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ABSTRACT

LEARNING ALGORITHMS FOR DETECTING DISINFORMATION ON SOCIAL
MEDIA

By

Courtland VanDam

Social media has become a widely accessible medium for users to share their opinions and

details of their personal lives, including first hand accounts of emerging/disaster events, to a

wide audience. However malicious entities may abuse users’ trust to disseminate disinforma-

tion, i.e. false and misleading information. The disinformation disseminated on social media

can have a significant impact offline. For example, fake news is suspected to have influenced

the 2016 U.S. political election. Rumors on social media can mislead criminal investigations,

e.g. the investigation of the 2013 Boston Bombing. To mitigate such impacts, automated

detection of social media disinformation is thus an important research problem.

This dissertation proposes algorithms to detect two approaches hackers use to disseminate

disinformation — hashtag hijacking and compromising accounts. Hashtags are terms added

to social media posts that are used to provide context to the posts, so those seeking to learn

more about a given topic or event can search for posts containing related hashtags. However

critics and attention-seeking trolls can mislead the public via hashtag hijacking. Hashtag

hijacking occurs when one group of users takes control of a hashtag by using it in a different

context than what was intended upon creation. Anyone can participate in hashtag hijacking,

but to be successful, a coordinated effort among several accounts posting that hashtag is

needed. This dissertation proposes HASHTECT, an unsupervised learning framework that

uses a multi-modal nonnegative matrix factorization method for detecting hijacked hashtags.

Experimental results on a large-scale Twitter data showed that HASHTECT is capable of



detecting more hijacked hashtags than previously proposed algorithms.

Another approach for disseminating disinformation is by compromising users’ accounts.

A social media account is compromised when it is accessed by a third party, i.e. hacker,

without the genuine user’s knowledge. Compromised accounts are damaging to the account

holder as well as the accounts audience, e.g. followers. Hackers can damage the user’s

reputation, e.g. by posting hateful rhetoric. They also disseminate misleading information

including rumors and malicious websites, e.g. phishing or malware. In this dissertation,

I propose two compromised account detection algorithms, CADET and CAUTE. CADET

is an unsupervised multi-view learning framework that employs nonlinear autoencoders to

learn the feature embedding from multiple views. The rationale behind this approach is that

an anomalous behavior observed in one view, e.g. abnormal time of day, may not indicate

a compromised account. By aggregating the data from multiple views, CADET projects

the features from all the views into a common lower-rank feature representation and detects

compromised accounts in the shared subspace. On the other hand, CAUTE focuses on

detecting compromised accounts early, by detecting the compromised posts. Given a user-

post pair, CAUTE is a deep learning framework which simultaneously learns the encodings

for the user as well as the post to detect whether the post was compromised, i.e. was written

by a different user. By training a neural network on the residuals from the post and user

encodings, CAUTE can classify whether a post is compromised with higher accuracy than

several existing compromised account detection algorithms.
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Chapter 1

Introduction

Social media has become an incredible medium for the free exchange of ideas and knowledge.

Users share details about their lives and their opinions to their friends and followers. They

use social media to seek information, including news about emerging events. A 2017 Pew

Research study found that 2/3 of participants receive at least some news from social me-

dia [83]. Additionally, users believe that the information on social media shared by people

they know is trustworthy. The data analytics firm Nielsen found this to be the case for 83%

of their survey participants [69]. Due to this inherent trust of information shared on social

media, it has become a valuable tool for people with malicious intent to abuse social media

and spread misleading information.

According to the Merriam-Webster dictionary, disinformation is false or inaccurate in-

formation that is intentionally shared to influence opinion or hide the truth [65]. Disinfor-

mation on social media can have serious consequences offline. For example, a conspiracy

theory named #pizzagate lead to a shooter to enter a Washington D.C. pizza restaurant [3].

In 2013, hackers compromised the Twitter account of the Associate Press, a news agency,

and tweeted there was an attack at the White House [30]. This led to public panic and a

significant drop in the stock market. Reports have also suggested that the Russian intelli-

gence sent malware tweets to members of US Defense Department [15]. Before the 2016 US

presidential election, Bessi and Ferrara found that 20% of tweets about the election were

1



published by bots, suggesting that bots could change public perception [10]. While malicious

players have used social media to spread disinformation for awhile, their approaches have

evolved and their methods have become more advanced as technology has improved. This

requires continual research to identify these emerging threats.

In the next section, I describe several approaches to spread disinformation on social

media. I will then present the algorithms developed in this dissertation for detecting two of

these dissemination approaches.

1.1 Taxonomy of Disinformation

Approaches used to spread disinformation on social media can be organized into three cat-

egories: individual deception, organized disinformation, and emergent disinformation. Pop-

ular approaches of each category are shown as circles in Figure 1.1. Overlapping circles

indicated the similarity between approaches. For example, cyberbullies spread rumors on

social media.

Based on the overlap of disinformation approaches detected in recent literature, I define

the categories as follows. Individual deception occurs at the account level, an account is being

deceptive about their identity, e.g. a bot posing as a genuine user. Organized disinformation

on social media is similar to disinformation in other domains, the false information is carefully

planned and there are intended targets [49]. Astroturf campaigns, where several accounts

promote a false message during a political campaign [73], are deliberately planned to sway

public opinion. Emergent disinformation occurs when there is limited information about an

event or an individual and users promote false information to fill these gaps. Rumors are

the most common example of emergent disinformation. The next sections further describe
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Figure 1.1: Taxonomy of disinformation approaches.

these common approaches to share disinformation.

1.1.1 Individual Deception

At the most general level, individual deception detection focuses on determining a user’s

credibility. Users often share first hand accounts of emerging events (e.g., active shootings,

public demonstrations, and natural disasters) on social media [1, 79]. Unfortunately, not all

accounts of the events are credible. Twitter helped users determine who is credible by adding

the verified account indicator, which indicates whether that “account of public interest is

authentic” [43]. Nevertheless, even though the accounts for most genuine users are not

verified, many of their social media posts may still be credible. Identifying which users are

not credible is thus an important but challenging problem. Previous research has mostly

focused on detecting a subset of such users, namely, bots.

Bots are automated programs deployed to perform a specific task with relatively little
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human intervention. For example, they are often used to spread spam or create fake connec-

tions to other users. Bots make it possible for users to buy followers or friends in order to

make the user appear more popular or influential [90, 92]. They can also flood social media

with fake posts to influence the portrayal of public opinion [10].

Nefarious people may also try to pose as genuine users. For example, they may clone an

account, called a sybil, whose features, like profile image and description, would match those

of the existing account. The sybil accounts then try to connect with the friends of the genuine

user. If the friend requests are accepted, the sybil account can take advantage of the genuine

user’s reputation as being trustworthy to spread disinformation. A more intrusive way by

which malicious actors may pose as a genuine user is by compromising, i.e., taking control,

of a genuine user’s account. This way, they do not have to depend on other genuine users

accepting their friendship requests to demonstrate their credibility. From the compromised

account, the hacker can post messages [28, 68, 100], follow other users [81, 84, 112], or learn

private information about the user [12, 110]. This private information may allow the hacker

to gain access to the user’s other accounts, e.g., online banking accounts. Once a sybil

account is created or a genuine user’s account is compromised, hackers may utilize bots to

publish fake messages on social media from these accounts.

1.1.2 Organized Disinformation

Spamming is the most commonly used approach for organized disinformation, where ne-

farious users would post or send messages containing links to phishing or malware web-

sites [32, 35, 91, 96, 95]. Phishing occurs when third parties pose as a trusted party, e.g.

a bank or a trusted friend, to deceive users into sharing confidential information. Malware

websites directed from the social media posts would ask users to download programs that
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contain viruses. While the spam posts tend to include some easily identifiable characteris-

tics, e.g. key terms or URLs [53], spammers continue to incorporate new methods to evade

detection, e.g., URL masking.

Wherever people gather, political actors will broadcast messages in order to influence

public opinion. On social media, their main modes of swaying public opinion are astroturf-

ing and hashtag hijacking. In astroturfing, a campaign will disguise itself as a “spontaneous,

popular, grassroots” group of users in order to create widespread support for a candidate

or an idea [76, 77]. Catchy repeatable slogans and messages are used to encourage non-

campaign-related users to forward the messages to their followers. Political representatives

and candidates also use hashtag hijacking to control the narrative of a topic [36, 109]. Hash-

tag hijacking occurs when one group of users takes control of a hashtag to use it in a different

context than was intended upon creation. In addition to using hashtag hijacking to control

the political narrative, hijackers use the hashtag to either degrade a brand or redirect the

narrative to their interests [16].

Malicious actors outside of the political sphere influence public opinion with clickbait

and fake news. Clickbait are news headlines/social media posts which promote misleading

content in order to attract attention and encourage users to click the link and read the

article [21]. News media outlets, especially those with strong bias, are the primary publishers

of clickbait posts. Fake news, however, are non-news outlets posing as news outlets to

promote inaccurate, misleading stories [85]. Fake and clickbait news were rampantly shared

on Facebook during the 2016 US presidential election, which many have speculated, changed

the outcome of the election [5].

Organized disinformation is not always carefully planned. For example, malicious users

on Wikipedia may vandalize Wikipedia articles, by changing or removing content, to fit

5



their agenda. Some of these vandalisms are harmless pranks however others are organized

propaganda efforts to persuade public opinion. Wikipedia vandalism is harmful because

general users, i.e. non-experts, often trust the information they read on Wikipedia [56].

1.1.3 Emergent Disinformation

Emergent disinformation is primarily focused on misinformation and rumors. Although there

is significant overlap between them, the main distinction is misinformation is false informa-

tion, which may or may not have been debunked at the time of sharing, whereas rumors

are unverified at the time of sharing and are relevant to a given situation [27]. Rumors’

purpose is to make sense and manage risk when there is ambiguity or a potential threat [27].

Unfortunately rumors emerging during dangerous situations can pull resources from those

investigating the current threat. For example, after the 2013 Boston Marathon Bombing,

rumors propagated on reddit website falsely accused two individuals as suspects [2, 59]. Jour-

nalists trying to report on the situation were misled by these uninformed social media users.

Misinformation is shared to spark conversations, socialize, and express opinions [20]. Both

misinformation and rumors are difficult to debunk. Starbird et al. found that corrections

to misinformation reach a smaller audience than the original misinformation [88]. Misin-

formation detection research often does not make a distinction between misinformation and

disinformation. For example, Wu et al. stated that misinformation is used to spread fear and

generate profit from public anxiety [93]. This is more prevalent in organized disinformation.

Cyberbullying is another form of emergent disinformation. Cyberbullying occurs when

one or more individuals insult, threaten, or harass other users on the internet [47]. This

includes starting rumors about the targeted person in order to persuade others to harass

them as well. The consequences of cyberbullying are serious, both physically and emotionally,
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including depression and suicide [47].

This dissertation focuses on detecting two disinformation approaches that have received

limited attention—hashtag hijacking and compromised account—compared to phishing, spam-

ming, and other approaches. An overview of these two approaches and the proposed detection

methods are described in the next two sections.

1.2 Hashtag Hijacking

Hashtags emerged on social media as a way to contextualize posts and facilitate content

filtering on Twitter [66]. Today, their continued popularity have encouraged social media

platforms to develop search interfaces for post retrieval. A user may search for a specific

hashtag, and they will receive the most popular recent posts containing that hashtag.

A hashtag is hijacked when a set of people use the hashtag in a context that differs from

the original intent. In order to detect hashtag hijacking, we must consider the following

questions. Can any hashtag be hijacked? Why is hashtag hijacking detection important,

and what are the challenges to detect hashtag hijacking?

In order for a hashtag to be hijacked, it must have a generally accepted meaning. For

example, the hashtag #healthcare appears in posts covering a variety of topics, from political

legislation to medical technologies. This hashtag is too general, which makes it less likely to

be hijacked. However #napaquake was used to describe a specific event, an earthquake in

Napa Valley, California, in 2014. People wanting to learn more about this earthquake can

search for #napaquake. This hashtag has a generally accepted specific meaning and has been

hijacked by a certain group of users to disseminate disinformation.

To determine the importance of detecting hashtag hijacking, we need to consider the uses
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of social media. Some users are seeking first-hand accounts of emergent events. For example,

journalists [13, 38] and first responders [55, 106] search social media to understand emerging

events in real time. Thus it is important that the information they retrieved is accurate.

Hijackers, especially attention-seeking trolls [16], will often hijack a trending hashtag to

spread their propaganda. For example, a terrorist organization hijacked #napaquake in 2014

to spread their message [98]. Users having negative experiences from viewing unrelated posts

are likely to seek information from other avenues, rather than staying on the social media

platform.

Detection of hashtag hijacking poses several challenges which require different solutions

than misinformation detection or spam detection. First, the underlying meaning of a hashtag

is unknown a priori. A hashtag can have any meaning, and the hijacking posts can also be

on any topic. The meaning of each hashtag is not formally defined, unlike misinformation

which is often debunked on third party websites, like Snopes. To detect whether a hashtag

has been hijacked, it is necessary to determine its original meaning. Second, some hashtags

have temporal variations. Unlike other features on social media, hashtags can have cyclical

patterns of use, e.g. #tbt meaning throwback Thursday, is used primarily on Thursdays. A

hashtag hijacking detector must consider whether its unusually high usage is solely due to

the cyclical pattern of the hashtag. In contrast, spam generally does not follow any type of

cyclical pattern, so an extra check for false alarms is not necessary. The third challenge is

that a change in how a hashtag was used does not necessarily mean the hashtag was hijacked,

but rather due to a change in the topic discussed using the hashtag (i.e., concept drift). For

example, fans of a specific TV show often use the same hashtag to discuss that show. The

topic of conversation may change each week to focus on the current episode, but the overall

topic of the hashtag has not changed; it is still about that TV show.
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This dissertation proposes a hashtag hijacking detection framework, HASHTECT, which

addresses these challenges. HASHTECT is an unsupervised multimodal framework, which

learns both the original intent of the hashtag as well as detect whether a group of users

changed the topic significantly, i.e. hijacked the hashtag. HASHTECT detects cyclical

patterns by considering temporal autocorrelation of the hashtag usage. To reduce false

alarms via concept drift, HASHTECT measures the similarity between topics. Experimental

results performed on a 72-day Twitter dataset showed that HASHTECT can effectively

detect real-world hijacked hashtags.

1.3 Compromised Account Detection

User experience on social media is heavily reliant on the security of their account. Users

trust that both their account and the accounts of their friends are controlled solely by the

designated person. When the account is compromised, i.e. when a hacker gains control

of the account and uses it for nefarious purposes, e.g. post spam or follow users, then

user experience worsens [82]. As a results, many users create new accounts [111] or leave

the social media platform altogether [96]. Unlike fake accounts, compromised accounts are

genuine accounts which are temporarily under the control of a malicious user which exhibits

anomalous behavior. Therefore typical features that are useful for detecting fake accounts

may not be able to distinguish compromised accounts from non-compromised accounts [28].

Additionally, compromised accounts are not always used to post spam. A hacker can publish

whatever they want, e.g. lie about the user’s sexual orientation or post inappropriate content.

As shown in this dissertation, most posts by the hackers are not spam. As a result, existing

spam detection algorithms cannot detect most compromised accounts.
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Compromised account detection poses several challenges. First, social media posts are

inherently noisy with lexical variations, typos, and abbreviations. Social media posts are

also sparse. For example, tweet messages tend to be short, i.e., 140 characters long, so each

tweet contains a very small set of words out of the entire language. Thus it is difficult to

effectively use them for training a robust compromised account detection model. Second,

social media users are diverse, each having their own style and topics of interest. One post

can be normal for one user and anomalous for another. For example, a hacker may lie about

the user’s sexuality to spread a rumor, but such posts are not unusual for some users who

discuss their sexuality openly on social media. Thus compromised account detection is more

challenging than spam detection, because spam posts are anomalous for most users. A trivial

solution to compromised account detection would be to learn a profile for each user and use

the profile to detect compromised posts. However this would not scale well to billions of

users. The third challenge is that social media platforms are large, so it is difficult to train

a model that can reliably detect compromised accounts for users not in the training data.

To address these challenges, I propose two compromised account detection algorithms,

CADET and CAUTE. CADET is an unsupervised algorithm which learns a low-dimensional

embedding of the users’ posts and detects compromised accounts using reconstruction error

from this embedding. CAUTE is a supervised algorithm to identify compromised posts, i.e.

the hackers’ posts. CAUTE simultaneously learns a tweet and user embedding, which can

be used to identify whether a post was written by a different author than specified, i.e. the

hacker.
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1.4 Thesis Statement

Sophisticated algorithms that consider the nonlinearities and multi-view nature of social me-

dia data can be developed to effectively detect compromised accounts and hijacked hashtags.

Unsupervised learning algorithms are useful when labeling the data is manually expensive

while supervised learning is more effective when there are sufficient amount of labeled data

available. This dissertation proposes two unsupervised learning algorithms, HASHTECT and

CADET, for detecting hijacked hashtags and compromised accounts respectively. I demon-

strate that these algorithms can detect anomalies more accurately than previously proposed

algorithms. In addition, I also propose CAUTE, a supervised deep learning algorithm for

detecting compromised posts. Whereas manual identification of a hacker’s posts is a chal-

lenging task, CAUTE trains a model to identify whether a tweet belongs to their respective

user after observing a small percentage of their posts. CAUTE can detect compromised

posts more effectively than other compromised account detection algorithms.

Detecting hijacked hashtags and compromised accounts can be useful for intervention

to improve social media user experience. A system that monitors hashtags could identify

well-defined hashtags and flag for review suspicious content, ensuring that users are reading

relevant content as they learn about emerging events. Social media platforms can apply the

proposed compromised account detection systems to prompt the user of suspicious content

to verify the user in control of the account is the genuine user. This would mitigate the

potential damages of the hackers’ posts.

This dissertation has four main contributions. First, I propose a novel temporal unsuper-

vised framework, called HASHTECT, to detect hashtag hijacking from social media data.

Second, I perform an in-depth analysis on known compromised accounts and hackers’ posts
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to understand their general characteristics. In particular, I answer the following questions:

who compromises accounts, what do they post, and what features can distinguish compro-

mised posts published by the hacker from normal posts published by the genuine user. Third,

I propose CADET, an unsupervised compromised account detection algorithm. Fourth, I

propose CAUTE, a supervised framework for compromised post detection.

This dissertation is organized as follows. In Chapter 2, I present related work. Chapter

3 proposes HASHTECT to detect hashtag hijacking. In Chapter 4, I provide an analysis of

compromised accounts. Chapter 5 proposes CADET, an unsupervised algorithm to detect

compromised accounts. Chapter 6 proposes CAUTE, a supervised learning framework to

detect compromised posts. In Chapter 7, I conclude and present future work.

The materials from this dissertation are adapted from several previously published papers

in peer-reviewed conference proceedings:

1. Chapter 3 is based on the paper entitled “Detection of hashtag hijacking” which was

published in the Web Science 2016 proceedings [101].

2. Chapter 4 is taken from the paper, “Analysis of compromised accounts”, which was

published in Web Intelligence 2017 proceedings [103].

3. The materials for Chapter 5 were published in ASONAM 2018 proceedings [102].

4. Chapter 6 describes the CAUTE approach. This work has been submitted and is

currently under review for IJCNN 2019.
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Chapter 2

Background

This chapter presents previous research on hashtag hijacking, analysis of compromised ac-

counts, and detection of compromised accounts.

2.1 Hashtag Hijacking Detection

Twitter is a widely used data source to solve a variety of problems including event detection,

topic discovery, information diffusion, opinion mining, sentiment analysis, and spam detec-

tion. Researchers have also investigated the use of hashtags, which are an integral part of

Twitter, to tag users’ postings to a specific topic or to add contextual information. Previous

research has focused on various aspects of hashtag analysis, including understanding their

construction [74], annotating the hashtags, analyzing their sentiment [26], modeling their

topics [54], predicting their popularity, and recommending hashtags.

Some research have used hashtags to analyze spamming strategies. For example, Grier

et al. identified an approach spammers use to spread malicious URLs by creating tweets

with a trending hashtag and embedding a hyperlink to their spam Web sites [35]. Chu et

al. clustered tweets by URL to detect spam campaigns [22]. Sridharan et al. studied what

makes spam strategies most successful [87]. They determined whether a spammer hijacked a

hashtag based on the proportion of the spammer’s tweets containing the popular hashtags.

While these studies demonstrate the use of hashtag hijacking for spamming, they limit their
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detection to tweets containing URLs and do not detect hashtags that are hijacked for other

purposes. Hashtags can be hijacked either for malicious or benign purposes. For example,

the hashtag #napaquake, which was originally intended for the 2014 Napa Valley earthquake

incident, was hijacked by a small group individuals to start a new trend, the wine bucket

challenge, which failed to become trending. It was also reported to have been hijacked by

terrorist organizations to spread their propaganda.

Prior research on detecting whether a hashtag has been hijacked focused on specific

hashtags, in particular political hashtags. Hadgu et al. and Weber followed the political

tweets posted by 33 Twitter users (political leaders and parties) and their retweeters to

detect incidents of a political party who hijacks the hashtags of its opponents [36, 109].

For each week, they collected all the political hashtags used by any of the 33 users. They

measure the lean of the hashtag by the volume of retweets originating from these 33 users.

If a hashtag has a significant shift in lean from one party to the other, then the hashtag

was hijacked. The approach proposed by Hadgu et al. [36] and expanded on by Weber [109]

requires that the political preference of a user be known, and thus, is limited to political

hashtags. It does not generalize to other types of hashtag hijacking incidents.

Another related work was recently developed by Hayashi et al. [37] for detecting topic

hijacking from Twitter data streams. Their method, however, was designed for inferring a

broad set of topics from all the tweets and checking if any of them had been hijacked. Our

work, on the other hand, focuses on identifying topics within each hashtag and checking if

any of them were hijacked. This is more challenging since each hashtag can have a different

frequency, word, and user distribution. Thus, we need to apply filtering techniques to reduce

the number of candidate hashtags that need to be examined to verify whether they have

been hijacked.
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Approaches from other hashtag tracking research are not directly applicable to hashtag

hijacking. For instance, research on meme tracking analyzes the spread of a distinct phrase

or hashtag. Hashtag tracking focuses on information diffusion [89] and event detection [24]

whereas in hashtag hijacking, we are looking for change in the use of a hashtag instead of

the spread of information.

2.2 Compromised Account

Previous research on compromised accounts focused on two themes, understanding com-

promised accounts and detecting compromised accounts. Research on understanding com-

promised accounts focused on identifying the prevalence, how they are reported, and their

impact. Compromised account detection research focused on detecting one of four types of

compromised accounts, forced shares, forced likes, forced follows, and information seeking.

As the names suggest, forced shares occur when the hacker publishes posts. Forced likes are

when the hacker likes pages or posts. Forced follows occur when the compromised account

follows or friends other accounts. During information seeking, the hacker is browsing the

private profile details, e.g. birth date, or private messages of the compromised user.

2.2.1 Exploratory Analysis

Using surveys and tweet analysis, previous research has attempted to understand the preva-

lence of compromised accounts, who compromise accounts and what is the impact of having a

compromised account. Compromised accounts tend to be prevalent. Shay et al. found 30% of

surveyors indicating they experienced either their email or social media account hijacked [82].

A 2017 Pew Center study found that 13% of Americans experienced a compromised social
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media account [71].

Previous research found that while most hackers are unknown to the genuine user, a

significant amount of the hackers knew the genuine user in person. Zangerle and Specht

found that among tweets reporting the current Twitter account was compromised, 10% also

reported the hacker was a relative or a friend [111]. Usmani et al. found that 21% of

survey participants had their Facebook account accessed without permission by someone

they knew [100]. Additionally they found that while compromised account victims could

be any age, those hackers who compromise their friends’ accounts in this way tend to be

younger, e.g. in their 20s.

Having a compromised social media account can have both physical and emotional im-

pacts on users and social media platforms. Zangerle and Specht found that 27% of tweets

announced creating a new account [111]. Social media accounts are valuable to users, so they

tend to be attentive to their accounts. Murauer et al. analyzed conversations between a user

reporting to their friend that the friend’s account was compromised, and they found that

the friend responds within an hour about 48% of the time, and within 24 hours 80% of the

time, either to explain the situation or confirm the account was compromised [67]. Shay et

al. found 82% of survey participants who experienced having a compromised accounts check

their account at least once per week [82]. According to survey participants, 37% experienced

spam being sent from their account and 18% experienced negative feelings as a result of

having their account compromised [82].

2.2.2 Detection

Previous work on compromised account detection have focused on four approaches. For the

first approach, a behavior model for each user is learned from a series of actions, e.g. clicks
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Table 2.1: Summary of compromised account detection literature.

Author Type Supervised Features Approach
Stringhini et al. [92] Follow Yes Temporal followers Classifier
Mehrotra et al. [62] Follow Yes Graph centrality Classifier
Shah et al. [81] Follow No Adjacency matrix Reconstruction Error
Shen et al. [84] Follow Yes User & Post Classifier
Jiang et al. [46] Follow No Temporal Followers Distance
Zhang et al. [112] Follow Yes User & Post Classifier
Ruan et al. [78] Seeking No Clickstream Behavior Model
Bohacik et al. [12] Seeking Yes Login Attributes Behavior Model
Wu et al. [110] Seeking Yes Clickstream Classifier
Viswanath et al. [107] Like No Page Likes Reconstruction Error
Egele et al. [28, 29] Share Yes Post Behavior Model
Igawa et al. [8, 41] Share Yes Post Author Verification
Nauta [68] Share Yes Post Classifier

or posts. Future actions are compared to this model to identify anomalous behaviors. In the

second approach, a user feature vector is constructed or learned, then these feature vectors

are passed to a generic classifier to predict which users are compromised. Third, a user-

feature matrix is constructed and then decomposed. Compromised users are those having

high reconstruction error. Fourth, distance based techniques focus on how a given user’s

behavior changes over time, e.g. the similarity of the user behavior in two time windows. A

summary of compromised account detection research is shown in Table 2.1. Noticeably, the

approaches vary within each type of compromised account.

Behavior models focus on determining whether a specific behavior is normal for a given

user, based on the frequency of that behavior in the user’s history. Previous research built

behavior profiles based on users’ posts, logins, and clickstreams. Egele et al. proposed

COMPA, which creates a behavior profile for each user based on several post features, e.g.

time of day and mentions [28, 29]. Then withheld posts are compared to that profile to

determine how anomalous they are. If a post has a high anomaly score, the account would be

flagged as compromised. The weakness of this approach is what constitutes a high anomaly
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score. Egele et al. focused on spam campaigns, where the messages shared are spam [28, 29].

Therefore they cluster posts by URL and set the anomaly score for each cluster. This limits

the type of compromised posts which can be detected. Another approach is the global

threshold approach which tests multiple thresholds and select the threshold which provides

the highest performance. Bohacik et al. applied this approach to identify anomalous social

media account logins [12]. Trang et al. showed that for COMPA, using a global maximum

threshold leads to either large amount of false positives or false negatives and suggests

that the threshold should be user dependent [97]. Therefore a more robust approach for

determining the threshold would be to compare activities of each user with all other users.

Igawa et al. divided each users’ posts into a training, threshold, and test sets [8, 41].

Phrases, i.e. N-grams, from the training set were compared to the threshold set based on

their simplified profile intersection to determine the threshold of anomalous behavior. The

threshold value can also be determined from a user’s self-variance and their profile distance

to other users. Ruan et al. applied this approach to users’ clickstreams to identify anomalous

behavior [78].

Classifier-based approaches assume that the anomalous activities can be identified in

order to train a classifier. This approach assumes that the anomalous behavior is similar

across users. Nauta proposes detecting forced shares by classifying posts [68]. In terms of

forced shares, the assumption that compromised posts will be similar to each other across

users limits the types of compromised posts which can be detected, e.g. spam. This approach

would not identify other types of compromised posts which are more user dependent, e.g.

false proclamation regarding the user’s sexual orientation. Classifiers have also been used to

detect forced follows and information seeking.

Recent research has proposed using unsupervised learning to detect compromised ac-
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counts by using reconstruction error. Reconstruction-based approaches transform users’

representations into a lower dimensional space, then apply another transformation back into

the original feature space. The assumption is that compromised or anomalous users will have

a higher reconstruction error than genuine users [107]. This approach has only been applied

to forced likes [107] and forced follows compromised accounts [81]. The main limitation of

using reconstruction error is that it is prone to a large amount of false positives due to its

unsupervised nature.

Lastly, previous research focused on within-user distance to detect compromised accounts.

Jiang et al. proposed a distance-based approach to detect forced follows by looking at the

changes in a user’s friends, i.e. users that the current user is following [46]. Namely, if the set

of friends changes significantly over a short period of time and the total number of friends is

similar, then the user in question is likely participating in the follower market, e.g. earning

credit to buy followers by following other users who have subscribed to this marketplace.
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Chapter 3

Detection of Hashtag Hijacking

3.1 Introduction

Twitter is a popular social media platform where trends emerge with the use of hashtags.

A hashtag is a user-generated label, starting with the # symbol followed by some text.

Although hashtags can be used by anyone who posts a tweet, they often develop into a

cohesive meaning as users tend to use the same hashtag in a similar context when discussing

the same topic. A trending hashtag is a hashtag with a cohesive meaning that is increasingly

being used in the tweets posted by users over a short period of time.

Hashtag hijacking occurs when a group of users start using one of these hashtags to pro-

mote a different message. Examples of hashtag hijacking include attention seeking trolls [16],

Public Relations (PR) campaign gone wrong [16], and politically fueled hijacks [26, 36, 109].

Attention seeking trolls are users who hijack a hashtag to post inflammatory or random

unrelated information. For example, terrorist groups have hijacked several popular hashtags

to gain attention [33, 70, 98]. The tweets that contain the hijacked hashtag may include

offensive messages or links to scam websites [14, 16]. Trolls typically use a trending hash-

tag for a short period of time before shifting their attention to another hashtag. Hashtag

hijacking may also occur when a company uses a hashtag to promote its brand name and im-

prove its image, but other users post negative comments about the company using the same
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hashtag. Such PR campaigns gone wrong are often the result of using vague or self-serving

hashtags [23, 31, 44]. Finally, politically fueled hashtag hijacks often involve controversial

issues with strong opposing views. One political party or group creates the hashtag and

uses it for their campaign. Then the opposing party uses the same hashtag and explains

everything wrong with the topic of the campaign [31, 48, 36, 109].

Previous studies have focused mainly on detecting a specific type of hashtag hijacking,

e.g., spamming or political hijacks, but not both. For example, Chu et al. [22] analyzed

tweets that share the same destination URL to detect hashtags that were hijacked for spam

campaigns. However, tweets without URLs may contribute to other type of hashtag hijack-

ing incidents. For example, the hashtag #whyistayed, which was originally used to discuss

domestic violence, was found to be hijacked by a company that produces frozen pizza. How-

ever, half of the unique tweets observed in our dataset from this hijacking campaign did not

contain any URLs. Thus, relying on URLs alone is insufficient as one could miss other types

of hijacking incidents. Similarly, some researchers have manually monitored the political

orientation of users who posted tweets using specific hashtags in order to detect politically

fueled hijacks [36, 109]. Unfortunately, such methods are neither generalizable nor scalable

to other types of hijacks.

Unlike prior research, this dissertation investigates the feasibility of applying a general

framework for detecting hashtag hijacking, where the compromised hashtags and their orig-

inal intent were unknown a priori. Designing an automated approach for detecting hashtag

hijacking is challenging due to several reasons. First, as the underlying topics of the tweets

containing a hashtag are unknown, they must first be inferred from the Twitter data. This

is a challenge since there are no strict guidelines on who and how to use a hashtag, al-

lowing it to be used in different contexts by diverse groups of users. As a consequence,
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previous studies have focused on a narrow set of hashtags whose semantic meanings were

known to the researchers. For example, Hadgu et al. [36] and Ingmar [109] considered only

political hashtags in their detection schemes. Such methods would fail to detect other, non-

political hashtag hijacking incidents. Second, one must consider the temporal variability

of the hashtag frequency to avoid misclassifying non-hijacked hashtags. For example, the

hashtag #neverforget is primarily used on September 11th to support victims of a deadly

terrorist attack incident but is also used on other days of the year to commemorate other

notable events. A detection algorithm may incorrectly classify such hashtags that gain sud-

den popularity on a particular day as being hijacked if it does not consider how the hashtag

frequency evolves over time. Third, detecting changes in the topics of a hashtag alone is

insufficient since not all hashtags whose underlying topics have changed at a given point in

time are the result of hijacking. For example, Figure 3.1 shows the distribution of the top

two topics for #ferguson, which is the hashtag used for tweets related to a police shooting

incident in Ferguson, Missouri. Although there appears to be significant shift in topics on

day 27, it was not due to hashtag hijacking. Instead, the topics changed as the focus of the

tweets moved from Michael Brown, the shooting victim, to Darren Wilson, the policeman

(see Figure 3.1).

To address these challenges, we propose a novel framework that combines information

about the temporal distribution of hashtag frequencies along with the content of their tweets

and the users who posted the tweets to determine whether a hashtag has been hijacked.

Specifically, our framework decomposes the detection task into three subproblems. The first

subproblem is to identify candidate hashtags that have experienced a significant change in the

temporal evolution of their underlying topics. The second subproblem is to determine which

of its underlying topics was the hijacked topic. The third subproblem is to determine when
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Figure 3.1: Topic distribution over time for #ferguson.

a hashtag was hijacked. We identify candidates for hijacking by employing a multimodal

non-negative matrix factorization approach to learn the underlying topics of each hashtag.

We then analyze the evolution of each topic over time. Using Hotelling’s t2 test, if a topic

changes significantly at any point in time, we consider the hashtag as a candidate that must

be further examined to determine whether it has been hijacked. The candidate hashtags are

further examined through the content distribution of the tweets as well as the distribution

of users who posted them to verify whether they were actually hijacked. We applied the

framework to 72 days of Twitter data and performed experiments to evaluate its effectiveness.

Experimental results showed that our framework can effectively detect hashtag hijacks with
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an AUC value as high as 0.669.

The remainder of the chapter is organized as follows. In Section 3.2 introduces the hashtag

hijacking problem and describes its challenges. The proposed framework is explained in detail

in Section 3.3. I demonstrate the effectiveness of our framework in Section 3.4. In Section

3.5, I conclude and present some directions for future work.

3.2 Hashtag Hijacking

Hashtag hijacking occurs when a hashtag is used to promote tweets that are unrelated to its

original intent. The promoted intent may be a separate topic or an opposing perspective.

For example, Veilleux-Lepage [104] described incidents of hashtag hijacking involving Islamic

State sympathizers who knowingly infiltrate into Twitter conversations involving hashtags

such as #Brazil2014 and #WC2014 related to World Cup soccer to increase exposure of their

messages. Hadgu et al. [36] and Weber [109] detected that members of one political party

hijack the hashtags of the opposing political party. As noted in the introduction, hashtag

hijacking can be used as a tool that serves various purposes, including trolling, spamming,

self-promoting, for humor, etc.

This section formally defines hashtag hijacking. Let Γ be a collection of tweets, U be

the set of all users, W be the set of all terms, and H be the set of all hashtags. Given a

tweet, t ∈ Γ, let t.u ∈ U denote the user who posted the tweet, t.w ⊂ W be the set of

terms contained in the tweet, and t.h ⊂ H be the set of hashtags contained in the tweet.

For this research, we focus only on tweets that contain hashtags, i.e., {t ∈ Γ
∣∣ |t.h| > 0},

where |x| denote the cardinality of the set x. Every tweet has a creation time. For this

research, we focus on the day granularity. We denote the creation date of the tweet t as
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t.date. For each hashtag ν ∈ H, we created a data set by aggregating all the tweets and

users that use the same hashtag, i.e., Dν =< ν, Tν , Uν >, where Tν = {t ∈ Γ
∣∣ν ∈ t.h} and

Uν = {u ∈ U
∣∣u ∈ t.u,∀t ∈ Tν}. Note that |Tν | ≥ |Uν | since the same user may produce

multiple tweets containing the same hashtag.

Let f : H → {−1,+1} be a target function that maps each hashtag to a binary label,

where f(h) = 1 if the hashtag h is hijacked and −1 otherwise. The goal of hashtag hijacking

detection is to infer the target function based on the colletion of hashtag data sets available,

{Dh}. In this dissertation, we focus on unsupervised learning of the target function, which

assumes there are no labeled examples available. Thus, we will define a set of heuristic

functions to discriminate the hijacked hashtags from the non-hijacked ones.

A hashtag is considered to be hijacked when there is a significant change in the topic of the

hashtag due to the tweets posted by a small group of users whose messages are significantly

different from the original intent. To do this, we need to recognize what is the original intent

of a hashtag and what constitutes a significant change in topic in order to detect hashtag

hijacking.

The original intent of a hashtag is the topic or topics which describes the core meaning of

the hashtag and captures the variability of the topic. Formally a hashtag can be described

by one or more topics, denoted by τ . For example, users discussed domestic abuse using the

hashtag #whyistayed. This hashtag has been used in tweets that discuss a variety of related

topics from specific incidents to celebrities who have experienced domestic violence. If one

of the topics is hijacked, it will appear significantly different from the original intent topics.

Section 3.3.2.1 describes how we measure similarity between topics and at what threshold

the similarity indicates significant difference.

The hashtag hijacking detection framework proposed in this study aims to resolve the
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following three sub-problems: (1) detect which hastags are hijacked, (2) detect which topic

describes the hijacked concept, and (3) detect when the topic is hijacked. To detect which

hashtags are hijacked, this dissertation presents an approach based on multimodal non-

negative matrix factorization (NMF) to combine content data with user data combined with

statistical tests. Which topic is hijacked is detected based on inter-topic similarity. Detecting

when the topic is hijacked results from applying a statistic to the hijacked topic. Details of

our methodology is presented in the next section.

3.3 Proposed Framework

Figure 3.2 presents a high-level overview of the proposed framework. The framework con-

sists of the following 2 main stages: detection of hashtags that are candidates for hijacking

and verification that the hashtags were indeed hijacked. Hashtags that are trending and

experience a significant change in topic are considered potential candidates for hijacking.

Thus, we first perform trend detection to identify the trending hashtags. To detect hijack

candidates, we learn the topics and detect whether the topics changed more than expected,

indicating an anomaly. Once we have identified the candidates, they need to be verified to

determine whether they were actually hijacked. Each stage is described in further detail in

the remainder of this section.

3.3.1 Identifying Hijacked Hashtag Candidates

The first step towards detecting hashtag hijacking is to identify the viable candidates. This

helps to narrow down the list of hashtags to be verified. Since hijackers favor trending

hashtags, we must first identify which hashtags are trending. We then learn what topics
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Figure 3.2: A schematic illustration of the proposed framework.

are discussed with those hashtags. Finally, we need to check whether a significant change in

topic has occurred.

3.3.1.1 Detection of Trending Hashtags

In this study we focus on detecting candidates that are trending hashtags1. Trending hash-

tags are a valuable target for hijacking because they reach a large audience quickly, making

it easy to share their message. A hashtag is trending if it has two properties; high volume

of usage presently (popular) and previously was not popular (novelty) [80, 113]. Although

Twitter has a Trending API, it only provides the current trending terms and hashtags. Since

we collect Twitter data using their Streaming API, to detect hashtag hijacking of trending

hashtags from previously collected data, we first need to detect whether each hashtag is

trending.

We measure the popularity of a hashtag based on the number of tweets in a day that

contain the hashtag. Let the popularity of a hashtag h on day d be the number of tweets

containing the hashtag posted on that day, phd = |{t ∈ Γ : t.h = h, t.date = d}|. A hashtag

is popular if its popularity is above some threshold, phd > k. We analyzed known trending

hashtags in our dataset, and found that all trending hashtags appear in at least 100 tweets

1Extending our detection approach to non-trending hashtags will be the subject of future work.
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Figure 3.3: Number of tweets per day collected for two popular hashtags, #tbt and #trndnl,
which are not trending because they lack novelty.

on the day they were most popular. Therefore we set the threshold to 100.

Popularity alone cannot define a trending hashtag. #jobs and #healthcare are among

the most popular hashtags, but they lack novelty. A hashtag is novel if it is acyclical and

exhibits anomalous behavior. Cyclical hashtags such as #tbt (Throwback Thursday) follow

predictable behavior, making it not novel. Similarly, when the discussion of a hashtag is

uniformly distributed over time, the hashtag is considered not novel even though it could

be popular. Figure 3.3 shows the daily frequency distribution of two popular but non-

trending hashtags. For trending hashtags, the number of tweets that include the hashtag

will experience a sudden increase that is anomalous compared to the previous popularity.
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The novelty of a hashtag is determined by testing for anomalies and cycles. To test for

anomalies, we fit the daily popularity to a normal distribution and test the goodness of fit,

with a significance level of 0.01. If the popularity of the hashtag fits a normal distribution,

then it is removed from the candidate list. To ensure we observe a hashtag long enough to

determine its distribution, we remove any hashtag that is observed on fewer than 7 days. We

also test for the presence of temporal autocorrelation to determine whether the popularity

of a hashtag follows a cyclical pattern. We compute the cross-correlation of the hashtag

popularity and check whether the distance between the lags where the highest correlation is

observed occur at a fixed interval. If the same interval length occurs at least half the time,

then the hashtag is considered cyclical and discarded from the candidate set. Typically

cyclical hashtags are observed weekly, so the interval length is 7 days.

3.3.1.2 Topic Learning

After identifying the trending hashtags, our next step is to learn its underlying topics. For

this, we use multi-modal non-negative matrix factorization (NMF), in which the latent topics

are inferred jointly from the user and term frequency matrices.

3.3.1.2.1 Feature Selection Our framework uses the Twitter Streaming API to retrieve

tweets. For each tweet, we gather its content, user ID, and the tweet creation date. Since

we are interested in detecting hijacked hashtags, we filter out tweets that do not contain any

hashtags.

Since the vocabulary of terms used in Twitter messages is potentially large, we apply the

Natural Language Toolkit (NLTK)2 part of speech tagger to select only nouns. We chose

2http://www.nltk.org/
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the NLTK part of speech tagger due to its simplicity even though part of speech taggers for

Twitter do exist, such as the CMU ARK Twitter Part-of-Speech Tagger3. We will explore

the performance of other part of speech taggers for feature selection in future work. Nouns

were selected because within the discussion of a topic the most prominent information are

the entities involved.

We use the tweet data Dh to generate two matrices: a term frequency per day matrix,

X, and a user frequency per day matrix, U , for each hashtag h. To reduce variability due

to differences in the frequency of tweets for each day, both matrices are normalized by the

frequency of tweets (or users) who used the hashtag for the day. The normalized matrices

are used to learn the topic distributions of the tweets associated with the given hashtag and

their time evolution.

3.3.1.2.2 Topic Learning We assume each topic has a cohesive meaning, which can be

represented by a set of influential terms describing the topic. We also assume that a user will

use the same hashtag to discuss the same topic. To determine if a hashtag has changed its

topics, we apply multi-modal non-negative matrix factorization (NMF) to jointly decompose

our term frequency and user frequency matrices into 3 latent factors: a terms by topic matrix,

W , a user by topic matrix, V , and a day by topic matrix, H. All of these matrices and their

dimensions are defined in Table 3.1. Non-negative matrix factorization ensures that none of

the latent matrices will have negative weights in their entries.

The multi-modal non-negative matrix factorization approach employed in this study was

3http://www.cs.cmu.edu/ ark/TweetNLP/#pos
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Table 3.1: List of variables defined for each hashtag. Note that m refers to number of terms,
n is number of users that uses the hashtag during the d days, and k is the number of topics.

Variable Definition Dimensions
X Terms used each day m x d
U Users posting each day n x d
W Term scores for each topic m x k
V Users’ scores for each topic n x k
H Days’ score for each topic d x k

designed to optimize the following objective function:

||X −WH>||2F + α||U − V H>||2F

s.t. Wij ≥ 0, Vkj ≥ 0, Hhj ≥ 0 ∀h, i, j, k
(3.1)

Since W , V , and H are unknown, this function cannot be solved in closed form. We learn

these matrices by iterating over the data , fixing at least one of the matrices and learning the

other matrices then fixing the learned matrix and relearning the previously fixed matrices.

To learn H, we fix V and W . We then fix H and learn W and V simultaneously. We repeat

this process until convergence.

Extending the multiplicative update rules proposed by Lee and Seung [52] to multi-modal

NMF, we obtain the following update functions:

Wij = Wij
(XH)ij

(WH>H)ij
(3.2)

Vkj = Vkj
(UH)kj

(V H>H)kj
(3.3)

Hhj = Hhj
(X>W + αU>V )hj

(HW>W + αHV >V )hj
(3.4)

We repeat the updates until convergence. Due to the time complexity of estimating
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the norm of a matrix, we compute the value of the objective function ∆(t), once every

100 iterations. In our experimentation, we burn-in for 500 iterations, then check if the

difference of the objective function between the times (t) and (t − 1) is less than 0.1%

of ∆(t−1). The burn-in ensures the matrix factorization reaches a stable solution. The

algorithm can also be easily extended to an online learning setting, using the stochastic

gradient descent method [37] or the online passive aggressive algorithm [11]. However, details

of the approaches are beyond the scope of this dissertation.

3.3.1.3 Detection of Hijacked Hashtag Candidates

The unnormalized probability of each topic often varies over time. To detect whether the

variability is due to hijacking rather than noise, a change detection algorithm is needed.

One of the most popular unsupervised change detection techniques is based on Hotelling’s

T 2 Statistic [39, 50]. The Hotelling’s T 2 statistic follows an F distribution, so we can compute

the p-value of the statistic to determine whether a significant change has occurred. Using a

sliding window around each day, we test if the topic distribution within the sliding window

days are from the same distribution as the topic distribution for the remaining days outside

the window. To illustrate this, let X = {x1, x2, . . . xn1 |xi ∈ Rk} be the weights of each topic

for days within the test window and Y = {y1, y2, . . . yn2|yi ∈ Rk} be the corresponding topic

weights for days outside the window. The Hotelling’s T 2 statistic is then calculated as:

T 2 =
n1n2(n1 + n2 − k − 1)

k(n1 + n2 − 2)(n1 + n2)

×(µx − µy)>Σ−1(µx − µy)

(3.5)

Where µx is the mean of the within-window days, µy is the mean of the out of window days,
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and Σ is the unbiased pooled covariance matrix.

Σ =

∑n1
j=1(xj − x̄)(xj − x̄)> +

∑n2
j=1(yj − ȳ)(yj − ȳ)>

n1 + n2 − 2
(3.6)

Under the null hypothesis that x and y are drawn from the same distribution with the same

mean and covariance, T 2 ∼ Fk,n1+n2−k−1. The change is significant if the p-value associated

with the T 2 statistic exceeds some significance level, α. Hashtags that fail this statistical

test are considered candidates for being hijacked.

3.3.2 Validating Hijacked Hashtags

Validating whether a candidate is hijacked requires two steps: (1) determining which topic

is hijacked and (2) detecting when the hijack occurred.

3.3.2.1 Detecting Hijacked Topic

After topic detection, we need to determine which topic describes the original intent of the

hashtag and which one is the hijacked topic. Inferring the original intent of a hashtag is

indeed a challenging problem.

We explore two approaches to identify the hijacked topic; one based on similarity while

the other based on Hotelling’s T 2 statistic. The similarity-based approach computes the

Jaccard similarity between all pairs of topics based on their top z terms or users. We

hypothesize that the hijacked topic is the topic least similar to all other topics. To measure

which topic is least similar, each topic is assigned a similarity score, which is the sum of

its corresponding row in the similarity matrix. Based on our hypothesis, the topic with the

lowest similarity score is likely to be the hijacked topic.
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Our second approach is to identify the topic with the highest unnormalized probability

in the H matrix, at the time the hijack was detected by the Hotelling’s T 2 statistic. When a

multiple day window is used to calculate the Hotelling’s statistic, the hijacked topic is based

on the middle day, e.g., day 2 of a 3-day window.

3.3.2.2 Detection of Timing of Hijack

In addition to detecting whether a hashtag is hijacked and identifying which topic is hijacked,

we need to determine when the hashtag was hijacked. A hashtag is hijacked when the

Hotelling’s statistic, described in Section 3.3.1.3, is at its peak.

3.4 Experimental Results

In this section, we evaluate the performance of the proposed framework on 72 consecutive

days of Twitter data.

3.4.1 Comparative Method

We compared the performance of our approach against the approach proposed by Hayashi et

al. [37]. Note that the approach described in [37] was originally designed to detect hijacked

topics in Twitter rather than hijacked hashtags. Specifically, they proposed a log-likelihood

ratio approach to determine whether the unnormalized probabilities of terms and users per

topic followed a p-step distribution or a power law distribution. They hypothesized that

if a topic is hijacked, then it will more likely follow a p-step distribution. We compared

the performance of this baseline approach against our approach in two ways. First, we

use this approach to predict whether a hashtag is hijacked by checking whether the log-
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Table 3.2: Tweets used to hijack hashtags.

Injected Tweets
islamic state executes 250 syrian soldiers #icebucketchallenge

@jjauthor islamic state’s declaration of war on the usa w/beheadings - obama
isn’t one but #americans know we are #infedels & we are at #war

@freedomcrusades @markknoller isis=islamic state of iraq and syria. i like #isil

this third letter to you from the islamic state beware of the fourth
#fireintheboothcypher #lastnightoftheproms http://t.co/efuz6mec9g

islamic state terrorist: we will make some attacks in new york soon

#msnbc #nbc #abc #cbs #cnn #is 4 islamic state #isil 4 islamic state in the
#levant stop yellow journalism and fear mongering! u got ur war!

abu waheed and mudjahideens nasheed islamic state: http://t.co/ukvy2dponu
@ecayuno #letters4nasheed #bayloc #lalaaz-iz #cripto #aceleezy

islamic state releases this photo of canadian shooter michael zehaf-bibeau
http://t.co/vkwau5obts #ottawashooting

likelihood ratio for any topic exceeds a given threshold. Second, we select the topic with

the largest log-likelihood ratio as the hijacked topic. Note that in both experiments, we

apply log-likelihood ratio to each topic of the user-topic and term-topic matrices, V and W

respectively, generated by the multimodal NMF approach. For the remainder of this chapter,

we refer to this baseline approach as Log Ratio.

3.4.2 Data Collection, Preprocessing, and Trend Detection

We collected tweets from Twitter’s Streaming API using the Python library, Tweepy4 for

the period between August 22, 2014 and November 1, 2014. From this data, we selected all

tweets that have at least one hashtag. We observed 4,533,702 hashtags. We evaluated which

4http://www.tweepy.org/
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hashtags are trending using the methodology explained in Section 3.3.1.1. We found 2667

trending hashtags, which were used in tweets by 766,057 unique users. In total, we found

98,234 unique nouns that co-occur with our popular hashtags.

3.4.3 Ground Truth

In order to detect hijacked hashtags, we needed to determine whether our data contained

hijacked hashtags. In our research, we found reports indicating some hashtags, such as

#napaquake and #askricky, had been hijacked by the terrorist organization, the Islamic

State (IS) [98]. Unfortunately, such tweets were not present in our Twitter data set. We

injected synthetic IS tweets to hijack the hashtags. We tested how well our algorithm

performed when we injected into a randomly selected hashtag 5% of the total number of

tweets observed with that hashtag. This injection percentage is similar to the amount used

in Hayashi et al [37]. We injected 8 synthetic tweets, listed in Table 3.2, into 100 randomly

selected trending hashtags. These hashtags are listed in Table 3.3. The injected tweets were

actual tweets found in our dataset that we believe were written by Islamic State supporters.

We chose to search for “Islamic State” instead of ISIS based on the findings by Magdy et

al. [60] who discovered that in Arabic tweets, supporters of the Islamic State tend to use the

full name of the organization more often than its abbreviation.

To determine the hijacked topic, we ranked the terms by their unnormalized probabilities

for each topic. The hijacked topic is the topic with “islam” and “state” with the highest

rank. When we injected 5% of the total tweets with hijacked tweets, we found “islam” and

“state” within the top 50 terms for 96% hashtags and within the top 100 terms for all of the

hashtags.

The hijacked tweets are synthetically injected such that the majority of the tweets oc-
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Table 3.3: Examples of hashtags that were hijacked.

#breakingbad #climatemarch #dragoncon #ebola

#fixthepolice #icebucketchallenge #napaquake #obamaspeech

#tiff14 #russiainvadedukraine #wasvsdal #whyistayed

curred on the day after the hashtag was trending. Then the hijackers’ use of the hashtag

would taper off over the following two days. The first day the hashtag was hijacked, 70%

of the hijacked tweets were injected. On the second and third day, 20% and 10% of the hi-

jacked tweets were injected respectively. According to previous reports on hashtag hijacking,

hijackers tend to hijack a hashtag while it is still trending [98].

3.4.4 Findings

One of the goals of this research is to detect hashtag hijacking with as few topics as necessary

to reduce memory. We explore how our algorithm performs when we decompose our term

and user matrices into 3, 4, and 5 topics.

3.4.4.1 Detecting Hijacked Hashtags

The first challenge is to detect which hashtags are candidates for being hijacked. We apply

the Hotelling’s statistic to all topics and use the p-value to determine whether the hashtag

fails the null hypothesis that no significant change occurred. As mentioned in Section 3.3.1.3,

the Hotelling’s statistic compares the distribution of topics within a window of k days with

the distribution of topics outside the window. We explore three window sizes, 1 day, 3 days,

and 5 days.

Table 3.4 shows the AUC of detecting whether a hashtag has been hijacked. When

Log Ratio is used, the performance is low as the approach fails to distinguish the hijacked

hashtags from non-hijacked ones. In fact, the majority of the hashtags predicted as hijacked
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Table 3.4: Area under ROC Curve.

Window Number of Topics
Size 3 4 5
Hotelling 1 Day Window 0.4973 0.5046 0.5048
Hotelling 3 Day Window 0.6068 0.6593 0.6691
Hotelling 5 Day Window 0.2298 0.1630 0.1024
Log Ratio of Terms 0.4691 0.4533 0.4364
Log Ratio of Users 0.4549 0.4776 0.4720

were false positives. In contrast, Hotelling’s statistic at window size of 3 days was best

at detecting hijacked hashtags. We calculated F-Measure based on the thresholds used for

ROC curve. Hotelling’s statistic using 3-day window also achieved the highest F-measure.

Nonetheless, the size of the window for calculating the Hotelling’s statistic has a great

influence on performance. When the window size is only 1 or 5 days, the performance

of our detection algorithm degrades significantly. This is because for the 1-day window,

there is not enough within-window time series data to compute the Hotelling T 2 statistic

effectively. When the window size is 5 days, the trending pattern gets overwhelmed by other

topics, which makes it harder to identify the hijacked topic. Thus, for the remainder of our

experiments using Hotelling’s statistic, we will use the 3-day window size.

3.4.4.2 Detecting Hijacked Topic

Two approaches were proposed in Section 3.3.2.1 to detect the hijacked topic; similarity and

Hotelling’s statistc. For comparison, Log Ratio was applied to the term-topic and user-topic

matrices. The performance, based on accuracy, of each approach is shown in Table 3.5. We

applied these approaches to all synthetically hijacked hashtags.

Using the Hotelling’s statistic to detect the hijacked topic performed best. The topic

that corresponds to the hijacking is the topic with the highest unnormalized probability
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when the hijack was detected. When the prediction of the hijacked topic was incorrect, the

predicted topic typically was a topic different from the one with highest probability outside

of the window. Analyzing the predicted hijacked topics for these hashtags, we found these

hashtags were about a general event or group, e.g. a sports team or a conference, and the

predicted hijacked topic was about a specific event, e.g. a sports game against a specific rival

or a workshop at the conference. For example #carnivorestour is about the Carnivore Tour,

a musical tour with bands Linkin Park and Thirty Seconds to Mars. Our algorithm predicted

tweets from the announcement of the tour were the hijacked topic, where users used the band

members’ names to discuss this specific event, whereas they used the bands’ names to discuss

the tour and specifc concerts. In sports, the American League Championship Series (with

hashtag #alcs) is a series of Major League baseball games. Fans of one team playing in the

series, the Baltimore Orioles, used #alcs in addition to other hashtags, #takethecrown and

#wewontstop, to promote their team. These users did not hijack #alcs because it was used

within the original intent, Major League baseball played during the ALCS.

Similarity and Log Ratio had similar performance. For similarity, we compared the top

100 terms and 100 users with the largest unnormalized probability for each topic. The

threshold 100 was selected based on the observation that the hijacked topic had the injected

terms within the top 100 terms. We found the topic with the lowest user similarity tended

to be the hijacked topic more often than the topic with the lowest term similarity. Log

Ratio had the best performance when 3 topics were used and lower performance for 4 and 5

topics. The Log Ratio of users was more indicative of the hijacked topic than the Log Ratio

of terms. Given that language tends to have more lexical variation, e.g. two terms having

similar meaning or the same term having multiple meanings, detecting the hijacked topic

from the user is more reliable than detecting it from the terms.
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Table 3.5: Accuracy of detecting the hijacked topic.

Number of Topics 3 4 5

Hotelling 3 Day Window 0.45 0.56 0.47
Term Similarity 0.42 0.39 0.41
User Similarity 0.46 0.42 0.29
Log Ratio of Terms 0.43 0.30 0.26
Log Ratio of Users 0.47 0.40 0.34

Table 3.6: Accuracy of detecting when a hashtag is hijacked. This comparison is using only
first, middle, or last day versus any of the days of the Hotelling’s window as the date of the
hijacking.

Number of Topics First Day Middle Day Last Day Any Day
3 32% 4% 5% 41%
4 43% 4% 1% 48%
5 45% 4% 3% 52%

3.4.4.3 Detecting When Hashtag is Hijacked

The next step is to determine when the hashtag was hijacked. Hotelling’s statistic is a change

detection technique, so it makes sense to predict the hijacking occured when the statistic

indicated a change. Using Hotelling’s statistic, we found a hijack window, where the topic

distribution of the days within the window does not follow the same distribution for the

days outside of the window. When using a window-based approach, predicting which day

the change occurred is not intuitive. The time of the hijacking could be at the beginning,

the end, or in the middle of the window. We explored the accuracy of detecting the date of

the hijack by selecting each day of the 3-day window. The results are in Table 3.6.

Each day of the hijack window provides some indication the hashtag was hijacked. Among

the days within the window, selecting the first day of the window as the hijack date was

most accurate. If we relax the requirement such that we successfully predicted the hijack

date if it falls anywhere within the window, we increase performance by 7%.
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Table 3.7: Normal and hijacked tweets about #napaquake.

Label Tweet
Normal Hoping everyone is safe and accounted for. #NapaQuake

Normal 6.0 Earthquake Strikes Near Napa. #napaquake

Hijack .@winetrain @erico & I challenged @KathieLGifford @hodakotb to
#napaearthquakewinebucketchallenge http://t.co/XxWSlLKRVl #napaquake

Hijack .@yayneabeba lol here’s mine & @erico’s #WineBucketChallenge

http://t.co/XxWSlLKRVl @KathieLGifford @hodakotb #napaquake

#ALS #wine

3.4.4.4 Additional Hashtag Hijacking Discovered

The previous experiment was conducted by artificially injecting hijacked tweets into 100 ran-

domly selected hashtags. We now applied our algorithm to identify other trending hashtags

and found a few interesting incidents of hijacked hashtags. Previous research on hashtag

hijacking had reported that two hashtags, #napaquake and #whyistayed, were hijacked dur-

ing our data collection period. In addition to the two, we found three additional hijacked

hashtags when ranking the hashtags based on their Hotelling’s statistic using 3-day window

and selecting the top 100 hashtags.

The hashtag #napaquake became popular as a result of an earthquake hitting Napa

Valley, California. The majority of the tweets discussed the earthquake, including damages,

aftershocks, and concern for friends in the area. Examples of these tweets are in Table 3.7.

One group of users hijacked #napaquake to promote a new trend #winebucketchallenge.

The trend did not become popular, so the hijack was not successful. Table 3.8 presents the

top 10 terms for each topic. Due to a significant overlap of terms between the topics, e.g.

napaquake was ranked highest in all 3 topics, we sparsified the term-topic matrix. For each

term, we find which topic has the highest weight. That topic maintains its weight while the

weights of the remaining topics are set to zero.

A hashtag used to discuss domestic violence, #whyistayed, was hijacked by a frozen
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Table 3.8: Top 10 Terms for each Topic for #napaquake.

Topic 1 Topic 2 Topic 3
napaquake xxwsllkrvl napa
wine al downtown
damag winebucketchalleng pool
quak erico valley
home mapit water anyon
today main friend
earthquak video weekend
recoveri road warm
help door aftershock
napavalley kodakotb feel

Table 3.9: Normal and hijacked tweets about #whyIstayed.

Label Tweet
Normal Because he was hurt, broken, the son of abusive alcoholics himself and said

he’d kill himself if I left. #WhyIStayed

Normal #WhyIStayed for the kids
Hijack I was into reading the #WhyIStayed and #whyileft stories until

@DiGiornoPizza ruined it.
Hijack #whyistayed you said you had pizza. #whyileft you said I ate too much pizza.

pizza company. Normal tweets discuss why they stayed in an abusive relationship, as seen

in Table 3.9. The hashtag hijackers focused on criticizing the company for attempting to

hijack the hashtag. In this situation, the hashtag was hijacked twice: the pizza company

hijacked the hashtag to gain attention for their products, then the users hijacked the hashtag

to demonstrate the PR campaign was wrong. In our dataset, we only observed the second

hijack.

After ranking all of the hashtags by their Hotelling’s statistic, we analyzed the top 100

hashtags for hijacking. Two examples of hijacked hashtags we found were #dear5sos and

#teammexico. Normal tweets for #dear5sos read like the user is writing a letter to the band

5 Seconds of Summer. They start with #dear5sos. The remainder of the tweet is the body

of the letter. Table 3.10 shows examples of these. The hijackers’ tweets contain several
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Table 3.10: Normal and hijacked tweets about #dear5sos.

Label Tweet
Normal #dear5sos thanks for all the smiles
Hijacked SUBSCRIBE TO THIS CHANNEL http://t.co/udT8tPNSTo LETS GET

TO 250!!!! #youtube #dear5sos #BeyDay #beyoncebirthday

#HappyBirthdayBeyonce

unrelated hashtags to draw attention to their tweet and entice users to click on the link.

This is a clear example of hashtag hijacking for spamming, according to our definition.

Some hashtags naturally can be used in different contexts. When the hashtag changes

context, this may not necessarily be hashtag hijacking. For example #teammexico could be

used for different types of sports teams, e.g. basketball or football. We observed this hashtag

was first used to promote the Mexican basketball team playing in International Basketball

Federation (FIBA) tournament. We also observed tweets with the same hashtag promoting a

singer. To determine whether this hashtag was hijacked, the context needed to be considered.

If the singer was representing Mexico in a competition, it still fits the original intent of the

hashtag. The hashtag was classified as hijacked for two reasons: the tweets did not promote

the singer as either from or representing Mexico in a competition and the tweets followed a

pattern used by attention-seeking trolls, tweeting the same tweet repeatedly. The hashtag

was clearly hijacked to promote the musical album of a Spanish singer, Pablo Alboran.

This hijacking had a unique characteristic; tweets discussing basketball were in English and

Spanish whereas tweets about the singer were only in Spanish. Examples of tweets written

in Spanish are listed in Table 3.11 with their English translation in italics.

An example of a hashtag having multiple contexts which is not hijacked is #swim. This

hashtag is used in two contexts; the recreational activity in a pool and the acronym for

software used by the Federal Aviation Administration (FAA) called System Wide Information
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Table 3.11: Normal and hijacked tweets about #teammexico. English translation of tweets
written in Spanish are in italics.

Label Tweet
Normal Ochoa better play for the 2nd half ! #teammexico

Normal @FIBA #TeamMexico vamos!! Slay the giant!! http://t.co/YBpkS3Pyrc
@FIBA #TeamMexico let’s go!! Slay the giant!! http://t.co/YBpkS3Pyrc

Hijacked Esos pts son nuestros\u2665 #TerrallyAlboran Vamos #TeamMexico

@pabloalboran
Those are our points\u2665 #TerrallyAlboran Let’s go #TeamMexico

@pabloalboran
Hijacked A darle con todo en el #terrallyalboran #teammexico esos pts.

Son nuestros @pabloalboran :-)
To give everything in the #terrallyalboran #teammexico these points.
They are our @pabloalboran :-)

Table 3.12: Tweets from #swim, a hashtag with multiple contexts.

Context Tweet
Aquatics Perfect #beach day #bathtub #swim #sun @ Alys Beach

http://t.co/rxM4nNmC6E
Software #SWIM Historical Review - #ATIEC keynote by Steve Bradford FAA

Chief Scientist for Architecture & NextGEN Development
http://t.co/SN2VwYjU7C

Aquatics Time to focus...priortize.....stress relief #SWIM

Management (SWIM). One indication of which topic the hashtag belongs to is whether

capitalization is used. Most of the time, #swim is used to describe the water sport. Tweets

discussing the FAA software, they used the #SWIM. As demonstrated by the third tweet in

Table 3.12, this is not a strict rule; users capitalize the hashtag while referring to the aquatic

sport.

3.5 Conclusion

This chapter considers the problem of automatically detecting hijacked hashtags from Twit-

ter data. We present a novel framework to identify candidates of hashtag hijacking and

verify the hijacking. Identification of candidates is based on multimodal non-negative ma-
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trix factorization to learn the topics associated with a hashtag and use Hotelling’s t2 test to

identify anomalous behavior. The candidates are subsequently validated by automatic iden-

tification of the hijacked topic and verification of the hijack timing using Hotelling’s statistic.

Experimental results showed the framework is promising as it can effectively detect many

potentially interesting hijacked hashtags.
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Chapter 4

Understanding Compromised

Accounts

4.1 Introduction

Social media has become a widely used medium for users to share information with their

friends and family. Unfortunately, its popularity has also attracted considerable attention

among hackers to disseminate misinformation by compromising users’ accounts. These hack-

ers then perform a variety of online abuses, including spamming and identity theft, with these

accounts.

Recent research has measured the frequency and impact of compromised accounts on

social media websites such as Twitter. A 2016 Pew Research study found 13% of online adults

experienced having their social media account compromised [71]. A survey conducted by the

University of Phoenix found nearly two thirds of adults with a social media account had

been compromised [61]. Compromised accounts can have negative impact on both the social

media sites as well as their users. For example, Thomas et al. reported that 57% of victims

of accounts compromised lost friends on Twitter when their accounts were compromised,

and 21% of victims never return to Twitter [96]. Zangerle and Specht found that among the

users reporting their accounts compromised, 27% of them stated they created and moved to
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new accounts [111]. When a business is targeted by a compromised account, they can lose

offended customers before they are able to respond to the compromised accounts [58].

A previous study [6] presented four reasons hackers would compromise social media

accounts—for laughs, forced shares, forced follows, and for user information. Forced shares

enable hackers to share links to phishing and malware infested sites. Its impact can be ma-

licious because users are more likely to click on spam links shared on the social media sites

than those embedded in emails [35]. Accounts can also be hacked to impersonate the users

and make them look bad [75, 25] by posting misleading or harmful information about their

political inclination, religious beliefs, sexual orientation, etc. Some hackers may also use the

information learned from the account to target the user’s other accounts, e.g. bank account.

There are many ways hackers can gain access to login credentials of social media users,

e.g., through database dumps, password guessing, social contagions, external contagions [19,

96], and shared devices. Database dumps occur as a result of a security breach that exposes

login credentials of users to hackers. Database dumps from other services can also result in

compromised credentials when the users reuse the same passwords on other social media sites.

Password guessing is another approach that can be used to hack into accounts of users with

weak passwords. Social contagions refer to the spread of phishing and malware distributed

from within a social media platform to trick users into revealing their login credentials. In

contrast, external contagions are malware or phishing attacks from outside of the social

media, e.g., malware planted on the user’s computer or phishing attacks in email, which

allow hackers to steal information from users including their social media accounts. Finally,

the accounts can be compromised when users leave their devices, e.g. phone or computer,

unlocked for anyone to use.

There is growing research dedicated to detecting compromised accounts [28, 41]. Some
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research assume that a compromised account follows the behaviors of malicious accounts,

i.e. accounts controlled by a malicious user [28]. They assume that these compromised

accounts will spread spam or malware in sync with other accounts, creating social contagions.

There have also been studies that focus on detecting malicious accounts including those that

are part of social contagions, but such studies do not distinguish between fake accounts

and compromised accounts [9, 17, 91]. One of the limitations of these previous studies is

that not all compromised accounts are part of social contagions. Sometimes a hacker will

only compromise a single account for fun or other non-malicious reasons. For example,

research has shown that 10% of the time, accounts are compromised by someone the user

knows [111]. Another limitation is that many of the previous work have relied on using a

limited number of features to detect compromised accounts. For example, Igawa et al. [41]

detected compromised accounts using only content information, i.e., the terms that appeared

in the tweets posted by the users. However, since tweets are typically short, informal, and

noisy, they may not provide sufficient information for accurate text analysis [86]. On the

other hand, the tweets also contain rich meta information such as hashtags and mentions,

which could provide more helpful information to advance compromised account detection.

Understanding the characteristics of compromised accounts would provide useful insights

into how to detect compromised accounts. In this chapter, I aim to understand who compro-

mises accounts on Twitter, what information they share, and what patterns may be useful

for detecting compromised accounts. Different types of hackers compromise accounts for

different reasons, and thus, they may compromise the accounts in different ways and share

different types of content. Some approaches that can detect certain types of compromised

accounts well, e.g. using source information to detect spammers [28], may perform poorly on

other types of hackers, e.g. hackers who use similar device as the account owner. Therefore,
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in this chapter, I aim to understand compromised accounts using both textual and meta

information. The specific contributions of this research are:

• Identified two types of hackers that compromise accounts;

• Discovered six themes of compromised tweets based on the types of hackers; and

• Examined patterns of compromised tweets and studied the importance of such patterns

for detection.

The structure of the chapter is as follows. In the next section, I formally define compro-

mised accounts and presents other terminology used in the dissertation. Section 4.3 describes

the data collected. Section 4.4 presents the findings of hackers’ identities and the common

themes of tweets they share. Patterns useful for detecting compromised tweets are examined

in Section 4.5. Conclusions are presented in Section 4.6.

4.2 Preliminaries

This section formally defines compromised accounts and introduces other terminology that

will be used in the remainder of this dissertation. A social media account, A, is owned by

an individual who created that account, i.e. the original user or the genuine user. Any

individual who accesses account A without the knowledge or permission of the original user

is known as a hacker. If account A is accessed by a hacker, it is said to be compromised.

Definition 4.2.1. (Compromised Account) A compromised account is an account accessed

by a third party without the knowledge of the original user.

I consider two types of tweets when collecting Twitter data for compromised account

detection: announcement tweets and timeline tweets. Tweets initially collected from the
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Twitter stream, to be described in the next section, are called announcement tweets if

they matched the keywords used to announce compromised accounts. Additional tweets

collected from the same users are called timeline tweets. If a set of tweets is not specified

in the remainder of this chapter as an announcement tweet, then it is referred to as a timeline

tweet. In this study, a tweet will be classified as compromised or normal. A compromised

tweet is a tweet believed to be authored by the hacker. A normal tweet is any tweet

written by the original user. For example, announcement tweets are normal as they were

written by the original user declaring their accounts had been compromised.

There are four types of compromised accounts; pranks, forced shares, forced follows, and

information gathering [6].

• Prank: A prank is content that is shared with other users by the hacker for laughs.

Pranks include sharing random content, e.g. song lyrics or confessions of love for the

hacker.

• Forced Share: A forced share is when a hacker shares content that is false, misleading,

or of malicious intent on the social media site.

• Forced Follow: A forced follow occurs when the hacker forces the user account to

follow other fake or malicious accounts.

• Information Gathering: A hacker uses the account to learn sensitive information

about the user, such as their password. This is used by spammers to compromise the

original user’s other accounts, e.g. bank account.

For pranks and forced shares, hackers can share content either via social media posts or in

direct messages to other users. The focus of this research is to analyze the social media posts
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Table 4.1: Phrases Users Say Indicating their Account was Compromised.

Phrase Regular Expression
“sorry that wasnt me” (.*sn’t me .*),(.*sn’t me$),(.*not me$),

(.*not me .*),(.*snt me .*),(.*snt me$)
“I was hacked!” (.* hack.*)

created by the hacker for pranks and forced shares. Forced follows are harder to detect than

forced shares, because the Twitter API only returns the current number of followers of a user

when the tweet was collected rather than when the tweet was published. To study detection

of forced follows, researchers would need to know which accounts will be compromised in the

future to follow how the number of followers changes over time. Accounts compromised for

only information gathering are the most challenging to detect because the hacker does not

change anything about the account or post any tweets. Detection of information gathering

compromises would require knowledge of the user’s login history, e.g. IP addresses, to identify

these hackers, and this information is not provided by the Twitter API.

There are two types of hackers who compromise an account; acquaintances and intruders.

An acquaintance is a friend, relative, or coworker of the original user. An intruder is an

unknown third party who compromises an account to share misleading or harmful informa-

tion. One type of intruders are spammers, users whose posts are intended to mislead normal

users to visit phishing and malware websites. Previous research has primarily focused on

detecting accounts compromised by spammers [28].

4.3 Data

This section introduces the details about the data used for this study. Data referenced as

2015 Data is described below.
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Table 4.2: Codebook used to determine whether the tweets in a user’s account has been
compromised (C) or normal (N).

Label Scenario Example
C Stated someone else tweeted on their account not me posting it
C Mentioned “hack” without context I was hacked
C Mentioned “hack” with Twitter context So my Twitter got hacked

N Compromised on different social media platform
Rachel needs to stop hacking

into my facebook
N Different Twitter account compromised my other account was hacked
N Not written in English Para que me hackees?

N Compromised account in distant past
about 2 years ago someone

hack into my account
N Only said “not me” or “wasn’t me” that wasn’t me
N Uses hack in a different context Spurs are hacking Asik off

the ball

4.3.1 Data Collection and Annotation

All tweets geotagged as originating from the continental United States using the Twitter

Streaming API from April 27, 2015 to May 6, 2015 were collected. To roughly identify

which users have been compromised, tweets were matched to a regular expression where

the user may be self-reporting they were compromised. Table 4.1 shows the self-reporting

phrases and the corresponding regular expressions. For each tweet matching the regular

expression, the previous 200 tweets from the user were collected. These tweets will be used

to classify whether their author was the original user or a hacker. To ensure this dataset

includes tweets from user accounts that were not compromised, we randomly selected a set

of 500 tweets that did not fit the regular expression and collected the previous 200 tweets

from their authors.

The majority of tweets matching the regular expression did not appear to be reporting a

compromised account. For example, “hack” can refer to writing code, shortcuts (life hacks),

or users discussing compromised accounts on different websites, like Facebook or Snapchat.

52



To determine which accounts were really compromised, two annotators labeled each tweet

as whether or not the tweet claims the Twitter account was compromised. If the tweet

only stated they were compromised without any other context, e.g. “I was hacked”, the

annotators assumed that the user was referring to his/her Twitter account. The codebook

used for this annotation is listed in Table 4.2. When the annotators disagreed on a tweet’s

label, a third annotator labeled the tweet using the same codebook. If at least two of the

annotators labeled a tweet as reporting that account was compromised, then the tweet was

labeled as compromised. Otherwise the tweet was labeled as not compromised.

Some users had multiple announcement tweets matching the regular expression used for

data collection. Among these users, some reported their accounts compromised multiple

times, while others discussed an event, e.g. computer hackathon, in multiple tweets. The

first unit of analysis in this research is the user, so it is important to remove duplicate

users. If a user has multiple announcemnt tweets in the dataset, their timeline tweets were

combined into a single set. Duplicate timeline tweets were removed. If a user had both

compromised and not compromised announcement tweets, the user is labeled compromised.

Otherwise the user maintains the label of their announcement tweets.

Tweets claiming the account was compromised, i.e. announcement tweets, were also

annotated on whether the original user knew the hacker. If the tweet said the name, Twitter

handle, or relation of the hacker to the user, e.g. sister, then the hacker was known to

the original user. If the announcement tweet was written in first person present participle

verb tense, e.g. “I’m hacking you”, then the hacker was known to the original user. If

the announcement tweet did not mention the identity of the hacker, then it is assumed the

original user does not know the hacker.

For each compromised user, an annotator read their tweets to identify which tweets were
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written by the hacker. If the compromised tweets of a user could be identified, features from

those tweets were extracted and compared to the normal tweets by the same user to identify

characteristics which are more indicative of a compromised tweet than a normal tweet.

4.3.2 Data Statistics

The Twitter Streaming API returned 6334 tweets matching the regular expression. The

two annotators labeled these tweets, and their inter-rater reliability was 0.722. There is

substantial agreement between the annotators [45, 105]. After annotation, 584 announcement

tweets indicated the account was compromised, 5750 announcement tweets that matched the

regular expression were not indicating the account was compromised, and 500 announcement

tweets that did not match the regular expression. After combining tweets from the same

user, 502 user accounts were labeled as compromised and 5387 users were labeled as not

compromised. When analyzing the number of tweets collected from each user’s timeline,

one concern was that users may delete their hackers’ tweets before announcing the account

was compromised. To ensure the hackers’ tweets were likely collected, all users having 150

or fewer tweets were removed, which left us with a dataset that contains 461 compromised

users and 4913 normal users.

4.4 Hackers and Their Content Themes

In this section, we use the Twitter data collected to study who compromises accounts and

what information do they share.
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Table 4.3: Examples of Announcement tweets where hacker is an acquaintance.

Hacker Mention Example Announcement Tweet
Pronoun How tf did she hack my stuff
Name Kewian hacked me.
Relation Why does my bf think it’s okay to hack my Twitter
Twitter Handle Omg i got hacked by @audra allen14

4.4.1 Hacker Identity

Accounts are compromised by two types of individuals, acquaintances and intruders. Among

the compromised users, 16% reported they knew the hacker, by name (e.g. “When Evan

hacks ur twitter.”) or by relation (“my friend”). Previous research found that in 10%

of announcement tweets, the hacker was someone the original user knew, i.e. friend or

relative [111].

Hackers identified by mention or pronoun present an ambiguous case about whether the

hacker is an acquaintance of the user. 12% of compromised users announced the identity

of their hackers by Twitter screen name or by pronoun. If the hacker is someone the user

communicates with often, the original user may consider their hackers as friends, i.e. ac-

quaintance. Otherwise the hacker would be considered as an intruder. Examples of the four

ways hackers are identified are presented in Table 4.3.

4.4.2 Hacker Content

Tweets by the hacker could be identified for 47% of the compromised users. I analyzed the

content of each compromised tweet and identified its topic. Topics were manually grouped

based on common themes. Through analysis of the content of these tweets, six themes

emerged.

• Spam: Advertising a product or porn
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• False proclamation: Announcement that is false, such as relationship status, sexual

orientation, or pregnancy

• Praise: Typically praise hacker, however can include praise of other items, e.g. grilled

cheese

• Criticism: Strong negativity towards an individual, or a group

• Announce Compromise: Hacker announces they compromised the account

• Other: Tweets that did not fit any previous theme.

The number of users whose hackers followed each theme is shown in Figure 4.1. The most

prominent theme was fake announcements. Hackers told the original users’ friends false-

hoods about wanting sex, their relationship status, their bathroom habits, and their sexual

orientation. Most of these falsehoods are harmless to the original user, however some of

them can hurt the reputation of the user, e.g. coming out as gay or announcing they smoke

cannabis and cheat on tests. The next most common theme are when the hacker posts the

announcement tweet. These tweets are straightforward, the user identifies themselves and

then says they are hacking the user. Spammers were 16% of the hackers whose tweets could

be easily identified. Spammers enticed other users to purchase items, e.g. weight loss pills

or porn, and they also requested information from their audience, e.g. nude images. Despite

the extensive previous work on detecting spam and spammers, spam contributes to a small

percent of compromised accounts. Praising the hacker was a common theme among hackers,

utilized by 13% of the hackers. Criticism was the least frequent theme. Hackers criticized

other individuals and groups in general, e.g. fat people. They also called for violence against

police. If this criticism is interpreted as threats, the original user could face consequences
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Figure 4.1: Themes of hackers’ tweets where hacker tweets could be identified and the percent
of users whose hacker followed each theme.

for content the hacker posts. There were also several hackers whose tweets did not follow

any theme, noted by the Other theme in Figure 4.1. Some hackers retweet random tweets

which have no theme. For example, sometimes the hacker simply tweeted “hello”.

4.5 Characteristics of Compromised Tweets

I characterize two types of tweets from a compromised account – (1) compromised tweets:

tweets from the hacker; and (2) normal tweets: tweets from the original user. The goal is

to determine whether compromised tweets have distinct patterns from normal tweets. This

section first analyzes compromised tweets in terms of their features, e.g. hashtags, mentions,

etc. Then I test whether these features can help with compromised tweet detection. In

particular, the aim of this section is to answer the following research questions:

• RQ1: Do compromised tweets contain more hashtags than normal tweets?
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• RQ2: Are mentions more prevalent in compromised tweets than normal tweets?

• RQ3: Are compromised tweets more likely to contain URLs?

• RQ4: Do the sources, software used to post the tweet, of compromised tweets match

the sources of normal tweets?

• RQ5: Are compromised tweets more positive or negative than normal tweets?

• RQ6: Are compromised tweets more likely to be retweets?

For each research question, the normal tweets are compared against the compromised tweets

for compromised users whose compromised tweets could be identified. To determine whether

the distribution of the compromised tweets differ significantly from their normal tweets, a

one-sided Welch’s T-test is applied to compare the mean values of the features associated with

each research question (hashtags, mentions, retweets, etc). Welch’s T-test is used instead of

Student’s T-test since the sample size and variance of the normal and compromised tweets

are unequal. However, the Welch T-test makes a strong assumption that the data is normally

distributed. To overcome this limitation, the non-parametric 2-sample Kolmogorov-Smirnov

(K-S) test is also applied to compare the cumulative distributions of the normal tweets and

compromised tweets. Both hypothesis testings were applied to 5085 compromised tweets

and 42,024 normal tweets from the same users.

4.5.1 Hashtags

Hashtags are frequently used in tweets to provide context [34, 57, 99]. A tweet can contain

multiple hashtags or no hashtags. From the histogram in Figure 4.2, compromised tweets

appear to contain more hashtags than normal tweets. Specifically, this figure shows that
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Figure 4.2: Histogram of the number of hashtags used per tweet. Compromised tweets tend
to have more hashtags.

92% of normal tweets do not contain any hashtags whereas only 85% of compromised tweets

do not contain a hashtag. Furthermore, less than 1% of normal tweets contain four or more

hashtags. In comparison, 2.3% of compromised tweets contain 4 or more hashtags. This is

further demonstrated by analyzing the average number of hashtags for compromised tweets

and normal tweets, shown in Table 4.4. The average for compromised tweets is higher than

for normal tweets. The p-value according to the Welch’s T-test suggests that the difference is

significant. For the K-S test, the null hypothesis is that compromised tweets contained equal

or fewer number of hashtags than normal tweets. Applying the one-sided hypothesis test

with 0.001 significance level, this null hypothesis was rejected, as shown in Table 4.4. From

this evidence, the results suggest compromised tweets contain more hashtags than normal

tweets.
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Table 4.4: Comparison whether compromised tweets have more hashtags or mentions than
normal tweets by the same user. Compromised tweets tend to have significantly more hash-
tags and more mentions than normal tweets.

Mean p-value
Aspects Compromised Normal T-test K-S test

Hashtags 0.27 0.09 9.7× 10−48 5.5× 10−22

Mentions 0.97 0.80 3.6× 10−27 2.9× 10−27

4.5.2 Mentions

Users tag other users by mentioning their Twitter handle to gain their attention [108]. Spam-

mers use mentions to entice users to engage with their tweets [35]. As shown in Figure 4.3,

compromised tweets appear to have more mentions than normal tweets. Specifically, this fig-

ure shows a larger percentage of normal tweets contain between 0 and 2 mentions, compared

to compromised tweets. Furthermore, a higher percentage of compromised tweets have four

or more mentions, compared to normal tweets. Moreover by analyzing the average number of

mentions per tweet for the two groups, shown in Table 4.4, compromised tweets were found

to have more mentions than normal tweets. Applying the K-S test with significance of 0.001,

the null hypothesis, compromised tweets would have similar or fewer number of mentions

than normal tweets was rejected, as shown in Table 4.4. Thus, compromised tweets tend to

have more mentions than normal tweets.

4.5.3 URLs

When users share images or tweets within a tweet, they are linking to that content by

adding URLs to their tweets. URLs can also lead to different websites. URLs are shown

in a shortened form, e.g. Twitter’s shortened URLs are masked to the t.co domain, which

masks the final destination of the URL. Spammers utilize this feature to mislead users to their

60



Figure 4.3: Histogram of the number of mentions used per tweet. Compromised tweets tend
to have more mentions.

malicious content [22, 35, 95]. Figure 4.4 shows that tweets without a URL tend to be normal,

and tweets with URLs appear more often in compromised tweets. Looking at the average

number of URLs for each set of tweets, shown in Table 4.5, compromised tweets have more

URLs than normal tweets. Welch’s T-test suggests this difference is significant. The null

hypothesis that URLs appear as often or less often in compromised tweets than in normal

tweets was rejected with the KS-test. The p-value is shown in Table 4.5. Compromised

tweets contain more URLs than normal tweets.

4.5.4 Retweets

Retweets are a common tool used to share tweets with one’s followers [108]. Whether com-

promised tweets were more often being retweets compared to normal tweets was tested. K-S

test cannot be performed on binary valued variables, however it is possible to compare the
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Figure 4.4: Histogram of the number of URLs used per tweet. Compromised tweets tend to
have more URLs.

Table 4.5: Comparison whether compromised tweets are more likely to contain URLs, are
more positive sentiment, or are more likely retweets compared to normal tweets. Tweets
contain between 0 and 3 URLs. A retweet is valued at 1, whereas a non-retweet is valued
at 0. Sentiment ranges from -4 (negative sentiment) to +4 (positive sentiment). Sentiment
score of 0 indicates the tweet is neutral.

Mean p-value
Aspects Compromised Normal T-test K-S test

URL 0.41 0.27 1.5× 10−57 1.4× 10−35

Retweet 0.24 0.35 1 N/A

Sentiment 0.18 0.13 4.6× 10−4 5.0× 10−5
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means using Welch’s T-test. The results suggests the average number of retweets is lower for

compromised tweets than for normal tweets. The null hypothesis, that compromised tweets

are retweets as often or less often as normal tweets, could not be rejected. Compromised

tweets are not more likely to be retweets compared to normal tweets.

4.5.5 Source

Every tweet is published from a specific software, i.e. source. Most tweets, 89% of tweets

collected, are published from the Twitter apps for iPhone, Android, or web client. Users can

grant permission to third party apps, e.g. games, to post on their Twitter feed. By analyzing

how often compromised tweets come from sources that the original user never used in their

normal tweets, we found that 50% of the compromised users had at least one compromised

tweet posted from a source they had not used. This is consistent with [28] – source was a

good predictor for identifying compromised accounts that belong to spam campaigns.

4.5.6 Sentiment

Sentiment, whether a tweet is positive, negative, or neutral, may be a useful feature. Previous

research found that spam emails tend to have positive sentiment [40]. To determine whether

this finding can also be applied to compromised tweets, SentiStrength [94] was applied to

all tweets to learn their sentiment. SentiStrength returns a positive score, range 1 to 5,

and a negative score, in the range of -1 to -5. A score closer to zero indicates the tweet

is neutral. The overall sentiment of each tweet is the addition of its positive and negative

score. Comparing the average sentiment of compromised tweets and normal tweets, shown

in Table 4.5, compromised tweets are more positive. Welch’s T-test suggests this difference
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of averages is significant. Under the null hypothesis, compromised tweets are similar or more

negative sentiment than normal tweets. This null hypothesis was rejected, using K-S test,

with significance 0.001. The p-value for this test is shown in Table 4.5. Similar to spam

emails, compromised tweets are more positive than normal tweets.

4.5.7 Compromised Tweet Detection

This subsection demonstrates that the proposed features improve performance of detection

of compromised tweets.

To measure the predictive performance of the explored features, a logistic regression

classifier was learned and evaluated using 5-fold cross validation using F-Measure. Stratified

sampling was used such that equal number of samples from each class were in each fold. In

addition to analyzing classifier performance, the coefficients of the features were ranked and

analyzed. Coefficients were standardized, using the full standardized method proposed by

Menard [63, 64], and ranked by the absolute value of the standardized coefficient.

Along with the features proposed earlier in this section, the set of terms (tweet content)

were also used. Text data is inherently noisy with a large vocabulary and several forms of

the same word. Without preprocessing steps to reduce the size of the vocabulary, a classifier

would be prone to overfitting. Terms are filtered by removing stopwords and stemmed using

the Porter Stemmer. All terms are lowercased and punctuation is removed. Terms appearing

in only one tweet are removed. After preprocessing, 69,951 terms were found. For source

features, some sources may be used to publish only one tweet, which can also lead a classifier

to overfit to the data. Sources which only appear in one tweet are replaced with a single

token. Including a token for rare sources, 285 sources were found. Hashtags, Mentions, and

URLs were each represented as 1 feature whose value was their frequency in each tweet.
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Table 4.6: Classifier performance, measured in F-Measure, for identifying compromised
tweets using different sets of features.

Feature F-Measure
Terms 0.32
All 0.41
Random 0.11

Sentiment was an integer in the range of -4 to 4. One feature denoted whether a tweet was

a retweet or not. There were 70,241 features in total.

The detection performance is reported in Table 4.6, where “Random”, “Terms” and “All”

denote the performance of random guessing, logistic regression using terms only, and logistic

regression using both terms and the proposed features. From the table, the following obser-

vations are made – (1) the performance of “Random” is low due to the highly skewed dataset;

(2) both “Terms” and “All” perform much better than “Random”; and (3) “All” outper-

forms “Terms”, suggesting that the proposed features can significantly boost the detection

performance. The result suggests that features from meta information are complimentary to

tweet content. Examine the standardized coefficients of the features in the logistic regression

model found that, among the top-10 features, 9 of them are associated with the proposed

new features, as shown in Table 4.7. This further validates the importance of using the new

features. For example, the top-10 features include some of the most common sources used

to post to Twitter. The negative coefficients associated with these features suggest they

are predictive of normal tweets. Furthermore, the model also suggests that if the tweet is a

retweet, it is likely not compromised. This is consistent with the results in Table 4.5. Simi-

larly, Table 4.4 showed that more URLs appear in compromised tweets, so it follows that the

regression coefficient associated with the URL feature is positive-valued, i.e., predictive of

compromised tweets. The term feature, 0f, is part of a unicode variation selector, “\ufe0f”,
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Table 4.7: Top features for detection of compromised tweets. Features ranked by absolute
value of standardized coefficients. The proposed features, e.g. sources, retweets, and URLs,
were predictive of identifying compromised tweets from normal tweets.

Standardized
Feature Type Coefficient

Twitter for iPhone Source −1.22× 10−3

Twitter for Android Source −9.11× 10−4

Twitter Web Client Source −4.05× 10−4

Twitter for iPad Source −3.53× 10−4

Is Retweet Retweet −2.72× 10−4

Echofon Source −2.35× 10−4

0f Term −2.28× 10−4

Tweetlogix Source −2.26× 10−4

Number of URLs URL 2.22× 10−4

iOs Source −2.13× 10−4

commonly used to modify an emoji. Since its coefficient is negative valued, this suggests

that the presence of emojis is more predictive of normal tweets.

4.6 Conclusion

This study analyzed the content of compromised accounts to understand who are hackers,

what type of content do hackers tweet, and what features can help distinguish between

compromised tweets and normal tweets. There are two types of hackers; acquaintances and

intruders. 16% of compromised accounts were hacked by an acquaintance. The content of

compromised tweets belonged to one of six themes; spam, false proclamations, praises, criti-

cism, announcements of compromise, and other. The prevalence of features in compromised

tweets and normal tweets were compared, and they demonstrated improved classification

performance. Compromised tweets have more hashtags and mentions than normal tweet,

but they are not predictive of compromised tweets. Compromised tweets more often contain

a URL and are more positve than normal tweets. Sentiment is predictive for tweet classifi-
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cation. Compromised tweets are not retweeted more often than normal tweets. Terms and

sources were the most predictive features for detecting compromised tweets. Given these

preliminary findings on the most predictive features, next chapter proposes an algorithm to

detect compromised accounts.
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Chapter 5

Compromised Account Detection

using Unsupervised Learning

5.1 Introduction

The method proposed in the previous chapter, use logistic regression to identify compromised

tweets, would not be effective at detecting compromised tweets from previously unobserved

accounts. Due to its small size, it is unlikely that the compromised tweets used to train the

classifier are representative of all compromised tweets. The compromised tweets could be

identified for less than half of the compromised accounts. This annotation task is challenging

because the average person often needs a large sample of tweets and a long time to learn

the writing style of the user in order to identify the tweets that do not belong to that user.

Additionally, expert annotators are expensive. Therefore it would be beneficial to detect

compromised accounts without dependence on knowing which tweets are compromised.

Detecting compromised accounts from social media faces another challenge: social media

posts are inherently noisy, riddled with lexical variations, acronyms, and misspellings [7].

Applying standard algorithms to the textual features of the social media content (e.g. N-

grams, hashtags, and mentions) [41] alone may not be sufficient to effectively detect unusual

patterns of user behavior. Furthermore, a user may have a variety of topics to discuss, and

68



occasionally, in multiple languages. Thus, a change in user topic or the language used does

not necessarily indicate a hacker has gained control of their accounts.

To overcome these challenges, this chapter presents a novel learning framework called

CADET for detecting compromised accounts on Twitter. Instead of relying on the textual

features alone, CADET utilizes additional side information (e.g., source, location, and time

information) to enhance its detection performance. Nevertheless, combining the textual and

meta-data information is a challenging problem in itself. A trivial way is to concatenate the

features from all modalities of the data together into a single feature vector, but such an

approach is likely to be ineffective as it fails to consider the unique dimensionality, scale,

and underlying topics associated with each view of the data. Furthermore, the relationships

among the features and topics from different modalities are likely to be nonlinear, making

it challenging to learn them efficiently in a robust, unified learning framework. The pro-

posed framework is also unsupervised, enabling it to identify compromised accounts without

the need for labeled data. While previous work has focused on identifying compromised

tweets [28, 68], CADET focuses on detecting compromised accounts at the user-level, which

bypasses the need to classify the individual tweets.

CADET employs a nonlinear multi-view learning approach using auto-encoders to derive

the feature representation (topics) of each data view. The nonlinear topics are subsequently

integrated by projecting them into a common latent space using a variant of generalized

canonical correlation analysis [18]. A major advantage of using the proposed framework

is its flexibility to incorporate diverse types of meta-data due to its ability to handle the

varying number of features and topics across different modalities. Another advantage is that,

by allowing the topics to share a common latent space, we can compute the reconstruction

error of each user in the shared subspace to identify the compromised accounts. Experimental
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Figure 5.1: Twitter pattern of a compromised user. The original user will tweet before and
after their account has been compromised, denoted as normal tweets. When the hacker takes
control of the account, they will publish tweets, i.e. compromised tweets. When the user
realizes their account was compromised, they will alert their followers of the compromise in
an announcement tweet.

results using real-world Twitter data demonstrate the superiority of CADET over several

previously used unsupervised compromised account detection approaches.

5.2 Problem Statement

A compromised account is an account created by a legitimate user, i.e. the original user,

which has been taken over by an unauthorized individual, i.e. a hacker. The expectation

for a given compromised account is there will be several tweets authored by the original

user before the account was compromised, as shown in Figure 5.1. Once the hackers have

taken control of an account, they will start publishing tweets, which we call compromised

tweets. When the original users notice that their accounts have been compromised, they

will announce to their followers that their accounts were compromised in an announcement

tweet1. The assumption is that the compromised tweets will be different from the normal

tweets through one or more data views.

The compromised account detection problem can be formalized as follows. Let U =

1A user may announce their account was compromised via other means, e.g. direct messaging, emails,
etc., which is beyond the scope of this dissertation
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{u1, u2, · · · , uN} denote the set of user accounts, where N is the number of users. Each

user account ui is associated with a set of multi-modal feature vectors, {x(i)1 ,x
(i)
2 , · · · ,x(i)k },

where x
(i)
v ∈ Rdv is a dv-dimensional feature vector of user i for the v-th modality (view).

Furthermore, we can concatenate the feature vectors for the v-th view from all the users into

an N × dv data matrix, Xv = [x
(1)
v x

(2)
v · · · x

(N)
v ]T .

Definition 5.2.1 (Compromised Account Detection). Let U be the set of users and {X1, X2, · · · , Xk}

be the corresponding data matrices for each of the k views. The goal is to learn a target

function f : U → R+ that maps each user u ∈ U to a non-negative score that indicates how

likely u’s account has been compromised.

This chapter considers an unsupervised learning approach to the compromised account

detection problem. The approach does not require labeled examples to be available, but can

be susceptible to high false positive rate, similar to other security-related applications such

as spam or malware detection. Instead of flagging all suspicious accounts as compromised, a

more practical scenario is to present only the top-N most suspicious accounts to the domain

experts or account owners for verification purposes.

Definition 5.2.2 (Top-N Compromised Account Detection). Let U be the set of users and

{X1, X2, · · · , Xk} be the corresponding data matrices for each of the k views. Let the target

function f : U → R+ map each user u ∈ U to a non-negative score that indicates how likely

u’s account has been compromised. The goal of top-N compromised account detection is to

rank the users using the target function f and select the top-N users whose accounts have

most likely been compromised.
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5.3 Multi-view Social Media Data

CADET combines multiple modalities of data at the user-level to detect compromised ac-

counts. Specifically, four modalities of data are considered in this study: source, timing,

location, and textual content. Other modalities can also be easily incorporated into the

CADET framework.

5.3.1 Incorporating Source Information

Previous research has suggested that source information, i.e. the software used to post

to social media, can help to detect malicious compromised accounts, such as those that

are part of a social contagion [28]. For example, the previous chapter found that some

hackers tweet from different sources than the original user. To evaluate the benefit of using

source information, we examine the number of sources and which sources are used by 462

compromised and 5065 normal Twitter users, described in the previous chapter. The results

shown in Table 5.1 indicate that 71.5% of users tweet from more than one source, and among

them, 8.3% are compromised. The percentage is equivalent to the overall percent of users

who are compromised, which suggests that relying on the number of sources used alone is

not sufficient to accurately detect the compromised accounts. Analyzing the type of sources

used, 12 of the 291 sources were found to be used more often by compromised users than

normal users, with 10 of these sources being used solely by compromised users. This analysis

suggests identifying the types of sources used may assist in compromised account detection.
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Table 5.1: The frequency of compromised and not compromised users that tweet from either
only one source or more than one source. The likelihood that a user is compromised if they
tweet from multiple sources is the same as if all of their tweets are from only one sources.

>1 Source 1 Source
Compromised 328 134 462
Not Compromised 3626 1439 5065

3954 1573

Figure 5.2: Percent of users compromised and not compromised by the number of distinct
hours in the day they tweet. Most users tweet throughout the day instead of at the same
time of the day. Compromised users tweet as often throughout the day as not compromised
users.

5.3.2 Incorporating Timing Information

The time information, when users tweet, can be represented at different granularities: hour,

day of the week, or day of the year. Similar to several previous works, this chapter considers

tweet time at hour granularity [28, 68]. Analysis of the range of times, i.e. how many distinct

hours per day during which users tweet, found that the majority of users, 89.3%, have tweeted

at least once within 16 distinct hours of the day. This is expected assuming the average user
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sleeps for 8 hours at the same time every day. The number of distinct hours compromised

users tweet is similar to that of normal users, as shown in Figure 5.2. Thus, the number

of hours the user tweets is not a clear indicator that they were compromised. However,

analyzing the number of users who tweeted at each hour and what proportion of those users

are compromised users, we found that the proportion of users who were compromised was

the largest during late night and early morning hours, as shown in Figure 5.3. At 10:00am

GMT, or 5:00am EST, 9.6% of the users tweeting were compromised users. During the day,

the percent of users tweeting who were compromised was below 8.3%, the overall percent

of users who were compromised. As will be explained in Section 5.5, all of the collected

users have tweeted from within the United States, so most users are expected to be asleep at

certain times. This is evident in Figure 5.4 which shows the first four principal components

of the user-hour matrix. There is little activity at 10:00AM GMT, which suggests that

tweeting at such abnormal times may indicate the account was compromised.

5.3.3 Incorporating Location Information

Twitter users have the option to include their location when they publish each tweet. This

information can be represented at different granularities, e.g. latitude/longitude, city, state,

country, etc. In this research, we use the Place field embedded in each tweet to locate the

city and state where the tweet was posted. If the user disabled this feature, the Place value is

set to Null. Our analysis suggests that all user accounts that had been compromised appear

to have tweets posted from multiple places, as shown in Table 5.2. Among the 109 users

whose tweets originate from only one place, none of them were compromised. This suggest

that knowing the place the tweet originated from can help to detect compromised accounts.
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Figure 5.3: The proportion of users who tweet within each hour of the day who are compro-
mised. All times are indicated in Greenwich Mean Time (GMT). At 10:00-11:00 am GMT,
9.6% of users who published tweets were compromised. Throughout the rest of the day, the
percent of users who were compromised and tweeted in any given hour was similar to the
overall percent of users who were compromised, i.e. 8.36%.
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Figure 5.4: Top four principal components (PC) of the user-hour matrix. Hours are in
Greenwich Mean Time (GMT). The first PC captures users who tweet in the late afternoon
and early evening. The second PC are the users tweeting around midnight EST. Users who
tweet only in the evening and never late at night nor in the morning appear in the third PC.
The fourth PC are users who tweet primarily in the morning and late at night. This figure
is best viewed in color.

Table 5.2: Number of places associated with the tweets posted from compromised and un-
compromised user accounts. The likelihood that a user account is compromised is higher if
the user’s tweets originate from multiple places.

>1 Place 1 Place
Compromised 462 0 462
Not Compromised 4956 109 5065

5418 109

5.3.4 Incorporating Content Information

The simplest representation of content of tweets is by using the bag of words model. Ana-

lyzing the vocabulary of the tweets, we found the average vocabulary size for compromised

users is 664, and for normal users is 694. Additionally among the 27,719 words used by

compromised users, only 117 of them were not used by normal users. Thus, the textual

content alone is insufficient to detect compromised accounts. However, it can still provide

useful information about abnormal user behavior when combined with other data modality.
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5.4 CADET: Unsupervised Compromised Account De-

tection Framework

CADET is an unsupervised multi-view learning framework for detecting compromised ac-

counts on Twitter. Specifically, CADET considers each data modality as a view that provides

partial information on whether an account has been compromised. For each view, the data

is encoded into a lower dimensionality feature space and then reconstructed (decoded) to

its original representation. The expectation is that users with normal behavior (not com-

promised) will exhibit reconstructed views that are similar to the original data, whereas

compromised users will exhibit more deviance, i.e. larger reconstruction errors, due to some

anomalous pattern, e.g. tweeting from a suspicious source. Therefore we use reconstruction

error to measure how likely a user is compromised.

For each view v, the reconstruction error for a user u is computed as follows:

fv(u) = ‖x(u)v −Ψv(Φv(x
(u)
v ))‖2, (5.1)

where Φv(·) denote the encoding function and Ψv(·) denote the decoding function. For

example, using the principal component analysis approach [107], Φ(x(u)) = ΣTx(u) ≡ x̂(u),

where Σ is a matrix of eigenvectors associated with the covariance matrix computed from

the data matrix X and Ψ(x̂(u)) = Σx̂(u).

One way to extend the formulation to multi-view learning is to apply a weighted combi-

nation of the reconstruction errors from multiple views:

f(u) =
∑
v

αvfv(u) =
∑
v

αv‖x
(u)
v −Ψv(Φv(x

(u)
v ))‖2, (5.2)
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where αv is the hyperparameter associated with the error in the v-th view. The limitation of

the preceding formulation is that the reconstruction error for each modality, fv(u) may vary

depending on the scale, dimensionality, and number of latent factors associated with each

view of the data. This makes it difficult to determine an optimal set of hyperparameters

{αv} that can effectively detect the compromised accounts. Therefore, the key design issues

in CADET are as follows:

1. How to design an appropriate reconstruction error function, f(u), that is robust to the

varying scale, dimensionality, and number of topics for different data modalities?

2. How to design flexible encoder (Φ(·)) and decoder (Ψ(·)) functions for compromised

account detection?

In the subsections below, we first describe the proposed approach used in CADET to address

the first question. This will be followed by discussion on the nonlinear encoding method used

to address the second question.

5.4.1 Multi-view Reconstruction Error

CADET learns a global low-rank encoding of the multi-view data to detect compromised

accounts using a 2-level framework, as shown in Figure 5.5. The first layer provides an initial

encoding of each view, Φ : Rdv → Rmv . This provides the flexibility needed to deal with the

varying dimensionality, scale, and number of latent features associated with each modality

of the data. For example, some of the views, e.g. places, have a large number of features

that are correlated, e.g. some users may tweet from multiple nearby cities like San Francisco

and San Jose, California. Similarly, a user could be tweeting mostly at 8am, but occasionally
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Figure 5.5: CADET Framework. CADET is a two-layer, multi-view learning framework. In
the first level, each view is encoded independently to learn a lower-dimensional representation
for each data modality. The second layer maps the encodings from multiple views to a shared
latent space.

at 7am and 9am. The initial encoding reduces the dimensionality by mapping correlated

features in a given view v to the same latent feature, Φv(Xv).

The second layer maps the set of latent features from each view, {Φv} to a shared latent

subspace, G. There are two advantages for projecting the latent features to a common

subspace. First, it alleviates the need to specify the optimal set of hyperparameter values αv

when combining the reconstruction error of different views, unlike the multi-view learning

approach shown in Equation (5.2). This is because without any labeled examples available,

there is no rationale for preferring one set of hyperparameter values over another. Second,

the shared subspace provides a common basis for aggregating the reconstruction errors as

the dimensionality of the matrices used are the same for all the views. Specifically, the

multi-view reconstruction error provided by the second layer encoding can be written as
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follows:

min
{G,Av}

k∑
v=1

‖G− Φv(Xv)Av‖2F + Ω(G), (5.3)

where Av is the transformation matrix for the v-th view, G is the latent features in the

shared space, and Ω(G) is a regularization term. The Av matrices allow each single-view

encoding Φv(Xv) to have a different number of features.

The formulation in the second layer of CADET is quite similar to the generalized canoni-

cal correlation analysis (CCA) [18] approach for multi-view learning, except the shared latent

space is learned by projecting the encoded features from the first layer. Furthermore, the

formulation given in Equation (5.3) can accommodate different types of regularization, e.g.,

sparsity constraints, unlike the generalized CCA approach, which restricts G to be an or-

thogonal matrix. Nevertheless, the orthogonality constraint has the advantage of producing

a closed form solution for learning G and Ai. Specifically, the objective function for CADET

with orthogonality constraint becomes:

min
G,A

K∑
v=1

||G− Φv(Xv)Av||2 + Tr[Γ(G>G− I)], (5.4)

where Γ is assumed to be a diagonal matrix. Solving for G and Av, we obtain:

G(I + Γ) =
1

K

K∑
v=1

Φv(Xv)Av (5.5)

Av = (Φv(Xv)
>Φv(Xv))

−1Φv(Xv)
>G (5.6)

By substituting Equation (5.6) into Equation (5.5) yields the following equation:

GΛ = MG, (5.7)
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where Λ = I + Γ and

M =
1

K

K∑
i=1

Φv(Xv)(Φv(Xv)
>Φv(Xv))

−1Φv(Xv)
>

This reduces the problem of learning the shared multi-view representation G to an eigenvalue

decomposition problem on M . To ensure G is low rank, only the eigenvectors from the top τ

eigenvalues are used. τ is selected at the point where the eigenvalue curve begins to level out,

i.e. the elbow in the curve. Once the shared latent subspace G is obtained, we can replace

it into Equation (5.6) to learn the matrix Av for each view. Finally, the reconstruction error

for each user, u, is computed as follows:

f(u) =
∑
v

‖gu − Φv(X
(u)
v )‖2,

where gu corresponds to the u-th row of matrix G.

5.4.2 Single View Encodings

The first layer of CADET uses a nonlinear autoencoder, specifically a multi-layer perceptron

with one hidden layer trained to learn a lower-dimensional encoding of the input features,

as shown in Figure 5.6. Unlike NMF and PCA, it performs a nonlinear transformation

of the original features by employing an activation function such as the sigmoid function.

The nonlinear autoencoder is trained to minimize the reconstruction error of its input data.

We used Matlab’s implementation of autoencoder, where the weights of the network are

trained using the scaled conjugate gradient algorithm, with L2 and sparsity regularizers.

Each autoencoder is trained for 800 epochs. The activation function used is logistic sigmoid.
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Figure 5.6: A nonlinear autoencoder that learns a nonlinear, lower-dimensional embedding
of an input data matrix.

5.5 Experimental Evaluation

This section presents the datasets used in our experiments along with the experimental setup

and results obtained to demonstrate the effectiveness of CADET.

5.5.1 Data Collection

This experiment used the same dataset described in the previous chapter. The entire dataset

contained 5889 users, with 484 of them identified as compromised. However to ensure we

had a sufficient number of previous tweets from each user to identify their normal behavior,

users with fewer than 150 tweets were removed. Our final dataset contains 462 compromised

accounts and 5065 normal (i.e. not compromised) accounts.

5.5.2 Experimental Setup

We compared the performance of CADET against the following baseline algorithms:

• Distance-based: In this approach, we compute the cosine similarity between all pairs

of users for each view. For each user, we select their average distance (i.e., 1 - average

similarity) to other users to be the outlier score for the view. The users are then ranked

based on their average outlier score across all four views.
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• PCA [107]: This approach applies principal component analysis (PCA) to the data

matrix and uses its reconstruction error to determine whether an account is compro-

mised. We consider two ways to extend PCA to our multi-modal Twitter data. The

first approach, termed PCA-1 [107], simply concatenates the multi-modal features

into a single feature vector before applying PCA. The second approach, termed PCA-

2, applies PCA on each view separately and then combines their reconstruction errors,

assuming the error from each view is weighted equally.

• Multi-view NMF [4]: In this approach, we extended the approach in [4] from 2 to

4 views and added an orthogonality constraint on each of the topic-feature matrices.

The reconstruction errors from each view are then combined. Specifically, the objective

function for the multi-view NMF is:

min
V,H,K,L,M≥0

||X1 − V H||2F + ||X2 − V K||2F

+||X3 − VM ||2F + ||X4 − V L||2F

s.t.HH> = I,KK> = I,MM> = I, LL> = I

(5.8)

• COMPA [28]: This supervised approach creates a user’s behavior profile from different

types of tweet features. Next COMPA trains a classifier on the anomaly scores of the

withheld tweets to detect anomalous tweets, i.e. those that do not belong to the profile.

A user’s anomaly score is given by the maximum of their tweet anomaly scores.

For fair comparison, we set the number of latent factors associated with each view to be

4 for all of the approaches (PCA, NMF, and CADET). Since PCA-1 is the concatenation

of four views, the number of components used is the sum of the number of components

found for each view. For CADET, the number of latent features in the multiview layer was

83



selected as the inflection point in the eigenvalue curve of the G matrix. For evaluation pur-

poses, we rank all the users by their reconstruction error and measure their performance in

terms of their precision at top-K% and their percentage improved from random of the area

under the precision-recall curve (AU-PR). Specifically, precision at top-K (P@K) measures

the proportion of the top K% of users who are compromised. A large P@K signifies that

the highest ranked users are true compromised accounts. We choose P@K as it is a com-

monly used measure for security related applications, in which the top-K most suspicious

accounts are presented to domain experts or account holders for verification purposes. For

our experiments, P@K is evaluated at top 0.1%, 0.2%, 0.5%, 1%, 3%, 5%, 8% and 10% users.

5.5.3 Experimental Results

In our experiments, we first investigate the benefit of using a two-level framework in CADET

to detect compromised accounts. We then compare the performance of CADET against the

baseline approaches.

5.5.3.1 Single View Encoding

To determine the number of latent features to be used, we applied PCA to each of the four

data views—place, source, hour, and terms—and selected the number of latent features based

on their proportion of variance explained, which correspond to the elbow of the eigenvalue

curve, as shown in Figure 5.7. We found that the best performance for PCA on each view

was at 4 latent features. For a fair comparison, we also set the number of latent factors to

4 for NMF and nonlinear autoencoders.

To demonstrate the value of using multi-modal data, we compared the performance of

CADET against the results of using reconstruction error for each view. From Figure 5.8,
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Figure 5.7: Variance reduced by the addition of each principal component of the user-source
matrix. The inflection point occurs at 4 principal components.

it is evident that the time users post and their location are good detectors of compromised

accounts. To determine whether a simple linear combination of the views is sufficient, each

reconstruction error was normalized by the number of features of its respective view, and the

vectors were averaged across views, denoted as View Avg in Figure 5.8. The results show

that simple linear averaging of features from multiple views may not necessarily improve

performance over single view encoding. However, by projecting the multiple views into a

shared subspace, CADET is able to detect more compromised accounts among its highest

ranked users compared to any of the single-view autoencoders.

5.5.3.2 Comparison against Baseline Algorithms

This section compares the performance of CADET against several baseline algorithms. Our

results demonstrate that CADET is better at detecting compromised accounts compared to
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Figure 5.8: Performance comparison of single-view autoencoders, combining view scores via
averaging, and CADET. CADET achieves the highest precision for the top 0.1%, 0.2%, 0.5%
and 1% of users. Place and Time views alone achieved good precision. Using all four views
alone, via averaging view scores, was insufficient. However by projecting each view into a
shared space, CADET achieved higher precision.
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Figure 5.9: Performance comparison of multi-view algorithms, Distance-based, PCA-1, PCA-
2, Multi-view NMF, COMPA, and CADET. CADET achieves the highest precision for the
top 0.1%, 0.2%, 0.5% and 1% of users. For more users, all five algorithms had similar
precision.

the other algorithms. From evaluating the performance using on top k% precision, CADET,

shown in Figure 5.9, is able to identify more compromised users among its highest ranked

users compared to other methods. For example, among the top 0.2% of users, which con-

sisted of 11 users in total, CADET correctly identified 4 compromised users whereas PCA-1

and COMPA identified only 1 compromised user and Multi-view NMF found 2 compro-

mised users. CADET consistently achieved the highest precision within the top 1% of users.

However, as the number of users increased, all of the algorithms except Distance-based saw

decreased performance due to an increase in the number of false positives. Furthermore,

the precision achieved by CADET is consistently better than random guessing (0.0835) un-

like some of the other baseline algorithms. Surprisingly COMPA, which is supervised, had

significantly lower precision than our approach. COMPA was designed to detect groups of

accounts with the same type of anomalous tweets at the same time [28]. As a result, the
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Figure 5.10: Comparison of percent improved from random guessing in terms of Area under
Precision-Recall curve (AU-PR) for CADET against the other baseline methods.

types of anomalous tweets it detects tend to be spam tweets. However in this dataset, only

about 15% of the compromised tweets were spam [103].

Additionally these algorithms were evaluated based on their precision-recall curves. The

percent improved of the area under the precision-recall curve (AU-PR), shown in Figure 5.10,

demonstrates that overall, CADET has the largest AU-PR improvement followed closely by

PCA-1. Furthermore, by analyzing the precision-recall curve shown in Figure 5.11, it is

evident that CADET’s higher AU-PR is a result of achieving significantly higher precision

at low recall rates compared to PCA-1 and other baseline algorithms. The heavy tail of

the precision-recall curves are unavoidable due to the unsupervised nature of their learning

algorithms. Even supervised learning, i.e. COMPA, also suffered from the heavy tail in the

precision-recall curve. As the number of users increases, all 6 algorithms are susceptible to

more false positives. However, their overall performance is significantly better than random

guessing.
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Figure 5.11: Performance comparison based on the Precision-Recall curves of multi-view
algorithms, PCA-1, PCA-2, Multi-view NMF, COMPA, and CADET. CADET achieves
higher precision than the other methods for recall under 5%.

5.6 Conclusion

This chapter presented CADET, an unsupervised multi-view framework for compromised

account detection. CADET combined nonlinear encodings from multiple views to learn a

user-encoding, using a variant of generalized canonical correlation analysis. CADET was able

to detect compromised accounts with higher precision and higher area under the precision-

recall curve than several existing approaches for compromised account detection. In the

next chapter, I present a framework for detecting compromised tweets, which may identify

when an account was first compromised. I explore a more complex deep learning approach

to improve compromised account detection performance.
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Chapter 6

Compromised Tweet Detection using

Deep Learning

Compromised accounts are often used to spread misleading information, including spam and

false information. Victims of compromised accounts may lose their friends [96], or worse

still, if a reputable account is compromised, such as a news agency’s Twitter account, the

hackers’ posts can lead to public panic and volatile fluctuations of the stock market [72].

Thus, accurate and early detection of compromised accounts is essential to protect social

media users from such malicious threats and mitigate their potential damages. Early detec-

tion means identifying compromised accounts at the post level. This chapter proposes an

algorithm to detect compromised posts, i.e. the hackers’ posts.

Compromised post detection is a challenging problem for several reasons. First, a com-

promised post may resemble a normal post for another user. For example, a hacker may

lie about the user’s sexuality to spread a rumor, but such posts are not unusual for some

users who discuss their sexuality openly on social media. Detecting compromised posts is

therefore more difficult compared to other tasks such as spam detection as spam posts tend

to have features that are be more easily distinguishable from the regular posts of normal

users. Although there has been previous research to address this challenge by learning the

behavioral profile of each user [28, 68, 97], they require a significantly large sample size to
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build a reliable user representation. If the number of tweets used to generate the profile is

too low, it will flag too many false alarms. If the number of tweets needed is too high, then

it cannot be effectively used for early detection. In addition, it is computationally expensive

to generate a profile for every user.

Second, the raw features of the social media data (e.g., the text messages and other

meta-features of user tweets) are often sparse and noisy. For example, tweet messages tend

to be short, i.e., 140 characters long, and contain typos and other non-standard lexical

variations, making it difficult to effectively use them for training a robust compromised

account detection model. While there has been previous research focusing on deriving reliable

feature representation for detecting compromised accounts, they are mostly limited to linear

(e.g., using principal component analysis [107]) and unsupervised [102] learning methods. As

a result, the derived features may not be optimal for compromised post detection purposes.

To address these challenges, I propose CAUTE (Compromised Account User Tweet

Encoder), a deep learning framework that simultaneously learns the nonlinear embeddings

of users and their posts, and detects whether a post is compromised. CAUTE considers

both lexical and meta features of a tweet to determine whether it was posted by the genuine

account holder or a hacker. It accomplishes this by learning a pair of encoders to transform

the raw features into more informative features while reducing their sparsity and noise. The

first encoder, tweet2user, learns a latent representation to help transform the tweet features

into user features while the second encoder, user2tweet, learns a representation that helps

predict the content of a tweet from the user’s features and tweet’s meta-features. The hy-

pothesis is that if a user is indeed the author of a post, then the errors associated with the

tweet2user and user2tweet encoders for a given (user, tweet) input pair are expected to be

low. Otherwise, the errors are likely to be high if the tweet was composed by another user
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(hacker). Instead of applying some arbitrary threshold, the residual errors of the encoders

are fed into a fully-connected neural network layer, res2class, to predict whether the post is

compromised for that given user. In principle, since the user features can be derived from

the user’s profile, CAUTE is applicable even in a cold start scenario, when the user has not

posted any tweets, unlike other existing methods. However, unless the user profile includes

meaningful information about the topics of interest to the user, it may not be sufficient

to train a robust model. To enhance CAUTE’s performance, the user features can also be

derived from a small set of their initial tweets. Unlike other approaches that require a large

training set to learn a reliable profile of the users, our empirical results suggest that CAUTE

can effectively identify compromised posts after observing only as few as 10 of their initial

tweets.

The main contributions of this chapter are as follows:

• Propose CAUTE, a deep learning framework that can detect compromised posts by

modeling the user and post features simultaneously.

• Show that the nonlinear embeddings derived by the tweet2user and user2tweet encoders

are informative predictors of compromised posts.

• Demonstrate that CAUTE outperforms state-of-the-art baseline algorithms in terms

of their accuracy as well as their ability for early detection without generating a large

number of false alarms.

The remainder of this chapter is as follows. The compromised post detection problem is

formally defined in Section 6.1. Section 6.2 describes the CAUTE framework. Experimental

results are presented in Section 6.3, followed by our conclusions in Section 6.4.
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Figure 6.1: A typical attack scenario of compromised account on Twitter. The original user
will tweet before and after their account has been compromised, denoted as normal posts.
When hackers take control of the account, they will publish tweets, i.e. compromised posts.
When the user realizes the account was compromised, they will alert their followers of the
compromise in an announcement post.

6.1 Problem Statement

Let U = {u1, u2, · · · , uN} be the set of social media users and T = {T (1), T (2), · · · , T (N) be

the set of all postings, where each T (i) = {t(i)1 , t
(i)
2 , · · · , t(i)mi} is the set of posts associated

with user ui’s account. A user’s account is compromised when an unauthorized person, i.e.

hacker, gains access to the user’s account and perform some actions, e.g. posting, from that

account without the user’s consent. We denote y(t
(i)
j ) as the genuine author of the j-th post

from user ui’s account.

Definition 6.1.1. Compromised Post: A post, t(i), from user ui’s account is said to be

compromised if it was written by another user, i.e., y(t(i)) 6= ui.

Definition 6.1.2. Compromised Account: The social media account of user ui, is said to

be compromised if it is associated with at least one compromised post, i.e., ∃t(i) : y(t(i)) 6= ui.

As proof of concept, this research focuses on compromised Twitter accounts, where each

post corresponds to a user’s tweet. The proposed framework can be easily generalized to

other social media platforms or to other types of hackers’ actions, e.g. liking or browsing.
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Figure 6.1 demonstrates a typical attack scenario of compromised accounts on Twitter. The

genuine user initially publishes a series of tweets. When the account is compromised, the

hacker will publish one or more tweets, shown in dark orange in Figure 6.1. When the original

user discovers the account was compromised, he or she will perform actions to prevent the

hacker from further posting, e.g., by changing password, and post an announcement post,

shown in black, to inform their followers that the hackers’ tweets were not written by the

original user.

In this chapter, we cast the compromised post detection problem as a binary classification

task. Specifically, we classify each user-tweet pair, (ui, t
(i)), either as positive class if t(i)

is a compromised post or negative class if it is a genuine post. To predict the user-tweet

pair, let x
(i)
t ∈ Rd be the set of features associated with the post t(i) and z(i) ∈ Rp be

the set of features associated with the user ui. We further categorize the tweet features

x
(i)
t into two types: content or meta tweet features. Content-related tweet features include

the text message itself, hashtags, mentions, and URLs whereas tweet meta features include

the location, source (application), and language used by the user to post the tweet. The

tweet meta features are expected to have lower variability since a user will likely tweet

from a limited number of applications (e.g., from a Web browser or via their smartphone

app) and locations, usually in the same language. In contrast, content features such as the

terms used, hashtags, and mentions may vary from one tweet to another. Such distinction

between content and tweet meta features will be utilized by our proposed CAUTE framework.

Finally, the user features z(i) can be derived from the user profile or based on the user’s initial

posting behavior. The latter can be obtained by extracting features from the first k% tweets

associated with the user. This is similar to the approach used in COMPA [28, 29].
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Figure 6.2: CAUTE Framework.

6.2 Proposed Framework

CAUTE is a 3-component neural network architecture that simultaneously learns the feature

embedding of a given user-tweet pair (u, t) and uses the residual error of the embedding to

determine the likelihood that user u is not the author of tweet t. A high likelihood would

suggest that the tweet has a high probability of being a compromised post.

As noted in the Introduction section, the raw user and tweet features, which are typically

represented using one-hot encoding, are often too sparse to be effectively used for detecting

compromised posts and accounts. To address this challenge, the first two components of our

architecture, tweet2user and user2tweet, are feature encoders designed to learn nonlinear

embeddings of the raw features, which are then used to approximate the user and tweet

features. The third component, res2class, uses the residual errors from the tweet2user and

user2tweet encoders to predict whether the tweet was written by the user. The rationale

behind our proposed framework is as follows. If user u is the author of tweet t, then the

tweet features xt can be used to predict the user features z, and vice-versa. If the user is

not the author of the tweet, then the residual errors of the predictions are likely to be large.
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A high-level schematic illustration of the CAUTE framework is shown in Figure 6.2.

6.2.1 tweet2user Encoder

The goal of the tweet2user encoder is to learn a nonlinear feature embedding of the tweet that

can be used to predict the user features. One potential challenge to learning the embedding

is that tweets with similar content can be posted by more than one user. To address this

challenge, instead of learning the embedding from the tweet content features alone (e.g.,

the terms in the tweet), CAUTE also considers the tweet meta features to help identify

the user who authored the tweet. The latent features derived by the tweet2user encoder

thus represent not only the topics pertaining to the tweet content but also some information

about the user who posted the tweet.

The tweet2user encoder is a feed-forward neural network, shown in the top left portion

in Figure 6.2. Specifically, given a user-tweet pair, (ui, t
(i)), with the corresponding user

feature z(i) ∈ Rp and tweet feature x
(i)
t ∈ Rd, the network is trained to learn a pair of

mapping functions g1 : Rd → Rk and g2 : Rk → Rp such that the following residual error:

‖g2(g1(x
(i)
t ))− z(i)‖2 (6.1)

is minimized for all user-tweet pairs in the training data. The mapping function g1 is

implemented using a Leaky ReLU applied to the output of the first weight layer shown in

Figure 6.2 while the mapping function g2 is implemented using a linear activation function

applied to the output of the second weight layer. The output of the Leaky ReLU unit,

g1(x
(i)
t ), thus provides a nonlinear embedding of the tweet features.

The input of the tweet2user encoder is a concatenation of the tweet content features
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(x
(i)
t,c) and tweet meta features (x

(i)
t,u), i.e., x

(i)
t = [x

(i)
t,c , x

(i)
t,u]. The output of tweet2user

is trained to approximate the user features z(i). How the user is represented, i.e. its raw

features, can affect the user encoding accuracy of tweet2user. Ideally, the features should

be unique for each user, i.e., no two users should have the same feature representation. A

simple representation of users is a 1-hot encoded feature vector of length N , corresponding

to the total number of users. However as social networks are continuously growing, this

fixed-length feature vector would prevent CAUTE from detecting compromised posts of the

users who are not in the training set.

6.2.2 user2tweet Encoder

As multiple users can post similar type of tweets, it is possible that the tweet2user encoder

would predict the features of one user when the tweet is posted by a different user. To

boost our confidence that a user is indeed the author of a tweet, a user2tweet encoder is

simultaneously trained to recognize the type of tweets posted by the user. Since a user can

post multiple tweets with different content, it is insufficient to use the user features alone as

input to the user2tweet encoder as the encoder will always produce the same output given

the same input features. In this case, the embedded features are likely to be the average

feature representation of all the tweets by that same user. To overcome this limitation, the

user2tweet encoder in CAUTE leverages the tweets’ meta features to identify their content

features. Specifically, the meta tweet features are concatenated with the user features before

being provided as input of the user2tweet encoder, as shown in Figure 6.2. Formally, given a

user-tweet pair, (ui, t
(i)), with the corresponding user feature z(i) ∈ Rp, tweet meta feature

x
(i)
t,u ∈ Rd1 and tweet content feature x

(i)
t,c ∈ Rd2 , the encoder is trained to learn a pair of

mapping functions h1 : Rp+d1 → Rk and h2 : Rk → Rd2 such that the following residual
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error:

‖h2(h1(z(i),x
(i)
t,u))− x

(i)
t,c‖

2 (6.2)

is minimized for all user-tweet pairs. By optimizing the error function, the approximation

will be close to the actual tweets’ content features if the tweet is authored by the selected

user. However if the tweets are authored by a different user, then their residual errors are

likely to be large.

6.2.3 res2class Classifier

The tweet2user and user2tweet encoders provide approximations of the user and tweet fea-

tures respectively. The third component of CAUTE, res2class, takes the residual errors of

the two encoders as input to predict whether a tweet was authored by the corresponding

user. The output of res2class is a positive class if the tweet was written by the user, and

negative class if the tweet was written by a different user.

Given a user-tweet pair, (ui, t
(i)), let ∆t2u(ui, t

(i)) = g2(g1(x
(i)
t )) − z(i) ∈ Rp be the

element-wise residual error of tweet2user and ∆u2t(ui, t
(i)) = h2(h1(z(i),x

(i)
t,u))− x

(i)
t,c ∈ Rd2

be the corresponding element-wise residual error of user2tweet. The residuals from the

tweet2user and user2tweet encoders are concatenated and provided to a feed forward neural

network with Leaky ReLu activation function. A cross entropy loss function was used to

train the res2class classifier, enabling the output of res2class to represent the likelihood of

the class.

98



6.3 Experimental Evaluation

This section describes the experiments conducted to evaluate the performance of CAUTE

and other state-of-the-art algorithms for compromised account detection on a real-world

Twitter dataset. We first describe dataset collected along with the features used to describe

the users and their posts. We also discuss our approach for training the network before

presenting the experimental results and discussion.

6.3.1 Data

We employed the Twitter streaming API to download the tweets posted between between

April 27, 2015 and May 6, 2015. We extracted the IDs of users who posted the tweets

and collected the 200 most recent tweets1 by each user. As noted in [103], identifying

compromised posts is a challenging annotation task. Following the approach used in Trang

et al. [97], we artificially inserted compromised posts into the data by swapping posts from

one user and assigning them to another user. With this approach, we created a dataset that

contains tweets from 5524 users, where each user has posted, on average, about 173 ‘genuine’

tweets. In addition, we artificially injected 957,392 ‘compromised’ tweets by assigning each

tweet to a random user. The entire dataset thus contains 1,917,342 (user, tweet) pairs with

50.1% pairs are genuine posts and the remaining 49.9% pairs are compromised.

Learning the encoding from a tweet’s representation to its respective user’s representation

and vice versa is heavily reliant on the features used. Instead of manually identifying the

discriminative features to be used for compromised account detection, CAUTE is designed to

automatically learn the informative features using the tweet2user and user2tweet encoders.

1Although we requested for 200 tweets, the number of actual tweets returned may vary since the user
may delete some of their tweets before they were collected
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For each tweet, we consider the following raw tweet features:

• Content features:

– Hashtags: hashtags that appear in the body of the tweet.

– Mentions: which users were mentioned in the tweet.

– URLs: domain name of any URLs in the tweet.

– Text: terms that appear in the tweet.

• Meta features:

– Time of Day: when was the tweet published.

– Language: the language in which the tweet was written.

– Source: the application used to post the tweet.

We used one-hot-encoding to represent each feature except for text. To reduce the spar-

sity of text features, we applied Singular Value Decomposition (SVD) with the number of

components set to 30. To select this component set, we varied the number of components

from 10 to 100 and measured the average pairwise distance between users and selected the

number of components that produced a large pairwise distance.

As previously noted in the Introduction section, in principle, CAUTE is applicable even in

a cold-start scenario unlike other existing methods, e.g., by using the user profile information

to create the user features. By applying CAUTE on the user and tweet features, we can

detect whether the tweet is likely to be posted by the user. However, in practice, the

detection performance under the cold-start scenario tends to be poor unless the user features

are indicative of the type of tweets posted (e.g., if the user profile features include the topics
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of interest to the user). In our experiments, we reserve a subset of the initial posts made by

each user to define the user features. Specifically, we applied SVD on the initial tweets and

used their derived components as user features. The subset of tweets will be excluded from

the dataset used to train the compromised detection model.

To ensure fairness in experimental evaluation, we reserved the same subset of the tweets

made by each user to learn the behavioral profile of the users for all the baseline algorithms

considered in this study. We explored two percentage values, 5% and 10% of the 200 tweets

for each user, as our initial subset. Ideally, only a small percentage of tweets would be

available to learn a user representation, even though having more tweets used to generate a

profile would lead to better predictions of compromised posts.

6.3.2 Training a Neural Network

Neural network training is challenging due to the numerous hyperparameters that need to be

tuned, including batch size and number of epochs. If the batch size is too large, the neural

network over-generalizes the patterns learned, whereas a batch size that is too small leads

to longer training time. We tested batch sizes of powers of 2 up to 2048 tweets and found

that user-specific embeddings emerge when the batch size is either 16 or 32 tweets, without

suffering a noticeable increase in training time. For these experiments, the tweet2user and

user2tweet encoders were trained using batch size of 16 tweets. The res2class encoder focused

on learning more general patterns, so batch size was set to 128 tweets.

In order for a neural network to be generalizable to unseen users, a sufficiently large

sample of users is needed for training. However training on more users leads to a longer

training time. To overcome this challenge, users were split equally into three sets for training,

validation, and testing. Using all tweets from the users in the training set could still lead
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to long training time. However training on a random sample of their tweets could be just

as effective as training on all of a users’ tweets. After removing the tweets used to generate

the user features, we selected 40% of the users’ tweets to train the network, because it had

similar performance to using 100% of the tweets. The model was evaluated on the withheld

tweets from the training set users to determine when to stop training the neural network. If

the loss increased by 0.1% for these tweets, training was terminated.

The datasets and their purposes are denoted as follows:

• Train: Approximately 1/3 of users and 40% of their tweets were used to train the

neural networks. These tweets were also used to perform SVD in order to obtain the

user features or their behavioral profile. The remaining 40% of tweets from these users

determined how many epochs to train each neural network

• Validation: Approximately 1/3 of users that do not appear in the training set. This

dataset was used for hyperparameter tuning, e.g. number of nodes in the neural net-

work.

• Test: Remaining 1/3 of users. The (user, tweet) pairs for these users are used for

evaluating the performance of the various algorithms.

For the validation and test set, the initial subset of tweets used to generate the SVD-based

user feature vector were excluded. For training and validation sets, instances of compromised

posts were created by matching each tweet with a random user that was not their respective

user. That random user, assigned to be the hacker, was another user in the training or

validation set respectively. For the test set, instances of compromised posts were created

by matching all the tweets of a user in the test set to the same random user in the test

set. Thus, for each user ui in the test set, the tweets associated with ui include all of their
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original tweets (‘genuine’ posts) as well as all the tweets from another user in the test set uj

(‘compromised’ posts) where i 6= j.

6.3.3 Experimental Results

In this subsection, we present the results of our experiments. In particular, we design the

experiments to answer the following questions:

• How good is the feature embeddings learned by CAUTE?

• How well does CAUTE perform compared to existing methods for compromised post

detection?

• What value does each component of CAUTE contribute to its overall performance?

6.3.3.1 Evaluating the Utility of CAUTE’s Latent Features

The first research question is to evaluate the efficacy of using the features learned by CAUTE

to detect compromised posts. Specifically, we use the feature embeddings learned from

tweet2user and user2tweet encoders to train a classifier for predicting compromised posts.

To do this, we first create a dataset containing a set of (user, tweet) pairs, where the user

features correspond to the latent features of the user2tweet encoder while the tweet features

are the latent features of the tweet2user encoder. Each (user, tweet) pair is assigned a class

label of +1 if the tweet is a compromised post or -1 if the tweet is posted by the user. We

evaluated the performance of CAUTE’s latent features using both logistic regression and

random forest as our classifiers.

We compare the performance of CAUTE’s latent features against those generated by the

following baselines:
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Table 6.1: Comparison of feature representation methods. Logistic regression and random
forest classifiers are applied to detect compromised posts using the user and tweet features
obtained from various methods. Results shown are evaluated in terms of AUC score for
compromised posts.

Method Logistic Random
Regression Forest

Raw Features 0.5036 0.5000
Doc2vec 0.5017 0.5353
SVD 0.5012 0.5022
Tweet2User & User2Tweet Features 0.5964 0.5708

• Raw features: In this approach, the user features are the same as the original user

features provided as input to CAUTE (i.e., SVD applied to the text features of a

subset of initial tweets posted by each user). For the tweet features, we applied one-hot

encoding to the tweet content and meta features listed in Section 5.5A. Due to memory

limitations, we also applied SVD on the text features with number of components set

to 30.

• Doc2vec: [51] This is a popular representation learning approach for documents. To

create the user features, we first concatenated the text of a user’s tweets into a single

document. We repeated this process for each user to obtain 5524 documents. We then

trained a doc2vec model on these documents to obtain the feature embedding for each

user. To obtain the tweet features, we applied the doc2vec model to the text of each

tweet.

• SVD: For user features, we use the same features as CAUTE. For tweet features, all the

tweet content and meta features (e.g. source, text, language, etc.) were concatenated

before applying SVD.

Table 6.1 summarizes the results of our experiment. We use Area under the ROC curve

(AUC) for the positive class (compromised post) as our evaluation metric. For logistic
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regression, the results suggest that none of the baseline methods (raw features, doc2vec,

and SVD) were able to produce classifiers that perform significantly better than random

guessing (AUC score around 0.5). For random forest, doc2vec is the only baseline method

that performs slightly better than random guessing, with an AUC score around 0.53.

These results showed the challenges of finding effective features for compromised post

detection. Using the raw features alone is insufficient to produce classifiers that perform

better than random guessing. The data contains too much variations that standard meth-

ods such as SVD and doc2vec were unable to create useful features that can accurately

identify compromised posts. Transforming the features using a nonlinear encoder may lead

to higher performance. Specifically training a random forest using doc2vec embeddings

achieved slightly higher AUC than using the raw features or SVD. One rationale for this is

that doc2vec tries to capture meaning within its embeddings. However, since the doc2vec

features are learned in an unsupervised way, there are no guarantees that they would be

effective for compromised post detection.

CAUTE’s latent features derived from the tweet2user and user2tweet encoders were signif-

icantly better predictors for compromised post detection than the other baseline algorithms.

The results hold for both logistic regression and random forest classifiers. Given that the

tweet2user and user2tweet encoders are designed to recognize tweets coming from the gen-

uine users, their embeddings of tweets and users should be good predictors of whether a post

is compromised.

6.3.3.2 Performance Comparison

Next, we evaluate CAUTE’s overall performance as a whole and show that CAUTE can

detect compromised posts better than existing methods. We consider both the overall per-
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Table 6.2: Comparison of compromised post detection between CAUTE and the baseline
algorithms; COMPA and PCA. Algorithms are evaluated in terms of their AUC score. The
number of posts used to generate the user features varied from 5% of their posts to 10%.
CAUTE consistently outperforms the baselines by at least 2%. All of the algorithms improve
performance when more tweets are used to generate the user features.

Algorithm 5% Tweets 10% Tweets
COMPA 0.6415 0.6779
PCA 0.5064 0.5088
CAUTE 0.6707 0.7014

formance, weighing false positive and false negatives equally, as well as early detection of

compromised accounts. We compare CAUTE against the following state-of-the-art algo-

rithms;

• COMPA: We applied the Trang et al. [97] adaptation of the COMPA algorithm [29, 28],

which builds a profile for each user based on their tweets’ features. Previously unseen

tweets are compared to the profile to determine their likelihood of being anomalous,

i.e. assigned an anomaly score. The tweet’s anomaly score is the weighted average of

the anomaly score of each of its features.

• Principal Component Analysis (PCA): This is an unsupervised anomaly detection ap-

proach developed in [107] to extract principal components of the data and then re-

construct the original features from the principal components. The likelihood of a

post is compromised is measured by its reconstruction error. In this experiment, we

concatenate the users’ terms (from the tweets used to create user features) with the

tweet features of their tweets. Next we learn the principal components of this matrix

for users in the training set. From the learned principal components, we transform

user-tweet pairs and calculate their reconstruction error.

CAUTE is consistently better at detecting compromised posts than the baseline algo-
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rithms, as shown in Table 6.2. PCA has the lowest AUC, comparable to random guessing,

which is not surprising given the difficulty of the detection task and the unsupervised nature

of the algorithm. COMPA and CAUTE were significantly better than PCA. Additionally,

both CAUTE and COMPA were better at detecting whether a post belonged to the genuine

user when more posts were used to generate the user representation.

In addition to detecting whether a tweet was published by its respective author, it is

crucial to detecting the compromised accounts early. In this experiment, we provide each

user with a set of compromised posts and test how many such posts are observed before one

of them is flagged as compromised. Ideally, the first post should be detected as compromised,

to mitigate any further damages posed by the hacker.

On average, COMPA detects compromised posts earlier than CAUTE. However, given

its lower AUC, it also classifies more posts as false positives, i.e. genuine posts classified

as compromised post. We observe that COMPA detects the first message as compromised

for the majority of the 1841 users in the test set, shown in Figure 6.3a. CAUTE is more

conservative when flagging a post as compromised. Within the first 10 tweets, CAUTE can

detect most compromised accounts.

To verify that these algorithms were not predicting genuine posts as compromised, we also

provided each user with their own posts, and tested how many posts before each algorithm

would identify one of them as compromised. Both PCA and COMPA mis-classify genuine

users as compromised early, shown in Figure 6.3b. PCA mislabels 1447 of the 1841 users

as compromised from their first tweet. COMPA incorrectly predicts only 1125 users as

compromised from their first tweet. However, by their 10th tweet, COMPA incorrectly

predicts 1832 users as compromised. CAUTE has significantly fewer mis-classifications on

the first tweet than the other algorithms. It only incorrectly classifies 520 genuine users
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(a) Compromised accounts detected

(b) Genuine accounts predicted as compromised

Figure 6.3: Measurement of how many posts from each user are observed before one of them
is flagged as compromised. In (a), all of the tweets provided to the user were compromised.
In (b), all of the tweets were their own tweets. COMPA detects most compromised accounts
from the first tweet, but also predicts genuine tweets as compromised at a higher rate.
CAUTE detects most compromised accounts within the first 10 tweets, and has a significantly
lower false positive rate from the the genuine users’ posts.
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as compromised based on their first tweet. By the users’ 10th tweet, CAUTE incorrectly

identified only 1572 genuine users as compromised.

Thus, while COMPA and PCA can detect a compromised account earlier than CAUTE,

it is at the cost of incorrectly classifying most users’ genuine posts as compromised. CAUTE

detects compromised accounts slightly later, e.g. from the 3rd compromised tweet. However,

CAUTE also detects the genuine users’ posts correctly more often than COMPA or PCA,

thus raising fewer false alarms. With fewer false alarms, the user is more likely to take

actions to mitigate the attack, e.g. changing their password, when a compromise is detected.

6.3.3.3 Evaluating the Importance of Each Component

Next we analyze the importance of each component of CAUTE. This analysis considers

how the removal of one or two of the components of CAUTE affects performance, shown

in Table 6.3. The tweet2user encoder is better at detecting tweets from a hacker than the

user2tweet encoder. Despite appending some tweet information to the user in the user2tweet

encoder, it still had lower performance. The inclusion of the res2class encoder yields signif-

icantly higher AUC for both encoders. This is expected because the res2class is trained on

the specific classification task, identifying whether a tweet was written by their respective

user, whereas the other components are focused on minimizing the approximation error. The

addition of the user2tweet embedder into CAUTE yields slightly higher performance than

using the tweet2user and res2class encoders.

To train the res2class component of CAUTE, the residuals could either be frozen or

updated during back propagation. If the residuals are frozen, res2class only learns the

neuron weights between the residual and the class. In CAUTE, the residuals are updated

as back propagation would update the weights of the user2tweet and tweet2user encoders
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Table 6.3: AUC of the tweet2user and user2tweet encoders in comparison to CAUTE. For
tweet2user and user2tweet embedders, tweet-user pairs were scored based on the sum of
absolute residuals. Tweet2user encoder was better than the user2tweet encoder at identifying
whether a tweet matched its respective user. Both encoders provided some information to
CAUTE, which achieved higher AUC than either of the individual encoders.

Component AUC
tweet2user 0.6212
user2tweet 0.5581
tweet2user + res2class 0.6419
user2tweet + res2class 0.5772
res2class (freeze residuals) 0.6691
CAUTE 0.6707

as well as the res2class encoder. The pretrained tweet2user and user2tweet encoders are

passed to CAUTE. Frozen residuals is significantly faster at converging, as there are fewer

weights that need updating. However allowing CAUTE to back propagation through the

entire network yields slightly higher performance, as evident in Table 6.3.

6.4 Conclusion

This chapter proposed CAUTE, a compromised account user-tweet encoder which can iden-

tify tweets that do not belong to the designated user, i.e. are compromised. CAUTE is able

to identify tweets matched with the incorrect user, from a subset of each user’s tweets. Addi-

tionally, CAUTE can identify whether tweets belong to users it had not previously observed.

In future work, we plan to extend our framework to different types of compromised accounts.

Whereas CAUTE focused encoding users and tweets, future work would encode either users

with other users to identify suspicious following activity or users with their social media

activity patterns to identify hackers seeking information about the compromised user.
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Chapter 7

Conclusion

In this dissertation, I explored two approaches malicious actors use to share disinformation

on social media; hashtag hijacking and compromised accounts. In hashtag hijacking, a group

of users promote a trending hashtag in an organized campaign to change the meaning of the

hashtag. This can lead to disinformation about emerging events, such as natural disasters,

to affect those involved, e.g. victims of an earthquake. Detection of hashtag hijacking is

especially challenging due to hashtags have emergent meaning, i.e. the topic of a hashtag

is not defined until people start using it. Therefore this dissertation proposes HASHTECT,

an unsupervised learning algorithm to detect hashtag hijacking. HASHTECT learns the

topics of a hashtag based on the terms that co-occur with that hashtag and the users who

tweet it. It identifies hijacked hashtags by detecting whether there was a significant change

in topic and that topic was significantly different from the original intent of the hashtag.

HASHTECT can detect hijacked hashtags better than previously proposed algorithms.

Compromised accounts occur when malicious actors take control of the account to im-

personate the genuine user. They are used to damage a user’s reputation and disseminate

misleading information that cause public panic and financial loss. Compromised account de-

tection is a challenging problem, due to the sparsity and noise of social media features, the

difficulty of obtaining a ground truth set of posts that were published by hackers, and that

some compromised posts resemble normal posts for other users. This dissertation addresses
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these challenge by proposing two algorithms, CADET and CAUTE. CADET circumvents

identifying the hackers posts by using unsupervised learning to detect compromised accounts.

CADET learns a multi-view encoding of each user and identifies the likelihood a user is com-

promised from their reconstruction error from this encoding. The encoding learns the user’s

behavior and reduces the noise and the sparsity of features.

CAUTE addresses these challenges by focusing on compromised post detection, i.e. iden-

tify if the post was written by a different user than the genuine user of the account. It

simultaneously learns a tweet embedding that can approximate the user’s features and a

user embedding that can approximate the tweet’s features. These embeddings are predictive

of whether the (tweet, user) pair are a match. CAUTE addresses the compromised account

detection challenges by (1) learning an embedding that reduces noise and sparsity and (2)

assuming any tweet from another user could be a hacker tweet.

Compromised account detection is also challenging due to the diversity of users. Each user

has a different pattern of behavior on social media, however those behaviors have significant

overlap, e.g. common software used to publish posts. CADET approaches this challenge

by detecting anomalies from multiple views. CAUTE selects the compromised posts to be

normal posts from other users. The user and tweet embeddings learned can separate tweets

from different users.

There are three key areas of future work for detecting hijacked hashtags and compromised

accounts; online learning, cluster-centric learning, and the cold start problem. All of the

algorithms proposed in this dissertation were learned via batch learning, i.e. all of the

tweets by the user or with the hashtag were provided to the learning algorithms at the same

time. In practice, though, social media posts are continually published. A user’s topics of

interest may change over time, e.g. concept drift, so the user embeddings should change to

112



reflect these changes. Otherwise these models will produce more false positives, i.e. normal

behavior flagged as compromised, as the model becomes out of date. Concept drift can also

affect hashtags, so online learning is needed to update the normal topics of the hashtag over

time.

Social media platforms are large and continually growing. In this dissertation, the

datasets used were relatively small. Thus the algorithms proposed may not scale well, e.g.

from thousands of hashtags to hundreds of millions. To address this challenge, we can take

advantage of the pairwise similarities between hashtags and between users to cluster the

hashtags or users. For hijacked hashtags, the topics would be learned for each cluster in-

stead of each hashtag. For compromised accounts, the embeddings would be cluster-specific

instead of user-specific. For example, the hashtags #Sales and #Retail are closely related.

If we clustered all hashtags and learned the topics of each hashtag cluster, I hypothesize that

the cluster’s topics will be similar to the topics of each hashtag. To detect whether a hashtag

is hijacked, we could test whether the recent tweets containing that hashtag belong to one of

the cluster’s topics. A cluster-centric approach would reduce the model complexity, allowing

for more hashtags to be monitored.

As mentioned in Chapter 6, another challenge is the cold start problem, i.e., how to detect

compromised posts for previously unobserved users. In this dissertation, I hypothesized that

if the user profile contained information about the user’s topics of interests, these features

could be used as the user features. For some users, their username (e.g. Twitter handle) may

provide some information about their interests. They may include the name of a fictional

character, a movie, or a game that they enjoy. For many users, their username is based on

their actual name, which has no connection to their interests. Thus, additional features need

to be augmented to generate the user features.
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There is a growing concern among the populous regarding user privacy. As a result,

some social media companies have modeled their platforms to remove the content of users’

messages after they have been received. For example, Snapchat deletes the snaps (pictures)

and chats (messages) from their servers once they have been opened by the designated recip-

ient [42]. Thus, detecting compromised accounts is more challenging with less information.

Future work would explore the use of non-content features, such as the user profile and log

information, to identify compromised accounts.

Additionally countries, especially the European Union, are passing laws which require

machine learning user models to be more transparent. For example, a social media platform

would need to make available to the user information on how its models came to a predic-

tion. Deep learning models are harder to interpret, due to their nonlinear embeddings. Re-

cent research focuses on increasing model interpretability, especially of complex algorithms.

However, this transparency also increases the information available to adversaries. Hackers

looking to evade detection could learn from these algorithms for model transparency.
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[34] Fréderic Godin, Viktor Slavkovikj, Wesley De Neve, Benjamin Schrauwen, and Rik
Van de Walle. Using topic models for twitter hashtag recommendation. In Proceedings
of the 22Nd International Conference on World Wide Web, WWW ’13 Companion,
pages 593–596, 2013.

118



[35] Chris Grier, Kurt Thomas, Vern Paxson, and Michael Zhang. @spam: the underground
on 140 characters or less. In Proceedings of the 17th ACM conference on Computer and
communications security, CCS ’10, pages 27–37. ACM, 2010.

[36] Asmelash Teka Hadgu, Kiran Garimella, and Ingmar Weber. Political hashtag hijacking
in the u.s. In Proceedings of the 22Nd International Conference on World Wide Web
Companion, WWW ’13 Companion, pages 55–56, Republic and Canton of Geneva,
Switzerland, 2013. International World Wide Web Conferences Steering Committee.

[37] Kohei Hayashi, Takanori Maehara, Masashi Toyoda, and Ken-ichi Kawarabayashi. Real-
time top-r topic detection on twitter with topic hijack filtering. In Proc. of the 21th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2015.

[38] Alfred Hermida. Twittering the news: The emergence of ambient journalism. Journalism
Practice, 4(3):297–308, July 2010.

[39] Harold Hotelling. The generalization of student’s ratio. The Annals of Mathematical
Statistics, 2(3):360–378, 08 1931.

[40] Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu. Social spammer detection with senti-
ment information. In Proceedings of the 2014 IEEE International Conference on Data
Mining, ICDM ’14, pages 180–189, 2014.

[41] Rodrigo Augusto Igawa, Alex Marino Goncalves de Almeida, Bruno Bogaz Zarpelao,
and Sylvio Barbon, Jr. Recognition of compromised accounts on twitter. In Proceedings
of the Annual Conference on Brazilian Symposium on Information Systems: Informa-
tion Systems: A Computer Socio-Technical Perspective - Volume 1, SBSI 2015, pages
2:9–2:14, Porto Alegre, Brazil, Brazil, 2015. Brazilian Computer Society.

[42] Snap Inc. Privacy policy, 2018. https://www.snap.com/en-US/privacy/privacy-policy.

[43] Twitter Inc. About verified accounts. https://help.twitter.com/en/managing-your-
account/about-twitter-verified-accounts.

[44] Infowars.com. Pro-toothpaste hashtag hijacked by anti-fluoride activists, 2014.
http://www.infowars.com/pro-toothpaste-hashtag-hijacked-by-anti-fluoride-activists/.

[45] Gary G. Koch J. Richard Landis. The measurement of observer agreement for categorical
data. Biometrics, 33(1):159–174, 1977.

[46] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Catchsync:
Catching synchronized behavior in large directed graphs. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 941–950, 2014.

119



[47] Krishna B. Kansara and Narendra M. Shekokar. A framework for cyberbullying detec-
tion in social network. International Journal of Current Engineering and Technology,
2015.

[48] Howard Koplowitz. #keepcalmvotedem hashtag trends on twitter, gets hijacked by
republicans, 2014. http://www.ibtimes.com/keepcalmvotedem-hashtag-trends-twitter-
gets-hijacked-republicans-1716095.

[49] K. P. Krishna Kumar and G. Geethakumari. Detecting misinformation in online so-
cial networks using cognitive psychology. Human-centric Computing and Information
Sciences, 4(1), Sep 2014.

[50] Ludmila I. Kuncheva. Change Detection in Streaming Multivariate Data Using Likeli-
hood Detectors. Knowledge and Data Engineering, IEEE Transactions on, 25(5):1175–
1180, May 2013.

[51] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32, ICML’14, 2014.

[52] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In Advances in Neural Information Processing Systems 13, pages 556–562. MIT Press,
2001.

[53] Kyumin Lee, James Caverlee, and Steve Webb. Uncovering social spammers: Social
honeypots + machine learning. In Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’10, pages
435–442. ACM, 2010.

[54] Kar Wai Lim and Wray Buntine. Twitter opinion topic model: Extracting product
opinions from tweets by leveraging hashtags and sentiment lexicon. In Proceedings of
the 23rd ACM International Conference on Conference on Information and Knowledge
Management, CIKM ’14, pages 1319–1328, New York, NY, USA, 2014. ACM.

[55] Bruce R. Lindsay. Social Media and Disasters: Current Uses,Future Options, and Policy
Considerations. Technical Report R41987, Congressional Research Service, September
2011.

[56] Teun Lucassen and Jan Maarten Schraagen. Trust in wikipedia: How users trust infor-
mation from an unknown source. In Proceedings of the 4th Workshop on Information
Credibility, WICOW ’10, pages 19–26, 2010.

[57] Zongyang Ma, Aixin Sun, and Gao Cong. Will this #hashtag be popular tomorrow?
In Proceedings of the 35th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’12, pages 1173–1174, 2012.

120



[58] David Mack. New york gay bar claims it was hacked after angry tweets to bill de blasio
and al sharpton. BuzzFeed News, 2014.

[59] Alexis Madrigal. #bostonbombing: The anatomy of a misinformation disaster. The
Atlantic, 4 2013.

[60] Walid Magdy, Kareem Darwish, and Ingmar Weber. #failedrevolutions: Using twitter
to study the antecedents of ISIS support. CoRR, 2015.

[61] Jennifer Marshall. Nearly two-thirds of u.s. adults with social media accounts say they
have been hacked. Technical report, University of Phoenix, 2016.

[62] Ashish Mehrotra, Mallidi Sarreddy, and Sanjay Singh. Detection of fake twitter followers
using graph centrality measures. In 2016 2nd International Conference on Contemporary
Computing and Informatics (IC3I), pages 499–504, Dec 2016.

[63] Scott Menard. Applied Logistic Regression Analysis, volume 106. Sage Publishing, 2
edition, 1997.

[64] Scott Menard. Standards for standardized logistic regression coefficients. Social Forces,
89(4):1409–1428, 2011.

[65] Merriam-Webster. Disinformation, 2015. http://www.merriam-webster.com/
dictionary/disinformation.

[66] Chris Messina. Groups for twitter; or a proposal for twitter tag channels, Aug
2007. https://factoryjoe.com/2007/08/25/groups-for-twitter-or-a-proposal-for-twitter-
tag-channels/.

[67] Benjamin Murauer, Eva Zangerle, and Guenther Specht. A peer-based approach on ana-
lyzing hacked twitter accounts. In Hawaii International Conference on System Sciences,
01 2017.

[68] Meike Nauta. Detecting Hacked Twitter Accounts by Examining Behavioural Change
using Twtter Metadata. In Proceedings of the 25th Twente Student Conference on IT,
2016.

[69] Nielsen. Global trust in advertising, 2015. http://www.nielsen.com/us/en/insights/
reports/2015/global-trust-in-advertising-2015.html.

[70] Markham Nolan, Assaf Uni, and Gilad Shiloach. Hostage steven sotloff is the center of
new isis propaganda campaign. Vocative, 2014.

[71] Kenneth Olmstead and Aaron Smith. Americans and cybersecurity. Technical report,
Pew Research CCenter, 2017.

121



[72] Shira Ovide. False ap twitter message sparks stock-market selloff. Wall Street Journal,
4 2013.

[73] Symeon Papadopoulos, Kalina Bontcheva, Eva Jaho, Mihai Lupu, and Carlos Castillo.
Overview of the special issue on trust and veracity of information in social media. ACM
Transactions on Information Systems, 34(3), April 2016.

[74] Liza Potts, Joyce Seitzinger, Dave Jones, and Angela Harrison. Tweeting disaster:
Hashtag constructions and collisions. In Proceedings of the 29th ACM International
Conference on Design of Communication, SIGDOC ’11, pages 235–240, New York, NY,
USA, 2011. ACM.

[75] The Associated Press. U.s. indicts 3 it ties to syrian electronic army for hacking. AP
in the News, 2016.

[76] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno Goncalves, Alessandro Flam-
mini, and Filippo Menczer. Detecting and tracking political abuse in social media. In
International AAAI Conference on Web and Social Media, 2011.

[77] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno Gonçalves, Snehal Patil,
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