MSU

LIBRARIES
A ——

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.

Ay s 2 3




in



EFFICIENCY COMPARISONS OF
VOTING SYSTEMS
WITH STRATEGIC VOTING
By

Laura M. Hayes

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Economics

1987



The
effect of
different
Systems ¢¢
Sorda yst
oting, in
s a choic

Effic
theoretica
SYStemS, a

®oumptioy,



[o ¢y

WV

~

~

A

ABSTRACT
EFFICIENCY COMPARISONS OF
VOTING SYSTEMS
WITH STRATEGIC VOTING
By

Laura M. Hayes

The purpose of this dissertation is to investigate the
effect of strategic voting on efficiency measures of
different multi-candidate voting systems. The voting
systems compared include the standard plurality system; the
Borda system, a weighted ranking voting system; and approval
voting, in which the number of alternatives receiving a vote
is a choice variable for the voter.

Efficiency measures have already been developed
theoretically and estimated via simulation for these voting
systems, assuming voters use sincere strategies. Given this
assumption, the Borda system is found to be the most
efficient, followed by approval voting, followed by the
standard voting system.

However, a set of sincere strategies for the voting
population does not always constitute a Nash equilibrium.

It is shown that sincere strategies do converge to a Nash
equilibrium as the voting population becomes large.
Similarly, as the degree of information the voting
poprulation is assumed to have decreases, i.e. the standard
error of their estimates of alternatives” total votes

received increases, sincere strategies converge to a Nash
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equilibrium. Thus, for small, sufficiently knowledgeable
voting populations, efficiency measures may change with the
assumption of strategic voting as opposed to sincere voting.
A simulation of the voting systems under consideration
confirms that efficiency measures do change significantly
under these conditions. 1In addition, the results of the
simulation show that strategic voting can alter the ranking
of the voting systems. For one of the two efficiency
measures used, the standard voting system is found to be
most efficient, followed by the Borda system, with approval

voting being the least efficient of the three.
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INTRODUCTION

It is often necessary to make decisions which will
affect a group of individuals. Arrow [1] in his General
Posgsibility Theorem, proved the impossibility of
constructing a social welfare function (without using
cardinal utilities) which fulfilled the following
conditions: (1) unrestricted domain; (2) consistency with
the Pareto principle; (3) independence of irrelevant
alternatives; and (4) nondictatorship. Certainly if such a
social welfare function could be constructed it could be
used to determine which of the possible alternatives to
chooge. Despite the fact that no such social welfare
function exists, the decisions remain to be made. In lieu
of using a social welfare function with these
characteristics, voting systems are often used.

There are many different voting systems to choose from,
and different voting systems may produce different outcomes.
The voting systems considered here are the standard
plurality system, the Borda system, and the approval voting
system. The standard voting system is the one commonly used
in the United States, where each voter casts one vote for
the alternative of his choice. The Borda system is a

weighted ranking system in which alternatives are ranked and
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2
then assigned pointe according to their rank. For example,
in an election with five alternatives (A, B, C, D, and E) an
individual would rank the alternatives from firet to last.
For simplicity, let the alternatives be ranked in

alphabetical order. Then points are assigned as follows:

Alternative Rank Points Assigned
A 1 4
B 2 3
C 3 2
D 4 1
E 5 0

The Borda system was presented for the first time to the
French Academy in 1784 by Jean-Charles de Borda, and was
promptly adopted by the Academy. It remained in use until
1800, when it was challenged by a new member and modified
soon afterward. The new member was Napoleon Bonaparte.l
Currently, a modified Borda system is used as the selection
method for the Heisman trophy winner, as well as for several
other athletic awards.

In the approval voting system, voters are allowed to
vote for as many of the alternatives as they find acceptable
or approve of. In the example above, a voter could cast
from zero to five votes, although zero and five are
equivalent strategies in the sense that neither affects the
outcome of the election. Approval voting was first
discussed by S. Brams in 1976 [17], and there have been
efforts to have this system adopted for use in the

Massachusetts primary.
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3
The Institute of Management Sciences tested the
approval voting system against the standard voting system in
its 1985 annual elections. 85% of the 1,851 voters, or
1,579 voters returned the test ballot. Members were also
asked to rank the candidates, and 82% provided at least some
rankings. Three elections were used for comparison. The

results of the first election are presented here.

Candidate Official Approval
Vote Vote
A 166 417
B 827 1038
C — 908
1828 2363

(1,562 voters)
The outcome of the election is C under the standard voting
system, while B wins under approval voting. This difference
is caused by the pattern of second choices. There is no
scope for information about second choices in the standard
voting system, but some of this information is used in the

approval voting system.

18t choice 2nd vote
A B 36%
A C 23%
B C 27%
C B 45%

As shown above, among A°s followers, more approve of B than
C (36% to 23%), and more of C's followers approve of B (45%)
than B’s followers do of C (27%). Using the ranking data
submitted, Little and Fishburn [87] extrapolated to obtain
the result of a hypothetical pairwise race between B and C.

Interestingly, the expected outcome of such a race is a tie,
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4
with both B and C obtaining 914 votes. Clearly, the choice
of voting system used impacts directly on the outcomes
achieved. The question now becomes one of determining which
voting system is "best,” and the criterion which should be
used in making this determination.
A brief outline of the dissertation is presented here.
In chapters 1 and 2, the literature on voting systems is
reviewed. The literature focuses on three major areas:
1) voting systems as ways of aggregating individual
preferences, and their characteristics, e.g.
Arrow’s General Possibility Theorem, work on
incentive compatibility;
2) how voting systems work in terms of individual
' motivation and equilibrium: voting equilibria, and
why individuals vote; and
3) comparisons of voting systems in terms of expected
outcomes.
Chapter 1 outlines the historical background of voting
system research, while Chapter 2 defines the comparison
measures for voting systems and reviews voting system
comparisons in terms of expected outcomes. Chapter 3
presents the formal model used for simulation as well as
investigating some of the implications of the model, such as
equilibria found. Also presented is a discussion of when
sincere strategies constitute a Nash equilibrium. Chapter 4
presents the results of simulations run under the complete

information assumption and an intermediate level of
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information. A discussion of the results and their policy
implications is presented in Chapter 5, along with possible

extensions and areas for further research.
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CHAPTER 1
HISTORICAL BACKGROUND

Approaches to the study of voting systems vary widely.
The earliest work, beginning with Jean-Charles de Borda in
1781 [11] and continuing through the 19th century, appears
for the most part to be a continuing ideoclogical debate on
the subject. Later work can be categorized into three major
areas. The first of these focuses on voting systems as a
means of aggregating individual preferences and the
characteristics of the aggregation process. The second
looks rather at individual motivation and equilibria in a
voting system, usually one specific voting system. The
third area, which can be characterized as a strictly modern
approach, compares voting systems in terms of outcomes or
expected outcomes. A great deal of the literature falls
strictly into one class or another, although there is of
course some work which crosses these lines.
1.1 Early Work

Jean-Charles de Borda's work [11], the earliest
commonly cited on voting and voting systems, begins with an
example to show that the "single vote" (the standard voting
system), may select the "wrong" candidate. In this example,
he makes implicit use of the Condorcet criterion, showing
that the standard voting system may select a candidate who
can be beaten by another candidate in a pairwise race.
Borda then shows that this “"defect" can be remedied either

by his method of ranking or by pairwise voting. He defines
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7
his method of ranking as giving points to each candidate in
accordance with their rank on a preference scale, which is
equivalent to assuming a linear utility function for voters.
During the same period, Condorcet [26],[118] discussed
the "paradox of voting"” and internal consistency of social
choices. Condorcet motivated his work as follows: "...it is
in the interest of those who dispose of the public power to
employ that power only to sustain decisions that conform to
the truth, and to give, to the representatives they have
charged to decide on their behalf, rules which guarantee the
goodneass of their decisions."2 He focuses on how to
determine the best rules by applying the laws of probability
to the voting process. Condorcet’ s own description of his
work explains much more fully his reasoning:
*...we shall first suppose assemblies composed of
voters possessing equal soundness of mind and equal
enlightenment. We shall suppose that none of the
voters influences the votes of others and that all
express their opinion in good faith. Supposing then
that one knows the probability that the opinion of each
voter will be in conformity with the truth, the form of
the decision, the hypothetical majority and the number
of voters, one seeks to discover (1) the probability of
not having an decision contrary to the truth; (2) the
probability of having a true decision; (3) the
probability of having any decision (true or false); (4)
the probability that a decision that one knows to have
been taken will be true rather than false; and,
finally, the probability of this decision when the
majority by which it has been taken is known. Such is
the subject of the first part of this book."3
In the second part of his work, he deals more
explicitly with the standard voting system. He uses an

example in the same manner as Borda to show that the
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8
standard voting system "can result in a decision really
contrary to the opinion of the majority."#¢
*...to have a majority decision that merits confidence,
it is absolutely necessary to reduce all opinions in
such a way that they represent in a distinct manner the
different combinations that can arise from a system of
simple propositions and their opposites; ...every
complex proposition is reducible to a system of simple
propositions, and that all the opinions that can be
formed in deliberating upon this proposition are equal
in number to the combinations that one can make of
these propositions and those contradicting them."S$
Pairwise comparisons of candidates were to be used to
determine a social ranking, and the Condorcet criterion,
although used implicitly by de Borda, was made explicit for
the first time. The candidate (or alternative) which
obtains a majority in a pairwise race with each other
candidate (or alternative), now called the Condorcet winner,
has the highest social ranking and ought to be chosen.
Condorcet showed, however, that pairwise comparisons would
not necessarily give a social preference order which was
internally consistent, foreshadowing Arrow’s work. However,
he suggested that the propositions be taken in successive
order with the size of the majority, and "“"as soon as these
propositions produce a result, it should be taken as the
result, without regard for the less probable decisions that
follow."8
The third part of his work discusses the probability of
obtaining an inconsistent social ordering and represents the
first attempt to estimate the frequency of the paradox of

voting. Given a set of n candidates, there are n! sets of

consistent social rankings. If each candidate is paired
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with each other candidate, then there are (1/2)n(n-1) pairs,
i.e. candidate A vs. candidate B, candidate A vs. candidate
C., etc., which is equal to the number of combinations of n
things taken two at a time. In each of these pairings, a
choice must be made between the two candidates. Therefore,
2(1/2)n(n-1) gives the number of possible social “preference
profiles”. This minus n!, the set of internally consistent
pairings, is the number of inconsistent preference
orderings, and the limit of the percentage of inconsistent
social orderings,

2(1/2)n(n-1) - n!
2(1/2)n(n-1)

is equal to one as n-+®. Condorcet s work does not make
any obvious assumptions about individual voter preferences,
except that given two candidates, any voter is equally
likely to vote for either. He does not require that an
individual‘s vote be consistent with a preference ordering.
In 1795, LaPlace essentially duplicated Borda’s method
of ranking using a different line of reasoning. He assumed
that the "merit" attributed on average to candidates was
linear, similar to Borda, and that the candidate who ought
to be elected is the one to whom the most merit is
attributed by the entire group of voters. Interestingly,
the merit attributed on average to candidates will be
linear, as will individual expected utilities for candidates
by rank, if all voter utilities are drawn from an identical

uniform distribution. The "merit" discussed by LaPlace is
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the voter's marginal rate of substitution or ratio of
exchange of the candidate for money.

Other early work was produced by Hare, Nanson, Galton,
and Dodgson, and contained the same types of arguments. The
most extensive review of this work is contained in Black
[7]. A more rigorous approach did not appear until
Hotelling s work.

1.2 Yoting Svatems as Ways of Aggregating Individual

Preferences
1.2.1 Imposgsibility Theorems

Work in this area has focused on the incompatibility of
specific characteristics in an aggregation procedure. The
seminal work, Arrow’ s General Possibility Theorem [1],
showed the incompatibility of 1) unrestricted domain on
(ordinal) preferences; 2) consistency with the Pareto
principle; 3) independence of irrelevant alternatives; and
4) nondictatorship. Zeckhauser's [145] explanation of these
conditions is clear and concise. "(1) The procedure must
include all logically possible combinations of individuals”
orderings. (2) It must lead to Pareto-optimal outcomes.

(3) The choice between any two alternatives cannot be
influenced by the presence or nonpresence of a third
alternative. (4) No individual can always secure his choice
regardless of the presence of others."7?7 Arrow proved that
there is no aggregation procedure (social welfare function)
which simultaneously fulfills these conditions. Condition 2

is simply that if all individuals prefer an alternative x to
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an alternative y, or are indifferent between them, with at
least one individual strictly preferring x to y, then x is
socially preferred to (Pareto dominates) y. Any alternative
y for which an alternative x can be found which fulfills
this condition is not an acceptable outcome. Condition 3,
independence of irrelevant alternatives, is the requirement
that the social ranking between any two alternatives be
independent of any other alternative. In essence, this
limits us to pairwise comparisons of alternatives, as in
Condorcet s method, and implicitly accepts the Condorcet
criterion. However, the General Possibility Theorem shows
that if we limit ourselves to using pairwise comparisons,
then any aggregation procedure which is to be used for all
preference profiles (unrestricted domain) is either
inconsistent with the Pareto principle (some outcomes will
be Pareto-dominated), or dictatorial.

Arrow’s work was followed by many attempts at relaxing
his requirements in order to find a set of compatible
conditions with little success. Expansion and comment (e.g.
Sen [124],[125],(127], Plott [107],[108]) provided insight
into Arrow’ s result, but no progress in solving the problem
of social choice. To clarify the issue, the problem needed
to be stated in a different form. Gibbard [58] did just
that: instead of referring to a social welfare function, he
looked at the problem in terms of a game form.

A game form, in Gibbard’s terms, is "...any scheme

which makes an outcome depend on individual actions of some
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specified sort...strategies. A voting scheme, then, is a
game form in which a strategy is a profession of
preferences...”"8 He also makes use of the term
‘straightforward® to mean a game form for which all players,
for every preference profile, have a dominant strategy. A
strategy is dominant for an individual player if, given any
set of strategies of the other players, no other strategy
available to the player will produce an outcome preferable
to him. Using these definitions, Gibbard proved that every
straightforward game form with at least three possible
outcomes is dictatorial, and every voting scheme with at
least three outcomes is either dictatorial, or can be
manipulated by an individual.®

Satterthwaite [120] independently made the same
contribution, although his terminology differs somewhat.
Instead of straightforwardness, he looks at strategy-
proofness, which in his work corresponds to Arrow’s
independence of irrelevant alternatives and Pareto
conditions for social welfare functions. He showed that all
strategy-proof voting procedures are dictatorial.

Interestingly, these results break down if lotteries
over alternatives are allowed as outcomes of a social choice
function (Gibbard [59]). However, Gibbard proved that all
strategy-proof decision schemes are either random
dictatorships, pairwise majority rule over a random pair, or
a system which chooses randomly between the first two.

Unfortunately, either method violates one of Arrow’s
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conditions, which is where the alteration in terminology, at
first appearance eminently useful, comes back to haunt us.
When randomness is introduced, strategy-proofness no longer
corresponds to Arrow’s second and third conditions.

A final work in this area is discussed because of the
direct relevance it bears on this work. Postlewaite and
Schmeidler [109] considered social choice functions in terms
of (first-degree) stochastic dominance. "A person is said
to prefer in the stochastic dominance sense one lottery-
over-outcomes over another lottery-over-outcomes if the
probability of his (at least) first choice being selected in
the first lottery is greater than or equal to the analogous
probability in the second lottery, the probability of his at
least second choice being selected in the first lottery is
greater than or equal to the analogous probability in the
second lottery, and so on, with at least one strict
inequality."10 Individuals, assumed to know the relative
frequency of (ordinal) preference profiles for two social
choice functions (which may include an element of
randomness) can compare the social choice functions in terms
of stochastic dominance. If a social choice function F
stochastically dominates a social choice function G for all
individuals in a society, F stochastically dominates G
socially. This implies ex ante Pareto efficiency of F over
G. Postlewaite and Schmeidler comment that "Arrow’'s Pareto
principle, which is ex post, should be implied by a

reasonable notion of ex ante efficiency in a model which



C
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admits such evaluations."1! Their main result is that for
more than 3 voters and alternatives, there does not exist a
social choice function which is simultaneocusly Pareto
undominated (ex ante efficient) and straightforward.12 That
is, a social choice function which is ex ante efficient in
the stochastic dominance sense will present individuals in
the society with situations in which misrepresenting their
preferences (as a strategy) dominates their sincere strategy
of truthful revelation of preferences.

These major contributions to the social choice
literature provide a background for comparisons of voting
systems, but do not provide any positive criteria which can
be used for comparison because of the incompatibility of
desired characteristics. If these characteristics were
compatible, a social welfare function could be constructed
that would specify the "correct"” choice for every social
choice situation.

1.2.2 Incentive Compatibility

The concern with strategy-proofness or manipulability
has been addressed from another viewpoint, that of incentive
compatibility. In this line of research, attempts have been
made to construct voting systems which are incentive-
compatible: truthful revelation of preferences is a dominant
strategy in an incentive-compatible mechanism.

This emphasis on incentive compatibility is due in
large part to the “free-rider problem’ which is a

consequence of the existence of pure public goods (the
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classic example is national defense). The main
characteristics of a pure public good (Samuelson [119]) are
joint consumption and nonexcludability. Joint consumption
is the property that all members of the consuming body for
this good benefit from its production (although not
necessarily equally), without preventing other consumers
from benefiting or reducing the benefits available to them.
Nonexcludability is just that: individuals cannot be
prevented from enjoying these benefits. The problem is to
determine the Pareto-optimal level of a pure public good to
be produced. The condition for Pareto-optimal production of
a good is that marginal benefit be equal to marginal cost.
Since marginal benefit is distributed across the consuming
body, the marginal benefit for one unit of a pure public
good is the sum of marginal benefits for all consumers. The
level of the pure public good should be chosen such that the
sum of marginal benefits across consumers is equal to the
marginal cost of production. The difficulty lies in
determining what the sum of marginal benefits across
consumers is for different levels of production. Generally,
individuals would be asked to provide their marginal benefit
curve. However, the method of financing production of the
pure public good influences the information provided. If
individual marginal cost (the marginal tax rate) is zero
over the level of production of the good (total cost is
constant), each individual has an incentive to overstate his

marginal benefits at each level of the pure public good,
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which will lead to overproduction of the good and a
misallocation of resources. If, on the other hand,
individual marginal cost is set to correspond with stated
marginal benefit, individuals have an incentive to
understate marginal benefits in order to reduce their
marginal cost, which leads to underproduction of the good.

Because of this difficulty, attention focused on the
formulation of a direct mechanism which would induce
truthful revelation as a dominant strategy. Dasgupta,
Hammond, and Maskin [33] review the major results of this
approach. They discuss general results on incentive
compatibility in the implementation of social choice rules.
Their discussion involves the use of a "planner” to
implement the social choice rule; however, a "planner” is
not necessary to their discussion except as a pedagogical
tool. The general problem is approached as follows: A
social choice mechanism depends on signals from the
individual agents to implement the social choice rule. It
is assumed that each individual agent sends his own signal.
The mechanism is then a rule which specifies a social state
for each list of signals eeﬁt by the individual agents. It
is assumed that each agent knows the precise form of the
mechanism being used. Then each agent realizes that he is
involved in a game, because the outcome of the mechanism
depends on the signals which he and all the other agents
send. More precisely, this is a "game form,"” in which there

is a fixed set of strategies, consisting of signals, and in
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which the outcomes of these strategies are known to all
"players.” It is then assumed that the players in this game
form, who are the individuals in the society, reach some
kind of equilibrium which depends on their true
characteristics - in particular, their preferences. The
mechanism generates a particular social state given these
equilibrium signals. “"Presumably, one wants this social
state to be in the social choice set given the agents” true
characteristics - i.e. to be something the planner might
have chosen had he known these characteristics right from
the start. ...The basic problem, then, is to devise a game
form which always has at least one equilibrium, and whose
possible outcomes in equilibrium all belong to the
appropriate social choice set for the individuals® true
characteristics. A mechanism (or game form) with this
property is said to implement the social choice rule."13

Dasgupta, Hammond and Maskin discuss mechanisms which
are individually incentive compatible, both direct and
indirect. A direct mechanism is one where the agent’s
signal is a characteristic: preferences, endowments, etc.,
relevant to the economic decision to be made. In contrast,
with an indirect mechanism, agents” signals "may be quite
arbitrary, without any obvious economic significance."14
Such mechanisms can be and have been found, such as the
Clarke tax [24]. However, as Dasgupta, Hammond, and Maskin
point out, "the papers which find straightforward mechanisms

restrict themselves to rather special economic environments.
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Either the preferences are special, (Clarke [24], Green and
Laffont [(61], Groves and Loeb [65]) or there is a large
economy in which no one individual’s lie can significantly
affect the overall outcome (Hammond [66], Roberts and
Postlewaite [116])."15§

They then present their versions of impossibility
theorems, which extend Arrow’'s work. First, in any "rich
economic environment”18 (e.g. unrestricted domain of ordinal
preferences), any Pareto optimal single valued social choice
rule which can be truthfully implemented in dominant
strategies is dictatorial. Secondly, in any "rich economic
environment,” any Pareto-optimal single-valued social choice
rule which can be implemented in Nash strategies is
dictatorial. This follows naturally from their proof that
in a rich economic environment, a single-valued social
choice function which is implementable in Nash strategies is
truthfully implementable in dominant strategies.

However, this does not mean that the task is hopeless.
All that this implies is that a non-dictatorial Pareto
optimal single-valued social choice rule cannot be
‘"implemented” in Nash strategies. This means that the use
of the Nash equilibrium concept implies that all possible
outcomes in equilibrium do not belong to the appropriate
social choice set for the individuals” true characteristics.
However, recall from the previous section that
straightforwardness (truthful implementation in dominant

strategies) is inconsistent with ex ante efficiency in the
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stochastic dominance sense. Postlewaite and Schmeidler’s
result is that without restricting preferences, ex ante
efficiency comes at the cost of straightforwardness.
1.3 VYoting Systems, Fquilibrium, and Individual Motivation

A different approach to voting systems is to look at
specific parts of a system. How are voter preferences
formed? What are admissible strategies? Finally, what is
(are) the equilibrium outcome(s)?
1.3.1 Yoting Equilibria

One branch of this literature concerns itself with the
equilibrium outcome(s) of specific voting systems.
Different assumptions about the restrictions on formation of
voter preferences account for the differences in outcomes,
but the models are set up in essentially the same way. The
most famous of these is the median voter model.
1.3.1.1 Unidimensional Spatial Model (Median Voter Model)

The spatial theory of voting has a long and
distinguished history. Black [7] states that "Galton (13807)
notices the property of the median optimum when the variable
under consideration is measurable (provided the voters’
preference curves can be taken as single-peaked)."17
However, a close reading of his citation from Galton reveals
that what Galton noted was the equilibrium property of the
median.18 The impetus to the approach must lie with
Hotelling [74] and Smithies [135], who showed the existence
of a spatial location equilibrium in a model where producers

of goods must choose a location given the existence of



posi
Galt

of tl

najo
exte
voti
pref
if,

vote
dire
the
"pea
Sing
Poin
cont
thig
Syst
Baxj,
lmp)
avaj
to b,
Ingj,
DrodL
Noyu ],
Patg

Sup



20
positive transportation costs. Their work, along with
Galton’s, inspired Black to prove the equilibrium properties
of the median position in pairwise majority voting.

Black [6] essentially limited his analysis to pairwise
majority voting, although in a related work he includes an
extensive discussion of the literature including alternative
voting methods. He first defines single-peakedness of
preferences. Preferences of a society are single-peaked,
if, for some arrangement (order) of alternatives, each
voter's utility curve over alternatives "changes its
direction at most once, from up to down."19 1In this case,
the highest point on an individual’s utility curve is his
"peak preference.” It is important to point out that
single-peakedness of preferences does not imply a “satiation
point.” The median voter model is ordinarily used in the
context of decisions on the production of public goods. In
this context, given a method of financing production (tax
system), the individual is solving a constrained
maximization problem based on his resources (income). This
implies an optimal level of consumption of each good
available, including the public good on which a decision is
to be made. It is not unreasonable that a graph of the
individual’s total utility as a function of the level of
production of the public good would be single peaked (as it
would be, for example, if there were a constant marginal tax
rate for increments of the public good and the usual

assumptions on individual utility were made).
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The median voter is the individual with the median peak
preference. Black’'s main result is that the peak preference
of the median voter, in this case, is the pairwise majority
voting equilibrium. As Galton deduced, anything less will
have a majority in favor of increasing it, and anything more
will have a majority in favor of decreasing it. However,
preferences must be single-peaked, and the unrestricted
domain used by Arrow will cause nonexistence of an
equilibrium point for some cases in this model.

Bowen [15] extended Black s result to an economic
context. He showed that under certain conditions plurality
or simple majority voting would produce a Pareto optimal
outcome in equilibrium, when the decision to be made is the
level of production of a pure public good. The conditions
under which this holds are: (1) There is complete and
sincere participation of the voting population; all voters
in the voting population do vote, and they vote sincerely,
i.e. in correspondence with their true preferences. (2)

The cost curves for production of the public good are known.
(3) The public good is produced under conditions of
(eventually) nondecreasing marginal cost. (4) The cost of
the public good is divided equally across the population, or
there are equal tax shares. (5) The marginal rate of
substitution of the public good for money is normally
distributed across the population at any level of the public

good. (6) The public good is nonexcludable and equally
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available to all voters, corresponding to Samuelson’s
definition of a pure public good.

Conditions 2, 3, 4, and 5 imply that there are single-
peaked preferences for all members of the population for the
public good, if it is a normal good with a decreasing
marginal rate of substitution for money. Since preferences
are single-peaked, each voter has a most preferred level of
the public good, and condition 5 implies that the most
preferred level then has a continuous normal distribution
across the popﬁlation. The point of maximum density of this
distribution would be the simple plurality voting winner,
and the outcome under a simple plurality system would be the
output of the public good for which this maximum density
occurs. Since the most preferred level of the public good
has a continuous symmetric distribution, the point of
maximum density coincides with both the median and mean most
preferred level. Since each voter s most preferred level is
that at which his marginal benefit is equal to his marginal
cost, this implies that mean marginal benefit equals mean
marginal cost, and therefore the sum of the marginal
benefits across the population will be equal to the marginal
cost of production of the public good. In other words, the
equilibrium point of the simple plurality system is
Pareto-optimal.

With simple majority voting over increments of the
public goods, the outcome will be the same. As shown by

Black, the median most preferred level (median peak
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preference) is the equilibrium point. However, in Bowen’s
model, the median coincides with the mean, and Pareto-
optimality results. Therefore simple plurality voting or
simple majority voting will produce the optimal level of the
public good if the conditions postulated by Bowen are
fulfilled. It should be noted here that any continuous
symmetric distribution of peak preferences for which the
point of maximum density is both the mean and the median
will produce this same result.
1.3.1.2 Multidimensional Spatial Model

The multidimensional spatial model, developed by Enelow
and Hinich [40], is a simple extension of Bowen and Black's
median voter model. The major difference is that one
dimension is no longer thought sufficient to describe how
individuals”® preferences are formed. An issue may have more
than one dimension, and each dimension in this model is a
dimension in the "issue space."‘ The justification for this
assumption is the prevalence of “package votes,” such as a
decision on the level of two or more public goods at once.
The peak preference level of the unidimensional model is
described here as a voter’s ideal point in the issue space.
However, preferences are again assumed to be single-peaked.
“"The key element of spatial models is the relationship
between preference and distance. ...The weighted Euclidean
distance between y and z is defined to be |y - z|a =
(a11(y1-21)2 + 2a12(y1-21)(y2-22) + az2(y2-z2)2]1/2, where

a11>0, az22>0, and (ai1z)2<aiiaz2 %o ensure that ||y - z|a>0



24
for all y#z. ...Weighted Euclidean distance defines a
symmetric preference rule...the closer (in weighted
Euclidean distance) an alternative is to his ideal point,
the more he prefers it."20 a12=0 implies separability of
preferences; that is, the most preferred level in one
dimension is independent of the most preferred level in all
other dimensions. Given this mechanism for formation of
preferences, and again assuming, with Black and Bowen,
complete and sincere participation of the voting population,
determination of the equilibrium is made. In the classic
spatial model, it makes a great deal of difference whether
‘dimensions” are voted on sequentially or simultaneously.
Unless all voters  preferences are separable, the
equilibrium outcome will differ. Separability of
preferences along with sequential voting implies Pareto-
optimality of the equilibrium outcome, just as in the
unidimensional model. If preferences are not separable,
however, sequential voting produces differing outcomes
depending on the order in which dimensions are voted on. In
essence, this is because in all but the first election,
voters take the values of public goods decided on in
previous elections as given. In any case, results of
‘secondary’ elections may be Pareto-optimal given the result
of the first election, but the converse does not hold, as
shown in Figure 1.1. This in turn implies that the overall

results of the system are not Pareto-optimal.
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Figure 1.1. Segquential Voting Equilibrium with
Reintroduction of Issues.

If voting on x1 takes place first, the level selected will
be xi. A vote on x2 then selects x¢. If x1 were
reintroduced, the level chosen would be x{ ', etc.
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Separability or nonseparability of preferences does not
matter with respect to Pareto-optimality of outcomes if a
dimension can be re-introduced into the process. In Figure
1.1, reintroduction of the first dimension after the second
has been decided on will move the outcome towards the
Pareto-optimal point, and if this process is continued, the
limiting equilibrium point is indeed Pareto-optimal.

However, if preferences are separable but voting on
dimensions is simultaneous, the outcome is not necessarily
the peak preference point, which corresponds to the median
ideal point on each dimension. "...once both issues are
voted on simultaneously,...xmed can be beaten in a majority
contest, and furthermore there may exist no proposal that
cannot be beaten...this result is a general problem for the
multidimensional spatial model."21 A dominant point only
exists if there is a point in the multidimensional space
which is a median in all directions. "If a dominant point
exists, all that we are guaranteed is that no other point
can beat it in a pairwise contest. This does not mean that
a dominant point beats all others."22 A dominant point
receives at least as many votes as any other point in a
pairwise contest. In other words, some other point may tie
with the dominant point in a pairwise contest. However, if
a point y is closer to xmea than z, then y beats z in a
majority contest. This suggests that the limiting

equilibrium point is the dominant point xmead.
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In the absence of a dominant point, the outcome of a
sequence of pairwise votes depends upon the agenda. "It is
possible to reach literally any point in the space through
gsome sequence of votes, pairing each previously winning
proposal with some new proposal that a majority prefers
until the chosen point is finally reached.”23 Thus the
spatial model, in the absence of a dominant point, has no
implications for outcomes without a model of agenda control,
which is beyond the scope of this work.

1.3.2 Individual Motivation. or Why Vote?

“"Much theorizing about the utility of voting concludes
that voting is an irrational act in that it usually costs
more to vote than one can expect to get in return.”24 This
includes the work of Downs [37] and Tullock [141]. If we
are to apply a rational choice perspective, the expected
return from voting should be at least equal to the cost or
expected cost of voting in order to induce voters to
participate. The expected return is the difference in
utility between the voter’s preferred alternative and
another alternative, times the probability that the voter is
decisive (the probability that his action in voting causes
the change in outcome). If expected return exceeds expected
cost, it is rational to vote; if not, voting is an
irrational act. Since in any election where the voting
population is large, as in the U.S., the probability of
being decisive is very small (Riker cites 10-8), the

difference in utility must be extremely large in order to
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compensate for a relatively low cost of voting. The general
conclusion is that voting is not a rational act.

Some attempts to modify this conclusion have postulated
direct benefits from voting as opposed to its expected
return. Palfrey and Rosenthal [102] critique this approach,
commenting that "...many observations are inconsistent with
the proposition that an individual s net cost of voting...is
anywhere near constant. The greater turnout in presidential
than in off-year elections and the greater turnout in
contested than in uncontested elections belie any simple
citizen-duty story. Of course, citizen duty could be
rescued by arguing that there is a greater sense of duty in
presidential and contested elections, but such logic is
difficult if not impossible to test."25

Another approach is Ferejohn and Fiorina“s [42] minimax
regret model. They contrast voting as decision-making under
risk, which is the conventional analysis, with voting as
decision-making under uncertainty. "Under risk,
probabilities can be assignhed to the states of nature; under
uncertainty, state probabilities are unknown or
unknowable."28 They analyze voting under Savage s minimax
regret criterion, and come to two interesting conclusions.
First, voting for one’s second choice is never minimax
regret optimal. This implies that strategic voting never
occurs, which would make the current work irrelevant if
believed. Secondly, minimax regret decision makers find it

rational to vote for their most-preferred alternative rather
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than abstain under relatively weak conditions. This model
thus avoids the difficulties that the expected utility
analysis runs into. Unfortunately, a great deal of
empirical evidence indicates that probabilities have a
significant effect on voter participation.27?7 The minimax
regret framework denies that these probabilities are known
or knowable.

An alternative approach to the problem of voter
participation is suggested by Palfrey and Rosenthal, who
model simultaneous determination of participation and the
probability of being decisive. "If everyone else votes, p
can readily be very small. But if no one else votes, the
probability of being decisive would be 1. Clearly, if
citizens are rational, the voting probabilities and the
turnout decisions are simultaneously determined."28

Ledyard [85],[86] modeled simultaneity of voting
participation and the probability of being decisive in the
spatial model. Each voter knows the size of the voting
population, the spatial positions of the alternatives, and
his own preferences. His information on other voters~
preferences is limited to knowledge of the continuous
probability distribution from which they are drawn. Under
these conditions, if expected return is sufficiently large
relative to the cost of voting, turnout is positive, and he
proves existence of a symmetric equilibrium.

Palfrey and Rosenthal take a similar approach, but

model only two types ("teams") of citizens, each with
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identical preferences. Voting in this model is over two
fixed alternatives "as in a two-candidate election or in a
referendum or initiative vote between a proposal and a
status quo."29 They find the possibility of substantial
voter turnout in equilibrium, although depending on the size
of the electorate, multiple equilibria are common. Thus for
small numbers of voters "there are not strong predictions
about the size of voter turnout."”30 For a large voting
population, they find only two types of equilibria: one in
which turnout approaches zero, and one in which percentage
turnout approaches twice the “minority’ side’s percentage of
the electorate.

Table 1.1 below presents percentage turnout for the
1972, 1976, and 1980 presidential elections along with the
percentage of voters registered under the “minority” party
(Republican or Democrat only).31 Percentage turnout can
only roughly be described as double the minority side’s
percentage of the electorate, but Palfrey and Rosenthal’s
conditions are not strictly complied with. There are more
than two “types’ of citizens, and it is improbable that all
citizens of a specified type have identical preferences.
Certainly, this can be considered as some support for
Palfrey and Rosenthal s model. However, the important point
is that even with a cost of voting, substantial turnout can

be an equilibrium outcome for rational voters.
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Table 1.1 Voter Turnout as Percentage of Minority

Registration
Registered Total % Turnout % Registered
Voters Votes as "Minority”
(thousands) Cast (R or D only)
1972 82,702 77,719 83.84 37.5
1976 105,837 81,556 77.06 48.0
1980 112,945 86,515 76.60 41.0

1.3.3 Randomness in Voting Models

Several models have introduced randomness via
probabilistic voting. These have included Hinich, Ledyard,
and Ordeshook [69], and Fishburn and Gehrlein [56],[57]. 1In
these models, there is a probability that an individual will
abstain as opposed to voting his (sincere) preferences.
However, if we think of sincere voting as one possible
strategy and abstention as another, this type of model
arbitrarily restricts voters’ possible strategies to these
two. Hinich, Ledyard, and Ordeshook model a two-
alternative system which makes this plausible, since sincere
voting is the unique optimal strategy when there are only
two alternatives. However, a social welfare function
fulfilling Arrow’s conditions exists for a two-alternative
system, casting some doubt on the applicability of this
model. Intriligator [79] and Coughlin and Nitzan [31],(32]
use a different type of model, in which each voter has a
probabilistic density function fi(x), and for any subset A
of the set of feasible social alternatives X, jA fi(x) is
the probability that individual i chooses some member of A,

given than he can unilaterally determine the social choice.
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An individual s choice probabilities are “"proportional to
his strength of preferences."32 Intriligator develops this
model to extend standard systems (Borda, majority rule,
Pareto rule, etc.) into a probabilistic framework. In
contrast, Coughlin and Nitzan assume that each individual’s
density function is also his differential utility function,
and using two candidates, develop a model based on the
probability of voting for each candidate. These
probabilities are determined by the alternatives each
candidate proposes to enact if elected. They then go on to
analyze candidate behavior in the sense that electoral
equilibrium depends on proposed policies.

The major drawback to Intriligator”s model is that if
all utilities are positive, all probabilities are positive,
implying that in some case an individual would choose his
lowest-ranked alternative, given that he could unilaterally
determine the social choice. Unless a framework is
specified in which the welfare of other individuals enters
into an individual’s utility function, this doesn’t make
sense. In the current literature, the only readily
understandable context for randomness in voting models is in
generating preferences or utilities, or in tie-breaking.
1.3.4 Strategic Voting

Farquaharson [41] was the first author to approach
voting systems from a game-theoretic point of view. He
discussed only binary procedures; at any point within the

procedure, voters have only two choices. This is
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distinguished from pairwise voting because all possible
outcomes are not paired with each other. In Congress, a
bill may be amended or not, but if it is amended, the
decision to be made is to pass or fail the amended bill.
The possible outcomes of passage of the amended bill and
passage of the original bill are not directly compared in
the process. In one-stage binary processes, sincere voting
(voting in accordance with one s preferences) is always
opEimal. In contrast, multistage binary processes are
"vulnerable"33 to strategic voting.
"A situation is vulnerable if another situation
i) can be obtained from the first by
substituting a strategy of at least one
voter;
ii) 1is preferred to it by that voter or those
voters."34
A set of strategies is "invulnerable” if it is a Nash
equilibrium, one in which "each voter can say "no other
strategy would have given a better outcome. "35 As
Farquaharson points out, sincere voting may or may not be an
equilibrium. In fact, it is certain that sincere voting
Wwill not always be an equilibrium strategy in multistage
games in which Gibbard’s conditions on unrestricted domain,
Pareto principle, and nondictatorship are fulfilled. In
this case, another strategy will be used by at least one
voter for some social preference profile.
Given this, is it reasonable to assume that voters use
sincere strategies, or is it possible that voters actually

calculate optimal strategies? “Sophisticated’ voting as

developed by Farquaharson (his terminology for the use of
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optimal strategies) received theoretical attention from
McKelvey and Niemi [89], focusing on legislative voting
games characterized by a finite sequence of two-alternative
issuesa. This theory is examined by Enelow and Koehler [39],
who look specifically at two amendment strategies: (1) amend
to save a losing bill; (2) amend to "kill a winning bill."
In either case, the amendment is voted on first (amended
bill ab vs. bill b), followed by the vote on final passage,
with each voter voting either yes or no on each. The game

tree for this is shown in Figure 1.2.

amended bill ab vs. bill b

amended bill vs. @ bill vs. @

ab g b g
Figure 1.2. The Game Tree for Pairwise
Majority Voting with Amendment.

If the first strategy is being employed, then the original
bill is expected to lose, and the amended bill is expected
to win. Therefore, "...the sophisticated voter realizes
that while the nominal contest on the amendment vote is ab
vs. b, the expected fate of ab and b, respectively, on final
passage indicates that the actual contest on the amendment
vote is between ab and @. Therefore, the sophisticated
voter votes for the amendment if he prefers ab to @ and

against the amendment if he prefers g to ab."38
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Table 1.2. Possible Preference Orders, Sincere
Votes, and "Sophisticated” Votes on a Saving Amendment
and Final Passage (Amendment Expected to Pass)
preference order b>ab>@ b>@F>ab ab>b>@ ab>@>b @F>b>ab @>ab>b
sincere votes N,Y N,N Y,Y Y,Y N,N Y,N

sophisticated Y,Y N,N Y,Y Y,Y N,N N,N

Votes on passage of a "saving amendment” (the Sarasin
amendment on House bill 4250) were compared to predicted
votes. . Actual voting patterns were: Y,Y - 204 or 48.5%;

N,N - 177 or 42.0%; Y,N - 40 or 9.5%; N,Y - 0 or 0%. 90.5%
of these vote patterns used were predicted by the theory. A
more in-depth analysis of how the vote patterns support the
theory is presented in the article. An analysis of a killer
amendment is also presented. Enelow [38] subsequently
extended this paper to conform to an "expected utility
theory of sophisticated voting."37 In this case, comparison
of the “lotteries” described by the left hand and right hand
second branches determines voting on the amendment for an
individual voter. In order to test this model, "...group
rating scores were used to distinguish among congressmen by
preference types. It was then shown that the aggregate
voting patterns on a well-known example of a saving
amendment and a well-known example of a killer amendment
were consistent with the predictions of the EUS (expected
utility sophisticated) voting model for each preference
type."38 Thus these articles indicate that there is
empirical support for the notion of “sophisticated’

(strategic) voting.



CHAPTER 2
LITERATURE REVIEW: EXPECTED OUTCOMES

2.1 Comparison Measures

Given the different outcomes of voting systems, an
explanation of the criteria that can be used to compare them
is necessary for any comparisons to be meaningful. Two
measures have been used in comparing voting systems:
Condorcet efficiency, and social utility of voting systems.
2.1.1 Condorcet Efficiency

In order to understand the idea of Condorcet
efficiency, it is necessary to define the Condorcet winner.
Given a set of alternatives, the Condorcet winner is that
alternative which would achieve a majority in a pairwise
race with any other alternative. For example, if there are
three alternatives A, B, and C, there are three pairwise
races possible: A vs. B, A vse. C, and B vs. C. Let A>B
indicate that alternative A achieves a majority over B in a
pairwise race. Then A is the Condorcet winner if and only
if A>B and A>C. Similarly, in a four-alternative election,
A is the Condorcet winner if and only if A»>B, A>C, and A>D.

Condorcet efficiency is a measure of the extent to
which a voting system complies with the Condorcet criterion:
"...a candidate who receives a majority as against each
other candidate should be elected.”! As Arrow points out,
this criterion implicitly accepts that there should be
independence of irrelevant alternatives. Since pairwise

majority choice may lead to intransitivity of social

36
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preferences, only those cases where a Condorcet winner
exists are used in the construction of Condorcet
efficiency. Explicitly, Condorcet efficiency is the
percentage of Condorcet winners expected to be elected by a
voting system, when they exist. By this measure, a voting
system which is more likely to elect Condorcet winners (i.e.
has a higher expected percentage of Condorcet winners) is
judged to be a "better"” voting system.
2.1.1.1 Existence of a Condorcet Winner

One difficulty with Condorcet efficiency is that a
Condorcet winner may not exist. Existence of a Condorcet
winner is not precluded by the presence of majority voting
cycles; however, all of the alternatives in any cycle must
be beaten in a pairwise contest by another alternative
(which is the Condorcet winner) to avoid this problem. What
is the frequency of existence of a Condorcet winner? It
should be substantial if Condorcet efficiency is to be used
as a comparison measure, since it is undesirable to compare
voting systems on the basis of a minority of cases.
Fortunately, probabilities of a social preference profile
with no Condorcet winner have been calculated by Niemi and
Weisberg [99] for an infinite voting population where all
preference orders are equally likely. The probabilities are
shown in Table 2.1 below. These are limiting probabilities
for an infinite population; however, for small numbers of
voters, probabilities for existence of a Condorcet winner

are slightly higher. Until the number of alternatives
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exceeds ten, the majority of social preference profiles do

have a Condorcet winner.

Table 2.1 Probabilities of the Existence of a Condorcet
Winner for Various Numbers of Alternatives

# of alternatives P(no Condorcet P(Condorcet
winner) winner)
2 0 1
3 .0877 .9123
4 .1755 .8245
5 .2513 . 7487
6 .3152 .6848
7 .3692 .6308
8 .4151 .5849
9 .4545 .5455
10 .4887 .5113
11 .5187 .4813

2.1.1.2 Condorcet Efficiency and Pairwise Maijority Voting

As mentioned previously, the Condorcet winner, when it
exists, is the pairwise majority voting equilibrium. This
is true regardless of whether voters use sincere or
"gophisticated” strategies, since the Condorcet winner is a
pairwise majority voting equilibrium in either case. A
simple example should make this clear. Suppose there are
three alternatives: A, B, and C. The game trees below
diagram possible outcomes of a pairwise majority voting

game, depending on the agenda.

A
a. b. C.

Figure 2.1. Possible Agendas and Outcomes
for Pairwise Majority Voting
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Let C be the Condorcet winner. Then in Figure 2.1a, at the
first branch of the tree, individuals ranking C last cannot
prevent C from being considered as an alternative, and at
the second branch, cannot prevent it from being chosen since
a majority of the voting population sincerely prefers C and
has no incentive to vote other than sincerely. In Figure
2.1b and 2.1c, these individuals could prevent the choice of
C if they could influence the game by moving down the left
branch of the tree. However, again they are working against
a majority of the voting population which has no incentive
to vote other than sincerely. Clearly, whether voters are
assumed to vote sincerely or strategically, the Condorcet
winner remains a pairwise majority voting equilibrium.

Current legislative voting systems are characterized by
a sequence of pairwise votes. Thus, when a Condorcet winner
exists, it is the unique equilibrium outcome. Condorcet
efficiency is therefore one measure of how closely different
voting systems would correspond to current legislative
methods’ equilibria in those cases where a Condorcet winner
exists.

2.1.2 " i .

Another way of looking at the problem of comparing
voting systems is to use a social welfare function even
though we know this cannot fulfill all of Arrow’s
conditions. Specifically, if individuals have cardinal
utilities for the alternatives in the choice set, then a

social welfare function of the form
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{2 [uijJv}i/sm TS1; T #0,
where T is a constant reflecting society’s aversion to
inequality, is often used to measure the social utility of
each of these alternatives. If T = 1, one way to interpret
this efficiency measure is as the a priori expected utility
of the outcome of a voting system, given the stated
assumptions about individual utility. It is equally likely
than an individual voter will have any of the possible
preference orderings. Thus his expected utility for the
outcome is 1/n times the expected social utility of the
outcome as measured by a utilitarian social welfare
function. Given a distribution from which utilities are
drawn and a method of determining voters ™ strategies, an
expected value for social utility can be determined for each
voting system. As an example, Weber s derivation of
"effectiveness” for the standard voting system with two
alternatives is reproduced here.2 In this work, individual
utilities are independent identically distributed random
variables drawn from a uniform [0,1] distribution. Given no
specific information about other voters ™ strategies and a
‘large” voting population, an individual voter s optimal
strategy in the standard voting system is to cast his vote
for his most-preferred alternative.3 Since the winner is
the alternative with the most votes, the expected social
utility of the elected alternative is:

n n
Zk=0 (1/2nm) (x) (2/3 max(k, n-k) + 1/3 min(k, n-k)),
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where (1/2n) (:) describes the probability of a certain
pattern of votes occurring, max(k, n-k) is the number of
votes cast for the winning candidate and min(k, n-k) is the
number of votes cast for the losing alternative, and 2/3 and
1/3 are expected values for the utility of an alternative
ranked first and second, respectively, since the expected
values of the maximum and minimum of two independent [0,1]
uniform random variables are 2/3 and 1/3. Using Stirling’s
factorial approximation, this expression simplifies to n/2 +
{n/18w.

Weber uses a transformation of this to make social
utility measures more comprehensible. He defines the

effectiveness of a voting system as follows:

E(maximal) - E(random)
where E(*) is the expected social utility of the elected,
maximal, or random alternative. Values for ‘effectiveness”
of course will vary according to the scaling factor used,
which is E(random) in this transformation, but relative
effectiveness of any two systems (in terms of ranking) will
remain the same regardless of the scaling factor used. This
is a particularly nice transformation since E(random) = n/2
and E(maximal) is asymptotic to n/2 + {n/IZ Normmax (m).
Normmax (m) is the expected value of the maximum of m unit
normal random variables, and Normmax (2) = 1/4w,
simplifying the expression considerably. Effectiveness of

the two alternative standard voting system is 42/3 = .8165.
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This method can be used to determine the theoretic
effectiveness (hereafter referred to as social utility
efficiency) for the Borda system. The theoretic social
utility efficiency as derived by Weber, of the standard
voting system and the Borda voting system for m-alternative
elections is:
Standard voting system: f3m/(m+1)
Borda system: fm/(m+1)
Weber was not able to derive a formula in terms of m for the
approval voting system; however, he did derive social
utility efficiency for a 3-alternative election: 87.5%.
2.2 Relationship of Comparison Measures

For voting populations which are assumed to use sincere
strategies, both comparison measures generally have given
the same rankings of voting systems, indicating some overlap
in criteria. 1Indeed, it is easily verified that when |
individual utilities are i.i.d. random variables of a given
distribution, when a Condorcet winner exists, it has maximum
expected social utility over all alternatives. Since at
least a majority of voters prefer the Condorcet winner to
any other alternative, the expected social utility of the
Condorcet winner is greater than or equal to
(int[{n/2]1+1)(E(distmax(2)]) + (n-int{n/2]1-1)(E[distmin(2)1]),
where int[n/2] is the largest integer smaller than or equal
to n/2 and E[distmax(2)] and E[distmin(2)] are the expected
values of the maximum and minimum of two independent random

variables of the givenvdistribution. For at least a
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majority of the voting population, the utility of the
Condorcet winner exceeds that of the other alternative. 1In
contrast, the expected social utility of the other
alternative does not exceed
(n—int[n/é]—l)(E[distmax(Z)]) + (int[n/2]+1)(E[distmin(2)]).
This implies that a voting system which always chooses the
Condorcet winner when it exists maximizes expected social
utility in these situations. Therefore, differences in
rankings which occur given the two efficiency measures may
be due to statistical variation or to the outcomes of the
voting systems in cases where the Condorcet winner does not
exist. An additional possibility is that a voting system
which has a lower Condorcet efficiency but higher social
utility efficiency chooses another alternative than the
Condorcet winner in precisely those situations in which a
smaller than majority group of voters benefit
disproportionately. This would be expected to occur in
voting systems with greater scope for strategic voting.

For the interested reader, optimality properties of
comparison measures are discussed in chapter 5.
2.3 VYoting Systems and Expected Outcomes

The more modern approach of comparing voting systems by
looking at their expected outcomes was pioneered by Fishburn
[45]. Rather than analyzing the characteristics of the
process or mechanism, he analyzed the characteristics of

expected or mean outcomes.

Yy T
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Fishburn's approach was designed to fulfill many of the
previously discussed conditions on the process. To begin
with, he allowed all logically possible preference orderings
(unrestricted domain), in keeping with Arrow’s justification
thaf "...the decision making process should be applicable to
all possible profiles since when we choose it, we don't know
to which profiles it will be applied."4 In addition, all
logically possible preferences orderings are taken as
equally likely (since termed the “impartial culture’
assumption). He assumed there would be complete and sincere
participation of the voting population, as in the median
voter model, and that other voters’® preferences and voting
behavior are independent of each other.

Under these conditions, Fishburn analyzed the degree to
which the Borda and Copeland extension of Borda give, or
fail to give, the same selection. The Copeland extension of
Borda is a Condorcet completion method, consisting of
pairwise comparisons of all alternatives, so in essence what
he was doing was determining the degree to which the Borda
method of ranking would produce the Condorcet winner. Since
the Condorcet winner is the result (in the absence of
cyclical majorities) which is chosen by a pairwise majority
voting system such as is used in Congress or in Parliament,
this is one way of comparing how closely the Borda system
would correspond to equilibrium outcomes of voting systems

currently used.
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Additional work by Fishburn and Brams [51],([52] and
Fishburn and Gehrlein ([53],[54],(551,[(56],[(57] proceeds
along the same lines, comparing voting systems in terms of
their likelihood of choosing the Condorcet winner when it
exists. In an article summarizing their work, Fishburn and
Gehrlein [55] present the findings of their earlier studies.
They consider the cases of 3, 4, and 5 alternatives, but
restrict their summarization to “large numbers’ of voters.
Their summary of “simple majority efficiencies” (Condorcet
efficiencies) for one stage procedures is presented below.
Table 2.2. Condorcet Efficiencies for Various
Voting Systems5 (%)
Profile Generating Method
random model 1 model 2 MAX

n=101 power 1 power 1 n=101
Procedures n=101 n=101
vote for 1 77 76 81 78
vote for 2 74 72 73 76
vote for <2 75-79
w=(2,1,0) 91
vote for 1 66 67 69 63
vote for 2 74 76 72 77
vote for 3 61 61 62 65

vote for <2 70-76
vote for <3 64-70

w=(3,2,1,0) 87 87
w=(2,1,0,0) 82 79
vote for 1 58 58 76 58
vote for 2 70 71 64 68
vote for 3 68 67 54 71
vote for 4 53 50 38 54

vote for <2 61-72
vote for <3 63-69
vote for <4 59-64

w=(4,3,2,1,0) 85 87 87
w=(3,2,1,0,0) 84
w=(2,1,0,0,0) 73 73 72
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Fishburn and Gehrlein used several methods to generate
preference profiles. These include (a) random: each of the
voters is independently and randomly assigned one of the m!
linear orders on the m candidates; (b) model 1, power 1:
same as random but recorded differently (power 2 squares the
number of voters with each preference order); (c) model 2,
power 1: each of the linear orders is selected randomly.
Each order is then sequentially assigned voters, with the
probability that ni1 voters have this order assigned
according to a binomial distribution. The second order is
then taken and n2 voters assigned it, etc., until all voters
have been assigned a preference order or until the last
preference order is reached, in which case all remaining
voters are assigned it; (d) MAX: each of the preference
orders is randomly assigned an integer in {1,2,...,101} as
the number of voters who have that preference order (the
number of voters varies between m! and 101(&!)). All of
these methods have the expectation of producing the same
number of voters for each preference order, but the variance
of methods (b), (c¢), and (d) differs. The methods used do
“"tend to generate ‘close elections’ among the m>3
contenders.”8 Fishburn and Gehrlein see this as a drawback
because "the efficiency percentages...may represent only a
small proportion of relevant multicandidate elections, and
the “correct” efficiency figures could well be much higher
than those given in the tables."7 However, there is no

reason to believe that rankings of voting systems would
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change by adding in “non-close” elections. In these cases,
the result is pretty much a foregone conclusion regardless
of the voting system used. In fact, the relevant cases for
a comparison of voting systems are precisely those in which
the outcome would differ depending on the system used.

Table 2.2 clearly shows that the Borda weighted ranking
system achieves higher Condorcet efficiency than the
standard voting system. The approval voting system (vote
for <(m-1)) generates a range of Condorcet efficiency
numbers that in 2 out of 3 cases contains the estimated
Condorcet efficiency for the standard voting system and in
one case exceeds it. Fishburn and Gehrlein’s work produces
the following ranking: (1) Borda system; (2) approval voting
system; (3) standard voting system.

Although the work assumed sincere voting, Fishburn and
Gehrlein do discuss the possible effect of strategic voting
on Condorcet efficiencies. They argue that "approval voting
is more immune to strategic voting than any of the other =k
or <k procedures...its efficiency estimates may compare more
favorably to the efficiencies of other procedures when
strategic voting is taken into account."® They do not
predict the effect of strategic voting on Condorcet
efficiency of the Borda system, but do not "count its
apparent sensitivity to strategic misrepresentation of
preferences in its favor."?9

Weber [143] also compared voting systems from the point

of view of their outcomes or expected outcomes. He did not
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use Condorcet efficiency as his comparison measure; instead
he used social utility efficiency. Social utility can be
considered the expected utility of a given alternative to a
randomly chosen voter. Weber, assuming equally likely
preference orders and complete and sincere participation,
performed his analysis to determine the efficiency of a
voting system in terms of social utility. 1Individual
utilities were drawn from a uniform [0,1] distribution, and
as previously noted, social utility was defined as the sum
of individual utilities over all voters. Weber then
determined what the expected social utility of the elected
candidate for particular voting systems would be, and by
comparing this with the expected social utility of the
alternative with maximum social utility, scaled by the
social utility of a randomly chosen alternative, developed
the social utility efficiency measure: the percentage of
maximum social utility a voting system is expected to
produce. Using statistical tools for expected value, Weber
computed the theoretical values of this efficiency measure
for an infinite population of voters.

Weber [143] showed that the Borda system, the approval
voting system and the standard voting system could be
ranked in the order given. The social utility efficiencies
of the systems for a 3-alternative race are, respectively,
87.5%, 86.6%, and 75%. Weber also showed that the Borda
system increases in efficiency as the number of candidates

is increased, whereas the standard voting system decreases
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in efficiency as the number of alternatives increases. He
also proved that sincere voting is an optimal strategy
asymptotically, and produces a unique symmetric Nash
equilibrium. Sincere strategies are also sophisticated
optimal strategies, given no information about the
preferences of other voters.

In a subsequent article, Weber [143] first defined
essentially equivalent voting systems as voting systems
whose weights are positive affine transformations of each
other; if a positive affine transformation of an optimal
strategy under one system will yield the optimal strategy
under the other system, this implies that these voting
systems are essentially equivalent. He also showed that
every nontrivial voting system is essentially equivalent to
a unique minimal 0-1 norhalized voting system ; the voting
system weights are 0-1 normalized and the voting system is
minimal in the sense that for every weight set of the
system, there is at least one vector of utilities for which
the weight set must be used in the corresponding optimal
strategy. Using this definition, it is clear that all two-
alternative voting systems are essentially equivalent to the
standard voting system, which in the previous article was
shown to have a social utility efficiency of 42/3 = 81.65%.

Following Weber s analyses, voting systems were
compared by Chamberlin and Cohen [22]. Chamberlin and Cohen
used the comparison method of the expected percentage of

Condorcet winners (Condorcet efficiency), but also compared
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the multidimensional spatial model with the unidimensional
impartial culture model. Spatial theory assumes that there
are dimensions to an election corresponding to salient
issues, and that every voter has a preferred ideal position
in the voting space. The voter is assumed to cast his vote
in the standard voting system for the alternative or
candidate closest to him in the space that describes the
factors that are of concern to the voter. They perceive the
use of the spatial model as a generalization of the
impartial culture assumption. This is not strictly correct,
since, as noted earlier, the classic spatial model, with
individual utility being a function of weighted Euclidean
distance, gives all voters single-peaked preferences. The
standard assumptions on complete and sincere participation
continue to apply.

The voting systems which Chamberlin and Cohen compare
include the standard voting system, the Borda system, and
two multistage systems, the Hare and Coombs voting systems,
which will not be discussed here. Their impartial culture
results as presented below do not differ significantly from
previous results.

Table 2.3. Chamberlin and Cohen: Proportion of
Condorcet Winners Selected - Impartial Culture
21 voters 1000 voters

Borda system 86% 89%
standard system 69% 69%
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In contrast, their spatial model simulations produce varying
results. All voters are represented by their ideal points
in a four-dimensional space. The four numbers are generated
as follows: voter j's position on the first dimension is
chosen from a standard normal distribution; his position on
the second dimension is generated from the first dimension
position by perturbing it with normal noise; the third
position is produced from the second with fresh noise, and
the fourth from the third likewise. All values are then
normalized to have variance 1. However, this produces an
electorate characterized by the correlation matrix shown in

Table 2.4.

Table 2.4. Expected Correlations Among Voter Dimensions

Dimension 1 2 3 4
1 - .45 .33 .28
2 .45 - .75 .68
3 .33 .75 - .83
4 .28 .68 .83 -

Candidate or alternative positions are generated in the same
way, but three variances are used: low (.04), medium (1.0),
and high (1.5). Given this structure, Chamberlin and Cohen
find that the existence of a Condorcet winner is more likely
in the spatial model than the impartial culture assumption.
Depending on candidate (alternative) dispersion and the
number of voters, the probability ranges from 92 to 100%, as
opposed to 84-85% for the impartial culture assumption for 4
alternatives. The arbitrary correlation used in assigning

utilities to voters may have some influence on this result.
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However, as shown below, the ranking of the Borda and
standard voting system does not change. Because of the
arbitrary nature of dimensional correlation, Chamberlin and
Cohen’s results do not generalize well for the spatial
model.

Table 2.5. Chamberlin and Cohen: Proportion of
Condorcet Winners Selected - Spatial Model

21 voters 1000 voters
cand variance: low med high low med high
Borda 83 83 92 85 86 97
standard 59 53 77 27 33 70

Following Chamberlin and Cohen, Merrill [93] compared
voting systems using both Condorcet efficiency and social
utility efficiency. He also varied the candidate dispersion
in space in the spatial model relative to voters. Merrill’'s
results for the impartial culture model bear a striking
similarity to Fishburn and Gehrlein’s. His spatial model
results differ from Chamberlin and Cohen’s, but he used a
multivariate normal distribution to generate voter and
candidate positions, with a variety of correlation
structures.

Table 2.6. Merrill: Proportion of Condorcet
Winners Selected (%)

Impartial Culture (25 voters)

# of candidates: 2 3 4 5 7 10

standard 100 79.1 69.4 62.1 52.0 42.6
approval 100 76.0 69.8 67.1 63.7 61.3
Borda 100 90.8 87.3 86.2 85.3 84.3
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Table 2.6 (cont"d.)
Spatial Model (201 voters, 5 candidates)

dispersion 1.0 .5

# of dimensions 2 4 2 4

standard 61 81 27 42

approval 81 84 75 82

Borda 89 92 86 88

% with Condorcet 99+ 99+ 98 99
winner

Merrill s dispersion is the ratio of standard
deviations of the marginal distributions for candidates and
voters. Thus if dispersion is greater than 1, there is more
variance in candidate positions than in voter positions and
vice versa. His results do indicate that as dispersion
increases, Condorcet efficiency increases for all voting
systems. If candidate dispersion is high relative to voter
dispersion, the median has a greater probability of winning,
whereas if candidate dispersion is low, extreme candidates
or alternatives have a greater probability of winning. Thus
there should exist an equilibrium level of relative
dispersion under which all distances from the center or
median of the voting space are equally attractive to
candidates. This nonconvergent equilibrium is in strong
contrast to the median voter result of the unidimensional
model, but is due to the discrete choice set. The same
result occurs in the unidimensional model when a discrete
choice set is used. Also, the nonconvergent equilibrium
depends on the voting system. For the Borda and approval
systems of voting, the advantage of the centrist candidates

is little affected by the relative dispersion of voters and
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candidates because they are systems in which either
approximately half or all but one of the candidates receive
votes from voters.

Another interesting point is that Chamberlin and
Cohen’s assertion that existence of a Condorcet winner is
more likely under spatial model assumptions is borne out. In
their development of the spatial model, Enelow and Hinich
show that when more than one dimension is used, the
existence of a Condorcet winner, or a median in all
directions (dominant point), becomes less and less likely as
the number of dimensions is increased. However, any point
in the issue space may be introduced as an alternative in
their model. They are essentially working with a continuous
choice set. 1In contrast, the discrete choice set may have
an equilibrium where the continuous one does not, and based
on Merrill's results, an increase in the number of
dimensions increases the likelihood of an equilibrium point
(Condorcet winner) when the size of the choice set (number
of alternatives) remains constant.

Merrill’s social utility efficiency results for the
impartial culture assumption differ from his Condorcet
results only in ranking the approval voting system above the
standard voting system for a 3 alternative election.
Otherwise all rankings remain the same. His results for the

spatial model also parallel his Condorcet results.
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Table 2.7. Merrill: Social Utility Efficiency
Impartial Culture (25 voters)

# of candidates 2 3 4 5 7 10
standard 100 83.0 75.0 69.2 62.8 53.3
approval 100 g5.4 91.1 89.1 87.8 87.0
Borda 100 94.8 94.1 94.4 95.4 95.9

Spatial Model (201 voters, 5 candidates)

dispersion 1.0 .5

# of dimensions 2 4 2 4
standard 74 93 22 52
approval 97 g8 95 98
Borda 98 99 96 99

Note the close correspondence between social utility
efficiency and Condorcet efficiency numbers between Tables
2.6 and 2.7. The distinct relationship between the two
efficiency measures as discussed earlier is apparent here.

Merrill's social utility efficiencies for the two and
three alternative races are appreciably larger than the
asymptotic limits calculated by Weber. He cannot be using
the same exact formulation, since Weber calculates that
expected social utility of a two alternative election for
all voting systems is 81.65%.

A final work using the expected outcomes approach to
comparisons was written by Bordley [12]. He used both the
spatial model and impartial culture assumptions to simulate
the effect of various changes in the model on social utility
efficiency. The variables analyzed included the number of
alternatives and the number of voters. Generally,
regardless of these values, rankings of the systems were (1)

Borda; (2) approval voting; and (3) the standard voting
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system. However, social utility efficiency estimates for
the approval voting system approached those of the Borda
system as the ratio of the number of voters to the number of
alternatives increased.
2.4 VYarying Other Parameters of the System
2.4.1 Yarying Weight Sets

In a 1974 article, Fishburn [49] took a different
approach. In this article, he analyzed how many candidates
should be voted for, as a parameter of the voting system, in
order to maximize the efficiency of a voting system, in
terms of agreement with the Condorcet criterion. He looked
at both the simple voting system (vote for k of m), and the
rank ordering system in which k are rank-ordered of m. He
determined that a simple voting system reaches maximum
efficiency by this criterion when as close to half of the
candidates as possible are voted for. He also determined
that weighted ranking systems, such as the Borda system, are
most efficient when all candidates are ranked (k=m).

Evidence about the efficiency of various values for the
k parameter, which is the number of alternatives about which
information is provided, is presented in Table 2.2. For the
standard voting system and the approval voting system,
voting for as close to half as possible of the alternatives
is seen to increase Condorcet efficiency; for the Borda
system, ranking less than all alternatives decreases

efficiency.
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Weber also analyzed how the weight sets used
(admissible strategies) affect the efficiency of the
approval voting system and the Borda system. First it must
be clarified that use of a different weight set may not
produce an essentially equivalent system, which would have
identical social utility efficiency to the original system.
Although the Borda system with weights (m,m-1,...,1) is
essentially equivalent to the Borda system with weights (m-
1,m-2,...,0), the 3 alternative system with weights (4,3,0)
is not essentially equivalent to the one with weights
(2,1,0). His analysis does show that alternative weight
sets can increase the social utility efficiency of a voting
system.

Weber [143] also directly compared three voting systems
with different parameter values:
a. vote for k of m voting system, the family in which k

€ (1,...,m-1). The standard system with which we are

all acquainted has k=1.

b. the weighted ranking voting system with a single weight
set (wi,...,wm), of which the Borda system is
representative with the weight set (m,m-1,...1). This

is in contrast to the original Borda system with weight

set (m-1,...,0).
c. the vote for-or-against k system, with weight sets
(wi,...wm) and (wi,...,wm), where the first set, with

w1 through wk = 1, wk+1 through wm = 0 corresponds to

voting for k candidates, and the second set, with wi
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through wa-x = 1 and wm-k+1 through wm = 0 corresponds
to voting against k candidates. Where m=3, this is the
approval voting system with k=1. With more than three
candidates, however, the approval voting system does
not fit this model because in approval voting k is a
choice variable for each voter.
Examining these three systems, Weber determined which k
would maximize the effectiveness of each voting system
according to his social utility efficiency measure. Looking
at system a, in which one votes for k of m, he determined
that its efficiency measure was:

1/(m+1) x [3mkim:kl11/2

m-1
Taking the derivative of this with respect to k and setting
it equal to zero gives the result that when m/2 = k, the
social utility efficiency of the vote for k system is
maximized. Therefore, in the vote for k system, as close to
half as possible of the candidates should be voted for. It
is easily verified that social utility efficiency is
symmetric about m/2 and that k = m/2 - 1 and k = m/2 + 1
are equivalent. Interestingly, this result corresponds to
Fishburn's earlier work showing that Condorcet efficiency is
also maximized when k = m/2. It can be shown that if k is
vset to be m/2, then as the number of candidates increases
(m+ ®), then the effectiveness of the vote for k system
approaches a constant equal to {3/2 (= .866 or 86.6% social

utility efficiency). This is in contrast to any fixed k as
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m increases, in which case social utility efficiency
decreases and the limiting value is zero.

In the weighted ranking voting system, the social
utility efficiency of the voting system is:

m/(w+1)
Any weighted ranking voting system has maximum social
utility efficiency when all candidates are ranked, as
opposed to any k < m.

Considering the vote for-or-against k system, Weber
showed that vote for k and vote for n-k (i.e., vote against
k) are essentially equivalent. The social utility

efficiency of the vote for-or-against k system is:

W X [12&%25}%] 172

where w = the expected value of the difference in utility
between a1 and bi, where [a] is the set of alternatives
voted for and [b] is the set of alternatives not voted for.
al1 - b1 is the difference in utility between the most-liked
in the set of alternatives which receive votes and the
most-liked (or least-hated) in the set of alternatives which
do not receive votes. It is easily verified that the vote
for-or-against k system has strictly greater social utility
efficiency than the vote for k system. This system has
maximum social utility efficiency when k = .368m. The
limiting social utility efficiency of the vote for-or-
against k system is 92.25%. However, the limiting social

utility efficiency of the Borda system is 100%.
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Asymptotically, the Borda system has social utility
efficiency as great as any voting system possible.
2.4.2 Yoter Concordance and Correlation

Fishburn extended his work to allow for the possibility
of different “levels of agreement’ in the voting population.
In a 1973 article (48], he examined the effect of voter
concordance as measured by the Kendall-Smith coefficient of
concordance, W, on the existence of a Condorcet winner and
the degree to which the Borda system agrees with the
Condorcet winner. The Kendall-Smith coefficient of
concordance, developed in 1939, is a transformation of the
variance of the rank of candidates across the voting
population, adjusted for the numbers of voters and
candidates. If variance in rank is high, there is little
concordance, whereas if variance in rank is low, there is a
substantial amount of agreement among voters in the
population as to what is a desirable outcome. The analysis
showed that there is more agreement between the Borda system
and the Condorcet winner when W is extreme. If there is
either very little voter concordance or extreme agreement
across the voting population, then the systems tend to
select the same outcome. That is, the likelihood of the
Borda system selecting the Condorcet winner is greater at
the extremes of W.

Bordley [12] examined the correlation coefficient r,
with a range of -1 to 1. For the correlation coefficient,

his assumption was of two equally sized groups in the voting
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population, with the correlation being between utilities in
the two groups. When r=-1, there are two diametrically
opposed groups in the voting population, whereas when r=1,
the two groups are identical. Bordley sho;ed that as r
changes, the best voting system will change radically. When
r=-1, dictatorship may be a preferable alternative to any
voting system, whereas when correlation is perfect, the
voting system used is of little importance with the
exception of the approval voting system. This is in
contrast to Fishburn’s results on the Kendall-Smith
coefficient of concordance and Condorcet efficiency.
Fishburn's results showed an increase in Condorcet
efficiency for the Borda system when there was little
concordance. Presumably the difference is due to Bordley's
assumption of diametrically opposed groups, which would
decrease the variance in rank across the voting population.
If all preference orders occurred in equal numbers, this
variance would increase; the ‘extreme disagreement” implied
by a high Kendall-Smith coefficient is qualitatively
different from the extreme disagreement produced in
Bordley s model by a correlation coefficient of -1.
2.4.3 Other Parameters

Bordley s work indicates that the effect of altering
the standard deviation of utilities is negligible.
“"Changing the standard deviation only changes the scale of
utilities and does not affect results."10 Normal or uniform

distributions for utilities of alternatives to voters were
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also compared. Bordley provided evidence to support the
idea that whether a normal or uniform utility distribution

is used, the results in terms of ranking voting systems do

not change.
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CHAPTER 3

A MODEL FOR SIMULATION OF VOTING SYSTEMS
WITH STRATEGIC VOTING

A model which investigates the results of strategic
voting as opposed to sincere voting should correspond as
closely as possible to previous work for the comparisons to
be meaningful. Therefore, the standard assumptions of
previous work, with the exception of sincere voting should
be incorporated into the model. 1In particular, generation
of individual preference profiles is identical to the most
commonly used method.

A more detailed explanation of how a voter’s
preferences are formed, how the possible strategies and
structure of the voting system along with these preferences
and information about other voters determine the strategy he
chooses, and how all voters’ strategies determine the
outcome of the system is presented here.

3.1 Assumptions of the Model
1. A voter’'s preference ordering is based on the utility
of various alternatives to him. Let uij be the

cardinal utility of alternative i to voter j, where i

indexes alternatives 1 through m and j indexes voters 1

through n. All uij are independently and identically

distributed uniformly on the interval [0,1]. This
determination of cardinal utilities allows all ordinal
preference orderings, and in fact makes them equally
likely for any given individual - the ‘impartial
culture’ assumption. Arrow does not require equal

63
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probability for preference orderings, just

admissibility of all preference orderings, or

unrestricted domain.

Voters  possible strategies for a voting system include

all weight sets B = [wi1,...,wn] which conform to the

requirements of the particular voting system.

a) the Borda system strategy set includes all weight
sets [w1,...,wmn] for which each wi is an element
of {0,1,...,m-1}, and wi # wj for all i # j. Thue
voters  possible strategies for the Borda system
include all permutations of (0,1,...,m-1].

b) the standard voting system strategy set includes
all weight sets [wi1,...wm] for which each wi is an
element of {0,1} and 2i wi = 1. Therefore
standard voting system strategies include exactly
one weight of 1, with the remaining weights being
0.

c) For the approval voting system, the strategy set
includes all weight sets [wi1,...,wm] for which
each wi is an element of {0,1}. Approval voting
system strategies may include from zero to m
weights of 1, and correspondingly m to zero
weights of 0.

Voters® strategies determine the outcome of a voting

system. The weights assigned by the n voters are

summed over alternatives. The outcome of a voting

system is the alternative which receives the greatest
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total weight over the voting population, or arg max
2?:1 Wwij. All ties are broken randomly. 1

4. Voters choose optimal strategies from their possible
strategy sets by maximizing their expected utility
based on their information about other voters’
strategies.

5. Let E{uj(N1,H2,...,Hn)} be voter j s expected utility

as a function of all voters’ strategies including his

own. An equilibrium point is a matrix of strategies

(H1,H2,...8n) such that for each j=1,2,...,n,
E{uj(H1,H2,...,Hn)} = mrﬁx E{uj(H1,H2,...,Hn)}
J

Simply put, all outcomes of a voting system must be in
the set of Nash equilibria for the associated voting
game.

3.2 VYoting Strategies

3.2.1 Sincere Strategies

A sincere strategy for an individual voter is the
strategy he chooses based only on his own preferences. Thus
for the Borda system, the sincere strategy is an assignment
of weights ([wi1,...,wm], where wi = m-rank(i), which
corresponds to the voter’s true ranking of alternatives.
Then if ui 2 uz > ..._> um, the sincere strategy assigns
weights 80 that w1 > w2 > ... > wm. For the standard voting
system, the sincere strategy is to assign a weight of one to
the most preferred alternative (wi = 1 iff i = arg m?x ui,
otherwise wi = 0.) For the approval voting system, the

sincere strategy is to vote for every alternative of greater

than average utility [143]. Let u = (Zi ui)/m. Then if
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(ui-u) > 0, wi = 1; otherwise wi = 0. Intuitively, u is
the expected utility of the election when the voter does not
participate, and the individual voter "approves” of any
alternative which betters that.
3.2.2 Optimal Strategies

Since voters are maximizing expected utility, the
information upon which they base their expectations is an
important part of the model. 1In all cases voters are
assumed to know the distribution from which all individual
utilities are drawn (or, equivalently, the likelihood of
each individual preference profile). They may know the
strategies of voters other than themselves. However, the
key piece of information that is used to determine an
individual“s optimal strategy is his estimate of total votes
accruing to each of the alternatives, and the confidence
level of his estimates. If the voter has full information,
his determination of optimal strategy is based on the actual
values of total votes accruing to alternatives, Zi wij, and
his knowledge of his own strategy. If the voter has less
than full information, it is based on his estimates ﬁi, and
given his confidence level, the probabilities of various
outcomes occurring. The voter solves

max Zi pi(ﬂj,ﬁ?;;)uii
subject to the constraints of the voting system. The use of
maximizing behavior on the part of voters can make a great
difference to the performance of a voting system as measured

by either Condorcet efficiency or social utility efficiency.
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3.3 An Analvtical Example

Suppose that there is a committee of three (voters 1,2,
and 3) which has to choose one of three alternatives A, B,
and C. The model specified makes all preference orders
equally likely. Consider then the problem of a
‘representative’” voter. This voter will, under the
assumption of sincere voting, choose a strategy which
corresponds to his true preference ordering. Outcomes of
sincere strategies for the standard and Borda voting systems
are presented in Table 3.1, along with the Condorcet winner
for the given preference profile. Because of the equal
likelihood of individual preference orders and symmetry of
the system, the Condorcet efficiency of a system given a
profile for voter 1 is the same as that for the system. The
outcomes shown are used to determine Condorcet efficiencies
for the standard voting system and the Borda system with
sincere voting, which are 88.24% (30/34) and 95.59%
(32.5/34) respectively.

Table 3.1. Outcomes for the Standard and Borda
Voting Systems with Sincere Voting

Voter 1: A>B>C
)

2 \ ] ] 1 > ] ] |
A>B>C | a/a/a | a/a/a |, a/a/a |a/a,b/al a/a/a ! a/a/a |
A>C>B | a/a/a | a/a/a |, a/a/a | a/a/a | a/a/a | a/a/a |
B>A>C | a/a/a | a/a/a |} b/b/b | b/b/b | x/a/a | */b/b |
B>C>A }a/a,b/a! a/a/a | b/b/b | b/b/b ! x/%x/X | %/b/b |
C>A>B | a/a/a | a/a/a | */a/a | *x/%x/X |c/a,c/c! c/c/c !
C>B>A | a/a/a | a/a/a | *X/b/b | */b/b | c¢/c/c | ¢/c/c |

Entries are standard outcome/Borda outcome/Condorcet winner.
A % indicates that a tie occurs among all alternatives,
which is broken randomly. Where two alternatives are
listed, only those two are tied.
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When instead voters choose optimal strategies, a Nash
equilibrium point will determine the outcome. Possible
strategies for the standard and Borda systems and outcomes
given total votes accrued are presented below.
Table 3.2 Possible Strategies and Outcomes Given
Others” Strategies

3.2.1: Borda System

=]
E
[ %

Wiz 2,1,0 2,0,1 1,2,0 1,0,2 0,2,1 0,1,2
4,2,0 a a a a a, a
4,0,2 a a a a a a,c
4,1,1 a a a a a a
3,3,0 a a b a b b
3,0,3 a a a c c c
3,2,1 a a a,b a b X
3,1,2 a a a a,c X c
2,4,0 b a.b b b b b
2,0,4 a,c c c c c c
2,3,1 a,b a b X b b
2,1,3 a a,c x c c c
2,2,2 a a b c b c
1,4,1 b b b b b b
1,1,4 c c c c c c
1,3,2 X b X b c b b,c
1,2,3 X X c b c b,c c
0,4,2 b b b b b b,c
0,2,4 c c b.c c c c
0,3,3 b c b c b c
3.2.2: Standard System

n Wi
Hiz; 1,0,0 0,1,0 0,0,1

2,0,0 a a a

0,2,0 o b o
0,0,2 c c c

1,1,0 a b X

1,0,1 a X c

0,1,1 X x b c

‘Optimal” strategies for a voter with A>B>C are underlined.
In the rows marked with an X, where more than one strategy
is underlined, determination of the optimal strategy depends
on whether the expected utility from a random choice exceeds
the individual’'s utility for his second-ranked alternative.
If strategies are equivalent in terms of payoffs, the voter
is assumed to maintain the current strategy (usually the
sincere strategy).
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If a preference profile is given, sincere strategies
can be determined and then voters checked individually to
see if an increase in expected utility can be obtained by
changing strategy. When no voter can unilaterally increase
his expected utility given the strategies of others, a Nash
equilibrium has been reached.

Given the classic majority cycle profile, either one,
two or three Nash equilibria will be found for the standard
voting system.

Voter 1: A>B>C

Voter 2: B>C>A

Voter 3: C>A>B

If all voters have expected utility for a random choice
(EU(*)) exceeding the utility of their second-ranked
alternative (u2), sincere voting will be the only Nash
equilibrium found. If exactly one voter has u2>EU(%*), that
voter will vote for his second choice, which will be the
Nash equilibrium outcome found. If more than one voter has
uz2>EU(*), then the number of voters with this characteristic
is the number of equilibria this method of solving can find.
The equilibria found are not equally probable for a given
social preference profile. However, the probability of a
particular equilibrium can be determined using the
probability that voters® cardinal utilities have specific
characteristics, and the frequency with which this
equilibrium is found will reflect this probability.

The equilibrium outcomes of the 3-alternative 3 voter
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election for the standard and Borda voting systems, assuming
voters choose optimal strategies, are shown in Table 3.3.
Table 3.3 Outcomes for the Standard and Borda
Voting Systems with Strategic Voting

Voter 1: A>B>C
2 \a ] QZBZQ ] BZQZB ] Bze>g ] Bzgze ] CZA>B ] Q>BZA ]

A>B>C | a/a/a | a/a/a | a/a/a a/a,b/a} a/a/a | a/a/a |
A>C>B | a/a/a | a/a/a | a/a/a | a/a/a | a/a/a | a/a/a |
B>A>C | a/a/a | a/a/a | b/b/b | b/bs/b | 1/1/a | 11/2/b}
B>C>A }a/a,b/a}! a/a/a | b/b/b | b/b/b | */%/X 111/3/b!
C>A>B | a/a/a | as/a/a | 1/1/a | *x/¥%/X !c/a,c/c! c/c/c |
C>B>A | a/a/a | a/a/a | 11/2/b}111/3/b} c/c/c | c/c/c |

Entries are standard outcome/Borda outcome/Condorcet winner.
Numbered outcomes have probabilities for each of the
alternatives being an equilibrium outcome:

I: 15/24 a + 8/24 b + 1/24 ¢

II: 8/24 a + 15/24 b + 1/24 c

ITI: 1/24 a + 15/24 b + 8/24 c

1: 19/24 a + 4/24 b + 1/24 c

2: 4/24 a + 19/24 b + 1/24 c

3: 1/24 a + 19/24 b + 4/24 c
Condorcet efficiencies are now 93.38% for the standard
voting system and 95.22% for the Borda system. Condorcet
efficiencies clearly do change as the assumption of sincere
voting is dropped. The Borda system suffers a slight
decrease, while the standard voting system performs
significantly better.
3.4 Information Conditions

Previous work has either assumed that voters use

sincere strategies or, alternatively, that voting takes
place under zero information conditions. Particularly for
committee voting, zero information is not the most realistic

assumption to make. Frequently committees have one or more

‘vocal®’ members whose preferences are common knowledge.
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The example in the previous section assumed complete
information. Let us see how “incomplete” information
affects Condorcet efficiency under the standard voting
system. As before, voters may have any preference profile,
but now know only the strategy of voter 3 beside their own.
This of course implies that voter 3 knows only his own

strategy.

Table 3.4. Possible Strategies and Expected Utility
for Voters 1 and 2, Given Voter 3°s Strategy

EU(H;) Wj
Voter 3
1,0,0 ua
4/9(ua + uB)+1/9(uc)
4/9(ua uc)+1/9(us)
0,1,0 4/9(ua + uB)+1/9(uc)
uB
4/9(uB + uc)+1/9(ua)
0,0,1 4/9(ua uc)+1/9(usB)
4/9(uB + uc)+1/9(ua)
uc

+

+
COrRrOOHHOOK

O OOFrROOFrO
HOOFROOKFrOO

Our representative voter’s optimal strategy again depends on
his cardinal utilities. However, where he previously had a
50% chance of preferring the insincere strategy on the basis
of his expected utility, he now has only a 20% chance of
this occurring (P[(4ua+uc)<5uB]). The median of three
independent uniform random variables (A>B>C) is distributed
uniformly on [C,A]. The conditional probability density
function of the median of three independent uniform random
variables on the same interval is 1/(A-C). Therefore

P[ (4A+C)<5B] = I?4A+C)/5 1/(A-C) dB = 1/5. With this

specification of information structure, the equilibrium
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outcomes of the standard voting system are as shown in Table

3.5.

Table 3.5. Equilibrium Outcomes of the Standard
Voting System When One Specific Voter s Strategy is Known.

Voter 1: A>B>C

2\

A>B>C
A>C>B
B>A>C
B>C>A
C>A>B
C>B>A

O
-
wean
o
N
-

Numbered outcomes have probabilities for each of the
alternatives being an equilibrium outcome:

.64 a + .36 b

.6933 a + .2533 b + .0533 ¢

.2667 a + .2667 b + .4667 c

.2667 a + .4667 b + .2667 c

.2133 a + .5733 b + .2133 ¢

N WN -

In this case, Condorcet efficiency for the standard voting
system is 85.33%.

If two voters” strategies are known, the results change
again. Suppose the strategies of voters 2 and 3 are known.
Both of these voters calculate optimal strategies in
accordance with Table 3.4, while voter 1 uses Table 3.2.2.
Then results are as shown in Table 3.6.

Table 3.6. Equilibrium Outcomes of the Standard

Voting System When Two Voters”™ Strategies are Known.

Voter 1: A>B>C

2 \a A>B>C A>C>B ! B>A>C ' B>C>A ! C>A>B ! C>B>A !
A>B>C | a H a H a H a ' a H a !
A>C>B | a H a H a ' a H a H a H
B>A>C ! a ' a ' b ' b ! 1 H 2 H
B>C>A | a ' a ' b ' b ' 3 H 4 '
C>A>B | a ' a ' 1 ' 3 ! c ' c '
C>B>A | a ' a ' 2 H 4 ' c ' c H
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Table 3.6 (cont'd.)

Numbered outcomes have probabilities for each of the
alternatives being an equilibrium outcome:

.1667 a + .6667 b + .1667 ¢

.1333 a + .7333 b + .1333 ¢

.1333 a + .5333 b + .3333 ¢

.1067 a + .6267 b + .2667 c

AC.ONH

Condorcet efficiency in this case is 91.33%.
Interestingly, Condorcet efficiency does not follow a
predictable pattern given the information level. Condorcet
efficiencies when 0, 1, 2, and 3 voters” strategies are
known are 88.24%, 85.33%, 91.33%, and 93.38%. This is due
in part to the asymmetry of information between voters.

An important point here is that in the 3 voter, 3
alternative standard voting game, it is always in the
voter’'s interest to reveal his strategy. Presented below
are the probabilities of first, second, and third choices
being chosen by the system if the voter either does or does
not reveal his strategy.

Table 3.7. Probabilities of Voters® 1lst, 2nd, and 3rd

Choices Being Chosen by the Standard Voting System Given
the Information Structure of the Game.

zero information .6296 .1852 .1852

one voter known
strategy revealed .6919 .1541 .15641
strategy unknown .5784 .2252 .1963
two voters known
strategy revealed .6517 .1822 .1661
strategy unknown .5856 .2533 .1611

three voters known .6296 .2176 .1528

The first voter to reveal his strategy does so because this

policy stochastically dominates that of concealing his
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strategy (zero information). The same holds true for the
second and third voters, who compare their previous
strategies of one voter known, strategy unknown, and two
voters known, strategy unknown, respectively.
Interestingly, this implies that an incomplete information
game, at least in this example, is not an equilibrium
outcome, because it is in each individual’s interest to
reveal his strategy. However, when the voting population
becomes larger, it may in reality be difficult for each
individual voter to communicate his strategy to all other
voters unless there is systematic reporting, such as on
support for various bills before Congress. An incomplete
information game may therefore occur.
3.5 Sincere Strategies and Nash Fquilibria

It has been shown [58],[120] that every non-dictatorial
voting system with at least three alternatives is
manipulable. That is, there is always some social
preference profile for which an individual can improve his
utility by misrepresenting his preferences. In other words,
there is always a case for which sincere strategies do not
constitute a Nash equilibrium. Given the stated assumptions
about voters® behavior and an infinite voting population,
Weber [139] showed that sincere strategies are
asymptotically optimal if only the distribution from which
cardinal utilities are drawn is known to voters besides
their own utilities. To show this, he used the fact that

the number of votes cast by one voter for a particular
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candidate and the probability that this number of votes is
critical (changes the outcome of the election) are
asymptotically proportional. Then subjective expected gain
from a vote vector [w1,...wm] is asymptotically proportional
to
Zc#a (uc-ua) max {0, wec-wa} = m[Zc wc(uec-u)l.
An optimal strategy is then an assignment of weights which
maximizes Zc¢ we(uc-u), and Weber demonstrates the optimality
of sincere strategies for each voting system, showing that
sincere strategies under these conditions produce a unique
symmetric Nash equilibrium.

It can be shown that either an infinite voting
population or zero information conditions are sufficient for
sincere strategies to constitute a Nash equilibrium, and
that both are not needed.

3.5.1 An Infinite Voting Population

A set of strategies is not a Nash equilibrium if for
any voter j, there exists some strategy W for which

E{ui(ﬂ?#s,ﬂ)} > E{u,-(u:”,m)},
where K?#j is the set of strategies for all other voters.
Clearly, an individual must be able to change the outcome of
the voting system by altering his strategy for (H:#j,ﬂj) to

be excluded from the set of Nash equilibria.

Theorem 1: As the voting population becomes large, i.e.
n+ o, the probability that sincere strategies constitute a
Nash equilibrium approaches one.

Proof (standard voting system):
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For the individual voter, any wij is a binomial random

variable (either a #ote is cast for it or not), with p =

1/m. Then Wi Z2j Wwij is distributed approximately normally

with mean np n/m and variance np(l-p) = n(m-1)/m2, and
the Wi have an approximate multivariate normal distribution.
In order for an individual voter to change the outcome of
the system, there must be some |Wi - Wk| < 1. That is, the

voter 's maximum weight assignment of one can cause the

ordering of two totals to change. Let Y = Wi - Wk. Then Y

2 2 2
has a mean py = pw - pw = 0; and variance oy = ow + ow +
i K
20w w . Because of the relationship between the covariance

ik
and correlation coefficient this variance can be computed

exactly; the correlation coefficient is -1/(m-1).
Intuitively, when one of the Wi is above its mean, the
others are expected to be slightly below the mean.

Computing this, a variance of c; = 2n(m-2)/m2 is obtained.
Obviously, as n +®, the variance of Y becomes infinite.
Therefore P{|Wi - Wk| < 1} = P{-1 < Y < 1}, the probability
that Y falls within the specified interval, approaches zero.
Thus scope for strategic behavior diminishes asymptotically
and the probability that sincere strategies constitute a
Nash equilibrium approaches one. An analogous proof can be
constructed for the Borda system and the approval voting
system (see appendix A).

3.5.2 Information Conditions Again

Recall that voters choose optimal strategies based on

their information about other voters”™ strategies (assumption
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4). I will assume that this information is obtained by
sampling the voting population and that the information
obtained is correct. As an individual voter’'s sample size
becomes smaller, his estimates of the total votes accruing
to alternatives become less accurate, and their variances
increase. Specifically, let ﬁi be representative voter j’s
estimate of total votes accruing to alternative i and ns be
the number of voters sampled, with W: being the sample
total. Because of the independence of the uij, the voter’'s
best estimate Qi is

Ni = Wi+ (n- ns) E(: wis)/m,
where E(Zi wij) is the expected total weight for an
individual voter. For the standard voting system and the
Borda system this can be calculated precisely since it is
not random, but for the approval voting system it must be
designated as an expectation. The variance of ﬁi is (n -
ns) times var(wij). If ns = n, variance is zero and the
voter has complete information. If ns = 0, then %i =
n E(Zj wij)/m, and the variance of &i is n times var(wij),

which is the zero information condition used by Weber.

Theorem 2: As individual voters” estimates of other voters~
specific strategies become less accurate, i.e., their sample
s8ize becomes smaller, the probability that sincere
strategies constitute a Nash equilibrium approaches one.
Proof: As shown above, as sample size diminishes, the
limiting condition is the zero information condition used by

Weber. It remains to be shown that with zero information,
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the sincere strategy is the optimal strategy for an
individual voter. Recall that Weber used the asymptotic
proportionality of the number of votes cast by one voter for
a particular candidate and the probability that this number
of votes is critical (pi). With this, he shows that
subjective expected gain from a vote vector [wi,...,wm] is
asymptotically proportional to m[(Zi wi(ui-u)]. Asymptotic
proportionality of pi and wi is a sufficient but not
necessary condition for this result. The necessary
conditions are that Pi, the probability that outcome i
occurs, be a positive function of wi (Pi = f(wi)), with

6Pi/6wi > 0; O62Pi/bwi2 > 0; 2i Pi =1
That is, the probability of a specified alternative i
occurring is strictly positively related (increasing at an
increasing rate) to the number of votes cast for alternative
i, wi, within the constraints of the voting system. This
condition holds for the model employed here.

Under zero information conditions, the probability of
occurrence of a specified alternative increases at an
increasing rate with wi, with a strict one-to-one
correspondence of wi and Pi. Therefore, given that the sum
of the wi is a constant, a vote vector which maximizes Zi
wi(ui-u) over W also maximizes Zi f£(wi)ui = Zi piui over H,
or expected utility under the constraints of the voting
system, and is an optimal strategy for the voter. However,
the vote vector which does this is simply the sincere

strategy, as shown by Weber. Therefore, under zero
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information conditions, sincere strategies constitute a Nash

equilibrium.

As an example for the standard voting system, consider
the following three-alternative, three voter election. For
representative voter j, possible values of ﬂ?#j are shown in
the left-hand column, along with their probable occurrence
in parentheses. Voter j s possible strategies of voting for
alternatives A, B, or C, and the possible outcomes of the
strategy are shown in columns 2, 3, and 4.

Table 3.8. Strategies and Possible Outcomes of a
Three-Alternative,Three Voter Election.

n Wi
Wiz A =1[1,0,0] B =1(00,1,0] C =([0,0,1]
(1,1,0] (2/9) a b X
(1,0,1] (2/9) a * c
(0,1,1] (2/9) X b c
(2,0,0] (1/9) a a a
[0,2,0] (1/9) b b b
[0,0,2] (1/9) c c c

%A tie occurs which will be broken randomly.

It is easily verified that if voter j votes for alternative
A, his expected utility is

PAuA + pBuB + pcuc = .6926 ua + .1852 us + .1852 uc.

For the standard and Borda voting systems, given the
number of voters and alternatives, any vote vector has a
corresponding probability vector, and a permutation of the
vote vector corresponds to an analogous permutation of the
probability vector. Although probabilities are not a linear
function of the weights assigned for small voting

populations, there is a strict mapping from vote vectors to
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probability vectors (which is asymptotically linear). For
the approval voting system, there is a strict mapping for
any fixed number of total votes. Vote vectors and their
corresponding probability vectors are as shown in Table 3.9.

Table 3.9. Vote Vectors and Corresponding
Probability Vectors for a 3 Alternative, 3 Voter Election

Vote Vector Probability Vector (=(Pa,PB,Pc])
Standard Voting Svstem
(1,0,0] [.6926,.1852,.1852]
(0,1,0] [.1852,.6926,.1852]
{(0,0,1] [.1852,.1852,.6926]
Borda System
[2,1,0] [.6162,.2689,.1159]
[2,0,1] [.6162,.1159,.2689]
[(1,2,0] [.2689,.6162,.1159]
[0,2,1] [.1159,.6162,.2689]
[1,0,2] [(.2689,.1159,.6162]
[0,1,2] [.1159,.2689,.6162]
Approval VYoting System
[(1,0,0] [.6574,.1713,.1713]
[(0,1,0] [.1713,.6574,.1713]
{0,0,1] [.1713,.1713,.6574]
(1,1,0] [.4491,.4491,.1018]
[1,0,1] [.4491,.1018,.4491]
[0,1,1] [.1018,.4491, .4491]

3.6 The Simulation Program and Solving Algorithm

The simulation program is set up in accordance with the
model specified. (For specific programs, see appendix B.)
A cardinal utility vector is generated for each voter. With
these, the Condorcet winner, it if exists, and the
alternative with maximum social utility are determined.
Given the voting system, the sincere strategy corresponding
to the utility vector for each voter is determined. Then
for each voter, possible pure strategies are taken one at a

time and the voter s expected utility for the possible
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strategy calculated. With complete information, expected
utility is only an expectation in the case of a tie
occurring (because the tie will be broken randomly). With
incomplete information, expected utility depends on the
calculation of probabilities of outcomes, which depend on
the strategy chosen, as well as the voter s sample size.

Expected utility is calculated for all possible
strategies. It is then compared with expected utility for
the voter's sincere strategy. If expected utility from
another strategy exceeds that of the voter s sincere
strategy (an alternative strategy strictly dominates the
sincere strategy), the individual's vote vector is changed
accordingly. If more than one alternative strategy has the
same (maximum) expected utility, one of these strategies is
chosen randomly, and the individual e vote vector changed
accordingly. The process continues, checking each possible
strategy for an expected utility increase. If expected
utility remains constant with a change of strategy, the
original vote vector is kept; there is no reason to assume
that a strategy will change unless a gain is expected. Each
voter is checked in a similar fashion until a Nash
equilibrium is reached, or a specified number of iterations
checking strategies (40) have been done. If after 40
iterations no equilibrium has been found, voters are
randomly reordered and the process repeated. When an
equilibrium is found, the outcome of voters ™ strategies is

determined along with its social utility; it is compared
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with the Condorcet winner when it exists to see if they are
the same, and the results are used to estimate the
efficiency measures. Efficiency measure estimates are based
on 2000 repetitions of the voting system for a given number
of voters and alternatives. Numbers of alternatives range
from 3 to 6, and the size of the voting population ranges
from 3 to 125.

For the incomplete information game, the number of
alternatives is set at three, and sample size (the number of
voters used in determining total votes for a subset of the
population) is taken as 2/3 of the voting population,
rounded to the nearest integer (a = .6667). The probability
of each outcome (given the sample) should be approximately
equal for different electorate sizes, given essentially
equivalent population profiles, inducing equivalent optimal
strategy responses from voters. Differences are due to the
reduced likelihood of a tie in the larger voting population,
just as in the complete information simulations. Voting
populations again range from 3 to 125.

3.7 Restriction to Pure Strategy Equilibria

Voters® possible strategies in the solving algorithm
include only pure strategies. Models in which an element of
randomness is introduced for voters (see p. 31) have in
general introduced a probability of voting as opposed to
probabilities for strategies. If we think of sincere voting
as one possible strategy and abstention as another, this

type of model arbitrarily restricts voters® possible
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strategies to these two. Also, I question whether it is
reasonable to expect voters, even in committee voting, to
choose a mixed strategy when an optimal pure strategy
response can be found.

Merrill [92] proved that all "potentially uniquely
optimal strategies"! are pure strategies. A potentially
uniquely optimal strategy may be a unique best response to
others  strategies. A point Wj in a convex subset S of Rm
is called extreme if it is not interior to any line segment

contained in S.
A

sz

(0,1,0)

(1,0,0)

(0,0,1)
w3j

Figure 3.1. Possible Strategies in the Standard Voting
System with 3 Alternatives: a Convex Subset of Rm.
If a voting system S is a convex subset of Rm, then "the
potentially uniquely optimal strategies are extreme points
of S."2 Let E(i), the “strategic value’ of
alternative i, be 2?:1 (ui-uj)pij, where pij is the

probability of being decisive between alternative i and j

(pii=0). Merrill’'s formulation of expected utility is
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m
EUO(W;) = Zi=1 E(i)vi, where vi is the number of votes in Wj

for alternative i. If W; is a potentially uniquely optimal
strategy, then there exists a total utility function such
that EU(W;) > EU(Wj) for all Wj in S other than W;. Because
EU(Wj) is a linear combination of the E(i) s, Wj; must be an
extreme point.

One significant conclusion can be drawn from Merrill’ s
work. A mixed strategy is a linear combination of pure
strategies and therefore interior to a line segment
contained in S. Therefore a mixed strategy is never
potentially uniquely optimal. In other words, a mixed
strategy can never be a unique best response in the game.
All unique best responses are pure strategies.

Additionally, in cases where a mixed strategy is a best
response, there exists a pure strategy with equal expected
utility. A mixed strategy is only optimal if the voter is
indifferent between two or more pure strategies which in
linear combination produce the mixed strategy. However, if
this is the case, he is also indifferent between the pure
strategies which produce the mixed strategy and the optimal
mixed strategy itself. There is thus always a pure strategy
response with equal expected utility to the optimal mixed
strategy response.

There are cases for which the solving algorithm does
not find a pure strategy equilibrium given a fixed order of

voters for checking strategies. An example of such a case
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for the 3-alternative 5 voter Borda voting system will serve

to illustrate the point.

Table 3.
Preferences for Which
Not Found when Voters

Expected Utility Matrix

10. An Example of
a Pure Strategy Equilibrium is

are Taken in a Specified Order

J \-i 1 2 3

1 4.967650E-002 9.129716E-001 3.133120E-001
2 8.345773E-001 7.409244E-001 7.170978E-001
3 2.628670E-001 6.382484E-003 2.704006E-001
4 6.233332E-001 3.598900E-001 6.352836E-001
5 3.980304E-001 6.974258E-001 6.352836E-001
Sincere Vote Matrix

J \ i 1 2 3

1 0 2 1

2 2 1 0

3 1 0 2

4 1 0 2

5 0 2 1
Preferences

Voter 1: 2 » 2,3 » 1,2 » 1,2,3 > 3 > 1,3 > 1

Voter 2: 1 » 1,2 > 1,3 » 1,2,3 > 2 > 2,3 > 3

Voter 3: 3 » 1,3 > 1 > 1,2,3 » 2,3 > 1,2 >» 2

Voter 4: 3 > 1,3 > 1> 1,2,3 > 2,3 > 1,2 > 2

Voter 5: 2 » 2,3 > 3 » 1,2,3 > 1,2 > 1,3 > 1

a,b denotes a tie which will be broken randomly.

The solving algorithm produces the following sequence of

strategy changes:

Table 3.11. Sequence of Strategy Changes Produced

by the Solving Algorithm

Individual Strategies and Total Votes

i 1 2 3 4 5 Total
0,2,1 2,1,0 1,0,2 1,0,2 0,2,1 4,5,6
Wi 1,2,0 2,1,0 1,0,2 1,0,2 0,2,1 5,5,5
1,2,0 2,1,0 2,0,1 1,0,2 0,2,1 6,5,4
0,2,1 2,1,0 2,0,1 1,0,2 0,2,1 5,5,5
0,2,1 2,1,0 1,0,2 1,0,2 0,2,1 4,5,6
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The pure strategy equilibria {(2,1,0], (2,1,0],
(o,1,23, (1,0,2], (0,1,2}}, {(O0,2,1]1, (2,1,0], [1,0,2],
(0,23, (1,0,2]}, and {(0,2,1]1, (2,1,0], [2,0,1], [1,0,2],
[0,1,2]} all exist for this preference profile but are not
found by the solving algorithm because the voters are taken
in a specified order. However, if voters are taken at
random to have their strategies checked, there is no way of
ensuring that all voters” strategies are checked (verifying
the existence of the Nash equilibrium). A random reordering
of all voters and repeat of the process solves the problen,
and an equilibrium is found in every case.
3.8 TIhe Nature of Equilibria Found

Not all Nash equilibria are found by the solving
algorithm. Because of its construction, if sincere
strategies constitute a Nash equilibrium, then for that
social preference profile the outcome of the voting system
is the outcome of sincere voting. Only if sincere
strategies do not constitute a Nash equilibrium is strategic
voting taken into consideration. In the previous example
(Tables 3.10 and 3.11) the strategy [2,1,0] for all voters
is a pure strategy Nash equilibrium point; none of the
voters can unilaterally increase his expected utility.
However, the solving algorithm provides no motivation for
individual voters to alter their strategies to reach this
equilibrium. In fact, both voters 1 and 5 are strengthening
their last-ranked alternative at the expense of their first

and second choices. The strength of the solving algorithm
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lies in the fact that any Nash equilibrium found can be
reached via individual strategy changes (motivated by
expected utility maximization) from the sincere strategy
matrix. In this case, the equilibrium will correspond to a
minimal B-coalition of the associated cooperative game.

In cooperative games, the characteristic set V(s)
delineates a set of payoff vectors for each possible
coalition S which represent the worth or effectiveness of
the coalition S. 1In beta theory, a vector of payoffs is
included in the characteristic set V(s) if and only if it is
non-preventable by players outside the coalition.3 In other
words, 1if players outside the coalition have some strategy
or set of strategies which could prevent this payoff vector
from occurring, it is not included in the beta solution. A
simple example using the standard voting system should
clarify the idea of the beta solution.

Table 3.12. Expected Utility, Preference Orderings,

and Sincere Strategies of Voters Using the
Standard Voting System.

Voter

Alternative 1 2 3

A .016 .365 .694

B .682 .482 .247

C .793 .218 .413

X . 497 .355 .4513

Expected value of uij

Preference orderings Sincere strategies
voter 1: C>B>x>A {(0,0,1]
voter 2: B>A>*>C (0,1,0]

voter 3: A>*>C>B (1,0,0]
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If voters 1 and 2 form a coalition, they can achieve
any of the possible payoff vectors (rows of Table 3.12) for
A, B, or C. They cannot guarantee the payoff vector for a
random choice (*X) because regardless of the strategies they
choose, voter 3 has a strategy which can prevent it. If
voters use sincere strategies, this final payoff vector is
the outcome. Sincere strategies clearly do not constitute a
Nash equilibrium in this case. If voter 1 votes for
alternative B instead of his most-preferred alternative C,
his expected utility increases. Additionally, if voter 1
does this, neither of the other voters can increase their
expected utility by altering strategy and this set of

strategies is a Nash equilibrium.

1: [0,1,0]
2: [(0,1,0]
3: [(1,0,0]

However, the set of strategies

1: [0,0,1]
2: [1,0,0]
3: [1,0,0]

is also a Nash equilibrium in this game. If the .solving
algorithm looks at voter 2 before voter 1, this is the
equilibrium that will be found. Because of the randomness
of individual utilities, the Monte Carlo techniques employed
make it equally likely that the individual utilities will
occur in either order, and a sufficient number of
repetitions will find each equilibrium; furthermore, they
will occur with equal probability (given that exactly 2

voters have u2>EU(X)).
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The equilibria above correspond to minimal B-coalitions
because the removal of one player from the coalition causes
it to fall apart. If we looked at a standard voting system
game with five players, a coalition of 4 would not be
minimal because the removal of one player would still leave
a decisive coalition of 3. The solving algorithm will not
find an equilibrium in which individuals vote strategically
corresponding to a non-minimal B-coalition in a game with
complete information. Subsequent to the assignment of
strategies corresponding to a minimal B-coalition, no voter
outside the coalition can increase expected utility by
altering his strategy so as to "join the coalition.” All
equilibria corresponding to non-minimal B-coalitions will be
sincere strategy equilibria, and the coalitions will occur
with probability determined by the approximate multivariate
normal distribution.

In contrast, in an incomplete information game, a non-
minimal B-coalition equilibrium with strategic voting may
occur because a player may have a positive probability that
this minimal coalition does not exist, due to his
uncertainty about voters® strategies. Even though a minimal
B~coalition already exists, a voter may have preferences
such that either joining the coalition or voting
strategically against it can increase his expected utility
because of this positive probability.

The equilibria found are also perfect equilibria in the

sense of Selten [123]. Although his concept of a perfect
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equilibrium was intended to apply to extensive games, the
point of view which looks at "complete rationality as a
limiting case of incomplete rationality"4 is useful in this
model because of the difficulty of accepting the concept of
the rational voter. Suppose voters are rational in the
sense that they can evaluate different alternatives, compare
strategies available to them, and estimate the effect of
these strategies on the outcome of the system. However,
this hypothetical rational voter is not perfect; he may make
‘mistakes.” When he has had a "bad day ™ with probability ¢,
he is equally likely to choose any of the strategies
available to him, as he is no longer thinking straight. 1If
all this happens to all voters, we have Selten’'s perturbed
game. The "rational” part of the voter knows that this
happens and uses it in his calculation of optimal strategy
as far as he is able. Then if the strategies of the
perturbed game approach the strategies of the original game
as € - 0, the Nash equilibrium of the original game is
‘perfect.” The model as constructed is set up in exactly
this way. The zero information game corresponds to a
complete information game in which the rational voter
assigns ¢ = (Q-1)/Q (where Q is the number of admissible
strategies) to every other voter and determines his optimal
(sincere) strategy on that basis. As the original value of
e gets smaller, the variance of estimates &?15 decreases,
exactly as if the voter had better information. Complete

information (or perfect rationality) is the limiting case.
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Conversely, a Nash equilibrium which cannot be reached
from the sincere strategy matrix is not perfect, since the
sincere strategy matrix is the unique equilibrium of a
suffigiently perturbed game. Therefore if the number of
repetitions is sufficiently large, the set of equilibria
found will correspond to the set of perfect equilibria, and
Nash equilibria which are not found will not be perfect

equilibria.



CHAPTER 4
RESULTS
The results of the simulations are presented and
analyzed here. Some of the questions examined are 1) the
relationship between social utility efficiency estimates and
Weber s theoretical values; 2) how social utility efficiency
estimates compare given the use of sincere strategies as
compared to optimal strategies; 3) how Condorcet efficiency
estimates compare given sincere and optimal strategies; 4)
the effect of strategic voting on rankings of the systems
using either social utility or Condorcet efficiency with
strategic voting; 5) the relationship between Condorcet
efficiency and social utility efficiency; and 6) the effect
of the amount of information available to voters on
efficiency estimates given optimal strategies.
4.1 Theoretical Values
4.1.1 Sincere Voting
Weber s social utility efficiency values are
asymptotic. It is therefore possible that social utility
efficiencies may be significantly different for small voting
populations. This possibility was investigated, but the
differences were found to be insignificant for the most
part. Using the student’'s t distribution, t-tests indicated
only three cases, all for the standard voting system, for
which the differences were significant at the 90% level or
better. In each of these cases, the number of voters

differed from the number of alternatives by at most one, and

92
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social utility efficiency was significantly greater than the
theoretical value. However, in these cases, the standard
voting system had appreciably lower social utility
efficiency than either of the other systems considered, and
rankings were not affected. Again, for 3 alternative
elections, rankings according to Weber’ s asymptotic social
utility efficiencies are 1) approval voting system, 87.5%;
2) Borda system, 86.6%; and 3) standard voting system, 75%.
The simulations tended to confirm this for 3 alternative
elections, although there is difficulty in differentiating
the efficiency of the Borda and approval systems. In fact,
the Borda system ranked above the approval voting system
12/22 times, but a t-test detects no significant difference
in means.

Although Weber did not develop a formula for
theoretical values of the approval voting system with more
than three alternatives, simulation estimates of social
utility efficiency for the approval voting system appear to
indicate that asymptotic social utility efficiency is
constant at 87.5%, regardless of the number of alternatives.
Figures 4.5-4.9 (pages 96-97) show social utility efficiency
estimates for the approval voting system and their approach
to this limit. Deviations are greater for a smaller number
of voters, and the size of the deviation is greater the
larger the number of alternatives considered.

For more than 3 alternatives, rankings were, without
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exception: 1) Borda system; 2) approval voting system; and
3) standard votiﬁg system.
4.1.2 Strategic Voting

When voters” use of optimal strategies was
incorporated, social utility efficiency estimates diverged
markedly from theoretical values for the standard voting
system. Differences are predictably greater for small
electorates, and given the number of voters, greater for a

larger number of alternatives.
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Figure 4.1 Social Utility Efficiency for the
Standard Voting System with 3 Alternatives:
Strategic, Sincere, and Limit Values
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Figure 4.2 Social Utility Efficiency for the
Standard Voting System with 4 Alternatives:
Strategic, Sincere, and Limit Values
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Figure 4.3 Social Utility Efficiency for the
Standard Voting System with 5 Alternatives:
Strategic, Sincere, and Limit Values
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Figure 4.4 Social Utility Efficiency for the
Standard Voting System with 6 Alternatives:
'Strategic, Sincere, and Limit Values

This difference did not occur to such an extent for the
approval voting system. In only two cases was the
difference great enough to produce a t-statistic significant
at the 80% level. However, an interesting pattern to social
utility efficiency estimates appeared. For small voting
populations, the estimates are very close to 87.5%; they
decline as the number of voters increases and after a
certain point begin to increase again toward 87.5%. This
decline is more marked as the number of alternatives

increases, as shown in Figures 4.5-4.8.
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Figure 4.5 Social Utility Efficiency for the
Approval Voting System with 3 Alternatives:
Strategic, Sincere, and Limit Values
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Figure 4.6 Social Utility Efficiency for the
Approval Voting System with 4 Alternatives:
Strategic, Sincere, and Limit Values
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Figure 4.7 Social Utility Efficiency for the
Approval Voting System with 5 Alternatives:
Strategic, Sincere, and Limit Values
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Figure 4.8 Social Utility Efficiency for the
Approval Voting System with 6 Alternatives:
Strategic, Sincere, and Limit Values
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Strategic estimates again diverge for the Borda system;
the same pattern is discernable as for the approval system.
Once again the effect is greater where there is more scope
for strategic voting. Efficiency measures for the 6
alternative system are predicted values using regression

coefficients estimated (see page 115).
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Figure 4.9 Social Utility Efficiency for the
Borda Voting System with 3 Alternatives:
Strategic, Sincere, and Limit Values
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BORDA VOTING SYSTEM: 4 ALTERNATIVES

e STRATEGIC,.... LIMIT =ee SINCERE

Figure 4.10 Social Utility Efficiency for the
Borda Voting System with 4 Alternatives:
Strategic, Sincere, and Limit Values
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Figure 4.11 Social Utility Efficiency for the
Borda Voting System with 5 Alternatives:
Strategic and Limit Values
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Figure 4.12 Social Utility Efficiency for the
Borda Voting System with 6 Alternatives:
Strategic and Limit Values

4.2 Social Utility Ffficiency Rankings with Sincere and

Strategic Voting

Under the assumption of sincere voting, social utility
efficiency rankings from the simulation estimates are
compatible with the results of previous work. When voters
are assumed to use optimal strategies, estimates of social
utility efficiency are in many cases significantly different
from their sincere voting estimates. Despite this, overall
rankings of the systems do not change much. The approval
voting system does rank above the Borda system for small
electorates given more than 3 alternatives. As the voting
population increases, this ranking is reversed. 1In all
cases, the standard voting system is ranked below the other

two systems, despite the pronounced increase in social
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utility efficiency for the standard voting system and
decrease for the Borda system. For the approval voting
system, small voting population estimates of social utility
efficiency are significantly greater than their sincere
counterparts, while larger electorates tend to have
strategic estimates below the sincere estimates.

Given these changes, for small electorates the approval
voting system moves up in ranking while the Borda system
moves down to second place. The standard voting system,
while having social utility estimates which are roughly
comparable (for 4 alternatives and 3 voters, estimates are:
approval, 89.1%; Borda, 88.0%; and standard, 87.9%), remains
ranked in third place. As the size of the voting population
increases, the ranking between the approval and Borda system
is reversed, and the estimates for the standard voting

system decrease steadily toward their limit.
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Figure 4.13 Sincere Social Utility Efficiency:
3 Alternatives
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Figure 4.20 Strategic Social Utility Efficiency:
6 Alternatives

4.3 Condorcet Efficiency Rankingse

Condorcet efficiency rankings under sincere voting are,
for "small"” electorates: 1) Borda system; 2) standard voting
system; and 3) approval voting system. Given a specified
number of alternatives, as the size of the electorate
increases, the approval voting system reverses rank with the
standard voting system, and as with social utility
efficiency, we have the Borda system ranked first, followed
by approval voting, followed by the standard voting system.

Strategic voting produces a dramatic change in these
rankings. Condorcet efficiency increases significantly for
both the approval and standard voting systems, while in all

but a few cases it decreases significantly for the Borda
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system. For most small voting populations (committee size),
the standard voting system is ranked first in Condorcet
efficiency, followed by the Borda system, with approval
voting ranked last.

For any number of alternatives considered (3-6),
Condorcet efficiency for the standard voting system with
strategic voting peaks when there are five voters and
decreases more or less consistently thereafter. In
contrast, the approval voting system with strategic voting
has maximum Condorcet efficiency with 3 voters and declines
thereafter. Within the voting populations used in the
simulation, there is no U-shaped curve as found for social
utility efficiency; Condorcet efficiency does not reach some
approximate minimum and begin to climb towards a limit.
Instead Condorcet efficiency begins from a level above its
"limiting value" and approaches the value in an approximate
logarithmic curve.

For the Borda system, with 3 or 4 alternatives, the U-
shaped curve is again apparent. Estimates for Condorcet

efficiency with 5 or 6 alternatives follow the same pattern.
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4.4 Condorcet Efficiency and Social Utility Efficiency

The relationship between Condorcet efficiency and
social utility efficiency was discussed in Chapter 2. An
attempt to quantify this relationship more precisely was
made by running simple linear regressions (OLS) of the form

SCON = A + B1(SSU) + B2(ALTS) + B3(V),
where SSU is strategic social utility efficiency, SCON is
strategic Condorcet efficiency, ALTS is the number of
alternatives, and V is the number of voters. This
regression was run for each voting system. The results of
the regressions are presented below, with Figures 4.29-4.31
showing estimated and actual strategic Condorcet
efficiencies.

Table 4.1 Regression Results for Strategic
Condorcet Efficiency

Borda Svstem Dependent Variable: SCON

Mean of Dependent Variable 86.898530

Standard Deviation 4.166679

Sum of Squared Residuals 159.787800

Standard Error of Regression 1.998673

Number of Observations 44

R2 .785960

Variable Estimate Std. Error T-Statistic
Intercept -30.9682720 22.8332530 -1.3562795
ALTS -4.6555093 .6553843 -7.1034801
v -.0138721 .0078597 -1.7649777
SSsU 1.5771413 .2558077 6.1653391
Standard Svstem Dependent Variable: SCON

Mean of Dependent Variable 81.270320

Standard Deviation 9.219158

Sum of Squared Residuals 472 .696268

Standard Error of Regression 2.372201

Number of Observations 88

R2 .936074
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Variable Estimate Std. Error T-Statistic
Intercept 29.9295465 11.3396821 2.6393638
ALTS -4.0469293 .3360611 -12.0422427

v -.0876380 .0101957 -8.5955649
SSsU .9422485 .1261226 7.4708959
Approval System Dependent Variable: SCON

Mean of Dependent Variable 76.712010

Standard Deviation 7.978904

Sum of Squared Residuals 699.152623

Standard Error of Regression 2.885004

Number of Observations 88

R2 .873769

Variable Estimate Std. Error T-Statistic
Intercept -58.6598397 15.4701347 -3.7918118
ALTS -3.4314452 .3058458 -11.2195253

\'s -.0762712 .0083586 -9.1248403
SSU 1.8056124 .1722115 10.4848536

Note that in each of the regressions, strategic social
utility efficiency has a fairly strong positive relationship
with strategic Condorcet efficiency. In fact, strategic
Condorcet efficiency can be predicted fairly well given the
value of strategic social utility efficiency, as will be
seen in Figures 4.29-4.31. Even so, values for strategic
Condorcet efficiency estimated with regression coefficients
are not too far off from the simulation values. Note also
that the sign of the coefficients on both ALTS and V is
negative in every case, as would be expected. The
regressions do support the hypothesis of a strong

relationship between the two efficiency measures.
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4.5 Forecasted Values

In addition, regressions were run to allow prediction
of efficiency measures for these systems when the number of
alternatives is greater than is feasible to simulate. The
variables used for sincere efficiency measures were THEO,
DIF, MEAN, and VAR. THEO is the theoretical social utility
efficiency value. DIF is a measure of the difference
between the actual distribution of total votes and the
normal distribution which total votes approach as the number
of voters increases. DIF is defined as the difference
between the normal distribution standard deviation and the

actual standard deviation divided by two times mean votes
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for the voting system. MEAN and VAR are the mean and
variance of total votes for the voting system.

The variables used for strategic efficiency measures
were THEO, DIF, 1/P, Q" (ALTS/(2*%(ALTS+V))), and four powers
of V. The new variables are functions of P, the probability
of a tie, and Q, the number of admissible strategies. P is
defined as ¥(4VK/SD)-&(-1VK/SD), where V is the number of
voters, SD is the standard deviation of (Wi-Wk), and K is a
constant term equal to the maximum weight assignment of the
voting system. Q has the above functional form to display
the following characteristics: as V gets large, the effect
of Q decreases, and as the number of admissible strategies Q
increases, the damping effect of V decreases.

The numerical results of these regressions are
presented in appendix D. The results were used to forecast
values for efficiency measures for 7 alternative elections,

which are shown in Figures 4.32-4.35.
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4.6 Incomplete Information

A variation of the simulations was run to determine the
effect of less than full information on efficiency
estimates. It was assumed that the total votes of 2/3 of
the voting population (to the nearest integer) were known to
all voters, who also knew whether or not they were included
in the group. Unfortunately this provided no useful
information because with more than approximately 7 voters,
efficiency estimates were practically identical to those for
sincere voting (the zero information case). This is due
primarily to voters” knowledge of the distribution from
which individual utilities are drawn. Because of this,
voters cannot treat the sample total vote vector as a random
sample from population total votes and assign corresponding
probabilities or expected values to the unknown votes. The
unknown votes continue to have the known (approximately
multivariate normal) distribution as under zero information,
adjusted for sample size. Therefore, if 3 or more voters
are not in the sample, the variance of population total
votes is large enough to discourage most strategic voting
(as in the analytical example, p. 69).

The results that were obtained are presented here for
the sake of completeness, although the simulations were
aborted when it was apparent that the level of information
was not large enough, given the structure of the model, to

provide information on the movement of sincere estimates
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toward strategic estimates as the information level

increases.

Table 4.2 1Incomplete Information Efficiency Measures
for 3 Alternatives and 3 Voters

Standard Voting System

Voters SU SSsU CON SCON

3 81.28015 85.64013 89.9151 92.43286
5 73.89849 74.64334 81.86399 81.4175
7 77.15541 77.15031 82.56971 82.80641
9 78.36027 79.40004 81.01244 81.60281
11 76.51844 75.74441 80.96372 80.25922
13 76.13150 75.44744 80.24274 80.33026
15 75.09851 T75.92546 178.97618 80.12462
17 75.06600 73.67316 80.62215 80.56885
19 76.10229 76.65386 80.56049 80.69643
21 76.26308 75.64381 79.39276 178.56687
23 76.66461 76.86256 78.59663 78.81081
25 75.36212 75.63785 79.0997 79.17628
Approval Voting Ovstem

Voters SU SSU CON SCON

3 84.59656 84.38637 73.80964 74.48530
5 85.49946 84.88809 76.43347 75.29308
7 84.75676 85.13169 75.97089 75.95857
9 86.40394 86.43179 73.26244 73.43390
11 87.68660 87.51424 75.68910 76.54454
13 88.60281 87.75786 74.57857 7T74.97629
Borda Voting System

Voters SU SSU CON SCON

3 87.47958 85.14944 97.28929 94.75961
5 86.7208 86.7208 93.3808 93.3808
7 85.8735 85.8735 92.6008 92.6008
9 86.7582 86.7582 92.7946 92.7946
11 86.8360 86.8360 93.3957 93.3957
13 85.4114 85.4114 90.2788 90.2788

15 88.1715 88.1715 91.4930 91.4930



CHAPTER 5
DISCUSSION AND SUGGESTIONS FOR FURTHER RESEARCH

Perhaps the most pertinent question which can be
addressed to this research is why it is of any interest to
compare multi-alternative voting systems with strategic
voting. After all, any voting system has 100% Condorcet
efficiency with only two alternatives, regardless of whether
sincere or optimal strategies are assumed. Additionally,
most of the voting situations in which there are more than
two alternatives occur with large electorates, where the
possibility of strategic voting is more or less precluded.
However, there are two points to keep in mind. First, a
series of sequential pairwise votes on the same issue
implies more than two alternatives, and this occurs
frequently in committee voting. Second, we knoﬁ that
increasing the number of alternatives decreases the
likelihood of a Condorcet winner, and as appealing as the
Condorcet criterion is, that means that we disregard those
cases where extreme conflict occurs (no Condorcet winner
exists). We also know that maximum social utility
efficiency of a two alternative election is 81.65%. Thus,
we must expect social utility efficiency to decrease with
every step in a sequence of pairwise votes.

Multi-alternative elections are an option to be
compared with a sequence of pairwise votes. Condorcet
efficiency is the appropriate comparison measure for this

purpose. However, different multi-alternative voting
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systems can also be compared to each other using both
Condorcet efficiency and social utility efficiency. Given
this rationale, it is important to differentiate between
sincere and strategic efficiency measures. Strategic
efficiency measures are more appropriate because they
recognize maximizing behavior on the part of individuals.
5.1 Efficiency Measure Changes with Strategic Voting

The striking difference in the way social utility
efficiencies change for a given voting system is not very
difficult to explain. Recall that with the assumption of
strategic voting, standard voting system social utility
efficiency increased markedly, while for the approval and
Borda systems it decreased, particularly for small
electorates. However, in the standard voting system, for
strategic voting to occur, some alternative must be ranked
first by as large or nearly as large a percentage of the
voting population as the winning or tied alternative. The
individual who changes the outcome increases his utility by
doing so; the voters who had ranked the strategic voter’'s
more preferred alternative as first gain, while those who
had ranked his less-preferred alternative as first lose.
The other voters” losses and gains essentially balance each
other out, with the gain of the strategically voting
individual being the predominant effect. 1In contrast, for
both the approval and Borda systems, strategic voting can

occur if there is an alternative which is ranked as high or
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nearly as high on average as the winning or tied
alternative.

These characteristics are combined with the fact that
you can't "go around in circles” in the standard voting
system. Strategic voting is an all or nothing proposition.
Suppose two alternatives are vying for first place, and an
individual changes his vote from his most preferred
alternative to his more preferred of the two vying for first
place. At that point, there is nothing more he can do to
change the outcome, and he has reduced or eliminated the
possibility of strategic voting on his most preferred
alternative. 1In the Borda system he would have the option
of ‘removing® votes from the less preferred alternative,
which would increase the total of some 3rd alternative and
the possibility of strategic voting on it. 1In the approval
system he can either remove a vote from the less preferred
alternative, or add one to the more preferred alternative,
but this does not prevent yet another voter from adding or
subtracting a vote without affecting hisg most preferred
alternative. In other words, strategic voting in the Borda
or approval system may entail changes in total votes which
can cause other strategic (insincere) voters to change their
minds. In the standard voting system, the total of the 3rd
alternative can only decrease.

It is easy to show that expected social utility of the
standard voting system should increase and expected social

utility of the Borda system should decrease with strategic
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voting. Let Wx be the maximum of total votes with sincere
voting, and Wi be within range of winning. Then |Wk-Wi| <
k, where k is the maximum weight assignment of the systenm.
Standard Voting Svetem: The value of k is 1. Any strategic
voter either makes or breaks a tie, and the adjusted total
votes are such that |Wk-Wi| < 1. Let Ni>k be the number of
voters who prefer i to k, and Nk»>i be the number that prefer
k to i. There continues to be an incentive for strategic
voting until min(Wi,Wk) = min(Ni>x,Nkx>i) and either
WiZWk or Wi+Wk=N. However, for an odd number of voters,
this implies that a majority of the voting population
prefers the winning alternative after strategic voting to
the contending alternative, and the change in expected
social utility is positive if the outcome is different after
strategic voting, and zero if the outcome remains the same.
Borda Voting Svstem: The change in expected social utility
from a change in outcome from i to k with strategic voting
is E(Zj(uij-ukj). Let rj(i) be an individual voter’s
ranking of alternative i, and r(i) be the average rank
across the voting population of alternative i. Given that
individual utilities are i.i.d. uniform [0,1] variables,
E(uij-uik)= (rj(k)-rj(i))/(m+1), and E(Z;j(uij-uik))=
n(r(i)-r(k))/(m+1). However, we know that rj(i)=(m-wij),
where wij is the sincere vote. Using this information, we
obtain E(Zj(uij-uik))= (Wi-Wk)/(m+1). But Wk > Wi, so the
change in expected social utility with strategic voting is

negative or zero.
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5.2 Implications of the Results

The first major implication of the results is that
strategic voting can increase efficiency measures of a
voting system. Manipulability of a voting system is not
necessarily an undesirable characteristic. It should be
pointed out that the voting system which is least
manipulable (the standard voting system), is the one which
showed the most dramatic increase for both Condorcet
efficiency and social utility efficiency. However, the fact
remains that strategic voting can actually produce a
“"better” outcome.

Unless a fairly high level of information is available
to voters, rankings according to sincere efficiency
estimates are correct. Without nearly complete information,
the incentives for strategic voting disappear, and estimates
approach their sincere counterparts. Similarly, with large
electorates (>125 voters) the advantages of strategic voting
disappear, although for the standard voting system,
strategic Condorcet efficiency can still be significantly
greater than sincere Condorcet efficiency.

Second, when optimal strategies are used by voters,
differences between voting systems are not as clear-cut for
small electorates. For very small voting populations,
efficiency estimates for all three voting systems fall
within a very small range when the number of alternatives is
4 or lesas. The advantages of using the approval or Borda

system as opposed to the standard voting system are not as



126

large as previous work has indicated for these situations.
Again, however, for large electorates or less than nearly
complete information, the conclusions of previous work hold.

Third, multi-alternative voting decreases Condorcet
efficiency, but fairly high efficiencies are still
obtainable if strategic voting is assumed. The cost of
repeated (sequential) pairwise votes may be large enough
relative to a single multi-alternative election to justify
multi-alternative voting in committees.
5.3 Limitations on Nash Equilibria Found

In estimating efficiency measures, the use of the first
equilibrium found (sincere voting, if it is a Nash
equilibrium) is based on two points. The model is designed
to approximate as closely as possible to previous work,
which has always assumed the use of sincere strategies by
voters. The cases which differentiate the current research
from previous work are those in which sincere voting is not
a Nash equilibrium. A base vote matrix is necessary in
solving for equilibria, and the sincere vote matrix is the
simplest and most logical choice. Again, there is no reason
to assume that individuals® strategies will change unless a
gain in expected utility can be achieved. Therefore, if
sincere voting is a Nash equilibrium, it is the equilibrium
used.

The algorithm does not go on to find all equilibria
after the first both because of the number of equilibria

that exist (regardless of the number of voters) and because
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asymptotically this approach is incapable of differentiating
between voting systems. Recall theorem 1, which says that
asymptotically sincere strategies are a Nash equilibrium.
The theorem implies that asymptotically, any set of
strategies is a Nash equilibrium. If one assumes that
equilibria are equally likely, then as the voting population
increases, the voting system degenerates to a random choice.
Some restriction of equilibria is necessary in order to
differentiate between voting systems.

For small electorates, efficiency estimates do differ
when all equilibria are found. Table 5.1 presents these
estimates for the 3 voter 3 alternative case (1000
repetitions). However, it is clear that efficiency
estimates increase as the number of strategy profiles which
are not equilibria increases.

Table 5.1 Summary Statistics for the 3 Voter
3 Alternative System When All Nash Equilibria are Found

Approval Borda Standard
# possible strategy
profiles 216 216 27
mean # equilibrium
strategy profiles 18.297 29.544 6.111
% profiles which
are equilibria 8.47 13.68 22.63
% profiles which
are not equilibria 91.53 86.32 77.37
social utility
efficiency (%) 97.7247 91.3310 55.5714

Condorcet
efficiency (%) 75.7878 75.1140 58.7851
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Finally, the use of sincere voting as the equilibrium
each time it is a Nash equilibrium is supported by the
concept of bounded rationality as expressed in perfect
equilibria [123]. Each voter has some probability ei for
the breakdown of rationality. When this occurs, he will use
each admissible strategy Si with probability @ , and
2?:1 q = 1. o

8i

Theorem 3: If sincere voting is a Nash equilibrium, it is a
perfect pure strategy equilibrium.
Proof: Let Q be the number of admissible pure strategies in
the voting game. Qn is the set of admissible strategy
profiles. Let S1 be a representative voter s sincere
strategy, with S2 being any other admissible strategy.
N(S1,52) € Qn is the subset of admissible strategy profiles
for which the expected outcomes of the two strategies
differ. For any profile k € N, pf is the probability that
this profile occurs in the perturbed game. pﬁ is a function
of all voters’ e¢i and q vectors, and Zkeqn pﬁ = 1. Then
EU(S1) - EU(S2), the difference in expected utility of
strategies 1 and 2, is equal to

ZkeN pi(Ui - uj) (1)
As ¢€-+0, all pi (k € Qn) approach either 0 or 1 (the
degenerate distribution of the complete information case).
Then there are two possible cases: either pﬁ approaches one
for a profile for which the expected outcomes of the two

€
strategies do not differ, or pkx approaches one for k € N.

€
Case 1: pkx 1, k ¢ N.
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For any sequence of ¢ in which qsi = qs8; = 1/Q for
each voter, the maximand is a positive linear
transformation of the zero information game maximand.
As shown in Chapter 3, sincere strategies are optimal.
Case 2: pk 1, k € N.
(a) k 3: p£-+1 has ui > uj: ZkeN pi(Ui—Uj) > 0 =>
strategy Si1 is optimal.
(b) k 2: pﬁ +1 has ui < uj: ZkeN pi(ui-Uj) < 0 =
ZkeN pk(ui-uj) < 0. However, this implies that
strategy S1 was not optimal in the original game,
and sincere strategies were not a Nash
equilibrium, which is a contradiction.
Therefore, if sincere voting is a Nash equilibrium, it is a
perfect pure strategy equilibrium. It is also clear that
for this sequence of ¢, the equilibrium is the only one that
will be found.
5.4 Optimality Properties of Comparison Measures
The optimality properties of the comparison measures
used depend on the decisions being made by using a voting
system. Two classic situations in which voting systems
appear to be reasonable methods of choice are a)
determination of the level of a pure public good to be
produced; and b) choice of an allocation of "resources"”
along a Pareto-frontier.
5.4.1 Choice of the [evel of a Pure Public Good
The condition for Pareto-optimal provision of a pure

public good was derived by Samuelson in 1954 [119]. A pure
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public good has the property that it is consumed
simultaneously by all individuals in its entirety. The
Samuelson condition is
Zi MRS;x = MRTqx,
where MRS;x is individual i“s marginal rate of substitution
of the private good X for the public good G, and MRTGx is
the marginal rate of transformation of X for G.
Intuitively, "...at the optimum, the marginal cost of
supplying the last unit of G in terms of X foregone just
equals the sum of the marginal benefits that all users of
the increment G simultaneously obtain in terms of X."1 Since
individual marginal benefits are equally weighted, this is
identical to maximizing social utility in terms of a
utilitarian social welfare function.
5.4.1.1 Social Utility Efficiency and Optimality in the
P igi ¢ p Public Good

A voting system which maximizes social utility in terms
of a utilitarian social welfare function will produce
Pareto-optimal outcomes when used for decisions about the
level of pure public goods to be produced. Social utility
efficiency measures the "closeness"” of outcomes of a voting
system to maximum social utility, and is the ratio of the
expected social utility of the outcome to the expected
maximum social utility over the alternatives. If this ratio
is equal to one, then the voting system being evaluated is
expected to produce a Pareto-optimal outcome. Given the

same variance, a voting system with lower social utility
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efficiency will be expected to achieve a Pareto- optimal
outcome less frequently. One difficulty is that the
variance of social utility efficiency does not remain
constant across voting systems. A better measure might be
the frequency with which a voting system is expected to
attain maximum social utility, but the same problem surfaces
that occurs with Condorcet efficiency: there is no
differentiation between social-utility outcomes which do not
attain the maximum. Given this problem, the social utility
efficiency measure used is a reasonable compromise. Because
it does reflect to some extent the probability of
Pareto-optimal provision of a pure public good, a voting
system with greater social utility efficiency than another
is in some sense "better.”

Because social utility efficiency reflects a random
individual ‘s expected utility of a voting system’'s outcome,
a further insight into the optimality properties of this
measure can be gained. Each alternative (level of the
public good) X has a corresponding mean utility level across
the population, u(x), which is the expected utility of that
level to a randomly chosen voter. Conversely, an ekpected
utility of the voting system’ s outcome implies one or more
expected outcomes (the inverse function is not generally
single-valued). If expected utility for the average (mean)
voter is single peaked and symmetric about its maximum Xp,
the Pareto-optimal level (Figure 5.1a), then as expected

utility increases, the level of under- or over-provision of
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the public good, |Xp - X|, decreases, i.e. the level
actually produced is closer to the Pareto-optimal level.
Both single-peakedness and symmetry are necessary conditions
for this conclusion, however. In Figures 5.1b and 5.1c, an
increase in expected utility does not necessarily move the
level of provision of the public good closer to the

Pareto-optimal level.

expected
utility

P>
xp output of public good X.

5.1la. Symmetric and single-peaked mean expected utility
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5.1b. Symmetric and non-single-peaked mean expected utility
|Xp - X| may increase; |Xp - Xo| < |Xp - X1].
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$5.1c. Asymmetric and single-peaked mean expected utility.
|Xp - X| may increase; |Xp - Xo| < |Xp - X1].

Figure 5.1. Mean Expected Utility and Corresponding
Levels of the Public Good (G) Produced.
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5.4.1.2 Condorcet Efficiency and Optimality in the
Provision of Pure Public Goods

Bowen [15] showed that the Condorcet winner (median
voter equilibrium) is a Pareto-optimal outcome if the median
voter is also the mean voter. Since the median voter is
decisive in his model, and the equilibrium point is the
median voter s most preferred level of the public good, if
the median coincides with the mean then the mean voter also
has a utility-maximizing outcome. In algebraic terms,

i
—2i_MRSecs = t = MCq,
N ' N

or the average marginal rate of substitution of money for
the public good G is equal to the marginal tax rate, which
in his model is an equal share of the marginal cost of
production of the public good. Under this condition, then,
the Condorcet winner is a Pareto-optimal outcome. However,
the existence of a Condorcet winner does not require
single-peakedness of preferences, nor if preferences are
single peaked does the mean peak preference necessarily
coincide with the median. Without these assumptions, the
Condorcet winner need not be a Pareto-optimal outcome in
choosing the level of provision of a pure public good.
5.4.2 Choice Along a Pareto-Frontier

The second situation in which voting systems are of
interest to an economist is the situation of choice along a
Pareto frontier. Using lump-sum taxes and transfers, the
government can attain alternative points along the grand

utility possibility frontier. When choosing an allocation
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of resources along a Pareto-frontier, the general guideline
is that the allocation which maximizes social welfare should
be chosen. A widely-used formulation of the social welfare
function ([140] is
{25 [uijT]}1/T T<1; T#O0.
If + = 1, then we are using a utilitarian social welfare
function.
5.4.2.1 Social Utility Efficiency and Choice Along a
Pareto-Frontier
The social utility efficiency used by Weber and
Bordley, among others, is a transformation of a utilitarian
gsocial welfare function. If indeed a society has a social
welfare function for which v = 1, a voting system with
higher social utility efficiency will be expected to produce
outcomes of greater social welfare and will be in some sense
a "better"” voting system. Additionally, if in fact v # 1,
social utility efficiency measures can easily be constructed
which use different values of v. If an estimate of T can be
obtained, then a social utility efficiency measure can be

constructed which will rank possible voting systems

appropriately.
5.4.2.2. Condorcet Efficiency and Choice Along a
Pareto-Frontier

As mentioned previously, when it exists, the Condorcet
winner has maximum expected social utility. Therefore a
voting system which is expected to choose the Condorcet

winner with greater frequency when it exists might also have
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greater expected social utility. Rankings of voting systems
obtained by using Condorcet efficiency have agreed with
those obtained with social utility efficiency when voters
use sincere strategies. Unfortunately, because the
Condorcet efficency measure does not differentiate between
outcomes in cases where there is no Condorcet winner, no
correspondence between the two measures can be shown unless
preferences are restricted so that a Condorcet winner always
exists.
5.4.3 Implicit Rquity Considerations

Condorcet efficiency does have one implicit equity
consideration. If the Condorcet winner is chosen, at least
a majority of the voting population prefer it to any other
alternative. Also, the Condorcet winner tends to have high
gocial utility. The converse is not true. Social utility
efficiency does not imply anything about equity.
5.5 QBuggestions for Further Research
5.5.1 Costs of Voting

A cost of voting is not included in the model used for
the simulation. Tullock and Downs [141],[37] both concluded
that "voting is an irrational act in that it costs more to
vote than one can expect to get in return."2 An estimate of
voting costs appropriate to a comparison of voting systems
is presented below.

The expected utility of voting is:

EU = (ui-uj)pij - ¢
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where (ui-uj) is the gain in utility to the voter if
alternative i defeats alternative j as a result of his vote;
pij is the probability of this occurring, and c is the cost
to the individual of voting. Since pij approaches zero
rapidly, and ¢ is generally assummed to be positive, (ui-uj;)
must be of extreme magnitude for voting to be a rational
act.

Once again, let p be the probability that an individual
voter is decisive. P depends upon the size of the voting
population. Now, where a cost of voting is included,
complete participation cannot be assumed. Voter
participation will depend upon whether the expected utility
of voting is positive, which in turn is based on the
individual voter's estimate of p. The question of the
"rationality” of voting is not therefore as clear-cut as
would appear on preliminary examination. Using a model in
which p and n are determined simultaneously, Palfrey and
Rosenthal find that substantial voter turnout can be
consistent with the inclusion of a cost of voting. Their
model uses only two alternatives; however, increasing the
number of alternatives would, under the assumptions
presented at the beginning of this chapter, only increase p,
making substantial participation more likely. Thus the
inclusion of a cost of voting is consistent with the
rationality assumptions employed.

However, because the purpose of this work is to compare

voting systems, a determination of the possibly differential
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costs of voting for different systems is necessary. Voting
involves not only a fixed cost of taking the time to go to
the polling place and vote, but the cost of determining
which strategy (vote vector) to use. Strategy determination
costs clearly vary with the level of information the
individual has, since as discussed previously, under zero
information conditions, sincere voting is the unique optimal
strategy. However, even under zero information conditions
this cost will vary across voting systems because of the
amount of information ‘requested” from the voter. The
standard voting system asks only for the voter's most-
preferred alternative; the approval voting system required
identification of all alternatives with above-average
utility; and the Borda voting system requires a full ranking
of all alternatives. Let the individual cost of voting be
approximated by

ci = ai + f£f(s8[C],a) 0 <axgl

where ai is some fixed cost to the individual voter i of
taking the time to go to the polling place, s[C] is the
number of possible strategies in the strategy set of the
voting system or choice rule C, a is the information level
voters are assumed to have, and f£f(s8[C],a) represents the
cost of optimal strategy determination. Individual voting
costs may differ due to ai, which may be modelled as a
random variable. Given this determination of the individual

cost of voting, an equilibrium in p and n can be determined.

Palfrey and Rosenthal s model, however, finds multiple
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equilibria in p and n, and there are no strong predictions
about voter turnout. Their model used only two
alternatives, so that an extension of this model would be
necessary prior to drawing any conclusions about voter
turnout. It is also highly likely that such an extension
would produce multiple equilibria in p and n for small
voting populations. However, the multiple equilibria
problem could be handled as it has been here, with Monte
Carlo techniques.

At this point a pertinent consideration would be the
administrative, or social costs of the voting system. Once
individual strategies (including abstention) are determined,
even if the equilibrium outcome of the election is known by
the modeler, there is still the problem of "counting votes.”
Again there are differences between voting systems in this
regard. The factor which immediately appears significant is
the number of elements in the vote vector to be tallied.

Let the social cost of the voting system be cs(S) = n(S) x
k(S),where n(S) is expected participation in the voting
system as determined above, i.e. the number of ballots
completed, and k(S) is the number of positive elements in an
individual vote vector. k(S) would of course be one for the
standard voting system, m/2 for the approval voting system,
and m-1 for the Borda system. Given this information,
appropriate efficiency measures, based on the expected net
social cost (= expected social utility of chosen alternative

- Z2i ci - social cost) can be constructed for comparison of
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these voting systems. Given the difficulties, extending the
model to include a cost of voting at this time would
probably not produce any useful results.
5.5.2 Other Equilibria: The Competitive Solution

The possibility of modeling voting systems as
cooperative games has not been overlooked. "Cooperative
game theory for the most part focuses on games with
transferable utility, even though...this assumption excludes
the possibility of modelink most interesting political
coalition processes. For the more general case, though,
standard solution concepts are inadequate because they are
undefined or they fail to exist, and even if they do exist,
they focus on predicting payoffs rather than the coalitions
that are likely to form."3 Thus values such as the Shapley
value or the Banzhaf-Coleman index of power, which have been
widely used to estimate, for example, the "coalitional”
value of states in a U.S. presidential election game, cannot
be used to compare different voting systems, as the only
information which they can provide is on the "coalitional”
value of the players and not on outcomes.

McKelvey, Ordeshook and Winer [90] propose a different
solution concept entirely, the competitive solution for
games without transferable utility. The solution concept
hypothesizes that "potential coalitions must bid for their
members in a competitive environment via the proposals they
offer. Given that several coalitions are attempting to form

simultaneously, each coalition must if possible, bid
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efficiently by appropriately rewarding its “"critical"”
members. " 4

Let A be the set of feasible outcomes. Then for any
coalition C, v(C) = A if C is winning and v(C) = @ if C is
losing. Thus if there is a majority voting game and C is a
majority coalition, v(C), in a repeated game, is "the set of
all possible dispositions of all bills."S A coalition’s
proposal is their policy platform; in their work a
coalition"s proposal is an ordered pair (u:C) such that u is
an element of v(C) and u is an element of v(N). Then given
two proposals, the coalition’s proposal (ui:Ci) is viable
against the proposal (uz2:C2) if ui 2 uz for all individuals
belonging to both coalitions (i € Ci1 N C2). Let K be any
set of proposals. (u:C) is viable in K if it is viable
against all proposals in K. K is balanced if each coalition
can have exactly one proposal, and all proposals in K are
viable against each other.

Of course, there may exist many distinct balanced sets
of proposals. McKelvey, Ordeshook and Winer focus on the
class of proposals in which the coalitions represented "make
offers that are as attractive as possible to their
respective critical members.”"8 A proposal upsets a set of
proposals K if it is a viable proposal in K and there is an
alternative proposal (u':C°) in K for which u > u’” for all
individuals belonging to both coalitions.

A set of proposals K is a competitive solution if K is

balanced and there is no proposal (u:C) that upsets K. This
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implies that the coalitions represented in K do indeed make
offers that are as attractive as possible to their critical
members. A stronger definition of "balanced" allows them to
exclude coalitions greater than minimal winning size. K is
strongly balanced if it is balanced and there are no two
proposals (ui1:Ci1) and (u2:C2) for which ui > uz, with strict
inequality for at least one i, for all individuals belonging
to both coalitions. If K is a competitive solution and
strongly balanced, the authors refer to it as a "strong
competitive solution.”

The competitive solution does predict vote trading; in
one example the authors show that none of the proposals in
the unique competitive solution correspond to the outcome of
sincere voting. Additionally, a preliminary test or
empirical validity found impressive correspondence between
actual outcomes and the competitive solution’s predictions.
The predicted coalitions all formed at least once, and no
other coalitions formed.

As a solution concept this is very attractive. Not
only do the conditions of the solution have intuitive
appeal, but they can be placed in the familiar context of
committee voting, as for example in Congress. Different
voting systems such as the approval and Borda voting system
can be analyzed, and the competitive solution predicts
different size coalitions with each because of the different
requirements for a winning coalition. However, some

agsumption about the likelihood of coalitions must be made
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to get any prediction on expected outcomes in order to
compare different voting systems.
5.5.3 Social Welfare Functionse

Because equity considerations are ignored in the
utilitarian social welfare function, it would be useful to
see if another formulation (17 # 1) would produce any changes
in rankings of voting systems. Certainly if equity is
important to the choice of a voting system, the utilitarian
social welfare function is not the appropriate comparison
measure to use.
5.6 Conclusion

It has been shown that the use of optimal strategies by
voters as opposed to sincere strategies can significantly
change both social utility and Condorcet efficiency
estimates for multi-candidate voting systems. Furthermore,
the changes in Condorcet efficiency estimates change the
rankings of the voting systems when the voting population is
small. The standard voting system is seen to achieve the
highest Condorcet efficiency, followed by the Borda system,

with approval voting ranked last.
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APPENDIX A

SINCERE VOTING AS A NASH EQUILIBRIUM WITH AN
INFINITE VOTING POPULATION

Theorem 1: As the voting population becomes large, i.e.
n-+o, the probability that sincere strategies constitute a
Nash equilibrium approaches one.
A.1 Proof: Borda System

For the individual voter, any wij is a random variable
with p = (m-1)/2, o2 = Z:;i w2/m - [(m-1)/2]2. Then Wi =
Z2j wij is distributed approximately normally with mean
n(m-1)/2 and variance n[Zs;i w2/m - ((m-1)/2)2], and the Wi
have an approximate multivariate normal distribution. In
order for an individual voter to change the outcome of the
system, there must be some |Wi - Wk| < m-1. That is, the

voter ' s maximum weight assignment of m-1 can cause the

ordering of two totals to change. Let Y = Wi - Wk. Then Y

2 2 2

has a mean By = pw - pHw = 0; and variance oy = ow + ow +
i k i k

20w w . Because of the relationship between the covariance

ik
and correlation coefficient this variance can be computed

exactly; the correlation coefficient is -1/(m-1).
Intuitively, when one of the Wi is above its mean, the
others are expected to be slightly below the mean.

Computing this, a variance of

o: = 2n([2:;f we/m] - (m-2)(m-1)2/2m] - 2/(m-1) is obtained.
Obviously, as n+®o, the variance of Y becomes infinite.
Therefore P{|Wi - Wk| < m-1} = P{-m+1 < Y < m-1}, the
probability that Y falls within the specified interval,
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approaches zero. Thus scope for strategic behavior
diminishes asymptotically and the probability that sincere
strategies constitute a Nash equilibrium approaches one.
A.2 Proof: Approval System

For the individual voter, any wij is a binomial random
variable (either a vote is cast for it or not), with p =
1/2. Then Wi = 2; wij is distributed approximately normally

n/2 and variance np(l-p) = n/4, and the Wi

with mean np
have an approximate multivariate normal distribution. In
order for an individual voter to change the outcome of the
system, there must be some |Wi - Wk| < 1. That is, the
voter s maximum weight assignment of one can cause the

ordering of two totals to change. Let Y = Wi - Wk. Then Y

2 2 2
has a mean gy = gw - pw = 0; and variance oy = ow + ow +
i k
20w w . Because of the relationship between the covariance

ik
and correlation coefficient this wvariance can be computed

exactly; the correlation coefficient is -1/(m-1).
Intuitively, when one of the Wi is above its mean, the
others are expected to be slightly below the mean.
Computing this, a variance of o; = [2n(m-1) - 8]/4(m-1) is
obtained. Obviously, as n-+ ®, the variance of Y becomes
infinite. Therefore P{|Wi - Wk| < 1} = P{-1 <Y < 1}, the
probability that Y falls within the specified interval,
approaches zero. Thus scope for strategic behavior

diminishes asymptotically and the probability that sincere

strategies constitute a Nash equilibrium approaches one.



APPENDIX B

SIMULATION PROGRAMS
VARIABLES USED

ALTS - number of alternatives used

CHOOS - randomly chosen voter for the reordering

COMMON - number of elections for which there is neither a
Condorcet winner nor a pure strategy Nash equilibrium
(always = 0)

COMP - indices of alternatives within "reach"” of the winner;
those which need to be compared for strategic voting
CVOTES(6) - Condorcet votes

CWINNE - Condorcet winner

F - indicator of strategic voting

G - number of tied alternatives

G1(720) - vector of strategies with maximum expected utility
G2 - number of tied strategies

H - loop counter

I - loop counter for alternatives

J loop counter for voters

K randomly chosen alternative for breaking ties

L - loop counter

LAST - loop counter for sorting by rank

M - loop counter for elections

MONE - loop counter for random reorderings of voters

N - loop counter for determining expected utility of
strategies

NCOND - number of elections for which the Condorcet winner
is chosen by sincere voting

NONASH - number of elections for which a pure strategy Nash
equilibrium is not found (always = 0)

P - loop counter for repetitions of 100 election simulations
PVOTE(6,721) - matrix of admissible strategies within the
voting system

Q - number of admissible strategies for the voting system
RANK(6) - the vector contains the index of the alternative
in the specified rank for an individual voter

SIN - number of elections for which sincere voting is not
manipulable '

SNCOND - number of elections for which the Condorcet winner
is chosen by strategic voting

STRAT - strategy which maximizes expected utility for a
given voter

TEMPR - holding variable for sorting by rank

TIED(6) - the vector contains the indices of the tied
alternatives

TOTAL(6) - total number of votes accruing to specified
alternatives

TRANK(6) - rank ordering of total votes
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TVOTE - holding variable for random reordering of voters
VOTE(6,125) - individual votes

VOTERS - the number of voters

VOTES(6) - total number of votes accruing to specified
alternatives

WINNER - the alternative chosen by the voting system

WINS(6) - number of alternatives beaten in pairwise races by
the specified alternative

VMAX - maximum number of votes accruing to any alternative

Z - 2,147,483,647: used in random number generation

REAL VARIABLES

CEFFIC - Condorcet efficiency with sincere voting

DSEED - current seed value for the random number generator
EELECT - total social utility of all winners chosen by
sincere voting for a voting system

EFFIC - social utility efficiency with sincere voting

EMAX - maximum social utility over alternatives

EU(721) - expected utility of an admissible strategy

NOCC - number of elections without a Condorcet winner

NOM - number of elections with a Condorcet winner

RUTIL(6) - holding variable for sorting by rank

SCEFFI - strategic Condorcet efficiency

SEELEC - total social utility of all winners chosen by
strategic voting for a voting system

SEFFIC - strategic social utility efficiency

SOCUT(6) - vector of social utilities of alternatives
TEMPU - holding variable for random reordering of voters
TOTUT - total utility of all alternatives in an election;
divided by the number of alternatives, the expected utility
of the election if the specified voter does not participate
UTIL(6,125) - matrix of individual utilities

UTMAX - sum over elections of maximum social utility

M1 - mean Condorcet efficiency with sincere voting

M2 - mean strategic Condorcet efficiency

M3 - mean social utility efficiency with sincere voting

M4 - mean strategic social utility efficiency

SD1 - standard deviation of Condorcet efficiency with
sincere voting

SD2 - standard deviation of strategic Condorcet efficiency
SD3 - standard deviation of social utility efficiency with
sincere voting

SD4 - standard deviation of strategic social utility
efficiency

X - multiplier for random number generation

Y - double precision value of 2

YOTING SYSTEM PROGRAMS

PROGRAM STANDARD (BORDA, APPROVAL)
COMMON/PICK/ALTS,VOTERS,I,J,TOTAL,VOTES, LAST,
+TVOTE, TEMPR, COMP,WINNER, TIED, G, K, TRANK,
+S0CUT, VOTE

INTEGER*2 ALTS,CVOTES(6),CWINNE,F,G,H,I,
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+J,K,L,LAST,M,N,NCOND, RANK(6) ,COMP, TOTAL(6) ,MONE,
+SNCOND, STRAT , COMMON, P, SIN,Q,PVOTE(6,721),G2,
+TEMPR, TIED(6),NONASH,TVOTE,G1(720),CHOOS, TRANK(6),
+VOTE(6,125),VOTERS,VOTES(6) ,NINNER,WINS(6) , VMAX
REAL CEFFIC,EELECT,EFFIC,EMAX,EU(721),NOCC, NUM,
+RUTIL(6),SCEFFI,SEELEC, SEFFIC,SOCUT(6), TEMPU,
+TOTUT,UTIL(6,125),0TMAX,M1,M2,M3,
+M4,SD1,SD2,5D3,SD4

INTEGER*4 Z

REAL*8 DSEED,X,Y

DATA X/1.6807D4/

2=2147483647

Y=DBLE(Z)

ALTS=5

Q=5

The value of Q@ (the number of admissible

strategies) depends on the voting system

being simulated. For the Borda

system, Q=ALTS!, while forthe Approval
alts-1

system, Q=(Zi=1 2i)

ADMISSIBLE STRATEGIES ARE DETERMINED

DO 2 N=1,Q
DO 1 I=1,ALTS
IF(I.EQ.N)THEN
PVOTE(I,N)=1
ELSE
PVOTE(I,N)=0
ENDIF
CONTINUE
CONTINUE

For the Borda and Approval Systems,
admissible strategies are read from a file.
The above lines are replaced with the
following:

Open(5,File="STRAA " ,Status="01d")
Do 2 N=1,Q
Do 1 I=1,ALTS
Read(5,*)PVOTE(I,N)
1 Continue
2 Continue

OPEN(4,FILE="RESULT " ,STATUS="OLD")
OPEN(3,FILE="SEED",STATUS="OLD")
READ(3, x)DSEED

DO 295 VOTERS=3,25,2
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INITIALIZE LOOP VALUES

M1=0.
M2=0.
M3=0.
M4=0.
SD1=0.
SD2=0.
SD3=0.
SD4=0.

DO 20 REPETITIONS OF 100 ELECTIONS
DO 294 P=1,20
INITIALIZE LOOP VALUES

SIN=0
COMMON=0
NONASH=0
NCOND=0
SNCOND=0
EELECT=0.
SEELEC=0.
EMAX=0.
NUM=100.

DO 100 ELECTIONS

DO 286 M=1,100
UTMAX=0
DO 4 I=1,ALTS
SOCUT(I)=0
WINS(I)=0

ASSIGN UTILITIES TO VOTERS FOR EACH ALTERNATIVE

DO 3 J=1,VOTERS
DSEED=DMOD(DSEED*X,Y)
UTIL(I,J)=SNGL(DSEED/Y)
SOCUT(I)=SOCUT(I)+UTIL(I,J)

CONTINUE

IF(SOCUT(I).GT.UTMAX)THEN
UTMAX=SOCUT(1I)

ENDIF

CONTINUE
EMAX=EMAX+UTMAX

DETERMINE CONDORCET WINNER BY MAKING ALL PAIRWISE
COMPARISONS

CWINNE=0
DO 11 I=1,ALTS
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DO 10 H=I+1,ALTS
CVOTES(I)=0
CVOTES(H)=0
DO 9 J=1,VOTERS
IF(UTIL(I,J).GT.UTIL(H,J))THEN
CVOTES(I)=CVOTES(I)+1
ELSE
CVOTES(H)=CVOTES(H)+1
ENDIF
CONTINUE
IF(CVOTES(I).GT.CVOTES(H) ) THEN
WINS(I)=WINS(I)+1
ELSE IF(CVOTES(I).LT.CVOTES(H))THEN
WINS(H)=WINS(H)+1
ENDIF
CONTINUE
IF(WINS(I).EQ.ALTS-1)THEN
CWINNE=I
GOTO 12
ENDIF
CONTINUE

NO CONDORCET WINNER: SUBTRACT 1 FROM NUMBER OF
ELECTIONS WITH CONDORCET WINNER

NUM=NUM-1.

ORDER UTIL(I,J) AND RANK(I,J) SO WE HAVE UTILITIES IN
ORDER AND CANDIDATES IN ORDER BY RANK

DO 17 J=1,VOTERS
DO 13 I=1,ALTS
RANK(I)=I ,
RUTIL(I)=UTIL(I,J)
CONTINUE
DO 15 LAST=ALTS,2,-1
DO 14 I=1,LAST-1
IF(RUTIL(I).LT.RUTIL(I+1))THEN
TEMPU=RUTIL(I)
RUTIL(I)=RUTIL(I+1)
RUTIL(I+1)=TEMPU
TEMPR=RANK (1)
RANK (I)=RANK(I+1)
RANK (I+1)=TEMPR
ENDIF
CONTINUE
CONTINUE

CANDIDATES ARE RANKED FROM HIGHEST TO LOWEST. RANK(I)
GIVES NUMBER OF CANDIDATE IN RANK I FOR VOTER J.
ASSIGN VOTES (SINCERE) FOR STANDARD SYSTEM.

DO 16 I=1,ALTS
K=RANK(I)
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IF(I.EQ.1)THEN
VOTE(K,J)=1
ELSE
VOTE(K,J)=0
ENDIF
CONTINUE
CONTINUE

For the Borda and Approval systems,
assignment of sincere votes differs slightly.
The above lines are replaced with the

following:
Borda:
Do 16 1I=1,ALTS
K=RANK(I)
VOTE(K,J)=ALTS-1
16 Continue
17 Continue
Approval:
TOTUT=0

Do 16 I=1,ALTS
TOTUT=TOTUT+UTIL(I,J)
16 Continue
TOTOUT=TOTUT/ALTS
Do 18 I=1,ALTS
If(UTIL(I,J).GT.TOTOUT)Then
VOTE(I,J)=1
Else
VOTE(I,J)=0
Endif
18 Continue
17 Continue

CALL COUNT

IF(WINNER.EQ.CWINNE)THEN
NCOND=NCOND+1

ENDIF

EELECT=EELECT+SOCUT (WINNER)

ASSIGN VOTES (STRATEGIC) FOR STANDARD SYSTEM

IF NUMBER OF ALTERNATIVES WITHIN "REACH" OF WINNING
IS NOT EQUAL TO 1, THE ELECTION IS MANIPULABLE.
OTHERWISE DO NOT NEED TO CHECK STRATEGIES. SKIP TO
LINE 65, P. 159.

IF(COMP.NE.1)THEN
DO 37 L=1,40
DO 36 J=1,VOTERS
N=Q+1
EU(N)=0
G=1
VMAX=MAX(VOTES(1),VOTES(2),VOTES(3),VOTES(4),
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+VOTES(5))
DO 26 I=1,ALTS
IF(VOTES(I).EQ.VMAX)THEN

ASSIGN INDEX TO TIED ALTERNATIVE

TIED(G)=I1
G=G+1
EU(N)=EU(N)+UOTIL(I,J)
ENDIF
VOTES(I)=VOTES(I)-VOTE(I,J)
PVOTE(I,Q+1)=VOTE(I,J)
CONTINUE
EU(N)=EU(N)/REAL(G-1)
STRAT=Q+1
DO 31 N=1,Q
IF(TOTAL(1).GT.TOTAL(2))THEN
DO 27 I=1,ALTS

IF STRATEGY CAN CHANGE OUTCOME OF ELECTION

IF((TOTAL(1)-VOTE(TRANK(1),J)+PVOTE(TRANK(1),N)
+)-(TOTAL(I)-VOTE(TRANK(I),J)+PVOTE(TRANK(I),N)).LE.O)
+THEN

GOTO 30

ENDIF

CONTINUE

OTHERWISE EXPECTED UTILITY OF STRATEGY IS EQUAL TO
EU OF CURRENT STRATEGY. SKIP TO END OF LOOP AND
GO TO NEXT STRATEGY.

EU(N)=EU(Q+1)
GOTO 31
ENDIF

DETERMINE EXPECTED UTILITY OF STRATEGY

DO 28 I=1,ALTS
VOTES(I)=VOTES(I)+PVOTE(I,N)
CONTINUE
VMAX=MAX(VOTES(1),VOTES(2),VOTES(3),VOTES(4),
+VOTES(5))
EU(N)=0
G=1
DO 29 I=1,ALTS
IF(VOTES(I).EQ.VMAX)THEN

TIED(G)=I
G=G+1
EU(N)=EU(N)+UTIL(I,J)
ENDIF
VOTES(I)=VOTES(I)-PVOTE(I,N)
CONTINUE

EU(N)=EU(N)/REAL(G-1)
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IF EXPECTED UTILITY EXCEEDS EU OF CURRENT STRATEGY,
CHANGE STRATEGY

IF(EU(N).GT.EU(STRAT) )THEN
STRAT=N
ENDIF
CONTINUE
G2=1
IF(STRAT.NE.Q+1)THEN
F=F+1
DO 33 N=1,Q

IF MORE THAN ONE STRATEGY HAS MAX EU, CHOOSE ONE
RANDOMLY

IF(EU(N) .EQ.EU(STRAT) ) THEN
G1(G2)=N
G2=G2+1
ENDIF
CONTINUE
DSEED=DMOD (DSEED*X, Y)
K=INT(((SNGL(DSEED/Y) )*(REAL(G2-1)))+1.)
STRAT=G1(K)
ENDIF

REASSIGN VOTES IN ACCORDANCE WITH CHOSEN STRATEGY
DETERMINE NEW TOTALS

DO 34 I=1,ALTS
VOTE(I,J)=PVOTE(I,STRAT)
VOTES(I)=VOTES(I)+VOTE(I,J)

CONTINUE

CONTINUE

IF NO STRATEGY CHANGES HAVE OCCURRED, NASH EQUILIBRIUM

HAS BEEN FOUND. DETERMINE WINNER AND GO TO
CALCULATION OF STATISTICS.

IF(F.EQ.O0)THEN
CALL COUNT

IF(WINNER.EQ.CWINNE)THEN
SNCOND=SNCOND+1

ENDIF

SEELEC=SEELEC+SOCUT (WINNER)
GOTO 285

ENDIF

F=0

CONTINUE

HERE WE HAVE NOT REACHED THE NASH EQUILIBRIUM
WRITE UTILITIES AND VOTES TO A FILE
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REWIND 11
DO 44 J=1,VOTERS
DO 13 I=1,ALTS
RANK(I)=I
RUOTIL(I)=UTIL(I,J)
CONTINUE
DO 15 LAST=ALTS,2,-1
DO 14 I=1,LAST-1
IF(RUTIL(I).LT.RUTIL(I+1))THEN
TEMPU=RUTIL(I)
RUTIL(I)=RUTIL(I+1)
RUTIL(I+1)=TEMPO
TEMPR=RANK(I)
RANK(I)=RANK(I+1)
RANK(I+1)=TEMPR
ENDIF
CONTINUE
CONTINUE
DO 43 I=1,ALTS
K=RANK(I)
VOTE(K,J)=ALTS-1I
CONTINUE
WRITE(11,%*)0TIL(1,J),0TIL(2,J),0TIL(3,J),0TIL(4,J)
WRITE(11,%)VOTE(1,J),VOTE(2,J),VOTE(3,J),VOTE(4,J)
CONTINUE

DO LOOP FOR NUMBER OF REORDERINGS

DO 63 MONE=1,40

REWIND 11

DO 46 J=1,VOTERS
READ(11,x)UTIL(1,J),UTIL(2,J),0TIL(3,J),U0TIL(4,J)
READ(11,%*)VOTE(1,J),VOTE(2,J),VOTE(3,J),VOTE(4,J)

CONTINUE

RANDOM REORDERING OF VOTERS

DO 48 J=1,VOTERS
DSEED=DMOD (DSEED*X, Y)
CHOOS=INT(SNGL(DSEED/Y)*(VOTERS-J+1) )+J
IF(CHOOS.NE.J)THEN
DO 47 I=1,ALTS
TVOTE=VOTE(I,J)
VOTE(I,J)=VOTE(I,CHOOS)
VOTE(I,CHOOS)=TVOTE
TEMPU=UTIL(I,J)
UTIL(I,J)=UTIL(I,CHOOS)
UTIL(I,CHOOS)=TEMPU
CONTINUE
ENDIF
CONTINUE
WRITE(*,x) "SEARCH ", MONE
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AFTER REORDERING, REPEAT PROCESS OF SEARCHING FOR
NASH EQUILIBRIUM

DO 62 L=1,40
DO 60 J=1,VOTERS
N=Q+1
EUO(N)=0
G=1
VMAX=MAX(VOTES(1),VOTES(2),VOTES(3),VOTES(4),
+VOTES(5))
DO 50 I=1,ALTS
IF(VOTES(I).EQ.VMAX)THEN
TIED(G)=I
G=G+1
EO(N)=EU(N)+UTIL(I,J)
ENDIF
VOTES(I)=VOTES(I)-VOTE(I,J)
PVOTE(I,Q+1)=VOTE(I,J)
CONTINUE
EUO(N)=EU(N)/REAL(G-1)
STRAT=Q+1
DO 55 N=1,Q
DO 52 I=1,ALTS
VOTES(I)=VOTES(I)+PVOTE(I,N)
CONTINUE
VMAX=MAX(VOTES(1),VOTES(2),VOTES(3),VOTES(4),
+VOTES(5))
EUO(N)=0
G=1
DO 53 I=1,ALTS
IF(VOTES(I).EQ.VMAX)THEN

TIED(G)=I
G=G+1
EU(N)=EU(N)+0TIL(I,J)
ENDIF
VOTES(I)=VOTES(I)-PVOTE(I,N)
CONTINUE

EU(N)=EU(N)/REAL(G-1)
IF(EU(N).GT.EU(STRAT) ) THEN
STRAT=N
ENDIF
CONTINUE
G2=1
IF(STRAT.NE.Q+1)THEN
F=F+1
DO 57 N=1,Q
IF(EU(N).EQ.EU(STRAT) )THEN
G1(G2)=N
G2=G2+1
ENDIF
CONTINUE
DSEED=DMOD(DSEED*X, Y)
K=INT(( (SNGL(DSEED/Y) )*(REAL(G2-1)))+1.)
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STRAT=G1(K)
ENDIF
DO 58 I=1,ALTS
VOTE(I,J)=PVOTE(I,STRAT)
VOTES(I)=VOTES(I)+VOTE(I,J)
CONTINUE
CONTINUE
IF(F.EQ.O0)THEN
CALL COUNT
IF(WINNER.EQ.CWINNE)THEN
SNCOND=SNCOND+1
ENDIF
SEELEC=SEELEC+SOCUT (WINNER)
GOTO 285
ENDIF
F=0
CONTINUE
CONTINUE
CONTINUE

IF AFTER 40 RANDOM REORDERINGS OF VOTERS, AN
EQUILIBRIUM STILL HAS NOT BEEN FOUND,

NONASH=NONASH+1

IF(CWINNE.EQ.O)THEN
COMMON=COMMON+1

ENDIF

WRITE(10,*)VOTERS, ALTS,P

ELSE

SINCERE VOTING IS A NASH EQUILIBRIUM

SIN=SIN+1
IF(WINNER.EQ.CWINNE)THEN
SNCOND=SNCOND+1

ENDIF

SEELEC=SEELEC+SOCUT (WINNER)
ENDIF
WRITE(*,*x)VOTERS,P,M
CONTINUE

CALCULATE STATISTICS FOR 100 ELECTION SIMULATION AND
WRITE TO RESULT FILE

EFFIC=((EELECT/100.)-(VOTERS/2.))/
+((EMAX/100.)-(VOTERS/2.))

SEFFIC=( (SEELEC/(REAL(100-NONASH)))-(VOTERS/2.))/
+( (EMAX/100.)-(VOTERS/2.))

CEFFIC=(REAL(NCOND) ) /NUM
SCEFFI=(REAL(SNCOND))/(NUM-REAL(NONASH)+REAL (COMMON) )
NOCC=100.-NUM

WRITE(4,*)ALTS,VOTERS
WRITE(4,*)NONASH,NOCC,COMMON, SIN
WRITE(4,*)EFFIC,SEFFIC,CEFFIC,SCEFFI
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IF(NONASH.GT.0)THEN
WRITE(12,*)EELECT, SEELEC, EMAX
WRITE(12,%)NCOND, SNCOND, NUM

ENDIF

M1=M1+EFFIC

M2=M2+SEFFIC

M3=M3+CEFFIC

M4=M4+SCEFFI

SD1=SD1+(EFFIC*x2)

SD2=SD2+(SEFFIC**2)

SD3=SD3+(CEFFICx*2)

SD4=SD4+(SCEFFI*%2)

CONTINUE

CALCULATE STATISTICS FOR 20 REPETITIONS OF 100
ELECTION SIMULATION AND WRITE TO RESULT FILE
M1=M1/20.

M2=M2/20.

M3=M3/20.

M4=M4/20.

SD1=((SD1-(20.%(M1%%x2)))/19.)%x*0.5
SD2=((SD2-(20.%(M2%*%2)))/19.)*x0.5
SD3=((SD3-(20.%(M3%%x2)))/19.)%xx0.5
SD4=((SD4-(20.%(M4%x%2)))/19.)%%0.5
WRITE(4,%*)M1,M2,M3,M4
WRITE(4,%)SD1,SD2,SD3,SD4

REWIND 3

WRITE(3,*)DSEED

CONTINUE

STOP

END

SUBROUTINE COUNT
COMMON/PICK/ALTS,VOTERS,I,J,TOTAL,VOTES, LAST,
+TVOTE, TEMPR, COMP,WINNER, TIED,G,K, TRANK,
+SOCUT, VOTE

INTEGER*2 ALTS,CVOTES(6),CWINNE,F,G,H,I,
+J,K,L,LAST,M,N,NCOND, RANK(6),COMP, TOTAL(6),MONE,
+SNCOND, STRAT, COMMON, P,SIN,Q,PVOTE(6,721),G2,
+TEMPR, TIED(6),NONASH, TVOTE,G1(720),CHOOS, TRANK(6),
+VOTE(6,125),VOTERS,VOTES(6) ,NINNER,WINS(6), VMAX
REAL CEFFIC,EELECT,EFFIC,EMAX,EU(721),NOCC,NUN,
+RUTIL(6),SCEFFI,SEELEC, SEFFIC,SOCUT(6),TEMPU,
+0TIL(6,125),UTMAX,M1,M2,M3,

+M4,5D1,5D2,SD3, SD4

INTEGER*4 Z

REAL*8 DSEED,X,Y

DATA X/1.6807D4/

2=2147483647

Y=DBLE(Z)

CALL ADD

COMP=0

DO 23 I=2,ALTS

IF((TOTAL(1)-TOTAL(I)).GT.2)THEN
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For the Borda system, the difference
between totals must be (ALTS-1)x2 for
the totals to be comparable.

COMP=I-1
GOTO 24
ENDIF
CONTINUE
COMP=ALTS
G=1
WINNER=TRANK(1)
DO 25 I=1,COMP
IF(TOTAL(I).EQ.TOTAL(1))THEN
TIED(G)=TRANK(I)
G=G+1
ENDIF
CONTINUE
DSEED=DMOD(DSEED*X, Y)
K=INT(( (SNGL(DSEED/Y) )*REAL(G-1))+1.)
WINNER=TIED(K)
END
SUBROUTINE ADD
COMMON/PICK/ALTS,VOTERS,I1,J,TOTAL,VOTES, LAST,
+TVOTE, TEMPR, COMP,WINNER, TIED, G, K, TRANK,
+SOCUT, VOTE
INTEGER*2 ALTS,CVOTES(6),CWINNE,F,G,H,I,
+J,K,L,LAST,M,N,NCOND,RANK(6),COMP, TOTAL(6),MONE,
+SNCOND, STRAT, COMMON, P,SIN,Q,PVOTE(6,721),G2,
+TEMPR, TIED(6) , NONASH, TVOTE,G1(720),CHOOS, TRANK(6),
+VOTE(6,125),VOTERS,VOTES(6) ,NINNER,WINS(6), VMAX
REAL CEFFIC,EELECT,EFFIC,EMAX,EU(721),NOCC,NUM,
+RUTIL(6),SCEFFI,SEELEC, SEFFIC,SOCUT(6), TEMPU,
+UTIL(6,125),UTMAX,M1,M2,M3,
+M4,5D1,SD2,SD3,SD4
INTEGER*4 Z
REALx*8 DSEED,X,Y
DO 19 I=1,ALTS
VOTES(I)=0
DO 18 J=1,VOTERS
VOTES(I)=VOTES(I)+VOTE(I,J)
CONTINUE
TOTAL(I)=VOTES(I)
TRANK(I)=I
CONTINUE

SORT TOTALS FROM HIGHEST TO LOWEST

DO 22 LAST=ALTS,2,-1
DO 21 I=1,LAST-1
IF(TOTAL(I).LT.TOTAL(I+1))THEN
TVOTE=TOTAL(I)
TOTAL(I)=TOTAL(I+1)
TOTAL(I+1)=TVOTE
TEMPR=TRANK(I)
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TRANK(I)=TRANK(I+1)
TRANK(I+1)=TEMPR
ENDIF
21 CONTINUE
22 CONTINUE
END



APPENDIX C

NUMERICAL EFFICIENCY ESTIMATES

M number of alternatives

\') number of voters

SU = sincere social utility efficiency estimate
SSU = strategic social utility efficiency estimate

CON sincere Condorcet efficiency estimate
SCON = strategic Condorcet efficiency estimate
STAN = standard voting system

APP = Approval voting system

BOR Borda voting system
Table C.1 Numerical Efficiency Estimates

SYSTEM M v sU SSU CON SCON
STAN 3 3 75.29620 86.58792 87.62981 93.21197
STAN 3 5 76.56103 85.39255 82.70782 97.85348
STAN 3 7 77.25581 83.33194 82.69535 97.51660
STAN 3 9 73.77195 81.90794 82.55657 95.61583
STAN 3 11 75.30593 81.24983 80.56394 94.93969
STAN 3 13 77.16174 82.38519 80.80422 96.09350
STAN 3 156 75.54303 79.91310 79.67271 93.77476
STAN 3 17 74.82475 81.87458 79.45167 93.37818
STAN 3 19 175.25263 81.06884 80.78949 92.77217
STAN 3 21 74.86692 79.54131 78.96233 92.64790
STAN 3 23 T74.75631 78.49162 77.83499 90.97667
STAN 3 25 176.57353 81.04321 79.02290 91.19462
STAN 3 35 77.40226 82.07282 78.56488 90.17090
STAN 3 45 175.97288 81.16663 78.21436 89.63732
STAN 3 55 T77.33902 81.52497 79.50794 88.26764
STAN 3 65 176.32630 80.55056 79.27800 88.37267
STAN 3 75 74.28504 78.01983 78.06476 86.70417
STAN 3 85 T75.34359 79.35842 77.75959 86.19793
STAN 3 95 176.29606 79.59635 77.73936 85.09785
STAN 3 105 74.77132 78.14500 76.90236 84.22219
STAN 3 115 73.76456 77.43318 75.86477 83.64887
STAN 3 125 76.26712 78.93581 77.13104 84.46829
STAN 4 3 72.92103 87.93572 79.24885 89.70616
STAN 4 5 72.72946 82.38886 75.83340 94.59490
STAN 4 7 72.51401 81.32061 74.56514 92.59365
STAN 4 9 71.83081 82.21461 73.29077 90.72868
STAN 4 11 70.39012 80.12018 71.34916 89.64331
STAN 4 13 71.76589 79.64956 70.98848 87.13876
STAN 4 15 71.74075 81.34573 69.41348 87.87754
STAN 4 17 71.24847 79.90104 70.07659 85.42102
STAN 4 19 70.59990 78.53442 68.90776 85.36750
STAN 4 21 70.67474 78.64796 69.48363 85.36599
STAN 4 23 67.91703 76.85156 67.86444 83.83754
STAN 4 25 171.71382 80.27880 69.98096 85.81014




Table C.1 (cont’d.)
SYSTEM M Vv 18]
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STAN 4 35 68.69625
STAN 4 45 70.75148
STAN 4 556 69.56684
STAN 4 65 71.68784
STAN 4 75 69.76920
STAN 4 85 170.28945
STAN 4 95 71.34871
STAN 4 105 71.99607
STAN 4 115 70.39350
STAN 4 125 69.60443
STAN 5 3 69.30213
STAN 5 5 72.01346
STAN 5 7 70.53767
STAN 5 9 68.56567
STAN 5 11 70.35698
STAN 5 13 68.58490
STAN 5 15 68.84727
STAN 5 17 66.64464
STAN 5 19 67.48163
STAN 5 21 65.22192
STAN 5 23 67.13834
STAN 5 25 68.53179
STAN 5 36 66.07011
STAN 5 45 66.22192
STAN 5 55 68.44178
STAN 5 65 64.36284
STAN 5 75 65.96298
STAN 5 856 62.85065
STAN 5 95 69.14971
STAN 5 105 68.48776
STAN 5 115 66.05291
STAN 5 125 66.53121
STAN 6 3 65.05819
STAN 6 5 70.21628
STAN 6 7 67.70756
STAN 6 9 67.32233
STAN 6 11 64.75424
STAN 6 13 67.02317
STAN 6 15 64.161893
STAN 6 17 67.08984
STAN 6 19 64.30106
STAN 6 21 63.41932
STAN 6 23 64.62094
STAN 6 25 64.84376
STAN 6 35 63.34317
STAN 6 45 62.89053
STAN 6 556 61.16387
STAN 6 65 63.93198
STAN 6 75 62.34725
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Table C.1 (cont’d.)

SYSTEM M
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Table C.1 (cont'd.)

SYSTEM M

BOR
BOR
BOR

Values estimated with regression coefficients:

BOR
BOR
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BOR
BOR
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93.
90.
88.
87.
86.
86.
85.

62172
17734
38428
30332
59463
10698
76300

90.
89.
89.
88.
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88.
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37112
51751
06592
75550

.51114
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92.
86.
84.
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80.
80.
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APPENDIX D

REGRESSION RESULTS

Equation 1:
C(4)%VAR

Table D.1. Sincere Social Utility Efficiency

Regression Results

Standard Voting System

Coefficient Std. Error
C(1l) 0.9660104 0.0134421
C(2) 12.5755110 2.0373614
C(3) -0.0908287 0.0509604
C(4) 0.1744424 0.0523831
R2

Standard Error of Regression
Sum of Squared Residuals

Approval Voting Svstem

Coefficient Std. Error
C(1) 0.9834290 0.0049852
C(2) -14.4611890 2.6824025
C(3) 3.6120629 0.5574343
C(4) -3.6261399 0.5612308
R2

Standard Error of Regression
Sum of Squared Residuals

Borda Voting System

. Coefficient Std. Error
C(1) 0.9988894 0.0028917
C(2) -1.4911846 5.7122250
C(3) 0.0056901 0.0148756
C(4) -0.0036556 0.0094704
R2

Standard Error of Regression
Sum of Squared Residuals
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T-Stat.
71.8642880
6.1724490
-1.7823393
3.3301283

T-Stat.
197.2711100
-5.3911334
6.4797997
-6.4610496

T-Stat.
345.4374500
-0.2610514
0.3825100
-0.3860020

SU = C(1)*THEO + C(2)*DIF + C(3)*MEAN +

0.862424
1.717966
247.9183

0.432635
0.995403
83.22952

0.834664
0.663750
17.62255
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Equation 2:
C(4)xVAR

Table D.2. Sincere Condorcet Efficiency

Regression Results

Standard Voting System

Coefficient Std. Error
C(1) 0.9347468 0.0225973
C(2) 17.4107530 3.4249585
C(3) 0.7782854 0.0856683
C(4) -0.8640046 0.0880599
R2

Standard Error of Regression
Sum of Squared Residuals

Approval Voting Svatem

Coefficient Std. Error
C(1) 0.6636912 0.0092258
C(2) -18.8665650 4.9641934
C(3) 20.5012300 1.0316170
C(4) -20.4961870 1.0386428
R2

Standard Error of Regression
Sum of Squared Residuals

Borda Voting Svstem

Coefficient Std. Error
C(1) 0.9702868 0.0032940
C(2) 136.2546000 6.5070940
C(3) 0.1357765 0.0169456
C(4) -0.0832901 0.0107883
R2

Standard Error of Regression
Sum of Squared Residuals

T-Stat.
41.3654810
5.0848752
9.0848752
-9.8115514

T-Stat.
71.9385700
-3.8005298
19.8729090

-19.7336240

T-Stat.
294 .5577000
20.9393930

8.0125011
-7.7204378

CC = C(1)%THEO + C(2)%DIF + C(3)*MEAN +

0.908270
2.888031
700.6208

0.854252
1.842145
285.0538

0.887074
0.756112
22.86822
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SSU = C(1)%THEO + C(2)*DIF + C(3)/P +
C(4)*(Q" (ALTS/(2%(ALTS+V)))) + C
C(6)xV~"2 + C(T)*XV~3 + C(8)xV~4

Equation 3:

Table D.3. Strategic Social Utility Efficiency
Regression Results

Standard Voting Svstem

Coefficient Std. Error T-Stat.
C(1) 0.5207019 0.0542326 9.6012750
C(2) 18.1723560 17.5191300 1.0372864
C(3) 22.8116840 4.8082186 4.7443110
C(4) 15.1048080 2.0875383 7.2357038
C(5) 0.0750898 0.1612042 0.4658056
C(6) -0.0026245 0.0039308 -0.6676666
C(7) 3.237D-05 4.058D-05 0.7978145
C(8) -1.343D-07 1.459D-07 -0.9206889
R2
Standard Error of Regression
Sum of Squared Residuals
Approval Voting Svstem

Coefficient Std. Error T-Stat.
C(1) -1.4149151 0.2701843 -5.2368524
C(2) 92.3039750 10.0521490 9.1825119
C(3) 169.3911200 19.1548330 8.8432624
C(4) 1.3284882 0.5041483 2.6351140
C(5) -0.2029406 0.1278940 -1.5867872
C(86) 0.0051127 0.0033746 1.5154758
C(7) -3.835D-05 3.624D-05 -1.0583883
C(8) 9.423D-08 1.333D-07 0.7066768
R2
Standard Error of Regression
Sum of Squared Residuals
Borda Voting System

Coefficient Std. Error T-Stat.
C(1) 0.7174308 0.0998939 7.1819298
C(2) 262.6485400 54.7449520 4.7976760
C(3) 15.0476340 10.2901170 1.4623384
C(4) 2.6690842 1.3929331 1.9161611
C(5) -0.0878516 0.1415911 -0.6204598
c(6) 0.0044036 0.0036143 1.2183975
C(7) -5.407D-05 3.806D-05 -1.4209206
C(8) 2.095D-07 1.383D-07 1.5148517
R2

Standard Error of Regression
Sum of Squared Residuals

(5)xV +

0.921995
1.116703
99.76201

0.741881
1.097526
96.36510

0.709214
0.766167
21.13243
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Equation 4: SCC = C(1) + C(2)%SSU + C(3)*xALTS + C(4)x%V

See Chapter 4, page 112.
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