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ABSTRACT

ACCELERATION OF SIMULATED ANNEALING

BUILDING BLOCK PLACEMENT PROCESS

By

Man Kuan Vai

One of the important issues in VLSI design is the building block placement prob-

lem. The difficulty lies in optimal placement of many blocks on the chip so that those

which are strongly connected are close to each other. Simulated annealing has been

shown to be very effective in the placement problem; however, the process is very

slow due to the numerous configurations generated at each temperature stage.

New methods are developed in this work to perform the building block placement

task effectively. A new model for representing the building block placement problem

in a CAB system is developed. This model reduces the size of the problem space so

that a solution is found more rapidly. Moreover, this model guarantees that overlap

between building blocks will not occur in the placement result

An explicit mapping method is developed to map the building blocks of a place-

ment problem to different regions of a chip. The power of parallel processing is

applied to the placement process. The parallel placement method performs simulated

annealing concurrently on different regions of a chip.

The architecture of a hardware placement engine implementing the parallel place-

ment method is developed. This engine can be implemented as a coprocessor for a

CAB system.



Man Kuan Vai

Experimental results on different design cases show that the placements are com-

parable to those obtained with the conventional algorithm; however, the computation

time has been reduced by more than an order of magnitude.
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CHARTER I

INTRODUCTION

VLSI (Very Large Scale Integration) technology provides the capability of

accommodating more than one million transistors on a single chip. This order of com-

plexity has promoted the popularity of a divide-and-conquer design philosophy and

hierarchical design methodologies have become prevalent in ASIC (Application

Specific Integrated Circuit) designs [1, 2]. Hierarchical design methodologies simplify

all critical design steps of a VLSI-based structure, including hardware specification,

architecture development, physical layout, and simulation. The principle of hierarchi-

cal design is to predesign a set of circuits with different functions and complexities

and store them in the library of a CAB (Computer-Aided Engineering) system. These

library circuits are used as building blocks in an ASIC design process to construct

larger systems. The physical layout process of an ASIC can then be described, from a

simplified point of view, as the placement and interconnection of the desired building

blocks on the chip.

Experiments show that the performance of a chip produced by using the building

block concept is generally inferior to that of a full custom design in which the chip is

built from scratch; however, the sub-optimal chip performance is compensated for by

the savings in design complexity and tum-around time [3]. Moreover, the performance

gap between the full custom and the building block approaches will be brought closer

or even fully removed as computer-aided design tools are improved.



This research contributes to the physical layout process of ASIC design,

specifically the building block placement problem. The ultimate goal of this work is

to provide methods, with both software and hardware considerations, to accelerate and

improve the building block placement procedure.

1.1 Problem Statement

The building block placement process belongs to the class of combinatorial

optimization problems. The establishment of an optimal placement configuration has

been shown to be NP-complete, which implies that the process of finding this

configuration has a complexity that grows exponentially with the number of building

blocks [4]. The difficulty of building block placement lies in optimally placing many

components, or building blocks, on a chip so that those which are strongly connected

are close to each other. Due to the NP-complete characteristic of the problem, heuris-

tic algorithms have been developed to find a feasible solution in a finite time [5].

A typical heuristic placement process utilizes an iterative improvement strategy

and proceeds as follows. An initial layout configuration is generated as the starting

point of the heuristic search process. Small modifications are then made to the layout

configuration at each step to generate a new configuration, which is evaluated accord-

ing to an objective function. Traditional heuristic algorithms accept only

configurations which improve the objective function. This criterion of acceptance

often causes the process to be trapped into a local minimum of the objective function.

An algorithm which simulates the metal annealing process for application in the

placement process has been developed to deal with the local minimum problem [6-8].

This algorithm proceeds similar to the conventional iterative improvement method



except that a process control parameter, or a pseudo-temperature, is introduced into the

placement process. The temperature is decreased very slowly from a large value to

simulate the annealing process. New configurations are, accepted if the objective func-

tion is improved and cases in which the objective function is worsened are accepted

conditionally using a probability calculated from a Boltzman distribution function.

This algorithm has been shown to be very effective for the placement problem;

however, it is very time consuming since numerous configurations must be generated

and evaluated at each temperature step to simulate the slow cooling process. Due to

the extremely large solution space in the placement problem, the long computing time

of any heuristic algorithm searching for a combinatorial solution is always a major

concern. This computation time problem is even more serious in the simulated anneal-

ing approach as the algorithm must ensure that every building block has a fair chance

of being chosen for movement to cover all possible solutions in the problem space.

Thus, there is a desire to provide a model which reduces the size of the solution space

in the building block placement process. The simulated annealing process can then

converge to a near-optimal solution more rapidly while maintaining good placement

results.

Most of the conventional placement algorithms use nodes and edges as defined in

graph theory to model the building blocks and their interconnections, respectively [9].

The interconnected graph is then algorithmically rearranged to produce a solution.

One nice feature of using a connected graph to represent the placement problem is that

many techniques developed in graph theory can be applied. However, there are some

inherent disadvantages in this conventional model.

The information about the shapes and sizes of the building blocks cannot be

readily considered using this model since all blocks are collapsed into dimensionless

nodes. A placement algorithm utilizing this node-and-edge model can determine at



most the relative locations between building blocks because the reconstruction of the

nodes back into actual building blocks generally results in some overlap among adja-

cent blocks. Overlapping building blocks are, of course, unacceptable from a physical

standpoint. The overlap can be eliminated by several heuristic methods during or after

the placement process, but these methods are in themselves very time consuming and

often degrade the placement result. Another problem with this model is that the loca-

tions of the block terminals, which are critical for the placement process to provide a

routable configuration, cannot be considered.

In view of the inherent drawbacks of the node-and-edge model, it is desirable to

provide a new model to represent the building block placement problem in a CAB sys-

tem. This model should retain the advantages of the node-and-edge model but remove

its drawbacks.

Much effort has been devoted to accelerate the slow building block placement

process [10-13]. Due to the NP-complete nature of the problem, there is a limit in the

acceleration that can be obtained by any algorithm that manages the entire set of build-

ing blocks simultaneously. As mentioned, the philosophy of divide-and-conquer is

popular in VLSI design methodologies. Thus, it seems that a reasonable approach here

is to decompose a design case with a large number of building blocks into several

smaller problems. However, this approach to the placement problem has received little

attention since, in general, the optimization at one level may increase the complexity at

all other levels.

Partitioning the building block placement problem into several smaller sub-

problems naturally arises when parallel processing is considered. If the circuit under

consideration has several non-intersecting sub-circuits, the decomposition task is rather

straightforward. Unfortunately, this is often not the case in a practical ASIC design.

A good method for applying the strength of parallel processing in the placement



problem has yet to be developed.

Following the advances in integrated circuit technology and the development of

computer-aided design tools, it is not uncommon to develop special hardware architec-

tures to handle computationally intensive problems. Without the overhead of a general

purpose computer, the building block placement process can take the advantage of a

dedicated hardware accelerator, implementing a suitable placement algorithm, to

achieve high performance. In view of this, there is a need to investigate and develop

the architecture of a building block placement engine and its associated algorithm.

1.2 Approach

The goal of this work is to develop methods, with both software and hardware

considerations, to perform the building block placement task effectively. Of particular

interest in this research is the implementation of the simulated annealing approach, the

advantages of which have already been established. Interestingly, most, if not all, of

the results of this research can also be applied to other heuristic placement methods.

The specific tasks performed in this work are listed below. These tasks and their rela-

tionships are graphically presented in Figure 1.1.

A new model for representing the building block placement problem in a CAB

system is developed and tested. The purpose of this new model is to eliminate the

drawbacks of the conventional node-and-edge model without sacrificing its advantages.

In developing this model, a set of goals have been defined. The size of the problem

space in the placement process has to be reduced so that the process converges to the

final configuration rapidly. In addition, critical information about the building blocks,

i.e., their sizes, shapes, and terminal locations, has to be considered in this model to
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Figure 1.1 The specific tasks performed in this research and their relationships.



provide a practical configuration.

To evaluate the performance of this new model, a simulated annealing placement

algorithm using this model is developed and applied ,to test cases with different

numbers of building blocks and connectivities. A program coded in the C language is

used to implement this algorithm on a VAX 8600 operating under UNIX. The place-

ment quality and the computation time of this algorithm are evaluated against a bench-

mark. The benchmark is established by a placement process using the concepts of the

TimberWolf placement and routing package from the University of California at

Berkeley VLSI design tools [7, 8].

A parallel placement method having multiple simulated annealing processes work-

ing concurrently on different regions of a chip is then developed. A scheme which

hierarchically maps the building blocks of a placement problem to different regions of

a chip is developed as a pre-process for this parallel placement method. A parallel

environment is simulated to evaluate the performance of this placement method.

Finally, the concept of a hardware placement engine implementing the parallel

version placement algorithm is developed. This architecture can be implemented as a

VLSI structure and act as a coprocessor for a CAB workstation to handle the place-

ment task.

1.3 Organization of This Dissertation

The remaining chapters of this dissertation are organized as follows. First,

Chapter II provides the necessary background material related to this work, which

addresses the importance of building block placement in VLSI design. The



conventional placement methods, including the implementation of simulated annealing

in the TimberWolf package, are also described in this chapter. The new model

developed in this research for the placement problem and an improved simulated

annealing placement algorithm implementing this model are then described in Chapter

III. The concept of generating configurations with multiple block displacements in a

simulated annealing process is discussed in Chapter IV, which eventually evolves into

a parallel placement method applying concurrent simulated annealing. The architecture

of a hardware placement engine specially designed for the parallel placement is pro-

posed at the end of Chapter IV. Finally, Chapter V presents the test results of the

approaches developed in this work and discusses the future trends in VLSI design

automation and this research area.



CHAPTER II

BACKGROUND

The rapid evolution of the IC (Integrated Circuit) industry over the past two

decades has created a new frontier for both electrical engineers and computer scien-

tists. The potential of VLSI (Very Large Scale Integration) technology has not only

stimulated the developments of many new algorithms and architectures, but has also

provoked novel design concepts that are different from those used in traditional circuit

design.

Only mass production could justify the high design cost of an integrated circuit at

the beginning of the IC industry. The design history of two pepular 16-bit micropro-

cessors, the Motorola 68000 and the Intel 8086, which required 52'and 13 man-years

of design effort, respectively, demonstrated the design complexity dilemma [14]. Few

custom applications could afford a time-cost of this magnitude. Standard integrated

circuits, due to their universal applications, have the advantage of sharing the one-time

development cost among the large quantities of parts produced. Some of the standard

integrated circuits, such as logic gates, have fixed functions and are commonly used as

building modules in larger systems while others, such as microprocessors and pro-

grammable logic arrays, have fixed architectures but are programmable to perform

different operations.

The recent advances in IC technology and the development of computer-aided

design tools provide circuit or system designers with the opportunity of applying IC, or

more specifically, VLSI technology, in their designs [15, 16]. It has been mentioned
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above that some of the standard IC’s are programmable for specific applications, how-

ever, their universality and flexibility are often obtained at the cost of sacrificing per-

formance in certain operations. It is now obvious that in order to fully utilize the

potential of VLSI technology, the chip architecture must be designed specially for the

intended application. Industry predictions are that ASIC (Application Specific

Integrated Circuit) sales will be half of all IC sales by sometime in the 1990’s [17].

The truth of this prediction relies on the development of powerful computerized VLSI

design tools, the objective of which is to simplify the VLSI design task so that a fast

tum-around time can be achieved with efficiently designed circuits.

An intimate relationship between engineering and computers has developed right

from the dawn of IC technology. However, computers were primarily used for the

storage of information and simulation through the 60’s and early 70’s. It was not until

the rrrid 70’s that CAE (Computer-Aided Engineering) became a necessity in the

design of highly complex VLSI circuits [18, 19]. In the early 80’s, CAE workstations

with general IC layout capability emerged to cope with the increasing complexity of

IC design [20]. However, many problems in the IC design process remain to be

solved. For instance, the process of placing building blocks onto a chip requires hours

or days of computation time to obtain a near-optimal result [7, 8]. This consideration

has motivated the objectives pursued in this research.

Today, numerous automated or computer assisted VLSI design systems are avail-

able commercially. The following sections discuss the aspects of the state-of-the-art

VLSI design processes with special attention paid to the building block placement

problem and the physical layout stage.
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2.1 Design Methodology

Design methodology is defined as a set of codified techniques that are applicable

to the VLSI design process. Design functions of interest in VLSI design methodology

can be categorized as follows [21]:

1. Chip specification and partitioning;

2. Chip design planning and initial implementation;

3. Subcircuit and module synthesis;

4. Simulation at different levels;

5. IC mask layout;

6. Design verification;

7. Testability in design and product;

8. Test sequence generation;

9. Database management;

10. Design documentation.

The ultimate objective of studying design methodology is to facilitate the creation

of better designs in less time. The prevalent VLSI design methodology today, and in

the foreseeable future, is hierarchical in nature [1, 2]. A set of universal circuits are

designed, optimized, and stored in the library of a CAB system. The library circuits

can be repeatedly accessed, modified, and used as building blocks to construct the

desired system.

Figure 2.1 presents the overview of a typical VLSI design process. A top-down

design flow is normally used to decompose the circuit under design into a network of

smaller and simpler functional modules. Once a functional implementation strategy
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has been established, a bottom-up flow is used to complete the physical design of the

chip.

The design process begins by converting an idea for a VLSI-based circuit into

more concrete circuit specifications. An algorithm is developed to perform the

required operations and a suitable architecture is designed to carry out the chosen algo-

rithm. Simulations are used to verify the correctness and estimate the performance of

both the algorithm and architecture. After the architecture of the circuit has been esta-

blished, the design process enters the physical layout phase. Copies of the needed

building blocks are fetched from the library, placed in some optimal manner, and inter-

connected as they will be on the chip. The layout is then simulated to verify its opera-

tion and performance with respect to the desired specifications. Finally layout mask

information is sent to a silicon foundry for fabrication.

The structure and behavior of a chip must be completely described in a CAB

environment. High level programming languages or Hardware Description Languages

(I-IDLs) have been developed to describe circuits so as to facilitate the use of CAE

equipment [22-26]. An ideal HDL should be able to describe all levels of chip

behavior and structure. In practice, however, different HDL’s are usually devised to

effectively represent different levels of the design hierarchy. These representation

methods must also interface with design operations such as placement and routing.

Three major design and fabrication approaches are commonly used in the design

of a VLSI-based structure: gate array, standard cell, and full custom. (Gate array and

standard cell approaches are sometimes referred to as semi-custom). The phi1050phy

of the semi-custom approaches is to perform the design process as completely as possi-

ble before the design is customized for a specific application. The design process is

highly simplified by the development of automatic semi-custom design tools. A fast

tum-around time is also possible. Some degrees of design flexibility are, however,
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sacrificed to gain these advantages.

Prefabricated chips, containing cells of non-interconnected transistors and feed-

throughs, are used in gate array designs. A typical floorplan of a gate array structure

is presented in Figure 2.2. Cells of transistors are arranged in rows with feed-throughs

inserted between these cells. The space between rows is called a channel which is

provided for the interconnecting signal paths. The function of the feed-throughs is to

allow interconnections between the signal paths in different channels.

333131138 Feedthroughs

4 -\
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Figure 2.2 A typical fioorplan of a gate array chip.

Macro-cells, built with the transistors on a gate array as basic components, are

stored in a cell library of a CAB system. The layout procedure is simplified into

fetching the desired macro-cells from the library and arranging them (placement) on
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the chip. The process is then completed by interconnecting these macro-cells.

Another semi-custom VLSI design approach is to use standard library cells. The

major difference between the gate array and standard cell approaches is that the chips

used in the gate array approach are pre-fabricated with unconnected transistors, while

the chips for standard cell approach are fabricated anew for each design.

The layout task of a design using the standard cell approach also involves the

placement and routing of building blocks, i.e., standard cells, fetched from a cell

library. One distinct feature of the standard cells is that their heights are identical but

their widths vary according to their complexities and functions. The identical heights

of the standard cells allow them to be placed in rows by an appropriate placement

algorithm. Channels are allocated between the rows for the signal paths that intercon-

nect the standard cells to form the target circuit. A typical floorplan of the standard

cell approach is shown in Figure 2.3.

Instead of using predesigned parts, the VLSI layout can also be done from

scratch. A number of CAE tools have been provided for the layout of IC masks and

simplified design rules have been developed to guide this type of low level layout pro-

cess [16, 27, 28]. These design rules assure that the patterns generated are within the

resolution of the fabrication process and that they do not violate the device physics

required for the proper operation of transistors and interconnections formed by the pro-

cess. Full custom design provides circuits with the best possible performance since the

designer now has much more freedom in laying out the circuit. The design flexibility

is gained at the cost of increased design complexity, and thus full custom design is

only practical for circuits having a high degree of design regularity. An example of

this type of circuit, a multiplier, which is constructed by an array of full adders is

shown in Figure 2.4 [29]. The layout of the multiplier is simplified as it requires at

the primary level the layout of a full adder, which serves as a basic building block.
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The placement process for this circuit is straightforward since the entire architecture

can be built by tesselating a few different types of modules with connections only to

nearest neighbors.

One approach in between semi-custom and full custom is to construct the circuit

by the placement and interconnection of mega-cells. This is similar to the standard

cell approach in the sense that pre-designed library circuits are used to build the entire

system hierarchically. However, the restriction on identical cell height is removed

with mega-cells. Both the heights and widths of mega-cells can vary, even though the

shape of a mega-cell is normally rectangular and arbitrary shapes are generally not

allowed. The placement of mega-cells are no longer confined to rows or columns. An

example layout of a chip using mega-cells is given in Figure 2.5, in which each
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rectangle (except for the bonding pads) is a mega-cell.

Bonding

(\ Pads

 

 

   

     

 

 

   

    
 

      

D‘EJ‘DEJDDDDD

El _' [_'E]

r. B 3
Ciligfiirlglga __D(_/

\Ug DMega—Cells

El

[:1 1:1

DDDDDDDDD   
Figure 2.5 An example layout of a chip using mega-cells.

Since most of the restrictions on library cells are removed in this mega-cell

design approach, the layout can be better optimized. But, the fact that more degrees of

freedom are permitted in a mega-cell custom design makes the placement problem

more difficult than that of other design approaches. The placement process for such

mega—cells is of special interest in this work.
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2.2 Building Block Placement in Design Automation

Most of the current design methods are based on the existence of a large set of

universal library cells. Library cells can be the macro-cells in the gate array approach,

the standard cells in the standard cell approach, the basic building blocks modules in a

full custom design, or mega-cells. Copies of the necessary blocks for constructing the

circuit are taken from the database library in the design process, and then must be

placed and routed to ultimately construct the masks for the integrated circuit. An illus-

tration demonstrating this layout concept is provided in Figure 2.6.

The information available at the placement stage is a set of functional blocks and

their interconnections. The format of this information is, of course, dependent on the

HDL used. However, the following information is generally essential for the place-

ment process.

1. The physical information, such as the size, shape, and orientation, of each

functional block is necessary for determining the locations of the building

blocks. In addition, the lower bound of chip area required for implement-

ing the circuit can be estimated by the total area of the building blocks.

2. The terminal information for each functional block describes the locations

and functions of the terminals on the functional block boundaries. This

information is useful since global routability is taken into consideration

during the placement process.

3. An netlist is used to describe the interconnections between the terminals of

the functional blocks. This information indicates the relationships between

the blocks. Wiring distance, which is calculated using this information, is

often used to evaluate the quality of a configuration.
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The problem then is to place a set of building blocks within a limited area of the

carrier, subject to various positional and electrical constraints. The ultimate goal of the

placement process is to determine the optimal locations of the blocks fetched from the

library on the chip so that those which are strongly connected are close to each other.

The placement problem did not originate in integrated circuit design and, in fact,

has been studied with respect to many other applications long before the existence of

VLSI technology. However, the problem is more difficult at the VLSI level due to the

tremendous complexity of the circuit

The task of finding a good placement configuration is not easy and it has been

shown that the establishment of an optimal solution for a placement problem belongs

to the class of combinatorial Optimization problems and is NP-complete [4]. There-

fore, heuristic methods are used to find a valid placement configuration in a finite time.

Common heuristic algorithms solve the problem step-by-step and at each step they use

an objective function to guide the selection of blocks to be placed or moved. The

common criteria used for evaluating the objective function include Wiring length, chip

area, and the number of crossovers. Due to the fact that the delay time in a VLSI-

based circuit depends heavily on the signal paths, the total wiring length is the most

popular criterion for evaluating a placement configuration. Almost all the heuristic

methods employ the branch and bound method to optimize the solution. The main

difference between them lies in the particular search strategy and rules which are used

to generate and evaluate a feasible solution.

Numerous placement algorithms have been proposed during the last decade [30-

36]. Four representative methods that are conventionally used to solve the placement

problem are described next. It should be noted that these methods and others are

capable of finding a valid placement configuration for the design under consideration;

however, there is no guarantee that the solution found is near-optimal or optimal.
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2.2.1 Constructive Method

A constructive placement algorithm begins with the placement of one or a few

"seed" building blocks, which are usually the critical components of the circuit under

design. The other building blocks that are closely related to those placed are then

sequentially added to the layout. Clusters of building blocks are established on the

chip until all the components have been placed.

The reasoning behind this placement method is that by keeping the connected

building blocks close to each other the wires between them are short and thus require

as little area as possible. Problems arise when a building block is heavily connected to

two or more other building blocks which have been placed at the opposite sides of a

chip. The order of selecting building blocks to be placed is essential for the perfor-

mance of this class of algorithms.

2.2.2 Min-Cut Method

Graph theory techniques are applied to the placement problem in the min-cut

placement method [9, 35]. The building blocks and their interconnections are

represented by nodes and edges as defined in graph theory. The circuit is then con-

verted into a connected graph. The intention of min-cut placement is to emphasize a

global placement strategy and to defer local considerations as long as possible. This is

a topdown approach to placement rather than the bottom-up technique typically used

by the constructive algorithms. The Operation of this method is based on the partition-

ing of a connected graph. The goal of the partitioning is to generate two subgraphs

such that the number of edges cut by this partitioning is minimal and that the
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difference between total block areas in the two subgraphs does not exceed a predefined

threshold value. The cutting of the subgraphs is repeated until, at the end of the pro-

cess, each subgraph contains only one node (building block). The relative locations of

the building blocks are then established.

The main advantage of the min-cut method is that it considers the balance

between block area in partitioned subgraphs. Unfortunately, this method can only

locally minimize the count of net-cuts due to the sequential nature of the process.

Moreover, the actual locations of the building blocks cannot be readily determined

since, in addition to the area of the building blocks, their shapes, sizes, and terminal

locations need to be considered to generate a practical configuration.

2.2.3 Force-Directed Method

The force-directed method, also called the attractive and repulsive method, applies

Hooke’s law from physics to the placement problem [35, 36]. Hooke’s law states that

if two particles are connected to each other by a spring, then there is an attractive

force between these two particles that is equal to the spring constant times the distance

between the two particles. The building blocks are treated as particles and the inter-

connections between blocks are considered as springs to generate an attractive force

proportional to the connectivity between building blocks. In addition, repulsive forces

are assumed to exist between blocks that are not directly connected. A system of par-

ticles, with forces interacting between them, thus represents the circuit. A set of

simultaneous equations describes the relationships between the forces and the relative

locations between the building blocks. These equations are solved, most commonly by

numerical methods, to determine the relative locations of the building blocks.
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The advantage of the force-directed method is that it provides a systematic

approach to solve the placement problem. However, it is very time consuming to

solve the set of simultaneous equations especially when the number of building blocks,

and thus the number of variables, is large. Moreover, this method also suffers, as in

the case of min-cut method, from ignorance of the actual sizes and shapes of the build-

ing blocks and their terminal locations.

2.2.4 Iterative Improvement Method

The iterative improvement method is of special interest in this research. As men-

tioned, the placement process is a combinatorial Optimization problem involving a

large solution space. Theoretically, the best solution exists under a certain well-

defined cost function and can be guaranteed only by generating and evaluating all pos-

sible solutions (enumeration). However, the size of the solution space (all the possible

configurations) in the placement problem is extremely large and it grows exponentially

with the number of building blocks involved in the circuit. Due to the NP-complete

nature of the placement process, it is impossible to perform an exhaustive search to

locate the best solution in finite (reasonable) time.

Heuristics have been applied to the placement problem to find a good solution in

a reasonable period of time. The iterative improvement method is comprised of two

phases. An initial placement configuration is generated in the first phase by any con-

structive placement method or simply by randomly placing all the building blocks onto

the chip. The initial placement configuration is then iteratively improved in the second

phase of the process. A new placement configuration is generated at each step by

introducing modifications to the present configuration. The modifications that are
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made to a placement configuration include:

1. the movement of a block to a new location;

2. the swapping of locations between two blocks;

3. the rotation of a block in multiples of 90";

4. the mirror imaging of a block.

A cost function is defined to guide the heuristic search in a direction that will

improve the placement result. The delay time of the signal nets in a VLSI circuit

plays an important role in the determination of its performance and thus the most com-

mon cost function used in this class of algorithms is the estimated total wiring length

between the blocks. If the cost of a new configuration is lower than that of the previ-

ous one, the new one is accepted and further modifications are made to it. Otherwise,

if the cost has increased in the new configuration, it is rejected and the previous one is

retained for other modifications. The iterative impiOvement process continues until no

further improvement can be obtained.

The idea behind the application of the heuristic search in building block place-

ment is easy to understand. However, the design of a good heuristic search placement

process is not trivial. The following summarizes four major considerations in the

design of an iterative improvement placement algorithm:

1. The set of possible movements in the solution space must be rich enough

so that all reasonable solutions can be found. The movements must be

relatively inexpensive to compute since thousands or more of such move-

ments will be made before a solution is found.

2. The cost function must be incrementally computable, so that the time to

evaluate each move is minimal. Moreover, the cost function must be phy-

sically meaningful.



26

3. The search procedure must be planned carefully. The performance of this

type of algorithm depends heavily on the quality of the initial placement.

A good strategy for guiding the layout modification is necessary.

4. The data structure representing the system for iterative improvement must

support the movements and evaluation of the cost function efficiently.

The data structure will determine the speed of execution of the algorithm.

2.3 Simulated Annealing

Most heuristic algorithms search for a solution only in the directions that improve

the objective/cost functions. One inherent drawback of this type of heuristic search is

that it can be easily trapped into a local minima of the objective/cost function. The

example presented in Figure 2.7 is used to demonstrate this problem.

Consider the curve shown in Figure 2.7 as the cost function of an iterative

improvement process and the circles indicate the costs of certain configurations. Since

a new configuration is generated by introducing small modifications to the placement,

its corresponding location on the curve is most likely to be somewhere near that of the

original configuration. The traditional iterative improvement algorithms only accept

configurations that have reduced the cost. This criterion of configuration acceptance

implies that the process can only go downhill into a local minimum and any uphill

movement is forbidden. Thus, the search process cannot climb over the peak of the

curve to reach the global minimum.

Recently, an approach called simulated annealing has been proposed as a method

to find a near optimal solution for NP-complete combinatorial problems [6]. Simulated
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Figure 2.7 The local minimum traps of a cost function.

annealing associates the statistical mechanics which deal with the behavior of systems

with many degrees of freedom in thermal equilibrium at a finite temperature, to com-

binatorial optimization which finds the minimum of a given function depending on

many parameters. This new approach has found a major application in the building

block placement problem [7, 8].

Annealing is defined as a process of slow cooling after subjecting a piece of

metal to heat in order to prevent checking, cracking, and warping. When the metal is

solidified from its liquid phase, low temperature is not a sufficient condition for

achieving the lowest energy state. The metal must be cooled slowly to allow the large

number of atoms in the material to settle in a stable manner. The likelihood of the

piece of metal at a certain temperature being in a given energy state is governed by the

Boltzman distribution for that temperature. As the temperature decreases, the distribu-

tion becomes concentrated on the lower energy states until, when the temperature
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finally approaches zero, only the minimum energy state has non-zero probability.

An analogy was noticed between the annealing process and the search of a com-

binatorial solution space [6]. The conventional iterative improvement strategy forbids

the changes of states that increase the cost function. From the point of view of

annealing, it is much like rapidly quenching a material to zero temperature. The local

minima encountered in an iterative improvement process are analogous to the meta-

stable states that dominate after rapid cooling.

An algorithm can be used to provide an effective simulation of a collection Of

atoms in equilibrium at a given temperature. In each step of this algorithm, an atom is

given a small random displacement and the difference, AE(s,-), in the energy of the sys—

tem between the present and previous states, 3,- and 3H, is computed. If AB 5 0, the

displacement is accepted as in the traditional heuristic search and the modified

configuration is used in the next step. Cases in which AE > 0 is treated using proba-

bility and accepted conditionally. The probability that the new configuration will be

accepted is

P(3i) = “as”, (2.1)

where P(s,-) is the probability of having a state s,- at a certain temperature, AE(s,-) is the

energy difference between state 3,- and previous state SH, and T is the temperature.

Random numbers, uniformly distributed in the interval 0 and 1, are convenient means

of implementing the random part of the algorithm. One such number is generated and

compared with P(s,-). If it is less than P(s,-), the new configuration is accepted; other-

wise, the original configuration is retained.

A configuration has a higher probability of being accepted at higher temperature

for the same cost increase. On the other hand, when the temperature is lower, the pro-

bability of accepting a cost increasing configuration is smaller and the system
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concentrates at configurations having lower cost. The same example cost function

shown in Figure 2.7 is used to demonstrate this concept in Figure 2.8. The salient

feature of simulated annealing is to allow the exploration of the solution space in a

"wrong" direction, which worsens the cost function. The probability of accepting a

move depends on the temperature applied at a certain simulated annealing stage. It

has been proved that, under certain movement assumptions, the simulated annealing

approach asymtotically produces the global optimal solution with probability one [7].
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Figure 2.8 The hill climbing capability of a simulated annealing algorithm.
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2.4 Application of Simulated Annealing to the Placement Process

Simulated annealing is an excellent way to attack the VLSI placement problem.

An analogy between the placement problem and metal annealing is given in Table 2.1.

In order to apply the concept of simulated annealing to the placement problem, a con-

trol parameter (pseudo-temperature) is introduced into the building block placement

process.

Table 2.1 Analogy between building block placement and metal annealing problems.

 

 

 

 

 

VLSI Placement Metal Annealing

Building blocks Atoms

Movements, rotations, mirror imaging Displacements

Cost function Energy

Control parameter (pseudo-temperature) Temperature    
The placement process implemented in the TimberWolf placement and routing

package is used here to discuss the application of simulated annealing [8]. The func-

tion provided in Figure 2.9 gives the general structure of the algorithm. Note that the

important part of the algorithm is the function "accept" 'which is given in Figure 2.10.

A placement process using simulated annealing proceeds similar to the traditional

iterative improvement methods except that the pseudo-temperature decreases very

slowly from a large value during the process. The selection of new configurations is
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Placement(x,c){

/* configuration x and cost function c *I

while ("stopping criterion" is not satisfied){

generate a new configuration x’;

evaluate c(x’); /* new cost *I

if (accept(c(x’),c(x)){

/*

accept returns 1 if an acceptance criterion

has been satisfied and 0 otherwise

  
 

Figure 2.9 The TimberWolf placement algorithm [8].

based on the following considerations:

1. A random number between one and the total number. of blocks is gen-

erated. A block is selected according to this random number.

Experimental investigation has revealed that the ratio of single block dis-

placements to block interchanges has a pronounced effect on the quality of

the final placement. Experiments have revealed that a ratio of about 5 to

1 yields the best results. A second random number is selected between 1

and the number of blocks multiplied by this ratio.

If the two numbers selected both represent blocks, then the pair of blocks

are interchanged to generate a new configuration.

If the second number selected does not represent a block, then the first

number selected governs the generation of a new configuration. The block
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accept(c(X’),C(X)){
/*

given the cost of a new configuration x’ and of the

previous configuration s, return 1 if the cost variation

passes a test. T is a pseudo-temperature.

*/

Ac = c(x’) - c(x);

if (Ac S 0){

return( 1);

}else{

y = CXP(-Ac I T);

r = random(0,l);

[It

random(0,l) is a function which returns a pseudo

random number between 0 and l (with uniform

distribution).

*/

if (r < y){

retum(ll;

}else{

retum(0);

}

}

}   
 

Figure 2.10 The "accept" function in the TimberWolf placement algorithm [8].

indicated by the first number is moved to a new location.

A placement configuration is accepted if the cost is reduced as in the conven-

tional heuristic methods. Cases in which the cost is increased are treated using the

probability [AC/T, where AC,- is the cost difference between the present and the previ-

ous configurations and T is the temperature. This probability is compared to a random

number generated between 0 and 1. If the probability is larger than the random

number, the new configuration is accepted. If the movement or interchange Of
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building blocks is rejected, the orientation change of the first block selected is per-

formed to generate yet another configuration. The acceptance of this configuration

generated by changing the orientation of the first block is determined in the same

manner as the block movement. At each temperature, an appropriate number of

changes are applied to the configuration to simulate the slow cooling procedure. The

number of moves evaluated at each temperature must be large enough so that every

block has a fair chance of being chosen for movement thereby ensuring that all solu-

tions in the problem space can be reached. Experiments have shown that more than

100 new configurations per building block are necessary to fully explore the solution

space [7, 8]. A rule of thumb for decreasing the temperature is to use the formula

T2 :3 GT1, (22)

where T1 and T2 are the present and next temperatures, respectively, and or is a con-

stant in the range of 0.8 to 0.95. In the current implementation of TimberWolf, the

parameter a is changed during the placement process. The best results have been

obtained when a is large (approximately 0.95) during the stages of the algorithm when

the cost function is decreasing rapidly and or is given its lowest values at the initial

and latter stages of the algorithm (usually 0.80). The value of or is gradually increased

from its lowest value to its highest value, and then gradually decreased back to its

lowest value. The process is stopped when the cost function’s value has not changed

for 4 consecutive stages.

This method has been shown to be very effective in the placement problem; how-

ever, the process is very time consuming since numerous moves must be generated at

each temperature to simulate the "slow" cooling procedure. An example is used to

demonstrate the magnitude of the computation complexity in this approach. Consider

a simulated annealing process starting from T = 300. If the rate of decrease, or, is set
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as 0.9, there are more than 50 temperature steps before T S 1. Assuming that 100

new configurations are generated and evaluated at each temperature, more than 105

new configurations must be generated for a moderate design case with 100 building

blocks.

2.5 Placement Problem Model

As long as a computer program is used to handle the building block placement

problem, the effectiveness and efficiency of this Operation is at least partially deter-

mined by how the problem is represented in memory. A minimum requirement on a

problem model for building block placement is that the model itself must be easily

manipulated by a computer program. In addition, the model must be able to represent

all the necessary information about the building blocks and their interconnections to

obtain a meaningful placement configuration.

2.5.1 Node-and-Edge Model

Many placement algorithms use nodes and edges to model the building blocks

and their interconnections, respectively. Under this model, the circuit is converted

from a network of interconnected building blocks into a connected graph. An example

of applying this technique to represent a circuit is shown in Figure 2.11. The original

circuit, presented as a network of interconnected functional blocks is converted into a

connected graph.
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Figure 2.11 An example of representing a circuit by a connected graph.
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The advantage of this node-and—edge model is that many techniques and princi-

ples from graph theory can readily be applied. The placement algorithms manipulate

the connected graph algorithmically to produce a solution for the placement problem.

Moreover, due to the simplicity of this model, it can be implemented easily in a com-

puter program. However, there are some inherent drawbacks to this conventional

node-and-edge model:

1. The shapes and sizes of the building blocks are totally ignored when they

are converted into dimensionless nodes.

2. The orientations of the building blocks cannot be readily considered in an

algorithm that utilizes this model since it is difficult to represent opera-

tions such as the rotation of a dimensionless node.

3. The locations of the building block terminals cannot be easily presented

by dimensionless nodes.

Ignoring the shapes and sizes of building blocks is acceptable as long as all the

building blocks are the same size and are allowed to be placed only in some predeter-

mined fixed location. This is the case in a gate array design in which everything

except the final metal interconnection is prefabricated. However, this is not true in the

other design approaches. Without knowledge of the shapes and sizes of the building

blocks, the algorithm can determine their relative locations, but the blocks often over-

lap when the nodes are changed back to their real shapes and sizes.

Even though the locations of the building blocks are determined, different

configurations can still be generated without changing their locations. These different

configurations are generated by the rotation and/or mirror-imaging of one or more

building blocks. Figure 2.12 shows eight different orientations that a building block

can assume. The circled vertex is the lower left corner of the original orientation.
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The orientations of the building blocks and their terminal locations also affect the sub-

sequent routing process. All possible orientations of the building blocks have to be

considered in placement process to enhance routability. Without taking the routability

of a placement configuration into consideration, it is impOssible to generate a good

placement result.

2.5.2 TimberWolf Model

The rudimentary node-and-edge model can, of course, be enhanced to carry all

the desired information. The placement process of the TimberWolf package [7, 8]

takes the sizes and terminal locations of the building blocks into consideration. Since

the sizes of building blocks are canied in the model, different orientations of the build-

ing blocks can be considered in the placement algorithm. Also, the inclusion of termi-

nal locations improves the routability of the final placement result. However, this

enhanced version is not popular since the problems encountered in the node-and—edge

model are only partially solved. Building blocks generally have different sizes imply-

ing that overlap is very likely to occur with the movement or rotation of nodes. In

fact, if cells are allowed to overlap with each other they will be attracted to the same

location in the final configuration since that obviously produces the shortest wiring

length when all the interconnections are assumed to go on a two dimensional plane.

Overlap can be eliminated during the placement process in a number of ways. In

the TimberWolf model, a new configuration is generated by either exchanging two

blocks or moving a block to another location. Overlap in the TimberWolf package is

dealt with by introducing a penalty function. When two building blocks overlap, a

penalty is assessed which is proportional to the square of quantity of the amount of
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overlap plus an offset parameter. The offset parameter is chosen to ensure that when

the temperature approaches zero, then the total amount of overlap approaches zero.

This method requires the tedious calculation of overlap area and the corresponding

penalty term, making the already slow simulated annealing process even more slug-

gish.

Another way to avoid block overlap is to check whether or not there is sufficient

space before a block is moved or rotated. When it is determined that there is not

enough space for a certain operation, the operation is canceled or the blocks in the

neighborhood can be moved apart to generate the necessary space. This check-

before-move strategy is very time consuming and often results in inferior placement

configurations. If the desired operation is canceled, the placement process is handi-

capped since the solutions that it can reach are limited. The area of the final place-

ment is often oversized due to this limitation. Moreover, the strategy to generate

necessary space by moving building blocks apart degrades the result by changing the

determined block locations. Altemately, overlap can be eliminated after the process by

expanding the final configuration. This method suffers the same problems of being

time consuming and clearly reduces the placement quality.

2.6 Parallel Placement

Simulated annealing is an approach to the placement problem that has proven to

be particularly successful. Unfortunately, the run-time of a placement process based

on the simulated annealing algorithm is often unacceptable [10]. Due to the expanding

complexity of VLSI circuits, and thus the increased number of building blocks con-

sidered in the placement process, a practical limit is introduced by any algorithm that



attacks the entire problem space simultaneously. The philosophy of divide-and-

conquer and its application in VLSI design have been discussed in the previous sec-

tions. It seems that a reasonable next step in the research of the placement problem is

to apply this philosophy and divide a large problem into smaller more amiable prob-

lems. The need to partition a placement problem arises naturally from the application

of parallel processing, but is is also advantageous, from the standpoint of computation

speed, for a sequential process. If a placement algorithm for n blocks has a computa-

tion complexity of 0(n2), quite common for the heuristic methods such as the iterative

improvement approach, the computation time required by the process will be reduced

after the problem is partitioned into k sub-problems. This consideration is summarized

in the following equation.

If n = in;, then in? < (ing)? (2.3)

i=1 i=1 i=1

Even though the partitioning of a placement problem has advantages with respect to

computation speed, it has received little attention. This is because the quality of the

partitioning result will be extremely important to the Optimality of the final placement

configuration. It is well-known that Optimization at one level may increase complexity

at all other levels. Some approaches for implementing the placement process using

simulated annealing in a multiprocessor environment, however, have been proposed

[IO-13].

The key issue in the parallel implementation of a placement algorithm is its parti-

tioning across communicating processors. Two approaches have been proposed to

accelerate the simulated annealing algorithm [10, 11]. The first approach is simply to

reduce the per-move computing time by dividing the task of computing a single move

into several cOOperating subtasks that execute in parallel on a multiprocessor. The

second approach is to compute several complete moves in parallel, No matter which
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of these approaches is applied, the annealing process is still characterized as a long

sequence of accept/reject decisions, but in each time slot many moves are evaluated in

parallel. The move decomposition and parallel move strategies are not mutually

exclusive. With sufficient parallel resources, one could evaluate several moves in

parallel and also divide each of these parallel moves into cooperating subtasks.

The work of a move consists of selecting a feasible block displacement, evaluat-

ing the cost change, deciding to accept or reject, and updating a database. Not all

these activities, however, can proceed in parallel. The concept of "serializable subset"

of moves is introduced in the parallel move evaluation approach. The moves

evaluated in parallel must be serializable so that the moves which are accepted in

parallel are not contradictory (e.g., moving the same block to two different locations).

The simplest scheme to guarantee the set of serializable moves is to take all the

rejected moves and also the accepted move found first, and abort all other accepted

moves. The determination of the subsets of serializable moves is quite difficult since

the algorithm has to guarantee that the configurations are reachable from each other in

a finite number of steps, which is a necessary condition for the convergence of simu-

lated annealing. This approach has a major intrinsic limitation. The greater the

number of processors, the more difficult it is to find the serializable subsets [10].

Another approach is to partition the building blocks in a placement problem into

groups and have each group annealed by a processor [12]. If the circuit under design

comprises several independent subcircuits of which the number is smaller than or equal

to the number of available processors, the partitioning will be rather straightforward.

Unfortunately, this is often not the case in a practical design. In a realistic problem,

simulated annealing must also be applied to the partitioning and is combined with the

placement process. The clustering of the blocks is dynamically changed during the

placement process by utilizing the concept of a center of mass. The blocks are
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imagined as particles of mass proportional to their area and their distances to the

center of mass are used to calculate the cluster-cost. If a block is given by a processor

to another processor that owns blocks which are in closer proximity then the cluster-

cost decreases. In addition to heavy interprocessor communication traffic created by

the movement of blocks from one processor to others, this approach is non-applicable

if the partitioning has to be done before the placement process when no information

about the locations of the blocks is available.

A special multiprocessor architecture has also been proposed to implement a

parallel placement algorithm using the strategy of conventional iterative improvement

[13]. An adjacent pairwise exchange method is applied in these placement methods.

The proposed architecture is formed by a two-dimensional array of processors, each of

which has direct connection to its immediate neighbor processors. An initial place-

ment is generated by randomly assigning a building block to a processor. Non-

intersecting pairs of neighboring blocks are selected for exchanges. Blocks are

exchanged if the total wiring length associated with one pair of blocks can be

decreased by the exchange. Exchanges are continued until the improvement rate

becomes lower than a given value or until a given time has elapsed.

A unique problem of oscillation exists in this parallel pairwise exchange place-

ment method. Oscillation refers to the phenomenon that a number of blocks perform

endless exchanges of locations. The reason for oscillation is that erroneous decisions

are possible when numerous pairs of modules are considered simultaneously for

exchange. Because the algorithm cannot predict the movements of other blocks, it can

only assume that they will not change locations. The decision to exchange block loca-

tions based on this assumption may turn out to be incorrect. Even though some spe-

cial patterns for selecting the pairs of blocks to be exchanged have been suggested to

reduce the adverse effect of oscillation, this method still suffers from the sequential
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broadcast of the new block locations [13]. Also, the approach cannot deal with place-

ment problems which have more building blocks than the number of processors in the

array.



CHAPTER III

PLACEMENT PROBLEM MODEL

The intimate relationship between computer-assisted tools and VLSI design has

been discussed in the previous chapter. As the complexity of a VLSI circuit continues

to grow, many operations in the design process, such as the building block placement

process, cannot even be considered without the assistance of a computer. As long as a

design task is handled by a computer program, the effectiveness and efficiency of this

Operation are partially dependent on how the task itself is represented.

Some conventional models for representing the building blocks and their intercon-

nections in a placement problem have been discussed in Section 2.5. Their advantages

and disadvantages have also been addressed in that section. A minimum requirement

on a problem model for the placement process is that the model itself must be algo-

rithmically manageable by a computer program. In addition, the model should be able

to carry all the necessary information about the building blocks and their interconnec-

tions to facilitate the production of a meaningful placement result.

A new model for representing the building block placement problem in a CAB

system is described in this chapter. This is followed by a discussion of the improve-

ments made to the simulated annealing placement algorithm by applying this model.

This model guarantees that the building blocks will not overlap during the placement

process, thus saving the computation required for eliminating the overlap. Best of all,

this model significantly reduces the solution space of the heuristic search in a place-

ment process. The process can then converge to a near optimal solution more rapidly.

44
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3.1 Solution Space of Building Block Placement Problem

A few observations can help to explain the time consuming feature of the simu-

lated annealing placement process. It was shown in Section 2.4 that, numerous moves,

most of which will be rejected, must be generated at each temperature stage to fully

explore the solution space. For the same number of components, the size of the solu-

tion space is determined by the number of locations that a building block can assume

on the chip.

In the design of a VLSI circuit, the gate array approach has the smallest solution

space since all gate cells are prefabricated on the chip and have fixed locations. For

instance, a cell can only be swapped with another cell and cannot be moved arbitrarily.

The allowable changes to a placement configuration are quite limited and thus the

solution space is small. The solution space of a standard cell placement is larger,

since even though a cell can only be placed in a row with standard height, many rows

and numerous locations at each row can be chosen. The solution space of a mega-cell

custom‘design is the largest of these approaches. This is easily understandable since

all the building blocks involved in the placement process have different heights and

widths and they have complete freedom to be placed in any location on the chip.

In order to demonstrate the magnitude of the size of solution space for the place-

ment problem, the number of possibilities for placing a building block with a size of

100 X 100 square units into an area of 1000 X 1000 square units with different design

approaches are compared. Three different layout styles are considered in this com-

parison.

Case 1: The first layout style considered is a gate array like design. Slots, which

determine the possible locations of the building blocks, are defined on a chip.



Case 2:

Case 3:

The changes that can be made to a configuration are restricted to moving a

building block to an empty slot, swapping the locations of two building

blocks, and the left or right mirror imaging of a building block. It is noted

that, according to these rules of introducing modifications to a configuration,

no overlap occurs between blocks when they are moved or flipped.

In the second layout style, the chip is divided into rows with identical

heights as in the standard cell design approach. The building blocks are res-

tricted to be placed in the defined rows, but they can assume any location in

a row as long as they do not cross the border of the chip. The only orienta-

tion change allowed in this case is the left or right mirror imaging of a build-

ing block. The modification of a configuration using this style generally

results in some amount of overlap between building blocks.

In the third style, building blocks have different sizes and shapes as in the

mega-cell design approach. A building block can be placed at any location

on the chip as long as it does not overlap the boundary of the chip. The

building blocks are free to rotate by multiples of 90" and to be mirror

imaged. In addition to the possible block overlap that has to be dealt with,

this design style creates the largest solution space.

The result of the solution space comparison for these cases is listed in Table 3.1.

The data in Table 3.1 were calculated by considering the coordinates at which the "ori-

gin" (lower left corner) of a building block can be placed without overlapping the

boundary of the defined chip area. The area required for the routing channels is not

considered in the calculations; however, the possible orientation changes, such as rotat-

ing or flipping of the blocks, are taken into account.
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Table 3.1. The possible placements of a block in three different design styles.

 

 

 

 

     

Design Style Locations Orientation Changes Possible Placements Overlap

Case 1 100 2 200 No

Case 2 9,000 2 18,000 Yes

Case 3 810,000 8 6,480,000 Yes

 

The second column in Table 3.1 lists the number of different locations that can be

taken by a building block. The third column gives the number of allowable orienta-

tions that a building block can assume at a certain location. The next column is the

product of the numbers given in columns 2 and 3, which indicates the number of pos-

sible placements for the building block when changes in both its location and orienta-

tion are taken into account. The possibility of having overlap between blocks is

described in the last column. In order to fully explore this tremendous solution space,

numerous different configurations must be generated and evaluated during the place-

ment process. This is the main reason for the time consuming feature of the simulated

annealing approach.
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3.2 New Placement Problem Model

The discussion presented in Sections 2.5 and 3.1 suggest that the simulated

annealing placement process is handicapped by two problems:

1. The large solution space of the placement problem; and

2. The avoidance or elimination of overlap between building blocks.

In view of these considerations, two strategies can be applied to accelerate the simu-

lated annealing placement process: reducing the size of the problem space so that less

configurations have to be generated at each temperature stage without affecting the

coverage of the solutions and getting rid of the overlap area calculations. A new

model for representing the circuit in a placement problem is developed. This model

guarantees that overlap between building blocks does not occur in the placement pro-

cess. This model also greatly reduces the solution space of the problem so that a good

solution can be found more rapidly.

The VLSI design style of interest in this work is Case 3 as presented in Table

3.1, which is the most difficult one. It has been shown in Table 3.1 that, if a design

style similar to the one discussed in Case 1 is followed, the size of the solution space

can be reduced by several orders of magnitude. Moreover, no area overlap between

building blocks will ever occur.

The chip, or in general, the carrier, is divided into an array of equally-sized

square slots. The dimension of each slot is determined by the size of the largest build-

ing block in the design. The array is then used to guide the placement process. An

example of a layout generated by this fixed slot model (FS model) is shown in Figure

3.1. A building block can only be placed into an empty square. In this manner, no

overlap can occur when the blocks are moved, rotated, or flipped. The overhead of
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eliminating the overlap or evaluating the penalty term is thus totally removed. It is

also very easy to show that the problem space of the heuristic search has been reduced

by dividing the chip into an array of slots for the building blocks. Since the possible

locations available for a block are significantly reduced, a comparable coverage of the

solution space can be obtained with fewer new configurations generated.
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Figure 3.1 A placement configuration generated by using the FS model.

The original simulated annealing process described in Section 2.4 can be easily

modified to apply this problem model. This modified algorithm (FS algorithm) is pro-

vided in Figure 3.2. The distinct feature of this algorithm is in providing an array of

slots on the chip to guide the movement of the blocks.

This approach works well if the sizes of all the building blocks are approximately

the same and their length to width ratios are close to unity. However, this is not
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Place0{

Calculate the largest dimension of the building blocks;

/* the result is used to define the slots on the chip */

Divide the chip into an array of slots;

/* each of which is square and large enough to hold the largest block */

Randomly place all the blocks onto the empty slots;

While (stopping criterion is not satisfied)

Rearrange the configuration by simulated annealing;

/* modifications: moving a block to an empty slot,

swapping the locations of two blocks,

changing the orientation of a block */

  
 

Figure 3.2 The F8 building block placement algorithm.

always the case in a practical placement problem. The argument provided above for

the solution space is still valid, but since the dimension of the slots has to be deter-

mined by the largest building block, a slot holding a relatively small building block

will have some wasted area. This situation is demonstrated in Figure 3.3 and the

wasted area is indicated by the shaded regions. Building block No. 1 is the largest

block in this placement example and thus its size is used to divide the chip area into

an array of slots. When the relatively small building blocks, e.g., block Nos. 2 and 4,

are placed into their slots, some area in the specific slots is wasted. The unusable

area, of course, increases the lengths of the interconnections between these building

blocks and others.

This problem is solved by a modification of the FS model. The relatively large

building blocks are partitioned into connected submodules of approximately the same

size. Weighted pseudo-interconnections are provided between the sibling submodules

of the same parent building block. The chip is then divided into an array of slots

according to the size of the submodules. An example of applying this fixed slot with
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Figure 3.3 The chip area wasted in the FS model.

partitioned building block (FSWPB) model to the placement problem in Figure 3.3 is

shown is Figure 3.4. The partitioning of the blocks is guided by the objective of

minimizing the total amount of unused area within the slots when the submodules are

placed into the array. In general, the average block size can be used for this purpose.

The partitioning of building block No. 1 is illustrated in Figure 3.4. This large build-

ing block is partitioned into four submodules, indicated by la to 1d, with weighted

pseudo-interconnections assigned between them. The chip area is redivided to gen-

erate slots that fit the size of the submodules.

The submodules generated by the partitioning are treated as independent blocks in

the annealing process. The validity of this model depends on its capability of bringing

the submodules of a building block together at the end of the process to eliminate the

pseudo-interconnections. The cost of a configuration is calculated by the total

estimated wiring length including those of the pseudo-interconnections multiplied by

their respective weights. Since the pseudo-interconnections between the modules are

weighted more heavily than the real interconnections in the original netlist, the change
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Figure 3.4 An example of applying the FSWPB placement model.

in the wiring length of a pseudo-interconnection will more strongly affect the cost of a

configuration than the same change in a real interconnection. For example, the separa-

tion of two submodules belonging to the same parent will strongly increase the cost

and will likely be rejected, especially at low temperatures. Also, the nearness of two

submodules generated from the same parent will greatly improve the cost and will

have a better chance of acceptance.

In order to guarantee that, at the end of the placement process, the submodules of

the same parent are placed such that the pseudo-interconnections between them have

zero wiring distances, the weight applied on the pseudo-interconnections is changed

dynamically during the annealing process. The weight increases as the temperature

decreases and thus their effect on the cost evaluation gets stronger as the process

progresses. At the later stages of the annealing process, even a small displacement of

a submodule can greatly affect the cost.

It has been shown that, under certain assumptions, only the optimal configuration

determined by a well-defined cost function exists with probability 1 as the temperature
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approaches 0 in a simulated annealing process [7]. Since the weight on the pseudo—

interconnections is inversely proportional to the temperature, the weight approaches co

as the temperature approaches 0. A small separation between two sibling submodules

will cause the cost of the pseudo-interconnection between them to be enormous. Such

a configuration is, of course, far from optimal and will not be permitted

Another advantage of this placement model is its potential to allow building

blocks with arbitrary Manhattan shapes to be used in the design process. The handling

of some example Manhattan building blocks is given in Figure 3.5. A set of rectangu-

lar submodules can be generated by partitioning the building blocks.
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Figure 3.5 The partitioning of Manhattan building blocks.

The modified simulated annealing placement algorithm presented in Figure 3.2 is

further improved to include the partitioning of large building blocks into intercon-

nected submodules. This algorithm is described in Figure 3.6. The fact that a larger

problem with increased numbers of blocks and connectivities is created after the
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partitioning of the building blocks into submodules has an adverse effect on the com-

putation time required for the placement process. The placement process is divided

into two stages to minimize this problem. The stopping criterion for the annealing

process is temporarily ignored prior to a user-specified switching temperature which

defines the boundary between the first and second stages. In the first stage, the FS

model is applied to find the relative locations of the building blocks, the configuration

of which is used as the initial placement for the second stage. In the second stage,

relatively large blocks are partitioned into connected submodules which have sizes

approximately equal to those of the relatively small blocks. Weighted interconnections

between the sibling submodules are added to the original netlist. The chip is then red-

ivided into slots that fit the newly defined submodules. The simulated annealing pro-

cess then continues, with all the submodules considered independently for movement

and rotation to generate new configurations, until the stopping criterion is satisfied.

3.3 Validity of the FSWPB Placement Problem Model

The principles of the FSWPB placement problem model and its application to the

simulated annealing process were discussed in the previous section. The theoretical

background of this model is expanded here to verify its validity. The necessary

mathematical tools, adapted from stochastic processes for this purpose, are first dis-

cussed [37].

A stochastic process deals with a collection of random variables. That is, if the

steps in the process are indicated by {s e S}, where S is the index set, there exists a

set of random variables {X_,, s e S}. Xs is referred to as the state of the process at step

s. When S is a countable set the stochastic process is said to be a discrete time



55

 

FSWPB(){

Calculate the largest dimension of the building blocks;

/* the result is used to define the slots on the chip */_

Divide the chip into an array of slots;

/* each of which is square and large enough to hold the largest block */

Randomly place all the blocks onto the empty slots;

While (T > Switching Temperature)

/* the Switching Temperature is specified by the designer */

Rearrange the configuration by simulated annealing;

/* modifications: moving a block to an empty slot,

swapping the locations Of two blocks,

changing the orientation of a block */

Calculate the average dimension of the building blocks;

Partition the blocks into approximately equally-sized submodules;

Generate weighted interconnections between submodules of the same parent;

Redivide the chip array to fit the submodules;

While (Stopping Criterion is not satisfied)

Rearrange the configuration by simulated annealing;

/* submodules are considered independently */  
 

Figure 3.6 The FSWPB building block placement algorithm.

process. The state space of a stochastic process is defined as the set of all possible

values that the random variables X, can assume. Thus, a stochastic process is a family

of random states that can be used to describe the evolution through the time of the

process. Suppose that whenever the process is in state i, there is a fixed probability Pi]-

that it will next be in state j. This condition can be expressed as

RX,“ =j]X, = i, XH = iH, . . . , X1=i1, X0 = i0) = Pi}- (3.1)

for all states i0, i1, . . . , £34, 1‘, j and all s 2 0. Such a stochastic process is known as

a Markov chain. Equation (3.1) may be interpreted as stating that, for a Markov chain,

the conditional distribution of any future state X3“, given the past states

X0,X1, . . .,X,_1 and the present state X3, is independent of the past states and
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depends only on the present state.

The value Pi]- represents the probability that the process will, when in state i, next

make a transition into state j. Since probabilities are nonnegative and the process must

make a transition into some state, it follows that

Pi]. 2 0, i, j = 0, 1,..., ISI, (3.2a)

and

IS!

2P5]- : 1, i = 0, 1,..., ISI. (3.2b)

j=0

There exists a limiting probability that a Markov chain process will be in state j

after a large number of transitions. This value is independent of the initial state.

Some properties of the states of a Markov chain need to be considered in order to

define them more precisely. State j is said to be accessible from state i if Pj} > 0 for

some n 2 0. This implies that state j is accessible from state i if and only if, starting

in i, it is possible that the process will ever enter state j. Two statesi and j that are

accessible to each other are said to communicate. Two states that communicate are

said to be in the same class. Any two classes of states are either identical or dis-

jointed. A Markov chain is said to be irreducible if there is only one class, i.e., if all

states communicate with each other. State i is defined as a recurrent state if the pro-

bability that, starting in state i, the process will ever reenter state i is l. A recurrent

state i has period d if P}:- = 0 whenever n is not divisible by d and d is the largest

integer with this property. A state with period 1 is called aperiodic. If state i is

recurrent, then it is said to be positive recurrent if, starting in i, the expected time until

the process returns to state i is finite. Positive recurrent, aperiodic states are called

ergodic. If n is large enough, Pf}, the probability of being at the n-th iteration in state

j, starting from state i, depends only on the state itself and is totally independent on
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the initial state j. This important result is the backbone of the simulated annealing

approach and is described in the following theorem [37].

Theorem 3.1: For an irreducible ergodic Markov chain limPg- exists and is indepen-

n—reo

dent of i. Furthermore, if

it]- : lim—)oo Pf}, j e S (3.3)

II

then rtj is the unique nonnegative solution of

ISI

“I. = Znipij’ j E S (3.4)

b0

and

Isl

211:} = l. (3.5)

i=0

1 n—no"

Proof: Given that it = lim P'-‘- exists and is independent of the initial state i, it can be

seen (heuristically) that the 1t’s must satisfy Equation (3.5). Now, derive an expression

for P{X,,+1 = j} by conditioning on the state at time n. That is,

. '5' . . . WI .

Pu... =1} = MK... =11X. = um. = .} = MPH. = .} (3.6)
i=0 i=0

Letting n -> no, and assuming that the limit can be brought inside the summation,

equation (3.6) leads to equation (3.4) which is restated below

ISI

1t]- = Ere-PU. (3.7)

i=0

The set {1t,-,i=l,...,|S|} determined by Theorem 3.1 is called the

stationary probability distribution of the Markov chain. The stationary probability
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distribution is very important since it completely characterizes the asymptotic behavior

of a Markov chain.

Markov chains can be used as mathematical tools to describe the FSWPB place-

ment algorithm; however, the above developments cannot be applied directly. In fact,

these results in general are valid for transition probabilities that are independent of

time. Note that all the probabilities defined in the annealing process depend on the

pseudo-temperature T which is updated during the evolution of the process and hence

is dependent on time. However, when the temperature is kept constant, i.e., in the

inner loop of the annealing process, the transition probabilities are constant and the

associated Markov chain is stationary.

The FSWPB strategy is that the submodules from the same parent will come

together, thereby eliminating the lengths of their pseudo-interconnections at the end of

the simulated annealing process. To prove this it must be shown that the process will

generate, asymptotically with probability one, a global optimal solution for the place-

ment problem. This goal is stated in Theorem 3.2.

Theorem 3.2: If the simulated annealing process applying FSWPB model produces

asymptotically with probability one a global optimal solution for the placement prob-

lem, then

1

lim [21,-] = 0, (3.8)

where T is the pseudo-temperature of the annealing process, L,- is the length of a

pseudo-interconnection indicated by i, and l is the number of pseudo-interconnections

created in the FSWPB model.
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Proof: Based on the proposed strategy for dynamically changing the weights on the

pseudo-interconnections, when T approaches 0 the weight applied to the pseudo-

interconnections approaches co. Any configuration having a pseudo-interconnection

with non-zero length will therefore not qualify as an optimal. configuration and the pro-

bability of its existence at the end of the process is zero. This implies equation (3.8)

and completes the proof.

The remaining task in developing the mathematical model for the FSWPB place-

ment model is to show that the simulated annealing process as applied to this model

produces asymptotically with probability one a global optimal solution for the place-

ment problem. The following discussion applies to all non-zero temperatures in the

annealing process. The strategies of generating new configurations in the placement

process ensures that for each pair of configurations, say i, j, there must be integers

m, n 2 0, so that P}; at 0, and P}? at: 0. In other words, the Markov chain induced by

the FSWPB algorithm is irreducible. The condition for making the Markov chain

aperiodic is satisfied by the acceptance rule in the FSWPB algorithm since there is

always a state i, i.e., the optimum solution for which Pi,- > 0. The Markov chain asso-

ciated with the FSWPB algorithm is obviously positively recurrent since it is finite.

So, the Markov chain is irreducible and ergodic. According to Theorem 3.1, the place-

ment process with the set of configurations (states), S, described by this Markov chain

thus has a stationary probability distribution, {1C;(T). i = 1,..., ISI}. Theorem 3.3 and

Corollary 3.3.1 prove that the probability of having a global optimal placement

configuration at the end of the process is 1.

Theorem 3.3: If the set of global optimal configurations is indicated by I, then the

simulated annealing process utilizing the FSWPB model produces asymptotically with



probability 7}]- a certain global optimal configuration when the pseudo-temperature

approaches 0.

Proof: According to the principle of simulated annealing, at a certain temperature, T,

the probability of the system being in a configuration i with cost c(z) is described by

the Boltzman distribution (“0”. Let 1t,(T), for all i e S, be defined according to the

general simulated annealing approach by

(“M r allT' s 39“Kn-W 01‘ ,lE . (.)

j e S

For the set of global optimal configurations l,

1

1'6 (S-1)

 1t,»(T) = for all i’ e 1. (3.10)

For all i’ e l and j 6 (S-1), (00') - c(i’)) > 0 and hence Z (“0)“an approaches

1'6 (5-1)

0 when T approaches 0, so

limit-(T) - -1— i’ e 1 (3 11a)
T-)0 ‘ III ’ ° '

If the same reasoning is applied for a state j e (S - I), at least one element of the sum

becomes oo as T approaches 0. As such,

l'mrt- = 0, 'e S— . 3.11b11.0 ,m J ( I) ( )

This completes the proof of the Theorem.

Corollary 3.3.1: The probability of producing an optimal configuration for the place-

ment problem is 1 when the temperature approaches 0 at the end of the FSWPB algo-

rithm.
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Proof: This result is trivial when equation (3.11a) is applied. The probability of hav-

ing an optimal placement configuration when the temperature approaches 0 is

_1__

i’elllI

l.

The last consideration reveals that results obtained in Theorem 3.3 and Corollary

3.3.1 require the algorithm to perform an infinite number of iterations in the inner loop

which is not practical. However, if the pseudo-temperature, T, is decreased slowly

enough so that 1t,-(T) can be treated as a continuous function, then the continuity of

1t,(T) implies that the stationary probability distribution for a particular value of tem-

perature, T, is a good approximation for the stationary probability distribution for all

the values of temperatures sufficiently close to T. The method of generating the next

temperature in the annealing process by multiplying the present temperature by a con-

stant between 0 and l meets this requirement.

In conclusion, the submodules of a building block will come together to give its

location with probability 1 at the end of the simulated annealing process. The validity

of the FSWPB model is thus proved.



CHAPTER IV

PARALLEL PROCESSING OF BUILDING BLOCK PLACEMENT

With the great advances in VLSI technology, it has become cost-effective to

include a large number of general purpose processors in one computing system. As a

result, parallel algorithm implementation is increasingly feasible and its applicability to

VLSI design automation has recently received more and more attention. One of the

main reasons is that many problems in this field, such as the building block placement

problem, are combinatorial in nature. Solving these problems requires so much com-

putation time that a sequential process is often not sufficient. More advanced technol-

ogy can, of course, be used to build a faster machine; however, this approach is

beyond the scope of this research. Implementation of improved placement methods on

a sequential machine were discussed in the previous chapter. The two aspects con-

sidered in this chapter to further accelerate the placement process are parallel process-

ing and a hardware accelerator which implements the parallel version of the placement

method.

The concept of parallel processing is not new. There are many examples where

powerful achievements have been accomplished by a collective endeavor. Parallel pro-

cessing can be defined as the creation and operation of multiple processes, executed

concurrently in more than one processing unit. The ultimate objective of parallel pro-

cessing is to improve the computation time by an amount proportional to the number

of processors. This must be done within the architectural constraints and involves

trade-offs in computation time, memory space, and communications.

62
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Limits do exist when the power of parallel processing is applied to combinatorial

optimization problems [38]. The NP-complete characteristic of a placement algorithm

cannot be changed by the application of parallel processing. If the placement algo-

rithm has an exponential complexity of computation and is not polynomially solvable

by a sequential computer then the advantage of parallel processing is insignificant

unless an exponential number of processors are used. This is, of course, impractical

for large problems. The computational efficiency of solving the placement problem

can be improved in a parallel processing environment; however, the solvable problem

space cannot be expanded. Approximate solutions will still serve as the goal of a

parallel placement algorithm so that it can reach a good solution in a reasonable

amount of time.

The approach of generating a configuration by making multiple (parallel) block

displacements in a simulated annealing process is first discussed. The results obtained

from this study evolve into a parallel placement method applying concurrent simulated

annealing processes on different "regions" of a chip. An explicit mapping scheme is

developed to hierarchically map the building blocks into the different regions. Each of

the chip regions can be handled independently by a simulated annealing process. The

parallelism in this placement method is also discussed. A hardware accelerator imple-

menting the parallel placement method is proposed as the conclusion of this chapter.

4.1 Simulated Annealing Placement with Multiple Displacements

Three exclusive types of parallel processing schemes are currently in use: pipelin-

ing, array processing, and multiprocessing [39]. Different forms of parallel processing

are emphasized in these schemes. Temporal parallelism is exploited by overlapping



computations in pipeline computing. Multiple processing units operating under the

same instruction stream are used in array processing to achieve spatial parallelism.

The multiprocessing schemes have multiple instruction streams over a set of interactive

processors with shared resources such as memories.

The term "block displacement" appearing in the discussion to follow is intended

to cover both the rotation and movement of a block. A simulated annealing process

making multiple displacements to generate a new configuration was studied. The

rationale behind this experiment is based on the observation that only one or two

blocks are displaced to produce a new configuration in the original simulated annealing

process, while a large number of atoms are displaced simultaneously in the metal

annealing process. Therefore, in order to produce a more realistic simulation of the

metal annealing process, a large number of building blocks should be moved or rotated

between two consecutive configurations. A sequential machine is very inefficient in

simulating this effect since all the displacements must be done sequentially and if a

multiple displacement is rejected, many time slots will have been wasted.

Intuitively, multiple block displacements can be made to the layout simultane-

ously in one time slot by a parallel machine. However, the significance of this

approach is its ability to produce new configurations in a simulated annealing process.

In order to discuss its effect, the concept of utilizing a two-dimensional processor array

to represent the chip area is introduced in Figure 4.1. Each node processor in the

array is provided with basic arithmetic/logic functions and a local memory. Communi-

cation paths are provided between a node processor and its immediate neighbors for

interprocessor communications. A master controller is connected to all the node pro-

cessors through a global bus for control and communication purposes.
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Figure 4.1 The concept of utilizing a processor array for the placement problem.
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The PS placement model discussed in Chapter 111 can be implemented on this

processor array. Each slot on the chip, as defined by the FS placement model, is

mapped onto a node processor and thus the entire chip area is represented by the pro.

cessor array. The initial placement is generated by randomly assigning one building

block to an empty node processor. An occupied node processor possesses information

about its resident block, including the identification of its resident block and the loca-

tions of the blocks that have connectivity with its resident block. The node processor

is then able to calculate the wiring lengths of the interconnections involved with its

resident block.

The movement of a building block to an empty slot is performed by transferring

its entire set of information to the node processor that represents that slot. Exchanging

the locations of two blocks is done similarly by exchanging their information between

their host node processors. All displacements are restricted to those between neighbor-

ing slots to reduce the communication traffic between the node processors.

After a new configuration is produced by making multiple concurrent block dis-

placements, the simulated annealing algorithm enters its cost evaluation stage. It has

been mentioned that a node processor can calculate the wiring distances associated

with its resident block; however, its information about the blocks in other slots may be

out-of-date since they may have just been displaced from their locations. The node

processors can, of course, broadcast their up-to—date information to all other processors

before the evaluation is done. This creates a lot of undesirable communication traffic

on the global bus. Recall, however, that the block displacements are in their immedi~

ate neighborhoods and hence their previous locations are good approximations of their

new locations. The node processors can thus use their slightly out-of-date information

to perform the cost calculation.
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The next step is to determine the acceptability of the newly produced

configuration. This can be done either globally or locally. In the global cost evalua-

tion, the node processors report their associated costs to the controller. The controller

sums up the costs and decides whether or not to accept the configuration. It is possi-

ble that the controller will receive different costs for the same connection since their

calculations are carried out redundantly and independently in different node processors

using slightly out-of-date information. The average of the costs for the same connec-

tion can be used by the controller to make its decision.

This global cost evaluation scheme has been simulated on a VAX-8600 to evalu-

ate its performance. The simulation results indicate that this process has a problem in

convergence to a good placement of the building blocks. Moreover, the computation

time of this processor array is found to be worse than that of a sequential machine due

to the overhead required for the sequential broadcast of block information from each

node processor. The reason for this is intuitive; a multiple displaced configuration

may include some cost improving displacements as well as some cost increasing ones.

It is very likely that the cost increasing moves will dominate the evaluation of the

configuration acceptance, especially at the later stage of the annealing process. This

prevents good displacements from being accepted.

Another possible scheme for evaluating a configuration generated by multiple dis-

placements is to consider the cost changes separately for each displacement. The

acceptability of an individual displacement is locally determined by the node processor

involved. An analysis of the possibility of accepting a configuration with this evalua-

tion scheme reveals that it is only an approximation to simulated annealing in which

global cost evaluation is used. The following discussion is based on the assumption

that all block displacements happen within their immediate neighborhoods so that the

calculations based on the slightly out-of-date information are acceptable.
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Since the block displacements are evaluated locally and independently, it is likely

that only some of the block displacements will be accepted and appear in the new

configuration. A configuration produced by the local cost evaluation scheme is con-

sidered and compared to its probability of being accepted in a multiple displacement

simulated annealing process using global cost evaluation. Suppose n blocks are dis-

placed to generate a new configuration and let AC,- indicate the cost change due to the

displacement of block i. Three cases are considered to compare the possibility of

accepting the same configuration in both schemes.

Case 1:

Case 2:

The cost changes induced by the block displacements are AC,- > 0, for

i = 1,..., n, which imply that all of them are cost increasing moves. In the

local cost evaluation scheme, the probability of accepting the displacement

of block i is e'AC’T. The probability of having all the displacements

appearing in the next configuration is the same regardless of whether the

cost is evaluated locally or globally. This probability can be expressed as

n disco/r

P1 - Tie-AC”: e "° . (4.1)

i=1

In the local cost evaluation, there is also a non-zero probability of accept-

ing k out of the n block displacements in the new configuration. Without

the loss of generality, the accepted block displacements are numbered from

1 to k. The probability of accepting these block displacements in the local

cost evaluation scheme is

k

k n -(ZAC.)/I’ n

P; = Tie-AC” n (1 — {AC/T) = e i=° r1 (1 — 6“”). (4.2)
i=1 j=k+l j=k+l

The cost changes resulting from the displacements are AC, 5 0, i = 1,..., n.

These changes indicate that none of the block displacements has worsened
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n

the cost function. Since ZAC, S 0, a configuration with these block dis-

i=1

placements is accepted in either scheme with probability 1.

Mixed displacement costs are produced in this. case. Without the loss of

generality, it is assumed that the cost increasing displacements are num-

bered from 1 to m, while the others improve or at least do not change the

cost function. These cost changes can be expressed as

AC,- > 0, i = 1,..., m and AC} 5 0,j = m+l,..., n. In the local cost evalua-

tion scheme, the diSplacements of blocks j, j = nit-1,..., n, will definitely

be accepted. In addition, assume k out of the m cost increasing displace-

ments are accepted. The probability of accepting such a configuration in

the local cost evaluation is

k

k m ’(ZACM m

P3 = new” II (1 - {AC/T = e H II (1 - [AC/T). (4.3)
i=1 j=k+l j=lc+l

M II

If the cost is evaluated globally and ZAC, + 2 ACJ- S 0, the cost

i=1 j=m+l

improving displacements dominate the cost evaluation and the probability

of accepting all displacements is 1. On the other hand, if

m n

ZAC, + 2 ACj > 0, the global effect of all the displacements is cost

i=1 j=m+l

increasing and the probability of accepting them is

‘(2AC3 + 2 AC)”

jam-l
P4 = e "" (4.4)

The global cost evaluation scheme considers all the displacements at the same

time and they are either totally accepted or totally rejected. In the local cost evalua-

tion, those displacements that improve the cost will definitely be accepted, while the
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cost increasing displacements are handled using probability. This is considered an

advantage of the local cost evaluation, since it will not miss the individual displace-

ments that improve the cost. This feature is especially helpful at the later stages of the

process by avoiding the inferior result obtained in the global cost evaluation scheme.

The capability of locating the optimal configuration is thus enhanced.

The major improvement of the local cost evaluation lies in the fact that several

simulated annealing processes are working in parallel on different regions of the chip.

This improves the speed of convergence since it is similar to evaluating multiple

moves at the same time. But, this approach also suffers from some inherent draw-

backs. The necessity of broadcasting the block information every time a new

configuration is accepted creates a large amount of communication traffic on the global

bus. From the standpoint of hardware, a vital drawback of this approach is that it

needs a node processor to represent each slot. The number of slots defined on a chip

is directly proportional to the chip area and the size of the building blocks. The

number of processors needed to solve a large placement problem may thus become

impractical. Even though future technology may allow the inclusion of a large number

of processors in the same system, the sequential broadcast of information will waste

many working cycles of the processors.

A variation of this multiple displacement simulated annealing with local cost

evaluation is developed to remove these problems. The details of this algorithm and a

hardware accelerator implementing this algorithm are described in the next sections.
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4.2 Parallel Building Block Placement Using Simulated Annealing

In order to reduce the number of node processors the multiple displacement simu-

lated annealing with local cost evaluation proposed in the previous section is extended.

Instead of assigning a single slot to a node processor, a node processor is assigned to a

region of the chip and it executes the simulated annealing process for that region. If

the building blocks that will eventually be placed into a certain area can be predicted

beforehand, they can be handed over to the node processor that is assigned to work at

that region. Unfortunately, the exact location of a building block within a region is

not known to the processors working on other regions unless the time consuming

broadcast scheme is used. However, if the area of a chip assigned to a node processor

is small, the displacement of any building block within that region will be in a small

neighborhood. Whenever a cost evaluation takes into account the blocks in other

regions, the center of a region can be used as an approximation of the locations of the

building blocks within this region. Assuming that the mapping of the building blocks

is satisfactory, then the simulated annealing processes on different regions can be per-

formed independently and hence no communication is required between the node pro-

cessors. Furthermore, a hardware accelerator implementing the processor array will be

more flexible for the placement problem since the number of slots or the area of the

region assigned to each node processor can be easily changed.

The first step in developing this parallel simulated annealing placement process

involves finding an appropriate method to map the building blocks into their proper

regions. The mapping plays an important role in the algorithm and will have a critical

effect on the quality of the final placement. If the blocks mapped into one region

remain there through the entire placement process, they are bound to become neigh-

bors in the final placement. This may or may not be as good a configuration as might
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be determined by a sequential placement process depending upon the quality of the ini-

tial building block mapping. On the other hand, if the building blocks are allowed to

migrate between different regions during the placement procedure, the requirement of

inter-process communication will be tremendous and the presumption of no inter-

processor communication is ruined.

A scheme for explicitly mapping the building blocks to different regions on the

chip is developed in this research. The ultimate objective of this mapping scheme is

to predict and ensure the spatial localities of the building blocks in a layout as would

be produced by a sequential placement process. This means that the blocks mapped

into a region are neighbors within a placement configuration obtained sequentially.

The adverse effect of making multiple displacements and evaluating the cost changes

independently will be minimized if the spatial localities of the building blocks are

predicted and retained by the mapping process. This observation is stated and dis-

cussed in the following proposition.

Proposition 4.1: If the building blocks mapped to a certain region on a chip appear as

neighbors in the placement generated sequentially, then in the parallel placement

method having independent simulated annealing processes working on different chip

regions, the spatial localities between these blocks are retained. In addition, if the spa-

tial localities are retained for all the regions and the relative locations of these regions

are substantially equal to that obtained by a sequential simulated annealing placement

method, then the adverse effect of performing simulated annealing independently in

different regions is minimized.
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Remark: For easy of discussion, the configurations generated by a sequential simu-

lated annealing process and a parallel simulated annealing process are referred to as

sequential placement and parallel placement, respectively. If the number of blocks

mapped to a region approaches the size of the entire problem, the cost of parallel pro-

cessing, or the cost difference between the sequential and the parallel placements,

approaches 0. This is very easy to see since both placements will be exactly the same

when all the blocks are mapped into a single region. When more than one region is

defined on the chip, the cost of a placement can be calculated by considering two fac-

tors:

l. the sum of regional costs, each of which is associated with only the build-

ing blocks in a region; and

2. an inter-regional cost which describes the cost induced by the connectivity

of building blocks in different regions.

Based on the assumption that the blocks mapped to a region appear as neighbors in the

sequential placement, the regional costs in the parallel placement are close to those in

the sequential placement. If the relative locations of the regions in the parallel place-

ment are approximately the same in the sequential placement, then the inter-regional

costs calculated in both placements are also close to each other. The total placement

costs in both methods are substantially equal and thus the adverse effect of parallel

processing is minimized.

The mapping of the building blocks to different regions of a chip is performed in

two steps. The building blocks are first grouped into clusters according to their

predicted spatial localites as would be found by sequential placement and then the

clusters are mapped to different regions on the chip. In order to guarantee the
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satisfaction of Proposition 4.1, the clustering scheme must follow the guidance used in

the sequential placement process. Since the most common cost function for placement

algorithms is the estimated wiring length between the building blocks, the clustering

scheme in this work is based upon the interconnections between the blocks. The rela-

tionship between any pair of blocks can be described by the connectivity between

them. A coherency matrix, which represents the spatial locality between any two

blocks, is used to guide the clustering of the building blocks. The coherency between

two blocks is calculated by considering their interconnections. The rules for the gen-

eration of the coherency matrix are described below.

1. If a connection exists exclusively between two blocks, the coherency

assigned to this connection is 1 unit.

2. If the connection is shared by more than two blocks, the coherency

between any pair of blocks in the group defined by this connection is 1

unit divided by the number of blocks connected.

3. The coherency between any pair of blocks is calculated by summing up all

the coherencies induced by the interconnections between them. If there is

no connection between two blocks, their coherency with respect to each

other is defined as 0.

An example is used to demonstrate the generation of a coherency matrix for a cir-

cuit. The schematic diagram of the example circuit and its corresponding coherency

matrix are shown in Figure 4.2. Each element hi,- of the matrix H describes the

coherency between blocks i and j. As shown in Figure 4.2, the coherency matrix is

symmetric about the diagonal and can be treated as a triangular matrix since the

coherency between blocks i and j is the same as that between blocks j and i.
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Figure 4.2 The generation of a coherency matrix for an example circuit.
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The clustering of the building blocks in a placement problem also belongs to the

class of combinatorial optimization problems and finding optimal clusters is as difficult

as the placement problem itself. Due to the near optimal characteristic of the simu-

lated annealing approach in solving NP-complete problems, it is adopted again for the

clustering scheme developed in this research. The coherency matrix is used to guide

the clustering operation. The algorithm for grouping building blocks into different

clusters is presented in Figure 4.3.

 

Cluster(){

Randomly assign the building blocks into a number of clusters;

/* the number of clusters and the capacity of a cluster are

specified by the designer */

While (stopping criterion is not satisfied)

Rearrange the clustering result according to the principles of

simulated annealing;

/* the movement set includes moving a building block to a new cluster

and swapping the ownerships of two blocks; the cost function is

defined by the inter-cluster coherency, the intra-cluster coherency,

and the block area in the clusters */

  
 

Figure 4.3 The algorithm for clustering a placement problem.

The clustering algorithm accepts two parameters from the designer: the number

of desired clusters and the maximum capacity of a cluster. The capacity of a cluster

can also be determined automatically as [n/r], where n is the number of blocks in a

placement problem and r is the number of desirable clusters. Two types of move-

ments are used to modify a clustering result to generate a new state in the simulated

annealing process:
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moving a building block from its original cluster to another non-full clus-

ter; and

swapping the ownership of two building blocks among two clusters.

The objective of simulated annealing in this clustering process is to maximize the

intra—cluster coherency or to minimize the inter-cluster coherency, while maintaining

the balance between the block area in different clusters. This objective is based on the

following considerations.

1. It is desirable that the coherency between the clusters become null. If this

is possible, an ideal clustering result is produced. The building blocks of

the circuit are mapped into independent subcircuits which can be annealed

independently. The parallel placement method does not affect the place-

ment cost at all. This strategy is implemented by including a term,

2hr}: for all blocks i and j not in the same cluster,

131'

in the cost function of the building block clustering process, where hi]- is

the coherency between blocks i and j.

Restating condition No. l, the aim is to maximize the intra-cluster

coherency of all the clusters under the constraint that each cluster has an 3

upper limit on the number of blocks that it can hold. The sum of all the

elements in a coherency matrix is a constant since the circuit connectivity

is fixed. The maximization of the intra-cluster coherencies is equivalent to

the minimization of the inter-cluster coherency. The constraint on the

capacity of a cluster is necessary since the intra-cluster coherency will

definitely be maximized when all the blocks are put into a single region.

This term can be defined as
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1

I0!

2 Zkhjk

i=1 j,

, for all blocks j and k in cluster i,

where G is the set of all clusters, and IGI is thenumber of desired clusters.

3. The block areas in all the clusters should be approximately equal. This

will facilitate the application of the previously described FS model, which

requires that the blocks to be placed have approximately equal sizes. This

consideration is implemented as a term in the cost function, defined as

53Mi - Aavel:

i=1

where A; is the total block area of cluster i, and Ann is the average block

area of all the non-empty clusters.

The reasoning behind this clustering scheme is based on the ultimate goal of a

placement process, which states that the blocks strongly connected should be placed

close to each other. The clustering scheme maximizes the intra—cluster connectivities

and hence the blocks clustered together as neighbors in the final configuration are

strongly connected.

Once the building blocks have been clustered into groups, the next step is to

assign these clusters to different regions of the chip. This assignment must be done in

a manner such that the relative locations of the clusters in the parallel placement

resemble the sequential placement result. A simplified version of the FS placement

algorithm is applied to establish the relative locations of the clusters on a chip by con-

sidering the clusters as superblocks and thus place them into different regions of the

chip.

It is desirable that the maximum number of building blocks in a region be small

enough so that the assumption of neighborhood displacements is satisfied. For large
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placement problems, the number of clusters generated by the clustering scheme may be

too large for the FS placement algorithm to operate upon efficiently. A hierarchical

clustering method is applied to solve this problem, the concept of which is illustrated

in Figure 4.4. The clustering scheme can be applied hierarchically and repeatedly by

considering the clusters generated at one level as superblocks for the clustering process

at next higher level. Only the inter-cluster connections are considered in the clustering

operation for the next higher level. A tree structure is then created to guide the map-

ping process. The root indicates the final chip and the leaves of the tree represent the

building blocks. The number of levels in the mapping hierarchy is determined by

working from the leaves toward the root until the number of clusters in one level is

appropriate for the FS placement algorithm.

Chip

{.__.

M

I... 0000000000...-

ClustersJ

  

 

 

000000

        

oooooounoooooo III-coo

BuildingBlocks

Figure 4.4 A hierarchy for the clustering and mapping processes.
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A top-down approach using the hierarchy generated by the clustering process is

used to map the building blocks to different regions of the chip. For each level in the

mapping hierarchy, the inter-cluster interconnections are used to determine the relative

locations of the clusters, which are used along with the intra-cluster interconnections to

perform the mapping operation at next lower level. Notice that the intra-cluster inter-

connections at one level are considered as inter-cluster interconnections at the next

lower level.

The relative locations of the clusters in one level of the hierarchy are established

using a simplified version of the FS placement algorithm. The F3 placement algorithm

requires knowledge of the sizes of the clusters and the inter-cluster terminal locations.

The cluster sizes are used to define the slot array while the inter-cluster terminal loca-

tions are necessary for considering different orientations of the clusters. The members

within the clusters have yet to be placed at this stage and hence neither the cluster

sizes nor the terminal locations for inter-cluster connections are known. If the chip is

assumed to have unlimited area, one possible approach is to define the slot size arbi-

trarily and apply the FS placement algorithm on this array. However, in a more practi-

cal case, having limited chip area, an underestimated slot size will create a

configuration which requires an area larger than the chip. This result can be seen by

considering that the number of slots in one column (row) of the array is obtained by

dividing the length (width) of the chip by the length of a slot. The largest total block

area in a cluster is used to give a reasonable estimation of the slot size. All the inter-

cluster interconnections are temporarily considered to emerge from the center of the

slots which hold their respective clusters.

An FS placement algorithm with a reduced set of possible movements is then

applied to this level of mapping in the hierarchy. Since the wiring length is calculated

by using the slot centers as starting and terminating points, the changes in cluster
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orientations will not affect the wiring distance and thus are not considered in the FS

placement algorithm. When the FS algorithm converges, the relative locations of the

clusters on a chip are determined. The cluster orientations will be considered by the

mapping performed at the next lower level.

After the relative locations of the clusters at one level are determined, the process

continues to perform the mappings of the members in these clusters. The chip region

allocated for the members of a cluster is determined by the slot size defined at the next

higher level.

Recall that it was impossible to determine the best orientations of the clusters in

the previous mapping process since all the calculations of wiring length are done with

respect to the cluster centers. When the mapping of the members of a cluster is per-

formed, the information about the relative locations of the clusters is available and is

utilized to consider the orientations of the clusters. The first step is to define the ter-

minal locations on the region assigned for a cluster for the inter-cluster interconnec-

tions. The relative locations of the clusters indicate approximately the direction in

which an inter-cluster connection will enter or leave. The members in a cluster can be

mapped to locations so that the inter-cluster connections are minimized in their respec-

tive directions and thus their costs are reduced. The consideration of the inter-cluster

connections in the intra-cluster mapping takes the orientations of the clusters into

account. The inter-cluster terminals are defined, using the information of the relative

cluster locations, according to the following rules. Some examples of defining inter-

cluster terminals are provided in Figures 4.5a and 4.5b.

1. If an inter-cluster interconnection only involves with two clusters, then a

terminal is set up for this connection at the intersection of the region

boundary and the line connecting the centers of both clusters.
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Inter-cluster Terminals
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(a)
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(b)

Figure 4.5 Some examples of defining inter-cluster terminals, (a) an inter-cluster in-

terconnection involving only two clusters, and (b) an inter-cluster intercon-

nection involving more than two clusters.
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2. If an inter-cluster interconnection involves more than two clusters, the

determination of the location at which it enters or leaves the cluster is

non-trivial. The concept of a center of mass is applied to determine the

approximate locations of the inter-cluster terminals. The inter-cluster con-

nection is first decomposed into several interconnections, each of which

connects the center of the cluster under consideration to that of another

cluster. Imaginary unit masses are placed at the intersections of these con-

nections with the region boundary. An inter-cluster terminal is set up at

the center of mass for these intersections. Assume that there are k inter-

sections p,(x,-, Yr), i =1,..., k, where x,- and y,- are the x- and y-coordinates of

intersection pi. The location of the inter-cluster terminal defined for this

connection is calculated as

x, = — (4.5a)

and

y! = —’ (45b)

where x, and y, are the coordinates of the inter-cluster terminal.

The PS placement algorithm is then utilized to map the members of a cluster into

its region. In addition to the consideration of the intra-cluster connections between the

members, the wiring distances to and from the inter-cluster terminals are also included

in the cost evaluation.

The mapping of the building blocks in a placement problem to their respective

chip regions is now complete. The remaining task of the placement process is to
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apply simulated annealing to the chip regions to determine the locations of the building

blocks. The terminals on the boundary of a region are defined for inter-regional con-

nections using the same rules described above for the inter-cluster connections. Simu-

lated annealing processes are then performed on all the regions in parallel to determine

the final configuration. If the number of available processing units is less than the

number of regions defined on the chip, the multiple displacement simulated annealing

processes can be applied sequentially to different parts of the chip. This concept is

illustrated in Figure 4.6.

 
/‘

Chip
Regions

Figure 4.6 The application of simulated annealing to different parts of a chip.
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4.3 Degree of Parallelism

One important criterion in the evaluation of a parallel algorithm is a consideration

of the degree of parallelism within the algorithm. The degree of parallelism in an

algorithm determines the amount of speedup in computation time obtainable in a paral-

lel processing environment.

The parallel placement method can be described as a mapping process, which

includes block clustering, the mapping of the clusters into different regions of the chip,

and the concurrent simulated annealing processes. The clustering has to be done

hierarchically and sequentially; however, experiments show that the computation time

required by the clustering operation is insignificant in comparison to the total place-

ment time. The mapping operations at the same level can be performed independently

and in parallel. Whenever the relative locations of the clusters at one level of the

hierarchy are established, the construction of the inter-cluster terminals for the cluster

area can also be done in parallel for all the clusters. This implies that this approach is

especially suitable for parallel processing.

To further investigate the potential of this approach in a parallel environment, the

placement method is simulated and compared against a sequential placement method.

The two parameters of interest in this comparison are the placement acceleration and

the rate of processor utilization. The results of these comparisons are graphed in Fig-

ures 4.7 and 4.8, respectively.

Assume the placement algorithm has a computational complexity of 0(n), where

n is the number of blocks in the placement problem. This is the lower bound of the

computation complexity of any placement algorithm. Let the time required for the

placement of n building blocks be n time units. In the case of the parallel placement
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Figure 4.7 Acceleration obtained by the parallel placement method.
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Figure 4.8 Processor utilization rate for the parallel placement method.
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method, the capacity of a cluster is set as M = 50, while different numbers of process-

ing units, P = 5, 10, and 20, are considered in the comparisons. The computation

times for the parallel placement method are generated by performing the mappings or

placements at the same level of the hierarchy in parallel. For a placement problem

with n building blocks, the number of levels in the hierarchy is

L = [logMn]. (4.6)

The time required for completion of the parallel placement is given by

L

T = 2T5, (4.7)

i=1

where T,- is the time required to finish one level of mapping or placement. The time

consumed in one level of the hierarchy depends on the number of jobs at this level,

which is defined iteratively by

 

J

J,- = , i = 1,..., L, and JL+1 = n, (4.8)

where J,-is the number of jobs performed at level i. After the number of jobs has

been determined, the time required by one level of the hierarchy can be expressed as

T _ M, if J,- 5 P,

1" AIM/P], if 1, > P. (49)

In Figure 4.7, the acceleration of the parallel placement method is calculated by

dividing the time required by the sequential method by that of the parallel method.

The curves for processor utilization shown in Figure 4.8 are generated in the following

manner. At each level of the hierarchy, the processor utilization is defined as the total

working time of the processors divided by the time spent at that level. The processor

utilization for the entire parallel placement process is defined as
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L

2W1

i=1
= —, 4.10T ( )

where W,- is the working time of the processors in level i and is defined as

w. = _...., (4.11)

The comparisons shown in Figures 4.7 and 4.8 demonstrate the significant

speedup and the high processor utilization rate when the parallel placement method is

implemented in a parallel processing environment. The larger the number of building

blocks in a placement problem, the greater the Speedup that can be achieved from this

placement method with multiple displacement simulated annealing. The utilization rate

of the processors also approaches 100% when the number of building blocks greatly

exceeds the number of processors.

4.4 Hardware Accelerator

The parallel placement method and its associated mapping scheme have been

described. After the building blocks are clustered hierarchically, the placement process

describes levels of mappings or placements. At each level of the hierarchy, the opera-

tion includes the generation of inter-cluster terminals for each cluster and the mappings

of their members. Both of these Operations can be done for all the clusters in parallel.

Best of all, operations in one cluster are independent of those in other clusters. The

number of available processors can be increased to reduce the number of blocks in one

region for a large placement problem. For generality, the discussion in the previous

section assumed a multiple level hierarchy. The increment of processors will, of
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course, affect their utilization rate, especially at the upper levels of the hierarchy when

the number of clusters is less. But, from a practical point of view, if the placement

algorithm is designed to handle 50 building blocks at a time, only a two-level hierar-

chy is needed to guide the placement of 2,500 building blocks. The blocks are

grouped into 50 clusters, each of which contains 50 blocks, and the FS placement

algorithm is used to map these clusters into different regions for concurrent simulated

annealing.

A general-purpose multiprocessor can be used to implement this parallel place-

ment method. This type of computing facility is, however, very expensive at present.

The current trend of VLSI design automation is to have all the design steps handled by

a workstation, which is relatively inexpensive. It is not economical to dedicate a gen-

eral purpose multiprocessor system for the placement problem. Furthermore, the com-

puting resources in a general purpose multiprocessor could be under-utilized for this

placement method. Multiprocessors generally provide data paths with associated con-

trol mechanisms for inter-processor communication. This is not necessary for the

parallel placement method since all the placements performed in different regions are

independent. In addition, the architecture of the processing units in a general purpose

multiprocessor is designed to be universal and not customized for the specific opera-

tions of the placement problem. Finally, it is not easy to increase the number of pro-

cessing units in a general purpose multiprocessor. These observations justify the pro-

posal of a special purpose multiprocessor for the hierarchical placement problem.
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4.4.1 Processor Array

The structure of a processor array for the placement process is proposed in Figure

4.9, which is designed according to the requirements of placement with multiple dis-

placement simulated annealing. It consists of a two-dimensional array of processing

units. Each processing unit possesses the basic computation capability to perform the

simulated annealing process. In contrast to the structure introduced in Figure 4.1,

there is no direct communication path provided between the node processors. A con-

trolling microprocessor is connected to all the node processors through a global bus.

This is provided to execute the block clustering, which has to be done sequentially,

and to assign the building blocks to their respective host processors. The controlling

microprocessor also acts as an interface between the processor array and the host CAE

workstation.

If there are only two levels of hierarchy in the placement problem, the Operation

of the processor array is very simple. After the mapping scheme is completed, the

building blocks are assigned to the node processors handling their respective chip

regions. The simulated annealing process executed within the node processors deter—

mines their locations within those regions. Finally, the locations and orientations of

the building blocks are reported to the CAB workstation through the global bus under

the control of the microprocessor. On the other hand, if there are more than two levels

in the placement hierarchy, the microprocessor has the responsibility of assigning jobs

to the node processors to fully utilize them for each level of mapping in the hierarchy.

The processor array can be implemented in a VLSI-based structure. If a larger

array is needed, it can be constructed easily by combining several chips on a board to

form a bigger accelerator so that a large chip design can be handled in one run. This

board level hardware accelerator is shown in Figure 4.10.



92

 

 

 

 

          

 

 

 
 

 

 

          

7-PU "PUT‘PU hJPU L1-PU

  

 

          

 

 

          

 
 

          

 

      
   
 

 

1

Global Bus

Microprocessor

   

PU: Processing Unit

Figure 4.9 The structure of a processor array for the parallel placement process.
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4.4.2 Node Processor (PU) Details

All the node processors (PUs) in the array are the same. The entire array can be

built by duplication of the PUs on a chip. In order to define an architecture for a node

processor, the required operations of the simulated annealing process are considered.

In the process described in Section 2.4, many Operations, such as the selection of block

displacement and the decision of accepting or rejecting a configuration, require the

generation of random numbers. A hardware pseudo random number generator is there-

fore necessary. Random numbers can be generated by means of a simple circuit called

an autonomous linear feedback shift register. This is a series connection of D flip-

flops with no external inputs and with all feedback provided by means of exclusive-OR

gates (XORs) [40].

Most of the computation time is consumed in the parallel simulated annealing of

the chip regions. To further accelerate the simulated annealing process executed in a

node processor, the inherent parallelism in the process is utilized, As in the Tim-

berWolf package, the orientation change of a building block is only considered after its

movement is rejected. The orientation change of a building block can only slightly

change the cost and thus the process should concentrate on the movement of blocks,

especially at early stages of the placement process. At the later stages of the annealing

process, the locations of the building blocks are almost fixed. The process then should

concentrate on the orientation changes of the blocks. The method of rotating blocks

only after movement is rejected automatically takes these considerations into account.

This was also followed in this research. Further study revealed that the rotation of a

block is totally independent of any previous movement. The rotation of a block is

based on the original block information, it is not considered at all if the block has been

moved to a new location.
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In the later stages of the process, the rejection of block movements becomes quite

common since the layout is approaching its near-optimal configuration. Figure 4.11

lists the steps used in both block movement and rotation. Both operations require

almost the same amount of computation and thus consume approximately the same

time. This observation indicates that an iteration in which a block movement is

rejected will take a computation time twice as long as an iteration in which a block

movement is accepted. The annealing process concentrates on the iterations with

rejected block movement when the pseudo temperature approaches 0. This suggests

that the block movement and rotation can be performed concurrently within a node

processor. A block diagram of a node processor implementing these concurrent opera-

tions is shown in Figure 4.12. The rotation result is immediately available after a

block movement is rejected. If the block movement is accepted, the rotation result is

simply discarded. The concurrent generations of block movement and rotation will

speed up the simulated annealing process, especially in its later stages. When the node

processors are used for the mapping of clusters, the rotation generation mechanism is

turned Off since the rotation of clusters is not considered.

Local memory is provided in a node processor to store the necessary database.

The most convenient format for representing the location and orientation of a building

block is to use the transformation matrix

f t t
T=[ll 12 13], (4.12)

t21 t22 t23

where the orientation of the block is indicated by I“, :12, :21, and t22, and its location

is indicated by In, and t23. The present coordinates of any point on a building block

x’ ‘11 t12 ‘13 x
I = , 4.13

[y ] [‘21‘22 t23] [’1’] ( )

can be calculated by
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where x’ and y’ are the new coordinates of a point, designated originally by x and y.

The calculation of the movement and rotation of a block generally involves the multi-

plication of matrices. It is therefore necessary to include a suitable architecture to han-

dle matrix multiplication rapidly in a node processor. Several such architecture are

available in the literature [41, 42].



CHAPTER V

TEST RESULTS AND CONCLUSIONS

The partitioning and acceleration approaches developed for improving the build-

ing block placement process in VLSI design have been presented. In this chapter, the

comparison of these approaches for practical design cases is presented and discussed.

In order to evaluate the performance of these approaches, a benchmark is established

using the concepts of the TimberWolf package [8]. As described in Chapter II, Tim-

berWolf is an integrated set of placement and routing programs. The placement and

global routing cost estimation algorithms are incorporated in the benchmark. The

results obtained from the approaches developed in this research are compared against

the benchmark. These results verify numerically that a significant amount of accelera-

tion of the building block placement process using simulated annealing has been

obtained at a very modest increase in cost. Finally, future trends in the VLSI design

automation related to this research are discussed.

5.1 Design Cases

The new placement problem model has been tested on five design cases with

varying numbers of building blocks and connectivities. The building blocks involved

in these design cases are functional blocks with different sizes as typically used in a

VLSI custom design. The complexity of these building blocks ranges from a logic

99
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inverter to an exclusive-OR (XOR) gate. All the building blocks in the library have

been created on a Sun-3 workstation using Magic, the graphic layout tool developed at

University of California at Berkeley [16]. SCMOS (Scalable Complimentary Metal

Oxide Semiconductor) technology with double metal layer was used.

Two examples of the building blocks in this library, an inverter and a three-input

NOR gate, are provided in Figure 5.1. After the internal structure of a functional cir-

cuit is laid out, the smallest rectangle that encloses the circuit is defined as the build-

ing block and the locations of its input/output terminals are indicated on its boundary.

The rectangles enclosing the building blocks are also shown in Figure 5.1. These rec-

tangles are treated as black boxes with fixed input/output terminals in the placement

process.

The first and second design cases used in this research are of the same function, a

l-bit full adder, but they are constructed using different components. Figure 5.2 shows

the schematic logic diagrams of these two full adder implementations [43]. The third

design case chosen is a 4-bit BCLA (Block Carry Lookahead) unit. with block carry

generate/propagation functions [44]. Its schematic logic circuit is provided in Figure

5.3. The fourth design case is a 4-bit ALU (Arithmetic Logic Unit) with carry looka-

head as shown in Figure 5.4 [45]. In order to test the performance of the proposed

approaches working on a design case with a larger number of building blocks, an

artificial test case is created by expanding the ALU circuit (Design Case No. 4). The

last design case is provided by duplicating the ALU circuit 5 times to generate a cir-

cuit with a few hundred building blocks and interconnections. The parameters of these

design cases, consisting of the number of building blocks and interconnecting nets, are

listed in Table 5.1.
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Figure 5.2 The schematic diagrams of two implementations of a l-bit full adder [43].
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Figure 5.3 The schematic diagram of a 4-bit BCLA [44].
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Table 5.1. Parameters of the design cases tested in this research.

Case No. Circuit Name No. of Building Blocks No. of Nets

l Full Adder l 5 6

2 Full Adder 2 17 18

3 BCLA 28 31

4 ALU 80 87

5 ALU X 5 400 435      
 

5.2 Implementation of Test Programs

Test programs were developed to implement the approaches presented in the pre-

vious chapters. They include the FS and FSWPB algorithms utilizing the new place-

ment problem model (Section 3.2), and the parallel placement method (Section 4.2).

In this section the implementation description of the placement process in these pro-

grams and the benchmark is discussed. The specific details are described in later sec-

tions along with their results. All test programs and the benchmark are coded in the C

language and the results were obtained on a VAX 8600 operating under UNIX. The

data structure and details of the test programs are designed to be as close as possible

to the benchmark program to make the comparison meaningful.
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5.2.1 New Configuration Generation

The programs begin with a random initial placement configuration. A new

configuration is generated by introducing small random modifications to the present

configuration. Both the benchmark and the test programs implement the same set of

possible modifications. Permitted movements in the problem space consist of moving

a block to a new location, exchanging the locations of two blocks, rotating a block by

multiples of 90°, and mirror imaging a block. This set of movements is rich enough to

reach all possible solutions.

The building blocks (including the submodules in the case of the FSWPB algo-

rithm) are numbered from 1 to n, where n is the number of building blocks. The gen-

eration of a new configuration is determined by two random numbers. An initial ran-

dom number, between 1 and n is generated. The block with that number is then

picked for movement. The TimberWolf package chose 5 to be the ratio of single block

displacements to block interchanges [8]. This ratio is also implemented in this

research to make the comparison meaningful. The generation of the second random

number is weighted to produce the desired ratio. This occurs by generating a random

number between 1 and m, where m is n multiplied by the desired ratio. If the two

numbers selected both represent blocks, then the pair of blocks are interchanged to

generate a new configuration. Otherwise, if the second number selected does not

represent a block, the block indicated by the first number is moved to a new location.

In the benchmark program, the new location is randomly picked by generating two

numbers within the coordinate system of the chip, while in the programs of this

research, an empty slot is chosen randomly to accommodate the block to be moved. If

this new configuration is rejected, then an orientation change of the first block chosen

is attempted. Five orientation changes of a building block are considered in the
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programs: rotating a block (by 90°, 180°, and 270”), and mirror imaging a block (left

right and upside-down). A random number between 0 and 4 is generated to select the

type of orientation change.

In the later stages of the simulated annealing process, when the value of the

pseudo-temperature approaches zero, the displacement of a block has very little chance

of being accepted unless the displacement is very local. Similarly, an exchange of dis-

tant blocks has a slim chance of being accepted. Hence, it is more efficient to employ

a range limiter, which limits the range of the displacement of a block during the later

stages of the simulated annealing process.

5.2.2 Cost Function

The cost of a configuration is defined as the total estimated wire length, approxi-

mated by summing the estimated lengths of all interconnecting nets.) The wire length

of an interconnecting net is estimated by one half of the perimeter of the smallest rec-

tangle that encloses all the terminals involved in the net. This cost function can be

expressed as

k

c=za, on
i=1

where C is the cost of a configuration, k is the number of interconnecting nets, and L,-

is the estimated wiring length of net i. Following TimberWolf, the cost function in the

benchmark program includes a second portion consisting of a total sum of overlap

penalties to deal with the block overlap [8]. This cost function can be expressed as

A2k

Cb=£Li+—i:,

i=1

(5.2)
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where Cb is the cost of a configuration, It is the number of interconnecting nets, L, is

the estimated wiring length of net i, A is the total overlap area, and T is the pseudo-

temperature. According to this cost function, the penalty on the overlap area becomes

more severe as the pseudo-temperature decreases.

5.2.3 Pseudo-Temperature

In the current implementation of the test programs and the benchmark, the

pseudo-temperature is decreased according to equation (2.2). The best results have

been obtained by introducing a variable or. The assignment of or is summarized in the

following equation.

0.85 if T 2 100,

or = 0.95 if 100 > T 240, (5.3)

0.8 if T < 40.

For the annealing process implemented in this research, the pseudo-temperature is

assigned to be T = 1000 at the beginning of the process.

5.2.4 Inner Loop Criterion

The inner loop criterion is implemented by the specification of the number of new

configurations generated for each stage of the annealing process. This number is

specified as a multiple of the number of building blocks for the placement problem.

For the approaches developed in this research, 20 new configurations per block are

generated at each stage. The benchmark program has many more degrees of freedom
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(movement to any location on the chip), and hence 100 new configurations are gen-

erated per block at each stage.

5.2.5 Stopping Criterion

The stopping criterion is implemented by recording the cost function’s value at

the end of each stage of the annealing process. The stopping criterion is satisfied

when the cost function’s value has not changed for 5 consecutive stages. In the

FSWPB algorithm utilizing the new placement problem model, the stopping criterion

for the process is temperorarily ignored prior to a user-specified switching temperature,

at which the large blocks are partitioned and the chip slots are redefined.

5.3 New Problem Model Result

The PS and FSWPB algorithms applying the new placement problem model to

the simulated annealing process have been tested. Partitioning of the building blocks

is not used in the first approach (FS) and the chip is divided into an array of slots,

each of which is large enough to hold the largest building block. This approach is

especially suited to applications for which the blocks are approximately the same size.

The second approach (FSWPB), more appropriate for the building blocks with varied

sizes, starts the placement process as in the first approach with a slot size determined

by the largest building block. The stopping criterion, however, is temporarily ignored

until a user specified switching temperature is reached. At the switching temperature,

the building blocks are partitioned into submodules with pseudo interconnections and
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the configuration at that temperature is used as the initial placement for the remaining

stages.

The programs have been tested on the design cases discussed above in Table 5.1.

The test results of these two approaches, including the placement cost and CPU time,

are listed in Tables 5.2 and 5.3. As explained in the previous sections, the new place-

ment model reduces the solution space of the problem. Using the new model, the pro-

grams need to generate only 20 new configurations per block at each temperature stage

to produce final results comparable to the benchmark program that generates 100 new

configurations per block at each temperature. For the test results obtained with parti-

tioned blocks, the switching temperature is set at T = 20. The cost of the pseudo-

interconnections is calculated by C2/T, where C is the estimated wiring length due to

the pseudo-interconnections and T is the temperature. The time and cost comparison

ratios are calculated by dividing the computation times and costs, respectively, by

those obtained from the benchmark.

In all the design cases presented and other cases that have been tested, the place-

ment costs, defined by the total estimated wiring distance, are comparable to the costs

obtained in the benchmark; however, the computation time has been significantly

reduced by applying this new model. This is expected due to the reduction of the

solution space. In addition, the computations of overlap area and the penalty term are

eliminated. The fact that a reduced number of new configurations per building block

are generated allows the algorithm to converge to a near optimal solution much faster.

It has been found that the switching temperature plays an important role in deter-

mining the performance. Experiments show that too high a switching temperature, i.e.,

partitioning the blocks at the beginning of the annealing process, produces inferior

results. A small number of submodules may not be able to cluster into neighbor loca-

tions. This problem can be explained by the fact that the method of simulated
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Table 5.2. The test results of the FS algorithm.

 

 

 

 

 

 

 

       

FS Benchmark Comparison Ratio

Design Case Time Time

Cost Cost Time Cost

(mins.) (mins.)

1 0.08 335 0.97 266 0.082 1.33

2 0.75 1470 19.91 1259 0.038 1.17

3 0.77 3058 81.27 2088 0.009 1.46

4 5.24 13640 149.69 10971 0.035 1.24

5 70.21 85182 2033.23 63859 0.035 1.33

 
 

annealing is developed with statistics. In the FSWPB, this problem is solved by the

establishment of a switching temperature. The placement is divided into two phases,

the first phase develops the relative locations of the building blocks and the second

phase shakes the configuration to further improve the placement cost and reduce the

chip area.

The increased number of blocks and larger connectivities caused by the partition-

ing of building blocks into submodules has an adverse effect on the computation time.

In the design cases tested, the size of the placement problem is enlarged about five

times after the partitioning. The computation times still favor this model and thus this

effect can be compensated for by the significant gain in computation speed.
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Table 5.3. The test results of the FSWPB algorithm.

 

 

 

 

 

 

 

FSWPB Benchmark Comparison Ratio

Design Case Time Time

Cost Cost Time Cost

(mins.) (mins.)

1 0.21 276 0.97 266 0.216 1.037

2 1.14 1365 19.91 1259 0.057 1.084

3 0.92 2185 81.27 2088 0.011 1.046

4 7.73 11671 149.69 10971 0.052 1.064

5 166.76 68521 2033.23 63859 0.082 1.073         
 

5.4 Parallel Placement Result

The parallel placement method and the associated mapping scheme are tested on

Design Cases 1 to 4. As mentioned in Section 4.2, the generation of the coherency

matrix has to follow the definition of the cost function to ensure the reservation of the

spatial localities in the configuration. Since the placement cost is determined by the

estimated total wiring length, the coherency between building blocks is calculated by

their interconnections. If an exclusive connection exists between two blocks, the

coherency assigned to this connections is one unit. Otherwise, the connection involves

more than two blocks. The coherency between any two blocks in the group defined by
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this connection is the reciprocal of the number of blocks connected.

The PS placement results generated in Section 5.3 for Design Cases 1 to 4 are

presented in Figures 5.5 to 5.8. The clusters of building blocks constructed by the

mapping scheme are shown in these figures by different shadings. As demonstrated by

the mapping results, the spatial localities of a placement configurations are retained in

the partitioning scheme. The blocks clustered as a group are neighbors in the

configuration generated sequentially. Thus, the undesired effect of partitioning the

placement problem is minimized.

 

     KAI/1Z4

£533

 

       

Figure 5.5 The mapping result of Design Case No. 1 on its FS placement.

After the mapping operation is completed, the parallel placement method

described in Section 4.2 is applied to find the relative locations of the clusters and the

locations of the blocks within their respective clusters. The inter-cluster connections

are used to determine the relative locations of the clusters, which are used along with

the intra-cluster connections to place the blocks within a cluster. Tables 5.4 provides

the test results in all 4 design cases.

As indicated in the test results, the mapping scheme has the capability of discov-

ering and retaining the spatial localities in the placement problem. Finally, the



114

 

 

  
 
 

 

 

  

  

    

  

  
'0
~ ‘\ A

r

we: to:
lemma

l
l
L
l

I
l
l

  
             

Figure 5.7 The mapping result of Design Case No. 3 on its FS placement.

hierarchical placement method generates configurations for the design cases, the costs

of which are comparable to those obtained sequentially but with a significantly reduced

computation time.
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Figure 5.8 The mapping result of Design Case No. 4 on its FS placement.
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Table 5.4. The results of the parallel placement method.

 

 

 

 

 

 

Parallel Benchmark Comparison Ratio

Design

No. of Time Time

Cost Cost Time Cost

Case Processors (mins.) (mins.)

1 2 0.048 392 0.97 266 0.049 1.47

2 3 0.19 1366 19.91 1259 0.010 1.08

3 5 0.20 2805 81 .27 2088 0.002 1.34

4 9 1.6 14132 149.69 10971 0.011 1.29         
 

5.5 Contributions

The building block placement process using simulated annealing has been

accelerated and improved in a number of ways in this research. A new model for

representing the placement problem in a CAB system was presented in Section 3.2.

The critical contribution of this model is that the size of the problem space in a simu-

lated annealing placement process was significantly reduced so that the process con-

verges to a near-optimal solution more rapidly. In addition, the drawbacks of the con-

ventional models are eliminated without sacrificing their advantages. Several goals

have been achieved by this model. The sizes and the shapes of the building blocks

and their terminal locations are considered. By taking this information into considera-

tion, the placement process can produce a more practical configuration with increased
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routability. Moreover, this model saves the overhead required to eliminate overlap

between building blocks during or after the placement process. Finally, it is applicable

to any hierarchical VLSI design methodology.

Two improved building block placement algorithms using simulated annealing,

which implement this placement problem model, are developed in this research. The

performance, including the placement quality and the computation time, of these algo-

rithms was tested and evaluated. Test results on different examples show that the

placement results are comparable to those obtained by the benchmark program and the

computation time is reduced by more than an order of magnitude.

An eXplicit mapping scheme for the building block placement problem was

developed. This mapping scheme locates the clusters of neighbor building blocks on a

placement configuration produced sequentially. By means of anticipating the building

block clusters in the layout, the spatial localities of building blocks are thus retained

and the effect of partitioning the placement problem is minimized. The mapping

scheme maps the building blocks into different regions of a chip so that concurrent

simulated annealing process can be applied to the placement problem. A parallel

simulated annealing placement method was also developed and tested. The placement

results obtained for the test cases are degraded, in the worse case, by a factor of about

50%. But, the computation time of the placement process is shown to be reduced by

as much as 2 orders-of-magnitude. Even though this represents testing on only several

cases and is not rigorously proven, the evidence once again indicates a balance of

modest placement degradation contrasted to orders-of-magnitude time savings.

Finally, the architecture of a VLSI placement engine which applies the power of

parallel processing to building block placement problem is proposed and discussed in

Section 4.4. The placement engine requires only a few different, simple processing

elements so that its design and test can be simplified. The design is also modular and
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extensible, so one can create a large processor by combining the designs of smaller

cells and/or chips. The placement engine can be utilized as a coprocessor in a CAB

system for any VLSI design technology.

The approaches developed in this dissertation can easily be adapted for use in

other placement algorithms. However, due to the near optimum characteristic of the

simulated annealing process, they are especially suitable for use in this class of algo-

rithms.

5.6 Trends in VLSI Design Automation and Future Study

There is a strong relationship between VLSI technology and CAB tools. As the

density of components on a VLSI-based structure grows, the design process, especially

the physical design stage, becomes heavily dependent on automated design tools.

Better CAB tools will facilitate the improvement of VLSI technology, and vice versa.

Several approaches for the improvement of the building block placement process in

VLSI design have been studied in this dissertation. In order to reduce the overhead of

a general purpose computer, the architecture of a dedicated VLSI placement engine is

proposed in this work. The implementation of this placement engine onto an ASIC

and its evaluation are thus an essential next step of this research.

Further improvement can be made to the placement algorithms provided in this

research. Due to the wasted area in the slots defined in the new model of this

research, the wiring distance is generally higher than that of an Optimal result After a

configuration is established, a good compaction scheme can be used following the

placement to reduce the wasted chip area between the building blocks. The compac-

tion of a configuration, which is also an NP-complete combinatorial optimization
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problem, is at least as hard as the placement process itself. The traditional heuristic

compaction schemes suffer from the local minimum problem and often destroy the

optimal relationships between the blocks on the chip generated by the placement pro-

cess. The simulated annealing approach should be a goOd means to attack this prob-

lem, and should be further examined.

It is impossible to produce a good placement configuration without taking the

later routing process into consideration. This observation is quite easy to understand

since a placement process does not complete the design problem until the router can

successfully finish the connections between the building modules. The traditional

research in VLSI design automation studies the placement and routing problems

separately, which is quite impractical. A future research direction in this area is to

combine the placement and routing into one process to produce a more practical

configuration.

One major problem arises in the routing process when the router determines that

the space, or channel, reserved for the routing in a certain area is not sufficient to com-

plete all the necessary interconnections. When this situation occurs, the router has

several choices. The router can quit and inform the designer that the routing cannot

proceed further. The designer can try to complete the routing manually. The router

can also rip up some of the connections and reroute the wires in the neighborhood. It

is very likely that no matter how hard the designer or the router tries, the routing will

fail eventually. The configuration must then be rearranged to provide more space in

the congested area for the interconnections. In a combined placement and routing pro-

cess, the placement process can accurately anticipate the routability of the

configuration so that it produces and guarantees 100% routability. The compaction

and expansion of a configuration will play an important role in this process. When it

is determined that a certain area is too congested for routing, the building blocks in
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that area can be moved apart (i.e., expansion) to generate a wider channel. On the

other hand, if it is found that the space reserved in a certain chip area is too dispersed,

the building blocks in the neighborhood can be moved closer (i.e., compaction) to

reduce the size of the chip. The compaction and expansion of a placement

configuration must be, of course, done in a manner that does not destroy the relation-

ships between the moved building blocks and the other blocks.

Present ASIC design technology is dominated by the gate array approach. Since

only the metallization step in the fabrication is missing, the mass production of identi-

cal gate array chips is possible. The design of a gate array chip can be completed in a

rather short time by personalization. Design costs are low; however, the performance

of a chip designed by this approach is sub-optimal due to the fixed sizes and locations

of the components on the chip. The trend in ASIC design technology is shifting from

the gate array approach to the standard cell approach. Even though the standard cells

still have a constraint of identical heights, the design of a cell is more flexible than

those in the gate array approach. Better performance is thus possible with good cell

design and careful layout. This trend can be projected to anticipate that future ASIC

design technology will involve the utilization of mega-cells. Two reasons can be

given to justify this anticipation. After all the constraints on the design of a library

cell are removed, the cell can be readily optimized, which will eventually result in a

better ASIC performance. Furthermore, the design methodology of mega-cells will be

more similar to the traditional circuit design using off-the-shelf components. Due to

the typically varied height and width of mega-cells, their placement and routing are

much more difficult and the compaction and expansion operations discussed above

become extremely important for a good layout.

Instead of generating the entire circuit from scratch, the trend of silicon compila-

tion is to generate the layout using predesigned library cells. Since the library cells
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have to be universal in the sense that they can be fetched and used in any future

design, the parameters of the cells themselves, such as DC driving capability, are not

optimized for a certain application. This inflexibility reduces the performance of the

chip produced. One trivial solution to this problem is to prepare and store cells of the

same function but with different parameters. This will greatly increase the requirement

on the library memory and create problems in database management. A possible

future research direction in silicon compilation is to store a basic model of a cell in the

library and optimize it on-the-fly according to a specific application when it is called

up.

In conclusion, current trends project that design automation shows great promise

in VLSI circuit design. As the computer-assisted design tools are improved, the per-

formance gap between the chips produced by a silicon compiler and full custom design

will eventually be removed. These new techniques will allow any suitable algorithm

or architecture to be implemented inexpensively on silicon chip in a relatively short

tum-around time without concern to design complexity or chip performance.
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