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ABSTRACT

EFFICIENCY COMPARISONS OE

VOTING SYSTEMS

WITH STRATEGIC VOTING

By

Laura M. Hayes

The purpose of this dissertation is to investigate the

effect of strategic voting on efficiency measures of

different multi-candidate voting systems. The voting

systems compared include the standard plurality system; the

Borda system, a weighted ranking voting system; and approval

voting, in which the number of alternatives receiving a vote

is a choice variable for the voter.

Efficiency measures have already been developed

theoretically and estimated via simulation for these voting

systems, assuming voters use sincere strategies. Given this

assumption, the Borda system is found to be the most

efficient, followed by approval voting, followed by the

standard voting system.

However, a set of sincere strategies for the voting

population does not always constitute a Nash equilibrium.

It is shown that sincere strategies do converge to a Nash

equilibrium as the voting population becomes large.

Similarly, as the degree of information the voting

population is assumed to have decreases, i.e. the standard

error of their estimates of alternatives' total votes

received increases, sincere strategies converge to a Nash
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equilibrium. Thus, for small, sufficiently knowledgeable

voting populations, efficiency measures may change with the

assumption of strategic voting as opposed to sincere voting.

A simulation of the voting systems under consideration

confirms that efficiency measures do change significantly

under these conditions. In addition, the results of the

simulation show that strategic voting can alter the ranking

of the voting systems. For one of the two efficiency

measures used, the standard voting system is found to be

most efficient, followed by the Borda system, with approval

voting being the least efficient of the three.
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INTRODUCTION

It is often necessary to make decisions which will

affect a group of individuals. Arrow [1] in his General

Possibility Theorem, proved the impossibility of

constructing a social welfare function (without using

cardinal utilities) which fulfilled the following

conditions: (1) unrestricted domain; (2) consistency with

the Pareto principle; (3) independence of irrelevant

alternatives; and (4) nondictatorship. Certainly if such a

social welfare function could be constructed it could be

used to determine which of the possible alternatives to

choose. Despite the fact that no such social welfare

function exists, the decisions remain to be made. In lieu

of using a social welfare function with these

characteristics, voting systems are often used.

There are many different voting systems to choose from,

and different voting systems may produce different outcomes.

The voting systems considered here are the standard

plurality system, the Borda system, and the approval voting

system. The standard voting system is the one commonly used

in the United States, where each voter casts one vote for

the alternative of his choice. The Borda system is a

weighted ranking system in which alternatives are ranked and
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then assigned points according to their rank. For example,

in an election with five alternatives (A, B, C, D, and E) an

individual would rank the alternatives from first to last.

For simplicity, let the alternatives be ranked in

alphabetical order. Then points are assigned as follows:

Alternative Rank Points Assigned

A 1 4

B 2 3

C 3 2

D 4 1

E 5 0

The Borda system was presented for the first time to the

French Academy in 1784 by Jean—Charles de Borda, and was

promptly adopted by the Academy. It remained in use until

1800, when it was challenged by a new member and modified

soon afterward. The new member was Napoleon Bonaparte.1

Currently, a modified Borda system is used as the selection

method for the Heisman trophy winner, as well as for several

other athletic awards.

In the approval voting system, voters are allowed to

vote for as many of the alternatives as they find acceptable

or approve of. In the example above, a voter could cast

from zero to five votes, although zero and five are

equivalent strategies in the sense that neither affects the

outcome of the election. Approval voting was first

discussed by S. Brams in 1976 [17], and there have been

efforts to have this system adopted for use in the

Massachusetts primary.
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The Institute of Management Sciences tested the

approval voting system against the standard voting system in

its 1985 annual elections. 85% of the 1,851 voters, or

1,579 voters returned the test ballot. Members were also

asked to rank the candidates, and 82% provided at least some

rankings. Three elections were used for comparison. The

results of the first election are presented here.

Candidate Official Approval

Vote Vote

A 166 417

B 827 1038

C ___208_

1828 2363

(1,562 voters)

The outcome of the election is C under the standard voting

system, while B wins under approval voting. This difference

is caused by the pattern of second choices. There is no

scope for information about second choices in the standard

voting system, but some of this information is used in the

approval voting system.

lst choice 2nd vote

A B 36%

A C 23%

B C 27%

C B 45%

As shown above, among A's followers, more approve of B than

C (36% to 23%), and more of C's followers approve of B (45%)

than B's followers do of C (27%). Using the ranking data

submitted, Little and Fishburn [87] extrapolated to obtain

the result of a hypothetical pairwise race between B and C.

Interestingly, the expected outcome of such a race is a tie,
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with both B and C obtaining 914 votes. Clearly, the choice

of voting system used impacts directly on the outcomes

achieved. The question now becomes one of determining which

voting system is "best," and the criterion which should be

used in making this determination.

A brief outline of the dissertation is presented here.

In chapters 1 and 2, the literature on voting systems is

reviewed. The literature focuses on three major areas:

1) voting systems as ways of aggregating individual

preferences, and their characteristics, e.g.

Arrow's General Possibility Theorem, work on

incentive compatibility;

2) how voting systems work in terms of individual

motivation and equilibrium: voting equilibria, and

why individuals vote; and

3) comparisons of voting systems in terms of expected

outcomes.

Chapter 1 outlines the historical background of voting

system research, while Chapter 2 defines the comparison

measures for voting systems and reviews voting system

comparisons in terms of expected outcomes. Chapter 3

presents the formal model used for simulation as well as

investigating some of the implications of the model, such as

equilibria found. Also presented is a discussion of when

sincere strategies constitute a Nash equilibrium. Chapter 4

presents the results of simulations run under the complete

information assumption and an intermediate level of
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information. A discussion of the results and their policy

implications is presented in Chapter 5, along with possible

extensions and areas for further research.
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CHAPTER 1

HISTORICAL BACKGROUND

Approaches to the study of voting systems vary widely.

The earliest work, beginning with Jean-Charles de Borda in

1781 [11] and continuing through the 19th century, appears

for the most part to be a continuing ideological debate on

the subject. Later work can be categorized into three major

areas. The first of these focuses on voting systems as a

means of aggregating individual preferences and the

characteristics of the aggregation process. The second

looks rather at individual motivation and equilibria in a

voting system, usually one specific voting system. The

third area, which can be characterized as a strictly modern

approach, compares voting systems in terms of outcomes or

expected outcomes. A great deal of the literature falls

strictly into one class or another, although there is of

course some work which crosses these lines.

1.1 W

Jean—Charles de Borda's work [11], the earliest

commonly cited on voting and voting systems, begins with an

example to show that the "single vote“ (the standard voting

system), may select the "wrong" candidate. In this example,

he makes implicit use of the Condorcet criterion, showing

that the standard voting system may select a candidate who

can be beaten by another candidate in a pairwise race.

Borda then shows that this "defect“ can be remedied either

by his method of ranking or by pairwise voting. He defines
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his method of ranking as giving points to each candidate in

accordance with their rank on a preference scale, which is

equivalent to assuming a linear utility function for voters.

During the same period, Condorcet [26],[118] discussed

the "paradox of voting" and internal consistency of social

choices. Condorcet motivated his work as follows: "...it is

in the interest of those who dispose of the public power to

employ that power only to sustain decisions that conform to

the truth, and to give, to the representatives they have

charged to decide on their behalf, rules which guarantee the

goodness of their decisions."2 He focuses on how to

determine the best rules by applying the laws of probability

to the voting process. Condorcet's own description of his

work explains much more fully his reasoning:

"...we shall first suppose assemblies composed of

voters possessing equal soundness of mind and equal

enlightenment. We shall suppose that none of the

voters influences the votes of others and that all

express their opinion in good faith. Supposing then

that one knows the probability that the opinion of each

voter will be in conformity with the truth, the form of

the decision, the hypothetical majority and the number

of voters, one seeks to discover (1) the probability of

not having an decision contrary to the truth; (2) the

probability of having a true decision; (3) the

probability of having any decision (true or false); (4)

the probability that a decision that one knows to have

been taken will be true rather than false; and,

finally, the probability of this decision when the

majority by which it has been taken is known. Such is

the subject of the first part of this book.“3

In the second part of his work, he deals more

explicitly with the standard voting system. He uses an

example in the same manner as Borda to show that the
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standard voting system "can result in a decision really

contrary to the opinion of the majority.“4

"...to have a majority decision that merits confidence,

it is absolutely necessary to reduce all opinions in

such a way that they represent in a distinct manner the

different combinations that can arise from a system of

simple propositions and their opposites; ...every

complex proposition is reducible to a system of simple

propositions, and that all the opinions that can be

formed in deliberating upon this proposition are equal

in number to the combinations that one can make of

these propositions and those contradicting them.”5

Pairwise comparisons of candidates were to be used to

determine a social ranking, and the Condorcet criterion,

although used implicitly by de Borda, was made explicit for

the first time. The candidate (or alternative) which

obtains a majority in a pairwise race with each other

candidate (or alternative), now called the Condorcet winner,

has the highest social ranking and ought to be chosen.

Condorcet showed, however, that pairwise comparisons would

not necessarily give a social preference order which was

internally consistent, foreshadowing Arrow's work. However,

he suggested that the propositions be taken in successive

order with the size of the majority, and "as soon as these

propositions produce a result, it should be taken as the

result, without regard for the less probable decisions that

follow."3

The third part of his work discusses the probability of

obtaining an inconsistent social ordering and represents the

first attempt to estimate the frequency of the paradox of

voting. Given a set of n candidates, there are n! sets of

consistent social rankings. If each candidate is paired
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with each other candidate, then there are (1/2)n(n:1) pairs,

i.e. candidate A vs. candidate B, candidate A vs. candidate

C., etc., which is equal to the number of combinations of n

things taken two at a time. In each of these pairings, a

choice must be made between the two candidates. Therefore,

2(1/2)n(n-1) gives the number of possible social ‘preference

profiles'. This minus n!, the set of internally consistent

pairings, is the number of inconsistent preference

orderings, and the limit of the percentage of inconsistent

social orderings,

2(1/2)n(n-1) - nl

2(1/2)n(n-1)

is equal to one as n-+m. Condorcet's work does not make

any obvious assumptions about individual voter preferences,

except that given two candidates, any voter is equally

likely to vote for either. He does not require that an

individual’s vote be consistent with a preference ordering.

In 1795, LaPlace essentially duplicated Borda's method

of ranking using a different line of reasoning. He assumed

that the "merit“ attributed on average to candidates was

linear, similar to Borda, and that the candidate who ought

to be elected is the one to whom the most merit is

attributed by the entire group of voters. Interestingly,

the merit attributed on average to candidates will be

linear, as will individual expected utilities for candidates

by rank, if all voter utilities are drawn from an identical

uniform distribution. The “merit“ discussed by LaPlace is
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the voter's marginal rate of substitution or ratio of

exchange of the candidate for money.

Other early work was produced by Hare, Nanson, Galton,

and Dodgson, and contained the same types of arguments. The

most extensive review of this work is contained in Black

[7]. A more rigorous approach did not appear until

Hotelling's work.

1.2W

Preferences

1.2.1 Impassihility—Theereme

Work in this area has focused on the incompatibility of

specific characteristics in an aggregation procedure. The

seminal work, Arrow's General Possibility Theorem [1],

showed the incompatibility of 1) unrestricted domain on

(ordinal) preferences; 2) consistency with the Pareto

principle; 3) independence of irrelevant alternatives; and

4) nondictatorship. Zeckhauser's [145] explanation of these

conditions is clear and concise. "(1) The procedure must

include all logically possible combinations of individuals'

orderings. (2) It must lead to Pareto-optimal outcomes.

(3) The choice between any two alternatives cannot be

influenced by the presence or nonpresence of a third

alternative. (4) No individual can always secure his choice

regardless of the presence of others."7 Arrow proved that

there is no aggregation procedure (social welfare function)

which simultaneously fulfills these conditions. Condition 2

is simply that if all individuals prefer an alternative x to
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an alternative y, or are indifferent between them, with at

least one individual strictly preferring x to y, then x is

socially preferred to (Pareto dominates) y. Any alternative

y for which an alternative x can be found which fulfills

this condition is not an acceptable outcome. Condition 3,

independence of irrelevant alternatives, is the requirement

that the social ranking between any two alternatives be

independent of any other alternative. In essence, this

limits us to pairwise comparisons of alternatives, as in

Condorcet’s method, and implicitly accepts the Condorcet

criterion. However, the General Possibility Theorem shows

that if we limit ourselves to using pairwise comparisons,

then any aggregation procedure which is to be used for all

preference profiles (unrestricted domain) is either

inconsistent with the Pareto principle (some outcomes will

be Pareto-dominated), or dictatorial.

Arrow's work was followed by many attempts at relaxing

his requirements in order to find a set of compatible

conditions with little success. Expansion and comment (e.g.

Sen [124],[125],[127], Plott [107],[108]) provided insight

into Arrow's result, but no progress in solving the problem

of social choice. To clarify the issue, the problem needed

to be stated in a different form. Gibbard [58] did just

that: instead of referring to a social welfare function, he

looked at the problem in terms of a game form.

A game form, in Gibbard's terms, is "...any scheme

which makes an outcome depend on individual actions of some
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specified sort...strategies. A voting scheme, then, is a

game form in which a strategy is a profession of

preferences..."8 He also makes use of the term

‘straightforward’ to mean a game form for which all players,

for every preference profile, have a dominant strategy. A

strategy is dominant for an individual player if, given any

set of strategies of the other players, no other strategy

available to the player will produce an outcome preferable

to him. Using these definitions, Gibbard proved that every

straightforward game form with at least three possible

outcomes is dictatorial, and every voting scheme with at

least three outcomes is either dictatorial, or can be

manipulated by an individual.9

Satterthwaite [120] independently made the same

contribution, although his terminology differs somewhat.

Instead of straightforwardness, he looks at strategy—

proofness, which in his work corresponds to Arrow's

independence of irrelevant alternatives and Pareto

conditions for social welfare functions. He showed that all

strategy-proof voting procedures are dictatorial.

Interestingly, these results break down if lotteries

over alternatives are allowed as outcomes of a social choice

function (Gibbard [59]). However, Gibbard proved that all

strategy-proof decision schemes are either random

dictatorships, pairwise majority rule over a random pair, or

a system which chooses randomly between the first two.

Unfortunately, either method violates one of Arrow’s
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conditions, which is where the alteration in terminology, at

first appearance eminently useful, comes back to haunt us.

When randomness is introduced, strategy-proofness no longer

corresponds to Arrow’s second and third conditions.

A final work in this area is discussed because of the

direct relevance it bears on this work. Postlewaite and

Schmeidler [109] considered social choice functions in terms

of (first-degree) stochastic dominance. "A person is said

to prefer in the stochastic dominance sense one lottery-

over-outcomes over another lottery-over—outcomes if the

probability of his (at least) first choice being selected in

the first lottery is greater than or equal to the analogous

probability in the second lottery, the probability of his at

least second choice being selected in the first lottery is

greater than or equal to the analogous probability in the

second lottery, and so on, with at least one strict

inequality."1° Individuals, assumed to know the relative

frequency of (ordinal) preference profiles for two social

choice functions (which may include an element of

randomness) can compare the social choice functions in terms

of stochastic dominance. If a social choice function F

stochastically dominates a social choice function G for all

individuals in a society, F stochastically dominates G

socially. This implies ex ante Pareto efficiency of F over

G. Postlewaite and Schmeidler comment that "Arrow's Pareto

principle, which is ex post, should be implied by a

reasonable notion of ex ante efficiency in a model which
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admits such evaluations."11 Their main result is that for

more than 3 voters and alternatives, there does not exist a

social choice function which is simultaneously Pareto

undominated (ex ante efficient) and straightforward.12 That

is, a social choice function which is ex ante efficient in

the stochastic dominance sense will present individuals in

the society with situations in which misrepresenting their

preferences (as a strategy) dominates their sincere strategy

of truthful revelation of preferences.

These major contributions to the social choice

literature provide a background for comparisons of voting

systems, but do not provide any positive criteria which can

be used for comparison because of the incompatibility of

desired characteristics. If these characteristics were

compatible, a social welfare function could be constructed

that would specify the “correct“ choice for every social

choice situation.

1.2.2 lneenfixe_flemnatihilitx

The concern with strategy-proofness or manipulability

has been addressed from another viewpoint, that of incentive

compatibility. In this line of research, attempts have been

made to construct voting systems which are incentive—

compatible: truthful revelation of preferences is a dominant

strategy in an incentive-compatible mechanism.

This emphasis on incentive compatibility is due in

large part to the ‘free-rider problem' which is a

consequence of the existence of pure public goods (the
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classic example is national defense). The main

characteristics of a pure public good (Samuelson [119]) are

joint consumption and nonexcludability. Joint consumption

is the property that all members of the consuming body for

this good benefit from its production (although not

necessarily equally), without preventing other consumers

from benefiting or reducing the benefits available to them.

Nonexcludability is just that: individuals cannot be

prevented from enjoying these benefits. The problem is to

determine the Pareto-optimal level of a pure public good to

be produced. The condition for Pareto-optimal production of

a good is that marginal benefit be equal to marginal cost.

Since marginal benefit is distributed across the consuming

body, the marginal benefit for one unit of a pure public

good is the sum of marginal benefits for all consumers. The

level of the pure public good should be chosen such that the

sum of marginal benefits across consumers is equal to the

marginal cost of production. The difficulty lies in

determining what the sum of marginal benefits across

consumers is for different levels of production. Generally,

individuals would be asked to provide their marginal benefit

curve. However, the method of financing production of the

pure public good influences the information provided. If

individual marginal cost (the marginal tax rate) is zero

over the level of production of the good (total cost is

constant), each individual has an incentive to overstate his

marginal benefits at each level of the pure public good,
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which will lead to overproduction of the good and a

misallocation of resources. If, on the other hand,

individual marginal cost is set to correspond with stated

marginal benefit, individuals have an incentive to

understate marginal benefits in order to reduce their

marginal cost, which leads to underproduction of the good.

Because of this difficulty, attention focused on the

formulation of a direct mechanism which would induce

truthful revelation as a dominant strategy. Dasgupta,

Hammond, and Maskin [33] review the major results of this

approach. They discuss general results on incentive

compatibility in the implementation of social choice rules.

Their discussion involves the use of a "planner" to

implement the social choice rule; however, a “planner" is

not necessary to their discussion except as a pedagogical

tool. The general problem is approached as follows: A

social choice mechanism depends on signals from the

individual agents to implement the social choice rule. It

is assumed that each individual agent sends his own signal.

The mechanism is then a rule which specifies a social state

for each list of signals sent by the individual agents. It

is assumed that each agent knows the precise form of the

mechanism being used. Then each agent realizes that he is

involved in a game, because the outcome of the mechanism

depends on the signals which he and all the other agents

send. More precisely, this is a "game form,” in which there

is a fixed set of strategies, consisting of signals, and in
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which the outcomes of these strategies are known to all

“players." It is then assumed that the players in this game

form, who are the individuals in the society, reach some

kind of equilibrium which depends on their true

characteristics - in particular, their preferences. The

mechanism generates a particular social state given these

equilibrium signals. "Presumably, one wants this social

state to be in the social choice set given the agents' true

characteristics - i.e. to be something the planner might

have chosen had he known these characteristics right from

the start. ...The basic problem, then, is to devise a game

form which always has at least one equilibrium, and whose

possible outcomes in equilibrium all belong to the

appropriate social choice set for the individuals' true

characteristics. A mechanism (or game form) with this

property is said to implemenl.the social choice rule."13

Dasgupta, Hammond and Maskin discuss mechanisms which

are individually incentive compatible, both direct and

indirect. A direct mechanism is one where the agent's

signal is a characteristic: preferences, endowments, etc.,

relevant to the economic decision to be made. In contrast,

with an indirect mechanism, agents' signals "may be quite

arbitrary, without any obvious economic significance."14

Such mechanisms can be and have been found, such as the

Clarke tax [24]. However, as Dasgupta, Hammond, and Maskin

point out, "the papers which find straightforward mechanisms

restrict themselves to rather special economic environments.
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Either the preferences are special, (Clarke [24], Green and

Laffont [61], Groves and Loeb [65]) or there is a large

economy in which no one individual's lie can significantly

affect the overall outcome (Hammond [66], Roberts and

Postlewaite [116])."15

They then present their versions of impossibility

theorems, which extend Arrow's work. First, in any "rich

economic environment"13 (e.g. unrestricted domain of ordinal

preferences), any Pareto optimal single valued social choice

rule which can be truthfully implemented in dominant

strategies is dictatorial. Secondly, in any "rich economic

environment," any Pareto-optimal single—valued social choice

rule which can be implemented in Nash strategies is

dictatorial. ,This follows naturally from their proof that

in a rich economic environment, a single-valued social

choice function which is implementable in Nash strategies is

truthfully implementable in dominant strategies.

However, this does not mean that the task is hopeless.

All that this implies is that a non-dictatorial Pareto

optimal single-valued social choice rule cannot be

‘implemented' in Nash strategies. This means that the use

of the Nash equilibrium concept implies that all possible

outcomes in equilibrium do not belong to the appropriate

social choice set for the individuals' true characteristics.

However, recall from the previous section that

straightforwardness (truthful implementation in dominant

strategies) is inconsistent with ex ante efficiency in the
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stochastic dominance sense. Postlewaite and Schmeidler's

result is that without restricting preferences, ex ante

efficiency comes at the cost of straightforwardness.

1.3WWWM

A different approach to voting systems is to look at

specific parts of a system. How are voter preferences

formed? What are admissible strategies? Finally, what is

(are) the equilibrium outcome(s)?

1.3.1 Wiring:

One branch of this literature concerns itself with the

equilibrium outcome(s) of specific voting systems.

Different assumptions about the restrictions on formation of

voter preferences account for the differences in outcomes,

but the models are set up in essentially the same way. The

most famous of these is the median voter model.

1.3.1.1 UnmimeneimaLfinatialJedeuMediaLVeteLMedeu

The spatial theory of voting has a long and

distinguished history. Black [7] states that "Galton (1907)

notices the property of the median optimum when the variable

under consideration is measurable (provided the voters'

preference curves can be taken as single-peaked)."17

However, a close reading of his citation from Galton reveals

that what Galton noted was the equilibrium property of the

median.18 The impetus to the approach must lie with

Hotelling [74] and Smithies [135], who showed the existence

of a spatial location equilibrium in a model where producers

of goods must choose a location given the existence of



posi‘

Galtc

of t]

majO'

exte:

voti

pref

if,

vote

dire

"Pea

Sing

POin

COnt

this

SYSt.

maxil

impl.

aVai;

to be

indix

PrgdL

“oulc

rate

SUE



20

positive transportation costs. Their work, along with

Galton's, inspired Black to prove the equilibrium properties

of the median position in pairwise majority voting.

Black [6] essentially limited his analysis to pairwise

majority voting, although in a related work he includes an

extensive discussion of the literature including alternative

voting methods. He first defines single-peakedness of

preferences. Preferences of a society are single-peaked,

if, for some arrangement (order) of alternatives, each

voter's utility curve over alternatives "changes its

direction at most once, from up to down.“19 In this case,

the highest point on an individual's utility curve is his

"peak preference." It is important to point out that

single-peakedness of preferences does not imply a ‘satiation

point.’ The median voter model is ordinarily used in the

context of decisions on the production of public goods. In

this context, given a method of financing production (tax

system), the individual is solving a constrained

maximization problem based on his resources (income). This

implies an optimal level of consumption of each good

available, including the public good on which a decision is

to be made. It is not unreasonable that a graph of the

individual's total utility as a function of the level of

production of the public good would be single peaked (as it

would be, for example, if there were a constant marginal tax

rate for increments of the public good and the usual

assumptions on individual utility were made).
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The median voter is the individual with the median peak

preference. Black's main result is that the peak preference

of the median voter, in this case, is the pairwise majority

voting equilibrium. As Galton deduced, anything less will

have a majority in favor of increasing it, and anything more

will have a majority in favor of decreasing it. However,

preferences must be single-peaked, and the unrestricted

domain used by Arrow will cause nonexistence of an

equilibrium point for some cases in this model.

Bowen [15] extended Black's result to an economic

context. He showed that under certain conditions plurality

or simple majority voting would produce a Pareto optimal

outcome in equilibrium, when the decision to be made is the

level of production of a pure public good. The conditions

under which this holds are: (1) There is complete and

sincere participation of the voting population; all voters

in the voting population do vote, and they vote sincerely,

i.e. in correspondence with their true preferences. (2)

The cost curves for production of the public good are known.

(3) The public good is produced under conditions of

(eventually) nondecreasing marginal cost. (4) The cost of

the public good is divided equally across the population, or

there are equal tax shares. (5) The marginal rate of

substitution of the public good for money is normally

distributed across the population at any level of the public

good. (6) The public good is nonexcludable and equally
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available to all voters, corresponding to Samuelson's

definition of a pure public good.

Conditions 2, 3, 4, and 5 imply that there are single—

peaked preferences for all members of the population for the

public good, if it is a normal good with a decreasing

marginal rate of substitution for money. Since preferences

are single-peaked, each voter has a most preferred level of

the public good, and condition 5 implies that the most

preferred level then has a continuous normal distribution

across the population. The point of maximum density of this

distribution would be the simple plurality voting winner,

and the outcome under a simple plurality system would be the

output of the public good for which this maximum density

occurs. Since the most preferred level of the public good

has a continuous symmetric distribution, the point of

maximum density coincides with both the median and mean most

preferred level. Since each voter's most preferred level is

that at which his marginal benefit is equal to his marginal

cost, this implies that mean marginal benefit equals mean

marginal cost, and therefore the sum of the marginal

benefits across the population will be equal to the marginal

cost of production of the public good. In other words, the

equilibrium point of the simple plurality system is

Pareto-optimal.

With simple majority voting over increments of the

public goods, the outcome will be the same. As shown by

Black, the median most preferred level (median peak
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preference) is the equilibrium point. However, in Bowen's

model, the median coincides with the mean, and Pareto-

optimality results. Therefore simple plurality voting or

simple majority voting will produce the optimal level of the

public good if the conditions postulated by Bowen are

fulfilled. It should be noted here that any continuous

symmetric distribution of peak preferences for which the

point of maximum density is both the mean and the median

will produce this same result.

1.3.1.2 Mulfidimensiena1_Snafia1_Medel

The multidimensional spatial model, developed by Enelow

and Hinich [40], is a simple extension of Bowen and Black's

median voter model. The major difference is that one

dimension is no longer thought sufficient to describe how

individuals' preferences are formed. An issue may have more

than one dimension, and each dimension in this model is a

dimension in the “issue space."‘ The justification for this

assumption is the prevalence of ‘package votes,’ such as a

decision on the level of two or more public goods at once.

The peak preference level of the unidimensional model is

described here as a voter's ideal point in the issue space.

However, preferences are again assumed to be single-peaked.

"The key element of spatial models is the relationship

between preference and distance. ...The weighted Euclidean

distance between y and z is defined to be "y - zNa =

[a11(y1-zi)2 + 2a12(y1-21)(y2-zz) + azz(y2-zz)2]1/2, where

a11>0, azz>0, and (a12)2<a11a22 to ensure that "y - z"a>0
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for all yiz. ...Weighted Euclidean distance defines a

symmetric preference rule...the closer (in weighted

Euclidean distance) an alternative is to his ideal point,

the more he prefers it.“2° a12=0 implies separability of

preferences; that is, the most preferred level in one

dimension is independent of the most preferred level in all

other dimensions. Given this mechanism for formation of

preferences, and again assuming, with Black and Bowen,

complete and sincere participation of the voting population,

determination of the equilibrium is made. In the classic

spatial model, it makes a great deal of difference whether

‘dimensions' are voted on sequentially or simultaneously.

Unless all voters' preferences are separable, the

equilibrium outcome will differ. Separability of

preferences along with sequential voting implies Pareto-

optimality of the equilibrium outcome, just as in the

unidimensional model. If preferences are not separable,

however, sequential voting produces differing outcomes

depending on the order in which dimensions are voted on. In

essence, this is because in all but the first election,

voters take the values of public goods decided on in

previous elections as given. In any case, results of

‘secondary' elections may be Pareto-optimal given the result

of the first election, but the converse does not hold, as

shown in Figure 1.1. This in turn implies that the overall

results of the system are not Pareto-optimal.
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Figure 1.1. Sequential Voting Equilibrium with

Reintroduction of Issues.

If voting on x1 takes place first, the level selected will

be xi. A vote on x2 then selects xi. If x1 were

reintroduced, the level chosen would be xi', etc.
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Separability or nonseparability of preferences does not

matter with respect to Pareto-optimality of outcomes if a

dimension can be re-introduced into the process. In Figure

1.1, reintroduction of the first dimension after the second

has been decided on will move the outcome towards the

Pareto-optimal point, and if this process is continued, the

limiting equilibrium point is indeed Pareto-optimal.

However, if preferences are separable but voting on

dimensions is simultaneous, the outcome is not necessarily

the peak preference point, which corresponds to the median

ideal point on each dimension. "...once both issues are

voted on simultaneously,...xmed can be beaten in a majority

contest, and furthermore there may exist no proposal that

cannot be beaten...this result is a general problem for the

multidimensional spatial model."21 A dominant point only

exists if there is a point in the multidimensional space

which is a median in all directions. "If a dominant point

exists, all that we are guaranteed is that no other point

can beat it in a pairwise contest. This does not mean that

a dominant point beats all others.“22 A dominant point

receives at least as many votes as any other point in a

pairwise contest. In other words, some other point may tie

with the dominant point in a pairwise contest. However, if

a point y is closer to Xmed than 2, then y beats z in a

majority contest. This suggests that the limiting

equilibrium point is the dominant point xmed.
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In the absence of a dominant point, the outcome of a

sequence of pairwise votes depends upon the agenda. "It is

possible to reach literally any point in the space through

same sequence of votes, pairing each previously winning

proposal with some new proposal that a majority prefers

until the chosen point is finally reached.“23 Thus the

spatial model, in the absence of a dominant point, has no

implications for outcomes without a model of agenda control,

which is beyond the scope of this work.

1.3.2 WW2.

"Much theorizing about the utility of voting concludes

that voting is an irrational act in that it usually costs

more to vote than one can expect to get in return."24 This

includes the work of Downs [37] and Tullock [141]. If we

are to apply a rational choice perspective, the expected

return from voting should be at least equal to the cost or

expected cost of voting in order to induce voters to

participate. The expected return is the difference in

utility between the voter's preferred alternative and

another alternative, times the probability that the voter is

decisive (the probability that his action in voting causes

the change in outcome). If expected return exceeds expected

cost, it is rational to vote; if not, voting is an

irrational act. Since in any election where the voting

population is large, as in the 0.8., the probability of

being decisive is very small (Riker cites 10-8), the

difference in utility must be extremely large in order to
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compensate for a relatively low cost of voting. The general

conclusion is that voting is not a rational act.

Some attempts to modify this conclusion have postulated

direct benefits from voting as opposed to its expected

return. Palfrey and Rosenthal [102] critique this approach,

commenting that "...many observations are inconsistent with

the proposition that an individual's net cost of voting...is

anywhere near constant. The greater turnout in presidential

than in off-year elections and the greater turnout in

contested than in uncontested elections belie any simple

citizen-duty story. Of course, citizen duty could be

rescued by arguing that there is a greater sense of duty in

presidential and contested elections, but such logic is

difficult if not impossible to test."25

Another approach is Ferejohn and Fiorina's [42] minimax

regret model. They contrast voting as decision-making under

risk, which is the conventional analysis, with voting as

decision-making under uncertainty. "Under risk,

probabilities can be assigned to the states of nature; under

uncertainty, state probabilities are unknown or

unknowable."28 They analyze voting under Savage's minimax

regret criterion, and come to two interesting conclusions.

First, voting for one's second choice is never minimax

regret optimal. This implies that strategic voting never

occurs, which would make the current work irrelevant if

believed. Secondly, minimax regret decision makers find it

rational to vote for their most-preferred alternative rather
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than abstain under relatively weak conditions. This model

thus avoids the difficulties that the expected utility

analysis runs into. Unfortunately, a great deal of

empirical evidence indicates that probabilities have a

significant effect on voter participation.27 The minimax

regret framework denies that these probabilities are known

or knowable.

An alternative approach to the problem of voter

participation is suggested by Palfrey and Rosenthal, who

model simultaneous determination of participation and the

probability of being decisive. "If everyone else votes, p

can readily be very small. But if no one else votes, the

probability of being decisive would be 1. Clearly, if

citizens are rational, the voting probabilities and the

turnout decisions are simultaneously determined.“28

Ledyard [85],[86] modeled simultaneity of voting

participation and the probability of being decisive in the

spatial model. Each voter knows the size of the voting

population, the spatial positions of the alternatives, and

his own preferences. His information on other voters'

preferences is limited to knowledge of the continuous

probability distribution from which they are drawn. Under

these conditions, if expected return is sufficiently large

relative to the cost of voting, turnout is positive, and he

proves existence of a symmetric equilibrium.

Palfrey and Rosenthal take a similar approach, but

model only two types ("teams") of citizens, each with
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identical preferences. Voting in this model is over two

fixed alternatives "as in a two-candidate election or in a

referendum or initiative vote between a proposal and a

status quo."29 They find the possibility of substantial

voter turnout in equilibrium, although depending on the size

of the electorate, multiple equilibria are common. Thus for

small numbers of voters "there are not strong predictions

about the size of voter turnout."30 For a large voting

population, they find only two types of equilibria: one in

which turnout approaches zero, and one in which percentage

turnout approaches twice the ‘minority' side's percentage of

the electorate.

Table 1.1 below presents percentage turnout for the

1972, 1976, and 1980 presidential elections along with the

percentage of voters registered under the ‘minority' party

(Republican or Democrat only).31 Percentage turnout can

only roughly be described as double the minority side's

percentage of the electorate, but Palfrey and Rosenthal's

conditions are not strictly complied with. There are more

than two ‘types' of citizens, and it is improbable that all

citizens of a specified type have identical preferences.

Certainly, this can be considered as some support for

Palfrey and Rosenthal's model. However, the important point

is that even with a cost of voting, substantial turnout can

be an equilibrium outcome for rational voters.
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Table 1.1 Voter Turnout as Percentage of Minority

Registration

Registered Total % Turnout % Registered

Voters Votes as ‘Minority'

(thousands) Cast (R or D only)

1972 92,702 77,719 83.84 37.5

1976 105,837 81,556 77.06 48.0

1980 112,945 86,515 76.60 41.0

1.3.3 RandemnesLinJefinLMedele

Several models have introduced randomness via

probabilistic voting. These have included Hinich, Ledyard,

and Ordeshook [69], and Fishburn and Gehrlein [56],[57]. In

these models, there is a probability that an individual will

abstain as opposed to voting his (sincere) preferences.

However, if we think of sincere voting as one possible

strategy and abstention as another, this type of model

arbitrarily restricts voters' possible strategies to these

two. Hinich, Ledyard, and Ordeshook model a two-

alternative system which makes this plausible, since sincere

voting is the unique optimal strategy when there are only

two alternatives. However, a social welfare function

fulfilling Arrow's conditions exists for a two-alternative

system, casting some doubt on the applicability of this

model. Intriligator [79] and Coughlin and Nitzan [31],[32]

use a different type of model, in which each voter has a

probabilistic density function fi(x), and for any subset A

of the set of feasible social alternatives X, la fi(x) is

the probability that individual i chooses some member of A,

given than he can unilaterally determine the social choice.



 

An ind

his st

model ‘

Pareto

contra:

density

and usi

probabi

Probabi

candida

analee

equilib:

The

all utij

implYing

lowest_I

mania

specifle

into an

SenSe.

understa]

generatil

1.3.4

Farg

voting
8y

iscuSSed

procedure



32

An individual's choice probabilities are "proportional to

his strength of preferences.“32 Intriligator develops this

model to extend standard systems (Borda, majority rule,

Pareto rule, etc.) into a probabilistic framework. In

contrast, Coughlin and Nitzan assume that each individual's

density function is also his differential utility function,

and using two candidates, develop a model based on the

probability of voting for each candidate. These

probabilities are determined by the alternatives each

candidate proposes to enact if elected. They then go on to

analyze candidate behavior in the sense that electoral

equilibrium depends on proposed policies.

The major drawback to Intriligator's model is that if

all utilities are positive, all probabilities are positive,

implying that in some case an individual would choose his

lowest-ranked alternative, gi1en_that_he_cguld_unilaterallx.

determine_the_sggial_ghgige, Unless a framework is

specified in which the welfare of other individuals enters

into an individual's utility function, this doesn't make

sense. In the current literature, the only readily

understandable context for randomness in voting models is in

generating preferences or utilities, or in tie-breaking.

1.3.4 Strafefiic_letini.

Farquaharson [41] was the first author to approach

voting systems from a game-theoretic point of view. He

discussed only binary procedures; at any point within the

procedure, voters have only two choices. This is
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distinguished from pairwise voting because all possible

outcomes are not paired with each other. In Congress, a

bill may be amended or not, but if it is amended, the

decision to be made is to pass or fail the amended bill.

The possible outcomes of passage of the amended bill and

passage of the original bill are not directly compared in

the process. In one-stage binary processes, sincere voting

(voting in accordance with one’s preferences) is always

optimal. In contrast, multistage binary processes are

"vulnerable"33 to strategic voting.

"A situation is vulnerable if another situation

i) can be obtained from the first by

substituting a strategy of at least one

voter;

ii) is preferred to it by that voter or those

voters."34

A set of strategies is "invulnerable" if it is a Nash

equilibrium, one in which "each voter can say ‘no other

strategy would have given a better outcome.’"35 As

Farquaharson points out, sincere voting may or may not be an

equilibrium. In fact, it is certain that sincere voting

will not always be an equilibrium strategy in multistage

games in which Gibbard’s conditions on unrestricted domain,

Pareto principle, and nondictatorship are fulfilled. In

this case, another strategy will be used by at least one

voter for some social preference profile.

Given this, is it reasonable to assume that voters use

sincere strategies, or is it possible that voters actually

calculate optimal strategies? ‘Sophisticated’ voting as

developed by Farquaharson (his terminology for the use of
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optimal strategies) received theoretical attention from

McKelvey and Niemi [89], focusing on legislative voting

games characterized by a finite sequence of two-alternative

issues. This theory is examined by Enelow and Koehler [39],

who look specifically at two amendment strategies: (1) amend

to save a losing bill; (2) amend to "kill a winning bill.“

In either case, the amendment is voted on first (amended

bill ab vs. bill b), followed by the vote on final passage,

with each voter voting either yes or no on each. The game

tree for this is shown in Figure 1.2.

amended bill ab vs. bill b

amended bill vs. 0 bill vs. 0

ab 9 b 9

Figure 1.2. The Game Tree for Pairwise

Majority Voting with Amendment.

If the first strategy is being employed, then the original

bill is expected to lose, and the amended bill is expected

to win. Therefore, "...the sophisticated voter realizes

that while the nominal contest on the amendment vote is ab

vs. b, the expected fate of ab and b, respectively, on final

passage indicates that the actual contest on the amendment

vote is between ab and 0. Therefore, the sophisticated

voter votes for the amendment if he prefers ab to 0 and

against the amendment if he prefers 0 to ab.”36
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Table 1.2. Possible Preference Orders, Sincere

Votes, and "Sophisticated" Votes on a Saving Amendment

and Final Passage (Amendment Expected to Pass)

preference order b>ab>¢ b>g>ab ab>b>¢ ab>g>b fi>b>ab g>ab>b

sincere votes N,Y N,N Y,Y Y,Y N,N Y,N

sophisticated Y,Y N,N Y,Y Y,Y N,N N,N

Votes on passage of a "saving amendment" (the Sarasin

amendment on House bill 4250) were compared to predicted

votes.. Actual voting patterns were: Y,Y - 204 or 48.5%;

N,N - 177 or 42.0%; Y,N - 40 or 9.5%; N,Y - 0 or 0%. 90.5%

of these vote patterns used were predicted by the theory. A

more in-depth analysis of how the vote patterns support the

theory is presented in the article. An analysis of a killer

amendment is also presented. Enelow [38] subsequently

extended this paper to conform to an "expected utility

theory of sophisticated voting."37 In this case, comparison

of the ‘lotteries’ described by the left hand and right hand

second branches determines voting on the amendment for an

individual voter. In order to test this model, "...group

rating scores were used to distinguish among congressmen by

preference types. It was then shown that the aggregate

voting patterns on a well—known example of a saving

amendment and a well-known example of a killer amendment

were consistent with the predictions of the E08 (expected

utility sophisticated) voting model for each preference

type."38 Thus these articles indicate that there is

empirical support for the notion of ‘sophisticated’

(strategic) voting.



CHAPTER 2

LITERATURE REVIEW: EXPECTED OUTCOMES

2.1W

Given the different outcomes of voting systems, an

explanation of the criteria that can be used to compare them

is necessary for any comparisons to be meaningful. Two

measures have been used in comparing voting systems:

Condorcet efficiency, and social utility of voting systems.

2.1.1 GendemeLEffieienel

In order to understand the idea of Condorcet

efficiency, it is necessary to define the Condorcet winner.

Given a set of alternatives, the Condorcet winner is that

alternative which would achieve a majority in a pairwise

race with any other alternative. For example, if there are

three alternatives A, B, and C, there are three pairwise

races possible: A vs. B, A vs. C, and B vs. C. Let A>B

indicate that alternative A achieves a majority over B in a

pairwise race. Then A is the Condorcet winner if and only

if A>B and A>C. Similarly, in a four-alternative election,

A is the Condorcet winner if and only if A>B, A>C, and A>D.

Condorcet efficiency is a measure of the extent to

which a voting system complies with the Condorcet criterion:

"...a candidate who receives a majority as against each

other candidate should be elected.“1 As Arrow points out,

this criterion implicitly accepts that there should be

independence of irrelevant alternatives. Since pairwise

majority choice may lead to intransitivity of social

36
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preferences, only those cases where a Condorcet winner

exists are used in the construction of Condorcet

efficiency. Explicitly, Condorcet efficiency is the

percentage of Condorcet winners expected to be elected by a

voting system, when they exist. By this measure, a voting

system which is more likely to elect Condorcet winners (i.e.

has a higher expected percentage of Condorcet winners) is

judged to be a “better“ voting system.

2.1.1.1 WW

One difficulty with Condorcet efficiency is that a

Condorcet winner may not exist. Existence of a Condorcet

winner is not precluded by the presence of majority voting

cycles; however, all of the alternatives in any cycle must

be beaten in a pairwise contest by another alternative

(which is the Condorcet winner) to avoid this problem. What

is the frequency of existence of a Condorcet winner? It

should be substantial if Condorcet efficiency is to be used

as a comparison measure, since it is undesirable to compare

voting systems on the basis of a minority of cases.

Fortunately, probabilities of a social preference profile

with no Condorcet winner have been calculated by Niemi and

Weisberg [99] for an infinite voting population where all

preference orders are equally likely. The probabilities are

shown in Table 2.1 below. These are limiting probabilities

for an infinite population; however, for small numbers of

voters, probabilities for existence of a Condorcet winner

are slightly higher. Until the number of alternatives
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exceeds ten, the majority of social preference profiles do

have a Condorcet winner.

Table 2.1 Probabilities of the Existence of a Condorcet

Winner for Various Numbers of Alternatives

# of alternatives P(no Condorcet P(Condorcet

winner) winner)

2 0 1

3 .0877 .9123

4 .1755 .8245

5 .2513 .7487

6 .3152 .6848

7 .3692 .6308

8 .4151 .5849

9 .4545 .5455

10 .4887 .5113

11 .5187 .4813

2.1.1.2 CendenceLEffieieneLandJiaimieLMeieritLlefing

As mentioned previously, the Condorcet winner, when it

exists, is the pairwise majority voting equilibrium. This

is true regardless of whether voters use sincere or

"sophisticated" strategies, since the Condorcet winner is a

pairwise majority voting equilibrium in either case. A

simple example should make this clear. Suppose there are

three alternatives: A, B, and C. The game trees below

diagram possible outcomes of a pairwise majority voting

game, depending on the agenda.

A

a. b. c.

Figure 2.1. Possible Agendas and Outcomes

for Pairwise Majority Voting
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Let C be the Condorcet winner. Then in Figure 2.1a, at the

first branch of the tree, individuals ranking C last cannot

prevent C from being considered as an alternative, and at

the second branch, cannot prevent it from being chosen since

a majority of the voting population sincerely prefers C and

has no incentive to vote other than sincerely. In Figure

2.1b and 2.1c, these individuals could prevent the choice of

C if they could influence the game by moving down the left

branch of the tree. However, again they are working against

a majority of the voting population which has no incentive

to vote other than sincerely. Clearly, whether voters are

assumed to vote sincerely or strategically, the Condorcet

winner remains a pairwise majority voting equilibrium.

Current legislative voting systems are characterized by

a sequence of pairwise votes. Thus, when a Condorcet winner

exists, it is the unique equilibrium outcome. Condorcet

efficiency is therefore one measure of how closely different

voting systems would correspond to current legislative

methods’ equilibria in those cases where a Condorcet winner

exists.

2.1.2 " ' "

Another way of looking at the problem of comparing

voting systems is to use a social welfare function even

though we know this cannot fulfill all of Arrow’s

conditions. Specifically, if individuals have cardinal

utilities for the alternatives in the choice set, then a

social welfare function of the form
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where T is a constant reflecting society’s aversion to

inequality, is often used to measure the social utility of

each of these alternatives. If T = 1, one way to interpret

this efficiency measure is as the a 221921 expected utility

of the outcome of a voting system, given the stated

assumptions about individual utility. It is equally likely

than an individual voter will have any of the possible

preference orderings. Thus his expected utility for the

outcome is 1/n times the expected social utility of the

outcome as measured by a utilitarian social welfare

function. Given a distribution from which utilities are

drawn and a method of determining voters’ strategies, an

expected value for social utility can be determined for each

voting system. As an example, Weber’s derivation of

"effectiveness" for the standard voting system with two

alternatives is reproduced here.2 In this work, individual

utilities are independent identically distributed random

variables drawn from a uniform [0,1] distribution. Given no

specific information about other voters’ strategies and a

‘large’ voting population, an individual voter’s optimal

strategy in the standard voting system is to cast his vote

for his most-preferred alternative.3 Since the winner is

the alternative with the most votes, the expected social

utility of the elected alternative is:

n n

Zk=o (1/2n) (R) (2/3 max(k, n-k) + 1/3 min(k, n-k)),
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n

where (1/2“) (k) describes the probability of a certain

pattern of votes occurring, max(k, n-k) is the number of

votes cast for the winning candidate and min(k, n-k) is the

number of votes cast for the losing alternative, and 2/3 and

1/3 are expected values for the utility of an alternative

ranked first and second, respectively, since the expected

values of the maximum and minimum of two independent [0,1]

uniform random variables are 2/3 and 1/3. Using Stirling’s

factorial approximation, this expression simplifies to n/2 +

W.

Weber uses a transformation of this to make social

utility measures more comprehensible. He defines the

effectiveness of a voting system as follows:

ElelecfeMLnandeml.

E(maximal) - E(random)

where E(*) is the expected social utility of the elected,

maximal, or random alternative. Values for ‘effectiveness’

of course will vary according to the scaling factor used,

which is E(random) in this transformation, but relative

effectiveness of any two systems (in terms of ranking) will

remain the same regardless of the scaling factor used. This

is a particularly nice transformation since E(random) = n/2

and E(maximal) is asymptotic to n/2 + IH7T2'Normmax (m).

Normmax (m) is the expected value of the maximum of m unit

normal random variables, and Normmax (2) = l/ffi,

simplifying the expression considerably. Effectiveness of

the two alternative standard voting system is $273 : .8165.
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This method can be used to determine the theoretic

effectiveness (hereafter referred to as social utility

efficiency) for the Borda system. The theoretic social

utility efficiency as derived by Weber, of the standard

voting system and the Borda voting system for m-alternative

elections is:

Standard voting system: 1357(m+1)

Borda system: m m+

Weber was not able to derive a formula in terms of m for the

approval voting system; however, he did derive social

utility efficiency for a 3-alternative election: 87.5%.

2.2 RelatienehiLofJemeariseLMeasuree

For voting populations which are assumed to use sincere

strategies, both comparison measures generally have given

the same rankings of voting systems, indicating some overlap

in criteria. Indeed, it is easily verified that when 1

individual utilities are i.i.d. random variables of a given

distribution, when a Condorcet winner exists, it has maximum

expected social utility over all alternatives. Since at

least a majority of voters prefer the Condorcet winner to

any other alternative, the expected social utility of the

Condorcet winner is greater than or equal to

(int[n/2]+1)(E[distmax(2)l) + (n-int[n/2]-1)(E[distmin(2)]),

where int[n/Z] is the largest integer smaller than or equal

to n/2 and E[distmax(2)] and E[distmin(2)] are the expected

values of the maximum and minimum of two independent random

variables of the given distribution. For at least a
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majority of the voting population, the utility of the

Condorcet winner exceeds that of the other alternative. In

contrast, the expected social utility of the other

alternative does not exceed

(n-int[n/2]-1)(E[distmax(2)]) + (int[n/2]+1)(E[distmin(2)]).

This implies that a voting system which always chooses the

Condorcet winner when it exists maximizes expected social

utility in these situations. Therefore, differences in

rankings which occur given the two efficiency measures may

be due to statistical variation or to the outcomes of the

voting systems in cases where the Condorcet winner does not

exist. An additional possibility is that a voting system

which has a lower Condorcet efficiency but higher social

utility efficiency chooses another alternative than the

Condorcet winner in precisely those situations in which a

smaller than majority group of voters benefit

disproportionately. This would be expected to occur in

voting systems with greater scope for strategic voting.

For the interested reader, optimality properties of

comparison measures are discussed in chapter 5.

2.3 Wes

The more modern approach of comparing voting systems by

looking at their expected outcomes was pioneered by Fishburn

[45]. Rather than analyzing the characteristics of the

process or mechanism, he analyzed the characteristics of

expected or mean outcomes.
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Fishburn’s approach was designed to fulfill many of the

previously discussed conditions on the process. To begin

with, he allowed all logically possible preference orderings

(unrestricted domain), in keeping with Arrow’s justification

that "...the decision making process should be applicable to

all possible profiles since when we choose it, we don’t know

to which profiles it will be applied.“4 In addition, all

logically possible preferences orderings are taken as

equally likely (since termed the ‘impartial culture’

assumption). He assumed there would be complete and sincere

'participation of the voting population, as in the median

voter model, and that other voters’ preferences and voting

behavior are independent of each other.

Under these conditions, Fishburn analyzed the degree to

which the Borda and Copeland extension of Borda give, or

fail to give, the same selection. The Copeland extension of

Borda is a Condorcet completion method, consisting of

pairwise comparisons of all alternatives, so in essence what

he was doing was determining the degree to which the Borda

method of ranking would produce the Condorcet winner. Since

the Condorcet winner is the result (in the absence of

cyclical majorities) which is chosen by a pairwise majority

voting system such as is used in Congress or in Parliament,

this is one way of comparing how closely the Borda system

would correspond to equilibrium outcomes of voting systems

currently used.
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Additional work by Fishburn and Brams [51],[52] and

Fishburn and Gehrlein [53],[54],[55],[56],[57] proceeds

along the same lines, comparing voting systems in terms of

their likelihood of choosing the Condorcet winner when it

exists. In an article summarizing their work, Fishburn and

Gehrlein [55] present the findings of their earlier studies.

They consider the cases of 3, 4, and 5 alternatives, but

restrict their summarization to ‘large numbers’ of voters.

Their summary of ‘simple majority efficiencies’ (Condorcet

efficiencies) for one stage procedures is presented below.

Table 2.2. Condorcet Efficiencies for Various

Voting System35 (%)

Profile Generating Method

random model 1 model 2 MAX

n=101 power 1 power 1 n=101

Procedures n=101 n=101

vote for 1 77 76 81 78

vote for 2 74 72 73 76

vote for 52 75-79

w=(2,1,0) 91

vote for 1 66 67 69 63

vote for 2 74 76 72 77

vote for 3 61 61 62 65

vote for 32 70-76

vote for $3 64-70

w=(3,2,1,0) 87 87

w=(2,1,0,0) 82 79

vote for 1 58 58 76 58

vote for 2 70 71 64 68

vote for 3 68 67 54 71

vote for 4 53 50 38 54

vote for 32 61-72

vote for 13 63-69

vote for $4 59-64

w=(4,3,2,1,0) 85 87 87

w=(3,2,1,0,0) 84

w=(2,1,0,0,0) 73 73 72
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Fishburn and Gehrlein used several methods to generate

preference profiles. These include (a) random: each of the

voters is independently and randomly assigned one of the m!

linear orders on the m candidates; (b) model 1, power 1:

same as random but recorded differently (power 2 squares the

number of voters with each preference order); (c) model 2,

power 1: each of the linear orders is selected randomly.

Each order is then sequentially assigned voters, with the

probability that n1 voters have this order assigned

according to a binomial distribution. The second order is

then taken and n2 voters assigned it, etc., until all voters

have been assigned a preference order or until the last

preference order is reached, in which case all remaining

voters are assigned it; (d) MAX: each of the preference

orders is randomly assigned an integer in {1,2,...,101} as

the number of voters who have that preference order (the

number of voters varies between m! and 101(m!)). All of

these methods have the expectation of producing the same

number of voters for each preference order, but the variance

of methods (b), (c), and (d) differs. The methods used do

"tend to generate ‘close elections’ among the m;3

contenders."6 Fishburn and Gehrlein see this as a drawback

because "the efficiency percentages...may represent only a

small proportion of relevant multicandidate elections, and

the ‘correct’ efficiency figures could well be much higher

than those given in the tables."7 However, there is no

reason to believe that rankings of voting systems would
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change by adding in ‘non-close’ elections. In these cases,

the result is pretty much a foregone conclusion regardless

of the voting system used. In fact, the relevant cases for

a comparison of voting systems are precisely those in which

the outcome would differ depending on the system used.

Table 2.2 clearly shows that the Borda weighted ranking

system achieves higher Condorcet efficiency than the

standard voting system. The approval voting system (vote

for $(m-1)) generates a range of Condorcet efficiency

numbers that in 2 out of 3 cases contains the estimated

Condorcet efficiency for the standard voting system and in

one case exceeds it. Fishburn and Gehrlein’s work produces

the following ranking: (1) Borda system; (2) approval voting

system; (3) standard voting system.

Although the work assumed sincere voting, Fishburn and

Gehrlein do discuss the possible effect of strategic voting

on Condorcet efficiencies. They argue that "approval voting

is more immune to strategic voting than any of the other =k

or 5k procedures...its efficiency estimates may compare more

favorably to the efficiencies of other procedures when

strategic voting is taken into account."8 They do not

predict the effect of strategic voting on Condorcet

efficiency of the Borda system, but do not “count its

apparent sensitivity to strategic misrepresentation of

preferences in its favor."9

Weber [143] also compared voting systems from the point

of view of their outcomes or expected outcomes. He did not
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use Condorcet efficiency as his comparison measure; instead

he used social utility efficiency. Social utility can be

considered the expected utility of a given alternative to a

randomly chosen voter. Weber, assuming equally likely

preference orders and complete and sincere participation,

performed his analysis to determine the efficiency of a

voting system in terms of social utility. Individual

utilities were drawn from a uniform [0,1] distribution, and

as previously noted, social utility was defined as the sum

of individual utilities over all voters. Weber then

determined what the expected social utility of the elected

candidate for particular voting systems would be, and by

comparing this with the expected social utility of the

alternative with maximum social utility, scaled by the

social utility of a randomly chosen alternative, developed

the social utility efficiency measure: the percentage of

maximum social utility a voting system is expected to

produce. Using statistical tools for expected value, Weber

computed the theoretical values of this efficiency measure

for an infinite population of voters.

Weber [143] showed that the Borda system, the approval

voting system and the standard voting system could be

ranked in the order given. The social utility efficiencies

of the systems for a 3-alternative race are, respectively,

87.5%, 86.6%, and 75%. Weber also showed that the Borda

system increases in efficiency as the number of candidates

is increased, whereas the standard voting system decreases
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in efficiency as the number of alternatives increases. He

also proved that sincere voting is an Optimal strategy

asymptotically, and produces a unique symmetric Nash

equilibrium. Sincere strategies are also sophisticated

optimal strategies, given no information about the

preferences of other voters.

In a subsequent article, Weber [143] first defined

essentially equivalent voting systems as voting systems

whose weights are positive affine transformations of each

other; if a positive affine transformation of an optimal

strategy under one system will yield the optimal strategy

under the other system, this implies that these voting

systems are essentially equivalent. He also showed that

every nontrivial voting system is essentially equivalent to

a unique minimal 0-1 normalized voting system ; the voting

system weights are 0-1 normalized and the voting system is

minimal in the sense that for every weight set of the

system, there is at least one vector of utilities for which

the weight set must be used in the corresponding optimal

strategy. Using this definition, it is clear that all two-

alternative voting systems are essentially equivalent to the

standard voting system, which in the previous article was

shown to have a social utility efficiency of {2/3 = 81.65%.

Following Weber’s analyses, voting systems were

compared by Chamberlin and Cohen [22]. Chamberlin and Cohen

used the comparison method of the expected percentage of

Condorcet winners (Condorcet efficiency), but also compared
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the multidimensional spatial model with the unidimensional

impartial culture model. Spatial theory assumes that there

are dimensions to an election corresponding to salient

issues, and that every voter has a preferred ideal position

in the voting space. The voter is assumed to cast his vote

in the standard voting system for the alternative or

candidate closest to him in the space that describes the

factors that are of concern to the voter. They perceive the

use of the spatial model as a generalization of the

impartial culture assumption. This is not strictly correct,

since, as noted earlier, the classic spatial model, with

individual utility being a function of weighted Euclidean

distance, gives all voters single-peaked preferences. The

standard assumptions on complete and sincere participation

continue to apply.

The voting systems which Chamberlin and Cohen compare

include the standard voting system, the Borda system, and

two multistage systems, the Hare and Coombs voting systems,

which will not be discussed here. Their impartial culture

results as presented below do not differ significantly from

previous results.

Table 2.3. Chamberlin and Cohen: Proportion of

Condorcet Winners Selected - Impartial Culture

21 voters 1000 voters

Borda system 86% 89%

standard system 69% 69%
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In contrast, their spatial model simulations produce varying

results. All voters are represented by their ideal points

in a four-dimensional space. The four numbers are generated

as follows: voter j’s position on the first dimension is

chosen from a standard normal distribution; his position on

the second dimension is generated from the first dimension

position by perturbing it with normal noise; the third

position is produced from the second with fresh noise, and

the fourth from the third likewise. All values are then

normalized to have variance 1. However, this produces an

electorate characterized by the correlation matrix shown in

Table 2.4.

Table 2.4. Expected Correlations Among Voter Dimensions

Dimension 1 2 3 4

1 — .45 .33 .28

2 .45 - .75 .68

3 .33 .75 - .83

4 .28 .68 .83 -

Candidate or alternative positions are generated in the same

way, but three variances are used: low (.04), medium (1.0),

and high (1.5). Given this structure, Chamberlin and Cohen

find that the existence of a Condorcet winner is more likely

.in the spatial model than the impartial culture assumption.

Depending on candidate (alternative) dispersion and the

number of voters, the probability ranges from 92 to 100%, as

opposed to 84-85% for the impartial culture assumption for 4

alternatives. The arbitrary correlation used in assigning

utilities to voters may have some influence on this result.
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However, as shown below, the ranking of the Borda and

standard voting system does not change. Because of the

arbitrary nature of dimensional correlation, Chamberlin and

Cohen’s results do not generalize well for the spatial

model.

Table 2.5. Chamberlin and Cohen: Proportion of

Condorcet Winners Selected - Spatial Model

21 voters 1000 voters

cand variance: low med high low med high

Borda 83 83 92 85 86 97

standard 59 53 77 27 33 70

Following Chamberlin and Cohen, Merrill [93] compared

voting systems using both Condorcet efficiency and social

utility efficiency. He also varied the candidate dispersion

in space in the spatial model relative to voters. Merrill’s

results for the impartial culture model bear a striking

similarity to Fishburn and Gehrlein’s. His spatial model

results differ from Chamberlin and Cohen’s, but he used a

multivariate normal distribution to generate voter and

candidate positions, with a variety of correlation

structures.

Table 2.6. Merrill: Proportion of Condorcet

Winners Selected (%)

Impartial Culture (25 voters)

 

# of candidates: 2 3 41 5 7 10

standard 100 79.1 69.4 62.1 52.0 42.6

approval 100 76.0 69.8 67.1 63.7 61.3

Borda 100 90.8 87.3 86.2 85.3 84.3
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Table 2.6 (cont’d.)

Spatial Model (201 voters, 5 candidates)

 

dispersion 1.0 .5

4 of dimensions 2 4 2 4

standard 61 81 27 42

approval 81 84 75 82

Borda 89 92 86 88

% with Condorcet 99+ 99+ 98 99

winner

Merrill’s dispersion is the ratio of standard

deviations of the marginal distributions for candidates and

voters. Thus if dispersion is greater than 1, there is more

variance in candidate positions than in voter positions and

vice versa. His results do indicate that as dispersion

increases, Condorcet efficiency increases for all voting

systems. If candidate dispersion is high relative to voter

dispersion, the median has a greater probability of winning,

whereas if candidate dispersion is low, extreme candidates

or alternatives have a greater probability of winning. Thus

there should exist an equilibrium level of relative

dispersion under which all distances from the center or

median of the vOting space are equally attractive to

candidates. This nonconvergent equilibrium is in strong

contrast to the median voter result of the unidimensional

model, but is due to the discrete choice set. The same

result occurs in the unidimensional model when a discrete

choice set is used. Also, the nonconvergent equilibrium

depends on the voting system. For the Borda and approval

systems of voting, the advantage of the centrist candidates

is little affected by the relative dispersion of voters and



54

candidates because they are systems in which either

approximately half or all but one of the candidates receive

votes from voters.

Another interesting point is that Chamberlin and

Cohen’s assertion that existence of a Condorcet winner is

more likely under spatial model assumptions is borne out. In

their development of the spatial model, Enelow and Hinich

show that when more than one dimension is used, the

existence of a Condorcet winner, or a median in all

directions (dominant point), becomes less and less likely as

the number of dimensions is increased. However, any point

in the issue space may be introduced as an alternative in

their model. They are essentially working with a continuous

choice set. In contrast, the discrete choice set may have

an equilibrium where the continuous one does not, and based

on Merrill’s results, an increase in the number of

dimensions increases the likelihood of an equilibrium point

(Condorcet winner) when the size of the choice set (number

of alternatives) remains constant.

Merrill’s social utility efficiency results for the

impartial culture assumption differ from his Condorcet

results only in ranking the approval voting system above the

standard voting system for a 3 alternative election.

Otherwise all rankings remain the same. His results for the

spatial model also parallel his Condorcet results.
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Table 2.7. Merrill: Social Utility Efficiency

Impartial Culture (25 voters)

 

# of candidates 2 3 4 .5 7 10

standard 100 83.0 75.0 69.2 62.8 53.3

approval 100 95.4 91.1 89.1 87.8 87.0

Borda 100 94.8 94.1 94.4 95.4 95.9

Spatial Model (201 voters, 5 candidates)

 

dispersion 1.0 .5

it of dimensions L 4 2 4

standard 74 93 22 52

approval 97 98 95 98

Borda 98 99 96 99

Note the close correspondence between social utility

efficiency and Condorcet efficiency numbers between Tables

2.6 and 2.7. The distinct relationship between the two

efficiency measures as discussed earlier is apparent here.

Merrill’s social utility efficiencies for the two and

three alternative races are appreciably larger than the

asymptotic limits calculated by Weber. He cannot be using

the same exact formulation, since Weber calculates that

expected social utility of a two alternative election for

all voting systems is 81.65%.

A final work using the expected outcomes approach to

comparisons was written by Bordley [12]. He used both the

spatial model and impartial culture assumptions to simulate

the effect of various changes in the model on social utility

efficiency. The variables analyzed included the number of

alternatives and the number of voters. Generally,

regardless of these values, rankings of the systems were (1)

Borda; (2) approval voting; and (3) the standard voting
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system. However, social utility efficiency estimates for

the approval voting system approached those of the Borda

system as the ratio of the number of voters to the number of

alternatives increased.

2.4W

2.4.1 We

In a 1974 article, Fishburn [49] took a different

approach. In this article, he analyzed how many candidates

should be voted for, as a parameter of the voting system, in

order to maximize the efficiency of a voting system, in

terms of agreement with the Condorcet criterion. He looked

at both the simple voting system (vote for k of m), and the

rank ordering system in which k are rank-ordered of m. He

determined that a simple voting system reaches maximum

efficiency by this criterion when as close to half of the

candidates as possible are voted for. He also determined

that weighted ranking systems, such as the Borda system, are

most efficient when all candidates are ranked (kzm).

Evidence about the efficiency of various values for the

k parameter, which is the number of alternatives about which

information is provided, is presented in Table 2.2. For the

standard voting system and the approval voting system,

voting for as close to half as possible of the alternatives

is seen to increase Condorcet efficiency; for the Borda

system, ranking less than all alternatives decreases

efficiency.
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Weber also analyzed how the weight sets used

(admissible strategies) affect the efficiency of the

approval voting system and the Borda system. First it must

be clarified that use of a different weight set may not

produce an essentially equivalent system, which would have

identical social utility efficiency to the original system.

Although the Borda system with weights (m,m-1,...,1) is

essentially equivalent to the Borda system with weights (m-

1,m-2,...,0), the 3 alternative system with weights (4,3,0)

is not essentially equivalent to the one with weights

(2,1,0). His analysis does show that alternative weight

sets can increase the social utility efficiency of a voting

system.

Weber [143] also directly compared three voting systems

with different parameter values:

a. vote for k of m voting system, the family in which k

e (1,...,m-1). The standard system with which we are

all acquainted has k=1.

b. the weighted ranking voting system with a single weight

set (W1,...,Wm), of which the Borda system is

representative with the weight set (m,m-1,...1). This

is in contrast to the original Borda system with weight

set (m-1,...,0).

c. the vote for-or-against k system, with weight sets

(w1,...wm) and (wi,...,wm), where the first set, with

w1 through Wk = 1, wk+1 through wm : 0 corresponds to

voting for k candidates, and the second set, with wi
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through wfl-k = 1 and wfi-k+1 through we = 0 corresponds

to voting against k candidates. Where m=3, this is the

approval voting system with k=1. With more than three

candidates, however, the approval voting system does

not fit this model because in approval voting k is a

choice variable for each voter.

Examining these three systems, Weber determined which k

would maximize the effectiveness of each voting system

according to his social utility efficiency measure. Looking

at system a, in which one votes for k of m, he determined

that its efficiency measure was:

1/(m+1) x [W] 1/2

m-l

Taking the derivative of this with respect to k and setting

it equal to zero gives the result that when m/2 = k, the

social utility efficiency of the vote for k system is

maximized. Therefore, in the vote for k system, as close to

half as possible of the candidates should be voted for. It

is easily verified that social utility efficiency is

symmetric about m/2 and that k = m/2 - 1 and k = m/2 + 1

are equivalent. Interestingly, this result corresponds to

Fishburn’s earlier work showing that Condorcet efficiency is

also maximized when k = m/2. It can be shown that if k is

iset to be m/2, then as the number of candidates increases

(ms’m), then the effectiveness of the vote for k system

approaches a constant equal to [372 (z .866 or 86.6% social

utility efficiency). This is in contrast to any fixed k as
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m increases, in which case social utility efficiency

decreases and the limiting value is zero.

In the weighted ranking voting system, the social

utility efficiency of the voting system is:

m m+

Any weighted ranking voting system has maximum social

utility efficiency when all candidates are ranked, as

opposed to any k < m.

Considering the vote for-or-against k system, Weber

showed that vote for k and vote for n-k (i.e., vote against

k) are essentially equivalent. The social utility

efficiency of the vote for-or-against k system is:

w x [leLmzkl 1/2

m(m-l)

 

where w : the expected value of the difference in utility

between a1 and b1, where [a] is the set of alternatives

voted for and [b] is the set of alternatives not voted for.

a1 - b1 is the difference in utility between the most-liked

in the set of alternatives which receive votes and the

most-liked (or least-hated) in the set of alternatives which

do not receive votes. It is easily verified that the vote

for-or-against k system has strictly greater social utility

efficiency than the vote for k system. This system has

maximum social utility efficiency when k = .368m. The

limiting social utility efficiency of the vote for-or-

against k system is 92.25%. However, the limiting social

utility efficiency of the Borda system is 100%.
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Asymptotically, the Borda system has social utility

efficiency as great as any voting system possible.

2.4.2 Vefenfieneemamnmrrelatien

Fishburn extended his work to allow for the possibility

of different ‘levels of agreement’ in the voting population.

In a 1973 article [48], he examined the effect of voter

concordance as measured by the Kendall-Smith coefficient of

concordance, W, on the existence of a Condorcet winner and

the degree to which the Borda system agrees with the

Condorcet winner. The Kendall-Smith coefficient of

concordance, developed in 1939, is a transformation of the

variance of the rank of candidates across the voting

population, adjusted for the numbers of voters and

candidates. If variance in rank is high, there is little

concordance, whereas if variance in rank is low, there is a

substantial amount of agreement among voters in the

population as to what is a desirable outcome. The analysis

showed that there is more agreement between the Borda system

and the Condorcet winner when W is extreme. If there is

either very little voter concordance or extreme agreement

across the voting population, then the systems tend to

select the same outcome. That is, the likelihood of the

Borda system selecting the Condorcet winner is greater at

the extremes of W.

Bordley [12] examined the correlation coefficient r,

with a range of -1 to 1. For the correlation coefficient,

his assumption was of two equally sized groups in the voting
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population, with the correlation being between utilities in

the two groups. When r=-1, there are two diametrically

opposed groups in the voting population, whereas when r=1,

the two groups are identical. Bordley showed that as r

changes, the best voting system will change radically. When

r=-1, dictatorship may be a preferable alternative to any

voting system, whereas when correlation is perfect, the

voting system used is of little importance with the

exception of the approval voting system. This is in

contrast to Fishburn’s results on the Kendall-Smith

coefficient of concordance and Condorcet efficiency.

Fishburn’s results showed an increase in Condorcet

efficiency for the Borda system when there was little

concordance. Presumably the difference is due to Bordley’s

assumption of diametrically opposed groups, which would

decrease the variance in rank across the voting population.

If all preference orders occurred in equal numbers, this

variance would increase; the ‘extreme disagreement’ implied

by a high Kendall-Smith coefficient is qualitatively

different from the extreme disagreement produced in

Bordley’s model by a correlation coefficient of -1.

2.4.3 cheniaramefere

Bordley’s work indicates that the effect of altering

the standard deviation of utilities is negligible.

"Changing the standard deviation only changes the scale of

utilities and does not affect results.“1° Normal or uniform

distributions for utilities of alternatives to voters were
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also compared. Bordley provided evidence to support the

idea that whether a normal or uniform utility distribution

is used, the results in terms of ranking voting systems do

not change.
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CHAPTER 3

A MODEL FOR SIMULATION OF VOTING SYSTEMS

WITH STRATEGIC VOTING

A model which investigates the results of strategic

voting as opposed to sincere voting should correspond as

closely as possible to previous work for the comparisons to

be meaningful. Therefore, the standard assumptions of

previous work, with the exception of sincere voting should

be incorporated into the model. In particular, generation

of individual preference profiles is identical to the most

commonly used method.

A more detailed explanation of how a voter’s

preferences are formed, how the possible strategies and

structure of the voting system along with these preferences

and information about other voters determine the strategy he

chooses, and how all voters’ strategies determine the

outcome of the system is presented here.

3.1 Aesumntiens_Qf_the_Mede1

1. A voter’s preference ordering is based on the utility

of various alternatives to him. Let Uij be the

cardinal utility of alternative i to voter j, where i

indexes alternatives 1 through m and j indexes voters 1

through n. All nij are independently and identically

distributed uniformly on the interval [0,1]. This

determination of cardinal utilities allows all ordinal

preference orderings, and in fact makes them equally

likely for any given individual - the ‘impartial

culture’ assumption. Arrow does not require equal

63
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probability for preference orderings, just

admissibility of all preference orderings, or

unrestricted domain.

Voters’ possible strategies for a voting system include

all weight sets W = [w1,...,wu] which conform to the

requirements of the particular voting system.

a) the Borda system strategy set includes all weight

sets [w1,...,wn] for which each w: is an element

of {0,1,...,m-1}, and w: 7 Wj for all i 1 j. Thus

voters’ possible strategies for the Borda system

include all permutations of [0,1,...,m-1].

b) the standard voting system strategy set includes

all weight sets [w1,...wm] for which each Wi is an

element of {0,1} and 2: W1 = 1. Therefore

standard voting system strategies include exactly

one weight of 1, with the remaining weights being

0.

c) For the approval voting system, the strategy set

includes all weight sets [w1,...,wm] for which

each w: is an element of {0,1}. Approval voting

system strategies may include from zero to m

weights of 1, and correspondingly m to zero

weights of 0.

Voters’ strategies determine the outcome of a voting

system. The weights assigned by the n voters are

summed over alternatives. The outcome of a voting

system is the alternative which receives the greatest
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total weight over the voting population, or arg max

23:1 Wij. All ties are broken randomly. 1

4. Voters choose optimal strategies from their possible

strategy sets by maximizing their expected utility

based on their information about other voters’

strategies.

5. Let E{uj(W1,Hz,...,Wn)} be voter j’s expected utility

as a function of all voters’ strategies including his

own. An equilibrium point is a matrix of strategies

(W1,E2,...fln) such that for each j=1,2,...,n,

E{UJ(E1:E2:°--:Hn)} 2" max E{uj(fll’fl2!°'-tfln)}

.1

Simply put, all outcomes of a voting system must be in

the set of Nash equilibria for the associated voting

game .

3.2W

3.2.1 Wheaties

A sincere strategy for an individual voter is the

strategy he chooses based only on his own preferences. Thus

for the Borda system, the sincere strategy is an assignment

of weights [w1,...,wn], where W1 = m-rank(i), which

corresponds to the voter’s true ranking of alternatives.

Then if ul ; uz 1 ..._; um, the sincere strategy assigns

weights so that w1 L wz L ... ; wm. For the standard voting

system, the sincere strategy is to assign a weight of one to

the most preferred alternative (Wi = 1 iff i = arg max ui,

otherwise w: = 0.) For the approval voting system, the

sincere strategy is to vote for every alternative of greater

than average utility [143]. Let u,= (21 ui)/m. Then if
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(ui-u) > 0, W1 = 1; otherwise w: = 0. Intuitively, u,is

the expected utility of the election when the voter does not

participate, and the individual voter "approves“ of any

alternative which betters that.

3.2.2 W

Since voters are maximizing expected utility, the

information upon which they base their expectations is an

important part of the model. In all cases voters are

assumed to know the distribution from which all individual

utilities are drawn (or, equivalently, the likelihood of

each individual preference profile). They may know the

strategies of voters other than themselves. However, the

key piece of information that is used to determine an

individual’s optimal strategy is his estimate of total votes

accruing to each of the alternatives, and the confidence

level of his estimates. If the voter has full information,

his determination of optimal strategy is based on the actual

values of total votes accruing to alternatives, 21 Wij, and

his knowledge of his own strategy. If the voter has less

than full information, it is based on his estimates E1. and

given his confidence level, the probabilities of various

outcomes occurring. The voter solves

max 21 pi(flj,&:7j)u1j

subjecEJto the constraints of the voting system. The use of

maximizing behavior on the part of voters can make a great

difference to the performance of a voting system as measured

by either Condorcet efficiency or social utility efficiency.
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3.3W

Suppose that there is a committee of three (voters 1,2,

and 3) which has to choose one of three alternatives A, B,

and C. The model specified makes all preference orders

equally likely. Consider then the problem of a

‘representative’ voter. This voter will, under the

assumption of sincere voting, choose a strategy which

corresponds to his true preference ordering. Outcomes of

sincere strategies for the standard and Borda voting systems

are presented in Table 3.1, along with the Condorcet winner

for the given preference profile. Because of the equal

likelihood of individual preference orders and symmetry of

the system, the Condorcet efficiency of a system given a

profile for voter 1 is the same as that for the system. The

outcomes shown are used to determine CondOrcet efficiencies

for the standard voting system and the Borda system with

sincere voting, which are 88.24% (30/34) and 95.59%

(32.5/34) respectively.

Table 3.1. Outcomes for the Standard and Borda

Voting Systems with Sincere Voting

Voter 1: A>B>C

2 \a I 92329 I eeC>E I 32929 I BZC>9 a 92923 1 92326 I

A>B>C : a/a/a : a/a/a : a/a/a :a/a,b/a: a/a/a : a/a/a :

A>C>B : a/a/a : a/a/a : a/a/a : a/a/a : a/a/a : a/a/a :

B>A>C : a/a/a : a/a/a : b/b/b : b/b/b : */a/a : */b/b :

B>C>A :a/a,b/a: a/a/a : b/b/b : b/b/b : */*/X : */b/b :

C>A>B : a/a/a : a/a/a : X/a/a : */*/X :c/a,c/c: c/c/c :

C>B>A : a/a/a : a/a/a : x/b/b : */b/b : c/c/c : c/c/c :

Entries are standard outcome/Borda outcome/Condorcet winner.

A * indicates that a tie occurs among all alternatives,

which is broken randomly. Where two alternatives are

listed, only those two are tied.
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When instead voters choose optimal strategies, a Nash

equilibrium point will determine the outcome. Possible

strategies for the standard and Borda systems and outcomes

given total votes accrued are presented below.

Table 3.2 Possible Strategies and Outcomes Given

Others’ Strategies

3.2.1: Borda System

n H:

W115 2,1,0 2,0,1 1,2,0 1,0,2 0,2,1 0,1,2

4.2.0 a a a a a, a

4,0,2 a a a a fl 3,0

4.1.1 a a a a a a

3,3,0 a a b a b b

3,0,3 a a a c c 0

3,2,1 a a a,b a b *

3,1,2 a a a a,c * c

2,4,0 b a1h b b b b

2,0,4 a+g c c c c 0

2,3,1 a,b a b * b b

2,1,3 a a,c * c c 0

2,2,2 a a b c b 0

1,4,1 h h h h h h

1.1.4 1: c c e c e

1:332 x b. i b. C h b,c

1,2,3 X i c h c b,c c

0,4,2 h h h h h b,c

0,2,4 c c h+c c c c

0,3,3 h c h c h 0

3.2.2: Standard System

n 35

W115 1,0,0 0,1,0 0,0,1

2,0,0 a a 3.

0,2,0 h h h

0,0,2 9. c Q

131:0 a b *

1,0,1 a * 0

0,1,1 X i h 0

‘Optimal’ strategies for a voter with A>B>C are underlined.

In the rows marked with an X, where more than one strategy

is underlined, determination of the optimal strategy depends

on whether the expected utility from a random choice exceeds

the individual’s utility for his second-ranked alternative.

If strategies are equivalent in terms of payoffs, the voter

is assumed to maintain the current strategy (usually the

sincere strategy).
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If a preference profile is given, sincere strategies

can be determined and then voters checked individually to

see if an increase in expected utility can be obtained by

changing strategy. When no voter can unilaterally increase

his expected utility given the strategies of others, a Nash

equilibrium has been reached.

Given the classic majority cycle profile, either one,

two or three Nash equilibria will be found for the standard

voting system.

Voter 1: A>B>C

Voter 2: B>C>A

Voter 3: C>A>B

If all voters have expected utility for a random choice

(EU(*)) exceeding the utility of their second-ranked

alternative (uz), sincere voting will be the only Nash

equilibrium found. If exactly one voter has u2>EU(*), that

voter will vote for his second choice, which will be the

Nash equilibrium outcome found. If more than one voter has

uz>EU(*), then the number of voters with this characteristic

is the number of equilibria this method of solving can find.

The equilibria found are not equally probable for a given

social preference profile. However, the probability of a

particular equilibrium can be determined using the

probability that voters’ cardinal utilities have specific

characteristics, and the frequency with which this

equilibrium is found will reflect this probability.

The equilibrium outcomes of the 3-alternative 3 voter
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election for the standard and Borda voting systems, assuming

voters choose optimal strategies, are shown in Table 3.3.

Table 3.3 Outcomes for the Standard and Borda

Voting Systems with Strategic Voting

Voter 1: A>B>C

A>B>C : a/a/a : a/a/a : a/a/a :a/a,b/a: a/a/a : a/a/a :

A>C>B : a/a/a : a/a/a : a/a/a : a/a/a : a/a/a : a/a/a :

B>A>C : a/a/a : a/a/a : b/b/b : b/b/b : I/l/a : II/2/b:

B>C>A :a/a,b/a: a/a/a : b/b/b : b/b/b : */*/X :III/3/b:

C>A>B : a/a/a : a/a/a : I/1/a : */*/X :c/a,c/c: c/c/c :

C>B>A : a/a/a : a/a/a : II/2/b:III/3/b: c/c/c : c/c/c :

Entries are standard outcome/Borda outcome/Condorcet winner.

Numbered outcomes have probabilities for each of the

alternatives being an equilibrium outcome:

I: 15/24 a + 8/24 b + 1/24 c

II: 8/24 a + 15/24 b + 1/24 c

III: 1/24 a + 15/24 b + 8/24 c

1: 19/24 a + 4/24 b + 1/24 c

2: 4/24 a + 19/24 b + 1/24 0

3: 1/24 a + 19/24 b + 4/24 c

Condorcet efficiencies are now 93.38% for the standard

voting system and 95.22% for the Borda system. Condorcet

efficiencies clearly do change as the assumption of sincere

voting is dropped. The Borda system suffers a slight

decrease, while the standard voting system performs

significantly better.

3.4W

Previous work has either assumed that voters use

sincere strategies or, alternatively, that voting takes

place under zero information conditions. Particularly for

committee voting, zero information is not the most realistic

assumption to make. Frequently committees have one or more

‘vocal’ members whose preferences are common knowledge.
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The example in the previous section assumed complete

information. Let us see how ‘incomplete’ information

affects Condorcet efficiency under the standard voting

system. As before, voters may have any preference profile,

but now know only the strategy of voter 3 beside their own.

This of course implies that voter 3 knows only his own

strategy.

Table 3.4. Possible Strategies and Expected Utility

for Voters 1 and 2, Given Voter 3’s Strategy

EU(HJ) ‘ 11.:

Voter 3

110:0 HA

4/9(uA uB)+1/9(uc)

4/9(uA uc)+l/9(uB)

0,1,0 4/9(uA + uB)+1/9(uc)

uB

4/9(u3 + uc)+1/9(uA)

0,0,1 4/9(UA uc)+1/9(u8)

4/9(u8 + uc)+1/9(uA)

uc

+
~
+

+

O
O
H
D
O
H
O
O
H

C
H
O
O
H
O
O
I
—
‘
O

H
O
O
H
O
O
H
O
O

Our representative voter’s optimal strategy again depends on

his cardinal utilities. However, where he previously had a

50% chance of preferring the insincere strategy on the basis

of his expected utility, he now has only a 20% chance of

this occurring (P[(4uA+uc)<5uB]). The median of three

independent uniform random variables (A>B>C) is distributed

uniformly on [C,A]. The conditional probability density

function of the median of three independent uniform random

variables on the same interval is 1/(A-C). Therefore

P[(4A+C)<5B] = I?4A+C)/5 1/(A-C) dB = 1/5. With this

specification of information structure, the equilibrium
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outcomes of the standard voting system are as shown in Table

3.5.

Table 3.5. Equilibrium Outcomes of the Standard

Voting System When One Specific Voter’s Strategy is Known.

Voter 1: A>B>C

E
D

/ v v v

A>B>C

A>C>B

B>A>C

B>C>A

C>A>B

C>B>A I
I
I
I
I
I
.

I
I
I
I
I
I

I
I
I
I
I
I

I
I
I
I
I
I

O
(
)
O
J
*
O
J
W

I
I
I
I
I

'

Numbered outcomes have probabilities for each of the

alternatives being an equilibrium outcome:

1: .64 a + .36 b

2: .6933 a + .2533 b + .0533 c

3: .2667 a + .2667 b + .4667 c

4: .2667 a + .4667 b + .2667 c

5: .2133 a + .5733 b + .2133 c

In this case, Condorcet efficiency for the standard voting

system is 85.33%.

If two voters’ strategies are known, the results change

again. Suppose the strategies of voters 2 and 3 are known.

Both of these voters calculate optimal strategies in

accordance with Table 3.4, while voter 1 uses Table 3.2.2.

Then results are as shown in Table 3.6.

Table 3.6. Equilibrium Outcomes of the Standard

Voting System When Two Voters’ Strategies are Known.

Voter 1: A>B>C

2 \a 92329 EZCZB I B>ezc I 82929 I C>BZB I 92B>e I

A>B>C : a l a : a : a : a : a :

A>C>B : a l a : a : a i a : a :

B>A>C : a : a : b : b i 1 : 2 :

B>C>A : a : a : b I b : 3 : 4 :

C>A>B : a : a : 1 : 3 : c : c :

C>B>A : a : a : 2 i 4 : c : c :
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Table 3.6 (cont’d.)

Numbered outcomes have probabilities for each of the

alternatives being an equilibrium outcome:

1: .1667 a + .6667 b + .1667 c

2: .1333 a + .7333 b + .1333 c

3: .1333 a + .5333 b + .3333 c

4: .1067 a + .6267 b + .2667 c

Condorcet efficiency in this case is 91.33%.

Interestingly, Condorcet efficiency does not follow a

predictable pattern given the information level. Condorcet

efficiencies when 0, 1, 2, and 3 voters’ strategies are

known are 88.24%, 85.33%, 91.33%, and 93.38%. This is due

in part to the asymmetry of information between voters.

An important point here is that in the 3 voter, 3

alternative standard voting game, it is always in the

voter’s interest to reveal his strategy. Presented below

are the probabilities of first, second, and third choices

being chosen by the system if the voter either does or does

not reveal his strategy.

Table 3.7. Probabilities of Voters’ lst, 2nd, and 3rd

Choices Being Chosen by the Standard Voting System Given

the Information Structure of the Game.

zero information .6296 .1852 .1852

one voter known

strategy revealed .6919 .1541 .1541

strategy unknown .5784 .2252 .1963

two voters known

strategy revealed .6517 .1822 .1661

strategy unknown .5856 .2533 .1611

three voters known .6296 .2176

The first voter to reveal his strategy does so because this

.1528

policy stochastically dominates that of concealing his
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strategy (zero information). The same holds true for the

second and third voters, who compare their previous

strategies of one voter known, strategy unknown, and two

voters known, strategy unknown, respectively.

Interestingly, this implies that an incomplete information

game, at least in this example, is not an equilibrium

outcome, because it is in each individual’s interest to

reveal his strategy. However, when the voting population

becomes larger, it may in reality be difficult for each

individual voter to communicate his strategy to all other

voters unless there is systematic reporting, such as on

support for various bills before Congress. An incomplete

information game may therefore occur.

3.5 Sincere Strategies and Nash Equilibria

It has been shown [58],[120] that every non-dictatorial

voting system with at least three alternatives is

manipulable. That is, there is always some social

preference profile for which an individual can improve his

utility by misrepresenting his preferences. In other words,

there is always a case for which sincere strategies do not

constitute a Nash equilibrium. Given the stated assumptions

about voters’ behavior and an infinite voting population,

Weber [139] showed that sincere strategies are

asymptotically optimal if only the distribution from which

cardinal utilities are drawn is known to voters besides

their own utilities. To show this, he used the fact that

the number of votes cast by one voter for a particular
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candidate and the probability that this number of votes is

critical (changes the outcome of the election) are

asymptotically proportional. Then subjective expected gain

from a vote vector [w1,...wm] is asymptotically proportional

to

chd (uc-ud) max {0, wc-wd} = m[2c wc(uc-u)].

An optimal strategy is then an assignment of weights which

maximizes 2c wc(uc-u), and Weber demonstrates the optimality

of sincere strategies for each voting system, showing that

sincere strategies under these conditions produce a unique

symmetric Nash equilibrium.

It can be shown that either an infinite voting

population or zero information conditions are sufficient for

sincere strategies to constitute a Nash equilibrium, and

that both are not needed.

3.5.1 An_1nfinife_!efing_Benuleiien

A set of strategies is not a Nash equilibrium if for

any voter j, there exists some strategy H for which

EIuIOIIHJIlH > Efua'mgvmfljn.

where W213 is the set of strategies for all other voters.

Clearly, an individual must be able to change the outcome of

the voting system by altering his strategy for (fl?#j,flj) to

be excluded from the set of Nash equilibria.

Ihegrem_1;_As the voting population becomes large, i.e.

ne-m, the probability that sincere strategies constitute a

Nash equilibrium approaches one.

Erect (standard voting system):
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For the individual voter, any Wij is a binomial random

variable (either a vote is cast for it or not), with p =

1/m. Then W1 = 25 Wij is distributed approximately normally

with mean np n/m and variance np(1-p) = n(m—1)/m2, and

the W1 have an approximate multivariate normal distribution.

In order for an individual voter to change the outcome of

the system, there must be some [W1 - Wk] 3 1. That is, the

voter’s maximum weight assignment of one can cause the

ordering of two totals to change. Let Y = W: - Wk. Then Y

z 2 2

has a mean uy = pw - pa = 0; and variance 0y : Ow + Ow +

i k

20w w . Because of the relationship between the covariance

i k

and correlation coefficient this variance can be computed

exactly; the correlation coefficient is —1/(m-1).

Intuitively, when one of the W1 is above its mean, the

others are expected to be slightly below the mean.

Computing this, a variance of a: = 2n(m-2)/m2 is obtained.

Obviously, as n-rm, the variance of Y becomes infinite.

Therefore P{|Wi - Wk] 3 1} = P{—1 g Y s 1}, the probability

that Y falls within the specified interval, approaches zero.

Thus scope for strategic behavior diminishes asymptotically

and the probability that sincere strategies constitute a

Nash equilibrium approaches one. An analogous proof can be

constructed for the Borda system and the approval voting

system (see appendix A).

3.5.2 WWW

Recall that voters choose optimal strategies based on

their information about other voters’ strategies (assumption
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4). I will assume that this information is obtained by

sampling the voting population and that the information

obtained is correct. As an individual voter’s sample size

becomes smaller, his estimates of the total votes accruing

to alternatives become less accurate, and their variances

increase. Specifically, let W1 be representative voter j’s

estimate of total votes accruing to alternative i and n: be

the number of voters sampled, with W: being the sample

total. Because of the independence of the uij, the voter’s

best estimate W1 is

w: = wI + (n - ns) E(Zi w:5)/m,

where E(Zi Wij) is the expected total weight for an

individual voter. For the standard voting system and the

Borda system this can be calculated precisely since it is

not random, but for the approval voting system it must be

designated as an expectation. The variance of W1 is (n -

ns) times var(wij). If n: = n, variance is zero and the

voter has complete information. If n: = 0, then W: =

A

n E(Ej Wij)/m, and the variance of W1 is n times var(wij),

which is the zero information condition used by Weber.

Ihegrem_2; As individual voters’ estimates of other voters’

specific strategies become less accurate, i.e., their sample

size becomes smaller, the probability that sincere

strategies constitute a Nash equilibrium approaches one.

Erggf; As shown above, as sample size diminishes, the

limiting condition is the zero information condition used by

Weber. It remains to be shown that with zero information,
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the sincere strategy is the optimal strategy for an

individual voter. Recall that Weber used the asymptotic

proportionality of the number of votes cast by one voter for

a particular candidate and the probability that this number

of votes is critical (p1). With this, he shows that

subjective expected gain from a vote vector [Wi,...,Wm] is

asymptotically proportional to m[21 w1(u1-u)]. Asymptotic

proportionality of pi and w1 is a sufficient but not

necessary condition for this result. The necessary

conditions are that P1, the probability that outcome 1

occurs, be a positive function of w1 (P1 = f(w1)), with

5P1/5w1 > 0; 53P1/5w12 L O; 21 P1 = 1

That is, the probability of a specified alternative 1

occurring is strictly positively related (increasing at an

increasing rate) to the number of votes cast for alternative

1, w1, within the constraints of the voting system. This

condition holds for the model employed here.

Under zero information conditions, the probability of

occurrence of a specified alternative increases at an

increasing rate with w1, with a strict one-to-one

correspondence of w1 and P1. Therefore, given that the sum

of the w1 is a constant, a vote vector which maximizes 21

w1(u1-u) over W also maximizes 21 f(w1)u1 = 21 p1u1 over W,

or expected utility under the constraints of the voting

system, and is an optimal strategy for the voter. However,

the vote vector which does this is simply the sincere

strategy, as shown by Weber. Therefore, under zero
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information conditions, sincere strategies constitute a Nash

equilibrium.

As an example for the standard voting system, consider

the following three-alternative, three voter election. For

representative voter j, possible values of Egg: are shown in

the left-hand column, along with their probable occurrence

in parentheses. Voter j’s possible strategies of voting for

alternatives A, B, or C, and the possible outcomes of the

strategy are shown in columns 2, 3, and 4.

Table 3.8. Strategies and Possible Outcomes of a

Three-Alternative,Three Voter Election.

n HJ

Hin‘ A =[1.0.01 B = [0.1.0] C = [0.0.1]

[1.1.0] (2/9) a b *

[1,0,1] (2/9) a X 0

[0.1.1] (2/9) * b 0

[2,0,0] (1/9) a a a

[0,2,0] (1/9) b b b

[0,0,2] (1/9) c c c

*A tie occurs which will be broken randomly.

It is easily verified that if voter j votes for alternative

A, his expected utility is

pAUA + pBuB + pcuc = .6926 uA + .1852 us + .1852 uc.

For the standard and Borda voting systems, given the

number of voters and alternatives, any vote vector has a

corresponding probability vector, and a permutation of the

vote vector corresponds to an analogous permutation of the

probability vector. Although probabilities are not a linear

function of the weights assigned for small voting

populations, there is a strict mapping from vote vectors to
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probability vectors (which is asymptotically linear). For

the approval voting system, there is a strict mapping for

any fixed number of total votes. Vote vectors and their

corresponding probability vectors are as shown in Table 3.9.

Table 3.9. Vote Vectors and Corresponding

Probability Vectors for a 3 Alternative, 3 Voter Election

Vote Vector Probability Vector (=[PA,PB,PC])

StandancLloizinLstfem

[1,0,0] [.6926,.1852,.1852]

[0,1,0] [.1852,.6926,.1852]

[0,0,1] [.1852,.1852,.6926]

BerdLSiLsiem

[2,1,0] [.6162,.2689,.1159]

[2,0,1] [.6162,.1159,.2689]

[1,2,0] [.2689,.6162,.1159]

[0,2,1] [.1159,.6162..2689]

[1,0,2] [.2689,.1159,.6162]

[0,1,2] [.1159,.2689,.6162]

WW

[1,0,0] [.6574,.1713,.1713]

[0,1,0] [.1713,.6574,.1713]

[0,0,1] [.1713,.1713,.6574]

[1,1,0] [.4491,.4491,.1018]

[1,0,1] [.4491,.1018..4491]

[0,1,1] [.1018,.4491,.4491]

3.6 The_Simu1atien_Eregram_and_Selxins_AlsQrifhm

The simulation program is set up in accordance with the

model specified. (For specific programs, see appendix B.)

A cardinal utility vector is generated for each voter. With

these, the Condorcet winner, it if exists, and the

alternative with maximum social utility are determined.

Given the voting system, the sincere strategy corresponding

to the utility vector for each voter is determined. Then

for each voter, possible pure strategies are taken one at a

time and the voter’s expected utility for the possible
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strategy calculated. With complete information, expected

utility is only an expectation in the case of a tie

occurring (because the tie will be broken randomly). With

incomplete information, expected utility depends on the

calculation of probabilities of outcomes, which depend on

the strategy chosen, as well as the voter’s sample size.

Expected utility is calculated for all possible

strategies. It is then compared with expected utility for

the voter's sincere strategy. If expected utility from

another strategy exceeds that of the voter’s sincere

strategy (an alternative strategy strictly dominates the

sincere strategy). the individual’s vote vector is changed

accordingly. If more than one alternative strategy has the

same (maximum) expected utility, one of these strategies is

chosen randomly, and the individual's vote vector changed

accordingly. The process continues, checking each possible

strategy for an expected utility increase. If expected

utility remains constant with a change of strategy, the

original vote vector is kept; there is no reason to assume

that a strategy will change unless a gain is expected. Each

voter is checked in a similar fashion until a Nash

equilibrium is reached, or a specified number of iterations

checking strategies (40) have been done. If after 40

iterations no equilibrium has been found, voters are

randomly reordered and the process repeated. When an

equilibrium is found, the outcome of voters’ strategies is

determined along with its social utility; it is compared
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with the Condorcet winner when it exists to see if they are

the same, and the results are used to estimate the

efficiency measures. Efficiency measure estimates are based

on 2000 repetitions of the voting system for a given number

of voters and alternatives. Numbers of alternatives range

from 3 to 6, and the size of the voting population ranges

from 3 to 125.

For the incomplete information game, the number of

alternatives is set at three, and sample size (the number of

voters used in determining total votes for a subset of the

population) is taken as 2/3 of the voting population,

rounded to the nearest integer (a = .6667). The probability

of each outcome (given the sample) should be approximately

equal for different electorate sizes, given essentially

equivalent population profiles, inducing equivalent optimal

strategy responses from voters. Differences are due to the

reduced likelihood of a tie in the larger voting population,

just as in the complete information simulations. Voting

populations again range from 3 to 125.

3.7 ReaLn1QIiQn_1Q_Enze_fiiraI§81_EQnilihzia

Voters’ possible strategies in the solving algorithm

include only pure strategies. Models in which an element of

randomness is introduced for voters (see p. 31) have in

general introduced a probability of voting as opposed to

probabilities for strategies. If we think of sincere voting

as one possible strategy and abstention as another, this

type of model arbitrarily restricts voters’ possible
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strategies to these two. Also, I question whether it is

reasonable to expect voters, even in committee voting, to

choose a mixed strategy when an optimal pure strategy

response can be found.

Merrill [92] proved that all "potentially uniquely

optimal strategies"1 are pure strategies. A potentially

uniquely optimal strategy may be a unique best response to

others’ strategies. A point Wj in a convex subset S of RI"

is called extreme if it is not interior to any line segment

contained in S.

A

sz

(0.1.0)

  

(Ofihl)

w3j

Figure 3.1. Possible Strategies in the Standard Voting

System with 3 Alternatives: a Convex Subset of R“.

If a voting system S is a convex subset of Rm, then “the

potentially uniquely optimal strategies are extreme points

of 8."2 Let E(i), the ‘strategic value’ of

alternative i, be 2?:1 (u1-uj)p13, where p15 is the

probability of being decisive between alternative i and j

(p11=0). Merrill’s formulation of expected utility is



84

EU(W5) : 2?:1 E(i)v1, where v1 is the number of votes in W5

for alternative i. If W5 is a potentially uniquely optimal

strategy, then there exists a total utility function such

that EU(W5) > EU(W3) for all W3 in S other than W5. Because

EU(W5) is a linear combination of the E(i)’s, W5 must be an

extreme point.

One significant conclusion can be drawn from Merrill’s

work. A mixed strategy is a linear combination of pure

strategies and therefore interior to a line segment

contained in S. Therefore a mixed strategy is never

potentially uniquely optimal. In other words, a mixed

strategy can never be a unique best response in the game.

All unique best responses are pure strategies.

Additionally, in cases where a mixed strategy is a best

response, there exists a pure strategy with equal expected

utility. A mixed strategy is only optimal if the voter is

indifferent between two or more pure strategies which in

linear combination produce the mixed strategy. However, if

this is the case, he is also indifferent between the pure

strategies which produce the mixed strategy and the optimal

mixed strategy itself. There is thus always a pure strategy

response with equal expected utility to the optimal mixed

strategy response.

There are cases for which the solving algorithm does

not find a pure strategy equilibrium given a fixed order of

voters for checking strategies. An example of such a case
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for the 3-alternative 5 voter Borda voting system will serve

to illustrate the point.

Table 3.10. An Example of

Preferences for Which a Pure Strategy Equilibrium is

Not Found when Voters are Taken in a Specified Order

Expected Utility Matrix

 

 

j \ 11. 1 2 3

1 4.967650E-002 9.129716E-001 3.133120E-001

2 8.345773E-001 7.409244E-001 7 170978E-001

3 2.628670E-001 6.382484E-003 2.704006E-001

4 6.233332E-001 3.598900E-001 6.352836E-001

5 3.980304E-001 6.974258E-001 6.352836E-001

Sincere Vote Matrix

j \ Ii 1 2 3

1 0 2 1

2 2 1 0

3 1 0 2

4 1 O 2

5 O 2 1

Preferences

Voter 1: 2 > 2,3 > 1,2 > 1,2,3 > 3 > 1,3 > 1

Voter 2: 1 > 1,2 > 1,3 > 1,2,3 > 2 > 2,3 > 3

Voter 3: 3 > 1,3 > 1 > 1,2,3 > 2,3 > 1,2 > 2

Voter 4: 3 > 1,3 > 1 > 1,2,3 > 2,3 > 1,2 > 2

Voter 5: 2 > 2,3 > 3 > 1,2,3 > 1,2 > 1,3 > 1

a,b denotes a tie which will be broken randomly.

The solving algorithm produces the following sequence of

strategy changes:

Table 3.11. Sequence of Strategy Changes Produced

by the Solving Algorithm

Individual Strategies and Total Votes

 

i1 1. 2 3 4 5 Total

0,2,1 2,1,0 1,0,2 1,0,2 0,2,1 4,5,6

H5 1,2,0 2,1,0 1,0,2 1,0,2 0,2,1 5,5,5

1,2,0 2,1,0 2,0,1 1,0,2 0,2,1 6,5,4

0,2,1 2,1,0 2,0,1 1,0,2 0,2,1 5,5,5

0,2,1 2,1,0 1,0,2 1,0,2 0,2,1 4,5,6
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The pure strategy equilibria {[2,1,0], [2,1,0],

[0,1,2], [1,0,2], [0,1,2]}, {[0,2,1], [2,1,0], [1,0,2],

[1,0,2], [1,0,2]}, and {[0,2,1], [2,1,0], [2,0,1], [1,0,2],

[0,1,2]} all exist for this preference profile but are not

found by the solving algorithm because the voters are taken

in a specified order. However, if voters are taken at

random to have their strategies checked, there is no way of

ensuring that all voters’ strategies are checked (verifying

the existence of the Nash equilibrium). A random reordering

of all voters and repeat of the process solves the problem,

and an equilibrium is found in every case.

3.8 Wad

Not all Nash equilibria are found by the solving

algorithm. Because of its construction, if sincere

strategies constitute a Nash equilibrium, then for that

social preference profile the outcome of the voting system

is the outcome of sincere voting. Only if sincere

strategies do not constitute a Nash equilibrium is strategic

voting taken into consideration. In the previous example

(Tables 3.10 and 3.11) the strategy [2,1,0] for all voters

is a pure strategy Nash equilibrium point; none of the

voters can unilaterally increase his expected utility.

However, the solving algorithm provides no motivation for

individual voters to alter their strategies to reach this

equilibrium. In fact, both voters 1 and 5 are strengthening

their last-ranked alternative at the expense of their first

and second choices. The strength of the solving algorithm
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lies in the fact that any Nash equilibrium found can be

reached via individual strategy changes (motivated by

expected utility maximization) from the sincere strategy

matrix. In this case, the equilibrium will correspond to a

minimal B-coalition of the associated cooperative game.

In cooperative games, the characteristic set V(s)

delineates a set of payoff vectors for each possible

coalition S which represent the worth or effectiveness of

the coalition S. In beta theory, a vector of payoffs is

included in the characteristic set V(s) if and only if it is

non-preventable by players outside the coalition.3 In other

words, if players outside the coalition have some strategy

or set of strategies which could prevent this payoff vector

from occurring, it is not included in the beta solution. A

simple example using the standard voting system should

clarify the idea of the beta solution.

Table 3.12. Expected Utility, Preference Orderings,

and Sincere Strategies of Voters Using the

Standard Voting System.

Voter

Alternative 1 2 3

A .016 .365 .694

B .682 .482 .247

C .793 .218 .413

x .497 .355 .4513

Expected value of u15

Preference orderings Sincere strategies

voter 1: C>B>*>A [0,0,1]

voter 2: B>A>*>C [0,1,0]

voter 3: A>*>C>B [1,0,0]
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If voters 1 and 2 form a coalition, they can achieve

any of the possible payoff vectors (rows of Table 3.12) for

A, B, or C. They cannot guarantee the payoff vector for a

random choice (*) because regardless of the strategies they

choose, voter 3 has a strategy which can prevent it. If

voters use sincere strategies, this final payoff vector is

the outcome. Sincere strategies clearly do not constitute a

Nash equilibrium in this case. If voter 1 votes for

alternative B instead of his most-preferred alternative C,

his expected utility increases. Additionally, if voter 1

does this, neither of the other voters can increase their

expected utility by altering strategy and this set of

strategies is a Nash equilibrium.

1: [0,1,0]

2: [0,1,0]

3: [1,0,0]

However, the set of strategies

1: [0,0,1]

2: [1,0,0]

3: [1,0,0]

is also a Nash equilibrium in this game. If the solving

algorithm looks at voter 2 before voter 1, this is the

equilibrium that will be found. Because of the randomness

of individual utilities, the Monte Carlo techniques employed

make it equally likely that the individual utilities will

occur in either order, and a sufficient number of

repetitions will find each equilibrium; furthermore, they

will occur with equal probability (given that exactly 2

voters have u2>EU(*)).
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The equilibria above correspond to minimal B-coalitions

because the removal of one player from the coalition causes

it to fall apart. If we looked at a standard voting system

game with five players, a coalition of 4 would not be

minimal because the removal of one player would still leave

a decisive coalition of 3. The solving algorithm will not

find an equilibrium in which individuals vote strategically

corresponding to a non-minimal B—coalition in a game with

complete information. Subsequent to the assignment of

strategies corresponding to a minimal B-coalition, no voter

outside the coalition can increase expected utility by

altering his strategy so as to "join the coalition." All

equilibria corresponding to non-minimal B-coalitions will be

sincere strategy equilibria, and the coalitions will occur

with probability determined by the approximate multivariate

normal distribution.

In contrast, in an incomplete information game, a non-

minimal B—coalition equilibrium with strategic voting may

occur because a player may have a positive probability that

this minimal coalition does not exist, due to his

uncertainty about voters’ strategies. Even though a minimal

B-coalition already exists, a voter may have preferences

such that either joining the coalition or voting

strategically against it can increase his expected utility

because of this positive probability.

The equilibria found are also perfect equilibria in the

sense of Selten [123]. Although his concept of a perfect
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equilibrium was intended to apply to extensive games, the

point of view which looks at “complete rationality as a

limiting case of incomplete rationality"4 is useful in this

model because of the difficulty of accepting the concept of

the rational voter. Suppose voters are rational in the

sense that they can evaluate different alternatives, compare

strategies available to them, and estimate the effect of

these strategies on the outcome of the system. However,

this hypothetical rational voter is not perfect; he may make

‘mistakes.’ When he has had a ‘bad day’ with probability 8,

he is equally likely to choose any of the strategies

available to him, as he is no longer thinking straight. If

all this happens to all voters, we have Selten’s perturbed

game. The ‘rational’ part of the voter knows that this

happens and uses it in his calculation of optimal strategy

as far as he is able. Then if the strategies of the

perturbed game approach the strategies of the original game

ase:+'0, the Nash equilibrium of the original game is

‘perfect.’ The model as constructed is set up in exactly

this way. The zero information game corresponds to a

complete information game in which the rational voter

assigns 5:: (Q-1)/Q (where Q is the number of admissible

strategies) to every other voter and determines his optimal

(sincere) strategy on that basis. As the original value of

6 gets smaller, the variance of estimates W295 decreases,

exactly as if the voter had better information. Complete

information (or perfect rationality) is the limiting case.
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Conversely, a Nash equilibrium which cannot be reached

from the sincere strategy matrix is not perfect, since the

sincere strategy matrix is the unique equilibrium of a

sufficiently perturbed game. Therefore if the number of

repetitions is sufficiently large, the set of equilibria

found will correspond to the set of perfect equilibria, and

Nash equilibria which are not found will not be perfect

equilibria.



CHAPTER 4

RESULTS

The results of the simulations are presented and

analyzed here. Some of the questions examined are 1) the

relationship between social utility efficiency estimates and

Weber’s theoretical values; 2) how social utility efficiency

estimates compare given the use of sincere strategies as

compared to optimal strategies; 3) how Condorcet efficiency

estimates compare given sincere and optimal strategies; 4)

the effect of strategic voting on rankings of the systems

using either social utility or Condorcet efficiency with

strategic voting; 5) the relationship between Condorcet

efficiency and social utility efficiency; and 6) the effect

of the amount of information available to voters on

efficiency estimates given optimal strategies.

4.1 Theorefiea1_la1uee

4.1.1 Sincerelefing

Weber’s social utility efficiency values are

asymptotic. It is therefore possible that social utility

efficiencies may be significantly different for small voting

populations. This possibility was investigated, but the

differences were found to be insignificant for the most

part. Using the student’s t distribution, t-tests indicated

only three cases, all for the standard voting system, for

which the differences were significant at the 90% level or

better. In each of these cases, the number of voters

differed from the number of alternatives by at most one, and

92
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social utility efficiency was significantly greater than the

theoretical value. However, in these cases, the standard

voting system had appreciably lower social utility

efficiency than either of the other systems considered, and

rankings were not affected. Again, for 3 alternative

elections, rankings according to Weber’s asymptotic social

utility efficiencies are 1) approval voting system, 87.5%;

2) Borda system, 86.6%; and 3) standard voting system, 75%.

The simulations tended to confirm this for 3 alternative

elections, although there is difficulty in differentiating

the efficiency of the Borda and approval systems. In fact,

the Borda system ranked above the approval voting system

12/22 times, but a t-test detects no significant difference

in means.

Although Weber did not develop a formula for

theoretical values of the approval voting system with more

than three alternatives, simulation estimates of social

utility efficiency for the approval voting system appear to

indicate that asymptotic social utility efficiency is

constant at 87.5%, regardless of the number of alternatives.

Figures 4.5-4.9 (pages 96-97) show social utility efficiency

estimates for the approval voting system and their approach

to this limit. Deviations are greater for a smaller number

of voters, and the size of the deviation is greater the

larger the number of alternatives considered.

For more than 3 alternatives, rankings were, without
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exception: 1) Borda system; 2) approval voting system; and

3) standard voting system.

4.1.2 Wing

When voters’ use of optimal strategies was

incorporated, social utility efficiency estimates diverged

markedly from theoretical values for the standard voting

system. Differences are predictably greater for small

electorates, and given the number of voters, greater for a

larger number of alternatives.

 

  
 

 

  
STANDARD VOTING SYSTEM: 3 ALTERNATIVES

—STRATEGIC ..... LIMIT .....- SINCERE

Figure 4.1 Social Utility Efficiency for the

Standard Voting System with 3 Alternatives:

Strategic, Sincere, and Limit Values
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Figure 4.2 Social Utility Efficiency for the

Standard Voting System with 4 Alternatives:

Strategic, Sincere, and Limit Values
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Figure 4.3 Social Utility Efficiency for the

Standard Voting System with 5 Alternatives:

Strategic, Sincere, and Limit Values
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STANDARD VOTING SYSTEM: 6 ALTERNATIVES

  

_STRATEGIC ,.... LIMIT ...- SINCERE

Figure 4.4 Social Utility Efficiency for the

Standard Voting System with 6 Alternatives:

.Strategic, Sincere, and Limit Values

This difference did not occur to such an extent for the

approval voting system. In only two cases was the

difference great enough to produce a t-statistic significant

at the 80% level. However, an interesting pattern to social

utility efficiency estimates appeared. For small voting

populations, the estimates are very close to 87.5%; they

decline as the number of voters increases and after a

certain point begin to increase again toward 87 5%. This

decline is more marked as the number of alternatives

increases, as shown in Figures 4.5-4.8.



97

 

  

   l ' I ' r ' l ' l ‘ I ‘ I ‘ I

APPROVAL VOTING SYSTEM: 3 ALTERNATIVES
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Figure 4.5 Social Utility Efficiency for the

Approval Voting System with 3 Alternatives:

Strategic, Sincere, and Limit Values

 

 

 

   lffjl'l'l

APPROVAL VOTING SYSTEM: 4 ALTERNATIVES

__swam-mm ..... LIMIT --- smcsaz

Figure 4.6 Social Utility Efficiency for the

Approval Voting System with 4 Alternatives:

Strategic, Sincere, and Limit Values
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Figure 4.7
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Social Utility Efficiency for the

Approval Voting System with 5 Alternatives:

Strategic, Sincere, and Limit Values
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APPROVAL VOTING SYSTEM: 6 ALTERNATIVES

 

—STRATEGIC ..... LIMIT ...... SINCERE

Figure 4.8 Social Utility Efficiency for the

Approval Voting System with 6 Alternatives:

Strategic, Sincere, and Limit Values



99

Strategic estimates again diverge for the Borda system;

the same pattern is discernable as for the approval system.

Once again the effect is greater where there is more scope

for strategic voting. Efficiency measures for the 6

alternative system are predicted values using regression

coefficients estimated (see page 115).
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BORDA VOTING SYSTEM: .3 ALTERNATIVES

-—STRATEGIC ..... LIMIT --- SINCERE

Figure 4.9 Social Utility Efficiency for the

Borda Voting System with 3 Alternatives:

Strategic, Sincere, and Limit Values
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BORDA VOTING SYSTEM: 4 ALTERNATIVES
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Figure 4.10 Social Utility Efficiency for the

Borda Voting System with 4 Alternatives:

Strategic, Sincere, and Limit Values
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BORDA VOTING SYSTEM: 5 ALTERNATIVES (ESTIMATED)

 

_STRATEGIC ..... LIMIT

Figure 4.11 Social Utility Efficiency for the

Borda Voting System with 5 Alternatives:

Strategic and Limit Values
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BORDA VOTING SYSTEM: 6 ALTERNATIVES (ESTIMATED)

...—STRATEGIC ..... LIMIT

Figure 4.12 Social Utility Efficiency for the

Borda Voting System with 6 Alternatives:

Strategic and Limit Values

4.2Wm

Wm

Under the assumption of sincere voting, social utility

efficiency rankings from the simulation estimates are

compatible with the results of previous work. When voters

are assumed to use optimal strategies, estimates of social

utility efficiency are in many cases significantly different

from their sincere voting estimates: Despite this, overall

rankings of the systems do not change much. The approval

voting system does rank above the Borda system for small

electorates given more than 3 alternatives. As the voting

population increases, this ranking is reversed. In all

cases, the standard voting system is ranked below the other

two systems, despite the pronounced increase in social
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utility efficiency for the standard voting system and

decrease for the Borda system. For the approval voting

system, small voting population estimates of social utility

efficiency are significantly greater than their sincere

counterparts, while larger electorates tend to have

strategic estimates below the sincere estimates.

Given these changes, for small electorates the approval

voting system moves up in ranking while the Borda system

moves down to second place. The standard voting system,

while having social utility estimates which are roughly

comparable (for 4 alternatives and 3 voters, estimates are:

approval, 89.1%; Borda, 88.0%; and standard, 87.9%), remains

ranked in third place. As the size of the voting population

increases, the ranking between the approval and Borda system

is reversed, and the estimates for the standard voting

system decrease steadily toward their limit.
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Figure 4.13 Sincere Social Utility Efficiency:

3 Alternatives
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Figure 4.14 Strategic Social Utility Efficiency:

3 Alternatives
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Figure 4.15 Sincere Social Utility Efficiency:

4 Alternatives
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Figure 4.16 Strategic Social Utility Efficiency:

4 Alternatives
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Figure 4.17 Sincere Social Utility Efficiency:

5 Alternatives
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Figure 4.18 Strategic Social Utility Efficiency:

5 Alternatives
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Figure 4.19 Sincere Social Utility Efficiency:

6 Alternatives
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Figure 4.20 Strategic Social Utility Efficiency:

6 Alternatives

4.3 QQndeeLEfficisncLRankizms.

Condorcet efficiency rankings under sincere voting are,

for ”small" electorates: 1) Borda system; 2) standard voting

system; and 3) approval voting system. Given a specified

number of alternatives, as the size of the electorate

increases, the approval voting system reverses rank with the

standard voting system, and as with social utility

efficiency, we have the Borda system ranked first, followed

by approval voting, followed by the standard voting system.

Strategic voting produces a dramatic change in these

rankings. Condorcet efficiency increases significantly for

both the approval and standard voting systems, while in all

but a few cases it decreases significantly for the Borda
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system. For most small voting populations (committee size),

the standard voting system is ranked first in Condorcet

efficiency, followed by the Borda system, with approval

voting ranked last.

For any number of alternatives considered (3-6),

Condorcet efficiency for the standard voting system with

strategic voting peaks when there are five voters and

decreases more or less consistently thereafter. In

contrast, the approval voting system with strategic voting

has maximum Condorcet efficiency with 3 voters and declines

thereafter. Within the voting populations used in the

simulation, there is no U-shaped curve as found for social

utility efficiency; Condorcet efficiency does not reach some

approximate minimum and begin to climb towards a limit.

Instead Condorcet efficiency begins from a level above its

“limiting value" and approaches the value in an approximate

logarithmic curve.

For the Borda system, with 3 or 4 alternatives, the U-

shaped curve is again apparent. Estimates for Condorcet

efficiency with 5 or 6 alternatives follow the same pattern.
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SINCERE CONDORCET EFFICIENCY: 3 ALTERNATIVES

Figure 4.21 Sincere Condorcet Efficiency:

3 Alternatives
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Figure 4.22 Strategic Condorcet Efficiency:

3 Alternatives
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Figure 4.23 Sincere Condorcet Efficiency:

4 Alternatives
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Figure 4.24 Strategic Condorcet Efficiency:

4 Alternatives
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Figure 4.25 Sincere Condorcet Efficiency:

5 Alternatives
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Figure 4.26 Strategic Condorcet Efficiency:

5 Alternatives
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Figure 4.27 Sincere Condorcet Efficiency:

6 Alternatives
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Figure 4.28 Strategic Condorcet Efficiency:
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4.4 .... - ' '-. -.. . '- ' ’ ' ’-¢

The relationship between Condorcet efficiency and

social utility efficiency was discussed in Chapter 2. An

attempt to quantify this relationship more precisely was

made by running simple linear regressions (OLS) of the form

SCON = A + B1(SSU) + B2(ALTS) + BB(V),

where SSU is strategic social utility efficiency, SCON is

strategic Condorcet efficiency, ALTS is the number of

alternatives, and V is the number of voters. This

regression was run for each voting system. The results of

the regressions are presented below, with Figures 4.29-4.31

showing estimated and actual strategic Condorcet

efficiencies.

Table 4.1 Regression Results for Strategic

Condorcet Efficiency

Borda_fixatem Dependent Variable: SCON

Mean of Dependent Variable 86.898530

Standard Deviation 4.166679

Sum of Squared Residuals 159.787800

Standard Error of Regression 1.998673

Number of Observations 44

R2 .785960

Variable Estimate Std. Error T-Statistic

Intercept -30.9682720 22.8332530 -1.3562795

ALTS -4.6555093 .6553843 —7.1034801

V -.0138721 .0078597 —1.7649777

SSU 1.5771413 .2558077 6.1653391

Standard_fiy§tem Dependent Variable: SCON

Mean of Dependent Variable 81.270320

Standard Deviation 9.219158

Sum of Squared Residuals 472.696268

Standard Error of Regression 2.372201

Number of Observations 88

32 .936074
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Variable Estimate Std. Error T-Statistic

Intercept 29.9295465 11.3396821 2.6393638

ALTS -4.0469293 .3360611 -12.0422427

V -.0876380 .0101957 -8.5955649

SSU .9422485 .1261226 7.4708959

Annrnxal_fixstem. Dependent Variable: SCON

Mean of Dependent Variable 76.712010

Standard Deviation 7.978904

Sum of Squared Residuals 699.152623

Standard Error of Regression 2.885004

Number of Observations 88

R2 .873769

Variable Estimate Std. Error T-Statistic

Intercept -58.6598397 15.4701347 —3.7918118

ALTS -3.4314452 .3058458 -11.2195253

V -.0762712 .0083586 -9.1248403

SSU 1.8056124 .1722115 10.4848536

Note that in each of the regressions, strategic social

utility efficiency has a fairly strong positive relationship

with strategic Condorcet efficiency. In fact, strategic

Condorcet efficiency can be predicted fairly well given the

value of strategic social utility efficiency, as will be

seen in Figures 4.29-4.31. Even so, values for strategic

Condorcet efficiency estimated with regression coefficients

are not too far off from the simulation values. Note also

that the sign of the coefficients on both ALTS and V is

negative in every case, as would be expected. The

regressions do support the hypothesis of a strong

relationship between the two efficiency measures.
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Figure 4.29 Actual and Estimated Condorcet Efficiency:

Standard Voting System
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Figure 4.30 Actual and Estimated Condorcet Efficiency:

Approval Voting System



115

 

  

     

 

Estimated with

quation 2

Estimated with .

equation 4 '

    

    

 

 

    7° 3 alternatives 4 alternatives 5 alternatives 6 alternatives

TT‘IIIIYUVIIITII IIIIII'|"|'I"IIII'|"

STRATEGIC CONDORCET‘EFFICIENCY: BORDA SYSTEM

   
__ ACTUAL ....... ESTIMATED

Figure 4.31 Actual and Estimated Condorcet Efficiency:

Borda Voting System

4.5 Wines

In addition, regressions were run to allow prediction

of efficiency measures for these systems when the number of

alternatives is greater than is feasible to simulate. The

variables used for sincere efficiency measures were THEO,

DIF, MEAN, and VAR. THEO is the theoretical social utility

efficiency value. DIF is a measure of the difference

between the actual distribution of total votes and the

normal distribution which total votes approach as the number

of voters increases. DIF is defined as the difference

between the normal distribution standard deviation and the

actual standard deviation divided by two times mean votes
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for the voting system. MEAN and VAR are the mean and

variance of total votes for the voting system.

The variables used for strategic efficiency measures

were THEO, DIF, l/P, Q“(ALTS/(2*(ALTS+V))), and four powers

of V. The new variables are functions of P, the probability

of a tie, and Q, the number of admissible strategies. P is

defined as Q(lVK/SD)-Q(-IVK/SD), where V is the number of

voters, SD is the standard deviation of (Wi-Wk), and K is a

constant term equal to the maximum weight assignment of the

voting system. Q has the above functional form to display

the following characteristics: as V gets large, the effect

of Q decreases, and as the number of admissible strategies Q

increases, the damping effect of V decreases.

The numerical results of these regressions are

presented in appendix D. The results were used to forecast

values for efficiency measures for 7 alternative elections,

which are shown in Figures 4.32-4.35.
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Figure 4.32 Sincere Social Utility Efficiency:

7 Alternatives (Estimated)
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Figure 4.33 Strategic Social Utility Efficiency:

7 Alternatives (Estimated)
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Figure 4.34 Sincere Condorcet Efficiency:

7 Alternatives (Estimated)
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4.6 Winn

A variation of the simulations was run to determine the

effect of less than full information on efficiency

estimates. It was assumed that the total votes of 2/3 of

the voting population (to the nearest integer) were known to

all voters, who also knew whether or not they were included

in the group. Unfortunately this provided no useful

information because with more than approximately 7 voters,

efficiency estimates were practically identical to those for

sincere voting (the zero information case). This is due

primarily to voters’ knowledge of the distribution from

which individual utilities are drawn. Because of this,

voters cannot treat the sample total vote vector as a random

sample from population total votes and assign corresponding

probabilities or expected values to the unknown votes. The

unknown votes continue to have the known (approximately

multivariate normal) distribution as under zero information,

adjusted for sample size. Therefore, if 3 or more voters

are not in the sample, the variance of population total

votes is large enough to discourage most strategic voting

(as in the analytical example, p. 69).

The results that were obtained are presented here for

the sake of completeness, although the simulations were

aborted when it was apparent that the level of information

was not large enough, given the structure of the model, to

provide information on the movement of sincere estimates



120

toward strategic estimates as the information level

increases.

Table 4.2 Incomplete Information Efficiency Measures

for 3 Alternatives and 3 Voters

Wm

Voters 80 SSU CON SCON

3 81.28015 85.64013 89.9151 92.43286

5 73.89849 74.64334 81.86399 81.4175

7 77.15541 77.15031 82.56971 82.80641

9 78.36027 79.40004 81.01244 81.60281

11 76.51844 75.74441 80.96372 80.25922

13 76.13150 75.44744 80.24274 80.33026

15 75.09851 75.92546 78.97618 80.12462

17 75.06600 73.67316 80.62215 80.56885

19 76.10229 76.65386 80.56049 80.69643

21 76.26308 75.64381 79.39276 78.56687

23 76.66461 76.86256 78.59663 78.81081

25 75.36212 75.63785 79.0997 79.17628

W

Voters 80 SSU CON SCON

3 84.59656 84.38637 73.80964 74.48530

5 85.49946 84.88809 76.43347 75.29308

7 84.75676 85.13169 75.97089 75.95857

9 86.40394 86.43179 73.26244 73.43390

11 87.68660 87.51424 75.68910 76.54454

13 88.60281 87.75786 74.57857 74.97629

W

Voters SU SSU CON SCON

3 87.47958 85.14944 97.28929 94.75961

5 86.7208 86.7208 93.3808 93.3808

7 85.8735 85.8735 92.6008 92.6008

9 86.7582 86.7582 92.7946 92.7946

11 86.8360 86.8360 93.3957 93.3957

13 85.4114 85.4114 90.2788 90.2788

15 88.1715 88.1715 91.4930 91.4930



CHAPTER 5

DISCUSSION AND SUGGESTIONS FOR FURTHER RESEARCH

Perhaps the most pertinent question which can be

addressed to this research is why it is of any interest to

compare multi-alternative voting systems with strategic

voting. After all, any voting system has 100% Condorcet

efficiency with only two alternatives, regardless of whether

sincere or optimal strategies are assumed. Additionally,

most of the voting situations in which there are more than

two alternatives occur with large electorates, where the

possibility of strategic voting is more or less precluded.

However, there are two points to keep in mind. First, a

series of sequential pairwise votes on the same issue

implies more than two alternatives, and this occurs

frequently in committee voting. Second, we know that

increasing the number of alternatives decreases the

likelihood of a Condorcet winner, and as appealing as the

Condorcet criterion is, that means that we disregard those

cases where extreme conflict occurs (no Condorcet winner

exists). We also know that maximum social utility

efficiency of a two alternative election is 81.65%. Thus,

we must expect social utility efficiency to decrease with

every step in a sequence of pairwise votes.

Multi-alternative elections are an option to be

compared with a sequence of pairwise votes. Condorcet

efficiency is the appropriate comparison measure for this

purpose. However, different multi-alternative voting

121
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systems can also be compared to each other using both

Condorcet efficiency and social utility efficiency. Given

this rationale, it is important to differentiate between

sincere and strategic efficiency measures. Strategic

efficiency measures are more appropriate because they

recognize maximizing behavior on the part of individuals.

5.1 EffisisaCLMsasaathaasssJiiLSiaatssisLlctias

The striking difference in the way social utility

efficiencies change for a given voting system is not very

difficult to explain. Recall that with the assumption of

strategic voting, standard voting system social utility

efficiency increased markedly, while for the approval and

Borda systems it decreased, particularly for small

electorates. However, in the standard voting system, for

strategic voting to occur, some alternative must be ranked

first by as large or nearly as large a percentage of the

voting population as the winning or tied alternative. The

individual who changes the outcome increases his utility by

doing so; the voters who had ranked the strategic voter’s

more preferred alternative as first gain, while those who

had ranked his less-preferred alternative as first lose.

The other voters' losses and gains essentially balance each

other out, with the gain of the strategically voting

individual being the predominant effect. In contrast, for

both the approval and Borda systems, strategic voting can

occur if there is an alternative which is ranked as high or
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nearly as high Qn_a1erage as the winning or tied

alternative.

These characteristics are combined with the fact that

you can't "go around in circles“ in the standard voting

system. Strategic voting is an all or nothing proposition.

Suppose two alternatives are vying for first place, and an

individual changes his vote from his most preferred

alternative to his more preferred of the two vying for first

place. At that point, there is nothing more he can do to

change the outcome, and he has reduced or eliminated the

possibility of strategic voting on his most preferred

alternative. In the Borda system he would have the option

of ‘removing' votes from the less preferred alternative,

which would increase the total of some 3rd alternative and

the possibility of strategic voting on it. In the approval

system he can either remove a vote from the less preferred

alternative, or add one to the more preferred alternative,

but this does not prevent yet another voter from adding or

subtracting a vote without affecting his most preferred

alternative. In other words, strategic voting in the Borda

or approval system may entail changes in total votes which

can cause other strategic (insincere) voters to change their

minds. In the standard voting system, the total of the 3rd

alternative can only decrease.

It is easy to show that expected social utility of the

standard voting system should increase and expected social

utility of the Borda system should decrease with strategic

_
¢
—
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voting. Let Wk be the maximum of total votes with sincere

voting, and W1 be within range of winning. Then [Wk-W1! ;

k, where k is the maximum weight assignment of the system.

Standazd_lgting_fiystem; The value of k is 1. Any strategic

voter either makes or breaks a tie, and the adjusted total

votes are such that {Wk-W1] ; 1. Let Ni>k be the number of

voters who prefer i to k, and Nk>i be the number that prefer

k to i. There continues to be an incentive for strategic

voting until min(Wi,Wk) = min(Ni>k,Nk>i) and either

WiiWk or Wi+Wk=N. However, for an odd number of voters,

this implies that a majority of the voting population

prefers the winning alternative after strategic voting to

the contending alternative, and the change in expected

social utility is positive if the outcome is different after

strategic voting, and zero if the outcome remains the same.

Borda_lgting_fiystem: The change in expected social utility

from a change in outcome from i to k with strategic voting

is E(Zj(uij-ukj). Let rj(i) be an individual voter's

ranking of alternative i, and E(i) be the average rank

across the voting population of alternative i. Given that

individual utilities are i.i.d. uniform [0,1] variables,

E(uij-uik)= (r5(k)-r5(i))/(m+1), and E(25(u15-uik))=

n(z(i)‘n(k))/(m+1). However, we know that rj(i)=(m-Wij),

where wij is the sincere vote. Using this information, we

obtain E(Zj(uij-uik))= (Wi-Wk)/(m+1). But Wk 1 W1, so the

change in expected social utility with strategic voting is

negative or zero.
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5.2 Innllcnlinnfi_9£_1h§_fls&nllfi

The first major implication of the results is that

strategic voting can increase efficiency measures of a

voting system. Manipulability of a voting system is not

necessarily an undesirable characteristic. It should be

pointed out that the voting system which is least

manipulable (the standard voting system), is the one which

showed the most dramatic increase for both Condorcet

efficiency and social utility efficiency. However, the fact

remains that strategic voting can actually produce a

“better" outcome.

Unless a fairly high level of information is available

to voters, rankings according to sincere efficiency

estimates are correct. Without nearly complete information,

the incentives for strategic voting disappear, and estimates

approach their sincere counterparts. Similarly, with large

electorates (>125 voters) the advantages of strategic voting

disappear, although for the standard voting system,

strategic Condorcet efficiency can still be significantly

greater than sincere Condorcet efficiency.

Second, when optimal strategies are used by voters,

differences between voting systems are not as clear-cut for

small electorates. For very small voting populations,

efficiency estimates for all three voting systems fall

within a very small range when the number of alternatives is

4 or less. The advantages of using the approval or Borda

system as opposed to the standard voting system are not as
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large as previous work has indicated for these situations.

Again, however, for large electorates or less than nearly

complete information, the conclusions of previous work hold.

Third, multi-alternative voting decreases Condorcet

efficiency, but fairly high efficiencies are still

obtainable if strategic voting is assumed. The cost of

repeated (sequential) pairwise votes may be large enough

relative to a single multi-alternative election to justify

multi-alternative voting in committees.

5.3 LiaiiatiaauajasLEauilihaiaflaad

In estimating efficiency measures, the use of the first

equilibrium found (sincere voting, if it is a Nash

equilibrium) is based on two points. The model is designed

to approximate as closely as possible to previous work,

which has always assumed the use of sincere strategies by

voters. The cases which differentiate the current research

from previous work are those in which sincere voting is not

a Nash equilibrium. A base vote matrix is necessary in

solving for equilibria, and the sincere vote matrix is the

simplest and most logical choice. Again, there is no reason

to assume that individuals' strategies will change unless a

gain in expected utility can be achieved. Therefore, if

sincere voting is a Nash equilibrium, it is the equilibrium

used.

The algorithm does not go on to find all equilibria

after the first both because of the number of equilibria

that exist (regardless of the number of voters) and because
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asymptotically this approach is incapable of differentiating

between voting systems. Recall theorem 1, which says that

asymptotically sincere strategies are a Nash equilibrium.

The theorem implies that asymptotically, any set of

strategies is a Nash equilibrium. If one assumes that

equilibria are equally likely, then as the voting population

increases, the voting system degenerates to a random choice.

Some restriction of equilibria is necessary in order to

differentiate between voting systems.

For small electorates, efficiency estimates do differ

when all equilibria are found. Table 5.1 presents these

estimates for the 3 voter 3 alternative case (1000

repetitions). However, it is clear that efficiency

estimates increase as the number of strategy profiles which

are not equilibria increases.

Table 5.1 Summary Statistics for the 3 Voter

3 Alternative System When All Nash Equilibria are Found

Approval Borda Standard

3 possible strategy

profiles 216 216 27

mean # equilibrium

strategy profiles 18.297 29.544 6.111

% profiles which

are equilibria 8.47 13.68 22.63

% profiles which

are not equilibria 91.53 86.32 77.37

social utility

efficiency (%) 97.7247 91.3310 55.5714

Condorcet

efficiency (%) 75.7878 75.1140 58.7851



128

Finally, the use of sincere voting as the equilibrium

each time it is a Nash equilibrium is supported by the

concept of bounded rationality as expressed in perfect

equilibria [123]. Each voter has some probability 61 for

the breakdown of rationality. When this occurs, he will use

each admissible strategy S1 with probability q , and

Q Si

21:1 q = 1.

51

Theorem_3; If sincere voting is a Nash equilibrium, it is a

perfect pure strategy equilibrium.

Erggf; Let Q be the number of admissible pure strategies in

the voting game. Qn is the set of admissible strategy

profiles. Let 81 be a representative voter's sincere

strategy, with 32 being any other admissible strategy.

N(Si,Sz) E Qn is the subset of admissible strategy profiles

for which the expected outcomes of the two strategies

differ. For any profile k E N, p: is the probability that

this profile occurs in the perturbed game. pi is a function

of all voters' C1 and q vectors, and ZkeQn p: = 1. Then

EU(81) - EU(Sz), the difference in expected utility of

strategies 1 and 2, is equal to

Zken p:(u1 - Uj) (1)

As s-+O, all p: (k e Qn) approach either 0 or 1 (the

degenerate distribution of the complete information case).

Then there are two possible cases: either p: approaches one

for a profile for which the expected outcomes of the two

2

strategies do not differ, or pk approaches one for k e N.

a

Case 1: pk +1, k i N.
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For any sequence of s in which qs1 = qss = 1/Q for

each voter, the maximand is a positive linear

transformation of the zero information game maximand.

As shown in Chapter 3, sincere strategies are optimal.

Case 2: pic->1, k e N.

(a) k 3: p:-+1 has u1 > us: Zken p:(u1-uj) > 0 :>

strategy 61 is optimal.

(b) k a: p§-+1 has u1 < UJ: Zken p:(u1-uj) < 0 :>

Skew pk(u1-uj) < 0. However, this implies that

strategy 81 was not optimal in the original game,

and sincere strategies were not a Nash

equilibrium, which is a contradiction.

Therefore, if sincere voting is a Nash equilibrium, it is a

perfect pure strategy equilibrium. It is also clear that

for this sequence of e, the equilibrium is the only one that

will be found.

5.4 QatimalitLEnaenisaMmaaaianaJlaaanna

The optimality properties of the comparison measures

used depend on the decisions being made by using a voting

system. Two classic situations in which voting systems

appear to be reasonable methods of choice are a)

determination of the level of a pure public good to be

produced; and b) choice of an allocation of "resources”

along a Pareto-frontier.

5.4.1 Qhnina_Qf_Lhn_Lax§l_nfi_a_2nrs_2nhlin_finnd

The condition for Pareto-optimal provision of a pure

public good was derived by Samuelson in 1954 [119]. A pure
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public good has the property that it is consumed

simultaneously by all individuals in its entirety. The

Samuelson condition is

21 MRSGX = MRTGx,

where MRSCX is individual i's marginal rate of substitution

of the private good X for the public good G, and MRTGX is

the marginal rate of transformation of X for G.

Intuitively, "...at the optimum, the marginal cost of

supplying the last unit of G in terms of X foregone just

equals the sum of the marginal benefits that all users of

the increment G simultaneously obtain in terms of X.“1 Since

individual marginal benefits are equally weighted, this is

identical to maximizing social utility in terms of a

utilitarian social welfare function.

5.4.1.1 Sgcial Utility Efficiency and Optimality in the

E i . E E E 11' G I

A voting system which maximizes social utility in terms

of a utilitarian social welfare function will produce

Pareto-optimal outcomes when used for decisions about the

level of pure public goods to be produced. Social utility

efficiency measures the "closeness" of outcomes of a voting

system to maximum social utility, and is the ratio of the

expected social utility of the outcome to the expected

maximum social utility over the alternatives. If this ratio

is equal to one, then the voting system being evaluated is

expected to produce a Pareto-optimal outcome. Given the

same variance, a voting system with lower social utility
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efficiency will be expected to achieve a Pareto— optimal

outcome less frequently. One difficulty is that the

variance of social utility efficiency does not remain

constant across voting systems. A better measure might be

the frequency with which a voting system is expected to

attain maximum social utility, but the same problem surfaces

that occurs with Condorcet efficiency: there is no

differentiation between social-utility outcomes which do not

attain the maximum. Given this problem, the social utility

efficiency measure used is a reasonable compromise. Because

it does reflect to some extent the probability of

Pareto-optimal provision of a pure public good, a voting

system with greater social utility efficiency than another

is in some sense "better."

Because social utility efficiency reflects a random

individual’s expected utility of a voting system’s outcome,

a further insight into the optimality properties of this

measure can be gained. Each alternative (level of the

public good) X has a corresponding mean utility level across

the population, u(x), which is the expected utility of that

level to a randomly chosen voter. Conversely, an expected

utility of the voting system's outcome implies one or more

expected outcomes (the inverse function is not generally

single-valued). If expected utility for the average (mean)

voter is single peaked and symmetric about its maximum Xp,

the Pareto-optimal level (Figure 5.1a), then as expected

utility increases, the level of under- or over-provision of
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the public good, :Xp - Xl, decreases, i.e. the level

actually produced is closer to the Pareto-optimal level.

Both single-peakedness and symmetry are necessary conditions

for this conclusion, however. In Figures 5.1b and 5.10, an

increase in expected utility does not necessarily move the

level of provision of the public good closer to the

Pareto-optimal level.

expected

utility

  
 fl,

Xp output of public good X.

5.1a. Symmetric and single-peaked mean expected utility



133

  

expected

utility

 r
-
-
—
—
-
_
-
—
_

~3>

output of public good X.

N
H

N

O J
‘

5.1b. Symmetric and non-single-peaked mean expected utility
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5.1c. Asymmetric and single-peaked mean expected utility.

|Xp - X] may increase; IXp - X0] < lXp - X1].

Figure 5.1. Mean Expected Utility and Corresponding

Levels of the Public Good (G) Produced.
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5.4.1.2 QQadnzaa1_EiiiQiancx_and_QnLimalill_in_Lha

We.

Bowen [15] showed that the Condorcet winner (median

voter equilibrium) is a Pareto-optimal outcome if the median

voter is also the mean voter. Since the median voter is

decisive in his model, and the equilibrium point is the

median voter's most preferred level of the public good, if

the median coincides with the mean then the mean voter also

has a utility-maximizing outcome. In algebraic terms,

Jim“ = t = has.

N N

or the average marginal rate of substitution of money for

the public good G is equal to the marginal tax rate, which

in his model is an equal share of the marginal cost of

production of the public good. Under this condition, then,

the Condorcet winner is a Pareto-optimal outcome. However,

the existence of a Condorcet winner does not require

single-peakedness of preferences, nor if preferences are

single peaked does the mean peak preference necessarily

coincide with the median. Without these assumptions, the

Condorcet winner need not be a Pareto-optimal outcome in

choosing the level of provision of a pure public good.

5.4.2 ChaiaLAlnaLahntnEnatiar

The second situation in which voting systems are of

interest to an economist is the situation of choice along a

Pareto frontier. Using lump-sum taxes and transfers, the

government can attain alternative points along the grand

utility possibility frontier. When choosing an allocation
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of resources along a Pareto-frontier, the general guideline

is that the allocation which maximizes social welfare should

be chosen. A widely-used formulation of the social welfare

function [140] is

{25 [uijT]}1/T T a 1; T i 0.

If T = 1, then we are using a utilitarian social welfare

function.

5.4.2.1 SQcial_fl1ilitx_Efficisncx_and_flhnice_Alnng_a

W

The social utility efficiency used by Weber and

Bordley, among others, is a transformation of a utilitarian

social welfare function. If indeed a society has a social

welfare function for which T = 1, a voting system with

higher social utility efficiency will be expected to produce

outcomes of greater social welfare and will be in some sense

a "better" voting system. Additionally, if in fact T ¢ 1,

social utility efficiency measures can easily be constructed

which use different values of T. If an estimate of T can be

obtained, then a social utility efficiency measure can be

constructed which will rank possible voting systems

appropriately.

5.4.2.2. QnndorneI_Efficiencx_and_flhnice_AlQns_a

Earetanrnntier

As mentioned previously, when it exists, the Condorcet

winner has maximum expected social utility. Therefore a

voting system which is expected to choose the Condorcet

winner with greater frequency when it exists might also have
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greater expected social utility. Rankings of voting systems

obtained by using Condorcet efficiency have agreed with

those obtained with social utility efficiency when voters

use sincere strategies. Unfortunately, because the

Condorcet efficency measure does not differentiate between

outcomes in cases where there is no Condorcet winner, no

correspondence between the two measures can be shown unless

preferences are restricted so that a Condorcet winner always

exists.

5.4.3 MW

Condorcet efficiency does have one implicit equity

consideration. If the Condorcet winner is chosen, at least

a majority of the voting population prefer it to any other

alternative. Also, the Condorcet winner tends to have high

social utility. The converse is not true. Social utility

efficiency does not imply anything about equity.

5.5 W11

5.5.1 W

A cost of voting is not included in the model used for

the simulation. Tullock and Downs [141],[37] both concluded

that "voting is an irrational act in that it costs more to

vote than one can expect to get in return."2 An estimate of

voting costs appropriate to a comparison of voting systems

is presented below.

The expected utility of voting is:

EU = (ui-uj)pij - c



137

where (ui-Uj) is the gain in utility to the voter if

alternative i defeats alternative j as a result of his vote;

p15 is the probability of this occurring, and c is the cost

to the individual of voting. Since pij approaches zero

rapidly, and c is generally assummed to be positive, (ui—uj)

must be of extreme magnitude for voting to be a rational

act.

Once again, let p be the probability that an individual

voter is decisive. P depends upon the size of the voting

population. Now, where a cost of voting is included,

complete participation cannot be assumed. Voter

participation will depend upon whether the expected utility

of voting is positive, which in turn is based on the

individual voter's estimate of p. The question of the

”rationality" of voting is not therefore as clear-cut as

would appear on preliminary examination. Using a model in

which p and n are determined simultaneously, Palfrey and

Rosenthal find that substantial voter turnout can be

consistent with the inclusion of a cost of voting. Their

model uses only two alternatives; however, increasing the

number of alternatives would, under the assumptions

presented at the beginning of this chapter, only increase p,

making substantial participation more likely. Thus the

inclusion of a cost of voting is consistent with the

rationality assumptions employed.

However, because the purpose of this work is to compare

voting systems, a determination of the possibly differential
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costs of voting for different systems is necessary. Voting

involves not only a fixed cost of taking the time to go to

the polling place and vote, but the cost of determining

which strategy (vote vector) to use. Strategy determination

costs clearly vary with the level of information the

individual has, since as discussed previously, under zero

information conditions, sincere voting is the unique optimal

strategy. However, even under zero information conditions

this cost will vary across voting systems because of the

amount of information ‘requested’ from the voter. The

standard voting system asks only for the voter's most-

preferred alternative; the approval voting system required

identification of all alternatives with above-average

utility; and the Borda voting system requires a full ranking

of all alternatives. Let the individual cost of voting be

approximated by

c1 = ai + f(s[C],a) 0 g a g l

where ai is some fixed cost to the individual voter i of

taking the time to go to the polling place, s[C] is the

number of possible strategies in the strategy set of the

voting system or choice rule C, a is the information revel

voters are assumed to have, and f(s[C],a) represents the

cost of optimal strategy determination. Individual voting

costs may differ due to ai, which may be modelled as a

random variable. Given this determination of the individual

cost of voting, an equilibrium in p and n can be determined.

Palfrey and Rosenthal's model, however, finds multiple
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equilibria in p and n, and there are no strong predictions

about voter turnout. Their model used only two

alternatives, so that an extension of this model would be

necessary prior to drawing any conclusions about voter

turnout. It is also highly likely that such an extension

would produce multiple equilibria in p and n for small

voting populations. However, the multiple equilibria

problem could be handled as it has been here, with Monte

Carlo techniques.

At this point a pertinent consideration would be the

administrative, or social costs of the voting system. Once

individual strategies (including abstention) are determined,

even if the equilibrium outcome of the election is known by

the modeler, there is still the problem of "counting votes."

Again there are differences between voting systems in this

regard. The factor which immediately appears significant is

the number of elements in the vote vector to be tallied.

Let the social cost of the voting system be 03(8) 2 n(S) x

k(S),where n(S) is expected participation in the voting

system as determined above, i.e. the number of ballots

completed, and k(S) is the number of positive elements in an

individual vote vector. k(S) would of course be one for the

standard voting system, m/2 for the approval voting system,

and m-1 for the Borda system. Given this information,

appropriate efficiency measures, based on the expected net

social cost (= expected social utility of chosen alternative

- 21 Ci - social cost) can be constructed for comparison of
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these voting systems. Given the difficulties, extending the

model to include a cost of voting at this time would

probably not produce any useful results.

5.5.2 Qther_Ednilihriai_Ihs_flgmpstitixe_fiolntion

The possibility of modeling voting systems as

cooperative games has not been overlooked. “Cooperative

game theory for the most part focuses on games with

transferable utility, even though...this assumption excludes

the possibility of modeling most interesting political

coalition processes. For the more general case, though,

standard solution concepts are inadequate because they are

undefined or they fail to exist, and even if they do exist,

they focus on predicting payoffs rather than the coalitions

that are likely to form."3 Thus values such as the Shapley

value or the Banzhaf-Coleman index of power, which have been

widely used to estimate, for example, the "coalitional"

value of states in a 0.8. presidential election game, cannot

be used to compare different voting systems, as the only

information which they can provide is on the "coalitional"

value of the players and not on outcomes.

McKelvey, Ordeshook and Winer [90] propose a different

solution concept entirely, the competitive solution for

games without transferable utility. The solution concept

hypothesizes that "potential coalitions must bid for their

members in a competitive environment via the proposals they

offer. Given that several coalitions are attempting to form

simultaneously, each coalition must if possible, bid
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efficiently by appropriately rewarding its "critical“

members."4

Let A be the set of feasible outcomes. Then for any

coalition C, v(C) = A if C is winning and v(C) = 9 if C is

losing. Thus if there is a majority voting game and C is a

majority coalition, v(C), in a repeated game, is "the set of

all possible dispositions of all bills."5 A coalition's

proposal is their policy platform; in their work a

coalition's proposal is an ordered pair (u:C) such that u is

an element of v(C) and u is an element of v(N). Then given

two proposals, the coalition's proposal (u1:C1) is viable

against the proposal (u2:Cz) if u1 ;,u2 for all individuals

belonging to both coalitions (i 6 C1 n Cz). Let K be any

set of proposals. (uzC) is viable in K if it is viable

against all proposals in K. K is balanced if each coalition

can have exactly one proposal, and all proposals in K are

viable against each other.

Of course, there may exist many distinct balanced sets

of proposals. McKelvey, Ordeshook and Winer focus on the

class of proposals in which the coalitions represented “make

offers that are as attractive as possible to their

respective critical members.”6 A proposal upsets a set of

proposals K if it is a viable proposal in K and there is an

alternative proposal (u':C’) in K for which u > u' for all

individuals belonging to both coalitions.

A set of proposals K is a competitive solution if K is

balanced and there is no proposal (uzC) that upsets K. This

'
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implies that the coalitions represented in K do indeed make

offers that are as attractive as possible to their critical

members. A stronger definition of "balanced" allows them to

exclude coalitions greater than minimal winning size. K is

strongly balanced if it is balanced and there are no two

proposals (u1:C1) and (u2:C2) for which u1 ; uz, with strict

inequality for at least one i, for all individuals belonging

to both coalitions. If K is a competitive solution and

strongly balanced, the authors refer to it as a "strong

competitive solution."

The competitive solution does predict vote trading; in

one example the authors show that none of the proposals in

the unique competitive solution correspond to the outcome of

sincere voting. Additionally, a preliminary test or

empirical validity found impressive correspondence between

actual outcomes and the competitive solution's predictions.

The predicted coalitions all formed at least once, and no

other coalitions formed.

As a solution concept this is very attractive. Not

only do the conditions of the solution have intuitive

appeal, but they can be placed in the familiar context of

committee voting, as for example in Congress. Different

voting systems such as the approval and Borda voting system

can be analyzed, and the competitive solution predicts

different size coalitions with each because of the different

requirements for a winning coalition. However, some

assumption about the likelihood of coalitions must be made
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to get any prediction on expected outcomes in order to

compare different voting systems.

5.5.3 MAW

Because equity considerations are ignored in the

utilitarian social welfare function, it would be useful to

see if another formulation (T ¢ 1) would produce any changes

in rankings of voting systems. Certainly if equity is

important to the choice of a voting system, the utilitarian

social welfare function is not the appropriate comparison

measure to use.

5.6 Cnnnlusion

It has been shown that the use of optimal strategies by

voters as opposed to sincere strategies can significantly

change both social utility and Condorcet efficiency

estimates for multi-candidate voting systems. Furthermore,

the changes in Condorcet efficiency estimates change the

rankings of the voting systems when the voting population is

small. The standard voting system is seen to achieve the

highest Condorcet efficiency, followed by the Borda system,

with approval voting ranked last.

V
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APPENDIX A

SINCERE VOTING AS A NASH EQUILIBRIUM WITH AN

INFINITE VOTING POPULATION

Theorem 1: As the voting population becomes large, i.e.

n-+m, the probability that sincere strategies constitute a

Nash equilibrium approaches one.

A.1 Proof: Borda System

For the individual voter, any Wij is a random variable

with u = (m-1)/2, 02 = 22;: wZ/m - [(m-1)/2]2. Then W1 :

Ej Wij is distributed approximately normally with mean

n(m-1)/2 and variance n[2:;: wZ/m - ((m—1)/2)2], and the W1

have an approximate multivariate normal distribution. In

order for an individual voter to change the outcome of the

system, there must be some [W1 - Wk] 3 m-1. That is, the

voter's maximum weight assignment of m-l can cause the

ordering of two totals to change. Let Y = W1 - Wk. Then Y

2 2 2

has a mean py = pw - pu = O; and variance 0y = Ow + Cu +

1 K 1 k

20w w . Because of the relationship between the covariance

andlczrrelation coefficient this variance can be computed

exactly; the correlation coefficient is -1/(m-1).

Intuitively, when one of the W1 is above its mean, the

others are expected to be slightly below the mean.

Computing this, a variance of

a: = 2n([2:;: wz/m] - (m-2)(m-1)2/2m] - 2/(m—1) is obtained.

Obviously, as n-1m, the variance of Y becomes infinite.

Therefore P{'W1 — Wkl ; m-l} : P{-m+1 g Y ; m-1}, the

probability that Y falls within the specified interval,
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approaches zero. Thus scope for strategic behavior

diminishes asymptotically and the probability that sincere

strategies constitute a Nash equilibrium approaches one.

A.2 Proof: Approval System

For the individual voter, any Wij is a binomial random

variable (either a vote is cast for it or not), with p =

1/2. Then W1 2 23 W15 is distributed approximately normally

n/Z and variance np(1-p) = n/4, and the W1with mean np

have an approximate multivariate normal distribution. In

order for an individual voter to change the outcome of the

system, there must be some [W1 - Wk| ; 1. That is, the

voter's maximum weight assignment of one can cause the

ordering of two totals to change. Let Y 2 W1 - Wk. Then Y

2 2 2

has a mean py = pw - pw = 0; and variance 0y = Ow + 0w +

1 k

20w wk. Because of the relationship between the covariance

andicorrelation coefficient this variance can be computed

exactly; the correlation coefficient is -1/(m-1).

Intuitively, when one of the W1 is above its mean, the

others are expected to be slightly below the mean.

Computing this, a variance of a: = [2n(m-1) - 8]/4(m-1) is

obtained. Obviously, as n->m, the variance of Y becomes

infinite. Therefore P{|W1 - Wkl g 1} = P{-1 g Y 3 1}, the

probability that Y falls within the specified interval,

approaches zero. Thus scope for strategic behavior

diminishes asymptotically and the probability that sincere

strategies constitute a Nash equilibrium approaches one.



APPENDIX B

SIMULATION PROGRAMS

VARIABLES USED

ALTS - number of alternatives used

CHOOS - randomly chosen voter for the reordering

COMMON - number of elections for which there is neither a

Condorcet winner nor a pure strategy Nash equilibrium

(always = 0) ;

COMP - indices of alternatives within “reach" of the winner; [

those which need to be compared for strategic voting F

CVOTES(6) - Condorcet votes

CWINNE - Condorcet winner

F - indicator of strategic voting

G - number of tied alternatives

G1(720) - vector of strategies with maximum expected utility

G2 - number of tied strategies

H - loop counter

I - loop counter for alternatives

J loop counter for voters

K randomly chosen alternative for breaking ties

L - loop counter

LAST - loop counter for sorting by rank

M - loOp counter for elections

MONE - loop counter for random reorderings of voters

N - loop counter for determining expected utility of

strategies

NCOND - number of elections for which the Condorcet winner

is chosen by sincere voting

NONASH - number of elections for which a pure strategy Nash

equilibrium is not found (always = 0)

P - loop counter for repetitions of 100 election simulations

PVOTE(6,721) - matrix of admissible strategies within the

voting system

Q - number of admissible strategies for the voting system

RANK(6) - the vector contains the index of the alternative

in the specified rank for an individual voter

SIN - number of elections for which sincere voting is not

manipulable '

SNCOND - number of elections for which the Condorcet winner

is chosen by strategic voting

STRAT - strategy which maximizes expected utility for a

given voter

TEMPR - holding variable for sorting by rank

TIED(6) - the vector contains the indices of the tied

alternatives

TOTAL(6) - total number of votes accruing to specified

alternatives

TRANK(6) - rank ordering of total votes
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TVOTE - holding variable for random reordering of voters

VOTE(6,125) - individual votes

VOTERS - the number of voters

VOTES(6) - total number of votes accruing to specified

alternatives

WINNER - the alternative chosen by the voting system

WINS(6) - number of alternatives beaten in pairwise races by

the specified alternative

VMAX - maximum number of votes accruing to any alternative

Z - 2,147,483,647: used in random number generation

 

DSEED - current seed value for the random number generator

EELECT - total social utility of all winners chosen by

sincere voting for a voting system

EFFIC - social utility efficiency with sincere voting

EMAX - maximum social utility over alternatives

EU(721) - expected utility of an admissible strategy

NOCC - number of elections without a Condorcet winner _

NUM - number of elections with a Condorcet winner 5

RUTIL(6) - holding variable for sorting by rank

SCEFFI - strategic Condorcet efficiency

SEELEC - total social utility of all winners chosen by

strategic voting for a voting system

SEFFIC — strategic social utility efficiency

SOCUT(6) - vector of social utilities of alternatives

TEMPU - holding variable for random reordering of voters

TOTUT - total utility of all alternatives in an election;

divided by the number of alternatives, the expected utility

of the election if the specified voter does not participate

UTIL(6,125) - matrix of individual utilities

UTMAX - sum over elections of maximum social utility

M1 - mean Condorcet efficiency with sincere voting

M2 - mean strategic Condorcet efficiency

M3 - mean social utility efficiency with sincere voting

M4 - mean strategic social utility efficiency

SD1 - standard deviation of Condorcet efficiency with

sincere voting

SD2 - standard deviation of strategic Condorcet efficiency

SD3 - standard deviation of social utility efficiency with

sincere voting

SD4 - standard deviation of strategic social utility

efficiency

X - multiplier for random number generation

Y - double precision value of Z

W115.

PROGRAM STANDARD (BORDA, APPROVAL)

COMMON/PICK/ALTS,VOTERS,I,J,TOTAL,VOTES,LAST,

+TVOTE,TEMPR,COMP,WINNER,TIED.G.K,TRANK.

+SOCUT.VOTE

INTEGER*2 ALTS,CVOTES(6),CWINNE,F.G,H,I,

WES

CEFFIC - Condorcet efficiency with sincere voting . F
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+J,K,L,LAST,M.N.NCOND,RANK(6),COMP,TOTAL(6),MONE,

+SNCOND,STRAT,COMMON,P,SIN.Q,PVOTE(6,721),GZ,

+TEMPR,TIED(6).NONASH,TVOTE,G1(720),CHOOS,TRANK(6),

+VOTE(6,125),VOTERS,VOTES(6),WINNER,WINS(6),VMAX

REAL CEFFIC,EELECT.EFFIC,EMAX,EU(721),NOCC,NUM,

+RUTIL(6),SCEFFI,SEELEC,SEFFIC,SOCUT(6),TEMPU,

+TOTUT,UTIL(6,125),UTMAX,M1,M2,M3,

+M4,SD1,SD2,SD3,SD4

INTEGER*4 Z

REAL*8 DSEED.X.Y

DATA X/1.6807D4/

Z=2147483647

Y=DBLE(Z)

ALTS=5

Q=5

The value of Q (the number of admissible

strategies) depends on the voting system

being simulated. For the Borda

system, Q=ALTS!, while forthe Approval

alts-1

system, Q=(21=1 2i)

ADMISSIBLE STRATEGIES ARE DETERMINED

DO 2 N=1,Q

DO 1 I=1,ALTS

IF(I.EQ.N)THEN

PVOTE(I,N)=1

ELSE

PVOTE(I,N)=O

ENDIF

CONTINUE

CONTINUE

1

2

For the Borda and Approval Systems,

admissible strategies are read from a file.

The above lines are replaced with the

following:

Open(5,File='STRAA',Statusz’Old')

Do 2 N=1,Q

Do 1 I=1,ALTS

Read(5,*)PVOTE(I,N)

Continue

Continue

OPEN(4,FILE='RESULT',STATUSz’OLD')

OPEN(3,FILE='SEED',STATUS='OLD')

READ(3,*)DSEED

DO 295 VOTERS=3,25,2
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INITIALIZE LOOP VALUES

M1=0.

M2=0.

M3=0.

M4=0.

SD1=0.

SD2=0.

SD3=O.

SD4=0.

DO 20 REPETITIONS OF 100 ELECTIONS

DO 294 P=1,20

INITIALIZE LOOP VALUES

SIN=0

COMMON=0

NONASH=0

NCOND=0

SNCOND=0

EELECT20.

SEELECzo.

EMAX=0.

NUM=100.

DO 100 ELECTIONS

DO 286 M=1,100

UTMAX=0

DO 4 I=1.ALTS

SOCUT(I)=0

WINS(I)=0

ASSIGN UTILITIES TO VOTERS FOR EACH ALTERNATIVE

DO 3 J=1,VOTERS

DSEED=DMOD(DSEED*X,Y)

UTIL(I,J)=SNGL(DSEED/Y)

SOCUT(I)=SOCUT(I)+UTIL(I,J)

CONTINUE

IF(SOCUT(I).GT.UTMAX)THEN

UTMAX=SOCUT(I)

ENDIF

CONTINUE

EMAX=EMAX+UTMAX

DETERMINE CONDORCET WINNER BY MAKING ALL PAIRWISE

COMPARISONS

CWINNE=O

DO 11 I=1,ALTS
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H

H
0
0
0
0

0
0
0
0
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13

14

0
0
0
0
0
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D0 10 H=I+1,ALTS

CVOTES(I)=0

CVOTES(H)=O

DO 9 J=1.VOTERS

IF(UTIL(I.J).GT.UTIL(H.J))THEN

CVOTES(I)=CVOTES(I)+1

ELSE

CVOTES(H)=CVOTES(H)+1

ENDIF

CONTINUE

IF(CVOTES(I).GT.CVOTES(H))THEN

WINS(I)=WINS(I)+1

ELSE IF(CVOTES(I).LT.CVOTES(H))THEN

WINS(H)=WINS(H)+1

ENDIF

CONTINUE

IF(WINS(I).EQ.ALTS-1)THEN

CWINNE=I

GOTO 12

ENDIF

CONTINUE

NO CONDORCET WINNER: SUBTRACT 1 FROM NUMBER OF

ELECTIONS WITH CONDORCET WINNER

NUM=NUM-1.

ORDER UTIL(I.J) AND RANK(I.J) SO WE HAVE UTILITIES IN

ORDER AND CANDIDATES IN ORDER BY RANK

DO 17 J=1,VOTERS

DO 13 I=1,ALTS

RANK(I)=I .

RUTIL(I)=UTIL(I,J)

CONTINUE

DO 15 LAST:ALTS.2.-1

D0 14 I=1,LAST-1

IF(RUTIL(I).LT.RUTIL(I+1))THEN

TENPU=RUTIL(I)

RUTIL(I)=RUTIL(I+1)

RUTIL(I+1)=TEMPU

TEMPRzRANK(I)

RANK(I)=RANK(I+1)

RANK(I+1)=TEMPR

ENDIF

CONTINUE

CONTINUE

CANDIDATES ARE RANKED FROM HIGHEST TO LOWEST. RANK(I)

GIVES NUMBER OF CANDIDATE IN RANK I FOR VOTER J.

ASSIGN VOTES (SINCERE) FOR STANDARD SYSTEM.

DO 16 I=1,ALTS

K=RANK(I)
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IF(I.EQ.1)THEN

VOTE(K,J)=1

ELSE

VOTE(K,J)=O

ENDIF

CONTINUE

CONTINUE

For the Borda and Approval systems,

assignment of sincere votes differs slightly.

The above lines are replaced with the

following:

Borda:

Do 16 I=1,ALTS

K=RANK(I)

VOTE(K,J)=ALTS-I

16 Continue

17 Continue

Approval:

TOTUT=0

Do 16 I=1,ALTS

TOTUT=TOTUT+UTIL(I,J)

16 Continue

TOTUT=TOTUT/ALTS

Do 18 I=1,ALTS

If(UTIL(I.J).GT.TOTUT)Then

VOTE(I.J)=1

Else

VOTE(I,J)=O

Endif

18 Continue

17 Continue

CALL COUNT

IF(WINNER.EQ.CWINNE)THEN

NCOND=NCOND+1

ENDIF

EELECT=EELECT+SOCUT(WINNER)

ASSIGN VOTES (STRATEGIC) FOR STANDARD SYSTEM

IF NUMBER OF ALTERNATIVES WITHIN "REACH" OF WINNING

IS NOT EQUAL TO 1, THE ELECTION IS MANIPULABLE.

OTHERWISE DO NOT NEED TO CHECK STRATEGIES. SKIP TO

LINE 65, P. 159.

IF(COMP.NE.1)THEN

DO 37 L=1,40

DO 36 J=1,VOTERS

N=Q+1

EU(N)=0

G=1

VMAX=MAX(VOTES(1),VOTES(2),VOTES(3),VOTES(4),

 



0
0
0

26

0
0
0

.
4

0
0
0
0
0
N

0
0
0
0
0
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+VOTES(5))

DO 26 I=1,ALTS

IF(VOTES(I).EQ.VMAX)THEN

ASSIGN INDEX TO TIED ALTERNATIVE

TIED(G)=I

G=G+1

EU(N)=EU(N)+UTIL(I,J)

ENDIF

VOTES(I)=VOTES(I)-VOTE(I,J)

PVOTE(I,Q+1)=VOTE(I,J)

CONTINUE

EU(N)=EU(N)/REAL(G-1)

STRAT=Q+1

D0 31 N=1.Q

IE(TOTAL(1).GT.TOTAL(2))THEN

D0 27 I=1,ALTS

IF STRATEGY CAN CHANGE OUTCOME OF ELECTION

IF((TOTAL(1)-VOTE(TRANK(1),J)+PVOTE(TRANK(1),N)

+)-(TOTAL(I)-VOTE(TRANK(I),J)+PVOTE(TRANK(I),N)).LE.0)

+THEN

GOTO 30

ENDIF

CONTINUE

OTHERWISE EXPECTED UTILITY OF STRATEGY IS EQUAL TO

EU OF CURRENT STRATEGY. SKIP TO END OF LOOP AND

GO TO NEXT STRATEGY.

EU(N)=EU(Q+1)

GOTO 31

ENDIF

DETERMINE EXPECTED UTILITY OF STRATEGY

DO 28 I=1,ALTS

VOTES(I)=VOTES(I)+PVOTE(I,N)

CONTINUE

VMAX=MAX(VOTES(1),VOTES(2),VOTES(3),VOTES(4),

+VOTES(5))

EU(N)=0

G21

D0 29 I=1,ALTS

IF(VOTES(I).EQ.VMAX)THEN

TIED(G)=I

G:G+1

EU(N)=EU(N)+UTIL(I,J)

ENDIF

VOTES(I)=VOTES(I)-PVOTE(I,N)

CONTINUE

EU(N)=EU(N)/REAL(G-1)
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IF EXPECTED UTILITY EXCEEDS EU OF CURRENT STRATEGY,

CHANGE STRATEGY

IF(EU(N).GT.EU(STRAT))THEN

STRAT=N

ENDIF

CONTINUE

62:1

IF(STRAT.NE.Q+1)THEN

F=F+l

DO 33 N=1,Q

IF MORE THAN ONE STRATEGY HAS MAX EU. CHOOSE ONE

RANDOMLY

IF(EU(N).EQ.EU(STRAT))THEN

G1(G2)=N

G2=G2+1

ENDIF

CONTINUE

DSEED=DMOD(DSEED*X,Y)

K=INT(((SNGL(DSEED/Y))*(REAL(G2-1)))+1.)

STRAT=G1(K)

ENDIF

REASSIGN VOTES IN ACCORDANCE WITH CHOSEN STRATEGY

DETERMINE NEW TOTALS

DO 34 I=1,ALTS

VOTE(I,J)=PVOTE(I,STRAT)

VOTES(I)=VOTES(I)+VOTE(I,J)

CONTINUE

CONTINUE

IF NO STRATEGY CHANGES HAVE OCCURRED, NASH EQUILIBRIUM

HAS BEEN FOUND. DETERMINE WINNER AND GO TO

CALCULATION OF STATISTICS.

IF(F.EQ.O)THEN

CALL COUNT

IF(WINNER.EQ.CWINNE)THEN

SNCOND=SNCOND+1

ENDIF

SEELEC=SEELEC+SOCUT(WINNER)

GOTO 285

ENDIF

F=0

CONTINUE

HERE WE HAVE NOT REACHED THE NASH EQUILIBRIUM

WRITE UTILITIES AND VOTES TO A FILE
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REWIND 11

DO 44 J=1.VOTERS

DO 13 I=1,ALTS

RANK(I)=I

RUTIL(I)=UTIL(I.J)

CONTINUE

DO 15 LAST=ALTS,2.-1

DO 14 I=1.LAST-l

IF(RUTIL(I).LT.RUTIL(I+1))THEN

TEMPU=RUTIL(I)

RUTIL(I)=RUTIL(I+1)

RUTIL(I+1)=TEMPU

TEMPR=RANK(I)

RANK(I)=RANK(I+1)

RANK(I+1)=TEMPR

ENDIF

CONTINUE

CONTINUE

DO 43 I=1,ALTS

K=RANK(I)

VOTE(K,J)=ALTS-I

CONTINUE

WRITE(11,*)UTIL(1,J),UTIL(2,J),UTIL(3.J),UTIL(4,J)

WRITE(11,*)VOTE(1,J),VOTE(2,J),VOTE(3,J),VOTE(4,J)

CONTINUE

DO LOOP FOR NUMBER OF REORDERINGS

DO 63 MONE=1,40

REWIND 11

DO 46 J=1,VOTERS

READ(11,*)UTIL(1,J),UTIL(2,J),UTIL(3,J),UTIL(4,J)

READ(11,*)VOTE(1,J),VOTE(2,J),VOTE(3,J),VOTE(4,J)

CONTINUE

RANDOM REORDERING OF VOTERS

DO 48 J=1,VOTERS

DSEED=DMOD(DSEED*X,Y)

CHOOS=INT(SNGL(DSEED/Y)*(VOTERS-J+1))+J

IF(CHOOS.NE.J)THEN

DO 47 I=1,ALTS

TVOTE=VOTE(I,J)

VOTE(I,J)=VOTE(I,CHOOS)

VOTE(I,CHOOS)=TVOTE

TEMPUzUTIL(I,J)

UTIL(I,J)=UTIL(I,CHOOS)

UTIL(I,CHOOS)=TEMPU

CONTINUE

ENDIF

CONTINUE

WRITE(*,*)’SEARCH ',MONE
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AFTER REORDERING, REPEAT PROCESS OF SEARCHING FOR

NASH EQUILIBRIUM

DO 62 L=1.40

DO 60 J=l.VOTERS

N:Q+1

EU(N)=O

G=1

VMAX=MAX(VOTES(1),VOTESOZ),VOTES(3),VOTES(4),

+VOTES(5))

DO 50 I=1,ALTS

IE(VOTES(I).EQ.VMAX)THEN

TIED(G)=I

G:G+l

EU(N)=EU(N)+UTIL(I.J)

ENDIF

VOTES(I)=VOTES(I)-VOTE(I,J)

PVOTE(I,Q+1)=VOTE(I,J)

CONTINUE

EU(N)=EU(N)/REAL(G-1)

STRAT=Q+1

DO 55 N=1.Q

DO 52 I=1,ALTS

VOTES(I):VOTES(I)+PVOTE(I,N)

CONTINUE

VMAX=MAX(VOTES(1),VOTES(2),VOTES(3),VOTES(4),

+VOTES(5))

EU(N)=0

G=1

DO 53 I=1,ALTS

IF(VOTES(I).EQ.VMAX)THEN

TIED(G)=I

G:G+l

EU(N)=EU(N)+UTIL(I,J)

ENDIF

VOTES(I)=VOTES(I)-PVOTE(I,N)

CONTINUE

EU(N)=EU(N)/REAL(G-1)

IE(EU(N).GT.EU(STRAT))THEN

STRAT=N

ENDIF

CONTINUE

G2=1

IF(STRAT.NE.Q+1)THEN

F:F+1

DO 57 N=l,Q

IF(EU(N).EQ.EU(STRAT))THEN

G1(G2)=N

G2=G2+1

ENDIF

CONTINUE

DSEED=DMOD(DSEED*X.Y)

K=INT(((SNGL(DSEED/Y))*(REAL(G2-1)))+1.)
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STRAT=G1(K)

ENDIF

DO 58 I=1,ALTS

VOTE(I,J)=PVOTE(I,STRAT)

VOTES(I)=VOTES(I)+VOTE(I.J)

58 CONTINUE

60 CONTINUE

IF(F.EQ.O)THEN

CALL COUNT

IF(WINNER.EQ.CWINNE)THEN

SNCOND=SNCOND+1

ENDIF

SEELEC=SEELEC+SOCUT(WINNER)

GOTO 285

ENDIF

F=0

61 CONTINUE

62 CONTINUE

63 CONTINUE

IF AFTER 40 RANDOM REORDERINGS OF VOTERS, AN

EQUILIBRIUM STILL HAS NOT BEEN FOUND,

0
0
0
0

NONASH=NONASH+1

IF(CWINNE.EQ.0)THEN

COMMON=COMMON+1

ENDIF

WRITE(10,*)VOTERS.ALTS.P

5 ELSE

SINCERE VOTING IS A NASH EQUILIBRIUM

0
0
0
0
)

SIN=SIN+1

IF(WINNER.EQ.CWINNE)THEN

SNCOND=SNCOND+1

ENDIF

SEELEC=SEELEC+SOCUT(WINNER)

ENDIF

285 WRITE(*,*)VOTERS,P,M

286 CONTINUE

CALCULATE STATISTICS FOR 100 ELECTION SIMULATION AND

WRITE TO RESULT FILE

0
0
0
0

EFFIC=((EELECT/100.)-(VOTERS/2.))/

+((EMAX/100.)-(VOTERS/2.))

SEFFIC=((SEELEC/(REAL(100-NONASH)))‘(VOTERS/Z-))/

+((EMAX/100.)-(VOTERS/2.))

CEFFIC=(REAL(NCOND))/NUM

SCEFFI=(REAL(SNCOND))/(NUM-REAL(NONASH)+REAL(COMMON))

NOCC=100.-NUM

WRITE(4,*)ALTS,VOTERS

WRITE(4,*)NONASH,NOCC,COMMON,SIN

WRITE(4,*)EFFIC,SEFFIC,CEFFIC,SCEFFI
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IF(NONASH.GT.0)THEN

WRITE(12,*)EELECT.SEELEC.EMAX

WRITE(12,*)NCOND,SNCOND,NUM

ENDIF

M1=M1+EFFIC

M2=M2+SEFFIC

M3=M3+CEFFIC

M4=M4+SCEFFI

SDl=SD1+(EFFIC**2)

SD2=SD2+(SEFFIC**2)

SD3=SD3+(CEFFIC**2)

SD4=SD4+(SCEFFI**2)

CONTINUE

CALCULATE STATISTICS FOR 20 REPETITIONS OF 100

ELECTION SIMULATION AND WRITE TO RESULT FILE

M1=M1/20.

N2=M2/20.

M3=M3/20.

M42M4/20.

SD1=((SD1-(20.x(M1**2)))/19.)**0.5

SD2=((SD2-(20.*(M2**2)))/19.)**0.5

SD3=((SD3-(20.*(N3**2)))/19.)**0.5

SD4=((SD4-(20.*(M4**2)))/19.)**0.5

WRITE(4,*)M1,M2.M3,M4

WRITE(4;*)SD1,SD2,SD3,SD4

REWIND 3

WRITE(3,*)DSEED

CONTINUE

STOP

END

SUBROUTINE COUNT

COMMON/PICK/ALTS,VOTERS,I,J,TOTAL,VOTES,LAST,

+TVOTE,TEMPR,COMP,WINNER,TIED,G,K,TRANK,

+SOCUT.VOTE

INTEGER*2 ALTS,CVOTES(6),CWINNE,F,G,H,I,

+J,K,L,LAST,M,N,NCOND,RANK(6),COMP,TOTAL(6),MONE,

+SNCOND,STRAT,COMMON,P,SIN.Q.PVOTE(6,721),G2,

+TEMPR,TIED(6),NONASH,TVOTE,G1(720),CHOOS,TRANK(6),

+VOTE(6,125),VOTERS,VOTES(6),WINNER,WINS(6),VMAX

REAL CEFFIC,EELECT.EFFIC.EMAX.EU(721).NOCC.NUM.

+RUTIL(6),SCEFFI,SEELEC,SEFFIC,SOCUT(6),TEMPU,

+UTIL(6,125),UTMAX,M1,M2,M3,

+M4,SD1,SD2,SD3,SD4

INTEGER¥4 Z

REAL*8 DSEED.X.Y

DATA X/1.6807D4/

Z=2147483647

Y=DBLE(Z)

CALL ADD

COMP=0

DO 23 I=2.ALTS

IF((TOTAL(1)-TOTAL(I)).GT.2)THEN



23

24

25

0
0
0
:
4
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For the Borda system, the difference

between totals must be (ALTS-1)x2 for

the totals to be comparable.

COMP=I-l

GOTO 24

ENDIF

CONTINUE

COMP=ALTS

G=1

WINNER=TRANK(1)

DO 25 I=1,COMP

IF(TOTAL(I).EQ.TOTAL(1))THEN

TIED(G)=TRANK(I)

G:G+1

ENDIF

CONTINUE

DSEED=DMOD(DSEED*X.Y)

K=INT(((SNGL(DSEED/Y))*REAL(G-l))+1.)

WINNER=TIED(K)

END

SUBROUTINE ADD

COMMON/PICK/ALTS,VOTERS,I,J,TOTAL,VOTES,LAST,

+TVOTE,TEMPR,COMP,WINNER,TIED,G,K,TRANK,

+SOCUT,VOTE

INTEGER*2 ALTS,CVOTES(C),CWINNE,F,G,H,I,

+J,K,L,LAST,M,N,NCOND,RANK(6),COMP,TOTAL(6),MONE,

+SNCOND,STRAT,COMMON.P,SIN1Q1PVOTE(6,721),G2,

+TEMPR,TIED(6),NONASH,TVOTE,GI(720),CHOOS,TRANK(6),

+VOTE(6,125),VOTERS,VOTES(6),WINNER,WINS(6),VMAX

REAL CEFFIC,EELECT,EFFIC,EMAX,EU(721),NOCC,NUM,

+RUTIL(6),SCEFFI,SEELEC,SEFFIC,SOCUT(6),TEMPU,

+UTIL(6,125),UTMAX,M1,M2,M3,

+M4,SD1,SD2,SD3,SD4

INTEGER¥4 Z

REAL*8 DSEED.X.Y

DO 19 I=1,ALTS

VOTES(I)=O

DO 18 J=1,VOTERS

VOTES(I)=VOTES(I)+VOTE(I,J)

CONTINUE

TOTAL(I)=VOTES(I)

TRANK(I)=I

CONTINUE

SORT TOTALS FROM HIGHEST TO LOWEST

DO 22 LAST=ALTS,2,-1

DO 21 I=1,LAST-l

IF(TOTAL(I).LT.TOTAL(I+1))THEN

TVOTE=TOTAL(I)

TOTAL(I)=TOTAL(I+1)

TOTAL(I+1)=TVOTE

TEMPR=TRANK(I)
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TRANK(I)=TRANK(I+1)

TRANK(I+1)=TEMPR

ENDIF

21 CONTINUE

22 CONTINUE

END



STAN

APP

BOR

APPENDIX C

NUMERICAL EFFICIENCY ESTIMATES

number of alternatives

number of voters

SU = sincere social utility efficiency estimate

strategic social utility efficiency estimate

sincere Condorcet efficiency estimate

strategic Condorcet efficiency estimate

standard voting system

Approval voting system

Borda voting system

SYSTEM M

A
A
h
p
h
h
a
»
p
u
m
p
»
w
w
w
w
w
w
w
w
m
w
w
w
w
w
w
w
w
w
w
w
w
w

Table 0.1 Numerical Efficiency Estimates
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Table 0.1 (cont’d.)

SYSTEM M V SU SSU CON SCON

STAN 4 35 68 69625 76 43157 67 31848 82 23264

STAN 4 45 70 75148 77 81714 67 28976 80 31257

STAN 4 55 69 56684 76 58865 68 50451 79 62701

STAN 4 65 71 68784 76 79339 68 73268 79 57056

STAN 4 75 69 76920 75 28825 65 53801 74 82826

STAN 4 85 70 28945 77 55321 66 03845 78 15042

STAN 4 95 71 34871 77 18910 67 95308 78 11021

STAN 4 105 71 99607 77 21820 66 63617 75 37265

STAN 4 115 70 39350 75 21690 68 25966 76 30755

STAN 4 125 69 60443 75 41456 65 07824 73 55512

STAN 5 3 69 30213 85 41085 73 50789 85 04213

STAN 5 5 72 01346 81 82657 71 19073 92 17719

STAN 5 7 70 53767 80 76190 67 97408 87 65211

STAN 5 9 68 56567 78 66927 65 11762 85 37357

STAN 5 11 70 35698 79 95623 67 46361 85 56151

STAN 5 13 68 58490 79 37249 63 63131 82 46771

STAN 5 15 68 84727 79 47679 65 33905 83 63716

STAN 5 17 66 64464 76 05931 61 66896 79 90193

STAN 5 19 67 48163 77 99164 61 80851 81 43187

STAN 5 21 65 22192 77 77954 58 44027 78 62954

STAN 5 23 67 13834 76 69456 61 56055 77 48210

STAN 5 25 68 53179 78 24449 63 45115 79 38334

STAN 5 35 66 07011 75 17092 58 49493 74 21334

STAN 5 45 66 22192 75 15441 59 75353 73 99453

STAN 5 55 68 44178 76 39528 60 68997 74 27016

STAN 5 65 64 36284 72 59757 60 49124 72 53312

STAN 5 75 65 96298 74 23602 60 45285 71 83448

STAN 5 85 62 85065 72 40006 57 94659 68 78442

STAN 5 95 69 14971 74 65492 61 47445 71 10004

STAN 5 105 68 48776 74 97199 60 55389 71 30886

STAN 5 115 66 05291 72 51652 58 55390 68 91547

STAN 5 125 66 53121 72 02755 59 26700 68 81782

STAN 6 3 65 05819 84 54540 68 88606 82 76113

STAN 6 5 70 21628 80 06387 68 45763 89 08249

STAN 6 7 67 70756 80 83061 63 49053 84 24884

STAN 6 9 67 32233 78 70402 61 83347 82 75975

STAN 6 11 64 75424 76 42666 58 51207 80 27396

STAN 6 13 67 02317 78 15276 59 82922 79 05948

STAN 6 15 64 16193 75 80341 57 94467 77 83272

STAN 6 17 67 08984 77 70395 58 05382 77 74515

STAN 6 19 64 30106 74 64041 55 95757 75 27487

STAN 6 21 63 41932 75 27146 55 99650 75 10687

STAN 6 23 64 62094 75 43137 55 87289 73 15285

STAN 6 25 64 84376 74 44135 55 40077 72 46808

STAN 6 35 63 34317 73 88823 54 30782 69 83503

STAN 6 45 62 89053 72 27750 54 37664 69 03371

STAN 6 55 61 16387 71 43884 51 11140 64 65038

STAN 6 65 63 93198 72 13074 54 54405 66 66238

STAN 6 75 62 34725 71 82034 51 38808 63 97619
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SYSTEM M
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SYSTEM M
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Table C.1 (cont'd.)

SYSTEM M V SU SSU CON SCON

BOR 3 13 85 6521 86 0514 91 0840 90 3618

BOR 3 15 86 0413 85 1241 91 4254 89 3947

BOR 3 17 86 5786 86 0729 91 4962 89 9234

BOR 3 19 87 4681 85 8277 91 0791 89 1793

BOR 3 21 86 9231 85 7577 90 8613 88 8679

BOR 3 23 86 0169 85 5753 90 4614 87 0584

BOR 3 25 85 9809 84 8370 91 0876 89 3036

BOR 3 35 86 9052 86 0876 90 8584 88 7467

BOR 3 45 85 9639 84 1891 90 9682 88 4536

BOR 3 55 87 2799 86 2050 89 4846 88 3376

BOR 3 65 85 7878 84 6726 90 2689 90 4917

BOR 3 75 86 1616 85 6402 89 1739 88 4144

BOR 3 85 85 9609 85 6280 89 6652 88 9880

BOR 3 95 85 6847 84 3600 90 0702 89 1871

BOR 3 105 87 8802 86 7592 89 7204 89 3822

BOR 3 115 85 7873 84 9270 89 8063 89 2558

BOR 3 125 87 5652 86 4840 90 8998 90 1502

BOR 4 3 90 2885 87 5803 91 0800 95 5689

BOR 4 5 88 9593 85 8698 87 7640 90 8517

BOR 4 7 89 8753 84 8071 88 8192 84 8081

BOR 4 9 89 9198 84 6571 87 7144 82 8791

BOR 4 11 88 9953 85 2660 88 8147 81 8023

BOR 4 13 89 6839 83 8101 87 0150 80 7521

BOR 4 15 89 5930 83 4478 87 9289 80 5604

BOR 4 17 89 5385 84 8454 88 0877 81 9271

BOR 4 19 89 6547 83 4629 87 7410 80 7406

BOR 4 21 88 7063 83 3710 88 5702 82 1670

BOR 4 23 88 1805 82 9895 88 7625 83 2401

BOR 4 25 88 6720 83 7541 87 7058 80 8639

BOR 4 35 88 7871 83 1956 87 1246 80 7768

BOR 4 45 88 8816 85 0088 87 8488 84 0707

BOR 4 55 89 4796 84 7656 86 7280 82 7086

BOR 4 65 89 5331 85 8105 87 5145 83 1699

BOR 4 75 89 8240 85 5151 88 3134 84 3461

BOR 4 85 90 2245 86 5894 88 0251 84 6901

BOR 4 95 88 5688 86 2847 86 0952 83 4126

BOR 4 105 88 3059 85 4874 87 2052 83 8800

BOR 4 115 89 0266 84 7904 87 8618 84 9852

BOR 4 125 90 2115 87 5790 86 7301 84 9834

Values estimated with regression coefficients:

BOR 5 3 91.28709 93.62172 90.37112 92.07680

BOR 5 5 91.28709 90.17734 89.51751 86.85212

BOR 5 7 91.28709 88.38428 89.06592 84.12371

BOR 5 9 91.28709 87.30332 88.75550 82.47178

BOR 5 11 91.28709 86.59463 88.51114 81.38258

BOR 5 13 91.28709 86.10698 88.30303 80.62754

BOR 5 15 91.28709 85.76300 88.11699 80.08968
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SYSTEM M
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APPENDIX D

REGRESSION RESULTS

Equation 1:

C(4)*VAR

Table D.1. Sincere Social Utility Efficiency

Regression Results

Willem

Coefficient Std. Error

C(1) 0.9660104 0.0134421

C(2) 12.5755110 2.0373614

C(3) -0.0908287 0.0509604

C(4) 0.1744424 0.0523831

32

Standard Error of Regression

Sum of Squared Residuals

WWW

Coefficient Std. Error

C(1) 0.9834290 0.0049852

C(2) -14.4611890 2.6824025

C(3) 3.6120629 0.5574343

C(4) -3.6261399 0.5612308

32

Standard Error of Regression

Sum of Squared Residuals

Wm

. Coefficient Std. Error

C(1) 0.9988894 0.0028917

C(2) -1.4911846 5.7122250

C(3) 0.0056901 0.0148756

C(4) -0.0036556 0.0094704

R2

Standard Error of Regression

Sum of Squared Residuals

166

T-Stat.

71.8642880

6.1724490

-1.7823393

3.3301283

T-Stat.

197.2711100

-5.3911334

6.4797997

—6.4610496

T-Stat.

345.4374500

-O.2610514

0.3825100

-0.3860020

SU = C(1)*THEO + C(2)*DIF + C(3)*MEAN +

0.862424

1.717966

247.9183

0.432635

0.995403

83.22952

0.834664

0.663750

17.62255
"
7
"
“
!
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Equation 2: CC = C(1)*THEO + C(2)*DIF + C(3)*MEAN +

C(4)*VAR

Table D.2. Sincere Condorcet Efficiency

Regression Results

WWII;

Coefficient Std. Error T-Stat.

C(1) 0.9347468 0.0225973 41.3654810

C(2) 17.4107530 3.4249585 5.0848752

C(3) 0.7782854 0.0856683 9.0848752

C(4) -0.8640046 0.0880599 -9.8115514

R2 0.908270

Standard Error of Regression 2.888031

Sum of Squared Residuals 700.6208

Annmallatinmm

Coefficient Std. Error T-Stat.

C(1) 0.6636912 0.0092258 71.9385700

C(2) -18.8665650 4.9641934 -3.8005298

C(3) 20.5012300 1.0316170 19.8729090

C(4) -20.4961870 1.0386428 -19.7336240

R2 0.854252

Standard Error of Regression 1.842145 .

Sum of Squared Residuals 285.0538

WW

Coefficient Std. Error T-Stat.

C(1) 0.9702868 0.0032940 294.5577000

C(2) 136.2546000 6.5070940 20.9393930

C(3) 0.1357765 0.0169456 8.0125011

C(4) -0.0832901 0.0107883 —7.7204378

Rz 0.887074

Standard Error of Regression 0.756112

Sum of Squared Residuals 22.86822
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SSU = C(1)*THEO + C(2)*DIF + C(3)/P +

C(4)*(Q‘(ALTS/(2*(ALTS+V)))) + C(5)*V +

C(6)*V‘2 + C(7)*V“3 + C(8)*V‘4

Equation 3:

Table D.3. Strategic Social Utility Efficiency

Regression Results

Standardistimflsm

Coefficient Std. Error T-Stat.

C(1) 0.5207019 0.0542326 9.6012750

C(2) 18.1723560 17.5191300 1.0372864

C(3) 22.8116840 4.8082186 4.7443110

C(4) 15.1048090 2.0875383 7.2357038

C(5) 0.0750898 0.1612042 0.4658056

C(6) -0.0026245 0.0039308 -0.6676666

C(7) 3.237D-05 4.058D-05 0.7978145

C(8) -1.343D-07 1.459D—07 -0.9206889

R2 0.921995

Standard Error of Regression 1.116703

Sum of Squared Residuals 99.76201

WWII

Coefficient Std. Error T-Stat.

C(1) -1.4149151 0.2701843 -5.2368524

C(2) 92.3039750 10.0521490 9.1825119

C(3) 169.3911200 19.1548330 8.8432624

C(4) 1.3284882 0.5041483 2.6351140

C(5) -0.2029406 0.1278940 -1.5867872

C(6) 0.0051127 0.0033746 1.5154758

C(7) -3.835D-05 3.624D-05 -1.0583883

C(8) 9.423D-08 1.333D-07 0.7066768

R2 0.741881

Standard Error of Regression 1.097526

Sum of Squared Residuals 96.36510

W

Coefficient Std. Error T-Stat.

C(1) 0.7174308 0.0998939 7.1819298

C(2) 262.6485400 54.7449520 4.7976760

C(3) 15.0476340 10.2901170 1.4623384

C(4) 2.6690842 1.3929331 1.9161611

C(5) -0.0878516 0.1415911 -0.6204598

C(6) 0.0044036 0.0036143 1.2183975

C(7) -5.407D-05 3.806D-05 -1.4209206

C(8) 2.095D-07 1.383D-07 1.5148517

R2 0.709214

Standard Error of Regression 0.766167

Sum of Squared Residuals 21.13243
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Equation 4: SCC 2 C(1) + C(2)*SSU + C(3)*ALTS + C(4)*V

See Chapter 4, page 112.

 



APPENDIX E

NOTES TO TEXT

Introduction and Chapter 1

lBlack [7], p. 180.

2Condorcet, in Rosenstein [118], p. 36.

3Condorcet, in Rosenstein [118], p. 46-47.

4Condorcet, in Rosenstein [118], p. 53.

5Condorcet, in Rosenstein [118], p. 51.

6Condorcet, in Rosenstein [118], p. 56.

7Zeckhauser [145], p. 935.

8Gibbard [58], p. 587.

9Gibbard [58], p. 595.

10Postlewaite and Schmeidler [109], p. 37.

11Postlewaite and Schmeidler [109], p. 38.

12Postlewaite and Schmeidler [109], p. 37.

13Dasgupta, Hammond, and Maskin [33], p 186.

14Dasgupta, Hammond, and Maskin [33], p. 186.

15Dasgupta, Hammond, and Maskin [33], p. 188.

16Dasgupta, Hammond, and Maskin [33], p 189.

1'7Black [7],‘p. 188.

13Black [7], p. 188.

19Black [7], p. 7.

20Enelow and Hinich [40], p. 16.

2lEnelow and Hinich [40], p. 30.

22Enelow and Hinich [40], p. 30.

23Enelow and Hinich [40], pp. 30-31.

2“Riker and Ordeshook [114], pp. 25-26.

25Palfrey and Rosenthal [102], p. 9.

26Ferejohn and Fiorina [42], p. 527.

27Palfrey and Rosenthal [102], p. 9.

28Palfrey and Rosenthal [102], p. 10.

29Palfrey and Rosenthal [102], p. 8.

30Palfrey and Rosenthal [102], p.

31Data are taken from the ”tr ‘ t .~ '

Statesg_1982;83, 103rd Edition. U.S. Bureau of the Census,

1982.

32Intriligator [79], p. 553.

33Farquaharson [41], p. 24.

34Farquaharson [41], p. 24.

35Farquaharson [41], p. 25.

36Enelow and Koehler [39], p. 399.

37Enelow [38], p. 1062.

38Enelow [38], pp. 1088-1089.

    ’
3
0
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Chapter 2

1Arrow [1], pp. 94-95.

2Weber [143], pp. 7-8.

3Weber [143], pp. 9-11.

4Postlewaite and Schmeidler [109], p. 38.
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5Fishburn

6Fishburn

7Fishburn

8Fishburn

9Fishburn

10Bordley

Chapter 3

1Merrill [92],

2Merrill [92],

3Shubik [130],

4Selten [123],

Chapter 5

1Boadway,

Co., 1979,

2Riker and

3McKelvey,

4McKelvey,

5McKelvey,

6McKelvey,
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and Gehrlein [55], p. 143.

and Gehrlein [55], p. 149.

and Gehrlein [55], p. 149.

and Gehrlein [55], p. 151.

and Gehrlein [55], p. 151.

[12], p. 129.

p. 119.

p. 119.

p 136.

p 35.

R.W..WWLittle. Brown, and

pp. 71-72.

Ordeshook [114], pp. 25-26.

Ordeshook, and Winer [90], p. 599.

Ordeshook, and Winer [90], p. 605.

Ordeshook, and Winer [90], p. 602.

Ordeshook, and Winer [90], p. 606.
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