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ABSTRACT
SPECIFIC CHANGES IN A HISTOCHEMICAL PROFILE

OF RAT HINDLIMB MUSCLE INDUCED
BY TWO EXERCISE REGIMENS

By
Roland Richard Roy

This investigation was undertaken to determine the effects of
eight weeks of sprint (SPT) or endurance (END) training on a histo-
chemical profile of the various fiber types found in the hindlimbs of
adult male albino rats (Sprague-Dawley strain). Two muscle areas were
selected for study on the basis of homogeneity of fiber type: the
central portion of the soleus which is composed primarily of slow-
twitch oxidative (SO) fibers and the posterior part of the plantaris
which consists mainly of fast-twitch glycolytic (FG) fibers with some
fast-twitch oxidative glycolytic (FOG) fibers interspersed. Histochem-
ical profiles were determined using the reactions of adenosine triphos-
phatase (ATPase 9.4) as an indicator of contractile speed, lactic
dehydrogenase (LDH) to reflect lactate fermentation activity, succinic
dehydrogenase (SDH) to indicate Krebs cycle activity, and Sudan Black B
(SUD) and periodic acid-Schiff (PAS) to localize intracellular fat and

glycogen respectively.



Roland Richard Roy

A histochemical photometer was used to obtain objective photo-
metric evaluations in serial cross-sections for a group of 30 adjacent
muscle fibers from each of the two muscle areas investigated.

Chi-square analyses, within muscle areas for each stain, revealed
significant (P< .01) differences between distributions in all treatment
comparisons except that for SDH in the plantaris. In general, the
exercise-induced metabolic adaptations were similar in the SO soleus
and FG-FOG plantaris areas.

The SPT and END exercise regimens each produced a number of alter-
ations in the histochemical profiles of the muscle cells. Both train-
ing regimens resulted in decreased staining intensities for ATPase 9.4
and increased reactivities to SDH staining. The SPT program specifical-
ly enhanced LDH and PAS staining reactions, whereas END training pro-
duced a large group of fibers staining darkly with SUD. In effect, the
END training program resulted in an increased aerobic capacity of the
muscle cells while the SPT program enhanced both their aerobic and

anaerobic metabolic capacities.
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CHAPTER I

THE PROBLEM

Histochemical techniques are used to categorize skeletal muscle
fibers according to various metabolic characteristics. In conjunction
with biochemical, physiological and anatomical observations, histochem-
ical profiles have helped to identify at least three major fiber type
categories. Many systems of fiber-type classification have evolved,
but the nomenclature of Peter et al. (235) of fast-twitch glycolytic
(FG), fast-twitch oxidative glycolytic (FOG) and slow-twitch oxidative
(SO) seems to be the most comprehensible and is supported in the cur-
rent literature (39).

Single-cell characterization can only be accomplished with histo-
chemical and morphological techniques. No biochemical or physiological
method has been perfected for determining individual fiber profiles.
Biochemists and muscle physiologists usually depend upon histochemical
analyses for selection of skeletal muscles, or parts of muscles, which
are fairly homogeneous in composition. Recently, fiber populations of
several mammalian muscles have been categorized according to their
percentage of FOG, FG and SO fibers (4,24,65,88,117,173,235,261,262).

Fiber types, even in adult animals, are not immutable. There is

evidence to indicate that muscle cells undergo continual alteration



throughout 1life in adaptation to changing functional demands. For
example, the metabolic profile of rat skeletal muscle can be modified

in response to the functional overload induced by incapacitation of
synergistic muscles (135,259), by inactivity (196,249), and by immobili-
zation (31,89,247,248).

The nervous system plays a primary role in determining adaptive
changes in the metabolic and physiological characteristics of skeletal
muscle (59,131,134,281,296). Mutability of muscle fibers was first
indicated in studies involving surgical alterations of the innervating
nerves. Following denervation of mature fast and slow muscles, the
enzymatic differences between muscle fibers gradually disappear. That
is, the fibers lose their metabolic differentiation (18,38,74,151,177,
271). Twitch times of muscles composed mainly of FG and FOG fibers
are considerably lengthened, while muscles formed mainly by SO fibers
may show either a slight decrease in the speed of contraction or a
slight increase (138,140,193). When these muscles are reinnervated
with their own nerves, there is no metabolic dedifferentiation (64,74,
171,172,253). However, cross-innervation of fast and slow muscles
results in a shift of the energy metabolism of the muscle fibers (38,
41,42,43,58,64,77,241,252,253).

Alterations of normal discharge patterns of the innervating
nerve also produce significant changes. Fast muscles, electrically
stimulated at normal rates of discharge for tonic fibers, become mark-
edly slower in their contraction times (231,239,255), are more resist-
ant to fatigue (231) and exhibit significant shifts in their enzyme

activities (90,231,249).



Neural control of skeletal muscle differentiation seems to be
regulated by the transport of specific neurotrophins from the neurons
to the muscle via axoplasmic transport. Evidence for this transsynaptic
transfer of specific neuroproteins has been accumulating (2,183,184).
Various regimens of physical training have produced specific
changes in the fiber profiles of skeletal muscles. Prolonged programs
of endurance exercise have resulted in significant increases in the
aerobic metabolic capacity of all fiber types (155,158). Furthermore,
increases in the percentages of SO and FOG fibers, especially in pre-
dominately FG muscles, have been reported (21,78,83,194,198,208).
Exercise programs for laboratory animals that are solely dependent upon
anaerobic metabolic processes are yet to be developed. However, studies
utilizing training programs with relatively high anaerobic components
have produced increases in anaerobic metabolic capacity and shifts in
SO muscles toward higher FOG fiber populations (122,257,272).
Isometric training has produced specific changes in enzyme activities
and fiber type populations that are dependent upon the specifications

of the training program used (96,97,159,185,209,270,297).

Statement of the Problem

In Tight of the evidence for mutability of muscle fibers, this
study was undertaken to determine the effects of two very strenuous
training programs on the histochemical profiles and distributions of
various fiber types. Supplementary data were obtained on performance

¢

criteria, body weights, and muscle weights.



Research Plan

Normal adult male rats (Sprague-Dawley strain) were used as sub-
jects. For each animal, a common area containing thirty adjacent
fibers in each of the left soleus and plantaris muscles were studied.
Several anatomical landmarks were used to help locate homologous areas
in all tissue sections. The fibers selected were chosen as being
typical of those in the central portion of the soleus and the medial
posterior portion of the plantaris.

The two training regimens were modifications of Controlled-Running
Wheel routines previously reported from this laboratory (286, see
Appendix A). The modified programs, an endurance running routine (END)
and a sprint running routine (SPT), represented attempts to stimulate
selectively either aerobic or anaerobic metabolic processes in the
experimental animals. At the termination of the study, the END animals
were running continuously for one hour at the relatively slow speed of
36 m/min. The END program was expected to produce increases in aerobic
metabolic capacity. The SPT program consisted of alternated work and
rest periods. The animals ran at speeds of up to 108 m/min, but the
work periods were limited to 15 sec. Anaerobic metabolic pathways were
expected to be taxed by the SPT program. The exercise treatments were
administered five days per week for eight weeks.

Histochemical profiles were determined using an adenosine tri-
phosphatase (ATPase 9.4) reaction as an indicator of contractile speed.
The lactate dehydrogenase (LDH) reaction was used to show lactate

fermentation activity. The succinic dehydrogenase (SDH) reaction was



selected to indicate tricarboxylic acid cycle activity. Localization
of fat and glycogen as substrates was demonstrated by the use
ofi Sudan Black B (SUD) and periodic acid-Schiff (PAS) stains

respectively.

Rationale

Current literature has indicated that exercise consists of a con-
tinuum of specific activities each of which elicits a specific response
within the organism (29,99,125,126,127,128,202,242). The two training
regimens used in this study were designed to provide functional over-
loads of the aerobic and anaerobic ends of this continuum.

The act of running in the rat involves plantar flexion of the
foot. The soleus and plantaris muscles are both involved in plantar
flexion and therefore were assumed to be highly active during the train-
ing programs. The muscle areas were selected for homogeneity of fiber-
type populations. The soleus in the rat has been reported to contain
84% SO, 16% FOG, and 0% FG fibers (4). The central portion of the
soleus has been shown to be predominately SO (78). The posterior part
of the rat plantaris has been observed to contain mainly FG fibers with
some FOG fibers interspersed (78).

It was postulated that the response of the different fiber types
would be specific to the functional demands of the training programs.
The selection of histochemical procedures was made to insure a reason-
ably inclusive fiber profile. Enzymes involved in aerobiosis (SDH) and

anaerobiosis (LDH) reflect different metabolic pathways. ATPase



reaction indicates the contractile properties of the various fiber

types. Substrate levels are indicated by PAS (glycogen) and SUD (fat).

Significance of the Problem

Metabolic fiber profiles have become valuable tools for assessing
the functional state of individual muscle fibers. Specific adaptations
in fiber metabolism have been shown to be induced by exercise and
various surgical techniques and have been observed in numerous neuro-
muscular disorders. The study of exercise-related alterations, by
fiber types, may provide insight into the mechanisms of these metabolic

adaptations.

Limitations of the Study

1. The results of this study are restricted to the soleus and plantaris
muscles of normal male albino rats.

2. The training programs used may not have stimulated purely aerobic or
anaerobic metabolic processes.

3. Histochemical methods to evaluate precise quantitative enzyme con-
centrations in individual muscle fibers are not available at the
present time.

4. The limited number of histochemical techniques that were used cannot
be expected to provide a complete picture of all exercise-related

metabolic adaptations.



5. A control for the shock stimulus used to motivate the animals to run
was not included in the investigation. However, previous experience
in this laboratory suggests that the stimulus has no effect on histo-
chemical or morphological parameters in the plantar flexor muscles.

6. Three sessions for the sectioning and staining of tissues were con-
ducted. A single session included all animals from one treatment
group. Intersession variability in staining reactions may have
accounted for some of the histochemical differences observed. This
confounding factor may be important especially for the highly pH

sensitive ATPase reaction.



CHAPTER 11

REVIEW OF RELATED LITERATURE

Skeletal muscle fibers have been classified into three broad
categories or fiber types according to their histochemical, morpho-
logical, physiological and biochemical characteristics (48,207,235,238,
280). These characteristics are not fixed; individual fibers are
known to be dynamic with regard to fiber type (60,135). Various regi-
mens of physical activity have produced marked changes in both metabolic
and contractile profiles (122,156,158,208,233). The direction and
extent of enzymatic adaptations have been dependent on the specifica-
tions of the training programs used.

To facilitate a discussion of fiber-type mutability, the follow-
ing review of literature is divided into two main sections with several
subdivisions. A general description of the three fiber types will be
presented under the first main heading. Histochemical and morphologic
characteristics of single muscle fibers, biochemical correlates in
muscles of nearly homogeneous fiber type, and physiological data uti-
lizing whole muscle and single motor unit preparations will be dis-
cussed. The second major part will deal with the adaptations of these
fiber types to different exercise regimens. Histochemical and biochem-

ical changes will be emphasized.



Fiber Types

Differences between individual muscle fibers can be seen best by
histochemical and morphologic techniques. Biochemical methods are not
available at present to establish single-fiber enzyme profiles, and
physiological measures of contractile speed will differentiate only

between fast-twitch and slow-twitch contractile elements.

Histochemical Characteristics and Differences

Enzyme histochemistry is a specialty that forms a connecting link

between two methods of approaching the investigation of tissues:
histology and biochemistry (171). When stained histochemically, indi-
vidual muscle fibers show different degrees of coloration. These dif-
ferences generally are thought to persist throughout the length of an
individual fiber (66,72,92,98,273), but this hypothesis recently has
been challenged (287). Serial cross-sections of muscle can be stained
by different histochemical reactions to obtain metabolic profiles of
individual fibers (93). It is important to note that relative degrees
of fiber staining do not necessarily represent relative levels of
enzyme activity (92). A histochemical reaction can only be indicative
of the amount of accumulated end-product. Therefore, direct relative
comparisons of histochemical staining intensities should be restricted
to fibers in the same muscle of the same species (5,28,217,295).

In the adult mammal, skeletal muscle fibers may be differentiated
by a variety of histochemical techniques. Combinations of these stains

plus biochemical reactions, physiological properties, and morphologic
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characteristics have prompted investigators to categorize fibers accord-
ing to several schema (see Table 1). The descriptive taxonomy intro-
duced by Peter et al. (235) of fast-twitch glycolytic (FG), fast-twitch
oxidative glycolytic (FOG), and slow-twitch oxidative (SO) seems to

have emerged as the most useful and has been adapted by a number of
investigators. This classification system will be used throughout the
current report.

Table 2 summarizes the information that is now available concern-
ing relative histochemical staining intensities of the three fiber
types. Clearly, substrate levels in FG fibers are characterized by a
high glycogen content as reflected by the PAS stain and by a low lipid
content as reflected by the SUD stain. Aerobic capacity is assumed to
be low since stains for localizing the activity of oxidative enzymes
such as SDH, malate dehydrogenase, and NADH-diaphorase have minimal
intensities and the myoglobin content is low. Anaerobic capacity is
thought to be high because of the maximal staining reactions of anaero-
bic enzymes such as M-lactate dehydrogenase, triosephosphate dehydro-
genase, mitochondrial a-glycerophosphate dehydrogenase, and phosphoryl-
ase. The high myosin ATPase reaction at pH 9.4 confirms the fast-
twitch characteristic of FG fibers.

The histochemical profile for FOG fibers is quite different.
These fibers are high in glycogen and 1lipids, have high to moderate
reactions for most aerobic and anaerobic enzyme stains, and are fast
contracting.

SO fibers react strongly to most indicators of aerobic metabolism.

These fibers exhibit the lowest glycogen content and only a moderate
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Table 2. Histochemical Metabolic Profile for the Three Fiber Types in Mammals
Fiber Type
Fast
Fast Oxidative Slow
Metabolic Glycolytic Glycolytic Oxidative
Characteristics (FG) (FOG) (s0) References
Myoglobin Content L2 H HP 165,166,251,258
NADH-Diaphorase L H 1€ 80,235
Glycogen Localization I-H H L 116,214
Periodic acid-Schiff (PAS) H H L 116,214,235
Phosphorylase H H L 80,82,214,235,293
Hexokinase L I H 233
Triosephosphate Dehydrogenase H L L 215
Lactate Dehydrogenase (M) H L-I L 214,215,218,233,
(M-LDH) 234
Lactate Dehydrogenase (H) L H I 234,262,263,273
(H-LDH)
Mitochondrial u-Glycerophos- H I-H L 80,235,297
phate Dehydrogenase
Succinic Dehydrogenase (SDH) L H I 3,80,95,143,144,
179,180,212,215,
218,258,273,284,
293,297
Malate Dehydrogenase L H I 80,82,218,235
Lipid Localization L H 1-H 109,143
Sudan Black B (SuD) L H 109,143,262
Myosin Adenosine H H L 78,84,132,133,
Triphosphatase 179,293
Mitochondrial Adenosine L H 1 116,180
Triphosphatase
Myofibrillar Adenosine H L H 80,91,95,253,273

Triphosphatase (ATPase)
at pH 9.4

pH sensitivity of myo-
fibrillar ATPase

Formaldehyde sensitivity
of myofibrillar ATPase

Creatine Phosphokinase

acid labile
alkali
stable

sensitive

H

acid labile
alkali
stable

stable

acid stable 37,132,256,296
alkali
labile

132,273

H 179,180

3 indicates a low staining reaction.

b

H indicates a high staining reaction.

I indicates a moderate staining reaction.
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amount of 1ipid material. High myoglobin content and moderate to high
reactions for oxidative enzymes are indicated. Stains for anaerobic
enzyme activity are light. The reaction with myosin ATPase at pH 9.4

is low and reflects the slow-twitch characteristic of these fibers.

Morphological Characteristics and Differences

Morphological differences in skeletal muscle fiber types are
found at both the gross and ultrastructural levels. Qualitative and
quantitative disparities in cellular content and in the distribution
and form of constituent organelles and inclusions are clearly evident.
In addition, surrounding and associated tissues are quite variable
among fiber types.

Mitochondria.--One of the primary differences among fiber types
is found in the number, form and distribution of mitochondria. Al1l
fiber types have mitochondria arranged in pairs opposite the I bands
(112,219). However, the FOG fibers contain many large, interfibrillar
mitochondria that are arranged in rows. These spherically-shaped
organelles contain dense matrices with closely packed cristae (110,111,
112,224,226,280). Subsarcolemmal and perinuclear aggregations of mito-
chondria are typical of the FOG fiber (112,114,280).

Sparsity and smallness of mitochondria distinguish the FG fiber
type from other types. Interfibrillar mitochondria are scarce and
interfibrillar rows are absent. A few mitochondria may occupy perinu-
clear regions. Subsarcolemmal organelles usually occur individually.
Paired mitochondria at the I bands are present, but they are smaller

and have fewer cristae and less dense matrices than do those of the FOG
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fibers (112,224).

Compared to those in FOG fibers, the mitochondria within the SO
fiber are fewer, more pleomorphic and have less opaque matrices (280).
Subsarcolemmal and perinuclear chains are present, but they are shorter
and less conspicuous than in FOG fibers (219,265).

Lipid and Glycogen Inclusions.--Lipids are numerous in both FOG

and SO fibers but extremely rare in FG muscle cells (280). A direct
relationship seems to exist between mitochondrial density and trigly-
ceride droplets (109).

Abundant glycogen permeates the sarcoplasm of all fiber types but
is most prominent in the I band region of FG fibers (280). This observ-
ation may be related to the phasic nature of FG fibers.

Myofibrils.--FOG fibers generally have the smallest cross-
sectional dimensions, and FG fibers have the largest. SO fibers are
intermediate in size (68).

The M Tine is more prominent in FOG and FG fibers than it is in
SO fibers (280).

The width of the Z line, measured at comparable sarcomere lengths,
usually is reported to be greatest in SO fibers and smallest in FG
fibers (112,209,254,280). Indications are that wide Z lines may be
associated with tonic muscle contractions (280). However, recent work
has determined that Z-line width is highly variable and may differ in
the same fiber types of separate muscles of the same species (114,115)
and in the same muscle between species (113). The significance of this

finding is not yet clear.
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Sarcoplasmic Reticulum and Transverse System.--An extensive

reticular network pervades the FG fiber. This network consists primar-
ily of longitudinal components at the A band, but it has numerous

broad expansions and transversely or obliquely oriented components at
the I band (280). A compact arrangement of broad parallel tubules is
present at the H band (112).

The reticulum in the FOG fiber consists of a plexus or fenestrated
collar in the A band region between successive T tubules and a less
extensive component at the I band (280). An elaborate network of
narrow tubules is present at the H band.

The sarcoplasmic reticulum of the SO fiber is less extensive than
that of either the FOG or FG fiber (30,280). The observation that fast-
twitch fibers (FOG and FG) have a more extensive sarcoplasmic reticulum
correlates well with their physiological characteristics (103).

Neuromuscular Junction.--Obvious morphological differences in

neuromuscular junctions exist between the three fiber types. The FG
nerve terminal is the largest and is characterized by many long thin
branches which are relatively straight and have numerous small pearl-
shaped swellings along their course (182,285). The profile of junction-
al folds reveals increasing complexity as the folds extend towards the
sarcoplasm (210,227). The site of contact has a large surface area
(111) with deep wide folds (210).

The small FOG nerve terminal possesses only a few short thick
branches with more elongated swellings (285). The junctional folds
have a relatively small number of branches which are shallow and flat

(210).
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The SO terminal possesses intermediate characteristics in terms
of the number and size of terminal branches and swellings (285) and the
size and form of junctional folds (210,227).

Capillarity.--Tomanek et al. (280) recently found higher capillary
to fiber ratios for SO and FOG fibers than for FG fibers in guinea pig
soleus and vastus lateralis muscles. Other investigators have reported
no differences in capillarity between fiber types (130,195). Due to
the differences in staining and counting techniques used, the current
results on capillary to fiber ratios are inconclusive. There is
general agreement, however, that capillarization is directly related to
the oxidative metabolism of the muscle fiber (54,130,160,161,195,213,
244,252 ,253,280).

Biochemical Characteristics and Differences

Biochemical assays have been used to substantiate some of the
inferences drawn from histochemical staining reactions. Since no bio-
chemical technique has been devised to determine enzyme profiles in
single muscle fibers, biochemists have used whole muscles or portions
of muscles which have been identified histochemically as being rela-
tively homogeneous (see Table 3). Table 4 summarizes some of the
literature dealing with biochemical determinations in homogenates of
predominately one fiber type.

Fast-twitch glycolytic fibers are dependent chiefly upon anaerobic
carbohydrate metabolism. These fibers have a high glycogen content and
exhibit high levels of glycogenolytic (phosphorylase), glycolytic

(phosphofructokinase, pyruvate kinase, glyceraldehyde 3-phosphate
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Table 3. Representative Values for Fiber Type Composition of Several
Muscles Commonly Used in Histochemical, Biochemical and
Physiological Investigations

Fiber Types
Muscle Species FOG FG SO Reference

Gastrocnemius rat 37 58 5 4
Superficial Vastus rat 0 100 0 1
Deep Vastus rat 70 0 30 1
Soleus rat 16 0 84 4
Extensor Digitorum Longus rat 59 38 3 4
Plantaris rat 53 4] 6 4
Tibialis Anterior rat 66 32 4
Biceps Brachii rat

central 61 23 16 297

peripheral 29 51 20 297
Rectus Femoris rat 54 42 4 4
Lateral Gastrocnemius guinea pig 32 5 12 4
Medial Gastrocnemius guinea pig 50 38 12 24
Red Vastus guinea pig 78 18 4 4
White Vastus guinea pig 23 77 0 4
Soleus guinea pig 0 0 100 4
Semimembranosus lesser bushbaby 33 66 1 4
Vastus Lateralis lesser bushbaby 13 87 0 4
Plantaris lesser bushbaby 30 51 19 4
Soleus lesser bushbaby 13 0o 87 4
Tibialis Anterior lesser bushbaby 45 43 12 4
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Table 4. Enzyme Activity Levels and Substrate Concentrations Determined Biochemically
in Muscle Homogenates of Predominately One Fiber Type

Fiber Type
Fast
Fast Oxidative Slow
Glycolytic Glycolytic Oxidative
Metabolic Characteristics (FG) (FOG) (s0) References
Myoglobin Content L2 HP H 235
Cytochrome a L H 1 11,235
Cytochrome ¢ L H L-1 11,235
Glycogen Content I-H H L 14,24,235,245
Glycogen Synthetase L H 168
Phosphorylase I-H H L 13,25,62,235,257
Hexokinase L I-H H 25,62,232,235
Phosphofructokinase H I 62,235,257
Triosephosphate dehydrogenase H L 25
Glyceraldehyde 3-phosphate H 1 L 235
dehydrogenase
Pyruvate kinase H I L 235,257
Lactate dehydrogenase H 1 L 25,62,235
a-Glycerophosphate dehydrogenase H I-H L 25,62,235
Citrate Synthase L H I 11,25
Succinic dehydrogenase L H I 235,257
Total Lipid Content L I H 103
Triglyceride Content L H L-1 14,245
Carnitine Palmityltransferase L H I-H 11,12
3-Hydroxyacyl CoA L H 25
3-Hydroxybutyrate dehydrogenase L I H 290
3-Ketoacid CoA-transferase L 1 H 290
Acetoacetyl-CoA thiolase L I H 290
Lipoprotein lipase L I H 32
Palmitate Oxidation L H I n
Pyruvate Oxidation L H 1 1
Myosin adenosine triphosphatase H H L 235,277

3 indicates a low enzyme activity.
bH indicates a high enzyme activity.
°l indicates a moderate enzyme activity.
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dehydrogenase and triosephosphate dehydrogenase), and lactate fermenta-
tion (lactate dehydrogenase) enzyme activities. High values of
a-glycerophosphate dehydrogenase activity suggest an important role for
the a-glycerophosphate shuttle system in the regeneration of NAD for
glycolysis. Aerobic capacity is limited as is shown by low succinate
dehydrogenase, citrate synthase, and cytochrome activities as well as
low myoglobin content. Fat metabolism is relatively unimportant in
these fibers. Low total lipid and triglyceride contents and low levels
of activity of B-oxidation enzymes (B-3-hydroxyacyl CoA and carnitine
palmityl transferase) are found. Low lipoprotein lipase levels also
suggest little dependence on exogeneous fat stores. Fast-twitch con-
tractile characteristics are indicated by high levels of myosin adeno-
sine triphosphatase (myosin ATPase).

An opposite pattern of enzyme activities is found in the slow-
twitch oxidative fibers. The fact that SO fibers are slow contracting
is shown by the low levels of myosin ATPase activity. Metabolically,
these fibers appear to rely predominately on aerobic mechanisms. Total
1ipid content is high in these fibers, but it should be noted that tri-
glyceride levels are relatively low. Intermediate to high activities
of the enzymes of fatty acid oxidation and high levels of lipoprotein
lipase activity indicate a heavy reliance on fat metabolism. High B
oxidation levels substantiate this observation. Cytochrome and myo-
globin levels are high as are the activities of the citric acid cycle
enzymes. Glycogenolytic, lactate fermentation, and glycolytic enzyme

activities are minimal and glycogen content is low. As expected,
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hexokinase activity is an exception since it seems to vary directly
with respiratory capacity (25,62).

Fast-twitch oxidative glycolytic fibers appear to have the high-
est capacity for aerobic metabolism. Succinic dehydrogenase and citrate
synthase activities as well as cytochrome levels and myoglobin concen-
trations are greatest in these fibers. Moderate total 1ipid and high
triglyceride concentrations indicate a capacity for fat storage, and
high activities of lipoprotein lipase and the fatty acid oxidation
enzymes reflect high rates of fat metabolism. FOG fibers also are
characterized by a moderate to high anaerobic capacity. They have the
highest glycogen concentration with moderate activity levels of the
glycolytic enzymes. Phosphorylase activity is high and a-glycerophos-
phate dehydrogenase and lactate dehydrogenase activities are moderate.
In summary, these fibers have adequate capacity for glycogenolysis,
glycolysis and oxidative phosphorylation with a fast speed of contrac-

tion.

Physiological Characteristics and Differences

Histochemical and biochemical studies suggest the existence of
marked differences in contractile characteristics between fiber types.
These differences have considerable physiological importance.

Fast- and Slow-twitch Characteristics.--It is now well-established

that the histogenesis of striated muscle in mammals leads to the forma-
tion of limb buds which at first are uniformly slow contracting (60,68,
207). Further differentiation into fast and slow muscles occurs later,

but the developmental changes differ between muscles within the same
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animal and in corresponding muscles between different species (40,56,
139,176). Differentiation in the rat appears to be brought about by a
relative shortening of contraction time in potential fast muscles
(e.g., extensor digitorum longus), there being little or no change in
eventual slow muscles (e.g., soleus) (60). However, histochemical
findings in the soleus muscles of the guinea pig, rabbit and cat reveal
a mixed fiber pattern with a predominance of fibers having high ATPase
activity (FOG and FG fibers) at birth, and many fibers having low
ATPase activity (SO fibers) in adult animals (139,176,217). This slow-
ing of contraction time in the soleus follows a different time course
in each species and appears to be dependent upon the level of matura-
tion at birth (139).

Biochemical studies have shown that there are proportional
changes in the intrinsic speed of contraction and the myosin ATPase
level during ontogenetic differentiation of vertebrate fast and slow
muscles (60). Barany and Close (17) and Barany (16) reported that
specific activity of myosin ATPase is correlated with contraction time
in adult muscle, and Guth and Samaha (132) demonstrated that actomyosin
ATPase measured biochemically is correlated with the histochemical myo-
fibrillar ATPase at pH 9.4. These observations have been substantiated
by other investigators (24,88). Using the myosin ATPase reaction at pH
9.4, it has been shown that the SO fibers are slow contracting while
both the FOG and FG fibers have fast contraction times (24,80,84,132,
293).
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Motor Unit Characteristics.--The contractile elements of skeletal

muscle are organized into functional entities called "motor units".

A motor unit consists of a group of muscle fibers and the single moto-
neurone innervating them (76,264). Each motor unit appears to be homo-
geneous with regard to muscle fiber type (33,48,90,149,199,292), and
the fibers are scattered and intermingled with fibers of other motor
units (33,45,90). The dynamic properties of motor units found in "slow"
and “"fast" muscles are quite different (57,60). There is evidence from
animal studies that the size of the motor unit and its contractile
properties are related in some way to the diameter of the innervating
motor axon (1,148,149,199,292). However, this is not always the case
(276,292). Alpha motor neurons have been divided into slow (S) and
fast (F) types on the basis of distinctive twitch properties of the
muscle fibers they innervate (199,292), but these neurons are indis-
tinguishable in terms of their histochemical profiles since all are
high in phosphorylase and low in SDH (50,51).

Direct investigation of the histochemical, morphologic and
physiologic characteristics of mammalian muscle fibers has become pos-
sible using a variety of techniques that are based on the classical
work of Kugelberg and Edstrom (90,187). These investigators developed
a technique for the histochemical mapping of the muscle fibers belong-
ing to a single motor unit using depletion of fiber glycogen following
repetitive electrical stimulation. This technique permits the identifi-
cation of stimulated fibers in PAS-stained sections as being unstained

fibers outlined against the stained fibers of surrounding unstimulated
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motor units. The process does not affect the staining properties of
the stimulated fibers with other histochemical reactions and thus
allows for fiber typing with serial sections.

Burke et al. (44,47), using a modification of this technique,
have presented evidence which suggests that motor units of the medial
and lateral heads of the gastrocnemius of the cat may be classified
into three nonoverlapping groups. These motor-unit groups are based on
fatigue characteristics and contractile speed. The three groups are as
follows: type FR, fast contracting and fatigue resistant; type FF,
fast contracting and fast fatiguing; and type S, slow contracting and
fatigue resistant. It seems to be a reasonable extension of the exist-
ing histochemical information to assume that the FF, FR, and S motor
units contain FG, FOG and SO muscle fibers respectively.

The histochemical data presented by Kugelberg (188,189) on rat
hindlimb substantiates the ability to categorize motor units into three
groups corresponding to muscle fiber types. In the anterior tibial
muscle, Kugelberg (189, p. 9) identified a Type I motor unit that corre-
sponds to the S group of Burke et al. (44), a Type IIA motor unit that
corresponds to the FF group, and Types IIB and IIC that together corre-
spond to the FR group. A similar histochemical profile in the soleus
of the rat revealed motor units of only Type I or the S group and Types
IIB and IIC or the FR group (188).

It is of interest to note that indirect estimates of the per-
centage of motor units belonging to each group in the medial gastroc-

nemius of the cat have been reported by Burke and Tsairis (45) to be:
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55% FF, 20% FR, and 25% S. The values compare favorably with those for
the muscle fiber population that were determined histochemically by
Ariano et al. (4): 61% FG, 14% FOG, and 25% SO. Other data support
these findings (49,201,275).

It has been known for a long time that slow muscles are employed
in slow contractions and in the maintenance of posture, whereas fast
muscles are used primarily in quick phasic movements (68). This princi-
ple should hold true for slow and fast motor units within any given
muscle (47,220). In a recent study, Stephens and Stuart (275) observed
the recruitment of motor units in the cat medial gastrocnemius in
response to different intensities of electrical stimulation. At low
contraction strengths, motor units which were largely fatigue resistant
were stimulated; at high contraction strengths, motor units which were
fast contracting and less fatigue resistant were recruited. The func-
tional interpretation and importance of this dual role was emphasized.
The medial gastrocnemius is a muscle which participates in a broad
range of activities. Fatigue-resistant units (of the S and maybe FR
groups) could be well-adapted to maintain long sustained contractions
as needed in standing. Rapidly contracting units (of the FF and FR
groups) may be required for phasic activities such as jumping and
running. Animal exercise studies of motor unit recruitment have sup-
ported the concept of task-specific recruitment patterns (86,87,117,
198).

Fast- and slow-twitch units have been demonstrated by stimulating

single motoneurones in man (267). Milner-Brown and co-workers (201,274)
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provided direct evidence that human motor units of the first dorsal
interosseous muscle of the hand are recruited during increasing volun-
tary contraction in an orderly fashion. They also observed that the
number of additional motor units recruited for a given increment in
force declines sharply at high levels of voluntary force. This suggests
that even though the high threshold units generate more tension, the
contribution of recruitment to increases in voluntary force declines at

higher force levels.

Metabolic Adaptations to Physical Training

The fact that muscle fiber types are mutable was first established
in studies involving surgical alterations of motor nerves. Denervation
(18,38,74,151,177,186,271), reinnervation (64,74,171,172,253), and
cross-innervation (38,41,42,43,58,64,77,252,253) all have been shown to
produce marked metabolic changes in muscle fibers. The obvious conclu-
sion is that muscle fiber type is under neural control (131,281). This
concept has been supported by direct stimulation of intact motor nerves
(90,231,239,249,255). Evidence is accumulating that axoplasmic flow
may be a regulating factor (2,183,184).

Regardless of the nature of the control mechanism(s), alterations
of nerve discharge patterns clearly produce significant changes in the
metabolic characteristics of muscle fibers. It might be expected,
therefore, that noninvasive physiological conditions which affect nerve
function would produce similar changes in muscle fibers. Inactivity

(196,249) and immobilization (31,89,248) are two such conditions that
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have been shown to modify the metabolic profile of rat skeletal muscle.
The effects of different regimens of exercise on fiber type have been

studied in some detail (see Table 5).

Endurance Training--Biochemical Alterations

Prolonged programs of endurance training, performed regularly,
have resulted in significant increases in the aerobic capacity of all
fiber types (156,158).

Myoglobin and Cytochrome Levels.--Myoglobin, which stores oxygen

and enhances its rate of diffusion through the cell wall, has been
shown to be increased by endurance exercise in mixed muscles of the rat
(191,228) and in the FG portion of the vastus lateralis muscle of the
lesser bushbaby (85). This rise may account for a portion of the in-
crease in maximal oxygen uptake that occurs in response to prolonged
endurance training (158).

Cytochrome a (cytochrome oxidase) and cytochrome ¢ (ferrocyto-
chrome c-oxygen oxidoreductase) activities are elevated in endurance-
trained rats (8,11,29,70,152,154,204,221,290), gquinea pigs (23), and
lesser bushbabies (85). A1l three fiber types are equally involved.
The magnitude of the changes found in the rats was greatest, but this
may be due to interspecies variations and/or differences in training
programs.

The question of the significance of the elevated cytochrome
levels has been debated (23,106,236). After a 12-week treadmill pro-
gram of running, untrained and trained guinea pigs were run to exhaus-

tion in a single bout of exercise (23,236). Performances were not
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different for the two groups. Yet, the trained animals had much higher
levels of the cytochromes. The correlation coefficient between cyto-
chrome ¢ activity and running time to exhaustion was a low 0.37. These
data indicate that cytochrome levels are not good indicators of aerobic
capacity. However, Fitts et al. (106) challenged this position. Rats
run on a standard endurance treadmill program demonstrated significant
correlations between cytochrome c, citrate synthase and respiratory
capacity in the gastrocnemius muscle and the duration of a run to ex-
haustion. Differences in training procedures seem to be the cause of
this discrepancy.

Glycogenolytic and Related Enzymes.--In an early study small in-

creases in phosphorylase activity were demonstrated in the biceps

region of the hindlegs of rats swum for 15 weeks (129). Subsequent
studies have verified that changes in phosphorylase levels do take
place. Huston et al. (163) reported an increased activity in phos-
phorylase in gastrocnemius homogenates of trained rats. Baldwin

et al. (13) found an increase in activity in the predominately SO soleus
muscles of rats trained on a treadmill program. A decrease in the FOG
deep quadriceps and no change in the FG superficial quadriceps also were
reported. However, Edgerton et al. (85) trained lesser bushbabies on

a treadmill for six months and found no change in phosphorylase activity
in the mixed semimembranosus or the FG vastus lateralis. It appears
that phosphorylase activity may be affected mainly in the SO fibers

which have the lowest initial values.
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Increases in LDH activity in the biceps region of the hindlimbs of rats
(243) and increases in aldolase activity in the gastrccnemius muscles
of rats (146), swum from 5 to 15 weeks, were reported in early studies.
These findings were surprising in view of the very light stress that

a swimming program imposes on animals. Gollnick et al. (118,119) re-
futed these findings when they found no change in the LDH activity of
the gastrocnemius in rats swum for seven weeks.

With prolonged running of rats on a treadmill, Baldwin et al. (13)
and Holloszy et al. (155) found changes in the glycolytic enzymes that
are fiber-type specific. Hexokinase activity increased greatly in FOG
muscle (deep red quadriceps), less in SO muscle (soleus), and slightly
in FG muscle (superficial white quadriceps). This enzyme was unique in
that it was the only glycolytic enzyme to increase in all three fiber
types. However, the finding was expected since hexokinase activity
tends to vary directly with respiratory capacity (25,62). Increases in
hexokinase activity were found in whole gastrocnemius homogenates of rats
trained on a treadmill (163). Similar increases were reported in the
red (FOG) and white (FG) portions of the vastus lateralis muscles of
guinea pigs run on a treadmill (20,190,232). The changes were of the
same magnitude in both parts of the vastus muscle.

Phosphofructokinase, pyruvate kinase, and LDH all increased from
18 to 35% in the soleus and decreased approximately 20% in the red
quadriceps of rats trained by endurance running on a treadmill (13).
The only change in the white quadriceps was a 15% decrease in LDH.

Molé et al. (205), using the same training program, reported no
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physiologically significant shifts of LDH isozyme patterns in the vari-
ous fiber types. Edgerton et al. (85) also found no change in LDH
activity in either the FG vastus lateralis or the mixed semimembranosus
after six months of training. However, their results were from the
lesser bushbaby and species specificity needs to be investigated.

The glycerol phosphate shuttle is involved in unidirectional
transport of reducing equivalénts into the mitochondria of muscle cells.
NAD-1inked (cytoplasmic) and FP-linked (mitochondrial) a-glycerophos-
phate dehydrogenases catalyze the first step of the reaction on either
side of the mitochondrial membrane. This shuttle system is extremely
important in the regeneration of NAD for glycolysis during anaerobic
metabolism. The findings from exercise studies are inconclusive regard-
ing the alterations that may occur in NAD-linked o-GPD activity.
Baldwin et al. (13) reported a significant increase in the SO soleus,

a significant decrease in the FOG red quadriceps and no change in the
FG white quadriceps of the treadmill-trained rat. These results are
consistent with the changes reported in glycolytic enzymes and phos-
phorylase (13,155). However, other studies utilizing chronic activity
of low (85,153) and high (272) intensity have shown no a-GPD effect in
a variety of muscles and species (rat gastrocnemius and rectus femoris,
and lesser bushbaby vastus lateralis and semimembranosus).

Tricarboxylic Acid (TCA) Cycle Enzymes.--Early work by Hearn and

Wainio (145,146) indicated that changes in TCA intermediates might
accompany endurance training. Moderate swimming programs resulted in

increases in aldolase (146) and SDH (145) activities in the rat
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gastrocnemius. Similarly, a moderate program of treadmill running in-
creased SDH activity 30% in the rat gastrocnemius (121).

More recent work has supported these results. The activity of
citrate synthase, which catalyzes the primary rate-limiting step of the
TCA cycle (192, p. 453), has been shown to increase two-fold in all
types of muscle with prolonged endurance training (11,70,154,289,290).
Other TCA cycle enzymes including NAD-1linked mitochondrial isocitrate
dehydrogenase (70,154,203), aconitase (157), and succinic dehydrogenase
(70,152,154) have shown parallel two-fold increases in activity.
Smaller significant rises have been reported for a-ketoglutarate dehy-
drogenase (154) and malate dehydrogenase (70,154,205). The only excep-
tion to increased TCA cycle enzyme activity with endurance training was
reported by Edgerton et al. (85) who found no SDH change in the SO
soleus of the lesser bushbaby. However, there was a 20% increase in
the FG part of the vastus lateralis muscle.

A recent study by Benzi et al. (29) has given support to the con-
cept of specificity of training effects. SDH, cytochrome c and cyto-
chrome oxidase activity levels changed in relation to the daily workload
and the total training time. More work in this area is needed.

ATPase and Enzymes of Oxidative Phosphorylation.--The immediate

source of energy required for muscular contraction is derived from the
hydrolysis of ATP to ADP, a process that is catalyzed by adenosine tri-
phosphatase. ATP stores are limited and must be replenished constantly
by oxidative phosphorylation in the presence of oxygen. Under anaerobic

conditions, phosphocreatine becomes a primary source of the high-energy
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phosphate needed for ATP resynthesis. ATP-creatine transphosphorylase,
now commonly known as creatine phosphokinase or creatine kinase,
catalyzes the transfer of high-energy phosphate to ADP to form ATP.

A secondary source of ATP regeneration is the myokinase reaction in
which adenylate kinase catalyzes the transfer of high-energy phosphate
from one molecule of ADP to another to form ATP plus AMP. Combined
with glycolysis, these two reactions supply the needed ATP during
anaerobic muscular contraction.

Oscai and Holloszy (221) have shown that endurance training
specifically increases oxidative phosphorylation without affecting the
anaerobic ATP regenerating systems. Mitochondrial ATPase activity,
used as a measure of mitochondrial coupling factor 1 (F]), increased
two-fold in gastrocnemius muscle homogenates of endurance-trained rats.
At the same time, the levels of mitochondrial and cytoplasmic adenylate
kinase and creatine phosphokinase were unchanged.

Myosin ATPase activity levels have been shown to be correlated
with speed of muscle contraction (16,17), and the specific activity of
myosin ATPase in "white" muscle was found to be two to three times
greater than in "red" muscle (16). Several groups of investigators
have studied the effects of prolonged endurance exercise on myosin
ATPase activity with conflicting results. Early studies utilizing
moderate swimming programs showed little or no change in homogenates
of rat gastrocnemius muscle (147,243). Similar results were reported
by Bagby et al. (10) for rats trained 11 weeks on a treadmill. Syrovy

et al. (277) observed an increase in myosin ATPase activity in the
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soleus of young rats swum for several weeks, but no changes in adult
soleus or extensor digitorum longus muscles. Wilkerson and Evonuk
(288) used mild and exhaustive programs of swimming for either 6 or 10
weeks. The rats trained for both durations of the exhaustive program
demonstrated increased specific activities of myosin ATPase in gastro-
cnemius homogenates.

Recently, Baldwin et al. (15) investigated the adaptation of
actomyosin ATPase in specific muscle fiber types to endurance running.
Initial concentration levels were maintained after 18 weeks of training.
Specific activity levels of actomyosin ATPase were increased in the SO
soleus, decreased in the FOG red vastus lateralis, and unchanged in the
FG white vastus lateralis. The reported changes paralleled earlier
findings on glycogenolytic enzymes (13).

Enzymes Involved in Fatty Acid and Ketone Metabolism.--Plasma free

fatty acids (229) and plasma triglyceride fatty acids (107,164) have
been shown to be important substrates for oxidation by skeletal muscle
during exercise. Major increases in the levels of enzymes involved in
the activation, transport and B oxidation of long-chain fatty acids
(11,69,71,108,157,203,204) and in the levels of enzymes involved in
ketone oxidation (8,289,290,291) have supported these observations.
Molé et al. (204) reported a doubling of palmityl CoA synthetase,
carnitine palmityl transferase, and palmityl CoA dehydrogenase activi-
ties in mixed muscle homogenates (quadriceps plus gastrocnemius) of
rats trained on an endurance running program. The rates of palmitate

oxidation by whole muscle homogenates and by mitochondrial fractions
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from the leg muscles also were found to increase two-fold. Identical
observations had been reported earlier for gastrocnemius homogenates
(203).

To determine which fiber types participate in the exercise-related
increase in fat metabolism, Baldwin et al. (11) repeated the study of
Molé using homogenates of the SO soleus, the FOG deep red quadriceps,
and the superficial white quadriceps. The rate of palmitate oxidation
and the activity level of carnitine palmityl transferase increased
approximately two-fold in all three fiber types. Consequently, the
relative capacities of the different fiber types for fat metabolism
remained unchanged.

Ketone oxidation also is affected by an endurance program (8,289,
290,291). Winder et al. (289,290) found a two-fold to three-fold in-
crease in the rates of D-B-hydroxybutyrate and acetoacetate oxidation
in gastrocnemius muscle homogenates under conditions of uncontrolled
respiration. D-B-hydroxybutyrate dehydrogenase, 3-ketoacyl-CoA trans-
ferase and acetoacetyl-CoA thiolase, key enzymes in ketone metabolism,
all increased significantly with training. Recently, Winder et al.
(291) have shown that endurance training affects ketone metabolic path-
ways in the three fiber types differently. The levels of 3-hydroxy-
butyrate dehydrogenase activity increased slightly in FG, 2.6-fold in
SO and 6-fold in FOG fibers. Acetoacetyl-CoA thiolase activity in-
creased approximately 40-45% in all fiber types, and 3-keto acid CoA-
transferase activity increased 2-fold in FOG and FG muscle, but only

26% in SO muscle. This exercise-induced increase in the capacity of
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skeletal muscle to oxidize ketones could play a major role in prevent-
ing ketosis in the exercising animal (8,291).

In a related study, Borensztajn et al. (32) investigated the
effects of prolonged endurance training on the activity of lipoprotein
lipase in the same three muscles. This enzyme is responsible for the
uptake of chylomicrons by skeletal muscle. Initial control measure-
ments revealed the highest activities to be in SO muscle. The soleus
had activities which were 14 to 20 times greater than that in the FG
white quadriceps and 2 times greater than that in the FOG red quadriceps.
Twelve weeks of training resulted in a four-fold increase in lipoprotein
lipase activity in the FOG muscle and two-fold increases in the SO and
FG muscles. The greater rise found in the FOG muscle may reflect
selective recruitment of these fibers during treadmill running. In
contrast to these findings, Askew et al. (7) found no significant change
in Tlipoprotein lipase activity in the quadriceps muscles of rats trained

for seven weeks on a treadmill.

Endurance Training--Histochemical Alterations

Histochemical techniques have been used to determine muscle fiber
metabolic profiles before and after specific training programs.
Recruitment patterns induced by various work tasks and loads may be
studied in this manner.

Faulkner and co-workers (100,101,194,198) studied the effects of
chronic exercise on the distribution of fiber types in hindlimb muscles
of the guinea pig. The exercise regimen consisted of daily running on

a motor-driven treadmill at 0% grade with a maximum speed of 30 m/min.
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The animals were exercised 30 to 45 min per day for eight weeks. SDH
and myofibrillar ATPase were used to classify fiber types. In adult
sedentary animals, the composition of the plantaris muscle was deter~
mined to be 53% FG, 36% FOG, and 11% SO. The soleus was found to be
100% SO and the psoas was 2% FG, 33% FOG, and 66% SO (198). These
values agree closely with the findings of other investigators (4) and
reflect three vastly different muscle fiber distributions. Training
specifically affected the composition of the plantaris muscle but had
no effect on the others. An increase in the proportion of FOG fibers,
a decrease in the proportion of FG fibers, and no change in the propor-
tion of SO fibers was reported for the plantaris. The results are
consistent with those found in other studies of the effects of endur-
ance exercise (21,83).

Reversability of exercise-induced fiber changes in the guinea pig
was observed with 16 weeks of detraining (101). Selective atrophy and
degeneration of FG fibers may have occurred, but the regression effect
was attributed to a loss of mitochondrial density in FOG fibers which
then were reclassified as FG fibers.

It should be noted that the percentage of red fibers (presumably
FOG) has been found to be significantly increased in the diaphragm of
endurance-trained animals (194).

The productive group of Edgerton, Barnard, Peter and their co-
workers (20,21,22,23,24,78,79,80,81,82,83,84,85,86,87,88,89,102,103,
116,117,168,169,190,232,233,234,235,236,237) pioneered the early work

of physiological, histochemical and biochemical correlational studies
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and made many contributions to the concepts of mutability of fiber types
and motor unit recruitment during exercise.

Edgerton et al. (78) subjected male albino rats to a prolonged
swimming program. No significant alterations in percentages of fiber
types were found in the soleus. However, the plantaris muscles of the
exercised animals had a greater proportion of fibers with high malate,
SDH, and NAD-diaphorase staining reactions than did those of the seden-
tary controls. These changes were observed in two areas of the plan-
taris. One area had a mixed-fiber population and the other was com-
posed predominately of FG fibers. No changes were found in the propor-
tion of SO fibers with weak myosin ATPase reactions.

Morphological changes also were investigated in these animals
(81). Necrotic, angular and split fibers were observed in the soleus
muscle but not in the gastrocnemius or plantaris muscles of all groups
including the control group. The number of split fibers was the same
for the three groups, but the total number of subfibers increased with
the intensity of exercise. Split fibers have been reported in several
other training (55,208) and surgically overloaded muscle studies (141,
142,283).

In a series of classical papers Barnard et al. (21,22,23) reported
the histochemical, biochemical and physiological changes induced by an
endurance training program in guinea pig hindlimb muscles. After 18
weeks of training, the mitochondrial yield had significantly increased
in the gastrocnemius and plantaris (21). Histochemical analysis (NADH-

diaphorase) revealed a significant conversion of FG to FOG fibers in



42

the central "red" and peripheral "white" areas of the medial gastroc-
nemius. The percentage of SO fibers did not change (21). Contractile
properties as measured in the in situ gastrocnemius-plantaris muscle
preparation revealed no exercise effect (22).

Edgerton et al. (82) ran guinea pigs on a treadmill at 1.6 km/hr
for 5 min, 10 min, or until exhaustion. With increasing durations of
acute exercise, the percentage of fibers lacking phosphorylase activity
increased. Selective depletion of phosphorylase content was found in
the red fibers (presumably FOG) of the plantaris muscle. No consistent
changes were found in the soleus. This finding reflects the homogeneous
SO fiber population in the soleus (4) which shows negligible phosphoryl-
ase activity even in controls.

Edgerton et al. (79,83) studied this depletion phenomenon further.
Guinea pigs were trained on a progressive program of intermittent run-
ning for 20 weeks. Indirect electrical stimulation caused total phos-
phorylase to be selectively depleted in FG fibers. The effect was less
in trained (86%) than in untrained (97%) animals. The histochemical
depletion of ‘phosphorylase was paralleled by glycogen depletion which
was measured by spectrophotometric readings of PAS staining intensities.
These PAS results support the findings of Kugelberg and Edstrom (187).

Recently, Edgerton et al. (85,117) have attempted to extend their
findings to a nonhuman primate, the lesser bushbaby. These animals
were trained to run or jump on a motor-driven treadmill. After six
months of endurance running, fewer giycogen-depleted fibers were found

in the plantaris muscles of trained than untrained animals following 15
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min of electrical stimulation (85). This finding reaffirms the train-
ing-related resistance to fatigue reported for the guinea pig (83).

The other biochemical, histochemical and physiological data also were
in agreement with the results of previous work on guinea pigs (21,22,23).
Endurance running produced increases in SDH and cytochrome a and c
activities. Myoglobin content was enhanced. There was an increased
proportion of FOG fibers, at the expense of FG fibers, in the tibialis
anterior but not in the soleus. Glycogenolytic enzyme concentrations
and contractile properties were not altered. No significant changes in
myosin nor actomyosin ATPase activities were found. In general, the
results supported those of other histochemical (10) and biochemical
(147,243) studies.

A single 5-min to 15-min bout of running at 1.75 m/min or jumping

at 2.4 to 2.9 m/min was used to determine the pattern of motor unit
recruitment during specific types of exercise (117). Glycogen depletion
was assessed by the PAS stain. FOG fibers were preferentially depleted
in the vastus lateralis and gastrocnemius muscles after running.
Jumping affected mainly the FG fibers in these two muscles. Both exer-
cise regimens depleted the FOG fibers in the soleus. The findings sug-
gest that the recruitment pattern of specific types of motor units is
related to the nature of the specific movement being performed. Recent
work has indicated that this also is the case in humans (124,125,126,
162).

In a comprehensive investigation, Muller (208) attempted to deter-

mine the temporal progress of mutability in muscle fibers. Young female



44

rats were exercised on a motor-driven treadmill six days a week for
periods of 3, 6 and 12 weeks. At the end of the study, the mean fiber
areas in the soleus, gastrocnemius and rectus femoris muscles of the
exercised and control animals were not different. However, progressive
splitting of SO fibers was seen in the soleus muscles of the trained
rats at 3 and 6 weeks. Fiber splitting was not evident in the control
animals. This observation conflicts with that of Edgerton et al. (81)
who noted that a minimal amount of splitting is to be expected even in
untrained animals. Muller (208) also reported a significantly decreased
percentage of fast-twitch fibers in the soleus muscle. This decrease
presumably was caused by the transformation of FOG fibers to SO fibers.
Small but similar endurance-training effects were observed in the pre-
dominately FOG and FG areas of the gastrocnemius and rectus femoris
muscles. The general trend of adaptation was from FG to FOG to SO
fibers. The conversion of fast-twitch to slow-twitch fibers was not
found in several earlier biochemical (147,243) and histochemical (10,
52,85) studies. However, recent evidence indicates that myosin ATPase
activity may be altered in response to specific exercise regimens (15,

137).

Sprint Training

A program of sprint running could be expected to provide consider-
able stimulation for the anaerobic metabolic mechanisms. Unfortunately,
due to the inherent difficulties associated with training animals at
high running velocities, relatively 1ittle work has been done to date

with this type of exercise.
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Saubert et al. (257) trained adult male rats on a treadmill at
speeds of up to 80.5 m/min for 11 weeks. Glycogenolytic and glycolytic
mechanisms were affected but only minimally. Phosphorylase activities
were unchanged in the FG white portion of the gastrocnemius, the FOG

red portion of the gastrocnemius, the red vastus, and the mixed rectus
femoris muscles. The only change in phosphorylase activity was a 70%
increase in the SO soleus.

Hexokinase activity increased 50% in both the mixed rectus femoris
and the soleus muscles. No changes in phosphofructokinase, pyruvate
kinase, triosephosphate dehydrogenase, or lactate dehydrogenase activi-
ties were reported except in the soleus where there was a 35% increase
in pyruvate kinase. In a parallel study by Staudte et al. (272), run-
ning at 80 m/min produced a 17% increase in triosephosphate dehydro-
genase activity of the rat soleus.

The slight anaerobic adaptation of the soleus muscle was evident
in the ATP regenerating system. Creatine phosphokinase activity in-
creased 12% in the soleus but remained unchanged in the rectus femoris
(272). Bagby et al. (10) also ran rats for 11 weeks at speeds up to
80.4 m/min and found myosin ATPase activity was unchanged in homogenates
of the mixed gastrocnemius muscle. No alterations in the percentages
of FG, FOG, or SO fiber types were observed.

Possible explanations for these relatively small changes include:
(a) the FG and FOG fibers of the rat already may be equipped metabolic-
ally to handle an anaerobic stress; or (b) the running speed of 80 m/min

may not be fast enough to act as a pure anaerobic stimulus. The latter
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hypothesis is supported by the fact that histochemical fiber typing
techniques revealed a significant increase in the percentage of FOG
fibers, with an accompanying decrease in FG fibers, for the white
portion of the gastrocnemius (257). There was an accompanying shift
towards an FOG fiber population in the soleus muscle.

Fitts et al. (104) studied several histochemical parameters in
the miniature pig following a sprint-running program known to have
physiologically measurable training effects. No changes in fiber types
were observed, and the investigators concluded that the histochemical
techniques were not sensitive enough to distinguish metabolic adapta-
tions.

The effects of sprint training on aerobic metabolism are not
clear at this time. No change in myoglobin content in any fiber type
of sprint-trained miniature pigs was reported by Fitts et al. (105).
Staudte et al. (272) found increases of 20% in citrate synthase activity
in homogenates of both the mixed rectus femoris and the SO soleus
muscles. However, no changes have been observed in a variety of muscles
assayed for SDH activity (257,272). Although not enough information is
available to draw firm conclusions, it appears that current sprint pro-

grams for animals may have a substantial aerobic component.

Isometric, Weight Lifting, and Miscellaneous
Training

Three parallel studies have been conducted to determine the ef-

fects of an isometric training program on histochemical and biochemical

profiles of exercised skeletal muscle (96,97,209). Male and female
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rats were forced to climb a 60° incline and support a predetermined
amount of weight until exhaustion (approximately 5 min).

Activities of several enzymes of glycolysis, glycogen metabolism,
fatty acid oxidation, lactate fermentation, and the ATP regeneration
system were determined in homogenates of the rectus femoris and soleus
muscles (96,97). Changes in anaerobic enzymes were evident. Creatine
phosphokinase, glycogen phosphorylase, and triose phosphate activities
increased in the rectus femoris and decreased in the soleus. Lactate
dehydrogenase also decreased in the soleus. Contraction times became
faster in the rectus femoris and slower in the soleus muscles of the
females (96).

Histochemical changes in the female rats were studied using SDH
and myofibrillar ATPase to classify muscle fibers (209). The percentage
of FOG fibers decreased at the cost of the FG fibers in rectus femoris
but not in the soleus or the lateral head of the gastrocnemius. The
percentage of SO fibers did not change significantly in any of the
muscles studied.

Together, these parallel studies would indicate that a rise in
anaerobic capacity occurs in predominately FG-FOG muscle which is sub-
jected to isometric training (96,97,209). This increased anaerobiosis
may be modulated by a shift of FOG to FG fibers (209). A concomitant
decrease in aerobic capacity might accompany such a shift (270).
However, conflicting results have been reported by other investigators

(159,185,297).
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Howells and Goldspink (159) devised a counter-weighted basket
which the animal had to pull down to obtain food. Hamsters subjected
to this regimen for five weeks had increased SDH levels in the mixed
biceps brachii, the slow soleus, and the fast extensor digitorum longus
muscles. Similar increases in SDH values were reported by Zika et al.
(297) in the biceps brachii of young rats subjected to tonic stress on
a ladder for four to six months. Significantly elevated levels of
a-glucanphosphorylase and nonspecific esterases also were found. There
were no changes in LDH or mitochondrial a-glycerolphosphate dehydro-
genase values.

Kowalski et al. (185) trained adult female rats on a weight 1ift-
ing program of vertical climbing with an attached load for six weeks.
Six preselected regions of the quadriceps muscles were investigated
histochemically. Weight 1ifting resulted in overall increases in SDH,
phosphorylase and cytochrome oxidase in all six regions regardless of
the fiber-type population.

The increases in oxidative enzymes observed by Howells and Gold-
spink (159), Zika et al. (297), and Kowalski et al. (185) suggest that
the various training programs used in these studies may have had a

common aerobic component.



CHAPTER I11

METHODS AND MATERIALS

Gross measurements of total-body oxygen debt and oxygen uptake
have been used to reflect human metabolic responses to physical activity.
Exhaustive sprint running leads to an increased tolerance of oxygen
debt which presumably reflects a greater capacity for the generation of
muscular energy via anaerobic metabolism. Training regimens based on
this type of running are characterized by maximal workloads and rela-
tively short bouts of repeated exercise. In contrast, distance running
is thought to be dependent chiefly upon oxidative muscle metabolism and
tends to increase total-body oxygen uptake capacity. Moderate or light
workloads and relatively long bouts of continuous exercise are typical
of endurance training programs. This study was designed to investigate
cellular-level alterations in two preselected areas of the plantar
flexor muscles of the male albino rat following eight weeks of sprint

and endurance training.

Experimental Animals

Forty-two normal male albino rats (Sprague-Dawley strain) were
obtained from Hormone Assay, Inc., Chicago, I1linois. They were re-

ceived at weekly intervals in three shipments of 15, 12, and 15 animals

49
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respectively. Each shipment was designated as a separate treatment
group. A standard period of 12 days was allowed for adjustment to
laboratory conditions. The treatments were initiated when the animals
were 84 days old. The application of selection criteria (to be dis-

cussed later) reduced the final sample to a total of 27 animals.

Research Design and Treatment Groups

This study was conducted as a one-way design with three treatment
groups of nine animals each. The duration of the treatment period was

eight weeks. The three treatment groups were as follows.

Control Group

The 12 animals in the second shipment constituted the control
(CON) group. These animals received no special treatment and were
housed in individual sedentary cages (24 cm x 18 cm x 18 cm) during

both the adjustment period and the treatment period.

Sprint Group

The sprint running (SPT) group was comprised of the 15 animals in
the first shipment. Each of these animals was housed in an individual
voluntary-activity cage (sedentary cage with access to a freely revolv-
ing activity wheel) during the adjustment period and in an individual
sedentary cage during the treatment period. The SPT animals were sub-
jected to an interval training program of high-intensity sprint running
(Appendix A). Tne workload of the SPT program was gradually increased

until on the 27th day of training, and thereafter, the animals were
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expected to complete six bouts of exercise with 2.5 min of inactivity
between bouts. Each bout included five 15-sec work periods alternated
with four 30-sec rest periods. During the work periods, the animals

were required to run at the relatively fast speed of 108 m/min.

Endurance Group

The endurance running (END) group was composed of the 15 animals
in the third shipment. These animals were housed under the same condi-
tions as the SPT animals. The END animals were subjected to a demanding
program of distance running (Appendix A). The workload was progressive-
1y increased so that on the 30th day of training, and thereafter, the
animals were expected to complete 60 minutes of continuous running at

36 m/min.

Training Procedures

The SPT and END groups were trained in a battery of individual
controlled-running wheels (CRW). This apparatus has been described as:
... a unique animal-powered wheel which is capable of induc-

ing small laboratory animals to participate in highly specific

programs of controlled reproducible exercise. (286)

Animals learn to run in the CRW by avoidance-response operant con-
ditioning. A low-intensity controlled shock current, applied through
alternating grids comprising the running surface, provides motivation
for the animals to run. A light above the wheel signals the start of

each work period. The animal is given a predetermined amount of time

(acceleration time) to attain a prescribed running speed. If the
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animal does not reach the prescribed speed by the end of the accelera-
tion time, the light remains on and shock is applied. As soon as the
animal reaches the prescribed speed, the light is extinguished and the
shock is discontinued. If the animal responds to the light and attains
the prescribed running speed during the acceleration time, the light is
extinguished immediately and shock is avoided. If the animal fails to
maintain the prescribed speed throughout the work period, the light-
shock sequence is repeated. Most animals learn to react to the light
stimulus after only a few days of training.

A typical training session consists of alternated work and rest
periods. The wheel is braked automatically during all rest periods to
prevent spontaneous activity. The brake is released and the wheel is
free to turn during work periods.

Performance data are displayed for each animal in terms of the
total meters run (TMR) and the cumulative duration of shock (CDS). The
TMR and the total expected meters (TEM) are used to calculate the per-

centage of expected meters (PEM):

PEM = 100 (TMR/TEM)

PEM values are the chief criteria used to evaluate and compare training
performances. A secondary criterion is provided by the percentage of
shock-free time (PSF) which is calculated from the CDS and the total
work time (TWT):

PSF = 100 - 100 (CDS/TWT)
In this study, all exercise treatments were administered once a

day, Monday through Friday, between 12:30 p.m. and 5:30 p.m.
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Animal Care

A11 housing cages were steam-cleaned every two weeks. Standard
procedures for daily CRW cleaning and maintenance were observed.
The animals received food (Wayne Laboratory Blox) and water ad

1ibitum.!

A relatively constant environment was maintained for the
animals by daily handling as well as by temperature and humidity control.
The animals were exposed to an automatically regulated daily

sequence of twelve hours of light followed by twelve hours without
light. Since the rat normally is a nocturnal animal, the light sequence
was established so that the lights were off between 1:00 p.m. and 1:00
a.m. and on between 1:00 a.m. and 1:00 p.m. This lighting pattern
altered the normal day-night schedule for the animals so that they were
trained during the active phase of their diurnal cycle.

Body weights of the SPT and END animals were recorded before and

after each training session. The CON animals were weighed weekly.

Sacrifice Procedures

Anticipated limitations of time and personnel restricted the

number of animals that could be handled at sacrifice to 12 in each

]The three groups of animals used in this study were the placebo
groups for a larger diet-training investigation. Seven days a week,
between 7 p.m. and 9 p.m., each animal was given approximately .1 cc of
5% sugar solution/100 gms body weight, by oral syringe. Administration
of the placebo was begun the day prior to the initiation of treatments
and was terminated the day prior to sacrifice. Since all of these
animals received the same dietary treatment, the effect of the placebo
can not be evaluated. However, the internal validity of this study
could not have been affected.
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treatment group. Since one of the inherent purposes of the study was
to compare various parameters in two groups of highly trained animals
and a group of untrained animals, three extra rats originally were in-
cluded in the SPT and END groups. Twelve animals were selected for
sacrifice from each of these two groups on the basis of their health
and their training performance throughout the treatment period. Only
animals subjectively determined to be in good health were chosen.
Because the training requirements were extremely vigorous, no absolute
minimal performance criteria were established. However, individual
daily records of PEM and PSF values were examined, and those animals
making the best adaptations to the training regimens were selected for
sacrifice. A1l 12 CON animals were judged to be healthy and were
sacrificed.

Three sacrifice periods of two-days duration (Monday and Tuesday)
were established. A1l animals within a treatment group were killed
during a single sacrifice period (i.e., six animals each day). The
trained animals were killed either 72 or 96 hr after their last exer-
cise bouts were completed. This procedure was followed to eliminate
any transient effects of acute exercise. The animals were either 140
or 141 days old at sacrifice.

Final body weights were recorded immediately prior to sacrifice,
Each animal was anesthetized by an interperitoneal injection (4 mg/100
gn body weight) of a 6.48% sodium pentcbarbital (Halatal) solution. The
right hind1imb was skinned and the superficial posterior crural muscles

were exposed by reflecting the overlying tissue. The right triceps
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surae (gastrocnemius and soleus) and plantaris muscles were removed as
a block. Similar procedures were used on the left hindlimb except that
the plantaris and soleus muscles were separated, individually weighed,
and discarded.

Upon removal, the right muscle block was rolled in talcum powder.
The block was held with forceps, gently stretched to approximate its
physiological length, and quick frozen in 2 methylbutane (isopentane).
The isopentane had been precooled to a viscous fluid (-140 to -160° C.)
by liquid nitrogen. The frozen muscles were stored in aluminum 35-mm
film containers at -20° C until sectioning and histochemical procedures
could be initiated. Using precooled stainless steel knives, sandwich
blocks approximately 10 to 15 mm thick were cut from the mid-portions
of the frozen muscles. The sandwich blocks were oriented distal end up
and frozen onto cork strips using 5% gum tragacanth. The cork strips
were used to attach the muscle blocks onto cryostat chucks for section-
ing. Fresh-frozen serial cross-sections, 10 micra thick, were cut using
a rotary microtome-cryostat (International-Harris Microtome). Sections

were picked up on cover glasses and fan-dried for at least one hour.

Histochemical Procedures

Succinic dehydrogenase (SDH) reactivity was used as an indicator
of aerobic capacity and resistance to fatigue. In the Krebs cycle,
succinate is oxidized to fumarate by SDH. The covalently bound flavin
adenine nucleotide picks up the two hydrogens removed and transports

them to the electron transport system. SDH is bound firmly to the
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mitochondrial membrane, and thus it also is a good indicator of mito-
chondrial distribution. In this study, SDH localization was demon-
strated using nitro blue tetrazolium (NBT) as the electron acceptor.
The method has been described by Barka and Anderson (19, p. 313). NBT
yields a colored precipitate of diformazan when it is reduced and the
formazan deposition observed with the light microscope indicates the
loca]ization.of oxidative enzymes (216). A direct correlation between
the qualitative histochemical classification by staining intensity for
SDH and the quantitative measurements of SDH activity has been reported
(27).

Lactate dehydrogenase (LDH) reversibly oxidizes lactate to
pyruvate in the last step of glycolysis. It is found in all cells
which are capable of glycolysis. Five isozymes have been isolated bio-
chemically each consisting of one or a combination of two polypeptide
chains designated as M (muscle) or H (heart) (67). A1l LDH isozymes
catalyze the same reaction but have different activity levels. LDH
localization was determined in this study using NBT as the electron
trap and nicotinamide adenine dinucleotide (NAD+) as the cofactor (230,
p. 911). Staining intensity was assumed to be an indicator of lactate
fermentation capacity. Because of the rather uniform intermyofibrillar
network that is associated with this enzyme, it does not differentiate
fiber types as well as do some other glycolytic enzymes. This lack of
discriminative ability perhaps is due to the fact that LDH is a water
soluble enzyme which may be present in the aqueous sarcoplasm (35).

Myosin adenosine triphosphatase (ATPase) localization was investi-

gated by the method of Padykula and Herman (223) as modified by Guth
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and Samaha (132) and presented by Dubowitz and Brooke (75, p. 32). The
reaction is one in which both the preincubation of the tissue section
and the incubation in the ATP mixture are carried out at a pH of 9.4.
Under these conditions, the reaction develops in the myofibrils, and
the intermyofibrillar network seems to dissolve out of the tissue sec-
tion at some stage during the reaction (75, p. 32). The localization
of this ATPase in the myofibrils has been substantiated by selective
extraction procedures (260). Myosin ATPase is an enzyme involved in
the hydrolysis of ATP to ADP with the release of a high energy bond
available for muscle contraction (192). A direct correlation between
myosin ATPase activity and speed of muscle contraction has been demon-
strated biochemically (16,17,60) and substantiated histochemically (24,
53,88,132). Fast-twitch fibers (FOG and FG) stain darkly and slow-
twitch fibers (SO) stain lightly at a pH of 9.4.

Glycogen localization was determined using the periodic acid-
Schiff (PAS) reaction (197, p. 132). Previous studies have shown that
spectrophotometric measures of glycogen content are correlated highly
with PAS staining intensity in frozen tissue when the PAS response is
evaluated either by microphotometric methods or by subjective ratings
(117,188).

Lipid localization was demonstrated using the Sudan Black B (SUD)
method (197, p. 126). SUD, a colorant, is soluble in absolute alcohol
and has a high affinity for fatty material.

Harris' alum hematoxylin and eosin (H & E) was applied to the
fresh-frozen sections to facilitate observations of morphological char-

acteristics (197, p. 29).
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Incubation times were varied according to the staining procedure.
The mounting medium for the ATPase, SDH and LDH sections was glycerin-

jelly. PAS, SUD and H & E sections were mounted in permount (Histoclad).

Muscle Areas

Histochemical evaluations were performed on two muscle areas in
this study. These areas were selected to represent two different fiber
populations. The central portion of the soleus (area 1) normally is
composed primarily of SO fibers. Only a few FOG fibers are present.
The posterior part of the plantaris (area 2) consists mainly of FG

fibers with some FOG fibers interspersed (78).

Histochemical Evaluations

Each histochemical stain was evaluated objectively with the use
of a Histochemical Photometer (HCP) at a magnification of 80X. The
operator of the HCP is able to isolate a photometric beam on the center
of a single muscle fiber in the projected image of a muscle cross-
section. The photometer registers the percentage of 1light that is trans-
mitted through the fiber on a scale from 0 to 100. The percentage of
1light transmitted is converted to percentage of 1ight absorbed so that
higher HCP readings reflect higher values of substrates and enzymes.
Repeated measures of the same fibers on different days have shown the

average percent error for the HCP to be + 0.3%.
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Photometric evaluations of each stain were determined for a group of 30
adjacent muscle fibers] from both muscle areas in each animal. The
planned analysis of data imposed the requirement that histochemical
values had to be taken on the same fibers in all serial cross-sections
from a given animal. Fiber tracings of the SDH sections were matched
with the projected images of the other sections to insure that this
requirement was satisfied. Although 12 animals in each treatment group
were sacrificed, identical fibers could be found throughout the serial
cross-sections of only 9 animals per group. In each of the other cases,
various artifacts prevented conclusive fiber identification in one or
more of the sections. Con;equently, the final sample was limited to a
total of 27 animals.

The HCP values obtained on cross sections from the control animals
served as reference standards for the histochemical stains. A1l photo-
metric determinations of each stain were performed at the same time

without knowledge of the treatment groups.

Analysis of Data

The body weights and the absolute and relative muscle weights were

analyzed using a one-way fixed-effects analysis of variance routine on

1In a previous study, a sample of 30 fibers was calculated to be
more than necessary and sufficient for a four-way (7x4x8x10) mixed-
model nested analysis of variance that was run on HCP data when: (a)
the probability of making a type I statistical error was limited to the
.01 level, (b) the probability of making a type II statistical error
was limited to the .05 level, (c) the minimal mean difference to be
detected as significant was set at 0.5 standard deviations, and (d) a
moderate variability between subgroup means was assumed. Consequently,
standard laboratory protocol now is to take readings on 30 fibers in
each muscle area of interest.
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the Michigan State University Control Data 6500 Computer (CDC 6500).
Newman-Keuls tests were used to evaluate differences between pairs of
means whenever a significant (P g .05) F-ratio was obtained.

The histochemical data for each stain were plotted by treatment
group and muscle area. A Chi-square contingency analysis (ACT routine)
was used to determine if there were any significant differences
(P s .01) between frequency distributions for treatment groups within

muscle areas.



CHAPTER IV

RESULTS AND DISCUSSION

The material in this chapter is organized into four main sections.
The first part deals with the training results from the Controlled-
Running Wheel (CRW) programs and includes a summary of basic statistics
for the percentage of body weight lost during the daily exercise
periods, the environmental factors that operated during training, and
the data obtained on the two performance criteria. Body and muscle
weight results at sacrifice are given next. A major section is devoted
to the histochemical data which are presented by muscle area. Finally,
a discussion is offered that attempts to relate the present findings to

those of other investigations reported in the literature.

Training Results

The sprint (SPT) and endurance (END) Controlled-Running Wheel (CRW)
training programs are presented in Appendix A. These programs are modi-
fied versions of standard regimens routinely used in the Human Energy
Research Laboratory, Michigan State University, East Lansing, Michigan.
The modifications were incorporated in an attempt to design strenuous
exercise programs which would specifically stimulate anaerobic or

aerobic metabolic processes in individual muscle cells. The performances
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of the animals were evaluated using the percentage of expected meters
(PEM) and the percentage of shock-free time (PSF) as criterion measures.
The performance data for the SPT group are presented in Figure 1.
Progressive increases in the required running velocity were made
rapidly. From the beginning of the fourth week of training to the end
of the program, the animals were expected to run at velocities ranging
from 90 to 108 m/min (see Figure 1 and Appendix A, Table A-1). No com-
parable exercise programs for small animals has been found in the
literature. The results indicate the animals could not maintain the
program requirements. PEM and PSF values fell to approximately 50 and
40 respectively during the last three weeks of training. Several pos-
sible explanations could account for these relatively poor performance
data. The required running velocities may have been too fast, but
observations during the training sessions revealed that the animals
were capable of sprinting at the desired speeds. Low PEM and PSF values
might suggest that the animals responded to the unconditioned shock
stimulus rather than to the conditioned light stimulus. Improper ini-
tial training and defects in the CRW equipment could lead to such a
learning problem, but the END animals learned to run under the same
conditions and had no such difficulties (see Figure 2). A lack of con-
trol of environmental factors affecting training performance might have
accounted for these results. This is particularly true for air tempera-
ture and percent humidity, but again the END data make this explanation
improbable (see Appendix B). The most 1ikely cause of the low PEM and

PSF values is that the SPT regimen may have produced a state of
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overtraining. The data in Figure 1 support this hypothesis. Increases
in the required velocity were expected repeatedly from the SPT animals

before they were fully adapted to the previous velocity. The constant

additional stress could have resulted in overtraining.]

The training data for the END group are shown in Figure 2. PEM
values were 70 or higher on all but one day and averaged 81.3. PSF
values were above 60 on all but three days. The mean PSF value was
68.4. These results indicate that the animals were able to maintain
the daily requirements of the END program relatively well.

The END animals ran at the relatively slow speed of 36 m/min.
Periods of continuous running were progressively increased to 60 min
at the end of five weeks of training and were maintained at this level
for the remainder of the eight week program (see Appendix A, Table A-2).
The single bout of exercise was determined subjectively to result in
daily physical exhaustion of the animals. Repeated exposure to this
level of stress could have resulted in a mild state of overtraining.

On the average, the rats lost 2.7% body weight during each training
session (see Appendix B, Table B-2). Body weight data were used to
award an unplanned recovery day on Wednesday of each of the last three
weeks of training. The animals were run on the 39th and 40th days of

the program, but the results were not recorded due to a technician error.

]Supplementary data on hindlimb bone weights of the animals (to be
reported elsewhere) also suggest an overtraining phenomenon. The bones
of the SPT group were approximately 40% lighter than those of the CON
group. This observation was totally unexpected and does not agree with
the results of previous work in which less strenuous training regimens
were used (282).
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The requirements of the END program appear to be similar to those
of the training protocol used in the experiments conducted by Holloszy
and a number of other investigators (see Table 4). In those studies
animals ran continuously for periods of up to two hours at 31 m/min.
The discrepancy in the duration of time the animals could run probably
is due to the different modes of training. Holloszy and co-workers
used a motor-driven treadmill, whereas the CRW used in the present
study is animal-powered. The animals must displace the mass of the
running wheel during the acceleration period and then maintain the rota-
tion of the wheel at some required speed for the entire program. At
any given running velocity, the CRW is a more demanding exercise module
than the motor-driven treadmill. The metabolic changes produced by

these two pieces of apparatus need not coincide.

Body and Muscle Weight Results at Sacrifice

At the end of eight weeks of exercise, the trained animals were
significantly smaller than the sedentary control animals (see Table 6).
The difference in body weight between the SPT and END groups of animals
was not statistically significant. Both trained groups were approxi-
mately 20% lighter than the CON group. These results are in agreement
with those of previous studies using the CRW (150,278) and support the
general observation that strenuous exercise slows the usual gain in
body weight seen in the male rat over time (21,63,100,152). The slower
rate of weight gain is usually attributed to an increase in caloric

expenditure associated with exercise and, in some instances, to a
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Table 6. Analysis of variance for overall treatment effects and Newman
Keul's tests of paired comparisons for body weight at sacri-
fice and absolute and relative muscle weights.

Newman

Dependent Treatment Means F P Keul's

Variable CON SPT END Value Value Test**

Body Weight at 517.2 409.9 420.6 52.722 <0.0005* SPT =

Sacrifice (g) END < CON

Absolute Soleus 0.200 0.160 0.164 6.801 0.005* SPT =

Weight (g) END < CON

Absolute Plantaris 0.501 0.365 0.456 20.744 <0.0005* SPT <

Weight (g) END < CON

Relative Soleus 0.387 0.390 0.391 0.009 0.991

Weight (g x 10-3)

Relative Plantaris 0.968 0.892 1.082 11.232 <0.005* SPT< CON

Weight (g x 10-3) <END

*Significant overall treatment effect at the 0.05 level.
**Newman Keul's Tests were run at the 0.05 level of significance.
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significant reduction in food intake (63,222). In the present study,
however, these parameters were not monitored.

The absolute soleus weights followed the same pattern as was
found for the body weight data. The CON group had a significantly
larger mean soleus weight than did either of the trained groups. The
absolute soleus weights of the SPT and END groups were not significantly
different. Consequently, relative soleus weights were not different
among the three treatment groups.

The absolute plantaris weights of the three treatment groups were
significantly different. The plantaris muscles of the CON animals were
the largest, those of the END animals were intermediate in weight, and
those of the SPT animals were the smallest. When body weight was taken
into consideration, this relationship resulted in relative plantaris

weight being largest in the END group and smallest in the SPT group.

Histochemical Results

Histochemical photometer (HCP) readings were obtained for ATPase
9.4, SDH, LDH, PAS and SUD taken on 30 adjacent fibers in each of two
muscle areas. All muscle sections selected were determined histological-
1y normal as reflected by the routine H and E stain. Serial cross-
sections were used, and the HCP readings were taken on the same 60
fibers in all five sections from a given animal. The fibers were
selected as being typical of those in the central portion of the soleus
muscle and the medial posterior portion of the plantaris muscle (see

Plate I, A).
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PLATE 1

Schematic view of a cross-section of the superficial posterior
crural musculature. Histochemical profiles were determined for

the intramuscular areas identified as 1 and 2.

Serial-section histochemical profile for area 1 in the soleus

muscle of a control animal. B through F show ATPase 9.4, SDH,
LDH, PAS and SUD stains respectively. Fiber a is FOG; fiber b
is S0. (X 125)
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PLATE I
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Fiber-type Profiles

Histochemical profiles for individual fibers in the two muscle
areas were established from the serial cross-sections.

Soleus Muscle (Area 1).--Two fiber types were identified histo-

chemically in the soleus muscle (Area 1). The FOG fibers were charac-
terized by high reactions to the ATPase 9.4, SDH, LDH, PAS and SUD
staining procedures (see fiber a in Plate I, B-F). This profile con-
firms the metabolic heterogeneity previously reported for the FOG fiber
type (see Tables 2 and 4). The SO fibers stained less intensely with
all of the histochemical procedures (see fiber b in Plate I, B-F).

Plantaris Muscle (Area 2).--The plantaris muscle (Area 2) exhibit-

ed three fiber types. The FG fibers had high reactions to ATPase 9.4,
intermediate to low reactions for LDH, SDH and PAS, and low reactions
to SUD (see fiber a in Plate II, A-E). The FOG fibers stained darkly
with all five histochemical indicators (see fiber b in Plate II, A-E).
Low reactions to ATPase 9.4, intermediate staining intensities for SDH,
LDH and PAS, and intermediate to high reactions to SUD characterized

the SO fibers (see fiber c¢ in Plate II, A-E).

Fiber-type Distributions

Percent frequency distributions for HCP readings of the five
stains were constructed by treatment groups within muscle areas. This
procedure was carried out in an attempt to identify any treatment
effects on metabolic characteristics and fiber-type distribution.

A total of 30 frequency distributions were established (i.e., five
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PLATE II

Serial-section histochemical profile for area 2 in the
plantaris muscle of a control animal. A through E show
ATPase 9.4, SDH, LDH, PAS and SUD respectively. Fiber a
is FG; fiber b is FOG; fiber ¢ is SO. (X 125)
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PLATE II
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stains times two muscle areas times three treatment groups). Each fre-
quency distribution represents 270 muscle fibers (i.e., 30 fibers from
each of nine animals in a treatment group).

Chi-square tests were used to determine overall significant dif-
ferences between the frequency distributions of the three treatment
groups. Supplementary Chi-square tests were used to evaluate differ-
ences between pairs of distributions whenever a significant (P< .01)
overall value was obtained for a given procedure. In all analyses,
observations had to be pooled near the ends of the distributions to
achieve the minimum expected frequencies required for the Chi-square
test. Standard grouping procedures were followed. Although some of
the extreme HCP values were pooled for calculation purposes, raw data
were used when the frequency distributions were graphed.

Soleus Muscle (Area 1).--The results of the Chi-square analyses

for differences between frequency distributions of HCP readings in the
soleus muscle (Area 1) show that all comparisons were highly significant
(see Table 7). The CON frequency distribution for ATPase 9.4 (Figure 3)
shows two major peaks at the upper end of the graph. The smaller peak
may represent FOG fibers and the larger peak SO fibers. This interpre-
tation agrees with previous histochemical findings (4). The distribu-
tions for both trained groups were shifted to the left and were quite
dispersed. The SPT distribution was shifted more than the END distribu-
tion. Physiologically, these findings suggest that a slowing of con-
traction speed and an increase in resistance to fatigue may have

occurred with training. Another possibility, the existence of a simple
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exercise-induced enzyme depletion, cannot be ruled out from the present
data. Considering the time between the last exercise bout and sacrifice,
however, such an effect seems to be unlikely.

An apparent third group of fibers with relatively low values of
ATPase 9.4 can be seen in all three treatment distributions. This ob-
servation is interesting although it cannot be explained at the present
time.

The SDH distributions (Figure 4) were shifted to the right with
both types of training. This adaptation would indicate that increases
in aerobic metabolism took place. The shift is more apparent in the
END group than in the SPT group.

LDH is an index of lactate fermentation and is used as a marker
for anaerobic metabolism. With training, LDH reactions in individual
muscle cells generally were increased (Figure 5). The SPT training
program produced the largest overall shift in HCP readings, whereas an
additional effect of the END program was to decrease the range of
values. Note, however, that the distribution for the END trained animals
showed a small shift towards high LDH values. Evidence indicates that
endurance exercise may alter the metabolic profile of red (SO-FOG)
muscle to resemble cardiac muscle. That is, the red muscle may assume
the ability to utilize lactate as an energy source (174). This phenom-
enon may be reflected in the increased LDH activity in the SO soleus.

SPT training resulted in marked increases in glycogen stores as
reflected by the PAS stain (Figure 6). This finding is consistent with

the observed increase in LDH reactions for the SPT group since anaerobic
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metabolism is known to depend primarily on glycogen as a substrate (122).
The PAS distribution was shifted only slightly to the right with END
training. The small change implies a relatively trivial role of glyco-
gen as a substrate in prolonged activity.

Fat metabolism becomes increasingly important during physical
activity of long duration (107,108,164). With END training, approxi-
mately ten percent of the soleus muscle fibers demonstrated a high reac-
tion to SUD staining (Figure 7). However, a large increase in the
number of fibers exhibiting Tow HCP readings also was evident. The dis-
tribution of values for the SPT group was shifted slightly to the left.

Pictorial representations of the phenotype changes observed in the
soleus muscle are shown in Plate III.

Plantaris Muscle (Area 2).--The Chi-square analyses for differ-

ences between frequency distributions of HCP readings in the plantaris
muscle (Area 2) are summarized in Table 8. A1l but one of the compari-
sons were significant at the .01 level.

Nearly all of the plantaris muscle fibers in the CON animals had
HCP values between 80 and 90 for ATPase 9.4 (Figure 8). Homogeneity of
staining reaction was expected since this muscle area is composed pre-
dominately of fast contracting fibers. The frequency distributions of
the two trained groups were shifted to the left and were widely dis-
persed. The general pattern of training effects was the same as that
seen in the soleus muscle.

Significant increases in SDH staining intensity (Figure 9) were

observed in both the SPT and the END groups. A similar pattern was
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PLATE III

Representative phenotype changes in the histochemical profile of the

soleus muscle (Area 1) following eight weeks of strenuous training.

The first column (A, D, G, J and M) contains cross-sections from CON

animals. The center column (B, E, H, K and N) contains sections from

SPT animals. The last column (C, F, I, L and 0) contains sections from

END animals. The sections are not serial. (X 33)

A-C:

D-F:

J-L:

M-0:

ATPase 9.4 sections. Note the general decreases in staining
intensity and the reduced number of dark staining fibers in the

trained animals.

SDH sections. There is an exercise-related increase in both the
SO and the FOG fibers. This is particularly apparent in the END

animal.

LDH sections. The same general pattern is seen here as with SDH.
However, in this case the SPT animal has the highest staining re-

action.

PAS sections. The SPT animal has a large number of fibers with
high staining intensity. Reaction levels in the END animal are

similar to those in the CON animal.

SUD sections. There are many dark staining fibers in the END

animal.
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found in the soleus muscle. Although the SPT program originally was de-
signed specifically to stimulate anaerobic metabolic processes, it is
clear that both training programs had largevaerobic components.

The range of HCP readings for LDH (Figure 10) was greater than for
any other stain. This pattern was found in the soleus muscle also and
suggests that the LDH reaction is quite variable within fiber types.
Since the LDH stain used in this study is not isoenzyme specific,
these diverse values were anticipated. M-type and H-type LDH could be
expected to respond differently to the specific exercise programs.

With SPT training, a general shift to the right was observed. The END
running program resulted in a large number of fibers having lTow LDH
reactions.

SPT training caused a large increase in PAS staining intensity
(Figure 11). This adaptation would indicate an enhanced ability of the
fast contracting fibers to store glycogen after a program of strenuous
running. END training also produced a shift to the right, but the
change was much less pronounced than it was in the SPT animals.

Both training programs caused the distribution of HCP readings
for SUD to be shifted towards the middle and to be concentrated at the
lower end of the continuum (Figure 12). A larger percentage of low SUD
values were found in the END group than in the SPT group.

Plate IV gives a pictorial representation of the phenotype changes

observed in the plantaris muscle.
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PLATE IV

Representative phenotype changes in the histochemical profile of the
plantaris muscle (Area 2) following eight weeks of strenuous training.
The first column (A, D, G, J and M) contains cross-sections from CON
animals. The center column (B, E, H, K and N) contains sections from
SPT animals. The last column (C, F, I, L and 0) contains sections

from END animals. The sections are not serial. (X 33)

A-C: ATPase 9.4 sections. A similar pattern to that found in the
soleus is seen. Note the general decrease in staining intensity

in both the SPT and END animals.

D-F: SDH sections. An increased reaction is seen in both SO and FOG
fibers with training. The percentage of FOG fibers may be

increased.

G-I: LDH sections. Dark staining fibers are increased in the SPT

animal and decreased in the END animal.

J-L: PAS sections. Many fibers exhibit intermediate to dark reactions

in the SPT animal.

M-0: SUD sections. A moderate number of dark fibers can be seen in

both of the trained animals.
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Discussion

The two muscle areas investigated have markedly different fiber-
type populations. The central portion of the soleus muscle (Area 1) is
composed primarily of SO fibers with some FOG fibers interspersed. The
medial posterior portion of the plantaris muscle (Area 2) consists
almost entirely of fast-twitch fibers, and a majority of these are FG.

Serial cross-sections revealed typical patterns of relative
staining intensities for the fiber types within each muscle area.
However, different intensities of reaction to given staining procedures
were obtained for the same fiber types in the two areas. Consequently,
fiber-type comparisons between areas were not warranted. This observa-
tion supports the results of previous investigations (185,278).

The SPT and END exercise regimens each produced a number of alter-
ations in the histochemical profiles of muscle cells that were training-
program specific. In most cases, however, the differences between the
SPT and END effects were in the magnitude rather than in the direction
of the shifts. Surprisingly, most of the distribution changes were
similar in both magnitude and direction in the two muscle areas. Some
notable exceptions were observed.

The tissue sections from both training groups had large increases
in the number of fibers with Tow ATPase 9.4 values. This adaptation
was seen in both the slow soleus and the fast plantaris areas. Since
the intensity of histochemical staining at this pH has been shown to
parallel speed of contraction and fatiguability, the results suggest an

increase in the number of fibers possessing relatively slow contractile
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properties and high resistance to fatigue. The decreases in staining
intensity could have resulted from an actual transformation of fiber
types, a decreased reaction across the muscle cells of one or more
fiber types, or some combination of these possibilities.

The frequency distributions of the quantitative HCP readings for
ATPase 9.4 show that the staining intensities within categorically
determined groups of “dark" and "light" fibers are not homogeneous.
There are gradations of both "dark" and "1light". These gradations be-
come very apparent in the graphs of the trained animals where the ranges
of values are large. It is possible that an increased range of values
reflects a progressive adaptive process in the contractile properties
of the muscle.

Recent biochemical (15) and histochemical (208) studies have
demonstrated exercise-induced changes in the ATPase activity of specific
muscle fiber types. Baldwin et al. (15) reported significant changes
in the specific activity of actomyosin ATPase in rat skeletal muscle
homogenates after 18 weeks of endurance running on a treadmill.
Similarly, Muller (208) found a decrease in the percentage of fast-
twitch fibers in the soleus muscles of rats run for 12 weeks on a tread-
mill. The change in fiber-type composition was attributed to a trans-
formation of fast-twitch fibers to slow-twitch fibers.

Physiological studies inyolying motor unit composition and
recruitment also support the present findings. Motor units composed of
muscle fibers with 1ight ATPase 9.4 staining characteristics have been

shown to be fatigue resistant (44,46). These units are involved in
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maintaining prolonged low levels of physical activity (117). The ob-
served decreases in ATPase 9.4 staining intensities found in this study
suggest that both the END and the SPT training programs produced en-
hanced capacity for aerobic work.

A word of caution is appropriate regarding the evaluation and
interpretation of ATPase findings. The ATPase reaction is highly pH
sensitive. That sensitivity may have affected the results of the cur-
rent study to some unknown degree. The three groups of animals used
in the study were all involved in a larger diet-training experiment.
The research design of the parent study required the tissues of the CON,
SPT and END groups to be processed separately. The potential bias
inherent in following such a protocol is obvious. However, the ATPase
changes observed in this study were so striking that it appears they
must have been due, at least in part, to the traininé programs.

Histochemical and biochemical procedures for demonstrating SDH
reactivity are used routinely to indicate the aerobic capacity of
individual muscle cells (see Table 2). Several studies using low-
intensity exercise as a stimulus have reported increases in the activi-
ties of most tricarboxylic acid cycle enzymes (80,100,154,194,198,297).
In this study, SDH staining intensity was enhanced in both muscle areas
by both training regimens. This finding is in agreement with the
ATPase 9.4 results and suggests that the SPT program has an aerobic
component which is at least as great as that of the END program.

Metabolic adaptations specific to sprint-type training have

recently been reported. Biochemical assays have shown a 70% increase
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in phosphorylase activity (257), a 35% increase in pyruvate kinase
activity (257), and a 17% increase in triosephosphate dehydrogenase
activity (272) in soleus muscle homogenates of sprint-trained rats.
Corresponding changes were not found in predominately FG, FOG or mixed
muscles. In the present study, an increase in the glycogenolytic
capacity of the muscle cells of the SPT animals was indicated by an
increased number of high PAS and LDH readings. The shifts in distribu-
tions were greater in the soleus than in the plantaris. Since FG and
FOG fibers have been shown to have higher initial levels of glycogeno-
lytic and glycolytic enzymes than do SO fibers (see Tables 2 and 4),

these findings are consistent with current knowledge.



CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summar

This study was undertaken to determine the effects of two strenu-
ous training regimens on a histochemical profile of various fiber types.
Two muscle areas were selected for study on the basis of homogeneity of
fiber type: the central portion of the soleus (a predominately SO area)
and the posterior part of the plantaris (an FG-FOG area). Normal male
adult rats (Sprague-Dawley strain) were used as subjects. The two train-
ing regimens were modifications of Controlled-Running Wheel routines
previously reported from this laboratory (286). The modified programs,
an endurance running routine (END) and a sprint running routine (SPT),
represented attempts to stimulate selectively either aerobic or anaero-
bic metabolic processes in the experimental animals. Histochemical
profiles were determined using the reactions of ATPase 9.4 as an indi-
cator of contractile speed, LDH to reflect lactate fermentation activ-
ity, SDH to indicate Krebs cycle activity and, SUD and PAS to localize
intracellular fat and glycogen respectively.

Forty-two animals were brought into the laboratory and randomly
assigned to CON, SPT and END treatment groups. An eight-week treatment

period began when the animals were 84 days of age. Selected animals
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were sacrificed 72 to 96 hours after their last training session.

Each histochemical stain was evaluated objectively with the use
of a Histochemical Photometer (HCP). Photometric evaluations were
determined in serial cross-sections for a group of 30 adjacent muscle
fibers from each of the two muscle areas investigated. Selection
criteria developed for training performance and staining characteristics
resulted in a final frequency of nine animals per treatment group.

The histochemical data for each stain were plotted by treatment
group and muscle area and statistically analyzed for distribution dif-
ferences using a Chi-square contingency analysis (ACT routine).

A11 comparisons of frequency distributions by treatments were
significant (P <.01) except that for SDH in the plantaris (Area 2).

In most cases, the changes caused by training were similar in both
magnitude and direction in the two muscle areas investigated. That is,
the exercise-induced metabolic adaptations were similar in the SO
soleus and the FG-FOG plantaris areas.

The SPT and END exercise regimens each produced a number of alter-
ations in the histochemical profiles of the muscle cells. Both train-
ing regimens resulted in decreased staining intensities for ATPase 9.4
and increased reactivities to SDH staining. The SPT program specifical-
1y enhanced LDH and PAS staining reactions, whereas END training pro-
duced a large group of fibers staining darkly with SUD. In effect, the
END training program resulted in an increased aerobic capacity of the
muscle cells while the SPT program enhanced both their aerobic and

anaerobic metabolic capacities.
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Conclusions

The results of this study have led to the following conclusions:

. A wide range of staining intensities for histochemically demonstrated
metabolic markers can be found within each muscle fiber type.

. The SPT and END training programs produced similar increases in the
aerobic capacity of muscle cells in the two areas investigated.

This adaptation was indicated by the increased staining reactions
for SDH.

. The contractile properties of the muscle cells involved were altered
by both training regimens. This change was reflected by decreased
reactivity to the ATPase 9.4 staining procedure.

. The SPT training program resulted in specific anaerobic metabolic
adaptations as indicated by the enhanced staining reactions to the

LDH and PAS techniques.

Recommendations

. The present study should be repeated with the intersession staining
factor eliminated.

. In any follow-up study using the SPT program, additional anaerobic
metabolic markers should be included. The response of enzymes such
as phosphorylase and phosphofructokinase would be helpful in evalu-
ating the metabolic adaptations to sprint training.

. The specifications of the SPT program should be refined to produce
as specific an anaerobic effect as possible. In addition, other

high-intensity exercise regimens for animals should be developed.
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. Correlative morphological, biochemical, histochemical and physio-
logical studies are needed for complete muscle evaluations.

. Power-type events for animals must be designed to add to the present
knowledge of the metabolic adaptations resulting from activities
across the endurance continuum. High-jumping and weight-1ifting
programs should be developed for this purpose.

. Circulatory adjustments in skeletal muscle produced by anaerobic
training should be investigated.

. The metabolic adaptations in animals resulting from exercise should
be substantiated in human subjects via muscle biopsy and energy
metabolism studies. These results then should be extended to the
applied clinical and training areas.

. The effects of specific exercise regimens on the rate of flow and
the composition of axoplasmic transport materials should be studied.
In addition, the entire area of trophic relationships within the
neuromuscular unit must be explored in relation to exercise.

. Studies involving the recruitment patterns of motor units during

specific types of exercise should be continued.
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APPENDIX A

TRAINING PROGRAMS

Modified Eight Week Sprint Training Program for Postpubertal and Adult Male Rats in
Controlled-Running Wheels

Total
Ac- Time Time Total
celer- Work Repeti- Be- of Total Work
Day Day ation Time Rest tions No. tween Run Prog. Exp. Time
: of of Time (min: Time per of Bouts Shock Speed (min: Meters (sec)
Wk. Wk. Tr. (sec) sec) (sec) Bout Bouts (min) (ma) (m/min) sec) TEM TWT
0 4=T -2 3.0 40:00 10 1 1 5.0 0.0 27 40:00 --- -—-
5=F -1 3.0 40:00 10 1 1 5.0 0.0 27 40:00 --- -——
1 1=M 1 2.0 00:10 10 10 8 2.5 1.2 36 42:50 480 800
2=T 2 2.0 00:10 10 10 8 2.5 1.2 36 42:50 480 800
3=W 3 1.5 00:10 15 10 8 2.5 1.2 54 49:50 720 800
4=T 4 1.5 00:10 15 10 8 2.5 1.2 54 49:50 720 800
5=F 5 1.5 00:10 15 10 8 2.5 1.2 54 49:50 720 800
2 1=M 6 1.5 00:10 15 10 8 2.5 1.2 54 49:50 720 800
2=T 7 1.5 00:10 15 10 8 2.5 1.2 54 49:50 720 800
3=N 8 1.5 00:15 30 6 7 2.5 1.2 72 43:00 756 630
4=T 9 1.5 00:15 30 6 7 2.5 1.2 72 43:00 756 630
5=F 10 1.5 00:15 30 6 7 2.5 1.2 72 43:00 756 630
3 1=M N 1.5 00:15 30 6 7 2.5 1.2 72 43:00 756 630
2=T 12 1.5 00:15 30 6 6 2.5 1.2 81 36:30 729 540
=W 13 1.5 00:15 30 6 6 2.5 1.2 81 36:30 729 540
4=T 14 1.5 00:15 30 6 6 2.5 1.2 8] 36:30 729 540
5sF 15 1.5 00:15 30 6 6 2.5 1.2 81 36:30 729 540
4 1=M 16 1.5 00:15 30 6 6 2.5 1.2 81 36:30 729 540
2=T 17 2.0 00:15 30 5 6 2.5 1.2 90 32:00 675 450
=W 18 2.0 00:15 30 5 6 2.5 1.2 90 32:00 675 450
4=T 19 2.0 00:15 30 5 6 2.5 1.2 90 32:00 675 450
5=F 20 2.0 00:15 30 5 6 2.5 1.2 90 32:00 675 450
5 1=M 21 2.0 00:15 30 5 6 2.5 1.2 90 32:00 675 450
2=T 22 2.0 00:15 30 5 6 2.5 1.2 99 32:00 743 450
3=N 23 2.0 00:15 30 5 6 2.5 1.2 99 32:00 743 450
4=T 24 2.0 00:15 30 5 6 . 2.5 1.2 99 32:00 743 450
5=F 25 2.0 00:15 30 5 6 2.5 1.2 99 32:00 743 450
6 1=M 26 2.0 00:15 30 5 6 2.5 1.2 99 32:00 743 450
2=T 27 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
3=W 28 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
4=T 29 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
5=F 30 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
7 1=M 31 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
2=T 32 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
3= 33 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
4=T 34 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
5=F 35 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
8 1=M 36 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
2=T 37 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
3=W 38 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
4=T 39 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450
5=F 40 2.0 00:15 30 5 6 2.5 1.2 108 32:00 810 450

This training program is a modified version of a standard program designed using male rats of the

Sprague-Dawley strain (150,278).

A1l animals should be exposed to a minimum of one week of voluntary running in a wheel prior to the

start of the program.

Failure to provide this adjustment period will impose a double learning

situation on the animals and will seriously impair the effectiveness of the training program.
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Table A-2. Modified Eight Week Endurance Training Program for Postpubertal and Adult Male Rats in
Controlled-Running Wheels
Total
Ac- No. Par- Time Time Total
celer- Work Repeti- of tial Be- of Total Work
Day Day ation Time Rest tions Com- Bouts tween Run Prog. Exp. Time
. of of Time (min: Time per plete (min: Bouts Shock Speed (min: Meters (sec)
Wk. Wk. Tr. (sec) sec) (sec) Bout Bouts sec) (min) (ma) (m/min) sec) TEM TWT
0 4=T -2 3.0 40:00 10 1 5.0 0.0 27 40:00 --- -—
5=F -1 3.0 40:00 10 1 5.0 0.0 27 40:00 --- -—--
1 1=M 1 2.0 02:30 0 1 6 2.5 1.2 27 27:30 405 900
2=T 2 2.0 02:30 0 1 6 2.5 1.2 27 27:30 405 900
3=N 3 1.5 05:00 0 1 3 5.0 1.2 36 25:00 540 900
4=T 4 1.5 05:00 0 1 3 5.0 1.2 36 25:00 540 900
5=F 5 1.5 05:00 0 1 3 5.0 1.2 36 25:00 540 900
2 1=M 6 1.5 05:00 0 1 3 5.0 1.2 36 25:00 540 900
2=T 7 1.0 07:30 0 1 2 5.0 1.2 36 20:00 540 900
3=W 8 1.0 07:30 0 1 2 2.5 1.2 36 17:30 540 900
4=7 9 1.0 07:30 0 1 2 1.0 1.2 36 16:00 540 900
5=F 10 1.0 15:00 0 1 1 0.0 1.2 36 15:00 540 900
3 1=M N 1.0 15:00 0 1 1 05:00 1.0 1.2 36 21:00 720 1200
2=T 12 1.0 15:00 0 1 1 07:30 1.0 1.0 36 23:30 810 1350
3=N 13 1.0 15:00 0 1 1 10:00 1.0 1.0 36 26:00 900 1500
4=T 14 1.0 15:00 0 1 1 12:30 1.0 1.0 36 28:30 990 1650
5=F 15 1.0 15:00 0 1 2 1.0 1.0 36 31:00 1080 1800
4 1=M 16 1.0 15:00 0 1 2 05:00 1.0 1.0 36 37100 1260 2100
2=T 17 1.0 15:00 0 1 2 07:30 1.0 1.0 36 39130 1350 2250
3=W 18 1.0 15:00 0 1 2 10:00 1.0 1.0 36 42:00 1440 2400
4=T 19 1.0 15:00 1] 1 2 12:30 1.0 1.0 36 44:30 1530 2550
5=F 20 1.0 15:00 0 1 3 1.0 1.0 36 47:00 1620 2700
5 1=M 21 1.0 15:00 0 1 3 05:00 1.0 1.0 36 52:00 1800 3000
2=T 22 1.0 15:00 0 1 3 07:30 1.0 1.0 36 54:30 1890 3150
3=N 23 1.0 15:00 0 1 3 10:00 1.0 1.0 36 57:00 1980 3300
4=T 24 1.0 15:00 0 1 3 12:30 1.0 1.0 36 59:30 2070 3450
5=F 25 1.0 15:00 0 1 4 1.0 1.0 36 63:00 2160 3600
6 1=M 26 1.0 15.00 0 1 4 1.0 1.0 36 64:00 2160 3600
2=T 27 1.0 30:00 0 1 2 5.0 1.0 36 65:00 2160 3600
3= 28 1.0 30:00 0 1 2 2.5 1.0 36 62:30 2160 3600
4=T 29 1.0 30:00 0 1 2 1.0 1.0 36 61:00 2160 3600
5=F 30 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
7 1=M 3 1.0 6000 0 1 1 0.0 1.0 36 60:00 2160 3600
22T 32 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
3=W 33 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
4=T 34 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
5=F 35 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
8 1M 36 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
2=T 37 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
=N 38 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
4=T 39 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600
5=F 40 1.0 60:00 0 1 1 0.0 1.0 36 60:00 2160 3600

This training program is a modified version of a standard program designed using male rats of the

Sprague-Dawley strain (150,278).

A1l animals should be exposed to a minimum of one week of voluntary running in a wheel prior to the start
Failure to provide this adjustment period will impose a double learning situation in the

of the program.
animals and will seriously impair the effectiveness of the training program.
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APPENDIX B

BASIC STATISTICS FOR TRAINING DATA

Table B-1. Basic Statistics for Percentage of Body Weight Loss, Environmental Factors and
Performance Criteria for the Sprint Running Group
Simple Correlations
Percent
Body
a Standard Air Percent Bar. Weight
Variable N Mean Deviation Temp. Humidity Press. Loss PEM
Air Temp. (°F.) 340 73.1 4.6
Percent Humidity 340 38.6 12.3 .122
Bar. Press. (mm Hg) 340 740.7 4.2 -.255 -.N7
Percent Body Wgt Loss 340 1.7 .b -.041 -.182 .029
PEM 340 66.2 25.1 -.197 -.477 .266 .100
PSF 340 66.5 22.3 -.287 -.339 .155 .038 .840
A7otal training days for all animals.
Table B-2. Basic Statistics for Percentage of Body Weight Loss, Environmental Factors and
Performance Criteria for the Endurance Running Group
Simple Correlation
Percent
Body
a Standard Air Percent Bar. Weight

Variable N Mean Deviation Temp. Humidity oress. Loss PEM
Air Temp. (°F.) 314 73.9 4.0
Percent Humidity 314 47.1 10.6 .147
Bar. Press (mm Hg) 314 739.5 3.8 -.290 -.679
Percent Body Wgt Loss 314 2.7 1.0 .455 A3 -.173
PEM 314 81.3 19.3 -.258 -.263 .323 -.060
PSF 314 68.4 19.4 -.282 -.120 174 .759 .759

3otal training days for all animals.



