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ABSTRACT

OPERATIONALLY DEFINING THE ASSUMPTION OF

INDEPENDENCE AND CHOOSING THE APPROPRIATE

UNIT 0F ANALYSIS

By

Linda K. Glendening

The assumption of independence was operationally defined as:

Individual units (such as students) can be considered independent on

some dimension whenever the variance of the grouped units (such as

classrooms) can be predicted from the grouping size and the variance

of the individual units. When this definition of independence is

satisfied, the expected mean squares between and within groups are

equal. Given this operational definition, two types of dependence are

possible, positive and negative. Positive dependence was defined by

the expected mean square between groups being larger than the expected

mean square within groups. Negative dependence was defined by the

expected mean square within groups being larger than the expected mean

square between groups.

Both empirical and analytical methods were used to study the effect

of violating the assumption of independence, where the design model was

balanced and had two levels of nesting, subjects within groups and

groups within treatments. Group data were independent of each other,

while subjects within group data were manipulated to create different

degrees and types of dependence. The simulated data were analyzed using
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two ANOVA models, the "never pool" model where group was the unit of

analysis and so was an always correct model and the "always pool" model

with student as the unit of analysis.

First, sampling distributions using the "never pool" model and the

"always pool" model were compared for independent, positively dependent,

and negatively dependent conditions. Given independence of subject

responses, either subject or group can be used as the unit of analysis

as both the "never pool" and the "always pool" tests proved to have

acceptable Type I error rates for the test of treatment effects. The

"always pool" test is the preferable test, however, as it had more power

than did the "never pool" test. Given positive dependence, the proper

unit of analysis is the grouped unit. Using subject as the unit of

analysis caused the pooled error term for the "always pool" test to be

too small, and so the "always pool" test was too liberal and had

spuriously high power. Given negative dependence, the correct unit

of analysis is again the grouped unit. Using subject as the unit of

analysis caused the pooled error term for the "always pool" F test to

be too large and thus the "always pool" test was too conservative and

had spuriously low power. The empirical results indicated clearly that

the F test is not robust to violations of the assumption of independence,

even given small degrees of positive and negative dependence.

Next, a conditional testing procedure (a "sometimes pool" model)

was studied where an initial test of independence was done and then on

the basis of that test a unit of analysis was chosen for the primary

test of treatment effects. Sampling distributions using the "never
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pool" and the "sometimes pool" models were compared for independent,

positively dependent, and negatively dependent conditions. Given

independence of ungrouped units, the "sometimes pool" F test had

acceptable Type I error rates for the test of treatment differences,

as did the "never pool" test. In addition, the powers of the "sometimes

pool" test tended to be greater than the powers of the "never pool" test.

Given positive dependence, the "sometimes pool" F test generally was too

liberal and thus had spuriously high empirical power. And given nega—

tive dependence, the "sometimes pool" test was somewhat conservative

and generally had less power than the "never pool" F test. These

results suggest that, as a general rule of thumb, a preliminary test

of independence should not be done to choose a unit of analysis to use

in testing for treatment differences.
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CHAPTER I

STATEMENT OF THE PROBLEM

At least three standard assumptions are necessary whenever

parametric hypotheses are tested or confidence intervals constructed.

These three "minimum" assumptions cut across models, e.g., correlational

models and experimental models, and across research designs, e.g.,

crossed and nested designs. There is the assumption of equal variances

or homoscedasticity, the assumption of normality and the assumption of

independence. Since assumptions are rarely, if ever, exactly met in

real world situations, researchers need to be sensitive to departures

from the assumptions underlying the model to be used and they need to

be aware of the consequences of such departures. Thus when making

assumptions, it seems necessary to consider two questions in particular.

First, what happens when the assumptions are violated? Second, if it

is important that an assumption be satisfied, how can one tell when it

has been satisfied?

Failure to meet the assumptions of a model may affect both the

significance level of a test and the sensitivity of'a test (Cochran &

Cox, 1957, p. 91). It is well known that under certain circumstances

the analysis of variance is robust to violations of the assumptions

concerning homoscedasticity and normality (Glass, Peckham & Sanders,

1972). However violations of the assumption of independence are less



well understood and may substantially affect the validity of any

confidence statements based in part on that assumption and made

regarding the hypothesized effects. In comparison to research efforts

studying the effects of violating the homoscedasticity and normality

assumptions, very little research effort has systematically dealt with

the effects of using correlated units of analysis.

In cases where the analytic model is not robust to violating either

the homoscedasticity assumption or the normality assumption, tests exist

(e.g., Levene's [1960] test for equal variances and, if n is reasonably

large, the chi-square test for normality of data) that can be used for

making a decision about whether the assumption was violated. The ques—

tion remains as to whether or not the validity of the independence

assumption can also be tested.

The major intent of this study was to propose a definition of

independence that was both conceptually meaningful within the typical

educational paradigm and operationally measurable. Secondly, this study

addressed the effects on the sampling distribution of the F statistic

and the effects on parameter estimates when correlated units of analysis

were assumed to be independent of each other. More specifically, the

probability of Type I errors, the power of the test and the biasedness

of parameter estimates were examined when different degrees and types

of dependencies were present within the research model. And thirdly,

this study considered distributional problems with using a conditional

testing procedure which included a preliminary test of independence

and either one of two subsequent primary tests of treatment effects.



In particular, the probability of Type I errors and the power of the

conditional F test (where the error term for the primary test of treat-

ment effects was selected on the basis of the results of a preliminary

test of independence) were of interest, both for conditions where the

preliminary test should fail to reject and for conditions where the

preliminary test should reject that individual observational units

were independent. The two distributional problems were studied both

analytically (to determine the existence and direction of effects) and

empirically (to estimate the magnitude of effects). The general design

model used for studying these problems was a balanced, hierarchically-

nested analysis of variance model, having only one outcome measure per

subject.

Throughout this paper the effects of violating the assumption

of independence will be discussed within the context of the general

educational setting, where students are reacting to stimuli within a

group atmOSphere and where treatments or programs are usually given

to the entire classroom. Within each classroom situation, it seems

that different classroom or grouping components can make the responses

of individual students (observational units) dependent upon each other

to some degree. Some classroom components that can affect the

relationships between students' responses are:

0 classroom environment effect;

0 teacher or instructional effect; and

o classmate effect.



The first problem is knowing and measuring how dependence operates

within a particular classroom. A second problem involves designing

statistical models which minimize the possibility of dependence due

to one or more of the classroom components. Clearly the answer to

the first problem should guide solutions to the second.

As one research effort to empirically study the effect of a com-

mon learning environment on the achievement of students, Steck (1966)

randomly assigned thirty 7th graders to receive mathematical instruction

in a group and another thirty to receive the instruction on a one-to-one

basis. The presentation of the lesson was made by tape recorder to

ensure similarity of treatment. In both situations, students were

encouraged to ask questions concerning the lesson before they took a

test to measure the extent to which they had mastered the material.

Steck found that the variance of the scores of students who received

the presentation as a group was significantly smaller than the variance

of the scores of students who received the lesson individually. Steck's

results suggest that in this particular study either common classroom

experience decreased the variability of student responses and/or indi—

vidualized instruction increased the variability of student responses.

Clearly, however, this one study is not enough to conclude that the

opposite condition (where classroom experience actually increases

student variation and/or individualized instruction decreases student

variation) does not occur.

Just how classroom components affect student responses may depend

on such things as the student population. For example, the responses



of kindergarteners within a classroom may tend to be more related to

each other than the responses of 12th graders within a classroom. The

type of program instruction might also make a difference. For example,

a classroom discussion probably tends to make students' responses more

related to each other than does a classroom lecture. Independence (or

dependence) is not an all or nothing situation. Rather it is a matter

of degree. At one extreme, observational units can be completely

dependent upon each other. In this situation, N observational units

are no more informative than one observational unit. At the other

extreme, observational units can be completely independent (at least

in theory). In this situation, N observational units give N pieces of

nonoverlapping information. In—between these two extremes is a complete

continuum of dependency. It is this in—between area that gives

practicing statisticians headaches.



CHAPTER II

REVIEW OF LITERATURE

Definitions of Independence

Understanding the assumption of independence is prerequisite to

studying the consequences of violating that assumption. Thus this

section contains a review of the varying definitions of independence

contained in texts and papers dealing with statistical and research

design issues. The conclusion is that, for the most part, these sta—

tistical sources have been too theoretical and mystical to inform

practice on the assumption of independence itself and the consequences

of violating that assumption. Below are examples of how different

statisticians formally define independence. By themselves, these

definitions seem inadequate as they are conflicting in the suggested

causes of dependency and deficient in the assessment of dependency.

The experimental errors must all be independent. That is,

the probability that the error of any observation has a

particular value must not depend on the values of the

errors for other observations. (Cochran, 1947)

It is also assumed that the 81 's are independent, both

within each treatment level and across all treatment

levels. If subjects are randomly assigned to treatment

levels, the value of Eij for any observation can be

assumed independent of the values of Eij for other

observations. (Kirk, 1968, p. 52)



Before looking at additional definitions of independence,

a distinction needs to be made between independence and random

assignment. (Note that Kirk's definition equated the two.) The

condition of random assignment in a study is not synonymous with the

condition of independence of observations. In theory, independence

can happen without random assignment. Students judgmentally assigned

to any treatment condition can react to that treatment individually or

independently of others assigned to that same treatment. 0n the other

hand, it can and does happen that units randomly assigned to treatment

conditions do not, in fact, receive the treatments independently and

thus the assigned units are not independent of each other. One example

of this would be where children are randomly assigned to treatments but

then all children assigned to any one treatment condition are treated

as a group, e.g., they may all receive the treatment from the same

teacher. Random assignment can only be counted upon to control dis—

turbing or confounding variables that are present at the start of the

study. Random assignment cannot control variables that are introduced,

maybe only for convenience sake, into the experiment by the experi-

menter's manipulations, e.g., having one teacher instruct all students

assigned to one treatment level.

A third definition of independence has been given by Draper and

Smith (1966, p. 17). ‘In discussing the general regression model,

Y1 = 80 + 81 X + e for i = l, 2, ... , n, they make the following
i,

assumption: "Si and Ej are uncorrelated, i # j, so that

cov (61, ej)==0. Thus . . . Y1 and Yj’ i i j, are uncorrelated."



They then conclude that, given the above assumption and an additional

assumption that e is a normally distributed random variable, "Ci, Ej
i

are not only uncorrelated but necessarily independent."

Draper and Smith's definition, in particular, seems especially

hard to conceptualize. The difficulty lies in finding a way to measure

the covariance between subjects when there is only one outcome score per

subject. Within the single sample paradigm and under the condition that

subjects are measured before selection, the cov (£1, ej), for i # j,

should always equal zero whenever subjects have been randomly selected

from an infinitely large target population. When subjects within a

sample are more homogeneous on the dependent variable than subjects

in the population, the cov (81, Ej) will be greater than zero. The

opposite condition of the cov (£1, E ) being less than zero occurs

.1

whenever subjects within a sample are more heterogeneous on same

outcome measure than subjects in the population.

Draper and Smith have suggested that one way observations would

be independent of each other, before any treatment has taken place,

is if the subjects are randomly selected from a normally distributed

population. The condition of random selection from a normal population

before treatment is not synonymous, however, with the condition of

independence of observations after treatment. First, there is no

reason that independence need be a function of the population being

normally distributed. Theoretically, observations from a non-normal

population can be independent of each other. Secondly, random selection

does not insure independence of observations after a treatment has been



effected. Random selection is concerned with the external validity of

the experiment and cannot control variables that are later introduced

into the study. For example, the situation where subjects randomly

chosen were not, in fact, treated independently could disturb any

condition of independence that was due to subjects being randomly

selected.

Cox (1958, p. 15) defines independence as the condition where "the

observation on one unit is unaffected by the treatments applied to other

units." He then goes on to say (1958, p. 19) that independence

is the requirement that the observation on one unit should

be unaffected by the particular assignment of treatments

to the other units, i.e., that there is no "interference"

between different units. In many experiments the differ-

ent units are physically distinct and the assumption is

automatically satisfied. If, however, the same object

is used as a unit several times, or if different units

are in physical contact, difficulties can arise.

Cox's definition of independence suggests that physical contact

causes dependence. He states that if units are physically distinct the

assumption of independence has been met. Within the educational setting,

however, defining what "physically distinct" means is as difficult as

defining what independence means. In looking over Cox's definition of

independence, one must remember that Cox was mainly concerned with

agricultural experiments. In these types of experiments, it happens

to be much easier to control the interaction between different units.

With educational studies, this is not usually the case. For example,

the educational researcher cannot control what happens to his subjects

outside the school environment.
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A fifth definition of independence concerns equating the

experimental unit and the unit of analysis. If the statistical

analysis of an experiment is to yield a valid confidence statement

about the chances of drawing false conclusions from the data, the

analytic unit should coincide with the experimental unit (Glass &

Stanley, 1970; Peckham, Glass & Hopkins, 1969a, 1969b; Porter, 1972).

This suggests that another definition of independence is that the

condition of independence is satisfied when the unit of analysis is

identical to the experimental unit. A unit of analysis refers to the

smallest observational unit (or data point) Which in the data analysis

is to be considered distinct from other observational units.

Cox (1958, p. 2) has given the following definition of experi-

mental unit: "The formal definition of an experimental unit is that

it corresponds to the smallest division of the experimental material

such that any two units may receive different treatments in the actual

experiment." Cox then goes on to say that it is very "desirable" that

experimental units also respond independently of one another. Peckham

et al. (1969a, p. 341) have defined the experimental unit as:

The experimental units are the smallest divisions of the

collection of the experimental subjects which have been

randomly assigned to the different conditions in the

experiment and which have responded independently of

each other for the duration of the experiment or which,

if allowed to interact during the experimental period,

have had the influence of all extraneous variables

controlled through randomization.

Most of the above definitions of the condition of independence

are not complete in that they are written only within the context of
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experimental situations. Definitions of independence should include

correlational situations as well as experimental situations as the

assumption of independence is made in correlational studies as well

as in experimental studies. It is also interesting to note that some

of the definitions of independence are procedural and imply cause,

i.e., Cox's and Kirk's. Other definitions are given only in terms

of outcomes or effects, i.e., Cochran's and Draper and Smith's.

Threats to Independence
 

Peckham et al. (1969a, 1969b) suggest two different ways that

group influence can exert a dependency among units within a group on

one or more dimensions. The first of these is an additive effect,

which can raise or lower the group mean by tending to raise or lower

the score of each unit within the group by a constant amount. This

additive effect influences the variability of classroom means, but at

the same time does nothing to the variability of students' scores within

the classroom. In other words, an additive type of dependency would

disturb the predictability of the between class variance from the within

class variance by affecting the former. The second type of group influ-

ence is what Peckham et a1. call a proportional effect which leaves the

mean performance of a group unchanged but has a marked effect on the

variability of responses within the group. This type of dependence

also disturbs the predictability of the between class variance from

the within class variance, but this time by affecting the latter.
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These two general types of group influence defined by Peckham et a1.

can be broken into four conditions of dependence which systematically

affect either the variation of students within classrooms or the

variation of students between classrooms:

a An additive type of dependence which decreases the variation

between classes,

0 An additive type of dependence which increases the variation

between classes,

0 A proportional type of dependence which decreases the variation

within classrooms, and

0 A proportional type of dependence which increases the variation

within classrooms.

In real world situations it is possible that any one of the four

dependency conditions suggested might occur simply by nonrandom

assignment of students to classrooms.

A decrease in the between class variation could occur in a study

where judgmental assignment of teachers to intact classrooms has taken

place. A situation where principals have assigned particularly effec-

tive teachers to difficult classes and average teachers to the more

motivated classes could have the effect of decreasing the between class—

room variation perhaps without changing the within classroom variation.

On the other hand, an increase of the between class variation could be

a function of classroom composition systematically affecting teachers'

attitudes toward teaching. Some teachers may become extremely ineffec-

tive when assigned to a particularly difficult class. This could have

the effect of decreasing their students' achievement by a constant

amount. Other teachers when assigned to a particularly motivated
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class may enjoy their working conditions so much that the achievement

level of all their students within the class is increased by a constant

amount, apart from the effect of the treatment being investigated. A

situation occurring such as this could have the effect of increasing

the between classroom variability without affecting the within

classroom variability.

A decrease of variation within classes could be due, for example,

to teachers working hard to increase the achievement level of dis-

advantaged students while at the same time ignoring the achievement

potential of the brighter students. A situation such as this could

decrease the within classroom variability without similarly affecting

the between class variability. An increaSe of within class variation

could be a function of teachers paying more attention to the more

capable students in the class while ignoring the slower students.

A situation such as this could increase the within classroom variance

without changing the between classroom variance.

Selection of Analytic Units
 

In order that any definition of independence be operational, it

must be able to help the researcher choose between alternative units

of analysis and/or at least realize the consequences of a wrong choice

of unit. Thus in this section, past theoretical research will be

reviewed that suggests how using a unit of analysis inappropriate

to the research design can affect the results of a study. Empirical

research will be presented that suggests how statistical power can
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differ given two distinct units of analysis, both being appropriate

to the research design. The studies reviewed suggest that the test

of the hypothesis of no treatment effects may be affected by the

choice of unit of analysis. The magnitude of treatment effects (ai's),

however, should not depend upon the choice of the unit of analysis.

Logical arguments will also be reviewed that discuss whether or not

research questions dealing with educational programs should focus on

the individual student. That is, are educational research questions

involving the individual student functional given the present

educational system?

Statistical Arguments for Unit Selection
 

Scheffé (1959) has discussed the effects of violating the

assumption of independence when observations are serially correlated.

He considered the single group case where the random variables Y1 and

Yi+l’ for i==1, 2, ... , n-l, had a serial correlation equal to p and

all other pairs of observations had a serial correlation equal to zero.

Scheffé found that the effect of serial correlation can be serious on

inferences about means. As the serial correlation went from 0 to -0.4,

the test of the hypothesis became very conservative. As the serial

correlation went from 0 to +0.4, the test of the hypothesis became

very liberal. Measurements that are either close in time or close in

space can be serially correlated. Scheffé's results seem applicable

in educational research when successive measurements have been taken

on each experimental unit.
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Cochran (1947), on the other hand, considered a simple group

comparison case where every pair of observational units within a treat-

ment level had a simple correlation of p. With correlated (0) units of

analysis, the error of the treatment total (e1 + e2 + ... + en) should

have a variance equal to no2 + n(n—l)p02, rather than n02 which would

be the variance of the treatment total when errors are uncorrelated.

Consequently, with correlated observations, the true variance of the

treatment mean is [02 + (n-l) pozlln. However the variance of the

treatment mean is estimated by calculating the sum of squared deviations

within each treatment level and then pooling across treatment levels.

The variance of this treatment mean is equal to 02 (l—p)/n. Therefore

Cochran concludes that when observations are positively correlated, the

true variance of the treatment means is underestimated. When observa-

tions are negatively correlated, the true variance of the treatment

means is overestimated. This suggests that Cochran's conclusions are

consistent with Scheffé's in that when observations are positively

correlated, the actual alpha level for the test of no treatment effect

will be larger than the nominal alpha level, indicating that the test

is too liberal; and when observations are negatively correlated, the

actual alpha level for the test of the null hypothesis will be smaller

than the nominal alpha level, indicating that the test is too conserva-

tive. Cochran handled the problem of dependent units of analysis within

the same context as Draper and Smith's definition of independence,

correlating pairs of units of analysis on one outcome measure.
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Lissitz and Chardos (1975) empirically verified Cochran's

theoretical analysis, where every pair of subjects had a simple

correlation of p, and replicated Scheffé's analysis, where subjects

were serially correlated both positively and negatively. They also

extended Cochran's case to data which were negatively correlated (-p),

although they failed to explain what this negative correlation meant.

Their empirical analysis showed that positively dependent data, as

defined by Cochran, for both p==.2 and p==.4, made the t-test too liberal

a statistic; while negatively correlated data, 0 = -.2 and p = -.4, made

the t-test too conservative. The same general conclusions were found

with the positive and negative serially correlated data except the

results were not as extreme in any of the cases.

Probably the one most persuasive argument used by educational

researchers in selecting the individual within a group, rather than

the group itself, as their unit of analysis is the well-ingrained notion

that studies with few observations tend to have little power for detect-

ing treatment differences. Peckham et al. (1969a, 1969b) considered

the hypothetical case of having 200 subjects randomly assigned to one

of eight groups and groups randomly assigned to one of two treatment

conditions. Using Kirk's (1968, p. 107) formula for estimating the

noncentrality parameter, ¢, under the condition of independence of

individual observations, they computed power estimates using both the

group as the unit and the individual as the unit (Table 1). Table 1

shows that, under these conditions, only for small treatment effects
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Table 1

Power Computations Using Groups and Individuals as Units of

Analysis, Given Individuals Are Independent

 

Power (0L= .05)

Treatment Effect

(u1-u2 in sigma units)

 

 

Analysis unit d.f. (error) .25 .50 .75

Individuals 198 .42 .94 .991

Groups 6 .25 .82 .987

 

is the power using the group as the analysis unit much less than the

power using the individual as the analysis unit. Under the conditions

hypothesized by Peckham et a1. no systematic differences occur between

subjects across groups within treatment levels and therefore the

expected mean square for groups within treatments equals the expected

mean square for subjects within group/treatment combinations. Because

these two expected mean squares are equal the two F tests, one using

group as the unit of analysis and the other using individual as the

unit of analysis, have identical noncentrality parameters (¢) and thus

the difference in the power of the two F tests is totally a function

of the difference in degrees of freedom associated with each F test.

Logical Arguments for Unit Selection
 

Working within the realm of education, a question that needs to

be asked is, Can the responses of individual students ever legitimately
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be assumed to be independent of each other? Or, in other words, is

student ever the appropriate unit of analysis? Within traditional

education, the classroom is most often the functional treatment unit.

That is, most often it occurs that all students within the same class-

room receive the same basic instructional treatment. For example, it

usually is the case that all children within a classroom learn math

instructed by the same method. Rarely does it happen that, within one

classroom, math is taught to some students using one method and to other

students using yet another method. Wiley (1970) has stated that "if the

object of evaluation is a typical classroom instructional program where

the instruction is received simultaneously by all students in the class,

then the appropriate vehicle (or sampling unit) is the class and not

the individual pupil."

Peckham et al. (1969a, 1969b), Raths (1967), and Wiley (1970)

have stated that if, however, treatments are presented in the form of

individualized instructional techniques, such as programmed learning

texts, dependency between students is unlikely to occur since the stu-

dents should be working through the program on their own. Thus in

programmed instructional experiments such as this, students would be

the proper units of analysis. On the other hand, Haney (1974) has

suggested that, even if students are given individualized instruction

within the same classroom area, students' responses may not be inde-

pendent of each other. Even though student A is working in his own

carrel, he may find out at recess or after school that student B is

moving along on his work a lot faster than he, student A, is moving.
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This could, for example, make student A hurry through his work too

fast and thus the activities of student B would be having a negative

effect on student A's learning, even if an individualized instructional

setting.

Some people argue that using classroom means as units of analysis

rather than individual student observations deprives them of strat-

ifying on student variables of interest and hence the researcher loses

all possibilities of finding aptitude/treatment interactions (ATI's).

In other words, using classroom as the unit of analysis prevents

researchers from investigating treatment by student characteristic

interactions. This need not be the case. Repeated measures designs

(Winer, 1962) do allow researchers to test for aptitude/treatment

interactions while still using the classroom as the unit of analysis.

Porter (1972), however, has suggested that from a program evaluation

perspective, these types of interactions CATI's) may often not be

relevant to educators. In talking about classroom—oriented Follow

Through approaches, Porter states:

If one approach works better with black children and

another approach works better with white children, then

what are the implications for integrated classrooms?

Should both approaches be used in an integrated classroom?

Such a decision would not be based on data from the eval-

uation since the interaction was observed for situations

where children were in classrooms receiving only one

approach. It seems more appropriate to investigate

treatment interactions with variables defined on class-

room composition, such as percent of white children in

the class.
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The definitions of independence and the research studies on the

selection of appropriate analytic units discussed thus far are not

sufficient to inform practice on the assumption of independence and

consequences of violating that assumption. What is needed is an

operational definition that is measurable. As long as the condition

of independence is conceived to be an "ideal" property, undefinable

operationally and hence unmeasurable directly, researchers will have

trouble not only validating the assumption itself but also agreeing

among themselves as to what the appropriate unit of analysis should

be for specific research studies. An operational definition of

independence can be surmised by returning to what was said earlier

about threats to the assumption of independence.



CHAPTER III

AN OPERATIONAL DEFINITION OF INDEPENDENCE

Peckham et al. (1969a, 1969b) suggest two general threats to

independence. The first threat (an additive effect) affects the

variation of the group or aggregate variable. The second threat (a

proportional effect) affects the variation of individual units within

the aggregate variable. And given random assignment of subjects to

groups, these two variabilities are related. That is, given random

assignment of subjects to groups, the variance of the group means will

equal the variance of the population of subjects divided by the number

of subjects per group. Translating this into an educational example,

if students (S) are randomly assigned to classrooms (C) and classrooms

randomly nested within treatment levels (T) and students remain inde-

pendent throughout the ongoing treatments, then the variance of the

random sampling distribution of classroom means (CC) should equal the

variance of the student population within classes and treatments (OS:CT)

divided by the number of students per classroom(s).

The two threats to independence and the general rule described

above for relating between group and within group variations provide

the basis for the following proposed operational definition of inde-

pendence. It is proposed that independence be operationally defined

2

C

2

as the condition that O S:CTequals 0 Is, or equivalently the condition

21
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).that the expected mean square of the grouping variable, E(MSC'T

equals the expected mean square of individual units within the grouping

variable, E(MS More generally, this definition states that indi-
S:CT)'

viduals or disaggregated units can be treated as independent units

whenever the variance of aggregate units is predictable from the

grouping size and the variance of the disaggregate units.

The intraclass correlation coefficient (pl), which measures the

extent to which observations within the same group tend to be homoge—

neous relative to observations across different groups (Kirk, 1968,

pp. 126—127), can also be used to define independence. Computationally

the intraclass correlation coefficient equals:

  

_ 2_2

p1 = ECMSC:T) E(MSS:CT) = soc OS:CT

E(MSC:T)+(S-l) E(MSS:CT) 30é4'(S-1) OS:CT

2

S'CT/S’ or equivalentlyThis formula indicates that whenever 0C equals 0

whenever the E(MSC'T) equals the E(MS ), the pI will equal zero.
S:CT

Thus an intraclass correlation coefficient equal to zero also

operationally defines independence.

Given these three equivalent indicators of independence, opera-

tionally there are only two distinguishable types of dependence.

2

C

Equivalently, positive dependence occurs whenever the ratio of the

Positive dependence is that condition where o is greater than 0
2

S:CT/8'

E<MSC°T) to the E(MSS°CT) is greater than one or whenever the pI is

greater than zero. Positive dependence is maximal when scores within

2

S:CT equals zero) and theeach group are identical (i.e., when the O
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2

C

than zero). Negative dependence is that condition where 06 is less

scores differ only from group to group (i.e., when the O is greater

than GS'CT/s' Equivalently, negative dependence occurs whenever the

ratio of the E(MSC'T) to the E(MS ) is less than one or whenever the
S:CT

01 is less than zero. Negative dependence is maximal when group scores

2

are identical (i.e., when the CC equals zero) and when scores within

2

S:CT

Either type of dependency (positive or negative) can result from

each group differ (i.e., when the o is greater than zero).

any of the following:

a. an additive effect,

b. a proportional effect, and

c. nonrandom assignment which will most probably result

in either an additive or a proportional effect.

It happens that factors which would by themselves cause dependency can

occur simultaneously in an experiment so as to counterbalance each

2

other leaving the 0C equal to the US'CT/S' For example, if interactions

between students caused both the between class variance and the within

class variance to decrease, positive dependency would not show up at

least so long as the E(MSC'T) remained equal to the E(MS These
S:CT)'

situations, however, really do not matter; as will be seen later, the

only thing that upsets the random sampling distribution of the F sta-

tistic of treatment effects when individual students are the analytic

2

C

2

S:CT

normality and homoscedasticity assumptions hold.

unit is the situation where 0 does not equal U /s, given that the

Again it should be mentioned that random assignment of students to

classrooms and treatments is not synonymous with independence. However
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the condition of nonrandom assignment of students to classrooms almost

certainly flags the condition of dependence between students, That is,

under nonrandom assignment of students to classrooms, it seems unlikely

that the operational definition of independence of students will hold.

Importantly, the proposed operational definition of independence

seems to be a useful one within the typical educational framework of

hierarchical designs (i.e., designs which have students nested within

classrooms, classrooms nested within schools, etc.). Further, this

definition captures the usual definitions of independence at least

insofar as variations from them affect the nature of the data. Finally,

this definition has the advantage of being readily estimable.



 

 

CHAPTER IV

ANALYTIC RESULTS

Armed with an operational definition of independence which is

readily measurable, it is useful to reconsider the consequence of

using correlated analytic units. As stated previously, failure to

have independent units of analysis may bias parameter estimates, and

this in turn may alter both the actual significance level and power

of a test.

The Effects of Dependence
 

The effects of violating the assumption of independence were

studied within the context of a balanced, hierarchically-nested design,

which had students nested within classrooms and classrooms nested within

program or treatment levels. There was only one outcome measure per

student, observations between classrooms were independent of each other

and observations on classes, students within classes and students within

treatments were normally distributed and had homoscedastic variances.

Data fitting the general educational model described above was

analyzed using two different analysis of variance models. Model A

(Table 2) was defined as:

Y; =u+ai+b

ljk j(i) + 913k

25



26

Table 2

Expected Mean Squares for Model A

 

 

 

Yijk = u+ai+bj(i)+eijk

Sources of variation d.f. E(MS)a

Treatment (T) t-l OS:CT + SOC:T + sec;

Classroom:T (C:T) (c-l)t OS:CT + SOC:T

Student:CT (S:CT) (s-l)ct OS:CT

Total sct—l

 

a 2 _ 2 _
OT - Ea i/(t l).

where a1 represents the effect of treatment i, bj(i) represents the

effect of classroom j within treatment 1 and e r rijk epresents the erro

of the kth student observation within the jth classroom and the ith

treatment. Model B (Table 3) was defined as:

Yik = u + “1* eik

where ai again represents the effect of treatment 1 and eik represents

the error of the kth student observation within the ith treatment.

Both models regard student as random. Model B differs from Model A

in that Model B contains no classroom component. Classroom is the

analytic unit for Model A, while student is the analytic unit for

Model B. The model having classroom as the unit of analysis (Model A)

is also called the "never pool" model. The model with student as the
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Table 3

Expected Mean Squares for Model B

 

Y =u+a +e

 

 

ik i ik

Sources of variation d.f. E(MS)a

_ 2 2
Treatment (T) t l US:T + scOT

Student:T (S:T) (sc-l)t OS°T

Total sct—l

 

a 2 a 2 _
0T 2a i/(t 1).

unit of analysis (Model B) is called the "always pool" model as its

expected mean square error term, E(MS is a pooled or weighted sum

SzT)’

of the expected mean square between classrooms, E<MSC°T)’ and the

expected mean square.within classrooms, E(MS Any hierarchically-
S:CT"

nested data which fits Model A can also be analyzed using Model B.

The expected mean square tables for Model A and Model B, which

were defined using the Millman and Glass (1967) rules of thumb, indicate

that each model can test the hypothesis that there are no treatment

differences. For the "never pool" model, the test is F a MST/MSG:T’

while for the "always pool" model, the test is F = MST/MS Regard-
S:T'

less of whether students are independent or not or whether there is a

treatment effect or not, the E(MST) for the "never pool" model equals

the E(MST) for the "always pool" model. Because the two F tests

mentioned above have computationally identical numerators, problems
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caused by having correlated units of analysis only become evident

in comparing the denominators of the two F statistics.

If students themselves are operationally independent on the

dependent variable and there are no true treatment effects (02 = O),

T

2

S:CT' Onethen all expected mean squares in Models A and B estimate 0

operational definition of independence on the dependent variable dis-

cussed above equated the E<MSC°T) to the E(MS So, for the case
S:CT)'

of independence of student responses within classes, the following holds

for Model A:

E(MSS:CT) = E(MSC:T)

E(MSE'SEN ‘ OS:CT+SOC:T

E("33:01.9 g °§:cr

andaoé:T = 0

Thus the CC’T component in the E(MSC'T) formula can also be used to

2

define independence. That is, whenever the CC‘T component equals zero,

observations on students can be considered independent observations.

That the E(MSS°T) in Model B estimates OS'CT when given independent

student observations can best be seen by looking at the sources of

variation that combine to form the SSS°T:
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SS = SS i-SS
S:T S:CT C:T

E(333m) = E(SSS:CT1'SSC:T)

E(ssS:T) = E(SSSzCT)4-E(Ssc:T)

(sc-l)t E(MSS:T) = (s-l)ct ECMSS:CT)4-(c-1)t E(MSC:T)

= 2 __ 2 2 __ 2 _
E(MSS:T) [scoSzCT G S:CT-l-scoc:T SOC:T]/(sc l)

_ 2 (c-1)s 2

’ CS:CTI' (sc-l) 0C:T

2 -
and if OC:T - 0

_ 2

E(MSS:T) ‘ OS:CT

As stated previously, both Model A and Model B regard the student

as a random variable. However, it also makes conceptual sense to think

of students as fixed. This comes from thinking of individual classrooms

as being unique and defined only by the particular students in the class.

Given this is the case, in Model A (Table 2), classrooms would remain

random and students would be considered fixed. And if so, the E(MST)

and the E<MSC°T) in Model A would no longer contain the variance come

ponent US'CT' Thus with subjects fixed, the EcM8C°T) would not be

2

S:CT term, as it is when subjects aredependent on the size of the 0

considered random. Each would vary independently, which explains how

the E(MSC_T) can be smaller than the E(MS ), the operational defi—
S:CT

nition of negative dependence. What this all suggests is that negative

dependence seems possible only when student represents a fixed inde-

pendent variable, while positive dependence is possible with either

fixed or random subjects.
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Classroom as Unit
 

Independence. Whenever classroom observations are operationally
 

independent of each other, normally distributed and homoscedastic and

there are no treatment effects, the test statistic F = MST/MS in
C:T

Model A will have a central F distribution with (t-l) and (c—l)t

degrees of freedom. This is true, in fact, regardless of what the

distribution of students within classes looks like or regardless of

whether or not student observations within classrooms are independent.

Given independence of student responses within treatments, varying

the number of students per class and/or the number of classes per treat-

ment should have no affect on the actual significance level of the F

test MST/MS 0n the other hand, it is predictable that increasing
C:T“

the number of students per class and/or increasing the number of classes

per treatment should increase the noncentrality parameter, defined as

A
2 2 2

li—scoT/(03:CT-PSOC:T), and thus increase the power of the test

2

C:T

can predict, by looking at the noncentrality parameter, that increasing

F = MST/MS Given independence of students, i.e., 0 = 0, one

C:T'

the number of classes per treatment or the number of students per class

should identically inflate the E(MST) and at the same time have no

affect on the E(MS However, increasing the number of classes per

C:T)'

treatment should increase the power of the test F = MST/MS to greater

C:T

than that gotten by increasing the number of students per classroom by

the same amount. This is due to the fact that increasing the number of

students per class has no affect on the degrees of freedom error when

classroom is being used as the unit of analysis. Whereas increasing
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the number of classes per treatment does increase the degrees of

freedom error.

Positive dependence. Positive dependence between student obser-

vations has been defined as the condition where the E(MSC:T) is greater

than the E(MS , or concurrently the condition where the 02 is

C

greater than OS°CT/S' Positive dependence can occur either because

S:CT)

a proportional type of dependency has decreased the within classroom

variation or because an additive type of dependency has increased the

between classroom variation. The positive dependency condition is

identical to the case where the cov (81,8 ), or similarly the intra-

J

class correlation coefficient, would be greater than zero, under Draper

and Smith's definition of independence. "It is also identical to the

instances where Cochran and Scheffé speak of responses of subjects

being positively correlated.

When positive dependency occurs, under the condition of no treat-

ment effects, F = MST/MSC:T has a central F distribution with (t—l) and

(c-1)t degrees of freedom, given that classroom observations within

treatment levels are independent, homoscedastic and distributed nor-

mally. This is true because the OC:T component, which is greater than

zero when student responses are positively correlated, affects the

E(MST) and the E(MSC:T) in the "never pool" model (Model A) similarly,

given there are no treatment effects. Increasing the number of student

responses within each class and/or increasing the number of classes per

treatment should have no affect on the actual significance level of the

test F = MST/MSG:T.
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The power of F = MST/MS and the method of manipulating the
C:T

2
C:T is) are confounded. Ifdegree of positive dependence (how big 0

degree of positive dependence is defined by increasing the E(MS ),
C:T

just such an increase will decrease power. However, if degree of

positive dependence is defined by decreasing the E(MS ), degree
S:CT

of positive dependence will not affect the power of F = MST/MSC°T°

Degree of positive dependence is not confounded with significance

level and will in no way affect the significance level of the F

statistic using class as the unit of analysis.

Negative dependence. Negative dependence between student responses
 

has been defined as the condition where the ECMS ) is less than the

C:T

E(MSS:CT)’ or concurrently the condition where the Oé is less than the

OS:CT/S° Negative dependence can occur either because a proportional

type of dependency has increased the within classroom variation or

because an additive type of dependency has decreased the between class-

room variation. Again, when dealing with real world data, these two

conditions of dependency are indistinguishable and can be considered

as one. This particular type of dependency is identical both to the

case where the cov (61, e ), or similarly the intraclass correlation

J

coefficient, is less than zero, under Draper and Smith's definition of

independence, and to the instances where Cochran and Scheffé speak of

subjects being negatively correlated.

As with positive student dependency, the amount of negative

student dependency should have no affect on the distribution of the

statistic F = MST/MSG:T’ given the condition of no treatment effects,
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and neither should increasing the number of students per class, the

latter because the test F==MSTIMS uses classrooms as the unit of
C:T

analysis rather than students. In addition, given negative dependence,

increasing the number of classes per treatment should also not affect

the actual significance level of this test of no treatment effects as,

under the central case, increasing the number of classes per treatment

should have no effect on the parameters E(MST) and E(MS As with
C:T"

positive dependence, when the test of the hypothesis is F = MST/MSC°T’

the method of manipulating degree of negative dependence is confounded

with affect on the power, but not the significance level, of

F = MST/MSC:T°

Student as Unit
 

The expected mean square formulas in Table 2 (the "never pool"

model) indicate that the E(MSC:T) is the appropriate error term in

testing for treatment effects. This is true whether or not student

responses within classes are independent of each other (and, in fact,

whether they be considered as fixed or random). Therefore, in order

to check the validity of the test F = MST/MS , which has student as
S:T

the unit of analysis, when students are not independent of each other,

the E<MSS°T) in Model B (Table 3) can be compared to the E(MS in
C:T)

Model A (Table 2). If these two expected means squares are not equal,

then the E(MSS°T) has to be biased in some way. Much of the subsequent

discussion will be made treating students as random, but the conclu-

sions would hold even had students been considered fixed.
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Independence. Given independence of student responses,
 

F= MST/MS would be an appropriate test of treatment effects for,
S:T

as indicated earlier, the MSS°T and the MSC'T then estimate the same

parameter (OS'CT)' So, given independence of student responses within

treatments, varying the number of students per class and/or the number

of classes per treatment should have no affect on the actual signif—

Whenever students' responsesicance level of the F test MST/MSS°T'

are operationally independent, there are no treatment effects and the

assumptions of normality and homoscedasticity hold for observations on

students within treatment levels, the test statistic F = MST/MSS=T will

have a central F distribution with (t—l) and (sc—l)t degrees of freedom.

On the other hand, it is predictable, by looking at the expected mean

square formula for the E(MST) in Model B (Table 3), that increasing the

number of students per class and/or increasing the number of classes

per treatment should increase the power of the test F = MST/MSS:T'

Under the independence condition, the two F tests, F a MST/MSC:T and

F a MST/MSS:T’ should differ only in their power, with F = MST/MSS:T

being the more powerful test as it has more degrees of freedom error.

Positive dependence. The effect of positive student dependency

on the dependent variable can be seen by comparing the formulas for

the E(MSC:T) and the E(MSS:T)°

- 2 2

E(Mscm‘) " O's:c'r+ SOC:T

= 2 (C-1) 2

E(MSS:T) OS:CT+ (sc-l) SUC:T°
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Positive dependence deflates the E(MSS'T) to less than the E(MSC_T)

as when the E<MSC°T) is greater than the E(MS will be
2

S:CT)’ OC:T

greater than zero. However, carries less weight in the E(MS
2

OC:T S:T)

formula than it does in the E<MSC°T) formula. Thus it can be seen

that for all values of c and s, the E<MSS°T) should be smaller than

the E(MSC°T) and therefore F = MST/MSS°T should be too liberal a test.

So, when the E(MSC'T) is greater than the E(MS ) and there is no
S:CT

treatment effect, F = MST/MS should not be distributed as a central

S:T

F. Rather F = MST/MS should have an F distribution which is spread
S:T

out and lies to the right of the distribution for the same F statistic

under the condition of students being independent. That the positive

dependency condition should result in too liberal a test statistic, when

student is the unit of analysis, is consistent with what Scheffé (1959)

and Cochran (1947) concluded when observations are positively correlated.

Given positive dependence, the degree of liberalness of the test

F = MST/MSS:T is monotonically related to the degree of positive

dependence. That is, as the OC:T increases beyond zero, the discrepancy

between the E(MSC:T) and the E(MSS:T) increases and thus the degree of

liberalness increases. Given any one positive dependence level, this

liberalness should be reduced as c increases and increased as s in-

creases. Because of the general liberalness of the F - MST/MS test,
S:T

given positive dependence, the power of that test should be spuriously

high.

Negative dependence. What happens to the magnitude of the

E(MSS.T), which designates student as the unit of analysis, when
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there is negative dependence, i.e., when the E(MS ) is less than
C:T

I,

the E(MSS:CT)' The E(MSS:T) is inflated to greater than the E(MSC:T)°

The following relationships show why:

553:1: = SSs:cr+SSc:T

(sc—l)t E(MSS:T) = (s-1)ct E(Mss:CT)4-(c-l)t E(MSC:T)

= gs-l)c (c-l)

E(MSS:T) (sc-l) E(MSS:CT)+ (sc-l) E(MSC:T)

Whenever the E(MSS:CT) is at all larger than the E(MSC:T)’ the E(MSS:T)

is larger than the E(MSC.T), since for s greater than or equal to 2,

(s-l)c is greater than (c-l). Therefore, the test F = MST/MSS_T under

this dependency condition should give too conservative a test. This

indicates that whenever the E(MSC'T) is less than the E(MS ) and
S:CT

there is no treatment effect, F = MST/MSS°T should not be distributed

as a central F with (t—l) and (sc—l)t degrees of freedom. Rather

F = MST/MS should have an F distribution which is compressed and
S:T

lies to the left of the distribution for the same F statistic under

the situation where the E(MS ) is equal to the E(MSC°T)’ or con-
S:CT

currently where the E(Msng) equals the ECMSC:T)' That the negative

dependency condition should result in a too conservative a test sta-

tistic, when the unit of analysis is the student, is consistent with

what Scheffé (1959) and Cochran (1947) concluded when observations are

negatively correlated.

Given negative dependency, the degree of conservativeness of the

test F = MST/MS is monotonically related to the degree of negative
S:T
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dependence. That is, as the degree of negative dependence increases

(as the 02 becomes smaller and smaller relative to the ratio oS‘CT/S)
C

the discrepancy between the E<MSC°T) and the E<MSS°T) increases and

thus the degree of conservativeness should increase. As for positive

dependence, given any one level of negative dependence, this conserva—

tiveness should be reduced as c is increased and increased as s is

increased.

The power of the test F a MST/MS should spuriously be reduced
S:T

as the conservativeness is increased. However both an increase in c

and an increase in s inflates the E(MBT) and gives the error term of

students within treatments more degrees of freedom. Thus both in-

creasing c and 8 should increase the power of the test F = MST/MSS'T'

Whether F=MSTIMS will end up having more power than F=MST/MS
S:T C:T

depends on how conservative F==MSTIMS is and how many additional
S:T

degrees of freedom having students as the unit of analysis, rather

than classroom, gives.

In summary, failure to have independent units of analysis, as

operationally defined in,this study, biases the parameter estimate

of the students within treatment error term, E(MS And this
S:T)“

bias, in turn, influences the empirical alpha and power of the test

P a MST/MSS°T’ which has student as the unit of analysis. The magnitude

of this bias, given different degrees of both positive and negative

dependence, will be studied later using simulated data.
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The Preliminary Test
 

There are available at least two tests of treatment effects

given an hierarchically—nested design with students nested within

classrooms and classrooms nested within treatments. These two tests

may conveniently be referred to as the "never pool" and the "always

pool" procedures. The "never pool" test, F = MST/"Sc:r’ uses classroom

observations, which in this study are independent of each other, homo-

scedastic and normally distributed, as the units of analysis. Even

though dependence of student responses does not affect the actual

significance level of this test, always using the aggregate variable

as the unit of analysis restricts the degrees of freedom error which,

in turn, limits the power of this test of treatment effects. This few

degrees of freedom problem motivates the need for another test or test-

ing procedure with possibly greater power. The second and so—called

"always pool" test, F = MST/MS , uses disaggregate or individual
S:T

student observations, which within treatments are homoscedastic,

normally distributed but not necessarily independent of each other,

as the units of analysis. This particular analysis model has more

degrees of freedom error, but, on the other hand, it has been shown

analytically that any dependence between student responses adversely

affects the significance level of the test of treatment effects. Thus

it seems that there is no one "best" choice of unit of analysis for

all hierarchical designs. Rather, the best testing procedure would

entail using student as the analytic unit when student responses are



39

independent of each other, and for all other circumstances using

classroom as the analytic unit. This suggests a need for some sort

of conditional testing procedure in which the unit of analysis to be

used in the primary test of treatment effects is determined by a pre-

liminary test of whether or not disaggregate units are operationally

independent of each other.

When there is a question as to the validity of an assumption

within an experiment, a preliminary test of significance can be used

to support or reject the validity of that assumption. The procedure

followed is to view the assumption as a hypothesis which is testable.

If this hypothesis that the assumption is true is rejected, one takes

action as if the assumption were false. 'On the other hand, if this

hypothesis that the assumption is true is not rejected, one takes

action as if the assumption were, in fact, true. This sort of assump-

tion testing procedure is sometimes used by researchers in analysis of

covariance models for testing the equality of regression slopes within

groups. Another example of its use includes testing the equality of

variances in analysis of variance models when groups are of different

sizes.

If the researcher has some a priori notion that his individual

observations are independent, Peckham et al. (1969a, 1969b) and Poynor

(1974) recommend using this preliminary test of the assumption to choose

the unit of analysis for the primary test of treatment differences.

The two-staged procedure takes the following form. The researcher

begins with Model A (Table 2) and examines the null hypothesis that
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the variation between classes is no different than the variation within

classes, Ho: E(MSC'T) equals E(MS If the hypothesis of this
S:CT)'

preliminary test is not rejected, the researcher adopts Model B (Table

3) and pools the two mean squares, MS and MSC:T S:CT' Using the pooled

MSC°T and MSS°CT as the error term in a test of treatment differences is

identical to using individual observations as the units of analysis.

On the other hand, if the hypothesis of the preliminary test, Ho:

E(MSC'T) equals E(MS ), is rejected, the researcher retains Model A
S:CT

in testing for treatment differences and by doing so selects the class—

room as the appropriate unit of analysis. This type of conditional

testing procedure can be claimed a success if the actual alpha level

of the primary or conditional test remains equal to the theoretical

alpha and if the power of the conditional or final F test is greater

than the power of the unconditional, always correct F = MST/MS test.
C:T

Actually in describing this conditional testing procedure for

choosing an appropriate unit of analysis, Peckham et al. considered

that this procedure would only detect dependencies of the additive

type, where a constant is added to or subtracted from an entire class.

Furthermore, they, as well as Poynor, considered only the possibility

of the expected mean square between classes, E(MSC:T)’ being larger

than the expected mean square within classes, E(MS These two
S:CT)'

limiting considerations are needlessly restrictive. First, as pre-

viously indicated in this paper, the additive and proportional types

of dependency which Peckham et al. define are in reality indistinguish-

able. And second, the preliminary F test can actually be rejected for
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one of two reasons. The E(MSC'T) can be greater than the E(MSS'CT)’

which will happen when the GE is greater than oS’CT/S' This signifies

a positive dependency condition. On the other hand, theoretically the

E(MSC°T) can also be less than the E(MS ), which will happen when
S:CT

the 02 is less than 02 /s. This signifies a negative dependency
C S:CT

condition. Thus this preliminary F test should be a two-tailed test

rather than the usual one-tailed F test which Peckham et al. and

Poynor recommend.

Determining that individual observations rather than group

observations should be the correct unit of analysis based on the

initial test of independence is, in fact, a questionable analysis

procedure. If the primary test of no treatment differences is based

on the results of the preliminary test of independence, then the F test

for no treatment effects is a conditional test and not a regular F test.

This makes the test statistic have an unknown conditional distribution

(Kirk, 1968). The conditional F test statistic need not be distributed

either as the regular or "always pool" F statistic with (t-l) and

(sc-l)t degrees of freedom, nor as the regular or "never pool" F

statistic with (t-l) and (c-l)t degrees of freedom.

Paull (1950) has investigated the distributional properties of

the conditional or so-called "sometimes pool" F statistic where the

MSC:T and the MSS:CT form a pooled error term in testing for treatment

effects only when the E(MSC:T) is significantly greater then the

E(MS which is the same limited condition that Peckham et al.
S:CT)’

and Poynor talked about. Paull found that under the currently proposed
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condition of operational independence, where the E(MSC'T) equals the

E(MS the preliminary F test, designed to choose the appropriate

S:CT)’

unit of analysis to use for the primary F test of treatment effects,

is effective in making the power of the conditional test greater than

the power of the "never pool" or F = MST/MS test. But given the
C:T

general condition of positive dependence, Paull found that the con-

ditional test was more liberal and less powerful than the unconditional

test F = MST/MS It should be noted that Paull compared the powers
C:T'

of the "sometimes pool" and "never pool" tests at equal empirical alpha

levels. That is, he did not confound power with the liberalness of the

"sometimes pool" or conditional F test. As the ratio of the E(MS )
C:T

to the E(MS ) increased from equal to one, Paull found that the

S:CT

observed alpha level of the "sometimes pool" or conditional test

increased to a maximum and then decreased slowly to being equal to

the nominal alpha level. This occurs because there is usually little

power to find very small degrees of dependence, or very small differ-

ences between the E(MSC:T) and the E(MSS:CT)' This means that given

very small degrees of dependence, the preliminary test will most often

signal the individual, rather than the group, as the appropriate unit

of analysis. And using the individual as the analytic unit will make

the primary test of treatment effects too liberal a test. As the

degree of positive dependence increases though, the researcher rejects

the null hypothesis of operational independence more often. This

dictates using classroom as the unit of analysis more often in the

test for treatment differences. This, in turn, suggests that as the
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degree of positive dependence increases, the distributional properties

of the "sometimes pool" or conditional F test become more and more

similar to the distributional properties of the "never pool" or

unconditional F = MST/MS test. From this, one can conclude that

C:T

for great amounts of dependency, the conditional test is just fine

because it simply becomes an unconditional, "never pool" F test,

F = MST/MSG:T'

Paull also found that the number of classes per treatment and

the number of students per class clearly affected the magnitude of

the distributional differences between the "sometimes pool" and the

"never pool" F tests, given positive dependence. Under the condition

of positive dependence, a large number of classes per treatment is

desirable in two respects. First, as c increases the preliminary test

becomes more powerful and correctly identifies classrooms as the appro-

priate unit more often. And second, when pooling of mean square error

terms is prescribed, the pooled mean square MS is weighted in favor
S:T

of the valid and correct mean square error, MSG‘T' As the number of

students per class, 8, increases, the preliminary test F = MSC‘T/MSS°CT

again becomes more powerful and thus correctly signals the classroom

as the proper unit of analysis more often. However, counterbalancing

this positive effect of increasing 3 when given positive dependence is

the fact that increasing 8 gives more weight to the wrong error term,

MSS'CT’ which is smaller than the valid error term, MS Thus the
C:T'

effect on the primary F test of increasing the number of individuals

per group is due to a combination of two factors and most importantly



44

depends on how much larger than the E(MS ) the E(MSC.T) is. Lastly,
S:CT

Paull considered the effect of increasing the nominal alpha level of

the preliminary F test and found that, given positive dependence, the

magnitude of the undesirable property (liberalness) of the conditional

F test was reduced somewhat with just such an increase. There was,

however, a critical alpha level above which increasing the alpha level

of the preliminary F test resulted in the conditional F test becoming

more liberal. In Paull's example, this critical alpha value was very

large, around 0.77.

Paull finally comes up with recommending the following rule as

when and when not to pool the two mean square error terms, MS d
C:T 3“

MS The rule entails pooling the two mean square error terms only
S:CT'

if their ratio is less than ZFSO’ where F is the 50% point of the F
50

distribution with (c-l) and (s-l)ct degrees of freedom. Paull claims

that this pooling decision rule is one which tends to "stabilize the

disturbances" between the distributions of the two statistics

F = MST/MS and F . MST/MSS°T’ given "intermediate" conditions of
C:T

positive dependence, while still taking advantage of a considerable

portion of the possible gain in power of pooling, given very low levels

of positive dependence. The present author, however, questions this

"rule of thum ." Ideally, the researcher wants most not to reject the

null preliminary hypothesis of operational independence, as when this

null hypothesis is not rejected the degrees of freedom error and mean

squares between classes (MSC°T) and within classes (MS ) can be

S:CT

pooled. The error the researcher needs to guard most against is a
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Type II error (8), or not rejecting the null hypothesis when it is,

in fact, false. One way to decrease the probability of a Type II

error is to increase the probability of a Type I error (0). However,

doing as Paull recommends and taking twice the critical value given a

large alpha of .50 has the same effect as selecting a small alpha

level in the first place.

Again, as mentioned above, within a two level, hierarchically-

nested design with individual units nested within groups and groups

nested within treatments, Paull studied the distributional properties

of the conditional F test given the usual one- and upper-tailed only

preliminary F test. These distributional properties were studied only

under the condition of positive dependence. It has been noted, however,

that this preliminary test can be rejected for one of two reasons (the

occurrence of positive dependence and the occurrence of negative depen-

dence) and thus instead should be a two-tailed F test. Or, if negative

dependence is suspected, a one- and lower-tailed only preliminary F test

would seem an appropriate possibility. On the other hand, there is no

reason to believe that the presence and direction of the distributional

effects found by Paull by changing the four parameters--the number of

individuals per group, the number of groups per treatment, the degree

of dependence and the nominal alpha level of the preliminary F test--

should differ given negative dependence and/or a two-tailed preliminary

F test. It is predictable, however, that given these other conditions,

the magnitude of these effects should change. The estimates of the

magnitude of these distributional effects will be studied later using

simulated data.



CHAPTER V

SIMULATION PROCEDURES

The present investigation has addressed and discussed two

specific questions. First, what is the effect of using correlated

units of analysis? That is, what happens to parameter estimates and

the probability of Type I and II errors when the assumption of indepen—

dence is violated? And second, what is the effect of using a prelim?

inary test of independence to choose the unit of analysis for the

primary test of treatment effects? Thus far the two questions have

been presented and discussed analytically. As yet, though, no attempt

has been made to describe the actual magnitude of effects, whose pres-

ence and direction were predicted in the preceding analytic chapter,

and which is the whole purpose of the simulation study. Thus the

simulation study will demonstrate the size of the distributional

effects for situations held to be common in educational settings.

The procedures employed to empirically study the magnitude of

distributional effects will now be discussed. First, the description

of the design parameters will be given. Second, the data generating

routine will be described along with a presentation of tests performed

on the generation routine.

46
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Simulation Parameters

As stated previously, the general research design considered in

the present study was a balanced, hierarchically-nested design. There

were two levels to the nesting. Individuals were nested within groups

and groups were nested within treatments. The design assumed there to

be one outcome measure per subject. Data such as this can be analyzed

using one of two analysis of variance models, which were described in

the previous chapter and presented in Tables 2 and 3.

For this simulation study, the number of treatment groups, t, was

held constant at two. Both the number of classes per treatment, c, and

the number of students per class, 8, were allowed to vary so that pos-

sible trends in the sampling distributions of the F statistic could be

investigated as these two parameters increased. Three values of classes

per treatment (2, 5, and 10) were selected. Two classes per treatment

is the minimum allowable number of classes per treatment such that the

treatment effects can be kept unconfounded from the classroom effects.

Ten classes per treatment was chosen as the upper limit as in practice

most educational studies do not employ more than ten classes or groups

per treatment condition. The sample size of students ranged from five

observations per classroom to twelve and twenty. The two extreme values

of subjects per class were chosen because five subjects per group is

relevant for small group studies and 20 subjects per group comes

relatively close to the average number of students per classroom

in elementary school settings.

Two competing methods for defining and manipulating levels of

positive and negative dependence among units were considered, both
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of which seem equally valid. One method uses the ratio of the E(MSC.T)

over the E(MS This method allows the intraclass correlation

S:CT)'

coefficient (pl) to vary as the number of students per class varies

(i.e., the pI naturally gets smaller as the number of students per

class increases). The intraclass correlation coefficient could also

have been used to define and manipulate levels of dependence. This

alternative method would entail keeping the pI at a constant value for

each level of dependence regardless of how many classes there were per

treatment or students there were per class, but would force either the

E(MSC'T) or the E(MS ) to vary as the number of students per class
S:CT

varied. The first method described above for defining and manipulating

degrees of dependence, altering the relationship between the E(MSC'T)

and the E(MS ) by varying the E(MS was selected for several
S:CT C:T)’

reasons. First, this method keeps the conceptual population of stu—

dents the same. That is, randomly deleting or adding students to any

classroom does not affect the within class variability. Second, pre-

vious research (Paull, 1950) has used the ratio of the expected mean

squares between groups to the expected mean squares within groups in

order to study the effects of preliminary tests for pooling mean

squares.

Two general types of dependence were studied. Positive depen-

dence was defined as occurring whenever the ratio of the E(MSC:T) to

the E(MS ) was greater than one (similarly the pI was positive).
S:CT

Negative dependence was defined as occurring whenever the ratio of

the E(MSC°T) to the E(MS ) was less than one (similarly the pI was

S:CT
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negative). Within each type of dependence, two degrees or levels of

dependence were studied. The degree of positive and negative dependence

was varied in order to study probable trends of disturbance in sampling

distributions of F tests of treatment effects, given different degrees

of dependence. Along with the condition of independence the four

defined conditions of dependence were:

0 Independence

E("$09.0momma) = 1

0 Positive dependence

E("Sc:r)/E("Ss:cr) = 2

E("30:r)’"("ss:01') = 3

0 Negative dependence

E(MSC:T)/E(MSS:CT) = .50

E(MSC:T)/E(MSS:CT) ' '33

The choice of particular degrees of positive and negative

dependence was somewhat arbitrary. However, an attempt was made to

investigate degrees of dependence which typically occur within educa-

tional research studies. Smith (1974) suggested that, for elementary

school children, classroom variance usually accounts for anywhere

between 20 and 502 of the student variation within treatment levels

for achievement measures such as reading and arithmetic. For studies

conducted within a "tight" regional area, the classroom variation most

likely would account for approximately 20% of the student variation;

while for studies conducted nationwide the classroom variation most j

I

likely would account for about 502 of the student variation.

:
‘
l
-
‘
h
W
-
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Haney (1974), working with data from 14 Philadelphia schools

in the Follow Through study, found that students (ungrouped) had a

variance of 137 on the Metropolitan Achievement Test total mathematics

score. When Haney randomly formed groups of eight students (which was,

on the average, the number of students per actual group), the variance

between random groups was 25, while the variance between actual groups

(or classrooms) was 52, which was twice the size of the variance using

random groupings. Haney's data seem consistent with Smith's suggested

limits in that when using the intraclass correlation coefficient to

calculate the percentage of student variance attributable to classroom

differences, the random groups accounted for approximately 6% of the

student variation, while the actual classrooms accounted for approx-

imately 2:}. However, in calculating the variances, Haney did not

take into account Follow Through, non—Follow Through differences.

If he had, his intraclass correlation coefficients would likely have

been somewhat smaller.

The actual degrees of positive dependence chosen reflect fairly

well Haney's data, using sample sizes which seem in the range of common

usage. It is also desirable that for different numbers of students,

the intraclass correlation coefficient remain relatively small, as it

is with small to intermediate degrees of dependence that effects of

dependence and effects of the preliminary test of independence seem

most nebulose. As Table 4 indicates, the intraclass correlation

coefficients used in the present study were in the small to

intermediate range.
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Table 4

Numbers of Students and Degrees of Dependence

 

 

 

E(Msc:r)/E(Mss:cr)

.33 .50 1 2 3

s = s -.153 -.111 .000 .167 .286

s = 12 -.059 -.044 .000 .077 .143

s = 20 -.026 .000 .048 .091-.O34

 

the

the

simulation study.

Table 5 indicates all possible combinations of the four parameters,

number of students per class, the number of classes per treatment,

type of dependence, and the degree of dependence, included in this

Table 5

Design of Study

An "+" marks the cells actually used in this study.

 

 

 

 

 

E("30:T)/"3("Ss:cr)

c s .33 .50 1 2 3

5

2 12 + + + + +
20

5 1- + + + +
5 12 + + + + +

20 + + + + +

5

10 12 + + + + +
.20
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For studying statistical power, the noncentral case was created

by adding 0.4 within class standard deviation units to each student's

observation in one treatment group. This value of 0.4 was determined

by approximating power under condition that the E(MSC:T) equalled the

E(MS ) for the selected numbers of classes per treatment and stu-

S:CT

dents per class. The size of the effects was selected so as to give

theoretical power values within the desired moderate range, given

independence of analytic units.

Data Generation Routine

The generation of unit normal variates involved two steps. First,

pseudo-random variates were obtained by calling subroutine RANDU (IBM,

1970, p. 77). This subroutine uses the power residue method to generate

uniform random variables. Second, the GAUSS subroutine (IBM, 1970,

p. 77) took 12 RANDU variates and used the Central Limit Theorem to

rescale and normalize the uniform variates to be distributed as N(0,l)

variates. Each time the generation program was run, which was once for

each marked row in Table 5, the seed or initial random number was

changed to insure independence among the resulting F distributions.

The number of iterations per selected row in Table 5 was 1000.

Four basic steps were used to create the dependent variable Yijk

with a known degree of dependence, where k indexes a student observation

within classroom j and treatment 1. First, a number of N(O,l) variates

(Yijk) were summed and averaged to get a classroom mean (Yij‘). Second,

within each classroom, the classroom mean was subtracted from each
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individual observation (Yijkf-Ylj ). Third, the class means were

adjusted by the square root of the dependence level, E(MSC'T)/E(MSS'CT)°

And finally, the adjusted means were added back to their respective set

of deviations. Thus the dependent variable was calculated as

 

Y.=Y' YE+
131. 131.- 11, I_ij./E(M30:T)/E(MS

S:CT'I '

There was special concern that, after adjusting the normal random

variates within classrooms for dependency, the student observations,

within treatments but across classrooms, remain normally distributed.

This is necessary when Model B (ignoring classrooms) is being consid-

ered. Theoretically the variates within treatments, adjusted for

dependency, should be normally distributed as each adjusted variate

is a linear combination of two variates independently distributed as

normal variables (Graybill, 1961, pp. 56—57).

Chi—square tests were run to see if example distributions of class

means and individual observations, for both independent and defined

dependent situations, would approximate the normal distribution, which

theoretically they should. The abscissa of the normal distribution was

divided into 12 sections. A sample of 10,000 observations, adjusted to

fit both the independent and four defined dependent conditions, and

2000 classroom means (there were five observations for each class)

were generated and the number of cases falling into each of the 12

defined intervals was counted (Table Arl in Appendix A). None of the

six x2 tests of fit were rejected at the .10 level, which suggests
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good approximation to the normal distribution for both class means and

individual observations.

In addition, the mean, variance, skewness and kurtosis for student

within treatment type data were calculated for each marked cell in

Table 5. These distributional statistics are displayed in Appendix A

(Tables A-2 through A-6). In all cases the four distributional sta—

tistics were visually in close agreement to their known parameters.

For data constructed under both dependent and independent conditions,

the means for the adjusted student within treatment observations should

equal zero for each treatment, given the central case. Given the non-

central case, the means for student within one treatment condition

should equal zero and within the other treatment condition 0.4. The

expected variances of the student within treatment data can be calcu-

lated from the following:

Var(Yijk) = Var(Y' )4—(6—1)2Var(T' )4—2(e—1) Cov(Y
ijk 13. ijk,Yij.)’

 

where 0 = /ECMSC:T)/ECM83:CT)

Var(Yijk) = l + 2(0-1)/s + (0-1)2/s, as the

C°v(Yijk’ Yij.) = l/s.

As one example, if s = 12 and 0 = /3: the expected variance of the

adjusted observations within one treatment level is 1.167. Given

these two parameters, the empirical variances, one for each treatment

level, are very close to this predicted value (see Tables A-2, A-4,
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and A—6). The remaining empirical variances for the simulated data,

for all combinations of s and 0, were also close in value to their

respective expected values. And finally, the empirical skewness and

kurtosis estimates for the simulated student within treatment type data

were also very close to their expected values of zero for all simulated

runs.

Distributional properties of four observed mean squares adjusted

by their expected values were also examined (Tables A97 through A-ll

in Appendix A). Each of these four standardized mean squares, MST,

MS MSS‘CT’ and MSS°T’ should be distributed as chi-square variables
C:T’

with a mean equal to its degrees of freedom, a variance equal to twice

its degrees of freedom and a skewness equal to the square root of eight

divided by its degrees of freedom (Glass & Stanley, 1970, pp. 231-232).

Under the condition of no treatment effect, the mean, variance and

skewness of these standardized mean squares across 1000 samples were

visually close to their respective known chi-square parameters. All

three sets of above analysis suggest that the data generation routine

was in proper working order.



CHAPTER VI

UNITS 0F ANALYSIS: EMPIRICAL ESTIMATES

OF EFFECTS

Chapter IV dealt analytically with how dependence between

disaggregate units affects the sampling distribution of two F

statistics, one using the aggregate unit as the unit of analysis

(F = MST/MSG:T) and the other using the disaggregate unit as the

unit of analysis (F a MST/MS The present chapter demonstrates
S:T"

empirically the size of the effects hypothesized in Chapter IV for

situations held to be common in educational research. The variables

of interest in both the analytic and the empirical investigations were

number of subjects per group, number of groups per treatment, type of

dependence, and degree of dependence. Any combination of levels of the

above variables represents a sampling distribution which could have been

generated. An attempt was made to generate sampling distributions for

a subset of the totality which would afford as much information as

possible about the effects of the above mentioned variables on the

sampling distributions of the two F statistics. The subset of variable

levels chosen to study is represented by the three-dimensional matrix

in Table 5.

56
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Classroom as Unit
 

Model A or the "never pool" model (Table 2) is the analytic model

of concern when classroom is designated as the unit of analysis in

testing for treatment effects. With classroom as the unit of analysis,

the test of treatment effects is F a MST/MSC'T°

Independence
 

Whenever student responses within and between classrooms were

operationally independent of each other, homoscedastic and normally

distributed between classrooms and given the data were contrived such

that there were no treatment effects, the test statistic F = MST/MSG:T

was always distributed as a central F with (t—l) and (c—l)t degrees of

freedom. Under this set of conditions, the observed alpha level of the

test F = MST/MS consistently agreed to within 1.96 standard deviation
C:T

units, /E(l-a)/1000, with the nominal alpha levels (Table 6). Across

 

the five different combinations of s and c, the mean observed alpha

levels equalled .008 for a = .01, .023 for a = .025, .050 for a’= .05,

.100 for a = .10, and .240 for a - .25. As one can see, these averaged

observedalpha levels are relative close to their nominal counterparts.

Table 6 also indicates that the number of students per class and the

number of classes per treatment had no affect on the actual signifi-

cance level of the test F = MST/MS Another view of the effect on

C:T'

the actual alpha levels of increasing 3 and increasing c can be gotten

by calculating mean empirical alpha levels across the five nominal alpha

levels. Doing this and keeping c constant at 5 gave mean empirical
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Table 6

Empirical Type I Errors for F = MST/MSC'T

 

Nominal alpha

 

 

 

d.f. Mean

c 3 error .010 .025 .050 .100 .250 alpha

2 12 (2) .010a ..ozsa .049a .090a .262a .088

5 5 (8) .011a .025a .061a .107a .2448 .090

5 12 (8) .007a .018a .046a .095a .2268 .078

' 5 20 (8) .007a .028a .049a .100a .2488 .086

10 12 (18) .006a .017a .049a .094a .2318 .079

Mean alpha .008 .023 .050 .100 .240

 

aEmpirical alpha is within 1.96 standard errors of the nominal alpha.

alpha levels equalling .090 for s = 5, .078 for s = 12, and .086 for

s = 20. Averaging across the five nominal alpha levels and keeping s

constant at 12 gave mean empirical alpha levels equal to .088 for c==2,

.078 for c = 5, and .079 for c - 10. The standard by which each of the

mean empirical alpha levels, as s and c were varied, should be judged

is the mean of the five nominal alpha levels, which equals .087. As

expected, this standard mean is in close agreement to those found when

s and c were varied.

As predicted analytically, given independence of student

responses, i.e., E(MSC.T)/E(MS ) equalled one, and noncentral

S:CT

conditions, both increasing the number of students per class and

increasing the number of classes per treatment increased the power

of the test F = MST/MSC°T (Table 7). Averaging across the five nominal
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Table 7

T

 

Nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

d.f. Mean

c 3 error . 010 . 025 . 050 . 100 . 250 power

2 12 (2) .074 .149 .297 .499 .793 .362

5 5 (8) .265 .436 .594 .760 .896 .590

.33 5 12 (8) .661 .839 .916 .966 .997 .876

5 20 (8) .896 .967 .990 .998 .999 .970

10 12 (18) .986 .996 .999 1.000 1.000 .996

Mean power .576 .677 .759 .845 .937

2 12 (2) .055 .124 .217 .389 .708 .299

5 5 (8) .162 .287 .420 .592 .813 .455

.50 5 12 (8) .450 .651 .794 .889 .967 .750

5 20 (8) .721 .861 .937 .978 .997 .899

10 12 (18) .920 .965 .984 .995 1.000 .973

Mean power .462 .578 .670 .769 .897

E3, 2 ' 12 (2) .036 .086 .153 .261 .533 .214

033 5 5 (8) .078 .149 .227 .359 .621 .287

53 l 5 12 (8) .193 .322 .478 .657 .843 .499

23 5 20 (8) .381 .552 .699 .822 .938 .678

F;, 10 12 (18) .621 .773 .852 .915 .967 .826

fig) Mean power .262 .376 .482 .603 .780

“I 2 12 (2) .023 .057 .103 .194 .406 .157

5 5 (8) .038 .085 .141 .229 .447 .188

2 5 12 (8) .075 .160 .261 .399 .638 .307

5 20 (8) .164 .292 .429 .569 .781 .447

10 12 (18) .268 .411 .562 .705 .857 .561

Mean power .114 .201 .299 .419 .626

2 12 (2) .021 .047 .086 .167 .353 .135

5 5 (8) .024 .069 .107 .191 .383 .155

3 5 12 (8) .053 .110 .176 .299 .524 .232

5 20 (8) .094 .195 .302 .448 .666 .341

10 12 (18) .173 .275 .386 .539 .765 .428

Mean power .075 .138 .211 .329 .538
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alpha levels but keeping c constant at 5 gave mean power values

equallying .287 for s = 5, .499 for s = 12, and .678 for s = 20.

Averaging across the same nominal alpha levels but keeping s constant

at 12 gave mean power values equalling .214 for c = 2, .499 for c = 5,

and .826 for c = 10. Table 7 also shows that increasing the number of

classrooms per treatment had a more positive effect on increasing the

power of F - MST/MSC:T than did increasing the number of students per

classroom. This is illustrated in Table 7 by comparing the difference

in estimated powers as c is increased, but keeping s constant at 12,

from c equals 5 to c equals 10 (a difference of five classrooms per

treatment) to the difference in estimated powers as s is increased,

but keeping c constant at 5, from 8 equals 12 to 5 equals 20 (a dif-

ference of eight students per classroom). As the nominal alpha level

was increased from .01 to .25, an increase of five classes per treatment

increased the estimated power from .193 to .621, which is an increase

in power of 221% to an increase in power from .843 to .967, which is

an increase of 14.72. Correspondingly, an increase of eight students

increased the estimated power from .193 to .381, which is an increase

in power of only 97.4%, to an increase in power from .843 to .938, which

is an increase of only 11.32. This same sort of general relationship

between estimated powers as c and s were increased by relative amounts

held up across all five nominal alpha levels examined (.01, .025, .05,

.10, and .25).
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Positive Dependence
 

Positive dependence between student responses within classrooms

was defined as the condition where the E(MSC_T) was greater than the

E(MS ). For the simulation study, the E(MS ) always equalled
S:CT S:CT

one and the degree of positive dependence was defined by manipulating

the value of the E(MS The degree of positive dependence was said

C:T)’

to increase as the value of the E(MS ) increased above one. In par-
C:T

ticular, two degrees of positive dependence were studied. They were

E(MSC.T)/E(MS ) equal to 2 and E(MSC.T)/E(MS ) equal to 3.
S:CT S:CT

Whenever student responses within classrooms were operationally

dependent upon each other in a positive manner, but between classroom

observations were independent, homoscedastic and normally distributed,

and given no treatment effects, the test statistic F = MST/MS again
C:T

had a central F distribution with (t-l) and (c-l)t degrees of freedom.

And as predicted in the earlier analytic work, neither the number of

students per class nor the number of classes per treatment nor the

existence and/or degree of positive dependence had any effect on the

actual significance level of the test F = MST/MS The observed
C:T'

alpha values, given both degrees of positive dependence between student

responses, for the five nominal alpha levels are identical to those

when given independence between student responses and are displayed

in Table 6 for prespecified values of s and c.

The estimated powers for F = MST/MSC:T (the "never pool" test)

for the two simulated positive dependence conditions are shown at the

bottom of Table 7. The estimated statistical powers when using class
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as the unit of analysis decreased as the degree of positive dependence

increased from E(MSC.T/E(MS ) = 3. This
S:CT) = 2 t° E("50:13)/E("'Ss:cr

inverse relationship, however, is purely a function of the degree of

dependence being defined by manipulating the E(MSC'T) and keeping the

E(MS ) constant. The relationship between degree of positive depen-
S:CT

dence and magnitude of the estimated power values would have equalled

zero if the degree of dependence had instead been defined by altering

the E(MSS:CT) or if the noncentral case had been created by adding 0.4

of the between class variance, rather than 0.4 of the within class

variance, to the adjusted random variates of one treatment level. In

other words, because of the way the data base in the noncentral case

was built, power and degree of dependency are confounded when classroom

is the unit of analysis. The effect of increasing 8 and/or c would have

increased the power of F - MST/MS no matter how the degree of depen-

C:T

dence and the noncentral case had been defined. Similarly, the number

of students per class and the number of classes per treatment would

have had no effect on the actual significance level of F = MST/MSC°T

no matter how degree of dependence had been defined.

Negetive Dependence
 

Negative dependence between student responses within classes was

defined as the condition where the E<MSC°T) was less than the E(MSS°CT)

or concurrently where the variance between classrooms was less than

that predicted had equal numbers of students been randomly assigned

to classrooms. Two degrees of negative dependence were studied. They
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were E(MSCOT)/E(MS ) equal to .5 and E(MSC.T)/E(MS ) equal
S:CT S:CT

to .33.

The amount of negative student dependency, an increase in students

per class and an increase in classes per treatment all had no effect on

the distribution of the test statistic F - MST/MS given the central
C:T’

case and given that observations between classes were independent,

homoscedastic and normally distributed. When classroom is the unit

of analysis, the observed alpha values, given negative dependence within

classrooms, for the five nominal alpha levels are identical to those

when given independence and are displayed in Table 6 for prespecified

values of s and c.

The empirical powers for F - MST/MSG:T for the two simulated

negative dependence conditions are shown at the top of Table 7. As

with the case of positive dependency, the noncentrality parameter, and

thus power, and the degree of negative dependence are confounded when

classroom is the unit of analysis. Once again, however, increasing 3

and/or c would have increased the power of F a MST/MS no matter how
C:T

degree of negative dependence and the noncentral case had been defined.

Student as Unit

Model B or the "always pool" model (Table 3) is the analytic model

of concern when student is used as the unit of analysis in testing for

treatment effects. With student as the analytic unit, the test of

treatment effects is F = MST/Mss:T.
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Independence

Empirical Type I errors for the F = MST/MS test given
S:T

independence of student responses within treatments are given in

Table 8. All estimated Type I errors, across all five combinations

of s and c and across all five nominal alpha levels, were within 1.96

standard errors of the nominal alphas. Across the five combinations

of s and c, the mean observed alpha levels equalled .010 for a = .01,

.024 for a = .025, .051 for a = .05, .098 for a = .10, and .241 for

a = .25. The mean observed alpha levels appear very close to their

respective nominal values. Table 8 also indicates that increasing the

number of students per class and/or increasing the number of classes

per treatment had no effect on the probability of Type I errors for

F = MST/MS Averaging across the five nominal alpha levels and
S:T'

keeping c constant at 5 gave mean observed alpha levels of .082 for

s = 5, .081 for s = 12, and .092 for s - 20. Averaging~across the

nominal alpha values and keeping s constant at 12 gave mean observed

alpha levels of .087 for c = 2, .081 for c = 5, and .082 for c - 10.

All of the above mean empirical alpha levels are in close agreement to

their expected mean empirical alpha level which equals .087. Thus, as

expected, given that students within treatments were independent, homo-

scedastic and normally distributed and given there were no treatment

effects, F = MST/MS was distributed as a central F having (t-l) and
S:T

(sc-l)t degrees of freedom.

Empirical statistical powers for F = MST/MSS°T for the five

analysis of variance designs are given in Table 9. As expected, the



Empirical Type I

65

Table 8

Errors for F = MST/MSS:T

 

Nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

d.f. Mean

c 8 error .010 .025 .050 .100 .250 alpha

2 12 (46) .000 .001 .001 .008 .059 .014

5 5 (48) .000 .000 .004 .011 .058 .015

.33 5 12 (118) .000 .000 .001 .005 .049 .011

5 20 (198) .000 .000 .001 .005 .050 .011

10 12 (238) .000 .000 .000 .004 .053 .011

Mean alpha .000 .000 .001 .007 .054

2 12 (46) .001 .002 .009 .029 .100 .028

5 5 (48) .000 .007 .012 .023 .114 .031

.50 5 12 (118) .000 .003 .007 .018 .108 .027

5 20 (198) .000 .002 .008 .021 .122 .031

10 12 (238) .000 .000 .004 .021 .108 .027

r;‘ Mean alpha .000 .003 .008 .022 .110

c:

m&; 2 12 (46) .011: .032: .058: .091: .242: .087

5 5 5 (48) . 012a . 022a . 048a . 097a . 231a . 082

E l 5 12 (118) . 008a . 020a .046a . 094a . 237a . 081

fig. 5 20 (198) .0148 .024a .050a .111a .2608 .092

as 10 12 (238) .007 .022 .052 .096 .235 .082

(D

f; Mean alpha .010 .024 .051 .098 .241

2 12 (46) .064 .093 .146 .226 .383 .182

5 5 (48) .044 .081 .123 .195 .351 .159

2 5 12 (118) .051 .096 .139 .210 .395 .178

5 20 (198) .067 .116 .158 .242 .405 .198

10 12 (238) .056 .093 .144 .215 .356 .173

Mean alpha .056 .096 .142 .218 .378

2 12 (46) .102 .165 .224 .312 .457 .252

5 5 (48) .085 .122 .180 .252 .417 .211

3 5 12 (118) .106 .153 .211 .298 .465 .247

5 20 (198) .126 .179 .249 .324 .475 .271

10 12 (238) .108 .158 .210 .290 .451 .243

Mean alpha .105 .155 .215 .295 .453

 

aEmpirical alpha is within 1.96 standard errors of the nominal alpha.
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Table 9

S:T

 

Nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

d.f. Mean

c 8 error .010 .025 .050 .100 .250 power

2 12 (46) .028 .087 .177 .342 .685 .264

5 5 (48) .031 .105 .200 .397 .727 .292

.33 5 12 (118) .282 .485 .694 .855 .962 .656

5 20 (198) .685 .857 .929 .980 .998 .890

10 12 (238) .854 .942 .976 .996 1.000 .954

Mean power .376 .495 .595 .714 .874

2 12 (46) .053 .126 .211 .376 .656 .284

5 5 (48) .057 .139 .229 .406 .689 .304

.50 5 12 (118) .321 .481 .646 .800 .937 .635

5 20 (198) .644 .815 .897 .948 .991 .859

10 12 (238) .805 .898 .957 .981 .998 .928

Mean power .374 .492 .588 .702 .854

‘23 2 12 (46) . 114 .190 .286 .409 .607 .321

:3” 5 5 (48) .102 .186 .274 .402 .645 .322

E; 1 5 12 (118) .346 .470 .590 .742 .869 .600

21 5 20 (198) .604 .730 .810 .881 .947 .794

”La 10 12 (238) .720 .826 .883 .931 .971 .866

go Mean power .377 .480 .569 .669 .808

"J 2 12 (46) .185 .262 . 345 .437 .612 .368

5 5 (48) .149 .221 .301 .400 .616 .337

2 5 12 (118) .357 .454 .544 .641 .782 .556

5 20 (198) .563 .670 .733 .798 .884 .730

10 12 (238) .642 .730 .795 .859 .920 .789

Mean power .379 .467 .544 .627 .763

2 12 (46) .226 .312 .390 .455 .621 .401

5 5 (48) .171 .236 .320 .420 .617 .353

3 5 12 (118) .367 .442 .526 .610 .752 .539

5 20 (198) .537 .623 .703 .753 .846 .692

10 12 (238) .589 .687 .744 .807 .879 .741

Mean power .378 .460 .537 .609 .743
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table shows that, given E(MSC.T)/E(MS ) equals one and the
S:CT

noncentral condition, increasing the number of subjects per class

and increasing the number of classes per treatment increased the power

of the test F = MST/MS Averaging across the five nominal alpha
S:T'

levels and keeping c constant at 5 gave mean power values equal to

.322 for s = 5, .600 for s = 12, and .794 for s = 20. In similar

fashion, averaging over the nominal alpha levels but keeping s constant

at 12 gave mean power values equalling .321 for c = 2, .600 for c = 5,

and .866 for c = 10. Each one of these mean power values exceeds its

respective mean power value when class, rather than student, is used

as the unit of analysis. In fact, given independence of student

responses, all of the 25 powers shown in Table 9 are larger than the

25 corresponding powers displayed in Table 7, which indicates that, as

expected under independence, F = MST/MS was always more powerful a
S:T

test than F = MST/MS This increase in power can be accredited to
C:T’

an increase in degrees of freedom error. (Comparing any two respective

rows in Tables 7 and 9, given E(MSC.T)/E(MS ) equals 1, is similar
S:CT

to Table 1 from Peckham et al.)

Positive Dependence
 

The analytic analysis (Chapter IV) of the effect of positive

dependence given student as the unit of analysis suggested that the

test F = MST/MS would result in a too liberal test statistic.

S:T

Determining just how liberal that test statistic would be given certain

parameters can be estimated using either of two methods: (a) Monte
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Carlo analysis and (b) rescaling the biased F statistic and then using

the tabled F values to measure the degree of liberalness. Both methods

of estimation were used in this study and their comparable results will

be discussed in this section, beginning with the Monte Carlo analysis.

The effects of positive dependence between disaggregate units on

the actual significance levels of the test F = MST/MSS:T’ measured by

the Monte Carlo method, are reported at the bottom of Table 8. None

of the observed alpha levels are within 1.96 standard errors of the

nominal alpha levels. All observed alpha levels are larger than their

theoretical complements, which signals liberalness of the test statistic.

This indicates that, given positive dependence and no treatment effects,

F = MST/MS is not distributed as a central F, but in fact is distrib-

S:T

uted as an F distribution which is located to the right of the central

F distribution found when given independence of student responses and

the same F statistic. This is in complete agreement with the work of

Scheffé (1959) and Cochran (1947) and with analytic work presented in.

Chapter IV.

As a second and alternative way to determine the extent of the

liberalness, the F statistic MST/MS can be adjusted such that it
S:T

has a central F distribution under the null hypothesis. Doing this

would allow using the F table to estimate the degree of effect posi-

tive dependence has on the alpha level. Given the null, the E(MST)

equals the E(MSC:T) and thus the two ratios of expected values

E(MSC:T)/E(MSS:T) and E(MST)/E(MSS:T) are equivalent and greater than

one, given positive dependence. If, however, the F is rescaled by a
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constant 1/n, where n equals E(MSC.T)/ECMSS.T), the two ratios of

expected values given above equal one, from which it follows that the

rescaled F, F0, will have a central F distribution. This rescaled F

equals (MST/n)/MS The actual alpha level then equals the P(F02>d/n),
S:T'

where d equals the critical F value at any nominal alpha, given (t-l)

and (sc—l)t degrees of freedom.

The estimated Type I errors, given positive dependence, obtained

using the rescaled F statistic are reported at the bottom of Table B-1

in Appendix B. These estimated values closely match those found in the

Monte Carlo study (Table 8). (Ninety percent of the matched alpha

values from the two empirical analyses were within 1.96 standard errors

of each other.) Because the empirical alpha levels of both techniques

were similar both in absolute value and trend, the remaining analysis

of the empirical effects on the alpha level of increasing 8, increasing

c, and increasing degree of positive dependence will be discussed and

illustrated using only the simulated or Mbnte Carlo data found in

Table 8.

As c and degree of positive dependence were held constant and the

actual alpha levels were averaged across the five nominal alpha levels,

an increase in s was directly related to an increase in liberalness.

For example, at E(MSC.T)/E(MS ) equal to 2 and c equal to 5, aver-
S:CT

aging across the five nominal alpha levels gave mean observed alpha

levels equal to .159 for s = 5,.178 for s = 12, and .198 for s = 20

(Table 8). This direct relationship between liberalness and increasing

8, given positive dependence, occurs because as s is increased the

discrepancy between the E(MSC'T) and the E<MSS°T) is increased
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(Table 10). For example, given E(MSC.T)/E(MS ) equal to 2 and
S:CT

c equal to 5, this observed discrepancy goes from .81 to .94 to .97

as 8 equals 5, 12, and 20, respectively. On the other hand, as s and

the degree of positive dependence were held constant and the actual

alpha levels were averaged across the nominal alpha values, an increase

in c was indirectly related to the degree of liberalness. For example,

at E(MSC.T)/E(MS ) equal to 2 and s = 12, the mean observed alpha
S:CT

levels equalled .182 for c = 2, .178 for c = 5, and .173 for c = 10.

This indirect relationship occurs because as c is increased the dis-

crepancy between the E(MSC:T) and the E(MSS:T) decreases. For example,

given E(MSC:T)/E(MSS:CT) equal to 2 and 8 equal to 12, this observed

discrepancy equals .96 for c = 2, .94 for c = 5, and .92 for c = 10.

Table 8 also shows that the degree of liberalness is monoton-

ically related to the degree of positive dependence. That is, as

E(MSC.T)/E(MS ) increased from 2 to 3, the liberalness of the F
S:CT

test using student as the unit of analysis also increased. At

E(MSC.T)/E(MS ) equal to 2 averaging across the five combinations

S:CT

of s and c gave mean observed alpha levels equal to .056 for a = .01,

.096 for a = .025, .142 for a = .05, .218 for a - .10, and .378 for

a = .25. These five mean values are all smaller than their matches,

given E(Msc:T)/E(MS ) equal to 3, which, respectively, equal .105,
S:CT

.155, .215, .295, and .453.

Because of the general liberalness of the test F = MST/MSS°T’

under all observed cases of s, c, and degree of positive dependence,

the powers shown at the bottom of Table 9 will not be discussed as

these powers are all spuriously large.
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Table 10

Discrepancy Between Observed and Theoretical E(MSC'T) and E(MSS.T)

E("30:19 ’Emssm'r)

c s .33 .50 l 2 3

2 12 -.6388 -.478 .000 .957 1.913

(-.638)b (-.478) (.000) (.957) (1.913)

5 5 -.560 -.423 -.013 .808 1.629

(—.556) (-.417) (.000) (.833) (1.667)

5 12 -.634 -.476 -.004 .939 1.883

(-.622) (—.466) (.000) (.932) (1.864)

5 20 -.645 —.483 .002 .974 1.946

(-.640) {-.480) (.000) (.960) (1.919)

10 12 -.624 -.470 -.008 .915 1.839

(-.6l6) (-.462) (.000) (.924) (1.849)

aObserved E(MSC:T) minus Observed E(MSS:T)'

bTheoretical E<MSC°T) minus Theoretical E(MS

S:T>’
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Negative Dependence
 

The effects of negative dependence between disaggregate units

on the actual significance levels of the test F = MST/MSS:T’ estimated

using Monte Carlo procedures, are reported at the top of Table 8. None

of the empirical alpha levels were within 1.96 standard errors of the

nominal alpha levels. All empirical alpha levels were smaller than

their nominal counterparts, which means the test statistics were too

conservative. This indicates that, given that GE was less than 0;.CT/s

and there were no treatment effects, F = MST/MSS°T was not distributed

as a central F but instead had an F distribution which was located to

the left of the central F distribution found when given the same F

statistic and independence of individual units. This finding concurs

with the analytic work of Scheffé (1959) and Cochran (1947) and also

with the analytic work presented in Chapter IV.

The rescaled F statistic was also used to estimate the magnitude

of effects given negative dependence and prespecified parameters. The

results of this analysis are reported at the top of Table B-1 in Appen-

dix B. Once again the estimated alpha values in Table B-1 closely

match, both in absolute value and trend, those reported in Table 8.

(Ninety-eight percent of the matched alpha levels from the two

empirical analyses were within 1.96 standard errors of each other.)

Because of this, the effects on the alpha level of increasing 8,

increasing c, and increasing the level of negative dependence will

1

be discussed and illustrated using only the simulated data found in

Table 8.
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The theoretical and observed discrepancies (Table 10) between

the E(MSC'T) and the E(MSS'T) for each level of negative dependence

indicate that as 3 increases F = MST/MS should become more conserva—

S:T

tive because the E(MSs:T) becomes increasingly larger than the E(MSC:T)

as 3 increases. Table 10 indicates that the opposite should occur as

c is increased. Neither one of these two expectations appeared in the

simulated data. It may have been that the observed alpha values were

just too close to zero and the three different levels of number of

students and classes were just not different enough to bring out the

expected trends.

Table 8 also shows that the degree of conservativeness is

monotonically related to degree of negative dependence. For example,

at E(MSC.T)/B(MS ) equal to .5, averaging across the five combina-
S:CT

tions of s and c gave mean observed alpha levels equal to .000 for

a = .01, .003 for a - .025, .008 for a - .05, .022 for a = .10, and

.110 for a - .25; while at E(MSC.T)/E(MS ) equal to .33, averaging
S:CT

across the combinations of s and c gave mean observed alpha levels

equal to .000 for a - .01, .000 for a I .025, .001 for a = .05, .007

for a . .10, and .054 for a - .25.

The empirical powers for F - MST/Mss:T for the two simulated

negative dependence conditions are shown at the top of Table 9. As

expected, the estimated power values increased both as the number of

students per class increased and as the number of classes per treatment

increased. For example, given.the least degree of negative dependence,

i.e., E(MSC.T)/E(MS ) equal to .5, averaging across the five nominal
S:CT
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alpha levels and keeping c constant at 5 gave mean power values

equalling .304 for s = 5, .635 for s = 12, and .859 for s = 20.

Given that same degree of negative dependence, averaging across the

nominal alpha levels and keeping s constant at 12 gave mean power

values equal to .284 for c = 2, .635 for c = 5, and .928 for c = 10.

By itself a conservative test statistic should have spuriously

less power. Thus the power of the test F = MST/MSS'T should be reduced

as the negative dependence is increased from ECMSC.T)/E(MS ) equals

S:CT

.5 to E(MSC.T)/E(MS ) equals .33. For small degrees of freedom
S:CT

error, i.e., (sc-l)t equals 46 and 48, increasing negative dependence

did decrease the power of F = MST/MS However, for large degrees
S:T'

of freedom error, across most nominal alpha levels the reverse occurred.

Of greatest significance to the practitioner, however, F = MST/MS
S:T

had, in all cases but one, (EIMSC°T]/E[MSS°CT] = .5, c = 2, s - 12, and

a = .025), less power than the F = MST/MSC°T test. Thus, in this simu—

lation situation increasing the degrees of freedom error for the F

statistic by using student, rather than class, as the unit of analysis

did not compensate for the fact that using student made the test of no

treatment effects too conservative a test.



CHAPTER VII

THE CONDITIONAL F TEST: EMPIRICAL ANALYSIS

The most desirable situation in testing hypotheses is, of

course, both a small probability of a Type I error (a) and a small

probability of a Type II error (8). Table 7 of the preceding chapter

showed that the probability of a Type 11 error, given the always correct

F = MST/MS test, the most commonly used alpha level of .05 and the
C:T

operational definition of independence, was relatively high for four

of the five simulated combinations of s and c. For c = 2 and s = 12,

B equalled .847; for c - 5 and s - 5, B equalled .773; for c = 5 and

s = 12, B equalled .522; for c - 5 and s I 20, B equalled .301, and

for c a 10 and s = 12, B equalled .148. Clearly, it would be nice

to improve on these rather high probabilities, if possible, without

increasing the probability of Type I errors. It was shown earlier,

both analytically and empirically (Table 9), that using F tests with

disaggregate units as the units of analysis, F - MST/Mss:T, would reduce

the probability of Type II errors, given independence, by increasing the

degrees of freedom error. However, if the individual data values were

positively dependent upon each other, which appears to be quite common

in ordinary classroom situations, then using the test F = MST/M88:T

increased the probability of Type I errors. On the other hand, if

observations within groups were negatively dependent, using the test

75
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F = MST/M88:T decreased the probability of Type I errors but at the

same time the natural increase in degrees of freedom error was not

enough to offset the increase of the probability of Type II errors

caused by this spurious decrease in the probability of Type I errors.

All in all, given simulated conditions common to educational data, it

seemed "best" to use classroom as the unit of analysis given dependence

(either positive or negative) between student responses and student as

the unit of analysis when student responses were independent of each

other. Herein lies the motivation for performing a preliminary test

of independence. That is, the sole purpose of this preliminary test

is to choose the appropriate unit of analysis for the primary test of

treatment effects.

The problem with using this operational test of independence,

F = MS /MSC'T T’ to select a unit of analysis for the primary test
S:C

is that this procedure makes the primary test of no treatment effects

have a conditional F distribution. Of interest then is the difference

between the distribution of a conditional F test statistic (also called

the "sometimes pool" test statistic) and the distribution of the appro-

priate unconditional and always correct F statistic from the "never

pool" model, F = MST/MS Variables which were examined to see how

C:T’

they affected this difference included the number of students per class,

the number of classes per treatment, the type and degree of dependence,

the alpha level of the preliminary test, and the alpha level of the

primary test. The effects of each one of the above mentioned variables

on the distributional properties of the conditional F test were empir-

ically studied within the content of three different preliminary F
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tests. The three preliminary F tests included: (a) a two-tailed

preliminary F test, (b) the usual, upper—tailed only preliminary F

test, and (c) a lower-tailed only preliminary F test.

In order to claim this two-stage testing procedure a success,

the observed alpha level of the conditional F test should be close to

the nominal alpha level at which the researcher thinks he is working

and the procedure should have greater power than the always correct,

unconditional test F = MST/MS Simulated data, identical to those
C:T'

used for looking at the effects of correlated units of analysis, were

used to examine both empirical probabilities of Type I errors and

empirical powers of the conditional F tests. Based on the results of

one of the preliminary tests, either Model A (Table 2), F = MST/MSC:T’

or Model B (Table 3), F a MST/M58:T’ was designated as the appropriate

‘model to use in testing the primary hypothesis of no treatment effects.

The actual alpha level for the conditional F test was defined by

(nAo:A + nBGB)/(nA.+ nB), where nA and nB equalled the number of pre-

liminary F tests rejected and not rejected, respectively, and “A and

GB equalled the actual alpha levels for the primary tests of no treat-

ment effects analyzed by Models A and B, respectively.

The Two-Tailed Preliminary Test

The two-tailed preliminary F test tested the hypothesis that the

E(MSC'T) equalled the E(MS ), or equivalently that pI equalled zero.
S:CT

The effects of the two-tailed preliminary test were examined at five

different preliminary test alpha levels (i.e., .02, .05, .10, .20, and
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.50). Actual conditional test alpha levels, given the two—tailed

preliminary test, are shown in Tables 11 through 15. Corresponding

differences between empirical powers of the conditional test and the

unconditional, always correct test F = MST/MSC=T are shown in Tables

16 through 20. Appendix C (Tables C-l through C—S) contains the actual

statistical powers of the conditional F test, given the two-tailed

preliminary test. Each separate table describes the effect on the

conditional F test alpha level or power of varying the type and degree

of dependence, the two-tailed preliminary test alpha level and the

conditional test alpha level for one specific combination of s and c.

Examining the effects of s and c requires between table comparisons.

In this study each combination of s and c will be referred to as a

"design." Thus, this study includes five designs, c - 2 and s - 12,

c ' 5 and s = 5, c - 5 and s - 12, c = 5 and s = 20, and c = 10 and

s = 12.

Independence
 

Independence is that condition where the variance of the aggregate

units is predictable given the variance of the disaggregate units and

the grouping size. Operationally speaking, within the context of this

study, independence occurs whenever the ratio of E(MSC:T) over E(MSS:CT)

equals 1. Given this situation, ideally the two-tailed preliminary test

should not reject its null hypothesis, Ho: E(MSC:T) equals E(MSS:CT)’

designating the disaggregate unit (students) as the appropriate unit of

analysis in testing for treatment effects.
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Table 11

Actual Alphas of the Conditional F Test Given a Two-Tailed

Preliminary Test, c = 2 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

Mean

 

 

 

 

 

 

 

 

 

 

  

nominal alpha .010 .025 .050 .100 .250 alpha

.02 .007: .0153 .017 .025 .081 .029

.05 .0108 .024a .0338 .051 .114 .046

.33 .10 .010a .029a .044a .0708 .151 .061

.20 .0108 .029a .048a .085a .2008 .074

.50 .010 .029 .050 .093 .257 .088

Mean alpha .009 .025 .038 .065 .161

.02 .008: .0148 .023 .044 .116 .041

.05 .0118 .023a .035a .060 .139 .054

.50 .10 .011a .026a .045a .0753 .161 .064

.20 .0118 .029a .052a .091a .2008 .077

.50 .010 .028 .052 .098 .254 .088

”E; Mean alpha .010 .024 .041 .074 .174

(g3 .02 .0168 .042 .070 .102: .251: .096

5 .05 .018 .045 .072 .104at . 2508 .098

23 1 .10 .019 .048 .078 .113 .2608 .104

r}, .20 .019a .048 .085 .122 .268 .108

as .50 .016 .042 .079 .126 .289 .110

2% Mean alpha .018 .045 . 077 .113 .264
m

.02 .065 .090 .138 .210 .357 .172

.05 .066 .093 .138 .201 .340 .168

2 .10 .066 .091 .134 .193 .325 .162

.20 .055 .082 .123 .181 .309 .150

.50 .035 .062 .098 .152 .280 .125

Mean alpha .057 .084 .126 .187 .322

.02 .093 .144 .188 .261 .383 .214

.05 .085 .136 .178 .244 .357 .200

3 .10 .079 .125 .161 .219 .329 .183

.20 .067 .108 .139 .196 .306 .163

.50 .044 .070 .100 .143 .274 .126

Mean alpha .074 .117 .153 .213 .330

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 12

Actual Alphas of the Conditional F Test Given a Two—Tailed

Preliminary Test, 0 = 5 and s = 5

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.02 .008: .019: .044: .070 .151 .058

.05 .009a .020a .049a .076a .192 .069

.33 .10 .0108 .022a .055a .098a .209 .079

.20 .0118 .0248 .059 .107 .2308 .086

.50 .011 .025 .061a .108a .2453 .090

Mean alpha .010 .022 .054 .092 .205

.02 .006: .018: .0328 .053 .152 .052

.05 .008a .024a .045a .0708 .180 .065

.50 .10 .008a .026a .053a .084a .2018 .074

.20 .010a .026a .057a .098a .2248 .083

.50 .011 .026 .062 .108 .241 .090

E3 Mean alpha .009 .024 .050 .083 .200

gf’ .02 .013: .024: .053: .100: .235: .085

I: .05 .016a, .029a '058a .106a .234a .089

;: 1 .10 .016 .0318 .060 .108 .237 .090

E: .20 .0183 .0308 .064 .118: .244: .095

E?) .50 .014 .031 .069 .118 .247 .096

I: Mean alpha .015 .029 .061 .110 . 239

.02 .039 .073 .112 .171 .308 .141

.05 .036 .067 .104 .155 .289 .130

2 .10 .033 .060 .095 .144 .2788 .122

.20 .026 .054 .091 .133 .2638 .113

.50 .020 .040 .074 .119 .248 .110

Mean alpha .031 .059 .095 .144 .277

.02 .056 .082 .119 .170 .319 .149

.05 .047 .073 .109 .159 .299 .137

3 .10 .038 .059 .095 .147 .2858 .125

.20 .031 .046 .079 .1278 .274a .111

.50 .019 .033 .071 .115 .253 .098

Mean alpha .038 .059 .095 .144 .286

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 13

Actual Alphas of the Conditional F Test Given a Two-Tailed

Preliminary Test, c = 5 and s = 12

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.02 .006: .015 .030 .049 .120 .044

.05 .0068 .015a .036a .071 .155 .057

.33 .10 .0078 .017a .040a .0808 .190 .067

.20 .0078 .018a .045a .0918 .212 .075

.50 .007 .018 .046 .095 .2248 .078

Mean alpha .007 .017 .039 .077 .180

.02 .003a .0088 .021 .042 .136 .042

.05 .0058 .0168 .032 .058 .157 .054

.50 .10 .0063 .017a .036a .0708 .175 .061

.20 .0068 .0178 .042a .0863 .198 .070

.50 .007 .018 .046 .096 .222 .078

’14 Mean alpha .005 .015 .035 .070 .178

U

a; .02 .009a .021a .047a .095a .2358 .081
a a a a a

g .05 .009a .021a .047a .099al .235a .082

a, 1 .10 .010a .023a .054a .106a .2358 .086

;; .20 .0118 .025a .057a .110a .2378 .088

e: .50 .011 .027 .056 .117 .234 .089

30 Mean alpha .010 .023 .052 .105 .235

“I .02 .040 .081 .111 .167 .323 .144

.05 .033 .067 .095 .148 .2988 .128

2 .10 .028 .058 .084 .1328 .2748 .115

.20 .0248 .050a .074a .115a .2538 .103

.50 .014 .029 .055 .101 .237 .087

Mean alpha .057 .057 .084 .133 .277

.02 .055 .076 .108 .157 .298 .139

.05 .042 .056 .085 .132 .2808 .119

3 .10 .032 .0443 .072a .120a .2658 .107

.20 .0238 .030a .058a .109a .2448 .093

.50 .012 .023 .053 .099 .231 .084

Mean alpha .033 .046 .061 .123 .264

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 14

Actual Alphas of the Conditional F Test Given a Two-Tailed

Preliminary Test, c = 5 and s = 20

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.02 .006: .019: .0303 .051 .126 .046

.05 .0073 .0243 .0403 .0773 .168 .063

.33 .10 .0073 .0263 .0453 .0893 .2093 .075

.20 .0073 .0283 .0493 .0973 .2333 .083

.50 .007 .028 .049 .100 .248 .086

Mean alpha .007 .025 .043 .083 .197

.02 .005: .0123 .020 .037 .143 .043

.05 .0053 .0183 .0293 .054 .168 .055

.50 .10 .0073 .0233 .0393 .0693 .192 .066

.20 .0073 .0253 .0443 .0893 .2113 .075

.50 .007 .028 .049 .100 .245 .086

,3 Mean alpha .006 .021 .036 .070 .192

H

E? .02 .014: .025: .050: .110: .260: .092

a? .05 .0163 .0283 .0543 .1113 .2603 .094

5 1 .10 .0163 . 0303 .0563 . 1123 . 2623 .095

31 .20 .0163 .031 .0543 .1103 .2603 .094

’14 .50 .015 .035 .057 .107 .259 .095

g?) Mean alpha .015 .030 .054 .110 .260

33 .02 .052 .092 .120 .193 .328 .157

.05 .048 .085 .111 .175 .305 .145

2 .10 .040 .075 .102 .157 .2903 .133

.20 .032 .063 .0843 .129 .274 .116

.50 .021 .039 .060 .112a .2528 .097

Mean alpha .039 .071 .095 .153 .290

.02 .064 .089 .123 .170 .303 .150

.05 .050 .069 .098 .144 .286 .129

3 .10 .032 .052 .082 .136 .2668 .114

.20 .0243 .043 .067 .118a .2578 .102

.50 .010 .031a .054a .103a .2508 .090

Mean alpha .036 .057 .085 .134 .272

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 15

Preliminary Test, c = 10 and s = 12

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.02 .006: .016: .044: .0783 .200 .069

.05 .0063 .0173 .0463 .0883 .2173 .075

.33 .10 .0063 .0173 .0483 .0923 .2253 .078

.20 .0063 .0173 .0493 .0943 .2303 .079

.50 .006 .017 .049 .094 .231 .079

Mean alpha .006 .017 .047 .089 .221

.02 .003 .009 .0233 .049 .160 .049

.05 .006: .0143 .0373 .070 .191 .064

.50 .10 .0063 .0163 .0443 .0793 .2103 .071

.20 .0063 ~.0173 .0473 .0853 .2253 .076

.50 .006 .017 .049 .094 .230 .079

,3 Mean alpha .005 .015 .040 .075 .203

E-4

:33 .02 .007: .023: .054: .099: .237"1 .084

g .05 .0073 .0233 .0543 .0993 . 238 .084

ES 1 .10 .0073 .0233 .0543 .098a .2383 .084

;: .20 .006 .021 .056 .097 .235 .083

E: .50 .006a .022a .053a .095a .2328 .082

gf’ Mean alpha .007 .022 .054 .098 .236

“‘ .02 .032 .053 .087 .152 .2773 .120

.05 .024 .043 .071 .132 .262 .106

2 .10 .0153 .033: .063: .1173 .254a .096

.20 .0113 .0263 .0543 .1043 .2403 .087

.50 .007 .021 .051 .096 .235 .082

Mean alpha .018 .035 .065 .120 .254

.02 .0193 .031a .064 .116a .2488 .096

.05 .0143 .026: .056: .102: .243: .088

3 .10 .0113 .021 .053 .099 .241 .085

.20 .0073 .018: .050: .0972 .2353 .081

.50 .006 .017 .049 .094 .2318 .079

Mean alpha .011 .023 .054 .102 .240
 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Actual alpha levels. It was expected that, given independence of
 

student data and no treatment effects, the empirical and nominal alpha

levels for all the conditional F tests would be equal. Generally the

simulated data verified this expectation. Excluding all situations

where c equalled 2 and s equalled 12, 962 of the remaining 100 observed

alpha levels (Tables 12 through 15), given E(MSC_T)/E(MS = l, were
S:CT)

within 1.96 standard errors of the nominal alpha levels. However, given

all situations where c equalled 2 and s equalled 12 (Table 11), only 9

of the 25 observed alpha values (36%) were within 1.96 standard errors

of the nominal alpha levels. The remaining 16 observed alpha levels

were too liberal. That is, their probabilities of a Type I error were

consistently too large. These 16 liberal observed alpha levels were

concentrated at the lower conditional test nominal alpha levels (i.e.,

.01, .025, and .05). Given independence, the actual alpha levels of

the conditional F tests, averaged across the five preliminary test

alpha levels and the four designs c I 5 and s = 5, c = 5 and s a 12,

c a 5 and s - 20, and c = 10 and s 8 12, increased from .012 to .026

to .055 as the nominal alpha levels increased from .01 to .025 to .05.

At those same three conditional test nominal alpha levels, however, the

actual alpha levels of the conditional tests for c - 2 and s - 12,

averaged across the five preliminary test alpha levels, increased from

.018 to .045 to .077. Because there seemed to be no reasonable expla-

nation for the liberalness that dominated when c equalled 2 and s

equalled 12, a second simulation run was done for that particular

design. The results of this run deviated even more from the expected,
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given independence, as 22 of the 25 (88%) actual alpha values were

too liberal.

Estimatedepowers. Given that E(MSC3T)/E(MS ) equalled one,
 

S:CT

the statistical powers of the conditional F tests were, almost without

exception, greater than the powers of their respective "never pool,"

unconditional F = MST/MS tests (Tables 16 through 20). Across the
C:T

five designs and the five preliminary alpha levels, as the five nominal

alpha levels increased from .01 to .25, the average difference between

the conditional test powers and the "never pool" test powers decreased

from .102 to .091 to .076 to .057 to .021. Comparing the estimated

power values of the conditional F tests (Appendix C) with comparable

power values of the unconditional F = MST/MS tests (Table 7) shows
C:T

that this decrease in discrepancy is probably due to the fact that the

average powers of the "never pool" tests are rather high given an alpha

level of .25 and thus it is harder for the "sometimes pool" tests to

improve on that already "high" power. This is especially so given the

two designs c = 5 and s - 20 and c - 10 and s = 12. While this negative

relationship held up across the five designs or combinations of s and c,

it did not hold up within each combination of s and c. Consider the

design c a 2 and s = 12 (Table 16). Averaged across the five prelim-

inary test alpha levels, the observed power differences for this one

design equalled .085, .115, .142, .146, and .060 as their respective

nominal alphas increased from .01 to .25.
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Table 16

 

 

 

 

 

 

 

 

 

 

 

 

  

Given a Two-Tailed Preliminary Test, c= 2 and s= 12 T C:T

Conditional test

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.02 .018 -.034 -.097 -.l37 -.099 -.077

.05 .014 .006 -.057 -.108 -.087 -.O46

.33 .10 .019 .034 -.012 -.065 -.060 -.017

.20 .020 .055 .055 .006 -.027 .022

.50 .013 .039 .067 .075 .016 .042

Mean power dif.a .010 .020 -.009 -.046 -.051

.02 .019 .019 .011 .001 -.046 .001

005 0036 0045 0033 .019 -0036 .019

050 010 0046 0069 0060 0039 -0024 0038

.20 .046 .089 .094 .088 .006 .065

.50 .028 .064 .093 .114 .021 .082

,3 Mean power dif. .035 .057 .058 .052 -.016

[.1

‘3. .02 .089 .115 .143 .155 .077 .116

m‘” .05 .090 .116 .142 .152 .068 .114

5 1 .10 .092 .122 .150 .156 .065 .117

E .20 .090 .127 .154 .156 .051 .116

“a: .50 .062 .093 .120 .113 .038 .085

U}’ Mean power dif. .085 .115 .142 .146 .060

2‘.

“I .02 .152 .191 .223 .218 .159 .189

.05 .145 .180 .210 .202 .139 .175

2 .10 .134 .166 .191 .175 .110 .155

.20 .114 .149 .167 .147 .082 .132

.50 .068 .088 .101 .070 .029 .071

Mean power dif. .123 .155 .178 .162 .104

.02 .171 .221 .250 .218 .166 .205

.05 .154 .196 .219 .183 .136 .178

3 .10 .137 .175 .194 .157 .108 .154

.20 .114 .144 .146 .105 .058 .113

.50 .059 .078 .073 .043 .028 .056

Mean power dif. .127 .163 .176 .141 .099

 

aMean power differences.
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Table 17

 

 

 

 

 

 

 

 

 

 

 

 

  

Given a Two—Tailed Preliminary Test, c==5 and s==5 T C:T

Conditional test

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.02 .101 .177 —.239 -.228 -.099 -.169

005 0045 0094 “.150 -0153 -0068 -0102

.33 .10 .016 .044 -.083 -.092 -.054 -.058

.20 .004 .018 -.O34 -.042 -.025 -.025

.50 .000 .004 .002 .001 -.003 .001

Mean power dif.a .033 .066 -.101 -.103 -.050

.02 .060 .096 -.l4l -.l41 -.092 -.106

.05 .031 .057 -.O99 -.104 -.074 -.073

050 010 0013 0025 -0060 "0072 _0052 _0044

.20 .005 .008 -.012 -.026 -.032 -.011

.50 .012 .022 .011 .008 -.002 .010

Mean power dif. .017 .030 -.O60 -.O67 -.050

E3 .02 .029 .041 .051 .044 .022 .037

5; .05 .030 .043 .052 .042 .024 .038

g 1 . 10 . 032 . 043 . 051 . 040 . 028 . 039

E; .20 .039 .041 .043 .035 .022 .036

Z: .50 .025 .025 .025 .024 .007 .021

64

3;; Mean power dif. .031 .039 .044 .037 .021

2'1

3; .02 .090 .101 .106 .108 .102 .101

.05 .076 .078 .074 .077 .075 .076

2 .10 .066 .071 .066 .062 .057 .064

.20 .053 .050 .043 .044 .039 .046

.50 .024 .022 .017 .020 .008 .018

Mean power dif. .062 .064 .061 .062 .056

.02 .083 .083 .101 .093 .082 .088

.05 .069 .063 .080 .072 .055 .068

3 .10 .050 .046 .060 .052 .036 .049

.20 .033 .032 .038 .022 .025 .030

.50 .019 .011 .014 .003 .006 .011

Mean power dif. .051 .047 .059 .048 .041

 

aMean power differences.
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Table 18

Power of the Conditional F Test Minus Power of the Test F==MSTlMsc-T

Given a Two-Tailed Preliminary Test, c= 5 and s= 12

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.02 .218 .240 .150 -.079 -.026 -.143

.05 .135 .158 .099 -.052 -.015 -.092

.33 .10 .050 .086 .061 -.033 -.011 -.048

.20 .003 .026 .023 -.011 -.005 -.014

.50 .018 .007 .000 -.002 .000 .005

Mean power dif.a .078 .101 .067 -.035 -.011

.02 .085 .127 .120 -.073 -.028 -.087

.05 .051 .090 .083 -.056 -.021 —.060

.50 .10 .002 .046 .049 -.039 -.015 -.030

.20 .033. .003 .010 -.020 -.006 -.001

.50 .045 .041 .018 .003 .002 .022

Mean power dif. .012 .045 .049 -.037 -.014

E? .02 .148 .141 .105 .062 .026 .096

a: .05 .140 .130 .096 .058 .025 .090

fig 1 .10 .141 .130 .092 .054 .018 .087

53 .20 .135 .119 .082 .044 .016 .079

’23 .50 .090 .073 .052 .032 .006 .051

333 Mean power dif. .131 .119 .085 .050 .018

E? .02 .192 .180 .161 .130 .078 .148

.05 .153 .142 .122 .100 .050 .113

2 .10 .119 .105 .090 .081 .031 .085

.20 .081 .067 .045 .045 .016 .051

.50 .034 .030 .016 .018 .004 .020

Mean power dif. .116 .105 .087 .075 .036

.02 .114 .107 .100 .081 .061 .093

.05 .075 .074 .071 .056 .040 .063

3 .10 .056 .057 .054 .037 .027 .046

.20 .030 .032 .031 .016 .013 .024

.50 .014 .010 .010 .006 .004 .009

Mean power dif. .058 .056 .053 .039 .029

 

aMean power differences.
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Table 19

Power of the Conditional F Test Minus Power of the Test F=-MST/MSC3T

Given a Two-Tailed Preliminary Test, c=5 and s '20 '

Conditional test

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.

002 -0143 -0072 “.043 -0016 0001 -0055

.05 -.O90 -.O49 -.029 -.012 .001 -.036

.33 .10 .041 -.027 -.015 -.005 .000 -.018

.20 .004 -.009 -.008 -.001 .001 -.004

.50 .020 .004 .002 .000 .001 .005

Mean power dif.a -.052 -.031 -.019 -.007 .000

.02 —.050 -.034 -.035 -.028 .006 -.O3l

.05 .027 -.016 -.023 -.023 .006 -.019

.50 .10 .003 .002 -.011 -.014 .005 -.005

020 0039 0025 0001 -0007 0004 0011

.50 .059 .037 .013 .000 .000 .022

Mean power dif. .005 .003 -.011 -.014 .004

S .02 .218 .173 .106 .056 .007 .112

J; .05 .207 .161 .095 .053 .007 .105

g 1 .10 .195 .152 .087 .049 .005 .098

n: .20 .178 .134 .083 .040 .001 .087

233 .50 .113 .080 .041 .015 .001 .050

3;; ‘Mean power dif. .182 .140 .082 .043 .004

ES .02 .259 .235 .173 .116 .047 .166

.05 .209 .187 .132 .087 .033 .130

2 .10 .168 .141 .088 .058 .020 .095

.20 .115 .095 .059 .035 .011 .063

.50 .043 .037 .018 .006 .004 .022

Mean power dif. .159 .139 .094 .060 .023

.02 .158 .137 .123 .073 .039 .106

.05 .101 .086 .080 .043 .026 .067

3 .10 .073 .061 .058 .026 .015 .047

.20 .049 .031 .031 .012 .008 .026

.50 .014 .008 .011 .002 .003 .008

Mean power dif. .079 .065 .061 .031 .018  
aMean power differences.
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Table 20

Power of the Conditional F Test Minus Power of the Test F==MS /MS

Given a Two-Tailed Preliminary Test, c= 10 and s = 12

T C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.02 .033 .015 -.007 -.001 .000 -.011

.05 .014 .005 -.003 -.001 .000 -.005

.33 .10 .004 .003 -.002 -.001 .000 -.002

.20 .001 .000 .000 .000 .000 .000

.50 .001 .000 .000 .000 .000 .000

Mean power dif. .004 .005 -.002 -.001 .000

.02 .070 .043 -.021 -.011 .002 -.029

.05 .047 .025 -.013 -.008 .000 -.019

.50 .10 .025 .015 -.007 -.006 .000 —.011

.20 .009 » .003 -.002 -.004 .000 -.004

.50 .005 .000 .000 .000 .000 .001

Mean power dif. .029 .017 -.017 -.006 .000

E3 .02 .100 .054 .031 .015 .003 .041

J; .05 .095 .051 .028 .013 .003 .038

g 1 .10 .092 .048 .028 .011 .002 .036

a: .20 .079 .038 .023 .011 .001 .030

:33 .50 .047 .021 .010 .006 .001 .017

335 Mean power dif. .083 .042 .024 .011 .002

§ .02 .165 . 131 .090 .047 .019 .090

.05 .109 .081 .053 .026 .013 .056

2 .10 .070 .046 .033 .017 .008 .035

.20 .044 .021 .015 .009 .002 .018

.50 .013 .004 .004 .001 .000 .004

Mean power dif. .080 .057 .039 .020 .008

.02 .040 .035 .020 .020 .006 .024

.05 .022 .019 .010 .012 .003 .013

3 .10 .006 .007 .005 .008 .002 .006

.20 .003 .004 .003 .004 .001 .003

.50 .001 .000 .000 .001 .000 .000

Mean power dif. .014 .013 .008 .009 .002

 

aMean power differences.



91

As the number of observations per class increased (compare across

Tables 17, 18, and 19), the discrepancy between the power of the condi-

tional test and the power of the unconditional F = MST/MS test was
C:T

expected to increase. The rationale for this expectation follows.

Given independence of student responses, E(MSC3T)/E(MS = l, pooling
S:CT)

should be prescribed all the time. If there were only one student per

class, the power of the conditional test and the power of F = MST/MSC:T

should be identical. As the number of students increases, however, the

power of the conditional test and the power of the test F = MST/MSG:T

should become more discrepant, with the power of the conditional test

being greater as it would have more degrees of freedom error. Basically

the simulated data upheld this prediction, especially given the more

stringent nominal conditional test alpha levels (.01 and .025). Given

a conditional test nominal alpha of .01 and averaging across the five

preliminary test alpha levels gave average differences between the

power of the conditional F test and the respective power of the test

F a MST/MSC3T of .031 for c - 5 and s - 5, .131 for c - 5 and s 8 12,

and .182 for c - 5 and s - 20. As the number of students per class

increased, the empirical powers of the unconditional test F - MST/MSG:T

became rather high (Table 7) given the larger nominal alpha values.

Thus it became more difficult to detect this expected difference in

powers between the conditional test procedure and the unconditional

test F - MST/MSG.T as 3 increased at the higher nominal conditional

test alpha levels.
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On the other hand, with the exception of the design c = 2 and

s = 12 at the smallest alpha levels, as the number of classes increased

(compare across Tables l6, l8, and 20), the discrepancies between the

powers of the conditional F test and the unconditional test F-BMST/MSC3T

tended to decrease. For example, for the conditional test alpha of .25,

averaging the discrepancies across the five preliminary test alpha

levels gave power differences of .060 for the design c I 2 and s = 12,

.018 for the design c I 5 and s = 12, and .002 for the design c I 10

and s I 12. This trend was expected as "sometimes pooling" should be

more advantageous for increasing power than "never pooling" when only

a few classrooms per treatment have been sampled. The increased degrees

of freedom brought on by pooling has a larger effect when the "never

pool" test has relatively few degrees of freedom error than when it has

many degrees of freedom error. The powers of the conditional test for

the design c = 2 and s I 12 turned out very curiously as it was the one

design where the discrepancies between the conditional test power and

the F I MST/MS test power did not fit the predicted trend as c was
C:T

varied for nominal conditional test alphas of .01 and .025. At those

two alpha levels, the estimated powers of the conditional tests were

spuriously high because the actual alpha levels were too liberal. Thus,

one would have expected the average discrepancies between powers of the

conditional test and powers of the test F I MST/MSG:T to also be

spuriously large. However, the opposite occurred.

Although the trend was not perfect across the five conditional

test nominal alpha levels and across the five combinations of s and c,
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the simulated data generally showed the discrepancies between the power

of the "sometimes pool," conditional test and the power of the "never

pool" test to decrease with an increase in the nominal alpha level of

the preliminary test. This too was predictable as the distributions of

the "sometimes pool" test and the "never pool" test become more similar

as the nominal preliminary test alpha level increases. As the alpha

level of the preliminary test increases to .50, the power of the pre-

liminary test, F I MSC:T/MSS:CT’

of freedom and mean squares between and within classrooms are prescribed

increases and thus pooling of degrees

less often, which makes the conditional F test more of a "never pool"

test. A good example of this indirect relationship between the power

difference between the conditional andunconditional test and alpha

level of the preliminary test is evident when the nominal alpha level

of the conditional test equals .25 and the design is c = 2 and s = 12

(Table 16). Given these three prespecified parameters, the discrep-

ancies between the power of the conditional test and the F I MST/MSG:T

test equal .077, .068, .065, .051, and .038 for preliminary test alpha

levels of .02, .05, .10, .20, and .50.

Given independence of individual responses within and between

groups, one might also wonder how the power of the conditional,

"sometimes pool" test compared to the power of the "always pool"

F I MST/MSS:T test. These two powers can be compared by looking at the

E(MSC3T)/E(MS ) = 1 sections in Appendix C (Tables C-l through C-5)
S:CT

and Table 9. One would expect the power of the "always pool" test to

always exceed the power of the "sometimes pool" test. While that was
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usually the case, it was not always the case. For example, given the

design c I 2 and s I 12 (Table C-l), 17 of the 25 (68%) conditional

test powers exceeded the "always pool" F I MST/MS test powers. A
S:T

little over two-thirds of these "exceptions," given this design,

coincided with alpha levels which were too liberal, which would explain

this result. However, as one example of a curious and unexplained

result, given a preliminary alpha of .02, a conditional alpha of .01,

c I 2 and s I 12, the power of the conditional test equalled .125

(Table C—l), while the power of the "always pool" test only equalled

.114 (Table 9) even though the actual alpha level of this conditional

test was within 1.96 standard errors of the nominal value. The other

design that had several of these surprising and unexplanable findings

was c I 5 and s I 5 (Table C—2). Here 14 of the 25 (562) conditional

test powers exceeded the F I MST/MS test powers. And for this
S:T

particular design, in all cases but one, these "exceptions" occurred

even though the conditional test alphas were not too liberal.

Positive Dependence
 

Positive dependence is that condition where the variance of the

aggregate units exceeds that predicted given random assignment of

individual units to groups, the variance of the disaggregate units

and the grouping size. Given positive dependence, the two-tailed

preliminary test should reject its null hypothesis, Ho: E<MSC°T)

equals E(MS ), designating the aggregate unit (classrooms) as

S:CT

the appropriate unit of analysis in testing for treatment effects.
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Actual alpha levels. Because positive dependence is defined by
 

the E(MSC3T) being greater than the E(MS it was expected that
S:CT)’

given no treatment effects the observed probabilities of Type I errors

for the conditional or "sometimes pool" F distribution would be too

large. While the simulations generally showed this (see bottom sec-

tions of Tables 11 through 15), they also empirically showed that all

four factors-~the value of s, the value of c, the nominal alpha level

of the preliminary test, and the nominal alpha level of the conditional

test-~and their interactions affected whether or not there was any

liberalness in the conditional distribution and, if so, the degree

of that liberalness.

While one generally expected the observed alphas to be too

liberal, given positive dependence, that liberalness decreased as

the nominal alpha level of the preliminary F test increased from .02

to .50 and the nominal alpha level of the conditional F test increased

from .01 to .25. This was so for both defined degrees of positive

dependence, E(MSC3T)/E(MS ) equal to 2 and E(MSC°T)/E(MS ) equal
S:CT S:CT

to 3. For example, Table 12 shows that, given ECMSC_T)/E(MS ) equal
S:CT

to 3, c I 5 and s I 5, if the preliminary test alpha level equals .20,

four of the five conditional test actual alphas were too liberal; if,

however, the alpha of the preliminary test is increased to .50, only

three of the five conditional test alphas were too liberal. Given

the same set of conditions, but letting the conditional test nominal

alpha remain constant at .10, four of the five actual alphas were too

liberal; when, on the other hand, the nominal alpha level of the
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conditional test was increased to .25, only three of the five actual

conditional test alpha levels were too liberal. That an increase in

the nominal level of the preliminary test should cause a decrease in

the liberalness of the conditional F test was expected, as when the

alpha level of the preliminary test is increased, the primary test

of treatment effects becomes less of a conditional test. That the

liberalness, given positive dependence, tended to disappear as the

nominal alpha level of the conditional F test increased suggests

that the tail of the conditional F distribution, given no treatment

effects, was too thick in comparison to the tail of the distribution

of F I MST/MS at the extreme alpha levels, such as .01. The con—
C:T

ditional distribution had a much closer fit to the central F distri-

bution for (t—l) and (c-l)t degrees of freedom at the large alpha

levels, such as .25.

Generally there was a trend for the fit of the observed alpha

levels of the conditional F tests to improve as the number of classes

increased. This improvement was more evident given the greater degree

of positive dependence, E(MSC3T)/ECMS ) I 3, than given the lesser
S:CT

degree of positive dependence, E(MSC'T)/E(MSS°CT) I 2. For example,

given that E(MSC3T)/E(MS ) equals 3 for c I 2 and s I 12, 1002 of
S:CT

the actual alphas of the conditional test were too liberal; for c I 5

and s I 12, 602 were too liberal; and for c I 10 and s I 12, only 82

were too liberal. Given that E(MSC3T)/E(MS ) equals 2, for c I 2
S:CT

and s I 12, 100% of the actual alphas were too liberal; for c I 5 and

s I 12, 682 were too liberal; and for c I 10 and s I 12, 362 were too
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liberal. This trend, of the actual alpha levels of the conditional F

tests becoming less liberal as c increased, was predictable as when

the number of classes increased the discrepancy between the E(MSC:T)

and the E(MSS:T) decreased (Table 10). As c increases, pooling should

be prescribed less often as the preliminary test becomes more powerful.

And when pooling is prescribed, the pooled mean square error is weighted

in favor of the proper error term, E(MS Both factors are contrib-

C:T)'

uting toward a decrease in the bias of the conditional test error term

and thus less disagreement between the actual and nominal alpha values

of the conditional F test.

How increasing the number of students per classroom affected the

actual alpha levels of the conditional F test was less clear. As 8

increases, pooling of error terms should be prescribed less often,

causing the conditional distribution to become more similar to the

distribution of the F statistic using classrooms as the unit of

analysis. But when pooling is prescribed, the pooled error term

is weighted toward the improper, too small error term, E(MSS:CT)’

causing the conditional F test to be too liberal. The effect of

these two competing factors on the actual alpha level of the conditional

test clearly depends on the combined value of s and the ratio of the

E(MSC'T) to the E(MS A comparison across Tables 12, 13, and 14

S:CT)’

shows that as s was increased in the simulations from 5 to 12 to 20,

no simple trend on the actual alpha level of the conditional F tests

showed up. For c I 5 and s I 5, 922 and 882 of the actual alpha levels

were too liberal given E(MSC3T)/E(MS ) equal to 2 andii,respectively;
S:CT
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for c I 5 and s I 12, 682 and 60% of the actual alphas were too liberal

given E(Msc-T)/E(MSS°CT) equal to 2 and 3, respectively; and for c I 5

and s I 20, 84% and 682 of the actual alpha values were too large given

E(MSC:T)/MSS:CT) equal to 2 and 3, respectively.

When comparing the empirical alpha levels for both degrees of posi-

tive dependence, E(MSC_T)/E(MS ) equal to 2 and E(MSC3T)/E(MS
S:CT S:CT)

equal to 3, the conditional or "sometimes pool" F tests generally

appeared more liberal given the lesser degree of positive dependence,

E(MSC3T)/E(MS ) equal 2, than given the higher degree of positive
S:CT

dependence. For example, given c I 5 and s I 20 (Table 14), 84% of the

conditional tests' actual alphas were too liberal when E<MSC°T)/ECMSS°CT)

equalled 2; while only 68% of the actual alphas were too liberal

when E(MSC3T)/E(MS ) equalled 3. An exception to this trend
S:CT

appeared with the design c I 2 and s I 12 (Table 11). Given c I 2 and

s I 12, all (100%) of the actual alpha values were too liberal for both

degrees of positive dependence. And for this design, given a specific

preliminary test nominal alpha value and a specific conditional test

nominal alpha value, all 25 actual conditional test alpha values given

the condition E(MSC3T)/E(MSS3CT) equal to 3 were more liberal than their

matched values given the condition ECMSC3T)/E(MS ) equal to 2. For
S:CT

example, given this one design, if ECMSC3T)/E(MS ) equals 2, the
S:CT

nominal preliminary test alpha level equals .10 and the nominal con-

ditional test alpha level equals .05, then the actual conditional test

alpha value equals .134; while for those same conditions, except letting

E(MSC3T)/E(MS ) equal 3, the nominal conditional test alpha level
S:CT
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equals .161. This is exactly opposite to what one would expect and

'to what actually occurred in the other four designs. When it is

true that the E(MSC3T)/E(MS ) equals 3, the researcher rejects
S:CT

the null hypothesis of independence more often than when it is true

that the E(MSC3T)/E(MS ) equals 2. This dictates using MS
S:CT C:T

more often as the error term for the test of treatment effects.

This, in turn, suggests that the conditional F distribution, given

E(MSC:T)/E(MSS:CT) equal 3, is closer to the F distribution of the

unconditional F I MST/MSC3T test than is the conditional F distri—

bution, given E(MSC3T)/E(MS ) equals 2. Thus the observed alpha
S:CT

values of the conditional test, given the greater degree of positive

dependence, should be less liberal than the observed alpha values of

the conditional test, given the lesser degree of positive dependence.

Estimated powers. Without exception, the statistical powers of
 

the conditional F test of treatment effects were more powerful than

the powers of the unconditional test F I MST/MSC=T (see bottom sections

of Tables 16 through 20 and Appendix C). This was expected because of

the general liberalness of the conditional F test, given positive

dependence. In this study, the liberalness of a test statistic and

its power are completely confounded. Because of this confounding,

statistical powers, given positive student dependence, were not

examined to any great extent since a liberal alpha is generally

considered a "no-no." One can, however, compare powers of the

conditional F tests to powers of the F I MST/MSC3T tests for

simulated designs which did not have alpha levels that were too

large. For example, given E(MSC3T)/E(MS ) equal to 3, c I 10
S:CT



100

and s I 12, only 8% of the actual alpha levels of the conditional F

tests were too liberal (Table 15). The power differences between the

"sometimes pool" test and the "never pool" test for this one design

are very small, but positive (Tables 20 and C-S).

Negative Dependence
 

Negative dependence is that condition where the variance of the

aggregate units is smaller than that predicted given random assignment

of individual units to groups, the variance of the individual units and

the grouping size. As with positive dependence situations, the two-

tailed preliminary test should reject its null hypothesis, Ho: E<MSC°T)

equals E(MS ), given E(MSC3T)/E(MS ) is less than one, designating
S:CT S:CT

the aggregate unit (classrooms) as the appropriate unit of analysis in

testing for treatment differences.

Actual alpha levels. Given negative dependence, where the
 

E<MSC°T) is less than the E(MS ), and a two-tailed preliminary

S:CT

test, one would expect the observed probabilities of Type I errors

for the conditional F tests of treatment effects to be too small.

However, for the two specific degrees of negative dependence in this

simulation study, many (66.4% in total) observed alpha levels of the

conditional or "sometimes pool" F tests were within 1.96 standard

errors of the theoretical or nominal alpha values (see top sections

of Tables 11 through 15).

The conservativeness that did appear in the data decreased as the

nominal alpha level of the preliminary tests increased from .02 to .50

and the nominal alpha level of the conditional F tests decreased from
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.25 to .01. This held true for both simulated degrees of dependence,

E(MSC3T)/E(MS ) equal to .50 and E(MSC3T)/E(MS ) equal to .33.
S:CT

) equal .33, c I 2 and

S:CT

Table 11 shows that, given E(MSC3T)/E(MS
S:CT

s I 12, if the preliminary test alpha level equals .02, one out of

five conditional test actual alphas fell within a 95% confidence

interval of the appropriate nominal value; if, however, the preliminary

test alpha level equals .05, two of the five conditional test actual

alphas were within the 95% confidence interval. Given the same set

of conditions, if the conditional test nominal alpha equals .025,

four of the five actual alphas fell within the 95% confidence interval

of their respective nominal values; if, on the other hand, the condi-

tional test nominal alpha equals .01, all five actual alphas were

within the 95% confidence interval. That the conservativeness of the

conditional F tests decreased as the nominal alpha level of the pre-

liminary test increased directly compares to the similar results found

given positive dependence and liberalness of the conditional F test

alpha level. That the conservativeness, given negative dependence,

tended to dissipate as the nominal alpha level of the conditional F

test decreased suggests that the conditional F distribution, given no

treatment effects, was too thin in comparison to the distribution of

the F==MSTIMS test at the larger alpha levels, such as .25. On the
C:T

other hand, the conditional F distribution had a much closer fit to

the central F distribution for (t-l) and c-l)t degrees of freedom

given the extreme alpha levels, such as .01.
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It was expected that the fit of the observed alpha level of the

conditional F test would improve as the number of classes increased

from c equal 2 to c equal 5 and 10. As in the case of positive

(thendence, this improvement was expected because when the number

of classes increases the discrepancy between the E(MSC:T) and the

E(MSS3T) decreases (Table 10). Once more it was expected that more

improvement would take place given the greater degree of negative

dependence, E(MSC3T)/E(MS I .33, than given the lesser degree
S:CT)

of negative dependence, E(MSC3T)/E(MS ) I .50. The simulated
S:CT

data situations did not empirically verify very well these expected

improvements in the fit of the conditional test actual alpha levels

as c was increased. For example, given that E(MSC3T)/E(MS ) equals
S:CT

.33, for c I 2 and s I 12, 402 of the actual alpha values of the con-

ditional test were too conservative; for c I 5 and s I 12, 442 were too

conservative; and for c I 10 and s I 12, 122 were too conservative.

Given that E(MSC3T)/E(MS ) equalled .50, for c I 2 and s I 12, 40%
S:CT

of the observed alpha values were too conservative; for c I 5 and s I 12,

522 were too conservative; and for c I 10 and s I 12, 402 were too con-

servative. That the expected trend achieved by increasing c did not

appear in the simulated data was probably due somewhat to the fact that

‘many of the actual alpha levels of the conditional F test were not

statistically different from their theoretical values.

As in the case with positive dependency, comparisons within the

two negative dependency conditions but across Tables 12, 13, and 14

showed no simple trend on how increasing the number of students per
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class affected the actual alpha values of the conditional F test.

For example, given E(MSC:T)/E(MSS:CT) equal to .33 and c I 5, as s

was increased from 5 to 12 to 20, the percentage of actual alpha levels

of the conditional test that were too conservative equalled 20%, 442,

and 242, respectively. Given E(MSC3T)/E(MS ) equal to .50 and c I 5,
S:CT

again as s was increased from 5 to 12 to 20, the percentage of conserva-

tive actual alpha levels of the conditional F tests equalled 242, 52%,

and 402, respectively.

When comparing the observed alpha levels for both defined degrees

of negative dependency, the conditional or "sometimes pool" F test

generally appeared more conservative given the lesser degree of negative

dependence, E(MSC3T)/E(MS .50, than given the larger degree of
S:CT) "

negative dependence, E(MSC3T)/E(MS I .33. For example, given
S:CT)

c I 10 and s I 12 (Table 15), 402 of the conditional test alpha levels

were too conservative when E(MSC3T)/E(MSS3CT) equalled .50; while only

122 of the actual alphas were too conservative when E(MSC3T)/E(MSS3CT)

equalled .33. One design deviated from this predicted finding. Given

c I 2 and s I 12, 402 of the actual alpha values were too conservative

for both degrees of negative dependence. And for this one design, given

a specific preliminary test nominal alpha value and a large conditional

test nominal alpha value, a majority of the actual conditional test

alpha values, given E(MSC3T)/E(MS ) equal to .33, were more con-
S:CT

servative than their respective alpha values given E(MSC'T)/E(MSS°CT)

equal to .50. This one design also deviated from the general trend

in the simulations done given positive dependence.
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Estimated powers. It was hoped that, since the fit of the
 

empirical alpha levels of the conditional test were fairly good and

in the conservative direction which is more acceptable than a test

being too liberal, use of the conditional test would increase power,

relative to the unconditional test F I MST/MS For all five designs

C:T'

(see top sections of Tables 16 through 20 and Appendix C), only when

the nominal alpha level of the preliminary test was very large (pref-

erably .50) and the nominal alpha level of the conditional test was

small (.01 or .025) did the powers of the conditional or "sometimes

pool" test tend to be greater than the powers of the "never pool"

F I MST/MS test. Given these two conditions, however, the dif-
C:T

ferences between the estimated powers of the two F tests tended to

be on the small side. For example, given E(MSC3T)/E(MS ) equal to
S:CT

.33, a preliminary test alpha value equal to .50, a conditional test

alpha value equal to .01, c I 5 and s I 12, the estimated power of

the conditional test was .679 (Table C-3); while the estimated power

of the unconditional F I MST/MS test was .661 (Table 18), a .018
C:T

difference in favor of the conditional test. C I 2 and s I 12 was the

one design where the power of the conditional test was in a majority

of cases, at each of the two defined negative dependence degrees, larger

than the power of the F I MST/MS test (Table 16). Given c I 2 and
C:T

s I 12, across all alphas, 52% and 882 of the conditional test powers

were greater than the unconditional test powers,given E(Msc-T)/E(MSS°CT)

equal to .33 and .50, respectively. This same design had a majority

of its actual alpha levels of the conditional test to within 1.96



a
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standard errors of the nominal alpha at the same large preliminary

test nominal alphas and small conditional test nominal alpha levels

(Table 11).

Comparing the powers of the conditional and unconditional F tests,

given negative dependence levels prescribed in this simulation study,

one would have to conclude that generally using a two—tailed preliminary

test to choose a "correct" unit of analysis lowers the powers of the F

test rather than raises them, as is the desired case. For example,

given E(MSC3T)/E(MSS3CT) equal to .50, c I 5 and s I 5 (Table 17), 76%

of the "never pool" test powers exceeded the "sometimes pool" test

powers. And given E(MSC:T)/E(MSS:CT) equal to .33, c I 10 and s I 12

(Table 20), 522 of the "never pool" test powers were larger than the

"sometimes pool" test powers; and 442 of the time, the two estimated

powers were equal.

The Upper-Tailed Preliminary Test

Paull (1950), Peckham et al. (1969a, 1969b) and Poynor (1974)

considered only two possible situations. One, student responses within

classrooms could be independent of each other, defined by the E(MSC:T)

equalling the E(MSS3CT); or two, student responses within classrooms

could be positively dependent upon each other, defined by the E(MSC3T)

being greater than the E(MSS:CT)' And because they considered only

the one alternative to independence, they suggested that the choice

of unit of analysis could be determined by using an upper-tailed only

preliminary F test, rather than the two-tailed preliminary test
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discussed in the previous section. This upper—tailed preliminary

F test tests the null hypothesis that the E<MSC°T) is less than or

equal to the E(MS ) or equivalently that pI is less than or equal
S:CT

to zero. Using this upper-tailed only preliminary F test suggests that

the negative dependency situation, where the E<MSC°T) is less than the

E(MS ), could never occur or that this situation is no more inter—

S:CT

esting than a zero difference between the between class and within

class expected mean squares. The latter is clearly not the case as

was shown in Chapter VI, the chapter which discussed the empirical

results of correlated units.

In this section the effects of using an upper-tailed preliminary

test to choose an analytic unit for the conditional test are studied

for five different preliminary test alpha levels (i.e., .01, .025, .05,

.10, and .25). Actual conditional test alpha levels, given the upper-

tailed preliminary F test, are shown in Tables 21 through 25. Corre-

sponding differences between estimated powers of the conditional F test

and the unconditional, always correct F I MST/MSG:T test are shown in

Tables 26 through 30. Appendix D (Tables D—l through D-S) contains the

empirical powers of the conditional test, given the upper-tailed pre-

liminary test. Each separate table describes the effect on the condi-

tional F tests' actual alpha or power of varying the type and degree of

dependence, the alpha level of the upper-tailed preliminary test and the

alpha level of the conditional test for one specific combination of s

and c.
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Table 21

Actual Alphas of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c I 2 and s I 12

 

Conditional test

nominal alpha

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

 

 

E
(
‘
M
g
C
:
'
.
l
.
‘
)
/
E
(
M
S
S
:
C
T
)

 

 

 

 

 

 

 

 

 

 

.01 .000 .001 .001 .008 .059 .014

.025 .000 .001 .001 .008 .059 .014

.33 .05 .000 .001 .001 .008 .059 .014

.10 .000 .001 .001 .008 .058 .014

.25 .000 .001 .001 .008 .057 .013

Mean alpha .000 .001 .001 .008 .058

.01 .001 .002 .009 .029 .100 .028

.025 .001 .002 .009 .029 .100 .028

.50 .05 .001 . .002 .009 .029 .099 .028

.10 .001 .002 .009 .029 .098 .028

.25 .000 .001 .007 .026 .090 .025

Mean alpha .001 .002 .009 .028 .097

.01 .011: .032: .058: .090: .240: .086

.025 .0113 .032a .057a .089a .2353 .085

l .05 .0093 .0303 .055a .0853 .227 .081

.10 .0093 .029a .0543 .082 .217 .078

.25 .008 .026 .049 .073 .190 .069

Mean alpha .010 .030 .055 .084 .222

.01 .061 .084 .132 .205 .351 .167

.025 .060 .082 .126 .190 .328 .157

2 .05 .059 .079 .121 .181 .310 .150

.10 .049 .067 .104 .1583 .2823 .132

.25 .035 .049 .074 .117 .237 .102

Mean alpha .053 .072 .111 .170 .302

.01 .090 .141 .185 .258 .379 .211

.025 .081 .128 .169 .235 .348 .192

3 .05 .074 .117 .151 .208 .317 .173

.10 .062 .099 .128 .184 .2893 .152

.25 .044 .062 .085 .124 .247 .112

Mean alpha .070 .109 .144 .202 .316  
aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 22

Actual Alphas of the Conditional F Test Given an Upper—Tailed

Preliminary Test, c I 5 and s I 5

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.10 .000 .000 .004 .011 .058 .015

.025 .000 .000 .004 .011 .058 .015

.33 .05 .000 .000 .004 .011 .058 .015

.10 .000 .000 .004 .011 .058 .015

.25 .000 .000 .004 .011 .058 .015

Mean alpha .000 .000 .004 .011 .058

.01 .000 .007 .012 .023 .114 .031

.025 .000 . .007 .012 .023 .114 .031

.50 .05 .000 .007 .012 .023 .114 .031

.10 .000 .007 .012 .023 .113 .031

.25 .000 .007 .011 .022 .113 .031

“[343 Mean alpha .000 .007 .012 .023 .114

m .01 .011“3 .021at .047a .0953 .230£1 .081
g; a a a a a
\J .025 .0113 .021a .047a .0953 .227 .080

E l . 05 . 011a . 0213 .0463 . 0933 . 222 .079

”g. .10 .0113 .020 .0443 .0913 .217 .077

as; .25 .007 .015 .039 .083 .203 .069

§ Mean alpha .010 .020 .045 .091 .220

.01 .039 .072 .111 .170 .308 .140

.025 .035 .065 .101 .153 .289 .129

2 .05 .031 .058 .091 .141 .2773 .120

.10 .024 .051 .085 .1283 .2623 .110

.25 .017 .035 .066 .112 .244 .095

Mean alpha .029 .056 .091 .141 .276

.01 .056 .082 .119 .170 .319 .149

.025 .047 .072 .108 .158 .299 .137

3 .05 .038 .058 .094 .146 .2853 .124

.10 .030 .0443 .077 .1253 .2743 .110

.25 .018 .030 067 .113 .252 .096

Mean alpha .038 .057 .093 .142 .286

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 23

Actual Alphas of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c = 5 and s = 12

 

Conditional test

nominal alpha

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

 

 

 

 

 

 

 

 

 

E
“
m
e
n
?
[
E
(
M
s
‘
s
m
'
r
)

 

 

  

.01 .000 .000 .001 .005 .049 .011

.025 .000 .000 .001 .005 .049 .011

.33 .05 .000 .000 .001 .005 .049 .011

.10 .000 .000 .001 .005 .049 .011

.25 .000 .000 .001 .005 .049 .011

Mean alpha .000 .000 .001 .005 .049

.01 .000 .003 .007 .018 .108 .027

.025 .000 .003 .007 .018 .108 .027

.50 .05 .000 p .003 .007 .018 .108 .027

.10 .000 .003 .007 .018 .107 .027

.25 .000 .003 .007 .018 .105 .027

Mean alpha .000 .003 .007 .018 .107

.01 .008: .020: .045: .093: .234: .080

.025 .0088 .020a .045a .093a .228 .079

l .05 .0088 .020a .045a .0938 .222 .078

.10 .0088 .019 .0448 .090 .215 .075

.25 .007 .015 .038 .081 .196 .067

Mean alpha .008 .019 .043 .090 .219

.01 .040 .081 .111 .167 .323 .144

.025 .033 .067 .095 .148 .2988 .128

2 .05 .028 .058 .084 .1328 .2748 .115

.10 .0248 .050a .071a .112a .2538 .102

.25 .014 .029 .049 .095 .234 .084

Mean alpha .028 .057 .082 .131 .276

.01 .055 .076 .108 .157 .298 .139

.025 .042 .056 .085 .132 .2808 .119

3 .05 .032 .0448 .072a .120a .2658 .107

.10 .0238 .030a .058a .109a .244a .093

.25 .012 .023 .051 .099 .231 .083

Mean alpha .033 .046 .075 .123 .264

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 24

Actual Alphas of the Conditional F Test Given an Upper—Tailed

Preliminary Test, c =- 5 and s - 20

 

Preliminary test

Conditional test

nominal alpha

 

nominal alpha .010 .025 .050

Mean

.100 .250 alpha

 

 

E
(
M
S
C
:
T
)
/
E
(
M
S
S
:
C
T
)

 

 

 

 

 

 

 

 

  

.01 .000 .000 .001 .006 .050 .011

.025 .000 .000 .001 .006 .050 .011

.33 .05 .000 .000 .001 .006 .050 .011

.10 .000 .000 .001 .006 .050 .011

.25 .000 .000 .001 .006 .050 .011

Mean alpha .000 .000 .001 .006 .050

.01 .000 .002 .008 .021 .122 .031

.025 .000 .002 .008 .021 .122 .031

.50 .05 .ooo~ .002 .008 .021 .122 .031

.lo .000 .002 .007 .020 .121 .030

.25 .000 .002 .007 .020 .120 .030

Mean alpha .000 .002 .008 .021 .121

.01 .013: .023: .048: .108: .257: .090

.025 .0128 .022a .047a .107a .2558 .089

1 .05 .0118 .021a .046a .105a .252a .087

.10 .0118 .0218 .043 .0998 .2438 .083

.25 .010 .018 .036 .088 .227 .076

Mean alpha .011 .021 .044 .101 .247

.01 .051 .091 .119 .192 .328 .156

.025 .047 .084 .110 .174 .305 .144

2 .05 .039 .073 .100 .155 .289a .131

.10 .031 .060 .0828 .127a .2738 .115

.25 .017 .036 .057 .109 .249 .094

Mean alpha .037 .069 .094 .151 .289

.01 .063 .088 .122 .170 .303 .149

.025 .049 .068 .097 .144 .2868 .129

3 .05 .031 .051 .081 .1368 .2668 .113

.10 .023 .042 .066 .118 .256 .101

.25 .009a .029a .052a .103a .249a .088

Mean alpha .035 .056 .084 .134 .272

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 25

Actual Alphas of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c - 10 and s = 12

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.01 .000 .000 .000 .004 .053 .011

.025 .000 .000 .000 .004 .053 .011

.33 .05 .000 .000 .000 .004 .053 .011

.10 .000 .000 .000 .004 .053 .011

.25 .000 .000 .000 .004 .053 .011

Mean alpha .000 .000 .000 .004 .053

.01 .000 .000 .004 .021 .108 .027

.025 .000 .000 .004 .021 .108 .027

.50 .05 .000 ‘ .000 .004 .021 .108 .027

.10 .000 .000 .004 .021 .108 .027

.25 .000 .000 .004 .021 .108 .027

p;‘ Mean alpha .000 .000 .004 .021 .108

U

a; .01 .007: .022: .052: .096: .234: .082

g .025 .007a .022a .oszéll .095a . 2333 .082

ES 1. .05 .0078 .0218 .051a .093a .2308 .080

:: .10 .0068 .018a .048a .0888 .225 .077

E: .25 .006 .016 .040 .082 .210 .071

U

a Mean alpha .007 .020 .049 .091 .226

m

.01 .032 .053 .087 .152 .2778 .120

.025 .0248 .043a .071a .132a .2628 .106

2 .05 .0158 .033a .063a .117a .2543 .096

.10 .0118 .026a .054a .103a .2408 .087

.25 .007 .020 .050 .095 .233 .081

Mean alpha .018 .035 .065 .120 .253

.01 .0198 .031: .0643 .116: .248: .096

.025 .0148 .026a .056a .102a .243a .088

3 .05 .0118 .021a .053a .099a .241a .085

.10 .007a .018a .050a .097a .235a .081

.25 .006 .017 .049 .094 .231 .079

Mean alpha .011 .023 .054 .102 .240  
aActual alpha is within 1.96 standard errors of the nominal alpha.
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Independence
 

Ideally, the upper-tailed preliminary test should designate the

disaggregate unit (student) as the appropriate unit of analysis to use

in testing the primary or conditional null hypothesis of no treatment

differences.

Actual alpha levels. Comparisons of actual alpha levels to their

respective nominal values were excellent as all four parameters, c, s,

the preliminary test alpha level and the conditional test alpha level,

were varied (Tables 21 through 25). Given E(MSC.T)/E(MS ) equal
S:CT

one and an upper-tailed preliminary F test, the observed alphas for

the conditional or "sometimes pool" F test of treatment effects were

89.62 of the time within 1.96 standard errors of the theoretical alpha

levels. All conditional test alphas (10.42) that were not in agreement

with their respective nominal values were too conservative. Unlike the

situation found given independence and the two-tailed preliminary test,

the design c = 2 and s = 12 was no exception to the rule as, given c - 2

and s - 12, 88% of the actual alphas were within 1.96 standard errors of

the nominal alphas.

Estimated powers. Given ECMSC.T)/E(MS ) equal one, the
S:CT

estimated statistical powers of the conditional or "sometimes pool"

F tests were, in most cases (91.2% of the time), greater than the

estimated powers of the unconditional or "never pool" tests of treatment

effect, F = MST/MSG:T (Tables 26 through 30). Paull (1950), in

studying the distributional properties of the conditional F test, given

independence and an upper-tailed preliminary F test, also found that
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the upper-tailed only preliminary test was effective in making the

power of the "sometimes pool" test greater than the power of the

"never pool" test. Given,E(MSC.T)/E(MS ) equal one, all trends
S:CT

in power discrepancies between the conditional and unconditional F

tests due to varying the four parameters, c, s, the preliminary test

alpha level, and the conditional test alpha level, mirrored those found

given the two-tailed preliminary test of independence.

Across all five designs and all five preliminary test alpha

levels, as the five conditional test alpha levels increased from .01

to .25, the average difference between the "sometimes pool" and the

"never pool" test powers went from .089 to .076 to .059 to .042 to .012.

This indirect relationship did not, however, hold up within two of the

five combinations of c and s (i.e., c - 2 and s - 12; c - 5 and s a 5).

For example, consider the design c = 5 and s = 5 (Table 27). Averaged

across the five preliminary test alpha levels, the estimated power dif-

ferences equalled .017, .023, .026, .017, and .007 as their counterpart

nominal values increased from .01 to .25.

As the number of individual units per group increased from s

equals 5 to 3 equal 12 and 20 (compare Tables 27, 28, and 29), the

discrepancies between the powers of the "sometimes pool" test and

the powers of the "never pool" test tended to increase. For example,

given independence, an upper-tailed preliminary test, a conditional

test nominal alpha of .01 and a c equal to 5, averaging over the five

preliminary test alpha levels gave average power differences between the

"sometimes pool" and "never pool" tests of .017 for s==5, .119 for s==12
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Table 26

Given an Upper—Tailed Preliminary Test, c- 2 and s = 12
C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.01 -.046 .062 .120 -.157 -.108 -.099

.025 -0046 0062 .120 -0157 —0108 -0099

.33 .05 -.O46 .062 .120 -.157 -.108 -.099

.10 -.046 .062 .120 -.157 -.110 —.099

.25 -.046 .063 .123 -.l64 -.120 -.103

Mean power dif.a -.O46 .062 .121 -.158 -.111

.01 -.002 .002 .006 -.013 -.052 -.014

.025 -.002 .002 .006 -.013 -.052 -.014

.50 .05 -.002 .002 .006 -.013 -.054 -.015

010 -0002 0001 0008 -0016 -0058 -0017

025 _0006 0008 0022 -0038 -0088 -0032

’E; Mean power dif. -.003 .000 .010 -.019 -.O6l

£3 .01 .077 .103 .132 .146 .070 .106

e, .025 .075 .099 .125 .137 .058 .099

23 1 .05 .071 .092 .117 .127 .045 .090

’1, .10 .069 .086 .107 .113 .021 .079

g; .25 .054 .058 .065 .053 -.024 .041

a:

33 Mean power dif. .069 .088 .109 .115 .034

.01 .147 .185 .217 .212 .155 .183

.025 .137 .169 .199 .192 .132 .166

2 .05 .126 .153 .177 .161 .100 .143

.10 .109 .128 .147 .124 .065 .115

.25 .073 .076 .078 .040 -.001 .053

Mean power dif. .118 .142 .164 .146 .090

.01 .166 .216 .246 .214 .164 .201

.025 .147 .190 .213 .176 .131 .171

3 .05 .129 .167 .186 .146 .100 .146

.10 .106 .133 .135 .091 .046 .102

.25 .063 .075 .064 .024 .006 .046

Mean power dif. .122 .156 .169 .130 .089

 

aMean power differences.
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Table 27

Given an Upper-Tailed Preliminary Test, c- 5 and s= 5

C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif .3

.01 -.234 -.331 -.394 -.363 .169 -.298

.025 -.234 —.331 -.394 -.363 .169 -.298

.33 .05 -.234 -.331 -.394 -.363 .169 -.298

010 -0234 -0331 -0394 _0363 0169 -0298

02.5 -0234 -0331 -0394 -0363 0169 -0298

Mean power dif.a -.234 -.331 -.394 -.363 .169

.01 -.105 -.148 -.l9l -.186 .124 -.151

0025 -0105 -0148 -0191 -0186 .124 -0151

050 005 -0105 -0148 -0191 -0186 .124 -0151

.10 -.105 -.l48 -.191 -.186 .125 -.151

.25 -.105 -.148 -.l95 -.l93 .127 -.154

’L. Mean power dif. -.105 -.148 -.l92 —.187 .125

c)

o; .01 .023 .037 .046 .040 .020 .033

a .025 .023 .037 .043 .035 .019 .031

33 1. .05 .021 .030 .035 .027 .015 .026

”L4 .10 .017 .019 .018 .007 .003 .013

6 025 0000 -0008 -0010 -0024 0022 -0013

5": Mean power dif. . 017 .023 .026 .017 .007

u:

.01 .089 .101 .105 .107 .102 .101

.025 .075 .077 .072 .076 .075 .075

2 .05 .064 .069 .063 .061 .056 .063

.10 .051 .048 .040 .042 .038 .044

.25 .022 .020 .012 .015 .006 .015

Mean power dif. .060 .063 .058 .060 .055

.01 .083 .083 .099 .093 .082 .088

.025 .068 .063 .078 .072 .055 .067

3 .05 .049 .046 .058 .051 .036 .048

.10 .032 .031 .035 .021 .025 .029

.25 .018 .009 .011 .002 .006 .009

Mean power dif. .050 .046 .056 .048 .041  
aMean power differences.
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Table 28

Given an Upper-Tailed Preliminary Test, c = 5 and s = 12

C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.01 .379 .354 -.222 -.111 -.035 -.220

.025 .379 .354 —.222 -.111 -.035 -.220

033 005 0379 0354 -0222 -0111 -0035 -0220

.10 .379 .354 -.222 -.111 -.035 -.220

.25 .379 .354 -.222 -.111 -.035 -.220

Mean power dif.a .379 .354 -.222 -.111 -.035

.01 .138 .170 -.l48 -.089 -.030 -.115

.025 .138 .170 -.l48 -.089 -.030 -.115

.50 .05 0138 0170 -0148 -0089 “0030 -0115

.10 .138 .170 -.148 -.089 -.031 -.115

025 0146 0177 -0153 -0091 -0032 -0120

r;‘ Mean power dif. .140 .171 -.l49 -.089 -.031

L)

J; .01 .148 .141 .105 .061 .025 .096

g .025 .138 .128 .092 .051 .022 .086

ES 1 .05 .130 .117 .081 .041 .014 .077

‘1 .10 .113 .096 .058 .023 .010 .060

’L, .25 .064 .042 .008 -.010 -.003 .020

9" Mean power dif. .119 .105 .069 .033 .014

V

“I .01 .192 .180 .161 .130 .078 .148

.025 .153 .142 .122 .100 .050 .113

2 .05 .119 .105 .090 .081 .031 .085

.10 .081 .067 .045 .045 .015 .051

.25 .034 .029 .012 .018 .000 .019

Mean power dif. .116 .105 .086 .075 .035

.01 .114 .107 .100 .081 .061 .093

.025 .075 .074 .071 .056 .040 .063

3 .05 .056 .057 .054 .037 .027 .046

.10 .030 .032 .031 .016 .013 .024

.25 .014 .010 .010 .006 .004 .009

Mean power dif. .058 .056 .053 .039 .029  
aMean power differences.
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Table 29

Given an Upper-Tailed Preliminary Test, c = 5 and s 8 20
C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 d1£.a

.01 .211 -.110 .061 -.018 -.001 —.080

.025 .211 -.110 .061 —.018 -.001 -.080

.33 .05 .211 —.110 .061 -.018 -.001 -.080

.10 .211 -.110 .061 -.018 -.001 -.080

.25 .211 -.110 .061 -.018 -.001 -.080

Mean power dif.a .211 -.110 .061 -.018 -.001

.01 .077 -.046 .040 -.030 -.006 -.040

.025 .077 -.046 .040 -.030 -.006 -.040

050 .05 0077 -0046 0040 -0030 -0006 -0040

.lo .078 -.046 .040 -.031 -.006 -.040

025 0083 -0051 .042 -0032 -0006 -0043

”La Mean power dif. .078 -.047 .040 -.031 -.006

U

a; .01 .217 .172 .106 .056 .007 .112

a .025 .203 .157 .092 .049 .006 .101

:3 1 .05 .189 .143 .080 .044 .004 .092

2: .10 .163 .119 .067 .032 -.001 .076

E .25 .091 .060 .020 .002 —.006 .033

g Mean power dif. .173 .130 .073 .037 .002

"' .01 .259 .235 .173 .116 .047 .166

.025 .208 .187 .132 .087 .033 .129

2 .05 .167 .140 .087 .057 .020 .094

.10 .114 .094 .058 .034 .010 .062

.25 .041 .033 .016 .005 .002 .019

Mean power dif. .158 .138 .093 .060 .022

.01 .158 .137 .123 .073 .039 .106

.025 .101 .086 .080 .043 .026 .067

3 .05 .073 .061 .058 .026 .015 .047

.10 .048 .031 .031 .012 .008 .026

.25 .013 .008 .011 .001 .003 .007

Mean power dif. .079 .065 .061 .031 .018

   
aMean power differences.
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Table 30

Power of the Conditional F Test Minus Power of the Test F = MST/MSC°T

Given an Upper-Tailed Preliminary Test, c==10 and s==12 °

Conditional test

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.01 -.132 -.054 -.023 -.004 .000 -.043

.025 -.132 —.054 -.023 -.004 .000 -.043

.33 .05 -.132 -.054 -.023 -.004 .000 -.043

.10 -.132 -.054 -.023 -.004 .000 -.043

.25 -.l32 -.054 -.023 -.004 .000 -.043

Mean power dif.E -.132 -.054 -.023 -.004 .000

.01 -.115 -.067 —.027 -.014 —.002 -.045

.025 -.115 -.067 -.027 -.014 -.002 -.045

.50 .05 -.115~ -.067 -.027 -.014 -.002 -.045

010 -0115 -0067 -0027 -0014 -0002 -0045

.25 -.115 -.069 -.028 -.014 -.002 -.046

rL' Mean power dif. -.115 -.067 -.027 -.014 -.002

c:

65 .01 .096 .050 .028 .014 .003 .038

Q .025 .088 .045 .024 .012 .003 .034

E? 1 .05 .080 .040 .023 .010 .002 .031

I: .10 .062 .028 .018 .007 .001 .023

Z: .25 .019 .000 .000 -.001 -.002 .003

a Mean power dif. .069 .033 .019 .008 .001

[3.]

.01 .165 .131 .090 .047 .019 .090

.025 .109 .081 .053 .026 .013 .056

2 .05 .070 .046 .033 .017 .008 .035

.10 .044 .021 .015 .008 .002 .018

.25 .013 .004 .002 .000 .000 .004

Mean power dif. .080 .057 .039 .020 .008

.01 .040 .035 .020 .020 .006 .024

.025 .022 .019 .010 .012 .003 .013

3 .05 .006 .007 .005 .008 .002 .006

.10 .003 .004 .003 .004 .001 .003

.25 .001 .000 .000 .001 .000 .000

Mean power dif. .014 .013 .008 .009 .002  
aMean power differences.
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and .173 for s = 20. This trend was also found when the preliminary

test was a two-tailed test. Only given a conditional test alpha of

.25 did the trend fail to hold. This was most likely due to a ceiling

effect occurring given the large alpha value.

With the exception of the very small conditional test alpha levels

of .01 and .025 for the design c - 2 and s = 12, the discrepancies

between the powers of the conditional test and the F - MST/MS test
C:T

tended to decrease with an increase in the number of classes per treat—

ment (compare Tables 26, 28, and 30). For example, given independence,

a conditional test alpha of .25 and 8 equal to 12, averaging the power

discrepancies across the five preliminary alpha values gave discrep-

ancies of .034 for c=2, .014 for c=5, and .001 for c-10. That the

expected trend did not hold at the small conditional test alpha levels

for the design c = 2 and s - 12 also occurred when the preliminary test

was a two-tailed test.

The effect of increasing the alpha level of the upper-tailed

preliminary test on the power discrepancies between the "sometimes

pool" and "never pool" F tests also copied the trend found given the

two—tailed preliminary test. That is, there was an indirect relation-

ship between changing the alpha level of the preliminary test and the

effects that it had on the power differences between the conditional

and unconditional tests. For example, given independence, a conditional

test alpha level of .25, c - 2 and s = 12 (Table 26), the discrepancies

between the power of the conditional test and the F - MST/MSG:T test

equalled .070, .058, .045, .021, and -.024 for preliminary test alpha

levels of .01, .025, .05, .10, and .25, respectively.
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In comparison to the strange result that occurred when comparing

the powers of the "sometimes pool" test, given a two-tailed preliminary

F test, and the "always pool" test, the expected always occurred when

the preliminary test was an upper-tailed only test. That is, as

expected, the power of the "always pool" test (Table 9) always

exceeded the power of the "sometimes pool" test, given an upper—tailed

preliminary test and E(MSC:T)/E(MSS:CT) equal one (Tables D-l through

D-S).

Positive Dependence
 

Ideally the upper-tailed preliminary test should reject its null

hypothesis, designating the aggregate unit (classroom) as the appro-

priate analytic unit in looking for treatment effects. Paull and

Peckham et al. referred to this particular situation, having the

E(MSC.T)/E(MS ) be greater than one and an upper—tailed only
S:CT

preliminary F test, when they discussed the effects of using a

preliminary testing procedure to choose the unit of analysis.

Actual alpha levels. Given the ECMSC.T) was greater than the

E(MS ) and the preliminary test was an upper-tailed only F test

S:CT

done at the a level, the actual alphas of the conditional or "sometimes

pool" F test were essentially duplicates of the actual alphas of the

conditional F test given positive dependence and a two-tailed prelim—

inary test done at the 20 level, which generally were too liberal.

For example, compare Tables 12 and 22. If E(MSC:T)/E(MSS:CT) equal 2,

the alpha level of the two-tailed preliminary test equal .02 and the

alpha level of the upper-tailed preliminary test equal .01, the
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absolute differences between the two sets of actual conditional test

alphas equalled .000, .001, .001, .001, and .000 as the nominal con—

ditional test alpha went from .01 to .25. Because the consequences

of varying the five principal parameters, a, c, the preliminary test

alpha, the conditional test alpha, and the degree of positive depen-

dence, imitated (both in size and direction) those found when studying

the effects of using a two-tailed preliminary test on the actual

conditional test alphas, no more will be said about this situation.

 

Estimated powers. As expected, given the E(MSC°T) was greater

than the E(MS ), the power of the conditional test following an
S:CT

upper-tailed preliminary test done at a equalled the power of the con-

ditional test given a two-tailed preliminary test done at 2a (compare

Tables C-l through C-5 with Tables D-l through D-5). Because of the

general liberalness of the "sometimes pool" test, though, given posi-

tive dependence and an upper-tailed preliminary test, studying the

power of that "sometimes pool" test is rather uninteresting.

Negative Dependence
 

Given the E(MSC.T) is less than the E(MS ), the upper-tailed
S:CT

only preliminary F test should designate the disaggregate unit (stu-

dent) as the appropriate unit of analysis in testing the primary or

conditional null hypothesis of no treatment effects.

Actual alpha levels. Given negative student dependence and an

upper-tailed preliminary test, all observed alpha values of the con-

ditional test were too conservative (see top sections of Tables 21
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through 25). In fact, if one compares Tables 21 through 25 with

Table 8, which recorded the actual alphas of the "always pool"

F = MST/MS test, one finds that the "sometimes pool" alphas,
S:T

at both levels of negative dependence, are just as conservative as

the "always pool" alphas. For example, given E(MSC.T)/E(MS ) equal
S:CT

.33, c = 2 and s = 12, the actual alphas of the conditional test aver-

aged across the five preliminary test alpha levels equal .000, .001,

.001, .008, and .058 as the conditional test nominal alphas increase

from .01 to .25 (Table 21), while the actual alphas of F = MST/MSS:T

equal .000, .001, .001, .008, and .059, respectively (Table 8).

The one distinct feature of the "sometimes pool" test is its

preliminary test used for choosing the so—called appropriate unit

of analysis for the primary test of treatment differences. However,

given E(MSC:T)/E(MSS:CT) is less than one and the preliminary test is

an upper-tailed only test, the alpha level of the preliminary test had

virtually no affect on the actual alpha level of the conditional or

"sometimes pool" test. For example, given E(MSC:T)/E(MSS:CT) equal

.33 and c = 2 and s 8 12 (Table 21), the actual alpha levels averaged

over the five conditional test nominal alpha levels equalled .014,

.014, .014, .014, and .013 as the nominal alpha levels of the pre-

liminary test ranged from .01 to .25. Because the actual alphas and

the effects of s, c, and the nominal alpha level of the conditional

test are exactly identical to those found when studying the empirical

effects on the alpha levels of always using student as the unit of

analysis, given negative dependence, no more will be said about this

situation.
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Estimated powers. Because the actual alpha values of the

"sometimes pool" tests behaved exactly as expected and exactly as

did the actual alpha values of the "always pool" test, one could

expect the powers of the "sometimes pool" tests (see top sections

of Tables 26 through 30) and the "always pool" tests (Table 9) to mimic

each other also. This is exactly what happened. Once again, the only

difference between the two tests is that a preliminary test of inde-

pendence preceeds the "sometimes pool" test. The effect of increasing

the nominal alpha of the preliminary test had no affect whatsoever on

the power of the "sometimes pool" test. Because the "sometimes pool"

test, based on the upper-tailed preliminary test, and the "always pool"

test are essentially the same, given negative dependence, no more will

be said about the power of the former.

The Lower—Tailed Preliminary Test

The lower-tailed preliminary test tests the null hypothesis that

the E(MSC:T) is equal to or greater than the E(MSS:CT) or equivalently

that pl is equal to or greater than zero. This test cannot detect

positive dependence situations.

Observed conditional test alpha values, given the lower—tailed

only preliminary F test, are reported in Tables 31 through 35.

Estimated power discrepancies between the "sometimes pool" or con-

ditional test and the "never pool" or F = MST/MS test are given
C:T

in Tables 36 through 40. Appendix E (Tables E-l through E-5) contains

the estimated powers of the conditional test, given the lower-tailed
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Table 31

Actual Alphas of the Conditional F Test Given a Lower-Tailed

Preliminary Test, c - 2 and s = 12

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.01 .007: .0153 .017 .025 .081 .029

.025 .0103 .024a .0333 .051 .114 .046

.33 .05 .0103 .029a .044a .0703 .151 .061

.10 .0103 .0293 .0483 .0853 .2013 .075

.25 .010 .029 .050 .093 .259 .088

Mean alpha .009 .025 .038 .065 .161

.01 .008: .0143 .023 .044 .116 .041

.025 .0113 .0233 .035 .060 .139 .054

.50 .05 .0113 .0263 .045: .0753 .162 .064

.10 .0113, .0293 .0523 .0913 .2023 .077

.25 .011 .029 .054 .101 .264 .092

,1 Mean alpha .010 .024 .042 .074 .177

H

:- .01 .0163 .042 .070 .103: . 253: .097

g .025 .018 .045 .073 .106 .2573 .100

3; 1 .05 .021 .050 .081 .119 .275 .109

;: .10 .021 .051 .089 .131 .293 .117

E: .25 .019 .048 .088 .144 .341 .128

U

‘33: Mean alpha .019 .047 .080 .121 . 284

"' .01 .068 .099 .152 .231 .389 .188

.025 .070 .104 .158 .237 .395 .193

2 .05 .071 .105 .159 .238 .398 .194

.10 .070 .108 .165 .249 .410 .200

.25 .064 .106 .170 .261 .426 .205

Mean alpha .069 .104 .161 .243 .404

.01 .105 .168 .227 .315 .461 .255

.025 .106 .173 .233 .321 .466 .260

3 .05 .107 .173 .234 .323 .469 .261

.10 .107 .174 .235 .324 .474 .263

.25 .102 .173 .239 .331 .484 .266

Mean alpha .105 .172 .234 .323 .471

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 32

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.01 .0088 .019: .0448 .070 .151 .057

.025 .009: .0203 .049: .086: .192 .071

.33 .05 .0103 .0223 .0553 .0983 .209 .079

.10 .0113 .0243 .059a .1073 .2303 .086

.25 .011 .025 .061 .108 .245 .090

Mean alpha .010 .022 .054 .094 .205

.01 .006: .018: .0323 .053 .152 .052

.025 .0083 .024a .0453 .0703 .180 .065

.50 .05 .0083 .0263 .053a .0843 .201 .074

.30 .0103 .026a .0573 .0983 .225 .083

. 5 .011 .026 .063 .109 .242 .088

,3 Mean alpha .009 .024 .050 .083 .200

H

E? .01 .014a .025a .054a .1028 .236 .086

63’ .025 .017 .030: .059: .108: .238 .090

E} 1 .05 .017 .0323 .062 .112 .246 .094

e. .10 .019 .032 .068 .124 .258 .100

’1. .25 .019 .038 .078 .132 .2758 .108

gg’ Mean alpha .017 .031 .064 .116 .251

“‘ .01 .044 .082 .124 .196 .351 .159

.025 .045 .083 .126 .197 .351 .160

2 .05 .046 .083 .127 .198 .352 .161

.10 .046 .084 .129 .200 .352 .162

.25 .047 .086 .131 .202 .355 .164

Mean alpha .046 .084 .127 .199 .352

.01 .085 .122 .180 .252 .417 .211

.025 .085 .123 .181 .253 .417 .212

3 .05 .085 .123 .181 .253 .417 .212

.10 .086 .124 .182 .254 .417 .213

.25 .086 .125 .184 .254 .418 .213

Mean alpha .085 .123 .182 .353 .417

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 33

Actual Alphas of the Conditional F Test Given a Lower—Tailed

Preliminary Test, c - S and s = 12

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.01 .006: .015 .030 .049 .120 .044

.025 .006 .0153 .0363 .071 .155 .057

.33 .05 .0073 .0173 .0403 .0803 .190 .067

.10 .0073 .0183 .0453 .0913 .2123 .075

.25 .007 .018 .046 .095 .224 .078

Mean alpha .007 .017 .039 .077 .180

.01 .0033 .0083 .021 .042 .136 .042

.025 .0053 .0163 .032 .058 .157 .054

.50 .05 .0063 .0173 .0363 .0703 .175 .061

.10 .0063 .0173 .0423 .0863 .1993 .070

.25 .007 .018 .046 .096 .224 .078

3‘ Mean alpha .005 .015 .035 .070 .178

E-'

52 .01 .009: .021: .048: .096: .238: .082

33a .025 .0093 .0213 .050 .1003 .2443 .085

23 1 .05 .0103 .0233 .055 .1073 .2503 .089

23 .10 .0113 .0263 .059 .114 .2593 .094

’2. .25 .012 .032 064 .120 .275 .101

(£0 Mean alpha .010 .025 .055 .107 .253

“J .01 .051 .096 .139 .210 .395 .178

.025 .051 .096 .139 .210 .395 .178

2 .05 .051 .096 .139 .210 .395 .178

.10 .051 .096 .142 .213 .395 .179

.25 .051 .096 .145 .216 .398 .181

Mean alpha .051 .096 .141 .212 .396

.01 .106 .153 .211 .298 .465 .247

.025 .106 .153 .211 .298 .465 .247

3 .05 .106 .153 .211 .298 .465 .247

.10 .106 .153 .211 .298 .465 .247

.25 .106 .153 .213 .298 .465 .247

Mean alpha .106 .153 .211 .298 .465

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 34

Preliminary Test, c = 5 and s = 20

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.01 .006: .019: .0303 .051 .126 .046

.025 .0073 .0243 .0403 .0773 .168 .063

.33 .05 .0073 .0263 .0453 .0893 .2093 .075

.10 .0073 .0283 .0493 .0973 .2333 .083

.25 .007 .028 .049 .100 .248 .086

Mean alpha .007 .025 .043 .083 .197

.01 .005: .0123 .020 .037 .143 .043

.025 .0053 .0183 .0293 .054 .168 .055

.50 .05 .0073 .0233 .0393 .0693 .192 .066

.10 .0073 .0253 .0453 .0903 .2123 .076

.25 .007 .028 .050 .101 .247 .087

E3 Mean alpha .006 .021 .037 .070 .192

(D

g .01 .0158‘ .0262 .052a .1132 . 263£1 .094

:3 .025 .018 .0303 .057 .1153 .2653 .097

:: 1 .05 .019 .0333 .0603 .118 .270 .100

E1 .10 .019 .034 .061 .122 .277 .103

E?) .25 .019 .041 .071 .130 .292 .111

E3 Mean alpha .018 .033 .060 .120 .273

.01 .068 .117 .159 .243 .405 .198

.025 .068 .117 .159 .243 .405 .198

2 .05 .068 .118 .160 .244 .406 .199

.10 .068 .119 .160 .244 .406 .199

.25 .071 .119 .161 .245 .408 .201

Mean alpha .069 .118 .160 .244 .406

.01 .127 .180 .250 .324 .475 .271

.025 .127 .180 .250 .324 .475 .271

3 .05 .127 .180 .250 .324 .475 .271

.10 .127 .180 .250 .324 .476 .271

.25 .127 .181 .251 .324 .476 .272

Mean alpha .127 .180 .250 .324 .475

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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Table 35

Actual Alphas of the Conditional F Test Given a Lower-Tailed

Preliminary Test, c - 10 and s = 12

 

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

Preliminary test Mean

nominal alpha .010 .025 .050 .100 .250 alpha

.01 .006: .016: .044: .0783 .200 .069

.025 .0063 .017a .0463 .0883 .2173 .075

.33 .05 .006 .017 .0483 .0923 .2253 .078

.10 .0063 .0173 .0493 .0943 .230 .079

.25 .006 .017 .049 .094 .2313 .079

Mean alpha .006 .017 .047 .089 .221

.01 .0033 .009 .0233 .049 .160 .049

.025 .0063 .0143 .0373 .070 .191 .064

.50 .05 .0063 .0163 .0443 .0793 .2103 .071

.10 .0063 .0173 .0473 .0853 .2253 .076

.25 .006 .017 .049 .094 .230 .079

Mean alpha .005 .015 .040 .075 .203

’E; .01 .007: .023: .0548 .099: .238: .084

a; .025 .0073 .0233 .054 .1003 .2403 .085

g; 1 .05 .0073 .0243 .0553 .1013 .2433 .086

g; .10 .0073 .0253 .060 .1053 .2453 .088

;; .25 .007 .028 .065 .109 .257 .093

E-O

3;; Mean alpha .007 .025 .058 .103 .245

g; .01 .056 .093 .144 .215 .356 .173

.025 .056 .093 .144 .215 .356 .173

2 .05 .056 .093 .144 .215 .356 .173

.10 .056 .093 .144 .216 .356 .173

.25 .056 .094 .145 .216 .358 .174

Mean alpha .056 .093 .144 .215 .356

.01 .108 .158 .210 .290 .451 .243

.025 .108 .158 .210 .290 .451 .243

3 .05 .108 .158 .210 .290 .451 .243

.10 .108 .158 .210 .290 .451 .243

.25 .108 .158 .210 .290 .451 .243

Mean alpha .108 .158 .210 .290 .451

 

aActual alpha is within 1.96 standard errors of the nominal alpha.
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preliminary test. Each table is read exactly as were the comparable

tables for the two-tailed and upper—tailed preliminary tests.

Independence
 

Ideally, the lower-tailed preliminary test should point to the

disaggregate unit (student) as the appropriate unit of analysis to

use in testing for treatment differences.

Actual alpha levels. Sixty-seven percent of the actual alpha
 

values of the conditional tests were within 1.96 standard errors of

their nominal values, given independence and a lower—tailed preliminary

test (Tables 31 through 35). All actual conditional test alphas that

were not in agreement with their respective nominal counterparts were

too liberal. As in the situation with independence and the two-tailed

preliminary F test, the design c = 2 and s = 12 deviated from the

expected. Given independence and the lower-tailed only preliminary

test, only 242 of the actual alpha values for c = 2 and s - 12 (Table

31) were within 1.96 standard errors of their respective nominal values.

) equal one, the
 

Estimatedgpowers. Given E(MSC3T)/E(MSS=CT

estimated powers of the conditional tests were, in all cases, greater

than the estimated powers of the F - MST/MS tests (Tables 36 through

C:T

40). In addition, the effects of varying c, s, and the conditional test

alpha level followed those found when the preliminary test was either

a two-tailed or upper-tailed only test.

Across all designs and all preliminary test alpha levels, as the

conditional test alpha level increased from .01 to .25, the power dis—

crepancies between the "sometimes pool" and "never pool" tests decreased
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from .128 to .119 to .103 to .082 to .037. But once again, this

indirect relationship did not hold up within the two designs c = 2

and s = 12 and c = 5 and s = 5 (Tables 36 and 37). For example, given

c = S and s = 5, averaging across the five preliminary alpha levels

gave power discrepancies equalling .038, .053, .065, .063, and .038

as the conditional test alpha level was monotonically increased.

As was the case given the upper-tailed and two-tailed preliminary

tests, a ceiling effect at the higher conditional test alpha levels

prevented the power differences between the "sometimes pool" and "never

pool" tests from increasing as the number of students per classroom was

increased (compare Tables 37, 38, and 39). For example, given indepen-

dence, a conditional test alpha of .25 and a c equal to 5, averaging

across the five preliminary alpha levels the power differences equalled

.038 for s = 5, .031 for s = 12, and .011 for s = 20.

It was expected that, given independence, increasing the number

of classes per treatment should decrease the discrepancies between the

power of the conditional test and the power of F = MST/MSG:T (compare

Tables 36, 38, and 40). With the exception of the two conditional test

alpha levels of .01 and .025, given c = 2 and s = 12, this trend did

appear in the simulated data. For example, given E(MBC3T)/E(MSS3CT)

equal one, a lower-tailed preliminary test, a conditional test alpha of

.25 and an 3 equal to 12, averaging the power differences across the

preliminary test alpha levels gave power differences of .100 for c=- 2,

.031 for c = 5, and .004 for c = 10. The value for c = 10 (.004) is

most probably spuriously low because of the extremely large powers of

the F = MST/MSC3T test.
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Table 36

Power of the Conditional F Test Minus Power of the Test F = MS /MS

Given a Lower—Tailed Preliminary Test, c= 2 and s= 12

T C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.01 .018 .034 -.097 -.l37 .099 -.077

.025 .014 .006 -.057 -.108 .087 -.046

033 005 0019 0034 -0012 -0065 0060 -0017

.10 .020 .055 .055 .006 .025 .022

.25 .013 .040 .070 .082 .028 .047

Mean power dif.a .010 .020 -.008 -.044 .049

.01 .019 .019 .011 .001 .046 .001

.025 .036 .045 .033 .019 .036 .019

.50 .05 .046 .069 .060 .039 .022 .038

.10 .046 .090 .096 .091 .012 .067

.25 .032 .074 .109 .139 .056 .082

’13 Mean power dif. .036 .059 .062 .058 .007

,9; .01 .090 .116 .144 .157 .081 .118

ES .025 .093 .121 .150 .163 .084 .122

E: 1 .05 .099 .134 .166 .177 .094 .134

’1. .10 .099 .145 .180 .191 .104 .144

g; .25 .086 .139 .188 .208 .136 .151

U)

:5 Mean power dif. .093 .131 .166 .179 .100

.01 .167 .211 .248 .249 .210 .217

.025 .170 .216 .253 .253 .213 .221

2 .05 .170 .218 .256 .257 .216 .223

.10 .167 .226 .262 .266 .223 .229

.25 .157 .217 .265 .273 .236 .230

Mean power dif. .166 .218 .257 .260 .220

.01 .210 .270 .308 .292 .270 .270

.025 .212 .271 .310 .295 .273 .272

3 .05 .213 .273 .312 .299 .276 .275

.10 .213 .276 .315 .302 .280 .277

.25 .201 .268 .313 .307 .290 .276

Mean power dif. .210 .272 .312 .299 .278  
aMean power differences.
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Table 37

Given a Lower—Tailed Preliminary Test, c B 5 and s = 5

C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.01 .101 .177 —.239 .228 —.099 -.169

.025 .045 .094 —.150 .153 -.068 -.102

.33 .05 .016 .044 —.083 .092 -.054 -.058

.10 .004 .018 -.034 .042 —.025 -.025

.25 .000 .004 .002 .001 -.003 .001

Mean power dif.a .033 .066 -.101 .103 -.050

.01 .060 .096 -.l49 .141 -.092 -.108

.025 .031 .057 -.099 .104 -.074 -.073

.50 .05 .013 .025 -.060 .072 -.052 -.044

.10 .005 .008 —.012 .026 -.031 -.011

.25 .012 .022 .015 .015 .001 .013

’3 Mean power dif. .017 .030 -.O61 .066 -.050

E-C

3 .01 .030 .041 .052 .047 .026 .039

:32 .025 .031 .043 .056 .050 .029 .042

.3 l .05 .035 .050 .063 .056 .037 .048

£3 .10 .046 .059 .072 .071 .043 .058

”E: .25 .049 .070 .082 .091 .053 .069

g” Mean power dif. .038 .053 .065 .063 .038

”' .01 .112 .136 .161 .172 .169 .150

.025 .112 .137 .162 .172 .169 .150

2 .05 .113 .138 .163 .172 .170 .154

.10 .113 .138 .163 .173 .170 .151

.25 .113 .138 .165 .176 .171 .153

Mean power dif. .113 .137 .163 .173 .170

.01 .147 .167 .211 .229 .234 .198

.025 .148 .167 .211 .229 .234 .198

3 .05 .148 .167 .211 .230 .234 .198

.10 .148 .168 .212 .230 .234 .198

.25 .148 .169 .212 .230 .234 .199

Mean power dif. .148 .168 .211 .230 .234

 

aMean power differences.
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Table 38

 

 

 

 

 

 

 

 

 

 

 

 

  

Given a Lower-Tailed Preliminary Test, c==5 and s==12 C:T

Conditional test

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.01 -.228 -.240 -.150 -.079 -.026 -.l45

.025 -.13S —.158 -.O99 -.052 -.015 -.092

.33 .05 —.050 -.086 -.061 -.033 -.011 -.048

.10 -0003 “0023 -0023 -0011 -0005 -0013

o 25 o 018 o 007 o 000 '- o 002 o 000 o 005

Mean power dif.a -.080 -.100 -.067 -.035 -.011

001 -0085 “.127 -0120 -0073 “.0028 -0087

0025 -0051 -0090 -0083 -0056 _0021 -0060

.50 .05 -.002 -.046 -.049 -.039 -.015 -.030

.10 .033 -.003 -.010 -.020 -.005 -.001

.25 .053 .048 .023 .005 .004 .027

I” Mean power dif. -.010 -.044 -.O48 —.037 -.013

El

33’. .01 .153 .148 .112 .068 .027 .102

g .025 .155 .150 .116 .074 .029 .105

z: 1 .05 .164 .161 .123 .080 .030 .112

‘\ .10 .175 .171 .136 .088 .032 .120

’2: .25 .179 .179 .156 .109 .035 .132

(£0 Mean power dif. .165 .162 .129 .084 .031

V

“I .01 .282 .294 .283 .242 .144 .249

.025 .282 .294 .283 .242 .144 .249

2 .05 .282 .294 .283 .242 .144 .249

.10 .282 .294 .283 .242 .145 .249'

.25 .282 .294 .287 .242 .148 .251

Mean power dif. .282 .294 .284 .242 .145

.01 .314 .332 .350 .311 .228 .307

.025 .314 .332 .350 .311 .228 .307

3 .05 .314 .332 .350 .311 .228 .307

.10 .314 .332 .350 .311 .228 .307

.25 .314 .332 .350 .311 .228 .307

Mean power dif. .314 .332 .350 .311 .228

 

aMean power differences.
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Table 39

Given a Lower-Tailed Preliminary Test, c= 5 and s = 20

C:T

 

Conditional test

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha Mean

Preliminary test power

nominal alpha .010 .025 .050 .100 .250 dif.a

.01 .143 -.072 -.043 .016 -.001 -.055

.025 .090 -.049 -.029 .012 -.001 -.036

.33 .05 .041 -.027 -.015 .005 .000 -.018

.10 .004 -.009 -.008 .001 .001 -.004

.25 .020 .004 .002 .000 .001 .005

Mean power dif.a .052 -.031 -.019 .007 .000

.01 .050 -.034 -.035 .028 -.006 -.031

.025 .027 -.016 -.023 .023 -.006 -.019

.50 .05 .003 .002 -.011 .014 -.005 -.005

.10 .040 .025 .001 .006 -.004 .011

.25 .065 .042 .015 .002 .000 .025

“(a Mean power dif. .006 .004 -.011 .014 -.004

gf’ .01 .224 .179 .111 .059 .009 .116

3; .025 .227 .182 .114 .063 .010 .119

;: 1 .05 .229 .187 .118 .064 .010 .122

E: .10 .238 .193 .127 .067 .011 .127

3;: .25 .245 .198 .132 .072 .014 .132

22

j; Mean power dif. .233 .188 .120 .065 .011

.01 .399 .378 .304 .229 .103 .283

.025 .400 .378 .304 .229 .103 .283

2 .05 .400 .379 .305 .230 .103 .283

.10 .400 .379 .305 .230 .104 .284

.25 .401 .382 .306 .230 .105 .285

Mean power dif. .400 .379 .305 .230 .104

.01 .443 .428 .401 .305 .180 .351

.025 .443 .428 .401 .305 .180 .351

3 .05 .443 .428 .401 .305 .180 .351

.10 .444 .428 .401 .305 .180 .352

.25 .444 .428 .401 .306 .180 .352

Mean power dif. .443 .428 .401 .305 .180 
 

aMean power differences.
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Table 40

 

 

 

 

 

 

 

 

 

 

 

 

 

Given a Lower-Tailed Preliminary Test, c==10 and s==12 T C:T

Conditional test

nominal alpha Mean

Preliminary test power

nominal alpha . 010 .025 .050 . 100 . 250 dif .3

001 .033 -0015 -0007 -0001 0000 -0011

0025 0014 -0005 -0003 "0001 .000 - 0005

.33 .05 .004 —.003 -.002 -.001 .000 -.002

.10 .001 .000 .000 .000 .000 .000

.25 .001 .000 .000 .000 .000 .000

Mean power dif.a .010 -.005 -.002 -.001 .000

.01 .070 -.043 -.021 -.011 .002 -.029

.025 .047 -.025 -.013 -.008 .000 -.019

050 005 0025 -0015 -0007 -0006 0000 -0011

.10 0009 -0003 -0002 -0004 0000 -0004

.25 .005 .002 .001 .000 .000 .002

,‘ Mean power dif. .029 -.017 —.008 —.006 .000

H

3’; .01 .103 .057 .034 .017 . 004 .043

g . 025 . 106 . 059 . 035 . 017 .004 .062

E: 1 .05 .111 .061 .036 .017 .004 .046

:: .10 .116 .063 .036 .020 .004 .048

a: .25 .127 .074 .041 .023 .005 .054

g” Mean power dif. . 113 .063 .036 . 019 . 004

“' .01 .374 .319 .233 .154 .063 .229

.025 .374 .319 .233 .154 .063 .229

2 .05 .374 .319 .233 .154 .063 .229

.10 .374 .319 .233 .155 .063 .229

.25 .374 .319 .235 .155 .063 .229

Mean power dif. .374 .319 .233 .154 .063

.01 .416 .412 .358 .268 .114 .314

.025 .416 .412 .358 .268 .114 .314

3 .05 .416 .412 .358 .268 .114 .314

.10 .416 .412 .358 .268 .114 .314

.25 .416 .412 .358 .268 .114 .314

Mean power dif. .416 .412 .358 .268 .114 
 

aMean power differences.
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The effect of increasing the nominal alpha level of the

lower—tailed preliminary test on the power differences between the

"sometimes pool" and "never pool" F tests were reversed from the trends

found given both a two-tailed and an upper-tailed test. That is, as

the preliminary test alpha level increased, there was an increase in

the power differences. For example, given a conditional alpha level

of .25, c = 2 and s = 12 (Table 36), the power differences, as the

preliminary test alpha level increased, came to .081, .084, .094,

.104, and .136, favoring the "sometimes pool" test. This reversal

in trend probably was due to the fact that the alpha levels of the

"sometimes pool" test leaned further and further toward being too

liberal as the alpha level of the preliminary test increased.

Without exception, given independence of disaggregate units,

the estimated powers of the "sometimes pool" test (Tables E-l through

E-S) were greater than the powers of the "always pool" or F = MST/MSS:T

test (Table 9). The larger powers of the "sometimes pool" test could

be expected when the conditional test was too liberal a test, but they

also occurred when the actual alpha levels of the conditional test

were satisfactory.

Positive Dependence
 

Given that E(MSC_T) is greater than the E<MSS°CT)’ the lower-

tailed preliminary F test should not reject its null hypothesis of

Ho: the E(MSC'T) is greater than or equal to the E(MS ) and thus
S:CT

designate the disaggregate unit (student) as the appropriate unit of

analysis for the primary test of treatment effects.
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Actual alpha levels. Given positive dependence, all actual

conditional test alpha levels exceeded their respective nominal values

by more than 1.96 standard errors (see bottom sections of Tables 31

through 35). If one compares Tables 31 through 35 with Table 8, which

documents the actual alphas of the F = MST/MS and has no preliminary
S:T

test associated with it, one finds that the "sometimes pool" alphas, at

both levels of positive dependence, are very close in magnitude to their

counterpart "always pool" alphas. This was especially so for the three

designs with large (sc—l)t values, i.e., c = 5 and s = 12, c = 5 and

s 20, and c = 10 and s = 12. Given E(MSC_T)/E(MS ) equal 2,
S:CT

10 and s = 12, the actual "sometimes pool" alphas, averaged acrossc

the five preliminary test alphas, equalled .056, .093, .144, .215, and

.356 as the nominal "sometimes pool" test alphas increased from .01 to

.25 (Table 35), while the actual "always pool" alphas also equalled

.056, .093, .144, .215, and .356, respectively (Table 8).

The preliminary test is the distinguishing feature separating

the "sometimes pool" F test from the "always pool" F test. And given

either degree of positive dependence, the alpha level of the lower-

tailed preliminary test had little to no affect on the actual alpha

of the "sometimes pool" test. For c - 2 and s = 12, as the alpha

level of the preliminary test increased, the alpha levels of the

"sometimes pool" tests became slightly more liberal. For example,

given E(MSC.T)/E(MS ) equal 2, a conditional test nominal alpha

S:CT

of .25, c==2 and s==12, as the five alpha levels of the preliminary

test increased from .01 to .25, the five actual conditional test alphas
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went from .389 to .395 to .398 to .410 to .426 (Table 31). Given the

same circumstances, the actual conditional test alpha levels for designs

with higher values of (sc-l)t had almost no variation as the preliminary

test alpha level was varied. Because the actual alphas, given a lower-

tailed preliminary test and positive dependence, closely match those

found when studying the empirical alphas of the F - MST/MS test,
S:T

given positive dependence, no more will be said about the former.

Estimated powers. Given positive dependence and a lower-tailed
 

preliminary test, the "sometimes pool" F test of treatment effects

essentially becomes an "always pool" F test of treatment effects.

Because of this, one would expect their powers to react similarly

both in magnitude and in direction. This is exactly what happened.

The nominal alpha of the preliminary test did have minimal effect on

the power of the "sometimes pool" test for c = 2 and s = 12 though

(Table E-l). This was expected, however, as this was the design for

which increasing the preliminary test alpha level made the difference

between the "sometimes pool" alpha and the "always pool" alpha slightly

more than zero, making the former more liberal. Because the "sometimes

pool" test, based on the lower-tailed preliminary test, and the "always

pool" test are virtually the same, given positive dependence, no more

will be said about the power of the "sometimes pool" test.

Negative Dependence
 

The lower-tailed preliminary test should recognize the situation

where the E<MSC°T) is less than the E(MSS°CT) and by so doing designate
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the aggregate unit (classroom) as the appropriate analytic unit in

testing for treatment differences.

Actual alpha levels. Given that the E<MSC°T) was less than the

E( ) and the preliminary test was a lower—tailed only test done

MSS:CT

at the a level, the observed alphas of the conditional test were very

nearly equal in magnitude to observed alphas of the conditional test

given negative dependence and a two-tailed preliminary test done at 2a.

For example, compare the observed alphas of the conditional test in

Table 32 with the observed alphas in Table 12. Given E(MSC:T)/E(MSS:CT)

equals .50, 21 of the 25 observed alphas, given the lower-tailed pre-

liminary test (Table 32) done at a, equal their counterpart observed

alphas, given the two-tailed preliminary test done at 20 (Table 12).

And four times the observed alphas of the conditional test given the

lower-tailed preliminary test exceeded their matched observed alphas

given the two-tailed preliminary test by only .001. In summary, given

negative dependence and a lower-tailed preliminary test, the conse-

quences of varying s, c, the preliminary test alpha, the conditional

test nominal alpha, and the level of negative dependence on the observed

alphas of the conditional test imitated the magnitude and pattern of

effects found when studying the effects of using a two-tailed prelim-

inary test on the observed conditional test alphas.

Estimatedgpowers. It was expected that, given the E(MSC:T)

was less than the E(MS , the power of the conditional test fol-

S:CT)

lowing a lower-tailed preliminary test done at a would equal the power

of the conditional test given a two-tailed preliminary test done at 2a.



140

Under this condition, both preliminary tests have equal probabilities

of rejecting the null hypothesis of the preliminary test. To see that

this expectation appeared in the simulated data, compare Tables 16

through 20 with Tables 36 through 40 and/or Tables C-l through C-S

with Tables E-l through E-S. For example, if E(MSC.T)/E(MS ) equals
S:CT

.33, the alpha level of the two—tailed preliminary test equal .02,

c = S and s = 5, as the nominal alpha of the conditional test increased

from .01 to .25, the power differences between the "sometimes pool"

test and the "never pool" test equalled -.101, -.177, —.239, -.228,

and -.099 (Table 17). If the preliminary test was instead a lower-

tailed only test done at alpha equal .01 (Table 37), the power dis-

crepancies between the "sometimes pool" and "never pool" tests also

equalled -.101, -.l77, -.239, -.228, and -.O99 as the conditional test

nominal alpha was increased from .01 to .25.

Given negatively dependent data, the power of the conditional

test following a two-tailed preliminary test done at a had less power

than the conditional test following a lower-tailed preliminary test

done at a. For example, Table C—2 empirically shows that given

E(MSC.T)/E(MS ) equals .50, c = S, s a 5 and the two-tailed

S:CT

preliminary test alpha equal .05, the power of the conditional test

equalled .131, .230, .321, .488, and .739 as the nominal alpha of the

conditional test increased from .01 to .25. Given the same set of

conditions but instead having the lower-tailed preliminary test alpha

equal .05, the power of the conditional test following the lower-

tailed preliminary test equalled .149, .262, .360, .520, and .761
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as the conditional alphas increased (Table E-2). Given both the

lower-tailed and two—tailed tests were done at the same alpha level

and the ECMSC'T) was less than the EGMS the lower—tailed pre-
S:CT)’

liminary test would have more power to reject the null preliminary

test hypothesis and thus designate class as the unit of analysis more

often. Since negative dependence is defined by having the E(MSC°T)

less than the E(MS ), using class as the analytic unit decreases
S:CT

the error term in testing for treatment effects, which should increase

the power of the conditional test. At the same time, however, using

student as the analytic unit has as its advantage more degrees of

freedom error, which also has the effect of increasing the power of

the conditional test. Thus that the power of the conditional test

following a two-tailed preliminary test done at a had less power than

the conditional test following a lower—tailed preliminary test done at

a was a combined function of the difference between c and s and the

difference between the E(MSC:T) and the E<MSS=CT)°



CHAPTER VIII

SUMMARY AND CONCLUSIONS

The main purpose of this study was to propose an operational

definition of independence of analytic units, and to use that definition

in an investigation of the effects.of violating the assumption of inde-

pendence. A secondary purpose was to expand upon a conditional testing

procedure that had been proposed in past research and to test its valid-

ity. This conditional testing procedure included a preliminary test of

independence that was used to select the unit of analysis to use in

testing the primary hypothesis of no treatment differences. How the

number of individual units per group, the number of groups per treatment

level and the type and degree of dependence within groups affected both

the validity of using correlated units of analysis and the consequences

of using a conditional testing procedure were studied analytically. In

addition, the size of the effects were estimated empirically.

It was proposed that independence be operationally defined as:

Disaggregate or ungrouped units can be considered as independent units

whenever the variance of the aggregate or grouped units can be predicted

from the grouping size and the variance of the disaggregate units. This

definition of independence can be translated into testing the equality

of expected mean squares between and within groups. That is, given the

above definition of independence, the expected mean square between

142
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groups, E(MS , should equal the expected mean square within groups,
C:T)

E(MS for the two-level, hierarchically-nested design considered
S:CT)’

in this study, which within each treatment had subjects grouped into

classrooms. Also, under independence of responses between and within

groups, the intraclass correlation coefficient would equal zero.

Given the above operational definition of independence, two types

of dependency are possible, positive dependence and negative dependence.

Positive dependence was defined by the expected mean square between

groups being larger than the expected mean square within groups, or

similarly by the intraclass correlation coefficient being greater than

zero. Negative dependence was defined by the expected mean square

within groups being larger than the expected mean square between groups,

or similarly by the intraclass correlation coefficient being less than

zero. Negative dependence can occur only when subjects within groups

are considered fixed, while positive dependence can occur with subjects

considered as either fixed or random. Either type of dependence can be

caused by an additive effect (which influences the variation between

groups), a proportional effect (which influences the variation within

groups), and nonrandom assignment, which most probably will result in

either positive or negative dependence. Random assignment of students

to classrooms does not perforce erase the possibility of positive or

negative dependence occurring. It can and does happen that units

randomly assigned to treatment conditions do not receive the treatments

independently and thus the randomly assigned units are not independent

of each other.
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Given a definition of independence which is measurable, both

the analytic and empirical consequences of using correlated units of

analysis were considered. The empirical estimation part of the study

was done to see if hypothesized effects of correlated units on alphas

and powers were large enough to affect practice. In some respects, the

parameter values specified for the Monte Carlo portion of this study

limit generalizations of empirical effects. However, care was taken

to select parameter values held to be common in educational data.

The basic research design had a balanced, two—level hierarchically—

nested structure, with students nested within classrooms and classrooms

nested within treatments. Two analysis of variance models were used to

analyze data fitting this general design. Classroom was the analytic

unit for one model, while student was the analytic unit for the other

model. The model having classroom as the unit of analysis was called

the "never pool" model. The model with student as the unit of analysis

was called the "always pool" model as its mean square error term was a

pooled or weighted sum of the mean square between classrooms and the

mean square within classrooms. Parameters that were allowed to vary

included the number of students per classroom, the number of classrooms

per treatment and the type and degree of dependence within each class-

room. Each combination of number of students per classroom (8) and

number of classrooms per treatment (c) was called a design. In total,

the empirical study considered five designs and within each design, data

for each of 1,000 samples were altered such to create defined types and

degrees of dependence. The three basic assumptions of normality,



145

independence, and homoscedasticity held for all simulated classroom

means; however, observations within each group or classroom were

controlled only to the extent that they were normally distributed

and had equal variances.

Given independence of student responses, both the analytic and

empirical analyses showed that either student or classroom can be

used as the unit of analysis. That is, both the "never pool" test,

F = MST/MS , and the "always pool" test, F = MST/MS , are appro-
C:T S:T

priate tests of treatment effects. All empirical alphas for both

tests were within 1.96 standard errors of their nominal values.

F = MST/MS is the preferable test, however, as it always had
S:T

more power than did the test F = MST/MS Over the five designs
C:T'

and the five nominal alpha levels, the power of the "always pool" test

exceeded that of the "never pool" test by an average of .081. The

"always pool" test's advantage in power ranged from a low of .004

(c=10, s=12, 0L= .25) to a high of .223 (c=5, s=20, a= .01). Given

a seemingly appropriate design for elementary school research (c==5 and

s =- 20), the power discrepancy at 0.8 .05 between the "never pool" test

and the "always pool" test was .111, favoring the "always pool" test,

which has student as the unit of analysis. Given independence, the

discrepancy in power between these two ANOVA tests comes solely from

the difference in degrees of freedom error for each of the F tests.

Given positive dependence, where the E(MS ) was greater than

C:T

the E(MS ), the proper unit of analysis is the grouped unit, class-

S:CT

rooms. Using the disaggregate unit as the unit of analysis caused the
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pooled error term, E(MS , to be biased on the small side. And

S:T)

this attenuation caused the "always pool" test, F = MST/MSS:T’ to

be too liberal. For both simulated degrees of positive dependence,

none of the empirical alphas were within 1.96 standard errors of their

respective nominal value. This suggests that the effect of positively

correlated units can result in spurious significance. In addition,

the empirical magnitudes of the differences between the nominal and

actual alphas were of sufficient size to suggest that having positively

correlated units of analysis results in negative effects that are of

meaningful and practical importance. The liberalness increased as the

number of students per class increased and as the degree of positive

dependence increased, i.e., the ratio of the E(MSC:T) over the E(MSS:CT)

increased above one. The liberalness decreased as the number of classes

per treatment increased. Because of the general liberalness of the

"always pool" test, given positive dependence, the empirical power of

that test was spuriously high.

Given negative dependence, where the E(MSC:T) was less than the

E(MS ), the correct unit of analysis is once again the grouped unit.
S:CT

Using the ungrouped unit as the unit of analysis caused the pooled

error term, E(MS , to be biased on the high side. That is, the
S:T)

"always pool" test, F = MST/MS °T’ was too conservative a test. For
8

both simulated degrees of negative dependence, none of the empirical

alphas were within 1.96 standard errors of their respective nominal

alpha. This suggests that the effect of negatively correlated units

of analysis can result in spurious lack of significance. Here too,
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the actual magnitudes of the discrepancies between the nominal and

empirical alpha values were of such size to indicate that having

negatively correlated units results in negative effects that are

of meaningful importance. While the analytic analysis suggested

that increasing the number of students per class should increase

the conservativeness and increasing the number of classes per treat—

ment should decrease any conservativeness, the empirical analysis

found no clear trends. This lack of trend may have been due, in part,

to a "floor effect." Decreasing the ratio of the E(MS ) over the
C:T

E(MS ) to below one (which is the same thing as increasing negative
S:CT

dependence within the data) did, however, increase the conservativeness

of the "always pool" F statistic, as expected. The conservativeness

spuriously reduced the empirical power of the "always pool" test to

such an extent that, in all simulated cases, but one, the advantage

of using the "always pool" test in the first place (more degrees of

freedom error) was cancelled out.

What do the above analytic and empirical results suggest for the

practitioner? They suggest that when dealing with educational data,

in almost all cases, the grouped unit, such as classrooms, should be

the unit of analysis. If, however, the data do happen to be indepen-

dent of each other, it is clearly advantageous to use the individual

unit as the unit of analysis. The results indicated quite convincingly

that the F test is not robust to violations of the assumption of

independence, even for small degrees of dependence. This conclusion

should be kept in mind both when designing and analyzing experiments
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as well as when interpreting the results from studies which have not

followed the advice from this investigation. Closely tied to this,

of course, is a real need to empirically determine the types and

degrees of dependence most common in real world, educational data.

One might ask next, Is it feasible to first do an initial test

of independence, and then on the basis of that test choose a unit of

analysis for the primary test of treatment effects? This study showed

clearly, both analytically and empirically, that the answer to this

question is no. Two criteria were used to judge the adequacy of the

conditional testing procedure, which is also called the "sometimes pool"

test. First, the empirical alpha should be close to its respective

nominal value. And second, the power of the conditional or "sometimes

pool" test should be greater than the power of the always correct,

"never pool" test, F = MST/MSC:T'

Actually three different preliminary tests of independence were

considered (one at a time) under the "sometimes pool" procedure. The

first was a two-tailed preliminary test which tested for the inequality

of the mean square between and the mean square within classroom error

terms. The second, an upper-tailed preliminary test, tested whether

the mean square between classes was larger than the mean square within

classes. The third preliminary test, a lower-tailed test, tested for

the condition that the mean square within classrooms was larger than

the mean square between classrooms.

Only when independence of student responses occurred did the

conditional testing procedure turn out to be very effective. For
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that condition and given the two-tailed, the upper-tailed only and

the lower-tailed only preliminary tests, 80% of the empirical condi—

tional test alphas were within 1.96 standard errors of the nominal

alphas and 96.5% of the powers of the conditional test were greater

than comparable powers of the "never pool" test, F = MST/MS Across
C:T'

the three types of preliminary tests and across all five designs, the

difference between the power of the "sometimes pool" F test and the

"never pool" F test averaged .073, favoring the "sometimes pool" test.

Given any of the three preliminary F tests, the discrepancy between

the powers of the "sometimes pool" test and the powers of the "never

pool" test decreased as the number of groups per treatment increased

and as the alpha levels of the "sometimes pool" and "never pool" test

increased. 0n the other hand, the discrepancy increased as the number

of students per group increased. For both the two—tailed and upper-

tailed preliminary test situations, the discrepancy between the powers

of the "sometimes pool" and the "never pool" tests decreased as the

alpha level of the preliminary test increased. However, this trend

(which was expected) was reversed when the lower—tailed preliminary

test was used, most likely because the observed alpha levels of the

"sometimes pool" test tended to become too liberal as the preliminary

test alpha level increased.

Given positive dependence, the conditional F test generally turned

out to be too liberal a test and thus had spuriously high empirical

power. Given either the two~tailed or upper-tailed preliminary tests,

the liberalness of the "sometimes pool" statistic decreased as the
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number of groups per treatment increased, as the degree of positive

dependence increased, as the alpha level of the preliminary test

increased and as the alpha level of the "sometimes pool" test

increased. Increasing the number of students per group had no

simple effect on the liberalness of the "sometimes pool" test.

Across the five designs considered and given the two—tailed pre—

liminary F test of independence, 22% and 35.2% of the "sometimes

pool" or conditional F tests were, however, robust to the occurrence

of positive dependence, where E(MSCoT)/E(MS ) equalled 2 and 3,
S:CT

respectively. For those simulated circumstances, where the "sometimes

pool" test did empirically appear to be robust to the occurrence of

positively correlated analytic units, the difference between the

empirical powers of the "sometimes pool" and the "never pool" tests

averaged only .014, favoring the "sometimes pool" test. Given positive

dependence, the magnitude of effects for the conditional test, following

either a two-tailed preliminary test done at 2a or an upper-tailed

preliminary test done at a, were comparable. On the other hand, the

"sometimes pool" F test statistic, given positive dependence and a

lower-tailed preliminary test, was distributed as the F = MST/M33:T

test statistic as varying the alpha level of the preliminary test had

negligible affect on the "sometimes pool" test statistic.

Given negative dependence, the conditional test was somewhat

conservative and generally had less power than the "never pool"

F = MST/NSC:T test. Given either the two-tailed or lower-tailed

preliminary tests, the conservativeness of the "sometimes pool"
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statistic decreased as the degree of negative dependence increased,

as the alpha level of the preliminary test increased and as the alpha

level of the "sometimes pool" test decreased. And also as expected,

increasing the number of students per group again had no simple effect

on the conservativeness of the "sometimes pool" test. The analytic

analysis suggested that increasing the number of groups per treatment

should decrease the conservativeness of the "sometimes pool" test sta-

tistic, but the simulated data were weak in confirming this expected

trend. Across the designs considered and given the two-tailed pre-

liminary F test, 60.8% and 72% of the "sometimes pool" or conditional

F tests were empirically robust to the occurrence of negative depen-

dence, where E(MSCoT)/E(MS ) equalled .50 and .33, respectively.
S:CT

For those specific empirically robust instances, the differences

between the empirical powers of the "sometimes pool" and the "never

pool" tests averaged -.010, favoring the "never pool" test. Given

the E<MSC°T) was less than the E(MS , the magnitude of effects
S:CT)

for the conditional test, following either a two-tailed preliminary

test done at 2a or a lower-tailed preliminary test done at a, were

comparable. The "sometimes pool" F test statistic, given negative

dependence and an upper-tailed preliminary test of independence, was

distributed like the "always pool" F test statistic as varying the

alpha levels of the preliminary test had essentially no affect on

the "sometimes pool" test statistic.

In summary, this study shows that, in an hierarchically-nested

design with one outcome measure per subject, as a general rule of
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thumb any preliminary test of independence should not be used to

choose a unit of analysis to test for treatment differences. That

is, the decision of what analytic unit to use should not be based

M8on the test F = MS If individual units are independent,
C:T/ S:CT'

the "always pool" F = MST/MSS°T test is best. If individual data are

not independent, the "never pool" F = MST/MSC'T test is best. However,

the problem is the researcher is never actually in the position of

knowing before the analysis stage whether or not responses of subjects

nested within groups are, in fact, independent responses. And this in

and of itself suggests that the researcher should in general be using

the grouped unit as his unit of analysis, at least in educational

research where dependence most probably is the rule rather than the

exception.
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Table A—1

Distribution of Sample Classroom Means and Student Observations

 

 

 

  

 

 

Student Observations

(N = 10,000)

Classroom Means Observed

(N==2,000) E(MSC:T)/E(MSS:CT)

Expected Observed Expected .33 .50 l 2 3

22 28 110 105 109 113 119 120

24 19 120 130 128 138 135 126

44 40 220 239 226 201 185 201

104 92 520 471 486 527 551 547

290 301 1,450 1,443 1,439 1,420 1,441 1,444

516 508 2,580 2,610 2,603 2,587 2,547 2,553

516 532 2,580 2,579 2,583 2,591 2,605 2,571

290 310 1,450 1,481 1,451 1,442 1,428 1,441

104 99 520 501 527 536 541 550

44 33 220 219 233 237 234 231

24 17 120 131 121 109 117 118

22 21 110 91 94 99 97 97

x2 11.92 13.43 6.42 9.16 14.43 8.50 
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Table A92

Moments for Student within Treatment Type Data when c==2 and s==12

 

 

 

   

E(Msc:T)/ Central Noncentral

E<MSS°CT) Treatment Mean Variance Skew Kurtosis Mean

.33 1 .0049 .9456 -.0111 .0728 .4049

.33 2 -.0043 .9510 .0206 .0079

.50 1 .0060 .9589 -.0106 .0732 .4060

.50 2 -.0052 .9652 .0211 .0076

1 1 .0085 .9988 -.0097 .0724 .4085

l 2 -.0074 1.0076 .0213 .0069

2 l .0121 1.0785 -.0094 .0683 .4121

2 2 -.0104 1.0924 .0193 .0061

3 1 .0148 1.1583 -.0010 .0640 .4148

3 2 -.0128 1.1772 .0162 .0056

Table A23

Moments for Student within Treatment Type Data when c- 5 and s - 5

 

 

 

  

E(Msc:T)/ Central Noncentral

E(MSS'CT) Treatment Mean Variance Skew Kurtosis Mean

.50 1 —.0024 .9044 .0035 .0023 .3976

.50 2 -.0053 .9129 .0023 -.0202

l 1 -.OO33 1.0052 .0093 .0178 .3967

l 2 -.0075 1.0115 -.0001 -.0204

2 1 -.0047 1.2067 .0133 .0320 .3953

2 2 -.0107 1.2087 -.0018 -.0208

3 1 -.0058 1.4082 .0139 .0367 .3942

3 2 -.0131 1.4059 -.0020 -.0212
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Table A—4

Moments for Student within Treatment Type Data when c==5 and s= 12

 

 

 

   

E(Msch)/ Central Noncentral

E(MSS'CT) Treatment Mean Variance Skew Kurtosis Mean

.33 l -.0003 .9466 —.0040 -.0083 .3997

.33 2 -.0025 .9375 -.0046 .0053

.50 l -.0003 .9605 -.0029 -.OO75 \.3997

.50 2 —.OO31 .9515 -.0055 .0064

1 1 -.0004 1.0023 .0000 -.0063 .3996

l 2 -.0044 .9935 -.0076 .0081

2 l -.0006 1.0858 .0046 -.0061 .3994

2 2 -.0062 1.0774 -.0108 .0086

3 l -.0008 61.1694 .0084 -.0069 .3992

3 2 -.OO76 1.1614 -.0133 .0072

Table ArS

Moments for Student within Treatment Type Data when c = 5 and s = 20

 

 

 

  

E(MSC:T)/ Central Noncentral

E(MSS'CT) Treatment Mean Variance Skew Kurtosis Mean

.33 1 .0003 .9649 .0138 .0075 .4003

.33 2 -.0010 .9577 .0067 -.0104

.50 1 .0004 .9734 .0138 .0078 .4004

.50 2 -.0013 .9658 .0067 -.0101

l 1 .0006 .9988 .0137 .0083 .4006

1 2 -.0018 .9900 .0065 -.0095

2 l .0008 1.0497 .0136 .0085 .4008

2 2 -.0026 1.0385 .0062 -.OO87

3 l .0010 1.1007 .0135 .0086 .4010

3 2 -.0031 1.0870 .0058 -.0083
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Table A—6

Moments for Student within Treatment Type Data when c==10 and s==12

 

 

 

E(Msc;T)/ Central Noncentral

E(Mss-CT) Treatment Mean Variance Skew Kurtosis Mean

.33 1 .0006 .9490 .0017 -.0048 .4006

.33 2 -.0018 .9492 .0110 .0093

1 1 .0010 1.0044 .0026 -.0053 .4010

l 2 -.OO31 1.0051 .0130 .0153

2 1 .0014 1.0874 .0037 -.0053 .4014

2 2 -.0043 1.0889 .0143 .0191

3 1 .0017 1.1705 .0047 -.0052 .4017

3 2 -.0053 1.1728 .0147 .0206   
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Table Ar7

Three Distributional Statistics8 for Standardized Mean

Square Values, Given c = 2 and s = 12

 

 

 

 

Mean Variance Skew

Central case:

MsT Meana 1.00 (1.00)b 2.30 (2.00) 3.00 (2.83)

MSC:T Mean 2.00 (2.00) 3.80 (4.00) 1.90 (2.00)

MSS:CT Mean 44.00 (44.00) 93.00 (88.00) 0.45 (0.43)

MSS:T Mean 46.00 (46.00) 97.20 (92.00) 0.47 (0.42)

Noncentral case:

MST Mean 1.06 1.28 1.86

Msc:T Mean 2.00 3.80 1.90

MSS:CT Mean 44.00 93.00 0.45

MSS:T Mean 46.00 97.20 0.47

 

8The values for the distributional statistics were averaged over the

four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table A-8

Three Distributional Statisticsa for Standardized Mean

Square Values, Given c 5 and s = 5

 

 

 

 

Mean Variance Skew

Central case:

MST Meana 0.96 (1.00)b 2.10 (2.00) 3.10 (2.83)

MSC:T Mean 7.90 (8.00) 17.00 (16.00) 0.93 (1.00)

MSS:CT Mean 40.00 (40.00) 85.00 (80.00) 0.42 (0.45)

MSS:T Mean 48.00 (48.00) 109.80 (96.00) 0.43 (0.41)

Noncentral case:

MST Mean 1.00 0.98 1.76

MSC:T Mean 7.90 17.00 0.93

MSS:CT Mean 40.00 85.00 0.42

Mss:T Mean 48.00 109.80 0.43

 

8The values for the distributional statistics were averaged over the

four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table A-9

Three Distributional Statisticsa for Standardized Mean

Square Values, Given c=5 and s = 12

 

 

 

 

Mean Variance Skew

Central case:

MST Meana 0.96 (1.00)b 1.80 (2.00) 2.80 (2.83)

MSC:T Mean 8.10 (8.00) 15.00 (16.00) 0.94 (1.00)

MSS:CT Mean 110.00 (110.00) 210.00 (220.00) 0.28 (0.27)

MSS:T Mean 120.00 (118.00) 234.00 (236.00) 0.32 (0.26)

Noncentral case:

MST Mean 1.00 0.68 1.32

MSG:T Mean 8.10 15.00 0.94

MSS:CT Mean 110.00 210.00 0.28

MSS:T Mean 120.00 234.00 0.32

 

8The values for the distributional statistics were averaged over the

four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table A910

Three Distributional Statistics8 for Standardized Mean

Square Values, Given c- 5 and 8 =20

 

 

 

 

Mean Variance Skew

Central case:

MsT Meana 1.00 (1.00)b 2.10 (2.00) 2.80 (2.83)

MSC:T Mean 8.10 (8.00) 16.00 (16.00) 0.92 (1.00)

MSS:CT Mean 190.00 (190.00) 370.00 (380.00) 0.21 (0.21)

MSS:T Mean 200.00 (198.00) 404.00 (396.00) 0.20 (0.20)

Noncentral case:

MST Mean 1.00 0.50 1.07

MSC:T Mean 8.10 16.00 0.92

MSS:CT Mean 190.00 370.00 0.21

MSS:T Mean 200.00 404.00 0.20

 

8The values for the distributional statistics were averaged over the

four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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Table Arll

Three Distributional Statisticsa for Standardized Mean

Square Values, Given c = 10 and s = 12

 

 

 

 

Mean Variance Skew

Central case:

MST Meana 0.95 (1.00)b 1.90 (2.00) 2.50 (2.83)

MSC:T Mean 18.00 (18.00) 33.00 (36.00) 0.72 (0.67)

MSS:CT Mean 220.00 (220.00) 470.00 (440.00) 0.26 (0.19)

MSS:T Mean 240.00 (238.00) 532.00 (476.00) 0.26 (0.18)

Noncentral case:

MST Mean 1.00 0.42 1.01

MSC:T Mean 18.00 33.00 0.72

MSS:CT Mean 220.00 470.00 0.26

MSS:T Mean 240.00 532.00 0.26

 

aThe values for the distributional statistics were averaged over the

four conditions of dependence and the independence condition.

bParenthesized values are the theoretical distributional properties.
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ESTIMATED ALPHAS OF THE RESCALED F STATISTIC
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Table B-1

Estimated Type I Errors for F a MST/MSS°T Using a Rescaled F Statistic

d.f. Mean

c 3 error .010 .025 .050 .100 .250 alpha

2 12 (46) .000 .000 .001 .006 .052 .012

5 5 (48) .000 .000 .002 .008 .062 .014

.33 5 12 (118) .000 .000 .001 .006 .052 .012

5 20 (198) .000 .000 .001 .005 .049 .011

10 12 (238) .000 .000 .001 .006 .052 .012

Mean alpha .000 .000 .001 .006 .053

 

2 12 (46) .001 .002 .007 .023 .110 .029

5 5 (48) .001 .003 .009 .027 .121 .032

.50 5 12 (118) .000 .002 .007 .023 .111 .029

5 20 (198) .000 .002 .006 .022 .108 .028

10 12 (238) .000 .002 .007 .023 .111 .029

 

 

 

 

 

 

 

,‘ Mean alpha .000 .002 .007 .024 .112

E4
<5

5; 2 12 (46) .010: . 025: .050: .100: . 250: .087

(Q 5 5 (48) . 010a . 025a . 050a . 100a . 250a . 087

E: 1 5 12 (118) .0108 .025a .050a .100a .2508 .087

:: 5 20 (198) .0108 .025a .050a .100a .2508 .087

S: 10 12 (238) .010 .025 .050 .100 .250 .087

L:
05

ES Mean alpha .010 .025 .050 .100 .250

m

2 12 (46) .058 .101 .153 .231 .414 .191

5 5 (48) .046 .084 .131 .206 .388 .171

2 5 12 (118) .058 .100 .151 .228 .409 .189

5 20 (198) .062 .105 .157 .235 .416 .195

10 12 (238) .058 .099 .150 .227 .408 .188

Mean alpha .056 .098 .148 .225 .407

2 12 (46) .113 .170 .232 .318 .494 .265

5 5 (48) .080 .130 .186 .269 .450 .239

3 5 12 (118) .110 .165 .226 .310 .486 .259

5 20 (198) .120 .177 .238 .333 .497 .273

10 12 (238) .112 .167 .227 .312 .487 .261

Mean alpha .107 .162 .222 .308 .483 
 

aEstimated alpha is within 1.96 standard errors of the nominal alpha.
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POWERS OF THE CONDITIONAL F GIVEN A

TWO-TAILED PRELIMINARY TEST
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Table C-l

Power of the Conditional F Test Given a Two—Tailed

Preliminary Test, c = 2 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.02 .056 .115 .200 .362 .694

.05 .088 .155 .240 .391 .706

.33 .10 .093 .183 .285 .434 .733

.20 .094 .204 .352 .505 .766

.50 .087 .188 .364 .574 .809

C:Ta .074 .149 .297 .499 .793

.02 .074 .143 .228 .390 .662

.05 .091 .169 .250 .408 .672

.50 .10 .101 .193 .277 .428 .684

.20 .101 .213 .311 .477 .714

.50 .083 .188 .310 .503 .729

’13 C:T .055 .124 .217 .389 .708

a; .02 .125 .201 .296 .416 .610

fig .05 .126 .202 .295 .413 .601

33 1 .10 .128 .208 .303 .417 .598

,E* .20 .126 .213 .307 .417 .584

as .50 .098 .179 .273 .374 .571

g C:Tb .036 .086 .153 .261 .533

;; S:T .114 .190 .286 .409 .607

.02 .175 .248 .326 .412 .565

.05 .168 .237 .313 .396 .545

2 .10 .157 .223 .294 .369 .516

.20 .137 .206 .270 .341 .488

.50 .091 .145 .204 .264 .435

C:T .023 .057 .103 .194 .406

.02 .192 .268 .336 .385 .519

.05 .175 .243 .305 .350 .489

3 .10 .158 .222 .280 .324 .461

.20 .135 .191 .232 .272 .411

.50 .080 .125 .159 .210 .381

C:T .021 .047 .086 .167 .353  
a

Power of the

bPower of the

H II 8

never pool test F MST/MSC:T'

n u =
always pool test F MST/MSS:T'
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Table C-2

Power of the Conditional F Test Given a Two-Tailed

Preliminary Test, c = 5 and s = 5

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.02 .164 .259 .355 .532 .797

.05 .220 .342 .444 .607 .828

.33 .10 .249 .392 .511 .668 .842

.20 .261 .418 .560 .718 .871

.50 .265 .440 .596 .761 .893

C:Ta .265 .436 .594 .760 .896

.02 .102 .191 .279 .451 .721

.05 .131 .230 .321 .488 .739

.50 .10 .149 .262 .360 .520 .761

.20 .167 .295 .408 .566 .781

.50 .174 .309 .431 .600 .811

’}3 0:1 .162 .287 .420 .592 .813

a; .02 .107 .190 .278 .403 .643

g .05 .108 .192 .279 .401 .645

:3 1 .10 .110 .192 .278 .399 .649

:: .20 .117 .190 .270 .394 .643

E: .50 .103 .174 .252 .383 .628

gf’ C:T .078 .149 .227 .359 .621

E? S:Tb .102 .186 .274 .402 .645

.02 .128 .186 .247 .337 .549

.05 .114 .163 .215 .306 .522

2 .10 .104 .156 .207 .291 .504

.20 .091 .135 .184 .273 .486

.50 .062 .107 .158 .249 .455

C:T .038 .085 .141 .229 .447

.02 .107 .152 .208 .284 .465

.05 .093 .132 .187 .263 .438

3 .10 .074 .115 .167 .243 .419

.20 .057 .101 .145 .213 .408

.50 .043 .080 .121 .194 .389

C:T .024 .069 .107 .191 .383 
 

8Power of the "never pool" test P - MST/MS

bPower of the "always pool" test F - MST/MS

C:T’

S:T'
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Table C-3

Power of the Conditional F Test Given a Two-Tailed

Preliminary Test, c = 5 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.02 .443 .599 .766 .887 .971

.05 .526 .681 .817 .914 .982

.33 .10 .611 .753 .855 .933 .986

.20 .658 .813 .893 .955 .992

.50 .679 .846 .916 .964 .997

C:Ta .661 .839 .916 .966 .997

.02 .365 .524 .674 .816 .939

.05 .399 .561 .711 .833 .946

.50 .10 .448 .605 .745 .850 .952

.20 .483 .648 .784 .869 .961

.50 .495 .692 .812 .892 .969

AS C:T .450 .651 .794 .889 .967

a; .02 .341 .463 .583 .719 .869

:43 .05 .333 .452 .574 .715 .868

E? 1 .10 .334 .452 .570 .711 .861

:: .20 .328 .441 .560 .701 .859

E: .50 .283 .395 .530 .689 .849

§§’ C:T .193 .322 .478 .657 .843

E: S:Tb .346 .470 .590 .724 .869

.02 .267 .340 .422 .529 .716

.05 .228 .302 .383 .499 .688

2 .10 .194 .265 .351 .480 .669

.20 .156 .227 .306 .444 .654

.50 .109 .190 .277 .417 .642

0:1 .075 .160 .261 .399 .638

.02 .167 .217 .276 .380 .585

.05 .128 .184 .247 .355 .564

3 .10 .109 .167 .230 .336 .551

.20 .083 .142 .207 .315 .537

.50 .067 .120 .186 .305 .528

C:T .053 .110 .176 .299 .524 
 

aPower of the "never pool" test F a MST/MS

bPower of the "always pool" test F = MST/MS

C:T’

S:T'
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Table C-4

Power of the Conditional F Test Given a Two—Tailed

Preliminary Test, c = 5 and s = 20

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.02 .753 .895 .947 .982 .998

.05 .806 .918 .961 .986 .998

.33 .10 .855 .940 .975 .993 .999

.20 .892 .958 .982 .997 1.000

.50 .916 .971 .992 .998 1.000

C:Ta .896 .967 .990 .998 .999

.02 .671 .827 .902 .950 .991

.05 .694 .845 .914 .955 .991

.50 .10 .724 .863 .926 .964 .992

.20 .760 .886 .938 .971 .993

.50 .780 .898 .950 .978 .997

,\ 0:1 .721 .861 .937 .978 .997

‘53, .02 .599 .725 .805 .878 .945

a: .05 .588 .713 .794 .875 .945

2‘3, 1 .10 .576 .704 .786 .871 .943

23 .20 .559 .686 .782 .862 .939

r;, .50 .494 .632 .740 .837 .937

£5 C:T .381 .552 .699 .822 .938

g; S:Tb .604 .730 .810 .881 .947

a: .02 .423 .527 .602 .685 .828

.05 .373 .479 .561 .656 .814

2 .10 .332 .433 .517 .627 .801

.20 .279 .387 .488 .604 .792

.50 .207 .329 .447 .575 .785

C:T .164 .292 .429 .569 .781

.02 .252 .332 .425 .521 .705

.05 .195 .281 .382 .491 .692

3 .10 .167 .256 .360 .474 .681

.20 .143 .226 .333 .460 .674

.50 .108 .203 .313 .450 .669

C:T .094 .195 .302 .448 .666 
 

8Power of the "never pool" test F - MST/MSC'T°

bPower of the "always pool" test F = MST/MS
S:T'
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Table C-5

Power of the Conditional F Test Given a Two-Tailed

Preliminary Test, c= 10 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.02 .953 .981 .992 .999 1.000

.05 .972 .991 .996 .999 1.000

.33 .10 .982 .993 .997 .999 1.000

.20 .985 .996 .999 1.000 1.000

.50 .987 .996 .999 1.000 1.000

C:Ta .986 .996 .999 1.000 1.000

.02 .850 .922 .963 .984 .998

.05 .873 .940 .971 .987 1.000

.50 .10 .895 .950 .977 .989 1.000

.20 .911 .962 .982 .991 1.000

f‘ .50 .925 .965 .984 .995 1.000

‘53: C:T .920 .965 .984 .995 1.000

gi’ .02 .721 .827 .883 1930 .970

E? .05 .716 .824 .880 .928 .970

;: 1 .10 .713 .821 .880 .926 .969

g: .20 .700 .811 .875 .926 .968

c2 .50 .668 .794 .862 .921 .966

E3, C:T .621 .773 .852 .915 .967

9* S:Tb .720 .826 .883 .931 .971

.02 .433 .542 .652 .752 .876

.05 .377 .492 .615 .731 .870

2 .10 .338 .457 .595 .722 .865

.20 .312 .432 .577 .714 .859

.50 .281 .415 .566 .706 .857

C:T .268 .411 .562 .705 .857

.02 .213 .310 .406 .559 .771

.05 .195 .294 .396 .551 .768

3 .10 .179 .282 .391 .547 .767

.20 .176 .279 .389 .543 .766

.50 .174 .275 .386 .540 .765

0:1 .173 .275 .386 .539 .765  
8Power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MS

C:T'

S:T'
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Table D—l

Power of the Conditional F Test Given an Upper—Tailed

Preliminary Test, c = 2 and s - 12

 

Preliminary test

Conditional Test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha .010 .025 .050 .100 .250

.01 .028 .087 .177 .342 .685

.025 .028 .087 .177 .342 .685

.33 .05 .028 .087 .177 .342 .685

.10 .028 .087 .177 .342 .683

.25 .028 .086 .174 .335 .673

0:1a .074 .149 .297 .499 .793

.01 .053 .126 .211 .376 .656

.025 .053 .126 .211 .376 .656

.50 .05 .053 .126 .211 .376 .654

.10 .053 .125 .209 .373 .650

.25 .049 .116 .195 .351 .620

.14 C:T .055 .124 .217 .389~ .708

$2 .01 .113 .189 .285 .407 .603

cg“ .025 .111 .185 .278 .398 .591

5 1 .05 .107 .178 .270 . 388 .578

23 .10 .105 .172 .260 .374 .554

I}, .25 .090 .144 .218 .314 .509

(:3 C:T .036 .086 .153 .261 .533

35 S:Tb .114 .190 .286 .409 .607

a: .01 .170 .242 .320 .406 .561

.025 .160 .226 .302 .386 .538

2 .05 .149 .210 .280 .355 .506

.10 .132 .185 .250 .318 .471

.25 .096 .133 .181 .234 .405

C:T .023 .057 .103 .194 .406

.01 .187 .263 .332 .381 .517

.025 .168 .237 .299 .343 .484

3 .05 .150 .214 .272 .313 .453

.10 .127 .180 .221 .258 .399

.25 .084 .122 .150 .191 .359

0:1 .021 .047 .086 .167 .353

 

8Power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MS

C:T’

S:T'
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Table D-2

Power of the Conditional F Test Given an Upper—Tailed

Preliminary Test, c = 5 and s = 5

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.01 .031 .105 .200 .397 .727

.025 .031 .105 .200 .397 .727

.33 .05 .031 .105 .200 .397 .727

.10 .031 .105 .200 .397 .727

.25 .031 .105 .200 .397 .727

C:Ta .265 .436 .594 .760 .896

.01 .057 .139 .229 .406 .689

.025 .057 .139 .229 .406 .689

.50 .05 .057 .139 .229 .406 .689

.10 .057 .139 .229 .406 .688

.25 .057 .139 .225 .399 .686

’3. 0:1 .162 .287 .420 .592 .813

U

a; .01 .101 .186 .273 .399 .641

g; .025 .101 .186 .270 .394 .640

a: 1 .05 .099 .179 .262 .386 .636

Z: .10 .095 .168 .245 .366 .624

8 .25 .078 .141 .217 .335 .599

g C:T .078 .149 .227 .359 .621

F5 S:Tb .102 .186 .274 .402 .645

.01 .127 .186 .246 .336 .549

.025 .113 .162 .213 .305 .522

2 .05 .102 .154 .204 .290 .503

.10 .089 .133 .181 .271 .485

.25 .060 .105 .153 .244 .453

C:T .038 .085 .141 .229 .447

.01 .107 .152 .208 .284 .465

.025 .092 .132 .187 .263 .438

3 .05 .073 .115 .167 .242 .419

.10 .056 .100 .144 .212 .408

.25 .042 .078 .120 .193 .389

C:T .024 .069 .109 .191 .383  
8Power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MS

C:T'

S:T'
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Table D-3

Power of the Conditional F Test Given an Upper-Tailed

Preliminary Test, c = 5 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.01 .282 .485 .694 .855 .962

.025 .282 .485 .694 .855 .962

.33 .05 .282 .485 .694 .855 .962

.10 .282 .485 .694 .855 .962

.25 .282 .485 .694 .855 .962

C:Ta .661 .839 .916 .966 .997

.01 .312 .481 .646 .800 .937

.025 .312 .481 .646 .800 .937

.50 .05 .312 .481 .646 .800 .937

.10 .312 .481 .646 .800 .936

.25 .304 .474 .641 .798 .935

r}, C:T .450 .651 .794 .889 .967

U

5; .01 .341 .463 .583 .718 .868

g .025 .331 .450 .570 .708 .865

a; 1 .05 .323 .439 .559 .698 .857

:: .10 .306 .418 .536 .680 .853

E: .25 .257 .364 .486 .647 .840
0

g C:T .193 .322 .478 .657 .843

ES S:Tb .346 .470 .590 .724 .869

.01 .267 .340 .422 .529 .716

.025 .228 .302 .383 .499 .688

2 .05 .194 .265 .351 .480 .669

.10 .156 .227 .306 .444 .653

.25 .109 .189 .273 .417 .638

C:T .075 .160 .261 .399 .638

.01 .167 .217 .276 .380 .585

.025 .128 .184 .247 .355 .564

3 .05 .109 .167 .230 .336 .551

.10 .083 .142 .207 .315 .537

.25 .067 .120 .186 .305 .528

C:T .053 .110 .176 .299 .524  
aPower of the "never pool" test F - MST/MS

bPower of the "always pool" test F = MST/“88'

C:T'

T.
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Power of the Conditional F Test Given an Upper—Tqiled

Preliminary Test, c = 5 and s = 20

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha .010 .025 .050 .100 .250

.01 .685 .857 .929 .980 .998

.025 .685 .857 .929 .980 .998

.33 .05 .685 .857 .929 .980 .998

.10 .685 .857 .929 .980 .998

.25 .685 .857 .929 .980 .998

C:Ta .896 .967 .990 .998 .999

.01 .644 .815 .897 .948 .991

.025 .644 .815 .897 .948 .991

.50 .05 .644 .815 .897 .948 .991

.10 .643 .815 .897 .947 .991

.25 .638 .810 .895 .946 .991

’E3 C:T .721 .861 .937 .978 .997

033 .01 .598 .724 .805 .878 .945

g; .025 .584 .709 .791 .871 .944

53 l .05 .570 .695 .779 .866 .942

.14 .10 .544 .671 .766 .854 .937

{5 .25 .472 .612 .719 .824 .932

a 0:1 .381 .552 .699 .822 .938

E: S:Tb .604 .730 .810 .881 .947

.01 .423 .527 .602 .685 .828

.025 .372 .479 .561 .656 .814

2 .05 .331 .432 .516 .626 .801

.10 .278 .386 .487 .603 .791

.25 .205 .325 .445 .574 .783

C:T .164 .292 .429 .569 .781

.01 .252 .332 .425 .521 .705

.025 .195 .281 .382 .491 .692

3 .05 .167 .256 .360 .474 .681

.10 .142 .226 .333 .460 .674

.25 .107 .203 .313 .449 .669

0:1 .094 .195 .302 .448 .666

 

8Power of the "never pool" test F - MST/MS

bPower of the "always pool" test F = MST/MS

C:T'

S:T'
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Power of the Conditional F Test Given an Upper—Tailed

Preliminary Test, c = 10 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha .010 .025 .050 .100 .250

.01 .854 .942 .976 .996 1.000

.025 .854 .942 .976 .996 1.000

.33 .05 .854 .942 .976 .996 1.000

.10 .854 .942 .976 .996 1.000

.25 .854 .942 .976 .996 1.000

C:Ta .986 .996 .999 1.000 1.000

.01 .805 .898 .957 .981 .998

.025 .805 .898 .957 .981 .998

.50 .05 .805 .898 .957 .981 .998

.10 .805 .898 .957 .981 .998

.25 .805 .896 .956 .981 .998

’13 C:T .920 .965 .984 .995 1.000

a; .01 .717 .823 .880 .929 .970

g .025 .709 .818 .876 .927 .970

:5 1 .05 .701 .813 .875 .925 .969

Z: .10 .683 .801 .870 .922 .968

S .25 .640 .773 .852 .914 .965

g 0:1 .621 .773 .852 .915 .967

;; S:Tb .720 .826 .883 .931 .971

.01 .433 .542 .652 .752 .876

.025 .377 .492 .615 .731 .870

2 .05 .338 .457 .595 .722 .865

.10 .312 .432 .577 .713 .859

.25 .281 .415 .564 .705 .857

C:T .268 .411 .562 .705 .857

.01 .213 .310 .406 .559 .771

.025 .195 .294 .396 .551 .768

3 .05 .179 .282 .391 .547 .767

.10 .176 .279 .389 .543 .766

.25 .174 .275 .386 .540 .765

C:T .173 .275 .386 .539 .765

 

8Power of the "never pool" test P - MST/MS

bPower of the "always pool" test F = MST/MS

C:T'

S:T'
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Power of the Conditional F Test Given a Lower—Tailed

Preliminary Test, c = 2 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

  

nominal alpha .010 .025 .050 .100 .250

.01 .056 .115 .200 .362 .694

.025 .088 .155 .240 .391 .706

.33 .05 .093 .183 .285 .434 .733

.10 .094 .204 .352 .505 .768

.25 .087 .189 .367 .581 .821

C:Ta .074 .149 .297 .499 .793

.01 .074 .143 .228 .390 .662

.025 .091 .169 .250 .408 .672

.50 .05 .101 .193 .277 .428 .686

.10 .101 .214 .313 .480 .720

.25 .087 .198 .326 .528 .765

’1. C:T .055 .124 .217 .389 .708

U

5; .01 .126 .202 .297 .418 .614

g .025 .129 . 207 .303 .424 .617

n: 1 .05 .135 .220 .319 .438 .627

Z: .10 .135 .231 .333 .452 .637

E .25 .122 .225 .341 .469 .669

g C:T .036 .086 .153 .261 .533

g; S:Tb .114 .190 .286 .409 .607

.01 .190 .268 .351 .443 .616

.025 .193 .273 .356 .447 .619

2 .05 .193 .275 .359 .451 .622

.10 .190 .283 .365 .460 .629

.25 .180 .274 .368 .467 .642

C:T .023 .057 .103 .194 .406

.01 .231 .317 .394 .459 .623

.025 .233 .318 .396 .462 .626

3 .05 .234 .320 .398 .466 .629

.10 .234 .323 .401 .469 .633

.25 .222 .315 .399 .474 .643

C:T .021 .047 .086 .167 .353

 

aPower of the "never pool" test F - MST/MS
C:T'

bPower of the "always pool" test F a MST/MSS°T°
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Table E-2

Power of the Conditional F Test Given a Lower—Tailed

Preliminary Test, c = 5 and s = 5

 

Conditional test

nominal alpha

 

Preliminary test

 

 

 

 

 

 

 

 

 

 

  

nominal alpha .010 .025 .050 .100 .250

.01 .164 .259 .355 .532 .797

.025 .220 .342 .444 .607 .828

.33 .05 .249 .392 .511 .668 .842

.10 .261 .418 .560 .718 .871

.25 .265 .440 .596 .761 .893

C:Ta .265 .436 .594 .760 .896

.01 .102 .191 .271 .451 .721

.025 .131 .230 .321 .488 .739

.50 .05 .149 .262 .360 .520 .761

.10 .167 .295 .408 .566 .782

.25 .174 .309 .435 .607 .814

’33 C:T .162 .287 .420 .592 .813

(:3 .01 .108 .190 .279 .406 .647

5 .025 .109 .192 .283 .409 .650

53 1 .05 .113 .199 .290 .415 .658

,1‘ .10 .124 .208 .299 .430 .664

as .25 .127 .219 .309 .450 .674

:54; 0:1 .078 .149 .227 .359 .621

a: S:Tb .102 .186 .274 .402 .645

.01 .150 .221 .302 .401 .616

.025 .150 .222 .303 .401 .616

2 .05 .151 .223 .304 .401 .617

.10 .151 .223 .304 .402 .617

.25 .151 .223 .306 .405 .618

C:T .038 .085 .141 .229 .447

.01 .171 .236 .320 .420 .617

.025 .172 .236 .320 .420 .617

3 .05 .172 .236 .320 .421 .617

.10 .172 .237 .321 .421 .617

.25 .172 .238 .321 .421 .617

C:T .024 .069 .109 .191 .383

 

bPower of the "always pool" test F = MST/MS

8Power of the "never pool" test F a MST/MSC_T.

S:T'
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Table E—3

Power of the Conditional F Test Given a Lower-Tailed

Preliminary Test, c = 5 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .100 .050 .250

.01 .433 .599 .766 .887 .971

.025 .526 .681 .817 .914 .982

.33 .05 .611 .753 .855 .933 .986

.10 .658 .816 .893 .955 .992

.25 .679 .846 .916 .964 .997

C:Ta .661 .839 .916 .966 .997

.01 .365 .524 .674 .816 .939

.025 .399 .561 .711 .833 .946

.50 .05 .448 .605 .745 .850 .952

.10 .483 .648 .784 .869 .962

.25 .503 .699 .817 .894 .971

’E3 C:T .450 .651 .794 .889 .967

(:3 .01 .346 .470 .590 .725 .870

a .025 .348 .472 .594 .731 .872

53 1 .05 .357 .483 .601 .737 .873

’14 .10 .368 .493 .614 .745 .875

{3 .25 .372 .501 .634 .766 .878

g C:T .193 .322 .478 .657 .843

;; S:Tb .346 .470 .590 .724 .867

.01 .357 .454 .544 .641 .782

.025 .357 .454 .544 .641 .782

2 .05 .357 .454 .544 .641 .782

.10 .357 .454 .544 .641 .783

.25 .357 .454 .548 .641 .786

C:T .075 .160 .261 .399 .638

.01 .367 .442 .526 .610 .752

.025 .367 .442 .526 .610 .752

3 .05 .367 .442 .526 .610 .752

.10 .367 .442 .526 .610 .752

.25 .367 .442 .526 .610 .752

C:T .053 .110 .176 .299 .524  
aPower of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MSS'

C:T'

T.
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Table E—4

Power of the Conditional F Test Given a Lower—Tailed

Preliminary Test, c = 5 and s =- 20

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.01 .753 .895 .947 .982 .998

.025 .806 .918 .961 .986 .998

.33 .05 .855 .940 .975 .993 .999

.10 .892 .958 .982 .997 1.000

.25 .916 .971 .992 .998 1.000

C:Ta .896 .967 .990 .998 .999

.01 .671 .827 .902 .950 .991

.025 .694 .845 .914 .955 .991

.50 .05 .724 .863 .926 .964 .992

.10 .761 .886 .938 .972 .993

.25 .786 .903 .952 .980 .997

r}, C:T .721 .861 .937 .978 .997

$2 .01 .605 .731 .810 .881 .947

of” .025 .608 .734 .813 .885 .948

ES 1 .05 .610 .739 .817 .886 .948

El .10 .619 .745 .826 .889 .949

’8. .25 .626 .750 .831 .894 .952

a}: C:T .381 .552 .699 .822 .938

g; S:Tb .604 .730 .810 .881 .947

“I .01 .563 .670 .733 .798 .884

.025 .564 .670 .733 .798 .884

2 .05 .564 .671 .734 .799 .884

.10 .564 .671 .734 .799 .885

.25 .565 .674 .735 .799 .886

C:T .164 .292 .429 .569 .781

.01 .537 .623 .703 .753 .846

.025 .537 .623 .703 .753 .846

3 .05 .537 .623 .703 .753 .846

.10 .538 .623 .703 .753 .846

.25 .538 .623 .703 .754 .846

C:T .094 .195 .302 .448 .666  
8Power of the "never pool" test F = MST/MS

bPower of the "always pool" test F = MST/MS

C:T'

S:T'
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Table E-5

Power of the Conditional F Test Given a Lower-Tailed

Preliminary Test, c = 10 and s = 12

 

Preliminary test

Conditional test

nominal alpha

 

 

 

 

 

 

 

 

 

 

 

 

nominal alpha .010 .025 .050 .100 .250

.01 .953 .981 .992 .999 1.000

.025 .972 .991 .996 .999 1.000

.33 .05 .982 .993 .997 .999 1.000

.10 .985 .996 .999 1.000 1.000

.25 .987 .996 .999 1.000 1.000

C:Ta .986 .996 .999 1.000 1.000

.01 .850 .922 .963 .984 .998

.025 .873 .940 .971 .987 1.000

.50 .05 .895 .950 .977 .989 1.000

.10 .911 .962 .982 .991 1.000

.25 .925 .967 .985 .995 1.000

’33 C:T .920 .965 .984 .995 1.000

(:3 .01 .724 .830 .886 .932 .971

a .025 .727 .832 .887 .932 .971

a: 1 .05 .732 .834 .888 .932 .971

I: .10 .737 .836 .888 .935 .971

E .25 .748 .847 .893 .938 .972

g C:T .621 .773 .852 .915 .967

; S:Tb .720 .826 .883 .931 .971

.01 .642 .730 .795 .859 .920

.025 .642 .730 .795 .859 .920

2 .05 .642 .730 .795 .859 .920

.10 .642 .730 .795 .860 .920

.25 .642 .730 .797 .860 .920

C:T .268 .411 .562 .705 .857

.01 .589 .687 .744 .807 .879

.025 .589 .687 .744 .807 .879

3 .05 .589 .687 .744 .807 .879

.10 .589 .687 .744 .807 .879

.25 .589 .687 .744 .807 .879

0:1 .173 .275 .386 .539 .765

  
8Power of the

bPower of the "always pool" test F = MST/MS

"never pool" test F = MST/MS
C:T'

S:T'
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