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ABSTRACT

STATISTICAL ISSUES AND NOVEL STRATEGIES FOR EXPRESSION
QUANTITATIVE TRAIT LOCI MAPPING

By

Shaoyu Li

Gene regulation is thought to play a pivotal role in determining physiological trait variability

by promoting/reducing the expression of functional genes directly or indirectly related to the

phenotype. Expression quantitative trait loci (eQTL) mapping studies hold great promise

in disentangling gene regulations and have become a popular research area recently. In

this dissertation, I explore several statistical strategies, which are applied to eQTL mapping

studies, aimed to have a better understanding on the biological mechanism of gene regulation.

The major goal of eQTL studies is to identify genomic regions that are likely to regulate

gene expressions. Given that genes function in a network basis, we consider the scenario that

a genetic perturbation could lead to a cascade effects on the transcription of multiple genes

which belongs to a gene set, e.g., network/pathway. We develop a statistical procedure which

incorporates prior biological gene set information (e.g. KEGG pathway, GO terms) into

eQTL mapping framework to elucidate gene regulation from a systems biology perspective.

Pathway regulators which mediate the expression of genes in a pathway are detected by

modeling multiple gene expressions as a multivariate response to test the joint variation

changes among different genotype categories. We apply the proposed approach to a yeast

eQTL data set. Novel pathway regulators and regulation hotspots are identified.

Currently, most eQTL mapping studies focus on single marker analysis. However, the

variability of gene expression may be caused by the regulation of a set of variants that belong

to a common genetic system, and individually only with small or moderate effect. To study



the roles of genetic systems in regulating gene expressions, we propose a statistical p-value

combination approach to combine individual signals across a pre-defined genetic system to

form an overall signal, while considering correlations between genetic variants in the system.

Results for simulation studies and the application to the yeast eQTL data are presented.

As part of the DNA sequence variation, gene-gene interaction or epistasis has been ubiq-

uitously observed in nature where its role in shaping the development of an organism has

been broadly recognized. Investigating genetic interactions related to mRNA expression is

an important step on the path to elucidating the genetic architecture underlying gene expres-

sion and could provide valuable functional interpretation of gene regulation. As genes are

the functional units in living organisms, we conceptually propose a gene-centric gene-gene

interaction framework for genome-wide epistasis detection. Multiple genetic markers (e.g.

SNPs) in a gene are modeled simultaneously as a testing unit. We develop a model-based

kernel machine approach for detecting pairwise gene-gene interactions. Simulation study

and applications of the proposed method to the yeast eQTL data indicate its feasibility to

eQTL mapping. We further extend the model-based kernel machine method to binary phe-

notypic outcomes. Our models provide quantitative and testable framework for assessing

the interplay between gene expression and gene regulation,

and will have great implications for elucidating the genetic architecture of gene expression.
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Chapter 1

Introduction

1.1 An overview of genetics

1.1.1 Basic concepts

Every single organism on earth has an unique set of chemical blueprints determining how

it looks and functions. The chemical blueprints are contained in Deoxyribose Nucleic Acid

(DNA). DNA sequence consists four nucleotides, Adenine(A), Thymine(T), Cytosine(C) and

Guanine (G) and the sequence of the four bases makes every organism distinguished from

others. The bases are paired, A with T and C with G, and the pairs are called base pairs.

DNA sequence organized neatly to form chromosomes. The number of chromosomes varies

widely in different species: for example, Arabidopsis thaliana has 5 pairs, Saccharomyces

cerevisiae has 16 pairs, Drosophila melanogaster has 4 pairs and human has 23 pairs. The

whole set of chromosomes is defined as genome for each species.

Most multicellular organisms are diploid, which means their chromosomes are paired

and with one chromosome of each pair inherited from mother and the other chromosome

1



from father. A gene is a segment of DNA that stores the instructions needed to construct

components of a cell for making a particular protein (Wikipedia). Genes are known to be the

basic functional units in which biological characteristics are inherited from one generation

to the next. A site on chromosome is called a locus, where one or several genes could reside.

At a given locus, there could be multiple forms of DNA sequence. And the total number

of forms at the locus depends on the number of copies of each chromosome. For example,

diploid organisms have two forms because the chromosomes are paired. Each form of DNA

sequence at a given locus is called an allele. At a given locus, suppose the two different DNA

sequence forms are A and a, then organisms with identical alleles (AA or aa) are homozygous

and heterozygous otherwise (Aa). The collection of alleles, AA, Aa and aa are genotypes

of the locus, which carry unique genetic information for each single subject and contribute

to the outcome of certain characteristic traits-phenotype, for example, hair color and blood

pressure.

1.1.2 Quantitative genetics

Variants in genes or chromosomes may affect the phenotype of a trait. A major goal that lies

at the heart of quantitative genetics is to understand the contribution of genetic sequence

to the observed variance of a trait of interest. A fundamental idea of classical quantitative

genetics is that the phenotypic variance VP is the sum of genetic variance VG and environ-

mental variance VE .

VP = VG + VE (1.1)
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The genetic variance can be further decomposed into the variances of additive, dominance

and epistatic components:

VG = VGA + VGD + VGI (1.2)

The variance associated with each of these components can be estimated by using the co-

variance structure for the phenotypic resemblances between groups of relatives. Based on

the decomposition of phenotypic variance, the broad-sense heritability is defined as:

H2 =
VG

VG + VE
(1.3)

And the narrow-sense heritability is defined as

h2 =
VGA

VG + VE
(1.4)

These two heritability parameters H2 and h2 are used to describe the degree of overall

genetic contributes for a quantitative trait traditionally [1].

The breakthroughs in genotyping and sequencing technology [2, 3, 4, 5] have accelerated

the process toward a complete understanding of the relationship between genotype and phe-

notype. The emerge of the whole genome sequencing technology in recent years established

huge collections of molecular markers for various species, e.g. Yeast, E. Coli, Human, Rice

and Soybean [6, 7, 8, 9, 10]. The genome sequence built up detailed maps of chromosomes,

showing the precise location of genes and determining the area that can differ from subject to

subject. These areas vary among individuals can be used as molecular markers to study the

genetic contribution to phenotypes. Different types of molecular markers have being used,

including the most commonly used microsatellite markers, also referred as short tandem
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repeats (STRs) and single nucleotide polymorphisms (SNPs). STRs happens when a small

number of nucleotides (normally, 1-6 base pairs) repeat themselves. The number of repeats

differ from one to another and therefore can be used as genetic markers. SNPs are polymor-

phisms in base pairs throughout the genome. Scientists have been able to genotype up to

millions of SNPs throughout the entire genome. Other than these, copy number variation,

DNA methylation and histone modification are also applicable as genetic markers.

Based on the genomic maps stands the quantitative trait loci (QTL) mapping methodolo-

gies, which aim to identify linkage/association between genomic regions and a quantitative

trait of interest [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

1.2 Quantitative trait loci (QTL) mapping

1.2.1 Statistical approaches for QTL mapping

Statistical methodologies on QTL mapping have been published through the past several

decades. include single-marker mapping [11, 12, 13, 14, 22], interval mapping [15], composite

interval mapping [16, 17, 18, 19, 20] and multiple interval mapping [21, 23, 24, 25]. Single

marker mapping is the simplest method for QTL mapping studies. At each genotyped

marker, one may split phenotypes into groups according to the genotypes at the marker,

e.g., a backcross population has two genotype groups (AA, Aa) and an F2 population has

three genotype groups (AA, Aa, aa). Then apply either a t-statistic or analysis of variance

(ANOVA) or logarithm of the odds (LOD) score to test the variation of phenotypes between

different genotype groups, whichever works properly to measure the evidence of linkage

between the marker and the QTL. Markers access statistical significance are then identified
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to be linked to the QTL of the quantitative trait. Although the implementation of single

marker analysis is straightforward and does not require genetic map distance information, the

weaknesses of the approach are obvious. By looking at molecular markers only, single marker

mapping approaches fail to provide estimates of QTL locations and tend to underestimate

the true QTL effect. In most cases, molecular markers are not the true QTL and the

recombination between a marker and QTL makes the effect of the marker smaller than the

true QTL effect generally. Especially, when markers are widely spaced, a QTL could be

far away from a single marker. Then the effect size of the maker could be too small to be

detected and therefore mapping power is low.

Interval mapping developed by Lander and Botstein [15] adapted the approach of LOD

score analysis to obtain estimates of both the genetic location and phenotypic effect size of a

QTL. Rather than focusing on molecular markers only, interval mapping estimates and tests

effect size at locations in intervals between markers. By assuming a putative QTL and its

location between two markers, the effect of the putative QTL can be expressed as a function

of the probabilities of its genotype given the genotypes of the two flanking markers and

the genetic distances. Single marker analysis can then be conducted at each putative QTL

position between markers, where the test statistic exceeds a threshold level is declared as a

QTL. Interval mapping approach overcomes some disadvantages of single marker mapping

and has been the most popular mapping approach in the past decade. However, interval

mapping still focuses on analyzing one single position at a time. When there are multiple

QTLs on a chromosome, the test statistic at the position being tested will be influenced

by all the QTLs, consequently leading to biased estimates of QTL effect size and position.

For example, a “ghost” QTL between two closely located true QTLs could appear. Besides,
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by using only the nearest two flanking markers to estimate the probabilities of the QTL

genotype may not be efficient.

To overcome these disadvantages of the interval mapping approaches, Zeng [18] extended

the interval mapping to a more efficient and precise mapping approach, termed composite in-

terval mapping (CIM). A similar approach called multiple QTL mapping was also developed

by Jansen [19] at the same time. The basic idea about the composite interval mapping is

to perform interval mapping through a test statistic which could adjust the effects of linked

QTL(s). CIM selects a set of markers as covariates to control the genetic variation of other

possible QTLs. Appropriate selection of the set of marker loci serve as covariates is crucial

in CIM [26]. Either too many or too few markers being included in the model as cofactors

may cause problems. Due to the lack of prior knowledge of the number and positions of

underlying QTL, no simple solution for the choice of marker covariates has been developed.

And because of the issue, there are recommendations against the use of CIM [27].

All the previous methods were developed to target one single QTL at a time. While for

quantitative traits with more than one QTL, especially those with linked or interact QTL, a

approach which considers multiple QTL simultaneously will be more accurate and therefore

attractive. Multiple interval mapping (MIM) [21, 28, 29] extends interval mapping to multi-

ple QTLs. MIM apply the model selection approach to search for the best model among all

possible genetic models that considers the true genetic architecture of the quantitative trait.

It is not hard to imagine that the number of all possible models will be huge with large scale

molecular markers. Exhaustive search for the best model from the big pool of all possible

models incurs huge computational burden. Some strategies that can reduce the burden have

been proposed. For example, Sen and Churchill [30] developed a new statistical framework
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for quantitative trait loci mapping, which is an approach reside in the middle of pure fre-

quentist and Bayesian. The method splits the multiple QTL problem into two distinct parts:

the relationship between the QTL and phenotype and the locations of QTL. A simulation

based algorithm was used to estimate the number and genotypes of QTL. With this infor-

mation, the estimation of QTL effects and interaction becomes easier and computationally

less demanding.

1.2.2 Issues and challenges for QTL mapping

How to properly model the underlying poly QTL structure has become the major focus and

challenge in the analysis of QTL. There are still issues, such as how many markers should

be incorporated as covariates in the CIM method; what is a good estimate of the number

of QTL across the genome and how many of them should be include in one model? Besides

these issues relevant to modeling, multiple testing issue is a well known problem in the anal-

ysis of QTL. Modern QTL study deals with high dimensional molecular marker data. When

statistical tests are conducted across the genome, declaring statistical significance becomes

a challenging problem. With small number of tests, multiple testing correction can be done

by the classical Bonnferroni correction to control the family wise error rate (FWER). When

the number of tests increases, especially to a large number, Bonnferroni correction turns out

to be too conservative for detecting significant signals. The FDR procedure developed by

Benjamini and Hochberg has been proved to be less conservative than approaches controlling

the FWER [31]. Motivated by more challenging practical questions with even higher dimen-

sion or more complicated correlation structure between tests, many other multiple testing

procedures have been developed, including the q-value approach [32]. For more information
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on multiple testing issues, readers are referred to some comprehensive reviews [33, 34]. Al-

though the topic has been intensely investigated, no standard has been obtained to evaluate

the performance of different correction procedures. FDR procedure and q-value approach are

the most widely used ones, which still have limitations with respect to different applications.

1.3 Microarray study and gene expression

1.3.1 Microarray technology

Genes are expressed when they transcript into RNA (transcription). The technology of mi-

croarry has been enabled the measurement of thousands of gene expressions simultaneously.

In a typical microarray experiment, two mRAN samples are isolated and then fluorescently

labeled and hybridized to a platform surface. Microarry platforms is a glass slide or mem-

brane arrayed with DNA fragments or oligonucleotides that represent specific gene coding

region in a regular pattern. The relative amounts of transcript RNA can be measured by laser

scanning or autoradiographic imaging after thorough washing. cDNA array and Affymetrix

Gene Chips are the two widely used microarray platforms. With the data generated by mi-

croarray experiment, a number of statistical methods can be applied to infer the underlying

dynamic functioning.

Studying the change in expression pattern offers an opportunity, that all technologies

aforetime could not provide, to understand the molecular mechanisms underlying biological

processes in a cell. While, the original scanned gene expression raw data contains noise, miss-

ing values and systematic errors within and between arrays, hence must be pre-processed

before any other quantitative tools, e.g. clustering and classification, can be properly applied.
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Problems relevant to microarray data pre-processing includes normalization [35, 36, 37], miss-

ing values estimation [38, 39, 40, 41] and pre-selection which chooses only those informative

genes for later analysis [42].

After the pre-processing, those genes show statistically significant differences across differ-

ent conditions, such as mutant versus wild type, healthy versus diseased or multiple tissues,

can be reported by studying their expression profiles. It is also possible to compare gene

expression profile over multiple time points. The analysis of expression data reveals valuable

insights of gene function and gene regulation. For example, by comparing gene expression

patterns of healthy people (controls) and people with a certain disease (cases), genes over-

or under-express in cases may be identified to have association with the disease and the

function of an unknown gene could be inferred from genes in the same cluster.

1.3.2 Clustering analysis

There are many ways to analyze gene expression data. Gene expression clustering intends to

group “similar” genes into the same cluster and the “dissimilar” ones into different groups.

Two crucial questions in clustering analysis need to be answered are: how do we define simi-

larity and how to decide whether two genes are similar enough to be clustered into one group?

Depends on the objects of a study or project, investigators may have their own expectation

of how the clusters would look like. For example, a study aim to study gene functions would

like to have genes share similar function (in a same functional circuit/pathway) clustered

together. The expectation leads to project-oriented definition for “similarity” as well as the

clustering algorithm. Hundreds of clustering algorithms have been developed and some of

these algorithms have been applied to gene expression analysis since the huge amount of
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data became available. Inventing a new clustering algorithm is easy; inventing a clustering

algorithm which is computationally efficient and able to provide accurate and biologically

meaningful gene clusters for studies with specific targets is challenging; and inventing a

clustering algorithm that performs well under all kinds of circumstances could be mission

impossible. It is possible that a clustering algorithm works perfect for one study leads to

disaster for another. No standard criteria that can be used to evaluate the performance of all

different algorithms up to date. And there’s no single algorithm can perform well uniformly

in different studies. Statistical issues raised up in the clustering analysis of gene expression

profiles include finding appropriate similarity measures, deciding whether two genes are sta-

tistically significantly related and a fair evaluation procedure for the performance of different

clustering algorithms.

The microarray expression profiling shows its advances in unraveling valuable biological

insights. This high-throughput study of multiple genes appears to be more powerful when

integrated with genetics. Jansen and Nap proposed a new manner of study termed genetical

genomics [43]. It is the study that treats expression level of each single gene of the thousands

of genes as quantitative traits and map genomic regions responsible for the gene expression

variation. Genetical genomics combines the studies of gene expression profiles and traditional

QTL mapping and therefore also referred as expression QTL (eQTL) mapping study. eQTL

mapping has being applied widely to different model organisms because of its great promise

in inferring gene regulation. The details of a general framework for eQTL mapping will be

discussed in the following section.
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1.4 Expression quantitative trait loci (eQTL) mapping

Traditional quantitative trait loci (QTL) mapping has been focused on identifying genetic

loci responsible for the phenotypic changes of a quantitative trait. Such studies are designed

to detect linkage between genetic markers and the functional (causal) variants responsible for

the phenotypic variability, and thus fail to disentangle the functional mechanisms of variants

due to the regulation of genes. It has been commonly recognized that gene regulations play

pivotal roles in determining trait variations in natural populations by promoting or reducing

the expression of functional genes directly related to the trait. The obvious difference in

the looks and functions between organisms is not due to the static chemical blueprints but

rather to the complexity of dynamic functional mechanisms of gene regulation.

The recent advances in microarray technology open an alternative front for multiple gene

discovery by studying thousands of gene expression profiles simultaneously under certain

conditions or treatments. As an intermediate molecular phenotypes that associates genetic

variants with physiological outcomes, e.g. human diseases, analysis of gene expression holds

great promise to infer genes accompanying a disease trait, and serves as an alternative to

identify novel relationships among genes. A number of studies have shown repeatedly that

gene expressions are inheritable traits, thus can be used for genetic mapping [44, 45, 46].

eQTL mapping study successfully integrates the two endeavors, genetic mapping and gene

expression analysis, and allows the systematic insights into the biology of gene regulation.

By assaying genome-wide gene expressions and genotype profiles for individuals in a

mapping population (e.g. F2, RIL and natural human population), the traditional statistical

QTL mapping tools can be used to map the genomic regions that are responsible for the

variation in transcriptional abundance of thousands of genes (Figure 1.1). Single trait-single
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marker eQTL mapping analyzes the quantitative level of the transcript of one single gene

at a time to map eQTL [46]. By assembling eQTL for all genes across the genome, we can

build up a comprehensive two-dimensional diagram in which positions of detected eQTL are

plotted against the positions of genes for which eQTL was mapped. The diagram provides

an important reference source for characterizing cis and trans regulations. eQTL whose

physical location is close to the actual location of the target gene (e.g. 10kb or 20kb up

and down the gene region) are defined as cis-acting regulators of the gene. And the linkage

between the gene and the eQTL is a cis-linkage. In contrast, eQTL located remotely away

the target gene is trans-acting regulator and the linkage is a trans-linkage. For example, if

a gene on chromosome 10 transcribes to create a transcription factor which regulates the

expression of a gene on chromosome 1, then the gene on chromosome 10 trans-regulates the

gene on chromosome 1. Generally, cis-regulators have bigger effects on gene expression and

therefore are easier to be detected. Gene expressions are found to be polygenic [45, 47] and

the distribution of eQTL across the genome is not uniform. Some genomic regions linked to

multiple genes [47] are regulation hotspots or “master regulator”.

eQTL mapping study involves analysis of large volume of data. Statistical strategies

and methods are needed in every step of eQTL mapping: experimental design, data pre-

processing, mapping and down-stream functional analysis. Take the mapping stage as an

example, efficient and intuitive approaches to the identifications of eQTL for transcription

levels are crucial. Besides, multiple testing issue is another well known challenge in large

scale eQTL mapping studies. Multiple testing corrections are implemented differently in

various studies and no standard statistical approach addressing the multiplicity issue in

eQTL mapping study has been developed so far. There are quite a few review articles for
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Figure 1.1: A typical design of the eQTL experiment. (a) Two genetically distinct strains
(BY and RM) are chosen as parent strains. (b) Segregants are generated by crossing the
two parent strains. (c) Gene expression levels of all segregants are measured by microarray.
(d) Genetic markers across the genome are genotyped. (e) eQTL mapping results for one
gene expression. (For interpretation of the references to color in this and all other figures,
the reader is referred to the electronic version of this dissertation.)

eQTL mapping in the literature. Readers are referred to [48] for a review of statistical

methods in eQTL mapping, and to [49, 50] for a general review of eQTL mapping studies.

1.5 Objectives and organization

Despite the successes of eQTL studies, there are open questions remained to be answered.

The classification of cis and trans regulation relies on how a researcher defines gene regions.
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Due to the limited knowledge on the explicit genomic map, no standard definition of gene re-

gions is available. Misclassification of cis and trans regulation is possible when inappropriate

distance rule is applied. For example, a transcription factor near its target gene could be re-

ferred to as a cis regulator. Moreover, studies of eQTL in a variety of organisms observe that

the polygenic basis of transcriptional variation is complex. One single regulator may regulate

the expression of multiple genes and the cumulative effects of multiple regulatory elements

could function jointly to affect the expression of a single gene or multiple genes in a network.

Figure (1.2) shows various gene regulation pattern. Additional hallmarks of the complexity

of genetic basis of expression changes includes gene×gene interaction, gene×environment

interaction and pleiotropy. A complete understanding of the genetic basis of gene expression

is far more than the broad claims of cis and trans regulations.

One of the major goals of eQTL mapping studies is to elucidate gene regulatory principles

and ultimately gain knowledge of the genetic architecture underlying complex physiological

phenotypes [43, 49, 51, 52]. It is the aim of this dissertation to develop statistical mapping

methods and strategies which can be applied to eQTL studies to obtain novel findings about

gene regulation.

The content of the dissertation is organized as follows. In chapter 2, we propose a statisti-

cal approach to identify pathway regulators, eQTLs that regulate transcriptional variation of

pathways. A p-value combination approach which considers correlations between individual

p-values to infer pathway regulation is developed in chapter 3. The method combines indi-

vidual p-values across pre-defined genetic systems to infer the cumulative effect of the whole

genetic system in regulating gene expressions. Chapter 4 introduces a statistical framework

for detecting gene×gene interactions from a conceptually novel gene-centric perspective. A
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Figure 1.2: Various patterns of gene regulation: (A) cis-element regulates its own gene
expression; (B) trans-element regulates downstream gene expression; (C) multiple trans-
elements regulate the same gene expression; (D) single trans-element regulates single gene
expression or multiple gene expressions in a network (i.e., gene network); and (E) multiple
regulators in a genetic pathway function jointly to regulate multiple gene expressions in or
not in a network. The shaded ovals and rectangular represent regulatory elements and coding
genes, respectively. The dotted lines imply that genes are located in different regions.

model based kernel machine approach for investigating gene×gene interaction effects un-

derlying quantitative traits is developed. The approach is extended to studies with binary

phenotypic outcomes in chapter 5.
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Chapter 2

A systems biology approach for

identifying novel pathway regulators

in eQTL mapping

2.1 Background and motivation

Most current eQTL mapping studies treat each gene expression as one single trait. The so

called single trait analysis may not be powerful enough to identify genetic variants responsible

for gene expression changes given that genes function in networks. Wessel et al. found in their

eQTL mapping study that many SNPs are responsible for the expression change of genes

belonging to a certain pathway [53]. It is commonly recognized that genes in a biological

pathway, e.g. metabolic pathway, developmental pathway or signal transduction pathway,

“cooperate” with each other and function as a team to fulfill their designated tasks. Different

expression of one gene, especially those that play key roles in the pathway, would influence
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expression levels of other genes in the same pathway. Thus, a signal perturbation of a

particular gene in a pathway would induce a cascade of biochemical events that affect all,

or many of the other genes belonging to the same network or pathway. Take this functional

mechanism of a pathway into account, the current broad claims of cis- or trans-regulation

detected with the single trait analysis might not be sufficient and efficient enough to capture

the relationship between genetic variations and gene expressions.

Mootha et al. [54] have previously showed that focusing on expression data in terms of

predefined pathways can provide valuable insights not easily achievable by methods focus

on individual genes. Many scientists are thus interested in identifying which genetic variant

mediates the expression change of a pathway. The identified regulator, termed pathway reg-

ulator, provides additional information about the function of gene regulation from a systems

biology perspective. A number of eQTL studies have incorporated prior biological pathway

information into their analysis [55, 56]. And most of these studies implement a two-stage

procedure: perform single trait analysis in the first stage and then conduct gene set enrich-

ment analysis (GSEA) to test whether an expression pathway is enriched at a particular

locus. The two-stage approach obviously does not take care the correlation, which is com-

mon between genes in a pathway. Moreover, the accuracy and efficiency of the enrichment

analysis in the second stage depends heavily on the results of the first stage. When multiple

genes function jointly, each with small marginal effects, the approach may fail to identify

important pathway regulators. Another disadvantage of the two-stage analysis is the multi-

plicity issue. With thousands of gene expression profiles, single trait analysis have to adjust

for the large number of tests when declaring significance. This may lead to low power in

identifying genes with small marginal effects, which again affects the power of the second
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stage enrichment analysis.

Considering the limitation of the current single trait-based analysis and motivated by

the biological phenomenon, we propose to identify common pathway regulators by treating

gene expressions belonging to a common pathway as a multivariate response, and focus our

interests in identifying pathway regulators that mediate the expression change of a particular

biological pathway or process. More importantly, when multiple gene expressions are jointly

considered, the multiple testing burden in a single trait analysis is potentially reduced, and

hence leading to increased power. For the illustrations in the chapter we restrict ourselves

to one yeast dataset [47]. Our analysis indicates there are potential pathway regulators in

regulating pathway expressions. Applying commonly used hotspot detection method, we

identified several pathway regulator hotspots. We also performed an enrichment analysis

to test which genetic pathway is enriched in regulating the expression change of a certain

pathway, and found significantly enriched genetic pathways in regulating other pathway

expressions.

2.2 Methods

2.2.1 eQTL dataset

The yeast dataset was generated from 112 meiotic recombinant progeny of two yeast strains:

BY4716 (BY; a laboratory strain) and RM11-1a (RM; a vineyard isolate) aimed to under-

stand the genetic architecture of gene expressions. The dataset contains expression profiles

of 6216 gene expression traits and 2956 SNP marker genotype profiles. For more details

about the dataset, see [47].
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In the yeast genotype profiles, genotypes of neighboring markers tend to be very similar

and some are even identical. For those SNP markers showing high correlation, we follow the

strategy proposed by Sun [57] to construct marker blocks, in order to remove redundancy

and reduce the genotype dimension. Specifically,

i) Merge markers into marker blocks: Define u = (u1, u2, · · · , un)T and v = (v1, v2, · · · , vn)T

as vectors of two SNP genotype profiles over n individuals. Each SNP is coded as 0

or 1 depending on whether it is inherited from BY or RM strain. The Manhattan

distance between the two SNP genotype vectors is defined as

MD =
n∑

i=1

|ui − vi|

The value of MD indicates the degree of overlap of the two SNP markers. A small value

would indicate much overlap between the two markers. We include a SNP marker into

a marker block if the Manhattan distance between a marker and any markers in its

neighborhood is less than a predefined value r. In our analysis, we set r = 1. Other

values like 1.25, 1.5 could also be used, depending on how strict the constrain you want

to put on the marker similarity. If either ui or vi is missing for any individual i, the

term |ui − vi| is excluded from the summation, and the MD measure is adjusted by

multiplying a factor n
n−m [57], where m is the total number of terms been excluded.

By setting r = 1, 1168 marker blocks are obtained.

ii) Define genotype profiles for each marker block : We find consensus of each marker block

and then dichotomize it. An individual genotype is set to 0 or 1 if at least 75% of the

markers in a block equals to 0 or 1 for that individual. Otherwise it is set as missing.
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Individuals with missing genotypes will be eliminated for further analysis.

In the following presentation, when we see a marker which really means a marker block.

Quite often some of the marker blocks only contain one SNP marker and some may con-

tain more than one marker. We interchange the two words “marker” and “marker block”

frequently and they do mean the same thing.

2.2.2 Genome-wide pathway regulator identification

We focused our analysis on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database

and we extracted 99 pathways from the R package: YEAST. Let Yi = {yi1, · · · , yip}T be

a vector of gene expressions in a pre-defined pathway for the ith subject, where p is the

size of the pathway. Assuming the 1168 SNP marker blocks are the causal genetic variants

responsible for the gene expression changes, we test on one marker block at a time, ignoring

any variants located at the interval flanking any two marker blocks. Thus, for each marker,

there are two genotype categories with each one corresponding to one multivariate expression

profiles. To test the differential expression pattern between different genotypes at a locus, a

Hotelling’s T 2 test can be applied which has the form,

T 2 = (Ȳ0 − Ȳ1)
T [(

1

n1
+

1

n2
)Spooled]

−1(Ȳ0 − Ȳ1) (2.1)

where Ȳj =
∑nj

i=1 Yi and nj are the sample mean expression vector and sample size for

genotypes coded as j (j = 0, 1), respectively. Assuming equal variance for expression values

in the two genotype categories, a pooled variance estimation Spooled can be used in defining

the T 2 statistic. The T 2 test is performed for all 99 KEGG pathways at every marker block

across the genome.
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Theoretically the T 2 statistic follows a scaled F distribution [58]. To control the family-

wise error rate across the whole genome, we perform a permutation test to determine the

genomewide cutoff. When doing permutations, each row vector of gene expression is consid-

ered as one observation to retain the gene correlation information within a pathway. Then we

fix the genotype information and randomly sample expression vectors without replacement.

This random reshuffling procedure disturbs the relationship between gene expressions and

genotypes. One thousand permutations are conducted to generates a null distribution for the

T 2 statistic. For each permutation, T 2 values for all marker blocks are calculated, and the

maximum T 2 value is recorded. The 1000 maximum T 2 values represent the genome-wide

null distribution of the T 2 statistic in which the 95th percentile is considered as the genome-

wide cutoff. A SNP marker block is considered as a pathway regulator if the observed T 2

value is greater than the cutoff value.

The T 2 test is performed when the number of genes in a pathway is less than the sample

size. However, in real applications some pathways may contain large number of genes (p > n).

Given the small sample size (total 112) in the yeast dataset, this does happen (e.g., pathway

‘04111’ and ‘03010’). When this happens, instead of using the T 2 statistic, we propose to

use the F statistic proposed by Zapala and Schork [59]. Consider a multivariate regression

model,

Y = Xβ + ε (2.2)

where Y is a multivariate response (e.g., gene expression in a pathway), X is the design

matrix for SNP genotypes. When only one SNP marker is considered, X is an n× 2 matrix

with ones in the first column and numerical genotype coding in the second column. The F
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statistic proposed by Zapala and Schork has the form,

F =
tr(HGH)

tr[(I −H)G(I −H)]

where H is the hat matrix of the multivariate regression model in (4.1), and

G = (I − 1

n
11′)A(I − 1

n
11′)

where matrix A = (aij) = (−1
2d

2
ij) is a so called distance matrix which measures distance

between expression levels of genes in a pathway; 1 is a column vector of ones and I is an

identity matrix. An easy way to form the distance matrix is to use the correlation matrix

and transform them with simple transformation technique, i.e. dij =
√
2(1− rij) where rij

is the correlation between genes i and j [59].

The F statistic is specially useful when the number of parameters p is larger than the

sample size n [59]. However, it is not trivial to find the theoretical distribution of the F

statistic. Here, we still conduct a permutation procedure to assess the statistical significance.

When p = 1, the F and the T 2 statistics are identical if the distance matrix is computed

through the use of the standard Euclidean distance measure. For pathways with small

number of genes, results obtained with the two statistics are also very consistent. For

pathways with large number of genes, the F method is more time demanding due to large

matrix operation. Thus, we only apply this method to pathways with p > n.
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2.2.3 Pathway regulation hotspot detection

eQTL hotspot is defined as the genetic region where there are a large number of gene ex-

pressions are mapped to than by random [60, 61]. For traditional eQTL hotspot detection,

genomic regions are generally defined as “bins” with each “bin” covering a genomic interval

in a length of, say 5Mb (in humans)[60]. Similar to regular eQTL hotspot detection, we can

also identify pathway regulation hotspots. Let Nl (l = 1, · · · , L(= 1168)) be the number

of pathways which are significantly mapped to marker block l. Let N =
∑L

l=1Nl be the

total number of pathways significantly mapped to the whole genome. Then a Poisson distri-

bution can be assumed for each Nl with the mean parameter λ estimated by the empirical

mean N/L. Consider each marker block as one potential hotspot, the probability of observ-

ing Nl or more significant pathways mapped to a marker block can be considered as the

hotspot p-value, denoted as pl. Take the Bonferroni correction at the 0.05 genome-wide sig-

nificant level, a marker block is considered as a pathway regulation hotspot if pl < 0.05/L.

Alternatively, we can combine neighborhood marker blocks as one synthetic block with a

pre-defined length, e.g., 20kb length. Then the total genome can be divided into K(< L)

segments. Following the same procedure described above, pathway regulation hotspots can

also be tested.

Relaxing the Poisson assumption, we can also use a nonparametric permutation procedure

to identify regulation hotspots. Let Q = (qij) be a matrix which contains the mapping

results, where qij = 1 if pathway i (i = 1, · · · , 99) is significantly mapped to locus j (j =

1, · · · , 1168), and qij = 0 otherwise. We randomly permute the positions for 1’s for each row

of matrix Q and generate 1000 permuted matrices Q∗
1, Q

∗
2, · · · , Q

∗
1000 while keeping the row
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sums of all these Q∗
p’s the same as the row sum of original observed matrix Q, i.e.,

1168∑

j=1

q∗p,ij =
1168∑

j=1

qij , i = 1, 2, · · · , 99, p = 1, 2, · · · , 1000

The distribution of column sums for each permuted matrix is recorded. A locus is declared

as a regulation hotspot if the observed count at that locus is larger than the 95th percentile

of the permuted distribution.

2.2.4 Genetic pathway enrichment analysis

In a recent genome-wide association study for identifying disease risk variants, Wang et al.

[62] first proposed a pathway-based association study to map genetic pathways involving

multiple genetic variants functioning together to give rise to a disease phenotype. Motivated

by this idea, we expect certain genetic pathways be enriched in responsible for the expression

change of an expression pathway. By genetic pathway we mean SNP variants that belong

to a common pathway. Here we use GP to denote a genetic pathway and use EP to denote

an expression pathway. The purpose of this analysis is to identify which GP is enriched in

mediating the expression change of an EP. For an enriched GP corresponding to an EP, we

anticipate the expression variation of that EP can be explained by the joint function of SNPs

in that GP.

From the genome-wide analysis, we can obtain a list of significant pathway regulators

(markers) corresponding to an EP. Total 1149 unique genes (including annotated and non-

annotated) are extracted from the whole genome. GPs are then grouped according to the

KEGG pathway information. We call a gene is significant if there is at least one marker in

this gene is significant. It is possible that there are several markers in a gene are significant.
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Similar as the EPs, there are total of 99 GPs retrieved from the KEGG database. Fixing

each EP, we can test which GP is enriched to explain the expression variation of an EP. Let

nS be the total number of genes that are significantly associated with an EP. Let nG be the

number of genes that belong to a GP, among which S are significantly associated with an

EP. Then we can formulate a 2× 2 table shown in Table 2.1. The Fisher’s exact test can be

applied to calculate the enrichment p-value which is then compared with a significance level

α. We use a less conservative α value, i.e., α = 0.01 to declare GP enrichment.

Table 2.1: A simple layout for testing genetic pathway enrichment
No. of genes in a GP No. of genes not in a GP Total

No. of sig. genes S nS − S nS
No. of non-sig. genes nG − S K − nG − nS + S K − nS

Total nG K − nG K

K(= 1149) is the total number of unique genes covering the marker blocks across the genome.

2.3 Results

2.3.1 Pathway regulators

We combined prior pathway information (e.g., KEGG) with the proposed pathway mapping

approach to detect pathway regulators. There are totally 99 pathways retrieved for the Yeast

package in R for this dataset as listed in the supplement Table (A.1). At each marker block

position, a T 2 or F statistic was calculated for each gene expression pathway depending on

the size of the pathway. We illustrate the idea with one pathway: MAPK signaling pathway.

Figure 2.1 shows the T 2 profile plot for the pathway across the 16 yeast chromosome. The

horizontal dash-dotted line in the plot indicates the 5% genome-wide threshold by permu-
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tation tests. Genomic positions where the T 2 peaks passing the threshold are considered as

potential pathway regulators. For this pathway, we identified several pathway regulators on

chromosome 2, 3, 5, 8, 14, 15 and 16. A full plot of the T 2 (or F ) profiles for all the 99

pathways are listed in a appendix file given by [63].
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Figure 2.1: The T 2 profile plot across the entire yeast genome (16 chromosomes).The dash-
dotted horizontal line is the 5% genome-wide permutation cutoff. The vertical dotted lines
separate different chromosome regions. The peaks of the T 2 profiles that pass the cutoff
correspond to potential pathway regulation loci (e.g. on chromosome 2, 3, 5, 8, 14, 15 and
16). Both the cutoff and the T 2 values are log10 transformed.

As indicated by the whole genome scan of all the 99 pathways, we can see consistent

strong association signals on chromosome 3, 14 and 15 which indicates that there are impor-

tant pathway regulators located on these three chromosomes. Since large number of EPs are

regulated by these regulators, they are potentially “master” pathway regulators. For exam-

ple, SNP marker YCL009C (ILV6) on chromosome 3 regulates 39 EPs and its neighborhood
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genes (e.g., LEU2 and BUD3) also regulate large number of EPs.
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Figure 2.2: Number of regulators for each expression pathway. The horizontal axis denotes
the 99 KEGG pathways and the vertical axis denotes the number of marker blocks that are
significantly associated with each expression pathway.

Figure 2.2 shows how many regulators each EP has. All the 99 EPs are plotted in the

horizontal axis and the vertical axis indicates the number of regulators each pathway has.

We can clearly see that the expression of some pathways are affected by many genetic vari-

ants. For example, pathway 62 (Pyruvate metabolism pathway) has 98 regulators. Some

pathways are not regulated by any variants, for instance, pathway 60 (ABC transporters -

General) and 90 (Two-component system - Organism-specific). Note that many markers are

highly correlated in this yeast dataset. Even though we merged some markers with large

proportion of overlaps, we still expect large number of markers to be highly correlated with

neighborhood markers. Thus, Figure 2.2 only gives us a rough idea of how each pathway

expressions are affected by many regulators. Whenever there is a causal regulator presented
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in a genomic region, due to strong linkage disequilibrium (LD) between neighborhood mark-

ers, its neighborhood markers might also show strong association signals. Thus, the true

regulators for each EP might be smaller than the reported numbers.

2.3.2 Pathway regulation hotspot

In eQTL mapping study, people are often interested in knowing which genomic region or

interval plays important roles in regulating gene expressions. The so identified regions or

intervals are called eQTL hotspots [60]. Since we merged some markers to form marker

blocks, we simply treat each block as one potential pathway regulation hotspot and assess

its significance. We counted the number of pathways being regulated by a marker block

across the genome. The average number of association for one marker block is λ̂ = 2.52, and

none of the marker block was expected to contain association with more than 10 pathways

by chance at the 5% genome-wide significant level after Bonferroni correction (0.05/1168).

We detected total 76 pathway regulation hotspots. Figure 2.3 shows the distribution of the

identified hotspots. The horizontal dash-dotted line indicates the threshold calculated from

the Poisson model. The vertical bars indicates the number of pathways regulated by each

marker block. Significant pathways at the hotspots are indicated by red color and all other

significant pathways are indicated by cyan color. We identified serval pathway regulation

hotspot groups located on chromosome 2, 3, 5, 10, 12, 13, 14 and 15. Chromosome 5 and 15

show two distantly located hotspots.

It is interesting to note that most of the hotspots are clustered together on the genome.

Some clusters have narrow band (e.g., the ones on chromosome 5, 10, 14 and 15), and some

have wide band (e.g., the ones on chromosome 2, 12 and 13). As we noted from the marker
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Figure 2.3: The pathway regulator hotspot. The dash-dotted and the dashed lines indicate
the threshold calculated using the Poisson distribution and the permutation method, respec-
tively. Red bars indicate the number of EPs regulated by hotspots and cyan bars indicate
all other significant EPs not mapped to the hotspots.

data, there are strong correlations (LD) between markers for this yeast dataset. Thus, this

kind of pattern is expected. If we increase the hotspot interval size, the hotspot band would

become narrower with more sharp peak. Noted also the clustered pattern for other regulation

loci due to high LD between neighboring SNP markers.

We also applied the permutation method to detect regulation hotspot. When using

the permutation method, the cutoff is changed to 11. The horizontal dashed line in Fig.

2.3 indicates the permutation cutoff. Loci with more than 11 associated pathways were

identified as hotspots. With increased threshold, the number of regulation hotspots reduced

to 67. Several hotspots including the ones on chromosome 5 and 10 are no longer significant
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with the new threshold value. Overall, the two methods for identifying regulation hotspots

give quite similar results. A detailed lists of the hotspot regulation are given in appendix,

Table (A.2).

In a recent study of genetic basis for small-molecule drug response, Perlstein et al. [64]

detected eight QTL hotspots located on chromosome 1, 3, 12, 13, 14, 15 with the same yeast

marker data. Five of those (on chromosome 3, 12, 13 and 14) overlap with the hotspots we

identified. This information indicates the relative importance of these four genomic regions

in regulating gene expressions as well as drug responses. It is possible that the variation in

drug response is due to the variation in pathway expressions which are directly related to

hotspots regulation. Models can be developed to test this type of causal relationship [65],

and will be considered in future work.

2.3.3 Genetic pathway enrichment

In addition to identify pathway regulation hotspots, we also performed a functional enrich-

ment analysis using the Fisher’s exact test to assess if a GP is enriched in regulating the

expression of an EP. An enrichment p-value was computed to reflect the degree in which

a given GP is over-represented. The results are tabulated in Table 2.2. A heatmap of the

pathway enrichment analysis is given in the supplemental figure-Figure (A.1). To make the

table consistent with the supplemental figure (A.1), we also listed the pathway number (de-

noted as #) in addition to the pathway identification number (PID). The left column shows

the enriched GPs which are responsible for the expression change of the corresponding EPs

in the left column. All enriched GPs are claimed at the 1% significance level.

Clearly, pathway 15, 20 and 74 are relatively important in regulating the expression of
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other pathways, since each one is enriched for a large number of EPs. It is hypothesized that

the signal perturbation of these pathways may have pleiotropic consequences on multiple

downstream pathways. Particularly for pathway 20, it may act as potential “master” path-

way regulators as it regulates 25 pathway expressions. Also noted that most enriched GPs

are metabolism or biosynthesis related pathways, which may indicate that these pathways

might play key roles in the yeast genome.

In testing GP enrichment, we found that some GPs are enriched in regulating its own gene

expressions. We define these GPs who regulate their own gene expressions as cis-pathway

regulators. The highlighted bold-font pathways in Table 2.2 are those that show strong cis-

regulation effects. These six GPs are pathway 13, 15, 20, 27, 43 and 44. All the others show

trans-regulation effects. Noted that the enriched GPs are claimed at the 0.01 significance

level. If we lower the significance level to 0.001, all the cis-regulation pathways are gone,

indicating that the cis-regulation effect is actually weaker than the trans-regulation effect in

this application.

In a closer look at the enriched GPs, we found that pathway 20 contains two SNP markers

(YCL009C in gene ILV6 and YCL018W in gene LEU2) that are located on the hotspot

on chromosome 3. LEU2, beta-isopropylmalate dehydrogenase, plays an important role in

catalyzing the third step in the leucine biosynthesis pathway. Pathway 78 also contains two

SNP markers (YBR176W in gene ECM31 and YCL009C in gene ILV6). In checking the

KEGG pathway, we found that ILV6 is on the most upstream in pathway 78. Thus this gene

may play a key role in affecting the downstream gene functions and in turn affecting many

other pathway expressions.
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2.4 Discussion

Understanding the genetic architecture of complex traits is one of the major challenges in

modern biology. In a series of recent advances, many efforts have been focused on mapping

genetic regions, called QTLs, in responsible for the phenotypic variation of a complex trait.

Due to limited mapping resolution and other non-genetic factors contributing to the pheno-

typic variation, this process has not been very successful in real applications, leaving only

a few successful cases being reported in literature [66, 67]. Recent advances in microarray

technology allows us to measure the transcription abundance of many organisms and hence

open another framework in understanding the genetic basis of gene expression, with an aim

to shed new light on the regulation of a genetic system. The initiation of the eQTL mapping

with combined genetic mapping and gene expression analysis brings new prospect in under-

standing the complex process of gene regulation toward the ultimate goal of improving trait

quality and disease prevention [68].

Based on the biological assumption that genes function in networks, dissecting the genetic

architecture of gene regulation from a systems biology perspective should provide more

insights regarding the function of a biological system. In this article, we made an attempt

to study gene regulations by combining gene expression and genetic polymorphism data

together and proposed a pathway-based systems biology approach that aims to identify

genetic variants that regulate pathway gene expressions. We propose to do the analysis

by considering gene expressions in a pre-defined pathway as a multivariate response. Since

genes in the same biological pathway tend to have similar expression patten, looking at a

bunch of expression levels in a pathway as our unit phenotype will give us more information

about the differential expression pattern about this pathway, and thereby will give us more
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power to steadily detect the association of a genetic variation with the expression changes

of a pathway. We focused our application to a real dataset in yeast and identified significant

regulation patterns across the 16 yeast chromosomes. The detected pathway regulators tend

to cluster together on the genome which might be due to the strong correlations among SNP

markers on the genome.

In this study, we identified strong pathway regulation hotspots. Most of the hotspots

overlap with the ones tested with single trait analysis [47]. Perlstein et al. recently applied

the same yeast data to study individual genetic differences in response to small-molecule

drugs and identified eight hotspots in response to multiple compounds [64]. Their hotspots

overlap with most of the pathway regulation hotspots identified in our study except the

one on chromosome 1. This information indicates that the same polymorphisms may affect

both gene expression and compound response. The genetic enrichment test proposed in

this work can be applied to their study to understand which genetic pathways are involved

in drug response. Noted in our analysis, each hotspot contain either a single pleiotropic

polymorphism or several closely linked polymorphisms (marker blocks) affecting the response

to multiple pathway expressions. If we group the genomic regions as intervals with 20kb

length as a previous work did [47], we may reduce the number of hotspots to a more compact

size. On the other hand, to do so we may end up with an interval containing many genes

and this may bring difficulties in interpretation.

In a similar analysis of the same yeast dataset by [69], the authors also found out the

pattern that gene expressions associated with a common SNP marker are tend to be in

the same pathway given that the pathway information is available. In their analysis, for

instance, twelve expressions were identified to have strong linkage with the SNP marker at
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one locus on chromosome 3. Two out of these 12 traits are included in the same KEGG

pathway: MAPK signaling pathway (pathway id “04010”). Seven expression traits were

shown to have linkage with the SNP marker at another locus on chromosome 3. Three

out of these 7 traits are in the same pathway: Valine, leucine and isoleucine biosynthesis

pathway (pathway id “00290”). These two loci were also detected to be pathway regulators

in the current study. These results underscore the importance in finding genetic regulators

responsible for the joint expression change of a pathway.

From the biological perspective, due to limited knowledge in genome annotation and gene

pathways, not all genes can be mapped to a pathway. In the current analysis, only 1193

gene expressions are mapped to the 99 KEGG pathways, leaving a large proportion of genes

unmapped. Alternatively, one can also focus the analysis on Gene Ontology (GO) terms

which have a more comprehensive coverage of the gene information. As more and more gene

information being documented in the public database (e.g., KEGG), this will eventually not

be an issue. With limited pathway information, we can also classify gene expressions accord-

ing to their correlation information to construct gene co-expression networks or modules [70].

These modules can be treated as pseudo pathways for further analysis. When a module is

found to be significantly regulated, the function of those unknown genes can thus be inferred

from those genes with known function in the same module. Since genes in the same module

potentially share the same regulator, this can help generate meaningful biological hypothesis

for experimental validation.
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Table 2.2: Genetic pathway enrichment analysis results. The right column indicates enriched genetic pathways (GPs) that
are responsible for the expression change of the corresponding expression pathways (EPs) in the right column, at the 0.01
significant level. Pathways highlighted with bold faces indicate cis-pathway regulation.

# (PID) Enriched Genetic Pathway # (PID) Expression Pathway
1 (04010) MAPK signaling pathway 47 (00480) Glutathione metabolism
13 (03020) RNA polymerase 13 (03020) RNA polymerase
15 (00051) Fructose and mannose metabolism 15 (00051) Fructose and mannose metabolism

16 (00052) Galactose metabolism
43 (00520) Nucleotide sugars metabolism
70 (00625) Tetrachloroethene degradation

16 (00052) Galactose metabolism 15 (00051) Fructose and mannose metabolism
43 (00520) Nucleotide sugars metabolism

17 (03022) Basal transcription factors 83 (00220) Urea cycle and metabolism of amino groups
20 (00290) Valine, leucine and isoleucine biosynthesis 1 (04010) MAPK signaling pathway

4 (00910) Nitrogen metabolism
6 (00410) beta-Alanine metabolism
18 (00053) Ascorbate and aldarate metabolism
20 (00290) Valine, leucine and isoleucine biosynthesis
25 (00010) Glycolysis / Gluconeogenesis
26 (00330) Arginine and proline metabolism
32 (00920) Sulfur metabolism

PID=pathway ID
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Table 2.2 (cont’d)

# (PID) Enriched Genetic Pathway # (PID) Expression Pathway
20 (00290) Valine, leucine and isoleucine biosynthesis 38 (00563) GPI-anchor biosynthesis

45 (00340) Histidine metabolism
49 (00750) Vitamin B6 metabolism
52 (00251) Glutamate metabolism
54 (00252) Alanine and aspartate metabolism
58 (00670) One carbon pool by folate
61 (00300) Lysine biosynthesis
66 (00260) Glycine, serine and threonine metabolism
73 (00310) Lysine degradation
75 (00630) Glyoxylate and dicarboxylate metabolism
77 (00450) Selenoamino acid metabolism
78 (00770) Pantothenate and CoA biosynthesis
86 (00360) Phenylalanine metabolism
88 (00680) Methane metabolism
92 (00401) Novobiocin biosynthesis
96 (00272) Cysteine metabolism
99 (00903) Limonene and pinene degradation

27 (00650) Butanoate metabolism 27 (00650) Butanoate metabolism

PID=pathway ID
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Table 2.2 (cont’d)

# (PID) Enriched Genetic Pathway # (PID) Expression Pathway
35 (00561) Glycerolipid metabolism 51 (00521) Streptomycin biosynthesis

68 (00530) Aminosugars metabolism
39 (00513) High-mannose type N-glycan biosynthesis 87 (01030) Glycan structures - biosynthesis 1
43 (00520) Nucleotide sugars metabolism 43 (00520) Nucleotide sugars metabolism
44 (00020) Citrate cycle (TCA cycle) 44 (00020) Citrate cycle (TCA cycle)
46 (00980) Metabolism of xenobiotics by cytochrome P450 64 (00440) Aminophosphonate metabolism
68 (00530) Aminosugars metabolism 53 (00072) Synthesis and degradation of ketone bodies
74 (03010) Ribosome 45 (00340) Histidine metabolism

86 (00360) Phenylalanine metabolism
92 (00401) Novobiocin biosynthesis

78 (00770) Pantothenate and CoA biosynthesis 86 (00360) Phenylalanine metabolism
92 (00401) Novobiocin biosynthesis

PID=pathway ID
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Chapter 3

A combined p-value approach to infer

pathway regulations in eQTL mapping

3.1 Introduction

Given that the expression of a gene or a network of genes may be regulated by a group of

genetic variants functioning together as a system, studying gene regulations by focusing on

the joint function of variants in a system could shed novel light into the complexity of a

biological system. It is commonly recognized that genes in a pathway or network act in a

coordinated manner to fulfill a joint task. Thus analysis from a systems biology perspective,

for instance, focusing on genetic variants in terms of pre-defined pathways/networks, can

provide valuable biological insights into gene function and regulation. Moreover, variants

in a genetic pathway often confer moderate effects in mediating the expression change of a

gene or a gene network, which makes it difficult to detect individual effect and consequently

leads to low power in single marker analysis. From a biological point of view, signals in
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a genetic system, even though individually are not significant (say p-values of 0.06 for an

extreme case), many such values for related genes within a pathway or network when taken

together may suggest the relative importance of that particular genetic system in mediating

gene expression changes. By a genetic system we mean a group of genes within a genetic

functional category which can be obtained from various sources such as Kyoto Encyclopedia

of Genes and Genomes (KEGG)[71], Gene Map Annotator and Pathway Profiler [72] and

Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB) [73], or a category

of multiple loci defined by SNP physical locations.

The above thoughts motivated us to consider a joint analysis in which multiple signals

are combined together to indicate the contribution of the overall system. Herein, we argue

that a joint analysis could provide additional insights into gene function and regulation

that otherwise could not be achieved by looking at individual signals alone. We propose to

combine individual p-values in a genetic system (e.g., KEGG category) while considering the

correlations among them, to form an overall signal for inference of shared gene expression

patterns in an eQTL mapping framework.

Methods of combining p-values have been applied to a wide range of problems, including

genome-wide association studies [74, 75], multiple endpoints studies in clinical trails and

meta-analysis, and detecting differentially expressed genes [76]. There are different p-value

combination methods in the literature, for example, the Fisher’s combined p-value approach

[77]; the truncated product method [78]; the rank truncated product method [79]; and the

weighted truncation product method [80]. A commonality among these combining methods

is to first take a transformation of individual p-values and then evaluate the distribution of

the combined statistic. However, when individual tests are not independent, the distribution
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of the combined statistic is difficult to obtain. Moreover, there is no analytical criterion for

choosing the truncation threshold for the truncated product methods.

For multiple individual tests in a genetic system, it is known that they are not independent

due to linkage disequilibrium (LD) or functional interactions between variants. Regarding

the concern of correlations among individual tests, methods that ignore correlations and treat

them independently will obviously affect the accuracy of the results and could lead to either

inflated false positives or false negatives. Some work has been done to handle correlations

when combining individual p-values. For example, one could estimate the empirical null

distribution of the combined statistic by a simulation-based procedure [78]; approximate the

null distribution based on a known correlation matrix [81]; or apply the most widely used

permutation approach. Although, permutation approaches, when performed appropriately,

provide an unbiased estimation of the null distribution and are widely considered the gold

standard with which other tests are compared, their main disadvantage is the computational

cost [82]. For example, to get an empirical p-value of 10−5, at least 105 permutations are

needed.

When a large number of tests are involved in a study, alternative methods that can pro-

vide similar accuracy would be attractive. Brown (1975) proposed to combined dependent

tests assuming a multivariate normal distribution of the test statistics with a specified co-

variance structure [83]. The method later on was extended by Kost and McDermott (2002)

assuming a known covariance matrix up to a scaler quantity [81]. The assumption of a known

covariance matrix limits their application as in most cases the distribution of the test statis-

tic is unknown with an unknown covariance matrix. In this chapter, we focus our attention

on the Fisher’s combination statistic and propose to approximate its null distribution with
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a scaled chi-square distribution while considering correlations among individual tests. We

propose different strategies to estimate the correlation information.

3.2 Statistical Methods

3.2.1 Pattern of gene regulation

It has been commonly recognized that gene regulation plays a pivotal role in determining

trait variation in natural populations by promoting or reducing the expression of functional

genes that are (in)directly related to a phenotypic trait. Given that genes function in net-

works, the identification of regulatory elements, as well as the “master regulators” that affect

the expression of hundreds of genes, can greatly enrich our knowledge of gene regulatory net-

works, and ultimately help us gain novel insights into the genetic architecture of complex

traits [51, 52].

Figure 1.2 shows several possible gene regulation patterns. Figure 1.2(A) and 1.2(B)

show cis- and trans-regulation patterns, respectively. Figure 1.2(C) indicates that the same

gene can be regulated by multiple trans-regulatory loci. Each of these regulatory loci are

associated with specific genetic variants. In the context of eQTL mapping, we are trying

to identify genetic variants that are associated with these regulatory changes and likely

regulate gene expression. To map eQTLs as illustrated in Figs. 1.2(A)-(C), single marker–

single trait analysis can be applied followed by multiple testing corrections. Figure 1.2(D)

shows that a regulatory element can regulate multiple genes, among which some share a

common network. When multiple gene expressions are grouped into a network or a pathway,

the identified regulators are termed as network or pathway regulators, and methods for this
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purpose have been developed [63]. Figure 1.2(E) shows that the expression of a single gene or

a network of genes is regulated by the joint function of multiple genetic variants, potentially

belonging to a common genetic system (e.g., a genetic pathway). The signal perturbation

of a genetic system could cause the expression change of a gene or a network of genes,

and consequently result in phenotypic changes such as a disease. In this work we focus

our analysis in identifying pathway regulation as shown in Figure 1.2(E). The identification

of pathway regulations would help us better understand the genetic architecture of gene

expression and regulation from a systems biology perspective.

3.2.2 The Satterthwaite’s approximation

As we mentioned in the introduction section, a genetic system can be defined as a genetic

pathway from the KEGG database or a GO term, or as a group of variants located physically

close to each other. We hypothesize that the signal perturbation of a genetic system could

lead to the expression change of a single gene or a network of genes. We assume there are

L SNP variants in a given genetic system. For the L SNPs, we conduct L individual tests

and obtain L individual test statistics or p-values. Depending on the number of genotype

categories at each locus and the expression phenotype distribution, different tests can be

applied. For example, a two-sample t-test or Hotelling’s T 2 test can be applied depending

on whether the response is a single gene expression value or multiple gene expression values,

while assuming there are two possible genotype categories at a locus (e.g., in a recombinant

inbred line or yeast population). We tried to combine individual signals in a genetic system

to determine if it, as a whole system, underlies the expression changes of genes, and hope to

gain novel insights into gene regulations from a systems biology perspective.

42



Let p1, p2, · · · , pL be the p-values for L individual two-sided tests, Hi,0 : µi1 = µi0 versus

Hi,1 : µi1 &= µi0 (i = 1, 2, · · · , L) assuming there are two genotype categories (denoted as 1

and 0) at each locus. Define zi = −2 log pi. Under the null hypothesis of no genetic effect,

each of the L p-values is uniformly distributed and zi ∼ χ22 for i = 1, · · · , L. If we assume

the L tests are independent, the Fisher’s combined statistic T =
∑L

i=1 zi ∼ χ22L under the

global null hypothesis of no genetic effect.

When multiple genetic variants are considered as a system, they are more or less cor-

related. Thus the L p-values are not independent and the Fisher’s chi-square distribution

with 2L degrees of freedom (d.f.) does not hold. Here we proposed to approximate T by a

scaled chi-square distribution under the null by applying the Satterthwaite’s approximation

method. We assume that the combined statistic T follows a scaled chi-square distribution,

i.e.,

T =
L∑

i=1

zi∼̇aχ2g. (3.1)

The scale parameter a and the d.f. g are chosen so that the first and second moments of

the scaled chi-square distribution and the distribution of T under the null are identical. For

correlated p-values, the expectation and variance of the statistic T under the null can be

obtained as

E(T ) = E(
L∑

i=1

zi) = 2L,

V ar(T ) = V ar(
L∑

i=1

zi)

=
L∑

i=1

V ar(zi) + 2
∑

j<i

Cov(zi, zj)

= 4L+ 8
∑

j<i

ρij ,
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where ρij is the correlation between the log-transformed p-values zi and zj .

By equating the first and the second moments of T and aχ2g, we have

E(aχ2g) = ag = E(T ) = 2L,

and

V ar(aχ2g) = 2a2g = V ar(T ) = 4L+ 8
∑

j<i

ρij .

Solving the two equations, we obtain

â =
4L+ 8

∑
j<i ρij

4L
= 1 +

2
∑

j<i ρij
L

, (3.2)

ĝ =
2L

â
=

2L2

L+ 2
∑

j<i ρij
. (3.3)

When the L SNPs are completely independent, i.e., ρij = 0 ∀ i, j, it can be seen that the

approximation is the same as the distribution of the Fisher’s combined statistic assuming

independence. When the L SNPs are completely dependent, i.e., ρij = 1 ∀ i, j, then â = L

and ĝ = 2. In this case, the statistic T is just a sum of L independent χ22 variables. For

−1 < ρij < 1, parameters a and g approximate the distribution of T , where a and g can be

estimated by Equations (3.2) and (3.3). In reality, we rarely see negative correlations for a

two-sided test. So the restriction of 2
∑

j<i ρij > −L to get positive estimates of a and g is

easily met. The challenge remaining is to estimate the correlation between zi and zj from

the data. In the following, we illustrate how to estimate the correlation ρij .
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3.2.3 Estimating the correlation matrix

Let z = (z1, · · · , zL) be a vector of log-transformed p-values and let Γ be the correlation ma-

trix of z. From the above approximation we can see that the accuracy of the approximation

to the distribution of T depends largely on how well the correlation matrix Γ is estimated.

Assuming a multivariate normal distribution of the test statistics, Brown (1975) proposed

to estimate Γ with a completely specified covariance matrix [83]. The author argued that

the covariance between zi and zj is a function of the correlation between the ith and jth

variables under the group of affine transformation. This is however not true in a genetic

study, and there is no analytically closed form for the structure of Γ. In this paper, we

propose two methods to approximate Γ, which are detailed in the follows.

Estimating the correlation matrix by permutation Since we want to approximate

the null distribution of T , we need the correlation matrix of the transformed p-value vec-

tor z under the null hypothesis. Permutation was applied to generate random samples of

z by reshuffling the relationship between the gene expression values and genetic markers,

where genetic variants for each individual in a system are maintained as a vector to pre-

serve their correlation structure. For each permutation, we would have a vector of p-values,

pb = (pb1, p
b
2, · · · , p

b
L) and also the transformed p-values zb = (zb1, z

b
2, · · · , z

b
L). The corre-

lation matrix for z under the null then can be estimated by the sample covariance of the

permuted random sample: zb(b = 1, 2, · · · , B), and B is the total number of permutations

(say 1000). The sample correlation matrix obtained from the permuted samples were used

as the estimate of Γ. No assumption is required for the distribution of the test statistics at

this step. Generally speaking, the larger the data dimension (L), the more the permutations

are required.

45



0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.2

0.4

0.6

0.8

1

A

R2

 

 

scatter points
LS fitted: ρ=0.9959*R2

ρ=R2

Figure 3.1: Scatter plots of correlation coefficient ρ vs LD R2. The blue line is ρ = R2,
black line is the least square fitted line. (A) MAF = 0.1, fitted function: ρ = 0.996R2; (B)
MAF = 0.3, fitted function: ρ = 1.006R2; and (C) MAF = 0.5, fitted function: ρ = 0.99R2
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Figure 3.1 (cont’d). MAF = 0.3, fitted function: ρ = 1.006R2.

Estimating the correlation matrix by LD approximation Note that multiple

variants in a genetic system are either physically close to each other or functionally correlated.

46



0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.2

0.4

0.6

0.8

1

C

R2

 

 

scatter points
LS fitted: ρ=0.9894*R2

ρ=R2

Figure 3.1 (cont’d). MAF = 0.5, fitted function: ρ = 0.99R2.

The correlation information is more or less reflected by LDs between the variants. This

motivates us to approximate Γ by LDs among SNP variants whose individual p-values are

to be combined. Unfortunately there is no analytical solution to assess the relationship

between the correlations of z and the LDs. We checked the relationship between the LDs of

SNP variants (measured by R2) and the correlation structure of z. To begin with a simple

example, we considered two SNP variants, each with a minor allele frequency (MAF) of

q = 0.1 (0.3, 0.5). For a given MAF, the range of LD denoted by D is given by

max{−q1q2,−(1− q1)(1− q2)} ≤ D ≤ min{q1(1− q2), q2(1− q1)},

where q1 and q2 denote the MAF for SNPs at two different loci. If we assume the same MAF

for both SNPs, the range of D becomes max{−q2,−(1− q)2} ≤ D ≤ q(1− q) and the range

of R = D√
(q1(1−q1)q2(1−q2))

= D
q(1−q) is max{−q/(1− q),−(1− q)/q} ≤ R ≤ 1.
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For a fixed MAF, we generated genotypes for two SNPs with different values of D (hence

R) in a given range (following the procedure described in the LD-based simulation section).

Phenotypes were simulated independent of the SNPs (i.e. under the null distribution) and

then tested for association between the phenotype and the two SNP markers with p-values

denoted by p1 and p2. For a given R value, the correlation coefficient of the two transformed

p-values z1 = −2 log p1 and z2 = −2 log p2 was calculated from 1000 simulated samples.

Scatter plots of the correlation coefficient ρ against R2 corresponding to MAF 0.1, 0.3 and

0.5 are given in Figures 3.1. The three plots clearly indicate a linear relationship between

ρ and R2. The least squares fitted lines (black) almost perfectly overlap with the ρ = R2

lines (blue). We also tried various allele frequency combinations for the two SNPs and

found very similar relationships. Since a two-sided test was performed, even with negatively

correlated SNPs, their p-values are still positively correlated. This explains why we rarely

see negative correlations between the log-transformed p-values. We assessed the relationship

for a real eQTL data set applied in this study (discussed in the real data analysis section).

A similar relationship was also observed (Figure 3.2). The assessment in simulation and

real data indicates that R2 provides a good approximation to the correlation between the

log-transformed p-values.

3.3 Simulation study

3.3.1 Accuracy of the scaled χ2 approximation

The accuracy of the scaled chi-square approximation was evaluated by a χ2-plot. Consid-

ering two p-values, p1 and p2, which are correlated with corr(p1, p2) = ρ∗. We generated
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Figure 3.2: Scatter plot of the correlation coefficient ρ and R2 for the YEAST eQTL data
set. The black line is the least square fitted line: ρ = 0.995R2 and the blue line is a straight
diagonal line.

1000 random samples of p-values with a given correlation ρ∗. The corresponding combined

statistic T for the 1000 simulated samples were obtained. The estimated correlations be-

tween log-transformed p-values were then used to estimate a and g. Figure 3.3 plots the

approximated percentiles using âχ2ĝ (right panel) and χ22L (left panel) versus the observed

empirical percentile of T . As shown in the figure, points of percentiles of scaled chi-square

distribution and the empirical percentiles lie roughly on a straight line, while χ2-plot for the

χ22L approximation deviates from the straight line, especially at the tail. The plots demon-

strate that the scaled chi-square distribution provides a much more accurate approximation

to the distribution of T under the null than a regular chi-square distribution does. Simply

ignoring the correlations among the test statistics would result in biased approximation and
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wrong inference.

3.3.2 Simulation design

Genotype simulation We simulated genotypes for one genetic pathway with multiple SNP

variants. These variants function together as a whole system to regulate expression changes

of a single gene or a network of genes. Two methods were used to simulate the genotype

data. The first method, termed LD-based simulation, generates SNP genotype data based

on pairwise LD structure. The second method is a real data-based simulation which mimics

gene structure and LD patterns of a real data set by sampling genotypes directly from the

data.

LD-based simulation: Let qA and qB be the frequencies of two alleles A and B for

two adjacent SNPs, with LD denoted by D. The frequencies of four haplotypes can be

expressed as pab = (1 − qA)(1 − qB) +D, pAB = qAqB +D, pAb = qA(1 − qB) −D, paB =

(1 − qA)qB −D. Assuming HardyWeinberg equilibrium, the SNP genotype at locus A can

be simulated assuming a binomial distribution. Locus B can be simulated conditional on

locus A with the conditional probability given by

P (B|A) = P (BA)

P (A)
=

pAB
qA

=
qAqB +D

qA
. (3.4)

This illustration is for simulating a haploid genome (e.g., yeast). The same idea can be

applied to simulate a diploid genome. The advantage of this simulation strategy is that we

can easily control the pairwise LD pattern between adjacent SNPs. We assume genes in a

pathway are in linkage equilibrium (The assumption is not required for the method, but is

used only for illustration of the feasibility of the proposed approach to different applications).
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SNPs within each gene are in LD and the genotypes for SNPs in each gene were simulated by

the LD-based simulation approach. We simulated SNP genotypes for four individual genes,

G1(8), G2(5), G3(3) and G4(4), where the number in parenthesis indicates the number of

SNP markers in the corresponding genes. The four genes were assumed to belong to one

genetic pathway. LDs for SNPs within each gene were set to R2 = 0.9.

Table 3.1: List of data generating models

Model Gene action
I y = µ+ ε

II y = µ+ β1S1 + β2S2 + β7S7 + β8S8 + ε
III y = µ+ β1S1 + β2S2 + β15S1S5 + β38S3S8 + ε

IV y = µ+ β1G1,1 + β2G1,2 + β3G2,1 + β4G2,2 + β5G3,2 + β6G1,3G3,2 + ε
V y = µ+ β1G1,1 + β2G1,2 + β3G2,1 + β4G2,2 + β5G2,2G2,3 + β6G1,5G4,4 + ε

Where Sj represents the jth SNP in a genetic pathway; Gi,j represents the jth SNP in the
ith gene. The effect of βij ’s were considered the same.

Real data-based (RD) simulation: To simulate SNPs which mimic the gene structure and

LD patterns among SNPs in a real genetic pathway, we took genotype vectors for SNPs

within the #20 genetic pathway (“00290”, Valine, leucine and isoleucine biosynthesis) in the

yeast data set. Genotype vectors were randomly drawn with replacement from the real data

to create a simulation sample. This genetic pathway has four individual genes with 14 SNPs

in total. Missing genotypic values were imputed before the random draw. We found that

the pairwise LDs in this pathway varies with D ∈ (−0.035, 1) and R ∈ (−0.14, 1).

Phenotype simulation Several simulation scenarios assuming different gene actions

were considered (Table 3.1). Model I considers the case in which there is no genetic effect at

all. So model I is the null model we used to assess the false positive rate. Model II assumes

only main SNP effects in a genetic pathway (SNPs 1, 2, 7 and 8). Model III assumes main
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SNP effects (SNPs 1 and 2) as well as the interactions between SNPs 1 and 5 and between

3 and 8. Model IV and V simulate phenotypes considering the gene structure in a genetic

pathway. Interactions were considered for SNPs in different genes. Model IV considers

interactions only when the corresponding gene has a main effect. Model V assumes there is

an interaction effect between two genes and one of which has no marginal main effect.

We applied model II and model III to simulate phenotypes with genotype simulated by

the RD-based simulation method. The LD-based simulation method were applied for model

IV and model V to generate phenotype data. Thus four different simulation scenarios were

considered: (A) RD-based genotype + Model II phenotype; (B) RD-based genotype + Model

III phenotype; (C) LD-based genotypes + Model IV phenotype; and (D) LD-based genotypes

+ Model V phenotype. Type I error rate was assessed with phenotypic data simulated by

Model I.

3.3.3 Simulation Results

We evaluated the type I error rate and power of the scaled chi-square approximation to

infer genetic regulatory patterns. The type I error rate was estimated by simulating 1000

data sets under the null distribution (Model I). Similarly, we estimated power by simulating

1000 data replicates for each model (Model II-V). Two-sided two sample t-tests were applied

to test for associations between SNP markers and a quantitative trait y. Individual p-

values for all SNP markers within the pathway were then combined to form the test statistic

T = −2
∑L

i=1 log pi. For each simulated data set, a p-value for the combined statistic T is

assessed and is denoted by pc
χ22L

, pc
aχ2g

(perm), pc
aχ2g

(R2) and pcperm. For pc
χ22L

, the combined

p-value follows a χ22L distribution under the null; for pc
aχ2g

(perm) and pc
aχ2g

(R2), the combined
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p-value follows a scaled aχ2g distribution, where parameters a and g were estimated by using

correlations approximated by the permutation-based and the LD-based approximation (i.e.,

ρ = R2) approaches, respectively; and for pcperm, the significance of the combined p-values

were assessed by permutation tests with 10,000 permutation samples. In all simulations, we

treated the results obtained by the pcperm method as the underlying truth with which the

performance of other methods was compared.

Type I error rate Empirical type I error rates at the 0.05 significance level for 1000

replicates are summarized in the third column of Tables 3.2 and 3.3. The results clearly

show that the type I error rates are significantly inflated for the χ22L approximation under

different simulation scenarios. The scaled chi-square approximation and the permutation

procedure yield similar type I error rates which are close to the 0.05 nominal level. The two

methods for correlation estimation have no significant effect on type I error rate.

Table 3.2: Empirical type I error rate and power for scenarios A and B under different sample
sizes. The effects of βj ’s are fixed at 0.1.

n Methods Model I Model II Model III
χ22L 0.217 0.935 0.942

200 aχ2g(perm) 0.051 0.787 0.785
aχ2g(R

2) 0.053 0.788 0.786
Permutation 0.049 0.788 0.787

χ22L 0.204 1.000 0.999
500 aχ2g(perm) 0.052 0.994 0.991

aχ2g(R
2) 0.047 0.992 0.990

Permutation 0.047 0.992 0.991

Power comparison Table 3.2 summarizes the empirical power for scenarios A and B.

The results obtained with the permutation method is considered as the underlying truth.

It can be seen that the χ22L approximation always gives the highest power (see column 3),

which is due to its high false positive rate. The results produced by the scaled chi-square
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approximation are very close to the permutation-based results, which indicates the good

performance of the scaled chi-square approximation. No significant differences in power were

observed for the two scaled chi-square approximation methods. However, the calculation with

the aχ2g(R
2) method is much faster than the permutation-based aχ2g(perm) method. The

effect of sample size on power is clear: large sample size always gives large power, as we

expected.

The results for scenarios C and D are summarized in Table 3.3. Similar trends as in

Table 3.2 were observed. Again, the χ22L approximation yields inflated false positive rates

and is less attractive than the scaled chi-square approximation does. We also tried other

correlations and found that negative or low positive correlations may reduce the overall

power for given genetic effects. However, the overall trend as we observed in Tables 3.2 and

3.3 remains unchanged, when comparing the performance of different methods.

Table 3.3: Empirical type I error rate and power for scenarios C and D under different sample
sizes. The effects of βj ’s are fixed at 0.15.

n Methods Model I Model IV Model V
χ22L 0.179 0.882 0.885

200 aχ2g(perm) 0.056 0.706 0.718
aχ2g(R

2) 0.053 0.703 0.709
Permutation 0.054 0.704 0.714

χ22L 0.189 0.998 0.996
500 aχ2g(perm) 0.057 0.986 0.989

aχ2g(R
2) 0.056 0.984 0.989

Permutation 0.052 0.986 0.989
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3.4 Real data analysis

We applied our method to the yeast eQTL dataset introduced in section (2.2.1). The pathway

information was retrieved from the R package: YEAST. There are 99 KEGG pathways in the

package, but only 83 pathways were retrieved for follow-up analysis. The genotype profiles

of neighboring markers tend to be highly correlated and some are even identical. With this

information, markers were first merged to blocks [57]. Then missing genotypes were imputed

based on available genotype information in each block. In cases where markers did not belong

to any block, missing data were imputed by assuming a Bernoulli distribution with allele

frequency estimated based on available data for the corresponding marker. We focused our

analysis on the pathway regulation of a network of genes as illustrated in Figure 1.2(E). We

first built up gene expression networks using the gene expression traits. Then the method

described in this work was applied to identify pathway regulations for each network.

3.4.1 Gene co-expression network

There are many ways to construct gene expression networks. We focused on gene co-

expression networks following the method proposed by Zhang and Horvath [84]. Because of

the computational burden, only the top 2001 connected genes out of the 4000 most varying

genes were considered to build the co-expression networks. The average linkage hierarchical

clustering method was applied to group genes with coherent expression profiles based on a

topological overlap matrix (TOM) dissimilarity measure. In our study, we obtained six gene

modules (Table 3.4). Figure 3.4 shows the six co-expression network modules. For a detailed

description of the weighted gene co-expression network approach, the readers are referred to

[84].
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Table 3.4: Information on gene co-expression networks

Modules Blue Brown Green Red Turquoise Yellow
# of genes 251 153 125 56 325 151

# of eigengenes 12 7 7 1 9 6

3.4.2 Network singular value decomposition

For each network, gene expression values were treated as multivariate responses and tested

for association at each SNP marker locus. For the yeast data, there are two possible genotype

categories at each locus. So a two sample Hotelling’s T 2 test can be applied to test if mean

responses are different for the two groups at each locus [63]. A gene co-expression network

usually consists of many genes. In this dataset, most co-expression networks contain hun-

dreds of genes. So the dimension of a network is greater than the sample size in most cases.

Therefore it is infeasible to use Hotelling’s T 2 test for expression profiles of all genes in a

network. To reduce the dimension of a network, we applied the singular value decomposition

(SVD) method. Because genes in a network are often highly correlated, using SVD could

dramatically reduce the data dimensionality with only relatively few “eigengenes” capturing

the total variation of a network. In this study, “eigengenes” that account for more than 85%

of the total variation of a network of gene expression values were chosen as the response

variable for further analysis.

Consider a gene expression network with N genes, all expression profiles can be repre-

sented by a matrix X with N × n dimension where n is the sample size. Each row of X

represents the expression of one gene belonging to the network. The SVD of matrix X is

given by

X = UDV T ,
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where U is an N × L matrix; D = diag{d1, d2, · · · , dL} is an L × L diagonal matrix,

d1 ≥ d2 ≥ · · · ≥ dL are eigenvalues of X; and V T is an L× n matrix with L = min{N, n}.

Each row of matrix V T represents a so-called “eigengene” of the original network. The

proportion of “eigengenes” calculated by vl = d2l /
∑L

i=1 d
2
i indicates the amount of total

variation captured by the lth eigengene. Top K eigengenes will be remained for further

analysis if the cumulative variation captured by the top K eigengenes is larger than 85%,

i.e.,
∑K

l=1 vl ≥ 85%. The eigengenes are orthogonal to each other and are treated as a

multivariate response to represent each co-expression network for further analysis.

3.4.3 Results by the scaled chi-square approximation

Hotelling’s T 2 test was applied at each locus for gene expression networks with two or more

eigengenes. For the red module with only one eigengene, a two-sided two sample t-test was

applied. Individual p-values were then combined for each of the 83 genetic pathways to

assess the significance by the scaled chi-square approximation. SNPs in different GPs may

overlap which may cause dependence among GPs. The overlap issue was ignored in the

current analysis and will be studied in future work. We also did the pathway enrichment

analysis (PEA) proposed by Wang et al. [62]. The results are summarized in Table 3.5. Only

GPs with p-values less than 0.001 were reported. The last three columns list the p-values

for the combined statistic T using different methods to estimate the correlations plus those

with the PEA analysis. The overlapped GPs with p-values less than 0.001 are highlighted

with bold font. In many cases the enriched GPs identified with the two methods are very

similar, except for the Blue module. In terms of the computation time, the combined p-value

approach took much less time than the PEA analysis. For example, it took about 5 minutes
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to calculate the combined p-value with LD-based correlation approximation, while it took

about 8 hours to run 1000 permutations for one network module with the PEA analysis.
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Figure 3.3: χ2 plot for percentiles of the observed statistic T against the χ22L approximation

(left panel) and aχ2g approximation (right panel). Two correlations were assumed: ρ = 0.1
(upper panel), ρ = 0.5 (middle panel) and ρ = 0.9 (lower panel).
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Figure 3.4: Weighted gene co-expression network with hierarchical clustering trees for the
yeast gene expression data. See Zhang and Hovath (2005) for details of the algorithm.
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Table 3.5: List of enriched genetic pathways (GPs) with the scaled chi-square approximation method and the gene set
enrichment analysis. Only GPs with p-values ≤ 0.001 using either the p-value combined method or the PEA method are
listed. The middle column is the list of GPs that are associated with the expression change of the corresponding co-expression
networks given in the first column. GPs that show enrichment with both methods are highlighted with bold font.

Gene Network P# (PID) Name of enriched GPs p
aχ2g

(R2) p
aχ2g

(perm) pPEA

(# of genes)
Blue 17 (03022) Basal transcription factors 2.28e-03 1.75e-03 < 0.001
(251) 34 (04111) Cell cycle - yeast 7.55e-04 3.03e-03 0.010

78 (00770) Pantothenate and CoA biosynthesis 4.68e-04 7.69e-04 0.011
Brown 10 (00500) Starch and sucrose metabolism 8.89e-02 8.97e-02 < 0.001
(153) 13 (03020) RNA polymerase 2.53e-04 4.39e-04 < 0.001

17 (03022) Basal transcription factors 2.87e-04 3.69e-04 < 0.001
25 (00010) Glycolysis / Gluconeogenesis 2.66e-02 3.05e-02 < 0.001
32 (00920) Sulfur metabolism 7.11e-04 1.12e-03 0.002
34 (04111) Cell cycle - yeast 4.68e-05 2.81e-04 0.001
78 (00770) Pantothenate and CoA biosynthesis 3.97e-05 6.08e-05 0.039
83 (00220) Urea cycle and metabolism of amino groups 4.28e-04 6.41e-04 < 0.001
84 (00860) Porphyrin and chlorophyll metabolism 6.92e-04 1.07e-03 < 0.001

P#=pathway number; PID=pathway ID.
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Table 3.5 (cont’d)

Gene Network P# (PID) Name of enriched GPs p
aχ2g

(R2) p
aχ2g

(perm) pPEA

(# of genes)
Green(125) 20 (00290) Valine, leucine and isoleucine biosynthesis 3.50e-05 4.19e-05 < 0.001

Red 1 (04010) MAPK signaling pathway 1.19e-04 1.06e-04 < 0.001
(56) 10 (00500) Starch and sucrose metabolism 1.23e-02 1.56e-02 < 0.001

43 (00520) Nucleotide sugars metabolism 2.28e-05 3.53e-05 < 0.001
85 (00040) Pentose and glucuronate interconversions 3.04e-04 3.86e-04 0.001

Turquoise 20 (00290) Valine, leucine and isoleucine biosynthesis 5.75e-07 3.45e-06 < 0.001
(325) 27 (00650) Butanoate metabolism 6.40e-04 1.30e-03 < 0.001

78 (00770) Pantothenate and CoA biosynthesis 3.67e-05 1.43e-04 0.002
Yellow 20 (00290) Valine, leucine and isoleucine biosynthesis 2.91e-39 1.05e-35 < 0.001
(151) 27 (00650) Butanoate metabolism 1.92e-13 2.615e-13 < 0.001

74 (03010) Ribosome 2.99e-04 3.93e-04 0.006
78 (00770) Pantothenate and CoA biosynthesis 2.10e-19 6.41e-18 < 0.001

P#=pathway number; PID=pathway ID.
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We also tried the Fisher’s χ22L approximation assuming SNPs in a genetic pathway are

independent. We found more significant pathways than with the scaled chi-square approx-

imation (data not shown). As indicated by the simulation studies, the additional GPs

identified are most likely false positives. From Table 3.5, we can see that pathways 78 (Pan-

tothenate and CoA biosynthesis) and 20 (Valine, leucine and isoleucine biosynthesis) are

responsible for several network expression changes. This implies the relative importance of

these pathways in the regulation of yeast gene expressions.

In order to understand the biological significance of our findings, it is important that we

first describe the origin of strains used in the original yeast crossing design. As mentioned

earlier, the parental strains are derived from natural isolates. The first strain, BY4716, is a

lab strain whose origin can be traced back to a natural isolate that was found growing on a

rotting fig [85]. However, this strain has had a long history of use as a laboratory model and

has been selected for many properties that make it more amenable to experimentation [86]. In

addition, because it is derived from a haploid segregant of the original heterozygous, diploid

natural isolate, and because it has been harbored in the relatively benign lab environment for

many generations, several known loss-of-function alleles have been identified in this parental

strain [87]. Finally, all yeast strains used in experimental genetic crosses are altered to some

degree. Most commonly these alterations include the generation of a null mutation for the HO

endonuclease, the loss of which prevents mating type switching and allows for manipulation

of ploidy and mating type [88]. In addition, experimental yeast strains also harbor loss-of-

function alleles for genes within amino acid biosynthetic pathways, so that nearly all lab

strains are auxotrophic for some combination of amino acids (e.g., Uracil, Leucine, Lysine,

Histine, Tryptophan, Methionine, Adenine) [88]. Such auxotrophies provide a mechanism
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for phenotypic selection on yeast media that lacks specific amino acid supplements. Even

though the second parental strain, a haploid derivative of the natural vineyard isolate RM11-

1a, was chosen to represent the prototrophic representative of a natural strain, it does carry

loss-of-function alleles for HO endonuclease and auxotrophies for the Leucine and Uracil

biosynthetic pathways [45].

Strikingly, all of the pathways inferred to influence co-expressed gene groups can be

traced to either the engineered or lab selected loss-of-function alleles segregating in the

parental stains. For example, in Table 3.5, the Yellow gene co-expression module exhibited

the highest statistical significance with respect to the functional categories that explain

the observed variation. We did a GO term search and found that 43.7% of genes in this

module are mapped to GO cellular amino acid and derivative metabolic process. This

represents the highest percentage these genes can be mapped to the GO process category.

Also 28.5% of genes are mapped to the GO transferase activity function category, which

explains the enrichment of pathway 74 (Ribosome). KEGG genetic pathways 20 (Valine,

leucine, and isoleucine biosynthesis), 27 (Butanoate metabolism), and 78 (Pantothenate and

CoA biosynthesis) are all either directly requiring or downstream of the Lue2 (YCL018W)

and Ilv6 (YCL009C) genes. These genes are both physically and functionally linked in

that they are required for leucine and isoleucine biosynthesis and found with 13 kilobases

of one another (roughly 3-5 centiMorgans) [89]. Because Leu2 is a complete knock-out,

there were several markers all found within this locus, each strongly associated with a given

pathway. Similarly, the Ilv6 gene, with only a single marker, is also strongly associated

with all three of these KEGG genetic pathways. In addition, all or some combination of

these genetic pathways are strongly associated with the Blue, Brown, Green, and Turquoise,

64



gene co-expresssion networks, and in each case, the association is mediated by the same

genetic markers. Hence a single engineered mutation that was known to be segregating in

the parental cross explains most of the co-expressed genes in the Yellow module, and these

same associations are found in the Blue, Brown, Green, and Turquoise gene networks. All

of these effects are likely mediated by a single loss-of-function at Leu2 with direct effect. In

addition, the indirect effects of Leu2 on the regulation and activity of Ilv6 as well as the

linkage of Ilv6 with Leu2 may also play an important role [90, 89, 91]. Note that pathway 78

is enriched for the Blue, Brown and Turquoise network only by our approach, which indicates

the better performance of our method against the PEA analysis in this study. Thus, this

systems biology approach has allowed for the elucidation of many interacting gene networks

and the genetic pathways through which they are most likely influenced. Importantly, these

conceptual linkages derive from a clear biological reason, in this case an engineered mutation

with pleiotropic effects.

In addition to the associations mediated via auxotrophic markers, the remaining genetic

pathways can be broadly categorized in three groups: mitochondrial function (17 - Basal

transcription factors; 13 - RNA polymerase), cell cycle (34 - Cell cycle), and cell signaling,

filamentous/invasive growth, and mating (1 - MAPK signaling pathway). All of these effects

are in pathways that can be traced to additional alleles of large effect that are known to

have been segregating in the cross. Amn1 and Flo8 mutations in the lab strain were selected

at some point in the past for reduced flocculation (clumpy growth due to cell-cell adhesion),

and the 112 segregants differ in mating type at the MAT locus [45, 85]. All of these selected

and engineered alleles are known to be strongly involved in MAPK signaling. In fact, gene

Ste20 (YHL007C) in the MAPK signaling pathway in this analysis shows the strongest single
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marker associations, and the gene is directly downstream of another well characterized QTL

in previous studies, the Gpa1 gene [92]. Perhaps accidentally, the lab strain also is known

to exhibit several phenotypes indicative of reduced mitochondrial function [93]. While loss-

of-function alleles were known to exist in the lab strain for the Hap1 (YLR256W) and

Mkt1 (YNL085W) genes, a recent study mapping variation in mitochondrial function with

these same data, identified three additional mitochondrial alleles of strong effect at Sal1

(YNL083W), Cat5 (YOR125C), and Mip1 (YOR330C), respectively [94]. In particular,

Mip1 is part of the mitochondrial DNA polymerase and Hap1 is required for cytochrome

function [95, 96]. Hence, the many genetic pathways related to mitochondrial function and

localization (e.g., 92% genes in the Green module map to mitochondria via Gene Ontology)

are likely a downstream pathway that was altered as a result of these known deficient alleles

segregating in the cross. In this case, we suspect that given the importance of proper

mitochondrial function in the wild, each of these alleles is due to relaxed selection in the lab

environment [91].

Finally, the single largest effect size typically observed in studies utilizing data from this

cross is at the Ira2 gene (YOL081W) [97]. We observed very strong signals at this gene for

all six co-expressed modules. The strongest one (p-value< 10−14) corresponds to the Brown

module. Even though this gene is not mapped to any KEGG pathways in this analysis, it is

located upstream of the RAS/PKA signaling pathway and has strong downstream effects on

nutrient signaling, cyclic AMP signaling, cell proliferation, and polymerase II activity [98].

The downstream effects of this polymorphism are apparent in the many genetic pathways

related to nutrient metabolism, transcription, and cell cycle. Interestingly, this allele has not

been traced to lab engineering or relaxed selection, but is more likely a naturally segregating
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difference that is derived in the vineyard isolate [99].

In summary, our analysis has elucidated how a systems biology approach can identify

the variation in genetic pathways that control co-expressed gene networks, and nearly all

of the effects identified in this cross can be traced back to either engineered mutations or

loss-of-function alleles that arose due to relaxed constraint in the benign lab environment.

3.5 Discussion

The integration of gene expression analysis and genetic mapping, termed eQTL mapping,

brings great promise in elucidating the genetic architecture of gene expression. Empirical

studies have shown that eQTL mapping can shed new light into gene network prediction,

provide additional biological insights into gene regulation, and facilitate functional gene

identification [100, 101, 102, 103]. Moreover, eQTL mapping results can provide additional

directional information in gene regulatory network construction [104, 105]. With more bio-

logical data being generated at the sequence, transcriptional, proteomic and metabolic levels,

together with the end-point phenotypic data such as a disease status, we are progressively

approaching the era where various sources of data information can be integrated to gain

novel biological insights from a systems biology perspective.

Our study is driven by the biological fact that genes function in networks or systems. Most

biological phenomena occur through the expression of multiple genes which are potentially

regulated by a cascade of genetic variants. Mootha et al. previously showed that focusing

on expression data in terms of predefined pathways/networks (genetic features) can provide

valuable insights into gene function not easily achievable by methods focus on individual

genes [54]. This inspired us to focus on features of genetic variants that belong to predefined
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pathways/networks in order to understand the genetic basis of gene regulation. Given the

complexity of a genetic system, it is very unlikely that the function of a single variant will

induce an overt identifiable or physiologically meaningful expression change of a network of

genes. Also features defined by groups of genes should be more robust to genetic variation.

Thus, we proposed to incorporate pathway (e.g., KEGG pathway) information into an eQTL

mapping framework to gain novel insights into pathway regulation of gene expression. By

combining evidence of multiple signals in a genetic system, our method addresses the limita-

tion of the traditional single marker–single trait analysis: 1) Without a single encompassing

theme, results could be hard to interpret; 2) Moderate changes which were disregard in single

marker analysis, may afford more insight into gene regulation mechanisms [54].

As reviewed in the introduction section, there are many ways to combine evidences. It is

commonly recognized that variants in a genetic system are often correlated. In this study we

proposed to approximate the combined p-values of individual signals with a scaled chi-square

approximation considering correlations among variants. Newton et al. proposed a random-

set method in assessing gene-set enrichment by averaging gene scores [106]. As discussed by

the authors, among-gene dependence was not an issue in their enrichment analysis because

factors that caused dependence were excluded from the calculation of a gene score. Instead of

averaging, we proposed to combine signals. In addition, correlations among genetic variants

preserved a structural relationship due to LD. Our simulation studies indicated that large

false positive rates could be observed if correlations were not properly accounted for. We

proposed two different methods for an estimation of the correlation information between the

log-transformed p-values. The results indicate that using the LD information to approximate

the correlation produces similar results as using permutation-based methods. Real data
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analysis also confirmed the result (Table 3.5). Thus, LD information could be directly applied

in order to save computation time. It is also worth noting that depending on whether it is

a one-sided or two-sided test, the relationship between the LD (R) and the correlation (ρ)

could be different.

In the real data analysis, we focused our attention on gene expression networks as the

response variables. We can also focus the responses on expression pathways extracted from

public database such as those from KEGG database or from GO terms. Since only p-

values are required, any sophisticated statistical tests can be applied. Even though the

LD-based approximation for correlation of the log-transformed p-values may not be valid for

a nonlinear model, the correlations can always be evaluated with the proposed permutation-

based method. Depending on the interest of an investigator, our method provides a general

strategy for regulation inference in a single gene or pathway level [107]. In addition, the

method can also be extended to a (genome-wide) genetic association study to identify novel

pathways underlying complex disease.
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Chapter 4

Gene-centric gene-gene interaction: a

model-based kernel machine method

4.1 Introduction

Accumulative evidence shows that much of the genetic variation for a complex trait can

be explained by the joint function of multiple genetic factors, as well as environmental

contributions. Searching for these contributing genetic factors and further characterizing

their effect sizes, is one of the primary goals and challenges for modern genetics. The

recent breakthroughs in high-throughput genotyping technologies and the completion of the

International Haplotype Mapping (HapMap) project provide unprecedented opportunities to

characterize the genetic machinery of living organisms. Genetic association analyses focusing

on single nucleotide polymorphisms (SNPs) or haplotypes have led to the identification of

many novel genetic determinants of complex traits. However, despite enormous success in

genome-wide association studies, single SNP or haplotype based studies still suffer from
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low replication rates because of the infeasibility of dealing with the complex patterns of

association, e.g. genetic heterogeneity, epistasis and gene-environment interaction. Much of

the genetic components of many traits remains unaccounted for and only a small proportion

of the heritability has been explained.

It has been broadly recognized that most common human diseases are likely to have

complex etiologies [108]. In a recent report, Neale and Sham discussed the choice of the

basic genetic components to be considered for association with a complex trait [109]. It is

demonstrated that a gene-based approach, in which all variants within a putative gene are

considered jointly, have relative advantages over single SNP or haplotype analysis. There

are multiple reasons for this. First, it is well known that genes are the functional units of

human genome. Variants in genes have high probability of being functionally important

than those that occur outside of genes [110]. Because of this characteristic, gene-based

association analysis would provide more biologically interpretable results than the single-

SNP or haplotype based analysis. Second, the position, sequence and function of genes are

highly consistent across diverse human populations, which makes the gene-based studies

more powerful in terms of replication [109]. Third, when there are multiple variants within

a gene that function in a complicated manner, the gene-based association test can gain

additional power compare to a single SNP analysis by capturing the joint function of multiple

variants simultaneously [111, 112]. Finally, a gene-based analysis is statistically appealing.

By considering multiple SNP markers within a gene as a testing unit, the number of tests

would decrease dramatically, hence reducing the multiple testing problem and improving the

power of the association testing.

We all know that genes do not function alone, rather they constantly interact with each
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other. It has been widely recognized that gene-gene interaction, or epistasis, is an impor-

tant category that contributes to the unexplained heritability of complex traits [108, 113,

114, 115]. Methods for detecting gene-gene interaction have been historically pursued on a

single locus level, either parametrically such as the regression-based tests of interaction [116]

and the Bayesian epistasis mapping [117], or non-parametrically such as the entropy-based

approaches [118], and some data mining methods such as the multifactor dimensionality

reduction (MDR) [119] and random forests [120]. Methods based on interaction of haplo-

types have also been developed [121]. However, due to the phase-ambiguity problem, the

haplotype-based methods are limited to only small size haplotypes. Extensions to interaction

of large size haplotypes are challenged by computational cost. For a comprehensive review

of statistical methods developed for detecting gene-gene interactions, readers are referred to

[122].

With the relative merits of the gene-based association analysis, the identification of ge-

netic interactions by focusing on genes as functional units should carry the same benefits

and gains as it does with single gene analysis. Thus we propose to jointly model the genetic

variation of SNPs within a gene, then pairwise gene-gene interactions can be carried out

in a genome-wide search. The idea of Gene-centric Gene-Gene (denoted as 3G) interaction

would conceptually change the way we model gene-gene interactions and meantime bring

statistical challenges. Through the modeling of the joint variation of a gene pair, we argue

that a 3G interaction analysis is biologically attractive. In addition, by focusing on genes as

testing units, the number of pairwise interaction tests can be dramatically reduced compared

to a single SNP-based pairwise interaction analysis. Thus a 3G interaction analysis is also

statistically appealing.
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In this work, we propose a model-based kernel machine method for the purpose of iden-

tifying significant gene-gene interactions under the proposed 3G analysis framework. Kernel

based methods have been proposed to evaluate association of genetic variants with com-

plex traits in the past decades [123, 124, 125, 126, 127]. A general kernel machine method

can account for complex nonlinear SNP effects within a genetic feature (e.g. a gene or a

pathway) by using an appropriately selected kernel function. Generally speaking, a kernel

function captures the pairwise genomic similarity between individuals for variants within

an appropriately defined feature [126]. The application of kernel-based method in genetic

association analysis has been reported in the literature [124, 128, 129]. However, none of

these considers interaction of genes. Here, we propose a general 3G interaction framework by

applying the smoothing-spline ANOVA model [130] to model gene-gene interaction. The pro-

posed method, termedGene-centricGene-Gene interaction with Smoothing-sPlineANOVA

Model (3G-SPAM), is implemented through a two-step procedure: (1) an exhaustive 2-

dimensional genome-wide search for pairwise gene-gene interactions; and (2) significance

assessment of pairwise interactions.

The rest of the chapter is organized as follows. In section 4.2, we describe the detailed

model derivation of our method. We proposed two score statistics for testing the overall

genetic effect and the interaction effect based on the 3G-SPAM. To evaluate the performance

of the proposed method, Monte Carlo simulations are performed in section 4.3. The utility

of the method are demonstrated by real data analysis in section 4.4 followed by discussions

in section 4.5.
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4.2 Statistical methods

4.2.1 Smoothing Spline-ANOVA (SS-ANOVA) model

We assume n unrelated individuals sampled from a population, each of which possesses a

measurement for certain quantitative trait of interest. The quantitative measurements of the

n individuals are denoted as y = (y1, y2, · · · , yn)′. Traditional approaches for detecting gene-

gene interactions, such as MDR or regression type analysis, identify SNP-SNP interactions.

In this work, we focus our attention to pairwise gene-gene interactions by considering each

gene as a unit. Consider two genes, denoted as G1 and G2, with L1 and L2 SNP markers

respectively. Let xi = (xi,1, · · · , xi,L)T be an L × 1 genotype vector of the gene pair for

subject i. Here L = L1+L2 is the total number of SNP markers in the gene pair. We model

the relationship between the genotypes of the gene pair (xi) and the phenotype yi by the

following model

yi = m(xi) + εi, i = 1, 2, · · · , n (4.1)

where m is an unknown function and εi ∼ N(0, σ2) is a random subject-specific error term

which is generally assumed to be normal with mean 0 and variance σ2 and be independent

of xi.

Gu has discussed the ANOVA decomposition of multivariate functions on generic domains

of each single coordinate [131]. Actually, the decomposition can also be defined on nested

domains; see Appendix B.1. With the prior knowledge of genes, the genotype vector xi

is partitioned as xi = [x
(1)
i ,x

(2)
i ], with x

(j)
i represents the Lj SNP predictors for gene j

(j = 1, 2). Let a product domain be X = X (1) ⊗ X (2) with x(j) ∈ X (j) and Aj be an

averaging operator on X (j), that averages out x
(j)
i , j = 1, 2. Then a function m(x) defined
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on the product domain has a functional ANOVA decomposition as in the following equation:

m =
2∏

j=1

(I − Aj + Aj)m

= A1A2 + (I − A1)A2 + A1(I − A2) + (I − A1)(I − A2)m

= µ+m1 +m2 +m12

(4.2)

µ is the overall mean, m1,m2 are the main effects of the two genes and m12 describes the

interaction effect between them.

4.2.2 Reproducing kernel Hilbert space and the dual representa-

tion

Based on the ANOVA decomposition, an reproducing kernel Hilbert space (RKHS) H of

functions on X can be constructed [132, 133]. Let H(j) be an RKHS of functions on X (j),

j = 1, 2 and 1(j) be a space of constant functions on X (j), then

H =
2∏

j=1

(1(j) ⊕H(j))

= [1]⊕ [H(1) ⊗ 1(2)]⊕ [1(1) ⊗H(2)]⊕ (H(1) ⊗H(2))

= [1]⊕H1 ⊕H2 ⊕H3

(4.3)

where ⊕ refers to direct sum and ⊗ refers to tensor product. Equation (4.3) provides an

orthogonal decomposition of the entire functional space H. So H is an RKHS with the

associated reproducing kernel as the sum of the reproducing kernels of these component

subspaces. Each functional component in (4.2) lies in a subspace in (4.3), and is estimated in
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the corresponding RKHS. The identifiability of the components is assured by side conditions

:
∫
X (j) mj(x

(j))dµj = 0, j = 1, 2.

We assume that function m is a member of the RKHS H and it can be estimated as the

minimizer of the following penalized sum of squares.

L(y,m) =
n∑

i=1

(yi −m(xi))
2 +

1

2
λJ(m) (4.4)

where J is a roughness penalty. Since the orthogonal decomposition of spcase H, the penalty

can also be decomposed, then

L(y,m) =
n∑

i=1

(yi −m(xi))
2 +

1

2

3∑

l=1

λl ‖ P lm(.) ‖2H (4.5)

where P l is the orthogonal projector in H onto Hl, λl are the tuning parameters which

balance the goodness of fit and complexity of the model. The minimizer of (4.5) is known

to have a representation [130] in terms of a constant and the associated reproducing kernels

{kl(s, t)} of the Hl, l = 1, 2, 3.

m(x) = µ1+
n∑

i=1

ci

3∑

l=1

θlkl(xi,x)

= µ1+
3∑

l=1

KT
l (x)Cl

(4.6)

where KT
l (x) = (kl(x1,x), · · · , kl(xn,x)), Cl = (c1, · · · , cn)T θl. Details on the choice of

the reproducing kernel functions corresponding to the three subspaces will be discussed in a

later section.
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Substitute the representation of m(·) into equation (4.5)

L(y,m) =
n∑

i=1

(yi −m(xi))
2 +

1

2

3∑

l=1

λl ‖ P lm(·) ‖2H

= (y −m(X))T (y −m(X)) +
1

2

3∑

l=1

λlC
T
l KlCl

= (y − µ1−
3∑

l=1

KlCl)
T (y − µ1−

3∑

l=1

KlCl) +
1

2

3∑

l=1

λlC
T
l KlCl

(4.7)

where

Kl =





KT
l (x1)

KT
l (x2)

...

KT
l (xn)





The gradients of L with respect to the coefficients (µ, Cl : l = 1, 2, 3) are

∂L
∂µ

= 1T (y − µ1−
3∑

l=1

KlCl)

and

∂L
∂Cl

= KT
l (y − µ1−

3∑

l=1

KlCl) + λlKlCl

Therefore, the first order condition is satisfied by the system





n 1TK1 1TK2 1TK3

KT
1 1 KT

1K1 + λ1K1 KT
1K2 KT

1K3

KT
2 1 KT

2K1 KT
2K2 + λ2K2 KT

2K3

KT
3 1 KT

3K1 KT
3K2 KT

3K3 + λ3K3









µ

C1

C2

C3





=





1T

KT
1

KT
2

KT
3





y (4.8)
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The connection between smoothing splines and linear mixed effects model has been pre-

viously established [130, 134]. For the two-way ANOVA decomposition model considered

in this paper, we show that the above first order system is equivalent to the Henderson’s

normal equation the following linear mixed effects model; see Appendix B.2.

y = µ1+ m̃1 + m̃2 + m̃12 + ε (4.9)

where m̃1, m̃2, m̃12 are independent n × 1 vector of random effects; m̃1 ∼ N(0, τ21K1),

m̃2 ∼ N(0, τ22K2), m̃12 ∼ N(0, τ23K3), and ε ∼ N(0, σ2I) is independent of m̃1, m̃2, m̃12.

This connection indicates the estimators of functions m1,m2,m12 are just the BLUPs of

the random effects in the linear mixed effects model. Tuning parameters λl, l = 1, 2, 3 are

functions of the variance components, which can be estimated either by maximum likelihood

method or by restricted maximum likelihood (REML) method. Since REML method gives

unbiased estimates for the variance components, we adopt the REML estimation in this

work. The obtained dual representation of the linear mixed effects model for the SS-ANOVA

model makes it feasible to do inferences about the main and interaction components under

the mixed effects model framework.

4.2.3 Choice of kernel function for genotype similarity

The choice of reproducing kernel is not arbitrary in the sense that the kernel function must be

non-negative definite. By theorem 2.3 [131], given a non-negative definite function k on X , we

can construct a unique RKHS of real-valued functions on X with k as its reproducing kernel.

In a genetic association study, kernel function captures the pairwise genomic similarities

between two individuals across multiple SNPs in a gene. It projects the genotype data

from the original space, which can be high dimensional and nonlinear, to a one-dimensional
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linear space. The Allele Matching (AM) kernel is one of the most popularly used kernels

for measuring genotype similarity. This type of kernel measure has been used in linkage

analysis [135] and in association studies [123, 124, 125, 128, 136]. For a comprehensive

review of genomic similarity and kernel methods, readers are referred to [126, 127]. With the

notable strength of not requiring knowledge of the risk allele for each SNP, AM kernel has

been chosen as the kernel function in this study. This similarity kernel counts the number

of matches among the four comparisons between two genotypes gi,s (with two alleles A and

B) and gj,s (with two alleles C and D) of two individuals i and j at locus s, and can be

expressed as

AM(gi,s = A/B, gj,s = C/D) = I(A ≡ C) + I(A ≡ D) + I(B ≡ C) + I(B ≡ D) (4.10)

where I is the indicator function and “≡” means the two alleles are in identical-by-state

(IBS). The kernel function based on AM similarity measure then takes the form

f(gi, gj) =

∑S
s=1AM(gi,s, gj,s)

4S
(4.11)

where S is the number of SNPs considered.

To incorporate valuable SNP-specific information into analysis to potentially improve

performance, a weighted-AM kernel can be applied which has the form

f(gi, gj) =

∑S
s=1wsAM(gi,s, gj,s)

4
∑S

s=1ws
(4.12)

where ws is the weighting function which can be adopted to incorporate prior knowledge to
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gain extra power. For example, when a study is trying to identify the effect of rare variants,

the weight function can be taken as the inverse of the minor allele frequency to boost the

signal for rare variants [127].

We use the AM kernel as the reproducing kernel for the two subspaces H1 and H2

corresponding to the main effects of the two genes. Utilizing the fact that the reproducing

kernel for a tensor product of two reproducing kernel spaces is the product of the two

reproducing kernels [137], the associated reproducing kernel for H3 can be taken as the

product of the reproducing kernels of the two subspaces: H1 and H2.

4.2.4 Hypothesis testing

Testing overall genetic effect In a gene-based genetic association study, one is inter-

ested in whether a gene as a system is associated with a disease trait. In the proposed

3G interaction study, we are interested in the association of each gene with a quantita-

tive trait as well as the interaction between genes if any. The analysis starts with a two-

dimensional pairwise search for gene pairs with overall contribution to the phenotypic vari-

ation and then test those contributing gene pairs for interaction effect. In the SS-ANOVA

framework, testing the overall contribution of a gene pair to a phenotypic trait is to test

H0 : m1(x
(1)) = m2(x

(2)) = m12(x
(1),x(2)) = 0. Similarly, testing for interaction ef-

fect can be formulated as H0 : m12(x
(1),x(2)) = 0 With the linear mixed effects model

representation, the aforementioned two tests are equivalent to

(I) H1
0 : τ21 = τ22 = τ23 = 0
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and

(II) H2
0 : τ23 = 0

respectively. Here, τ21 , τ
2
2 , τ

2
3 , σ

2 are the variance components in model (4.9).

A well-known issue in testing variance component is that the parameters under the null

hypotheses are on the boundary of the parameter space. Moreover, the kernel matrices Ks’s

are not block-diagonal. Thus, the asymptotic distribution of the likelihood ratio test (LRT)

statistic does not follow a central chi-square distribution under the null hypothesis. The

mixture chi-square distribution proposed by Self and Liang [138] under irregular conditions

does not apply in our case either. In this work, we construct score test statistics based on

the restricted likelihood. Consider the linear mixed model in (4.9), y ∼ N(µ1, V (β)), and

the restricted log-likelihood function can be written as

+R ∝ −1

2
ln(|V (β)|)− 1

2
ln(|1TV −1(β)1|)− 1

2
(y − µ̂1)TV (β)−1(y − µ̂1) (4.13)

where β = (σ2, τ21 , τ
2
2 , τ

2
3 ), V (β) = σ2I + τ21K1 + τ

2
2K2 + τ

2
3K3. The first order derivative

of the restricted log-likelihood function with respect to each variance component:

∂+R
∂βi

= −1

2
tr(RVi) +

1

2
(y − µ̂1)TV −1(β)ViV

−1(β)(y − µ̂1) (4.14)

where Vi =
∂V (β)
∂βi

, i = 1, · · · , 4, so V1 = I, V2 = K1, V3 = K2, V4 = K3 and R = V −1 −

V −11(1TV −11)−11TV −1.

The restricted score function under the null hypothesis: H1
0 : τ21 = τ22 = τ23 = 0 is

∂+R
∂βi

|
τ21=τ

2
2=τ

2
3=0

= − 1

2σ2
tr(P0Vi) +

1

2σ4
(y − µ̂1)TVi(y − µ̂1)
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where P0 = I−1(1T1)−11T is the projection matrix under the null. Thus, H1
0 can be tested

by the following score statistic

S(σ2) =
1

2σ2
(y − µ̂01)

T
3∑

l=1

Kl(y − µ̂01)

where µ̂0 = (I− P0)y is the MLE of µ under the null. This leads to

S(σ2) =
1

2σ2
yTP0

3∑

l=1

KlP0y (4.15)

Denoting σ20 as the true value of σ2 under the null, then S(σ20) is a quadratic form in y.

Following Liu and Lin [139], we use the satterthwaite method to approximate the distribution

of S(σ20) by a scaled chi-square distribution, i.e., S(σ20) ∼ aχ2g, where the scale parameter

a and the degrees of freedom g can be estimated by the method of moments (MOM). By

equating the mean and variance of the test statistic S(σ20) with those of aχ2g, we have






δ = E[S(σ20)] = tr(P0
∑3

i=1Ki)/2 = E[aχ2g] = ag

ν = V ar[S(σ20)] = tr(
∑3

i=1(P0Ki)
∑3

i=1(P0Ki))/2 = V ar[aχ2g] = 2a2g

(4.16)

Solving for the two equations leads to â = ν/2δ and ĝ = 2δ2/ν.

In practice, we do not know the true value σ20 and we usually replace it by its MLE

under the null model, denoted as σ̂20. The asymptotic distribution of S(σ̂0
2) can still be

approximated by the scaled chi-square distribution because the MLE is
√
n consistent. To

account for this substitution, we estimate a and g by replacing ν with ν̃ based on the efficient
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information. The Fisher’s information matrix of τ = (τ21 , τ
2
2 , τ

2
3 ) is given by

Iττ =
1

2





tr(P0K1P0K1) tr(P0K1P0K2) tr(P0K1P0K3)

tr(P0K2P0K1) tr(P0K2P0K2) tr(P0K2P0K3)

tr(P0K3P0K1) tr(P0K3P0K2) tr(P0K3P0K3)





Iτσ2 =
1

2

(
tr(P0K1) tr(P0K2) tr(P0K3)

)T

and Iσ2σ2 = 1
2tr(P0P0). Then the efficient information Ĩττ = Iττ − IT

τσ2
I−1
σ2σ2

Iτσ2 and

ν̃ = V ar[S(σ̂2)] ≈ SUM [Ĩττ ] (4.17)

where operator “SUM” indicates the sum of every elements of the matrix.

Testing G×G interaction For testing interaction effect, i.e., testing H2
0 : τ23 = 0, we

also apply a score test. Denote Σ = σ2I + τ21K1 + τ
2
2K2. The score function (4.14) under

this null hypothesis becomes:

∂+R
∂τ23

|
τ23=0

= −1

2
[tr(P01K3)− (y − µ̂1)TΣ−1K3Σ

−1(y − µ̂1)]

= −1

2
(tr(P01K3)− yTP01K3Py)

(4.18)

where P01 = Σ−1 − Σ−11(1TΣ−11)−11TΣ−1 is the projection matrix under the null, then

SI =
1

2
yTP01K3P01y (4.19)

Similarly, Satterthwaite method is used to approximate the distribution of SI by aIχ
2
gI
.
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Parameters aI and gI are estimated by MOM. Specifically, âI = νI/2δI and ĝI = 2δ2I/νI ,

where δI = 1
2tr(P01K3) and νI = 1

2tr(P01K3P01K3)− 1
2Φ

T∆−1Φ,

Φ = [tr(P 2
01K3), tr(P01K3P01K1), tr(P01K3P01K2)]

T

and

∆ =





tr(P 2
01) tr(P 2

01K1) tr(P 2
01K2)

tr(P 2
01K1) tr(P01K1P01K1) tr(P01K1P01K2)

tr(P 2
01K2) tr(P01K2P01K1) tr(P01K2P01K2)





4.3 Simulation study

4.3.1 Simulation design

Monte Carlo simulations were conducted to evaluate the performance of the proposed ap-

proach for detecting genetic effects as well as gene-gene interaction in an association study.

The genotype data were simulated using two approaches introduced in [111]. In the fol-

lowing, we describe the details of the two genotype generating methods: MS program and

LD-based simulation.

MS program : The MS program developed by Hudson [140] generates haplotype samples

by using the standard coalescent approach in which the random genealogy of a sample is

first generated and the mutations are randomly placed on the Genealogy. We first simulated

two independent samples of haplotypes by using MS program. Parameters of the coalescent

model were set as following: (1) The diploid population size N0 = 10, 000; (2) The mutation

parameter θ = 4N0µ = 5.610 × 10−4/bp; and (3) The cross-over rate parameters are ρ =
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4N0r = 4.0×10−3/bp and ρ = 8×10−3/bp for the two independent samples respectively. In

each sample, 100 haplotypes were simulated for a locus with 10kb long and the number of

SNP sequences were set to be 100. Two haplotypes were then randomly drawn within each

simulated haplotype pool and paired to form the genotype on the locus for an individual. For

each individual, we randomly selected 10 adjacent SNPs with minor allele frequency (MAF)

greater than 5% to form a gene. This was done separately for each simulated haplotype pool

and finally we had genotypes for n individuals for two separate genes with 10 SNPs each,

and the two genes were independent.

LD-based simulation : Under this scenario, SNP genotypes were simulated by con-

trolling pairwise LD values. Let pA be the MAF for SNP1. Assuming Hardy-Weinberg

equilibrium (HWE), the first SNP marker can be simulated according to a multinomial dis-

tribution with frequencies p2A, 2pA(1 − pA) and (1 − pA)
2 for genotype AA, Aa and aa,

respectively. Let the MAF of the next simulated marker (SNP2) as pB and the LD between

SNP1 and SNP2 be D. Assuming HWE, the four haplotype frequencies can be calculated as

pAB = pApB+D, pAb = pA(1−pB)−D, paB = (1−pA)pB−D and pab = (1−pA)(1−pB)+D

for haplotype AB, Ab, aB and ab, respectively. The conditional genotype distribution of

SNP2 given on SNP1 can be derived as

P (BB|AA) = P (AABB)

P (AA)
=

p2AB

p2A
=

(pApB +D)2

p2A
(4.20)

Similarly we can get the other 8 conditional genotype distributions (see Table 1 in [111]

for more details). Two genes with 10 SNPs each were simulated by applying the LD-based

simulation method. For gene 1, we assume MAF=0.3 and pairwise SNP correlation r2 = 0.5

(r2 = D2

pApB(1−pA)(1−pB)). For gene 2, we assume MAF=0.2, and r2=0.8.
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Phenotype simulation : Four simulation scenarios were considered in simulating the

phenotype (Table 4.1). In Scenario I, the three genetic effects were set as zero, with which

we can assess the false positive control of different methods. In Scenario II, we considered

the main effects for the two genes, but set the interaction effect as zero. In Scenarios III

and IV, both main effects and interaction effect were considered. The difference between

the scenario III and IV is that the interaction effect in Scenario III is smaller than the main

effect, while in Scenario IV it is larger than both main effects. Quantitative trait of interest

were simulated from a multivariate normal distribution with mean µ1n×1 and variance-

covariance matrix V = σ2I + τ21K1 + τ
2
2K2 + τ

2
3K3, where τ

2
1 , τ

2
2 , τ

2
3 took different values

under different scenarios; Ki, i = 1, 2, 3 are the kernel matrices using the allele matching

method described before. Different sample sizes (n = 200 and 500) and different heritability

(H2=0.1, 0.2, 0.4) were assumed. Let σ2G = τ21 + τ22 + τ23 , then the heritability is defined as

H2 = σ2G/(σ
2
G + σ2). For a given value of residual variance σ2, the main effects of the two

genes were set equal. When the interaction effect was considered, it was set as either half

of the main effect (Scenario III) or double the main effect (Scenario IV). Thus for a given

heritability level, the parameter values were different under different scenarios. Specific

values for σ2, τ21 , τ
2
2 , τ

2
3 were given in the first column of Table 4.1.

4.3.2 Model comparison

We mainly compared our simulation results with two other methods described in the follows.

Wang et al. proposed an interaction method using a partial least square approach which

is developed specifically for binary disease traits [141]. The method cannot be applied for

quantitative traits. However, in [141], the authors compared their method with a regression-
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based principle component analysis method. Specifically, assuming an additive model for

each marker in which genotypes AA, Aa and aa are coded as 2,1,0, respectively, the singular

value decomposition (SVD) can be applied to both gene matrices. Let Gj be an n×Lj SNP

matrix for gene j (= 1, 2) . The SVD for Gj can be expressed as Gj = UjDjV
T
j , where Dj

is a diagonal matrix of singular values, and the elements of the column vector Uj are the

principal components U1
j , U

2
j , · · · , U

mj
j (mj ≤ Lj is the rank for Gj). An interaction model

can be expressed as

y = µ+

L1∑

l1=1

βl1xl1 +

L2∑

l2=1

βl2xl2 + γU
1
1U

2
1 (4.21)

where γ represents the interaction effect between the first pair of PCs corresponding to the

largest eigenvalues in the two genes. The main effect of the each gene is modeled through

the sum of all single marker effects. For simplicity, only one interaction effect between the

first PC corresponding to the largest eigenvalues in each gene was considered in [141]. We

followed their way and compared the performance of our model with this model.

In principle, one can select PCs for each gene based on the proportion of variation ex-

plained (say > 85%). Then, pairwise interactions can be considered for all selected PCs

in model (4.21). Thus, we replaced the main effect of each gene in model (4.21) with PCs

rather than single SNPs to reduce the model degrees of freedom, model (4.21) then becomes

y = µ+

K1∑

k1=1

βk1Uk1
+

K2∑

k2=1

βk2Uk2
+

K1∑

k1=1

K2∑

k2=1

γk1k2U
1
k1
U2
k2

(4.22)

where Ukj
, j = 1, 2 represents the PCs for gene j, and Kj , j = 1, 2 is chosen based on the

proportion of variation explained by the number of PCs in gene j. With this regression

model, we considered all possible pairwise PC interactions between the two genes and G×G
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interaction was done by testing H0 : γk1k2 = 0, for all k1 and k2. This model was applied

by [142], in their gene-based interaction analysis.

In addition to the above two models, we also compared our gene-centric approach to a

pairwise SNP interaction model. Details of the comparison is given in section 4.3.3. For

a given simulation scenario, 1000 simulation runs were conducted. Type I error rates and

power were examined at the nominal level α = 0.05.

4.3.3 Simulation results

Table 4.1 summarizes the comparison results between our kernel method and model (4.21)

and (4.22). The power of an association test was denoted by P .
1, P

.
2 and P .

3 which correspond

to the power by using the proposed gene-centric interaction method, model (4.21) and (4.22),

respectively. The superscript letters o and i denote the power for testing the significance of

the overall genetic effects and the interaction effect, respectively. Noted that the power for

the interaction test was calculated only when the overall test showed significance. Thus, the

power and the false positive rate for the interaction test are smaller than the ones obtained

without this constraint.

Comparisons of the the proposed method with the two PCA-based methods: The results

for Scenario I indicate that our method has type I error rate reasonably controlled for the

overall genetic effect tests under the two genotype simulation scenarios (see Scenario I in

Table 4.1). The two PCA-based interaction models produced slightly conservative results

when the genotypes were simulated with the MS program. For example, the type I error

rates were 0.033 and 0.023 for the two methods when sample size is 500.

In Scenarios II-IV, we fixed the residual variance σ2 to 0.8, and varied the three genetic
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Table 4.1: List of empirical type I error and power based on 1000 simulation runs.

Parameter values LD-based
(σ2, τ21 , τ

2
2 , τ

2
3 ) H2 n Po∗

1 Pi∗
1 Po∗

2 Pi∗
2 Po∗

3 Pi∗
3

Scenario I
(1,0,0,0) 0 200 0.049 0.004 0.045 0.016 0.095 0.025

500 0.061 0.002 0.044 0.021 0.055 0.012
Scenario II
(0.8, 0.044, 0.044,0) 0.1 200 0.285 0.019 0.212 0.032 0.209 0.042

500 0.531 0.026 0.420 0.052 0.374 0.043

(0.8, 0.1, 0.1,0) 0.2 200 0.459 0.029 0.386 0.058 0.387 0.055
500 0.776 0.048 0.636 0.045 0.686 0.042

(0.8, 0.267, 0.267,0) 0.4 200 0.734 0.072 0.661 0.058 0.684 0.072
500 0.927 0.065 0.862 0.069 0.939 0.071

Scenario III
(0.8, 0.036, 0.036, 0.018) 0.1 200 0.289 0.025 0.234 0.051 0.238 0.037

500 0.565 0.054 0.415 0.059 0.414 0.062

(0.8, 0.08, 0.08, 0.04) 0.2 200 0.486 0.053 0.389 0.065 0.389 0.046
500 0.806 0.086 0.686 0.085 0.746 0.074

(0.8, 0.21, 0.21, 0.11) 0.4 200 0.765 0.109 0.654 0.087 0.740 0.107
500 0.946 0.163 0.881 0.131 0.956 0.140

Scenario IV
(0.8, 0.022, 0.022, 0.044) 0.1 200 0.318 0.047 0.245 0.048 0.253 0.051

500 0.571 0.064 0.466 0.090 0.432 0.062

(0.8, 0.05, 0.05, 0.1) 0.2 200 0.500 0.074 0.409 0.076 0.443 0.087
500 0.805 0.141 0.720 0.117 0.755 0.119

(0.8, 0.133, 0.133, 0.266) 0.4 200 0.771 0.172 0.694 0.115 0.750 0.136
500 0.938 0.304 0.881 0.230 0.961 0.244

*P.o and P.i refer to the power for testing the overall genetic effects (i.e., H0 : τ21 = τ22 =
τ23 = 0) and for testing interaction effect (i.e., H0 : τ23 = 0), respectively. P.

1, P
.
2 and P.

3 refer
to powers by using the proposed gene-centric method, the full PCA-based interaction with
model (4.22) and the partial PCA-based interaction analysis with model (4.21), respectively.

effects to get different heritability levels. As we expected, the testing power increases as the

heritability level and sample size increase. For example, under the LD-based simulation, the

overall power increases from 0.565 to 0.946 when H2 increases from 0.1 to 0.4 with fixed

sample size 500 in Scenario III. Under the same Scenario, the overall power increases from
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Table 4.1 (cont’d)

Parameter values MS program
(σ2, τ21 , τ

2
2 , τ

2
3 ) H2 n Po∗

1 Pi∗
1 Po∗

2 Pi∗
2 Po∗

3 Pi∗
3

Scenario I
(1,0,0,0) 0 200 0.070 0.002 0.048 0.025 0.034 0.011

500 0.052 0.001 0.033 0.019 0.023 0.008
Scenario II
(0.8, 0.044, 0.044,0) 0.1 200 0.255 0.016 0.186 0.057 0.115 0.019

500 0.525 0.036 0.339 0.045 0.254 0.030

(0.8, 0.1, 0.1,0) 0.2 200 0.485 0.044 0.324 0.058 0.253 0.041
500 0.755 0.041 0.615 0.071 0.594 0.050

(0.8, 0.267, 0.267,0) 0.4 200 0.758 0.080 0.611 0.066 0.604 0.052
500 0.946 0.066 0.842 0.066 0.917 0.048

Scenario III
(0.8, 0.036, 0.036, 0.018) 0.1 200 0.299 0.019 0.164 0.041 0.126 0.027

500 0.548 0.030 0.399 0.069 0.298 0.034

(0.8, 0.08, 0.08, 0.04) 0.2 200 0.491 0.069 0.346 0.056 0.279 0.046
500 0.752 0.061 0.640 0.089 0.632 0.045

(0.8, 0.21, 0.21, 0.11) 0.4 200 0.766 0.100 0.629 0.091 0.616 0.069
500 0.941 0.131 0.872 0.128 0.914 0.097

Scenario IV
(0.8, 0.022, 0.022, 0.044) 0.1 200 0.280 0.027 0.189 0.051 0.136 0.032

500 0.571 0.038 0.449 0.089 0.325 0.045

(0.8, 0.05, 0.05, 0.1) 0.2 200 0.514 0.053 0.377 0.062 0.291 0.043
500 0.787 0.111 0.669 0.119 0.667 0.105

(0.8, 0.133, 0.133, 0.266) 0.4 200 0.779 0.153 0.619 0.103 0.680 0.092
500 0.963 0.256 0.874 0.211 0.955 0.194

* P.o and P.i refer to the power for testing the overall genetic effects (i.e., H0 : τ21 = τ22 =
τ23 = 0) and for testing interaction effect (i.e., H0 : τ23 = 0), respectively. P.

1, P
.
2 and P.

3 refer
to powers by using the proposed gene-centric method, the full PCA-based interaction with
model (4.22) and the partial PCA-based interaction analysis with model (4.21), respectively.

0.486 to 0.806 when sample size increases from 200 to 500 under fixed H2. We observed a

similar trend for genotypes simulated with the MS program (Table 4.1).

Relatively little power to detect interactions was observed for the three methods (partly

due to the way we calculated the interaction power). As sample size or heritability increase,

the interaction power also increases. Larger interaction effect (Scenario IV) results in larger
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interaction power compared to the one obtained with smaller interaction effect (Scenario III).

For example, for fixed sample size (n = 500) and fixed heritability (H2 = 0.4), the interaction

power increases from 16% to 30% under the LD-based simulation when the interaction effect

was doubled. We did additional simulation by increasing the sample size to 1000 and achieved

reasonable interaction power (data not shown). The simulation results indicate that large

sample size is needed in order to obtain reasonable power to detect the interaction effect.

Model performance under different interaction effect sizes: Interactions may be caused by

a variety of underlying mechanisms. Some genes might have both significant main and inter-

action effects, while others might only incur epistatic effects without main effects. Simulation

studies were designed to evaluate the performance of the proposed kernel machine approach

in discovering gene × gene interaction under different epistasis effect sizes. We defined the

proportion of the epistatic variance among the total genetic variance as ρ = τ23 /(τ
2
1+τ

2
2+τ

2
3 ),

which gave us an indication of the strength of the epistatic effect between two genes for a

fixed total genetic variance.

Two genes each with 10 SNPs were considered as in previous simulation studies. Geno-

type data and phenotype data were generated as described in Section 3.1, but with different

values for the variance components. For a given heritability level (H2 = 0.4) and a fixed resid-

ual error variance (σ2 = 0.6), the total genetic variance is calculated as 0.4. We then assumed

the same effect size for the two main components, and varied the proportion ρ. For example,

we had (τ21 , τ
2
2 , τ

2
3 ) = (0.16, 0.16, 0.08) when ρ = 0.2, and (τ21 , τ

2
2 , τ

2
3 ) = (0.04, 0.04, 0.32)

when ρ = 0.8. Six values of proportion ρ = (0, 0.2, 0.4, 0.6, 0.8, 1.0) were considered, includ-

ing the two extreme cases: no epistatic effect at all (ρ = 0) and pure epistasis (ρ = 1).

Comparisons with the other two PCA-based interaction analyses were considered under two
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different sample sizes, 500 and 1000. Empirical powers was calculated based on testing the

interaction effect only.

Results based on 1000 replicates were summarized in Figure 4.1. All the three methods

can reasonably control the type I error (ρ = 0). As we expected that the empirical interaction

power increases as the interaction effect size increases. When SNPs are correlated (Figure

4.1B), small number of PCs might be enough to capture the variation of each gene. So

the power is larger than MS-based simulation (Figure 4.1A). Among the three methods, our

kernel-based method has the highest power. Model (4.21) has the lowest power, which implies

that only considering one pair of PC interaction is not enough to capture the interaction

effect between two genes. The effect of sample size on the interaction power is also significant.

Larger sample size always leads to larger power. The results also confirm that detecting gene

× gene interactions generally requires relatively larger sample size than it does for detecting

main genetic effects.

Comparison with the single SNP interaction model: In a regression-based analysis for

interaction, the commonly used approach is the single SNP interaction model with the form

y = β0 + β1x1 + β2x2 + β12x1x2 + ε (4.23)

where β0 is the intercept; β1, β2 and β12 represent the effects of SNP x1 in gene 1, SNP x2

in gene 2 and the interaction effect between the two; and ε ∼ N(0, σ2). We simulated data

according to model (4.23) assuming a MAF pA = 0.3. Different heritabilities and different

sample sizes were assumed. Obviously it is unfair to compare the two since the single SNP

interaction model is the true analytical model and it should have the best performance.

However, it is worth to evaluate the performance of our kernel method when there is only
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one functional pair of SNPs in two genes. For simplicity, we assumed the same effect size for

the three coefficients which are calculated under specific heritability (H2 = 0.2 and 0.4) when

generating the data. We considered an extreme case in which each gene only contains one

single SNP. Data generated with model (4.23) are subject to both the single SNP interaction

and the proposed kernel interaction analysis. The results are summarized in Table 4.2.

Table 4.2: List of empirical type I error and power based on 1000 simulation runs (single
SNP interaction model).

Heritability Coefficients Sample size Single SNP Kernel
(H2) (β0, β1, β2, β12) (n) Po Pi Po Pi

200 0.055 0.019 0.059 0.003
(0.19, 0, 0, 0) 500 0.058 0.019 0.057 0.003

1000 0.052 0.017 0.059 0.003

200 0.497 0.03 0.534 0.032
0.2 (0.19, 0.19, 0.19, 0) 500 0.923 0.045 0.911 0.046

1000 0.999 0.048 0.997 0.053

200 1 0.221 1 0.183
(0.19, 0.19, 0.19, 0.19) 500 1 0.419 1 0.349

1000 1 0.714 1 0.635
200 0.053 0.022 0.053 0.003

(0.51, 0, 0, 0) 500 0.049 0.016 0.062 0.001
1000 0.054 0.024 0.057 0.008

200 1 0.051 1 0.058
0.4 (0.51, 0.51, 0.51, 0) 500 1 0.062 1 0.067

1000 1 0.054 1 0.058

200 1 0.850 1 0.648
(0.51, 0.51, 0.51, 0.51) 500 1 0.996 1 0.964

1000 1 1 1 1

* Po and Pi refer to the power for testing the overall genetic effects (i.e., H0 : τ21 = τ22 =
τ23 = 0 for the kernel approach and H0 : β1 = β2 = β12 = 0 for the pairwise SNP interaction
analysis) and for testing interaction effect (i.e., H0 : τ23 = 0 for the kernel approach and
H0 : β12 = 0 for the pairwise SNP interaction analysis), respectively.

Both models show comparable type I error control for the overall genetic test (see Po in

the table). For the interaction test, it looks like that the kernel approach generates more
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conservative results. Here the interaction test is nested within the overall genetic test. If we

aggregate the results by dividing Pi by Po, the single SNP analysis actually produces more

inflated false positives compared to our kernel approach when no genetic effect is involved at

all. When data were simulated assuming only main effects but no interaction (case β12 = 0),

the two approaches yield very similar false positive rate, indicating reasonable performance

of the kernel approach for false positive control.

For the power analysis, we found little difference between the two methods for the over-

all genetic test (Po), especially under large sample size and high heritability level. For the

interaction test (Pi), we found the power increase as sample size and heritability level in-

crease. For example, Pi increases from 0.183 to 0.635 for the kernel approach when sample

size increases from 200 to 1000, a 2.5 fold increase in power under a fixed heritability level

(H2=0.2). When heritability level increases from 0.2 to 0.4 under a fixed sample size (say

500), we saw a dramatic power increase from 0.349 to 0.964 for the kernel approach. A

similar trend is also observed for the single SNP interaction analysis. The information im-

plies that from a practical point of view, large sample is always preferred, especially when

environmental noise is large. Overall, the single SNP interaction model (4.23) yields slightly

higher power than the kernel approach, although the difference is diminished under large

sample size (n = 1000) and high heritability level (H2 = 0.4). This is not surprising since

one would expect to see large power when data are analyzed with the true model. We did ad-

ditional simulations in which more than one functional SNPs within each gene were involved

in interacting with each other to affect a trait variation. Results showed that the kernel

method consistently outperformed the single SNP interaction model (data not shown).

In summary, our model performs reasonably well in different scenarios compared to the
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other methods. Even when there is only one single SNP pair interacting with each other in

two genes, our analysis produces results as good as the ones analyzed with the true model,

especially under large sample size and high heritability (Table 4.2). For the powers obtained

under the two genotype simulation methods, the difference is not remarkable. To achieve

high power, large sample size (say n > 500) is always encouraged.

4.4 Applications to real data

4.4.1 Analysis of yeast eQTL mapping data

The real data set we analyzed with our model is the well studied yeast eQTL mapping

dataset generated to understand the genetic architecture of gene expression. The details of

the dataset is described in section (2.2.1). As an example to show the utility of our approach

to an eQTL mapping study, we picked the expression profile of one gene (BAT2) as the

quantitative response to identify potential genes or epistasis that regulate the expression of

this gene. Noted that one of the parental strain RM11-1a is a LEU2 knockout strain. We

expect strong segregation of this gene in the mapping population. Thus we picked this gene

which is in the downstream of Leucine Biosynthesis Pathway (see Fig. 5(a) in [57]) as the

response. A two-dimensional pairwise interaction search was done. Due to strong signals,

Bonferroni correction was applied to adjust multiple testings for the 1072380 gene pairs.

Overall test for pairs of gene effects was conducted followed by the score test for interaction

if the overall test is significant.

There are total 1465 genes with some containing a single SNP marker. All the genes were

subject to the proposed kernel interaction analysis. Figure 4.2A shows the pairwise inter-
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action plot for -log10 transformed p-values associated with the overall genetic test (I). The

yellow hyperplane indicates the Bonferroni correction threshold. Data points with p-values

larger than 10−4 were masked. The plot indicates a strong genetic effect at chromosome 3

and 13, which implies that the two locations are potential regulation hotspots. In checking

the recent literature, we found that the two positions were reported as eQTL hotspots in a

number of studies [45, 64, 63].

Out of the 1072380 gene pairs, 87 pairs were found to have significant interactions at

an experimental wide level of 0.05. Figure 4.2B plots the pairwise significant interactions.

Circles corresponds to significant interaction pairs with the darkness of the color indicating

the strength of the interaction. We saw a strong interaction pattern on chromosome 13. One

or several genes at this location interact with many other genes to affect the transcription

of gene BAT2. Another interaction “hotspot” is at chromosome 3 where genes (containing

LUE2 and its neighborhood genes) interact with genes at chromosome 5, 13 and 15 to regulate

BAT2 expression. We used Cytospace [143] to generate an interaction network (see Fig. 4.3).

Each node represents a gene and the thickness of the connection line indicates the strength

of the interaction effect. Genes at the same chromosome location are clustered together in

the plot. Light nodes with oval shapes indicates weak or no marginal effects. We found

strong marginal effects for genes on chromosome 3 and 13. The most strongest interaction

effect is between genes on chromosome 3 and chromosome 13. We also highlighted (red

lines) the interaction between genes on chromosome 3 and others. Among the genes with

no marginal effects (light oval nodes), is URA3 which is a known transcription factor [144].

Even though it does not show any main effect, it interacts with several genes on chromosome

3 to regulate the expression of BAT2. The results also imply the important role of several
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loci on chromosome 13. Since their functions are unknown, they can be potential candidate

genes for further lab validation.

4.5 Discussion

The importance of gene-gene interaction in complex traits has stimulated enormous dis-

cussion and fundamental works in statistical methodology development have been broadly

pursued (reviewed in [122]). Previous investigations have demonstrated the importance of a

gene-centric approach in genetic association studies by simultaneously considering all mark-

ers in a gene to boost association power and reduce the number of tests [111, 112, 145].

This motivates us to develop a gene-centric approach to understand gene-gene interaction

associated with complex traits.

In this work, we have proposed a gene-centric kernel machine framework for gene-gene

interaction analysis. Our model considers all variants in a gene as a system and adopts a

kernel function to model the genomic similarity between SNP variants. The kernel machine

method was previous developed for an association test and has been shown to be powerful

in association studies [128, 129]. Motivated by these work, we propose a spline-smoothing

ANOVA decomposition method to decompose the genetic effects of two genes into separate

main and interaction effects, and further model and test the genetic effects in the reproduc-

ing kernel Hilbert space. The joint variation of SNP variants within a gene is captured by

a properly defined kernel function, which enables one to model the interaction of two genes

in a linear reproducing Hilbert space by a cross-product of two kernel functions. Following

rigorous derivations, the kernel machine method is shown to be equivalent to a linear mixed

effects model. Thus, testing main and interaction effects can be done by testing the signif-
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icance of different variance components. Extensive simulations under various settings and

the analysis of two real data sets demonstrate the advantage of the gene-centric analysis.

He et al. [142] previously proposed a gene-based interaction method in which each gene is

summarized by several principle components and interaction was tested through the modeling

of the PC terms rather than single SNPs. The authors proposed a weighted genotype scoring

method using pairwise LD information to test gene-gene interaction. Their method is similar

to several other methods which jointly consider information contributed by multiple markers

[146, 147]. Our method is fundamentally different from their approach in which we capture

the joint variation of SNP variants within and between genes by kernel functions (see [126] for

more discussion of the advantage of the kernel methods). Our method can also be extended

to test interaction of variants by incorporating various weighting functions to define a kernel

measure. Simulation studies demonstrate the advantage of the method over the PC-based

regression analysis.

The advantage of the gene-centric gene-gene interaction analysis was previously discussed

in [142], such as reducing the number of hypothesis tests in a genome-wide scan. However, we

should not over-emphasize the role of gene-centric analysis. Our simulation study indicates

that when the underlying truth is that interaction only occurs between two single SNPs

in two genes, single-SNP interaction analysis performs better. This result agrees with the

conclusion made by He et al. [142]. Therefore, we recommend investigators conduct both

types of analysis (single SNP and gene-centric) in real applications, especially when no prior

knowledge is available on how SNPs function within a gene as well as between genes. For a

large-scale genome-wide or candidate gene study, one can also use the gene-centric approach

as a screening tool, then further target which SNPs in different genes interact with each
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other.

The choice of kernel function may have potential effects on the testing power [126, 127].

In this paper, we consider the allele matching (AM) kernel. Choice of other kernel functions

can also be applied such as the identical-by-state (IBS) kernel and many others. Schaid

gave a very nice summary of various choices of kernel functions and their applications in

genetic association studies [126, 127]. It is not the purpose of this paper to compare the

performance of difference kernel choices on the power of an association test. A comparison

study of different kernel functions on the power of the interaction test will be considered in

future investigation.

The proposed method considers two genes as two units to test their interaction. It is

easy to extend the idea to incorporate other genomic features such as pathways as testing

units to assess pathway-pathway interaction under the proposed framework. The mapping

results can then be visualized by some network graphical tools such as the Cytospace software

[143] which can help investigators generate important biological hypotheses for further lab

validation.
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Figure 4.1: Power comparison of the proposed kernel approach (solid line), the partial PCA-
based interaction model (4.21) (dashed line, denoted as pPCA) and the full PCA-based
interaction model (4.22) (dotted line, denoted as fPCA) under different sample sizes and dif-
ferent proportions (ρ) of epistasis variance. Genotypes were simulated with the MS program
(A) and the LD-based algorithm (B).
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Figure 4.2: The -log10 transformed p-value profile plot of all gene pairs for the overall test
(A) and the interaction test (B). The yellow hyperplane in A represents the Bonferroni cutoff.
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Figure 4.3: The network graph of interacting genes generated with Cytoscape (Shannon et
al. 2003). The thickness of the connection line indicates the strength of the interaction.
Nodes with light oval shapes indicate no marginal effect.
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Chapter 5

An extension of the kernel-based

gene-centric gene×gene interaction to

binary phenotypes

5.1 Introduction

In chapter 4, we have illustrated the importance of incorporating gene×gene interactions in

association studies. We proposed a model-based kernel machine method to detect gene×gene

interaction for continuous quantitative trait from a gene-centric point of view. Simulation

and real data studies indicate the promise and utility of the method as a statistical tool,

which can be applied to various studies including eQTL mapping and disease association

studies. However, in reality, many research problems have dichotomous phenotypic traits

of interest, such as, human diseases, which are normally classified as diseased and healthy

status. Gene×gene interaction is ubiquitous and believed to be an important contributor
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to the “missing” part of the heritability of complex human diseases as argued in chapter 4.

The aim of this chapter is to extend the model-based kernel machine approach to binary

phenotypic outcomes.

5.2 Methods

Statistical model Suppose we have binary disease outcomes of n unrelated subjects, de-

noted as y = (y1, y2, · · · , yn)T , in which yi = 1 if the ith subject is affected and yi = 0

otherwise. Let xi denote the genetic vector of a gene pair which can be partitioned as

xi = (x
(1)
i ,x

(2)
i ); x

(j)
i , j = 1, 2 represents the genotypes of SNPs in the two genes, respec-

tively. Let E(yi|xi) = πi, we model the relationship between the disease status and the gene

pair with a smooth function m.

log(
πi

1− πi
) = m(xi) (5.1)

By functional ANOVA decomposition [130, 133, 131], m can be decomposed as the sum of

several components.

log(
πi

1− πi
) = µ+m1(x

(1)
i ) +m2(x

(2)
i ) +m12(x

(1)
i ,x

(2)
i ) (5.2)

where m1,m2 model the main effects of the two genes and m12 captures the interaction

between them. The above equation defines a logistic two-factor interaction model. Assume

function m ∈ H, then m1 ∈ H1,m2 ∈ H2 and m12 ∈ H3 are orthogonal components,

where H,Hl, l = 1, 2, 3 are defined the same as in chapter 4. We estimate function m as the
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maximizer of the following penalized log-likelihood function.

L(y|m(xi)) =
n∑

i=1

(yim(xi)− log(1 + exp(m(xi)))−
1

2

3∑

l=1

λl‖P lm‖2H (5.3)

Function m ∈ H which maximizes (5.3) is known to have the following representation [130,

133]

m(x) = µ1+
n∑

i=1

ci

3∑

l=1

θlkl(xi,x) (5.4)

Plug in the representation of the maximizer into the penalized log-likelihood function,

we have

L(y|µ,Cl) =
n∑

i=1

(yi(µ+
3∑

l=1

KT
l (xi)Cl)− log(1 + e(µ+

∑3
l=1K

T
l (xi)Cl))) +

1

2

3∑

l=1

λlC
T
l KlCl

(5.5)

where Kl(x), Cl and K are defined as in (4.6) and (4.7).

We show that the penalized log-likelihood function is identical to the penalized quasi-

likelihood function of the following logistic mixed effects model for π̃ = E(y|m̃1, m̃2, m̃12).

logit(π̃) = µ1+ m̃1 + m̃2 + m̃12 (5.6)

with independent random effects m̃1 ∼ N(0, τ21K1), m̃2 ∼ N(0, τ22K2) and m̃12 ∼ N(0, τ23K3).

The penalized quasi-likelihood function [148] of model (5.6) is

L =
n∑

i=1

(yi(µ+
3∑

l=1

m̃l,i)− log(1 + e
µ+

∑3
l=1 m̃l,i)− 1

2

3∑

l=1

1

τ2l
m̃T

l K
−1
l m̃l (5.7)

where m̃l = (m̃l(x1), m̃l(x2), · · · , m̃l(xn))T and m̃l,i = m̃l(xi). Letting τ2l = 1/λl, m̃l =
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KT
l Cl, then

L =
n∑

i=1

(yi(µ+
3∑

l=1

KT
l (xi)Cl)− log(1 + eµ+

∑3
l=1K

T
l (xi)Cl)− 1

2

3∑

l=1

λlC
T
l KlCl (5.8)

The above expression is identical to the penalized log-likelihood function given in (5.5). The

identity indicates the connection between the two models.

By the dual representation theorem of the logistic mixed effect model, (µ,m1,m2,m12)

and the penalty parameters (λ&, + = 1, 2, 3) can be estimated by the BLUPs and REML

estimates under the logistic mixed effect model framework.

Parameter estimation Take the first order derivatives of function (5.7) with respect

to µ and Cl (l = 1, 2, 3)

∂L

∂µ
= 1T (y − π̃) (5.9)

∂L

∂Cl
= Kl(y − π̃)− λlKlCl, l = 1, 2, 3 (5.10)

Then the Hessian matrix H is

H = −





1TD1 1TDK1 1TDK2 1TDK3

KT
1D1 KT

1DK1 + λ1K1 KT
1DK2 KT

1DK3

KT
2D1 KT

2DK1 KT
2DK2 + λ2K2 KT

2DK3

KT
3D1 KT

3DK1 KT
3DK2 KT

3DK3 + λ3K3





where matrix D = diag{π̃1(1−π̃1), π̃2(1−π̃2), · · · π̃n(1−π̃n)}. Let q = (∂L∂µ ,
∂L
∂C1

, ∂L
∂C2

, ∂L
∂C3

)T

and α = (µ,C1, C2, C3)
T , assume λl (l = 1, 2, 3) are known, then α can be estimated by the

106



Newton-Raphson iteration as

α(k+1) = α(k) − (H(k))−1q(k)

The α value at convergence is the BLUPs of the model (5.6) when the penalty parameters are

known. In reality, we do not know the values for λl (l = 1, 2, 3) and need to estimate them.

Substitute the Hessian matrix and the first order derivatives into the Newton-Raphason

iteration, we arrive at

H(k)α(k+1) = H(k)α(k) − q(k)

=





1D(k)(1µ(k) +
∑3

l=1KlCl + (D(k))−1(y − π̃(k)))

K1D
(k)(1µ(k) +

∑3
l=1KlCl + (D(k))−1(y − π̃(k)))

K2D
(k)(1µ(k) +

∑3
l=1KlCl + (D(k))−1(y − π̃(k)))

K3D
(k)(1µ(k) +

∑3
l=1KlCl + (D(k))−1(y − π̃(k)))





(5.11)

ỹ = 1µ(k) +
∑3

l=1KlCl + (D(k))−1(y − π̃(k)) is known as the working response vector

in the generalized linear model context. Breslow [148] proposed to estimate the variance

components of a generalized mixed effect model by assuming normality for the working

vector ỹ at convergence. Then parameters (τ21 , τ
2
2 , τ

2
3 ) are estimated as the REML estimates

of variance components in a linear mixed effects model with the response variable ỹ expressed

as

ỹ = µ1+ m̃1 + m̃2 + m̃12 + ε (5.12)

where the m̃′s are the same independent effects in model (5.6) and ε ∼ N(0, D−1). The

detailed algorithm of the estimation procedure is summarized as in the following algorithm.
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Figure 5.1: Work flow of the estimating algorithm

Figure 5.1 gives the work flow of the present estimating procedure.

• Step 0: Initialization: (τ21 , τ
2
2 , τ

2
3 ) = (τ21 , τ

2
2 , τ

2
3 )

(0), π̃ = π̃(0)

• Step 1: Calculate the values of ỹ(0) = logist(π̃(0)) + (D(0))−1(y − π̃(0)) and H(0) and

q(0) by corresponding equations.

• Step 2: Obtain α(1) by solving the system (5.11). Get the corresponding ỹ(1) and π̃(1).

• Step 3: Remain (τ21 , τ
2
2 , τ

2
3 )

(0) unchanged, iterate the process until convergence (e.g.

|ỹ(k+1) − ỹ(k)| < 1.0e− 005) and denote the value of ỹ at convergence as ỹ(c).
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• Step 4: Assume normality for ỹ(c) and solve for REML estimates of (τ21 , τ
2
2 , τ

2
3 )

(1)

based on the approximate linear mixed effect model of (5.12).

• Step 5: Iterate step 1 through 4 until convergence (e.g. |π̃(t+1) − π̃(t)| < 1.0e− 005).

• Step 6: The values of the parameters at convergence are used as estimates.

Hypothesis tests We constructed the following test statistics for the two hypotheses we

are interested in. (1) Testing the overall genetic effect of a gene pair, i.e., H0 : m1 = m2 =

m12 = 0; and (2) testing the interaction effect between a gene pair, i.e., H0 : m12 = 0, which

are equivalent to the following hypotheses with the logistic mixed effect model representation:

(I) H0 : τ21 = τ22 = τ23 = 0; and (II) H0 : τ23 = 0. Based on the approximate linear mixed

effects model for the working vector ỹ(c) at convergence [149], two score test statistics are

obtained similarly as in chapter 4. The restricted log-likelihood function of the approximate

linear mixed effects model (5.12) is

lR = −1

2
log(|V |)− 1

2
|1TV −11|− 1

2
(ỹ − 1µ̂)TV −1(ỹ − 1µ̂) (5.13)

where µ̂ is the MLE of µ. We use the score test statistic to test the overall genetic effect of

a pair of genes by

Sbinary =
1

2
(ỹ − 1µ̂)TD

3∑

l=1

KlD(ỹ − 1µ̂) = (y − 1µ̂)T
3∑

l=1

Kl(y − 1µ̂) (5.14)

where µ̂ is the MLE of µ under the null hypothesis H0 : τ21 = τ22 = τ23 = 0.
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The score test statistic for testing the interaction between the two genes is derived as

Sbinary,I =
1

2
(ỹ − 1µ̂)TV −1

1 K3V
−1
1 (ỹ − 1µ̂) (5.15)

where µ̂ is the MLE of µ under the null hypothesis H0 : τ23 = 0, ỹ is the working vector

at convergence and V1 = D−1 + τ21K1 + τ
2
2K2 with τ21 , τ

2
2 and D estimated under the null

hypothesis.

We approximate the distribution of both score statistics by a scaled χ2 distribution.

The scale parameter and degrees of freedom are estimated by the method of moments (see

Appendix C).

To identify gene×gene interactions associated with a disease, a two-step strategy is im-

plemented: (1) an exhaustive search for gene pairs with significant overall genetic effects;

and (2) an interaction test at the position where there is significant overall genetic effect. A

general concern about an exhaustive pair-wise screen is the potential demand of computation

time. While, for the gene-centric approach, the total number of pairs to be tested has been

dropped dramatically by treating multiple SNPs in a gene simultaneously as one testing

unit. What’s more, under the null hypothesis, i.e., H0 : τ21 = τ22 = τ23 = 0, the logistic mixed

effect model becomes a general logistic regression model. Hence, the genome-wide scan in

the first step should not be time consuming. In practice, to avoid losing potential interaction

effects, a relatively nonconservative cutoff value (e.g., p − value < 0.1) can be used in the

pre-selection step. For those selected gene pairs (i.e., with the overall testing p-value< 0.1),

we continue to test interaction effects.

The methodology development of the model-based kernel machine method for detecting

gene×gene interactions for binary phenotypes has been completed. We have applied the
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approach to a candidate gene association study and derived interesting findings. But the

application doesn’t fit in the theme of this dissertation and has been excluded.
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Chapter 6

Conclusion and future work

6.1 Concluding remarks

The total number of human genes is estimated to be around 23,000. This number is not

much greater than the numbers found in species look very different from humans, such as

mouse and fruit fly (around 13,000), and even smaller than the number of genes in rice

(> 46, 000). Many wondered how human complexity could be explained by such few genes.

It has become common knowledge that the complexity is not due the static number of genes

but rather to the dynamic regulation of the transcription of these gene. Understanding

mechanistic principles of gene regulation is important for understanding the functions of a

living organism.

Data generated by genome research coupled with the recent advancements in microarray

technology have made it possible to measure thousands of gene expression profiles simul-

taneously and genotype up to millions of genetic markers. The combination of traditional

QTL mapping and the microarray technology, i.e., expression quantitative trait loci (eQTL)
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mapping, has been a powerful paradigm in the past decade which holds great promise in

elucidating the genetic architecture of gene expression as well as inferring gene regulation.

Current single trait-single marker eQTL mapping studies have achieved valuable insights

into gene regulation, for example, identifying cis and trans regulatory elements for genes

across the genome. However, there are still many open questions in regard to how genes are

being regulated.

It is postulated that a regulatory gene alters its own gene expression level and could

consequently alters expression levels of relevant genes through cellular signaling pathways.

And like most phenotypic traits, gene expression levels are multifactorial and complex ge-

netically. It is very likely that genetic variants belonging to one functional group interact

with each other in a complicated manner to affect transcript levels of genes. Hence, tra-

ditional approaches focusing on single gene analysis could have limited power and lead to

results that are difficult to be interpreted biologically. In this dissertation, we proposed

to integrate the biological pathway/gene set information into eQTL mapping studies. We

considered two levels of pathway/gene set based analysis. One level is the pathway analysis

across thousands of genes. Expression levels of genes in a pre-defined pathway are modeled

as multivariate response to test the association with any given genomic locus. The study

identifies regulators for the whole pathway, which are called pathway regulators. Based on

the mapping results, we also detected regulation hotspots which regulate the transcription of

genes in more pathways than by random. Another level is the marker set analysis across the

whole genome. Genetic features were defined by grouping genetic markers in a pre-defined

pathway or a region on the genome. Then association test is conducted between expression

of a given gene or a gene set with the genetic feature. Association studies based on genetic
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features is potentially more robust and could lead to biologically meaningful results. Statis-

tical strategies for the two levels of pathway based eQTL mapping were described in chapter

2 and 3.

Chapter 4 and 5 of the dissertation introduced a statistical association approach for

detecting gene×gene interactions. By treating genes as testing units, the testing dimension

is reduced and the analysis may be more robust in the context of reproducibility. We modeled

the relationship between genotype and phenotype by a smooth function. Functional ANOVA

decomposed the function into additive main effects and interaction effect between a pair

of genes. Score test statistics were constructed to test for genetic factors associated with

the quantitative traits of interest. This model-based kernel machine method for detecting

associated gene ×gene interactions was developed in chapter 4. The mapping method was

applied to the yeast eQTL data to find epistases which control the transcription of genes. In

chapter 5, we extended the model-based method to binary phenotypic outcomes.

Our overall aim in this dissertation is to develop novel statistical strategies for pathway-

based eQTL mapping study, which incorporates prior biological pathway information into

the eQTL mapping framework to disentangle gene regulations from the systems biology per-

spective. eQTL mapping analysis at pathway level can shed new lights into the functional

interpretation of gene regulation. Besides, this dissertation presents a statistical gene-centric

procedure for detecting gene×gene interactions underlying complex traits. It is our expecta-

tion that results obtained by these novel statistical strategies will help experimental scientists

to generate informative biological hypothesis for further functional evaluation of any genes

related to complex traits.
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6.2 Future work

Research in eQTL mapping has making great progress in understanding the genetics of

gene expression. However, substantial multidisciplinary efforts are still required including

efficient statistical strategies for the analysis and interpretation of the analysis results in

the functional context. Even though eQTL mapping only differs from the traditional QTL

mapping in the number of phenotypes, the challenge lies on the multiplicity issue of multiple

gene expression profiles and the correlations among them. Statistical approaches which

model the functional relationship between gene expressions is thus biologically appealing. For

example, the pathway-based eQTL mapping strategies proposed in this dissertation could

provide additional biological insights by integrating additional gene set information into the

eQTL mapping framework. However, genes as components in a pathway have their own

particular responsibilities. For example, up-stream genes in the toll-like receptor signaling

pathway recognize pathogens and pass the signal through down-stream genes in the pathway

to activate immunity. How to statistically model the complicated functional relationship

is a challenging and interesting research problem for future investigation. What’s more,

pathway information retrieved from public databases only represent the most conserved

parts of pathways. Transcriptional pathway can be plastic; it depends on a large numbers of

factors, such as environment, developmental stage and different tissues. Therefore, pathway

regulators can be extremely context dependent. What biological information should be

incorporated into a statistical model is another question that needs to be considered.

Recent achievements of the next generation sequencing (NGS) technology generates ex-

tremely large volume of data with an unprecedented speed. A Roche 454 machine can com-

plete sequencing a genome in about 8 hours. The new technology presents both challenges
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and opportunities in turning the massive NGS data into biological information. Sophisti-

cated statistical methodologies and strategies are in demand for base-calling, sequence align-

ment and the down-stream functional interpretation analysis. The parallel RNA-sequencing

(RNA-seq) allows accurate measurement of transcript complexity, including rare and com-

mon transcripts, novel gene structure, alternative splicing (AS) and allele-specific expression

(ASE). To use RNA-seq data in the context of eQTL mapping calls for novel statistical

method due to the new characteristics of the RNA-seq data. We are especially interested in

developing efficient statistical mapping approaches which combines the AS and ASE informa-

tion to infer eQTL and therefore derive novel insights of gene regulation, such as regulators

of transcriptional, cotranscriptional and post-transcriptional levels, respectively.

The DNA-sequencing (DNA-seq) technology is able to provide an entire spectrum of

genetic variations, including a large proportion of low frequency polymorphisms (rare vari-

ants). Genome-wide association study (GWAS) has been the primary approach for detecting

genetic variants associated with complex diseases. And hundreds of related genes have been

identified for human diseases in the past decade. However, researchers started realizing that

only a small proportion of heritability is explained by those genes. Rare variants is thought

to be a potential source that contributes to the missing heritability. Traditional association

methods based on common variants common disease hypothesis have little power in detecting

rare variants due to the low appearance frequency and modest effect size. Novel statistical

approaches are needed to detect the association between rare variants and complex traits.

Recently, several association tests for rare variants based on grouping and collapsing were

proposed [150, 151, 152]. The common idea of these approaches is to pool rare variants

within a given genomic region to investigate the cumulative evidence of association of the
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region. The current statistical approaches for rare variants detection are intuitive and easy

to implement, but still have limitations because of the simplified biological background be-

tween the genetic variants, for example, linkage disequilibrium, functional correlation and

uneven effect size. Besides, systematic errors could also cause high false positive rate. More

work is required to refine the various approaches for association study with rare variants and

ultimately determine their properties and performance under different scenarios.

The development of efficient and useful statistical methods for eQTL mapping studies and

functional interpretation of analysis results are two interwoven issues. Regulators identified

by statistical approaches can be distinguished between true positives and false positives by

looking for consistent supports from a different data source. Conversely, richer biological

knowledge helps to develop more suitable statistical models. With the support of highly

improving biotechnologies, a multi-field integrative analysis which combines the advantages

of different sources, for example, DNA-Seq, RAN-Seq and ChIP-Seq could be a direction of

future work. The importance of integrating multiple sources of data sets has been recognized.

The marriage of eQTL mapping and gene networks has led to the oriented gene regulatory

network, which provides valuable information about gene regulation [153]. We anticipate

the analysis from multiple data sources and in an integrative manner is the path that could

lead us to a full understanding of life functions.
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Appendix A

Supplementary materials for chapter 2
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Table A.1: List of KEGG pathways and their ID numbers
# PID Function
1 04010 MAPK signaling pathway
2 00460 Cyanoamino acid metabolism
3 00780 Biotin metabolism
4 00910 Nitrogen metabolism
5 00280 Valine, leucine and isoleucine degradation
6 00410 beta-Alanine metabolism
7 00730 Thiamine metabolism
8 00230 Purine metabolism
9 00550 Peptidoglycan biosynthesis
10 00500 Starch and sucrose metabolism
11 00190 Oxidative phosphorylation
12 00640 Propanoate metabolism
13 03020 RNA polymerase
14 00960 Alkaloid biosynthesis II
15 00051 Fructose and mannose metabolism
16 00052 Galactose metabolism
17 03022 Basal transcription factors
18 00053 Ascorbate and aldarate metabolism
19 04070 Phosphatidylinositol signaling system
20 00290 Valine, leucine and isoleucine biosynthesis
21 00740 Riboflavin metabolism
22 00240 Pyrimidine metabolism
23 00380 Tryptophan metabolism
24 00510 N-Glycan biosynthesis
25 00010 Glycolysis / Gluconeogenesis
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Table A.1: List of KEGG pathways and their ID numbers (cont’d)
# PID Function
26 00330 Arginine and proline metabolism
27 00650 Butanoate metabolism
28 03030 DNA replication
29 00970 Aminoacyl-tRNA biosynthesis
30 00600 Sphingolipid metabolism
31 00790 Folate biosynthesis
32 00920 Sulfur metabolism
33 00100 Biosynthesis of steroids
34 04111 Cell cycle - yeast
35 00561 Glycerolipid metabolism
36 00061 Fatty acid biosynthesis
37 00562 Inositol phosphate metabolism
38 00563 Glycosylphosphatidylinositol(GPI)-anchor biosynthesis
39 00513 High-mannose type N-glycan biosynthesis
40 00564 Glycerophospholipid metabolism
41 00565 Ether lipid metabolism
42 04120 Ubiquitin mediated proteolysis
43 00520 Nucleotide sugars metabolism
44 00020 Citrate cycle (TCA cycle)
45 00340 Histidine metabolism
46 00980 Metabolism of xenobiotics by cytochrome P450
47 00480 Glutathione metabolism
48 00430 Taurine and hypotaurine metabolism
49 00750 Vitamin B6 metabolism
50 00071 Fatty acid metabolism
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Table A.1: List of KEGG pathways and their ID numbers (cont’d)
# PID Function
51 00521 Streptomycin biosynthesis
52 00251 Glutamate metabolism
53 00072 Synthesis and degradation of ketone bodies
54 00252 Alanine and aspartate metabolism
55 04130 SNARE interactions in vesicular transport
56 00030 Pentose phosphate pathway
57 00350 Tyrosine metabolism
58 00670 One carbon pool by folate
59 03050 Proteasome
60 02010 ABC transporters - General
61 00300 Lysine biosynthesis
62 00620 Pyruvate metabolism
63 00120 Bile acid biosynthesis
64 00440 Aminophosphonate metabolism
65 00760 Nicotinate and nicotinamide metabolism
66 00260 Glycine, serine and threonine metabolism
67 00710 Carbon fixation
68 00530 Aminosugars metabolism
69 00624 1- and 2-Methylnaphthalene degradation
70 00625 Tetrachloroethene degradation
71 00627 1,4-Dichlorobenzene degradation
72 04140 Regulation of autophagy
73 00310 Lysine degradation
74 03010 Ribosome
75 00630 Glyoxylate and dicarboxylate metabolism
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Table A.1: List of KEGG pathways and their ID numbers (cont’d)
# PID Function
76 00130 Ubiquinone biosynthesis
77 00450 Selenoamino acid metabolism
78 00770 Pantothenate and CoA biosynthesis
79 00900 Terpenoid biosynthesis
80 00400 Phenylalanine, tyrosine and tryptophan biosynthesis
81 00590 Arachidonic acid metabolism
82 00720 Reductive carboxylate cycle (CO2 fixation)
83 00220 Urea cycle and metabolism of amino groups
84 00860 Porphyrin and chlorophyll metabolism
85 00040 Pentose and glucuronate interconversions
86 00360 Phenylalanine metabolism
87 01030 Glycan structures - biosynthesis 1
88 00680 Methane metabolism
89 03060 Protein export
90 02021 Two-component system - Organism-specific
91 00271 Methionine metabolism
92 00401 Novobiocin biosynthesis
93 00361 gamma-Hexachlorocyclohexane degradation
94 01031 Glycan structures - biosynthesis 2
95 00632 Benzoate degradation via CoA ligation
96 00272 Cysteine metabolism
97 00362 Benzoate degradation via hydroxylation
98 01032 Glycan structures - degradation
99 00903 Limonene and pinene degradation
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Table A.2: Detailed list of hotspot regulations
Chr Hotspot(Gene) Start Stop Regulated EPs

2 YBR131W(CCZ1) 499012 499012 “03020” “00010” “00600” “00790” “00100” “00020”
“00300” “00620” “00310” “00900” “00720” “00220”

2 YBR132C(AGP2) 499889 499895
“03020” “00740” “00010” “00600” “00790” “00100”
“00300” “00620” “00310” “00900” “00400” “00590”
“00220”

2 gBR07 506661 508843
“00500” “03020” “00740” “00010” “00790” “00100”
“04111” “00020” “00300” “00620” “00900”
“00400” “00590” “03060”

2 YBR139W 516889 517123 “00500” “04070” “00740” “00790” “00100” “04111”
“00564” “00620” “00760” “00900” “00400” “00220”

2 gBR08 519049 521415 ”00500” ”03020” ”00740” ”00790” ”00100” ”00564”
”00020” ”00620” ”00900” ”00400” ”00220” ”03060”

2 YBR142W(MAK5) 530481 530481
“00500” “03020” “00740” “00970” “00600” “00790”
“00100” “00020” “00620” “00450” “00900” “00400”
“00590” “00220” “03060”

2 YBR147W 537314 537314
“00500” “03020” “00740” “00510” “00970” “00600”
“00790” “00100” “04111” “00564” “00020” “00620”
“00310” “00450” “00900” “00400” “00220” “03060”
“00361”

2 YBR154C(RPB5) 548401 548401
“04010” “00500” “03020” “04070” “00510” “00970”
“00600” “00790” “00100” “04111” “00562” “00513”
“00564” “00020” “00620” “00760” “00450” “00900”
“00400” “00590” “00220” “01030” “03060”

2

YBR156C(SLI15) 551299 551299 “00500” “00640” “03020” “04070” “00740” “00510”
NBR031C 553812 553812 “00970” “00600” “00790” “00100” “04111” “00562”
NBR034W 555575 555596 “00513” “00564” “00020” “00030” “00620” “00760”
NBR035W 555778 555787 “00450” “00900” “00400” “00590” “00220” “01030”

”03060”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

2 YBR161W 562409 562415
“00500” “03020” “00960” “00650” “00600” “00790”
“00100” “04111” “00513” “00564” “00020” “00620”
“00530” “00450” “00900” “00400” “00220” “00360”
“03060”

2 YBR162W(YSY6) 565216 565216
“00500” “03020” “00960” “00650” “00600” “00790”
“00100” “04111” “00564” “00030” “00620” “00530”
“00450” “00900” “00400” “00220” “00360”

2
YBR163W(DEM1) 567221 567221 “00500” “03020” “00960” “00650” “00600” “00790”
YBR165W(UBS1) 569414 569414 “00100” “00564” “00030” “00620” “00900” “00400”

“00220” “01030”

2
YBR165W(UBS1) 569420 569420 “00500” “03020” “00650” “00600” “00790” “00100”
YBR166C(TYR1) 570229 570229 “00564” “00030” “00620” “00900” “00400” “00220”

“01030”

2
YBR172C(SMY2) 579459 579459 “00500” “00960” “04070” “00650” “00600” “00790”

YBR174C 582419 582419 “00100” “04111” “00562” “00564” “00900” “00400”
”00220”

2
YBR176W(ECM31) 584351 584357 “00500” “00960” “00650” “00600” “00790” “0100”

NBR038W 592863 592863 “00564” “00620” “00530” “00900” “00400” “00220”
NBR041W 592989 592989

3 YCL026C(FRM2) 75021 75021
“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00330” “00650” “00750” “00670” “00630”
“00770” “00680” “00401” “00903”

3 YCL025C(AGP1) 76127 76127

“00910” “00280” “00410” “00640” “00053” “00290”
“00740” “00380” “00010” “00330” “00650” “00561”
“00020” “00340” “00750” “00071” “00252” “00670”
“00300” “00620” “00120” “00310” “00630” “00770”
“00220” “00360” “00680” “00401” “00272” “00903”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

3 YCL023C 79091 79091

“04010” “00910” “00280” “00410” “00640” “00053”
“00290” “00740” “00380” “00010” “00330” “00650”
“00600” “00920” “04111” “00561” “00563” “00564”
“00020” “00340” “00980” “00750” “00071” “00251”
“00252” “00350” “00670” “00300” “00620” “00120”
“00624” “00310” “00630” “00450” “00770” “00720”
“00220” “00360” “00680” “00401” “00272” “00903”

3

“04010” “00910” “00280” “00410” “00640” “00051”
“00053” “00290” “00380” “00010” “00330” “00650”

YCL022C 81832 81832 “00970” “00600” “00920” “04111” “00561” “00563”
gCL01 90412 91496 “00564” “00020” “00340” “00980” “00750” “00071”

YCL018W(LEU2) 91977 92391 “00251” “00252” “00350” “00670” “00300” “00620”
“00120” “00440” “00260” “00624” “00310” “00630”
“00450” “00770” “00720” “00220” “00360” “00680”
“00271” “00401” “00632” “00272” “00903”

3 YCL014W(BUD3) 100213 100213

“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00010” “00330” “00650” “00600” “00920”
“00561” “00563” “00564” “00020” “00340” “00980”
“00750” “00071” “00251” “00252” “00350” “00670”
“00300” “00620” “00120” “00260” “00310” “00630”
“00450” “00770” “00220” “00680” “00401” “00272”
“00903”

3 YCL009C(ILV6) 105042 105042

“04010” “00910” “00280” “00410” “00640” “00053”
“00290” “00380” “00010” “00330” “00650” “00920”
“00561” “00563” “00564” “00020” “00340” “00750”
“00071” “00251” “00252” “00350” “00670” “00300”
“00620” “00120” “00260” “00710” “00310” “00630”
“00450” “00770” “00220” “00360” “00680” “00401”
“00272” “00903” “00600”

126



Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

3
NCR015C 175799 175808 “04010” “00280” “00410” “00290” “00380” “00600”
gCR02 177850 177850 “00563” “00340” “00350” “00440” “00630” “00450”

“00770” “00903”

5
gEL02 109310 109310

YEL021W(URA3) 116530 116830 “00740” “00240” “00510” “00020” “00251” “00252”
NEL011C 117046 117056 “00030” “00620” “00710” “00630” “00720” “01030”

YLR014C(PPR1) 117705 117705

3 YLR236C 611967 611997
“00410” “00380” “00650” “00600” “00100” “00513”
“00071” “00072” “00620” “00530” “00627” “00900”
“00720” “00361” “00903”

12 gLR07 634225 634226
“00280” “00640” “00380” “00650” “00600” “00100”
“00072” “04130” “00620” “00530” “00627” “00900”
“00720” “01030” “00361” “00903”

12 gLR07 634227 634227
“00280” “00640” “00380” “00650” “00600” “00100”
“00513” “00072” “04130” “00620” “00530” “00627”
“00310” “00900” “00720” “01030” “00361” “00903”

12 gLR07 635380 635380
“00280” “00410” “00190” “00640” “00240” “00380”
“00010” “00650” “00600” “00100” “00564” “00071”
“00072” “04130” “00620” “00530” “00627” “00310”
“00900” “00720” “00860” “01030” “00361” “00903”

12

“00280” “00410” “00190” “00640” “00380” “00010”
YLR252W 642137 642137 “00650” “00600” “00100” “00513” “00564” “00071”
YLR253W 644082 644136 “00072” “04130” “00620” “00530” “00627” “00310”

“00130” “00900” “00720” “00860” “01030” “00361”
“00903”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

12

“00280” “00410” “00190” “00640” “00960” “00240”
“00380” “00510” “00010” “00650” “00600” “00100”

YLR257W 659357 659357 “00561” “00513” “00564” “00020” “00071” “00072”
YLR258W(GSY2) 662627 662627 “00252” “04130” “00030” “00620” “00120” “00530”

“00627” “00310” “00130” “00900” “00720” “00220”
“00860” “01030” “03060” “00361” “00632” “00903”

12

“00280” “00410” “00190” “00640” “00240” “00380”
“00510” “00010” “00650” “00600” “00100” “00513”

YLR261C(VPS63) 668249 668249 “00564” “00020” “00071” “00251” “00072” “00252”
YLR263W(RED1) 672779 672785 “04130” “00620” “00120” “00530” “00627” “00310”

“00130” “00900” “00720” “00220” “00860” “01030”
“03060” “00271” “00361” “00903”

12 YLR265C(NEJ1) 674651 674651

“00280” “00410” “00190” “00640” “00380” “00010”
“00650” “00600” “00100” “00513” “00564” “00020”
“00071” “00251” “00072” “00252” “04130” “00620”
“00120” “00530” “00627” “00310” “00130” “00900”
“00720” “00860” “01030” “03060” “00361” “00903”

12 NLR116W 677957 677957

“00280” “00410” “00190” “00640” “00380” “00010”
“00650” “00600” “00100” “00513” “00564” “00071”
“00251” “00072” “00252” “00620” “00120” “00530”
“00627” “00310” “00130” “00900” “00720” “00220”
“00860” “01030” “00361” “00903”

12

“00280” “00410” “00190” “00640” “00380” “00010”
YLR267W(BOP2) 679808 679808 “00650” “00600” “00100” “00513” “00564” “00071”

YLR269C 681096 681096 “00251” “00072” “00252” “00620” “00120” “00530”
YLR271W 683457 683463 “00627” “00310” “00130” “00900” “00720” “00220”

“00860” “01030” “00361” “00903”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

12

“00280” “00410” “00190” “00640” “00380” “00010”
YLR273C(PIG1) 689211 689217 “00650” “00600” “00100” “00513” “00564” “00071”

YLR274W(CDC46) 693610 693616 “00251” “00072” “00620” “00530” “00627” “00310”
“00130” “00900” “00720” “00860” “01030” “00271”
“00361” “00903”

12 YLR274W(CDC46) 693790 693790

“00280” “00190” “00640” “00380” “00010” “00650”
“00600” “00100” “00513” “00564” “00020” “00071”
“00251” “00072” “00620” “00530” “00627” “00310”
“00130” “00900” “00720” “00860” “01030” “00271”
“00361” “00903”

12 YLR277C(YSH1) 697260 697260

“00280” “00190” “00640” “00380” “00010” “00650”
“00600” “00100” “00513” “00564” “00071” “00251”
“00072” “00620” “00530” “00627” “00130” “00900”
“00720” “00860” “00271” “00361” “00903”

12
YLR281C 704828 704828 “00280” “00640” “00380” “00010” “00650” “00600”
YLR282C 705088 705220 “00100” “00564” “00071” “00072” “00252” “00620”

“00627” “00900” “00720” “00271” “00361”

12 YLR282C 705226 705226
“00280” “00640” “00380” “00650” “00600” “00100”
“00072” “00252” “00620” “00627” “00130” “00900”
“00720” “00361”

12 YLR285W 708035 708041 “00280” “00640” “00380” “00010” “00650” “00600”
12 NLR118C 708258 708260 “00100” “00020” “00071” “00072” “00620” “00627”
12 YLR286C(CTS1) 708594 708594 “00130” “00900” “00720” “00361”

12 NLR121W 710924 710924
“00280” “00640” “00380” “00010” “00650” “00600”
“00100” “00020” “00072” “00620” “00627” “00130”
“00900” “00720” “00361” “00361”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

12 YLR288C(MEC3) 713638 713644
“00280” “00640” “00380” “00010” “00650” “00600”
“00100” “00564” “00071” “00251” “00072” “00252”
“00620” “00627” “00130” “00900” “00720” “00271”
“00361”

12 YLR288C(MEC3) 713686 713686
“00280” “00640” “00380” “00010” “00650” “00600”
“00100” “00071” “00072” “00620” “00627” “00130”
“00900” “00720” “00361”

12 YLR292C(SEC72) 719857 719857
“00280” “00640” “00010” “00650” “00600” “00100”
“00072” “00627” “00450” “00900” “00720” “00271”
“00361”

13 YML120C(NDI1) 28622 28694
“00280” “00410” “00640” “00053” “00290” “00380”
“00561” “00071” “00710” “00770” “00220” “00272”
“00903”

13 NML013W 46070 46084
“00280” “00410” “00640” “00053” “04070” “00290”
“00380” “00330” “00650” “00970” “00561” “00020”
“00071” “00251” “00670” “00120” “00260” “00710”
“00310” “00770” “00220” “00272” “00903”

13 NML011W 49894 49903

“00910” “00280” “00410” “00500” “00640” “00053”
“04070” “00290” “00380” “00010” “00330” “00650”
“00970” “00561” “00020” “00071” “00251” “00252”
“00670” “00620” “00120” “00260” “00710” “00310”
“00770” “00720” “00220” “00272” “00903”

13
“00280” “00410” “00640” “00053” “00290” “00380”

YML108w 54913 54913 “00650” “00970” “00561” “00020” “00071” “00251”
YML106W(URA5) 57145 57145 “00670” “00120” “00260” “00710” “00770” “00220”

“00272” “00903”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

13 gML01 64970 69122
“00280” “00410” “00640” “00053” “00290” “00380”
“00650” “00970” “00561” “00071” “00251” “00252”
“00670” “00120” “00260” “00310” “00770” “00220”
“00040” “00272” “00903”

13 YML098W(TAF13) 77684 77684
“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00650” “00561” “00071” “00251” “00670”
“00120” “00310” “00770” “00220” “00272” “00903”

13 YML097C(VPS9) 78655 78655
“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00650” “00561” “00071” “00670” “00120”
“00770” “00220” “00272” “00903”

13
“00910” “00280” “00410” “00640” “00053” “00290”

NML009C 79760 79786 “00380” “00650” “00561” “00071” “00670” “00620”
YML096W 81250 81358 “00120” “00710” “00310” “00770” “00220” “00272”

“00903”

13 YML091C(RPM2) 87587 87587
“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00650” “00561” “00071” “00670” “00620”
“00120” “00260” “00710” “00310” “00770” “00220”
“00360” “00272” “00903”

13 YML086C(ALO1) 96015 96015
“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00650” “00561” “00071” “00670” “00620”
“00120” “00260” “00710” “00310” “00770” “00220”
“00360” “00272” “00903”

13 YML084W 99585 99720
“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00650” “00561” “00071” “00670” “00620”
“00120” “00310” “00770” “00360” “00272” “00903”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

13 YML083C 100048 100048
“00910” “00280” “00410” “00640” “00053” “00290”
“00380” “00650” “00561” “00071” “00670” “00620”
“00120” “00710” “00310” “00770” “00220” “00360”
“00272” “00903”

13
“00910” “00280” “00410” “00640” “00053” “00290”

YML072C 124876 124876 “00380” “00010” “00650” “00561” “00340” “00071”
YML071C(DOR1) 129925 130069 “00670” “00620” “00120” “00710” “00220” “00272”

“00903”

13 YML061C(PIF1) 149075 149075
“00280” “00410” “00640” “00053” “00650” “00561”
“00340” “00071” “00670” “00120” “00710” “00220”
“00272” “00903”

14 NNL035W 449639 449639

“04010” “00410” “00500” “00190” “03020” “00960”
“00051” “00052” “03022” “00053” “04070” “00290”
“00240” “00380” “00510” “00010” “00330” “00650”
“03030” “00970” “00600” “00790” “00061” “00562”
“00563” “00564” “00565” “04120” “00520” “00340”
“00480” “00750” “00071” “00521” “00251” “00252”
“04130” “00030” “00350” “00670” “03050” “00300”
“00620” “00120” “00440” “00760” “00260” “00710”
“00625” “00310” “03010” “00450” “00400” “00590”
“00220” “00860” “00040” “00360” “01030” “03060”
“00271” “01031” “00632” “00272”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

14 YNL074C(MLF3) 486861 486861

“04010” “00500” “00190” “00640” “03020” “03022”
“04070” “00290” “00240” “00380” “00510” “00010”
“00330” “00650” “03030” “00970” “00790” “00920”
“00061” “00562” “00563” “00513” “04120” “00020”
“00480” “00750” “00521” “00251” “00252” “04130”
“00030” “00350” “00670” “03050” “00300” “00620”
“00440” “00760” “00260” “00710” “04140” “00310”
“00450” “00400” “00590” “00220” “00860” “01030”
“00680” “03060” “00271” “01031” “00632” “00272”

14 YNL066W(SUN4) 502316 502316

“03022” “04070” “00290” “00330” “00970” “00790”
“00920” “00562” “00563” “00750” “00251” “00252”
“00300” “00620” “00440” “00760” “00260” “00310”
“00450” “00400” “00590” “00220” “00860” “00271”
“00632” “00272”

14 gNL07 525061 525064

“03022” “04070” “00290” “00330” “00970” “00562”
“00563” “00750” “00251” “00252” “00300” “00620”
“00760” “00260” “00630” “00400” “00590” “00220”
“00860” “00271”

15 YOL094C(RFC4) 141621 141633
“04010” “00052” “04111” “00561” “00513” “00564”
“00565” “00980” “00071” “00030” “00350” “00120”
“00710” “00624” “04140” “00130” “00040”

15
YOL093W 143597 143597 “00561” “00513” “00565” “00980” “00071” “00251”
YOL092W 144659 144959 “00252” “00030” “00350” “00120” “00710” “00624”

YOL089C(HAL9) 150651 150651 “00625” “04140” “00040”

15 YOL088C(MPD2) 154177 154309
“04010” “00561” “00513” “00564” “00565” “00520”
“00980” “00071” “00251” “00350” “00120” “00710”
“00624” “00625” “04140” “00040”
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Table A.2: Detailed list of hotspot regulations (cont’d)
Chr Hotspots(Gene) Start Stop Regulated pathways

15 gOL02 170945 174364

“04010” “00910” “00280” “00410” “00500” “00640”
“00053” “00380” “00010” “00790” “00920” “00561”
“00513” “00564” “00565” “00520” “00340” “00980”
“00430” “00750” “00071” “00521” “00251” “00252”
“00030” “00350” “00670” “00120” “00760” “00260”
“00710” “00624” “00625” “00590” “00860” “00040”
“00360” “00680” “00272” “00362” “00903”

15

“04010” “00910” “00280” “00410” “00640” “00053”
“00380” “00010” “00790” “00920” “00561” “00513”

gOL02 175594 179289 “00564” “00565” “00520” “00340” “00980” “00430”
YOL081W(IRA2) 180180 180222 “00750” “00071” “00521” “00251” “00252” “00030”
YOL080C(REX4) 180961 180961 “00350” “00670” “00120” “00760” “00260” “00710”

“00530” “00624” “00625” “04140” “00310” “00590”
“00220” “00860” “00040” “00360” “00680” “00271”
“00272” “00362” “00903”

15 YOR127W(RGA1) 563943 563943
“00052” “00380” “00010” “00561” “00020” “00980”
“00071” “00350” “03050” “00120” “00710” “00624”
“00130”
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Figure A.1: A heatmap of enriched pathways. Only significantly enriched pathways are
shown in the plot (indicated by squares). The darker the color of each square, the smaller
the enrichment p-value and hence the strong the association. Squares on the diagonal line
indicate cis-pathway regulation and those on off-diagonals indicate trans-regulation. The
horizontal and vertical axes denote the genetic pathway (GP) and the gene expression path-
way (EP), respectively. Strong trans-pathway regulations are detected.
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Appendix B

Smoothing spline ANOVA

decomposition and the dual

representation
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B.1 SS-ANOVA decomposition

Suppose a function f is on domain Γ = Γ1 ⊗ Γ2 ⊗ Γ3. Define corresponding averaging

operator Aγ on each generic domain Γγ , γ = 1, 2, 3. An ANOVA decomposition of function

f can be obtained:

f = {
3∏

γ=1

(I − Aγ + Aγ)}f

= (I − A1)(I − A2)(I − A3) + (I − A1)(I − A2)A3 + (I − A1)A2(I − A3)

+ A1(I − A2)(I − A3) + (I − A1)A2A3 + A1A2(I − A3) + A1(I − A2)A3 + A1A2A3

For a nested domain (Γ1⊗Γ2)⊗Γ3, let A12 be the averaging operator on domain (Γ1⊗Γ2).

Then the ANOVA decomposition becomes

f = {(I − A12)(I − A3) + A12(I − A3) + (I − A12)A3 + A12A3}f

Since

(I − A1)(I − A2) + (I − A1)A2 + A1(I − A2) = I − A1A2

By letting A12 = A1A2,

{(I − A12)(I − A3) + A12(I − A3) + (I − A12)A3 + A12A3}f = {
3∏

γ=1

(I − Aγ + Aγ)}f

Recursively, it shows that the ANOVA decomposition can also be conducted on product of

nested domains.
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B.2 The dual representation

Consider the linear mixed effect model

y = µ1+ m̃1 + m̃2 + m̃12 + ε

with m̃1, m̃2, m̃12 are independent n× 1 vector of random effects; m̃1 ∼ N(0, τ21K1), m̃2 ∼

N(0, τ22K2), m̃12 ∼ N(0, τ23K3), and ε ∼ N(0, σ2I) is independent of m̃1, m̃2 and m̃12. The

Henderson’s normal equation for obtaining the BLUPs of the random effects is





n 1T 1T 1T

1 I+ σ2

τ21
K−1

1 I I

1 I I+ σ2

τ22
K−1

2 I

1 I I I+ σ2

τ23
K−1

3









µ

m̃1

m̃2

m̃12





=





1T

I

I

I





y (B.1)

It can be shown this normal equation is equivalent to the first order condition for estimating

function m, equation (4.8). Multiply both sides of equation (4.8) by the following matrix





1 0 0 0

0 K−1
1 0 0

0 0 K−1
2 0

0 0 0 K−1
3
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then 



n 1TK1 1TK2 1TK3

1 K1 + λ1I K2 K3

1 K1 K2 + λ2I K3

1 K1 K2 K3 + λ3I









µ

C1

C2

C3





=





1T

I

I

I





y

Letting m̃l = KlCl, l = 1, 2, m̃12 = K3C3 and τ2l = σ2/λl, l = 1, 2, 3, the system is exactly

the equation (B.1), which is the Henderson’s normal equation of linear mixed effects model

(4.9).
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Appendix C

Scaled χ2 approximation
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We approximate the distribution of statistics Sbinary and Sbinary,I with scaled χ2 distri-

butions.

Sbinary = (y − 1µ̂)T
3∑

l=1

Kl(y − 1µ̂) ∼ aχ2g (C.1)

Sbinary,I =
1

2
(ỹ − 1µ̂)TV −1

1 K3V
−1
1 (ỹ − 1µ̂) ∼ aIχ

2
gI

(C.2)

The parameters a, g, aI and gI are estimated by the method of moments.

E(Sbinary) =
3∑

l=1

1

2
tr(P0Kl) = ag (C.3)

V ar(Sbinary) = tr(
3∑

l=1

(P0Kl)
3∑

l=1

(P0Kl))/2 = 2a2g (C.4)

Solve the equations,

â =
V ar(Sbinary)

2E(Sbinary)
=

tr(
∑3

l=1(P0Kl)
∑3

l=1(P0Kl))

2
∑3

l=1 tr(P0Kl)
(C.5)

and

ĝ =
(
∑3

l=1 tr(P0Kl))
2

tr(
∑3

l=1(P0Kl)
∑3

l=1(P0Kl))
(C.6)

Since τ21 , τ
2
2 in the statistic Sbinary,I are replaced with their MLE in practice, corresponding

corrections (based on the efficient information) are needed when estimate the mean and

variance of the statistic [154].

e = E(Sbinary,I) =
1

2
tr(P1K3) = aIgI (C.7)

Iττ = V ar(Sbinary,I) ≈
1

2
tr((P1K3P1K3))−

1

2
ΦT∆−1Φ = 2a2IgI (C.8)
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where Φ = (tr(P1K3P1K1), tr(P1K3P1K2))
T and

∆ =




tr(P1K1P1K1) tr(P1K1P1K2)

tr(P1K2P1K1) tr(P1K2P1K2)



 (C.9)

Therefore,

âI =
Iττ
2e

(C.10)

ĝI =
2e2

Iττ
(C.11)
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