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ABSTRACT

AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION

OF THE ELASTODYNAMIC RESPONSE OF A CLASS

or INTELLIGENT MACHINERY

By

VASUDIVAN SUNAPPAN

A methodology is proposed, herein, for reducing the elastodynamic

response of high-speed machine systems by introducing an additional

perturbational input which is computer-controlled. The work presented

here describes a comprehensive analytical and experimental investigation

on a bread-board model of the concept, in which the objective is to

reduce the vibrational response at the midspan of a flexible rocker link

of a "retrofitted" four-bar linkage. A variational formulation is

employed to develop the equation governing the response of the flexible

member to the combined parametric and forcing functions. This equation

is then solved numerically and the viability of the model is validated

by comparing the analytical results with response-data from a

complementary experimental program. The stability of motion is examined

using the above equation.
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CHAPTER 1

INTRODUCTION

1-1 CURRENT TRENDS IN IRDUSTRIAL.HACHINERY

The intense competition in the international marketplace for

robots and machine systems which significantly enhance manufacturing

productivity by operating at high speeds has resulted in the evolution

of a new frontier in machine design. Under these more stringent

operating conditions, the traditional design methodologies are unable to

adequately predict a machine's performance because elastodynamic

phenomena are stimulated due to the inherent flexibility of the moving

parts. The traditional design methodologies are based on dynamic

analyses wherein all mechanism members are treated as rigid-bodies.

When operating in a high-speed mode, vibrations and dynamic

stresses in the members of a mechanism can drastically modify the

performance characteristics, and the fatigue-life of parts becomes a

significant design consideration. Furthermore, the radial clearances in

sleeve bearings in mechanical and electro-mechanical systems, which are

essential for the operation of these joints, will generally result in

excessive stresses and impact loads, and these loads can generate more

severe problems such as wear, loss of performance, increased levels of

noise and vibration.

The trend towards ultra-high operating speeds as a method for

increasing productivity has exacerbated the design of modern machine

systems and as a consequence of these stimuli, the research community



has responded by developing more sophisticated modeling techniques

[1,2,3]. In addition to these enhanced predictive capabilities,

described in the above review articles the academic community has also

developed two design methodologies for reducing the elastodynamic

response of linkage machinery. (Vibrations or deflections in a mechanism

with elastic links under dynamic conditions is called elastodynamic

response.) The first advocates that the articulating members of these

mechanical systems should be designed with optimal cross-sectional

geometries and fabricated from commercial metals [4,5,6,7,8]. The second

advocates that the articulating members should be designed with

polymeric composite laminates which are optimally-tailored in order to

synthesis the material properties for the specific application

[9,10,11,12]. When implemented, the foregoing methodologies achieve a

reduction in the levels of the dynamic response by increasing the

stiffness/weight ratios of the members by tailoring both the geometrical

and material properties of the articulating members.

The rationale can be clarified by examining the terms in the

approximate linear finite element equations governing the elastodynamic

response of a general machine system presented below,

[Ml’llxlwi + [Ml’ltcm'n + [111133 - -[I]{R} (1.1)

where [M], [K] and [C] are the global mass, stiffness and damping

matrices respectively of the system, [I] is the identity matrix, {U}

represents the discretized deformation field, the overdot denotes the

time derivative and {R} represents the discretized rigid-body

acceleration field. Thus for a prescribed machine system operating at a



prescribed speed the elastodynamic response is principally dictated by

the stiffness-to-mass ratio of the links.

In contrast to the foregoing methodologies which focus on the mass

and stiffness terms on the left-hand-side of equation (1.1), the

methodology proposed herein focuses on the right-hand-side of equation

(1.1); namely the kinematic variables which provide the principal system

excitation in a high-speed mode of operation. Thus it is argued, if the

magnitude of these variables, and hence the inertial loading, can be

reduced, then so too will the elastodynamic response. This translates

into a reduction in the dynamic deflections of articulating members, a

reduction in the associated dynamic stresses, and also a reduction in

the severity of the fatigue enviroment in which the members must

operate.

1-2 INTELLIGENT MACHINE SYSTEMS

Intelligent machine systems have been the subject of numerous

publications, principally in the context of robotic manipulators

[13,14], but of course this terminology really pertains to a very broad

spectrum of machine products which incorporates sensors and computers.

The research reported, herein addresses intelligent machinery in this

broader context, by proposing a general methodology for controlling the

elastodynamic response of linkages machinery.

The current generation of robotic and intelligent machine systems

are capable of undertaking many diverse tasks, and implicit in this

statement is embedded a spectrum of diverse technologies from several



different disciplines, such as instrumentation, controls, computing,

artificial intelligence, materials and machine dynamics.

In contrast to these robotic-orientated publications, herein, the

focus of attention is the attenuation of the elastodynamic response of

flexible linkage machinery which feature in a very broad range of both

industrial and commercial machinery and equipment. These classes of

mechanism systems are prone to generate a vibrational response when

operating in a high-speed mode, which is attributed to the time-

dependent inertial loading imposed upon the members of the articulating

system, since these members are inherently an assemblage of flexible,

not rigid bodies. Typical contributions to this field include references

[15].

The objective, herein, is to develop and then experimentally test

the viability of a methodology for reducing the response of flexible

members of linkage mechanisms by introducing an additional input in the

kinematic chain. The concept is evaluated by studying a bread-board

model of the proposed approach which comprises a retrofitted planar

four-bar linkage with a flexible rocker link. The retrofitment involves

modifying the normally stationary ground-link/rocker-link revolute joint

to incorporate an additional prismatic joint whose perturbatational

motion is controlled by an electrodynamic shaker which is driven by an

arbitrary waveform/function generator. The linkage can function as a

classical four-bar mechanism by locking the prismatic joint, or

alternatively, as a five-bar linkage by releasing this locking device.

In this latter mode, the system has two nominally rigid-body degrees of

freedom with inputs provided by the crank rotation and also the motion



of the shaker. The idea was first reported in a theoretical publication

[16] prior to presenting some preliminary experimental work in reference

[17].

The equations of motion and the relevant boundary conditions for

the flexible rocker link are derived using a variational technique, and

the steady-state response is obtained using an approach developed by Hsu

[18]. An analysis of the corresponding homogeneous equation is developed

by means of which the stability of motion are examined. The

computational results correlate favorably with experimental data from a

complementary experimental investigation.



CHAPTER 2

KINEMATIC.AIALISIS OF THE.NODIFIED LINKAGE

2-1 INTRODUCTION

The kinematic characteristics of the rocker link need to be

evaluated prior to determining the midspan transverse deflection. The

kinematics of a four-bar linkage have been investigated widely, but for

the intelligent mechanism, the kinematic analysis of a four-bar linkage

'with two-degrees of freedom is necessary. The kinematics of this linkage

are evaluated assuming the links are rigid, and the effects of friction

and clearance at the bearings are neglected. The kinematic analysis of

four-bar linkage found in reference [19] is modified in order to analyze

the proposed class of intelligent mechanism.

A 1‘

Fig. 2.1 : Intelligent Mechanismzthe kinematic chain



The linkage under consideration is shown in Fig. 2.1, where it is

the length of ground link which is variable with time and £2, 1, and

2, are the lengths of the crank AB, coupler BC and rocker CD

respectively. The angles 02, 0,, and 0‘ are the angles of each link. The

corresponding angular velocities and angular accelerations are denoted

by 02, w,, w, and a2, a3, a, respectively. For the intelligent

mechanism, w, is constant and hence a2 - 0.

2-2 KINEMATICS

2-2.1 VECTOR ANALYSIS

If It’ 12, I, and I, represent the vectors AD, AB, BC and CD

respectively, it follows from Fig. 2.2 that

1, +1, +1, - I (2.1)
t

  
Fig. 2.2 : Vector-Loop Diagram
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and by writing Ir - ire r (r - l,2,3,4) in complex number notation,

equation (2.1) becomes

10, 10, 10‘ 101

Ize + lse + i‘e - 2 e (2.2)

where 01 - 0 from Fig. 2.2

2-2.2 POSITION ANALYSIS

The Euler equation (e10 - cosfi + isinfi) is substituted into eq.

(2.2) prior to separating the real and imaginary parts. This process

yield equations for the angular positions of the coupler and rocker

links in terms of the input angle of the crank. They are

lgcosoz + lscoso3 + £,cosfl‘ - It (2.3a)

2,31no, + lasinfl3 + 1‘sin0‘ - 0 (2.3b)

Solving equation (2.3) for cases, yields the expression

2 2 2 1/2

coso3 - A? i [ [A%] - E——§—§ ] (2.4)

D D D

where

A - 213(22c0302 - it)



2 2 2 2

B - 1‘ - it - £2 - £3 + 2£t£2coso2

D - (.2 . .211”

Once 0, has been determined from equation (2.4), the value of 0‘ follows

from eq. (2.3)

2-2.3 ANGULAR VELOCITIES

Upon differentiating (2.2) with respect to time and separating

real and imaginary parts and solving for w, and w, yields

£2w231n(02 ' 0‘) + Itcoso‘

“8 ' ' 1,31n(0,- 0,)

 

(2.5a)

2,w,sin(0,- 0,) + itcoso,

“4 ' ' 2,sin(0,- 0,)

 

(2.5b)

2-2.4 ANGULAR ACCELERATIONS

The angular acceleration of the coupler and the rocker may be

obtained by differentiating (2.2) twice with respect to time and

separating the real and imaginary parts. The results can be expressed in

the form
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2 2 2 ..

lzwzcos(0‘-02) + lawzcos(0,-0,) + 24w, + itcosfl,

“3 ' ' 2,s1n(0,- 0,)

 

(2.6a)

2 2 2 --

lzwzcos(0,-02) + 14w‘cos(03-0‘) + 13w, + Itcosos

l,sin(0;- 0,)

 

(2.6b)a‘ - -

2-2.5 LINEAR ACCELERATIONS

Expressions for the linear accelerations of the centers of mass

Ga, 6,, and G. of the moving links follow from the preceding equations.

The expressions are written according to the coordinate axes shown in

Fig. 2.3. Thus, if AG,- r2, BC,— rs and DG‘- r,, the component

accelerations are written as (azx, azy), (a3x, 83y) and (a4x’ 84y) and

can be expressed as

a2x - -r2(w:c0302 + azsinoz) (2.7a)

a2y - -r2(w:sin0, - 02C0802) (2.7b)

a3x - (.22/r2)a2x - r,(w:cos03 + casinos) (2.7c)

a3y - (.22/r2)a2y - r3(w:sin0s - ascosas) (2.7d)

ahx - 2; - r,(a,s1n0; + wicoso;) (2.7e)

a4y - -r,(o:sin0, - a,cosa;) (2.7f)

where 0; - (0,- n)



a
-
<

 

'21

ll

  
 

21

 

Fig. 2.3 : Component Pin Forces
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2-3 DYNAMICS

The forces acting at the joints of the mechanism is shown in Fig.

2.3, where, for example, X1, represents the component of the force

exerted by link 1 on link 4. Thus X1, - -){‘1 and etc. N is the normal

force exerted by the slider guide on the slider and the force exerted by

the shaker is denoted by K. The slider acceleration 2t is in the OX

direction.

The notations m2, m, and m‘ are the masses of the links and IZA’

13B and 140 are the corresponding moments of inertia about axes

perpendicular to the plane of motion and passing through points A, B and

D respectively. Then, the equations of motion necessary to evaluate the

forces acting on the rocker link are

Y2: " Ys‘ - msa3y (2.8b)

2
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Solving the above equations for the pin forces yields the following

expressions,

0 2 0

IBBasl‘coso‘ +I4Da‘23coso8 -w2m,r,lzl,coso.sin(02-03)

 

 

X3. , (2.9a)

0 2 0

IaBasl‘sino‘ +14Da‘lssin03 -w2m3r812£‘sin0,sin(02-0,)

Y34 - . (2.9b)

131‘81n(03-0‘)

X‘I "' Xa‘ ' m‘a4x (2.9C)

The force exerted by the slider guide and the shaker is given by

N - -Y,, (2.10s)

s t (2.10b)

where Ms is the mass of the slider.



VARIATIONAL.TREOREM

The objective of this chapter is to develop the equations of

motion governing the elastic rocker link. An accurate mathematical model

is required which will accomodate the inherent elastic deformations of

the link. The variational theorem forming the kernel of this theoretical

study was originally developed in the doctoral dissertation of B.S.

Thompson [20]. It incorporates the geometrically non-linear form of the

field equations so that it may provide a basis for analysing linkages

susceptible to dynamic instabilities and also mechanism systems that

must be analysed using higher-order theories.

3-1 THEORETICAL DEVELOPMENT

The theoretical development follows the approach of reference

[21]. The dynamical problem of an elastic body describing a general

 

 
X

Fig. 3.1 : Definition of axis systems and position vectors

l4
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spatial motion relative to an inertial reference frame is considered. In

Fig. 3.1, axes OXYZ define the inertial reference frame, while oxyz are

Lagrangian coordinates fixed in the body in a refernce state containing

zero stresses and strains. Employing an indicial notation (i-x,y,z),

then at time t, a general point P in the continuum has the position

vector r1, which is defined as

r1 - roi + rR1 + u1 (3.1)

where

roi the component relative to o-x-y-z frame of the position vector

of the origin of the body axes relative to the origin of the

inertial frame

rR1 the position vector of point P in the reference state relative

to the origin of the body axes

u1 : the deformation displacement vector

The non-linear form of the field equations necessary for a body

describing a general spatial motion relative to OXYZ frame are as

follows:

(1) p1 - r01 + 61 + eijkaj(rok + rRk + uk) (3.2)

This equation is obtained by differentiating eq. (3.1)

where

p1 : the velocity associated with the time rate of r1
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eijk : alternating tensor

31 : component of angular velocity vector for the moving axes or

Lagrangian frame

(~) : the time rate of change with respect to the moving frame

(0) : the absolute rate of change with respect to time

(ii) The boundary conditions for prescribed surface tractions and

deformation displacements are written as

E, on S. (3.3)

u1 - ui on S,

where

81 : surface on which the prescribed tractions are imposed

S2 : surface on which the prescribed displacements are imposed

(iii) Non-linear strain-displacement relations

71J'12‘(u1.3+ 113,1 + uk,iuk,j) (3.4)

where

113 : Lagrangian strain component

(,) : denotes spatial differentiation

The kinetic energy density T, of the system is defined as
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T - %p61jpipj (3.5)

where

p : the mass density of the material

61J : the kronecker delta

Further, defining W as the strain-energy density and X1 as the

body forces per unit volume, the principle of virtual work leads to the

problem of determining the stationary conditions of the functional

t1

G - I {£ [T(p1) - W(1ij) + X1r1]dV + g gir1 d8} dt (3.6)

to 1

subject to the auxiliary conditions through the volume and over the

surface 82, the prescribed deformation displacement condituion. The

volume integral extends over the entire volume V of the elastic body and

sum of S1 and 8, defines the total surface area S of the continum.

A free variation problem without auxiliary conditions may be

constructed by the Lagrange multiplier method which incorporates the

constraints in the functional. The first variation of the modified

functional enables these undetermined multipliers to be expressed in

terms of the system parameters [21]. To obtain this expression it is

necessary to use Gauss' theorem relating surface and volume integrals,

and to perform integration by parts. Furthermore no variation in the

system configuration is permitted at to and t1.
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The variations in the position vector r1 is obtained by permitting

the variations to coincide with the actual displacement that occur

during the time interval dt. The following relationship may be proved

6ri - 8ro1 + eijk6¢j(rok + rRk + uk) (3.7)

The functional becomes

t1

J " {{{lT(P1) ' 110111) + xiri + '11[111-%<u1,j+uj,1+u.k,iuk,:])]

to

' Ppi[P1 ’ {roi+ “1 + ‘ijkaj(rok + rRk + “k)’]’dv

*{
Eirids - f (51 + u1 kgk)(31- ui)ds}dt (3.8)

1 s2 ’

The first variation must vanish for stationary conditions and the

corresponding variational equation is

t1

SJ - 0 - i {£61ij[rij-(8W/ayij)dv + £5Tij[11j-%(ui,j+uj,i+uk,iuk,j)]dv

o

-fp6p1[p1-(roi+ui+eijk$1(rok+rRk+uk)l]dV (3.9)

v

+£6ui[xi+rij,j+ui,kjrjk+ui,krjk,jCpfildv

+£ 5“1(51'31'“1,k3k)ds ' i (531+5“1,kgk+“1,k53k)(“1'”1)“S
1 2
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+6¢J [{eiijkx1(rok+rkk+uk)dv + { 'ijkgi(rok+rRk+uk)ds

2

-£eijkppi(rok+rRk+uk)dv] + 6r01L£X1dV +£ gidS -fpp1dv]}dt

1

where r is the stress tensor.

1.1

If arbitrary variations of the system parameters p1, u r
i’ 01’ rRi'

11], r11, ¢J in eq. (3.9) are permitted, the characteristic equations

for this class of elastodynamic problem follow and are the balance of

linear and angular momentum for the complete continuum, the field

equations defining the relationships between the velocity and rate of

change of position, the stress-strain relations, the strain-displacement

relations and the equations and the equations of equilibrium, subject to

prescribed boundary conditions on region S, and 82.

The stationary conditions for the functional are obtained by

solving the mixed boundary-value problem defined by eq. (3.9).

Approximations such as the Euler-Bernoulli beam theory may be introduced

since the flexible link is considered slender and the deformations

small.This permits an approximate problem definition to be generated

systemmatically . This will lead to approximate partial differential

equations of motion with dependent variables in space and time.

Since the investigation focusses on the flexible link, the rigid-

body equations of motion are of no interest, they may be removed from



20

the variational equation by assuming that the variations 8¢J and 6roi,

which are arbitrary - are zero. Hence the final form of variational

equation of motion is

t1

6J - 0 - I {£8111[11J-(aW/611j)dv + £6Tijl7ij'%(ui,j+uj,i+uk,iuk,j)]dv

to

-fp6p1[p1-{E°1+Ei+'ijka
j (r0k+rRk+uk) ’ ld" (3 . 10)

v

+£6u1[x1+
fij ’j+u1,kjr

jk+u1,kfj
k,1-pé]dv

1 2

3-2 APPROXIMATIONS FOR.THE VARIABLES

Approximating statements for the system variables in eq. (3.10)

must be formulated so that it may be used to construct the problem

definition. The intelligent mechanism in Fig. 3.2 is assumed to have a

rigid crank AB which rotates at constant speed w2(w2-52). rigid coupler

BC and elastic rocker link CD of undeformed length L with a cross-

sectional area A. The ground-link/rocker-link revolute joint is being

harmonically excited in the horizontal direction 0X while the crank

foundation is grounded. The length it is variable with time. Smooth pin

joints are assumed and the slider of the shaker translates in a

frictionless guide. Coordinates oxyz are Lagrangian axes fixed in the

rocker link in an undeformed reference state which is defined by
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rigid link

flexible

link
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Fig. 3.2 : The modelling of an intelligent mechanism

the angle 0‘ relative to an inertial reference frame OXYZ. Approximation

for the variables found in reference [22] is used here.

Deformation of the rocker link is restricted to simple axial and

out of plane flexural components. If the link is considered slender and

the deformations small, then the Euler-Bernoulli beam theory may be used

and assumptions are

ux - ub(x,t) - zw x

- 0 3.11“y ( )

uz - w(x,t)

The longitudinal stress is assumed to consist of two components

[with the same format as the axial displacement. All other stresses are
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zero except for 'xz which must be non-zero in order that prescribed

surface displacements may be imposed on the ends of the link. Hence

fxx - To(x,t) - zT1(x,t)

1x2 - T2(x,t) (3.12)

f - r - r - r - 0

yy 22 yz xy

Similarly, for strains,

vxx - 50(X.t) - 281(X.t)

sz - 82(x,t) (3.13)

Vyy - 1zz - ' yyxx

1yz - 72x - 0

where the lateral strains are permitted to develop unhindered and u is

Poisson's ratio.

Rotatory inertia may be deliberately excluded from the analysis by

assuming velocity formats

Px - B(X.t)

p - 0 (3.14)
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The position vector describing the location of the origin of the moving

axes oxyz relative to the inertial frame OXYZ has components

rox - itcoso‘ - L

r0y - 0 (3.15)

roz - Itsinfi‘

measured relative to o-x-y-z, and a general point on the undeformed

connecting rod may be defined by

- y: rRZ - Z (3.16)

i - o, J - 0,, 0 - o (3.17)

Prescribed deformation displacements are to be imposed on a small region

surrounding the centroid of the section at both ends of the link. The

flexible link is considered to be pin-pin, and hence

C
: | I

N Gat x - 0,

E - E - o (3.18)

at x - L, E - u

c
z
l

I c
l

I c
>
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Over the remainder of the section at the ends of the link,

prescribed surface tractions are imposed. At the rocker-pin end(x-0)

external forces P(t) and Q(t) are assumed to be uniformly distributed,

so that

m (3.19)

At the rocker-slider joint, the expressions must incorporate the dynamic

effects of the slider on the link and the axial loading again has

uniform components. As shown in Fig. 3.3, the slider has normal force

N(t) exerted by the slider guide and a force exerted by the shaker, K(t)

- 4
9,,

M!)

Fig. 3.3 : Forces exerted at the rocker-slider pin joint

K(t)

The surface tractions are

3

£121
at x - L, 2% - A sino. - KLEIcosa‘ - (3.20)

J 0

A (px)x-L
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M
Hifil _§ -

A (pz)x-L

c0304 - sinfi‘ -

0
9

I

N

I I

? A

where M8 is the mass of slider. The flanks of the flexible link are

assumed to be unloaded. Hence

Ex - gy _ gz - o (3.21)

3-3 “INSTRUCTION OF 1113 PROBLEM DEFINITION

The equations of motion and boundary conditions are constructed

by substituting the approximating statements (3.11) to (3.21) into the

variational eq. (3.10) prior to using the arbitrary independent nature

of the variations in the system parameters. Upon subtitution into the

volume integrals of eq. (3.10) yields

I{-Ipss[8-(itcoso,-zt0,sin0, +uo-zw'x+5,(£tsin0‘ +z +w)}]dA

x A

-Ip6C[C-l2tsin0‘ +£t94cosa‘ +9 -5,(£tcoso4 -L +x +uo-zw’x)}]dA

A

+I[(8so-zss,)(ro-zr,— 3% +u(%% +g§ )) + 632(2T2-4682)]dA

A xx yy 22

2 2

+I(6To-26T1)lso'251' %{2(Uo,x'zw,xx) +w,x +("‘o,3:'zw,xx) }]dA

A

+I6T2[S2 - %(uo’x-zw,xx)(-w’x)]dA

A
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+I(8uo-26w’x)[rxj’1 + ux’Jkrkj +“x,k'kj,j' ppx]dA

A

+£SWIrzj’j +uz,jk'kj + uz,krkj,j -ppz]dA}dx - 0 (3.22)

The first two integrals yield the velocity statements

B - itcoso, + 60 + ww, (3.23)

C - Itsino‘ + 6 - w‘(x + uo-L)

which may be differentiated to give the absolute aacelerations

- s . s s 2

B - £tcoso‘ +2ww‘ +wa‘ +uo -w4(x +uo -£,) (3.24)

2

C - itsino‘ -2u°w‘ + w -ww‘ -a‘(x +uo -£4)

By substituting a strain energy function W for an isotropic

homogenous material into the third integral of expression (3.22), one

obtains

where E is the Young's modulus and G is the modulus of rigidity. The

fourth and fifth integrals give



o o,x 2 o,x 2 ,x 2A ,xx

S, - w,xx(1 + u0,x) (3.26)

S, - ' 2“o,x w,x

where I is the area moment of inertia of the section.

The final pair of integrals in eq. (3.22) must be integrated by

parts to give the equations of motion,

Isuolfxx,x +("1x,x'xx),x +(ux,z'xz),x - prldv

v

+ISWI<uz,x'xx),x -(ux,xfxz),x +z'xx,xx +(zux,x'xx),xx

‘v

+(zux,zrxz),xx - szx,x - ppz]dV - 0 (3.27)

and the natural boundary terms,

II[(6uo -y6w’x)rxz(l +ux,x) + 6wrxzuz’x]zdxdy (3.28)

xy

IIsw['xz(1 +ux,x) 'Z{Txx,x +(ux,xrxx),x +(ux,zrxz),x -ppx}]xdydz

zy

The final form of equations of motion are constructed by

substituting the results (3.24) to (3.26) into eq. (3.27) and performing

the integration to give the axial and flexural equations of motion,



EA(“o,xx + uo,xuo,xx + w,xw,xx + Aw,xxw,xxx)

2 1n: 1—w2 3 29)
+ (Acuo,xw,x),x + EA“‘o,xl“lo,x + 2 o,x + 2A ,xx ( °

2 2

+ %w,x + EIw’xx(l + uo’x)] x -pAB - 0

EI(w [1 +2u + 1n? + 1w2 + 1——w2 1)
,xx 0 x x x

- EA(w x[u + 1n” + 1w2 + 1—w2 1) (3.30)
o,x 2 o,x 2 ,x 2A ,xx ,x

2

- AG(uo,xw,x),x + pAC - 0

The boundary conditions are derived by combining the last two

terms in eq. (3.10) with natural boundary terms (3.28), prior to the

substitution of statement (3.18) to (3.21).

At the rocker-pin, prescribed deformations are imposed on a small

region at the centroid of the section. On the assumption of plane normal

ends to the link, the kinematic boundary conditions at x-O are

uo - w - 0 (3.31)

Over the remainder of the section, the prescribed surface

tractions must be combined with the natural boundary terms in expression

(3.28) to be evaluated at constant x. After permitting independent

variations in the parameters, integration over the beam section yields

the following statements at,
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at x - 0,

P(t)+EA[uox+lu2 4"ng + 2 ](1+uo)

2 2

+ EIw (1 + u ) + AGu w - 0 (3.32s)

,xx o,x o,x ,x

1 3 3 2 1102 2 0 3 32b
EIw xx[ + ‘10 x + 2uo,x + 2 ,x + 2A ,xx] - ( ' )

Q(t) + EAw x(u + %u2 + 1w2 + 2 )

o x N I
R

N >
’

‘
k x

])(1 +uo,x) +AGu w- EI(w,xxx[1 +uo ] -w [w o,x ,x-u
,x ,xx ,xxx o,xx

- EI(w [u + 1u2 + §w2x + 1-w2 ]) - 0 (3.32c)

,xx o,x 2 o,x 2A ,xx ,x

These equations simply complete the problem-definition, since the values

of the pin forces P and Q cannot be determined until the problem has

been solved for the deformation displacements.

On the beam flanks, the prescribed surface traction condition must

be combined with the natural boundary terms in eq. (3.28) to be

evaluated at constant y. The result is identically zero.

The statement for the prescribed surface tractions which are

imposed on the major portion of the beam section at the rocker-slider

pin must be combined with the natural boundary term and this yields,

upon integration,

at x - L,
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, 2 2

N(t)sin0, -K(t)coso, -Ms(px)x_L 'EIw,xx(1 + uo,x) -AGuo xw x

2 2 2

- EA(1 +uo’x)(uo’ + i‘uo’x + 2",); + 21".“) - 0 (3.33s)

1:1 1 3 1‘12 10:2 + I—w2 0 (3 33b)
w,xx[ + uo,x + 2 o,x + 2 ,x 2A ,xx] '

N(t)coso, - K(t)sin0, 'Ms(pz)x-L

+ %u2 + 1w2 + l-w2 )

o,x 2 ,x 2A ,xx

EAw (u

,x o,x

+ EI(w,xx[1 +uo ] -w [w
,x ,xx ,xxx-“o,xXJH1 +uo )’x

EI(w [u +1112 +1012 +1—w2 ])x-0 (3.336)
,xx o,x 2 o,x 2 ,x 2A ,xx

+

3-4.AN'APTROXIMATE SOUUTION

The problem definition is now complete since equations of motion

and the corresponding boundary conditions have been constructed. Thus

the objective is to simplify the equations sufficiently to permit the

use of standard solution procedures.

The forcing frequency of the rocker link is much lower than the

first natural frequency in the axial mode, and hence the axial

vibrations may be neglected [23]. If second and higher-order terms are

assumed to be small in eq. (3.29) and (3.33a), then the integration of

eq. (3.29) with respect to x gives a general statement for the axial

force in the link:
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.. 2 2 2

EAuo x - pAltcos9,(x - L) - pAw,[%x - Lx + L ] (3.34)

+ N(t)sin0, - K(t)cos0. - “3(Px)x-L

Attention is now focused on eq. (3.30) which governs the flexural

vibrations of the link. Upon neglecting the shear term, second and

higher-order terms in the coefficient of E1 and third-order terms in the

coefficient of EA, this equation reduces to

EAu w - EAu w + pAC - 0 (3.35)

,xxxx o,x ,xx o,xx ,x

The axial force statement (3.34) may be substituted into eq. (3.35) to

give

0 s 2 2 .

EIw xx-[prltcos 0, -pAw,(%x -Lx) +Nsin0, -Kcoso, -M8(Px)
9 XX x-L

so so 2

- mltcoso, -%me,]w +[-pA1tcoso, ~l-pr..>,(x-L)]w’x
,xx

so so 2

+ pA[£tsin0, + w -ww, -a,(x-L)] - 0 (3.36)

where m(m-pAL) is the mass of the flexible link

A solution procedure in which normal modes are used will be

adopted for this non-linear differential equation. Since any deflection

of the beam may be expressed as the sum of deflections in the various

principal modes [24], the standard solution can be written as
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n

w(x,t) - 2 W (t)¢ (x) (3.37)

n n

npl

where Wh(t) are unknowns and ¢n(x) are the mode shapes. In accordance

with the standard approach, the derivatives of eq. (3.37) are

substituted into eq. (3.36) and the orthogonality condition utilized by

multiplying the resulting equation by ¢m(x) before integrating each term

over the length of the rocker link. This gives an equation of the form

   

so EIC1 c2 + C5 2 C3 + l/ZC. ' C7 2 C‘

W(t) + W(t) pAc, - Tho, + c, w, + pAc1(Kcosfl,

2 c, c2 + c5 M c, ..

_ __ - _______ _§__
Nsino, + %me,) + c7L c, + pAc7]ltc°so‘]

c, - c.L c. ..

- -—-;:—- a, - z: itsino, (3.38)

where the constants c,(i - 1,2,....9) are given by

L L

c, - {¢n¢n,xxxx c2 - {¢n¢n,xdx

L L

c, - Jm¢n.¢n,xxcix c, - f¢n¢n,xxdx

L L 2

c5 - {¢n¢n’xxxdx c, - {¢n¢n,xxx dx (3.39)

L 2 L
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L

Equation (3.38) is an inhomogeneous Hill's equation and the first term

in the coefficient of W yields the natural frequency of the stationary

link. If wn denotes the natural frequency of the link, eq. (3.38) can be

written in simpler form as

am.) + mow: + r(t)] - K(t) (3.40)

For the pinned-pinned beam the form of the principal modes are

sine curves [24]. Hence the characteristic function is

¢n(X) - sinnfé (3.41)

while the value of the nth principal co-ordinate Wu as that which gives

unit amplitude to the sine wave. Upon substitution of eq. (3.41) into

eq. (3.39) and integrating them, the o1 values may be found directly.

Since the transverse deflection at the midspan of the rocker link is of

interest, the mode shape ¢n(x) appearing in (3.37) may be evaluated at x

- L/2, hence

nfi

¢n(x - L/2) - sin-5 (3.42)
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The next step is to solve the Hill's eq. (3.38) for the time

dependent amplitude W(t) by a viable method. The midspan deflection of

the link may then be evaluated from (3.37) by summing over the desired

number of terms.



CHAPTER 4

SOLUTION TO HILL'S EQUATION

The Hill's equation (3.38) obtained in the preceding chapter is

linear inhomogeneous differential equation with periodic coefficients

and the system is subjected to forcing excitations of periodic nature.

This equation can be solved for both elastodynamic and quasi-static

responses, since the kinematic characteristics of the intelligent

mechanism are known. Only the steady-state solution is considered here,

which implies the system is stable and this will be verified in chapter

6. The steady-state response would the amplitude of deflection of the

rocker link.

4-1 QDASI-STAIIC RESPONSE

A straight-forward method of solving the Hill's equation is to

neglect the dynamic term(W ) and obtaining the solution directly, which

is termed as quasi-static solution. Upon neglecting the dynamic term,

the Hill's equation becomes

2

W(t)[wn + r(t)] - R(t) (4.1)

Hence the amplitude of deflection may be evaluated on a digital computer

.from the equation

 

W(t) - 23“) (4.2)

[wn + r(t)]

35
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4-2 ELASTODYNAHIC RESPONSE

The steady-state solution to Hill's equation is termed as

elastodynamic response. An explicit expression for the steady-state

periodic response is possible, but for the system under investigation an

analytical determination is not feasible. A straightforward numerical

procedure developed by Hsu [18] is used here.

4-2.1 MATRIX NOTATIONS

The Hill's equation under periodic forcing can be written in

standard state-variable form as

i(t) - C(t)x(t) + f(t) (4.3)

where

mt) W(t) 2° 1

‘(t) ' x2(t) ' fi<t> ' C(t) ' -[wn + r(t)] o '

f(t:) - {32”}

In the above equation x is a vector, C is real coefficient matrix

periodic in t with period To and f a vector also periodic in t but with

period rf. For the intelligent mechanism, to would be the period of

<2rank rotation and rf as the period of shaker excitation.
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4-2.2 NUMERICAL PROCEDURE

Let Q(t) with 0(0) - I be the fundamental matrix for the solution

of the homogeneous equation(assuming f(t)-O) corresponding to (4.3).

Then the solution of (4.3) is given by

x<t> - ¢<t)(x(0> - (I - Hflng} + xfuz). (4.4)

where the first term is the solution to homogeneous equation and xf(t)

is steady-state response and is given by

t

xf(t) - Q(t){ Ie’1(a)£(s)ds + (I - m‘lng} (4.5)

0

t

The quantities I§-1(s)f(s)ds and g appearing in (4.5) are

0

evaluated by simply using the Trapezoidal rule of numerical integration.

In this manner from Hsu, the final form of steady-state solution is

given by

-l
xf(t~) - xk + Q(t‘)(I - H) xk, x - O,l,2,....,K (4.6)

where

Xo'o
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x-A‘%;¢(A)fo+; ;p1(A)f1_1+12‘f} (4.7)
" -1 1 1—2 1—2 "

and

K

H - LII p (A)] (4.8)

-1 J

9(0) - I, identity matrix

K

Q(t ) - II p (A), ac - 1,2,....,K (4.9)

n 3'1 j

- 4.10fJ f(tj) ( )

The time step A is obtained by dividing the crank period '0 by a large

positive integer K, i.e.

ro

A - E— (4.11)

Note that the equations are written by assuming similar frequencies for

the crank and shaker excitation.

To evaluate numerically the periodic steady-state response, xf(t)

will be evaluated at the discrete station points t - tn, where

t - nA, x - 0,1,2,....,K (4.12)



39

An efficient expression for ¢3(A) appearing in the above equations

may be evaluated using Scheme I of Hsu [18], and it is given by

91(1)) ~ exv(CJA) (4.13)

By using the coefficient matrix C and the methodology found in reference

[25], eq. (4.13) can be written as

cosw A sinw A

‘A 3 j 3 (4.14)

-w sinw A cosij

J J

'1 (A) - e

where w - [mi + r (t)]1/2

J J

Upon substituting equations (4.7) to (4.12) and (4.14) into eq.

(4.6), the steady-state response or the amplitude of deflection of the

rocker link may be evaluated at discrete time step.



CHAPTER 5

EXPERIMENTAL INVESTIGATION

5-1 EXPERIMENTAL.APPARATUS

A photograph of the experimental intelligent mechanism is

presented in Fig. 5.1. The rigid coupler link is manufactured from

aluminum and the flexible rocker link is from steel. At the end of each

link, two clearance holes were drilled. These holes accommodated socket

screws which clamped each specimen to the bearing housing. Identical

ball bearings of type R4 DB 12 instrument ball bearings supplied by FAG

Bearing Limited were used at crank-ground pin and at rocker-slider end.

The rocker pin was mounted on R32 ball bearing and a cleavage design

joint was used for coupler-rocker end as shown at the top of Fig. 5.1.

Each bearing housing in the mechanism was preloaded using a Dresser

Industries torque limiting screw driver calibrated to :1 in-lbf to

eliminate radial clearence, otherwise the impact loading associated with

bearing clearances would cause the links to have larger deflections.

One end of the rocker link was connected to a Microslides Inc.

2020 cross-roller slide assembly which permitted translational motion as

shown in Fig. 5.2. This precision assembly was then bolted to a force

transducer, which permitted the force exerted by the shaker on the

slider to be carefully monitored. An accelerometer was mounted on the

slide assembly parallel to the translational motion to measure the

kinematic characteristics imposed by the vibrator, as shown in Fig. 5.2.

40
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Fig. 5.1 : Experimental Intelligent Mechanism

 

=Fig. 5.2 : Electrodynamic Shaker-Slider Assembly
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The mechanism was bolted to a large cast-iron test stand which was

bolted to the floor and also to the wall of the laborotary to provide a

substantial rigid foundation. A 0.75 h.p. Dayton variable speed d.c.

electric motor which was bolted to the test stand, powered the linkage

through a 19.05 mm diameter shaft supported on a pair of Timken tapered

roller bearings type TS4A-6. A 100 mm (4 in) diameter flywheel (see Fig.

5.1) was keyed to the shaft thereby providing a large inertia to ensure

a constant crank frequency, when operating in unison with the motor's

speed controller.

The data for the mechanism is shown in Table 5.1. The initial

ground link length was 381 mm and upon the shaker excitation, it is

variable with time. The net mass of the flexible link was 22.6 gramms.

This data will be used for computer simulation in the following

chapters.
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Crank Coupler tziocker

(rigid) (rigid) (fleXIble)

Link length, pin to pin 50 305 293.6

mm

Mass,gm

(including bearings * 157 l46.7

and joints)

Depth,mm *. l9.43 no.2

(in the plane perpen.

to the mechanism)

Hidth,mm

(in the plane of * 6.25 0.838

mechanism)

'i’mters 0.0 0.175 0.192

(center of mass, see .

F1023)

Mass moment of inergia,

- Kg-m ,

(see Fig. 2.3) * 0.005235 0.00722

 

Modulus of elasticity for rocker link, ;E=207 Gpa.

Mass density of rocker link. P= 9294.3 Kg/m3

Area moment of inertia, I=3.9588Xl0

Mass of slide assembly, "5 = 0.4l5 Kg

*Flywheel was used to provide large inertia to insure

a constant crank frequency

Table 5.1 : Data for Intelligent Mechanism

-l3 m4
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5-2 INSTRUMENTATION

A schematic diagram of the instrumentation employed in the

experimental investigation is shown in Fig. 5.3. The rated speed of the

electric motor was measured in revolutions per minute(rpm) by a Hewlett

Packard 5314A Universal Counter which was activated by an electro-

magnetic pickup model 58423, manufactured by Electro Corp., sensing a

sixty tooth spur gear mounted on the drive shaft of the rig. The gear is

shown in Fig. 5.4. The arrangement provided visual feedback to the

operator by adjusting the speed controller of the motor in order achieve

the desired crank speed.

The experimental result presents the variation of link deflections

with crank angle. Strain gages were bonded to the midspan of the rocker

link and the midspan deflections were monitored by a Micromeasurements

Group Inc., strain gage conditioner/amplifier system type 2100. In order

to relate the strain gage signal to the configuration of the

experimental mechanism, another transducer arrangement was established.

An Airpax type 14-0001 zero velocity digital pickup was employed to

sense the bolt-head at the end of the crank, when the mechanism is in

the position of zero-degree crank angle. This long hexagonal transducer

is shown in Fig. 5.4

In order to excite the shaker simultaneously with crank motion,

the signal from Airpax pickup at zero-degree crank angle configuration

will be fed to wave generator. A Wavetek digital arbitrary function

generator permits arbitrary waveforms to be generated for a wide range

of frequencies. A desired wave function is programmed into the Wavetek
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Function

Generator Visual monitoring of

crank speed(RPM)

V7 3

Power HP Universal

Amplifier Counter

V! A

Ling Electra-Corp.

Dynamic System pickup

V4ll Vibrator

A

Four-Bar 60 tooth D.C.

‘** r7 Linkage spur gear Motor

)7 i

' a a K "Links - Speed
Charge strain gaged Controlle

Amplifier

Strain Gage

zero , Conditioner and

crank-angle Amplifier system

gapggguration . *hccelerometer

dynamic ”Force

strains Transducer

05c Post-processed'

PDP ll/03 ‘_ experimental

microcomputer ’ results

  

Fig. 5.3 : Schematic Diagram of the Instrumentation
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Fig. 5.4 : Assembly of Crank and Airpax Pickup

 

Fig. 5.5 : Data-Acquisition System and Equipment
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and the signal is amplified by Hafler power amplifier model P500, prior

to feeding it to the shaker. The shaker is an air-cooled Ling Dynamic

Systems type V411 vibrator, which upon converting electrical current

into mechanical force will permit translational motion to the slide-

assembly.

The precision assembly which was bolted to a Bruel & Kjaer force

transducer, type 8200, which permitted the force exerted by the shaker

on the slider to be carefully monitored. The acceleration imposed by the

shaker upon the slide-assembly was monitored by a Bruel & Kjaer

accelerometer type 4731, mounted on the slide—assembly. The output from

the two transducers were fed to a Bruel & Kjaer charge amplifier type

2635, which enabled the force and displacement, velocity and

acceleration characteristics of the slide-assembly to be monitored.

The mechanism configuration signal, the output from the gages and

transducers were either fed to an oscilloscope or to a Digital Equipment

Corp. PDP 11/03 microcomputer. A photograph of the data-acquisition

system and the equipment used for this experimental investigation is

shown in Fig. 5.5. The oscilloscope with a C-SC camera attachment was

used for photographic recording and preliminary evaluation of the

response data.

The BNC cables from the experimental apparatus were connected to

an input-output module, bolted to the cabinet of the computer. This

device had 16 analog-digital channels, 4 digital-analog channels and two

schmidt triggers. Using the code developed for digital data-acquisition,

the kinematic output and flexural response signal was recorded from the
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zero crank angle position through 360 degrees by firing one of the

Schmidt triggers.
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5-3 EXPERIMENTAL PROCEDURE

The experimental procedure involved first determining the natural

frequency of the stationary rocker link, so that the mechanism can be

operated away from the undesirable vibrations. The mechanism under

stationary condition, the rocker link was deflected and released and the

transient vibration was recorded on the oscilloscope prior to

photographically recording it on the camera. The result is presented in

Fig. 5.6. The mechanism was then operated at constant crank frequency by

locking the cross-roller slide assembly in order to create a classical

four-bar linkage. The preliminary experimental work was to obtain a

frequency-response curve, so that desirable operating speed could be

chosen.

 

Fig. 5.6 : Transient Response of Rocker Link (wn- 18.75 Hz)
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The frequency response of the flexible rocker link is investigated

for a wide range of operating speeds. The theoretical elastodynamic

response is obtained by solving the Hill's equation. The experimental

results were obtained by operating the four-bar linkage through a range

of crank speeds and recording the resulting midspan amplitude of the

rocker link. The theoretical natural frequency of the rocker link was

computed from the Hill's eq. and it is compared with experimentally

obtained result below,

n,th - 19.32 Hz (1159 rpm)

wn,ex - 18.75 Hz (1125 rpm) (5.1)

Since the Hill's equation does not incorporate damping, the theoretical

natural frequency was found to be slightly higher than the experimental

result.

Fig. 5.7 shows the frequency response curve from analytical and

experimental investigation. The response regime shows the resonance

condition when the ratio of natural frequency(experimental result) to

operating frequency is an integer. Both curves show good correlation.

Having defined the frequency response data, operating speeds can be

chosen remote from the resonance condition.



51

 

. — ANALYTICAL

-- EXPERIMENTAL
C .
1P
A
N
A
M
P
U
T
U
D
E
(
m
m
)

k
fl
D

 
   
 

0 7 Ti I Y I I I i 1 I I I I W I I r W I I I I I If

100 135 170 _ 265 240

w. CRANK FREQUENCY (rpm) 4

fi lo 6 h 5 8 , 3

w. /w, FREQUENCY RATIO

Fig. 5.7 : Frequency-response curves for the four-bar linkage

The classical four-bar linkage was then operated at the chosen

speed to obtain the transverse deflection curves upon which the response

curves with the shaker excited will be compared. The data was then

digitally filtered with low-bound frequency set at approximately 30 Hz

and 100 Hz to yield quasi-static and elastodynamic response

respectively. The digital filtering also removed electromagnetic and

other noise sources which may have occured during the course of the

experiment.

In order to excite the shaker, the prismatic joint was unlocked

prior to programming a waveform into the function generator. The

displacement of the slider was carefully monitored by controlling the

amplifier gain. Upon maintaining a constant crank speed, the mechanism

was operated for at least two minutes in order to allow the link
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deflections to settle down to a periodic nature. This was visually

monitored on the oscilloscope along with the displacement, velocity and

acceleration of the slider.

Experimental results were obtained by implementing the following

procedure. The signal from the strain gage instrumentation was fed to

the PDP microcomputer and the results were digitally filtered. The data

was then post-processed by multiplying the digitized response by a

strain-deflection calibration factor for the rocker link specimen. This

factor was obtained by supporting the link at the ends on knife edges in

a calibration fixture shown in Fig. 5.8, prior to subjecting the midspan

to a series of known monotonically increasing transverse deflections

which were imposed and measured by a micrometer attachement on the

fixture. The corresponding voltages from the strain gages bonded to the

link were also recorded to relate strain magnitude to midspan

deflection.

 

Fig. 5.8 : Link Calibration-Fixation



'CHAPTER 6

STABILITY'ANALYSIS

6-1 STABILITY OF MOTION

It is well known that for systems with time-periodic coefficients

which are free from external forcing, the behavior of the system can be

investigated according to Floquet theory [26]. When the system is

subjected to periodic-forcing and when the homogeneous equation is

stable or asymptotically stable, then a key result one will be

interested in is the steady-state response of the system under that

forcing. Hence, the stability of the mechanism is investigated by means

of Hill’s homogeneous equation.

The Hill's homogeneous equation is given by

0(t) + W(t)[w; + r(t)] - 0 (6.1)

and the corresponding solution to (6.2) is reproduced from eq. (4.4) of

chapter 4,

th - 900mm - (I - m'lug) (4.4)

It is argued that the above equation is stable only if Q(t) is stable at

the system's period, i.e. Q(t-r). The stability of this matrix is

determined by performing an eigenvalue analysis.

The general procedure for eigenvalue analysis is as follows:

53
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1) Compute eigenvalues of Q(r)

let A1,....,An be the eigenvalues

2) Choose An - 1, one eigenvalue will always be equal to l

3) The remainder must lie inside of the unit circle in the complex plane

for stability.

i.e. system is stable if [All < l i-l, ...... ,n-l

system is unstable if [Ail > 1 for all i

Fig. 6.1 shows the analytically obtained frequency response curves

for the four-bar linkage and intelligent mechanism, where stability

analysis has been performed for a wide range of operating speeds. The

shaker displacement for the modified linkage was chosen in the range 0

to -l.35 mm (The viable waveform will be verified in chapter 7). The

discontinuos portion of the curves are parts where the steady-state

response has no meaning because the homogeneous system is unstable. Note

that the instability occurs at the same region for both mechanisms. In

the following chapters, steady-state solution is utilized by operating

in the stable region.
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CHAPTER 7

ELASTODYNAMIC RESPONSE Of THE UNMODIFIED LINKAGE AND

THE SYNTHESIS Of THE SHAKER/SLIDER.MDTION

7-1 RESPONSE CURVES FOR.THE FLEXIBLE FOUR-BAR.LINKAGE

The first set of results of interest is the midspan transverse

deflection of the flexible link of a classical four-bar linkage. The

analytical result is the steady-state solution obtained numerically from

eq. (4.6) by setting the shaker input to zero (i.e. lt-O). These

analytical results are then compared with experimentally obtained

elastodynamic deflection in order to verify the correlation between

them. A good correlation of these results will allow to make better

prediction of the response with the shaker in motion.

The main assumptions made in formulating the computer model for

simulations are:

(1) All bearings were considered frictionless and without clearance.

(2) The crank speed was assumed constant.

(3) The kinematic analysis of the flexible link was based on the

assumption that it was a rigid body

(4) Damping was neglected in the derivation of the equations of motion.

Figures 7.1, 7.2, 7.3 and 7.4 presents a comparison of the

elastodynamic response of the rocker link from analytical and

experimental investigations at crank frequencies of 148, 170, 200 and

215 rpm respectively. These curves comprises two components: the quasi-

56
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static response at the mechanism's operating frequency and a high-

frequency component at approximately the link's fundamental natural

frequency in flexure. The quasi-static response of the rocker link

obtained at 200 rpm is compared in Fig. 7.5
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Fig. 7.4 : Elastodynamic Response of the Four-bar

linkage at 215 rpm
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7-2 CURVE SYNTHESIS FOR.SHAKER/SLIDER.MOTION

7-2.l JUSTIFICATION OF WAVEFORM

The current mode of operation of the four-bar linkage may not

satisfy the prescribed design specification; namely the amplitude of

deflection may be greater than a prescribed quantity. Under these

circumstances, a linkage with two-degrees of freedom may provide a

solution whereby the motion of the slider would be controlled in a

prescribed manner in order to reduce the deflections of the rocker link.

This philosophy requires the ability to synthesize a suitable waveform

for the shaker/slider motion.

A general waveform of sine function is considered here.

it - Assin(wst + ¢8), (7.1)

where A8 is the amplitude of slider motion, we is the frequency of

excitation and d8 is the phase between crank motion and shaker

excitation. Hence, there are 3 independent variables that need to be

evaluated such that when eq. (7.1) is substituted into the Hill's eq.

(3.38), the amplitude of deflection is reduced in comparison to

classical four-bar linkage (i.e. 2;— 0). The proposed waveform becomes

more complicated if 2t is assumed to be function of sine and cosine

terms. A less cumbersome methodology is to excite the shaker using a

‘waveform based on the profile of the link response. This waveform
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requires a theoretical justification to insure the vibrational response

does not exceed the prescribed quantity.

For the purpose of discussion, the Hill's equation (3.38) is

reproduced here. The methodology proposed herein focuses on the right-

hand-side of the equation; namely the kinematic variables which provide

the principal system excitation in a high-speed mode of operation. Since

the shaker inertial term (2;) appears on both sides of the equation,

reducing the angular acceleration of the rocker link (a‘) by means of

shaker excitation does not guarantee a reduction in the elastodynamic

   

response.

.. EIc2 C2 + cs 2 c8 + l/2c, - c7 2 c‘

W(t) + W(t) pAc, - c7 Lw‘ + c, w‘ + pAc1(Kcos0‘

2 C‘ 02 + Cg M c‘ so

- Nsino‘ + %me4) + E—L - -————-— + -§—-]ltcos0‘]

1 c7 pAc,

C9 ° Cg L Cg .-

- c, a‘ - c7 ltsin04 (3.38)

The equation is analysed by neglecting the dynamic term and solving for

the quasi-static response using the following equation,

f,(c)a, + f2(t)2;

W(t) - (7.2)
2 e a

mu + f3(t) + £,(c)2t

 

where f1(t) and f2(t) are the coefficients of a4 and I; on the right

hand-side of eq. (3.38), and f2(t) is the last term in the coefficient
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of W(t).The quasi-static response is reduced by either decreasing the

numerator or increasing the denominator by shaker excitation. However a

decrease in the numerator does not necessarily increase the denominator

because of the coupling of shaker inertial terms.

The flexural midspan deflection are measured perpendicular to the

link in the plane of motion, the forcing fields imposed in this plane

must be continously modified in order to reduce the amplitude of

deflection. This requires the absolute acceleration perpendicular to the

link to be reduced. Fig. 7.6 shows the absolute acceleration a4a’

measured perpendicular to the rocker link in the plane of deflection;

where it is a function of the inertial loading of the link as shown in

eq. (7.3). Thus it is argued, if the magnitude of the absolute

acceleration can be reduced by a viable shaker motion, then so too will

the elastodynamic response, since the absolute acceleration terms

provide the principal forcing functions.

a - a c030

4a 4xy

2 o 0

a48 - f(ra‘, rw‘, 2t)coso (7.3)
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Fig. 7.6 : Absolute Acceleration of The Rocker Link

7-2.2 SYNTHESIS OF SHAKER WAVEFORM

As discussed earlier in section 7-2.l, the profile of the link

response will serve as a basis for the slider motion. Fig. 7.7 shows the

analytical quasi-static response obtained at 200 rpm. Superimposed on it

is the proposed shaker waveform, the shape being proportional to the

deflection curve. Fig. 7.8 shows the computer simulation of the absolute

acceleration of the rocker link corresponding to the proposed shaker

waveform. It shows a decrease in magnitude in the first half-cycle and

an increase in the second half-cycle, so does the elastodynamic response

as shown in Fig. 7.9. An experimental investigation was carried out by

feeding the experimental quasi-static response curve into the shaker

simultaneously with crank motion. The result is shown in Fig. 7.10,
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which correlates with the analytical result. Fig. 7.11 shows the angular

acceleration of the rocker link.

Fig. 7.12 shows the inverse of the quasi-static response as being

the proposed shaker waveform. The results corresponding to this waveform

are shown in Figures 7.13, 7.14, 7.15 and 7.16. The results obtained for

two different sets of shaker waveform are summarized in Table 7.1.

 

 

 

 

 

 
 

 

i Analytical Experimental

absolute angular deflection deflection

acceleration acceleration of of

a link link

I .. i ..

shaker st nd st nd st nd
waveform 1 half 2 lhalf 2 I hale

proportional to

link

deflection T l

I,
shaker ;

waveform I .

,is inverse of

'link

deflection           
 

'Iincrease in magnitude

ldecrease in magnitude

Table 7.1 : Variation of link response with shaker at 200 rpm
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Fig. 7.8

to quasi- static response
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: Absolute acceleration of the rocker link at 200 rpm
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Fig. 7.9 : Analytical elastodynamic response at 200 rpm

given shaker/slider waveform shown in Fig. 7.7
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Fig. 7.10 : Experimental elastodynamic response at 200 rpm
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Fig. 7.11 : Angular acceleration of the rocker link at 200 rpm

given shaker/slider waveform shown in Fig. 7.7
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Fig. 7.12 : Suggested shaker/slider waveform inverse

of quasi-static response
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Fig. 7.13 : Absolute acceleration of rocker link at 200 rpm

given shaker/slider waveform shown in Fig. 7.12
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Fig. 7.14 : Analytical elastodynamic response at 200 rpm
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Both experimental and analytical link deflections are dependent on the

absolute acceleration of the link. Note that a decrease in angular

acceleration of the link does not necessarily reduce the deflection.

The data from Table 7.1 implies that the peak response in both

halves of the cycle may be reduced by having a shaker waveform

proportional to link deflection in the first half and a waveform inverse

of the link deflection in the second half. This notion is graphically

shown in Fig. 7.17, where discontinuities on the curve occur due to the

inversion process. From the experimental point of view, excitation of

the shaker with a discontinous waveform may result in erroneous slider

motion (displacement with spikes), which is not recommended [27]. This

can be avoided by smoothing the discontinuities as shown by the modified

curve. This general approach is accomplished for any operating speed by

feeding the modified experimental quasi-static response data to the

arbitrary waveform generator which provides the excitation for the

shaker. The shaker must be carefully orchestrated with the primary

forcing function provided by the crank motion in order to reduce the

elastodynamic response of the rocker link.

This waveform will serve as a possible optimum curve for the

slider motion. In this fashion, the shaker frequency would be the same

as crank frequency and the phase would be zero. The only unknown is the

slider amplitude, which has a constraint of i8 mm. If this waveform can

reduce the absolute acceleration of the rocker link, then it may be

justified that it will in turn reduce the link deflection. As it turns

out, it does behave accordingly and the results are shown in the next

chapter.
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CHAPTERS

EXPERIMENTAL.& COMPUTATIONAL.RESUETS

In chapter 7, section 7-1, the analytical deflection of the rocker

link of a classical four-bar linkage was shown to correlate with the

experimental results. Having defined the shaker waveform, computer

simulation and experimental investigation were carried out by exciting

the shaker simultaneously with crank motion. The results are presented

for crank frequency of 148, 170, 200 and 215 rpm.

8-1 RESPONSE DATA & ABSOLUTE ACCELERATION OF THE FLEXIBLE LINE

The experimental elastodynamic and quasi-static midspan deflection

at 148 rpm are shown in Figs. 8.1 and 8.2 respectively, followed by

analytical results in Figs. 8.3 and 8.4. The absolute acceleration at

148 rpm is shown in Fig. 8.5.

The experimental and analytical response at 170 rpm is shown in

Figs. 8.6 and 8.7 respectively, followed by absolute acceleration in

Fig. 8.8. The results at 200 rpm are shown in Figs. 8.9 to 8.11. A

comparison of experimental and analytical result for the intelligent

mechanism at 200 rpm is shown in Fig. 8.12. Figs. 8.13 to 8.16 present

the results at 215 rpm
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Fig. 8.1 : Experimental elastodynamic response at 148 rpm
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Fig. 8.2 : Experimental quasi-static response at 148 rpm
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Fig. 8.4 : Analytical quasi-static response at 148 rpm
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Fig. 8.5 : Absolute acceleration of the rocker link at 148 rpm
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Fig. 8.6 : Experimental elastodynamic response at 170 rpm
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Fig. 8.7 : Analytical elastodynamic response at 170 rpm
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Fig. 8.11 : Absolute acceleration of the rocker link at 200 rpm
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the intelligent mechanism at 200 rpm
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Fig. 8.13 : Experimental elastodynamic response at 215 rpm
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8-2 KINEHAIIC RESUEIS FDR.THE FLEXIBLE LINK

The analytical and experimental slider displacement, velocity and

acceleration are compared in Figures 8.17 to 8.28. The force exerted by

the shaker on the slider are shown in Figs. 8.29 to 8.32. The simulation

of angular acceleration of the rocker link are shown in Figs. 8.33 to

8.36
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Fig. 8.17 : Shaker/slider displacement at 148 rpm
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Fig. 8.18 : Shaker/slider displacement at 170 rpm
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Fig. 8.19 : Shaker/slider displacement at 200 rpm
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Fig. 8.20 : Shaker/slider displacement at 215 rpm
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Fig. 8.21 : Shaker/slider velocity at 148 rpm
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Fig. 8.22 : Shaker/slider velocity at 170 rpm
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Fig. 8.23 : Shaker/slider velocity at 200 rpm
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Fig. 8.24 : Shaker/slider velocity at 215 rpm
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Fig. 8.25 : Shaker/slider acceleration at 148 rpm
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Fig. 8.26 : Shaker/slider acceleration at 170 rpm
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Fig. 8.28 : Shaker/slider acceleration at 215 rpm
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Fig. 8.29 : Force exerted by the shaker on the slider at 148 rpm
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Fig. 8.30 : Force exerted.by the shaker on the slider at 170 rpm
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Fig. 8.32 : Force exerted by the shaker on the slider at 215 rpm
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Fig. 8.33 : Angular acceleration of the rocker link at 148 rpm

 

 
   a” T v I v v v v v v .

o poo 150 2%: _ . as:

cuuNKAnm£(panca»

Fig. 8.3a : Angular acceleration of the rocker link at 170 rpm



 

?

 

I

I

I

, I

-1041... - "1""'T —r r—- —r— 1— v + J.

so 73o :55 ib

WWW v

3

Fig. 8.35 : Angular acceleration of the rocker link at 200 rpm
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CHAPTER 9

DISCUSSION OF RESULTS

Figures 7.1 to 7.4 in chapter 7 show that the correlation between

analytical and experimental elastodynamic response of a four-bar linkage

are extremely good, thus proving that appropriate approximating

statements have been introduced into the variational formulation and

correct solution procedure has been utilized by the principal of normal

modes.

The experimental elastodynamic response at 148 rpm in Fig. 8.1

shows a reduction of 12% in the first half-cycle, but the amplitude

remains more or less the same in the second half-cycle. Since the

fundamental response curve has a larger peak amplitude in the first

half-cycle than in second half of the cycle (for all operating speed), a

reduction in the first half would be a important design consideration.

The experimental response at 170 rpm (Fig. 8.6) shows by far the best

result with a 19% reduction in amplitude in the first half-cycle and 11%

reduction in the second half-cycle. The response curves at 200 rpm (Fig.

8.9) and 215 rpm (Fig. 8.13) shows a reduction of 15% and 7%

respectively, but the amplitude remains more or less the same in the

second half of the cycle. The analytical elastodynamic response predicts

a reduction in amplitude in the first half of the cycle, even though the

accompanying absolute acceleration is reduced at both peaks for all

operating speeds. Plausible explanations for this behaviour will now be

presented.

Firstly, in the curve synthesis of shaker, it was shown that a
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waveform with inverse of a deflection curve gave a reduction in absolute

acceleration and midspan deflection in the second half of response

curve. Hence, final waveform was modified by inversion and smoothing.

This process changed the boundary conditions of the shaker motion and

consequently the kinematic characteristics are altered slightly.

Secondly, damping was neglected in the derivation of the equations of

motion, which resulted in larger vibrational amplitude. Finally the

kinematic analysis does not incorporate the flexible body, i.e. the

analysis is based on rigid-body.

Fig. 8.12 presents analytical and experimental response curves at

200 rpm, which validate the models developed for this class of

machinery. The quasi-static response from analytical and experimental

investigation shows reduction throught the cycle for all operating

speeds.

The experimental and analytical shaker displacement data are shown

in Figs. 8.17-8.20. There is a slight discrepancy between the analytical

and experimental results. All the experimental results tend to show a

d.c. offset above the zero axis line in comparison to the analytical

results. From the experimental point of view, the shaker always tends to

move symmetrically and it is very difficult to keep the motion below the

neutral line. The shaker velocity is compared in Figs. 8.21-8.24 and the

acceleration are shown in figs. 8.25-8.28. A reasonable correlation

exists between the analytical and experimental results, even though it

is difficult to excite the shaker in a prescribed manner.
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The theoretical and experimental force exerted by the shaker on

the slider are compared in Figs. 8.29-8.32. A comparable difference

exists between the two solutions. The possible explanations are: l) the

force analysis was undertaken assuming the links are rigid-bodies, even

though the rocker link is flexible; 2) the electrodynamic vibrator might

not be properly modeled and incorporated in the force analysis. A

comparison of the angular acceleration are shown in Figs. 8.33-8.36. The

magnitude is not necessarily reduced in order to attenuate the link

deflection.

Some of the problems faced during the experimental program are

discussed here. The dynamic responses of the experimental work were

often disturbed by unknown sources of electromagnetic noise and the

results are not precisely repeatable. Thus, it was necessary to take

several data sets for the same speed and select the best curve after

first eliminating the noise disturbance by digital filtering. The

operating speed does not always remain constant (variations of i1 rpm

does exist), and this created a major problem in controlling the shaker

motion, which is triggered by the zero crank-angle configuration pulse.

The shaker/slider motion must be carefully orchestrated relative to the

crank input.

In order to attenuate the vibrational amplitude of the rocker link

to zero, a larger slider motion may be necessary. The procedure

described below will yield a shaker/slider waveform which is different

from the synthesized curve.

(1) Obtain the quasi-static response of the four-bar linkage.

Let w be the solution.
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(2) Let the quasi-static response in the Hill's equation (3.38) be the

known variable, denoted by w'.

Let w'- -w

(3) Solve for the unknown variable 2;, which is shaker acceleration.

(4) Integrate the solution obtained in step (3) to get the shaker/slider

waveform.

The above procedure yielded a shaker amplitude of approximately 10

cm. This large amplitude is beyond the constraint imposed on the slider

motion. Furthermore, a large shaker amplitude will change the

configuration of the mechanism under investigation.



CHAPTER 10

CONCLUSIONS

A methodology has been proposed to reduce the vibrational response

of a linkage mechanism at various Operating speeds. A variational

theorem has been developed and has been shown to provide a viable basis

for establishing the governing equations of motion for predicting the

response of a flexible rocker link of a four-bar linkage mechanism. An

additional input to the prismatic joint of a four-bar linkage has shown

to reduce the vibrational response of the rocker link. The waveform for

the additional input was synthesized by analysing the response profile

of the flexible link. The analytical model can be further improved by

incorporating the structural damping of the member. The stability

analysis of the system has provided a wide spectrum of stable region.

Computer simulations provide a conservative prediction for the

elastodynamic response, hence this model could be used with confidence

in an industrial computer-aided design enviroment for the design of

high-speed mechanism systems and robotic manipulators.
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CHAPTER 11

FUTURE WORK

A philosophy directed towards developing computer-controlled

intelligent machinery would be more practical for an industrial oriented

enviroment. Clearly more work must be undertaken to document the control

algorithm, whereby a microprocessor for instance would post-process the

rocker link's response data to synthesize shaker/slider waveform which

will provide an additional input to the linkage mechanism by exciting

the electrodynamic shaker. This requires a carefull orchestration of

the crank motion and slider motion.

94

 



DRUM

 



BIBLIOGRAPHY

l. A. G. Erdman and G. N. Sandor, ”Kineto-Elasto-Dynamics -A

Review of State of Art and Trends”, fleohenien eno fleenine Theory, Vol.

7, pp. 19-33, 1972.

2. G. G. Lowen and W. G. Jandrasits, "Survey of Investigation

into the Behaviour of Mehanisms Containing Links with Distributed Maas

and Elasticity". Neshanism and Mashine Ihsgrx. V01. 7. PP- 3-17. 1972.  

3. A. G. Erdman, G. N. Sandor and R. G. Oakberg, "A General

Method for Kineto-Elastodynamic Analysis of Mechanisms", ASME Jonrnel of

Enzineerins fer Industry. Vol. 948. pp. 1193-1205. 1972.

4. W. L. Cleghorn, R. G. Fenton and B. Tabarrok, ”Optimum Design

of High-Speed Flexible Mechanisms”, neonenien eno fleenine Theory, Vol.

16, pp. 399-406, 1981.

5. I. Imam and G. N. Sandor, "High Speed Mechanism Design -A

General Analytical Approach", ASME lonrnel of Engineering for Inonerrx,

Vol. 97, pp. 609-628, 1975.

6. M. R. Khan, K. D. Willmert and W. A. Thornton, "Automated

Analysis and Design of High-Speed Planar Mechanisms", Erooeeoinge of rne

5th Qfiu Applies Meghanisms anfersnse. Oklahoma City. Oklahama. 1977.

7. W. A. Thornton, K. D. Willmert and M. R. Khan, ”Mechanism

Optimization via Optimality Criterion Techniques", ASHE Journal or

neehenieel Deeign", Vol. 101, pp. 392-397, 1979.

8. Ce. Zhang and H. T. Grandin, "Optimum Design of Flexible

Mechanisms", ASME Joornal of neonanisms, Irenenieeione, eno Autonarion

1n Deeign, Vol. 105, pp. 267-272, 1983.

9. C. K. Sung and B. S. Thompson, "Material-Selection: An

Important Parameter in the Design of High-Speed Linkages”, nechenism ene

Mé£h1n§.Ih2211. Vol. 19, No. 4/5, pp. 389-396, 1984.

10. C. K. Sung, B. S. Thompson, P. Crowley and J. Cuccio, "An

Experimental Study to Demonstrate The Superior Response Characteristics

of Mechanisms Constructed with Composite Laminates", Mechaniem ene

95



96

Meohine Ineory, in press, May 1985.

11. B. S. Thompson and M. V. Ghandi, "The Finite Element Analysis

of Mechanism Components made from Fiber-Reinforced Composite Materials",

ASME paper No. 80-DET-63, 1980.

12. B. S. Thompson and C. K. Sung, "A Variational Formulation for

the Dynamic Viscoelastic Finite Element Analysis of Robotic Manipulators

Constructed from Composite Materials", ASME gonrnel of Meoneniene,

Transmissisns. and Automatics in Design. Vol. 106. N0. 2. pp. 133-190.

1984.

 13. H. Asada and P. 1. R0, "A Linkage Design for Direct-Drive-

Robotic Arms”, ASME gonrnel or Mecneniems, Irensmissione, eno Aeronation

in Benign, Vol. 107, pp. 536-540, Dec. 1985.

14. H. Asada and K. Youce-Toumi, "Analysis and Design of Semi-

Direct-Drive Arm”, Erooeeoinge 2f rhe A99, San Francisco, June 1983.

15. G. G. Lowen and C. Chassapis, "The Elastic Behavior of

Linkages = An Update". Meshanism and Machine Ibserx. Vol. 21. No 1. pp.

33-42, 1986.

16. J. H. Oliver, D. A. wysocki and B. S. Thompson, ”The Synthesis

of Flexible linkage by balancing the Tracer Point Quasi-Static

Deflection's using Microprocessor and Advanced Materials Technologies",

Mechanism and Machine Ihssrx. V01. 20. No. 2. pp- 103-114. 1985.

17. B. S. Thompson, K. Soong and C. K. Sung, ”An Experimental

Bread-Board Model For a Class of Intelligent High-Speed Machinery: some

Preliminary results", Erooeedinge or rne 2gb ogg Annlieo Meonenieme

Conferenoe", Kansas City, Vol. II, pp. IV-l to IV-4, Oct. 1985.

18. C. S. Hsu and W. H. Cheng, "Steady-State Response of a

Dynamical System under Combined Parametric and Forcing Excitation”, ASME

loornel 2f Aonlieo Mechenice, Vol. 41, pp. 371-378, 1974.

19. M. R. Smith and L. Maunder, "Inertia Forces in a Four-Bar

Linkage”. lssrnal 2f fleshasical Engineering Science. Vol. 9. pp- 218-

225, 1967.

20. B. S. Thompson, "An Elastodynamic Analysis of Planar Linkage

Mechanisms", Doctoral Dissertation , University of Dundee, Scotland,

1976.



97

21. B. S. Thompson and A. D. S. Barr, "A Variational Principle for

the Motion of Components of Elastic Mechanisms", Eroceedinge of rhe

mmmmmmfimmw.

Newcastle-Upon-Tyne, U.K., Paper No. 43, 1975.

22. B. S. Thompson and R. P. Ashworth, "Resonance in Planar

Linkage Mechanisms Mounted on Vibrating Foundations", ioornel of Sound

eno yiorerion, Vol. 49, No. 3, pp. 403-414, 1976.

23. V. V. Bolton, "The Dynamic Stability of Elastic Systems", San

Francisco: Holden-Day, 1964.

24. R. E. D. Bishop and D. C. Johnson, "The Mechanics of

Vibration", Cambridge University Press, pp. 318-320, 1960.

25. C.T. Chen, "Linear System Theory and Design",CBS, New York,

pp. 51-53, 1984.

26. P. Hartman, "Ordinary Differential Equations", Wiley, New

York, 1964. ‘

27. Ling Dynamic Systems, Instruction Manual for Vibrator model

400 Series.

 


