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An active parametric vibration control theory was developed

which uses parametric fluctuation to control the beam transverse

vibration. The beam was modelled as non-linear, dynamic, simply-

supported Bernoulli-Euler beam using'the extended Hamilton's

principle. The closed- loop system was deduced using the direct method

of Liapunov from which the control algorithm for asymptotic stability

was derived.

The closed-loop system model was reduced to a nonhomogeneous

wave equation for the longitudinal vibration u(x,t) subject to the

nonhomogeneous boundary conditions which could be solved analytically

using the finite Fourier transform, and a nonlinear fourth order

parabolic equation in the transverse vibration y(x,t) which was

approximated using finite difference method.

A prototype control system was designed and constructed to

demonstrate and verify the approach and to evaluate its performance.

The basic measured quantities were the transverse vibration y(x,t) ,

the acceleration (or the displacement) of the end point of the beam
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and the exciting force. Analog integrator and differentiator circuits

were designed and built to implement the control algorithm.

Both the simulation and the prototype control system were

tested and compared to evaluate stability of the transient vibration

and dynamic motions due to external disturbances. The comparison of

the simulation with experiment results showed good agreement. The

significant increases in stability of the test beam were measured and

feasibility of employing active parametric vibration control

demonestrated .
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1 . 1 Active Vibration Control

Active vibration control of destributed parameter systems is an

active area. One application is active control of large space

structures [1-3] . Large space structures are generally lightly damped

due to low structural damping in the material. Performance

requirements for shape, orientation, alignment and pointing accuracy

require the use of active vibration control because these systems have

low frequency flexural modes.

The vibration of a distributed parameter system (DPS) is

governed by one or more coupled partial differential equations

(PDE's) [4] whose coefficients or parameters are, in general,

functions of spatial variables and time. Three current approaches to

control the vibrations of DPS include: Modal Active Control [5-7]

Spectral Active Control [8] and Distributed Parameter Feedback [9,101.

Modal Active Control uses a finite number of modes to describe the

motion of the vibrating DPS. A spatial description of each mode,

e.g., its eigenfunction in this finite set is used to separate the

total motion of the system into the motion of each of these modes.

Because motion of the system in modes not included in the controlled

modes always occurs, this motion results in truncation errors in the

observation algorithm referred as observation spillover [5]. Spectral

Active Control separates the motions of the modes using their

different eigenvalues instead of the eigenfunctions used in the Modal



Active Control. This method also suffers from spillover problems

associated with modes at identical eigenvalues or at eigenvalues above

the operating eigenvalues of the controllers. Spatial filtering has

been employed with this method to control frequency domain spillover

and improve controller performance. The third approach is Distributed

Parameter Feedback control, in which the system is treated as if it

has infinity number of modes. To this date there are much theoretical

work but few applications in the literature [11] .

Active parametric control discussed here uses controlled

parameter fluctuation to control transverse vibration. It is well

known that transverse and longitudinal vibrations of a beam are

coupled [12]. If a transversally vibrating rod is subjected to time

dependent axial force; P(t), Figure 1.1 at its moving boundary, a

parametric time varying force p(x,t) will be produced. If the force

P(t) is applied with an appropriate control algorithm, the induced

parametric time varying force will work as an active vibration

control. Ball and Slemrod [20] and Ball, Marsden and Slemrod [21]

studied the abstract problem of controlling a semilinear evolution

equation and applied the formalism to the case of a Bernoulli-Euler

beam with parametric force p(x,t)-p(t). They proved the

controllability for finite-dimensional observations (y,ay/at) provided

the initial data are active in all modes.
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Figure 1.1 Flexible beam model



lcz Aplmwluuummch

This dissertation presents a theoretical and experimental study

for the application of the active parametric vibration control on a

beam. The beam is modelled as a nonlinear, dynamic, simply-supported

Bernoulli-Euler beam using the extended Hamilton principle. The

direct method of Liapunov is applied to develop a control algorithm

for asymptotic stability of the system. The control algorithm enables

one to map from observing and controlling a theoretically infinite

number of points of the domain into observing and controlling just one

point to stabilize the system. Since no truncation associated with

the control algorithm, the control does not suffer from the spillover

problems. To demonstrate the effectiveness of the approach, a

numerical finite difference approximation and an analytical solution

are used to solve the closed-loop control system PDE's

Based on success with control simulations, a prototype control

system was constructed to evaluate the performance of the active

parametric vibration control system on a simply supported beam. The

comparison of experimental system response with the simulation showed

good agreement between the analytical and experimental results.

Significant increases in stability of the test beam were measured and

the feasibility of employing active parametric vibration control

demonstrated .



1.3 Scope of Dissertation

This thesis is divided into six chapters. Following this

introductory chapter, chapter 2 will develop the mathematical model of

the beam and derive the control law. The mathematical model will be

derived using Hamilton's principle and the control law from the direct

method of Liapunov which will lead to a closed-loop system model.

Chapter 3 will develop the analytical-numerical solution of this

closed-loop system model. Seven simulation test cases are given to

demonstrate the effectiveness of active parametric control. Chapter 4

will present the experimental facilities, procedures and results. The

simply supported beam test stand design is presented. The actuator

mechanisms, sensor systems and associated electronic circuits are

presented. Typical experimental procedures and results are then

discussed. Chapter 5 compares simulation and experiment results.

Chapter 6 will sumarize this dissertation's contributions.



m2

mamm1. All) ACTIVE PWC VIBRATION comer. THEORY

Active parametric control is a new method for controlling the

transverse vibration of an elastic beam. This chapter discusses the

theoretical basis of this active control method after developing a

mathematical formulation of the problem. The beam is modelled as a

modified nonlinear, dynamic, Euler-Bernoulli beam using Hamilton's

principle. The direct method of Liapunov is used to prove asymptotic

stability, and a closed-loop system of equations are deduced. Since

the main difficulty in applying the direct method of Liapunov is to

choose a Liapunov functional, the energy integral procedure is given

and compared to the time derivative of the Hamiltonian. In chapter 3,

the closed-loop system will be simulated and results from the

simulation will be discussed.

2 . l Probl- For-duties!

To develop a mathematical model of a structure two approaches

may be used. In the first approach, the problem is formulated in

terms of differential equations, which describe the local behavior of

a typical infinitesimal region, and include auxiliary conditions on

the motion. In the second approach, which will be used here, a

variational formulation called "the principal of least action" is

postulated which is valid over the whole domain of the structures.

6



Hamilton's principle is an example of a variational formulation which

reduces the problems of dynamics to the investigation of a scalar

integral which does not depend on the coordinates used. The condition

:rendering the value of the integral stationary leads to all the

equations of motion with their admissible boundary conditions. Once

Hamilton's principle is formulated, the total energy of the system can

be found which is very helpful in choosing a Liapunov functional. We

will consider the vibration of the beam due to excitation and

elasticity in the transverse and longitudinal directions. Our

mathematical model includes three unknown space and time-dependent

quantities which characterize the beam motion in a plane: the

transverse vibration y(x,t), the axial vibration u(x,t) and the axial

parametric force p(x,t) (Figure 2.1). The following derivation

involves the usual strength of material assumptions as to linearly

elastic material behavior, small displacements, and uniform

geometrical and physical properties, but neglects rotary inertia,

effects due to shear strains and passive dampings. The parameters of

the beam are the mass density p, the moment of inertia I, the modulus

of elasticity E, the cross sectional area A and the length of the beam

2.

The mathematical statement [22-25] of the extended Hamilton's

principle is:

t2

I(6T+5W)dt-O (2.1)

t:1

Where T is the kinetic energy and W is the the work function. The
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L P(t)
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i x I p(x,t) I
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Figure 2.1a Beam configuration
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Figure 2.lb Displacements and forces acting on an

infinitesimal element of length Ax



kinetic energy of the entire beam is:

“run-é orpa[m] dx+éoIlpA[MJ-Q]dx (2.2)

To evaluate the work done by the axial force p(x,t) the total axial

displacement A of the right hand and of element dx should be

estimated. This total axial motion is due to the axial elastic

elongation [au(x,t)/ax]dx and the change in the horizontal projection

of the element ds due to bending which was initially dx, (ds - dx)

(Figure 2.1), i.e.;

3%)dx+12- [Md-‘1] dx (2.3a)

where the assumption has been made that the displacements are

sufficiently small that in the binomial expansion only the first two

terms can be retained. The axial strain-displacement relation is

given by



10

alasl_iu§x.sl+;[u§§_m]2
(2.31:)

X

For the purpose of derivation we assume that p(x,t) is a tensile

force. We note that the force p(x,t) acts against A, so that the work

is negative. It follows that the work function is

1 2 2

2 ° 6x

I 2 I

-% I 9.11.51 dx + 1““) y(x.c> dd: (2.4)
0 EA 0

Where the first, second and third terms in the RHS of (2.4) represent

the work done by the bending moment, the axial force and the

transverse load respectively. The variation in kinetic energy is

1 2

6T-IpAuL(6y)dx+JpAiua—(6u)dx
0 0

at at at at

30

t2 t2 1 23.2 3 0.9.6.cf 51' dt-CI [ OI pAat a(6y)dx+oI pAat ac(5“)d"] dt

t, t
2 2

_ 121. 6.39.
OJ [ t I pA at at(6y) dt +t I pA at at(6n) dt ] dx

1 1
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1 3.1 t32 I32 2 1% t2

_I[pAat8y -JIpA[‘a—y—2]5ydt+pAat8u

0 t1 t1 at t1

t2 2

- I pA.a—% 6u dt ] dx

c, a:

t2
2 2 l 2

--J' [Ipia—Jgsydx+ pAL%6udx]dt (2.5)

t1 ° at 0 at

The boundary terms vanish because, by definition, 6y(x,t) and, 6u(x,t)

are zero at t - t1 and t2. The virtual work can be written

1 2 2 2 z

5w--I EIL§97(5y)dx-Ig-A-spdx+I f6ydx

° 8x 6x ° °

using (2.3b) to find 6p(x,t)/EA yields

1 2' 2 1

sw--I 313+3-5-(5y)dx-Ip§—(5u)dx

° 8x 8x ° 3x

1 l

' I} p d1. %'(6y) dx + I f 6y dx

0 x 0

Integrating by parts yields
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£2 a. 2 23: 2 ’2 ‘ ’2
6W--EI 2 (6y)|+EI ,Syl -IEIa—¥6ydx-p6u

a x 8x a 6x 0 0 6x

in _ fix a.
[Jax Sudx pax 8y 0+0] a,‘(paxl6ydx

1

+ I f 6y dx

0

I‘[ 6.! 23: a. ‘
-- EI ‘- “[p ]- f]6ydx-EI 2 (6y)|

0 8x 8x 8x 8x 6x 0

8’ 22 an 1..X - -
+[EI a, pax]8 +0! axSudx pSu o (2.6)

x

Introducing (2.5) and (2.6) in (2.1) we obtain

t32 1 s 2

-I I[EIQ-3;[pg§}+pAL¥-f]sydx

t1 ° 6x at

3.1.2 as ’2 2‘3: 31 ‘-.1..[ ] ..1.[-. ].,
3x 6x 0 8x 6x 0

‘ an 33. ’2
+I[ -pA 2]8udx+p6u dt-O (2.7)

o ax at 0

The integral must vanish for any arbitrary values of 6y, Hay/BX). and

6u, which obey the essential boundary conditions. Because each term
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above is independent and the variations are arbitrary, each term in

the equation must vanish. The first and fourth terms are integrals

which yield the Euler equations

6 2

fl_Y .fl_. fl! fl_¥ _
EIaX,-ax[pax]+pAat, f (2.8)

2

'gfi+"":%'° . (2.9)

which are the differential equations of motion for the beam.

Furthermore, if we consider the boundary terms in (2.7), the nature of

arbitrary variations yields

 

 

2 2

51%581] -o (2.10a)

ax x °

3 2

[3114} - p31] 6y -o (2.1%)

6x x °

2

p Su - 0 (2.11)

0 

Equations (2.10) allow the possibilities that either

2

21% -0 or s[g-§]-o atx-0,2 (2.12a)

6x

and that



l4

3

£1 §-¥ - p gi" 0 or 6y - 0 at x - o, 2 (2.12b)

‘

Admissible variations are those for which 6(3y/ax) and 6y vanish at

the boundaries, e.g. admissible functions, y(x,t) always satisfy the

low order boundary conditions. Equation (2.11) allows the possibility

that either 8u or p vanishes at either end; i.e.;

p-0 or 6u-0 atx-0,£ (2.13)

If the beam is clamped at the end x - 0, the boundary condition is

u( 0.t ) - 0 (2.14a)

and p(x,t) can be any force. If a force P(t) is applied at the end

x - l, we will have

p(2,t) - P(t) (2.14b)

and u(x,t) must satisfy the displacement condition at x - 1 exactly.

Equations (2.10 to 2.13) represent the admissible boundary conditions.

The equations (2.12a) require' either the vanishing of the bending

moment or requires exact satisfaction of the slope boundary conditions

at each end. The equations (2.12b) require either the vertical force

is zero or that admissible functions exactly satisfy the deflection

boundary conditions at each end. Restricting ourselves to simply

supported beam, the mathematical model is given by equations ( 2.8,

2.9 and 2.3b) with the boundary conditions given by first of (2.123),
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the second condition of (2.12b) and ( 2.14a, b). Now we can write the

governing equations of motion of the open-loop system:

0 2

E1 §—¥ - g; [ p 3% ] + pA a4.}- f(x,t) (2.153)

x at

2

‘ g: + P‘ 2.? ‘ °
(2.15b)

at

2

EX _ 3%., I [ g: ] (2.15c)

with the appropriate boundary conditions

Y(0.t) " 303.13) " 0 (2-158)

2 2

2.2:9;31 _ 2.:i§.t) - o (2.16b)

x x

u(0,t) - o (2.16c)

2

EA [ anéfieil + g [—3¥§i*Sl ] ] - P(t) (2.16d)

and the initial conditions

y(x,0) - f1(x) o s x s 2 (2.17a)
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aggm - f,(x) o s x s 2 (2.17b)

u(x,0) - g1(x) 0 s x s 1 (2.17c)

“fie-Q)- -0 05x52 (2.17d)

where f1(x) and f ,(x) are the initial displacement and initial

velocity distributions in the y-direction respectively. The function

g1(x) is the initial displacement distribution in the x-direction.

Equation (2.15a) expresses equilibrium of the beam in the transverse

direction, equation (2.15b) expresses equilibrium of the beam in the

axial direction and equation(2.15c) is the axial strain displacement

relation. Equations (2.15) with. their boundary and initial

conditions, represent a complete system of equations for determining

the three unknowns y(x,t), u(x,t) and p(x,t). Versions of this system

of equations can be found in the literature [26-31 especially 29]

concerned with the bending of columns under dynamically applied axial

loads. The system of equations derived here from the energy

functional indicates the accuracy of the functional which will be used

to derive a parametric control law.

2 . 2 Stability Analysis

The active parametric vibration control theory is based upon

using one of the time dependent distributed parameters to control

transverse displacement under specific control law. It is clear that

equation (2.15a) contains the parametric force p(x,t) as a
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coefficient, our objective is to find a control law by which p(x,t)

can be manipulated and transform the open-loop system into an

asymptotically stable system. For the analysis of the stability of

distributed parameter systems the direct method of Liapunov is used.

We define a Liapunov functional which properly describes a kind of

energy distribution of the system, and it is the purpose of the direct

method to indicate whether the energy is always decreasing to zero. If

this is the case then the system is asymptotically stable. The

necessary theorem concerning stability of a partial differential

equation system has been given by Zubov [32] and Wang [33,34]. The

essence of such a theorem is to extend the Liapunov stability theory

from a finite dimensional space to a space of infinite dimensions and

the realm of partial differential equations. As with the simpler n-

dimensional space method, the determination of the Liapunov functional

V is the main difficulty [35] .

2.2.1 Liapunov functional for asymtotic stability

Leipholz [36] showed the close connection between Liapunov's

stability criterion and the classical energy ( Hamiltonian, H )

criterion, for autonomous, dynamic, continuous systems. He proved

that for a conservative system, if V is chosen as the Hamiltonian,

then

fl-fl-dc dt 0 (2.18)

and for nonconservative system,
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d! 513

dt‘dt- VOIQQ‘NO
(2.19)

where Q. is the vector of generalized forces, ('1 is the derivative of

the state vector q with respect to t and V0 is the volume of the

system. For a non-conservative system, the stability problem is more

complicated. Leipholz's work showed that even then it might be

advisable to use H as V [36,37]. Here, we choose V as the total

internal energy of the system:

V(q) - I - w

.. 10I1[pA[g§]z+pa[§§]2+-EI [3} 2

2

+gx]dx (2.20)

where f(x,t) - 0. By using (2.15c) and if the velocities Y - Y(x,t)

and U - U(x,t) are introduced where;

Y(x,t) - fixiggil . U(x,t) - i“§§*§1

(2.20) becomes

2 2 2

v(q)-%I[pAY2+pA02+EI[i-%]
0

2

D—
+ EA ldx (2.21)

ax
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It is also convenient to introduce the notation of vector q,

qT-[Ypr] (2.22)

Then we can say that the vector q - 0 corresponds to the undeformed

equilibrium position of the beam. The sign of V(q) and of its time

derivative will be investigated [38]. Let us also introduce the

auxiliary vectors f and 5 as

{T - [ (lo :2! {So {4 1! 6T- [ £12 £29 £39 6‘ ] (2°23)

so that we can introduce also the metric p1(§,€),

l 2 2

P1(§.€ )-{ 1/2°I[2A(§1- 6;) + pA(§'1- 61)

2 2

+ 31 [ a"2(9'3' 53) ] d3 )1/2 (2°24)

ax

It then follows that

1 1 2 2 flax 2 1/2

21(q.0) - [ E I [ pA Y + pA.U + EI( 2 ) ] dx (2.25)

° ax

Thus p1(q,0) is a measure of the distance between the equilibrium

state q -0 and the deformed state q #0, further, if p1(q.0) is small,

then each of the terms
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2 2 2 2 2 £24 7

IpAY dx, J‘an dx and IEI[ 2]

o o 0 6x

must then be small, as the integrand of p1(q,0) is sum of these non-

negative terms. It is clear that the metric “((36) satisfies the

following properties [ 39]

(1) PALE) Z 0. 91636) - 0 if and only if S' - 5

(11) P1(§.E) - 21“.!) (Symon?)

(111) 91(93):) 5 216.6) + 22105.2() (the triangular immunity)

where x is a four dimensional vector. So the chosen metric p1(q,0) is

s

a metric space in the Euclidean space R . To prove the stability of

the equilibrium state q-O we must prove that

(a) V(q) is positive definite with respect to the metric p1(q,0);

(b) V(q) admits an infinitely small upper bound in the neighborhood of

q-O; and

(c) investigate the sign of dV(q)/dt.

a) To prove that V(q) is positive definite; comparing (2.21) with

(2.25) yields

2

V(q) 2 «. p.<q.0) 2 o (2.26)
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where at, is positive constant - l in this case. The equality holds

2

only when q - 0. Therefore V(q) is positive definite since p1(q,0) is

positive definite .

b) To prove that V(q) admits an infinitely small upper bound in the

neighborhood of q - 0 ; equivalently this requires that

2

WC!) 5 1 po(q.0) (2.27)

where y is positive constant. The reason for this is to allow

continuity of the solution of the PDEs (equations(2.15 and 2.16))with

respect to the initial data (2.17). Thus by limiting the size of the

initial disturbances f1(x) and f,(x) , a bound can be placed on the

response. If we choose

2

1 z 1 and Po (q.0) - V(q.0) (2.28)

then (2.27) is true and requirement (b) is satisfied. The relation

between the metrics .pland pois given by

91 " Po ' 2' dx (2.29a)

It is clear that p; depends continuously on p0 and since

N
‘
s
-

de>0 for p>0 and t
0 EA

I
V

0



22

therefore p0 > ,01 for all t _>. 0

then by (2.26 to 2.29) we get

2 2

p: ((1.0) S V(Q) S ‘1 Po ((1.0)

c) Finally we need to examine the time derivative of V(q) ,

V(Q) - V(Yxx 9 Y: 9 p9 ut)

2121.91-21 2n,2xils,ax22,ax
at ayt at ap at au Q

)
Q
:

"
L
“

(2.29b)

(2.30)

(2.31)

substituting (2.20) into (2.31) and making use of the boundary

conditions (2.16) yields

man) 23:.

(it

2

-‘J [El yxxyxxt+pAytytt+EA +pAuu

2 I l

'J [ EI yxxdyxt + J ”A ytyredx +01 p[ “an:+ yxyxt ] dx

2

+0". pA “tutt dx

after integration by parts,
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fl 2I 2

dt 'J BI yaomx yt dx +0J. ”A yr ytt+ (J p(“xt + yx yxt) dx

2

+01 pA ututtdx

When the appropriate boundary conditions are applied,

2

511’- -
dc 0I[E1yxxxx [pyx]x+pAytt]ytdx

2

 

2

+OI[pAutt-px] utdx-i-put 0

After making use of the equation of motion,

fi§ - p(x,t) “: (2.t) - P(t) ut<2.c) (2.32)

which is of the form of (2.19).

The sign of p(2,t) ut(2,t) is not known in general for all

t> 0, hence, the sign of dV(q)/dt undetermined. The stability of the

system can not be judged unless the sign of dV/dt is guaranteed by

some relationship between the applied force, P and velocity on the end

of the beam.

Definition: Let d be a positive real number. The neighborhood S(o,d)

of q - 0 is defined as the set of q which belongs to the admissible



24

states for the system for which 0 s p°(q,0) < d where po(q,0) is a

metric measuring the distance between the equilibrium state q - 0 and

the deformed state q - q. Now let us state the stability theorem by

Zubov [32-34]:

In order for the solution q - 0 of the boundary value problem

to be stable with respect to p0 and p], where p1 depends continuously

on p0, it is necessary and sufficient that in a sufficiently small

neighborhood S(o,d) of q - 0 there exists a functional V having the

following properties when qu(0,d):

1) V is positive definite with respect to pl;

2) V admits an infinitely small upper bound with respect to po;

0 o

3) V(q(t,q )) is non-increasing for t z 0, whenever q 2 S(o,d). If,

in addition , there exists a d' , 0 < d' s d, such that.

o o

4) V(q(t,q ))-o 0 as t -’ 0 whenever q 2 S(o,d'), then q - O is

asymptotically stable with respect to p0 and ,01

Properties 1 and 2 require

2 2

p; (9.0) s V(q) s 1 po(q.0)

Which is inequality (2.30) given as a result of the discussion in

subsection 2.2.1 items a and b. And if we force

P(t) ut(2,t) < 0 for all t > 0 (2.33)
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Then dV/dt < 0 i.e. negative definite, therefore properties 3 and 4

are proven,and the system given by (2.15.2.16 and 2.17)is

asymptotically stable subject to (2.33). Now any active control

algorithm given by:

P(t) - s ( ut (1.t)) (2.34)

where g ( u: (2,t)) is some function that depends on au(2,t)/6t, and

satisfies (2.33) will yield asymptotic stability. In- the au(2,t)/at -

P(t) plane, any force in the second or fourth quadrant results in

closed-loop asymptotic stability of the beam system. The control

force shown in Figure 2.2 satisfies this condition. Figure 2.3 shows

the structure of the active vibration control using this force.

It is worthwhile to mention that if we already have the

mathematical model (2.15 to 2.17) and we wish to construct the energy

integral of the given system by which a Liapunov functional and its

total time derivative can be deduced easily, the following procedure

may be suggested:

Multiply (2.15a) across by ay/at, integrate over 2 and use the

boundary conditions to get;

£2.11 [H [iifwfiflz] 9

2 2 2 2

_ _ :23: 1.1L _ _ .1. L 521

J p ax axat dx 2 J [ ] dx (2.36s)



26

P(t)
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Figure 2.2 Modified bang-bang control force

r‘C‘t)=0 e r Poul , utflft)

.' £32. BEAM -—’

3. ’1 *
\’0'

13

l
 
 

e=-ut(l,‘t)

Figure 2.3 Active vibration control
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By making use of (2.15c), equation (2.36a) becomes

2

Mm? ”Main ].

---‘-J‘v2:[%:-2%:1«

l l 3

-- Lu LL

Jmac‘k" Paxacd"

, - 2.
at 0 EA dx + I’ p axat dx (2.36b)

Now multiply (2.15b) across by au/at, integrate over 1 and use the

boundary conditions; yielding

1a. ‘ 232 ‘2222

2atoJ‘pA[at] dx-OI dx

2

- P(t) 3312.4). J “- dx (2.37a)

From which

2 2 2

LL ML). .1. L is
J p axac dx - P(t) ac - 2 at J pA [ 1 dx (2.37b)

Substituting from (2.37b) into (2.36b) yields
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:z—fiI [21 (£32 ”+M[%%)’+ém[s:]’] ax

-p(t)m , (2.38a)

If we take V(q) as

1 2 2 2

V(q)-ll [EI[3—¥ +pA 1“ +L+pA 1“ dx
20 ax? at EA at

(2.38b)

Then (2.38a) can be written as:

dt " P(t) gills). (2.38c)

By comparing (2.38c) with (2.32) we find that both the the

infinitesimal and the variational approaches yield the same result.

In fact this procedure yields a relationship between the rate of

change of the total internal energy of the system with respect to time

and the external power applied on the system which agrees with (2.19).

In this chapter the theoretical basis of the active parametric

control theory for controlling an elastic beam was presented. The

mathematical model was derived using Hamilton's principle which led to

a modified nonlinear, dynamic, Bernoulli-Euler beam. Also asymptotic

stability using the direct method of the Liapunov was proven from

which the closed-loop control system was deduced. The energy integral
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as an alternative procedure and the time derivative of the internal

energy led to the same result.



mm-mxcu. SOLUTION

To see the effectiveness of the approach, the closed-loop

control system is simulated. An analytical-numerical solution of the

closed-loop control system is presented in section 3.1 and 3.2

followed by section 3.3 which discusses the steps of solution. The

numerical-analytical results of the closed-loop system simulation are

given and discussed in section 3.4. The simulation results show the

effectiveness of the closed-loop control law derived in chapter 2 from

the Liapunov function for the beam.

3 . 1 Analytical Solution For Bes- Axial lotion

This subsection presents the analytical solution of the wave

equation which gives beam axial motion. The two governing equations

of motion of the closed-loop system are coupled and nonlinear in-

general, and it has not been possible to find an analytical solution

to the beam equations. However, an analytical solution for the wave

equation can be obtained from which the parametric force p(x,t)

coupling the two equations can be evaluated and used in the

approximate solution of the parabolic equation modelling beam

transverse motion .

The axial force p(x,t) may be eliminated when combining

(2.15b) and (2.15c) to yield

30
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2

2

“a - a 3.1: -max (3.1a)
a: 3:

where a2 - E ,

p

2 2

_a_ :31¢(x.c) 2 [ax] (3.11.)

This is recognized as a nonhomogeneous wave equation for u, subject to

the nonhomogeneous boundary conditions of (2.16d). A formal solution

of(3.la) can be obtained using Finite Fourier Transform [14]. Let the

Finite sine transform of u(x,t) be defined by

1

U(x,t) - I u(x,t) sin Xx dx (3.2a)

o

2

where A is the eigenvalue to be determined. In addition, the Fourier

Lanna.
sine transform of 2 is given by

8:

1 2

U(2)(A t) - I sin Ax dx
2 2

° 8x

as
- sin Ax

2 l

- A I QB cos Ax dx

6x 00 6x 
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I

U(2)(.\,t) - flgfi‘n sin A! - M u(x,t) cos Ax ] o

2 l

- A Iu(x,t) sin Ax dx

0

2

- dig-h”- sin A2 - Au(£,t) cos A! -A U(x,t) (3.2b)

where the boundary conditions have been used. Since u(1,t) is not

available we search for eigensolutions with cos A1 - O, which leads to

A -( 2n -1)12'7; n - 1,2,3, ..... (3.2c)

It follows that

sin A! - sin (2n - 1) g - (_1)n-l ; n - 1,2,... (3.2d)

Transforming (3.1a) we obtain

2 2

Wig-51+[(2n- 1)fl] U(n,t)
2!

dt

1- 2

-(-1)“ 1 a 1332:2241 -( 2n-l ) 12L; J ¢(x,t) cos(2n - 1) fix dx

+ ¢(2,c)(-1)“‘1 (3.2e)
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since

1 l l

I a‘é:*£l sin Ax dx - - A OI ¢ (x,t) cos A dx + ¢(2,t)(-l)n'

0

therefore

n-l t

' inlllll g;

«(2n-l) J 3:: sin(2n-1) 22 (t-r)drU (n,t) -

l c n 1 rs
- a oI sin(2n -l) 21 (t-r)°I ¢(x,r) cos(2n - l) 21 x dxdr

+ wtor ¢(1,r)sin(2n-1) 12‘} (t-7)dr

+ U(n,0) cos(2n -1) 3 c (3.2f)

2

where U(n,0) - OI u(x,0) sin At

The corresponding inverse formula of (3.2a) is

u(x,t) - % E U(n,t)sin(2n - 1) £3 (3.3a)

n-l

which yields
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-l

2 n 22:21)}.
u(x,t) - l E [ sin(2n - l) 21 [ «(2n-1)

n-l

”Id! (I, r ) sin(2n-1)¥1(t- r)dr

t

-i “I sin(2n -l)?£(t-r) 0!!¢(x, r)cos(2n - 1) £5 xdxdr

a«(2n-1)1°J
I ¢<1 ')81n(2

n-1)¥1(t--,)
d,

+ U(n,0) cos(2n -l) g: t ] ] (3.3b)

Therefore the distributed parameter force (2.3b) is given by

p(x, c) - EA 39++2EA[ 3% ]

- EA a“ +‘EA (3.4a)
ax+ a2

Where au/ax is given by
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Q n-l

2:93_§ ““2“,”23 [24.341.—

n-l

2

OIC[£_ALL)_.;.[§%£LLI] ] sin(2n -1)fi dr

t 1

- 211;} I I sin(2n -1) 3 (t-r) ¢(x,r) cos(2n - 1) if x dx dr

a! o o

2

2 I “n-l c

+ l-
I ‘(1.T)8

1n(2n-1
) n

(t’7)df
+

-

a 0
22

‘2“:111

U(n,0) cos(2n -l) 3 t ] (3.4b)

3 .2 Numerical Solution of the Parabolic Equation.

Equation (2.15a) is a nonlinear parabolic equation. Since no analytic

solution is known for this equation with its boundary conditions and

initial values, an approximate solution is developed here. It is

assumed that the x-t solution domain is covered by a uniform

rectangular lattice with Ax and dt denoting space and time increments,

respectively. Furthermore, it is assumed that the point considered is

the point x - iAx, t - jAt of the solution domain. Then if we agree

to denote y( iAx, jAt) by yi j we have the following finite difference

approximation.

2

1

a_x .___ ( 2
2 - 2 y - 2y . + y _ ) + o(At )
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1% 2 J: a: + 0(At2)
(3.58)

31'- At

6x2 " E (YB-1.1 ' 2’1.) + Y1-1’J ) + 0(AX )

éJ,§+om’) 05m
Ax

‘ l 2

2.! _ -
) + 0(Ax )— 4 +6 -4 +

3x4 Ax‘ (Y1+2,j y1+1,j Y1,j Y1-1,j Y1-2,j

9 -1, a; + o(Ax‘) (3.5c)

Ax

2; [ P‘x"’ gi'] ' 5; [ ”1.1 6; ] ’1.1

1.51

Ax x [ 91,1 [ Y1+1/2 j - yi_1/2 J ] + och’)

‘.:;2 [ p1+1/2,j [ y1+1,j ' Y1,j ]

2

‘ p1-1/2.j [ ’1.J ' ’1-1.J ] + °‘Ax ’ (3'5d)

1
L

where 6x yi,j ' Ax [ yi+l/2,j - y1-1/2,j ]

Making use of (3.5) , the finite difference approximation for (2.15a)

takes the form
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El A; ‘

Y1,j +1' 2Y1,j ' Y1,j-1 ‘ pA Ax? ] 5x Y1,J

_l_.As_

- pA AX: - At [p1+1/2vj [y1+lsj - yivj]

' Pia/2.1 [’12 ' ’14.: H ' 3% EL:

2 2

+ o (Ax ,At )

2 2

1r Y1-2,j * [ 4°1‘ + °2rP1-1/2,j] yi-l,j
5'0

2

[ ' 6°1r * °2rP1+1/2,j * °2rP1-1/2.J *2 ] Y1,J

2 2

[ 4c1r + pi+l/2,j °2r ] yi+l,j ‘ c1r Y1+2,j

- y1’1_1 (3.6a)

where r - 2 , c1 - and c2 -.
A; El

Ax

The boundary and initial conditions of (2.16a,b) and (2.17a,b) require

yi’o - f1 (iAx), yi’o - yi’-1 +At f2(iAx) (3.6b)
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You, -0 o yN,J -0 (3.66)

yN+1,j' ' yN-1,j . Y.1,J - - y1,j (3.6d)

where N is the number of mesh divisions in the x-direction; i.e.

NAx - 1. If piil/Z are known equations (3.6) yield a value of y at a

point in the j + 1 row in terms of already known values in the j-l and

j-rows. Thus the entire y-mesh can be computed, and the solution can

be generated one row at a time. Figure 3.1 illustrates the

computational molecules for the explicit difference approximation

of (3.6).

To study the convergence of the finite difference

approximation, it is sufficient to study the stability and

consistency. To study the stability of (3.6), p(x,t) is assumed to be

constant. Now since the stability bounds are not affected by the

lower-order terms; i.e., in which piil/Z j arecoefficients of them,

the nature of the problem assumes that the vibration is governed

mainlygby the beam stiffness EI, rather than the axial force pi+1/2 j’

Fourier stability method yield [16]

2

4 [ ]

0 < s l

pA Ax2
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“is

1/2

[‘5] (3.7)

Ax
EI

N
I
H

This stability bound was found to give good results.

The numerical approximation was derived from the PDE, i.e.

(2.15a), and since that the truncation errors go to zero as

At, Ax -' 0 no matter how this limit is taken, the explicit finite

difference approximation (3.6) is consistent with the differential

equation (2.15a), and as long as (3.7) holds, the system is stable.

By Lax's theorem; [14,17,40 and 41] stability and consistency imply

convergence, provided that the parabolic PDE is well posed.

3.3 Steps of Solution

The analytical-numerical solution presented in the previous

sections are given in order to find the response of the beam at any

point x under the action of a control force P(t) - g(au(£,t)/at) and

some initial and working data. This section presents the steps of

solution to achieve this purpose below

1) Select initial values f1(x), f2 (x) in (3.6b), working conditions

f(x,t) in (3.6a) and a control gain a.

2) Calculate the corresponding response of the initial values

using (3.6b), i.e. i - 1,2,3, ..... N.
2 yi,o 9

3) Calculate the end velocity of the beam using the

approximation:



wwsszan] ..

4) Calculate the control force P(t) using (2.34) subject to

(2.33) .

5) Find the distributed parameter force p1+1/21 , i.e.,

[p((ii1)Ax,jAt)] which requires that P(t) [ - g(6u(£, t)/at ]

and ay(2, t)/6x to be known at t - jAt using (3.4) with truncation

number of 20 modes.

6) Calculate the response y1 1+1 using (3.6)

7) Increase j by l and repeat steps 3-6

3.4 Sinnlation Results and Discussion

This section. contains the numerical-analytical results of the

closed-loop control system simulation. The simulation is designed to

illustrate of the following aspects of the. controlled system's

dynamics :

1- The stability.

2- The transient motions due to initial data.

3- The dynamic system response due to external disturbances.
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The simulation were run on a Prime 750 computer at the Albert

H. Case Center for Computer-Aided Design at Michigan State University.

The calculations for the test case are carried out using a mesh of

2 2

N -15 nodes in the x-direction and ‘AE-; - .219 sec/m [.0203 sec/ft ].

(AX)

The steel beam material properties and dimensions for laboratory

tests, which will be presented in the following chapter are:

2 2 1 2

2.10(10 ) kg/mm [3(10 )1b/in ]m I

s s

p - 8304 kg/m [.3lb/in ]

2 - .61 m [2ft]

A - 50.8mm width x 1.588mm thickness [Zin x .062Sin]

For a particular control gain a, the results of the simulations

are the response at a point x1 - iAx, the required control force P(t),

the internal energy and the work done by the external disturbance.

3.4.1 Control Force.

For our control system; the asymptotic stability is guaranteed

when (2.34) and (2.33) are satisfied. The function g in (2.34) may be

chosen such that the relationship between g and ut(2,t) lies in the

second or fourth quadrant in the g-ut(£,t) plane. In the test cases

the modified bang-bang control force as shown in Figure 2.2 is chosen.

-3

In all simulation test cases 5 - 3(10 ) m/sec.
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3.4.2 Internal Energ and Work Done.

The relationship between the internal energy E(t) and the work

done by the control force P(t) can be deduced by integrating (2.38c)

from 0 to t:

t

E(t) - 3(0) - J P(r) “£43- (17 (3.9a)

2 2 2

E(t)-%°II[EI [ii-1f 2+pA[‘g'§] +DEZ+pA[g%] ]dx

(3.9b)

The work done by an external force f(x,t) can be added to

(3.9a) to yield

1: t 1

E(t) - 2(0) - I P(r) We: dr +1 I f(x,r) alga-L)- dxdr
0 o 0

(3.9c)

Test Case 1: Initial Displacement.

In this case the initial displacement is, y(x,0) - sin(«x/£)mm,

which is the first eigenfunction of the beam. Figure 3.2a shows the

response of the middle ofthe beam, y(2/2,t) versus time and control

gains or - 0,40,80 and 108 N. In Figure 3.2a the curve for a: - 0

(control is off) is the response of the free stable vibration. The

frequency of this response is 9.654 Hz. which is the first natural

frequency of the beam. The curves for or - 40,80 decay rapidly in the

first two cycles of oscillation. For at - 108 N the motion decreases
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4S

monotonically with increasing t; i.e. , the active control overdamps

the vibration in this case. For at - 80 N the vibration almost dies

out in two cycles (the amplitude is .001mm), for a: - 40 N it almost

dies out in 4 cycles (the amplitude is - .059 m). Figure 3.2b shows

the required control force versus time for o: - 0,40,80 and 108 N. It

is clear from Figure 3.2b that the end velocity of the beam

au(£,t)/at reflects the internal energy content E(t) and lutl falls in

the interval (+e,-e) faster for bigger at. This is not the case for

a: - 108 N it seems that the control action freezes the initial shape

of the beam by slowing down the conversion of the initial energy, i.e.

the potential energy, into kinetic energy and dissipate the energy in

such way that it does not allow for oscillation, until the energy

dissipated.

The internal energy E(t) given by (3.9b) is plotted versus time

for a: - 0,40,80 and 108 N. in Figure 3.2c. For a: - 0 the system is

conservative, also it is clear in Figure 3.2c that at the early times

i.e. 0<t<.025 sec. the smaller the gain, the bigger the energy

dissipation is and at later times the energy dissipation is

proportional to the control gain. Except for a - 108 N (the

overdamped gain) which verifies the freezing phenomena mentioned

above .

The work done by the control force p(t) is shown in

Figure 3.2d. Comparing the corresponding curves in Figure 3.2c and

3.2d for the same or, one can see that (3.9a) is satisfied for each or

which proves the energy balance of the system at any time t. Again,

contrary to other «'5 the work done by p(t) for or - 108 N is less for

0<t<1sec.
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A subset of the simulated test results for c: - 40 N is shown in

table 3.1. Table 3.2 shows the effect of the control gain a: on the

amplitude ratio an - yn/yn.1 the energy ratio en - J En /En-l and the

efficiency factor n - (E(O) - E(tn)/ E(O), where n

is the amplitude number. Notice the closed connection between the

energy ratio en and the amplitude ratio au for low values of control

gain or. For low a: it is clear that the amplitude ratio an and the

energy ratio en are almost constant and equal for the first three

cycles. The observation on the amplitude ratio an agrees with

Flouquet Liapunov theorem for this kind of system [26 and 42]

In this test case, i.e., case of controlling the transient

motion due to an initial displacement of the first mode, the control

algorithm could successfully transform the stable system into an

asymptotically stable system, and for a: - 108 N the vibration

monotonically decreases with time.
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Table 3.2 Effect of the control gain a on the amplitude ratio

the energy ratio enand the efficiency factor n for

 

 

for initial displace-ant test results for teat case 1

gain n tn yn an an n 8

a N sec mu mm/mn N um

10 1 .1057 .81548 .81548 .2573 .836 30.08

2 .21077 .653619 .8015 .18131 .839 50.73

3 .31255 .535909 .81991 .1241 .827 66.28

20 1 .10791 .6218 .622 .1485 .635 59.65

2 .21185 .4187 .673 .0717 .695 80.51

3 .31688 .2766 .661 .031 .657 91.58

40 1 .112 .39 .39 .059 .40 86.41

2 .2205 .157 .40 .0094 .399 97.45

3 .33 .062 .395 .0014 .386 99.62

80 1 .168 ..064 .064 .0021 .075 99.43

2 .328 .008 .125 .000024 .0081 99.9

3 .433 .0053 .662 .00 .00 100

 

108 .......... motion ~ 0, no oscilation.
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Test Case 2: Initial Velocity.

This case excites the first mode. Impulsive loads are common

for mechanical structural elements like beams, yielding an initial

kinetic energy to the beam. An impulse was simulated as an initial

velocity. An example of such a simulation is ay(x,0)/at -

.13331n(1rx/£) m/sec. Figure 3.3a shows the response of the middle of

the beam for at - 0,10, and 20 N. The curve for a: - 0 is the response

of the free stable vibration. The frequency of this response is

9.654 Hz which is the first natural frequency of the beam. Table 3.3

shows the effect of or on the amplitude ratio aj - yJ / yj_2, energy

ratio:

ej- JEJ / Ej-2 and the efficiency factor n - (E(O) ‘ E(tj))/ E(O),

where j is the amplitude numbers Comparing the values of the

amplitude ratio and the energy ratio at the same gain, in tables (3.2

and 3.3), they are very much close.

Figure 3.3b shows the required control force for car—10 and 20 N.

The stabilizing effect of the control is evident again. The internal

energy E(t) given by(3.9b) is plotted in Figure 3.3c for a: - 0,10

and 20 N and can be compared with the work done by p(t) Figure 3.3d.

The energy balance (3.9a) is satisfied for each a. In this test case;

i.e. case of controlling the transient motion due to an initial

velocity of the first model, the control algorithm could again

successfully transform the stable system into an asymptotically

stab1e system.
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Table 3.3 Effect of the control gain.¢ on the amplitude ratio

 

 

J

the energy ratio ejand the efficiency factor n for

initial velocity test results for test case 2.

gain tJ yJ aJ EJ eJ n t

a N sec mm mm/mm N mm

10 .02517 -2 1359 1.694

.07714 1 9036 1.3475

.12911 -1 7241 .8072 1.1187 .812 40.5

.18108 1 5475 .813 0.9055 .819 51.8

.23305 -1.39735 .8104 0.7411 .813 60.6

.2850 1.242 .804 0.596 .811 68.3

.3370 -1.12196 .803 0.4861 .81 74.1

20 .0235 -2.026 1.53

.07633 1.6037 0.965

.1291 ~1.2994 .641 0.632 .634 66.4

.1819 1.03096 .643 0.4048 .647 78.5

.23468 -0.83564 .643 0.26651 .649 85.8

.2834 0.67515 .654 0.17594 .658 90.6
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Test Case 3: Resonance.

In this case the system which is initially at rest is excited

by applying a disturbing force f(x,t) - .146 sin w1t N/m, where 031 is

the fundamental frequency (- 60.66 rad./sec). Figure 3.4a shows the

response at or - 0,10,20 and 40 N. For a: - 0, the growth is linear

with t as is expected for resonance. For a: - 20 - 40 N the amplitudes

are kept bounded, and the amplitude value decreases with the increase

of the control gain 0:. Figure 3.4b shows the required control force.

The internal energy of the system is shown in Figure 3.4c. For at - 0

the internal energy increases unboundedly with t but for a: - 20 - 40 N

it is kept bounded. Figure 4d shows the work done by p(t) and the

energy balance of the system as given by (3.9c) for a: - 20 N. It

should be noticed that the work done by p(t) is equal to the work done

by f(x,t) Figure 3.4d and this limits the response amplitude.
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Test Case 4: Steady State Time Response.

To study the steady state time response of the been, a damping

term should be added to the 138 of (2.15a). The damping model chosen

is the structural damping (3.7). The basic property of structural

damping is that the amplitudes of normal modes of vibration are

attenuated at rates which are proportional to the oscillation

frequencies. The structural damping of a DPS is found to be

consistent with the model [19]:

1/2

By - CB yt +p A yct - 0

Where C is the damping coefficient and B is the operator EIyxxxx

1 2

defined on an appropriate domain and B / is the unique positive

definite square root of B. Therefore (2.15a) becomes

0 3

E1 6.1.3.2519. _ c 6.132115). , g; [p(x,t)gfiait).

a x a x a t

2

+pAa-19L-‘l- f(x,t), 0<x< 2 (3.10)

a c

In this case the forcing function,

f(x,t) - 4.38 sin(wlt) N/m

where an is the fundamental natural frequency (- 60.66 rad/sec), and

C - .267 kg m/sec which was chosen to produce fast steady-state

nesponse not as a model of the experimental test system. Figure 3.5a

shows the time response of the closed-loop system for zero initial
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conditions. For a: - 0, due to the passive damping the amplitude is

limited to 1.55m. For a: - 40 N two control actions are considered,

the first is that for t > 0 the control is turned on and the second is

that the the control is turned on for t 2 1.115 sec. In both cases

the amplitude is reduced from 1.55 mm to .545 mm. Figure 3.5b shows

the control forces p(t) versus t. The internal energy is shown in

Figure 3.5c for both cases. The internal energy for or - 0 is constant

for t 2 1.1 due to the passive damping. For a: - 40 N the largest

dissipation is due to the active control action as shown in the

figure. From figures 3.5a and 3.5c we conclude that the desired

steady state response may be obtained regardless of the time the

control action starts. The open-loop steady state internal energy

is .958 (N mm) and the closed loop steady state internal energy is

.13 (N m) which yields a steady state 1) - 86.64 %.
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Test Case 5: Initial Displacement of an Infinite Rider of Nodes.

In this test case the initial data is given by y(x,0) -

21.527x(x-£) m where x is in meters. This case excites an infinite

number of modes. The control action is set "on” for internal energy

E(t) 2 .3 8(0). Figure 3.6a shows the response for a: - 0, 10,

and 30 N. Since the control action is based on internal energy; The

amplitudes of a: - 10, 20 and 30 N dropped to .8m. for E(t) z .3E(0)

for each a. It is the equality starts to be satisfied at t - t1, one .

can see from Figure 3.6b that E(t1)-.3E(0) is satisfied after 3/4 of a

cycle for or - 30, and after 4 1/2 cycles for a: - 10 N. The internal

energy and the work done are shown in Fig.(3.6c) in which the energy

balance is satisfied for each at. Table 3.4 shows the effect of a: on

an, en and n in the first three cycles for each or.



for various control gains for test case 5 .

initial displacement of an infinite number of modes

Figure 3.6a Response of the transverse vibration at x-£/2 for
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Table 3.4 Effect of the control gain.« on the amplitude ratio an,

the energy ratio enand the efficiency factor n for

initial displacement for an.infinite number of modes

for test case 5.

 

 

gain n tn yn an En en n 8

a N . sec mm mm/mm N mm

10 1 .103 -1.741 .8705 1.343 0.86 25.8

2 .2135 -1.37 .7869 0.9272 0.831 48.77

3 .3110 -1.17 .854 0.6818 0.857 62.33

20 1 .103 -l.418 .709 0.983 0.737 45.7

2 .2038 -0.993 .70 0.580 0.768 67.95

3 .311 -0.8427 .848 0.438 0.864 75.8

30 1 .103 -1.l74 .587 0.759 0.647 58.1

2 .2038 '-0.84 .715 0.508 0.818 71.9

3 .311 -0.777 .925 0.427 0.917 76.4
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Test Case 6: Initial Iqulse Excitation of an

Infinite Mr of Nodes.

The impulse in this case excites an infinite number of modes.

This impulse may be simulated as an initial velocity of the form

ay(x,0)/at - 1.094x(£-x) m/sec

where x in meter, 0 s x z 2 . In this case, because the numerical

differentiation process for estimating 8u(1,t)/at causes numerical

instability when the energy level is less than.0026 E(O), the control

action is set "on" for internal energy E(t) z 0.00268(0).

(Figures 3.7a, b and c) show the response of the middle of the beam,

the control force and the internal energy and the work done versus

time for a: - 0, 10 and 30 N respectively. It is clear from

1

figures 3.7 b,c that E(tl) - .0026E(0) is satisfied in less than 5;

cycles for a: - 30. Also the energy balance is satisfied for all t _>. 0

as shown in Figure 3.7c.

Table 3.5 shows the effect of control gain a: on the amplitude

ratio aj, the energy ratio e_1 and the efficiency factor n. It is

clear from table 3.5 that for certain at, the amplitude ratio

aj- yj / yj_2 and the energy ratio ej- JEJ /Ej-2 are equal up to the

first decimal point, and these ratios decrease with increase of or,

where j is the amplitude number. In this test case the control action

could reduce the intial impulse energy to .0026 of its initial value

1

in less than 5'; cycles for or - 30 N.
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Table 3.5 Effect of the control gain a on the amplitude ratio

the energy ratio

initial inpulse excitation of an infinite nulber of

70

e and the efficiency factor a for

.1

nodes for testcase 6.
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“h 5 ‘1 ’J ‘J '1 ‘1 " ‘

e 3 sec - -/-| l -

0 21.78 1.123 0

10 1 .023 1.631 1.0170 9.33

2 .0771 °1.5923 .0376 0.02119 .036 27.0

3 .129 1.333 .007 0.6625 .007 £1.12

6 .101 -1.1927 .00 0.3366 .000 32.32

.233 1.0701 .0007 0.6320 .000 61.33

6 .203 -0.9756 .010 0.3590 .0073 60.91

7 .337 0.0637 .003 0.2019 .0071 73.02

20 1 .0219 1.376 0.952 16.27

2 .0771 -1.276 .733 0.6011 .731 33.02

3 .12911 1.023 .63 0.3906 .644 63.20

h .101 -0.0172 .65 0.2336 .623 77.20

3 .2290 0.6606 .606 0.170 .639 04.09

6 .203 -0.361 .662 0.1003 .631 90.36

7 .3602 0.5301 .631 0.0701 .662 92.99

30 1 .021 1.319 0.062 23.34

2 .0771 -1.0003 .623 0.030 .62h 61.07

3 .1291 0.770 .312 0.2271 .313 79.01

A .101 -0.333 .300 0.120 .323 09.33

3 .233 0.0039 .319 0.0630 .326 90.5

6 .02002 -0.2912 .326 0.0327 .322 97.09

7 .353 0.211 .322 0.0173 .327 90.50
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Test Case 7: Internally Unstable System.

This test case is considered to give more insight in order to

understand the control and to show that it can transform an internally

unstable system into an asymptotically stable one. The system is

internally distabilyzed by replacing a positive C in (3.10) by a

negative value, C - -.OOM¢5 Kg m/sec. An initial displacement,

y(x,0) - 1.5 sin(xx/l) mm, which is the first eigenfunction of the

beam is applied. Figure 3.8a shows the response of the middle of the

beam, y(1/2,t) versus time for 0: - O, 10, 20 and 100 N. In

Figure 3.8a the curve for a - 0 (control is off) is the response of

the free unstable, self excited vibration. The frequency of this

response is 9.654 H2 which is the the first self excited frequency of

the beam.

The frequency of the response For ariO varies with time within

one cycle of oscillation. It oscillates about the frequency of the

uncontrolled (a: - 0) system, therefore every half cycle of the

response curve, there are two different zones: slow and fast.

Figure 3.8b is a plot of the response and the control force for

a-hO N. In Figure 3.8b t c:and t are the time of any point xel taken
t

to reach the equilibrium position from the maximum amplitude of

oscillation and from the equilibrium position to the maximum amplitude

of oscillation respectively. It should be noticed from Figure 3.8b

that during tcand tt, P(t) is compression and tension respectively

which gives a physical interpretation of the control mechanism,

e.g. ,when the distance between the beam supports tends to get longer,

the control force is compression and vice versa. In this case the



for various control gains for test case 7

for internally unstable system test results

Figure 3.8a Response of the transverse vibration at x-1/2
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numerical values of tc and tt give the frequencies «ac-7.35 Hz

and «ac-11.36 Hz respectively, i.e. , during half of a cycle of the

transverse vibration, the frequency of oscillation varies from wcto

wt. This fluctuation shows that there are softening and stiffening

actions due to the parametric force p(x,t) generated by the control

action P(t) .

Figure 3.8c shows the required control force versus time for

a-lO, 20 and 100 N. The internal energy E(t) and the work done by the

control force p(t) are plotted versus t for the same control gains a:

in Figure 3.8d. An efficiency factor n - (E(O)-E(t))/E(O) giving

the fraction of the energy dissipated due to the control action during

the first cycle of oscillation, t, has been considered in order to

judge the efficiency of the approach in the first cycle. Table 3.6

shows the effect of the control gain a: on the amplitude ratio aj , the

energy ratio eJ and the efficiency factor n. In this test case, the

control algorithm could successfully transform the initially

internally unstable system into an asymptotically stable system

without exciting any other modes which might be excited easily since

the system is internally unstable and for a-lOO N the vibration

monotonically decreases with time.

This chapter has shown the effectiveness of the control law in

controlling beam transverse vibration through investigation of

stability, transient motions and controlled response from external

disturbances. The closed-loop system which was derived in chapter 2

from the Liapunov function for the beam, was reduced to a

nonhomogeneous wave equation for u(x,t) subject to the non homogeneous
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Table 3.6 Effect of the control gain.¢ on the amplitude ratio aj,

the energy ratio ejand.the efficiency factor n for

for internally'unstable system for test case 7.

i t E t

5‘ “ J ’1 “J J ‘1 ”

a N sec mm mm/mm N mm

10 .0527 ~1.4l477 .74872 8.47

.1039 1.31884 .8792 .651616 .892 20.3

.157538 -1.235227 .8731 .57022 .87 30.29

.2086977 1.13517 .861 .481039 .86 41.19

.259857 -l.06915 .8655 .429797 .868 47.46

.31345 0.98863 .871 .3701688 .877 54.75

.36461 -0.92952 .8694 .3276178 .873 59.95

20 .0527 -1.26749 .596791 27.04

.106379 1.041047 .694 .403597 .702 50.66

.157538 -0.873227 .689 .287831 .694 64.81

.211134 0.72176 .693 .199689 .703 75.59

.262293 -0.610207 .699 .142664 .704 82.56

.31588 0.50948 .706 .09699 .697 88.26

.367048 -O.42654 .699 .070878 .705 91.34
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boundary conditions which could be solved analytically using finite

Fourier transform and a nonlinear fourth order parabolic equation in

y(x,t) which was approximated by finite difference method.

The simulation was runAon a prime 750 computer at the Albert

H. Case Center for Computer-Aided Design at Michigan State

University. The beam chosen for the test had dimensions and

material properties appropriate for the laboratory tests which will

be given in chapter 4 and the simulations indicated asymptotically

stable response. Test cases 5 and 6 for infinite number of modes

demonstrated most of the initial energy was removed in the early

oscillating cycles. Test cases 3 and 4 showed resonant amplitude

could be limited by this control.

The single mode test results demonstrated:

1) asymptotically closed-loop stable transient response for at < 40 N

and monotonically decreasing response for control gain a: - 108 N.

2) the closed-loop control reduced the resonant response amplitude.

For test results exciting an infinite number of modes the control

action successfully:

1) reduced the amplitude from 2 m to 0.8 mm for control gains 10, 20

and 30 N for energy based control;i.e. control was set "on" for

E(t) z .3E(0) for the initial displacement y(x,0) - 21.527 x(x - 2) mm

where x in m,
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2) reduce the initial impulse energy due to an initial velocity given

by ay(x,0) / a t - 1.094(1 - x) m/sec where x in m, to .0026 of its

initial value for control gain a: - 30 N.

In both transient single mode and infinite number of modes

the closed connection between the energy ratio en and the amplitude

ratio an for low values of control gain a: was clear. For low a: it was

clear that the amplitude ratio an and the energy ratio en were almost

constant and equal for the first three cycles and depend only on on.

This observation has not been previously reported because none has

used this control before.



WFACIIITIES, PROCEDURES ANDRBSULTS.

A prototype control system was constructed to evaluate the

performance of the active parametric vibration control system on a

simply supported beam (Figure 4.1). The beam chosen for the

experimental tests has dimensions that give reasonable natural

frequencies. This chapter discusses the experimental control

evaluation in three main sections. In section 4.1 the construction of

the simply supported beam test stand is presented. The actuator

mechanisms and sensors and their associated circuits are presented in

section 4.2. Experimental results are given in section 4.3. The

modelled beam is compared with the ideal beam with respect to the

modal frequencies and the modulus of elasticity in section 4.4.

Significant increases in stability of the test beam were measured

which demonstrated the feasibility of employing active parametric

vibration control. The experimental results presented here will be

compared with simulation results in chapter 5.

4.1 Siqu-Supported Beam Test Stand

In this section, the construction of the beam test stand to

assess control performance is described. The test stand had the

following requirements:

79
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1- External damping due to frictions in the joints of the moving parts

should be minimized .

2- The actuators and sensors should have minimum interaction with the

beam dynamics .

3- The effect of gravity on the transverse and longitudinal vibration

should be eliminated.

Figure 4.1 shows the prototype active vibration controller.

The dimensions and physical properties for the steel beam are:

a s

p - 8304 kg/m [.3lb/in ]

1 - .61 m [2ft]

A - 50.8mm width x 1.588mm thickness [Zin x .06251n]

To eliminate the friction in the hinge junctions of the beam

supports while achieving near-zero bending moment at the ends of the

beam, i.e. yxx (0,t) - yxx (Lt) - 0; the end conditions were

approximated using very thin steel shims of thickness .01 inch which

were soldered in slots at the ends of the beam and tightly fixed to

the supports.

To realize the axial movement of the simply-supported beam end,

while keeping minimum interaction between the beam dynamics and the

supports; the other end of the corresponding shim was fixed in a rigid
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cross shaped section of plexi-glass (to reduce inertia)vfluch.was

supported on three deep groove ball hearings (to allow only axial

motion with minimum friction). To ensure proper contact between the

bearings and the plexi-glass support, one of the bearings was made

adjustable through a screw which drives two swivelling brackets and

tightened when adjusted. A steel strip of dimension 1.5 x 3.5 x.06

in. fixed by screws at the other end of the plexi-glass support, which

could be attracted by the electromagnet to implement the active

control as shown in Figure 4.2. The maximum control force applied by

the magnet was up to 90 N for .01 in. gap. The supports of the beam

were fixed through brackets to a machined 6.5 x 6.5 x 35.5 in. right

angle which was fixed to a heavy cast iron test stand through heavy

duty C-clamps. To excite the beam, two identical electromagnets were

fixed to the frame through brackets and centered at 82.55 mm. This

pair of magnets could excite the first five modes of the beam

efficiently. The effect of gravity on the transverse and longitudinal

vibrations was eliminated by allowing both y(x,t) and u(x,t) to be in

the horizontal plane .
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4.2 Active Control Prototype

In this section the experimental procedure and the measured

quantities are presented. This section is divided into five

subsections. Subsection 4.2.1 describes the main instrumentation

circuits,and subsections 4.2.2a and 4.2.2b describe the end beam

acceleration and displacement measurements respectively. The

transverse displacement measurement is given in subsection 4.2.3. The

beam excitation and the control actuators are presented in subsections

4.2.4 and 4.2.5 respectively.

4.2.1 lain Instrumentation Circuits

To evaluate the performance of the control law derived in

chapter 2 from the Liapunov function for the beam, the following

circuits constructed:

a) The transverse vibration measurement circuit.

b) Beam excitation and the exciting force circuits.

c) Beam control actuator circuits to implement the control law.

The transverse vibration was measured using an inductive noncontacting

displacement probe. The beam excitation circuit consisted of a pir of

electromagnets driven by a custom built magnet amplifier driven by two

wave functions or by a random noise generator. The exciting force was

measured using a strain gauge bridge circuit. The control actuator

was an electromagnet on the end of the beam excited by a magnet derive

amplifier driven by custom built analog circuits. The analog circuits

consisted of an integrator if the end beam motion was observed by an
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accelerometer or a differentiator if the end beam motion was observed

by a noncontacting displacement probe. The output signal from either

the integrator or the differentiator represented the end beam velocity

(au(1,t) /at). This velocity was fed into an analog switch deriving

the power amplifier that supplied current to the control

electromagnet. Figure 4.3 shows the measurement circuits and control

flow diagram .
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4.2.2 End Beam Notion Measurement

The control law derived in chapter 2 from the stability

analysis using the direct method of Liapunov gave the relation

between beam end velocity and the control force. A control force

opposing the velocity for all t > 0 was shown to yield asymptotic

stability. Two different methods to accurately observe the beam end

velocity were necessary. It was found in the transient motion test

experiments that the observed signal level produced by the

accelerometer was too small at low frequencies to be distinguished

from the noise. At low frequencies, the displacement of the end of

the beam was measured by one of the inductive noncontacting

displacement probes to improve the signal-to-noise ratio.

4.2.2a Ind Beam Acceleration Heme-ant.

The closed-loop control law based upon observing the end beam

velocity and applying the actuating force accordingly. Because there

was no available velocity transducer, the acceleration was measured

and integrated by an analog integrator. Integrating acceleration

is a smoothing process, which reduces high frequency noise.

The end beam acceleration was measured with a piezoelectric

accelerometer and amplifier by PCB Pieonronics, Inc. model 482A10.

The measured signal was fed into the analog integrator (Figure 4.4) .

The output velocity was amplified and fed into an analog switch ;

which controlled the power amplifier type 2712 by Bruel 6: Kj aer which

drove the control electromagnet.
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To find the bandwidth of the integrator, the transfer function

of the integrator was measured over 0-200 Hz using the HP dynamic

analyzer as shown in Figure 4.5a which showed that the integrator was

acceptable over 20 - 200 Hz. Figures 4.5 b,c show two test signals at

20 Hz and 200 Hz and their integrator outputs which verify the

frequency response result.
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4-2.2b hId 0e- Displace-ent Measurement.

In the transient tests, an efficient way to find the beam end

velocity by observing the displacement was required. The displacement

was measured using inductive noncontacting probe model KD 2400 by

Kaman Sciences and the observed signal was fed into the analog

differentiator showed in Figure 4.6. The resulting velocity signal

was fed into the analog switch as in the integrator circuit. To find

the bandwidth of the differentiator, the transfer function of the

differentiator was measured from 0 to 50 Hz using the HP dynamic

analyzer as shown in Figure 4.7a. This test showed that the

differentiator was acceptable over a frequency range of (5- 25 Hz).

Figure 4.7b shows a test signal at 20 Hz and the corresponding

differentiator output .
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4-2. 3 Transverse Displacement Measurement.

To evaluate control power, the transverse displacement of the

beam was measured using an inductive noncontacting displacement probe

model 102400 by Kaman Sciences Corporation, located at 367.2 mm from

the stationary end of the beam. This position was chosen to avoid

nodes in the first five modes. The output signal was fed into the

signal amplifier then into DEC 151/23+ after removing the DC component

as shown in Figure 4.3. The sensor had a sensitivity of .23 mm/V with

a resolution of .25 V (appendix Al) yielding a measurement range of

0-2.5 mm and accuracy i 0.06 In.

4.2.4 Ben Excitation.

To achieve minimum interaction between the beam dynamics and

the beam excitation force, two identical electromagnets opposing each

other and located at 82.55 mm from the stationary end of the beam were

used. The two electromagnets were driven either by a function

generator (Wavetek Model 180) or random noise generator (HP 54410 A

and 5423 A). The exciting force was calibrated using strain gauge

(type EA-13-125BT-120 by Micro-Measurements group, INC.) the maximum

force available was 5 N and the strain gauges had a sensitivity of

1.5 N/V for a linearized magnet output range of 0-.75 N with

resolution of .08 N. The exciting force calibration procedure and the

strain gauge arrangement are given in appendix A2.
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4.2.5 Control Force Measurement

The axial force produced by the control electromagnet was

calibrated using a full strain gauge bridge (type EA-l3-l25BT-120 by

M-M). The strain gauges had a sensitivity of 36.1 N/V for magnet

drive output up to 90 N with resolution of .75 N (appendix A2) .

4-3 Experimental Test Results and Discussions.

The prototype control system presented in the previous sections

was constructed to obtain experimental data to evaluate the

performance of the control law derived in chapter 2 by using the

direct method of Liapunov for the beam. In this section the

experimental procedure and the results of three test cases

representing the stability due to transient and steady state motion

are presented and discussed. The significant increase in stability of

the test beam demonstrates the feasibility of employing active

parametric vibration control. The experimental results presented will

be compared with the simulation results in chapter 5.

In the following test cases the control force P(t) was set "on"

for negative and beam velocity and "off" elsewhere (Figure 3.2) . The

control gain here is the amplitude of the control force or. The

locations of the sensors and actuators are shown in (Figure 4.8).
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Test Case 1: Transient Motion.

This case is similar to an initial value problem in which an

initial displacement, velocity or both were given to the beam. To

realize this, the beam was excited at the desired mode until reached a

steady state, then the excitation was turned "off" and the control at

a test gain or was turned ”on" until the vibration decayed. Data was

recorded from a time just before the excitation was turned "off”.

Figures 4.9-4.12 show the real time record of the transient motion

for control gain a: - 0, 10.63, 13.98 and 58.67 after being converted

into physical values using the calibration formulas given in the

appendices. Figure 4.9 shows the results of the transient response

for the uncontrolled beam. In figures 4.9a, 4.10b, 4.lla and 4.12s

the response curves are marked “2" while the excitation signals are

marked "1". The excitation signals where plotted with the response

curves just to give an idea when the excitation was turned'off". In

Figures 4.10b, 4.11b, and 4.12b the amplitudes of the control force

decrease with the decay of the response, that is because the control

law uses the end.beam velocity (which is more or less proportional to

the response) of the observed signal to apply the control action P(t).

Table 4.1 summarizes the experimental test results of the transient

case for the control action on the amplitude of the cycles number

1,5,10,15,20 and 48. By comparing figures 4.9 with 4.12s and from

table 4.1, the amplitudes were reduced with the increase of the

control gain 0:; e.g. for n - 48, the amplitude reduced from .40 mm to

.16 mm, for control gain a - 58.67 N.
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a)the response at x - 367.2 mm
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Ihblo 4.1 Effect of the control gain.on the transient lotion

Ilplitudns test results.

 

Amplitude (mm) at n -

 

 

gain a

N l 5 10 15 20 48

00.00 1.10 1.0 0.88 0.78 0.71 0.40

10.63 1.10 0.98 0.84 0.74 0.65 0.27

13.98 1.10 0.97 0.83 0.73 0.64 0.24

58.67 1.10 0.90 0.79 0.67 0.59 0.15
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Test Case 2 Steady State Resonant Response

The most severe working conditions for a mechanical structure

is when it is excited with a harmonic force having one or more

frequencies equal to one or more of its eigenvalues , and it is the

role of the active control to limit the resonant amplitudes. In this

case the results of the effect of the control action on the steady-

state resonant amplitudes are presented and discussed. Subsections

(a) and (b) discuss the effect of the control action on the resonant

amplitude due to single mode and two-mode excitations respectively.

In both subsections the obtained results showed the efficiency of the

control law in limiting the steady state resonant amplitudes.

a) One-lode Excitation:

to obtain a steady-state resonant response, the wave generator

was adjusted to provide a magnitude and frequency (which corresponded

to the first or the second natural frequency of the beam) of the

sinewave signal to drive the excitingpower amplifier, after a while

the beam responded with the steady-state resonant amplitude for the

uncontrolled beam. To obtain the steady-state resonant amplitude for

the controlled beam; the previous step was done first while the

control was “off", then control action at certain gain a: was set "on”

until the steady-state amplitude for the controlled beam was obtained.

This procedure was repeated up to five times and the average of the

steady-state resonant amplitude was obtained. Table 4.2 shows the

experimental test results of the effect of the control gain on the

steady-state first-mode amplitude.
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The control action could reduce the resonant amplitude from

1.26 n- to 1.0 m for a! - 12.55 N and to .73 mm for a: - 28.2 N. It

was expected to observe some increase in the resonant frequency caused

by the stiffening effect of the control force, but this did not

happen .

Figures 4.13s, b and c show the steady-state second-mode test

results of a complete record of the exciting force, the response and

the control force for control gain a: - 35.46 N for the steady-state

second mode. These Figures show the relationship between the

exciting force, the response and the control force at any instance

during the time record. The control force is applied during the

period while the beam tends to get shorter, and zero while it tends to

get longer which demonstrates the control action mechanism, which was

explained before in chapter 3, (test case 7). Table 4.3 shows the

experimental test results of the effect of the control gain on the

steady state second—mode response. It is clear from table 4.3 that

the steady state amplitude is reduced from 1.42 mm for a: - 0 to .72 m

for or - 60 N. A subset of the measured displacement, exciting force

and control force histories for the steady-state second mode test

results for a: - 35.46 N will be shown in appendix B.

b) Two-lode Excitation:

As mentioned in the beginning of test case 2, that the most

severe working conditions for a mechanical structure is when it works

under the effect of an exciting force having a frequency equal to one

of the eigenvalues of the structure. A more dangerous situation is

when the exciting force has more than one frequencies that are equal
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Figure 4.13 Steady state second-mode test results for a - 35.46 N.

a) the exciting force.

b) the response at x - 367.2 mm.
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Table 4.2 Effect of the control gain.on the steady state first mode

response for test case 2.

 

 

gain a amplitude frequency exciting amplitude

N mm Hz N

00 00 1.26 9.412 0.22

12.55 1.00 9.412 0.22

28.20 0.73 9.412 0.22

 

Thble 4.3 Effect of'the control gain.on the steady state second.mnde

response for test case 2.

 

 

gain, amplitude frequency exciting amplitude

«N m Hz N

00.00 1.42 37.65 1.95

35.46 1.04 37.65 1.95

60.0 0.72 37.65 1.95
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to the eigenvalues of the structure. The two-mode excitation case is

considered to demonstrate the efficiency of the control law to limit

resonant amplitudes resulting from two-mode excitation. The exciting

force was due to two sinsoidal waves having frequencies of the first

and second modes and were added together then fed to the magnet drive

power amplifier. The time domain data for various control gains will

be given in appendix C. Since the time domain data due to mixed modes

is difficult to demonstrate the efficiency of the control law , the

FFT of the steady-state response for various control gains are

plotted in Figure 4.14. Table 4.4 summarizes the two—mode excitationi

test results for various control gains. In this test case, the

amplitude of the first-mode was reduced from .95 mm to .55 mm and that

of the second-mode was reduced from .8 mm to .65 mm for a: - 50 N,

which demonstrates the effectiveness of the control action in limiting

the resonant amplitudes resulting from the two-mode excitation.
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Table 4.4 Effect of the control gain.on the steady state two-mode

response for test case 2.

 

 

 

 

 

response excitation

gain «

amplitude frequency amplitude frequncy

N mm Hz N Hz

mode 1 0.95 09.39 0.288 09.393

00.0

mode 2 0.80 37.57 0.537 37.57

mode 1 0.68 09.39 0.288 09.3

41.71

mode 2 0.73 37.57 0.537 37.57

mode 1 0.55 09.39 0.288 09.393

50.0

mode 2 0.65 37.57 0.537 37.57
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Test Case 3 land:- Hoise Excitation.

The behavior of the beam under one and two-mode excitation were

presented in test case 2, in which the excitation were pure sinewaves.

The more practical case is when the beam is exposed to a force that

carries all the possible frequencies(including the eigenvalues of the

beam) within a bandwidth. The resulting response in this case will

cover all the possible resonant amplitudes within that bandwidth.

The results presented in this test case were for a random excitation

with 200 Hz bandwidth. Since the excitation was random, the given

results were the average of 100 records. Figures 4.15s and 4.15b show

typical test results done by the HP structural analyzer for a: - 0 and

13 N. A replot of the test results done by the HP analyzer is given

in figure 4.16 for a - 0, 13, 48.4 and 88.5 N. Table 4.6 summarizes

the most important results in this test case. It can be shown by the

aid of figure 4.16 and table 4.6 that when the gain increased the

amplitude of the first mode was reduced from 8.25 V/V to 4.87 V/V for

a: - 88.52 while the amplitude of fourth mode was reduced from .66 V/V

to .56 for the same gain. Also the table shows that the resonant

frequencies of the controlled beam were increased slightly from those

of the uncontrolled beam; e.g. the first mode frequency was 9.38 for o:

- 0 was increased to 10.156 for a; - 13 N. This increase in frequency

was expected since the control action was applied in one direction

i.e. tension force only.
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Figure 4.15 Typical test results of the transfer function

of the beam. The displacement sensor located

at x - 367.2 mm and the exciting force applied

at x - 82.55 mm.

a) the transfer function for a -.0

b) the transfer function for a - 13 N
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Table 4.5 Effect of the control gain.on the transfer function at the

first four modal frequencies for the random noise excitation

test results.

 

transfer function, frequency at mode no.

 

 

 

 

 

gain a

N l 2 3 4

freq. Hz 9.375 37.50 84.375 148.48

00.0

TF. V/V 8.2451 2.0272 .9467 .6598

freq. Hz 10.156 37.50 84.375 148.48

13.007

TF V/V 6.7651 2.0272 .9466 .6597

freq. Hz 10.156 38.281 85.156 149.22

48.3836

TF V/V 6.0847 1.9039 .7974 .5857

freq. Hz 10.156 38.379 85.094 149.23

88.527

TF V/V 4.8709 1.3171 .7299 .5612
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4.4 Men of. the Uncontrolled Ideal Beam With the Hodelled

Be- Iith Respect To Natural Frequencies and Young's Modulus

To see how well the modelled beam agrees with the ideal beam,

the experimental model frequencies f1 and the Young's modulus E of the

modelled beam were compared with those of the ideal beam. The ideal

natural frequencies f1 of the uncontrolled beam were calculated from

the relation:

2

is 8.1
11 - 2 12 I p A Hz (4.1)

2 .

where E - 210 GN/m is Young's modulus of the ideal beam. Also

Young's modulus E of the modelled beam was evaluated at the first four

modes using the experimental modal frequencies f1 in the relation:

“(€111 +1‘ {91

The difference between the ideal and experimental natural frequencies

and Yomig's modulus are less than 5% and 10% respectively (table 4.6)

which shows good agreement between the ideal and the modelled beam.

In this chapter; the active control prototype, the test set up

and the experimental test results were given and discussed. Although

the control action actedin tension only, the significant increase in

stability of the test beam demonstrated the feasibility of employing
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Table 4. 6 Comparison of the uncontrolled natural frequencies

and Young's mochalus of the ideal beam with those of

the ndelled beam.

 

mode no., i

 

 

 

 

 

 

1 2 3 4

E1 Hz 9.73 38.93 87.58 155.71

f1 Hz 9.375 37 50 84.375 148.48

8 err 3.65 3.67 3.66 4.64

E GH/m2 195.00 194.9 194.9 191.0

% error 7.14 7.19 7.19 9.05
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active parametric vibration to control the motion due to initial data

and dynamic external disturbances. The comparison of the uncontrolled

modal natural frequencies and the Young's modulus for the modelled

beam with those of the ideal beam showed good agreement. In chapter 5

comparison between the simulation test results and the experimental

test results will be presented and discussed.



“PARIS“ 0?mmWITH 311101411019 RESULTS

The simulation results showed the effectiveness of the approach

in controlling the beam transverse vibration with respect to the

stability, the transient motions and the dynamic motions due to

external disturbances. Unfortunately, there are no published study on

the active parametric control beam transverse vibration; therefore it

was important to verify the effectiveness of the approach

experimentally. The experimental test results showed significant

increase in the stability and demonstrated the feasibility of

employing active parametric vibration to control the transverse motion

of the beam. In this chapter some considerations needed for the

comparison between the experimental and simulation results will be

presented, then two comparison test cases representing transient and

steady-state motions will be presented and discussed. The comparison

results showed good agreement between the experimental and numerical

test results.

5 . 1 Cowarison Considerations .

The experimental transient and steady-state cases given in

chapter 4 were used in the comparison with the numerical simulation.

In each comparison test case, the simulation was adjusted to agree

with the experimental test conditions. Therefore the following

factors were taken into account when adjusting the simulation:

118
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l) The control forces in the experimental tests were applied in one

direction; i.e. tension forces only; as was mentioned in chapter 4.

2) Although the control forces in the experimental tests were a bang-

bang control; i.e. 'on" and ”off"; they were proportional control;

i.e. , the control amplitudes decreased with the decrease of the

horizontal and velocity of the beam.

3) The damping of the uncontrolled beam which affected the response of

the beam. The damping sources were due to the structural damping,

friction in the bearings and the air resistance to the transverse

vibration .

Factors 1 and 2 reduced the efficiency of the experimental

control, and the simulation was modified to account for these

deficiencies. For factor 1 the simulation was modified to allow only

tension control forces. For factor 2 the simulation was modified by

choosing the modification control factor 6 (Figure 2.2) in which the

control forces of both the simulation and the experiment were close.

For factor 1 the following method was used to model the damping of the

uncontrolled beam .

5.1.1 Ming Hodel for the Uncontrolled Beam.

The damping model chosen for the simulation was the same one

given in chapter 3, equation (3.10). The reason of choosing that

damping model is that the amplitudes of normal modes of vibration are

attenuated at rates which are proportional to the oscillation

frequencies [39]. Equation (3.10) includes the damping coefficient C



120

which must be estimated. The procedure for the evaluation of C for

the test beam is to excite the test stand beam at its first natural

frequency until steady-state is reached. The excitation was then

turned 'off' and the displacement at x - 367.2 mm recorded and

converted using the calibration formula (A.1). A simulation using

equation (3.10) was given an initial displacement y(x,0) - 1.161 sin

in mm and the response (y(x,t)) for various trial values of C was

obtained. The C value which gave the closest simulation to the

experimental response was found to be .01558 Kg m/sec. This behavior

will be shown when comparing the experimental with results simulated

results for the transient case for no control force (or - 0) in

table 5. 2.

5.1.2 Open-loop nodal Frequencies.

The first four open-loop modal frequencies of the test beam

were obtained using the HP dynamic analyzer. A random noise of

bandwidth of 200 Hz was used to excite the uncontrolled beam and the

transfer function obtained. The corresponding simulated results were

obtained by giving equation (3.10) initial displacement:

y(x,0) - sin i3 m

with mode number i - 1,2,3 and 4. The corresponding simulation

natural frequencies were obtained from these responses. Table 5.1

shows the first four open-loop natural frequencies of the experimental

and simulated results of the beam. The maximum error is 4.05 8.
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Table 5.1 Open-loop natural frequencies of the experimental

and simulated results of the beam.

 

Frequency Hz

 

 

Mode No. Error %

Exp. Num.

1 9.375 9.6543 2.97

2 37.5 39.02 4.05

3 84.375 86.587 2.62

4 148.48 145.84 1.78
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5.2 Coqarison Cases.

The above factors 1-3 accounted for through adjusting the

simulation conditions to agree with the experimental test conditions.

Two comparison cases will be presented and discussed.

Comparison Case 1: Tramient lotion

The details of the experimental test procedures and response

time history for the transient motion for the first mode for various

control gains were presented and discussed in chapter 4. A damping

coefficient C - .01558 Kg m/sec and an initial displacement y(x,0) -

1.161 sin f3 m were used in the simulation. The comparison between

the experimental and the corresponding numerical amplitudes, n for

various control gains and control modification factor, 8 will be given

in this subsection. The amplitude of control forces in the

experimental test results which were shown in Figure 4.10b, 4.1lb and

4.12b decreased with the decrease of the amplitudes of the response,

therefore the simulation was modified to account for this effect by

changing 6. Table 5.2 shows the experimental and numerical results

for various control gains. The simulated values in table 5.2 were

-8

calculated for e - 2.4 x 10 m/sec. The difference between the

numerical and experimental test results is less than 12 % which shows

good agreement between the experimental and numerical results for

transient motion of the first beam mode.



Table 5.2 Experimental and simulation results for transient

notion of the beam for e - 2.4z10“3 m/sec
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Amplitude (mm) at n -

 

 

 

 

 

gain a

N 1 5 10 15 20 48

Exp. 00.00 1.10 1.0 0.88 0.78 0.71 .40

Num. 00.00 1.10 1.0 0.87 0.76 0.67 .38

0 error 0.0 0.0 1.14 2.56 5.63 5.00

Exp. 10.63 1.10 0.98 0.84 0.74 0.65 .27

Num. 10.63 1.10 0.98 0.84 0.72 0.63 .26

8 error 0.0 0.62 0.00 2.70 3.07 3.70

Exp. 13.98 1.10 0.97 0.83 0.73 0.64 .24

Num. 13.98 1.10 0.98 0.83 0.71 0.62 .231

% Error 0.0 1.03 0.00 2.73 3.13 3.80

Exp. 58.67 1.10 0.90 0.79 0.67 0.59 .15

Num. 58.67 1.10 0.91 0.74 0.61 0.52 .132

% Error 0.0 1.11 6.33 8.95 11.86 12.00

 



Coqariaon Case 2: Steady-State Notion.

Comparison of steady-state experimental and numerical first-

mode test results required a representative excitation force

distribution. The exciting force was simulated as a trapezoid

centered at x - 82.55 mm and having an area equal to the exciting

force amplitude, Fe' The base length of the trapezoid was equal to

the magnet length 88.9 mm (3.5 in) and the top length was equal to

76.2 mm. (3 in), therefore the height of the trapezoid w was:

_ 4.3.1992— _ _
w (88.9 + 76.2) Fe 2.698 N/m for Fe .2227 N. (table 4.2)

It was found that for low control gains the experiment and

-8

simulation control forces were close for e - 1.2x10 and for high

-6

control gains they were close for e - 3x10 . Figure 5.1 shows the

effect of the control gain on the steady-state amplitude simulation

results for damping coefficient C - .0155 Kg m/sec and for

6 - 1.2x10-3, 3x10J, 3.x10'5, and 3.x10'8. Also plotted in Figure

5.1 the experimental results for control various gains. Table 5.3

shows the experimental and numerical results for selected control

gains and e. The difference between the numerical and experimental .

test results is less than 11 0 which shows good agreement between the

experimental and numerical results for the steady-state motion.
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Table 5.3 Experimental and analytical amplitude test results for the

steady-state motion of the beam.

 

 

 

Gain, N 0.0 12.56 28.21 44.48 c m/sec

Exp.(mm) 1.26 1.00 0.73 0.57

-3

Num.(mn) 1.24 1.03 0.85 0.753 1.2x10

-4

1.24 0.97 0.67 0.61 3.0x10

_5

1.24 0.73 0.56 0.483 3.0x10

-8

1.24 0.20 0.09 0.0001 3.0x10
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The results for the transverse vibration of a beam under the

action of the active parametric control have not been previously

reported in the literature. In this chapter some considerations for

the comparison between the experimental and simulation were presented.

These considerations included the damping model and the nature of the

experimental control forces. Based on these considerations two

comparison.cases representing transient and steady-state motions were

presented and discussed. The simulation results agreed with the

experimental results with error up to 12-11 0 for the transient and

the steady-state response.



SM AND WSIONS

The active parametric control theory was presented and applied

to control the transverse vibration of a modified, nonlinear, dynamic,

simply-supported Bernoully-Euler beam. The mathematical formulation of

the open-loop system equations of motion was derived using the extended

Hamilton's principle. More importantly, the functional found after

application of Hamilton's principle is a valid Liapunov functional.

Closed-loop stability was then investigated using the direct method of

Liapunov and the control algorithm for asymptotic stability was found.

The control law was tested analytically and experimentally. The

closed-loop system model derived from Hamilton's principle was reduced

to a nonhomogeneous wave equation for the longitudinal vibration u(x,t)

subject to nonhomogeneous boundary conditions and a parabolic equation

for the transverse vibration y(x,t) . The wave equation was solved

analytically using the finite Fourier transform. The nonlinear fourth

order parabolic equation for the transverse vibration y(x,t) was solved

approximately using the finite difference method.

A prototype control system was designed and constructed to

demonstrate and verify the approach and to evaluate its performance.

Both the simulation and the prototype control system were tested and

compared to evaluate stability of transient vibration and resonant

amplitude due to external disturbances. The methods used for measuring
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the motion of the end of the beam, showed that an inductive, non-

contacting, proximity probe has satisfactory noise immunity for

observing displacement at frequencies up to 50 Hz and the accelerometer

is less noise sensitive at higher frequencies. Comparison of the

simulation with experiment results showed good agreement with errors

less than 12 8 and 11 e in transient and steady state tests

respectively .

The active parametric control approach was found to be an

efficient method to reduce vibration due to external disturbances. The

control algorithm is easy-to-implement. No truncation is required in

the control algorithm. It enables a single force to control all modes

of the beam based on observation of one velocity and does not suffer

from the spillover problems.

Further work may be directed toward the design and

implementation of a double acting force actuator to increase the

efficiency of the approach, the digital realization of controller

feedback, the combination of observing both the displacement using

proximity probe and the acceleration of the end of the beam and the

analytical solution of the closed-loop system.

This work is the first time the direct method of Liapunov has

been used to derive a parametric active control law. This easy-to-

implement, single-input single-output control law was tested

analytically and experimentally and stabilized the beam in transient

and steady-state tests without suffering from spillover induced

instability.



APPENDICES
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APPENDIX A

Displacement And Forces Measurements And Calibrations

APPENDIX A1

Displacement Sensor Calibration

The displacement sensor used was inductive, non-contacting

proximeter model Kd2400 manufactured by Kaman Sciences corporation.

One sensor consisting of a detector and detector driver was used in

tests. The sensor was fixed to the frame through a long threaded sleeve

which was tightened to the frame. The position of the sensor was chosen

to detect the first five modes. The sensor was calibrated in its mount

on the prototype controller test stand. At varying distances from the

stationary detector, the gap between the detector head and the test beam

was measured with feeler gages and the sensor output voltage measured.

These calibration measurements were then plotted and a least squared

error fit to a first order polynomial obtained over the measurement

range used during the prototype controller tests (Figure Al). The

deduced relationship between the displacement yd in mm and the probe

output xp in V is given by:

yC1 - 0 .4233 + 0.233 xp mm ‘ (A.1)

This polynomial fit was subsequently used in the test data conversions.
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APPHDIX A2

Forces Heasurements and Calibrations

A2-1 strain Gauge Orientation and Configuration:

The following circuits were used in measuring the axial force and the

exciting force.

1) Control Force manure-ant:

The axial control force applied by the control magnet was

measured by a four-arm strain gauge bridge which compensates for

temperature and bending effects. Figure A2 shows the strain gauge

orientation and the bridge configuration.

2) Exciting force moment:

The exciting force was applied by using two identical magnets one

of them pulls the beam for the positive part of the exciting signal and

the other for the negative part. The exciting force was measured by a

four-arm strain gauge bridge which compensates for temperature, axial

and torsional effects. Figure A3 shows the strain gauge orientation and

the bridge circuit .
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(a)

 

 

  

 

fly rat-7.2] a.)

Figure A2 Four-arm strain gauge bridge for measuring the

control force.

a) bridge circuit.

b) strain gauge orientation
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(a)

 

 

  

 

(b)

 

\

§
\
K
\

§
0 

Figure A3 Four-arm strain gauge bridge for measuring the

exciting force.

a) bridge circuit.

b) strain gauge orientation.
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A2-2 Force Calibration:

In this section; the calibration procedures are presented and

the calibration constants are deduced for both the exciting and the

control forces.

A2-2. 1 Control force calibration:

The beam was taken out and clamped firmly by a machine vise.

Weights were hung by a wire through holes at the end of the beam and the

corresponding strain gauge output signals were recorded. Figure A4

shows a typical results of that calibration. Then the beam was mounted

back on the test support and the control magnet was excited by the power

amplifier. Both signals from the strain gauge and the power amplifier

outputs were recorded and plotted using a least square approximation as

shown in Figure A5. The relationship between the strain gauge output in

volts; ya and the control force magnet drive power amplifier output; xc

in volts is given by ( using the least square approximation):

2

ys - .0061xc + 1.5056xc V (A.2)

and the relationship between the weight which were applied axially; yw

in pounds and the strain gauge output is ( using the least square

approximation):

yw - 3.413 ys LB (4.3)
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from (A.2) and (A.3) the control force, yW can be calculated by knowing

the control magnet drive signal; xc:

2 s

y - 3.413 (1.2 x - 0.3241 x + 0.5119 x ) LB
w c c c

2 8

- 18.218 x - 4.92 x +7.77l x N (A.4)
c c c

A2-2.2 Exciting Force Calibration:

First the outer bracket which supports the outer exciting magnet

was taken out and the whole set up was turned 90 degree. Dead weights

were mounted at the point of application of the exciting force and the

corresponding strain gauge output signals were recorded. A typical plot

of the calibration results is shown in Figure A6. The set up was put

back again and one of the magnets was excited by the exciting power

amplifier. Both signals from the strain gauge and the power amplifier

outputs were recorded and plotted using the least square approximation

as shown in Figure A7. The relationship between the strain gauge output

in volts; ys and the exciting magnetic drive power amplifier output; xe

in volts is given by:

2

y - 0.02998x + 0.22966x V (A.5)
s e e

The relationship between the weights; yw in pounds and the strain gauge

output; ys is:
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yw - 2.97975ys LB (A.6)

substituting from (A.5) into (A.6) yields

2

yw - 2.97975(0.02988xe + 0.22966xe ) LB

2

- 0.397xe + 3.044xe N (A.7)

By knowing the exciting magnet drive output signal; xe the corresponding

exciting force can be calculated using equation (A.7).



APPEIIDIXB

Real Time Record For The Steady-State

Second-lode Test Results For a! - 35.46 N

In chapter 4, the prototype control system was presented to

demonestrate and verify the approach and to evaluate its performance.

The basic measured quantities were the transverse vibration y(x,t) , the

control force and the exciting force. The measured quantities were fed

into DEC 1.81 /23+ for the data acquisition. A subset of the measured

quantities for the steady-state second-mode test results for control

gain - 35.46 N are given in table 8.1 as an example.
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Table 8.1 A subset of the measured displacement, exciting

force and control force histories for the

steady state second mode test result for a -

35.46 N

Time Exciting Force Displacement Control Force

0.. ' V V

0.0000 g 00.06 .2.395 0.049

0.1250E-02. 0.459 _2 121 0.044

OeZSOOE-OZ. 0.27‘ -1.667 0.044

0.37503-02, 0.059 _1'051 0.03,

0.50008-02. -0.156 -0:323 0.034

0.10002-01, -0.730 2 204 -1.35,

0.12505-01, ”0.579 2.43‘ .0.073

0.16255'01, '0.181 1.173 0.039

0.18755-01, 0.259 -0.415 -1_354

0.2000E-01 ' 00445 _1 .09: -1.354

0 42125E‘01 . 0 e 596 -1 .743 -1 .344

0.22505-01, 0.694 -2.234 -1.344

0.23752-01, 0.720 -2.345 -1.359

0.2625E-01. 0.616 -2.531 0,049

0 .27305‘01 . 0 e 469 -2.312 0 .04‘

0.2875E-01, 0.288 -1.85, 0,944

0.30003-01, 0.070 _1.251 9,039

0 .3125E-01 . “'0 .142 -o .523 o .03,

0.32502-01. -0.352 0.23. -o.132

0.35003-01, -0.660 1.61, -1,354

0 e 3625:”‘01 . -0 e 733 2 . 082 -1 . 364

0 e 375°E'01 . -0 .743 2.336 -1 .251

0 e387SE-01 . -0 e 68‘ 2e366 -0 .010

0.40005-01, -0.567 2_185 0,04.

0.41258-01, -0.401 1.774 0,039

0.42506-01. -0-196 1,133 0.039

0.43755‘01 . 04029 0.469 -o.239

0.4625E‘01, 0.435 -1.022 -1.354

0 e 47508'01 . 0 e 587 -1 .637 —1.. 349

0 e 4875E-01 . 0 e 689 -2.13‘ -1 .349

0.50005-01, 0.733 -20434 -1,359

0.51255-01, 0.709 -2.545 0.054

0.52305-01. 0.621 -2.453 0.044

0.53752-01, 0.484 -2.135 0.044

0.55002-01, 0.298 -1,725 0.039

0.56252-01, 0.093 -1.105 0.039

0.57505-01. '0 .127 ”0.367 0.039

0.58755-01. -0-337 0,425 0.029

0 e 6125E-01 . -0 e 650 1 . 823 -1 .373

0 0 62505-01 . -0 e 733 2.297 -1 . 369

0 e 6375:“01 . -0 e 7‘3 2. 556 ...o . 533

0.6500E-01, ”00689 2.60: 0.044

0.6625E-01, -0.s77 2.43, 0.039

0.6875E-01, -0.215 1.422 0.029

0.70005-01, 0.015 0.777 0.029

0.7125E-01, 0.230 0.020 -1.163

0.72505-01, 0.420 -o,719 -1.369

0.73755-01, 0.577 -1.369 -1.359

0.76255-01, 0.733 -2,195 -1.202

0.77502-01, 0.714 -2.326 0.044

0 . 7875E-01 . 0 . 530 -2 .263 O . 039

0.8000E-01, 0.494 -2.004 0.039



Table 8.1 (continued)

Til. '4313138 39:30 Displacement

0.0375E“01.

0.0625E“01.

0.0075E“01,

0.90006“01.

0.93755-01,

0.95006“01.

0.1000

0.1012

0.1025

0.1037

0.1050

0.1062

0.1075

0.1007

0.1100

0.1112

0.1125

0.1137

0.1150

0.1162

0 e 1175

0.1107

0.1200

0.1212

0.1225

0.1237

0.1250

0.1262

0.1275

0.1207

0.1300

0.1312

0.1325

0.1337

0.1350

0.1362

0.1375

0.1307

0.1400

0.1412

0.1425

0.1437

0.1450

0.1462

0.1475

0.1407

0.1500

0.1512

0.1525

0.1537

0.1550

0.1562

0.1575

0.1507

0.1600

0.1612_

V

0.100

“0.112

“0.323

“0.645

“0.699

“0.507

“0.425

“0.225

0.215

0.411

0.572

0.679

0.720

0.714

0.635

0.503

0.327

0.122

“0.090

“0.313

“0.494

“0.723

“0.704

“0.596

“0.440

“0.024

0.200

0.396

0.557

0.674

0,728

0.710

0.645

0.510

0.342

0.137

“0.070

“0.293

“0.740

“0.709

0.106

0.301

0.547

0.665

0.720

0.710

0.650

0.520

0.357

0.152

145

V

“0.230

0.547

1.205

1.921

2.634

2.603

2.512

2.141

1.564

0.050

0.003

“0.679

“1.359

-1 e 887

0.310

1.051

1.601

2.155

2.424

2.403

2.312

1.965

1.390

0.694

“0.060

“0.026

“1.500

“2.033

“2.390

“2.556

“2.527

“1.329

“0.630

0.132

0.000

1.544

2.053

2.366

2.463

2.346

2.019

1.406

0.011

0.060

“0.674

“1.344

“2.395

“2.100

“1.704

-1 e212

Control Force

V

0.034

0.034

0.029

“0.665

0.039

0.034

0.029

0 e 029

0.024

“1.153

“1.364

“1.364

0.044

0.039

0.034

0.034

0.034

0.029

0.024

“0.371

“1.256

“0.415

0.034

0.029

0.029

0.024

0.024

“1.129

0.039

0.034

0.029

0.029

0.029

0.024

0.024

“0.142

“1.150

“1.150

“0.420

0.029

0.024

0.024

0.024

0.020

“1.300

“1.370

“1.373

0.034

0.029

0.029

0.029

0.024



Table 3.1 (continued)

In.

.—

0.1662

0.1675

0.1607

0.1700

0.1712

0.1725

0.1737

0.1750

0.1762

0.1775

0.1707

0.1000

0.1012

0.1025

0.1037

0.1050

0.1062

0.1075

0.1007

0.1900

0.1912

0.1925

0.1937

0.1950

0.1962

0.1975

0.1907

0.2000

0.2012

0.2025

0.2037

0.2050

0.2062

0.2075

0.2007

0.2100

0.2112

0.2125

0.2137

0.2150

0.2162

0.2175

0.2107

0.2200

0.2212

0.2225

0.2237

0.2250

0.2262

0.2275

0.2207

0.2300

0.2312

0.2325

0.2337

0.2350

0.2362

0.2375

0.2307

0.2400

0.2412

0.2425

0.2437

0.2450

h-flungfmne thhnunu: 0am:d.flhue

'

‘0 0621

“0.714

“0.616

“0.464

“0.274

“0.054

0.171

0.371

0.530

0.660

0.723

0 .723

0.660

0.530

0.367

0.166

“0.049

“0.264

“0.611

“0.709

“0.740

-0 e718

“0 0‘2‘

“0.073

0.156

0.357

0.520

0.650

0.723

0.723

0.665

0.547

0.301

0.101

“0.034

“0.249

“0.601

“0.704

“0.740

“0.723

“0.409

0.137

0.342

0.510

0.645

0.710

0.720

0.670

0.557

0.396

0.196

“0.015

“0.235

“0.435

“0.591

146

V

2.229

2.571

2.674

2.501

.2.270

1.774

1.114

0.367

“0.306

“2.240

“2.263

-1 0716

“1.170

-004“

0.259

1.007

1.672

2.190

2.512

2.630

2.532

2.224

1.711

1.041.

0.274

-10212

'1 e793

-2021,

-2e454

“2.490

0.635

1.344

1.040

2.195

2.331

2.250

1.965

1.457

0.006

0.064

“0.609

“2.605

-2.146

-o.ssa

-o.215

0.547

1.251

1.023

0

“0.300

0.034

0.029

0.029

0.024

“1.056

“1.373

“1.359

“0.665

0.039

0.034

. 34

0.034

0.029

0.024

“0.929

“1.370

“1.373

0.039

0.034

0 e 029

0.029

-1 e 373

“0.500

0.044

0.039

0.039

0.034

0.034

0.029

“0.327

“1.373

0.039

0.034

0.029

0.029

“0.474

“1.364

“0.507

0 e 04‘

0.039

0.034

0.034

0.029

0.029

“0.391

“1.370

“1.373
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Table 8.1.(continued)

In. lldshulhun Dhaka-um: anHMIIMN-

e-I V V V

0 .2473 . -0 . 740 2.214 ’1 ~373

0.2407 , “0.723 2.395 “0.259

-0 .2500 g “0.640 2.336 00039

0.2537 . “0.103 13025 0-029

0.2575 , 0.500 -1.124 “1.369

0 02587 g 0 e 640 III . 701 -1 e364

0.2612 . 0.728 -2,351 -0.132

0.2623 . 0.679 -2,390 0.039

0.2637 . 0.567 ~2.239 0.034

0.2650 . 0.411 -1.ass 0.034

0.2662 . 0.210 -1.333 0.034

than . 0.000 -0.71e 0.029

0.2687 . -0.220 0.033 0.029

0.2700 , “0.420 0,311 0.024

0.2725 , “0.694 2.102 “1.303

0.2750 . “0.720 2.674 “0.020

0.2762 , -0.650 2,549 0.029

0.2775 . “0.513 2,414 0.029

0.2707 , “0.327 1.375 0.029

0.2812 . 0.100 0,530 0.020

0 02°37 . 00494 -0 0846 -1 0373

0.2050 , 0.630 “1.457 “1.364

0.2062 g 0071‘ -1.911 -1036,

0.2925 . 0.230 -1.359 0.029

0.2937 , 0.015 -o.713 0.029

0.2975 . “0.572 1.457 -1.193

0 .3000 . “0 .743 2.405 -1 .378

0.3012 , “0.733 2.535 “0.425

0.3025 , -0.655 2,555 0.034

0.3037 , “0.523 2.322 0.029

0.3050 . “0.342 1.077 0.029

0.3062 . -0.132 1.246 0 .024

0.3075 . 0.093 0.513 -0.088

0.3007 . 0.303 -o.259 -1.383

0.3100 , 0.404 -1.002 “1.369

0.3125 , 0.709 -2.111 -1.364

0.3137 . 0 e733 -2.405 -1e129

0.3150 , 0.609 -z,512 0.039

0.3162 . 0-597 -2.424 0.034

0.3175 , 0.430 -2.146 0.034

0.3187 . 0-239 -1.557 0.029



APPENDIX C

rm mm TEST RESULTS ma Tm-KJDB EXCITATIOK

As mentioned in test case 2 chapter 4, that the most severe

working conditions for a mechanical structure is when it works under the

effect of an exciting force having more than one frequencies that are

equal to the eigenvalues of the structure. The two mode excitation case

was considered to demonstrate the efficiency of the control law to limit

resonant amplitudes resulting from two-mode excitation. The exciting

force was due to two sinsoidal waves having frequencies of the first and

second modes and were added together then fed to the magnet drive power

amplifier. The time domain data for control gains c - 0, 41.71 and 50 N

are shown in Figures Cl, CZ and C3. Figures Cla, 02a and 03a show the

exciting force versus time for various control gains. Figures Clb, C2b

and 03b show the response under the action of the exciting force for

various control gains. The required control forces are shown in Figures

C2c and C3c. As discussed in case 21: chapter 4 and by the help of FF’I‘

of the responses for various control gains, (Figure 4.14), the amplitude

of the first-mode. was reduced from .95 mm to .55 mm and that of the

second-mode was reduced from .8 mm to .65 mm for a: - 50 N which

demonstrates the effectiveness of the control action in limiting the

resonant amplitudes resulting from the two-mode excitation.
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Figure C2 Steady state two-mode test results for control

gain a - 41.7 N.

a) the exciting force.

b) the response at x - 367.2 mm

c) the control force
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