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ABSTRACT
OPERATIONALLY DEFINING THE ASSUMPTION OF

INDEPENDENCE AND CHOOSING THE APPROPRIATE
UNIT OF ANALYSIS

By

Linda K. Glendening

The assumption of independence was operationally defined as:
Individual units (such as students) can be considered independent on
some dimension whenever the variance of the grouped units (such as
classrooms) can be predicted from the grouping size and the variance
of the individual units. When this definition of independence is
satisfied, the expected mean squares between and within groups are
equal. Given this operational definition, two types of dependence are
possible, positive and negative. Positive dependence was defined by
the expected mean square between groups being larger than the expected
mean square within groups. Negative dependence was defined by the
expected mean square within groups being larger than the expected mean
square between groups.

Both empirical and analytical methods were used to study the effect
of violating the assumption of independence, where the design model was
balanced and had two levels of nesting, subjects within groups and
groups within treatments. Group data were independent of each other,
while subjects within group data were manipulated to create different

degrees and types of dependence. The simulated data were analyzed using
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two ANOVA models, the 'mever pool" model where group was the unit of
analysis and so was an always correct model and the '"always pool" model
with student as the unit of analysis.

First, sampling distributions using the ''never pool'" model and the
"always pool" model were compared for independent, positively dependent,
and negatively dependent conditions. Given independence of subject
responses, either subject or group can be used as the unit of analysis
as both the "never pool" and the "always pool" tests proved to have
acceptable Type I error rates for the test of treatment effects. The
"always pool" test is the preferable test, however, as it had more power
than did the '"never pool" test. Given positive dependence, the proper
unit of analysis is the grouped unit. Using subject as the unit of
analysis caused the pooled error term for the "always pool" test to be
too small, and so the "always pool" test was too liberal and had
spuriously high power. Given negative dependence, the correct unit
of analysis is again the grouped unit. Using subject as the unit of
analysis caused the pooled error term for the "always pool" F test to
be too large and thus the "always pool" test was too conservative and
had spuriously low power. The empirical results indicated clearly that
the F test is not robust to violations of the assumption of independence,
even given small degrees of positive and negative dependence.

Next, a conditional testing procedure (a "sometimes pool" model)
was studied where an initial test of independence was done and then on
the basis of that test a unit of analysis was chosen for the primary

test of treatment effects. Sampling distributions using the ''mever



Linda K. Glendening

pool" and the "sometimes pool'" models were compared for independent,
positively dependent, and negatively dependent conditions. Given
independence of ungrouped units, the "sometimes pool" F test had
acceptable Type I error rates for the test of treatment differences,

as did the '"nmever pool" test. In addition, the powers of the '"sometimes
pool" test tended to be greater than the powers of the 'mever pool" test.
Given positive dependence, the '"sometimes pool" F test generally was too
liberal and thus had spuriously high empirical power. And given nega-
tive dependence, the 'sometimes pool" test was somewhat conservative

and generally had less power than the '"never pool" F test. These
results suggest that, as a general rule of thumb, a preliminary test

of independence should not be done to choose a unit of analysis to use

in testing for treatment differences.
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CHAPTER I

STATEMENT OF THE PROBLEM

At least three standard assumptions are necessary whenever
parametric hypotheses are tested or confidence intervals constructed.
These three "minimum" assumptions cut across models, e.g., correlational
models and experimental models, and across research designs, e.g.,
crossed and nested designs. There is the assumption of equal variances
or homoscedasticity, the assumption of normality and the assumption of
independence. Since assumptions are rarely, if ever, exactly met in
real world situations, researchers need to be sensitive to departures
from the assumptions underlying the model to be used and they need to
be aware of the consequences of such departures. Thus when making
assumptions, it seems necessary to consider two questions in particular.
First, what happens when the assumptions are violated? Second, if it
is important that an assumption be satisfied, how can one tell when it
has been satisfied?

Failure to meet the assumptions of a model may affect both the
significance level of a test and the sensitivity ofva test (Cochran &
Cox, 1957, p. 91). It is well known that under certain circumstances
the analysis of variance is robust to violations of the assumptions
concerning homoscedasticity and normality (Glass, Peckham & Sanders,

1972). However violations of the assumption of independence are less



well understood and may substantially affect the validity of any
confidence statements based in part on that assumption and made
regarding the hypothesized effects. In comparison to research efforts
studying the effects of violating the homoscedasticity and normality
assumptions, very little research effort has systematically dealt with
the effects of using correlated units of analysis.

In cases where the analytic model is not robust to violating either
the homoscedasticity assumption or the normality assumption, tests exist
(e.g., Levene's [1960] test for equal variances and, if n is reasonably
large, the chi-square test for normality of data) that can be used for
making a decision about whether the assumption was violated. The ques-
tion remains as to whether or not the validity of the independence
assumption can also be tested.

The major intent of this study was to propose a definition of
independence that was both conceptually meaningful within the typical
educational paradigm and operationally measurable. Secondly, this study
addressed the effects on the sampling distribution of the F statistic
and the effects on parameter estimates when correlated units of analysis
were assumed to be independent of each other. More specifically, the
probability of Type I errors, the power of the test and the biasedness
of parameter estimates were examined when different degrees and types
of dependencies were present within the research model. And thirdly,
this study considered distributional problems with using a conditional
testing procedure which included a preliminary test of independence

and either one of two subsequent primary tests of treatment effects.



In particular, the probability of Type I errors and the power of the
conditional F test (where the error term for the primary test of treat-
ment effects was selected on the basis of the results of a preliminary
test of independence) were of interest, both for conditions where the
preliminary test should fail to reject and for conditions where the
preliminary test should reject that individual observational units
were independent. The two distributional problems were studied both
analytically (to determine the existence and direction of effects) and
empirically (to estimate the magnitude of effects). The general design
model used for studying these problems was a balanced, hierarchically-
nested analysis of variance model, having only one outcome measure per
subject.

Throughout this paper the effects of violating the assumption
of independence will be discussed within the context of the general
educational setting, where students are reacting to stimuli within a
group atmosphere and where treatments or programs are usually given
to the entire classroom. Within each classroom situation, it seems
that different classroom or grouping components can make the responses
of individual students (observational units) dependent upon each other
to some degree. Some classroom components that can affect the
relationships between students' responses are:

e classroom enviromment effect;

e« teacher or instructional effect; and

e classmate effect.



The first problem is knowing and measuring how dependence operates
within a particular classroom. A second problem involves designing
statistical models which minimize the possibility of dependence due
to one or more of the classroom components. Clearly the answer to
the first problem should guide solutions to the second.

As one research effort to empirically study the effect of a com-
mon learning environment on the achievement of students, Steck (1966)
randomly assigned thirty 7th graders to receive mathematical instruction
in a group and another thirty to receive the instruction on a one-to-one
basis. The presentation of the lesson was made by tape recorder to
ensure similarity of treatment. In both situations, students were
encouraged to ask questions concerning the lesson before they took a
test to measure the extent to which they had mastered the material.
Steck found that the variance of the scores of students who received
the presentation as a group was significantly smaller than the variance
of the scores of students who received the lesson individually. Steck's
results suggest that in this particular study either common classroom
experience decreased the variability of student responses and/or indi-
vidualized instruction increased the variability of student resbonses.
Clearly, however, this one study is not enough to conclude that the
opposite condition (where classroom experience actually increases
student variation and/or individualized instruction decreases student
variation) does not occur.

Just how classroom components affect student responses may depend

on such things as the student population. For example, the responses



of kindergarteners within a classroom may tend to be more related to
each other than the responses of 12th graders within a classroom. The
type of program instruction might also make a difference. For example,
a classroom discussion probably tends to make students' responses more
related to each othér than does a classroom lecture. Independence (or
dependence) is not an all or nothing situation. Rather it is a matter
of degree. At one extreme, observational units can be completely
dependent upon each other. In this situation, N observational units
are no more informative than one observational unit. At the other
extreme, observational units can be completely independent (at least

in theory). 1In this situation, N observational units give N pieces of
nonoverlapping information. In-between these two extremes is a complete
continuum of dependency. It is this in-between area that gives

practicing statisticians headaches.



CHAPTER II

REVIEW OF LITERATURE

Definitions of Independence

Understanding the assumption of independence is prerequisite to
studying the consequences of violating that assumption. Thus this
section contains a review of the varying definitions of independence
contained in texts and papers dealing with statistical and research
design issues. The conclusion is that, for the most part, these sta-
tistical sources have been too theoretical and mystical to inform
practice on the assumption of independence itself and the consequences
of violating that assumption. Below are examples of how different
statisticians formally define independence. By themselves, these
definitions seem inadequate as they are conflicting in the suggested
causes of dependency and deficient in the assessment of dependency.

The experimental errors must all be independent. That is,

the probability that the error of any observation has a

particular value must not depend on the values of the

errors for other observations. (Cochran, 1947)

It is also assumed that the €j4's are independent, both

within each treatment level and across all treatment

levels. If subjects are randomly assigned to treatment

levels, the value of €43 for any observation can be

assumed independent of the values of € for other
observations. (Kirk, 1968, p. 52)



Before looking at additional definitions of independence,
a distinction needs to be made between independence and random
assignment. (Note that Kirk's definition equated the two.) The
condition of random assignment in a study is not synonymous with the
condition of independence of observations. In theory, independence
can happen without random assignment. Students judgmentally assigned
to any treatment condition can react to that treatment individually or
independently of others assigned to that same treatment. On the other
hand, it can and does happen that units randomly assigned to treatment
conditions do not, in fact, receive the treatments independently and
thus the assigned units are not independent of each other. One example
of this would be where children are randomly assigned to treatments but
then all children assigned to any one treatment condition are treated
as a group, e.g., they may all receive the treaément from the same
teacher. Random assignment can only be counted upon to control dis~
turbing or confounding variables that are present at the start of the
study. Random assignment cannot control variables that are introduced,
maybe only for convenience sake, into the experiment by the experi-
menter's manipulations, e.g., having one teacher instruct all students
assigned to one treatment level.

A third definition of independence has been given by Dfapgr and
Smith (1966, p. 17). In discussing the general regression model,
Yi = Bo + Bl X + €g» for i =1, 2, ... , n, they make the following
assumption: "€, and €, are uncorrelated, i # j, so that

i b

cov (€, ej) =0. Thus . . . Y, and Yj’ i # j, are uncorrelated."



They then conclude that, given the above assumption and an additional
assumption that €4 is a normally distributed random variable, "ei, Ej
are not only uncorrelated but necessarily independent."

Draper and Smith's definition, in particular, seems especially
hard to conceptualize. The difficulty lies in finding a way to measure
the covariance between subjects when there is only one outcome score per
subject. Within the single sample paradigm and under the condition that

subjects are measured before selection, the cov (ei, €,), for 1 # j,

h|
should always equal zero whenever subjects have been randomly selected
from an infinitely large target population. When subjects within a
sample are more homogeneous on the dependent variable than subjects
in the population, the cov (ei, ej) will be greater than zero. The

opposite condition of the cov (ei, €,) being less than zero occurs

3
whenever subjects within a sample are more heterogeneous on same
outcome measure than subjects in the population.

Draper and Smith have suggested that one way observations would
be independent of each other, before any treatment has taken place,
is if the subjects are randomly selected from a normally distributed
population. The condition of random selection from a normal population
before treatment is not synonymous, however, with the condition of
independence of observations after treatment. First, there is no
reason that independence need be a function of the population being
normally distributed. Theoretically, observations from a non-normal

population can be independent of each other. Secondly, random selection

does not insure independence of observations after a treatment has been



effected. Random selection is concerned with the external validity of
the experiment and cannot control variables that are later introduced
into the study. For example, the situation where subjects randomly
chosen were not, in fact, treated independently could disturb any
condition of independence that was due to subjects being randomly
selected.

Cox (1958, p. 15) defines independence as the condition where '"the
observation on one unit is unaffected by the treatments applied to other

units." He then goes on to say (1958, p. 19) that independence

is the requirement that the observation on one unit should

be unaffected by the particular assignment of treatments

to the other units, i.e., that there is no "interference"

between different units. In many experiments the differ-

ent units are physically distinct and the assumption is

automatically satisfied. If, however, the same object

is used as a unit several times, or if different units

are in physical contact, difficulties can arise.

Cox's definition of independence suggests that physical contact
causes dependence. He states that if units are physically distinct the
assumption of independence has been met. Within the educational setting,
however, defining what "physically distinct" means is as difficult as
defining what independence means. In looking over Cox's definition of
independence, one must remember that Cox was mainly concerned with
agricultural experiments. In these types of experiments, it happens
to be much easier to control the interaction between different units.
With educational studies, this is not usually the case. For example,

the educational researcher cannot control what happens to his subjects

outside the school environment.
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A fifth definition of independence concerns equating the
experimental unit and the unit of analysis. If the statistical
analysis of an experiment is to yield a valid confidence statement
about the chances of drawing false conclusions from the data, the
analytic unit should coincide with the experimental unit (Glass &
Stanley, 1970; Peckham, Glass & Hopkins, 1969a, 1969b; Porter, 1972).
This suggests that another definition of independence is that the
condition of independence is satisfied when the unit of analysis is
identical to the experimental unit. A unit of analysis refers to the
smallest observational unit (or data point) which in the data analysis
is to be considered distinct from other observational units.

Cox (1958, p. 2) has given the folloﬁing definition of experi-
mental unit: "The formal definition of an experimental unit is that
it corresponds to the smallest division of the experimental material
such that any two units may receive different treatments in the actual
experiment." Cox then goes on to say that it is very "desirable" that
experimental units also respond independently of one another. Peckham
et al. - (1969a, p. 341) have defined the experimental unit as:

The experimental units are the smallest divisions of the

collection of the experimental subjects which have been

randomly assigned to the different conditions in the

experiment and which have responded independently of

each other for the duration of the experiment or which,

if allowed to interact during the experimental period,

have had the influence of all extraneous variables

controlled through randomization.

Most of the above definitions of the condition of independence

are not complete in that they are written only within the context of
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experimental situations. Definitions of independence should include
correlational situations as well as experimental situations as the
assumption of independence is made in correlational studies as well
as in experimental studies. It is also interesting to note that some
of the definitions of independence are procedural and imply cause,
i.e., Cox's and Kirk's. Other definitions are given only in terms

of outcomes or effects, i.e., Cochran's and Draper and Smith's.

Threats to Independence

Peckham et al. (1969a, 1969b) suggest two different ways that
group influence can exert a dependency among units within a group on
one or more dimensions. The first of these is an additive effect,
which can raise or lower the group mean by tending to raise or lower
the score of each unit within the group by a constant amount. This
additive effect influences the variability of classroom means, but at
the same time does nothing to the variability of students' scores within
the classroom. In other words, an additive type of dependency would
disturb the predictability of the between class variance from the within
class variance by affecting the former. The second type of group influ-
ence is what Peckham et al. call a proportional effect which leaves the
mean performance of a group unchanged but has a marked effect on the
variability of responses within the group. This type of dependence
also disturbs the predictability of the between class variance from

the within class variance, but this time by affecting the latter.
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These two general types of group influence defined by Peckham et al.
can be broken into four conditions of dependence which systematically
affect either the variation of students within classrooms or the
variation of students between classrooms:

e An additive type of dependence which decreases the variation
between classes,

e An additive type of dependence which increases the variation
between classes,

e A proportional type of dependence which decreases the variation
within classrooms, and

e A proportional type of dependence which increases the variation
within classrooms.

In real world situations it is possible that any one of the four
dependency conditions suggested might occur simply by nonrandom
assignment of students to classrooms.

A decrease in the between class variation could occur in a study
where judgmental assignment of teachers to intact classrooms has taken
place. A situation where principals have assigned particularly effec-
tive teachers to difficult classes and average teachers to the more
motivated classes could have the effect of decreasing the between class-
room variation perhaps without changing the within classroom variationm.
On the other hand, an increase of the between class variation could be
a function of classroom composition systematically affecting teachers'
attitudes toward teaching. Some teachers may become extremely ineffec-
tive when assigned to a particularly difficult class. This could have
the effect of decreasing their students' achievement by a constant

amount. Other teachers when assigned to a particularly motivated
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class may enjoy their working conditions so much that the achievement
level of all their students within the class is increased by a constant
amount, apart from the effect of the treatment being investigated. A
situation occurring such as this could have the effect of increasing
the between classroom variability without affecting the within
classroom variability.

A decrease of variation within classes could be due, for example,
to teachers working hard to increase the achievement level of dis-
advantaged students while at the same time ignoring the achievement
potential of the brighter students. A situation such as this could
decrease the within classroom variability without similarly affecting
the between class variability. An increase of within class variation
could be a function of teachers paying more attention to the more
capable students in the class while ignoring the slower students.

A situation such as this could increase the within classroom variance

without changing the between classroom variance.

Selection of Analytic Units

In order that any definition of independence be operational, it
must be able to help the researcher choose between alternative units
of analysis and/or at least realize the consequences of a wrong choice
of unit. Thus in this section, past theoretical research will be
reviewed that suggests how using a unit of analysis inappropriate
to the research design can affect the results of a study. Empirical

research will be presented that suggests how statistical power can
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differ given two distinct units of analysis, both being appropriate

to the research design. The studies reviewed suggest that the test

of the hypothesis of no treatment effects may be affected by the
choice of unit of analysis. The magnitude of treatment effects (ai's),
however, should not depend upon the choice of the unit of analysis.
Logical arguments will also be reviewed that discuss whether or not
research questions dealing with educational programs should focus on
the individual student. That is, are educational research questions
involving the individual student functional given the present

educational system?

Statistical Arguments for Unit Selection

Scheffé (1959) has discussed the effects of violating the
assumption of independence when observations are serially correlated.
He considered the single group case where the random variables Yi and

Yi+l’ for i=1, 2, ... , n-1, had a serial correlation equal to p and
all other pairs of observations had a serial correlation equal to zero.
Scheffé found that the effect of serial correlation can be serious on
inferences about means. As the serial correlation went from 0 to -0.4,
the test of the hypothesis became very conservative. As the serial
correlation went from O to +0.4, the test of the hypothesis became
very liberal. Measurements that are either close in time or close in
space can be serially correlated. Scheffé's results seem applicable

in educational research when successive measurements have been taken

on each experimental unit.
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Cochran (1947), on the other hand, considered a simple group
comparison case where every pair of observational units within a treat-
ment level had a simple correlation of p. With correlated (p) units of
analysis, the error of the treatment total (e1 + e, + ...+ en) should
have a variance equal to nd? + n(n-1)po?, rather than no? which would
be the variance of the treatment total when errors are uncorrelated.
Consequently, with correlated observations, the true variance of the
treatment mean is [0? + (n-1) po?1/n. However the variance of the
treatment mean is estimated by calculating the sum of squared deviations
within each treatment level and then pooling across treatment levels.
The variance of this treatment mean is equal to 02 (1-p)/n. Therefore
Cochran concludes that when observations are positively correlated, the
true variance of the treatment means is underestimated. When observa-
tions are negatively correlated, the true variance of the treatment
means is overestimated. This suggests that Cochran's conclusions are
consistent with Scheffé's in that when observations are positively
correlated, the actual alpha level for the test of no treatment effect
will be larger than the nominal alpha level, indicating that the te;t
is too liberal; and when observations are negatively correlated, the
actual alpha level for the test of the null hypothesis will be smaller
than the nominal alpha level, indicating that the test is too conserva-
tive. Cochran handled the problem of dependent units of analysis within
the same context as Draper and Smith's definition of independence,

correlating pairs of units of analysis on one outcome measure.
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Lissitz and Chardos (1975) empirically verified Cochran's
theoretical analysis, where every pair of subjects had a simple
correlation of P, and replicated Scheffé's analysis, where subjects
were serially correlated both positively and negatively. They also
extended Cochran's case to data which were.negatively correlated (-p),
although they failed to explain what this negative correlation meant.
Their empirical analysis showed that positively dependent data, as
defined by Cochran, for both p=.2 and p= .4, made the t-test too liberal
a statistic; while negatively correlated data, p = -.2 and p = -.4, made
the t-test too conservative. The same general conclusions were found
with the positive and negative serially correlated data except the
results were not as extreme in any of the cases.

Probably the one most persuasive argument used by educational
researchers in selecting the individual within a group, rather than
the group itself, as their unit of analysis is the well-ingrained notion
that studies with few observations tend to have little power for detect-
ing treatment differences. Peckham et al. (1969a, 1969b) considered
the hypothetical case of having 200 subjects randomly assigned to one
of eight groups and groups randomly assigned to one of two treatment
conditions. Using Kirk's (1968, p. 107) formula for estimating the
noncentrality parameter, ¢, under the condition of independence of
individual observations, they computed power estimates using both the
group as the unit and the individual as the unit (Table 1). Table 1

shows that, under these conditions, only for small treatment effects
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Table 1

Power Computations Using Groups and Individuals as Units of
Analysis, Given Individuals Are Independent

Power (o= .05)
Treatment Effect
(ul--u2 in sigma units)

Analysis unit d.f. (error) .25 .50 .75
Individuals 198 .42 .94 .991
Groups 6 .25 .82 .987

is the power using the group as the analysis unit much less than the
power using the individual as the analysis unit. Under the conditions
hypothesized by Peckham et al. no systematic differences occur between
subjects across groups within treatment levels and therefore the
expected mean square for groups within treatments equals the expected
mean square for subjects within group/treatment combinations. Because
these two expected mean squares are equal the two F tests, one using
group as the unit of analysis and the other using individual as the
unit of analysis, have identical noncentrality parameters (¢) and thus
the difference in the power of the two F tests is totally a function

of the difference in degrees of freedom associated with each F test.

Logical Arguments for Unit Selection

Working within the realm of education, a question that needs to

be asked is, Can the responses of individual students ever legitimately
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be assumed to be independent of each other? Or, in other words, is
student ever the appropriate unit of analysis? Within traditional
education, the classroom is most often the functional treatment unit.
That is, most often it occurs that all students within the same class-
room receive the same basic instructional treatment. For example, it
usually 1is the case that all children within a classroom learn math
instructed by the same method. Rarely does it happen that, within one
classroom, math is taught to some students using one method and to other
students using yet another method. Wiley (1970) has stated that "if the
object of evaluation is a typical classroom instructional program where
the instruction is received simultaneously by all students in tﬁe class,
then the appropriate vehicle (or samplingbunit) is the class and not
the individual pupil."

Peckham et al. (1969a, 1969b), Raths (1967), and Wiley (1970)
have stated that if, however, treatments are presented in the form of
individualized instructional techniques, such as programmed learning
texts, dependency between students is unlikely to occur since the stu-
dents should be working through the program on their own. Thus in
programmed instructional experiments such as this, students would be
the proper units of analysis. On the other hand, Haney (1974) has
suggested that, even if students are given individualized instruction
within the same classroom area, students' responses may not be inde-
pendent of each other. Even though student A is working in his own
carrel, he may find out at recess or after school that student B is

moving along on his work a lot faster than he, student A, is moving.
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This could, for example, make student A hurry through his work too
fast and thus the activities of student B would be having a negative
effect on student A's learning, even if an individualized instructional
setting.

Some people argue that using classroom means as units of analysis
rather than individual student observations deprives them of strat-
ifying on student variables of interest and hence the researcher loses
all possibilities of finding aptitude/treatment interactions (ATI's).
In other words, using classroom as the unit of analysis prevents
researchers from investigating treatment by student characteristic
interactions. This need not be the case. Repeated measures designs
(Winer, 1962) do allow researchers to test for aptitude/treatment
interactions while still using the classroom as the unit of analysis.
Porter (1972), however, has suggested that from a program evaluation
perspective, these types of interactions (ATI's) may often not be
relevant to educators. In talking about classroom-oriented Follow
Through approaches, Porter states:

If one approach works better with black children and

another approach works better with white children, then

what are the implications for integrated classrooms?

Should both approaches be used in an integrated classroom?

Such a decision would not be based on data from the eval-

uation since the interaction was observed for situations

where children were in classrooms receiving only one

approach. It seems more appropriate to investigate

treatment interactions with variables defined on class-

room composition, such as percent of white children in
the class.
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The definitions of independence and the research studies on the
selection of appropriate analytic units discussed thus far are not
sufficient to inform practice on the assumption of independence and
consequences of violating that assumption. What is needed is an
operational definition that is measurable. As long as the condition
of independence is conceived to be an "ideal" property, undefinable
operationally and hence unmeasurable directly, researchers will have
trouble not only validating the assumption itself but also agreeing
among themselves as to what the appropriate unit of analysis should
be for specific research studies. An operational definition of
independence can be surmised by returning to what was said earlier

about threats to the assumption of independence.



CHAPTER III

AN OPERATIONAL DEFINITION OF INDEPENDENCE

Peckham et al. (1969a, 1969b) suggest two general threats to
independence. The first threat (an additive effect) affects the
variation of the group or aggregate variable. The second threat (a
proportional effect) affects the variation of individual units within
the aggregate variable. And given random assignment of subjects to
groups, these two variabilities are related. That is, given random
assignment of subjects to groups, the variance of the group means will
equal the variance of the population of subjects divided by the number
of subjects per group. Translating this into an educational example,
if students (S) are randomly assigned to classrooms (C) and classrooms
randomly nested within treatment levels (T) and students remain inde-
pendent throughout the ongoing treatments, then the variance of the
random sampling distribution of classroom means (Gé) should equal the
variance of the student population within classes and treatments (0§:CT)
divided by the number of students per classroom(s).

The two threats to independence and the general rule described
above for relating between group and within group variations provide
the basis for the following proposed operational definition of inde-

pendence. It is proposed that independence be operationally defined

2
C

2

as the condition that o S:CT

equals O /s, or equivalently the condition

21
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that the expected mean square of the grouping variable, E(MS ),

C:T
equals the expected mean square of individual units within the grouping

variable, E(MS More generally, this definition states that indi-

S:CT)'
viduals or disaggregated units can be treated as independent units
whenever the variance of aggregate units is predictable from the
grouping size and the variance of the disaggregate units.

The intraclass correlation coefficient (pI), which measures the
extent to which observations within the same group tend to be homoge-
neous relative to observations across different groups (Kirk, 1968,

pp. 126-127), can also be used to define independence. Computationally

the intraclass correlation coefficient equals:

- 2 - 2
o1 - EMSc,p) ~EMSs.cr) 89~ Y:cr
E(MSg,p) + (s-1) E(MSq, op) soi+ (s-1) 0%, op

2

This formula indicates that whenever 02 equals 9s.cT

/s, or equivalently
C

whenever the E(MSC_T) equals the E(MS ), the pI will equal zero.

S:CT

Thus an intraclass correlation coefficient equal to zero also
operationally defines independence.
Given these three equivalent indicators of independence, opera-

tionally there are only two distinguishable types of dependence.

2

c is greater than 02 ../s.

Positive dependence is that condition where o S:CT

Equivalently, positive dependence occurs whenever the ratio of the

E(MSC°T) to the E(MS ) is greater than one or whenever the pI is

S:CT
greater than zero. Positive dependence is maximal when scores within

2

each group are identical (i.e., when the Og.cT

equals zero) and the
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2

scores differ only from group to group (i.e., when the o is greater

C
than zero). Negative dependence is that condition where oé is less
than o2 /s. Equivalently, negative dependence occurs whenever the

S:CT
ratio of the E(MSC'T) to the E(MSS'CT) is less than one or whenever the

pI is less than zero. Negative dependence is maximal when group scores

are identical (i.e., when the Cé equals zero) and when scores within

2
S:CT

Either type of dependency (positive or negative) can result from

each group differ (i.e., when the O is greater than zero).
any of the following:

a. an additive effect,

b. a proportional effect, and

c. nonrandom assignment which will most probably result
in either an additive or a proportional effect.

It happens that factors which would by themselves cause dependency can

occur simultaneously in an experiment so as to counterbalance each

2

C equal to the o? /s. For example, if interactions

other leaving the © S:CT

between students caused both the between class variance and the within
class variance to decrease, positive dependency would not show up at

least so long as the E(MSC°T) remained equal to the E(MS These

S:CT)’
situations, however, really do not matter; as will be seen later, the
only thing that upsets the random sampling distribution of the F sta-
tistic of treatment effects when individual students are the analytic

unit is the situation where cé does not equal © given that the

2

s:c1/s

normality and homoscedasticity assumptions hold.
Again it should be mentioned that random assignment of students to

classrooms and treatments is not synonymous with independence. However
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the condition of nonrandom assignment of students to classrooms almost
certainly flags the condition of dependence between students, That is,
under nonrandom assignment of students to classrooms, it seems unlikely
that the operational definition of independence of students will hold.
Importantly, the proposed operational definition of independence
seems to be a useful one within the typical educational framework of
hierarchical designs (i.e., designs which have students nested within
classrooms, classrooms nested within schools, etc.). Further, this
definition captures the usual definitions of independence at least
insofar as variations from them affect the nature of the data. Finally,

this definition has the advantage of being readily estimable.



CHAPTER IV

ANALYTIC RESULTS

Armed with an operational definition of independence which is
readily measurable, it is useful to reconsider the consequence of
using correlated analytic units. As stated previously, failure to
have independent units of analysis may bias parameter estimates, and
this in turn may alter both the actual significance level and power

of a test.

The Effects of Dependence

The effects of violating the assumption of independence were
studied within the context of a balanced, hierarchically-nested design,
which had students nested within classrooms and classrooms nested within
program or treatment levels. There was only one outcome measure per
student, observations between classrooms were independent of each other
and observations on classes, students within classes and students within
treatments were normally distributed and had homoscedastic variances.

Data fitting the general educational model described above was
analyzed using two different analysis of variance models. Model A

(Table 2) was defined as:

Yijk = u+ai+bj(i)+eijk

25
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Table 2

Expected Mean Squares for Model A

Yy = utogtb,gyte
Sources of variation d.f. E(MS)a
Treatment (T) t-1 oé:CT + soé:T + sco?
Classroom:T (C:T) (c-1)t Gg:CT + SGé:T
Student:CT (S:CT) (s-1)ct OE:CT

Total sct-1

a 2 _ 2 _
op = Ia i/(t 1).

where o, represents the effect of treatment i, bj(i) represents the

i

effect of classroom j within treatment 1 and e

1jk represents the error

of the kth student observation within the jth classroom and the ith

treatment. Model B (Table 3) was defined as:

Vi = Htogte,,

where oy again represents the effect of treatment i and e, represents

the error of the kth student observation within the ith treatment.

Both models regard student as random. Model B differs from Model A

in that Model B contains no classroom component. Classroom is the

analytic unit for Model A, while student is the analytic unit for

Model B.

The model having classroom as the unit of analysis (Modei A)

is also called the "never pool" model. The model with student as the
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Table 3

Expected Mean Squares for Model B

Y = p+a,+e

ik i ik
Sources of variation d.f. E(MS)a
2 2
Treatment (T) t-1 US:T + scoT
Student:T (S:T) (sc-1)t oé'T
Total sct-1

a2 _ y.2 _
CT Zo i/(t 1).

unit of analysis (Model B) is called the '"always pool" model as its
expected mean square error term, E(MSS°T)’ is a pooled or weighted sum
of the expected mean square between classrooms, E(MSC'T)’ and the

expected mean square within classrooms, E(MS Any hierarchically-

S:CT)'
nested data which fits Model A can also be analyzed using Model B.

The expected mean square tables for Model A and Model B, which
were defined using the Millman and Glass (1967) rules of thumb, indicate
that each model can test the hypothesis that there are no treatment
differences. For the '"never pool" model, the test is F = MST/MSC:T’

while for the "always pool" model, the test is F = MST/MS Regard-

S:T*
less of whether students are independent or not or whether there is a
treatment effect or not, the E(MST) for the "never pool" model equals

the E(MST) for the "always pool" model. Because the two F tests

mentioned above have computationally identical numerators, problems
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caused by having correlated units of analysis only become evident
in comparing the denominators of the two F statistics.
If students themselves are operationally independent on the

dependent variable and there are no true treatment effects (0; = 0),

2

then all expected mean squares in Models A and B estimate CS'CT'

One
operational definition of independence on the dependent variable dis-
cussed above equated the E(MSC_T) to the E(MSS°CT)' So, for the case

of independence of student responses within classes, the following holds

for Model A:

EMSg,cp) =

< T
EMS5ier)

"
Q

E(MS ) =0

S:CT

. ~2
and..oC=T 0

Thus the Oé'T component in the E(MSC'T) formula can also be used to

2

define independence. That 1is, whenever the OC'T

component equals zero,
observations on students can be considered independent observations.
That the E(MSS_T) in Model B estimates Og-CT when given independent

student observations can best be seen by looking at the sources of

variation that combine to form the SSS.T:
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S:T S:CT C:T
E(SSg,p) = E(SSg,cp+ 5S¢, 1)
E(SSg,p) = E(SSg,cp) +E(SSg,q)
(sc-1)t E(MSS:T) = (s-1)ct E(MSs:CT)i-(c-l)t E(Msc:T)
EMSg,p) = UscOg, op=0%g,cp ¥ 8c0¢, = 50, 11/ (se=1)

=2+ {cbs 2

S:CT (sc-1) "C:T

2
and 1if OC:T

0

E(MS

S:T) S:CT

As stated previously, both Model A and Model B regard the student
as a random variable. However, it also makes conceptual sense to think
of students as fixed. This comes from thinking of individual classrooms
as being unique and defined only by the particular students in the class.
Given this is the case, in Model A (Table 2), classrooms would remain
random and students would be considered fixed. And if so, the E(MST)
and the E(MSC:T) in Model A would no longer contain the variance com-

ponent °§-cr' Thus with subjects fixed, the E(MSC'T) would not be
2
S:CT

considered random. Each would vary independently, which explains how

dependent on the size of the o term, as it is when subjects are

the E(MSC_T) can be smaller than the E(MS ), the operational defi-

S:CT
nition of negative dependence. What this all suggests is that negative
dependence seems possible only when student represents a fixed inde-

pendent variable, while positive dependence is possible with either

fixed or random subjects.
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Classroom as Unit

Independence. Whenever classroom observations are operationally

independent of each other, normally distributed and homoscedastic and

there are no treatment effects, the test statistic F = MST/MS in

C:T
Model A will have a central F distribution with (t-1) and (c-1)t
degrees of freedom. This is true, in fact, regardless of what the
distribution of students within classes looks like or regardless of
whether or not student observations within classrooms are independent.
Given independence of student responses within treatments, varying
the number of students per class and/or the number of classes per treat-
ment should have no affect on the actual significance level of the F
test MST/MSC:T' On the other hand, it is predictable that increasing
the number of students per class and/or increasing the number of classes

per treatment should increase the noncentrality parameter, defined as

A= 1+-sc0%/(0§:CT-+scé=T), and thus increase the power of the test
2
C:T

can predict, by looking at the noncentrality parameter, that increasing

F = MST/MS Given independence of students, i.e., © = 0, one

C:T®
the number of classes per treatment or the number of students per class
should identically inflate the E(MST) and at the same time have no
affect on the E(MSC'T)' However, increasing the number of classes per

treatment should increase the power of the test F = MST/MS to greater

C:T
than that gotten by increasing the number of students per classroom by
the same amount. This is due to the fact that increasing the number of

students per class has no affect on the degrees of freedom error when

classroom is being used as the unit of analysis. Whereas increasing
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the number of classes per treatment does increase the degrees of
freedom error.

Positive dependence. Positive dependence between student obser-

vations has been defined as the condition where the E(MSC_T) is greater
than the E(MSS'CT)’ or concurrently the condition where the Gé is

greater than 0§:CT/S. Positive dependence can occur either because
a proportional type of dependency has decreased the within classroom
variation or because an additive type of dependency has increased the
between classroom variation. The positive dependency condition is
identical to the case where the cov (ei,ej), or similarly the intra-
class correlation coefficient, would be greater than zero, under Draper
and Smith's definition of independence. It is also identical to the
instances where Cochran and Scheffé speak of responses of subjects
being positively correlated.

When positive dependency occurs, under the condition of no treat-
ment effects, F = MST/MSC:T has a central F distribution with (t-1) and
(c-1)t degrees of freedom, given that classroom observations within
treatment levels are independent, homoscedastic and distributed nor-
mally. This 1s true because the Ué:T component, which is greater than
zero when student responses are positively correlated, affects the
E(MST) and the E(MSC:T) in the "never pool" médel (Model A) similarly,
given there are no treatment effects. Increasing the number of student
responses within each class and/or increasing the number of classes per

treatment should have no affect on the actual significance level of the

test F = MST/MSC:T'
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The power of F = MST/MS and the method of manipulating the

C:T
degree of positive dependence (how big Oé.T is) are confounded. If
degree of positive dependence is defined by increasing the E(MSC.T),
just such an increase will decrease power. However, if degree of

positive dependence is defined by decreasing the E(MS ), degree

S:CT
of positive dependence will not affect the power of F = MST/MSC'T'
Degree of positive dependence is not confounded with significance
level and will in no way affect the significance level of the F

statistic using class as the unit of analysis.

Negative dependence. Negative dependence between student responses

has been defined as the condition where the E(MSC:T) is less than the
E(MSS:CT)’ or concurrently the condition where the oé is less than the
0§:CT/S. Negative dependence can occur either because a proportional
type of dependency has increased the within classroom variation or
because an additive type of dependency has decreased the between class-
room variation. Again, when dealing with real world data, these two
conditions of dependency are indistinguishable and can be considered

as one. This particular type of dependency is identical both to the

case where the cov (ei, €,), or similarly the intraclass correlation

i
coefficient, is less than zero, under Draper and Smith's definition of
independence, and to the instances where Cochran and Scheffé speak of
subjects being negatively correlated.

As with positive student dependency, the amount of negative

student dependency should have no affect on the distribution of the

statistic F = MST/HSC:T’ given the condition of no treatment effects,
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and neither should increasing the number of students per class, the

latter because the test F==MST/MS uses classrooms as the unit of

C:T
analysis rather than students. In addition, given negative dependence,
increasing the number of classes per treatment should also not affect
the actual significance level of this test of no treatment effects as,
under the central case, increasing the number of classes per treatment

should have no effect on the parameters E(MST) and E(MS As with

C:T)'
positive dependence, when the test of the hypothesis is F = MST/MSC'T’
the method of manipulating degree of negative dependence is confounded
with affect on the power, but not the significance level, of

F = MST/MSC:T'

Student as Unit

The expected mean square formulas in Table 2 (the 'never pool"
model) indicate that the E(MSC:T) is the appropriate error term in
testing for treatment effects. This is true whether or not student
responses within classes are independent of each other (and, in fact,
whether they be considered as fixed or random). Therefore, in order
to check the validity of the test F = MST/MSS:T’ which has student as
the unit of analysis, when students are not independent of each other,
the E(MSS:T) in Model B (Table 3) can be compared to the E(MSC:T) in
Model A (Table 2). If these two expected means squares are not equal,
then the E(MSS:T) has to be biased in some way. Much of the subsequent
discussion will be made treating students as random, but the conclu-

sions would hold even had students been considered fixed.
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Independence. Given independence of student responses,

F= MST/MS would be an appropriate test of treatment effects for,

S:T
as indicated earlier, the MSS'T and the MSC'T then estimate the same
parameter (Gé.CT). So, given independence of student responses within

treatments, varying the number of students per class and/or the number
of classes per treatment should have no affect on the actual signif-

Whenever students' responses

icance level of the F test MST/MSS'T'

are operationally independent, there are no treatment effects and the
assumptions of normality and homoscedasticity hold for observations on

students within treatment levels, the test statistic F = MST/MS will

S:T
have a central F distribution with (t-1) and (sc-1)t degrees of freedom.
On the other hand, it is predictable, by looking at the expected mean
square formula for the E(MST) in Model B (Table 3), that increasing the
number of students per class and/or increasing the number of classes
per treatment should increase the power of the test F = MST/MSS:T‘

Under the independence condition, the two F tests, F = MST/MS d

C:T an

F= MST/MSS:T’ should differ only in their power, with F = MST/MSS:T

being the more powerful test as it has more degrees of freedom error.

Positive dependence. The effect of positive student dependency

on the dependent variable can be seen by comparing the formulas for

the E(MSC:T) and the E(MSS:T)°

o o2 2
EMS,.p) = Og.cr+S9g,p

= g2 Le-1) _ 2
E(MSS:T) US:CT*. (sc-1) SOC:T'
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Positive dependence deflates the E(MSS_T) to less than the E(MSC'T)

as when the E(MSC'T) is greater than the E(MS will be

s:cr)» 9Cit

greater than zero. However, oé:T carries less weight in the E(MSS:T)

formula than it does in the E(MSC:T) formula. Thus it can be seen

that for all values of ¢ and s, the E(MSS:T) should be smaller than

the E(MSC:T) and therefore F = MST/MSS:T should be too liberal a test.

So, when the E(MSC:T) is greater than the E(MSS:CT) and there is no

treatment effect, F = MST/MSS:T should not be distributed as a central

F. Rather F = MST/MSS:T should have an F distribution which is spread

out and lies to the right of the distribution for the same F statistic

under the condition of students being independent. That the positive

dependency condition should result in too liberal a test statistic, when

student is the unit of analysis, is consistent with what Scheffé (1959)

and Cochran (1947) concluded when observations are positively correlated.
Given positive dependence, the degree of liberalness of the test

F = MST/MSS:T is monotonically related to the degree of positive

dependence. That 1s, as the Gé-T increases beyond zero, the discrepancy

between the E(MSC:T) and the E(MSS:T) increases and thus the degree of
liberalness increases. Given any one positive dependence level, this
liberalness should be reduced as c increases and increased as s in-
creases. Because of the general liberalness of the F = MsT/M58:T test,
given positive dependence, the power of that test should be spuriously

high.

Negative dependence. What happens to the magnitude of the

E(MSS-T)’ which designates student as the unit of analysis, when
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there is negative dependence, i.e., when the E(MS, ,) is less than

C:T
2
the E(MSS:CT)' The E(MSS:T) is inflated to greater than the E(MSC:T)'
The following relationships show why:
SSg:1 = SSs:crtSScit
(sc-1)t E(MSS:T) = (s-1)ct E(MSSzCT)+-(c—1)t E(MSC:T)
_ (s-1)c (c-1)
E(MSS:T) (sc-1) E(MSS:CT)+- (sc-1) E(MSC:T)
Whenever the E(MSS:CT) is at all larger than the E(MSC:T)’ the E(MSS:T)

is larger than the E(MSC-T)’ since for s greater than or equal to 2,

(s-1)c is greater than (c-1). Therefore, the test F = MST/Mss-T under

this dependency condition should give too conservative a test. This

indicates that whenever the E(MSC'T) is less than the E(MS ) and

S:CT
there is no treatment effect, F = MST/MSS=T should not be distributed
as a central F with (t-1) and (sc-1)t degrees of freedom. Rather

F = MST/MSS:T should have an F distribution which is compressed and
lies to the left of the distribution for the same F statistic under

the situation where the E(MS ) is equal to the E(MSC_T), or con-

S:CT
currently where the E(MSS:T) equals the E(MSC:T)' That the negative
dependency condition should result in a too conservative a test sta-
tistic, when the unit of analysis is the student, is consistent with
what Scheffé (1959) and Cochran (1947) concluded when observations are
negatively correlated.

Given negative dependency, the degree of conservativeness of the

test F = MST/MS is monotonically related to the degree of negative

S:T
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dependence. That is, as the degree of negative dependence increases
(as the Gé becomes smaller and smaller relative to the ratio 0§:CT/S)
the discrepancy between the E(MSC:T) and the E(MSS:T) increases and
thus the degree of conservativeness should increase. As for positive
dependence, given any one level of negative dependence, this conserva-
tiveness should be reduced as c¢ i1s increased and increased as s is
increased.

The power of the test F = MST/MSS:T should spuriously be reduced
as the conservativeness is increased. However both an increase in ¢
and an increase in s inflates the E(MST) and gives the error term of
students within treatments more degrees of freedom. Thus both in-
creasing c and s should increase the powér of the test F = MSTlnss:T.
Whether F’MST/MSS:T will end up having more power than F=MST/MS(::T

depends on how conservative F==MST/MS is and how many additional

S:T
degrees of freedom having students as the unit of analysis, rather
than classroom, gives.

In summary, failure to have independent units of analysis, as
operationally defined in this study, blases the parameter estimate

of the students within treatment error term, E(MS And this

S:T)'
bias, in turn, influences the empirical alpha and power of the test
F = MST/MSS°T’ which has student as the unit of analysis. The magnitude
of this bias, given different degrees of both positive and negative

dependence, will be studied later using simulated data.
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The Preliminary Test

There are available at least two tests of treatment effects
given an hierarchically-nested design with students nested within
classrooms and classrooms nested within treatments. These two tests
may conveniently be referred to as the "never pool" and the "always
pool" procedures. The '"never pool" test, F = MST/MSC:T’ uses classroom
observations, which in this study are independent of each other, homo-
scedastic and normally distributed, as the units of analysis. Even
though dependence of student responses does not affect the actual
significance level of this test, always using the aggregate variable
as the unit of analysis restricts the degrees of freedom error which,
in turn, limits the power of this test of treatment effects. This few
degrees of freedom problem motivates the need for another test or test-
ing procedure with possibly greater power. The second and so-called
"always pool" test, F = MST/MSS:T’ uses disaggregate or individual
student observations, which within treatments are homoscedastic,
normally distributed but not necessarily independent of each other,
as the units of analysis. This particular analysis model has more
degrees of freedom error, but, on the other hand, it has been shown
analytically that any dependence between student responses adversely
affects the significance level of the test of treatment effects. Thus
it seems that there is no one '"best" choice of unit of analysis for
all hierarchical designs. Rather, the best testing procedure would

entail using student as the analytic unit when student responses are
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independent of each other, and for all other circumstances using
classroom as the analytic unit. This suggests a need for some sort
of conditional testing procedure in which the unit of analysis to be
used in the primary test of treatment effects is determined by a pre-
liminary test of whether or not disaggregate units are operationally
independent of each other.

When there is a question as to the validity of an assumption
within an experiment, a preliminary test of significance can be used
to support or reject the validity of that assumption. The procedure
followed is to view the assumption as a hypothesis which is testable.
If this hypothesis that the assumption is true is rejected, one takes
action as if the assumption were false.- On the other hand, if this
hypothesis that the assumption is true is not rejected, one takes
action as if the assumption were, in fact, true. This sort of assump-
tion testing procedure is sometimes used by researchers in analysis of
covariance models for testing the equality of regression slopes within
groups. Another example of its use includes testing the equality of
variances in analysis of variance models when groups are of different
sizes.

If the researcher has some a priori notion that his individual
observations are independent, Peckham et al. (1969a, 1969b) and Poynor
(1974) recommend using this preliminary test of the assumption to choose
the unit of analysis for the primary test of treatment differences.
The two-staged procedure takes the following form. The researcher

begins with Model A (Table 2) and examines the null hypothesis that
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the variation between classes 1s no different than the variation within

classes, Ho: E(MSC_T) equals E(MS If the hypothesis of this

S:CT)'
preliminary test is not rejected, the researcher adopts Model B (Table

3) and pools the two mean squares, MS and MS

C:T S:CT* Using the pooled

MS..p and MSS'CT as the error term in a test of treatment differences is
identical to using individual observations as the units of analysis.
On the other hand, if the hypothesis of the preliminary test, HO:

E(MSC'T) equals E(MS ), 18 rejected, the researcher retains Model A

S:CT
in testing for treatment differences and by doing so selects the class-
room as the appropriate unit of énalysis. This type of conditional
testing procedure can be claimed a success if the actual alpha level
of the primary or conditional test remains equal to the theoretical
alpha and if the power of the conditional or final F test is greater

than the power of the unconditional, always correct F = MST/MS test.

C:T
Actually in describing this conditional testing procedure for
choosing an appropriate unit of analysis, Peckham et al. considered
that this procedure would only detect dependencies of the additive
type, where a constant is added to or subtracted from an entire class.
Furthermore, they, as well as Poynor, considered only the possibility
of the expected mean square between classes, E(MSC:T)’ being larger

than the expected mean square within classes, E(MS These two

S:CT)'
limiting considerations are needlessly restrictive. First, as pre-
viously indicated in this paper, the additive and proportional types
of dependency which Peckham et al. define are in reality indistinguish-

able. And second, the preliminary F test can actually be rejected for
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one of two reasons. The E(MSC°T) can be greater than the E(MSS'CT)’
which will happen when the Oé is greater than oé'CT/s' This signifies

a positive dependency condition. On the other hand, theoretically the

E(MSC'T) can also be less than the E(MS ), which will happen when

S:CT
the 02 is less than 02 /s. This signifies a negative dependency

C S:CT
condition. Thus this preliminary F test should be a two-tailed test
rather than the usual one-tailed F test which Peckham et al. and
Poynor recommend.

Determining that individual observations rather than group
observations should be the correct unit of analysis based on the
initial test of independence is, in fact, a questionable analysis
procedure. If the primary test of no treatment differences is based
on the results of the preliminary test of independence, then the F test
for no treatment effects is a conditional test and not a regular F test.
This makes the test statistic have an unknown conditional distribution
(Kirk, 1968). The conditional F test statistic need not be distributed
either as the regular or "always pool" F statistic with (t-1) and
(sc-1)t degrees of freedom, nor as the regular or 'mever pool" F
statistic with (t-1) and (c-1)t degrees of freedom.

Paull (1950) has investigated the distributional properties of
the conditional or so-called "sometimes pool" F statistic where the
MSC:T and the MSS:CT form a pooled error term in testing for treatment
effects only when the E(MSC:T) is significantly greater then the

E(MS which is the same limited condition that Peckham et al.

S:CT)’

and Poynor talked about. Paull found that under the currently proposed
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condition of operational independence, where the E(MSC:T) equals the
E(MSS:CT)’ the preliminary F test, designed to choose the appropriate
unit of analysis to use for the primary F test of treatment effects,
is effective in making the power of the conditional test greater than

the power of the '"never pool" or F = MST/MS test. But given the

C:T
general condition of positive dependence, Paull found that the con-
ditional test was more liberal and less powerful than the unconditional
test F = MST/MSC:T' It should be noted that Paull compared the powers
of the "sometimes pool" and "never pool'" tests at equal empirical alpha

levels. That is, he did not confound power with the liberalness of the

"sometimes pool" or conditional F test. As the ratio of the E(MS_. ,.)

C:T

to the E(MS ) increased from equal to one, Paull found that the

S:CT
observed alpha level of the '"sometimes pool" or conditional test
increased to a maximum and then decreased slowly to being equal to

the nominal alpha level. This occurs because there is usually little
power to find very small degrees of dependence, or very small differ-
ences between the E(MSC:T) and the E(MSS:CT)' This means that given
very small degrees of dependence, the preliminary test will most often
signal the individual, rather than the group, as the appropriate unit
of analysis. And using the individual as the analytic unit will make
the primary test of treatment effects too liberal a test. As the
degree of positive dependence increases though, the researcher rejects
the null hypothesis of operational independence more often. This

dictates using classroom as the unit of analysis more often in the

test for treatment differences. This, in turn, suggests that as the
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degree of positive dependence increases, the distributional properties
of the "sometimes pool" or conditional F test become more and more
similar to the distributional properties of the "never pool" or

unconditional F = MST/MS test. From this, one can conclude that

C:T

for great amounts of dependency, the conditional test is just fine

because it simply becomes an unconditional, 'mever pool" F test,

F = MSTlusc:T.
Paull also found that the number of classes per treatment and

the number of students per class clearly affected the magnitude of

the distributional differences between the '"sometimes pool" and the

"never pool" F tests, given positive dependence. Under the condition

of positive dependence, a large number of classes per treatment is

desirable in two respects. First, as c increases the preliminary test

becomes more powerful and correctly identifies classrooms as the appro-

priate unit more often. And second, when pooling of mean square error

terms is prescribed, the pooled mean square MS is weighted in favor

S:T
of the valid and correct mean square error, MSC_T. As the number of
students per class, s, increases, the preliminary test F = MSC'T/MSS°CT

again becomes more powerful and thus correctly signals the classroom
as the proper unit of analysis more often. However, counterbalancing
this positive effect of increasing s when given positive dependence is
the fact that increasing s gives more weight to the wrong error term,

MS .CT’ which is smaller than the valid error term, MS Thus the

S C:T"

effect on the primary F test of increasing the number of individuals

per group is due to a combination of two factors and most importantly
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depends on how much larger than the E(MS ) the E(MSC°T) is. Lastly,

S:CT
Paull considered the effect of increasing the nominal alpha level of
the preliminary F test and found that, given positive dependence, the
magnitude of the undesirable property (liberalness) of the conditional
F test was reduced somewhat with just such an increase. There was,
however, a critical alpha level above which increasing the alpha level
of the preliminary F test resulted in the conditional F test becoming
more liberal. In Paull's example, this critical alpha value was very
large, around 0.77.

Paull finally comes up with recommending the following rule as

when and when not to pool the two mean square error terms, MS d

c:T 2"

MS The rule entails pooling the two mean square error terms only

S:CT*

if their ratio is less than ZFSO’ where F_. . 1is the 507 point of the F

50
distribution with (c-1) and (s-1l)ct degrees of freedom. Paull claims
that this pooling decision rule is one which tends to '"stabilize the
disturbances" between the distributions of the two statistics

F = MST/MSC:T and F = MST/MSS:T’ given "intermediate" conditions of
positive dependence, while still taking advantage of a considerable
portion of the possible gain in power of pooling, given very low levels
of positive dependence. The present author, however, questions this
"rule of thumb." Ideally, the researcher wants most not to reject the
null preliminary hypothesis of operational independence, as when this
null hypothesis is not rejected the degrees of freedom error and mean

squares between classes (MSC°T) and within classes (MS ) can be

S:CT

pooled. The error the researcher needs to guard most against is a
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Type II error (B), or not rejecting the null hypothesis when it is,
in fact, false. One way to decrease the probability of a Type II
error is to increase the probability of a Type I error (a). However,
doing as Paull recommends and taking twice the critical value given a
large alpha of .50 has the same effect as selecting a small alpha
level in the first place.

Again, as mentioned above, within a two level, hierarchically-
nested design with individual units nested within groups and groups
nested within treatments, Paull studied the distributional properties
of the conditional F test given the usual one- and upper-tailed only
preliminary F test. These distributional properties were studied only
under the condition of positive dependence. It has been noted, however,
that this preliminary test can be rejected for one of two reasons (the
occurrence of positive dependence and the occurrence of negative depen-
dence) and thus instead should be a two-tailed F test. Or, if negative
dependence is suspected, a one- and lower-tailed only preliminary F test
would seem an appropriate possibility. On the other hand, there is no
reason to believe that the presence and direction of the distributional
effects found by Paull by changing the four parameters--the number of
individuals per group, the number of groups per treatment, the degree
of dependence and the nominal alpha level of the preliminary F test--
should differ given negative dependence and/or a two-tailed preliminary
F test. It is predictable, however, that given these other conditionms,
the magnitude of these effects should change. The estimates of the
magnitude of these distributional effects will be studied later using

simulated data.



CHAPTER V

SIMULATION PROCEDURES

The present investigation has addressed and discussed two
specific questions. First, what is the effect of using correlated
units of analysis? That is, what happens to parameter estimates and
the probability of Type I and II errors when the assumption of indepen-
dence is violated? And second, what is the effect of using a prelim-
inary test of independence to choose the unit of analysis for the
primary test of treatment effects? Thué far the two questions have
been presented and discussed analytically. As yet, though, no attempt
has been made to describe the actual magnitude of effects, whose pres-
ence and direction were predicted in the preceding amnalytic chapter,
and which is the whole purpose of the simulation study. Thus the
simulation study will demonstrate the size of the distributional
effects for situations held to be common in educational settings.

The procedures employed to empirically study the magnitude of
distributional effects will now be discussed. First, the description
of the design parameters will be given. Second, the data generating
routine will be described along with a presentation of tests performed

on the generation routine.

46
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Simulation Parameters

As stated previously, the general research design considered in
the present study was a balanced, hierarchically-nested design. There
were two levels to the nesting. Individuals were nested within groups
and groups were nested within treatments. The design assumed there to
be one outcome measure per subject. Data such as this can be analyzed
using one of two analysis of variance models, which were described in
the previous chapter and presented in Tables 2 and 3.

For this simulation study, the number of treatment groups, t, was
held constant at two. Both the number of classes per treatment, c, and
the number of students per class, s, were allowed to vary so that pos-
sible trends in the sampling distributions of the F statistic could be
investigated as these two parameters increased. Three values of classes
per treatment (2, 5, and 10) were selected. Two classes per treatment
is the minimum allowable number of classes per treatment such that the
treatment effects can be kept unconfounded from the classroom effects.
Ten classes per treatment was chosen as the upper limit as in practice
most educational studies do not employ more than ten classes or groups
per treatment condition. The sample size of students ranged from five
observations per classroom to twelve and twenty. The two extreme values
of subjects per class were chosen because five subjects per group is
relevant for small group studies and 20 subjects per group comes
relatively close to the average number of students per classroom
in elementary school settings.

Two competing methods for defining and manipulating levels of

positive and negative dependence among units were considered, both
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of which seem equally valid. One method uses the ratio of the E(MSC_T)

over the E(MS ). This method allows the intraclass correlation

S:CT
coefficient (pl) to vary as the number of students per class varies
(i.e., the pI naturally gets smaller as the number of stﬁdents per
class increases). The intraclass correlation coefficient could also
ﬁave been used to define and manipulate levels of dependence. This
alternative method would entail keeping the pI at a constant value for
each level of dependence regardless of how many classes there were per
treatment or students there were per class, but would force either the
E(MSC:T) or the E(MSS:CT) to vary as the number of students per class
varied. The first method described above for defining and manipulating
degrees of dependence, altering the relationship between the E(MSC:T)

and the E(MS ) by varying the E(MS was selected for several

C:T)’

reasons. First, this method keeps the conceptual population of stu-

S:CT

dents the same. That is, randomly deleting or adding students to any
classroom does not affect the within class variability. Second, pre-
vious research (Paull, 1950) has used the ratio of the expected mean
squares between groups to the expected mean squares within groups in
order to study the effects of preliminary tests for pooling mean
squares.

Two general types of dependence were studied. Positive depen-
dence was defined as occurring whenever the ratio of the E(MSC:T) to
the E(MSS:CT) was greater than one (similarly the pIl was positive).
Negative dependence was defined as occurring whenever the ratio of

the E(MSC°T) to the E(MS ) was less than one (similarly the pIl was

S:CT
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negative). Within each type of dependence, two degrees or levels of
dependence were studied. The degree of positive and negative dependence
was varied in order to study probable trends of disturbance in sampling
distributions of F tests of treatment effects, given different degrees
of dependence. Along with the condition of independence the four
defined conditions of dependence were:

* Independence

EMSc, ) /EMSg,0p) = 1

e Positive deépendence
EMSq, 1) /EMSg, op) = 2
EMS;. ) /EMSg, o) = 3

¢ Negative dependence
E(MSC:T)/E(MSS:CT) = .50
EMSy. 1) /EMSg.op) = .33

The choice of particular degrees of positive and negative
dependence was somewhat arbitrary. However, an attempt was made to
investigate degrees of dependence which typically occur within educa-
tional research studies. Smith (1974) suggested that, for elementary
school children, classroom variance usually accounts for anywhere
between 20 and 502 of the student variation within treatment levels
for achievement measures such as reading and arithmetic. For studies
conducted within a "tight" regional area, the classroom variation most
likely would account for approximately 202 of the student variation;
while for studies conducted nationwide the classroom variation most é

likely would account for about 50%Z of the student variation. i
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Haney (1974), working with data from 14 Philadelphia schools
in the Follow Through study, found that students (ungrouped) had a
variance of 137 on the Metropolitan Achievement Test total mathematics
score. When Haney randomly formed groups of eight students (which was,
on the average, the number of students per actual group), the variance
between random groups was 25, while the variance between actual groups
(or classrooms) was 52, which was twice the size of the variance using
random groupings. Haney's data seem consistent with Smith's suggested
1imits in that when using the intraclass correlation coefficient to
calculate the percentage'of student variance attributable to classroom
differences, the random groups accounted for approximately 67 of the
student variation, while the actual classrooms accounted for approx-
imately 22?. However, in calculating the variances, Haney did not
take into account Follow Through, non-Follow Through differences.

If he had, his intraclass correlation coefficients would likely have
been somewhat smaller.

The actual degrees of positive dependence chosen reflect fairly
well Haney's data, using sample sizes which seem in the range of common
usage. It is also desirable that for different numbers of students,
the intraclass correlation coefficient remain relatively small, as it
is with small to intermediate degrees of dependence that effects of
dependence and effects of the preliminary test of independence seem
most nebulose. As Table 4 indicates, the intraclass correlation
coefficients used in the present study were in the small to

intermediate range.
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Table 4

Theoretical Intraclass Correlation Coefficients for Selected
Numbers of Students and Degrees of Dependence

EMS¢, o) /EMSg, op)
.33 .50 1 2 3
s=5 -.153 -.111 .000 .167 .286
s =12 -.059 -.044 .000 .077 .143
s =20 -.034 -.026 .000 .048 .091

Table 5 indicates all possible combinations of the four parameters,
the number of students per class, the number of classes per treatment,
the type of dependence, and the degree of dependence, included in this

simulation study. An "t" marks the cells actually used in this study.

Table 5

Design of Study

EMS;, ;) /EMSg, op)

c s .33 .50 1 2 3
5

2 12 + t + + +
20

5 t t + + +

5 12 t t + + t

20 t t t t t
5

10 12 ot + t + +

. 20
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For studying statistical power, the noncentral case was created
by adding 0.4 within class standard deviation units to each student's
observation in one treatment group. This value of 0.4 was determined
by approximating power under condition that the E(MSC:T) equalled the

E(MS ) for the selected numbers of classes per treatment and stu-

S:CT
dents per class. The size of the effects was selected so as to give
theoretical power values within the desired moderate range, given

independence of analytic units.

Data Generation Routine

The generation of unit normal variates involved two steps. First,
pseudo-random variates were obtained by calling subroutine RANDU (IBM,
1970, p. 77). This subroutine uses the power residue method to generate
uniform random variables. Second, the GAUSS subroutine (IBM, 1970,

p. 77) took 12 RANDU variates and used the Central Limit Theorem to
rescale and normalize the uniform variates to be distributed as N(0,1)
variates. Each time the generation program was run, which was once for
each marked row in Table 5, the seed or initial random number was
changed to insure independence among the resulting F distributions.

The number of iterations per selected row in Table 5 was 1000.

Four basic steps were used to create the dependent variable Yijk
with a known degree of dependence, where k indexes a student observation
within classroom j and treatment i. First, s number of N(0,1) variates

(Yijk) were summed and averaged to get a classroom mean (Yij'). Second,

within each classroom, the classroom mean was subtracted from each
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individual observation (Yijk-fij ). Third, the class means were
adjusted by the square root of the dependence level, E(MSC'T)/E(MSS'CT)°
And finally, the adjusted means were added back to their respective set

of deviations. Thus the dependent variable was calculated as

= vt v v
Y Y Y, + {1}

13k = Y4k~ VEMS;, 1) /EMS

3. s:cr)} y

There was special concern that, after adjusting the normal random
variates within classrooms for dependency, the student observations,
within treatments but across classrooms, remain normally distributed.
This is necessary when Model B (ignoring classrooms) is being consid-
ered. Theoretically the variates within treatments, adjusted for
dependency, should be normally distributed as each adjusted variate
is a linear combination of two variates independently distributed as
normal variables (Graybill, 1961, pp. 56-57).

Chi-square tests were run to see if example distributions of class
means and individual observations, for both independent and defined
dependent situations, would approximate the normal distribution, which
theoretically they should. The abscissa of the normal distribution was
divided into 12 sections. A sample of 10,000 observations, adjusted to
fit both the independent and four defined dependent conditions, and
2000 classroom means (there were five observations for each class)
were generated and the number of cases falling into each of the 12
defined intervals was counted (Table A-1 in Appendix A). None of the

six x2 tests of fit were rejected at the .10 level, which suggests
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good approximation to the normal distribution for both class means and
individual observations.

In addition, the mean, variance, skewness and kurtosis for student
within treatment type data were calculated for each marked cell in
Table 5. These distributional statistics are displayed in Appendix A
(Tables A-2 through A-6). In all cases the four distributional sta-
tistics were visually in close agreement to their known parameters.

For data constructed under both dependent and independent conditioms,
the means for the adjusted student within treatment observations should
equal zero for each treatment, given the central case. Given the non-
central case, the means for student within one treatment condition
should equal zero and within the other treatment condition 0.4. The
expected variances of the student within treatment data can be calcu-

lated from the following:

Var(Yijk) = Var(Yijk)ﬁ-(e—l)ZVar(§' ) +2(6-1) Cov(Y

13. i3k, Yig.0?

where 6 = /E(MSC:T)/E(MSS:CTj

Var(Yijk) =1+ 2(6-1)/s + (6-1)%/s, as the

Cov(Yijk, Ylj.) = 1/s.

As one example, if s = 12 and 6 = /3: the expected variance of the
adjusted observations within one treatment level is 1.167. Given
these two parameters, the empirical variances, one for each treatment

level, are very close to this predicted value (see Tables A-2, A-4,
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and A-6). The remaining empirical variances for the simulated data,
for all combinations of s and 0, were also close in value to their
respective expected values. And finally, the empirical skewness and
kurtosis estimates for the simulated student within treatment type data
were also very close to their expected values of zero for all simulated
runs.

Distributional properties of four observed mean squares adjusted
by their expected values were also examined (Tables A-7 through A-11
in Appendix A). Each of these four standardized mean squares, MST,
MSC:T’ MSS:CT’ and MSS:T’ should be distributed as chi-square variables
with a mean equal to its degrees of freedom, a variance equal to twice
its degrees of freedom and a skewness edual to the square root of eight
divided by its degrees of freedom (Glass & Stanley, 1970, pp. 231-232).
Under the condition of no treatment effect, the mean, variance and
skewness of these standardized mean squares across 1000 samples were
visually close to their respective known chi-square parameters. All
three sets of above analysis suggest that the data generation routine

was in proper working order.



CHAPTER VI

UNITS OF ANALYSIS: EMPIRICAL ESTIMATES

OF EFFECTS

Chapter IV dealt analytically with how dependence between
disaggregate units affects the sampling distribution of two F
statistics, one using the aggregate unit as the unit of analysis
(F = MST/MSC:T) and the other using the disaggregate unit as the
unit of analysis (F = MST/MSS:T)' The present chapter demonstrates
empirically the size of the effects hypothesized in Chapter IV for
situations held to be common in educational research. The variables
of interest in both the analytic and the empirical investigations were
number of subjects per group, number of groups per treatment, type of
dependence, and degree of dependence. Any combination of levels of the
above variables represents a sampling distribution which could have been
generated. An attempt was made to generate sampling distributions for
a subset of the totality which would afford as much information as
possible about the effects of the above mentioned variables on the
sampling distributions of the two F statistics. The subset of variable
levels chosen to study is represented by the three-dimensional matrix

in Table 5.

56
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Classroom as Unit

Model A or the "nmever pool" model (Table 2) is the analytic model
of concern when classroom is designated as the unit of analysis in
testing for treatment effects. With classroom as the unit of analysis,

the test of treatment effects is F = MST/MSC'T'

Independence

Whenever student responses within and between classrooms were
operationally independent of each other, homoscedastic and normally
distributed between classrooms and given the data were contrived such
that there were no treatment effects, the test statistic F = MST/MSC:T
was always distributed as a central F with (t-1) and (c-1)t degrees of
freedom. Under this set of conditions, the observed alpha level of the

test F = MST/MS consistently agreed to within 1.96 standard deviation

C:T
units, /ETI:577i56—, with the nominal alpha levels (Table 6). Across
the five different combinations of s and ¢, the mean observed alpha
levels equalled .008 for a = .01, .023 for o = .025, .050 for o = .05,
.100 for a = .10, and .240 for a = .25. As one can see, these averaged
observed alpha levels are relative close to their nominal counterparts.
Table 6 also indicates that the number of students per class and the
number of classes per treatment had no affect on the actual signifi-

cance level of the test F = MST/MS Another view of the effect on

C:T®
the actual alpha levels of increasing s and increasing c¢ can be gotten
by calculating mean empirical alpha levels across the five nominal alpha

levels. Doing this and keeping c constant at 5 gave mean empirical
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Table 6

Empirical Type I Errors for F = MST/MSC-T

Nominal alpha

d.f. Mean
c s error .010 .025 .050 .100 .250 alpha
2 12 (2) .010*  .028%  .049%  .090®  .262°  .088
5 5 (8) o112 .0252 .0612 .1072 2442 .090
5 12 (8) .0072 .0182 .0462 .0952 .2262 .078
5 20 (8) .0072 .0282 .049% 1002 .2482 .086
10 12 (18) .0062 .0172 .0492 .0942 .2312 .079
Mean alpha .008 .023 .050 .100 . 240

aEmpirical alpha is within 1.96 standard errors of the nominal alpha.

alpha levels equalling .090 for s = 5, .078 for s = 12, and .086 for
s = 20. Averaging across the five nominal alpha levels and keeping s
constant at 12 gave mean empirical alpha levels equal to .088 for c=2,
.078 for ¢ = 5, and .079 for ¢ = 10. The standard by which each of the
mean empirical alpha levels, as s and c were varied, should be judged
is the mean of the five nominal alpha levels, which equals .087. As
expected, this standard mean is in close agreement to those found when
s and c were varied.

As predicted analytically, given independence of student

responses, i.e., E(MSC.T)/E(MS ) equalled one, and noncentral

S:CT
conditions, both increasing the number of students per class and
increasing the number of classes per treatment increased the power

of the test F = MST/MSC'T (Table 7). Averaging across the five nominal
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Table 7

Empirical Powers for F = MST/MSC:T

Nominal alpha

d.f. Mean
c s error .010 .025 .050 .100 .250 power
2 12 (2)  .074 .149  .297  .499  .793  .362
5 5 (8)  .265 .436 .594  .760  .896  .590
.33 5 12 (8) .66l .839 .916  .966  .997 .876
5 20 (8  .896 .967 .990  .998  .999  .970
10 12 (18)  .986 .996 .999 1.000 1.000 .996
Mean power .576 .677 .759 .845 .937
2 12 (2)  .055 .124 .217  .389  .708 .299
5 5 (8)  .162 .287 .420  .592  .813  .455
.50 5 12 (8)  .450 .651 .794  .889  .967 .750
5 20 (8  .721 .861 .937  .978  .997  .899
10 12 (18  .920 .965 .984  .995 1.000 .973
Mean power .462 .578 .670  .769  .897
3] 2 12 (2) .03 .086 .153  .261  .533 .214
O 5 5 (8  .078 .149 .227  .359  .621  .287
g1 5 12 (8)  .193 .322 .478  .657  .843  .499
= 5 20 (8)  .381 .552 .699  .822  .938 .678
~, 10 12 (18)  .621 .773 .852  .915  .967 .826
Ei’ Mean power .262 .376 .482  .603  .780
2 2 12 (2) .023 .057 .103  .194  .406 .157
5 5 (8)  .038 .085 .141  .229  .447 .188
2 5 12 (8  .075 .160 .261  .399  .638 .307
S 20 (8)  .164 .292 .429  .569 .78l  .447
10 12 (18)  .268 .411 .562  .705  .857  .561
Mean power 114 .201 .299 .419 .626
2 12 (2) .021 .047 .086  .167  .353  .135
5 5 (8  .024 .069 .107  .191  .383 .155
3 5 12 (8)  .053 .110 .176  .299  .524  .232
5 20 (8) .09 .195 .302  .448  .666 .34l
10 12 (18)  .173 .275 .386  .539  .765 .428
Mean power .075 .138  .211  .329  .538
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alpha levels but keeping c constant at 5 gave mean power values
equallying .287 for s = 5, .499 for s = 12, and .678 for s = 20.
Averaging across the same nominal alpha levels but keeping s constant
at 12 gave mean power values equalling .214 for ¢ = 2, .499 for c = 5,
and .826 for ¢ = 10. Table 7 also shows that increasing the number of
classrooms per treatment had a more positive effect on increasing the

power of F = MST/MS than did increasing the number of students per

C:T
classroom. This is illustrated in Table 7 by comparing the difference
in estimated powers as c is increased, but keeping s constant at 12,
from ¢ equals 5 to ¢ equals 10 (a difference of five classrooms per
treatment) to the difference in estimated powers as s is increased,

but keeping c constant at 5, from s equals 12 to s equals 20 (a dif-
ference of eight students per classroom). As the nominal alpha level
was increased from .01 to .25, an increase of five classes per treatment
increased the estimated power from .193 to .621, which is an increase

in power of 221% to an increase in power from .843 to .967, which is

an increase of 14.7Z. Correspondingly, an increase of eight students
increased the estimated power from .193 to .381, which is an increase

in power of only 97.4%, to an increase in power from .843 to .938, which
is an increase of only 11.3%Z. This same sort of general relationship
between estimated powers as c and 8 were increased by relative amounts

held up across all five nominal alpha levels examined (.01, .025, .05,

.10, and .25).
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Positive Dependence

Positive dependence between student responses within classrooms
was defined as the condition where the E(MSC'T) was greater than the
E(MS

). For the simulation study, the E(MS ) always equalled

S:CT S:CT

one and the degree of positive dependence was defined by manipulating
the value of the E(MSC:T)’ The degree of positive dependence was said
to increase as the value of the E(MSC:T) increased above one. In par-
ticular, two degrees of positive dependence were studied. They were

EMS;. ) /E(MS ) equal to 2 and E(MS., )/E(MSg,..) equal to 3.

S:CT
Whenever student responses within classrooms were operationally
dependent upon each other in a positive manner, but between classroom
observations were independent, homoscedastic and normally distributed,
and given no treatment effects, the test statistic F = MST/MSC:T again
had a central F distribution with (t-1) and (c-1)t degrees of freedom.
And as predic;gd in the earlie; analytic work, neither the number of
ségs;nts per class nor the number of classes per treatment nor the
existence and/or degree of positive dependence had any effect on the

actual significance level of the test F = MST/MS The observed

C:T*
alpha values, given both degrees of positive dependence between student
responses, for the five nominal alpha levels are identical to those
when given independence between student responses and are displayed
in Table 6 for prespecified values of s and c.

The estimated powers for F = MST/MSC:T (the "never pool" test)

for the two simulated positive dependence conditions are shown at the

bottom of Table 7. The estimated statistical powers when using class
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as the unit of analysis decreased as the degree of positive dependence

increased from E(MSC_T/E(MS ) = 3. This

s:cr) = 2 to EMS, ) /EMSg, oy
inverse relationship, however, is purely a function of the degree of
dependence being defined by manipulating the E(MSC:T) and keeping the
E(MSS:CT) constant. The relationship between degree of positive depen-
dence and magnitude of the estimated power values would have equalled
zero if the degree of dependence had instead been defined by altering
the E(MSS:CT) or if the noncentral case had been created by adding 0.4
of the between class variance, rather than 0.4 of the within class
variance, to the adjusted random variates of one treatment level. In
other words, because of the way the data base in the noncentral case
was built, power and degree of dependency are confounded when classroom
is the unit of analysis. The effect of increasing s and/or c would have
increased the power of F = MST/MSC:T no matter how the degree of depen-
dence and the noncentral case had been defined. Similarly, the number
of students per class and the number of classes per treatment would

have had no effect on the actual significance level of F = MST/MSC:T

no matter how degree of dependence had been defined.

Negative Dependence

Negative dependence between student responses within classes was
defined as the condition where the E(MSC'T) was less than the E(MSS_CT)
or concurrently where the variance between classrooms was less than

that predicted had equal numbers of students been randomly assigned

to classrooms. Two degrees of negative dependence were studied. They
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were E(MSC:T)/E(MSS:CT) equal to .5 and E(MSC:T)/E(MS ) equal

S:CT
to .33.

The amount of negative student dependency, an increase in students
per class and an increase in classes per treatment all had no effect on
the distribution of the test statistic F = MSTlnsc:T, given the central
case and given that observations between classes were independent,
homoscedastic and normally distributed. When classroom is the unit
of analysis, the observed alpha values, given negative dependence within
classrooms, for the five nominal alpha levels are identical to those
when given independence and are displayed in Table 6 for prespecified
values of s and c.

The empirical powers for F = MST/HSC:T for the two simulated
negative dependence conditions are shown at the top of Table 7. As
with the case of positive dependency, the noncentrality parameter, and
thus power, and the degree of negative dependence are confounded when
classroom is the unit of analysis. Once again, however, increasing s

and/or c would have increased the power of F = MST/MSC_T no matter how

degree of negative dependence and the noncentral case had been defined.

Student as Unit

Model B or the "always pool" model (Table 3) is the analytic model
of concern when student is used as the unit of analysis in testing for
treatment effects. With student as the analytic unit, the test of

treatment effects is F = MST/MSS:T'
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Independence

Empirical Type I errors for the F = MST/MS test given

S:T
independence of student responses within treatments are given in
Table 8. All estimated Type I errors, across all five combinations
of s and ¢ and across all five nominal alpha levels, were within 1.96
standard errors of the nominal alphas. Across the five combinations
of s and ¢, the mean observed alpha levels equalled .010 for o = .01,
.024 for a = .025, .051 for a = .05, .098 for a = .10, and .241 for
o = .25. The mean observed alpha levels appear very close to their
respective nominal values. Table 8 also indicates that increasing the
number of students per class and/or increasing the number of classes
per treatment had no effect on the probability of Type I errors for
F = MST/MSS:T' Averaging across the five nominal alpha levels and
keeping c constant at 5 gave mean observed alpha levels of .082 for
s =5, .081 for s = 12, and .092 for s = 20. Averaging across the
nominal alpha values and keeping s constant at 12 gave mean observed
alpha levels of .087 for ¢ = 2, .08l for ¢ = 5, and .082 for ¢ = 10.
All of the above mean empirical alpha levels are in close agreement to
their expected mean empirical alpha level which equals .087. Thus, as
expected, given that students within treatments were independent, homo-
scedastic and normally distributed and given there were no treatment
effects, F = MST/MSS:T was distributed as a central F having (t-1) and
(sc-1)t degrees of freedom.

Empirical statistical powers for F = MST/MSS:T for the five

analysis of variance designs are given in Table 9. As expected, the
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Table 8

Empirical Type I Errors for F = MST/MS

S:T

Nominal alpha

d.f. Mean
c s error .010 .025 .050 .100 .250 alpha
2 12 (46) .000 .001 .001 .008 .059 .014
5 5 (48) .000 .000 .004 .011 .058 .015
.33 5 12 (118) .000 .000 .001 .005 .049 .011
5 20 (198) .000 .000 .001 .005 .050 .011
10 12 (238) .000 .000 .000 .004 .053 .011
Mean alpha .000 .000 .001 .007 .054
2 12 (46) .001 .002 .009 .029 .100 .028
5 5 (48) .000 .007 .012 .023 .114 .031
.50 5 12 (118) .000 .003 .007 .018 .108 .027
5 20 (198) .000 .002 .008 .021 .122 .031
10 12 (238) .000 .000 .004 .021 .108 .027
~, | Mean alpha .000 .003 .008 .022 .110
(&)
o 2 12 (46) .0112 .0323 .058: .091: .242: .087
g 5 5 (48)  .0127 .0227 .0487 .0977 .2312 .082
2 1 5 12 (118) .0087 .0200 .0461 .094% .2370 .08l
~, 5 20 (198) .014 .024> .0507 .1117 .2600  .092
3 10 12 (238) .007% .022® .052% .096% .235 .082
n
E} Mean alpha .010 .024 .051 .098 .241
2 12 (46) .064 .093 .146 .226 .383 .182
5 5 (48) .044 .081 .123 .195 .351 .159
2 5 12 (118) .051 .096 .139 .210 .395 .178
5 20 (198) .067 .116 .158 .242  .405 .198
10 12 (238) .056 .093 .l44 .215 .356 .173
Mean alpha .056 .096 .142 .218 .378
2 12 (46) .102 .165 .224 .312  .457 .252
5 5 (48) .085 .122 .180 .252 .417 .211
3 5 12 (118 .106 .153 .211 .298  .465 247
5 20 (198) .126 .179 .249  .324  .475 .271
10 12 (238) .108 .158 .210 .290 .451 .243
Mean alpha .105 .155 .215 .295 .453

aEmpirical alpha 1is within 1.96 standard errors of the nominal alpha.
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Empirical Powers for F = MST/MSS=T

Nominal alpha

d.f. Mean
c s error .010 .025 .050 .100 .250 power
2 12 (46) .028 .087 .177 .342 .685 .264
5 5 (48) .031 .105 .200 .397 .727 .292
.33 5 12 (118) .282  .485 .694  .855 .962 .656
5 20 (198) .685 .857 .929 .980 .998 .890
10 12 (238) .854  .,942 .976 .996 1.000 .954
Mean power .376 .495  .595 714 .874
2 12 (46) .053 .126 .211 .376 .656 .284
5 5 (48) .057 .139 .229 .406 .689 .304
.50 5 12 (118) .321 .481 .646 .800 .937 .635
5 20 (198) .644  .815 .897  .948 .991 .859
10 12 (238) .805 .898 .957 .981 .998 .928
Mean power 374 .492 .588 .702 .854
§ 2 12 (46) 114,190 .286  .409 .607 .321
o 5 5 (48) .102 .186 .274  .402 .645 .322
& 1 5 12 (118) .346  .470 .590 .742 .869 .600
I 5 20 (198) .604 .,730 .810 .881 .947 .794
~ 10 12 (238) .720 .826 .883 .931 .971 .866
@ | Mean power .377  .480 .569 .669  .808
= 2 12 (46) .185 .262 .345  .437 .612 .368
5 5 (48) 149 .221 .301 .400 .616 .337
2 5 12 (118) .357 454 544  ,641 .782 .556
5 20 (198) .563 .670 .733 ,798 .884 .730
10 12 (238) .642 ,730 .795 .859 .920 .789
Mean power 379  .467 544  .627 .763
2 12 (46) .226 .312 .390 .455 .621 .401
5 5 (48) 171 .236 .320 .420 .617 .353
3 5 12 (118) .367  .442 .526 .610 .752 .539
5 20 (198) .537 .623 .703 .753 .846 .692
10 12 (238) .589 .687 744 .807 .879 741
Mean power .378 .460 .537 .609 .743
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table shows that, given E(MSC.T)/E(MS ) equals one and the

S:CT
noncentral condition, increasing the number of subjects per class
and increasing the number of classes per treatment increased the power

of the test F = MST/MS Averaging across the five nominal alpha

S:T"
levels and keeping c constant at 5 gave mean power values equal to

.322 for s = 5, .600 for s = 12, and .794 for s = 20. In similar
fashion, averaging over the nominal alpha levels but keeping s constant
at 12 gave mean power values equalling .321 for ¢ = 2, .600 for ¢ = 5,
and .866 for ¢ = 10. Each one of these mean power values exceeds its
respective mean power value when class, rather than student, is used

as the unit of analysis. In fact, given independence of student
responses, all of the 25 powers shown in Table 9 are larger than the

25 corresponding powers displayed in Table 7, which indicates that, as
expected under independence, F = MST/MSS:T was always more powerful a

test than F = MST/MS This increase in power can be accredited to

C:T*

an increase in degrees of freedom error. (Comparing any two respective

rows in Tables 7 and 9, given E(MSC.T)/E(MS ) equals 1, is similar

S:CT
to Table 1 from Peckham et al.)

Positive Dependence

The analytic analysis (Chapter IV) of the effect of positive
dependence given student as the unit of analysis suggested that the

test F = MST/MS would result in a too liberal test statistic.

S:T
Determining just how liberal that test statistic would be given certain

parameters can be estimated using either of two methods: (a) Monte
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Carlo analysis and (b) rescaling the biased F statistic and then using
the tabled F values to measure the degree of liberalness. Both methods
of estimation were used in this study and their comparable results will
be discussed in this section, beginning with the Monte Carlo analysis.
The effects of positive dependence between disaggregate units on

the actual significance levels of the test F = MST/MS , measured by

S:T
the Monte Carlo method, are reported at the bottom of Table 8. None

of the observed alpha levels are within 1.96 standard errors of the
nominal alpha levels. All observed alpha levels are larger than their
theoretical complements, which signals liberalness of the test statistic.
This indicates that, giveﬁ positive dependence and no treatment effects,

F = MST/MS is not distributed as a central F, but in fact is distrib-

S:T
uted as an F distribution which is located to the right of the central
F distribution found when given independence of student responses and
tﬁe same F statistic. This is in gomplete agreement with the work of
Scheffé (1959) and Cochran (1947) and with analytic work presented in
Chapter IV.

As a second and alternative way to determine the extent of the

liberalness, the F statistic MST/MS can be adjusted such that it

S:T
has a central F distribution under the null hypothesis. Doing this
would allow using the F table to estimate the degree of effect posi-
tive dependence has on the alpha level. Given the null, the E(MST)
equals the E(MSC:T) and thus the two ratios of eipected valueé

E(MSC:T)/E(MSS:T) and E(MST)/E(MSS:T) are equivalent and greater than

one, given positive dependence. If, however, the F is rescaled by a
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constant 1/n, where n equals E(MSC'T)/E(MSS'T)’ the two ratios of
expected values given above equal one, from which it follows that the
rescaled F, Fo’ will have a central F distribution. This rescaled F

equals (MST/n)/MS The actual alpha level then equals the P(F°>'d/n),

S:T*
where d equals the critical F value at any nominal alpha, given (t-1)
and (sc-1)t degrees of freedom.

The estimated Type I errors, given positive dependence, obtained
using the rescaled F statistic are reported at the bottom of Table B-1
in Appendix B. These estimated values closely match those.found in the
Monte Carlo study (Table 8). (Ninety percent of the matched alpha
values from the two empirical analyses were within 1.96 standard errors
of each other.) Because the empiricalialpha levels of both techniques
were similar both in absolute value and trend, the remaining analysis
of the empirical effects on the alpha level of increasing s, increasing
¢, and increasing degree of positive dependence will be discussed and
illustrated using only the simulated or Monte Carlo data found in
Table 8.

As ¢ and degree of positive dependence were held constant and the
actual alpha levels were averaged across the five nominal alpha levels,
an increase in s was directly related to an increase in liberalness.
For example, at E(MSC:T)/E(MSS:CT) equal to 2 and ¢ equal to 5, aver-
aging across the five nominal alpha levels gave mean observed alpha
levels equal to .159 for s = 5, .178 for s = 12, and .198 for s = 20
(Table 8). This direct relationship between liberalness and increasing
s, given positive dependence, occurs because as s is increased the

discrepancy between the E(MSC~T) and the E(MSS-T) is increased
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(Table 10). For example, given E(MSC.T)/E(MS ) equal to 2 and

S:CT
c equal to 5, this observed discrepancy goes from .81 to .94 to .97

as s equals 5, 12, and 20, respectively. On the other hand, as s and
the degree of positive dependence were held constant and the actual
alpha levels were averaged across the nominal alpha values, an increase
in ¢ was indirectly related to the degree of liberalness. For example,

at E(MSC.T)/E(MS ) equal to 2 and 8 = 12, the mean observed alpha

S:CT
levels equalled .182 for ¢ = 2, .178 for ¢ = 5, and .173 for ¢ = 10.
This indirect relationship occurs because as c¢ is increased the dis-
crepancy between the E(MSC:T) and the E(MSS:T) decreases. For example,
given E(MSC:T)/E(MSS:CT) equal to 2 and s equal to 12, this observed
discrepancy equals .96 for ¢ = 2, .94 for ¢ = 5, and .92 for ¢ = 10.
Table 8 also shows that the degree of liberalness is monoton-

ically related to the degree of positive dependence. That ié, as

E(MSC_T)/E(MS ) increased from 2 to 3, the liberalness of the F

S:CT

test using student as the unit of analysis also increased. At

E(MSC.T)/E(MS ) equal to 2 averaging across the five combinatioms

S:CT

of s and ¢ gave mean observed alpha levels equal to .056 for a = .01,
.096 for o = .025, .142 for a = .05, .218 for a = .10, and .378 for
a = ,25. These five mean values are all smaller than their matches,

given E(MSC:T)/E(MS ) equal to 3, which, respectively, equal .105,

S:CT
.155, .215, .295, and .453.

Because of the general liberalness of the test F = MST/MSS'T’
under all observed cases of s, ¢, and degree of positive dependence,

the powers shown at the bottom of Table 9 will not be discussed as

these powers are all spuriously large.
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Table 10
Discrepancy Between Observed and Theoretical E(MSC'T) and E(MSS_T)
EMS, 1) /EMSg, cp)

c s .33 .50 1 2 3
2 12 -.638% -.478 .000 .957 1.913
(-.638)°  (-.478) (.000) (.957) (1.913)
5 5 -.560 -.423 -.013 .808 1.629
(-.556) (-.417) (.000) (.833) (1.667)
5 12 -.634 -.476 -.004 .939 1.883
(-.622) (~.466) (.000) (.932) (1.864)
5 20 -.645 -.483 .002 974 1.946
(-.640) (-.480) (.000) (.960) (1.919)
10 12 -.624 -.470 -.008 .915 1.839
(-.616) (-.462) (.000) (.924) (1.849)

80bserved E(MSC:T) minus Observed E(MSS:T)'

bTheoretical E(MSC'T) minus Theoretical E(MS

S:T)'
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Negative Dependence

The effects of negative dependence between disaggregate units
on the actual significance levels of the test F = MSTluss:T, estimated
using Monte Carlo procedures, are reported at the top of Table 8. None
of the empirical alpha levels were within 1.96 standard errors of the
nominal alpha levels. All empirical alpha levels were smaller than
their nominal counterparts, which means the test statistics were too
2 was less than 02

Cc s:cr/®
was not distributed

conservative. This indicates that, given that O
and there were no treatment effects, F = MST/MSS:T
as a central F but instead had an F distribution which was located to
the left of the central F distribution found when given the same F
statistic and independence of 1nd1v1du§1 units. This finding concurs
with the analytic work of Scheffé (1959) and Cochran (1947) and also
with the analytic work presented in Chapter IV.

The rescaled F statistic was also used to estimate the magnitude
of effects given negative dependence and prespecified parameters. The
results of this analysis are reported at the top of Table B-1 in Appen-
dix B. Once again the estimated alpha values in Table B-1 closely
match, both in absolute value and trend, those reported in Table 8.
(Ninety-eight percent of the matched alpha levels from the two
empirical analyses were within 1.96 standard errors of each other.)
Because of this, the effects on the alpha level of increasing s,
increasing c, and increasing the level of negative dependence will

.

be discussed and illustrated using only the simulated data found in

Table 8.
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The theoretical and observed discrepancies (Table 10) between
the E(MSC°T) and the E(“SS'T) for each level of negative dependence

indicate that as s increases F = MST/MS should become more conserva-

S:T
tive because the E(MSS'T) becomes increasingly larger than the E(MS

C:T)
as s increases. Table 10 indicates that the opposite should occur as
c 1s increased. Neither one of these two expectations appeared in the
simulated data. It may have been that the observed alpha values were
just too close to zero and the three different levels of number of
students and classes were just not different enough to bring out the
expected trends.

Table 8 also shows that the degree of conservativeness is
monotonically related to degree of negative dependence. For example,
at E(MSC:T)/E(MSS:CT) equal to .5, averaging across the five combina-
tions of 8 and ¢ gave mean observed alpha levels equal to .000 for
a= ,01, .003 for o = .025, .008 for a = .05, .022 for a = .10, and
.110 for a = ,25; while at E(MSC:T)/E(MSS:CT) equal to .33, averaging
across the combinations of s and ¢ gave mean observed alpha levels
equal to .000 for a = .01, .000 for o = ,025, .001 for a = .05, .007
for o = .10, and .054 for a = .25.

The empirical powers for F = MST/MS for the two simulated

S:T
negative dependence conditions are shown at the top of Table 9. As
expected, the estimated power values increased both as the number of
students per class increased and as the number of classes per treatment
increased. For example, given the least degree of negative dependence,

i.e., E(MSC.T)/E(MS ) equal to .5, averaging across the five nominal

S:CT
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alpha levels and keeping c constant at 5 gave mean power values
equalling .304 for s = 5, .635 for s = 12, and .859 for s = 20.
Given that same degree of negative dependence, averaging across the
nominal alpha levels and keeping s constant at 12 gave mean power
values equal to .284 for ¢ = 2, .635 for ¢ = 5, and .928 for c = 10.

By itself a conservative test statistic should have spuriously

less power. Thus the power of the test F = MST/MS should be reduced

S:T

as the negative dependence is increased from E(MSC.T)/E(MS ) equals

S:CT

.5 to E(MSC.T)/E(MS ) equals .33. For small degrees of freedom

S:CT

error, i.e., (sc-1)t equals 46 and 48, increasing negative dependence

did decrease the power of F = MST/MS However, for large degrees

S:T*
of freedom error, across most nominal alpha levels the reverse occurred.
Of greatest significance to the practitioner, however, F = MST/MSS'T

had, in all cases but one, (E[MSC.T]/E[MS = 5, ¢c=2, 8 =12, and

S:CT]
o = .025), less power than the F = MST/MSC_T test. Thus, in this simu-
lation situation increasing the degrees of freedom error for the F
statistic by using student, rather than class, as the unit of analysis

did not compensate for the fact that using student made the test of no

treatment effects too conservative a test.



CHAPTER VII

THE CONDITIONAL F TEST: EMPIRICAL ANALYSIS

The most desirable situation in testing hypotheses is, of
course, both a small probability of a Type I error (o) and a small
probability of a Type II error (B). Table 7 of the preceding chapter
showed that the probability of a Type II error, given the always correct

F = MST/MS test, the most commonly used alpha level of .05 and the

C:T
operational definition of independence, was relatively high for four

of the five simulated combinations of s and ¢c. For ¢ = 2 and 8 = 12,

B equalled .847; for ¢ = 5 and 8 = 5, B equalled .773; for ¢ = 5 and

s = 12, B equalled .522; for ¢ = 5 and s = 20, 8 equalled .301, and

for ¢ = 10 and s = 12, B equalled .148. Clearly, it would be nice

to improve on these rather high probabilities, if possible, without
increasing the probability of Type I errors. It was shown earlier,

both analytically and empirically (Table 9), that using F tests with
disaggregate units as the units of analysis, F = MST/MSS:T’ would reduce
the probability of Type II errors, given independence, by increasing the
degrees of freedom error. However, if the individual data values were
positively dependent upon each other, which appears to be quite common
in ordinary classroom situations, then using the test F = MST/MSS:T
increased the probability of Type I errors. On the other hand, if

observations within groups were negatively dependent, using the test

75
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F = MST/MSS:T decreased the probability of Type I errors but at the
same time the natural increase in degrees of freedom error was not
enough to offset the increase of the probability of Type II errors
caused by this spurious decrease in the probability of Type I errors.
All in all, given simulated conditions common to educational data, it
seemed "best" to use classroom as the unit of analysis given dependence
(either positive or negative) between student responses and student as
the unit of analysis when student responses were independent of each
other. Herein lies the motivation for performing a preliminary test
of independence. That 1is, the sole purpose of this preliminary test
is to choose the appropriate unit of analysis for the primary test of
treatment effects.

The problem with using this operational test of independence,
F = MSC:T/MSS:CT’ to select a unit of analysis for the primary test
is that this procedure makes the primary test of no treatment effects
have a conditional F distribution. Of interest then is the difference
between the distribution of a conditional F test statistic (also called
the "sometimes pool" test statistic) and the distribution of the appro-
priate unconditional and always correct F statistic from the '"never

pool" model, F = MST/MS Variables which were examined to see how

C:T*
they affected this difference included the number of students per class,
the number of classes per treatment, the type and degree of dependence,
the alpha level of the preliminary test, and the alpha level of the

primary test. The effects of each one of the above mentioned variables

on the distributional properties of the conditional F test were empir-

ically studied within the content of three different preliminary F



77

tests. The three preliminary F tests included: (a) a two-tailed
preliminary F test, (b) the usual, upper-tailed only preliminary F
test, and (c) a lower-tailed only preliminary F test.

In order to claim this two-stage testing procedure a success,
the observed alpha level of the conditional F test should be close to
the nominal alpha level at which the researcher thinks he is working
and the procedure should have greater power than the always correct,

unconditional test F = MST/MS Simulated data, identical to those

C:T’
used for looking at the effects of correlated units of analysis, were
used to examine both empirical probabilities of Type I errors and
empirical powers of the conditional F tests. Based on the results of
one of the preliminary tests, either Model A (Table 2), F = MST/MSC:T’
or Model B (Table 3), F = MST/MSS:T’ was designated as the appropriate
model to use in testing the primary hypothesis of no treatment effects.
The actual alpha level for the conditional F test was defined by

(nAaA + nBaB)/(nA + nB), where n, and ng equalled the number of pre-

liminary F tests rejected and not rejected, respectively, and oy and

o, equalled the actual alpha levels for the primary tests of no treat-

B
ment effects analyzed by Models A and B, respectively.

The Two-Tailed Preliminary Test

The two-tailed preliminary F test tested the hypothesis that the

E(MSC,T) equalled the E(MS ), or equivalently that pI equalled zero.

S:CT

The effects of the two-tailed preliminary test were examined at five

different preliminary test alpha levels (i.e., .02, .05, .10, .20, and
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.50). Actual conditional test alpha levels, given the two-tailed
preliminary test, are shown in Tables 11 through 15. Corresponding
differences between empirical powers of the conditional test and the
unconditional, always correct test F = MST/MSC:T are shown in Tables
16 through 20. Appendix C (Tables C-1 through C-5) contains the actual
statistical powers of the conditional F test, given the two-tailed
preliminary test. Each separate table describes the effect on the
conditional F test alpha level or power of varying the type and degree
of dependence, the two-tailed preliminary test alpha level and the
conditional test alpha level for one specific combination of s and c.
Examining the effects of s and ¢ requires between table comparisons.
In this study each combination of s and ¢ will be referred to as a
"design." Thus, this study includes five designs, ¢ = 2 and s = 12,

c=5and s =5, c=5and 8 =12, c = 5 and 8 = 20, and ¢ = 10 and

s = 12.

Independence

Independence is that condition where the variance of the aggregate
units is predictable given the variance of the disaggregate units and
the grouping size. Operationally speaking, within the context of this
study, independence occurs whenever the ratio of E(MSC:T) over E(MSS:CT)
equals 1. Given this situation, ideally the two-tailed preliminary test
should not reject its null hypothesis, Ho: E(MSC:T) equals E(MSS:CT)’
designating the disaggregate unit (students) as the appropriate unit of

analysis in testing for treatment effects.
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Table 11

Actual Alphas of the Conditional F Test Given a Two-Tailed
Preliminary Test, ¢ = 2 and 8 = 12

Conditional test
nominal alpha
Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha

EMSq,p) /EMSg, op)

.02 .oo7: 015, .017  .025  .081 .029
.05 .010% .0242 .033  .051 .114 .046
.33 .10 .0107 .0297 .044% .070_ .151 .061
.20 .0107 .0297 .0487 .0850 .200_  .074
.50 .010® .029% .050% .093% .257 .088

Mean alpha .009 .025 .038 .065 .161
.02 .008% .014 .023 .044 .116 .041
.05 .011: .023: .035_ .060  .139 .054
.50 .10 .011% .026% .045% .075 .161 .064
.20 .011%2 .029% .052® .091% .200 .077
.50 .010® .028% .052% .098% .254% .088

Mean alpha .010 .024 .041 .074 174
.02 .0162 .042 .070 .102% .2512 .096
.05 .018 .045 .072 .104® .250%  .098
1 .10 .019 .048 .078 .113% .260: .104
.20 .019 .048 .085 .122 .268 .108
.50 .016%2 .042 .079 .126 .289 .110

Mean alpha .018 .045 .077 .113 .264
.02 .065 .090 .138 .210 .357 .172
.05 .066 .093 .138 .201 .340 .168
2 .10 .066 .091 .134 .193 .325 .162
.20 .055 .082 .123 .181 .309 .150
.50 .035 .062 .098 .152 .280 .125

Mean alpha .057 .084 .126 .187 .322
.02 .093 .144 .188 .261 .383 .214
.05 .085 .136 .178 .244  .357 .200
3 .10 .079 .125 .161 .219 .329 .183
.20 .067 .108 .139 .196 .306 .163
.50 .044 .070 .100 .143 .274 .126

Mean alpha .074 117 .153 .213 .330

2Actual alpha is within 1.96 standard errors of the nominal alpha.
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Table 12

Actual Alphas of the Conditional F Test Given a Two-Tailed
Preliminary Test, ¢ = 5 and s = 5

Conditional test
nominal alpha
Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha

.02 .008: .019: .044: .070  .151 .058
.05 .009% 0207 .049% .076_ .192 .069
.33 .10 .0107 .0225 .0557 .0982 .209_ .079
.20 0112 .024% .059% .107% .230 .086
.50 0112 .025% .061% .108% .245% .090
Mean alpha .010 .022 .054 .092 .205
.02 .006: .018: .032_ .053 .152 .052
.05 .0087 .0247 .045% .070_ .180 .065
.50 .10 .0087 .026_ .053° .084> .201 .074
.20 .0107 .0267 .057; .098% .2242 .083
.50 .011%2 .026% .0622 .108% .241 .090
&5 | Mean alpha .009 .024 .050 .083 .200
g{’ .02 .013: .024: .053: .1oo: .235: .085
& .05 .0167. .0292 .058% .106> .2342 .089
= 1 .10 .016 .031% .060% .108° .237 .090
E .20 .018_ .030 .064 .1182 .244: .095
gf’ .50 0142 .031% .069 .118% .247 .096
= Mean alpha .015 .029 .061 .110 .239
.02 .039  .073 .112 .171 .308 141
.05 .036 .067 .104 .155 .289 .130
2 .10 .033  .060 .095 .l44 .278_ .122
.20 .026  .054 .091 .133  .263] .113
.50 .020 .040 .074 .119 .248 .110
Mean alpha .031  .059 .095 .l44 .277
.02 .056 .082 .119 .170 .319 .149
.05 .047 .073 .109 .159  .299 .137
3 .10 .038  .059 .095 .147  .285 .125
.20 .03 .046 .079  .127_ .274 .111
.50 .019 .033 .071 .115% .253% .098
Mean alpha .038 .059 .095 144 .286

2Actual alpha is within 1.96 standard errors of the nominal alpha.
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Table 13

Actual Alphas of the Conditional F Test Given a Two-Tailed
Preliminary Test, ¢ = 5 and s = 12

Conditional test
nominal alpha
Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha

EQMS;,p) /EQMSg, op)

.02 .006: .015 .030 .049 .120 .044
.05 .0067 .015  .036, .071 .155 .057
.33 .10 .0075 .0173 .0407 .080_ .190 .067
.20 .007% .0187 .0457 .0917 .212 .075
.50 .007% .018% .046% .095% .224%2 .078

Mean alpha .007 .017 .039 .077 .180
.02 .003 .008  .021 .042 .136 .042
.05 .0052 .0162 .032 .058 .157 .054
.50 .10 .006> .0172 .036, .070_ .175 .061
.20 .006> .017: .0427 0862 .198 .070
.50 .007% .018% .046® .096% .222 .078

Mean alpha .005 .015 .035 .070 .178
.02 .009: .021: .047: .0952 .235: .081
.05 .0093 .0217 .0472 .099% .2353 .082
1 .10 .010% .023 .054: .1067  .235 .086
.20 0112 .025% .057 1103 .2373 .088
.50 .011% .027% .056% .117% .234 .089

Mean alpha .010 .023 .052 .105 .235
.02 .060 .081 .111 .167 .323 144
.05 .033  .067 .095 .148 .298_ .128
2 .10 .028  .058 .084 .132_ .274: .115
.20 .024_ 050 .074_ .115: .2537 .103
.50 0142 .029% .055% .101% .237 .087

Mean alpha .057 .057 .084 .133 .277
.02 .055 .076 .108 .157 .298 .139
.05 .042  .056 .085 .132 .280_ .119
3 .10 .032  .044_ .072_ .120  .265] .107
.20 .023_ .0303 .0587 .1097 .244> .093
.50 0122 .023% .053% .099% .231 .084

Mean alpha .033 .046 .061 .123 .264

8Actual alpha is within 1.96 standard errors of the nominal alpha.
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Table 14

Actual Alphas of the Conditional F Test Given a Two-Tailed
Preliminary Test, ¢ = 5 and s = 20

Conditional test
nominal alpha

Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha
.02 .006: .019: .030_ .051  .126 .046
.05 .007% 0245 .0407 .077_ .168 .063
.33 .10 .007%  .0267 .045. .089 .209_ .075
.20 .007% .028% .049% .097% .233 .083
.50 .007% .028% .049% .100* .248% .086
Mean alpha .007 .025 .043 .083 .197
.02 .005: .012_ .020 .037  .143 .043
.05 .005° .0187 .029_ .054 .168 .055
.50 .10 .0077 .0237 .0392 .069_ .192 .066
.20 .0077 .0250 .044> .089° 211 .075
.50 .007% .028% .049% .100® .245 .086
—~ Mean alpha .006 .021 .036 .070 .192
=
9 .02 .014: .025: .oso: .1102 .zeo: .092
0 .05 .0167 .0287 .054> .111% .2607 .094
E 1 .10 .0167 .0307 .056> .112° .262 .095
J .20 .016_ .031% .054° .1100 .260° .094
™ .50 .015% .035 .057% .107® .259 .095
;f’ Mean alpha .015 .030 .054 .110 .260
1 .02 .052  .092 .120 .193 .328 .157
.05 .048 .085 .111 .175 .305 .145
2 .10 060 .075 .102 .157 .290_ .133
.20 .032  .063 .084  .129  .274 .116
.50 .021  .039 .060% .112% .252 .097
Mean alpha .039 .071 .095 .153 .290
.02 .064 .089 .123 .170 .303 .150
.05 .050  .069 .098 .14  .286_ .129
3 .10 .032  .052 .082 .136_ .266 114
.20 .024_ 043 .067_ .1182 .257: .102
.50 .010% .031% .054% .103% .250 .090
Mean alpha .036 .057 .085 .134 .272

qActual alpha is within 1.96 standard errors of

the nominal alpha.



83

Table 15

Actual Alphas of the Conditional F Test Given a Two-Tailed
Preliminary Test, ¢ = 10 and s = 12

Preliminary test

Conditional test
nominal alpha

Mean

nominal alpha .010 .025 .050 .100 .250 alpha
.02 .006: .016: .044: .078_ .20 .069
.05 .0067 .0170 0467 .088% .217_ .075
.33 .10 .0067 0170 .048% .0927 .2257 .078
.20 .0067 0170 .049% .094> .2303 .079
.50 .0062 .017% .049% .094% .231 .079
Mean alpha .006 .017 .047 .089 .221
.02 .003_ .009 .023  .049 .160 .049
.05 .0067 .0l4  .037; .070 .191 .064
.50 .10 .0067 .0162 .044> .079_  .210_ .071
.20 .0065 .0175 .047% .085) .2257 .076
.50 .0062 .017% .049% .094% .230 .079
- Mean alpha .005 .015 .040 .075 .203

[

3 .02 .0072 .023: .054: .099: .237: .084
a .05 .007% .0237 .0547 .0997 .2387 .084
S 1 .10 .0073 .0237 .0547 .098% .2387 .084
= .20 .006% .021% .056% .097% .235 .083

b .50 .006% .022% .053% .095% .232%  .082

> | Mean alpha .007 .022 .054 .098 .236
4
= .02 .032  .053 .087 .152 .277_ .120

.05 .024 .043 .071 .132 .262 .106
2 .10 .0158 0338 0632 .1178 .2543 .096
.20 L0117 .0267 .0547 .104> .240° .087
.50 .007% .021% .051% .096® .235 .082

Mean alpha .018 .035 .065 .120 254
.02 .019_ .031: 064 .116: .248: .096
.05 .0147 .0267 .0567 .1023 .2437 .088
3 .10 .0117  .021% .053% .0997 .2417 .085
.20 .0077 .0187 .0507 .097% .235) .081
.50 .0062 .017% .049% .0942 .231 .079

Mean alpha .011 .023 .054 .102 .240

8pctual alpha is within 1.96 standard errors of

the nominal alpha.
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Actual alpha levels. It was expected that, given independence of

student data and no treatment effects, the empirical and nominal alpha
levels for all the conditional F tests would be equal. Generally the
simulated data verified this expectation. Excluding all situations
where ¢ equalled 2 and s eqﬁalled 12, 962 of the remaining 100 observed

alpha levels (Tables 12 through 15), given E(MSC.T)/E(MS ) =1, were

S:CT
within 1.96 standard errors of the nominal alpha levels. However, given
all situations where c equalled 2 and s equalled 12 (Table 11), only 9
of the 25 observed alpha values (36%) were within 1.96 standard errors
of the nominal alpha levels. The remaining 16 observed alpha levels
were too liberal. That is, their probabilities of a Type I error were
consistently too large. These 16 liberal observed alpha levels were
concentrated at the lower conditional test nominal alpha levels (i.e.,
.01, .025, and .05). Given independence, the actual alpha levels of

the conditional F tests, averaged across the five preliminary test

alpha levels and the four designs ¢ = 5 and s = 5, ¢ = 5 and s = 12,
c=5and s = 20, and ¢ = 10 and s = 12, increased from .012 to .026

to .055 as the nominal alpha levels increased from .01l to .025 to .05.
At those same three conditional test nominal alpha levels, however, the
actual alpha levels of the conditional tests for ¢ = 2 and s = 12,
averaged across the five preliminary test alpha levels, increased from
.018 to .045 to .077. Because there seemed to be no reasonable expla-
nation for the liberalness that dominated when c equalled 2 and s
equalled 12, a second simulation run was done for that particular

design. The results of this run deviated even more from the expected,
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given Independence, as 22 of the 25 (887) actual alpha values were
too liberal.

Estimated powers. Given that E(MSC.T)/E(MS ) equalled one,

S:CT

the statistical powers of the conditional F tests were, almost without
exception, greater than the powers of their respective '"never pool,"

unconditional F = MST/MS tests (Tables 16 through 20). Across the

C:T
five designs and the five preliminary alpha levels, as the five nominal
alpha levels increased from .01 to .25, the average difference between
the conditional test powers and the '"never pool" test powers decreased
from .102 to .091 to .076 to .057 to .021. Comparing the estimated
power values of the conditional F tests (Appendix C) with comparable

power values of the unconditional F = MST/MS tests (Table 7) shows

C:T
that this decrease in discrepancy is probably due to the fact that the
average powers of the "never pool" tests are rather high given an alpha
level of .25 and thus it is harder for the "sometimes pool'" tests to
improve on that already "high" power. This is especially so given the
two designs ¢ = 5 and s = 20 and ¢ = 10 and s = 12. While this negative
relationship held up across the five designs or combinations of s and c,
it did not hold up within each combination of s and c¢. Consider the
design ¢ = 2 and s = 12 (Table 16). Averaged across the five prelim-
inary test alpha levels, the observed power differences for this one
design equalled .085, .115, .142, .146, and .060 as their respective

nominal alphas increased from .01 to .25.
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Table 16

Power of the Conditional F Test Minus Power of the Test F=MS_/MS

Given a Two-Tailed Preliminary Test, ¢=2 and s=12 T C:T
Conditional test
nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2a
.02 -.018 -.034 -.097 -.137 -.099 -.077
.05 .014 .006 -.057 -.108 -.087 -.046
.33 .10 .019 .034 -,012 -.065 -~.060 -.017
.20 .020 .055 .055 .006 -.027 .022
.50 .013 .039 .067 .075 .016 .042
Mean power dif.ar .010 .020 -.009 -.046 -.051
.02 .019 .019 .011 .001 -.046 .001
.05 .036 .045 .033 .019 -.036 .019
.50 .10 .046 .069 .060 .039 -.024 .038
.20 .046 .089 .094 .088 .006 .065
.50 .028 .064 .093 .114 .021 .082
- Mean power dif. .035 .057 .058 .052 -.016

-

« .02 .089 .115 .143 .155 .077 .116
v .05 .090 .116 .142 .152 .068 114
& 1 .10 .092 .122 .150 .156 .065 .117
g .20 .090 .127 .154 .156 .051 .116
T .50 062 .093 .120 .113 .038  .085
g;’ Mean power dif. .085 .115 .142 .146 .060
=1 .02 .152 191 .223 .218 .159 .189

.05 .145 .180 .210 .202 .139 .175
2 .10 .134 .166 .191 .175 .110 .155
.20 .114 .149 .167 .147 .082 .132
.50 .068 .088 .101 .070 .029 .071

Mean power dif. .123 .155 .178 .162 .104
.02 171 .221 .250 .218 .166 .205
.05 .154 .196 .219 .183 .136 .178
3 .10 .137 .175 .194 .157 .108 .154
.20 114 .144 .146 .105 .058 .113
.50 .059 .078 .073 .043 .028 .056

Mean power dif. .127 .163 .176 141 .099

8Mean power differences.



Power of the Conditional F Test Minus Power of the Test F =MS_/MS

87

Table 17

T C:T

Given a Two-Tailed Preliminary Test, ¢=5 and s=5

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2
.02 -.101 -.177 -.239 -,228 .099 -.169
.05 -.045 -.094 -.150 -.153 .068 -.102
.33 .10 -.016 -.044 -.083 -.092 .054 -.058
.20 -.0046 -.018 -.034 -.042 025 -.025
.50 .000 .004 .002 .001 .003 .001
Mean power dif.2 -.033 -.066 -.101 -.103 -.050
.02 -.060 -.096 -.141 -.141 .092 -.106
.05 -.031 -.057 -.099 -~.104 .074 -.073
.50 .10 -.013 -.025 -.060 -.072 052 -.044
.20 .005 .008 -.012 -.026 .032 -.011
.50 .012 .022 .011 .008 .002 .010
Mean power dif. -.017 -.030 -.060 =-.067 .050
’ES .02 .029 .041 .051 .044 .022 .037
n .05 .030 .043 .052 .042 .024 .038
e 1 .10 .032 .043 .051 .040 .028 .039
pxt .20 .039 .041 .043 .035 .022 .036
= .50 .025 .025 .025 .024 .007 .021
&~
w§ Mean power dif. .031 .039 .044 .037 .021
=
e .02 .090 .101 .106 .108 .102 .101
.05 .076 .078 .074 .077 .075 .076
2 .10 .066 .071 .066 .062 .057 .064
.20 .053 .050 .043 .044 .039 .046
.50 .024 .022 .017 .020 .008 .018
Mean power dif. .062 .064 .061 .062 .056
.02 .083 .083 .101 .093 .082 .088
.05 .069 .063 .080 .072 .055 .068
3 .10 .050 . 046 .060 .052 .036 .049
.20 .033 .032 .038 .022 .025 .030
.50 .019 .011 .014 .003 .006 .011
Mean power dif. .051 .047 .059 .048 .041

3Mean power differences.
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Table 18

Power of the Conditional F Test Minus Power of the Test F==MST/M50-T
Given a Two-Tailed Preliminary Test, c¢=5 and s=12 :

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2
.02 -.218 -.240 ~-.150 -.079 -.026 -.143
005 -0135 —.158 —.099 -.052 -0015 ‘.092
.33 .10 -.050 -.086 -.061 -.033 -.,011 -.048
.20 -.003 -.026 -.023 -.011 -.005 -.014
.50 .018 .007 .000 -.002 .000 .005
Mean power dif.2 -.078 -.101 -.067 -.035 -.011
.02 -.08 -.127 -.120 -.073 -.028 -.087
‘05 -0051 —0090 -o083 -o056 -.021 _0060
.50 .10 -.002 -.046 -.049 -.039 -.015 -.030
.20 .033 -.003 -.010 -.020 -.006 -.001
.50 .045 .041 .018 .003 .002 .022
Mean power dif. -.012 -.045 -.049 -.037 -.014
§ .02 .148 .141 .105 .062 .026 .096
2] .05 .140 .130 .096 .058 .025 .090
g 1 .10 .141 .130 .092 .054 .018 .087
Id .20 .135 .119 .082 .044 .016 .079
~ .50 .090 .073 .052 .032 .006 .051
26 Mean power dif. .131 .119 .085 .050 .018
m .02 .192 .180 .161 .130 .078 .148
.05 .153 .142 .122 .100 .050 .113
2 .10 .119 .105 .090 .081 .031 .085
.20 .081 .067 .045 .045 .016 .051
.50 .034 .030 .016 .018 .004 .020
Mean power dif. .116 .105 .087 .075 .036
.02 .114 .107 .100 .081 .061 .093
.05 .075 .074 .071 .056 .040 .063
3 .10 .056 .057 .054 .037 .027 .046
.20 .030 .032 .031 .016 .013 .024
.50 .014 .010 .010 .006 .004 .009
Mean power dif. .058 .056 .053 .039 .029

8Mean power differences.
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Table 19

Power of the Conditional F Test Minus Power of the Test F"MST/Msc-T
Given a Two-Tailed Preliminary Test, c¢c=5 and s =20 '

Conditional test

EMSg,p) /EMSg, op)

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.
'02 -0143 ‘-072 -.043 —0016 -0001 "'0055
005 -0090 -0049 -0029 -0012 -0001 -0036
.33 .10 -.041 -.027 -.015 -.005 .000 -.018
.20 -.006 -.009 -.008 -.001 .001 -.004
.50 .020 .004 .002 .000 .001 .005

Mean power dif.2 -.052 -.031 -~-.019 -.007 .000
.02 -.050 -0034 “0035 -0028 _.006 -0031
.05 -.027 -.016 -.023 -.023 -.006 -.019
.50 .10 .003 .002 -.011 -.014 -.005 -.005
.20 .039 .025 .001 -.007 -.004 .011
.50 .059 .037 .013 .000 .000 .022

Mean power dif. .005 .003 -.011 -.014 -.004
.02 .218 .173 .106 .056 .007 .112
.05 .207 .161 .095 .053 .007 .105
1 .10 .195 .152 .087 .049 .005 .098
.20 .178 134 .083 .040 .001 .087
.50 .113 .080 .041 .015 -.001 .050

Mean power dif. .182 .140 .082 .043 .004
.02 .259 .235 .173 .116 .047 .166
.05 .209 .187 .132 .087 .033 .130
2 .10 .168 .141 .088 .058 .020 .095
.20 .115 .095 .059 .035 .011 .063
.50 .043 .037 .018 .006 .004 .022

Mean power dif. .159 .139 .09 .060 .023
.02 .158 .137 .123 .073 .039 .106
.05 .101 .086 .080 .043 .026 .067
3 .10 .073 .061 .058 .026 .015 .047
.20 .049 .031 .031 .012 .008 .026
.50 .014 .008 .011 .002 .003 .008

Mean power dif. .079 .065 .061 .031 .018

3Mean power differences.
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Table 20

T

C:T

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2@
.02 .033 .015 -.007 -.001 .000 -.011
.05 .014 .005 -.003 -.001 .000 -.005
.33 .10 -.004 .003 -.002 -.001 .000 -.002
.20 .001 .000 .000 .000 .000 .000
.50 .001 .000 .000 .000 .000 .000
Mean power dif. -.004 .005 -.002 -.001 .000
.02 -.070 .043 -.021 -.011 .002 -.029
.05 -.047 .025 -.013 -.008 .000 -.019
.50 .10 -.025 .015 -.007 -.006 .000 -.011
.20 -.009 .003 -.002 -.004 .000 -.004
.50 .005 .000 .000 .000 .000 .001
Mean power dif. .029 .017 -.017 -.006 .000
3} .02 .100 .054 .031 .015 .003 .04l
n .05 .095 .051 .028 .013 .003 .038
g% 1 .10 .092 .048 .028 .011 .002 .036
S| .20 .079 .038 .023 .011 .001 .030
:i* .50 .047 .021 .010 .006 .001 .017
,O | Mean power dif. .083  .042 .024 .011 .002
§ .02 .165 .131 .090 .047 .019 .090
.05 .109 .081 .053 .026 .013 .056
2 .10 .070 .046 .033 .017 .008 .035
.20 .044 .021 .015 .009 .002 .018
.50 .013 .004 .004 .001 .000 .004
Mean power dif. .080 .057 .039 .020 .008
.02 .040 .035 .020 .020 .006 .024
.05 .022 .019 .010 .012 .003 .013
3 .10 .006 .007 .005 .008 .002 .006
.20 .003 .004 .003 .004 .001 .003
.50 .001 .000 .000 .001 .000 .000
Mean power dif. .014 .013 .008 .009 .002

3Mean power differences.
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As the number of observations per class increased (compare across
Tables 17, 18, and 19), the discrepancy between the power of the condi-
tional test and the power of the unconditional F = MST/MSC:T test was
expected to increase. The rationale for this expectation follows.

Given independence of student responses, E(MSC.T)/E(MS = 1, pooling

S:CT)
should be prescribed all the time. If there were only one student per
class, the power of the conditional test and the power of F = MST/MSC:T
should be identical. As the number of students increases, however, the
power of the conditional test and the power of the test F = MST/MSC:T
should become more discrepant, with the power of the conditional test
being greater as it would have more degrees of freedom error. Basically
the simulated data upheld this prediction, especially given the more
stringent nominal conditional test alpha levels (.0l and .025). Given

a conditional test nominal alpha of .0l and averaging across the five
preliminary test alpha levels gave average differences between the

power of the conditional F test and the respective power of the test

F = MST/MSC:T of .031 for c = 5 and 8 = 5, .131 for ¢ = 5 and s = 12,
and .182 for ¢ = 5 and s = 20. As the number of students per class
increased, the empirical powers of the unconditional test F = Hsrlusc:T
became rather high (Table 7) given the larger nominal alpha values.

Thus it became more difficult to detect this expected difference in
powers between the conditional test procedure and the unconditional

test F = MST/Msc-T as s increased at the higher nominal conditional

test alpha levels.
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On the other hand, with the exception of the design ¢ = 2 and
s = 12 at the smallest alpha levels, as the number of classes increased
(compare across Tables 16, 18, and 20), the discrepancies between the
powers of the conditional F test and the unconditional test I~‘-==MS,1,/MS(::T
tended to decrease. For example, for the conditional test alpha of .25,
averaging the discrepancies across the five preliminary test alpha
levels gave power differences of .060 for the design ¢ = 2 and 8 = 12,
.018 for the design ¢ = 5 and s = 12, and .002 for the design ¢ = 10
and s = 12. This trend was expected as '"sometimes pooling" should be
more advantageous for increasing power than ''never pooling" when only
a few classrooms per treatment have been sampled. The increased degrees
of freedom brought on by pooling has a larger effect when the "never
pool" test has relatively few degrees of freedom error than when it has
many degrees of freedom error. The powers of the conditional test for
the design ¢ = 2 and 8 = 12 turned out very curiously as it was the one
design where the discrepancies between the conditional test power and
the F = MST/MSC:T test power did not fit the predicted trend as c was
varied for nominal conditional test alphas of .01 and .025. At those
two alpha levels, the estimated powers of the conditional tests were
spuriously high because the actual alpha levels were too liberal. Thus,
one would have expected the average discrepancies between powers of the
conditional test and powers of the test F = MST/MSC:T to also be
spuriously large. However, the opposite occurred.

Although the trend was not perfect across the five conditional

test nominal alpha levels and across the five combinations of s and c,
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the simulated data generally showed the discrepancies between the power
of the "sometimes pool," conditional test and the power of the '"never
pool" test to decrease with an increase in the nominal alpha level of
the preliminary test. This too was predictable as the distributions of
the "sometimes pool" test and the "never pool" test become more similar
as the nominal preliminary test alpha level increases. As the alpha
level of the preliminary test increases to .50, the power of the pre-
liminary test, F = MSC:T/HSS:CT’

of freedom and mean squares between and within classrooms are prescribed

increases and thus pooling of degrees

less often, which makes the conditional F test more of a '"mever pool"
test. A good example of this indirect relationship between the power
difference between the conditional and unconditional test and alpha
level of the preliminary test is evident when the nominal alpha level
of the conditional test equals .25 and the design is ¢ = 2 and s = 12
(Table 16). Given these three prespecified parameters, the discrep-
ancies between the power of the conditional test and the F = MST/MSC:T
test equal .077, .068, .065, .051, and .038 for preliminary test alpha
levels of .02, .05, .10, .20, and .50.

Given independence of individual responses within and between
groups, one might also wonder how the power of the conditional,
"sometimes pool" test compared to the power of the "always pool"

F = MST/MS test. These two powers can be compared by looking at the

S:T

E(MSC.T)/E(MS ) = 1 sections in Appendix C (Tables C-1 through C-5)

S:CT

and Table 9. One would expect the power of the "always pool" test to

always exceed the power of the "sometimes pool" test. While that was
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usually the case, it was not always the case, For example, given the
design ¢ = 2 and s = 12 (Table C-1), 17 of the 25 (68%) conditional

test powers exceeded the "always pool" F = MST/MS test powers. A

S:T
little over two-thirds of these "exceptions," given this design,
coincided with alpha levels which were too liberal, which would explain
this result. However, as one example of a curious and unexplained
result, given a preliminary alpha of .02, a conditional alpha of .01,

c =2 and s = 12, the power of the conditional test equalled .125
(Table C-1), while the power of the "always pool" test only equalled
.114 (Table 9) even though the actual alpha level of this conditional
test was within 1.96 standard errors of the nominal value. The other
design that had several of these surprising and unexplanable findings
was ¢ = 5 and s = 5 (Table C-2)., Here 14 of the 25 (56%Z) conditional

test powers exceeded the F = MST/MS test powers. And for this

S:T
particular design, in all cases but one, these "exceptions" occurred

even though the conditional test alphas were not too liberal.

Positive Dependence

Positive dependence is that condition where the variance of the
aggregate units exceeds that predicted given random assignment of
individual units to groups, the variance of the disaggregate units
and the grouping size. Given positive dependence, the two-tailed
preliminary test should reject its null hypothesis, Ho: E(MSC:T)
equals E(MSS:CT)’ designating the aggregate unit (classrooms) as

the appropriate unit of analysis in testing for treatment effects.
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Actual alpha levels. Because positive dependence is defined by

the E(MSC.T) being greater than the E(MS it was expected that

S:CT)’
given no treatment effects the observed probabilities of Type I errors
for the conditional or "sometimes pool" F distribution would be too
large. While the simulations generally showed this (see bottom sec-
tions of Tables 11 through 15), they also empirically showed that all
four factors--the value of s, the value of ¢, the nominal alpha level
of the preliminary test, and the nominal alpha level of the conditional
test——and their interactions affected whether or not there was any
liberalness in the conditional distribution and, if so, the degree
of that liberalness.

While one generally expected the observed alphas to be too
liberal, given positive dependence, that liberalness decreased as
the nominal alpha level of the preliminary F test increased from .02
to .50 and the nominal alpha level of the conditional F test increased
from .01 to .25. This was so for both defined degrees of positive
) equal

dependence, E(MSC‘T)/E(MS ) equal to 2 and E(MSC.T)/E(MS

S:CT S:CT

to 3. For example, Table 12 shows that, given E(MSC.T)/E(MS ) equal

S:CT
to 3, c =5 and 8 = 5, if the preliminary test alpha level equals .20,
four of the five conditional test actual alphas were too liberal; if,
however, the alpha of the preliminary test is increased to .50, only
three of the five conditional test alphas were too liberal. Given
the same set of conditions, but letting the conditional test nominal

alpha remain constant at .10, four of the five actual alphas were too

liberal; when, on the other hand, the nominal alpha level of the
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conditional test was increased to .25, only three of the five actual
conditional test alpha levels were too liberal. That an increase in
the nominal level of the preliminary test should cause a decrease in
the liberalness of the conditional F test was expected, as when the
alpha level of the preliminary test is increased, the primary test
of treatment effects becomes less of a conditional test. That the
liberalness, given positive dependence, tended to disappear as the
nominal alpha level of the conditional F test increased suggests
that the tail of the conditional F distribution, given no treatment
effects, was too thick in comparison to the tail of the distribution

of F = MST/MS at the extreme alpha levels, such as .0l1. The con~-

C:T
ditional distribution had a much closér fit to the central F distri-
bution for (t-1) and (c-1)t degrees of freedom at the large alpha
levels, such as .25.

Generally there was a trend for the fit of the observed alpha
levels of the conditional F tests to improve as the number of classes
increased. This improvement was more evident given the greater degree

of positive dependence, E(MSC.T)/E(MS ) = 3, than given the lesser

S:CT
degree of positive dependence, E(MSC'T)/E(MSS'CT) = 2, For example,
given that E(MSC'T)/E(MSS°CT) equals 3 for ¢ = 2 and 8 = 12, 100% of
the actual alphas of the conditional test were too liberal; for ¢ = 5

and 8 = 12, 607 were too liberal; and for ¢ = 10 and 8 = 12, only 8%

were too liberal. Given that E(MSC.T)/E(MS ) equals 2, for ¢ = 2

S:CT
and 8 = 12, 100Z of the actual alphas were too liberal; for ¢ = 5 and

s = 12, 68%Z were too liberal; and for ¢ = 10 and s = 12, 36% were too
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liberal. This trend, of the actual alpha levels of the conditional F
tests becoming less liberal as ¢ increased, was predictable as when

)

the number of classes increased the discrepancy between the E(MSC:T
and the E(MSS:T) decreased (Table 10). As c increases, pooling should
be prescribed less often as the preliminary test becomes more powerful.
And when pooling is prescribed, the pooled mean square error is weighted

in favor of the proper error term, E(MS Both factors are contrib-

C:T)'
uting toward a decrease in the bias of the conditional test error term
and thus less disagreement between the actual and nominal alpha values
of the conditional F test.

How increasing the number of students per classroom affected the
actual alpha levels of the conditional F test was less clear. As s
increases, pooling of error terms should be prescribed less often,
causing the conditional distribution to become more similar to the
distribution of the F statistic using classrooms as the unit of
analysis. But when pooling is prescribed, the pooled error term
is weighted toward the improper, too small error term, E(MSS:CT)’
causing the conditional F test to be too liberal. The effect of
these two competing factors on the actual alpha level of the conditional
test clearly depends on the combined value of s and the ratio of the

E(MSC'T) to the E(MS A comparison across Tables 12, 13, and 14

S:CT)'

shows that as s was increased in the simulations from 5 to 12 to 20,
no simple trend on the actual alpha level of the conditional F tests
showed up. For ¢ = 5 and 8 = 5, 92X and 88X of the actual alpha levels

were too liberal given E(MSC°T)/E(HSS'CT) equal to 2 and 3, respectively;



98

for ¢ = 5 and s = 12, 68%Z and 60X of the actual alphas were too liberal
given E(MSC'T)/E(MSS°CT) equal to 2 and 3, respectively; and for c¢c = 5
and s = 20, 847 and 68 of the actual alpha values were too large given
E(MSC:T)/MSS:CT) equal to 2 and 3, respectively.

When comparing the empirical alpha levels for both degrees of posi-

tive dependence, E(MSC.T)/E(MS ) equal to 2 and E(MSC.T)/E(MS

S:CT S:CT)
equal to 3, the conditional or "sometimes pool" F tests generally
appeared more liberal given the lesser degree of positive dependence,

E(MSC.T)/E(MS ) equal 2, than given the higher degree of positive

S:CT
dependence. For example, given ¢ = 5 and 8 = 20 (Table 14), 84% of the
conditional tests' actual alphas were too liberal when E(MSC'T)/E(MSS°CT)
equalled 2; while only 68Z of the actual alphas were too liberal

when E(MSC.T)/E(MS ) equalled 3. An exception to this trend

S:CT
appeared with the design ¢ = 2 and s = 12 (Table 11). Given ¢ = 2 and

s = 12, all (100%) of the actual alpha values were too liberal for both
degrees of positive dependence. And for this design, given a specific
preliminary test nominal alpha value and a specific conditional test
nominal alpha value, all 25 actual conditional test alpha values given
the condition E(MSC:T)/E(MSS:CT) equal to 3 were more liberal than their

matched values given the condition E(MSC.T)/E(MS ) equal to 2. For

S:CT
example, given this one design, if E(MSC'T)/E(MSS'CT) equals 2, the
nominal preliminary test alpha level equals .10 and the nominal con-
ditional test alpha level equals .05, then the actual conditional test

alpha value equals .134; while for those same conditions, except letting

E(MSC'T)/E(MSS'CT) equal 3, the nominal conditional test alpha level
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equals .161. This is exactly opposite to what one would expect and
‘to what actually occurred in the other four designs. When it is

true that the E(MSC.T)/E(MS ) equals 3, the researcher rejects

S:CT

the null hypothesis of independence more often than when it is true

that the E(MSC.T)/E(MS ) equals 2, This dictates using MS..p

S:CT
more often as the error term for the test of treatment effects.

This, in turn, suggests that the conditional F distribution, given
E(MSC:T)/E(MSS:CT) equal 3, is closer to the F distribution of the
unconditional F = MST/MSC:T test than is the conditional F distri-

bution, given E(MSC.T)/E(MS ) equals 2, Thus the observed alpha

S:CT
values of the conditional test, given the greater degree of positive
dependence, should be less liberal than the observed alpha values of

the conditional test, given the lesser degree of positive dependence.

Estimated powers. Without exception, the statistical powers of

the conditional F test of treatment effects were more powerful than
the powers of the unconditional test F = MST/MSC:T (see bottom sections
of Tables 16 through 20 and Appendix C). This was expected because of
the general liberalness of the conditional F test, given positive
dependence. In this study, the liberalness of a test statistic and
its power are completely confounded. Because of this confounding,
statistical powers, given positive student dependence, were not
examined to any great extent since a liberal alpha is generally
considered a "no-no." One can, however, compare powers of the
conditional F tests to powers of the F = MST/MSC:T tests for

simulated designs which did not have alpha levels that were too

large. For example, given E(MSC,T)/E(MS ) equal to 3, ¢ = 10

S:CT
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and s = 12, only 8% of the actual alpha levels of the conditional F
tests were too liberal (Table 15). The power differences between the
"sometimes pool" test and the "never pool" test for this one design

are very small, but positive (Tables 20 and C-5).

Negative Dependence

Negative dependence is that condition where the variance of the
aggregate units is smaller than that predicted given random assignment
of individual units to groups, the variance of the individual units and
the grouping size. As with positive dependence situations, the two-
tailed preliminary test should reject its null hypothesis, Ho: E(MSC:T)
equals E(MS

), given E(MSC.T)/E(MS ) is less than one, designating

S:CT S:CT

the aggregate unit (classrooms) as the appropriate unit of analysis in
testing for treatment differences.

Actual alpha levels. Given negative dependence, where the

E(MS ) is less than the E(MS ), and a two-tailed preliminary

C:T S:CT
test, one would expect the observed probabilities of Type I errors

for the conditional F tests of treatment effects to be too small.
However, for the two specific degrees of negative dependence in this
simulation study, many (66.4% in total) observed alpha levels of the
conditional or "sometimes pool" F tests were within 1.96 standard
errors of the theoretical or nominal alpha values (see top sections

of Tables 11 through 15).

The conservativeness that did appear in the data decreased as the

nominal alpha level of the preliminary tests increased from .02 to .50

and the nominal alpha level of the conditional F tests decreased from
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.25 to .01. This held true for both simulated degrees of dependence,

EMS,.,)/E(MSg,.p) equal to .50 and E(MS;..)/E(MSg,..) equal to .33.

S:CT

Table 11 shows that, given E(MSC.T)/E(MS ) equal .33, ¢ = 2 and

S:CT
s = 12, if the preliminary test alpha level equals .02, one out of

five conditional test actual alphas fell within a 95% confidence
interval of the appropriate nominal value; if, however, the preliminary
test alpha level equals .05, two of the five conditional test actual
alphas were within the 95Z confidence interval. Given the same set

of conditions, if the conditional test nominal alpha equals .025,

four of the five actual alphas fell within the 95% confidence interval
of their respective nominal values; if, on the other hand, the condi-
tional test nominal alpha equals .Ol,kall five actual alphas were
within the 952 confidence interval. That the conservativeness of the
conditional F tests decreased as the nominal alpha level of the pre-
liminary test increased directly compares to the similar results found
given positive dependence and liberalness of the conditional F test
alpha level. That the conservativeness, given negative dependence,
tended to dissipate as the nominal alpha level of the conditional F
test decreased suggests that the conditional F distribution, given no
treatment effects, was too thin in comparison to the distribution of

the F-=MST/MS test at the larger alpha levels, such as .25. On the

C:T
other hand, the conditional F distribution had a much closer fit to
the central F distribution for (t-1) and c-1)t degrees of freedom

given the extreme alpha levels, such as .0l.
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It was expected that the fit of the observed alpha level of the
conditional F test would improve as the number of classes increased
from ¢ equal 2 to c equal 5 and 10. As in the case of positive
dependence, this improvement was expected because when the number
of classes increases the discrepancy between the E(MSC:T) and the
E(MSS:T) decreases (Table 10). Once more it was expected that more
improvement would take place given the greater degree of negative

dependence, E(MSC,T)/E(MS .33, than given the lesser degree

s:cT) ™

of negative dependence, E(MSC.T)/E(MS ) = .50, The simuiated

S:CT
data situations did not empirically verify very well these expected
improvements in the fit of the conditional test actual alpha levels

as c was increased. For example, given that E(MSC:T)/E(MSS:CT) equals
.33, for ¢ = 2 and 8 = 12, 407 of the actual alpha values of the con-
ditional test were too conservative; for ¢ = 5 and 8 = 12, 44 were too
conservative; and for ¢ = 10 and 8 = 12, 12X were too conservative.

Given that E(MSC_T)/E(MS ) equalled .50, for ¢ = 2 and 8 = 12, 40%

S:CT
of the observed alpha values were too conservative; for ¢ = 5 and 8 = 12,
522 were too conservative; and for ¢ = 10 and 8 = 12, 402 were too con-
servative. That the expected trend achieved by increasing c did not
appear in the simulated data was probably due somewhat to the fact that
many of the actual alpha levels of the conditional F test were not
statistically different from their theoretical values.

As in the case with positive dependency, comparisons within the

two negative dependency conditions but across Tables 12, 13, and 14

showed no simple trend on how increasing the number of students per
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class affected the actual alpha values of the conditional F test.

For example, given E(HSC:T)/E(MSS:CT) equal to .33 and ¢ = 5, as s

was increased from 5 to 12 to 20, the percentage of actual alpha levels
of the conditional test that were too conservative equalled 20%, 442,

and 24%, respectively. Given E(MSC.T)/E(MS ) equal to .50 and ¢ = 5,

S:CT
again as s was increased from 5 to 12 to 20, the percentage of conserva-
tive actual alpha levels of the conditional F tests equalled 24%, 52%,
and 40%, respectively.

When comparing the observed alpha levels for both defined degrees
of negative dependency, the conditional or "sometimes pool" F test
generally appeared more conservative given the lesser degree of negative

dependence, E(MSC.T)/E(MS .50, than given the larger degree of

s:cr) =
negative dependence, E(MSC~T)/E(Mss-CT) = .33, For example, given

c = 10 and s = 12 (Table 15), 40Z of the conditional test alpha levels
were too conservative when E(MSC'T)/E(MSS'CT) equalled .50; while only

12% of the actual alphas were too conservative when E(MSC°T)/E(MSS°CT)

equalled .33. One design deviated from this predicted finding. Given

c = 2 and s = 12, 40% of the actual alpha values were too conservative
for both degrees of negative dependence. And for this one design, given
a specific preliminary test nominal alpha value and a large conditional
test nominal alpha value, a majority of the actual conditional test

alpha values, given E(MSC_T)/E(MS ) equal to .33, were more con-

S:CT
servative than their respective alpha values given E(MSC'T)/E(MSS'CT)

equal to .50. This one design also deviated from the general trend

in the simulations done given positive dependence.
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Estimated powers. It was hoped that, since the fit of the

empirical alpha levels of the conditional test were fairly good and
in the conservative direction which is more acceptable than a test
being too liberal, use of the conditional test would increase power,

relative to the unconditional test F = MST/MS For all five designs

C:T’
(see top sections of Tables 16 through 20 and Appendix C), only when
the nominal alpha level of the preliminary test was very large (pref-
erably .50) and the nominal alpha level of the conditional test was
small (.01 or .025) did the powers of the conditional or "sometimes
pool" test tend to be greater than the powers of the '"never pool"

F = MST/MSC:T test. Given these two conditions, however, the dif-
ferences between the estimated powers of the two F tests tended to

be on the small side. For example, given E(MSC.T)/E(MS ) equal to

S:CT
.33, a preliminary test alpha value equal to .50, a conditional test
alpha value equal to .01, c = 5 and 8 = 12, the estimated power of

the conditional test was .679 (Table C-3); while the estimated power

of the unconditional F = MST/MSC:T test was .661 (Table 18), a .018
difference in favor of the conditional test. C = 2 and 8 = 12 was the
one design where the power of the conditional test was in a majority

of cases, at each of the two defined negative dependence degrees, larger
than the power of the F = MST/MSC:T test (Table 16). Given c = 2 and

s = 12, across all alphas, 522 and 882 of the conditional test powers
were greater than the unconditional test powers, given E(MSC:T)/E(MSS:CT)
equal to .33 and .50, respectively. This same design had a majority

of its actual alpha levels of the conditional test to within 1.96



"t
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standard errors of the nominal alpha at the same large preliminary
test nominal alphas and small conditional test nominal alpha levels
(Table 11).

Comparing the powers of the conditional and unconditional F tests,
given negative dependence levels prescribed in this simulation study,
one would have to conclude that generally using a two-tailed preliminary
test to choose a '"correct" unit of analysis lowers the powers of the F
test rather than raises them, as is the desired case. For example,
given E(MSC:T)/E(MSS:CT) equal to .50, ¢ = 5 and 8 = 5 (Table 17), 76%
of the "never pool" test powers exceeded the "sometimes pool" test
powers. And given E(MSC:T),E(MSS:CT) equal to .33, ¢ = 10 and s = 12
(Table 20), 52% of the "never pool" test powers were larger than the
"sometimes pool" test powers; and 442 of the time, the two estimated

powers were equal.

The Upper-Tailed Preliminary Test

Paull (1950), Peckham et al. (1969a, 1969b) and Poynor (1974)
considered only two possible situations. One, student responses within
classrooms could be independent of each other, defined by the E(MSC:T)
equalling the E(MSS:CT); or two, student responses within classrooms
could be positively dependent upon each other, defined by the E(MSC:T)
being greater than the E(MSS:CT)' And because they considered only
the one alternative to independence, they suggested that the choice

of unit of analysis could be determined by using an upper-tailed only

preliminary F test, rather than the two-tailed preliminary test
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discussed in the previous section. This upper-tailed preliminary
F test tests the null hypothesis that the E(MSC°T) is less than or

equal to the E(MS ) or equivalently that pIl is less than or equal

S:CT
to zero. Using this upper-tailed only preliminary F test suggests that
the negative dependency situation, where the E(MSC'T) is less than the

E(MS s could never occur or that this situation is no more inter-

S:CT)
esting than a zero difference between the between class and within
class expected mean squares. The latter is clearly not the case as
was shown in Chapter VI, the chapter which discussed the empirical
results of correlated units.

In this section the effects of using an upper-tailed preliminary
test to choose an analytic unit for the conditional test are studied
for five different preliminary test alpha levels (i.e., .01, .025, .05,
.10, and .25). Actual conditional test alpha levels, given the upper-
tailed preliminary F test, are shown in Tables 21 through 25. Corre-
sponding differences between estimated powers of the conditional F test
and the unconditional, always correct F = MST/MSC=T test are shown in
Tables 26 through 30. Appendix D (Tables D-1 through D-5) contains the
empirical powers of the conditional test, given the upper-tailed pre-
liminary test. Each separate table describes the effect on the condi-
tional F tests' actual alpha or power of varying the type and degree of
dependence, the alpha level of the upper-tailed preliminary test and the

alpha level of the conditional test for one specific combination of s

and c.
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Table 21

Actual Alphas of the Conditional F Test Given an Upper-Tailed
Preliminary Test, c=2 and s=12

Conditional test
nominal alpha
Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha

CT)

EMS;, ) /E(MSg

.01 .000 .001 .001 .008 .059 .014
.025 .000 .001 .001 .008 .059 .014
.33 .05 .000 .001 .001 .008 .059 .014
.10 .000 .001 .001 .008 .058 .014
.25 .000 .001 .001 .008 .057 .013

Mean alpha .000 .001 .001 .008 .058
.01 .001 .002 .009 .029 .100 .028
.025 .001 .002 .009 .029 .100 .028
.50 .05 .001 .002 .009 .029 .099 .028
.10 .001 .002 .009 .029 .098 .028
.25 .000 .001 .007 .026 .090 .025

Mean alpha .001 .002 .009 .028 .097
.01 .0117 .0327 .058% .0907 .2402 086
.025 .0118 .032a .057a .089a .235a .085
1 .05 .009a .030a .055a .085a .227 .081
.10 .009a .029a .054a .082 .217 .078
.25 .008™ .026 .049 .073  .190 .069

Mean alpha .010 .030 .055 .084 222
.01 .061 .084 .132 .205 .351 .167
.025 .060 .082 .126 .190 .328 .157
2 .05 .059 .079 .121 .181 .310 .150
.10 .049 .067 .104 .158a .2828 .132
.25 .035 .049 074  .117 .237 .102

Mean alpha .053 .072 111 .170  .302
.01 .090 .141 .185 .258  .379 .211
.025 .081 .128 .169 .235 .348 .192
3 .05 074 .117 .151 .208 .317 .173
.10 .062 .099 .128 .184 .289a .152
.25 044 .062 .085 124 247 .112

Mean alpha .070 .109 .144 .202 .316

3Actual alpha is within 1.96 standard errors of the nominal alpha.
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Table 22

Actual Alphas of the Conditional F Test Given an Upper-Tailed
Preliminary Test, c¢=5 and 8=5

Conditional test
nominal alpha
Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha

.10 .000 .000 .004 .011 .058 .015
.025 .000 .000 .004 .011 .058 .015
.33 .05 .000 .000 .004 .011 .0S8 .015
.10 .000 .000 .004 .011 .058 .015
.25 .000 .000 .004 .011 .058 .015
Mean alpha .000 .000 .004 .011 .058
.01 .000 .007 .012 .023 .114 .031
.025 .000 .007 .012 .023 .1l14 .031
.50 .05 .000 .007 .012 .023 .1l14 .031
.10 .000 .007 .012 .023 .113 .031
.25 .000 .007 .011 .022 .113 .031
’33 Mean alpha .000 .007 .012 .023 .1l14
n .01 0112 .021% .047% .095% .230° .081
g a a a a a
E .025 L0117 .0217 .047; .095. .227 .080
213 .05 .0117 .0217 0467 .0932 .222 .079
ey .10 .0117 .020% .044> .0917 .217 .077
O .25 .007% ,015 .039 .083% .203 .069
§ Mean alpha .010 .020 .045 .091 .220
.01 .039 .072 .111 .170 .308 .140
.025 .035 .065 .101 .153 .289 .129
2 .05 .031  .058 .091 .141 .277_ .120
.10 .024  .051 .085 .128_ .262_ .110
.25 .017 .035 .066 .112% .244 .095
Mean alpha .029 .056 .091 .141 .276
.01 .056 .082 .119 .170 .319 .149
.025 .047 .072 .108 .158 .299 .137
3 .05 .038  .058 .094 .146 .285, 124
.10 .030  .044_ 077 .125_ .2743 .110
.25 .018 .030% .067 .113% .252 .096
Mean alpha .038 .057 .093 .142 .286

2ctual alpha

is within 1.96 standard errors of

the nominal alpha.



109

Table 23

Actual Alphas of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c=5 and s=12

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050

Mean
.100 .250 alpha

.01 .000 .000 .001 .005 .049 .011
.025 .000 .000 .001 .005 .049 .011
.33 .05 .000 .000 .001 .005 .049 .011
.10 .000 .000 .001 .005 .049 .011
.25 .000 .000 .001 .005 .049 .011
Mean alpha .000 .000 .001 .005 .049
.01 .000 .003 .007 .018 .108 .027
.025 .000 .003 .007 .018 .108 .027
.50 .05 .000 .003 .007 .018 .108 .027
.10 .000 .003 .007 .018 .107 .027
.25 .000 .003 .007 .018 .105 .027
Mean alpha .000 .003 .007 .018 .107
3] .01 .008: .ozoz .oas: .093: .234: .080
o .025 .0085 .020% .045% .0937 .228 .079
211 .05 .008% .020% .045% .093% .222 .078
= 10 0082 .019% .044% .090% .215 075
:i4 .25 .007% .015 .038% .081 .196 .067
g§5 Mean alpha .008 .019 .043 .090 .219
b1 .01 .040 .081 .111 .167 .323 .144
.025 .033  .067 .095 .148 .298 .128
2 .05 .028 .058 .084 .132 .2742  .115
.10 .024_ .050 .071  .1127 .253%  .102
.25 0142 0292 .049% .095% .234 .084
Mean alpha .028 .057 .082 .131 .276
.01 .055 .076 .108 .157 .298 .139
.025 .042  .056 .085 .132 .280_  .119
3 .05 .032 .04 .072_ .120  .265)  .107
.10 .023_ .030% .0582 .109% .2442  .093
.25 .0122 .023% .051% .099% .231 .083
Mean alpha .033 .046 .075 .123 .264

8Actual alpha

is within 1.96 standard errors of

the nominal alpha.
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Table 24

Actual Alphas of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c¢=5 and 8= 20

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250 alpha
.01 .000 .000 .001 .006 .050 .011
.025 .000 .000 .001 .006 .050 .011
.33 .05 .000 .000 .001 .006 .050 .011
.10 .000 .000 .001 .006 .050 .011
.25 .000 .000 .001 .006 .050 .011
Mean alpha .000 .000 .001 .006 .050
.01 .000 .002 .008 .021 .122 .031
.025 .000 .002 .008 .021 .122 .031
.50 .05 .000 .002 .008 .021 .122 .031
.10 .000 .002 .007 .020 .121 .030
.25 .000 .002 .007 .020 .120 .030
~, Mean alpha .000 .002 .008 .021 .121
o .01 .0137 .0237 .0487 .1085 .2575  .090
%) .025 .012° 0227 .047 .107% .2555  .089
S 1 .05 0112 0212 .046% .1052 .252 .087
a a a a a
= .10 .011% 0217 .043% 0997 .2437  .083
& .25 .010° .018% .036 .088% .227 .076
O
£ | Mean alpha .011  .021 .044 .101  .247
[<3]
.01 .051 .091 .119 .192 .328 .156
.025 .047 .084 .110 .174 .305 144
2 .05 .039  .073 .100 .155 .289 .13l
.10 .03  .060 .082 .127_ .273)  .115
.25 .017 .036 .057% .109® .249 .094
Mean alpha .037 .069 .094 .151 .289
.01 .063 .088 .122 .170 .303 .149
.025 .049  .068 .097 .144  .286 .129
3 .05 .031  .051 .081 .136_ .266 .113
.10 .023_  .042_ .066_  .118% .256% .101
.25 .009% .029% .052% .103% .249%  .088
Mean alpha .035 .056 .084 .134 .272

8Actual alpha

is within 1.96 standard errors of

the nominal alpha.
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Table 25

Actual Alphas of the Conditional F Test Given an Upper-Tailed
Preliminary Test, ¢=10 and s=12

Preliminary test

Conditional test
nominal alpha

Mean

nominal alpha .010 .025 .050 .100 .250 alpha
.01 .000 .000 .000 .004 .053 .011
.025 .000 .000 .000 .004 .053 .011
.33 .05 .000 .000 .000 .004 .053 .011
.10 .000 .000 .000 .004 .053 .011
.25 .000 .000 .000 .004 .053 .011
Mean alpha .000 .000 .000 .004 .053
.01 .000 .000 .004 .021 .108 .027
.025 .000 .000 .004 .021 .108 .027
.50 .05 .000 .000 .004 .021 .108 .027
.10 .000 .000 .004 .021 .108 .027
.25 .000 .000 .004 .021 .108 .027
~,| Mean alpha .000 .000 .004 .021 .108

(&)

a .01 .007: .022: .052: .096: .234: .082
Qa .025 .007° .0227 .0527 .095) .2337  .082
5l 1 .05 .007% .021% .051% .0932 .2307  .080
= .10 .0067 .0187 .0487 .088] .225 .077

3 .25 .006% .016% .040% .082% .210 .071

(&)
£ | Mean alpha .007 .020 .049 .091 .226
m

.01 .032  .053 .087 .152 .277_  .120
.025 .024_ .043  .071  .132_ .2627  .106
2 .05 .0157 .0337 0637 .1173 .254%  .096
.10 .011% .0267 .054> .1037 .2407  .087
.25 .007% .020® .050% .095% .233 .081
Mean alpha .018 .035 .065 .120 .253
.01 .019 .031: .064 .116: .248: .096
.025 .0147 0267 .0567 .1027 .2437  .088
3 .05 .011% .021% .0537 .0995 .2412  .085
.10 .0073 .018% .050% .097 .2352  .081
.25 .0062 .017% .049% .094% .231 .079
Mean alpha .011 .023 .054 .102 .240

3pctual alpha

is within 1.96 standard errors of

the nominal alpha.
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Independence

Ideally, the upper-tailed preliminary test should designate the
disaggregate unit (student) as the appropriate unit of analysis to use
in testing the primary or conditional null hypothesis of no treatment
differences.

Actual alpha levels. Comparisons of actual alpha levels to their

respective nominal values were excellent as all four parameters, c, s,
the preliminary test alpha level and the conditional test alpha level,

were varied (Tables 21 through 25). Given E(MSC.T)/E(MS ) equal

S:CT
one and an upper-tailed preliminary F test, the observed alphas for

the conditional or "sometimes pool" F test of treatment effects were
89.6% of the time within 1.96 standard errors of the theoretical alpha
levels. All conditional test alphas (10.42) that were not in agreement
with their respective nominal values were too conservative. Unlike the
situation found given independence and the two-tailed preliminary test,
the design ¢ = 2 and 8 = 12 was no exception to the rule as, given c = 2

and s = 12, 88% of the actual alphas were within 1.96 standard errors of

the nominal alphas.

Estimated powers. Given E(MSC:T)/E(MSS:CT) equal one, the
estimated statistical powers of the conditional or "sometimes pool"
F tests were, in most cases (91.2% of the time), greater than the
estimated powers of the unconditional or '"never pool" tests of treatment
effect, F = MST/MSC:T (Tables 26 through 30). Paull (1950), in
studying the distributional properties of the conditional F test, given

independence and an upper-tailed preliminary F test, also found that
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the upper-tailed only preliminary test was effective in making the
power of the "sometimes pool" test greater than the power of the

"never pool" test. Given E(MSC.T)/E(MS ) equal one, all trends

S:CT
in power discrepancies between the conditional and unconditional F
tests due to varying the four parameters, c, s, the preliminary test
alpha level, and the conditional test alpha level, mirrored those found
given the two-tailed preliminary test of independence.

Across all five designs and all five preliminary test alpha
levels, as the five conditional test alpha levels increased from .01
to .25, the average difference between the "sometimes pool" and the
"never pool" test powers went from .089 to .076 to .059 to .042 to .012.
This indirect relationship did not, however, hold up within two of the
five combinations of ¢ and s (1.e., ¢ = 2 and s = 12; ¢ = 5 and 8 = 5).
For example, consider the design ¢ = 5 and 8 = 5 (Table 27). Averaged
across the five preliminary test alpha levels, the estimated power dif-
ferences equalled .017, .023, .026, .017, and .007 as their counterpart
nominal values increased from .01 to .25.

As the number of individual units per group increased from s
equals 5 to s equal 12 and 20 (compare Tables 27, 28, and 29), the
discrepancies between the powers of the "sometimes pool" test and
the powers of the '"never pool" test tended to increase. For example,
given independence, an upper-tailed preliminary test, a conditional
test nominal alpha of .0l and a ¢ equal to 5, averaging over the five
preliminary test alpha levels gave average power differences between the

"sometimes pool" and "never pool" tests of .017 for s=5, .119 for s=12
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Table 26

Power of the Conditional F Test Minus Power of the Test F = MS_/MS
Given an Upper-Tailed Preliminary Test, ¢=2 and s=12

T C:T

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.a
.01 .046 -.062 .120 .157 .108 -.099
.025 .046 -.062 .120 .157 .108 -.099
.33 .05 .046 -.062 .120 .157 .108 -.099
.10 .046 -.062 .120 .157 .110 -.099
.25 .046 -.063 -.123 -~-.164 -.120 -.103
Mean power dif.? .046 -.062 =-.121 -.158 -.111
.01 .002 .002 .006 .013 .052 -.014
.025 .002 .002 .006 .013 .052 -.014
.50 .05 .002 .002 .006 .013 .054 -.015
.10 .002 .001 .008 .016 .058 -.017
.25 .006 -.008 -.022 -.038 -.088 -.032
’E; Mean power dif. .003 .000 -.010 -.019 -.061
gf; .01 .077 .103 .132 .146 .070 .106
& .025 .075 .099 .125 .137 .058 .099
= 1 .05 .071 .092 .117 .127 .045 .090
- .10 .069 .086 .107 .113 .021 .079
S .25 .054 .058 .065 .053 -.024 .041
[72]
§ Mean power dif. .069 .088 .109 .115 .034
.01 147 .185 .217 .212 .155 .183
.025 .137 .169 .199 .192 ,132 .166
2 .05 .126 .153 ,177 .161 .100 .143
.10 .109 .128  .147 .124 .065 .115
.25 .073 .076 .078 .040 -.001 .053
Mean power dif. .118 .142 .164  .146 .090
.01 .166 .216 .246 .214 .164 .201
.025 .147 .190 .213 .176 .131 171
3 .05 .129 .167 .186 .146 .100 .146
.10 .106 .133 .135 .091 .046 .102
.25 .063 .075 .064 .024 .006 .046
Mean power dif. .122 .156 .169 .130 .089

2Mean power differences.



Power of the Conditional F Test Minus Power of the Test F = MS_/MS

115

Table 27

Given an Upper-Tailed Preliminary Test, ¢=5 and s=5 C:T
Conditional test
nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.?
.01 -.234 -.331 -.394 -.363 -.169 -.298
.025 -.234 -.331 -.394 -.363 -.169 -.298
.33 .05 -.234 -.331 -.394 -.363 -.169 -.298
.10 -.234 -,331 -.394 -.363 -.169 -.298
.25 -.234 -.,331 -.394 -.363 -.169 -.298
Mean power dif.2 -.234 -.331 -.394 -.363 -.169
.01 -.105 -.148 -,191 -.186 -.124 -.151
.025 -.105 -.148 -.191 -.186 -.124 -.151
.50 .05 -.105 -.148 -.191 -.186 =-.124 =-.151
.10 -.105 -.148 -.191 -.186 -.125 -.151
.25 -.105 -.148 -.195 -.193 -.127 -.154
"t | Mean power dif. -.105 -.148 -.192 -.187 -.125

2]

n .01 .023 .037 .046 .040 .020 .033
Ei .025 .023 .037 .043 .035 .019 .031
= 1 .05 .021 .030 .035 .027 .015 .026
~, .10 .017 .019 .018 .007 .003 .013

3 .25 .000 -.008 -.010 -.024 -.,022 -.013
£ | Mean power dif. .017 .023 .026 .017 .007
=

.01 .089 .101 .105 .107 .102 .101
.025 .075 .077 .072 .076 .075 .075
2 .05 .066 .069 .063 .061 .056 .063
.10 .051 .048 .040 .042 .038 .044
.25 .022 .,020 .012 .015 .006 .015
Mean power dif. .060 .063 .058 .060 .055
.01 .083 .083 .099 .093 .082 .088
.025 .068 .063 .078 .072 .055 .067
3 .05 .049 .046 .058 .051 .036 .048
.10 .032 .031 .035 .021 .025 .029
.25 .018 .009 .011 .002 .006 .009
Mean power dif. .050 .046 .056 .048 .041

8Mean power differences.
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Table 28

Power of the Conditional F Test Minus Power of the Test F = MS_/MS
Given an Upper-Tailed Preliminary Test, c¢=5 and s=12

T C:T

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.a
.01 .379 -.354 -,222 -.111 -.035 -.220
.025 .379 -.354 -.,222 -.111 -.035 -.220
.33 .05 .379 -.354 -,222 -.111 -.035 -.220
.10 .379 -.354 -.,222 -.111 -.035 -.220
.25 .379 -.354 -.222 -,111 -.035 -.220

Mean power dif.2 .379 -.354 -.222 -.111 -.035
.01 .138 -.170 -.148 -.089 -.030 -.115
.025 .138 -.170 -.148 -.089 -.030 -.1l15
.50 .05 .138 -,170 -.148 -.089 -~.030 -.115
.10 .138 -.170 -.148 -.089 -.031 -.115
.25 .146 -.177 -.153 -.091 -.032 -.120

~ Mean power dif. .140 -.171 -.149 -.089 -.031

(2}

v .01 .148 .141 .105 .061 .025 .096
e .025 .138  .128 .092 .051 .022 .086
a 1 .05 .130 .117 .081 .041 .014 .077
- .10 .113 .096 .058 .023 .010 .060
AE_. 025 0064 0042 0008 _0010 -0003 0020
g;’ Mean power dif. 119 .105 .069 .033 .014
= .01 .192  .180 .161 .130 .078  .148

.025 .153 .142 ,122 .100 .050 .113
2 .05 .119 .,105 .090 .081 .031 .085
.10 .081 .067 .045 .045 .015 .051
.25 .036 .029 .012 .018 .000 .019

Mean power dif. 116 .105 .086 .075 .035
.01 .114 .,107 .100 .081 .061 .093
.025 .075 .074 .071 .056 .040 .063
3 .05 .056 .057 .054 .037 .027 .046
.10 .030 .032 .031 .016 .013 .024
.25 .014 .010 .010 .006 .004 .009

Mean power dif. .058 .056 .053 .039 .029

8Mean power differences.
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Table 29

Given an Upper-Tailed Preliminary Test, ¢=5 and s =20

C:T

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.a
.01 .211 -.110 .061 -.018 -.001 -.080
.025 .211 -.110 -.061 -.018 -.001 -.080
.33 .05 .211 -.,110 -.061 -.018 -.001 -.080
.10 .211 -.110 -.061 -.018 -.001 -.080
.25 .211 -.110 .061 -.018 -.001 -.080

Mean power dif.2 .211 -.110 -.061 -.018 -.001
.01 .077 -.046 .040 -.030 -.006 -.040
.025 .077 -.046 .040 -.030 -.006 -.040
.50 .05 077 -.046 .040 -.030 -.006 -.040
.10 .078 -.046 .040 -.031 -.006 -.040
.25 .083 -.051 .042 -.032 -.006 -.043

< Mean power dif. .078 -.047 .040 -.031 -.006

(3]

n .01 .217 172 .106 .056 .007 112
g .025 .203 .157 .092 .049 .006 .101
= 1 .05 .189 .143 .080 .044 .004 .092
~ .10 .163 .119 .067 .032 -.001 .076

E .25 .091 .060 .020 .002 -.006 .033
e Mean power dif. .173 .130 .073 .037 .002
™ .01 .259  .235 .173  .116 .047  .166

.025 .208 .187 .132 .087 .033 .129
2 .05 .167 .140 .087 .057 .020 .094
.10 114 .094 .058 .034 .010 .062
.25 .041 .033 .016 .005 .002 .019

Mean power dif. .158 .138 .093 .060 .022
.01 .158  .137 .123 .073 .039 .106
.025 .101 .086 .080 .043 .026 .067
3 .05 .073 .061 .058 .026 .015 .047
.10 .048 .031 .031 .012 .008 .026
.25 .013 .008 .011 .001 .003 .007

Mean power dif. .079 .065 .061 .031 .018

%Mean power differences.
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Table 30
Power of the Conditional F Test Minus Power of the Test F = MST/MSC_T
Given an Upper-Tailed Preliminary Test, ¢=10 and s=12 :
Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.?
.01 132 -.054 -.023 -.004 .000 ~.043
.025 132 -.054 -.023 -.004 .000 -.043
.33 .05 132 -.054 -.023 -.004 .000 -.043
.10 132 =-.054 -.023 -.004 .000 -.043
.25 132 -.054 -.023 -.004 .000 -.043

Mean power aif.3 .132 -.054 -.023 -.004 .000
.01 115 -.067 -.027 -.014 -.002 -.045
.025 .115 -.067 -.027 -.014 -.002 -.045
.50 .05 .115 -.067 -.027 -.014 -.002 -~.045
.10 .115 =-.067 -.027 -,014 -.002 -.045
.25 .115 -.069 -.028 -.014 -.002 -.046

~ Mean power dif. .115 -.067 -.027 -.014 -.002

3]

n .01 .096 .050 .028 .014 .003 .038
@ .025 .088 .045 .024 .012 .003 .034
= 1 .05 .080 .040 .023 .010 .002 .031
Py .10 .062 ,028 .018 .007 .001 .023

:.',1 .25 .019 .000 .000 -.001 -.002 .003
£ | Mean power dif. .069 .033 .019 .008 .001
=)

.01 .165 .131 .090 .047 .019 .090
.025 .109 .081 .053 .026 .013 .056
2 .05 .070 .046 .033 .017 .008 .035
.10 .044 .021 .015 .008 .002 .018
.25 .013 .004 .002 .000 .000 .004
Mean power dif. .080 .057 .039 .020 .008
.01 .040 .035 .020 .020 .006 .024
.025 .022 .019 .010 .012 .003 .013
3 .05 .006 .007 .005 .008 .002 .006
.10 .003 .004 .003 .004 .001 .003
.25 .001 .000 .000 .001 .000 .000
Mean power dif. .014 .013 .008 .009 .002

8Mean power differences.
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and .173 for s = 20. This trend was also found when the preliminary
test was a two-tailed test. Only given a conditional test alpha of
.25 did the trend fail to hold. This was most likely due to a ceiling
effect occurring given the large alpha value.

With the exception of the very small conditional test alpha levels
of .01 and .025 for the design ¢ = 2 and s = 12, the discrepancies

between the powers of the conditional test and the F = MST/MS test

C:T
tended to decrease with an increase in the number of classes per treat-
ment (compare Tables 26, 28, and 30). For example, given independence,
a conditional test alpha of .25 and s equal to 12, averaging the power
discrepancies across the five preliminary alpha values gave discrep-
ancies of .034 for c=2, .014 for c;S, and .001 for c¢=10. That the
expected trend did not hold at the small conditional test alpha levels
for the design ¢ = 2 and 8 = 12 also occurred when the preliminary test
was a two-tailed test.

The effect of increasing the alpha level of the upper-tailed
preliminary test on the power discrepancies between the ''sometimes
pool" and "never pool" F tests also copied the trend found given the
two—-tailed preliminary test. That is, there was an indirect relation-
ship between changing the alpha level of the preliminary test and the
effects that it had on the power differences between the conditional
and unconditional tests. For example, given independence, a conditional
test alpha level of .25, ¢ = 2 and s = 12 (Table 26), the discrepancies

between the power of the conditional test and the F = MST/MS test

C:T
equalled .070, .058, .045, .021, and -.024 for preliminary test alpha

levels of .01, .025, .05, .10, and .25, respectively.
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In comparison to the strange result that occurred when comparing
the powers of the "sometimes pool" test, given a two-tailed preliminary
F test, and the "always pool" test, the expected always occurred when
the preliminary test was an upper-tailed only test. That is, as
expected, the power of the "always pool" test (Table 9) always
exceeded the power of the "sometimes pool" test, given an upper-tailed
preliminary test and E(MSC:T)/E(MSS:CT) equal one (Tables D-1 through

D-5).

Positive Dependence

Ideally the upper-tailed preliminary test should reject its null
hypothesis, designating the aggregate unit (classroom) as the appro-
priate analytic unit in looking for treatment effects, Paull and
Peckham et al. referred to this particular situation, having the

E(MSC.T)/E(MS ) be greater than one and an upper-tailed only

S:CT
preliminary F test, when they discussed the effects of using a

preliminary testing procedure to choose the unit of analysis.

Actual alpha levels. Given the E(MSC'T) was greater than the

E(MS ) and the preliminary test was an upper-tailed only F test

S:CT
done at the a level, the actual alphas of the conditional or "sometimes
pool" F test were essentially duplicates of the actual alphas of the
conditional F test given positive dependence and a two-tailed prelim~-
inary test done at the 2a level, which generally were too liberal.

For example, compare Tables 12 and 22. 1If E(MSC:T)/E(MSS:CT) equal 2,

the alpha level of the two-tailed preliminary test equal .02 and the

alpha level of the upper-tailed preliminary test equal .01, the
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absolute differences between the two sets of actual conditional test
alphas equalled .000, .001, .00l1, .001, and .000 as the nominal con-
ditional test alpha went from .0l to .25. Because the consequences

of varying the five principal parameters, s, c, the preliminary test
alpha, the conditional test alpha, and the degree of positive depen-
dence, imitated (both in size and direction) those found when studying
the effects of using a two-tailed preliminary test on the actual
conditional test alphas, no more will be said about this situation.

Estimated powers. As expected, given the E(MSC_T) was greater

than the E(MS ), the power of the conditional test following an

S:CT
upper-tailed preliminary test done at o equalled the power of the con-
ditional test given a two-tailed pfeliminary test done at 2a (compare
Tables C-1 through C-5 with Tables D-1 through D-5). Because of the
general liberalness of the '"sometimes pool" test, though, given posi-

tive dependence and an upper-tailed preliminary test, studying the

power of that "sometimes pool" test is rather uninteresting.

Negative Dependence

Given the E(MSC_T) is less than the E(MS ), the upper-tailed

S:CT
only preliminary F test should designate the disaggregate unit (stu-
dent) as the appropriate unit of analysis in testing the primary or

conditional null hypothesis of no treatment effects.

Actual alpha levels. Given negative student dependence and an

upper—~tailed preliminary test, all observed alpha values of the con-

ditional test were too conservative (see top sections of Tables 21
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through 25). In fact, if one compares Tables 21 through 25 with
Table 8, which recorded the actual alphas of the "always pool"

F = MST/MSS:T test, one finds that the "sometimes pool" alphas,

at both levels of negative dependence, are just as conservative as

the "always pool" alphas. For example, given E(MS....)/E(MS ) equal
C:T

S:CT
.33, ¢ = 2 and s = 12, the actual alphas of the conditional test aver-
aged across the five preliminary test alpha levels equal .000, .001,
.001, .008, and .058 as the conditional test nominal alphas increase
from .01 to .25 (Table 21), while the actual alphas of F = MST/MSS:T
equal .000, .001, .001, .008, and .059, respectively (Table 8).

The one distinct feature of the "sometimes pool" test is its
preliminary test used for choosing ﬁhe so-called appropriate unit
of analysis for the primary test of treatment differences. However,
given E(MSC:T)/E(MSS:CT) is less than one and the preliminary test is
an upper-tailed only test, the alpha level of the preliminary test had
virtually no affect on the actual alpha level of the conditional or
"sometimes pool" test. For example, given E(MSC:T)/E(MSS:CT) equal
.33 and ¢ = 2 and 8 = 12 (Table 21), the actual alpha levels averaged
over the five conditional test nominal alpha levels equalled .014,
.014, .014, .014, and .013 as the nominal alpha levels of the pre-
liminary test ranged from .0l to .25. Because the actual alphas and
the effects of s, ¢, and the nominal alpha level of the conditional
test are exactly identical to those found when studying the empirical
effects on the alpha levels of always using student as the unit of

analysis, given negative dependence, no more will be said about this

situation.
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Estimated powers. Because the actual alpha values of the

"sometimes pool" tests behaved exactly as expected and exactly as

did the actual alpha values of the "always pool" test, one could

expect the powers of the "sometimes pool" tests (see top sections

of Tables 26 through 30) and the "always pool" tests (Table 9) to mimic
each other also. This is exactly what happened. Once again, the only
difference between the two tests is that a preliminary test of inde-
pendence preceeds the '"sometimes pool" test. The effect of increasing
the nominal alpha of the preliminary test had no affect whatsoever on
the power of the '"sometimes pool" test. Because the "sometimes pool"
test, based on the upper-tailed preliminary test, and the "always pool"
test are essentially the same, given negative dependence, no more will

be said about the power of the former,

The Lower-Tailed Preliminary Test

The lower-tailed preliminary test tests the null hypothesis that
the E(MSC:T) is equal to or greater than the E(MSS:CT) or equivalently
that pIl is equal to or greater than zero. This test cannot detect
positive dependence situations.

Observed conditional test alpha values, given the lower-~tailed
only preliminary F test, are reported in Tables 31 through 35.
Estimated power discrepancies between the 'sometimes pool" or con-

ditional test and the "never pool" or F = MST/MS test are given

C:T
in Tables 36 through 40. Appendix E (Tables E-1 through E-5) contains

the estimated powers of the conditional test, given the lower-tailed
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Table 31

Actual Alphas of the Conditional F Test Given a Lower-Tailed
Preliminary Test, c=2 and s=12

Conditional test
nominal alpha

Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha
.01 .0072 .015_ .017  .025 .081 .029
.025 .0100 .024_ .033_ .051 .1l4 .046
.33 .05 .0100 .0297 .044 .070_ .151 .061
.10 .0100 .0297 .0487 .085" .201 .075
.25 .010% .029% .050% .093% .259% .088
Mean alpha .009 .025 .038 .065 .161
.01 .008: .014, .023  .044 .116 .04l
.025 .0117 .0237 .035_ .060 .139 .054
.50 .05 .0117 0267 .0450 .075_ .162 .064
.10 L0117 .0297 .0527 .091: .202_ .077
.25 .011% .029% .054% .101% .264 .092
~ | Mean alpha .010 .024 .042 .074 177

[

2 .01 .016% .042 .070 .1037 .2532 .097
@ .025 .018  .045 .073  .106 .2577 .100
S |1 .05 .021 .050 .081 .119 .275 .109
= .10 .021 .051 .089 .131 .293 117

e .25 .019 .048 .088 .144 .341 .128

(&)
£ | Mean alpha .019 .047 .080 .121 .284
a .01 .068 .099 .152 .231 .389 .188

.025 .070 .104 .158 .237 .395 .193
2 .05 .071  .105 .159 .238 .398 .194
.10 .070 .108 .165 .249  .410 .200
.25 .064 .106 .170 .261  .426 .205

Mean alpha .069 .104 .161 .243 .404
.01 .105 .168 .227 .315 .461 .255
.025 .106  .173  .233  .321  .466 .260
3 .05 .107 173 .234 .323  .469 .261
.10 107 .174  .235 .324  .474 .263
.25 .102  .173  .239  .331 .484 .266

Mean alpha .105  .172 .234  .323 471

8Actual alpha

is within 1.96 standard errors of

the nominal alpha.
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Table 32

Actual Alphas of the Conditional F Test Given a Lower-Tailed
Preliminary Test, c¢=5 and 8=5

Conditional test
nominal alpha
Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha

EMSy,p) /EMSg, o)

.01 .0082 .019: .0442 .070_  .151 .057
.025 .009: .0207 L0497 .086: .192 .071
.33 .05 .010% .0225 .0555 .0982 .209 .079
.10 .0117 .0242 0595 .1075 .2302  .086
.25 0112 .025% .061® .108% .245 .090

Mean alpha .010 .022 .054 .094 .205
.01 .0062 .018: .032 .053 .152 .052
.025 .0085 .0242 .045: .070_  .180 .065
.50 .05 .0087 .0267 .0537 .084> .201  .074
.10 .010° .0267 .0577 .0985 .2250 .083
.25 0112 .026% .063% .109% .242 .088

Mean alpha .009 .024 .050 .083 .200
.01 .0142  .025% .054% .102® .2362 .086
.025 .017 .oso: .059% .1082 .238: .090
1 .05 017 .0323 .0622 .112% .246 .094
.10 .019 .032% .068 .124 .258: .100
.25 .019 .038 .078 .132 .275 .108

Mean alpha .017 .031 .064 .116 .251
.01 .044  .082 .124 .196 .351 .159
.025 .045 .083 .126 .197 .351 .160
2 .05 .046 .083 .127 .198 .352 .161
.10 .046 .084 .129 .200 .352 .162
.25 .047 .08 .131 .202 .355 .164

Mean alpha .046 .084 .127 .199 .352
.01 .085 .122 .180 .252 .417 .211
.025 .085 .123 .181 .253 .417 .212
3 .05 .085 .123 .181 .253  .417 .212
.10 .086 .124 .182 .254  .417 .213
.25 .086 .125 .184 .254  .418 .213

Mean alpha .085 .123 .182 .353 .417

2Actual alpha is within 1.96 standard errors of the nominal alpha.
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Table 33

Conditional test
nominal alpha

Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha
.01 .006: .015 .030 .049 .120 .044
.025 .006> .015  .036_ .071  .155 .057
.33 .05 .0077 .0177 .040% .080_ .190 .067
.10 .0070 .018° 0457 .091% .212_  .075
.25 .007% .018% .046% .095% .224 .078
Mean alpha .007 .017 .039 .077 .180
.01 .003_ .008_ .021 .042 .136 .042
.025 .0052 .016% .032 .058 .157 .054
.50 .05 .006: .017: .036_ 070, .175 .061
.10 .006_ 0177 .042° .086) .199 .070
.25 .007% .018% .046® .096% .224 .078
__ | Mean alpha .005 .015 .035 .070 .178
[
© .01 .0092 .021: .048: .096: .238: .082
o .025 .009_ .021° .050_ .100_ .244_ .085
E | 1 .05 .010° .0237 .055. .107, .2507  .089
1 .10 .011% .0267 .059% .114% .2597  .094
< .25 .012% .032% .064 .120 .275 .101
gf’ Mean alpha .010 .025 .055 .107 .253
= .01 .051 .096 .139 .210 .395 .178
.025 .051 .096 .139 .210 .395 .178
2 .05 .051 .096 .139 .210 .395 .178
.10 .051 .096 .142 .213  .395 .179
.25 .051 .096 .145 .216 .398 .181
Mean alpha .051 .096 .141 .212 .396
.01 106 .153 .211  .298  .465 247
.025 .106 .153 .211 .298  .465 <247
3 .05 .106  .153  .211  .298  .465 .247
.10 .106 .153 .211 .298  .465 .247
.25 .106  .153  .213  .298  .465 .247
Mean alpha .106 .153 .211 .298 465

8Actual alpha

is within 1.96 standard errors of

the nominal alpha.
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Table 34

Actual Alphas of the Conditional F Test Given a Lower-Tailed
Preliminary Test, c=5 and s =20

Conditional test
nominal alpha

Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250  alpha
.01 .0062 .019: .030_ .051  .126 .046
.025 .0072 0247 .0405 077, .168 .063
.33 .05 .007% .0267 .0455 .0897 .209 .075
.10 .0077 .0287 .049% .0972 .233%  .083
.25 .007% .028% .049% .100® .248 .086
Mean alpha .007 .025 .043 .083 .197
.01 .005: 012 .020 .037 .143 .043
.025 .0057 .0187 .029_ .054 .168 .055
.50 .05 .007% .023% .039% .069 .192 .066
10 0072 .025% .045% .090% .212 076
.25 .007® .028% .050° .101% .247% .087
£ | Mean alpha .006 .021 .037 .070 .192
wn
2] .01 .015% .0267 0527 .113% .2635  .094
=1 .025 .018  .0307 .0577 .1157 .2655  .097
~ |1 .05 .019 .033% .060% .118% .270 .100
a a
€ .10 .019 .034~ .061° .122 ,277 .103
O 25 .019 .041 .071 .130 .292 111
E .
@ | Mean alpha .018 .033 .060 .120 .273
.01 .068 .117 .159  .243  .405 .198
.025 .068 .117 .159 .243  .405 .198
2 .05 .068 .118 .160 .244  .406 .199
.10 .068 .119 .160 .244  .406 .199
.25 071  .119 .161 .245 .408 .201
Mean alpha .069 .118 .160 . 244 .406
.01 .127  .180 .250 .324  .475 .271
.025 .127  .180 .250 .324  .475 271
3 .05 .127  .180 .250 .324  .475 .271
.10 127  .180 .250 .324  .476 271
.25 .127  .181  .251 .324  .476 .272
Mean alpha .127 .180 .250 .324 475

4Actual alpha is within 1.96 standard errors of the nominal alpha.
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Table 35

Conditional test
nominal alpha

Preliminary test Mean
nominal alpha .010 .025 .050 .100 .250 alpha
.01 .006: .016: .044: .078_ .200  .069
.025 .006° .017_ .046. .088° .217_  .075
.33 .05 .0067 .0170 .0487 .0927 .2257 .078
.10 .0067 .0177 .0497 .094% .2303  .079
.25 .006% .017% .049% .094% .231% .079
Mean alpha .006 .017 .047 .089 .221
.01 .003  .009 .023_ .049 .160  .049
.025 .0067 .014_ .037: .070 .191  .064
.50 .05 .0067 .0167 .044% .079_ .210,  .071
.10 .0067 .017_ .047. .085 .225°  .076
.25 .006% .017% .049% .094% .230% .079
Mean alpha .005 .015 .040 .075 .203
& .01 .007% 0237 .054% .0997 .2385  .084
a .025 .0077 .0237 .054> .1007 .2407  .085
2| 1 .05 .0070 .0247 .055) .101> .2437  .086
< .10 .0077 0257 .060% .1057 .2457 .088
= .25 .007% .028% .065 .109% .257 .093
=
g;; Mean alpha .007 .025 .058 .103  .245
S .01 .056 .093 .144 .215 .356  .173
.025 .056 .093 .144 .215 .356  .173
2 .05 .056 .093 .144 .215 .356  .173
.10 .056 .093 .144 .216 .356  .173
.25 .056 .094 .145 .216 .358  .174
Mean alpha .056 .093 .144 .215 .356
.01 .108 .158 .210 .290 .451  .243
.025 .108 .158 .210 .290 .451  .243
3 .05 .108 .158 .210 .290 .451  .243
.10 .108 .158 .210 .290 .451  .243
.25 .108 .158 .210 .290 .451  .243
Mean alpha .108 .158 .210 .290 <451

4Actual alpha

is within 1.96 standard errors of

the nominal alpha.
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preliminary test. Each table is read exactly as were the comparable

tables for the two-tailed and upper-tailed preliminary tests.

Independence

Ideally, the lower-tailed preliminary test should point to the
disaggregate unit (student) as the appropriate unit of analysis to
use in testing for treatment differences.

Actual alpha levels. Sixty-seven percent of the actual alpha

values of the conditional tests were within 1.96 standard errors of
their nominal values, given independence and a lower-tailed preliminary
test (Tables 31 through 35). All actual conditional test alphas that
were not in agreement with their respective nominal counterparts were
too liberal. As in the situation with independence and the two-tailed
preliminary F test, the design ¢ = 2 and 8 = 12 deviated from the
expected. Given independence and the lower-tailed only preliminary
test, only 24% of the actual alpha values for ¢ = 2 and s = 12 (Table
31) were within 1.96 standard errors of their respective nominal values.

Estimated powers. Given E(MSC.T)/E(MS ) equal one, the

S:CT

estimated powers of the conditional tests were, in all cases, greater
than the estimated powers of the F = HST/MSC:T tests (Tables 36 through
40). In addition, the effects of varying c, s, and the conditional test
alpha level followed those found when the preliminary test was either
a two-tailed or upper-tailed only test.

Across all designs and all preliminary test alpha levels, as the
conditional test alpha level increased from .01 to .25, the power dis-

crepancies between the "sometimes pool" and "never pool" tests decreased
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from .128 to .119 to .103 to .082 to .037. But once again, this
indirect relationship did not hold up within the two designs c = 2

and s = 12 and ¢ = 5 and 8 = 5 (Tables 36 and 37). For example, given
c =5 and s = 5, averaging across the five preliminary alpha levels
gave power discrepancies equalling .038, ,053, .065, .063, and .038

as the conditional test alpha level was monotonically increased.

As was the case given the upper-tailed and two-tailed preliminary
tests, a ceiling effect at the higher conditional test alpha levels
prevented the power differences between the "sometimes pool" and "never
pool" tests from increasing as the number of students per classroom was
increased (compare Tables 37, 38, and 39). For example, given indepen-
dence, a conditional test alpha of>.25 and a c equal to 5, averaging
across the five preliminary alpha levels the power differences equalled
.038 for s = 5, .031 for s = 12, and .01l for s = 20.

It was expected that, given independence, increasing the number
of classes per treatment should decrease the discrepancies between the
power of the conditional test and the power of F = MST/MSC:T (compare
Tables 36, 38, and 40). With the exception of the two conditional test
alpha levels of .0l and .025, given ¢ = 2 and s = 12, this trend did
appear in the simulated data. For example, given E(MSC:T)/E(MSS:CT)
equal one, a lower-tailed preliminary test, a conditional test alpha of
.25 and an s equal to 12, averaging the power differences across the
preliminary test alpha levels gave power differences of .100 for c= 2,
.031 for ¢ = 5, and .004 for ¢ = 10. The value for ¢ = 10 (.004) is
most probably spuriously low because of the extremely large powers of

the F = MST/MSC:T test.



Power of the Conditional F Test Minus Power of the Test F = MST/MS

131

Table 36

Given a Lower-Tailed Preliminary Test, c=2 and s=12

C:T

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.?
.01 .018 -.034 -.,097 -.137 .099 -.077
.025 .014 .006 -.057 -.108 -.087 -.046
.33 .05 .019 .034 -.012 -.065 .060 -.017
.10 .020 .055 .055 .006 -.025 .022
.25 .013 .040 .070 .082 .028  .047
Mean power dif.2 .010 .020 -.008 -.044 -.049
.01 .019 .019 .011 .001 -.046 .001
.025 .036 .045 .033 .019 -.036 .019
.50 .05 .046 .069 .060 .039 -.022 .038
.10 .046 .090 .096 .091 .012 .067
.25 .032 .074 .109 .139 .056 .082
’ES Mean power dif. .036 .059 .062 .058 .007
s .01 .090 .116 .144 .157 .08l .118
& .025 .093 .121 .150 .163 .084 122
211 .05 .099 .134 .166 .177 .094 .134
- .10 .099 .145 .180 .191 .104 .1l44
3 .25 .086 .139 .188 .208 .136 .151
w
;? Mean power dif. .093 .,131 .166 .179 .100
.01 .167 211 .248 .249 .210 .217
.025 .170 .216 .253 .253 .213 .221
2 .05 170 .218 .256 .257 .216 .223
.10 167 .226  .262 .266 .223 .229
.25 157 .217 .265 273  .236 .230
Mean power dif. .166 .218 .257 .260 .220
.01 .210 .270 .308 .292 .270  .270
.025 .212 .271  .310 .295 273 .272
3 .05 .213 .,273 .312 .299 .276 .275
.10 .213 .276 .315 .302 .280 .277
.25 .201 .268 .313 .307 .290 .276
Mean power dif. .210 .272 .312 ,299 .278

4Mean power differences.
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Table 37

Given a Lower-Tailed Preliminary Test, c¢=5 and s=5

C:T

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2
001 -101 -177 0239 0228 -099 -0169
.025 .045 .094 .150 .153 .068 -.102
.33 .05 .016 .044 .083 .092 .054 -.058
.10 .004 .018 .034 .042 .025 -.025
.25 .000 .004 .002 .001 .003 .001
Mean power dif.2 .033 .066 .101 .103 .050
.01 .060 .096 .149 .141 .092 -.108
.025 .031 .057 .099 .104 .074 -.073
.50 .05 .013 -.025 .060 .072 .052 -.044
.10 .005 .008 .012 .026 .031 -.011
.25 .012 .022 .015 .015 .001 .013
~ | Mean power dif. .017 .030 .061 .066 .050
E
g .01 .030 .041 .052 .047 .026 .039
@ .025 .031 .043 .056 .050 .029 .042
S 1 .05 .035 .050 .063 .056 .037 .048
~ .10 .046 .059 .072 .071 .043 .058
’E: .25 .049 .070 .082 .091 .053 .069
@ | Mean pover dif. .038 .053 .065 .063 .038
= .01 112 .136 .161 .172 .169 .150
.025 .112 .137 .162 .172 .169 .150
2 .05 .113 .138 .163 .172 .170 .154
.10 .113 .138 .163 .173 .170 .151
.25 .113 .138 .165 .176 171 .153
Mean power dif. .113 .137 .163 .173 .170
.01 .147 .167 .211 .229 .234 .198
.025 .148 .167 .211 .229 .234 .198
3 .05 .148 .167 .211 .230 .234 .198
.10 .148 .168 .212 .230 .234 .198
.25 .148 .169 .212 .230 .234 .199
Mean power dif. .148 .168 .211 .230 .234

3Mean power differences.
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Table 38

Given a Lower-Tailed Preliminary Test, c¢=5 and s=12 T C:T
Conditional test
nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2
.01 .228 . 240 .150 .079 .026 -.145
.025 .135 .158 .099 .052 .015 -.092
.33 .05 .050 .086 .061 .033 .011 -.048
.10 .003 .023 .023 .011 .005 -.013
.25 .018 .007 .000 .002 .000 .005
Mean power dif.?2 .080 -.100 -.067 -.035 -.0l1
.01 .085 .127 .120 .073 .028 -.087
.025 .051 .090 .083 .056 .021 -.060
.50 .05 .002 .046 .049 .039 .015 -.030
.10 .033 .003 .010 .020 .005 -.001
.25 .053 .048 .023 .005 .004 .027
~ | Mean power dif. .010 -.044 -.048 -.037 -.013
£
o .01 .153  .148 .112 .068 .027 .102
7] .025 .155 .150 .116 .074 .029 .105
S 1 .05 .164 .161 .123 .080 .030 112
= .10 .175 171 .136 .088 .032 .120
B .25 .179 .179 .156 .109 .035 .132
g" Mean power dif. .165 .162 .129 .084 .031
7/
= .01 .282 .294 .283 .242 144 .249
.025 .282 .294 .283 242 144 .249
2 .05 .282 294 .283 242 144 .249
.10 .282 .294 .283 .242 .145 .249
.25 .282 . 294 .287 .242 .148 .251
Mean power dif. .282 .294 .284 . 242 <145
.01 .314 .332 .350 .311 .228 .307
.025 .314 .332 .350 311 .228 .307
3 .05 .314 .332 .350 311 .228 .307
.10 .314 .332 .350 .311 .228 .307
.25 .314 .332 .350 311 .228 .307
Mean power dif. .314 .332 .350 .311 .228

3Mean power differences.
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Table 39

Given a Lower-Tailed Preliminary Test, c¢=5 and s =20

C:T

Conditicnal test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2
.01 .143 -.072 -.043 -.016 -.001 =-.055
.025 .090 -.049 -.029 -.012 -.001 -.036
.33 .05 .041 -.027 -.015 -.005 .000 -.018
.10 .006 -.009 -.008 =-.001L .001 -.004
.25 .020 .004 .002 .000 .001 .005
Mean power dif.2 .052 -.031 -.019 -.007 .000
.01 .050 -.034 -.035 -.028 -.006 =-.031
.025 .027 -.016 -.023 -.023 -.006 -.019
.50 .05 .003 .002 -.011 -.014 -.005 -.005
.10 .040 .025 .001 -.006 -.004 .01l
.25 .065 .042 .015 .002 .000 .025
“E| Mean power aif. .006 .004 =-.011 -.014 -.004
@ .01 .2264  .179 .111  .059 .009 .116
1 .025 .227 .182 .114 .063 .010 .119
S| 1 .05 .229 .187 .118 .064 .010 .122
& .10 .238  .193 .127 .067 .011 .127
3 .25 .245 .198 .132 .072 .014 .132
=
= | Mean power dif. .233 .188 .120 .065 .011
.01 .399 .378 .304 .229 .103 .283
.025 .400 .378 .304 .229 .103 .283
2 .05 .400 .379 .305 .230 .103 .283
.10 .400 .379 .305 .230 .104 .284
.25 .401 .382 .306 .230 .105 .285
Mean power dif. 400  .379 .305 .230 .104
.01 443 .428 401 .305 .180 .351
.025 L443 428 401 .305 .180 .351
3 .05 .443 428 401 .305 .180 .351
.10 L444 428 401,305 .180  .352
.25 L444 428 401 .306 .180  .352
Mean power dif. .443 .428 .401 .305 .180

4Mean power differences.
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Table 40

Given a Lower-Tailed Preliminary Test, c¢=10 and s=12

C:T

Conditional test

nominal alpha Mean
Preliminary test power
nominal alpha .010 .025 .050 .100 .250 dif.2
.01 -.033 -.015 -.007 .001 .000 -.011
.025 -.014 -.005 -.003 .001 .000 -.005
.33 .05 -.004 -.003 -.002 .001 .000 -.002
.10 -.001 .000 .000 .000 .000 .000
.25 .001 .000 .000 .000 .000 .000
Mean power dif.2 -.010 -.005 -.002 -.001 .000
.01 -.070 -.043 -.021 .011 .002 -.029
.025 -.047 -.025 -.013 .008 .000 -.019
.50 .05 -.025 -.015 -.007 .006 .000 -.011
.10 -n009 -0003 —0002 0004 0000 -0004
.25 .005 .002 .001 .000 .000 .002
~ | Mean power dif. -.029 -.017 -.008 -.006 .000
4
3 .01 .103 .057 .034 .017 .004 .043
2] .025 .106 .059 .035 .017 .004 .062
N1 1 .05 111 .061 .036 .017 .004 .046
< .10 .116 .063 .036 .020 .004 .048
’E: .25 .127 .074 .041 .023 .005 .054
g" Mean power dif. .113 .063 .036 .019 .004
= .01 .374 .319 .233 .154 .063 .229
.025 .374 .319 .233 .154 .063 .229
2 .05 .374 .319 .233 .154 .063 .229
.10 .374 .319 .233 .155 .063 .229
.25 .374 .319 .235 .155 .063 .229
Mean power dif. .374 .319 .233 .154 .063
.01 .416 412 .358 .268 114 .314
.025 .416 412 .358 .268 .114 .314
3 .05 .416 .412 .358 .268 114 .314
.10 .416 412 .358 .268 114 .314
.25 .416 412 .358 .268 114 .314
Mean power dif. .416 .412 .358 .268 114

8Mean power differences.
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The effect of increasing the nominal alpha level of the

lower-tailed preliminary test on the power differences between the
"sometimes pool" and "never pool" F tests were reversed from the trends
found given both a two-tailed and an upper-tailed test. That is, as
the preliminary test alpha level increased, there was an increase in
the power differences. For example, given a conditional alpha level
of .25, ¢ = 2 and s = 12 (Table 36), the power differences, as the
preliminary test alpha level increased, came to .081, .084, .094,
.104, and .136, favoring the "sometimes pool" test. This reversal
in trend probably was due to the fact that the alpha levels of the
"sometimes pool" test leaned further and further toward being too
liberal as the alpha level of the preliminary test increased.

Without exception, given independence of disaggregate units,
the estimated powers of the '"sometimes pool" test (Tables E-~1 through
E-5) were greater than the powers of the "always pool" or F = MST/MSS:T
test (Table 9). The larger powers of the "sometimes pool" test could
be expected when the conditional test was too liberal a test, but they

also occurred when the actual alpha levels of the conditional test

were satisfactory.

Positive Dependence

Given that E(MSC'T) is greater than the E(MS , the lower-

S:CT)
tailed preliminary F test should not reject its null hypothesis of

Ho: the E(MSC'T) is greater than or equal to the E(MS ) and thus

S:CT
designate the disaggregate unit (student) as the appropriate unit of

analysis for the primary test of treatment effects.
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Actual alpha levels. Given positive dependence, all actual

conditional test alpha levels exceeded their respective nominal values
by more than 1.96 standard errors (see bottom sections of Tables 31
through 35). If one compares Tables 31 through 35 with Table 8, which
documents the actual alphas of the F = MST/MSS:T and has no preliminary
test associated with it, one finds that the "sometimes pool" alphas, at
both levels of positive dependence, are very close in magnitude to their
counterpart "always pool" alphas. This was especially so for the three

designs with large (sc-1)t values, i.e., ¢ = 5 and s = 12, ¢ = 5 and

s =20, and ¢ = 10 and s = 12. Given E(MSC_T)/E(MS ) equal 2,

S:CT

10 and s = 12, the actual "sometimes pool" alphas, averaged across

c
the five preliminary test alphas, equalled .056, .093, .144, .215, and
.356 as the nominal "sometimes pool" test alphas increased from .0l to
.25 (Table 35), while the actual "always pool" alphas also equalled
.056, .093, .144, .215, and .356, respectively (Table 8).

The preliminary test is the distinguishing feature separating
the "sometimes pool" F test from the "always pool" F test. And given
either degree of positive dependence, the alpha level of the lower-
tailed preliminary test had little to no affect on the actual alpha
of the "sometimes pool" test. For ¢ = 2 and s = 12, as the alpha
level of the preliminary test increased, the alpha levels of the
"sometimes pool" tests became slightly more liberal. For example,

given E(MSC.T)/E(MS ) equal 2, a conditional test nominal alpha

S:CT
of .25, ¢c=2 and s=12, as the five alpha levels of the preliminary

test increased from .01 to .25, the five actual conditional test alphas
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went from .389 to .395 to .398 to .410 to .426 (Table 31). Given the
same circumstances, the actual conditional test alpha levels for designs
with higher values of (sc-1)t had almost no variation as the preliminary
test alpha level was varied. Because the actual alphas, given a lower-
tailed preliminary test and positive dependence, closely match those

found when studying the empirical alphas of the F = MST/MS test,

S:T

given positive dependence, no more will be said about the former.

Estimated powers. Given positive dependence and a lower-tailed

preliminary test, the "sometimes pool" F test of treatment effects
essentially becomes an "always pool" F test of treatment effects.
Because of this, one would expect their powers to react similarly

both in magnitude and in direction. This is exactly what happened.

The nominal alpha of the preliminary test did have minimal effect on
the power of the "sometimes pool" test for ¢ = 2 and s = 12 though
(Table E-1). This was expected, however, as this was the design for
which increasing the preliminary test alpha level made the difference
between the "sometimes pool" alpha and the "always pool" alpha slightly
more than zero, making the former more liberal. Because the '"'sometimes
pool" test, based on the lower-tailed preliminary test, and the "always
pool" test are virtually the same, given positive dependence, no more

will be said about the power of the "sometimes pool" test.

Negative Dependence

The lower-tailed preliminary test should recognize the situation

where the E(MSC'T) is less than the E(MSS'CT) and by so doing designate
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the aggregate unit (classroom) as the appropriate analytic unit in
testing for treatment differences.

Actual alpha levels. Given that the E(MSC'T) was less than the

E(

MSS'CT) and the preliminary test was a lower-tailed only test done

at the a level, the observed alphas of the conditional test were very
nearly equal in magnitude to observed alphas of the conditional test
given negative dependence and a two-tailed preliminary test done at 2a.
For example, compare the observed alphas of the conditional test in
Table 32 with the observed alphas in Table 12. Given E(MSC:T)/E(MSS:CT)
equals .50, 21 of the 25 observed alphas, given the lower-tailed pre-
liminary test (Table 32) done at a, equal their counterpart observed
alphas, given the two-tailed preliminary test done at 2o (Table 12).
And four times the observed alphas of the conditional test given the
lower-tailed preliminary test exceeded their matched observed alphas
given the two-tailed preliminary test by only .00l1. In summary, given
negative dependence and a lower-tailed preliminary test, the conse-
quences of varying s, c, the preliminary test alpha, the conditional
test nominal alpha, and the level of negative dependence on the observed
alphas of the conditional test imitated the magnitude and pattern of
effects found when studying the effects of using a two-tailed prelim-
inary test on the observed conditional test alphas.
Estimated powers. It was expected that, given the E(MSC:T)
,» the power of the conditional test fol-

was less than the E(MSS:CT)

lowing a lower-tailed preliminary test done at a would equal the power

of the conditional test given a two-tailed preliminary test done at 2a.
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Under this condition, both preliminary tests have equal probabilities
of rejecting the null hypothesis of the preliminary test. To see that
this expectation appeared in the simulated data, compare Tables 16
through 20 with Tables 36 through 40 and/or Tables C-1 through C-5

with Tables E-1 through E-5. For example, if E(MSC.T)/E(MS ) equals

S:CT
.33, the alpha level of the two-tailed preliminary test equal .02,
c=5and s = 5, as the nominal alpha of the conditional test increased
from .01 to .25, the power differences between the "sometimes pool"
test and the "never pool" test equalled -.101, -.177, -.239, -.228,
and -.099 (Table 17). If the preliminary test was instead a lower-
tailed only test done at alpha equal .01 (Table 37), the power dis-
crepancies between the "sometimes pool" and "never pool" tests also
equalled -.101, -.177, -.239, -.228, and -.099 as the conditional test
nominal alpha was increased from .01 to .25.

Given negatively dependent data, the power of the conditional
test following a two-tailed preliminary test done at o had less power
than the conditional test following a lower-tailed preliminary test
done at o. For example, Table C~2 empirically shows that given
E(MSC:T)/E(MSS:CT) equals .50, ¢ = 5, 8 = 5 and the two-tailed
preliminary test alpha equal .05, the power of the conditional test
equalled .131, .230, .321, .488, and .739 as the nominal alpha of the
conditional test increased from .01 to .25. Given the same set of
conditions but instead having the lower-tailed preliminary test alpha
equal .05, the power of the conditional test following the lower-

tailed preliminary test equalled .149, .262, .360, .520, and .761
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as the conditional alphas increased (Table E-2). Given both the
lower-tailed and two-tailed tests were done at the same alpha level

and the E(MSC_T) was less than the E(MS ), the lower-tailed pre-

S:CT
liminary test would have more power to reject the null preliminary
test hypothesis and thus designate class as the unit of analysis more
often. Since negative dependence is defined by having the E(MSC:T)
less than the E(MSS:CT)’ using class as the analytic unit decreases
the error term in testing for treatment effects, which should increase
the power of the conditional test. At the same time, however, using
student as the analytic unit has as its advantage more degrees of
freedom error, which also has the effect of increasing the power of
the conditional test. Thus that the power of the conditional test
following a two-tailed preliminary test done at a had less power than
the conditional test following a lower-tailed preliminary test done at

o was a combined function of the difference between ¢ and s and the

difference between the E(MSC:T) and the E(MSS:CT)'



CHAPTER VIII

SUMMARY AND CONCLUSIONS

The main purpose of this study was to propose an operational
definition of independence of analytic units, and to use that definition
in an investigation of the effects of violating the assumption of inde-
pendence. A secondary purpose was to expand upon a conditional testing
procedure that had been proposed in past research and to test its valid-
ity. This conditional testing procedure included a preliminary test of
independence that was used to select the unit of analysis to use in
testing the primary hypothesis of no treatment differences. How the
number of individual units per group, the number of groups per treatment
level and the type and degree of dependence within groups affected both
the validity of using correlated units of analysis and the consequences
of using a conditional testing procedure were studied analytically. 1In
addition, the size of the effects were estimated empirically.

It was proposed that independence be operationally defined as:
Disaggregate or ungrouped units can be considered as independent units
whenever the variance of the aggregate or grouped units can be predicted
from the grouping size and the variance of the disaggregate units. This
definition of independence can be translated into testing the equality
of expected mean squares between and within groups. That is, given the

above definition of independence, the expected mean square between

142
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groups, E(MSC:T)’ should equal the expected mean square within groups,
E(MSS:CT)’ for the two-level, hierarchically-nested design considered
in this study, which within each treatment had subjects grouped into
classrooms. Also, under independence of responses between and within
groups, the intraclass correlation coefficient would equal zero.

Given the above operational definition of independence, two types
of dependency are possible, positive dependence and negative dependence.
Positive dependence was defined by the expected mean square between
groups being larger than the expected mean square within groups, or
similarly by the intraclass correlation coefficient being greater than
zero. Negative dependence was defined by the expected mean square
within groups being larger than the expected mean square between groups,
or similarly by the intraclass correlation coefficient being less than
zero. Negative dependence can occur only when subjects within groups
are considered fixed, while positive dependence can occur with subjects
considered as either fixed or random. Either type of dependence can be
caused by an additive effect (which influences the variation between
groups), a proportional effect (which influences the variation within
groups), and nonrandom assignment, which most probably will result in
either positive or negative dependence. Random assigmment of students
to classrooms does not perforce erase the possibility of positive or
negative dependence occurring. It can and does happen that units
randomly assigned to treatment conditions do not receive the treatments
independently and thus the randomly assigned units are not independent

of each other.



144

Given a definition of independence which is measurable, both
the analytic and empirical consequences of using correlated units of
analysis were considered. The empirical estimation part of the study
was done to see if hypothesized effects of correlated units on alphas
and powers were large enough to affect practice. In some respects, the
parameter values specified for the Monte Carlo portion of this study
limit generalizations of empirical effects. However, care was taken
to select parameter values held to be common in educational data.

The basic research design had a balanced, two-level hierarchically-
nested structure, with students nested within classrooms and classrooms
nested within treatments. Two analysis of variance models were used to
analyze data fitting this general design. Classroom was the analytic
unit for one model, while student was the analytic unit for the other
model. The model having classroom as the unit of analysis was called
the "never pool" model. The model with student as the unit of analysis
was called the "always pool" model as its mean square error term was a
pooled or weighted sum of the mean square between classrooms and the
mean square within classrooms. Parameters that were allowed to vary
included the number of students per classroom, the number of classrooms
per treatment and the type and degree of dependence within each class-
room. Each combination of number of students per classroom (s) and
number of classrooms per treatment (c) was called a design. In total,
the empirical study considered five designs and within each design, data
for each of 1,000 samples were altered such to create defined types and

degrees of dependence. The three basic assumptions of normality,
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independence, and homoscedasticity held for all simulated classroom
means; however, observations within each group or classroom were
controlled only to the extent that they were normally distributed
and had equal variances.

Given independence of student responses, both the analytic and
empirical analyses showed that either student or classroom can be
used as the unit of analysis. That is, both the "never pool" test,
F= MST/MSC:T’ and the "always pool" test, F = MST/HSS:T’ are appro-
priate tests of treatment effects. All empirical alphas for both
tests were within 1.96 standard errors of their nominal values.

F = MST/MSS:T is the preferable test, however, as it always had

more power than did the test F = MST/MS Over the five designs

C:T’
and the five nominal alpha levels, the power of the "always pool" test
exceeded that of the "never pool" test by an average of .081. The
"always pool" test's advantage in power ranged from a low of .004
(¢=10, 8=12, aa=.25) to a high of .223 (¢=5, s=20, a=.01). Given
a seemingly appropriate design for elementary school research (c=5 and
s = 20), the power discrepancy at a= .05 between the '"never pool" test
and the "always pool" test was .lll, favoring the "always pool" test,
which has student as the unit of analysis. Given independence, the
discrepancy in power between these two ANOVA tests comes solely from
the difference in degrees of freedom error for each of the F tests.
Given positive dependence, where the E(MSC:T) was greater than

the E(MS ), the proper unit of analysis is the grouped unit, class-

S:CT

rooms. Using the disaggregate unit as the unit of analysis caused the
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pooled error term, E(MS , to be bilased on the small side. And

S:T)
this attenuation caused the "always pool" test, F = MSTlnss:T, to
be too liberal. For both simulated degrees of positive dependence,
none of the empirical alphas were within 1.96 standard errors of their
respective nominal value. This suggests that the effect of positively
correlated units can result in spurious significance. In addition,
the empirical magnitudes of the differences between the nominal and
actual alphas were of sufficient size to suggest that having positively
correlated units of analysis results in negative effects that are of
meaningful and practical importance. The liberalness increased as the
number of students per class increased and as the degree of positive
dependence increased, i.e., the ratio of the E(MSC:T) over the E(MSS:CT)
increased above one. The liberalness decreased as the number of classes
per treatment increased. Because of the general liberalness of the
"always pool" test, given positive dependence, the empirical power of
that test was spuriously high.

Given negative dependence, where the E(MSC:T) was less than the

E(MS ), the correct unit of analysis is once again the grouped unit.

S:CT
Using the ungrouped unit as the unit of analysis caused the pooled

error term, E(MS to be biased on the high side. That is, the

S:T)’

"always pool" test, F = MST/MS , was too conservative a test. For

S:T
both simulated degrees of negative dependence, none of the empirical
alphas were within 1.96 standard errors of their respective nominal

alpha. This suggests that the effect of negatively correlated units

of analysis can result in spurious lack of significance. Here too,
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the actual magnitudes of the discrepancies between the nominal and
empirical alpha values were of such size to indicate that having
negatively correlated units results in negative effects that are

of meaningful importance. While the analytic analysis suggested

that increasing the number of students per class should increase

the conservativeness and increasing the number of classes per treat-
ment should decrease any conservativeness, the empirical analysis
found no clear trends. This lack of trend may have been due, in part,
to a "floor effect." Decreasing the ratio of the E(MSC:T) over the

E(MS ) to below one (which is the same thing as increasing negative

S:CT
dependence within the data) did, however, increase the conservativeness
of the "always pool" F statistic, as expected. The conservativeness
spuriously reduced the empirical power of the "always pool" test to
such an extent that, in all simulated cases, but one, the advantage
of using the "always pool" test in the first place (more degrees of
freedom error) was cancelled out.

What do the above analytic and empirical results suggest for the
practitioner? They suggest that when dealing with educational data,
in almost all cases, the grouped unit, such as classrooms, should be
the unit of analysis. If, however, the data do happen to be indepen-
dent of each other, it is clearly advantageous to use the individual
unit as the unit of analysis. The results indicated quite convincingly
that the F test is not robust to violations of the assumption of

independence, even for small degrees of dependence. This conclusion

should be kept in mind both when designing and analyzing experiments
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as well as when interpreting the results from studies which have not
followed the advice from this investigation. Closely tied to this,
of course, is a real need to empirically determine the types and
degrees of dependence most common in real world, educational data.

One might ask next, Is it feasible to first do an initial test
of independence, and then on the basis of that test choose a unit of
analysis for the primary test of treatment effects? This study showed
clearly, both analytically and empirically, that the answer to this
question is no. Two criteria were used to judge the adequacy of the
conditional testing procedure, which is also called the "sometimes pool"
test. First, the empirical alpha should be close to its respective
nominal value. And second, the power of the conditional or "sometimes
pool" test should be greater than the power of the always correct,
"never pool" test, F = MST/MSC:T'

Actually three different preliminary tests of independence were
considered (one at a time) under the "sometimes pool" procedure. The
first was a two-tailed preliminary test which tested for the inequality
of the mean square between and the mean square within classroom error
terms. The second, an upper-tailed preliminary test, tested whether
the mean square between classes was larger than the mean square within
classes. The third preliminary test, a lower-tailed test, tested for
the condition that the mean square within classrooms was larger than
the mean square between classrooms.

Only when independence of student responses occurred did the

conditional testing procedure turn out to be very effective. For
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that condition and given the two-tailed, the upper-tailed only and
the lower-tailed only preliminary tests, 80% of the empirical condi-
tional test alphas were within 1.96 standard errors of the nominal
alphas and 96.5% of the powers of the conditional test were greater

than comparable powers of the '"nmever pool" test, F = MST/MS Across

C:T*
the three types of preliminary tests and across all five designs, the
difference between the power of the "sometimes pool" F test and the
"never pool" F test averaged .073, favoring the "sometimes pool" test.
Given any of the three preliminary F tests, the discrepancy between
the powers of the "sometimes pool" test and the powers of the "never
pool" test decreased as the number of groups per treatment increased
and as the alpha levels of the "sometimes pool" and "never pool" test
increased. On the other hand, the discrepancy increased as the number
of students per group increased. For both the two-tailed and upper-
tailed preliminary test situations, the discrepancy between the powers
of the "sometimes pool" and the "never pool" tests decreased as the
alpha level of the preliminary test increased. However, this trend
(which was expected) was reversed when the lower-tailed preliminary
test was used, most likely because the observed alpha levels of the
"sometimes pool" test tended to become too liberal as the preliminary
test alpha level increased.

Given positive dependence, the conditional F test generally turned
out to be too liberal a test and thus had spuriously high empirical
power. Given either the two-tailed or upper-tailed preliminary tests,

the liberalness of the "sometimes pool" statistic decreased as the



150

number of groups per treatment increased, as the degree of positive
dependence increased, as the alpha level of the preliminary test
increased and as the alpha level of the 'sometimes pool" test
increased. Increasing the number of students per group had no
simple effect on the liberalness of the '"sometimes pool" test.
Across the five designs considered and given the two-tailed pre-
liminary F test of independence, 227 and 35.2% of the '"sometimes
pool" or conditional F tests were, however, robust to the occurrence

of positive dependence, where E(MSC.T)/E(MS ) equalled 2 and 3,

S:CT
respectively. For those simulated circumstances, where the "sometimes
pool" test did empirically appear to be robust to the occurrence of
positively correlated analytic units, the difference between the
empirical powers of the "sometimes pool" and the '"never pool" tests
averaged only .014, favoring the "sometimes pool" test. Given positive
dependence, the magnitude of effects for the conditional test, following
either a two-tailed preliminary test done at 20 or an upper-tailed
preliminary test done at a, were comparable. On the other hand, the
"sometimes pool" F test statistic, given positive dependence and a
lower-tailed preliminary test, was distributed as the F = MST/MSs:T
test statistic as varying the alpha level of the preliminary test had
negligible affect on the "sometimes pool" test statistic.

Given negative dependence, the conditional test was somewhat
conservative and generally had less power than the '"never pool"
F = MST/MSC:T test. Given either the two-tailed or lower-tailed

preliminary tests, the conservativeness of the '"sometimes pool"



151

statistic decreased as the degree of negative dependence increased,

as the alpha level of the preliminary test increased and as the alpha
level of the "sometimes pool" test éecreased. And also as expected,
increasing the number of students per group again had no simple effect
on the conservativeness of the "sometimes pool" test. The analytic
analysis suggested that increasing the number of groups per treatment
should decrease the conservativeness of the '"sometimes pool" test sta-
tistic, but the simulated data were weak in confirming this expected
trend. Across the designs considered and given the two-tailed pre-
liminary F test, 60.8% and 72% of the "sometimes pool" or conditional
F tests were empirically robust to the occurrence of negative depen-

dence, where E(MSC.T)/E(MS ) equalled .50 and .33, respectively.

S:CT
For those specific empirically robust instances, the differences

between the empirical powers of the "sometimes pool" and the '"never
pool" tests averaged -.010, favoring the '"never pool" test. Given

the E(MSC'T) was less than the E(MS ), the magnitude of effects

S:CT
for the conditional test, following either a two-tailed preliminary
test done at 20 or a lower-tailed preliminary test done at o, were
comparable. The "sometimes pool'" F test statistic, given negative
dependence and an upper-tailed preliminary test of independence, was
distributed like the "always pool" F test statistic as varying the
alpha levels of the preliminary test had essentially no affect on
the "sometimes pool" test statistic.

In summary, this study shows that, in an hierarchically-nested

design with one outcome measure per subject, as a general rule of
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thumb any preliminary test of independence should not be used to
choose a unit of analysis to test for treatment differences. That
is, the decision of what analytic unit to use should not be based

on the test F = MSC.T/MS If individual units are independent,

S:CT’
the "always pool" F = MST/MSS°T test is best. If individual data are
not independent, the '"mever pool" F = MST/MSC'T test is best. However,

the problem is the researcher is never actually in the position of
knowing before the analysis stage whether or not responses of subjects
nested within groups are, in fact, independent responses. And this in
and of itself suggests that the researcher should in general be using
the grouped unit as his unit of analysis, at least in educational
research where dependence most probably is the rule rather than the

exception.
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Distribution of Sample Classroom Means and Student Observations

Student Observations

(N=10,000)
Classroom Means Observed
(N=2,000) E(MSC:T) /E(MSS:CT)
Expected Observed Expected .33 .50 1 2 3
22 28 110 105 109 113 119 120
24 19 120 130 128 138 135 126
44 40 220 239 226 201 185 201
104 92 520 471 486 527 551 547
290 301 1,450 1,443 1,439 1,420 1,441 1,444
516 508 2,580 2,610 2,603 2,587 2,547 2,553
516 532 2,580 2,579 2,583 2,591 2,605 2,571
290 310 1,450 1,481 1,451 1,442 1,428 1,441
104 99 520 501 527 536 541 550
44 33 220 219 233 237 234 231
24 17 120 131 121 109 117 118
22 21 110 91 94 99 97 97
x? 11.92 13.43  6.42  9.16 14.43  8.50
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Table A-2

Moments for Student within Treatment Type Data when c=2 and s=12

E(Msc:T)/ Central Noncentral
E(HSS'CT) Treatment Mean Variance Skew Kurtosis Mean
.33 1 .0049 .9456 -.0111 .0728 .4049
.33 2 -.0043 .9510 .0206 .0079
.50 1 .0060 .9589 -.0106 .0732 .4060
.50 2 -.0052 .9652 .0211 .0076
1 1 .0085 .9988 -.0097 .0724 .4085
1 2 -.0074 1.0076 .0213 .0069
2 1 .0121 1.0785 -.0094 .0683 4121
2 2 -.0104 1.0924 .0193 .0061
3 1 .0148 1.1583 -.0010 .0640 .4148
3 2 -.0128 1.1772 .0162 .0056
Table A-3

Moments for Student within Treatment Type Data when c¢=5 and s=5

E(Msc:T)/ Central Noncentral
E(MSS_CT) Treatment Mean Variance Skew Kurtosis Mean
.33 1 -.0019 .8708 .0002 -.0053 .3981
.33 2 -.0044 .8800 .0038 -.0201
.50 1 -.0024 .9044 .0035 .0023 .3976
.50 2 -.0053 .9129 .0023  -.0202
1 1 -.0033 1.0052 .0093 .0178 .3967
1 2 -.0075 1.0115 -.0001 -.0204
2 1 -.0047 1.2067 .0133 .0320 .3953
2 2 -.0107 1.2087 -.0018 -.0208
3 1 -.0058 1.4082 .0139 .0367 .3942
3 2 -.0131 1.4059 -.0020 -.0212
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Table A-4

Moments for Student within Treatment Type Data when c=5 and s=12

E(MSC:T)/ Central Noncentral
E(MSS_CT) Treatment Mean Variance Skew Kurtosis Mean
.33 1 -.0003 .9466 -.0040 -.0083 .3997
.33 2 -.0025 .9375 -,0046 .0053
.50 1 -.0003 .9605 -.0029 -.0075 \ 3997
.50 2 -.0031 .9515 -.0055 .0064
1 1 -.0004 1.0023 .0000 -.0063 .3996
1 2 -.0044 .9935 -.0076 .0081
2 1 -.0006 1.0858 .0046 -.0061 .3994
2 2 -.0062 1.0774 -.0108 .0086
3 1 -.0008 1.1694 .0084 -.0069 .3992
3 2 -.0076 1.1614 -.0133 .0072

Table A-5

Moments for Student within Treatment Type Data when c=5 and s =20

E(MSC:T)/ Central Noncentral
E(MSS_CT) Treatment Mean Variance Skew Kurtosis Mean
.33 1 .0003 .9649  .0138 .0075 .4003
.33 2 -.0010 .9577  .0067 -.0104
.50 1 .0004 .9734 .0138 .0078 .4004
.50 2 -.0013 .9658  .0067 -.0101
1 1 .0006 .9988  .0137 .0083 .4006
1 2 -.0018 .9900 .0065 -.0095
2 1 .0008 1.0497 .0136 .0085 .4008
2 2 -.0026 1.0385 .0062 -.0087
3 1 .0010 1.1007 .0135 .0086 .4010
3 2 -.0031 1.0870 .0058 -.0083
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Table A-6

when ¢=10 and s =12

E(Msc:T)/ Central Noncentral
E<MSS'CT) Treatment Mean Variance Skew Kurtosis Mean
.33 1 .0006 <9490 .0017 -.0048 .4006
.33 2 -.0018 .9492 .0110 .0093
.50 2 -.0022 .9632 .0117 .0113
1 1 .0010 1.0044 .0026 -.0053 .4010
1 2 -.0031 1.0051 .0130 .0153
2 1 .0014 1.0874 .0037 -.0053 .4014
2 2 -.0043 1.0889 .0143 .0191
3 1 .0017 1.1705 .0047 -.0052 .4017
3 2 -.0053 1.1728 .0147 .0206
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Table A-7

Three Distributional Statistics® for Standardized Mean
Square Values, Given c=2 and s=12

Mean Variance Skew

Central case:

MS,, Mean? 1.00 (1.00)°  2.30 (2.00)  3.00 (2.83)

MS..o Mean 2.00 (2.00) 3.80 (4.00) 1.90 (2.00)

MS¢.cr Mean 44.00 (44.00) 93.00 (88.00) 0.45 (0.43)

MSg.p Mean 46.00 (46.00) 97.20 (92.00) 0.47 (0.42)
Noncentral case:

MST Mean 1.06 1.28 1.86

MSC:T Mean 2.00 3.80 1.90

MSg. or Mean 44.00 93.00 0.45

MS¢.p Mean 46.00 97.20 0.47

8The values for the distributional statistics were averaged over the
four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table A-8

Three Distributional Statisticsa for Standardized Mean
Square Values, Given c=5 and s=5

Mean Variance Skew

Central case:

MS, Mean? 0.96 (1.000°  2.10 (2.00) 3.10 (2.83)

MS..p Mean 7.90 (8.00) 17.00 (16.00) 0.93 (1.00)

MSq.cp Mean 40.00 (40.00) 85.00 (80.00) 0.42 (0.45)

MSg.p Mean 48.00 (48.00) 109.80 (96.00) 0.43 (0.41)
Noncentral case:

MST Mean 1.00 0.98 1.76

Msch Mean 7.90 17.00 0.93

MSS:CT Mean 40.00 85.00 0.42

MSg. o Mean 48.00 109.80 0.43

8The values for the distributional statistics were averaged over the
four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table A-9

Three Distributional Statisticsa for Standardized Mean

Square Values, Given c¢=5 and s =12

Mean Variance Skew
Central case:
MS, Mean 0.96 (1.00)°  1.80 (2.00) 2.80 (2.83)
MSC:T Mean 8.10 (8.00) 15.00 (16.00) 0.94 (1.00)
MSq. cr Mean 110.00 (110.00) 210.00 (220.00) 0.28 (0.27)
MSq.q Mean 120.00 (118.00) 234.00 (236.00) 0.32 (0.26)
Noncentral case:
MS, Mean 1.00 0.68 1.32
C:T Mean 8.10 15.00 0.94
MSg.or Mean 110.00 210.00 0.28
MSS:T Mean 120.00 234.00 0.32

3The values for the distributional statistics were averaged over the
four conditions of dependence and the independence condition.

bI’ar:enthesized values are the theoretical distributional properties.
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Table A-10

Three Distributional Statisticsa for Standardized Mean
Square Values, Given c¢=5 and s =20

Mean Variance Skew

Central case:

MS,, Mean® 1.00 (1.00)°  2.10 (2.00)  2.80 (2.83)

MSC=T Mean 8.10 (8.00) 16.00 (16.00) 0.92 (1.00)

MSq.cr Mean 190.00 (190.00) 370.00 (380.00) 0.21 (0.21)

MS¢.p Mean 200.00 (198.00) 404.00 (396.00) 0.20 (0.20)
Noncentral case:

MST Mean 1.00 0.50 1.07

MSC:T Mean 8.10 16.00 0.92

MSg. op Mean 190.00 370.00 0.21

MSg.p Mean 200.00 404.00 0.20

8The values for the distributional statistics were averaged over the
four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table A-11

Three Distributional Statisticsa for Standardized Mean
Square Values, Given ¢ =10 and s=12

Mean Variance Skew

Central case:

MS,, Mean? 0.95 (1.00)®>  1.90 (2.00) 2.50 (2.83)

MS..p Mean 18.00 (18.00) 33.00 (36.00) 0.72 (0.67)

MSg.or Mean 220.00 (220.00) 470.00 (440.00) 0.26 (0.19)

MSg.r Mean 240.00 (238.00) 532.00 (476.00) 0.26 (0.18)
Noncentral case:

MS., Mean 1.00 0.42 1.01

MSC:T Mean 18.06 33.00 0.72

MSS:CT Mean 220.00 470.00 0.26

MSS:T Mean 240.00 532.00 0.26

3The values for the distributional statistics were averaged over the
four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table B-1
Estimated Type I Errors for F = MST/MSS_T Using a Rescaled F Statistic
d.f. Mean
c s error .010 .025 .050 .100 .250 alpha
2 12 (46) .000 .000 .001 .006 .052 .012
5 5 (48) .000 .000 .002 .008 .062 .014
.33 5 12 (118) .000 .000 .001 .006 .052 .012
5 20 (198) .000 .000 .001 .005 .049 .011
10 12 (238) .000 .000 .001 .006 .052 .012
Mean alpha .000 .000 .001 .006 .053
2 12 (46) .001 .002 .007 .023 .110 .029
S 5 (48) .001 .003 .009 .027 121 .032
.50 5 12 (118) .000 .002 .007 .023 111 .029
5 20 (198) .000 .002 .006 .022 .108 .028
10 12 (238) .000 .002 .007 .023 111 .029
—~ Mean alpha .000 .002 .007 .024 112
B
3
o 2 12 (46) .0105 .0252 .050% .1007 .2507  .087
2] 5 S (48) .010a .025a .050a .100a .250a .087
= 1 5 12 (118) .010a .025a .050a .100a .250a .087
= 5 20 (198) .010a .025a .050a .100a .250a .087
B 10 12 (238) .010 .025 .050 .100 .250 .087
(3]
[72]
& Mean alpha .010 .025 .050 .100 .250
™
2 12 (46) .058 .101 .153 .231 414 .191
5 5 (48) .046 .084 131 .206 .388 171
2 5 12 (118) .058 .100 .151 .228 .409 .189
5 20 (198) .062 .105 .157 .235 .416 .195
10 12 (238) .058 .099 .150 .227 .408 .188
Mean alpha .056 .098 .148 .225 .407
2 12 (46) .113 .170 .232 .318 494 .265
5 5 (48) .080 .130 .186 .269 .450 .239
3 5 12 (118) .110 .165 .226 .310 .486 .259
5 20 (198) .120 177 .238 .333 497 .273
10 12 (238) 112 .167 .227 312 487 .261
Mean alpha .107 .162 .222 .308 .483
3Estimated alpha is within 1.96 standard errors of the nominal alpha.



APPENDIX C

POWERS OF THE CONDITIONAL F GIVEN A

TWO-TAILED PRELIMINARY TEST



163

Table C-1

Power of the Conditional F Test Given a Two-Tailed

Preliminary Test, c=2 and s=12

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250

.02 .056 .115 .200 .362 .694

.05 .088 .155 .240 .391 .706

.33 .10 .093 .183 .285 434 .733

.20 .094 .204 .352 .505 .766

.50 .087 .188 .364 .574 .809

c:T@ .074 .149 .297 .499 .793

.02 .074 .143 .228 .390 .662

.05 .091 .169 .250 .408 .672

.50 .10 .101 .193 277 .428 .684

.20 .101 .213 .311 477 714

.50 .083 .188 .310 .503 .729

’E; C:T .055 .124 .217 .389 .708
o .02 .125 .201 .296 .416 .610
g .05 .126 .202 .295 .413 .601
= 1 .10 .128 .208 .303 417 .598
~, .20 .126 .213 .307 417 .584
3 .50 .098 .179 .273 .374 .571
Q C:T_ .036 .086 153 .261 .533
S |s:it 114 .190 .286 .409 .607
.02 .175 .248 .326 412 .565

.05 .168 .237 .313 .396 .545

2 .10 .157 .223 .294 .369 .516

.20 .137 .206 .270 .341 .488

.50 .091 .145 .204 . 264 .435

C:T .023 .057 .103 .194 . 406

.02 .192 .268 .336 .385 .519

.05 .175 .243 .305 .350 .489

3 .10 .158 .222 .280 .324 461

.20 .135 .191 .232 272 411

.50 .080 .125 .159 .210 .381

C:T .021 .047 .086 .167 .353

aPower of the

bPower of the

"never pool" test F = MST/MS

n " =
always pool" test F MST/MSS:T'

C:T°
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Power of the Conditional F Test Given a Two-Tailed

Preliminary Test, c=5 and 8=5

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250
.02 .164 .259 .355 .532 .797

.05 .220 .342 WANA .607 .828

.33 .10 .249 .392 .511 .668 .842

.20 .261 .418 .560 .718 .871

.50 .265 440 .596 .761 .893

c:T2 .265 436 .594 .760 .896

.02 .102 .191 .279 451 .721

.05 .131 .230 .321 .488 .739

.50 .10 .149 .262 .360 .520 .761

.20 .167 .295 .408 .566 .781

.50 174 .309 431 .600 .811

’g; C:T .162 .287 .420 .592 .813
a .02 .107 .190 .278 .403 .643
a .05 .108 .192 .279 .401 .645
= 1 .10 .110 .192 .278 .399 .649
=~ .20 .117 .190 .270 .394 .643
& .50 .103 174 .252 .383 .628
g§’ C:T 078 .149  .227  .359  .621
1 s:TP .102 .186 274 .402 645
.02 .128 .186 247 .337 .549

.05 114 .163 .215 .306 .522

2 .10 .104 .156 .207 .291 .504

.20 .091 .135 .184 .273 .486

.50 .062 .107 .158 .249 .455

C:T .038 .085 .141 .229 447

.02 .107 .152 .208 .284 465

.05 .093 .132 .187 .263 .438

3 .10 .074 .115 .167 .243 .419

.20 .057 .101 .145 .213 .408

.50 .043 .080 .121 .194 .389

C:T .024 .069 .107 .191 .383

8power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/HS

C:T"

S:T*
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Table C-3

Power of the Conditional F Test Given a Two-Tailed
Preliminary Test, c¢=5 and s=12

Conditional test
nominal alpha

Preliminary test

nominal alpha .010 .025 .050 .100 .250

.02 443 .599 .766 .887 .971

.05 .526 .681 .817 .914 .982

.33 .10 .611 .753 .855 .933 .986

.20 .658 .813 .893 .955 .992

.50 .679 .846 .916 .964 .997

c:T? .661 .839 .916 .966 .997

.02 .365 .524 .674 .816 .939

.05 .399 .561 .711 .833 .946

.50 .10 448 .605 .745 .850 .952

.20 .483 .648 .784 .869 .961

.50 495 .692 .812 .892 .969

A .02 .341 .463 .583 .719 .869
2 .05 .333 452 574 .715 .868
= 1 .10 .334 .452 .570 .711 .861
N .20 .328 441 .560 .701 .859
e .50 .283 .395 .530 .689 .849
gf’ C:T .193 .322 478 .657 .843
S S:Tb .346 .470 .590 724 .869
.02 .267 .340 422 .529 .716

.05 .228 .302 .383 .499 .688

2 .10 .194 .265 .351 .480 .669

.20 .156 .227 .306 WA .654

.50 .109 .190 277 417 .642

C:T .075 .160 .261 .399 .638

.02 .167 .217 .276 .380 .585

.05 .128 .184 .247 .355 .564

3 .10 .109 .167 .230 .336 .551

.20 .083 .142 .207 .315 .537

.50 .067 .120 .186 .305 .528

C:T .053 .110 .176 .299 .524

3power of the "never pool” test F = MST/MSC_T.

Ppower of the "always pool" test F = MST/MSS_T.
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Table C-4

Power of the Conditional F Test Given a Two-Tailed
Preliminary Test, c=5 and s =20

Conditional test
nominal alpha

Preliminary test

nominal alpha .010 .025 .050 .100 .250

.02 .753 .895 .947 .982 .998

.05 .806 .918 .961 .986 .998

.33 .10 .855 .940 .975 .993 .999

.20 .892 .958 .982 .997  1.000

.50 .916 .971 .992 .998 1.000

c:T? .896 .967 .990 .998 .999

.02 .671 .827 .902 .950 .991

.05 .694 .845 .914 .955 .991

.50 .10 724 .863 .926 .964 .992

.20 .760 .886 .938 .971 .993

.50 .780 .898 .950  .978 .997

. |c:T .721 .861 .937 .978 .997
5 .02 .599  .725 _ .805  .878  .945
» .05 .588 .713 .794 .875 .945
g 1 .10 .576 .704 .786 .871 .943
= .20 .559 .686 .782 .862 .939
~. .50 .494 .632 740  .837 .937
G| CiT .381 .552 .699 .822 .938
g |s:b .604 .730 .810 .881 .947
=] .02 .423 .527 .602 .685 .828
.05 .373 .479 .561 .656 .814

2 .10 .332 .433  ,517 .627 .801

.20 .279 .387 .488 .604 .792

.50 .207 .329 447 .575 .785

C:T .164 .292 .429 .569 .781

.02 .252 .332 .425 .521 .705

.05 .195 .281 .382 .491 .692

3 .10 .167 .256 .360 .474 .681

.20 .143 .226 .333 .460 .674

.50 .108 .203 .313 .450 .669

C:T .094 .195 .302 .448 .666

8power of the "never pool" test F = MS./MS.,pe

bPower of the "always pool" test F = MST/MSS'T'
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Table C-5

Power of the Conditional F Test Given a Two-Tailed

Preliminary Test, c¢=10 and s =12

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250

.02 .953  .981  .992  .999  1.000

.05 .972 .991  .996  .999 1.000

.33 .10 .982  .993  .997  .999  1.000

.20 .985  .996  .999 1.000 1.000

.50 .987  .996  .999 1.000 1.000

c:T? .986 .996 .999 1.000 1.000

.02 .850  .922 .963 _ .984  .998

.05 .873  .940  .971  .987 1.000

.50 .10 .895  .950  .977  .989 1.000

.20 911  .962  .982  .991 1.000

_ .50 .925  .965  .984  .995 1.000
S | c:T .920  .965  .984  .995 1.000
gf’ .02 .721  .827  .883  .930  .970
S .05 .716  .824  .880  .928  .970
= 1 .10 .713 .821  .880  .926  .969
& .20 .700 .811  .875  .926  .968
3} .50 .668  .794  .862  .921  .966
£ ot 621 .773 _ .852  .915  .967
m S:TP .720 .826  .883  .931  .971
.02 .433  .542  .652  .752  .876

.05 .377  .492  .615  .731  .870

2 .10 .338  .457  .595  .722  .865

.20 .312 .432  .577 .714  .859

.50 .281  .415  .566  .706  .857

C:T .268  .411  .562  .705  .857

.02 .213  .310  .406  .559  .771

.05 .195  .294  .396  .551  .768

3 .10 179 .282 .391  .547  .767

.20 .176  .279  .389  .543  .766

.50 174 275 .386  .540  .765

C:T .173  .275  .386  .539  .765

8power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MS

C:T°®

S:T*
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Power of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c=2 and s =12

Preliminary test

Conditional Test
nominal alpha

nominal alpha .010 .025 .050 .100 .250

.01 .028 .087 177 .342 .685

.025 .028 .087 177 .342 .685

.33 .05 .028 .087 177 .342 .685

.10 .028 .087 .177 .342 .683

.25 .028 .086 174 .335 .673

c:T? .074 .149 .297 .499 .793

.01 .053 .126 .211 .376 .656

.025 .053 .126 211 .376 .656

.50 .05 .053 .126 .211 .376 .654

.10 .053 .125 .209 .373 .650

.25 .049 .116 .195 .351 .620

~, |c:T .055 124 .217 .389.  .708
Q .01 .113 .189 .285 .407 .603
» .025 111 .185 .278 .398 .591
g 1 .05 .107  .178  .270  .388  .578
= .10 .105 172 .260 .374 .554
~. .25 .090 144 .218 .314 .509
S ofcr .036 .086 .153 .261 .533
g |[s:b 114 .190  .286  .409  .607
= .01 .170 .242 .320 .406 .561
.025 .160 .226 .302 .386 .538

2 .05 .149 .210 .280 .355 .506

.10 .132 .185 .250 .318 471

.25 .096 .133 .181 .234 .405

C:T .023 .057 .103 .194 .406

.01 .187 .263 .332 .381 .517

.025 .168 .237 .299 .343 484

3 .05 .150 .214 .272 .313 .453

.10 127 .180 .221 .258 .399

.25 .084 122 .150 .191 .359

C:T .021 .047 .086 .167 .353

8power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MSS'T°

C:T°



169

Table D-2

Power of the Conditional F Test Given an Upper-Tailed

Preliminary Test, ¢=5 and s=5

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250

.01 .031 .105 .200 .397 .727

.025 .031 .105 .200 .397 727

.33 .05 .031 .105 .200 .397 .727
.10 .031 .105 .200 .397 .727

.25 .031 .105 .200 .397 .727

c:T? .265 .436 .594 .760 .896
.01 .057 .139 .229 .406 .689

.025 .057 .139 .229 .406 .689

.50 .05 .057 .139 .229 .406 .689
.10 .057 .139 .229 .406 .688

.25 .057 .139 .225 .399 .686

< | c:T .162 .287 .420 .592 .813

(&)

o .01 .101 .186 .273 .399 .641
g .025 .101 .186 .270 .394 .640
= 1 .05 .099 .179 .262 .386 .636
~ .10 .095 .168 .245 .366 .624

S .25 .078 .141 .217 .335 .599
@ C:T .078 149 227 .359 .621
S s:Tb .102 .186 .274 .402 .645

.01 .127 .186 .246 .336 .549

.025 .113 .162 .213 .305 .522

2 .05 .102 .154 .204 .290 .503
.10 .089 .133 .181 .271 .485

.25 .060 .105 .153 244 .453

C:T .038 .085 .141 .229 447
.01 .107 .152 .208 . 284 .465

.025 .092 .132 .187 .263 .438

3 .05 .073 .115 .167 .242 .419
.10 .056 .100 .144 .212 .408

.25 .042 .078 .120 .193 .389

C:T .024 .069 .109 .191 .383

8power of the "never pool" test F = HST/MS

bPower of the "always pool" test F = MST/MS

C:T"®

S:T*
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Table D-3

Power of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c=5 and s =12

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250

.01 .282 .485 .694 .855 .962

.025 .282 .485 .694 .855 .962

.33 .05 .282 .485 .694 .855 .962
.10 .282 .485 .694 .855 .962

.25 .282 .485 .694 .855 .962

c:T2 .661 .839 .916 .966 .997
.01 .312 .481 .646 .800 .937

.025 .312 .481 .646 .800 .937

.50 .05 .312 481 .646 .800 .937
.10 .312 .481 .646 .800 .936

.25 .304 474 .641 .798 .935

~, | cT .450 .651 .794 .889 .967

(&)

o .01 .341 .463 .583 .718 .868
] .025 .331 .450 .570 .708 .865
b=t 1 .05 .323 .439 .559 .698 .857
= .10 .306 .418 .536 .680 .853

& .25 .257 .364 .486 .647 .840
g§’ C:T 193 .322  .478  .657  .843
1 s:Tb .346 .470 .590 .724 .869

.01 .267 .340 422 .529 .716

.025 .228 .302 .383 .499 .688

2 .05 .194 .265 .351 .480 .669
.10 .156 .227 .306 444 .653

.25 .109 .189 .273 417 .638

C:T .075 .160 .261 .399 .638
.01 .167 .217 .276 .380 .585

.025 .128 .184 .247 .355 .564

3 .05 .109 .167 .230 .336 .551
.10 .083 142 .207 .315 .537

.25 .067 .120 .186 .305 .528

C:T .053 .110 .176 .299 .524

3power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MS

C:T*

S:T*
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Power of the Conditional F Test Given an Upper-Tqiled

Preliminary Test, c¢=5 and s =20

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250

.01 .685  .857 .929  .980  .998

.025 .685 .857 .929  .980  .998

.33 .05 .685  .857  .929  .980  .998

.10 .685  .857  .929  .980  .998

.25 .685  .857 .929  .980  .998

c:T? .896 .967 .990 .998 .999

.01 .644  .815  .897 .948  .991

.025 .644  .815 .897  .948  .991

.50 .05 .644  .815  .897  .948  .991

.10 .643  .815  .897 947  .991

.25 .638  .810  .895  .946  .991

B [cr 721 .861  .937  .978  .997
o .01 .598  .724  .805  .878  .945
2] .025 .584  .709  .791  .871  .944
= 1 .05 .570  .695  .779  .866  .942
~, .10 544  .671  .766  .854  .937
3 .25 472 .612  .719  .824 .932
e C:T .381 .552 .699 .822 .938
= s:Tb .604 .730 .810  .881 .947
.01 .423  .527  .602  .685  .828

.025 372 479 .561  .656  .814

2 .05 .331 .432  .516  .626  .801

.10 .278  .386  .487  .603  .791

.25 .205  .325 445 .574  .783

C:T 164 .292  .429  .569  .781

.01 .252  .332  .425 .521  .705

.025 .195  .281  .382  .491  .692

3 .05 .167 .256  .360  .474  .681

.10 142 226 .333 460  .674

.25 .107 .203  .313  .449  .669

C:T .096  .195 .302  .448  .666

8power of the "never pool" test F = MS_/MS
T

bPower of the "always pool" test F = MST/MSS'T'

C:T*
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Power of the Conditional F Test Given an Upper-Tailed
Preliminary Test, ¢=10 and s=12

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250
.01 .854 .942 .976 .996 1.000

.025 .854 .942 .976 .996 1.000

.33 .05 .854 .942 .976 .996 1.000

.10 .854 .942 .976 .996 1.000

.25 .854 .942 .976 .996 1.000

c:T? .986 .996 .999 1.000 1.000

.01 .805 .898  .957 .981 .998

.025 .805 .898 .957 .981 .998

.50 .05 .805 .898 .957 .981 .998

.10 .805 .898 .957 .981 .998

.25 .805 .896 .956 .981 .998

’}3 C:T .920 .965 .984 .995 1.000
o .01 717 .823 .880 .929 .970
2] .025 .709 .818 .876 .927 .970
= 1 .05 .701 .813 .875 .925 .969
>~ .10 .683 .801 .870 .922 .968
E .25 .640 .773 .852 .914 .965
%) C:T .621 .773 .852 .915 .967
S |s:TP .720 _ .826  .883  .931  .971
.01 .433 .542 .652 .752 .876

.025 .377 .492 .615 .731 .870

2 .05 .338 457 .595 .722 .865

.10 .312 432 577 .713 .859

.25 .281 415 .564 .705 .857

C:T .268 411 .562 .705 .857

.01 .213 .310 .406 .559 771

.025 .195 .294 .396 .551 .768

3 .05 .179 .282 .391 .547 .767

.10 .176 .279 .389 .543 .766

.25 174 .275 .386 .540 .765

C:T .173 .275 .386 .539 .765

8power of the "never pool" test F = MS_/MS
T

bPower of the "always pool" test F = MST/MS

C:T°

S:T°
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Table E-1
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Power of the Conditional F Test Given a Lower-Tailed

Preliminary Test, c¢c=2 and s =12

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250

.01 .056 .115 .200 .362 .694

.025 .088 .155 .240 .391 .706

.33 .05 .093 .183 .285 434 .733
.10 .094 .204 .352 .505 .768

.25 .087 .189 .367 .581 .821

c:T? .074 .149 .297 .499 .793
.01 074 143 .228 -390 662

.025 .091 .169 .250 .408 .672

.50 .05 .101 .193 .277 .428 .686
.10 .101 214 .313 .480 .720

.25 .087 .198 .326 .528 .765

~ C:T .055 124 .217 .389 .708

(&)

n .01 .126 .202 .297 .418 .614
g .025 .129 .207 .303 424 .617
= 1 .05 .135 .220 .319 .438 .627
Py .10 .135 .231 .333 .452 .637

E .25 .122 .225 .341 469 .669
Q C:T .036 .086 153 .261 .533
S s: TP 114 190  .286  .409 _ .607

.01 .190 .268 .351 443 .616

.025 .193 .273 .356 447 .619

2 .05 .193 .275 .359 .451 .622
.10 .190 .283 .365 .460 .629

.25 .180 274 .368 467 .642

C:T .023 .057 .103 .194 .406
.01 .231 .317 .394 .459 .623

.025 .233 .318 .396 .462 .626

3 .05 .234 .320 .398 466 .629
.10 .234 .323 .401 .469 .633

.25 .222 .315 .399 474 .643

C:T .021 .047 .086 .167 .353

8power of the "never pool" test F = MS_/MS
T

bPower of the "always pool" test F = MST/MSS_T.

C:T*
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Table E-2

Power of the Conditional F Test Given a Lower-Tailed
Preliminary Test, c¢=5 and 8=5

Conditional test
nominal alpha

Preliminary test

nominal alpha .010 .025 .050 .100 .250
.01 .164 .259 .355 .532 .797

.025 .220 .342 YA .607 .828

.33 .05 .249 .392 .511 .668 .842

.10 .261 .418 .560 .718 .871

.25 .265 440 .596 .761 .893

c:T? .265 436 .594 .760 .896

.01 .102 .191 .271 451 .721

.025 .131 .230 .321 .488 .739

.50 .05 .149 .262 .360 .520 .761

.10 .167 .295 .408 .566 .782

.25 174 .309 .435 .607 .814

’% C:T .162 .287 .420 .592 .813
dz .01 .108 .190 .279 .406 .647
E .025 .109 .192 .283 .409 .650
2 1 .05 .113 .199 .290 .415 .658
A .10 .124 .208 .299 430 .664
5 .25 127 .219 .309 .450 .674
gg C:T .078 .149 .227 .359 .621
= s:TP .102 .186 .274 .402 .645
.01 .150 .221 .302 .401 .616

.025 .150 222 .303 .401 .616

2 .05 .151 .223 .304 .401 .617

.10 .151 .223 .304 .402 .617

.25 .151 .223 .306 .405 .618

C:T .038 .085 .141 .229 447

.01 .171 .236 .320 .420 .617

.025 .172 .236 .320 .420 .617

3 .05 .172 .236 .320 421 .617

.10 172 .237 .321 421 .617

.25 .172 .238 .321 421 .617

C:T .024 .069 .109 .191 .383

3power of the "never pool" test F = MST/MSC°T'

Dpower of the "always pool" test F = MST/HSS”I"



175

Table E-3

Power of the Conditional F Test Given a Lower-Tailed
Preliminary Test, c=5 and s=12

Conditional test
nominal alpha

Preliminary test

nominal alpha .010 .025 .100 .050 .250

.01 .433 .599 .766 .887 .971

.025 .526 .681 .817 .914 .982

.33 .05 .611 .753 .855 .933 .986

.10 .658 .816 .893 .955 .992

.25 .679 .846 .916 .964 .997

c:Ta .661 .839 .916 .966 .997

.01 .365 .524 .674 .816 .939

.025 .399 .561 .711 .833 .946

.50 .05 448 .605 .745 .850 .952

.10 .483 .648 .784 .869 .962

.25 .503 .699 .817 .894 .971

’g C:T .450 .651 .794 .889 .967
dﬁ .01 .346 .470 .590 .725 .870
= .025 .348 472 .594 .731 .872
=2 1 .05 .357 .483 .601 .737 .873
f\H .10 0368 0493 '614 0745 0875
3 .25 .372 .501 .634 .766 .878
2] C:T .193 .322 .478 .657 .843
= s: TP 346 .470  .590  .724  .867
.01 .357 454 544 .641 .782

.025 .357 454 544 .641 .782

2 .05 .357 454 544 .641 .782

.10 .357 454 .544 .641 .783

.25 .357 454 .548 .641 .786

C:T .075 .160 .261 .399 .638

.01 .367 442 .526 .610 .752

.025 .367 442 .526 .610 .752

3 .05 .367 442 .526 .610 .752

.10 .367 442 .526 .610 .752

.25 .367 442 .526 .610 .752

C:T .053 .110 .176 .299 .524

%power of the "never pool" test F = MST/MSC'T'

bPower of the "always pool" test F = MST/MSS'T°
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Power of the Conditional F Test Given a Lower-Tailed

Preliminary Test, c=5 and s =20

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025 .050 .100 .250
.01 .753 .895 .947 .982 .998

.025 .806 .918 .961 .986 .998

.33 .05 .855 .940 .975 .993 .999

.10 .892 .958 .982 .997  1.000

.25 .916 .971 .992 .998 1.000

c:T2 .896 .967 .990 .998 .999

.01 .671 .827 .902 .950 .991

.025 .694 .845 .914 .955 .991

.50 .05 724 .863 .926 .964 .992

.10 .761 .886 .938 .972 .993

.25 .786 .903 .952 .980 .997

~, | c:T .721 .861 .937 .978 .997
2 .01 .605  .731  .810  .881  .947
n .025 .608 .734 .813 .885 .948
g |1 .05 .610  .739  .817  .886  .948
8 .10 .619 .745 .826 .889 .949
g .25 .626 .750 .831 .894 .952
O [T .381 .552 .699 .822 .938
2 |[s:Tb .604  .730  .810  .881  .947
= .01 .563 .670 .733 .798 .884
.025 .564 .670 .733 .798 .884

2 .05 .564 .671 .734 .799 .884

.10 .564 .671 .734 .799 .885

.25 .565 .674 .735 .799 .886

C:T .164 .292 .429 .569 .781

.01 .537 .623 .703 .753 .846

.025 .537 .623 .703 .753 .846

3 .05 .537 .623 .703 .753 .846

.10 .538 .623 .703 .753 .846

.25 .538 .623 .703 754 .846

C:T .094 .195 .302 .448 .666

8power of the "never pool" test F = MST/MS

bpower of the "always pool" test F = MST/MSS'T'

C:T®
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Table E-5

Power of the Conditional F Test Given a Lower-Tailed

Preliminary Test, ¢=10 and s =12

Preliminary test

Conditional test
nominal alpha

nominal alpha .010 .025  .050  .100  .250
.01 .953  .981  .992  .999  1.000

.025 972 .991  .996  .999  1.000

.33 .05 .982  .993  .997  .999 1.000

.10 .985  .996  .999 1.000 1.000

.25 .987  .996  .999 1.000 1.000

c:7? .986  .996  .999 1.000 1.000

.01 .850  .922  .963  .984  .998

.025 .873  .940  .971  .987 1.000

.50 .05 .895  .950  .977  .989 1.000

.10 911 .962  .982  .991 1.000

.25 .925  .967  .985  .995 1.000

& [cT 920  .965  .984  .995 1.000
o .01 .724  .830  .886  .932  .971
g .025 .727  .832  .887  .932  .971
= 1 .05 .732  .834  .888  .932  .971
A .10 .737  .836  .888  .935  .971
o .25 .748  .847  .893  .938  .972
Q[ C:T .621  .773  .852  .915  .967
S | s:Tb .720 .826  .883  .931  .971
.01 .642  .730  .795  .859  .920

.025 .642  .730  .795  .859  .920

2 .05 .642  .730  .795  .859  .920

.10 .642  .730  .795  .860  .920

.25 .642  .730  .797  .860  .920

C:T .268  .411  .562  .705  .857

.01 .589  .687  .744  .807  .879

.025 .589  .687  .744  .807  .879

3 .05 .589  .687  .744  .807  .879

.10 .589  .687  .744  .807  .879

.25 .589  .687  .744  .807  .879

C:T 173 .275  .386  .539  .765

3power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MSS°T'

C:T"
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