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ABSTRACT 

THE COST OF WILDFIRES IN HEAVILY URBANIZED AREAS: MEASURING 
PROPERTY VALUE AND RECREATIONAL IMPACTS IN SOUTHERN CALIFORNIA 

By 

Sophia Tanner 

Wildfire frequency and severity are increasingly important issues in the western United States, 

as fires threaten lives, properties and outdoor amenities. This dissertation seeks to measure the impact 

of wildfires in Southern California using nonmarket valuation techniques. In the first essay we employ 

the hedonic property method to estimate how wildfires affect nearby property values. Using data from 

15 years of property sales prices and 20 years of wildfire data, we find that the average impact of a 

wildfire on housing sales price depends on the market context and whether the event increases, 

decreases, or does not change prior risk perceptions. This suggests that public policy and availability 

of risk information can be effective tools in capitalizing wildfire risk in housing markets prior to events. 

The second essay uses evidence from a choice experiment given to respondents who were 

intercepted at national forest sites to estimate preferences for environmental attributes of recreation 

sites. Specifically, the main attribute of interest is fire history, where fire history is given by distinct 

categories in relation to the dominant vegetation at the site. Using conditional logit, random 

parameters logit, and latent class models, we find that tree cover, compared to shrubs or barren areas, 

and water are highly desirable attributes, while evidence of past fires decreases the value of a site. 

Forest fires that reach the crowns of trees are least desirable, while older forest fires and shrub fires 

have less of a negative effect. We find evidence of significant preference heterogeneity over the 

vegetation and fire attributes. 

The third essay combines revealed preference data from site intercepts and stated preference 

data from online surveys to estimate the welfare impacts of different fire scenarios at recreation sites. 

We estimate a multi-site zonal travel cost model of trips to hiking and day use sites in the Angeles 



 

National Forest. Stated preference data on reduction in trips to recreation sites under different fire 

history scenarios are used to calibrate the zonal travel cost model and estimate the welfare impacts of 

fire. The greatest estimated welfare losses are from recent fires that burn all vegetation as opposed to 

less intense fires or older fires that have had time to recover. For popular recreation sites, these losses 

from intense fires can total over $1 million in one summer. Applying this method to a large fire that 

affected many sites in our study area, we illustrate how losses decrease over time, but can continue 

well after sites are re-opened due to lasting effects on the landscape.  
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INTRODUCTION 

Throughout the western United States wildfires are increasing in size, number, and severity 

(Miller et al. 2009; Westerling et al. 2006). In a study of the past three millennia of wildfires in the 

west, Marlon and et al. (2012) conclude that historic wildfire frequency and severity are driven by large 

scale climate anomalies – anomalies of the kind we are currently creating with climate change. In 

particular, an increase in mean temperature, along with precipitation changes and earlier springs have 

lengthened and worsened the wildfire season in all western regions (Westerling et al. 2006). 

Compounding this issue, humans have contributed to large scale fire exclusion and suppression, which 

has driven a wedge between the expected number fires given climatic conditions alone and actual 

wildfire levels. This fire deficit is unsustainable, suggesting fire seasons will continue to worsen in the 

future (Marlon et al. 2012). 

Southern California is home to four national forests that provide respite and recreation for 

millions of visitors and residents in the surrounding cities: the Los Padres, Angeles, San Bernardino, 

and Cleveland National Forests. They are unique among western forests; at higher altitudes, they are 

comprised of pine and oak, but the lower altitudes are dominated by chaparral, a dense shrubland 

characteristic of the region. High-intensity chaparral fires are subject to the same forces that drive 

earlier springs, and hence longer fire seasons, but large fires closely correspond to times when the 

Santa Ana wind is blowing (Moritz et al. 2010), a legendary dry wind that rushes from high pressure 

areas above the Great Basin towards the Pacific Ocean. Because of this, perhaps wildfires have always 

been a way of life southern California; as Didion writes in 1968: “The city burning is Los Angeles’s 

deepest image of itself ... the violence and unpredictability of the Santa Ana affect the entire quality of 

life.” However, even the wind is affected by recent climate change, as Miller and Schlegel find (2006). 

Models of air pressure predict consistent shifts in Santa Ana Occurrences (SAOs) from September - 



 2 

October in the fall to November - December, suggesting an additional extension of the wildfire season 

in the opposing direction. 

Clearly these wildfires have a significant impact on the lives of the 23.8 million people living in 

southern California (US Census Bureau). Besides fire making its way in to the local mythos, any 

individual blaze could cause loss of life, displace people from their homes, threaten or destroy 

structures, degrade air quality, close down roads and recreation sites in the national forests, and leave 

a lasting burn scar. In addition, the Forest Service is facing the rising financial cost of fire containment, 

which has started to shift resources away from non-fire related programs. For the first time, wildland 

fire management is a full 50% of its FY2017 budget ($2.45 billion out of $4.9 billion in discretionary 

funds) (“Fiscal Year 2017 Budget Overview” 2016). 

In addition to the financial cost of fire suppression and damage, there is a need to estimate the 

indirect effects of wildfires on surrounding communities. Given how wildfire prone the four southern 

California national forests are, and the densely populated areas directly adjacent to them, there may 

be significant negative effects of fire. On the other hand, southern California is unusually disposed to 

natural disasters – fires, earthquakes, flooding, and landslides coincide in the region. If wildfire risk is 

common knowledge, or wildfires are commonplace, we may see a more muted impact of any 

individual event.  

The objective of this dissertation is to measure the cost of wildfires to southern California in 

several different ways: first, we use the hedonic property method to estimate the impact of wildfires 

on nearby property values. The hedonic method allows us to capture impacts for those who live in 

the direct vicinity of wildfires. However, the four national forests of southern California attract 

millions of visitors each year, many of whom travel from coastal areas or out of state. To understand 

additional effects of wildfires, the second essay uses a choice experiment to estimate impacts of fire 

on different types of national forest visitors. In the third essay, using trip data combined with stated 
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preference data, we take an alternate approach to estimating the effect of wildfire on patterns of 

recreation in the Angeles National Forest and welfare loss to recreationists caused by fire. We find 

evidence that the effects of wildfires are heterogeneous. They affect communities and groups of 

people differently depending on both the physical attributes of the environment and how fire burns 

and recovers, as well as individuals’ perceived risk, knowledge of fire, and preferences. We also find 

evidence of heterogeneous impacts over time; recent wildfires cause greater welfare losses than older 

fires. However, intense forest fires can have lasting effects for many years. 

The first essay uses a 16-year multi-county housing data set that spans from the border of the 

Los Padres National Forest in the north to the Cleveland National Forest in the south to estimate the 

impact of wildfires on the value of surrounding properties. Previous studies in the area use small data 

sets, identifying the impact of a few wildfires on the immediate surrounding neighborhood. By 

contrast, the housing data used here includes single-family residences within 30 km of a national forest 

boundary that sold between January 1, 2000 and December 31, 2015. The wildfire data set spans 21 

years, from 1995 to 2015, and includes all wildfires in the area at least 500 acres in size. Tax records 

on sales were combined with data on the location and geographic features of the property to identify 

the effect of selling after a nearby large wildfire. Using a larger dataset allows us to better estimate the 

impacts of wildfires in general, rather than focusing on immediate effects of a single event. Results 

suggest that wildfires have an ambiguous effect on housing price; we argue that this ambiguity stems 

from housing market prior expectations of wildfire risk. If a wildfire causes a large increase in risk 

perception for buyers and sellers in the market, there should be a large negative impact of fire on 

nearby properties. However, if a wildfire does not change risk perceptions overall, there should be a 

smaller or insignificant impact.  

After a major wildfire, damaged recreation sites may be closed for months or years, and many 

have visible wildfire burn scars that last until the forest regrows. The second essay uses stated 
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preference data from a choice experiment to explore systematic heterogeneity in visitor preferences 

over wildfire burned areas. Data for the second essay comes from two rounds of onsite surveys 

administered June – August 2016 and June – August 2017 and two rounds of online survey conducted 

in the winters of 2016 and 2017 that followed up with onsite participants. Respondents made a series 

of choices between hypothetical national forest sites that differed in terms of vegetation and water 

near the site, fire history, and driving distance from home. We look for preference heterogeneity across 

respondents by comparing conditional logit, latent class, and random parameters logit models. Our 

results suggest that some environmental attributes – such as the presence of lakes or streams at a 

recreation site – are desirable and that preferences for these have little heterogeneity. Preferences for 

other attributes, including tree cover at sites and past fire history, do have heterogeneity; it may be of 

interest to forest managers that increased wildfire activity will impact some recreationists more than 

others – for some, it may be a curiosity to visit sites in fire recovery, while for others, it drives them 

towards other sites or activities. 

The third essay uses contingent behavior questions from the same online recreation survey. In 

contrast to trip choice over hypothetical sites, we instead analyze a choice about the site at which 

respondents were intercepted and interviewed. Under eight different fire history scenarios which 

corresponded to the vegetation at the site they visited, respondents were asked to make a choice 

between the same trip as before, visiting a different national forest site, or doing something else 

altogether. Using real trip data, we first estimate a multi-site zonal repeated logit model of trip 

participation and site choices. The revealed preference model uses a full set of site-specific fixed effects 

to control for site differences.  We then use the contingent behavior data and a contraction map to 

calibrate the demand model to the stated trip visitation changes under our fire history scenarios in 

order to derive the welfare impacts of different fires. We find that recent forest fires cause larger trip 
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and welfare losses than less recent forest fires or shrub fires, with forest fires decreasing welfare by 

roughly $29 per lost trip.   
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 Burning Down the House: The Effect of Wildfires on Housing Prices 

1.1 Introduction 

Wildfires have increased dramatically in number, size, and destructive force over the past 30 

years; especially hard hit is the American West, from forests of the Pacific Northwest through to dry 

shrub land that dominates at the U.S.-Mexico border. Two factors contribute to the increasing risk of 

wildfire. First, there are climatic or natural factors: warmer temperatures, earlier springs, insects and 

infestations affecting forests, and the associated buildup of available fuel, spark more frequent and 

intense wildfires (Westerling et al. 2006). Second, while climate change has encouraged conditions 

conducive to wildfires, development and expansion into the wildland-urban interface (WUI), land in 

transition between development and wildland, has put more people directly into their path. Syphard 

et al. (2007) find that population density and distance from WUI are important factors in determining 

fire frequency in California, suggesting human patterns of development also determine exposure to 

risk. The wildfire burned area in California may grow by as much as 74% by 2085, putting many more 

people at risk (Westerling et al. 2011). 

Wildfires have significant economic impact: federal agencies respond to tens of thousands of 

wildfires on roughly 7 million acres of land, spending a combined total of $1-2 billion each year on 

fire suppression (National Interagency Fire Center 2016). The US Forest Service expects its annual 

cost of fire suppression will reach an estimated $1.8 billion by 2025 (USDA Forest Service 2015) and 

has growing concerns that other management efforts suffer when funds are re-directed towards fire 

suppression. In addition to the direct costs of wildfire – suppression, damages, health, and loss of life 

- people living near areas affected by wildfire may experience indirect costs such as the aesthetic 

disamenity of the burn scar, loss of nearby recreation opportunities, and heightened perceived risk of 

wildfires. 
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The policy background is particularly relevant for Southern California. Its native shrubland, 

chaparral, has a natural high-intensity fire regime, and so the existence of large wildfires is not a recent 

phenomenon as it is in the Pacific Northwest or the Rocky Mountains. The largest wildfires in 

Southern California are driven by the Santa Ana winds, a phenomenon in which dry air from Nevada 

sweeps toward the Pacific Ocean (Moritz et al. 2010); however, dangers from these large wildfires only 

increase as the cities expand outward. In addition to this extensive experience with fire, the state passed 

a pivotal piece of legislation known as the Bates Bill in response to several severe fires affecting urban 

areas in the late 1980s and early 1990s. The Bates Bill mandates the state fire-fighting agency CAL 

FIRE develop and maintain maps of high wildfire hazard in wildland areas, where the state takes fiscal 

responsibility for fire containment costs, as well as in urban areas, where local governments have 

primary responsibility (California Govt. Code 51175-89). Homeowners are also required to disclose 

the wildfire hazard status of their property at the time of sale. These two features may mean that, 

distinct from other places, California residents may be exceptionally well informed about fire risks.  

This essay estimates the cost of wildfires to residents of southern California using a hedonic 

price approach. Our study area has several distinguishing features that make it a key place of inquiry: 

Southern California faces very high levels of development and urbanization, with suburbs of Los 

Angeles and San Diego running straight into four fire-prone national forests: the Angeles, Cleveland, 

Los Padres, and San Bernardino National Forests. The ecosystems in these national forests are 

characterized predominantly by chaparral, a dense shrubland unique to this region with a natural high-

intensity fire regime. At higher altitudes, they are comprised of pine, oak, and other mixed forest. The 

regulatory environment also sets California apart. State law requires the disclosure of potential risks, 

including location on a wildland fire zone, to home buyers at the time of purchase. Unlike some studies 

that use small data sets and individual fires, this essay uses a large dataset with 15 years of property 

sales prices and 20 years of wildfire data to exploit extensive spatial and temporal variation to identify 
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fire effects. We employ difference-in-differences to identify the effects of proximity to a past wildfire 

and risk perceptions associated with wildfires. Using a model of subjective risk, we argue that risk 

perceptions can cause wildfires to have an ambiguous effect on welfare. The empirical results suggest 

significant heterogeneity in the impacts of wildfire, which may be explained by differences in the risk 

information communicated to buyers, as well as differences in the recovery and regrowth patterns of 

the two dominant vegetation types in Southern California. 

The rest of this essay is organized as follows: a brief review of the existing literature on 

environmental risk and property values is followed by a conceptual model, a description of the data 

and sources, the results, and a discussion.  

1.2 Literature Review 

Wildfires have become an increasingly urgent environmental and public policy issue in the past 

decade, and literature on the effects of wildfires on housing prices has developed at pace. The hedonic 

literature attempts to disentangle the aesthetic disamenity caused by a large wildfire from the effects 

of increased risk perception among potential buyers. In one of the earliest studies, Loomis (2004) 

estimates the change in property values in a town near, but not directly affected by, a major wildfire 

in Colorado. He finds that housing prices dropped 10-15% in the unburned town after the fire and 

that the effects were still present five years later. Donovan, Champ, and Butry (2007) study changes 

to housing prices after wildfire risk ratings are made publicly available. They find that both spatial lag 

and spatial error dependence are statistically and economically significant; their preferred specification 

is the joint spatial lag-spatial error model. However, evidence on the economic significance of spatial 

dependence is mixed. Mueller and Loomis (2008) using Los Angeles county data on 2,520 transactions 

find that there is little of economic significance distinguishing estimates using spatial dependence and 

those that do not. With the same dataset Mueller, Loomis, and González-Cabán (2009) estimate the 

effects of repeated wildfires in a small part of Los Angeles county. Concentrating instead on the impact 
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of successive fires that occurred within either 2 years or 4 years, the authors find a much steeper 

decrease in price after the second fire (23% as opposed to 10%).   

Like other environmental risks such as hazardous waste sites, nuclear plants, and pipelines, the 

impact of a wildfire does not have a clearly demarcated boundary – properties located within a fire 

perimeter suffer damage, but people living outside the perimeter may also experience a loss of 

recreational opportunities, poorer view, or greater awareness of fire risk. Researchers have approached 

the issue of the appropriate distance to use in estimating impacts of wildfires in two different ways. 

Some studies impose an artificial boundary, outside of which they assume the wildfire has no impact 

(Loomis 2004; Mueller, Loomis, and González-Cabán 2009; Mueller and Loomis 2014). Mueller, 

Loomis, and Gonzalez-Caban look at the impact of fires on properties within a 1.75-mile radius of 

one or two large wildfires in a neighborhood outside of Los Angeles. They motivate the choice of a 

distance by appealing to Superfund studies (e.g. Gayer, Hamilton, and Viscusi 2000) which consider 

impacts on property values within a very short distance of a site, usually around one mile, as well as 

conversations with USFS officials about how far they expect an effect. However, they do not 

empirically test their assumption that fire effects are negligible outside 1.75 miles. 

 Others estimate the impact of fires allowing for a distance decay. Evidence on the distance at 

which wildfires have a significant impact on property prices is mixed. The relevant distance may 

depend on the context of the study area, severity of the fire, and geographic features of the area. In a 

study on an area of northwest Montana, Stetler et al. (2010) estimated several hedonic price models 

with a suite of environmental controls, including distances to many amenities – lakes, wilderness, and 

recreation areas – canopy cover, location on wildland-urban interface, and view of the burned area. 

They estimate a hedonic price model using housing data between 1996 and 2007, and information 

from more than 200 medium to large fires over the same time period. They include a property’s 

distance from a fire and time since the nearest fire in the controls, as well as structural and 
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environmental characteristics of the property. The results suggest importance of environmental 

amenities, and that there are significant differences for homes with a view of the burned area as 

opposed to without. They also find large and lasting effects of wildfires – home prices suffered at 

distances up to 10 km away from the nearest wildfire compared to homes at least 20 km from a fire. 

In addition, they do not find any significant attenuation in the effect for seven years after a wildfire, 

potentially because the time frame of covered by their data set is shorter than the long wildfire recovery 

time in the Rocky Mountain forests. 

Using data from properties in the Colorado Front Range, McCoy and Walsh (2018) utilize a 

quasi-experimental approach looking at how a wildfire affects three distinct treatment groups: houses 

in close proximity to the burn perimeter, houses with a view of the burn scar, and those located in an 

area of high latent wildfire risk. High latent risk areas are defined by geographic characteristics such 

as slope, vegetation, and housing density that make some communities more susceptible to fire than 

others. To test the sensitivity of their proximity treatment to the cutoff, they start with a treatment 

group of 1 km from a fire and increase the treatment group size in 250 m increments. In contrast to 

Stetler et al. they find no significant effect of a wildfire more than 2 km from the property. Within 2 

km of the burn perimeter, housing prices decrease by 8.7% in the first year after a fire, 7.7% the second 

year, and 6.7% the third year after a fire.  

We use a quasi-experimental approach similar to that of McCoy and Walsh to examine impacts 

of fire on nearby houses, as well as impacts of fire on areas of latent risk, but adapt the model to the 

southern California context. While other California studies have used a cross-sectional hedonic 

function and smaller datasets (less than 3,000 transactions) and focus on the impacts of specific fires, 

we use a long-term data set with a large number of transactions in a region that experienced numerous 

spatially and temporally distinct fires to identify the effect of fire events on property values.  
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1.3 Conceptual Model 

The hedonic model developed by Rosen (1974) treats houses as differentiated products, where 

price is a function of attributes including structural properties of the house, characteristics of the 

neighborhood, and environmental amenities, such as those provided by the national forests, and the 

observed market price is an equilibrium between buyers and sellers. In addition, a property’s value will 

capture the subjective perception in the market of future wildfire risk. A wildfire’s impact is at least 

two-fold: first, it will cause a change to the house’s amenities, and second, it may change the market-

wide subjective probability of risk. We argue that both these changes will have an ambiguous effect 

on the equilibrium housing price. Hansen and Naughton (2013), in a study of the impacts of natural 

disturbances to forests in Alaska, find that major disturbances such as pine beetle outbreaks and large 

wildfires increased assessed property values. They posit that for their study area the benefits of 

improved views after tree die-off outweigh the diminished forest amenities. The properties in our 

sample are located near a large national forest with recreation areas that wildfires diminish or destroy. 

However, a wildfire could also open up views or lead to a wildflower explosion the following spring. 

A wildfire also causes market agents to update their subjective probability of risk but will not 

necessarily cause them to expect a greater probability of fire in the future. If a fire heightens buyers’ 

risk salience, we expect to find a significant decrease in property values nearby. However, in some 

areas years of fire suppression have caused an overgrowth of brush and fuel; after one fire occurs, the 

probability of a second fire decreases. In both cases the overall impact will depend on how prospective 

buyers’ priors are affected and the relative magnitude of impacts. 

More formally, we lay out a model of subjective risk in the housing market following the 

example of Beron et al. (1997) who incorporate risk of earthquake damage into the hedonic price 

function. The hedonic price function is given by Equation 1. 

! = ! #$, &, '(, ')('(), (1) 



 14 

  

In equation 1 Z is a set of structural, neighborhood and geographic characteristics that influence 

housing price; r is a vector of environmental and geographic characteristics of the neighborhood, 

including elevation, housing density, distance to the forest, and forest quality that are positive 

attributes in the market, but are also related to risk of wildfire; '(is the buyer’s subjective probability 

of a fire occurring; and ') the buyer’s subjective probability of property damage, which is an increasing 

function of the probability of fire. It is important to note that after a fire occurs changes in '( could 

be due to increased risk salience – perhaps due to media attention, more accurate risk perceptions, or 

a change (either an increase or decrease) in the future risk of wildfire. For example, in the pre-fire state 

of the world, market actors could be either overestimating or underestimating objective wildfire risk 

(Beron et al. 1997). Another, perhaps unlikely, possibility is that buyers in the market are always correct 

about wildfire risk and any observed change in the marginal change in '( can be attributed to actual 

changes in fire risk. 

The risk term '( can be written more fully as a function of the amenity variables r and market 

information about wildfire risk I. 

'( = '((&, -) (2) 
  

We expect that the subjective risk of fire will depend on both environmental and geographic attributes 

that are correlated with risk of wildfire as well as market information I regarding fire risk, which may 

come from local governments, the media, or other market actors. A recent wildfire is one such source 

of information that we expect to have some impact on the market price. In California another source 

of information comes from hazard disclosure documents provided to buyers when a house is 

purchased regardless of whether a recent fire has occurred. Hazard disclosures inform buyers whether 

or not the property is located on a Fire Hazard Severity Zone (FHSZ). FHSZ status indicates that the 
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land has a high probability of experiencing a fire given its physical characteristics and historical fire 

activity. Details on construction of FHSZ are provided in the Data section. 

Since r represents characteristics positively correlated with fire risk, by construction the partial 

derivative of '( with respect to r is nonnegative. 

.'(

./ ≥ 0 (3) 

  

However, we cannot sign the partial derivative with respect to I as buyers’ subjective risk perceptions 

could be either increasing or decreasing in the level of information they receive. If their priors are that 

wildfire risk is low, media coverage of wildfires in their area may increase subjective probability of fire. 

If their priors are that wildfire risk is higher than it actually is, receiving more accurate risk information 

may decrease subjective probability of fire. 

The subjective probability of damage ') is an increasing function of probability of fire and is 

given by the following equation, 

') = ') #'((&, -), (4) 
  

and its partial derivative is nonnegative. 

.')

.'( ≥ 0 (5) 

  

Again, subjective risk perceptions cannot be signed with respect to information since the partial 

derivative of '( with respect to I cannot be signed. 

.')

.- =
.')

.'(
.'(

.-
>
<0 (6) 

  

In this framework, a wildfire acts as a shock to both information and forest quality. Much of 

the Southern California forests is chaparral, a dense shrubland at maturity. Though it burns with high 

intensity, it also has a quick regrowth rate: sometimes burn scars are difficult to detect one to two 
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years after a fire (Barro and Conard 1991). However, if fires occur more quickly than the natural 30 

to 150-year regime, chaparral may be replaced with non-native grasses, which are even quicker to burn 

(Barro and Conard 1991; Bell, Ditomaso, and Brooks 2009). In older forests, stand clearing fires have 

the effect of removing available fuel, making another fire less probable. Hence, the overall effect of 

fire on subjective risk is indeterminable. 

A buyer on the market maximizes expected utility across three states of the world. In the first 

state of the world, a fire is not realized, and utility depends on housing characteristics and the level of 

site attributes r. In the second, which occurs with subjective probability '( a fire occurs and may affect 

nearby amenities denoted rf in the fire state but does not damage the property. In the third, which 

occurs with probability ') , property damage is sustained, and structural characteristics Z change to 

Zf. In each state, the buyer faces a budget constraint that depends on a numeraire good X and the 

price of the home P. 

4 = 5 + !(∙) (7) 
  

Recall that equation (1) defined the hedonic price function below, where '( is a function of r. 

! = ! #$, &, '(, ')('(), (8) 
  

Following the arguments laid out above, the effect of fire on P is now ambiguous and depends on the 

relative effects on amenities and subjective risk perceptions. The buyer’s maximization problem over 

the three states is given by 

max
;,<

=⟦?⟧ = '( ∙ (1 − ')) ∙ CD5, $, &EF + '( ∙ ') ∙ CD5, $E, &EF	 (9) 

+(1 − '() ∙ C(5, $, &)	  
  

subject to the budget constraint given by (7).  In the model, a buyer maximizes utility from a home 

purchase by selecting characteristics Z and site amenities r. This conceptual framework leads to four 

expectations: 
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1. If the disamenity effects of a fire outweigh changes in risk perception, the impact of a 

recent fire will be negative.  

2. Assuming that the nearer a property is to a wildfire perimeter, the greater the level of 

information received by that fire, we expect that the impact of a fire should be greater 

at closer distances than at farther distances. Similarly, we expect that properties selling 

more recently after a fire receive more information from the fire. 

3. The more accurate the buyer’s information prior to purchasing a home, the less likely 

a recent wildfire will change risk perceptions. We expect that if FHSZ status is 

conveying accurate information, the impacts on price observed at closer distances 

from a fire should be mitigated if a property is on FHSZ. However, if FHSZ status 

leads to a general overestimation of market risk, this may not hold.  

4. A fire may serve as either a positive or negative information shock, so the overall 

impact of a fire on housing value will be ambiguous. 

We are able to test 2-4 by taking advantage of California’s Fire Hazard Severity Zones (FHSZ). 

Properties sold on FHSZ have elevated fire hazard, and potential buyers are made aware of the 

increased risk on natural hazard disclosure forms as well as by their realtor prior to sale. Given elevated 

market information for buyers of properties on FHSZ, we expect that a recent fire will have a 

significantly smaller impact on sales price than on non-FHSZ properties. Second, we expect that larger 

or more destructive fires will serve as greater information shocks than smaller or less destructive fires. 

Finally, we expect that there may be some areas or times after which a fire when the impact on sales 

prices is ambiguous, which may depend on the market, physical characteristics of the area burned, or 

characteristics of the fire. If a large destructive fire decreases buyers’ perception of future fire risk, 

sales prices may increase after a fire. If a fire serves to increase buyers’ risk salience, prices may decrease 

after a fire.  
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1.4 Econometric Model 

The hedonic price method is commonly used to value environmental amenities, from the 

benefits of open space to air quality to risks such as nuclear waste (Anderson & West 2006; Kim, 

Phipps, & Anselin 2003; Gawande & Jenkins-Smith 2001). However, a concern in the estimation of 

hedonic price functions is that coefficients will be biased if unobserved variables that influence price 

are correlated with observed variables. To address this, we turn to a difference-in-differences (DID) 

approach commonly used in in the risk literature to identify the effects of wildfires on a group of 

treated properties (Hallstrom and Smith 2005; Gawande, Jenkins-Smith, and Yuan 2013; McCoy and 

Walsh 2018). In our case, a unique feature of using wildfires as treatments over a large area is that our 

events are scattered through time and space. As opposed to a single before and after time period for 

the study area, two properties selling in the same year far away from each other will be nearest to two 

different wildfire perimeters; one may have sold before its nearest wildfire, while the other may have 

sold after its nearest wildfire. 

To implement the DID approach, we first calculate the distance between each property and all 

wildfires within 15 km, measured as the distance from the property to the wildfire perimeter – because 

of the prevalence of wildfires in the area, many properties are within 15 km of multiple fires. We 

expect that excluding these properties from the dataset will bias estimates, so we keep them and add 

a control variable equal to the number of past fires. The past fires variable is defined by the number 

of fires 500 acres or more within 15 km prior to the transaction. The model takes this form: 

HI!JK = LM + L)JNKOPQRJK+	LSTNK!UQRVP/WJK + L)JNKSTNK(OPQR × 	!UQR)JK + YZT[N\]JK (10) 
+Y^\T_J + Y`\J^ZaT<bJK + YcT[`KdeJ + YKJf\gJK + hJK 

  

where lnPit is the natural log of the sale price for house i selling in year t. OPQRJK is the natural log of 

distance from the fire perimeter. We exclude properties within the fire perimeter if they sold after the 

fire, but in order to keep properties within the perimeter that sold before a fire occurred, we transform 
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the distance variable by adding .01 (or 1 meter) before taking the natural log. Since the housing closing 

process takes 30 to 60 days, we define Postit=1 if the property is sold between 60 days and three years 

after the nearest fire occurs.1 The coefficient of interest is bdistpost, the difference-in-difference 

coefficient that measures the effect of selling after a fire for houses in each treatment group. The 

model also controls for housing characteristics X, geographic characteristics G, neighborhood 

demographics N, and includes county fixed effects C, and year by quarter dummies T. Housing 

characteristics are drawn from tax assessor data and are accurate to the most recent tax assessment. 

For unbiasedness in difference-in-difference estimates, three assumptions must be met: correct 

specification of the model, error terms satisfy =(hJ|5) = 0, and there must be parallel trends between 

treatment and control groups.  

1.5 Study Area and Data 

1.5.1 Study Area 

There are several key features of Southern California that make it an interesting area to 

investigate potential for wildfire risk. First, in many areas of the country, areas at high wildfire risk are 

remote or undeveloped. By contrast, some of the largest cities in California including Los Angeles and 

San Diego are adjacent to forested or wilderness areas with extreme wildfire risk.  In our selected study 

area of southern California in particular, these high-risk areas also benefit from amenities from 

national forests. Second, the physical characteristics of the study area are unique: the dominant 

vegetation in the region chaparral, which has a very different fire regime from forests in the Pacific 

Northwest or the Rocky Mountains. Finally, Californians are familiar with natural hazards and risks, 

and the housing market has many sources of fire risk information for potential home buyers. One 

major source of risk information is that the state natural hazard disclosure law requires buyers to be 

                                                

1 Models were also run defining postfire as 120 days to three years and there was little effect on results. 
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notified of homes on land that has been classified as at high wildland fire risk. These risk zones are 

defined by state and local governments; more on how they were developed in Section 1.5.4. 

The study area is geographically large and covers several of California’s biggest urban areas, 

including Santa Barbara, Los Angeles, Anaheim, Riverside, and San Diego. Because we expect 

heterogeneity between these major cities, and because it is unlikely that they share a housing market, 

in addition to running models with pooled data from all counties, where possible, we also run models 

with five smaller markets. The five markets consist of: (1) Santa Barbara and Ventura Counties; (2) 

Los Angeles County; (3) Orange County; (4) Riverside and San Bernardino Counties; and (5) San 

Diego County. Figure 1.1 depicts the entire study area, county boundaries (labeled), and national 

forests (shaded). The five markets are denoted by county fill. From north to south the markets are: 

Santa Barbara & Ventura; Los Angeles; Orange County; San Bernardino & Riverside; and San Diego. 

 

 
Figure 1.1 Study Area and Markets 
 



 21 

1.5.2 Housing Data 

We obtained property transactions data for homes sold between January 2000 and December 

2015 near the Los Padres, Angeles, San Bernardino, and Cleveland National Forests, spanning seven 

counties: Santa Barbara, Ventura, Los Angeles, San Bernardino, Riverside, Orange, and San Diego. 

The study area was defined by selecting Zip Code Tabulation Areas (ZCTA) within 30 km of the 

National Forests on the coastal side. Figure 1.2 shows the study area with the selected ZCTA as well 

as the four National Forests. Housing data was purchased from CoreLogic, a company that provides 

real estate data obtained from public records to financial and research institutions. This data includes 

transactions data for residential properties, street address, a set of structural variables including 

bedrooms, bathrooms, square footage, lot size, and features such as parking, fireplace, and pool. For 

a subset of properties, we also observe information on one prior sale. Data quality for features of the 

properties – e.g. swimming pool, fireplace, view – is quite low so models include only structural 

variables such as the number of rooms and square footage. Data are limited to relevant transactions 

of owner-occupied residential single-family residences in a series of steps. To identify arms-length 

transactions as opposed to transfers between family members or built-to-order homes, we exclude 

properties built in the same year as they were sold, that sold twice in 12 months, properties transferred 

using quit claim or other unusual deeds, and those marked with a partial sale code.  

After excluding properties with missing sales data, we drop houses in the top 1% of bedrooms, 

bathrooms, and total rooms, and the top 1% of square feet, to remove extreme values from the 

sample2, and remove condos and duplexes. The cleaned dataset still contains extreme values in size 

and sales price: the HPI-adjusted sales price of remaining properties ranges from $3,500 to 

$191,000,000, including some properties with a price per square foot of $1, and the minimum square 

                                                

2 Muehlenbachs Spiller and Timmins (2015) and McCoy and Walsh (2018) use similar methods to trim extreme values 
 



 22 

footage is under 50. For all models we then further exclude properties with fewer than 500 square 

feet3, with a price per square foot of less than $404, a sales price of less than $10,000, or a sales price 

of greater than $10,000,000. After trimming, we have 1,346,132 observed transactions; some 

properties sold twice between 2000-2015, and information from both transactions are included in the 

total observations. A comparison of sales price summary statistics before and after trimming extreme 

values is in Table 1.1. The price distribution in the trimmed sample now shows a more realistic 

minimum of around $20,000 rather than $3,500, while the distribution in middle 90% of the sample 

has not changed drastically. 

 

Table 1.1 Distribution of Sales Prices in the Full Sample Before and After Trimming 

 Before Trimming After Trimming 
   

Minimum $ 3,496 $ 19,379 
1st Percentile $ 139,598 $ 140,879 
5th Percentile $ 198,511 $ 198,882 
Median $ 447,159 $ 447,159 
95th Percentile $ 1,069,509 $ 1,063,000 
99th Percentile $ 1,750,977 $ 1,701,387 
Maximum $ 191,000,000 $ 9,984,551 
   

N 1,348,336 1,346,132 

Table 1.1 displays summary statistics on the HPI-adjusted sales price of transactions in the full sample before and 
after trimming by four criteria: (1) properties under 500 square feet; (2) transactions with a price per square foot of 
less than $40; (3) transactions with a sales price less than $10,000; and (4) transactions with a sales price greater than 
$10,000,000. 

 

 The focus of this paper is to identify the immediate impact of a recent fire, so to minimize the 

potential for confounding influences, models are limited to transactions which occur in the three years 

                                                

3 500 square feet is the size cutoff to meet the definition of a micro-home 
4 Wolf and Klaiber (2017) remove properties with a price of less than $40/sqft 
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before or after the wildfire, and properties within 10 km of a wildfire 500 acres or more. Table 1.2 

shows summary statistics for the fully cleaned dataset and the dataset used in most of the models 

presented (transactions within three years before or after a fire, and within 10 km of a wildfire 500 

acres or more – the estimation sample). Transactions in the estimation sample have more wildfires 

prior to the sale (2.4 compared to 1.5) and are on average closer to a fire perimeter (3.5 km compared 

to 4.3 km) than the full sample. The structural characteristics of the properties, including square 

footage, price, and age, as well as year of sale, are very similar to those in the full sample of properties. 
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Table 1.2 Summary Statistics on Transactions in the Full Sample and Estimation Sample 

  Full sample of properties 
(N= 1,346,132) 

 Properties in Estimation Sample 
(N= 223,323) 

Variable Mean Std dev Min Max   Mean Std dev Min Max 
          

Sales price ($) 520,349 346,689 19,379 9,984,551  525,494 341,233 44,039 9,637,375 
Price per square foot ($) 281 145 40 8,022  284 137 40 4,516 
Bedrooms 3.4 0.8 1 5  3.4 0.8 1 5 
Bathrooms 2.4 0.8 1 5  2.4 0.8 1 5 
Square feet 1,909 757 500 4,981  1,903 750 500 4,981 
Age 36 23 1 214  35 23 1 208 
Sale year 2007 5 2000 2015  2006 4 2000 2015 
Distance from USFS land (km) 14.7 8.2 3.0E-4 30.0  11.5 7.4 3.0E-4 30.0 
Distance to other open space (km) 0.6 0.5 0.0 6.1  0.6 0.5 0.0 5.9 
Number of fires prior to sale (over 
500 acres and within 15 km) 1.5 1.7 0 16  2.4 1.9 0 16 

Distance to fire perimeter (km) 4.3 3.1 0.0 15.0  3.5 2.5 0 10.0 
FHSZ (0/1) 0.1 0.3 0 1  0.1 0.3 0 1 
Sold after a fire (0/1) 0.5 0.5 0 1   0.5 0.5 0 1 
          

Table 1.2 summarizes structural and relevant geographic characteristics of properties; statistics for the full sample of properties are displayed on the left, and 
statistics for the Estimation Sample (transactions that occur in the three years before or after a wildfire) are on the right. Property characteristics, including sales 
price, size, number of rooms, and age are similar between the two samples. In addition, there is no evidence for significantly different transaction times between 
the two samples. There are some differences in terms of distance to fire perimeter and number of fires prior to sale. 
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1.5.3 Wildfire and Geographic Data 

Using wildfire perimeter data available from California’s Fire Resource and Assessment 

Program (FRAP), we select wildfires that occur between 1995-2015, and only fires at least 500 acres 

in size; earlier models suggest fires older than ten years or smaller than 500 acres have a negligible 

effect on sales. The FRAP data set obtained from the state of California includes all footprints of fires 

10 acres or greater that local agencies reported to the state. After matching each property with all fire 

perimeters within 15 km, there are 1116 individual footprints 10 acres or more – summary statistics 

for fires by year are in Table 1.3. The 25th percentile in size is 40 acres, the 50th is 131, and the 75th 

percentile in fire size is 521 acres. Thus, limiting to fire perimeters 500 acres or more allowed us to 

concentrate on a subset of significantly large fires. A total of 288 wildfires are within 15 km of a 

property in the data set and 500 acres or more. Figure 1.2 shows the selected study area and spatial 

distribution of wildfires in the greater Los Angeles area. 

Conditional on being more than 500 acres, these fires burned on average 10,900 acres and lasted 

roughly a week. Robustness checks include models with only these extra-large fires 10,000 acres or 

more. The study period spans some of California’s worst wildfire incidents, including the “California 

Fire Sieges” of 2003, in which 14 fires blazed through southern California over the course of two 

weeks, and 2007, which charred nearly one million acres between Santa Barbara and the US-Mexico 

border (Blackwell and Tuttle 2003; CAL FIRE, USFS, and OES). 

Addresses were geocoded with Texas A&M Geoservices. Fifty percent of properties matched 

with a parcel latitude and longitude, 46% matched with a street segment, and 4% were matched with 

a zip code centroid. Next, geographic data for properties was obtained, including distance to the 

nearest wildfire perimeter, distance to the closest National Forest boundary, and distances to other 

amenities for each individual property. Distance to primary and secondary roads was calculated using 

road data from the US Census Bureau’s TigerLine road shapefiles. Distances to city centers were 
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calculated using metropolitan boundaries from the San Diego Association of Governments and the 

city of Los Angeles – each property was matched with either Los Angeles or San Diego as the nearest 

major city – and distance to the nearest park or open space used data from the California Protected 

Area Database.  

 

Table 1.3 Descriptive Statistics for Wildfires > 500 ac and within 15 km of a Property by Year 

Year Number of Fires Smallest (Acres) Median (Acres) Largest (Acres) 

1995 23 531 1,680 21,444 
1996 24 502 1,084 19,861 
1997 19 522 1,326 24,797 
1998 11 580 2,056 28,136 
1999 16 502 3,298 63,508 
2000 4 798 1,199 11,734 
2001 8 531 1,599 10,438 
2002 20 555 3,432 61,691 
2003 21 806 8,474 270,686 
2004 17 513 3,693 16,447 
2005 12 618 1,630 23,396 
2006 12 500 6,549 161,816 
2007 27 602 3,839 240,359 
2008 8 500 7,059 30,305 
2009 8 839 4,824 160,833 
2010 7 522 717 12,582 
2011 5 508 1,027 2,134 
2012 9 519 2,637 11,667 
2013 14 510 2,505 30,268 
2014 7 959 1,952 15,186 
2015 5 1,049 1,462 31,284 

Table 1.3 shows summary statistics for the sample of wildfires 500 acres or more, and within 15km of a property in 
the sample, by year. An average year had 14 wildfires, and a median fire size of around 2,000 acres. Some exceptional 
years (2003, 2007) had wildfires more than 200,000 acres. 
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Figure 1.2 Study Area with National Forests and Wildfires Perimeters from 1995-20155 
 

1.5.4 Fire Hazard Data 

Previous research suggests that risk of wildfire is generally not salient to potential home buyers 

except shortly after an information shock such as publicly available risk ratings, or an actual fire. A 

household survey of Colorado Springs residents found that homeowners had not been aware of fire 

risk when they purchased their homes (Champ, Donovan, and Barth 2009), and a related study on the 

impact of making available parcel-level risk ratings in the same town found that before the program 

amenities associated with risk were positively related to price, while after ratings were posted online 

the amenities were insignificant (Donovan, Champ, and Butry 2007). We therefore identify effects of 

                                                

5 Figure 1.2 shows county boundaries (labeled), USFS boundaries (labeled and denoted by a striped pattern), and fire 
perimeters in the study area. Each fire perimeter is at least 10 acres in size, within 15 km of a property in our study 
area and occurred between 1995 and 2015. Many of the fire perimeters overlap with USFS land, but several wildfires 
affect other areas.  
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wildfires along two main dimensions: the effect of being close to a recent fire for properties located 

on and off areas of high risk as defined by the state. 

California Department of Forestry and Fire Protection (CAL FIRE) produces statewide maps 

of areas with significant fire hazards, called Fire Hazard Severity Zones (FHSZ). Hazard zones are 

developed using information about the physical attributes of the area and fire history, including fuel 

availability, topography, typical weather, and models of ember production and movement. FHSZs do 

not take into consideration private actions to reduce fire risk on a given property, such as fuel 

reduction and defensible space. Hazard zones are divided into two main categories defined by the 

level of government responsible for firefighting costs: state responsibility areas (SRAs) and local 

responsibility areas (LRAs). For SRAs, hazard severity is rated as one of three categories: moderate, 

high, or very high. For LRAs, there is only data on areas rated “very high”. 

Maps of FHSZ have existed since the 1980s, however, early geographic records are incomplete. 

Mapping efforts were greatly expanded in the early 2000s; the current version of maps for SRA were 

proposed in 2007 and adopted by January 2008. Current hazard zones for LRAs were proposed 

between 2007 and 2008 and were adopted by local jurisdictions on an individual basis afterwards6. 

Our main models define FHSZ to be a binary variable equal to one if the property is on any of the 

above zones and use the hazard zone designation that is most accurate to the sale year; properties that 

sell prior to 2008 are coded using older FHSZ maps that date back to 1985 and properties selling in 

2008 or later are coded using the more recent maps. 

FHSZ may be used in the development of building standards and defensible space requirements, 

but more importantly since 1998 California’s Civil Code has required natural hazard disclosures at the 

time of property sale, including both location on areas of wildland fire risk (any SRA rating) and 

                                                

6 The state of California advised the city of San Diego that LRA maps would be updated roughly every five years 
but as of 2018 there are no additional updates from after the 2007-2008 remapping effort 
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whether the property is in a “Very High” wildfire hazard zone (anywhere with a “very high” hazard 

rating). Location of FHSZ according to maps adopted in 2008 is shown in Figure 1.3. 

 
Figure 1.3 Fire Hazard Severity Zone (FHSZ) Maps Adopted in 2008: Both SRA and LRA7 
 

1.5.5 Data on Major Highways as Barriers 

For a robustness check presented in the appendix we use an additional treatment that uses 

highways, which often act as a physical barrier for wildfires, as an information treatment. Because it is 

rare that fires jump barriers with little fuel (e.g. a large road or river), we expect that properties in the 

interior of a highway – between a major highway and USFS land – will be more impacted by a recent 

fire than those directly on the other side. 

                                                

7 Figure 1.3 shows county boundaries (labeled), ZCTA boundaries in a light gray, and boundaries of FHSZ in the 
study area. There are two categories of FHSZ: SRA are areas where the state is responsible for fire-fighting costs, 
and LRA are areas where the local governments are responsible for fire-fighting costs. In addition, all land is either 
unclassified or classified into three hazard categories: moderate, high, or very high. 
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To develop a model that uses major highways as barriers we use Highway I-210 as a reference 

point for major road on Google Maps. Highway 210 runs almost parallel to the boundary of the 

Angeles National Forest from Santa Clarita to San Bernardino and is often used as a reference point 

for wildfire news. With 210 as a reference point, we select similar major roads from the TigerLine 

shapefile in GIS and individually select the portions of road that run parallel to all four forest 

boundaries. We calculate both the distance and angle to the selected roads for each property in the 

sample. Then, by selecting groups of properties based on latitude, longitude, and angle to the nearest 

of the roads, we are able to identify the properties in each county that are between the highway and 

forest (“between”) and on the other side of the highway. 

1.6  Empirical Model and Results 

1.6.1 Cross-Sectional Difference-in-Differences Model 

Our empirical approach uses the hedonic pricing model in a difference-in-differences 

framework where selling near a recent wildfire is the treatment and properties that sold prior to the 

wildfire or farther away are controls. In this specification, treatment estimates the effect of a recent 

fire but cannot separately identify amenity and risk effects. Prior studies testing the effect of wildfire 

proximity on housing prices have used a range of values from 2 km (McCoy Walsh 2018) to roughly 

3.2 km (Loomis 2004). Rather than assuming a strict distance cutoff after which proximity to a recent 

fire has no effect, we allow impacts farther away from a fire by using continuous distance as our 

treatment variable. In all models we allow for heterogeneous effects according to FHSZ classification 

by interacting an indicator variable for FHSZ with postfire and distance variables.  

The econometric specification takes the form 
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!"#$% = '( + '*$+%ln	(0123)$%+	'56+%#723819:$% +	';<+=>?@A 

(11) 
+	'*$+%56+%[ln	(0123) × 	#723]$% + '*$+%;<+=[ln(0123) × >?@A]$% 
+	'56+%;<+=[#723 × >?@A]$% + '56+%;<+=*$+%[ln	(0123) × #723 × >?@A]$% 
+	E<6F+GH$% + EIG6J$ + EKG$I<L6MN$% + EO6FK%PQ$ + E%$RGS$% + T$% 

  

The dependent variable is log of an HPI-adjusted sales price8. We control for distance from the 

fire perimeter, selling after a fire, and FHSZ (0/1 dummy variable). The coefficient '*$+%56+% on the 

interaction term is the difference-in-difference coefficient which describes the effect of distance from 

a wildfire after the fire occurs; '56+%;<+= describes the impact of selling on FHSZ after a wildfire; and 

'56+%;<+=*$+% shows the additional impact of selling on FHSZ after a nearby wildfire. In all models we 

control for a set of structural, geographic, and demographic characteristics; Table 1.4 is a list of all 

controls used in the cross-sectional difference-in-differences estimation.  

 

                                                

8 The dependent variable is actual sales price rather than assessed property value. 
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Table 1.4 Structural, Geographic, and Demographic Controls used in Cross-Sectional Models 

Category Variable Name Description 
   

Structural Variables Bedrooms Number of bedrooms 
 Bathrooms Number of bathrooms 
 Ln(Square feet) Logged square footage 
 Ln(Acres) Logged parcel acreage 
 Age Age of the house 
   

Geographic Variables Development density Indicator variables for housing development density (4 categories) 
 National forest (NF) Indicator variables for the closest national forest (4 variables) 
 Distance from NF Logged distance from NF land in km 
 Slope Slope of property 
 Elevation Elevation of property 
 WUI Indicator variable for located on Wildland-Urban Interface 
 Urban Indicator variable for located on land classified as urban 
 Distance to city Logged distance from the nearest major city center, either Los Angeles or San 

Diego 
 Distance to open space Logged distance to land in the California Protected Area Database 
 Distance to highway Logged distance to major road 
 Number of past fires Number of fires (500 acres or more) within 15 km prior to the transaction 
   

Census Tract 
Characteristics 

Percent Bachelor's 
degree Percent of the population 25 years and older with at least a Bachelor's degree 

 Median income Median household income 
 Percent Hispanic Percent of the population that is Hispanic 
 Percent black Percent of the population that is black 
  Unemployment rate Percent of the population unemployed 
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In the pooled model with all counties the sign of the coefficient on Ln(Distance) is positive and 

significant, indicating that before a fire occurs, prices are higher farther away from the area that 

eventually buns. Given that distances from various amenities – Los Angeles or San Diego city centers, 

major highways, USFS and other wild land – are controls, we would have expected an insignificant 

sign on this variable, and its significance suggests some omitted variable correlated with fire. One 

possible explanation is that property price differentials are in part driven by insurance rates. Insurance 

companies are increasingly using sophisticated modeling techniques to estimate fire risk at a parcel 

level and may use variables beyond the controls in our model. After major fires, they update insurance 

rates not only for affected properties but also properties in other areas determined to have a high risk 

of fire. 

Closer examination of the by-county models provides evidence for a mixed impact of distance 

from fire perimeter across the sample. The positive significant coefficient on FHSZ indicates that in 

general, properties on risky areas have a premium (being on FHSZ is associated with a 7.3% higher 

sales price). In general, FHSZ areas are less developed and adjacent to areas with nice views and 

recreational opportunities and prior to a fire, the benefit from these amenities may outweigh any 

sources of risk information. The coefficient on Ln(Distance) x FHSZ describes the impact of distance 

from a fire perimeter on FHSZ before the fire happens. Similar to Ln(Distance), we expected this 

value to be insignificant. It is in the pooled county model, while in the models by market there are 

mixed impacts. 

Recall hypotheses (3) the greater the buyer’s information prior to purchasing a home, the less 

likely a recent wildfire will change risk perceptions; and (4) a fire may serve as either a positive or 

negative information shock, so the overall impact of a fire on housing value will be ambiguous. The 

Postfire x FHSZ coefficient is negative and significant in the pooled county model – on average there 

is a 1.7% decrease in sales price on FHSZ after a fire. This is consistent with our hypothesis that 
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potential buyers and sellers of properties on FHSZ will experience either an increase in fire risk 

salience or an increase in insurance market rates that will decrease the sales price on these zones 

compared to properties that are not rated as at greater wildfire risk. However, by looking at the models 

by market, we can see that this effect only holds for part of the sample. It may be the case that in those 

areas where we see the opposite effect, after a fire subjective risk decreases for the future. 

On average after a fire, sales price decreases as distance from the fire increases, meaning after a 

fire happens, houses are selling for higher prices near the fire perimeter. This contradicts prevailing 

results in the literature. Our study does have some significant differences from prior studies, the most 

major being that we allow for effects over a much wider distance (10 km compared to a norm of 2-5 

km or even less). Robustness checks include models that use 5 and 15 km distance cutoffs as well as 

an alternate model specification that interacts Postfire with 1-km bins from the fire perimeter (these 

results are summarized in the appendix). For models in smaller markets we are not able to detect the 

effect of distance from a recent fire on property sales prices. The Los Angeles County market model 

has an estimated parameter that is positive and significant, indicating as you get farther away from a 

recent fire, price increases. The overall effect seems to be driven mostly by Orange County. 

The coefficient on the triple interaction of Distance x Postfire x FHSZ in both the All Counties 

and Orange County models is the opposite sign than the main DID estimate Distance x Postfire. 

Considering expectation (3) above, this suggests that no matter the overall impact of a fire on risk 

expectations, being on FHSZ has a mitigating impact. In areas that do not get this extra risk 

information when houses are on the market, distance to open space or other sources of information 

are used to form priors on fire risk. However, for buyers and sellers of properties on FHSZ, each 

receive a more accurate information signal about fire risk, and so after a fire, beliefs are updated to a 

lesser amount.  
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Table 1.5 Results of Cross-Sectional DID Models; All Counties and Five Markets 

  (1) (2) (3) (4) (5) (6) 

 All Counties Santa Barbara 
& Ventura Los Angeles Riverside & San 

Bernardino Orange County San Diego 

       

Ln(Distance) 0.013*** 0.021*** -0.006*** -0.009*** 0.012*** -0.057*** 
 (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) 
Postfire 0.040*** 0.010 -0.007*** 0.030*** 0.066*** 0.010*** 
 (0.000) (0.418) (0.009) (0.000) (0.000) (0.000) 
FHSZ 0.073*** 0.045* 0.044*** 0.040*** 0.038*** 0.015*** 
 (0.000) (0.068) (0.000) (0.000) (0.000) (0.004) 
Ln(Distance) x FHSZ -0.007 0.029 0.020*** 0.023*** -0.007* -0.006** 
 (0.000) (0.143) (0.000) (0.000) (0.092) (0.024) 
Postfire x FSHZ -0.017*** 0.055* 0.015* -0.011 -0.066*** 0.053*** 
 (0.000) (0.051) (0.067) (0.191) (0.000) (0.000) 
Ln(Distance) x Postfire -0.010*** -0.006 0.014*** 0.001 -0.061*** 0.002 
 (0.000) (0.436) (0.000) (0.343) (0.000) (0.257) 
Ln(Distance) x Postfire x 
FHSZ 0.019*** -0.008 -0.008 -0.001 0.043*** -0.032** 

 (0.000) (0.723) (0.184) (0.895) (0.000) (0.048) 
Constant 9.565*** 9.350*** 9.653*** 12.075*** 9.051*** 9.313*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 206,841 6,351 61,438 67,791 31,636 39,625 
R-squared 0.830 0.793 0.777 0.838 0.804 0.782 
       

Table 1.5 describes the controls used in the cross-sectional DID model, including structural controls, geographic variables, and census tract characteristics. All 
logged variables have been transformed by adding one so that properties with distance=0 from open space, city center, or fire perimeter remain in the models. 
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1.6.2 Repeat Sales Model 

A concern of the cross-sectional DID approach is that there are unobservables that bias the 

treatment effect estimate. We take advantage of observing repeated sales from a subsample of 

properties to create a two time-period panel and run property fixed effects models. The repeat sales 

model should better control for time-invariant unobservables that are correlated with both distance 

to fire and price. The model takes the form: 

!"#$% = '(+	'+,-%#./01234$% +	'56-789:;$% 

(12) +	'<$-%+,-%[ln	(A2/0) × 	#./0]$% + '<$-%56-7[ln(A2/0) × 89:;]$% 
+	'+,-%56-7[E./0 × 89:;]$% + '+,-%56-7<$-%[ln	(A2/0) × #./0 × 89:;]$% 
+	'FGHIJ4$% + KLH$G6M,NO$% + K%$PHQ$% + 8R + S$% 
 

 

Like Equation 15, the coefficient '<$-%+,-% describes the effect of proximity to a wildfire after 

the fire; '+,-%56-7 describes the impact of selling on FHSZ after a wildfire; and '+,-%56-7<$-% shows 

the additional impact of selling on FHSZ nearby a wildfire. The model still includes all covariates that 

change over time. FHSZ is included in the model because of the hazard zone update in 2008; each 

property’s FHSZ rating corresponds to the map in use during the year of sale. Census tract 

characteristics also vary over time. For sales in 2010-2015, demographic variables are from the 

American Community Survey (ACS) 5-Year Estimates. For sales in 2009 or earlier, we use the 2009 

estimates. 

Another difference of note: in the cross-sectional DID dataset the primary unit of observation 

is the transaction. Each transaction was matched to the nearest fire; if the closest fire was more than 10 

years ago, we matched the transaction in question with the next nearest fire, expanding the dataset. 

Hence, the same house could be matched with two different relevant fires if the sales were for example 

in 2000 and then again in 2012, and standard errors were clustered at the property level to account for 

correlation in the sales. In the repeat sales models, we match each property with the nearest wildfire, 
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which could have occurred in the three years prior to the first sale, between the two sales, or in the 

three years after the second sale. 

The subset of 47,842 houses for which we observe a true repeat sale – meaning each transaction 

was arms-length, involved the whole property parcel, with reasonable sales price – is much smaller 

than the Estimation Sample. Table 1.6 shows the breakdown of the Repeat Sales Sample by Postfire 

and FHSZ.  

 

Table 1.6 Summary of Postfire and FHSZ Observations in the Repeat Sales Sample 

  Postfire 
FHSZ 0 1 Total 
    

0 23,475 21,029 44,504 
1 1,111 2,227 3,338 
    

Total 24,586 23,256 47,842 

Table 1.6 shows the cross-tabulation of Postfire and FHSZ to illustrate that the number of treated houses decreases 
significantly in the repeat sales model compared to the cross-sectional DID model. The count includes all counties 
and only properties that were already included in the Estimation Sample. 

 

In Table 1.7 we present results from a repeat sales model on the pooled county data. The sign 

and magnitude of the coefficients of interest are fairly similar to the cross-sectional model. In the 

repeat sales model we see a price premium for selling on FHSZ before a fire (13.2%), but there is no 

significant effect of selling on FHSZ after a fire. The coefficient on the Distance x Postfire coefficient 

is insignificant. However, the coefficient of Distance x Postfire x FHSZ is negative and significant. In 

this model distance from a recent fire seems to only matter for properties on FHSZ and not for other 

properties. 
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Table 1.7 Fixed Effects Model with Repeat Sales Only 

 (7) 
 All Counties 
  

Postfire -0.017*** 
 (0.000) 
FHSZ 0.132*** 
 (0.000) 
Postfire x FSHZ -0.008 
 (0.389) 
Ln(Distance) x Postfire -0.003 
 (0.624) 
Ln(Distance) x Postfire x FHSZ -0.017*** 
 (0.000) 
Constant 0.022*** 
 (0.002) 
  
Observations 47,842 
Number of Houses 23,921 
R-squared 0.449 
  

Table 1.7 shows estimates from a Fixed Effects model on the Repeat Sale Sample. Pval in parentheses, *** p<0.01, 
** p<0.05, * p<0.1. 

 

1.6.3 Effects of Fire Over Time 

So far, we have focused on the impacts of fire over space, but it may be of interest to look at 

effects over time.  Prior studies have shown evidence of a decrease in risk salience over time. In the 

wildfire literature, McCoy & Walsh (2018) estimate effects by year since a fire by interacting treatments 

with dummy variables for year. They find evidence that properties on high risk land, but which are far 

enough away not to receive visual disamenities see a short-term decrease in price, followed by a 

recovery by the third year after a fire. On the other hand, they find that properties with a view of a 

burn scar see a decrease in price that remains for at least three years. We adapt their approach to look 

for evidence of diminishing effects over time and expand the original model to include interactions 

with year variables. 
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!"#$% = '(T'+,-%U#./0V$%

W

UXY

+	'56-789:;$% +T'<$-%+,-%U[ln	(A2/0) × 	#./0V]$%

W

UXY

	

(13) +'<$-%56-7[ln(A2/0) × 89:;]$% +T'+,-%U56-7[#./0V × 89:;]$%

W

UXY

	

+T'+,-%U56-7<$-%[ln	(A2/0) × #./0V × 89:;]$%

W

UXY

	

+	'FGHIJ4$% + KLH$G6M,NO$% + K%$PHQ$% + 8R + S$%	
	

	

Table 1.8 presents results from a pooled model with yearly effects as well as the five market 

models. On average we do not find any evidence that the impact of distance from a fire decreases year 

by year - the coefficient on the interaction term Distance x Postfire is significant up to three years 

after a fire. We do see a diminishing effect on FHSZ only; in the first year after a fire, there is a 2.5% 

decrease in price on FHSZ, in the second year, a 1.9% decrease, and in the third year no discernible 

decrease after a fire. An F-test for significant differences in coefficients is unable to reject the null 

hypothesis that the first and second year coefficients are equal, but the second and third year are 

significantly different from each other, as well as the first and third years. This is consistent with the 

McCoy and Walsh finding, and suggests that risk salience from a recent event is greater in the year 

after it than as time passes. However, in the sub-market models we can see that this trend is being 

driven by negative and significant estimates for Orange County, while some estimates in other counties 

are either insignificant or positive. 

 



 40 

Table 1.8 Effects of Fire Over Time 

 (8) (9) (10) (11) (12) (13) 

 All Counties Santa Barbara & 
Ventura 

Los Angeles 
Market 

Riverside & San 
Bernardino Orange County San Diego 

       

Post Year 1 0.036*** -0.002 -0.009** 0.018*** 0.061*** -0.037*** 
 (0.000) (0.906) (0.014) (0.000) (0.000) (0.000) 
Post Year 2 0.045*** 0.031** -0.007* 0.025*** 0.072*** -0.046*** 
 (0.000) (0.034) (0.053) (0.000) (0.000) (0.000) 
Post Year 3 0.039*** -0.006 -0.005 0.040*** 0.073*** -0.079*** 
 (0.000) (0.669) (0.259) (0.000) (0.000) (0.000) 
Ln(Distance) 0.013*** 0.021*** -0.006*** -0.009*** 0.011*** 0.010*** 
 (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) 
FHSZ 0.073*** 0.043* 0.043*** 0.040*** 0.037*** 0.015*** 
 (0.000) (0.077) (0.000) (0.000) (0.000) (0.003) 
Post 1 x FHSZ -0.025*** 0.055 0.009 -0.022* -0.058*** 0.034*** 
 (0.000) (0.148) (0.406) (0.068) (0.000) (0.002) 
Post 2 x FHSZ -0.019*** 0.061* 0.015 -0.009 -0.067*** 0.057*** 
 (0.000) (0.070) (0.116) (0.461) (0.000) (0.000) 
Post 3 x FHSZ -0.006 0.052 0.024** 0.003 -0.076*** 0.073*** 
 (0.262) (0.148) (0.018) (0.811) (0.000) (0.000) 
Ln(Distance) x FHSZ -0.007*** 0.030 0.020*** 0.023*** -0.006 -0.006** 
 (0.000) (0.129) (0.000) (0.000) (0.117) (0.027) 
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Table 1.8 (cont’d) 
       

Ln(Distance) x Post 1 -0.010*** 0.004 0.008*** 0.000 -0.059*** 0.005* 
 (0.000) (0.699) (0.002) (0.828) (0.000) (0.077) 
Ln(Distance) x Post 2 -0.011*** -0.013 0.019*** 0.003* -0.067*** -0.005* 
 (0.000) (0.267) (0.000) (0.069) (0.000) (0.093) 
Ln(Distance) x Post 3 -0.010*** -0.008 0.014*** 0.001 -0.057*** 0.008*** 
 (0.000) (0.415) (0.000) (0.779) (0.000) (0.005) 
Ln(Distance) x Post 1 x 
FHSZ 0.005 -0.012 0.000 0.015 0.033*** -0.037*** 

 (0.190) (0.682) (0.981) (0.168) (0.000) (0.000) 
Ln(Distance) x Post 2 x 
FHSZ 0.021*** 0.005 -0.006 -0.020** 0.046*** -0.021*** 

 (0.000) (0.834) (0.381) (0.032) (0.000) (0.001) 
Ln(Distance) x Post 3 x 
FHSZ 0.030*** -0.019 -0.016** 0.001 0.048*** -0.035*** 

 (0.000) (0.507) (0.019) (0.918) (0.000) (0.000) 
Constant 9.555*** 9.312*** 9.656*** 12.078*** 9.087*** 9.315*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 206,841 6,351 61,438 67,791 31,636 39,625 
R-squared 0.830 0.793 0.777 0.838 0.804 0.783 
       

Table 1.8 shows estimates from an expanded model with interactions with each year since a fire. Overall the results suggest that there is no diminishing effect of 
a fire over time in terms of how it affects distance, but there is some evidence that properties on FHSZ see an immediate decrease in sales price and recovery 
over three years. However, there is a lot of heterogeneity in the results by market. Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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1.6.4 Heterogeneous Effects by Fire Size 

Most previous literature has focused on estimating impacts of specific fire events (all papers 

prior to 2010 here). With a larger dataset and a wide range of wildfires in the study period, it is possible 

to investigate the potentially different impacts by fire size in acres, which here acts as a proxy for 

severity. A dummy variable for fires greater than 405 hectares (or 1,000 acres) in the Stetler et al. 

Montana study is negative and statistically significant, indicating that larger fires are less desirable than 

more moderately sized ones. In our study area many properties are nearby wildfires much larger than 

1,000 acres; conditional on being 500 acres or more, the average fire size in the sample is 10,000 acres. 

We run additional models splitting the data by properties closest to fires 500-10,000 acres (Medium 

Fires) and properties closest to fires 10,000 acres or more (Large Fires). These results are presented in 

Table 1.9 and Table 1.10. If fires with greater severity serve as larger information shocks, we should 

expect to see a larger impact in the Large Fire model compared to the Medium Fire model. 

In the Medium Fire model with all counties the sign of the coefficient on Ln(Distance) is 

negative and significant; as a house gets farther from an (eventual) fire perimeter, sales price decreases. 

This is the opposite effect than in the model that uses fires 500 acres and above, as well as the large 

fire model that includes fire 10,000 acres and above. The coefficient on FHSZ is positive and 

significant, as before, and suggests that there are amenities associated with being on otherwise risky 

land (2.6% in the Medium Fire model and 10.5% in the Large Fire model).  

The next two coefficients of interest have opposite signs in the two models. Postfire x FHSZ is 

positive in the Medium Fire model – after a fire, price increases by 1.9% on FHSZ – and negative in 

the Large Fire model – after a fire, price decreases by 6.1% on average.  In the Medium Fire model 

Distance x Postfire has a positive coefficient, meaning increased distance from the fire perimeter 

increases sales price while in the Large Fire model, it is negative and significant, meaning sales price 

decreases as you move farther from the perimeter. 
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Table 1.9 Medium Fire Size (500-10,000 Acres) 

 (1) (2) (3) (4) (5) (6) 

 All Counties Santa Barbara 
& Ventura Los Angeles Riverside & San 

Bernardino Orange County San Diego 

       

Postfire 0.012*** -0.073*** 0.014*** -0.012*** -0.007 0.054*** 
 (0.000) (0.000) (0.010) (0.000) (0.535) (0.001) 
Ln(Fire Dist) -0.009*** 0.035*** -0.038*** -0.026*** -0.010*** 0.018** 
 (0.000) (0.000) (0.000) (0.000) (0.007) (0.018) 
FHSZ 0.026*** 0.049* 0.039* 0.012 0.017* 0.038*** 
 (0.000) (0.079) (0.057) (0.101) (0.055) (0.000) 
Postfire x FSHZ 0.019*** 0.030 0.017 0.026*** 0.003 -0.053*** 
 (0.001) (0.330) (0.452) (0.003) (0.803) (0.000) 
Ln(Distance) x FHSZ 0.024*** 0.034 0.077*** 0.039*** 0.013** -0.022*** 
 (0.000) (0.160) (0.000) (0.000) (0.027) (0.004) 
Ln(Distance) x Postfire 0.004* -0.023** 0.020*** -0.000 -0.008 -0.038*** 
 (0.062) (0.043) (0.000) (0.931) (0.105) (0.000) 
Ln(Distance) x Postfire x 
FHSZ 

-0.013*** -0.015 -0.079*** -0.003 -0.003 0.037*** 

 (0.002) (0.578) (0.000) (0.714) (0.679) (0.001) 
Constant 10.267*** 10.752*** 9.653*** 10.372*** 8.346*** 9.505*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 80,506 3,975 28,978 33,191 12,155 4,418 
R-squared 0.858 0.725 0.791 0.830 0.796 0.840 
       

Table 1.9 shows estimates from a model with medium-sized fires (500-10,000 acres) only. Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 1.10 Large Fires (>10,000 Acres) 

 (1) (2) (3) (4) (5) (6) 

 All Counties Northern 
Market 

Los Angeles 
Market 

Inland Empire 
Market 

Orange County 
Market 

San Diego 
Market 

       

Postfire 0.030*** 0.053*** -0.003 0.043*** 0.083*** -0.060*** 
 (0.000) (0.000) (0.257) (0.000) (0.000) (0.000) 
Ln(Fire Dist) 0.017*** 0.054*** -0.008*** -0.009*** 0.017*** 0.003*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.009) 
FHSZ 0.105*** 0.053** 0.062*** 0.036*** -0.003 -0.010 
 (0.000) (0.026) (0.000) (0.000) (0.891) (0.206) 
Postfire x FSHZ -0.061*** 0.059** -0.031*** -0.025** -0.033 0.072*** 
 (0.000) (0.033) (0.001) (0.013) (0.186) (0.000) 
Ln(Distance) x FHSZ -0.011*** 0.028 0.021*** 0.026*** -0.026*** 0.000 
 (0.000) (0.176) (0.000) (0.000) (0.000) (0.952) 
Ln(Distance) x Postfire -0.015*** -0.016* 0.011*** -0.003** -0.067*** 0.003 
 (0.000) (0.080) (0.000) (0.039) (0.000) (0.176) 
Ln(Distance) x Postfire x 
FHSZ 

0.027*** -0.002 0.007 -0.003 0.066*** -0.045*** 

 (0.000) (0.921) (0.230) (0.736) (0.000) (0.000) 
Constant 9.735*** 11.616*** 9.977*** 12.229*** 9.423*** 9.273*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 126,335 4,969 32,460 58,635 19,481 35,207 
R-squared 0.815 0.822 0.790 0.838 0.824 0.780 
       

Table 1.10 shows estimates from a model with large-sized fires (10,000 acres or more) only. Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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1.7 Discussion and Conclusions 

Previous hedonic literature on the impacts of wildfires finds a consistently negative effect of 

fire on nearby properties, ranging from 7-15% decrease after a fire (Loomis 2004; Stetler et al. 2010; 

McCoy and Walsh 2018). These effects are attributed to both a decrease in amenities – the presence 

of a burn scar or loss of forest recreation opportunity – and an increase in risk perception. Some argue 

that the majority of the effect is a risk salience increase rather than the impact of amenity loss (Stetler 

et al. 2010). However, the literature has tended to focus on regions with low population density and 

infrequent wildfires. Using a richer dataset and longer time frame, our analysis suggests that there is 

no reason to presuppose that all wildfire activity must result in a decrease in housing sales prices nearby 

whether due to risk salience or disamenity. Our conceptual model shows that the effect of a fire should 

depend on the way beliefs about future fire risk are updated after the fire. In contrast to floods or 

hurricanes where an event likely increases perception of future risk, a wildfire does not always indicate 

that future risk of fire will increase if available fuel was burned off. If a wildfire causes a market-wide 

increase in belief that fires will occur in the future, we expect to see a drop in nearby housing prices. 

However, in areas with fire risk priors that are very high, a wildfire may not change or even decrease 

beliefs about future risk. Prior information can come from a variety of sources including fire hazard 

severity zone (FHSZ) status (a public disclosure of risk classification unique to California) or distance 

from some physical barrier such as a major highway. There is evidence that wildfires provide 

information to the market: on average, over the full sample of properties, there is a large pre-fire 

premium for properties on land with high physical risk of wildfire which decreases by 2% after a fire. 

Results on the treatment effect of distance to a recent wildfire diverges from the majority of the 

hedonic literature: in most of the estimated models, properties sell for higher prices nearer the fire 

perimeter than farther away. However, this effect varies depending on the sample of properties used. 

We find heterogeneous effects of fire by geographic area – frequently, treatment effects have opposite 
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signs in Los Angeles and Orange counties – as well as according to the size of the wildfire. We find 

that for the average medium-sized fire (500 – 10,000 acres) proximity to a recent wildfire decreases 

sales price, while for the average larger ones (10,000 acres or more) proximity to a recent wildfire 

increases sales price. This is consistent with the result from Hansen and Naughton (2013) who 

hypothesize that larger fires in Alaska opened up views which increased property assessment values 

and that large fires reduce future risk. Finally, we find some evidence that more complete information 

prior to a wildfire has a mitigating impact on the effect, no matter the direction of the effect. The 

interaction of Distance x Postfire x FHSZ is on average in opposite direction of Distance x Postfire, 

suggesting that while proximity to a wildfire changes subjective risk of future fire, for properties 

located on FHSZ, subjective risk does not change as much as for properties not on FHSZ. This result 

is consistent with the hypothesis that FHSZ areas provide information signals that mitigate how 

property markets will react to information signals from new fires. 

The results presented here suggest several directions for future research. With the frequency of 

wildfires increasing, there is a greater need for more comprehensive multi-fire studies with spatial and 

temporal variation in treatment effects. Case studies of small areas or few fires may not provide an 

accurate picture of the average treatment effect of wildfires. Further investigation into the impact that 

fire size, prevalence in the news, and proximity to urban areas have on the treatment effect will allow 

for better inference about how future impacts of wildfires relate to these other factors and offer 

potential solutions to better match actual future risk with perceptions of future risk – e.g. public 

information campaigns, more reliable news coverage, and other avenues of public engagement. More 

studies with larger variation in wildfire size and impacts will also provide better insight into the pattern 

of impacts across fire sizes and specifically whether the result that smaller fires reduce property prices 

while larger ones can increase them holds generally. Future research in California should also consider 
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that burns scars of large fires may reduce future fire risk but increase risk of other natural disasters 

such as flooding and mudslides.  

Second, there may be potential local policy nuances that could lead to the differing results across 

the markets. Fighting wildland fires requires coordination from state, federal, and local agencies, 

however, it is possible that wildfires indirectly increase local fire department funding. If that is the case 

and residents are aware of funding levels, this dynamic could explain an increase in sales prices after a 

wildfire. It is also possible that areas newly classified as having wildland fire hazard similarly see 

changes to local funding or support for fire departments. For these reasons, future research into the 

effect that wildfires have on local or state-level mitigation strategies such as fire department funding 

or new fire prevention strategies (e.g., defensible space requirements) would shed more light on 

geographic differences in the effects of fire. 

Finally, an important direction for future studies is to account for not only heterogeneity in 

wildland fire characteristics but also heterogeneity in indirect preferences of market actors. In southern 

California there are large differences in wealth, demographics, and political views that might affect the 

indirect preferences across the region. Differences in income may affect the hedonic value of amenities 

and risk, and future work in regions with major urban areas that include both extremely wealthy 

residents and less-affluent residents should consider whether people are sorting into many smaller 

hedonic markets.  There may also be significant differences in risk perceptions for other reasons – 

studies on the effect of flooding on housing price has found evidence of significant heterogeneity in 

risk perceptions of future flooding (Bakkensen and Barrage 2018). Future research into wildfire risk 

perceptions should account for heterogeneity in preferences by developing models of sorting behavior 

which may help explain differences in effects of fires across regions.  
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Appendix 1A. Additional Descriptive Tables 

Table 1.11 Correlation between Geographic Variables 

 Fire Dist Forest Dist Park Dist Slope Elev FHSZ 
       

Fire Dist 1      

Forest Dist 0.4016 1     

Park Dist 0.0108 -0.1248 1    

Slope -0.2152 -0.0263 -0.0295 1   

Elevation -0.3349 -0.4358 0.2633 0.0124 1  

FHSZ -0.2078 -0.0647 0.1451 0.2490 0.0664 1 
       

 

Table 1.12 Breakdown of Sample Sizes for Moderate, High, & Very High FHSZ Properties 

  Moderate 
 

High 
 

Very High 
Post 0 1 Total 

 
0 1 Total 

 
0 1 Total 

            

0 102,745 1,667 104,412  113,886 1,693 115,579  112,182 3,397 115,579 
1 99,674 1,228 100,902   106,651 1,093 107,744   99,789 7,955 107,744 
            

Total 202,419 2,895 205,314   220,537 2,786 223,323   211,971 11,352 223,323 

 

Table 1.13 Distribution of Distances (in km) to a Barrier Highway 

  All Observations Between Barrier 
Highway and Forest 

   

Minimum 2.2E-4 2.2E-4 
1st Percentile 0.15 0.13 
5th Percentile 0.47 0.34 
Median 5.80 3.33 
95th Percentile 18.87 19.48 
99th Percentile 24.58 29.93 
Maximum 41.14 41.14 
N 223,323 44,461 
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Appendix 1B: Robustness Checks for Essay 1 

Table 1.14 Small Fires (10-500 Acres) 

 All 
Counties 

Santa 
Barbara & 
Ventura 

Los 
Angeles 

Riverside & 
San 
Bernardino 

Orange 
County San Diego 

       

Postfire 0.012*** -0.017* 0.015*** -0.007*** 0.010 0.024*** 
 (0.000) (0.078) (0.000) (0.003) (0.148) (0.000) 
Ln(Distance) 0.006*** 0.021*** 0.008*** -0.025*** 0.001 0.013*** 
 (0.000) (0.004) (0.000) (0.000) (0.883) (0.000) 
FHSZ 0.021*** -0.004 0.067*** -0.027*** 0.043*** -0.027*** 
 (0.000) (0.819) (0.000) (0.000) (0.000) (0.001) 
Postfire x FSHZ -0.025*** 0.024 -0.036*** -0.013** -0.070*** 0.009 
 (0.000) (0.210) (0.000) (0.026) (0.000) (0.421) 
Ln(Distance) x 
FHSZ 0.036*** 0.012 0.026*** 0.030*** 0.019** 0.004 

 (0.000) (0.535) (0.000) (0.000) (0.042) (0.505) 
Ln(Distance) x 
Postfire 0.001 -0.002 -0.011*** 0.009*** -0.003 0.003 

 (0.482) (0.766) (0.000) (0.000) (0.531) (0.469) 
Ln(Distance) x 
Postfire x FHSZ -0.015*** -0.023 0.019** -0.005 -0.000 -0.009 

 (0.000) (0.258) (0.014) (0.329) (0.986) (0.235) 
Constant 9.780*** 10.756*** 10.061*** 10.204*** 6.049*** 9.006*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 182,172 9,467 60,691 100,286 22,877 15,479 
R-squared 0.845 0.821 0.822 0.795 0.772 0.748 
       

Note: this table shows estimates from a model with small-sized fires (less than 500) only using the Estimation Sample 
of properties that sell within three years of a fire. Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 1.15 Model using Transactions Five Years Before or After a Fire 

 All 
Counties 

Santa 
Barbara & 
Ventura 

Los Angeles 
Riverside & 
San 
Bernardino 

Orange 
County San Diego 

       
Postfire 0.030*** 0.026*** -0.010*** 0.019*** 0.024*** -0.069*** 
 (0.000) (0.008) (0.000) (0.000) (0.000) (0.000) 
Ln(Distance) 0.010*** 0.008 -0.011*** -0.008*** 0.009*** 0.010*** 
 (0.000) (0.129) (0.000) (0.000) (0.000) (0.000) 
FHSZ 0.075*** 0.044** 0.062*** 0.037*** 0.027*** 0.031*** 
 (0.000) (0.040) (0.000) (0.000) (0.000) (0.000) 
Postfire x 
FSHZ -0.032*** 0.043* -0.012 -0.017** -0.053*** 0.028*** 

 (0.000) (0.070) (0.102) (0.028) (0.000) (0.000) 
Ln(Distance) 
x FHSZ -0.004** 0.030* 0.022*** 0.024*** -0.004 -0.002 

 (0.014) (0.098) (0.000) (0.000) (0.305) (0.342) 
Ln(Distance) 
x Postfire -0.012*** 0.000 0.019*** -0.010*** -0.044*** -0.003** 

 (0.000) (0.979) (0.000) (0.000) (0.000) (0.024) 
Ln(Distance) 
x Postfire x 
FHSZ 

0.022*** -0.016 -0.010** -0.001 0.031*** -0.019*** 

 (0.000) (0.432) (0.036) (0.862) (0.000) (0.000) 
 9.482*** 9.480*** 9.616*** 11.837*** 8.562*** 9.255*** 
Constant (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 331,796 10,585 103,661 103,518 54,237 59,795 
R-squared 0.826 0.787 0.772 0.821 0.799 0.776 

Note: This dataset was constructed in the same way as the Estimation Sample but includes all transactions within 
five years of a fire rather than three. Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 1.16 Effects by FHSZ Rating 

 All Counties 
  

Postfire 0.041*** 
 (0.000) 
Ln(Distance) 0.013*** 
 (0.000) 
Moderate 0.065*** 
 (0.000) 
High 0.015** 
 (0.017) 
Very High 0.088*** 
 (0.000) 
Postfire x Moderate -0.042*** 
 (0.000) 
Postfire x High -0.014 
 (0.133) 
Postfire x Very High -0.021*** 
 (0.000) 
Ln(Distance) x Moderate -0.045*** 
 (0.000) 
Ln(Distance) x High -0.026*** 
 (0.000) 
Ln(Distance) x Very High 0.004* 
 (0.063) 
Ln(Distance) x Postfire -0.011*** 
 (0.000) 
Ln(Distance) x Postfire x Moderate -0.013* 
 (0.063) 
Ln(Distance) x Postfire x High 0.020*** 
 (0.008) 
Ln(Distance) x Postfire x Very High 0.012*** 
 (0.000) 
Constant 9.551*** 
 (0.000) 
  
Observations 206,841 
R-squared 0.830 
  

Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1.  
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Table 1.17 Barrier Highway Treatment 

 No Interactions Interactions 
   

Postfire 0.055*** 0.056*** 
 (0.000) (0.000) 
Ln(Distance) 0.012*** 0.003 
 (0.000) (0.151) 
FHSZ 0.033*** 0.032*** 
 (0.000) (0.922) 
Between 0.008*** 0.00 
 (0.003) (0.028) 
Distance to Highway -4.27e-6*** -4.06e-6*** 
 (0.000) (0.000) 
Postfire x Between -0.030*** -0.028*** 
 (0.000) (0.000) 
Ln(Distance) x Between  0.016*** 
  (0.000) 
Ln(Distance) x Between x Postfire  -0.011*** 
  (0.000) 
Constant 9.785*** 9.783*** 
 (0.000) (0.000) 
   
Observations 75,302 74,830 
R-squared 0.853 0.853 
   

Note: this table shows results from an alternate model using “Between”, meaning between a highway and the forest, 
as an indicator of risk rather than FHSZ. The positive coefficient on Distance x Between implies that price increases 
as you get farther away. Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1.   
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Table 1.18 Models with Properties up to 5 km 

 All 
Counties 

Santa 
Barbara & 
Ventura 

Los 
Angeles 

Riverside & 
San 
Bernardino 

Orange 
County San Diego 

       

Postfire 0.039*** 0.007 -0.011*** 0.026*** 0.006 -0.064*** 
 (0.000) (0.545) (0.000) (0.000) (0.267) (0.000) 
Ln(Distance) 0.008*** 0.028*** -0.008*** -0.007*** 0.011*** 0.010*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
FHSZ 0.070*** 0.064** 0.057*** 0.029*** -0.023** 0.005 
 (0.000) (0.012) (0.000) (0.000) (0.013) (0.341) 
Postfire x FSHZ -0.017*** 0.052* 0.022** -0.012 -0.014 0.038*** 
 (0.000) (0.069) (0.010) (0.145) (0.192) (0.000) 
Ln(Distance) x 
FHSZ 0.001 0.023 0.027*** 0.021*** -0.011** -0.002 

 (0.487) (0.267) (0.000) (0.000) (0.018) (0.419) 
Ln(Distance) x 
Postfire -0.007*** -0.020** 0.010*** -0.007*** -0.027*** -0.008*** 

 (0.000) (0.030) (0.000) (0.000) (0.000) (0.000) 
Ln(Distance) x 
Postfire x FHSZ 0.019*** 0.014 0.008 0.001 0.012* -0.019*** 

 (0.000) (0.559) (0.175) (0.850) (0.055) (0.000) 
Constant 9.615*** 8.659*** 9.757*** 11.948*** 8.479*** 9.258*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 150,523 5,635 42,241 54,482 21,901 26,264 
R-squared 0.843 0.786 0.784 0.846 0.807 0.788 
       

Note: this table shows results using a dataset constructed in the same way as the Estimation Sample but includes 
properties up to 5 km from a fire only. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 1.19 Models with Properties up to 15 km 

 All 
Counties 

Santa 
Barbara & 
Ventura 

Los 
Angeles 

Riverside 
& San 
Bernardino 

Orange 
County San Diego 

       

Postfire 0.041*** 0.013 -0.005* 0.030*** 0.092*** -0.057*** 
 (0.000) (0.257) (0.058) (0.000) (0.000) (0.000) 
Ln(Distance) 0.014*** 0.023*** -0.004*** -0.009*** 0.016*** 0.010*** 
 (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) 
FHSZ 0.070*** 0.045* 0.038*** 0.040*** 0.046*** 0.013*** 
 (0.000) (0.066) (0.000) (0.000) (0.000) (0.008) 
Postfire x FSHZ -0.015*** 0.056** 0.014* -0.011 -0.082*** 0.053*** 
 (0.000) (0.047) (0.085) (0.196) (0.000) (0.000) 
Ln(Distance) x FHSZ -0.008*** 0.025 0.020*** 0.023*** -0.014*** -0.006** 
 (0.000) (0.207) (0.000) (0.000) (0.000) (0.020) 
Ln(Distance) x 
Postfire -0.012*** -0.007 0.011*** 0.001 -0.074*** 0.001 

 (0.000) (0.303) (0.000) (0.318) (0.000) (0.440) 
Ln(Distance) x 
Postfire x FHSZ 0.021*** -0.006 -0.004 -0.001 0.059*** -0.031*** 

 (0.000) (0.790) (0.524) (0.891) (0.000) (0.000) 
Constant 9.654*** 9.423*** 9.906*** 12.088*** 8.991*** 9.344*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
       
Observations 221,870 6,729 66,878 67,898 39,926 40,439 
R-squared 0.823 0.793 0.778 0.838 0.816 0.785 
       

Note: this table shows results using a dataset constructed in the same way as the Estimation Sample but includes 
properties up to 15 km from a fire. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 1.20 Model with Postfire Interacted with 1-km Bins that Measure Distance from Fire 

 All Counties P-value 
   

Postfire -0.037*** (0.000) 
0-1 km -0.108*** (0.000) 
1-2 km -0.092*** (0.000) 
2-3 km -0.090*** (0.000) 
3-4 km -0.091*** (0.000) 
4-5 km -0.102*** (0.000) 
5-6 km -0.104*** (0.000) 
6-7 km -0.073*** (0.000) 
7-8 km -0.042*** (0.000) 
8-9 km -0.025*** (0.000) 
Postfire x 0-1 km -0.024*** (0.002) 
Postfire x 1-2 km -0.024*** (0.000) 
Postfire x 2-3 km -0.012** (0.037) 
Postfire x 3-4 km4 -0.021*** (0.000) 
Postfire x 4-5 km -0.027*** (0.000) 
Postfire x 5-6 km -0.021*** (0.000) 
Postfire x 6-7 km -0.017*** (0.001) 
Postfire x 7-8 km -0.004 (0.487) 
Postfire x 8-9 km -0.016*** (0.008) 
FHSZ 0.070*** (0.000) 
Ln(Distance) x FHSZ 0.002 (0.342) 
Post x FHSZ -0.015*** (0.000) 
Ln(Distance) x Post 0.000 (0.926) 
Ln(Distance) x Post x FHSZ 0.011*** (0.000) 
Constant 9.691*** (0.000) 
   
Observations 206,841  
R-squared 0.830  
   

Note: this table presents estimation results from a model where distance from a fire is measured in 1-km bins. We 
use all counties and include both FHSZ and non-FHSZ properties. *** p<0.01, ** p<0.05, * p<0.1.  
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Appendix 1C: Previous Robustness Checks 

 

 

 

Robustness Check Note 

Exclude years affected by the housing crisis 
(2007-2009) 

This was tested in a previous iteration with 
data on transactions within five years of the 
nearest fire and results were not significantly 
different 

Exclude properties that experience multiple fires 
in the past five years 

This was tested in a previous iteration with 
data on transactions within five years of the 
nearest fire and results were not significantly 
different 
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 Heterogeneous Preferences Over Recreation Sites in Wildfire Prone Areas 

2.1 Introduction 

Residents and visitors to southern California benefit from ecosystem services provided by four 

major National Forests that surround the Los Angeles Basin – Angeles, Cleveland, Los Padres, and 

San Bernardino National Forests. These forests cover the San Gabriel, San Emigdio, San Jacinto, and 

San Bernardino mountains, that shield the cities from the Mojave Desert. Areas adjacent to national 

forests are pleasant to live in, offering views and solace from the busier urban area. In addition, there 

are many recreation opportunities – trails, picnic areas, fishing, visitor centers, and other attractions 

located in the national forests. This essay examines visitor preferences for the environmental attributes 

of national forest sites, including vegetation, water, and wildfire history. 

Preferences regarding wildfire history are especially relevant for this area, as these forests are 

frequently affected by fire. The four national forests are largely covered by chaparral, a vegetation 

characterized by dense, dry shrubs and grasses, found primarily in southern California and northern 

Mexico, though oak and pine dominate in higher elevations. Chaparral in southern California burns 

every 30 years or more in high-intensity stand-replacing fires that play an important part in 

regeneration (Moritz et al. 2014; Rundel 2018). However, this unique environment is home to millions 

of people in the Los Angeles and San Diego metro areas, whose presence changes the natural fire 

regime. Humans not only suppress or contain natural wildfires, potentially leaving dry fuel to spark 

another, but also cause as many as 84% of all wildfires through negligence or intentional actions (Balch 

et al. 2017). Smaller, less severe forest wildfires may shut down a road for a few days; larger fires can 

cause mass devastation. In 2002, the Curve Fire destroyed 20,000 acres of forest, and affected 

campsites were closed for nearly a decade afterward. The 2009 Station Fire burned for over a month 

along the entire Angeles Crest Highway, a major road that cuts from one side of the Angeles National 
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Forest to the other. Charred trees left in its wake are still visible today in many campgrounds, trails, 

and picnic areas along the highway.  

We use evidence from choice experiments to explore how the visible effects of past wildfires 

might affect recreation decisions by visitors to National Forests, and, given the diverse user groups in 

Southern California, we also test for systematic differences in preferences for recreation sites in 

wildfire prone areas. The simplest way to estimate preference heterogeneity with discrete choice data 

is to interact demographic variables with choice attributes in a conditional logit model. However, the 

conditional logit model has fairly rigid assumptions about choice behavior, specifically it suffers from 

independence of irrelevant alternatives (IIA). In addition to conditional logit models, we turn to 

random parameters logit and latent class logit models to relax the IIA assumption and explore 

heterogeneity.  

2.2 Literature on Effects of Wildfire on Recreation Demand 

The earliest studies to consider the impact of wildfire on recreation tend to use direct 

approaches such as contingent valuation. Vaux, Gardner, and Mills (1984) use contingent valuation to 

estimate willingness to pay for entry to recreation sites recovering from wildfires of varying intensity 

with a group of 69 university students in California. They find that less intense fires have beneficial 

effects, whereas more severe fires decrease willingness to pay for recreation. This result suggests that 

there may be some groups of visitors who prefer sites affected by moderate fires – these visitors could 

be interested in the new growth that occurs after a fire or may be attracted by clearer hiking paths. 

Most of the wildfire valuation literature of the past two decades uses revealed preferences methods to 

estimate recreational welfare impacts of fire and suggests the effects vary significantly over time and 

across recreational groups. 

There is evidence of time-varying impacts of wildfire – in some cases, there are per-trip welfare 

benefits directly after a fire, which then decline quickly before recovering. Englin, Loomis, and 
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González-Cabán (2001) estimate an initial sharply positive trip response lasting two years after fires in 

the western US (forests in Colorado, Wyoming, and Idaho), followed by a decline in visitation before 

a final slow recovery in trip numbers. Hilger and Englin (2009) as well as Englin, Holmes, and Lutz 

(2008) affirm this result – a short term increase in trips – using hiking trip data from the Cascade 

Mountains in Washington. However, Boxall and Englin (2008) present conflicting evidence. Using 

pooled RP-SP models, they incorporate correlation between the respondents’ series of choices by 

using dummy variables for lagged choices. In models allowing for state dependence they observe initial 

decreases in visitation, while those without state dependence mimic the short-term increase pattern 

found in other papers.  

Potential differences across user groups creates another potential source of heterogeneity. 

Loomis, González-Cabán, and Englin (2001) use a count data travel cost model and find that fires do 

not affect recreational values equally across hikers and mountain bikers in Colorado. Trips by 

mountain bikers are adversely affected by a crown fire in terms of both quantity of trips and the value 

of each trip, while for hikers the number of trips remains steady after a crown fire and per-trip welfare 

increases. Hesseln et al. (2003) use a Poisson count model and combined RP-SP data and find that 

while demand by mountain bikers is nearly nonexistent after a wildfire, fire is associated with a 

decrease in the number of hiking trips but also an increase in per trip net benefits. 

Forest recreation studies have focused primarily on preference heterogeneity across 

management attributes. Applying this framework to wilderness and forest areas, Boxall and 

Adamowicz (2002) develop a latent class model to explore preferences for wilderness parks in 

Manitoba, allowing underlying motivations for wilderness trips as well as sociodemographic factors to 

predict preferences. Their results support significant heterogeneity over preferences for site attributes 

among the park visitors including management attributes. A study of forest users in Great Britain 

found significant heterogeneity both between and within user groups (Christie et al. 2007). More 
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specialized user groups within each recreation category (mountain bikers are more specialized than 

general bikers) had greater willingness to pay for facilities than general forest users. Nordén et al. 

(2017) also analyze preferences for forest landscapes and facilities across stakeholder groups using 

random parameters models and latent class models, finding significant differences in their preferences 

over forest management practices.  

Comparing separate models for classes of people is informative when there are distinct groups 

of recreational users but ignores other potential sources of heterogeneity and is not ideal in a setting 

where people could participate in many activities on a single trip. At day-use sites in the Angeles 

National Forest, most visitors are hiking, but a large portion of them also participate in other activities 

such as relaxing, picnicking, or swimming. An alternate way of modeling heterogeneity across 

individuals is to use a choice experiment to examine the trade-offs between attributes. In this essay 

we employ a RUM modeling framework that has been frequently used to examine preferences for 

water quality and beach attributes (Beharry-Borg and Scarpa 2010; Kosenius 2010; Schaafsma et al. 

2014; Peng and Oleson 2017). Given the evidence of heterogeneous preferences over site attributes 

in the recreation literature (Beharry-Borg and Scarpa 2010; Kosenius 2010; Scarpa and Thiene 2005; 

Zhang and Sohngen 2018) and in forest management (Christie et al. 2007; Nordén et al 2017; Japelj 

et al. 2016), our discrete choice experiment examines the role of individual preferences over wildfire-

burned areas in forest sites. 

This essay has three main contributions: first, efforts to value the effects of wildfire on 

recreation have concentrated on forest areas. Chaparral has a significantly different wildfire regime 

and recovery pattern than conifer or hardwood forests, distinguished by intense crown fires which 

burn everything, but recover quickly. Hence, a fire’s impacts on recreation in a chaparral dominated 

area could look significantly different than in a forested area. Second, the majority of wildfire studies 

occur in sparsely populated areas, whereas our data comes from one of the largest metropolitan areas 
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in the world. Third, there is little information about systematic heterogeneity within recreationist 

categories with respect to preference over past wildfires. 

2.3 Survey Data and Design 

2.3.1 Study Area and Onsite Sampling 

The Angeles National Forest spans 700,000 acres of open space only an hour’s drive from 

downtown Los Angeles and receives more than 3 million visits per year (US Forest Service 2001). In 

addition to visitor’s centers and developed recreation areas, it contains all or part of five different 

designated wilderness areas and manages most of the recently established San Gabriel Mountains 

National Monument. Data for this study comes from two onsite intercept surveys with follow-up 

surveys conducted in the Angeles National Forest during consecutive summers. The first onsite 

intercept survey was conducted June 17 – August 14, 2016 with a follow-up survey conducted 

November 2016 – February 2017. The second onsite intercept survey conducted June 16 – August 

20, 2017 with a follow-up survey conducted December 2017 – February 2018. 

For the two intercept surveys we used a random sampling plan which stratified sites according 

to the day of the week and expected use level. Work shifts were drawn throughout the week where 

Friday afternoons and weekends had a higher probability of sampling compared to weekday mornings 

and afternoons, and for each shift two sites were drawn for sampling. Site visitation data from the 

USFS National Visitor Use Monitoring survey (NVUM) was used to classify sites as high or low use 

according to number of visits they generally receive on a weekend. Sites classified as high use were 

over-sampled compared to low-use sites. In 2016 the Angeles National Forest was also being sampled 

by NVUM, so the sites in our sample were also grouped into three geographic clusters. On any given 

day, sampling was only conducted in the geographic clusters without active NVUM enumerators. In 

summer 2017 we sampled at the same set of 39 sites as in 2016, using a similar stratified sampling 

strategy.  
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National forest visitors were intercepted as they exited the recreation site. At low-traffic sites, 

or where the parking lot was easily monitored, enumerators intercepted people as they approached 

their vehicle for a short questionnaire, while at high-traffic trailheads where that was not possible, 

visitors were intercepted as they existed the trailhead for their vehicles. To ensure a random selection 

of people, for each vehicle or group of visitors the person with the most recent birthday was 

interviewed. For each shift we recorded all exiting vehicle or foot traffic. 

Onsite participants answered a short questionnaire that asked respondents for information 

about their current trip: the length of the visit, what activities they participated in, the number of 

people in the vehicle, and some information about who they were – gender, age, and racial identity. 

In addition, all onsite survey respondents were asked to provide an email or mailing address for the 

online survey. Of 2260 completed onsite surveys in 2016, 1755 (77.7%) provided contact information 

– 1685 email addresses and 70 mailing addresses. In 2017, 1726 individuals completed an onsite survey, 

with 1245 (72.1%) providing either an email or mailing address. 
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Figure 2.1 Map of Recreation Survey Sites 
 

2.3.2 Online Survey and Choice Experiment Design 

The survey was designed in three stages. Forty-nine in-person semi-structured interviews were 

conducted at recreation sites in July 2015, some of which test our intercept instrument and some of 

which probed people on their recreation habits and what they might do if a fire occurred nearby. 

Choice experiment questions were further tested in-person using paper survey instruments followed 

by cognitive interviews with 15-20 people at several sites in the Angeles National Forest (ANF) in 

May 2016. In October and November of 2016, the instrument was tested online in a webinar setting 
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in a series of four individual cognitive interviews with people who had been intercepted at a site in the 

ANF previously and provided an email address. The four major sections of the survey are as follows: 

 Section 1 primes respondents on the attributes they faced choices over in the choice 

experiment. Attributes and levels are in Table 2.1. Respondents were also asked to think about 

attributes located “nearby” and “farther away” from the parking area: nearby is within a 5-minute walk 

from the parking area, and farther away is between 5 and 60 minutes away from the parking area. 

Figure 2.2 was used to illustrate the nearby and farther away areas. This allows us to capture differences 

in preferences for attributes by distance for people who may engage in different activities, e.g. 

picnicking vs. hiking. Section 2 consists of information designed to introduce the choice attributes 

including vegetation types and fire effects followed by the stated preference questions. Section 3 asks 

about respondents’ habits regarding national forest visits as well as how they receive information about 

fires and site closures, and additional demographic information was collected in Section 4. 

 

 

Figure 2.2 Illustration Depicting "Nearby" and "Farther Away" from Parking Area 
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Respondents from the onsite survey ranged from people living in nearby communities to 

international visitors. To ensure that they saw realistic choices in the online survey, the choice 

experiment section was tailored to respondents according to the distance between their home zip code 

and a mid-point in the Angeles National Forest. The survey attribute levels and combinations were 

altered between 2016 and 2017 to allow for a greater spread in the distance variable and to increase 

the D-efficiency of the design. All other attribute levels and elements of the survey were the same. 

In 2016 (Round 1) respondents were categorized into four origin distance zones, (1) less than 

60 miles, (2) 60-150 miles, (3) 150-300 miles, and (4) over 300 miles. Respondents in zones 1, 2, and 

3 saw different distances from home in their options, tailored to their distance from ANF. Those in 

bin 4, living more than 300 miles away from the Angeles National Forest, received a version of the 

survey without choice experiment questions.  

Three choice sets were shown to each respondent, and the overall design was grouped into 12 

blocks of 3 questions each. In each of three scenarios they faced, respondents were asked to choose 

between two unlabeled National Forest sites to visit. These sites varied according to a) vegetation 

nearby and farther away from the parking area, b) presence of lakes or streams nearby and farther 

away from the parking area, c) fire history farther away,9 and d) driving distance from home. Choice 

experiment attributes and levels are in Table 2.1, and an example of a question format is found in 

Figure 2.3. As shown in Table 2.1, driving distance from home is equal to baseline miles (ranging from 

0 to 60) plus 20 if the respondent was in zone 1, plus 60 if in zone 2, and plus 120 if in zone 3. 

The relevant choice experiment elements that vary by survey version are: choice set block and 

distance bin. There are 36 combinations of block and bin. In 2016, each survey version was also 

                                                

9 The survey stated that the sites we were asking about “are safe” and “have no history of fire near the parking 
area.” This was done to alleviate safety concerns that arose during pre-testing.  
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available in Spanish. Respondents in 2017 (Round 2) were also categorized into four distance zones, 

(1) less than 50 miles, (2) 50-100 miles, (3) 100-300 miles, and (4) over 300 miles. Again, those in the 

first three zones see site choices with different distances, while those in zone 4, living more than 300 

miles away from the Angeles National Forest, received a version of the survey without the choice 

experiment.  In 2017 the Spanish version of the questions were not offered because only 14 people 

opted to complete the 2016 survey in Spanish. As shown in Table 2.1, for 2017 the baseline miles used 

for the driving distance attribute was given a greater spread, ranging from 0 to 100, plus 10 if the 

respondent was in zone 1, plus 50 if in zone 2, and plus 100 if in zone 3. Round 2 choice sets were 

grouped into 14 blocks of three questions each, resulting in 42 survey versions for the combinations 

of choice set blocks and distance zones. 

In both 2016 and 2017, NGene software (ChoiceMetrics 2014) was used to develop the attribute 

combinations using a design to minimize D-error subject to constraints on the feasible combinations 

of attributes.  The feasibility constraints ensured the types of fire were consistent with the types of 

vegetation.  For example, since shrubs recover quickly and effects of a fire that burned some 

vegetation would be hard to see, we ruled out an “old” fire if the vegetation was shrubs. Likewise, the 

fire type could not be a recent shrub fire if the vegetation near and far was trees.  
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Table 2.1 Attributes and their Levels in 2016 and 2017 

Attributes Levels 
  

Plants Trees nearby, trees farther away 
 Trees nearby, shrubs farther away 
 Shrubs nearby, trees farther away 
 Shrubs nearby, shrubs farther away 
  

Lakes or streams Some nearby, some farther away 
 Some nearby, none farther away 
 None nearby, some farther away 
 None nearby, none farther away 
  

Fire history farther away (over a 5-minute 
walk) 

Old forest fire that burned all plants (some new 
grass and plants) 

 Recent forest fire that burned some plants  
 Recent forest fire that burned all plants 
 Recent shrub fire (some new grass and plants) 
 None visible 
  

One-way driving distance from home  
(miles) 2016 survey Zone 1: 20,   30,   40,   60 ,  80 

 Zone 2: 60,   70,   80 ,  100, 120 
 Zone 3: 120, 130, 140, 160, 180 
  

One-way driving distance from home  
(miles) 2017 survey Zone 1: 10,   30,   50,   80,   110       

 Zone 2: 50,   70,   90,   120, 160 
 Zone 3: 100, 120, 140, 170,  200  
  

Table 2.1 displays choice experiment attributes and levels for 2016 and 2017. The only difference between the two 
rounds of the survey were in the driving distance levels.   
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Figure 2.3 Choice Experiment Question Format 

 
For the online survey, 1755 people total were contacted by email or by mail in Round 1, which 

ran November 2016 to January 2017: of those, 1685 were email addresses, and 70 were mailing 

addresses. In Round 2, running from November 2017 to February 2018, 1244 individuals, 1220 by 

email and 24 by mail. Overall 1054 (35%) responded to both rounds of the survey, 662 (38%) in 

Round 1 and 392 (32%) in Round 2; 607 of whom saw the choice experiment.  

2.4 Econometric Models 

The standard framework for analyzing choice experiment data is based on random utility theory 

(McFadden 1973). We assume that the utility for an individual facing a choice is made of a 
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deterministic component and a random component. The utility function for individual i with option j 

is:  

!"# = %&"# + e"# (1) 
 

 

Where the observable component %&"# depends on preference parameters % and a vector of 

attributes &"# , and e"# is the random or unobservable component. Therefore, the probability that we 

observe individual i select site j is the probability that the utility from site j was the greatest in the 

available choice set C:  

((*) = ((%&"# + e"# > %&"- + e"-)	∀012 (2) 
 

 

When the random error follows a type I extreme value distribution, the probability of observing choice 

j is: 

((*) = 345(%&)
∑ 345(%&-)-

 (3) 

 
 

Estimating this model with a common parameter vector % for the population leads to the 

conditional logit model. However, given results from prior studies showing that groups of visitors 

have differing responses to fire damage, we expect to find evidence of preference heterogeneity, and 

turn to more flexible forms. Three ways of modeling heterogeneity in preferences are explored: 

introducing demographic interaction terms with the preference parameters within conditional logit; 

random parameters logit models, which assume a continuous distribution of preference parameters 

%" throughout the population; and latent class models, also called finite mixing models, which assume 

there are discrete groups of preference parameters within the population. 

The probability of observing choice j in a random parameters set-up is:  

((*) = 3457%"&#8
∑ 345(%"&-)-

 (4) 
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Here, the %" is distributed across the population. The difference in estimation between the random 

parameters logit and conditional logit is that the conditional logit model estimates a population average 

%9  while random parameters logit estimates a mean and standard deviation for %9" where i = 1, …, I. 

Although these models allow for preference heterogeneity, they do not lend themselves to explaining 

the types of people with different preferences (Boxall & Adamowicz 2002).  To address this, we also 

consider latent class models, which assume that preferences systematically vary across classes that, to 

the researcher, are unobservable. The probability that an individual belongs to a certain class depends 

on demographics and other respondent characteristics such as attitudes towards the good being 

evaluated. The choice probability is then defined as the joint probability of observing a choice and the 

probability of belonging to a class. Suppose individual i belongs to class s in the set of classes S. Then 

the probability of observing choice j is dependent on class membership: 

((site *|class :) = 3457%;&#8
∑ 345(%;&-)-

 (5) 

 
 

Within class s, the choice probability typically follows a conditional logit. Following Swait (1994) 

and Boxall and Adamowicz (2002), we assume there is an unobservable class-membership function, 

where sociodemographic characteristics predict class membership, 

<";
∗ = >;?" + @"; (6) 

 
 

where <";
∗  is the class membership latent variable for individual i in class s, ?" are demographic 

characteristics, >; are parameters to be estimated, and @"; is a random error term. Assuming the 

random error follows a type-I extreme value distribution and is independent across individuals and 

classes, the probability of class membership is 

((:) = 345(>;?")
∑ 345(>;?");

 (7) 
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Since the choice experiment asked respondents to make tradeoffs between site attributes and 

distance, marginal rates of substitution estimates are presented as willingness to drive and estimated 

as the negative of the ratio between the driving distance parameter, %A , and the site attribute parameter, 

%- . For the conditional logit where the average coefficient is estimated, the willingness to drive for 

attribute k estimate is: 

BCD" = −%-%A
 (8) 

 
 

2.5 Results 

Results use data collected from the onsite surveys conducted in 2016 and 2017 and the online 

surveys conducted winter 2016-2017 and winter 2017-2018. This section describes the demographics 

of the choice experiment respondents used in the analyses, and results from conditional logit, random 

parameters logit, and latent class models. 

2.5.1 Sample Characteristics  

Summary statistics for respondents who received a choice experiment are in Table 2.2 below. 

Respondents were around forty years old on average. One third of respondents were female, and two-

thirds male. They tended to be well off, with more than half of respondents having annual household 

incomes of $75,000 or more. The largest minority group to respond were Hispanics or Latinos (24% 

in Round 1 and 30% in Round 2) followed by Asians (16%). Most respondents cited their main activity 

as hiking or walking – roughly 75% – while another 8-9% were picnicking or relaxing. Many of them 

are regular forest visitors: 23% visited 11-25 times in the past two years, and 33% visited more than 

25 times in the past two years. 

The respondents were asked to rate how important certain site attributes are to their site choice 

prior to completing the choice experiment. Results from these attitudinal questions show that most 
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people agreed that the presence of water and plant type at recreation sites affects their decision to 

visit. However, they were split on whether the presence of burned vegetation affects their decision; 

32% strongly disagreed or somewhat disagreed, 34% were neutral, and the last 34% somewhat agreed 

or strongly agreed—evidence of substantial heterogeneity. A majority were neutral or not concerned 

about safety or air quality at sites with visible fire damage. The majority also did not have experience 

with wildfires affecting their planned forest visits; 58% had never cancelled a forest visit because of 

an ongoing wildfire. In the extended models we explore whether experience with fire significantly 

affects preferences for fire history attributes. 
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Table 2.2 Summary Statistics for Choice Experiment Respondents 

  Choice Experiment Sample 
 Variable Mean Std dev Min Max 
      

Demographics Age 41 15 18 87 
 Has children 0.30 0.46 0 1 
 College degree 0.67 0.47 0 1 
 Employed full time 0.63 0.48 0 1 
 Gender 0.67 0.47 0 1 
 Hispanic 0.27 0.45 0 1 
 Asian 0.16 0.37 0 1 
 White 0.57 0.49 0 1 
 Income ($1000s) 101 67.5 12.5 250 
      

Experience with 
site closure Experience 0.83 0.38 0 1 
      

Likert (1/5) Air quality affects decision-
making 2.7 1.3 1 5 

 Presence of burned plants 
affects decision-making 2.9 1.1 1 5 

 Vegetation type affects 
decision-making 3.2 1.1 1 5 

 Safety concerns affect 
decision-making 2.4 1.3 1 5 

 Water affects decision-making 3.6 1.1 1 5 
 Wildfires are natural 4.3 1.0 1 5 
      

Main activity Hiking 0.72 0.45 0 1 
 Relaxing / Picnicking 0.08 0.27 0 1 

Table 2.2 describes the sample of respondents used in the choice experiment analysis. Annual household income is 
converted to a continuous measure using midpoints of the following categories: Less than $25,000; $25,000-49,999; 
$50,000-74,999; $75,000-99,999; $100,000-149,999; $150,000-199,999; Over $200,000 (coded as $250,000). 
Experience means they indicated that they had altered or cancelled a trip due to concerns about site closure or health, 
or that they experienced actual site closure due to fire.  

 

2.5.2 Conditional Logit Models 

Table 2.3 shows the results of the conditional logit model. The conditional logit model correctly 

predicts the preferred alternative about 70% of the time using the option with the largest probability 

as the prediction criteria. The conditional logit coefficients for all the site attributes have the expected 
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sign, with trees being preferred vegetation over shrubs, water is a positive attribute, and fire damage a 

negative attribute in general. The omitted vegetation attribute level is “shrubs nearby and shrubs 

farther away” – the results clearly show a strong preference for tree cover, especially locations with 

trees both nearby and farther away. Similarly, compared to sites with no water nearby, sites with lakes 

or streams were preferred, with the largest coefficient on the attribute for water both nearby and 

farther away. The fire history attributes are more mixed. Though all the coefficients are negative and 

significant at the 10% level, there is less strong evidence for the parameters on types of fires where 

some vegetation may be recovering (old forest fires and recent shrub fires). There is much stronger 

evidence that recent forest fires are undesirable. 

Three additional models introduce heterogeneity in the conditional logit by interacting 

individual characteristics with site attributes. Conditional logit models with interaction terms are 

presented in Table 2.4. Model 2 includes the interaction of income10 with distance; Model 3 interacts 

all fire attributes with a dummy variable for experience with fire; and Model 4 interacts all fire attributes 

with a dummy variable for Hispanic. Estimates indicate neither income nor experience with decision-

making over fire-affected sites contributes to heterogeneity. Although the interaction was insignificant, 

the model fit criteria AIC and BIC as well as the log likelihood suggest that Model 2 which included 

an interaction between driving distance and income is a better fit for the data than the conditional 

logit with no interactions. However, there is evidence that on average Hispanic respondents have a 

lower preference for sites where water is only available farther away, and that they have a higher 

preference for trees nearby. In net, recent shrub fires at recreation sites do not matter as much to 

Hispanic respondents; a linear test of the hypothesis that the sum of the coefficients on recent shrub 

fire and the interaction are equal to zero is insignificant. Forest managers in Southern California are 

                                                

10 In the interaction term, income was re-scaled to $100,000s 



 79 

interested in expanding outdoor access to underserved minority populations. Our results suggest 

minority populations could recreate in a significantly different way than other forest users.  

 

Table 2.3 Conditional Logit Model Parameter Estimates 

Attribute Level Model 1 
   

Vegetation Shrubs near, trees far 0.670*** 
  (0.000) 
 Trees near, shrubs far 0.646*** 
  (0.000) 
 Trees near, trees far 1.149*** 
  (0.000) 
Water None near, some far 1.032*** 
  (0.000) 
 Some near, none far 1.014*** 
  (0.000) 
 Some near, some far 1.405*** 
  (0.000) 
Fire History (farther away) Old forest fire that burned all plants -0.194* 
  (0.057) 
 Recent forest fire that burned all plants -1.054*** 
  (0.000) 
 Recent forest fire that burned some plants -0.341*** 
  (0.001) 
 Recent shrub fire -0.178* 
  (0.055) 
Driving Distance (one-way) Distance -0.014*** 
  (0.000) 
   
Observations  4,968 
AIC  3069.75 
BIC  3141.37 
Log Likelihood  -1523.88 
   

P-values in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Table 2.4 Conditional Logit Model with Interactions 

Attribute Level Model 2 Model 3 Model 4 
     

Vegetation Shrubs near, trees far 0.726*** 0.672*** 0.612*** 
  (0.000) (0.000) (0.000) 
 Trees near, shrubs far 0.682*** 0.653*** 0.555*** 
  (0.000) (0.000) (0.000) 
 Trees near, trees far 1.209*** 1.152*** 1.089*** 
  (0.000) (0.000) (0.000) 
Water None near, some far 1.048*** 1.035*** 1.126*** 
  (0.000) (0.000) (0.000) 
 Some near, none far 1.046*** 1.021*** 1.025*** 
  (0.000) (0.000) (0.000) 
 Some near, some far 1.510*** 1.414*** 1.437*** 
  (0.000) (0.000) (0.000) 
Fire History (farther 
away) Old forest fire that burned all plants -0.173 -0.091 -0.112 

  (0.120) (0.650) (0.346) 

 Recent forest fire that burned all 
plants -1.104*** -0.848*** -1.146*** 

  (0.000) (0.000) (0.000) 

 Recent forest fire that burned some 
plants -0.344*** -0.283 -0.367*** 

  (0.002) (0.146) (0.002) 
 Recent shrub fire -0.167* -0.393* -0.281*** 
  (0.095) (0.064) (0.009) 
Driving distance 
(one-way) Distance -0.013*** -0.015*** -0.015*** 

  (0.000) (0.000) (0.000) 
Income x Distance Income by distance -0.003   
  (0.176)   
Experience x Fire Old forest fire that burned all plants  -0.132  
   (0.540)  

 Recent forest fire that burned all 
plants  -0.256  

   (0.240)  

 Recent forest fire that burned some 
plants  -0.078  

   (0.707)  
 Recent shrub fire  0.263  
   (0.248)  
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Table 2.4 (cont’d) 

Attribute Level Model 2 Model 3 Model 4 
     

Hispanic x Veg Shrubs near, trees far   0.262 
    (0.383) 
 Trees near, shrubs far   0.412* 
    (0.087) 
 Trees near, trees far   0.259 
    (0.427) 
Hispanic x Water None near, some far   -0.398** 
    (0.041) 
 Some near, none far   0.097 
    (0.671) 
 Some near, some far   -0.033 
    (0.892) 
Hispanic x Fire Old forest fire that burned all plants   -0.313 
    (0.182) 

 Recent forest fire that burned all 
plants   0.325 

    (0.214) 

 Recent forest fire that burned some 
plants   0.161 

    (0.538) 
 Recent shrub fire   0.393* 
    (0.070) 
Hispanic x Distance Distance   0.001 
    (0.802) 
     
Observations  4,290 4,968 4,938 
AIC  2623.00 3073.86 3044.89 
BIC  2699.36 3171.52 3187.99 
Log Likelihood  -1299.50 -1521.93 -1500.44 
     

Table 2.4 shows parameter estimates from conditional logit models with interactions. Model 2 includes an interaction 
between distance and income; Model 3 includes interactions between dummy variables for experience with fire-affected 
sites and fire attributes; and Model 4 includes interactions of all attributes with an indicator variable for whether the 
respondent is Hispanic. where site choice is determined by the attributes of the sites. Standard errors are clustered at the 
individual level. P-values in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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2.5.3 Random Parameters Logit Model 

The random parameters logit model allows for taste heterogeneity by assuming a continuous 

distribution of parameters across the population. In the specification used, vegetation, water, and fire 

attributes are assumed to have a normal distribution. Use of a normal distribution allows for the fact 

that any attribute could be positive or negative to different people. We expect that for the vegetation 

and water attributes, there may be some people who care more strongly about tree cover or bodies of 

water nearby and others who care more strongly about having those attributes farther away. In 

addition, in pre-testing, some respondents indicated an interest in recreation sites with visible fire 

effects, suggesting there could be heterogeneity in preferences for sites with fire history. 

Model 5 assumes that all site attributes (vegetation, water, and fire history) are randomly 

distributed in the population and independent from each other, while preferences for driving distance 

are fixed. Table 2.5 reports coefficients and standard errors for the random parameters. Because we 

observe repeated choices by individuals, the model was estimated as a panel. In Model 6, we assume 

preferences for water are also fixed in the population but allow preferences for vegetation and fire 

history to be randomly distributed and correlated with each other. Table 2.5 also reports coefficient 

estimates for the correlated model, and the covariance matrix between correlated random attributes is 

found in the appendix. Although a joint significance test of the off-diagonal elements is significant at 

the 1% level, only two attributes have significant covariance variation between their preference 

distributions at the 10% level. Preferences for trees nearby and trees farther away are significantly 

positively correlated with preferences for trees nearby and shrubs farther away. Preferences for recent 

shrub fire and recent forest fire that burned some plants are also significantly positively correlated 

with each other – these two fires are likely both thought of as less severe than a forest fire that burns 

all plants, but because they are recent, still have some significant impact on the landscape. Overall the 

random parameters logit models suggest that not only are preferences over fire history heterogeneous, 
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but the standard deviations are large compared to the coefficient, which indicates that there are visitors 

for whom signs of a previous fire are a positive attribute.  
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Table 2.5 Random Parameters Logit Models with and without Correlation between Attributes 

  Model 5 Model 6 
Attribute Level Coef. Std. Dev. Coef. Std. Dev. 
      

Vegetation Shrubs near, trees far 0.879*** 0.378 1.020*** 0.267 
  (0.000) (0.362) (0.000) (0.483) 
 Trees near, shrubs far 0.891*** 1.047*** 1.018*** 1.527*** 
  (0. 000) (0.290) (0.000) (0.000) 
 Trees near, trees far 1.559*** 0.865*** 1.816*** 1.324*** 
  (0. 000) (0.227) (0.000) (0.000) 
Water None near, some far 1.425*** -0.213 1.609***  
  (0. 000) (0.365) (0.000)  
 Some near, none far 1.396*** 0.397 1.603***  
  (0. 000) (0.365) (0.737)  
 Some near, some far 1.959*** 0.541 2.219***  
  (0. 000) (0.381) (0.000)  
Fire History 
(farther away) 

Old forest fire that 
burned all plants -0.248* 0.825*** -0.321** 0.574* 

  (0. 074) (0.277) (0.034) (0.050) 

 Recent forest fire that 
burned all plants -1.432*** -1.044*** -1.702*** 1.581*** 

  (0. 000) (0.303) (0.000) (0.000) 

 Recent forest fire that 
burned some plants -0.465*** 1.013*** -0.617*** 1.592*** 

  (0. 000) (0.331) (0.001) (0.000) 
 Recent shrub fire -0.280** 0.863** -0.289* 1.494*** 
  (0. 033) (0.370) (0.073) (0.000) 
Driving 
Distance (one-
way) 

Distance -0.020***  -0.022***  

  (0.000)  (0.010)  
      
Observations  4,968  4,968  
AIC  3060.11  3073.86  
BIC  3196.83  3327.78  
Log Likelihood  -1509.05  -1497.93  
Correlation  No  Yes  
      

Note: Model 5 allows vegetation, water, and fire history parameters to be randomly distributed in the population. Model 
6 only allows vegetation and fire history to be randomly distributed, and also allows the random parameters to be correlated 
with each other. Coefficient and p-values are shown here, and variance-covariance matrix estimates for the random 
parameters shown in the appendix. *** p<0.01, ** p<0.05, * p<0.1 
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2.5.4 Latent Class Models 

If preferences are not continuously distributed across individuals but characterized by discrete 

classes of people with similar average preferences within classes, latent class models may be a better 

fit. An advantage of latent class models is that they allow class membership to be determined by 

demographic variables, which can help with understanding drivers of preferences among forest users. 

The specification in Model 7 allows children (binary), income (continuous), and Hispanic (binary) to 

determine class membership. The log-likelihood of the children, income, and Hispanic model 

improved significantly compared to a model with no demographics. However, models with more 

demographic variables such as gender and age performed poorly (singular variance matrix) or offered 

little improvement to the selected model. All latent class models are estimated using the expectation 

maximization algorithm (Pacifico and Yoo 2013). 

When estimating latent class models, it is also necessary to determine the number of classes 

estimated. Because likelihood ratio tests are not possible with non-nested models, information criteria 

such as the AIC, CAIC, and BIC are frequently used in model selection (Dimitropoulos et al. 2016; 

Kermagoret et al. 2016; Von Haefen and Domanski 2018). Simulation studies have found that more 

parsimonious criteria such as CAIC, BIC, and bootstrapped LR test outperform AIC in selecting the 

true model (Tein et al. 2013). Using both the CAIC and BIC as model selection criteria, we prefer 

two-class models after testing the performance of 2, 3, 4, and 5-class models. Both information criteria 

also suggest an improvement over the conditional logit model. Table 2.6 shows a comparison of results 

for different numbers of classes in the latent class model. 
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Table 2.6 Comparison of results for different number of latent classes 

Number of classes Log-likelihood (LL) Number of parameters CAIC BIC 
     

2 -1250.385 26 2697.576 2671.576 
3 -1237.862 41 2786.073 2745.073 
4 -1208.098 56 2840.087 2784.087 
5 -1189.758 71 2916.948 2845.948 
6 -1179.217 86 3009.409 2923.409 
7 -1174.698 101 3113.913 3012.913 
     

 

Table 2.7 shows results from the 2-class latent class model that uses children, income, and 

Hispanic in the class membership equations. The prior probabilities of class membership predict that 

90% of respondents are in Class 1, while 10% of respondents are in Class 2. Parameter estimates for 

respondents in Class 1 are similar to those in the conditional logit and random parameters models 

with positive preferences for trees and water and recreation sites, and negative preferences for recent 

forest fires. The two fire attributes significant at the 10% level are a recent forest fire that burned some 

plants and a recent forest fire that burned all plants. The coefficients on the socio-demographic 

variables are standardized to zero in a reference class (Class 2), indicating that those with a higher 

annual household income are less likely to be in Class 1 compared to Class 2, and those with children 

are more likely to be in Class 1 than Class 2. 

In the second class of respondents they also have a significant, negative probability of choosing 

a recreation site with a recent forest fire that burned all plants. However, of all the environmental 

attributes, vegetation, water, and past fires, that was the only significant attribute level. In both Class 

1 and Class 2 the driving distance attribute is negative and significant. Those without children and 

with a higher annual household income are more likely to be in Class 2 than in Class 1, where the only 

characteristics influencing decisions are distance and a severe recent fire. This subset of visitors might 

be driving the large amounts of heterogeneity seen in the RPL results. 
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Two groups of people are likely to be of interest to forest managers in the national forests 

around southern California: the Angeles National Forest is one of the most important outdoor 

recreation areas for the city of Los Angeles, whose population is half Hispanic. However, minorities 

are traditionally underrepresented among outdoor recreation visitors (Flores et al. 2018). In keeping 

with other literature which examines heterogeneity by activity group, we also include a dummy variable 

for hiking equal to one if the visitor cited hiking as their main activity. The two-class latent class model 

with Hispanic and Hiker determining class membership is reported in Table 2.8. The model results 

show that Hispanic respondents are significantly more likely to be in Class 2 than Class 1. The 

preferences in Class 2 are fairly consistent with results from Model 4 (conditional logit with Hispanic 

interacted with site attributes). In general, individuals in Class 2 are less sensitive to driving distance 

than those in Class 1, although it is still negative and significant. They have stronger preferences for 

trees as opposed to shrubs, and for water at the site. Compared to people in Class 1, for whom all 

recent fires have negative and significant coefficients, people in Class 2 are less sensitive to fire. The 

only fire type with a significant coefficient is for a recent forest fire that burned all plants farther away 

from the parking area. Note however, in models (not shown) where the income and children variables 

are also included, the Hispanic and hiker variables become insignificant at predicting class membership 

and class attribute preferences are similar to model 7. 
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Table 2.7 Latent Class Model with Children, Income, and Hispanic 

    Model 7 
    Class 1 Class 2 
    

Driving Distance (one-way) Distance -0.015*** -0.023*** 
  (0.000) (0.010) 
Vegetation Shrubs near, trees far 1.491*** 0.109 
  (0.001) (0.827) 
 Trees near, shrubs far 1.408*** -0.091 
  (0.004) (0.824) 
 Trees near, trees far 2.336*** 0.098 
  (0.000) (0.892) 
Water None near, some far 1.946*** 0.272 
  (0.000) (0.607) 
 Some near, none far 2.322*** -0.093 
  (0.002) (0.874) 
 Some near, some far 2.812*** 0.465 
  (0.000) (0.439) 
Fire History (farther away) Old fire that burned all plants -0.298 -0.086 
  (0.216) (0.750) 
 Recent fire that burned all plants -1.117*** -1.488*** 
  (0.000) (0.000) 
 Recent fire that burned some plants -0.587* -0.443 
  (0.071) (0.214) 
 Recent shrub fire -0.156 -0.458* 
  (0.569) (0.095) 
Class Membership Has children under 18 0.738**  
  (0.020)  
 Income -0.005**  
  (0.049)  
 Hispanic 0.154  
  (0.651)  
 Constant  0.589  
    (0.552)  
    
Membership Share  0.90 0.10 
Observations 2,115   

CAIC 2697.58   

BIC 2671.58   

Log Likelihood -1250.38     
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Table 2.8 Two-Class Latent Class Model with Hispanic and Hiking 

    Model 8 
    Class 1 Class 2 
    

Driving Distance (one-way) Distance -0.019*** -0.010* 
  (0.000) (0.061) 
Vegetation Shrubs near, trees far 0.322 2.031 
  (0.138) (0.194) 
 Trees near, shrubs far 0.196 2.086 
  (0.400) (0.130) 
 Trees near, trees far 0.591* 3.102* 
  (0.086) (0.091) 
Water None near, some far 0.763*** 2.112*** 
  (0.002) (0.004) 
 Some near, none far 0.465 3.188* 
  (0.133) (0.072) 
 Some near, some far 0.910*** 3.450** 
  (0.001) (0.045) 
Fire History (farther away) Old fire that burned all plants -0.053 -0.687 
  (0.789) (0.108) 

 Recent fire that burned all 
plants 

-1.222*** -1.062** 

  (0.000) (0.012) 

 Recent fire that burned some 
plants 

-0.329* -0.612 

  (0.078) (0.344) 
 Recent shrub fire -0.381** 0.011 
  (0.022) (0.982) 
Class Membership Hispanic -0.712**  
  (0.034)  
 Hiker 0.145  
  (0.608)  
 Constant  2.090***  
    (0.000)  
    
Membership share  0.92 0.08 
Observations 2,086   

AIC 2515.69   

BIC 2656.76   

Log Likelihood -1212.80     
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2.6 Willingness to Drive for Attributes 

In choice experiments, a common way to compare the strength of preferences across models 

to express them in terms of people’s willingness to trade off one attribute to obtain another. In this 

section, the estimated preference parameters are used to compute the additional distance an individual 

would drive one way for a change in a site attribute, the willingness to drive (WTD)11.  For the 

conditional logit and random parameters models we estimated average willingness to drive for a 

change in attributes, and this was computed using the full sample. Model 1 is conditional logit with 

no interactions, Model 2 is conditional logit with distance x income, Model 3 is conditional logit with 

experience x fire history, and Model 4 is conditional logit with Hispanic x all attribute interactions. 

Models 5 and 6 are random parameters logit with and without correlation, respectively. Model 7 is the 

two-class latent class model with children, annual household income, and Hispanic determining class 

membership and Model 8 is a two-class latent class model with Hispanic and hiking determining class 

membership. 

In all the models presented, willingness to drive for vegetation and water attributes is positive, 

while willingness to drive for fire attributes is negative. Comparing the Model 7 estimates for 

vegetation and water for latent classes 1 and 2, we see that the WTD are much larger in magnitude for 

Class 1 respondents than Class 2 respondents or in the conditional logit or random parameters models. 

For Class 1, WTD for all the plant and water levels are significant at the 5% level. The only WTD 

estimate for fire that is significant at the 5% level is a recent fire that burned all plants farther away. 

For Class 2, only WTD for recent fire that burned all plants farther away is significant. Model 8 

                                                

11 In Appendix G, this willingness to drive (WTD) is also converted to a monetary measure using travel costs to 
estimate the willingness to pay (WTP) for an attribute change (see Table 2.21). 
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similarly identifies one latent class with extremely high WTD and one with WTD that are smaller in 

magnitude but none of the WTD in Class 2 are significant at the 5% level. 

From the conditional and random parameters logit WTD results in Table 2.9 we see that on 

average respondents will drive about 45 miles more to visit a site with trees either nearby or farther 

away compared to sites with shrubs nearby and shrubs farther away. Sites with tree cover both nearby 

and farther away from the parking lot are valued even more, with average willingness to drive being 

at least 70 miles one-way. Sites with a water feature – in the Angeles National Forest these tend to be 

sites with rivers or streams, but sometimes lakes – are highly valued, with average willingness to drive 

ranging between around 70 miles for sites with water at a distance from the parking area, to around 

100 for sites with water nearby and farther away. These results are consistent with observed recreation 

patterns, as those sites with streams and large shaded picnic areas were among the most heavily visited 

in our sample. 

As expected, sites with fire history are less desirable than those with no visible effects of past 

fires, but there is a wide variation in WTD estimates between four categories of fire history. If a site 

has been affected by an older forest fire that is in recovery on average respondents would drive 12 

fewer miles one-way to visit that site. However, if a site was affected by a recent forest fire that burned 

all vegetation, they would drive on average 79 fewer miles for that site. Recent forest fires that only 

affected some plants (like shallow ground fires as opposed to crown fires) and older shrub fires that 

are in recovery lie in between those two extremes. 

Estimates of WTD for attributes across the four specifications of the conditional logit model 

and the two random parameters logit models are very similar. WTD to sites with mixed tree and shrub 

vegetation is roughly 45 miles one-way in Model 1, which estimated average preferences in the 

population. Both the random parameters logit models also show that visitors would be willing to drive 

about 45 more miles to those sites compared to sites with only shrubs. Similarly, WTD for trees nearby 
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and farther away, water attributes, and fire history attributes are nearly the same for three of the 

conditional logit model specifications and the two random parameters logit models. Model 2, in which 

income was interacted with the distance attribute, consistently estimates greater WTD for trees and 

water, and less WTD for sites with fire history. The first latent class where children, income, and 

Hispanic determined class membership, the model identifies a group of respondents whose 

preferences are very strong and would be willing to drive 100 or more miles for sites with desirable 

attributes, and a second group with little WTD for any of the attributes presented. Although not 

shown in the table, the weighted average WTD for attributes for Model 7 is much higher than the 

conditional logit estimate. Model 8 identifies a group of people less with similar preferences to the 

average estimated by the conditional logit and a second group with no significant WTD for attributes. 



 93 

Table 2.9 Willingness to Drive 

 Conditional Logit  Random 
Parameters  Latent Class 

Model (1) (2) (3) (4)  (5) (6)  (7)  (8) 
         Class 1 Class 2  Class 1 Class 2 

Vegetation              
Shrubs near, trees far 46 45 46 46  44 46  103 5  17 204 
Trees near, shrubs far 45 43 45 45  44 46  97 -4  10 210 
Trees near, trees far 79 76 79 78  77 82  161 4  31 312 

Water              
None near, some far 71 66 71 70  71 73  134 12  40 212 
Some near, none far 70 65 70 71  69 73  160 -4  24 320 
Some near, some far 97 94 97 97  97 101  194 20  47 347 

Fire History (farther away)              
Old fire that burned all plants -13 -11 -14 -13  -12 -15  -21 -4  -3 -69 
Recent fire that burned all plants -73 -69 -72 -72  -71 -77  -77 -64  -63 -107 
Recent fire that burned some plants -24 -21 -24 -22  -23 -28  -41 -19  -17 -62 
Recent shrub fire -12 -10 -13 -12  -14 -13  -11 -20  -20 1 
              

Note: All values rounded to the nearest mile and bold cells indicate values significantly different than zero at the 5% level. Models 2, 3, and 
4 use Krinsky and Robb (1986) 95% confidence intervals using the mean of the demographic variable. Confidence intervals for the other 
models were computed using the delta method. 
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2.7 Discussion and Conclusions 

In this study, we use results from a choice experiment survey to model forest visitors’ 

preferences for environmental attributes of national forest recreation sites and estimate willingness to 

pay for sites with different vegetation, water, and fire histories. The fire attributes span forest and 

chaparral vegetation types, include different burn intensities, and capture temporal effects of fire via 

old versus recent fires. We introduce and test for evidence of preference heterogeneity by employing 

conditional logit models with interactions, random parameters logit models, and latent class models. 

The dominant vegetation type in much of southern California is chaparral, which is a shrubland. 

Many recreation sites in the southern portions of the Angeles National Forest and nearby forests 

mostly have chaparral nearby, with the exception of large picnic sites along rivers, where there is 

usually tree cover by the water. At higher altitudes, and also at greater driving distance from any 

respondents living in Los Angeles or its immediate suburbs, the Angeles National Forest is dominated 

by pine and conifer forests. Sites with some tree cover are favored by respondents, with sites with 

trees both near the parking lot as well as farther away being the most preferred. This indicates a 

preference for sites with long, shaded hiking trails as opposed to those that are more exposed. 

Some of the busiest recreation sites in the national forest are those with streams or lakes. Many 

sites along a stream are popular picnic sites in addition to having hiking trails, as opposed to other 

sites without water near the parking lot, which may have long hiking trails, but are not picnic sites. It 

makes sense then, that across the board, sites with water nearby, farther away, or both, are highly 

preferred to sites that have no river, stream, or lake within hiking distance.12  

                                                

12 Our sampling design favored sites with many visitors. Future extensions of this work will incorporate sampling 
weights to better address potential differences in user groups at high and low use sites. 
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The study area is frequently affected by severe wildfires that sometimes close recreation sites 

and when sites re-open they can be left with visible burn scars that vary depending on the vegetation 

type and fire severity. We find evidence, as expected, that sites with visible effects from wildfires are 

less desirable than those with no visible effects of wildfires, but that as time and recovery increase, the 

effect is mitigated. Previous recreation literature has found that trips increase after a recent wildfire 

for a short time – however, we find that in the case of severe wildfires in California that burn all the 

vegetation, recent wildfires are larger dis-amenities than older forest fires or shrub fires. Recent forest 

fires that burned some plants, recent shrub fires, and old forest fires that are still visible also cause 

welfare losses, but less so than severe, recent forest fires. 

These basic results are consistent across the three classes of models we use. As expected, the 

average preferences across models are roughly similar to the basic conditional logit, which only 

measure average preferences. While the other models reveal some heterogeneity, each model 

incorporates preference heterogeneity differently. In the conditional logit model, we interacted 

variables that may influence preferences with the site attributes which allows for a clear interpretation 

of how preferences vary with demographics. The interacted models suggest that experience with 

changing trips due to site closures or fire conditions do not contribute to preference heterogeneity, 

however, we do find evidence that different groups of people may have heterogeneous preferences 

across site attributes. Model 4 shows that Hispanic forest visitors are more likely than others to visit 

sites with trees nearby and shrubs far away, and less likely to visit sites with no water nearby but some 

far away. This is consistent with previous literature that shows that minority groups use public forest 

areas differently than other groups.  In our random parameters model estimation, we find significant 

standard deviations for the vegetation and fire history attributes, suggesting that there is considerable 

heterogeneity in preferences for these characteristics. However, the standard deviation estimates for 
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water are insignificant suggesting that the presence of lakes, rivers, or streams at a site is uniformly 

desirable. 

Latent class models can be useful for identifying classes of people who have distinct preferences. 

To explore heterogeneity, we examined latent class models and found that fewer classes were preferred 

to more classes across a range of specifications. We present results from two latent class models. In 

the first model respondents with children under 18 are more likely to belong to a class of people for 

whom many of the site attributes – tree cover, the presence of water, and fire history – are significant 

drivers of their choices over recreation sites. Those with a higher annual income are less likely to be 

in that class and more likely to be in a class of respondents who are only sensitive to distance and 

recent fires. The second latent class model predicts that Hispanic forest visitors are more likely to 

belong to a class who have strong preferences for water at the site, and for trees both nearby and 

farther away, but are less sensitive to the fire history attributes. 

The results identify two sources of heterogeneity in preferences for the vegetation, water, and 

fire history attributes of recreation sites that may be of interest to forest managers. The construction 

of the attribute levels allows us to draw some conclusions about how the welfare effects of forest fires 

change over time. We find significant evidence for differences in effects of fire over time. Sites that 

have been affected by wildfires are less preferred to sites with no visible fire history, but unlike some 

previous recreation literature, we find that recent wildfires cause greater welfare loss than older forest 

fires and that visible damage can have a significant effect on site choices. Second, we identify 

heterogeneity across groups of people. The urban national forests in our study area are an important 

recreational opportunity for the diverse residents of Los Angeles and Southern California. One of the 

most important demographic trends in this area is a large and growing Hispanic population, who, 

compared to other demographic groups, are under-represented among forest visitors. Managers have 

an interest in understanding how recreation preferences differ across user groups. Past literature has 
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looked at preferences for levels of development and amenities and diversity in the types of activities 

that visitors engage in (Chavez et al. 2008). We find that there are also significant differences in 

preferences over environmental attributes of recreation sites that could provide insight into how 

management activities can differentially affect people. Improvements in water quality and protection 

of forest quality nearby parking or picnic areas appear more beneficial to some visitors such as those 

who are Hispanic, have young children, and those with lower household income, while trail 

maintenance and fire recovery in forested areas appear more valuable to visitors who are non-

Hispanic, have higher household income, and do not have children. 
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Appendix 2A: Coefficient Covariance Matrix 

Table 2.10 Correlation Table for Random Parameters Logit Model 6 

  
Shrubs 
near, trees 
far 

Trees 
near, 
shrubs far 

Trees 
near, 
trees far 

Old fire, 
all 
plants 

Recent 
fire, all 
plants 

Recent fire, 
some 
plants 

Recent 
shrub 
fire 

Shrubs 
near, trees 
far 

0.072       

Trees near, 
shrubs far -0.243 2.330**      

Trees near, 
trees far -0.142 0.999* 1.752**     

Old fire, all 
plants -0.079 0.365 0.641 0.330    

Recent fire, 
all plants 0.267 0.5 0.413 -0.087 2.499**   

Recent fire, 
some 
plants 

0.146 -0.368 -0.454 -0.545 0.723 2.535**  

Recent 
shrub fire 0.043 0.379 0.180 -0.146 0.755 1.097* 2.233** 
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Appendix 2B: Robustness Checks for Essay 2 

Table 2.11 Conditional Logit with Travel Cost 

 Conditional 
Logit 

  

Shrubs near, trees far 0.731*** 
 (0.000) 
Trees near, shrubs far 0.682*** 
 (0.000) 
Trees near, trees far 1.216*** 
 (0.000) 
None near, some far 1.049*** 
 (0.000) 
Some near, none far 1.049*** 
 (0.000) 
Some near, some far 1.517*** 
 (0.000) 
Old forest fire that burned all plants -0.181 
 (0.104) 
Recent forest fire that burned all plants -1.108*** 
 (0.000) 
Recent forest fire that burned some plants -0.349*** 
 (0.002) 
Recent shrub fire -0.169* 
 (0.089) 
Travel cost (one-way) -0.069*** 
 (0.000) 
  
Observations 4,290 
AIC 2621.64 
BIC 2691.64 
Log Likelihood -1299.82 

Robust pval in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 2.12 Conditional Logit with Interactions using Travel Cost 

 Experience x 
Fire 

Hispanic x 
Attributes 

   

Travel cost (one way) -0.069*** -0.069*** 
 (0.000) (0.000) 
Shrubs near, trees far 0.728*** 0.683*** 
 (0.000) (0.000) 
Trees near, shrubs far 0.688*** 0.599*** 
 (0.000) (0.000) 
Trees near, trees far 1.216*** 1.155*** 
 (0.000) (0.000) 
None near, some far 1.054*** 1.155*** 
 (0.000) (0.000) 
Some near, none far 1.055*** 1.052*** 
 (0.000) (0.000) 
Some near, some far 1.528*** 1.554*** 
 (0.000) (0.000) 
Old forest fire that burned all plants -0.147 -0.093 
 (0.467) (0.472) 
Recent forest fire that burned all plants -0.879*** -1.190*** 
 (0.000) (0.000) 
Recent forest fire that burned some plants -0.379* -0.365*** 
 (0.075) (0.004) 
Recent shrub fire -0.342 -0.222* 
 (0.135) (0.055) 
Hispanic x Shrubs near, trees far  0.184 
  (0.557) 
Hispanic x Trees near, shrubs far  0.347 
  (0.143) 
Hispanic x Trees near, trees far  0.208 
  (0.512) 
Hispanic x No water near, some far  -0.467** 
  (0.022) 
Hispanic x Some water near, none far  0.101 
  (0.641) 
Hispanic x Some water near, some far  -0.089 
  (0.686) 
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Table 2.12 (cont’d) 
   

Hispanic x Old fire, all  -0.323 
  (0.173) 
Hispanic x Recent fire, all  0.337 
  (0.222) 
Hispanic x Recent fire, some  0.155 
  (0.586) 
Hispanic x Recent fire, shrub  0.175 
  (0.446) 
Experience x Old fire, all -0.042  
 (0.850)  
Experience x Recent fire, all -0.280  
 (0.240)  
Experience x Recent fire, some 0.037  
 (0.871)  
Experience x Recent fire, shrub 0.211  
 (0.389)  
   
Observations 4,290 4,260 
AIC 2626.68 2599.94 
BIC 2722.14 2733.43 
Log Likelihood -1298.34 -1278.97 
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Table 2.13 Random Parameters Logit with No Correlation and Travel Cost 

 Coef. Std. Dev. 
   

Travel cost (one-way) -0.102***  
 (0.000)  
Shrubs near, trees far 1.036*** 0.199 
 (0.000) (0.709) 
Trees near, shrubs far 1.020*** 1.210*** 
 (0.000) (0.000) 
Trees near, trees far 1.798*** 1.020*** 
 (0.000) (0.000) 
None near, some far 1.509*** -0.587** 
 (0.000) (0.046) 
Some near, none far 1.480*** 0.681** 
 (0.000) (0.037) 
Some near, some far 2.240*** -0.776** 
 (0.000) (0.021) 
Old forest fire that burned all plants -0.268* 0.474 
 (0.087) (0.309) 
Recent forest fire that burned all plants -1.613*** -0.991*** 
 (0.000) (0.003) 
Recent forest fire that burned some plants -0.488*** 1.304*** 
 (0.005) (0.001) 
Recent shrub fire -0.293* 1.045** 
 (0.061) (0.010) 
   
Observations 4,290  
AIC 2613.95  
BIC 2747.59  
Log Likelihood -1285.97  
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Table 2.14 Comparison of WTP using Models that used One-way Travel Cost 

    Conditional Logit  Random 
Parameters 

    No 
Interactions Exp x Fire Hisp x 

Attributes 
 No Corr 

       

Vegetation Shrubs near, trees far $ 11 $ 11 $ 11  $ 10 
 Trees near, shrubs far $ 10 $ 10 $ 10  $ 10 
 Trees near, trees far $ 18 $ 18 $ 17  $ 18 
Water None near, some far $ 15 $ 15 $ 15  $ 15 
 Some near, none far $ 15 $ 15 $ 16  $ 14 
 Some near, some far $ 22 $ 22 $ 22  $ 22 
Fire History (farther 
away) Old fire that burned all plants -$ 3 -$ 3 -$ 2  -$ 3 
 Recent fire that burned all plants -$ 16 -$ 16 -$ 16  -$ 16 
 Recent fire that burned some plants -$ 5 -$ 5 -$ 5  -$ 5 
  Recent shrub fire -$ 2 -$ 3 -$ 3  -$ 3 
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Appendix 2C: Three and Four-Class Latent Class Models 

Table 2.15 Three-class Latent Class Model with Hispanic, Income, and Children 

    Class 1 Class 2 Class 3 

Driving Distance (one-way) Distance -0.016*** 0.017 -0.262*** 
  (0.003) (0.015) (0.025) 
Vegetation Shrubs near, trees far 1.371*** -2.587* 2.043** 
  (0.257) (1.338) (0.889) 
 Trees near, shrubs far 1.271*** -1.381 1.575** 
  (0.218) (1.083) (0.788) 
 Trees near, trees far 2.117*** -3.344** 4.996*** 
  (0.286) (1.550) (0.991) 
Water None near, some far 1.396*** 0.980 3.664*** 
  (0.166) (0.876) (0.571) 
 Some near, none far 1.755*** -0.230 3.670*** 
  (0.210) (0.723) (0.524) 
 Some near, some far 2.228*** 0.023 6.129 
  (0.224) (1.040) NA 
Fire History (farther away) Old fire that burned all plants -0.152 -0.515 -2.347*** 
  (0.201) (0.687) (0.660) 
 Recent fire that burned all plants -1.184*** -2.086** -3.718 
  (0.194) (1.015) NA 
 Recent fire that burned some plants -0.631*** 0.530 -1.115* 
  (0.205) (0.699) (0.644) 
 Recent shrub fire -0.003 -3.099*** -2.075** 
  (0.183) (1.193) (0.810) 
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Table 2.15 (cont’d) 

Class Membership Has children under 18 1.214** 0.451  
  (0.500) (0.752)  
 Income -0.006** -1.38E-4  
  (0.003) (0.004)  
 Hispanic -0.194 -1.088  
  (0.478) (1.022)  
 Constant  1.806*** -0.226  
    (0.469) (0.842)  
     
Observations 2,115    

CAIC 2786.46    

BIC 2745.46    
Log Likelihood -1238.06       
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Table 2.16 Four-class Latent Class Model with Hispanic, Income, and Children 

    Class 1 Class 2 Class 3 Class 4 
      

Driving Distance (one-way) Distance -0.016*** -1.302*** 0.005 -0.531*** 
  (0.004) (0.0296) (0.016) (0.045) 
Vegetation Shrubs near, trees far 0.163 170.6*** 3.403*** 6.927*** 
  (0.616) (1.753) (1.011) (1.301) 
 Trees near, shrubs far 1.258*** 29.35 -0.626 4.634*** 
  (0.318) NA (0.858) (1.006) 
 Trees near, trees far 1.166*** 235.4*** 0.599 13.33*** 
  (0.294) (1.095) (1.291) (1.570) 
Water None near, some far 1.522*** 153.3 -0.0547 4.750*** 
  (0.402) NA (0.886) (1.122) 
 Some near, none far 1.844*** 40.50*** 0.690 6.380*** 
  (0.457) (1.564) (1.087) (1.188) 
 Some near, some far 2.450*** 117.3*** -0.506 11.50*** 
  (0.636) (1.434) (1.361) (2.070) 
Fire History (farther away) Old fire that burned all plants 0.0468 -62.68*** -2.747* -4.622*** 
  (0.283) (2.904) (1.587) (1.293) 
 Recent fire that burned all plants -0.375 -156.7*** -5.858** -10.38*** 
  (0.491) (1.387) (2.738) (1.382) 
 Recent fire that burned some plants -0.0920 -77.56*** -1.797* -3.187** 
  (0.276) (1.318) (0.991) (1.534) 
 Recent shrub fire -0.412 52.17*** -0.444 -3.006*** 
  (0.258) (1.053) NA (0.951) 
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Table 2.16 (cont’d) 
      

Class Membership Has children under 18 0.925 0.759 0.394  
  (0.769) (1.022) (0.693)  
 Income -0.005 -0.021* -0.004  
  (0.003) (0.011) (0.004)  
 Hispanic 0.456 -0.579 0.091  
  (0.637) (0.782) (0.790)  
 Constant  1.577*** 1.854** 0.452  
        
Observations 2,115     

CAIC 2840.09     

BIC 2784.09     

Log Likelihood 1208.10        
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Appendix 2D: Onsite Survey Instrument (2016)  

 

	
#	_______	

	
	 	 	 	 	 	 Interviewer:	_________________		Site:		__________________	
	
Hi,	I	work	with	Michigan	State	University	and	I’m	conducting	interviews	for	the	Forest	Service	
for	a	research	study	that	will	help	them	serve	visitors.	Your	participation	is	voluntary	and	all	
information	is	confidential.	This	survey	should	take	5	minutes.		
	
1.	Would	you	be	willing	to	take	a	few	minutes	to	participate	in	this	interview?	
⃞ Yes 
⃞ No à Thank you for your time. (END INTERVIEW) 

	
2.	I	need	to	select	just	one	of	you	to	complete	this	interview.	Which	of	you	had	the	most	recent	
birthday	and	is	18	years	of	age	or	older?	

(Or	say	“	I	am	hoping	to	speak	with	the	person	in	your	group	who	had	the	most	recent	
birthday”	and	then	prompt	with	the	question	if	needed.)	

	
3.	What	is	your	home	ZIP	code?	_____________	

If	visitor	is	from	another	country,	zip	code	=	00000	à	proceed	to	Q3a,	otherwise	skip	to	Q4	
If	don’t	know	/	refuse	to	answer,	zip	code	=	99999	
	

3a.		If	visitor	is	from	another	country,	select:		
⃞ Canada 
⃞ Mexico 
⃞ South & Central America 
⃞ Asia 
⃞ Europe 
⃞ Other   ______________ 

	
4.	What	is	the	primary	purpose	of	your	visit	to	(site	name)?	
⃞ Working or commuting to work     à end interview 
⃞ Only stopping to use the bathroom    à end interview 
⃞ Only passing through, going somewhere else   à end interview 
⃞ Some other reason       à end interview 
⃞ Recreation  à  proceed to Q5; if any other reason, end interview 

	
5.	When	do	you	plan	to	leave	(site	name)	for	the	last	time	on	this	visit?	
⃞ Not leaving this site today 
⃞ Don’t know 
⃞ Leaving now 
⃞ Leaving later today à     Time:  _____________ 

	
6.	When	did	you	first	arrive	at	(site	name)	for	this	visit?		Date	and	time:		____________________	
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Section 2: National Forest Visit  

7.	On	this	visit	to	this	NF,	did	you	go	or	do	you	plan	to	go	to	any	areas	for	recreation	other	
than	this	one?	
⃞ Yes  
⃞ No 

	
Questions	8-11	ask	the	visitor	about	the	activities	they	participated	in	during	their	national	forest	visit.		
Since	the	activity	choice	list	is	very	long,	hand	them	the	activity	flash	card	then	ask:	
	
8.	In	which	of	the	following	activities	have	you	participated	or	will	you	participate	during	this	
NF	visit?	
⃞ Hiking or walking 
⃞ Bicycling, including mountain bikes 
⃞ Driving for pleasure on roads (paved, gravel, or dirt) 
⃞ Relaxing, hanging out, escaping heat 
⃞ Viewing/photographing wildlife or scenery 
⃞ Picnicking and family day gatherings   
⃞ Camping  
⃞ Fishing 
⃞ Canoeing or boating without a motor  
⃞ Boating with a motor  
⃞ OTHER (write in activity)_________________________ 

	
	
9.	Which	one	of	those	is	your	primary	activity	for	this	recreation	visit	on	this	NF?				
⃞ Hiking or walking 
⃞ Bicycling, including mountain bikes 
⃞ Driving for pleasure on roads (paved, gravel, or dirt) 
⃞ Relaxing, hanging out, escaping heat 
⃞ Viewing/photographing wildlife or scenery 
⃞ Picnicking and family day gatherings   
⃞ Camping  
⃞ Fishing 
⃞ Canoeing or boating without a motor  
⃞ Boating with a motor  
⃞ OTHER (write in activity)_________________________ 

	
If	Q7=No,		skip	to	Q12.			
	
10.	In	which	of	the	following	activities	have	you	participated	or	will	you	participate	at	this	
site?	
⃞ Hiking or walking 
⃞ Bicycling, including mountain bikes 
⃞ Driving for pleasure on roads (paved, gravel, or dirt) 
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⃞ Fishing 
⃞ Canoeing or boating without a motor  
⃞ Boating with a motor  
⃞ OTHER (write in activity)_________________________ 

	
	
11.	Which	one	of	those	is	your	primary	activity	for	this	recreation	visit	at	this	site?					
⃞ Hiking or walking 
⃞ Bicycling, including mountain bikes 
⃞ Driving for pleasure on roads (paved, gravel, or dirt) 
⃞ Relaxing, hanging out, escaping heat 
⃞ Viewing/photographing wildlife or scenery 
⃞ Picnicking and family day gatherings   
⃞ Camping  
⃞ Fishing 
⃞ Canoeing or boating without a motor  
⃞ Boating with a motor  
⃞ OTHER (write in activity)_________________________ 

	
12.	Including	this	visit,	about	how	many	times	have	you	come	to	this	NF	for	recreation	in	

the	past	12	months?				__________	
	
 
Section 3: Demographics 

The	next	questions	provide	statistics	about	the	basic	demographics	of	forest	visitors.		This	
allows	the	forest	managers	to	better	understand	who	their	clientele	are.			
	
13.	How	many	people,	including	you,	traveled	here	in	the	same	vehicle	as	you?			_______	
	
14.	How	many	of	those	people	are	less	than	18	years	old?			__________	
	
15.	What	is	your	age?				___________	
	
16.	Record:		
⃞ Male 
⃞ Female  

	
17.	Are	you	Hispanic	or	Latino?	
⃞ Yes 
⃞ No 
⃞ Refused 

	
18.	With	which	racial	group(s)	do	you	most	closely	identify?	
⃞ American Indian / Alaska Native 
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⃞ Native Hawaiian or other Pacific Islander 
⃞ White 
⃞ Refused 

	
 

Section 4: Contact Info 

Do	you	have	an	e-mail	address	where	we	can	send	you	a	short	follow-up	survey?	The	invitation	
would	come	in	a	couple	weeks	from	Michigan	State	University.		It	is	strictly	confidential	and	your	
e-mail	would	never	be	used	in	any	other	way.	Read	their	email	back	to	them	to	make	sure	you	have	
it	written	correctly.	
	
Email:	______________________________________________________________________	
	
	 (Thank	you.	We	will	send	you	a	link	to	the	follow-up	survey	in	August.)	
	
	
If	the	respondent	was	unwilling	to	share	their	email	address,	ask	for	a	mailing	address:	
Would	you	be	wiling	to	share	your	mailing	address	instead?	
	
Full	name:	___________________________________________________________________________________	
Address	Line	1:	_____________________________________________________________________________	
Address	Line	2:	_____________________________________________________________________________	
City,	State,	Zip	Code:	________________________________________________________________________	
	
	

Thank	you	for	your	time!	
	
	
	
Date:	__________________________________________	
Interview	end	time:	__________________________	
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Appendix 2E: Online Survey Instrument (2017) 

The following pages show images of a paper version of the survey that was mailed in 2017 (Figures 

2.4a - 2.4m). The survey was originally 8.5 by 11 inches but is downscaled here to fit the pages. 
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Figure 2.4 Image of Paper Version of Survey (originally 8.5” by 11”)  



 
 

 115 

 
Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)   
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d)  
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Figure 2.4 (cont’d) 
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Appendix 2F: Disposition Tables 

Table 2.17 Disposition Codes for Onsite Survey (2016) 

Disposition Description Freq. Percent 
    

0 Declined to participate 1,300 35.61 
1 Not recreating 60 1.64 
2 Incomplete survey 9 0.25 
3 No contact information 505 13.83 
4 Contact information 1,755 48.07 
5 Less than 18 years old 16 0.44 
6 Not contacted (duplicate email or no zip code) 6 0.16 
    

  Total 3,651 100.00 

 

Table 2.18 Disposition Codes for Onsite Survey (2017) 

Disposition Description Freq. Percent 
    

0 Declined to participate 1,404 44.05 
1 Not recreating 49 1.54 
2 Incomplete survey 4 0.13 
3 No contact information 481 15.09 
4 Contact information 1,245 39.06 
6 Not contacted (duplicate email or no zip code) 4 0.13 
    

  Total 3,187 100.00 
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Table 2.19 Disposition Codes for Online Survey (2016) 

Disposition Description Freq. Percent 
    

0 Did not respond 904 51.39 
1 Did not continue past the consent page 38 2.16 
2 Incomplete survey 110 6.25 
3 Complete survey 552 31.38 
4 Incorrect contact information 135 7.67 
5 Refusal 16 0.91 
6 Did not record ID number 4 0.23 
    

  Total 1,759 100.00 

 

Table 2.20 Disposition Codes for Online Survey (2017) 

Disposition Description Freq. Percent 
    

0 Did not respond 683 55.04 
1 Did not continue past the consent page 26 2.10 
2 Incomplete survey 69 5.56 
3 Complete survey 323 26.03 
4 Incorrect contact information 130 10.48 
5 Refusal 10 0.81 
    

  Total 1,241 100.00 
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Appendix 2G: Attribute Trade-offs in WTP 

In addition to expressing the attribute trade-offs in willingness to drive (WTD), as in the main 

text, the WTD can be converted into willingness to pay units using travel costs per mile. We estimate 

average travel cost per mile using the following formula: 

!"#$%&'()* = ,-)*#.'% ∗ (,"-$-.1	'()*) + *"#$%&	*-5% ∗ 67 8
9::;9<	=:>?@A

BCCC D           (9) 

  

Driving costs are calculated using the 2016 and 2017 AAA Your Driving Cost handbook; 

driving costs are equal to the cost of fuel, tires, and oil plus marginal depreciation costs for a medium 

sized sedan that drives 15,000 miles per year. For travel time, we assume that individuals drive 45 miles 

per hour on average, and annual income is self-reported in the survey. Using this formula, our travel 

cost estimate is $.236 per mile in 2017 CPI-adjusted dollars.  

Translating the willingness-to-drive to a dollar value,13 the average willingness to pay for shrubs 

nearby and trees farther away or for trees nearby and shrubs farther away across all models is about 

$10 one way. The average across all models of willingness to pay for trees nearby and farther away is 

about $20, and for water nearby and farther away is $25. The average willingness to pay for a recent 

fire that burned all plants is -$17 one way or $34 round-trip, while for other fires, the willingness to 

pay is about -$10 per round trip. Willingness to pay values are found in Table 2.21. 

 

 

                                                

13 The conditional logit and random parameter logits presented in this essay were also run using travel cost instead 
of distance, and the resulting WTP values are nearly the same as when willingness to drive is converted to WTP using 
average travel cost. 
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Table 2.21 Willingness to Pay One-Way Using Average Travel Cost 

 Conditional Logit  Random 
Parameters  Latent Class 

Model (1) (2) (3) (4)  (5) (6)  (7)  (8) 
         Class 1 Class 2  Class 1 Class 2 

Vegetation              
Shrubs near, trees far $ 11 $ 11 $ 11 $ 11  $ 10 $ 11  $ 24 $ 1  $ 4 $ 48 
Trees near, shrubs far $ 11 $ 10 $ 11 $ 10  $ 10 $ 11  $ 23 -$ 1  $ 2 $ 50 
Trees near, trees far $ 19 $ 18 $ 19 $ 18  $ 18 $ 19  $ 38 $ 1  $ 7 $ 74 

Water              
None near, some far $ 17 $ 16 $ 17 $ 17  $ 17 $ 17  $ 32 $ 3  $ 9 $ 50 
Some near, none far $ 17 $ 15 $ 17 $ 17  $ 16 $ 17  $ 38 -$ 1  $ 6 $ 75 
Some near, some far $ 23 $ 22 $ 23 $ 23  $ 23 $ 24  $ 46 $ 5  $ 11 $ 82 

Fire History (farther 
away)              
Old fire that burned all 
plants -$ 3 -$ 3 -$ 3 -$ 3  -$ 3 -$ 4  -$ 5 -$ 1  -$ 1 -$ 16 

Recent fire that burned 
all plants -$ 17 -$ 16 -$ 17 -$ 17  -$ 17 -$ 18  -$ 18 -$ 15  -$ 15 -$ 25 

Recent fire that burned 
some plants -$ 6 -$ 5 -$ 6 -$ 5  -$ 5 -$ 7  -$ 10 -$ 4  -$ 4 -$ 15 

Recent shrub fire -$ 3 -$ 2 -$ 3 -$ 3  -$ 3 -$ 3  -$ 3 -$ 5  -$ 5 $0.25 
              

Note: Values in bold indicate the WTP is significant at the 5% level using the delta method 

 



 

 131 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

  



 

 132 

REFERENCES 

Balch, Jennifer K., Bethany A. Bradley, John T. Abatzoglou, R. Chelsea Nagy, Emily J. Fusco, and 
Adam L. Mahood. 2017. “Human-Started Wildfires Expand the Fire Niche across the United 
States.” Proceedings of the National Academy of Sciences 114 (11): 2946–51.  

Barro, Susan C., and Susan G. Conard. 1991. “Fire Effects on California Chaparral Systems: An 
Overview.” Environment International 17 (2–3): 135–149. 

Beharry-Borg, Nesha, and Riccardo Scarpa. 2010. “Valuing Quality Changes in Caribbean Coastal 
Waters for Heterogeneous Beach Visitors.” Ecological Economics 69 (5): 1124–39.  

Bell, Carl E., Joseph M. Ditomaso, and Matthew L. Brooks. 2009. “Invasive Plants and Wildfires in 
Southern California.” University of California ANR Catalog 8397 (August).  

Boxall, Peter C., and Wiktor L. Adamowicz. 2002. “Understanding Heterogeneous Preferences in 
Random Utility Models: A Latent Class Approach.” Environmental and Resource Economics 23 (4): 
421–446. 

Boxall, Peter C., Jeffrey Englin, and Wiktor L. Adamowicz. 2003. “Valuing Aboriginal Artifacts: A 
Combined Revealed-Stated Preference Approach.” Journal of Environmental Economics and 
Management 45 (2): 213–30.  

Boxall, Peter C., and Jeffrey E. Englin. 2008. “Fire and Recreation Values in Fire-Prone Forests: 
Exploring an Intertemporal Amenity Function Using Pooled RP-SP Data.” Journal of Agricultural 
and Resource Economics 33 (1): 19–33. 

Chavez, Deborah J., Patricia L. Winter, and James D. Absher. 2008. “Recreation Visitor Research: 
Studies of Diversity.” PSW-GTR-210. Albany, CA: U.S. Department of Agriculture, Forest 
Service, Pacific Southwest Research Station. 

ChoiceMetrics. 2014. Ngene 1.1.2 User Manual & Reference Guide, Australia. 

Dimitropoulos, Alexandros, Jos N. van Ommeren, Paul Koster, and Piet Rietveld. 2016. “Not Fully 
Charged: Welfare Effects of Tax Incentives for Employer-Provided Electric Cars.” Journal of 
Environmental Economics and Management 78 (July): 1–19. 

Englin, Jeffrey, Peter C. Boxall, Kalyan Chakraborty, and David O. Watson. 1996. “Valuing the 
Impacts of Forest Fires on Backcountry Forest Recreation.” Forest Science 42 (4): 450–55. 

Englin, Jeffrey, Thomas P. Holmes, and Janet Lutz. 2008. “Wildfire and the Economic Value of 
Wilderness Recreation.” In Holmes T.P., Prestemon J.P., Abt K.L. (Eds) The Economics of Forest 
Disturbances. Forestry Sciences, Vol 79, 191–208. Springer, Dordrecht. 

Englin, Jeffrey, John Loomis, and Armando Gonzalez-Caban. 2001. “The Dynamic Path of 
Recreational Values Following a Forest Fire: A Comparative Analysis of States in the 
Intermountain West.” Canadian Journal of Forest Research 31: 1837–44. 



 

 133 

Flores, David, Gennaro Falco, Nina S Roberts, and Francisco P Valenzuela. 2018. “Recreation Equity: 
Is the Forest Service Serving Its Diverse Publics?” Journal of Forestry 116 (3): 266–72.  

Hesseln, Hayley, John B. Loomis, Armando González-Cabán, and Susan Alexander. 2003. “Wildfire 
Effects on Hiking and Biking Demand in New Mexico: A Travel Cost Study.” Journal of 
Environmental Management 69 (4): 359–68.  

Hilger, James, and Jeffrey Englin. 2009. “Utility Theoretic Semi-Logarithmic Incomplete Demand 
Systems in a Natural Experiment: Forest Fire Impacts on Recreational Values and Use.” Resource 
and Energy Economics 31 (4): 287–98.  

Japelj, Anže, Robert Mavsar, Donald Hodges, Marko Kovač, and Luka Juvančič. 2016. “Latent 
Preferences of Residents Regarding an Urban Forest Recreation Setting in Ljubljana, Slovenia.” 
Forest Policy and Economics 71 (October): 71–79. 

Kermagoret, Charlène, Harold Levrel, Antoine Carlier, and Jeanne Dachary-Bernard. 2016. 
“Individual Preferences Regarding Environmental Offset and Welfare Compensation: A Choice 
Experiment Application to an Offshore Wind Farm Project.” Ecological Economics 129 
(September): 230–40.  

Kosenius, Anna-Kaisa. 2010. “Heterogeneous Preferences for Water Quality Attributes: The Case of 
Eutrophication in the Gulf of Finland, the Baltic Sea.” Ecological Economics 69 (3): 528–38.  

Krinsky, I and A. L. Robb. 1986. “On Approximating the Statistical Properties of Elasticities." Review 
of Economic and Statistics 68: 715-719. 

Loomis, John, Armando González-Cabán, and Jeffrey Englin. 2001. “Testing for Differential Effects 
of Forest Fires on Hiking and Mountain Biking Demand and Benefits.” Journal of Agricultural and 
Resource Economics 26 (2): 508–22. 

McFadden, Daniel. 1973. “Conditional Logit Analysis of Qualitative Choice Behavior.” In Frontiers in 
Econometrics, edited by P Zarembka. 

Moritz, Max A., Enric Batllori, Ross A. Bradstock, A. Malcolm Gill, John Handmer, Paul F. Hessburg, 
Justin Leonard, et al. 2014. “Learning to Coexist with Wildfire.” Nature 515 (7525): 58–66.  

Nordén, Anna, Jessica Coria, Anna Maria Jönsson, Fredrik Lagergren, and Veiko Lehsten. 2017. 
“Divergence in Stakeholders’ Preferences: Evidence from a Choice Experiment on Forest 
Landscapes Preferences in Sweden.” Ecological Economics 132 (February): 179–95.  

Pacifico, Daniele, and Hong il Yoo. 2013. “Lclogit: A Stata Command for Fitting Latent-Class 
Conditional Logit Models via the Expectation-Maximization Algorithm.” The Stata Journal 13 
(3): 17. 

Peng, Marcus, and Kirsten L.L. Oleson. 2017. “Beach Recreationalists’ Willingness to Pay and 
Economic Implications of Coastal Water Quality Problems in Hawaii.” Ecological Economics 136 
(June): 41–52.  



 

 134 

Rundel, Philip W. 2018. “California Chaparral and Its Global Significance.” In Valuing Chaparral. 
Springer Series on Environmental Management. Springer International Publishing. 

Schaafsma, Marije, Roy Brouwer, Inge Liekens, and Leo De Nocker. 2014. “Temporal Stability of 
Preferences and Willingness to Pay for Natural Areas in Choice Experiments: A Test–Retest.” 
Resource and Energy Economics 38 (November): 243–60.  

Swait, Joffre. 1994. “A Structural Equation Model of Latent Segmentation and Product Choice for 
Cross-Sectional Revealed Preference Choice Data.” Journal of Retailing and Consumer Services 1 (2): 
77–89. 

Tein, Jenn-Yun, Stefany Coxe, and Heining Cham. 2013. “Statistical Power to Detect the Correct 
Number of Classes in Latent Profile Analysis.” Structural Equation Modeling : A Multidisciplinary 
Journal 20 (4): 640–57.  

US Forest Service. 2001. “National Visitor Use Monitoring Results.” USDA Forest Service. 
https://www.fs.fed.us/recreation/programs/nvum/reports/year1/R5_Angeles_final.htm#_
Toc522596886. 

Vaux, Henry James, Philip D. Gardner, and Thomas John Mills. 1984. Methods for Assessing the Impact 
of Fire on Forest Recreation. USDA Forest Service, Pacific Southwest Forest and Range Experiment 
Station.  

Von Haefen, Roger H., and Adam Domanski. 2018. “Estimation and Welfare Analysis from Mixed 
Logit Models with Large Choice Sets.” Journal of Environmental Economics and Management 90 (July): 
101–18.  

 

 



 

 135 

 Estimating the Impact of Fires on Recreation in the Angeles National Forest 
Using Combined Revealed and Stated Preference Methods 

3.1 Introduction 

A multitude of factors including fire suppression and exclusion, drought, warming temperatures, 

and increased human activity have made wildfire season in the Western United States more intense 

and severe than ever in recent years. California, as the most populous state and home to many unique 

national parks and forests, is especially vulnerable to the financial, health, and recreational impacts of 

these wildfires. The 2017 fire season was particularly destructive. In December 2017 southern 

California experienced an outbreak of ten separate wildfires in and around the Los Angeles 

metropolitan area, many starting in one of the four national forests that surround the area. These 

national forests are an important outdoor recreation opportunity for a population of millions of people 

in Los Angeles, San Diego, and surrounding cities. A review of 49 studies estimated that access to 

recreational sites in the Pacific western states has an average estimated value of $35 per trip in 2018 

dollars (Loomis 2005). Road closures, site closures, and lasting site damage due to wildfires every 

season impact patterns of recreation in these high-use national forests. With wildfire intensity and 

severity expected to increase throughout the west, there is a need to understand how wildfire activity 

affects forest recreation in southern California. This essay examines the impacts of fire activity in 

national forests by using revealed and stated preference data on site choice in one of the most heavily-

used national forests in the country. 

The study area focuses on the Angeles National Forest. This forest is the largest area of open 

space in Angeles County and an important source of outdoor recreation for the dense urban 

population of Los Angeles and its suburbs, receiving over 3 million visits annually from local trips as 

well as nationwide and international visitors (Garnache et al. 2018). Vegetation in the forest is primarily 

chaparral, with mixed conifer and hardwood forests at higher altitudes. Both these predominant 
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species are prone to fire; the forests experience both mild surface fires and intense crown fires, while 

chaparral primarily experiences intense, stand-burning fires but recovers more quickly. Sites in the 

Angeles National Forest span a wide variety of activities from hiking to fishing, picnicking, historical 

sites, and camping. Variation in land cover, site attributes, and burn and recovery patterns, make this 

a unique area to study the effects of visible fire damage to forest visitors. 

There is a growing literature on the effects of wildfire on outdoor recreation. An early 

contingent valuation study by Vaux, Gardner, and Mills (1984) gave university students at UC Davis 

a series of photographs to elicit preferences over fire damage. The photographic series they used 

showed typical forest vegetation before and after fire in a series of western conifer forest including 

Southern California. The respondents were asked which series they preferred given that both 

represented typical recreation areas nearby. They found that in general intense fires are detrimental, 

while more moderate fires may increase welfare. 

Instead of asking people how they react to fire, some studies use revealed preference data and 

recreation demand models. Englin et al. (1996) use data from canoe registrations in Manitoba to 

estimate the impacts of fire damage along popular canoe routes in a state park ten years after a series 

of large fires, finding a per-trip welfare loss of $15 per lost trip in 1993, ten years after the fires. 

Baerenklau et al. (2010) use a combination of geographic data and zonal travel cost models to map 

recreational value in the San Bernardino National Forest, which is adjacent to Angeles National Forest 

on the eastern side. They find that on average the value of a lost trip to a trailhead in the San Jacinto 

Wilderness is $19, but that recreational value is highly spatially concentrated in higher elevations, 

suggesting that a major wildfire – such as the 2006 Esperanza Fire which affected the forest – would 

have varying costs across landscapes. 

Much of the literature into the cost of fires on recreational sites combines revealed preference 

(RP) and stated preference methods (SP) (Hesseln et al. 2003; Hesseln, Loomis, and González-Cabán 
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2004; Boxall and Englin 2008; Hilger and Englin 2009; Rausch, Boxall, and Verbyla 2010; Duffield et 

al. 2013). Revealed preference data can be used jointly with stated preference data from contingent 

valuation (e.g. Loomis 1997), discrete choice experiments (e.g. Christie, Hanley, and Hynes 2007), or 

contingent behavior methods (e.g. Englin and Cameron 1996) to draw on the strengths of both 

approaches. A consistent finding of this literature is that forest fires decrease recreational value, but 

that there is heterogeneity across groups of recreationists and types of fires. Englin, Loomis, and 

González-Cabán in a pair of papers (Loomis, González-Cabán, and Englin 2001; Englin, Loomis, and 

Gonzalez-Caban 2001), and work by Hesseln et al. (2003; 2004) pool data on actual trips per season 

with people’s intended trips following a fire. They each find different effects depending on the 

intensity of the fire and the time since it occurred. Englin, Loomis, and González-Cabán (2001) find 

evidence of an “s-shaped” path of damages, suggesting that as an area recovers from a fire there may 

be some benefits as well as costs to recreationists. Similarly, Boxall and Englin (2008) find both 

positive and negative parameters on burn variables depending on the time since fire. This suggests 

that as a forest recovers, there may be some benefits to a recent fire – perhaps some people are 

interested in the regrowth or prefer a less obstructed view of other scenery. The non-linear recovery 

pattern of damages lasts for several decades (Englin, McDonald, and Moeltner 2006; Boxall and Englin 

2008). Most of these studies take place in mountainous forested regions – the Rocky Mountains and 

western Canada and none of these studies take place in chaparral. 

Contingent behavior in the recreation literature has mostly been used to estimate hypothetical 

trips per year or season following a change. We take an alternate approach similar to that used by 

Adamowicz, Louviere, and Williams (1994), Boxall et al. (2003), and most-closely related to Parsons 

and Stefanova (2011) in which the respondents’ task is to decide whether an observed trip would have 

changed given various fire scenarios. This way, discrete decisions over scenarios are easily comparable 
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to discrete site choice decisions in the RP data. In addition, the approach helps to ground respondents 

in a real decision for which we have trip data.  

Given that wildfires are expected to become more frequent, there is a greater need to understand 

the effects of site closures and the continuing welfare effects of wildfire burn scars on the landscape. 

In this study we use visitation data to estimate a multi-site zonal travel cost model of demand for trips 

to sites in the Angeles National Forest. Contingent behavior responses are embedded within the 

demand system and the implied fire preference parameters are estimated using contraction maps, 

allowing us to value both site closures and the impacts of fire history on sites after they reopen. Results 

contribute to forest management when facing increasing threats of site closures by providing insight 

into potential impacts during and after closures in a popular urban national forest. Of the fire scenarios 

presented, recent forest fires are the costliest, causing estimated welfare losses of up to $2.2 million 

per summer season for one affected site. The remainder of this essay is organized as follows: Section 

3.2 describes empirical strategy used to estimate the effects of fire. Section 3.3 describes the sampling 

strategy for the onsite survey and the data, and Section 3.4 presents model results and welfare 

estimates. Section 3.5 concludes. 

3.2 Empirical Strategy 

This essay combines data on revealed site choice with information on stated choices under 

several wildfire scenarios. First, we collected onsite visitation data at day use sites in the Angeles 

National Forest. Random sampling of recreation sites was stratified by expected use level (high or 

low), weekend or weekday, and morning or afternoon. We followed up with an online survey to collect 

contingent behavior data. The empirical strategy exploits both the onsite and contingent behavior data 

to estimate welfare effects of fires. Using respondents’ observed site choice, we employ a multi-site 

zonal travel cost model following the approach developed by von Haefen et al. (2015) for the 

Deepwater Horizon oil spill. The zonal model uses on-site sampling and intercept probabilities to 
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estimate rates of visitation from each origin zip code, allowing us to estimate a multi-site recreation 

demand system with a full set of alternative specific constants (ASCs). This model provides estimates 

of visitation to each site under unchanged conditions which are then calibrated via contraction maps 

to estimates of the percentage of visitors who would have still visited the site at which they were 

intercepted under alternate fire history scenarios. 

3.2.1 Zonal Data Set 

Onsite trip data for this essay was collected June – August 2016 in the Angeles National Forest. 

Visitors were intercepted at hiking and picnicking sites; our random sampling strategy stratified sites 

according to the number of visits they generally receive over the weekend, and sampling times were 

stratified according to time of the day and day of the week (morning or afternoon, and weekend or 

weekday). Interviewers intercepted visitors as they exited the main hiking trail at the site or approached 

their vehicles to exit and kept a count of the number of exiting vehicles in each work shift. Sampling 

weights were constructed using the intercept probabilities which take into account the count of visitors 

to each sampled site as well as the probability of sampling that site. Using the trip intercept data and 

sampling weights, we estimate visitation to each site from each origin zip code. The zip code-level 

visitation is then used to estimate a multi-site zonal travel cost model that included non-participation 

using a method developed for the Deepwater Horizon oil spill (von Haefen et al. 2018)14 and recently 

implemented to estimate the impact of the Thomas fire in California (Garnache and Lupi 2018). The 

model is specified as a repeated random utility model (RRUM; Morey et al. 1993) using the zonal data 

and treating each origin as if it is composed of a representative agent from that zone. This section 

                                                

14 von Haefen et al. (2018) show a multi-site zonal model that included non-participation that was estimated using 
site intercept data yielded welfare measures that are strikingly similar to those of a multi-site model with non-participation 
that was estimated from a large general population sample of individuals (English et al. 2018). 
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describes the creation of the zonal data set, and a later section lays out the RRUM theory, choice 

probabilities and welfare measures. 

To create the zonal dataset, estimated trips are needed for each origin zone and destination 

sites.  Let j = 0, …, J be the set of sites in our dataset; j=0 corresponds to the outside option, or no-

trip option in a RRUM.  After removing sites for which we have no intercept data, e.g. no observations 

of individuals’ origin zones, the total number of sites in the choice set is J=31, and the total number 

of alternatives, including no-trip, is J+1=32. For each origin zip code i we identify the one or more 

sites visited by individuals from that zip code. Let Tij be the estimated total number of trips from zip 

code i to site j, derived from the survey sampling probabilities, where Ni is the set of intercepted 

individuals who live in zip code i, and !"# is the probability that individual n was intercepted at site j, 

which is derived from the sampling design. Trips from each origin to each site are estimated by  

$%# = '
1

!"#

)*

"+,

										. ≠ 0 (1) 

  

We can also define Ti, the total number of trips from zip code i across all sites by summing Tij 

over the J sites in the choice set: 

$% ='$%#

1

#+,

 (2) 

  

The total number of trips from all zip codes to a site j, Tj, is given by the sum of Tij over the I origin 

zip codes in the dataset. 

$# ='$%#

2

%+,

										. ≠ 0 (3) 
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For each zip code the Tij will serve as the weights in our estimation of the zonal RRUM. Following 

von Haefen et al (2018), we use the zip code population to construct the number of times in each 

origin that j=0 is chosen:  

$%3 = 4 ∗ 676% − $% (4) 
  

where A is a scaling factor that allows the total choice occasions in zip code i to be greater than the 

population 676% .  A is defined as follows: 

4 = max
%
<1.1 ∗

$%
676%

> (5) 

  

The aggregated zonal dataset contains trips for each origin-destination pair and the total number of 

choice occasions for each origin zip code, ?@%, which equals 4 ∗ 676% . 

3.2.2 Site Choice Model 

Site choice is modeled using the RP data following random utility maximization (RUM) theory. 

We have a sample of individuals from i zip codes, each with a set of J potential sites to visit; in our 

data j = 0, 1, …, 31, where j=0 is the no-trip option. In our zonal model assume an individual from 

zip code i makes a choice of site j from a set of sites J. The utility for a person from zip code i at some 

site j≠0 has an observed component and a random error term. 

B%# = C%# + E%# = FGHIJKL7MF%#NOPQRSTUVWO + X# + E%#										. ≠ 0  (6) 
  

The deterministic portion of utility depends on the travel cost from zip code i to site j and an 

alternative specific constant X# that captures utility from attributes of site j that do not vary across 

individuals.15  The utility for a person from zip code i from the no-trip option (j = 0) depends on the 

demographic characteristics of the zip code.  

                                                

15 Each of the J sites has a fixed effect, X# , commonly referred to as alternative specific constants (ASCs). Since 
random utility models are only defined up to utility differences, we can only identify ASCs for J of the J+1 alternatives. 
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B%3 = C%3 + E%3 = YJZ		[\L7YJ%]%"UV^S + YJZ	H_J%]Q`S (7) 
          +6LF	L7KKJ_J%]UVTTS`S + 6LF	ℎ[M6H\[L%]b%WcQ"%U + E%3  
  

The individual chooses site j only if the utility of site j is greater than all other sites in the choice 

set, including the no-trip option. The probability of observing that individual i goes to site j is 

expressed 

d%# = d%	OP%cd%#|OP%c										. ≠ 0  (8) 
  

where d%	OP%c is the probability of taking a trip, and d%#|OP%c is the conditional probability of site j given 

that the respondent takes a trip is taken. Assuming the error term has a GEV distribution, the 

probabilities of site j≠0 take the nested-logit form and are equal to 

d%,OP%c =
f∑ Jh6i,jC%kl

1
k+, m

j

Jh6(C%3) + f∑ Jh6i,jC%kl
1
k+, m

j (9) 

  

d%#|OP%c =
Jh6i,jC%#l

∑ Jh6i,jC%kl
1
k+,

 (10) 

  

where p is the nesting parameter, which captures the correlation between alternatives in the nest with 

recreation sites. Then the weighted log-likelihood function is 

qq ='r$%3s%3K\(d%3) +'$%#s%#K\id%#l

1

#+,

t

2

%+,

 (11) 

  

where yij=1 if an individual from zip code i visits site j, and 0 otherwise, and Tij is the number of choice 

occasions for which a person from zip code i visits site j. 

The number of predicted trips to site j is equal to the sum over zip codes of the number of 

choice occasions in zip code i, $% , times the probability d%# given by the formula: 

$G[6M# ='$%d%#

2

%+,

 (12) 
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Our welfare predictions rely on calibration of the RRUM site choice model to the contingent 

behavior data. For each site j under some fire history scenario s we add by adding an additional term 

u#
W to the estimated ASC. Then for each fire type we take the weighted average u̅W to use in welfare 

analysis. For each fire type, the average welfare loss for a fire s at site j is given by the log-sum equation: 

C#
W ='$%

,

w
xK\ yJh6(C%3) + x' Jh6 z

{*|}2~[ÄÅÅÅ
Ç]

j
Ñ

k
Ö
j

Ü − K\ yJh6(C%3) + x' Jh6 z
{*|
j
Ñ

k
Ö
j

ÜÖ
%

 (13) 

  

In this equation á#[u̅W] = <
u̅W	[à	M[FJ = .
0	[à	M[FJ ≠ .

 is an indicator function; if site=j we add the weighted 

average u̅W to the utility for site j and $% is the number of choice occasions in zip code i. To get an 

estimate of value per lost trip, we divide the total welfare loss by the change in predicted trips with 

and without fire.  

Câ
Wä =

∑ $%
,
w
xK\ yJh6(C%3) + ã∑ Jh6 z

{*|}2~[ÄÅÅÅ
Ç]

j Ñk å
j

Ü − K\zJh6(C%3) + f∑ Jh6i{*|j lk m
j
ÑÖ%

∑ $[d[.á
[=1 − ∑ $[d[.

Má
[=1

 (14) 

  

To estimate the value of site closures, we add term u#
3 to the relevant estimated ASCs, which is a 

constant that drives predicted trips to closed sites to zero. Total welfare loss from site closure is given 

by Equation (15) where á#[u.0] = ç
u.
0	[à	M[FJ	.	 ∈ ?

0	[à	M[FJ	. ∉ ?
 and C is the set of closed sites. 
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3.2.3 Calibration to SP Data and Welfare Measures 

The two-level nested logit model is estimated using the zonal dataset created from onsite trip 

data.  While it can be used to estimate the effect of fire-induced site closures, we would like to estimate 

the welfare impacts of wildfire histories on recreation sites after they reopen following fires. To do 

this, we use the data on respondents’ changes to site choice from the contingent behavior questions 

in the online survey. This approach of calibrating the model to outside data on site visitation has been 
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employed by English et al. (2018). In our case we choose adjustments to site alternative-specific 

constants such that the estimated pattern of demand matches the changes to visitation from the survey 

contingent behavior questions. For each fire scenario s in the dataset we have a percentage reduction 

in trips to some affected site j, or target trips to site j. We adjust the alternative specific constants to 

site j so that 

X#
W = X# + u#

W,											. ≠ 0 (16) 
  

These u#
W solve the problems that equates predicted trips under fire and no fire conditions: 

$G[6M#
W = ñ$G[6M#,										. ≠ 0 (17) 

  

Here, ñ is the proportion of respondents who chose “I would go to the same site” when presented 

with scenario s found in Table 3.4 (noting that not all fires occur at each site; a site in an area with 

predominantly trees cannot have a shrub fire nearby). For each site in the choice set and each relevant 

fire scenario we solve for some u#
W  using a contraction mapping (Berry et al, 1995; Murdock 2006). 

The contraction mapping algorithm is specified in terms of predicted trips to site j and iteratively 

guesses values of uâWó so that $Gò6MâWô  and $G[6M#
W are arbitrarily close. It is given by the equation 

uâ,k},
Wô = uâ,k

Wó + lni$Gò6Mâl
ô − lnfàiú, uâ,k

Wó lm (18) 
  

where k indexes iterations. For each iteration, the guess is updated by adding the difference in logs 

between estimated trips to site j and target trips to site j.  

3.3 Data  

3.3.1 Onsite Survey Sampling Strategy and Design 

This chapter uses data from a two-stage survey. The first stage was conducted in-person during 

the summer of 2016, with a follow-up online survey in the winter. The onsite recreation survey 

conducted June 17 – August 14, 2016 intercepted visitors at a total of forty trailheads and day use sites 
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in the Angeles National Forest. During the summer, eight enumerators were assigned to six-hour 

shifts that occurred either in the morning (8 AM – 2 PM) or in the afternoon (2 PM – 8 PM). For 

each week of the survey, five “weekday” slots were drawn from nine potential weekday shifts; all five 

possible “weekend” – weekends included Friday afternoons – shifts were drawn on each week for 

which all workers were available. On each assigned shift, two sites were selected. Each shift followed 

a clustered sampling strategy in which sites were separated by location into one of three clusters; first, 

a cluster was drawn, and then two sites within that cluster. Within each cluster, sites were stratified by 

the number of visits they generally receive on a weekend – high or low use.  

At low-traffic sites, or where the parking lot was easily monitored, enumerators intercepted 

people as they approached their vehicle to leave, while one person per shift was recorded exiting 

vehicle traffic. At some heavily used trailheads, enumerators intercepted people as they returned from 

a hike, as one person recorded the number of individuals exiting the trail. Visitation counts based on 

vehicles were converted to people using the data from the intercepts on the number of people per 

vehicle. With these exit counts and the total number of interviews at a site during a given shift, we 

estimate the probability that an individual was interviewed conditional on being at that recreation site 

on that day. The sampling weights for the site strata were used to calculate the probability that a site 

was drawn in any particular work shift. Finally, we estimated the probability that interviews were 

conducted during a work shift given the time of day and day of the week. These three were combined 

to form an intercept probability equal to the probability of intercepting an individual at a given site 

during a given shift.  
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The onsite survey received a response rate of 62%. This percentage includes only complete 

responses by people who were recreating at the national forest site.16 Respondents provided 

information about their trip, main activity in the forest, demographic information, and were asked to 

provide an email or mailing address for a follow-up online survey.17 Of 2266 complete in-person 

interviews, 1755 (77.7%) respondents provided either an email address (1685) or mailing address (70) 

for the web survey.  

3.3.2 Online Survey Design 

In the online follow-up survey, respondents are first primed on major attributes of interest – 

vegetation, the presence of water at the site, and fire history. Vegetation and water were chosen as 

they are likely to be some of the most salient environmental attributes for visitors: the Angeles 

National Forest has diverse vegetation but can be broadly classified into forest or chaparral, and 

recreation sites with a stream or lake attract different visitors and different activities than those 

without. Respondents are also asked to think about attributes “nearby” and “farther away” from the 

parking area because pretesting suggested that some people differentiated between whether a fire had 

been off in the distance or was visible in the area around the parking lot and picnic areas, which tend 

to be right by the parking lots.18 Thus, nearby was defined as the area within a 5-minute walk from the 

parking area, and farther away was defined as the area beyond a 5-minute walk. Next, respondents 

were introduced to the vegetation types and to fire impacts for chaparral and forests prior to receiving 

two to six contingent behavior questions depending on the vegetation type at the site they visited. We 

                                                

16 Disposition codes for the onsite and online surveys are provided in the Appendix 2F of Essay 2. 

17 See the appendix for replicas of the paper versions of on-site and online survey instruments. 

18 Survey development included 49 in-person interviews conducted at Angeles National Forest (ANF) recreation 
sites in July 2015, with some testing our site intercept instrument and some probing what people would do in response to 
fires. Paper questionnaires were tested in 15 in-person interviews at ANF in May 2016. In Fall 2016, the online instrument 
was tested in a webinar setting in four individual cognitive interviews with people previously intercepted at ANF. 
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also collected information on respondents’ national forest visits, attitudes towards sites with visible 

fire history, and how they receive information about national forest site closures and fire conditions. 

Contingent behavior questions were tailored to the type of site at which the respondent was 

intercepted. There were three possible sets of questions corresponding to vegetation at their site: 1) 

trees nearby and trees farther away, tree/tree; 2) trees nearby and shrubs farther away, tree/shrub; 3) 

shrubs nearby and shrubs farther away, shrub/shrub. The number of contingent behavior scenarios 

depends on the site type because not all types of fire are feasible at every vegetation combination. 

Forest fires can be broadly categorized as either high-intensity crown fires, which burn all plants 

to the crown of the trees, or surface fires which burn the grasses and scorch tree trunks, but do not 

reach to the tops of trees. High-intensity forest fires leave large areas of burned vegetation visible from 

long distances that may take years to recover. Low-intensity surface fires are more difficult to see from 

a distance, however, close up they leave lasting marks at recreation sites. Chaparral fires tend to burn 

with high intensity, and also recover more quickly than trees; sometimes, after a year it is difficult to 

see where chaparral burned. Therefore, for the contingent behavior scenarios we assume that past 

fires that burned in areas of mostly trees could have burned some plants or all plants and could have 

been recent or old fires. Both types of fires (tree or shrub) could have been near the parking lot or farther 

away. However, we assume old forest fires that burned only some plants are not visible farther away 

and were not included. Fires that burn in areas of mostly shrubs we assume can only burn all plants, 

and could only be recent, as fires more than a couple years old are not visible. Therefore, respondents 

with an intercept site that was tree/tree saw contingent behavior questions with six possible past fire 

combinations, respondents to tree/shrub sites saw four scenarios, and respondents to shrub/shrub 

sites saw two contingent behavior scenarios. 

Contingent behavior scenarios correspond with the predominant vegetation at sites at which 

respondents were intercepted: see Table 3.1 for a list of the three site vegetation categories and their 
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fire history scenarios. Sites were categorized according to their vegetation nearby (within a 5-minute 

walk of the parking area) and farther away (more than 5-minutes but less than an hour’s hike). 

Vegetation types were defined according to what visitors would see and how sites are used. For 

example, nearby was “mostly trees” if there was some shade present, for example a group of trees 

near a picnic table, and “mostly shrubs” otherwise. Sites were “mostly trees” farther away if the major 

trail from the parking lot followed a shaded path, and “mostly shrubs” if the path was exposed. We 

used a combination of visual evidence from visiting each site, aerial images from Google Earth, and 

information about major hikes in the area to determine vegetation type. 

 

Table 3.1 Contingent Behavior Scenarios for Each Vegetation Type 

Vegetation type Contingent Behavior Scenarios 
  

Trees near, trees far Old fire that burned all plants farther away 

 Old fire that burned all plants nearby 

 Recent fire that burned all plants farther away 

 Recent fire that burned all plants nearby 

 Recent fire that burned some plants farther away 

 Recent fire that burned some plants nearby 
  

Trees near, shrubs far Old fire that burned all plants nearby 

 Recent fire that burned all plants nearby 

 Recent shrub fire farther away 

 Recent fire that burned some plants nearby 
  

Shrubs near, shrubs far Recent shrub fire farther away 
  Recent shrub fire nearby 
  

 

The online survey ran from November 2016 to January 2017. Email addresses were contacted 

a total of 8 times and mailing addresses 6 times. Overall 662 out of 1755 people contacted (38%) 

responded to the survey. The majority (576) were at sites where there were trees both nearby and 

farther away and saw six contingent behavior scenarios. Descriptive statistics for the full dataset of 
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onsite survey respondents are in Table 3.2; we have information on education and income for online 

survey respondents only. 

 

Table 3.2 Descriptive Statistics for Onsite Survey Respondents 

Variable Mean Min Max  N  
     

Age (years) 37 18 87 3,124  
Male (0/1) 0.63 0 1 3,141  
Hispanic (0/1) 0.39 0 1 3,130  
White (0/1) 0.54 0 1 2,907  
College degree (0/1) 0.67 0 1 774  
Income ($1000) 101.23 12.50 250.00 716  
One-way distance to site visited (miles) 47.12 1.30 558.80 3,150  
Hiker 0.71 0.00 1.00 3,150  
     

 

3.3.3 Contingent Behavior Data 

We derive welfare estimates of the eight different fire scenarios presented in the contingent 

behavior section of the online survey. For each fire scenario, we have an estimate of the percent of 

trips to a site that would switch to either another site or no trip. Table 3.3 shows responses from the 

online survey data: the worst fire scenario, which causes the most switching, is a recent fire that burned 

all plants farther away from the parking lot. Fifty-eight percent of respondents would continue to go 

to the same site, while 36% would go to a different site, and 6% would do something else. Roughly 

10-15% of trips are altered in scenarios with fires that burn only some plants, or an old fire near the 

parking area.  
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Table 3.3 Contingent Behavior Responses to Fire Scenarios 

Fire Scenario Do Something 
Else 

Go to Another 
Site 

Go to the Same 
Site 

Vegetation 
Types 

     

Old all, far 2.92% 12.69% 84.39% Tree/tree 

Old all near 1.89% 7.35% 90.76% Tree/tree 
Tree/shrub 

Recent all far 6.42% 35.90% 57.69% Tree/tree 

Recent all near 4.38% 30.89% 64.74% Tree/tree 
Tree/shrub 

Recent far shrub 2.23% 12.26% 85.51% Tree/shrub 
Shrub/shrub 

Recent near shrub 3.86% 4.41% 91.73% Shrub/shrub 

Recent some far 0.80% 12.81% 86.39% Tree/tree 
Tree/shrub 

Recent some near 1.86% 10.62% 87.52% Tree/tree 

 

3.3.4 Summary Statistics 

Summary statistics for the zonal dataset and the individual data prior to aggregation are found 

in Table 3.4. The zonal dataset was created with data from onsite interviews conducted in 2016. In 

2016 intercepted individuals were on average 38 years old. Sixty-four percent were men, and 68% 

college educated. Household income was relatively high, $103,000 annually, and the majority (58%) 

of respondents were white, and the largest minority was people of Hispanic or Latino origin (36%). 

Our dataset consists of 2,045 individuals from 467 origin zip codes.19 The average value of Tij, or the 

number of trips from zip code i to site j, is 593, while the average number trips from any given zip 

code 1,568. The number of trips to a site j ranges from 146 to 320,044 with an average of 23,617, and 

the total number of trips to any site is 732,127.  

                                                

19 For the current version of this chapter we limit the data to individuals from zip codes in California only and 
individuals for which we had previously estimated distances and travel costs from PC Miler 
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The travel cost from zip code to site latitude and longitude is calculated: 

$GHIJKL7MF%# = Z[MFH\LJ ∗ ($. 23	6JG	Y[KJ) + FGHIJK	F[YJ ∗
1

3
y
H\\†HK	[\L7YJ

2000
Ü (6) 

  

Where distance is round-trip distance and travel time is round-trip travel time in hours calculated by PC 

Miler. The cost of driving per mile is calculated using the 2016 AAA Your Driving Costs report and 

includes both operating costs and the marginal cost of depreciation using values for a medium-sized 

sedan driving 15,000 miles per year20. The opportunity cost of time is the one-third median household 

income of the zip code divided by 200021, or roughly one-third the hourly wage.  

                                                

20 Operating costs (fuel, tires, and oil) are $.1753 per mile, and the average marginal depreciation per mile is 
(290+225)/10,000 = $.0515 per mile, for a total per mile driving cost of $.2268 

21 Assumes a 40-hour work week, and 50 weeks worked per year 
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Table 3.4 Descriptive Statistics for the Zonal Dataset 

Table 3.4 includes descriptive statistics for the zonal data set. The section on individual-level demographics are descriptive statistics for the individuals whose weights 
were then aggregated at the zip code level. Aggregating variables including Tij, Ti, and Tj are used to develop the zip code level data set and weights used for estimation. 
Zip code-level demographics are taken from the US Census Bureau 2016 American Community Survey 5-year estimates. Trip statistics are summary statistics for distance 
and travel cost between zip codes and sites. 

 Variable Mean Min Max N 
      

Individual-Level Demographics Age (years) 38 18 84 2,032 
 Male (0/1) 0.64 0 1 2,045 
 Hispanic (0/1) 0.36 0 1 2,038 
 White (0/1) 0.58 0 1 1,881 
 College degree (0/1) 0.68 0 1 500 
 Income ($1000) 103.10 12.50 250.00 463 
      

Aggregating Variables Trips from zip code i to site j (Tij) 593 29 12,024 1,234 
 Trips from zip code i (Ti) 1,568 45 13,008 467 
 Trips to site j (Tj) 23,617 146 320,044 31 
      

Zip Code-Level Demographics Median household income ($) 67,732.70 12,370.00 195,051.00 1,699 
 College degree (%) 20.11 2.21 47.57 1,701 
 Median age (years) 37 21 66 1,701 
 Hispanic (%) 59.76 2.10 98.34 1,701 
 White (%) 59.27 11.85 96.88 1,701 
 Unemployment rate (%) 8.51 0.00 26.20 1,701 
      

Trip Statistics Round-trip distance to any site (miles) 147.14 2.00 1,199.00 52,731 
 Round-trip travel cost to any site ($) 68.54 1.17 578.08 52,669 
 Round-trip distance to site visited (miles) 116.75 2.60 1,117.60 1,234 
 Round-trip travel cost to site visited ($) 55.66 1.76 574.49 1,233 
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3.4 Results 

3.4.1 Site Choice Model 

Estimated parameters for the site choice model are presented in Table 3.5. The travel cost 

parameter is negative and significant, indicating that sites with a higher travel cost are less likely to be 

chosen. A full set of J ASCs were estimated, with the no-trip ASC !" = 0; for brevity the coefficients 

are omitted from Table 3.5. The nesting parameter t is between 0 and 1, and significantly different 

from 1. It is a measure of the correlation between the sites in the Trip nest, and implies that the nested 

logit model, which allows for correlation within alternatives in a nest, is a better fit for our data than 

the conditional logit model. The participation level parameters, which are interacted with the J=0 no 

trip alternative, show that origins with higher median household income, age, education and 

percentage non-Hispanics have higher participation levels (are less likely to choose the not rip option). 

The standard errors and confidence interval in Table 3.5 were estimated by constructing bootstrapped 

samples of the individual-level trip data22.  

The site choice model allows us to estimate the welfare effects of site closures. Major wildfires 

often cause recreation sites to close either while the fire is suppressed or in the case of areas that 

sustain major infrastructure damage, sites sometimes remain closed for months or years. We find that 

the average per-trip welfare loss from the closure of a day-use site range from $24 to $29 per trip. The 

closure of high-use sites for an entire season results in welfare loss up to $9 million (a table describing 

welfare loss from site closure can be found in the appendix).   

                                                

22 The dataset of individuals was expanded so that the person’s frequency in the data was proportional to their 
resampling probability. Replicate datasets were then drawn for each site so that the number of trips in each site remained 
the same. 
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Table 3.5 Site Choice Model Results 

Level Variable Coef. Std. Err. 95% Confidence Interval 
      

Trip Travel cost -0.017*** 1.82E-04 -0.018 -0.017 

 Nesting parameter 0.419*** 0.005 0.410 0.427 
  

    

No trip Median household income -1.96e-06*** 1.15E-07 -2.16E-06 -1.74E-06 

 Median age -0.057*** 3.62E-04 -0.057 -0.056 

 Pct college graduate -1.591*** 0.025 -1.640 -1.551 

 Pct Hispanic 0.866*** 0.011 0.843 0.889 
  

    

 Log likelihood -5910159.1    
  N 4.797e+09    
      

Note: For brevity the site-specific constants (the ASCs) are not presented here. 

 

3.4.2 Welfare Effects of Fire 

In this section we present results from the contraction map and estimate the welfare impacts of 

our eight fire scenarios, which are specific to the type of vegetation found at the recreation site. The 

eight scenarios are: 

1. Old forest fire that burned all plants farther away 

2. Old forest fire that burned all plants nearby 

3. Recent forest fire that burned all plants farther away 

4. Recent forest fire that burned all plants nearby 

5. Recent shrub fire farther away 

6. Recent shrub fire nearby 

7. Recent forest fire that burned some plants farther away 

8. Recent forest fire that burned some plants nearby 

For each site j and fire scenario s we estimate a set of parameters %&' that equate the expected 

trips to site j with predicted trips using the site choice model. Table 3.6 shows the average %̅' and the 
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95% confidence intervals for %̅' computed using the bootstrapped datasets, weighted by predicted 

trips to sites.23 In Table 3.6 σ is the proportion of people who would choose to go to the same site 

under the given scenario. The parameters %̅' are used as inputs into the welfare estimation24. 

 

Table 3.6 Weighted Average of Delta from Contraction Map 

Fire Scenario %̅' Confidence Interval	
(%̅') , Vegetation types 

     

Old all far -0.0873 (-0.0888, -0.0858) 84.39% Tree/tree 

Old all near -0.0490 (-0.0499, -0.0482) 90.76% Tree/tree 
Tree/shrub 

Recent all far -0.2747 (-0.2795, -0.2698) 57.69% Tree/tree 

Recent all near -0.2144 (-0.2182, -0.2105) 64.74% Tree/tree 
Tree/shrub 

Recent far shrub -0.0682 (-0.0696, -0.6685) 85.51% Tree/shrub 
Shrub/shrub 

Recent near shrub -0.0377 (-0.0385, -0.3694) 91.73% Shrub/shrub 

Recent some far -0.0754 (-0.0767, -0.0741) 86.39% Tree/tree 
Tree/shrub 

Recent some near -0.0672 (-0.0684, -0.0660) 87.52% Tree/tree 
     

 

For each fire s we calculate the total welfare loss for one summer season25 with the fire at site j, 

the change in predicted trips to site j under the change, and the value per lost trip -.'/ . Naturally when 

we compare across the sites, sites with larger numbers of trips experience larger losses, making it 

sensible to report the value per lost trip. Table 3.7 shows weighted average value per lost trip for each 

scenario – welfare losses range from $24.94 per lost trip to $29.52 per lost trip. Results are as expected, 

with forest fires mattering more than shrub fires, and fires farther away from the parking area 

                                                

23 The bootstrapping for these calculations has not yet accounted for the underlying variation in each σ. 
24 The site-specific estimates %&' are presented in the appendix 

25 Welfare estimates correspond to the sampling period for the intercept survey, early June to mid-August 
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mattering more than fires nearby the parking area. Given that a large majority of respondents were 

hikers – roughly 70% of intercepts – it is reasonable to expect that fire conditions at some distance 

from the parking area will have a greater welfare impact than conditions nearby, where the average 

respondent spends less time. However, the overall difference in the estimates per lost trip between 

nearby and farther away is small in magnitude (around $1 per lost trip). The large differences in value 

lost are between shrub fires and forest fires; per-lost-trip from shrub fires either nearby or farther 

away is around $25, while for forest fires it is $29 per lost trip. This is potentially because shrubs or 

chaparral grow back relatively quickly after a fire, and because visitation is lower at these sites. Our 

presented scenarios were on a time scale at which there would be significant regrowth in chaparral 

areas; we only ask respondents to consider shrub fires 1-3 years old, whereas chaparral areas generally 

see significant regrowth within one year. 
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Table 3.7 Trip Predictions and Welfare Estimates for a Past Fire Affecting a Single Site 

Fire Scenario Welfare loss Confidence Interval 
(Welfare loss) Δ Trips to site j Confidence Interval 

(Δ Trips) Value per lost trip 

      

Old all far  $       951,186  ($ 914,513,     $ 982,420) 30,263  (29,072,    31,240)  $ 29.47  
Old all near  $       488,600  ($ 469,699,     $ 504,619) 15,589  (14,973,    16,094)  $ 28.94  
Recent all far  $    2,535,967  ($ 2,437,628,  $ 2,618,989) 83,196  (79,932,    85,878)  $ 28.73  
Recent all near  $    1,843,208  ($ 1,771,761,  $ 1,903,490) 60,436  (58,056,    62,387)  $ 28.32  
Recent far shrub  $       175,601 ($ 168,783,     $ 181,304) 6,990  (6,717,      7,215)  $ 24.94  
Recent near shrub  $       103,572  ($ 99,554,       $ 106,940) 4,139  (3,978,      4,273)  $ 24.99  
Recent some far  $       830,337  ($ 798,341,     $ 857,609) 26,361  (25,323,    27,212)  $ 29.52  
Recent some near  $       658,974  ($ 633,464,     $ 680,573) 21,093  (20,260,    21,775)  $ 28.86  
      

Note: Welfare loss, change in trips, and value per lost trip are a weighted average across sites for the summer season. 95% confidence intervals 
were computed using the bootstrapped datasets. 
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For each recreation site in the choice set, the contraction mapping used to estimate welfare 

losses calibrates that site’s ASC until the new predicted trips to the site are equal to the predicted trips 

under some fire scenario according to responses from the survey data. However, for each fire scenario 

we also have a contingent behavior estimate of the percentage of respondents who would have stayed 

at home rather than take a trip to another site in the forest. The contraction mapping results do not 

take into account the percentage of people who stated they would go to another site in the forest or 

stay at home. Rather, the pattern of substitution away from the site in question is determined by the 

estimated parameters from the zonal travel cost model. Table 3.8 compares how the estimated 

distribution of diverted trips from site j after a fire using our calibrated ASCs differs from respondents’ 

stated behavior in the contingent behavior data. Overall, we find that our model predictions for 

continuing to go to the same site are very close. However, the estimated nested logit model structure 

is less likely to predict that people will choose the no-trip option than our survey respondents stated 

preferences. For each of the fire scenarios, with the exception of recent forest fires that burned all 

plants, roughly 2% of respondents would choose the no-trip option. For recent forest fires that burned 

all plants, that number is closer to 8% who would choose to do something else rather than recreate in 

the forest. The model predicts well below 1% choosing to do something else for all possible scenarios, 

and nearly all diverted trips going to other recreation sites in the forest. 
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Table 3.8 Comparison of Stated Preference Data and Nested Logit Predictions 

 Survey Responses Model Predictions Using !̅# 

Fire Scenario Do something 
else 

Go to another 
site 

Go to the same 
site 

Do something 
else 

Go to another 
site 

Go to the same 
site 

       

Old all far 2.92% 12.69% 84.39% 0.0111% 15.77% 84.22% 
Old all near 1.89% 7.35% 90.76% 0.0057% 9.36% 90.63% 
Recent all far 6.42% 35.90% 57.69% 0.0295% 42.45% 57.52% 
Recent all near 4.38% 30.89% 64.74% 0.0215% 35.46% 64.52% 
Recent far shrub 2.23% 12.26% 85.51% 0.0020% 14.49% 85.51% 
Recent near shrub 3.86% 4.41% 91.73% 0.0012% 8.27% 91.73% 
Recent some, far 0.80% 12.81% 86.39% 0.0097% 13.76% 86.23% 
Recent some near 1.86% 10.62% 87.52% 0.0077% 12.63% 87.36% 
       

Note: Model predictions are averaged across the results for each of the 31 sites. 
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3.4.3 Station Fire 

To illustrate the temporal effect of wildfires in the Angeles National Forest we estimate the 

welfare effects of three different fire scenarios, using a group of sites affected by the Station Fire 

(2009) as an example.26 The Station Fire is one of the largest wildfires in Angeles County – it burned 

for nearly two months (August- October 2009) and affected 160,577 acres, mostly in the southwestern 

portion of the Angeles National Forest. Figure 3.1 shows the extent of the burn scar as captured by 

the MODIS satellite in September 2009 (NASA 2009). In addition to causing fire damage at recreation 

sites, over 40 miles of the Angeles Crest Highway, which runs through the forest and provides access 

to campgrounds, trailheads, and visitors’ centers in the forest, remained closed after the fire due to 

continued risk from debris and mudslides until June 2011 (Pasadena Star-News 2011). In addition to 

site closures within the fire perimeter, the Angeles Crest Highway closure prevented visits to 

unaffected sites north of the fire perimeter for the better part of two years. Twelve of the sampled 

sites from the intercept survey are located within the burn scar, ten of them along the Angeles Crest 

Highway. An additional five sites are accessible only by the highway but were not in the fire perimeter. 

Even after the opening of sites, our model results suggest there will be impacts if effects of fire are 

visible at sites. Lasting damage from the Station Fire was still visible at many of the affected forested 

sites during our site visits in 2016, seven years after the fire. To illustrate the dynamic effect of the 

Station Fire we model three scenarios, each lasting one season: (1) a highway closure that prevents 

access to all sites on the Angeles Crest Highway; (2) a recent fire that burned all vegetation (both 

forests and shrubs) far from the parking area within the Station Fire burn scar; and (3) an old fire that 

                                                

26 The purpose here is to apply the model to this scenario to illustrate how the model addresses the immediate, 
mid, and longer-term effects of a large fire on recreation sites. This is not meant to be an exact recreational damage 
assessment of the station fire. 
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burned all vegetation far from the parking area within the Station Fire burn scar (at a time when far 

shrub fires would no longer be noticeable).  

 

 
Figure 3.1 Station Fire Burn Scar on Sept. 16, 2009 

 

The sites used in the analysis with their predicted trips under the status quo are shown in Table 

3.9. They are predominantly sites that provide access to major trails located in forested areas although 

four sites are located in less shaded shrubland. In the road closure scenario all sites on the Angeles 

Crest Highway are inaccessible and receive no trips. We estimate that, in the first scenario, the fire and 

highway closure would have caused $2.8 million in forest recreation-related welfare losses. The second 

scenario is a recent fire that burned all vegetation (trees or shrubs) far from the parking area. We find 

that in the year after re-opening, when fire effects would be clearly visible at recreation sites, the Station 

Fire would have caused 22,196 diverted trips to the affected sites, resulting in a total welfare loss of 
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about $563,000. Later, as vegetation began to recover in our third scenario, fire damage would still 

affect roughly 6,870 trips to the forest and cause welfare losses of about $171,000.  

 

Table 3.9 Sites Affected by Station Fire 

Site Burn perimeter Angeles Crest Hwy Predicted 
summer trips 

    

Buckhorn Picnic Area Yes Yes 850 
Charlton Flat Picnic Area Yes Yes 3,686 
Chilao Visitor Center Yes Yes 1,112 
Devil's Canyon Trailhead Yes Yes 202 
Josephine/Colby Road Trailhead Yes Yes 678 
Mt. Wilson Observatory Yes Yes 5,212 
Red Box Picnic Area Yes Yes 11,299 
Hidden Springs Picnic Area Yes No 357 
Stonyvale Picnic Area Yes No 3,969 
Wildwood Picnic Area Yes No 19,675 
Islip Saddle Trailhead No Yes 5,841 
Eagle Roost Picnic Area No Yes 631 
Grassy Hollow Visitor Center No Yes 12,609 
Inspiration Point No Yes 8,432 
Vincent Gap No Yes 763 
    

 

3.5 Conclusions 

The Angeles National Forest is one of the most important areas of outdoor recreation for 

people in Los Angeles County as well as visitors from farther away. In recent years the forest has 

frequently experienced wildfires in the forest boundary, often causing road closures and site closures, 

sometimes causing lasting damage. In 2016 the Sand Fire consumed a large section of the forest near 

Santa Clarita, causing site closures that are still in place two years later. Even when recreation sites 

reopen, popular hikes and picnic sites may have visible fire damage. 
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This essay uses combined revealed preference and stated preference data to estimate the welfare 

impacts of fire at recreation sites in the forest. In particular, we use stated response data for several 

types of fires that could previously have occurred at the site they were intercepted at, for which 

respondents stated whether they would go to the same site, go to some other national forest site, or 

choose to do something else. A multi-site zonal recreation demand model was estimated with the 

intercept revealed preference data, and it was calibrated to the contingent behavior results in order to 

estimate the demand and welfare impacts of fires after sites reopen. 

From our nested logit zonal model specification, we find that there is significant correlation 

between site alternatives. Individuals from zip codes that are on average wealthier and more educated 

are more likely to take trips to the Angeles National Forest; individuals in areas that are less wealthy 

or have a higher share of Hispanics are less likely to recreate in the forest. Our multi-site zonal model 

is specified using alternative-specific constants; we use contraction maps to calibrate these site 

constants to estimate the change in site characteristics that results in the same number of reduced trips 

as in the contingent behavior data. We find welfare loss of forest fires of roughly $29 per lost trip. 

When considering the average effect of a past fire on a single site, a recent forest fire that burned all 

plants farther away has the greatest total welfare loss, $2.5 million, followed by a recent forest fire that 

burned all plants nearby, at $1.8 million. This suggests that increasing fire activity in the national forest 

as well as other wilderness areas in California not only have immediate economic impacts from 

potential destruction of property and loss of life, but that indirect welfare losses to recreation continue 

for years afterwards. 

The largest wildfires in the forest do not affect one site at a time. Usually several in the same 

area are impacted, and in some cases, such as the Station Fire in 2009, over ten major day use, hiking, 

and camping areas experience fire damage. For large wildfires that impact multiple sites, our single site 

welfare estimates are an understatement of the actual impact. To demonstrate how large fires such as 
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the Station Fire can have a lasting impact over time, we model the welfare effects of a fire and road 

closure that affected many major hiking and picnic sites both within and outside of the Station Fire 

burn perimeter. We also illustrate how major wildfires have lasting impacts over time by modeling 

recent and older fires that burn all plants farther away from the parking area on hiking trails. The 

model predicts that in the summer after the fire when sites were inaccessible, the Station fire caused 

welfare losses of over $2 million. After re-opening but while significant damage was still visible, it 

caused over 20,000 altered trips to the forest, and years later even as the forest began to recover and 

shrubs had recovered, the impacted sites still see 5,000 fewer visits per year.  

Finally, the substitution pattern in our calibrated zonal model predicts many fewer no-trips than 

suggested by our stated preference data. In the contingent behavior data, 1-6% of trips to sites are 

diverted to the stay-home option under our fire scenarios. In our calibrated demand model we predict 

0.002% of those trips become stay-home when there is a shrub fire. Under the worst-case scenario, a 

recent forest fire that burned all plants farther away, we predict 0.0295% of the trips become stay-

home option. Future extensions to this work should consider the stated preference substitution 

between other sites and no-trip in order to more accurately predict the pattern of stated responses to 

fire. 
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Appendix 3A: Recreation sites in zonal data set and predicted trips 

Table 3.10 Recreation Sites and Predicted Trips 

Site Vegetation Predicted summer trips 
   

East Fork Trailhead shrub/shrub 51,904 
Elizabeth Lake Canyon Road shrub/shrub 1,040 
Josephine/Colby Road Trailhead shrub/shrub 678 
Upper Bear Creek Trailhead shrub/shrub 168 
   

Barrett Stoddard Road tree/shrub 1,517 
Bear Divide Vista Picnic Area tree/shrub 4,781 
Elizabeth Lake Picnic Area tree/shrub 1,353 
Frenchman’s Flat tree/shrub 3,652 
Hidden Springs Picnic Area tree/shrub 357 
Stonyvale Picnic Area tree/shrub 3,969 
West Fork  tree/shrub 66,450 
Wildwood Picnic Area tree/shrub 19,675 
   

Buckhorn Picnic Area tree/tree 850 
Chantry Flat Picnic Area tree/tree 318,695 
Charlton Flat Picnic Area tree/tree 3,686 
Chilao Visitor Center tree/tree 1,112 
Devil's Canyon Trailhead tree/tree 202 
Eagle Roost Picnic Area tree/tree 631 
Grassy Hollow Visitor Center tree/tree 12,609 
Icehouse Canyon Trailhead tree/tree 85,395 
Inspiration Point  tree/tree 8,432 
Islip Saddle Trailhead tree/tree 5,841 
Jackson Lake Picnic Area tree/tree 4,911 
Mt. Wilson Observatory tree/tree 5212 
Red Box Picnic Area Area tree/tree 11299 
San Antonio Falls Trailhead tree/tree 94524 
Switzer Picnic Area tree/tree 20887 
Three Points Trailhead tree/tree 762 
Vincent Gap tree/tree 763 
Vista Picnic Area tree/tree 537 
Windy Gap Trail tree/tree 149 
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Appendix 3B: Site Closure 

Table 3.11 Welfare Impacts of Site Closure by Site 

Site Welfare loss from site closure 
for summer season 

  

Islip Saddle Trailhead  $ 140,378  
Elizabeth Lake Canyon Road  $ 24,927  
Barrett Stoddard Road  $ 36,346  
Bear Divide Vista Picnic Area  $ 114,848  
Buckhorn Picnic Area  $ 20,357  
Chantry Flat Picnic Area  $ 9,112,321  
Charlton Flat Picnic Area  $ 88,427  
Chilao Visitor Center  $ 26,631  
Devil's Canyon Trailhead  $ 4,827  
Eagle Roost Picnic Area  $ 15,114  
East Fork Trailhead  $ 1,272,097  
Elizabeth Lake Picnic Area  $ 32,473  
Frenchman’s Flat  $ 87,896  
Grassy Hollow Visitor Center  $ 304,189  
Hidden Springs Picnic Area  $ 8,548  
Icehouse Canyon Trailhead  $ 2,158,100  
Inspiration Point Area  $ 202,918  
Jackson Lake Picnic Area  $ 117,950  
Josephine/Colby Road Trailhead  $ 16,236  
Mt. Wilson Observatory  $ 125,086  
Vincent Gap  $ 18,288  
Red Box Picnic Area  $ 272,061  
San Antonio Falls Trailhead  $ 2,397,999  
Stonyvale Picnic Area  $ 95,216  
Switzer Picnic Area  $ 505,392  
Three Points Trailhead  $ 18,245  
Upper Bear Creek Trailhead  $ 4,014  
Vista Picnic Area  $ 12,854  
West Fork  $ 1,639,062  
Wildwood Picnic Area  $ 475,993  
Windy Gap Trail  $ 3,574  
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Appendix 3C: Site-specific delta and welfare estimates 

Table 3.12 Estimates of dj for All Sites and Fire Scenarios 

Site Vegetation Old, all, 
far 

Old, all, 
near 

Recent, all, 
far 

Recent, all, 
near 

Recent, 
far, shrub 

Recent, 
near, 
shrub 

Recent, 
some, far 

Recent, 
some, near 

          

East Fork 
Trailhead shrub/shrub     -0.0684 -0.0378   

Elizabeth Lake 
Canyon Road shrub/shrub     -0.0657 -0.0362   

Josephine/ 
Colby Road shrub/shrub     -0.0656 -0.0362   

Upper Bear 
Creek Trailhead shrub/shrub     -0.0655 -0.0361   

Barrett 
Stoddard Road tree/shrub  -0.0406  -0.1822 -0.0656   -0.0559 

Bear Divide 
Vista Picnic 
Area 

tree/shrub  -0.0408  -0.1830 -0.0659   -0.0561 

Elizabeth Lake 
Picnic tree/shrub  -0.0407  -0.1826 -0.0658   -0.0560 

Frenchman’s 
Flat tree/shrub  -0.0410  -0.1835 -0.0661   -0.0563 

Hidden Springs 
Picnic tree/shrub  -0.0406  -0.1821 -0.0655   -0.0558 

Stonyvale 
Picnic tree/shrub  -0.0407  -0.1826 -0.0658   -0.0560 

West Fork tree/shrub  -0.0429  -0.1909 -0.0692   -0.0589 
Wildwood 
Picnic Area tree/shrub  -0.0414  -0.1850 -0.0668   -0.0569 
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Table 3.12 (cont’d) 
          

Buckhorn 
Picnic tree/tree -0.0711 -0.0406 -0.2304 -0.1821   -0.0613 -0.0558 

Chantry Flat 
Picnic Area tree/tree -0.0961 -0.0554 -0.2987 -0.2390   -0.0831 -0.0758 

Charlton Flat 
Picnic Area tree/tree -0.0713 -0.0407 -0.2309 -0.1825   -0.0614 -0.0560 

Chilao Visitor 
Center tree/tree -0.0711 -0.0406 -0.2304 -0.1822   -0.0613 -0.0559 

Devil's Canyon 
Trailhead tree/tree -0.0711 -0.0406 -0.2303 -0.1820   -0.0613 -0.0558 

Eagle Roost 
Picnic tree/tree -0.0711 -0.0406 -0.2304 -0.1821   -0.0613 -0.0558 

Grassy Hollow 
Visitor Center tree/tree -0.0720 -0.0412 -0.2329 -0.1842   -0.0621 -0.0566 

Icehouse 
Canyon 
Trailhead 

tree/tree -0.0781 -0.0447 -0.2496 -0.1981   -0.0674 -0.0614 

Inspiration 
Point tree/tree -0.0717 -0.0410 -0.2320 -0.1835   -0.0618 -0.0563 

Islip Saddle 
Trail Head tree/tree -0.0715 -0.0409 -0.2315 -0.1831   -0.0616 -0.0562 

Jackson Lake 
Picnic tree/tree -0.0714 -0.0408 -0.2313 -0.1829   -0.0616 -0.0561 

Mt. Wilson 
Observatory tree/tree -0.0713 -0.0408 -0.2311 -0.1827   -0.0615 -0.0560 

Vincent Gap tree/tree -0.0711 -0.0406 -0.2304 -0.1821   -0.0613 -0.0558 
Red Box Picnic 
Area tree/tree -0.0718 -0.0410 -0.2322 -0.1836   -0.0619 -0.0564 

San Antonio 
Falls Trailhead tree/tree -0.0786 -0.0451 -0.2511 -0.1993   -0.0679 -0.0619 
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Table 3.12 (cont’d)  
          

Switzer Picnic 
Area tree/tree -0.0724 -0.0414 -0.2340 -0.1851   -0.0624 -0.0569 

Three Points 
Trailhead tree/tree -0.0711 -0.0406 -0.2304 -0.1821   -0.0613 -0.0558 

Vista Picnic 
Area tree/tree -0.0711 -0.0406 -0.2304 -0.1821   -0.0613 -0.0558 

Windy Gap 
Trail tree/tree -0.0711 -0.0406 -0.2303 -0.1820     -0.0612 -0.0558 
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Table 3.13 Estimates of Per-trip Value Lost for All Sites and Fire Scenarios 

Site Vegetation Old, all, 
far 

Old, all, 
near 

Recent, all, 
far 

Recent, all, 
near 

Recent, 
far, shrub 

Recent, 
near, 
shrub 

Recent, 
some, far 

Recent, 
some, near 

          

East Fork 
Trailhead shrub/shrub     $ 24.99 $ 25.03   

Elizabeth Lake 
Canyon Road shrub/shrub     $ 24.00 $ 24.00   

Josephine/Col
by Road 
Trailhead 

shrub/shrub     $ 23.96 $ 23.96   

Upper Bear 
Creek 
Trailhead 

shrub/shrub     $ 23.95 $ 23.95   

Barrett 
Stoddard Road tree/shrub  $ 23.98  $ 23.97 $ 23.98   $ 23.98 

Bear Divide 
Vista Picnic 
Area 

tree/shrub  $ 24.09  $ 24.07 $ 24.09   $ 24.09 

Elizabeth Lake 
Picnic Area tree/shrub  $ 24.04  $ 24.02 $ 24.04   $ 24.04 

Frenchman’s 
Flat tree/shrub  $ 24.17  $ 24.14 $ 24.17   $ 24.17 

Hidden Springs 
Picnic Area tree/shrub  $ 23.95  $ 23.95 $ 23.95   $ 23.95 

Stonyvale 
Picnic Area tree/shrub  $ 24.03  $ 24.02 $ 24.03   $ 24.03 

West Fork tree/shrub  $ 25.31  $ 25.11 $ 25.29   $ 25.29 
Wildwood 
Picnic Area tree/shrub  $ 24.41  $ 24.34 $ 24.40   $ 24.40 
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Table 3.13 (cont’d) 
          

Buckhorn 
Picnic Area tree/tree $ 23.96 $ 23.96 $ 23.96 $ 23.96   $ 23.96 $ 23.96 

Chantry Flat 
Picnic Area tree/tree $ 32.48 $ 32.75 $ 31.36 $ 31.69   $ 32.56 $ 32.62 

Charlton Flat 
Picnic Area tree/tree $ 24.02 $ 24.03 $ 24.01 $ 24.01   $ 24.03 $ 24.03 

Chilao Visitor 
Center tree/tree $ 23.97 $ 23.97 $ 23.97 $ 23.97   $ 23.97 $ 23.97 

Devil's Canyon 
Trailhead tree/tree $ 23.95 $ 23.95 $ 23.95 $ 23.95   $ 23.95 $ 23.95 

Eagle Roost 
Picnic Area tree/tree $ 23.96 $ 23.96 $ 23.96 $ 23.96   $ 23.96 $ 23.96 

Grassy Hollow 
Visitor Center tree/tree $ 24.27 $ 24.28 $ 24.22 $ 24.23   $ 24.27 $ 24.28 

Icehouse 
Canyon 
Trailhead 

tree/tree $ 26.31 $ 26.39 $ 25.97 $ 26.06   $ 26.33 $ 26.35 

Inspiration 
Point  tree/tree $ 24.16 $ 24.17 $ 24.13 $ 24.14   $ 24.16 $ 24.17 

Islip Saddle 
Trailhead tree/tree $ 24.10 $ 24.11 $ 24.08 $ 24.08   $ 24.10 $ 24.10 

Jackson Lake 
Picnic Area tree/tree $ 24.08 $ 24.08 $ 24.06 $ 24.06   $ 24.08 $ 24.08 

Mt. Wilson 
Observatory  tree/tree $ 24.05 $ 24.05 $ 24.03 $ 24.03   $ 24.05 $ 24.05 

Vincent Gap tree/tree $ 23.97 $ 23.97 $ 23.96 $ 23.96   $ 23.97 $ 23.97 
Red Box Picnic 
Area tree/tree $ 24.19 $ 24.20 $ 24.15 $ 24.16   $ 24.19 $ 24.19 

San Antonio 
Falls Trailhead tree/tree $ 26.49 $ 26.58 $ 26.12 $ 26.23   $ 26.52 $ 26.54 
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Table 3.13 (cont’d) 
          

Switzer Picnic 
Area tree/tree $ 24.40 $ 24.42 $ 24.33 $ 24.35   $ 24.41 $ 24.41 

Three Points 
Trailhead tree/tree $ 23.96 $ 23.96 $ 23.96 $ 23.96   $ 23.96 $ 23.96 

Vista Picnic 
Area tree/tree $ 23.96 $ 23.96 $ 23.96 $ 23.96   $ 23.96 $ 23.96 

Windy Gap 
Trail tree/tree $ 23.95 $ 23.95 $ 23.95 $ 23.95   $ 23.95 $ 23.95 
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