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ABSTRACT

MODELING AND SIMULATION OF A FLUTTERING BIOINSPIRED

SUBMERSIBLE

By

Aren Michael Hellum

A bioinspired submersible propelled by a fluttering, fluid-conveying tail was designed and

analyzed. A simple model of the submersible was created by treating the rigid hull of

the submersible as a rigid body boundary condition on the fluid-conveying tail. Curves of

neutral stability were determined in the internal/external velocity parameter space for several

values of rigid body mass, and the thrust produced by these neutrally-stable waveforms was

determined using Lighthill’s methods. The power required to produce these waveforms

and their efficiency were also determined. The efficiency was found to be greater than

50%, comparable to a small marine propeller, but below the 90% quoted in fish propulsion

literature.

A more general model of the submersible which removed many of the linearizing assump-

tions made in the simplified model was also developed and solved numerically. This model is

comprised of the equations of motion for a non-inertial frame fixed on the rigid head of the

submersible and the equations of motion for a fluid-conveying tail within that non-inertial

frame. Simulations were made using several flexible tail geometries, as well as for a rigid

tube and a rigid tail which was dimensionally identical to one of the geometries. The for-

ward speed of the fluttering flexible tail configuration was found to be higher than than that

of the rigid tube configuration for one geometry, and higher than that of the rigid tail for

most geometries. A prototype of this submersible was constructed, and qualitative features

and findings of the general model were verified. The general model was also extended to



incorporate a time-variable velocity of the conveyed fluid, and a functional description of

this velocity was found which caused the submersible to turn without the incorporation of

additional actuators on the tail or hull-mounted fins.
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Chapter 1

Motivation

Fish-like propulsion has been a matter of academic interest since Gray’s pioneering work

in the 1930’s; the oft-cited “Gray’s Paradox” is derived from a 1936 paper [14] in which

the speed attained by a dolphin was calculated to require approximately seven times the

power available to the animal. Though later workers resolved this apparent paradox (see

the work by Fish [12]), interest in the efficiency of fish-like motion has been sustained to the

present day. An early model of oscillatory propulsion Taylor [42] was based on calculation

of the resistive force applied by the surrounding fluid; this model, which neglects inertial

effects, is more appropriate to the study of low-Reynolds number propulsion, such as that

of spermatozoa. These inertial effects were accounted for by Lighthill in his seminal 1960

paper [23] which used slender-body theory to approximate the effect of the pressure field

surrounding the fish. Lighthill found that a travelling waveform with higher amplitude at

the tail than the head is required to produce efficient thrust. Later works have extended

these initial efforts to account for a planform of variable height [44], deflections of arbitrary

amplitude [26], and to account for the wing-like “lunate” tail which is a feature of the fastest

1



carangiform1 swimmers [11], along with a host of other works.

The continued drive within the academic community to “chase the tail” is in large part

due to impressive estimates of efficiency. For example, Lighthill’s slender body methods

estimate that 90% of the power expended by a swimming fish is available to propel the fish,

and that the remainder is wasted, serving only to raise the kinetic energy in the wake. This

value of 90% “Froude” efficiency lines up well with a figure of 87% found by Anderson and

coworkers [2] found on a simplified experimental setup. Some simplifications were required

to obtain these figures; it is difficult to precisely measure the efficiency of a self-propelled

swimming body, since the sources of drag and thrust cannot be separated. An interesting

paper by Schultz and Webb [37] describes a variety of approaches which have been employed

to determine drag and thrust, but they conclude that forward speed is the most robust way

of determining whether a tail waveform is superior to another for a given platform.

This interest has manifested itself in a number of robotic platforms designed to harness

the efficiency of fish-like motion. The MIT RoboTuna [5, 43] is a well known “biomimetic”

platform. That device employs a tail composed of several links covered by a Neoprene

sheath. These links were then individually actuated in an approximation of a fishes motion.

A different type of linked system was built by McMasters and coworkers [27] which used a

novel geared mechanism to produce a fish-like motion using only a single servomotor, while a

third approach was taken by Alvarado and Youcef-Toumi [1], who described a system which

used a wholly flexible tail, excited with a single actuator at the base. These platforms are

simply some of the more complex and recent devices; experimental devices used to measure

1: “Carangiform” swimming is typified by large amplitude motion concentrated in the
posterior half of a swimming fishes body. The term is used in contrast to “anguilliform”
motion, in which large amplitude deflections take place over the length of the creature’s body.
Lighthill’s excellent review paper [24] describes these and other propulsion mechanisms in
more detail.
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fish propulsion were built as early as 1933 [13]. Other devices have also been built to

investigate single aspects of fish swimming, such as the caudal fin work of Anderson and

coworkers [2], and studies of pectoral fin swimming undertaken by Lauder and coworkers

[22].

A fundamental difference between the approaches taken by Triantafyllou [43] and Al-

varado and Youcef-Tuomi [1] is that the RoboTuna’s need to independently actuate its

linked tail means that the system must essentially be driven against its natural dynamics.

In contrast, the flexible tail described in [1] can be induced to oscillate near its natural

frequency. This approach can lead to reduced transmission losses and lower motor band-

width requirements, and the mechanism so produced can easily be made very robust, since

it consists of a single flexible element. The present work proposes a sort of flexible tail that

is fundamentally different from that described by Alvarado. Specifically, the desired travel-

ing waveform is produced not by an actuator at the base, but instead by flutter instability

induced in a slender tail by conveying fluid down its center. This instability is sometimes

referred to as the “garden hose instability”, after the tendency of such a hose to whip about

when the faucet is opened too far.

The fluid-conveying pipes and flutter instability are well-represented in the academic

literature - the lists of papers cited in Paidoussis’ review books on the topic [30, 31] are a

testament to this. However, the literature is largely grounded in a relatively small number of

applications, such as pipeline vibrations [3]. Therefore, even a simplified model of a fluttering

fluid-conveying submersible requires expansion of the literature.

This work is organized as follows. Chapter 2 derives the equations of motion for a fluid-

conveying pipe, and presents a simple way to account for a non-uniform velocity profile found

3



in real pipe flow. Chapter 3 presents a simple, analytically tractable model of a fluttering

fluid-conveying submersible, consisting of a rigid body affixed to one end of a fluid-conveying

tail. This rigid body boundary condition, while not particularly unusual, had never been

presented in the fluid-conveying pipe literature. Chapter 3 also presents some estimates of

thrust and efficiency for a fluid-conveying tail’s waveform based on the results of Lighthill

[23] and Wu [44].

Chapter 4 derives a considerably more complex model of the submersible, a model which

is able to account for the general motion of a fluttering fluid-conveying submersible within

a plane. As with the rigid body boundary condition, it is interesting that despite the

well-developed state of the literature, the equations of motion for a fluid-conveying pipe

in a non-inertial reference frame have not been presented. Chapter 5 discusses previous

designs of fish-like submersibles and presents preliminary experimental data from a platform

designed at Michigan State University. The equations of motion derived in Chapter 4 are

also extended to account for a time-varying velocity of the conveyed fluid and are solved with

an eye toward maneuvering the submersible. Conclusions and thoughts for the direction of

future research on this topic are provided in Chapter 6.
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Chapter 2

Dynamics of a Pipe Conveying Fluid

with a Non-Uniform Velocity Profile

2.1 Introduction

Analytical treatments of the fluid-conveying pipe problem typically invoke the “plug flow”

assumption, under which the velocity profile is uniform across the cross-section of the pipe.

At high Reynolds number, this assumption is approximately correct, since the velocity profile

is nearly uniform over the central region of the cross-section, with only a thin, highly sheared

annular region near the pipe wall. The plug flow assumption is less valid at low Reynolds

numbers, since a larger fraction of the fluid at a given cross section has significantly different

momentum than the average fluid element at that cross section. The deviation from the plug

flow assumption is particularly apparent for laminar flow. This chapter presents a method

by which the boundaries of flutter instability of pipes conveying low Reynolds number fluid

may be determined.
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This chapter is organized as follows. The equation of motion of a pipe conveying fluid

with a uniform velocity profile (plug flow) is first presented in Section 2.2 as background

material. The derivation of plug flow is extended to a non-uniform velocity profile in Section

2.3. A flow model composed of three concentric plugs of fluid derived first and extended to

N plugs; large values of N can be used to model an arbitrary velocity profile. The resulting

equation for the non-uniform flow differs from the standard equation for uniform flow by a

single constant; it is highly tractable, requiring no more effort to solve than the standard

equation. This constant, a momentum flux correction factor similar to that used in many

fluid mechanics texts [33], is determined in Section 2.4. The equations of motion for a

cantilever pipe are solved and the results for the uniform and non-uniform flow equations

are compared in Section 2.5 for both laminar and turbulent flow.

2.2 Background - Uniform Velocity Profile

Consider the fluid-conveying pipe in Fig.2.1 where U denotes the fluid velocity (constant)

relative to the pipe. Assuming an Euler-Bernoulli beam model of the pipe, its equation of

motion [30] can be written as follows

EI
∂4y

∂x4
+MU2

∂2y

∂x2
+ 2MU

∂2y

∂x∂t
+ (M +m)

∂2y

∂t2
= 0, (2.1)

where E and I are the Young’s modulus of elasticity and area moment of inertia of the

cross-section of the pipe, and M and m are the fluid mass and pipe mass per unit length.

The above equation can be obtained by showing that the rate of change of linear momentum
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y(x,t)

x

y

U
U

x dx

dx

R

r

Figure 2.1: A fluid-conveying pipe and a magnified view of a small length element

of a fluid element is given by the expression [30]

d~L

dt
=M

[
∂

∂t
+ U

∂

∂x

]2
y dx ĵ

and from the equations of motion of a fluid element and its corresponding pipe element

Fig.2.2 in the x and y directions

dxx

y

(a) (b)

A(p− 1
2
∂p
∂x
dx)

A(p+ 1
2
∂p
∂x
dx)

qSdx

qSdx

qSdx

qSdx

Fdx

Fdx
M− 1

2
∂M
∂x

dx
M+ 1

2
∂M
∂x

dx

Q− 1
2
∂Q
∂x

dx

Q+ 1
2
∂Q
∂x

dx

T − 1
2
∂T
∂x

dx

T + 1
2
∂T
∂x

dx

Figure 2.2: Free-body diagram of (a) a fluid element and (b) its corresponding pipe element

Plug fluid element:

−A
∂p

∂x
− qS − F

∂y

∂x
= 0, (2.2)

F −A
∂

∂x
(p
∂y

∂x
)− qS

∂y

∂x
=M

[
∂

∂t
+ U

∂

∂x

]2
y, (2.3)
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Pipe element:

∂T

∂x
+ qS + F

∂y

∂x
−Q

∂2y

∂x2
= 0, (2.4)

∂Q

∂x
− F +

∂

∂x
(T
∂y

∂x
) + qS

∂y

∂x
= m

∂2y

∂t2
. (2.5)

In Eqs.(2.2) through (2.5), A denotes the cross-sectional area of the pipe, S denotes its

internal surface area per unit length, p denotes the fluid pressure, q denotes the shear stress

in the fluid, and F denotes the force per unit length normal to the wall. For the pipe element,

Q, M and T denote the traverse shear force, bending moment, and tension, respectively.

2.3 Non-Uniform Velocity Profile

2.3.1 Triple plug flow model

The triple plug flow model assumes three concentric volumes of fluid being conveyed through

the pipe; the cross-sectional area of these volumes are shown in Fig.2.3. The flow velocity is

different for the three volumes but is assumed to be constant within each volume. The triple

plug flow is not physically realizable but its analysis provides the framework for investigation

of a general velocity profile. Note that the fluid volume at the center (marked 1 in Fig.2.3)

has a single fluid-fluid interface; the volume in the middle (marked 2 in Fig.2.3) has two

fluid-fluid interfaces; and the outermost fluid volume (marked 3 in Fig.2.3) has one fluid-

fluid and one fluid-pipe interface. The analysis for a general velocity profile will require us

to introduce more volumes with two fluid-fluid interfaces, similar to volume 2. It is for this

reason that three “plugs” are required; using fewer does not give rise to volumes with two

8



fluid-fluid interfaces, and using more creates redundant elements.

z

y

1
2

3

Figure 2.3: A cross-sectional view of the three fluid volumes of a triple plug flow

To extend the analysis of plug flow in section 2.2 to triple plug flow, we first denote

the cross-sectional areas of volumes 1, 2, and 3 as A1, A2 and A3 respectively; their flow

velocities as U1, U2 and U3 respectively; and their mass per unit length as M1, M2 and

M3 respectively. F12, F23 and F3p denote the radial force per unit length between fluid

volumes 1 and 2, fluid volumes 2 and 3, and fluid volume 3 and the pipe, respectively. The

shear force at these interfaces are denoted by q12, q23 and q3p respectively, and the surface

area per unit length of these interfaces are denoted by S12, S23 and S3p respectively. The

dynamics of the fluid volumes 1, 2 and 3 can now be replicated from Eqs.(2.2) and (2.3),

and that of the pipe from Eqs.(2.4) and (2.5), as follows

Volume 1:

−A1
∂p

∂x
− q12S12 − F12

∂y

∂x
= 0, (2.6)

F12 − pA1
∂2y

∂x2
− q12S12

∂y

∂x
=M1

[
∂

∂t
+ U2

∂

∂x

]2
y, (2.7)
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Volume 2:

−A2
∂p

∂x
− q23S23 + q12S12 − (F23 − F12)

∂y

∂x
= 0, (2.8)

(F23 − F12)− pA2
∂2y

∂x2
− (q23S23 − q12S12)

∂y

∂x
=M2

[
∂

∂t
+ U2

∂

∂x

]2
y, (2.9)

Volume 3:

−A3
∂p

∂x
− q3pS3p + q23S23 − (F3p − F23)

∂y

∂x
= 0, (2.10)

(F3p − F23)− pA3
∂2y

∂x2
− (q3pS3p − q23S23)

∂y

∂x
=M3

[
∂

∂t
+ U3

∂

∂x

]2
y (2.11)

Pipe:

∂T

∂x
+ q3pS3p + F3p

∂y

∂x
−Q

∂2y

∂x2
= 0, (2.12)

∂Q

∂x
− F3p + T

∂2y

∂x2
+ q3pS3p

∂y

∂x
= m

∂2y

∂t2
. (2.13)

The summation of equations in the x direction, namely Eqs.(2.6), (2.8), (2.10) and (2.12),

gives

−(A1 + A2 + A3)
∂p

∂x
+
∂T

∂x
= 0

Note that (A1 + A2 + A3) = A, where A is the inner cross-sectional area of the pipe. The

above equation simplifies to

∂

∂x
(T − pA) = 0

if A 6= A(x), the same result as that which is obtained for plug flow. The summation of
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equations in the y direction, Eqs.(2.7), (2.9), (2.11) and (2.13), gives

−pA
∂2y

∂x2
+
∂Q

∂x
+ T

∂2y

∂x2
=

3∑

n=1

Mn

[
∂

∂t
+ Un

∂

∂x

]2
y +m

∂2y

∂t2

Following the derivation of plug flow [30] and substituting (T − pA) = 0 and Q = −EI
∂3y
∂x3

into the above equation, the following expression is obtained:

EI
∂4y

∂x4
+





3∑

n=1

MnU
2
n




∂2y

∂x2
+2





3∑

n=1

MnUn




∂2y

∂x∂t
+



m+

3∑

n=1

Mn




∂2y

∂t2
= 0. (2.14)

2.3.2 N-plug flow model

It is simple to envision the analysis of the preceding section with more volumes. The addi-

tional volumes, similar to Volume 2 of the triple plug flow in that they possess two fluid-

fluid interfaces, do not complicate the analysis since all interfacial terms are cancelled. Thus

Eq.(2.14) can be rewritten as

EI
∂4y

∂x4
+





N∑

n=1

MnU
2
n




∂2y

∂x2
+2





N∑

n=1

MnUn




∂2y

∂xt
+



m+

N∑

n=1

Mn




∂2y

∂t2
= 0, (2.15)

where N is any integer greater than three. For very large values of N , the volumes have

infinitesimal thickness and the summations in the coefficients of Eq.(2.15) can be replaced

with integrals. The average velocity of fluid over a cross section is defined as

Ū =
1

A

∫∫

A
U(A) dA =

2

R2

∫ R

0
U(r) rdr

for a cylindrical pipe of radius R.
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The coefficients of the dynamical equation in Eq.(2.15) can now be expressed as





N∑

n=1

MnU
2
n



 = ρf

∫∫

A
U2(A) dA = 2πρf

∫ R

0
U2(r) rdr = µMŪ2,

2





N∑

n=1

MnUn



 = 2ρf

∫∫

A
U(A) dA = 2ρfAŪ = 2MŪ, (2.16)



m+

N∑

n=1

Mn



 = m+M,

where ρf is the density of the conveyed fluid, and µ is the non-dimensional momentum flux

correction factor. For a cylindrical pipe with a known fluid velocity profile U(r), µ has the

expression

µ =
2

R2

∫ R

0

[
U(r)

Ū

]2
rdr. (2.17)

Using the algebraic simplifications in Eq.(2.16), Eq.(2.15) can be rewritten as follows

EI
∂4y

∂x4
+ µMŪ2

∂2y

∂x2
+ 2MŪ

∂2y

∂x∂t
+ (m+M)

∂2y

∂t2
= 0. (2.18)

Note the similarity of Eq.(2.18) with that of plug flow given by Eq.(2.1). All terms are

essentially identical with the exception of the additional constant µ, which is a function of

the velocity profile. Note also that evaluation of Eq.(2.17) for a uniform velocity profile

yields µ = 1, meaning that Eq.(2.1) is consistent with its plug flow assumption under this

expanded derivation.
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2.4 Analysis of a Cantilever Pipe

2.4.1 Solution of the differential equation

The behavior of a fluid-conveying pipe for cantilever boundary conditions has been analyzed,

namely

y(0, t) = 0,
∂y(0, t)

∂x
(0, t) = 0,

∂2y(L, t)

∂x2
= 0,

∂3y(L, t)

∂x3
= 0, (2.19)

The equation of motion is made non-dimensional with the following change of variables

Y =
y

L
, X =

x

L
, T = tΩ.

By introducing the non-dimensional velocity, mass fraction and frequency as follows

u =

(
M

EI

)1/2
ŪL, β =

M

m+M
, ω =

(
M +m

EI

)1/2
ΩL2,

and assuming a separable form for Y (X, T ) such that

Y (X, T ) = φ(X) e−iωT

the following non-dimensional equation of motion and boundary conditions are obtained:

d4φ

dX4
+ µu2

d2φ

dX2
+ 2β1/2uiω

dφ

dX
− ω2φ = 0

φ(0) = 0,
∂φ(0)

∂X
(0, t) = 0,

∂2φ(1)

∂X2
= 0,

∂3φ(1)

∂X3
= 0 (2.20)
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The solution of φ is assumed to be of the form φ(X) = AezX and this yields the characteristic

polynomial

z4 + µu2z2 + 2β1/2uiωz − ω2 = 0. (2.21)

For specific values of µ, u and β, Eq.(2.21) provides four roots, zn, n = 1, 2, 3, 4, where

zn = zn(ω). The complete solution of φ(X) has the form

φ(X) = A1e
z1X + A2e

z2X + A3e
z3X + A4e

z4X

The solution of the equation above based on the boundary conditions in Eq.(2.20) results in

the complete solution

Y (X, T ) =
4∑

n=1

Ane
znXeiωT =

4∑

n=1

An eRe[zn]X
︸ ︷︷ ︸

(i)

ei(Im[zn]X+Re[ω]T )
︸ ︷︷ ︸

(ii)

e−Im[ω]T
︸ ︷︷ ︸

(iii)

An inspection of the above equation indicates that Y (X, T ) is a product of three exponential

terms of which the first term is bounded since X is bounded and the second term is oscillatory

since the exponent is imaginary. The third term can grow unbounded with time if Im[ω] < 0

and this represents unstable dynamics of the pipe. The exact mode and velocity at which

the fluid-conveying pipe becomes unstable depends on the fluid mass fraction β.

2.4.2 Determination of momentum flux correction factor

For laminar flow, the Poiseuille solution of Navier-Stokes equation holds [33] and the value

of µ can be analytically determined to be equal to 4/3 for a circular pipe. For turbulent

flow, the value of µ approaches unity as the value of Reynolds number approaches infinity.
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The literature [7] commonly cites single values of µ for turbulent flow based on the boundary

layer model employed, and the values cited are derived using assumptions better suited to

high-Reynolds number turbulence. Since the present work relaxes the assumption of high-

Reynolds number turbulence, a model for µ such that µ = µ(Re) is desired. Numerical values

of µ for turbulent flow were calculated based on Eq.(2.17) using velocity profiles generated

by the commercial software STAR-CCM. Even with this improved resolution, knowledge of µ

is required for more values of the Reynolds number than are feasible to simulate. To predict

the value of µ for laminar, transition, and turbulent flow regimes, the following curve-fit was

employed:

µ(Re) =







4/3 Re ≤ 2200

3.647− 0.001052× Re 2200 < Re < 2413

1.04 + 167.2/Re Re ≥ 2413.

(2.22)

0 2 4 6

1.0

1.1

1.2

1.3

1.4

x 10
4

laminar

transition

turbulent

Re

µ
(R
e)

Figure 2.4: Plot of the momentum flux correction factor µ as a function of the Reynolds
number. The data points obtained through simulation are shown by circles.

It can be seen from Fig.2.4 that the data points obtained from simulation matches well with

the expression of µ in Eq.(2.22). The choice of 2200 < Re < 2413 to define the “transition
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region” is somewhat arbitrary, as might be the choice of using one single value for µ to

represent a phenomenon as complex as turbulent transition. However, the authors note that

for a given flow setup the range of velocities corresponding to transition flow is small, making

the choice of the transition model relatively unimportant1.

For a circular pipe, expressions can be determined which relate the non-dimensional

velocity u and the Reynolds number:

u =

(
M

EI

)1/2
ŪL, Re =

ŪD

ν
⇒ u = νLRe

√
πρf

4EI
. (2.23)

Clearly, a value of u does not uniquely determine the Reynolds number. The geometric

properties of the pipe (L, E, I) and density and kinematic viscosity of the working fluid (ρf ,

ν) should be specified to determine the Reynolds number for a given u. Since the momentum

flux correction factor µ is a function of the Reynolds number, it follows that the value of µ

cannot be determined from the value of u alone.

2.5 Model Comparison:

Uniform and Non-Uniform Flow

2.5.1 Turbulent flow

The locus of the first three roots of Det (Z) = 0 is shown in the Argand diagram in Fig.2.5(a)

for β = 0.308 for both uniform and non-uniform flow models. Since the fluid-conveying pipe

undergoes flutter instability in the second mode, a separate Argand diagram of the loci of the

1: The laminar to turbulent transition region can be seen in the Argand diagram in
Fig.2.5.
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Figure 2.5: (a) Locus of the first three roots of Det (Z) = 0 for uniform (dashed line) and
non-uniform (solid line) flow models with β = 0.3 (b) A magnified image of the second root
loci in (a).

second root is shown in Fig.2.5(b). The root loci for the uniform flow model are a function

of u alone (µ is implicitly assumed to be unity) but they are a function of both u and µ for

the non-uniform flow model. As noted in the previous section, the value of µ is not uniquely

defined in terms of u. Certain dimensional coefficients related to the working fluid and pipe

geometry must be assumed to obtain this relationship. The non-uniform flow model assumes

water to be the working fluid (ρf = 1000 kg/m3, ν = 1.0 × 10−6 m2s) and the following

parameters for the pipe:

E = 1.7 MPa, I = 6.48× 10−10 m4, L = 0.5 m

It is acknowledged that the need to specify dimensional parameters is a limitation but this

limitation is not significant. An inspection of Fig.2.4 reveals that µ is weakly related to
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the Reynolds number for turbulent flow and therefore dependence of µ on the dimensional

parameters is not significant.

It can be seen from Fig.2.5 that the root loci for the uniform and non-uniform flow models

are quite different though their µ values are quite similar1. A close look at the second root

loci indicates that the uniform flow model predicts flutter instability of the pipe to occur

for a critical velocity of ucr = 8.13 with ωcr = 23.06 whereas the non-uniform flow model

predicts significantly lower values of ucr = 6.94 (15% lower) and ωcr = 14.46 (37% lower).

Clearly, the dynamics of the system are very sensitive to the value of µ in the neighborhood

of β = 0.3. The values of ucr and ωcr are plotted in Fig.2.6 for different values of β. This

figure indicates that the non-uniform flow model predicts significantly lower values of ucr and

ωcr for β in the neighborhood of 0.7 as well. There is good agreement between the uniform

and non-uniform turbulent flow models for values of β that are not in the neighborhood of

0.3 or 0.7.

The system’s behavior in the regions near β = 0.3 and β = 0.7 is somewhat different than

what has appeared in the literature [15], since we are examining only the lowest velocity at

which the pipe becomes unstable. The source of the system’s sensitivity to changes in β is

not a mode-switching phenomenon [38]. A mode switch for the uniform flow system does

occur near β = 0.386, and this phenomenon is depicted in Figs.2.7 and 2.8.

Rather, the discontinuous behavior is a consequence of the unusual shape of the second

mode’s locus in this region of the β parameter space. Fig.2.9 shows the shape of second

mode’s locus in this sensitive region of the β-space. The β = 0.297 curve is nearly tangent

to the real axis near ω = 16 and the β = 0.290, 0.305 curves first cross the real axis at

1: The value of µ is implicitly assumed to be unity for the uniform flow model whereas
it has values in the neighborhood of 1.05 for the non-uniform flow model.
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Figure 2.6: Plot of (a) ucr and (b) ωcr for uniform (dashed line) and non-uniform (solid
line) turbulent flow for different values of β.
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Figure 2.7: Left: Modes two and three of the uniform profile case prior to mode switch,
β = 0.385. Right: Closeup of boxed region. The marked points are the values of each locus
at u = 8.498, and are at points (23.75, 5.64) and (24.46, 6.25) for the second and third mode,
respectively.
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Figure 2.8: Left: Modes two and three of the uniform profile case after mode switching has
occurred, β = 0.387. Right: Closeup of boxed region. The marked points are the values of
each locus at u = 8.502, and are at points (23.60, 6.08) and (24.59, 5.92) for the second and
third mode, respectively.

ω = 14.35 and ω = 22.54, respectively.

2.5.2 Laminar flow

In prior work, the plug flow model implicitly made the assumption that µ = 1. It is clear from

Fig.2.4 that this assumption is reasonable only for high Reynolds number. The non-unique

relationship between u and Re allows situations where this assumption is not reasonable.

For example, inspection of Eq.(2.23) reveals that a sufficiently long pipe could have a large

value for u at low Reynolds number. A sufficiently long fluid-conveying pipe could therefore

undergo flutter instability with laminar flow, in which case µ = 4/3. In the case of turbulent

flow, the near-unity value of µ yields values of ucr and ωcr which differ significantly from the

uniform case only in certain thin regions of the β parameter space. Figure 2.10 is analogous
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Figure 2.9: Closeup of second mode, where β = 0.290, 0.297, 0.305 in the direction of the
plotted arrow.

to Fig.2.6, but assumes laminar flow and gives a very different result. The values of ucr

for laminar flow are quite different from that of uniform flow in all regions of the parameter

space. The values of ωcr for laminar flow are similar to that of uniform flow over much of the

range of β but there are certain regions where the predicted values are significantly different.

Unlike the thin regions near β = 0.3 and β = 0.7 for turbulent flow (see Fig.2.6), the regions

of large separation for laminar flow extend from approximately β = 0.29 to β = 0.40 and

from β = 0.69 to β = 0.93.

This dramatic difference between the solution found using the “standard” plug flow as-

sumption and the improved model presented in this communication is perhaps the best

argument for the standard use of this improved model, particularly at scales outside of

typical engineering practice.
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Figure 2.10: Plot of (a) ucr and (b) ωcr for uniform (thin line) and laminar (thick line) flow
for different values of β.
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Chapter 3

Simplified Dynamics of a

Fluid-Conveying, Fluid-Immersed

Pipe Affixed to a Rigid Body

3.1 Introduction

In the 1970s, Paidoussis and coworkers built and tested [28] a propulsor consisting of a fluid-

conveying pipe affixed to the underside of a large surface hull. That work has limited theoret-

ical justification, but the superficial similarity between a fluttering fluid-conveying cantilever

and a fish is readily apparent — both motions take the form of a traveling wave which grows

in amplitude from tip to tail. It is therefore easy to appreciate that the well-documented ef-

ficiency of fish-like motion [14, 25] was the motivation for this type of mechanism. Although

the fluttering motion of the tail was found to be a net gain above the thrust provided by the

jet exhausting into the water, the efficiency did not approach that of a propeller, and after
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a patent [29], the idea appears to have been dropped.

Interim developments since these initial efforts justify a reexamination of the fluttering

fluid-conveying tail as a propulsor. Improvements in battery and motor technologies now

permit the prime mover and power source to be packaged into the neutrally buoyant hull of a

small submersible, whereas Paidoussis’ surface hull was very large relative to the propulsor.

Reducing the size of the hull changes the system’s dynamics, since the fluid-conveying tail

may produce sufficient transverse force and moments to alter the motions of the hull. That

is, the boundary conditions of the tail are likely to be significantly different than those of

a cantilever. The rigid body boundary condition developed in this chapter and used in its

investigations is a close linear approximation to the boundary condition acting on the base

of a fluttering, fluid-conveying submersible’s tail.

This chapter is organized as follows. Section 3.2 provides the background for the dy-

namic equations of fluid conveying, fluid immersed pipes and the mechanics of slender body

swimming. Section 3.3 presents the rigid body boundary conditions and makes them non-

dimensional. The analytical method used for solution is also describe in this section. Section

3.4 investigates the flow requirements for controlled flutter and calculations of thrust and

efficiency of the waveforms produced by the fluttering tail.

3.2 Background

3.2.1 Fluid-conveying pipes

The equations of motion and boundary conditions for a cantilever pipe conveying fluid with

constant velocity Ui, immersed in an inviscid fluid flowing with constant velocity Ue, and
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ignoring gravitational, viscous, pressurization and tensile effects, are as follows [31]:

EI
∂4y

∂x4
+ (MU2i +MeU

2
e )
∂2y

∂x2
+ 2(MUi +MeUe)

∂2y

∂x∂t
+ (m+M +Me)

∂2y

∂t2
= 0, (3.1)

y(0, t) = 0,
∂y

∂x
(0, t) = 0,

∂2y

∂x2
(L, t) = 0,

∂3y

∂x3
(L, t) = 0

y(x,t)

x

y

Ui

x dx

dx

R

r

Ui

Figure 3.1: A cantilevered fluid-conveying pipe, with a magnified view of a small length
element.

where y(x, t) is the displacement of the pipe, as shown in Fig.3.1, E, I and L denote the

Young’s modulus, area moment of inertia, and length of the pipe, respectively, and m, M

and Me represent the mass per unit length of the beam, the internal (conveyed) fluid, and

the external fluid. The masses per unit length of the beam and internal fluid can be easily

computed but the mass per unit length of the external fluid requires approximation. One

method for computation ofMe is to use the added mass coefficient [9]. For thin cross sections,

such as that of a flat plate, the added mass is equal to the mass of water within the cylinder

which circumscribes the plate cross-section. A “finned tube”, well suited to providing both a

fluid conduit and a tail of adequate span, is depicted in Fig.3.2 with the area responsible for

the added external mass marked. Viscous terms characteristic of the external flow [17] and

internal flow [20] are of course needed to compute the overall efficiency of the submersible,
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S

D

Figure 3.2: The cross-section of a finned tube with fluid-conduit diameter D and tail span
S. The dotted circle describes the area responsible for the added external mass Me, which
is equal to 0.25ρfπS

2, where ρf is the density of the external fluid.

and affect beam stability as well. These effects are neglected in this section to permit an

analytical solution of the equations, and will be considered in the following section along

with the additional accelerations and nonlinear rotations of the rigid body.

Equation (3.1) may be made non-dimensional via the following change of variables

X =
x

L
, Y =

y

L
, T =

t

L2

(
EI

m+M +Me

)1/2
. (3.2)

The non-dimensional velocities ui and ue and the mass fractions βi and βe are defined as

follows

ui =

(
M

EI

)1/2
UiL,

ue =

(
Me
EI

)1/2
UeL,

βi =
M

m+M +Me
,

βe =
Me

m+M +Me
,

then Eq.(3.1) can be written in its non-dimensional form

∂4Y

∂X4
+ (u2i + u2e)

∂2Y

∂X2
+ 2(ui

√

βi + ue
√

βe)
∂2Y

∂X∂T
+
∂2Y

∂T2
= 0

A separable form for y(x, t) is assumed, i.e., y(x, t) = f(x)eiΩt, such that the non-dimensional
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variable Y takes the form

Y (X, T ) = φ(X)eiωt, ω =

(
m+M +Me

EI

)1/2
ΩL2. (3.3)

Separation yields the ordinary differential equation and boundary conditions

∂4φ

∂X4
+ (u2i + u2e)

∂2φ

∂X2
+ 2(ui

√

βi + ue
√

βe) iω
∂φ

∂X
− ω2φ = 0, (3.4)

φ(0) = 0,
∂φ(0)

∂X
= 0,

∂2φ(1)

∂X2
= 0,

∂3φ(1)

∂X3
= 0,

The solution of φ is assumed to be of the form φ(X) = AezX . For specific values of ui, ue, βi

and βe, the characteristic polynomial of Eq.(3.4) provides four roots zn, where zn = zn(ω),

n = 1, 2, 3, 4. The solution of φ(X) therefore takes the form

φ(X) = A1e
z1X + A2e

z2X + A3e
z3X + A4e

z4X. (3.5)

Substitution of Eq.3.5 into Eq.3.4 yields the identity














1 1 1 1

z1 z2 z3 z4

z21e
z1 z22e

z2 z23e
z3 z24e

z4

z31e
z1 z32e

z2 z33e
z3 z34e

z4














︸ ︷︷ ︸

Z













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
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
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







=














0

0

0

0














. (3.6)

A non-trivial solution (for ω) of Eq.3.6 is obtained by numerical evaluation of the roots of

Det(Z) = 0. This equation has infinite roots in ω. Substitution of Eq.(3.5) into Eq.(3.3)
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yields

Y (X, T ) =
4∑

n=1

Ane
znXeiωT =

4∑

n=1

An eℜ[zn]X
︸ ︷︷ ︸

(i)

ei(ℜ[zn]X+ℜ[ω]T )
︸ ︷︷ ︸

(ii)

e−ℜ[ω]T
︸ ︷︷ ︸

(iii)

. (3.7)

It can be seen that Y (X, T ) is a product of three exponential terms of which the first term

is bounded (since X is bounded), and the second term is periodic since the exponent is

imaginary. The third term can grow unbounded with time if ℜ[ω] < 0 and this represents

the onset of flutter instability. The mode and velocity at which the pipe becomes unstable

depends on the fluid mass fractions βi and βe. The coefficients An, n = 1, 2, 3, 4, can

be computed from the nullspace of the matrix Z in Eq.3.6, once ω and zn, n = 1, 2, 3, 4,

have been determined. These coefficients are needed to estimate the force exerted by the

fluid-conveying tube on the surrounding fluid.

3.2.2 Slender body swimming

Fish-like propulsion has been a topic of interest in the academic community for more than 60

years and several robotic platforms have been built [43, 27] to exploit the phenomenon. The

mechanism proposed in this communication (see Fig.3.3) is composed of a fluttering fluid-

conveying tail providing thrust by both jet and tail action; the tail has the cross-sectional

profile of a finned tube like the one shown in Fig.3.2. A similar mechanism was constructed

in the 1970s [28] and was found to produce positive thrust only if the phase velocity of the

tail displacement was greater than the forward speed of the vessel.

Thrust production via a high phase velocity traveling wave was described first in a paper

by Lighthill [23], which used slender body analysis to approximate the thrust produced by
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Figure 3.3: The proposed submersible, comprised of a rigid body and a fluid-conveying
flexible tail. Note that the tail is assumed to have a finned-tube cross section, as shown in
Fig.3.2.

an idealized fish. Lighthill found that a traveling waveform, for example

y(x, t) = f(x) cos(kx+ Ωt) (3.8)

can produce positive thrust if (Ω/k) > Ue, where Ue is the speed of the body relative to the

external fluid. The quantity Ω/k is known as the phase velocity. The following equation is

the dimensional form of Eq.(3.7) for a single waveform

yn(x, t) = Ane
ℜ[Zn]x ei(ℜ[Zn]x+ℜ[Ω]t) e−iℜ[Ω]t, (3.9)

where Zn and Ω are the dimensional wavenumber and frequency. The waveform described

by Eq.(3.9) will result in positive thrust if

ℜ[Ω]

ℜ[Zn]
> Ue.
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The above equation can be made non-dimensional, taking the form

ℜ[ω]

L2

(
EI

m+M +Me

)1/2 L

ℜ[zn]
> ue

(
EI

Me

)1/2 1

L
⇒

ℜ[ω]

ℜ[zn]
>

ue

β1/2
. (3.10)

Equation (3.10) gives us a condition under which a waveform will generate positive thrust,

where ℜ[ω]/ℜ[zn] is the non-dimensional phase velocity of the waveform.

Paidoussis’ described his icthyoid propulsor [28] as having a single phase velocity, which

was measured by direct observation. While a single phase velocity is relatively simple to de-

termine experimentally, determination of positive thrust is not straightforward in the context

of Eq.(3.7) since it has four traveling waveforms of different, spatially variable amplitudes

and phase velocities. In the context of Eq.(3.7), it is easier to estimate thrust by the method

laid out by Lighthill [23] and Wu [44]. In those papers, a slender1 fish is considered and the

time-averaged thrust τ is given by the relation

τ =
1

2
Me

[[(
∂y

∂t

)2
−

(

Ue
∂y

∂x

)2
]

x=L

−

[(
∂y

∂t

)2
−

(

Ue
∂y

∂x

)2
]

x=0

]

, (3.11)

where y = y(x, t) denotes the displacement of the slender body from its neutral position, ẏ

and y′ denote partial derivatives of y with respect to time and x, and overbar refers to a long-

term time average. In the above equation, increasingMe increases the thrust generated; this

leads to the design choice of the finned-tube in Fig.3.2. The form of Eq.(3.11) also makes

it clear that a higher forward speed Ue requires a higher velocity ẏ to sustain it. Both

Lighthill (Lighthill, 1960) and Wu (Wu, 1971) derived the expression in Eq.(3.11) without

the assumption of harmonic motion. If harmonic motion is assumed, the time average over a

1: A definition of “slender body” can be found in §2 of Wu [44].
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single cycle is sufficient. Note that Eq.(3.11) differs slightly from that found in (Wu, 1971)1.

Wu’s assumption that no mass is affected at x = 0 is relaxed, since we have assumed that

the tail has a geometry which is uniform along its length rather than a tapered fish which

has zero area at the tip.

A similar expression (Lighthill, 1960) was derived for the average power P required to

provide the displacements y(x, t)

P = UeMe

[[
∂y

∂t

(
∂y

∂t
+ Ue

∂y

∂x

)]

x=L
−

[
∂y

∂t

(
∂y

∂t
+ Ue

∂y

∂x

)]

x=0

]

, (3.12)

which includes the power lost in the vortex wake. Equations (3.11) and (3.12) indicate that a

large magnitude of ẏ produces greater thrust but also requires higher energy input. This can

also be verified from the expression of the Froude efficiency (Lighthill, 1960) of the motion

of the slender body

η =
τUe

P
. (3.13)

The expression for efficiency in Eq.(3.13) does not account for power lost to internal fluid

shearing in the pipe, external drag, or the thrust produced by the fluid expelled from the

fluid-conveying tail. The actual efficiency of the submersible will therefore be somewhat

lower after these effects are accounted for.

1: Equation (47) in that work.
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3.3 Fluid-conveying pipe affixed to a rigid body

3.3.1 Simplified boundary conditions

The complete planar dynamics of a submersible with a fluid-conveying fluttering tail, as

shown in Fig.3.3, will be presented in the next chapter. However, a simplified model that

permits better understanding of the important parameters governing the motion is desirable.

To this end, we make the following assumptions:

A1. The rigid body is symmetric about the plane containing the neutral surface of the

undeformed beam.

A2. The rotation of the rigid body, denoted by θ in Fig.3.4, is small. This is in addition

to the Euler-Bernoulli beam assumption that the slope of the tail is small everywhere

along its length.

A3. The submersible has zero acceleration in the x direction. This allows us to ignore the

“forces” that arise from a non-inertial reference frame.

A4. The added mass coefficient associated with the rigid body is zero. This assumption

simplifies the analysis by allowing us to concentrate on the geometry of the rigid body

in the xy plane. This is equivalent to the assumption that the rigid body is a planar

lamina in the xy plane.
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Figure 3.4: Free-body diagrams of the rigid body and tail of the submersible in Fig.3.3.

The above assumptions allow us to write the boundary conditions for the fluid-conveying

tail1 at x = 0 as follows:

[

EI
∂3y

∂x3
+MB

(

∂2y

∂t2
− ℓ

∂3y

∂x∂t2

)]

x=0

= 0, (3.14a)

[

EI
∂2y

∂x2
− (JB +MBℓ

2)
∂3y

∂x∂t2
+MBℓ

∂2y

∂t2

]

x=0

= 0, (3.14b)

where MB is the mass of the rigid body, and JB is the mass moment of inertia of the rigid

body about its center of mass, and ℓ is the distance of the center of mass of the rigid body

from the base of the tail. The boundary conditions in Eq.(3.14) can be derived from the

free-body diagram of the rigid body in Fig.3.4 as follows

−V =MB

[

∂2y

∂t2
− ℓ

∂3y

∂x∂t2

]

x=0

, M− ℓV = JB

[

∂3y

∂x∂t2

]

x=0

.

It should be pointed out that the variable θ in Fig.3.4 denotes the orientation of the rigid

body, which is equal to the slope of the tail at x = 0, i.e., θ = [∂y/∂x]x=0. Since the rigid

body is symmetric about the plane containing the neutral surface of the undeformed beam,

1: The result given here is similar to that in [8] with the exception that they have been
derived here at x = 0 rather than x = L.
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the force F does not affect the boundary conditions.

Using Eq.(3.2), we can obtain the non-dimensional form of Eq.(3.14):

[

∂3Y

∂X3
+ µ(

∂2Y

∂T2
− λ

∂3Y

∂X∂T2
)

]

X=0

= 0, (3.15a)

[

∂2Y

∂X2
− µ

{

(ψB + λ2)
∂3Y

∂X∂T2
− λ

∂2Y

∂T2

}]

X=0

= 0, (3.15b)

where

µ =
MB

(m+M +Me)L
, λ =

ℓ

L
, ψB =

JB
MBL

2
,

are non-dimensional parameters of the rigid body. Physically, µ is the ratio of its mass to the

mass of the rest of the system, λ is a non-dimensional distance, and ψB is the square of the

non-dimensional radius of gyration. Note that Eq.(3.15) provides the boundary conditions

for a free end as µ → 0, and that of a clamped end as µ → ∞. The free-end conditions can

be shown easily whereas the clamped-end conditions can be shown by allowing µ to approach

∞ in Eq.(3.15), which yields:

[

∂2Y

∂T2
− λ

∂3Y

∂X∂T2

]

X=0

= 0, (3.16a)

[

(ψB + λ2)
∂3Y

∂X∂T2
− λ

∂2Y

∂T2

]

X=0

= 0. (3.16b)

Since ψB 6= 0, it can be readily shown from the above that ∂2Y/∂T2 = ∂3Y/∂X∂T2 = 0

at X = 0. Assuming zero initial velocities, i.e., ∂Y (0, 0)/∂T = ∂2Y (0, 0)/∂X∂T = 0, we

obtain the clamped end conditions ∂Y (0, T )/∂T = ∂2Y (0, T )/∂X∂T = 0.
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3.3.2 Method of analysis

The simplified boundary conditions for a fluid-conveying pipe affixed to a rigid body are

investigated in the same manner as that of a cantilever pipe, which was discussed in section

2.1. Using the boundary conditions in Eq.(3.15), we get the following relation that is similar

to Eq.(3.6):




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



η1 η2 η3 η4

ζ1 ζ2 ζ3 ζ4
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, (3.17)

where ηn, ζn, n = 1, 2, 3, 4, are defined by the relations

ηn = z2n + µω2
[

(ψB + λ2)zn − λ
]

,

ζn = z3n − µω2(1− λzn).

Equation (3.17) leads to a solution of the form given by Eq.(3.7). Since the proposed ap-

plication of the swimming submersible requires the oscillations of the fluttering tail not to

grow with time, the points of neutral stability, i.e. ℜ[ω] = 0, are sought in the ui-ue space.

For a given µ, λ, ψB , βi, βe, and a given forward velocity ue, the value of ui for which

ℜ[ω] = 0 can be found through analysis of an Argand diagram, an example of which is

provided in Fig.3.5. This diagram is constructed [15] by determining the natural frequencies

of a set of modes at ui = 0, then gradually incrementing ui to determine ℜ[ω] and ℜ[ω]

for higher values of ui. The natural frequencies at the onset of flutter instability, ωcr, are

the locations where the resultant curves cross the imaginary axis. The velocities at which
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this occurs are referred to as critical velocities, ucr. This procedure yields a single neutrally

stable point in the ui-ue space. Clearly, while it is possible to search the entire ui-ue space

for these neutrally stable points, this would require construction of a large number of Argand

diagrams to obtain an acceptable resolution in ue, which is prohibitively time-expensive. To

mitigate this problem, an automated method similar in character to that discussed above is

proposed.

third root

second
root

first
root

0 20 40 60

0

20

10

ωcr = 14.64

ucr = 5.24

ℜ (ω)

I
(ω

)

Figure 3.5: Argand diagram for the first three modes of oscillation for βi = 0.01, βe = 0.9,
λ = 1/2, ψB = 1/12, µ = 2.25 and ue = 1.0.

In the automated method, the value of ui required for neutral stability at ue = 0 is first

computed by interpolating values of ui for which ℜ[ω] ≈ 0. This is repeated once more for

ue = ǫ, where ǫ is a small number. Subsequent points may be found in the following manner,

which is explained with the help of Fig.3.6. For a set of two consecutive neutrally stable

points already determined, such as the points marked 1 and 2 in Fig.3.6, the next point is

guessed to exist at point 3′ at a distance ǫ1 from point 2 along the vector ~v drawn from
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Figure 3.6: Illustration of the procedure used to find the neutral stability curve.

point 1 to point 2. Several points at which to compute ω are then chosen near point 3′ along

a vector perpendicular to ~v. These points are separated from each other by the distance ǫ2.

The value for ωcr may now be found by interpolation, and computation of the critical values

of ui an ue follows trivially. This procedure, in which the direction of iteration is nearly

perpendicular to the curve, was necessary to navigate some of the sharp turns in the neutral

stability curves given in the next section. In general, lower values of ǫ1 and ǫ2 are needed

for curves with sharper turns, and in the current work, ǫ1 = 0.02, ǫ2 = 0.002 were found

to suffice. The method was found to be robust as well; while we present results for a single

rigid body of variable mass here, changes in other parameters can be easily accomodated.
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3.4 Stability, thrust and efficiency

3.4.1 Neutral stability

We obtained neutral stability curves in the ui-ue space for a fluid-conveying pipe affixed

to a rigid body, using the simplified boundary conditions discussed in the previous section.

These neutral stability curves were obtained for various values of µ. The values of the other

parameters were chosen as follows:

βi = 0.01, βe = 0.9, λ = 1/2, ψB = 1/12.

The values of βi and βe used here reflect the finned-tube geometry, shown in Fig.3.2. The

nature of this geometry is such that a large amount of external fluid is associated with the

oscillations of the tail and this explains the relatively large value of βe. Likewise, the small

value of βi reflects the small area through which internal fluid is conveyed. The values of λ

and ψB correspond to a uniform cylinder with length equal to that of the tail.

The neutral stability curves are shown in Fig.3.7. The area inside each curve (towards

the origin) represents the region where the tail does not flutter whereas the area outside

represents the region where the tail flutters. The difference between the low-µ and high-µ

curves is striking. For values of ue < 2.9, the value of ui required to create flutter decreases

with increase in the value of µ. The confluence of all the curves at ue ≈ 2.9 is also interesting

though no theoretical reason for this confluence is apparent. It should be mentioned that the

curves’ tendency to pass close to one another is not a unique scenario. Recall that the rigid

body can be described by the parameters ψJ , λ, and µ, of which we have only investigated

the latter in detail in this work. Changing the values of ψJ and λ does not, in our experience,
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Figure 3.7: Neutral stability curves for different values of µ.

remove this tendency of the curves to intersect at a point, though the point in ui-ue space

is different.

For values of ue > 2.9, higher values of µ are neutrally stable at a higher value of ue for

a given value of ui. This implies that for a given flow rate provided by the prime mover, a

tail affixed to a hull of larger mass will tend to flutter at higher forward speed. The curves

also indicate that higher values of µ are neutrally stable at a higher value of ui for a given

value of ue. This implies that for a given external flow, a tail affixed to a hull of larger mass

will require higher internal flow to flutter.

Figure 3.8 plots the relationship between ue and ωcr. It can be seen from this figure

that for high mass ratios, there exist certain regions of the ue parameter space where ωcr

is sensitive to ue. This sensitivity may be used to determine a “sweet spot”, where a

higher oscillation frequency may be obtained with a minimal change in ue. This increase

in oscillation frequency and concomitant increase in ẏ will increase the thrust produced by
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Figure 3.8: Plot showing the relationship between ωcr and ue for different values of µ.

the beam, per Eq.(3.11), and can be used for designing high-acceleration maneuvers for the

submersible. Thrust production and efficiency in the context of Eqs.(3.11) and (3.12) is

discussed in the next two sections.

3.4.2 Thrust characteristics

To determine the thrust produced by the fluttering tail of the proposed submersible, we

non-dimensionalize Eq.(3.11) and compute the average over one cycle as follows:

τ∗ =
τL2

EI
=
ωcr
4π

∫ 2π/ωcr

0

{[

βeẎ
2 − u2eY

′2
]

X=1
−
[

βeẎ
2 − u2eY

′2
]

X=0

}

dT. (3.18)

The function Y (X, T ) is found by the method presented in section 2.1, and takes the form of

Eq.(3.7). Equation (3.7) has both real and imaginary parts; only the real part is physically

manifest and contributes to the thrust. Assuming neutral stability (ℜ[ω] = 0), the real part
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of Eq.(3.7) is

Y (X, T ) =
4∑

n=1

eℜ[zn]X
{

ℜ[An] cos(ℜ[zn]X + ℜ[ω]T )− ℜ[An] sin(ℜ[zn]X + ℜ[ω]T )

}

The coefficients An in the above equation are found by computing the nullspace of the matrix

in Eq.(3.17). The terms Ẏ and Y ′ in Eq.(3.18) can then be obtained through differentiation.
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Figure 3.9: The darkened region of each neutral stability curve (left of the dotted lines)
depicts the region of negative thrust.

Figure 3.9 reproduces the curves of neutral stability in Fig.3.7 with dark lines depicting

the region on each curve where the thrust is negative. Notice that no value of µ allows

thrust-producing flutter instability at ui = 0. This matches with our physical intuition that

a flapping flag cannot generate thrust. At low values of ui, the positive hydrodynamic work

is predominantly contributed by the external fluid and reduces the energy of that fluid; this

phenomenon can be put to use in power generation [41]. It is also interesting to note that

systems with lower values of µ can produce thrust at lower values of ui than systems with
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higher values of µ, though the high-µ systems have higher forward speed ue.

It is important to remember, however, that merely having positive thrust from the tail

does not guarantee that a given ui-ue point can be reached. The system’s drag and the

thrust of the fluid jet will also govern the submersible’s top speed. Since the drag of the

system will, for a neutrally-buoyant vessel, be strongly related to the displacement and mass,

we will reserve these concerns for a later work more closely tied to the physical realization

of the submersible.

Finally, it should be mentioned that the calculations presented here are purely concerned

with the thrust produced by the traveling waveform in the fluttering tail. As such, the

thrust produced by the fluid jet is not considered. However, it has been shown through

experiments [28] that this loss of thrust can be overcome such that the combined jet and tail

action produces a net thrust that is higher than that of a fixed jet.

3.4.3 Hydrodynamic efficiency

Similar to the expression for thrust, Eq.(3.12) can be made non-dimensional and the average

over one cycle computed, to give the average non-dimensional power P∗:

P∗ =
PM

1/2
e L3

(EI)3/2
=

ωcr
2π

∫ 2π/ωcr

0

{[

βeueẎ
2 − u2eβ

1/2
e Y ′Ẏ

]

X=1
−

[

βeueẎ
2 − u2eβ

1/2
e Y ′Ẏ

]

X=0

}

dT

From Eq.(3.13), the expression for Froude efficiency can be written as

η =
τUe

P
=
τ∗ue
P∗

. (3.19)
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Figure 3.10: Efficiency for neutrally stable points in the ui-ue space and for different values
of µ. Note that the curve for µ = 2.5 is unique in that it has an interim region of zero
efficiency.

Efficiencies computed using Eq.(3.19) are plotted with respect to ue for various values of µ

in Fig.3.10. Each curve plots the efficiency for neutrally stable points in the ui-ue space.

Per the discussion in [44], Eq.(3.19) has meaning only when the thrust is positive, and

therefore, Fig.3.10 plots the efficiency only for neutrally stable points with positive thrust,

the non-darkened regions of Fig.3.9.

It is interesting to note that the maximum efficiency is insensitive to the value of µ.

This will provide flexibility in submersible design since the mass of the hull can be chosen

based on other factors such as power source, drag and buoyancy, rather than hydrodynamic

efficiency. For each value of µ, the efficiency remains near its peak value for a wide range

of ue. This trend resembles the efficiency curves for tail-swimming fish which are known to

maintain efficiency over a broad range of swimming speeds. Incidentally, this broad peak in

efficiency is not characteristic of typical marine propellers, which tend to be most efficient
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over a narrow range of velocities.

It should be mentioned that the values of efficiency cited here consider only the power

used to generate tail motion in the external pressure field and the thrust provided by the tail.

Other factors, such as pipe losses and viscous drag will affect the efficiency of the vehicle

when considered as a whole. However, the thrust provided by the fluid jet has also not been

considered; a full accounting of the system’s efficiency would require further investigation.
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Figure 3.11: Efficiency as a function of ui and ue for the mass fraction µ = 2.5.

A combined perspective on Figs.3.9 and 3.10 is presented in Fig.3.11, which depicts the

neutral stability curve for µ = 2.5 in three dimensions, with the efficiency shown out of the

plane of the page. It is easy to see from this figure that the efficiency of tail motion for a

propulsor of this type is dependent on both ue and ui. Since a value of zero on the above

chart represents a net zero or negative thrust, it should be pointed out that high values of ue

require high values of ui in order for the tail to oscillate with a thrust-generating waveform.
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This result could be reasonably predicted; the limit case of a cantilever perturbed only by

an axially flowing external fluid (ui = 0) is not expected to add momentum in the axial

direction to the surrounding fluid. Nonetheless, it is good to see this expectation confirmed

by analysis.
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Chapter 4

General Dynamics of a

Fluid-Conveying, Fluid-Immersed

Pipe Affixed to a Rigid Body

4.1 Nomenclature

A large number of symbols have been employed in this chapter. A nomenclature has therefore

been provided for the reader’s convenience.

h Height of the flexible tail in the z direction, [m]

î, ĵ, k̂ Unit vectors along the x, y and z axes, respectively

kxxh , k
xy
h
, k
yx
h
, k
yy
h

Added mass coefficients associated with accelerations of the rigid head of

the submersible in the x and y directions, [−]

kxxt , k
xy
t , k

yx
t , k

yy
t Added mass coefficients associated with accelerations of the flexible tail

of the submersible in the x and y directions, [−]
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kθθh , kθθt Added mass coefficients associated with angular acceleration of the rigid

head and flexible tail of the submersible, [−]

mh, mt Mass of the rigid head and flexible tail of the submersible, [kg]

mi Mass of the fluid within control volume Ωi, [kg]

n̂ The outward-pointing unit vector normal to a surface

n̂j The outward-pointing unit vector normal to a control surface Γj

p2(x), p4(x) Pressure in fluid control volumes Ω2 and Ω4, [N/m
2]

q Shear stress at the wall of the fluid-conveying tube [N/m2]

~r Position vector of a point in the xy reference frame, [m]

~̇rxy Time derivative of ~r as seen by an observer in the xy frame, [m/s]

~̈rxy Time derivative of ~̇rxy as seen by an observer in the xy frame, [m/s2]

~rc Position vector of the center-of-mass of the system comprised of the sub-

mersible and fluid control volumes in the xy reference frame, [m]

rcx, rcy x and y components of ~rc, [m]

~̇rcxy Time derivative of ~rc as seen by an observer in the xy frame, [m/s]

ṙcx, ṙcy x and y components of ~̇rcxy , [m/s]

~̈rcxy Time derivative of ~̇rcxy as seen by an observer in the xy frame, [m/s2]

r̈cx, r̈cy x and y components of ~̈rcxy , [m/s
2]

xy-frame Body-fixed reference frame as shown in Fig.4.1

x̄, ȳ x and y coordinates of the center-of-mass of control volume Ω, [m]

x̄h, ȳh x and y coordinates of the center-of-mass of the rigid head of the sub-

mersible, [m]
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x̄t, ȳt x and y coordinates of the center-of-mass of the flexible tail of the sub-

mersible, [m]

x̄i, ȳi x and y coordinates of the center-of-mass of the i-th fluid control volume,

[m]

y(x, t) Displacement of a point on the flexible tail at a distance of x from the

origin of the xy-frame, [m]

yL y(L, t), [m]

ẏ(x, t) Time derivative of y(x, t) as seen by an observer in the xy-frame, [m/s]

ẏL ẏ(L, t), [m/s]

y′(x, t) First spatial derivative of y(x, t)

y′L y′(L, t)

Aj Area of the control surface Γj , [m
2]

Î , Ĵ , K̂ Unit vectors along the X , Y and Z axes, respectively

~Fext External force acting on the submersible, [N ]

~Fd External force on the submersible per unit length due to drag, generated

by fluid in the external control volumes, [N/m]

Fp Pressure on the submersible due to non-ambient pressure at the entrance

of the internal tube, [N/m2]

FI Force magnitude per unit length normal to the wall of the fluid-conveying

tube of the flexible tail due to internal flow, [N/m]

FE Force magnitude per unit length normal to the outer surface of the flexible

tail due to external flow, [N/m]
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Jz Mass moment of inertia of control volume Ω about the z-axis passing

through the origin of the xy-frame, [kg.m2]

Jzh, Jzt Mass moment of inertia of the rigid head and flexible tail of the sub-

mersible, respectively. Both are computed about the z-axis passing

through the origin of the xy-frame, [kg.m2]

Jzi Mass moment of inertia of the i-th fluid control volume about the z-axis

passing through the origin of the xy-frame, [kg.m2]

L Length of the flexible tail in the undeformed configuration, [m]

Lh Length of the rigid head of the submersible along the x axis, [m]

M Bending moment at a cross-section of the flexible tail, [N.m]

~Mext Moment of ~Fext about the origin of the inertial reference frame, [N.m]

Ph, Pt Perimeters of the head and tail, [m]

Q Shear force magnitude at a cross-section of the flexible tail, [N ]

~R Position vector of a point in the XY frame, [m]

~R0 Position vector of the origin of the xy reference frame in the XY frame,

[m]

R0x, R0y x and y components of ~R0, [m]

~Rc Position vector of the center-of-mass of the system comprised of the sub-

mersible and fluid control volumes in the XY frame, [m]

S Internal surface area per unit length of the fluid conveying tube within

the flexible tail, [m2]

T Tension at a cross-section of the flexible tail, [N ]
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U Speed of the fluid flowing through the flexible tail of the submersible,

[m/s]

Ue Speed of the external fluid in the x direction as seen by an observer in the

xy-frame, [m/s]

Uh Speed of the fluid flowing through the rigid head of the submersible, [m/s]

~V Velocity of a particle in the XY reference frame, [m/s]

~Vr Velocity of a fluid particle relative to a control surface, [m/s]

~Vs Velocity of a point on a control surface, [m/s]

XY -frame Inertial reference frame as shown in Fig.4.1

X0, Y0 X and Y components of ~R0, [m]

ρ Volumetric density, [kg/m3]

ρh, ρt Volumetric density of the rigid head and flexible tail of the submersible,

[kg/m3]

ρf Volumetric density of the fluid, [kg/m3]

θ orientation of xy reference frame with respect to the XY frame, [rad]

Γ Surface, [m2]

Γj j-th control surface, [m2]

Ω Volume, [m3]

Ωh, Ωt Control volume of the rigid head and flexible tail of the submersible, [m3]

Ωi i-th fluid control volume, [m3]
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4.2 Introduction

In this chapter, we derive and solve the equations of motion for a submersible propelled by a

fluttering fluid-conveying tail while relaxing some of the assumptions imposed in the previous

chapter. In the previous chapter, it was assumed the rotations and transverse accelerations of

the rigid body were small, meaning that the equation of motion of the fluid-conveying flexible

tail could be stated within an inertial reference frame. In this more general formulation, the

submersible is assumed to have distinctly non-zero acceleration and rotation, which makes it

more convenient to write the equations of motion in a non-inertial frame of reference. Note

that the equation of motion for a fluid-conveying pipe in a non-inertial frame has yet to

appear in the literature as of this writing.

It is perhaps interesting that the equation of motion for a fluid-conveying pipe in a non-

inertial frame appears here for the first time, given that an earlier attempt at this type of

propulsor was made by Paidoussis and coworkers in the mid-1970’s [28, 29] 1. There are

two likely reasons for this. First, those works are primarily experimental in nature and

provide very little in the way of theory to begin with; as will be shown in this chapter, the

equations of motion in a non-inertial frame are not trivial, and do not lend themselves to

being “thrown in” to an experimental work. Also, while no dimensions have been published

for the surface ship-type hull described by [28], the figures provided in that work and the

related patent [29] imply that the hull is large relative to the tail. A sufficiently large hull

is of course insensitive to the time-dependent transverse loads and moments imposed by a

fluttering tail, and the testing method employed in those works was not sensitive to the

transient in forward acceleration.

1: An earlier cited work is an undergraduate thesis [36], which is difficult to find.
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This chapter is organized as follows. Section 4.3 states the assumptions made for deriva-

tion of the equations of motion of the fluid-conveying flexible tail submersible. In section 4.4,

the derivation method is laid out, and the terms for the momentum and external forces are

described for the various components of the submersible. Section 4.5 describes the equations

of motion of a fluid-conveying tail or pipe within a non-inertial reference frame. The simu-

lation procedure used to solve the equations presented in sections 4.4 and 4.5 is presented

in section 4.6, along with the results of those simulations.

This chapter makes use of many variable names, only some of which will be recognizable

from prior sections - a nomenclature for this chapter is therefore provided in Appendix A.

4.3 Assumptions

Consider the fluid-conveying submersible shown in Fig.4.1. It is propelled by the combined

action of a fluid jet exiting from its flexible tail and the fluttering action of the tail. XY

denotes the inertial reference frame, xy is a body-fixed reference frame, and θ is the orien-

tation of the xy frame with respect to the inertial frame. The equations of motion of the

submersible are derived using the following simplifying assumptions:

A1. The submersible is comprised of a head, which is a rigid body, and a flexible tail

clamped to the head. The submersible is neutrally buoyant and its motion is confined

to the XY plane. The xy-frame is fixed to the head at the base of the tail such that

the neutral axis of the undeformed tail is congruent with the x-axis. The head is

symmetric with respect to the xz and xy planes and is uniform along its length. In

its undeformed configuration, the flexible tail has a rectangular projection in the xz

plane. A corollary to this assumption is that both the head and tail have three planes
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Figure 4.1: A submersible with a fluid-conveying flexible tail. The submersible is propelled
by the combined action of the fluid jet and fluttering tail. In this figure, the deflection of
the tail has been exaggerated.

of symmetry. The projection of the head and the undeformed tail in the xy plane is

slender.

A2. An internal cylindrical fluid-conveying tube runs along the length of the rigid head and

the flexible tail. The axis of the cylindrical tube is congruent with the neutral axis of

the flexible tail and with the x-axis along the length of the head.

A3. The flexible tail behaves like an Euler-Bernoulli beam. This implies that all points

along the length of the tail move in the y direction only, i.e., without foreshortening.

Furthermore, the displacement and slope of the tail with respect to the x-axis are

small.

A4. The flow in the internal cylindrical tube is steady and has a uniform tube-axial velocity

profile. Secondary flows resulting from the curvature of the tube have been neglected.
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A5. The fluid conveyed through the internal cylindrical tube is the same as the fluid sur-

rounding the submersible. The submersible is far from any free or solid surfaces.

cross-section
of

rigid body

(a)

finned
tube

(b)

y

z

Figure 4.2: The cross-section of (a) the rigid head of the submersible at some point along its
length, and (b) the flexible tail of the submersible, which is a finned tube. In both figures,
the dotted circle describes the area responsible for the added fluid mass in the y direction.

The following assumptions are made in regards to the external fluid:

A6. Geometry : The fluid control volumes around the head and tail of the submersible,

which are defined in the next section, have identical motion as that of the submersible.

The control volume around the head has identical axes of symmetry as those of the

head. The control volume around the tail is symmetric about the neutral axis of the

tail.

A7. Inertial Effects : Each of the external control volumes contain the fluid associated with

“added mass” [9]; note that the added-mass volumes may be different for the x, y and

θ coordinates. A cross-section of the added mass volume for the y coordinate is shown

in Fig.4.2 for both the rigid head and the flexible tail. The fluid within these volumes

is inviscid.
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A8. Drag Effects : The “drag force” experienced by the head and tail of the submersible is

reflected within the surrounding control volumes of fluid as a momentum deficit within

that fluid. Instead of approximating this momentum deficit, the drag force on the body

will be computed directly, via separate analysis.

A9. Inlet Pressure: There is a non-ambient pressure at the entrance of the internal tube

which results from drawing surrounding fluid into the head of the submersible. This

pressure will be computed via analysis of the captured streamtube.

The internal fluid affects the dynamics of the submersible in the following way:

A10. Inertial Effects : The fluid control volumes inside the head and tail of the submersible

are subjected to the same acceleration as that of the head and tail of the submersible,

respectively.

4.4 Dynamic Model - Newtonian Formulation

4.4.1 Force and Moment Equations

The equations of motion of the submersible are derived using the standard control volume

approach. The fluid control volumes in and around the rigid head and flexible tail of the

submersible are shown in Fig.4.3 along with their control surfaces. The names of the control

volumes and control surfaces are listed in Table 4.1. The equations presented in this section

are concerned with the motion of the xy-frame assuming a general function y(x, t) for the

motion of the tail. The tail’s dynamics are developed separately in a later section. The
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translational motion of the xy-frame can be obtained from Newton’s second law of motion

~Ffluid =
d

dt

∫

Ωh(t)
ρh
~V dΩ +

d

dt

∫

Ωt
ρt
~V dΩ (4.1)

Section D-DSection A-A

A

A

D

D

Section B-B

B

B

C

C

Section C-C

identical areas

Ωh Ω1 Ωt Ω2

Ω3

Ω4

n̂1

n̂3

n̂2
n̂6

n̂4

n̂5

Γ3 Γ4

Γ5 Γ6
Γ1 Γ2

Figure 4.3: Depiction of control volumes Ωh, Ωt, and Ωi, i = 1, 2, 3, 4; and control surfaces
Γj , j = 1, 2, 3, 4, 5, 6, along with their outward normals.

The fluid forces on the left hand side of Eq.(4.1) are comprised of inertial forces associated

with the fluid control volumes (assumptions A7 and A10), drag forces (assumption A8),

and the force generated by the non-ambient pressure at the entrance of the internal tube
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Table 4.1: Names of different fluid control volumes and control surfaces. Note that there
is no need for a “head internal outlet” and “tail internal inlet”, since these surfaces are the
same.

Control Volumes Control Surfaces
Ωh Rigid Head Γ1 Jet Inlet
Ωt Flexible Tail Γ2 Jet Outlet
Ω1 Head Internal Fluid Γ3 External Flow Head Inlet
Ω2 Tail Internal Fluid Γ4 External Flow Head Outlet
Ω3 Head External Fluid Γ5 External Flow Tail Inlet
Ω4 Tail External Fluid Γ6 External Flow Tail Outlet

(assumption A9). The inertial forces are comprised of volume and surface terms obtained

from Reynolds’ transport theorem [33] and therefore the external forces can be written as

~Ffluid = −
4∑

i=1

[

d

dt

∫

Ωi(t)
ρf
~V dΩ

]

−
6∑

j=1





∫

Γj(t)
ρf
~V (~Vr · n̂j)dΓ





+

∫

Ωh,Ωt

~Fd dx+

∫

Γ1(t)
~Fp dΓ (4.2)

Substitution of the above equation into Eq.(4.1) yields

∫

Ωh,Ωt

~Fd dx+

∫

Γ1(t)
~Fp dΓ =

d

dt





∫

Ωh(t)
ρh
~V dΩ+

∫

Ωt
ρt
~V dΩ +

4∑

i=1

∫

Ωi(t)
ρf
~V dΩ





+
6∑

j=1





∫

Γj(t)
ρf
~V (~Vr · n̂j)dΓ



 (4.3)

The volume integral terms of Eq.(4.3) may be simplified using Liebniz’ rule, written in

Eq.(4.4) for a general control volume Ω(t) with control surface Γ(t). Note that Liebniz’ rule

applies only to the volume integral term on the left-hand side of Eq.(4.4); the surface integral

which arises from the application of Liebniz rule can be combined with the surface integral
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since ~Vs + ~Vr = ~V .

d

dt

∫

Ω(t)
ρ~V dΩ +

∫

Γ(t)
ρ~V (~Vr · n̂)dΓ

=

∫

Ω(t)

∂

∂t
(ρ~V )dΩ +

∫

Γ(t)
ρ~V (~Vs · n̂)dΓ +

∫

Γ(t)
ρ~V (~Vr · n̂)dΓ,

=

∫

Ω(t)

∂

∂t
(ρ~V )dΩ +

∫

Γ(t)
ρ~V (~V · n̂)dΓ (4.4)

Using Liebniz’ rule as written above, Eq.(4.3) can be rewritten as follows

∫

Ωh,Ωt

~Fd dx+

∫

Γ1(t)
~Fp dΓ =

∫

Ωh

∂

∂t
(ρh

~V )dΩ+

∫

Ωt

∂

∂t
(ρt

~V )dΩ+

4∑

i=1

∫

Ωi

∂

∂t
(ρf

~V )dΩ

+

4∑

j=1

∫

Γj
ρf
~V (~V · n̂j)dΓ (4.5)

An equation for the rotational motion of the submersible may be obtained by equating

the sum of external moments about the inertial origin to the rate of change of angular

momentum

∫

Ωh,Ωt

~Mext dΩ =
d

dt

∫

Ωh

[

~R × ρh
~V
]

dΩ+
d

dt

∫

Ωt

[

~R × ρt
~V
]

dΩ (4.6)

where ~V = ~̇R. Similar to the external forces, the external moments on the left hand side of

Eq.(4.6) are comprised of inertial moments, drag moments, and pressure moments. The iner-

tial moments are comprised of volume and surface terms obtained from Reynolds’ transport
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theorem [33] and therefore the external moments can be written as

∫

Ωh,Ωt

~Mext dΩ = −

4∑

i=1

[

d

dt

∫

Ωi(t)

(

~R × ρf
~V
)

dΩ

]

−

6∑

j=1





∫

Γj(t)

(

~R× ρf
~V
)

(~Vr · n̂j)dΓ





+

∫

Ωh,Ωt

~R× ~Fd dx+

∫

Γ1(t)
~R × ~Fp dΓ

where, as with Eq.(4.3), Liebniz’ rule may be applied to move the time derivative inside the

integral:

∫

Ωh,Ωt

~Mext dΩ = −
4∑

i=1

[
∫

Ωi(t)

∂

∂t

(

~R× ρf
~V
)

dΩ

]

−
6∑

j=1





∫

Γj(t)

(

~R× ρf
~V
)

(~V · n̂j)dΓ





+

∫

Ωh,Ωt

~R× ~Fd dx+

∫

Γ1(t)
~R × ~Fp dΓ (4.7)

Similar to the linear momentum equations, the equation above may be combined with

Eqs.(4.6) to form:

∫

Ωh,Ωt

~R × ~Fd dx+

∫

Γ1(t)
~R× ~Fp dΓ =

∫

Ωh

~R×
∂

∂t

[

ρh
~V
]

dΩ+

∫

Ωt

~R×
∂

∂t

[

ρt
~V
]

dΩ

4∑

i=1

[
∫

Ωi(t)
~R ×

∂

∂t

[

ρf
~V
]

dΩ

]

−

6∑

j=1





∫

Γj(t)

(

~R× ρf
~V
)

(~V · n̂j)dΓ



 (4.8)

using the simplification

∂

∂t

(

~R× ρ~V
)

= ~R×
∂

∂t

(

ρ~V
)

+ ~V × ρ~V = ~R×
∂

∂t

(

ρ~V
)

It is useful to rewrite Eq.(4.8) by taking moments and defining the angular momentum about

the center of mass of the submersible and its attached control volumes. Using Eqs.(4.5) and
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(4.8) yields the expressions

∫

Ωh,Ωt
(~R− ~Rc)× ~Fd dx+

∫

Γ1(t)
(~R− ~Rc)× ~Fp dΓ =

∫

Ωh

∂

∂t

[

(~R− ~Rc)× ρh
~V
]

dΩ+

∫

Ωt

∂

∂t

[

(~R− ~Rc)× ρt
~V
]

dΩ

4∑

i=1

[
∫

Ωi(t)

∂

∂t

[

(~R− ~Rc)× ρf
~V
]

dΩ

]

+
6∑

j=1





∫

Γj(t)

[

(~R− ~Rc)× ρf
~V
]

(~V · n̂j)dΓ





(4.9)

4.4.2 Added Mass

When a body is accelerated through a fluid, a volume of fluid surrounding the body is

accelerated together with the body. The time rate of change of the momentum of this

surrounding fluid results from a force to that fluid by the body, and an equal and opposite

force is applied by that fluid to the body. This force is known as the added mass effect, and is

modeled as the product of the acceleration of the body and a directionally dependent “added

mass” related to the geometry of the body [9]. The directional dependence is reflected by

rewriting the terms associated with external flow in Eqs.(4.5) and (4.9). Let ~αh and ~αt be

defined as follows:

~αh =

∫

Ω3

∂

∂t
(ρf

~V )dΩ+

∫

Γ3,Γ4
ρf
~V (~V · n̂j)dΓ

~αt =

∫

Ω4

∂

∂t
(ρf

~V )dΩ+

∫

Γ5,6
ρf
~V (~V · n̂j)dΓ

The following replacements may now be made in Eq.(4.5):
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Replace:

∫

Ω3

∂

∂t
(ρf

~V )dΩ+

∫

Γ3,Γ4
ρf
~V (~V · n̂j)dΓ

With: kxxh

[

~αh · î
]

î+ k
xy
h

[

~αh · î
]

ĵ + k
yx
h

[

~αh · ĵ
]

î+ k
yy
h

[

~αh · ĵ
]

ĵ

Replace:

∫

Ω4

∂

∂t
(ρf

~V )dΩ+

∫

Γ5,Γ6
ρf
~V (~V · n̂j)dΓ

With: kxxt

[

~αt · î
]

î+ k
xy
t

[

~αt · î
]

ĵ + k
yx
t

[

~αt · ĵ
]

î+ k
yy
t

[

~αt · ĵ
]

ĵ

where the coefficients kxx and kxy scale the momentum imparted to the external fluid in

the x and y directions by acceleration in the x direction. Likewise, kyx, and kyy scale

the momentum imparted to the external fluid in the x and y directions by accelerations

in the y direction. The volume Ω3 is equal in size to that of the head [9] and is assumed

to surround the head with uniform thickness. The boundary of volume Ω4 is a cylinder

which circumscribes the finned tube tail [9]. As per assumption A1, both the head and tail

have three planes of symmetry and assumption A7 states that the velocity field of the fluid

surrounding the tail is adequately modeled by potential flow theory. Thus the replacements

above simplify to [9]:

Replace:

∫

Ω3

∂

∂t
(ρf

~V )dΩ+

∫

Γ3,Γ4
ρf
~V (~V · n̂j)dΓ

With: kxxh

[

~αh · î
]

î+ k
yy
h

[

~αh · ĵ
]

ĵ (4.10)
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Replace:

∫

Ω4

∂

∂t
(ρf

~V )dΩ+

∫

Γ5,Γ6
ρf
~V (~V · n̂j)dΓ

With: kxxt

[

~αt · î
]

î+ k
yy
t

[

~αt · ĵ
]

ĵ (4.11)

Using the substitutions in Eqs.(4.10) and (4.11), Eq.(4.5) can now be rewritten as follows

∫

Ωh,Ωt

~Fd dx+

∫

Γ1(t)
~Fp dΓ =

∫

Ωh

ρh
∂~V

∂t
dΩ+

∫

Ωt
ρt
∂~V

∂t
dΩ+

∫

Ω1,Ω2
ρf
∂~V

∂t
dΩ

+

∫

Γ1,Γ2
ρf
~V
[

~V · n̂j

]

dΓ +

[(

kxxh

∫

Ω3
ρf
∂~V

∂t
dΩ + kxxt

∫

Ω4
ρf
∂~V

∂t
dΩ

)

· î

]

î

+

[(

k
yy
h

∫

Ω3
ρf
∂~V

∂t
dΩ+ k

yy
t

∫

Ω4
ρf
∂~V

∂t
dΩ

)

· ĵ

]

ĵ

+

[(

kxxh

∫

Γ3,Γ4
ρf
~V
[

~V · n̂j

]

dΓ + kxxt

∫

Γ5,Γ6
ρf
~V
[

~V · n̂j

]

dΓ

)

· î

]

î

+

[(

k
yy
h

∫

Γ3,Γ4
ρf
~V
[

~V · n̂j

]

dΓ + k
yy
t

∫

Γ5,Γ6
ρf
~V
[

~V · n̂j

]

dΓ

)

· ĵ

]

ĵ (4.12)

A replacement similar to Eqs.(4.10) and (4.11) can be performed on analogous terms in

Eq.(4.9):

Replace:

∫

Ω3

∂

∂t

[

(~R− ~Rc)× ρf
~V
]

dΩ +

∫

Γ3,Γ4
(~R− ~Rc)× ρf

~V (~V · n̂j)dΓ (4.13)

With: kθθh

(
∫

Ω3

∂

∂t

[

(~R− ~Rc)× ρf
~V
]

dΩ+

∫

Γ3,Γ4
(~R − ~Rc)× ρf

~V (~V · n̂j)dΓ

)
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Replace:

∫

Ω4

∂

∂t

[

(~R− ~Rc)× ρf
~V
]

dΩ +

∫

Γ5,Γ6
ρf
~V (~V · n̂j)dΓ (4.14)

With: kθθt

(
∫

Ω4

∂

∂t

[

(~R− ~Rc)× ρf
~V
]

dΩ+

∫

Γ5,Γ6
(~R − ~Rc)× ρf

~V (~V · n̂j)dΓ

)

Using the substitutions in Eqs.(4.13) and (4.14) and replacing (~R− ~Rc) with (~r−~rc), which

can be verified from Fig.4.1, Eq.(4.9) can now be rewritten as follows

∫

Ωh,Ωt
(~r − ~rc)× ~Fd dx+

∫

Γ1(t)
(~r − ~rc)× ~Fp dΓ = (4.15)

∫

Ωh

∂

∂t

[

(~r − ~rc)× ρh
~V
]

dΩ+

∫

Ωt

∂

∂t

[

(~r − ~rc)× ρt
~V
]

dΩ

+

∫

Ω1,Ω2

∂

∂t

[

(~r − ~rc)× ρf
~V
]

dΩ +

∫

Γ1,Γ2

[

(~r − ~rc)× ρf
~V
] (

~V · n̂j

)

dΓ

+ kθθh

∫

Ω3

∂

∂t

[

(~r − ~rc)× ρf
~V
]

dΩ+ kθθt

∫

Ω4

∂

∂t

[

(~r − ~rc)× ρf
~V
]

dΩ

+ kθθh

∫

Γ3,Γ4

[

(~r − ~rc)× ρf
~V
] (

~V · n̂j

)

dΓ + kθθt

∫

Γ5,Γ6

[

(~r − ~rc)× ρf
~V
] (

~V · n̂j

)

dΓ

To account for the effect of added mass, ~rc in the above equation is defined as follows:

~rc = rcx î+ rcy ĵ, (4.16)

rcx =
mhx̄h +mtx̄t +m1x̄1 +m2x̄2 + kθθh m3x̄3 + kθθt m4x̄4

mh +mt +m1 +m2 + kθθ
h
m3 + kθθt m4

rcy =
mhȳh +mtȳt +m1ȳ1 +m2ȳ2 + kθθh m3ȳ3 + kθθt m4ȳ4

mh +mt +m1 +m2 + kθθ
h
m3 + kθθt m4

where ȳh, ȳ1 and ȳ3 are zero due to Assumptions A1, A2 and A6.
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4.4.3 Expansion of a General Volume Term

This section contains expansion of the volume terms in Eqs.(4.12) and (4.15), which are

the force and moment equations, respectively. From Fig.4.1, the position, velocity and

acceleration of an arbitrary particle is

~R = ~R0 + ~r ~V = ~̇R = ~̇R0 + ~̇rxy + (θ̇k̂ × ~r)

~̇V = ~̈R = ~̈R0 + ~̈rxy + (θ̈k̂ × ~r) + (2θ̇k̂ × ~̇rxy) + (θ̇k̂ × (θ̇k̂ × ~r)) (4.17)

where the particle’s velocity and acceleration have been obtained through differentiation.

The volume terms in Eq.(4.12) are expanded via Eq.(4.17), and are integrated separately to

give rise to physically intuitive terms:

∫

Ω
ρ
∂~V

∂t
dΩ =

∫

Ω
ρ
[

~̈R0 + ~̈rxy + (θ̈k̂ × ~r) + (2θ̇k̂ × ~̇rxy) + (θ̇k̂ × (θ̇k̂ × ~r))
]

dΩ

=

∫

Ω
ρ( ~̈R0 + ~̈rxy) dΩ+ θ̈k̂ ×

∫

Ω
ρ~r dΩ+ 2θ̇k̂ ×

∫

Ω
ρ~̇rxy dΩ− θ̇2

∫

Ω
ρ~r dΩ

=

∫

Ω
ρ( ~̈R0 + ~̈rxy) dΩ+mθ̈(x̄ĵ − ȳî) + 2θ̇k̂ ×

∫

Ω
ρ~̇rxy dΩ−mθ̇2(x̄̂i+ ȳĵ)

(4.18)

where

∫

Ω
ρ~r dΩ = m(x̄î+ ȳĵ) (4.19)

The volume terms in Eq.(4.15) are likewise expanded via Eq.(4.17) and integrated to give
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rise to the following terms

∫

Ω

∂

∂t

[

(~r − ~rc)× ρ~V
]

dΩ =

∫

Ω

∂

∂t






(~r − ~rc)× ρ ( ~̇R− ~̇Rc)

︸ ︷︷ ︸

=(~̇r−~̇rc)






dΩ+

∫

Ω

∂

∂t

[

(~r − ~rc)× ρ ~̇Rc

]

dΩ

=

∫

Ω






(~r − ~rc)× ρ ( ~̈R− ~̈Rc)

︸ ︷︷ ︸

=(~̈r−~̈rc)






dΩ +

∫

Ω

[

(~r − ~rc)× ρ ~̈Rc

]

dΩ

︸ ︷︷ ︸

=0

+

∫

Ω

[

(~̇r − ~̇rc)× ρ ~̇Rc

]

dΩ

︸ ︷︷ ︸

=0

=

∫

Ω
(~r − ~rc)× ρ

[

(~̈rxy − ~̈rcxy) + θ̇k̂ × (~r − ~rc) + 2θ̇k̂ × (~̈rxy − ~̈rcxy)

+ θ̇k̂ × (θ̇k̂ × (~r − ~rc))
]

dΩ

=

∫

Ω
(~r − ~rc)× ρ~̈rxy dΩ+ θ̈k̂

[

Jz −m(x̄2 + ȳ2)
]

+ 2θ̇k̂

∫

Ω
(~r − ~rc) · ρ~̇rxy dΩ (4.20)

In the above equation, the following simplifications were employed:

∫

Ω
(~r − ~rc)× ρ~̈rcxy dΩ =

∫

Ω
ρ(~r − ~rc) dΩ× ~̈rcxy = 0

∫

Ω

[

(~r − ~rc)× θ̇k̂ × ρ(~r − ~rc)
]

dΩ = θ̇k̂

∫

Ω
ρ [(~r − ~rc) · (~r − ~rc)] dΩ = θ̇k̂

[

Jz −m(x̄2 + ȳ2)
]

∫

Ω
(~r − ~rc)× ρ

[

2θ̇k̂ × (~̇rxy − ~̇rcxy)
]

dΩ

= 2θ̇k̂

∫

Ω
ρ
[

(~r − ~rc) · ~̇rxy

]

dΩ− 2θ̇k̂

∫

Ω
ρ
[

(~r − ~rc) · ~̇rcxy

]

dΩ

∫

Ω
(~r − ~rc)× ρ

[

θ̇k̂ × (θ̇k̂ × (~r − ~rc))
]

dΩ = 0
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4.4.4 Individual Volume Terms

In this section, the expansions in Eqs.(4.18) and (4.20) were used to compute the volume

terms in Eqs.(4.12) and (4.15). In particular, the integrals for the volumes Ωh, Ωt, and Ωi,

i = 1, 2, 3, 4 were evaluated.

4.4.4.1 Rigid Head: Ωh

All the particles in the rigid head of the submersible are fixed with respect to the xy-frame

and therefore

~̈rxy = 0, x̄ = x̄h, ȳ = 0, ~̇rxy = 0, Jz = Jzh

The volume terms in Eq.(4.12), expanded via Eq.(4.18), take the form

∫

Ωh

ρh
∂~V

∂t
dΩ = mh

[

~̈R0 + θ̈x̄hĵ − θ̇2x̄hî
]

(4.21)

The volume terms in Eq.(4.15), expanded via Eq.(4.20), take the form

∫

Ωh

∂

∂t

[

(~r − ~rc)× ρh
~V
]

dΩ = mh

[

θ̈

(
Jzh
mh

− x̄2h

)]

k̂ (4.22)

4.4.4.2 Flexible Tail: Ωt

For the particles in the flexible tail of the submersible, the following relations hold:

~̈rxy = ÿĵ, x̄ = x̄t, ȳ =
1

L

∫ L

0
y dx, ~̇rxy = ẏĵ, Jz = mt

(

L2

3
+

1

L

∫ L

0
y2 dx

)
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The volume terms in Eq.(4.12), expanded via Eq.(4.18), take the form

∫

Ωt
ρt
∂~V

∂t
dΩ = mt

[

~̈R0 +
1

L

∫ L

0
ÿ dxĵ + θ̈

(

x̄t ĵ −
1

L

∫ L

0
y dx î

)

−2θ̇
1

L

∫ L

0
ẏ dx î− θ̇2

(

x̄tî+
1

L

∫ L

0
y dx ĵ

)]

(4.23)

The volume terms in Eq.(4.15), expanded via Eq.(4.20), take the form

∫

Ωt

∂

∂t

[

(~r − ~rc)× ρt
~V
]

dΩ =

mt




1

L

∫ L

0
(x− rcx)ÿ dx+ θ̈




L2

3
+

1

L

∫ L

0
y2 dx− x̄2t −

[

1

L

∫ L

0
y dx

]2




+2θ̇
1

L

∫ L

0
(y − rcy)ẏ dx

]

k̂ (4.24)

4.4.4.3 Head Internal Fluid: Ω1

The fluid within the head flows with steady velocity Uh, per assumption A4. The conduit

through which it flows is fixed within the head of the submersible, and therefore

~̈rxy = 0, x̄ = x̄1, ȳ = 0, ~̇rxy = Uhî, Jz = m1
L2h
3

The volume terms in Eq.(4.12), expanded via Eq.(4.18), take the form

∫

Ω1
ρf
∂~V

∂t
dΩ = m1

[

~̈R0 + θ̈x̄1 ĵ + 2θ̇Uh ĵ − θ̇2x̄1î
]

(4.25)
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The volume terms in Eq.(4.15), expanded via Eq.(4.20), take the form

∫

Ω1

∂

∂t

[

(~r − ~rc)× ρf
~V
]

dΩ = m1

[

θ̈

(
L2h
3

− x̄21 dx

)

+ 2θ̇
1

Lh

∫ 0

−Lh

(x− rcx)Uh dx

]

k̂

(4.26)

4.4.4.4 Tail Internal Fluid: Ω2

For the particles in this control volume, the following relations hold:

~̈rxy = (ÿ + 2Uẏ′ + U2y′′)ĵ, x̄ = x̄2 ȳ =
1

L

∫ L

0
y dx,

~̇rxy = U î+ (ẏ + Uy′) ĵ, Jz = m2

(

L2

3
+

1

L

∫ L

0
y2 dx

)

The volume terms in Eq.(4.12), expanded via Eq.(4.18), take the form

∫

Ω2
ρf
∂~V

∂t
dΩ = m2

[

~̈R0 +
1

L

∫ L

0
(ÿ + 2Uẏ′ + U2y′′) dx ĵ + θ̈

(

x̄2 ĵ −
1

L

∫ L

0
y dx î

)

+2θ̇

(

U ĵ −
1

L

∫ L

0
[ẏ + Uy′] dx î

)

− θ̇2

(

x̄2î+
1

L

∫ L

0
y dx ĵ

)]

(4.27)

The volume terms in Eq.(4.15), expanded via Eq.(4.20), take the form

∫

Ω2

∂

∂t

[

(~r − ~rc)× ρf
~V
]

dΩ = m2

[

1

L

∫ L

0
(x− rcx)(ÿ + 2Uẏ′ + U2y′′) dx

+ θ̈




L2

3
+

1

L

∫ L

0
y2 dx− x̄22 −

[

1

L

∫ L

0
y dx

]2




+2θ̇
1

L

∫ L

0
(x− rcx)U + (y − rcy)(ẏ + Uy′) dx

]

k̂ (4.28)

68



4.4.4.5 Head External Fluid: Ω3

The fluid in this control volume flows past the rigid head of the submersible with an unsteady

velocity Ue. For particles in this control volume, the following relations therefore hold

~̈rxy = U̇e î, x̄ = x̄3 ȳ = 0, ~̇rxy = Ue î Jz = kθθh m3
L2h
3

The volume terms in Eq.(4.12), expanded via Eq.(4.18), take the form

∫

Ω3
ρf

[

kxxh

(

∂~V

∂t
· î

)

î+ k
yy
h

(

∂~V

∂t
· ĵ

)

ĵ

]

dΩ =

m3k
xx
h

[

R̈0x + U̇e − θ̇2x̄3

]

î+m3k
yy
h

[

R̈0y + θ̈x̄3 + 2θ̇Ue

]

ĵ (4.29)

The volume terms in Eq.(4.15), expanded via Eq.(4.20), take the form

kθθh

∫

Ω3

∂

∂t

[

(~r − ~rc)× ρf
~V
]

dΩ = m3k
θθ
h

[

rcyU̇e + θ̈

(
L2h
3

− x̄23

)

+ 2θ̇(x− rcx)Ue

]

k̂

(4.30)

4.4.4.6 Tail External Fluid: Ω4

The fluid in this control volume flows past the flexible tail of the submersible with an unsteady

velocity Ue. For particles in this control volume, the following relations therefore hold

~̈rxy = U̇e î+ (ÿ + 2Ueẏ
′ + U2e y

′′ + U̇ey
′)ĵ, x̄ = x̄4, ȳ =

1

L

∫ L

0
y dx,

~̇rxy = Ue î+ (ẏ + Uey
′) ĵ, Jz = kθθt m4

(

L2

3
+

1

L

∫ L

0
y2 dx

)
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The volume terms in Eq.(4.12), expanded via Eq.(4.18), take the form

∫

Ω4
ρf

[

kxxt

(

∂~V

∂t
· î

)

î+ k
yy
t

(

∂~V

∂t
· ĵ

)

ĵ

]

dΩ =

m4k
xx
t

[

R̈0x + U̇e − θ̈
1

L

∫ L

0
y dx− 2θ̇

1

L

∫ L

0
(ẏ + Uey

′) dx− θ̇2x̄4

]

î +

m4k
yy
t

[

R̈0y +
1

L

∫ L

0
(ÿ + 2Ueẏ

′ + U2e y
′′ + U̇ey

′) dx+ θ̈x̄4 + 2θ̇Ue − θ̇2
1

L

∫ L

0
y dx

]

ĵ

(4.31)

The volume terms in Eq.(4.15), expanded via Eq.(4.20), take the form

m4k
θθ
t

∫

Ω4

∂

∂t

[

(~r − ~rc)× ρf
~V
]

dΩ =

m4k
θθ
t

[

1

L

∫ L

0

{

(x− rcx)(ÿ + 2Ueẏ
′ + U2e y

′′ + U̇ey
′)− (y − rcy)U̇e

}

dx +

θ̈




L2

3
+

1

L

∫ L

0
y2 dx− x̄24 −

[

1

L

∫ L

0
y dx

]2




+2θ̇
1

L

∫ L

0

{

(x− rcx)Ue + (y − rcy)(ẏ + Uey
′)
}

dx

]

k̂ (4.32)

4.4.5 Individual Surface Terms

4.4.5.1 Jet Inlet: Γ1

The jet inlet is located at the tip of the head as shown in Fig.4.3. At this location,

~r = −Lhî, n̂1 = −î, ~Vs = ~̇R0 + θ̇k̂ ×−Lhî,
~Vr = Uhî,

~V = (~Vs + ~Vr) = ~̇R0 + Uhî− θ̇Lhĵ,
~V · n̂1 = −Ṙ0x − Uh
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The surface terms in Eq.(4.12) have the form

∫

Γ1
ρf
~V [~V · n̂1] dΓ = ρfA1

(

~̇R0 + Uhî− θ̇Lhĵ
)

(−Ṙ0x − Uh) (4.33)

The surface terms in Eq.(4.15) have the form

∫

Γ1
(~r − ~rc)×

(

ρf
~V [~V · n̂1]

)

dΓ =

ρfA1

[

(−Lh − rcx)Ṙ0y + rcy(Ṙ0x + Uh) + θ̇(L2h + Lhrcx)
]

[−Ṙ0x − Uh] k̂ (4.34)

4.4.5.2 Jet Outlet: Γ2

At the outlet of the jet,

~r = Lî+ y(L) ĵ, n̂2 ≈ î+ y′(L) ĵ, ~Vs = ~̇R0 + ẏ(L) ĵ + θ̇k̂ ×
[

Lî+ y(L)ĵ
]

,

~Vr = Un̂2,
~V = (~Vs + ~Vr) = ~̇R0 + ẏ(L) ĵ + U î+ Uy′(L)ĵ + θ̇

[

Lĵ − y(L) î
]

,

~V · n̂2 =
[

Ṙ0x + U − θ̇y(L)
]

+ y′(L)
[

Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)
]

The surface terms in Eq.(4.12) have the form

∫

Γ2
ρf
~V [~V · n̂2] dΓ =

ρfA2

[

~̇R0 + ẏ(L) ĵ + Uî+ Uy′(L)ĵ + θ̇
{

Lĵ − y(L)̂i
}]

×

[{

Ṙ0x + U − θ̇y(L)
}

+ y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)
}]

(4.35)
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The surface terms in Eq.(4.15) have the form

∫

Γ2
(~r − ~rc)×

(

ρf
~V [~V · n̂2]

)

dΓ = ρfA2

[

(L− rcx){Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)}

−{y(L)− rcy}{Ṙ0x + U − θ̇y(L)}+ θ̇
{

L2 + y2(L)− Lrcx − y(L)rcy

}]

×

[

{Ṙ0x + U − θ̇y(L)}+ y′(L){Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)}
]

k̂ (4.36)

4.4.5.3 External Flow Head Inlet: Γ3

For this surface, shown in Fig.4.3,

~r = −Lh î, n̂3 = −î, ~Vs = ~̇R0 + θ̇k̂ ×−Lhî,
~Vr = Ue î,

~V = (~Vs + ~Vr) = ~̇R0 + Ue î− θ̇Lh ĵ,
~V · n̂3 = −Ṙ0x − Ue

The surface terms in Eq.(4.12) have the form

∫

Γ3
ρf

(

kxxh

[

~V · î
]

î+ k
yy
h

[

~V · ĵ
]

ĵ
)

[~V · n̂3] dΓ =

ρfA3

(

kxxh

{

Ṙ0x + Ue

}

î+ k
yy
h

{

Ṙ0y − θ̇Lh

}

ĵ
)

[−Ṙ0x − Ue] (4.37)

The surface terms in Eq.(4.15) have the form

kθθh

∫

Γ3
(~r − ~rc)×

(

ρf
~V [~V · n̂3]

)

dΓ =

ρfA3k
θθ
h

({
−Lh − rcx

}
Ṙ0y + rcy

{

Ṙ0x + Ue

}

+ θ̇
{

L2h + Lhrcx

})

[−Ṙ0x − Ue] k̂

(4.38)
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4.4.5.4 External Flow Head Outlet: Γ4

This surface, shown in Fig.4.3, is located at the base of the flexible tail. For this surface, the

following relations hold:

~r = 0, n̂4 = î, ~Vs = ~̇R0,
~Vr = Ue î,

~V = (~Vs + ~Vr) = ~̇R0 + Ue î, ~V · n̂4 = Ṙ0x + Ue

The surface terms in Eq.(4.12) have the form

∫

Γ4
ρf

(

kxxh

{

~V · î
}

î+ k
yy
h

{

~V · ĵ
}

ĵ
)

[~V · n̂4] dΓ =

ρfA4

(

kxxh

{

Ṙ0x + Ue

}

î+ k
yy
h
Ṙ0y ĵ

)

[Ṙ0x + Ue] (4.39)

The surface terms in Eq.(4.15) have the form

kθθh

∫

Γ4
(~r − ~rc)×

(

ρf
~V [~V · n̂4]

)

dΓ =

ρfA4k
θθ
h

(

−rcxṘ0y + rcy

{

Ṙ0x + Ue

})

[Ṙ0x + Ue] k̂ (4.40)

4.4.5.5 External Flow Tail Inlet: Γ5

This surface also lies at the base of the flexible tail. Although its normal n̂5 is opposite to

that of Γ4, the net momentum flux through these surfaces is not zero, since their areas and
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added mass coefficients are not equal. For this surface,

~r = 0, n̂5 = −î, ~Vs = ~̇R0,
~Vr = Ue î,

~V = (~Vs + ~Vr) = ~̇R0 + Ue î, ~V · n̂5 = −Ṙ0x − Ue

The surface terms in Eq.(4.12) have the form

∫

Γ5
ρf

(

kxxt

{

~V · î
}

î+ k
yy
t

{

~V · ĵ
}

ĵ
)

[~V · n̂5] dΓ =

ρfA5

(

kxxt

{

Ṙ0x + Ue

}

î+ k
yy
t Ṙ0y ĵ

)

[−Ṙ0x − Ue] (4.41)

The surface terms in Eq.(4.15) have the form

kθθt

∫

Γ5
(~r − ~rc)×

(

ρf
~V [~V · n̂5]

)

dΓ =

ρfA5k
θθ
t

(

−rcxṘ0y + rcy

{

Ṙ0x + Ue

})

[−Ṙ0x − Ue] k̂ (4.42)

4.4.5.6 External Flow Tail Outlet: Γ6

This surface lies at the tip of the tail and has the same normal as that of Γ2. For this surface,

~r = Lî+ y(L) ĵ, n̂6 ≈ î+ y′(L) ĵ, ~Vs = ~̇R0 + ẏ(L) ĵ + θ̇k̂ × Lî,

~Vr = Ue n̂6,
~V = (~Vs + ~Vr) = ~̇R0 + ẏ(L) ĵ + Ue î+ Ue y

′(L)ĵ + θ̇
[

Lĵ − y(L) î
]

,

~V · n̂6 =
[

Ṙ0x + Ue − θ̇y(L)
]

+ y′(L)
[

Ṙ0y + ẏ(L) + θ̇L+ Ue y
′(L)

]
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The surface terms in Eq.(4.12) have the form

∫

Γ6
ρf

(

kxxt

{

~V · î
}

î+ k
yy
t

{

~V · ĵ
}

ĵ
)

[~V · n̂6] dΓ =

ρfA6

(

kxxt

{

Ṙ0x + Ue − θ̇y(L)
}

î+ k
yy
t

{

Ṙ0y + θ̇L+ ẏ(L) + Ue y
′(L)

}

ĵ
)

×

[

Ṙ0x + Ue − θ̇y(L) + y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Ue y
′(L)

}]

(4.43)

The surface terms in Eq.(4.15) have the form

kθθt

∫

Γ6
(~r − ~rc)×

(

ρf
~V [~V · n̂6]

)

dΓ = ρfA6k
θθ
t

[

(L− rcx)
{

Ṙ0y + ẏ(L) + θ̇L+ Ue y
′(L)

}

−
{
y(L)− rcy

}{

Ṙ0x + Ue − θ̇y(L)
}

+ θ̇
{

L2 + y(L)2 − Lrcx − y(L)rcy

}]

×

[

Ṙ0x + Ue − θ̇y(L) + y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Ue y
′(L)

}]

k̂ (4.44)

4.4.6 Combined Scalar Equations

The expressions in sections 4.4.4 and 4.4.5 are substituted back into Eqs.(4.12) and (4.15) to

obtain the equations of motion for translation in x and y, and rotation in θ. These equations,

which are are given subsequently, use the following terms:

mTx =
(

mh +mt +m1 +m2 + kxxh m3 + kxxt m4

)

mTy =
(

mh +mt +m1 +m2 + k
yy
h
m3 + k

yy
t m4

)
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mh =

∫

Ωh

ρh dΩ, x̄h î+ ȳh ĵ =
1

mh

∫

Ωh

ρh~r dΩ

mt =

∫

Ωt
ρt dΩ, x̄t î+ ȳt ĵ =

1

mt

∫

Ωt
ρt~r dΩ

mi =

∫

Ωi
ρf dΩ, x̄i î+ ȳi ĵ =

1

mi

∫

Ωi
ρf~r dΩ, i = 1, 2, 3, 4

Translation in x:

(
∫

Ωh,Ωt

~Fd dx+

∫

Γ1(t)
~Fp dΓ

)

· î =

mTx R̈0x +
(

kxxh m3 + kxxt m4

)

U̇e − θ̈

[

(mt +m2 +m4k
xx
t )

1

L

∫ L

0
y dx

]

− 2θ̇

[

(mt +m2 +m4k
xx
t )

1

L

∫ L

0
ẏ dx+ (m2U +m4k

xx
t Ue)

y(L)

L

]

− θ̇2
[

mhx̄h +mtx̄t +m1x̄1 +m2x̄2 +m3k
xx
h x̄3 +m4k

xx
t x̄4

]

− ρfA1

(

Ṙ0x + Uh

)2

+ ρfA2

[

Ṙ0x + U − θ̇y(L)
] [

Ṙ0x + U − θ̇y(L) + y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)
}]

− ρfA3k
xx
h

(

Ṙ0x + Ue

)2
+ ρf (k

xx
h A4 − kxxt A5)

(

Ṙ0x + Ue

)2

+ρfA6k
xx
t

[

Ṙ0x + Ue − θ̇y(L)
][

Ṙ0x + Ue − θ̇y(L) + y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Ue y
′(L)
}]

(4.45)
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Translation in y:

(
∫

Ωh,Ωt

~Fd dx+

∫

Γ1(t)
~Fp dΓ

)

· ĵ =

mTy R̈0y + (mt +m2 +m4k
yy
t )

1

L

∫ L

0
ÿ dx+m2

1

L

∫ L

0
(2Uẏ′ + U2y′′) dx

+m4k
yy
t

1

L

∫ L

0
(2Ueẏ

′ + U2e y
′′ + U̇ey

′) dx

+ θ̈
[

mhx̄h +mtx̄t +m1x̄1 +m2x̄2 +m3k
yy
h
x̄3 +m4k

yy
t x̄4

]

+ 2θ̇
[

m1Uh +m2U + (m3k
yy
h

+m4k
yy
t )Ue

]

− θ̇2

[

(mt +m2 +m4k
xx
t )

1

L

∫ L

0
y dx

]

+ ρfA1

(

Ṙ0y − θ̇Lhĵ
)

(−Ṙ0x − Uh)

+ ρfA2

[

Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)
] [

Ṙ0x + U − θ̇y(L)

+y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)
}]

+ ρfA3k
yy
h

(

Ṙ0y − θ̇Lh

)

[−Ṙ0x − Ue] + ρf (k
yy
h
A4 − k

yy
t A5)Ṙ0y

[

Ṙ0x + Ue

]

+ ρfA6k
yy
t

[

Ṙ0y + θ̇L+ ẏ(L) + Uey
′(L)

][

Ṙ0x + Ue − θ̇y(L)

+y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Uey
′(L)

}]

(4.46)
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Rotation in θ:

∫

Ωh,Ωt
(~r − ~rc)× ~Fd dx+

∫

Γ1
(~r − ~rc)× ~Fp dΓ =

(mt +m2 +m4k
θθ
t )

L

∫ L

0
(x− rcx)ÿ dx

+
m2
L

∫ L

0
(x− rcx)(2Uẏ

′ + U2y′′) dx+
m4k

θθ
t

L

∫ L

0
(x− rcx)(2Ueẏ

′ + U2e y
′′ + U̇ey

′) dx

+ U̇e

[

m3k
θθ
h rcy −

m4k
θθ
t

L

∫ L

0
(y − rcy) dx

]

+ θ̈

{

Jzh + (m1 +m3k
θθ
h )

L2h
3

+ (mt +m2 +m4k
θθ
t )

[

L2

3
+

1

L

∫ L

0
y2 dx

]

− (mt +m2 +m4k
θθ
t )

[

1

L

∫ L

0
y dx

]2

−
[

mhx̄
2
h +mtx̄

2
t +m1x̄

2
1 +m2x̄

2
2 +m3k

θθ
h x̄23 +m4k

θθ
t x̄24

]
}

+ 2θ̇




m1Uh +m3k

θθ
h Ue

Lh

∫ 0

−Lh

(x− rcx) dx+
m2U +m4k

θθ
t Ue

L

∫ L

0
(x− rcx) dx

+
mt +m2 +m4k

θθ
t

L

∫ L

0
(y − rcy)ẏ dx+

m2U +m4Uek
θθ
t

L

∫ L

0
(y − rcy)y

′ dx

]

+ ρfA1

[

(−Lh − rcx)Ṙ0y + rcy(Ṙ0x + Uh) + θ̇(L2h + Lhrcx)
]

[−Ṙ0x − Uh]

+ ρfA2

[

(L− rcx)
{

Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)
}

−{y(L)− rcy}{Ṙ0x + U − θ̇y(L)}+ θ̇
{

L2 + y2(L)− Lrcx − y(L)rcy

}]

×

[{

Ṙ0x + U − θ̇y(L)
}

+ y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Uy′(L)
}]

+ ρfA3k
θθ
h

({
−Lh − rcx

}
Ṙ0y + rcy

{

Ṙ0x + Ue

}

+ θ̇
{

L2h + Lhrcx

})

[−Ṙ0x − Ue]

+ ρf (A4k
θθ
h − A5k

θθ
t )

(

−rcxṘ0y + rcy

{

Ṙ0x + Ue

})

[Ṙ0x + Ue]

+ ρfA6k
θθ
t

[

(L− rcx)
{

Ṙ0y + ẏ(L) + θ̇L+ Uey
′(L)

}

−
{
y(L)− rcy

}{

Ṙ0x + Ue − θ̇y(L)
}

+ θ̇
{

L2 + y(L)2 − Lrcx − y(L)rcy

}]

×

[

Ṙ0x + Ue − θ̇y(L) + y′(L)
{

Ṙ0y + ẏ(L) + θ̇L+ Uey
′(L)

}]

k̂ (4.47)
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4.4.7 Pressure and Drag Forces

In this section, expressions for the pressure and drag forces, ~Fp and ~Fd that appear on the

left side of Eqs.(4.45), (4.46) and (4.47) are provided. The force exerted by the pressure

acting at the inlet is computed via analysis of a captured quasi-steady streamtube:

∫

Γ1

~FpdA = −A1ρfUh(Uh − Ue) î (4.48)

On the left side of the scalar equations in the previous section, the pressure ~Fp is integrated

over the surface of the inlet Γ1. It is assumed to be uniform over this area.

An expression for the drag force is obtained by first writing the components of the velocity

of the rigid head and flexible tail in the normal and tangential directions (V Nh , V Th , V Nt ,

V Tt ):

V Nh = Ṙ0y + θ̇x

V Th = Ṙ0x

V Nt = Ṙ0y + ẏ + θ̇x− (Ṙ0x − θ̇y)y′

V Tt = Ṙ0x − θ̇y + (Ṙ0y + ẏ + θ̇x)y′

(4.49)

Using a model similar to that proposed by [42]1, the distributed drag forces on the rigid head

and flexible tail in the normal and tangential directions (DNh , DTh , D
N
t , DTt ) are written as

DNh = −ρfPh(C
N
h V Th V Nh + chV

N
h )

DTh = −ρfPhC
T
h V

T
h |V Th |

DNt = −ρf h(C
N
t V Tt V Nt + ctV

N
t )

DTt = −ρfPtC
T
t V

T
t |V Tt |

(4.50)

where Ph, Pt are the perimeters of the head and tail in the yz plane. The coefficients CNh ,

CNt , CTh and CTt are empirical drag coefficients in the normal and tangential directions;

1: While terms similar to chV
N
h or ctV

N
t do not appear in [42], later workers recognized

the need for a linear correction. Some of these works can be found in [31].
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and ch and ct are linear damping coefficients.

The above expressions for drag are used to derive the components of drag in the x and

y directions (Dxh, D
y
h
, Dxt , D

y
t ):

Dxh = DTh

D
y
h
= DNh

Dxt = DTt −DNt y′

D
y
t = DNt +DTt y

′

(4.51)

Substitution of Eqs.(4.49) and (4.50) into (4.51) yields

Dxh = −ρfPh

[

CTh Ṙ0x

∣
∣
∣Ṙ0x

∣
∣
∣

]

D
y
h
= −ρfPh

[

CNh Ṙ0x

(

Ṙ0y + θ̇x
)

+ ch

(

Ṙ0y + θ̇x
)]

(4.52)

and

Dxt =− ρfPt

[

CTt

{

Ṙ0x − θ̇y +
(

Ṙ0y + ẏ + θ̇x
)

y′
} ∣
∣
∣Ṙ0x − θ̇y +

(

Ṙ0y + ẏ + θ̇x
)

y′
∣
∣
∣

]

+ ρfh
[

CNt

{

Ṙ0x − θ̇y +
(

Ṙ0y + ẏ + θ̇x
)

y′
}{

Ṙ0y + ẏ + θ̇x− (Ṙ0x − θ̇y)y′
}

+ct

{

Ṙ0y + ẏ + θ̇x− (Ṙ0x − θ̇y)y′
}]

y′

D
y
t =− ρf h

[

CNt

{

Ṙ0x − θ̇y +
(

Ṙ0y + ẏ + θ̇x
)

y′
}{

Ṙ0y + ẏ + θ̇x− (Ṙ0x − θ̇y)y′
}

+ct

{

Ṙ0y + ẏ + θ̇x− (Ṙ0x − θ̇y)y′
}]

− ρfPt

[

CTt

{

Ṙ0x − θ̇y +
(

Ṙ0y + ẏ + θ̇x
)

y′
} ∣
∣
∣Ṙ0x − θ̇y +

(

Ṙ0y + ẏ + θ̇x
)

y′
∣
∣
∣

]

y′

(4.53)

In addition to these distributed viscous forces, the low pressure region at the blunt trailing

end of a slender body is an additional source of drag. Consistent with the literature [31],
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this communication refers to this as a drag force, rather than a pressure force. These forces,

commonly referred to as base drag, are given by the following expressions:

Dbh = −
ρf

2
AhC

b
h

[

V Th

∣
∣
∣
∣
V Th

∣
∣
∣
∣

]

x=0
, Dbt = −

ρf

2
AtC

b
t

[

V Tt

∣
∣
∣
∣
V Tt

∣
∣
∣
∣

]

x=L
(4.54)

where Ah, At are the cross-sectional areas of the head and tail in the yz plane, and Cbh, C
b
t

are the base drag coefficients of the head and tail. Using Eqs.(4.52), (4.53) and (4.54), the

drag force ~Fd in Eqs.(4.45), (4.46), and (4.47) is written in component form as follows

∫

Ωh,Ωt

~Fd dx · î =

∫

Ωh

Dxh dΩ+

∫

Ωt
Dxt dΩ+Dbh +Dbt

∫

Ωh,Ωt

~Fd dx · ĵ =

∫

Ωh

D
y
h
dΩ+

∫

Ωt
D
y
t dΩ +Dbt y

′(L)

4.5 Dynamics of the Flexible Tail

4.5.1 Equations of Motion

In section 4.4 a generic function y(x, t) was used to describe the motion of the flexible tail.

In this section, we will derive the equation of motion of the tail such that y(x, t) can be

computed. To this end, Fig.4.4 presents the free-body diagrams of differential elements

within control volumes Ω2, Ωt and Ω4. A balance of forces for each element in the x and y

directions is provided below:
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(c)

wall of fluid-conveying tube
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2
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dx)
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2
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dx)

qSdx

qSdx
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FIdx

FIdx

M− 1
2
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∂x

dx

M+ 1
2
∂M
∂x

dx

Q− 1
2
∂Q
∂x

dx

Q + 1
2
∂Q
∂x

dx

T − 1
2
∂T
∂x

dx

T + 1
2
∂T
∂x

dx

FEdx

FEdx

A6(p4 − 1
2
∂p4
∂x

dx)

A6(p4 + 1
2
∂p4
∂x

dx)

Dxt

D
y
t

dx

Figure 4.4: Free-body diagrams of (a) a differential element of Ω2 (tail internal fluid), (b)
a differential element of Ωt (flexible tail), and (c) a differential element of Ω4 (tail external
fluid).
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Tail Internal Fluid:

[

−A2
∂p2
∂x

− qS − FI
∂y

∂x

]

î+

[

FI −A2
∂

∂x

(
∂p2
∂x

∂y

∂x

)

− qS
∂y

∂x

]

ĵ =
m2
L

d~V

dt
(4.55)

where

∂~V

∂t
= ~̈R0 +

[

ÿ + 2Uẏ′ + U2y′′
]

ĵ + θ̈
[

x ĵ − y î
]

+ 2θ̇
[

Uĵ − (ẏ + Uy′) î
]

Flexible Tail:

[

∂T

∂x
+ qS + FI

∂y

∂x
−Q

∂2y

∂x2
− FE

∂y

∂x
+Dxt

]

î+

[

−FI +
∂Q

∂x
+

∂

∂x

(
∂T

∂x

∂y

∂x

)

+ qS
∂y

∂x
+ FE +D

y
t

]

ĵ =
mt
L

∂~V

∂t
(4.56)

where

∂~V

∂t
= ~̈R0 + ÿ ĵ + θ̈

[

x ĵ − y î
]

− 2θ̇ẏî− θ̇2
[

x î+ y ĵ
]

Tail External Fluid:

[

−A6
∂p4
∂x

+ FE
∂y

∂x

]

î−

[

FE + A6
∂

∂x

(
∂p4
∂x

∂y

∂x

)]

ĵ =

m4
L

[(

kxxt
∂~V

∂t
· î

)

î+

(

k
yy
t
∂~V

∂t
· ĵ

)

ĵ

]

(4.57)
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where

∂~V

∂t
= ~̈R0 +

[

ÿ + 2Ueẏ
′ + U2e y

′′ + U̇ey
′
]

ĵ + U̇eî+ θ̈
[

x ĵ − y î
]

+ 2θ̇
[

Uĵ − (ẏ + Uy′)̂i
]

− θ̇2
[

x î+ y ĵ
]

By combining the x-components of Eqs.(4.55), (4.56) and (4.57), we obtain the following

expression which will be used to simplify the expression that will be obtained by summation

of the y components:

∂T

∂x
− A2

∂p2
∂x

−A6
∂p4
∂x

=

(

mt +m2 +m4k
xx
t

L

)

ax +
m4k

xx
t

L
U̇e −Dxt (4.58)

where

ax = ~̈R0 · î− θ̈y − 2θ̇

[

ẏ +
m2

mt +m2 +m4k
xx
t

U
∂y

∂x
+

m4k
xx
t

mt +m2 +m4k
xx
t

Ue
∂y

∂x

]

− θ̇2x

(4.59)

Summation of the y-components of Eqs.(4.55), (4.56) and (4.57) gives:

D
y
t − EI

∂4y

∂x4
+

∂

∂x

[

(T − A2p2 − A6p4)
∂y

∂x

]

=

[

m2
L
U2 +

m4k
yy
t

L
U2e

]

∂2y

∂x2

+ 2

[

m2
L
U +

m4k
yy
t

L
Ue

]

∂2y

∂x∂t
+
m4k

yy
t

L
U̇e

∂y

∂x
+
mt +m2 +m4k

yy
t

L

(

∂2y

∂t2
+ ay

)

(4.60)
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where

ay = ~̈R0 · ĵ + θ̈x+ 2θ̇

[

m2

mt +m2 +m4k
yy
t

U +
m4k

yy
t

mt +m2 +m4k
yy
t

Ue

]

− θ̇2y (4.61)

The combined tension-pressure gradient term in Eq.(4.60) can be rewritten as:

∂

∂x

[

(T −A2p2 − A6p4)
∂y

∂x

]

=

(
∂T

∂x
−A2

∂p2
∂x

− A6
∂p4
∂x

)
∂y

∂x
+ (T −A2p2 − A6p4)

∂2y

∂x2

Using Eq.(4.58), terms on the right hand side of the above equation can be written as

(
∂T

∂x
− A2

∂p2
∂x

−A6
∂p4
∂x

)

=
mt +m2 +m4k

xx
t

L
ax +

m4k
xx
t

L
U̇e −Dxt

(T − A2p2 −A6p4) = −

∫ L

x

∂

∂x
(T −A2p2 − A6p4)dx+ T (L)− A2p(L)− A6p4(L)

︸ ︷︷ ︸

=Dbt

Note that the final term in the above equation represents the low pressure region at the

blunt trailing edge of the tail, which is commonly termed the base drag. Substitution of the

above expressions into Eq.(4.60), yields the equation of motion for transverse vibration of

the flexible tail:

EI
∂4y

∂x4
+

[

m2
L
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m4k
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t

L
U2e

+

∫ L
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L
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+
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(
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−D
y
t = 0 (4.62)
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The boundary conditions for the flexible tail are the familiar expressions for a cantilever:

y(0, t) = 0
∂y(0, t)

∂x
= 0

∂2y(L, t)

∂x2
= 0

∂3y(L, t)

∂x3
= 0 (4.63)

Note that while the system presented here is similar to that derived in [19], the boundary

condition at x = 0 is not the same; in that work, the authors used an inertial frame at x = 0,

and allowed the rigid head to move in the y-direction. In contrast, since the boundary

conditions for the present system are written in a non-inertial frame which is fixed to the

undeformed neutral axis of the tail, the simple equations for a cantilever are used.

4.5.2 Discretization

A finite-difference scheme was used to discretize the PDE in Eq.(4.62), in which the contin-

uous function y(x, t) is considered to have discrete values y1, y2, · · · , yN at the locations

x1, x2, · · · , xN . The five-point stencils in Eq.(4.64) were used to approximate the required

spatial derivatives at the i-th point:

∂yi
∂x

=
1

12∆

[
yi−2 − 8yi−1 + 8yi+1 − yi+2

]
, (4.64a)

∂2yi
∂x2

=
1

12∆2

[
−yi−2 + 16yi−1 − 30yi + 16yi+1 − yi+2

]
, (4.64b)

∂3yi
∂x3

=
1

2∆3

[
−yi−2 + 2yi−1 − 2yi+1 + yi+2

]
, (4.64c)

∂4yi
∂x4

=
1

∆4

[
yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2

]
, (4.64d)
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where ∆ is the spacing between the points xi+1 and xi. The central difference relationships

provided in Eq.(4.64) were used for all points on the flexible tail; “mirror” conditions were

used to handle the edge values and implement the boundary conditions. In this method,

additional points are created at x < 0 and x > L such that evaluating the stencils in

Eq.(4.64) yields the boundary conditions of Eq.(4.63). The boundary condition ∂y/∂x(0) = 0

is implemented by creating the points y0 and y−1:

y0 = y2 y−1 = y3

The condition y(0) = 0 is implemented by simply setting y1 = 0. The two conditions at

x = L are created by rearranging the expressions for ∂2y/∂x2 = 0 and ∂3y/∂x3 = 0 yields:

−y(N−2) + 16y(N−1) − 30yN = −16y(N+1) + y(N+2)

−y(N−2) + 2y(N−1) = 2y(N+1) − y(N+2)

which can be solved for the values y(N+1) and y(N+2):

y(N+1) =
15yN − 9y(N−1) + y(N−2)

7
, y(N+2) =

−30yN + 32y(N−1) + 9y(N−2)

7

The scalar equations, Eqs.(4.45), (4.46) and (4.47) also require integration of y(x, t); to

approximate these integrals, a discrete trapezoidal approximation is used, such that

∫ L

0
y dx ≈



y1 + yN +
1

2

N−1∑

i=2

yi



∆ (4.65)

After applying these discrete approximations to the integrodifferential terms, N+3 ordinary
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differential equations corresponding to the three scalar equations remain: Eqs.(4.45), (4.46)

and (4.47) and the N equations that result from discretization of Eq.(4.62). These N + 3

equations are second-order in time, and are transformed into a system of 2N + 6 first order

equations. These equations are solved with a fourth-order Runge-Kutta algorithm.

4.6 Numerical Simulations

4.6.1 Simulation Parameters and Procedure

Simulations were conducted using three different configurations for the tail: a flexible tail

with a finned-tube geometry as shown in Fig.4.5, a rigid tail with identical geometry to that

of the flexible tail, and a rigid tube which does not have the vertical fins which exist on the

other two configurations. The two configurations of the submersible with rigid tail structures

were simulated to provide baselines measures of performance which were compared to the

performance of the submersible with the flexible fluttering tail. Experimental studies of the

rigid configurations were used to obtain good estimates of the viscous drag coefficients used in

the simulations. The values of the parameters used for the flexible tube configuration in these

simulations are provided in Table 4.2. All values are the same for the rigid tail configuration,

except that the Young’s modulus E is irrelevant since the tail does not oscillate.

4.6.2 Estimation of Drag Coefficients

The second-order drag coefficients CTh , CTt , CNh , CNt , Cbh, and Cbt , and the linear coeffi-

cients ch and ct have been estimated using a combination of analysis of experimental results

and extrapolation of published correlations. The tangential and base drag coefficients are
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Figure 4.5: A fluid-conveying beam in the form of a finned-tube with fin height h.

calculated by analyzing the speeds of the rigid tube and rigid tail configurations. For these

configurations, the thrust is well-known, since it comes only from the jet. The rigid state

of the system means that an expression for the balance of forces on the submersible in the

x-direction can be easily expressed as:

A1ρfUh(Uh − Ue) = ρf




CbhAh

2
+
CbtAt
2

+ CTh PhLh + CTt PtL



U2e (4.66)

Equation (4.66) can be written for both the case of the rigid tail and the rigid tube using val-

ues of external velocity Ue which are determined experimentally. Two additional equations
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Table 4.2: Parameters used in simulations

Masses (kg)

mh mt m1 m2 m3 m4

4.200 0.045 0.020 0.017 1.800 1.600

Added mass coefficients

khxx ktxx khyy ktyy khθθ ktθθ

0.10 0.10 1.00 1.00 1.00 1.00

Center of mass locations (m)

x̄h x̄t x̄1 x̄2 x̄3 x̄4

−0.20 0.17 −0.20 0.17 −0.20 0.17

Lengths (m)

Lh L Ph Pt h

0.390 0.340 0.239 0.163 0.067, 0.072, 0.077

Miscelleneous (SI units)

Uh U ρf Jzh I E

4.0 4.0 1000 0.217 5.65× 10−10 1.30× 106

Areas ×10−4 (m2)

Ah At A1 A2 A3 A4 A5 A6

45.60 0.495 0.500 0.500 45.60 45.60 46.80 46.80

Drag coefficients

CNh CNt CTh CTt Cbh Cbt ch(m/s) ct(m/s)

0.0118 0.0039 0.0060 0.0020 0.0830 0.0790 0.116 0.116

from [21]1 relate the tangential and base drag coefficients:

Cbh =
0.029

√

CT
h
PhLh/Ah

Cbt =
0.135

3
√

(CT
h
Sh + CTt PtL)/At

(4.67)

1: Chapter 3 in that work.
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In the above equations, the denominator is a measure of the tangential drag on the “fore-

body” of the body in question, i.e. the portion of the submersible that is ahead of the base.

The different forms of the expressions for Cbh and Cbt reflect the flat aspect ratio of the tail’s

cross-section relative to that of the head; the two-dimensional form of the correlation found

in [21] has been used for the tail. Equations (4.66) and (4.67) may now be solved for the

tangential and base coefficients CTh and CTt , and Cbh and Cbt . The second-order normal

coefficients have been set as CNh = 2.0CTh and CNt = 2.0CTt Pt/h, per the discussion in

[31]. The additional Pt/h scaling on CNt is to account for the different length scaling for

the tail in the tangential and normal directions.

The linear coefficients ch and ct can be estimated by using a procedure similar to that

employed by [6]. In that work, Batchelor analytically derived an estimate for the viscous

drag produced by the boundary layer on an oscillating cylinder; this result provides an

estimate for ch. Batchelor’s method [6] can be extended to produce an estimate for the drag

coefficient ct on an oscillating flat plate, that approximates the tail. This procedure yields

estimates of ct = 0.0065 m/s and ch = 0.0108 m/s. It should be mentioned that Batchelor’s

procedure estimates the velocity and velocity gradient at the surface using a method more

appropriate to flow with very low Reynolds number, and the coefficients cited in Table 4.2

have been found to produce oscillations more similar in magnitude to those of the physical

device.

4.6.3 Simulation Results

Using the methods and parameters given above, the equations of motion have been solved

for the flexible tail, rigid tail and rigid tube cases. The forward speed of the submersible
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using each of these configurations is shown in Fig.4.6, along with the deflection of the tip

of the tail (x = L) and orientation of the rigid head for the flexible tail configuration. The

maximum speed of the flexible tail configuration exceeds that of the rigid tail configuration,

indicating that the fluttering motion of the tail generates a net thrust. A large increase in

the amplitude of oscillation of the tail tip is observed near t = 10 sec - this coincides with

an increase in the speed of the submersible with the flexible tail configuration.
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Figure 4.6: The subplot on the left shows the forward speed of the submersible with flexible
tail, rigid tail, and rigid tube configurations. On the right, the displacement of the tail tip
y(L) and orientation θ of the rigid head of the submersible are given for the flexible tail
configuration.

The steady-state speed of the flexible tail configuration is somewhat faster than the

dimensionally identical rigid tail and somewhat slower than the finless rigid tube; this trend

is consistent with experimental trials conducted on these configurations presented in section

5.4. The lower speed of the flexible and rigid tail configurations is the result of the drag

created by the fins affixed to the tube. The additional thrust created by the fluttering action
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of the flexible tail is not sufficient to overcome this drag for the geometry simulated in Fig.4.6.

A fluttering tail configuration can however exceed the speed of a rigid tube - this is shown

later in this section.

As an aside, note that the oscillations of the tail tip shown in Fig.4.6 become bounded as

time increases. This would not be expected in an unstable linear system, in which pertur-

bations grow unbounded as t → ∞. The system simulated is indeed non-linear, unlike the

systems presented in Chapters 2 and 3. The non-linear terms responsible for the bounded

behavior of the tail are the quadratic drag terms presented in section 4.4.7, e.g., V Tt

∣
∣
∣
∣
V Tt

∣
∣
∣
∣
.

Since these terms are quadratic with respect to the speed of the tail, increasing the tail’s

amplitude causes a large increase in drag, effectively bounding the tail’s motion.

The traveling wave nature of the flexible tail’s motion is made clear in Fig.4.7, which

provides a set of images of the submersible over one cycle of oscillation. The dynamic

coupling between the tail’s motion and the rigid head is evident from these images where it

is observed that the angle of the rigid head is not constant throughout the cycle. The period

of oscillation for the tail of 0.3 sec is very similar to the experimentally observed value of

≈ 0.33 sec.

Additional simulations have been performed using different tail geometries. To conform

to assumption A1, all simulated tails have rectangular planforms. Figure 4.8 presents the

forward speeds of three flexible tails with h = 0.077 and lengths L = 0.30, 0.34 and 0.38.

The speed achieved with the L = 0.30 tail is comparable to that achieved with the rigid tail

shown in Fig.4.6. This is because the L = 0.30 tail is on the border of flutter instability -

this can be verified from the amplitude of tail oscillation shown in Fig.4.8. The L = 0.34

tail exhibits the highest forward speed of these configurations, although the behavior of the
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Figure 4.7: Sequence of images of the submersible with the flexible tail. The scaling for the
y axis has been adjusted to make the tail oscillations more visible.

L = 0.38 tail also indicates thrust production by fluttering action. The oscillations in the

forward speed of the L = 0.38 tail are the result of that tail temporarily stabilizing. An

analytical treatment of a simplified version of the submersible showed similar stabilization

behavior (Hellum et al., 2010).

In Fig.4.9, the forward speeds of three L = 0.34 tails are presented; the heights of the

tails are different and equal to h = 0.067, 0.072, and 0.077. A tail height of h = 0.082 was

also simulated. The data for this configuration is not shown in Fig.4.9 since it did not exhibit

flutter instability; its forward speed is presented in Table 4.3. The h = 0.072 tail exhibits

the highest forward speed of these configurations, although the behavior of both the 0.067

and 0.077 tails also indicate thrust production by fluttering action. Note that the steady

state speed of the h = 0.072 tail is Ue = 0.933, meaning that this geometry is faster than

the rigid tube configuration.

A summary of the data in this section is provided in Table 4.3. It is interesting that

the two flexible tail configurations with minimal oscillations, (h, L) = (0.077, 0.30) and
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Table 4.3: Different tail geometries and their forward speeds and steady-state oscillation
amplitudes.

Illustration Configuration L h y(L) Ue

Fig.4.6
Flexible Tail 0.34 0.077 0.023 0.889
Rigid Tail 0.34 0.077 - 0.851
Rigid Tube 0.34 - - 0.894

Fig.4.8
Flexible Tail 0.30 0.077 0.001 0.857
Flexible Tail 0.34 0.077 0.023 0.889
Flexible Tail 0.38 0.077 0.020 0.876

Fig.4.9
Flexible Tail 0.34 0.067 0.025 0.874
Flexible Tail 0.34 0.072 0.044 0.933
Flexible Tail 0.34 0.077 0.023 0.889
Flexible Tail 0.34 0.082 0 0.849

(h, L) = (0.082, 0.34) have forward speeds which are close to, but not equal to, that of the

rigid tail configuration with (h, L) = (0.077, 0.34). This is because of the change in surface

area and associated drag of these two configurations relative to the rigid tail.
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Figure 4.8: The subplot on the left shows the forward speed of the submersible with L = 0.30,
0.34 and 0.38 where h = 0.077. On the right, the displacement of the tail tip y(L) is shown
for these tail configurations.
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Figure 4.9: The subplot on the left shows the forward speed of the submersible with h =
0.067, 0.072 and 0.077 where L = 0.34. On the right, the deflection of the tail tip y(L) is
shown for these tail configurations.

4.7 Validation

The most robust form of simulation validation is comparison to experimental data, which

will be presented in the following section. While the complexity of the equations presented

in this chapter precludes comparison to an analytical solution, it is possible to compare

a numerical solution of a simplified version of the system to a analytical solution of that

simplified system. This approach cannot provide validation of system’s full dynamics, but

can at least provide assurance that the numerical method and base terms are correct. Here, a

comparison between the numerical and analytical solutions of a cantilever will be undertaken.

The analytical method used will be the same as that presented in Chapter 2. The tail

simulated will be the same as the “baseline” case from the configuration study in the prior

section (h = 0.772 m, L = 0.34 m). Consistent with the modeling from Chapter 2, the
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Figure 4.10: Displacement of the tail tip y(L) in mm for a cantilever, U = Ucr = 2.372
m/s. Neutral stability is evident, since the oscillations of the tail are neither growing nor
shrinking over time.

effects of the external flow will be neglected. For this system, the non-dimensional mass

ratio, critical velocity, and critical frequency are

β =
m2

mt +m2
= 0.274

ucr =
( m2
LEI

)1/2
LUcr = 6.619

ωcr =

(
mt +m2
LEI

)1/2
ΩcrL

2 = 13.801

where Ucr is the internal velocity at the onset of instability, and Ωcr is the radian frequency

of oscillation at the onset of instability. For this system, the equations above predict Ucr =

2.372 m/s. The full equations of motion were constrained such that the rigid head was held

stationary, and solved with U = Ucr.
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Figure 4.10 shows the displacement of the tail tip y(L) of the simulated tail. Notice that

the amplitude is constant over the length of the trial; since the system being simulated has

no energy dissipation (drag), a constant amplitude of oscillation means that the simulation

predicts a neutrally-stable system for u = 6.619. The period of oscillation is 0.827 sec., which

yields a critical frequency value of ωcr = 13.79, which agrees with analytical predictions to

within 0.1 percent. This agreement, coupled with the experimental comparisons presented

in the next chapter, provides some confidence in the simulation method presented in this

chapter.
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Chapter 5

Experimental Studies and Control

5.1 Introduction

Devices which moved like fish have been produced by the academic community since the

1930’s, with a series of results by James Gray. Gray, using mechanical [13] and elec-

tric/galvanic means [14], was able to induce swimming motions in the bodies of dead eels.

A great deal of more recent work has been done in the Draper Laboratories at MIT, which

produced the well-known RoboTuna [5, 43]. RoboTuna and its sister RoboPike use articu-

lated tails covered by flexible sheaths. The tails of these vessels are individually actuated

such that the resulting waveforms closely resemble those of living fish, a technique known as

“biomimicry”.

Articulated systems comprise the bulk of the experimental platforms; a non-biomimetic

articulated system was built by McMasters and coworkers [27] which used a novel geared

mechanism to produce a fish-like motion using only a single servomotor. Saimek and Li

[35] designed a two-link tail with a motor at the base of the first link to achieve heave and
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pitch motion similar to that described in Anderson, et al. [2]. Yu, et al. [45] constructed

an articulated system and designed tail motion for three types of turning behaviors. The

work on articulated systems has not been confined to “traditional” servomotor transmissions;

Guo, et al. [16] and Chen, et al. [10] used electrically active polymers for actuation.

An alternate approach was taken by Alvarado and Youcef-Toumi [1], who described a

system which used a flexible tail excited with a single actuator at the base. Paidoussis’ work

[28] on a system similar to the one proposed in this communication also falls into this class

of “underactuated” tails. An intermediate form between the infinitely continuous beam-like

tails and discrete systems was described by Harper et al.[18], who constructed an articulated

tail which was actuated in series with lateral and torsional springs. A properly designed

underactuated tail has natural dynamics which are similar to the desired tail waveform,

which allows the use of a lower bandwidth apparatus. Underactuated systems are also likely

to have lower transmission losses, since there are unactuated degrees of freedom. Helpful

natural dynamics and unactuated degrees of freedom do lead to certain other difficulties,

however. A flexible tail which naturally vibrates with a good waveform for straight-line

swimming will need to resist those dynamics in order to maneuver. Control of unactuated

degrees of freedom is likewise more difficult, since the system’s natural dynamics must be

taken into consideration.

This chapter is organized as follows. Section 5.2 describes an experimental platform

designed at Michigan State University, and provides some preliminary results from that

device. Section 5.3 extends the analysis provided in the previous chapter to include time-

variable internal flow. A method which can be used to turn the submersible is described.
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5.2 Experiments

A series of tests has been performed in the diving well of Michigan State University’s in-

tramural pool with an experimental realization of the submersible described in the previous

chapter. This prototype is shown in Fig.5.1. The submersible’s speed was determined for

the flexible tail, rigid tail and rigid tube configurations which are described in the previous

section. The presence of the tube, as opposed to simply removing all attachments from the

tail barb, was required in order to stabilize the vehicle; it was found that removing the tube

led to a pitch instability of the hull. Note that the simulations of the rigid tube configuration

described in the previous section account for the drag on this tube, as opposed to simply

simulating the “no tail” case, as might seem natural.

fluid-conveying tube

antenna for wireless
communication

tail fin

recharging port

intake nozzle

0.82 m

Figure 5.1: Exterior of the current prototype SPI, with marked features of interest. For
interpretation of the references to color in this and all other figures, the reader is referred to
the electronic version of this dissertation.

The prototype’s ellipsoidal Delrin hull is sealed via an integral silicone gasket; the hull

is of monocoque construction, in that there is no separate “frame” upon which internal
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components are mounted. The intake nozzle is also made of Delrin, and has an elliptical

profile to reduce losses. The fluid is expelled from the hull through a hose barb upon which

the tails are fitted. The prime mover is a Rule inline bilge pump rated at 500 gallons per

hour. We have found that the major and minor losses of the flow system limit the flow

rate to approximately 40% of this rated value. This prime mover and the control electronics

are powered by 20 NiMH AA cells. The control electronics consist of an ATmega1284

microcontroller which provides a PWM signal to the prime mover’s driving circuitry and

receives wireless communications from the surface; this communication method requires

that testing occur at or near the surface. The hull was designed to be excessively buoyant

with these components; to achieve nearly neutral buoyancy, sticks of lead are added to the

interior. This allows us to move the center of mass of the hull away from the centerline to

counteract roll moments. The center of mass can also be moved fore and aft, in order to

change the pitch of the submersible.

The submersible’s flexible tail (L = 0.34 m) is made of two 1/20 inch thick latex sheets

bonded to a latex tube (5/16 inch ID, 3/8 inch OD) using waterproof silicone RTV. The

specific gravity of the latex is ≈ 0.96, and is approximately neutrally buoyant. The tail’s

geometry is that of a finned tube, as shown in Fig.4.5, and the height of the tail is h = 0.077

m. The rigid tail, which has identical span and length, is made of an identical latex tube

as that of the flexible case, bonded to two sheets of polypropylene with waterproof silicone

RTV. The polypropylene has a specific gravity of ≈ 0.95 and is nearly neutrally buoyant.

The rigid tube is made of a polycarbonate tube (3/8 inch ID, 7/16 inch OD) which has been

found to fit over the barbed fitting at the rear of the submersible without leaks. A small

aluminum nozzle (5/16 inch ID) has been fitted into the end of the rigid tube to ensure that
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the exit velocity of this configuration is the same as the flexible and rigid tail cases.

The SPI prototype described here was designed primarily by Mr. Paul Strefling, and his

M.S thesis [40] contains additional details regarding its construction.

5.2.1 SPI Performance

Figure 5.2: High-speed images of the submersible with the flexible tail acquired over a period
of 1 sec, soon after it started from rest in the MSU swimming pool. The average speed of the
submersible in these images was ≈ 0.4BL/s, less than the maximum speed of ≈ 1.15BL/s.
Note the large deflections of the tail which occur during acceleration.

Figure 5.2 is sequence of images taken over 1 sec of operation; these images were acquired

while the submersible was accelerating from rest, during which time pictures could be taken

more normal to the free surface to reduce glare. The reduced forward speed during acceler-

ation also leads to a longer period of oscillation of the tail; Fig.5.2 indicates a period of 0.8

seconds, compared to a period of ≈ 0.33 sec. observed when the submersible is at top speed.

The prototype currently lacks control surfaces, which required the trials to be conducted

using a guide string. This string runs through a tube affixed to the dorsal fin; there is

considerable play in the interface between the tube and string, and small rotations of the

rigid hull are visible during operation in the pitch, roll and yaw axes. The average speed
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of the submersible is measured by analyzing 30 frame/sec video taken during operation;

the guide string has been marked at two locations 9.14 m apart, and the times at which the

submersible crosses these marks can be determined, and the speed calculated. The tests were

conducted relatively near the surface of the pool, to enable wireless control of the throttle

at the start of the run. In order to limit the loss of energy due to free surface effects, the

mass and center of mass of the rigid head were adjusted such that the measured portion of

the run was entirely below the surface.

The average speed of each configuration is given in Table 5.1. The reader will note that

only the speed for each configuration is cited, rather than individually listing the thrust and

drag of each configuration. This is consistent with the approach taken in the prior chapter;

for a self-propelled swimming body the sources of drag and thrust cannot be conveniently

separated, unlike a conventional propeller-driven craft.

Table 5.1: Mean speeds of the three configurations in experiments

Configuration Trials Speed [m/s] Speed [BL/s]

Rigid Tube 5 0.918 1.176
Rigid Tail 10 0.878 1.126
Flexible Tail 4 0.889 1.139

The relatively low number of trials is the result of selecting trials for which the prototype

is traveling in a relatively straight line, and not interacting with the guide string; these runs

can be determined after the fact, by using the video data. Figure 5.3 provides essentially

the same data as Table 5.1 with included error bars. It is clear that the general trend found

in simulation (Fig.4.6) is verified by experiment; a fluttering flexible tail has superior perfor-

mance to a rigid tail of identical dimension, but does not necessarily exceed the performance

of a rigid tube. The speed of each configuration in simulation is also similar to the value
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Figure 5.3: Mean speeds of the configurations listed in Table 5.1. The error bars express the
95% confidence intervals.

found by experiment, though this is to be expected, since experimental values were used

to calibrate the drag coefficients used in simulations. The ≈ 0.33 sec. period of oscillation

varies slightly from the 0.306 sec. period found in simulation. However, the shape of the tail

is similar, in that the tail appears to conform to a second mode waveform. Note also that

the experimental period is difficult to determine precisely from the relatively slow video used

in these experiments.

5.3 Effect of Time-Varying Internal Fluid Velocity

5.3.1 Additional Terms

The equations of motion can be modified to account for a time-variable conveyed fluid

velocity. The following changes will be made in the derivation presented in Section 4.4:
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Head Internal Fluid: Ω1

Replace: ~̈rxy = 0 With: ~̈rxy = U̇hî

Tail Internal Fluid: Ω2

Replace: ~̈rxy = (ÿ + 2Uẏ′ + U2y′′)ĵ With: ~̈rxy = U̇ î+ (ÿ + 2Uẏ′ + U2y′′ + U̇y′)ĵ

Expanded per Eqs.(4.18) and (4.20), the above replacements require that the following terms

be added to the scalar equations of motion, Eqs.(4.45 ), (4.46) and (4.47):

Eq.(4.45) : m1U̇h +m2U̇

Eq.(4.46) : m2U̇
y(L)

L

Eq.(4.47) : m1rcyU̇h +
m2
L
U̇

∫ L

0

[

(x− rcx)y
′ − (y − rcy)

]

dx

The equation of motion for the flexible beam must also be expanded to account for the

time-variable internal fluid velocity. The rate of change of momentum used in Eq.(4.55) is

therefore:

∂~V

∂t
= ~̈R0 + U̇ î+

[

ÿ + 2Uẏ′ + U2y′′ + U̇y′
]

ĵ + θ̈
[

x ĵ − y î
]

+ 2θ̇
[

Uĵ − (ẏ + Uy′) î
]

With the addition of these terms, Eq.(4.58) is replaced with the following expression:

∂T

∂x
− A2

∂p2
∂x

− A6
∂p4
∂x

=

(

mt +m2 +m4k
xx
t

L

)

ax +
m2
L
U̇ +

m4k
xx
t

L
U̇e −Dxt
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Equation (4.60) is replaced by

D
y
t − EI

∂4y

∂x4
+

∂

∂x

[

(T − A2p2 −A6p4)
∂y

∂x

]

=

[

m2
L
U2 +

m4k
yy
t

L
U2e

]

∂2y

∂x2
(5.1)

+ 2
m2U +m4k

yy
t Ue

L

∂2y

∂x∂t
+
m2U̇ + k

yy
t m4U̇e

L

∂y

∂x
+
mt +m2 +m4k

yy
t

L

(

∂2y

∂t2
+ ay

)

where the tension-pressure gradient term in Eq.(5.1) is replaced by:

∂

∂x

[(
∂T

∂x
− A2

∂p2
∂x

−A6
∂p4
∂x

)
∂y

∂x

]

=

[

mt +m2 +m4k
xx
t

L
ax +

m2
L
U̇ +

m4k
xx
t

L
U̇e −Dxt

]

∂y

∂x
[

−

∫ L

x

[

mt +m2 +m4k
xx
t

L
ax +

m2
L
U̇ +

m4k
xx
t

L
U̇e −Dxt

]

dx+Dbt

]

∂2y

∂x2
(5.2)

Substitution of Eq.(4.58) into Eq.(5.1) yields the modified equation of motion:

EI
∂4y

∂x4
+

[

m2
L
U2 +

m4k
yy
t

L
U2e

+

∫ L

x

(

mt +m2 +m4k
xx
t

L
ax +

m2
L
U̇ +

m4k
xx
t

L
U̇e −Dxt

)

dx−Dbt

]

∂2y

∂x2

+

[

−
mt +m2 +m4k

xx
t

L
ax −

m4(k
xx
t − k

yy
t )

L
U̇e +Dxt

]

∂y

∂x

+ 2

[

m2
L
U +

m4k
yy
t

L
Ue

]

∂2y

∂x∂t
+
mt +m2 +m4k

yy
t

L

(

∂2y

∂t2
+ ay

)

−D
y
t = 0 (5.3)

It is interesting to note that no analog of the U̇e
∂y
∂x

term appears for U̇ . This is consistent

with a previous derivation of the equation of a fluid-conveying with time variable internal

flow [32]. For internal flow, there is no difference between the effective mass acting in the x
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and y directions, meaning that the (kxxt − k
yy
t ) term is effectively zero for internal flow.

5.3.2 Numerical Simulations

Addition of the terms associated with U̇ and U̇h requires that two additional states be added

to the discretized equations of motion, such that

U̇ = fu(X0, Y0, θ, yi, Ẋ0, Ẏ0, θ̇, ẏi, t)

U̇h = fh(X0, Y0, θ, yi, Ẋ0, Ẏ0, θ̇, ẏi, t)

Note that if U̇ and U̇h are explicit functions of only time, no additional states need to be

added to the discretized equations, since U and Uh can be computed a priori. We will also

make another assumption:

A10. At any time, the mass flux through the inlet Γ1 is equal to that through the control

surface at the tip of the tail, Γ2. This precludes fluid storage within the rigid head of

the submersible, and implies that U̇h = (A2/A1)U̇ .

The functional description of U̇ is as follows:

U̇ = αẏ(kL) U(0) = 4.0 (5.4)

where α is a scaling parameter, and ẏ(kL) is the velocity of a given point on the flexible

tail. Functions of this type have several favorable properties, not least of which is the ease

of implementation within the simulation. While we have yet to do so, it is also easy to

experimentally implement the sensing required for this type of function, since it requires a

single point measurement at a point on the beam. This is in contrast to a function requiring
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knowledge of one or more spatial derivatives, or an approximation of the integral of the beam

position.

It is easy to understand why a function in this form can cause the vehicle to turn; since

ẏ(kL) is signed, the thrust from the jet may be unbalanced with respect to the centerline of

the vehicle. The degree of imbalance is related to the point k at which the measurement is

taken, because of the traveling nature of the beam’s waveform. Essentially, by moving the

point k nearer to the head of the vehicle, we can mimic a phase shift between the observed

value of ẏ(kL) and U̇ .

In the figures which follow, the tail is the “baseline” tail described in the previous section:

L = 0.34, h = 0.077. In addition, the value for U has been subjected to upper and lower

saturation such that 3.8 ≤ U ≤ 4.2; removal of these limits affects neither system stability

nor the qualitative results, but it is difficult to keep the average velocity between cases the

same without imposing them. Furthermore, similar limits are likely to be imposed by any

physical pump.

Figure 5.4 gives a comparison of the constant velocity case where U = 4.0 and the non-

constant velocity case where α = 40, k = 0.75. The total rotation of the vehicle θ is given in

the left axes, and the right axes depict the forward speed of the vehicle Ue and the conveyed

fluid velocity U(t). It is clear from the left axes of Fig.5.4 that the U = U(t) case is subject

to a net moment over the course of its travel, making a clockwise turn of ≈ 1 rad. relative to

the U = const case. The middle right axes show the forward speed of the vehicle for both

cases, and Ue for both cases can be seen to be very similar; the top right axes show that

there are larger fluctuations in the forward speed of the U = U(t) case. The conveyed fluid

velocity is shown in the bottom right axes, and the increase in U(t) amplitude and eventual
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Figure 5.4: Comparison of the constant-velocity U = 4.0 case to non-constant velocity case
where α = 40, k = 0.75

saturation is clearly visible. Note that the time scale of the U(t) plot is 1/3 that of the Ue(t)

plot.

Figure 5.5 compares the behavior of three values of k: 0.25, 0.75 and 1.0. The left axes

show θ for each case. The right set of axes shows the orientation of each at t = 20 sec.,

marked with a dashed line on the θ axes.

The different behavior of each value of k is evident from each case’s θ curve. Measuring

the beam velocity at different points places U(t) in different phase with respect to the

orientation of the tip of the tail, due to the traveling wave nature of the tail’s waveform. A

measurement point of k = 0.75 corresponds to a large negative moment, k = 1.0 a smaller

negative moment, and the direction of turn can be reversed by measuring at k = 0.25. A

physical realization of this type of control is likely to simply reverse the sign of Eq.5.4 in

order to reverse the direction of the moment, and it is likely that such a realization will use
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Figure 5.5: Comparison of three values of k: 0.25, 0.75 and 1.0. The scaling parameter
α = 40 for all cases.

a measurement point near x = L, to take advantage of the larger deflections there.

The sequence of images shown in Fig.5.6 have been acquired over one cycle of the tail

where U = U(t) with λ = 0.75 - note that the frame of reference pictured is the non-inertial

(xy) frame. Compared to Fig.4.7, there is a distinct asymmetry to the tail’s motion; this

asymmetry is most clear at the tip of the tail, which spends a larger fraction of the cycle

on the right half of the submersible’s centerline. This asymmetry is the likely reason for the

turning behavior - as the angle of surfaces Γ2 and Γ6 change throughout the cycle, fluid

which enters through the inlet surfaces Γ1 and Γ3 is turned with respect to the centerline.

111



Figure 5.6: An image sequence of the submersible during a turn. Note that the dashed line
is collinear with the non-inertial x axis.
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Chapter 6

Concluding Remarks and

Future Work

6.1 Dynamics of a Pipe Conveying Fluid with a Non-

Uniform Velocity Profile

Chapter 2 assessed the dynamics of cantilever pipes conveying fluid with a fully developed

non-uniform velocity profile. The equation of motion derived in that section is tractable,

requiring only the use of a single empirical parameter µ to account for the dependence of

fluid momentum on the square of the fluid velocity. Previous analyses made the assumption

of a uniform velocity profile, implicitly assuming µ to be unity. While this assumption is

reasonable at high Reynolds number, µ = 1 is the minimum value possible, approached only

in the limit of infinite Reynolds number. That is, the momentum flux for real fluid flows

will always be greater than the uniform case, and the uniform profile assumption becomes

monotonically less accurate as the Reynolds number decreases.
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It was shown that the dependence of u, the non-dimensional velocity relevant to the

stability of the pipe, is not uniquely dependent on the Reynolds number. Since the Reynolds

number determines the velocity profile, a uniform velocity profile may not be generally

assumed near the onset of flutter instability, despite the requirement of high u. This is

particularly relevant for laminar flow, where the value of µ reaches its maximum value; as

the scale of “engineering applications” shrinks, the dynamics of pipes conveying laminar flow

with high nondimensional velocity u may become relevant.

The stability characteristics of a sample pipe were assessed with our updated model.

In this pipe, the fluid became turbulent at relatively low u with the effect that µ ≈ 1.05

when u approached values necessary to achieve flutter instability. This proximity to the

uniform model causes similarity between the predictions over much of the parameter space,

a similarity which is to be expected since the predictions of the uniform model have been

qualitatively verified by experiment. There are significant differences in certain sensitive

regions of the parameter space, such as near β = 0.3 and β = 0.7. A pipe with dimensions

such that the conveyed fluid is laminar at the onset of flutter instability exhibited markedly

different stability characteristics from the uniform case. Both the critical velocity and critical

frequency were significantly different over large regions of the parameter space.

6.2 Simplified Dynamics of a Fluid-Conveying, Fluid-

Immersed Pipe Affixed to a Rigid Body

Chapter 3 derived the equations of motion for an immersed fluid-conveying tail affixed to a

rigid body. It was shown that both the cantilever and free pipe can be expressed as special
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cases of the rigid body boundary condition. The neutral stability curve in ui-ue space was

computed over a wide range of values of the rigid body mass fraction. The serpentine nature

of these curves renders it difficult to make statements about the entire parameter space;

nonetheless, some local trends can be observed. At low values of ue, a tail affixed to a rigid

body of larger mass become unstable at lower values of ui, but this trend is reversed for higher

values of ue. The system’s stability was also found to be largely insensitive to additional

rigid body mass above µ = 25, i.e., the system’s behavior is largely indistinguishable from

that of a cantilever.

Estimates of the sign of the thrust produced by the fluttering tail and the efficiency of

that thrust have also been computed via methods first proposed by Lighthill [23]. Although

this analysis is less robust than that proposed in Chapter 4, some general statements about

the suitability of this type of propulsor can be made. A relatively high value of ui is required

to drive a thrust-producing flutter instability. Although a system of this type may permit

flutter instability for ui = 0, instability driven entirely by the external flow does not provide

a thrust-producing motion. This ui = 0 limit case is intuitively obvious, since a flapping

flag does not produce thrust. The regions of the neutral stability curves where thrust is

produced therefore have boundaries primarily defined by ui, since the internal fluid flow is

the only energy input to the system.

It is also clear that a less massive rigid head leads to thrust-producing instability at

lower values of ui, though these motions occur at lower forward velocity. Note also that

the efficiency of the produced thrust is relatively insensitive to ue over a wide range of ue

values. Similar observations have been made for live fish [34], which move with a waveform

reminiscent of the traveling waveform generated by a fluid-conveying pipe. It is therefore
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heartening that one of the great advantages of fish-like propulsion is preserved.

The analysis proposed in this chapter was confined to the mass of the rigid body, but it

is possible to investigate the role of many other parameters for a vehicle of this type. Besides

the parameters identified in this work, a terminal nozzle might be used at the free end, or

a fish-like planform used for the shape of the tail. Analysis of the latter system must be

performed numerically, and will likely be an adjunct to later work along the lines of that

presented in Chapter 4.

6.3 General Dynamics of a Fluid-Conveying,

Fluid-Immersed Pipe Affixed to a Rigid Body

Chapter 4 presented the planar equations of motion for a fluid-conveying submersible with

a fluttering tail without many of the limiting assumptions used in Chapter 3. In particular,

the only assumption made regarding the accelerations or rotations of the non-inertial frame

attached to the submersible are that the accelerations and rotations occur within a single

plane. This derivation therefore comprises the scalar equations for the motion of this non-

inertial frame as well as the equation of motion for the fluid-conveying tail within the frame.

These equations appear here for the first time in the academic literature likely because most

applications for fluid-conveying pipes, such as pipeline vibrations or the simple “garden hose”

problem, do not require analysis in a non-inertial frame.

These equations are solved for a variety of tail geometries, and one geometry is presented

which produces thrust in excess of a rigid tube of equal length; this provides evidence of what

our research group has termed “synergistic propulsion”, in which there is net thrust provided
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by the fluttering motion of the tail, in addition to the thrust of the fluid jet. This particular

finding has yet to be verified by the experimental work described in Chapter 5, though the

speed of a device with a fluttering tail has been shown to exceed that of the device with a

dimensionally identical rigid tail. This finding is the same as that of Paidoussis [28], since

that work compared the fluttering and non-fluttering tails by placing an additional stiffener

on the flexible tail.

The methods laid out in this chapter are likely to be the basis for much of the future

work done on this topic; indeed one such “future” topic, control of a fluttering fluid-conveying

submersible, is touched upon in Chapter 5 of this communication. This type of empirically-

based numerical analysis is perhaps a bridge between the analytical methods typified by

the work in Chapter 3 and a full-blown CFD simulation. In addition to further work on

control, extension of these methods to non-uniform tail geometries is planned for the future.

A fish-like planform, with a large reduction in area near the tip of the tail, has been shown

[25] to be highly efficient for producing thrust on the basis of slender-body theory. A beam

with a fish-like planform will be relatively weak at a location near its its end, and then much

stiffer in that portion which mimics the caudal fin. This should lead to a large, out-of-phase

angle between this “fin” and the forward portion of the tail, a condition which is seen in

swimming fish.

The large angles and large amplitudes associated with non-uniform tail geometries require

that the effects of large displacements be accounted for. The equations of motion of a fluid-

conveying Euler elastica have been presented before [4] [39], though neither of the cited

works considered either external flow or a non-uniform pipe/beam geometry. Extension to

these conditions is planned for future work.
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6.4 Experimental Studies and Control

Chapter 5 describes a prototype version of a fluttering fluid-conveying submersible that

was produced at Michigan State University. Much of the credit for the prototype’s design

and construction is due to Mr. Paul Strefling, and his M.S. thesis [40] may be used as a

more complete source of information about the platform. Preliminary findings qualitatively

verify the model proposed in Chapter 4. A great deal of work remains to be done on the

experimental hardware. Communication with the device as currently constructed is not

possible through water, which means that it is difficult test in a way which removes free-

surface effects. Underwater communication is likely to be added soon, as is buoyancy control,

to permit running at greater depth.

The equations of motion derived in Chapter 4 have also been extended to permit the

use of a time-variable internal fluid velocity, and a simple function for this velocity has been

shown to turn the submersible. This function requires the velocity measurement of a single

point on the tail; changing this measurement point leads to a phase shift in internal fluid

velocity which can be exploited to turn the submersible in both directions. The potential

ability to maneuver by changing the internal flow rate is a useful feature, since it would allow

control of the submersible without additional control surfaces, such as fins.

The function proposed for the internal fluid velocity produced reasonable turning rates,

but it is likely that there is significant potential for improvement by using information about

additional states of the system. In particular, Eq.(5.4) contains no information about the

global coordinates X, Y, θ in its definition for U̇(t); knowledge of the state of the non-inertial

frame will certainly be required for trajectory tracking. Note also that the turn shown in

Fig.5.4 takes place over many oscillations of the tail, and the image sequence shown in Fig.
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5.6 shows a tail which is oscillating asymmetrically, but not wildly so. It is therefore likely

that the device is nowhere near its limits of its turning performance; a functional description

for U̇(t) which leads to a more asymmetric oscillation of the tail is likely to increase the

turning rate of the vehicle.
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