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ABSTRACT

CONSISTENCY FOR DISTRIBUTED DATA STORES

By

Mohammad Roohitavaf

Geo-replicated data stores are one of the integral parts of today’s Internet services. Service providers

usually replicate their data on different data centers worldwide to achieve higher performance and

data durability. However, when we use this approach, the consistency between replicas becomes

a concern. At the highest level of consistency, we want strong consistency that provides the

illusion of having only a single copy of the data. However, strong consistency comes with high

performance and availability costs. In this work, we focus on weaker consistency models that

allow us to provide high performance and availability while preventing certain inconsistencies.

Session guarantees (aka. client-centric consistency models) are one of such weaker consistency

models that prevent some of the inconsistencies from occurring in a client session. We provide

modified versions of session guarantees that, unlike traditional session guarantees, do not cause the

problem of slowdown cascade for partitioned systems. We present a protocol to provide session

guarantees for eBay NuKV that is a key-value store designed for eBay’s internal services with high

performance and availability requirements. We utilize Hybrid Logical Clocks (HLCs) to provide

wait-free write operations while providing session guarantees. Our experiments, done on eBay

cloud platform, show our protocol does not cause significant overhead compared with eventual

consistency. In addition to session guarantees, a large portion of this dissertation is dedicated to

causal consistency. Causal consistency is especially interesting as it is has been proved to be the

strongest consistency model that allows the system to be available even during network partitions.

We provide CausalSpartanX protocol that, using HLCs, improves current time-based protocols by

eliminating the effect of clock anomalies such as clock skew between servers. CausalSpartanX also

supports non-blocking causally consistent read-only transactions that allow applications to read a

set of values that are causally consistent with each other. Read-only transactions provide a powerful



abstraction that is impossible to be replaced by a set of basic read operations. CausalSpartanX, like

other causal consistency protocols, assumes sticky clients (i.e. clients that never change the replica

that they access). We prove if one wants immediate visibility for local updates in a data center,

clients have to be sticky. Based on the structure of CausalSpartanX, we provide our Adaptive

Causal Consistency Framework (ACCF) that is a configurable framework that generalizes current

consistency protocols. ACCF provides a basis for designing adaptive protocols that can constantly

monitor the system and clients’ usage pattern and change themselves to provide better performance

and availability. Finally, we present our Distributed Key-Value Framework (DKVF), a framework

for rapid prototyping and benchmarking consistency protocols. DKVF lets protocol designers only

focus on their high-level protocols, delegating all lower level communication and storage tasks to

the framework.



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Session Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Causal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Causally Consistent Read-only Transactions . . . . . . . . . . . . . . . . . . . . . 16
2.5 Hybrid Logical Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Existing Work on Session Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Existing Work on Causal Consistency for Basic Operations . . . . . . . . . . . . . 21

3.2.1 Explicit Dependency Tracking . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Implicit Dependency Tracking . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Existing Work on Causal Consistency for Read-only Transactions . . . . . . . . . . 26
3.4 Other Consistency Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Eventual Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Strong Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 4 SESSION GUARANTEES USING HYBRID LOGICAL CLOCKS . . . . . 32
4.1 The Architecture of eBay NuKV . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Server-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Effect of Locality of Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.3 Effect of Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.4 Implication of Experimental Results . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 5 CAUSAL CONSISTENCY USING HYBRID LOGICAL CLOCKS . . . . . 46
5.1 Effect of Clock Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Sensitivity on Physical Clock and Clock Synchronization . . . . . . . . . . 47
5.1.2 Query Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 CausalSpartanX Basic Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



5.2.1 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Server-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 CausalSpartanX Read-only Transactions . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 Causal Consistency for GET Operations . . . . . . . . . . . . . . . . . . . 56
5.4.2 Causal Consistency for ROTX Operations . . . . . . . . . . . . . . . . . . 65
5.4.3 Causal Consistency of Values Returned by ROT X Operations . . . . . . . 70
5.4.4 Convergence for GET Operations . . . . . . . . . . . . . . . . . . . . . . 72
5.4.5 Convergence for ROTX Operations . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 Response Time of PUT Operations . . . . . . . . . . . . . . . . . . . . . . 75
5.5.2 Query Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Update Visibility Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.4 Throughput Analysis and Overhead of CausalSpartanX . . . . . . . . . . . 79
5.5.5 Performance of ROTX operations . . . . . . . . . . . . . . . . . . . . . . 80

CHAPTER 6 NECESSITY OF STICKY CLIENTS FOR CAUSAL CONSISTENCY . . . 85

CHAPTER 7 ADAPTIVE CAUSAL CONSISTENCY . . . . . . . . . . . . . . . . . . . 87
7.1 An Approach for Adaptive Causal Consistency . . . . . . . . . . . . . . . . . . . . 88
7.2 Adaptive Causal Consistency Framework . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.1 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.2 Server-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CHAPTER 8 DISTRIBUTED KEY-VALUE FRAMEWORK . . . . . . . . . . . . . . . . 96
8.1 Overview of DKVF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Creating a Prototype using DKVF . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2.1 Metadata Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2.2 Server-side Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.3 Client-side Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3 Benchmarking with YCSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.4.1 Cluster Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.4.2 Cluster Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.5.2 The Effect of Workload on Performance . . . . . . . . . . . . . . . . . . . 112
8.5.3 The Effect of Query Amplification . . . . . . . . . . . . . . . . . . . . . . 114

CHAPTER 9 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.1 Hybrid Protocol for Causal Consistency . . . . . . . . . . . . . . . . . . . . . . . 116
9.2 Other Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.3 Offline Availability while Providing Consistency . . . . . . . . . . . . . . . . . . . 118



9.4 General Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.5 Model-based Development of Consistency Protocols . . . . . . . . . . . . . . . . 119
9.6 Adaptive Causal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.7 Partial Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

CHAPTER 10 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vi



LIST OF TABLES

Table 4.1: Legend for Figures 4.2- 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 5.1: Round trip times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 7.1: Tracking and Checking in Some of Causal Systems . . . . . . . . . . . . . . . . 89

Table 8.1: The number of lines of code that we wrote to implement different protocols
with DKVF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii



LIST OF FIGURES

Figure 1.1: Highlights in a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1: A system consisting of M data centers (replicas) each of which consists of N
partitions. pm

n denotes nth partition in mth data center. . . . . . . . . . . . . . . 9

Figure 2.2: Updating profile picture in a social network while blocking another user. . . . . 18

Figure 4.1: An example of a NuKV deployment with three data centers each with R. Note
that for each partition, we have the architecture shown here. . . . . . . . . . . . 33

Figure 4.2: The effect of load on the latency and throughput of mixed PUT and GET
operations with 100% local traffic . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.3: The effect of load on the latency and throughput of mixed PUT and GET
operations with 10% remote traffic . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.4: The effect of local access probability on the latency and throughput of mixed
PUT and GET operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.5: The effect of workload on latency and throughput of mixed PUT and GET
operations with 100% local traffic . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.6: The effect of workload on latency and throughput of mixed PUT and GET
operations with 10% remote traffic . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.1: The effect of clock skew on PUT response time: a) with accurate artificial
clock skew when servers are running on the same physical machine b) with-
out any artificial clock skew when servers are running on different physical
machines synchronized with NTP. . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.2: The effect of different values of clock skew on request response time for
different query amplification factor in GentleRain and CausalSpartanX. . . . . . 77

Figure 5.3: The effect of amplification factor on client request response time and through-
put when we have 8 partitions and 6 data centers, and all partitions are
synchronized by NTP without any artificial clock skew. . . . . . . . . . . . . . 78

Figure 5.4: How the location of an irrelevant data center adversely affects a collaborative
communication in GentleRain, while CausalSpartanX is unaffected. . . . . . . . 80

Figure 5.5: The basic PUT/GET operations throughput in GentleRain and CausalSpartanX. 81

viii



Figure 5.6: The effect of slowdown of one partition on the latency of ROTX operations.
Each ROTX operations reads 3 keys. . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.7: Empirical CDFs of results of Figure 5.6 . . . . . . . . . . . . . . . . . . . . . 84

Figure 7.1: Two ways to organize replicas . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 7.2: Normalized throughput of App1 and App2 for different groupings. App1 has
higher throughput with 4 × 1, while App2 has higher throughput with 2 × 2. . . 95

Figure 8.1: Typical usage of DKVF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 8.2: Using of YCSB for evaluating a prototype created by DKVF . . . . . . . . . . . 108

Figure 8.3: The graphical interface of Cluster Designer . . . . . . . . . . . . . . . . . . . . 110

Figure 8.4: Throughput vs. GET:PUT proportion . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 8.5: The effect of GET:PUT ratio on response time . . . . . . . . . . . . . . . . . . 114

Figure 8.6: The effect of amplification factor on response time and throughput . . . . . . . 115

Figure 9.1: How hybrid approach can reduce the overhead of explicit approach while
keeping the same update visibility latency . . . . . . . . . . . . . . . . . . . . 117

Figure 9.2: Example of how different consistency protocols refines abstract protocols . . . . 122

ix



LIST OF ALGORITHMS

Algorithm 2.1 HLC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Algorithm 4.1 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Algorithm 4.2 Server-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Algorithm 5.1 Client operations at client c . . . . . . . . . . . . . . . . . . . . . . . . 51

Algorithm 5.2 PUT and GET operations at server pm
n . . . . . . . . . . . . . . . . . . 53

Algorithm 5.3 HEARTBEAT and DSV computation operations at server pm
n . . . . . . 54

Algorithm 5.4 Algorithm for ROTX . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Algorithm 7.1 Client operations at client c . . . . . . . . . . . . . . . . . . . . . . . . 91

Algorithm 7.2 PUT and GET operations at server i . . . . . . . . . . . . . . . . . . . 93

Algorithm 8.1 Pseudocode of the GET request handler of GentleRain protocol . . . . . 105

Algorithm 8.2 Pseudocode of the PUT handler of the client-side of GentleRain protocol 107

x



CHAPTER 1

INTRODUCTION

With millions of users across the world accessing the data in a real-time manner, no major internet

service provider can rely on a single copy of its data stored at only one location. To achieve higher

performance and availability as well as to increase the durability of the data, most service providers

create replicas of their data on different geographical locations–the technique that is known as

geo-replication. Geo-replication lets clients query their own local replica thereby reducing the

network latency. It also improves the availability and durability of the data, as if one of the replicas

fails, the data is still available in other replicas.

Once we create multiple copies of a data item, we need to deal with the consistency among

replicas. At the highest level of consistency, we want all replicas to always provide the same

data. This level of consistency is called strong consistency. Strong consistency lets application

developers write the code as if theywerewriting the code for a systemwith only one copy of the data.

This illusion significantly makes the coding and debugging easier. However, strong consistency

comes with its high availability and performance costs. Based on Eric Brewer’s conjecture [24],

Seth Gilbert and Nancy Lynch [38] proved that it is impossible to have strong consistency and

availability in presence of network partitions that prevent some nodes from communicating with

each other. This theorem is known as theCAP theorem. To realizewhy achieving strong consistency

and availability is impossible in presence of network partitions consider the following scenario:

Suppose we have data item X replicated in two replicas R0 and R1. Suppose there is a network

partition preventing R0 and R1 from communication, i.e., delivery of any message between R0 and

R1 is indefinitely delayed. Now, suppose a client writes value V for data item X at replica R0. After

this write, another client reads X from replica R1. The availability requires to never reject a user

request. In other words, all user requests must be satisfied in a finite time. Thus, replica R1 must

answer client’s request in a finite time. Since, the communication between R0 and R1 is broken, R1

does not know the value V . Thus, any value returned by R1 violates strong consistency.
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TheCAP theorem is about the conflict between availability and strong consistency in presence of

network partitions. However, even when there is no partition, we have an inherent conflict between

performance and consistency as well. Specifically, to achieve strong consistency, replicas need to

communicate with all other replicas to perform a read/write operation. Waiting for all replicas

to respond increases the response time for clients which makes strong consistency inefficient for

many modern applications such as real-time web applications. To achieve higher availability and

performance, most of the current systems sacrifice strong consistency providing much weaker

consistency guarantees. Many of new databases such as [10, 17, 27, 31, 44] provide eventual

consistency which only guarantees that in the absence of new writes if replicas are connected

to each other, all replicas eventually become consistent (i.e., provide the same data). Although

eventual consistency provides high availability and performance, it causes some data anomalies that

make the programming for application developers complex. When coding on top of an eventually

consistent system, application developers need to take these data anomalies into consideration

which certainly makes coding and debugging challenging. For an example of such data anomalies,

consider this example for a social networking application: Suppose Alice uploads a photo and then

adds it to an album. The state of the album is stored in one data object, and the value of the photo

is stored in another data object. Under eventual consistency, it is possible for a remote replica to

receive and make the value of the album visible before receiving the photo. In this situation, the

album refers to a photo that the replica has not received. It is not desired, as clients see an album

that is referring to a photo, but once they try to see the photo, the system provides no photo.

Fromdiscussion above, we can see that at one end, we have strong consistencywhich provides the

easiest interface for application developers, but is expensive in terms of availability and performance.

On the other end, we have eventual consistency which has the least availability and performance

overhead but does not provide any consistency guarantee except the eventual convergence of the

data. In this work, we focus on somewhere in between. Specifically, we focus on consistency

models weaker than strong consistency and stronger than eventual consistency that provide high

performance and availability as well as preventing some inconsistencies from occurring. Session
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guarantees (aka. client-centric consistency models) are one of such weaker consistency models.

Session guarantees do not provide perfect consistency as strong consistency, but they prevent some

inconsistency in a client session. For instance, monotonic-read prevents a client’s view from going

backward in time by seeing a version that is older than a version that the client has already seen. As

another example, read-your-write guarantees that all versions written in a client session are always

visible in that session. These levels of consistency are not guaranteed by eventual consistency.

An obstacle in providing consistency guarantees stronger than eventual consistency is the

problem of slowdown cascades [19]. The slowdown cascade refers to a situation where the

slowdown of one component in a system affects the performance of other components. In case of

consistency protocols, slowdown cascade can delay the visibility of updates in all machines because

of the slowdown of only one of the servers inside a data center. To prevent slowdown cascades,

we provide per-key versions of session guarantees that define session guarantee for individual keys

which allows us to remove the need for communication between partitions insides a data center

thereby eliminating the possibility of slowdown cascades in the system.

We present a protocol to provide session guarantees for eBay NuKV that is a key-value store

designed for eBay’s internal services with high performance and availability requirements. We

utilize Hybrid Logical Clocks (HLCs) in our protocol. HLCs are a combination of conventional

logical clocks [45] and physical clocks. The timestamps assigned by HLCs are close to the physical

clocks, but at the same time, allows us to provide wait-free write operations while satisfying per-

key write session guarantees. Our experiments, done on eBay cloud platform, show our protocol

does not cause significant overhead compared with eventual consistency while providing session

guarantees.

In recent years, many researchers have focused on another intermediate consistency model

called causal consistency. What makes causal consistency especially interesting is that causal

consistency has been proved to be the strongest consistency model that allows the system to be

available even during network partitions [53]. Causal consistency is based on the notion of happens-

before relation defined by Lamport in his seminal work [45]. The happens-before relation defines

3



a partial order for events occurred in a distributed system. We will define happens-before relation

in details in Section 2.3, but basically the goal of happens-before relation is to capture the potential

causality between events. For example, if event e and f are both executed by the same client, and

e has executed earlier than f , we say e has happened before f . Now, if e and f are both write

operations, we call the value written by event e a causal dependency of the value written by event

f . For instance, in Alice’s photo album explained above, the photo is a causal dependency of the

value of the album referring to the photo, because Alice first uploads the photo, and then adds it to

the album. Causal consistency guarantees that if a value is visible, its causal dependencies are also

visible. In other words, we do not make a value visible to the clients, unless we made sure that we

have received all of its causal dependencies. In Alice’s example, the remote replica does not make

the album referring to the photo visible until it receives the photo.

The broad approach for providing causal consistency is to track the causal dependencies of

a version and check them before making the version visible in another replica. Some causal

consistency protocols do the dependency tracking explicitly; for each new update, we have a list of

all versions that it causally depends on. Once a replica receives the new update, it checks all versions

in its dependency list. Explicit dependency tracking becomes challenging when clients read many

values before writing new ones. This leads to large dependency metadata that causes performance

issues. Another approach is implicit dependency tracking via timestamping versions. Specifically,

we assign each version a timestamp that captures its causal dependencies. This information later

will be used by servers to decide whether to make a version visible.

We provide a causal consistency protocol with implicit dependency tracking named CausalSpar-

tanX. Since achieving perfectly synchronized clocks in distributed systems is not practical, existing

time-based implicit protocols such as GentleRain [36] suffer from clock skew between different

machines. CausalSpartanX solves this issue by using HLCs instead of physical clocks. CausalSpar-

tanX, like other causal consistency protocols, assumes sticky clients (i.e. clients never change the

replica that they access). We prove if one wants immediate visibility for local updates in a data

center, clients have to be sticky. CausalSpartanX also supports causally consistent read-only trans-
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actions that allow applications to read a set of values that are causally consistent with each other.

Read-only transactions provide a powerful abstraction that is impossible to be replaced by a set

of basic read operations. Our read-only transaction algorithm is non-blocking (i.e. the servers

involved in the transaction can read the requested data as soon as they received the request), and

requires only one round of client-server communication.

Existing protocols for causal consistency, including our own CausalSpartanX, utilize a static

approach for tracking and checking dependencies. They are agnostic about the actual usage patterns

of clients and treat all clients the same. This static approach penalizes some applications while

assisting others. We define the notion of tracking and checking groups as a way to study different

causal consistency protocols. We provide our Adaptive Causal Consistency Framework (ACCF)

that generalizes existing causal consistency protocols and can be configured to work with different

tracking and checking groups. The flexibility of ACCF provides us with a basis to create adaptive

causal consistency protocols that monitor the system and adapt themselves. Using ACCF we are

also able to treat different clients in different ways.

As mentioned above, consistency protocols for replicated data stores has received much atten-

tion in recent years. When the developers intuitively identify a new approach to design such a

protocol, the natural question that arises is how to evaluate the new protocol by comparing it with

different existing protocols. Distributed data stores are complex systems which makes an accurate

analytical performance evaluation infeasible for them. A more practical option is experimental per-

formance evaluation via benchmarking a prototype running the protocol. However, implementing

a prototype could be a time-consuming task. To facilitate this process, we have implemented a

general framework called Distributed Key-Value Framework (DKVF) that lets a protocol designer

conveniently implement a prototype system running a given protocol by writing a piece of code

that only focus on the high-level protocol. The protocol designer can delegate all lower-level tasks

such as storage and network communication to DKVF. DKVF also comes with a toolset that lets

protocol designers easily experiment their prototypes. They can visually design systems running

their protocol, run them on the cloud, and perform their experiments. Figure 1.1 shows highlights
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of the dissertation in a glance.

Organization: In Chapter 2, we provide the preliminaries including the system assumptions,

definitions, and a review on HLCs. Chapter 3 reviews related work. Chapter 4 is dedicated to

session guarantees. In Chapter 5, we provide our CausalSpartanX protocol. Chapter 6 provides the

proof for the necessity of the sticky clients. The need for adaptive causal consistency together with

our ACCF are presented in Chapter 7. We introduce our DKVF in Chapter 8. Chapter 9 provides

the future work. Finally, Chapter 10 concludes the dissertation.
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CHAPTER 2

PRELIMINARIES

In this chapter, we provide the background that is needed to understand the rest of this dissertation.

In Section 2.1, we provide system architecture and assumptions that are the same as the majority

of consistency protocols for key-value stores such as [35, 36, 49, 50]. The consistency protocols

presented in Chapters 4 and 5 are based on these assumptions. However, in Chapter 7, we

explain the need for a flexible architecture that can adapt itself based on actual usage pattern of

the clients. Sections 2.2 and 2.3 provide formal requirements for session guarantees and causal

consistency, respectively. In Section 2.4, we focus on the requirements for causally consistent

read-only transactions. All of the proposed protocols in this dissertation utilize Hybrid Logical

Clocks (HLCs). Thus, in Section 2.5, we review HLCs and explain why we utilize them.

2.1 Architecture

We consider a data store whose data is fully replicated into M data centers (i.e., replicas) where

each data center is partitioned into N partitions (see Figure 2.1). Partitioning the data means that the

data is distributed across multiple machines. Partitioning increases the scalability of a data store,

as the size of the data store does not depend upon the capacity of a machine. Replication, on the

other hand, increases performance and durability. Specifically, by replicating data in geographically

different locations, we let the clients query their local data center for reading or writing data thereby

reducing the response time for client operations. In addition, by replicating data, we increase the

durability of our data in case of failures at one data center. Like [35,36,49,50], our CausalSpartanX

protocol assumes that a client does not access more than one data center. We prove the necessity

of this assumption for causal consistency in Chapter 6. NuKV, discussed in Chapter 4, lets clients

change their data centers. There might be network failure between data centers that causes network

partitions. We assume network failure do not happen inside data centers. Thus, partitions inside a

data center can always communicate with each other.
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Figure 2.1: A system consisting of M data centers (replicas) each of which consists of N partitions.
pm

n denotes nth partition in mth data center.

We assume multi-version key-value stores that store several versions for each key. A key-value

store has two basic operations: PUT(k, val) and GET(k), where PUT(k, val) writes new version

with value val for item with key k, and GET(k) reads the value of an item with key k. In addition

to basic PUT and GET operations, a key-value store can provide read-only transactions denoted as

ROTX. ROT X(kset) returns the value of the set of keys given in kset.

2.2 Session Guarantees

In this section, we define various session guarantees for key-value stores. We provide modified

versions of session guarantees considered in [65]. This modified versions define session guarantees

per keys, which allows us to avoid the problem of slowdown cascade [19] by avoiding cross-

partition communications. Specifically, to satisfy definitions provided here, different partitions can

check session guarantees independently. Thus, failure/slowdown of a partition does not affect the

visibility of updates in other partitions.

First, regarding writes and reads of a specific key we consider following definitions:

Definition 1 CommittedWrites(s, k, t) is the set of all writes committed for key k at server s at

time t.

Definition 2 ClientWrites(c, k, t) is the set of all writes done by client c for key k at time t.
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Definition 3 ClientsReads(c, k, t) is the set of all writes that have written a value for key k read

by client c at time t.

Now, using above definitions, we define various per-key session guarantees as follows:

Definition 4 (Per-key Monotonic-Read Consistency) Let O be an operation issued by client c on

server s at time t that reads the value of key k. Operation O satisfies monotonic-read consistency

if any w ∈ ClientReads(c, k, t) is included in CommittedWrites(s, k, t′) where t′ is the time when

server s actually reads the value for key k.

Monotonic-read consistency is important for the clients, as the lack of monotonic-read causes

user confusion by going backward in time. For example, consider awebmail application. Monotonic-

read consistency guarantees that the user is always able to see all emails that has seen before. New

emails may be added to the mailbox in the next time that the user checks their mailbox, but no email

can disappear once the user saw it, unless the user wants to delete it. This is not guaranteed with

only eventual consistency.

Monotonic-read consistency guarantees that the client never misses what it has seen so far.

On the other hand, read-you-write consistency guarantees that the client never misses what it has

written so far. Specifically,

Definition 5 (Per-key Read-your-write Consistency) Let O be an operation issued by client c on

server s at time t that reads the value of key k. Operation O satisfies read-your-write consistency

if any w ∈ ClientWrites(c, k, t) is included in CommittedWrites(s, k, t′) where t′ is the time when

server s actually reads the value for key k.

For instance, users must be able to see the posts that they posted on their social network page.

This seems to be obvious for a centralized system, but unfortunately, with eventual consistency, it

may be violated if the client is routed to another replica when it wants to read the data.

Definition 6 (Per-key Monotonic-write Consistency) Let O be an operation issued by client c on

server s at time t that writes a value for key k. Operation O satisfies monotonic-write consistency if

10



for any server s at any time t′ if CommittedWrites(s, k, t′) includes O, no client accessing s reads

a value written by write w , O included in ClientWrites(c, k, t).

Suppose a user updates his/her password two times. Per-key monotonic-write consistency

together with eventual consistency guarantees that eventually, the user is able to login to the system

with the latest passwords in all replicas. Note that just eventual consistency does not guarantee the

second version to be the winner version.

Definition 7 (Per-key Write-follows-reads Consistency) Let O be an operation issued by client

c on server s at time t that writes a value for key k. Operation O satisfies write-follows-read

consistency if for any server s at any time t′ if CommittedWrites(s, k, t′) includes O, no client

accessing s reads a value written by write w , O included in ClientReads(c, k, t).

As an example for the necessity of per-key write-follows-reads consistency, consider a shared

document in a cloud-based document processing service. Suppose one of the contributors reads

the current version of a document and then appends a line to the document. To append the line, the

application reads the current value of the data object associated with the content of the document,

appends the line, and writes the new content of the document back to the system. The per-key

write-follows-reads consistency guarantees that in all replicas, the version of the document with

the appended line is the winner version.

With Definitions 6 and 7, we can trivially satisfy monotonic-write and write-follows-reads

consistency by never returning any committed version. To avoid such a trivial implementation, we

assume the following requirements are implicitly required for all definitions:

R1 Any write for a key committed on a server will be eventually committed on all servers hosting

that key.

R2 Clients reads only committed versions.

11



2.3 Causal Consistency

Causal consistency is defined based on the happens-before relation between events [45]. In the

context of key-value stores, we define happens-before relation as follows:

Definition 8 (Happens-before) Let e and f be two events. We say e happens before f , and denote

it as e→ f iff:

• e and f are two events by the same client (i.e., in a single thread of execution), and e happens

earlier than f , or

• e is a PUT(k, val) operation, and f is a GET(k) that returns the value written by e, or

• there is another event c such that e→ c and c→ f .

Now, we define causal dependency as follows:

Definition 9 (Causal Dependency) Let v1 be a version of key k1, and v2 be a version of key k2.

We say v1 causally depends on v2, and denote it as v1 dep v2 iff PUT(k2, v2) → PUT(k1, v1).

For example, suppose that a user writes a comment for a post on a social network. Since the

user, first reads the post, and then writes the comment, the comment causally depends on the post.

A data store is causally consistent if it satisfies these conditions: 1) when a client reads a

version, it always remains visible to the client, 2) writes by a client must be immediately visible to

the client, and 3) when a version is visible, all of its causal dependencies are also visible.

The definition of causal consistency depends upon the nature of operations allowed on the key-

value store. It is possible that the addition of an operation violates the causal consistency provided

by the key-value store. For example, if the key value store only supported GET operation and

causal consistency is satisfied, adding a new operation such as ROTX can potentially violate causal

consistency as the addition of ROTX creates new constraints that have to be satisfied as far as causal

consistency is concerned. For this reason, the definitions in this paper are parameterized with a

set of operations permitted on the key-value store. This approach allows us to make the definition
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generic so that if new operations (e.g., read/write transactions) are added, then the definition can

be extended to them. It also allows us to make the proofs in a modular fashion where we can prove

correctness with respect to GET and ROTX separately and conclude the correctness of the system

that supports both.

Next, we define the notion of visibility for an operation that captures whether a given version

(or some concurrent/more recent version) is returned by the operation.

Definition 10 (Visibility) We say version v of key k is visible for set of operations O to client c iff

any operation in O reading k performed by client c returns v′ such that v′ = v or ¬(v dep v′).

Note that in the definition above, O is a set of operation types. For instance, a possible O can

be {GET}. In this case, visible for O means, any GET(k) operation performed by a client returns

v′ such that v′ = v or ¬(v dep v′). Instead of {GET}, O could be {GET,ROT X}. Now, visible for

O means, any GET(k) or ROT X(K) that reads k returns v′ such that v′ = v or ¬(v dep v′). This

way, we can flexibly define visibility for different sets of operations.

Using visibility, we define causal consistency as follows:

Definition 11 (Causal Consistency) Let k1 and k2 be any two arbitrary keys in the store. Let v1

be a version of key k1, and v2 be a version of key k2 such that v1 dep v2. Let O and R be two

sets of operations. We say the store is causally consistent for set of operations O with set of reader

operations R, if for any client c conditions below hold:

• Any version written by client c is visible for O to c.

• Once c reads a version by one of operations of R, the version remains visible for O to c.

• If c that has read v1 by one of operations of R, v2 is visible for O to c.

In the above definitions, we ignore the possibility of conflicts in writes. Conflicts occur when

we have two writes on the same key such that there is no causal dependency relation between them.

For example, when two clients independently write to a key without reading the update made by

the other client.
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Definition 12 (Conflict) Let v1 and v2 be two versions for key k. We call v1 and v2 are conflicting

iff ¬(v1 dep v2) and ¬(v2 dep v1). (i.e., none of them depends on the other.)

In case of conflict, we want a function that resolves the conflict. Thus, we define conflict

resolution function as f (v1, v2) that returns one of v1 and v2 as the winner version. If v1 and v2

are not conflicting, any f returns the latest version with respect to the causal dependency, i.e., if v1

dep v2 then f (v1, v2) = v1. Now, we define the notion of visibility that also captures conflicts:

Definition 13 (Visibility+) We say version v of key k is visible+ for set of operations O for conflict

resolution function f to client c iff any operation of O performed by client c reading k returns v′

such that v′ = v or v′ = f (v, v′).

Definition 14 (Causal+ Consistency) Let k1 and k2 be any two arbitrary keys in the store. Let

v1 be a version of key k1, and v2 be a version of key k2 such that v1 dep v2. Let O and R be two

sets of operations. We say the store is causal+ consistent for set of operations O with set of reader

operations R for conflict resolution function f if for any client c conditions below hold:

• Any version written by client c is visible+ for O for f to c.

• Once c reads a version by one of operations of R, the version remains visible+ for O for f to

c.

• If c that has read v1 by one of operations of R, v2 is also visible+ for O for f to c.

To achieve the least update visibility latency for local updates, we define causal++ consistency

that requires the data store to make all local updates visible to clients immediately.

Definition 15 (Causal++ Consistency) Let O, R, and I be three sets of operations. A store is

causal++ consistent for set of operations O with set of reader operations R and set of immediate-

visible operations I for conflict resolution function f if conditions below hold:

• The store is causal+ consistent for O with set of reader operations R for f .
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• Any version v written in data center r is immediately visible+ for operations of I for f to any

client accessing r .

In practice, in addition to the consistency, we want all data centers to eventually converge to

the same data. In other words, we want an update occurred in a data center to be reflected in

other connected data centers as well. We define two data centers connected, if there is no network

partition that prevents them from communication. Now, we define convergence as follows:

Definition 16 (Convergence) Let v1 be a version for key k written in data center r .

• Let data center r′ be continuously connected to data center r , and

• for any version v2 such that v1 dep v2, let data center r′ be continuously connected to data

center r′′ where version v2 is written.

The data store is convergent+ for set of operations O for conflict resolution function f if v1 is

eventually visible+ for O for f to any client accessing r′.

With the definitions of causal++ consistency and convergence defined in this section, it is

straightforward to note the following observations:

Observation 1 If store S is

• causal++ consistent for O, with set of reader operations R1, and set of instantly visible

operations I for conflict resolution f , and

• causal++ consistent for O, with set of reader operations R2, and set of instantly visible

operations I for conflict resolution f ,

then, S is causal++ consistent for O, with set of reader operations R1 ∪ R2, and set of instantly

visible operations I for conflict resolution f .

Observation 2 If store S is
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• causal++ consistent for O1, with set of reader operations R, and set of instantly visible

operations I for conflict resolution f , and

• causal++ consistent for O2, with set of reader operations R, and set of instantly visible

operations I for conflict resolution f ,

then, S is causal++ consistent for O1 ∪O2, with set of reader operations R, and set of instantly

visible operations I for conflict resolution f .

Observation 3 If store S is

• causal++ consistent for O, with set of reader operations R, and set of instantly visible

operations I1 for conflict resolution f , and

• causal++ consistent for O, with set of reader operations R, and set of instantly visible

operations I2 for conflict resolution f ,

then, S is causal++ consistent for O, with set of reader operations R, and set of instantly visible

operations I1 ∪ I2 for conflict resolution f .

Observation 4 If store S is

• convergent for set of operations O1 for conflict resolution function f , and

• convergent for set of operations O2 for conflict resolution function f ,

then, it is convergent for set of operations O1 ∪O2 for conflict resolution function f .

2.4 Causally Consistent Read-only Transactions

In this section, we focus on causally consistent read-only transactions. We, first, discuss the

motivation for this operation, and then provide requirements for causally consistent read-only

transactions.
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A causally consistent read-only transaction is a powerful abstraction that can significantly help

application developers when working with replicated data stores. A read-only transaction allows

application developers to read a set of keys such that the returned versions of the key values are

causally consistent with each other as well as with previous reads of the application. To understand

the benefit of such abstraction, consider the following example.

Consider a social network such as Facebook where profile pictures are always public. Alice

wants to update her profile picture, but she does not want Bob to see her new picture. Since profile

pictures are public, the only way for Alice to hide her picture from Bob is to completely block

Bob. Thus, she first blocks Bob and then updates her picture (we call this change scenario 1). A

data store with only causally consistent PUT and GET operations (without read-only transactions)

guarantees that no matter which replicas Alice and Bobs are connected to, the new Alice’s picture

is visible only when Bob is blocked by Alice. However, it is not enough to protect Alice’s privacy.

Suppose the application first reads Bob’s status and finds it unblocked, then it reads Alice’s new

profile picture. Since it found Bob unblocked, it shows Alice’s new picture to Bob that is not

acceptable. With a causally consistent read-only transaction, the application could read both values

such that they are causally consistent with each other. Thus, the application either 1) reads Alice’s

old picture, or 2) it reads Alice’s new picture, but finds Bob blocked, and both of these cases are

acceptable.

Now, suppose after some time, Alice changes her mind. She changes her photo to the old one

and then unblocks Bob (we call this change scenario 2). A causally consistent read-only transaction

still protects Alice’s privacy after this change. With two independent causally consistent GET

operations it is impossible to protect Alice’s privacy in both cases. Specifically, based on the order

that the application issues the two GET operations, it violates Alice’s privacy either in scenario 1

or scenario 2.

We formally define this requirement as follows. First, we define visiblity+ for a set of versions:

Definition 17 (Visible+ to a Set of Versions) Let vset be a set of version. We say version v is

visible+ for conflict resolution function f to vset, if vset does not include version v′ such that v
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Figure 2.2: Updating profile picture in a social network while blocking another user.

and v′ are two version for the same key, v′ , v, and v = f (v, v′).

Now, we define causal consistency for a set of versions:

Definition 18 (Causal Consistency for a Set of Versions) Let vset be a set of versions. vest is

causally consistent for conflict resolution function f , if for any version v1 ∈ vset, any version v2

such that v1 dep v2 is visible+ for f to vest.

2.5 Hybrid Logical Clocks

In this section, we recall HLCs from [42]. HLCs allow us to capture happens-before relation [45]

while assigning timestamps that are very close to the physical clocks. The HLC timestamp of an

event e, is a tuple 〈l .e, c.e〉. l .e is our best approximation of the physical time when e occurs. c.e is

a bounded counter that is used to capture causality whenever l .e is not enough to capture causality.

Specifically, if we have two events e and f such that e happens-before f and l .e = l . f , to capture

causality between e and f , we set c.e to a value higher than c. f .

Why using HLCs? We want to timestamp versions such that two following requirements are

satisfied:

1. timestamps are close (within clock drift error) to the physical time when the event of writing

occurs, and

2. timestamps capture happens-before relation
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Logical clocks [45] fail to satisfy the first requirements. Specifically, logical timestamps have

no relation to the wall clock time. This causes several problems. First, we cannot use timestamps

to provide clients with the version of a data object at a given physical time. More importantly, we

cannot resolve conflicting writes based on timestamp. For instance, assume a client writes version

v for a data object on replica A. One hour later, another client writes version v′ for the same data

object on replica B. With logical timestamps, it is possible that the timestamp assigned to v′ is

smaller than the version assigned to version v. In this situation, if we use timestamps to select the

winner version (i.e. the version with higher timestamp is the winner), v will be selected as the

winner which is not desired, as we want the version written one hour later to be the winner.

On the other hand, physical clocks fail to satisfy the second requirement. This is due to the fact

that perfect clock synchronization is impossible. Thus, the clock skew between different replicas

prevents physical clocks from accurately capturing happens-before relation. For instance, imagine

a client writes version v for a data object on replica A. Next, the client write version v′ on replica

B. While using logical clocks we can guarantee that the timestamp assign to v′ is higher than that

of assigned to v, using physical clocks it is not guaranteed. Specifically, if the clock of replica B is

behind A, the timestamp assigned to v′ may be smaller than that of v.

HLCs solves both issues explained above, i.e., it allows us to capture the happens-before relation,

and at the same time, allows us to provide conflict resolution with respect to the physical time. For

completeness, we recall algorithm of HLC from [42] below.
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Algorithm 2.1 HLC algorithm
1: Upon sending a message or local event by process a
2: l′.a = l .a
3: l .a = max(l′.a, pt .a) //tracking maximum time event, pt .a is physical time at a
4: if (l .a = l′.a) c.a = c.a + 1 //tracking causality
5: else c.a = 0
6: Timestamp event with l .a, c.a

7: Upon receiving message m by process a
8: l′.a = l .a
9: l .a = max(l′.a, l .m, pt .a) //l .m is l value in the timestamp of the message received
10: if (l .a = l′.a = l .m) then c.a = max(c.a, c.m) + 1
11: else if (l .a = l′.a) then c.a = c.a + 1
12: else if (l .a = l .m) then c.a := c.m + 1
13: else c.a = 0
14: Timestamp event with l .a, c.a
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CHAPTER 3

RELATEDWORK

In this chapter, we review some of the consistency protocols for distributed data stores. We review

related work for session guarantees in Section 3.1. In Sections 3.2 and 3.3 we review some of causal

consistency protocols for basic operations and read-only transaction, respectively. In addition to

session guarantees and causal consistency, we also review two of popular consistency protocols

namely eventual consistency and strong consistency in Section 3.4.

3.1 Existing Work on Session Guarantees

Terry et al. provided a protocol for providing session guarantees in [65]. An important

improvement over [65], in our work, is utilizing HLCs to avoiding blocking write operations.

Also, we consider the per-key versions of session guarantees considered in [65]. This allows us

to avoid the overhead of inter-partition communication which in turns eliminates the possibility

of slowdown cascade [19] for systems with a large number of partitions. The protocol proposed

in [65] for providing session guarantees is used in Bayou architecture [32,58]. Similar approach is

provided in [26, 41]. Bermbach et al. [23] have provided a middleware to provide monotonic-read

and read-your-write guarantees on top of eventually consistency systems. There are no experimental

results provided in existing works such as [23, 26, 32, 41, 58, 65] to evaluate the cost of providing

session guarantees. In our work, we investigate the cost of providing session guarantees in eBay

NukV that uses Raft for replication on eBay’s cloud platform.

3.2 Existing Work on Causal Consistency for Basic Operations

There are several proposals for causally consistent replicated data stores such as [18,22,43,59]

where each replica consists of only one machine. Such an assumption is a serious limitation for the

scalability of the system, as the whole data must fit in a single machine. To solve this scalability

issue, we can partition the data inside each replica. In this section, we review some of the causal
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consistency protocols for partitioned key-value stores. We consider these protocols in two different

categories based on how they track causal dependencies. For each protocol, we provide a brief

sketch of the algorithm, and then discuss its pros and cons.

3.2.1 Explicit Dependency Tracking

The broad approach for providing causal consistency is to track the causal dependencies of a version,

and check them before making the version visible in another replica. The most straightforward way

to track dependencies of a version is to track them explicitly, i.e., to keep track of all versions that

a given version causally depends on. Specifically, we can accompany each version with a list of

all versions that it depends on. COPS [49] and Eiger [50] are two examples of causal consistency

protocols that use this approach. Here, we review COPS. Eiger is very similar to COPS for basic

PUT and GET operations.

COPS [49] is designed for partitioned key-value stores with the architecture provided in Section

2.1. In COPS, each client maintains a list of all versions that it has read so far. Whenever it wants to

write a value, it includes this list of versions with the PUT request. Once the server writes the value,

it sends a replicate message to other replicas to inform them about the update to the data. In addition

to the key and the value that has been written for it by the client, the server also includes the list of

versions read by the client in the replicate message as the dependency list. Once a server receives a

replicate message, it first checks the dependency list. If all dependencies of the version are visible

in the replica, it makes the version visible. Otherwise, it waits. To check the dependency, a server

may need to communicate with other partitions. Specifically, if the dependency list attached with

a replicate message received by partition A shows that the replicated version depends on a version

that hosted on another partition B, partition A needs to communicate with B to make sure that the

dependency is satisfied. To do that, A sends a dependency check message to B. If B has made the

dependency visible, it immediately responds to A. Otherwise, it waits. This dependency checking

has a high message complexity. Imagine that a client reads a lot of versions before writing a version

v. In this case, the dependency list of v is large that results in sending many dependency check
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messages in the remote replicas. In addition, the dependency list accompanied with the replicate

message is itself an overhead that slows down the communication of replicate messages.

3.2.2 Implicit Dependency Tracking

To reduce the size of dependency metadata, the majority of causal consistency protocol track the

dependencies implicitly via timestamps. We review some of these protocols in this section.

Orbe [35] is very similar to COPS, unless instead of the explicit list of actual versions, it uses

matrices of timestamps to capture dependencies. In Orbe, each client maintains a M × N matrix

of timestamps where M is the number of replicas, and N is the number of partitions (see Figure

2.1). If entry 〈m,n〉 of this matrix is t, then the highest timestamp of versions written in partitions

n of replica m read by the client is t. Remember causal consistency is transitive (See Section

2.3). Thus, the client may not have read that version directly; it may have read another version that

causally depends on a version with timestamp t written in partition n in replica m. Each version

also maintains its dependency matrix with it. Whenever a client read the version, it updates its

dependencymatrix by taking an entry-wise maximum of its dependencymatrix and the dependency

matrix of the version.

When a client writes a version, the dependency matrix of the client is considered as the

dependency matrix of the version. Like COPS, upon creating a new version, the servers sends

replicate message to its corresponding partitions in other replicas to inform them about the update.

Once a partition receives a replicate message, it first checks its dependencies before making the

version visible. Like COPS, the partition sends dependency check messages to other partitions if

necessary. Each server maintains the highest timestamps received from its corresponding partitions

in other replicas. If it has a timestamp higher than a timestamp required by a dependency check

message it responds immediately. Otherwise, it waits.

Although Orbe reduces the size of metadata for tracking dependencies, it still suffers from

high message complexity, because like COPS, it needs to contact other partitions for each replicate

message. It also needs to store more metadata with each version comparing to the COPS, because
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in COPS, we only need to store a single timestamp, but in Orbe, we need to store a matrix of

timestamps of O(M × N).

GentleRain [36] replaces the dependency matrices of Orbe with single scalars. It also changes

the mechanism of dependency checking of COPS and Orbe, and reduces the message complexity

dramatically. In GentleRain, each client maintains only a single integer called dependency time

which is the highest timestamp of the versions that it has read so far. Whenever the client writes

a new version, it includes its dependency time. The server creates a new version, and assigns a

timestamp to it. The server uses the value of physical clock for the timestamp. it assigns timestamps

such that the following condition is satisfied:

C1 : If version X of object x depends on version Y of object y, then Y .t < X .t.

Since the dependency time is the timestamp of versions read by the client before sending the

PUT request, we expect it to be less than the current physical time of the server receiving the PUT

request. However, in practice, the value of the physical time may not be larger than the client’s

dependency time due to the inaccuracy of physical clocks. Specifically, physical clocks of different

machines may skew. Thus, the clock of one machine may be behind another machine. This leads

to situations where a server receives a PUT request with dependency time larger than its current

physical time. In this situation, to satisfy C1, the server waits until its physical clock shows a value

higher than the dependency time.

Like Orbe, each partition keeps the highest timestamps received from its corresponding parti-

tions in other replicas in a version vector. Partitions inside a replica periodically share their version

vectors and compute Global Stable Time (GST) as the minimum of all entries of all version vectors.

It is straightforward to see:

C2 : When GST in a node has a certain value T , then all versions with timestamps smaller than or

equal to T are visible in the replica.
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Now, when a client requests to read a certain key, the server returns the version of the key

that has timestamp smaller than GST. C1 and C2 guarantees that any dependency of the returned

version is visible in the replica.

GentleRain dramatically reduces the size of necessary metadata to track dependencies. We only

need a single integer to track dependencies. It also reduces the message complexity significantly,

because partitions do not need to communicate with each other for each replicate message they

receive. Instead, they communicate with each other only periodically. Alongside these benefits,

GentleRain suffers from two important problems. The first problem is the sensitivity on the

accuracy of the physical clocks. Both the correctness and the performance of GentleRain depends

on the accuracy of the physical clocks. Specifically, the correctness of GentleRain is compromised

if the physical clock goes backward– an anomaly that happens in practice. The performance is also

affected by the wait time before write operations because of clock skew between partitions. The

negative impact of this problem is intensified in the context of query amplification where a single

end user request translates to many internal requests. We focus on this problem in more detail in

Section 5.1. COPS and Orbe do not delay any write operation.

Another issue of GentleRain is the delay before making versions visible in remote replicas.

Note that the GST is the minimum entry of all version vectors of all partitions inside a replica.

Thus, even only a single entry can hold GST small, increasing the delay before making new version

visible to the clients. This leads to high visibility latency when even a single partition is slow

(e.g. due to garbage collection, high load, or even failure), even if a version does not have any

dependency hosting by that partition. Waiting for a partition that does not host any dependency of

a version does not occur in COPS or Orbe. However, even in Orbe and COPS we need to delay

the visibility of a version v if the partition hosting one of its dependencies is slow. Such delay is

unnecessary for a client never wants to read dependencies of v. Based on this intuition, Mehdi et.

al have introduced Occult [54] protocol.

To check dependencies, Occult takes an approach different from the approach of COPS, Orbe,

and GentleRain; it moves dependency checking from servers to the clients. Occult assumes a
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different architecture than protocol considered so far in this section. Although like other protocols,

it assumes the same data placement schema (Figure 2.1), it assumes a single-leader replication

policy where for each part of the data, we have a master server. All writes must be done on the

master. The master replicates the updates to the followers. Once a server receives a replicate

message, it immediately makes the version visible. However, it provides the client with metadata

information that let it check if the returned version is consistent with its previous reads. The

metadata is similar to the Orbe dependency matrices. However, since Occult uses single-leader

replication, the dependency metadata is a vector that has one entry per master partition. To reduce

the size of metadata, Occult provides an optimization using structural compression. The details

of this optimization can be found in [54]. If the returned version is not causally consistent with

client’s previous reads, the client has two choices: it can either wait or query the master partition.

Transferring dependency checking to the client eliminates the negative impact of slow partitions

on the visibility latency, and reduces it to the minimum level, as versions are visible to the client

as soon as they arrive. However, it comes with an important cost: Occult does not provide

causal consistency and availability in presence of network partitions. As explained in Chapter

1, the most important advantage of causal consistency comparing with strong consistency is that

it can be achieved together with availability even in presence of network partitions. By making

versions visible as soon as they arrive without any dependency checking, Occult exposes clients

to inconsistent versions. In this situation, as explained above, a client has to either wait (i.e.,

unavailability) or deliver the inconsistent version to the application.

Another problem of Occult is its single-leader replication policy that makes it unsuitable for

write-heavy workloads. All other protocols mentioned in this section uses multi-leader replication

that lets us distribute the write workload over several machines.

3.3 Existing Work on Causal Consistency for Read-only Transactions

COPS-GT [49] is a read-only transaction algorithm that is based on the COPS [49] algorithm

that uses explicit dependency checking. COPS-GT may require two rounds of communication
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between the client requesting the transaction and the partitions involved in the transaction. These

two rounds of communication increase the response time for the client, especially when network

latency between the client and the partitions is high. Compared with COPS-GT, our algorithm

requires only one round of communication between the client and one of the partitions involved in

the transaction. The rest of communications are done between partitions inside the data centerwhich

have negligible network latency. COPS-SNOW [51] is an improvement of COPS-GT algorithm.

Unlike COPS-GT, COPS-SNOW requires only one round of communication between the client

and the servers. COPS-SNOW achieves this by shifting complexity from read operations to write

operations. COPS-SNOW has high metadata overhead. Specifically, in COPS-SNOW, for each

version X , we need to store a list of all transactions that have read a version older than X . For

each key, we also need to keep track of all transactions that have read the current version. Another

problem of COPS-SNOW is doing explicit dependency check for every write operation. To do

this explicit dependency check, nodes need to constantly communicate with each that increase the

message complexity of the algorithm.

GentleRain [36] provides a blocking ROTX algorithm that may require more than one round

of communication with servers in Section 5.5.5. Orbe [35] and ChainReaction [20] are two other

blocking algorithms. Contrarian [33] is a time-based causal consistency protocol that provides

non-blocking ROTX operations. However, it requires two rounds of client-server communication.

Compared with [33], CausalSpartanX protocol provided in Chapter 5 trades one round of client-

server communication with one round of server-server communication which results in lower

latency for RTOX operations when client-server communication delay is higher than server-server

communication delay. For instance, if the client is located in Oregon, and servers are located

in California, our experiments show, our CausalSpartanX provides 97% improvement compared

with [33] regarding the latency of ROTX operations. Even when the client is co-located with the

servers, the latency of client-server communication is typically higher due to firewalls and other

security checking across different security zones, because usually, the database servers are in the

same zone while application servers are in a different zone.
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Wren [64] relies on client cache to provide causally consistent transactions. Wren keeps track

of the dependencies of a version with two scalars; one for local updates and one for remote updates.

This enables Wren to eliminate the GentleRain’s blocking problem. However, since all remote

dependencies are tracked by a single scalar, like GentleRain, Wren still suffers from increased

update visibility in cases of slow replicas (cf. Section 5.5.3). Another issue with Wren is its

requirement for the clients to cache the data that they have written in the system which means more

work need to be done on the client-side.

3.4 Other Consistency Protocols

While researchers (especially at academia) are trying to design better causal consistency pro-

tocols, many existing industrial distributed data stores rely on eventual consistency and strong

consistency. In this section, we review these consistency models.

3.4.1 Eventual Consistency

Due to its performance and availability benefits, eventual consistency is very popular in practical

distributed systems. The performance and availability benefits of eventual consistency are especially

obvious when we compare it with strongly consistent systems. Many existing NoSQL databases

such as Dynamo [31], Cassandra [44], Voldemort [17], and MongoDB [10] provide eventual

consistency. Since eventual consistency is basically just a convergence guarantee (i.e. all replica

finally provide the same data), implementing it is straightforward: we only need to send any new

update to other replicas, and a replica makes a version visible as soon as it receives it. Also, all

servers must follow the same function in picking the most recent version between several existing

versions for an object. Here we review Dynamo as one of such systems. Other systems are also

very similar to Dynamo.

Dynamo [31] is a distributed key-value store built for Amazon platform. Amazon uses Dynamo

to manage the state of some of its services with high availability requirements1. Dynamo replicates

1Dynamo now is also publicly available under the name DynamoDB.
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each data object on N nodes referred to as preference list of the given key. The first node in the

preference list is the key coordinator. Each GET or PUT operation involves the N healthy and

reachable nodes in the preference list. If some of top N nodes are down or unreachable, we use

other less preferred nodes.

When a client sends a PUT(k, val) request, the coordinator creates a new version for k. Dynamo

uses vector clock [46] timestamps as version numbers. These vectors have one entry per server.

Dynamo does not perform any dependency checking before making a version visible, and version

numbers are used only to detect conflicting versions. Dynamo uses a quorum-based write and read

policy. Specifically, to write a new version, the coordinator sends the new version to N highest-

ranked healthy nodes in the preference list of k. If at least W − 1 nodes respond, then the write is

considered successful. The value for W can be configured by the application developer.

Similarly, when a client sends a GET(k) request, the coordinator asks N highest-ranked healthy

nodes in the preference list of k. The coordinator then waits for R responses. Like W , the value of

R is configurable by the application developer. The coordinator may receive different versions of k

from different servers. In that situation, two cases are possible: 1) All versions are causally related.

In that case, the coordinator reports the most recent version regarding the vector clock timestamps.

2) Some of the versions are not causally related. In that case, the coordinator reports all causally

unrelated versions to the client.

One of the advantages of Dynamo is that application developers who use Dynamo can config-

ure it to achieve their desired levels of consistency and availability. Basically, achieving higher

availability is possible by assigning lower values for R and W . Some services such as shopping

cart should be "always-writable", because the rejection of writes to shopping cart adversely affects

customer satisfaction. Setting W to 1 ensures that a PUT operation is never rejected as long as at

least one node in the system has written the new version value. However, it may increase the risk

of inconsistency. In contrast to shopping cart, some services such as services that maintain product

catalogs and promotional items, have high numbers of read requests and small numbers of updates.

For such services, typically R is set to 1 and W to N . The typical 〈N,R,W〉 configuration used in
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Dynamo instances is 〈3,2,2〉 [31].

3.4.2 Strong Consistency

As explained in Chapter 1, strong consistency gives the application developers the illusion of having

a single copy of the data. This is a very powerful abstraction that can significantly simplify coding

and debugging applications. It is shown that strong consistency is equivalent to the total order

broadcast, and both are equivalent to the consensus. We do not go to the details of consensus,

total order broadcast, and strong consistency algorithms in this report. However, briefly discuss the

relationship between these problems.

Consensus: Consensus is the problem of reaching an agreement in the distributed systems,

i.e. all nodes agree on a decision. Although it may seem easy, it turns out to be a hard problem

in presence of node or network failures. In fact, it has been shown it is impossible to design a

deterministic algorithm for achieving consensus in an asynchronous network model (when packets

may arbitrary delayed) [37]. However, this impossibility results is for a systemwith a very restrictive

assumption (i.e. nodes do not access any timer to use timeouts). In practice, the consensus is used

in many practical systems. Paxos [47] is one of the important consensus algorithms.

Total order broadcast: Total order broadcast lets nodes of a distributed systems deliver

a sequence of messages all with the same order. The total order broadcast is exactly what a

distributed data store needs [40]. Imagine that we have replicated our data in several replicas. All

of them apply writes to the data in the same order. Assuming that they have stared with the same

data, they will end up in the same state after applying writes in the same order. This idea is a called

state machine replication [40].

The problem of total order broadcast is equivalent to the problem of consensus. We do not

provide the formal proof of this equivalence here, but to realize it, consider that we can view the

total order broadcast as the consensus on the next message that has to be delivered by all nodes.

Strong consistency via total order broadcast: Using total order broadcast, we can provide

strong consistency as follows: All nodes share a log with each other.
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To write a value: the node appends the write message to the log via total order broadcast. Thus,

all nodes see the message on the log in the same order, and apply all writes in the same order.

To read a value: the node appends a message to the log. Then, it starts reading the log. Once

it finds the message that it just append to the log, it reads the value that it wants. This way, it is

guaranteed that it has applied all writes before it reads the value. Thus, it reads the most recent

version.

Viewstamp [48,56], Zab [39], and Raft [57] are some of popular total order broadcast protocols.

Zab and Raft are implemented in ZooKeeper [39] and etcd [13], respectively. As mentioned above,

Paxos [47] is a consensus protocol. By running Paxos for the next message to deliver, we can

provide total order broadcast. However, running total order broadcast directly is more efficient.

There is an optimization for Paxos called multi-Paxos that directly provides total order broadcast.

Spanner [30] is a strong consistency protocol developed by Google that relies on Paxos.
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CHAPTER 4

SESSION GUARANTEES USING HYBRID LOGICAL CLOCKS

In this chapter, we focus on session guarantees. We provide a protocol to provide session guarantees

for eBay NuKV that a key-value store designed for services with high performance and availability

requirements for internal eBay services. The architecture of NuKV is very similar to the architecture

provided in Section 2.1, except we have two levels of replication in NuKV. We start this chapter, by

explaining the architecture of NuKV.

4.1 The Architecture of eBay NuKV

The data of a typical NuKV deployment is fully replicated on D data centers. Inside each data

center, the data is hosted by P partitions. For each partition, we create several replicas inside a

data center. Thus, we have two levels of replication; at one level, we create replicas of the entire

data in several data centers, at another level, we create replicas of partitions inside a data center.

The replicas of a partition inside a data center form a Raft group [57]. Each group has a leader

and other replicas are followers. For each partition, Ld denotes the leader at the data center d. Fi
d

denotes the ith follower of Ld (see Figure 4.1).

NuKV follows a multi-leader replication, i.e. clients can write to the leader of any data center.

Followers learn new updates via the Raft algorithm [57]. An update on a data center will be

asynchronously replicated to the leaders of other data centers by a special follower of the Raft

group denoted by XC. The XC servers are stateless. Thus, in case of failure, they can easily recover

and resume sending replicate messages to other data centers. Data nodes, on the other hand, detect

repeated writes received from XC servers, and avoid applying them. We assume FIFO channels

between data centers, i.e., the XC sends updates to the leaders of other data centers with the same

order it reads them from its Raft log. Clients usually perform their operations on their local data

center. However, it is possible that they access other data centers too. For read operations, clients

may use any replica inside a data center, but writes are always on the leaders.
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Figure 4.1: An example of a NuKV deployment with three data centers each with R. Note that for
each partition, we have the architecture shown here.

4.2 Protocol

In this section, we provide a protocol for providing different levels of consistency defined in

Section 2.2. The read part of the protocol is basically an adoption of the protocol provided in [65]

for our architecture with Raft replication and partitioning explained in Section 4.1. Two basic

operations for a key-value store are PUT(k, v) which writes value v for key k and GET(k) which

reads the value of key k. Out algorithm may block a GET operation, when the server cannot meet

the session guarantee request by the client. For the PUT operations, instead of blocking, we use

timestamping with HLC [42] to provide session guarantees.

4.2.1 Client-side

Each client c maintains two D × P matrices: 1) highest read matrix (hrm), and 2) highest write

matrix (hwm). hrm[d, p] is the highest Raft log index of the versions written in partition p of data

center d read by client c. hwm[d, p] is the highest Raft log index of the versions written by client c
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at partition p of data center d. Note that hrm and hwm are only maintained by the client. They are

not sent over the network or stored with keys. Thus, their overhead is negligible. The client also

maintains two scalars dtr and dtw that maintains the highest HLC timestamps of versions read and

written by the client, respectively.

Algorithm 4.1 shows the client-side of our protocol. The client updates its hrm, hwm, dtr , and

dtw as it reads and writes the data according to the definitions provided above. When the client

wants to read a key on partition p, it includes two vectors hrv and hwv with its GET request. The

server-side uses these vectors to provide various session guarantees for read operations. Let O be

the vector of size D with all entries equal to zero. When the client sends a GET request to partition

p, it can send O or the row corresponding to partition p in its hrm, i.e. hrm[:, p] as hrv. Similarly,

it can send O or the row corresponding to partition p in its hwm i.e. hwm[:, p] as hwv. By choosing

vectors for hrv and hwv, the client can require different session guarantees for its read operations in

a per-operation basis as it is shown in Algorithm 4.1. In this algorithm, monotonic-read-your-write

means a session guarantee that requires both monotonic-read and read-your-write guarantees.

When the client wants to write a key on partition p, it includes an integer called dependency time

denoted by dt in its PUT request. The server-side uses this value to provide various session guaran-

tees for write operations. The client can control its desired session guarantee for a write operation

as it is shown in Algorithm 4.1 by choosing values for dt. Choosing 0 results in just eventual consis-

tency, dtw results in monotonic-write, dtr results in write-follows-reads, and max(dtr, dtw) results

in both monotonic-write and write-follows-reads that we refer to bymonotonic-write-follows-reads.

4.2.2 Server-side

Each server maintains a stable vector (sv) with size D. sv[d] in server s is the highest log index of

the versions written in data center d committed in server s. For each server, PCd shows the value

of the physical clock, and HLCd shows the value of the hybrid logical clock in Ld .

Algorithm 4.2 shows the server-side of our protocol. In the GET operation handler, the server

blocks if for some i, sv[i] is smaller than hrv[i] or hwv[i] sent by the client. This guarantees
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Algorithm 4.1 Client-side
1: GET (key k, ReadConsistencyLevel l)
2: p = partition id of k
3: if (l = EVENTUAL)
4: hrv = hwv = O
5: else if (l =MONOTONIC-READ)
6: hwv = O
7: hrv = hrm[:, p]
8: else if (l = READ-YOUR-WRITE)
9: hwv = hwm[:, p]
10: hrv = O
11: else if (l =MONOTONIC-READ-YOUR-WRITE)
12: hwv = hwm[:, p]
13: hrv = hrm[:, p]
14: send 〈GetReq k, hwv, hrv〉 to server i
15: receive 〈GetReply v, dc_id, log_idx, t〉
16: hrm[dc_id, p] = max(hrm[dc_id, p], log_idx)
17: dtr = max(dtr, t)
18: return v

19: PUT (key k, value v, WriteConsistencyLevel l)
20: p = partition id of k
21: if (l = EVENTUAL)
22: dt = 0
23: else if (l =WRITE-FOLLOWS-READS)
24: dt = dtr
25: else if (l =MONOTONIC-WRITE)
26: dt = drw
27: else if (l =MONOTONIC-WRITE-FOLLOWS-READS)
28: dt = max(dtr, dtw)
29: send 〈PutReq k, v, dt〉 to server i
30: receive 〈PutReply dc_id, log_idx, t〉
31: hwm[dc_id, p] = max(hwm[dc_id, p], log_idx)
32: dtw = max(dtw, t)
33: return
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that the server has committed all necessary version before reading the value of the requested key.

The server, next, returns the version with the highest timestamp among versions written for the

requested key.

In the PUT operation handler, the server first updates its HLC using dt sent by the client by

calling method updateHLC in Line 6. This will call HLC algorithm [42] and guarantees that

HLCd will be higher than any timestamp read/written by the client based on the session guarantee

requested by the client. Next, the server creates a new version, timestamps it with the updated

HLCd , and gives it to the Raft algorithm for replication. Once Raft committed, the servers add

the version to the version chain of the key and update sv entry for the local data center by the Raft

log index. After committing the value on the leader, and updating the local entry of sv, the server

returns reply to the client and includes the id of the local data center together with the sv entry for

the local data center, and the assigned timestamp. Similar to the leader, other non-XC servers also

update their sv upon committing a new version. On the other hand, when an XC server commits

version v, if v.dc_id is the same as the data center id of the server, i.e. the committed write is a

local write, it sends a replicate message to the leader of the other groups to propagate a local write

to other data centers. It includes the log index of the operation writing the version. Upon receiving

a replicate message, the leaders in other data centers append the received message to their Raft log.

Followers commit versions received from XC servers like normal local versions and update their

sv upon committing in Line 23. If the XC commits a version with a dcid that is different from the

id of the local data center, it simply drops the message and does nothing, because the XC of the

original data center is responsible for propagating the writes to the other data centers.

4.3 Correctness

In this section, we provide the correctness of the protocol provided in Section 4.2.

Lemma 1 When a server s has not committed write w with log index log_idx written in data center

d, sv[d] < log_idx.

Proof 1 By the FIFO assumption of the cross-data center channels, and the total order provided by
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Algorithm 4.2 Server-side
1: Upon receive 〈GetReq k, hwv, hrv〉
2: block while ∃i s.t. (sv[i] < hrv[i] ∨ sv[i] < hwv[i])
3: v = the version for k with the highest timestamp
4: send 〈GetReply v.value, v.dc_id, sv[v.dc_id], v.t〉 to client

5: Upon receive 〈PutReq k, value, dt〉 at Ld
6: updateHLC (dt)
7: t = HLCd
8: create new version v

9: v.value← value
10: v.t ← t
11: v.dc_id ← d
12: append the 〈k, v〉 to the Raft log
13: send 〈PutReply d, sv[d], t〉 to client

14: updateHLC (t) at Ld
15: l′← HLCd .l
16: HLCd .l ← max(l′,PCd, t.l)
17: if (HLCd .l = l′ = t.l)
18: HLCd .c← max(HLCd .c, t .c) + 1
19: else if (HLCd .l = l′) HLCd .c← HLCd .c + 1
20: else if (HLCd .l = l) HLCd .c← t .c + 1
21: else HLCd .c← 0

22: Upon commit 〈k, v〉 with log_idx at a non-XC server
23: sv[v.dc_id] = log_idx
24: add v to the version chain of k

25: Upon commit 〈k, v〉 at XCd with log_idx
26: if v.dc_id = d
27: send 〈Replicate k, v, log_idx〉 to Ld′ for all

d′ , d

28: Upon receive 〈Replicate k, v, log_idx〉 at Ld
29: append the 〈k, v〉 with log_idx to the Raft log

the Raft algorithm [57], we know that versions are committed with the same order that are written

in their original data centers. Thus, when write w has not committed on a server, all previously

committed writes written in data center d have been written before w. Thus, their log index in

smaller than log_idx which leads to sv[d] < log_idx.

Now, using the above lemma, we prove the monotonic-read consistency of the protocol. Specif-
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ically,

Theorem 1 (Monotonic-read) Any operation reading a key on partition p by client c with hrvc =

hrm[:, p] satisfies monotonic-read consistency.

Proof 2 Let O be an operation by client c that reads the value of key k at time t at server s.

If O does not satisfy monotonic-read consistency, there exists a w ∈ ClientReads(c, k, t) written

originally at data center d with log index log_idx that is not included inCommittedWrites(s, k, t′),

i.e., w has not committed at s at time t′ where t′ is the time of reading value for k. Thus, according

to Lemma 1, sv[d] < log_idx at time t′. Since client c has read w, hrv[d] ≥ log_idx, according

to Line 16 of Algorithm 4.1. Since O returns at time t′, sv[d] > hrv[d] at time t′, according to

Line 2. Thus, sv[d] ≥ log_idx at time t′ (contradiction).

In a similar way, we can prove following theorem:

Theorem 2 (Read-your-write) Any operation reading a key on partition p by client c with hwvc =

hwm[:, p] satisfies read-your-write consistency for f .

Now, we prove the correctness of our protocol for session guarantees of write operations.

Theorem 3 (Monotonic-write) Any operationwriting a key on partition p by client cwith dt = dtw

satisfies monotonic-write consistency.

Proof 3 LetO be an operation by client c thatwrites version v for key k at time t. IfO does not satisfy

monotonic-write consistency, there exists server s and time t′ such that CommittedWrites(s, k, t′)

includes O, but a client accessing s reads a version v′ written by write w , O included in

ClientWrites(c, k, t). By Line 32 of Algorithm 4.1, dtw is higher than v′.t at time of writing

v. By Line 6 of Algorithm 4.2, and HLC algorithm provided in updateHLC function, we know

HLCd > dtw. Thus, v.t > v′.t. Since O is included in CommittedWrites(s, k, t′), v is in the

version chain for key k according to Line 24. Thus, according to Line 3, server s never returns v′

with a smaller timestamp than v.t (contradiction).
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In a similar way, we can prove following theorem:

Theorem 4 (Write-follows-reads) Any operation writing a key on partition p by client c with

dt = dtr satisfies write-follows-reads consistency.

Finally, it is straightforward to see that the protocol provided in Section 4.2 satisfies implicit

requirements R1 and R2 provided in Section 2.2, as GET always return committed versions, and

all servers finally receive any committed version.

4.4 Experimental Results

In this section, we provide the results of benchmarking the protocol defined in Section 4.2 for

the architecture explained in Section 2.1. In Section 4.4.1, we provide the experimental setup. In

Section 4.4.2, first, we evaluate the overhead of different levels of session guarantees when clients

never change their data center. The results of this case reflect the impact of the delay of the Raft on

the performance overhead of session guarantees. Then, we consider the case where clients switch

to a remote data center for some of their operations. In addition to the Raft delay, the results of this

case also show the impact of cross-data center propagation delay on the performance overhead of

providing session guarantees. In Section 4.4.3, we investigate the effect of workload characteristics.

Section 4.4.4 provides the overall implication of the results.

4.4.1 Experimental Setup

NuKV is implemented in C++. For Raft, it uses an enhanced version of [4]. The client and servers

are connected by gRPC [9] and we use Google Protocol Buffers [8] for marshaling/unmarshaling

the data.

We did our experiments on a deployment including two data centers, each with three replicas on

different machines. Inside a data center, we also have an XC server that forwards the log commits

to the leader of the other data center. One data center is located at Phoenix, Arizona, and the other

data center is located at Salt Lake City, Utah. The average RTT time between these two data centers
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w/o HLC w/ HLC Write Guarantee Read Guarantee
E Eventual Eventual

M/E M/EHLC Monotonic-write-follows-reads Eventual
E/M E/MHLC Eventual Monotonic-read-your-write
M/M M/MHLC Monotonic-write-follows-reads Monotonic-read-your-write+

Table 4.1: Legend for Figures 4.2- 4.6

is ≈ 15 (ms). We run all replicas and XC servers on machines with the following specification: 4

vCPUs, Intel Core Processor (Haswell) 2.0 GHz, 4 GB memory, 40 GB Storage Capacity running

Ubuntu 16.04.3.

We run client threads from both data centers. We use one machine with following specification

for each data center to run the client threads: 8 vCPUs, Intel Core Processor (Haswell) 2.0 GHz, 4

GB memory, 40 GB Storage Capacity running Ubuntu 16.04.3.

Each client thread randomly decides to write or read a key. When it decides to write a key, it

randomly picks one of the leaders and writes on it. On the other hand, when it decides to read a

key, it randomly picks one of the six replicas and reads from it. These random selections are done

with the given probabilities. With different probabilities, we can study the effect of different client

usage patterns and the workload characteristics on the performance of the system. We consider

16B keys and 64B values.

4.4.2 Effect of Locality of Traffic

In the first set of experiments, we investigate the effect of locality of traffic on the performance of

our key-value store. First, we consider the case where clients only access their local data center.

We consider seven cases as shown in Table 4.1. The cases with HLC subscript show the results

for our protocol that uses HLC, and cases without HLC subscript show results when we do not use

HLC. If we do not use HLC then the PUT operation must wait until the current server receives all

the relevant updates that must occur before the current PUT operation. However, with HLC, we

can simply assign the new PUT operation a higher timestamp to ensure that it will be ordered later

than previous writes.
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Figure 4.2: The effect of load on the latency and throughput of mixed PUT and GET operations
with 100% local traffic

Figure 4.2a and Figure 4.2b show the effect of load on the operation latency and throughput,

respectively. In all diagrams with throughout, we report the total operations done by the clients

accessing one of the data centers. The results are for 0.5:0.5 put:get ratio, i.e., 50% of operations

are PUT, and 50%GET. Note that when clients do not change their data centers, our system actually

provides sequential consistency for keys of each partition thanks to the Raft protocol [57], i.e. all

updates are applied with the same other on all replicas in one data center. However, regarding the

recency of the updates, it is possible that a client reads a version in one replica, but does not find it

on another replica.

As expected, the latency and throughput increase in all cases aswe runmore client threads. Since

propagation delay is very small inside one data center, providing session guarantees causes only a

negligible overhead such that for some cases we even observed better latency and throughput for

stronger guarantees compared with eventual consistency due to the experimental error. However,

generally, eventual consistency and M/E , and M/EHLC show better results. In all cases, the

additional latency compared with eventual consistency always remains less than 1 (ms).

Next, we consider the case where clients may use the remote data center with 10% probability.

Figures 4.3a and 4.3b show the effect of load on the operation latency with 0.5:0.5 put:get ratio.
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Figure 4.3: The effect of load on the latency and throughput of mixed PUT and GET operations
with 10% remote traffic

Unlike the case with 100% local traffic, the difference between eventual consistency and other cases

is clear here. In all cases, eventual consistency has the lowest latency. M/EHLC provides the same

latency as that of eventual consistency due to wait-free write operations by using HLCs. For 40

client threads, M/E , E/M , and M/M requires an additional ~10 (ms) compared with eventual

consistency. When we use HLCs, M/EHLC requires no additional latency, and E/MHLC and

M/MHLC requires ~7.7 (ms) and ~8.6 (ms) additional latency. This improvement allows us to

process 12-160% additional operations (160% occurs for the case M/E where the use of HLC

eliminates the delay in write operations thereby allowing clients to issue more operations)

To further analyze the effect of locality of traffic on the performance, we consider the system
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Figure 4.4: The effect of local access probability on the latency and throughput of mixed PUT and
GET operations.

with various local access probabilities. Figures 4.4a and 4.4b show how the average latency and

throughput change as we increase the local access probability for 40 client threads in each data

center. The change in the latency and throughput is not clear, except for case with local access

probability 1 where the latency collapses, and throughput increases significantly.

4.4.3 Effect of Workload

In this section, we want to see how the performance changes for workloads with various natures

(e.g, read-heavy, write-heavy). The results are for 40 client threads per data center. First, we

consider the sticky clients, i.e., 100% local traffic. Figure 4.5a shows the effect of write proportion

on the average latency. As write proportion increases the latency increases which is expected,

because write operations are expected to be heavier than read operations. Figure 4.5b shows how

throughput changes as we change the workload for different levels of consistency. Like Section

4.4.2, the overhead of session guarantees for sticky clients is negligible. For pure-read workload,

there is no meaningful overhead, as there is no update and all replicas provide the same data. Thus,

all session guarantees are always satisfied.

Figures 4.6a and 4.6b show the effect of write proportion on the average latency for the case
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Figure 4.5: The effect of workload on latency and throughput of mixed PUT and GET operations
with 100% local traffic

with 10% remote traffic. Again, we see that the difference between eventual consistency and

stronger consistency models is more obvious due to inter-data center replication latency. Also, like

all other results M/EHLC provide the same performance as eventual consistency. For M/MHLC

consistency level, the latency drops as we move from 0.75 write proportion to 1. The reason is with

write proportion 1, there is no read operation, and for write operations, M/MHLC is the same as

M/EHLC . Thus, it does not require any blocking. Figure 4.6c shows how throughput changes as

we change the workload for different levels of consistency with 10% remote access.

4.4.4 Implication of Experimental Results

From these results, we find that if we introduce session guarantees, and the client remains within

the same data center, the overhead is within experimental error. Furthermore, even if the client

changes its data center, the cost of increased latency is very small, ≈ 10(ms). From these results,

we find that the session guarantees considered in this paper can be achieved with a very low cost.

Without session guarantees, the application can suffer from issues such as the user writes a new

value for a key, but obtains the old value when he reads the key, or the user changes the password

twice, but finds that the stored password is not the same as the latest one. Such common but highly

undesirable problems with eventual consistency can be eliminated with a very low overhead with
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Figure 4.6: The effect of workload on latency and throughput of mixed PUT and GET operations
with 10% remote traffic

session guarantees.

Finally, this low overhead also suggests that it is not worthwhile to attempt session guarantees

by having clients cache the data they have read or written, as it complicates the design of clients

substantially. This is especially important to support computing-challenged clients.
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CHAPTER 5

CAUSAL CONSISTENCY USING HYBRID LOGICAL CLOCKS

As explained in Section 3.2.2, GentleRain reduces the overhead of tracking dependencies by taking

an implicit approach via physical timestamps. However, it relies on synchronized and monotonic

physical clocks for both its correctness and performance. Specifically, it requires that clocks are

strictly increasing. This may be hard to guarantee if the underlying service such as NTP causes

non-monotonic updates to POSIX time [16] or suffers from leap seconds [2, 7]. In addition, as we

will see, the clock skew between physical clocks of partitions may lead to cases where GentleRain

must intentionally delay write operations.

The issue of clock anomalies is intensified in the context of query amplification, where a single

query (e.g., an update on a Facebook page) results in many (possibly 100s to 1000s) GET/PUT

operations [19]. In this case, the delays involved in each of these operations contribute to the total

delay of the operation, and can substantially increase the response time for the clients.

Our goal in this chapter is to analyze the effect of clock anomalies to develop a causally

consistent data store that is resistant to clock skew among servers. This will allow us to ensure that

high performance is provided even if there is a clock skew among servers. It would obviate the

need for all servers in a data center to be co-located for the sake of reducing clock anomalies.

To achieve this goal, we develop CausalSpartanX that is based on the structure of GentleRain

but utilizes HLCs [42]. Similar to [35,36,49,50], we assume that a client only accesses one replica

during its execution. In Chapter 6 we show that this assumption is essential if we want to provide

causal consistency while ensuring that all local updates are visible immediately. In other words,

we show that if the client could access multiple replicas and a replica makes local updates visible

immediately then it is impossible to provide causal consistency.

In this chapter:

• We show that in the presence of clock anomalies, CausalSpartanX reduces the latency of PUT

46



operations compared with that of GentleRain. Moreover, the performance or correctness of

CausalSpartanX is unaffected by clock anomalies.

• We demonstrate that CausalSpartanX is especially effective to deal with delays associated

with query amplification.

• We demonstrate that CausalSpartanX reduces the update visibility latency. This is especially

important in collaborative applications associated with a data store. For example, in an

application where two clients update a common variable (for example, the bid price for an

auction) based on the update of the other client, CausalSpartanX reduces the execution time

substantially.

• We show that using HLC instead of physical clocks does not have any overhead.

• We demonstrate the efficiency provided by our approach by performing experiments on cloud

services provided by Amazon Web Services [1].

5.1 Effect of Clock Anomalies

Thanks to the use of clocks for dependency checking, GentleRain [36] has a throughput higher

than that of other causally consistent data stores proposed in the literature such as COPS [49] or

Orbe [35]. In particular, GentleRain avoids sending dependency check messages, unlike other

systems which leads to a light message complexity which in turn leads to higher throughput. In

this section, we discuss the sensitivity of GentleRain on the accuracy of physical clocks and clock

synchronization.

5.1.1 Sensitivity on Physical Clock and Clock Synchronization

As explained in Section 3.2.2, to satisfy condition C1, in some cases, it may be necessary to wait

before creating a new version. Specifically, if a client has read/written a key with timestamp t, then

any future PUT operation the client invokes must have a timestamp higher than t. Hence, the client

sends the timestamp t of the last version that it has read/written together with a PUT operation. The
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partition receiving this request first waits until its physical clock is higher than t before creating

the new version. This wait time, as we observed in our experiments, is proportional to the clock

skew between servers. In other words, as the physical clocks of servers drift from each other, the

incidence and the amount of this wait period increases.

In addition, with GentleRain algorithm sketched in Section 3.2.2, the physical clocks cannot go

backward. To illustrate this, consider a system consisting of two data centers A and B. Suppose

GSTs in both data centers are 6. That means, both data centers assume all versions with timestamps

smaller than 6 are visible (condition C2). Now, suppose the physical clock of one of the servers in

data center A goes backward to 5. In this situation, if a client writes a new version at that server,

condition C2 is violated, as the version with timestamp 5 has not arrived in data center B, but its

GST is 6 which is higher than 5.

As we explained above, both performance and correctness of GentleRain rely on the accuracy

of the physical clocks and the clock synchronization between servers.

5.1.2 Query Amplification

The sensitivity issue identified in Section 5.1.1 is made worse in practice, because a single end

user request usually translates to so many possibly causally dependent internal queries. This

phenomenon is known as query amplification [19]. In a system like Facebook, query amplification

may result in up to thousands of internal queries for a single end user request [19]. In such a system,

an end user submits the request to a web server. The web server performs necessary internal queries,

and then responds to the end user. This implies that the web server needs to wait for all internal

queries before responding to the end user request. Thus, any delay in any of internal queries will

affect the end user experience [19].

CausalSpartanX solves the issues identified in this section by ensuring that no delays are added

to PUT operations. Therefore, CausalSpartanX is unaffected by clock skew even in the presence of

query amplification. We achieve this goal by using HLCs instead of physical clocks.
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5.2 CausalSpartanX Basic Protocol

In this section, we focus on CausalSpartanX protocol for basic PUT and GET operations 1.

One way to get around the issue of PUT latency identified in Section 5.1 is as follows: Suppose

that a client has read a value written at time t and it wants to perform a new PUT operation on a

server whose time is less than t. To satisfy C1, in [36], PUT operation is delayed until the clock

of the server was increased beyond t. Another option is to change the clock of the server to be

t + 1. However, changing the physical clock is undesirable; it would lead to a violation of clock

synchronization achieved by protocols such as NTP. It would also have unintended consequences

for applications using that clock.

Using HLC in this problem solves several problems associated with changing the physical clock.

Specifically, HLC is a logical clock and can be changed if needed. In the scenario described in the

previous paragraph, this would be achieved by increasing the c value which is still guaranteed to

stay bounded [42]. At the same time, HLC is guaranteed to be close to the physical clock. Hence,

it can continue to be used in place of the physical clock. Also, HLC uses the physical clock as a

read-only variable thereby ensuring that it does not affect protocols such as NTP. For these reasons,

CausalSpartanX uses HLC.

Another important improvement in CausalSpartanX is the use of Data center Stable Vectors

(DSVs) instead of GSTs. DSVs are vectors that have an entry for each data center. If DSV[ j]

equals t in data center i, then it implies that all writes performed at data center j before time t

have been received by data center i. DSVs reduce update visibility latency and allow collaborative

clients to work quickly in the presence of some slow replicas. Next, we focus on different parts of

the CausalSpartanX protocol.

1The CausalSpartanX protocol for basic operation is published under name CausalSpartan
in [60].
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5.2.1 Client-side

A client c maintains a set of pairs of data center IDs and HLC timestamps called dependency set,

denoted as DSc2. For each data center i, there is at most one entry 〈i, h〉 in DSc where h specifies

the maximum timestamp of versions read by client c originally written in data center i. For a given

PUT request, this information is provided by the client so that the server can guarantee causal

consistency. A client c also maintains DSVc that is the most recent DSV that the client is aware of.

Algorithm 5.1 shows the algorithm for the client operations. For a GET operation, the client

sends the key that it wants to read together with its DSVc by sending 〈GetReq k,DSVc〉 message

to the server where key k resides. In the response, the server sends the value of the requested key

together with a list of dependencies of the returned value, ds, and the DSV in the server, dsv. The

client, then, first updates its DSV, and next updates its DSc by calling maxDS as follows: for each

〈i, h〉 ∈ ds if currently there is an entry 〈i, h′〉 in DSc, it replaces h′ with the maximum of h and h′.

Otherwise, it adds 〈i, h〉 to the DSc.

For a PUT operation, the client sends the key that it wants to write together with the desired

value and its DSc. In response, the server sends the timestamp assigned to this update together

with the ID of the data center. The client then updates its DSc by calling maxDS.

5.2.2 Server-side

In this section, we focus on the server-side of the protocol. We have M data centers (i.e., replicas)

each of which with N partitions (i.e., servers). We denote the nth partition in mth replica by pm
n

(see Figure 2.1). We denote the physical clock at partition pm
n by PCm

n . Each partition pm
n stores

a vector of size M (one entry for each data center) of (HLC) timestamps denoted by VVm
n . For

k , m,VVm
n [k] is the latest timestamp received from server pk

n by server pm
n . VVm

n [m] is the highest

timestamp assigned to a version written in partition pm
n . Partitions inside a data center, periodically

2This could be maintained as part of client library as in [49] so that the effective interface of
the client does not have to explicitly maintain this information. Alternatively, this could also be
maintained by the server for each client. For sake of simplicity, in our discussion, we assume that
this information is provided by the client.
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Algorithm 5.1 Client operations at client c
1: GET (key k)
2: send 〈GetReq k,DSVc〉 to server
3: receive 〈GetReply v, ds, dsv〉
4: DSVc ← max(DSVc, dsv)
5: DSc ← maxDS(DSc, ds)
6: return v

7: PUT (key k, value v)
8: send 〈PutReq k, v,DSc〉 to server
9: receive 〈PutReply ut, sr〉
10: DSc ← maxDS(DSc, {〈sr,ut〉})

11: maxDS (dependency set ds1, dependency set ds2)
12: for each 〈i, h〉 ∈ ds2
13: if ∃〈i, h′〉 ∈ ds1
14: ds1 ← ds1 − 〈i, h′〉
15: ds1 ← 〈i,max(h, h′)〉
16: else
17: ds1 ← ds1 ∪ {〈i, h〉}
18: return ds1

share their VVs with each other, and compute DSV as the entry-wise minimum of VVs. DSVm
n is

the DSV computed in server pm
n .

For each version, in addition to the key and value, we store some additional metadata including

the (HLC) time of creation of the version, ut, and the source replica, sr , where the version has been

written, and a set of dependencies, ds, similar to dependency sets of clients. Note that ds has at

most one entry for each data center.

Algorithm 5.2 shows the algorithm for PUT and GET operations at the server-side. Upon

receiving a GET request (GetReq), the server first updates its DSV if necessary using DSV value

received from the client (see Line 2 of Algorithm 5.2). After updating DSV, the server finds

the latest version of the requested key that is either written in the local data center, or all of its

dependencies are visible in the data center. To check this, the server compares the DS of the

key with its DSV. Note that to find the latest version, the server uses the last-writer-wins conflict

resolution function that breaks ties by data center IDs as explained in Section 2.3. After finding
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the proper value, the server returns the value together with the list of dependencies of the value,

and its DSV in a GetReply message. The server also includes the version being returned in the

dependency list in Line 4 of Algorithm 5.2 by calling the same maxDS function as defined in

Algorithm 5.1.

A major improvement in CausalSpartanX over GentleRain is providing wait-free PUT opera-

tions. Once server pm
n receives a PUT request, the server first updates its DSV with the DS value

received from the client. The server, next, updates VVm
n [m] to calling updateHLC function. It

uses maximum number between ds values and DSVm
n [m] as updateHLC argument. This will

guarantee that the new VVm
n [m] to be higher than this maximum and capture causality. Next, the

server creates a new version for the key specified by the client and uses the current VVm
n [m] value

for its timestamp. The server sends back the assigned timestamp d.ut and data center ID m to the

client in a PutReply message.

Upon creating a new version for an item in one data center, we send the new version to other

data centers via replicate messages. Upon receiving a 〈Replicate d〉 message from server pk
n , the

receiving server pm
n adds the new version to the version chain of the item with key d.k. The server

also updates the entry for server pk
n in its version vector. Thus, it sets VVm

n [k] to d.ut.

Algorithm 5.3 shows the algorithm for updating DSVs. As mentioned before, partitions inside

a data center periodically update their DSV values. Specifically, every θ time, partitions share

their VVs with each other and compute DSV as the entry-wise minimum of all VVs (see Line 2 of

Algorithm 5.3). Broadcasting VVs has a high overhead. Instead, we efficiently compute DSV over

a tree like the way GST is computed in [36]. Specifically, each node upon receiving VVs of its

children computes entry-wise minimum of the VVs and forwards the result to its parent. The root

server computes the final DSV and pushes it back through the tree. Each node, then, updates its

DSV upon receiving DSV from its parent. Algorithm 5.3 also shows the algorithm for the heartbeat

mechanism. Heartbeat messages are sent by a server if the server has not sent any replicate message

for a certain time ∆. The goal of heartbeat messages is updating the knowledge of the peers of a

partition in other data centers (i.e., updating VVs).
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Algorithm 5.2 PUT and GET operations at server pm
n

1: Upon receive 〈GetReq k, dsv〉
2: DSVm

n ← max(DSVm
n , dsv)

3: obtain latest version d (the version with lexicographically highest value 〈ut, sr〉) from version
chain of key k s.t.

• d.sr = m, or

• for any 〈i, h〉 ∈ d.ds, h ≤ DSVm
n [i]

4: ds← maxDS(d.ds, {〈d.sr, d.ut〉})
5: send 〈GetReply d.v, ds,DSVm

n 〉 to client

6: Upon receive 〈PutReq k, v, ds〉
7: DSVm

n ← maxDS(DSVm
n , ds)

8: dt ← max value in {ds.values ∪ {DSVm
n [m]}}

9: updateHCL(dt)
10: Create new item d
11: d.k ← k
12: d.v ← v

13: d.ut ← VVm
n [m]

14: d.sr ← m
15: d.ds← ds
16: insert d to version chain of k
17: send 〈PutReply d.ut,m〉 to client
18: for each server pk

n, k ∈ {0 . . . M − 1}, k , m do
19: send 〈Replicate d〉 to pk

n

20: Upon receive 〈Replicate d〉 from pk
n

21: insert d to version chain of key d.k
22: VVm

n [k] ← d.ut

23: updateHLCforPut (dt)
24: l′← VVm

n [m].l
25: VVm

n [m].l ← max(l′,PCm
n , dt .l)

26: if (VVm
n [m].l = l′ = dt .l) VVm

n [m].c← max(VVm
n [m].c, dt.c) + 1

27: else if (VVm
n [m].l = l′) VVm

n [m].c← VVm
n [m].c + 1

28: else if (VVm
n [m].l = dt.l) VVm

n [m].c← dt .c + 1
29: else VVm

n [m].c← 0
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Algorithm 5.3 HEARTBEAT and DSV computation operations at server pm
n

1: Upon every θ time
2: DSVm

n ← max(DSVm
n , entry-wise minN

j=1(VVm
j ))

3: Upon every ∆ time
4: if there has not been any replicate message in the past ∆ time
5: updateHCL()
6: for each server pk

n, k ∈ {0 . . . M − 1}, k , m do
7: send 〈Heartbeat HLCm

n 〉 to pk
n

8: Upon receive 〈Heartbeat hlc〉 from pk
n

9: VVm
n [k] ← hlc

10: updateHLC ()
11: l′← VVm

n [m].l
12: VVm

n [m].l ← max(VVm
n [m].l,PCm

n )
13: if (VVm

n [m].l = l′) VVm
n [m].c← VVm

n [m].c + 1
14: else VVm

n [m].c← 0

5.3 CausalSpartanX Read-only Transactions

In this section, we provide an algorithm for ROTX, that never blocks, and requires only one

round of communication between the client and the servers. Algorithm 5.4 shows both sides of

our algorithm for ROTX. Upon request of a ROTX operation from the application, the client sends

a ROTX request with the set of requested keys by the application together with its DSVc and DSc

to one of the servers hosting one of the requested keys to read. In the response, the server sends

the values of the requested keys, updated DSV, and the set of dependencies of the returned values.

Upon receiving the response, the client updates its DSVc and DSc with the new values returned by

the server, and return the received values from the server to the application.

On the server-side, upon receiving a ROTX request from a client, first updates it DSV by dsv

and ds values received from the client. The server, next, uses the current value of its DSV as the

snapshot vector, sv. Then, for each requested key k, the server sends a SliceReq request with sv

to the partition hosting k. Upon receiving response to its SliceReq message, the server reads the

returned value, and updates ds. Once the server learned the value of all requested keys, it sends the
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response to the client together with its new DSV and the update ds.

Upon receiving a SliceReq request, a partition first updates the local entry of its DSV by the

corresponding entry in sv. Next, it retrieves the most recent version s of the request key such that all

dependencies of the version are smaller than their corresponding entries in sv, and the update time

of the version, d.ut, is less than or equal to the sv[d.sr]. Then, the partition returns the response

to the requesting server with the value of the key and the set of dependencies.

Algorithm 5.4 Algorithm for ROTX
1: //at client c
2: ROTX (keys kset)
3: send 〈ROTX kset,DSVc,DSc〉 to server
4: receive 〈ROTXReply vset, dsv, ds〉
5: DSVc ← max(DSVc, dsv)
6: DSc ← maxDS(DSc, ds)
7: return vset

8: //at partition pm
n

9: Upon receive 〈ROTX kset, dsv, ds〉
10: DSVm

n ← max(DSVm
n , dsv, ds)

11: vset ← ∅
12: sv ← DSVm

n
13: for each k ∈ kset do {In parallel}
14: send 〈SliceReq k, sv〉 to server
15: receive 〈SliceReply v, ds′〉
16: vset ← vset ∪ {v}
17: ds← maxDS(ds, ds′)
18: send 〈ROTXReply vset,DSVm

n , ds〉 to client

19: //at partition pm
n

20: Upon receive 〈SliceReq k, sv〉
21: DSVm

n [m] ← max(DSVm
n [m], sv[m])

22: obtain latest version d from version chain of key k s.t. for any 〈i, h〉 ∈
maxDS(d.ds, {〈d.sr, d.ut〉}), h ≤ sv[i]

23: ds← maxDS(d.ds, {〈d.sr, d.ut〉})
24: send 〈SliceReply d.v, ds〉 back to server
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5.4 Correctness

In this section, we focus on the correctness of our proposed protocol. We want to show that the

data store running our protocol is a causal++ consistent for R = O = {GET,ROT X}, I = {GET},

and conflict resolution function last-write-wins. For ROTX operations, we also need to show that

the set of values returned by ROTX operations are causally consistent with each other.

5.4.1 Causal Consistency for GET Operations

As explained in Section 5.2, we store a dependency set for each version. This set contains at most

one entry per data center. Whenever a client reads a version, the client updates its dependency

set by the dependency set of the version (see Line 5 of Algorithm 5.1, and Line 6 of Algorithm

5.4). This dependency set later will be used as the dependency set of any version written by this

client. Thus, dependencies are transitive. In addition, whenever a client writes a version v, we

update the DSc of the client in Line 10 of Algorithm 5.1 to capture dependency on v. Thus, ds of a

version written by client c captures dependency on any other version previously written by c, and

any version v previously read by client c along with all dependencies of v. Specifically, we have

the following observation,

Observation 5 Let v1 and v2 be two versions for two keys. If v1 dep v2, then for any member

〈i, h〉 ∈ v2.ds, there exists 〈i, h′〉 ∈ v1.ds such that h′ ≥ h.

Whenever a server returns a version, it includes the update time of the version in the dependency

set returned with the version/versions (see Line 4 of Algorithm 5.2, and Line 23 of Algorithm 5.4).

Thus, based on Observation 5, we have the following observation,

Observation 6 Let v1 and v2 be two versions for two keys such that v2 is written in data center j.

If v1 dep v2, then v1.ds has member 〈 j, h〉 such that h ≥ v2.ut.

According to Line 8 of Algorithm 5.2, using HLC algorithm, our protocol assigns a timestamp

higher than the timestamps of all of the dependencies of a version. Thus, we have
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Observation 7 Let v1 and v2 be two versions for two keys. If v1 dep v2, then v1.ut > v2.ut.

We consider the last-write-wins policy for conflict resolution. The last-write-wins means, if two

versions are conflicting, then the winner version is the one with higher timestamp. If timestamps

are equal, the winner version is the one with higher replication id. Specifically, we have

Observation 8 For conflict resolution function f = last-writer-wins, f (v, v′) = v iff

• v dep v′, or

• ¬(v dep v′) ∧ ¬(v′ dep v) ∧ 〈v.ut, v.sr〉 is lexicographically greater than 〈v′.ut, v′.sr〉.

Lemma 2 All versions written in data center i are immediately visible+ for {GET} to any client

at data center i.

Proof 4 Suppose a local version v is not immediately visible+ for {GET} to a client. That requires

that in response to aGET operation, another version v′ is returned such that f (v, v′) = v. According

toObservations 8 and 7, 〈v.ut, v.sr〉 in any case is lexicographically higher than 〈v′.ut, v′.sr〉. Thus,

since the version is local, the hosting partition has this version in the version chain of the key. Thus,

according to Line 3 of Algorithm 5.2, it is impossible to return v′ (contradiction).

A non-local version is not visible for {GET} in a data center, either if it has not arrived its

hosting partition, or DSV of the hosting partition is behind of one of the dependencies. Specifically,

we have the following Lemma,

Lemma 3 Let v be a version that is written in partition pm
n . If v is not visible+ for {GET} for

conflict resolution function f = last-write-wins to a client in data center i, then

• v has not arrived partition pi
n, or

• there is a member 〈k, h〉 ∈ v.ds, such that DSV i
n[k] < h.
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Proof 5 When v is not visible+ for {GET} in data center i, it means in the response of a GET

operation another version v′ is returned such that f (v, v′) = v (see Definition 13). According to

Observation 8, two cases are possible. In the first case, according to Observation 7, v.ut > v′.ut,

thus in both cases 〈v.ut, v.sr〉 > 〈v′.ut, v′.sr〉. Now suppose both conditions of the this lemma are

false. Then, according to Line 3 of Algorithm 5.2, it is impossible that GET operation returns v′

(contradiction).

We define DSV i
real as entry-wise minimum of all VV of partitions in data center i. In other,

words, for all 1 < m < M , DSV i
real[i] = min1<n<N VV i

n[m].

Now, we have the following lemma about the relation of the DSVreal and other DSV and DS

values inside a data center:

Lemma 4 In data center i,

• for all 1 < n < N , and 1 < m < M ∧ i , m, DSV i
n[m] ≤ DSV i

real[m], and

• for any client c accessing data center i, for all 1 < m < M ∧ i , m, DSVc[m] ≤ DSVm
real[m],

and

• for any client c accessing data center i, for any 〈k, h〉 ∈ DSc ∧ k , i, h ≤ DSV i
real[m].

Proof 6 We prove this lemma, by induction over time.

At the beginning all VV , DSV , and DS values at servers and client are zero. Thus, DSVm
real =

DSVm
n for any 1 < n < N . For any client c, DSVc = DSVm

real . Also, for any 〈k, h〉 ∈ DSc,

h = DSVm
real[k]. Now we consider different operations and note how DSVm

n , DSVc, or DSc values

changes. For sake of brevity, we assume 1 < n < N , 1 < m < M ∧ i , m, and i , k implicit:

• DSV calculation: At Line 2 of Algorithm 5.3, each server computes the the DSV as the

entry-wise minimum of all VVs. Thus, by definition of DSV i
real , DSV i

real ≥ DSVm
n .

• GET operation: By induction hypothesis, we have dsv ≤ DSV i
real . Thus, when the server

updates its DSV i
n at Line 2 of Algorithm 5.2, still we have DSV i

n ≤ DSV i
real . The server
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returns the value to client, and client updates its DSVc at Line 4 of Algorithm 5.1 using DSV i
n

received from server. Thus, still we have DSVc ≤ DSV i
real . The client also updates its DSc

with ds received from server at Line 5 of Algorithm 5.1. If the version is local, all of its

dependencies are the version is smaller than DSV i
real by induction hypothesis. Otherwise,

since for any 〈k, h〉 ∈ ds, h ≤ DSV i
n[k], and DSV i

n ≤ DSV i
real , for any 〈k, h〉 in the new DSc,

we still have h ≤ DSV i
real .

• PUT operation: By induction hypothesis, we know for any 〈k, h〉 ∈ ds, h ≤ DSV i
real[k].

Thus, when the server updates is DSV at Line 7 of Algorithm 5.2, we still have DSV i
n ≤

DSV i
real .

• ROT X operation: By induction hypothesis, we know the dsv and ds received from client

is less than or equal to DSV i
real . Thus, when the server updates its DSV i

n at Line 10 of

Algorithm 5.4, still we have DSV i
n ≤ DSV i

real . The server returns the values to client, and

client updates its DSVc at Line 5 of Algorithm 5.4 using DSV i
n received from server. Thus,

still we have DSVc ≤ DSV i
real . The client also updates its DSc with ds received from server

at Line 5 of Algorithm 5.1. Since for any 〈k, h〉 ∈ ds, h ≤ sv[k], and sv ≤ DSV i
n ≤ DSV i

real ,

for any 〈k, h〉 in the new DSc, we still have h ≤ DSV i
real .

We assume FIFO channels between replicas. Thus, we have the following observation

Observation 9 If a version v written in data center m, has not arrived data center i, DSV i
real[m] <

v.ut.

According to Observation 9, and Lemma 4, we have the following observation:

Observation 10 If a version v written in data center m, has not arrived data center i, for all

1 ≤ n ≤ N , DSV i
n[m] < v.ut.

According to Line 12 of Algorithm 5.4, we set the value of sv for each ROT X operation by a

DSV value. Thus, according to Lemma 4, we have the following observation

59



Observation 11 For any ROT X operation at data center i, for all 1 ≤ m ≤ M ∧ i , m, sv[m] ≤

DSV i
real[m].

Note that in all lines where we change the DSV values, we always increase them. Thus, we note

the following observation:

Observation 12 For all 1 ≤ i ≤ M , 1 ≤ n ≤ N , and 1 ≤ m ≤ M , DSV i
n[m] never decreases.

Lemma 5 Once a version becomes visible+ for {GET} for a client in data center i it remains

visible+ for {GET} for any client in data center i.

Proof 7 Suppose a version v was visible+ to a client, but later it is not visible+. That requires that

in response to a GET operation, another version v′ is returned such that f (v, v′) = v. According to

Observations 8 and 7, 〈v.ut, v.sr〉 in any case is lexicographically higher than 〈v′.ut, v′.sr〉. Since

v was visible, it is either a local version, or for all 〈i, h〉 ∈ v.ds, DSV had a greater value than h.

According to Observation 12, DSV never decreases, the condition is still valid. Thus, according to

Line 3 of Algorithm 5.2, it is impossible to return v′ (contradiction).

When a GET operation returns a version, either the version is a local version, or the entries of

DSV in the hosting partition is greater than the specified dependency for the version (see Line 3 of

Algorithm 5.2). Specifically, we have the following observation,

Observation 13 Let v be a version for key k that is written in partition pm
n . If GET(k) returns v

in data center i , m, then for any member 〈 j, h〉 ∈ v.ds, DSV i
n[ j] ≥ h.

Lemma 6 Let v1 be a version written in data center i. Then, for any non-local version v2 such that

v1 dep v2, there must be a client c at data center i that has read either v2, or a non-local version

v3 such that v3 dep v2.

Proof 8 According to Definition 9, (event of writing v2)→ (event of writing v1). Since v1 is a local

version, and v2 is not a local version, a non-local version v3 must be read at data center i in event e
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such that (event of writing v2)→ e and e→ (event of writing v1). By definition 8, (event of writing

v3)→ e. Thus, v3 = v2, or (event of writing v2)→ (event of writing v3) that leads to v3 dep v2.

Lemma 7 Once client c reads local version v1 by a GET operation, any version v2 such that v1

dep v2 is visible+ for GET to c.

Proof 9 Wlog assume v1 and v2 are versions for keys k1, and k2 written in partitions n1 and

n2, respectively. Also, assume v1 is written in data center i, and v2 is written in data center m.

According to Lemma 3, we have two cases:

Case 1 v2 has not arrived partition pi
n2

Since v1 is a local version, and v2 is not a local version, according to Lemma 6, we have two

cases:

– there is a client at data center i that has read v2

Contradiction to assumption that v2 has not arrived partition pi
n2 .

– there is a client at data center i that has read non-local version v3 such that v3 dep v2

Wlog, assume v3 is written in partition n3.

Since v2 has not arrived data center i, according to Observation 9, DSV i
real[m] < v2.ut.

Since v3 dep v2, according to Observation 6, there is 〈m, h〉 ∈ v3.ds such that h ≥ v2.ut.

We have two cases for reading v3:

∗ v3 has been read by a GET operation: Since v3 is not a local version, according

to Observation 13 for any 〈m, h〉 ∈ v3.ds, DSVm
n1[m] ≥ h. According to Lemma 4,

DSV i
n1[m] ≤ DSV i

real[m]. Thus, DSV i
real[m] ≥ v2.ut (contradiction).

∗ v3 has been read by an ROT X operation: for any 〈m, h〉 ∈ v3.ds, sv[m] ≥ h.

According to Observation 11, sv[m] ≤ DSV i
real[m]. Thus, DSV i

real[m] ≥ v2.ut

(contradiction).

Case 2 there is a member 〈k, h〉 ∈ v2.ds, such that DSV i
n2[k] < h.
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Since v1 dep v2, according to Observation 5, there is member 〈k, h′〉 ∈ v1.ds such that

h′ ≥ h. According to Line 7 of Algorithm 5.2, we update the DSV value with the set of

dependecies when we write a new version in a PUT operation. Thus, DSV i
n1[k] ≥ h′ that

leads to DSV i
n1[k] ≥ h. Since client read v1 before reading k2, the DSV i

n2[k] at time of

reading k2 is greater or equal to DSV i
n1 , according to Lines 4 of Algorithm 5.1, and Line 2

of Algorithm 5.2. Thus, DSV i
n2[k] ≥ h (contradiction).

Theorem 5 The data store running CausalSpartanX protocol defined in Section 5.2 is causal+

consistent for {GET} with reader operations {GET} for f = last-writer-wins.

Proof 10 We prove this theorem by showing that CausalSpartanX protocol satisfies Definition 14.

The first condition is satisfied based on the fact that clients are sticky and Lemma 2. The second

condition is satisfied based on Lemma 5. We prove the third condition via contradiction:

Let k1 and k2 be any two arbitrary keys in the store residing in partitions n1 and n2. Let v1 be

a version of key k1, and v2 be a version of key k2 such that v1 dep v2. Now suppose client c reads

v1 in data center i via a GET operation, but v2 is not visible+ for a GET operation to client c. Let

v2 be a version written in a data center m. According to Lemma 3, two cases are possible:

Case 1 v2 has not arrived partition pi
n2 .

Since v2 has not arrived at data center i, according to Observation 10, DSV i
n1[m] < v2.ut.

Since, v1 dep v2, according to Observation 6, v1.ds has member 〈m, h〉 such that h ≥ v2.ut.

According to Lemma 7, v1 is not a local version. Since GET(k1) = v1, and v1 is not a local

version, according to Observation 13, for any member 〈 j, h〉 ∈ v.ds, DSV i
n1[ j] ≥ h. Thus,

DSV i
n1[m] ≥ v2.ut (contradiction).

Case 2 v2 has arrived, but there is a member 〈k, h〉 ∈ v2.ds, such that DSV i
n2[k] < h.

Since client c asks for k2 after reading v1, according to Line 2 of Algorithm 5.2, DSV i
n2[k]

at the time of reading k2 is higher than DSV i
n1[k] at the time of reading k1 (DSV i

n1[k] ≤

DSV i
n2[k]). Since v1 dep v2, according to Observation 5, there is member 〈k, h′〉 ∈ v1.ds
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such that h′ ≥ h. According to Lemma 7, v1 is not a local version. Since GET(k1) = v1,

and v1 is not a local version, according to Observation 13, DSV i
n1[k] ≥ h′ that leads to

DSV i
n2[k] ≥ h (contradiction).

With Lemma 2 and Theorem 5, we have the following corollary:

Corollary 1 The data store running CausalSpartanX protocol defined in Section 5.2 is causal++

consistent for {GET} for reader operations {GET} and instantly visible operations {GET} for

conflict resolution function f = last-writer-wins.

Lemma 8 Once a client c reads version v of key k at partition n by an {ROT X} operation at data

center i, it remains visible+ for {GET} for c.

Proof 11 Since the client has read the version, it is obviously written. According to Lemma 2, v2

is not a local version. Now, according to Lemma 3, two cases are possible:

Case 1 v has not arrived partition data center i.

Contradiction to the assumption that the client has read the version.

Case 2 v has arrived, but there is a member 〈 j, h〉 ∈ v.ds, such that DSV i
n[ j] < h.

Since client c asks for k after reading v by an ROT X operations, according to Line 2

of Algorithm 5.2, DSV i
n[ j] at the time of reading k using GET is higher than or equal to

DSVc[ j] after reading k by ROT X operation. Since ROT X has read v1, according to Line 22

of Algorithm 5.4, sv[ j] ≥ h. Since sv[ j] ≤ DSVc[ j], DSVc[ j] ≥ h that leads to DSV i
n[ j] ≥ h

at the time GET operation (contradiction).

Theorem 6 The data store running CausalSpartanX protocol defined in Section 5.2 is causal+

consistent for {GET} with reader operations {ROT X} for f = last-write-wins.

Proof 12 We prove this theorem by showing that CausalSpartanX protocol satisfies Definition 14.

The first condition is satisfied based on the fact that clients are sticky and Lemma 2. The second

condition is satisfied based on Lemma 8. We prove the third condition via contradiction:
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Let k1 and k2 be any two arbitrary keys in the store residing in partitions n1 and n2. Let v1 be

a version of key k1, and v2 be a version of key k2 such that v1 dep v2. Now suppose client c reads

v1 in data center i via an ROT X operation, but v2 is not visible+ for a GET operation to client c.

According to Lemma 2, v2 is not a local version. Let v2 be a version written in a data center m.

According Lemma 3, two cases are possible:

Case 1 v2 has not arrived partition pi
n2 .

Since v2 has not arrived at data center i, according to Observation 9, DSV i
real[m] < v2.ut.

Since, v1 dep v2, according to Observation 6, v1.ds has member 〈m, h〉 such that h ≥ v2.ut.

Since an ROT X operation has read v1, for any member 〈 j, h〉 ∈ v.ds, sv[ j] ≥ h. According

to Observation 11, sv[m] ≤ DSV i
real[m]. Thus, DSV i

real[m] ≥ v2.ut (contradiction).

Case 2 v2 has arrived, but there is a member 〈k, h〉 ∈ v2.ds, such that DSV i
n2[k] < h.

Since client c asks for k2 after reading v1, according to Line 2 of Algorithm 5.2, DSV i
n2[k] at

the time of reading k2 is higher than DSVc[k] after reading k1. Since v1 dep v2, according

to Observation 5, there is member 〈k, h′〉 ∈ v1.ds such that h′ ≥ h. Since ROT X has read

v1, according to Line 22 of Algorithm 5.4, sv[k] ≥ h′. Since sv ≤ DSVc, DSVc[k] ≥ h′ that

leads to DSV i
n2[k] ≥ h (contradiction).

With Lemma 2 and Theorem 6, we have the following corollary:

Corollary 2 The data store running CausalSpartanX protocol defined in Section 5.2 is causal++

consistent for {GET} for reader operations {ROT X} and instantly visible operations {GET} for

conflict resolution function f = last-writer-wins.

According to Corollaries 1 and 2, and Observation 1, we have the following corollary:

Corollary 3 The data store running CausalSpartanX protocol defined in Section 5.2 is causal++

consistent for {GET} for reader operations {GET,ROT X} and instantly visible operations {GET}

for conflict resolution function f = last-write-wins.
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5.4.2 Causal Consistency for ROTX Operations

Lemma 9 Let v be a version that is written in partition pm
n . If v is not visible+ for {ROT X} for

conflict resolution function f = last-write-wins to a client in data center i, then

• v has not arrived partition pi
n, or

• there is a member 〈 j, h〉 ∈ v.ds, such that sv[ j] < h, or

• sv[v.sr] < v.ut.

Proof 13 The poof of this lemma is the same as that of Lemma 3, except we must note Line 22 of

Algorithm 5.4.

Lemma 10 All versions written by client c are visible+ for {ROT X} to client c.

Proof 14 Suppose version v written by client c is not visible to ROT X . Suppose client c accesses

data center i. Now, according to Lemma 9, we have following cases:

Case 1 v has not arrived data center i Impossible, since the version is written by client c

• there is a member 〈 j, h〉 ∈ v.ds, such that sv[ j] < h Since the client has written version v,

for any 〈 j, h〉 ∈ v.ds, DSc[ j] > h. According to Line 10, sv[ j] > h (contradiction).

• sv[v.sr] < v.ut . Since the client has written version v, DSc[v.sr] > v.ut. According to Line

10, sv[ j] > v.ut (contradiction).

Lemma 11 Once client c reads local version v1 by a GET operation, any version v2 such that v1

dep v2 is visible+ for {ROT X} to c.

Proof 15 Wlog assume v1 and v2 are versions for keys k1, and k2 written in partitions n1 and n2,

respectively. Also, assume v2 is written in data center m. If version v2 is not visible+ for {ROT X},

Lemma 9, we have three cases:
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• v2 has not arrived partition pi
n

In this case, with the same argument provided in Case 1 of proof of Lemma 7, we face a

contradiction.

• there is a member 〈k, h〉 ∈ v2.ds, such that sv[k] < h.

Since v1 dep v2, according to Observation 5, there is member 〈k, h′〉 ∈ v1.ds such that

h′ ≥ h. According to Line 7 of Algorithm 5.2, we update the DSV value with the set of

dependencies when we write a new version in a PUT operation. Thus, DSV i
n1[k] ≥ h′ that

leads to DSV i
n1[k] ≥ h. Since client read v1 before reading k2, the DSVc[k] at time of

reading k2 is greater or equal to DSV i
n1 . According to Line 10, and 12 of Algorithm 5.4, the

sv of the ROT X operation is entry-wise greater than DSVc. Thus, sv[k] ≥ h (contradiction).

• sv[v2.sr] < v2.ut.

Since v1 dep v2, according to Observation 6, 〈v2.sr, h〉 ∈ v1.ds such that h ≥ v2.ut. Since

client read v1 before reading k2, ds[v.sr] ≥ h for ROT X operation reading k2. According

to Line 10 and 12, sv[v2.sr] ≥ v2.ut (contradiction).

Lemma 12 When client c reads a version v using GET operation, it remains visible+ for {ROT X}

for c.

Proof 16 Suppose v is not visible+ for {ROT X} to client c. Since client has read the version

before, obviously it is written. According to Lemma 9, there are three cases:

Case 1 v has not arrived the hosting partition.

Contradiction to the assumption that the client has read the version.

Case 2 there is a member 〈 j, h〉 ∈ v.ds, such that sv[ j] < h

Since the client has read v, the DSVc[ j] ≥ h. According to Line 10, and 12 of Algorithm

5.4, the sv of the ROT X operation is entry-wise greater than DSVc. Thus, sv[ j] ≥ h

(contradiction).
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Case 3 sv[v.sr] < v.ut.

Since the client has read v, the DSc[v.sr] ≥ v.ut after reading v. According to Line 10, and

12 of Algorithm 5.4, the sv of the ROT X operation is entry-wise greater than DSc. Thus,

sv[v.sr] ≥ v.ut (contradiction).

Theorem 7 The data store running CausalSpartanX protocol defined in Section 5.2 is causal+

consistent for {ROT X} with reader operations {GET} for f = last-write-wins.

Proof 17 We prove this theorem by showing that CausalSpartanX protocol satisfies Definition 14.

The first condition is satisfied according to Lemma 10. The second condition is satisfied based

on Lemma 12. We prove the third condition via contradiction:

Let k1 and k2 be any two arbitrary keys in the store residing in partitions n1 and n2. Let v1 be

a version of key k1, and v2 be a version of key k2 such that v1 dep v2. Now suppose client c reads

v1 in data center i via a GET operation, but v2 is not visible+ for {ROT X} operation to client c.

Let v2 be a version written in a data center m. According to Lemma 9, three cases are possible:

Case 1 v2 has not arrived partition pi
n2 .

Since v2 has not arrived at data center i, according to Observation 9, DSV i
real[m] < v2.ut,

and according to Observation 10, DSV i
n1[m] < v2.ut. Since, v1 dep v2, according to

Observation 6, v1.ds has member 〈m, h〉 such that h ≥ v2.ut. According to Lemma 11, v1

is not a local version. Since GET(k1) = v1, and v1 is not a local version, according to

Observation 13, for any member 〈 j, h〉 ∈ v.ds, DSV i
n1[ j] ≥ h. Thus, DSV i

n1[m] ≥ v2.ut

(contradiction).

Case 2 there is a member 〈 j, h〉 ∈ v.ds, such that sv[ j] < h.

Since v1 dep v2, according to Observation 5, for any member 〈 j, h〉 ∈ v2.ds, there exists

〈 j, h′〉 ∈ v1.ds such that h′ ≥ h. Since the client has read v1 by a GET operations, the

DSVc[ j] ≥ h′. According to Line 10, and 12 of Algorithm 5.4, the sv of the ROT X operation

is entry-wise greater than DSVc. Thus, sv[ j] ≥ h′. This leads to sv[ j] ≥ h (contradiction).

67



Case 3 sv[v2.sr] < v2.ut.

Since v1 dep v2, according to Observation 6, 〈v2.sr, h〉 ∈ v1.ds such that h ≥ v2.ut. Since

client read v1 before reading k2, ds[v.sr] ≥ h for ROT X operation reading k2. According

to Line 10 and 12 of Algorithm 5.4, sv[v2.sr] ≥ v2.ut (contradiction).

With Lemma 2 and Theorem 7, we have the following corollary:

Corollary 4 The data store running CausalSpartanX protocol defined in Section 5.2 is causal++

consistent for {ROT X} for reader operations {GET} and instantly visible operations {GET} for

conflict resolution function f = last-writer-wins.

Lemma 13 When client c read a version v using ROT X operation, it remains visible+ for {ROT X}

for c.

Proof 18 Suppose v is not visible+ for {ROT X} to client c. Since client has read the version

before, and according to Lemma 9, there are two cases:

Case 1 v has not arrived the hosting partition.

Contradiction to the assumption that the client has read the version.

Case 2 there is a member 〈 j, h〉 ∈ v.ds, such that sv[ j] < h

Since the client has read v, the DSVc[ j] ≥ h. According to Line 10, and 12 of Algorithm

5.4, the sv of the ROT X operation is entry-wise greater than DSVc. Thus, sv[ j] ≥ h

(contradiction).

Case 3 sv[v.sr] < v.ut.

Since the client has read v, the DSc[v.sr] ≥ v.ut after reading v. According to Line 10, and

12 of Algorithm 5.4, the sv of the ROT X operation is entry-wise greater than DSc. Thus,

sv[v.sr] ≥ v.ut (contradiction).

Theorem 8 The data store running CausalSpartanX protocol defined in Section 5.2 is causal+

consistent for {ROT X} with reader operations {ROT X} for f = last-writer-wins.
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Proof 19 We prove this theorem by showing that CausalSpartanX protocol satisfies Definition 14.

The first condition is satisfied according to Lemma 10. The second condition is satisfied based

on Lemma 13. We prove the third condition via contradiction:

Let k1 and k2 be any two arbitrary keys in the store residing in partitions n1 and n2. Let v1 be

a version of key k1, and v2 be a version of key k2 such that v1 dep v2. Now suppose client c reads

v1 in data center i via an ROT X operation, but v2 is not visible+ for {ROT X} operation to client

c.

Let v2 be a version written in a data center m. According to Lemma 9, three cases are possible:

Case 1 v2 has not arrived partition pi
n2 .

Since v2 has not arrived at data center i, according to Observation 9, DSV i
real[m] < v2.ut.

Since, v1 dep v2, according to Observation 6, v1.ds has member 〈m, h〉 such that h ≥ v2.ut.

Since an ROT X operation has read v1, for any member 〈 j, h〉 ∈ v.ds, sv[ j] ≥ h. According

to Observation 11, sv < DSV i
real . Thus, DSVreal[m] ≥ v2.ut (contradiction).

Case 2 there is a member 〈 j, h〉 ∈ v.ds, such that sv[ j] < h.

Since v1 dep v2, according to Observation 5, for any member 〈 j, h〉 ∈ v2.ds, there exists

〈 j, h′〉 ∈ v1.ds such that h′ ≥ h. Since the client has read v1 by a ROT X operations, the

sv[ j] ≥ h′ where sv1 is that sv of the ROT X reading v1. Since sv1 < DSVc, DSVc[ j] > h′.

According to Line 10, and 12 of Algorithm 5.4, the sv of the ROT X operation is entry-wise

greater than DSVc. Thus, sv[ j] ≥ h′. This leads to sv[ j] ≥ h (contradiction).

Case 3 sv[v2.sr] < v2.ut.

Since v1 dep v2, according to Observation 6, 〈v2.sr, h〉 ∈ v1.ds such that h ≥ v2.ut. Since

client read v1 before reading k2, ds[v.sr] ≥ h for ROT X operation reading k2. According

to Line 10 and 12 of Algorithm 5.4, sv[v2.sr] ≥ v2.ut (contradiction).

With Lemma 2 and Theorem 8, we have the following corollary:
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Corollary 5 The data store running CausalSpartanX protocol defined in Section 5.2 is causal++

consistent for {ROT X} for reader operations {ROT X} and instantly visible operations {GET} for

conflict resolution function f = last-writer-wins.

According to Corollaries 4 and 5 and Observation 1 in Section 2.3, we have the following

corollary:

Corollary 6 The data store running CausalSpartanX protocol defined in Section 5.2 is causal++

consistent for {ROT X} for reader operations {GET,ROT X} and instantly visible operations

{GET} for conflict resolution function f = last-writer-wins.

Now, based on Corollaries 3 and 6 and Observation 2, we conclude our desired consistency

requirement. Specifically,

Corollary 7 The data store running CausalSpartanX protocol defined in Section 5.2 is causal++

consistent for {GET,ROT X} for reader operations {GET,ROT X} and instantly visible operations

{GET} for conflict resolution function f = last-writer-wins.

5.4.3 Causal Consistency of Values Returned by ROT X Operations

We formally define this requirement as follows. First, we define visiblity+ for a set of versions:

Definition 19 (Visible+ to a Set of Versions) Let vset be a set of version. We say version v is

visible+ for conflict resolution function f to vset, if vset does not include version v′ such that

v′ , v and v = f (v, v′).

Now, we define causal consistency for a set of versions:

Definition 20 (Causal Consistency for a Set of Versions) Let vset be a set of versions. vest is

causally consistent for conflict resolution function f , if for any version v1 ∈ vset, any version v2

such that v1 dep v2 is visible+ for f to vest.
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A group of values returned by any ROT X is causally consistent. Specifically,

Theorem 9 Let vset be a set of versions returned by an ROT X operation. vset is causally

consistent for f = last-writer-wins.

Proof 20 We prove this theorem by contradiction:

Let kset and vset respectively be the set of keys read and the set of of versions returned by

ROT X operation a performed by client c at data center i. Let v1 and v2 be versions for key

k1 ∈ kset and k2 ∈ kset, respectively, such that v1 dep v2. Suppose v1 ∈ vset, but v2 is not

visible+. When v2 is not visible+ to vset, it means it is no visible+ for {ROT X} to client c.

We have following cases for v2:

Case 1 v2 is not written when ROT X reads k2:

If v2 is a remote version, this case is the same as Case 2.1 where v2 has not been arrived.

Thus, we focus on the situation where v2 is a local version. Now, we consider two cases for

v1:

Case 1.1 v1 is a remote version:

Suppose v1 is written in data center j. Since v1 dep v2 and v2 is not written at the

time of ROT X begins, v1 also is not written at that time. Thus, data center could not

have received v1 when it starts the ROT X operation. According to Observation 10,

DSV i
real[ j] < v1.ut. According to Observation 11, sv[ j] < v1.ut. However, since

ROT X read v1, sv[ j] ≥ v1.ut (contradiction).

Case 1.2 v1 is a local version:

According to Line 21 of Algorithm 5.4, DSV i
n2[i] ≥ sv[i], after ROT X read k2. Since v2

is written after ROT X read k2, according to Line 8 of Algorithm 5.2 and the algorithm of

updateHLC, v2.ut > DSV i
n2[i] that leads to v2.ut > sv[i]. Since v1 dep v2, according

to Observation 6, 〈i, h〉 ∈ v1.ds such that h ≥ v2.ut. Thus, h > sv[i]. However, since

ROT X reads v1, sv[i] ≥ h (contradiction).
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Case 2 v2 is written when ROT X reads k2:

In this case, according to Lemma 9, two cases are possible for v2:

Case 2.1 v2 has not arrived partition pi
n2 .

Since v2 has not arrived at data center i, according to Observation 9, DSVreal[m] <

v2.ut. Since, v1 dep v2, according to Observation 6, v1.ds has member 〈m, h〉 such

that h ≥ v2.ut. Since the ROT X operation has read v1, for any member 〈 j, h〉 ∈ v.ds,

sv[ j] ≥ h. According to Observation 11, sv ≤ DSV i
real . Thus, DSV i

real[m] ≥ v2.ut

(contradiction).

Case 2.2 there is a member 〈 j, h〉 ∈ v2.ds, such that sv[ j] < h.

Since v1 dep v2, according to Observation 5, for any member 〈 j, h〉 ∈ v2.ds, there

exists 〈 j, h′〉 ∈ v1.ds such that h′ ≥ h. Since the client has read v1 by the ROT X

operation, sv[ j] ≥ h′. This leads to sv[ j] ≥ h (contradiction).

Case 2.3 sv[v2.sr] < v2.ut.

Since v1 dep v2, according to Observation 6, 〈v2.sr, h〉 ∈ v1.ds such that h ≥ v2.ut.

Since ROT X reads v1, sv[v2.sr] ≥ h which leads to sv[v2.sr] ≥ v2.ut (contradiction).

5.4.4 Convergence for GET Operations

Now, we focus on the convergence aspect of the protocol. First, we observe that DSV values for

connected servers never stop increasing via replicate or heartbeat messages. Thus, we have

Observation 14 If data center i is connected to data center j, for all 1 ≤ k ≤ N , DSV j
k [i] and

DSV i
k [ j] will never stop increasing.

We have the following theorem about the convergence of our protocol,

Theorem 10 The data store running CausalSpartanX protocol defined in Section 5.2 is convergent

for {GET} for conflict resolution function last-writer-wins.
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Proof 21 We prove this theorem by showing that CausalSpartanX protocol satisfies Definition 16

via proof by contradiction:

Let v1 be a version for key k written in partition pm
n . Let

• data center i be connected to data center m, and

• for any version v2 such that v1 dep v2, data center i be connected to data center j where

version v2 is written.

Now, suppose v1 is never visible+ in i.

When v1 is never visible+ in i, according to Lemma 3, two cases are possible for v1:

Case 1 v1 will never reach partition pi
n.

Since data center i is connected to data center m, pi
n will receive replicate message sent in

Line 19 of Algorithm 5.2 (contradiction).

Case 2 there is a member 〈 j, h〉 ∈ v1.ds, such that DSV i
n[ j] will always remain smaller than h.

This is a contradiction to Observation 14 and the second assumption of the theorem.

5.4.5 Convergence for ROTX Operations

Theorem 11 The data store running CausalSpartanX protocol defined in Section 5.2 is convergent

for {ROT X} for conflict resolution function last-writer-wins.

Proof 22 We prove this theorem by showing that CausalSpartanX-X protocol satisfies Definition

16 via proof by contradiction:

Let v1 be a version for key k written in partition pm
n . Let

• data center i be connected to data center m, and

• for any version v2 that v1 dep v2, data center i be connected to data center j where version

v2 is written.
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Now, suppose v1 is never visible+ in i.

When v1 is never visible+ in i, according to Lemma 9, following cases are possible for v1:

Case 1 v1 will never reach at partition pi
n.

Since data center i is connected to data center m, pi
n will receive replicate message sent in

Line 19 of Algorithm 5.2 (contradiction).

Case 2 there is a member 〈 j, h〉 ∈ v1.ds, such that sv[ j] will always remain smaller than h, or

sv[v1.sr] always remains smaller than v1.ut

This is a contradiction to Observation 14 and the second assumption of the theorem, and the

fact that sv is entry-wise greater than DSV.

According to Theorem 10 provided in Section 5.4.4, Theorem 11 provided in this section,

and Observation 4 provided in Section 2.3, we conclude our desired convergence requirement.

Specifically,

Corollary 8 The data store running CausalSpartanX protocol defined in Section 5.2 is convergent

for {GET,ROT X} for conflict resolution function last-writer-wins.

Corollaries 7 and 8 and Theorem 9 provide the correctness of CausalSpartanX.

5.5 Experimental Results

We have implemented CausalSpartanX protocol in a distributed key-value store called MSU-

DB. MSU-DB is written in Java, and it can be downloaded from [11]. MSU-DB uses Berkeley

DB [3] in each server for data storage and retrieval. For comparison purposes, we have implemented

GentleRian in the same code base.

We run all of our experiments on Amazon AWS [1] on c3.large instances running Ubuntu

14.04. The specification of servers is as follows: 7 ECUs, 2 vCPUs, 2.8GHz, Intel XeonE5-2680v2,

3.75 GiB memory, 2 x 16 GiB Storage Capacity.
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First, in Section 5.5.1, we investigate the effect of clock skew on PUT latency. Next, in Section

5.5.2, we evaluate the effect of this increased PUT latency along with query amplification. We

analyze the effectiveness of CausalSpartanX in reducing update visibility latency by analysis of a

typical collaborative application in Section 5.5.3. Finally, we evaluate the overhead of CausalSpar-

tanX by comparing the throughput of CausalSpartanX and GentleRain in Section 5.5.4 in cases

where clocks are perfectly synchronized.

5.5.1 Response Time of PUT Operations

To study the effect of clock skew on the response time accurately, we need to have a precise clock

skew between servers. However, the clock skew between two different machines depends on many

factors out of our control. To have a more accurate experiment, we consolidate two virtual servers

on a single machine and impose an artificial clock skew between them. Then, we change the value

of the clock skew and observe its effect on the response time for PUT operations. A client sends

PUT requests to the servers in a round robin fashion. Since the physical clock of one server is

behind the physical clock of the other server, half of the PUT operations will be delayed by the

GentleRain. On the other hand, CausalSpartanX does not delay any PUT operation, and processes

them immediately. We compute the average response time for PUT operations with value size 1K.

Figure 5.1-(a) shows that average response time for PUT operation in GentleRain grows as the clock

skew grows, while the average response time in CausalSpartanX is independent of clock skew.

Next, we do the same experiment when the servers are running on two different machines

without introducing any artificial clock skew. We run NTP [14] on servers to synchronize physical

clocks. In other words, this simulates the exact condition that is expected to happen in an ideal

scenario where we have two partitions within the same physical location. In this setting, the client

sends PUT requests to these servers in a round robin manner. Figure 5.1-(b) shows average delay

of PUT operations in GentleRain and CausalSpartanX. We observe that in this case, the effect of

PUT latency is visible even though the servers are physically collocated and have clocks that are

synchronized with NTP.
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Figure 5.1: The effect of clock skew on PUT response time: a) with accurate artificial clock skew
when servers are running on the same physical machine b) without any artificial clock skew when
servers are running on different physical machines synchronized with NTP.

5.5.2 Query Amplification

In this section, we want to evaluate the effectiveness of CausalSpartanX with query amplification.

As explained in Section 5.1.2, a single user request can generate many internal queries. We define

query amplification factor as the number of internal queries that are generated for a single request.

In this section, unlike the previous section where we computed average response time for the

queries, we compute the average response time for requests each of which contains several queries

specified by the query amplification factor.

Now, we want to study how the average response time changes as the query amplification factor

changes. We simulate the scenario where the user sends requests to a web server, and each request

generates multiple internal PUT operations. The web server sends PUT operations to partitions in

a round robin fashion. The user request is satisfied once all PUT operations are done. We compute

the average response time for different query amplification factors.

Figure 5.2 shows average response time versus query amplification factor, when we have two

partitions for different clock skews. As query amplification factor increases, the response time in

both GentleRain and CausalSpartanX increases. This is expected since each request now contains

more work to be done. However, the rate of growth in CausalSpartanX is significantly slower.
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Figure 5.2: The effect of different values of clock skew on request response time for different query
amplification factor in GentleRain and CausalSpartanX.

For example, for only 2 (ms) clock skew, the response time of a request with amplification factor

100 in GentleRain is 4 times higher than that in CausalSpartanX. Note that in practical systems

higher clock skews are possible [52,55]. For example, clock skew up to 100 (ms) is possible when

the underlying network suffers from asymmetric links [55]. In this case, for a query amplification

factor of 100, the response time of GentleRain is 35 times higher than CausalSpartanX.

For results shown in Figure 5.2, we used a controlled artificial clock skew to study the effect of

clock skew accurately. Figure 5.3-(a) shows effect of amplification factor on request response time

when there is no artificial clock skew, and servers are synchronized with NTP. It shows how real

clock skew between synchronized servers that use NTP affects request response time. For instance,

for query amplification factor 100, our experiments show that the response time of GentleRain

is 3.89 times higher than that of CausalSpartanX. Figure 5.3-(b) also shows the client request

throughput in GentleRain and CausalSpartanX for different query amplification factor.
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Figure 5.3: The effect of amplification factor on client request response time and throughput when
we have 8 partitions and 6 data centers, and all partitions are synchronized by NTP without any
artificial clock skew.

5.5.3 Update Visibility Latency

In this section, we want to focus on update visibility latency which is another important aspect of

a distributed data store. Update visibility latency is the delay before an update becomes visible

in a remote replica. Update visibility latency is ultimately important for today’s cloud services,

as even a few milliseconds matters for many businesses [19]. In GentleRain, only one far replica

adversely affects the whole communication in the system by increasing the update visibility latency.

In CausalSpartanX, we use a vector (DSV) with one entry for each data center instead of a single

scalar (GST) as used in GentleRain. As a result, a long network latency of a data center only affects

the communication with that specific data center, and does not affect independent communication

between other data centers.

To investigate how CausalSpartanX performs better than GentleRain regarding update visibility

latency, we do the following experiment: We run a data store consisting of three data centers A, B,

and C. Client c1 at data center A communicates with client c2 at data center B via key k as follows:

client c1 keeps reading the value of key k and increments it whenever finds it to be an odd number.

Similarly, client c2 keeps reading the value of key k, and increments it whenever finds it to be an

even number. The locations of data centers A and B are fixed, and they are both in California. We

change the location of data center C to see how its location affects the communication between c1
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and c2. Table 5.1 shows the round trip times for different locations of data center C.

Table 5.1: Round trip times.

Location of data center C RTT to data center A (ms) RTT to data center B (ms)
California 1.1709114 0.3201521
Oregon 21.8699663 20.6107391
Virginia 67.0469505 61.2305881
Ireland 138.2809544 139.3212938
Sydney 159.0899451 158.4004238
Singapore 175.6392972 175.6030464

We measure the update visibility latency as the time elapsed between writing a new update

by a client and reading it by another client. We use the timestamp of updates to compute the

update visibility latency. Thus, because of clock skew, the values we compute are an estimation

of actual update visibility latency. Figure 5.4-(a) shows the update visibility latency is lower in

CausalSpartanX than that in GentleRain. Also, the update visibility latency in GentleRain increases

as the network delay between data centerC and A/B increases. For example, when data centerC is in

Oregon the update visibility latency in CausalSpartanX is 83% lower than that in GentleRain. This

value increases to 92% when data center C is in Singapore. Figure 5.4-(b) shows the throughput

of communication between clients as the number of updates by a client per second. The location

of data center C affects the throughput of GentleRain, while the throughput of CausalSpartanX is

unaffected.

5.5.4 Throughput Analysis and Overhead of CausalSpartanX

CausalSpartanX utilizes HLC to eliminates the PUT latency, and utilizes DSV to improve update

visibility latency. In this section, we analyze the overhead of these features in the absence of clock

skew, query amplification or the collaborative nature of the application. In particular, we analyze

the throughput when GET/PUT operations by the client are unrelated to each other.
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Figure 5.4: How the location of an irrelevant data center adversely affects a collaborative commu-
nication in GentleRain, while CausalSpartanX is unaffected.

Since the two features of CausalSpartanX, the use of HLC and the use of DSV are independent,

we analyze the throughput with just the use of HLC and with both features. Figure 5.5 demonstrates

the throughput of GET and PUT operations. We observe that when GET/PUT operations are

independent, then throughout of CausalSpartanX is 5% lower than GentleRain. However, the

throughput of CausalSpartanX with just HLC (and not DSV) is virtually identical to that of

GentleRain. We note that additional experiments comparing CausalSpartanX with just using

HLC are available in [63]. They show that just using HLC does not add to the overhead of

CausalSpartanX.

Even though there is a small overhead of CausalSpartanX when GET/PUT operations are

unrelated, we observe that with query amplification (that causes some PUT operations to be

delayed in GentleRain), the request throughput of CausalSpartanX is higher (cf. Figure 5.3). Thus,

while the throughput of basic PUT/GET operations is slightly higher in GentleRain, the throughput

of actual requests issued by the end users is expected to be higher in CausalSpartanX.

5.5.5 Performance of ROTX operations

In this section, we compare the performance of ROTX algorithm provided in Section 5.3 with

ROTX (named GET-ROTX in [36]) of GentleRain [36]. The sketch of GentleRain’s ROTX is as
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Figure 5.5: The basic PUT/GET operations throughput in GentleRain and CausalSpartanX.

follows: like PUT operations, the client includes its dt with its GET-ROTX operations and sends it

to one of the servers as the coordinator. Upon receiving a ROTX operation, if |dt −GST | is smaller

than a threshold, sever waits for GST to goes higher than dt. The server sets the snapshot time as

its GST and sends requests to all partitions hosting some of the requested keys. In its request, the

server includes the snapshot time. The receiving partitions return versions with timestamps smaller

than the snapshot time. If |dt − GST | is higher than the threshold, the server runs the Eiger [50].

Since (1) [36] reports that this backup option was never triggered (2) there is a significant increase

in metadata and (3) there is up to two more rounds of communication between the client and servers

if one intends to use [50] for backup, in our experiments, we use threshold values that guarantee

the that the backup option was not necessary.

In Section 5.5.3, we saw how waiting for GST can increase the update visibility latency. In

the case of read-only transactions, waiting for GST in GentleRain also increases the response time.

Specifically, since GentleRain blocks read-only transactions until GST is high enough, any delay in

GST leads to higher response times for the clients and reduced throughput in the system. Latency

in GST can be caused by slow replicas (as we saw in Section 5.5.3), slow partitions inside the local

replica, or any other delay in GST calculation.

To evaluate the response time of transactions in the presence of a slow partition, we set up

the experiment as follows: (1) We consider a set of hot keys that are constantly written by several

clients, (2) We have some clients that perform GET with 50% probability and ROTX with 50%
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probability on hot keys. (3) We simulate one partition to be slow by intentionally delaying sending

messages from it. Specifically, whenever the slow partition wants to send a message to other servers

or the clients, we schedule it to be sent after a certain amount of time.

Figure 5.6a shows the latency of 200 ROTX operations with size 3 (i.e. each ROTX reads 3

keys) for GentleRain in a data center with 6 partitions where one partition is slowed by 100 (ms).

The circles show the response time of ROTX operations that do not involve any key hosted by the

slow partition. Diamonds, on the other hand, show the response time of the ROTX operations

involving a key hosted by the slow partition. Figure 5.6b shows the same experiment results for

the CausalSpartanX. As it is clear from the plots, in CausalSpartanX, ROTX operations that do

not involve the slow partition are not affected by the 100 (ms) slowdown. On the other hand, in

GentleRain, some of the ROTX operations that do not involve the slow partition are also affected

by the slowdown. The response time of some of ROTX operations of GentelRain involving the

slow partition is also significantly higher than that of CausalSpartanX. For 100 (ms) slowdown,

the average latency of ROTX operations not involving the slow partition is 29 (ms) for GentelRain

while it is 8 (ms) for CausalSpartanX. For ROTX operations involving the slow partition, the

response time is 169 and 142 for GentleRain and CausalSpartanX, respectively. The improvement

of CausalSpartanX is more significant regarding the tail-latency [40]. Figure 5.7a shows the

empirical CDFs for both cases of ROTX operations for GentleRain and CausalSpartanX for 100

(ms) slowdown. As it is marked in Figure 5.7a, for 100 (ms) slowdown, the 90th percentile of

ROTX operations not involving the slow partition is 129 (ms) for GentelRain while it is only 18

(ms) for CausalSpartanX (i.e., 86.04% improvement). For ROTX operations involving the slow

partition, the 90th percentile response time is 289 (ms) and 203 for GentleRain andCausalSpartanX,

respectively (i.e. 29.7% improvement). Figure 5.6 also shows results for the case with 250 (ms)

slowdown. The improvement of CausalSpartanX is more significant for higher slowdowns. For 250

(ms) slowdown, 90th percentile improvement goes to 93.88%. We note that for higher percentiles

also, CausalSpartanX shows clear improvement. Figure 5.7b shows the empirical CDFs for both

cases of ROTX operations for GentleRain and CausalSpartanX for 250 (ms) slowdown. For
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Figure 5.6: The effect of slowdown of one partition on the latency of ROTX operations. Each
ROTX operations reads 3 keys.

instance, for the 99th percentile, CausalSpartanX leads to 95.99% and 37.70% for not involving

and involving cases, respectively, compared with GentleRain [36]. Note that tail latency is very

important, as it directly affects the users’ experience. Although it affects a small group of clients

(e.g. 1 percent of clients in case of 99th percentile), this small group are usually the most valuable

users that perform most of the requests in the system [40]. For this reason, many companies such

as Amazon describe response time requirements for their services with 99.9th percentile [40].
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CHAPTER 6

NECESSITY OF STICKY CLIENTS FOR CAUSAL CONSISTENCY

In this chapter, we show that in presence of network partitions, if we want availability and causal

consistency while providing immediate visibility for local updates, the clients must be sticky.

Theorem 12 In an asynchronous network (i.e., in presence of network partitions) with non-sticky

clients, it is impossible to implement a replicated data store that guarantees following properties:

• Availability

• Causal++ consistency (for O = R = I = {GET} and any conflict resolution function f )

Proof 23 We prove this by contradiction. Assume an algorithm A exists that guarantees availability

and causal++ consistency for conflict resolution function f in asynchronous network with non-

sticky clients. We create an execution of A that contradicts causal++ consistency: Assume a data

store where each key is stored in at least two replicas r and r′. Initially, the data center contains

two keys k1 and k2 with versions v0
1 and v0

2 . These versions are replicated on r and r′. Next, the

system executes as follows:

• There is a partition between r and r′, i.e., all future messages between themwill be indefinitely

delayed.

• c performs GET(k1) on replica r , and reads v0
1 .

• c performs PUT(k1, v
1
1) on replica r .

• c performs PUT(k2, v
1
2) on replica r .

• c′ performs GET(k2) on replica r . Since v1
2 is a local update, and in causal++ consistency,

local updates have to be immediately visible, the value returned is v1
2 .
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• c′ performed GET(k1) on replica r′. Because of the network partition, there is no way for

replica r′ to learn v1
1 . Thus, the value returned is v

0
1 .

Since v1
1 dep v0

1 , for any conflict resolution function f , f (v0
1, v

1
1) = v1

1 . Thus, according to

Definition 13, v1
1 is not visible+ for f to client c′. It is a contradiction to causal++ consistency, as

c′ has read v1
2 , but its causal consistency v

1
1 is not visible+ to c′.

The necessity of sticky clients for the causal consistency has been investigated in the literature

[21]. The existing proof, however, is based on the impossibility of read-your-write consistency

which is part of causal consistency [21, 25]. In other words, since read-your-write consistency is

impossible for non-sticky clients for an always-available system in presence of network partition,

and because read-your-write consistency is a part of the causal consistency [21,25], the impossibility

also applies to the causal consistency. However, the read-your-write consistency can be achieved

even for non-sticky clients, if clients cache what they have read or written, and use this cache in the

read time if a server has an older value. It is straightforward to see that our proof still holds even

when clients can cache their read and writes.
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CHAPTER 7

ADAPTIVE CAUSAL CONSISTENCY

Existing causal consistency protocols utilize a static approach in the trade-off between different

conflicting requirements (e.g. consistency, visibility, and throughput). They also treat all clients

the same, and assume that their usage patterns are always unchanged. For example, they assume

clients only access their local data center, and any client may access any part of the data. However,

different applications may have different usage patterns.

To illustrate, consider a simple system that consists of two partitions A and Bwith geographically

distributed copies A1, A2, B1 and B2. Suppose, we are using a causal consistency protocol

like [35,36,49,50,60] that does not make a version visible, unless it made sure all partitions inside

a replica are updated enough. We consider two possible ways to organize the replicas: (1) two

full replicas each with two partitions, referred to as 2 × 2 (2) or four partial replicas each with one

partition referred to as 4 × 1. These two organizations are shown in Figure 7.1. Now, consider two

applications. The first application, App1 consists of two clients C1 and C2 that access A1 and A2

respectively for a collaborative work. In App1, each client updates the data after it reads the new

version written by another client. Since each client waits for the other client’s update, any increase

in update visibility will reduce the throughput of App1. In the scenario in Figure 7.1a, since A1

and B1 are considered in the same replica, A1 does not make versions visible, unless it made sure

B1 is updated enough. Thus, if the communication between A1 and B1 is slow, it takes more time

for A1 to make a version visible. Since the data on B1 and B2 is irrelevant for App1, this delay

by A1 is unnecessary which leads to increased visibility latency which, in turn, leads to a reduced

throughput of App1. Furthermore, if there were a large number of such partitions, this delay would

be even more pronounced.

By contrast, there is no such penalty in scenario in Figure 7.1b, as in Figure 7.1b, partitions A1

and B1 are considered in different replicas. Thus, they do not check each other.

On the other hand, consider App2 that consists of one client, say C3, and it accesses data from
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Figure 7.1: Two ways to organize replicas

A1 and B1. In scenario in Figure 7.1a,C3 is guaranteed to always read the consistent data. However,

in scenario in Figure 7.1b, since A1 and B1 do not check the freshness of each other, C3 may suffer

from finding inconsistent versions (or delays or repeated requests to find a consistent version) while

accessing A1 and B1.

From the above discussion, it follows that no matter how we configure the given key-value

store, a system with a static configuration that treats all clients the same will penalize some clients.

The goal of this chapter is to develop a broad framework that instead of relying on a fixed set

of assumptions, allows the system to be dynamically reconfigured after learning the actual client

activities and requirements.

7.1 An Approach for Adaptive Causal Consistency

The broad approach for providing causal consistency is to track the causal dependencies of

a version, and check them before making the version visible in another replica. Tracking and

checking are usually done using timestamping versions as follows:

• Dependency Tracking: Upon creating a new version for a key, we assign a timestamp to the

version that somehow captures causal dependencies of the version.

• Dependency Checking: Upon receiving a version, the receiving replica does not make the

version visible to the clients until it makes sure that all of the dependencies of the version are

also visible to the clients.

The goal of timestamping is to provide a way to capture causal relation between two versions.
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Table 7.1: Tracking and Checking in Some of Causal Systems

Protocol Tracking Checking
COPS [49] Per key Per Replica
Eiger [50] Per key Per Replica
Orbe [35] Per server Per Replica
GentleRain [36] Per system Per Replica
Occult [54] Per Master Server No checking
Okapi [34] Per Replica Per system
CausalSpartan [60] Per Replica Per Replica

To satisfy v1 dep v2 ⇔ v1.t > v2.t (where v1 dep v2 means the event of writing v2 has happened-

before [45] the event of writing v1, and v.t is the timestamps assigned to v), we need timestamps

of size O(N) [28] where N is number of nodes that clients can write on. To solve the issue of large

timestamps, causal consistency protocols consider servers in groups and track causality with vectors

that have one entry per group. We refer to such groups as tracking groups. Tracking dependencies

in groups, provides timestamps that satisfies a weaker condition v1 dep v2 ⇒ v1.t > v2.t. This

condition lets us guarantee causal visibility of the versions. However, since it does not provide

accurate causality information, we may need to unnecessarily delay the visibility of a version by

waiting for versions that are not its real dependencies. Thus, by grouping servers in tracking group,

we trade off the visibility of versions for a lower metadata size.

We face a similar trade-off in the dependency checking. Dependency checking determines

how conservative we are in making versions visible to the clients. Since checking the whole

system is expensive, causal consistency protocols consider systems in groups, and each server only

checks servers in its own group. We refer to such groups as checking groups. Most of current

protocols [35, 36, 49, 50, 60, 61] group servers by their replicas. Thus, a server only checks the

dependencies inside the replica that it belongs to. Table 7.1 shows tracking and checking groups

for some of the recent causal systems.

When we are designing a causally consistent key-value store, two natural questions arise based

on the trade-offs explained above: 1) how much tracking accuracy is enough for a system? 2)

how much should we be conservative in making versions visible? We believe the answer to these

questions depends on the factors that should be learned at the run-time. A practical distributed
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data store performs in a constantly changing environment; the usage pattern of clients can change

due to many reasons including time of the day in different time zones or changes in load balancing

policies; data distribution can change, because we may need to add or remove some replicas;

components may fail or slow down, and so on. These changes can easily invalidate assumptions

made by existing causal consistency protocols such as [35, 36, 49, 50, 54, 60] which leads to their

reduced performance in practical settings [19]. To solve this issue, we believe that a key-value store

must monitor the factors mentioned above and dynamically trade-off between different conflicting

objectives. We believe dynamically changing tracking and checking grouping based on what we

learn from the system is an effective approach to perform such dynamic trade-offs. Using a flexible

tracking and checking grouping we are also able to treat different applications in different ways.

To use the above approach, however, we need a protocol that can be easily configured for

different groupings. As shown in Table 7.1, existing protocols assume fixed groupings that cannot

be changed. To solve this issue, in the next section, we provide a protocol that can be configured

to use any desired grouping. This flexible algorithm provides a basis for creating adaptive causal

systems. This algorithm also lets us treat clients in different ways, and unlike most of the existing

protocols that require a certain data distribution schema, our algorithm allows us to replicate and

partition our data any way we like including creating partial replicas.

7.2 Adaptive Causal Consistency Framework

In this section, we provide Adaptive Causal Consistency Framework (ACCF) which is a con-

figurable framework that lets us deal with trade-offs explained in Section 7.1. Specifically, as the

input, ACCF receives 1) function T that assigns each server to exactly one tracking group, and 2)

function C that assigns each server to a non-empty set of checking groups.

7.2.1 Client-side

Algorithm 7.1 shows the client-side of the ACCF. A client c maintains a set of pairs of tracking

group ids and timestamps called dependency set, denoted as DSc. For each tracking group i, there
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is at most one entry 〈i, h〉 in DSc where h specifies the maximum timestamp of versions read by

client c originally written in servers of tracking group i. Each data object has a key and a version

chain containing different versions for the object. Each version is a tuple 〈v, ds〉, where v is the

value of the version, and ds is a list that has at most one entry per tracking group that capture

dependency of the version on writes on different tracking groups.

Algorithm 7.1 Client operations at client c
Input: Load balancer L
1: GET (key k, checking group id cg)
2: i = L(k)
3: send 〈GetReq k, cg,DSc〉 to server i
4: receive 〈GetReply d〉
5: DSc ← max(DSc, d.ds)
6: return d.v
7: PUT (key k, value v)
8: i = L(k)
9: send 〈PutReq k, v,DSc〉 to server i
10: receive 〈PutReply tg,ut〉
11: DSc ← max(DSc, 〈tg,ut〉)

To read the value of an object, the client calls GET method with the desired key to read. The

client also specifies the id of the checking group that the server must use. Wewill see how the server

uses this id in Section 7.2.2. We find the preferred server to read the object using the given load

balancer service L. After finding the preferred server to ask for the key, we send a GetReq request

to the server. In addition to the key and the checking group id, we include the client dependency

set DSc in the request message. The server tries to find the most recent version that is consistent

by the client’s past reads. In the Section 7.2.2, we explain how the server looks for a consistent

version based on the DSc.

To write a new value for an object, the client calls PUT method. The server writes the version

and records client’s DSc as the dependency of the version. After receiving a response from the

server for a GET (or PUT) operation, we update DSc such that any later version written by the

client depends on the version read (or written) by this operation.
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7.2.2 Server-side

In this section, we focus on the server-side of the protocol. We denote the physical clock at server i

by PCi. To satisfy v1 dep v2 ⇒ v1.t > v2.t condition, and assign timestamps close to the physical

clocks, ACCF relies on Hybrid Logical Clocks (HLCs) [42]. HLCi is the value of HLC at server

i. Each server keeps a version vector that has one entry for each tracking group denoted by VVi.

VVi[t] is the minimum of latest timestamps that server i has received from servers in tracking group

t. To keep each other updated, servers send heartbeat messages to each other in case of not sending

any replicate message for a specific amount of time.If there is no key that is hosted by both server

i and a server in tracking group t, then VVi[t] = +∞. Each server is a member of one or more

dependency checking groups. Servers inside a checking group, periodically share their VVs with

each other and compute Stable Version Vector (SVV) as the entry-wise minimum of VVs. SVVcg
i

is the SVV computed in server i for checking group cg.

Algorithm 7.2 shows the algorithm for PUT and GET operations at the server-side. When a

client asks to read an object, the server waits if there exists 〈t, h〉 in ds such that VVi[t] < h which

means the server is not updated enough, and reading from the current version chain can violate

causal consistency. When the server made sure for any 〈t, h〉 in ds,VVi[t] ≥ h, it checks the SVVcg
i .

If for any 〈t, h〉 in ds, SVVcg
i [t] ≥ h, the server returns the most recent version for k such that for

any 〈t, h〉 in k .ds, SVVcg
i [t] ≥ h. This guarantees that the client never has to wait if it only reads

from servers in checking group cg. If a client uses different checking groups for different reads, it

is possible that the server finds 〈t, h〉 in ds, such that SVVcg
i [t] < h. In this situation, server forgets

about SVVcg
i , and gives the client the most recent version that has for k. Note that this version is

guaranteed to be causally consistent with client’s previous reads.

Once server i receives a PUT request, the server updates HLCi by calling updateHLC(dt)

where dt is the highest timestamp in ds. Next, the server creates a new version for the key specified

by the client. The server updates VVi[T(i)] with the new HLCi value, and sends back its tracking

group, T(i), and the assigned timestamp, d.ds[T(i)], to the client in a PutReply message.

Upon creating a new version for an object in one server, we send the new version to other servers
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hosting the object via replicate messages. Upon receiving a 〈Replicate k, d〉 message from server

j, the receiving server i adds the new version to the version chain of the object with key k. The

server also updates the entry for server T( j) in its version vector (i.e., VVi[T( j)]).

Algorithm 7.2 PUT and GET operations at server i
Input: Tracking grouping function T , Data placement function H
1: Upon receive 〈GetReq k, cg, ds〉
2: while there is a member 〈t, h〉 in ds, h > VVi[t]
3: wait
4: if for all 〈t, h〉 in ds, h > SVVcg

i [t]
5: d = latest version d from version chain of key k

s.t. for any member 〈t, h〉 in k .ds, h ≤ SVVcg
i [t]

6: else
7: d = latest version d from version chain of key k
8: send 〈GetReply d〉 to client
9: Upon receive 〈PutReq k, v, ds〉
10: dt ← maximum value in ds
11: updateHCL(dt)
12: Create new item d
13: d.v, d.ds← v,max(ds, 〈T(i),HLCi〉)
14: insert d to version chain of k
15: update VVi[T(i)] with HLCi
16: send 〈PutReply T(i), d.ds[T(i)]〉 to client
17: for each server j , i, such that j ∈ H(k)
18: send 〈Replicate k, d〉 to server j
19: Upon receive 〈Replicate k, d〉 from server j
20: insert d to version chain of key k
21: update VVi[T( j)] with d.ds[T( j)]
22: updateHLCforPut (dt)
23: l′← HLCi .l
24: HLCi .l ← max(l′,PCi, dt .l)
25: if (HLCi .l = l′ = dt .l)
26: HLCi .c← max(HLCi .c, dt .c) + 1
27: else if (HLCi .l = l′) HLCi .c← HLCi .c + 1
28: else if (HLCi .l = l) HLCi .c← dt .c + 1
29: else HLCi .c← 0

7.3 Evaluation

We have implemented ACCF using our DKVF [62] that we will explain in Chapter 8. You can

find our implementation of ACCF in DKVF repository [5]. In this section, we provide the results
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of 2 × 2 and 4 × 1 groupings for applications App1 and App2 explained above. We run the system

explained above consisting of A1, A2, B1, and B2 on different data centers of Amazon AWS [1].

Note that since we focus on partial replication, there is no assumption about A1 and B1 (respectively

A2 and B2) to be collocated.

Observations for App1. App1 consists of two clients C1 and C2. C1 writes the value 0 using

A1. C2 reads 0 (from A2) and writes 1 (to A2). Subsequently, C1 waits to read 1 and writes 2 and

so on. The best scenario for this case is when you have only two partitions A1 and A2 in the system.

Hence, we normalize the throughput with respect to this.

The results for App1 are shown in Figure 7.2, where 2×2 (respectively 4×1) corresponds to the

organization in Figure 7.1a (respectively, Figure 7.1b). In Figure 7.2a, locations of A1, A2 and B1

are fixed, and we vary the location of B1 from California to Singapore (ordered based on increasing

ping time from A1 located in California). In Figure 7.2b, we keep the location of B1 fixed, but

artificially add delayB1 to any message sent by B1. As we can see, by viewing the system as Figure

7.1b, App1 performance is unaffected whereas viewing the system as Figure 7.1a, performance

drops by more than 50%.

Observations for App2. In App2, client C3 alternates reading from A1 and B1. To provide

fresh copies, another client writes the same objects on A2 and B2 respectively. Here, viewing the

system as in Figure 7.1b drops the performance substantially as the message delay of B2 (delayB2)

increases. This is due to blocking the GET operations while waiting for receiving consistent

versions. By contrast, by viewing replicas as in Figure 7.1a, performance remains unaffected.

Throughputs are normalized with respect to the case where there is no update.

7.4 Comparison with Related Work

Our approach for providing adaptivity in causal consistency is different from other approaches

considered in the literature. Occult [54] utilizes structural compression to reduce the size of the

timestamps. Other approaches include bloom filters [20]. While these features are intended as

a configurable parameter, we believe that it is not possible to dynamically change it at run-time
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Figure 7.2: Normalized throughput of App1 and App2 for different groupings. App1 has higher
throughput with 4 × 1, while App2 has higher throughput with 2 × 2.

while preserving causal consistency (or detection of its violation). Furthermore, in all these cases,

the reconfiguration provided is client-agnostic; it does not take client requests into consideration.

By contrast, our framework provides the ability to allow different clients a view of the system

in a manner that improves their performance. Finally, it is possible to take client requests into

consideration to identify how adaptivity should be provided.
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CHAPTER 8

DISTRIBUTED KEY-VALUE FRAMEWORK

Improving consistency protocols for key-value stores has received much attention in recent years.

When we design a new protocol, we need to evaluate the protocol with a working prototype to see

how our protocol works comparing to existing protocols. One way to have a prototype is building

it from scratch. This approach has the advantage of maximum flexibility. However, building our

prototype from scratch may take a long time that can slow down the research or development.

Furthermore, if the protocol suffers from some undesirable properties (e.g., low performance), a

substantial amount of development time is wasted. Another important obstacle is that this approach

especially makes the comparison to other protocols hard. Imagine that we want to compare our

new protocol to several other existing systems, developed by other groups. Since each of them are

implemented in a different code base, we need to implement other protocols with the same code

base as ours to have a fair comparison which requires more time.

Another approach is to create our prototype by modifying an already existing system. There are

many open-source NoSQL databases that can be modified for prototyping purposes. An important

advantage of this approach is that by building a system on top of a tested system, we can benefit

from all of its good features, and save time. However, modifying an existing system has its own

disadvantages. The most important problem is the lack of flexibility. Although we can always

change the code of an open-source data store, to change a system correctly, we need to understand

a possibly massive implementation thoroughly, that may take even more time than creating a

prototype from scratch. In addition, by changing an existing product, we may lose the advantage

of reusing some of its components which was the whole purpose of using an existing product. For

instance, suppose an existing system uses a certain replication policy. If the replication policy of

our protocol is different, we have to change the whole replication mechanism of the underlying

system.

Another problem of changing an existing product is the problem of being locked by that product.
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For instance, suppose that we have implemented a prototype to evaluate an algorithm for causal

consistency by forking from a current system like Cassandra [44]. If in future we are interested to

see how our algorithm would perform if we used another system, say Voldemort [17], we have no

choice but building another system based on Voldemort as well. That would be especially necessary

if we want to compare our algorithm with another system based on Voldemort.

In addition to the implementation of a protocol, running experiments is also another burden.

Different research groups may evaluate their systems in different ways making comparisons unfair.

Yahoo! Cloud Serving Benchmark (YCSB) [29] is a good candidate for a unified way of comparing

different storage systems. The YCSB drivers required for benchmarking with YCSB are already

available for many systems. Although YCSB helps us to benchmark our system, writing the driver,

running clusters and clients on several machines, obtaining, and aggregating the results is a task

that we have to do everything we want to evaluate a new protocol.

In this chapter, we introduce the Distributed Key-Value Framework (DKVF) that allows protocol

designers to quickly create prototypes running their protocols to see how they work in practice.

We want to help researchers to only focus on their high-level protocol and let the DKVF do all

the lower-level tasks. For instance, consider the GentleRain protocol proposed in [36]. The server

side of this protocol is only 31 lines of pseudocode provided in Algorithm 2 of [36]. However,

to have a prototype running this protocol, we need to write hundreds of lines of code to handle

lower-level tasks that are independent of the protocol. Our goal is to provide a framework that

helps researchers to create their prototypes by writing codes that are very close to the pseudocodes

that they publish in their research papers. We believe this framework together with a toolset that

helps us to run experiments can significantly save time in implementing and benchmarking new

protocols. We hope our framework expedites the research on the field.

Followings are the advantages of our framework:

• The framework allows us to easily define our protocol in a high-level abstraction with an

event-driven approach. Specifically, we can define our protocol as a set of event handlers

which is the same way as researchers typically present their protocols in their papers. It
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makes the code much more clear, and reduces the number of lines of code that protocol

designers need to write.

• The clear separation of concerns that the framework provides expedites debugging the system,

and improves maintainability of our code.

• We can easily compare any two protocols that are implemented on top of the framework, as

both of them are implemented with the same code base.

• We provide the implementation of four protocols with this report. Adding other protocols to

the repository is part of the future work. Also, other groups can add their protocols to the

repository making them publicly available. Having a library of protocol implementations

allows researchers to easily compare their protocols to previous ones.

• We can easily change the storage engine of our key-value store without changing the logic

of our higher consistency protocol. This makes comparison easy, as we can use the storage

engine that another system is built on for comparison purposes.

• The framework and its toolset streamline the use of YCSB for benchmarking protocols.

It encourages researchers to use a standardized framework for benchmarking instead of

performing experiments in individual ways.

• The framework comes with a command line application called Cluster Manager that lets

us conveniently run a cluster over the network. Using Cluster Manager, we can easily run

a cluster on cloud systems such as Amazon Web Services (AWSs) on Windows or Linux

instances. It allows us to monitor connections, network latencies, current load on nodes, and

so on.

• Cluster Manager also lets us specify a set of experiments to benchmark the system. it takes

care of running YCSB clients, collecting, and aggregating the results.
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• The framework is also accompanied by a graphical tool called Cluster Designer that lets us

easily define our cluster and experiments. We can visually create a graph of servers and

clients, and define different workloads to run on the cluster.

8.1 Overview of DKVF

DKVF is written in Java. Each key-value store created based on DKVF has two sides: 1)

a server side, and 2) a client side. The server-side (respectively, client-side) extends server-side

(respectively, client-side) of DKVF by implementing the respective abstract methods and adding

new methods required for the protocol at hand.

When we create a new protocol, in addition to actual data consisting of the key-value pairs,

we will likely need to store some metadata with each record. For example, we may need to store

a timestamp with each version, or we may need to store the ID of the replica where the version

has been written. Each protocol requires its own metadata. DKVF relies on Google Protocol

Buffers [8] (referred to as protobuf from now on) for marshaling/unmarshalling data for storage and

transmission. An important advantage of protobuf is its convenience for the protocol designer to

describe the metadata, as the protocol designer only needs to write a simple text file, and protobuf

takes cares of creating the necessary code. Another important advantage of protobuf is its effective

way of compressing the data using bit variant techniques that saves storage space and network

bandwidth. The protobuf description together with the server and client sides of the protocol are

components that the protocol designer needs to provide for any key-value store based on DKVF.

These components are shown by dark rectangles in Figure 8.1. We will focus on these components

in Section 8.2.

Once a key-value store is ready, we can use it for our applications. An application can be

any program (website, mobile application, etc.) that needs to access storage resources through

the network. We refer to the entity that provides the storage resources as storage provider. The

storage provider runs the server side of the key-value store. To do that, the storage provides needs

to write a configuration file. This configuration file is an XML file according to Config.xsd [6],
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and describes the cluster and server-side parameters. Once the server side is running, different

applications can connect to it through the client side of the key-value and use the storage resources.

The application developers also need to write a configuration file that specifies servers to connect

and client-side parameters. The server side and client side configurations are shown by white

rectangles in Figure 8.1. These configuration files together with three components that the protocol

designer needs to write are five components that we need to provide to have a running key-value

store based on DKVF.

The Application rectangle in Figure 8.1 captures any client program that uses a key-value

store server. While the exact application is orthogonal to DKVF, DKVF can be used to provide

suitable benchmarks so that application designer can choose the suitable protocol based on these

benchmarks. DKVF relies on YCSB [29] for benchmarking. When we benchmark our key-value

store using YCSB, the YCSB client becomes our application in Figure 8.1.

DKVF can be configured to use any storage engine provided the storage developer implements

the necessary drivers. DKVF comes with a driver for Berkeley-BD. We can configure the default

storage to be multi-version or single version. In the case of multi-version, we have to provide a

comparator function to order versions with the same key. DKVF also provides a simple approach

for the addition of a new storage engine. An important question regarding storage is how we want

to replicate data. Data replication can be done either by storage engine itself or by the protocol.

The default storage delegates data replication to the protocol. This gives the full control of data

replication to the protocol designer. However, we can configure DKVF for the case where the

storage engine handles data replication.

8.2 Creating a Prototype using DKVF

The overall usage of DKVF is as shown in Figure 8.1. When a designer intends to develop a

new protocol, he/she needs to specify three components (shown by dark rectangles in Figure 8.1).

These components are 1) metadata description, 2) the server side of the protocol, and 3) the client

side of the protocol. We explain each of these components in this section.
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Figure 8.1: Typical usage of DKVF

8.2.1 Metadata Description

Describing metadata is done by writing a text file, .proto, that contains a set of message blocks.

You can think of a message as a class or struct in a programming language. Each message

has a set of fields. Each field has a type that is either a primitive type like integer, or another

message. Any metadata description written for DKVF must include four messages: 1) Record, 2)

ClientMessage, 3) ServerMessage, and 4) ClientReply. Record describes records that will

be stored in the key-value store. For instance, if we want to store a timestamp with each record, we

need to add an int64 field to Record a message to store a 64-bit Java long variable with each

record. ClientMessage and ServerMessage describe client and server messages, respectively.

ClientReply describes a response to a client message.

As an illustration, consider the casewherewe implement GentleRain protocol [36] usingDKVF.

In GentleRain, each record (i.e., data item) is a tuple as 〈k, v,ut, sr〉 where k is the key, v is the value,
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ut is update time (timestamp of the current version), and sr is the ID of the replica where the current

version has been written. The following code shows the corresponding protobuf description for

GentleRain records. Numbers in front of fields are tag numbers that protobuf uses for optimization.

Tag numbers must be unique positive integers, and we should assign smaller values to the fields

that are used more frequently [8].

message Record {

s t r i n g k = 1 ;

b y t e s v = 2 ;

i n t 6 4 u t = 3 ;

i n t 3 2 s r = 4 ;

}

In addition to the metadata for the records, we also use protobuf to describe messages that server-

s/clients send in our protocol. For instance, consider GetReq message in GentleRain [36]. Each

GetReq message has a string to specify the key that we want to read, and an integer for GST value

used by the protocol to find a consistent version (see Section 3.2.2). Following code shows the

necessary protobuf description for GetReq message. Similarly, we can write description for other

messages of the protocol.

message GetMessage {

s t r i n g k = 1 ;

i n t 6 4 g s t = 2 ;

}

After writing the metadata description, we need to compile it using protobuf. The protobuf will

create a Java class that contains all necessary data structures to marshaling/unmarshalling our data.

This class is shown by Metadata class rectangle in Figure 8.1.
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8.2.2 Server-side Implementation

To implement the server side of a protocol, we need to write a class that extends the abstract class

DKVFServer. DKVF follows an event-driven approach to define a protocol. Specifically, we can

define a protocol as a set of event handlers. The two main event handlers that will be called by

the framework are handleServerMessage and handleClientMessage of DKVFServer class.

Inside these two main event handlers, the protocol designer can call detailed event handlers for

different events. A protocol can also have other event handlers that do not call by the framework.

For instance, GentelRain [36] and CausalSparatan [60] have event handlers that are constantly

called at a certain rate. The following code shows the overall structure of GentleRainServer class

that implements GentleRain on top of DKVF. The body of event handlers is left blank for sake of

presentation.

public class Gen t l eRa i nS e r v e r extends DKVFServer {

@Override

public void hand l eC l i e n tMe s s ag e ( C l i en tMessageAgen t cma ) {

if ( cma . g e tC l i e n tMe s s a g e ( ) . hasGetMessage ( ) ) {

hand leGetMessage ( cma ) ;

} else if ( cma . g e tC l i e n tMe s s a g e ( ) . hasPu tMessage ( ) ) {

hand lePu tMessage ( cma ) ;

}

}

@Override

public void hand l eSe rve rMes s age ( Se rve rMessage sm ) {

if ( sm . h a sRep l i c a t eMe s s ag e ( ) ) {

h and l eRep l i c a t eMe s s a g e ( sm ) ;

} else if ( sm . ha sHea r t b e a tMes s age ( ) ) {

hand l eHea rbea tMes sage ( sm ) ;

} else if ( sm . hasVvMessage ( ) ) {

handleVvMessage ( sm ) ;

} else if ( sm . hasGstMessage ( ) ) {

hand leGs tMessage ( sm ) ;
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}

}

private void hand leGetMessage ( C l i en tMessageAgen t cma ){

/ / TODO Handle GET messages here

}

private void hand lePu tMessage ( C l i en tMessageAgen t cma ){

/ / TODO Handle PUT messages here

}

private void h and l eRep l i c a t eMe s s a g e ( Se rve rMessage sm ){

/ / TODO Handle R e p l i c a t e messages here

}

void hand l eHea rbea tMes sage ( Se rve rMessage sm ) {

/ / TODO Handle Hea r t b ea t messages here

}

void handleVvMessage ( Se rve rMessage sm ) {

/ / TODO Handle VV messages here

}

void hand leGs tMessage ( Se rve rMessage sm ) {

/ / TODO Handle GST messages here

}

}

handleServerMessage receives an object of class ServerMessagewhich is created by proto-

buf from our metadata description explained in Section 8.2.1. handleClientMessage receives an

object from class ClientMessageAgent that includes an object of class ClientMessage created

by protobuf.

While we are processing server or client messages in handleServerMessage and handleC

lientMessage, we may need to send messages to other servers, or send client responses. To

send a message to another server, the framework provides the convenient sendToServer method

that receives the ID of the destination, and an object of ServerMessage class. The mapping

between server IDs and their actual addresses must be defined in the configuration file. DKVF

takes care of asynchronous reliable FIFO delivery of the message to the destination. Specifically,

if the receiver cannot receive the message (e.g., it has crashed, or there is a network partition),
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Algorithm 8.1 Pseudocode of the GET request handler of GentleRain protocol
1: Upon receive 〈GetReq k,gst〉
2: GSTm

n ← max(GSTm
n ,gst)

3: obtain latest version d from version chain of key k s.t. d.sr = m, or d.ut < GSTm
n

4: send 〈GetReply d.v, d.ut,GTSm
n 〉 to client

DKVF stores the message and will try to send it later. In the configuration file, we can specify the

amount of time to wait before resending the message. Also, we can set the capacity of the queue

of undelivered messages. If the limit of waiting messages reaches, DKVF throws an exception.

Calling sendToServer is thread-safe. Thus, the protocol designer does not need to worry about

concurrency or failure issues. To send the response to the client, the ClientMessageAgent class

provides sendReply method that allows us to send the response to the client message.

While we are processing client/server messages, we also need to store or retrieve data from the

storage engine. The DKVFServer class provides methods that can be used for this purpose. Two

main methods are read (String k, Predicate<Record> p, List<Record> result) and

insert (String k, Record rec). The first method reads all versions of the data item with

key k that satisfy predicate p. The second method adds record rec to the version chain of the data

item with key k. The default storage can be configured to be multi-version or single-version.

Now, as an example, let us consider an implementation of the GET request handler of Gen-

tleRain. Algorithm 8.1 shows the pseudocode of this event handler copied from the original

paper [36]. The following code shows the corresponding necessary code for DKVF. First, we

update the GST value by calling updateGst method. This method basically does what Line 2

of Algorithm 8.1 does in a thread-safe manner. Next, we call read of the framework to read

the value of the requested data item. We pass a predicate to the read function to find the visible

version according to the GentleRain algorithm. Specifically, a version is visible if either it is

written locally, or its update time is smaller than GST. Finally, we create ClientReply message

containing the value of the key, and send it to the client by calling sendReply method of the

ClientMessageAgent object. Note that in the following code, we ignore exception and error

handling for sake of presentation.
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void hand leGetMessage ( C l i en tMessageAgen t cma ) {
GetMessage gm = cma . g e tC l i e n tMe s s a g e ( ) . ge tGe tMessage ( ) ;
upda t eGs t (gm . g e tG s t ( ) ) ; / / Thread− s a f e l y upda t e GST
L i s t Record r e s u l t = new Ar r ayL i s t < > ( ) ;
S t o r a g e S t a t u s s s = r e ad (gm . getKey ( ) , ( Record r ) −> {
if (m == r . g e t S r ( ) | | r . g e tU t ( ) <= g s t . g e t ( ) )
return true ;
return false ; } , r e s u l t ) ;

Record r e c = r e s u l t . g e t ( 0 ) ;
C l i e n tR e p l y c r = C l i e n tR e p l y . newBui lde r ( ) . s e t S t a t u s ( true ) . s e tGe tRep l y ( GetReply . newBui lde r ( )

. s e tVa l u e ( r e c . g e tVa l ue ( ) ) . s e tU t ( r e c . g e tU t ( ) ) . s e tG s t ( g s t . g e t ( ) ) ) . b u i l d ( ) ;
cma . sendRep ly ( c r ) ;

}

8.2.3 Client-side Implementation

To implement the client side of a protocol, we need to extend the client part of the framework.

Specifically, we need towrite a class that extends classDKVFClient. Whenwe extendDKVFClient,

we have to implement two abstract methods put and get that are the basic PUT and GET operations

of a key-value store. These methods are operations that the protocol designer needs to provide

for the application developer. The application developer later can use these methods to use the

data store (see Figure 8.1). The protocol designer can also add more complex operations for its

implementation, but these two methods are required for any implementation.

To process application requests, the client part needs to send client messages and receive

responses from the servers. Finding the correct node to send the request is the problem of service

discovery [40]. DKVF does not force any service discovery policy, and lets protocol define it.

DKVF, on the other hand, provides convenient ways to send/receive messages to/from servers

via their IDs specified in the client configuration file. Specifically, sendToServer(String id,

ClientMessage cm) sends a client message to the server with ID id, and readFromServer

(String id) reads the response from server with ID id.

Now, let us consider client side of PUT operation of GentleRain. Algorithm 8.2 shows the PUT

operation at client side in the GentleRain. The following code shows the corresponding DKVF

code. To find the correct server to send the PUT request, we call findPartition function. DKVF

Utils library provides utilities to distribute the keys according to their hash values. The rest of the

handler is clear and identical to the pseudocode.
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public boolean pu t ( S t r i n g k , byte [ ] v ) {

C l i en tMes s age cm = Cl i en tMes s age . newBui lde r ( ) . s e tPu tMes s age ( PutMessage . newBui lde r ( ) . \ \

s e tD t ( d t ) . se tKey ( key ) . s e tVa l u e ( By t e S t r i n g . copyFrom ( va l u e ) ) ) . b u i l d ( ) ;

S t r i n g s e r v e r I d = f i n d P a r t i t i o n ( key ) / / f i n d s s e r v e r ID

s endToSe rve r ( s e r v e r I d , cm ) ;

C l i e n tR e p l y c r = readF romServe r ( s e r v e r I d ) ;

d t = Math . max ( dt , c r . g e t Pu tRep l y ( ) . g e tU t ( ) ) ;

return true ;

}

Algorithm 8.2 Pseudocode of the PUT handler of the client-side of GentleRain protocol
1: PUT (key k, value v)
2: send 〈PutReq k, v,DTc〉 to server
3: receive 〈PutReply ut〉
4: DTc = max(DTc,ut)

8.3 Benchmarking with YCSB

YCSB, originally developed by Yahoo!, is a tool for evaluating the performance of key-value or

cloud serving stores [29]. To use YCSB, we need to write a YCSB driver that lets YCSB client class

use our key-value store. YCSB has a core workload generator. We can specify different parameters

for the core workload generator such as read proportion, insert proportion, value size, number of

client threads, number of operations, and so on. Once we specified the workload and driver for

YCSB, we can run it to benchmark our system. YCSB gives us different measurements such as

throughput and latencies.

DKVF comes with a driver for YCSB. Thus, any key-value store written based on DKVF has

its YCSB driver ready. DKVF also includes a workload generator. The DKVF YCSB workload

generator extends the YCSB core workload generator by adding new operations such as amplified

insert to benchmark the system against query amplification (see Section 3.2.2). This feature allows

us to evaluate the performance of macro operations that reveal bottlenecks when a query results in

multiple operations on the key-value store.
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Figure 8.2 shows the components involving in benchmarking a key-value store created by

DKVF. The person who wants to benchmark the system, referred to as benchmark generator,

needs to provide two components shown by dark rectangles in Figure 8.2. The first component

is the workload properties. The benchmark generator can specify any YCSB core properties for

the workload. For benchmarking query amplification, we can specify the amplification factor.

The benchmark generator also needs to provide a client configuration file that specifies servers

to connect, and other client-side parameters (see Section 8.1). The workload generator is also

extensible. Specifically, if we want to benchmark an operation that is not included in DKVF, we

need to implement a customized YCSB driver and workload generator. We refer the reader to [29]

for details.
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Figure 8.2: Using of YCSB for evaluating a prototype created by DKVF

8.4 Tools

In this section, we introduce two tools that help protocol designers to run and benchmark their

distributed key-value stores created with DKVF. These tools can save us a great deal of time and

headache in running and benchmarking our systems.

8.4.1 Cluster Manager

Cluster Manager is a command line application to facilitate managing clusters running key-value

stores created with DKVF. It also helps us to run distributed YCSB experiments. Using this tool,
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we can benchmark our key-value store without directly setting up YCSB; we only need to define

our desired workload, and Cluster Manager takes cares of the rest.

To run a cluster, we need to write a cluster descriptor file. This descriptor file is an XML file

according to ClusterDiscriptor.xsd [6], and specifies various aspects such as the IP address of

the servers, port numbers to listen for incoming client/server messages, the topology of the servers,

and so on. After loading a cluster descriptor file, we can us Cluster Manager to start all servers.

Cluster Manager also enables us to monitor the servers. For instance, we can see if servers have

properly started and connected to each other, how much are the network latencies, or how many

clients are connected to each server.

Cluster Manager also helps us to test and debug our key-value store. Specifically, after running

a cluster we can connect to any server in the cluster and run commands on the servers. For instance,

suppose we want to test the convergence of our protocol. We can connect to a replica, and write a

value for some key. Next, we can connect to another replica to see if our write has been replicated

to the second replica properly. This kind of debugging is very convenient with Cluster Manager.

Cluster Manager uses an instance of the client side of our key-value store to interact with the server.

Thus, we need to specify our client class for Cluster Manager in the cluster descriptor file.

After running a cluster, and testing it with ClusterManager, we can conduct an experiment to see

howwell our protocol performs. We need to write an experiment descriptor file for each experiment.

The experiment descriptor file is an XML file according to ExperimentDescriptor.xsd [6], and

specifies experiment related parameters such as how many clients we want to run, what are the

addresses of the client machines, each client is connected to which servers, what are the workloads,

and so on. We can define a set of experiments for Cluster Manager in our descriptor file. After

loading an experiment descriptor file, we can use Cluster Manager to run the experiment. The

Cluster Manager conducts the experiments one by one by running YCSB clients, and gather the

results from clients. To aggregate the results, Cluster Manager provides us with a minimal query

language that lets us select measurements we want to aggregate and specify how we want to

aggregate them (e.g., taking the average).
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Figure 8.3: The graphical interface of Cluster Designer

8.4.2 Cluster Designer

Although Cluster Manager is a convenient tool that can significantly reduce the time and headache

of debugging and benchmarking our protocol, writing cluster and experiment descriptor files can

be a tedious and of course error-prone task for larger clusters. To solve this issue, we provide

Cluster Designer tool. Cluster Designer is a graphical tool that allows us to define our cluster

and experiments visually. The tool provides an area where we can add servers and clients. We

can connect servers and clients by lines to specify network connections. When we have several

components that need to be all connected to each other, we can use hubs to avoid connecting them

one-by-one. Figure 8.3 shows the interface of Cluster Designer. In this network, we have 6 servers

and 6 clients. We will talk about this network in more details in 8.5.

We can define default configurations for servers/clients. We later can tailor default configu-

rations for an individual server/client. After designing our cluster and experiments, we can use

Cluster Designer to export descriptor files. We can later use Cluster Manager to run our cluster and

experiments as explained in Section 8.4.1.

8.5 Experimental Results

In this section, we present some of the results thatwe obtained from implementing and evaluating

three causal consistency protocols namely COPS [49] 1, GentleRain [36], and CausalSpartan [60]

1We have implemented a simplified version of COPS without garbage collection.
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Table 8.1: The number of lines of code that we wrote to implement different protocols with DKVF.

Protocol Server Side Client Side Metadata
Eventual 95 58 32
COPS 269 84 45
GentleRain 226 61 50
CausalSpartan 292 118 53

(i.e. CausalSpartanX without ROTX operations) using DKVF. We also implemented eventual

consistency for comparison. Table 8.1 shows the number of lines of code that we wrote to

implement each of these protocols. For each protocol, we have reported the number of lines that

we wrote for server side, client side, and describing our metadata in .proto file for protobuf.

Of course, numbers of lines of code is not an accurate indicator, as different people may write

the same program in different ways, but we report them here just to give you an estimate of the

coding effort that we needed to put to implement these protocols using DKVF. You can access our

implementations in [6].

Without DKVF we needed 843 lines to implement CausalSpartan and 769 lines to implement

GentleRain. In implementing CausalSpartan andGentleRainwithout DKVF,we usedNetty [12] for

network communications. The number of lines of code that we needed to implement CausalSpartan

and GentleRain with DKVF is around 40 percent of what we needed to implement them without

DKVF. Note that reducing the number of lines of code is not the only goal of DKVF. Instead, using

DKVF has all the benefits that we mentioned in the introduction.

We have not implemented COPS and eventual consistency without DKVF. With DKVF, it took

only 2 days to implement COPS based on the description of the protocol in [49]. Furthermore, all

the code developed with DKVF essentially required us to convert the pseudocode in the respective

papers into Java and add error handling that is generally omitted in the pseudocode. In this sense,

writing the code required with DKVF was straightforward.
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8.5.1 Experimental Setup

We consider a replicated and partitioned data store shown in Figure 8.3. The data store consists

of two replicas. Each replica consists of three partitions. Replica 0 includes partitions 0_0, 0_1,

and 0_2. Replica 1, on the other hand, consists of partitions 1_0, 1_1, and 1_2. We assume full

replication, i.e., each replica has a copy of the entire key space. The key space inside each replica

is partitioned among servers. In Figure 8.3, we have connected servers inside each replica together

with a hub. Partitions are also connected to their peers in the other replica. For servers, we use AWS

m3.medium instances with the following specification: 1 vCPUs, 2.5 GHz, Intel Xeon E5-2670v2,

3.75 GiB memory, 1 x 4 (GB) SSD Storage Capacity.

Connected to each replica, we have a set of clients. We allocate three client machines to run

clients. We run 30 threads of YCSB clients on each client machine. All causal consistency protocols

that we study here assume locality of traffic, i.e., clients always access one replica. Thus, clients

are connected to only one replica as shown Figure 8.3. We run clients on c3.largemachines with

the following specification: 2 vCPUs, 2.8 GHz, Intel Xeon E5-2680v2, 3.75 GiB memory, 2 x 16

(GB) SSD Storage Capacity. We have used more powerful machines for clients to better utilize our

servers.

8.5.2 The Effect of Workload on Performance

The workload of different applications has different characteristics. Some workloads are write-

heavy, others like those in data analytics are read-heavy. In this section, we want to study how the

characteristics of our workload affect the performance of different consistency protocols. In all

experiment, we set the size of the values written by clients to 64 bytes.

Figure 8.4 shows how GET:PUT proportion affects the throughput. As we move from the left

side of the plot to its right side, the workload nature changes from write-heavy to read-heavy. The

throughputs of all protocol increase as the proportion of GET operations increases. This results

confirm previous studies [36, 49], and are expected, as GET operations are lighter than PUT. As

expected, eventual consistency has the highest throughput. COPS, on the other hand, has the lowest
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Figure 8.4: Throughput vs. GET:PUT proportion

throughput. This results confirm results published in [36], and is due to the overhead of dependency

check messages that partitions send to each other to make sure causal dependencies of an update in

other partitions are visible (see Section 3.2.2).

Figure 8.5a shows howGET:PUT proportion affects the response time of PUT operations. In all

protocols, the response time of PUT operations decreases as we move to read-heavier workloads.

This is due to the less load on servers for read-heavier workloads. The eventual consistency has

the shortest response time thanks to its minimal metadata. CausalSpartan has more metadata than

GentleRain resulting in higher PUT response time. COPS has the highest response time because of

its dependency checkmessages and its explicit dependency tracking approach. Like other protocols,

the trend of PUT response time for COPS is decreasing as we move toward read-heavier workloads

that can be explained by less load on the machines. However, for 0.05:0.95, the PUT response time

increases. This increase can be understood by considering the dependency tracking mechanism

of COPS. At point 0.05:0.95, clients read many keys before writing a key. That results in longer

dependency lists which make PUT messages heavier to transmit and process. Note that we have

implemented a basic version of COPS protocol without client metadata garbage collection. COPS

authors suggest a garbage collection mechanism to cope with this problem [49].

Figure 8.5b shows how GET:PUT proportion affects the response time of GET operations.

Like the case of PUT operations, the response time of GET operations also decreases, as we

move towards read-heavier workloads. It is interesting that GentleRain and CausalSpartan have
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Figure 8.5: The effect of GET:PUT ratio on response time

a lower response time for GET operations comparing to the eventual consistency for write-heavy

workloads. This can be explained by the synchronization that occurs between threads in GentleRain

and CausalSpartan. Specifically, there is a contention between threads while performing PUT

operations in GentleRain/CausalSpartan. This contention occurs for obtaining a lock that we used

to guarantee updates with smaller timestamps are replicated to other nodes before updates with

higher timestamps. This increases the PUT response time that results in lower overall throughput

of GentleRain/CausalSpartan for write-heavy workloads. While threads serving PUT operations

are waiting for synchronization, the server can handle GET operations. On the other hand, in

the eventual consistency, there is no competition between PUT operations. Thus, there are more

active threads serving PUT operations leading to higher competition over CPU that finally results

in higher GET response time comparing to GentleRain/CausalSpartan. Note that this happens for

write-heavy workloads with low GET proportion. Therefore, the eventual consistency still has the

highest overall throughout in all cases (See Figure 8.4).

8.5.3 The Effect of Query Amplification

In this section, we study the effect of query amplification on the performance of the system. In this

section, we only consider one replica consisting of three partitions. We consider a workload that

purely consists of amplified insert operations. Each amplified insert consists of several internal
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Figure 8.6: The effect of amplification factor on response time and throughput

PUT operations. The number of internal PUT operations is defined by the amplification factor.

Figure 8.6a shows the effect of amplification factor on the client request throughput. Note that

this throughput represents the number of client macro operations (not individual PUT operations)

that are served in one second. As the amplification factor increases, the throughput of all protocol

decreases which is expected, as requests with higher amplification factor include more internal

operations which mean more job to do for each request. The eventual consistency has the highest

throughput. The pure-write workload is an ideal write scenario for COPS, as dependency lists have

at most one entry. Thus, the throughput of COPS is the highest after eventual consistency for this

scenario. GentleRain has the lowest throughput. That is due to the delay that GentleRain imposes

on PUT operations in case of clock skew between servers. Note that we synchronized the physical

clocks of the system with NTP [14], but the effect of clock skew still shows up in the results.

These results confirm previous results presented in [60]. CausalSpartan has higher throughput than

GentleRain, as CausalSpartan eliminates the need for the delay before PUT operations by utilizing

HLCs instead of physical clocks [60]. Figure 8.6b shows the request response time for different

protocols. Again, because of delays that GentelRain forces on PUT operations, request response

time has the highest value for GentleRain.
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CHAPTER 9

FUTUREWORK

In this Chapter, we focus on some of the possible directions that can be pursued as the future work

of this dissertation.

9.1 Hybrid Protocol for Causal Consistency

In Chapter 1, we categorized causal consistency protocols to explicit and implicit protocols.

Explicit protocols track and check causal dependencies explicitly by keeping lists of actual causal

dependencies of the versions. Implicit protocols such our CausalSpartanX, on the other hand, track

causal relations via timestamps and check causal dependencies implicitly via constantly monitoring

some sort of the stable time in a replica. Implicit protocols reduce metadata overhead and message

complexity compared with explicit methods. However, they can leads to higher update visibility

especially due to slowdowns of partitions. For example, suppose we have a new update v that

has only one causal dependency on partition A. In an explicit protocol, we can easily send a

dependency check message to server A to check if the causal dependency is available. On the

other hand, an implicit protocol such as GentleRain [36] needs to wait for all servers in the system

to send a replicate/heartbeat message with a timestamp higher than that of v to their peers in the

replica and partitions inside the replica communicate with each other to find the stable time that is

higher than timestamp of v before making v visible. This can delay visibility of v if only one of

the partitions in one of the replicas is slowed or failed. We alleviate this problem by keeping track

of dependencies for different replicate separately. However, compared with an explicit protocol,

our CausalSpartanX still suffers from unnecessary delay before making a version visible due to the

implicit approach.

We believe an implicit approach is still much more practical than the explicit approach, because

it allows us to achieve considerably better performance by introducing a small increase in the update

visibility. As mentioned earlier, the overhead of the explicit approach comes from two problems:
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Figure 9.1: How hybrid approach can reduce the overhead of explicit approach while keeping the
same update visibility latency

1) metadata overhead of explicit dependency lists, 2) sending dependency check messages. We

believe using a hybrid approach, we can prevent the second overhead. Specifically, we can track

dependency via dependency lists, and send dependency check messages only when the stable time

calculated in a replica is not enough to make sure dependencies are present. We can also postpone

checking dependency to when a client wants to read the key– lazy dependency checking. This

way, we increase the probability of checking dependency by the stable time that allows us to avoid

sending unnecessary dependency check messages. The hybrid approach makes visibility latency

overhead the same as that of explicit approach while avoiding sending too much dependency check

messages. Thus, the hybrid will be superior to the explicit approach. However, since we still need

explicit dependency lists, we cannot say the hybrid approach is superior to the implicit approach

regarding the metadata overhead. Thus, if we consider two factors 1) update visibility latency and

2) metadata + message complexity overhead, we anticipate that such hybrid approach will position

as it is shown in Figure 9.1 compared to the explicit and implicit approach, i.e. it outperforms

explicit but not the implicit. Designing a hybrid protocol and experimenting it to see how it works

compared with explicit and implicit approach is interesting future work.
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9.2 Other Data Models

In this work, we focused on key-value data model. An interesting direction for future work is

exploring protocols for other data models such as graph databases or document stores. To do that,

we first need to define different consistency levels for such data models, and then design protocols

to provide the desired consistency levels. Although we can represent other data models such as

graph via key-value, a system that is intended to provide a certain data model can be optimized to

provide better performance for operations specific to that data model. Such optimization should be

considered in designing protocols for each data model.

9.3 Offline Availability while Providing Consistency

Many of consistency protocols provided in the literature, including those proposed in this

dissertation, consider online systems, i.e. clients are always connected to the servers. Such an

assumption is reasonable if we consider web servers clients especially when they reside in the data

center where data servers reside. However, if consider clients closer to the end user (e.g. laptop

machine or cell phones), then the assumption of online systems can be restrictive as the system

should be unavailable when clients are not connected to the servers. Interestingly, right now that

I am writing these lines, I am on the plane and do not have access to the Internet. Since I do

not have access to the Internet, I cannot edit my Latex documents on Overleaf [15] which is a

cloud-based Latex editor that allows several people to work on the same document at the same time.

It guarantees that all people editing a document see the same version at all time, but it requires

clients to be always connected to the servers. To allow clients to continue their work even when

there are offline, clients should be able to write and read to and from some sort of client cash. Some

protocols such as [66] use client cash for providing offline availability while satisfying certain levels

of consistency. However, we believe there is a lot more to investigate in this area.
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9.4 General Transactions

In this work, we provided an algorithm for causally consistent read-only transactions. Providing

general transactions that allow both read and write is future work. [64] and [54] are examples of

protocols that provide causally consistent general transactions.

9.5 Model-based Development of Consistency Protocols

Although there are several theorems such as CAP theorem for replicated data stores, there is a

lack of systematic unifying theory to characterize the spectrum of consistency protocols so that the

designers can utilize the exact tradeoff that they can obtain. Such a unifying theory could answer

questions such as ‘is it possible to design a protocol that combines feature A of protocol 1 with

feature B of protocol 2?’ If so, ‘what is the corresponding protocol and will it preserve feature

C?’. We can develop the notion of the abstract data store and abstract ’high-level’ protocols and

demonstrate how existing protocols refine the high-level abstract data store. This way we can find

the relation between different consistency protocols and expected constraints invariant properties

of the system that implements the given level of consistency. We can see how existing protocols

refine the constraints of the abstract protocol. It allows us to see how new protocols can be designed

based on alternate approaches to refine the abstract protocol.

We can define our abstract data store using various formalism. One possibility is to define the

state of a data store via a set of variables and define a protocol using a set of actions. For example,

for the key-value data model, the set of variables are our set of keys. Now, let v(k)s be the value

of key k and t(k)s be the timestamp assigned to the current version of key k at server s. Also, let

PUT(k, v)s be a predicate that is true when a client requests to write value v for key k, and GET(k)s

be a predicate that is true when a client requests to read value of key k at server s. Moreover, let

rets be the value returned to the client from server s. Now, we can define the abstract eventual

consistency with last-write-wins conflict resolution protocol using following three guarded actions

(the left side of→ is a condition that when is true, the system does what is on the right side of the

→):
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• PUT(k, v)s → v(k)s = v, t(k)s = 〈current_time, server_id〉,rets = OK

• GET(k)s → rets = v(k)s

• ∃si, s j, k : t(k)si > t(k)s j → v(k)s j = v(k)si

Note that the above description is very abstract and can be refined in different ways. For

example, to refine the third actions, servers can asynchronously send replicate message to their

peers to inform them about a new update after returning to the client, or they can do the replication

synchronously by informing peers before returning to the client. Another alternative is to give

the responsibility of replication to the clients (client-based replication). We define REP(k, v, t)s

a predicate that represents the event of receiving a replicate message with value v and timestamp

t for key k. Also, PUT(k, v, t)s is the predicate that is true when when a client request to write

value v for key k with timestamp t. Now, we can define eventually consistent systems with different

replication approaches as follows:

• Asynchronous replication:

– PUT(k, v)s → v(k)s = v; t(k)s = 〈current_time, server_id〉; rets = OK;∀s′ : REP(k, v, t(k)s, s′) =

T RUE

– GET(k)s → rets = v(k)s

– REP(k, v, t)s ∧ t(k)s < t → v(k)s = v; t(k)s = t

• Synchronous replication:

– PUT(k, v)s → v(k)s = v; t(k)s = 〈current_time, server_id〉;∀s′ : REP(k, v, t(k)s, s′) =

T RUE; rets = OK

– GET(k)s → rets = v(k)s

– REP(k, v, t)s ∧ t(k)s < t → v(k)s = v; t(k)s = t

• Client-based replication:
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– PUT(k, v)s → v(k)s = v; t(k)s = 〈current_time, server_id〉; rets = OK;∀s′ : PUT(k, v, t(k)s)′s =

T RUE

– GET(k)s → rets = v(k)s

– PUT(k, v, t)s ∧ t(k)s < t → v(k)s = v; t(k)s = t

These are just three examples of how we can refine the abstract eventual consistency protocol.

Thus, a key-value store that refines eventual consistency does not to be one these three. For instance,

NuKV (see Section 4.1) refines synchronous replication for replicas inside the same data center, and

uses asynchronous replication for replicas in remote data centers. These protocols can be refined

further until we reach concrete protocols. For example, NuKV refines synchronous replication using

Raft [57] algorithm, but we could refine it in different ways such as multi-Paxos algorithm [47].

Also, note that all protocols that refine stronger consistency protocols, also refineweaker consistency

protocols. For example, our CausalSpartanX that refines causal++ consistency also refines eventual

consistency. In fact, CausalSpartanX refines asynchronous eventual consistency protocol. Figure

9.2 shows how these abstract and concrete protocols are related. This figure is just an example

of how we can map various consistency protocols and find their relations. Also, note that the

formalism provided here is an example of how we can model abstract protocols. We can use

different formalism such as timed automata that enable us to model time aspects of consistency

protocols.

9.6 Adaptive Causal Consistency

In Chapter 7, we introduced our approach for providing adaptive causal consistency. We

provided our framework, ACCF, that facilitates creating such adaptive systems. ACCF is flexible

framework that can treat applications individually and can be easily configured by changing its

tracking and checking groups. Designing an adaptive causal consistency protocol using ACCF is

interesting future. There are some of possible ways for dynamically changing tracking and checking

groups to build an adaptive causal consistency protocol:
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Figure 9.2: Example of how different consistency protocols refines abstract protocols

Dynamically adding or removing checking groups: Adding checking groups is a straightfor-

ward process. Each checking group is associated with a data structure (e.g., SVV in the algorithm

provided in Section 7.2) that the servers need to maintain (in RAM). Hence, if we want to add a

new checking group, the system can run the protocol to initialize these fields and make the new

checking group available. Removing a checking group is somewhat challenging especially if some

client is using it. In this case, we anticipate that the principle-of-locality would be of help. If a

client has not utilized a checking group for a while, in most cases, all the data the client has read

has been propagated to all copies in the system. In other words, if a client is using a checking group

that has disappeared, we can have the client choose a different checking group. It is unlikely to

lead to delays, as all replicas already have the data that the client has read. Two practical questions

in removing checking groups are (1) the time after which we can remove a checking group and (2)

how servers can determine that no client has accessed that checking group in that time. A more

difficult question in this work is when to add a new checking group and how many checking groups

to maintain. Clearly, we cannot create a checking group for each possible client, as it would require
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exponentially many checking groups.

Utilizing multiple checking groups simultaneously: Yet another question is whether clients

could have multiple checking groups or whether clients can change their checking group. The

former would be desirable when the system does not offer a checking group that the client needs.

However, the client could choose two (or few) checking groups whose union is a superset of the

checking group requested by the client. In this case, the server providing the data would have to

utilize all of these checking groups –on the fly– to determine which data should be provided to the

client.

Learning required checking groups automatically: In this case, the system will learn from

client requests to identify when new checking groups should be added and when existing checking

groups should be removed. We expect that dynamically changing the checking groups in this

manner would be beneficial due to principle-of-locality, where clients are likely to access data

that similar to the data they accessed before. (Recall that we assume that keys are partitioned

with semantic knowledge rather than by approaches such as uniform hashing). We anticipate that

learning techniques such as evolutionary or machine learning techniques would be useful to identify

the checking groups that one should maintain.

Dynamically changing the tracking groups: Dynamically changing the tracking groups is

more challenging but still potentially feasible in some limited circumstances. The reason for this is

that while checking groups affect the data maintained by the servers at run-time (in RAM) tracking

groups affect storage affected by keys (in long-term permanent storage). In other words, at runtime,

we may run into a key that was stored with a different tracking grouping. In this case, it is necessary

to convert the data stored with the old tracking grouping into the corresponding data in the new

tracking grouping. We expect that principle-of-locality would be of help in this context as well;

keys stored long ago are likely to have been updated in all replicas. Conversion of the data stored

with keys is protocol specific but still feasible. For example, if we wanted to switch between

tracking grouping used by CausalSpartan [60] (where a vector DSV is maintained with one entry

per replica) to GentleRain [36] (where only a scalar entry GST is maintained) then we could convert
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the DSV entry into a GST entry that corresponds to the minimum of the DSV entries. However,

the exact approach to do this for different tracking groupings requires semantic knowledge of those

tracking groupings.

9.7 Partial Replication

In this works, like most of the protocols reviewed in Chapter 3, we focused on full replication

where each replica has the full copy of the data. Exploring partial replication and designing

protocols for it could be future work. Our ACCF introduced in section 7 also provides a basis for

causally consistent and partially replicated systems. Partial replication also can be related to the

offline availability discussed in Section 9.3, as a client cash can be considered as a partial replica

that has only a part of the whole key space.
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CHAPTER 10

CONCLUSION

In this dissertation, we considered the problem of consistency for replicated data stores. We focused

on intermediate consistency models that are stronger than eventual consistency and weaker than

strong consistency. They eliminate many of inconsistencies caused by eventual consistency and

at the same, unlike strong consistency, do not cause high performance and availability overhead.

Session guarantees are one of such intermediate consistency models. We provided modified defi-

nitions of session guarantees that, unlike conventional session guarantees, do not cause slowdown

cascades. We presented our analysis of the cost associated with providing session guarantees for

NuKV, a key-value store that aims to simultaneously provide high availability and consistency for

eBay services. In particular, NuKVmaintains the data in multiple data centers and each data center

contains multiple replicas of the data. We showed that if we introduce session guarantees, and

the client remains within the same data center, the overhead of session guarantees compared with

eventual consistency is within experimental error. Furthermore, even if the client changes its data

center, the cost of increased latency is very small, ≈ 10(ms). We demonstrated this for different

types of workloads (100% read, read-heavy, write-heavy and 100% write). Our analysis showed

that providing write session guarantees highly benefits from the use of HLCs [42].

In addition to session guarantees, we considered another intermediate consistency model called

causal consistency. Causal consistency is especially interesting as it is proved to be the strongest con-

sistency model that remains available in presence of network partitions. We presented CausalSpar-

tanX, a time-based protocol for providing causal consistency for replicated and partitioned key-value

stores. Unlike existing time-based protocols such as GentleRain that relies on the physical clocks,

our protocol is robust to clock anomalies thanks to utilizing HLCs instead of physical clocks.

CausalSpartanX guarantees that the response time for client operations are unaffected by clock

anomalies such clock skew. For example, for the clock skew of 10 (ms), the average response

time for PUT operations of CausalSpartanX was 4.5 (ms) whereas the average response time of
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GentleRain was 7.6 (ms). Also, the correctness of CausalSpartanX is unaffected by NTP kinks such

as leap seconds, non-monotonic clock updates and so on. The improvement of CausalSpartanX

over GentleRain is more obvious in the context of query amplification where a single end user’s

request translates to many internal requests. In our experiments, we observed even for 10 (ms)

clock skew, CausalSpartanX reduces the average response time from 814 (ms) to 124 (ms) (for a

query that consists of 100 operations) and from 3800 (ms) to 407 (ms) (for a query that consists of

500 operations).

Another advantage of CausalSpartanX lies in the fact that it reduces update visibility latency.

Specifically, causal consistency protocols need to delay a remote update from being visible to ensure

causal consistency. However, such delays can cause substantial increase in latency for collaborative

applications where two clients read each other’s updates to decide what actions should be executed.

As a simple application of this collaborative application, we considered the abstract bidding problem

where one client reads the updates (using data center A) from another client (using data center B) and

decides to increase its own bid until a limit is reached. We performed this experiment where A and

B were in California, but the location of another data center, say C was changed. CausalSpartanX

performance remained unaffected by the location of C. By contrast, in GentleRain, the latency

increased from 46 (ms) to 88 (ms) when we move data center C from Oregon to Singapore.

In addition to the basic GET and PUT operations, CausalSpartanX provides read-only transac-

tion operation, ROTX, that allows application developers to read a set of keys such that the returned

values are causally consistencywith each other as well as with the client past reads. CausalSpartanX

ROTX is non-blocking, i.e., servers receiving the request can read the requested values immediately,

and it only requires one round of communication between the client and the servers. In addition,

slow servers that are not involved in the transaction do not affect the response time of it. This fea-

ture provides a significant improvement for CausalSpartanX, especially regarding the tail latency,

compared with the existing protocol such as GentleRain where the slowdown of a single partition

in a data center affects the response time of all transactions in the data center. Our experiment

shows that for a 100 (ms) slowdown of a partition, the 90th percentile of ROTX response time of
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CausalSpartanX shows 86.04% and 29.7% improvement over that of GentleRain, for transactions

not involving the slow partition and transactions involving the slow partition, respectively. For

higher slowdowns and higher percentiles, this improvement is more significant. For example, for

500 (ms) slowdown and 99th percentile, these numbers go up to 95.99% and 37.70%, respectively.

CausalSpartanX together with the majority of causal consistency protocols assumes sticky

clients i.e., clients only access their local replica. We provided an impossibility result which states

in presence of network partitions the stickiness of clients is necessary, to have an always available

causally consistent data store that immediatelymakes local updates visible. This impossibility result

is different than the existing impossibility result that requires sticky clients for read-your-writes and

still holds even when clients can cache their past read and writes.

Existing causal consistency protocols, including our CausalSpartanX, utilize a static approach

in tracking and checking dependencies. In this dissertation, we explained the need for developing

a system that provides causal consistency in an adaptive manner. Specifically, we introduced the

notion of tracking and checking groups as away to generalize existing protocols as well as to develop

new adaptive protocols. We provided a framework that, unlike existing causal consistency protocols,

can be configured to work with different tracking and checking groupings. This flexibility enables

us to trade off between conflicting objectives, and provide different views to different applications

so that each application gets the best performance. We argue that the approach and the framework

introduced in this dissertation provide a basis for adaptive causal consistency for replicated data

stores.

To facilitate evaluating future protocols, we developed DKVF which is a framework for rapid

prototyping and benchmarking distributed key-value stores. It streamlines the evaluation of the

performance of consistency protocols for distributed key-value stores. The great advantage of

DKVF is that it allows us to implement our protocols by writing a piece of code that is very

close to the pseudocode that protocol designers include in their research papers. Thanks to the

convenience of DKVF, we were able to implement each of four consistency protocols namely

eventual consistency, COPS, GentleRain, and CausalSpartan in less than 2 days. DKVF relies on
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YCSB for benchmarking. The toolset that comes with the framework helps protocol designers to

easily evaluate their prototypes.
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