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ABSTRACT

CHARACTERIZATIONS OF THE BLOCH SPACE
AND RELATED SPACES

By
Karel Mattheus Rudolf Stroethoff

In the first chapter we give local and global Dirichlet-type characterizations for both the
Bloch space and the little Bloch space, generalizing some of the characterizations for these
spaces given in [2].

In the second chapter we characterize the Bloch space and the little Bloch space in
terms of the pseudo-hyperbolic metric on the unit disk; it is shown that the Bloch space
coincides with the class of analytic functions on the disk that are uniformly continuous
with respect to the pseudo-hyperbolic metric.

In chapter three we further develop some of the results obtained by Baernstein in [3],
where he proved that an analytic function on the disk belongs to the space BMOA if and
only if the Mo6bius transforms of the function form a bounded family in the Nevanlinna
class. We give a description of the space VMOA in terms of the Nevanlinna characteristic.
A description of VMOA cannot be obtained by simply replacing Baernstein's boundedness
condition by the corresponding vanishing condition (as is usually the case). We then
formulate and prove analogous characterizations for the Bloch space and the little Bloch
space in terms of an area version of the Nevanlinna characteristic.

In the fourth chapter we give a different proof of Baernstein's value distribution
characterization for BMOA [3], Theorem 3, and we formulate and prove the corresponding
description of the space VMOA. Defining an area version of the counting function used in
the value characterizations for BMOA and VM OA, we obtain analogous results for the

Bloch space and the little Bloch space.
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In chapter five we give estimates for the growth of analytic functions in weighted
Dirichlet space, which then are used to give necessary and sufficient conditions on the
growth of an analytic function on the disk for inclusion in the Bloch space or the little
Bloch space.

Chapter six briefly discusses cyclic vectors in the little Bloch space. We generalize a
theorem of Anderson, Clunie and Pommerenke [1], Theorem 3.8.

In the seventh chapter we consider Hankel operators with integrable symbol. The
Hankel operators that we study are defined by projecting onto the orthogonal complement
of the Bergman space. We first prove that these Hankel operators transform in a unitarily
equivalent way if the symbol is replaced by one of its Mobius transforms. We then restrict
our attention to Hankel operators with conjugate analytic symbol, and show Sheldon
Axler's results [2], Theorems 6 and 7, hold if the operator norm of the Hankel operator is

obtained by putting a weighted LP-norm on both its domain and its range.
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Chapter 0

In this chapter we give some background information, establish most of the notation
for the chapters that follow, and list the major results of this thesis. Since we will be
dealing with Bloch functions on the unit disk, we start with a theorem of the man whose
name is attached to these functions.

LetD ={ze C :1z] <1} denote the open unit disk in the complex plane. The basic

idea of a Bloch function on D goes back to the following theorem of André Bloch [9].

Bloch's Theorem : There exists a finite positive constant b such that if g is an
analytic function on D, normalized so that g (0) =0and g’ (0) = 1, then there is a disk

A contained in D on which g is one-to-one and such that g (A) contains a disk of radius b.

For w e € and 0 < r < o we will use the notation Aw, r)={ze C:lz-wl<r} for
the open disk of radius r centered at w. For an analytic function f on D and a point z
in D let df(z) be the supremum of all » > 0 for which there exists an open connected
neighborhood £2 of z in D such that f is one-to-one on 2 and f(£2) = A(f (2), ), unless
f’(2) =0 (and thus there are no such r > 0), in which case we let df(z) =0.1f df (2) >0,
then necessarily df (2) < oo, and it is easy to show that the supremum in the definition of
quantity df (2) is actually attained, i.e., there exists an open connected neighborhood £ of
z in D such that f is one-to-one on £2 and f(£2) = A(f (2), df(z)). A disk A(f(2), )
that is the image under f of an open connected neighborhood of z on which f is
one-to-one, is called a schlicht disk of f around f (z). Thus the number df (2) is the radius
of the largest schlicht disk of f around f(z). The first systematic study of this quantity
was done by W. Seidel and J.L. Walsh in [34]. As an easy consequence of Schwarz's

Lemma we have:
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df(O) <If ). (0.1)
Another easy property is that for y # 0:

dyf(z) = lyl df (2). 0.2)

For A € D let the Mébius function ¢, : D — D be defined by

¢A(Z) = A -.z , zeD. (0.3)

1-Az

Then it is easily verified that for an analytic function f on D and foreveryAe D :

df°¢1(2) =d.(¢,(2). (0.4)

Using this quantity, Bloch's Theorem can now be restated as follows:

There exists a finite positive constant b such that if g is an analytic function on D,
normalized so that g (0) =0 and g’ (0) = 1, then there exists a point w € D for which

dg(w) 2b.

If f is an analytic function on D and f’ (0) # 0, then we can apply this version of
Bloch's Theorem to the function g = (f- f (0))/f’ (0). Using the properties (0.1) and

(0.2) it follows that there exists a point w € D (depending on f) such that
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df(O) <IfrOI < % df(w).

Observe that the above is trivially satisfied if f’(0) =0 (with any w € D), so that the
initial restriction that f’(0) # 0 can be removed. Now take A € D. It is elementary to
verify that ¢, (0) =14 12 - 1, so that the above inequality and (0.4) give that for every A

in D there exists a point w; € D for which

20, ., 1
df(/l) SA-1ADIfF ) < 3 df(wa)’ (0.5)

Now, for an analytic function f on D we set

Iflly = sup a-1z5 1 @)1
zeD

The Bloch space B is the set of all analytic functions f on D for which Il f llgg < eo. Even
though Il . llg is not a norm, we will refer to Il f ll 3 as the Bloch norm of function f. The
quantity | f(0) | + ll fll defines a norm on the linear space 3, and we will see later that

B equipped with this norm is a Banach space.

Two quantities Af and Bf, both depending on an analytic function f on D, are said to
be equivalent, written as Af= B;, if there exists a finite positive constant C not

depending on f such that for every analytic function f on D we have:



If the quantities Af and Bf are equivalent, then in particular we have Af < oo if and only if
Bf < oo, It follows from (0.5) that for an analytic function f on D we have the

equivalence

Hfll_ = sup d.(z). (0.6)
B zeD f

For a region 2 C C let H=(£2) denote the algebra of all bounded analytic functions
on 2. We will simply write H> for H(D). It is clear that the image of a bounded analytic
function cannot contain arbitrarily large schlicht disks, so that the equivalence (0.6)

immediately gives us the inclusion H° C B.

In the argument leading from Bloch's Theorem to the equivalence (0.6) the Mobius
functions on the disk played an important role. For an analytic function f on D and a
point A € D, we will call the function fe @, -f(4) a Mébius transform of function f. It
follows from (0.4) and equivalence (0.6) that B is invariant under Mobius transforms,
ie,iffe BandAe D, then fo ¢; -f(A) € B. This is also easy to see from the
definition of the Bloch norm. Let f be an analytic function on D, and let A € D. We have

already observed that ;" (0) = A2 -1, so that by the chain rule we have

(fo @) O =F"(A) @’ ) =(A12-1)f" (.

It follows that

NAl_ = sup 1(fo @) O,
B AeD A



hence for every A € D:
IlfllSB ="f°¢l"g3‘ (0.7)

In [31] Rubel and Timoney showed that the Bloch space 3 is maximal among all
Mobius-invariant Banach spaces of analytic functions on D which have a decent linear

functional.

Contained in the Bloch space is the little Bloch space 33, which is by definition the

set of all analytic functions f on D for which
2, ., -
1-1z21f'(2) > 0as lzl—>1 .

It follows immediately from (0.5) that if f isin 130 then df (z) > 0aslzl— 1. That the

converse is also true follows from the following result of Pommerenke ([27], Theorem 1):

If f is analytic on D and df (2)<1forallze€ D, then forall z e D:

(l-lzlz) If @1 S-J% df(z) (3-df(z)). (0.8)

We can actually obtain a simpler proof as a result of the following theorem:

Theorem 0.1 : Let f be an analytic function on D. Then for every z € D we have:

(1-1251f ' @) < 4 /df(z) T (0.9)



This theorem has the following corollary:

Corollary 0.2 : Let f be an analytic function on D. Then there exists a point

we D for which

1
dw) 2 = Ifly . (0.10)

If for an analytic function g on the unit disk g"(0) = 1, then ll g llg > 1, and we see
that Bloch's Theorem is a consequence of Corollary 0.2 (and conversely, it is easy to
show that Corollary 0.2 is a consequence of Bloch's Theorem). A proof of Theorem 0.1
can be based on the following lemma which Edmund Landau used to give a proof of

Bloch's Theorem (see [20], Satz 2).

Lemma 0.3 : Let 0 <R <eoo. Let g be analytic on the disk A0, R), such that
g0 =0anda=1g'(0)!>0. Suppose that 1 g (z)| <M forall |zl <R.Then:

R2a2

eV

dg ©0) 2 (0.11)

The following proof is derived from Landau's proof.

Proof:

Without loss of generality we can assume that R = 1 and M = 1 (otherwise consider
the function A on A(0,1) = D defined by h(z) = g(Rz)/M for z e D).

Suppose that g is analytic on D, such that g(0)=0,a=1g'(0)! >0, and Ig (z) 1 <1
for all ze D. We must show that dg(0) 2 a2/6. Let



©0

g2 = z anz’l ,z €D,

n=1

be the Taylor series expansion of function g. Then it is easy to show thatla, 1< 1forall n
in N. In particular @ = | a, | < 1. So if we put p = a/4, then 0 < p <. Take a point w in
A(0, @%/6), and consider the function 8,, definedon D by g (z) =a;z-w forze D. For

Izl=p we have

[ead 00 2
lg(z)-w-g ()] < 2 Ianllzln < Z p" = -12— < %
n=2 -pP

n=2

Since w | < a?/6 we also have that for | z| = p,lg,@12la;zl-1wl> a%/4 - a%/6 =
@?/12. Thus for all 1z| = p wehave lg(2)-w-g (2)I<lg, (2)|. By Rouché's Theorem
the number of zeros of g - w in A(0,p) is equal to the number of zeros of g,, in A(0,p),
which is easily seen to be one. This shows that A(0, a2/6) is a schlicht disk around

g(0) =0, so that dg(O) > a2/6, as was to be shown.O

Proof of Theorem 0.1:
Let f be an analytic function on D. We must show that (0.9) holds. In view of (0.4)

and (0.7) it suffices to show

If*(0)! < 4 ,df(O) Ifly

ForlzI<%
1

(1-1zl

If (@) < Ifly < % Iflg



so that for |z | < V5:

If(2) - FO) < | 121 1f"(e2)1 de

4 2
3 "fMEB =3 IIfII:B.

Apply Lemma 0.3 with g =f-f(0),R="%2,M = (2/3) liflg,anda=1f"(0)I. It
follows from (0.11) that

eV

R2

s 2 _
If " (0)I° < d.(0) = 164,0) Ifl 5,

and the proof is complete.[d

Proof of Corollary 0.2:

Let f be an analytic function on D. If Il f llgg = O then there is nothing to show, so

assume that I fll3> 0. Let 0 < ¥ < 1. Choose aw € D for which
2 ’
L-1w) I w2 7 Il
Then it follows from (0.9) that

2
dw) 2 (3 Iflg,

from which (1.10) follows by taking ¥ sufficiently large.(]



We now turn from the geometric aspects of Bloch functions to the functional analytic
aspects of the linear space 33. In [13] the Bloch space is identified as the dual space of a
Banach space whose norm is defined by an area integral. This implies that the Bloch space
is a Banach space (which can also be proved directly from the definition). We will now
introduce the Bergman spaces on the unit disk. Let A denote the usual Lebesgue area
measure on the complex plane €. For an analytic function f on D and 0 < p <o we

define

1/p
IFl = Jlflp dA/n
LP
a D

The Bergman space LP is defined to be the set of all analytic functions f on D for which
l fll; p <oo.The subscript a stands for "analytic." Clearly each Bergman space L/ isa
linear space. For 1<p<ee,ll.ll, p isanormonL?,and equipped with this norm L ?
becomes a Banach space. For 0 <p <1, 1. ll; p is no longer a norm, but Il f- g ¥, »
defines a translation invariant complete metric on L, so that L P is a Fréchet space.

If 1<p<eo,let p’=p/(p - 1) denote the conjugate index. The dual space of L P

can be identitied as Lap' : defining the pairing

{f,g> = J f@) g @ dA@)/T , 0.12)
D

forfe LP,ge LaP', every bounded linear functional on L7 is of the form
fPLf . (feL)) (0.13)

for some unique g € Lap'. Moreover, the norm of the linear functional in (0.13) is
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equivalent to the norm ll g ll; p* (see [7] for a proof).

Very much in the same way the dual of the Bergman space La1 can be identified as the
Bloch space 3. In [2] and in [13] the Bloch space is shown to be the dual of the space J
which is definedtobe 9= {f: f is analyticon D and f'e Lal}. The pairing used in
both papers involves the derivative of the function in 9. This is not parallel to the pairing
in (0.12); it seems more natural to pair a Bloch function with a function in Lal. This was
done by Sheldon Axler in [7]. We will outline his results. There is however a problem
with the pairing as defined in (0.12): there exist fe Lal and g € B such that the product

fg isnot integrable over the disk D. To overcome this problem define the pairing by

{f,8>= lim J‘f(z)}—(_z'}dA(z)/ﬂ. 0.14)
t->1 p

If g € B, then (0.14) is defined for every fe La1 and the map
feffel,) (0.15)

is a bounded linear functional on La1 with norm equivalent to Il g ligg +1g(0) 1, and
every bounded linear functional on Lal is of the form (0.15) for some unique g € B.
Finally, the dual space of the little Bloch space B, can be identified with Lal : every

bounded linear functional on 3 o is of the form
feLfe.(feB) (0.16)

for some unique g € Lal, and the norm of the linear functional in (0.16) is equivalent to

the norm I g, 1.
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For A € D recall the definition of the Mobius function ¢, defined in (0.3):

0.(2) = A-_z , 2eD.
A 1-2z

The function ¢, is easily seen to be it own inverse under composition:

(@10 0, )2)=z forallze D.

The following identity can be obtained by straight forward computation:

1-ug(z) 1-¢ Wz
A = A wAzeD). 0.17)
1-ud 1-4z

The special case that u = 4 yields
(l-i(pl(z))(l-ZZ) = 1-12% (A, ze D). (0.18)

If we substitute u = ¢,(2) in (0.17) and make use (0.18) we obtain the identity:

2 _ A-1a51-12%

3 (A4 ze D). (0.19)
11-AzlI

1-19,0)!
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A slightly different form in which we will frequently apply identity (0.19) is:

1-1p.2)1

2

=19 @! , (A ze D). (0.20)
A
1-1zl

For points 4, z in the disk D the pseudo-hyperbolic distance d(4, z) between A and :
is defined by

dA, ) =12 .
Then it can be shown that d is a metricon D (see, for example, [14], page 4). For each

point Ae D and 0 <r <1, the pseudo-hyperbolic disk D(A,r) with pseudo-hyperbolic
center A and pseudo-hyperbolic radius r is defined by

DAnN={ze D:d,2)<r).

The pseudo-hyperbolic disk D(A,r) is also a euclidean disk: its euclidean center and

euclidean radius are:

2
w = 1-2r _ 1.
1-r71Al
and
1-121%
§= 2.2
1-r°14l
respectively.

For a Lebesgue measurable set K C €, let K1 denote the measure of K with respect

to the normalized Lebesgue area measure A/x . It follows immediately that:
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2.2
DO = A 2 0.21)

a-r2ia?

For A e D, the substitution z = @,(w) results in the Jacobian change in measure
given by dAQ2)/nr=1¢;" (w) 12 dA(w)/x . For a Lebesgue integrable or a non-negative

Lebesgue measurable function 4 on D we have the following change-of-variable formulas:

22
-14l
J h(z) dAQ2)/m = J (ko )W) -Q-I_l—)“ dAw)/m , (0.22a)

D(Ar) D(0,9) 1-Awl

and

2.2
-1A1
[ @oo) aerm = [ now S aagrn . 0220
D(O,r) D(AJ’) 11- A« wl

Many of the properties of the Bloch space and the little Bloch space are analogous to
their counterparts in the classical Hardy space setting. Recall the definition of the Hardy

spaces: for an analytic function f on D and 0 <p < e define

1/p

0<r<l1

2r
I = | sup — j IFre'®)1P do
HP 2 o

The Hardy space HP is defined to be the set of all analytic functions f on the disk D for
which | fllp < ee. For 1 <p <eo, Il . ll;p is a norm on HP, and equipped with this
norm HP is a Banach space; for 0 < p < 1, HP is a Fréchet space (see e.g. [12],

Corollaries 1 and 2 on page 37).
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LetdD = {ze € :1z|= 1} denote the unit circle, and let y; denote the normalized

Lebesgue measure on dD. If fe HP , for 0 < p < oo, then the radial limit

£ = tim £00)

r-l

exists for [yg)-a.e. { € 9D, and the function f~ € LP(OD, ) ([12], Theorem 2.2).
If 1 <p<eo,letp’=p/(p- 1) denote the conjugate index. The dual space of HP can

be identitied as HP : the pairing is

8> = [ 708" © dug® 0.23)
oD

for fe HP and g e HP' ([12], Theorem 7.3).

Before we give Charles Fefferman's identification of the dual space of H! we need to
introduce more notation. A connected subset / € dD for which Ho(I) >0 will be called
an arc in dD. For a function g € Ll(alD,uo) and an arc 1 in dD let g; denote the average

of g over I:
1

8 =—Jgdu .
Pyt 0

For a function g e Ll(a[D,,uO) let

1 .
lglgpo = sup { —Ilg-gllduoz I anarcinoD} .
Bod) y
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A function g € Ll(alD,pO) for which ll g llg,, < e is said to be of bounded mean
oscillation. The set of all functions in Ll(alD,uo) that are of bounded mean oscillation is
denoted by BMO. The class BMO was first introduced by John and Nirenberg in [18] (in
the context of functions defined on cubes in R”).

Define BMOA = {fe H!: f*e BMO }, and for fe BMOA set

*®

Equipped with the norm Il fllg;,04 + 1 (0) 1, BMOA is a Banach space. For 0 < p < e it

can be shown that for every analytic function f on D:

£l =sup lfop -fFAI . (0.24)
BMOA 1eD A Hp

Charles Fefferman proved that the dual space of H! can be identified with the space
BMOA . There is however a problem with the pairing as defined in (0.23): there exist
functions fe H! and g € BMOA such that f*g*" is not integrable over the circle aD.
Fefferman showed that if g € BMOA, then the map

v = [ £ O8O auy@.ren” 025)
oD

extends to a bounded linear functional on H! with norm equivalent to Il g | amoat '8 O],
and every bounded linear functional on H1 is of the form (0.25) for a unique g € BMOA
(for a proof see [8]).

By using Taylor series it is easy to see that If ' (0)I <l fll ;2 for every analytic

function f on D. It follows that for an analytic function f on D and a point A € D:
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A-1AD) I WIS Ifop, - FAI . (0.26)
A H

Thus we have the inclusion BMOA C B .
Paley's integral inequalities (see Chapter S5) and a change-of-variable give us that for

every analytic function f on D:

2
J TROIe -|¢1(z)|2) dA@/n < lifog - fFDI’, <
D H

<2 J TRO ¢! -|¢l(z)|2) dAG/T . (0.27)
D

It follows from (0.24) and (0.27) that for every analytic function f on D:

~sup | 1IfF@Pa -1o,@) %y dA@)/n .

Nl 0 up
D

In [32] Donald Sarason introduced the space VMO of functions of vanishing mean

oscillation defined by

VMO =({g € LI(BID,#O): L Jlg-glldyo - 0as p,(1)—>0}.
Ko g

Define VMOA = {fe H!:f*e VMO }. Since clearly VMO is contained in BMO , we
have that VMOA is contained in BMOA . It can be shown that analogous to equivalence

(0.24), if 0 < p < oo, then for every analytic function f on D:
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f € VMOA 4=)|:llfoqol-f(/1)ll p—)Oas Ill—-)l-:l. (0.28)
H

From (0.26) and (0.28) we get the inclusion VMOA C 130 . From (0.27) and (0.28) we

see that for every analytic function f on D:

feVMOA I If'(z)lz(l-lqol(z)lz) dAG@Z)/T — 0 as 1Al o1
D

For an analytic function f on D and 7 € (0, 1) the dilate f, is defined by f, (2) = f (12)
for z € D. It can be shown that an analytic function f on D belongs to VMOA if and only
if I f - f,lgp04 — 0 ast— 1°. Since each dilate of an analytic function is continuous on
a neighborhood of D it is easy to see that the space VMOA is the closure in BMOA of the
set of all polynomials.

The dual space of VMOA can be identified with H!: if g € H1, then the map

v = [ 708" auy. 1 apolynomial,
oD

extends to a bounded linear functional on VMOA with norm equivalent to ll g ll;1 , and

every bounded linear functional on VMOA can be obtained in this way.
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We now list the major results in this thesis.
In the following two theorems we give local and global Dirichlet-type characterizations
for the Bloch space and the little Bloch space, generalizing some of the characterizations

for these spaces given in [6]:

Theorem 1.7 : Let 0<p<eo, O<r<1,and ne N .Then for an analytic

function f on D the following quantities are equivalent:

@A) Nflg
1/p n-1
B sup | — J' e+ Y %o
Aeo{ e’ 5 =

1/p n-1
(C) sup I IFPeP A -125" 2 aae)n + > %o,
2eD\pan k=1

—

n-

1/p
(D) sup j PP a-128% 2010, darr |+ Y 1701,
AeD| p A 1

x
]

Theorem 1.9 : Let O0<p<e, O0<r<1,and ne N.Then for an analytic

function f on D the following statements are equivalent:

(a) feB,;
(b) + J f"Paam -5 0as1Ao1;
-np/z
I D(A,n) D)

© [ PP a-125% 2daGyn - 0 as 141> 17

D(Ar)

@ | If(")(z)lp(l-Izlz)"p'z(l-I(pl(z)lz)sz(z)/lt S 0as A>T,
D
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In [8] Baernstein proved that an analytic function on D belongs to the space BMOA if
and only if the Mobius transforms of the function form a bounded family in the Nevanlinna
class. The following theorem gives a description of the space VMOA in terms of the

Nevanlinna chacteristic T :

Theorem 3.3 : For an analytic function f on D the following statements are
equivalent:

(a) fe VMOA;
foo, - f

)—-) 0as Al >1.
p

(b) for every p >0 we have that T(

The following two theorems give analogous characterizations for the Bloch space and

the little Bloch space, in terms of T, , an area version of the Nevanlinna characteristic:

Theorem 3.6 : For an analytic function f on D the following statements are
equivalent:
(A) feB;

(B) supT (foo, -f)) < .
AeD

Theorem 3.7 : For an analytic function f on D the following statements are
equivalent:
(a) feBg;

foo, - M)

(b) Foreveryp>0wehavethatTa( ) —0aslAl>1.
p
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In [8] Baernstein gave a value distribution characterization for the space BMOA. The
following theorem describes the space VMOA in terms of the counting function N (for

which the definition is given in chapter 4):

Theorem 4.3 : For a nonconstant analytic function fon D the following statements
are equivalent:
(a) fe VMOA ;
(b) for every 8> 0 we have:
sup (INw, A, f):we Cand If(A)-wl2d}) -5 0 as IAl>1".

Defining N, , an area version of the counting function N (see chapter 4), we have

analogous results for the Bloch space and the little Bloch space:

Theorem 4.4 : For a nonconstant analytic function fon D the following statements
are equivalent:

(A) fe B;

(B) sup{N,w,A,f):we C,Ae Dand If(A))-wl21} < oo,

Theorem 4.5 : For a nonconstant analytic function f on D the following statements
are equivalent:
(a) fe B,;
(b) forevery 6 >0 we have:
sup (N,w,A,f):we Cand If(A)-wl26} - 0 as IAl>1".



21

For an analytic function f onD andO<r <1 let M(r,f):Z Ianlr" ,
n=0

where the numbers a, are the Taylor coefficients of f at 0. Using this crude estimate on

the growth of an analytic function we have the following results:

Theorem 5.3 : Let 0 <r < 1. For an analytic function fon D the following
quantities are equivalent:
(A) Nflg;

(B) sup M(r,fo ¢, - fA).
AeD

Theorem 5.4 : Let 0 <r < 1. For an analytic function fon D the following

statements are equivalent:
(a) fe By;
() M@r.foo - f(A) > 0asIA->T.

The following result on cyclic vectors generalizes a theorem of Anderson, Clunie and
Pommerenke ([2], Theorem 3.8). It is similar to a result of Brown and Shields for the

Dirichlet space ([10], Theorem 1).

Corollary 6.4 : Let f,ge B, such that |f(z)121g (2)| (ze D), and suppose

that g is bounded and g 2is cyclic for 530. Then f is cyclic for B,
Similar to Proposition 11 of [10] we have the following result:

Corollary 6.6 : If f,ge B, N H™, and if f g is cyclic for B, then both f
and g are cyclic for B,
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The Hankel operators Hf are defined by projecting onto the orthogonal complement
of the Bergman space (see chapter 7). These Hankel operators transform in a unitarily

equivalent way if the symbol is repaced by one of its Mobius transforms:

Theorem 7.1 : Let fe LY(D,dA/n). For each A€ D the Hankel operators Hf

ad H are u nitarily equiva lent .

More precisely, there exist unitary operators Uy : L2 > L .2 and Uy : L)' —» LDt
suchthat U,(H™) € H” and

U2°Hfo¢l =Hfo U1 .

Corollary 7.2 : Let fe LY(D,dA/n), and 0 <p < oo If er CP, then for each
Ae D
H € Cp.

Sheldon Axler's results [6], Theorems 6 and 7 hold if the operator norm of the Hankel
operator is obtained by putting a weighted LP-norm Il . |l o On both the domain and the

range of the Hankel operator:

Theorem 7.3 : Let 1<p <ooand -1 <a<p-1.Then for fe Lal the Bloch
norm |l f g and the operator norm | Hg Ilp'a are equivalent.
In particular, Hy is bounded as an operator on H™ with the weighted LP-norm |l . Ilp' o

on both the domain and the range of Hy ifand only if fe B.
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Theorem 7.4 : Let 1 <p<eo and -1<a<p-1.Then for fe Lal the Hankel
operator Hy is compact as an operator on H™ with the weighted LP-norm |l . | .o 0N

both the domain and the range of Hy ifand only if fe B,



Chapter 1

In this chapter we will give several Dirichlet-type characterizations for the Bloch space
and the little Bloch space. Our point of departure is the following theorem which is taken

from [6], where it is proved for 1 Sp <eo.

Theorem 1.1 : Let 0 <p<eoo andlet 0<r<1.Then for an analytic function f

on the unit disk D the following quantities are equivalent :

@A) Ifig ;
(B) sup lfoo -fMI
AeD A L’
i 1/p
(C) sup Ife - f_, P adA@/r|
2eD | 1D B D

1 1/p
(D) sup j @) - FOIP dA@yr|
2eD | IDAD DA

(E) il;% distance ( f ID().,r)'H (D(l,')));

12
(F) sup (area f (D(/'L,r))) ;
AeD

17
(G) sup (I If* ()1 dAG)/n ) .
AeD
D(Ar)

Whereas quantities (B), (C), and (D) in Theorem 1.1 are expressed for general p in
(0,%0), quantity (G) is given only for the special case that p = 2. The question arises

whether quantity (G) in Theorem 1.1 can be replaced by a more general quantity depending

24
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upon p and specializing to the above (G) in case p = 2.

Quantities (C) and (D) are local as opposed to quantity (B), which is global, this leads
to another question: is there a global version of quantity (G)?

These questions will be answered in Theorem 1.7, where we will also give equivalent
quantities involving higher derivatives of the function.

The equivalences of Theorem 1.1 carry over to the little Bloch space. Several
descriptions of this space are given in the following theorem which is taken from [6],

where it is proved for 1 <p <ee.

Theorem 1.2 : Let O<p <o andlet 0<r<1.Thenfor an analytic function f
on the unit disk D the following statements are equivalent:

(@) feB,;

) lfo ¢, - fA) IILP > 0as iAol ;

a

1

(c) j If@) - f I dAGzyr > 0 as 1M1 > 17;
DA
DA by
(d) 1 I If2) - AP dAGYT — 0 as 1Al -1
I D(A,r) DA

(e) distance (ilm ,H“(D(z,r))) >0as A1,

r)
(H area fODAr) = 0as lAl—>1 ;

(g) j IF @) dAG)T — 0 as 1Al 1;
D(A.»)

() Nf-fly—0as1 .
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Although the definition of the Bloch space only involves the first derivative of the

function, the following lemma gives characterizations involving higher derivatives.

Lemma 1.3 : Let ne IN. Then for an analytic function f on D the following

quantities are equivalent:
@A) Wflg ;
n-1
B) sup -1z 1fP(2) + Zlf(k)(O)l.
zeD k=1
Proof :

For n = 1 the equivalence of the two quantities is precisely the definition of the Bloch
norm. By induction it suffices to show that for a fixed n € IN, for every analytic function

f on D the quantities

-1
B) sup A-125" 1fY) + S 1 ®0)
" D k=1

and

n
@) sup @-1z071 a0+ Y 1 @)
zeD =1

are equivalent.
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Let g be an analytic function on D, and let w € D. Then:

1

lgw) - gO) < | 1wl 1gGw) dr

0
1

I R 1 A-1w)™ 1g'aw)l dr
o (d-lew)™
1

< Ll dt . sup (1-1z0"1 gl
0 (-rlw)"* 2eD

< 1 n+1

sup (1-1z2)"ig'@) .
n(l-lw)"® zD

Thus

(l-lwl)’l lg (w)l £ l sup (l-|z|)n+l g’ (z)l + lg@O)! .
m ,eD

Put g =™, multiply by (1 +Iwl)*® (which is less than 2"), and take the supremum over
allwe D, to get

saup (1-1wD" 1FPw)l < zZ sup (=128 Dy 4 1Py
weD B 2eD

Hence quantity (B,,) is less than or equal 2"/n times quantity (B, ;).
For the converse, fix ze D and put r=(1-1z1)/2. Again let g be an analytic

function on D. By the Cauchy Integral Formula
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g = -1— j g(w)2 dw ,
2mi w-z=r W-2)
so that
g’ < %sup (lgwl:lw-zl=r}. (1.1)

Iflw-zl=r,thenlwl<lzl+r=(1+1z1)/2. By the analyticity of g,
sup {lgwl:lw-zl=r}<sup {lgw):Iwl<1 +1z1)/2}.

Multiply both sides of inequality (1.1) by (1 - 1zI)*+1 = 2n+1 p n+1 5 get
-1z g < 2™ sup (F 1gw)l lwl= (1 +1z1)2 ).

Forlwl=(1 +1zl)/2wehave 1 -Iwl=(1-1z1)/2=r , so it follows that

n+l n+l

1-1z) gzl £ 2 sup((l-lwl)’l lgw)l:lwl=1+1zI)2 }. (1.2)
Put g =f ™, multiply by (1 +1zI)"*1 (which is less than 2"*1), and take the supremum
overall ze D, getting

saup (-1 DG < 22200 1w 17 Py .

2D weD
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It follows that quantity (B,,,) is less than or equal 22n+2 times quantity (B,). This

completes the induction and the lemma is proved. O

The equivalences of Lemma 1.3 carry over to the little Bloch space, as is shown in the

following lemma.

Lemma 1.4 : Let n € IN. Then for an analytic function f on D the following

statements are equivalent:
@ fe B, ;
B -1z P 5 0as 12151 .

Proof:
For n = 1 the equivalence of the two statements is precisely the definition of the little
Bloch space. By induction it suffices to show that for a fixed n € IN, for every analytic

function f on D the statements

by A-1z22fM) - 0 as Izl 1°
and

(bpyy) (1-122y*1f0+HDG) 5 0 as Izl 1°
are equivalent.

Let n € NN be fixed. That statement (b,) implies statement (b, ;) follows easily from
(1.2) (applied to g = f ™),
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For the converse suppose that f is an analytic function on D satisfying condition
(b,,1)-Let0<r<1.Let g be an analytic function on D, and let w € D. Then as in the

proof of Lemma 1.3 :

1
lgw) - g(rw)l < j Iwl 1g'(tw)l dr

< ; sup { (1 -Izl)'H'1

Ig'@l:riwl<lzi<1}.
n(l -1wh)”

Therefore we have

1-1wh)” 1g (w)! s% sup {(L-1z20" g @l riwl <izl<1 )+ (1-1wh)® 1grw)l

In the above inequality put g =f (. For given £> 0, choose p € (0, 1) such that

(1 - 1z12yn+1 | f(1+1)(7)| < £ whenever p <lzl < 1. For p<r<1it follows from the
above inequality that (1 - Iw)* If D)< g/n+ (1 - Iw)?If W@w)| whenever we
have p/r <Iwl<1.Hence (1-1wi)"f(M(w) — 0 as IzI - 1°, i, f satisfies (b,) .

This completes the induction, and the lemma is proved. O

For the statement and proof of the following lemma we need more notation. For a

point A € D and O<r<1,let

D%(A,r) =u{ Dw,r) :Dw,r) "D(Ar) #D } .
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Since ¢, is injective, D(w,r) "D(A,r) # @ if and only if D(@,(w),r) "D(O,r) = O.
It follows that D2(4,r) = @;(D%(0,r)) . Itis easily seen that D2(0,r) = D(0,s) , where
s=s(r) =(3 +r3)r)/Q1 + 3r2) . Thus we have D2(A,r) = D(A,s) . Note also that
D%(A,r/3) € D(Ar).

Lemma 1.5 : Let 0<r< 1, and let q be a real number. Then there exists a
constant C (depending on r and q) such that for every pair of non-negative measurable

functions u and v on D satisfying

u(d) < I v(z) dA(z)/n , (A € D) (1.3)

\DAn? 5

we have:

j u(z) dAQ2)/nr < ¢

PR _[ v(z) dA@)/r , A e D). (1.4)
D(Ar) ID(A,r)

Dz(l,r)

Proof:
Fix 0 <r<1, and let g be a real number. Let ¥ and v be a pair of non-negative
measurable functions on D satisfying (1.3). Using characteristic functions (1.3) can be

rewritten as:

1
W) < 1 . € V@) dA@/r , (A € D). (1.5)
| DAY ‘L D(An)
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Take w € D . Integrating both sides of (1.5) over D(w,r) and applying Fubini's

Theorem, we get:

J u(A) dA(A)/x < I _[ Xp 0™ Zpo, r)(z) 1 dAQ)/z \v(z) dAGZ)/x.
Dw.n) p\ D 7 1p@an?
(1.6)

Using xD(w’,)(l) 2D(2.1D = Xpw.r)D(z ',)(2.) and | D(A,n)| =| D(w,r)l whenever
A e D(w,r), we see that there exists a constant C (depending on r and gq) for which the

inner integral at the right hand side of (1.6) is smaller than

¢ | D(w,r) N\ D(z,r)l .
| D(w,)?

Clearly, for ze D, |D(w,r) " D(z,r)l < |D(w,r)| xDz(w',)(z) . Hence for each ze D,
the inner integral at the right hand side of (1.6) is smaller than

C

— @,
D9 Down

and (1.4) follows. O

The following lemma is due to Luecking ([24], Lemma 2.1). We will give a different
proof. As in Luecking's proof we will use induction on n, but at a "different level."
Lemma 1.5 will play a crucial role in our proof: it will be the tool to go from a pointwise

estimate to one involving integrals.
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Lemma16: Let O0<p<eo, O0<r<1,and ne N . There exists a constant C

(depending on n, p, and r) such that for every analytic function fon D:

1

™), 4P
FPaP < ¢
DA, PR

j IfIPdA/x , (A e D). 1.7)
D(A,r)

Proof:

Let O0<p<eoo and 0<r <1 be fixed. By induction on ne IN we will show that
(1.7) holds for every analytic function f on D and foreachAe D .

First assume that n = 1. By a normal families argument, there exists a constant Cp',

such that for every analytic function g on D :

lg’ )7 < C,, j 1g1? dA/x . (1.8)
D(@,r)

Take Ae D . Applying (1.8) to g =fo ¢, and using change-of-variable formula
(0.22b), we get:

Lf w)l? LMZ)Z
1-Awl

A-1A5P 1P < c,, J dAw)/n . (1.9)

D, n

Since

a-1a%? 16

2w a-ad?
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it follows from (1.9) that

If WP <16C S S j If1P dA/n .

p.r 2
A-1A5 P 5

Hence

1

S E— T L VY, 2 (1.10)
r Il)(ﬂ,r)|l+p,2 D“;,l,r)

IF (1P

IN

Cl.p.

and (1.7) is proved forn=1.

Now assume that (1.7) holds forn 2 1. Then

(), 2\ P 1
IFfPP < ¢
"B bt t PR

J' If1? dA/x . (1.11)
D(Ar/3)

Apply Lemma 1.5 with u=f® v = Cn.p,rBf’ q=1+np/2, and r replaced by r/3 .
Using D2(A,r/3) € D(A,r), we get

J' If PP qam < Cror 'l—,,p,z J' IfIP da/r . (1.12)
D(Ar/3) \D@ArBY™ pan

Inequality (1.10) applied to f ) gives us

r™Pay? < Crom 1 14pf2 J A (113
| D(A,r/3)l D(Ar/3)
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Combining (1.12) and (1.13) yields

(n+1),.,,p ’ 1 p
P s ¢y C e
PRI Dy R
1
. J If1P dA/x |
1,p,
n+lpr ID(l,r)ll +(n+1)pf2 e

which is (1.7) for n+1 . This completes the induction, and the lemma is proved. O

Theorem 1.7 : Let O<p <o, O0<r<1,and ne N .Then for an analytic

function f on D the following quantities are equivalent:

A Iflg;
1 1/p -1
B) sup| ———— j PP aam |+ i %0y :
aed| DAt P 5o k=1

1/p n-1
(C) sup J' FPe? (1 -125% 2 dae)/n + > 1%
AeD DA k=1

1/p n-1
(D) sup J FPP a-125% 2 0-19. @3 dAeyn |+ 2 1FP0)1 .
AeD D A k=1

Remark 1.8 :

(1) Of special interest are the cases where np=2.For n=1 and p =2 quantity
(B) specializes to quantity (G) of Theorem 1.1, and quantity (D) gives a global version
of quantity (G) of Theorem 1.1:
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Nfll_ = sup J
B AeD(

1/2
I @ - ?.(2 %2 dA@)/n ) .
D

which should be compared with the known equivalence

llfIIBMOA = sup (j

1/2
If (1 (1 -l(pl(z)lz) dAG)/n ) .
AeD D

(2) For n=2 and p =1 both quantities (B) and (C) specialize to the local
Besov-type equivalence

Ifly =sup | If" @)1 dA@IE + If )] .

AeD D)

The Besov space { fe HD): f” € Lal] is minimal among all M&bius-invariant Banach
spaces of analytic functions on D (see [3] or [5]). The above equivalence says that the
Bloch space B is the set of analytic functions on D whose restrictions to
pseudo-hyperbolic disks (of a fixed pseudo-hyperbolic radius) are uniformly in the Besov
space.

For n=2 and p =1 quantity (D) specializes to the global Besov-type equivalence

Iflg = sup | 1f” @) (1-|¢p;_(z)|2)2 dA@)/r + If (0) .

AeD D
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(3) Inthe case that n=1 quantities (C) and (D) are of interest because the quantity

j ' @1 (1-121%° 2 dA@y/n
D

is invariant under Mobius transformations of f.

Proof of Theorem 1.7:

Take O<p<e, O<r<1,and ne N.Let f an analytic function on D. We will
use the same letter C to denote a constant independent of the function f even though the
constant changes from one appearance to the next. Apply Lemma 1.5 with u=I1f®p,

v=ClfWP,q=1+np/2, where C is the constant of (1.7). We get:

j FPaam < ¢ —2

— j If1P dA/r .
DA ID(A,P)

D2(Z,,r)

Replace f by f - f(A), and write D(A,s) = D%(A,r) . It follows from the above inequality
that

1
ID(A,r)! P

j FOP dam < ¢ — J If - F)IPdA/m . (1.14)
ID(4,5)

D(Ar) D(A.s)

Combining (1.14) and Theorem 1.1 we get
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1p
sup -—ll—j FPPaum)| <c I .
AeD| DA PP 5

By Lemma 1.3 we also have

n-1
> iPonsc g o -
=1

thus it follows that quantity (B) is less than or equal C times quantity (A) .

For the converse apply Lemma 1.6 to f ™), 1o get

1 (n), p
1+pf2 .[ \F dA

| D(AN)! D(Ar)

(n+1)

F" P < c

1pr

Multiply both sides of this inequality by (1 -1412)"DP _Since ID(A,r)! = (1-111%)2 we

get

( 2.n+1 , (n+1)

14
a-1aAs (A)I) <C ;j P qam . 1.15)

1-
DAL PP B

By subharmonicity of the function |f ™IP we have

If"0)1P < lz j I ™\P qarz .
r D,

It follows that
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sp -1 Doy w150 <
AeD

1 1
< C sup — s j If(")lp dA/n| |,
AeD | 1D P DA

and by using Lemma 1.3 it follows that quantity (A) is less than or equal C times quantity
(B). This completes the proof that quantities (A) and (B) are equivalent.

That quantities (B) and (C) are equivalent is an immediate consequence of the fact
that (1-1z12)2=1D(A,r)|, whenever ze D(A,r).

For ze D(A,r) wehave (1-19,(2)%)?2 > (1-r2)2, thus

j PP a-125% ’2(1-|<p/1(z)|2)2 dA@)T 2
D

> (1-r%? J' PP a-125" % dA@yr,  (1.16)
D(A1)

and it follows that quantity (D) is greater than or equal a constant times quantity (C) . To

complete the proof we will show that quantity (D) is less than or equal a constant times

quantity (A). Again we make use of Lemma 1.3.

j F PP (1-125"P 2 (1-I¢16)l2)2 dA@)n <

D
22
p 1-1 |
s(sup 11z lf""(z)l) j 21900 sy .
zeD D 1-1zl
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Now, the integral at the right of the above inequality is 1 [by (0.20) the integrand is
equal to 19;’(2) 2, so that by changing to the variable w = ¢,(z) the integral is
transformed into one with integrand identically equal to 1]. Thus quantity (D) is less than
or equal to quantity (B) of Lemma 1.3, and the proof is complete. O

The equivalences of Theorem 1.7 carry over to the little Bloch space, as is shown in

the following theorem.

Theorem 1.9 : Let O0<p<eo, O0<r<1,and ne N.Then for an analytic
function f on D the following statements are equivalent:

(a) feB,;

b) —k j FPdaim 5 0as 1A1o17;

1-
| D) " D(Ar)

(c) j FPP A -125" 2 dA@m — 0 as 1Al 17;
D(Ar)

(d) j If(")(z)lp(l-Izlz)"p'z(l-|¢;L(z)lz)2dA(z)/n > 0aslAl=1 .
D

Proof:

Take 0 <p<eo,0<r<1,and ne IN. Let f be an analytic function on D. With the
help of Theorem 1.2, it follows immediately from inequality (1.14) that (a) implies (b).
Conversely inequality (1.15) together with Lemma 1.4 give that (b) implies (a) .

The equivalence of statements (b) and (c) follows immediately from the fact that for
ze D(Ar) we have (1 - 12122 = ID@A,r)].
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That (d) implies (c) is a consequence of inequality (1.16). To complete the proof we
will show that (a) implies (d). Suppose that (a) holds, i.e., fe 130. By Lemma 1.4

we have that (1-1z12y*[f(z)| — 0 as |zl — 1-. Then it is easy to see that

I lf(n)(Z)lp a _|z|2)np'2(l -|q)l(z)|2)2dA(z)/7t —-0a -1 . (1.17)
D\s D

By Lemma 1.3 there is a constant C such that (1-1z12)*|f(z)1<C forevery ze D.

It follows from the chain of inequalities

J‘ If(’l)(z) IP (1 _ |Z|2)np -2 (1 - ¢l(z) 62 dA(Z)/” <

5D
2
1-1p. ()1
< c? j —2i | dAQ)/n
izl

pos \ 1-1z
= cP J' 9, @)t dAG)/n [by identity (0.20)]

D(0,9)

c? j 1 dA/r = C? \DAS)
D(A.6)

that for every 8 € (0, 1) we have
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J’ v(n)(z)lp(l_|z|2)ﬂp‘2(l_|¢p).(z)|2)2dA(z)/7r - 0aslAl> 1. (1.18)
sD

Combining (1.17) and (1.18) yields that (d) holds. O



Chapter 2

In this chapter we will give characterizations of the Bloch space and the little Bloch
space in terms of the pseudo-hyperbolic metric. It will be shown that the Bloch space
consists of those analytic functions on the disk that are uniformly continuous with respect
to the pseudo-hyperbolic metric. A similar description will be given for the little Bloch
space. We will also consider the real harmonic Bloch space on the unit disk. First we will
show that for an analytic function on the disk the Bloch norm and the supremum of the

oscillations of the function over pseudo-hyperbolic disks of a fixed radius are equivalent

quantities.

Theorem 2.1 : Let 0 <r<1.For fanalytic on D the following quantities are

equivalent:
(A) lfilg ;

(B) sup sup If(2) - fM)I.
AeD z2eD(Ar)

Proof:

Fix0<r<1,and let f be analytic on D . It follows from the identity

5o =2 [ 750 dem
r DoOn

If ) < %r J If(2)! dAQ2)/m

r D)
2
s

< sup |f(2)!.

2eD(0,r)

43
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Replacing f by fo ¢, - f(A), we get the inequality

A-IADIF WD €2 sup If@) - FDI, 2.1)

2
' zeD(an)

and it follows that

Ifllg < 2 ap sup If@) - fFM.
T 2eD zeD@Ar)

On the other hand, as in the proof of Lemma 1.3, for Iw| <r we have

1

Ifw) - FO)I < j dr Il
0 1-12 1wl

1

<3

b (l+r) T

Replacing f by fe ¢, - f(A) yields

1+r

vww)ﬂwslm(l)w%,

whenever |lwl <r . Hence

sup sup If@) - fA)! € = log(ll+r) Iflg, 2.2)
AeD zeD(Ay)

and the theorem is proved.[]
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A function f on D is uniformly continuous with respect to the pseudo-hyperbolic
metric if

sup sup If@ -fA)) = 0asr—0". (2.3)
AeD zeD(AY)

Let UC denote the class of all functions f: D — € which are uniformly continuous
with respect to the pseudo-hyperbolic metric. Let H(D) denote the set of all analytic

functions on D.
Corollary 2.2 : B =UC n H(D)

Proof:

If fe UC n H(D), then f satisfies (2.3). In particular, for some r € (0, 1) we have

sup sup If@@) -fMHl <1,
AeD zeD(Ar)

so that by Theorem 2.1 fe 3.

For the converse suppose that fe B . Taking the limit » — 0* in (2.2) yields (2.3),
hence fe UC n H(D), and the corollary is proved.0

Remark 2.3 : For an grbitrary function f: D — C to be uniformly continuous
with respect to the pseudo-hyperbolic metric f must satisfy the little-o condition (2.3).
However, for an gnalytic function f: D — C to be uniformly continuous with respect to
the pseudo-hyperbolic metric it is sufficient (and of course necessary) that f satisfies the
big-O condition
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sup sup If(@) - f(A)] < oo,
AeD zeD(Ay)

for some re (0,1).

As usual, the equivalences of the previous theorem carry over to the little Bloch space.

This is expressed in the following theorem.

Theorem 2.4 : Let 0 <r< 1. For an analytic function f on D the following

statements are equivalent:
(a) fe B,;

(b) sup If(@ -fA)! > 0aslA—-1.
zeD(A,r)

Proof:
That (b) implies (a) follows immediately from (2.1).

For the converse, suppose that fe B, . From the proof of Theorem 2.1 we see that

for te (0,1) and Ae D

sup If @) - f,@) - f -f(l))l S = 108(1+r) If - f “ . (29
zeD(Ar)

Using the triangle inequality it follows from (2.4) that for re (0,1) and Ae D

up If@) - f(l)ls-%log( )Ilf flg + sup 1£,@ - f,MI. (25)
2eD(A) zeD(A)
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Let te (0, 1). The dilate f, is analytic in a neighborhood of the disk, so clearly

sup If;(z) -j;(/'l)l - 0as lAl>1,
zeD(Ar)

and it follows from inequality (2.5) that

Imsup sup 1f(z) - f(DI S-;-Iog(llf:) hf- f‘IIB.
111 2€D(AN)

Since fe B, wehave lIf - f;Ilg — 0 as £ — 1, hence the above inequality yields

Emsup sup I1f(z2) - f(A)! =0,
1A1o1 2€DA)

which implies that (b) holds.O

Let A(D) denote the set of all real harmonic functions on D . Define the real harmonic

Bloch space B to be the class of all real harmonic functions # on D for which

lully = sup (1-121(Vi)@) < o=,
2D

where Vu denotes the gradient of u . If f is analytic on D, and u = Re f, then it follows
from the Cauchy-Riemann equations that | f* | =1 Vu |, and consequently Il fllg =1l u llp.
It follows immediately that B =Re B3 .

Soif ue B, then fe B, so that fe UC, and hence u e UC. Thus we have the

inclusion B € UC N h(D). We claim that the converse is also true, i.e., in analogy to
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Corollary 2.2 we have the following result:
Theorem 2.5 : B=UC n h(D).

Proof:
We make use of the fact that the conjugate function operation is a bounded operator in

the L1(D,dA/7) norm (for a proof see [7]): there is a constant C such that for every real

harmonic function u on D

J gl dA/m < C j lul dA/x .
D D

Let 0 <r < 1. Dilating the above inequality gives that for every real harmonic function u
on D

J ldl dA/n < C j lul dA/m . (2.6)
D(O.r) D)

Suppose that u € UC N h(D). Let f be analytic on D such that u = Re f. Since u is
uniformly continuous with respect to the pseudo-hyperbolic metric we can pick 0 <r<1

such that

sup sup lu@) -u@l <1. 2.7
AeD zeD(Ar)

Let A € D be fixed. Using the change-of-variable formula (0.22a) and formula (0.21) for
the normalized area of a pseudo-hyperbolic disk, we have:
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22
-141
! j If - F)I dA/n < % J fop, - fM)] dAin
\DATY S riQ-141n" poy

1

< j fop, - fI da/n . (28)

2 4
r (1 -r) D(0,r)

Write f =u+i d. Itis easily seen that (u o @ -uA)"=do @, - d(A),soby
(2.6) we have

J |do (pA -d@) dA/lr £ C j luo q)l -uA) dA/m .
D©,r) D(0,r)

Since fo @, - f(A)=ue @; - u(A)+i(do @, - d(A)), the above inequality and
the triangle inequality give us that

J Ifo (pl -f(A)l dA/m £ C j luo (p/1 -u(A)l dA/m . (2.9)
D(0,r) D(0,r)

From (2.7) we see that the integral at the right of (2.9) is bounded by r. Combining this
with (2.8) yields

1
ID(A,r)|

f fep, - FW da/n < c+1

4
D(Ar) (1-n

By Theorem 1.1 (D), we have fe B, sothat u=Ref € B, as was to be shown.O
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Remark 2.6 : For an grbitrary function u : D = R to be uniformly continuous
with respect to the pseudo-hyperbolic metric u must satisfy the little-o condition (2.3).
However, for an real harmonic function u : D — R 1o be uniformly continuous with
respect to the pseudo-hyperbolic metric it is sufficient (and of course necessary) that u

satisfies the big-O condition

sup sup lu@) - u(A) < o,
AeD zeD(A))

for some re (0,1).

Just as BMO is closed under the conjugate function operation, so is B, the class of

real harmonic functions on the disk that are uniformly continuous with respect to the

pseudo-hyperbolic metric.

Corollary 2.7 : If ue UC N h(D), then T € UC N h(D).

Proof:

Suppose that u € UC N k(D). By Theorem 2.5, u € B . Thus u =Ref, with fe B.
Then -ife B,sothat d=Re(-if) e B, and by Corollary 2.2 we are done.0]



Chapter 3

In this chapter we describe some spaces of analytic functions on the unit disk in terms

of Nevanlinna characteristics. Our starting point is Baernstein's characterization for the

space BMOA ; he proved that an analytic function on the unit disk belongs to the space

BMOA if and only if the Mobius transforms of the function form a bounded family in the

Nevanlinna class. We give a similar description of the space VMOA . This description

cannot be obtained by simply repacing Baernstein's boundedness condition by the

corresponding vanishing condition (as is usually the case). We then formulate and prove

analogous characterizations for the Bloch space and the little Bloch space in terms of an

area version of the Nevanlinna characteristic.

For f analytic on D the Nevanlinna characteristic T(f) is defined by

T(f) = sup log* 1f re'®)1 d6 .

1
0<r<l 21

St p

The Nevanlinna class is the set N={fe H(D): T(f) <ee}.

Let 0 <p <oo, then it follows from the inequality p log*x<xP that

2 2
p - Jlog+lf(re'9)ld65 L J' Ifre’®iP do |
2 0 2 0

hence

T(F) <2 uf1? for O<p<oo.
p H?

51

3.1

3.2)
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It follows from (3.2) that for fe BMOA

sup T(fo ?, -f) < e,
AeD

i.e., the family {fo @, -f(4) : A€ D} is bounded in the Nevanlinna class N. In [§]
Baernstein proved that the converse is also true. Before stating his result we need to
introduce more notation:

Fix0<a<m2.For e%e oD let I',(ei®) denote the Stolz region based at €9, i.c.,

I',(e9) is the interior of the convex hull of the circle | z| = sin & and the point e9:

The non-tangential maximal function 71, (f) of a complex function f defined on D is

defined by

(n_¢f Ne'® = sup (If@)):z € ra(e""n .

Note that (71 ,(f)) (e?®) 21f*(e#9)l if f has a non-tangential limit f*(¢ ) at ¢iF.
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In [8] Baernstein proved the following "John-Nirenberg type" of theorem:

Theorem 3.1 : There exists an absolute constant K such that for each 0 < a < n/2
and f analytic on D the following statements are equivalent :

(A) {foo@y - f(A):Ae D} isboundedin the Nevanlinna class N ;

(B) There exists a constant B= B(a, f) for which

Holles Mo g, - fNED > Nk, (3.3)

forall Ae D,andforall 0<t<eoo.

As Baernstein indicated ([8], Corollary 5.2), Theorem 3.1 has as an immediate

consequence:

Theorem 3.2 : For an analytic function f on D the following statements are
equivalent:
(A) fe BMOA ;

(B) sup T(foo, -fA) < .
AeD

What about the space VMOA ? One may be tempted to replace the above big-O
condition (B) in Theorem 3.2 by the corresponding little-o condition, and ask whether

fe VMOA & T (fop; - f(A) —»0as IA 117 (3.4)

The answer is negative: the condition at the right of (3.4) is certainly necessary for f

to be in VMOA (this follows from (3.2)), but not sufficient. That the condition is not
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sufficient follows from the observation that it is trivially satisfied when Il fll_, < 1/2
(because this implies that T (fo @3 - f(4)) =0 forall A e D), but not every analytic
function f on D for which Il fll , < 1/2 is contained in VMOA .

Let's return to BMOA and rewrite the condition in Theorem 3.2.

Let p>0.If fe BMOA , then also fip e BMOA , so that

(fo ?, -fw)
sup T| =20 | < oo,
AeD P

It follows that for f analytic on D:

°op - f(A
fe€e BMOA & | Vp>0: sup T(i—(pL—f—)<oo . 3.5)
AeD P

Having replaced the big-O condition in Theorem 3.2 by a collection of big-O conditions in

(3.5), going to the corresponding little o-conditions yields the following:

Theorem 3.3 : For an analytic function f on D the following statements are

equivalent:
(a) fe VMOA;
foo, -f( )
(b) for every p> 0 we have that T(——%———) = 0aslAl->1.
p

Before the proof we need to relate the Nevanlinna characteristic and the H? - norm of

an analytic function. We'll do this not just for the H2 - norm, but for any HP - norm:
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Lemma 3.4 : Let 0 <p <oo. For an analytic function f on D:

nfu"p = p? _[pp"r(i) dp . (3.6)
H : p

Proof:

Let 0 <p <o, Integration by parts yields the formula:

1
a1
j:” Ujog 2 dr = L |
t 2
0 p

Thus for 0 <x << we have:

©o b 4 l

IPP-1108+£dp=J‘pp'llogidp=xpjtp'llogldt=—l-xp.
t 2

0 P 0 P 0 p

For an analytic function f on D and 0 < < 1 an application of Fubini's Theorem gives:

0

N fre'® 1
jp”’ —Ilog+| lao |ap=L
2% 0

L[ iree®P a0 . 37
0 P P’

OO—,s)

Taking the limit as » — 1-, and using the Monotone Convergence Theorem we get (3.6).0
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Now we are ready for the proof of Theorem 3.3.

Proof of Theorem 3.3 :

Let f be an analytic function on [D. We have already seen that condition (b) in
Theorem 3.3 is necessary.

To prove the sufficiency, suppose that f satisfies condition (b). Our first step is in
showing that fe€ BMOA. Choose anr € (0, 1) such that T (fo ¢; - f(4)) <1 whenever
r<lAl<1.Notethatge N <> g o ¢, € N (This follows easily from the fact that each
function in the Nevanlinna class N is the quotient of two H>-functions). Pick w such
thatr <Iwl<1.ThenT (fo @, - f(W)) <1, sothat fo ¢, € N, and therefore fe N.
Thus log*If1 has a harmonic majorant, call it k. Then for Ae D, h o @, is a harmonic

majorant of fo @, , whence

T (fo @) < (ho ¢y )0)=h(A).
Using the inequality log*(x + y) < log*x + log*y + log 2 , it follows that for | A1 < r:
T(fo @y - fF(A) ShA) +log"f(A)| +log 2.
Hence the family { fo @, - f(4) : A€ D} is bounded in N, and by Theorem 3.2 we have
fe BMOA.

Since fe BMOA we can apply Theorem 3.1. Let B be such that (3.3) holds. Then
forAe Dandt>0:

Ho(te ™17 (0 ) -r 1> e <k e P
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Using the above inequality as well as the distribution function for the log*, it follows that
forevery p>0:

* i6.
(@) - f)
p

log

o - f(A
T(f ?, f())SL
P 2n

Ot—.s)

0
du(e™)

1 9, * i6,
< Bolle™:1f (@ (e™) - fFDI>1)) dr

c[LrePia <X oo

pB

Now let £ > 0 be given. Choose R > 0 such that K e "B R < (¢2$2)/8. Then integrating the
above inequality we get

¢ fop -f(A

JpT(L) dp<f83. (3.8)
p

R

By the Lebesgue Dominated Convergence Theorem:

(fotpl-f(/l)) -
pT|——_&——|dp > 0asidlo1l.
p

O ey

Choose 6€ (0, 1) such that
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o -f(d)
J‘ p T(f_"’z,_f__) dp < £ (3.9)
0

whenever 1- 6<I1Al< 1. Using the formula of Lemma 3.4, it follows from (3.8) and

hence ifo ¢, - f(A) l2<€, whenever 1- 6<IAl< 1. Therefore fe VMOA , and

the theorem is proved.O

The classical Nevanlinna characteristic T is defined in terms of /og*, which only
measures the values of the function that are of modulus bigger than 1. Instead we could

define

T'(f) = sup

2r
1 Ilog(l+lf(re'9)l)d9,
0<sr<l1 21t 0

for an analytic function f on D, and we obtain a characteristic equivalent to T.
In fact, for 0 <x < oo, log*x <log (1 +x)< log*x + log 2, so that for every analytic

function f on D,
TE)YSTU)ST) + log2.

The characteristic T* also measures values of the function that are of modulus less than 1.
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Theorem 3.5 : For an analytic function f on D the following statements are
equivalent:
(a) fe VMOA;

() T (fo ?, -fA)) > 0as lAl->1,

Proof:
For x2p>0,
Iog+£ < M Iog 1+x),
p log(1+p)
so that

foo, -f()
T( A ) < log 1+ 1/p) T'(fep, - FA).

p log (1+p)

Soif T'(fo q)l-f(}{)) — 0 as IAl—> 1, then fe VMOA .
The inequality Jlog (1 + x) <x implies that

T’ (fo@y- fANSIfo g - FMMpa<lfo g, - f(A) N2,
sothatT'(fe @, - f(A)) = 0 as IA1 = 1", when fe VMOA .O

For f analytic on [D the area version of the Nevanlinna characteristic, T ,(f), is

defined by

T(f) = Ibg+IfIM/n.
D

The area-Nevanlinna class is the set N, = {fe H(D) : T (f) < ).
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Let 0 < p <eo. Integrating both sides of inequality (3.1) gives, in analogy to (3.2):

1 P
Ta(f)s;IIflle,for O<p<oo. (3.10)

a

So the area-Nevanlinna class contains all Bergman spaces. Analogous to Baernstein's
characterization for the space BMOA given in Theorem 3.2 we have following result for

the Bloch space:

Theorem 3.6 : For an analytic function f on D the following statements are
equivalent:
(A) feB;

(B) supT (foo, - fA) < .
AeD

Proof:
That (A) implies (B) follows from (3.10) and the Garcia-norm characterization for
the Bloch space [Theorem 1.1 (B) ].

For the converse, let f be an analytic function on D and suppose that

M = sup T (fo @, -f(D)) < e,
AeD

Fix 0<r<1,andlet z,Ae D with d(z,A) <r.Put u= ¢, (z), then lul <r. Using

that the function log*Ife @, - f(A)l is subharmonic on D we have
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bg'lf @) - FAN = log'I(fe )W) - f)

IA

J- log* |(f°¢P)(W) f)! dAw)/n
- r) A(u,1-r)

1 M
< s T,fe@ - f) <

a-r? a-n?

Since x < exp(log*x) for all x 20 it follows that 1£(z) - f(A)| < exp(M/(1 - r)?), and it

follows from Theorem 2.1 that f € B, as was to be shown.O

A description of the little Bloch space in terms of the area-Nevanlinna characteristic is
contained in the following theorem which is analogous to the description of the space

VMOA given in Theorem 3.3.

Theorem 3.7 : For an analytic function f on D the following statements are

equivalent:

(a) feB,;

> 0aslAl>1.

(forp f(l))
(b) Forevery p >0wehavethat T | —2——

Proof:
That (b) is implied by (a) follows easily from (3.10) and the Garcia-norm
characterization for the little Bloch space [Theorem 1.2 () ].

For the converse, suppose that f is an analytic function on D for which (b) holds.

FixO<r<1.Let z,Ae D such that d(z, A) < r. Then, as in the proof of Theorem 3.6:
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- 1 foo, - f(A)
ARSI/ Rpa Ta( A ) . 3.11)

p 1-n p

Given €>0, choose 0 < p<g2. Since (b) holds we can choose a € (0, 1) for

which

T

a

(fo 0, -f(l)) )
— A " | <a-nlg2, (3.12)
p

whenever 0<1-1A41< 8. Combining (3.11) and (3.12) we get thatfor0<1-141<§
If(2) - f(A)I £2p < €. We conclude that

up If@) -fA) > 0as A1,
2eD(A)

so that by Theorem 2.4, fe B, and we are done.0]



Chapter 4

In this chapter we will give a different proof of Baernstein's value distribution
characterization for BMOA [8], Theorem 3, and then formulate and prove the
corresponding description for the space VMOA . Defining an area version of the counting
function used in the value distribution characterizations for BMOA and VMOA, we obtain

analogous results for the Bloch space and the little Bloch space.

The Green's function for the unit disk is given by

g @A) = log , for e D .

I (pl(z)l

For a nonconstant analytic function f on D let {z,(f)} denote the zeros of f in D,
listed in increasing moduli and repeated according to multiplicities. Following Baernstein

we define N (w, A, f), the "counting function for value w started at A", by

Nw Af) = ), g (-w.A).

n
Note that g (z,0) = log (1/1z1), so that

1
N(W,O:f)=zlogmr
n n

the usual counting function. It is clear from the definition of the counting function that

63
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NWwAf)=oif f(A=w; (4.1a)

N W, A, f) = 0 if f omits the value w . (4.1b)

The following properties of the counting function, which are easily verified, are useful:

Forwe €, axe C\{0}, Ae D and f analytic on D we have:

Nw, Af) = Nw+a A f+a) (4.2a)
Nw, A f)=N (aw, A, af) (4.2b)
N(w,l,f)=N(0,0,fO(p1-w). (4.20)

The following theorem is due to Baernstein ([8], Theorem 3). We will give a simpler

proof of his theorem.

Theorem 4.1: For a nonconstant analytic function f on D the following statements
are equivalent:

(A) fe BMOA ;

(B) sup{Nw,Af):weC,AeDand If(A)-wl21} < oo,

Just as in Baernstein's proof we will need to relate the Nevanlinna characteristic of an

analytic function with its counting function. This is done in the following classical result.

Cartan's Formula : For a nonconstant analytic function f on D:

2
1 IN(eie, 0,f) d6 + log" If(O)!. (4.3)
2 0
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A proof of Cartan's Formula can be found in [17], pages 214-215, for the case that f
is analytic on a neighborhood of D. The general case follows easily by looking at the
dilates f, of f. Using the Monotone Convergence Theorem we see that T (f,) increases
to T (f) and for each @ in (0, 271) we have that N (%6, 0, f, ) increases to N (9, 0, f)
as we take the limit # — 1°. For these dilates f, we know that (4.3) holds, so that another

application of the Monotone Convergence Theorem gives that (4.3) holds for f.

Proof of Theorem 4.1:

Let f be a nonconstant analytic function on D. By Jensen's Formula we have:

Sty

i0 _ r
log\f(re ") d@ = Z Iogm + log If (0)l.

1
2n nilz (Fi<r

Thus

log+lf(rei8)l dée 2 2 logﬁi + log lf(O) ,
n

1
P4 nilz (fli<r

ot—y

which, after taking the limit » — 1°, gives us the inequality

T(f) 2N(0,0, f) + log1f(O) . (4.4)
Replacing f by fo ¢; - w, and making use of (4.2c) the above inequality yields

Nw,A,f) ST(Fop, - w) - loglf(A) - wl .



66

Using the inequality log*(x +y) < log*x + log*y + log 2, we get
Nw,Af) <T(feo (p'1 -fQ) + Iog+lf(2.)-wl - loglf(A)-wl + log 2.

Soif If(A)-wl 2 1, then we have

Nw,Lf) ST(fo @, - fA) + log 2.

The above inequality and Theorem 3.2 show that (A) implies (B).

To prove the converse suppose that
M=sup{(Nw, A f):we C,A €D and If(A) - wi21} < .

By Cartan's Formula

T(fep, - fA) = N 0,fe @, - F) 46 .

1
P 4

oy

Now, using (4.2a) and (4.2c), for every 0 < 0<27m we have N (e i6 0, foo, - f(A)
=N (e9+f(1), A, f ) <M, so it follows that

T(fo ¢ﬂ. -f(A) £ M, forall A€ D,

and hence, by Theorem 3.2, fe BMOA .O
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Before going to VMOA let's rewrite the condition in Theorem 4.1 for inclusion in
BMOA . Suppose that fe BMOA , and let § > 0. Since f/6 € BMOA , it satisfies
condition (B) of Theorem 4.1. By (4.2b), N(w, 4, f) =N W/, A, fi§ ). Therefore we

must have that for an analytic function f on D:

fe BMOA &

[V6>0:sup (Nw,Af):weC,A €D and If(A) - wl26}<°o]. 4.5)

We will show that the little-o condition corresponding to the big-O condition in (4.5)
will give a necessary and sufficient condition for inclusion in the space VMOA . This will
be made precise in Theorem 4.3.

In the proof of Theorem 4.3 we will need to relate the counting function N of an
analytic function to the H2-norm of the function. As is shown in the following lemma, this

can be done for not just for the H?2-norm but for any HP-norm of an analytic function.

Lemma 4.2 : Let 0<p <. For an analytic function f on D with f(0) =0, we
have:

14 2 2
ipn? = B J 1wl? 2N (w, 0,f) dAw) .
v 2z C

Proof:
Fix 0 <p < oo, and let f be an analytic function on D with f (0) = 0. By Cartan's
Formula and (4.2b), for every p>0:



Ne®o Lyae

T(£)=-1_
p/ 2 p

L [ Npe® o) a6
2n

Multiply by pP - 1 and integrate with respect to p over the interval (0, o). By the formula
(3.6) of Lemma 3.4 we get

oo 2
171° =p? [P = [ Noe0p) a0 | ap
HP 0 2 0

2
P j' Iwi? 2N (w, 0,f) dA(w)
¢

and the lemma is proved. O

Theorem 4.3 : For a nonconstant analytic function f on D the following

statements are equivalent:
(a) fe VMOA ;
(b) for every 6> 0 we have:

sup{Nw, A, f):we Cand 1f(A)-wl26} > 0 as A1,

Proof:

Let f be a nonconstant analytic function on D. Let 6> 0. Making use of Cartan's

Formula and the equations (4.2) we see
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2

° -f(A) . fo - fA)

T(f_ﬁ&_i_) =1 I N(e'e,o,L) de
) 2n 0 )

2

=L j N@e+ F, A1) do
L

Ssup{Nw, A f):we C and If(A) - wl 2 6},

so that, by Theorem 3.3, (b) implies (a) .
To prove the other implication we make use of Lemma 4.2. In this lemma take p =2,

and replace f by fo ¢, - f(4), we get the formula

2 2
Ifog, - fO1 , == J Nw+f), A f) dAMw). (4.6)
b4
C

We will also need Lehto's Theorem [21], which states that for a function g , analytic on a
neighborhood of D, the function w - N (w, 0, g ) is subharmonic on € \{g (0)}. Letg
be an analytic function on D for which g (0) = 0. Let 0 < r < 1. Applying Lehto's
Theorem to the dilate g, of g we get that for §>0and forlul> 4§

N@0,¢g) < -1—2 j N®,0,g) dAW). (4.7)

mé lu-vi<é

Taking the limit where r — 1°, we get

N 0¢g) < —1—2 I N0, ¢) dAW).

%o lu-vicéd
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Apply the inequality to g =fo @; - f(4). Using equations (4.2) we get

N@+f), Af) < ;2 [ Norro.a5 a0 .

8 lu- vicé

Replacing u + f (A) by w yields the formula

Nw,Af) < ; J N(z, A, f) dA(2) . 4.8)
r 82

lw-21<8

Combining (4.6) and (4.8) gives us that for | f (1) - wl 2 &

1 2
Nw A f) £ = lfoep -fAI ,,
w, 4, f) e foo, -f 2

so that

sup{Nw, A,f):we C and If(A) - wl 2 6} < —l— lfo o, - f(/'l.)llz2 ,

from which it follows that (a) implies (b) .0

Now we will turn to the Bloch space and the little Bloch space. Defining an area
version of the counting function used in the value distribution characterizations for BMOA

and VMOA, we obtain analogous results for the Bloch space and the little Bloch space.

Define an area version N, of the counting function N as follows: given an analytic

function f on D we first define N, (0, 0, f) by
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1

Na(0,0,f) = I 2 N©OOf) dr,
0

and, mimicking (4.2c), forwe Cand Ae D define N, (w, 4,f) by

N,w, A.f) = N_(0,0,fo g, - w).

Observe that N W, A, f) =0 if f omits the value w, but that (4.1a) is not necessarily
true for counting function N, . It follows immediately from the definition that properties
(4.2) do hold for counting function N, : forwe C, ae C\{0}, A€ D and f analytic

on D we have:

N wAf) =N w+oif+a) (4.92)
N (w,Af) = N_(aw, 1 of) (4.9b)
N, v, 4.f) = N (0,0,fo 9, - w). (4.9¢)

Theorem 4.4 : For a nonconstant analytic function f on D the following
statements are equivalent:

(A) fe B;

(B) sup (N,w,A,f):we C,Ae Dand If(Ad)-wi21} < oo,

Proof:
Let f be a nonconstant analytic function on D, and let 0 < r < 1. By inequality (4.4)

we have:
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N©,0.f)<T(f) - loglf(O)I.

Multiply the above inequality by 27 and integrate with respect to r over the interval (0, 1)

to get:

Na(0,0,f) < Ta f) - loglf(OI. (4.10)
Just as in the proof of Theorem 4.1 it follows that if | f (1) - wl 2 1, then we have
Na(w, ASf) < Ta(fo (p'1 -f(A) + log2.

Theorem 3.6 and the above inequality show that (A) implies (B) .

Note that integrating Cartan's Formula gives us the formula

T () = N_(€",0,f) 40 + log* 1f (0)1. 4.11)

1
2

Ol——.s)

To prove the converse we use this formula and proceed as in the proof of Theorem 4.1.0

The value distribution characterization for the Bloch space carries over to the little

Bloch space in the same way as going from BMOA to VMOA.
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Theorem 4.5 : For a nonconstant analytic function f on D the following
statements are equivalent:
(a) fe Bg;
(b) for every 6> 0 we have:
sup {N,w,4,f):we Cand If(A)-wl26}) - O as 1Al > 1".

Proof:
Let f be a nonconstant analytic function on D. Let § > 0. Making use of (4.11) and

the equations (4.9), as in the proof of Theorem 4.3, we have for every 6 >0

feo, -f)
T ———13——- < sup (N w, 2, f):we C and If (D) - wl 2 8},

a

so that, by Theorem 3.7, (b) implies (a).

To prove the other implication we need an area-version of Lemma 4.2. If 0 < p < oo,
the function f is analytic on D, and f (0) = 0, then applying Lemma 4.2 to the dilates f,
of f and subsequently integrating with respect to r over the interval (0, 1) yields the

formula

2
e’ = 2
L?  on

a

J' lwn”'zNa(w, 0,f) dAw) .
C

In the above formula take p = 2 and for A € D replace f by feo ¢, - f(4) ;analogous to
(4.6) we get:
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2
I£o 0, - FA1 ", = % [N wernnn aaom. (4.12)
C

a

Integrating (4.7) with respect to r over the interval (0, 1) gives that for an analytic function

g on D for which g(0) =0 and for lul 2 6 > 0 we have

1
Na(u, O, 2 ) < F Na(V, O, I4 ) dA(V) .

lu-vi<é

As in the proof of Theorem 4.3 it follows that whenever | f(A) - wl 2 § we must have

1

Na(w, Af) < j Na(z, Af) dA@2) . (4.13)

lw-zl<é

n82

Combining (4.12) and (4.13) we get

sup (N w,A,f):we C and If(A) - wl 2 ) < L lfo @ —f().)llzz,

a
from which it follows that (a) implies (b).01

For a nonconstant analytic function f on D it is easy to compute N,(0, 0, f). Let
(z,} denote the zeros of f in D, as usual, listed in increasing moduli and repeated

according to multiplicities. Then foreveryO <r<1:

r

N©.0.£) = D, 2(iz,1<r)log = ,
n n
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thus we have

N(0,0.5) = ), jzrzog & = Z—(log-l—-(l 1z ).

"lzl

Using power series it is elementary to show that

1
L cigL - q-12% , zeD,
2 1212

so that we have the inequality

Y a 1z B S 4N (0,0,1).
n

If fe N;,ie, T,(f) <o, and if f(0)# 0, then it follows from (4.9) that
N,0,0, f) < e, so that by the above inequality

z -1z 2 < oo, (4.14)

The condition f(0) # 0 is no restriction: if f(0) = 0, then write f(z) =z" g (z) z e D)
for an m € N and an analytic function g on D for which g (0) # 0. It is easy to see that
then also g € N,, so that the zeros of g satisfy (4.14). It is then clear that also the zeros of
f satisfy (4.14). Thus we have given a proof that the zeros {z,} of a function f in the

area-Nevanlinna class N, must satisfy (4.14). In [16], Andrei Heilper showed that
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conversely, all sequences {z,} in D satisfying (4.14) can be obtained as zerosets of

functions in the area-Nevanlinna class.

For a nonconstant analytic function f on D and 0 <r < 1 let n (f, r) denote the

number of zeros of f in D(0, r), counted according to multiplicities. Then

n(f)=Ilim n(f,r)

r-1

denotes the number of times (counting multiplicities) that f assumes the value 0. In [29]

Pommerenke showed that a Bloch function f which safisfies the valence condition

sup j n(f - w) dA(w) < o,

ue¢lw-u|<l

must belong to BMOA. If f is univalent (or finitely-valent), then it is trivial that the above
condition is satisfied, thus univalent (or finitely-valent) Bloch functions belong to BMOA.
We will give a necessary and sufficient condition on a Bloch function for inclusion in the
space BMOA.

It is elementary to show that

r

N(0,0,f’)=J
0

n

9 dr .
t

Thus it follows that
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1 r
n(f,0
Noop = (2 [22a)q
0 0
1
=J(-;-t)n(f,t)dt.
0

Hence
1

Na(0,0,f) + _[tn(f,t) d =NQOOf).
0

Take A€ D and w e C. Replacing f by fo ¢, -w yields
1
Na(w,/l,f)+jtn(foq>x-w,t) dt = NWw, A f), (4.15)
0 ,
which (in view of Theorems 4.1 and 4.4) implies that for a Bloch function f to belong to
BMOA it is necessary and sufficient that
1

sup{Jtn(fo (pl-w,t)dt :AeD, weC and If(A) - wl 2 1} < oo,
0

Note that n (fo ¢, - w, 1) is the number of zeros of f - w in the pseudo-hyperbolic disk
D(A, t), counted according to multiplicities. Thus the above condition is trivially satisfied

if f is univalent (or finitely-valent).
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Using Theorems 4.2 and 4.5 we see from (4.15) that a little Bloch function f must

belong to VMOA if and only if

1
Vé>0:| sup {Jtn(fo (pl-w,t)dt :we € and If(A)-wi26)} = 0aslAl>1].
0



Chapter 5§

In this chapter we give estimates for the growth of analytic functions in weighted
Dirichlet spaces, which then are used to give necessary and sufficient conditions on the
growth of an analytic function on the disk for inclusion in the Bloch space or the little
Bloch space. For the Bloch space and the little Bloch space we establish certain weighted
Dirichlet-type conditions, and we investigate the question of whether analogous results

are true for the spaces BMOA and VMOA.

We start with a lemma that gives estimates for the weighted Bergman norms of an

analytic function and its derivative.

Lemma 5.1 : Let -1 < ax< oo . For an analytic function f on D we have

1 j IF )P 1-120%* 2 dA zyn < jlf(z) - FO)P A -12A%dAG)T <
a+1
D D
< a+3 J‘I 2 2.a+2
< Fr@ra-1z5% 2 daqyr . (5.1)
a+1
D
Proof:

Let -1 < a < oo . For an analytic function f on D with Taylor series expansion
n
f@ = zoanz ,2€D,
n=

it is easily seen that

79
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j If D 1-125% dAG)T = z la PB(n, ), (5.2)
D n=0

where
1
Bn, a) = J 122 (1-125% dA@yn = fx"(l -x)% dx.
D 0
Then we have that

n!I'(a+1)

B(n,a) = . (5.3)
I'h+a+?2)
For the derivative of f we have
j i @ a-120" 2 daeyn = Y, la Pn®Bn-1,00+2).
n=1

D

Using (5.3) and the properties of the Gamma-function it is easy to verify that

n2B(n-1,a+2) = 22D 504y,

n+oa+?2
Thus we have

L 228(n-1,a+2) < Bin o) < 253 028(n-1, 0 +2),

a+1 a+l
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and (5.1) follows immediately. O

In the above proof, foreachne N, (a+ 1) f(n,x)=nB(n- 1, a+ 1) increases

to 1 as a decreases to -1. If we take fe H? then we have

IIfII Zlal

so that for eachm e N,

| lIfII22 - (a+1) I F@R-125¢ dagyr |
H
D

= Zla " (1-(a+1)B(n a))

MS n

la, 2 (A-(a+ 1), a)) + 2 Z la, 2

n=1 n=m+1

which implies that

(a+1) I IF @)1 -125% dAGzyn — IIfIIZz as o — -1,
D

Taking the limit in (5.1) where o — -1*, we thus obtain Paley's integral inequalities (see

[14], Lemma 3.2), which we will use later in this chapter:
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J‘l 2 2 2 L2 2

@1 -1z dA@Yr < If - fO 1, <2 | If (@ (A-12)dAG)/x. (5.4)
H

D D

For an analytic function f on D with Taylor series expansion

f@ = Zanzn , ze D,
n=0

set

M, f) = Z lanlr'l ,for0<sr<1.

n=0

The quantity M (r.f) is a very crude estimate on the growth of the modulus of the
function f. In the following lemma we give an estimate on M (r,f) in terms of a

weighted Dirichlet norm of the function f.

Lemma 5.2 : Let 0 < a < oo, For an analytic function f on D for which

f(0) =0, we have for all r € [0, 1) the inequality:

7
-2 xe. 5y < . [ 2! (Ilf'(z)lz(l-lﬂz)adA(z)/n . (55)
(04
D

Proof:

Let 0 < a@<oo,andre [0, 1). For the derivative f’ of f we have
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Jlf'(z)l2(1-lzI2)aM(z)/x =) la Pn®B(n-1,0).
D n=1

Using the Cauchy-Schwarz inequality we have

o 12 12
M(r, f) < z > 4 Zlanl2n2ﬁ(n-l,a)
n=1n"fn-1,a) =1
oo 12 12
< Z Ilf'(z)lz(l-lzlz)adA(z)/fr . (5.6)
asinBn-1,a) D

We need to estimate the infinite sum in (5.6). It follows from (5.3) that

1
nzﬁ(n-l,a)- na n!'l'(a) ’
n+a I'n+a)
therefore
i > n+o I'h+a) 2n
< r
=lnﬁ(n 1,a) n=1 na n!'I'(a)
+1 .
<22 q-ry°
a

which together with (5.6) gives the desired inequality. O

We will use Lemma 5.2 to obtain characterizations for the Bloch space and the little

Bloch space in terms of quantity M . The lemma can also be used to prove a result due to

V.S. Zakharyan [36]:
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Let 0 < a<oo If f is an analytic function on D for which

I If @1 (1 -1z0)% dA)n < o, (5.7)
D
Then
A-rD* 2R, ) 5 0 as ro 1. (5.8)
Proof:

Fix 0 < a <. Let f be an analytic function on D with Taylor series expansion

f@) = E:anz’l , ze D.
n=0

For N € N apply Lemma 5.2 to the function g, defined by

n
az ,zeD.
n

gy @ =f@) -

M

We get

-1 1) <

N 1/2
SA-rHY a1+ /&1 (J‘ gy @F 1-1z0%dAGYE | . (59)
n=0 @

D

It follows from (5.9) that
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12
tmsup (1-r5° 2% (. f) < /a—” (I gy @I (1-1zD%dAGYT | . (5.10)
- a
D

r-l

In (5.10) let N — oo . Since f satisfies (5.7) the integral at the right of (5.10) tends to O
and (5.8) follows. O

Theorem 5.3 : Let 0 <r < 1. For an analytic function fon D the following
quantities are equivalent:
(A) lflg;

(B) sup M(r,fo ¢, - f).
AeD

Proof:
Fix 0 <r < 1. Let f be analytic on D. By Lemma 5.2

1/2

A-rH Mo, f - fO) < ﬁ(_[ IF @) (-1 AG)r
D

Combining the above inequality with Lemma 5.1 we get

M(r.f- f(O) < —Q- ILf - £

2
a-r L,

Let A e D. Applying the above inequality to fo ¢; - f(A) we get
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— 2
Mesoo, - f0 s 12 109, - FAI 5, (5.11)
1-r a

and with the help of Theorem 1.1 it follows that quantity (B) is less than or equal to a
constant times the Bloch norm of f.

To show the converse, note that |f’(0)I r < M (r,f), so that

A-1AD)1f Q) < %ﬁ(r,fo 0 -f, (5.12)

which implies that the Bloch norm of f is less than or equal quantity (B). O

As usual the equivalences of the previous theorem carry over to the little Bloch

space, and we have:

Theorem 5.4 : Let 0 <r < 1. For an analytic function fon D the following

statements are equivalent:
(a) fe B,;
(b) M(r,fo 9, - fA) 2 0aslAl-1.

Proof:
Fix 0 <r < 1. Let f be analytic on D. It follows immediately from (5.12) that (b)

implies (a). The converse follows from (5.11) and Theorem 1.2. O

We now wish to investigate the spaces BMOA and VMOA. In view of Theorem 1.7,

comparison of the two equivalences
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lIfIIﬁ =is'u% (J
€

172
I @) (1-19,@ *? dA@)n ) :
D

and

12
1 W gron - sup (Ilf'(z) |2(1-|q)l(z)l?) dA(z Ve ) ,
D

leads to the following question:

Question : Let 0 <p <o and let f be an analytic function on D. Are the

following true?

(i) f e BMOA & sup If'(z)lp(l-Izlz)p'2(1-lq)l(z)lz) dAQ)T < 00?
AeD
D

(ii) fe VMOA

= jIf'(z)lp(l-lzlz)p'z(l-I¢l(z)l2) dAG@)/T - 0asIAl—1 |2
D

We do not know an answer for the above question. The classical results of
Littlewood and Paley ([22], Theorems 5 and 6, page 54) and a change of variables give

the following implications for an analytic function f on D:

(I) For 0<p<2:

sup U"(Z)l”(l-lzlz)”'z(l-up (z)|") dA(z)/r < o = f € BMOA;
AeD D A

IIf’(z)lp(l-lzlz)p-z(l-I(pl(z)F) dAGZ)Yr = 0as 1Al 51 | = f e VMOA.
D
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(II) For 2Sp<eo:

f e BMOA = sup lf'(z)lp(l-lzl?‘)p'z(l-lcpl(z)|2) dAQR)/T < oo;

AeD D

f e VMOA = I|f'(z)lp(l-Izlz)p_z(l-l(pl(z)l2) dAD)T = 0asiAlo1
D

As mentioned above, these implications follow from Littlewood and Paley's theorems,

but we can also prove them directly, using Theorem 1.7:

Proof:
(I) Let 0 <p < 2. If for an analytic function f on D

sup I|f'(z)lp(1-IzI2)p'2(1-I(pl(z)l2) dAG@)T < o,
AeD D

then it follows from Theorem 1.7 that fe 3. Since we have

J If @ - ?,0) *) dA@)n
D

<1r127 [ 1 P a-1229 20 -1p.0)P) dAeyr
8 )
D

both implications in (1) follow.
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(II) Let 2 <p <oo.Now make use of the inequality

I @’ a-1z572a -lq)l(z)lz) dAG)/T
D

-2
<Iflg J ' @12 a -Iq)l(z)lz) dA@)r
D
and since BMOA C 3B, the implications in (/I) follow immediately. O

What we can prove is the following theorem.

Theorem 5.5 : Let 0 <p <oo,0< o< 1. Then for an analytic function f on D

we have the following two implications:

G sup | IF'@1P-125° 21-19 @) PP dAe)n < o
AeD D A

implies that fe BMOA ;

(ii) _[ If’(z)lp(l-lzlz)p'z(l-Iq)k(z)lz)odA(z)/z > 0as AT
D

implies that fe VMOA .

The proof of Theorem 5.5 makes use of the following weighted Garcia-norm

equivalences for the Bloch space and the little Bloch space.
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Lemma 5.6 : Let -1 < a<e and 0<p <eo.Then for an analytic function f
on D we have:

(i) Wfly ~ sup (J’

Ip
If (9, -FP -125¢ dA@)/x ) ;
AeD D

(ii) f e fBo = j If((pl(z))-f(/l)lp (1-Izl2)°‘ dA(z)/r = O0aslAl>1 |.
D
Proof:
Take -1 < @< and 0 <p <o .Let f be an analytic function on D. Choose a
number s € (1, e=) small enough such that sa > -1. Let s’ denote the conjugate index of

s,i.e., s'=s/(s - 1). An application of Holder's inequality gives that

[re - s a0 s
D

1/s Vs’
< (I(l-lz 5 Ay ) (I f(g,@) - f@” dA@yr | . (5.13)
D D

Now, since sa > -1, we have that the integral at the left of (5.13) is finite, in fact it is

equal to 1/(sa + 1). It follows that

1

sa+1

1/ps
)" lfeg, - fA) ||L .

a

1/p
(J |f(<Pl(2)) -fo)”? (l-lzlz)a dAQ2)/x ) < (
D

(5.14)
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To obtain an inequality in the other direction choose a number g € (1,e0) large

enough so that ¢ >a + 1. By Holder's inequality

[ o, - 1P arcym
D

= f £ @) - F WP -1z @125 daym
D
Yq'

1/g ,
< (J‘If((pl(z)) - FIP -1z D% dA@y/n ) ( J 1 -125%" qaqyr
D D

Because ¢ - 1 > a, we have -aq’/q =-a¢/(q - 1) > -1, and thus the integral at the right
of the last inequality is finite, in fact it is equal to (g - 1)/(g - 1 - @). It follows that

Ifo o, -2 ||L e

a q

g-1 \@-Dip » p
) ( j Iif(9,2)) FWIP A -127)7 dAcyn ) .
1-a .

(5.15)

By Theorem 1.1 equivalence (i) follows from (5.14) and (5.15), and statement (ii) is
obtained by using Theorem 1.2. OO

Proof of Theorem 5.5:
Let 0 < o< 1. First we will prove that both statements hold for integers p > 2. Let

n be an integer, n > 2. Then ¢ = n/(n - 1) < 2. Let g be an analytic function on D for

which g(0) = 0. An application of Holder's inequality and (5.4) gives
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1n
Igh < lgl 25(2jlg'(z)I2(1-lzlz) dA(z)/x) . (5.16)
H H D

Let f be analytic on D, and assume for the moment that f(0) = 0. Apply (5.16) to the
function g = f"- 1. This yields

Y < atm-1 j F@P 2 1 ) -1z dA@)r .

Vil 2(:
H
D

Writing B=n+ 0- 2, and using Holder's inequality with index n/2, which has

conjugate index n/(n - 2), we get

||f||2(:’l)s 2(n-1) J IF @ -1z 15D (112 P gagyn
H

D
2/n
<2(n-1)° Jlf'(z)l" a-1z5?f agyr | x
D
1-2/n
n-28
x Jv(z)lz" a-125"2 dA@yr . (5.17)

D

Now let A € D, and in (5.17) replace f by fo @, - f(4). Then (5.17) becomes

Ifo g, - fA) ||;(:'l)s
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2/n
<2(n-1)° j 7 (@ 19 D" @ AP ey | x
D
1-2/n
n2B
X Ilf(rpl(z)) SfAP -1z 2 dA@yn .(5.18)
D

Making use of identity (0.20) and the change-of-variable formula (0.22a) we see that the
first integral at the right hand side of (5.18) is equal to

(z)l
J"f'wl(z))l" ( ) (le’)” lrpl'(z)l2 Q)T =
D 1- IzI

= | o a-1p,@™"* a-121% 19, @F dAGyn
D

= [ omma-1wdr? (1-I<pl(w)l2)°dA(w)/7z .
D

Since 0 < 1 we have that the exponent of (1 - |z12) in the second integral at the right
hand side of (5.18) is bigger than -1. By Lemma 5.6 there exists a constant C such that
the second integral at the right of (5.18) is less than or equal C Il f llg3. It follows that

If o0, - F u:::'”_

2/n

<2m-02ct ¥y ";-m (J IF @ (1-1z21"2 (1-|<pl(z)|2)° Az
D

(5.19)
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An important observation to make is that the conditions in statements (i) and (ii) imply
that fe B (by Theorem 1.7), so both statements (i) and (ii) follow at once from
inequality (5.19).

The general case is easily reduced to the previous case, again making use of the
Bloch norm of f.Let 0 <p <eo. Choose an integer n > 2 such that n 2 p. Then we

have

I I @ a-128"2 - l(pl(z)F)a dA()/T
D

< ufn;'p j I @1”° q-1zHP2 (1-|¢l(z)|2)° dAG)T .
D

This completes the proof of this theorem. O

The following assertion, which is implicit in the results of V.V. Peller ([26],

Theorem 2' on page 454), is an immediate consequence of the above theorem.

Corollary 5.7 : Let 1 <p <o If f is an analytic function on D for which

J IF P -1z 2 @) < o, (5.20)
D

then fe VMOA.

Hong Oh Kim proved that a Blaschke product satisfying (5.20) must be a finite
Blaschke product ([19], Theorem 1.1 on page 176). A simple proof is provided by the
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previous corollary, since it is easy to see that VMOA cannot contain Blaschke products
with infinitely many zeros in D. (In factif b is a Blaschke product and A € D is a zero

for b, thenll bo @) -b (M) 2=l bo ¢, ll;2=1.Thus b is not contained in VMOA

if it has infinitely many zeros in D.)
In [19] Hong Oh Kim also proved the following result:

If fe Band

I IF @)I1” A-12P% dA@)r < o , (5.21)
D

for 0<a+1<p<eo thenfe Hiforall 0 <g<eeo.

We can give a simple proof of this result using the same idea as in the proof of

Theorem 5.5.

Proof:
Take 0 <ox+ 1 <p<o,andlet fe B, and suppose that (5.21) holds. Let n 22

be an integer such that n > p. Put 8= a + n - p. As in the proof of Theorem 5.5 we have

2/n

1£1°0 V< 2o 1y? (Ilf'(z) " a-1zPaaeyr | x
H D
1-2/n
n-28
x ( I F@P* -1z dA@yn . (5.22)
D

Now estimate the first integral at the right of (5.22) as follows
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j iF " a-125° aagyr < ||f||;'p I IF'@)1P 1-129% AG)YT < o .
D D

The exponent (n - 2f)/(n - 2) = (2p - 2a - n)/(n - 2) in the second integral at the right of
(5.22) is easily seen to be greater than -1, so that also this integral is finite (as a
consequence of Lemma 5.6). Thus fe H", for arbitrary integers n > p. Hence fe HY
forall 0<g<e.O

After these digressions, Theorem 5.5 and our question preceeding it should be

compared with the following theorem.

Theorem 5.8 : Let 0 <p <o, 1 <1 <oo. Then for an analytic function fon D
we have:

(i) Ifll_ = sup
B lelD(‘[

1/p
IF @)1 a-1z%7% q -I(pl(z)lz)" A2 ) :
D

(i) f e B > J iF P 1-1257°2 -|<pl(z)|2)'7 dA@)/r = 0as IU—1 |
D
Proof:
Take 0 <p <eo, and let 1 < 1 <eo. Using the definition of the Bloch norm, identity

(0.20) and the change-of-variable formula (0.22a), we have that for an analytic function

f onD:

J' If@)IP (1-121P 2 (1-|¢1(z)|2)'7 dA@)/r <
D
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< Ifll

1-1 Y
p J‘ ( <PA(Z)2) @y

o -z

=1 fllI'; I (1-|qp/1(z)|2)”'2 9’ @)1 dA@)/r
D

= ifl) I 112572 aA@yir = 1517 _1_1.
D n-

Hence

Jlf' 1P a-1z572 (1-|¢A(z)|2)'7 A € —— Ilfll:; . (5.23)
n-1
D

Let g be an analytic function on D, then by the subharmonicity of | g i we have

g7 < 4_[ Ig ()1P dAG)/T .
D(0,'2)

If ze D(,%), then (1 -1z12)1*+P-2> §=min {1, (3/4)1*+P -2}, and therefore

1g )7 < 1g@)1° 1 -125"*7 % aaGyrn

D(0,2)

ol

[ 121 (11277 2 qaqyn . (5.24)
D

A
e

Let A € D. Applying inequality (5.24) to the derivative of the Mbius transform
fo @, -f(A)of f, we get



1-1A7

Using ide

atthe ng

It follo
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n]e €eq
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neCCSS
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A-125 1f ()P s% J‘lf'((pl(z))lp 9, @)1 -1z P2 qaeyr . (5.25)
D

Using identity (0.20) and the change-of-variable formula (0.22a) we see that the integral
at the right of (5.25) is equal to

1-19.@2)F \P-2
jlf'(tpl(z»lp (__4"312_) 1-1zH71*P 2 lqol'(z)l2 dAGz)/
1-1zl
D

- [P a-o@ 2 a-1:h 1p F dAcy
D

= [ 1 om®? a-1wd?2 (1-|<pl(w)|2)'7 dAW)/T .
D

It follows from (5.25) that

a-1ADP 1" 1P s% J.If'(z)lp a-1z287% a -|¢A(z)|2)'7 dA@YT . (5.26)
D

The equivalence in (i) follows immediately from (5.23) and (5.26). Inequality (5.26)
also gives that the condition in (ii) is sufficient for f to be in 8. To prove the
necessity, suppose that fe B,. Given £> 0, choose an r € (0, 1) such that

If'(z)l(l-lzl2)<e whenever r <1z1 < 1. Then we have

Jlf'(z)lp 1-1zH7 2 (l-lqpl(z)l?')" dAG)T <
D\rD

, A
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(1-19.@)A"
;’L dA(2)/n

Dy @ -1z1H?

[ -l(pl(z)l2)n'2 0,2 ? dAGzYr
D
[ (-9 qayr = £

D n-1

J'If'(z)lp a-1z25%2 a -|(p1(z)I2)’7 Q)T <

rD

It follows that

Jlf’(z)lp a-1z287% a
D

<€ 4uf
n-1

p
<
<Ifllg

p o
<
<iflg |

p
= Il

- (-19.0) Y
'p -z %)

dA@z)/m

119,07 19’ OF A
rD

a-129""2 da@yr .
D(A.r)

. I(pl(z)lz)" dA@Yr <

5’; j(l-lzlz)”’ZM(z)/n,
D(A,r)
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and we get the necessity of the condition in (ii), since for every fixed r € (0, 1) we have

J a-125"2 dAGz)r — 0 as 1Al 17,
DAy

This completes the proof of this theorem. O

It would be interesting to have characterizations of BMOA and VMOA involving
the pseudo-hyperbolic disks D(A,r). Recall that an analytic function f on D belongs to
B if and only if

sup | 15%dam < o

1EIDD(A,r)

for some r € (0, 1), and that f belongs to B if and only if

j If'PdA/r — 0aslAl>1
D(Ar)

for some r € (0, 1). The following theorem should be compared with these results.

Theorem 5.9 : For an analytic function f on D we have:
1
(i) f eBMOA < sup ( f \f 12 dA/n )dr < oo:
AeD 0 D)

1
(i) f eVMOA j J' TR )dr —>0as 1117,
0\ b@x.n
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Proof:

Let f be an analytic function on D. Using characteristic functions we have

’ 2 _ » 2
J‘ If'1"dA/r = Ilf @ xD(D)(z) dA(z)/m
D(A,r) D

thus

J

1
, 2
le @) (_!'xow)(z) o | dAGy

j( [ 172 aarm )dr

D(Ar)

I IF @ -lg JODETIOT
D

and both (i) and (ii) follow at once. O

The previous theorem can be used to give yet another proof of Pommerenke's result
([29], Satz 1) which states that for an analytic function f on D which is one-to-one,

containment in B, or in B, implies that the function already belongs to BMOA , or

VMOA , respectively.

Proof:
Suppose that fe B is one-to-one. Let A € D. Since for every z € D(A,r)

7@ - AN S Il zong_-; ,

we have the inclusion
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(f@ - f:2 € DR ) € DO, If N log =),
and it follows that

2 2
j lf'Isz/n ={f@)-fA):z e AN} < IlfIIB (Iog%) . (5.27)
DA

Thus

1 1
2 2
J'( J' f P | & < gl J'(zogl%) &r < oo,
0\ b@r 0

and by (i) of Theorem 5.9 we have that fe BMOA .
If fe SBO , then by Theorem 1.2 we have for each r € (0, 1)

f 1f P dA/m = 0 as 1Al o1°,
D(A,r)

so that by (5.27) and the Lebesgue Dominated Convergence Theorem we have that

1
J j If'Pda/r |dr — 0as 1251,
0\ D@Ar)

thus, by Theorem 5.9, fe VMOA . 0O



Chapter 6

In this chapter we briefly discuss cyclic vectors in the little Bloch space. We generalize
a theorem of Anderson, Clunie and Pommerenke and obtain a result very similar to one of
Brown and Shields in the context of Dirichlet spaces.

First some notation and a definition. In order to be able to compare our result for the
little Bloch space with a result of Brown and Shields for the Dirichlet space we will give a
general definition for a cyclic vector.

Let & be a Banach space of analytic functions on D which contains the polynomials
as a dense subset, which is invariant under multiplication by the function z , and for which
all the point evaluations are bounded linear functionals on &. For a function fe & let

[f1g denote the closure of the set { pf: p is a polynomial } in the Banach space 6.

Definition : A function fe © is called a cyclic vector in © or ¢yclic for &, if
[flg= 6.

The little Bloch space B, furnishes an example of such a Banach space 6. That B, is
invariant under multiplication by the function z is easy to see, and that the polynomials
form a dense subset of B, is proved in [2],Theorem 2.1. In general, it is easy to show
that a cyclic vector in & has no zeros in D (see, for example, [35], Proposition 4). In the
case of the little Bloch space Anderson, Clunie and Pommerenke proved the following

result [2], Theorem 3.8:

For fe B the condition inf {If(z)|:z€ D} >0 implies that f is cyclic for B,

In Corollary 6.4 we will extend their result and prove:

103
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Iffe By,ge ByNnH™, If(2)|21g @) in D, and if g2 is cyclic for B, ,then f is
cyclic for B, .

We are actually able to prove a result not just for cyclic vectors in 33 but one that gives an
inclusion relation for the sets [f]q introduced above. This will be the content of

Theorem 6.3.
The Dirichlet space & = {fe H(D):f'e La2] is another example of a Banach
space & of analytic functions on D. Our Corollary 6.4 should be compared with the

following result of Brown and Shields [10], Theorem 1:

If feD,ge DNAH™ If(z)|21g ()| in D, and if g2is cyclic for D,then f is
cyclic for O.

In [10], Proposition 11, Brown and Shields proved also that:

Iff,ge DNH™ andif fg is cyclic for O, then both f and g are cyclic for D.

This is also true for bounded functions in the little Bloch space. In Theorem 6.5 we will

give an inclusion relation for the sets [ f]q,, introduced above. As a corollary we get:

If ffge ByNnH™,andif fg iscyclic for B ,then both f and g are cyclic for B,

In the proofs of Theorems 6.2 and 6.5 we will need to use the following two lemmas.

Recall that for an analytic function g on D, and for 0 <t < 1 the dilate g, of g is defined

by the equation g, (z) =g (1z) (ze D).
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Lemma 6.1 : Let ge B . Then:

sup (1-121) 1g* @) log [+21Z) 5 0 as t 17 (6.1)
ZG[D t l"ZI

Proof:

Since g,"(z) =1 g’ (1z),and (1 - t1z1) I g’ (r 2) | < ll g lg we have the inequality

, 1-¢lzl 1-1z1 1-z1zl
Take 0 <r < 1. Itis elementary to show that
1-1z1 1-tlz| 1-r 1-tr

. m"’g( l-Izl) = T l"g( l-r) ' 6.3)

It follows from (6.2) and (6.3) that
, 1-tlzl -
mx (1-1z1)1g' @) log > 0ast>1. (6.4)
lzl<r ! 1-lzl

Now let € > 0 be given. Since g € B,,, we can choose an r € (0, 1) such that
A-lwhlgwl<e whenever r2<Iwl< 1. Thenforr<lzl<1andr<t<1 we have
A-tlzD)lg/ @I=t(1-11zl)1g"(t2) <te<e€. Because xlog (1/x) <x forO<x<1,
we have that

1-1lzl
l-Izl) S@-elz),

(1-121) Iog(

sothatforr<t<1
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r<lzlc1 1-1z|

sp (1-12)) 1/ @) zog(l""') <e. 6.5)

Our claim (6.1) follows readily from (6.4) and (6.5). O

Lemma 6.2 : Let fe B be nonvanishing in D. Suppose that for he B :

Il (fi - Dh lIgG > 0ast>1. (6.6)

t

Then [hlg, € [flg, -

Proof:
Let fe B, be nonvanishing in D, and suppose that € B satisfies (6.6). We will
have to show that h € [f]lg, . Let £>0be given. Since he B, Ih, -hllg—>0 as

t — 1. With (6.6) it follows that we can choose a ¢ € (0, 1) for which

f
Il(—-l)h‘||B<£ and Ilht-hII‘B<e. (6.7)

5

The function h, /f, is analytic in a neighborhood of D, hence we can find a sequence of
polynomials (p, ) (of course depending on the ¢ that we picked) such that the functions

p, - h,/f, and their derivatives converge to 0 uniformly on D. We claim that in fact

h
||f(pn--.;§-)||fB —> 0 as n—o oo, (6.8)
t
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To prove this claim, write g, =p, - h,/f, . Then by the choice of the sequence of
polynomials g, — 0 and g,” = O uniformly on D as n — o= . Using the product rule

for differentiation we see that
(l-IzIZ)I%(fgn)l < (A-1zZD)If @l1g 1 + A-12P)If@1g/ ()] . (69)

Again using the inequality x log (1/x) <1 for 0 <x < 1, it follows from

f@ - FOI < Iog(l_llzl) T

that
A-1251f@)-f0)! < 211,
which combined with (6.9) gives that
Ifg g < Iflg g I+ (2Uflg+1F@D) g/l . (6.10)

Now, since both Il g, I and Il g,’ll_, tend to O as n — e, our claim (6.8) follows
immediately from (6.10).
We are now ready to finish the proof. By (6.8) there is a polynomial p such that

h
t
lf(p - f) Iy < €. (6.11)
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By the triangle inequality

h
¢ f
Ifp - h Ny < lfip - _)II:,(3 + I (= - Dh I

wlh -k,
/ 5 : B

B

so that (6.7) and (6.11) imply that I fp - h llg < 3¢. We conclude that h e [flg,
which implies that [h]g, € [flg, . O

Theorem 6.3 : Let f,ge B, such that 1f(2)121g (2)| (ze D), and suppose
that f is nonvanishing and that g is bounded. Then [ g%lg, € [flg, -

Proof:
Let f, ge B, , such that If(z)I21g ()| (ze D), and suppose that f is
nonvanishing and that g is bounded. It is easy to see that g2e B, . So by Lemma 6.2 it

suffices to show that (6.6) holds with h = g2. As in the proof of Theorem 2.1 note that

1-t1zi
f@ - £,@1 S Wfll, log (-l—‘l-zi|) . (6.12)
It is elementary to check that
alf . OO @ -f@
T(%nn&)-hfag—wymxa+ T4

f@ - [N @ ,
- : 8 (@) .
£@

Using that If, (2)1 21g, (2)| (z € D) it follows that
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< 21f(2) -j;(z)llg"(z)l + 1f'(2) -ft'(z)lll gl +

+ 1f(2) -ft(z)llft' @ . (6.13)

Using the definition of the Bloch norm it follows from (6.12) and (6.13) that

f ) , 1-tlzl
I (f - g, “SB < 4lflg .s;ue{l)) (1-1zl) Ig ' 2! 108(_1_|z|) +

, 1-11zl
+ gl IIf-f‘||ira + 2“f"‘B szletg (1-1zl) Ifl (2)! log (T—TET) . (6.14)

Now, by Lemma 6.1 the first and the third term at the right of inequality (6.14) tend to O as

we take the limit where ¢t — 1°. Since fe Bjalso ll f - f,lg — 0, and our claim that

f 2 -
ll(fT- Dg, “33_) Oas t—>1

follows immediately. O

The following corollary is an immediate consequence of Theorem 6.3 and the

definition of a cyclic vector.

Corollary 6.4 : Let f,ge B, such that |f(2)|21g (2)| (ze D), and suppose
that g is bounded and g? is cyclic for B,. Then f is cyclic for B,.

Theorem 6.5 : Let f, g € B, N H™, and suppose that f is nonvanishing.
Then [fglg, € [flg,-
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Proof:
Take f, g € B,N H™, and suppose that f is nonvanishing. It is easy to see that
then their product h=fg isin 3. By Lemma 6.2 it suffices to show that the function h
satisfies (6.6). It follows from

d(f d
5(‘3' l)h‘) _ IEZ-((f-f,)g,)l

IN

lf" () -f" @1 gl +1f() -ft(z)l Igt’(z)l,

and inequality (6.12) that

f
II(?- Dhlg <sUf-flglgh +

t

, 1-¢lzl
+ 2||f||33 s;zg 1-1zl) Ig‘ )| log( l-IzI) . (6.15)

Both terms at the right of inequality (6.15) tend to 0 as ¢ — 1- (that the second term tends

to zero follows from Lemma 6.1). Thus

I - DNy > 0as e 1,

t
and by Lemma 6.2 we are done. O

The following corollary is an immediate consequence of Theorem 6.5 and the

definition of a cyclic vector.
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Corollary 6.6 : If f,ge B ,NH™, andif fg is cyclic for B, then both f

and g are cyclic for B .



Chapter 7

In this chapter we consider Hankel operators with integrable symbol. The Hankel
operators that we study are defined by projecting onto the orthogonal complement of the
Bergman space. We first prove that these Hankel operators transform in a unitarily
equivalent way if the symbol is replaced by one of its Mdbius transforms. We then
restrict our attention to Hankel operators with conjugate analytic symbol, and show that
Sheldon Axler's results [6], Theorems 6 and 7, hold if the operator norm of the Hankel

operator is obtained by putting a weighted LP-norm on both its domain and its range.

Recall that for 0 <p < e the Bergman space L is defined as the space of analytic

functions f: D — C such that

Hf%p:(j

1p
If )P dAG)/ < oo .
a D

For 1<p <o the Bergman space L ? is a Banach space. The Bergman space La2 isa
Hilbert space; it is a closed subspace of the Hilbert space L2(ID,dA/7r) with inner product
given by

8> = | T dacyn,
D

for f,g € L?(D,dA/n). Point evaluation is a bounded linear functional on the Hilbert

space Laz, thus for every A € D there exists a unique function k; € La2 such that

112
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f&) = <f k> forall f e L?.

These functions k; (4 € D) are called the reproducing kernels for Laz. It is easy to

verify that for every A € D the reproducing kernel k; is given by the formula

1

1-2z)>

k (2 = ,forzeD .

A

Because of the reproducing property of k; we have < k; ,k; > =k; (1) . Using the

above formula for k). it follows at once that

2
e, = ——
La (l'lll)

Let P denote the orthogonal projection of L%(ID,dA/x) onto L 2. In view of the above
formula for the reproducing kemnels it is easy to see that for g € L2(ID,dA/7) we have the

following formula for its projection P (g):

g(w)

P2 = I dA(w)/r , forze D . .1)

D (1-wz)

The map I - P is the orthogonal projection of L*([D,dA/r) onto (La2)l [the orthogonal
complement of La2 in L2(lD,dA/7r)]. For a function fe L>(D,dA/r), the Hankel
operator H; :L2 > (LD isdefined by (H)g)=(-P)(fg), g€ L2

Observe that the integral in (7.1) makes sense even when g € LY(D,dA/n), so we can

extend the definition of P to L1(D,dA/n). We want to consider Hankel operators Hy



114

for which the symbol f isin LY(D,dA/7). To do this restrict the domain of Hf to H™
and define Hf by

(He)@)=U-P)(fg) ge H”.

Using (7.1) for the product fg and for g = P (g) we get the following formula for the
Hankel operator H; ; for fe L!(D,dA/x) and g € H™ we have:

f@ - fw)

2

e = [ L2
D (I‘WZ)

gw) dA(w)/m , forze D . (7.2)

In [6] Sheldon Axler showed that for fe La2 the Hankel operator H7, densely
defined on H™ with the Laz-norm, is bounded if and only if fe 3. It follows that for
every f in La2 the Hankel operator of each Mobius transform of f has norm equivalent
to the norm of H7 . In the next theorem we will show that Hankel operators transform in
a unitarily equivalent way if the symbol is replaced by one of its M&bius transforms.
This implies that the Hankel operator of each Mdbius transform of a given function has
the same norm as the Hankel operator of the given function (as densely defined operators

on H* with the L 2-norm).

Theorem 7.1 : Let fe LY(D,dA/n). For each A€ D the Hankel operators H;

ad Hf 0 are u nitarily equiva lent .
-]
A

More precisely, there exist unitary operators Uy : L2 > L2 and U, : (L 2" - (L2)*
such that U(H) € H” and

=H .
U2°Hfo¢pl fOUI
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Proof:

Take fe L}(ID,dA/n) and g € H. Let Ae D. By (7.2) we have forze D

f (¢l(z)) -f (¢>/1 w)
(1-wz)

g (w) dA(w)/m . (7.3)

H =
#,, o @O |

In (7.3) make the substitution u = @,(w). Making use of identity (0.17) we have

1 a-1a5 (1-51) (1-121%?
(1-(pl(u)z)2 1-Aui (1-3.:)2(1-1'@1(:))2 1-Aul®

) a-11%? 1
(1-22)" (1-Gg@) (1-2u)

,

so that change-of-variable formula (0.22a) transforms (7.3) into

22
AR ¢ F@)-f@)
@, e = LA e —
foo, (1-22)" p (l-u(pl(z)) (1-Au)

= 8(p,()) dA/

@.@) -f ()
= (1-120k (2) j o716 A-120 k. () (go @.)u) dAu)/n
A - A A
p (1-59.6)

2
= (1 -I/uz)kA (@) H(1-1A1)k, (g0 9)X,()-
Thus we have

2
wal(g) = (1-1A7k, Hf((l-lllz)kl 8o )o 0, - (7.4)
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Define the operator U : L2(D,dA/r) — L%(D,dA/n) by
U(g)=1-142)k; (g0 @), forge LA(D,dA/m).

Since (1-1412)k; =- @,’, we have for g € L*(ID,dA/x)

2 2
U@l = I I(go 0.)2) P19, )P dAE)r = ligl ) .
L'@.aam A A L “(D, dA/m)

so that U is well-defined. For g , h € L%(D,dA/n) we have

CU(R).h> = J' (1-147k(2) 8 (9,2)) K dA .
D

In the above integral make the substitution u = @,(z) . We get

U@L h> =] Q-1ADk (¢.(u) g @) h(@.w) e @) dAwYT .
ATA A A
D

Now using the identity (0.18) it is easy to verify that
fni2
k(p,@) 1o @l = Ix(“) '

so that we have
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KU(g), h> = j '10) (1-|,1|2)k1(u) h(p W) dAWY/m = <g ,U®K)> .
D

Hence U is a self-adjoint operator on L2(|D,dA/7t).
Take g € L2(D,dA/7) and put h = U (g). Differentiating the identity ¢,(@;(2)) =z

we see that foreachze D

2 —
(l-lllz) kz.(z) kl(¢)_(2)) =1,
so that

222 _
U(h)z) = (1-1417) k(@) k,(9,(2) g(2) =2 (@) ,

and thus U o U=1.Hence U isa unitary operator on L%(D,dA/7).

Observe that U (L,2) € L2, U (H*) € H™, and U ((L,2)Y) € (L2t . The first
two of these inclusions are obvious from the definition of U. The last inclusion follows
from the first since the operator U is self-adjoint. Let U : La2 - La2 and
U,: (Laz)l - (La2)J- be the restrictions of U to La2 and (Laz)l respectively. Then both

U, and U, are unitary operators and U,(H) C H™". We claim that

U2°Hfo¢1 =Hfo U1 .

Let g € H™, then it follows from (7.4) that

H o @ =0 1k (H, 0 U)g)o e,

so that
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2
° = (1-1A0k, (H °
U, f°“’z)(g) (1-1A0k, (H ‘pl(g) ?,)
2.2
= -1k (ko 9) (H 2 U@

=(H U)X ,

and our claim is verified. This completes the proof of Theorem 7.1. O

In order to state a corollary of the above theorem we need to introduce more
notation. For a linear operator S : La2 - (Laz) L, densely defined on H*, let Il § Il denote
the operator norm of S obtained by putting the L2-norm on both the domain and the

range of S, i.e.,

IS =sup (1SN cgeH and ligl
L "(D,dA/n)

,<1).

a

Let L(Laz, (Laz) 1) denote the set of all bounded linear operator T : La2 - (Laz) L
densely defined on H. For T € L(L,2, (L,2)1), define its singular numbers s,,(T) by

s(T) = inf (IT- FI:F e L (L:,(LZ)‘L) has rank at most n } ,

for n € IN,. Note that s,(T) = I T I. For 0 < p < oo the Schatten-von Neumann class
CP is defined to be the set of all bounded linear operators T : La2 - (Laz) 1 densely
defined on H™, for which

N lp

ITn = D s@P| <.
64 n=0
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Let C= denote the set of all bounded linear operators T : La2 - (Laz) L densely defined
on H*, which are compact. Then clearly CP C C* for 0 < p <. Take f in
LY(D,dA/n) and suppose that Ae D. Let U 1 and U, be the unitary operators of
Theorem 7.1. If for an n € N, operator Fe L(Laz, (Laz) 1) has rank at most n , then
alsoUyo Fo U 1'1 has rank at most n . Since U, and U, are unitary operators it follows
that

-1
"Hfoq)l- Fl = IIHf- UzoFo Ul I,

which implies that for eachn € N,

sn(Hjo 'PA) = sn(H f) .

Thus we get the following corollary.

Corollary 7.2 : Let fe L\(D,dA/n),and 0 <p < oo If er CP, then for each
Ae D
H e C P .
fe ?,

Before we proceed note that equation (7.4) can be used to obtain a formula for

H/(kl) . Since (1 - | M2)2 k; (kp o@y) = 1, it follows from (7.4) that

Hf”"z(k‘) =k HMoo =k (fotpl - P(f)otpl)-

Replacing f by fo ¢, we get the formula
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Hk)=( -PFeop)op )k . (1.5)

Let1 <p<eand-1< a<p - 1. For a Lebesgue measurable function g on D let

the weighted LP-norm of g be defined by

1/p
= P a
Ilgllp,a-({)lg(z)l 1-1z29% dAeyr | .

For f eLa1 think of H7 as an operator from H* to the class of all functions on D. The
operator norm || Hz ||p' o of Hf is obtained by putting the weighted LP-norm Il . b

on both the domain and the range of Hy ,i.e.,

- = - : o <
Ilellp'a sup {IIHfgllp'a.geH andllgllp'a_l}.

Thus | H7 "2,0 coincides with our notation Il H Il used before Corollary 7.2. In [6]
Sheldon Axler showed that the operator norm Il H7 Il and the Bloch norm Il fll g are
equivalent. In the following theorem we extend this result to the operator norms

NH7

Theorem 7.3 : Let 1<p<eo and -1<a<p- 1. Then for fe L, the Bloch
norm | fllqy and the operator norm | Hz IIp'a are equivalent.
In particular, Hy is bounded as an operator on H™ with the weighted LP-norm | . | b
on both the domain and the range of Hy if and only if fe B.
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In [6] Sheldon Axler also showed that the Hankel operator Hy is compact if and
only if f is in the little Bloch space B3,,. That this result remains true when we view H7
as an operator on H™ with the weighted LP-norm Il . llp. o On both the domain and the

range of Hy , is the content of the following theorem.

Theorem 7.4 : Let 1<p<ee and -1< a<p-1.Then for fe L,! the Hankel
operator H7 is compact as an operator on H* with the weighted LP-norm |l . |l b On

both the domain and the range of Hy ifand only if fe B, .

For the proofs of Theorems 7.3 and 7.4 we need a series of lemmas. The first of

these lemmas gives estimates on some integrals, and will be used in the next lemmas.

Lemma 7.5 : Let 0 < B <oo.Then there exists a finite positive constant C

(depending on ) such that for every te (0, 1) we have

n
“ J _li”{;desc @-0)"P+1),if 0<p<us;  (16a)
a l1-te |
n 1 1
46 < C (1+1log —) ,if =Y : 7.6b
- =
¢ 1
1
——— d0 £ C ——— , if i<f <eo. (7.6c)
(c) _J,,u-:e‘”l’” -0
Proof:

Take 0 < B <o . It is elementary to show that
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11-212= (1-1)%+ 2 (1-co5 )
= (-0 desin® £

2
>1-1)+ 4 82 .

2

Thus for ¥2 <t <1 we have

. 2
11-1¢92> (1-:)2+2—9-5 ,
b9

and it follows that
n
1
dG < > dée .
7 11-1e” = (- :)+29)'3
71'2

The substitution V2 = (1 - ¢) x in the integral at the right of (7.7) yields

n V2/(1 -1)
_ ! wwezm_1 1
11-1¢%% 2oyt gy QP

-

Now we have to distinguish three cases.

Case (a): 0 < <2 . We estimate the integral at the right of inequality (7.8).

dx .

.7

(7.8)
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N2/(1-1) 1 Y2/(1-1)
J‘ 1 &< j & . j L
0 a+xHP 0 a+x3% 3 et

1

1-28
J' & (\12) 1
= — T-.-t- - c—
0 (1+Jc7‘)'3 1-28
)
<K 1+(—) .
1-t
Thus we have

N2/(1-1)

1 T
N2/ -1) (T +x P

and with the help of (7.8) inequality (7.6a) follows immediately.
Case (b): B =Y . In this case

N2/(1-1)
dx 1
lj —x-—log ‘12 + IOg rt—,

so that the same estimates as in the previous case show that

N2/(1 - 1)
! & < 2K (1 + log 117),

~N2/(1-1) (1*‘152)‘3
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which combined with (7.8) gives inequality (7.6b).
Case (c): Y2 < B < oo . It follows from (7.8) that

n oo
— 1 g<z I
S 11-16%% V2 . :)2’3 ! “(1+x2>3

Since B > Y the improper integral in the above inequality is finite, and (7.6c) follows.

This completes the proof of this lemma. O

The next lemma will play a crucial role in the proof of Theorem 7.3, where it will be

used twice.

Lemma 7.6 : Let 0 < ax<1.Then there exists a finite positive constant C

(depending on &) such that for every analytic function f on D andforall ze D :

U@ SOl 1 g < —S s, . 09

D 1-wzl? a1 -1wh® a-1zH%

Proof:
Take 0 < a<1.Let f be an analytic function on D. Fix a point ze€ D. In the
integral at the left of (7.9) make the change of variables 4 = @, (w). We get

J f(W)-f(Z)I 1
11-wzlF  1-1wPh®

dA(w) =
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dAd) .

! IVWMJW 1
a-1z5% o 11-2:209 @-1ad?

Since Il fo @, llgg =l fllg it suffices to show that there exists a finite positive constant

C such that for every analytic function f on D and forall ze D :

If (1) - £(0)! 1
D 11-22°%4°9 @-1ahe

AW s € Ifl . (7.10)

Fix f € B, andlet ze D. Using that for every Ae D,

f(®) - FO1 < Ifll log —

the integral at the left of (7.10) is less than or equal to

1
|wsjm(l) L uny,
D

LIV 117,079 (1-12)2

so it suffices to show that

sup | log ( ! ) ! ! dA(A) < oo, (7.11)

zeD D 1-1Al |l-izl2(l-a) (1_|M2)a

It is easy to see that the integrals in (7.11) depend only on the modulus p =1zl of z in

the disk D, so we have to show that there exists a finite positive constant C such that
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forall p € [0, 1) we have

1 n

[ rie () ——( - 6 )d <C. (112
1-r 7-)a i0 ,21-a)
0 (a-r x 11-rpe’ |

Distinguish the following three cases.
Case (a): 4 <a < 1. ApplyingLemma7.5withf =1-a, sothat 0<f <%,

we have

1

2a-1
de < C ((1- + 1) £2C,
o A-rp) )

x ll-rpe

and (7.12) follows immediately.
Case (b): a ='2. Then Lemma 7.5 gives us that

L dé < C (1 + log !
i6,21- @) 1-rp

)SC(1+lg 1)
ax 1-rpe

from which (7.12) follows easily.
Case (c): O0<a <% . Applying Lemma 7.5 with f =1- a, sothat “2<f3 <1,

we have
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which implies that
1 n
rlog (=) —— ( ‘ a8 ) ar <
1-r a i6,2(1- a)
0 1-rd o 11-rpe”|

1
<c [ i0g (1 1 ar = C/ a?,
AP l-a
0 1-r)

and (7.12) follows immediately. This completes the proof of this lemma. O

We will need estimates on the weighted L -norms of the reproducing kernels &, .

These are obtained in the following lemma.

Lemma 7.7 : Let 1 <p<ee and -1 < a<p- 1. Then there exists a finite positive

constant C such that for every Ae D :

% 1 < ||k1u"a <C L .
(1-120)%-@-2 P (1-1A5% 92

Proof:

Take 1 <p <eo andlet -1 < a<p - 1. In the formula

P _ P15
T J' k, @1 (1-12P)% dAG)m
D

make the substitution z = ¢, (w). This yields the formula



128

(14
TR ! j a-1wh dAw)/r ,

SR WP ToC AL PR MCCA A

so it suffices to show the following two statements:

. a

sup 1-1w?) AAW)/T < o ; (7.13a)
AeD D I11- l |2(a p+2)

inf (-lwh) Aw)r >0 . (7.13b)

AeD Iy 11-Aw HEPHD

As in the proof of Lemma 7.6 we have for p =121

f (1 -1wH Ay =

D -AwX@P*2
1 n
- j ra-ri? (J' ! 0 )d (1.19)
J T erpe®2eptD

Put f= a-p+ 2. Then it follows from a < p - 1 that B < 1. It is however not ruled out
that B is negative. We will first show that statement (7.13a) holds. Distinguish the

following four cases.

Case 1: ¥4 < B < 1. Then by (7.6¢c)

— S C —m — < —
o 11-rpe’®? (1-rp)?P! a-ryP-!
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so that the integral in (7.14) is less than or equal to

1

c Ir a-rhe 4 < c 2! Jr (1-rhH%-2B+1,,
(- r)" 0

28-1 1 L X

< C2 ’
2(a-28+2) p-1

since -2f+2=2(p-1)-a >p-1,and 2B - 1 < 1. This proves (7.13a) for this
case.

Case 2: f="2 . Then by (7.6b) we have

1 do < C (1+log

) £ C(1+lg —)
11-rpe®? 1-rp

and it follows that the integral in (7.14) is less than or equal

1
CIr(l—rZ)a(l+log-i—{7)dr < oo,
0

since a > -1, and (7.13a) follows.

Case 3: 0 < f<'2 . Then by (7.6a)

@<c@rp)Peysca-nt?+),
o 11-rpe®?
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so that the integral in (7.14) is less than or equal

1
C Ir a-rHe@-r}"?®i1ar < c( ! b —
0

Aa-2+2) 2a+1)

< Cp+a
Ap-1)a+1)
since a- 23+ 2> p - 1, and it follows that (7.13a) holds.

Case 4: B <0. Then the trivial estimate

1 2
_—  d < X

- Il-rpeielw vad

shows that the integral in (7.14) is bounded uniformly in p € [0, 1). This completes the
proof of statement (7.13a). To show that statement (7.13b) holds we need to consider
only two cases.

Case 1: 0 <f < 1. Then the trivial inequality

1 1
l-aw?P ¥

implies that statement (7.13b) is true.

Case 2: < 0. Now using the inequalities
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1 S S d
2w a-w® a-iwH?

’

we get

a
j (L"_w—'z)dA(w)/x > 2?8 J' a-wh* % sawyr .

Since x<p-landp>1wehavethat -2+ 1=2p-a-3>p-2>-1, so that the
last integral converges to a positive number. Thus statement (7.13b) is proved and the

proof of this lemma is complete. O

Proof of Theorem 7.3:
Letl1<p<eoand-l1<a<p-1.Take feL,!. Fixge H” andletze D. Thenit

follows from (7.2) that
I(Hf 2)2)! < I w lg (w)l dA(w)/m .
D I1- -i;' z|

It is easily verified that the inequalities 1 <p <ecand -1 < @ <p - 1 imply that we must
have (0,p- 1) N (e, x+ 1) # D. Choose >0 such thatpy € 0O, p-1)N(, a+1);
then clearly y< 1. Writing p’ for the conjugate index of p, i.e., p"=p/(p - 1), it follows
immediately from 0 <py<p-1that0<p'y<1.

Applying Holder's inequality we get
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I(H g)2)! < I YO - F@U oy — 1 11w daewyn

D 1-wzl A-1wl)

1jp’
By JACORS (RS SV
D 1-wzl (1-|w|2f7

1p
x leg(w)lp a-1w? dawyr | . (7.15)
p 1-wzl’

By Lemma 7.6 there is a finite positive constant C; such that

C,
J' ¥ i) 'f(z)' L aAwr s — L ufl

I1- wzl (1-|w|2fy a- |Z|Z)P

Using this estimate in (7.15) and taking p-th powers it follows that

p-1

¢ p-1 f Ifw) - f )]

| 9@)1P < 1g wWIP (@ -1w BPT dAwy/r .

Ifig —
-1zl D 1-wzl

Integrating the above inequality and applying Fubini's Theorem we get

4 2 -1 p-1
1,917 = [ 107 9P (-1 s s €7y x
D

x I 1g(w)I? (1- 1wiB?Y j 'f(w)_'f(;)' 12 dAGzYr |dAw)/. (7.16)
p '1-wzl" (1-1z1 yPr-¢
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By the choice of ¥ we have that 0 < py- a < 1, so that we can apply Lemma 7.6 once

more: there exists a finite positive constant C , such that

) C
j fw) - f @) ! Nt € —2 |

flo
—_— ) - B
p 1-wzl© (.17 a-1wifr e

Therefore it follows from (7.16) that

P p-1 P p 2
181 s clic, sy J'ng(w)u (1- 1w dAw)/r
D

which implies that there exists a finite positive constant C for which

IIHf Ilp,a < Clf Ilﬂ3 .

For the converse, fix 0 <r < 1, and for A € D consider the reproducing kernels kj .
Since f is analytic we have P ( fo Q)= r (A), and (7.5) gives us
Hfky=(f-T(A)k, ,so that

_" I(Hz k@ (1 -1219)% dAG)/n =I F@-fA1P 1k e (1-1z)% dAG)/x.
D (A7) D(An
(7.17)

Take z € D(A,r), then z can be written as z = @,(«) where | ul <r . Using the identity

(0.18) it is easy to verify that



We also have

2 2
1-|z|2= (l-lll_)-(l -2|ul ) ’
11- Aul

so that

1 A-1uP? 11-Au? 2

a-1ah%-e

L R Y AL

a-1a%®-¢

k@17 (1-1z5% =

Since 2p - a> o+ 2 we have that (1 - | ul)?P-% > (1-1ul)®+*2 and it follows from the
above inequality that there is a number § > 0 independent of A € D [in fact, we can take
8=min {(1-r), (1-r)®*+1})], such that forall ze D(A,r)

Ikl(z)lp -1z —9 (7.18)

(-1
Combining (7.17) and (7.18) we have

J' I k@)1 A-1z% dagyr 2 —9 | 1f @) -fFA)I1PdAG)/T,
D(A.7) a-12157% pan

which, together with formula (0.21) for the normalized Lebesgue area of a

pseudo-hyperbolic disk, gives us that
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1 _[ If ) -fW)IP dAG)/T <

ANt
<1 q.nap¥-e-? j I(Hz kYN (1-12 }e dA@)/r
res D(A,r)

< T (1-1A)% -2 IH; k || (1.19)

r’é

Now, making use of Lemma 7.7 and the definition of the operator norm | H7 7l I, o

have

ankln”a < H7||pa ¢ :
P P2 eaty®oe?

and it follows from (7.19) that

! j If @) -fMIPdAG)r < — IH "’
ID(A,N)| b r 5 pa

and by Theorem 1.1 there exists a finite positive constant C* such that

Iflg s CUH I

completing the proof of this theorem. O

Proof of Theorem 7.4 :
Let1<p<eand-1<a<p- 1. TakefeL,.
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By Theorem 7.3 there is a finite positive constant C such that

- - - < -
IH H; I SCUf-f iy .

If fe B,, then it follows from the above inequality that Hz, — H7 in operator norm.
Since each of the operators H; is compact, it follows that H7 is compact.

For the converse, suppose that H7 is compact. For each 4 € D let n, be function

5

N = el
Ao Nk
A pa

Put wy(z) =(1-1z 12)@ for ze D. For any s € [1, ) let L% denote the measure
space L%(D, w, dA/n). If p’ denotes the conjugate index of p , i.e., p’=p/(p - 1), then
the dual of the space LP-® can be identified with LP"%; the pairing is given by

(f.8) = j f@ 2@ (1-129¢ d@yr
D

for fe LP®,ge LP'®,

We claim that n; — 0 weakly in LP® as|d1 — 1°.
That the set { ga)a‘llp' : g e L™(D, dA/n)} is dense in LP"2 follows easily from the fact
that L=(D, dA/7) is dense in LP (D, dA/7). Since {n;: A€ D} is norm-bounded in
LP-¢ it suffices to show that (n, , gwa’l/l") —0aslAl— 1, forall g e L=(D, dA/n).

Fix a g € L™(D, dA/n). Noting that a)a'l/l" @, = @y, We have the estimate

Up'y) < j “ el Nk | 7.20
Ik, g0 s gl [ 1k lo, awim = Ngl Nk, . (.20
D
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We would like to estimate the norm Il k, “l,a Ip* but Lemma 7.7 does not apply to this
norm. The idea is to use Lemma 7.7 with an index slightly bigger than 1, but not too
big, so that the necessary estimates work out. It is easy to see that we can choose a
number g such that 1 <g<p and-1<gqa/p <q- 1. Now, by Lemma 7.7 there exists a

finite positive constant C’ such that forevery Ae D

Ikl sc 1 .

By Holder's inequality Il k, "l.a/p shkyh q.q0lp » SO that we have

Py < 1
I(kl ,ga)a y<scl gll‘;° ] (7.21)

(1-121%0 %P %

By Lemma 7.7 there is a finite positive constant C such that for every A e D

L <cc a-npree-de (7.22)
k|
A pa

Combining (7.21) and (7.22) we get
2 2

I(n, ,gwa‘“P')l sccligh_a-ahf 7,

which implies that (n , g, P") = 0as1 A1 — 1°, and the claim is proved.
Now, since Hy is a compact operator and n, — 0 weakly in LP® as1Al > 17,
we must have | Hf n; Ilp'a —0aslAl—> 1 It follows from (7.18) and Lemma 7.7

that
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1 j If@2)-FA)IP dAQ)r < % NH_n 1’

f A pa’
I D@A,r)! D) reé

therefore we have

1
ID(A,n)

j If ) -f(l)lpdA(z)/n = 0aslAl>1,
D(A.r)

and by Theorem 1.2 it follows that fe B,. 0
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