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ABSTRACT

CHARACTERIZATIONS OF THE BLOCH SPACE

AND RELATED SPACES

By

Karel Mattheus Rudolf Stroethoff

In the first chapter we give local and global Dirichlet-type characterizations for both the

Bloch space and the little Bloch space, generalizing some of the characterizations for these

spaces given in [2].

In the second chapter we characterize the Bloch space and the little Bloch space in

terms of the pseudo—hyperbolic metric on the unit disk; it is shown that the Bloch space

coincides with the class of analytic functions on the disk that are uniformly continuous

with respect to the pseudo-hyperbolic metric.

In chapter three we further develop some of the results obtained by Baemstein in [3],

where he proved that an analytic function on the disk belongs to the space BMOA if and

only if the Mobius transforms of the function form a bounded family in the Nevanlinna

class. We give a description of the space VMOA in terms of the Nevanlinna characteristic.

A description of VMOA cannot be obtained by simply replacing Baemstein's boundedness

condition by the corresponding vanishing condition (as is usually the case). We then

formulate and prove analogous characterizations for the Bloch space and the little Bloch

space in terms of an area version of the Nevanlinna characteristic.

In the fourth chapter we give a different proof of Baemstein's value distribution

characterization forBM0A [3], Theorem 3, and we formulate and prove the corresponding

description of the space VMOA. Defining an area version of the counting function used in

the value characterizations for BMOA and VM0A, we obtain analogous results for the

Bloch space and the little Bloch space.
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In chapter five we give estimates for the growth of analytic functions in weighted

Dirichlet space, which then are used to give necessary and sufficient conditions on the

growth of an analytic function on the disk for inclusion in the Bloch space or the little

Bloch space.

Chapter six briefly discusses cyclic vectors in the little Bloch space. We generalize a

theorem of Anderson, Clunie and Pommerenke [1], Theorem 3.8.

In the seventh chapter we consider Hankel operators with integrable symbol. The

Hankel operators that we study are defined by projecting onto the orthogonal complement

of the Bergman space. We first prove that these Hankel operators transform in a unitarily

equivalent way if the symbol is replaced by one of its Mobius transforms. We then restrict

our attention to Hankel operators with conjugate analytic symbol, and show Sheldon

Axler's results [2], Theorems 6 and 7, hold if the operator norm of the Hankel operator is

obtained by putting a weighted lP-norm on both its domain and its range.
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Chapter 0

In this chapter we give some background information, establish most of the notation

for the chapters that follow, and list the major results of this thesis. Since we will be

dealing with Bloch functions on the unit disk, we start with a theorem of the man whose

name is attached to these functions.

Let D = {z e G: : lzl < 1} denote the open unit disk in the complex plane. The basic

idea of a Bloch function on D goes back to the following theorem of Andre Bloch [9].

Bloch 's Theorem : There exists a finite positive constant b such that if g is an

analyticfunction on ID, normalized so that g (0) = 0 and g' (0) = 1, then there is a disk

A contained in ID on which g is one-to-one and such that g (A) contains a disk of radius b.

Forwe (I: and0<r<oowe will usethenotationA(w, r): {26 (I: : Iz- wl <r} for

the open disk of radius r centered at w. For an analytic function f on ID and a point z

in [D let df(z) be the supremum of all r > 0 for which there exists an open connected

neighborhood .(2 of z in [D such that f is one-to-one on {2 and f (.0) = A(f (z), r), unless

f ' (z) = O (and thus there are no such r > 0), in which case we let df(z) = 0. If df(z) > 0,

then necessarily df (z) < co, and it is easy to show that the supremum in the definition of

quantity df(z) is actually attained, i.e., there exists an Open connected neighborhood .(2 of

z in [D such that f is one-to—one on .Q and f (.(2) = A(f (z), df(z)). A disk A(f (z), r)

that is the image under f of an open connected neighborhood of 2 on which f is

one-to-one, is called a schlicht disk of f aroundf (2). Thus the number df(z) is the radius

of the largest schlicht disk of f around f (z). The first systematic study of this quantity

was done by W. Seidel and IL. Walsh in [34]. As an easy consequence of Schwarz's

Lemma we have:



df(0) s lf’(0)|. (0.1)

Another easy property is that for y at 0:

dyf (z) I y I df (z) . (0.2)

For A e D let the Mobius function {P}. : ID —-) D be defined by

(01(2) = A ._Z , 26113. (0.3)

l-lz

 

Then it is easily verified that for an analytic function f on D and for every )1 e D :

df. be) = dfaple». (0.4)

Using this quantity, Bloch's Theorem can now be restated as follows:

There exists afinite positive constant b such that if g is an analyticfunction on D,

normalized so that g (0) = 0 and g' (0) = 1, then there exists a point w e D for which

dg(w) 2 b.

If f is an analytic function on D andf ’ (0) at 0, then we can apply this version of

Bloch‘s Theorem to the function g = (f - f (0))/f ' (0). Using the properties (0.1) and

(0.2) it follows that there exists a point w e D (depending onf) such that



1

df(0) S lf'(0)| S 3 df(w).

Observe that the above is trivially satisfied if f ' (0) = 0 (with any w e D), so that the

initial restriction that f ' (0) :t 0 can be removed. Now take A e D. It is elementary to

verify that (p110) = I A I2 - 1, so that the above inequality and (0.4) give that for every 1

in D there exists a point w}. e D for which

2 , l

df(l) S (1 -IM )lf (2.)l _<_ 7)- df(w/1). (0.5)

Now, for an analytic function f on D we set

IIfIIB = sup (1-1212) If'(z)l.

ZED

The Bloch space 58 is the set of all analytic functions f on D for which llf “B < oo. Even

though || . "EB is not a norm, we will refer to II f "13 as the Bloch norm of function f. The

quantity If (0) I + II f “9 defines a norm on the linear space $3, and we will see later that

$8 equipped with this norm is a Banach space.

Two quantities Af and Bf, both depending on an analytic function f on D, are said to

be equivalent, written as Afz Bf , if there exists a finite positive constant C not

depending on f such that for every analytic function f on D we have:



If the quantities Af and Bf are equivalent, then in particular we have Af < co if and only if

Bf < co. It follows from (0.5) that for an analytic function f on D we have the

equivalence

||f|| = sup d (z). (0.6)

13 26D f

For a region {2 C (I: let H°°(.Q) denote the algebra of all bounded analytic functions

on .Q . We will simply write H°° for H°°(D). It is clear that the image of a bounded analytic

function cannot contain arbitrarily large schlicht disks, so that the equivalence (0.6)

immediately gives us the inclusion H°° C 13.

In the argument leading from Bloch's Theorem to the equivalence (0.6) the Mobius

functions on the disk played an important role. For an analytic function f on D and a

point 2. e D, we will call the function f o (P). - f (A) a Mobius transform of function f. It

follows from (0.4) and equivalence (0.6) that SE is invariant under Mobius transforms,

i.e., iffe i3 and l e D, then fo (PA —f(/'l) e 13. This is also easy to see from the

definition of the Bloch norm. Let f be an analytic function on D, and let )1 e D. We have

already observed that 4,110) = l/‘l I2 - 1, so that by the chain rule we have

(to 49,1 >' (0) =f'(l) (pg (0) = (I MZ- 1)f'(/1).

It follows that

Ilfll = sup |(fo€p )'(0)|,

B 16D '2'



hence for every 2. e D:

"fHEB ="f°(p}_"33° (0.7)

In [31] Rubel and Timoney showed that the Bloch space ‘13 is maximal among all

Mebius-invariant Banach spaces of analytic functions on D which have a decent linear

functional.

Contained in the Bloch space is the little Bloch space 380 , which is by definition the

set of all analytic functions f on D for which

2 , -

(1-lz|)f (z) —> 0 as Izl—>1.

It follows immediately from (0.5) that if f is in $80 then df (z) —) 0 as I2 I —-) 1’. That the

converse is also true follows from the following result of Pommerenke ([27], Theorem 1):

If f is analytic on D and df(z) S l for all z e D, thenfor all z e D:

2
(1-1212) If'(z)| s— [df(z) (3-df(z)). (0.8)

J3

We can actually obtain a simpler proof as a result of the following theorem:

Theorem 0.1 : Let f be an analyticfunction on D. Thenfor every 2 e D we have:

 

(1 -1212) If'(z)l 5 4de(2) IIfIISB . (0.9)



This theorem has the following corollary:

Corollary 0.2 : Let f be an analytic function on D. Then there exists a point

w e D for which

1
df(w) 2 50 IIfII13 . (0.10)

If for an analytic function g on the unit disk g' (0) = 1, then H g ":8 2 1, and we see

that Bloch's Theorem is a consequence of Corollary 0.2 (and conversely, it is easy to

show that Corollary 0.2 is a consequence of Bloch's Theorem). A proof of Theorem 0.1

can be based on the following lemma which Edmund Landau used to give a proof of

Bloch's Theorem (see [20], Satz 2).

Lemma 0.3 : Let 0 < R < 00. Let g be analytic on the disk A(0, R), such that

g (0) = 0 and a = lg' (0) l > 0. Suppose that lg (z) I s M for all | z I < R. Then:

R202

6M

 dg (0) 2 (0-11)

The following proof is derived from Landau's proof.

Proof:

Without loss of generality we can assume that R = l and M = 1 (otherwise consider

the function h on A(0,l) = D defined by h(z) = g(Rz)/M for z e D).

Suppose that g is analytic on D, such that g(0) = 0, a = lg' (0) I > 0, and lg (z) | s 1

for all z 6 ID. We must show that dg(0) 2 a2/6. Let



W

g(z) = 2 anz" ,z e D,

n=l

be the Taylor series expansion of function g. Then it is easy to show that Ian I S 1 for all n

in IN. In particular a = lal | S 1. So if we put p = a/4, then 0 < p S '/4. Take a point w in

A(0, a2/6), and consider the function gw defined on D by gw(z) = alz - w for z e D. For

|z|=p wehave

oo oo 2
2

Ig(z)-w-gw(z)lS E lanllzlns E owl—3%.

n=2 n=2 l-p

Since lw I < a2/6 we also have that for lz I = p , lgw(z) I 2 lalz I - lw l > a2/4 - a2/6 =

(22/12. Thus for all Izl = p we have |g(z) - w - gw(z) l < lgw(z)l . By Rouché's Theorem

the number of zeros of g - w in A(0,p) is equal to the number of zeros of gw in A(0,p),

which is easily seen to be one. This shows that A(0, a2/6) is a schlicht disk around

g(0) = 0, so that (18(0) 2 a2/6, as was to be shownD

Proof of Theorem 0.1:

Let f be an analytic function on D. We must show that (0.9) holds. In view of (0.4)

and (0.7) it suffices to show

 

lf'(0)l s 4de(0) Ilfu33

FmflzlSké

, 1 4
If (z)l s __ llfllfa s 3 llflLB,

(1-121



sothatforlzlS'/2:

|f(z) -f(0)l s Izl lf’(tz)| dt

I
A

4 2
3 ufn,B = .5 IlfIIB.

Apply Lemma 0.3 with g =f-f(0), R = %t,M = (2/3) llfllg , and a = lf'(0)l. It

follows from (0.11) that

6M

R2

. 2 _
If (0)1 .<_ df(0) _ 16df(0) IIfIIE,

and the proof is completeD

Proof of Corollary 0.2:

Let f be an analytic function on D. If N f IIB = 0 then there is nothing to show, so

assume that IlfIISB > 0. Let 0 < y < 1. Choose a w e D for which

2 .
(1..le )lf (w)! 2 yIIfIIEB.

Then it follows from (0.9) that

2

df(w) 2 (.3!) llfllg,

from which (1.10) follows by taking 7 sufficiently largefl



We now turn from the geometric aspects of Bloch functions to the functional analytic

aspects of the linear space 33. In [13] the Bloch space is identified as the dual space of a

Banach space whose norm is defined by an area integral. This implies that the Bloch space

is a Banach space (which can also be proved directly from the definition). We will now

introduce the Bergman spaces on the unit disk. Let A denote the usual Lebesgue area

measure on the complex plane (II. For an analytic function f on D and 0 < p < no we

define

l/p

llfll = JlflpdA/tt
LP

a [D

The Bergman space Lup is defined to be the set of all analytic functions f on D for which

II f IIL0p < oo . The subscript a stands for "analytic." Clearly each Bergman space Lap is a

linear space. For 1 S p < oo , || . "Lap is a norm on La? , and equipped with this norm Lap

becomes a Banach space. For 0 < p < 1, ll . "Lap is no longer a norm, but N f - g IIPLap

defines a translation invariant complete metric on Lap , so that Lap is a Fréchet space.

If 1 < p < oo , let p’ = p /(p - 1) denote the conjugate index. The dual space of Lap

can be identitied as Lap' : defining the pairing

<f.g > = J f(Z) EYES dA(Z)/7t . (0.12)

[D

forf6 Lap, g 6 Lap', every bounded linear functional on Lap is of the form

f 1+ (f, g>.(f e La”) (0.13)

for some unique g 6 Lap'. Moreover, the norm of the linear functional in (0.13) is
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equivalent to the norm ll g “Lap' (see [7] for a proof).

Very much in the same way the dual of the Bergman space La1 can be identified as the

Bloch space 38. In [2] and in [13] the Bloch space is shown to be the dual of the space fl

which is defined to be $1 = { f: f is analytic on D and f ' 6 L01}. The pairing used in

both papers involves the derivative of the function in f]. This is not parallel to the pairing

in (0.12); it seems more natural to pair a Bloch function with a function in Lal. This was

done by Sheldon Axler in [7]. We will outline his results. There is however a problem

with the pairing as defined in (0.12): there exist f6 La1 and g e 13 such that the product

fg' is not integrable over the disk D. To overcome this problem define the pairing by

<f,g> = lim Jf(z) 3(7) dA(z)/7r. (0.14)

l—-)l- (ID

If g e 13, then (0.14) is defined for every f 6 La1 and the map

f H <f. g>,(f 6 La‘) (0.15)

is a bounded linear functional on La1 with norm equivalent to II g "$8 + l g(0) | , and

every bounded linear functional on La1 is of the form (0.15) for some unique g 6 $13.

Finally, the dual space of the little Bloch space 80 can be identified with La1 : every

bounded linear functional on 130 is of the form

f l—> (f, g), (fe :80) (0.16)

for some unique g 6 L01, and the norm of the linear functional in (0.16) is equivalent to

the norm ll g “ml.
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For A e D recall the definition of the Mebius function (PA defined in (0.3):

(p(z) = ’1'] ,zeD.

A 1-12

 

The function 4’1 is easily seen to be it own inverse under composition:

(90,10 (0))(z)=z forallze D.

The following identity can be obtained by straight forward computation:

 

1-3143(2) _ l-q)A(u)z

__ ——_—, (u,).,z eD). (0.17)

I'UA 1-12

The special case that u = 1 yields

(1-itpl(z))(1-iz) = 1.1112, (11,26 D). (0.18)

If we substitute u = 901(2) in (0.17) and make use (0.18) we obtain the identity:

2 =(1-I2I2)(1-lz|2)
2 (1.26 D). (0.19)

ll-lzl

 1- l (pl(z)|
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A slightly different form in which we will frequently apply identity (0.19) is:

1 - ltpl(z) 12

2

=|(p'(z)| ,(/'l.,ze D). (0.20)

A

l—lzl

For points A, z in the disk D the pseudo-hyperbolic distance d(/'L, 2) between A and z

is defined by

dd, 2) = I (pA(z) I .

Then it can be shown that d is a metric on D (see, for example, [14], page 4). For each

point 2. e D and 0 < r < l , the pseudo-hyperbolic disk D(/l,r) with pseudo-hyperbolic

center A and pseudo-hyperbolic radius r is defined by

D(/'l,r)={ze D: d().,z)<r}.

The pseudo-hyperbolic disk D(l,r) is also a euclidean disk: its euclidean center and

euclidean radius are:

2

w = 1—2r 2 2. ’

l-r Ill

and

1-12.12

s = 2 2 ’
l-r Ill

respectively.

For a Lebesgue measurable set K C (II , let lKl denote the measure ofK with respect

to the normalized Lebesgue area measure A/It. It follows immediately that:
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22
(l-Ml) r2.

2

|D(/'l.,r)| =

(1 - r 1212)2

 (0.21)

For A e D , the substitution 2 = (pl(w) results in the Jacobian change in measure

given by dA(z)/7t = l ‘1’}: (w) l2 dA(w)/7r . For a Lebesgue integrable or a non-negative

Lebesgue measurable function h on D we have the following change-of—variable formulas:

22

l-I |

l he) two/rt =1 (ho (p/IXW) 111—); dA<w>/tt , (0.2220

Dal) 0m”) ll- 1 W l

and

2 2
l—l I

1 (ho (pAXZ) dA(z)/7r = I h(w) .(——_—_L)—z dA(w)/7t . (0.22b)

D(0,r) Dar) Il-Awl

Many of the properties of the Bloch space and the little Bloch space are analogous to

their counterparts in the classical Hardy space setting. Recall the definition of the Hardy

spaces: for an analytic function f on D and 0 < p < oo define

1m

2n

llfll = sup i I lf(re'6)lp d0

Hp 22: 00Sr<l

The Hardy space HP is defined to be the set of all analytic functions f on the disk D for

which N f “Hp < 00. For 1 S p < 0°, N . lal is a norm on HP, and equipped with this

norm HP is a Banach space; for 0 < p < 1, HP is a Fréchet space (see e.g. [12],

Corollaries 1 and 2 on page 37).
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Let 8D = {z e (II : lzl = 1} denote the unit circle, and let “0 denote the normalized

Lebesgue measure on 8D. If f 5 HP , for 0 < p < co, then the radial limit

fit) = lim_ f<r0

r—)1

exists for [uO]—a.e. C 6 3D, and the function f* e U’(BD,#0) ([12], Theorem 2.2).

If 1 < p < oo , let p' = p /(p - 1) denote the conjugate index. The dual space of HP can

be identitied as 11": the pairing is

<f, g > = I fit) g’to (1110(4) . (0.23)

8D

for fe HP and g GM), ([12], Theorem 7.3).

Before we give Charles Fefferman's identification of the dual space of H1 we need to

introduce more notation. A connected subset I C 8D for which you ) > 0 will be called

an arc in 8D. For a function g e L1(8D,u0) and an are I in 3D let g, denote the average

of g over I:

1

g, = —Jgd#0-

#00),

For a function g e L1(BD,/,10) let

1 .

llgllBMO = sup { —Ilg-glldu0: I anarcrnBD] .

1
110(1)
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A function g e L1(BD,u0) for which ll g "3M0 < oo is said to be of bounded mean

oscillation. The set of all functions in L1(BD,/,LO) that are of bounded mean oscillation is

denoted by BMO. The class BMO was first introduced by John and Nirenberg in [18] (in

the context of functions defined on cubes in IR" ).

Define BMOA = { fe H1: f* e BMO }, and for fe BMOA set

*

llfllBMOA =llf "BMO‘

Equipped with the norm N f llBMOA + lf (0) l , BMOA is a Banach space. For 0 < p < oo it

can be shown that for every analytic function f on D:

"fIIBMOA = sup llfo (0/1- f(/1)IIH (0.24)

t e D p

Charles Fefferman proved that the dual space of H1 can be identified with the space

BMOA . There is however a problem with the pairing as defined in (0.23): there exist

functions fe H1 and g e BMOA such that f*g*' is not integrable over the circle 8D.

Fefferman showed that if g e BMOA, then the map

W(f) = lf*(€) 8*(0 du0(o,f e H°° (0.25)

an)

extends to a bounded linear functional on 1-11 with norm equivalent to H g "BMOA" lg (0) l,

and every bounded linear functional on H1 is of the form (0.25) for a unique g e BMOA

(for a proof see [8]).

By using Taylor series it is easy to see that If ' (0) l S ll f "”2 for every analytic

function f on D. It follows that for an analytic function f on D and a point A e D:
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(1 -1212) If’(/l)l s llfo (p - f(/l)ll 2. (0.26)

A H

Thus we have the inclusion BMOA C 13 .

Paley's integral inequalities (see Chapter 5) and a change-of-variable give us that for

every analytic function f on D:

2

I lf’(z) 12(1 Jot/1(2)?) dA(z)/7t s llfo (pl - for)" 2 s

[D H

l
/
\

2 I lf’(z)l2 (Mo/1(2)?) dA(z)/7t. (0.27)

[D

It follows from (0.24) and (0.27) that for every analytic function f on D:

z sup lf’(z)l2(1 Ago/1(2) 12) dA(z)/7t ."fHBMOA tent)

D

In [32] Donald Sarason introduced the space VMO of functions of vanishing mean

oscillation defined by

 1 Ilg-glldpo -—> 0 as pO(I)—>0}.

#00) ,

VMO ={g e L‘(alD,,u0):

Define VMOA = { f6 H1:f* e VMO }. Since clearly VMO is contained in BMO , we

have that VMOA is contained in BMOA . It can be shown that analogous to equivalence

(0.24), if 0 < p < co, then for every analytic function f on D:
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feVMOA 4:)[llfotpl-f(l)ll p—rOaslAl—H']. (0.28)

H

From (0.26) and (0.28) we get the inclusion VMOA C 330 . From (0.27) and (0.28) we

see that for every analytic functionf on D:

f e VMOA 4:» I lf’(z)l2(l-|(pl(z)|2) dA(z)/7r —+ 0 as 121—91‘

[D

For an analytic function f on D and t e (0, l) the dilate f, is defined byf, (z) =f (tz)

for z e D. It can be shown that an analytic function f on D belongs to VMOA if and only

if ll f - ft "BMOA —) 0 as t —> 1'. Since each dilate of an analytic function is continuous on

a neighborhood of D it is easy to see that the space VMOA is the closure in BMOA of the

set of all polynomials.

The dual space of VMOA can be identified with H1: if g 6 H1, then the map

W) = like g'm duos) . f apolynomial.

BID

extends to a bounded linear functional on VMOA with norm equivalent to II g ll111 , and

every bounded linear functional on VMOA can be obtained in this way.



18

We new list the major results in this thesis.

In the following two theorems we give local and global Dirichlet-type characterizations

for the Bloch space and the little Bloch space, generalizing some of the characterizations

for these spaces given in [6]:

Theorem 1.7 : Let 0 <p < oo , 0 < r < 1, and n 6 IN . Then for an analytic

function f on D thefollowing quantities are equivalent:

 

(A) ll f II.B ;

l/p n-l

(B) sup 11 [2 I lf(n)lpdA/7t + 2 lf(k)(0)|;

“”3 'Dafl' mp D(l,r) k“

l/p n-l

(C) sup (I lf(n)(z)lp(1 -1212)"”‘2d4(z)/a ) + z lf(k)(0)l ;

26D k=l
D(/'L,r)

l/p n-l

(D) sup I lf(")(z)lp (1 -1212)"”'2(1-Io (2)12)2 dA(z)/7t + z lf(k)(0)l.

REID ID 1 k=l

Theorem 1.9 : Let 0 <p < co , 0 < r < 1, and n e IN. Then for an analytic

function f on D thefollowing statements are equivalent:

 

(a) f E 130 ;

(b) 11 J lf(")lpdA/7t —> 0 as Ill —9 1';
-np/2

ID(2,r)I 0W)

(0) I lf(n)(z)lp(1-|zl2)"p'2dA(z)/7t —-> 0 as 111—) 1';

D(l,r)

(a) I lf(")(z)lp(1-|zl2)np'2(1-I(ol(z)|2)2dA(z)/7t —> 0 as 121—911

[D
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In [8] Baernstein proved that an analytic function on D belongs to the space BMOA if

and only if the Mebius transforms of the function form a bounded family in the Nevanlinna

class. The following theorem gives a description of the space VMOA in terms of the

Nevanlinna chacteristic T :

Theorem 3.3 : For an analytic function f on D the following Statements are

equivalent:

(a) f e VMOA ,°

f o (p, - f (A)

p

 (b) foreveryp>0wehave that T( )—> 0 as Ill—>11

The following two theorems give analogous characterizations for the Bloch space and

the little Bloch space, in terms of Ta , an area version of the Nevanlinna characteristic:

Theorem 3.6 : For an analytic function f on D the following statements are

equivalent:

M) fefi;

(B) sup TGUO (p, - f(7l)) < 0°.

26D

Theorem 3.7 : For an analytic function f on D the following statements are

equivalent:

(a) f 6130;

f° to, -f(/1)

p

 (b) Foreveryp>0wehavethatTa( )—>0as Ill—+1-.
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In [8] Baernstein gave a value distribution characterization for the space BMOA. The

following theorem describes the space VMOA in terms of the counting function N (for

which the definition is given in chapter 4):

Theorem 4.3 : For a nonconstant analyticfunction fon D thefollowing statements

are equivalent:

(a) fe VMOA ;

(b) for every 6 > 0 we have:

sup {N(w,}l,f):we (Land |f(/l)-wl26} -> 0 as Ill—9 1'.

Defining Na , an area version of the counting function N (see chapter 4), we have

analogous results for the Bloch space and the little Bloch space:

Theorem 4.4 : For a nonconstant analyticfunction f on D the following statements

are equivalent:

(A) f 6 33;

(B) sup {Na(w,l,f) : we (13,16 D and lf(/'l)-w|21} < oo.

Theorem 4.5 : For a nonconstant analyticfunctionfon D thefollowing statements

are equivalent:

(a) fe 1’80;

(b) for every 5 > 0 we have:

sup {Na(w,/'L,f):we (I: and lf(/’I)-w|25} —-9 0 as Ill—9 1'.
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co

ForananalyticfunctionfonD and0<r <llet1l—4(r,f)=z lanlr" ,

n=0

where the numbers 0,1 are the Taylor coefficients of f at 0. Using this crude estimate on

the growth of an analytic function we have the following results:

Theorem 5.3 : Let 0 < r < 1. For an analytic function f on D the following

quantities are equivalent:

(8) sup Wrrfo (pl -f(l)).

leD

Theorem 5.4 : Let 0 < r < 1. For an analytic function f on D the following

statements are equivalent:

(a) f6 130;

(b) T4(r,fo (pA - f(l)) —> 0 as Ill —->1'.

The following result on cyclic vectors generalizes a theorem of Anderson, Clunie and

Pommerenke ([2], Theorem 3.8). It is similar to a result of Brown and Shields for the

Dirichlet space ([10], Theorem 1).

Corollary 6.4 : Let f, g e 90 , such that lf (z) I 2 lg (z)| (z e D), and suppose

that g is bounded and g 2 is cyclicfor $30. Then f is cyclicfor ‘18 0‘

Similar to Proposition 11 of [10] we have the following result:

Corollary 6.6 : If f, g e 130 n H°°, and if fg is cyclic for ‘80, then both f

and g are cyclicfor $30.
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The Hankel Operators Hf are defined by projecting onto the orthogonal complement

of the Bergman space (see chapter 7). These Hankel operators transform in a unitarily

equivalent way if the symbol is repaced by one of its Mobius transforms:

Theorem 7.1 : Let fe L1(D,dA/7t). For each l e D the Hankel operators Hf

and H are u nitarily equivalent.

full/1

More precisely, there exist unitary operators U1 : L02 —-> La2 and U2 : (L02% —> (L02H

such that U1(H°°) C H°° and

UZOHfotp =Hfo U1.

leD

Sheldon Axler's results [6], Theorems 6 and 7 hold if the operator norm of the Hankel

on both the domain and theoperator is obtained by putting a weighted lP-norm ll . llp'a

range of the Hankel operator:

Theorem 7.3 : Let l<p < co and -l < a <p - 1. Then for fe La,l the Bloch

norm ll f ":B and the operator norm ll H,- Ilpfl are equivalent.

In particular, H7 is bounded as an operator on H°° with the weighted [P-norm || . llpfl

on both the domain and the range of H; ifand only if f 6 EB.
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Theorem 7.4 .- Let 1 < p < co and -1 < a < p - 1. Then for fe L01 the Hankel

operator Hf is compact as an operator on H°° with the weighted [P-norm ll . II on
p.a

both the domain and the range of Hf ifand only if fe 380.



Chapter 1

In this chapter we will give several Dirichlet-type characterizations for the Bloch space

and the little Bloch space. Our point of departure is the following theorem which is taken

from [6], where it is proved for l S p < oo .

Theorem 1.1 : Let 0 < p < co and let 0 < r < 1. Then for an analytic function f

on the unit disk D thefollowing quantities are equivalent :

(A) llf "13 ;

(3) SH!) "f°<P -f(l)|l ;

leD 1” L p
a

 

1 Up

(C) sup I |f(z) - f I" cum/e ;
2.61) low» D( ”W

 

1 Up
(D) sup 1 Ire) - f(/l)|p cum/2t ;

AGID ID(A'rr)I 0(11’)

(E) 2121;) distance ( f |D(l,r)'H (001.1»);

1/2

(F) sup (area f(D(l,r))) ;

leD

1/2

(G) sup (I If'(z)|2 dA(z)/7t ) .

leD

D(l,r)

Whereas quantities (B), (C), and (D) in Theorem 1.1 are expressed for general p in

(0,00), quantity (G) is given only for the special case that p = 2. The question arises

whether quantity (G) in Theorem 1.1 can be replaced by a more general quantity depending

24
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upon p and specializing to the above (G) in case p = 2.

Quantities (C) and (D) are local as opposed to quantity (8), which is global, this leads

to another question: is there a global version of quantity (G)?

These questions will be answered in Theorem 1.7, where we will also give equivalent

quantities involving higher derivatives of the function.

The equivalences of Theorem 1.1 carry over to the little Bloch space. Several

descriptions of this space are given in the following theorem which is taken from [6],

where it is proved for l S p < oo.

Theorem 1.2 : Let 0 < p < co and let 0 < r < 1. Thenfor an analytic function f

on the unit disk D thefollowing statements are equivalent:

(a) f e 330 ;

(b) llfo to)1 - f(l)lle —> 0 as 121—)1';

a

 

 

1 -

(c) I lf(z) -f I” dA(z)’7t —) o as Ill—>1;
D(l,r)

ID(A.r)I our)

(a) 1 I lf(z) - for)” dA(z)/7t —) 0 as 121—) 1';

|D(l,r)|

D(l,r)

,H°°(D(2,r))) —+ 0 as 1,11 —> 1';
l,r)

(e) distance (flm

0) area f(D(l,r)) -> 0 as Ill—9 1' ;

(g) I lf’(z)|2 dA(z)/7t —> 0 as Ill—9 1-;

001;)

(h) llf-ftllB—ro ast—el'.
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Although the definition of the Bloch space only involves the first derivative of the

function, the following lemma gives characterizations involving higher derivatives.

Lemma 1.3 : Let n e IN. Then for an analytic function f on D the following

quantities are equivalent:

(A) llflleB ;

n-l

(B) sup (1-1212)"If(")(z)l + zlf(k)(0)l.

ZEID k=l

Proof :

For n = 1 the equivalence of the two quantities is precisely the definition of the Bloch

norm. By induction it suffices to show that for a fixed n e IN, for every analytic function

f on D the quantities

-1

(B) sup (14212)" If(")(z)l + S: lf(k)(0)|

n 26D k=1

and

’1

(am) sup (142.12)"+1 If("“)(z)l + Z lf(k)(0)|

ZED i=1

are equivalent.
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Let g be an analytic function on D, and let w e D. Then:

1

lg(w) - g(0)l s I lwl |g'(tw)| dt

0

l

 

 

I l
= I w (1-Itwl)"+1lg'(tw)l dt

0 outset)“

l

s 'W' 1dt .sup (l-lz|)n+1lg'(z)l

0 (1-thI)“ zeID

.<_ 1 sup (l-lzl)n+llg'(z)l .

n(1-le)" zeID

Thus

(l-le)n |g(w)| S —1- sup (l-Iz|)n+1lg'(z)| + Ig(0)l .

n 26D

Put g =f (n), multiply by (1 + lwl)" (which is less than 2"), and take the supremum over

all w e D, to get

sup (1 _ l2'2)r1 +1 If(rt +1)

ZEID

:
t
I
N
,

sup (l-le2)n lf(n)(w)| s (2)1 + lf(")(0)l .

w e D

Hence quantity (3") is less than or equal 2"ln times quantity (3,,+1).

For the converse, fix 2 e D and put r = (1 - lz l)/2 . Again let g be an analytic

function on D. By the Cauchy Integral Formula
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g.(z) = _1_ I g(w)2 dw ’

27” lw-z|=r (W‘Z)

sothat

|g'(z)l S -:-sup[|g(w)l:lw-zl=r}. (1.1)

Iflw-zl=r,thenlwlS|zl+r=(1+|zl)/2.Bytheanalyticityof g,

sup {lg(w)l:|w-2l=r}Ssup{|g(w)|:|w|S(l+|zl)/2 }.

Multiply both sides of inequality (1.1) by (1 - I z I)"+1 = 2M1 r "+1 to get

4.

(l-lzl)"+llg'(z)l s 2" 1sup{rn|g(w)l:lwl=(1-I-lz|)/2}.

Forlwl=(1+lzl)/2wehave l -lwl=(l-lzl)/2=r ,soitfollowsthat

n+1 n+1

(1-lzl) lg'(z)| S 2 sup { (l -lwl)" lg(w)l:|wl=(1+lzl)2 } . (1.2)

Put g =f I"), multiply by (1 + I z l)"+1 (which is less than 2"”), and take the supremum

over all z e D, getting

sup (1 .1212)"+1 If("“)(z)l s 22" 2sup (1 -IwI2)" lf(")(w)l .

ZEID WEID

+
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It follows that quantity (3M1) is less than or equal 22M2 times quantity (8"). This

completes the induction and the lemma is proved CI

The equivalences of Lemma 1.3 carry over to the little Bloch space, as is shown in the

following lemma.

Lemma 1.4 : Let n e IN. Then for an analytic function f on D the following

statements are equivalent:

(a) f6 130 ;

(b) (1 -IzI2)" f(")(z) -> 0 as lzl—) 1'.

Proof:

For n = 1 the equivalence of the two statements is precisely the definition of the little

Bloch space. By induction it suffices to show that for a fixed n 6 IN, for every analytic

function f on D the statements

(bn) (1 -lzl2)"f(”)(z) —> 0 as Izl —> 1-

and

(am) (1 -1212)"+1f<"+1>(z) —> 0 as Izl—> 1-

are equivalent.

Let n e IN be fixed. That statement (bu) implies statement (bu+1) follows easily from

(1.2) (applied to g =f(’0).
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For the converse suppose that f is an analytic function on D satisfying condition

(ban): Let 0 < r < 1 . Let g be an analytic function on D, and let w e D. Then as in the

proof of Lemma 1.3 :

l

lg(w) - g(rw)l s I lwl lg'(tw)l dt

T

n+1

S ——1—— sup { (1 -|zl) lg'(z)l : rlwlSlzl<l ] .

n(1-le)"

Therefore we have

(1-le)" Ig(w)| 9% sup I (1.121)“1 lg'(z)l:rlwlSlzl<l }+ (l-lwl)" lg(rw)l

In the above inequality put g =f (n). For given 8 > 0, choose p e (0, 1) such that

(1 -1212)"+11f<"+1)(z)l< 3 whenever p < Izl < 1. For p < r < 1 it follows from the

above inequality that (1 - I w l)n lf<n>(w) l s Eln + (l - lw I)" If (")(rw) I whenever we

have p/r < M < 1 . Hence (1 — Itv12ylf(")(w) —> 0 as Izl —> 1-, i.e., f satisfies (on).

This completes the induction, and the lemma is proved. III

For the statement and proof of the following lemma we need more notation. For a

point l e D and 0<r<l,let

0201;) = u{ D(w,r) :D(w,r) 0 bar) at e } .
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Since (P). is injective, D(w,r) nD(l,r) at G if and only if D(q)1(w),r) nD(0,r) ¢ Q.

It follows that 02(2,r) = o,(02(0,r)) . It is easily seen that 02(0,r) =D(0,s) , where

s = s(r) = ((3 + r2)r)/(1 + 3r2) . Thus we have D2(l,r) = D(l,s) . Note also that

02am) c D(l,r) .

Lemma 1.5 : Let 0 < r < 1, and let q be a real number. Then there exists a

constant C (depending on r and q) such thatfor every pair ofnon-negative measurable

fitnctions u and v on D satisfying

u(l) S q I v(z) dA(z)/7t , (l e D) (1.3)

lD(l,r)l D(l,r)

we have:

C

4-1 I v(z) dA(z)/7t , (l e D). (1.4)

lD(l,r)|

I u(z) dA(z)/7t S

D (4.7) 0201,)

Proof:

Fix 0 < r < 1, and let q be a real number. Let u and v be a pair of non-negative

measurable functions on D satisfying (1.3). Using characteristic functions (1.3) can be

rewritten as:

u(l) S 
1

x (z) v(z) dA(z)/7t . (l e D). (1.5)

IDUIJNq II) D(l,r)



32

Take w e D . Integrating both sides of (1.5) over D(w,r) and applying Fubini's

Theorem, we get:

I u(l) draw/a s I I too, 0(1) 250 A (z) -—1— dA(l)/tr V(2) dA<z)/7r.

D(w,r) ID ID , ( ,r) lD(l,r)lq

(1.6)

USng lD(w,r)(A’) xD<l,f)(z) = xD(w,r)flD(z,r)(l) and I D(l,r)l 1:: I D(w,r)I Whenever

l e D(w,r), we see that there exists a constant C (depending on r and q) for which the

inner integral at the right hand side of (1.6) is smaller than

C

lD(w,r)lq

lD(w,r) n D(z,r)| .

Clearly, for z e D, lD(w,r) nD(z,r)| S lD(w,r)l 10209.42) . Hence for each 2 e D,

the inner integral at the right hand side of ( 1.6) is smaller than

C

x (2) .

lD(w,r)lq '1 020w)

 

and (1.4) follows. E]

The following lemma is due to Luecking ([24], Lemma 2.1). We will give a different

proof. As in Luecking's proof we will use induction on n, but at a "different level."

Lemma 1.5 will play a crucial role in our proof: it will be the tool to go from a pointwise

estimate to one involving integrals.
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Lemma1.6: Let 0<p<oo, 0<r<1, and ne lN.There existsaconstant C

(depending on n, p, and r) such thatfor every analyticfunction fon D:

 If(")(,i)l” s C 1 I lflpdA/rt , (l 6 ID). (1.7)

IDW)‘ ””2 our)

Proof:

Let 0<p<oo and 0<r< l befixed. By induction on us IN we will show that

(1.7) holds for every analytic function f on D and for each l e D .

First assume that n = 1. By a normal families argument, there exists a constant CW

such that for every analytic function g on D :

Ig'(0)l” s C,” I lglp dA/n'. (1.8)

D(0,r)

Take l e D . Applying (1.8) to g =f o (P). and using change-of-variable formula

(0.22b), we get:

2

(1.1212)” lf'(l)|p 3 CW I lf(w)lp mi. dA(w)/7t . (1.9)

MM ll-lwl

Since

(1 - lll2)2 S 16

ll-lwl4 (142132
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it follows from (1.9) that

lf'(l)lp 5 16C 1 I Ifl” dA/rt.
P! 2

(1 -1212) 1” 0W)

Hence

Iron)” I
A

O I lflp dA/rt , (1.10)

D(l,r)

LP." '1)“,er +p/2

and (1.7) is proved for n = l .

Now assume that (1.7) holds for n 2 l . Then

Iflhwpsc 1 I IflpdA/rt. (1.11)
"pr/3 lD(A’r/jfll-tnp/Z

DOM/3)

Apply Lemma 1.5 with u =f(") , v = Cn’p'mf, q = l + np/2 , and r replaced by r/3 .

Using mar/3) c D(l,r), we get

 I lf(")lp dA/tt 3 CM” 1 up” I lflp dA/tt. (1.12)

our/3) lD(l,r/3)l 0W)

Inequality (1.10) applied tof (n) gives us

If("“)(2)l” 5 CW3 1 Had I lf(n)lpdA/7t. (1.13)

lD(lr/3)l Dal/3)
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Combining (1.12) and (1.13) yields

 

 

(n+1) p , 1 p

If (1)1 s C1 C I lfl dA/tt

""3 ””3 lD(i.r/3)I‘ ‘” "p” ”’2 D(l.r)

S Cn+lpr 11+(n+l) /2 .I lf'pdA/fl ’
’ |D(l,r)l ” mm

which is (1.7) for n+1 . This completes the induction, and the lemma is proved. [3

Theorem 1.7 : Let 0 <p < oo , 0 < r < 1, and n 6 IN . Then for an analytic

function f on D thefollowing quantities are equivalent:

 

(A) 11 f 1138 ;

1 1/p -1

(B) sup I 1f‘")1” dA/tt + S: 1f(")(0)1 ;

“ID 'Dat’fll'npn D(l,r) "“

l/P n-l

(C) sup I 1f‘")(z)1”(1-1212)"”'2d4(z)/n + 2 lf(k)(0)l;

leD DUI-J) lt=l

l/p n-l

(D) sup I 1f‘"’(z)1” (1 -1212)””'2(1- Io (2)12)2 dA(z)/7t + 2 If(k)(0)l.

AEID ID A k=l

Remark 1.8 :

(1) Of special interest are the cases where up = 2 . For n = l and p = 2 quantity

(B) specializes to quantity (G) of Theorem 1.1, and quantity (D) gives a global version

of quantity (G) of Theorem 1.1:
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Ilfll = sup

B leD(‘I

1/2

'f'(Z)|2(1-|¢1)A(Z)|2)2 dA(2)/7r ) .

D

which should be compared with the known equivalence

HfHBMOA = sup (I

1/2

lf’(z) 12 (1 -ltpl(z) 12) dA(z)/tr ) .

leD ID

(2) For n = 2 and p = 1 both quantities (B) and (C) specialize to the local

Besov-type equivalence

IlfIIB z sup lf"(z)l dA(z)/7t + |f’(0)| .

’1 e D D(lr)

The Besov space { fe H(D) : f " 6 L01} is minimal among all Mobius-invariant Banach

spaces of analytic functions on D (see [3] or [5]). The above equivalence says that the

Bloch space $3 is the set of analytic functions on D whose restrictions to

pseudo-hyperbolic disks (of a fixed pseudo-hyperbolic radius) are uniformly in the Besov

space.

For n = 2 and p = 1 quantity (D) specializes to the global Besov-type equivalence

llfllB ... sup lf"(z)| (run/1(2)?)2 dA(z)/7t + lf'(0)| .

leD ID
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(3) In the case that n = 1 quantities (C) and (D) are of interest because the quantity

I 1f'(z)1”(l .1.z12)‘”'2 dA(z)/7t

ID

is invariant under Mbbius transformations of f .

Proof of Theorem 1.7:

Take 0<p<oo, 0<r< l, and ne IN.Let f ananalytic function on D. Wewill

use the same letter C to denote a constant independent of the function f even though the

constant changes from one appearance to the next. Apply Lemma 1.5 with u = lf (’0 P,

v = C If IP, q = 1 + np/2 , where C is the constant of (1.7). We get:

I 1f‘")1" dA/rt s C 1-———;p—/-2- J‘ IprdA/fl .

D(lJ) lD(l,r)l

D2(l,r)

Replace f by f - f (l), and write D(l,s) = Dz(l,r) . It follows from the above inequality

that

1

|D(l,r)1 ‘ "”2

I lf(")lpdA/rt sc 1 I |f-f(l)|pd4/7t. (1.14)

lD(l,s)l

D(l,r) D(l,s)

 
 

Combining (1.14) and Theorem 1.1 we get
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AEID I’M/2

1 Up

sup I 1f"°1pdA/zt SC IlfllfB.

|D(l,r)l 0W)

By Lemma 1.3 we also have

n-l

zlf(k)(0)l SC 11 fllfi,

k=l

thus it follows that quantity (B) is less than or equal C times quantity (A) .

For the converse apply Lemma 1.6 to f(n), to get

1 (n)p
1+p/2 I If I dA/tt.

IDUIJM Dal)

(n+1)

If (1)1” s C  
l,p,r

Multiply both sides of this inequality by (1 - 1 )112)(n+1)p . Since lD(l,r)| z (1 - 1112)2 we

get

 

P

((1-1212)"*11f(’”1)(2)1) s C 11”” I 1f(")1" dA/tr. (1.15)

lD(l,r)| D(l.r)

By subharmonicity of the function If(")IP we have

1f"°(0)1" s 35. I 1f‘")1” dA/tt .

' D(0,r)

It follows that
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sup (141.12)"+1 1f(’“")(i)1 + 1f(’°(0)1 s

leD

 

leD l-an

1 Up

S C sup I lfmlp dA/zr ,

lD(A’rN D(l,r)

and by using Lemma 1.3 it follows that quantity (A) is less than or equal C times quantity

(B). This completes the proof that quantities (A) and (B) are equivalent.

That quantities (B) and (C) are equivalent is an immediate consequence of the fact

that (1 - 1212)2 e lD(l,r)I , whenever z e D(l,r).

For 2 e D(l,r) we have (1 - 1 rte/1(2) 12)2 > (1 - r2)2 , thus

I lfw(z)|p (1-lzl2)np-2(l-I¢A(z)l2)2 dA(z)/7t 2

ID

2 (1-r2)2 I 1f‘")(z)1” (1.1.212)"”'2 dA(z)/7t, (1.16)

D(lr)

and it follows that quantity (D) is greater than or equal a constant times quantity (C) . To

complete the proof we will show that quantity (D) is less than or equal a constant times

quantity (A) . Again we make use of Lemma 1.3.

I 1f(")(z)1” (1.1.212)""'2 (1-I¢l¢)I2)2 dA(z)/7t s

11)

22

P 1.1 ()1

S(sup (1-1212)"1f(")(z)1) I J2— «(2)/a.

ZEID ID l-IZI
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Now, the integral at the right of the above inequality is l [by (0.20) the integrand is

equal to l<p}: (2) l2, so that by changing to the variable w = (“(2) the integral is

transformed into one with integrand identically equal to 1]. Thus quantity (D) is less than

or equal to quantity (B) of Lemma 1.3, and the proof is complete. [I

The equivalences of Theorem 1.7 carry over to the little Bloch space, as is shown in

the following theorem.

Theorem 1.9 : Let 0 <p < oo , 0 < r < l, and n e IN. Then for an analytic

function f on D thefollowing statements are equivalent:

 

(a) f 6 ‘Bo ;

(b) 11 I lf(")lpdA/7t —+ 0 as 121—) 1';
-np/z

ID(A,I’)I D(lJ’)

(c) I 1f(")(z)1”(1-1212)"”'2dA(z)/7t —> 0 as 121—) 1';

D(l,r)

(d) I lf(n)(z)|p(l-|zl2)np'2(l-|tpl(z)l2)2dA(z)/7t —> 0 as Ill-+1-.

ID

Proof:

Take 0 <p < co, 0 < r< 1, and n e IN. Let f be an analytic function on D. With the

help of Theorem 1.2, it follows immediately from inequality (1.14) that (a) implies (b) .

Conversely inequality (1.15) together with Lemma 1.4 give that (b) implies (a) .

The equivalence of statements (b) and (c) follows immediately from the fact that for

z e D(l,r) we have (1 - 1212)2 e |D(l,r)l .
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That (d) implies (c) is a consequence of inequality (1.16). To complete the proof we

will show that (a) implies (d). Suppose that (a) holds, i.e., f6 $130. By Lemma 1.4

we have that (1 - Izlz)" lf(")(z)l —) 0 as Izl —-) 1'. Then it is easy to see that

I lf(n)(z)|p(1-lz|2)np‘2(1-|q)l(z)|2)2dA(z)/7r —9 0 as 5—) 1'. (1.17)

D\5 D

By Lemma 1.3 there is a constant C such that (1 - I 2 I2)" If (")(z) | S C for every 2 e D.

It follows from the chain of inequalities

I If(")(z) 1” (1 -1212)” ‘ 2 (1 - 1 (191(2) 132 dA(z)/7t s

5 D

2 2

l-l (z)|

s c? I -————‘p*2 dam/a

D(O,o) 1— lzl .

= Cp I lgoz'(z)?dA(z)/7t [by identity (0.20)]

D(0.b)

C” I 1 MM = C” lD(l,o)l ,

Dab)

that for every 5 e (0, 1) we have
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I |f(n)(z)|p(l-lzl2)np'2(l-|¢A(z)|2)2dA(z)/7t —> 0 as 121—) 1'. (1.18)

5D

Combining (1.17) and (1.18) yields that (d) holds. Cl



Chapter 2

In this chapter we will give characterizations of the Bloch space and the little Bloch

space in terms of the pseudo-hyperbolic metlic. It will be shown that the Bloch space

consists of those analytic functions on the disk that are uniformly continuous with respect

to the pseudo-hyperbolic metric. A similar description will be given for the little Bloch

space. We will also consider the real harmonic Bloch space on the unit disk. First we will

show that for an analytic function on the disk the Bloch norm and the supremum of the

oscillations of the function over pseudo-hyperbolic disks of a fixed radius are equivalent

quantities.

Theorem 2.1 : Let 0 < r < 1 .For f analytic on D the following quantities are

equivalent:

(A) ll f "9 ;

(B) sup sup |f(z) -f(l)|.

leD zeD(l,r)

Proof:

Fix 0 < r < l , and let f be analytic on D . It follows from the identity

f'(0) = 32- I Ere) dam/2r

r D(0,r)

If'(0)l S érI If(z)| dA(z)/7t

r D (0,r)

2
< _

r

sup If (z)| .

zeD(0,r)

43
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Replacing f by f o IPA. - f (l) , we get the inequality

(1-1212) lf'(l)| 5

”
(
I
N

sup |f(2) - f(l)|. (2.1)

26001:)

and it follows that

IIfIII3 S 3- sup sup If(z) -f(l)l.

leD zeD(l,r)

On the other hand, as in the proof of Lemma 1.3, for l wl < r we have

lwl

2 dt . "flIEB

l-t lwl

l+r

|f (W) - f(W S

Replacing f by f 0 (Pl - f (l) yields

 

1 1

|f(<pl(w) -f(l)| S -2- log( +r) Ilfll.I3 .
l-r

whenever I w I < r . Hence

 

sup sup |f(z)-f(l)ls%log(l+

,

II fll , (2.2)

7.61) tenor) 1") ‘B

and the theorem is proved.Cl
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A function f on D is uniformly continuous with respect to the pseudo-hyperbolic

metric if

sup sup lf(z) -f(l)| —> 0 as r—-)0+. (2.3)

leD zeD(l,r)

Let UC denote the class of all functions f: D -> C which are uniformly continuous

with respect to the pseudo-hyperbolic metric. Let H(D) denote the set of all analytic

functions on D.

Corollary 2.2 : EB = UC n H(D)

Proof:

If f6 UC r) H(D), then f satisfies (2.3). In particular, for some r e (0, 1) we have

sup sup |f(z) -f(l)| S 1.

leD zeD(l,r)

so that by Theorem 2.1 fe $3 .

For the converse suppose that fe 33 . Taking the limit r —-) 0+ in (2.2) yields (2.3),

hence f6 UC n H(D), and the corollary is provedD

Remark 2.3 : For an arbitrary function f: D -—) C to be uniformly continuous

with respect to the pseudo-hyperbolic metric f must satisfy the little-o condition (2.3).

However,for an analyticfimction f: D -) C to be uniformly continuous with respect to

the pseudo-hyperbolic metric it is sufi‘icient (and ofcourse necessary) that f satisfies the

big-0 condition
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sup sup |f(z) -f(l)| < w.

16D ZEMU)

for some r e (O, l) .

As usual, the equivalences of the previous theorem carry over to the little Bloch space.

This is expressed in the following theorem.

Theorem 2.4 : Let 0 < r < 1 . For an analytic function f on D the following

statements are equivalent:

(a) f6 130 ;

(b) sup lf(z) -f(h)| -—> O as Ill-9 1'.

zeD(l,r)

Proof:

That (b) implies (a) follows immediately from (2.1).

For the converse, suppose that f6 I30 . From the proof of Theorem 2.1 we see that

for te (0,1) and he D

1+r

l-r

 sup |f(2) -f,(2) - (f(l) - 1;(A»Is§-Iog( llf-fll . (2.4)

zeD(2.r) ) t B

Using the triangle inequality it follows from (2.4) that for t e (O, 1) and A e D

sup |f(z) -f(2.)l s ézogfi”) Ilf-ftllfB + sup lft(z) -ft(/'L)l. (2.5)

zeow) " xenon
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Let t e (O, 1) . The dilate ft is analytic in a neighborhood of the disk, so clearly

sup If‘(z) -ft(/'l)l —) 0 as Ill—)l',

26004)

and it follows from inequality (2.5) that

lmsup sup |f(z) -f(h)l S-é—log(llf:) llf- ftll‘B.

Ill—)1- WOW)

 

Since fe EEO , we have ll f - ft "SB —) O as t -) 1‘, hence the above inequality yields

imsup sup |f(z) —f(l)| = O,

Ill—)1- 260(k)

which implies that (b) holdsD

Let h(D) denote the set of all real harmonic functions on D . Define the real harmonic

Bloch space B to be the class of all real harmonic functions u on D for which

llullB = sup (l-Izl2)l(Vu)(z)l < co,

26D

where Vu denotes the gradient of u . If f is analytic on D, and u = Ref, then it follows

from the Cauchy-Riemann equations that If ' l = I Vu I, and consequently ll f "SB = II u "3.

It follows immediately that B = Re 13 .

So if as B , thenfe SB, so that fe UC, and hence ue UC. Thus we have the

inclusion B C UC n h(D). We claim that the converse is also true, i.e., in analogy to
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Corollary 2.2 we have the following result:

Theorem 2.5 : B = UC n h(D).

Proof:

We make use of the fact that the conjugate function operation is a bounded operator in

the L1(D,dA/7t) norm (for a proof see [7]): there is a constant C such that for every real

harmonic function u on D

JlfildA/tr s c I luldA/tr.

[D ID

Let 0 < r < 1. Dilating the above inequality gives that for every real harmonic function u

on D

J IUI dA/Jr S C J lul dA/7r . (2.6)

D(O,r) D(O,r)

Suppose that u 6 UC n h(D). Let f be analytic on D such that u = Ref. Since u is

uniformly continuous with respect to the pseudo-hyperbolic metric we can pick 0 < r < 1

such that

sup sup |u(z) - u(h)l S 1. (2.7)

16D 260(k)

Let A e D be fixed. Using the change-of-variable formula (0.22a) and formula (0.21) for

the normalized area of a pseudo-hyperbolic disk, we have:
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1

I D(lfl

22

J lf-f(/1)| dA/rt S WI lfo (DA-f(DI dA/tt

D(AJ) r (141”) D(O,r)

1

 

S J lfo (o - f(l)| dA/n' . (2.8)

2 4 A

r (1' r) D(O,r)

 

Write f = u + i (7. It is easily seen that (u 0 (pl - u (1))”: [70 (P2. - (7(2), so by

(2.6) we have

I |Uo(p;L - U(A)l dA/n: S C J Iuoqu - u(l)| dA/tt.

D(O,r) D(O,r)

Since fo (PA - f(l) = u o ‘Pit - u (A) + i ((70 (P1. - (7(2)), the above inequality and

the triangle inequality give us that

I lfogpA-f(/l)|dA/7t .<_ C I luotpl- u(h)| dA/n'. (2.9)

D(O,r) D(O,r)

From (2.7) we see that the integral at the right of (2.9) is bounded by r2. Combining this

with (2.8) yields

1

lD(ll,r)|

I lfotpl 4(1): dA/tt s C”
4

D(A,r) (1 ' ')

  

By Theorem 1.1 (D), we have fe 13, so that u =Ref e B , as was to be shownfl
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Remark 2.6 : For an Mmfimction u : D —) R to be uniformly continuous

with respect to the pseudo-hyperbolic metric u must satisfy the little-o condition (2.3).

However, for anWfunction u : D —> R to be uniformly continuous with

respect to the pseudo-hyperbolic metric it is suflicient (and of course necessary) that u

satisfies the big-0 condition

sup sup |u(z) - u(l)l < co,

16D zeD(h,r)

for some re (0, 1).

Just as BMO is closed under the conjugate function operation, so is B, the class of

real harmonic functions on the disk that are uniformly continuous with respect to the

pseudo-hyperbolic metric.

Corollary 2.7 : If u 6 UC n h(D), then (7 5 UC n h(D).

Proof:

Suppose that u 6 UC n h(D). By Theorem 2.5, u e B . Thus u =Ref, withfe ‘B.

Then -if6 I3, so that i] = Re (-if) e B , and by Corollary 2.2 we are done.El



Chapter 3

In this chapter we describe some spaces of analytic functions on the unit disk in terms

of Nevanlinna characteristics. Our starting point is Baemstein's characterization for the

space BM0A ; he proved that an analytic function on the unit disk belongs to the space

BMOA if and only if the Mobius transforms of the function form a bounded family in the

Nevanlinna class. We give a similar description of the space VMOA . This description

cannot be obtained by simply repacing Baemstein's boundedness condition by the

corresponding vanishing condition (as is usually the case). We then formulate and prove

analogous characterizations for the Bloch space and the little Bloch space in terms of an

area version of the Nevanlinna characteristic.

For f analytic on D the Nevanlinna characteristic T(f) is defined by

T(f) = sup log+lf(rei9)l d9 .
l

OSr<l 27:

c
a
n
?

The Nevanlinna class is the set N = {fe H(D) : T(f) < co}.

Let 0 < p < oo , then it follows from the inequality p log” x S x p that

2.1!: 211’

p —1— Jtog+lf(re‘9)ldes .1. J |f(re‘9)l”d0,

27: 0 21! 0

hence

T(f) s .1. llfllp ,for 0<p<°o.
P 3”

51

(3.1)

(3.2)
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It follows from (3.2) that for fe BMOA

sup T(fo (P1 -f(l)) < co.

16D

i.e., the family { fo 491 -f (11) : A e D] is bounded in the Nevanlinna class N. In [8]

Baernstein proved that the converse is also true. Before stating his result we need to

introduce more notation:

Fix 0 < a < 1V2 . For em6 3D let Fa(e i9) denote the Stolz region based at cm , i.e.,

Fa(e i6') is the interior of the convex hull of the circle I z I = sin a and the point e i9:

 

The non-tangential maximal function 77. a(f) of a complex function f defined on D is

defined by

(namxe‘a) = sup WW :2 e ra(e‘9>1.

Note that(‘l'la(f))(ei9)2|f*(ei9)l iff hasanon-tangential limit f*(ei9) at cm.
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In [8] Baernstein proved the following "John-Nirenberg type" of theorem:

Theorem 3.1 : There exists an absolute constant K such thatfor each 0 < a < 7t/2

and f analytic on D thefollowing statements are equivalent .'

(A) { f 0 (Pl - f(l) : A e D} is bounded in the Nevanlinna class N ;

(B) There exists a constant [3 = [3 (a, f)for which

none”: nave ‘9; -f(t»<e‘")>r ))<Ke"". (3.3)

forall he D ,andforall O<t<oo.

As Baernstein indicated ([8], Corollary 5.2), Theorem 3.1 has as an immediate

consequence:

Theorem 3.2 : For an analytic function f on D the following statements are

equivalent:

(A) fe BMOA .'

(B) sup T(fw/1 -f(l)) < co.

leD

What about the space VMOA ? One may be tempted to replace the above big-O

condition (B) in Theorem 3.2 by the corresponding little-o condition, and ask whether

fe VMOA (=bT(fo(pA-f(h))—)Oas Izl—>1”? (3.4)

The answer is negative: the condition at the right of (3.4) is certainly necessary for f

to be in VMOA (this follows from (3.2)). but not sufficient. That the condition is not
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sufficient follows from the observation that it is trivially satisfied when ll f llm S 1/2

(because this implies that T (f 0 ‘Ph - f (2.)) = O for all 11 e D), but not every analytic

function f on D for which N f II” S 1/2 is contained in VMOA .

Let's return to BM0A and rewrite the condition in Theorem 3.2.

Let p>0.Iffe BMOA ,then also flpe BMOA ,sothat

 

(fowl-f(l))
sup T <oo.

leD p

It follows that for f analytic on D:

 

(fog Jo»)
fe BMOA «=3 Vp>0:sup T l <oo . (3.5)

heD p

Having replaced the big-O condition in Theorem 3.2 by a collection of big-O conditions in

(3.5), going to the corresponding little o-conditions yields the following:

Theorem 3.3 : For an analytic function f on D the following statements are

equivalent:

(a) f e VMOA ;

f° (p, wt)

p

 (b) foreveryp>0wehavethat T( )-—) O as Ill-+1-.

Before the proof we need to relate the Nevanlinna characteristic and the H2 - norm of

an analytic function. We'll do this not just for the H2 - norm, but for any HP - norm:
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Lemma 3.4 : Let 0 < p < co. For an analyticfunction f on D:

llfllpp =p2 Ipp'lr(£) dp. (3.6)

H 0 p

Proof:

Let 0 < p < co. Integration by parts yields the formula:

1

- 1
It” ‘tog—d:=i.

t 2

o p

Thus for 0 S x < oo we have:

00 x 1

Jpp'llog+idp=Jpp'llogidp=xpJtp'llogldt=-l-xp.

t 2

o p 0 p o P

For an analytic function f on D and O < r < 1 an application of Fubini's Theorem gives:

W

1 1 2” f(reig) 1 1
Jupp- —Ilog+| IdB dp=—2—

o 2"o p p 2”

 |f(rei9)|p d6 . (3.7)

O
'
—
—
.
§
a

Taking the limit as r —-) 1', and using the Monotone Convergence Theorem we get (3.6).[1
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Now we are ready for the proof of Theorem 3.3.

Proof of Theorem 3.3 :

Let f be an analytic function on D. We have already seen that condition (b) in

Theorem 3.3 is necessary.

To prove the sufficiency, suppose that f satisfies condition (b). Our first step is in

showing that fe BMOA. Choose an r e (O, 1) such that T (f o a); - f(2.)) < 1 whenever

r < I ll < 1. Note that g e N 4:) g o ‘1’}. e N (This follows easily from the fact that each

function in the Nevanlinna class N is the quotient of two H°°-functions). Pick w such

that r<|w| < 1. Then T(fo (pw - f(w)) < 1, so that fo ow e N, and therefore fe N.

Thus log+lfI has a harmonic majorant, call it h. Then for A e D, h o a); is a harmonic

majorant of f o 491 , whence

T(f° m) S (’1 ° mXO) = (1(1).

Using the inequality log+(x + y) S log+x + log+y + log 2 , it follows that for I ll 5 r :

T(fo (Pl -f(l))Sh(h)+log+lf(/'l)l+log2.

Hence the family { f 0 ‘PA - f (A) : 2. e D} is bounded in N, and by Theorem 3.2 we have

fe BMOA.

Since fe BMOA we can apply Theorem 3.1. Let 3 be such that (3.3) holds. Then

forle D andt>0:

none”: If'wxeie» -f(l)| > r l) <K e'fi‘.
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Using the above inequality as well as the distribution function for the log“, it follows that

for every p > O:

 

27!: * i9

. -(t> I((e»-(A>I .T(f «)1 f )SLJ::+:«p, f (wow)

27: 0 p

Now let 8 > 0 be given. Choose R > 0 such that K e ‘ B R < (e 2,6 2)/8. Then integrating the

above inequality we get

 

°° f0 -f(l)
IpT( (p3 )dp<fh2. (3.8)

p 8

R

By the Lebesgue Dominated Convergence Theorem:

 

(f0 to, fit)
p T )dp -)Oas Ill—)l'.

p

o
b
i
»

Choose 8e (0 , 1) such that



 

R

° ' (4)

JpT(f $4 f )dp<-%2 (3.9)

0

whenever I - 5 < I ll < 1 . Using the formula of Lemma 3.4, it follows from (3.8) and

(3.9) that

 

f° (p, 4(1)) 2
2 co

0

hence llfo ‘P/t' f(l) IIH2<£,whenever 1- 6<|h| < 1 .Therefore fe VMOA , and

the theorem is proved.EI

The classical Nevanlinna characteristic T is defined in terms of log+, which only

measures the values of the function that are of modulus bigger than 1. Instead we could

define

T’Cf)= sup

27!

—1— Itog(1+lf(re‘9)l)de,

OSr<127r O

for an analytic function f on D, and we obtain a characteristic equivalent to T.

In fact, for O Sx < co, log+x Slog (1 + x) S log+x + log 2, so that for every analytic

function fon D,

T(f) s T'(f) s T(f) + log2.

The characteristic T' also measures values of the function that are of modulus less than 1.
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Theorem 3.5 : For an analytic function f on D the following statements are

equivalent:

(a) f e VMOA ;

(b) rump/1 -f(l)) —> 0 as Ill—)1”.

 

Proof:

For x 2 p > O ,

log+£ 5 log (1 +1/p) log (1 +x) ,

P 103(1 +10)

so that

 

T(f° (pa 4(1)) 5 log(1+1/p)
T’Cfo (pl, - f(l)).

P log(l+p)

Soif T'(fo 4),-f(l)) -+ 0 as l/Il-)1',then fe VMOA.

The inequality log (1 +x)$x implies that

sothatT'(fo (PAC f(l)) ——) 0 as |ll—>1‘,when fe VMOAD

For f analytic on D the area version of the Nevanlinna characteristic, Ta(f), is

defined by

Ta(f) = Jlog+lfldA/n.

D

The area-Nevanlinna class is the set Na = { fe H(D) : Ta(f) < co}.
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Let 0 < p < co . Integrating both sides of inequality (3.1) gives, in analogy to (3.2):

1 P

Ta(f)S-Ellflle,for0<p<oo. (3.10)

a

So the area-Nevanlinna class contains all Bergman spaces. Analogous to Baemstein's

characterization for the space BMOA given in Theorem 3.2 we have following result for

the Bloch space:

Theorem 3.6 : For an analytic fitnction f on D the following statements are

equivalent:

M) fefl;

(B) sup Ta(f° (PA - f(l)) < co.

AeD

Proof:

That (A) implies (B) follows from (3.10) and the Garcia-norm characterization for

the Bloch space [Theorem 1.1 (B) ].

For the converse, let f be an analytic function on D and suppose that

M = sup T0004011 -f(/1)) < w.

leD

Fix O<r<1,andlet z,le Dwith d(z,/'L)<r.Put u=tpx(z),thenlul<r.Using

that the function log+lf o a); - f (2)! is subharmonic on D we have
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bg+lf(z) - m» with (ppm) -f(/1)|

1

I
A

 2 I Iog*ltfo «ppm - tool «(We
1 - r)

( A(u,l-r)

1 M

s 2 Tatfo a, - f(l)) s
(1 -r) (1 -r)

  

Since x S exp(log+x) for all x 2 0 it follows that If (2) - f (A) I _<_ exp(M/(l - r)2), and it

follows from Theorem 2.1 that f e 33, as was to be shownfl

A description of the little Bloch space in terms of the area-Nevanlinna characteristic is

contained in the following theorem which is analogous to the description of the space

VMOA given in Theorem 3.3.

Theorem 3.7 : For an analytic function f on D the following statements are

equivalent:

(a) f 6580;

f° (p, 4(3)

p

 (b) Foreveryp>0wehavethat Ta( )-—>Oas Ill—>1'.

Proof:

That (b) is implied by (a) follows easily from (3.10) and the Garcia-norm

characterization for the little Bloch space [Theorem 1.2 (b) ].

For the converse, suppose that f is an analytic function on D for which (b) holds.

Fix 0 < r < 1 . Let 2, A e D such that d(z, 2.) < r . Then, as in the proof of Theorem 3.6:
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_ 1 f°¢ 'f(4)
|f(z) f(l)| Sap 2T0( 1 ) , (3.11)

p (l-r)

Given £> O , choose 0 < p < 8/2 . Since (b) holds we can choose a 5e (0 , l) for

which

 

T (to so, 4(2)
0 ) <(1-r)210g2, (3.12)

p

whenever 0 <1 -l/'ll < 6. Combining (3.11) and (3.12) we get that for 0 <1 - | Al < 6

If (2) - f ()1) l 5 2p < e. We conclude that

sup |f(z) -f(/'l)l -—> O as Ill—9 1',

26001!)

so that by Theorem 2.4, fe 5130 , and we are doneD



Chapter 4

In this chapter we will give a different proof of Baemstein's value distribution

characterization for BM0A [8], Theorem 3, and then formulate and prove the

corresponding description for the space VMOA . Defining an area version of the counting

function used in the value distribution characterizations for BM0A and VMOA, we obtain

analogous results for the Bloch space and the little Bloch space.

The Green's function for the unit disk is given by

 g(z,/'l) = log , for z,/le D.

| 431(2)!

For a nonconstant analytic function f on D let {zn(f)} denote the zeros of f in D,

listed in increasing moduli and repeated according to multiplicities. Following Baernstein

we define N (w, A, f), the "counting function for value w started at h ", by

N(w, M) = 2 gene-w)».
n

Note that g (2, O) = log (IA 2 I) , so that

1

N(W,O,f) = 2" logW s

the usual counting function. It is clear from the definition of the counting function that

63
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N(w,h,f)=ooiff(h)=w; (4.1a)

N(w, 2, f) = 0 if f omits the value w . (4.1b)

The following properties of the counting function, which are easily verified, are useful:

For we C, ate C\{O], he D and f analytic on D we have:

N(w,h,f) = N(w+a,h,f+a) (4.23)

N(w, h,f)=N (aw, h, af) (4.2b)

N(w,h,f)=N(0,0,foqol-w). (4.2C)

The following theorem is due to Baernstein ([8], Theorem 3). We will give a simpler

proof of his theorem.

Theorem 4.1: For a nonconstant analyticfimction f on D thefollowing statements

are equivalent:

(A) fe BMOA ;

(B) sup {N(w,h,f):we C,he D and lf(h)-wl21} < oo.

Just as in Baemstein's proof we will need to relate the Nevanlinna characteristic of an

analytic function with its counting function. This is done in the following classical result.

Cartan's Formula : For a nonconstant analytic fitnction f on D:

T(f) = N(ei9,0,f) d6 + log+lf(0)|. (4.3)
1

2.7:

0
5
.
?
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A proof of Cartan's Formula can be found in [17], pages 214-215, for the case that f

is analytic on a neighborhood of D. The general case follows easily by looking at the

dilates ft of f. Using the Monotone Convergence Theorem we see that T (f,) increases

to T (f) and for each 9 in (0, 2n) we have that N (e ‘9, O,ft ) increases to N (e i9, 0, f)

as we take the limit t -) 1'. For these dilates f, we know that (4.3) holds, so that another

application of the Monotone Convergence Theorem gives that (4.3) holds for f.

Proof of Theorem 4.1:

Let f be a nonconstant analytic function on D. By Jensen's Formula we have:

i6 _ r
loglf(re )I d0 — 2 logW + Ioglf(0)|.

1

27‘ n:lzn(f)l<r

o
c
.
_
_
.
,
§

Thus

log+|f(rei9)l d6 2 z logfiil- + log |f(0)| ,
1

2” nzlzn(f)l<r

c
p
s
—
5
5
)

which, after taking the limit r —> 1', gives us the inequality

T(f) 2N(0,0, f) + loglf(0)| . (4.4)

Replacing f by f 0 ‘Ph - w , and making use of (4.20) the above inequality yields

N(w,h,f) S T(fo (pA - w) - loglf(h) - wl.
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Using the inequality log+(x+y) S log+x + log+y + log 2, we get

N(w, h,f) _<. T(fo (pl - f(h)) + log+lf(h)-wl - loglf(h)-wl + log2.

Soiflf(h)-w|21,thenwehave

N(w,h,f) S T(fo (pA -f(h)) + log 2.

The above inequality and Theorem 3.2 show that (A) implies (B).

To prove the converse suppose that

M =sup{N(w,h,f):we C,h e D and |f(h) - w|21}< 00.

By Cartan’s Formula

T(f°¢l'f(l)) =

G
a
g
s
)

i N(e‘e. 0.f°¢ -f(l))d9 .
2” h

Now, using (4.2a) and (4.2c), for every 0 S 6S 2n we have N (em, 0,f o (p;~ - f (h))

=N (ei9+f(h ), h,f ) SM, so it follows that

T(fo (p;L -f(h)) S M, forall he D,

and hence, by Theorem 3.2, fe BMOA . El
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Before going to VMOA let's rewrite the condition in Theorem 4.1 for inclusion in

BMOA . Suppose thatfe BMOA , and let 6 > 0. Since f/6e BMOA , it satisfies

condition (B) of Theorem 4.1. By (4.2b), N (w, h, f) = N (w/6, h, 176 ). Therefore we

must have that for an analytic function f on D:

fe BMOA (=)

[V6>0:sup{N(w,h,f):w e ¢,2 e [D and |f(h) - w|26}<oo]. (4.5)

We will show that the little-o condition corresponding to the big-O condition in (4.5)

will give a necessary and sufficient condition for inclusion in the space VMOA . This will

be made precise in Theorem 4.3.

In the proof of Theorem 4.3 we will need to relate the counting function N of an

analytic function to the HZ-norm of the function. As is shown in the following lemma, this

can be done for not just for the Hz-norm but for any HP-norm of an analytic function.

Lemma 4.2 : Let 0 < p < co . For an analyticfunction f on D with f (O) -- O, we

have:

2

llfllp = 5’— ] lwlp'2N(w,0,f) dA(w).

Hp 2n (1:

Proof:

Fix 0 < p < co , and let f be an analytic function on D with f (O) = 0. By Cartan's

Formula and (4.2b), for every p > 0 :



21!

I“) = —1— ] N(e‘9,o, I.) d6

p 2x 0 p

271:

= L I N(pe‘9,o,f) d0.

27! 0

Multiply by pP ' 1 and integrate with respect to p over the interval (0, co). By the formula

(3.6) of Lemma 3.4 we get

0° 711'

Ilfllp =p2J,)1"'l —1—J‘N(pei9,0,f)d6 dp

”p o 2” o

2 2

= 5— ] IwIP' N(w,0.f) dA<w) .

2” (I:

and the lemma is proved. El

Theorem 4.3 : For a nonconstant analytic function f on D the following

statements are equivalent:

(a) fe VMOA ;

(b) for every 6 > O we have:

sup {N(w,h,f):we Cand |f(h)-wl26} —> O as |hl—) 1'.

Proof:

Let f be a nonconstant analytic function on D. Let 6> 0. Making use of Cartan's

Formula and the equations (4.2) we see
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- f° -f(h)
Mm gas )dQ

  

T(fo¢4-f(l))=-l—-N

5 2n

1

27:

“P

2t

I“
0

2!

I N(6e9+f(h), h,f) d6

0

{N(w,,h f): weC and |f(h) -w|2 6},

so that, by Theorem 3.3, (b) implies (a) .

To prove the other implication we make use of Lemma 4.2. In this lemma take p = 2,

and replace f by f 0 (PA - f (h), we get the formula

2 2
llfo (oi - f(h)|lH2 = ; I N(w +f(h),h,f) dA(w). (4.6)

a:

We will also need Lehto's Theorem [21], which states that for a function g , analytic on a

neighborhood of D, the function w H N (w, 0, g ) is subharmonic on C \{g (0)]. Let g

be an analytic function on D for which g (0) = 0. Let 0 < r < 1. Applying Lehto's

Theorem to the dilate g, of g we get that for 6 > O and for I u I 2 6

N (u, 0, gr) S -1—2 I N (v, 0, gr) dA(v) . (4.7)

7‘6 lu- vl<6

Taking the limit where r —-) 1‘, we get

N(u,0,g) S —1—2‘I N(v,0,g) dA(v).

71:5 lu- vl<6
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Apply the inequality to g =f o a); - f (h). Using equations (4.2) we get

N(u mutt) s #2 I N(V+f(h),h,f) dA(v) .

n6lu-N<6

Replacing u +f (h) by w yields the formula

N(w,h,f) S -1—J' N(z,h,f) dA(z) . (4.8)

2

”slw-fl<6

Combining (4.6) and (4.8) gives us that for If (h) - WI 2 6

1 2

N , h, S — II o - h H ,

so that

sup{N(w, h,f):we C and |f(h) — WI 2 6} S —1—Ilfoq) - f(h)||22 ,

252 h H

from which it follows that (a) implies (b) .12]

Now we will turn to the Bloch space and the little Bloch space. Defining an area

version of the counting function used in the value distribution characterizations for BM0A

and VMOA, we obtain analogous results for the Bloch space and the little Bloch space.

Define an area version Na of the counting function N as follows: given an analytic

function f on D we first define Na (0, O, f) by
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l

Na(0,0,f) = I 2rN(0,0,fr) dr,

0

and, mimicking (4.2c), for w e C and h e D define Na (w, h, f) by

Na(w,h,f) = Na(0,0,fo (a). - w).

Observe that Na (w, h,f ) = 0 if f omits the value w, but that (4.1a) is not necessarily

true for counting function Na . It follows immediately from the definition that properties

(4.2) do hold for counting function Na : for w e C, a e C\{O], h e D and f analytic

on D we have:

Na (w, h,f) = Na (w + a, h,f+ a) (4.9a)

Na (w, 2, f) = Na(0tw, h, of) (4.9b)

Na(w, h,f) = Na(0,0,fo (pl - w). (4.9c)

Theorem 4.4 : For a nonconstant analytic function f on D the following

statements are equivalent:

(A) f 6 33;

(B) sup {Na (w, h,f):we C,he D and |f(h)-w121} < 00.

Proof:

Let f be a nonconstant analytic function on D, and let 0 < r < 1. By inequality (4.4)

we have:
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N(0,0,fr) s T(fr) - log lf(O)|.

Multiply the above inequality by Zr and integrate with respect to r over the interval (0, l)

to get:

Na (0,0,f) S Ta (f) - log |f(0)| . (4.10)

Just as in the proof of Theorem 4.1 it follows that if If (h) - WI 2 1, then we have

Nam. h,f) 5 ram 4), 4(4)) + Iogz.

Theorem 3.6 and the above inequality show that (A) implies (B) .

Note that integrating Cartan's Formula gives us the formula

1

Ta(f) = Z

21!

I Na(e’9,o,f) d6 + log+|f(0)l. (4.11)

0

To prove the converse we use this formula and proceed as in the proof of Theorem 4.1.1:]

The value distribution characterization for the Bloch space carries over to the little

Bloch space in the same way as going from BMOA to VMOA.
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Theorem 4.5 : For a nonconstant analytic function f on D the following

statements are equivalent:

(a) f6 130;

(b) for ever 6> 0 we have:

sup {Na(w,h,f):we Cand |f(h)-wl26} -—> O as |h|—> 1'.

Proof:

Let f be a nonconstant analytic function on D. Let 6 > 0. Making use of (4.11) and

the equations (4.9), as in the proof of Theorem 4.3, we have for every 6 > 0

 

(to «)0A - f(l)
T

a 5
) S sup {Na(w,h, f):we C and |f(h) - WI .>. 6},

so that, by Theorem 3.7, (b) implies (a).

To prove the other implication we need an area-version of Lemma 4.2. If 0 < p < co,

the function f is analytic on D, andf (O) = 0, then applying Lemma 4.2 to the dilates f,

of f and subsequently integrating with respect to r over the interval (0, 1) yields the

formula

2

llfllp = P—

LP 27:
a

I lwlp-2Na(w,O,f) dA(w) .

a:

In the above formula take p = 2 and for h e D replace f by f 0 ‘Ph - f (h) ;analogous to

(4.6) we get:
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2

"fotpl—f(l)"L 2:

a

a
l
N

I Na(w +f(h), h, f) dA(w) . (4.12)

0:

Integrating (4.7) with respect to r over the interval (0, 1) gives that for an analytic function

goanorwhich g(O)=Oandfor|u|26>Owehave

l

Na(u)0:g)s m Na(v:0rg) dA(V).

lu—vl<6

As in the proof of Theorem 4.3 it follows that whenever If (h) - WI 2 6 we must have

1

n62

 Na(w, h, f) s I Na(z, a, f) dA(z) . (4.13)

lw-z|<6

Combining (4.12) and (4.13) we get

sup {N (w,h,f):we C and |f(h) - WI 2 6] S i llfoqo -f(h)l|22,

a

from which it follows that (a) implies (b).El

For a nonconstant analytic function f on D it is easy to compute Na(0, O, f). Let

{2"} denote the zeros of f in D, as usual, listed in increasing moduli and repeated

according to multiplicities. Then for every 0 < r < 1:

,
N(0,0.f,) = 2 x<Ian<r)Iogl—z—-,.

n n
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thus we have

1

2

Izl

n

 

l

1
Na(0,0,f)=2 IZrlogE-C-l-dr=Z-f(log -(1-lzn|2)).

n I!
"Izl

n

Using power series it is elementary to show that

1

3 (1-Izl2)2 S log—Li- (l-Izlz) , ZED,

Izl

so that we have the inequality

2 (1 -|zn 12)2 s 4Na(0,0,f).

u

If fe Na , i.e., Ta(f) < co, and if f (O) at 0, then it follows from (4.9) that

N“(0, O, f) < oo , so that by the above inequality

2 (l-Izn I2)2<°°. (4.14)

The condition f (O) at O is no restriction: if f (0) = 0, then write f (z) = 2’" g (z) (z e D)

for an m e IN and an analytic function g on D for which g (0) at 0. It is easy to see that

then also g e Na , so that the zeros of g satisfy (4.14). It is then clear that also the zeros of

f satisfy (4.14). Thus we have given a proof that the zeros {2"} of a function f in the

area-Nevanlinna class Na must satisfy (4.14). In [16], Andrei Heilper showed that
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conversely, all sequences {zn} in D satisfying (4.14) can be obtained as zerosets of

functions in the area-Nevanlinna class.

For a nonconstant analytic function f on D and O < r < 1 let n (f, r) denote the

number of zeros off in D(O, r), counted according to multiplicities. Then

n(f) = lim n(f,r)

pal

denotes the number of times (counting multiplicities) that f assumes the value 0. In [29]

Pommerenke showed that a Bloch function f which safisfies the valence condition

sup I n(f-W) dA(W)<°°.

ue¢lw-ul<l

must belong to BMOA. If f is univalent (or finitely-valent), then it is trivial that the above

condition is satisfied, thus univalent (or finitely-valent) Bloch functions belong to BM0A.

We will give a necessary and sufficient condition on a Bloch function for inclusion in the

space BM0A.

It is elementary to show that

f

N(0.0.f,) = I

0

n

 ’0 dt.

t

Thus it follows that
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l r

Na(0,0,f) = I (2rI"(:") dt)dr

0 0

(-:-- t)n(f,t) dt.

o
t
-
U
U
-
I

Hence

1

Na(0,0,f) + Itn(f,t) dt = N(0,0,f).

0

Take he D and w e C. Replacing f by fo (0&- w yields

1

Na(w,h,f)+Itn(fO¢l-w,t) dt =N(w,h,f), (4.15)

0 ,

which (in view of Theorems 4.1 and 4.4) implies that for a Bloch function f to belong to

BMOA it is necessary and sufficient that

l

sup{Itn(fo (pl-w,t)dt :heD, weC and |f(h) - wl21] < co.

0

Note that n (f o (a;. - w, t) is the number of zeros of f - w in the pseudo-hyperbolic disk

D(h, t), counted according to multiplicities. Thus the above condition is trivially satisfied

if f is univalent (or finitely-valent).
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Using Theorems 4.2 and 4.5 we see from (4.15) that a little Bloch function f must

belong to VMOA if and only if

I

V6>O: sup {Itn(fo (pl-w,t)dt :we C and |f(h)-wl26]—->OaslhI—)1'.

0



Chapter 5

In this chapter we give estimates for the growth of analytic functions in weighted

Dirichlet spaces, which then are used to give necessary and sufficient conditions on the

growth of an analytic function on the disk for inclusion in the Bloch space or the little

Bloch space. For the Bloch space and the little Bloch space we establish certain weighted

Dirichlet-type conditions, and we investigate the question of whether analogous results

are true for the spaces BM0A and VM0A.

We start with a lemma that gives estimates for the weighted Bergman norms of an

analytic function and its derivative.

Lemma 5.1 : Let -1 < a < oo . For an analytic function f on D we have

 

 

1 Ilf'(z)l2(l-|z|2)a+2dA(z)/7t s Ilf(z) -f(0)|2(1-|z|2)adA(z)/7t 5

(1+1 D D

s “+3 If'(z)|2(1-|z|2)a+2dA(z)/7t . (5.1)

a+1

ID

Proof:

Let -1 < a < oo . For an analytic function f on D with Taylor series expansion

n

f(2) = Ea zn , zeD,

n=0

it is easily seen that

79
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M

I lf(z)|2(1-Iz|2)a dA(z)/7t = 2 Ian 12pm, a), (5.2)

[D "=0

where

1

pm, a) = I 1212" (1.-1212)“ «(2)/z: = Ix"(1-x)a dx.

[D 0

Then we have that

n!F(a+ 1)

1"(n+a+2)

 

1302,01) = (5.3)

For the derivative of f we have

I lf'(z)|2(1-lz|2)a+2dA(z)/7t = 2 lan|2n2,6(n-l,a+2).

n=l

D

Using (5.3) and the properties of the Gamma-function it is easy to verify that

1

n2/3(n-1,a+2) = 353;) )3(n, a).

n+a+2

Thuswehave

1 (1+3

n2fi(n-1,a+2)s )3(n,a)s n2p(n-1,a+2),

a+1 0+1
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and (5.1) follows immediately. III

In the above proof, for each n e IN, (a + 1) [3(n, a) = n p (n - 1, (1+ 1) increases

to 1 as (1 decreases to -1. If we take fe H2 then we have

2 N

IlfII 2: Elanlz,

H n=0

so that for eachme IN,

2

lllfll 2 - (01+ 1) I If(z)|2(l-|zI2)a dA(z)/7t I

H

D

= z Ianl2 (1 -(a+ 1)/3(n, (1))

n=1

m 2 m 2

SXIanI (l-(a+1)[3(n,a)) + 2 Z Ianl ,

n=l n=m+l

which implies that

(01+ 1) I |f(z)|2(1 -1212)“ dA(z)/7t —> Ilfll:2 as a —> -1*.

ID

Taking the limit in (5.1) where a -—) 1*, we thus obtain Paley‘s integral inequalities (see

[14], Lemma 3.2), which we will use later in this chapter:
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II , 2 2 2 , 2 I2
f (z)| (1-lzl)dA(z)/7t S llf -f(0)|| 2 S 2 If (z)| (l-lz )dA(z)/7t.(5.4)

H

D D

For an analytic function f on D with Taylor series expansion

f(z)=2a zn,ze D,
n

n=0

SCI

M(r,f) = 2 lanlr" ,for OSr<1.

n=0

The quantity r? (r, f ) is a very crude estimate on the growth of the modulus of the

function f. In the following lemma we give an estimate on [‘7 (r, f ) in terms of a

weighted Dirichlet norm of the function f.

Lemma 5.2 : Let 0 < a < oo. For an analytic fitnction f on D for which

f(O) = O, we havefor all r e [0, 1) the inequality:

in

(1-r2)a/2M(r,f) s ””1 (Ilf'(z)|2(1-Iz|2)adA(z)/7t . (5.5)

(1

ID

 

Proof:

Let 0 < a < oo , and r e [0, 1). For the derivative f' of f we have
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Ilf’(z)|2(l-I2I2)ad4(z)/7t = zlanlzn2p(n-1,a).

[D "=1

Using the Cauchy-Schwarz inequality we have

 

 

1/2 1/2

M(r,f)S 22 Elanlznzfim-La)

n=l n 2-fi(n 1,0) n=l

as 1/2 1/2

< 21,12 Ilf'(z)|2(1-Iz|2)adA(z)/tt . (5.6)

n= Zfi(n- 1, a) [D

We need to estimate the infinite sum in (5.6). It follows from (5.3) that

 

I

"2301-1,(1): "‘1 fl,

n+a F(n+a)

therefore

°° r2" °° n+0: F(n+a) 2n

2 S ——r

n=1n[3(n-l,a) n=1 "‘1 "!r(a)

 

Soz+1

 

(1-2'ar)

a

which together with (5.6) gives the desired inequality. [I

We will use Lemma 5.2 to obtain characterizations for the Bloch space and the little

Bloch space in terms of quantity f1— . The lemma can also be used to prove a result due to

V.S. Zakharyan [36]:
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Let 0 < a < oo . If f is an analyticfunction on D for which

Ilf'(z)l2 (1 -|2I2)adA(z)/7t < co, (5.7)

[D

Then

(1-r2)a/2M(r,f) —+ 0 as r—41'. (5.8)

Proof:

Fix 0 < a < co . Let f be an analytic function on D with Taylor series expansion

ll

f(2) = Zanz , ze D.

n = 0

For N e IN apply Lemma 5.2 to the function gN defined by

n

anz,zeD.
gN(Z) =f(Z) '

M

We get

(1 -r2)a/2A—4(r,f) s

N 1/2

5 (1 - r50"2 2 lanlr" + I? (I IgN'(z)I2 (1 -|z|2)adA(z)/7t . (5.9)

n=0

D

It follows from (5.9) that



85

1/2

limsup (1-r2)“’27)7(r,f) _<. Ia“ IlgN'(z)|2(1-lzl2)adA(z)/7t .(5.10)

r—bl- a [D

 

In (5.10) let N —> oo . Since f satisfies (5.7) the integral at the right of (5.10) tends to 0

and (5.8) follows. III

Theorem 5.3 : Let 0 < r < 1. For an analytic function f on D the following

quantities are equivalent:

(B) sup Mnfo <0}1 -f(h)).

heD

Proof:

Fix 0 < r < 1. Let f be analytic on D. By Lemma 5.2

1/2

(1-r2) M(r,f - f(0)) s JEII If'(z)|2(1-IzI2)2d4(z)/7t

D

Combining the above inequality with Lemma 5.1 we get

M(nf- f(0)) 5 £- ||f - f(O)“
2

(1’7 La

Let h e D. Applying the above inequality to f o (,p}. - f (h) we get
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_ 2

M(r.f°¢l-f(h))s J— "focal-f(hflle. (5.11)

(1‘7 a

and with the help of Theorem 1.1 it follows that quantity (B) is less than or equal to a

constant times the Bloch norm of f.

To show the converse, note that If ' (O) I r S r?(r, f ) , so that

(l-lhl2)|f'(h)| s .1;'1)7(r,fo (pl -f(h)), (5.12)

which implies that the Bloch norm of f is less than or equal quantity (B). C]

As usual the equivalences of the previous theorem carry over to the little Bloch

space, and we have:

Theorem 5.4 : Let 0 < r < 1. For an analytic function f on D the following

statements are equivalent:

(a) f6 130;

(b) M(r,fo (pl1 - f(h)) -) 0 as Ihl—>1'.

Proof:

Fix 0 < r < 1. Let f be analytic on D. It follows immediately from (5.12) that (b)

implies (a). The converse follows from (5.11) and Theorem 1.2. CI

We now wish to investigate the spaces BM0A and VMOA. In view of Theorem 1.7,

comparison of the two equivalences
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1/2

IlfllSB = sup Ilf'(z)l2 (1-1a (2)12)2 dA(z)/7t ,

heD ID A

and

”SM

1/2

IlfIIBMOA p IIIf'(z)I2(1-I¢A(z)|2) dA(z)/7t ,

heD ID

leads to the following question:

Question : Let 0 < p < co and let f be an analytic function on D. Are the

following true?

(i) f eBMOA 4:) sup If'(z)Ip(1-lz|2)p'2(1-|(pl(z)|2) dA(z)/7t < co?

heD

ID

(ii) f e VMOA

4:) I |f'(z)|p(1-|z|2)p'2(l -|(pl(z)l2) dA(z)/7t —) 0 as lhl-—)1' ?

D

We do not know an answer for the above question. The classical results of

Littlewood and Paley ([22], Theorems 5 and 6, page 54) and a change of variables give

the following implications for an analytic function f on D:

(l)For 0<pS2:

sup If'(z)|p(1-|z I2)”'2(1—I(p (2)12) dA(z)/tt < co =5 f e BMOA;

heD ID ’1

I|f'(z)|p(1-Izl2)p'2(l-|(px(z)F)dA(z)/7t —) 0 as 121—)1' =>fe moa.

D



88

(Il)For 2Sp<ooz

f e BMOA =9 sup IIf'(z)|p(1-|z|2)p-2(1-|(pA(z)I2) dA(z)/7t < co;

heD

D

f e VMOA =5 IIf'(z)lp(1-Iz|2)p'2(1—I¢A(z)l2) dA(z)/7t -> o as 121—91'

ID

As mentioned above, these implications follow from Littlewood and Paley‘s theorems,

but we can also prove them directly, using Theorem 1.7:

Proof:

(1) Let 0 < p S 2. If for an analytic function f on D

sup IIf'(z)I”(1-IzI2)”‘2<1-Icpl(z)|2) «14(2):: < ..,
heD D

then it follows from Theorem 1.7 that fe D. Since we have

I If ' (z) 12 (1 — I (pl(z) 12) dA(z)/7t

D

.<_ Ilfllgp Ilf'(z)|p(1-Iz|2)p'2(1-I(pl(z)l2) dA(z)/7t ,

D

both implications in (I) follow.
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(I!) Let 2 S p < oo . Now make use of the inequality

I If'(z)|p(l-Iz|2)p'2(1 -I(pl(z)|2) dA(z)/7t

[D

P-2 , 2 2
S Ilfll13 I If (z)I (l-lqpl(z)| ) dA(z)/7t ,

D

and since BMOA C 13, the implications in ([1) follow immediately. [I

What we can prove is the following theorem.

Theorem 5.5 : Let 0 < p < oo , 0 < O'< 1. Then for an analyticfitnction f on D

we have thefollowing two implications:

(i) sup If’(z)lp(l-I2I2)p'2(l-Itp (2)12)“ dA(z)/7t < oo

heD ID '1

implies that fe BMOA ;

(ii) I |f’(z)lp(1-|zl2)p'2(1-|(pl(z)l7‘)° dA(z)/7t -) 0 as 121—51'

ID

implies that fe VMOA .

The proof of Theorem 5.5 makes use of the following weighted Garcia-norm

equivalences for the Bloch space and the little Bloch space.
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Lemma 5.6 : Let -1 < a < co and 0 < p < oo . Then for an analytic function f

on D we have:

(i) Ilfll =sup

13 hraD (‘I

l/p

|f<¢1(2))-f(h)|p (I-Izlz)“ dA(z)/a ) ;

D

(ii) f e :80 (=> [I |f((pl(z))-f(h)lp (14212)"l dA(z)/7t —) 0 as lhI—al' I.

ID

Proof:

Take -1 < a < co and 0 <p < oo . Let f be an analytic function on D. Choose a

number s e (1, co) small enough such that sa > -1. Let s' denote the conjugate index of

s, i.e., s' = s/(s - 1). An application of H61der's inequality gives that

I'f(<PA(Z)) -f(h)|p (14212)” dA(Z)/7t

D

l/s 1/s'

s (Ia-12 :2)” «(2)/7: ) (I Ina/1(2)) - f(z)|pS dA(z)/7t . (5.13)

D D

Now, since sa > -1, we have that the integral at the left of (5.13) is finite, in fact it is

equal to l/(sa + 1). It follows that

1

sa+1

 

PS

a

Up 1/

(I who) -f(2)|p(1-|z|2)°‘ «(2)/u) s( )psllfwl'fw'i '
D

(5.14)
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To obtain an inequality in the other direction choose a number q e (1,00) large

enough so that q >a + 1. By Hblder's inequality

I my» - f(l)!” dA(zyrc

n)

= I vole» 4(4)!” (1 4212)“ a 4212)” dam/7r

n)

Wm ,

s (Imago) - f(h)Ip (1 -12 12)“ dA(z)/7t ) I (14212)“‘1/4 dA(z)/7t

ID ID

Because q - 1 > a , we have -aq'/q = —a/(q - 1) > -1, and thus the integral at the right

of the last inequality is finite, in fact it is equal to (q - 1)/(q - l - a). It follows that

 

PM

a

1/P

- ( -1)/

"fog-f(hHIL .<.( q 1 )4 p(IIf<<p,(z))-f(A)I”(1-IzI2)°dA(z)/rrI .
-1-a

4 D

(5.15)

By Theorem 1.1 equivalence (i) follows from (5.14) and (5.15), and statement (ii) is

obtained by using Theorem 1.2. [3

Proof of Theorem 5.5:

Let 0 < 0'< 1. First we will prove that both statements hold for integers p > 2. Let

n be an integer, n > 2. Then q = n/(n - l) S 2. Let g be an analytic function on D for

which g(0) = 0. An application of Hblder's inequality and (5.4) gives
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1/‘2

II g H qS Ilgll 2S (ZI |g'(z)|2 (1-Izl?) dA(zYn’) . (5.16)

H H [D

Let f be analytic on D, and assume for the moment that f (0) = 0. Apply (5.16) to the

function g =f” ' 1. This yields

1) .<_ 2(n- 1)2 I If(z)|2("'2) lf'(z)I2 (1-1212) dA(z)/7t ."qu:
H

ID

Writing [3 = n + 0- 2, and using Hiilder's inequality with index n/2, which has

conjugate index n/(n - 2), we get

Ilfll2(:-1)S 2 (n- 1)2 I If'(z)l2(1 421523“ If(z)|2("’2)(1 4215145“ dA(z)/7t

H

[D

2/n

S2(n-1)2 Ilf'(z)l" (1423)” d4(z)/7t x

D

l-2/n

".22

x Iva)?” (1.1.7.12)"’2 dA(z)/7t . (5.17)

D

Now let he D, and in (5.17) replace f by fo 19,1. - f(h). Then (5.17) becomes

llfo ol-flh) "3:42
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2/n

s 2(n -1)2 I |f'((ol(z))|" Iol’(z)|" (1.1217‘)’3 dA(z)/7r x

D

l-2/n

n_.2g

x Ilf((pl(z)) - f(h)l2" (14212)“2 dA(z)/7t .(5.18)

ID

Making use of identity (0.20) and the change-of-variable formula (0.22a) we see that the

first integral at the right hand side of (5.18) is equal to

¢Q)|2

IIf (4(2))I" (+i—)(1-lzl2)fl|¢l'(z)|2dA(z)/7t =

~|z|2
D

= I (pm/1(3):" (l-Itpl(z)|2)n'2 (14212)" Iago)? dA(z)/7t

ID

= I lf'(w)|" (1-lez)”'2 (1-|¢l(w)l7')° dA(w)/7t .

D

Since o< 1 we have that the exponent of (1 - lz I2) in the second integral at the right

hand side of (5.18) is bigger than -1. By Lemma 5.6 there exists a constant C such that

the second integral at the right of (5.18) is less than or equal C II f IIB. It follows that

(n-l)<

Ilfotpl- f(h)"; S

2/n

s 2(n-1)2C1-2/n Ilfllg-M (I If'(z)In (14212)”2 (1-|(pA(z)l2)" dA(z)/7t

ID

(5.19)
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An important observation to make is that the conditions in statements (i) and (ii) imply

that f6 EB (by Theorem 1.7), so both statements (1') and (ii) follow at once from

inequality (5.19).

The general case is easily reduced to the previous case, again making use of the

Bloch norm of f. Let 0 < p < oo . Choose an integer n > 2 such that n 2 p. Then we

have

I |f’(z)|n (1 .1212)”2 (1 -|(pl(z)F)° dA(z)/7t

[D

s Ilfll;-p I lf'(z)|p (1-1212)”‘2 (1-|(pl(z)I2)° dA(z)/7t .

ID

This completes the proof of this theorem. [3

The following assertion, which is implicit in the results of V.V. Peller ([26],

Theorem 2' on page 454), is an immediate consequence of the above theorem.

Corollary 5.7 : Let 1 < p < co . If f is an analytic fimction on D for which

I If'(z)|p (l-lzl2)p'2 dA(z)/71: < oo , (5.20)

D

then fe VMOA.

Hong Oh Kim proved that a Blaschke product satisfying (5.20) must be a finite

Blaschke product ([19], Theorem 1.1 on page 176). A simple proof is provided by the
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previous corollary, since it is easy to see that VMOA cannot contain Blaschke products

with infinitely many zeros in D. (In fact if b is a Blaschke product and 11 e D is a zero

for b, then II b 0 (PA - b (A) "”2 = II b o (p; IIH2 = 1. Thus b is not contained in VMOA

if it has infinitely many zeros in D.)

In [19] Hong Oh Kim also proved the following result:

Iffe fBand

J lf'(z)|p (14212)“ dA(z)/7t < .. , (5.21)

[D

for 0<a+l<p<oo,thenfe quorall O<q<oo.

We can give a simple proof of this result using the same idea as in the proof of

Theorem 5.5.

Proof:

Take 0 < a +1 <p < co , and let f6 9, and suppose that (5.21) holds. Let n 2 2

be an integer such that n > p. Put [3 = a + n - p. As in the proof of Theorem 5.5 we have

2/n

Ilfll x:-1)_<_ 2(n-1)2 Ilf'(z)|" (1-lzl2)fidA(z)/1t x

” ID

l-2/n

L23

x ( J |f(z)?" (14211)"‘2 dA(z)/7r . (5.22)

ID

Now estimate the first integral at the right of (5.22) as follows
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I lf'(z)|" (1-12155 dA(z)/7t s Ilfllg'p J lf’(z)|p (14212)“ «(2)/7: < co .

ID ID

The exponent (n - 2/3)/(n - 2) = (2p - 2a - n)/(n - 2) in the second integral at the right of

(5.22) is easily seen to be greater than -1, so that also this integral is finite (as a

consequence of Lemma 5.6). Thus fe H", for arbitrary integers n > p. Hence fe H‘?

finm10<q<w.D

After these digressions, Theorem 5.5 and our question preceeding it should be

compared with the following theorem.

Theorem 5.8 : Let 0 < p < oo, 1 < n < oo . Then for an analytic function f on D

we have:

Up

(1') IlfllSIB = sup Ilf’(2)lp (1.1212)”'2 (1 -|q2 (2)12)" dA(z)/7t ;

116D ID '1

(ii) f e 130% JIf'(z)IP (1-12159'2(1-I¢l(z)12)" dA(z)/7t -—)Oas Izl-91‘

ID

Proof:

Take 0 < p < oo , and let 1 < n < co . Using the definition of the Bloch norm, identity

(0.20) and the change-of—variable formula (0.22a), we have that for an analytic function

fonD:

Inflow” (1.1212)”'2 (l-Itpl(z)l2)" dA(z)/7t s

D
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p I (1-1%.)12)"
s Ilfll dA(z)/7t

B D (1-12152

= Ilfll; I (l-Itp/1(z)|7‘)"'2|(p’1'(z)|2 «(2)/7:

ID

= Ilfll; I (14211)”2 (mm/n = Ilfll; —1—.

-1
D n

Hence

JIf’(z)|p (1-Izl2)p'2 (l-I¢A(z)I2)'7 dA(z)/7t s -1— Ilfll; . (5.23)

n-l

ID

Let g be an analytic function on D, then by the subharmonicity of l g IP we have

Ig(0)I” s 4! Ig(z)I” dA(z)/7t .

D(O,'/z)

Ifz e D(O,'/2), then (1 - Izlz)"+P'22 6=min {1, (3/4)II+P-2], and therefore

Ig(0)I” s 5. I Ig(z)|p (1 .1212)’7””'2 dA(z)/7r

D(OM)

s g I Ig(z)I” (l-lzl2)17+p ’2 dA(z)/7r . (5.24)

ID

Let A e D. Applying inequality (5.24) to the derivative of the Mobius transform

fo (pl-f(l) of f, we get



(1-121“

Using ide

at the rig

 
It follo

(l-I

The

3180 g

Heges

'f' (z)
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(1-1/112)” If'(/l)lp 5% trap/1(2)»? |(p1'(z)lp (1.1212)”””'2 dA(z)/7t .(5.25)

D

Using identity (0.20) and the change-of-variable formula (0.22a) we see that the integral

at the right of (5.25) is equal to

l-l ()F 9-2

J-lf'((pl(z))|p (J9) (1-Iev12)""”"‘2 l<p/{(2)12 dA(z)/7t

l-Izl
ID

= I Irwin»? (1 - I 1’1“) I2)” '2 <1 42?)" 'IPA' (z) 12 dA(zwz

D

= I lf'(w)lp (1414217)“2 (1-I¢A(w)12)’7 dA(w)/7r.

ID

It follows from (5.25) that

(14,117)” If'(2.)I” 5% J. |f'(z)|p (1 .1212)“2 (1-|(01(z)l2)’7 dA(z)/7t . (5.26)

D

The equivalence in (1') follows immediately from (5.23) and (5.26). Inequality (5.26)

also gives that the condition in (ii) is sufficient for f to be in $30. To prove the

necessity, suppose that fe {80. Given 8 > 0, choose an r e (O, 1) such that

lf’(z)l(1-lzl2)<e wheneverrSlzl< 1.Then we have

I |f'(z)|p (1-IzIZ)I”2 (1-I¢A(z)I2)" dA(z)/7t s

D\rD

 
i

It
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(1-1 012)"
_<. e” I (p12 «(2)/2:

«42152

5 e” I (1 -l(pl(z)|2)n’2 1451(2) 12 dA(ert

ID

= 8p J. (l-IZI2)n.2 dA(z)/7t = .53. .

D "'1

On the other hand

Ilf’(z)|p (1.1.212)”’2 (1 -l¢l(z)|2)'7 «(2)/7: s

rD

dA(z)/7I: 

l-l I77SIIfIIp J' ( $1632)

rm (1.1212)2

s Ilfll; J (1.1(o/1(z)12)’7'2 WW2 «(2)/n

rD

.—. Ilfll; I (1.1212)”'2 dA(z)/7t .

D(lJ)

It follows that

J lf’(z)lp (1.1212)?2 (1 -I¢l(z)I2)’7 dA(z)/7t s

ID

S Jp— + Ilfll:3 IU-Iz I2)".2 dA(z)/7r ,

"'1 D(XJ)
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and we get the necessity of the condition in (ii), since for every fixed r e (O, l) we have

I (1 -|z|2)r"2 dA(z)/7r -—) O as Ill—)l'.

D(lr)

This completes the proof of this theorem. D

It would be interesting to have characterizations of BM0A and VMOA involving

the pseudo-hyperbolic disks D(Ar). Recall that an analytic function f on D belongs to

SB if and only if

sup lf'lsz/n' < oo

lelD D(ll)

for some r e (O, 1), and that f belongs to 1’80 if and only if

Ilf'lsz/rt —+ o as Ill—>1'

D(AJ)

for some r e (O, l). The following theorem should be compared with these results.

Theorem 5.9 .° For an analyticfitnction f on D we have:

1

(i) feBMOA 4:) sup (Ilf’lsz/rt )dr <oo;

“ID 0 D(m

1

(ii) feVMOA «=5 I( JIf'IZdA/Ir dr —>Oas Ill—>1' .

o D(l ,r)
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Proof:

Let f be an analytic function on D. Using characteristic functions we have

.2 _ , 2
I If I dA/n' .. Jlf (z)I xix/mm dA(z)/7t ,

D(A,r) D

thus

1

l

r 2
_ ' 2

J( I If I dA/n‘ )dr — I If (z)I J‘xlX/Lr)(z) d; dA(z)/7t

0 D(AJ)
D o

I |f'(z) :2 (1 -|(pl(z)l) dA(z)/7t ,

D

and both (i) and (ii) follow at once. [I

The previous theorem can be used to give yet another proof of Pommerenke's result

([29], Satz 1) which states that for an analytic function f on D which is one-to-one,

containment in $3, or in SEQ , implies that the function already belongs to BMOA , or

VMOA , respectively.

Proof:

Suppose that fe B is one-to-one. Let ,1 e D. Since for every 2 e D(AJ)

|f(z) — f(2)| s Ilfllg log 1—1: ,

we have the inclusion
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{f(l) - f(l):z 6 0011)} C D(O, "fliglog T37).

and it follows that

2 2

J lf’IZdA/rt = I{f(z) -f(l):z eD(/1,r)}l s IlfllEB (log-l—fr-) . (5.27)

D(lr)

Thus

11

2 2 1 2
I JIf’ldA/n drs IIfIISB J(log-1-_—r—)dr<°°,

0 D(lm) 0

and by (i) of Theorem 5.9 we have that fe BMOA .

If fe 130 , then by Theorem 1.2 we have for each r e (O, 1)

Ilf’lsz/It —+ 0 as 121—)1’,

D(l,r)

so that by (5.27) and the Lebesgue Dominated Convergence Theorem we have that

l

J I If’lsz/zr dr —) 0 as I’ll-91',

O D(lJ)

thus, by Theorem 5.9, fe VMOA . El



Chapter 6

In this chapter we briefly discuss cyclic vectors in the little Bloch space. We generalize

a theorem of Anderson, Clunie and Pommerenke and obtain a result very similar to one of

Brown and Shields in the context of Dirichlet spaces.

First some notation and a definition. In order to be able to compare our result for the

little Bloch space with a result of Brown and Shields for the Dirichlet space we will give a

general definition for a cyclic vector.

Let 8 be a Banach space of analytic functions on D which contains the polynomials

as a dense subset, which is invariant under multiplication by the function z , and for which

all the point evaluations are bounded linear functionals on 8. For a function fe 8 let

[f18 denote the closure of the set { pf: p is a polynomial } in the Banach space 8.

Definition : A fiinction fe 8 is called aWorMif

[flg = 8 .

The little Bloch space $30 furnishes an example of such a Banach space 6. That $30 is

invariant under multiplication by the function z is easy to see, and that the polynomials

form a dense subset of EEO is proved in [2],Theorem 2.1. In general, it is easy to show

that a cyclic vector in 8 has no zeros in D (see, for example, [35], Proposition 4). In the

case of the little Bloch space Anderson, Clunie and Pommerenke proved the following

result [2], Theorem 3.8:

For fe $30 the condition inf[lf(z)l : z e D} >0 implies that f is cyclicfor ‘30.

In Corollary 6.4 we will extend their result and prove:

103
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Iffe fBo,ge fBonH”, |f(z)l2lg(z)l in D,andifg2is cyclicfor £80,212“ f is

cyclic for $30 .

We are actually able to prove a result not just for cyclic vectors in 130 but one that gives an

inclusion relation for the sets [f ]9ointroduced above. This will be the content of

Theorem 6.3.

The Dirichlet space D = {fe H (D) : f ' 6 L02} is another example of a Banach

space 6 of analytic functions on D. Our Corollary 6.4 should be compared with the

following result of Brown and Shields [10], Theorem 1:

Iffe D,ge DnH‘”, lf(z)|2lg(z)| in D, andzfgzis cyclicfor D,then f is

cyclicfor D.

In [10], Proposition 11, Brown and Shields proved also that:

Iff, g e D (WI-l”, andszg is cyclicfor D, then both f and g are cyclicfor D.

This is also true for bounded functions in the little Bloch space. In Theorem 6.5 we will

give an inclusion relation for the sets [f190 introduced above. As a corollary we get:

If f, g a $80 n H °°, and if fg is cyclicfor 130 ,then both f and g are cyclicfor $80.

In the proofs of Theorems 6.2 and 6.5 we will need to use the following two lemmas.

Recall that for an analytic function g on D, and for O < t < l the dilate g, of g is defined

by the equation gt (2) = g (tz) (z e D).
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Lemma 6.1 : Let g e 130. Then:

 sup (1-Izl)|g'(z)l log I-IIZI —> O as t—~) 1'. (6.1)

ZED t l'lZI

Proof:

Since g,’ (z) = t g' (tz), and (1 - t I z I) lg' (t z)l S H g "56 we have the inequality

 

l-tlzl l-IzI l-tlzl
- ' < — _(1 Izl)lgt(z)llog(1.lzl)_||g||‘la 1-tlzl log( 1-lzl) . (6.2)

Take 0 < r < l . It is elementary to show that

  

l-lzl l-tlzl l-r l-tr

."ff’s‘, l-tIzl log( 1-121) ‘ l-tr [03(14) ' (6‘3)

It follows from (6.2) and (6.3) that

l-tlzl

l-Izl

 max (1 -Izl) Igt'(z)l log(

IzI_<.r

)—90as t—>1-. (6.4)

Now let£>0begiven. Sincege 1'30,we can chooseanre (0, 1) such that

(l-lwl)Ig'(w)l<£ wheneverr2<lwl<1.Thenforr<|zl<landr<t<lwehave

(l -t|zI)|g,'(z)|=t(l-|tzI)|g'(tz)l<t£<£. Because xlog (1/x)<x for0<x<l,

we have that

1-tlzl

l-lzl

 (l-Izl) log( ) S(1-t|z|),

sothatforr<t<l
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1- I l
sup (1-lzl)|g'(z)| log ——‘—z < e. (6.5)

r<lzI<l ‘ 1"2'

Our claim (6.1) follows readily from (6.4) and (6.5). III

Lemma 6.2 : Let fe 130 be nonvanishing in D. Suppose thatfor h 6 Bo:

II (jfT - 1)h‘ “so -+ 0 as t—) 1'. (6.6)

Then [’2 1130 C “€190 .

Proof:

Let fe 380 be nonvanishing in D, and suppose that h e 130 satisfies (6.6). We will

have to show that h e [f]53o . Let £> 0 be given. Since he 130 , II h, - h "SD -—> 0 as

t —> 1'. With (6.6) it follows that we can choose a t e (O, 1) for which

f
II(—-1)ht|ISB<£ and Ilht-hIIB<£. (6.7)

ft

The function h, /f, is analytic in a neighborhood of D, hence we can find a sequence of

polynomials (p" ) (of course depending on the t that we picked) such that the functions

pn - h, If, and their derivatives converge to 0 uniformly on D. We claim that in fact

I!

IIf(pn--f7’)llEB —)0asn——)oo. (6.8)
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To prove this claim, write gn = p" - ht/ft . Then by the choice of the sequence of

polynomials gn —) 0 and gn' —> 0 uniformly on D as n —>oo . Using the product rule

for differentiation we see that

(l-lzl2)IEdz—(fgn)l _<_ (1-1212) |f'(z)Ilgn(z)| + (l-lzl2)lf(z)llg”l(z)l . (6.9)

Again using the inequality x log (l/x) < 1 for O < x < 1, it follows from

1

|f(z) -f(0)| 5 log (m) IlfllSB ,

that

(1-1212) |f(z)-f©)l s 2IIfIIflB,

which combined with (6.9) gives that

Ilfgn "13 s Ilfllia llgnllm + (2|lfllI3+ |f(0)l) llgn'llw . (6.10)

Now, since both II gn II“, and II gn' II“, tend to O as n —-) oo, our claim (6.8) follows

immediately from (6.10).

We are now ready to finish the proof. By (6.8) there is a polynomial p such that

h

Ilf(p - 7:.)"9 < e. (6.11)
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By the triangle inequality

llf -h H sllf( -1)" +|l(£-1)h II +||h -h II
p ‘B ’7 ft 53 j; r so I :3 ’

so that (6.7) and (6.11) imply that II fp - h IIB < 38 . We conclude that h e [f196

which implies that [h 1136 C [“536 . El

Theorem 6.3 : Let f, g 6 $30 , such that If (z) | 2 I g (z)I (z e D), and suppose

that f is nonvanishing and that g is bounded. Then I gzkao c mafia.

Proof:

Let f, ge SBO , such that lf(z)|2 lg (z)I (z e D), and suppose that f is

nonvanishing and that g is bounded. It is easy to see that gze T30 . So by Lemma 6.2 it

suffices to show that (6.6) holds with h = g2. As in the proof of Theorem 2.1 note that

  

- I |

|f(z) - ft(z)l S Ilfll:B log(-1T_—t—IZZT) . (6.12)

It is elementary to check that

d f 2 _ f(l)-f,(2) , f'(Z) -ft'(2) 2

a— ((z ' DE!) - 12(2) 8‘03) 8, (Z) 1’ 12(2) 8, (2)

0(2) - 13(2))ft' (z) 2
- 2 g, (z) .

i; (z)

 

Using that If, (2) I 2 lg, (z) I (z e D) it follows that
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s 2|f(z) -ft(z)llgt'(z)l + |f’(z) -ft'(z)l|| gllw +

d f 2

Islam“)  

+ |f(z) -ft(z)|Ift'(z)I . (6.13)

Using the definition of the Bloch norm it follows from (6.12) and (6.13) that

f 2 , l-tlzl
"(f7 - l)gl ":3 s 4IIfII,B sue?) (1-121) lg: (z)I 108(7751') +

 

, l-tIzI
+ Ilgllm IIf-ftllSB + 2IIfIISJB szietg (1-121) If: (z)I log( 1-121) . (6.14)

Now, by Lemma 6.1 the first and the third term at the right of inequality (6.14) tend to 0 as

we take the limit where t -—> 1'. Since fe 130 also || f - f, IIB -> O , and our claim that

f 2 -
"(J-f- l)gt "513—, O as t—)1

follows immediately. D

The following corollary is an immediate consequence of Theorem 6.3 and the

definition of a cyclic vector.

Corollary 6.4 : Let f, g e 130 , such that If (2) I 2 lg (z)I (z e D), and suppose

that g is bounded and g2 is cyclicfor-Bo. Then f is cyclicfor $30.

Theorem 6.5 : Let f, g e 130 n H °°, and suppose that f is nonvanishing.

Then [fglgo c mm.



1 1 0

Proof:

Take f, g e EEO r) H °°, and suppose that f is nonvanishing. It is easy to see that

then their product h =fg is in $0 . By Lemma 6.2 it suffices to show that the function h

satisfies (6.6). It follows from

d f d
3((3- - 1)}1‘) = lg((f‘ftlgfll

  
I
A

lf'(z) - ft' (z)I IIgIIw + |f(z) -ft(z)I Igt'(z)l,

and inequality (6.12) that

f
Il(7--1)htlltB s IIf-ftllfB |Ig||°°+

l

 

, l-tIzl

+ lefll‘BSzlég(1-|2|)|gt(2)llog(1"2|). (6.15)

Both terms at the right of inequality (6.15) tend to 0 as t —> 1' (that the second term tends

to zero follows from Lemma 6.1). Thus

f -

Il(17.1)h‘ll,13 —> 0 as t—)1,

t

and by Lemma 6.2 we are done. E]

The following corollary is an immediate consequence of Theorem 6.5 and the

definition of a cyclic vector.
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Corollary 6.6 : If f, g e 580 n H °°, and if f g is cyclic for 380 , then both f

and g are cyclicfor I30.



Chapter 7

In this chapter we consider Hankel operators with integrable symbol. The Hankel

operators that we study are defined by projecting onto the orthogonal complement of the

Bergman space. We first prove that these Hankel operators transform in a unitarily

equivalent way if the symbol is replaced by one of its Mbbius transforms. We then

restrict our attention to Hankel operators with conjugate analytic symbol, and show that

Sheldon Axler's results [6], Theorems 6 and 7, hold if the operator norm of the Hankel

operator is obtained by putting a weighted [JD-norm on both its domain and its range.

Recall that for 0 < p < co the Bergman space Lap is defined as the space of analytic

functions f: D —> (I: such that

1/p

Ilfll = I lf(z)|p «(2)/a < a. .

La” D

For 1 S p < co the Bergman space Lap is a Banach space. The Bergman space L02 is a

Hilbert space; it is a closed subspace of the Hilbert space L2(D,dA/7r) with inner product

given by

<f. g> = 1 mm dA(z)/a.

ID

for f, g e L2(D,dA/7t). Point evaluation is a bounded linear functional on the Hilbert

space L02, thus for every II. 6 D there exists a unique function kA 6 La2 such that

112
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f(l) = <f,kl> ,forallfe L02.

These functions 1‘2 (11 e D) are called the reproducing kernels for L02. It is easy to

verify that for every 1 e D the reproducing kernel k1 is given by the formula

k (2):A ,forzeD.

(l-llz)

Because of the reproducing property of k1 we have < k}. , k}. > = 163(4) . Using the

above formula for 1‘1. it follows at once that

2 l

"k H 2: ——-—2—2.

La (l-Ill)

Let P denote the orthogonal projection of L2(D,dA/7t) onto L02. In view of the above

formula for the reproducing kernels it is easy to see that for g e L2(D,dA/7t) we have the

following formula for its projection P (g):

8 (W)

(P(g»<z) = I 2
ID (1&2)

dA(w)/7I: , forze D . (7.1)

The map I - P is the orthogonal projection of L2(D,dA/7t) onto (L02)L [the orthogonal

complement of L62 in L2(D,dA/7t)]. For a function fe L°°(D,dA/7t), the Hankel

operator Hf :La2 -+ (L02)J- is defined by (Hf)(g) = (I - P )(fg ), g 6 L02.

Observe that the integral in (7.1) makes sense even when g e L1(D,dA/7t), so we can

extend the definition of P to L1(D,dA/7t). We want to consider Hankel operators Hf
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for which the symbol f is in L1(D,dA/7z). To do this restrict the domain of Hf to H°°

and define Hf by

(HfXg) = (I - P )(fg ). g e H°°.

Using (7.1) for the product fg and for g = P (g) we get the following formula for the

Hankel Operator Hf ; for fe L1(D,dA/7t) and g e H°° we have:

 (Hfg)(z) = J f(l) ' ““0 g(w) dA(w)/7t , forze ID . (7.2)
— 2

[D (1‘ W2)

In [6] Sheldon Axler showed that for f6 La2 the Hankel operator H f, densely

defined on H°° with the Luz-norm, is bounded if and only iff6 B. It follows that for

every f in La2 the Hankel operator of each Mbbius transform of f has norm equivalent

to the norm ofHf . In the next theorem we will show that Hankel operators transform in

a unitarily equivalent way if the symbol is replaced by one of its Mbbius transforms.

This implies that the Hankel operator of each Mobius transform of a given function has

the same norm as the Hankel operator of the given function (as densely defined operators

on H°° with the Laz-norm).

Theorem 7.1 : Let fe L1(D,dA/7t). For each he D the Hankel operators Hf

cmd H are u nitarily equivalent.

f ° It”1

- - - . 2 2 . 2 J. 2 J.
More preczsely, there exzst unitary operators U1 .La —> La and U2 . (La ) —-) (La )

such that U1(H°°) C H°° and

UZOHfoqpl = Hfo U1.



1 1 5

Proof:

Take fe L1(ID,dA/a) and g e H°°.Let1'le ID. By (7.2) we have for z 6 ID

my»«to, (w»

2

 (H v (g)>(z) = I s (w) dA(wya . (7.3)

f ° t D (1 - It? 2 )

In (7.3) make the substitution u = ”(w). Making use of identity (0.17) we have

1 (1-12.12)2_ (147202 (1.121152

(1.6/10m)2 Il-Zul4 (l-iz)2(l-a¢l(z))2 Ir-iul“

    

 

= (14,112)2 1

(1512)2 (1-E¢,(z))2(1-71u)2

 

so that change-of-variable formula (0.22a) transforms (7.3) into

22
-| | f((P(Z))-f(ll)

(H (3))(2) = (1 .1 )2 fl 2 ——l—; swam» dA(u)/7r
f°"’t (1-22) D (1461(2)) (1-2u)

  

 

( ( )) - (u)

=(1-I).|2)k(z) I f (p12 f (l-Illzflc (u) (go (p )(u) dA(u)/7t

l - 2 l l

D (1' it $107))

2

= (1-1165(2) Hf((1 -1111 u, (g o ¢l))(¢l(2)).

Thus we have

2

Hf°¢l(g) = (1 -121 ”A Hf((1-|l|2)kl(g° ripe (p, . (7.4)
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Define the operator U : L2(D,dA/7t) —9LZ(D,dA/7z) by

U (g) = (1 - 12.12) it,1 (g o 6,1), for g e L2(ID,dA/a).

Since (1 - 1M2) k1 = - (01' , we have for g e L2(D,dA/tr)

2 2

IIU(g)II 2 = I 1(goo )(z)|2l¢ '(z)l2dA(z)/7t = Ilgll 2 ,

L (ID.dA/7r) D “I “I L (lD.dA/2r)

so that U is well-defined. For g , h e L2(D,dA/7t) we have

< U (g) ,h ) = I (l -IAI2)kl(z)g WAC?» m dA(z)/7t .

D

In the above integral make the substitution u = (p112) . We get

 

< 061),}: > = j (1 -IAI2)k2(<p2(u»g(u> h(<p2<u» Itp2'tu112dA<u>/a .

D

Now using the identity (0.18) it is easy to verify that

. 2 _

k2(¢2(u)) l<p2 (u)| - 77—26) .

so that we have
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<U(g),h > =1 g(u) (1-1212)k2(u)h(tp2(u))dA(u)/a = (g ,U(h) >.

D

Hence U is a self-adjoint operator on L2(D,dA/7t).

Take g e L2(D,dA/rt) and put h = U (g). Differentiating the identity ¢A(¢l(z)) = 2

we see that for each 2 e D

2 —

(l—IAIZ) kl(z) k22((p2(z)) — 1 ,

so that

_ _ 22 =

U (h)(2) — (1 W ) k2(2) k2(¢2(2)) 8(2) 8 (2) ,

and thus U c U = l . Hence U is a unitary operator on L2(D,dA/7t).

Observe that U (L22) c L22, U (H°°) c H°°, and U ( (L22)i) c (1.22%. The first

two of these inclusions are obvious fiom the definition of U. The last inclusion follows

from the first since the operator U is self-adjoint. Let U1 : La2 —> La2 and

U2 : (1.22)i —> (L22)i be the restrictions of U to L22 and (L22)i respectively. Then both

U1 and U2 are unitary operators and U1(H°°) C H°°. We claim that

UZOHf°¢1 = Hf 0 U1.

Let g e H°°, then it follows from (7.4) that

H20 226;) = (1-111612 (H, o U,)(g)o (p2 .

so that
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2

(U20 22)(g) = (1--|/1|)k/1 ( (p (g)° (p2)
f° 2fo

= (14111sz2 (k2o (p2) (H, o U,)(g>

= (Hf o Ul)(g) .

and our claim is verified. This completes the proof of Theorem 7.1. E]

In order to state a corollary of the above theorem we need to introduce more

notation. For a linear operator S : L222 -) (L222) i, densely defined on H°°, let II S II denote

the operator norm of S obtained by putting the Lz-norm on both the domain and the

range of S, i.e.,

|IS|I=sup{I|S(g)I| 2 :geHwardIIgII 51}.

L (D,dA/7r) L 2
a

Let L(Laz, (L02) i) denote the set of all bounded linear operator T : La2 -) (L222) l,

densely defined on H°°. For T e L(Laz, (L222) J-), define its singular numbers sn(T) by

sn(T) = inf { II T - FM :17 e L (150241.29) has rankatmostn ].

for n e INO. Note that so(T) = II T II. For 0 < p < co the Schatten-von Neumann class

cp is defined to be the set of all bounded linear operators T : L22 —> (L22) i, densely

defined on H°°, for which

co l/p

_ p o,IITII P- Erna) < .

C n=0
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Let C°° denote the set of all bounded linear operators T : L222 -> (L02) i, densely defined

on H°°, which are compact. Then clearly CP C C°° for 0 < p < 00. Take f in

L1(D,dA/7t) and suppose that l e D. Let U1 and U2 be the unitary operators of

Theorem 7.1. If for an n e INO operator Fe L(L22, (L02) i) has rank at most n , then

also U20 F c U1'1 has rank at most n . Since U1 and U2 are unitary Operators it follows

that

-1
”Hfowl- FII = IIHf- U2°F° U1 II,

which implies that for each n e IN0

sn(Hf o 4’21) = sn(Hf) .

Thus we get the following corollary.

Corollary 7.2 .- Let fe L1(ID,dA/tt), and 0 < p 5 co . If er cp, then for each

A e D

Before we proceed note that equation (7.4) can be used to obtain a formula for

H2091) . Since (1 - 1,112)2 191(k)1 W1) = 1, it follows from (7.4) that

Hfo¢2(k2) = k2 Hf(1)°(p2 = "i (fotp2 - HUMP/.2).

Replacing f by f 0 (p3 we get the formula
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Hf(k2)=(f-P(f°¢2)o¢2)k2- (7.5)

Let 1 < p < co and -l < a < p - 1. For a Lebesgue measurable function g on D let

the weighted LP-norm of g be defined by

Mo

IIgII = J'lg(z)lp(l-Iz|2)adA(z)/7r

P-0

D

For feLa1 think of Hf as an operator from H°° to the class of all functions on D. The

operator norm II Hf “p,a of Hf is obtained by putting the weighted lP-norm II . "22202

on both the domain and the range of Hf , i.e.,

II -II = I - : °° I II s .Hf p,a sup{IHfgllp’a geH andlg pg 1}

Thus II Hf "2,0 coincides with our notation II H ;- I| used before Corollary 7.2. In [6]

Sheldon Axler showed that the operator norm II Hf II and the Bloch norm II f “13 are

equivalent. In the following theorem we extend this result to the operator norms

II H; IIM .

Theorem 7.3 : Let 1 <p < co and -1< a<p - 1. Then for fe Lal the Bloch

norm N f "SB and the operator norm II H,7 "pa are equivalent.

In particular, H;- is bounded as an operator on H°° with the weighted [P-norm ll . Ilpfl

on both the domain and the range of H7 ifand only if fe 53.
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In [6] Sheldon Axler also showed that the Hankel operator Hf is compact if and

only if f is in the little Bloch space 530. That this result remains true when we view Hf

as an operator on H°° with the weighted lP-norm ll . "22222 on both the domain and the

range ofHf , is the content of the following theorem.

Theorem 7.4 : Let l<p < co and -l < a<p - 1. Thenfor fe La1 the Hankel

operator H;- is compact as an operator on H°° with the weighted LP-norm II . Ilp'a on

both the domain and the range of Hf ifand only if fe 130 .

For the proofs of Theorems 7.3 and 7.4 we need a series of lemmas. The first of

these lemmas gives estimates on some integrals, and will be used in the next lemmas.

Lemma 7.5 : Let 0 < 6 < oo . Then there exists a finite positive constant C

(depending on ,6) such thatfor every t e (0, l) we have

(a) J fidBSC((1-t)1’2l3+1),if0<[i<'/2; (7.6a)

4, ll-te I

7!

J—i—d65C(1+log-l—),if[i='/2; (7.6b)

(b) l1 teielw 1".3 '

x l1

——7——d65C——,t°j"/2<fi<oo. (7.6c)

(C) J; l1_2219|?3 (14)”.1

Proof:

Take 0 < [i < oo . It is elementary to show that
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Il-tewIz: (1 -t)2+ 2t (l-cos 0)

=(1-t)2+4tsir12-2Q

2

2 (1-t)2+ 4t L.

71-2

Thus for '/2 S t< l we have

- 2

Il-te‘9122(l-t)2+2 9

 

7 9

7t

and it follows that

7t 7t

1 l

I—fidGSJ 2’3d9. (7.7)

_,, Il-te' I -,, ((1-,)2+20_)

722

The substitution 0 ‘12 = 7t (1 - t ) x in the integral at the right of (7.7) yields

1: 42/0 -t)

l 1

do<-ZL——l—— ———dx. (7.8)

ll-teialz‘B ‘12 (1-t)25'1,o2,(1,,) (1+x2)’3
'7!

Now we have to distinguish three cases.

Case (a): O < [3 < '/2 . We estimate the integral at the right of inequality (7.8).
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«12/(1 - t) l 12/(1 - t)

J __1_. dx 5 I _dx__ + J 2.

o (”55 o (14»1t2)’3 1 x25

1 1-23

I dx (V2) 1
= — + T7}— - —_

0 (1+x7')I3 1'25

1 ma

5 K l+(——)

l-t

Thus we have

‘12/(1 - t) 1 1-Zfi

_2.. ..(_) ,
-‘l2/(l-t) (1+Jr )fl

and with the help of (7.8) inequality (7.6a) follows immediately.

Case (b): [3 = '/2 . In this case

~12/(l-t)

dx 1
_= x12 _21.. x log +log l-t ,

so that the same estimates as in the previous case show that

«(2/(1 - t)

dx .<.2K(1+log1—),

35 l-t

n12/(l-t) (1”
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which combined with (7.8) gives inequality (7.6b).

Case (c): '/z < [i < co . It follows from (7.8) that

7: co

—1—2—des L——— I——

_,, I1-te‘9I2‘6 I2 (1 t)2fi 1 ...(1+x2)3dx

Since [3 > '/2 the improper integral in the above inequality is finite, and (7.6c) follows.

This completes the proof of this lemma. CI

The next lemma will play a crucial role in the proof of Theorem 7.3, where it will be

used twice.

Lemma 7.6 : Let 0 < a < l . Then there exists a finite positive constant C

(depending on a) such thatfor every analyticfunction f on D andfor all z e D :

 

I WW) "“22“ .4. w...) s __C__ IIfIISB . (7.9)

[D 11-sz (1-le2)a (1-Izl2)a

Proof:

Take 0 < a < 1. Let f be an analytic function on D. Fix a point z e D. In the

integral at the left of (7.9) make the change of variables A = (pl (w). We get

 

I f(W)-f(Z)| 1

Uml2 (1-1.9.730

dA(w) =
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1 |f<¢2(/1)- f(2)| 1
- —— —— dA(l) .

(14212)“ D 11-12120“) (l-Itl’i"

 

Since ll f 0 (p2 "$13 = II f I133 it suffices to show that there exists a finite positive constant

C such that for every analytic function f on D and for all z e D :

 

I |f(h) -f(0)| 1
(1A). II II . .

D 11-712120”) (l-IAIZ)“ ()5 C f9 (710)

Fix f e I3 , and let ze D. Using that for every he D,

 

  

|f(h) -f(0)| s Ilfll log ,

9 l-l/ll

the integral at the left of (7.10) is less than or equal to

IlfllSB I log( 1 ) 1 —1— dA(t).

D 1"“ Il-izIm‘a) (l-Illz)“

so it suffices to show that

sup log (4) 1 -—1— dA(A) < oo. (7.11)

zeD ID l-IM '1-iz|2(1'a) (141.30

 

It is easy to see that the integrals in (7.11) depend only on the modulus p = I z I of z in

the disk D, so we have to show that there exists a finite positive constant C such that
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for all p e [0, l) we have

1 1t

Irlog(—1—)—-1—-( 1 d0)dr so. (7.12)
l-f 2)a i9 20-0)

0 (1” 4, ll-rpe |

 

Distinguish the following three cases.

Case (a): '/2 <0: <1. ApplyingLemma7.5with]3 = l - a, sothat O<[3 <'/2 ,

we have

1

i9l2tl-a)

 d6 5 c ((1-rp)2“'1+ 1) s zc,

-fl ll-rpe

and (7.12) follows immediately.

Case (b): a = '/2. Then Lemma 7.5 gives us that

1 d05C(l+log1 )SC(1+log-l—),
i9l2(1-a) l-rp 1"

  

4, ll-rpe

from which (7.12) follows easily.

Case(c): O<a <'/2 .ApplyingLemma7.5withfi =1-a, sothat '/2 <6 <1,

we have

1 d9 5 C 1 1

i9l2(1-a)

 
 I

A

0

_,, ll-rpe (1-rp)1'2°‘ (1-r)"2°‘
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which implies that

1 It

Irbs<-ri.;>-‘—-(I 1, and, s
0 (1'r2)a 4, ll-rpe'elw'a)

<c Izog(—_)———adr=C/a2

(1- r)

and (7.12) follows immediately. This completes the proof of this lemma. [II

We will need estimates on the weighted U’ -norms Of the reproducing kernels k1.

These are Obtained in the following lemma.

Lemma 7.7 : Let 1 < p < co and -1 < a < p - 1. Then there exists afinite positive

constant C such thatfor every 2 e D :

i 1 sllkllp so 1

C (l-I/‘I.I2)2”""'2 ’1 ”’0‘ (1-I/‘IIZ)2”“"'2

  

Proof:

Take1<p<oo andlet -l <a<p- l.Intheforrnula

Mk ":2 =I lk (z)Ip (1 Izl2)adA(z)/7t

make the substitution 2 = (pl(w). This yields the formula
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a

llk II p = l (1"W'2) dA(w)/7t,

l ”’0‘ (1-I/II2)2“"""2 [D Il-iwlua’i’”)

 

 

so it suffices to show the following two statements:

 

_ a

sup :1 IWIz) dA(w)/7t < oo ; (7.13a)

1611) [D |1_Aw|2(a'p+2)

. 2 a

inf (1 M) dA(w)/tt > o . (7.13b) 

161D ID I1_1W|2(a'P+2)

As in the proof of Lemma 7.6 we have for p = I I'll

 

I (l - I M770! dA(W)/7r =

 

[D Il-iwlm'p”)

1 It

= I r (1_,2)a (I 1 do ) dr (7.14)
0 7r |12rpei9lla-p-t-2)

Put [3 = a - p + 2 . Then it follows from a < p - 1 that [3 < 1. It is however not ruled out

that ,6 is negative. We will first show that statement (7.13a) holds. Distinguish the

following four cases.

Case 1: '/z < fi< 1. Then by (7.6c)
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so that the integral in (7.14) is less than or equal to

l

C Ir (1- r2)a——— dr C 22'3'1J‘r(1-r2)a'2fi+1dr

(1- r12)B 0

I
A

5 C2254 1 s 3?—

2(a-2fi+2) P-l

 

9

since a - 25 + 2 = 2(p - 1) - a >p -1, and 213 -1< 1. This proves (7.13a) for this

case.

Case 2: B = '/2 . Then by (7.6b) we have

1
  d9.<_ C(1+log )5 C(1+lo —“9'23 MP 3 1r,)

7, Il-rpe

and it follows that the integral in (7. 14) is less than or equal

1

CJr(1-r2)a(1+log-1-1_-;-)dr<oo,

0

since a > -1, and (7.13a) follows.

Case 3:0 < fl < '/2 . Then by (7.6a)

 d0 3 C ((1-rp)"23+ 1) s C ((1-r)1‘2’3+ 1) ,

_,,I1-rpe I25
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so that the integral in (7.14) is less than or equal

  

 

1

C Jr (1-r2)a ((1-r)1‘2”+ 1) dr 5 C ( 1 + 1

0
2(05-2fi+2) 2(a+1)

< C(p+a)

_ 2(p-1)(a+1>'

since a - 25 + 2 > p - 1, and it follows that (7.13a) holds.

Case 4: [3 S 0. Then the trivial estimate

 1. d6 s 31,

-,, |1-rpe'9l2fi 225

shows that the integral in (7.14) is bounded uniformly in p e [0, 1). This completes the

proof of statement (7.13a). To show that statement (7.13b) holds we need to consider

only two cases.

Case 1: 0 <fi < 1. Then the trivial inequality

1 1

Il-iwlzfi 22’“

implies that statement (7.13b) is true.

Case 2: B S 0. Now using the inequalities
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1 1 225

—-:—— 2 —- 2 -—-——’

ll-Awlz’3 (14wa (1411112)?”

we get

2
a

I meyx 2 22’3 I (1—le )“‘2’3 dA(w)/7t .

1D Il-lwl [D

Since a<p- landp>1wehavethata-2fi+1=2p- a-3>p-2>-1, sothat the

last integral converges to a positive number. Thus statement (7.13b) is proved and the

proof of this lemma is complete. C]

Proof of Theorem 7.3:

Let 1 <p<ooand-l <a<p- 1.Take feLal.Fixge H°°,andletze lD.Thenit

follows from (7.2) that

(W) - f(IN

2

 |(Hf— g)(z)| S I If |g(w)l dA(w)/7r .

ID
ll-Wzl

It is easily verified that the inequalities 1 <p < co and -1 < a <p - 1 imply that we must

have (O,p -1)n(a, 05+ 1) #Q. Choose 7>O such thatpy e (O,p - 1) n (a, (1+1);

then clearly y< 1. Writing p' for the conjugate index ofp, i.e., p' = p/(p - 1), it follows

immediately from O <py<p - 1 that 0 <p'y< 1.

Applying Holder‘s inequality we get
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|(HF g)(z)| SJ |f(w) - ““22“ lg (w)| —1— (l -|w|2)7 dA(w)/7t

D Il-Wzl (1-le 7

M”

S J' |f(W);f(22)' 1 'dA(w)/7r x

[D ll-wzl (1-)wl7‘f7

 

 

 

Up

x J- If(“’)"f(z)'lg(w)ll’(1.I111I2)”7d,4(w)/7z .(7.15)

[D Il-Wzl2

By Lemma 7.6 there is a finite positive constant C1 such that

 

_ C
J- !f(W) f(2z)' 1 ' dA(w)/7t 5 ..___||f"13

II “I2 (1-leny (1 I212)?

Using this estimate in (7.15) and taking p-th powers it follows that

p-l

C1 p-II |f(w) -f(z)|
|(H7 g)(z)I” 5 lg (w)|p (1 - Iw I2)" dA(w)/7t . IIfIISB I _ 2

(l-lzl ID l-wzl

 

Integrating the above inequality and applying Fubini's Theorem we get

In - p-l

llegllp'a =J I(H? g)(z)I” (1-lzl2)a «(2)/z: 5 Cf lllfllfB x

ID

x I Ig(w)I”(1-IwI2)" J |f(w)_'f(:)' 12 dA(z)/7t dA(w)/7t. (7.16)

[D ll-wzl (1-)zl)"'a

 



133

By the choice of y we have that 0 < py- a < 1, so that we can apply Lemma 7.6 once

more: there exists a finite positive constant C 2 such that

- C1 WW) f(2)| 1 (“(2)/7! S 2
_ 2 _ -

[D Il-wzl (1-12121’7“ (1-IwI2f7“

  IlfllfB .

Therefore it follows from (7.16) that

P p-l p p 2a

IIHFgllp'a 5 C1 C2 IIfIISB J|g(w)l (1-1m) dA(w)/7:,

ID

which implies that there exists a finite positive constant C for which

III-If— "p.01 5 C IlfllfB .

For the converse, fix 0 < r < 1, and for l e [D consider the reproducing kernels k71-

Since f is analytic we have P ( f0 (01.): f(l) , and (7.5) gives us

[if/‘1: (F- f(l)) kl , so that

I I(H7 kl)(z)|p (1 -lz|2)a dA(z)/7t = I |f(z)-foul" lit/1w” (1-IzI’)“ dA(z)/7t.

D(AJ) D(ll)

(7.17)

Take 2 e D(Lr), then 2 can be written as 2 = WW) where l ul < r. Using the identity

(0.18) it is easy to verify that



We also have

2 (1 -|/1|2)(1 -|u|2)
l-lzl = _ 2 ,

U-Aul

 

so that

1 (1-lul2)a Il-iuIZP'Z“

(1-IAI2)3"°‘

1

(1-1/1?)?”

 Ikl(z)|p (1 -1212)“

(1-IuI)z"“ (1+IuI)a.I
V

 

Since 2p - a> 05+ 2 we have that (1 - | u|)2P‘ “ 2 (1 - |u|)"““2 and it follows from the

above inequality that there is a number 6 > 0 independent of A e D [in fact, we can take

5: min {(1 - r), (1 - r )‘M 1}], such that for all z e D(Lr)

 

 

lkl(z)lp (1 -lz|2)a 2 6 . (7.18)

(1 -I,1I2)2”'°‘

Combining (7.17) and (7.18) we have

I I(Hf kl)(z)lp (1 - |z|2)a dA(z)/7r 2 5 I |f(z) -f(2.)lpdA(z)/7t,

ow) (1 41' ‘0‘ D(l,r)

which, together with formula (0.21) for the normalized Lebesgue area of a

pseudo-hyperbolic disk, gives us that
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 i i I J’ |f(z)-f(l)|pdA(z)/7t s

D( ,r) D(lr)

s —:— (1-IAI2)2P'“'ZJ |(H-f- kAXz)lp (l-lzl2)a dA(z)/7r

r 6 D(JLJ)

l 2p-a-2 P

s r—zg (1-IAI2) IIkalllp’a (7.19)

Now, making use of Lemma 7.7 and the definition of the operator norm ll Hfllp.a we

have

 

 

lleklllpas Ilellpa C ,
P- P. (1_IM2)@-a-2

and it follows from (7.19) that

1 J' |f(z)-f(2)|pdA(z)/7r 5 523—11771; ,

lD(2.,r)| D(lLr) r 5 '

and by Theorem 1.1 there exists a finite positive constant C' such that

IIfIISB s C In? Ilp'a,

completing the proof of this theorem. E1

Proof of Theorem 7.4 :

Let1<p<ooand-1<a<p-1.TakefeLal.
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By Theorem 7.3 there is a finite positive constant C such that

_ - .. < -Ile Hf: llp'a_Cllf ftIISB.

If fe 130, then it follows from the above inequality that H7, —9 H ;- in operator norm.

Since each of the operators H5 is compact, it follows that Hf is compact.

For the converse, suppose that Hf is compact. For each 2. e D let n; be function

ki
n =—

’1 Ilk II

it p.a

Put coa(z) = (1 - I 2 l2)“ , for z e D. For any 5 e [1, co) let Ls'a denote the measure

space L5(D, ma (IA/7t). Ifp' denotes the conjugate index ofp , i.e., p' = p/(p - 1), then

the dual of the space Um can be identified with U3“; the pairing is given by

mg) =1 f(z) E133 (14212)“ dA(zwt .

D

for fe U'a,g 6 11’3“.

We claim that n; —> O weakly in If” as I ll —) 1'.

That the set {g(oa'l/P' : g e L°°(D, dA/n)] is dense in I?” follows easily from the fact

that L°°(D, dA/rt) is dense in [P'(D, dA/It). Since {nlz 2. e D] is norm-bounded in

11"“ it suffices to show that (n; , gwa’l/P') -) O as Ill --> 1', for all g e L°°(D, dA/7r).

Fix a g e L°°(D, dA/n). Noting that wa'l/P' (pa = ma ,p we have the estimate

'“P' < I J I I = II II Ilk II 720|(k’1 .8 (Ga )l _ | gllm k1. org/p dA/fl g 0° 1 Imp . (. )

ID
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We would like to estimate the norm ll ’9. "1.0: ,p , but Lemma 7.7 does not apply to this

norm. The idea is to use Lemma 7.7 with an index slightly bigger than 1, but not too

big, so that the necessary estimates work out. It is easy to see that we can choose a

number q such that l < q <p and -l < qa /p < q - 1. Now, by Lemma 7.7 there exists a

finite positive constant C’ such that for every 1 e D

"kill a/ so 1 .

M p (1—IAI2)2'°"P'2"1

 

By Holder's inequality ll k)."1,a/p 5 ll 1‘1 “(ma/p , so that we have

|(kl ,gwa'l’P'w s C' II gllw 1 . (7.21)
(1-|l|2)2' a/p ~2/q

 

By Lemma 7.7 there is a finite positive constant C such that for every ,1 e D

——1— s C (1-I2I2)2'°"P'2”’ . (7.22)

Ilk II
1. p,a

Combining (7.21) and (7.22) we get

2 2

|(nl,gwa-1/P')IS CC' llg II” (142.12)" P,

which implies that (n,1 , gwa'l/P') —> o as I AI -+ 1', and the claim is proved.

Now, since H7 is a compact Operator and n; -> O weakly in LP” as l/ll —-) 1‘,

we must have ll H;- n1 Ilp'a -) O as I ll —> 1'. It follows from (7.18) and Lemma 7.7

that
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l

lD(lJ) I

 J |f(z)-f(2)I”dA(z)/zt s -C_ IIH— n I” ,

D(lLr)

therefore we have

1

lD(ll,r)l

 J |f(z) -f(l)|pd4(z)/7t —) O as Ill—) 1-,

D(lr)

and by Theorem 1.2 it follows that fe 130. El
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