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ABSTRACT 

SATELLITE TIME-SERIES DATA FOR VEGETATION PHENOLOGY DETECTION 

AND ENVIRONMENTAL ASSESSMENT IN SOUTHEAST ASIA  

By 

Tanita  Suepa 

The relationship between temporal and spatial data is considered the major advantage of 

remote sensing in research related to biophysical characteristics. With temporally formatted 

remote sensing products, it is possible to monitor environmental changes as well as global 

climate change through time and space by analyzing vegetation phenology. Although a number 

of different methods have been developed to determine the seasonal cycle using time series of 

vegetation indices, these methods were not designed to explore and monitor changes and trends 

of vegetation phenology in Southeast Asia (SEA).  SEA is adversely affected by impacts of 

climate change, which causes considerable environmental problems, and the increase in 

agricultural land conversion and intensification also adds to those problems. Consequently, 

exploring and monitoring phenological change and environmental impacts are necessary for a 

better understanding of the ecosystem dynamics and environmental change in this region.  

This research aimed to investigate inter-annual variability of vegetation phenology and 

rainfall seasonality, analyze the possible drivers of phenological changes from both climatic and 

anthropogenic factors, assess the environmental impacts in agricultural areas, and develop an 

enhanced visualization method for phenological information dissemination. In this research, 

spatio-temporal patterns of vegetation phenology were analyzed by using MODIS-EVI time 

series data over the period of 2001-2010. Rainfall seasonality was derived from TRMM daily 



 
 

rainfall rate. Additionally, this research assessed environmental impacts of GHG emissions by 

using the environmental model (DNDC) to quantify emissions from rice fields in Thailand. 

Furthermore, a web mapping application was developed to present the output of phenological 

and environmental analysis with interactive functions.  

The results revealed that satellite time-series data provided a great opportunity to study 

regional vegetation variability and internal climatic fluctuation. The EVI and phenological 

patterns varied spatially according to climate variations and human management. The overall 

regional mean EVI value in SEA from 2001 to 2010 has gradually decreased and phenological 

trends appeared to shift towards a later and slightly longer growing season. Regional vegetation 

dynamics over SEA exhibited patterns associated with major climate events such as El Niño in 

2005. The rainy season tended to start early and end late and the length of rainy season was 

slightly longer. However, the amount of rainfall has decreased from 2001 to 2010. The 

relationship between phenology and rainfall varied among different ecosystems. Additionally, 

the local scale results indicated that rainfall is a dominant force of phenological changes in 

naturally vegetated areas and rainfed croplands, whereas human management is a key factor in 

heavily agricultural areas with irrigated systems. The results of estimating GHG emissions from 

rice fields in Thailand demonstrated that human management, climate variation, and physical 

geography had a significant influence on the change in GHG emissions. In addition, the 

complexity of spatio-temporal patterns in phenology and related variables were displayed on the 

visualization system with effective functions and an interactive interface. The information and 

knowledge in this research are useful for local and regional environmental management and for 

identifying mitigation strategies in the context of climate change and ecosystem dynamics in this 

region. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Problems  

  The relationship between temporal and spatial data is considered the major advantage of 

remote sensing in research related to biophysical characteristics. Due to the strong interactions 

between global climate change and vegetation phenology, research in plant phenology has 

brought on intense interest in the context of climate change. Remote sensing data can contribute 

significantly to this research. With temporally formatted remote sensing products, it is possible 

to monitor environmental changes through time and space by analyzing vegetation processes. 

Additionally, remote sensing technology has changed the observation of plant phenology from 

points (phenological observation stations) to coverages (macro regions) for better phenology 

observation across regions, countries, continents, and even across the globe (Zhang et al., 2006). 

  Vegetation phenology is the study of recurring patterns of vegetation growth and 

development, as well as their connection to climate (White et al., 1997). Phenological properties, 

such as the timing and rate of green-up, amplitude and duration of the growing season, and 

timing and rate of senescence of plant classes, have become an emerging indicator of global 

environmental changes. Land surface phenology (LSP) can be observed from remote sensing to 

monitor the seasonal pattern of the spatio-temporal variation in the vegetated land surfaces 

(White & Nemani, 2006; de Beurs & Henebry, 2010). Therefore, LSP is a key indicator of 

ecosystem dynamics under a changing environment (Xiao et al., 2009). 

  Plant phenology is sensitive to changes in weather and climate. Changes in plant 

phenology  can affect the carbon cycle, water cycle, and energy fluxes through photosynthesis 

and evapotranspiration (Xiao et al., 2009), which  consequently may  influence food security, 
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water resources availability, and climate. The length or magnitude of the plant growing season 

may change only slightly, but this could result in large changes in annual gross primary 

production. Furthermore, shifts in the timing of plant activity (e.g., the start of the growing 

season) provide evidence that species and ecosystems are being influenced by global 

environmental change (Reed et al., 2009). Accordingly, it is useful to characterize land cover 

phenology and understand how phenology responds to interannual variability, climate, and land 

use.  

  Multi-temporal remote sensing data provide opportunity to characterize LSP at the 

regional level (Reed et al., 2003). In contrast to AVHRR (Advanced Very High Resolution 

Radio Meter from the National Oceanic and Atmospheric Administration’s satellite) data as well 

as SPOT (Système Pour l'Observation de la Terre) and LANDSAT, MODIS (The Moderate 

Resolution Imaging Spectroradiometer) provides an improved basis for monitoring global 

ecosystem dynamics with appropriate spatial and temporal resolutions and substantially 

improved geometric and radiometric properties (Zhang et al., 2006). Additionally, The MODIS 

EVI ( Enhanced Vegetation Index) is designed to enhance the vegetation signal with improved 

sensitivity in high biomass regions and reduce atmospheric effects and soil background as well 

as reduce the smoke of biomass burning in tropical areas (Huete et al., 2002). Therefore, EVI is 

appropriate for studying phenological dynamics in tropical zones with several growing seasons 

during the year. 

  Although a number of different methods have been developed to determine the seasonal 

cycle of vegetation using time-series of vegetation indices, these studies have not explored and 

monitored changes and trends of vegetation phenology in Southeast Asia (SEA), which is 

adversely affected by impacts of climate change. SEA is one of the world’s regions that is most 
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vulnerable to the impacts of climate change because of its unique economic and social 

characteristics, extensive coastal regions, mostly tropical climate, and growing population as 

well as high dependence upon natural resources for development (IPCC, 2007). As one of the 

world’s most dynamic regions, the rapid economic growth in the past few decades has been 

dependent on agriculture. The effects of climate change due to heat stress, water stress, extreme 

climate events, and a rise in sea levels have caused the agriculture in SEA to be under 

considerable environmental pressure (IPCC, 2007; ADB, 2009). In the meantime, land use 

change and rapid economic development have exacerbated the effects of climate change on 

human and natural systems in this region. 

  Subsequently, it is of great interest to assess the environmental change of this region to 

better understand the environmental consequences of climate change and of human induced land 

use land cover change. Changes and trends of vegetation phenology can provide strong scientific 

evidence for ecosystem dynamics. Furthermore, the relationship between phenology and climate 

variability is necessary to monitor and assess environmental changes in this region. This 

relationship is a key to understanding the influence of climate change on biophysical 

characteristics. In tropical regions, ecosystems are less sensitive to temperature but are dependent 

on rainfall to trigger the emergence of green leaves and control vegetation growth duration 

(Kramer et al., 2000; Cleland et al., 2007). More importantly, extreme climate events, i.e., floods 

and droughts, also influence phenology in these regions (Zhang et al., 2005). Therefore, it is 

necessary to examine the response of phenology to rainfall variation in SEA in order to 

understand the sensitivity of various vegetation formations to climate variability and 

environmental change in this region. 
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  Additionally, SEA is considered to be a major source of food production in the world, 

particularly of rice that is mostly grown by Vietnam and Thailand (FAO, 2007). Increasing 

demand for food and industrial crops has led to increases in agricultural land conversion and 

intensification, generating considerable environmental problems. This land use change has direct 

environmental impacts, particularly the emission of greenhouse gases (GHG). In comparison to 

global GHG emissions, SEA contributed 12% of the world’s GHG emissions in 2000 and 

showed an increase of 27% from 1990, which was greater than the global average (ADB,  2009). 

In addition, SEA countries employ advanced farming practices (e.g., irrigation, tillage, 

fertilizers) to increase yields and agricultural production. These processes have significant 

impacts on the environment resulting in increasing GHG emissions (Carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O)), particularly from rice fields.  

  In order to assess the impact of environmental change, particularly in agricultural areas 

which is the major source of emissions in this region, an environmental model is needed (ADB, 

2009). Although there are several models for estimating GHG emissions, the DNDC 

(DeNitrification and DeComposition) model has proven to be capable of quantifying emissions 

in SEA. This is because DNDC has been continuously modified and calibrated as well as 

validated in Thailand (Cai et al., 2003; Smakgahn et al., 2009). This model can be applied for a 

wide variety of crop types in both upland and wetland agricultural ecosystems. In addition, 

DNDC includes CH4 emissions and considers water management in rice cultivation. 

   In addition to the analyses of spatio-temporal patterns, phenological changes, and 

environmental assessments, a visualization system is essential to provide the understanding and 

knowledge of how these changes are linked to environmental consequences. Due to the vast 



5 

 

amount of information that results from phenological and environmental analyses, a visualization 

system (e.g., map animation) has become indispensable to represent these spatio-temporal 

processes and to simulate the dynamics of environmental systems. The visualization system with 

a dynamic display and interactive interface enables users not only to detect changes but also to 

understand meanings encoded in transitions within these dynamic displays (Fish et al., 2011). 

  Although phenological information derived from satellite time-series data have provided 

a great deal of knowledge in environmental change, most research has focused on the northern 

high latitudes such as the US and China.  Additionally, such methods do not account for specific 

ecosystem characteristics, such as multiple growth cycles and the tropical forest, and they have 

not addressed the phenology changes and trends in SEA. Therefore, SEA is an ideal case study 

for exploring and monitoring patterns and trends of vegetation phenological changes in order to 

indicate the effects of climate variability as well as anthropogenic influences in this region. 

 According to these important issues in SEA, this research developed effective methods to 

study phenological characteristics in SEA. This study provided information on the spatial 

distribution and the temporal trends of phenological changes, as well as analyzed the possible 

drivers of changes between anthropogenically driven land cover change and interannual climatic 

fluctuations. The results indicate interannual variations of phenology, which correspond to land 

cover and climate variability. The spatial distributions and changes of GHG emissions were also 

investigated by using an environmental model. Additionally, a visualization system was 

developed to explore and monitor patterns and changes of vegetation phenology in this region. 

The relationship between phenological changes and climate variability, as well as environmental 

impacts, could enhance the understanding of environmental consequences and ecological 

changes in SEA. A better understanding of regional phenology and its responses to climate as 
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well as environmental impacts is important for global environmental impact and ecosystem 

dynamics. This information and knowledge can further identify mitigation strategies and 

decision-making in the context of environment and climate change for this region. 

1.2 Conceptual Framework 

  This research explored ecosystem dynamics in SEA through LSP, the relationship 

between LSP and climate data (rainfall), environmental impacts (CO2, CH4, and N2O), and the 

visualization system (Figure 1.1). 

 

Figure 1.1 Conceptual framework 

“For interpretation of the refereces to color in this and all other figures, the reader is referred to 

the electronic version of this dissertation” 

 

  LSP is the seasonal pattern of the spatio-temporal variation in the vegetated land surfaces 

observed from remote sensing (White & Nemani, 2006; de Beurs & Henebry, 2010). The 

temporal and spatial characteristics of remote sensing make it possible to study vegetation 

conditions and phenological changes through time and space. Generally, a vegetation index from 

satellite time-series data is used to explore LSP. In this study, EVI was applied to track 
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vegetation phenology to determine spatio-temporal patterns as well as trends and changes in 

SEA. 

  Additionally, this research analyzed the causes or drivers of phenological changes by 

addressing the relationship between phenology and climate variability. This relationship is a key 

to understanding the influence of climate change on biophysical characteristics. Differences in 

phenological trends between ecosystems and years are suggestive of ecosystem susceptibility to 

future climate change. This research used rainfall data as the key factor to explore phenology in 

response to climate. Land use data were also analyzed to indicate the possible causes of change 

in phenology by human management. 

  Changes in vegetation phenology and land use have an important impact on environment, 

particularly change in GHG emissions. To assess the environmental impacts, the DNDC 

environmental model was applied to quantify GHG emissions (CO2, CH4, and N2O) from rice 

fields in Thailand. 

  The last concept is the visualization system that is essential to provide the understanding 

and knowledge of phenological changes and environmental assessment. The visualization system 

in this research (Interactive Phenological Atlas for SEA) uses a web mapping application to 

represent the outputs of phenological and environmental analysis in an Internet atlas with 

interactive functions and powerful techniques such as map animation and bivariate mapping. 

This system will enable users to increase their understanding of temporal and spatial changes of 

geographic phenomena and facilitate environmental monitoring and management tasks. 

  These concepts—land surface phenology, the relationship between LSP and climate data, 

environmental impacts, and the visualization system—were integrated to understand ecosystem 
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dynamics and environmental consequences in SEA. This knowledge will be useful for decision-

making and environmental management in the near-future. 

1.3 Research Objectives and Research Questions 

  1.3.1 Objectives 

1. Determine the spatial characteristics of the vegetation phenology in SEA by 

extracting seasonal parameters related to the growing seasons; 

2. Identify seasonal and inter-annual variability of vegetation phenology and analyze the 

distribution and the patterns of vegetation phenological changes; 

3. Analyze the causes/drivers of phenological changes from both climatic and 

anthropogenic factors 

4. Assess the environmental impacts due to phenological change by using DNDC 

models for SEA; 

5. Develop an improved visualization method for phenological information 

dissemination. 

  1.3.2 Research Questions  

Objective 1: Determine the spatial characteristics of the vegetation phenology in SEA by 

extracting seasonal parameters related to the growing seasons 

1. What are the spatio-temporal patterns of vegetation phenology in SEA, particularly 

in multiple growth cycle areas? 

Objective 2: Identify seasonal and inter-annual variability of vegetation phenology and analyze 

the distribution and the patterns of vegetation phenological changes 

1. Does/how does vegetation phenological distribution change over time and across 

the space at regional and local scales? 
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2. What are the trends of vegetation phenological change in this region? 

3. Do the changes of vegetation phenology have magnitudes of difference between 

agricultural areas and naturally vegetated areas? 

Objective 3: Analyze the causes/drivers of changes both climatic and anthropogenic factors 

1. What are the spatio-temporal patterns and trends of rainfall seasonality? 

2. Do the changes and trends of vegetation phenology in SEA have a significant 

correlation with rainfall change? 

3. Are the changes and trends of vegetation phenology related to land use/land cover 

variation? 

Objective 4: Assess the environmental impacts due to phenological change by using DNDC 

models for SEA 

1. What are the spatial distributions and changes of GHG emissions (CO2, N2O, 

CH4) in agricultural areas? 

2. Are the changes and distributions of GHG emissions correlated with phenological 

changes and climate variation? 

Objective 5: Develop an improved visualization method for phenological information 

dissemination 

1. What is the appropriate technique to compile and organize all phenological 

information into an effective visualization system? 

2. What visualization tools reveal geographical distribution and spatio-temporal 

patterns of the phenological changes? 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Satellite Time-series Data for Phenological Information 

 2.1.1 Satellite Time-series Data and Vegetation Phenology 

Temporally formatted remote sensing products enable the analysis of vegetation 

time series to monitor the process and the pattern of environmental changes through time and 

space. The relationship between the temporal and the spatial data is considered the major 

advantage of remote sensing data. These data with various spatial resolution and high temporal 

resolution provide effectively monitoring large-scale geographic phenomenon, particularly the 

analysis of the vegetation process.  

Phenology is a key indicator of ecosystem dynamics under a changing 

environment (Xiao et al., 2009). According to Schwartz (2003), plant phenology is the study of 

periodic biological events in the plant world or the timing of different stages of the vegetation 

seasonal cycle, such as leaf unfolding, first bloom, and leaf fall, which are influenced by the 

environment and climate. Phenological information—such as the timing and rate of green-up, 

amplitude and duration of the growing season, and timing and rate of senescence of plant 

classes—is a key to understand climate variability and trends on vegetation which are important 

factors in the global change sciences (Hermance, 2007).  

Land surface phenology (LSP) is defined as the seasonal pattern of the spatio-

temporal variation in the vegetated land surfaces observed from remote sensing (White & 

Nemani, 2006; de Beurs & Henebry, 2010). This definition refers to aggregated information of 

plant phenology at the spatial resolution of satellite sensors. Therefore, LSP is different from the 

traditional definition, which refers to specific life cycle events using in situ observations of 



11 

 

individual plants or species (Tan et al., 2011). LSP is usually addressed through vegetation 

indices of satellite time-series data and it can present the advantage of a global coverage. 

Xiao et al. (2009) mentioned that LSP is sensitive to changes in climate. The 

carbon cycle, water cycle and energy fluxes change according to changes in phenology of plant 

through photosynthesis and evapotranspiration. Therefore, these effects have an influence on 

food security, water resources availability and climate. Phenology can change slightly, such as 

the length or magnitude of the plant growing season, could result in large changes in annual 

gross primary production. Furthermore, shifts in the timing of plant activity provide evidence 

that species and ecosystems are being influenced by global environmental change (Reed et al., 

2009). 

Differences in phenology trends between ecosystems can be used to assess 

responsiveness to climate change. The degree of interannual variability of phenology, 

particularly during severe dry and wet years, is suggestive of ecosystem susceptibility to future 

climate change (Bradley & Mustard, 2008). Accordingly, it is important to characterize land 

cover phenology and understand how phenology responds to interannual variability, climate, and 

land use. Phenology analysis by using satellite time series data to assess regional scale vegetation 

variability and to identify change is consequently essential to characterize current patterns of 

land cover phenology and distinguish between anthropogenically driven land cover change, and 

interannual climatic fluctuations (de Beures & Henebry, 2004).  

Research in plant phenology has brought on intense interest in the context of 

climate change due to the relationship between the global climate change and vegetation 

phenology. The temporal and spatial characteristic of remote sensing data leads to this research 

topic because temporal and spatial characteristics are both important for the study of plant 
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phenology. Additionally, remote sensing technology has changed the observation of plant 

phenology from points (phenelogical observation station) to coverage (macro region) for better 

phenology observation across regions, countries, continents, and even across the globe (Zhang, 

2006). 

 The scientific community has been continuously interested in developing methods 

of employing satellite data to monitor and extract changes in LSP. Time series of vegetation 

indices (VI) based on satellite observations were first created in the 1970s and have continuously 

grown in importance for ecological and other biosphere-related research (Beck et el., 2007). In 

the 1990s, several types of methodological research presented phenological parameters derived 

NDVI (The Normalized Difference Vegetation Index) from AVHRR sensor. Myneni et al. 

(1997) used AVHRR-NDVI data to show a lengthening of the growing season relating to warmer 

air temperature over the northern latitudes from 1981 to 1991. Tucker et al. (2001) extended the 

study of the growing season trends to the period 1982-1999. He found that the vegetation index 

in higher northern latitude was responding to warmer temperatures causing the growing season 

to start earlier and continue longer. Reed et al. (1994) have derived quantitative phenological 

parameters from 1989 to 1992 over the United States. NDVI data from AVHRR (1 km) 

presented the onset of greenness, time of peak NDVI, maximum NDVI, rate of green up, rate of 

senescence and integrated NDVI. The results of this study had implications for large area land 

use mapping and monitoring. Moulin’s research (1997) was the first effort to assess the main 

phenological stages of the vegetation at the global scale. This study proposed a method to derive 

the start, the maximum, the end, and the length of the vegetation cycle by using AVHRR sensors. 

In the 2000s, satellite imagery available globally with frequently repeating cycles has provided 

data to examine and monitor phenological events over large regions (Reed et al., 2003). An 
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initial analysis of the MODIS-NDVI and EVI performance in the global scale was presented at 

this time. Between 2000 and 2003, Zhang et al. (2005) explored the response of vegetation 

phenology to precipitation across Africa using MODIS and rain fall data. The result 

demonstrated that vegetation phenology was strongly dependent on the seasonality of 

precipitation. This characteristic suggested that climate change may have a significant influence 

on vegetation phenology in this continent. Zhang et al. (2006) found that phenological 

parameters exhibited strong correspondence with temperature patterns in mid and high latitude 

climates, with rainfall seasonality in seasonally dry climates, and with cropping patterns in 

agricultural areas. 

  Multi-temporal time series data have been used to study vegetation phenology in 

SEA. Sakamoto et al. (2006) estimated the spatial distribution of heading date and rice-cropping 

system employed in the Mekong Delta relative to seasonal changes in water resources in 2002 

and 2003 using MODIS-EVI data. Xiao et al. (2006b) developed a new geospatial database of 

paddy rice agriculture for 13 countries on South and SEA using a time series of MODIS-derived 

vegetation indices, 500 m spatial resolution in 2002. Tottrup et al. (2007) presented a new 

approach to mapping fractional forest cover across the highlands of Mainland SEA using 

regression tree modeling and multi-temporal MODIS 250 m data.  

  Although there are research related vegetation phenology in SEA, most of these 

studies focused on rice cropping system or forest areas. They have not addressed trends and 

change of vegetation phenology in regional scale as well as have not analyzed the relationship 

between phenology and climate variability, which is the important problems in this region. 
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2.1.2 Remote Sensing Approaches 

Although AVHRR data with frequent temporal coverage (12 hours, 1 week, 15 

days, etc.) have been used extensively for monitoring vegetation; the coarse scale of these data 

(more than 1 km) with five spectral bands result in difficulties of assessing spatial variations in 

vegetation amount and condition (Huete et al., 2002). The AVHRR sensor was originally 

designed for weather and climate study, and aims to provide radiance data for investigation of 

clouds, snow and ice extent, temperature of radiating surface and sea surface temperature (Xiao 

et al., 2009). Therefore, AVHRR data have some limitations for vegetation studies such as lack 

of calibration, poor geometry, and high level of noise due to large pixel size and limited cloud 

screening (Xiao et al., 2009). In addition to AVHRR, the Vegetation Instrument (VGT) Sensors 

of SPOT4 and 5 and LANDSAT can provide phenological characteristics. However, the spatial 

resolution of VGT is coarse (1 km) and LANDSAT data (30 m) are limited for their temporal 

resolution, availability, and cost as well as the high spatial resolution (30 m) are too large in file 

size to be utilized in a regional scale and long term study (Wardlow et al., 2007). 

In contrast, MODIS provides 8-day and 16-day dataset at spatial resolution of 250 

m with substantially geometric and radiometric properties relative to AVHRR data. Furthermore, 

MODIS data have been atmospherically corrected and screened for clouds. MODIS, launched in 

December 1999, has become the standard sensor for phenological studies. The MODIS sensor 

has 36 spectral bands, seven of which are designed for the study of vegetation and land surfaces 

(Didan & Huete, 2006).  

The MODIS NDVI and EVI products are computed from atmospherically 

corrected bi-directional surface reflectances that have been masked for water, clouds, heavy 

aerosols, and cloud shadows (LP DAAC, 2010). MODIS also includes a new EVI that minimizes 
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canopy background variations and maintains sensitivity over dense vegetation conditions as well 

as uses the blue band to remove residual atmosphere contamination caused by smoke and sub-

pixel thin clouds (LP DAAC, 2010).  

MODIS data, therefore, provide an improved basis for monitoring global 

ecosystem dynamics (Zhang et al., 2006). Huete et al. (2002) compared the MODIS-NDVI and 

AVHRR-NDVI, they revealed that the MODIS VI products provided better results for 

biophysical information for land surface characterization. Not only were NDVI used for 

phenological monitoring, Xiao et al. (2006a) also indicated that the MODIS-EVI data provide a 

good result to detect leaf phenology of tropical forests in a moist tropical region in South 

America.  For these reasons, MODIS-VI products are suitable to use in tropical region such as 

SEA. 

 2.1.3 Vegetation Index 

  To monitor global vegetation conditions and display phenological changes, a 

vegetation index (VI) is necessary for this research. VI data can be used for characterizing land 

surface biophysical properties and processes, including primary production and land cover 

conversion. A VI is spectral transformations of two or more bands designed to enhance the 

contribution of vegetation properties (Huete et al., 2002). A VI is computed from combinations 

of visible red and near-infrared spectral measurements. The advantages of using these numerical 

transforms rather than the original spectral observations include the following: minimizing soil 

and other background effects, reducing data dimensionality, providing a degree of 

standardization for comparison, and enhancing the vegetation signal (Malingreau, 1989 as cited 

in Reed et al., 1994). 
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  One of the more commonly used vegetation indices, NDVI, has been frequently 

used to evaluate phenological characteristics over large areas. Although NDVI is widely used for 

the study of vegetation and phenology dynamics, NDVI is not suitable for the tropical zone. This 

is due to the variation of atmospheric conditions with aerosols and clouds, and it is more 

sensitive to soil background (Kobayashi & dye, 2005 as cited in Xiao, 2006a).  Xiao et al. (2009) 

also indicated the limitation and problem of NDVI for LSP, the saturation, in particular for 

tropical forests and in high biomass region with large values of leaf area index.  

   EVI is an 'optimized' index designed to enhance the vegetation signal with 

improved sensitivity in high biomass regions and reduce atmospheric effects and soil 

background. EVI includes the blue reflectance band to correct for the influence of atmospheric 

aerosols on red reflectance (Huete et al., 2002). EVI is based on this equation (Huete et al., 

2002):   

                                                
           

                                
  (2.1) 

where ρ is atmospherically corrected or partially atmosphere corrected (Rayleigh and ozone 

absorption) surface reflectance, L is the canopy background adjustment that addresses nonlinear, 

differential NIR and red radiant transfer through a canopy, and C1, C2 are the coefficients of the 

aerosol resistance term, which uses the blue band to correct for aerosol influences in the red 

band. The coefficients adopted in the EVI algorithm are, L=1, C1=6, C2=7.5, and G (gain factor) 

= 2.5.  

   In addition, new MODIS products with collection 5.0 provide a better continuity 

with the standard EVI index, and a new index called EVI2 (Didan & Huete, 2006). The EVI 

index is replaced by the EVI2 index over cloudy pixel, snow/ice covered pixels in order to 

reduce the effects of the blue band over bright targets. This is because the blue band, as well as 
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the red and NIR bands exhibit proportionality problems over bright targets that are aggravated by 

the atmosphere correction resulting in abnormally high EVI values (Didan & Huete, 2006). This 

new product is based filtering scheme and a modified compositing method to deal with residual 

and mislabeled clouds. EVI2 is used this following equation (Didan & Huete, 2006): 

                                           
           

               
                   (2.2) 

  The EVI profile, which has potential to represent the seasonal and annual 

dynamics, can be generated to present the total trends and changes of vegetation conditions.  

Xiao et al. (2006a) mentioned that the EVI data provided a good result in detecting phenology in 

a moist tropical region in South America by using time-series data of EVI from MODIS in 2002. 

Huete et al. (2002) compared the MODIS-NDVI and EVI temporal profiles. The results 

indicated that the EVI values exhibited a smoother, more symmetrical seasonal vegetation profile 

with a narrower, well-defined peak greenness period. In addition, EVI is less sensitive to residual 

atmospheric contamination due to aerosols from extensive fire (Xiao et al., 2009). 

  For these reasons, MODIS EVI is the best choice for this research because it 

reduces soil and atmospheric effects as well as designs to improve sensitivity in high biomass 

regions and to reduce the canopy background signal (Huete et al., 2002). Additionally, EVI of 

MODIS has proved that it can help to reduce common problems with vegetation indices, 

particularly reducing smoke of biomass burning in tropical areas, while it is sensitive to canopy 

variations in high biomass regions. These characteristics are appropriate for studying a complex 

annual cycle with several growing seasons during the year in tropical zones. Therefore, MODIS-

EVI data, particularly MOD13Q1 product (16-day composite data at 250 m spatial resolution) 

are appropriate to detect phenological characteristics in SEA.  
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 2.1.4 Phenological Information Derived from Satellite Time-series Data 

 1) Growing Season Profile and Phenological Parameters 

 To extract meaningful phenology information about the vegetation growing 

season, it is necessary to identify the appropriate phenological parameters. Myneni et al. (1997) 

and Tucker et al. (2001) were among the first to use satellite data to identify some of the key 

phenological parameters from NDVI time series. They proposed a set of parameters, such as the 

time of onset of green-up and senescence, maximum rates of green-up and senescence, and the 

amplitude of maximum NDVI. Zhang et al. (2003) proposed to use four key transition dates—

green up, maturity, senescence, and dormancy—to monitor global vegetation phenology in the 

Northeastern United States. Although this method can provide vegetation dynamic over large 

areas, it focuses only on identifying phenology behavior characteristics. To more fully 

understand phenology patterns of each season requires more phenological parameters.  

  Therefore, to extract seasonal parameters, it is important to understand the 

seasonal curve of phenology. Jönsson & Eklundh (2004 and 2010) clearly explained this growing 

season profile (Figure 2.1). The start of a season, marked by (1), is defined from the filtered or 

fitted functions as the point in time for which the value of the left edge has increased to a user 

defined level  (a certain of the seasonal amplitude), generally set to 10% of the distance between 

the left minimum level and the maximum level. The end of the season (2) is defined by the time 

for which the right edge has decreased to a user defined level measured from the right minimum 

level. The length of the growing season (3) is the time from the start to the end of the season. The 

base level (4) is given as the average of the left and right minimum values. The middle of a 

season is obtained as the mean value of time, the position (5) between the position (8) and (9), 

for which the left edge has increased to the 80% level and the right edge has decreased to the 
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80% level, respectively. The maximum of fitted data (6) is the largest data value for the fitted 

function during the season; it may occur at a different time from (5). The amplitude (7) of the 

season is obtained as the difference between the maximum value and the base level. The left 

derivative (8) is the rate of increase at the beginning of the season; it is calculated as the ratio of 

the difference between the left 20% and 80% levels and the corresponding time difference. The 

right derivative (9) is the rate of decrease at the end of the season; it is calculated as the absolute 

value of the ratio of the difference between the right 20% and 80% levels and the corresponding 

time difference. The large integral (10) is the integral of the function describing the season from 

the season start to the season end; it is given by the area of the region between the fitted function 

and the zero level, represents the total vegetation production. The small integral (11) is given by 

the area of the region between the fitted function and the base level or the integral difference 

between the function describing the season and the base level from the season start to the season 

end. The small integral represents the seasonally active vegetation, which may be fairly small for 

evergreen areas. Therefore, in evergreen areas, the first integral may be small even if the total 

vegetation is large.  

 2) Data Smoothing and Filtering 

  VI is normally composited over a set period of time to process growing season 

and to extract phenological parameters. These composited data often have errors from cloud and 

atmosphere. Due to these errors from cloud and atmospheric contaminations, and varying sun 

and sensor angles, time-series data are required to remove outlier and spikes and minimize the 

effects of anomalous values (Figure 2.2).  
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Figure 2.1 A simple NDVI profile for a typical patch of vegetation 

Source: Jönsson & Eklundh, 2010 

 

 

  

 

 

Figure 2.2 The results of data smoothing applied to EVI time-series, the start and end of the 

seasons are marked with filled circles; Source: Jönsson & Eklundh, 2010 

 1)  Start of season 

 2)  End of season 

 3)  Length of season 

 4)  Base level 

 5)  Middle of season 

 6)  Maximum of              

      fitted data 

 7)  Amplitude 

 8)  Left derivative 

 9)  Right derivative 

10) Large integral 

11) Small integral 
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  A variety of methods have been developed to reduce satellite noise of time-series 

data, from simple linear smoothing window methods to more complicated analytical curve 

function methods. Fourier Transform (FT) has become one of the principal methods of 

phenological analysis because phenologies typically have strong seasonal cycles, particularly 

those comprised of monthly averaged samples from multiple years (Hermance et al., 2007). 

However, FT methods may be problematic, when applied to irregular or asymmetric VI data. 

This is because they depend critically on symmetric sine and cosine functions (Chen et al., 

2004). In addition, Fourier analysis fails to characterize each annual VI trajectory separately; it 

can generate spurious oscillations in the VI time-series (Hird & McDermid, 2009). Moreover, the 

observed data in classical harmonic methods need to be sampled at uniform intervals of time, 

which often poses a problem for typical VI data, particularly when there are extensive data gaps 

(Hermance et al., 2007). 

  A high-order spline fitting model applies the recursive least squares procedure for 

the initial inter-annual fit, and then uses the average annual curve as a baseline and 

asymmetrically weights all data points above and below the average in order to fit the upper 

envelope of the data (Bradley et al., 2007). Although exponential weighting in this approach is 

appropriate for fitting rapid green-up, one drawback is that it also fits data errors (spikes) that fall 

above the time series (Bradley et al., 2007). Moreover, this approach is considered 

computationally intensive and time consuming (Hermance et al., 2007). 

  Asymmetric Gaussian Functions (AG) uses semilocal methods. Local model 

functions are fitted to data at intervals around maxima and minima in the time series and used to 

build a global function that describes the annual cycles of vegetation (Jönsson & Eklundh, 2010). 

The main advantage of this approach is that this function can be applied to data not uniformly 
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sampled in time, i.e., the spacing between time-stamps does not affect the output of the filter 

(Bachoo & Archibald, 2007). Beck et al. (2006) mentioned that AG is appropriate for describing 

vegetation dynamics at high latitudes. However, this method may be difficult to identify a 

reasonable and consistent set of maxima and minima to which the local functions can be fitted, 

especially for noisy data or for data from areas where there is no clear seasonality in land cover 

time series (Chen et al., 2004).  

  The Double Logistic Function (DL) performs based on the minimum and 

maximum VI, two inflection points, and parameters related to the rate of increase or decrease in 

VI (Beck et al., 2007). DL, like AG, can deal with negatively-biased noise and work well to 

approximate winter conditions (Hird & McDermid, 2009). Therefore, this technique is 

appropriate for describing vegetation dynamics at high latitudes (Beck et al., 2006). The 

drawback of this technique are similar to AG in that it relies on the linear combination of local 

and independent intra-annual functions; in some cases, it fails to match the global waveform of 

numerous time series (Carrao et al., 2010). Another drawback is that this technique maintains the 

upper envelop of values, it is not suitable to apply on EVI, which have less negatively-biased 

noise and more erroneous spikes than NDVI (Hird & McDermid, 2009). 

  Savitzky-Golay (SG) Filtering is one of the potential functions for generating 

fitted curve of time-series data. SG method performs least-squares polynomial regression on 

each point (local polynomial function) to determine the smoothed value and adapt for the upper 

envelop of the VI time-series profile (Jönsson & Eklundh, 2010). The SG filter applies an 

iterative weighted moving average filter to time series, with weighting given as a polynomial of a 

particular degree (Chen et al., 2004). 
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  The main advantage of this approach is that it tends to preserve features of the 

distribution and capture rapid phenology changes, such as relative maximum, minimum, and 

width, which are usually flattened by other adjacent averaging techniques (Jönsson & Eklundh, 

2004). More importantly, SG is provided to model the shape of VI profile, even in problematic 

environments with large variation in the magnitude and timing of vegetation growth. It can 

distinguish the signal from the seasonal variation and noise to reconstruct a clear and clean time-

series by linear combination of nearby values. 

  When considering influence of phenological parameters and biogeographical 

regions for smoothing VI time-series data, SG has proved to be an essential method to deal with 

these factors. Not only does it preserve features of the distribution and capture rapid phenology 

changes, SG provided good results in the monsoon climate of SEA with multiple annual seasons 

during a year (Tottrup et al. 2007).  

  In tropical zones, there are large numbers of low NDVI values due to atmospheric 

perturbations; SG effectively replaces these low values with higher NDVI values that are more 

typical of the cropland found in these areas (Chen et al., 2004). Bachoo & Archibald (2007) 

compared two different fitted models, SG and AG, for smoothing and extracting phenological 

parameters in southern Africa. The result exhibited that SG approach worked better than AG. 

Tottrup et al. (2007) claimed that SG method provided the good results in smoothing data and 

extract phenological parameters for mapping fractional forest cover in SEA. They also confirmed 

that the SG approach is applicable in this monsoon climate with multiple annual seasons during a 

year.  

  However, this method is very sensitive to the size of window, that is, a wide 

window limits the ability of the filter to follow rapid but relevant changes in VI (e.g., a rapid 
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green-up), while a narrow window may cause the result to over-fit the time series and retain 

more noise (Hird & McDermid, 2009). Therefore, the size of window has to be applied with 

caution, and it should be tested before running the overall data (Chen et al., 2004). 

  Based on SG mentioned above, this method is robust to reconstruct high-quality 

VI time-series data in this research. SG filtering can preserve features of the distribution and 

capture rapid phenology changes, and deal with large variation in the magnitude and timing of 

vegetation growth. Most importantly, it is proven to provide good results in the monsoon climate 

of SEA with multiple annual seasons during a year. Therefore, this method is selected to produce 

a smoothed curve, while capture rapid phenological change in SEA. 

 3) Extraction of Phenological Parameters 

   Phenological parameters have been derived through various approaches from 

satellite time-series data after smoothing time-series profiles. The inflection point on a fitted 

curve is one of these techniques, which was developed by Badwar (1984 as cited in Reed et al., 

2003). This technique defined the start of the growing season (SGS) as where the (left) time 

derivative transitions from 0 to a positive number. Similarly, the end of the growing season 

(EGS) is defined as where the (right) time derivative transitions from negative to zero (Reed et 

al., 2003; Moulin et al., 1997). Zhang et al. (2001, 2003) defined the phenological parameters: 

green up, maturity, senescence, and dormancy from the inflection point technique. However, the 

problem of this technique is the difficulty in extracting VI in evergreen, snow effects, and the 

slow rate of senescence in some biomes (Reed et al., 2003). 

  Curve derivation phenology is also used to identify phenological parameters by 

examining curve characteristics where VI data exhibit a rapid sustained increase (Reed et al., 

2003). White et al. (1997) and Moulin et al. (1997) defined SGS as the timing of the highest 
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positive derivative in the NDVI. In a similar way, the lowest negative derivative is considered 

the EGS. However, this method suffers a major drawback in that it is not known whether the 

rapid change is the result of the natural variability of the data or a significant change. In addition, 

when the VI signal fails to follow an abrupt and rapid increase or decrease, this method is 

difficult to determine SGS and EGS (de Beurs & Henebry, 2010). 

  Threshold-base phenology is the effective technique to extract phenological 

parameters. This technique uses a pre-defined or a relative reference value for defining SGS and 

EGS (Reed et al., 2003). The SGS is defined as the day of the year (DOY) that the VI crosses the 

threshold in upward direction; whereas, the EGS is defined as the DOY that the VI crosses the 

same threshold in downward direction (de Beurs & Henebry, 2010). Various methods of 

threshold based technique have been developed to extract phenological parameters, for example, 

thresholds based on long-term mean VI, thresholds based on a baseline year, threshold based on 

reference value, and thresholds based on VI ratios (de Beurs & Henebry, 2010).  

  This research applied thresholds based on VI ratios for studying temporal 

variations of phenological dates by finding the appropriate values for SEA. This technique 

computes ratio of the seasonal amplitude measured from the left and right minimum values to 

define the SGS and EGS respectively (Jönsson & Eklundh, 2010). The rapid growth is more 

important than the first leaf occurrence for this technique and this method can reduce the effect 

of soil background at lower vegetation signals. In addition, users can select appropriate threshold 

depending on spatial local climate and VI characteristics; therefore, this technique is flexible and 

can be applied in various regions (Jönsson & Eklundh, 2004). Moreover, thresholds based on VI 

ratios are considered as a consistent determination, independent of the geographic location and 

land cover of the observed study area (de Beurs & Henebry, 2010).  
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 4) Trend Analysis for Satellite Time-series Data    

  The trend analysis of the VI time series is important for monitoring subtle and 

long-term vegetation changes to understand the inter-annual changes of vegetation dynamics. 

Changing in vegetation phenology reflects land cover change that covers both drastic and slight 

changes on vegetation. The drastic changes refer to land cover conversions (deforestation, 

urbanization) and the slight changes are modifications of land cover without changing its overall 

classification (Martínez & Gilabert, 2009). 

  A wide variety of procedures have been developed for trend analysis of time-

series data. The characteristics of VI time series data are defined as non-stationary, which present 

different frequency components, i.e., seasonal variations, long-term and short-term fluctuations, 

the patterns are typically seasonality, trends and abrupt changes or discontinuities resulting from 

disturbance events (de Beurs & Henebry, 2005). With these characteristics, simple linear 

regression is not appropriate for time-series data because it always results in parameter estimates 

but these parameters are not always significantly different from zero and the slope parameter 

fails to report the associated error and the overall error of the linear regression model (de Beurs 

& Henery, 2005). In addition, regression requires normality of the error distribution as well as 

constant variance of the errors and the method is very sensitive to extreme values (Qin, 2011).  

In contrast to linear regression, Mann-Kendall trend test (MK) is one of the 

efficiently non-parametric trend tests and it is more suitable for non-normally distributed data 

and censored data, which are frequently encountered in hydro-meteorological times series (Yue 

et al, 2002). Additionally, this statistic is considered to be the most useful trend analysis statistics 

for environmental time series (Luus, 2009). The rank-based nonparametric MK statistical test has 

since been widely applied to assess the significance of trends in hydrological and climatological 
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time series including water quality, stream flow, temperature, and precipitation (Latifovic  &  

Pouliot, 2007; Xu et al., 2007; Yue et al., 2002; Yue et al., 2003). Recently, MK has been 

applied to VI time-series analysis (Julien & Sobrino, 2009; Martínez & Gilabert, 2009; Meng et 

al., 2011).  

The basic principle of the MK test is to examine the signs of all pairwise 

differences of the observed values, ranked in chronological order (Hirsch et al., 1982; Hirsch & 

Slack, 1984). This test determines whether decreases and increases in a dataset are significant 

according to the sum of sign differences between observation pairs (Luus, 2009). Since the test 

uses the relative magnitude of data (based on rank order) and not the actual data values, this 

approach can deal with outliers, missing values, non-normality, seasonality, and values below 

detection limits (de Beurs & Henery, 2005; Ngwenya, 2006). Therefore, this technique ignores 

the degree of the change, and takes into account only the yearly positive or negative change 

(Minnesota State University, 2009). 

Numerous studies have shown that the MK method is robust for trend and change 

analysis of VI image time series. Julien and Sobrino (2009) retrieved local land surface 

phenology trends for the whole globe. The MK trend tests in this study have been performed for 

time series of phenological parameters derived by NDVI, and trends were estimated by linear 

regression. Martínez and Gilabert (2009) indicated that the MK method is easy to calculate, 

robust against non-normality, and insensitive to missing values. The inter-annual series has been 

used to identify the trend of vegetation dynamics from NDVI time series, which is related to 

land-cover changes in Spain. This study applied the MK method for the strength and direction of 

a trend and the Sen’s method was used to determine the slope of changes.   
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In addition, MK was used to distinguish the characteristics of changes in climate 

variability and NDVI during the period from 1982 to 2000 in China (Meng et al., 2011). This 

study mentioned that the MK method is suitable to detect one abrupt change in a sample time 

series of anomalies that are independent and Gaussian distributed. Cui et al. (2012) applied the 

MK test to analyze vegetation change treads in different vegetation-climatic regions from 1982 

to 2006 in Inner Mongolia by using the long time series NOAA/AVHRR NDVI dataset and 

vegetation-climate regions map.  Trend analysis of NDVI and land surface temperature 

parameters from AVHRR was present in the application of the yearly land-cover dynamics 

methodology throughout the 1981-2001 periods (Julien et al., 2011). These time-series data were 

tested for trends using the MK trend tests. Non-parametric MK trend test was also applied to 

analyze monotonic greening and browning trends from global NDVI time-series from 1981 to 

2006 (Jong et al., 2011). The results showed that NDVI time-series data were characterized by 

outliers, seasonality and serial auto-correlation; however, using the MK method took account of 

these effects. Due to various advantages of this technique, this research used MK to identify the 

trend of satellite time-series data (EVI, phenology, and rainfall seasonality). 

2.2 Phenology and Climate Variability 

  2.2.1 Relationship between Phenology and Climate 

   Vegetation phenology provides evidence not only ecosystem dynamics, 

biodiversity, and land use change but also play an important role in global climate change. 

Vegetation phenological events are effective and sensitive indicators for detecting and 

monitoring global environmental change driven mainly by temperature and precipitation (Zhang 

et al., 2005). A variety of studies demonstrated a clearly identifiable phenological response to 

global warming in high northern latitudes where temperature is normally the most important 
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climatic factor limiting plant photosynthesis (Myneni et al., 1997; Tucker et al., 2001; Robeson, 

2004; Schwartz et al., 2006). These studies showed changes in temperature that are relevant for 

different phases of plant development. The timing of spring events (budburst, flowering) has 

been earlier since 1970s mainly due to global warming. For example, in Northern Hemisphere 

temperate land areas, the Spring Indices showed that first leaf dates and last frost dates were 1.2 

and 1.5 days per decade earlier, respectively from 1955 to 2002 (Schwartz et al., 2006). This 

situation has accelerated spring and led to a longer growing season (Robeson, 2004). These 

characteristics are important indicators of ecosystem dynamics and global environmental 

changes. 

Although several research identified that the global temperature increase affects 

ecosystem in the higher northern latitudes (Myneni et al., 1997; Tucker et al., 2001; Yu et al., 

2003), few studies have investigated the effects and implications of climate change on the lower 

latitudes where both temperature and precipitation play important roles in limiting plant 

biological processes (Yu et al., 2003; Zhang et al., 2005). Vegetation phenology in arid and 

semiarid as well as tropical climates is primarily controlled by water availability (Zhang et al., 

2005). These ecosystems are dependent on rainfall to trigger the emergence of green leaves and 

control vegetation growth duration (Kramer et al., 2000). In addition, precipitation patterns in the 

rainy season are also critical to crop germination, growth, and harvest (Zhang et al., 2005). More 

importantly, extreme climate events (floods and droughts) and the extension of rainfall deficits or 

excesses also influence phenology in these regions (Zhang et al., 2005). 

   According to Cleland et al. (2007), in tropical ecosystems, phenology might be 

less sensitive to temperature and photoperiod, and more tuned to seasonal shifts in precipitation. 

Such shifts are expected to occur in relation to rising global temperatures, but both the direction 
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and magnitude of change vary regionally. Corlett & Lafrankie (1998) mentioned that in most of 

tropical Asia, seasonality in rainfall is the major ecological factor. Furthermore, in the monsoon 

tropics, seasonal changes such as drought are severe enough to have a significant impact on plant 

growth. 

   SEA is in the monsoon tropic region and so it is highly sensitive to climatic 

fluctuations, particularly rainfall changes causing floods and droughts. According to ADB (2009) 

and FAO (2007), most of SEA suffers from recurrent droughts and floods. Floods occur with 

greater frequency than ever before and damage agricultural areas in the river delta in this region, 

i.e., the Mekong, the Red, and the Chaopraya River Delta (ADB, 2009). In addition, droughts 

also affect agricultural areas in this region. 

   The unavailability of real-time climatic and environmental data makes it difficult 

to monitor phenology response to climate change in SEA. Additionally, numerous studies have 

focused on the study of relationship between phenology and rainfall in high northern latitudes 

(e.g., North America, China) or in Africa; vegetation dynamics and rainfall seasonality in SEA 

have not been addressed. It is consequently necessary to monitor and assess the relationship 

between phenology and rainfall for a better understanding of environmental changes in this 

region. 

 2.2.2 Satellite Time-series Data for Vegetation Phenology Response to Rainfall 

Change 

Satellite time-series data enable researchers to investigate the response of 

vegetation phenology to climatic variation on a regional scale. NDVI, which is the most 

commonly used remote sensing derived measurement, has been linked to rainfall seasonality in 

numerous studies. Nicholson et al. (1990) demonstrated a strong statistical association between 
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rainfall and AVHRR-NDVI in West African Sahel and in East Africa on climatic time and space 

in 1982-1985. However, they found that NDVI exhibited a saturation response to rainfall—

NDVI continued to increase as rainfall increased; after a certain threshold value, NDVI remained 

constant, while rainfall was increasing.  

Lee et al. (2002) and Yu et al. (2003) examined annual climatic variation, and its 

influence on plant phenology of the steppes of Inner Mongolia using AVHRR-NDVI. This 

research found that the major factors driving the changes in plant phenology is climate variation 

(precipitation and temperature). This was also demonstrated by Li & Xiao – Ling (2007), they 

used AVHRR-NDVI (from 1992 to 2001), precipitation, and temperature data to analyze the 

annual and monthly changes of vegetation in China. Both precipitation and temperature had 

different effects depending on different types of landform; moreover, precipitation dominated the 

changes of vegetation cover in high mountain areas.  

   While several studies used rainfall data from meteorological stations to examine 

the response of phenology to rainfall, Zhang et al. (2005) demonstrated that MODIS-EVI and 

rainfall data retrieved from TRMM (Tropical Rainfall Measuring Mission) with 1x1 degree grid 

cells can be used to calculate both the onset and the end of rainy seasons. Phenological patterns 

were linked to the onset and the end of rainy seasons to assess the phenological response to 

precipitation at continental scales in Africa (Zhang et al., 2005). Phenological patterns from 

MODIS data and rainy season from TRMM were proven useful tools for monitoring the response 

of vegetation to precipitation. 

TRMM is a satellite jointly launched by U.S.A. and Japan in 1997 designed to 

observe and understand the tropical rainfall (NASA, 2011). For data quality, TRMM will 

reprocess all products with improved algorithms approximately once per year and use ground 
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based validation (NASA, 2011). This satellite dataset for rainfall has minimized the need of 

ground based measurement because in many parts of the world there are few rainfall 

observations or stations; the data are hard to obtain; and in some countries, war or economic 

crises lead to multi-year breaks in the records. 

My research used MODIS-EVI time series data and TRMM (TRMM-3B42-daily 

product) to study the response of phenology to rainfall variation in SEA. This product is TRMM-

adjusted merged-infrared (IR) precipitation and root-mean-square (RMS) precipitation-error 

estimates. The algorithm of this product uses TRMM merged high quality (HQ)/infrared (IR) 

precipitation with other satellites (e.g., Meteosat-7, NOAA-12). The daily product is 

accumulated from 3-hourly product (3B42-3-hourly) with a 0.25 by 0.25-degree spatial 

resolution (NASA, 2011). 

By coupling satellite-derived vegetation phenology and precipitation, the response 

of phenology to seasonal variation in rainfall is possible. Although several studies explored the 

response of vegetation phenology to precipitation, small temporal extent and coarse resolution of 

phenology and rainfall data limits the scope with regard to vegetation dynamics. Few studies 

examined vegetation dynamics and rainfall seasonality in tropical climate as in SEA. Rainfall is 

definitely a dominant independent variable to vegetation and the relationship with phenology can 

also help to determine the sensitivity of various vegetation formations to climate variability. 

Therefore, the study of ecosystems in SEA will be helpful in understanding the climate of SEA 

and how it affects the vegetation important in light of global climate change.  
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2.3 Environmental Model: The DNDC Model 

 2.3.1 Global Climate Change and Greenhouse Gases Emissions 

In the context of global climate change, increasing greenhouse gases (GHG) is the 

main cause of climate change (Li et al., 1994; Pathak et al., 2005). Several trace gases, such as 

carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), are the key greenhouse gases.  CO2, 

CH4, and N2O contribute towards  global warming at 60%, 15%, and 5% respectively, and 

concentrations of these gases in the atmosphere are increasing at 0.4%, 3.0%, and 0.22% per 

year, respectively (Pathak et al., 2005).  

Agro-ecosystems are considered to be the major source of the increase in GHG 

emissions into the atmosphere (Jagadeesh Babu et al., 2005). Agriculture contributes 92%, 65%, 

and 26 % of the total anthropogenic emissions of N20, CH4, and CO2, respectively (Zhang et al., 

2002). CO2, CH4, and N2O are products of the biogeochemical cycles of carbon (C) and nitrogen 

(N) in agro-ecosystems and are produced in soils through decomposition, 

nitrification/denitrification, and methanogenesis (Li et al., 2004). In addition, any changes in 

management or climate/soil conditions will alter the biochemical or geochemical processes 

leading to changes in the gas fluxes (Li et al., 2004).  

Conversion of naturally vegetated land to agriculture generally results in the loss 

of soil organic carbon (SOC). The loss of carbon from agricultural soils contributes to the growth 

of atmospheric CO2 concentration and the potential for global warming (Li et al, 2003). In 

addition, food production contributes approximately 70% of global atmospheric input of N2O (Li 

et al., 2005). Variation in N2O fluxes is related to SOC content and C-sequestration during the 
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nitrification/denitrification process. Increasing C-sequestration is directly linked with increasing 

N2O emissions (Li et al., 2005). In particular, using fertilizer will alter the 

nitrification/denitrification process when SOC increases and results in increases of N2O (Li et 

al., 2005). Furthermore, several studies reported that agricultural activities are responsible for 

approximately 50% of global atmospheric inputs of CH4, and rice paddies are the major sources 

of CH4, contributing about 12% to global methane emissions (Zhang, et al., 2012; Zhang et al., 

2009; Jagadeesh Babu et al., 2005). Additionally, numerous observations indicated that 

agricultural production and anthropogenic activities, e.g., tillage, fertilization, irrigation, and 

manure amendment, have resulted in significant increases in the number of GHG emissions (Li 

et al., 2004; Pathak et al., 2005; Zhang, et al., 2009; Zhang et al., 2012). CO2, CH4, and N2O are 

consequently the major GHG emissions from agricultural activities.  

In order to predict the rate of GHG emissions from various ecosystems, a number 

of environmental models have been developed in recent years to understand environmental 

consequences. The different modeling approaches can be grouped into the following categories: 

regression, empirical/semi-empirical, and process-based models (Cai et al, 2003). Early models 

used regression relationships between rates of emission and either crop biomass or grain yield. A 

simple regression model with a GIS framework was applied by Sozanska et al. (2002) to make 

an inventory of N2O emissions in British soils. The DAYCENT ecosystem model has also been 

applied to simulate soil organic carbon levels, crop yields, and annual trace gas fluxes for various 

soils (Del Grosso et al., 2002). CENTURY was developed for carbon, nitrogen, sulphur, and 

phosphorus cycles (Parton et al., 1988). Matthews et al. (2000) developed a process-based 
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Methane Emissions from Rice EcoSystems (MERES) model for simulating CH4 emissions from 

rice fields. Cao et al. (1995) estimated CH4 emission from rice fields in China and globally by 

using a process-based Methane Emission Model (MEM). Mall and Agarwal (2002) compared the 

performance of crop simulation models, CERES-Rice and ORYZA1N in India to predict the 

influence of climate change on rice grain yield. Recently, a process-based model INFOCROP 

has been developed for scaling-up gas emission estimates from tropical agriculture (Agarwal     

et al., 2004). 

 2.3.2 DNDC Model and its Capacities 

One of the most effective environmental models is the Denitrification-

Decomposition Model (DNDC). This model is a process-based model developed by C. Li and his 

colleagues. The model is based on the biogeochemical concepts for predicting soil 

biogeochemistry (Li et al., 1992, 1994). The DNDC model was originally developed for 

predicting carbon sequestration, nitrogen dynamics, and trace gas emissions for agricultural 

lands, and then it was expanded to simulate N2O, CH4, CO2, nitrogen oxide (NO), and ammonia 

(NH3) emissions (Li, 2000; Li et al., 1992, 1994). This model is widely used to quantify GHG 

emissions from agriculture and other land uses. 

As a process-based biogeochemical model, the DNDC can simulate GHG 

dynamics under a range of changing ecological drivers (soil physical properties, climate, 

topography, vegetation) and management variables (cropping, tillage, manure, fertilization, and 

grazing practices), while capturing temporal and spatial variability (Li et al., 1992, 1994, 1996). 

The DNDC is able to estimate the rates of trace gas production and consumption in agricultural 

ecosystems by simulating the fundamental processes controlling the interactions among 



36 

 

ecological drivers, soil environmental factors, and relevant biochemical or geochemical reactions 

(Zhang et al., 2002). 

During the past two decades, the DNDC model was tested and validated by many 

researchers and under a wide range of conditions worldwide for predicting GHG emissions. The 

model has been applied to estimate soil organic carbon dynamics (Li et al., 1994, 2003), N2O 

emissions from agricultural fields (Li et al., 1996, 2001) and dairy farms (Brown et al., 2001), 

CH4 emissions from rice fields (Li et al., 2004,2005b; Pathak et al., 2005; Jagadeesh Babu et al., 

2005; Cai et al., 2003; Fumoto et al., 2008; Smakgahn et al., 2009; Zhang et al., 2009; Zhang et 

al., 2012), and a forest version of DNDC, PnET-N-DNDC, was developed for simulating N2O 

and NO emissions from forest soils (Butterbach-Bahl et al., 2004). With continuous modification 

and calibration, the DNDC model can become powerful tool for applying in national 

trace  gas  inventory  studies under different conditions and different areas, for example in the 

U.S., Canada, the United Kingdom, Germany, Italy, New Zealand, China, Japan, and Thailand 

(Li et al., 1994; Li et al., 2004, 2005a, 2005b; Cai et al., 2003; Butterbach-Bahl et al., 2004; 

Jagadeesh Babu et al.,  2005; Pathak el al., 2005; Fumoto et al., 2008; Smakgahn et al., 2009).  

The DNDC model has been modified for predicting GHG emissions from paddy 

rice ecosystems (Li et al., 2004, 2005b). The new DNDC model modified simulations of 

anaerobic biogeochemistry and rice growth as well as the parameterization of paddy rice 

management. This modified model was tested for its sensitivities to management alternatives and 

variations in climate and soil properties, particularly in tropical areas. The modified DNDC 

model was developed and used for estimating emissions of CO2, CH4, and N2O from all rice 
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paddies in China, Japan, Thailand, and India (Li et al., 2004, 2005b; Cai et al., 2003; Pathak      

el al., 2005: Fumoto et al., 2007; Smakgahn et al., 2009; Zhang et al., 2009, 2011, 2012).  

The DNDC provides significant advantages over other environmental models for 

quantifying GHG emissions from agricultural ecosystems. DNDC has been linked to 

a crop model to simulate SOC dynamics and emissions of several trace gases from both upland 

and wetland agricultural ecosystems (Li et al., 1992, 1994, 1996, 2004). DNDC simulates soil 

redox potential and CH4 emissions from saturated soils and CH4 uptake; whereas other models, 

such as DAYCENT, process CH4 uptake in non-saturated soils (Olander & Malin, 2010). 

Furthermore, this model can manipulate the quantity of irrigation with different types of 

irrigation and can be applied to a wide variety of crop types (Salas et al., 2008). Moreover, the 

DNDC model can work in site mode or regional mode and can be linked to a GIS database of 

climate, soil, vegetation, and farming practices (Cai et al., 2003; Jagadeesh Babu et al., 2005). 

The previously described capabilities of the DNDC model are critical for 

quantifying emissions in tropical zones that have varieties of crop types in both upland and 

wetland ecosystems. In addition, the  extensive validation and applications 

worldwide  demonstrate that  DNDC is capable of capturing the basic patterns and magnitudes of 

SOC, modeling  C  and  N  dynamics, and quantifying trace gas emissions across a broad range 

of climatic zones, soil  types,  and  management  regimes.     

2.3.3 GHG Emissions in SEA and Thailand  

SEA is considered highly vulnerable to consequences of climate change (ADB, 

2009). With 563.1 million people, the population is rising almost 2% annually, compared with 

the global average of 1.4% (ADB, 2009). Land use change is one of the most dramatic changes 

in this region – particularly change from forest to agricultural areas. Additionally, high 
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concentrations of human activities and economic growth in this region are highly dependent on 

agriculture, natural resources, and forestry. Accordingly, the agricultural sector is very important 

for providing jobs and livelihoods for a great number of people in this region.  

SEA contributes significantly to global GHG emissions due to the increase in 

large scale agriculture. According to ADB (2009) and IPCC (2007), SEA contributed 12% of the 

world’s GHG emissions in 2000, an increase of 27% from 1990, a rate greater than that of the 

global average. The land use change and forestry sector has been the major source of emissions 

from this region, contributing 75% of total regional GHG emissions in 2000 ADB (2009).  

Increasing demand for food and industrial crops has led to increases in 

agricultural land conversion and intensification, generating considerable environmental pressure. 

Nonagricultural areas (for example, forestlands, grasslands, and wetlands) have been converted 

to cropland for the production of beans, natural rubber, palm oil, rice (paddy), sesame seed, 

soybeans, and vegetables. This change results in emissions of CO2 from biomass (below ground 

and above ground) and soils. The burning of biomass in the process of land conversion also 

causes emissions of CO2 and other gases such as CH4, N2O, carbon monoxide (CO), and oxides 

of nitrogen (NOx). In addition, conversion of natural ecosystems to agriculture has caused 

changes in SOC and the decrease in SOC elevates increasing atmospheric CO2 (Li et al., 1994). 

SEA countries have to use modern crop varieties and improved farming techniques (e.g., 

irrigation, tillage, fertilizers) to increase yields. These processes have significant impacts on the 

environment, particularly CO2 and CH4 levels. 
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In addition to CO2 emission from agricultural areas, paddy rice fields are also an 

important source of CH4 (Li et al., 2005b).  Rice is a major food crop in SEA. Most rice farms in 

Asia are flooded paddy fields, which are the major source of CH4 (Li et al., 2005b), and rice 

farm management, e.g., water management and fertilizer, has greatly affected the total CH4 

emissions (Li et al., 2004). Additionally, the greater use of nitrogen fertilizer or chemicals 

without efficient management will have significantly adverse impacts in N2O emissions (IPCC, 

2007; ADB, 2009). Intensified cropping systems (i.e., two or three crops per year) with increased 

tillage, irrigation, and N fertilizer use have been widely applied in SEA to increase crop 

production.  Such techniques can increase production, but they have contributed to decreases in 

SOC and to increases in the emissions of CH4 and N2O. These gaseous emissions not only 

represent potential economic losses, but also could lead to a negative impact on environmental 

quality (Li et al., 2004). 

This situation is particularly important to consider in Thailand because it is an 

agricultural country and rice production is its major agricultural product. According to Thailand 

Report (USDA, 2010; Towprayoon, 2005), paddy rice cropland in Thailand accounts for 52% of 

all cultivated land in the country (approximately 10 million hectares of rice-growing areas) and 

for 6% of the world’s rice paddies. Additionally, Thailand is the world's largest exporter of rice. 

The total rice production in 2010 was 30.7 million tons and the export was estimated at 8.8 

million tons. Therefore, rice production in Thailand represents a significant portion of the Thai 

economy, which uses over half of its farmable land area and labor force, and rice is the main 

sources of nutrition for most Thai citizens. Most of rice growing areas are in the northeast of 

http://en.wikipedia.org/wiki/Rice_production_in_Thailand
http://en.wikipedia.org/wiki/Economy_of_Thailand
http://en.wikipedia.org/wiki/Economy_of_Thailand
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Thailand, although the Central Plains is known as the nation's "rice bowl". Wetland (rainfed and 

irrigated rice fields) contributed about 99% of the total rice area. Irrigated rice fields are about 

25% of rice lands, while the rest is still rainfed rice (FAO, 2007). These paddy rice croplands are 

considered to be the large CH4 source in Thailand. 

As one of the world's leading rice producers and one of 150 nations that have 

signed the United Nations Framework Convention on Climate Change in 1992, Thailand needs 

to estimate emissions at a broad scale in order to set mitigation policies and develop effective 

monitoring methods (UNFCC, 2007). Several approaches have been developed for estimating 

GHG emissions from cropping systems in Thailand, particularly CH4 from rice paddies. This is 

because wetland rice soils have been identified as an important CH4 source at the global scale 

(Smakgahn et al., 2009). Flooded rice fields, with their abundant organic matter, warm 

temperatures, and anaerobic conditions, provide and ideal environment for methanogenic activity 

(Matthews, et al., 2000). In addition, CH4 provides an equivalent warming effect being about 32 

times higher than CO2 (Matthews, et al., 2000). Therefore, accurately estimating CH4 emissions 

from rice paddies has become important for GHG inventories or mitigation policies at country 

and regional levels.  

However, estimates of GHG emissions from cropping systems are still far from 

reliable because of large spatial and temporal variations of the emission records they are based 

on (Cai et al., 2003). Additionally, Smakgahn et al. (2009) also mentioned that CH4 estimations 

are difficult due to a variety of factors, including soil properties, rice varieties, and agricultural 

practices. Several studies attempted to conduct the estimation of GHG emissions from Thai rice 
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fields. A typical approach is to use emission factors and scaling factors for various categories of 

ecosystems provided by the guidelines of the IPCC to estimate CH4 emissions from rice fields in 

Thailand (Smakgahn, 1999; Gale et al., 2005; Eiumnoh et al., 2002). In addition, a variety of 

studies quantified CH4 from rice fields in Thailand based on experiments conducted in specific 

sites or other field methods to study the interaction of various factors and their effects on CH4 

emissions in order to find the appropriate technology to reduce the emission of this gas 

(Jermsawatdipong, 2002; Tawprayoon, 2005; Siriratririya, 2001) 

Great efforts have been made to estimate CH4 emissions from Thai rice fields 

using the DNDC model at Prachinburi, Suphan Buri, Chiang Mai, and Surin (Cai et al., 2003). 

Smakgahn (2003) also simulated CH4 emissions using DNDC model at Kanchanaburi, 

Nonthaburi, Samutsakorn, and Singburi. However, the results showed large discrepancies 

between the simulated results and filed observations. The simulation of emissions using the 

DNDC model was revised and improved in the research of Smakgahn et al. (2009) to estimate 

CH4 from irrigated rice fields at nine study sites in Thailand and the results showed a high 

correlation with observations. The results suggested the considerable uncertainties resulted from 

model description (root biomass) and input parameters from soil properties and field 

management (reducible soil iron, straw incorporation rate, and water regime). In addition, 

scientists have measured CH4 and N2O from Thai rice fields by using process bases and 

empirical models (Towprayoon & Smakgahn, 2003; Smakgahn, 2003). The recent research 

estimated CH4 emissions by using vegetation indices from LANDSAT-5TM (Keereerom, 2011).  
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Spatio-temporal analysis of emissions from rice fields with changing 

environmental conditions and field management at regional and national scales has become 

important for GHG inventory and mitigation and for understanding environmental change in 

Thailand. However, most research has focused on quantifying emissions at a local scale 

(Jermsawatdipong, 2002; Cai et al., 2003; Tawprayoon, 2005; Smakgahn et al., 2009). The 

studies that used a model for GHG estimation frequently mentioned the problems of model 

accuracy due to missing data, incomplete databases, and insufficient availability of input 

parameters for the model (Smakgahn, 2003; Smakgahn et al., 2009). The local circumstances 

such as soil types, climate data, and farming management are necessary to better simulate 

emissions but these data are unavailable in some sites or some areas. In addition, a large spatial 

dimension is required to meet the demands for GHG mitigation.  

Remotely sensed data have provided an effective way to derive regional input 

data for the DNDC model. Spatial and temporal information obtained from satellite data provide 

geographic characteristics such as rice growing areas, rice phenology, and soil moisture, 

particularly in places where field observations are unavailable. Many researchers have used 

remotely sensed data for mapping the extent of paddy rice on local and regional scales and 

applied these data to the DNDC model (Zhang et al., 2009; Zhang et al, 2011; Zhang et al., 

2012). In addition to rice areas, phenology is very important data for DNDC to quantify 

emissions and these data are difficult to access or are often unavailable. With spatial and multi-

temporal remote sensing data, phenological patterns (e.g., the start and end of the growing 

season) can be extracted at regional scales and this information provides the opportunity for the 

DNDC model to generate spatio-temporal patterns of emissions at regional scales.  
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Therefore, this research applied remote sensing technology to develop the new 

database based on a grid-based system (250 m x 250 m) for the DNDC model in order to identify 

spatial patterns and changes in GHG emissions. This approach is different from other methods in 

terms of scale. Most DNDC modeling performed at site and regional scales usually is applied to 

a county as the basic unit. Spatial variation in climate, soil, and farming management provides 

great uncertainties at this scale unit, for example, using average soil properties for each county. 

In this way, the simulation at the site level with a grid-based unit can provide more detailed and 

accurate agroecosystem information because this approach could reflect the spatial diversity of 

crop growth environments. This approach is able to reserve the advantages of site-based 

modeling but also meet the demand for large-region estimation. 

In conclusion, agroecosystems play an important role in balancing food 

production and environmental protection. As a result, predicting and estimating the impacts of 

trace gas emission are significant for environmental safety and decision making. An 

environmental model is required to estimate regional GHG emissions in agricultural areas, 

particularly in Thailand. The new approaches proposed in this research, with spatial and multi-

temporal remote sensing data and the new database system with a grid-based unit at 250 m 

resolution can improve model performance to estimate inter-annual variation in emissions from 

rice paddy fields in Thailand or elsewhere. Additionally, the distributions and changes of these 

GHG emissions can be investigated with phenological changes and climate data in order to study 

the effects of the environmental impacts and ecosystem dynamics in this region. 
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2.4 Visualization for Satellite Phenological Information 

 2.4.1 Remote Sensing Time-series Data and Visualization 

Satellite time-series data are important for regional, natural resource management 

and environmental monitoring because they can represent changes in space, time, and attribute. 

These data show processes, patterns, trends, directions of change, anomalies, and causes and 

relationship of dynamic phenomena on the earth’s surface (Harrower, 2002; Blok, 2006). To 

date, there are no more technological or data problems. The important problem is how to 

represent time-series data to show the distribution and changes of geographic phenomena.  

To represent the spatio-temporal processes of environmental systems, 

cartographers need to use dynamic geovisual displays to realistically mimic the passage of world 

time. This goevisual display is important for environmental monitoring and management because 

it provides the capability to visualize time-series data that congruently depict change over time 

and space (Harrower, 2002; Blok, 2006). For example, map animation allows cartographers to 

create displays of time-series data that mimic this dynamic process, whereas static maps of time-

series data have the limitation to show change over time. Additionally, dynamic geovisual 

displays enable viewers not only to detect changes but also to understand the meanings encoded 

in transitions within these dynamic displays (Fish et al., 2011).  

Although satellite time-series data can dynamically display spatio-temporal 

processes in the real world, there are difficulties for the viewer to understand the meanings 

encoded within dynamic displays. The major challenges of satellite time-series data for 

visualization are data characteristics that require users’ knowledge and experience (Blok, 2006). 

In addition, satellite time-series data also require effective techniques to design the visualization 

(Harrower, 2002). Phenological information derived from satellite time-series data is the useful 
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information, but it does not has easily available method for users to view, explore, and share the 

data. To respond this need, it is necessary to develop the effective methods to visualize these 

geographical phenomena of the changes.  

 2.4.2 Visual Exploration 

Visual exploration is an effective technique for time-series satellite images. Blok 

(2006) described that visual exploration is a creative process to derive meaning and construct 

knowledge. Visual exploration is a process that users start without much knowledge about the 

underlying data, but interactivity provides the tools for the search of structures and trends. The 

comparison of patterns, spatial and temporal characteristics, relationships and trends, enables 

users to interact with the data and their graphic representations.  

Visual exploration is potentially helpful in all stages of the knowledge 

construction process (DiBiase et al., 1992). Users can derive the meaning of information from 

this process to formulate hypotheses and can also be used to confirm, synthesize, and ultimately 

present ideas and information in the research process.  Due to now the rate of environmental 

change effected by human activity has been increasing, we need more data to depict and monitor 

the changes. However, quantitative data about this change exceed our capacity to learn from 

them. Using visual exploration to convert these data to graphic form and searching visually for 

patterns and anomalies can increase potential for scientific insight in the earth science (DiBiase 

et al, 1992). Harrower’s research (2002) demonstrated that the effects of change on multi-

temporal remote sensing data enabled users to detect structures or trends and helped users to 

formulate specific hypotheses about the behavior of geographic entities represented within the 

data. Therefore, satellite time-series data have potential for visual exploration to detect the 

patterns of changes. 
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 2.4.3 Cartographic Design for Satellite Time-series Data 

In order to create visual exploration, the geographical representation in Internet 

atlas with map animation and bivariate mapping make it possible to detect spatially or temporally 

distributed regional patterns, and changes of satellite time-series data. Map animation and 

bivariate mapping are powerful techniques applied to the interactive atlas because they can 

display dynamically spatio-temporal processes and allow viewers to easily understand complex 

spatio-temporal geographic phenomena. This research creates an Internet atlas combining 

thematic maps, bivariate maps, and map animation and distributing this information by web 

mapping application with the MapServer. Five componets (Internet atlas, thematic maps, 

bivariate maping, map animation, and web mapping application) are discussed in the following 

sections. 

 1) Internet Atlas 

The development of Internet atlas is one of the cartographic developments on the 

web. An atlas is a combination of maps and additional information combined with a well 

structured work (Richard, 1999). The electronic form of the atlas applying the techniques of 

multimedia is commonly referred to as a multimedia atlas or Internet atlas (Borchert, 1999). An 

online atlas is a collection of maps, illustrations, informative tables or textual matters bundled 

with a clear structure and connected on an HTML page (Richard, 1999). The main advantages of 

the Internet atlas are data and media exploration by selection of context (spatial or thematic), 

interactive functions and dynamic animation for dynamic contents or method comparisons, 

individual selection of geometry and attributes, and individual map design by users (Borchert, 

1999). Due to these advantages, the production and uses of an Internet atlas are currently more 

available on the Internet for the general public. 
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At present, there are several atlases that can be found on the web and they are 

presented in an attractive way with useful information. The classification of Internet 

atlas/multimedia atlas can be distinguished by view-only atlases and interactive atlases. The 

interactive atlas is used for analysis purposes, which sometimes include a mapping module, GIS 

functionality, and topographic base map collections. This research created thematic map, 

bivariate map, and map animation in the Internet atlas with interactive functions for users to 

explore phenological information and related environmental variables in SEA. 

 2) Thematic Map  

The thematic map is used to display the spatial pattern of a theme or attribute and 

can provide information in three basis ways: specific information, general information, and 

pattern comparisons on two or more maps (Slocum et al., 2009). The thematic map was applied 

in this research to present one specific data set, emphasizing the spatial pattern of one or more 

geographic attributes such as EVI, start and end date of the growing season. These maps are 

appropriate to indicate the pattern and magnitude differences of geographic variable. 

  According to Slocum et al. (2009), there are the particular concerns in thematic 

mapping. The first concern is the classification techniques. Thematic mapping is needed to 

standardize data and select appropriate techniques for data classification. The appropriate 

technique depends on data characteristics and purpose of map. The other concerns are an 

appropriate number of classes, level of measurement, visual variables, including the color 

scheme. For example, hue is appropriate for qualitative attributes but lightness and satuation 

suggest quantitative differences. The last issue is legends that should be designed so that users 

can easily interpret maps. These numerous factors should be carefully considered, when 

designing the map.  
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 3) Bivariate Map 

Slocum et al. (2009) defined bivariate mapping as the process of displaying two 

attributes of geographic phenomena. The purpose of bivariate mapping is to compare and 

examine the relation between two attributes in order to represent individual distributions or the 

correlation between them. Consequently, bivariate maps enable the visualization of statistical 

correlation and show a lot of information on one map. Bivariate mapping is the technique that 

was developed by the U.S. Bureau of the Census in the 1970s (Slocum et al., 2009). The 

graphical representation of bivariate data can enhance the ability of map readers to detect and 

comprehend important phenomena as well as communicate major conclusions to others (Wang, 

1998).  

However, bivariate mapping has been criticized because of its failure to 

communicate information, although it can be effectively displayed with a clear legend and 

explanatory note (Olson, 1981).  The disadvantages of this type of map are the subjective 

interpretation, distortion of the data representation, and erroneous impression (Olson, 1981; 

Wang, 1998). In addition, it is difficult to read and to design, particularly when the number of 

entities to be represented increase; moreover, a lot of the correlation depends on classification 

methods (Slocum et al., 2009). 

To deal with the significant challenges of bivariate mapping, cartographers should 

concern with cartographic design for this type of map. Olson (1981) proposed the early revised 

design for bivariate maps: a very prominent and clear legend, the displays of single-variable and 

two-variable maps on the same layout to increase and improve extraction of information (single-

variable maps should show in black and white colors), and explanatory notes to reinforce the 

confidence of the user and show the types of information extractable from the display. 
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The important issues for bivariate mapping are data classification and color 

schemes (Brewer, 1994; Slocum et al., 2009). An appropriate method of classification should be 

selected for bivariate mapping. Furthermore, no more than three classes are appropriate for 

bivariate maps because it can increase cognitive overload leading the users to be confused with 

the maps. Color schemes for bivariate maps should suggest correlation and the technique is 

dependent on types of map and types of data. Brewer (1994) introduced color schemes for 

bivariate choropleth maps focusing specifically on correlation between variables. According to 

Brewer’s research (1994), a comprehensive set of color scheme types and corresponding 

guidelines for the use of hue and lightness for each scheme are proposed such as 

sequential/sequential schemes and diverging/diverging schemes. Brewer (1994) concluded that 

different characteristics of distributions and their interrelationships can be examined by using 

different schemes. 

In addition to data classification and color schemes, the important issues of 

bivariate mapping are the selection of appropriate variables and the use of a legend (Slocum et 

al., 2009). Both issues are dependent on the specific purpose and map-users. With these effective 

designs, bivariate map can communicate the relation between variables. Furthermore, users can 

analyze the data, detect and comprehend important phenomena, and find the major conclusion 

for their research.  

 4) Map Animation 

To represent spatio-temporal processes, cartographers use map animation to 

communicate changes in space, time, and attribute simultaneously (Goldsberry & Battersby, 

2009). Animations are defined as sequences of static graphic depictions (frames) to show the 

graphic content in rapid succession (Harrow, 2008). Animation provides a means for better 
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understanding the complexity of geographic changes because it can represent the outcomes of 

change and the process of change (what happened, how, and why), while the static map only 

represents the outcomes of change (Harrow, 2002). 

In addition, animated maps seem especially suited to emphasizing change over 

time and space, whereas static maps cannot represent time and geographic behaviors or 

processes. Although small multiple maps can represent changes over time, they can show this 

change only in macro steps (Harrower, 2008). The representation of small multiple maps is 

dependent on how many key events are selected to discretely display geographic phenomena. 

This characteristic is different from animated maps, which show continuous changes or micro 

steps in complex systems that might be missed in small multiple displays (Slocum et al., 2009). 

Furthermore, small multiple maps are difficult to interpret when comparing subregions within 

each map (Slocum et al., 2009). 

 Animated maps are effective in conveying concepts that are dynamic, 

particularly when using satellite time-series data because represent geographical processes that 

change over time and space that are important to investigate the complex and dynamic behavior 

of geographic entities (Harrower, 2002). This dynamic process is important for many 

applications such as deforestation, erosion, and land use/land cover change (Blok, 2006). 

Additionally, map animation represents changes in phenomena of interest i.e., space, time, and 

attribute (Goldsberry & Battersby, 2009), for example, selecting year (time) to explore space and 

attribute changes. With these capabilities, map animation is significant for knowledge 

construction and the research process. It can be used to formulate specific hypotheses and 

confirm information in the research process. 
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Map animation can communicate effectively the visual dynamic of a geographic 

process; however, it is difficult to perceive and easy overload users with rapid changes. Several 

researchers have argued that effective map design can reduce these challenges (Harrow, 2002, 

2008; Blok, 2006; Goldsberry & Battersby, 2009). For example, using the number of classes 

appropriately, applying dynamic visual variables and interactive map animations, and 

determining the levels of change detection can facilitate visualization in map animation. 

Additionally, understanding the meaning of map animation depends on the symbology used, the 

level of interaction that users are permitted to have with the animation, and the expertise and 

experience of the users in data characteristics and animation.  These techniques can apply to 

represent changes of satellite time-series data with map animation and allows users to detect 

meaningful information. 

 5) Web Mapping Application: A Tool to Disseminate Geographic Data 

Web mapping is the process of creation, distribution, and use of web maps on the 

Internet. In addition, visualization aspects are the main subject of this mapping (Hachler, 2003). 

Web mapping opens the opportunity to disseminate Internet atlas, thematic map, map animation, 

and bivariate map to users with easy accessibility but cheap distribution of data and software. 

One type of web mapping application is a web map server. A map server makes 

available geographical information in the form of maps. These maps can be static maps as a 

result of a cartographic process or interactive maps that users can change and define some 

selected graphical variables of the map presentation (Gartner, 1999). The “MapServer” of the 

University of Minnesota (UMN) is a well-known open source project whose purpose is to 

display dynamic spatial maps over the Internet  The UMN MapServer has been developed in 

cooperation with NASA and the Minnesota Department of Natural Resource to make its satellite 

http://en.wikipedia.org/wiki/Satellite_imagery
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imagery available to the public (The University of Minnesota, 2011). This open source product 

has already been successfully used in several other projects including in environmental 

monitoring and management tasks (Hachler, 2003; Choi et al., 2005; Aden et al., 2010). The 

main advantages are to operate on UNIX/LINUX and Windows systems and provide core 

functionality to support a variety of web mapping applications. The most important features 

include vector and raster format support, fully customizable and template driven output, 

automatic legend, and scale bar building (Hachler, 2003). 

While the growth rate of web mapping and map servers have been increasing, 

there is no web mapping of phenological information, especially in SEA. With powerful spatial 

data representation and simple user interfaces, web mapping can increase the understanding of 

spatial phenomena and facilitate environmental monitoring and management (Tsou et al., 2004). 

Therefore, the web mapping application with the MapServer that facilitate exploration of satellite 

time-series data and present valuable phenological information will benefit potential users to 

explore and analyze the temporal and spatial change of geographic phenomena. In addition, users 

can specify their unique areas and variables of interest and then see the information described in 

a map with easy-to-navigate tools and simple user interfaces. 

In conclusion, satellite time-series data that represent vegetation conditions and 

phenological parameters are suitable to create the specific visualization system. This 

visualization system provides opportunity to explore geographic phenomena, particularly the 

distribution and pattern of changes. Visual exploration enables users to derive the meaningful 

information from interactive processes by the comparison of patterns, and their spatial and 

temporal characteristics, as well as relationships and trends of the data. Internet atlas is one of the 

most effective systems, which provides data exploration for analysis purposes with applicable 

http://en.wikipedia.org/wiki/Satellite_imagery
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functions. In addition, this system is opened to general public by using the MapServer to deliver 

spatial information on Internet. Additionally, thematic mapping, map animation, and bivariate 

mapping can enhance the capability of internet atlas by enabling users to understand the complex 

spatio-temporal geographic phenomena more easily. With this effective system, users not only 

detect the trends and changes of environment (e.g., vegetation condition and phenological 

parameters) from satellite time-series data but also understand the meanings within these 

dynamic displays. Better understanding in environmental change by using visualization is the 

critical need to solve environmental problems and to provide effective planning and decision-

making (Harrower, 2008).  
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CHAPTER 3 

RESEARCH METHODOLOGY 

 There are four main parts in this research: spatio-temporal variation of vegetation 

phenology in SEA, driving forces of phenological changes, environmental impact, and 

visualization system. The flow chart of research methodology is shown in Figure 3.1. The first 

part of this research explored spatio-temporal variation of EVI and phenological parameters; 

then, causes and drivers of phenological changes were examined by addressing the relationship 

between phenology and rainfall seasonality and investigating phenology and land use changes. 

Next, environmental model, DNDC, was used to assess environmental impact in rice fields in 

Thailand. The change and distribution of GHG emissions were examined with phenology and 

climate variation. The last part is the visualization system. Interactive Phenological Atlas for 

SEA (IPA) was established to display the outputs from previous sections to present spatio-

temporal patterns of environmental changes in SEA. 

3.1 Study Area 

 Southeast Asia (SEA) consists of two dissimilar portions: the Indochina Peninsula and 

the Insular SEA (Archipelagic Nations). This research focuses on the seasonal dynamic in the 

Indochina Peninsula of SEA: Thailand, Vietnam, Cambodia, Lao PDR, Myanmar, and Malaysia; 

(Figure 3.2). This is because phenology can be extracted in the Indochina Peninsula while there 

is no variation in seasonal vegetation cycles in the Insular SEA due to the rainy tropical climate 

along with rain forests. For convenience, those countries in Indochina Peninsula are referred to 

as “Southeast Asia (SEA)" in this research. 
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Figure 3.1 Research methodology 
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Figure 3.2 Study Area, the Indochina Peninsula in SEA 

 The Peninsula has a humid subtropical climate with a winter dry season and much of it 

receives considerable annual precipitation (Southeast Asia, 2009). With these characteristics, the 

Peninsula has tropical maritime climate featuring relatively high temperatures, high humidity, 

and abundant precipitation. There are three basic seasons in this region: the rainy season, winter, 

and summer. Most of SEA is covered with tropical forests. There are rain forests (tropical 

evergreen forests), which have a high annual rainfall, and monsoon forests (tropical deciduous 

forests) where rainfall is seasonal (Southeast Asia, 2009). 
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 According to NIC (2009), SEA has a natural climate variability due to the regular pattern 

of seasonal monsoons or the periodic shift in global climate caused by ENSO (El Niño-Southern 

Oscillation events, a global climate phenomenon that recurs irregularly every 2-7 years and is 

associated with changes in sea surface temperature and prevailing winds). Seasonal monsoons 

can cause extreme weather events, such as floods and droughts. Moreover, ENSO can intensify 

existing floods and droughts in this region. 

3.2 Data Sources 

The following data are used in this research (Table 3.1):   

Table 3.1 Summary of data requirements in this research 

 Data Description Spatial and temporal coverage 

1 EVI images retrieved from MODIS dataset 

onboard NASA’s Terra spacecraft (MOD13Q1 

product) 

(http://reverb.echo.nasa.gov/reverb/) 

Indochina Peninsula: 250 m spatial 

resolution from 2001-2010, every 16-

day EVI composite period (23 dates 

per year with 460 tiles per year) 

2 Rainfall data retrieved from TRMM (TRMM3B42 

daily product) 

(http://mirador.gsfc.nasa.gov/cgi-

bin/mirador/presentNavigation.pl?project=TRMM

&tree=project) 

Indochina Peninsula: daily rainfall 

rate for 0.25x0.25 degree spatial 

resolution from 2001-2010 

3 Rainfall data acquired from meteorological stations 

(Thai Meteorological Department ) 

Thailand: Monthly rainfall: 2001-

2010 

4 LANDSAT  images  

(http://glovis.usgs.gov) 

Thailand: 2004,2005,2006, and 2007 

5 Land use data in Thailand 

- National Land Use Dataset of Thailand  

(Land Development Department, Ministry of 

Agriculture) 

Thailand: 2001, 2002, 2009, and 

2010  
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Table 3.1 (cont’d) 

 

 Data Description Spatial and temporal coverage 

6 Data for DNDC Model  

- Soil property data  

(Department of Land Development) 

- Rainfall data (Thai Meteorological Department ) 

- Land use data 

(Land Development Department, Ministry of 

Agriculture) 

- Farming practices (e.g., tillage, fertilization, 

residues, flooding period) 

(Department of Agriculture, Department of 

Agricultural Extension, Rice Department, Local 

rice research center, Office of Agricultural 

Economics (Ministry of Agriculture and 

Cooperatives), research of Jermsawatdipong et al. 

(2002)) 

Lopburi Province in Thailand 

 

 

Daily rainfall: 2001-2010 

2002, 2010 

 

 

2002, 2010 

  

3.3 Data Pre-processing  

 The flowchart of this step is shown in Figure 3.3: data pre-processing for EVI and 

phenological analysis, and data pre-processing for rainfall analysis. EVI time-series data of 4,600 

tiles were downloaded and organized by dates and years, and collected in a database preparing 

for pre-processing. The first step of time-series EVI data processing was reprojection from the 

sinusoidal projection to the geographic projection, WGS84. The next step was creating mosaics 

from each tile to produce one image per 16 days (23 images per a year). The mosaic process 

produced 230 time-series files which were subsetted to the study area. After pre-processing, 

TIMESAT program was used to remove noise, generate EVI profiles, and extract phenological 

parameters.  
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Figure 3.3 Flowchart of phenology and rainfall analysis 
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3.4 Fitted Function and Phenological Extraction  

This research employed the TIMESAT program (Jönsson & Eklundh, 2010) to remove 

noise, generate EVI profiles, and extract phenological parameters. TIMESAT is an open source 

software developed by Jonsson and Eklundh, and was designed to process time-series of 

vegetation index derived from satellite spectral measurements (Jönsson & Eklundh, 2010). This 

program is a simple yet robust method to remove noise in time-series data. The major advantages 

of this program are a user-defined parameter in the smoothing process and extracting 

phenological parameters, providing three different smoothing functions to fit time-series data 

(asymmetric Gaussian, double logistic, and adaptive Savitzky–Golay filtering), and providing a 

comprehensive set of phenological parameters (Tan et al., 2011).  

In this research, the 16-day MODIS EVI composites were used to depict phenology and 

seasonal variations in vegetation activity. TIMESAT needs time-series data of three complete 

years to extract phenology; therefore, three years of EVI time series data were used to process, 

and a number of annual seasonal parameters were extracted from the middle year. For example, 

to extract phenology in 2005, we need EVI time-series data from 2004 to 2006. This research 

implemented separate three years of EVI time series to extract phenology in the middle year as 

shown in Figure 3.4 (e.g., using data from 2001 to 2003 to extract phenology in 2002 and using 

data from 2002 to 2004 to extract phenology in 2003). 

TIMESAT first implements the simple median filtering to remove noise, spikes, and 

irregular values of original images. Then, a filtering technique was used to produce a smoothed 

curve of EVI profiles. To obtain accurate EVI profiles and phenological parameters, the 

appropriate threshold parameters were required to be defined in the TIMESAT Program 

according to the local conditions in SEA before applying the smoothing filter to data series. A 
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number of settings were generated based on the local conditions in SEA by exploring time-series 

data and tuning and testing the important parameters. Several tests were run on specific areas in 

Thailand according to available data for assessing model performance. The parameters in the 

setting files were modified for SEA (Table 3.2), for example, window size of SG technique, the 

seasonality parameter for more than one growing season per year, amplitude cutoff value to 

remove pixels with very weak seasonality from the processing.   

 
Figure 3.4 Three year time-series data to extract phenological parameters from one year 

 

3.4.1 Data Filtering 

After obtaining appropriate setting for parameters, smoothing functions were 

processed for time-series data. TIMESAT was developed to make the fit of the upper envelope 

approach of the time-series and to reflect significant anomalies through an iterative process. This 

approach is more flexible and effective in obtaining high-quality time-series. The TIMESAT 

program uses three processing steps based on least-squares fits to the upper envelope of VI time 

series data as follow: 

- Removing Spikes and Outliers: As some spikes and outliers may be detected in 

time-series; these positive and negative outliers seriously impair the function fits. The 
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TIMESAT program implements the median filtering to remove these spikes and outliers. Data 

values that differ from the median value by more than the spike value multiplied with the 

standard deviation of VI values and that are different from the left and right neighbors are 

removed (Jönsson & Eklundh, 2010). 

Table 3.2 TIMESAT input parameters 

Parameters Values 

Job_name SEA 

Image /series mode (1/0)  1 

Trend (1/0)  0 

Use mask data (1/0)  0 

 Data file list/name  filelist2001.txt  

Mask file list/name  none 

Image file type  2 

Byte order (1/0)  0 

File dimension (nrow ncol)  13473 9766 

Processing window (start row stop row start col stop 

col)    

No. years and no. points per year  3 23  

Valid data range (lower upper)  1 10000  

Mask range 1 and weight  0 

Amplitude cutoff value  1500 

Print functions and weights (1/0)  0 

Output files (1/0 1/0 1/0)  1 1 0 

Use land cover (1/0)  0 

Spike method  1 

Spike value  2 

No. of landcover classes  1 

Land cover code for class  1  1 

%Season parameter 0.1 

No. of envelope iterations (1-3)  3 

Adaptation strength (1-10)  2 

Force minimum (1/0) and value  0-99999 

Fitting method (1-3)  1 

Weight update method  1 

Window size for Sav-Gol.  4 

Season start method  1 

Season start / stop values  0.2 0.2 
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- Determining the Number of Seasons: The number of growing season is 

determined by using de-trended data values (ti, yi), i = 1, 2, . . . , N for all years in the time-

series to fit to a model function by using the following equation (Jönsson & Eklundh, 2010): 

                   f(t) = c1 + c2 sin(ωt) + c3 cos(ωt) + c4 sin(2ωt) + c4 cos(2ωt)   (3.1) 

Where, ω = 6¶/N, t = a function of time, de-trended data values = (ti, yi), i = 1, 2, . . . ,N for all 

years in the time-series.  

The first basis function determines the base level whereas the pairs of sine and 

cosine functions correspond respectively to one and two annual vegetation season equation 

(Jönsson & Eklundh, 2010). The fitting procedure always gives a primary maximum. In addition, 

a secondary maximum may be found, if the amplitude ratio between the secondary maximum 

and the primary maximum exceeds a user defined threshold; therefore, we have two annual 

seasons. 

- Savitzky-Golay Filtering: Fitted curve function of the Savitzky-Golay (SG) 

filtering is selected to remove noise, spikes and irregular value of original images due to cloud 

contamination, atmospheric conditions and bidirectional effects. The SG function in the 

TIMESAT program is suitable for studying vegetation dynamics. In contrast to functions 

resulting from Fourier methods, the SG function in the TIMESAT is able to capture interannual 

change, i.e., changes in seasonal timing in different years. In addition, the SG computes least-

squares polynomial regression on each point to determine the smoothed value and adapts for 

the upper envelope of the EVI time-series profile.  

According to the SG function in the TIMESAT program (Jönsson & Eklundh, 

2010), the general mathematical process is:  
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     ∑       

 

    

 (3.2) 

 

Where, Yi  (new EVI values) is replaced by the average of EVI values in the 

window at position i, yi is the original EVI value at i position, i=1,…,N by a linear combination 

of nearby values in a window, N = the width of the moving window, determine the degree of 

smoothing, which  consists of 2n+1 points, the weights are Cj = 1/(2n + 1).  

The moving average method preserves the area and mean position of a seasonal 

peak, but it does not maintain the width and height. In order to preserve these properties, SG 

performs least-squares polynomial regression on each point to determine the smoothed value for 

each point. For each point value yi, i = 1, 2, . . . , N we fit a quadratic polynomial  f(t) = c1 + c2t 

+ c3t
2
 to all 2n + 1 points in the moving window and replace the value yi with the value of the 

polynomial at position ti. 

3.4.2 Phenological Parameters 

Considering the profile of the growing season (Figure 2.1) and the review of 

phenological applications, this research identified 7 phenological parameters (Table 3.3) which 

are appropriate to depict phenological vegetation variability in SEA. This research applied a 

threshold-based function by calculating the ratio for the start (SGS) and the end of growing 

season (EGS) where the fitted curve reaches a proportion of the seasonal amplitude measured 

respectively from the left and right minimum value. The advantage of TIMESAT program is that 

it is easy to tune the threshold according to the local conditions.  
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Table 3.3 Phenological parameters 

Phenological Parameter Definition 

1. Start of the growing season The first date on which the value has increased to a 

defined level measured from the left minimum level 

2. End of the growing season The last date on which the value has decreased to a 

defined level measured from the right minimum level 

3. Length of the growing season Time from the start to the end of the season 

4. Mid of the growing season The middle date between the start and the end date 

5. Amplitude of the growing season The difference between the peak value and the start and 

the end date 

6. Large integral The total vegetation production 

7. Small integral The seasonally active vegetation, the different between 

the season and the base level 

 

In addition, the most important parameter for extracting phenology is the range of 

the growing season. TIMESAT needs a specific date between which the season is expected to 

occur, and pixels that have the season in a given range will be processed. To ensure that the full 

season in SEA is captured, the range of the start and end dates should be wider than the expected 

season. There are multiple cropping frequencies in this region and the length of the second 

growing seasons is longer than one calendar year. For example, some vegetation may start in 

October and end in March the following year. The range of season should be large enough to 

allow for a certain variation in the start and end of the first and the second seasons over the 

processed area. Therefore, time series data were processed to test and tune as well as to compare 

with the land use data and phenological data in Thailand. After testing the range of growing 

season in SEA, the results show that a large number of pixels show no phenological data when 

the narrower range was applied (Figure 3.5). The range from January to July of the following 

years is the appropriate range of growing season to detect phenology and is large enough to 

cover the start and end dates of the growing season in this region. Due to the limitations of the 
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TIMESAT program, this research focused on the first and second seasons in this region but the 

third season cannot be extracted by TIMESAT program. Input settings for the TIMESAT 

program in SEA is shown in Table 3.2.  

Testing Phenology Range, Start Date, S1, 2006 

 

Figure 3.5 Testing the range of growing season in Thailand 

3.5 Rainfall Seasonality Extraction 

  The rainfall profiles (daily rainfall from TRMM), which has potentials to represent the 

seasonal and annual dynamics, were generated to present the patterns and changes of rainfall 

seasonality from 2001 to 2010. First, this research extracted the mean annual rainfall to indicate 

the amount of rainfall throughout the season. Then, the start (SRS), the end (ERS), and the length 

(LRS) of rainy season were extracted. 
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 Rainfall is a discrete event; therefore, the appropriate thresholds must be defined to 

derive seasonality. The criteria to define thresholds are that rainfall threshold should directly 

influence the vegetation seasonality (Zhang et al., 2005). Moreover, it should be an independent  

estimation of rainfall and should be dealt with sporadic events of rainfall, which can be 

misleading. To define thresholds for the rainfall seasonality in SEA, the criteria of biological 

method were applied in this research. 

This research applied the criteria of rainy season provided by Jutakorn (2011) to 

determine rainy season in SEA. Jutakorn investigated SRS, ERS, and LRS including variation of 

rainy season from 1951 to 2009 in Thailand. In this study, SRS is defined as the duration of 

which rainfall persists for five consecutive days and the amount of cumulative rainfall is higher 

than 10 mm, which is sufficient for vegetation to start the growing season. The first day of that 

rainfall period is the start of rainy season. This criteria identifies SRS from April, 1st of every 

year as the earliest month that rainfall could start in this region. ERS is defined under the similar 

criteria except that it is considered backwards, starting from December, November, etc. The last 

day of the duration of which rainfall persists for five consecutive days but the amount of 

cumulative rainfall is greater than 10 mm is the ERS. The period between SRS and ERS defines 

the length of rainy season.  

3.6 Spatial Variation and Trend Analysis 

 3.6.1 Trend Analysis 

  This research applied the Mann–Kendall (MK) trend test and the Sen’s method for 

EVI, phenology, and rainfall analysis. According to Yue et al. (2002), Xu et al. (2007), EPA 

(2006), and De Beurs et al. (2009), the MK trend test is calculated by listing the observations in 

temporal order, computing all differences that may be formed between measurements and earlier 
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measurements, and then counting the number of positive and negative values. The only 

information about these differences used in the MK calculations is the sign (positive or 

negative). If a value of the observation is higher than a previous observation, one is added to the 

test statistic and a plus sign is scored. If the values are equal, no sign is scored, and if the value is 

lower than a previous observation, one is subtracted from the test statistic and a minus sign is 

scored. Next, this method counts the number of positive and negative values. The sum of these 

values indicates the trend of the data. The positive sum indicates an increasing trend and the 

negative sum indicates the decreasing trend. 

    MK is generated in the following form (Yue et al., 2002; de Beurs & Henery, 

2005; Xu et al., 2007). 

The MK test is based on the test statistic S defined as: 

    ∑ ∑           

 

     

 

   

   

 
(3.3) 

 

where xj are the sequential data values, n is the length of the data set (number of years), and  

sgn (xj - xi) = +1    xj - xi >0 

sgn (xj - xi) = 0    xj - xi =0 

sgn (xj - xi) = -1    xj - xi <0 

(3.4) 

 

The statistic S is approximately normally distributed with the mean and the variance as 

following:  
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[               ∑      

 

   

           ] 
(3.5) 

 

T is the number of tiled groups, and tj is the number of points in the j
th

 group.  

These data are used to test the null hypothesis, Ho: there is no trend, HA: there are downward or 

upward trends at an α = 0.05 significance level. If |Z| > Z α /2, then reject the null hypothesis of 

no trend. The test statistic Z of a particular pixel is calculated by (EPA, 2006): 

                                                   Z= 
  -     (S)

√ ar(S)
                                                                        (3.6) 

Where sign(S) = 1 if S >0, 0 if S = 0, and -1 if S < 0 

  As MK technique can provide the strength and direction of a trend but not the 

magnitude, the overall slope was obtained by using the Sen’s method to quantify the magnitude 

of the change, which can be positive or negative. The pixels with significant trend were used to 

calculate the magnitude of slope. According to the statistical analysis guidance for environmental 

data (EPA, 2006), Sen’s method is a nonparametric alternative for estimating a slope. This 

method calculates slopes for all the pairs of time points and then uses the median of these slopes 

as an estimate of the overall slope. As such, it is insensitive to outliers and can handle a moderate 

number of values below the detection limit and missing values.  

   The assumptions of this method are that there are n time points, and let Xi denote 

the data value for the i
th

 time point. If there are no missing data, there will be n(n-1)/2 possible 

pairs of time points (i, j) in which   i < j. The slope for such a pair is (EPA, 2006): 

     bij = (Xj – Xi) / (j - i)           (3.7) 
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where bij = slope between data point Xi and Xj, Xi = data measurement at time i, Xj = data 

measurement at time j. 

  Sen’s slope estimator is the median of the n(n-1)/2 pairwise slopes. If there is no  

underlying trend, there would be an approximately equal number of positive and negative slopes, 

and thus the median would be near zero. 

 3.6.2 Spatio-temporal Patterns, Changes and Trends of EVI Profile 

   The EVI profile, which has potential to represent the seasonal and annual 

dynamics, was generated to present the total trends and changes of vegetation conditions in SEA 

from 2001 to 2010. The 23 fitted images per year were calculated to obtain the mean annual EVI 

by using TIMESAT program from the previous step so as to indicate the overall greenness of 

vegetation throughout the season and to illustrate the interannual variability for 10 years. The 

EVI changes and trends were identified by using the MK trend analysis and Sen’s method. The 

results indicate spatial distributions and interannual change of EVI for ten years. 

 3.6.3 Spatio-temporal Patterns, Changes and Trends of Phenological Parameters 

 Seven phenological parameters were derived from the EVI time-series of 10 years 

by using TIMESAT. The mean values of each year in each parameter were computed to show 

spatial variation for 10 years and changes were processed by MK trend analysis and Sen’s 

method. The results exhibit spatial distributions and the trends of phenological changes.  

 3.6.4 Spatio-temporal Patterns, Changes and Trends of Rainfall Seasonality 

   Spatial distribution of mean annual rainfall, SRS, ERS, and LRS, were generated 

for ten years. The rainfall seasonality was processed to detect trends by using MK and Sen’s 

method. Spatial distributions and the trend of rainfall seasonality were presented from this step. 
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  3.6.5 Relationship between Phenology and Rainfall Seasonality 

   This step used the coefficient of correlation (R) to calculate the relationship 

between each pair of parameters (mean annual EVI-mean annual rainfall, SGS-SRS, EGS-ERS, 

and LGS-LRS). The coefficient of correlation uses this equation (EPA, 2006):  

  ∑
     ̅      ̅ 

√∑      ̅   
   ∑      ̅   

   

 

   

 (3.8) 

 

  Where,  ̅  and  ̅ are the sample means of Xi and Yi 

   In addition, the significance of relationship p-value (probability associated with 

significance) was performed to test the significance of the correlation at a level of 95%. 

Therefore, the pixels with a p-value less than 0.05 will show significant correlation. The t-

statistic for the slope was calculated by the following equation (EPA, 2006):  

         √
   

    
               (3.9) 

Where, r = Coefficient of correlation, r
2
 = Coefficient of determination, and n = Sample size 

   Furthermore, linear regression was performed on each pair of parameters for 

pixels with significant correlation. The slope from linear regression identified the trend of 

relation in order to estimate rate of change of phenological parameters with respect to 

corresponding change in rainfall seasonality for a period of ten years. 

 3.6.6 Analyze the Drivers of Phenology Changes 

  Two related factors (climate and land use) were investigated to analyze the drivers 

of changes in selected sites. Land use changes were compared with rainfall variability and 

phenological trends. Rainy seasons from TRMM were analyzed with phenolgical patterns. SRS, 

(3.8) 
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ERS, LRS, and annual rainfall were processed to obtain rainfall patterns and then compare with 

phenolgical parameters. The correlation coefficients between these two variables were 

calculated. Land use changes were also considered in order to identify the relationship with 

phenological changes and to clearly explain the driver of changes, which are human management 

or climate. 

3.6.7 Comparison between MODIS Phenology and Field Observations and TRMM 

Rainfall and Station Rainfall 

Although validation is a serious impediment of land surface phenology derived 

from satellite images over large areas due to scale and dates of phenological events (Zhang et al., 

2003; Reed et al., 2009), many studies have employed various techniques to validate satellite-

derived phenology such as using climate data (de Beurs and Henebry, 2005) or ground 

observations (Beck et al., 2007; Fisher and Mustard, 2007; Kang et al., 2003). This research 

attempted to compare the phenological parameters derived from MODIS EVI with field data in 

order to observe errors and quantify the agreement between satellite derived phenology and field 

observations.  

For the comparison between MODIS phenology and field data, the field data were  

obtained by interviewing famers and head of villagers in central and northeast Thailand. The 

sites were selected based on land cover diversity and the phenological changes. Two hundred 

points of phenological data (SGS and EGS) were compiled from various crop types (e.g., rice, 

cassava, sugarcane, corn) in 2011 to identify the phenological data in 2010 (Figure 3.6). The 

coefficient of determination (R
2
) was used to test the agreement between MODIS phenology and 

field data in 2010.  This coefficient of determination quantified how much of the variance in the 

observed dates is explained by the model.  
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In addition to comparison between MODIS phenology and field data, this 

research also compares TRMM rainfall with station rainfall.  Annual rainfall data from 2001 to 

2010 were processed along with the average ten-year mean of rainfall seasonality (SRS, ERS, 

and LRS) for these comparisons. Monthly rainfall was obtained from Thai Meteorological 

Stations (123 stations cover the whole Thailand) and rainfall seasonality was acquired from the 

research of Thailand Meteorological Department (TMD) (Jutakorn, 2011). The comparison was 

assessed based on the performance of the coefficient of determination, showing the agreement 

between TRMM rainfall and station rainfall. 

 

Figure 3.6 Field points in central and northeastern Thailand 

 

 

 

 



74 
 

3.7 Modeling DNDC 

 3.7.1 Model Description 

This research applied DNDC model to estimate CO2, CH4, and N2O emission 

from rice fields in Thailand (Figure 3.7 and 3.8) because of its capabilities to quantify emission 

in tropical zones that have varieties of crop types in both upland and wetland ecosystems. 

DNDC consists of two major components (ecological drivers and soil 

environmental variables and soil environmental factors to trace gases) with six sub-models—soil 

climate, plant growth, decomposition, nitrification, denitrification, and fermentation (Li, 2000; Li 

et al., 1994, 2004; Zhang et al., 2006). The interaction of the six sub-models enables DNDC to 

simulate a relatively complete suite of biochemical and geochemical processes, which occurs 

under both aerobic and anaerobic conditions.   

1. The first component in this model is to link between ecological drivers and soil 

environmental variables. DNDC integrates the ecological drivers in the three submodels: The 

soil climate submodel calculates soil temperature and moisture profiles based on soil physical 

properties, daily weather, and plant water use. The plant growth submodel tracks crop growth 

and partitioning of the biomass into grain, stalk, and roots. The decomposition submodel 

simulates decomposition of soil organic matter driven by the soil microbial respiration. The three 

submodels interact with one another to finally determine soil temperature, moisture, pH, redox 

potential (Eh), and substrate concentrations in the soil profile (e.g., ammonium, nitrate, dissolved 

organic carbon) at a daily time step based on ecological drivers (e.g., climate, soil, vegetation, 

and anthropogenic activity). 

2. The second component of this model is to link soil environmental factors to 

trace gases with the three submodels. The nitrification submodel calculates growth of nitrifiers 
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and oxidation of ammonium to nitrate. The denitrification submodel operates at an hourly time 

step to simulate denitrification and the production of nitric oxide, nitrous oxide, and dinitrogen. 

The fermentation submodel simulates methane production and oxidation under anaerobic 

conditions. These three submodels predict nitric oxide, nitrous oxide, methane, and 

ammonia fluxes based on the environmental variables in the soil. 

DNDC allows users to define the farming management and other parameters for a 

certain crop. As a result, this model requires the following input parameters: soil properties (e.g., 

soil bulk density, pH, texture, and SOC), climate data (daily temperature and precipitation), 

farming practices (e.g., crop type and rotation, tillage, fertilization, manure amendment, planting 

and harvest dates, irrigation, flooding, grazing, and weeding). Model outputs are crop 

productivity (grain, stem and root yield, N-uptake, N-fixation), trace gas fluxes (NO, N2O, CH4, 

CO2, and NH3), soil organic C and N pools, soil inorganic N content (Li, 2000).  

DNDC model was modified to efficiently simulate C and N biogeochemical 

cycling in paddy rice systems by adding a series of anaerobic processes. Additionally, rice 

growth sub-model was developed to quantify important dynamic parameters for modeling gas 

production and oxidation (Zhang, et al., 2002; Li et al., 2004; Cai et al., 2003). In addition, this 

model modification improves the simulation for crop growth and soil processes and enhances its 

ability to estimate CH4 from rice paddy field under a wide range of climatic and agronomic 

conditions (Fumoto et al., 2008)  
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Figure 3.7 DNDC model  
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Figure 3.8 DNDC flow chart  
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3.7.2 Study Area 

Lopburi province was selected to quantify emissions. Lopburi is located in the 

Chaopraya River delta in the central plains of Thailand. This study site has been rice fields for 

years and these rice fields produce one of the highest quality rice in the country and even the 

world due to its location and farming practices. In addition, the representative site exhibits the 

changes of phenological and climate variations over a ten year study.  Therefore, the patterns and 

trends of phenology and climate in this site indicate the changes of the growing season, which 

are useful for the interpretation in this research. Most of rice fields in this site are irrigated rice 

and double rice cropping systems, particularly in Amphoe Ban Mi and Tha Wung (Figure 3.9). 

Single rice cropping systems are found in the rest of the province, particularly in Amphoe Khok 

Samrong and Sa Bot. Modern cultivation managements are extensively practiced in this location.  

3.7.3 Database Development and Input Parameters 

Due to several spatially explicit environmental and cultural variables, a process 

base model, like DNDC, needs a great number of data to estimate emissions in large scales. This 

is a major challenge for using ecosystem model at a regional scale.  Furthermore, the input data 

for DNDC at a regional scale are large spatial and temporal variations with different factors, such 

as, soil properties, rice varieties, and agricultural practices (Cai et al., 2003; Smakgahn et al., 

2009). These datasets are required to initialize and run the model.  
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Figure 3.9a Rice cropping frequency in Lopburi province 2002  
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Figure 3.9b Rice cropping frequency in Lopburi province 2010 
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This research integrated biogeochemical models with remote sensing technology 

to advance the DNDC regional application. DNDC model was used to identify spatio-temporal 

patterns of GHG emissions (CO2, CH4, and N2O) from rice fields in Thailand over the past 10 

years (2001-2010). New method and database systems were developed in this research to 

increase efficient estimation of DNDC model. Satellite images are one of the effective methods 

to provide important data such as rice growing areas, rice phenology, and soil properties. In 

addition, satellite time series data could provide spatial and temporal information to extrapolate 

the understandings of spatial distribution in a large scale dimension. Spatial and temporal 

characteristics of phenology derived from remote sensing data were used in DNDC to quantify 

emissions. Also, this research took a new step to use regional database based on a grid-based 

system instead of using average input parameters in a large spatial unit (e.g., county unit). The 

different characteristics in a large spatial unit could be significant for biogeochemical modeling. 

Thus, the simulation of grid based system can differentiate the difference of soil properties, 

climate data, and farming management and substantially improve the accuracy of the GHG 

estimations from DNDC model at regional scale.  

Before simulating the whole dataset, this research tested and run model in specific 

locations of the study area to access model performance and test sensitivity of input parameters. 

In addition, this research applied model to estimate emissions for both single and double rice 

cropping systems. It is required to search for the technique running DNDC for two cropping 

systems, which the growing season is not completed in a year. These steps were performed in 

order to obtain accurate results from the model. 

- Construction of Database for Regional Simulation: This research used the 

DNDC model version 9.4 with the site mode (a site-scale simulation) to simulate emissions of 
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CO2, N2O, and CH4 from rice fields in Thailand. Figure 3.8 shows flow charts of database 

manipulations used in estimating GHG emission from rice fields in this research. Although 

regional mode in DNDC model can process large area estimation, each spatial unit in this mode 

is assigned to the same farming practices and this mode uses default farming practices instead of 

user specific crop management parameters (Xu, 2011). Consequently, this leads to the difficulty 

in adjusting models to specific sites. Therefore, this research simulated GHG emissions at the 

site level with grid-based unit to provide the output at regional level. This approach takes 

advantage of site-based modeling and also provides output for large-region estimation. 

DNDC used databases with spatially and temporally differentiated information on 

climate (temperature and precipitation), soil properties, and farming practices (crop type and 

rotation, tillage, fertilization, irrigation, and planting and harvest dates) as parameters for 

supporting regional scale analyses. The database was constructed based on a grid-based system. 

Each input data (e.g., phenology, soil, climate, farming management) was built based on grid 

unit (250 m x 250 m) as described in the following (Table 3.4, Figure 3.8).  

- Input Parameters:  input data are described in the following: 

1. The climate dataset composed of daily maximum and minimum air 

temperature and precipitation from 2001-2010 acquired from weather stations in Thailand (Table 

3.1). The station weather data were interpolated to climate zone by using Thiessen (Voronoi) 

polygon analysis. Thiessen polygons are used to divide space into a number of regions according 

to a set of points. Thiessen proximal polygons are constructed by creating a triangulated irregular 

network (TIN) and generating the perpendicular bisectors for each triangle edge and forming the 

edges of the Thiessen polygons (ArcGIS Resource Center, 2011). As a result, Thiessen polygons 

contain only a single point input feature and any location within a Thiessen polygon is closer to 
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its associated point than any other point input features. The thiessen polygon method was used to 

transform point-based climate station to climate zone in this research. Each grid cell was 

assigned to use climate data from a weather station in its climate zone. In other words, grid cells 

within one polygon (one climate zone) will receive the same climate data. The interpolation was 

performed by using geoprocessing functions provided by ArcGIS 9.3.  

2. Spatial soil databases, which consisted of soil profile, soil series, soil names, 

and soil physical and chemical properties (e.g., soil pH, texture, organic matter content), were 

induced from the 1:50,000 Thailand soil database.  

3. The rice fields were obtained from National Land Use Dataset of Thailand 

(Table 3.1). Phenological information (planting and harvest dates) were derived from MODIS 

EVI time-series data (see more details in section 3.4.2) to map the spatial pattern of start and end 

dates of the growing season.  

4. Agricultural management practices on rice cultivation and crop parameters of 

rice were investigated from Thailand reports and papers as well as by communicating with 

researchers, local agronomists, and local rice research centers in Thailand (Table 3.1). The 

detailed information on rice cultivation for DNDC model is shown in Table 3.4. In addition, 

annual yields were applied in crop parameter setting. However, unavailable input data were 

replaced by default values provided in the model. 

All the spatially differentiated input information was constructed in a grid-based 

system with a cell size of 250 m x 250 m. All datasets were segmented to rice areas and ignored 

other croplands. Then, the input text files were generated for DNDC model by using ERDAS and 

Python programing to derive data in each grid cell into text files. Therefore, one text file is for 

one site or one grid cell. For example, there are 40,000 cells in Lopburi province, which in turns, 
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generate 40,000 input text files. All input text files, including climate data, soil properties, and 

crop management parameters, were linked to DNDC through its interface with batch running for 

site mode (Figure 3.8).  

Table 3.4 Input parameters for DNDC model 

Parameters Data Source 

Environmental 

Factors 

  

Climate  2002-2010: Daily climate data 

(Max-Min Temperature, rainfall) 

Rainfall data acquired from 

meteorological stations 

(Thai Meteorological Department ) 

 

Soil  pH, Density, SOC, % Clay (Department of Land Development) 

 

Agricultural 

Management 

  

Rice area Land use data 

2002, 2010 

National Land Use Dataset of 

Thailand  

(Land Development Department, 

Ministry of Agriculture) 

 

Rice cultivation 

(Planting/Harvest 

Dates) 

Phenological Data 

2002-2010 

The results from the previous 

section 

Tillage 15 DBP
a
/ plow depth of 20 cm - Local rice research center 

- Rice Department, Office of  

Agricultural Economics, Ministry of  

Agriculture and Cooperatives 

- Jermsawatdipong et al., 2002 

Fertilization (kg 

N/ha) 

2002 

#1 20 DAP
b
; AP

c
 = 90 

#2 60 DAP; Urea = 30 

2010 

#1 20 DAP; AP = 150 

#2 60 DAP; Urea = 60 

Residues 

Management 

(Fraction of residues 

left in fields) 

10% 

Flooding Start: 7 DAP 

End: 15 DBH
d
 

Continuously flooding 

a 
DBP = days before planting; 

b 
DAP = days after planting; 

c 
AP = Ammonium phosphate;   

d 
DBH = days before harvest 
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The model simulated the emission cell-by-cell across the entire rice fields in the 

study site. All input files provided ecological, soil, and environmental drivers to process the crop 

and soil biochemistry sub-models of the DNDC model. The model, then, simulated C and N 

circulation of paddy rice system at a site scale for each grid cell and simulated the crop growth 

and environmental impacts of rice fields. The spatio-temporal patterns of CO2, N2O, and CH4 

were processed using ARCGIS and Python programming to show maps of the annual emission 

rate per pixel (kg C/ha/year). The yearly total emissions (kg C/year) in each cell were calculated 

by multiplying the emissions by the size of a cell containing rice fields (multiply by the size of 

the grid cell if that cell has rice fields). The regional emissions of province were derived from a 

sum of all cells in the province for a simulated year. 

In addition, this research assessed Global Warming Potential (GWP) to indicate 

the net effect on global warming. GWP is defined as the cumulative radiative forcing integrated 

over a period of time from the emission of a unit mass of gas relative to some reference gas 

(IPCC 1996).  In other words, GWP is the sum of the warming forces of all the three GHGs 

(CO2, N2O, and CH4) and convert them to a common basis of CO2-equivalents (Li et al., 2004). 

This method is used to estimate the warming effects of different long-lived greenhouse gases 

relative to each other within a particular time frame (for example, 100 years) as compared with 

the radiation a unit emission of CO2 absorbs in the atmosphere over the same time period. CH4 

and N2O can be converted into CO2-equivalents according to their radiative forcings.  

The warming forces of CH4 and N2O are 25 and 298 times higher than that of 

CO2 per unit of weight with the 100-year time horizon (IPCC, 2007). The GWP value is 
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calculated by summing up the CO2-equivalents of all the three GHGs as shown in the following 

equation (adjusted from Li et al., 2004 according to the new standard of IPCC (2007)): 

GWPi   = CO2 i /12 x 44  +  N2O i/28 x 44 x 298  +  CH4i /12 x 16 x 25,  (3.10)  

where GWPi (kg CO2 equivalent/ha/yr) is the Global Warming Potential; CO2i, N2Oi, and CH4i 

are CO2 flux (kg C/ha/yr), N2O flux (kg N/ha/yr), and CH4 flux (kg CH4-C/ha/yr), respectively. 

3.7.4 Spatio-temporal Patterns and Changes of GHG Emissions under Different 

Scenarios  

In order to identify the effect of the input parameters on the model regional 

emissions, this research tested five scenarios for a selected site (Table 3.5). The first scenario is 

the baseline scenario for 2002 and 2010, which was constructed based on the actual climate, 

phenology, land use, and farming management (fertilization, flooding period, and yield). The 

second scenario tested the effect of fertilization on GHG emissions by using different set of 

fertilization for 2002 and 2010 and keeping all other input parameters constant (apply input 

parameters of 2002 for 2010, except for fertilizer rate). The third scenario conducted multiyear 

simulations from 2002 to 2010 to investigate the impacts of interannual variations in climate 

condition on GHG emissions. This scenario used actual nine-year climate data (temperature and 

rainfall) for each simulated years, while keeping all other input parameters constant (used input 

data from 2002 for all years from 2002 to 2010). The fourth scenario was also set for multiyear 

simulations from 2002 to 2010. This scenario examined the effects of phenological changes by 

using actual phenology (start and end of the growing season) for nine years and all other inputs 

were held constant by using input data from 2002 for all years from 2002 to 2010. The last 

scenario investigated two parameters, phenology and climate for simulation of nine years. The 
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actual climate and phenological data for the nine-year period were utilized in this scenario and 

the remaining input parameters used were from the 2002 dataset. The results of these scenarios 

could represent the change of GHG emissions with the effect of human management as well as 

climate variation. 

Table 3.5 Five simulated GHG emissions from rice field in Thailand under different scenarios  

Parameters Scenario 

 Scenario1 

Baseline 

(2002, 2010) 

Scenario2 

Fertilizer 

Change 

(2002, 2010) 

Scenario3 

Climate 

Change 

(2002-2010) 

Scenario4 

Phenology 

Change 

(2002-2010) 

Scenario5 

Phenology 

and Climate 

Change 

(2002-2010) 

Climate  2002, 2010 2002 2002-2010 2002 2002-2010 

Rice area 2002, 2010 2002 2002 2002 2002 

Phenology 

(Planting/Harvest 

Dates) 

2002, 2010 2002 2002 2002-2010 2002-2010 

Fertilization  2002, 2010 2002, 2010 2002 2002 2002 

Other 

management 

practices 

e.g., residues, 

flooding, tillage 

2002, 2010 2002 2002 2002 2002 

Conditions Use actual 

data for 2002 

and 2010 

Use different 

rate of 

fertilizer 

(kg N/ha)  

2002 

#1 AP = 90 

#2 Urea = 30 

2010 

#1 AP = 150 

#2 Urea = 60 

Multi-year 

simulation 

From 2002-

2010 and 

apply actual 

climate data 

for each 

simulated 

years 

Multi-year 

simulation 

From 2002-

2010 and 

apply actual 

phenology 

data for each 

simulated 

years 

Multi-year 

simulation 

From 2002-

2010 and 

apply both 

actual 

climate and 

phenology 

data for each 

simulated 

years 

 

AP = Ammonium phosphate 
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3.7.5 Comparison of DNDC Results to IPCC Approach and Thailand Research 

Due to the unavailable field data for validation, this research assessed the results 

of DNDC model by using IPCC guidelines and the standard emission rates from the papers in 

Thailand. The modeled CH4 emissions were compared with IPCC method based on baseline 

emission factor (IPCC, 2006). The IPCC emission factor contains more specific values for CH4 

emission in different types of rice cultivation. The result of this research is also compared with 

standard estimation factors for rice ecosystem in Thailand in 2005 and estimated CH4 emission 

rates for each province in Thailand based on minimum, median, and maximum scenarios in 1998 

(Gale et al., 2005).  It should be noted that few studies have been conducted on emissions of CO2 

and N2O from Thai rice fields and no reliable estimations of their contribution to global emission 

are available. 

3.8 The Interactive Phenological Atlas for SEA (IPA) 

 3.8.1 Conceptual Framework 

One objective of this research is to develop the prototype of Interactive 

Phenological Atlas for SEA—with facilitated, interactive, and usable interface to represent spatial 

distribution and changes in phenology and related environmental variables in SEA (Figure 3.10). 

This prototype is presented as Internet atlas supported by MapServer. The web prototype 

includes basic functions—zoom, pan, and simple selection—and advanced functions—map 

animation, dynamic legend, and graph creation. The graphic user interface of the web map 

provides functionality of legends in interactive web maps combining the controlling function for 

thematic map, bivariate map, and map animation. 
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Figure 3.10 Interactive Phenological Atlas for SEA 

The purpose of this visualization system is for visual exploration. Visual 

exploration is a creative process to derive meaning and construct knowledge (Blok, 2006). Users 

can derive the meaningful information from interactive processes from the comparison of 

patterns, spatial and temporal characteristics, relationships, and trends. This process enables 

users to formulate hypotheses and construct knowledge as well as to confirm information in the 

research process (DiBiase et al., 1992). In addition, this prototype is designed for the general 

public. The intended audience is environmental scientists and remote sensing and GIS specialists 

as well as students who would like to use these data for their works and research.  
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There are three data groups in this system (Table 3.6). The first group consists of 

thematic maps of EVI, phenology, rainfall, GHG emissions, trend maps, bivariate maps, and data 

quality assessment maps, which were implemented by web map server. The second group 

consists of map animation generated by using flash program. The third group is vector data 

(supporting data), Indochina boundary and Lopburi province. 

Table 3.6 Data and map contents in visualization system 

Data Details 

I. Maps  

1. EVI images from 2001-2010 

 

- Mean EVI of each year (2001-2010) and ten-year mean 

EVI 

2. Phenological parameters 

 

- Spatial pattern/distribution of vegetation phenology from 

2001-2010 (Start, end, length, mid, amplitude, large, and 

small integral) 

3. Rainfall - Annual rainfall, the start, end, and length of rainfall 

seasonality (2001-2010) 

4. GHG emissions - Spatial pattern and distribution of CO2, CH4, and N20 

(Lopburi province, Thailand) 

5. Trend maps - EVI trend (2001-2010) 

- Phenological trend (2001-2010) 

- Rainfall trend (2001-2010) 

6. Bivariate maps - Start date and end date (2001-2010) 

- Length and amplitude (2001-2010) 

- Length and large integral (2001-2010) 

7. Data Quality Assessment Maps - Data quality assessment (2001-2010) and ten-year mean  

data quality assessment 

II. Map animation - EVI and phenology (start date, end date, mid date, 

amplitude, length, large integral,  small Integral)  (2001-

2010) 

III. Supporting data 5.Indochina boundary 

6.Lopburi province 
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3.8.2 Cartographic Design for Satellite Time-series Data 

 In order to serve maps in this visualization system, cartographic design is needed 

for thematic map, bivariate map, and map animation. 

- Thematic Map Design: Satellite time-series images in raster format were 

generated to create thematic maps for users to display on web map application. Thematic 

mapping can display the pattern and change over space. However, this mapping method needs 

appropriate techniques to design. The factors involved in thematic mapping design are data 

classification techniques, number of classes, color scheme, and legend design. The 

visualization system in this research generated thematic maps of EVI, phenology, rainfall, 

GHG emissions, trend maps on web mapping application (Table 3.6).  

- Bivariate Map Design: An effective bivariate map can communicate the 

relation between variables that is more essential than a set of individual maps of each attribute. 

Bivariate maps can enhance the ability of users to detect and comprehend important 

phenomena and major conclusions. This research selected important phenological parameters 

to show in bivariate maps. The important steps to design bivariate map are to:  

  1. Select appropriate variables/parameters to represent a relationship and the 

meaningful correlation, for example, the start date and the end date of the growing season. 

  2. Select appropriate techniques to show the pattern of phenological phenomena 

in each year and compare the change of these phenomena in different years, for example 

mean/median deviation with diverging scheme is an effective technique to show the increase and 

decrease pattern of vegetation condition (EVI) or demonstrate the changes in the start and end 

dates in the early or late growing season. This bivariate technique can answer the question where 

these patterns are located, and how much the magnitude of these attributes are.  In addition, two 
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quantitative variables in this technique can show the correlation where both variables are high or 

low values, and where one variable is high while the other is low. 

  3. Select data classification that depends on data characteristics, such as using 

biweekly time-series data, the appropriate range should be one or two weeks to present the early 

and late growing season. Furthermore, no more than three classes are appropriate for bivariate 

maps because they can increase cognitive overload leading to users’ confusion with the maps. 

  4. Select color scheme to display the pattern of phenological information in each 

category. This research applied Brewer’s color scheme (1994) for bivariate mapping. For 

example, sequential/sequential scheme needs two hue and lightness differences to show high or 

low values, while diverging/diverging scheme bases on dark hues at each corner of the legend to 

represent categories that are extremes for both variables. A light and white color is placed at the 

center of the legend to represent a class that contains the critical value or midpoint of both 

variables. The remaining colors are lighter than the corners.  

  - Animated Map Design: The prototype visualization system allows users to 

explore, monitor, and compare patterns and trends of vegetation phenology in SEA by using map 

animation. The major steps of map animation design are:  

1.  The first step is the same as bivariate maps to select appropriate factors: 

selecting appropriate parameters, data classification, the number of classes, and the color 

schemes, particularly simplifying the data before using in the map animation. The techniques 

used for animated maps are important to make animated maps effective and easy to read. 

2. This prototype uses interactive temporal and spatial controls that are useful for 

focusing on details and facilitating an understanding of the process of change. When users can 

replay, pause, stop between scenes, users have more chances to review events they may have 
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missed within the sequence. Cox (1990) suggested that dynamic display were preferable for 

exploratory analysis of multivariate Earth science data. The difficulty in visual interpretation, the 

symbols, and the cognitive overload can be reduced by interactive animation.  

3.  Animated maps also require dynamic visual variables. Using dynamic visual 

variables in map animated design help to reduce the challenges of map animation such as change 

blindness by applying appropriate duration, rate of change, or order. 

4.  Other techniques can also enhance the effective animated map. For example, 

maps and text explanations appear close to each other and relate to one another in meaningful 

ways can reduce the amount of working memory available for learning.  

5.  The last factor is to carefully apply color on maps. It is particularly 

important in interactive and animated map contexts because the reader must attend to changing 

patterns on the maps and have little time to look back and forth to a map legend. 

3.8.3 Visualization Implementation 

 - Interactive Web Map: Interactive web map is used in this visualization system 

to create important functions and disseminate maps to users via Internet. Web mapping 

architecture consists of the following components (Figure 3.11): 
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Figure 3.11 Web mapping architecture 

1. Client-side Component: Users can select parameters and display maps running 

in general web browsers through user interface (Mathiyalagan et al., 2005).  

2. Server-side Component: Server side composes of three components: 

- Web Server: The function of the web server is to deliver web pages to clients 

by request. The web server communicates between clients and map server via gateway, for 

example, CGI-script (Gartner, 1999).   

http://en.wikipedia.org/wiki/Client_(computing)
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- Map Server: A map server provides the connection from the database to a web 

server. A map server serves mapping and spatial analysis functions as well as manages and 

distributes map data. One of the potential web map servers is University of Minnesota (UMN) 

MapServer. These server-side functions are sometimes referred to as web map services (WMS). 

The WMS is a standard protocol for serving geo-referenced map images over the Internet that 

are generated by a map server and a distribution service open to anybody needing information 

from the service, for example, Google map service.  

- Database Server: This server provides the Database Management System 

functionalities. It is responsible for searching the database and retrieving results from it.  

When users select parameters on a web browser, a web browser sends the request 

to a web server. Then, a web server interprets the request and passes it to a map server. The map 

server connects to database and processes the data. The results are sent back to the web server by 

converting into HTML format to display in the client-side web browsers (Mathiyalagan et al., 

2005). 

Maps and images for the main web page in IPA were installed in the database and 

they are automatically and dynamically generated as users requested by MapServer. This 

database that contains images and maps were categorized in different folders based on the types 

of data and topics.  In order to serve maps on the web, the UMN MapServer was used to create 

different map services for different data. Map services are determined by proposed functions 

(e.g., zoom, pan, parameter selection). One computer was selected as the web server to 

communicate between clients and the map server. The basic setup of a map server relies on two 

major components (Hachler, 2003). First, the Template File controls the display of a map server 

output in a web page (the design of the graphical user interface and how users can interact with 
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the application). Second, the Map File is the configuration file and controls all other aspects of a 

map server application such as the layers to display and the display parameters.  

- User Interface and Interactive Functions: The user interface of 

visualization systems interacts with users through a web browser. The user interface was 

developed using MapServer, HTML, Javascript, and python. The web user interface has 

menus to display, control, and link to information, e.g., phenological parameters as well as 

toolbar functions. There are two main web pages for this system. The first web page is the 

main page for this system, including all parameters and functions. The second web page is 

for map animation. 

The interactive functions enable users to change parameters and the application 

reacts on those changes. This system built two groups of interactive functions—basic and 

advanced functions—for users to explore maps and images. The basic functions provide 

navigation (zoom and pan tools), map coordinate, map backgrounds and map-based overlay, 

scale bar, and overview map using Google Maps API. Transparency adjustment was also 

included for users to adjust transparency of overlay thematic map. 

The advanced functions provide dynamic generating layer content, which update 

automatically corresponding to database. This function enables users to select data layers and 

years. Additionally, dynamic legends and time-series graphs were added to this system. For 

dynamic legends, when users select parameters such as EVI in 2001, the program processes the 

data and then creates the legend to show on a web browser. Therefore, the program automatically 

processes and shows the data as the developer defined. For graph creation, this system provides 

both static and dynamic graphs created by Google Chart API. The static graphs of EVI and 

rainfall as well as GHG emissions appear on one side of web page as referenced data. The 
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dynamic graph is created from the database and displays over the map. This tool allows users to 

click on any pixels on the map, and graph of that pixel will generate automatically. For example, 

when users click on one pixel of the start date of the growing season map, the system will 

generate graph of that pixel to show start date for ten years. This advanced function is very 

useful for users to explore and compare the patterns of that parameter over time. 

- Interactive Flash Map:  Map animation of ten-year EVI and phenology were 

created in this visualization system. Maps and legends for map animation have to be created 

and prepared before building the animation. For map animation, the functions of map 

animation control, temporal legend, and temporal control were created by using Flash, 

Photoshop, and Illustrator. The series of completed maps in each phenological parameter were 

developed into animation and synchronized with the temporal legend and animation control by 

using Flash. Map animation in this prototype provides interactive animation and temporal 

control to represent changes over time and facilitate an understanding of the process of 

vegetation condition change in SEA. The tools in this prototype allow users to select the data, 

such as phenological parameters, to explore, monitor, and compare the patterns and changes of 

phenology. In addition, the start and stop time as well as duration of animation were set on the 

system. As a result, users can control animation by selecting play, pause, stop, as well as 

selecting any parameters on the tool bar to explore animation. 
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CHAPTER 4 

SPATIO-TEMPORAL VARIATION OF VEGETATION PHENOLOGY IN SEA  

4.1 Introduction 

The long-term change of phenology reflects the key aspects of global environmental 

impacts. This spatio-temporal extent of phenological change can be mapped with satellite time-

series data. The Indochina Peninsula of SEA was selected as the study area in this research. SEA 

is one of the world’s regions that is most vulnerable to the impacts of climate change and climate 

change has affected the ecosystem of this region. Therefore, this chapter discusses the spatial 

characteristics of the vegetation phenology in SEA by extracting EVI and seven phenological 

parameters and identified seasonal and inter-annual variability of vegetation phenology. The 

seven phenological parameters are the start (SGS), the end (EGS), the length (LGS), the middle, 

the amplitude of the growing season, the large integral, and the small integral. The patterns and 

trends of phenology were analyzed on a regional scale. Furthermore, specific hotspots were 

selected to illustrate the significant changes on a local scale for agricultural and naturally 

vegetated areas. In this research, the spatio-temporal variation of phenological parameters was 

investigated in both the first and the second growing seasons. EVI and phenological parameters 

were derived from MODIS products (16-day EVI with 250 m resolution from 2001to 2010). 

These satellite time-series images can provide an overall assessment of key ecological attribute 

changes over time across different ecosystems. Additionally, this chapter compares satellite- 

derived phenology with field observations to assess the phenology results based remote sensing 

time-series data. 
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4.2 Seasonal Characteristics of Vegetation Profiles and Land Use Land Cover Types in 

SEA 

The seasonal profiles derived from MODIS EVI time series data exhibit distinct seasonal 

cycles with a well-defined greenness period that can be used to depict phenology and seasonal 

variations of vegetation activity (Huete et al., 2002). The rapid increase of the EVI profile in the 

beginning of the growing season and the rapid decrease of the EVI profile at the end of growing 

season make the timing, length, amplitude, and integral of the growing season easy to define. As 

a result, these EVI profiles have been widely used to delineate plant growing season. 

The seasonal EVI profiles were selected to show the growing season in order to 

understand phenological characteristics in SEA. The major land cover types in this region are 

forests and agricultural lands. Figure.4.1 shows the land cover in SEA in 2005. The tropical 

evergreen forests are found in the northern and southern regions of the Peninsula. The tropical 

deciduous forests are mostly located in the northern and eastern portions of the Peninsula. Land 

use in the whole region including Insular SEA has changed rapidly to agriculture in the past 

century (ADB, 2009).  Agriculture is the most important sector in SEA, accounting for 11% of 

gross domestic product (GDP) in 2006 and providing 43.3% of employment in 2004 (ADB, 

2009). The planted agricultural land areas are approximately 115 million ha in size. The 

important agricultural areas in this region are located in central and southern Myanmar, central 

and northeastern Thailand, northern and southern Vietnam, and central Cambodia. The main 

crops in this region are rice, maize, oil palm, natural rubber, and coconut. This region produced 

approximately 140 million tons of milled rice per year from 2002 to 2007 (ADB, 2009), has been 

a major supplier of grain, led by Vietnam and Thailand, and is the largest producer of palm oil 

and natural rubber in the world (FAO, 2007). 
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Figure 4.1 Land cover in SEA from GLOBCOVER in 2005  
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There are multiple cropping frequencies (more than one growing season in a year) in this 

region, according to appropriate climatic conditions and plentiful water resources associated with 

the intensive farming management practices, and rice is the dominant crop in the second and 

third growing seasons.  According to the research of Bridhikitti & Overcamp (2012), the rice 

paddy areas of SEA are approximately 30% of the world total. Rice paddy areas are mainly 

found in southern Myanmar, central and northeastern Thailand, and northern and southern 

Vietnam (Figure 4.2). There are four major rice ecosystems in this region: irrigated rice, rainfed 

lowland rice, deepwater rice, and upland rice. Figure.4.2 shows that the rainfed rice ecosystem is 

found in northeast Thailand, Central Myanmar, and Cambodia. The irrigated rice ecosystem is 

mostly observed in central Thailand, southern Myanmar, northern and southern Vietnam. The 

deepwater rice ecosystem is distributed in southern Vietnam. In addition, multiple rice cropping 

frequencies are also found in this region including single, double, triple (multiple) rice crops. 

Double and multiple rice crops are found in the major irrigated rice ecosystems (Figure 4.3). 

Seasonal EVI profiles of different land cover types are shown in Figure 4.4. These multi-

temporal VI profiles of a crop reflect the crop’s general phenological characteristics (Wardlow  

et al., 2007). The typical land cover types in SEA are forest, rice, and farm crops (e.g., cassava, 

corn, sugarcane). Evergreen forest shows very low amplitude due to a monotonous growing 

season (Xiao et al., 2009). In other words, there are no seasonal dynamics of leaf phenology in 

evergreen tropical forests. In contrast, deciduous forest has very high amplitude because of the 

high density of green cover and the amplitude of the deciduous forest is also higher than 

croplands.  
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Figure 4.2 Rice cropping system in SEA 2007 

Source: Bridhikitti & Overcamp (2012) 
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Figure 4.3 Rice cropping frequency in SEA 2007  
Source: Bridhikitti & Overcamp (2012) 
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Furthermore, the number of growing seasons can be detected from the EVI profile to 

define one annual season or two annual seasons of vegetation in each pixel. The results show that 

most croplands have only one growing season throughout the year and the amplitude is slightly 

higher than that of rice. Also, different cropping frequencies were observed for paddy rice: 

single, double, and triple rice. The start and end of the growing seasons are also different for 

paddy rice from different locations.  

In addition to a clear signal of seasonal dynamics, the EVI profile can indicate the 

integral change and the timing shift when comparing with different years, and also represent the 

change of cropping frequency, for example, rice paddy changes from one to two growing seasons 

in a year (Figure 4.5). Crops phenology is likely dependent on agricultural practices, which may 

vary greatly among farmers as well as the variations of soil properties, water supply, and 

fertilizer management. Therefore, the EVI profile of each pixel has distinct seasonal dynamics 

indicating different phenological patterns (the timing, length, and amplitude) for different land 

cover types. Moreover, in the same pixel, the profile can be different from year to year due to 

climate variation or farming practices. Patterns and trends of EVI and phenology in the study 

area (Indochina Peninsula) on the regional and local scales are discussed in the following 

sections. 
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Figure 4.4 Seasonal EVI profile patterns 
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Figure 4.5 Seasonal EVI Profile Changes 
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4.3 Spatio-temporal Variation of EVI 

4.3.1 Spatial Patterns of Interannual EVI 

The temporal EVI patterns in SEA from 2001 to 2010 were identified from the 

annual mean of EVI 16-day time-series composite images, which illustrated the inter-annual 

variability over the 10-year study period. The annual mean of the EVI is an indicator of the 

overall greenness of vegetation throughout the growing season. The results of spatio-temporal 

EVI variation depict the regional vegetation dynamics and long-term trend in light of climate and 

land cover changes. 

The spatial distribution of 10-year mean EVI from 2001 to 2010 (Figure 4.6a) 

exhibited larger values in highly productive agriculture areas and forests. These areas were 

mostly located in northern and southern portions of the Peninsula and in eastern Vietnam. 

Deciduous and evergreen forests were found in those areas. In contrast, regions where crop 

conditions were poor or occupied by low biomass and deforested areas tended to have lower EVI 

values. Relatively low EVI values were found in central Myanmar and northeastern Thailand.  

These lower EVI values are located in agricultural areas, compare to forested areas. The main 

agricultural areas in this region are in southern Myanmar, central Thailand, northern and 

southern Vietnam. 

The spatial distribution of EVI mean deviation from 2001 to 2010 is presented in 

Figure 4.7. Due to remarkable variation of EVI values in 2005 and 2010 according to El Niño 

event, mean EVI over ten years did not include 2005 and 2010. The results clearly indicate 

regional changes in the EVI values of each year from the 8-year mean EVI. Increases in EVI 

values were evident from 2001 to 2003 (wet year), followed by a marked decrease from 2004 to 

2005 (dry year). The EVI increased gently in 2006 and 2007 and tended to decrease again to the 
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end of the analysis period in 2010. The years 2004-2005, and 2009-2010 were El Niño years 

with remarkably low rainfall, which apparently had a significant impact on the total vegetation 

growth in this region (TMD Thailand, 2010). The second increasing trend suggests the recovery 

of the ecosystems in the region after the extreme climate events. However, the second decreasing 

trend was found again at the end of study period, particularly in western Myanmar. These results 

indicate variable vegetation dynamics over SEA, mostly related to major climate events.  

4.3.2 Trend Analysis 

The trend analysis of EVI was performed using the Mann-Kendall (MK) and 

Sen’s method to show the slope of the temporal trend for each pixel in this region (Figure 4.6b). 

The EVI profiles, which have the potential to represent seasonal and annual dynamics, show the 

total trends and changes of vegetation conditions for 10 years at a 90% confidence level 

(α=0.05). The positive and negative trends of EVI indicate the overall greenness of vegetation 

throughout the growing season, which are increased and decreased greenness, respectively. The 

results indicated that the overall regional trend of EVI in SEA was decreasing from 2001 to 

2010. EVI patterns revealed a significant negative trend throughout most of SEA, particularly in 

western Myanmar, northern Thailand, and northern Vietnam. The areas which had a distinct 

positive trend of EVI were in southern Cambodia and Vietnam. 

In order to understand EVI changes in this region, some specific hotspots were 

selected to show the significant changes on a local scale. EVI trends of eight study sites, 

representing both agricultural areas and naturally vegetated areas, were investigated.  The 

representative sites of forest areas are located on highlands of Mainland SEA including uplands 

of northern Myanmar, Thailand, Vietnam and Laos, and eastern Cambodia. These areas are 

subtropical forest eco-regions with sparse populations and low human disturbance (Tottrup et al., 
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2007). The major agricultural areas in this region, particularly rice paddy fields, are located on 

the river deltas and lower floodplains: the Irrawaddy River delta in southern Myanmar, the 

Chaopraya River delta in central Thailand, the Mekong River delta in southern Vietnam, and the 

Red River Delta in northern Vietnam (ADB, 2009; Xiao et al., 2006b; Bridhikitti & Overcamp, 

2012). These areas are the major rice growing areas in the world (FAO, 2007; ADB, 2009). 

Therefore, the areas on the river delta are not only the major crop sources in this region but are 

also the largest sources of world food production. 

The eight typical locations with both naturally vegetated areas and agricultural 

areas exhibited the changes of EVI and land cover map (Figure 4.1) was also used to investigate 

these changes as follows: 

- Trends of naturally vegetated areas clearly showed decreased EVI in all selected 

sites (Figure 4.8). This pattern resulted from the decrease of forest areas in this region during the 

past ten years. Although some parts of this region still have a high forest cover such as northern 

Laos and Vietnam, some areas, the northern part of Thailand and the northern and eastern parts 

of the Peninsula, have relatively lower forest cover and the decreasing patterns of EVI were 

obviously seen in this site. This result suggests the forest loss in this region. 

- Most agricultural areas showed a decreasing trend of EVI (Figure 4.9). The 

large patches of negative trends were found in central Thailand and southern Vietnam. 

Specifically, rice paddies in central Thailand clearly exhibited the negative patterns. However, 

positive trends, which indicate the increase of vegetation greenness, were found in other 

croplands, e.g., cassava, and sugar cane in Thailand. In Vietnam, there were both positive and 

negative patterns. Most rice paddies in southern Vietnam have positive trends except for a single 

rice cropping system and rainfed rice, which showed a significantly decreasing trend.  The 



110 
 

positive patterns were found in rice areas of northern Vietnam and southern Myanmar.  

Therefore, the directions of EVI trends in agricultural areas of this region were all spatially 

varied depending on farming management and climate variations. 

4.4 Spatio-temporal Variation of Phenological Parameters 

4.4.1 Spatial Patterns of Interannual Phenology 

The 10-year mean phenological values were calculated for each pixel in the 

MODIS EVI time-series data in SEA from 2001 to 2010 (Figure 4.10). However, pixels 

containing EVI profiles that show no or little annual variation (a lack of seasonal vegetation 

cycles) such as water, bare soil, tropical rain forests, were cut off from the analysis and shown in 

the white color. In this research, phenological parameters were calculated on an interannual 

basis, e.g., the data in January 2002 – July 2003 were calculated for the phenological results in 

2002 (more details in Chapter 3 Section 3.4). The first growing season (Season 1) is defined as 

the first growing period of that year and the second growing season (Season 2) is referred to as 

the second growing period, which the start date of the second growing season is on the same year 

of the first growing season but the end date may be in the same year or in the next year.  The 

spatial variations of seven phenological parameters are shown in Figure 4.10. 
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Figure 4.6 (a)10-year mean EVI (2001-2010) and (b) EVI trend (2001-2010) 

 
Figure 4.7 EVI mean deviation 2001-2010 
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Figure 4.8 EVI trend of hotspots in forest areas 

 
 

Figure 4.9 EVI trend of hotspots in agricultural areas 
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Figure 4.10 10-year mean phenology, the first growing season (2001-2010) 
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Figure 4.10 (cont’d) 

 
 

- The First Growing Season (Season 1) 

1. The start of the growing season (SGS): SGS usually ranged from March 

through May in SEA. SGS shifted toward the later dates from the east to west. The typical start 
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date from March to April was clearly shown in the northeast and the center of the Peninsula. 

However, the northwestern part of the Peninsula experienced slightly later starting dates in May. 

Most agricultural areas exhibited early start of the growing season, for example, rice paddy in 

northern Vietnam and central Thailand showed distinct early patterns.  

2. The end of the growing season (EGS): The growing season ended at different 

times of the year depending on the type of the land cover and land use management practices, 

ranging from June to January of the next year. However, in general, EGS shifted toward the later 

dates from the east to west. In the eastern portion of the Peninsula, distinct areas were evident 

where the season ended earlier in June. The corresponding starting dates in these areas ranged 

from late January through March. This area is the large rice paddy area in northern Vietnam that 

has the same cropping pattern (has similar SGS and EGS) in the first growing season. 

Comparatively, the northwest portion of the Peninsula (Myanmar) experienced a later growing 

season, starting sometime in May and ending in January and February of the next year. The land 

uses of this area were the rainfed and irrigated croplands, and the timing of the growing season 

was different from the eastern portion of the Peninsula. 

3. The length of the growing season (LGS): The average length of the growing 

season was approximately 180-240 days. LGS was generally longer in the northwest through the 

northern portion of the Peninsula. Conversely, a large part of the central and eastern portions 

experienced shorter growing season lengths. This trend was supported by the general pattern of 

starting and ending dates described above. The longer season lengths in the northwestern and 

northern regions are likely due to moisture-rich environments, forests, and perennial crops with 

longer growing seasons compared to the crops found in the east.  
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4. The middle of the growing season: The middle of the growing season usually 

ranges from May through September. Generally, the middle date of growing season in this region 

was in August. However, the middle date in northern Vietnam was earlier in May. The later mid 

date was found in central Myanmar. 

5. The amplitude of the growing season: The mean amplitude, an indicator of the 

overall vegetation amount in the growing season, varied greatly across the Peninsula. The fairly 

low amplitudes were found in the agricultural and dry areas in the eastern and central parts of the 

Peninsula. The highest amplitudes were found in northern and northwestern portion of the 

Peninsula, where the vegetation development, evergreen and deciduous forests, are mixed.  

6. The large integral: The large integral map, which represents high annual net 

primary production (annual biomass), shows high values in the forests of the northern and 

eastern Peninsula (eastern Myanmar, northern Thailand, Laos, and Vietnam, and eastern 

Cambodia), whereas low integrals were found in agricultural areas in central and southern 

Myanmar, central and northeastern Thailand, and northern and southern Vietnam. The results of 

this map are related to the amplitude of the growing season map. The areas that displayed high 

amplitude of the growing season also showed high values of total vegetation production. 

Although there are large forest areas in the southern portion of the Peninsula, the large integral in 

this area showed very low values. This is because there is no variation in seasonal vegetation 

cycles in this area due to the rainy tropical climate along with rain forests. Therefore, phenology 

cannot be extracted in this area.  

7. The small integral: The small integral, which indicates seasonally active 

vegetation or seasonal change in net primary production (annual net growth), provided high 
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values in the same areas where the large integral was high. Some agricultural and dry areas, 

which received less rainfall, had lower values, suggesting low productivity. 

- The Second Growing Season (Season 2) 

The 10-year mean of each phenological parameter for the second growing season 

in SEA is shown in Figure 4.11. Distinct patterns of phenological parameters in the second 

growing season can be observed in the major irrigated croplands, dominated by paddy fields: 

southern Myanmar, central Thailand, northern and southern Vietnam. These four locations are 

the major agricultural areas in SEA and the largest source of world food production. 

1. The start of the second growing season (SGS2): SGS2 was generally from July 

to December. Northern Vietnam exhibited a large patch of SGS2 in July and August, which was 

earlier than other locations. The SGS2 in southern Myanmar, central Thailand, and southern 

Vietnam generally appeared later in November and December. Some parts of southern Myanmar 

and central Thailand had SGS2 in July and August.  

2. The end of the second growing season (EGS2): EGS2 ranged from December 

to April of the next year. EGS2 of northern Vietnam ended earlier in November and December 

corresponding with the earlier start date. 

3. The length of the second growing season (LGS2): LGS2 was shorter than the 

first growing season and lasted approximately 100-180 days. This length is related to the length 

of rice growing season, which lasts an average of 120 days for the second growing season in this 

region (Office of Agricultural Economics, 2010) 

4. The middle of the second growing season: The middle of the growing season 

was usually around October to January. However, northern Vietnam experienced the earlier mid-

season ranging from July to September.  
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5. The amplitude of the second growing season: The amplitude of the second 

growing season did not vary as much as the first growing season. The average of the amplitude 

was around 0.3-0.4 representing the rice ecosystem. 

6. The large and small integral of the second growing season:  The patterns of 

the large and small integrals were very similar in most of the study area. The reason is that the 

crops in the second growing season are mainly rice; as a result, most agricultural areas exhibited 

the similar patterns.  

4.4.2 Trend Analysis 

The trends of phenology were processed by using the MK and Sen’s method. 

Trends were detected in seasonality of phenology for a period of 10 years from 2001 to 2010 at a 

90% confidence level (α=0.05). Figure 4.12 and 4.15 show the significant overall trends of seven 

phenological parameters. The phenological trends did not clearly show when displaying the 

whole region. More detailed analyses were performed at specific sites and are discussed below. 

Positive and negative trends refer to later and earlier dates for the timing of phenology (e.g., 

SGS, EGS) and also refer to longer and shorter lengths of growing seasons as well as increased 

and decreased magnitudes for amplitude and integral. 

- The First Growing Season (Season 1) 

This section explains the changes and trends of phenological parameters: the start, 

end, length, and middle of the growing season, the amplitude, and the large and small integral by 

focusing on the first growing season. 

The overall phenological trends appeared to shift towards a later and slightly 

longer growing season in the Peninsula. Most of the study areas exhibited a later trend in SGS 

and EGS as well as a longer LGS (Figure 4.12). However, significant trends toward earlier SGS 
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were observed in western Myanmar, central, northeastern and eastern Thailand, and the eastern 

portion of the Peninsula. The overall changes of SGS, EGS, and LGS were within 2 weeks. The 

middle of the growing season also indicated the later trend.  

The amplitude and integral trends, which represent biomass production, illustrated 

decreasing trends in the eastern portion of the Peninsula (Figure 4.12).  The trends of the large 

and small integrals showed a correspondence with the trends of EVI. The decreasing integral 

trends were found in western Myanmar, northern Thailand, northern Vietnam, and the eastern 

portion of the Peninsula. The areas which had a distinct positive trend of the amplitude and large 

integral were in southwest Myanmar and northeast Thailand. 

A more detailed analysis of phenological changes in this region was explored in 

eight representative sites (the same sites used in the EVI trend analysis section).  The selected 

forest areas are the valuable forest areas with low level of human disturbance in this region 

(Tottrup et al., 2007) and  the representative agricultural areas are the major sources of grain in 

the world (FAO, 2007, ADB, 2009). Therefore, the patterns and trends of phenology in these 

sites, which indicate the change of the growing season, would be useful for forest protection and 

agricultural management. 

Spatial patterns of phenological changes in naturally vegetated areas and 

agricultural areas were examined in eight locations and compared with land cover map (Figure 

4.1) and rice ecosystem and rice cropping frequency maps in Figure 4.2 and 4.3 (Bridhikitti & 

Overcamp, 2012) and rice cropping pattern (Sakamoto et al.,2006): 

- In naturally vegetated areas, forest areas were found in regions that displayed 

both later and earlier trends. Forest areas in the western and eastern portions of the Peninsula 

exhibited an earlier trend, whereas forest areas in the northern portions showed a later trend 
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(Figure 4.13). Significant trends toward later SGS and EGS presented in northern Myanmar and 

northern Thailand, whereas significant trends toward earlier SGS and EGS were found in 

southern Laos and eastern Vietnam. Therefore, this eastern portion of the Peninsula is distinctly 

different from other forest areas in this region. This site showed earlier dates of growing seasons 

with decreased trends of amplitude and integral. Although other forest areas (i.e., the north of 

Myanmar and Thailand) had decreasing trends of amplitude and integral, the growing seasons 

changed to later dates.  

However, an increase of amplitude and integral with later growing season dates 

were found in western Myanmar. Moreover, there were also greater increases of the small 

integral, which indicates the increase of seasonally active vegetation or annual net growth at 

these sites. The change of timing of the growing season may be due to climate variation, while 

the change of amplitude and integral with the variation of the dates of the growing season in 

forest areas suggests land use change. This is because the production or magnitude not only 

changes but the timing also changes. In particular, if the small integral is also increasing, it is 

possible that forest has changed to cropland which has occurred in southern Laos and eastern 

Vietnam. 

- Most of the agricultural areas in this region showed later trends in SGS and 

EGS from 2001 to 2010 (Figure 4.14a). In central Thailand, irrigated rice exhibited a significant 

positive trend indicating the growing season started and ended later more than 2 weeks per year 

with a longer growing season. Rainfed rice demonstrated opposite patterns with earlier trends in 

start and end dates of the growing season and slightly shorter length. Other crops (e.g., cassava, 

sugarcanes) in Thailand started later and ended earlier with shorter lengths. The later pattern was 

also found in northern Vietnam. However, a significant negative trend presented in most of 
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southern Vietnam, which showed the growing season started and ended earlier and had a shorter 

length for irrigated rice. Interestingly, the rainfed rice in the southernmost part of Vietnam 

exhibited the later patterns for SGS, EGS, and longer patterns for LGS.  The positive and 

negative trends were found in agricultural areas of southern Myanmar. Rainfed rice is likely to 

be related to rainfall but irrigated rice is more influenced by human management. The middle of 

the growing season was in agreement with SGS, EGS, and LGS trends. The amplitude and 

integral showed increasing trends in most agricultural areas, particularly in irrigated rice in 

central Thailand and rainfed rice in southern Vietnam. This result suggests the increase in crop 

production. 

- The Second Growing Season 

This section explains the changes and trends of phenological parameters in the 

second growing season: the start, end, length, middle of growing season, amplitude, large, and 

small integral. The trends of the second growing season were clearly presented in irrigated 

croplands located in four locations: southern Myanmar, central Thailand, northern and southern 

Vietnam. These four locations are important sources of world food production. Generally, the 

phenological trends of the second growing season in SEA tended to shift toward later dates with 

longer growing season (Figure 4.14b ande 4.15).  SGS and EGS of the second growing season in 

central Thailand and southern Vietnam had become later with a longer growing season. The 

amplitude and the integral had increased. In contrast, the growing season in northern Vietnam, 

started and ended earlier with shorter length. The amplitude and integral had a tendency of 

decreasing.  Similar to central Thailand and southern Vietnam, the results illustrate that rice 

paddies in southern Myanmar had a trend of later SGS and EGS, however, the amplitude and 

integral were decreasing. 
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Figure 4.11 10-year mean phenology, the second growing season (2001-2010) 
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Figure 4.11 (cont’d) 
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Figure 4.12 Phenology trend, the first growing season (2001-2010) 
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Figure 4.12 (cont’d) 
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Figure 4.13 Phenology trend of hotspots in forest areas 
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Figure 4.14a Phenology trend of hotspots in agricultural areas (the first growing season) 
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Figure 4.14a (cont’d) 
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Figure 4.14b Phenology trend of hotspots in agricultural areas (the second growing season) 
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Figure 4.14b (cont’d) 
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Figure 4.15 Phenology trends, the second growing season (2001-2010) 
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Figure 4.15 (cont’d) 
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4.4.3 Trend from Bivariate Mapping 

In addition to the trend analysis processed by the MK trend test, this research also 

applied the bivariate mapping technique to display two related phenological parameters on one 

map. The purpose of bivariate mapping is to compare and examine the relation between two 

attributes in order to represent individual distributions or the correlation between them. Three 

types of bivariate mapping were produced based on the related phenological parameters: start 

and end dates, length and amplitude, and length and large integral (Figure 4.16, 4.17, and 4.18). 

Each map was produced by calculating the difference of phenological values of each year with 

the 10-year mean values on a pixel by pixel basis. It is important to note that the legends of 

bivariate mapping represent important geographic phenomena. Specifically, the extreme values 

of both variables on the map can be seen in the four corners of the legend representing the 

patterns of change. 

The four important types of changes of the start and end date is defined as the 

following: 

1.  An early shift of the growing season (started and ended earlier) 

2.  An expansion of the growing season (started earlier and ended later, longer 

growing season) 

3.  A delayed shift of the growing season (started and ended later) 

4.  A shrink of the growing season (started later and ended earlier, shorter 

growing season) 

The four important types of changes of the length and amplitude, and length and 

large integral were defined as the following: 

1. A shorter length with a decreased integral/amplitude 
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2. A shorter length with increased integral/amplitude 

3. A longer length with increased integral/amplitude 

4. A longer length with decreased integral/amplitude 

The results indicated distinct regional changes of two phenological parameters 

and can lead to the following major conclusions: 

- The Start and End of the Growing Season 

The spatio-temporal changes of the start and end of the growing season varied 

year by year (Figure 4.16). However, some explicit patterns can be discerned and general 

conclusions can be made. The growing seasons were mostly longer and shifted slightly to earlier 

dates in 2001. Northern Thailand and Laos experienced longer growing seasons during this year. 

From 2002 to 2004, the start and end dates shifted earlier with a shorter growing season length. 

The growing season in central Myanmar did not change much from 2001 to 2004; however the 

timing of the growing season exhibited the substantial shift to later dates with a longer length 

from 2006 to 2008. Northeast of Thailand showed a later shift of the growing season from 2006 

to 2008 but the eastern portion of the Peninsular presented an earlier shift of the growing season 

in 2009 and 2010. The growing seasons in 2005 and 2010 were obviously different than those in 

other years. The growing season significantly shifted and changed in those two years; the 

growing season shifted to the later dates and has a considerably shorter length. The observation 

in 2005 and 2010 reflects the dry years, which were El Niño years in this region with remarkably 

low rainfall, particularly in 2009.  These earlier and later growing seasons appeared to be in good 

agreement with the rainfall changes (see more details in section 4.2). These results suggest the 

relationship between the extreme climate events and growing seasons in this region. 
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- The Amplitude and Length of the Growing Season 

Visual interpretation of the amplitude and length of the growing season in the 

bivariate maps reveal that the general patterns over the period of ten years in this region showed 

decreasing amplitude (Figure 4.17). The length of growing season was clearly shorter in the first 

five years (2001-2005) and longer in the last five years (2006-2010). The amplitude exhibited 

significant decreasing patterns in 2006, 2008, and 2009.  However, an increase in amplitude was 

found in 2004, 2007, and 2010 with a shorter growing season in Thailand and longer growing 

season in Myanmar. The increasing amplitude with a shorter growing season length was more 

pronounced in 2010, especially in central Thailand and Myanmar, but most of Vietnam 

experienced the decreasing amplitude with shorter growing season lengths during this year. 

- The Large Integral and Length of the Growing Season 

Most of SEA showed two distinct patterns of the large integral and the length of 

growing season during the 10-year period (Figure 4.18). A decrease in the large integral with a 

shorter growing season length was found in 2002 to 2005 and 2010. Conversely, an increasing 

large integral with longer growing season lengths were exhibited in 2001 and 2006 to 2009. In 

addition, forest areas had an increasing integral and longer growing season lengths in 2001. This 

pattern changed to decreasing integrals and shorter lengths from 2002 to 2007 and switched back 

again to the higher integral and longer length in 2008, particularly in northern Thailand, Laos, 

and Vietnam. The overall patterns in 2010 clearly show decreasing integrals with shorter 

growing season lengths. 

The changes of these phenological parameters presented on bivariate maps 

generally suggest a significant impact of severe climate on the total vegetation growth and the 

growing season, which was clearly observed in the growing season that shifted to the later dates 
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and has a considerably shorter length in extreme climate years (2005 and 2010). Moreover, the 

amplitude and the large integral also showed decreasing patterns in 2005 and 2010. The 

amplitude and the large integral are related to the annual biomass and net primary production. 

The changes of these phenological parameters reflect the higher or lower biomass in each year. 

When considering specific sites for the changes of amplitude and large integral together with the 

length of growing season, the results can not only indicate the changes of biomass but they are 

also possible to suggest the land use and land cover change in those areas. For example, in 

northeast Thailand, the croplands showed an increased amplitude and large integral combined 

with a longer growing season length in the last five years of the study period (2006-2010). These 

results indicate land use changes in this location. The agricultural report in Thailand (Office of 

Agricultural Economics, 2010) supports this conclusion: most of this area has changed crop type, 

e.g., changed from rice to cassava. Therefore, these phenological changes provide the 

understanding of ecosystem dynamics from regional to local scales. 
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Figure 4.16 Bivariate map: mean different between the start and the end dates (2001-2010) 
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Figure 4.17 Bivariate map: mean different between the length and the amplitude (2001-2010) 
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Figure 4.18 Bivariate map: mean different between the length and the large intergral (2001-2010) 
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4.5 Comparison between MODIS Phenology and Field Observations 

This research compared the phenological parameters derived from MODIS EVI with 

field data in order to observe errors and quantify the agreement between satellite derived 

phenology and field observations. The field data (two hundred points) were obtained by 

interviewing famers and head of villagers in central and northeast Thailand.  

The results of the comparison are shown in Figure 4.19. The SGS and EGS of the first 

growing season plots suggested high correlations of SGS and EGS in Thailand with R
2
 values of 

0.6 and 0.9, respectively. The SGS and EGS of the second growing season derived from MODIS 

also showed strong agreement with field data (R
2
 = 0.9 for both SGS and EGS). However, we 

can notice that SGS and EGS obtained from MODIS tended to occur later than SGS and EGS 

from field data. In addition, the MODIS date varied but the date from field observations 

appeared unchanged. There is an expected difference between MODIS phenology and field data 

due to the differences between observation techniques. MODIS phenology is extracted from 

integrated canopy greenness, while the field data were collected from interviewing farmers and 

in some cases farmers provided only the estimated dates of the growing season, for example the 

beginning of the month was assumed as the 1
st

 of the month. However, this research considers 

these data to be sufficient for the comparison of the regional phenological patterns because:  1) 

the field data were obtained from the major crops in this region and 2) the MODIS pixels were 

selected that contained  only one crop type or from large areas of only one crop type. The results 

indicate that MODIS phenology provides reasonable results and can be used to estimate regional 

phenological patterns in SEA. 
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Figure 4.19 Comparison between MODIS phenology and field data in Thailand 
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4.6 Discussion and Conclusions 

4.6.1 Spatio-temporal Variation of Vegetation Phenology in SEA 

   The results presented in this chapter demonstrate that the annual cycle of 

vegetation phenology inferred from remote sensing can identify spatio-temporal patterns of the 

growing season at annual time scales. In terms of spatial difference, phenological patterns 

spatially varied depending on geographic locations and ecosystems as well as farming 

management and climate variations. The homogeneous patterns of phenology were found in the 

same ecoregion. The phenological dates (e.g., SGS, EGS) of natural vegetation appeared later in 

natural vegetation but started earlier in agricultural areas and forest areas had longer growing 

seasons than agricultural areas.  

Due to multiple cropping frequencies in this region and rice is the dominant crop 

in multiple growing seasons, this research presented the patterns of phenological changes in both 

the first and second growing seasons. Rice fields in a double cropping system with irrigation 

practice started earlier in the beginning of the years because most of the rice fields in this area 

have more than one growing season in a year, resulting in an earlier start in the first growing 

season. This pattern of earlier start was obviously seen in central of Thailand, northern and 

southern of Vietnam. In contrast, other croplands (e.g., cassavas, sugarcane) started their 

growing season in approximately May or June, which was later than the rice fields. This is 

because these crops need the rainfall that begins around May in this region for vegetation 

growth.  

In addition, the same crop types are spatially different in each location and may 

have differences in phenological characteristics due to different soil, water, climate, 

management, etc. Therefore, the timing of the start and end date of the growing season, and the 
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length of the growing season, as well as the magnitude of greenness (e.g., maximum VI) vary 

from place to place according to environment and management of each location. Rice fields are 

one of examples, which have different phenological characteristics in each location. However, 

different characteristics can be observed from irrigated and rainfed rice fields. 

Phenology is not only different in different land uses or locations; it can also 

indicate temporal change or shift due to climate variability or human management. In case of 

temporal analysis, the results indicate that the EVI in SEA from 2001 to 2010 was decreasing. 

Phenological trends exhibited a later and slightly longer growing season. The biomass 

production (the amplitude and integral) demonstrate decreasing trends in the eastern portion of 

the Peninsula. Regional vegetation dynamics over SEA illustrated a relative correspondence with 

major climate events such as El Niño in 2005. Various parameters showed distinctly different 

patterns in years of these extreme climate events.  

To obtain more information about EVI and phenological changes in this region, 

the representatives of forest areas and agricultural areas in this region were selected to 

investigate the trend and change of growing season. EVI trends representing overall greenness of 

vegetation showed the forest loss in the northern part of Thailand, northern and eastern portions 

of the Peninsula. Furthermore, the overall forest areas exhibited the decreases in amplitude and 

integral indicating the loss of high-quality forests, The major causes of forest loss are the shifting 

cultivation (small agricultural fields) and commercial logging, as well as large-scale 

infrastructure developments (Tottrup et al, 2007). In addition, the extreme climate events have 

negatively affected the forest, e.g., forest fires in the dry year (ADB, 2009). Therefore, the results 

of EVI and phenological changes in forest areas demonstrate the influence of human disturbance 

and climate variation. In agricultural areas, rice paddies in central Thailand showed decreasing 
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trends of EVI but increasing trends were found in Vietnam and Myanmar. The amplitude and 

integral of irrigated rice in central Thailand and rainfed rice in southern Vietnam indicated the 

increase in annual net primary production. The amplitude and integral of agricultural areas had 

an increasing trend suggesting the improvement of agricultural practices. Therefore, forest areas 

in this region tended to change according to climate variation and human disturbance, while 

trends of agricultural areas varied depending on farming management. The drivers of 

phenological change in this region are investigated in the next chapter.  

Information of vegetation dynamics derived from remotely sensed data is 

essential for local and regional natural resource managements. Understanding these seasonal 

patterns of vegetation activity is valuable for the characterization of vegetation, studying the 

impact of climate change and inter-annual variability, monitoring land degradation, and detection 

changes in land use and land cover. In addition, phenological shifts and changes could result in 

large changes in annual gross primary production and affect the carbon cycle, water cycle and 

energy fluxes through photosynthesis and evapotranspiration (Xiao et al., 2009). These effects 

consequently may have influenced on food security, water resources availability, and climate. 

More importantly, changes in average climate conditions and climatic variability will have a 

significant effect on phenology again as the feedback loop. As a result, phenological detection 

based on remote sensing can provide phenological information in space and time that is benefit 

the study of ecological terrestrial system and environmental management. 

4.6.2 Challenges and Limitations 

Although EVI time-series data at an intermediate spatial resolution and high 

temporal resolution provide useful land surface phenology for monitoring and assessing spatial 

and temporal variations in vegetation amount and condition, there are a number of challenges 
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that still need to be addressed. It is important to note that the data sets and the methods described 

in this research are the first attempt to extract phenology in this region on a regional scale; 

consequently, the following issues should be considered when applying EVI time-series data for 

phenological detection in this region. 

- Data Quality 

MODIS EVI can provide enhanced temporal detection of land surface phenology 

but this product is still constrained by cloud contamination and atmospheric effects. The 16-day 

compositing period of the MODIS EVI product series collection 5 (MOD13Q1) are improved by 

using a new quality based filtering scheme for cloud and aerosol correction, a modified 

compositing method to deal with residual and mislabeled clouds, as well as applying EVI2 as the 

backup algorithm for cloudy pixels (Didan & Huete, 2006). The compositing method is 

processed by selecting the date providing the smallest view angle with the highest VI values for 

minimizing the view angle effects with the best atmospheric conditions (Didan & Huete, 2006). 

This product is expected to have a tremendously positive affect on post-processing. However, 

vegetation in tropical climates is most active during the rainy (i.e., cloudy) season resulting in the 

selection of clear pixels, which is greatly impeded by residual clouds in the compositing method. 

It is important to note that optical remote sensing in a moist tropical region with monsoonal 

climate faces challenging issues such as frequent cloud cover in the wet season (growing season) 

and fire-induced aerosols in the dry season.  

To deal with these problems, MODIS EVI products used in this research have 

applied the Savitzky-Golay smoothing function in the TIMESAT program in order to replace 

outliers, spikes, or missing values. However, this approach is sometimes insufficient to eliminate 

cloud contamination, particularly to detect phenology in tropical climates. This leads to the 
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unsuccessful extraction of phenological information for some pixels.  Because of the concerns 

about data quality issues, annual data quality assessment maps were produced in order to 

compare the level of quality associated with annual EVI and annual phenological patterns 

(Appendix C). The data quality maps were processed by using reliability layers provided in the 

MOD13Q1 product. It is found that the lower data quality is enhanced during the growing season 

(May-Aug) due to the monsoonal climate. Therefore, it is impossible to avoid low quality data in 

the regional scale analysis. For the local scale analysis, this study attempted to select locations 

having high data quality. However, some locations with low data quality were also selected 

because they are the representative locations of this region.  

The interpretation of phenology in the areas of marginal quality data should be an 

important concern. This research tried to examine the phenological results in locations with 

marginal quality data. One of interesting location is in the Red River delta of northern Vietnam. 

This location showed low quality data in most of images in a year (There are 23 images per year 

for the MODIS EVI composited product.). The results of this study found two growing seasons 

of rice in this location and other studies also confirmed that most of rice in the Red River delta is 

irrigated with two crops per year (Young et al., 2002; Cooke & Toda, 2008; Vietnam Trade 

Promotion Agency, 2008; Bridhikitti & Overcamp, 2012). Therefore, it seems that even with low 

quality data, satellite derived phenology can provide reliable results of general phenological 

patterns; however, timing of growing season may be varied due to data quality. MODIS AQUA 

product is another alternative for the study of vegetation condition. However, data quality and 

biophysical conditions of the study area are important for the selection of data products and 

sensors in phenological study. 
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- Validation 

Validation is a key issue in remote sensing-based studies of phenology on a 

regional scale (Zhang et al., 2003). The best way to evaluate results is to use field data. While a 

variety of field programs for monitoring phenology have been initiated, these programs provide 

data that are typically species-specific and are collected on scales that are not compatible with 

coarse resolution remote sensing (Reed et al., 2009). In addition, ground phenological databases 

have not yet been satisfactorily validated due to the difficulty in obtaining sufficiently extensive 

ground observations throughout the growing season. 

This research has employed the comparison between phenological parameters 

derived from MODIS EVI with field data in order to observe errors and quantify the agreement 

between satellite derived phenology and field observation. There is no availability of 

phenological stations or ground-based phenology observation in this region. Therefore, the field 

data in this research were recorded by interviewing famers and head of villagers in central and 

northeast Thailand. As a result, field observations cover small areas in Thailand due to time and 

financial constraints. Although the results of the comparison showed good agreement between 

field observations and satellite estimations, the technique caused deviations between the 

phenological estimates and the ground data in some cases. For example, estimates of growing 

season dates from MODIS were later than those from field data and the MODIS dates varied but 

the dates from the field observations appeared unchanged.  It is noteworthy that substantially 

more field data are required to fully assess the phenology based remote sensing time-series data.  

Additionally, ground surveys of phenology in a variety of environments are 

required and field data collection should be specifically designed to validate remote sensing 

phenology. This means that the field approaches should cover large area estimates of phenology 



148 
 

over heterogeneous study areas, rather than plant specific measures. In addition, as Reed et al. 

(2009) suggested, the dates of phenological record should be related to continuous vegetation 

indices (e.g., start and end dates of the growing season). Such an integrated effort would be 

logistically difficult and expensive, but would be extremely beneficial to remote sensing-derived 

phenological applications as well as global change studies. The second solution is to develop and 

expand ground-based phenology observation networks, such as the USA National Phenology 

Network (Reed et al., 2009). Another possible way to validate phenology based remote-sensing 

time-series data is to compare the results with high resolution images, for example, comparing 

MODIS time-series data with LANDSAT data. However, this technique is difficult due to the 

need to acquire all time-series LANDSAT imagery for one year and it requires the appropriate 

method for data filtering and phenological extraction. Furthermore, for regional scale analysis, it 

is considered to be time consuming and requires high computing performance.  

- Resolution 

MODIS satellite time-series data provide high temporal resolution and is free of 

charge; however, the 250 m resolution leads to the spatial heterogeneity of land cover classes in 

one pixel. In the large MODIS pixel over diverse vegetation types, each pixel reflects the 

integrated response across landscapes with diverse species and phenological behavior. These 

mixed pixels introduce error into the analysis of interannual variability. The interpretation of 

remotely sensed phenological parameters at this spatial resolution should be addressed. The high 

resolution satellite images (e.g., LANDSAT) offer an appropriate local scale analysis but there 

are some limitations with these data for effective phenological extraction. 

Although there are a number of limitations and uncertainties to estimate satellite 

phenology derived from MODIS time-series data, the method used in this research provides 
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important phenological information; in particular, patterns and changes can be observed to 

understand regional vegetation variability and ecosystem dynamics in this region. 
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CHAPTER 5 

UNDERSTANDING THE DRIVING FORCES OF PHENOLOGICAL CHANGES 

5.1 Introduction 

The results of chapter 4 indicated the change of vegetation phenology in SEA. Moreover, 

the EVI and phenological patterns varied spatially. Regional vegetation dynamics in this region 

exhibited patterns that were associated with major climate events such as El Niño. However, 

human modification is a possible driver of such changes. The objective of this chapter is to 

analyze the causes/drivers of phenological changes from both climatic and anthropogenic factors. 

The first part of this chapter focuses on the relationship between phenology and climate 

variability to understand environmental changes in this region because this relationship is a key 

to identify the influence of climate change on biophysical characteristics. Since ecosystem of 

SEA is highly sensitive to rainfall variation and most of SEA suffers from recurrent droughts and 

floods, which strongly affect their agricultural areas, the relationship between rainfall variation 

and phenological changes was examined in this chapter. Spatio-temporal patterns and trends of 

rainfall seasonality were analyzed by using TRMM rainfall (TRMM-3B42-daily product from 

2001to 2010). Then, the response of vegetation phenology to rainfall seasonality and rate of 

phenological changes, with respect to rainfall seasonality in this region, were explored. This 

study will be helpful in understanding the climate in SEA and how it affects the vegetation. This 

knowledge is important for future study of global climate change. Additionally, land use data and 

rainfall variation on a local scale analysis were also used to indicate possible drivers of change 

between anthropogenically driven land cover change and interannual climatic fluctuations. The 

analyses on both regional and local scales are essential for understanding the effects of climate 

variability and human management on ecosystem dynamics in this region. This chapter also 
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illustrates the agreement between TRMM rainfall and station rainfall. The last section of this 

chapter discusses the influence of climate change and human management on phenological 

patterns in SEA. 

5.2 Response of Seasonal Vegetation Dynamics to Climate Variation in SEA 

5.2.1 Spatio-temporal Variation of Rainfall Seasonality in SEA 

Spatial distributions of rainfall were generated to represent 10-year mean annual 

rainfall and rainfall seasonality (the start of rainy season (SRS), end of rainy season (ERS), and 

length of rainy season (LRS) by using TRMM satellite time series data with the biological 

criteria (Jutakorn, 2011) from 2001 to 2010 (Figure 5.1). A high intensity of rainfall was found 

in the southern Peninsula and southwestern Cambodia. In contrast, low rainfall was observed in 

the northwestern Peninsula. The average amount of rainfall in most of SEA was approximately 

1,000-2,000 mm/year. The rainy season in SEA generally started in April or May. The southern 

portion of the Peninsula tended to have more rainfall and an earlier SRS due to year round 

rainfall resulting from its rainy tropical climate. The average ERS occurred from September to 

December, with an average LRS of 180-240 days with the exception of the southern peninsula, 

which exhibited a later ERS and longer rainy season.  

The trend of rainfall seasonality was calculated by MK and Sen’s method. The 

interannual change results show only pixels with a significant trend (Figure 5.2). The 

northwestern portion of the Peninsula and most areas of Laos presented a clear negative trend in 

rainfall, indicating decreasing rainfall in this region. Strong negative trends were found in the 

western Peninsula and in southern Laos. The rainy season in this region generally tended to start 

earlier (0-7 day/year), end later (0-7 day/year) and had a longer length (0-7 day/year), 

particularly in Thailand. Distinctive rainy season patterns were evident in Myanmar, as the 
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season tended to start later and had a shorter duration. Conversely, the southern portion of the 

Peninsula experienced an earlier start of rainfall and longer rainy season.  

5.2.2 Comparison between Mean Annual EVI and Mean Annual Rainfall 

The temporal mean EVI and mean annual rainfall show decreasing patterns in 

SEA from 2001 to 2010 (Figure 5.3). Increases in mean EVI were evident from 2002 to 2003, 

followed by a marked decrease from 2003 to 2005. The EVI increased again in 2006, then 

gradually decreased and continued in this trend through the end of the analysis period in 2010. 

Mean annual rainfall showed a decreasing trend from 2001 to 2010, with a significant decreasing 

trend in 2005 and 2010, which corresponded to the trend of mean EVI. The years of 2005 and 

2010 were El Niño years with remarkably low rainfall, which apparently had significant impacts 

on total vegetation growth in this region. The increasing trend of EVI and rainfall was basically 

reset after the El Niño event. The second increasing trend suggests the recovery of the 

ecosystems in the region after the extreme climate event in 2003 and 2006. However, this region 

exhibited continuously decreasing EVI and rainfall patterns from 2007 to 2010. EVI and rainfall 

in this region exhibited similar patterns indicating the influence of rainfall variability on total 

vegetation growth. Therefore, variable vegetation dynamics over SEA are more likely to be 

related to major climate events. 

5.2.3 Relationship between Seasonal Rainfall Fluctuations and Phenological 

Parameters 

Phenological patterns derived from MODIS products and rainy season 

observations from TRMM data over the ten year study period were used for investigating the 

response of vegetation to rainfall and identifying the sensitivity of various vegetation formations 
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to climate variability. The relationship between important parameters was examined: SGS-SRS, 

EGS-ERS, LGS-LRS. 

EVI and rainfall, and SGS and SRS showed a strong positive correlation in most 

of the study area (Figure 5.4). EVI and rainfall exhibited a positive correlation in northern, 

northwestern, and eastern portions of the Peninsula. SGS and SRS were highly correlated in 

Myanmar and some parts of Thailand, Laos, and Vietnam. EGS and ERS showed strong positive 

trends in Myanmar and Thailand. A significant positive trend in LGS and LRS were also 

apparent in some parts of Myanmar, Thailand and Vietnam. These results indicate that positive 

correlations were found in water deficient ecosystems, where ecosystems are dependent on 

rainfall for production. In contrast, a negative correlation was found in scattered pixels, where 

irrigated agricultural areas exist.   

5.2.4 Rate of Phenological Changes with Respect to Rainfall Seasonality 

Trends of relation presented the rate of shift were performed by considering 

phenology with respect to the change in rainfall during 2001-2010 (how many days phenology 

changes when rainfall increases or decreases). The regression analysis was processed for pixels 

with significant correlation and with a corresponding increase or decrease of rainfall parameters 

for a period of 10 years.  

Phenological parameters with respect to corresponding change in rainfall 

parameters show obvious results in some cases and only few pixels showed significant trends of 

relation. Therefore, this research selected three important cases to show the rate of change for 

SGS-SRS, EGS-ERS, LGS-LRS. The spatial patterns can be detected as shown in (Figure 5.5).  
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Figure 5.1 10- year mean rainfall (2001-2010) 
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Figure 5.2 Rainfall trends (2001-2010) 
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Figure 5.3 Mean annual EVI and mean annual rainfall 
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Figure 5.4 Relationship between phenology and rainfall seasonality 
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Figure 5.5 Rate of phenological change with respect to rainfall seasonality 
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- SGS showed a positive trend with respect to SRS. This suggests that SGS 

shifted backward at rate of 1-3 days per one day decrease of SRS in the eastern portion of the 

Peninsula. 

- EGS showed a positive trend with respect to ERS. This indicates that EGS 

shifted forward at a rate of 1-3 days per one day increase of ERS in the northeastern Thailand. 

- LGS showed positive trend with respect to LRS. This demonstrates that LGS 

shifted forward at a rate of 1-2 days per one day increase of LRS in some parts of Thailand. 

5.3 Driver of Phenological Change: Local Scale Analysis 

Changes and trends of vegetation phenology can provide strong scientific evidence for 

ecosystem dynamics. Both climate variations and human management are possible drivers of 

phenological changes. To understand phenological changes as explained in the previous section, 

the drivers of changes should be addressed. Therefore, this section analyzes the possible drivers 

of phenological changes between anthropogenically driven land cover change, and interannual 

climatic fluctuations on a local scale analysis (in Thailand). 

Although overall phenological change at a regional scale is important for examining 

drivers of change, local scale analysis can provide more precise and meaningful information 

about those drivers. In this section, the relationship between phenology and climate variability 

and land use/land cover changes were investigated in specific sites by selecting hotspots based 

on significant relationships among phenology and rainfall, striking trends, and differences of 

land cover characteristics. Four case studies were selected for this analysis: Site I and II in the 

northern Thailand and Site III and IV in central Thailand. 

First, the relationship between phenology and climate variability was explored to monitor 

and assess environmental changes in this region. This relationship is a key to understand the 
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influence of climate change on biophysical characteristics. As rainfall is the key factor to control 

vegetation growth duration in this region (Kramer et al., 2000; Cleland et al., 2007), this research 

focused on the response of phenology to rainfall variation in order to understand the sensitivity 

of various vegetation formations to rainfall changes. Phenological patterns were derived from 

MODIS products and rainy season observations were obtained from TRMM data over the ten 

year study period (as described in the previous section). 

Second, land use data were also considered to indicate the possible causes of change in 

phenology, which are human management or climate. Land use data for two periods in each site 

were provided by National Land Use Dataset of Thailand from Land Development Department, 

Ministry of Agriculture. This research also compared the phenological change and land use 

change with the rice ecosystem and rice cropping frequency maps (Figure 4.2 and 4.3). These 

maps were supported by Mahasarakam University in Thailand (Bridhikitti & Overcamp, 2012). 

5.3.1 Site I and II in Northern Thailand 

The first two sites are located in northern Thailand. The first site is in Sukhothai 

province, which is mainly covered by forest, with small areas of rainfed rice and corn (Figure 

5.6). The relationship between phenology and rainfall seasonality at this site showed a positive 

correlation in all pairs of parameters (SGS-SRS, EGS-ERS, and LGS-LRS). SGS displayed a 

later trend while EGS displayed an earlier trend; resulting in a shorter LGS for this site. Land use 

changes were also considered to identify the influences of human management on phenology 

change. Land use change and change detection were processed by using land use data in 2002 

and 2009. The results show that land use was not changed substantially at this site (Table 5.1). 

The obvious change was that sugarcane and corn had increased, while perennial, and mix field 
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crop had decreased.  Therefore, phenological changes at this site were mainly due to the changes 

in rainfall patterns.  

The second site is also located in northern Thailand, in the Uttaradit province. The 

land cover in this site is mainly rainfed rice with some large areas of evergreen and deciduous 

forests (Figure 5.6). Phenology and rainfall also showed positive correlations in SGS-SRS and 

LGS-LRS.  When considering land use change in 2001 and 2009, the areas of cropland showed 

little change (Table 5.2). The change detection shows that a large portion of sugarcane was 

converted into cassava. 

The results of these two sites exhibited a strong relationship between phenology 

and rainfall and there was relatively little land use change. Consequently, change in rainfall is the 

major influencing factor for phenology at these two sites.  

Table 5.1 Land use change for site I Sukhothai province in 2002 and 2009 

Land Use 2002 (%) 2009 (%) % Change 

Urban 0.74 1.60 114.27 

Paddy Field 2.86 3.29 14.72 

Corn 0.98 8.44 760.95 

Sugar cane 0.31 0.74 136.61 

Cassava 0.00 0.03 2.52 

Mix field crop 10.54 0.31 -97.07 

Perennial 8.59 3.30 -61.54 

Orchard 9.07 9.45 4.20 

Evergreen Forest            29.07         28.35  -2.47 

Deciduous Forest            36.73          42.85  16.67 

Water 1.09 0.99 -9.53 

Miscellancous Land 0.00 0.65 65.23 

 

 

 

 



162 
 

Table 5.2 Land use change for site II Uttaradit province in 2001 and 2009 

Land Use 2001 (%) 2009 (%) % Change  

Urban 11.11 13.38 20.42 

Paddy Field 38.40 37.37 -2.70 

Corn 3.97 1.90 -52.05 

Sugar cane 4.94 3.68 -25.37 

Cassava 1.58 3.17 100.93 

Mix field crop 8.39 4.18 -50.16 

Perenial 4.27 5.67 32.75 

Orchard 2.15 2.54 18.20 

Horticulture 0.00 0.40 40.48 

Aquacultural Land 0.00 0.03 3.47 

Evergreen Forest 11.84 12.81 8.19 

Deciduous Forest 7.79 7.00 -10.17 

Water 2.91 2.87 -1.67 

Miscellancous Land 2.65 5.00 88.48 

 

5.3.2 Site III and IV in Central Thailand 

Sites III and IV are located in central Thailand.  The central area of Thailand 

contains large areas of paddy fields and a mixture of croplands. It is not surprising that most 

pixels in this area showed a negative correlation between phenology and rainfall seasonality 

because the croplands are highly affected by human management. 

Site III, located in Supanburi province contains mostly irrigated rice and some 

sugarcane (Figure 5.7). Phenology and rainfall showed a negative correlation here. This site is 

largely covered by irrigated croplands; consequently, it is affected by human management. In 

addition, change detection analysis of land use in 2000 and 2010 clearly indicated that the 

important land use change in this site was the areas of sugarcane, which were increasing and 

changed from paddy rice (Table 5.3). It can be concluded that the phenology in this site was very 

dependent on agricultural practices, which may vary greatly among farmers. Therefore, the 
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precipitation changes did not show a strong relationship with the phenological changes. On the 

basis of these observations, this site reflects human management rather than climate influences. 

The last site is also located in Lopburi province. Half of this site is covered by 

paddy fields and another half by sugarcane (Figure 5.7). Most of paddy fields in this site are 

rainfed rice. Although this site is in central Thailand and is mainly covered by croplands, 

phenology and rainfall were positively correlated. When exploring land use changes in 2001 and 

2010 (Table 5.4), a noticeable change was the area of corn, which was converted to sugarcane. 

This site indicates that although land use is changed, the rainfall pattern also accounted for 

phenology changes, suggesting some croplands also need rainfall to control vegetation growth. 

In summary, natural vegetation is likely dependent on rainfall for vegetation 

growth duration. In addition, rainfed croplands also need rainfall for the growing season. 

Therefore, the results demonstrate the strong relationship between phenology and rainfall in 

these areas. However, most of the croplands, particularly irrigated crops, are more influenced by 

human management. Thus, phenology and rainfall exhibited a negative correlation. These 

characteristics need local scale analyses site-by-site to indicate the possible drivers of changes 

and to identify the hotspots or sensitive areas of ecosystem dynamics. 
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Table 5.3 Land use change for site III Suphanburi province in 2000 and 2010 

Land Use 2000 (%) 2010 (%) % Change  

Urban 6.09 12.13 99.31 

Paddy Field 84.73 65.54 -22.65 

Sugar cane 3.92 9.98 154.20 

Cassava 0.00 0.05 4.94 

Mix field crop 0.22 0.21 -2.18 

Perennial 0.00 0.31 31.24 

Orchard 1.85 3.94 112.54 

Horticulture 0.00 0.06 6.33 

Aquacultural Land 0.00 0.69 68.76 

Deciduous Forest 1.16 1.41 21.62 

Water 1.24 4.09 230.77 

Miscellancous Land 0.79 1.58 100.13 

 

Table 5.4 Land use change for site IV Lopburi province in 2002 and 2010 

Land Use 2002 (%) 2010 (%) % Change  

Urban 2.84 6.58 132.08 

Paddy Field 50.19 46.74 -6.88 

Corn 39.15 0.34 -99.14 

Sugar cane 1.36 30.74 2163.07 

Cassava 0.00 3.77 377.03 

Mix field crop 0.00 2.41 241.11 

Perennial 0.32 2.73 761.28 

Orchard 4.71 2.36 -49.89 

Horticulture 0.00 0.03 2.78 

Aquacultural Land 0.06 0.29 397.47 

Deciduous Forest 1.07 1.73 61.86 

Water 0.31 1.64 430.73 

Miscellancous Land 0.00 0.63 63.17 
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Figure 5.6 Land use changes in Site I and II in northern Thailand 
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Figure 5.6 (cont’d) 
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Figure 5.7 Land use changes in site III and IV in central Thailand 
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Figure 5.7 (cont’d) 
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5.4 Comparison between TRMM Rainfall and Station Rainfall 

This research compared TRMM rainfall with station rainfall. Monthly station rainfall and 

the average ten-year mean of rainfall seasonality (SRS, ERS, and LRS) from Thailand research 

(Jutakorn, 2011) were used for this comparison. As indicated from Figure 5.8, the results reveal 

that annual rainfall extracted from TRMM was strongly correlated with rainfall station data with 

R
2
 values of 0.6-0.8 from 2001 to 2010. Furthermore, the results showed that the slope was 

lower than the 1:1 line, indicating that the TRMM estimation was lower than what was observed 

by rainfall stations, particularly for heavy rainfall. Previous research also mentioned to this 

underestimated rainfall patterns from TRMM and this problem is more pronounced for heavy 

rain rates (Huffman et al., 2007; Chokngamwong & Chiu, 2008). This issue should be addressed 

when applying satellite-precipitation sensors.  

For rainfall seasonality, Figure 5.9 clearly illustrated good correlation of SRS, ERS, and 

LRS between the rainfall parameters derived from TRMM and obtained from TMD during a 

period of 10 years with R
2
 values of 0.5, 0.8, and 0.6, respectively. However, the discrepancy 

was also examined. The rainfall seasonality of TRMM showed earlier dates than what was 

estimated from TMD. The overall results indicate that rainfall from TRMM can be used to 

predict the rainfall seasonality. 
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Figure 5.8 Comparison annual rainfall between TRMM rainfall and station rainfall in Thailand 
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Figure 5.9 Comparison rainfall parameters between TRMM rainfall and station rainfall in Thailand 
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5.5 Discussion and Conclusion 

  5.5.1 Spatio-temporal Variation of Vegetation Phenology and Rainfall Seasonality 

The results presented in this research demonstrate that satellite time-series data 

provide great opportunities to study not only regional vegetation variability but also internal 

climatic fluctuation. These data can identify the relationships between phenology and climate 

variability, as well as the drivers of phenological changes related to climate variations.  

The rainy season in this region tended to start early and end late resulting in a 

slightly longer length. However, the amount of rainfall has decreased from 2001 to 2010. Annual 

rainfall decreased across most of the western and northern regions of the Peninsula and increased 

across the eastern region of Thailand.  The results reveal a significant positive correlation 

between SGS and SRS overall, although negative correlations can be found in areas used most 

extensively for agriculture. The forest areas and rainfed croplands show similar patterns, which 

shifted the growing season according to changes in rainfall, especially in Myanmar. The rate of 

phenological changes with respect to rainfall seasonality varied among different land cover types 

and ecosystems. 

In addition, the driver of phenological change due to rainfall variability and 

human management was also observed on a local scale. The local scale analysis indicates the 

hotspots and sensitive areas of vegetation conditions and climate variability. For example, the 

results showed that the northwestern part of the Peninsula was distinctly different from other 

regions in the Peninsula.  A later start and earlier end of growing seasons with shorter length 

were found in this area. Moreover, the rainy season was later and shorter than it was in the rest of 

the region and the amount of rainfall in this area decreased over the 10 years study. This area is 

covered mainly by forests and has low human disturbance; as a result, phenological patterns 
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reflect the strong influence of climate in this location. This sensitivity of phenology to rainfall in 

some specific sites is important for environmental management. Additionally, the findings 

indicate that the major drivers of the phenological changes are climate and human management. 

The regional and local scale analyses indicate that rainfall is a dominant force in naturally 

vegetated areas and rainfed croplands, whereas human management is a key factor in heavily 

agricultural areas with irrigated systems.  

5.5.2 The Influence of Climate Change on Phenological Patterns 

The general pattern and phenological changes exhibited relative correspondence 

with rainfall seasonality in SEA. The wet and dry years occur as a repeated cycle in this region. 

Extreme climate events in this region are associated with the El Niño Southern Oscillation 

Phenomenon (ENSO) (NIC, 2009). ENSO is related to the periodic shift in global climate 

resulting in a pattern of seasonal monsoons. Monsoon frequency and intensity enhanced by 

ENSO can create or intensify floods and droughts (NIC, 2009).  

According to Ninh & Kelly, 2000, El Niño and La Niña are used to describe the 

periodic warming and cooling of the tropical Pacific Ocean and the consequent disruption of the 

atmospheric circulation, bringing extreme weather and climate to many low-latitude areas. Both 

El Niño and La Niña events have severe impacts on the Indochina region, affecting patterns of 

temperature, rainfall and other weather variables such as the frequency of tropical storms. An El 

Niño event is associated with drought in most parts of the region, whereas La Niña events are 

more likely to bring excessive monsoon rain leading to flooding, especially in low lying areas. 

SEA experiences an increase of rainfall of up to 150% and frequent flash floods have been 

reported in SEA related to La Niña events (ADB, 2009). 
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When considering the EVI and phenological patterns in this research, it was 

apparent that the change of EVI and phenology were evident as an irregularly repeated cycle 

corresponding to the years of El Niño and La Niña. The EVI and rainfall showed decreasing 

patterns in 2002, 2004-2005, 2009-2010 (Figure 4.7 and Figure 5.3). This pattern was related to 

El Niño years with very low rainfall (TMD Thailand, 2010), resulting in lower EVI values than 

those in other years. La Niña years, which are wet with high amounts of rainfall, occurred in 

2003 and 2007-2008 (TMD Thailand, 2010). EVI in these years illustrated larger increases, 

particularly in 2007-2008. In addition, phenological patterns also revealed the change and shift 

patterns during those extremely climatic years (Figure 4.16). Therefore the temporal EVI and 

rainfall, including phenological patterns showed the cycles of changes (e.g., decreasing, 

increasing, change, and shift patterns) over the ten year study period, especially with significant 

changes in the years of extreme climate events. 

Several reports revealed the impact of extreme climate events on vegetation 

condition in this region. These extreme years have caused floods during the rainy season and 

water shortages during the dry season. For example, the model of Naylor et al., as cited in NIC, 

2009) predicted that El Niño events typically cause a delay of up to 2 months in the onset of the 

monsoon season in Indonesia, which delays the planting of rice crops. Lansigan et al., (as cited in 

NIC, 2009) investigated the potential impacts of climate during El Niño and non-El Niño years 

in the Philippines. They found a major change in the cycle of planting and harvest during El 

Niño years: the variability in weather patterns moved the sowing date for rice to as early as 

Julian day 137 (mid-May) or as late as Julian date 229 (mid-August) when it is normally near 

Julian day 173 (mid-June). Additionally, changes in precipitation patterns affected current 

cropping patterns, crop growing seasons, and the sowing period (ABD, 2009). 
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In addition to the growing season shift, the precipitation variability in El Niño 

years reduced crop yield. An El Niño year was typically marked by a shorter and more intense 

wet season, which decreased crop growing time and subjected crops to stress from excess water. 

This situation caused a crop loss of 52-81 percent, and the delayed onset of the rainy season by 

up to a month in ENSO years cut rice yields by up to 11 percent in parts of Indonesia (NIC, 

2009). Boonpragob (2005) revealed that the economic losses in Thailand between 1989 and 2002 

due to floods, storms, and droughts were mainly from the agriculture sector because crop yield 

losses amounted to more than $1.25 billion. In recent years, thousands of hectares devoted to rice 

production have been damaged by frequent flooding in the Red River Delta, Central Region, and 

Mekong Delta in Vietnam due to the impact of extreme weather events (ADB, 2009). 

The extreme climate events are particularly important for SEA because the 

region’s economics depends on agriculture (Ninh & Kelly, 2000). Agricultural outputs are 

severely affected if there is a serious deficit in water supply or excessive rainfall. Therefore, 

climate change has been and will continue to be a critical factor affecting the productivity of 

agriculture in this region (Lasco et al., 2011). In addition, the increase in incidence of observed 

climate extremes such as floods, droughts and tropical cyclones in this region have caused 

adjustments in farm management practices in response to climatic variation. The most commonly 

used adaptation techniques in the agriculture sector of SEA involve changes in crop variety, 

cropping patterns, cropping calendar, and improved farm management (Lasco et al., 2011). As a 

result, these adjustments lead to changes in phenology in this region; for example due the later 

start of rainy season, farmers have to delay the growing season. Therefore, climate variability 

will continue to cause significant impacts on SEA agriculture in coming decades. The frequency 

and severity of climate extremes due to climate change are expected to cause greater losses, 
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which will be exacerbated if extremes occur during vital stages of crop growth. Most 

importantly, these impacts are critical to food shortages in the region and pose a serious threat to 

future food security. 

Not only has climate variability had substantial impacts on agriculture, but it has 

also negatively affected naturally occurring vegetation. Changes in forestry and vegetation due to 

climate change will likely impact species biodiversity. The biologically diverse forests of SEA 

represented 5.1 percent of the total forest areas in the world in 2005, and they were a major 

source of global forest products, accounting for 50 percent of total forestry exports from Asia 

and the Pacific (NIC, 2009). SEA forests are vulnerable to climate change due to degradation 

and unsustainable practices, such as illegal logging and conversion of native forests to 

agricultural lands. The report in Thailand (Boonpragob and Santisirisomboon, as cited in NIC, 

2009) indicated that increases in temperature and variations in precipitation in Thailand due to 

climate change will cause the expansion of tropical dry forest into subtropical moist forest in the 

northern part of the country, and cause replacement of subtropical forests with tropical forests in 

the southern part of the country. In addition, the report in Vietnam concluded that climate change 

is likely to cause significant alterations in the Vietnamese forestry industry, particularly to shifts 

in suitable growing regions (NIC, 2009). These reports suggest that climate change poses a threat 

to biodiversity in the region. Subsequently, climate change will cause the replacement of high-

quality forests with low-quality forests, which will likely to lead to significant biodiversity loss. 

Thailand and Vietnam are expected to suffer more than other countries from biodiversity loss 

due to the impact of future climate change (ADB 2009).  

EVI and phenological patterns including rainfall seasonality derived from satellite 

images provide an opportunity to study phenological information related to climate changes over 
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large spatial regions and enable environmental monitoring and assessment. As observed from the 

results of this research, phenological patterns and changes can identify relationships with climate 

change events, particularly in El Niño and La Niña years. Additionally, the results in a local 

scale analysis can identify the hot spots or sensitive areas of decreasing EVI and forest loss as 

well as significant changes of phenology in croplands. These results could guide management 

priorities for protection and conservation in forest areas and agricultural management in cropland 

areas. SEA is more vulnerable to the impacts of climate change with its rapidly-growing 

population and increasing dependence on natural resources and agriculture (ADB, 2009; Lasco  

et al., 2011). Consequently, the information about the relationship between phenology and 

climate patterns is critical for examining the effects of climate change on ecosystem dynamics in 

this region on regional and local scales. 

5.5.3 The Influence of Human Management on Phenological Patterns 

In addition to the influence of climate on phenological changes, land use is also 

an important determinant in this region. Agricultural land use is one of the most extensive land 

cover types in this region. The spatio-temporal patterns of phenology in agricultural areas are 

distinct from that of natural vegetation. This characteristic can be seen at both regional and local 

scales. This study shows that the trends of phenological parameters reflect changes in land use 

practices in primary agricultural areas. However, the timing and production of crop phenology 

can be quite variable and dependent on crop types and human management.  

Socio-economics and improved farm management are the main causes of land use 

change in this region. The increase or decrease in crop prices would influence changing in crop 

types by farmers. In addition, changes in policy and planning could result changes in the extent 

and intensity of cultivation. These factors affect the timing and production of crop phenology to 
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change over time. Nevertheless, a mixture of climatic and anthropogenic effects is also possible. 

Extreme climate events such as floods and droughts have also resulted in the land use changes, 

for example, changes in cropping patterns (ADB, 2009; Lasco et al., 2011). More data on these 

changes are required in order to perform for a site by site analysis. The results presented in this 

research indicate that some locations are primarily influenced by human management, but 

climate also plays a role in some locations. However, the phenological patterns and changes that 

are influenced by human management are likely to become an increasingly important issue in 

this region.  
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CHAPTER 6 

ENVIRONMENTAL IMPACTS WITH BIOGEOCHEMICAL MODEL:  

RICE FIELDS IN THAILAND 

 

6.1 Introduction 

Chapters 4 and 5 examined spatio-temporal variations of vegetation phenology and 

rainfall seasonality, and responses of seasonal vegetation dynamics to climate variations in SEA. 

In general, phenological changes in SEA exhibited relative correspondence with rainfall 

seasonality and major climate events. However, human management with land use practices also 

altered land surface phenology in some areas. Therefore, the major drivers of the phenological 

changes were both climate and human management. To better understand the environmental 

consequences of climate change and management practices, it is necessary to assess the impact 

of environmental change, particularly in agricultural areas.  

This chapter demonstrates the integration of remote sensing mapping with a 

biogeochemical model (DNDC) to quantify GHG emissions (CO2, CH4, and N2O) from rice 

fields in Thailand. Lopburi province in Thailand was selected as a case study because this site is 

an important rice field site in the Chaopraya River Delta in Thailand.  The new approaches 

described in chapter 3 that include multi-temporal remote sensing data and the new database 

system with a grid-based unit at 250 m resolution, were proposed to improve model 

performances and provide more accurate emissions predictions. This approach can simulate 

emissions at site level, which reflects the spatial diversity of crop growth environments, and can 

also advance the regional estimation of the DNDC model. The database was established from 

climate and soil data, in combination with additional farm management information to estimate 

emissions for single and double rice cropping systems.  
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Additionally, spatio-temporal patterns and changes of GHG emissions were investigated 

under different scenarios (actual data, different rates of fertilizer, climate variation, phenological 

changes, and climate variation and phenological changes) to identify the effects of the input 

parameters on the model regional emission (see more details in chapter 3). The emission rates 

were directly retrieved cell-by-cell from the model, while total yearly emissions were obtained 

by multiplying the emissions by the area of the pixels containing rice fields (multiply by the size 

of the grid cell if that cell has rice fields) to produce total emissions per cell for scenario1 (actual 

input data). The regional emissions of the province were derived from a sum of all cells in the 

province for simulated year. To indicate the net effect on global warming, Global Warming 

Potential (GWP) was calculated for each grid cell. Furthermore, comparisons of the DNDC 

results to the IPCC approach and Thailand research is performed in this chapter.  The influence 

of human management, climate variation, and physical geography on the change of GHG 

emissions is also discussed.  

6.2 Spatio-temporal Patterns of GHG Emissions under Different Scenarios 

This research conducted five scenarios for a selected site (Table 3.5) to identify the effect 

of management practices (fertilization, flooding period), climate, and phenology on model-

produced regional emissions. The results of five scenarios are explained in the following:  

6.2.1 Scenario 1: Actual Input Data for 2002 and 2010 

Tables 6.1-6.2 and Figures 6.1-6.3 illustrate the results from the regional 

simulations based on actual input data (climate, land use, phenology, farming management) in 

Lopburi Province in 2002 and 2010. The overall emissions results at this site indicate that all 

emissions increased in 2010. The modeled average of CH4 for the simulated years of 2002 and 

2010 were 206 and 255 kg CH4-C/ha, respectively. The relative deviation of CH4 emission rate 
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in 2010 was higher than 2002 at 24%. The average of CO2 was 725 kg C/ha in 2002 and 770 kg 

C/ha in 2010 with a relative deviation of 6%. The average of N2O was 14 kg N/ha in 2002 and 

17 kg N/ha in 2010 with a relative deviation of 16%.  

Yearly total emissions and GWP present a similar pattern, where emissions were 

higher in 2010 than in 2002. The sum of the warming forces of all the three GHG emissions 

based on the concept of GWP shows that GWP values increased 18% from 2002 to 2010. The 

total emissions of CH4 in this province were 43,707 tons CH4-C in 2002 and 61,729 tons CH4-C 

in 2010. The total emissions of CO2 were 154,152 tons C and 186,563 tons C in 2002 and 2010, 

respectively. The total emissions of N2O in 2002 were 3,055 tons N and 4,042 tons N in 2010. 

The simulated spatial distribution of GHG emissions from the Lopburi rice fields 

and their GWP under continuous flooding condition is shown in Figures 6.1-6.2 The higher 

emission rates of CH4 were found in the western region of Lopburi province (Amphoe Ban Mi 

and Tha Wung), which is dominated by a double cropping rice system (Figure 3.9). The lower 

CH4 emission rate occurred in the central area of Lopburi province (Amphoe Khok Samrong), 

which is dominated by a single cropping rice system. It can be noted that CH4 showed sensitivity 

to soil properties. The patterns of CH4 reflected spatial variation in the soil properties (soil 

texture) when comparing the result with the soil maps (Figure 6.4). Low CH4 emissions were 

located in soils with a high clay fraction (higher than 50%). Conversely, high CH4 emission rates 

were found in low-clay soils, even in single cropping rice systems (yellow and orange colors in 

Figure 6.1).  
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However, CO2 and N2O displayed different spatial patterns from CH4. Emission 

rates of CO2 and N2O showed high values in single cropping systems and low values in double 

cropping systems. This is due to several influencing factors. Low-clay soil in areas with a single 

rice cropping system produces more CO2 and N2O emissions. In addition, a single cropping 

system has less crop biomass production than a double cropping system leading to a greater loss 

of soil organic carbon that affects higher CO2 emissions. N2O emissions were lower during the 

flooding period; as a result, shorter flooding period lengths for a single rice cropping system 

could produce more N2O emissions. High emission rates were found in Amphoe Sa Bot for all 

GHG emissions mainly due to the soil properties.  

When comparing the results of emission rates in 2002 with 2010, CH4 clearly 

showed an increasing pattern in a double cropping rice system. CO2 also showed increasing 

emissions in a double cropping rice system; however, decreasing emissions were found in a 

single cropping system. N2O emissions increased in most areas of the study site, although the 

area with the highest N2O emissions (orange color in Figure 6.1) in 2002 showed a slight 

decrease in emissions in 2010. 

Table 6.1 Emission rate in scenario 1 

Parameter Emission Rate % Change 

  2002 2010   

CH4 (kg CH4-C/ha)        205.69             254.62  23.79 

CO2 (kg C/ha)        725.44             769.53  6.08 

N2O (kg N/ha)          14.38               16.67  15.96 

GWP (kg CO2-equiv/ha)   16,249.03        19,116.33  17.65 
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Table 6.2 Total emission in scenario 1 

Parameter Total Emission % change 

  2002 2010 

CH4 (Ton CH4-C)        43,706.85       61,728.50  41.23 

CO2 (Ton C/ha)      154,151.81     186,562.70  21.03 

N2O (Ton N/ha)          3,055.19         4,042.05  32.30 

GWP (Ton CO2-equiv/ha)   3,452,817.86  4,634,515.16  34.22 

 

6.2.2 Scenario 2: Fertilizer Effect 

This scenario used different fertilizer rates for 2002 and 2010 (with a higher rate 

of fertilizer in 2010) in order to test the effect of fertilization on GHG emissions. Tables 6.3 and 

6.4 present the overall scenario 2 results and Figures 6.3 and 6.5 show spatial and temporal 

patterns of GHG emission rates and GWP. The results from the regional simulations based on 

different fertilizer rates in scenario 2 indicate that CH4 and N2O emissions in 2010 were higher 

than 2002; however,   CO2 presented the opposite pattern with lower emissions in 2010.  

The mean emission rate of CH4 increased by 23% from 2002 to 2010 (Figure 

6.3). A decrease of 5% was found for CO2. The mean emission rate for N2O showed only a 1% 

increase from 2002 to 2010. These results suggest that a change in fertilizer rate can significantly 

affect CH4 emissions. CH4 demonstrated a higher rate of increase, which was similar to scenario 

1 (Figure 6.4). On the other hand, N2O emissions in scenarios 1 and 2 were quite different 

asN2O emission rates showed an increase of 16% in scenario 1. GWP showed a slight increase at 

9.7%.  
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Figure 6.1 GHG emission rate in scenario 1 
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Figure 6.1 (cont’d) 
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Figure 6.2 Total GHG emission in scenario 1 
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Figure 6.2 (cont’d) 
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Figure 6.3 Comparison GHG emission rate between scenario 1 (S1) and scenario2 (S2) 
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Figure 6.4 Soil texture and % clay in Lopburi province 
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Figure 6.5 clearly illustrates the spatial variations of emissions across the 

province at grid-cell scale. CH4 emissions increased in 2010, particularly in double rice 

cropping systems. In contrast, a decrease in CO2 emissions was found in a double rice 

cropping system. Increases in N2O emissions were sparsely distributed in a double rice 

cropping system. Therefore, the results of this scenario indicate a strong effect of 

fertilization on CH4 emissions. In addition, increases in fertilizer rate showed a 

significant impact on a double rice cropping system, which exhibited large increasing 

values of emission, due to the increasing frequencies of fertilizer application in this 

cropping system.  

Table 6.3 Emission rate in Scenario 2 

Parameter Emission Rate % Change 

  2002 2010   

CH4 (kg CH4-C/ha)        205.69             253.90  23.44 

CO2 (kg C/ha)        725.44             690.60  -4.80 

N2O (kg N/ha)          14.38               14.57  1.35 

GWP (kg CO2-equiv/ha)   16,249.03        17,819.65  9.67 

 

Table 6.4 Total Emission in Scenario 2 

Parameter Total Emission % change 

  2002 2010 

CH4 (Ton CH4-C)        43,706.85       53,952.91  23.44 

CO2 (Ton C/ha)      154,151.81     146,749.17  -4.80 

N2O (Ton N/ha)          3,055.19         3,096.51  1.35 

GWP (Ton CO2-equiv/ha)   3,452,817.86  3,786,563.94  9.67 
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6.2.3 Scenario 3: Climate Effect 

The objective of this scenario is to investigate the effects of climate 

variations on GHG emissions by using actual climate data (temperature and rainfall) for 

nine years, while keeping all other input parameters constant (used input data from 2002 

for all years from 2002-2010). Figure 6.6 shows a graph of emission changes. The spatial 

patterns of GHG emissions from 2002 to 2010 are included in Appendix D. The results 

illustrate little variability in CH4 emission during the nine-year period, except in 2010, 

which showed a significant decrease in emissions. CO2 also demonstrated a stable pattern 

but exhibited a slight decrease in 2007. On the other hand, N2O emission patterns varied 

across the nine-year period. When comparing with the climate input data (Figure 6.6), it 

can be noted that N2O followed the pattern of rainfall. There is also an indication that 

N2O increased with an increase of rainfall. GWP patterns were similar to N2O. In 

addition, the decrease of CH4 and CO2 in 2010 and 2007 were largely related to extreme 

climate events in this study area. When examining the climate data at this site, the 

temperature was generally higher and the rainy season arrived  later with a shorter length 

in 2010 compared to other years; thus, 2010 was the drought year. In addition, the length 

of rainy season was longer with very low rainfall in 2007. This extreme climate with 

changes in temperature and rainfall could affect the change in CO2 and CH4 emissions. 

The results of this scenario suggest that rainfall could be a major factor for N2O emission 

and extreme climate events have an impact on CH4 and CO2 emissions in this region. 
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Figure 6.5 GHG emission rate in scenario 2 
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Figure 6.5 (cont’d) 

 



194 
 

6.2.4  Scenario 4: Phenology Effect 

This scenario examines the effects of phenological changes on GHG emissions. 

The actual phenology (the start and end dates of the growing season) of nine years were utilized 

in this scenario, whereas all other inputs were held constant by using data from 2002 for all 

years. The temporal CH4 emission varied greatly in this scenario (Figure 6.7). CH4 emissions 

showed decreasing patterns from 2002 to 2005 but exhibited a large increasing trend from 2009 

to 2010. The temporal CO2 emissions illustrated increasing trends with a remarkable increase in 

2005. N2O emissions demonstrated an increasing trend with small variations. Areas with the 

highest emissions for CH4 and CO2 did not change much during the nine-year period. Spatial 

patterns of GHG emissions for this scenario are provided in Appendix D. 

The modeled results indicate that phenological changes have significant impacts 

on emissions, particularly for CH4 emissions. Figure 6.7 compares CH4 emissions with the 

length of growing season; these two graphs show very similar patterns, as the length of growing 

season increased, CH4 increased. This is due to the fact that the flood duration for rice paddies is 

related to the length of growing period, especially in a double rice cropping system. A longer 

growing season length needs a longer flood duration (no mid-season drainage is included in the 

simulation of this research). The flooded rice paddy provided a favorable environment for 

methanogenesis, resulting in increased CH4 emissions. Therefore, change in the number of 

growing seasons from a single to double rice cropping system affects CH4 emissions due to 

increases in the frequency and duration of the flooding period  (e.g., twice in a year) in the paddy 

soils.  
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In the case of CO2 emissions, change in emissions was in relative agreement with 

vegetation production. Small integral and EVI, which shows the vegetation production or 

biomass, demonstrated decreasing trends from 2003 to 2005, but CO2 showed an increasing 

trend during these three years. This result is largely related to the loss of soil organic carbon. The 

decrease in crop biomass production or vegetation growth leads to the changes in soil 

decomposition rates and crop residue incorporation into the soil. This condition enables the 

change in soil from a sink to a source of atmospheric CO2 resulting in the increase in CO2 

emissions. N2O showed very little changes in this scenario and its pattern was similar to GWP. 

6.2.5 Scenario 5: Climate and Phenology Effect 

The actual climate and phenological data for the nine-year period were utilized in 

this scenario and the remaining input parameters used were from the 2002 dataset. The results 

show a significant impact of climate and phenology on annual emission rates (Figure 6.8). 

Spatial patterns of GHG emissions of this scenario are shown in Appendix D. The trends of all 

emissions were similar to the trends of scenario 4. In the case of CH4 emissions, there was a 

decreasing trend in the first four years (2002-2005) and an increasing trend from 2009 to 2010. 

CO2 and N2O emissions in this scenario have more variation when comparing to the trend of 

scenario 4. Both emissions illustrated rapid changes in 2005. These results suggest that climate 

combined with phenological changes have significant influences on CH4 emission and also 

affect the variation in CO2 and N2O, particularly during the years of extreme climate events in 

2004 and 2005.  
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Emission Rate Climate Input Data 

  

  

  

  

Figure 6.6 Comparison between climate input data and GHG emission rate in scenario 3 
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Emission Rate Phenology Input Data 

  

 
 

 
 

 

 

Figure 6.7 Comparison between phenology input data and GHG emission rate in  

scenario 4 
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When comparing the results of this scenario with scenarios 3 and 4, it can be 

noticed that phenology is the primary factor effecting the changes in CH4 emissions. The graph 

of temporal CH4 emissions shows large variation with phenological changes in scenario 4. CO2 

emissions trends were stable in scenario 3, 4, and 5 but showed rapid change in the extreme 

climate years. However, N2O emissions were strongly related to climate variation, especially 

rainfall changes. 

 
 

 

 
 

 

Figure 6.8 GHG emission rate in scenario 5 
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atmosphere. This research applied the GWP standard of the IPCC approach from 2007. Although 

the results indicate that the contribution of GWP over all scenarios was positive and varied from 

year to year, GWP increased in scenarios 1, 2, and 4, decreased in scenario 3, and was fairly 

stable in scenario 5 (Figures 6.3, 6.6-6.8). GWP showed fluctuant patterns with similarity to N2O 

in all scenarios. This implies that GWP is highly dependent on N2O according to the higher 

weight of the warming forces of N2O, compared to other emissions, in the GWP equation. The 

spatial patterns of GWP indicate that areas with high GWP values also have a high rate of N2O. 

However, CH4 and CO2 also shares in GWP especially in the areas with high emission rates of 

these two gases. These results suggest that reducing N2O could effectively mitigate the net effect 

of rice fields at this site on global warming. Additionally, the positive values of GWP imply that, 

in general, paddy rice fields are a source of atmospheric GHG at this study site. 

6.3 Comparison to IPCC Estimation and Research in Thailand 

A baseline emission factor from IPCC guidelines (IPCC, 2006) is usually applied for 

estimating the regional or global CH4 emissions from rice paddies, but none for CO2 and N2O. 

With the IPCC emission factor of 130 CH4-C/ha (Table 6.5) under 100-day continuously flooded 

conditions without organic amendments for rice paddies, the total CH4 emissions of Lopburi 

province were 27,624 tons CH4-C in 2002 and 31,517 tons CH4-C in 2010. The modeled 

estimation of regional CH4 emissions in this study site from the actual data (scenario 1) was 

43,707 and 61,729 tons CH4-C in 2002 and 2010, respectively, and the mean emission rate was 



200 
 

206 and 255 CH4-C/ha in 2002 and 2010, respectively. These results indicate that CH4 emissions 

from the DNDC model were greater than that of the IPCC approach. The relative deviation was 

found to be -58% and -96% in 2002 and 2010, respectively. However, if the continuous flooding 

period changed from 100 days to 200 days due to a double rice cropping system, which is the 

major rice system in this site, the results demonstrate good agreement between modeled 

emissions and the IPCC approach. The emissions from the IPCC method (260 CH4-C/ha) were 

larger than the model estimates in 2002 (206 CH4-C/ha) but were very close to model estimation 

in 2010 (256 CH4-C/ha). The relative deviation was only 26% and 2% in 2002 and 2010, 

respectively. 

The CH4 emission factors and scaling factors from previous Thailand research (Gale et 

al., 2005) were also used to compare with the regional CH4 emissions of this research. Gale et al. 

(2005) reported both the standard scaling factors for Thailand (232 CH4-C/ha) and the CH4 

emissions rate for each province of Thailand in 1998 (Table 6.6). The standard estimate rate of 

the Thailand research showed close agreement with the modeled estimation. A relative deviation 

between the standard and the modeled estimation was only 12% and 10% in 2002 and 2010, 

respectively. In addition, estimated CH4 emission rates for each province in Thailand based on 

minimum, median, and maximum scenarios in 1998 (Gale et al., 2005) were also compared to 

modeled emission rates (Table 6.7). The results demonstrated that the modeled emission rate was 

in between the median and maximum scenarios (150-331 CH4-C/ha).  
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Therefore, the results indicate close agreement between the standard emissions rate and 

modeled emissions rate with the IPCC approach under 200-day continuous flooding and scaling 

factors from the Thailand research. The discrepancies between simulated emissions, emission 

factors and standard emission rates in the IPCC approach and the Thailand research may be due 

to the differences in climate and cropping practices in each simulated year. The DNDC model 

has a number of advantages over the standard scaling factor method. The DNDC model is a 

complex, process-based model that applies various ecological drivers and soil environmental 

variables for regional GHG emissions. The greater detail of the DNDC calculations allows the 

effect of different soils, crops, climates, and farming practices to be reflected in the emission 

estimate. Climate and farming management can vary significantly in different years. The DNDC 

model is able to vary the input parameters (climate, soil, vegetation, and management factors) for 

different years and different grid cells. This technique has the potential to greatly improve the 

accuracy and precision of GHG estimates and reduce uncertainties in estimated parameters 

concerning rice field management.  In addition, the DNDC model allows users to identify and 

assess the specific effects of any single model driver or model input parameter on GHG 

emissions. This approach may be applied from local to regional scales.  

Table 6.5 Comparison between modeled estimation and IPCC approach 

Year 

DNDC 
IPCC 2006 (100-day 

continuously flooded) 

IPCC 2006 

(200-day continuously 

flooded) 

Kg CH4-

C/ha 
Ton C 

Kg CH4-

C/ha 
Ton C RD (%) 

Kg CH4-

C/ha 
Ton C RD (%) 

2002 205.7 43,706.8 130.0 27,624.2 -58.2 260.0 55,248.4 26.4 

2010 254.6 61,728.5 130.0 31,516.9 -95.9 260.0 63,033.8 2.1 

RD = relative deviation  

Source: IPCC. (2006). Guidelines for National Greenhouse Gas Inventories, Volume 4: 

Agriculture, Forestry and other Land Use. (Emission Factor: 1.30 kg CH4/ha/day) 
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Table 6.6 Comparison between modeled estimation and Thailand standard scaling factors 

Year 

 

DNDC Thailand research1 (2005) 

Kg CH4-C/ha Kg CH4-C/ha RD (%) 

2002 205.7  232.4  11.5  

2010 254.6  232.4  -9.6  

RD = relative deviation  

Source: Gale et al. (2005). Development of a database for estimating methane emissions from 

rice fields in Thailand (Emission Factor: 232.36 kg CH4/ha)  

 

Table 6.7 Comparison between modeled estimation and standard emission rate in Lopburi 

province 

Year DNDC 
Thailand research2 (1998) 

Min RD Median RD Max RD 

 
Kg CH4-C/ha 

(Kg CH4-

C/ha) 
(%) 

(Kg CH4-

C/ha) 
(%) 

(Kg CH4-

C/ha) 
(%) 

2002 205.7  55.1  -273.6  150.1  -37.1  330.8  37.8  

2010 254.6     -362.5     -69.7     23.0  

RD = relative deviation  

Source: Gale et al. (2005).  Development of a database for estimating methane emissions from 

rice fields in Thailand (Estimated CH4 emission rate for each province in Thailand based on min, 

median, and max scenarios)  
 

6.4 Discussion and Conclusions  

This research demonstrates the potential integration of remote sensing mapping with a 

biogeochemical model to quantify spatio-temporal patterns of GHG emissions from rice fields in 

Thailand. Spatial and temporal dynamics of GHG emissions were characterized under different 

scenarios to investigate the effects of various factors on GHG emissions from rice fields. These 

factors included climate and human management (fertilization and phenology). The results of 

five scenarios estimating GHG emissions from rice fields in Thailand demonstrate the influence 

of human management, climate variation, and physical geography on the change in GHG 

emissions. The results of GHG estimations indicate that phenology is the main factor affecting 
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the changes in CH4 emissions. The change of CO2 emissions was relatively smaller than CH4 

and N2O in all scenarios but showed rapid changes in extreme climate years. N2O emissions 

were strongly related to climate variation, especially rainfall changes. Additionally, high CH4 

emissions showed a correspondence with light texture soil. An increase in rates and applications 

of fertilizer produced the high CH4 and N2O emission. A longer flooding period resulted in 

increased CH4 emissions. 

6.4.1 Effect of Soil Properties on GHG Emissions 

Although GHG emissions in rice fields are influenced by a variety of factors, soil 

properties are some of the most significant factors in changing GHG emissions. The results 

indicate that the chemical and physical soil factors played important roles in CH4 and N2O 

emissions.  

The soil chemical properties, soil organic carbon, and soil texture, affected CH4 

emissions. Emissions increased with as clay content decreased and soil organic carbon increased. 

This finding is in agreement with numerous observations (Li et al., 2004, Babu, et al., 2006, 

Horwath, 2011, Smakgahn, 2003). High organic content and light soil texture contain abundant 

carbon sources for methanogenesis which leads to high emission rates. In contrast, heavily 

textured soils (high percent of clay) lack the nutrition for methanogenesis and emissions are 

entrapped before they are released to the atmosphere (Smakgahn, 2003). Additionally, heavier 

textured soils emitted less CH4 than lighter soils under the same management conditions due to 

the clay absorption which limits DOC availability to the soil microbes (Li et al., 2004). Horwath 

(2011) also mentioned that the higher buffering capacity of clay soils can be directly related to 
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lower CH4 emissions, which is due to the increased content of alternate electron acceptors 

resulting in a prolonged onset to reduced conditions. In addition, soils with a rapid return of pH 

to neutral upon flooding decreased in soil redox potential (Soil Eh) more rapidly and hastened 

the onset of CH4 production (Horwath, 2011). The same pattern is also found for CO2 and N2O 

emissions; heavier soils emitted less CO2 and N2O than lighter soils.  

In addition to soil chemical properties, soil physical properties also influence CH4 

production and emission. Soil Eh is related to soil moisture level, with high soil moisture 

resulting in a low soil Eh. A decrease in soil Eh under continuous flood conditions leads to an 

increase of CH4 production rates. According to Smakgahn (2003), a low soil Eh leads to low 

oxygen levels in the soil, affecting the growth of methanogenic populations and CH4 emissions, 

whereas high soil Eh from dry conditions is not suitable for methanogenesis activity. The range 

of soil Eh for CH4 emission is −150 to − 210 mV. On the contrary, soil Eh for significant N2O 

emissions ranges between +120 to +250 mV (Smakgahn, 2003). When rice fields are drained, the 

result is low soil moisture with a high soil Eh. These conditions decrease CH4 emissions, but 

intensify N2O emissions, particularly when N fertilizer is applied as top dressing. 

6.4.2 Effect of Management Practices on GHG Emissions 

In addition to soil properties, field management practices exhibited significant 

impacts on CH4 emissions. Although phenology may not be directly influencing the change in 

emissions, it is related to management practices resulting in the change in CH4 emissions. Water 

management strongly affects CH4 emissions. Flooding duration of rice fields depends on the 



205 
 

length of the growing period. Flooded rice with high cropping intensity (more than one season in 

a year) is extensively practiced in SEA due to their high rice demand. The longer the flooding 

period during a given year, the higher CH4 emissions are found in these rice flooded fields (Li et 

al., 2004, 2005; Pathak et al., 2005). For example, a double rice cropping system is usually 

flooded from the first day of planting until 15 days before harvesting. CH4 is produced through 

anaerobic decomposition of organic matter in biological systems. CH4 is emitted during flooding 

because anaerobic conditions are essential for methanogenic bacteria, which are a source of 

methane. Wetland rice during flooding is consequently favorable for both rice production and 

methane production. Moreover, low soil Eh from moist conditions is suitable for methanogenesis 

activity. Soil Eh is positive at the start of the growing season and gradually declines when the 

fields are flooded, and increases again when the fields are drained. Therefore, the change in 

length of growing season, resulting in the change of flooding duration, causes changes in CH4 

emissions. Consequently, the cropping frequency and phenology of rice are significant factors 

affecting the change in CH4 emission. 

In contrast, flooded rice fields produce low N2O emissions, while the drainage of 

rice fields increases N2O emissions. Several researchers report high N2O emissions from the soil 

of rice fields that are drained during the growing season (Li et al., 2004, 2005; Pathak et al., 

2005; Smakgahn, 2003). This is due to the higher rates of nitrification and denitrification than 

under continuously flooded conditions. Draining rice fields may create suitable O2 availability in 

the soil for N2O production as an intermediate product in either nitrification or denitrification, 
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while flooding may create strict anaerobic conditions and restrict N2O emissions (Li et al., 2004, 

2005; Smakgahn, 2003).  

Therefore, water management is important for emission mitigation. Although 

mid-season drainage or pre-harvest drainage reduces CH4 and CO2 emissions, this practice 

significantly increases N2O emissions (Li et al., 2004, 2005; Gale et al., 2005). Similar research 

in Thailand, China, and India reported low N2O emission observed under flooded conditions (Li 

et al., 2005; Pathak et al., 2005; Smakgahn, 2003). 

Another important management practice for GHG emission is fertilization. The 

second scenario of this research demonstrates that the fertilization rate, particularly of urea, was 

positively correlated to CH4 emission. Furthermore, double rice cropping systems tended to 

produce more CH4 emissions than a single rice system because the applications and rates of 

fertilization increase to more than two applications per year. Smakgahn (2003) found that urea 

applied as a top-dressing fertilizer significantly increases CH4 emissions in Thai rice fields and 

higher nitrogen levels in fertilizer resulting in higher CH4 emission rates. The influence of N 

fertilizer on N2O emissions was also found in this research, with an increase in fertilizer rates 

resulting in increased N2O due to nitrification processes. Smakgahn (2003) also reported that 

urea can produce high N2O emissions.  

Fertilizer application directly affects rice growth (plant density, amounts of leaf). 

An increase in biomass and grain yield leads to increased emissions (Smakgahn, 2003). N 

fertilizer application increases crop biomass or yields, which could indirectly enhance the CH4 
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production (Zhang et al., 2009). Therefore, rice intensification, with a longer flooding period and 

increased fertilizer applications and rates, substantially enhance CH4 production.  

6.4.3 Effect of Climate and Phenology on GHG Emissions 

The changes in climate variation (temperature and rainfall) and phenology (start 

date, end date, and length of growing season) have a large impact on GHG emissions from rice 

fields. Although CH4 and CO2 did not show major changes with climate variations, the extreme 

climate events (e.g., a drought year with high temperatures and low rainfall) had negative 

impacts on CH4 and CO2. Rainfall is an influential factor on N2O emission, as greater rainfall 

tends to produce higher N2O emissions. Wassmann and Dobermann (2006) also indicated that 

N2O is primarily emitted in pulses after fertilization and strong rainfalls. In addition, phenology 

change is associated with climate variation; phenology showed significant changes in 2005 and 

2010, which were El Niño years. These phenological changes, such as a change in the small 

integral or length of growing season, have effects on crop production resulting in changes of 

CO2 and N2O emissions. Most importantly, phenological change (e.g., the length of growing 

season) due to the intention to increase yield or climate change (e.g., drought or flood years) 

demonstrated a significant influence on GHG emissions. In particular, for CH4, change in the 

length of the growing season leads to change in flooding duration resulting in the modification of 

CH4 emissions.  

It is interesting to note that the trend of GWP shows significant influences of N2O 

emissions on global warming. This is because the weight of the warming forces for N2O is 
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higher than the weight for CH4 and CO2. Additionally, all scenarios have positive GWP values; 

this suggests that paddy rice fields are a source of atmospheric GHG. As a result, to mitigate the 

net effect of rice fields on global warming, N2O emission should also be considered as an 

important factor.  

6.4.4 Challenges and Limitations 

Challenges and limitations should be considered when applying the DNDC 

model. The first challenge is the quality of the input parameters. Several input datasets are 

required for DNDC model (i.e., climate, soil, land use, and farming practices) but some data are 

unavailable or there is a lack of information from field observations or data records; therefore, 

default values in the DNDC model or estimated values are applied in this research to estimate 

emissions, such as crop residual. For example, one important input parameter is rice variety. 

Although this research applied actual yields for 2002 and 2010 in scenario1, only one type of 

rice was applied in the model due to  lack of information. Rice varieties and rice cultivars vary in 

their phenology and physiological features, and the DNDC model can differentiate between two 

or more rice varieties and cultivars by using several specific input parameters, such as biomass 

yield, grain:shoot:root biomass ratio, crop growth, and crop phenology. Additionally, to obtain 

inter-annual estimation from the model, yearly land use and rice ecosystem maps for different 

locations are also important for the DNDC to reduce uncertainty in emission estimates. Sufficient 

and high quality input data are important to obtain high estimation accuracy when using the 

DNDC model. 

The second challenge is that the effectiveness of the model depends on the study 

site.  Continuous modification and calibration can enhance the performance of the DNDC model 

for estimating GHG emissions. Therefore, field data are necessary for both modification and 



209 
 

evaluation of model performances. Validating the model with the standard emission factor is 

unable to reflect the change of input parameters (e.g., climate, soil, management practices). As a 

result, discrepancies exist between the simulated results and the standard emission. Therefore, 

field observations are required to validate the model and improve the efficiency of model.  

This research generated phenology for both single and double rice cropping 

systems but it is possible that some pixels have no phenological data due to missing values or 

atmospheric effects. This condition might affect emission estimates, particularly for CH4 

emission. This is because CH4 emission estimates requires start and end dates of the growing 

season to calculate flooding period.  

Water management is another important factor for CH4 and N2O emissions. This 

research applied only continuous flooding management. Different water management practices 

should be applied to obtain accurate estimations and to identify the effects of water management 

under different conditions.  

In addition, the change in GHG emissions reported in this research should be 

considered as the results of a specific site, which may not be representative of all 

climate/soil/management regimes across the world’s rice fields. However, the general trends 

presented in this research could be applicable to other locations, particularly in SEA. 

6.4.5 Potential of DNDC Model 

The DNDC model integrates influences of various ecological drivers (climate, 

soil properties, vegetation, and human activities) and soil environmental variables for regional 

GHG emissions. In addition, the DNDC model can simulate daily emissions and soil Eh patterns 

throughout the rice-growing season and can define wet-dry conditions in flooded rice fields. 
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Additionally, the model provides graphic data for users to observe the patterns of emissions, and 

it is possible to estimate emissions on a large scale and generate mapped results. This data is 

useful for predicting the production potential and emissions from rice fields.  

The method introduced in this research, the DNDC in site mode with grid-based 

units to provide  output on a regional scale, could play an important role in linking management 

changes to biogeochemical cycles based on spatially differentiated information. This method has 

the ability to preserve the advantages of site-based modeling while also meeting the demand for 

large-scale estimation. Model efficiency is enhanced by this technique. Therefore, the integration 

of remote sensing mapping with the DNDC model to quantify emissions can increase the 

accuracy of GHG emissions on a regional scale. Additionally, satellite derived phenology is a 

type of alternative information that can be utilized in the DNDC model because in-situ  

phenological information (e.g., start and end dates of the growing season) is difficult to obtain in 

some areas, and phenology from remote sensing could reduce the cost of ground survey. This 

method would greatly improve estimations compared to the IPCC method based on the baseline 

emission factor. Although the results of GHG estimations from the DNDC model need more 

validation data, the DNDC model can demonstrate patterns and trends of emissions and it is 

useful for monitoring emission changes and developing mitigation strategies.  

In conclusion, climate variation has both direct and indirect impacts on GHG emissions. 

Climate variation alters plant-soil systems resulting in GHG emission changes. In addition, 

climate change indirectly affects GHG emissions by influencing changes in phenology and 

management practices. Moreover, a phenological change is strongly related to management 

practices that lead to a change in GHG emissions. The results of this research indicate that GHG 

emission not only vary spatially but also change significantly over time. This research 
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demonstrates that extreme climate events (flood and drought) have a significant impact on CH4 

and CO2 emissions. In addition, the most sensitive factor for N2O emissions from rice fields is 

the change in rainfall. The effects of climate variation also cause changes in phenology, which 

impacts emissions. For example, a change in the small integral (which represents seasonal 

vegetation growth) and the length of the growing season because of extreme climate events 

results in a change of emissions due to a crop production change. Human management in 

farming practices also produces huge environmental impacts. Two major management 

practices—flooding period and fertilization—affect emissions from paddy soils by altering the 

chemical and biophysical properties of the plant-soil system.  Continuous flooding practices 

increase CH4 but lead to lower N2O emissions. An increase in the rates and applications of 

fertilizer enhances CH4 and N2O emissions. Additionally, soil properties influence GHG 

emissions, particularly for CH4. A light soil texture produces higher emissions than a heavy soil 

texture. Low soil Eh tends to increase CH4 emissions, but decreases N2O emissions.  

The results of this research suggest that practical mitigation options should be carefully 

regulated to balance the emission types more efficiently, as well as to maintain or improve grain 

yields. The results imply that mitigation of CH4 emissions could be emphasized for rice fields 

because its emission is much higher than CO2 and N2O. Soil Eh should be controlled by water 

management in the appropriate range (−100 mV and +200 mV) to reduce both CH4 and N2O 

emissions (Majumdar, 2003). However, it may be difficult to apply this management in areas 

with insufficient water supplies and during the rainy season. A reduction of N fertilizers can 
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reduce emissions but would also reduce total rice production. However, ammonium sulfate could 

reduce emissions by 10-67% (Gale et al., 200). The integration of remote sensing and 

environmental models can help in identifying strategies to reduce these GHG emissions while 

maintaining rice production, which is an important source of food in the world. 
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CHAPTER 7 

THE INTERACTIVE PHENOLOGICAL ATLAS FOR SEA 

7.1 Introduction 

Previous chapters illustrated spatio-temporal patterns and changes of phenology and 

rainfall seasonality as well as environmental assessment. This information is very useful for 

research of environmental and ecosystem dynamics. Due to the vast amount of information 

resulting from phenological and environmental analysis, a visualization system has become 

indispensable to represent these spatio-temporal processes and to simulate the dynamics of 

environmental systems in order to provide the understanding and knowledge of how these 

changes are linked to environmental consequences.  

This chapter presents the prototype of the Interactive Phenological Atlas (IPA) for SEA. 

This visualization system applies the concepts of visual exploration and Internet atlas to display 

thematic map, bivariate map, and map animation. IPA uses web mapping application to deliver 

phenological information and related environmental variables in SEA on Internet. The outputs 

from previous chapters were selected to be displayed in IPA. EVI, phenological parameters, 

rainfall seasonality, as well as annual data quality assessment maps were processed to represent 

spatial and temporal patterns of environmental changes in this region. Additionally, spatial 

distributions and changes of GHG emissions on a local scale analysis were also included in this 

system. 

The objective of this system is data exploration, which allows users to derive meaningful 

information from interactive processes. The target users are researchers in environmental and 

remote sensing fields. The application allows users to display and explore the information 

interactively. The basic functions in this system enable users to navigate the maps in both spatial 
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and temporal extents; moreover, dynamic graphs are performed over the advanced functions. 

Additionally, map animation provides the functions for users to explore, monitor, and compare 

patterns and trends of vegetation phenology in SEA.  

IPA provides opportunity for researchers to explore the spatial distributions, changes, and 

the relationships between phenology and climate variability, as well as GHG emissions in SEA. 

This information is important for the understanding of ecosystem dynamics and environmental 

consequences in this region. In this chapter, the major components in the design and 

implementation of IPA are described and the capabilities of IPA, including accessibility, data, 

navigation, and interactive functionalities, are explained. The chapter concludes with the 

achievement, challenges, and limitations of IPA.  

7.2 Design and Implementation of IPA 

There are five major components in design and implementation of IPA which are 

explained in the following: 

7.2.1 Graphical User Interface (GUI) Design 

The GUI for the main web page is the entrance to the IPA system that users can 

access with a web browser (Figure 7.1). This web page is designed to facilitate data exploration 

as well as to communicate information with simple accessibility to easy understanding of the 

web content without special experience or knowledge. 

There are six main panels for designing the GUI of IPA as shown in Figure 7.1. 

The details of these panels are described as follows: 

a) Map content: the map content covers the major area of the web page in order to 

enrich the information to users. The map elements in this section are the map, legend, navigation 

tools, based map overlay button, overview map, scale bar, and layer transparency adjustment. In 
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addition to the map elements, the dynamic time-series graph displaying the pixel-based 

information is also enclosed in this panel. This graph will be displayed as a popup window, when 

users chick on the specific location on the map. 

b) Layer content: there are two major map layer categories consisting of the 

general map layers (e.g., boundary, field points) and the thematic map layers (e.g., EVI, 

phenological parameters, rainfall seasonality, etc.). The checkbox is used to select any layers of 

the general map layers and the drop-down list allows user to choose any categories of the 

thematic map layers. 

c) Toolbar: this panel contains several tools for specific functions consisting of 

on/off legend, map animation display, and help functions. Users can select any themes of map 

animations from the drop-down list. Additionally, the latitude/longitude coordinate is also 

provided in this panel. 
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Figure 7.1 IPA interface and components 
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Figure 7.1 (cont’d) 
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d) Static graph display: there are two categories of graphs to be included in this 

section in order to show the temporal data for each environmental parameter. The first category 

is the biophysical parameters consisting of mean annual EVI and mean annual rainfall. Another 

category is the greenhouse gas emission including CH4, CO2, N2O, and GWP. 

e) Dynamic graph display: this small panel is overlaid on the map content to 

display the pixel-based time-series graph. The pop up window is displayed when user clicks on a 

specific location on the thematic map. 

f) Map animation: this panel displays on top of the map content panel when users 

click on the display animation button in the toolbar (Figure 7.1). The GUI of map animation 

provides interactive animation control and temporal legend. The start and stop time as well as 

duration of animation are set on the system. As a result, users can control animation by selecting 

play, pause, and stop buttons, and by selecting parameters on the top tool bar of the main web 

page. These tools allow users to explore, monitor, and compare the patterns and changes of 

phenology. 

7.2.2  Map Design 

There are three categories of maps in this system—thematic map, bivariate map, 

and map animation. For thematic maps, the design is divided into two types for qualitative and 

quantitative data. The qualitative data, such as the start and end dates of the growing season, 

were designed by considering change of hue. The quantitative data applied the difference in 

lightness and saturation. The color scheme was designed according to data types. Sequential 

schemes were used for quantitative data such as the length of the growing season, whereas 

diverging scheme was designed for trend maps, which have negative and positive values. 

Sequential data classes are logically arranged from high to low values by sequential lightness 
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steps and diverging scheme emphasizes the values that progress outward from a critical midpoint 

of the data range. In addition to color scheme, data classification is also important. In this 

system, appropriate methods were selected for each map. Five classes were applied to most of 

the maps to reduce cognitive overload. However, some maps have more than five classes, such 

as the date of growing season that is related to the month of a year. Furthermore, the range of 

each class was assigned depending on the range of the raw data; for example, the range of trend 

map is the week corresponding to MODIS date. 

The bivariate map is required the specific design that are different from other 

maps. The bivariate map displays two attributes that allows users to examine and compare the 

relation between these two attributes. The important design is the selection of appropriate 

attributes and the use of a legend. This research created three bivariate maps (the start and end 

dates, length and amplitude, and length and large integral) by selecting two related phenological 

parameters in order to present the relationship of the two and to provide meaningful conclusions 

(Figure 4.16-4.18). Additionally, to create effective bivariate mapping, mean deviation technique 

was generated. Each map was produced by calculating the difference of phenological values of 

each year with the 10-year mean values based on pixel by pixel. The start and end dates represent 

the change in the timing of the growing season (early, normal, late). The amplitude, the length, 

and the large integral demonstrate the change of the growing season related to the annual 

biomass and net primary production (increase, normal, decrease). This information is able to 

indicate the sensitive areas of changes in vegetation condition as well as in land use. In addition 

to data selection, the legend design is another concern of this map. This system applied 

diverging/diverging schemes for bivariate maps because these maps use mean deviation 

technique to present normal, positive, and negative ranges. The technique was applied from 
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Brewer (1994) by using dark hues at each corners of the legend to represent categories that are 

extremes for both variables. A light and white color was placed at the center of the legend to 

represent the class that contains the critical value or midpoint of both variables. The remaining 

colors are lighter than the corners and lightness was adjusted in response to critical values within 

the data ranges of both variables. Since bivariate mapping is easy to increase cognitive overload, 

there are no more than three classes applied for bivariate maps in this system. In addition, the 

data classification was applied with appropriate ranges, such as using week to represent the early 

and late of the growing season. 

The design of the map animation is complicated and requires several tests before 

publishing. The important factor is the dynamic visual variables. This research applied three 

dynamic visual variables for map animation. Duration was defined for each scene of map 

animation; the rate of change was adjusted with appropriate time interval of each frame to make 

smooth change, while it has long enough duration for user to capture the change. All maps were 

arranged in chronological order. The color scheme and the number of classes are also important 

for designing map animation. The maps in map animation applied the same technique with 

thematic map but some maps need adjustments and modifications to display appropriate results 

on animation. In addition, to facilitate an understanding of the process of change, this system 

includes interactive temporal control and temporal legend. The temporal legend is designed for 

users to focus on the detail as well as to depict change over time and space. Temporal control is 

useful for users to review the events they may have missed within the sequence. With these 

effective techniques, map animation is able to communicate the concept of change for spatial and 

temporal context of phenological information. 
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7.2.3  Creating Map Service 

Map service was created to control a map server on how to generate a map when a 

request is received. Map service is a standard protocol used to request mapping data from a map 

server. Moreover, it is also determined and designed by considering the needs of users 

interactively between web browser and map server. The tool used for creating a map service is 

UMN MapServer. MapServer is an open source development environment for building spatially-

enabled internet applications.  It can be run as a CGI program or via MapScript, which supports 

several programing languages. In this research, MapServer that is used to develop a map service 

is the MapServer for windows (MS4W) and it run as CGI Program. The fundamental for creating 

map service is to create a map service configuration file. It is called as a Mapfile and is used for 

designing the map elements and configuring the behavior of the map and its layer. The Mapfile 

defines the relationship among objects as well as points MapServer to where data are located and 

defines how things are to be drawn (The University of Minnesota, 2011). Generally, each 

instance of map service needs to have its own Mapfile in which some parameters and some 

metadata entries are mandatory. For IPA, functions of this system were developed by using 

Python to automatically create the Mapfile. 

7.2.4  Creating Map Animation 

Map animation in this system was created by using the Flash program. Thematic 

maps with their legend were created in ArcMap program and then were imported to Flash 

program. It is necessary to design the layout of animation in advance to indicate the location of 

map components, such as a title, legend, explanation, etc., as well as the interactive functions. In 

the Flash program, duration, rate of animation change, and order of maps are set for transition of 

animation. This system designs and adds a temporal legend with indicators to show the time 
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change (e.g., year). Temporal legend is important for map animation to indicate what time period 

is currently shown, as well as the total duration of times that will be shown in the animation. 

Additionally, the script in Flash provides a variety options to add interactivity to animation. This 

system uses action scripting to develop animation control which allows users to compare data of 

different years and to view the map at users’ preferred pace. The animations were exported from 

Flash program in swf format and combined to IPA by using HTML. 

7.2.5  Establishing and Customizing the Prototype of IPA 

After creating the map service, an interface and functions in the IPA prototype are 

built and customized by HTML and JavaScript. The IPA is developed based on Google Maps 

API to build an interactive map. Using Google Maps API version 2 as a platform is an easy way 

for users to display, control, and compare between any layers and other information. Generally, 

Google Maps API does not support MapServer directly; however, it does support various ways 

of overlaying images on top of the map. In this research, IPA functions were developed by using 

JavaScript and Python as a connector to communicate between Google Maps API and 

MapServer. When a user clicks on a map or a tool, this function automatically generates and 

sends a request to the map server. When a response is returned from the map server, this function 

also processes the response by retrieving and displaying a map as an image on the Google Map 

platform. With this platform, only one image map service can be displayed at a time. In addition 

to the web map service function, other basic and advanced functions are developed and specified 

in the system in order to create the map elements, control a map, manipulate the data and display 

specific information. For example, dynamic time-series graph was developed by using Google 

Chart API. The web browser must be Firefox to handle the communications for requests, 

responses, and the specific functions. 
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7.3 Capabilities of IPA 

To understand the capabilities of IPA, accessibility, data, navigation and interactive 

functionalities are explained as follows: 

7.3.1 Accessibility 

 IPA was developed by UMN MapServer, HTML, Javascript, Python, and Flash. 

The testing results reveal that IPA could improve public’s accessibility and interaction to 

phenological information. IPA delivers information to users with fewer requirements for the 

client-side computing environment. However, this system is the most compatible when running 

on Firefox browser. Other browsers, such as Microsoft Internet Explorer and Google Chrome, 

can be used to access IPA but some functions might not be supported by these browsers. 

7.3.2 Data 

  The data in this system are listed in Table 3.6. There are maps of EVI, 

phenological parameters, rainfall seasonality, trend, bivariate, data quality assessment, and GHG 

emissions (on a local scale) in the thematic map layers. The boundary of Indochina region and 

Lopburi province in Thailand (case study area) are provided in general map layers. The formats 

of the data are in raster format for image maps and vector format for supporting layers. 

Additionally, EVI and seven phenological parameters are selected to be shown in map 

animation. 

7.3.3 Functionality 

  This system builds two groups of interactive functions for users to explore maps. 

The two groups of functions are basic and advanced functions.  
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1) Basic Functions 

The basic functions consist of map navigation (pan and zoom in/out), map 

coordinate, and map-based overlay. These functions are developed by using the Google Maps 

API. Moreover, the overview map is added for users to see a larger spatial extent so that users 

can get a better understanding of the spatial relationship of the current map and the entire region. 

Scale bar is included for distance measurement. In addition, this system has the function to adjust 

transparency of overlay thematic map. 

2) Advance Functions 

a) Dynamic generating layer content: This system provides the function to 

automatically and dynamically generate the map layer content corresponding to the maps in data 

source. When files in database change, map layer content in the interface also correspond to 

those changes and users can select any updated layers. 

b) Dynamic legend: This function was developed in this system to automatically 

change the map according to the map layer selection (with the activated layer). For example, 

every time user selects a map layer, the system not only generates and provides a thematic map, 

but also automatically creates a map legend corresponding to map content. In addition, this 

legend is created as an HTML object that can support the dynamic change and define interactive 

functions. In some complex maps, such as the bivariate maps, the dynamic legend can also 

provide more information for users to easily interpret the map.  

c) Dynamic time-series graph: This function was developed based on Google 

Chart API and JavaScript. It is performed to access and retrieve the pixel-based information from 

the temporal images in order to draw a time-series graph. When users click on a specific location 

on the thematic map, a time-series graph is automatically generated and shown in the popup 
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window at that location, and the graph will be changed when users click on other locations. For 

example, when users click on specific location on the start date of the growing season map, the 

system will generate a time-series graph of that location to show start date for ten years. The 

graph with the x-axis representing years and the y-axis representing different values depend on 

the map selection. Moreover, the interactive function on the dynamic graph was designed to 

change the graph to other parameters of that location by simply clicking on the graph without 

moving back to layer selection. This interactive dynamic graph function is very useful for users 

to explore and compare the patterns of that parameter during ten years. 

d) Map animation: Map animation is another effective technique used in IPA. 

EVI and seven phenological parameters were selected to show an animation in Flash 

environment. Map animation was generated separately from map server but embed into the 

system. Map animation is performed smoothly in a specific panel but completely overlay on the 

panel of map extent. Map animation can be reached by clicking on the animation button in the 

top toolbar and theme of maps is changed by selecting a specific layer on the drop-down list. 

Interactive animation control and temporal legend are provided for users to depict and explore 

change over time and space.   
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7.4 Discussion and Conclusions  

7.4.1  Achievement: The Concept of Visual Exploration in IPA 

The main goal of IPA is to provide visual exploration with an easy access and 

interactive functions for phenological data and related variables in SEA. From the literature 

reviews (DiBiase et al., 1992; Blok, 2006), it was determined that the visual exploration needs 

the tools to explore maps, for example, navigation tool. IPA is mainly developed by integrating 

MapServer and Google Maps API, which consist of several interactive functions of both basic 

and advanced functions. A GUI with these tools provides researchers a convenient way to 

conduct phenological and environmental research. 

In this system, cartographic techniques and basic and advanced functions are 

provided for users to explore the map. Basic functions include map navigation, map coordinate, 

map-based overlay, and layer transparency. Advanced functions consist of dynamic generating 

layer content, dynamic legend, dynamic time-series graph, and map animation. Additionally, 

cartographic techniques and designs were applied in this system: thematic map, bivariate map, 

and map animation. 

Thematic maps display the patterns of change over time and space. Bivariate map 

can communicate the relation between two variables. These bivariate maps enhance the ability to 

detect and comprehend important phenomena and major conclusions. In addition, map animation 

allows users not only to detect changes but also to understand meanings encoded in transitions 

within the dynamic displays and with interactive functions. Therefore, IPA provides highly 

interactive graphic displays that facilitate the environmental analysis of the change across space 

and through time. This process of exploration with interactive and dynamic interfaces enables 
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users to derive meaningful information as well as to construct knowledge in the research process 

that is the concept of visual exploration. 

7.4.2 Insights: Challenges and Limitations  

IPA was designed and developed for interactive representation of spatio-temporal 

environmental maps. The GUI and dynamic and interactive functions of IPA provide easy access 

to the maps with simple controllers for map navigation and exploration. However, there are 

challenges and limitation in design and development of this system.  

In case of technical issues in IPA, the system in IPA was mostly created by Open 

Source software. Although Open Source software provides interoperable application, some 

components are in individual software or functions that are developed by different groups 

leading to different versions. One component featuring additional desired functionality may 

result in a cascade of updating other components, particularly for a newly release version. In 

addition, these components must be configured, compiled and installed individually, which 

makes the maintenance of such systems a time consuming process. 

In terms of cartographic design, the nature of raster images causes the difficulty in 

visual exploration. The complexity of raster maps with a larger number of pixels could be 

misleading for interpretation and could increase cognitive overload for users to be confused with 

the maps. Consequently, this visualization system attempts to find appropriate color scheme for 

each variable—for example, different color hue for representing the month of the start and the 

end of the growing season, or lightness for the quantitative difference of the length of the 

growing season. These techniques might help user easily understand and detect the change. 

However, some image maps are difficult to design, such as the trend map that have the variation 

of values. Although the color schemes of these maps were carefully selected to have only five 
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classes, they provide the poor visualization when displayed on a regional scale. However, these 

maps show a clear display by using navigation tools to explore site by site. 

This research also found difficulties in designing bivariate map and map 

animation. Bivariate maps received considerable criticism for their presumed failure to 

communicate either information about individual distributions or the correlation between them 

(Olson, 1981). In addition to the design of data classification, color scheme and appropriate 

variable selection, this research found that the legend is important to explain the meaning of 

bivariate map. Therefore, this research added more information on the legend of bivariate maps 

by adding one word at the corner of the legend to explain extreme conditions (Figure 4.16). For 

example, the word “shift” was added to one corner of the legend indicating that the growing 

season starts and ends late. In addition, this system provides the additional explanation of four 

extreme conditions below the legend. These techniques allow users to understand and easily 

interpret the map. Additionally, to enhance the effectiveness of bivariate map in order to show 

spatio-temporal changes, mean difference or mean deviation of two maps can be applied. This 

research performed the mean difference between phenology of each year with the 10-year mean 

values based on pixel by pixel to indicate both the relationship between two parameters and the 

relation between different years. With these techniques, users can analyze the data, detect and 

comprehend important phenomena, and find a major conclusion from these maps. 

This research attempts to apply cartographic design to facilitate visualization in 

map animation such as using appropriate number of classes and applying dynamic visual 

variables and interactive map animations. However, the evaluation has not been addressed for 

this visualization prototype. The problem may exist without notice, particularly for map 

animation. For the problem of the map animation, numerous studies have pointed out that 
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information in an animation can be missed especially, when the data in animation are complex 

(Slocum et al., 2009). This is because complex data could increase cognitive overload. In 

addition, the problems of “change blindness” and “change blindness blindness” are critical in 

map animations (Fish, 2011). These two situations might cause users to miss the changes; 

moreover, they believe that they interpreted the map correctly (Fish et al., 2011).  Therefore, 

users do not review the display, resulting in the underestimation of changes. With these possible 

problems, the evaluation is important to improve the performance of this prototype.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE ENVISIONS 

8.1 Major Findings 

  8.1.1 Spatio-temporal Variation of Vegetation Phenology and Rainfall Seasonality 

Phenological patterns derived from MODIS products (16-day EVI with 250 m 

resolution from 2001-2010) and rainy season observations from TRMM data (daily rainfall with 

0.25x0.25 spatial resolution from 2001-2010) are proven to be useful tools for monitoring the 

response of vegetation to rainfall and identifying the sensitivity of various vegetation formations 

to climate variability. These data can identify the changes, the relationships between phenology 

and climate variability, as well as the drivers of phenological changes related to climate 

variations.  

However, the study of these patterns has not been addressed in SEA, particularly 

on a regional scale. In addition, the method used in this research minimized the need for ground 

based measurement and real-time climatic and environmental data which are unavailable in some 

locations. To explore vegetation conditions in SEA, this research selected important 

phenological parameters that can emphasize phenological patterns and changes, including the 

timing of the growing season, magnitude of vegetation, and vegetation production. This research 

investigated the patterns of phenological changes in both first and second growing seasons. In 

addition to phenological parameters, EVI value was also selected as an indicator of the overall 

greenness of vegetation to study vegetation conditions in this region. This study not only 

explored the spatio-temporal patterns of phenology on a regional scale, but also the local 

patterns. This is because local analysis provides valuable information and a meaningful 

conclusion, particularly for drivers of phenological changes. The hotspots and important 
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representative sites were selected to explain the EVI and phenological patterns as well as the 

driver of phenological changes due to rainfall variability and human management on a local 

scale.  

MODIS-derived estimates of EVI and phenology in this research indicated that 

EVI and phenological patterns varied spatially according to climate variations and human 

management. The results showed geographically and ecologically homogeneous patterns in the 

same ecoregion or biome type. Phenology of naturally vegetated areas and agricultural areas 

showed differences in timing and magnitudes. The phenological dates occurred later in natural 

vegetation but started earlier in agricultural areas. When considering the length of the growing 

season, forest areas have longer growing seasons than agricultural areas.  

The trend of overall regional mean EVI value in SEA from 2001 to 2010 was 

decreasing, and phenological trends appeared to shift towards a later and slightly longer growing 

season in the Peninsula. Regional vegetation dynamics over SEA exhibited patterns that were 

associated with major climate events such as El Niño in 2005. Various parameters showed 

distinctly different patterns in years of these extreme climate events.  

Additionally, the change in timing of growing season with variation of amplitude 

and integral of forest areas suggests the land use change, particularly in the northern and eastern 

regions of Vietnam and the southern regions of Laos. Phenology in agricultural areas mainly 

varied according to human management. The decrease in amplitude and integral of forest areas 

indicated the loss of high-quality forests, while the increase in amplitude and integral of 

agricultural areas suggested the improvement of agricultural practices.    

The rainy season in SEA tends to start early and end late. The length of rainy 

season was slightly longer; however, the amount of rainfall has decreased from 2001 to 2010. 
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Rainfall patterns were changing regionally, with increases in some locations and decreases in 

others. Annual rainfall has decreased across most of the western and northern regions of the 

Peninsula but has increased across the eastern region of Thailand.   

The relationship between phenological changes and rainfall variability is a key to 

understand the influence of climate change on biophysical characteristics. The regional data 

described in this research provide essential information for understanding and modeling the 

effects of climate variability on ecosystem dynamics. The results reveal a significant positive 

correlation between SGS and SRS overall, although negative correlations can be found in some 

areas that are used most extensively for agriculture. The forest areas and rainfed croplands show 

similar patterns, in which the growing season shifted according to changes in rainfall, especially 

in Myanmar. The rate of phenological changes with respect to rainfall seasonality varied among 

different land cover types and ecosystems. 

Although the trends of phenology were different from place to place, the major 

drivers of the phenological changes are climate and human management. The regional and local 

scale analyses indicate that rainfall is a dominant force in naturally vegetated areas and rainfed 

croplands, whereas human management is a key factor in heavily agricultural areas with irrigated 

systems. However, it was apparent that some croplands (e.g., sugar cane, cassava) also need 

rainfall to control vegetation growth. The phenology and rainfall were highly correlated in these 

places.  

In order to quantify the agreement between the satellites derived phenology and 

field observations as well as satellite TRMM rainfall and station rainfall, this research used the 

data from field survey in Thailand to compare with MODIS phenology and applied rainfall 

station in Thailand to compare with TRMM rainfall. The comparison demonstrated the 
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acceptable agreement between satellite data and field data; although discrepancies exist in some 

cases of satellite phenology and field observations due to the different technique used to acquire 

phenology. 

In summary, the general pattern and phenological changes in SEA at a regional 

scale apparently exhibited relative correspondence with rainfall seasonality and major climate 

events, particularly in El Niño and La Niña years. Climate variability has affected SEA 

agriculture, leading to greater losses in economics of this region as well as posing a serious threat 

to future food security. Not only has climate variability affected phenological changes, human 

management, with land use practices, can also profoundly affect land surface phenology. 

Changes in land use practices may contribute to large-scale alterations in the timing of land-

surface/atmosphere boundary conditions through phenological changes. Additionally, the results 

of this research has identified the hot spots or sensitive areas of decreasing EVI and forest loss as 

well as significant changes of phenology in croplands. These results could guide management 

priorities for protection and conservation in forest areas and agricultural management in cropland 

areas. As SEA is more vulnerable to the impacts of climate change, particularly in agricultural 

areas, this meaningful information is useful for monitoring and assessing the effects of climate 

change on ecosystem dynamics and environmental changes at both regional and local scales.  

8.1.2 Spatio-temporal patterns of GHG Emissions from the DNDC Model under 

Different Scenarios 

This research demonstrates the potential integration of remote sensing mapping 

with the biogeochemical model to quantify spatio-temporal patterns of GHG emissions (CH4, 

CO2, and N2O) from rice fields in Thailand for both single and double rice cropping systems.  

This research took a new step to advance the regional application of DNDC by using regional 
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database based on a grid-based system instead of average input parameters in a large spatial unit 

(e.g., county unit). Thus, the simulation of grid based system at the site mode of DNDC can 

differentiate the difference of soil properties, climate data, and farming management and can 

substantially improve the accuracy of the GHG estimations from the DNDC model. Additionally, 

phenological information is indispensable for DNDC but it is difficult to access or is often 

unavailable. Satellite time-series data can provide such important information. This research 

used spatial and temporal characteristics of phenology derived from remote sensing data for 

DNDC to quantify emissions.  The results of model simulation indicate that the new database 

system and spatio-temporal data can provide more accurate emission predictions from the DNDC 

model. 

Spatial and temporal dynamics of GHG emissions were characterized under 

different scenarios to investigate the effects of the various factors on GHG emissions from rice 

fields, including climate and human management (fertilization and phenology). The results 

indicate that paddy rice fields were a source of atmospheric GHG. The change of GHG 

emissions was influenced by human management, climate variation, and physical geography. 

The findings reveal that phenology is the main factor affecting the changes in CH4 emissions. 

The change of CO2 emissions was relatively smaller than CH4 and N2O in all scenarios but 

showed rapid changes in extreme climate years. N2O emissions were strongly related to climate 

variation, especially rainfall changes. 

Soil texture plays an important role on CH4 emissions with a high level of 

emissions in light texture soil. Rice intensification with longer length of flooding period and high 

application rates of fertilizer extremely induce CH4 production due to the change in the chemical 
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and biophysical properties of the plant-soil system. Additionally, standard emission factors of 

CH4 emissions obtained from the IPCC approach and research in Thailand were used to compare 

with DNDC results. The modeled emission results were in good agreement with these standard 

emission factors. 

In conclusion, human management in farming practices apparently affects spatio-

temporal patterns of GHG emissions. The results of this research suggest that practical mitigation 

options should be carefully regulated to balance the emission of different gas types more 

efficiently, as well as to maintain and improve grain yields. This is because a decrease in one gas 

emission may lead to significant increases in other gases’ emissions. The results imply that 

mitigation of CH4 emissions should be emphasized for rice fields because its emission is much 

higher than CO2 and N2O. These gas emissions not only represent a negative impact on the 

environmental quality but could also lead to economic losses. Balancing between optimum crop 

yield and environmental safety is a great challenge for agricultural management. Integration of 

remote sensing and a biogeochemical model provides the opportunity to identify mitigation 

strategies to balance food production and environmental protection as well as to predict the 

impacts of climate change on agroecosystem.   

8.1.3 The Interactive Phenological Atlas for SEA 

This research developed improved visualization methods for phenological 

information dissemination by using the concepts of visual exploration and Internet atlas. The 

prototype of the Interactive Phenological Atlas for SEA (IPA) was established to display 

thematic map, bivariate map, and map animation using web mapping application. Phenological 

information and related environmental variables (EVI, phenological parameters, rainfall 
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seasonality, and annual data quality assessment maps in SEA) were processed to represent spatial 

and temporal patterns of environmental changes in this region. Additionally, spatial distributions 

and changes of GHG emissions on a local scale analysis were also included in this system. 

The objective of this system is data exploration. This system allows users to 

derive meaningful information from interactive processes. The target users are researchers in 

environmental and remote sensing fields. The functions in this system enable users to navigate 

the maps in both spatial and temporal extents. The basic functions provide tools for map 

navigation, map coordinate, map-based overlay, and layer transparency, while the advanced 

functions include dynamic generating layer content, dynamic legend, dynamic time-series graph, 

and map animation. Cartographic design was carefully applied to each map according to its type 

(thematic maps, bivariate map, and map animation). This research selected appropriate 

techniques and designs in order to effectively communicate complex spatio-temporal geographic 

phenomena, such as visual variables, data classification, and number of classes for thematic 

mapping, and dynamic visual variables for map animation. 

The most important outcome of this system is that it allows users to explore the 

complexity of dataset. This system facilitates users with an interactive graphic user interface and 

effective functions in order to provide a convenient way for researchers to conduct phenological 

research. The visualization system for this application has little availability and little exploration 

in the field. Consequently, this phenology and climate variation exploration could generate 

research ideas and confirm information in research process that would be useful for 

environmental study.   
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8.2 Challenges and Limitations 

Validation is a significant concern in remote sensing-based analysis. The method of 

validation is very challenging due to the scale differences, time consumption, and high cost. 

Although comparisons of MODIS-derived estimates of phenology and ground observations in 

this research provide satisfactory results, substantially more field data are required to fully assess 

the phenology based remote-sensing time-series data. Additionally, field observations of 

phenology in a variety of environments are required and field data collection should be 

specifically designed to validate remote sensing phenology. 

  Satellite derived phenology is useful for the environmental study. However, their 

applications are hindered by atmospheric conditions, particularly in the tropical zone, due to 

frequent cloud cover in the wet season (growing season) and fire-induced aerosols in the dry 

season. A filtering method is needed for time-series data before extracting phenology. However, 

this approach is sometimes insufficient to eliminate cloud contamination resulting in 

unsuccessful phenological extraction in some pixels. Therefore, annual data quality assessment 

maps are provided in this research for comparing the level of quality associated with annual EVI 

and annual phenological patterns. The new MODIS EVI collection 6 will be released in the near 

future, which could provide more accurate data that would be useful for phenology research. 

  Although MODIS satellite time-series data with high temporal resolution is free, the 250 

m resolution leads to the spatial heterogeneity of land cover classes in one pixel. These mixed 

pixels introduce error into the analysis of interannual variability. The interpretation of remotely 

sensed phenological parameters at this spatial resolution should be addressed. 

The challenge of GHG emissions quantifying from DNDC model is the database 

development. Due to numerous input data for DNDC model, it is required to use default values 
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provided in the DNDC model or estimated values to run the model because some data are 

unavailable or lack of information from field observations or data records. This may lead to 

incorrect results in some cases. Additionally, the validation is also challenging for the DNDC 

modeling. The validation with field data is necessary for the model performance but there is no 

field data available in Thailand. IPCC approach and standard emission factors were applied in 

this research to compare with modeled results. However, the standard emission factor is unable 

to reflect the change of input parameters (e.g., climate, soil, management practices) resulting in 

the discrepancy between the simulated results and the standard factor. 

Both technical issues and cartographic designs are challenging for IPA. The Open Source 

software applied in this system provides a great opportunity to develop and modify the functions 

but it is difficult to keep up-to-date because of their various different versions. Additionally, 

cartographic design should be carefully considered for effective visualization. Different 

techniques and several tests are required to design thematic map, bivariate map, and map 

animation for visualizations. To improve the performance of this visualization prototype, an 

evaluation is important to demonstrate the success of the system. Evaluation can indicate the 

advantages and drawbacks of functions as well as the performance of the system in order to 

develop effective systems for users. 

8.3 Future Research 

The data utilized in this study were analyzed for a ten-year period, which may not be long 

enough to assess long-term ecosystem changes. Future ecological and environmental change 

analyses could benefit from extended study periods or integration with previous research to 

assess ecosystem dynamics as well as global climate change.  
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Future work is needed to validate remote sensing-based observations with high-resolution 

imagery or field observations. A set of field observations collected with effective techniques 

should be developed to provide a better basis for the comparison between field measurements 

and remotely sensed observations. This assessment is useful for the satellite-derived phenology 

research.  

Influence of soil properties and other climate data should be considered in future 

research. Although rainfall is a significant factor for phenological changes in this region, 

vegetation green-up is also associated with soil properties, particularly soil moisture, which is 

related to rainfall and vegetation types. Temperature could alter changes in growing season in 

some locations. The study of these factors may contribute to the understanding of the ecosystem 

dynamics and their disturbances for future adaptation strategy development in this region. 

Disaster is the critical issues in this region and it requires the monitoring system. 

Phenology based on remote sensing data could be used for estimating, indicating, and monitoring 

vegetation condition for environmental disasters (e.g., drought, flood, forest fire), especially in 

sensitive areas. This analysis could contribute to ecological effects of environmental change and 

the impact of climate and human on the environment due to stressful conditions. 

Integration of DNDC and remote sensing technique used in this study can be applied to 

other rice areas in this region over large-scale areas at country or regional levels because of  

lower cost and less time consuming. Additionally, future research should conduct sensitivity 

analysis using different inputs or major drivers, such as soil, to explore variations in GHG 

emissions from rice fields. These studies would be useful and highly valuable for regional and 

global emission inventory. 
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Future improvements of the IPA prototype should primarily address the performance for 

rendering image maps. Additional effective techniques for map animation could enable visual 

exploration. For example, visual salience can be applied on the complex maps by highlighting or 

signaling important content with flashing or dominant colors. Additionally, the synchronization 

of map animations allows identification of pattern correspondences in time-series by displaying 

more than one animation on the screen. This technique would contribute to the understanding of 

the relationship between related parameters in the spatial and temporal contexts.  
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APPENDIX A 

EVI and Phenological Parameters 2001-2010 

 
Figure A1 EVI and phenological parameters 2001-2010 
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Figure A2 Start date of the Growing Season 2001-2010 (first growing season) 
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Figure A3 End date of the Growing Season 2001-2010 (first growing season) 
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Figure A4 Length of the Growing Season 2001-2010 (first growing season) 
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APPENDIX B 

Rainfall Seasonality 2001-2010 

 
Figure B1 Mean Annual Rainfall 2001-2010 
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Figure B2 Start Date of the Rainy Season 2001-2010 
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Figure B3 End Date of the Rainy Season 2001-2010 
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Figure B4 Length of the Rainy Season 2001-2010 
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APPENDIX C 

Data Quality Assessment Map

 
Figure C1 MODIS EVI data quality Assessment 2001-2010 
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Figure C2 MODIS EVI data quality assessment (10-year mean) 
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APPENDIX D 

Multi-year Simulation of GHG Emissions from DNDC Model (Scenario 3-5) 

 

Figure D1 CH4 emission rate in scenario 3 
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Figure D2 CO2 emission rate in scenario 3 
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Figure D3 N2O emission rate in scenario 3 
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Figure D4 CH4 emission rate in scenario 4 
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Figure D5 CO2 emission rate in scenario 4 
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Figure D6 N2O emission rate in scenario 4 
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Figure D7 CH4 emission rate in scenario 5 
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Figure D8 CO2 emission rate in scenario 5 
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Figure D9 N2O emission rate in scenario 5 
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