
a. . , 4‘:(‘fptxs‘e‘ . . ‘ ~ ‘ . w

- ' ‘ - 2 .rLo..~;".-.I-' . ' .. «3m ‘ — ' .. we.
"‘(M'3;.a{&,h‘ {.3(11-31;: H. ‘7' ‘ - '? .’ . . “5:53 "W“.&%Q§

5‘331" Dab-".7 ‘. ‘ 4‘ {I .~. ---..... ~ ' ”'3‘?“WW.-c:-
t. in ‘ ‘ M .. _ >4 - \. fi-..

-. 2'4”...- 44.11:: _ - M,.\ .\ r .. ‘og‘ _ ' .- 3. «3% M4“. ‘25:.

‘m .-\ ‘ Wit 5..“ u“;
"'1‘~H.\"‘.'.'v:-“.’J'i‘ u'a * . . .

4 .'-‘/o‘."2"- 5
u"..‘v$r\ Wflmfiwwt
' tAl ' ~ - I V ‘ an!'L

4.13,? {3L} :5. :‘}‘5‘ m1..-“3;?“

baa-fiat.

. | .J“ ‘

"" r at?“ "w,igéik‘ a;

55.8 '2, '1! ‘- W4734:?” .

W95.1;3‘1."'~‘¢‘~‘.‘¢ 4“:13};-'

'2"

.wj. . 5&3},fig“ . ”WV;

’Afv,\7:¢;~:‘.:.g,,v.”‘31 ,

'23»;N... 332126.:““~'Ii-':i3{.". 3‘ d: . A

~‘i':l.‘-‘~"":Z~3:-;:'- ,. .-67.93321ML. 7“" .. . ‘ :-~ 7 P. . _

fl“ ‘ "w 43%” "“ . «qua; ' " --;:R:flx.n6.31;“

' J. -' ‘ '31:: vmsfin wZKV-nggg J“ - - . 2.5’i*.'.-‘1~.-\1iff-~

M .

'fi Wm.-

-513
to. us

-5:: £373.95." ~
é”;{5:}A“:”“13;

2":‘132-1 -‘-‘- "..(..“i’i'.I."k‘%fi\'-‘

\“t‘n

“(an

32.14,? 333.}.:,,:':_
. g?”

.

L71: ' :. fall-4;. V _
.

y

f7”“I . ‘.;I;(z:’.~?-7Lg?¥.
/;{I'{;Zé"14;.5'9’13."3".7!‘ ' 42’-. v

/r%‘21,;001 ' :1". ' .‘z' ~ Z. '71:.f, I . "I:

7 Kigali”;”4?;3,2245.H': ‘J'. 11 55?:°r If 6' l /f”
I???

0.2;} 5"!;."I':’:“ .n’ H I 7/24.?” :22” If.' .' '1’"!-
""I'a’yj o'_ ,-.".‘. u, .- u 4' "1:; 'Jl'q-J. 7:.

t I(.. . - - . . n“; .‘t‘

it’o'if, .'.r.J._.“'33." a9",'31]./ JV . Cg];

J3: ,77;‘/ '1 7:3.
’1’":- {:5 It?3”or."inf”)!3-} I

l: 6' ‘ ’6’ . 5:11!" [‘7’ ’:
";:; 'I’::;.,”r,'

:;?_5"'J.DJ
.. , "”4"“.xi}; ,4

far/g I - -12(:97!If? g!) “(1,,“

«get?
:0:’i.

U",'I'y

'11,!'(VI‘):

MMAI/m"6x33,”
(OW GJ»\

146177067
ATE UNIVERSITY UIIARIES

, llllllllll nu m l mm
00051 3758

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

INTERPROCESSOR COMMUNICATION

IN DISTRIBUTED MEMORY MULTIPROCESSORS

presented by '

Youran Lan

has been accepted towards fulfillment

of the requirements for

Ph. D. _ Computer Science
degreem_____ .

 M;
Major professor U

mew.

0-12771

MSU

RETURNING MATERIALS:

Place in book drop to

unamuas remove this checkout from

1-". your record. FINES will

be charged if book is

returned after the date

stamped below.

Twila ; 1990-

i, “I‘M

JUL 1 '80”.

‘5’?” A 3170*

rmw‘“

INTERPROCESSOR COMMUNICATION

IN

DISTRIBUTED MEMORY MULTIPROCESSORS

By

Youran Lan

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1988

ABSTRACT

INTERPROCESSOR COMMUNICATION

IN DISTRIBUTED MEMORY MULTIPROCESSORS

By

Youran Lan

Distributed memory multiprocessors (DMMPs) have gained much attention recently

due to their unique architectural characteristics to establish a massively parallel process-

ing environment. In such systems, the interprocessor communication mechanism has

been identified as the major source of system bottleneck. Thus, an efficient interprocessor

communication mechanism is the key to the future success of DMMPs. This motivates

the study of a fast, versatile, and fault-tolerant interprocessor communication mechanism

for DMMPs.

Both store-and-forward and virtual cut-through communication techniques are dis-

cussed. Formal models are developed to facilitate the performance comparison of these

two techniques. Three types of interprocessor communication patterns are demanded

from application point of view, which are unicast (one-to-one), multicast (one-to-many),

and broadcast (one-to-all). A graph theoretical model, namely the optimal multicast tree,

is proposed to characterize these communication pattems and to define the performance

evaluation criteria, time and trafiic.

The multicast communication, in particular, is highly demanded, but not directly

supported by any existing DMMP. A distributed multicast algorithm based on a heuristic

greedy method is proposed. In addition to guaranteeing a shortest path for message

delivery between the source and each destination, the total traffic created is very close to

the optimal solution. More importantly, the algorithm can be efficiently implemented in

hardware using the virtual cut-through technique. The architecture of the hardware router

is presented. A prototype router design for a 3-cube has been fabricated by MOSIS using

the 3 micron CMOS technology.

Enhancement to the proposed algorithm and its hardware implementation is studied,

which allows the communication mechanism to be able to handle interprocessor com-

munication in a faulty hypercube in which each fault-free node has at most one faulty

neighboring node.

In summary, centered around the interprocessor communication issue, this disserta-

tion focuses on modeling, algorithm development, and hardware implementation of a

versatile and efficient communication mechanism. The proposed communication

mechanism is novel in the sense that it is the first communication hardware for DMMPs

which directly supports all three types of communications, and the first one which has

fault-tolerant capability. It can be readily applied to future generations of DMMPs to

significantly increase overall system performance.

© Copyright by

Youran Lan

1988

iv

To my parents:

Zhen-lu Lou and Zhu-yu Zhou

ACKNOWLEDGEMENTS

I would like to thank Professor Lionel M. Ni, my thesis adviser, for his invaluable

inspiration and guidance throughout my graduate study. Without the knowledge and time

he gave me, this work would have been impossible. I would like to thank Professor

Abdol-Hossein Esfahanian, my thesis co-advisor, for directing me to pursue rigorous

research approach and for his continual encouragement.

I would like to thank Professors Edwin Kashy, George Stockman, and Anil Jain, for

their encouragement and many excellent comments during the course of my dissertation

research.

I would like to acknowledge all the faculty members and students who gave me

help and assistance during my studying at Michigan State University. Too numerous to

list all names, in particular, I would like to express my appreciation to Bruce McMillen,

Chung-Ta King, Xiao-la Lin, and Ning Liao, for their valuable help and insightful com-

ments; to Chong-wei Xu, Eric Wu, and Taieb Znati for helpful discussions; and to M.

Driscoll, T. Chen, W. Chou, J. Miller, and P. Prins for their excellent work on the

detailed layout of the prototype design of the router chip.

I am very grateful to my parents and parents-in-law for their years of concern and

support; to my wife Ben-1n for her constant encouragement and direct assistance in the

preparing of this manuscript; and to my wonderful daughter Lana for being so under-

standing.

This work was supported in part by the DARPA ACMP project and in part by the

State of Michigan RE/ED project.

vi

TABLE OF CONTENTS

List of Tables .. ix

List of Figures ... x

Chapter 1 Introduction .. 1

1.1 Demand of massively parallel multiprocessors 2

1.2 Distributed memory multiprocessors (DMMPs) 3

1.3 Interprocessor communication ... 5

1.4 Motivation and problem statement .. 7

1.5 Thesis organization .. 8

Chapter 2 Distributed Memory Multiprocessors ... 10

2.1 DMMPs under consideration ... 10

2.2 Interconnection topologies for DMMPs .. 12

2.3 Topological properties of hypercube ... 18

2.4 Review of hypercube multiprocessors ... 20

Chapter 3 Issues on Interprocessor Communication ... 24

3.1 A model for interprocessor communication .. 24

3.2 Three types of interprocessor communications 27

3.3 Centralized vs. distributed routing ... 28

3.4 Packet vs. circuit switching ... 29

3.5 Store-and-forward vs. virtual cut-through forwarding 30

3.6 Adaptive vs. non-adaptive routing ... 34

3.7 Software vs. hardware implementation ... 35

Chapter 4 Optimal Multicast Tree (OMT) — A Model

for Interprocessor Communication ... 37

4.1 Graph theoretical notation and definitions ... 37

4.2 The Optimal Multicast Tree model .. 38

4.3 Unicast and broadcast in hypercube multiprocessors 43

4.4 Multicast in hypercube environment ... 50

vii

Chapter 5 A Distributed Multicast Algorithm

for Hypercube Multiprocessors .. 58

5.1 Underlying rationale of the multicast algorithm 58

5.2 The Greedy multicast algorithm .. 61

5.3 An illustration example .. 65

5.4 Performance study on the greedy algorithm .. 69

Chapter 6 A Hardware Router Design for Hypercubes 79

6.1 Hardware design considerations .. 80

6.2 Multi-destination message format ... 81

6.3 An overview of the router .. 82

6.4 Message Handling Unit (MHU) ... 84

6.5 The processing unit .. 87

6.6 The multicaster design 91

6.7 The prototype MHU chip ... 97

Chapter 7 Routing in Faulty Hypercubes .. 99

7.1 Fault-tolerant systems .. 99

7.2 Design considerations for fault-tolerant roofing 101

7.3 Fault-tolerant routing algorithms ... 107

7.4 A fault-tolerant router design ... 118

7.5 General fault-tolerant routing problems .. 123

Chapter 8 Summary and Directions for Future Research 126

8.1 Summary of major contributions ... 126

8.2 Directions for future research .. 128

Bibliography .. 131

viii

LIST OF TABLES

Table 1.1 Comparison of communication and computation

of three DMMPs .. 6

Table 2.1 Hypercube system characteristics .. 23

Table 3.1 One hop communication comparison .. 25

Table 5.1 The actual addresses of source (00110) and destinations 66

Table 5.2 The reference array at node 00110 .. 66

Table 5.3 The reference array after the first run of the algorithm 67

Table 5.4 The reference array after the second run of the algorithm 67

Table 7.1 The reference array at node 00110 in faulty case 118

LIST OF FIGURES

Figure 2.1 The generic structure of the DMMP under consideration 11

Figure 2.2 The generic structure of individual nodes in the DMMP 12

Figure 2.3 An 8x8 Omega network .. 14

Figure 2.4 A 16 node BBN Butterfly interconnection network 14

Figure 2.5 Examples of point-to-point interconnection networks 16

Figure 3.1 Communication between two neighboring nodes 25

Figure 3.2 One-to-one message-passing model (It hops) .. 26

Figure 3.3 Message-passing time in a 64-node NCUBE .. 33

Figure 4.1 A multicast example in 3-cube .. 39

Figure 4.2 A example of multicast in a 2-D mesh .. 42

Figure 4.3 The "standard" unicast algorithm .. 45

Figure 4.4 A broadcast algorithm using a weight ... 46

Figure 4.5 A Broadcast algorithm without using weight .. 47

Figure 4.6 A Broadcast algorithm using a Control vector .. 48

Figure 4.7 A broadcast tree generated by BROADCAST.3 ... 49

Figure 4.8 One-to—two multicast trees in hypercube .. 53

Figure 4.9 Multicast algorithm for two destination case .. 53

Figure 4.10 One-to-three multicast tree patterns .. 55

Figure 4.11 Multicast algorithm for three destination case .. 56

Figure 4.12 One-to-four general multicast tree patterns ... 57

Figure 5.1 Greedy multicast algorithm ... 62

Figure 5.2 A multicast tree in a 5-cube ... 68

Figure 5.3 Comparison of three communication methods in a Q 6 71

Figure 5.4 Performance comparison of three multicast algorithms

(under uniform distribution) .. 73

Figure 5.5 Performance comparison of Greedy algorithm

with optimal solution (under uniform distribution) 74

Figure 5.6 Performance comparison of 3 multicast methods

(under decreasing probability distribution) ... 77

Figure 5.7 Performance comparison of Greedy algorithm with optimal

solution (under decreasing probability disu'ibution) 78

Figure 6.1 The block diagram of a router in a Q3 .. 83

Figure 6.2 The block diagram of an MHU ... 85

Figure 6.3 The Processing Module ... 87

Figure 6.4 The Input port and the Store .. 88

Figure 6.5 The Broadcaster for a fault-free Q3 .. 90

Figure 6.6 The Multicaster and the Store ... 92

Figure 6.7 The Decoder (DECR) for the j-th column .. 93

Figure 6.8 The Maximum column Checker (MAXC) .. 94

Figure 6.9 The Column Selector (CLMS) .. 96

Figure 6.10 The prototype MHU chip .. 98

Figure 7.1 An example of routing in a faulty Q4 ... 101

Figure 7.2 Simulation results of the faulty model .. 106

Figure 7.3 A unicast algorithm for faulty hypercubes .. 108

Figure 7.4 An example of unicast in faulty hypercubes ... 109

Figure 7.5 A broadcast algorithm for faulty hypercubes .. 111

Figure 7.6 A broadcast tree in a faulty Q4 generated by BROADCAST.F2 114

Figure 7.7 Greedy multicast algorithm for faulty hypercubes 115

Figure 7.8 Comparison of multicast trees in a fault-free and a faulty Q 5 119

Figure 7.9 Decoder (DECR) for j-th column for faulty Q3 120

Figure 7.10 Broadcaster for faulty hypercubes .. 122

xi

CHAPTER 1

INTRODUCTION

A distributed-memory multiprocessor (DMMP) is a computer system consisting of

many processors in which each processor is physically associated with its own local

memory and all processors work independently and communicate through an intercon-

nection network connecting the processors. The hypercube multiprocessor is the best

known example of DMMPs, and has attracted a great deal of attention in the past few

years. Many hypercube multiprocessors, such as the Ncube, iPSC, Ametek, and FPS T-

series are commercially available. Massively parallel DMMPs possess the potential of

achieving computation power beyond the megaflops range [HMSC86, Wile87]. Inter-

processor communication is the fundamental means allowing processors to communi-

cate in such systems. However, it is known that the interprocessor communication

mechanism is the major bottleneck of DMMPs, especially in the first generation sys-

tems. Centered around the interprocessor communication problem, this dissertation

research focuses on modeling, algorithm development, and hardware implementation of

a versatile and efficient interprocessor communication mechanism. The proposed inter-

processor communication mechanism not only significantly speeds up communication,

but also has fault-tolerant capabilities. It can be readily applied to future generations of

DMMPs to significantly increase the overall system performance.

1.1 DEMAND OF MASSIVELY PARALLEL MULTIPROCESSORS

The requirements of powerful computer systems which can handle computationally

intensive problems are increasingly in demand in many areas. Weather forecasting,

simulations, modeling of complex physical phenomena, advanced data base manage-

ment, artificial intelligence, image processing and pattern recognition, mechanical

engineering analysis, and medical diagnosis are some examples among many other

large-scale scientific and engineering applications [I-IwBr84, FoOt84, BaPa86].

To cope with these challenging computational requirements, many advanced com-

puter architectures have been developed. Great efforts have been made toward the fol-

lowing two trends in order to increase computational power by orders of magnitude.

One trend is to build vector machines with one or a few very powerful central proces-

sors, depending mainly on very fast circuit technology. For example, the Cyber 205 and

Cray-X/MP depend heavily on function unit pipelining and interleaved memory

modules to gain high preformance. The computational power of a single processor,

however, is limited by both physical and architectural bounds. To achieve new perfor-

mance improvement in such systems has become more and more difficult. Thus, a

natural trend is to construct systems consisting of multiple processors, which has been

shown in recent years to be the most straightforward and cost-effective approach to

achieve high performance. With continuous technological advances in integrated cir-

cuits, more powerful and compact, but less expensive, microprocessor, memory and

communication chips are available. This makes the construction of massively parallel

multiprocessor systems feasible. In such systems, by adding more processors and using

a better interconnection network, the performance can be greatly improved to the level

far beyond the performance of existing supercomputers.

1.2 DISTRIBUTED MEMORY MULTIPROCESSORS (DMMPS)

Existing multiple processor computer systems can be characterized into two struc-

tural classes: SIMD (single instruction stream / multiple data stream) architecture and

MIMD (multiple instruction stream / multiple data stream) architecture. All these archi-

tectures are centered around the concept of parallelism [HwBr84, Patt85].

An SIMD computer consists of an array of processors, a network to interconnect

these processors, and a central control unit to synchronize the operation of the proces-

sors. In an SIMD computer, all processors are executing the same instruction at any

given time, but multiple sets of operands are fetched and operated on in multiple proces-

sors in a synchronous fashion. All the processors are controlled by the central con-

troller.

Typical examples of SIMD machines include the Illiac IV, which has a central con-

trol unit and 64 mesh connected processing elements, each of which has direct connec-

tions to four other processing elements [BBKK68]; MPP, a system which contains 16K

bit-serial processing elements connected in a two dimensional mesh structure [Batc80];

and the Connection Machine, consisting of 64K bit-serial processors with the structure

of cube-connected toroidal lattices [Hill85, SASL85]. Because of the synchronous

feature, these machines are good for solving very structured problems, such as matrix

operations and image processing, which deal with mainly array data types. For exam-

ple, the primary purpose of the MPP is to process satellite imagery.

An MIMD computer, or a multiprocessor system, consists of many processors com-

municating through an interconnection mechanism [HwBr84]. In an MIMD computer,

all processors work independently in an asynchronous fashion. They execute different

instruction su'eams on different sets of operands. Usually, these processors are homo-

geneous and the communication delay between processors is relatively small but non-

negligible. Because of the multiple instruction stream feature, MIMD computers pro-

vide a more general computation model. They are more flexible and versatile than

SIMD computers.

Depending on the structure of the memories in the system, multiprocessor systems

can be classified as centralized-memory multiprocessors and distributed-memory mul-

tiprocessors [NiKP87]. In a centralized-memory multiprocessor, all memory modules

are equally accessible to all processors. A processor/memory interconnection network,

therefore, is needed to allow all processors in the system to access the memory modules.

There are several hardware bottlenecks in such a system, which include the number of

processors, the memory bandwidth, and the bandwidth of interconnection networks. For

example, many commercial products of centralized-memory systems including

Sequent’s Balance 8000 and 21000, Encore’s Multimax, and CRAY-X/MP [DoDu85,

HwBr84, Olso85] can have no more than 30 processors.

In a distributed-memory multiprocessor, however, each memory module is physi-

cally associated with a processor. No memory is globally accessible. An interprocessor

communication network is needed to allow the processors to communicate with each

other. Because each memory module is attached to a corresponding individual proces-

sor, the performance of an algorithm depends on how well the application problem is

partitioned and mapped into the processors. A multiprocessor system may have a mixed

memory structure to provide a local memory to each processor and global memory

modules shared by all processors.

From the viewpoint of processes, there are two basic process synchronization and

communication models. One is the shared memory model in which the system has a

global memory accessible by all processors. The processes communicate through shared

variables. In such a system, the access time to a unit of data is the same for all proces-

sors. A hardware device or a software protocol is required in such systems for arbitrat-

ing the access to the memory among the processes which share the memory. The shared

memory may cause a software bottleneck.

The other process synchronization and communication model is message-passing

in which processors communicate by explicit message-passing through the interproces-

sor communication network. In a message-passing system, the performance of an algo-

rithm depends on how well the application problem is partitioned and mapped into the

processors, and how efficient the communication mechanism in the system is.

Centralized-memory multiprocessors usually adopt the shared memory model, whereas

distributed-memory multiprocessors usually prefer the message-passing model

[NiKP87].

To construct a massively parallel system consisting of hundreds or even thousands

of processors, the distributed-memory structure is a promising approach. In order to

reduce the software bottleneck in such a complex system, message-passing is naturally a

better choice as the process synchronization and communication mechanism. Therefore,

in this study, we consider message-passing distributed-memory multiprocessors. From

here on, we use distributed-memory multiprocessor (DMMP) with the implication of

message-passing model.

1.3 INTERPROCESSOR COMMUNICATION

As mentioned in the previous section, a DMMP system does not have the software

bottleneck as in the case of a shared memory system. However, DMMPs do have an

interprocessor communication problem.

There are three basic communication types: unicast (one-to—one), broadcast (one-

to-all), and multicast (one-to—many). In the first generation DMMPs, only unicast is

directly supported. Message routing for broadcast is done by subroutine calls at the

source and each intermediate processor. Multicast communication is usually imple-

mented by issuing multiple unicast.

The interprocessor communication mechanism and the computational power of

each individual processor in a DMMP system are two of the major factors which affect

the performance of the system. In order to fully explore the computational power of a

DMMP, computation and communication must be balanced, that is, a proper

communication/computation ratio (about 1) should be achieved [ShFi87].

However, the communication/computation ratios in the first generation DMMPs

are very high. Table 1.1 is a comparison of the communication time (to transfer a 64 bit

data over a link) to the computation time (to preform a multiplication on two double pre-

cision floating-point numbers) for three first generation DMMPs [Duni87].

Table 1.1 Comparison of communication and computation of three DMMPs

Item AMETEK S-14 Intel iPSC NCUBE

8-byte transfer time (us) 640 1120 470

8-byte multiply time (us) 33.9 43.0 14.7

Comm/Comp. 19 26 32

As can be seen from the table, the communication/computation ratios are all

greater than 10. This indicates the communication mechanism provided in the first gen-

eration machines does not match the speed of powerful processors and thus becomes the

major bottleneck of the system preformance.

Therefore, to provide an efficient interprocessor communication is the key to the

successful exploitation of parallelism in DMMPs. With the advent of VLSI technology,

processors are becoming faster and more powerful. This causes interprocessor commun-

ication become more and more important and will dominate computing cost in both

hardware and software [l-ILSM82, Fox83].

In order to improve the overall system performance, the communication overhead

must be significantly reduced. As will be discussed further shortly, hardware implemen-

tation of efficient communication algorithms is a necessity for the success of future gen-

eration DMMPs. Therefore, we need to develop algorithms which can efficiently handle

all three types of communication, and to consider hardware implementation of the algo-

rithms.

Interprocessor communication in faulty DMMPs is another important issue. Since

we are studying highly parallel systems, consisting of up to one thousand or even more

processors, the reliability problem becomes a natural concern. A good interconnection

topology, such as the hypercube, may provide inherently fault-tolerant capability by

having multiple routing paths between each pair of processors. However, when a single

processor fails, the routing methods for a fault-free hypercube can no longer be applied.

We need to provide a communication mechanism which has certain fault-tolerant capa-

bility. Fault-tolerance is important especially when a large job is to be carried out,

which requires computation time close to or longer than the average non-fault run time

of the system.

1.4 MOTIVATION AND PROBLEM STATEMENT

As indicated in [ReFu87], the emergence of multiprocessor systems in the past

years has posed several important and challenging problems in (1) network topology

selection, (2) communication hardware design, (3) operating system design, (4) fault

tolerance considerations, and (5) algorithm design. In recent years, hypercube topology

has stood out as a dominating interconnection topology for message-passing distributed

memory multiprocessors. Some experts believe that hypercube multiprocessors are the

most promising highly parallel multiprocessor systems [Myer86, Seit85]. However, the

first generation hypercubes do not perform as well as people once expected, mainly

because of the software implementation of communication algorithms. In order to fully

explore the computational power of DMMPs, all the above problems have to be solved.

Design of efficient parallel algorithms has been a major research issue in the application

domain in the past few years. Development of operating systems better suitable for

DMMPs is another important issue in the system software domain [MuBA87, FoKo86].

Some research has been done to develop communication hardware implementing unicast

for second generation hypercube multiprocessors [DaSe86, iPSC88]. However,

hardware design for multicast communication has received little attention. No fault-

tolerant consideration has been made on the existing communication hardware designs.

Motivated by the above observations, our major concern is the communication

hardware design and related fault tolerance issues. The objective of this research is to

study a fast, versatile, and fault-tolerant message-passing mechanism for DMMPs, in

particular, for the hypercube multiprocessors. The major goal is to develop a hardware

router which can efficiently handle all three types of interprocessor communications

including the multicast communication which is highly demanded but not directly sup-

ported by any existing DMMP. The router works not only in fault-free hypercubes, but

also in faulty hypercubes in which each fault-free node has at most one faulty neighbor-

ing node. The router can be readily applied to future generation DMMPs in order to

significantly speedup interprocessor communication and to greatly improve the overall

system performance. Our ultimate goal is to make future DMMPs u'ue MIMD super-

computers.

15 THESIS ORGANIZATION

This introduction has discussed the requirement of massively parallel computing

systems, especially the DMMPs, and the problems existing in current DMMPs. Also,

the motivation of this dissertation research has been addressed.

The next chapter gives a brief review of multiprocessor systems and shows why we

select distributed-memory multiprocessors. Some background about interconnection

topologies, in particular, the hypercube topology, is given, followed by a comparison of

existing hypercube multiprocessors.

Chapter 3 addresses some fundamental issues in interprocessor communication

which is the key to the performance of such systems.

In Chapter 4, following the presentation of some graph theoretical notation and ter-

minology, the multicast communication is formally modeled as an Optimal Multicast

Tree (OMT), a graph theoretical problem. The OMT is a model for all three types of

communication in a broad sense. Following the OMT model, algorithms for unicast and

broadcast are studied first. Then the multicast problem in some simple cases is exam—

ined. Based on the observation of the complexity of the problem and previous research

on some closely related areas, the OMT problem is conjectured to be an NP-hard prob-

lem. After presenting optimal solutions to some special cases, in Chapter 5, a heuristic

multicast algorithm for the hypercube environment is presented. The proposed multicast

algorithm is disuibuted in the sense that the overall routing is not calculated solely by

the source. Instead, each involved node decides its own routing. Simulation results of

the algorithm with comparison to alternative maid-destination routing methods are

presented which attest to the efficiency of the proposed algorithm.

From the system designers’ point of view, simply proposing a polynomial time

complexity algorithm is still not of much interest. Software approaches are well known

to be too slow. Thus, besides the theoretical study and performance analysis of the pro-

posed algorithm, the hardware design of a dedicated router, which efficiently imple-

ments the algorithm, is presented in Chapter 6.

The problem of routing in faulty hypercubes is studied in Chapter 7. No hardware

routing devices developed so far have fault-tolerant capability. Chapter 7 first presents a

model for faulty hypercube multiprocessors, and then proposes fault-tolerant routing

algorithms and demonstrates how the hardware design presented in Chapter 6 can be

modified to work properly in faulty situations.

The last chapter summarizes the work of this dissertation research and presents

suggestions for related future research.

CHAPTER 2

DISTRIBUTED MEMORY MULTIPROCESSORS

In order to maximize the performance of a multiprocessor system, the components

of the system should be balanced so that there is no bottleneck in the system. As the

VLSI technology advances rapidly, the computing power of each individual processor

becomes faster and more powerful. This situation puts great pressure on system

designers to provide an efficient communication mechanism which can match the speed

of the processors. Data communication is the key to the successful exploitation of paral-

lelism, while the interconnection network plays a fundamental role in determining com-

munication efficiency. This chapter discusses why message-passing distributed memory

multiprocessor systems have become popular in recent years. Various interconnection

topologies are investigated. In particular, the tepological properties of hypercube is stu-

died in detail. A brief comparison of some commercially available hypercube multipro-

cessors is given.

2.1 DMMPs UNDER CONSIDERATION

In this study, a message-passing distributed-memory multiprocessor (DMMP) is

considered. Figure 2.1 shows the generic structure of such a system.

There are N processors in the system, with N ranging from hundreds to thousands.

The processors are interconnected by certain interconnection topology. The processors

are also connected to a host processor or 1/0 processors for communicating with exter-

nal devices. All processors work independently in an asynchronous fashion and

10

ll

HOST I/O

Processor Processors

l l

l l

Node 0 Node 1 Node N—l

A point-to-point interprocessor connection

Figure 2.1 The generic structure of the DMNIP under consideration

communicate by message-passing through the interconnection network.

Figure 2.2 shows a generic structure of a node in the system. Each node has its

own processor and local memory. The processor/memory pair is associated with a

router to handle interprocessor communication task. Each router has n incoming links

and n outgoing links connected to its n neighboring nodes and another pair of links con-

nected to the local processor. Through the input/output links, the router communicates

with the routers of other nodes.

Basically, the processor/memory pair performs computation, while the router han-

dles interprocessor communication. The local processor is involved in the communica—

tion task only when the node is a source or a destination.

12

Nodal

Processor/Memory

0 0
—H —’

Input Router Output

channels . . channels

n-1 n-1

—-u ——->

Figure 2.2 The generic structure of individual nodes in the DMMP

2.2 INTERCONNECTION TOPOLOGIES FOR DMMPs

Many interconnection topologies have been proposed for highly parallel multipro-

cessor systems [Feng81, HLSM82]. Some of them have been adopted in real machines.

Various interconnection topologies used in commercial systems can be roughly divided

into three categories: shared bus, multistage network, and point-to-point interconnec-

tion network.

Compared with other interconnection topologies, the bus structure is least complex

and the easiest to construct with low overall system cost for hardware. Also, it is not

difficult to modify system configuration by adding or removing some nodes. However,

simultaneous communication between multiple pairs of processors is impossible in a

shared bus system. Data transfer rate of the bus limits the overall system capacity. Thus,

the number of processors in the system is small. Furthermore, the failure of the bus will

cause the failure of the entire system. Since the bus-based architecture is not good for

13

massively parallel DMMPs, it is mainly used in shared memory multiprocessors such as

Encore’s Multimax and Sequent’s Balance.

A multistage network consists of many stages of interconnected switches. Only the

first stage and the last stage are connected to nodes. Switches in all intermediate stages

are connected to other switches. A typical multistage interconnection network in a mul-

tiprocessor system with N=k" processors consists of n stages with N/k 100: switch

boxes at each stage. A notable feature of the multistage network is that the distance

between any pair of nodes is the same. The most popular multistage network is the

Omega (shufi‘ie-exchange) network and its variations. A generalized b"xb" shuffle-

exchange network consists of n stages of bxb crossbar switches linked by perfect shuffle

interconnections. Usually b=2, and n=log2N. An omega network with N=8 and b=2 is

shown in Figure 2.3.

A typical example of DMMP system using multistage switching network is the

BBN Butterfly machine [BBN87]. Its interconnection tepology resembles that of a Fast

Fourier Transform Butterfly. A 16 node BBN Butterfly interconnection network is

shown in Figure 2.4. The interconnection network is constructed by two stages

(log416=2) of switching units. Each stage consists of 4 (16/4=4) 4x4 switches.

The major disadvantage of the multistage network is that it is very difficult to scale

up the system to contain a very large number of processors, since the cost and the com-

plexity of the switching hardware will grow up rapidly. Thus, multistage networks are

good for medium size systems.

In order to reduce the software bottleneck, message-passing seems to be a reason-

able choice for process synchronization and communication mechanism. For a

distributed-memory multiprocessor system with up to thousands of processors, point-to-

point interconnection networks provide a promising interconnection structure.

14

H
M
A
U
J
N

\
I
O
‘

0 0 t) O __,o

2 l I 1

1 1 2 _. 2

5 ,_. 3

1 4

l _. 6

1 V 'Z 7 7 . 7

Figure 2.3 An 8x8 Omega network

0 0

4 4

8 8

12 12

1 1

5 5

9 9

13 13

2 2

6 6

10 10

14 14

3 3

7 7

11 11

15 15
Figure 2.4 A 16 node BBN Butterfly interconnection network

15

The following issues have to be considered when designing or selecting a point-to-

point interconnection topology:

1. Diameter of the network. This is defined to be the maximum distance between all

pairs of nodes in the system. (The distance between two nodes is the length in

number of edges of a shortest path between two nodes. See formal definition in

Section 4.1.) A network with a smaller diameter has smaller worst case delay

caused by the message handling at intermediate nodes. The average communica-

tion distance also depends mainly on the network diameter.

2. Degree of the network. This is defined to be the number of connection links per

node. A large degree of network can provide a number of alternative paths

between pairs of nodes. However, a large degree also implies more expensive

hardware cost.

3. Regularity. A regular network is usually easy to construct and expand, and may

provide an easy routing mechanism.

4. Routing. The ease of message routing is essential to the system performance and is

greatly affected by the network topology.

5. Expansion. This is measured as the ease of adding new nodes to the network. A

network should be incremently expandable. That is, the size of the network can be

increased by easily adding more nodes to it.

6. Robustness. A reliable operation of the interconnection network is very important

to the overall system performance. When the number of processors and communi-

cation links increases, the probability that some components fail increases propor-

tionally. Thus, it is desirable to design a network which can keep full connection

capacity with graceful degradation when existing certain faults.

Some of the above issues are related; however, some may conflict. Thus, a trade-

off must be made between them for each individual design.

(i) 3-ary 3—cube (k) 3-D cube (1) 3-D cube connected cycle

Figure 2.5 Examples of point-to-point interconnection networks

17

Various point-to—point topologies have been studied. Figure 2.5 shows some popu-

lar point-to—point topologies. Typical examples are ring, tree, star, mesh (2-D and

higher dimension), lattice, completely connected, hypercube, etc.

Among those topologies, the hypercube has attracted most attention in the recent

years. The topological properties of hypercube will be discussed in detail in Section 2.3.

Another topology, the binary tree (and its augmented variations) has also been exten-

sively studied. Tree structure is especially good for AI application. Tree topology has a

small degree, thus, low hardware cost. However, it has poor robustness and may have a

congestion problem toward the root. With some addition of links, the augmented binary

trees can somewhat alleviate the above problems. A typical example is the fidl ring

binary tree [DePa78], as shown in Figure 2.5(a), which is a regular binary tree with all

nodes in the same level connected as a ring.

A rather general topology is the k-ary n~cube (torus) consisting of It" nodes. It is a

topology with n dimensions, and k nodes at each dimension. The k nodes in a dimension

are connected as a ring. Figure 2.5(g) is a 3-ary 2—cube, and Figure 2.50) is a 3-ary 3-

cube where some nodes and edges are not shown. The topology of a k-ary n-cube is

equivalent to a corresponding multistage network whose switches are replaced by

processor/memory pairs [GKL883]. Binary cube is a special case of k-ary n—cube (k =2).

A 2-D mesh can also be considered as a k—ary 2-cube.

Two more cube-related topologies are the cube-connected cycle (CCC) [PrVu81]

and hypernet [HwGh87]. Figure 2.5(1) is an example of a cube-connected cycle. The

major motivation of CCC is to keep the node degree constant, so that it is easier to

expand a CCC than a hypercube. Hypernet is a class of hierarchical networks for modu-

lar construction of very large size parallel systems by providing structured building

blocks for nodes and links.

While numerous interconnection topologies have been proposed, the binary cube is

still the most popular one.

18

2.3 TOPOLOGICAL PROPERTIES OF HYPERCUBE

Hypercube structure has been the subject of many research projects and has been

studied from different perspectives. As a result, many topological properties of hyper-

cube have been discovered [Fold77, BaPa86, BrSc86, HMSC86, KrVC86, SaSc85a,

SuBa77, TPPL85].

The properties of an n dimensional hypercube graph (Qn) can be briefly summar-

ized as follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

A Q, has N=2" nodes, with addresses from 0 to 2"—1 in binary form

(b,,_1b,,_2 . . - b0), and n2""1 edges.

There is an edge (or link) between two nodes if and only if the binary addresses of

the two nodes differ at exactly one bit position. If the bit position is position i, then

the edge is said to be at i-th dimension, or be the i-th dimensional edge. Thus, a Q,,

is n-regular (each node has exactly n edges connecting to n neighboring nodes).

A Q,, can be recursively constructed by combining two Q,,-1’s. Let (b,,_2 - - - b0)

be an address in Q,,_1, then there is a link between two corresponding nodes

(Obn—z ' ' ' b0) and (lbn-Z ' ‘ ° b0).

A Q,, can be split into two Q,,_1’s in n different ways. Namely, all nodes having

value 1 at bit position i and all edges incident to these nodes are put into one sub-

cube; all other nodes and their incident edges are put into another subcube, for

OSiSn—l. Moreover, it can be split into 2" QH's (lSkSn—l).

The distance between any two nodes is the number of bit positions by which the

two binary addresses differ. That is, the Hamming distance of the two binary

numbers.

The diameter of a Q, (the maximum distance between all pairs of nodes in a Q") is

n.

There are d! distinct paths of length d between two nodes of distance d in a Q,,.

19

(8) A set of n node—disjoint paths between any two nodes in a Q,, can be constructed.

If the distance between the two nodes is d and all paths been selected are as short as

possible, then d of the n paths are of length d, and the remaining n—d paths are of

length d+2. The construction of the set of paths is not unique if d>2.

(9) Q, is a bipartite graph. Thus, there are no cycles of odd lengths in it.

(10) A ring of length p=Zq can be mapped into Q,. when 254s?-l .

(1 l) A binary tree of height n-2 (i.e. n-l levels) can be mapped into Q,, (a single node

is a 1 level tree of height 0).

(12) A d—dimensional mesh (mlxmzx-med) can be mapped into Q" if

d

210g; [mg-I S n.

i=1

One of the most important advantages of hypercube topology is that it is a superset

of many other topologies, such as ring, two or higher dimensional mesh, tree, etc. As we

know, different application problems are best executed in systems with different archi-

tectures. Many numerical algorithms can be naturally decomposed such that the com-

munication pattern required by the job tasks matches the hypercube topology. Some

popular topologies, such as mesh, tree, FFI‘(Fast Fourier Transform), are used in a great

many scientific applications. For example, matrix operations (matrix-vector multiplica-

tion, convolution, etc.) are suited to be solved in mesh structured multiprocessors, while

search algorithms, linear recurrences are best executed in tree su'uctured multiproces-

sors. The FFT, which is one of the most common used computational algorithms in

almost all areas of scientific computation [BaPa86], can be perfectly mapped into hyper-

cube topology. Because of the wide range of embeddability of hypercube topology,

problems of these structures can be partitioned and mapped into a hypercube very easily

and be solved efficiently.

The diameter of a hypercube is relatively small, compared with other tepologies

such as tree and 2-D mesh. It grows logarithmically with the number of nodes. This

20

makes it possible to construct a system consisting of thousands of processors.

Each node in a hypercube is topologically identical. There are no corner-versus-

edge, or root-versus-leaf nodes, as are found in regular grids and trees. Because of the

symmetry, there is no special congestion point as would happen in the tree topology.

This symmetry also makes message routing in the hypercube relatively easy, which will

be discussed in detail later. The symmetry is also a useful feature for dynamic

reconfiguration of the system. Hypercube t0pology provides multiple paths between any

pair of nodes in the network. This makes the hypercube topology inherently fault-

tolerant.

All these properties make hypercube multiprocessors very versatile and suitable for

a wide range of computational applications [FoOt84, BaPa86]. As an impressive exam-

ple, in an 10-dimensional Ncube/ten hypercube, for some specially selected problems

with well tuned algorithms, a speedup of 1009 to 1020 over uniprocessor has been

achieved [GuMB88].

2.4 REVIEW OF HYPERCUBE MULTIPROCESSORS

Since the first hypercube multiprocessor, the COSMIC Cube, was demonstrated in

Caltech [Seit85]. many other hypercube multiprocessors have been made commercially

available. Examples of hypercube multiprocessors include Intel’s iPSC (up to 128 pro-

cessors), Ncube’s hypercube (up to 1024 processors), Ametek’s S/14 (up to 256 proces-

sors), FPS’s T series (up to 214 processors), and JPL’s MARK III [Amet86, GrRe86,

HMSC86, SASL85, P'I'LP85]. In the rest of this section, we briefly outline a typical

DMMP, the NCUBE. Then we give a comparison of the above mentioned systems.

2.4.1 Characteristics of a typical hypercube - the NCUBE

As an example of DMMPs, we briefly review the characteristics of the NCUBE

hypercube multiprocessor [HMSC86].

21

System architecture: Modularity and scalability are two architectural features of

DMMPs. An NCUBE hypercube multiprocessor can be configured to have various size

by combining different number of processor boards and I/O boards to form a system. A

maximum size NCUBE/ten has 1024 nodes, which consists of 16 processor boards and 8

I/O boards. A processor board contains 64 nodes. The U0 boards include host boards,

graphics boards and open systems boards that can be configured for custom design. An

I/O board contains 16 1/0 processors, each having connections to 8 nodes. Thus, an I/O

board has connections to a 128-node subcube. At least one of the I/O boards must be a

host board.

Host: An NCUBE has one or more (up to eight) host boards. A host board has an

Intel 80286 to run the Axis operating system. The board has 4Mbyte memory shared by

the host processor and other processors on the board. It supports peripherals such as ter-

minals, disk drives, tape drives, and network controllers, etc. The host(s) provide the

primary user interface and perform functions such as editing, debugging, program and

data downloading, performance monitoring, file maintenance, etc.

Node: A unique feature of the NCUBE is its compactness. Each node requires

only one processor chip and six memory chips. The processor chip is custom designed,

which contains a vax-like 32-bit processor, built-in floating-point support, memory con-

troller support, and eleven bidirectional communication channels. Ten of them are con-

nected to 10 neighboring nodes, the other one is connected to a U0 processor. Each

node has 128K or 512Kbyte memory. All eleven channels can be active simultaneously.

At 10 MHz clock, a node executes non-arithmetic instructions at 2MIPS or single preci-

sion floating point operations at 0.5MFLOPS.

Communication: Communication between nodes is done by means of asynchro-

nous DMA operations over the full duplex bidirectional links between neighboring

nodes. For a 101MHz clock, the data transfer rate is about leyte/second on each direc-

tion (700Kbyte/second for a 7MHz clock). Because of the DMA, the processor needs

22

only to initiate a send or a receive operation for each communication request. Commun-

ication between the hypercube nodes and external devices are handled by the I/O proces-

sors through the eleventh channel. Each I/O processor has a 128K (or 512K) RAM

which occupies a fixed slot of memory space in the host’s 4Mbyte memory. To perform

an input operation, the data are first sent to the host’s memory, then are transferred to

target nodes through DMA channels. The output operations are performed in a similar

way.

System software: The host processor (80286) in each host board runs Axis

operating system, a variant of Unix, which is compatible with both Unix System V and

4.3 BSD. Since an NCUBE may have more than one host board, each having its own

file system. A potential data inconsistency and conflict may exist. Axis provides the

capability to manage the multiple file systems as one unified, distributed file system. It

also supports hypercube partitioning, so that a user can allocate a subcube of a proper

size for his particular application. Both FORTRAN-77 and C are supported by the Axis.

Each node runs a small operating system called Vertex, whose main function is to sup-

port message-passing between neighboring nodes.

A system of 1024 nodes may have the speed of 2000 MIPS and 500FLOPS on sin-

gle precision or 300MFLOPS on double precision operations.

2.4.2 Comparison of hypercube multiprocessors

The characteristics of several hypercube multiprocessors are compared in Table 2.1

[ShFi87, ReFu87, Duni87, P'I‘LP85]. Both iPSC and Ametek S/l4 use standard

microprocessors. While FPT T series uses Inmos Transputer [GuHS86]. NCUBE

developed its own custom designed VLSI chips. All systems have a host processor

which is used for program downloading/uploading and data transfer between the nodes

and external devices. In the table, rows 5 to 8 are the memory size at each node, the

number of communication channels connected to each node, and the data u'ansmission

rate of each channel (in bit/second), respectively. Lines 11 and 12 are the performance

23

measurement of the entire system having maximum number of nodes for non-arithmetic

operations and double precision floating point operations, respectively.

Table 2.1 Hypercube system characteristics

No. Item Ametek S/14 FPS T-Series Intel iPSC Mark-III NCUBE

1 # of PE’s 16-256 8-4096 32-128 32-1024 64-1024

(clock) 8MHz 20MHz 8Ml-lz 16MHz 7orlOMHz

2 Processor 80286 Transputer 80286 68020 Custom

(clock) 8 MHz 6 MHz 16 MHz

3 Floating Point 80287 included 80287 68881 included

4 I/O Processor 80186 included 80186 68020 DMA controller

5 Memory (Byte) 1M 1M 0.5-4.SM 4M 128-512K

6 Channels/Node 8 4x4 7 8 11

7 Bandwidth(bps) 3M 20M 10M 13.5M 10M

8 Host VAX MicroVax 286/310 system 19 80286

9 Host OS Unix/Ultrix VMS Xenix CrOS Axis

10 Node OS Xon Occam iPSC/OS Mercury Vertex

ll MIPS 200 30000 100 2000 2000

12 MFLOPS 12 65000 8 2000 300

CHAPTER 3

ISSUES ON

INTERPROCESSOR COMMUNICATION

In a distributed memory message-passing multiprocessor system, processors do not

have shared memory. Message passing is the only means for interprocessor communi-

cation. If a node wants to send a message to a neighboring node, the message delivery is

relatively simple. However, if a node wants to send a message to a distant node, the

message has to traverse through some intermediate nodes. To send a message from a

node to a number of other nodes, the situation becomes more complicated. The major

problem in interprocessor communication is message routing, that is, to determine which

path(s) should be used to deliver a message from the source node to some destination

node(s). In this chapter, we first introduce a model for analyzing the message passing

time between two nodes. Then, we discuss some fundamental issues in interprocessor

communication, which are the keys to the performance of DMMPs.

3.1 A MODEL FOR INTERPROCESSOR COMMUNICATION

Let us consider passing a message from a source node u, to a destination node ad

with distance d(us,ud)=h in a DMMP. Some benchmarking has been done for several

hypercubes [ShFi87, GrRe86]. For communication between neighboring nodes (h=1),

as depicted in Figure 3.1, it is assumed that the time (t) needed to pass a message of size

S bytes, can be expressed as:

24

25

u, tl “d

Figure 3.1 Communication between two neighboring nodes

t=t,+tcS (3.1)

where t, is the communication latency, that is, the overhead time caused by processor u,

to initiate the communication and by ad to terminate the communication; tc is the time

needed to transmit one byte of data. After measuring the communication time for mes-

sages with different lengths, the parameters t, and tc can be determined by a least-

squares fit. Table 3.1 shows the results for four first generation hypercube multiproces-

sors [GrRe86, ShFi87].

Table 3.1 One hop communication comparison

Mark-III Intel iPSC Ametek S/l4 Ncube/ten

Latency: ti (us) 95 1700 550 384

tc (us/Byte) 0.563 2.83 9.53 2.6

For a more general communication, that is, communication between any nodes

(h21), single or multiple destinations, we propose the following model. Figure 3.2 dep-

icts a path selected for sending a message from us to ad, which could be a one destina-

tion communication, or a path from the source to one of several destinations in a

multiple-destination communication.

As discussed in Section 2.1, we assumed that each node is associated with a router

to handle communication tasks. Let 1513,44“ be the node-to-node communication

26

u: u “d

P: P Pd

tr Tr 1"

t
Router Router ‘ > - ~ - Router

Figure 3.2 One-to-one message passing model (h hops)

start-terminate time, where 1:” is the start-up time spent at the source node, that is, the

time interval fiom the moment when the source processor (p,) issues a send command

until the moment when the router begins to receive the message; and 1,4 is the time

spent at the destination node to terminate the communication, that is, the time interval

from the moment when the router begins to send out the message until the moment when

the destination nodal processor (pd) receives the entire message. Let 1:4 be the delay

time from the moment when a sending router starts transmitting the message till the

receiving router (at a neighboring node) starts to make routing decision. In order to sim-

plify the discussion, the delay time 1,, at the source node (the message transfer time from

the source processor to its router) is treated the same as that between two routers.

Parameter 1:4 is dependent on the size of the message, the bandwidth of the link, and the

message forwarding scheme, which will be discussed in detail in Section 3.5. Finally, 1,,

is the processing time required to make a routing decision at a router. As shown in Fig-

ure 3.2, for an h-hop message passing, h+l routers are involved. Thus, the time (t)

required to send a message to a node at h—hop away can be expressed in Eq. (3.2).

27

t = t,+(h+l)‘tp+(h +1)1:d. (3.2)

In the remaining sections, we will discuss different communication mechanisms

that affect the communication time.

3.2 THREE TYPES OF INTERPROCESSOR COMMUNICATIONS

At the system level, depending on the number of destinations, interprocessor com-

munications can be classified into three types: unicast, broadcast and multicast.

Unicast (One-to-one) communication is the sending of a message from a source

node to one destination node. It is directly supported by all DMMPs. Unicast in a

hypercube multiprocessor can be easily implemented based on the Hamming code. If

the distance between the source and the destination is d (i.e., their binary addresses

differ at exactly d bit positions), a total number of d! distinct (shortest) paths, all having

d-l intermediate nodes, can be constructed between the two nodes by changing, one at

a time, the values at the d bit positions in different orders. Using any one of the (1! paths,

the message will traverse the same number of links.

Broadcast (one-to-all) is a type of information exchange in which a source node

wishes to send a message to all other nodes in the system as quickly as possible. A fre-

quently used approach can be described as follows. In the first step, the source sends out

n copies of the message to all its n neighboring nodes. Subsequently, these nodes dupli-

cate and send out the message to those neighboring nodes which have not yet received

the message. The process continues until all nodes receive the message. Broadcast in

hypercube has been studied in [SuBa77, SaSc85b, H01086, BrSc86]. It has been shown

that broadcast in an n-cube can be done in n time steps even if each node sends a mes-

sage to no more than one neighbor during each time step.

In Multicast (one-to-many) communication, a node wants to send the same mes-

sage to k other nodes (1<k <2"—1). To send messages to the right destinations at the

right time is very important in many applications, since a node may have to await a

28

message from some other nodes before continuing its computation. Therefore, it is desir-

able that each individual destination receives the message in the fewest possible time

steps. This implies that each destination should receive the message through a shortest

path between the source and that destination. Moreover, the number of intermediate

nodes required to deliver the source message to all destinations should be as few as pos-

sible. This is because that number is a direct measure of traffic created by the multicast

communication in the network. Multicast communication has been studied in

[LaEN88a, LaEN88b].

3.3 CENTRALIZED VS. DISTRIBUTED ROUTING

An essential issue in implementing a routing scheme is whether the source node

should determine all the intermediate nodes (and related links) for message delivery or

the source node and eachforward node (a node involved in further message forwarding,

which may or may not be a destination node, see a formal definition in Section 4.2)

should determine only its neighboring node(s) which should be involved in the message

delivery. The first method is referred to as centralized routing; whereas, the second

method is known as distributed routing.

The main disadvantage of centralized routing is that the addresses of all intermedi-

ate nodes must be tagged with the message. This will create extra communication over-

head. Especially in the case of multi-destination message routing, it is unrealistic to

specify a particular path for each of the destinations, because it will result in an undesir-

able amount of message overhead.

Distributed routing avoids this problem by carrying only the destination addresses

in the message header. For a regular structured interconnection topology like hyper-

cube, it is easy to make routing decisions based on the source and destination addresses

only.

29

Another disadvantage of centralized routing is the fault-tolerant consideration. In

the case when some nodes or links fail, by centralized routing, a source node must have

global fault information in order to find a feasible path. By distributed routing, however,

the routing decision is made based on local fault information only. Thus, it is more

flexible and easier to implement. Therefore, in this study, we consider distributed rout-

ing only. Routing in faulty hypercubes will be discussed in detail in Chapter 7.

3.4 PACKET VS. CIRCUIT SWITCHING

When a message delivery between non-neighboring nodes occurs, the message has

to be forwarded through some intermediate nodes. Two transport mechanisms are

currently used: circuit switching and packet switching.

Circuit switching is similar to the communication mechanism in traditional tele—

phone networks. Using circuit switching, a physical communication path between the

source and the destination has to be established at first. Then, the source can send out

the message to the destination.

Packet switching is widely used in computer networks. By packet switching, how-

ever, no physical path is established before the starting of a communication. A message

is decomposed into packets and then the communication is canied out in the form of

packets. The source determines its output link(s), sends out the message to the neigh-

boring node(s). Then, each of the nodes which receives the message will decide its out-

put link(s) for further forwarding, and so on.

The major advantage of circuit switching is that routing overhead is paid only once

at the circuit set-up time. If each intermediate node can provide physical electrical con-

nection, then no buffers are needed. After the physical path is established, the messages

can traverse through the path with very little delay. However, once a physical path is

established, none of the links along the path can be used (or shared) by another message

delivery. If the messages are short, and the communication is bursty, then the

30

bandwidth of the communication path will be wasted.

The Packet switching mechanism makes efficient use of the bandwidth of the com-

munication links since it requests for one link at a time and releases the link immedi-

ately after it is used. However, it is required to make routing decisions for each message

packet. Also, a buffer is needed at each node to temporarily store the message. The

efficiency of the communication depends on the strategy for making the routing deci-

sions at the source and intermediate nodes as well as the size of the packet. If the packet

size is small and the message size is relatively large, then several packets may be

required to send one message. The routing overhead will be greater and message

reassembly may be required at the destination node depending on whether deterministic

routing or adaptive routing is used.

Packet switching mechanism can be further divided into store-and-forward and vir-

tual cut-through methods, which are discussed in the next section.

3.5 STORE-AND-FORWARD VS. VIRTUAL CUT-THROUGH FORWARDING

There are two switching methodologies to handle the switching tasks at intermedi-

ate nodes: store-and-forward [Tane81] and virtual cut-through [KeKl79]. In all first

generation DMMPs, the store-and-forward approach is used, in which a node receives

the entire message competely, and then further forwards the message. By virtual cut-

through approach, however, a node decides message forwarding link(s) right after the

destination addresses in the message header are received. The node then immediately

sends out the message to the selected link(s). The data part of the incoming message is

buffered only when the selected output link is unavailable. Obviously, the virtual cut-

through approach provides faster forwarding service. Thus, virtual cut-through

approach is preferred to the store-and-forward approach.

In this study, we use a relay approach for message forwarding, which is very simi—

lar to the virtual cut-through approach used in computer networks [KeKl79]. The

31

difference between our relay approach and the virtual cut-through approach is that the

latter requires the entire message be received completely if the selected link is blocked.

In relay method, however, as soon as the link is available, the message will be sent out.

Let us take a close examination of the h-hop message-passing time expressed in

Eq. (3.2) under the assumption of store-and-forward approach and relay approach,

respectively.

In store-and-forward approach, Eq. (3.2) can be written as:

t = 1:,+(h+1)tp+(h +l)r,S (3.3)

1,: communication start-terminate time;

tp: the processing time required to make routing decision at each router;

1,: data transmission rate (byte /second) of the communication link;

S: the size of a message (or a packet) in byte.

Note that, since the entire message has to be received and stored at a receiving

router, and then the router can start to make routing decision, that means a router has to

"wait" for 1,5 time, which corresponds to the delay time rd in Eq. (3.2). This results in

the last term, (h +1)t,S in Eq. (3.3). In order to ease our analysis, we made an approxi-

mation in the above model that to transfer data from nodal processor to the router in the

source node takes the same time as that between routers at two neighboring nodes.

Comparing Eq. (3.3) with Eq. (3.1), it can be easily seen that the latency t, = 1:,+21:p, and

tc=2't, is the time charged to each byte of data been transferred.

If we assume the message size S is a fixed value, as in the packet switching case,

then the time t is a function of the distance h. Equation 3.3 can be rewritten as:

t = t,+(h +l)(1:,,+t,S) (3.4)

We observe that the term 1:, does not depend on the number of hops, h, in the communi-

cation. As a result, the term t,+t,S can be used to approximate the value as a time step,

32

the time needed to transfer a message (of S byte) from a node to one of its neighboring

node, which consists of two parts: the processing time 1,, and the waiting time 1,S.

Similarly, for the case of relay method, the time required is:

t = 1,+(h+1)1’p+(h+1)1,S’+1,(S—S’) (3.5)

where

1’p: the processing time required at a router. If a hardware router is used, then 1’p<1p

should hold; otherwise, 1",=1p.

S’: the size in byte of the address part in the message.

Note that 1,S’ is the time each router has to "wait" to start processing, and 1,(S-S’)t

counts the time needed to transfer the remaining portion of the message through the

path. Similar to Eq. 3.4, we can rewrite Eq. 3.5 as follows:

t = (t.+t1(S-S’)H(h+1)(t’p+t,S’) (3.6)

As before, since the term (1,+1,(S-S')) does not depend on the number of hops, we use

1’,,+1,S’ to approximate the value of a time step for the relay method, which also con-

sists of two parts: 1”, and 1,S’. Note that 1’p<1p and S’<S. Thus, 1’p+1,S’<1,,+1,S,

which implies the hardware implementation of relay method is much faster than the

software implementation of store-and-forward method.

In the above discussion, 1, is determined by the bandwidth of communication links,

1, or 1’p is dependent upon the efficiency of the routing algorithm and on the architec-

ture and technology of the router. In first generation hypercube multiprocessors, how-

ever, no dedicated router has been designed. In Intel iPSC, the function of the router is

performed by the local processor and by the Ethernet communication coprocessor. In

NCUBE hypercube, a DMA controller in each node handles interprocessor communica-

tion. However, it is not a dedicated hardware router. Nodal processor still needs to parti-

cipate in interprocessor communication even in an intermediate node.

33

20

5 he
s

16
_

p

I
4 hops

12
_

Message
PaSSing

3
hops

Time

(m)

8 _

2 hops

’
/

f
’
f

ooooooooo

1
hop

4
_

/

eeeeeeeeeeeeeeeeeeeee

0

I

I

I

1

I

I

0
400

800
1200

1600
2000

2400

Mess
age Size (byte

)

Figure 3.3 Message-passing time in a 64-node NCUBE

34

As an example of store-and-forward routing scheme, we measured the message-

passing time for different message sizes and various distances in a 64-node NCUBE

hypercube with a 7 MHz clock rate. The results are shown in Figure 3.3.

After using the least squares fit method, the parameters in Eq. (3.4) are determined

as follows: 13:13.5 usec, 1p=232 usec, 1,=1.3 usec/byte. The relatively small value of

1,, compared with 1,,, indicates that the source and destination nodes can be treated the

same way as intermediate nodes from the point of view of estimating communication

overhead. In the case of one hop message-passing, using the model of Eq. (3.1), the two

parameters are measured as: t,=515usec and tc=2.5usec/byte. Since the clock rate is 7

MHz, the theoretically estimated data transmission rate on the links is 1.4 usec/byte. As

can be seen, the measured value of 1.3usec/byte is very close to the estimated rate.

Also, applying the model of Eq. (3.4) to the one hop case, they match reasonably well (

t] : ts+2tp9 Md [c3210.

3.6 ADAPTIVE VS. NON-ADAPTIVE ROUTING

Based on the relationship between routing procedure and the traffic condition in the

network, packet switching scheme can be classified as adaptive routing and non-

adaptive (deterministic) routing.

With non-adaptive routing, the path from a source to each destination is determined

a priori, that is, solely determined by the source and destination addresses. It is indepen-

dent of the traffic variation in the network. In a DMMP system, the network usually

provides multiple paths between the source and destination. However, only one of the

paths is regularly used. The alternative paths are used only when the failures of some

components make the "regular" path unfeasible and the routing algorithms have fault-

tolerant ability.

By adaptive routing strategy, however, the path from a source to a destination is

not fixed. It may vary from time to time, even the network is fault-free. The source and

35

each intermediate node along the path will select a seemly optimal output communica-

tion link based on its knowledge of global traffic condition at that particular moment.

Both strategies have their advantages and disadvantages. Theoretically, adaptive

routing has the advantage of being able to evenly distribute the traffic lead over the com-

munication links, and consequently provide a better interprocessor communication ser-

vice. However, as indicated in [ChBN81], the time required to update the global traffic

information and the traffic overhead caused by updating the information makes it less

attractive. Especially in a multiprocessor environment, since the communication links

provide very fast data transmission rate, it is very difficult to accurately reflect the

dynamic traffic condition in the network. Also, the time overhead needed to calculate

the "optimal" output link is undesirable.

The deterministic strategy, on the other hand, is simple and easy to implement. In

a multiprocessor system, if each node has a hardware router and the communication

links have a high bandwidth, the deterministic routing is more attractive. In fact, all

existing DMMPs adopt non-adaptive routing strategy. Therefore, only non-adaptive

routing is considered in this study.

3.7 SOFTWARE VS. HARDWARE IMPLEMENTATION

In computer networks, communication functions are traditionally implemented by

software approaches. This is also true in the first generation DMMPs. In this study,

software implementation refers to the approaches where routing is made through subrou-

tine calls by nodal processor (as in iPSC), or dedicated communication co-processor (as

in Ametek), or 1/0 processor (as in NCUBE). By hardware implementation, we mean a

hardware device dedicated to routing purpose is used at each node. The device is a

hardware implementation of communication algorithms.

The store-and-forward method used in first generation DMMPs is already slow; the

software implementation of the algorithms makes the situation even worse. The result is

36

a very poor communication/computation ratio as shown in Table 1.1. This becomes a

severe weakness of the first generation DMMPs.

Through hardware implementation, a dedicated hardware routing device is attached

to each nodal processor. The nodal processor no longer participates in the roofing activi-

ties unless the node is a source or a destination. Furthermore, hardware routing device

can implement a better message forwarding scheme to greatly reduce the time delay

introduced at each intermediate node, thus, significantly reduce the overall communica-

tion time (two to three orders of magnitude smaller). For example, in the second genera-

tion Intel hypercube iPSC/2, by using a hardware routing device, only a few usec is

needed at each intermediate node to establish a physical path [iPSC88], and approxi-

mately 350 usec is needed for a message transmit and acknowledgement receive. As

mentioned before, the communication latency time is 1.7 msec in its first generation

iPSC machines.

Hardware router for unicast has been reported in [DaSe86], in which the virtual

cut-tlu'ough packet switching method is used, and in [iPSC88], in which the circuit

switching method is used. Hardware implementation for broadcast communication has

also been studied [Seit87]. A hardware router which directly supports all three types of

interprocessor communication is reported in [LaNE88].

CHAPTER 4

OPTIMAL MULTICAST TREE (OMT) — A MODEL

FOR INTERPROCESSOR COMMUNICATION

We have discussed some fundamental issues about interprocessor communication

in last chapter. In this chapter, some useful notation and definitions are introduced in

Section 4.1. Then, in Section 4.2, a graph theoretical model — the Optimal Multicast

Tree (OMT) is presented for the multicast communication problem. The OMT model is

general enough to cover all three types of communications. Following the OMT model,

in Section 4.3, the unicast and broadcast communication is studied. Section 4.4 investi-

gates some insightful examples of multicast problem. The general multicast problem

will be studied in Chapter 5.

4.1 GRAPH THEORETICAL NOTATION AND DEFINITIONS

We will closely follow the graph theoretical terminology and the notation of

[Hara72]. Terms not defined here can be found in that book. Let G (V,E) be a graph,

with the node set V (G)=V and edge set E (G)=E. We use edge and link interchangeably.

When G is known from the context, the sets V(G) and E (G) will be referred to by V and

E, respectively. If an edge e=(u,v)e E, then nodes u and v are said to be neighboring

nodes (or neighbors) and the edge e is said to be incident to these nodes. The degree,

degG (v), of a node ve V is equal to the number of edges in G which are incident to v.

37

38

A path is an alternating sequence of nodes and edges, beginning and ending with

nodes, in which all the nodes (and thus all the edges) are distinct. A path p from node

uo to node ud can be represented by an ordered sequence of nodes

(uo,u1, : - - ,uj, - - - ,ud_1,ud). Or, alternatively, by a sequence of edges following node

uo [LeHa88]: uo [(10,11, ° - ° ,ld_1), where edge lj=(uj,uj+1), OSde—l. The length ofa

path p is measured by the number of edges contained in the path. Therefore, the above

path has length d. A path is shortest or minimal, if there are no shorter paths between

the two given nodes.

A graph is said to be connected if every pair of its nodes are joined by a path. A

tree is a connected graph which contains no cycles. A graph H (V,E) is a subgraph of

another graph G(V,E), if V(H)<;V(G) and E (H);E (G). When V(H)=V(G), H is

called a spanning subgraph. A subgraph which is a tree is referred to as a subtree. The

distance, dg(u, v), between a pair of nodes u and v in G, is equal to the length (in

number of edges) of a shortest path joining u and v.

4.2 THE OPTIMAL MULTICAST TREE MODEL

Multicast communication is highly demanded in many application areas, for exam-

ple, in simulation for electrical engineering, modeling for mechanical engineering, simu-

lation for computer networks, etc. Consider gate level simulation in electrical engineer-

ing. The output of a gate is usually connected to the inputs of several other gates, which

is a typical example of multicast. In first generation hypercube multiprocessors, multi-

cast is basically done by issuing multiple one-to-one communication, which is not an

efficient approach.

Let us examine a simple example of communication from a source node to two

destination nodes in a 3-cube. As show in Figure 4.1, suppose source node 000 (u,)

wants to send a message to both 011 (ul) and 101 (uz). In Figure 4.1 (a), the source

sends out two messages separately to two intermediate nodes 010 and 100. Then, the

39

(b) Two paths share a common link

Figure 4.1 A multicast example in 3-cube

40

two nodes pass the message to u, and 142, respectively. As we can see, each message

traverses 2 links. The total number of links involved in the communication is four. In

Figure (b), however, the source first sends a message to node 001 only, then the message

is duplicated at that node and sent out to u, and 142. If we assume that in both cases the

time required for an intermediate node to forward a message is the same, then the two

destinations will receive the message in the same time interval (two time steps). The

total number of links involved is three in the latter case, however, it is four in the previ-

ous case.

The two generic parameters which can be used as measures of communication

efficiency are time and traffic. They are formally defined as follows. Parameter time is

quantified using time steps, where a time step is the actual time needed to send a unit of

information (message) from a node to one of its neighboring nodes. This time is

assumed to be constant for all pairs of neighboring nodes. Parameter traffic is quantified

by the number of messages traversing over the communication links which are used to

deliver the source message to its destination(s). A unit of traffic is measured as a mes-

sage traverses over a link. Note that the number of time steps required to inform a desti-

nation is at least equal to the distance from the source to that destination. Also, for each

destination, at least one distinct communication link will be used. That is, at least one

unit of traffic will be created. Hence, the number of destinations gives a lower bound for

the amount of traffic required to complete the communication. In general, the relation-

ship between the two parameters are quite complicated. Usually, they are not totally

independent.

In order to make the situation more clear, let us consider a multi-destination mes-

sage passing example in a 2-D mesh environment, as shown in Figure 4.2. Assume node

u, (1) wants to send a message to u, (9), u; (10), 143 (13), and u,, (14). There are many

ways to implement the multicast. Two possible configurations are depicted in Figure

4.2(b) and (c). In Figure 4.2(b), u, first sends the message to node 6, node 6 then

41

forwards the message to node 11, at node 11, the message is replicated and sent to nodes

10 and 12, and so on. Eventually, u, receives the message after 6 steps, while uz, u;,

and u receive the message after 3, 4 and 5 steps, respectively. The traffic for this

configuration is 7. While in Figure 4.2(c), the message is replicated at node 6. Destina-

tion it 1 receives the message in 4 steps in stead of 6 steps. The time steps for uz, u;; and

u, to receive the message are the same as before. However, the total traffic increases

from 7 to 8.

Clearly, it is desirable to develop a routing mechanism that completes communica-

tion while minimizing both time and traffic. However, as we can see, the two parame-

ters may be in conflict. Minimizing one parameter may prevent minimizing the other.

In multiprocessor environment, we want every processor to receive messages in the

shortest possible time in order to reduce unnecessary "waiting". Thus, we consider the

time step requirement a higher priority. Based on that, we then try to minimize the

traffic.

A graph theoretical model for multicast communication in distributed memory

multiprocessors is now formally defined as follows. Let G (V, E) be a graph

corresponding to the topology of interprocessor communication network of the distri-

buted memory multiprocessor under consideration, and D={uo,u1, : ° - ,u,] be a subset

of V. Node uo corresponds to the source node, and nodes u1,u2, ' ° - ,uk correspond to k

destination nodes in a multicast. The multicast problem is the problem of finding a sub—

tree T (V, E) of G (V, E), called the Optimal Multicast Tree (OMT), such that

(a) DcV(T).

(b) dT(uo,u,-)=dc(uo,u,), for lSiSk, and

(c) IE (T)| is as small as possible.

where E (T) and V(T) are the edge set and vertex set of tree T(V,E), respectively.

A subtree of G which satisfies the conditions (a) and (b) above is referred to as a

multicast tree (MT). In a multicast tree, a leaf node is a destination node of degree one;

42

(a) A 2-D Mesh

us

0

(b)

at Time: u1(6).u2(3)

0 o “3(4)ru4(5)

Total traffic: 7

(D {D (B £9 £9

“2 ug u,

us

(C)

0 o o o u, Time: u1(4),u2(3)

“3(4).u4(5)

Total traffic: 8

O O O O
113 114

Figure 4.2 A example of multicast in a 2-D mesh

43

all non-leaf nodes are referred to asforward nodes. Thus, an intermediate node refers to

a non-destination forward node. In general, OMT may be not unique. Observing the

model, we can see that condition (b) is to ensure the minimum time steps while condi-

tion (c) is to reduce the traffic with the implication that a message traverses any link no

more than once.

Notice that, in a broad sense (when ISkSZ”-1) the OMT model actually refers to

all three types of communication: unicast (k=1), broadcast (k=2"-1), and multicast in a

narrow sense (l<k<2"-l). Thus, the model of the OMT problem is a general model for

any interprocessor communication. In the following discussion, we usually use the

name multicast in its narrow sense.

In the following discussion, we will concentrate our discussion on the OMT prob-

lem when G (V,E) is the n-cube graph, since hypercube has become the major intercon-

nection network for DMMPs in recent years. We first discuss unicast and broadcast in

hypercube multiprocessors. Then, we will consider the third communication type — the

multicast. A heuristic multicast algorithm which achieves condition (b) above and may

only compromise condition (c) will be presented in Chapter 5.

4.3 UNICAST AND BROADCAST IN HYPERCUBE MULTIPROCESSORS

In the last section, we presented a general graph theoretical model for interproces-

sor communication. In this section, we first give a graph theoretical model for hyper-

cube multiprocessor and introduce some notations for communication in hypercube

environment. Then, we examine how an OMT can be constructed in the case of unicast

and broadcast in hypercube multiprocessors.

An n-dimensional hypercube multiprocessor can be modeled as a graph Q,,(V,E),

with IV |=N=2", IE |=n2""1. Each node represents a processor (and its memory); each

edge represents a communication link between a pair of processors. The 2" nodes are

distinctly addressed by n-bit binary numbers, b(,,_1)b(,,_2) ° - - bj ° - - b0. For each node

44

us V(Qn), let a (u) and Ila (u)l I denote the binary address of node u and the number of

1’s in binary number a (u), respectively. Also, let 9 denote the bitwise exclusive or

(XOR) operation on binary numbers. Then, e=(u,v)eE (Q,,), if and only if

Ila (u)$a (v)| I=1. An edge connecting nodes u and v is said to be at dimension j or be

the j-th dimensional edge if the addresses of u and v differ at bit position j only, i.e.,

a(u)ea(v)=21'. It is implied that deg (u)=n for every node ueV(Q,,). That is, each

node has links at n dimensions ranging from 0 (lowest dimension) to n-l (highest

dimension). Also, dQ. (u,v)=| la (u)$a (v)| I, for every pair of nodes u,ve V(Qn).

In this study, we use a(u,-) to represent the address of node u,-, in general. How-

ever, in some cases, we need to compare the addresses of two nodes. Thus, a(u,) and

a(uj) are called the actual addresses of node n,- and uj, respectively, while the relative

address of node u,- with respect to node uj, is defined as rj(u,-)=a (uj)ea (14;).

In the following discussion, algorithms are to be executed at each node which

receives a message. The node originating a message is called the source node and

represented by u,. Notation no is used to represent any local node which is currently

executing the algorithm. Thus, uo could mean the source node or any other node which

received a message and is executing the algorithm. From the algorithm point of view,

each such node is Rated as a “source” node. When we have to distinguish between the

real source node which originates the message and the local node which is currently

executing the communication algorithm, we use u, and no, respectively. Otherwise, we

just use no in our discussion.

For a binary number B=b,,-1 ~ - - b 1 be, we define function W as follows:

j if j is the i -th Right most bit position having value 1

W-(B) = 4

‘ -1 ifbj= 0 V OSan-l; orB has less than i bit positions having value 1

 b

where 0Si,an—l.

45

For example, W1(01001)=0; W2(01001)=3; W3(01001)=—1; W1(00000)=—1.

Using the above notation, we can now give the algorithms for unicast and broad-

cast communication. In Section 2.3, we summarized some attractive topological proper-

ties of hypercube. Due to those special properties, one-to-one and broadcast communi-

cation in hypercube can be done in a quite straightforward way.

Sullivan and Bashkow [SuBa77] presented an algorithm for message-passing fi'om ‘

one node to another arbitrary node in the system, which now becomes a standard unicast

algorithm for fault-free hypercube. The idea is that each receiving node first checks if

the local address matches the destination address. If it does, then the message is sent to

the processor. Otherwise, the algorithm finds the right most bit position in which the

relative address of destination with respect to local address has value 1 and sends the

message to that dimension.

Algorithm UNICAST.1:

begin

("I find the relative destination address with respect to local address *)

r0(ud) ==a(uo)$a(ud);

If (ro(ud)=0) then

send message to local processor

else

send message to dimension W1(ro(ud));

end.

Figure 4.3 The "standard" unicast algorithm

Algorithm UNICAST.1 in Figure 4.3 shows the idea. The destination address is car-

ried in the message header together with the data part (see Section 6.2 for a detail

description of the message format). Note that the algorithm is first executed at the

source node (uo=u,). As a result, the message is forwarded to a neighboring node deter-

mined by the algorithm. Then the algorithm is executed at that node again, and so on. It

45

is obvious that the path found by algorithm UNICASTJ goes through dimension

W,(a(u,)ea(ud)) at step i +1 (OSiSd—l), and eventually guides the message to the desti-

nation ud in d steps. Let r,(u,,)=a (u,)®a (ud). Then the path consu'ucted by the algo-

rithm can be represented by ad.) I<W1<r.<u.».ws<r.(ud». - - - Wd-1(rs(ud)) >. '

A broadcast algorithm has also been presented in [SuBa77] and followed by other

researchers [BrSc86, HoJ086, SaSc85b, Kat588]. Sullivan and Bashkow’s algorithm

works by sending a weight along with the data part of the message. The weight indi—

cates how the receiving node should continue sending the message. Eventually, each

node in the system will receive the broadcast message exactly once and in no later than

n time steps. The algorithm is listed in Figure 4.4 as BROADCASTJ.

Algorithm BROADCAST.1:

(* The links of each node is assigned dimension 1 to n *)

(* the algorithm is executed at every node *)

begin

if uo=u, then weightz=n +1;

(* otherwise uo receives a weight from another node *)

for i :=1 to weight-l do

begin

new.weight :=i;

send message to dimension i with new.weight

end;

end.

Figure 4.4 A broadcast algorithm using a weight

The broadcast algorithms presented in [BrSc86, HoJo86] and [SaSc86] do not use

explicit weight. Instead, the relative address of local node with respect to the source

node is used to direct the broadcasting. The basic idea can be described as follows

[BrSc86]. The neighbors of any node n in an n-cube are of the form a(u)$2i for

i=0, 1, - - - ,n --1. To implement a broadcast, each node sends broadcast message only to

47

those neighbors a(u)$2} such that 2} >a (u). The algorithm is shown in Figure 4.5 as

BROADCASTZ.

Algorithm BROADCAST.2:

begin

(* Input: actual local address a (u o) and source address a (u,) *)

If a (u o)=a(u,) then

Send message to all neighbors

else

begin

Send the message to local processor;

(* Calculate relative address of local node with respect to to the source *)

r(u0)5b(n—1)b(n—2) ' ‘ ° 17} ' ' ' b0=a (u0)$a(us);

Find the largest i such that b,=1;

Send out message at the j-th dimension for all l<an —l

(* to node(s) a (uo)$21 *)

end;

end.

Figure 4.5 A broadcast algorithm without using weight

Algorithm BROADCAST.2 is simple, and easy to implement. If the message has to

carry the source address for other purpose, then the algorithm does not require any extra

message overhead. This algorithm is actually implemented in our hardware router

design to be presented in Chapter 6. However, this algorithm has a severe disadvantage

in that it works well only in fault-free hypercube.

Katseff introduces a version of BROADCASTJ , which replaces the integer weight

by a Boolean array travel [Kats88]. The algorithm BROADCAST.3 shown Figure 4.6 is

modified from the broadcast algorithm (Algorithm 5) presented in [Kats88]. Algorithm

BROADCAST.3 is more consistent with our definition of dimensions than algorithm

BROADCASTJ. In algorithm BROADCAST.3, Control* is a control vector received at the

current node. If bit position i in Control * has value 1, then the received message is sent

48

Algorithm BROADCAST.3:

1. begin

(* if uo=u_,, the router get a Control* vector with all bits set to 1 *)

("I otherwise, uo receives a Control* vector from a parent node *)

2. for j:=0 to n—l do

3. begin

4. send message to local processor;

5. if Control* [j]=1 and dimension j is fault-free then

6. begin

(* form Control,- vector *)

7. for b:=0 to n-l do

8. if Control* [b]=1 and b >j

then Control,- [b]:=1

9. else Control,- [b]:=0;

10. send message with Control,- to dimension j

1 1. end;

12. end;

13. end.

Figure 4.6 A broadcast algorithm using a Control vector

to dimension i. Control,- is the control vector to be sent to dimension i from current

node. Different dimensions will receive different new Control vectors calculated based

on the the dimension id and the content in the received Control* vector. At the source

node, the vector Control“ is initialized to all 1’s. The algorithm is to be executed in the

router or I/O processor of every node.

Comparing algorithm BROADCAST.2 with algorithm BROADCAST.3, we can see

that the two algorithms are essentially the same. However, BROADCAST.3 is more flexi-

ble and versatile than BROADCAST.2. As will be discussed later in Chapter 7, since the

Control vectors are calculated at each node, algorithm BROADCAST.3 can be modified to

route messages in a hypercube with certain faulty nodes. However, BROADCAST.3 is not

as simple as BROADCAST2. Also it requires each message to carry a distinct Control

VOCIOI'.

49

1111

Figure 4.7 A broadcast tree generated by BROADCAST.3

50

The broadcast tree resulting from executing either algorithm BROADCAST.2 or

BROADCAST.3, in a 4-cube, is shown in Figure 4.7, where a circle represents a node with

its address inside the circle. The binary numbers outside a circle is the binary Control

vector received by that node. The source address is assumed to be 0000. The arrows

form the message routing pathes, while the dashed lines are the links not involved in this

particular broadcasting.

4.4. MULTICAST IN HYPERCUBEENVIRONMENT

We have discussed unicast and broadcast in hypercube environment. In this

section, we take a look at multicast communication. We first investigate special

characteristics of multicast and examine some simple examples. Then we will go to

general case in next chapter.

Let Q,(V,E) be the topology of n-cube as defined above, and a node uo be the

source node in a multicast. The node set V of graph Qn(V, E) can be partitioned into

n+1 disjoint subsets (n+1 levels), V0,V1, - ' ° ,Vn, with respect to node no, where

V,-={ve V IdQ.(uo,v)=i}.

The level of a node u, denoted by Am), is equal to dQ'(uo,u). Of course,

A (uo)=0. From here on, we assume the source node has address zero, i.e., a (uo)=0. If,

however, a (uo)¢0, then we can relabel the nodes by XORing all node addresses with

the source address. Thus, if as Vj, then ||a(u)||=dQ.(uo,u)=}t (u)=j (note that

a(uo)=0). Also, D={u1,u2, ° ° - ,uk} will denote the set of destination nodes in a multi-

cast. And set M={uo }+D will be called a multicast set. Furthermore, for simplicity of

discussion, we assume that 2.(u1)51(u2)s - - ~ Sunk).

Definition: A node u is an ancestor of a node v (or v is a descendant of u) if and

only if u is contained in a shortest path joining uo and v. Thus, 7t(u)9. (v) and

1(v) - 3t (u)=dQ.(u,v) .

51

Definition: let X:V-{uo} be a non-empty set. Then, the common ancestors of X,

the set CA (X), is defined as follows:

CA (X)=[ue V In is an ancestor of every node veX}.

Note that CA (X) is not empty, as for any X, no 6 CA (X). The nearest common ances-

tor ofX, denoted by NCA (X), is defined as

NCA (X)={ue V Iue CA (X), and for every ve CA (X), A. (u)23\. (v)}.

Lemma 1: Let XcV—{uol and IX I=2. Then NCA (X) contains only one element.

That is, the nearest common ancestor of any two nodes is unique. Furthermore, the

address of this node can be calculated by bitwise ANDing the binary addresses of the

two nodes.

Proof: Let X={u1,u2 1, and "&" denote the bitwise AND operation on two or more

binary numbers. For simplicity, denote Mug) by 2.3. Furthermore, let u, be the node

whose binary address a (u,) is given by

a(ux)=a(u1)&a(u2) (4.1)

This implies that

(A). a (u,) has value 1 at exactly 1, bit positions and value 0 at the remaining n—Xx bit

positions, and

(B). a (u 1) and a (u 2) have value 1 at the same 2., bit positions as a (14,). Furthermore, at

each of the n-k, bit positions, at least one of the two binary addresses a(u1) and a (uz)

has value 0.

We first prove uxe NCA (X). It is obvious from Eq. (4.1) that uxe CA (X). In

order to prove the nearest requirement, suppose there exists another node aye CA (X)

with 2,»... With no loss of generality, assume the only difference between a (u,) and

a(ux) is that a(u,) has value 1 at one more bit position, say bk, among those n-X, bit

positions. That is, l,=k,+1. By condition (B), a (14,) differs from at least one of the two

addresses a(u1) and a(u2), say a(u1), at one more bit position than a(u,) does. We

then have dQ.(u,,u1)=?tl—X,+l. However, 1(u1)—k(uy)=kl -(7t,+1)=}tl 4,-1. Thus,

52

1(u1)-Mu,)¢dQ_(u,,u1), u, is not an ancestor of ul. Therefore, u, 4 CA (X), 2., is

maximum. We conclude uxeNCA (X).

Now let us prove the uniqueness, that is, NCA (X)=qu }. Suppose there is another

node uzatux, such that uzeNCA (X). Then, we must have 11:2,, which implies

I Ia(u,)l I=I Ia (u,)l I. With no loss of generality, suppose a (u,) has a 0 at one of the I»,

bit positions, say b8, and a l at one of the n-k, bit positions, say bk. Again, from condi-

tion (B), a(u,) differs from at least one of the two addresses a(u1) and a(u2), say

a(u1). in two more bit positions than a (u,) does, i.e., dQ.(u,,u 1)=11-X,+2. However,

1(u1)-7L(uz)=?~(u 1)-Mux)=11-?»x. Thus. k(u1)-l(uz)¢dg, (142.141). u: is not an ancestor

of ul, and uzéNCA (X). Therefore, NCA (X)={ux}. I

The argument presented in Lemma 1 can be easily generalized to the case of

IX I>2. Thus we have the following theorem.

Theorem 4.1: Let XcV—{uo} and IX I=k, (2SkSZ'L1). Then NCA (X) contains

only one element. That is, the nearest common ancestor of any k nodes is unique. Furth-

ermore, the address of this node can be calculated by bitwise ANDing the binary

addresses of all the k nodes.

Let us start to investigate the multicast for a small number of destinations, and then

we will get into general case. We first consider the situation that a source uo wants to

send a message to only two other destinations, ul and “2. We first investigate all possi-

ble topological patterns in the solution space of OMT.

All the possible patterns of OMTs for IM I=3 is illustrated in Figure 4.8. In the

figure, circles denote nodes and lines denote shortest pathes joining pairs of nodes.

Observe that if T2.1 is the desired subtree, then node x=NCA (u1,u2). Similarly, if 12.2

is the desired subtree, we have u0=NCA (u1,u2). Finally, when T23 is the solution,

u1=NCA (u 1 ,uz). In fact, we may refer to T2.1 as the general pattern of the OMT when

IM I=3. This is because when x=uo, we obtain subtree T22, and when x=u1, we obtain

subtree T23.

53

o

o

‘9 on

General Pattern x=u 0 x=u1

T 2.1 T 2.2 T 2.3

Figure 4.8 One-to-two multicast trees in hypercube

The above observations lead us to an algorithm for generating an OMT when

M={uo,u1,u2}. The algorithm is listed in Figure 4.9 as algorithm

One_to_Two_Multicast.

Algorithm One_to_Two_Multicast

input: 0 (ac). a(u1). a (142);

a(X) :=a(u1) &a(u2);

form a path between no and x;

form a path between 1: and ul;

form a path between x and u;.

Figure 4.9 Multicast algorithm for two destination case

In the One_to_Two_Multicast algorithm, to form a path between node u and node v

implies that any shortest path between u and v is acceptable. If u=v, then no path has to

be established. The validity of the above algorithm can be seen as follows. Denote the

multicast tree found by the algorithm by T(V,E). Let UB =I Ia (u1)I I+I Ia (142)] I (which

is a upper bound of the traffic). In all three subtrees, IE (T) I=UB—d (uo,x). By Lemma

54

l, x is the unique NCA of u; and u2, which implies d(uo,x)=7t(x) is maximum. Thus,

IE(T)I is minimum.

We now consider multicast with three destination nodes, i.e., M={uo,u1,u2,u3 }.

Again, we investigate all possible subtree patterns, find a general pattern, and then give

an optimal algorithm. The nine possible subtree patterns are shown in Figure 4.10.

Under the assumption that 7t(u1)Sl(u2)9t(u3), in Figure 4.10, a pattern having nodes

labeled u 1, u; and u3 represents a unique tree configuration. Each of the other patterns

actually represents three non-isomorphic subtrees obtained by permuting i,j, and k,

namely, (i,j,k)e {(1,2,3),(1,3,2),(2,3,1)}. Observing the nine patterns, we can see that

T3.1 is a general pattern. When y=x12=x23=x13, T3.1 becomes 13.2, and when

xgje [u1,u2}, T3.1 becomes T33. When y=uo and y=ul, the tree patterns in first row

correspond to patterns in second and third rows, respectively. Clearly, node y is

NCA (u1,u2,u3). Also, node xi,- must satisfy

Mxij)=max[}t(NCA (u 1 ,u2)),}t(NCA (u2,u3)),A(NCA (u 1 ,u3))}.

Since there is only one general pattern, we can again write a simple algorithm to

solve the problem. which is listed in Figure 4.11.

Denote the subtree found by the above algorithm by T(V,E), and let

UB=| la(u1)| |+| |a(u2)||+| la(u3)| I.

It is not difficult to see that the following equation holds for every subtree pattern

in Figure 4.10.

|E(T) I=UB-2d(uo.y>-d(y,xij)=UB-2| Ia 0’)| HI I0 (Xy)| I-I la 0’)| I)

=UB-l la(y)| I-I la(x.-,-)||.

Since U8 is fixed, a (y) is unique by Theorem 4.1. The maximum level number of

xm means IIa(x,-,~)|I is maximum. Therefore, IE(T)| is minimum. This establishes

the validity of the above algorithm.

55

general pattern y=x12=x23=x13 xi,- =u,-

T 3.1 T 3.2 T 3.3

y=uo uo=y=x 12=x23=x 13 y=uo; xij=ui

T 3.4 T 3.5 T 3.6

y=u1 y=u1=x23=x12=x13 y=u1; x23=u2

T 3.7 T 3.8 T 3.9

Figure 4.10 One-to-three multicast tree patterns

56

Algorithm One_to_Three_Multicast

input: a (u o), a (u 1), a (u 2). a (“3);

00):=a(u1)&a(u2) & MM):

0 (x12):=a (u 1)&a (“2). ;

a(x23):=a (u2)&a (u3), a(x13):=a (u1)&a (“3);

xm := xii, such that ngj):= max {k(x12),}t(x23),k(x13)];

form a path between xmax and u;;

form a path between xmax and u};

form a path between xm and y;

form a path between y and uk; (* k¢i,j *)

form a path between y and uo.

Figure 4.11 Multicast algorithm for three destination case

Finally, let us have an overview on four or more destination multicast. As we have

seen, the possible configurations of the multicast trees grow dramatically when the

number of destination nodes increases even from two to three. As the number of desti-

nations increases from three to four, the problem becomes more complicated. The most

important factor is that, in the case of four destination there is no unique general pattern;

instead, there are two general patterns as shown in Figure 4.12. If we want to write an

optimal algorithm, we have to deal with the two general patterns separately, then select

the one having less intermediate nodes.

In general, if we have a k-destination multicast problem, one way of finding an

OMT is to generate all the general patterns, consider each of them separately, and then

select an optimal one. However, the number of general patterns grows very rapidly as

the number of destinations increases. We have counted 3, 6, 11, and 23 general patterns

for 5, 6, 7, and 8 destinations, respectively. We can see the trend of how rapidly the

number of tree patterns and general patterns grows as the number of destinations

increases. Also, the general patterns become more and more complicated.

57

General Pattern 4.1 General Pattern 4.2

Figure 4.12 One-to—four general multicast tree patterns

Can we find an efficient algorithm to solve the OMT problem? For a general graph,

the answer is no. In fact, it has been shown in [ChEN87] that the problem of finding an

OMT for a general It is NP-hard even if G (V, E) is bipartite.

A problem which is very similar to the above problem is known as the Steiner Tree 1

(ST) problem. It is the problem of finding the smallest subtree of a given graph, which >

contains a given subset of nodes [GaJo79]. It can be observed that if condition (b) in the

definition of OMT is removed, OMT problem becomes a ST problem. It has been shown

that ST problem is NP-complete when G(V,E) is the hypercube graph [GrFo82].

The OMT model can be applied to any interconnection topology. From here on,

we only consider multicast in the hypercube topology. Now the question is “Is the OMT

problem still NP hard for the hypercube topology”? Based on the above observations,

we conjecture that the OMT problem remains NP-hard even for hypercube topology.

CHAPTER 5

A DISTRIBUTED MULTICAST ALGORITHM

FOR HYPERCUBE MULTIPROCESSORS

As discussed in the last chapter, it is impractical to find an OMT when the number

of destinations is large. Also, the optimal algorithms discussed so far are all centralized

in the sense that they require the entire routing be handled solely by the source node.

Subsequently, this approach requires the information of the enfltirepathsbe carried Lbythe _

message'header, and thus increases the interprocessor communication _ov_erhead._ In this

chapter, we propose a distributed heuristic algorithm which has the following properties.

First, the distance from the source node to each destination node in the multicast tree

generated by the proposed algorithm is the same as that in an OMT. Second, the algo-
/____________.._

“-wuu— MM

rithm is simple and _M4easily—implemented~1§__h§r_d_v_v_am Third, it allows distributed ,

routing. Finally, simulation results indicate the traffic generated by the algorithm is very

close to the optimal solution and is better than existing multi-destination message

delivery mechanisms.

5.1 UNDERLYING RATIONALE OF THE MULTICAST MULTICAST ALGO-

RITHM

Observe that in a multicast tree only forward nodes are involved in passing the

multicast message to some other nodes in the multicast tree. Initially, a node, called the

source node, decides to send its message to some number of other nodes, i.e., it issues a

58

59

multicast message. By ruining _t_he#al_gorithm,_ the source node will decide which of its
1,.r..-r~-'-- ‘- —___ uuh-- "

11mg nodes SEWssage. A message received by a node v includes

the data unit, the address of the source node, and a list of destination nodes (referred to

as destination list) which are descendants of node v in the multicast tree. Detailed

description of the message format will be given in Chapter 6.

Each node, upon receiving a multicast message, will perform the following func-

tions. First, it will compare its own address against the addresses in the destination list of

the received message. If there is a match, that matched address will be removed from

the destination list and a copy of the data field will be sent to the local processor. Then,

if the destination list is empty, the node is a leaf node in the multicast tree and no mes-

sage will be further forwarded. However, if the destination list is not empty (which

implies the node is a forward node), the node will execute the algorithm to determine its

descending neighbors in the multicast tree. Depending on the number of descending

neighbors, say m, the forward node will split its destination list into m disjoint destina-

tion sublists, each consisting of a set of destination nodes which are descendants of a

particular descending neighbor. Each such destination sublist is put into a message

header and sent to its corresponding descending neighbor.

Now the question is how each forward node decides which of its neighboring nodes

to pass the received message. Consider a two-destination multicast, as shown in T2.1

(Figure 4.8). In a hypercube environment, suppose the relative addresses of two destina-

tion nodes ul and u2 have 1’s at p common bit positions (p9.(u1)9(u2)), which

define the intermediate node 1:. For a message to go from node ac to x, it may traverse

through these dimensions in any order (by changing the values at these p bit positions

from 0 to 1, one at a time, in any order). As discussed before, there are pl different

paths between nodes uo and x. From the point of view of this message delivery, any of

these paths has the same effect since they all require the same number of time steps and

create the same amount of traffic.

60

Now, suppose that node uo wants to include an additional node, u3, in its destina-

tion list. In this case, we have the situation of T3.1 (Figure 4.10). Let

1(y)=lla(u1)&a(u2)&a(u3)lI=q, and q<p. In this situation, the q dimensions are a

subset of the original p dimensions. Obviously, these q dimensions have to be traversed

first, and then those p -q dimensions. Otherwise, y would not be the NCA of u1, uz, and

tag.

In order to have an intuitive idea, let us take a look at Figure 4.1 again. Why is

4.1(b) better than 4.1(a)? Notice that us®u1=011. Relative addresses 011 indicates

that a path from u, to u1 has to pass both dimension 0 and dimension 1, sooner or later.

Similarly, we have u,$u2=101, which means a path from u, to u; has to pass dimen-

sions 0 and 2 any way. The paths to both destinations have to pass a dimension 0. Thus,

in Figure 4.1 (b), the source node first sends out the message to dimension 0 (node 001);

then at node 001, the message is duplicated and sent out to the two destinations. By

doing this, one unit of traffic is saved for that message delivery.

The above discussion suggests that each forward node can use the relative binary

addresses of all its destination nodes to vote for preferred dimensions (bit positions).

The process works as follows. Each of the n bit positions has a counter. For each desti-

nation, if its binary address has value 1 at c bit positions, the corresponding c counters

are increased by 1. Then, if the counter of a particular bit position, say j, has the max-

imum number of 1’s, the j-th dimensional neighbor of the forward node no is selected.

In case of a tie, select one of the tied bit positions at random. For simplicity, a lower bit

position is selected in the actual implementation.

All the destination nodes whose binary addresses have value 1 at bit position j are

selected to form a destination sublist in the message sent to the j-th dimensional neigh-

bor. This implies that the neighbor is responsible for passing the message to all those

destinations in the list. The same procedure continues for the remaining destinations

which, of course, do not have 1 at their bit position j. Then we can find the second

61

destination sublist if the set of the remaining destination nodes is not empty. This pro-

cedure is repeated until all destination nodes have been resolved.

5.2 THE GREEDY MULTICAST ALGORITHM

As mentioned earlier, our multicast algorithm is executed by each forward node.

We now present an hueristic algorithm for the multicast. In the following algorithm,

a (u,) and a (uo) represents the actual addresses of the source node and current forward

node, respectively, and a (u1),a (uz), - - . ,a (at) represent the actual addresses of the k

destination nodes. For the algorithm to work, it is not necessary to sort the destination

addresses according to their distances from the source, as this was previously assumed in

order to simplify the explanation of the multicast problem. However, a forward node

has to perform an XOR operation on its own address and the addresses of its descending

destinations to change their actual addresses to relative addresses. The corresponding

relative addresses are ro(uo)=a(uo)ea(uo)=0, and ro(u1)=a (uo)ea (141'), for ISiSk.

The listing of the heuristic algorithm is given in Figure 5.1. The algorithm is also called

GREEDY multicast algorithm, since it selects a dimension of maximum column-sum

whenever it finds one.

Lemma 5.1: Given a source node u, and a destination list

D={u1,u2, ° ° - ,ui, - - ° ,uk} in a Q", algorithm MULTICASTJ passes a message from u,

to every destination “56D through a shortest path between u, and 14,-.

Proof: Let the path from us to u,- be p=(u,,v1, ° - - ,vj, - - ° ,vd-1,u,-). It is implied

that u,- is in the destination sublist received by every forward node v,- along the path.

Assuming a (vi) and a (v141) differ at bit position I, then u,- is included in the destination

sublist sent from vi to vj+1 only if a (Vi) and a (u,-) differ at bit position I. Also, a (VJ-+1)

and a (111') must agree at bit position I. That is, each forward node passes messages to its

children nodes only. Therefore, it is clear that for every destination iii, if

IIa(u,)$a(u,-)I I=d, then Ila (vj)$a(u,~)| I=d-j holds for lSde-l. Starting from the

62

Input: Local address: a (u 0);

Destination list: D={a (u1),a(u2), - ° . ,a (141)}.

Output: Destination sublist(s): D1, D1), ° ~ - , 08

where DicD, for 1Sng; and DinDj=Q, for i¢j.

Algorithm MULTICAST.1:

1.

2.

3.

5
"
.
“

6.

7.

8

8.1.

8.2.

8.3.

9.

10.

(* Calculate relative addresses: *)

ro(u;)=b1- (n_1)b1' 01.2) "by "bio-Ea (u 0) ea (14;), for ISiSk;

(* if local processor is a destination, send a copy to it *)

If ro(u,-)=0 for some is [1,k], send the message to local processor;

("I calculate column sums *)

Cj=2b1°j, for ()5an -1;

. II:

p=0; (* start loop *)

("' select a dimension with maximum column sum, *)

(* lower dimension has higher priority in case of a tie *)

Find smallest I, such that clzcj for all OSan —1;

If c1=0, stop.

D156;

(* form a new destination sublist, reset corresponding rows *)

For each ro(u,-), 1SiSk, if b11=1, then

Dp=Dp+Ir0(ui)$a (“0”;

Set ro(u,-)=0;

Cj=Cj-’b1'j for OSan-l;

Put destination sublist Dp into message header, send out the message at l-th

dimension (to node a (u (1)921);

(“I start the selection of another dimension *)

p=p+l; Goto step 5.

Figure 5.1 Greedy multicast algorithm

63

source node 14,, after d-l steps, the message will travel to node v4-1, whose address has

only 1 bit position in difference from a(u1-). The message then travels to to u,- through

the direct link between v4-1 and u;. That is, the message travels from u, to u,- in d steps

if the addresses of u, and u,- differ at d bit positions. The path is therefore a shortest one.

I

Lemma 5.2: Given a source node as and a destination list

D={u1,u2, ~ - ° ,u,~, - ' . ,uk} in a Q", by executing algorithm MULTICAST.1 at all forward

nodes, every destination node u1eD will receive the message exactly once.

Proof: Lemma 5.1 has shown that each destination node receives a copy of the

message through a shortest path. In the proof of Lemma 5.1, we have also shown that a

message will travel from a forward node v; to a destination u,- only when u,- is in the des-

tination sublist received by V}. We note that during the execution of algorithm MULTI-

CASTJ at forward node vj, each destination node in the destination sublist is passed to

one of vj’s children nodes only. This is true for any forward node. Also note that a

message always travels from a parent node to a child node. Therefore, no two nodes at

the same level (with respect to the source node) could have the same destination node in

the destination sublist it receives. Therefore, only one copy of the message is received

by each destination. The conclusion follows. I

Theorem 5.1: Given a source node u, and a destination list

D={u1,u2, - ° ° ,ug, - - - ,uk} in a Q", the edges selected by algorithm MULTICAST.1 at all

forward nodes induce a Multicast Tree.

Proof: Let the subgraph formed by the edges selected by algorithm MULTICAST.1

be T(V,E). It is obvious that T is a connected graph. We now show that there is no

cycle in T. Note that if a node uxdb and u, does not reside on a path from u, to any

“1'6D, then uxd V(T). We now prove that the paths from u, to all WED do not form any

cycle. We prove by contradiction. Assume there is a node u,e V(T), such that there

exist two paths from u, to u). in T. First, obviously it is impossible that ayeD, since

64

Lemma 5.2 has shown that the path from u, to every uieD is unique. Now suppose

14,40, and the two paths from u, to u, are p=(u,,v1, - - - ,vj, ° - - ,v,_1,u,) and

p’=(u,,v’1, . ~ - ,v’j, ° - . ,v’,_1,uy). Assume j is the smallest number such that v’jrtvj.

Also assume a(v,-_1) and a(vj) differ at bit position I, and a(vj_1) and a(v’j) differ at bit

position I’. Then a (vj_1) and a (u,) must differ at both bit positions I and 1’. If dimen-

sion 1 is selected first by the algorithm, then the addresses of all destination nodes in the

destination sublist received by v,- differ from a (u,) at bit position I, while the addresses

of all destination nodes in the destination sublist received by W; must agree with a (14,)

at bit position 1. Thus, the message passed to v’j will never travel through dimension 1,

therefore, will not reach node u,. If dimension 1’ is selected first, the same situation will

happen. Therefore, it is impossible that a cycle could exist in T, and thus T is a tree.

Furthermore, Lemma 5.2 shows that every destination node receives a message through

a unique shortest path, we conclude that T is a multicast tree.

Lemma 5.3: The multicast tree constructed by algorithm MULTICAST.1 is an

Optimal Multicast Tree when the number of destinations is less than 3.

Proof: When the number of destination is one, that is, in a unicast case, it is obvi-

ous that the multicast algorithm will generate a path form the source to the destination

exactly the same way as the unicast algorithm does. For the case of two-destination

multicast, we show that algorithm MULTICAST.1 works in the same way as algorithm

One_to_Two_Multicast (Figure 4.9) does. Suppose D={u1,u2]. We have

r,(u,-)=a(u,)$a(u1) (ISiSZ). Assuming I|r,(u1)&r,(u2)ll=1n, then when executing

the algorithm at u, to find column-sums, m column-sums will have value 2. The m

dimensions will be selected by the multicast algorithm one by one from the lowest

dimension to the highest dimension along the path. After m steps, the message will

reach the NCA of u1 and uz, which is node u, with a (ux)=a (u 1)&a (u). The order of

traveling the m dimensions is immaterial. At node 14,, all column-sums will be either 1

or 0. The message will travel to u1 and u2 through two separate paths. As detailed in

65

the proof of algorithm One_to_Two_Multicast, it is optimal. I

We would like to mention that the algorithm is distributed in the sense that each

forward node only decides which neighboring nodes to pass the message. Only the des-

tination addresses are carried in the message header. No intermediate node addresses

need to be carried. Also, each forward node which receives a message will execute the

same algorithm. The example in next section will make the idea clear, and show how a

multicast tree can be generated by the algorithm.

5.3 AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate through an example how the Greedy multicast algo-

rithm works. Consider a 5-cube in which node 00110 (6) wants to send a message to

nodes {00111 (7), 10100 (20), 11101 (29), 10010 (18), 00001 (1), 00000 (0)}. Initially,

the source node 00110 is the only forward node which executes the greedy algorithm

(uo=u,). The actual addresses of the source no, and destinations u1, - - - .145 are listed

in Table 5.1.

The actual addresses of all destination nodes are first XORed with the actual

address of no. The resulting relative addresses are put into a binary reference array

A [1..k, 0..n-1]. Initially, row i of array A corresponds to the relative address of destina-

tion u1,(1SiSk). The array is shown in Table 5.2.

The number of 1’s in each row of array A indicates the distance between that desti-

nation and current node. The number of 1’s in each column is counted to produce the

vector column_sum, which has the values of (3, 1, 3, 4, 3) in this example. Bit position 1

has the maximum value of 4. Thus, bit position 1 (i.e., dimension 1) is selected to

receive the message. Rows 2, 3, 5 and 6 which have value 1 at bit position 1 are picked

up to form a destination sublist. The corresponding descending neighbor, thus, is

00110600010=00100 and the message sent to this node contains the following destina-

tion addresses: a(u2).a (u3), a(u5) and a (us). These four rows (rows 2, 3, 5 and 6) in

66

Table 5.1 The actual addresses of source (00110) and destinations

Actual addresses

b4b3b2b1bo Decimal

a(uo) 0 0 1 1 0 6

a(u1) O 0 1 1 1 7

a(u2) 1 0 1 0 0 20

a(u3) 1 1 1 0 1 29

Mn) 1 0 0 l 0 18

0015) 0 0 0 0 1 1

a(u6) 0 0 0 0 0

Table 5.2 The reference array at node 00110

Reference array Distances

4 3 2 l 0

AU, *] 0 0 0 0 1 1

A[2,*] l 0 0 1 0 2

A[3,*] 1 1 0 l 1 4

A[4, *] 1 0 1 0 0 2

A15. *1 0 0 1 1 1 3

A[6,*] 0 0 1 1 0 2

column_sum 3 1 3 4 3

array A are then reset to all zeros. Array A now has new entries as shown in Table 5.3.

Now, the new column_sum becomes (1, 0, 1, 0, 1). Three bit positions, 4, 2, and 0

have the same maximum value of 1. Although Any one may be selected, we assume a

lower bit position has a higher priority and thus bit position 0 is selected. As a result,

destination address a (u 1) forms another destination sublist included in the message sent

to the descending neighbor 00110Q)0001=00111, which happens to be a destination

node.

67

Table 5.3 The reference array after the first run of the algorithm

Reference Array Distances

4 3 210

A[1,*] 00001

A[2.*] 00000

A[3,*] 00000

A[4,*] 10100

A[5,*] 00000

A[6."'] 00000

column_sum 1 0 l 0 1

Table 5.4 The reference array after the second run of the algorithm

Reference Array Distances

4 3 210

A[l,*] 00000

A[2,*] 00000

A[3,*] 00000

A[4,*] 10100

A[5,*] 00000

A[6,*] 00000

column_sum 1 0 1 0 0

After reseting row 1 to zero, the only row left is row 4, as shown in Table 5.4. By

repeating the same procedure, a (u4)=10010 is the destination sublist to be included in

the message sent to the descending neighbor 00010.

At this point, the multicast subtree with three descending neighbors, as shown in

Figure 5.2(a), is formed. In this and following figures, an arrow represents a link, and

the number inside a small square by a link indicates at which step of executing the algo-

rithm that dimension is determined. Also, a node marked by "*" means it is a destina-

tion node, The source node is marked by a ""2

68

(a) The multicast subtree generated at node 00110

00100

10100 [2]

00000

(b) The multicast subtree generated at node 00100

(c) The complete multicast tree

Figure 5.2 A multicast tree in a Q5

69

Upon receiving a message from node 00110, node 00100 serves as a forward node.

The corresponding multicast subtree of this node can be similarly generated and is

shown in Figure 5.2(b).

By repeating this procedure at all forward nodes, the resulting complete multicast

tree rooted at node 00110 is shown in Figure 5.2(c).

5.4 PERFORMANCE STUDY ON THE GREEDY ALGORITHM

In this section, we first estimate the time complexity of the greedy multicast algo-

rithm, and then compare the performance of the algorithm with the optimal solution and

other alternative methods for multi-destination message delivery.

5.4.1 Time complexity of the Greedy algorithm

We assume that the basic Operations, such as addition, subtraction, comparison and

assignment, have time complexity 0(1). Let n be the dimension of the hypercube and k

be the number of destinations in the multicast. Then, in the algorithm, line 1 and 2 have

time complexity of 0 (k); line 3 has 0 (kn). The number of loops between line 4 to 10 is

at most n. Thus, we have 0 (n2) for line 5, 0 (n) for lines 6 and 7, and 0 (kn) for line 8.

Lines 8.1 to 8.3 are executed at most k times regardless of the number of loops, which

have the complexity of 0(3k+nk). Finally, we have 0(3n) for lines 4, 9 and 10. It’s

not difficult to figure out that the Greedy algorithm is of time complexity

o (4k+3n+3kn+n2), or 0(nk+n2) for large k and n.

In Section 5.3, we have proven that the greedy multicast algorithm guarantees a

minimum message delivery time by providing shortest paths between source and each

destination. Using the algorithm, the traffic generated for the multicast is also minimum

when the number of destinations is less than 3. In general cases, the distribution of the

destination (the locality of information) has great effect on the traffic generated by the

message delivery. Several distributions have been suggested for the study of communi-

cation algorithms [ReFu87]. We would like to study the Greedy algorithm in Uniform

70

distribution and Decreasing probability distribution.

5.4.2 Performance under uniform distribution

Under the assumption of uniform routing distribution, the probability that node u,-

sends a message to node 14,- is the same for all uj¢u1, u1,u,-e V(Qn). We would like to

compare the performance of the Greedy algorithm with two alternative approaches for

one-to-many communication: multiple one-to-one and broadcast. Issuing k one-to-one

message deliveries for k-destination communication is the actual approach used in first

generation hypercube multiprocessors. Implementing one-to—many using the broadcast

communication, the router will not send the message to the local processor if the local

address does not match any address in the destination list.

Figure 5.3 shows the amount of traffic generated by these different interprocessor

communication methods in a 6-cube multiprocessor. A unit of traffic is measured as one

message traverses over one link. In the figure, the number of destination nodes, k, is

chosen within the range [1,63]. For a given ke [1,63], k destination addresses in the

multicast set are selected at random (uniform distribution). Then, by executing a simu-

lation program, the number of links involved in the message delivery is measured for

each communication method. For each k, we repeat the simulation 1000 times, and the

amount of traffic generated for a given k is averaged over the 1000 runs. The dashed

curve, solid curve, and dotted line show the results from multiple one-to—one, Greedy

algorithm and broadcast approach, respectively. The x—axis is the number of destina-

tions, and the y-axis is the average traffic created by the message delivery. The greedy

multicast algorithm always generates the least amount of traffic compared with the other

two approaches.

In the broadcast method, the traffic generated is independent of the number of des-

tination nodes and is 26-1=63. For multiple one-to«one message delivery, under the

uniform routing assumption, [:3] destinations have distance i from the source. The total

number of destinations is 2"-1. Thus, the average distance between a source and a

71

100

90 -— multiple one-to-one ,’

80 —

70 -I

Traffic 50 -

30—

 I l I I I I l

0 8 16 24 32 40 48 56 64

Number of Destinations

Figure 5.3 Comparison of three communication methods in a Q 6

destination, under uniform distribution, is

2n-1

2"-1

1 n . n

d = t[] =n><

For the case of n=6, dm=3.05. To send a message to a destination at h hops away will

create h units of traffic. Thus, the average traffic generated for k destinations using mul-

tiple one-to-one communication is 3.05k for uniform distribution. It follows that when

the number of destination nodes is greater than 20, even broadcast approach performs

better than the multiple one-to-one approach. Note that multiple one-to-one approach is

actually used in the first generation hypercube multiprocessors.

72

In order to better evaluate the performance of the Greedy algorithm, we also run

simulation programs for an optimal algorithm and a multi-destination routing algorithm

presented by Moler and Scott [M08086] with the name of Spare global send. The

optimal solution is obtained by exhaustive searching and comparing of all poSSible paths

for each given number of destinations (an exponential time complexity algorithm). The

idea of the Spare global send can be briefly described as follows. Given a local (for-

ward) node and a destination list, the algorithm first searches the destination list and

selects one which is closest to the local node, a message is then sent to that node through

a shortest path between the two nodes. Those destination nodes which are descendants

of the selected node will receive the message through that node. The algorithm is

repeated for the remaining nodes in the destination list until all destinations are dealt

with. The algorithm is also distributed.

The results for the three algorithms are generated in a way similar to the curves in

Figure 5.3, except that the simulation is for odd number of destinations, and for each

given number of destinations the value is averaged over 100 runs instead of 1000 runs

(since the optimal algorithm takes a long time). Figure 5.4 shows the three curves,

where the x-axis is the number of destinations and the y-axis is the traffic created by the

message delivery; the upper dashed curve, solid curve and lower dashed curve represent

the result from spare global send, the Greedy multicast algorithm and the optimal solu—

tion, respectively. Also shown in Figure 5.4 is the dotted line, which is a lower bound of

the multicast. For k destinations, the theoretical lower bound of traffic generated is obvi-

ously k, i.e., no non-destination forward nodes are needed.

From the curves, we can see that the performance of the greedy algorithm is better

than the spare global send, and is very close to the optimal solution, especially when k is

very small or very large. Note that it is proven in Section 5.2 that when k<3, the perfor-

mance of the greedy algorithm is the same as that of the optimal algorithm. This can

also be observed from the curves in Figures 5.4 and 5.5.

73

64

56 -

1. dashed curve: Spare global send

48 —1 2. solid curve: Greedy /

3. dashed curve: Optimal

4o ..

Traffic 32 -

24 .—

16 .1 4. dotted line: lower bound

8 —I

O I j I I I I I

0 8 16 24 32 40 48 56

Number of Destinations

Figure 5.4 Performance comparison of three multicast algorithms

(under uniform distribution)

74

Traffic

Difference

Worst case difference

Mean difference

fiy" h’“~—

v ‘

Standard deviation

 I I I I I I

16 24 32 40 48 56

Number of Destinations

Figure 5.5 Performance comparison of Greedy algorithm with optimal solution

(under uniform distribution)

75

In order to more closely compare the performance of the Greedy algorithm with

that of the optimal algorithm, we calculate the worst case difference between the traffics

created by the Greedy algorithm and the optimal algorithm, the mean of the difference

(11), and the standard deviation of the difference (a) during the 100 runs of the simula-

tion programs for each given number of destinations. The two parameters It and o are

calculated by the following formula:

p.=—100.-12(greedy1--optimal1-)

2
100.-—21[(greedy1--optimal1-)-u]

where greedy; and optimal; are the traffics generated by the two algorithms, respec-

tively, for i-th run of the algorithms.

Figure 5.5 shows the results, where the dotted, solid, and dashed line pieces

represent the worst case differences, the mean, and the standard deviation of the differ-

ences, respectively, for the 100 runs.

5.4.3 Decreasing probability routing

A good scheduling algorithm in a hypercube multiprocessor should partition and

map the data set to processors in a way that interprocessor communication is minimized.

In other words, if the evaluation of one data partition requires information from another

data partition, these two partitions should be allocated to adjacent processors [NiKP87].

In this case, those destination nodes are usually close to each other. Decreasing probabil-

ity routing is a good assumption for this situation [ReFu87]. Under this assumption, the

probability that a node sending a message to a destination of distance d decreases as the

value d increases. Let p(l1-) be the probability that a node of distance i happens to be a

destination node in a multicast. Then, we have p(l1-+1)=kp (11), where k<l is a constant

determining how fast the probability decreases as the distance increases. Since there are

[7] nodes having distance i from the source node, the following equation holds:

76

:31 ['1'] Midi): ['13] k"1 p(l1)=1

Based on this distribution, the simulation results of the performance for k=0.5 is shown

in Figures 5.6 and 5.7. Notice that the simulation is a very rough approximation of the

decreasing probability distribution. Since a node can be selected as a destination node

only once in a multicast set, when a number of destinations are selected, there is a factor

of conditional probability. Consequently, the simulated performance reflects the actual

destination distribution only when the number of destinations is very small. When the

number of destinations is very large, the distribution is actually close to uniform distri-

bution. As can be seen from Figures 5.6 and 5.7, the performance of the greedy multi-

cast algorithm for descending probability distribution is much better than that of uniform

distribution (Figures 5.4 and 5.5) when the number of destinations is small. From Figure

5.7, we can see that the average difference between the traffics of greedy and optimal

solutions is less than one unit.

77

64

56 a

1. dashed curve: Spare global send

48 - 2. solid curve: Greedy

3. dashed curve: Optimal

4o _

Traffic 32 -—

24 _

16 - 4. dotted line: lower bound

8 ‘1

O I 1 I I I I I

0 8 16 24 32 40 48 56

Number of Destinations

Figure 5.6 Performance comparison of 3 multicast methods

(under decreasing probability distribution)

78

 8

7 — —— Mean difference

6 - -------- Standard deviation

5 ._

Traffic

4 _.

Difference 1 1 1 1 1 1 1. .1 1. .1

3 ._ 3.’. 1‘. .3: .3. ..'. .°.. ..’. :1. Worst case differcncc

0 8 16 24 32 40 48 56

Number of Destinations

Figure 5.7 Performance comparison of Greedy algorithm with optimal solution

(under decreasing probability distribution)

CHAPTER 6

A HARDWARE ROUTER DESIGN

FOR HYPERCUBE MULTIPROCESSORS

As indicated in previous chapters, the interprocessor communication mechanism is

an important factor in determining the performance of multiprocessor systems. In first

generation hypercube multiprocessors, one-to-one communication is the only service

directly supported. In Intel iPSC, broadcast and multicast (called "spare global send")

communications are implemented by subroutine calls on top of one-to-one communica-

tion [MoSc86]. As discussed in Section 3.7, the software approach for handling interpro-

cessor communication is far too slow to match the speed of the processors.

Various techniques, such as DMA, used in NCUBE [HMSC86]. or dedicated com-

munication processor, used in Ametek [Amet86], have been used to reduce the commun-

ication overhead. However, since the first generation hypercube multiprocessors adopt

the store-and-forward approach for message routing, the communication overhead is

still unacceptable, especially for communication between non-neighboring nodes. The

communication mechanism provided by these machines not only has the potential of

generating more than required traffic in the system, but also introduces a great amount of

delay due to the time spent to make routing decision.

Therefore, to design hardware devices dedicated to routing purpose has become a

natural trend in the second generation DMMP design. In this chapter, we will present

the architecture of a hardware router. Each processor in a hypercube is associated with a

79

80

router to handle interprocessor communication tasks. We first give some design con-

siderations, then propose a message format to be used in the interprocessor communica-

tion. A major part of this chapter is devoted to the detailed discussion on the architec-

ture of the router.

6.1 HARDWARE DESIGN CONSIDERATIONS

Some dedicated router chips have been developed and used to handle one-to-one

communication in the second generation of hypercube multiprocessors. Dally and Seitz

present the torus routing chip [DaSe87] to perform virtual cut-through routing. Based

on a virtual chaan method, the chip can provide deadlock-free one-to-one communica-

tion for general k-ary n-cube DMMPs. At a speed of 4MHz, the delay introduced at

each intermediate node is 150 ns. In Intel’s second generation hypercube iPSC/2, a

router based on circuit switching is designed for one-to-one communication [iPSC88].

To establish a physical path between a source and a destination, a few microseconds is

required at each node along the path. About 3501.1s is needed to transmit a message and

receive an acknowledgement. Furthermore, some designs also include broadcast com-

munication capability using the wormhole approach [Seit87].

However, multicast communication, although greatly demanded by various appli-

cations, is not directly supported by any existing DMMP. To design a versatile

hardware router, which can directly support not only unicast and broadcast, but also

multicast, is the major goal of this research. As indicated in Chapter 3, virtual cut-

through packet switching is more versatile and better suited for our purpose.

Our goal is to design a VLSI router with the following features:

(1). Fast: Even for a complicated multicast message, the router decides a forwarding

dimension in 1 us or less.

(2). Dedicated: The router handles all communication tasks independent of local nodal

processor. The nodal processor is involved in any communication task only when

81

the node is a source or a destination.

(3). Versatile: The router can efficiently handle any of the three basic communication

types— unicast, broadcast, and multicast.

(4). Distributed: Routing decision is made by each forward node in a distributed

manner. Each router only decides its immediate neighbor(s) to forward received

messages.

(5). Fault-tolerant: The router should have certain fault-tolerant capability. More pre-

cisely, if each fault-free node has no more than one faulty neighbor, the router

should be able to forward messages to fault-free destination(s) correctly.

In the remaining sections, we will discuss the architecture of a hardware router fol-

lowing a presentation of the frame format.

6.2. MULTI-DESTINATION MESSAGE FORMAT

To support multicast communication, the message should carry all destination

addresses as well as the address of the source. For broadcast communication, however,

only the source address has to be specified. A general multi-destination message in an

n-cube has the following frame format.

n-bit n-bit 1 n-bit n-bit n-bit 1

I k D1 | 02 1),, s I] DATA

The first field in a message is the k field. For multicast and unicast, the value of k indi-

cates the number of destination fields canied in the message. The k field is immediately

followed by the k destination fields: D 1 ,D2, - . ~ ,Dk. For broadcast message, however,

no destination fields are carried, even though k=2”-1 in that case. Thus, k=1 means it is

a unicast message, and k= "-1 indicates a broadcast message. Otherwise, it is a multi-

cast. For simplicity, fields such as start and end delimiters and checksum are not shown

82

in the message format. Messages may have variable lengths not longer than a maximum

limit.

For example, the message generated by the nodal processor at node 6 as illustrated

in Section 5.2 has the following format.

DATA

—
1

6|7 20 29 rs|1|o]6

Based on the greedy multicast algorithm, the router at node 6 will generate three mes-

sages sent to nodes 4, 7 and 2, with the following formats, respectively.

4 20 I 29 1 o 6 || DATA

1 7 6 DATA |

1 18 6 DATA |

Note that the source field "S" and the data field "DATA" will never be changed on the

way to different destinations.

6.3. AN OVERVIEW OF THE ROUTER

In Chapter 4, we mentioned that multicast is the most general type of communica-

tion. In a broad sense, multicast could include all three types of communications, assum-

ing lSkS2”—l. In a narrow sense, it refers to the situation when 1<k<2"-1. However,

in real applications, it is unlikely that a multicast message will be sent to all 2"-2 possi-

ble destinations. Therefore, in our actual design, the hardware unit (multicaster) imple-

ments multicast algorithm for the case of lSkSm (notice that the unicast is included),

where m<2"—1. For the case of k>m, the routing will be implemented by broadcast

algorithm. From Figure 5.3, we can see that when the number of destinations is large,

the traffic generated by broadcast is close to that generated by multicast. Thus, the

83

choice ofm is a tradeoff between the space (hardware cost) and the time (system traffic).

In order to simplify the illustration, we show the diagrams of a hardware router for

a 3-cube. In the following discussions, n denotes the dimension of the hypercube (n =3,

in our example); m denotes the maximum number of destinations in a multicast the mul-

ticaster can handle (m =4, in our example); and k denotes the actual number of destina-

tions in a particular multicast.

Each router in a 3-cube has three input channels from its three neighbors, three out-

put channels to the three neighbors, and one input connection and one output connection

to the local nodal processor, as depicted in Figure 2.2. Channel i is the directly con-

nected link between the local node and the neighboring node at dimension i, that is, their

binary addresses differ at bit position i only. Each input channel is associated with a

message handling unit (MHU), through an input gateway (11- for dimension i, OSiSn).

After processing is done in the router, the incoming message is sent out through one or

more of the four output gateways (O,- for dimension j, OSan) to the corresponding

neighbor(s) or/and the local nodal processor.

E ____.,. [0 MHUo ___,

From To

Neighbors TI 1‘ MHUI Neighbors

E 12 MHU2 _’

FromLocal To Local

P ssor —a 13 MHU3 P ssor

Figure 6.1. The block diagram of a router in a Q3

84

In this study, what we are concerned with is the structure and activities in a router

attached to the nodal processor. In the following discussions, from the point of view of

a router in current node, the term sending node is used to represent the router in a neigh-

boring (parent) node which sends a message to the current node or the nodal processor at

the local node which originates a message. The term source node represents the node

which originates a message. Thus, a sending node is not necessarily a source node.

Similarly, a receiving node is the immediate receiver of a message — the router in a

neighboring child node, which is not necessarily a destination node.

Each input gateway provides necessary interface between the channel and the

MHU. Each output gateway acts as a multiplexer. An output gateway may receive mes-

sages from any of the four MHUs and send them out to the the receiving nodes specified

by the MHUs. We will concentrate our discussion on the MHU design since it is the

major component in a router.

6.4. MESSAGE HANDING UNIT (MHU)

Figure 6.2 shows the block diagram of a Message Handling Unit (MHU) which

consists of the following modules:

(1). A Controller Module, which interacts with neighboring and local processors, con-

trols the current state of the MHU, and synchronizes the activities of other modules

in the MHU.

(2) A Processing Module, which is the essential component —- actually executing all

communication algorithms.

(3) A Data Bufi’er Module, which provides temporary buffering space for the data

field of a message.

(4) An Input Module, which acts as a distributor. It sends k field, address fields, and

source field to the processing module and sends the source field and data field to

the data buffer module.

85

processing module

b
-
-
-
d

input _ _ _ _ - output

module I- - - - q controller module module

I
I
I
I

r

I

I

I

l

K/t£ta buffer module

Figure 6.2. The block diagram of an MHU

(5) An Output Module, which generates proper output to the output gateways. The

output module receives new message header(s) prepared by the processing module

and the data field from the data buffer, and reassembles them to form new

message(s). The message(s) are then sent to the output gateways according to the

relative address(es) of receiving node(s), which are also provided by the processing

module.

In the following sub-sections, we will briefly discuss the design of the controller

module and the data buffer module with emphasis on the processing module.

6.4.1 The Controller Module

The function of the controller module is to interact with all sending and receiving

nodes and coordinate all modules in the MHU by issuing proper control signals. Before

a sending node sends out a message, it first sends a request-to-send signal to its intended

receiving node. When the controller at the receiving node receives the request, it issues

86

an acknowledgement signal. Upon receiving the acknowledgement, the sender can then

send out a message.

The MHU works in the following four states:

WAIT: it is in idle status and is waiting for the next request-to-send signal from the

sender.

INPUT: The k field, address fields, and source field of an input message from the sender

are received. The k field of the message header is checked. In case of k<2"-1,

the k address fields are checked to see if the local address is in the destination

list.

PROCESSING:

Two things are to be done at this state: (1). Address processing is done at this

time. The processing module entails finding proper output port(s) to forward the

message. (2). At the same time, the input module sends the upcoming data field

to data buffer module.

OUTPUT:During this stage, the new message header(s) is formed and sent out through

selected output gateway(s) followed immediately by the data field pumped out

from the data buffer module.

6.4.2 The Data Buffer Module

Once a sending node starts sending a message, it will not stop till the entire mes-

sage has been sent out. When the processing module is making routing decision for the

message after the message header is received, the data field of the message will keep

coming in. Thus, a temporary buffering space is needed for the data field received dur-

ing the address processing time. However, it may happen that two or more MHU’s in a

router want to send messages to the same neighbor at the same time, or a MHU can not

receive an 1 acknowledgement from a receiving node. In this case, the entire message

may have to be buffered temporarily until the link is available. Thus, for flow control

purpose, the capacity of the data buffer should be equal to the size of a maximum length

87

message, even though only a small part of the buffer is used in usual case.

6.5 THE PROCESSING MODULE

matching

multicaster

checker l

from . I to

u 111p:1: - store output >

input p0 port output

module I module

type broadcaster ——I

checker

Figure 6.3 The Processing Module

The processing module is the main part in the MHU. As shown in Figure 6.3, it

consists of following components: an Input Port, a Store, a Broadcaster, a Multicaster,

a Type Checker, a Matching Checker, and an Output Port. All the connections between

the processing module and the control module for signals are omitted in the figure.

The task of the processing module is to determine routing dimensions (the relative

addresses of neighboring nodes) based on the algorithms MULTICAST.1 (described in

Section 5.2) and BROADCAST.2 (described in Section 4.3). The relative addresses are

directly sent to the output module and are then used to determine which output gateway

to send the message.

The multicaster unit will be discussed in Section 6.6, while all the other units are

briefly described in this section.

88

6.5.1 Input Port

b2 b1 b0

A[L‘] 012 011 01o

A[2,*] 022 021 020

A13.*] 032 031 030

A[4, *] 042 041 040

 Store

as2 as 1 “so

I

.»——>to matching checker

XOR a(uo): local address

RCgiStCI' a("l)r C(UZ), . . ° 9 G(Uk), 00‘!)

Figure 6.4. The Input port and the Store

The basic function of the Input Port is to convert the actual addresses of the source

and all destinations in the message header into relative addresses with respect to the

local address and then save them in the Store. As shown in Figure 6.4, the input destina-

tion addresses a (u1-) (lSiSk) and source address a(u_1) are first XORed with the local

address a (uo) to form the relative addresses:

ro(u1-)=-=a1-(,1-1)a1-(11-2)..a1j ..a1-o=a (u1-)$a (uo), for lsiSk;

Note that the relative source address is also calculated for the purpose of broadcast com-

munication.

6.5.2 The Store

The Store in the processing unit has a (m +1)xn binary array (5x3 in our example

as shown in Figure 6.4), which provides temporary storage space for the relative

addresses of the source and up to m destination nodes. Initially, all entries in the array

89

are set to zeros. A subset of the Store, A [l..m,0..n—1], which initially holds the m rela-

tive destination addresses, is referred to as reference array. After each cycle (to be

defined laster) of the operation in the MHU, a particular forwarding dimension, and thus

a receiving node, is selected. The addresses of a subset of destinations are put into a

destination sublist in a forwarding message and sent out along that dimension. The rows

corresponding to those destination addresses are then reset to all zeros.

6.5.3 The Type Checker

The first field in an incoming message is the k field, which indicates the communi-

cation type. The Type Checker checks the k field in the message header and sends a

type signal to the Controller. If k>m, then type=0 and the Broadcaster will be invoked.

Otherwise, type=1 and the Multicaster will be activated by the Controller. The type

check also informs Matching Checker the number of address fields, k, to be checked if

k<2”-1.

6.5.4 The Matching Checker

When the relative addresses are sent from Input Port to the Store, they are also sent

to the Matching Checker. The function of the Matching Checker is to examine each

destination address. Whenever a zero relative address is found, which indicates that the

local node is one of the destination nodes, the Matching Checker sends a signal to the

controller, so that a copy of the source field and the data field in the incoming message

will be sent to the local processor.

6.5.5 The Output Port

The Output Port basically performs the following two functions:

(1) It passes the relative addresses of the receiving node(s) to the output module.

Notice that there is exactly one bit position with value 1 in each of the relative

addresses. The addresses actually indicate the routing dimensions, or channel id

numbers. Thus, the output module can easily determine the forwarding dimension

90

accordingly. Furthermore, the k field of the message header provided by the Multicaster

or Broadcaster will also be directly passed through the Output Port immediately follow-

ing each dimension information.

(2) Similar to the Input Port, the Output Port performs XOR operation on the rela-

tive addresses in the destination sublist with the local address to form the actual

addresses. In broadcast case, the Output Port sends out a relative neighboring address

followed by a k field with value zero. In multicast case, the relative address of a neigh-

boring node is followed by a non-zero k field and k actual destination addresses.

Note that the relative address of neighboring node is eventually consumed at output

modules, while the k filed and the k following destination addresses are assembled into a

new message header with the data field from the data buffer to form a new message.

6.5.6 The Broadcaster

a..__{>c 4..

N ; g

asl—‘_‘l >0 J 1

as0—_'>C —:> > 80

Figure 6.5 The Broadcaster for a fault-free Q3

The Broadcaster is invoked for a broadcast communication (k=2"-1) or a multicast

communication with a large number of destinations (m<k<2"-1). If k=2"-1, a copy of

the received message is sent to local processor. Otherwise, a copy of the received mes-

sage is sent to the local processor only when the local address matches one of the

91

addresses in the destination list. The Broadcaster performs the broadcast algorithm dis-

cussed in Section 3.4 to decide further message forwarding. Assume the relative source

address with respect to the local address is a (u,)=a1,(11_1)a11(11_2) - - ° a111a110. In the

Broadcaster, a flag word G=g,1-1g,1_2 ° - - g 1go is generated first, such that

asj if j=n-l

31' = . . °
n (Ts; 1f OSan-Z

allij

where (and from here on) the symbols U and n stand for the logical OR and logi-

cal AND operations, respectively, for a number of bits. If gi=1’ then the received mes-

sage is sent out through dimension j. Actually, the relative address of a receiving node

with respect to the local node, a binary number which has value 1 at bit position j and

value 0 at all other bit positions, is sent through the Output Port to the Output Module to

decide proper output channel (dimension). The broadcaster can be easily constructed as

shown in Figure 6.5.

6.6 THE MULTICASTER DESIGN

The Multicaster is the most complicated part of the MHU, which implements the

greedy multicast algorithm. It calculates all n column sums of the relative destination

addresses and finds out one with the maximum sum. A brute force approach using a

number of counters and comparators will take too much space and time. In our

approach a combinational circuit is designed to find out the current maximum bit posi-

tion in one cycle. In other words, the determination of each outgoing message takes one

cycle, where the cycle time is measured as the worst case signal delay in the combina-

tional circuit, which is 1 usec in our prototype design based on a 3 micron CMOS tech-

nology.

92

‘termination’

signal to

to controller = output

port

DECR MAXC CLMS ADSC

(Decoder) (Maxim (Column (Address

€11ka Selector) Scarma)

I

Destination Destination

Store :

List Sublists

Figure 6.6 The Multicaster and the Store

Figure 6.6 shows the block diagram of a Multicaster and the Store. A Multicaster

consists of a Decoder (DECR), a Maximum Checker (MAXC) to check the maximum

number of 1’s in the columns, a Column Selector (CLMS) to select a particular column

which has the maximum number of 1’s, and an Address Scanner (ADSC) which picks

up all rows that have the value 1 at the selected column to form new address fields.

6.6.1 The Decoders (DECR)

There are n decoders in an MHU, each associated with a column. All the entries of

a column in the reference array are directly connected to the inputs of a DECR. As

shown in Figure 6.7, a DECR has m input lines and m-I-l output lines. The m input lines

to the DECRj are a1,- (ISiSm), which are the m elements (bits) of the j-th column in the

reference array, A P“,j]. The m input lines are sent to a Wallace tree to get log; Im+1]

bits (lines) representing the number of 1’s in the m input lines, followed by a decoder to

generate m-I-l output lines c,1 (0S!Sm). The DECR circuitry counts the number of 1’s in

93

v C-

a1,-
10

, le

Decoder

v :7 C'

Tree 12

031‘ 6

a4,- v C114

Figure 6.7 The Decoder (DECR) for the j-th column

m

all m input lines. Output line c11:1 implies that 2a11=l. For any input combination,

i=1

there is one and only one output line which has value 1.

After each cycle, those rows which have been removed to a destination sublist are

m k

reset to zeroes. Thus, cj1=l means 2ag=2a1~j=l, which indicates that column j in the

i=1 i=1

current reference array (i.e., at bit position j of all remaining binary relative address

addresses) has 1 1’3.

6.6.2 Maximum Checker

After the DECRs find the number of 1’s in all columns, the outputs from the

DECRs are sent to a Maximum Checker (MAXC) to find the maximum number of 1’s in

all columns. Figure 6.8 is a logic diagram of the MAXC. The MAXC has (m+1)xn

inputs, which are the outputs of the n DECRs, of, (05an-1, OSISm), and m+l outputs,

s1 (OSISm).

94

010

620

6‘01

011

621

012

022

613

023

014

€24
Figure 6.8 The Maximum column Checker (MAXC)

The intermediate values of the circuitry can be expressed as:

. n-l

S1 = U Cjl

j=0

where sj=l means some column (at least one) has 1 1’8.

The outputs are:

1

51 if l=n-1

if OSlSn—Z

SI

t

S] n(U Sp)

all p >l

The above logic ensures that there is one and only one of the m+1 output lines

which has value 1. Furthermore, s1=l means that the maximum number of 1’s in the

columns is exactly I.

95

A special case is that so=1, which means that all columns have zero number of 1’s.

That is, the current reference array is all zeroes. In other words, all destination

addresses have been resolved and the routing of the current message has been done.

Thus, the output line of so is used as a termination signal sent to the Controller.

6.6.3 The Column Selector

After finding the value of maximum number of 1’s in the columns, the next step is

to find which column has that maximum number. As pointed out in the discussion of

greedy algorithm, more than one column may have the same maximum number of 1’s.

The greedy algorithm requires only one column be selected. To simplify our design, we

select the column with the smallest column index among those columns. The Column

Selecter (CLMS) is designed for this purpose. As shown in Figure 6.9, it has

(m+1)x2xn inputs and n outputs.

The function of the CLMS can be expressed in the following equations:

0 m .

yj = U (6,131) for OSan-I

(=0

y1 = 1 means column j has the maximum number of 1’s. To make the selected column

unique, we let

r

t

y} ifj=0

”=4

if lSan-l

. t

yl n U yr

‘ allp<j

Exactly one of the n outputs from the CLMS has value 1, and yj=1 means column j has

been selected. Then, all the remaining destinations whose relative addresses have value

1 in bit position j will receive the message through the j-th dimensional neighbor of the

current node.

96

Yo

)’1

Y2

r----------------------—----fi

 MATCHER l

 MATCHER 2

Figure 6.9. The Column Selecter (CLMS)

97

6.6.4 The Address Scanner

The n outputs from the CLMS selector are used to scan the reference array. That

is, each row in the reference array, (a1-(,1_1)a1-(,1_2) - - ° am) for 19' Sm, is compared with

thcvector (ya-1 yn—Z yo).

n-l

r1- = U (a1-jyj) fOI' ISiSm.

j=0

If r1-=1, then row i will be put into a destination sublist, and all the entries in that row

will be set to zeros.

6.7 THE PROTOTYPE MHU CHIP

In this subsection, we summarize the operation of the MHU and the prototype

design of a MHU. As soon as the Store has received all the relative destination

addresses, the first receiving node will be determined after one cycle. As shown in pre-

vious sub-sections, the selection of a particular destination sublist is determined by a

number of logic equations which are implemented by a combination circuitry. Thus, the

cycle time is measured from the time the Store is updated until a destination sublist is

selected. This procedure is repeated until a termination signal is received (i.e., the ele-

ments of the reference array in the Store become all zeroes).

A prototype of the MHU has been designed by a group of students taking CPS922

course in Winter 1987 at Michigan State University [DCCM87]. It is a simplified ver-

sion of the MHU chip presented in this paper, which is for a 3-cube and does not per-

form broadcast algorithm (without Type Checker and Broadcaster). The chip has been

fabricated by MOSIS based on a 3 micron CMOS technology. To shorten the design

cycle, the Controller Module is designed using a PLA approach. Figure 12 illustrates

the photograph of the chip. The cycle time is measured to be 1 11sec.

98

"
'
.
'
-
"

'
3
‘

-
-

7
1

.
_
,

I
u

1
.

1
.
.
.
.
.
.
.
.

1
r

1
1

1
‘

.
A

‘

Figure 6.10 The prototype MHU chip

CHAPTER 7

ROUTING IN FAULTY HYPERCUBES

Hypercube multiprocessors are highly complex systems consisting of as many as

thousands of processors interconnected through a hypercube topology. As indicated pre-

viously, the hypercube topology provides multiple routing paths between every pair of

nodes. All message routing algorithms for hypercube multiprocessors are based on the

Hamming code of the node addresses.

As the system becomes larger, however, the probability that some processors and

communication links fail increases. When the failure of some components happens, the

routing mechanism based on the Hamming code cannot be applied. Design of fault-

tolerant routing mechanism is important especially for those applications requiring high

reliability. This chapter addresses the issue of message routing in faulty hypercube mul-

tiprocessors.

7.1 FAULT-TOLERANT SYSTEMS

In a fault-tolerant system, in order to reach the goal of reliable computing, first the

system should be able to detect the presence of failures and identify faulty components.

Once the failures are located, explicit mechanisms for dealing with the effects are

invoked. The process can be categorized as follows [Kim79, KuRe86]: (l) fault detec-

tion, (2) fault diagnosis (location), (3) system reconfiguration or repair, and (4) system

recovery.

99

100

The first two steps are basic steps to locate the source of failure at appropriate level

(typically node level in our case). Fault detection and location problem in hypercube

multiprocessors have been studied in the literature [ArGr81, Bhat83, Hawk85, KuhlSO].

After faulty components have been detected and located, the third step involves

physical reconfiguration of the system components around the faulty components, or

more likely, logical relocation of the load of faulty nodes among other nodes. There are

two approaches to achieve system reconfiguration [Aviz76]:

(1). Providing some spare hardware resource. The spare parts of the system either take

part in the computing process or are in standby condition, ready to act automati-

cally to preserve undisrupted continuation of the system. For up to a certain degree

of failure, the system can retain its full computing capacity.

(2). Providing no spare components. A system achieves partial fault-tolerancy (“fail-

soft”, “gracefully degrading”) by reducing its full computing capacity and

“shrinking” to a smaller system.

For the first approach as proposed in [Renn86], an extra subset of processors are

extended to a hypercube and reachable through crossbar switches by each node at the

(n +1)—th dimension (an extra port in each processor) in order to achieve fault tolerance.

In this approach, the system can maintain its full computation capacity under any single

fault. Some researchers have worked on the second approach which will be discussed in

more detail later.

The last step involves restoring data and computations in the system to a consistent

state. This may require recovery schemes such as rolling back computations to a pre-

failure state and restarting.

We will concentrate our attention on the reconfiguration step, especially, on partial

fault tolerancy in hypercube. More precisely, after the failure of one or a few processors

are located, how can we route messages among those fault—free nodes in such a faulty

environment?

101

7.2 DESIGN CONSIDERATIONS FOR FAULT-TOLERANT ROUTING

“15

“12 “13

Figure 7.1 An example of routing in a faulty Q4

Let us first demonstrate the difficulty of message routing in a faulty hypercube.

Consider a Q4 as shown in Figure 7.1. Suppose that nodes mm; and an are faulty

(double circled) and the source node uo wants to send a message to u3. We examine the

following three cases:

(A). Node uo does not know that u1 is faulty. It tries to send a message to u1 (dashed

arrow) in order to pass the message to u3, then, the message will get lost.

(B). Node uo knows that two of its neighbors u1 and u; are faulty. It may send the mes-

sage to us, as then pass the message to u 10. and so on, resulting in a path of length

6 (uo,u3,u1o,u14,u15,u7,u3), formed by the solid arrows.

(C). Node uo knows that u1 and u; are faulty. It sends the message to u, then us, and

so on, resulting in path (uo,u4,u5,u7,u3), indicated by the dotted arrows, which is

optimal with the shortest possible length of 4.

102

Note that case (A) can be avoided by proper fault diagnosis (detection-location)

techniques. For example, through a reliable communication protocol, such as the ack-

nowledgement and time-out scheme, the failure of u1 and 142 can be known to no.

However, case (B) is more difficult to avoid.

Situation for broadcast and multicast is even more complicated. The question is

what information the fault-free nodes have to know and how they can guide the message

through the shortest possible path(s) to the destination(s). Let us first introduce some

new notations, and then discuss what parameters should be considered in our study of

fault-tolerant routing.

In a Q11, the h-neighborhood of a node as V(Q11) is defined to be the set of nodes

H2=Iv|dQ_(u,v)sh, veV(Q,1)}. Let F(Q,1)CV(Q11) be the set of faulty nodes in Q1.

Also, let F1(u)=F(Q,,)nH: be the subset of faulty nodes which are in the h-

neighborhood of node u. A path from a source to a destination is a feasible path if it

contains no faulty nodes.

The values for the following parameters should be determined in our discussion of

fault-tolerant routing algorithms.

1. The neighborhood radius h. Suppose each fault-free node as V(Q11)—F (Q11) keeps

the status information of every node veH5 Then what is the value of h? Two spe-

cial cases are h=1 (u has the status information of neighboring nodes only) and

h=n (u has the global status information);

2. Max(IF(Q11) I). The maximum number of faulty nodes allowed in the system, such

that the routing algorithms still work; and

3. Max(|F11(u) I). The maximum number of faulty nodes allowed within the h-

neighborhood of a fault-free node u, for each as V(Q11)—F (Q11), such that the rout-

ing algorithms still work.

The problem of routing in faulty hypercubes has been studied in literature

[Hawk85, LeHa88]. Hawkes [Hawk85] addresses the fault diagnosis and one—to-one

103

fault-tolerant routing problems in generalized hypercube environments (r-ary n —cube).

There are (r-1)n node disjoint paths between any two nodes in an r-ary n—cube. These

paths are divided into three types. If the distance between the source and the destination

is t, then t of them have length r (typel), (n -t)(r—l) of them have length t+2 (type2),

and (r -2)t of them have length H] (type 3). When some nodes are faulty, the algorithm

tries to find a shortest possible path which is feasible.

Lee and Hayes [LeHa88] introduce the concept of unsafe nodes to identify those

fault-free nodes which may cause communication difficulties in faulty hypercubes.

Based on the concept, algorithms for one-to-one and broadcast communication in faulty

hypercubes for different values of h are prOposed.

Katseff [KatsSS] describes algorithms for one-to-one and broadcast communication

in incomplete hypercubes, which are structures similar to hypercubes but consisting of

an arbitrary number (N) of nodes where N is not necessarily a power of 2. The nodes

have the addresses of 0 to N—l interconnected by the same criterion as that of hypercube

topology. That is, two nodes have a direct connection, if and only if their binary

addresses differ at exactly one bit position.

For a highly reliable system, we do not expect many components to fail at the same

time. However, one or a few components may fail at a time. Therefore, we make the

following assumptions for the faulty hypercube multiprocessor under consideration.

1. We consider node failures only. A node is said to be faulty if its corresponding

processor fails. When a node is faulty, all the links incident to that node are also

faulty. Thus, they can be equivalently considered to have been removed from the

system.

2. All nodes are in one of the two statuses: either faulty or fault-free. The source

node and destination node(s) are all fault-free.

3. The failure of any node is known by all its neighboring nodes. That is, a fault-free

node knows the status of each of its neighboring node (h=1). An n-bit vector

104

Sf=f,1_1 - - . f1f0, called Fault_Vector, is maintained at each fault-free node. Each-

bit value in Fault_Vector indicates the status of a unique neighboring node, that is,

f1-=1 indicates the neighboring node at dimension i is faulty.

4. Each fault-free node has at most one faulty neighboring node (F1 (u)51, for

us V(Q11)—F (Q11)). This also implies I ISfI ISl.

If condition 4 is not satisfied, that is, a fault-free node finds two or more of its

neighboring nodes are faulty, it should report the situation to the host, and then the sys-

tem should be turned off to repair.

Now, what is the value of F (Q11)? We first find an upper bound for Max(IF (Q11) I)

regarding condition 4 in the above model.

Clearly, if IF (Q11) I>2"’1 , condition 4 will not be satisfied since there must exist a

node as V(Q11)-F (Q11) such that u is adjacent with at least two nodes in F(Q,1). Thus,

Max(IF (Q11) |)s2"’1, and the equality occurs when F (Q11) induces an (n -l)-cube.

However, if in addition to condition 4, it is required that no two faulty nodes be

adjacent in Q1, then the problem of finding the upper bound of Max(IF (Q11) I) is

reduced to the following classical question in the theory of error-correcting code:

‘ ‘What is the largest group of n-bit binary vectors (codewords) such that the Hamming

distance of any pair of codewords in the group is at least d?”. If the size of the largest

such group is denoted by IC I, then,

IC Is [3}, ['1‘]? 11+ If] 1 (7.1)

where t= [(d/2 — 1)] .

The above bound is known as the Hamming bound [Hamm50]. Clearly, with the

above modification of condition 4, the Hamming bound gives an upper bound for

Max(IF (Q11) I) with d=3. This implies

2!!

Max(IF (Qn) 05 "+1 . (7.2)

105

For n=3,4,5,6,7.8.9.and10, the floors of the right hand side of Eq. (7.2) are calcu-

lated to be 2.3,5,9,16,28,51, and 93, respectively.

The above modification of condition 4 is material by the fact that when selecting a

pair of nodes in random from V(Q11). the probability that the two nodes are adjacent is

very small. For this reason, we consider the Hamming bound as a representative of the

upper bound for Max(IF (Q11) I).

In order to have a quantitative idea about the fault model, we have run a simulation

program to estimate the probability that condition 4 above is valid under different

number of fault nodes. Figure 7.2 shows the results for 6—dimensional to 10-dimensional

hypercubes, where the x-axis is the number of faulty nodes in the system and y-axis is

the probability that the fault model is valid for the number of faulty nodes.

In the rest of this chapter, we first review some existing algorithms for unicast and

broadcast and then provide the fault-tolerant revisions of the algorithms which can be

easily implemented in hardware. Also, modification to the multicast algorithm

presented in Chapter 5 will be presented to allow certain fault tolerance. The hardware

implementation problem is always the major concern of this study. In Section 7.4, the

discussion is focused on how the hardware router design presented in Chapter 6 can be

modified so that it can handle all three types of interprocessor communication in faulty

hypercubes.

If the above assumption is violated, that is, a fault-free node has more than one

faulty neighbor. then the routing problem becomes more complicated. Section 7.5

briefly discusses this situation to see how we can deal with it.

106

‘§¢\‘

\\ “'8‘

\ it \ . -
‘1 1‘, 1 Dimensmn:

0.8 a ‘ \‘
1“- '5'. A n=10

.0 \ -\‘ x [:1 n=9

I X. \\

\‘ '.. \D x "=8

\ '. r -

Probability 0'6 7 ‘. ‘~ It ".7

fault I _ "=6

model “ x

is valid “ XE m‘

0.4 _ * °' ‘\ .'. \\

\ ‘

‘\ ’.° \\

\ .'. a

\\)1... \\

0.2 _I ‘1 '0, \s

\ e. \

\ ..°. 8‘

c it ‘ ~

.1 511
\ S

\ ' ‘ ‘
0 ~ ~ ‘ - it x. s a 1 ~

I I T ‘ ‘ - ‘
Number of faulty nodes

Figure 7.2 Simulation results of the faulty model

107

7.3 FAULT-TOLERANT ROUTING ALGORITHMS

Based on the model of faulty hypercube stated in Section 7.2. in this section, we

first investigate how one-to-one message routing can be achieved. Then, we discuss

how broadcast and multicast communications, which are more complicated in faulty

hypercube, are handled.

7.3.1 Unicast in Faulty Hypercube

We start our discussion with unicast communication in a faulty hypercube under

the above assumptions. Algorithm UNICAST.F1 (shown in Fig 7.3), a simple variant of

algorithm UNICAST.1 of Section 4.3, will find a shortest path between any two fault-free

nodes in a Q11. The basic idea is that. similar to the case of fault-free hypercube, each

node. upon receiving a message, first tries to send a message to the dimension

corresponding to the right most bit position at which the addresses of current node and

the destination node differ. If that dimension happens to be faulty, the node then sends

the message to the second right most one. The algorithm is to be executed at every for-

ward node along the path.

Theorem 7.1: Given two fault-free nodes u, and ad with distance d(u,.ud)=d in a

Q11, algorithm UNICAST.F1 always finds a shortest path of length d from u, to u, pro-

vided that every fault-free node in the Q11 has at most one faulty neighboring node.

Proof: Since the distance between u, and ud is d, their addresses a(u1.) and a(u11)

differ at exactly d bit positions. and d disjoint paths between the two nodes can be con-

structed. As discussed in Section 4.3, if the system is fault-free, starting from u,, by

traversing through each of the d dimensions exactly once, the message will reach ad in d

steps. The order of which dimension is traversed first is immaterial. In a faulty hyper-

cube, at any forward node uj, suppose the distance d(u,-,u11)=g. If g22, the algorithm

tries to find a fault-free dimension among the g dimensions at which a(u,-) and a(ud)

differ, to pass the message. Since each fault-free node has at most one faulty neighbor,

108

Algorithm UNICAST.F1:

(* h=1; |F1(u)ISl for all us V—F *)

begin

(* find the relative destination address with respect to the local address *)

route) 2=0(uo)$a(ud);

If (r 0(u11)=0) then

send message to local processor

else

i :=0;

repeat

if dimension W1-(ro(u11)) is fault-free then

send message to dimension W1-(ro(ud))

else i :=i-I-1;

until message is sent;

end.

Figure 7.3 A unicast algorithm for faulty hypercubes

such a fault-free dimension always exists. If g=1. then ud is a neighbor of uj, and ad is

supposed to be fault-free, uj will pass the message to ud through the direct link between

them. Therefore, a shortest path from u111 to ad can always be found. I

Figures 7.4 shows examples of unicast in a faulty 2-cube and a faulty S-cube.

where double circled nodes represent faulty nodes. The dotted lines form the path in

fault-free hypercube found by algorithm UNICAST.1. while the solid lines form the path

in faulty hypercube found by UNICAST.F1. In Figure 7.4 (b), 0000 is the source node,

and 1111 is the destination node. The source first sends a message to node 0001. At

node 0001, the algorithm first tries to pass message to node 0011 at dimension 1

(W1(0001$llll)=l). which, however. is found to be faulty. Thus, dimension 2

(W2(0001 $1111)=2) is selected, and the message is then forwarded to node 0101. At

0101, the algorithm tries dimension 1 again (W1(0101$llll)=1), which, unfor-

tunately, is found to be faulty again. Having had to select dimension 3

109

\

‘\

‘.I.

l”

I

(b) In a 4-cube

Double circled nodes represent faulty nodes

Dotted lines: path in fault-free hypercube

Solid lines: path in faulty hypercube

Figure 7.4 An example of unicast in faulty hypercubes

110

(W2(0101$1111)=3), the message reaches node 1101. Finally, 1101 passes the mes-

sage to the destination 1111 through dimension 1.

7.3.2 Broadcast in Faulty Hypercubes

In this subsection, we consider broadcast in faulty hypercubes. Let us compare the

two broadcast algorithms: BROADCAST.2 and BROADCAST.3, presented in Section 4.3.

Algorithm BROADCAST2 decides routing based on the local and source addresses only.

It does not seem modifiable to work in a faulty hypercube. Algorithm BROADCAST.3,

however, calculates and sends different Control vectors to different dimensions at each

forward node. Based on this approach, we develop a fault-tolerant algorithm

BROADCASTFS, which can correctly broadcast a message to all fault-free nodes in a

fault hypercube. The algorithm is listed in Figure 7.5, where u, refers to source node of

the broadcast. uo refers to the local node which is currently executing the algorithm,

Control* is the control vector received by uo. and Contron is the control vector sent out

from no to dimension j. Note that the major difference between Algorithm

BROADCAST.F3 and BROADCASTB is in line 8. We prove the correctness of the algo-

rithm in Lemma 7.1 and Lemma 7.2.

Lemma 7.1: Given nodes u1,ude V(Q,1)-F(Q11), algorithm BROADCAST.F3 finds a

shortest path from 1411 to ad in exactly the same way as UNICAST.F1 does, which has been

proven to be a shortest path between us and ud.

Proof: Let the path from u, to ad constructed by Algorithm UNICAST.F1 be

p=(u,,u1. - - - ,u1-, ° - - .u11_1,u11). We note the following two facts about algorithm

BROADCAST.F3. (1) Message is sent only to the dimension whose corresponding bit

position has value 1 in Control* and is fault-free; (2) For any bit position I, if

Control*[l]=0. then Control1 [1]=0 for any outgoing link j.

lll

Algorithm BROADCAST.F3:

(* h=1; |F1(u) I51 for all ue V-F *)

1. begin

(* if uo=u,. the router get a Control* vector with all bits set to 1 *)

("' otherwise, no receives a Control* vector from a parent node *)

("' fb=1, if dimension b is faulty, otherwise fb=0 031,91 -1 at)

2. for j:=0 to n-l do

3. begin

4. send message to local processor;

5. if Control* [1']=1 and fj=0 then

6. begin

(* form Control,- vector *)

7. for b:=0 to n -1 do

8. if Control* [b]=1 and (b >j or fb=1)

then Control,- [b]:=1

9. else Control,- [b]:=0;

10. send message with Controlj to dimension j

1 1. end;

12. end;

13. end.

Figure 7.5 A broadcast algorithm for faulty hypercubes

We prove by induction on i that algorithm BROADCAST.F3 reaches u1- along path

(u,,u1. - ° - u1--1) and that for each bit position x at which a(u1-) and a(ud) differ,

Control* [1:] at node u1- has value 1.

For i=1, the basis step of the induction, obviously u1 receives messages from u...

At u,, all bit positions of Control“ are set to value I initially.

Now assuming the hypothesis is true for i =t. We show that it is true for i =t+l. At

node u1, let l=W1(a(u1)$a(u11)), if dimension 1 is fault-free. algorithm UNICAST.F1

routes the message from u, to u1+1 through dimension I. That means u1+1 is the l-th

dimensional neighbor of u1. Algorithm BROADCAST.Fa will also route the message

through dimension 1. since Control*[l]=1 by the hypothesis. Also by the hypothesis,

Control“ has value 1 at all bit positions at which a(u1) and a(ud) differ. By Algorithm

112

BROADCAST.FS, Control, will also have value 1 at all those bit positions, except bit

position I, which is reset to 0. Since a (u1) and a(u1+1) differ at bit position I only,

Control, is thus also properly set.

If, however, dimension 1 is faulty, which implies that d(u1,ud)22 (otherwise, ud

itself is faulty, it should not receive any message). then algorithm UNICAST.FI routes the

message from u, to u1+1 through dimension m=W2(a(u1)$a(ud)), which always exists

and is not faulty since each fault-free node has at most one faulty neighbor. In that case.

u1+1 is the m-th dimensional neighbor of u1. Algorithm BROADCAST.FS will also route

the message through dimension m, since Control* [m]=1 by the hypothesis. Control,”

sending from u, to 14111 will have value 1 at bit position I and value 0 at bit position m.

Other bit positions at which a(u1-+1) and a(u11) differ, Control.,1 will have value 1. The

positions in vector Controlm, at which a(u1-+1) and a(u11) agree, will be set to appropriate

values depending on if u.) is a leaf node or a forward node in the broadcast tree.

By the induction step, it is proved that a message from u, to ud follows the same

path as constructed by algorithm UNICAST.F1. which is shown to be a shortest path from

u, to ud. I

Lemma 7.2: Given nodes u,,ude V(Qn)—F(Q11), exactly one shortest path from u11

to ud will be constructed by executing algorithm BROADCAST.F3.

Proof: We prove it by contradiction. Suppose by executing Algorithm

BROADCAST.FS. another path p’ from u, to ud, besides path p, is formed. such that p’iep,

where p is the path discussed in the proof of Lemma 7.1. and

p’=(u1,,u’1, . ° - ,u’1-, ° - - ,u’11_1,ud). Notice that, by the way Algorithm BROADCAST.FS

works, along any path from u11 to a destination, the message always traverses from a

parent node to a child node. It never goes along the reverse direction. Thus, p’ and p

should have the same length d. Let i be the smallest integer such that u1¢u’1. Let

l=W1(a (us—1)$a(u.-)) and l’=W1(a(u1-_1)ea(u’1-)). Thus. a(u1--1) differ form a(u11) at

both bit positions I and l’, and both dimensions are fault-free. Assuming l>l’, then. by

113

Algorithm BROADCAST.Fa, Controly, received by u’1-. will be set properly as detailed in

the proof of Lemmas 7.1, in particular, Control([l’]=0 and Control; [1]=1. However, by

the execution of lines 7 to 9 in Algorithm BROADCAST.F3. Control1, received by u1-, will

have value zero at both bit positions I and 1’. Since u1-_1 and ad differ at both bit posi-

tions 1 and l’. and u1- differs from u1--1 at bit position I only. u1- and ad must also differ at

bit position 1’. However, Control1[l’]=0, and, thus, the message will never go to ud.

Therefore, the existence of path p’ is impossible. If we assume l<l’, the same contradic-

tion will be generated. I

Theorem 7.2: Algorithm BROADCAST.F3 is optimal. In other words, given a

fault-free source node u, and a set of faulty nodes F(Q11) in Q11, algorithm

BROADCAST.FS broadcasts a message from u, to every node ue V(Q,1)—F (Q11) in smal-

lest possible time steps, and the total traffic created by the message broadcasting is

minimal, provided that every fault-free node has at most one faulty neighbor.

Proof: Notice that in broadcast communication, each fault-free node is a destina-

tion node. Lemma 7.1 and Lemma 7.2 not only ensure that each fault-free node receives

exactly one copy of the message, but also imply the message traverses each link no more

than once. The correctness of Theorem 7.2 follows. I

Figure 7.6 depicts the broadcast tree generated by algorithm BROADCAST.FS in a

Q4. assuming nodes 0011, 0111, 1000, and 1100 are faulty. Compared with the fault—

free broadcast tree (Figure 4.7), the binary Control vectors at nodes 0101, 1001 and

1101 are different in the two figures. Because of the failure of node 0011, which is the

dimension-l-neighbor of 0001, the Control vectors received by 0101 and 1001 are

changed to 1010 and 0010 in stead of 1000 and 0000, respectively. Note that the change

is at dimension 1, which reflects the failure of node 0011. Furthermore, since node 0111

is again faulty, that causes node 0101 to assign a Control vector of 0010 to node 1101,

which then ensures the message is passed to 1111 at dimension 1.

114

llll

Binary numbers outside circles: Control vectors;

Double circles: faulty nodes;

Dotted lines: faulty links;

Solid arrows: links used for the broadcast.

Dashed lines: links not involved in the broadcast;

Figure 7.6 A broadcast tree in a faulty Q4 generated by BROADCAST.FZ

115

Input: Local address: a (uo);

Destination list: D={a (u1),a(u2), - - - ,a (u1)}.

Output: Destination sublist(s): D 1. 0;, - ° - , D:

where D1-cD, for lSng; and D1nDj=Q, for iatj.

Multicast Algorithm MULTICAST.F1 :

@
9
5
3
1
"
?

8.1.

8.2.

8.3.

9.

10.

(* fb=1, if dimension b is faulty, otherwise f1,=0 OSbSn —l *)

(* Calculate relative addresses: *)

ro(u1-)=b1-(,1-1)b1-(,1_2)..b1-j ..b1-05a (u1-)ea (110), for ISISIC;

(* if local processor is a destination. send a copy to it *)

If ro(u1-)=0 for some ie [l.k], send the message to local processor;

(* calculate column sums *)

k

2b" .
1:1" rug-=0

C}:

o iffj=1

fOTOSan-l;

p=0; (* start loop *)

Find smallest I. such that c12c1- for all OSan -1;

If c1=0, stop.

DP=G;

("I form a new destination sublist, reset related rows *)

FOI' each ’00“), ISISIC, ifbu=1, then

Dp=Dp+Iro(ui)$a (140)};

Set ro(u1-)=0;

Cj=Cj-b1'j for ()5an -1;

Put destination sublist D,1 into message header. send out the message at l-th

dimension (to node a (u (1)92l);

(* start the selection of another dimension *)

p=p+1; Goto step 5.

Figure 7.7 Greedy multicast algorithm for faulty hypercubes

116

7.3.3 Multicast in Faulty Hypercube

Now, let us discuss how the multicast algorithm MULTICAST.1 presented in Chapter

5 can be modified to handle faulty situations. As stated previously, it is required that

every destination node receives the multicast message through a shortest path.

The idea is that at each forward node, when selecting a particular dimension to for-

ward a message, the algorithm has to first check the Fault_Vector about the status of its

neighboring nodes. If a dimension is faulty, it should not be selected. The algorithm

has to select some candidate(s) from other dimensions for the message forwarding. A

fault-tolerant revision of algorithm MULTICAST.1, the MULTICAST.F1 is listed in Figure

7.7.

Observing that, the difference between algorithm MULTICAST.F1 and algorithm

MULTICAST.1 is mainly in step 3, whenever a dimension is faulty, its corresponding

column-sum is forced to be zero. Therefore, it will never be selected.

Theorem 7.3: Given a source node u11 and a destination list: D={u1,u2, - . - ,uk],

u,,u1-e V(Q11)-F(Q,1), lSiSk. Algorithm MULTICAST.F1 passes a message from u, to

every destination u1- through a shortest path between the two nodes. provided that each

fault-free node in the system has at most one faulty neighbor.

Proof: It has been shown in Section 5.2 that the multicast tree generated by algo-

rithm MULTICAST.1 guarantees a shortest path from the source to every destination.

Here we show that the change made by MULTICAST.F1 will not cause any extra delay for

message delivery. Suppose some forward node, say u,, has a faulty neighbor, say u,, at

dimension j. Then uf could only be in one of the following three situations.

1. Node uf is not a destination node. but it would have been selected as a forward

node to pass a message to some descendent nodes, if it had not been faulty. In this

case, those destinations supposed to receive message from u, must be at least 2

hops away from uJr (otherwise it would not be a child node of uf). If they are

exactly at 2 hops away, then there exists always an alternative shortest path to the

117

destinations. since u, has at most one faulty neighbor. When the algorithm finds

that dimension j is faulty, it will select the other dimension to pass the message. By

the same argument, those destinations of 3 or more hops away from u, will receive

the message from u,1 through a feasible shortest path.

2. Node uf is a destination node, and it is also selected as a forward node to pass a

message to some descendent nodes. Since any message is expected to be passed to

fault-free nodes only, node u,- is not supposed to receive any message. For those

fault-free destinations which were supposed to receive a message from uf, the situa-

tion is the same as in case 1.

3. uf is not selected to further pass the message, then it does not bother our multicast

at all. I

To illustrate how the algorithm works. let us consider the same example discussed

in Section 5.3 but under some faulty situations. The multicast tree in fault-free case (Fig-

ure 5.2(c)) is redrawn here as Figure 7.8(a). In the figure, if node 00010 (the neighbor-

ing node of the source at dimension W1(00110910010)) is faulty, then the source

(00110) will simply select 10110 (at dimension W2(00110@10010)) to forward the

message to destination 10010, instead of 00010. The resulting multicast tree has the

same number of links.

However, if node 00100 (at dimension 1 of the source 00110) is faulty, the situa-

tion is different. In the fault-free case, as can be seen clearly in Figure 7.8(a). at the

source node 00110, three neighboring nodes are: node 00100 is selected for forwarding

messages to {00000,00001,10100.11101}; 00010 to 10010; and 00111 to itself. Now,

since 00100 is faulty, the source can no longer pass any message to 00100. Let us see

how the algorithm handles this situation. The initial reference array at the source node

(Table 5.2) is relisted below as Table 7. 1. Notice that the column-sum for dimension 1

(value 4) is no longer valid. After executing algorithm MULTICAST.F1, dimension 0 (to

node 00111) will be selected first for forwarding message to (00111.00001,11101); and

118

Table 7.1 The reference array at node 00110 in faulty case

Reference array Distances to

4 3 2 l 0 forward node

A[1,*] 00001 1

A[2,*] 10010 2

A[3,*] 11011 4

A[4,*] 10100 2

A[5,*] 00111 3

Aj6,*] 00110 2

column_sum 313633

then 00010 to 00000 and 10010; and 10110 to 10100. The newly resulting multicast tree

is shown in Figure 7.8(b).

It can be easily checked out that the total traffic increases from 9 to 10 in this par-

ticular example. I would like to point out. however. the result is not always worse than

faulty-free situation. since the greedy multicast itself is a heuristic algorithm

7.4 A FAULT-TOLERANT ROUTER DESIGN

In the last section, we discussed algorithms for unicast, broadcast and multicast

communication for faulty hypercubes under the assumption that each fault-free node in

the system has no more than one faulty neighbor. As emphasized previously, the major

goal of this research is to eventually provide a realistic VLSI hardware design. which

not only provides efficient communication mechanism for fault-free hypercube, but also

has certain fault-tolerant capability.

In this section, we discuss how the hardware router design presented in Chapter 6

can be made fault-tolerant with some minor modifications. We need to modify the

Decoder in the Multicaster unit and redesign the Broadcaster unit.

In both algorithms BROADCAST.F3 and MULTICAST.F1, a Fault_Vector is needed at

each node to keep the status of all n neighbors. In our hardware implementation, what

we need for a Fault_Vector is just adding n flip-flops (f1, for 0Si$n -1) as the indicator

119

(b). in a faulty Q5

"'": source node;

"*"2 destination node;

number in a small box: at which step the dimension is determined.

Figure 7.8 Comparison of multicast trees in a fault-free and a faulty Q5

120

of the n dimensions, one for each dimension (neighboring node). Flip-flop j is set to

one (fl-=1) if the neighboring node at dimension j is faulty; otherwise, it is reset to zero.

I

I > " ch

(111'

c- ’
a . Wallace 1 11

2’ Decoder

I

Tree 1%}. CjZ

a3,-

I

1.— F013
a4,-

I

t»— > cj4

(* fj=1, if dimension j is faulty *)

Figure 7.9 Decoder (DECR) for the j-th column for faulty Q3

We first discuss the modification to the Multicaster. In the fault-free case, the

column-sums for all n dimensions are directly sent to the Maximum Checker and then to

Column Selector to select a dimension for message forwarding in each operation cycle.

In a faulty hypercube, if dimension j is found faulty (0:1), it should never be selected.

It can be realized by having the outputs of the Decoder ANDed with the complement of

the fault indication flip-flop (f7) before being sent for further processing. Thus, if dimen-

sion j is faulty. the c}.- lines (for OSiSm) will all be zerosT. This ensures that column j

will never be selected. Figure 7.9 illustrates the fault-tolerant version of the Decoder.

121

As discussed previously, the Broadcaster unit design, an implementation of

BROADCAST.2 as shown in Figure 6.5, is fairly simple for fault-free hypercubes. The

dimension(s) which should receive messages can be easily determined based on the rela-

tive address of the local node with respect to the source node. For a faulty hypercube, we

design a broadcaster to be an implementation of BROADCAST.FS. A binary vector Con-

trol has to be calculated for each selected dimension at a forward node. Algorithm

BROADCAST.F3 does not look very straightforward. However, the actual hardware

implementation, by using a few gates, looks simpler than the appearance of the algo-

rithm. The diagram is shown in Figure 7.10.

Accordingly. a minor modification has to be made to the message format proposed

in Section 6.2. As mentioned before, when k=2"—1, there will be no destination fields,

only a k field, a source address, and a data field will be contained in the message. To

make the message format good for both fault-free and faulty cases, the source address

will no longer be included in the message header. Instead, an n—bit Control field,

immediately following the the k address fields, will be sent, replacing the position of

source address. The general message format presented in Section 6.2 can be modified to

the following form.

n-bit n-bit n-bit n-bit n-bit

k DI Dz ° ° ' Dk COMO! DATA

‘I'Theaetically, cjo’ should be set to l to indicate the column-sum being zero. However, since we assume

each fault-free node has at most one faulty neighbor. some column-sum must be non-zero, if the multicmt

has not finished. Therefore, this configuration will not affect the function of the Multicaster.

122

= C 22 - w , to.

: dimensron 2

c21 : Control2 1
I I

—' €20 ' J I

2
:
» V

K
I
:

§~

8
2
" I

1
n '
5

L
-
-
-

: €02 ' 'I . to .

1 d1mens10n 0

: 601 I Control0 :

GND - .
: Cm - -' ________ J

Input Control“=c§c1c3

Ifdimension i is faulty, then f1-=1 else f1-=0, 0SiSn-l

If send1-=l, "Control1-” will be sent to dimension i with the message.

Figure 7.10 Broadcaster for faulty hypercube

123

For multicast message, the Control will be set to all zeros. In the case of broadcast, the

message format will look like:

k field (n-bit) n-bit

2"-1 Control DATA

In the case of m<k<2"—l, there will be k destination fields between the k field and the

Control field.

7.5 GENERAL FAULT-TOLERANT ROUTING PROBLEMS

In previous sections. we have discussed how the routing algorithms and their

hardware implementation for fault-free hypercube can be modified to provide fault-

tolerant routing for faulty hypercubes under the assumption that each fault-free node has

no more than one faulty neighbor. However. it may happen that the assumption is

violated. One possible policy is that if any node finds two or more of its neighbors are

faulty, it sends a message to the host to report the situation. A proper action may be

taken.

As a general problem, in this section, we consider the situation where a fault-free

node may have more than one faulty neighboring node and the system is required to

keep working. When the number of faulty nodes becomes large, the problem becomes

complicated even for unicast communication. In the following discussion, we focus on

unicast communication and software approaches only.

We discuss the problem for different neighborhood radius h. Neighborhood radius

h=j means each fault-free node has the status information of its j-neighborhood.

(1). h=n, IF 1 (u) ISd-l for all ue V(Q,1)—F(Q11).

In this case, every fault-free node has global status information. When a source

wants to send a message to a destination at d hops away. every forward node (or more

124

generally, every fault-free node) is assumed to have no more than d-l faulty neighbors.

Condition IF(Q.1) ISd—l will guarantee the requirement. The problem is relatively easy.

Since there are d disjoint shortest paths of length d between the two nodes, at least one

shortest path among them is still feasible. A natural way is to check a set of the d shor-

test paths. and find a feasible one, which is guaranteed to be shortest [Hawk85, LeHa88].

This is a special case of the situation (2) discussed below.

The advantage of this approach is that a shortest path can always be found. How-

ever, the algorithm is a centralized one in the sense that the source node has to obtain

global status information and decides the entire path. Also, the problem of whether the

algorithm is valid depends on the distance between the individual pair of nodes been

considered.

(2). h=n, IF 1 (u) ISn -l for all us V(Q,1)—F(Q11).

Under this condition, each fault-free node has no more than n—l faulty neighbors.

Thus, there are n disjoint paths between any two nodes; d of them are shortest with

length d; the other n—d are of length d+2. Since IF (Q11) ISn-l, we also have

IF 1 (u) [Sn —1 for all us V-F. Thus. a path of length at most d+2 always exists.

There are two similar approaches to finding such a path. One approach [LeHa88]

is to first check a set of d shortest paths and try to find a feasible one. If it does not

succeed. then check the n -d paths of length d+2. There must be one feasible.

The other approach [Hawk85] works in the following way. Given a set of n dis-

joint paths, d of which are of length d (shortest paths), and n-d of which are of length

d+2, the algorithm finds out the paths in which the faulty nodes reside. and marks those

paths faulty. After all faulty paths have been identified. it selects a path of length d fi'om

the remaining feasible paths, if any. Otherwise, it selects a feasible path of length d+2.

Since the number of faulty nodes is less than n, one of the above n paths must be feasi-

ble, which has length d or d+2, depending on the distribution of the faulty nodes.

125

Both approaches have to be implemented in a centralized way. However, neither

method can guarantee optimal results in the sense that the algorithm may select a path of

length d+2 while a shortest path of length d actually exists, since they check only a par-

ticular set of d disjoint paths among the d! distinct ones.

Another approach is to check all d! distinct paths of length d. If no one is feasible,

then check a set of n -d paths of length d+2, at least one of which is feasible. However,

the computation time required by this approach makes it unattractive.

CHAPTER 8

SUMMARY AND

DIRECTIONS FOR FUTURE RESEARCH

This chapter summarizes the major contribution of this dissertation research and

outlines the directions for future research.

8.1 SUMMARY OF MAJOR CONTRIBUTIONS

This research has been motivated by a true need for providing a versatile, efficient

and fault-tolerant interprocessor communication mechanism for DMMPs. Although

DMMPs have been commercially available for only a few years, they have been demon-

strated to be the most cost effective approach to construct massively parallel computing

systems.

In order to fully explore the inherently massive computation power of DMMPs,

several problems have to be solved. which include interconnection topology selection,

communication hardware design. parallel operating system, fault-tolerant consideration,

and parallel algorithm design. This research has aimed at two of the above problems:

the communication hardware design and fault-tolerant consideration issues.

We have presented a graph-based model — the Optimal Multicast Tree to charac-

terize all three types of interprocessor communication methods. Two parameters which

are used as the measures of communication efficiency are time and traffic. Any com-

munication problem in DMMPs can be regarded as the problem of finding a multicast

tree which minimizes the two parameters.

126

127

A heuristic greedy algorithm has been proposed for multicast communication in

hypercube multiprocessors. Multicast communication is highly demanded in many

application areas. but not directly supported in any existing DMMP. This is the first time

the multicast communication in a DMMP environment is systematically studied. The

proposed algorithm guarantees that each destination receives the source message

through a shortest path between the source and that destination. The traffic generated by

a message delivery is very close to the optimal solution.

We have presented the architecture of a hardware router which is dedicated to per-

forming the interprocessor communication tasks. Existing hypercube multiprocessors

either do not provide broadcast and multicast at all or implement broadcast and multi-

cast by subroutine calls (a software approach). The software implementation of com-

munication algorithms based on the store-and-forward message forwarding scheme

causes the communication mechanism to become the major source of bottleneck in the

first generation DMMPs. The proposed hardware routing mechanism not only frees the

nodal processor from routing computation, but also performs much better (3 orders of

magnitude faster) than the nodal processor or communication coprocessor since it avoids

the time consuming program execution and adopts relay fashion message forwarding.

Using the hardware router, the data part of the message can be passed through all for-

ward nodes with very little delay. Therefore, it will greatly speed-up interprocessor

communication and improve the overall system performance.

Fault-tolerance is another important issue in massively parallel computer systems.

Current VLSI technology makes large computer systems very reliable. It is unlikely that

many components in a DMMP will fail at the same time. However, the situation when

one or a few components fail may happen. Based on this consideration, fault-tolerant

communication algorithms for the three types of interprocessor communications have

been proposed for the case when each fault-free node has no more than one faulty neigh-

boring node. The hardware implementation of the fault-tolerant interprocessor

128

communication algorithms is also presented. This is the first time a hardware communi-

cation device for DMMPs with fault-tolerant capability has been proposed. The pro-

posed fault-tolerant communication mechanism has a great practical importance, espe-

cially for very large scale systems.

In summary, we have presented the modeling, algorithm development and

hardware implementation of a novel interprocessor communication mechanism for

DMMPs. The proposed mechanism has the following unique features. First, it adopts a

relay approach for message forwarding to significantly reduce the communication

latency. Second. it is distributed in the sense it does not require the source node to

specify the global routing path(s). Third, it is versatile since it directly supports not only

unicast and broadcast, but also multicast which is highly demanded but is not directly

supported in any existing DMMP. Finally, it has certain fault-tolerant capabilities. The

proposed communication mechanism can be readily applied to future generations of

DMMPs.

8.2 DIRECTIONS FOR FUTURE RESEARCH

The following areas need to be further studied.

8.2.1 Multicast in other interconnection topologies

We have studied the interprocessor communication problem in DMMPs. The fun-

damental issues been studied and the OMT model are for any interconnection topolo-

gies. The communication algorithms presented in this study are basically for hypercube

multiprocessors. Hypercube is the most popular interconnection topology currently used

in DMMPs. However. some other interconnection topologies, for example. the 2-D

mesh, also have their unique advantages. For a large scale system, processor/memory

pairs interconnected through a 2D—mesh pattern are much easier to layout in VLSI

implementation than those interconnected as a hypercube. In fact, the 2-D mesh topol-

ogy is used in the Ametek Series 2010 DMMP. At first look, the message routing

129

problems in a 2-D mesh seems easier than those in a hypercube. However, finding an

OMT is still not a trivial task. It will be interesting to see how multicast communication

can be done in a 2-D mesh and other topologies, for example, the cube-connected-cycle

and general k-ary n-cube.

8.2.2 Formal proof of NP-hardness for multicast in hypercube

As mentioned previously, we emphasized the algorithms which can be efficiently

implemented in hardware. In fact. in the early stage of this research, we have investi-

gated several other algorithms, and found that the greedy multicast algorithm proposed

in this thesis has a very important feature — ease of hardware implementation. Even

though the number of edges in a multicast tree generated by the greedy algorithm is very

close to that of an OMT for any given multicast set, the algorithm does not guarantee an

OMT if the number of destinations is greater than two. We conjectured that the OMT

problem in hypercube t0pology is NP-hard based on the similarity between the OMT

problem and the Steiner Tree problem which has been shown to be NP-complete in

hypercube topology. and the fact that the number of general multicast tree patterns

grows very rapidly as the dimension of the hypercube increases. In order to provide a

solid theoretical foundation, we need to formally prove that conjecture. Another related

question is “Is the OMT problem NP-hard in a 2-D mesh?” Our conjectme for this

question is that it is not NP-hard.

8.2.3 Fault-tolerant considerations for more general cases

In Chapter 7, we have studied routing problems in faulty hypercubes. We proposed

algorithms for all three types of communications and the related hardware implementa-

tion based on our model that each fault-free node has no more than one faulty neighbor-

ing node. As mentioned before, in a highly reliable system. we do not expect many

components to fail at the same time. A system with one faulty node could be the case of

a faulty system most of the time. Therefore. the fault-tolerant communication mechan-

ism presented in this thesis has a great impact upon real operation of DMMPs.

130

However, as a general fault-tolerant routing problem, we have to consider the situation

when our model does not fit. Similar to other fault-tolerant problems. this is a more

difficult problem. but worth pursuing further.

8.2.4 Language support for multicast communication

Various parallel programming languages have been proposed recently to facilitate

the use of DMMPs. These languages are either newly designed languages, such as CSP

and OCCAM [Perr87], or enhancement of existing languages, such as Concurrent C

[GeRoSS] and Argonne’s Macro C [Boyl87]. All these message-passing programming

languages only support various forms of one-to-one communication. In these languages,

multicast has to be performed as multiple one-to-one communications. With the direct

hardware support of multicast and broadcast communication capability, new language

primitives should be added to take advantage of these hardware features. Also needed in

the languages is the declaration of groups of multiple destinations. Members of these

groups should be dynamically configured and should be application dependent. As far

as we know, no existing parallel programming languages support these features.

Language support for multicast communication deserves further investigation.

BIBLIOGRAPHY

BIBLIOGRAPHY

[Amet86]

[ArGr81]

[Aviz76]

[BaPa86]

[Batc80]

[BBKK68]

[BBN87]

[Bhat83]

[Boy187]

[BrSc86]

[ChBN81]

Ametek Computer Research Division, “Ametek system 14 user’s guide: C

edition.” Version 2.0, May 1986.

Armstrong, J. and F. Gray. “Fault diagnosis in a boolean n cube array of

microprocessors,” IEEE Trans. Comput., Vol. C-30, No. 8, Aug. 1981. pp.

587-590.

Avizienis, A., “Fault-tolerant systems,” IEEE Trans. Comput... Vol. C-25,

No. 12. 1976. pp. 1304-1312.

Barhen, J. and J. F. Palmer, “The hypercube in robotics and machine intel-

ligence,” Computers in Mechanical Engineering, March 1986.

Batcher, K., “Design of a massively parallel processor,” IEEE Trans. Com-

put., Vol. C-29, Sept. 1980, pp. 836-840.

Barnes, G. H., R. M. Brown, M. Kato. D. J. Kuck, D. L. Slotnick. and R. A.

Stokes, “The ILLIAC IV Computer”, IEEE Trans. on Computers, Vol. 17,

No. 8, Aug. 1968, pp. 746-757.

BBN Advanced Computers Inc.. Butterfly products overview, Oct. 1987.

Bhat, K., “An efficient approach for fault diagnosis in a boolean n-cube

array of multi processors,” IEEE Trans. Comput., Vol. C-32. No. 11, Nov.

1983. PP. 1070-1071.

Boyle, 1., et al.. Portable Programs for Parallel Processors, Holt, Rienhart

and Winston Inc.. 1987.

Brandenburg, J. E. and D. 8. Scott. “Embeddings of communication trees

and grids into hypercubes.” iPSC Technical Report, No. 1, 1986, INTEL

Scientific Computers.

Chou, W., A. W. Bragg, and A. A. Nilsson. “The need for adaptive routing

in the chaotic and unbalanced traffic environment”, IEEE Trans. Commun.

Vol. COM-29, No. 4, April 1981. PP. 481-490.

131

132

[ChEN87] Choi. Y.. A. Esfahanian, and L. Ni, “One-to-k Communication in

[DaSe86]

[DaSe87]

Distributed-memory multiprocessors,” Proc. of the 25-th Annual Allerton

Conference on Communication, Control. and Computing, pp. 268-270, Sep-

tember 1987.

Dally. W. J. and C. L. Seitz, “The torus routing chip,” Distributed Comput-

ing, Vol. 1, No. 3, 1986. PP. 187-196. pp. 531-540.

Dally, W. J. and Seitz, C. L., “Deadlock-free message routing in multipro-

cessor interconnection networks,” IEEE Trans. Comput., Vol. C-36, No. 5.

May. 1987. PP. 547-553.

[DCCM87] Driscoll, M., T. Chen, W. Chou, J. Miller. and P. Prins, “Router design pro-

[DePa78]

[DoDu85]

[Duni87]

[Feng81]

[FoKo86]

[Fold77]

[FoOt84]

[Fox83]

ject.” Term project for CPS922, Winter 1987. Dept. CPS, Michigan State

University, March 1987.

Despain, A. M., and Patterson, A., “X-tree: a tree structured multi-

processor computer architecture,” Proc. 5-th Intl. Symp. on Computer

Architecture, 1978, pp. 144-151.

Dongarra, J. J., and LS. Duff, “Advanced architecture computers,” Techni-

cal Memorandum No. 57. Mathematics and Computer Science Division,

Argonne National Laboratory, October 1985.

Duningan, T. H., ‘ ‘Hypercube Performace,’ ’ Hypercube Multiprocessors

1987, Ed.. M.T. Heath, SIAM. 1987, pp. 178-191.

Feng, T., “A survey of interconnection networks.” IEEE Computer, Dec.

1981, pp. 12-27.

Fox, G. C. and A. Kolawa, “Implementation of the high performance crys-

talline operating system on Intel iPSC hypercube,” In M. T. Heath, editor.

Hypercube Multiprocessors 1986, pp. 269-271, SIAM, 1986.

Foldes. S. “A characterization of hypercubes,” Discrete Math.. Vol. 17,

pp. 155-159, 1977.

Fox. G. and S. Otto, “Algorithms for concurrent processors.” Physics

Today, 37, 5 (May, 1984), pp. 50-59.

Fox, G. C.. “The impact of specialized processors in elementary particles

physics,’ ’ CorIf. on Scientific Calculation with Ensemble Computers, Pauda,

Italy, 1983.

[GaJo79]

[GeRo85]

[GKLS83]

[GrFo82]

[GrRe86]

[GuHS86]

[GuMB88]

[Hamm50]

[Hara72]

[Hawk85]

[Hill85]

[HLSM82]

[HMSC86]

[HoJ086]

133

Garey, M. and Johnson, D., Computers and intractability. a guide to the

theory ofNP-completeness, Freeman, 1979.

Gehani, N. H. and W. D. Roome, “Concurrent C,” Technical Report,

AT&T Bell Labs, 1985.

Gajski, D. D., D]. Kuck, D.H. Lawrie and AH. Sameh, "Cedar - A large

scale multiprocessor," Proc. of the 1983 Int’ 1 Conf. on Parallel Processing,

pp. 524-529, August 1983.

Graham. R. L. and L. R. Foulds, “Unlikelyhood that minimal phylogenies

for a realistic biological study can be constructed in reasonable computa-

tional time”, Mathematical Biosciences, 60, pp. 133-142 (1982).

Grunwald, D. C. and D. A. Reed, “Benchmarking hypercube hardware and

software,” Technical Report UIUCDCS-R-86-I303, Department of Com-

puter Science, University of Illinois, November 1986.

Gustafson, J.. S. Hawkinson, and K. Scott, “The architecture of a homo-

geneous vector supercomputer,’ ’ Proc. 1986 Intl. Conf. on Parallel Pro-

cessing. Aug. 1986. pp. 649-652.

Gustafson, J.. G. Montry, and R. Benner, “Development of parallel

methods for a 1024-processor hypercube,” SIAM Journal on Scientific and

Statistical Computing. Vol. 9, No. 4, July 1988.

Hamming, R. W., “Error detecting and error correcting codes.” Bell Syst.

Tech. J.. 29, 1950, pp. 147-160.

Harary, F., Graph Theory, Addison-Wesley, Reading, MA, 1972.

Hawkes, L., ‘ ‘A regular fault-tolerant architecture for interconnection net-

works,” IEEE Trans. Comput., Vol. 034, No. 7, July 1985, pp. 677-680.

Hillis, W., The Connection Machine, MIT Press, Cambridge, Mass., 1985.

Hayes. L., R. Lau, D. Siewiorek, and D. Mizell, “A survey of highly paral-

lel computing,” IEEE Computer, Jan. 1982, pp. 9-24.

Hayes, J., T. Mudge, Q. Stout, S. Colley. and J. Palmer, “Architecture of a

hypercube supercomputer,’ ’ Proc. I986 Intl. Conf. on Parallel Processing,

Aug. 1986. pp. 653-660.

Ho, C. and S. Johnson, “Distributed routing algorithms for broadcasting

and personalized communication in hypercubes.’ ’ Proc. 1986 Intl. Conf. on

Parallel Processing, Aug. 1986, pp. 640-648.

[HwBr84]

[HwGh87]

[iPSC88]

[Kats88]

[KeKl79]

[Kim79]

[KrVC86]

[Kuhl80]

[KuRe86]

[LaEN88a]

134

Hwang, K., and F. Briggs. Computer Architecture and Parallel Processing,

McGraw-Hill Book Co., 1984.

Hwang, K. and J. Ghosh, “Hypernet: a communication-efficient architec-

ture for costructing massively parallel computers,’ ’ IEEE Trans. Comp.,

Vol. 036. No. 12, Dec. 1987. PP. 1450-1466.

INTEL Scientific Computers, “iPSC/2.” Product description, order

number: 280110-001. Intel Corporation, 1988.

Katseff, H. P., “Incomplete Hypercube.” IEEE Trans. Comp., Vol. 37, No.

5. May 1988, PP. 604-608.

Kermani, P., and Kleinrock, L., “Virtual cut-through: a new computer com-

munication switching technique, ” Computer Networks, Vol. 3, pp. 267-

286, 1979.

Kim, K. H., “Error detection, reconfiguration and testing in distributed pro-

cessing systems,” Proc. 1st Int’l Conf. Distributed Computer Systems, Oct.

1979. PP. 284-295.

Krumme, D., K. Venkataraman, and G. Cybenko, “Hypercube embedding

is NP-complete,” in Hypercube Multiprocessor 1986 (M. Heath ed.), Phi-

ladelphia. 1986, pp. 148-157.

Kuhl, J. G., “Fault-diagnosis in computing networks,” ECS Thch. Rep.

801, Dep. Elec. Comput. Eng. Univ. of Iowa. Iowa City. IA, Aug. 1980.

Kuhl, J. and S. Reddy, ‘ ‘Fault-tolerance considerations in large, multiple-

processor systems,” IEEE Computer, March 1986, pp. 56-67.

Lari, Y., A. H. Esfahanian, and L. M. Ni, “Distributed Multi-destination

Routing in Hypercube Multiprocessors’ ’, Proceedings of the Third Confer-

ence on Hypercube Concurrent Computers and Applications. Pasadena, CA,

January 19-20. 1988.

[LaEN88b] Lan, Y., A. Esfahanian, and L. M. Ni, “Multicast in Hypercube Multipro-

[LaNE88]

cessors,” Proc. of the 1988 Phoenix Conference on Computers and Com-

munications, March 1988, pp. 27-30.

Lan, Y., L. M. Ni, and A. Esfahanian, “Relay Approach Message Routing

in Hypercube Multiprocessors,” Proc. of The Third International Confer-

ence on Supercomputing, pp. 174-182, May 1988.

[LeHa88]

[MuBA87]

[MoSc86]

[Myer86]

[NiKP87]

[Ols085]

[Patt85]

[Perr87]

[PrVu8 l]

[P’I'LP85]

[ReFu87]

[Renn86]

[SaSc85a]

[SaSc85b]

135

Lee. T. C. and J. P. Hayes, “Routing and broadcasting in hypercube com-

puters,’ ’ Proceedings of the Third Conference on Hypercube Concurrent

Computers andApplications, Pasadena, CA. January 19-20, 1988.

Mudge, T. N.. G. D. Buzzard and T. S. Abdel-Rahman, “A high perfor-

mance operating system for the NCUBE,’ ’ In Hypercube Multiprocessors

1986. PP. 90-99.

Moler, C., and D. Scott, “Communication utilities for the iPSC,” iPSC

Technical Report, No. 2, 1986. INTEL Scientific Computers.

Myers, W., ‘ ‘Getting the cycles out of a supercomputer,’ ’ IEEE Computer,

March, 1986. pp. 89-100.

Ni, L.M., King, GT. and Prins, P., “Parallel algorithm design considera-

tions for hypercube multiprocessors,” Proc. of 1987 Int’l Conf. on Parallel

Processing, August 1987. pp. 717-720.

Olson, R., “Parallel processing in a message-based operating system,”

IEEE Software, July 1985. PP. 39-49.

Patton, P. C., “Multiprocessors: architecture and applications.” IEEE Com-

puter, Vol. 18, No. 6, June, 1985, pp. 29-40.

Perrott, R. H., Parallel Programming, Addison-Wesley Publishing Com-

pany. 1987.

Preparata F. and Vuillemin J., “The cube-connected cycles: a versatile net-

work for parallel computation,” Commu. of ACM, Vol. 24, No. 5, May

1981, pp. 300-309.

Peterson, J.. J. Tuazon, D. Liberman, and M. Pniel, “The MARK III

hypercube-ensemble concurrent computer,” Proc. Intl. Conf. on Parallel

Processing, Aug. 1985, pp. 71-73.

Reed, D. A. and R. M. Fujimoto, Multicomputer networks: message-based

parallel processing, The MIT Press. Cambridge, Massachusetts. 1987.

Rennels, D., “On implementing fault-tolerance in binary hypercubes.”

Proc. I6-th Intl. Symp. on Fault-tolerant Computing, 1986, pp. 344-349.

Saad. Y. and M. Schultz, “Topological properties of hypercubes.” Res.

Rep. , YALEU/DCS/RR-389, Dep. Comput. Sci., Yale Univ. 1985.

Saad, Y. and M. Schultz. “Data communication in hypercubes,” Res. Rep. .

YALEU/DCS/RR-428, Dep. Comput. Sci., Yale Univ. 1985.

136

[SASL85] Schneck, P. B., D. Austin, S. L. Squires, J. Lehmann, D. Mizell, and K.

[Seit85]

[Seit87]

[ShFi87]

[SuBa77]

[Tane8 l]

[TPPL85]

[Wile87]

Wallgren, “Parallel processor programs in the federal government,” IEEE

Computer, Vol. 18, No. 6, May, 1985, pp. 43-56.

Seitz, C., “The COSMIC Cube,” Communications of the ACM, Vol. 28,

No. 1, Jan. 1985. Pp. 22-33.

Seitz, C., Private communication with L. M., Sept. 1987.

Shih, Y., and Fier J., “Hyprecube systems and key applications,” in Paral-

lel Processing for Supercomputing and AI", Chapter 6, ed. Hwang and

DeGroot, McGraw-Hill Book Company, New York, 1987.

Sullivan, H. and T. Bashkow, “A large scale. homogeneous, fully distri-

buted parallel machine. 1,” Proc. 4th Symp. on Computer Architecture , pp.

105-117, 1977.

Tanenbaum, A. 8., Computer Networks. Englewood Cliffs, NJ, Prentice-

Hall, 1981.

Tuazon, J.. J. Peterson, M. Pniel, and D. Liberrman. “Caltech Mark II

hypercube concurrent processor,” 1985 International Conf. on Parallel

Processing, 1985, pp. 666-673.

Wiley, P., “A parallel architecture comes of age at last,” IEEE Spectrum,

Vol. 24, No. 6, June, 1987, pp. 46-50.

"‘IIIIIIIIIIIIIIIIs

