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ABSTRACT

PREVENTING DIARRHEAL INFECTIONS WITH HOUSEHOLD WATER TREATMENT: 
LESSONS FROM SIMULATION MODELS

By

Kyle Scott Enger

Diarrheal disease kills two million children per year in developing countries. Diarrhea is 

controlled in industrialized countries by systems to remove sewage and distribute clean water. 

These systems are difficult to fund, build, and maintain in developing countries, so simpler 

technologies are promoted: e.g., household water treatment (HWT), handwashing, and latrines. 

These technologies, however, require consistent effort by individuals for proper use and 

maintenance, defined here as 'compliance'. Measuring compliance is difficult, and often 

neglected.

It is important to understand how the extent and pattern of compliance within communities 

affects the prevention of diarrhea by HWT, while accounting for biases in field trials and 

characteristics of natural transmission systems, such as the presence of multiple pathogens, 

transient spikes of contamination, and multiple transmission routes. This question was answered 

by: reanalyzing and generalizing results from a HWT field trial, using a quantitative microbial 

risk assessment (QMRA) model to adjust for bias (chapter 3); examining the joint effects of 

HWT antimicrobial efficacy and compliance on prevention of diarrhea (chapter 4); and using a 

model of diarrheal infection transmission incorporating multiple routes of infection to further 

examine efficacy and compliance issues with HWT (chapter 5).

The QMRA model of the field trial found that compliance greatly affected HWT 

effectiveness: with low compliance, 10% of diarrhea was prevented; with high compliance, 90% 

was prevented. It also estimated source water pathogen concentrations source water that were 
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consistent with measurements from other developing countries. The model found that the effect 

of an imperfect placebo device used during the field trial depended on the assumed level of 

compliance during the field trial.

The QMRA model was modified to examine how HWT compliance and antimicrobial 

effectiveness jointly altered diarrheal disease risk. Given perfect compliance, increasing 

antimicrobial effectiveness always lowered risk. If compliance was incomplete, increasing 

antimicrobial effectiveness eventually ceased to lower risk, except in a few scenarios with high 

incidence, high compliance, or large water contamination spikes. The pattern of compliance by 

communities also influenced risk; e.g., risk was lower if 90% of people used HWT perfectly and 

10% never used HWT, than if 100% of people used HWT 90% of the time. 

A preliminary transmission model simulated a community in which infected people shed 

pathogens, which were ingested by other people via exposure to land, drinking water, their 

household environment, or visits from other households. It found similar results to the QMRA 

models regarding compliance. Transmission of diarrheal pathogens by household visits appeared 

unimportant compared to other routes; however, visits consisted of exchanges of pathogens 

between household environments. Other types of visits (e.g., shared child care) might lead to 

greater transfer of pathogens and a greater influence of visits on illness. The model also inferred 

that viruses and protozoa were attenuated (removed from the system, e.g., by decay or 

sequestration) ~10 times faster than bacteria. Future sensitivity and uncertainty analyses will 

highlight important aspects of the model and its parameters that contribute to its results.

The amount and pattern of compliance strongly affects diarrhea prevention by HWT. 

Further research should be conducted on improving compliance with HWT in developing 

countries.
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1. INTRODUCTION

1.1. Brief summary of diarrheal disease and control

Diarrheal disease is a major cause of illness and death in developing countries, particularly 

among young children (World Health Organization, 2008). Diarrheal infections are generally 

transmitted by the fecal-oral route: ingesting water, food, or soil that has been contaminated by 

feces. However, transmission can be influenced (overtly or subtly) by a wide variety of factors, 

including: availability of water infrastructure (e.g., piped treated water systems, or other 

improved water sources such as carefully constructed wells); sanitation infrastructure (latrines or 

sewer systems); personal hygiene; types and quantities of pathogens present; nutritional status; 

climate; socioeconomic status; cultural factors; and many others. Therefore, the effectivenesses 

of interventions to reduce diarrhea can vary greatly depending on the characteristics of the 

community which applies them.

Reduction of diarrheal disease is an important public health goal. This can be 

accomplished by many different interventions that improve or modify some of the factors listed 

above. Some examples include: water supply improvements (for quality, quantity, or both); 

hygiene education (particularly handwashing); a wide array of household water treatment (HWT) 

interventions (e.g., boiling, chlorination, filtration); and sanitation (latrine or sewer construction). 

Interventions are most effective if they are used and maintained independently by communities 

over many years; this is referred to as 'compliance', or sometimes 'adherence'. High compliance 

is difficult to attain in the developing world, where money, materials, skilled personnel, and good 

governance are often in short supply. It is unclear how best to measure and maintain compliance 

within communities.

The effectiveness of interventions that prevent diarrhea is difficult to measure. Conducting 

research investigations in developing countries is inherently challenging due to lack of resources 
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and infrastructure, and researchers are often faced with linguistic or cultural barriers. Field trials 

of interventions are usually impossible to blind; blinding prevents study participants from 

knowing whether they are receiving an active intervention or an inactive 'placebo' intervention. 

Blinding is difficult because interventions are usually visually obvious (e.g., a large filter unit, or 

people attending handwashing education sessions). Therefore, field trials are likely to be biased 

by the expectations of investigators or participants, or by other factors (known or unknown). 

Published field trials often lack key contextual information about the communities that 

participated in the study, which impedes interpretation of the results.

Although the body of scientific literature concerning diarrhea is enormous and continues to 

grow, many aspects of diarrheal disease in developing countries remain poorly understood. There 

is a need to synthesize the available information to determine where to prioritize future research. 

Chapter 2 summarizes key ideas in this body of literature. Although meta-analyses concerning 

various aspects of diarrheal disease continue to be published and are useful, they do not clarify 

interrelationships between these aspects. Mechanistic modeling is a useful tool for describing 

and simulating complex systems problems such as disease transmission within human 

communities. This dissertation uses modeling methods (coupled with published data) to simulate 

diarrheal disease transmission. The models allow conclusions to be drawn about appropriate 

diarrhea control methods, and identify aspects of diarrhea transmission and control that require 

further research.

1.2. Scientific questions

Goal 1: Develop a method to link information from epidemiologic studies with 

simulation models (chapter 3). Field studies of interventions that prevent diarrhea are 

difficult and time-consuming to perform, and are subject to numerous biases (see page 17 

for further discussion). Models based on field studies can be used to infer the effect of 
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interventions on risk under circumstances that were not actually studied. 

Hypotheses: Biases that were observed during a field trial can be corrected by 

constructing a model that simulates the trial as closely as possible, and then altering 

the model structure (or its parameters) to remove the bias. In a similar fashion, the 

outcomes of counterfactual field trials can also be estimated.

Method: Construct a model to simulate an actual field trial. Calibrate the model to the 

outcomes of the trial in order to infer the values of unobserved parameters. Use the 

sets of inferred parameters in subsequent estimation steps, in which the model has 

been modified to simulate desired situations (e.g., differing compliance levels, 

elimination of biases).

Goal 2: How does noncompliance with interventions affect diarrheal disease levels 

(chapters 4 and 5)? 

Hypotheses: 

a) Perfect compliance with an intervention by X% of the population is more 

effective than 100% of the population using the intervention X% of the time. 

Or: the level of effectiveness of an intervention drops more rapidly when 

consistent use of the intervention is decreased, as opposed to when overall 

adoption of the intervention is decreased.

b) What level of noncompliance renders a specific intervention ineffective (i.e., 

<10% decrease in longitudinal prevalence) under particular conditions? Trials 

are seldom powered to detect a decrease this small.

c) Linear QMRA models and more complex EITS models incorporating 

feedback loops show similar effects of imperfect compliance and differing 

compliance patterns on diarrheal disease risk.
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Method: Construct QMRA and EITS models of diarrheal disease transmission, apply 

a simulated intervention, alter the levels of the two types of noncompliance, and 

observe the results in the form of their effects on diarrheal longitudinal prevalence. 

Compare the results returned by both model types.

1.3. General assumptions within this dissertation

Control of diarrhea requires sustainable use of interventions over many years by the 

communities (or individuals) that currently have high risk of diarrhea. Therefore, the 

effectiveness of an intervention is best described by changes in the average level of endemic 

diarrheal illness. Although diarrheal epidemics are undeniably important (particularly cholera 

epidemics), they represent short-term changes (days or weeks) in diarrheal disease risk. Any 

intervention that reduces endemic diarrhea consistently over several years is also likely to 

decrease the likelihood or severity of diarrheal epidemics during that time. Therefore, epidemics 

are given little consideration in this dissertation.

Although the scientific literature concerning diarrhea in developing countries is vast, the 

precise quantitative values of many important parameters for models that describe diarrhea are 

unclear. The detailed datasets necessary for validating such models are likewise lacking. Human 

communities are also idiosyncratic, and diarrheal disease transmission in a particular community 

might be greatly altered by characteristics that are unmeasured or difficult to measure (e.g., 

cultural practices, social structure, education, socioeconomic status, local geology, local climate, 

etc.). Therefore, the models described in this dissertation cannot make firm predictions for 

specific communities. However, they can still provide general insights about the transmission of 

diarrheal infections and how interventions can affect their transmission. They can also indicate 

aspects of diarrhea that require further scientific investigation.
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2. REVIEW OF DIARRHEAL INFECTION: EPIDEMIOLOGY, INTERVENTIONS, 

AND MODELING

2.1. Introduction

Diarrhea is a common disease, particularly among children. Although diarrheal infections 

are nearly always transmitted by ingestion of feces, the details of transmission and control are 

complicated. Diarrheal pathogens are extremely diverse, including many distinct bacteria, 

viruses, and protozoa. Furthermore, these pathogens can be transmitted by different routes, such 

as drinking water, food, soil, or household objects. Many different interventions are available, 

such as sanitation (latrines), handwashing, or household water treatment; these interventions 

impede transmission of diarrheal pathogens on different routes. The transmission and prevention 

of diarrheal disease has been extensively studied, giving rise to a vast body of published 

scientific literature. Nonetheless, many important gaps in our knowledge remain.

The central goal of this manuscript is to examine the issue of compliance with 

interventions to prevent diarrhea, particularly household water treatment (HWT). People in 

developing countries are often encouraged to adopt HWT methods, but they may use these 

methods inconsistently, or not at all. Although compliance affects estimates of diarrhea prevented 

by interventions in field trials, compliance is difficult to measure. Chapters 3, 4, and 5 use risk 

assessment models and infection transmission models to simulate field trials and examine the 

effect of differing levels and patterns of compliance on prevention of diarrhea. These models 

must incorporate existing information about diarrheal pathogens, their transmission, 

characteristics of infection and disease, and antimicrobial efficacy of HWT. 

This chapter summarizes available knowledge regarding diarrheal infections and their 

prevention in developing countries. It begins by concentrating on the epidemiology of endemic 

diarrhea in young children (generally under 5 years of age). Diarrheal illnesses which are 
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strongly epidemic (e.g., cholera) are only briefly mentioned. Interventions for preventing 

transmission of diarrheal pathogens are described, beginning on page 38. Application of 

simulation models to understand transmission and prevention of childhood diarrhea is discussed 

beginning on page 68.

2.2. Definition and measurement of diarrhea

Acute diarrhea is often considered to be 3+ loose or watery stools in 24 hours, not counting 

normal soft stools from breastfed babies (USAID et al., 2005). However, the number of 

episodes/day and the number of days that are considered to separate episodes vary. Diarrhea 

lasting for 14+ days is generally considered ‘persistent’ (Ejemot et al., 2008). 

Dysentery is a diarrheal syndrome in which the stools are bloody (T. F. Clasen et al., 2006). 

Shigella species are a common cause of this type of diarrhea.

Investigation of childhood diarrhea usually relies on the recall of the parents, which may 

be incomplete. Recall of diarrhea in infants by Guatemalan mothers was found to be unchanged 

for the two days prior to the interview, but dropped by 37% on the third day (Zafar et al., 2010). 

Recall for 4th and prior days was about 50% of that for the first two days. Severe illness was 

recalled more reliably. These results were similar to those reported in prior studies (Zafar et al., 

2010). In a review (Kosek et al., 2003) including 27 field studies of diarrhea, 10 interviewed 

caregivers weekly or monthly, indicating that diarrhea may be underestimated in those studies. 

Fortunately, the remaining 17 studies interviewed caregivers two or more times per week (Kosek 

et al., 2003). Use of daily diaries may mitigate some of the effects of infrequent followup.

Differing methods are used to measure changes in diarrheal risk. Incidence rates (the 

number of disease episodes over a given time in a certain number of people) are most commonly 

used, which may be appropriate when disease transmission is the outcome under study (Morris et 

al., 1996). However, the association of longitudinal prevalence (the number of person-days ill 
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over the total number of person-days observed) with growth faltering and death was stronger 

than the association of incidence with growth faltering and death (Morris et al., 1996) in a rural 

area of Ghana that was underserved with health services (Ghana VAST Study Team, 1993). 

Changes in longitudinal prevalence do not necessarily change incidence; for example, a 

treatment regime might reduce longitudinal prevalence by reducing the duration of illness, but 

incidence would remain unchanged. Longitudinal prevalence is also appealing because it more 

directly measures the extent of illness; a child with persistent diarrhea throughout most of the 

study period might contribute only 1 bout of illness to the community's diarrheal incidence, but 

is in actuality very sick (Morris et al., 1996). Point prevalence (the proportion of individuals ill at 

a given point in time) is sometimes used, but is far from ideal because the burden of diarrheal 

disease changes with time. Ratios of the above measures with the intervention group in the 

numerator and the non-intervention group in the denominator are used to estimate the magnitude 

of effect of the intervention.

Odds ratios are also used to estimate the effectiveness of interventions. Unlike the 

previously discussed measures of risk, which are population-based and measure ill people as a 

proportion of total people, the odds is the number affected divided by the number not affected. 

The odds of illness in a treatment group can then be divided by the odds of illness in a control 

group to yield an odds ratio. Although the odds of illness is similar to the risk of illness when the 

disease is rare (i.e., the number of non-ill people nearly equals the entire population), this is not 

the case for diarrheal illness in many developing countries, and ‘risk’ as measured using odds 

therefore appears larger. Odds ratios also tend to be larger than risk ratios. Odds ratios are 

commonly used in regression analysis where the effect of an intervention is controlled for 

confounding factors, since the parameter estimates are convenient to represent mathematically as 

odds ratios. They are also used in case-control studies, where population-based risk cannot be 
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determined because the study population is not necessarily representative of the actual 

population (Hennekens & Buring, 1987).

2.2.1. Persistent diarrhea  

Persistent diarrhea is generally considered to last for 14 days or more. This is mainly based 

on convenience, and a better definition may be needed that takes nutrient deficiency and growth 

faltering into account (Bhutta et al., 2008). Enteroaggregative E. coli, Cryptosporidium, and 

Giardia are commonly implicated in persistent diarrhea, but their relative contributions are 

unknown (Bhutta et al., 2008). Factors associated with reduction of persistent diarrhea are mostly 

unknown, although early feeding of non-human milk to children and multiple acute diarrheal 

episodes are important risk factors (Bhutta et al., 2008).

A recent review (Abba et al., 2009) of 20 studies from the 1980s and 1990s in various 

developing countries describing pathogens associated with childhood persistent diarrhea found 

no particular differences in the types of pathogens isolated from children with persistent diarrhea 

and children with no diarrhea. There was also no evidence to conclude that certain pathogens 

were more/less common in different regions of the world (most studies were from India and 

Bangladesh, though Latin America, southeast Asia, and sub-Saharan Africa were also 

represented), although individual studies varied. Enteropathic E. coli (particular types could not 

be distinguished) was detected in 25% to 33% of children, and no other pathogen was found in 

more than 10% of children. Children with persistent diarrhea were more likely to have at least 1 

pathogen detected than children without diarrhea (75% vs. 43%). However, studies tested for 

different suites of pathogens, sample size was often small, laboratory procedures were often 

poorly documented, and studies commonly did not cover a whole number of years, so seasonality 

may have influenced some results.
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2.3. Multiple infections

Simultaneous infections by multiple diarrheal pathogens are common. In a review focusing 

on norovirus (Patel et al., 2008), 4 of 5 studies of children in developing countries hospitalized 

for severe sporadic acute gastroenteritis showed that <7.5% had a mixed infection, although a 

Peruvian study was an outlier with 24%. It was not stated which organisms were tested for.

A study focusing on diarrheal parasites of hospitalized patients of all ages in Kolkata, India 

(A. K. Mukherjee et al., 2009) showed that mixed infections were the norm. 101/147 patients 

infected with Giardia and 66/84 patients infected with Cryptosporidium were coinfected with at 

least 1 other pathogen. Vibrio cholerae was most commonly (25% of coinfections) associated 

with Giardia, and rotavirus and other parasites (33% and 30% respectively of coinfections) were 

most commonly associated with Cryptosporidium. E. coli was also identified in 13% of Giardia 

and Cryptosporidium cases.

2.4. Asymptomatic infections

Particularly in developing countries, asymptomatic infection with various diarrheal 

pathogens is common (Wennerås & Erling, 2004). Asymptomatic infections can be described by 

morbidity ratios, i.e., the proportion of infections that yield illness. Morbidity ratios can be 

estimated by stool surveys, where a random sample of a community is chosen and one or more 

stools from each person is collected and analyzed, regardless of whether the person has diarrhea 

or not. Morbidity ratios vary greatly by pathogen and setting; morbidity ratios tend to be lower in 

developing countries than in developed countries due to more frequent exposure, since immunity 

is often developed to disease rather than infection (R H Gilman et al., 1988; Cravioto et al., 

1990; Valentiner-Branth et al., 2003; A. H. Havelaar et al., 2009).

Because multiple infections and asymptomatic infections with diarrheal pathogens are 

common, it is often difficult or impossible to reliably attribute an episode of diarrhea to a 
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particular pathogen, even if detailed laboratory results are available.

2.5. Burden of diarrheal disease

Diarrheal disease is common throughout the world. It is usually mild and self-limiting in 

healthy, well-nourished people in clean environments, but is an exceptionally serious problem 

among children in developing countries (World Health Organization, 2008).

2.5.1. Morbidity  

In the late 1980s to mid-1990s, it was estimated that children under 5 years of age in 

developing countries suffered from a median of 3.2 diarrheal episodes per child-year of life 

(Kosek et al., 2003). Children aged 6-11 months were most at risk, with a median of 4.8 episodes 

per child-year. Diarrheal risk may vary drastically depending on location and the degree of 

(under)development of the community. Age-specific incidences of diarrhea in developing 

countries have not decreased from 1955 to 2000, according to three major reviews that were 

conducted sequentially during that time period (Jamison et al., 2006). Gamma distributions can 

satisfactorily describe the number of episodes per child and the duration of episodes (Schmidt & 

Cairncross, 2009); the gamma distribution has a flexible shape (which can resemble a mound 

with a long right tail, or a monotonic decrease), and is defined by two parameters.

2.5.2. Mortality  

The approximate mortality rate due to diarrhea in children under 5 years of age in 

developing countries is 4.9 per 1000 per year (Kosek et al., 2003), for a total of about 2 million 

deaths per year (World Health Organization, 2008; Boschi-Pinto et al., 2008). In contrast to 

morbidity, mortality due to diarrhea has substantially decreased since the 1950s-1970s, when the 

rate was about 13.6 per 1000 per year (Kosek et al., 2003). This trend appears to be continuing, 

at least in part due to promotion of oral rehydration solution and other good practices for care of 

children with diarrhea (Jamison et al., 2006). However, the relatively constant levels of incidence 
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argue that the root problem of diarrheal disease transmission remains to be addressed, and 

diarrheal illness is still a major killer of children. In children under 5 years of age, 17% of deaths 

are due to diarrhea; for comparison, 17% of deaths are due to pneumonia, and malaria accounts 

for 7% of deaths (World Health Organization, 2008).

About 35% of mortality in children under five years of age due to diarrhea is thought to be 

from acute diarrhea, 45% from persistent diarrhea, and 20% from dysentery (R E Black, 1993).

Huge disparities are seen when diarrhea mortality is separated by WHO region (Figure 

2.1). The situation was worst in Africa by far (World Health Organization, n.d.).

2.5.3.     Disability-adjusted life years (DALYs) attributable to diarrhea  

Diarrhea morbidity and mortality can also be measured using DALYs per person lost due 

to diarrhea (Figure 2.2). DALYs describe years of healthy life that are lost to disease, and they 
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are used to compare morbidity between widely varying diseases (Murray & A. D. Lopez, 1996). 

Africa loses the most DALYs per person to diarrhea, and this increased from 2000 to 2004 

(WHO DALY estimates for 2008 were not yet available at this writing). Since diarrheal disease 

is often brief and self-limiting, mortality is responsible for nearly all of the DALYs; even though 

death is unlikely for a given diarrheal episode, it contributes many DALYs when it occurs 

(because fatalities nearly always occur in children, resulting in the loss of many future years of 

life). It has been argued that DALYs for diarrhea should consider long-term sequelae of chronic 

gastrointestinal infection (e.g., reduced intelligence and reduced physical fitness); this increases 

the number of DALYs lost to diarrhea by two to six times, depending on the assumptions used 

(Guerrant et al., 2002). However, such sequelae are not included in World Health Organization 

DALY calculations. 
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2.6. Changes in diarrheal morbidity over time in individuals

Risk for diarrheal morbidity approximately doubles in the 6th-11th month of age, compared 

with the first 6 months of life. This is largely because weaning is a critical time for breast-fed 

infants, increasing exposure to pathogens; when weaning commences, diarrheal infections and 

risk of death increase markedly (Motarjemi et al., 1993).The risk drops off sharply in one-year-

olds and declines gradually thereafter (Bern 1992). Diarrheal mortality is highest in the first year 

of life and drops by roughly a factor of 4 among ages 1-4 years (C Bern et al., 1992). 

Although immunity to certain diarrheal pathogens can be acquired (e.g., effective vaccines 

against rotavirus and polivirus exist), its importance is somewhat unclear. Diarrheal pathogens 
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are very diverse, and immunity from one pathogen serotype does not necessarily confer 

immunity to other serotypes of the same pathogen. Furthermore, immunity to diarrheal disease 

does not necessarily confer immunity to infection (A. H. Havelaar et al., 2009). Infected people 

without diarrhea can still shed pathogens and may still suffer important health effects; for 

example, children with asymptomatic cryptosporidiosis grow more slowly than uninfected 

children (Checkley et al., 1997). Finally, although diarrheal risk decreases as children age, they 

are acquiring immunity at the same time that they are learning to behave more hygienically, and 

it is unclear whether improved hygiene or increased immunity is more important for preventing 

diarrhea.

Evidence for approximately twofold increased risk of a diarrheal episode following 

recovery from a previous episode has been found in some datasets; this risk gradually declines 

over several weeks (Schmidt et al., 2009). A similar effect with risk declining more than twofold 

over about 13 weeks was seen in an observational study in urban Brazil, and remained even after 

adjusting for the age at the time of an episode and age upon enrollment in the study (Genser et 

al., 2006). This increased risk was only related to the timing of the prior episode, and not to the 

number of previous episodes, indicating that relapsing or intermittent symptoms from the same 

infection might be the cause (Genser et al., 2006). This general phenomenon has also been 

reported from rural Zaire (Tonglet et al., 1999).

2.7. Diarrhea-malnutrition vicious cycle

The evidence on how diarrhea and malnutrition compound each other has been recently 

reviewed (Guerrant et al., 2008). Malnourished children tend to suffer more and longer bouts of 

diarrheal illness, approximately doubling the amount of time spent ill. This is partially explained 

by damage to the absorptive capacity of the small intestine by enteric illness, as well as by 

malnutrition itself which further limits the resources available to repair that damage. Even 
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asymptomatic gastrointestinal infections appear to compound this feedback loop. However, the 

pathophysiology of these relationships is not well understood. Increased burden of enteric 

infection in the first 2 years of life is associated with decreased work productivity, earning 

capacity, and cognitive impairment in later childhood and adulthood (Guerrant et al., 2008).

Exclusive breastfeeding in children aged < 6 months protects them from malnutrition if 

they develop diarrhea, but exclusive breastfeeding cannot be sustained past approximately 6 

months of age (Motarjemi et al., 1993). Any breastfeeding is likely to mitigate the effect of 

diarrhea on malnutrition; under some circumstances, partially weaned children can have more 

diarrhea or slower growth than completely weaned children, which could be due to energy, 

protein, or micronutrient deficit from overreliance on breast milk (Tonglet et al., 1999; McDade 

& Worthman, 1998). 

It is unclear how diarrhea and malnutrition are linked quantitatively. Both of these 

syndromes are broad aggregations of many factors. Although many studies have linked 

anthropometric measures of malnutrition to increased diarrheal risk, such associations can 

disappear after adjusting for age, sex, time of enrollment (seasonal factors), and the caretaker’s 

assessment of the child’s growth (Tonglet et al., 1999).

It may be possible to clarify the action of the diarrhea-malnutrition vicious cycle by 

calibrating an infection transmission model to data describing changes in diarrhea  incidence 

among children who frequently suffer from diarrhea. Children who have suffered a recent bout of 

diarrhea are more likely to suffer subsequent bouts (Schmidt et al., 2009), and children who are 

stunted or wasted due to repeated episodes of diarrhea are also more likely to suffer further from 

diarrhea (Guerrant et al., 1992). Increased susceptibility to new diarrheal infections after 

resolution of a previous infection might be modeled by an increase in the probability that a single 

pathogen causes disease, which is the interpretation of the k parameter in the exponential dose 
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response equation (see Equation 3.2, page 98) (Haas et al., 1999). This increase could be 

estimated by calibrating a diarrhea transmission model to field data. The duration of time during 

which the probability of infection is increased would also need to be specified; it would probably 

be greater than the duration of disease, and might occur even for asymptomatic infection. 

2.8. Cyclic or recurring changes ('seasonality') in diarrhea incidence

The word 'seasonality' is often used to describe regular changes in disease incidence over 

time, often on an annual scale. However, seasons themselves are often distal influences on a 

more proximal factor such as temperature or humidity that better predicts the ‘seasonal’ effect 

(Fisman, 2007). ‘Seasonal’ changes in disease can be tenuously related (or unrelated) to seasons 

or climate, such as children coming together at the beginning of a school term leading to 

increased measles transmission (Grassly & Fraser, 2006). The obvious nature of seasons might 

lead to overattribution of disease fluctuations to them, or failure to measure other potentially 

more informative factors (Fisman, 2007). Therefore, seasonality should be considered as regular 

changes in disease incidence or prevalence, rather than changes related to particular seasons of 

the year.

Seasonality of diarrhea is variable and depends on local climate as well as the organism. 

For example, rotaviral disease tends to increase in cooler, drier weather (K. Levy, A. E. Hubbard 

& J. N. S. Eisenberg, 2009), while enterotoxigenic E. coli (ETEC) tends to peak at warm, wet 

times (Estrada-Garcia et al., 2009). Seasonal effects can differ depending on the community; for 

example, a community whose preferred water source dries up during the the dry season might 

experience increased diarrhea at that time due to use of poorer quality source water. In other 

areas, the onset of the rainy season might increase diarrheal disease for various reasons, such as 

rain washing pathogens from land into source water, or relatively poor nutritional status because 

food stores from the previous harvest have been depeted (S. Sutra et al., 1990).
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Apparent ‘seasonal’ (or simply oscillatory) cycles can arise in infectious disease models 

that include acquired immunity. This can arise from accumulation of susceptible individuals as 

they are born, followed by an increase in disease mediated by an increased proportion of 

susceptibles, with a subsequent decline in illness until sufficient susceptible individuals are born 

(Grassly & Fraser, 2006). Combining this behavior with seasonal factors can lead to complex 

dynamics, including chaos (Grassly & Fraser, 2006).

2.9. Crowding (urban vs. rural)

Overcrowding is associated with increased risk of diarrhea, particularly when coupled with 

poor sanitation. This phenomenon has been widely reported during military campaigns and in 

refugee camps (Lim & Wallace, 2004). Crowding may occur within the household (many people 

in a small dwelling) or in the community as a whole (periurban slums). Crowding within 

households is easily measured (number of people sleeping in a room or occupying a hut) and is 

associated with diarrhea (Chacín-Bonilla et al., 2008); however, the effect of this type of 

crowding on diarrhea is likely to be confounded with many other risk factors, such as low 

socioeconomic status and malnutrition. The precise effect on diarrheal risk by crowding at the 

community level is more difficult to measure, and also difficult to disentangle from other 

determinants of diarrheal risk, such as sanitation and malnutrition. Studies comparing diarrhea in 

districts that are more or less densely populated but have otherwise similar populations do not 

appear to be available in the published literature. 

2.10. Bias in epidemiological studies of diarrhea

Many epidemiological studies concerning diarrheal disease have been published. A recent 

systematic review (T. Clasen, I. G. Roberts, et al., 2009) of water quality intervention studies 

found 68 studies. Unfortunately, methodological problems are frequent in such studies (V. A. 
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Curtis & Cairncross, 2003; T. Clasen, I. G. Roberts, et al., 2009). This is partly because of the 

challenging nature of research in developing countries: cultural differences, language barriers, 

and infrastructure limitations complicate work in these communities. In field trials of 

interventions to prevent diarrhea, bias is a serious problem that is difficult to quantify.

There are two broad types of bias that are particularly important in field trials: selection 

bias and information bias. Selection bias occurs when people who are selected to participate in a 

study are not representative of the larger population that the study is meant to describe (Last, 

1995). For example, investigators might choose communities for an intervention trial that they 

think would be particularly likely to comply with the intervention; this would increase the 

apparent effectiveness of the intervention. Selection bias hinders generalization of results to 

larger populations. 

In contrast to selection bias, which generally occurs at the beginning of a study and is 

unrelated to the experimental groups within a study, information bias refers to informational 

error within the experimental groups. There are several types of information bias that are relevant 

to field trials. Probably the least serious is nondifferential misclassification bias, where some 

participants are in the wrong experimental group. If misclassification is similar in all 

experimental groups (hence nondifferential), then the effect size cannot be exaggerated and a 

conservative estimate of the effectiveness of an intervention would be obtained (Rothman, 1986). 

However, there are many other types of information bias that are more serious because they yield 

different effect measurements depending on the experimental group. For example, courtesy bias 

may arise when participants tell the experimenters what they think they want to hear; therefore, 

users of a HWT device might report less diarrhea, even if the device is completely ineffective. 

This might be deliberate or unconscious behavior by the participant. Recall bias could occur if 

participants in different groups differ in how they remember (and report) diarrheal episodes; for 
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example, presence of a HWT device in the home might prompt frequent consideration of clean 

water and diarrhea, and therefore diarrhea might be more completely recalled. Hawthorne 

effects, in which participant behavior is influenced by the knowledge that they are being 

observed (McCarney et al., 2007), are another type of information bias. This could act similarly 

to selection bias by boosting compliance with interventions, but it might also have different 

effects by experimental group. For example, recipients of an intervention might receive more 

follow-up during the study, which could alter their participation of the study or their perception 

of diarrheal illness. Interviewer bias (Last, 1995) can also arise when investigators know which 

experimental group they are studying; for example, interviewers might unconsciously interview 

control or intervention participants differently because of their expectations about the 

effectiveness of an intervention.

Two important strategies to reduce bias are: 1) random assignment to study groups; and 2) 

blinding of the study group assignment to the participants (single-blind) or, preferably, to 

participants and investigators alike (double-blind) (Hennekens & Buring, 1987). However, these 

strategies are often problematic in field trials because the intervention is visually obvious and 

cannot be concealed. A meta-analysis of a wide variety of intervention studies indicates that lack 

of blinding can exaggerate a protective effect by about 30% (L. Wood et al., 2008). Therefore, an 

unblinded study of an intervention that in fact has no effect would be expected to show a relative 

risk of about 0.7, which is similar to the effect size reported by many household water treatment 

studies (Hunter, 2009).

2.11. Relative contributions of pathogens to diarrheal etiology

Although dozens of different pathogens can cause childhood diarrhea in developing 

countries, pathogenic E. coli, rotavirus, norovirus, Shigella, Campylobacter jejuni, Giardia, and 

Cryptosporidium are particularly important. They contribute differently to acute and persistent 
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diarrhea. Enterotoxigenic E. coli (ETEC), rotaviruses, and noroviruses are particularly important 

in acute diarrhea, but enteroaggregative E. coli (EAEC), Cryptosporidium, and Giardia seem 

particularly important in persistent diarrhea (Guerrant et al., 2008).

Estimates of the proportion of disease caused by particular pathogens are difficult to 

obtain. However, a review (Lanata & W. Mendoza, 2002) of 266 studies from 1990-2002 

indicates that pathogenic Escherichia coli, Giardia, and rotavirus are probably the most common 

pathogens in community settings worldwide (Figure 2.3). Rotavirus is remarkable for the large 

numbers of inpatient and outpatient visits attributed to it; in contrast, Giardia accounts for few 

outpatient and inpatient cases compared to community cases. Coinfections and diarrheal illnesses 

of unknown etiology accounted for a large proportion (25-35%) of all cases. 

Examination of four WHO subregions (AfroD, AfroE, AmroB, and SearoD) which had 
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Figure 2.3. Estimated etiology of childhood diarrhea worldwide

Adapted from Lanata and Mendoza (2002), graphs 1-3.



five or more community studies covering a wide array of pathogens showed reasonably 

consistent proportions of disease attributable to bacteria, protozoa, and viruses. Considering 

cases where an etiology was identified, the proportion of cases where bacteria are isolated is 

approximately 60% in those four regions (Lanata & W. Mendoza, 2002). Protozoa accounted for 

16-34%, and rotavirus accounted for 9-22%. However, since only rotavirus was included, the 

contribution of viruses is probably underestimated. Also, it was common for no pathogen to be 

isolated (30-55% of cases in those four regions).

There are limitations to the Lanata and Mendoza (2002) review; in particular, the studies 

examined might not be representative, since investigators may have chosen to work in regions 

with known problems or on their particular pathogen(s) of interest. Pathogens that are more 

difficult to detect might be underrepresented. 

A more recent review (Abba et al., 2009) examined the etiology of persistent diarrhea 

(lasting >14 days) in young children (age ranges varied, but all were under six years), using four 

studies from Bangladesh, six from India, five in Central & South America, two in Zambia, one in 

Thailand, and one in Viet Nam. Overall, pathogenic E. coli was found in 31%-41% of children 

with persistent diarrhea, and in 22%-30% of children without diarrhea. Rotavirus, enteric 

adenovirus, Campylobacter, Salmonella, Vibrio cholerae, enterohemorragic E. coli (EHEC), 

Giardia, Cryptosporidium, and Entamoeba were all found, but at 10% or less. 

Much less information is available concerning the etiology of diarrhea in people older than 

five years. Although a recent review (Fischer Walker et al., 2010) found 22 studies, 15 were 

inpatient and 7 were outpatient. Of the outpatient studies, only two of them studied more than 

one pathogen. Only one study was community-based, and it examined ETEC only. Information 

about asymptomatic infection in older children and adults is similarly lacking, and information 

about coinfection was usually absent (Fischer Walker et al., 2010). However, the outpatient 

21



studies indicated similar proportions of diarrhea attributable to bacteria, protozoa, and viruses as 

the community studies described in Lanata and Mendoza (2002): 60%, 21%, and 19%, 

respectively (Fischer Walker et al., 2010).

2.12. Survey of diarrheal pathogens

Common pathogens causing endemic diarrhea are discussed below, with particular 

reference to developing countries. Rotavirus, diarrheagenic E. coli, and Giardia are given special 

attention because they are used as model organisms in the simulation models in chapters 3, 4, 

and 5 of this dissertation. Numerous parameters are used to describe these organisms' behavior in 

the models; they are briefly mentioned here, but are described in detail in the appendix.

2.12.1. Viral diarrheal pathogens  

A wide variety of enteric viruses are known to cause diarrhea. In general, they are small 

(25-100 nm) nonenveloped RNA viruses that are environmentally stable, although they are 

usually vulnerable to chlorine. The combination of flocculation/sedimentation and chlorination in 

standard water treatment usually reduces enteric viruses by four log10 or more. Due to their small 

size, they cannot be removed by most filtration methods.

Rotavirus and norovirus (formerly known as Norwalk virus) appear to be most important 

with regard to diarrhea. Among hospital-based studies of children in 11 different developing 

countries, rotavirus prevalence was 34.9% on average, and calicivirus (the family that includes 

norovirus) prevalence was 10.3% on average, while adenovirus accounted for 6.3% and 

astrovirus for 3.5% (Ramani & Gagandeep Kang, 2009). It is unclear whether these proportions 

also apply to disease in the community setting. Both rotavirus and norovirus tend to cause more 

severe disease than other enteric pathogens (Ramani & Gagandeep Kang, 2009), they are both 

highly potent with extremely high shedding, and they are responsible for high proportions of 
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severe childhood diarrheal illness in developing and developed countries, with 12% due to 

norovirus (Patel et al., 2008) and 33% due to rotavirus (Cook et al., 1990). Norovirus also 

accounted for 12% of mild to moderate diarrheal illness in all ages (Patel et al., 2008). 

Rotavirus

Transmission and ecology

Rotavirus is primarily transmitted by the fecal-oral route but may also be transmitted 

person-to-person, and in some circumstances it might be inhaled (Heymann, 2004). Although 

improved santitation and hygiene greatly inhibit transmission of many other diarrheal pathogens, 

rotavirus generally infected all children before four years of age in both developing and 

developed countries before rotavirus vaccine was available (Cook et al., 1990). 

Although there are several different serotypes of rotavirus, allowing repeated infection, 

risk of further episodes declines with each additional episode, and the severity of subsequent 

episodes also declines (Velázquez et al., 1996). 

Rotavirus disease is strongly seasonal in temperate regions, peaking in the winter in the 

Americas and in spring or fall in other areas, but is seen year-round with less seasonal change in 

tropical regions (Cook et al., 1990). Even within tropical areas, however, rotavirus incidence 

tends to be higher under cooler and drier conditions, although there is much heterogeneity (K. 

Levy, A. E. Hubbard & J. N. S. Eisenberg, 2009). It is not clear why this is, but drier conditions 

might facilitate airborne suspension of droplet nuclei and promote inhalation of rotavirus, and 

differing sanitary conditions and episodic local events (such as floods) likely modify any effect 

of humidity or temperature (K. Levy, A. E. Hubbard & J. N. S. Eisenberg, 2009).

Dose response

Rotavirus is extremely potent, with an ID50 of approximately 6 focus-forming units (FFU) 

(Anon, 2012) as measured in a human feeding study (Ward et al., 1986).
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Symptomology

The incubation period for rotavirus infection is short, 1-3 days (Blaser et al., 2002). 

Rotavirus disease consists of fever, vomiting, and watery diarrhea; fever and vomiting usually 

last 2-3 days, while diarrhea may continue for 8 days. However, rotavirus infection is frequently 

asymptomatic; approximately 60% of young rural children who were shedding rotavirus in 

Guinea-Bissau, Mexico, and Argentina did not have diarrhea (Cravioto et al., 1990; Vergara et 

al., 1996; Fischer et al., 2002). 

Burden of disease

Rotavirus is responsible for about 6% of diarrhea cases in children aged less than five 

years in the developing world and 20% of the childhood diarrhea deaths according to a review 

(de Zoysa & Feachem, 1985) of 7 studies from the early 1980s. A subsequent review (Parashar et 

al., 2003) of studies published from 1986 to 2000 yields a similar estimate of rotavirus 

involvement in 8% (IQR 4 to 12) of in-home cases for children under five years of age, and 

approximately 20% for outpatient and inpatient cases. Approximately 20% of diarrhea deaths in 

low-income countries were due to diarrhea, similar to the earlier estimate. This corresponded to a 

1/205 risk of dying from rotavirus by age 5 years, compared to a 1/49,000 risk in high-income 

countries (Parashar et al., 2003). The proportion of severe diarrheal disease attributed to rotavirus 

has increased over time (Harry B Greenberg & Mary K Estes, 2009). This may be because of 

reductions in diarrhea caused by other pathogens; high shedding and high potency means that 

rotavirus is particularly difficult to control (Harry B Greenberg & Mary K Estes, 2009). 

Persistence in the environment

Rotavirus resists inactivation in the environment. On aluminum or ceramic at 4°C or 20°C 

in high or moderate relative humidity, approximately 90-99% is inactivated within the first week, 

but further inactivation is much slower; even at 60 days approximately 1% of the original 
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amount of virus remained (Abad et al., 1994).

Control

Rotavirus disease is very difficult to control due to high levels of shedding and its 

extremely low ID50 of ~6 virions (Anon, 2012). Two live-virus vaccines have been developed, 

RotaTeq and Rotarix, which are both highly effective: 74% against diarrhea and 100% against 

severe diarrhea for RotaTeq, and 95% against severe diarrhea for Rotarix (Harry B Greenberg & 

Mary K Estes, 2009). It is unclear whether these vaccines will be as effective in severely 

underdeveloped environments, although trials are underway (Harry B Greenberg & Mary K 

Estes, 2009). Before rotavirus vaccine was available, rotavirus generally infected all children 

before the age of four years in both developing and developed countries (Cook et al., 1990). 

Correct use of oral rehydration solution (ORS) in diseased children is very effective in 

preventing rotavirus mortality (Blaser et al., 2002).

Norovirus

Transmission and ecology

Norovirus is highly potent and is shed in large quantities by infected individuals, and it can 

easily be transmitted by person-to-person contact as well as by contaminated food or fomites 

(Mattison, 2011). 

A substantial fraction of the population lacks a receptor necessary for infection with 

Norwalk virus (the first norovirus discovered); these 'secretor-negative' (Se-) individuals appear 

innately immune (Lindesmith et al., 2003). In a study population of 77 individuals (49% male, 

71% white, 23% black) 28.6% were Se- (Lindesmith et al., 2003). It is unclear how much Se+/- 

status varies among human populations. Even if an individual is Se+, they may still be resistant 

due to acquired immunity, if they have been exposed to norovirus previously. However, 
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noroviruses are diverse, and important characteristics of immunity (duration and cross-protection 

among strains) are poorly understood (Lindesmith et al., 2003); furthermore, acquired immunity 

following norovirus infection only lasts a few months, after which a previously infected 

individual can be reinfected by the same serotype (Carter, 2005). 

Peak shedding of norovirus occurred during (31%) or after (69%) disease in 16 

experimentally infected volunteers, at approximately 7×1010 genome copies / mL of stool 

(Atmar et al., 2008). Virus was detectable for 1 to 9 weeks in stool; however, peak levels only 

lasted for one to three days (Atmar et al., 2008). The duration of illness and the incubation period 

both averaged two days (Atmar et al., 2008).

Dose response

Like rotavirus, norovirus appears highly potent; however, dose response relationships are 

inconclusive. Although some dose response models have been published (Peter F M Teunis et al., 

2008), much of the data used came from feeding studies using viral stocks that had been stored 

for long periods and were highly aggregated. The extent to which noroviruses are naturally 

aggregated in the environment is unclear.

Symptomology

Norovirus disease is unpleasant, but relatively mild and seldom dangerous (Blaser et al., 

2002). It has an incubation period of about two days, and lasts about two days (Atmar et al., 

2008). Vomiting or diarrhea may onset suddenly; however, the extent of these symptoms varies 

greatly among diseased persons (Blaser et al., 2002).

Burden of disease

Norovirus had been primarily considered an epidemic gastroenteritis, but evidence is 

mounting that it is an important cause of sporadic gastroenteritis as well. The annual incidence of 

norovirus disease in children less than 5 years of age in developing countries is approximately 
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197 inpatient cases per 100,000 (Patel et al., 2008). This figure was 118 in industrialized 

countries; by contrast, the incidence of outpatient cases was estimated to be 1665 per 100,000 

(Patel et al., 2008). It is unclear what the outpatient or community-level incidence would be in 

developing countries but it is likely to be substantially larger than the inpatient incidence.

Persistence in the environment

Norovirus is very stable in the environment, although disinfection studies commonly use 

surrogate caliciviruses because it is not currently possible to grow human norovirus in cell 

culture (Mattison, 2011).

Control

Good hygiene and disinfection practices are essential. No vaccine is available.

2.12.2. Bacterial diarrheal pathogens  

Many different bacteria can cause diarrheal illness, including numerous species and strains 

from the genera Salmonella, Vibrio (notably Vibrio cholerae, the cause of cholera), Clostridium, 

Streptococcus, Yersinia, and Bacillus. However, pathogenic Escherichia coli and Campylobacter 

appear to be responsible for particularly large shares of bacterial diarrhea (Figure 2.3, page 20), 

and these are discussed in detail below.

Pathogenic   Escherichia coli  

Important pathotypes of E. coli

Escherichia coli usually resides in the mammalian large intestine, benefiting itself as well 

as the host. However, there are several well-established pathotypes of diarrheagenic E. coli 

(Kaper 2004, Nataro 1998). With respect to diarrhea, the most important are enteropathogenic E. 

coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroinvasive E. coli (EIEC), all of which 

produce watery diarrhea. Although enterohemorrhagic E. coli (EHEC) is much more potent than 

EPEC, ETEC, or EIEC and can cause severe or lethal disease, EHEC is relatively uncommon, 
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and is not a major cause of diarrhea. Shigella species are highly potent, like EHEC, but they are 

less dangerous, although they are an important cause of dysentery; Shigella are very closely 

related to E. coli, and are probably technically conspecifics (James B Kaper et al., 2004). 

Although EIEC is the E. coli pathotype most closely related to Shigella, EIEC is much less 

potent (Blaser et al., 2002; Anon, 2012).

Transmission and ecology

Shedding of ETEC may vary by strain. For E. coli H10407, the geometric mean number of 

bacteria per gram of feces was 4.03×107, and it did not differ greatly whether subjects were 

symptomatic or not (Levine et al., 1980). For E. coli 214-4, the geometric mean was 5.23×108, 

over tenfold higher (Levine et al., 1980).

ETEC can often be detected in apparently healthy people. In developing countries among 

healthy 0-11 month olds, and 1-4 year olds, 11.7% and 7.1%, respectively, are estimated to be 

colonized with ETEC (Wennerås & Erling, 2004).

ETEC disease tends to be more prevalent in warm, wet weather, which aids its 

multiplication in the environment (Qadri et al., 2005; J P Nataro & J B Kaper, 1998). In 

Bangladesh, its seasonality is similar in shape and magnitude to that of cholera, with one peak at 

the beginning of the hot season (spring) and another in autumn just after the monsoons, when 

more fecal material is entering surface water (Qadri et al., 2005). 

A household-level case-control study (R E Black et al., 1981) of ETEC was conducted in 

the rural Matlab area of Bangladesh. Extensive culturing of water, food, domestic animals, and 

family members was carried out. Compared with households testing negative for ETEC, risk of 

infection was only slightly higher (10.0% vs. 8.3%) in households where a water source or a 

domestic animal was positive for ETEC. In contrast, risk of infection increased 3.5 fold, to 
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29.0%, among households for which ETEC was found in stored water or cooked food, 

highlighting the importance of exposure within the household. Within households having an 

infected member, the proportion of household contacts becoming infected, and the proportion of 

those infected contacts actually acquiring disease, declined with age. This is consistent with 

development of immunity, since contamination of food and water within the household indicates 

that all members are likely to be similarly exposed.

Dose response

Pathogenic E. coli is much less potent than the other pathogens described in this chapter. 

Many studies with human volunteers have used disease as the outcome, and their ID50s range 

from 2×105 to 1×108. The only available experiment with infection as the outcome used EIEC 

(H L DuPont et al., 1971) and had an ID50 of 2×106 CFU (Anon, 2012) 

Feeding studies of ETEC or EPEC in healthy volunteers typically give 2-3g of NaHCO3, 

which neutralizes stomach acid and reduces the infectious dose (Levine et al., 1977). However, it 

has been suggested that food as a vehicle would have a similar acid-neutralizing effect (Levine et 

al., 1977). ETEC and EPEC do not appear to be transmitted person-to-person, partly because of 

their low potency; a study of ETEC-infected volunteers co-housed with uninfected volunteers did 

not result in any transmission of infection (Levine et al., 1980). Food was all served individually 

to the volunteers over the course of the experiment, so there was no opportunity for ETEC to 

spread via that route (Levine et al., 1980).

Symptomology

ETEC disease generally consists of watery diarrhea without fever, although its severity can 

vary widely, depending partly on the set of toxins that the strain is carrying (Blaser et al., 2002). 

The incubation period lasts from one to two days (Blaser et al., 2002), and ETEC diarrhea in 11 
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experimentally infected adult volunteers lasted 82.1 (SD 50.7) hours, with 12.0 (SD 9.29) stools 

over the course of the illness (R E Black et al., 1982). These were compared with other 

volunteers who were treated with antibiotics; immediate treatment cut diarrheal duration, stool 

volume, and hours ill by half.

EPEC disease can be more severe than ETEC, and there are many documented examples 

of lethal epidemics in children (Blaser et al., 2002). However, experimental infections in adult 

volunteers showed a relatively mild syndrome of less than two days of watery diarrhea after an 

incubation period of less than 1 day (Blaser et al., 2002).

Burden of disease

In a recent review (Abba et al., 2009), pathogenic E. coli was by far the most common 

pathogen isolated from children with persistent diarrhea in various developing countries; it was 

detected in 31% to 41% of children, compared to <10% for other pathogens. Pathogenic E. coli 

also predominated similarly among pathogens isolated from asymptomatic cases (Abba et al., 

2009).

Enterotoxigenic Escherichia coli (ETEC) is the most common type of diarrheagenic E. 

coli (Qadri et al., 2005). It is probably also the most common cause of childhood diarrhea in the 

developing world, responsible for approximately 1/7 of diarrheal episodes in children aged less 

than 1y and almost ¼ of diarrheal episodes in 1-4 year olds (Wennerås & Erling, 2004). It can 

also cause severe dehydrating cholera-like disease in adults (Qadri et al., 2005). Diagnosis is 

complicated since many other Gram-negative bacteria produce similar toxins, so both toxins as 

well as the E. coli bacterium must be tested for in order to yield accurate results (Wennerås & 

Erling, 2004).

Persistence in the environment

Laboratory studies of E. coli in unfiltered river water in the dark indicate exponential 
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decay at a rate of 1.15 day-1 (in water taken from above a sewage outfall) to 0.64 day-1 (in water 

from below a sewage outfall) (Flint, 1987). Filtering or autoclaving the water before adding E. 

coli enhanced survival (Flint, 1987). A summary of inactivation rates of E. coli published by 

other workers indicates high variability, spanning over 2 orders of magnitude (0.009 to 2 days-1) 

at 15-20°C (Pond et al., 2004).

Control

In addition to sanitation and hygiene, proper food preparation and handling (particularly of 

weaning foods), is important (Motarjemi et al., 1993). ETEC vaccines are being actively 

researched (Harro et al., 2011).

Campylobacter species

Transmission and ecology

In humans, Campylobacter jejuni and, less commonly, Campylobacter coli can cause 

gastroenteritides (A. H. Havelaar et al., 2009). Although Campylobacter can be spread by 

contaminated food and water, campylobacteriosis is mainly a zoonosis, being primarily 

associated with the gastrointestinal tract of birds, especially poultry (Dechesne et al., 2006). 

Campylobacter does not grow in water and (like E. coli) are an indicator of post-treatment 

contamination in water distribution systems. However, immunity appears to protect against 

disease rather than infection, and asymptomatic shedding is common (A. H. Havelaar et al., 

2009). In a comparison of Mexican children aged less than four years and Swedish patients (ages 

not given), Swedish patients tended to carry only one Campylobacter serotype, while mixed 

serotypes were carried by 42% of Mexican children tested (Sjögren et al., 1989).

Campylobacter epidemiology varies greatly between the developed and underdeveloped 

world, probably due to development of immunity early in life. Illness is rare after about five 

years of age in developing countries, but occurs among adults in industrialized countries, 
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probably because they avoided exposure (and therefore immunity) in childhood (A. H. Havelaar 

et al., 2009).

Dose response

In human volunteers, C. jejuni has an ID50 of approximately 900 CFU (R E Black et al., 

1988; Anon, 2012). Neutralization of stomach acid by food or sodium bicarbonate could increase 

its potency (Miliotis & Bier, 2003).

Symptomology

Campylobacter can cause acute self-limited watery diarrhea lasting 2-6 days in healthy 

humans with an incubation period of about three days (range of 1-7 days), often with fever and 

nausea, but seldom with vomiting (Miliotis & Bier, 2003). In developing countries, 

campylobacteriosis is typically a disease of very young children; after about age two years, 

immunity has been acquired (A. H. Havelaar et al., 2009).

Burden of disease

Campylobacter is a substantial contributor to childhood diarrhea in developing countries; 

although it might not generally contribute as much morbidity as diarrheagenic E. coli (Blaser et 

al., 2002). Illness is rare after early childhood, due to development of immunity from early 

infections.

Persistence in the environment

Campylobacter survival increases with decreasing temperature, and it may survive for 

weeks in water samples in the laboratory at 4-10°C (Buswell et al., 1998). It is vulnerable to acid 

(although it can pass through the stomach if protected by food), but it can tolerate freezing (1-2 

LRVs by freezing and thawing) and salting (about three weeks in 6.5% NaCl at 4°C) (Miliotis & 

Bier, 2003).

Control
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Limiting contact with bird feces and proper preparation of meat and eggs is important. It is 

somewhat unclear how best to manage household poultry to limit Campylobacter infection in 

developing countries. A randomized trial (Oberhelman et al., 2006) of chicken corralling in a 

Peruvian periurban community showed similar incidences (about three infections per person-

year) of asymptomatic infections in children less than six years of age between households with 

corrals and households without. However, it also found 1/3 higher incidence of diarrhea in 

general and twofold higher incidence of symptomatic Campylobacter infection in households 

with corrals. 

2.12.3. Protozoan diarrheal pathogens  

Protozoa are more difficult to culture than bacteria. However, they are larger, and are 

generally detected and counted under the microscope once they have been concentrated and 

stained with immunofluorescent dyes. They are more easily filtered from water due to their size, 

but tend to be more resistant to chlorine and are more potent than many bacterial pathogens. 

Cryptosporidium is used as a de facto standard for evaluating water filtration since it is smaller 

(5 microns) and more environmentally resistant than Giardia; if Cryptosporidium is 

undetectable, Giardia should be as well (American Water Works Association, 1999).

Cryptosporidium parvum and Cryptosporidium hominis

Transmission and ecology

Cryptosporidium belongs to the phylum Apicomplexa and reproduces both sexually and 

asexually in the intestinal tract, where it is an obligate intracellular parasite. It has a broad host 

range, occurring in most (perhaps all) vertebrates, but it does not cause diarrhea in adult dogs, 

cats, or horses, perhaps meaning that these animals are low risk for transmission to humans. Its 

oocysts are the infective stage, which are transmitted by the fecal-oral route. Infections in 

ruminants seem to be the biggest source of environmental contamination (Miliotis & Bier, 2003).
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Cryptosporidium hominis appears to only infect humans; it was recently shown to be a 

separate species from Cryptosporidium parvum, which primarily infects cattle but can also infect 

humans (Hunter & R. C. A. Thompson, 2005). Many other species of Cryptosporidium exist, but 

do not appear to infect humans (Hunter & R. C. A. Thompson, 2005).

Cryptosporidium is an intracellular parasite within epithelial cells in the small intestine, 

which shields it from the host immune response and limits the effects of chemotherapies 

(Miliotis & Bier, 2003).

Dose response

Several dose response datasets are available for C. parvum infection in humans. They 

provide ID50s ranging from 12 to 455 oocysts (median 165) (Anon, 2012). The two largest 

datasets (8 doses each) fit the exponential dose response equation, with ID50s of 165 and 132 

oocysts (H L DuPont et al., 1995; Messner et al., 2001; Anon, 2012). Only one feeding 

experiment has been done with C. hominis in humans (Cynthia L Chappell et al., 2006); the 

response measured was disease (rather than infection), and the ID50 was 17 oocysts (Anon, 

2012). Therefore C. hominis may be roughly 10 times more potent than C. parvum in humans.

Symptomology

Cryptosporidiosis had a mean incubation period of 5 days and lasted for a mean of 6 days 

in 13 volunteers experimentally infected with C. hominis (Cynthia L Chappell et al., 2006). It is 

generally short and self-limited, causing watery diarrhea in healthy people, but is particularly 

dangerous to people with AIDS because there is no effective treatment (Miliotis & Bier, 2003). 

This can lead to infections lasting months or years, with severe damage to the gut. Infections can 

often be asymptomatic in apparently healthy children and adults (Blaser et al., 2002). Disease 

duration can be substantially longer in malnourished developing-country children compared with 
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people in industrialized countries; mean diarrhea durations of 21 and 13 days have been reported 

for C. hominis and C. parvum, respectively, in children under five years of age in a Brazilian 

shantytown (Bushen et al., 2007).

Burden of disease

Although Cryptosporidium is ubiquitous throughout the world (Blaser et al., 2002), 

cryptosporidiosis prevalence is relatively high (20-27%) (Miliotis & Bier, 2003) in children in 

certain underdeveloped contexts. However, it causes little or no symptomatic disease in older 

children and adults in developing countries.

Persistence in the environment

Cryptosporidium oocysts are about 5 microns in diameter, and are generally even hardier 

than the durable cysts of Giardia. Oocysts are inactivated more quickly at warmer temperatures 

(Erickson & Ortega, 2006). Ultraviolet light is effective, yielding 1 to 5 LRVs depending on the 

strain and the type/intensity of UV (Erickson & Ortega, 2006). They can survive for months in 

cold lakes or streams. They are highly resistant to chlorine. They can be inactivated by heat 

>64.2°C for 2+ minutes, or drying at 18-28°C for >4h. 

Control

Effective control of Cryptosporidium is generally achieved in municipal drinking water 

treatment by filtration yielding nonturbid water (< 1 NTU) (USEPA, 2012). No effective anti-

cryptosporidial medications exist. HWT is particularly important for HIV-infected people to 

strictly limit exposure to Cryptosporidium in drinking water, even in industrialized countries.

Giardia   species  

Transmission and ecology

The currently accepted name for the Giardia species that primarily affects humans is 

Giardia duodenalis, although many papers refer to it as G. lamblia or G. intestinalis. Even within 
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G. duodenalis, certain assemblages are generally restricted to humans, and earlier beliefs that 

giardiasis is a single zoonosis now appear to be incorrect (Cacciò et al., 2005). Assemblages 

within G. duodenalis may later prove to be separate species (Cacciò et al., 2005).

G. duodenalis is a flagellated protozoan that attaches to the small intestinal wall and 

absorbs nutrients from the gut lumen. Shedding of cysts varies greatly over time (0 to 2.5×107 

cysts/g of feces), even within the same symptomatic individual (Porter, 1916). Because of this, 

diagnosis is often based on three specimens collected over several days (Miliotis & Bier, 2003).

Reinfection with Giardia following drug treatment can be extremely rapid; 98% of 44 

Peruvian children who were treated had reacquired infection within 6 months (R H Gilman et al., 

1988). Immunity is to symptomatic giardiasis, rather than to Giardia infection.

Dose response

Giardia is a potent pathogen, with an ID50 of 35 cysts based on a human feeding study; it 

fits the exponential dose response function (Rendtorff, 1954; Anon, 2012). 

Symptomology

Giardiasis often presents with diarrhea and flatulence, with foul-smelling foamy stools 

(Miliotis & Bier, 2003). In a study of experimentally infected humans (Rendtorff, 1954), it had a 

mean incubation period of 14 days; the mean duration of infection was 18 days, not counting two 

participants whose infection lasted > 100 days but did not shed during much of that time. 

Giardia infection is noninvasive, but can lead to villous atrophy and nutrient malabsorption 

(Miliotis & Bier, 2003)

Partial immunity appears to develop, and infections are often asymptomatic (Miliotis & 

Bier, 2003); reports exist of 3% of infections being symptomatic among fathers and their 

children in Pakistan (Ensink et al., 2006) with a similarly low symptomatic proportion in urban 
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Brazilian 6-45 month olds (M S Prado et al., 2005). However, a report (Peréz Cordón et al., 

2008) from a periurban area of Peru with poor sanitation describes 60% of infections among 

children aged 1 month to 9 years as being symptomatic. 

Burden of disease

Giardia infection is common (prevalence of 2-5%) in the developed world but is 20%-30% 

prevalent elsewhere; some communities have been documented with much higher prevalences 

(Blaser et al., 2002). Weaned children are more susceptible than adults; prevalence declines 

somewhat after adolescence (Blaser et al., 2002). Since asymptomatic infections are so common, 

the true health impact of Giardia remains unclear.

Persistence in the environment

Pooling data from two studies (Wickramanayake et al., 1985; deRegnier et al., 1989) yields 

an estimate of inactivation at a rate of 0.55/day in water at 20ºC. Cysts degrade more quickly in 

soil or cattle feces than in water (Olson et al., 1999). The cysts do not tolerate freezing (Olson et 

al., 1999).

Control

Effective water treatment and good hygiene limit Giardia transmission. In addition, several 

curative chemotherapies for Giardia infection are available (Blaser et al., 2002).

2.12.4. Metazoan pathogens (helminths)  

Intestinal tapeworms or roundworms can aggravate the diarrhea-malnutrition vicious cycle, 

although light infections are thought to have negligible nutritional consequences. Worms 

themselves do not appear to cause much diarrhea (Hall et al., 2008). In addition, poor sanitary 

conditions are likely to simultaneously lead to infection with helminths and diarrheal pathogens. 

An observational study (Genser et al., 2006) in an urban Brazilian area with poor sanitation 

tested children once for Ascaris lumbricoides, Trichuris trichiura, and Giardia species, finding 
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that only Giardia was associated with diarrhea incidence. 

2.13. Interventions to prevent transmission of diarrheal pathogens

Diarrheal infections nearly always have a major fecal-oral component to their transmission, 

and this is the major target of interventions to control diarrhea. Nonetheless, many different types 

of interventions are being used and investigated throughout the world. Unfortunately, it is 

difficult to ascertain how effective most of these interventions are in actual practice.

2.14. Effectiveness trials of interventions

The scientific literature is replete with results of effectiveness trials of various  

interventions in developing countries, with some assessing multiple interventions used 

simultaneously. In general, these trials usually take place over a few weeks or months, or perhaps 

a full year. They frequently show diarrheal disease reductions of approximately 30%, regardless 

of the type of intervention. Although children under 5 years of age are usually studied because 

they bear the greatest morbidity and mortality, other groups (all ages, <15 years of age, <3 years 

of age, etc.) are sometimes studied. Effectiveness may be measured with incidence ratios 

(number of new cases) or prevalence ratios (the number of persons infected at a given time); 

these two measures may differ because incidence and duration of illness are not tightly linked 

(Schmidt et al., 2009). Unlike clinical trials for determining drug effectiveness, intervention trials 

in communities are seldom blinded and may not be randomized, which can lead to bias. 

However, practical considerations (e.g., obvious visibility of intervention materials, expense of 

conducting research in multiple communities) make clinical trials of community interventions 

impractical.

2.14.1. Measures of effect in intervention trials  

Field trials of interventions commonly use some type of risk ratio to describe the 

effectiveness of the intervention. Many different measures of risks are used, with corresponding 

38



risk ratios (RRs; also called relative risks), in which the risk in an intervention group is divided 

by the risk in a control group. An RR of 1 generally indicates no effect, while an RR < 1 suggests 

that the intervention prevents disease, and an RR > 1 would mean that there was more disease in 

the intervention group than in the control group. In general, the preventable fraction (PF) is given 

by 1 – RR, and describes the proportion of disease that the intervention prevents. Brief 

descriptions of common types of risk follow.

Point prevalence (sometimes simply called prevalence) is the proportion of people who are 

affected at a single point in time. Its relative risk measure is the prevalence ratio (PR). Since the 

amount of diarrhea present in communities can vary greatly over time, point prevalence is not a 

very good measure of risk.

Incidence (sometimes called 'incidence rate') is the number of new cases of a disease that 

arise in a population over a period of time (often expressed in terms of 1 year). Its relative risk 

measure is the incidence ratio (IR).

The longitudinal prevalence (LP) is the number of person-days affected, divided by the 

number of person-days observed. Person-days are the product of the number of people observed 

and the mean time of observation per person. Its relative risk measure is the longitudinal 

prevalence ratio (LPR).

The odds is the number of instances where the disease occurred divided by the number of 

instances where the disease did not occur. Its relative risk measure is the odds ratio (OR). Odds 

are often used in case-control studies where the association of a particular factor with disease is 

being assessed.

All of these measures of risk are specific to a particular population (such as a particular age 

group studied in a certain community). The risk of diarrhea in general may be measured, or the 

risk of infection or diarrhea from a particular pathogen.
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Although the primary goal of interventions is to lower the risk of diarrheal disease, it is 

also useful to measure the antimicrobial effectiveness of these interventions. If an intervention 

cannot remove microorganisms in the laboratory, there is no reason to conduct a field study of 

that intervention to assess its impact on diarrheal disease. The log10 reduction value (LRV) is 

often used to assess water treatment methods; it is calculated by taking the log10 of the number 

of a certain microorganism detected in a certain volume of treated water, and subtracting the 

log10 of the number of those microorganisms detected in treated water. Thus, an LRV of 1 

removes 90% of microorganisms; an LRV of 2 removes 99%, and so on. Very high LRVs (5 or 

more, 99.999% reduction; see Table 2.1, page 64 for examples) are often desirable because some 

pathogens are both extremely infectious and extremely abundant; thus it might be necessary to 

eliminate nearly all of a pathogen in order to reduce risk to an acceptable level. If the LRV is low 

(< 2), antimicrobial effectiveness is sometimes described as a simple percentage of a certain type 

of microorganism removed or inactivated.

2.14.2. Nature of bias in intervention trials  

Effectiveness of interventions as measured by trials is likely to be higher than effectiveness 

in actual practice for several reasons:

• The intervention may be discontinued by the population after the study is completed and 

the investigators depart from the community.

◦ Cost to families or the community (in time or money) may become prohibitive 

(Stockman et al., 2007).

◦ The population may not believe that the intervention is worthwhile, or the 

intervention may not be culturally appropriate (Paul, 1955)

◦ The community might fail to maintain the intervention in good working order because 
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they lack the necessary skills, equipment, or money; or maintenance may simply be 

forgotten.

• Blinding is difficult or impossible to implement in community-based trials (B. F. Arnold 

& Colford, 2007), which can introduce bias:

◦ Respondents, knowing that they are receiving an intervention, may consciously or 

unconsciously underreport diarrheal illness, or comply more effectively with the 

intervention, e.g., the Hawthorne effect, or ‘courtesy bias’ (Luby et al., 2006).

◦ Investigators’ observations may be biased by their expectation that the intervention 

will be effective.

• Surveys themselves can alter behavior:

◦ Question-behavior effects: the survey causes the respondent to think about the topic 

more deeply than usual, potentially changing the response or the behavior 

(Spangenberg et al., 2008). Question-behavior effects may themselves be altered, for 

example, by differing frequency of surveying (Zwane et al., 2011). 

• The investigators conducting a trial may themselves introduce bias:

◦ A trial showing high efficacy might be more likely to be published than a trial that 

shows little/no efficacy (publication bias) (Hunter, 2009).

◦ Investigators receiving outside funds may (consciously or unconsciously) 

preferentially report findings that are aligned with the funder’s desires. This may 

occur through publication bias or through other means.

Bias might also lead to understatement of effectiveness. For example, a family that has 

poor hygiene practices might nonetheless report regular handwashing because it is a socially 

desirable answer. In a hygiene education trial, this would overestimate apparent handwashing in 
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the absence of an effect on disease, understating effectiveness of the intervention.

Although bias is seldom quantified, a recent meta-epidemiological study (L. Wood et al., 

2008) compared a wide variety of intervention studies (e.g., caesarian sections, smoking 

cessation, cancer treatment outcomes, etc.) with good/poor blinding to determine how these 

factors influence the reported effect of an intervention. When considering trials with subjectively 

reported outcomes, comparison of 104 unblinded trials with 205 blinded trials showed that 

unblinded trials tended to have odds ratios that were 25% lower (indicating a bias toward greater 

perceived effectiveness) compared to blinded trials (L. Wood et al., 2008). There was a similar 

effect regarding proper randomization of participants to treatment groups (allocation 

concealment). However, unblinded trials with objective outcomes did not show evidence of bias 

(L. Wood et al., 2008). This would seem particularly relevant to interventions to prevent diarrhea 

in developing countries since diarrhea reporting can be highly subjective, although such 

interventions were not the focus of this meta-epidemiological study.

A few trials report on microbiological outcomes, such as the log reduction of 

microorganisms attained by a particular water treatment method. However, most trials consider 

reduction of a diarrheal syndrome as the main outcome, without reference to particular 

pathogens. Since the ultimate goal of an intervention is to improve health, and it is easier to 

measure symptoms in people than to identify pathogens in feces, disease outcomes tend to be 

preferred in the literature.

2.15. Compliance with interventions, and long-term sustainability

Compliance with an intervention refers to the extent that people or communities actually 

use an intervention. It is often measured in terms of the proportion of people who are using (or 

claim to use) an intervention at a particular time. The word 'adherence' is sometimes used in 

place of compliance (Aronson, 2007). Sustainability is a related concept that refers to 
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maintenance of an intervention in a community over many years (essentially forever) without 

outside assistance, and it is notoriously difficult to attain (Shediac-Rizkallah & Bone, 1998). 

Compliance is necessary, but not sufficient, for sustainability. An intervention that people comply 

with and initially seems sustainable may become unsustainable if conditions change, such as 

deterioration of the infrastructure, economy, environment, or political situation.

Household water treatment (HWT) trials tend to be short, rendering sustainability 

unmeasurable; only 4 of 35 household interventions reviewed (T. Clasen et al., 2007) lasted one 

year or more, while 4 of 6 trials of interventions at the water source lasted three or more years. 

These water source interventions included well digging and installation of public taps, and did 

not include connection of individual households to the water distribution network (T. Clasen et 

al., 2007).

2.15.1. Costs of compliance (monetary and otherwise)  

Monetary cost to the user is a key issue in compliance, and this is somewhat controversial. 

Some nonzero price, however small, may reduce waste since families willing to use the 

intervention would presumably also be willing to pay for it. Establishment of local for-profit 

businesses that sell interventions (such as HWT devices) are likely to be sustainable if they are 

profitable (Joe Brown et al., 2007); however, even seemingly tiny prices (e.g., $0.08/month) can 

impede compliance among very poor people (Stockman et al., 2007). It is also often politically 

difficult to allot government resources to marginalized or underprivileged populations 

(Batterman et al., 2009).

Like money, time is a limited resource that must be carefully managed, and competing 

demands on time (particularly for women) in developing countries mean that the time required 

for a new task must be taken from other tasks (Awumbila & Momsen, 1995). Since interventions 

to prevent diarrhea generally require daily effort to maintain (e.g., consistent handwashing, or 
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daily treatment of drinking water), interventions that require little time and effort to operate 

should have higher compliance and a better likelihood of sustainability.

2.15.2. Psychological, social, and cultural aspects of compliance  

Even if an intervention’s effectiveness can be significantly demonstrated in a trial and is 

adopted initially by the community, the intervention may still fail if the magnitude of the disease 

reduction is too small to be perceived easily by individuals, who may therefore fail to recognize 

its importance (E. M. Rogers, 2003; Mäusezahl et al., 2009). A mother might not notice any 

difference between three illnesses per year in her child as opposed to four illnesses per year, even 

though this represents a 25% reduction in incidence. Therefore she might not be motivated to 

comply with the intervention. Even though the basics of the germ theory of disease are widely 

understood in many developing countries, 'germs' are invisible and abstract, and may not 

effectively motivate behavior change (V. A. Curtis et al., 2009). Interventions that yield visible 

daily benefits, such as savings in time and energy due to improved water supply or construction 

of conveniently available and comfortable latrines, may be maintained better by the community 

(Waddington et al., 2009).

Habits (a behavior that occurs 'automatically' following a particular stimulus) appear 

important for handwashing compliance, and habits are typically established in childhood (V. A. 

Curtis et al., 2009). If a habit has not been established, it might be learned or encouraged by 

particular motivators. In a review of structured observation studies of handwashing in several 

developing countries (V. A. Curtis et al., 2009), disgust from feces and dirty hands was a key 

motivator for handwashing. Affiliation (essentially, doing what everybody else is doing) was also 

important; although affiliation can promote handwashing if it is common, it can also discourage 

handwashing if it is uncommon. Fear was not an effective motivator, except in the context of a 

severe immediate threat like a cholera epidemic (V. A. Curtis et al., 2009). These motivations 
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might apply similarly to other interventions to prevent diarrhea, such as sanitation or HWT.

Compliance with interventions also depends on cultural factors. Local beliefs about water 

or hygiene impact the acceptability of an intervention. For example, women’s cleanliness is often 

highly regarded socially, but in some settings cleanliness implies attempting to attract other 

women’s husbands (V. A. Curtis et al., 2009). Belief that disease is pre-ordained or that people 

are powerless to affect disease (fatalism) can also impede the acceptance of interventions. In 

addition, diarrhea is often perceived to be a normal part of child development rather than a 

disease (V. A. Curtis et al., 2009). Communities also have different capacities to adapt to 

changing conditions, which is based partly on available resources but also on cultural factors 

(Batterman et al., 2009). 

2.15.3. Examples of compliance measurements in the field  

In practice, high compliance is seldom attained. HWT chlorination trials provide 

informative illustrations of compliance, because measuring chlorine residuals in stored water 

during unannounced home visits is a rapid and objective measurement. As part of a large meta-

analysis of HWT trials, 16 chlorination trials were reviewed (T. Clasen, I. G. Roberts, et al., 

2009), finding mixed evidence for effectiveness (e.g., a significant rate ratio of 0.61 for all ages 

across four studies, but a nonsignificant longitudinal prevalence ratio [LPR] of 0.91 for children 

under 5 years of age across 5 other studies). Eleven of these trials measured chlorine residuals. 

Three of these trials estimated compliance at 49% (Chiller et al., 2006), 44% (Crump et al., 

2005), and 61% (Crump et al., 2005). A fourth trial of 20 families had apparently perfect 

compliance because a health worker treated families' water daily , but found no protective effect 

(Kirchhoff et al., 1985). ; a possible explanation might be consumption of untreated water 

outside the home. A fifth trial (Doocy & Burnham, 2006) was an outlier that differed from the 

other trials by its remarkably low LPR of 0.09; it was carried out in refugee camps and reported 
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95% compliance. The compliance levels during the remaining trials were unclear. More accurate 

measurements of compliance are needed to improve quantitative understanding of its impact on 

effectiveness. With respect to HWT, the amount of untreated water consumed appears 

particularly important.

The challenges in implementing sustainable interventions are illustrated by the following 

example. An evaluation (B. Arnold et al., 2009) of a large HWT and handwashing promotion 

campaign in 90 Guatemalan villages, during which families with children under three years of 

age were visited for 30 minutes monthly or bimonthly by health educators who promoted various 

HWT methods, handwashing with soap, and good nutrition. At the end of the campaign it was 

estimated that 70% of participating households were using HWT regularly. However, in an 

evaluation of 600 households 6 months after the conclusion of the intervention, various health 

measures were no different than in control villages. Longitudinal prevalence of diarrhea, ‘highly 

credible gastroenteritis’, cough, or difficulty breathing were all no different, as were 

anthropometric measures of malnutrition, and only 37% of intervention households still self-

reported as using HWT. Furthermore, hygienic conditions, soap use, and self-reported 

handwashing behavior were no different. Statistically significant, but small, positive differences 

were seen in confirmed HWT use, which was 26% using any HWT method. 

2.16. Interaction of intervention effects

Interaction of interventions means that their joint effectiveness differs from their combined 

individual effectivenesses. Interaction between interventions is common, but may be positive or 

negative. In a review (Fewtrell et al., 2005) including 5 studies combining water supply 

improvements with sanitation and hygiene education, and found that the effect on childhood 

diarrhea was similar in those studies as the effect seen in other studies for water supply, 

sanitation, or hygiene alone. There was a similar effect when combining water treatment and 
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handwashing in Karachi squatter neighborhoods; there was no additional benefit to combining 

the interventions, although each intervention alone cut diarrhea prevalence by about 50% (Luby 

et al., 2006). 

However, a meta-analysis (Gundry et al., 2004) of 7 household water treatment (HWT) 

intervention studies found that the effectiveness of interventions increased as sanitation 

improved. Positive interaction between sanitation and source water quality has been observed for 

diarrhea (VanDerslice & Briscoe, 1995); furthermore, increased water use and latrine possession 

positively interacted to improve infant weight and length in rural Lesotho (Esrey et al., 1992) 

(presumably by reducing diarrhea). In general, though, interaction between interventions appears 

to be negative, with sanitation an occasional exception. Since good sanitation removes feces 

from the environment and therefore drastically reduces the amount of pathogens available, it may 

enable greater effectiveness of other interventions by allowing them to act on a region of the 

dose-response curve where disease risk is more rapidly declining. A possible explanation for 

negative interaction may be found in bias due to difficulty in blinding field trials. For example, 

the effectiveness of an intervention in a field trial may be overestimated if the trial is unblinded 

and the outcome is subjective (L. Wood et al., 2008). Such a bias would probably be similar 

whether a single intervention or two joint interventions are being applied, which would give 

results resembling negative interaction. 

Since diarrheal illness is transmitted by multiple pathogens over multiple routes, an 

intervention that can successfully impede transmission might not reduce pathogen exposure 

enough to detectably impact disease in a highly contaminated environment; enough transmission 

may occur by alternate routes to maintain high endemicity (Briscoe, 1984). Once conditions are 

somewhat improved, interventions which seemed initially to have low effectiveness might yield 

larger reductions in disease by further reducing the amount of pathogens into a zone of a dose-
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response curve where disease risk rapidly decreases. This is especially likely if the relationship 

between the number of pathogens ingested and the development of disease is nonlinear (Briscoe, 

1984). Unfortunately, preexisting characteristics of the area that might affect an intervention trial 

are often omitted or not clearly reported; many ‘single interventions’ might be considered 

‘multiple interventions’ if prior community development is considered. Furthermore, meta-

analyses attempt to generate overall effectiveness measures for particular interventions, but they 

generally lump trials together to obtain a pooled result with little regard for characteristics of the 

community before the intervention was implemented. 

Even if such characteristics are considered, power may be lacking to determine if 

heterogeneity between studies is due to community characteristics. A meta-analysis (Gundry et 

al., 2004) examined sanitation, urban/rural setting, type of water source, water storage, and 

blinding to see if they affected household water treatment effectiveness, but found no 

relationships other than increasing effectiveness with increasing sanitation. Sanitation explained 

1/3 of the heterogeneity between those studies, but the remaining 2/3 could not be explained 

(Gundry et al., 2004).

Interventions may also interact simply by facilitating each other in the household. For 

example, water supply improvements facilitate handwashing simply by making more water 

available (Curtis 2000). They might also facilitate activities such as breastfeeding and food 

preparation by increasing the amount of time available to the mother, such as by eliminating the 

necessity of walking long distances to collect water.

Natural conditions may also interact with interventions. For example, HWT chlorination 

was ineffective during abnormally heavy July rains in Karachi, but was effective for most of the 

rest of the year (Luby et al., 2006).
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2.17. Descriptions of individual interventions

In general, diarrheal disease should be prevented by preventing feces from entering the 

mouth, as illustrated by the classic ‘F-diagram’ (Figure 2.4) (V. A. Curtis et al., 2000); sometimes 

'fomites' are also added, denoting an object contaminated with pathogens. Anything that removes 

feces or pathogens from the environment has the potential to reduce infectious diarrhea; different 

interventions are possible, which act on different parts of the diagram. Interventions are 

described in detail below and will be referred to briefly in the context of particular pathogens.

2.17.1.   Sanitation  

Sanitation appears particularly important because it can restrict all routes connecting feces 

to other compartments (Figure 2.4). Although developed-country urban sanitation infrastructure 

including flush toilets, piped sewer systems, and sewage treatment plants are a highly effective 
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Figure 2.4. Simple F-diagram of transmission of diarrheal pathogens

The 'F-diagram' (so called because nearly all compartments begin with 'F') illustrates how 
diarrheal pathogens can be transferred by different vectors within a community. HWT means 
household water treatment. Modified from V. A. Curtis et al. (2000). See Figure 2.7 (page 77) for 
a more detailed diagram. For interpretation of the references to color in this and all other 
figures, the reader is referred to the electronic version of this dissertation (at Michigan State 
University, proquest.com, Google Scholar, or openthesis.org).



ideal, they are prohibitively expensive in many locations. Nonetheless, in crowded urban areas, 

this may be the only feasible solution due to the lack of space for building latrines.

Although sanitation seems important intuitively because of its key role in removing feces 

from the environment, there have been relatively few rigorous trials establishing its effectiveness 

on diarrhea; those available tend to be observational and unrandomized (Barreto et al., 2007; 

Henry & Rahim, 1990; Esrey, 1996). Large sanitation construction initiatives tend to be 

accompanied by other infrastructure improvements as well as hygiene education, making it 

difficult to isolate the effect of sanitation alone (Barreto et al., 2010). A large study (Barreto et 

al., 2007) comparing longitudinal prevalence of diarrhea in 0-3 year olds in the city of Salvador 

in Brazil before and after the implementation of a sewerage construction program showed 

reduction of diarrhea by about 43% in areas of the city with prevalence above 8 days of diarrhea 

per child per year. Most areas with lower prevalence of diarrhea did not have significant 

reductions in diarrhea, leading to an overall decrease of about 22% in the longitudinal prevalence 

of diarrhea. A later study of 0-4 year olds in the same area (Barreto et al., 2010) found a 

reduction in prevalence of Giardia infection from 14.1% to 5.3%; the new sewerage connections 

alone appeared to account for the greatest share (about 25%) of this decline, with improved 

cleanliness in/near the house accounting for an additional 17% (Barreto et al., 2010).

Given available space, several inexpensive and effective latrines can be built with local 

materials, such as the ventilated improved pit (VIP) latrine, pour-flush latrines connected to a 

hand-dug septic pit, and composting toilets (e.g, SkyLoo). These are considerable improvements 

over crude pit latrines, which may be avoided due to stench and risk of collapse. Latrines must 

also be carefully located in order to prevent fecal contamination of groundwater. 

2.17.2. Water supply improvement  

Improvement of the water supply at the source is an intuitively appealing intervention, 
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perhaps because it often involves building large tangible objects like wells, water tanks, or 

distribution systems. Provision of a piped connection and tap for each household is ideal but very 

expensive, costing approximately $100 per person just for the initial investment (Hutton & 

Laurence Haller, 2004). If a tap is absent, water must be gathered outside the household and 

stored within the household, where it can be easily recontaminated even if source water quality is 

excellent. A recent comprehensive review (T. Clasen, I. G. Roberts, et al., 2009) found variable 

results among six source-based interventions (improved wells or public taps, not including 

private taps); four studies showed reductions in diarrhea, including an incidence ratio of 0.83 in 

6-23 month olds in a rural Bangladeshi setting and a risk ratio of 0.45 in all ages in a rural 

Chinese setting.

Although water supply improvements commonly improve both the quantity of water 

available to the family as well as its quality, these two improvements have also been studied 

separately. Either alone generally yields similar benefits as both together (Esrey et al., 1991).

Water quantity improvement

Improving the quantity of available water, even if it remains contaminated, can be 

beneficial by facilitating more frequent washing and therefore improved hygiene. Time and labor 

required to gather water indirectly reduce the amount of water available. Basic guidelines for 

disaster response (Sphere Project, 2011) have recommended 15 liters per person per day, with a 

water point < 500 meters from the house, and < 15 minutes waiting time at the water point. 

However, these standards are frequently unmet in developing countries.

Water quality improvement

Improvements in water quality primarily yield benefits through reduced ingestion of 

pathogens in drinking water, although it may also reduce the amount of pathogens introduced 

into food. This may be particularly important if incompletely cooked weaning foods are made 
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with contaminated water (Motarjemi et al., 1993). 

The relationship between measured water quality and diarrhea risk is unclear; although 

presence of common indicators of poor water quality (turbidity, thermotolerant coliforms, high 

heterotrophic plate count) strongly suggest that water is unsafe to drink, the levels of these 

indicators are poorly correlated with the amounts of actual pathogens that are present. 

Furthermore, apparently clean water may still be contaminated with pathogens. A meta-analysis 

of 11 studies measuring E. coli or thermotolerant coliforms found no relationship between 

childhood diarrhea risk and the level of the bacterial indicator (Gundry et al., 2004). 

2.17.3. Hygiene  

Approximately 2 to 6 liters of water are needed daily per person for basic hygiene practices 

(Sphere Project, 2011). The best-studied aspect of hygiene with respect to diarrhea is 

handwashing, although aspects such as diapering and food preparation are also important. 

Handwashing

Failure (or inability due to lack of water) to wash hands provides a route for pathogens to 

be transmitted from person to person, as well as between people and their environment. Curtis 

and Cairncross (2003) describe 9 studies of handwashing in developing countries finding that 0 

to 20% of people (median 13%) washed their hands after defecation or after cleaning a child who 

had defecated. Dirty hands can also introduce bacteria such as pathogenic E. coli into food, 

where they may multiply (Motarjemi et al., 1993), and mothers are usually responsible both for 

cleaning children after defecation and preparing food for the family (V. A. Curtis & Cairncross, 

2003). Handwashing may be particularly important in preventing transmission of highly potent 

pathogens, such as Shigella sp. (Motarjemi et al., 1993). Accordingly, promotion of handwashing 

with soap in developed country daycare facilities has shown significant disease reduction 

(relative risk of approximately 0.5), even though the environment would seem to be much less 
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contaminated than in a developing country setting (V. A. Curtis & Cairncross, 2003).

Handwashing works best when soap is used, which is fortunately inexpensive. Transient 

bacteria are removed equally well by handwashing with ordinary soap and water as with 

antiseptics, and resident bacteria on the skin are relatively unaffected by handwashing with soap 

and water (Lowbury et al., 1964). Diarrheal pathogens contaminating hands would generally be 

transient bacteria. Although antibacterial agents may have residual activity on bacteria that 

remain on the skin following handwashing (Lowbury et al., 1964), one formulation of 

antibacterial soap was no more effective than ordinary soap in preventing diarrhea or pneumonia 

in a Karachi shantytown (Luby et al., 2005). LRVs measured in studies of handwashing are 

found in Table 2.1 (page 64).

Highly variable (relative risk from 1 to about 0.25) effectiveness of handwashing on 

diarrhea has been reported in a meta-analysis of 20 studies of various age groups, both 

observational and intervention-based (V. A. Curtis & Cairncross, 2003). Overall, the relative risk 

of diarrheal incidence was 0.57, although many studies were of poor quality.

A meta-analysis (Ejemot et al., 2008) considered five community-based, randomized, 

controlled intervention trials of hygiene education that included handwashing; an overall 

incidence rate ratio of 0.68 was estimated. This measure was consistent across studies of young 

children as well as children aged less than 15 years.

Despite the usefulness of handwashing in preventing diarrhea and other diseases, 

perpetuating good handwashing behavior remains a challenge. A 53% reduction in longitudinal 

prevalence of diarrhea effectiveness due to handwashing was estimated in squatter settlements in 

Karachi (Luby et al., 2006). However, no effectiveness was seen against childhood diarrhea 

during a ~13 month followup period that began 18 months after the earlier study concluded 

(Luby et al., 2009). Although intervention households were more likely to have a place to wash 

53



their hands and were more likely to demonstrate better handwashing technique, there was little 

difference in longitudinal prevalence of diarrhea between intervention and control households. 

Furthermore, intervention and control households had similar spending on soap and were equally 

likely to have soap in the house. The authors suggest that frequent reinforcement of handwashing 

behavior may be necessary for sustainability; although continued home visits would be 

prohibitively expensive, mass media messages might be helpful. However, the similarities in 

purchasing and having soap between the intervention and control groups indicate that the price of 

soap may be a barrier to sustaining effective handwashing behavior. 

Even if water and soap are available, good handwashing practices are uncommon. In 11 

developing countries, handwashing with water after defecation was only observed in 45% of 

caregivers, and just 17% used soap (V. A. Curtis et al., 2009). Handwashing is largely habit-

driven, meaning an unplanned reaction to something in the environment, such as touching 

something unclean (V. A. Curtis et al., 2009). Since habits are largely acquired in childhood, 

changing handwashing behavior in a community might require many years; once a community 

improves handwashing, it can be very stable over time, because conforming to social norms is a 

powerful influence on behavior. However, if the social norm is lack of handwashing, as it is in 

many areas, this impedes improvement of handwashing behavior; increased promotion via 

broadcast media or visual cues like posters may help redefine social norms while providing cues 

that reinforce habits (V. A. Curtis et al., 2009).

Diapering and open defecation

Fecal contamination around the home has repeatedly been linked to increased diarrheal 

disease risk (V. A. Curtis et al., 2000), although this relationship disappeared in a study in 

Myanmar when adjusted for education and socioeconomic status (Han & K. Moe, 1990). 

Latrines do not necessarily remove all fecal contamination, and diarrhea reductions attributed to 
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latrines are likely due to removing stools from the environment (V. A. Curtis et al., 2000). Many 

cultures do not consider infant stools to be hazardous (Motarjemi et al., 1993), and diapering was 

associated with absence of diarrheal illness in children under two years of age in a case-control 

study in Nicaragua (Gorter et al., 1998). 

Even if diapers or potties are available, feces may still enter the environment if they are not 

properly disposed of, such as in a latrine. Yeager et al. (1999) describe conditions in a dry 

shantytown area of Peru. Potty-training can be a long and difficult process, during which 

defecation in clothes or on the ground is common (Yeager et al., 1999). Even if child feces are 

noticed on the floor or near the house, the mother is often too busy to dispose of them 

immediately, and disposal in places such as the garbage dump or the street is common; 

nonetheless, feces in potties are more likely to be disposed of, and even incomplete disposal may 

be helpful (Yeager et al., 1999). Effective potty-training may therefore yield important reductions 

in fecal contamination of the environment.

Anal cleansing

Few published scientific papers have studied anal cleansing. Effective soft materials 

similar to toilet paper may be unaffordable or scarce, which can lead to increased exposure to 

feces (McMahon et al., 2011). Focus groups of Kenyan schoolchildren reported lack of 

instruction from their parents and teachers regarding proper anal cleansing, and parents did not 

perceive the benefits of toilet paper as worth the cost (McMahon et al., 2011). A study of school 

toilets and hygiene in Colombia suggested that simply providing toilet paper, towels, and soap 

could be an important method for preventing diarrhea, since that composite factor was associated 

with more cases of diarrhea than the number of toilets available (Koopman, 1978).

Food preparation

Diarrheal risk substantially increases following 6 months of age, when infants who were 
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exclusively (or mostly) breastfed begin consuming weaning foods, which are often more heavily 

contaminated than other foods eaten by the family (Motarjemi et al., 1993). Weaning foods are 

often thin porridges which are not thoroughly heated since long cooking makes a porridge that is 

too thick for infants, and organisms such as Bacillus cereus and pathogenic E. coli can multiply 

in such foods at ambient temperature (Motarjemi et al., 1993). The necessity of feeding infants 

several times per day means that food may be prepared in advance and stored at ambient 

temperature to save time (Motarjemi et al., 1993). Storage of hot food in vacuum flasks (which 

are durable and relatively inexpensive) reduces the rate of cooling, allowing food to be stored 

safely for up to 12 hours (Mensah & A. Tomkins, 2003). 

Certain traditional grain food preparations that are fermented with lactobacilli can limit 

growth of, or actually kill, pathogenic bacteria, principally through the creation of acidic 

conditions (pH 3.5 to 4.5) (Adams & Nicolaides, 1997). Production of other compounds, such as 

bacteriocins (polypeptide ‘antimicrobials’), hydrogen peroxide, and CO2, may also aid pathogen 

inhibition (Adams & Nicolaides, 1997). It is unclear to what extent fermentation inactivates 

viruses; based on limited research, rotavirus appears to persist in fermented foods (Mensah & A. 

Tomkins, 2003).

Fly control

Although measures such as insecticide treatment can yield reductions in diarrheal illness 

due to fly killing, such interventions are not likely to be sustainable (V. A. Curtis et al., 2000). 

Sanitation interventions are probably more effective, since they remove feces from the 

environment, preventing flies from accessing them (V. A. Curtis et al., 2000).

2.17.4. Household water treatment (HWT), or point-of-use (POU) technology  

This is a particularly active area of investigation. Since HWT can be carried out by 
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individual families, it can be effective even if infrastructure or community cooperation is limited. 

Water is frequently collected outside the home and stored in the home, and even if the source 

water is perfectly clean, the stored water may become contaminated when things fall into it, or 

when dirty hands or cups are placed in it (A. J. Pickering et al., 2010). HWT can therefore be 

more effective than interventions at the water source (T. F. Clasen et al., 2006). HWT can also be 

implemented far more cheaply per person than more infrastructure-intensive interventions like 

latrines and wells (Hutton 2004). Although HWT seems appealing, it can require substantial 

behavioral change or monetary investment, which impede sustainability. There are several 

different methodologies, which are described below. LRVs for various HWT methods are given 

in Table 2.1, and antimicrobial standards for HWT are given in Table 2.2.

Safe storage

Safe storage refers to use of a storage container that does not allow anything to touch the 

water inside, preventing recontamination. This commonly takes the form of a vessel with a 

covered top (or a narrow neck) and a spigot at the bottom. It is often combined with other HWT 

methods.

A less expensive alternative to safe storage is the ‘two-cup method’, which attempts to 

prevent contamination of stored water by using a single, clean, cup which is supposed to be the 

only object that touches the stored water. Water is decanted from the storage vessel with the cup 

and then poured into another cup to drink. However, it may be difficult (or impossible) to ensure 

that the cup remains clean, or to prevent other objects from entering the water.

Boiling

Boiling is the most widely used HWT method, and it is the only method that can reliably 

destroy all pathogens (T. Clasen, 2009). However, it requires fuel, which is frequently expensive 

or unavailable. Depending on how it is used, boiled water may require cooling, which is time-
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consuming. Stored boiled water is also subject to recontamination in the household.

Solar disinfection (SODIS)

Solar disinfection is accomplished by filling clear 1 to 2 liter polyethylene terephthalate 

(PET) bottles with water and placing them in the sun for at least 5 hours, or for two days under 

cloudy conditions (EAWAG, 2004). Oxygenating the water (e.g., by shaking the bottles) 

increases effectiveness (EAWAG, 2004). The method is primarily suited for treating drinking 

water; it is difficult to produce enough water by SODIS for washing or other purposes (EAWAG, 

2004). Pathogens in the water are inactivated by a combination of heating and irradiation by 

ultraviolet A (UV-A). Relatively clear water of <30 NTU is recommended for irradiation to be 

effective (EAWAG, 2004); nonetheless, highly turbid water (>300 NTU) can still be made safer 

by SODIS due to solar heating of the water.

Simply heating water using solar energy, for example in a solar cooker or using black or 

metal vessels, is a similar method to SODIS. Under sunny conditions temperatures over 60°C 

can be attained, which essentially pasteurizes the water, inactivating most microorganisms 

(Sobsey, 2002). Even if a solar cooker is used, at least three hours in full sun is required to 

inactivate 99% of viruses in 3.8 L of water (Sobsey, 2002).

Disadvantages of these methods include the substantial time and effort needed to fill 

bottles and place them in the sun, as well as having to wait for several hours for the method to 

work. The method is much less effective on cloudy days.

Although some community trials have shown effectiveness of SODIS in reducing 

diarrhea(T. Clasen, I. G. Roberts, et al., 2009; A. Rose et al., 2006), a recent community-

randomized trial in rural Bolivia (Mäusezahl et al., 2009) found no effect of SODIS on diarrhea 

incidence, longitudinal prevalence, severe diarrhea, or dysentery, despite provision of bottles and 

repeated educational sessions demonstrating the method. However, the study was only powered 
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to detect a 33% reduction in diarrhea incidence, and the communities lacked sanitation, so other 

infection pathways remained open and may have swamped any effect of SODIS. Furthermore, 

only about 32% of intervention households were observed to be using SODIS on any given day, 

and its use tended to be lower during the cultivation season when families were busy. These 

observations highlight the difficulty of implementing SODIS sustainably.

Chlorination

Chlorination can be performed in the home by adding sodium hypochlorite (household 

bleach) to water (attaining about 5 mg/L free residual chlorine) (Centre for Affordable Water and 

Sanitation Technology, 2008), shaking the container to mix the water, and letting it stand for 30 

minutes. This will kill most microorganisms, although Cryptosporidium is a common pathogen 

that is resistant. Commercial bleach may be used, or a custom solution may be produced and 

sold. Such a solution usually corresponds to one capful of solution for the particular size of 

storage vessel that is common in the community; the solution bottles are custom-designed to 

accomplish this. Increasing the pH of the solution above 11.9 with NaOH lengthens the shelf life 

to 12-18 months, though it should be used within 60 days of opening (Lantagne & Gallo, 2008). 

A double dose of hypochlorite solution is often recommended if the water is turbid (Lantagne & 

Gallo, 2008), although this may increase the risk of exposure to carcinogenic disinfection 

byproducts from the reaction of hypochlorite with organic material in the water. Chlorination is 

sometimes combined with a flocculant (e.g., PuR packets) which facilitates settling of particulate 

matter, improving its appearance and aiding removal of pathogens. Certain plants such as 

Moringa oleifera and Opuntia species can also provide flocculants (S. M. Miller et al., 2008). 

Some people find the taste of chlorinated water unappealing, although properly treated water 

should not taste strongly of chlorine. CDC’s Safe Water System (SWS) combines chlorination 

with safe storage (Lantagne & Gallo, 2008). Devices containing polymer beads that bind 

59



chlorine or bromine and release it into contaminated water are more expensive than adding 

chlorine solution to water, but may be easier to use because they do not require measurement of a 

dose; furthermore, bromine has a milder taste than chlorine (Dunk, 2007). Such devices are 

effective at inactivating bacteria and bacteriophages (McLennan et al., 2009; Coulliette et al., 

2010).

In a meta-analysis of the effectiveness of HWT chlorination against childhood diarrhea, a 

pooled relative risk estimate of 0.71 (0.56-0.89) was determined for children under five years of 

age (B. F. Arnold & Colford, 2007). Three studies in urban or peri-urban areas showed a larger 

risk reduction (0.63: 0.50-0.80) than the 5 rural studies (0.89: 0.71-1.13). However, the trials 

were not carried out over multiple years (the longest one covered 87 weeks), and longer trials 

appeared to show lower effectiveness (although this trend was nonsignificant), raising questions 

about sustainability. 

Recurring costs and interruption in chlorine supply are major obstacles to sustainability of 

HWT chlorination. For example, in Malawi, where a chlorination solution (WaterGuard) has 

been marketed nationwide, 64% of a nationwide sample (Stockman et al., 2007) of mothers had 

heard of the solution, and 12% of those said they were currently using it. Among mothers who 

had used WaterGuard in the past but were not using it at the time of the survey, 39% said that 

they couldn’t afford it and 34% said that it was “currently unavailable”. The price of WaterGuard 

was about $0.08 for one month’s supply. Even if rural families are willing to pay for chlorination 

solution, distance (or the cost of transportation) may make it impossible for them to obtain it.

Filtration

The two major types of filters are ceramic filters and sand filters. They are relatively 

expensive (initial cost of $20 or more) (Sobsey et al., 2008) and require frequent maintenance. 

Ceramic filters need to be scrubbed to remove trapped material that slows flow through the filter; 
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sand filters require cleaning of the upper layer of sand to remove sediment and improve water 

flow through the filter. Filtration trials have shown relative risks for diarrhea of about 0.4 when 

comparing households with filters to those without (Sobsey et al., 2008; T. Clasen, I. G. Roberts, 

et al., 2009).  Ceramic filters appear more effective at removing bacterial and protozoan 

pathogens from drinking water than biosand filters (Sobsey et al., 2008). Filters have the 

important advantage of improving the appearance (and often the taste) of the treated water. 

Chlorination may also be used on stored filtered water to further improve disinfection and 

prevent recontamination.

Biosand filters

The biosand filter (BSF) is a recent improvement on older slow sand filter designs. It 

consists of a tall bucket containing a layer of gravel with several feet of sand atop it. The outlet 

pipe originates at the bottom of the filter (in the gravel layer), and the mouth of the pipe (where 

filtered water exits) is slightly higher than the top of the sand layer. This ensures that the entire 

filter column remains wet, allowing an aerobic biofilm to establish itself near the top of the sand. 

The biofilm is believed to enhance deactivation of pathogens (Manz, 2009); this is consistent 

with results showing increasing deactivation of pathogens (including some viruses) while the 

filter ‘matures’ over several weeks (Elliott et al., 2008), but could also be explained by increased 

residence time in the filter due to decreased flow rate as pores close over time (Elliott et al., 

2008). Inactivation is drastically lowered (by 1-3 LRV of E. coli) if the amount of water passed 

through it daily exceeds its pore volume (Elliott et al., 2008). Although BSFs can often be 

constructed in developing-country communities according to instructions that are freely 

available, manufacture of properly functioning BSFs requires great attention to detail and 

consideration of local conditions (e.g., the characteristics of the sand/gravel available, quality of 

cement/concrete, etc.) (Manz, 2007). Although BSFs can produce water on demand, a separate 
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container is usually needed to store filtered water (Manz 2007), which is subject to 

recontamination if not stored safely.

Ceramic filters

Ideally, ceramic filters have pores that are too small (about 0.2 μm) to allow most bacteria 

and protozoa to pass through, although they cannot block viruses (Joe Brown et al., 2007). They 

can sometimes be made out of local materials, though quality control can be challenging (Sobsey 

et al., 2008). The filters need to be cleaned, and cracks in the filter reduce (or eliminate) its 

effectiveness. The two main ceramic filter designs are ‘pot’ (a large ceramic pot-shaped filter 

nested inside another vessel that captures the filtered water) and ‘candle’ (a cylindrical filter, 

often used inside a plastic receptacle to capture filtered water).

An evaluation of a program to produce, distribute, and promote ceramic pot filters in 

Cambodia (Joe Brown et al., 2007) showed that the number of filters in use decreased linearly 

over time, with about half of 506 households still using the filter after 24 months. Breakage 

accounted for 65% of the disused filters, so replacement filters must be purchased frequently 

(they cost $2.50 to $4.00 to produce). 

A pilot project in a small Bolivian community (T. F. Clasen et al., 2006) evaluating 

imported candle filters indicated that they were effective in reducing diarrhea, but identified 

several problems: many users reported inadequate quantity or flow of water, replacement filters 

were unavailable, and approximately 8% of the filters were broken 9 months after they were 

provided. 

Advanced filter technologies

Nanofilters with a pore size small enough to remove viruses have also been built into HWT 

devices for use in developing countries (T. Clasen, Naranjo, et al., 2009; Boisson et al., 2010). 

Such filters require advanced manufacturing techniques and cannot be produced locally like 
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ceramic pot filters. However, they are effective at removing pathogens, and in general should 

perform comparably to ceramic filters against bacteria and protozoa, while removing more 

viruses than ceramic filters. 
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Table 2.1. Log10 reduction values (LRVs) for various interventions

Laboratory* Actual community*

Intervention
Bact-
erial

Viral
Proto-
zoan

Bact-
erial

Viral
Proto-
zoan

Citations Notes

HWT 
chlorination

6+ 6+ 5+ 3 3 3
(Sobsey et al., 
2008)

Cryptosporid-
ium resists Cl; 
LRV doesn't 
apply to it.

HWT 
coagulation & 
chlorination 
(PUR® 
sachets)

9 6 5 7 2-4.5 3
(Sobsey et al., 
2008)

Chlorinated 
polymer beads 
(HaloPure®)

6 3
(McLennan et al., 
2009; Coulliette 
et al., 2010)

3 LRVs against 
Clostridium.

Brominated 
polymer beads 
(HaloPure®)

6 5
(McLennan et al., 
2009; Coulliette 
et al., 2010)

3 LRVs against 
Clostridium.

Ceramic 
filtration

6 4 6 2 0.5 4
(Sobsey et al., 
2008)

Biosand 
filtration

3 3 4 1 0.5 2
(Sobsey et al., 
2008)

Sari filtration 
(4 layers of 
ordinary cloth)

2 (Huq et al., 1996)
V. cholerae 
attached to 
particulates.

Nanofiltration 
(LifeStraw 
Family®)

6 4 3
(T. Clasen, 
Naranjo, et al., 
2009)

Pore size of 20 
nm.

Solar 
disinfection 
(SODIS)

5.5+ 4+ 3+ 3 2 1
(Sobsey et al., 
2008)

Handwashing 
with soap

3 0.5
(Lowbury et al., 
1964; Luby et al., 
2001)

Handwashing 
without soap

1 1 0.3

(Ansari et al., 
1989; A. J. 
Pickering et al., 
2011)

*LRVs are commonly higher in the laboratory (careful implementation and maintenance) 
compared with actual communities (might be improperly used or poorly maintained).
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Table 2.2. Log10 reduction values: standards for household water treatment (HWT)

Standard
Bact-
erial

Viral
Proto-
zoan

Citation

WHO 'highly protective' target 4+ 5+ 4+ (Sobsey & Joe Brown, 2011)

WHO 'protective' target 2+ 3+ 2+ (Sobsey & Joe Brown, 2011)

WHO 'interim' target
Meets 2/3 of 

'protective' targets 
above.

(Sobsey & Joe Brown, 2011)

USEPA HWT standard 6+ 4+ 3+ (USEPA, 1987)

USEPA primary drinking water 
standard for treatment facilities

* 4+ 3+† (USEPA, 2012)

*<500 colonies on heterotrophic plate count; ≤5% positive samples for total coliforms monthly.
†LRV of 2+ for Cryptosporidium.

Recent controversy surrounding HWT

Three recent reviews (Schmidt & Cairncross, 2009; Waddington et al., 2009; Hunter, 2009) 

have questioned whether there is really enough evidence to warrant widespread promotion and 

scaling up of HWT, despite substantial investment by WHO, the Gates Foundation, and others to 

expand it (Schmidt & Cairncross, 2009). WHO has referred to chlorination and safe storage as 

“consistently the most cost-effective” water, sanitation, and hygiene intervention (World Health 

Organization, 2002). However, Schmidt and Cairncross (Schmidt & Cairncross, 2009) argue that 

the decision of whether to promote HWT primarily rests upon demonstration of a health effect, 

since other benefits from HWT are small and the scalability and acceptability (which are critical 

to sustainability) of HWT remain unclear. The health effect is difficult to establish because 

results from trials vary greatly, and publication bias may be a large problem, particularly 

regarding smaller trials (Hunter, 2009). These reviews also conclude that the published health 

effect estimates attributed to HWT might be wholly explained by bias (reporter or observer), 

since it is difficult or impossible to blind studies of HWT interventions. They therefore call for 
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larger, long-term, blinded studies to be carried out to establish whether beneficial health effects 

truly exist, before making large investments in expansion of these interventions.

Hunter’s recent review (Hunter, 2009) also showed that intervention effectiveness was 

lower among studies with longer follow-up; similar findings have been reported (B. F. Arnold & 

Colford, 2007) regarding household water chlorination. This suggests difficulty with 

sustainability. However, other explanations might include declining of reporting bias over time or 

by a tendency for longer-term studies to be better designed and therefore less subject to bias. 

Hunter’s analysis (Hunter, 2009) also shows that effect sizes shown in most HWT trials over 

longer periods are roughly within the range that might be explained by bias in unblinded studies 

with subjective outcomes (risk ratio of ~ 0.7) (L. Wood et al., 2008). Ceramic filtration is a 

notable exception, showing substantial reductions in diarrhea even in long-term trials (risk ratio 

of 0.44, 95% CI 0.28 to 0.70) (Hunter, 2009). However, Wood’s (L. Wood et al., 2008) 

quantification of bias due to lack of blinding drew on a widely varying set of clinical trials, 

nearly all of which were drug trials or therapeutic intervention trials. However, there seems little 

reason to believe that HWT trials would be any less susceptible than drug trials to bias due to 

lack of blinding.

These assertions have been contested by several noted researchers in the HWT field, who 

want current HWT promotion efforts to continue even while additional needed research is carried 

out (T. Clasen, Bartram, et al., 2009). Patterns of publication suggesting publication bias in HWT 

have been noted elsewhere, but have been interpreted as possibly being caused by trials of 

different methods in drastically differing settings (T. Clasen, I. G. Roberts, et al., 2009).

2.17.5. Other interventions  

Many other important methods are available to mitigate the impact of diarrheal disease, 

such as: nutritional interventions (e.g., encouragement of breastfeeding, zinc supplementation); 
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vaccination against rotavirus; and treatment methods (particularly oral rehydration solutions). 

However, these interventions are not directly addressed in the research described in chapters 3, 4, 

and 5 of this dissertation. The reader may refer to page 235 in the appendices for a discussion of 

these methods. 

2.17.6. Gaps in knowledge about diarrheal disease interventions  

There is relatively little information about real-world effectiveness of interventions outside 

of field trials, and high-quality field trials lasting for a year or more are scarce. Use of an 

intervention may decline as equipment or infrastructure deteriorate and outside encouragement 

of healthy behaviors decreases. People may also forget how to apply the intervention effectively. 

This is difficult to investigate because the same communities must be studied over many years. 

Intervention trials commonly consider diarrhea as the outcome, without regard to etiology. 

Given the differing characteristics of common diarrheal pathogens, it is likely that interventions 

will affect different pathogens in distinct ways. The relative abundances of different pathogens in 

different areas may therefore affect intervention effectiveness, as well as the interactions of 

interventions with each other. However, information concerning antimicrobial effectiveness of 

some interventions (particularly HWT methods) is available (Table 2.1, page 64).

The effectivenesses of interventions are likely to differ depending on a community's level 

of development, because improvements in sanitation, water supply, or hygiene in an area are 

likely to restrict certain routes that pathogens travel in that community. Therefore, an 

intervention might prevent a smaller or larger fraction of disease depending on the interventions 

that have preceded it (Briscoe, 1984; VanDerslice & Briscoe, 1995). Existing intervention 

effectiveness estimates from field trials are likely to be incomplete because they do not take into 

account previous interventions (or protective characteristics) that are impacting the community at 

the time of the study. Effectiveness studies should carefully describe the status of the community 
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in detail before the intervention took place, in order to place the resulting effectiveness estimates 

in the context of the community. This would yield a large number of effectiveness estimates 

narrowly defined to particular settings. Although they would be difficult to summarize, they 

would be useful for validating diarrheal transmission models and the effect of interventions on 

the transmission network.

2.18. Infection transmission modeling and its application to diarrheal disease

Classical epidemiological methods (e.g., regression analysis of risk factors associated with 

a particular health outcome) are powerful within certain contexts, such as determining factors 

associated with illness in a point-source outbreak of disease. However, these methods often 

incorporate inappropriate assumptions with respect to infectious disease transmission. For 

example, classical statistical methods often assume that outcomes experienced by different 

individuals are independent (i.e., are not influenced by other individuals). This is clearly violated 

when pathogens are passed from person to person (Koopman, 2004). Modeling allows 

formalization of relationships between individuals, as well as between individuals and their 

environment, avoiding the false assumption of independence.

Models of infectious disease transmission have been used to guide public health efforts, 

particularly with regard to choosing among different control strategies. These include polio 

eradication by vaccination (K. M. Thompson et al., 2006), smallpox preparedness planning 

(Keeling & Rohani, 2008), and slowing pandemic influenza spread (Cooper et al., 2006). 

However, modeling methods have seldom been applied to common childhood diarrhea in 

developing countries (but see Eisenberg et al., 2007), despite the magnitude of the problem. 

2.18.1. Types of models  

In general, models attempt to represent the behavior of a real system in a simplified fashion 

according to a defined set of criteria. Models and simulations are used in many disciplines and 
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the nomenclature can be confusing and inconsistent. The general classification in Table 2.3 is 

based on Haefner (2005) with some modifications:

Table 2.3. Terms commonly used to describe or categorize models

Model descriptor Key question Notes

Mechanistic (yes)
Empirical (no)

Does the model explicitly include 
the inner workings of the system 
being studied?

Empirical models are sometimes 
called descriptive or 
phenomenological models, and often 
constitute simple equations.

Dynamic (yes)
Static (no)

Does the modeled system change 
over time?

Continuous (yes)
Discrete (no)

Is time (or other quantities of 
interest, e.g., population size) 
measured continuously?

Systems of differential equations 
usually describe time continuously, 
while a system of difference 
equations could measure time as a 
discrete integer number of days.

Spatially 
heterogeneous (yes)
Spatially 
homogeneous (no)

Are spatial relationships explicitly 
represented?

A spatially heterogeneous model must 
also represent space in a continuous 
or a discrete manner (discrete space is 
divided into cells or zones).

Stochastic (yes)
Deterministic (no)

Are random events included?

Models based on matrices of 
probabilities (Markov chain models) 
are sometimes called stochastic 
models because they track expected 
long-run behavior of systems where 
behavior of individual units is 
uncertain, even if they do not directly 
incorporate random events.

Model descriptor Definition Notes

Compartmental
Quantities (e.g., pathogens, water) 
flow between storage 
compartments (e.g, people, tanks).

Commonly used in models of 
infection transmission.

Agent-based

The model represents discrete 
units whose characteristics 
change; relationships between 
these units are explicitly defined.

Also called individual-based models.

Network

Describes links between units 
('nodes'); e.g., person A might 
contact persons B & C, but B & C 
do not contact each other directly.
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Any model will incorporate some combination of the characteristics described in Table 2.3. 

Examples might be a mechanistic dynamic discrete-time spatially homogeneous deterministic 

model, or a mechanistic dynamic continuous-time discrete-space stochastic model. A larger 

model might also contain a sub-model of a different type. An advantage of mechanistic models is 

their ability to explicitly describe interdependence between individuals and groups. The ability to 

represent nonlinearities, such as feedback loops, is an important feature as well. 

2.18.2. Model verification and validation  

Any model must be carefully verified. Model verification means ascertaining that the 

model does what its designer intends; i.e., there are no bugs in the algorithm/program (Haefner, 

2005). This is separate from whether the designer's intentions are ill-informed or mistaken. Once 

the model has been verified, validation statistically compares the behavior of the model to real 

systems to assess whether the model can explain or predict the behavior of those systems 

(Haefner, 2005). Thorough validation thus requires detailed data collected by carefully designed 

experimental or observational studies. 

Although model validation may be possible for very simple systems, it is probably 

impossible to thoroughly validate a model of a complex or complicated system (Oreskes et al., 

1994). It is unlikely that we can observe everything of importance within a system; furthermore, 

any measurement we make of a system contains error (Oreskes et al., 1994). Many aspects of 

diarrheal infections are poorly understood; for example, although we know that malnutrition and 

diarrhea exacerbate each other, we do not know exactly how, the mechanism is likely to vary 

depending on the particular pathogen, and it is unclear how much diarrhea is attributable to 

particular pathogens in particular communities. Nonetheless, models of complex, poorly-

understood systems can still provide insight about how the real systems operate, and models can 

always be tested to determine whether they approximate certain essential features of the system; 
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this might be termed 'weak validation' or 'confirmation'. However, confirmation does not 

necessarily mean the model accurately reflects the workings of the real system; further 

investigation of the system might reveal inconsistencies (Oreskes et al., 1994).

Although models have limitations (as do all forms of human knowledge), constructing and 

assessing them remains useful because they allow us to formalize available knowledge and apply 

it to understanding and addressing problems. The process of model building often provides 

guidance about the kind of information that needs to be gathered by studies in order to more fully 

understand the system. This can occur even if scant data are available for validating or 

confirming the model. Modeling is a process that attempts to improve understanding of a 

complex system through rigorous description of the system's characteristics and their 

interrelationships, followed by comparison of the model against reality, followed by revision of 

the model, and so on in a repeating cycle. Analysis of the model and its results may suggest 

experiments that could allow more rigorous validation, or provide information to improve the 

structure of the model (e.g., by carefully measuring a particular value that greatly alters the 

results of the model).

2.19. Modeling transmission of diarrheal infections

Infection transmission models are typically dynamic models, describing the behavior of a 

system of susceptible and infected hosts over time. They explicitly describe changes in 

transmission depending on the number of people that are infectious. These models are commonly 

represented by box-and-arrow diagrams, in which boxes (sometimes called 'compartments') 

represent a 'stock' and solid arrows represent a 'flow'. For example, the classic SIR (Susceptible – 

Infectious – Removed) model (Keeling & Rohani, 2008) represents hosts (e.g., people) flowing 

in and out of 'susceptible', 'infectious', and 'removed' stocks, where 'removed' could mean 

immunity or death (Figure 2.5). 
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Figure 2.5. Schematic of the Susceptible-Infectious-Removed (SIR) model

Solid arrows represent hosts flowing between stocks (which represent infection states); dashed 
arrows represent the influence of a stock upon a flow. Red and blue arrows represent infection 
and recovery, respectively. All letters represent terms in equation 2.1 below. Modified from 
Keeling and Rohani, 2008.

2.19.1. Simple mathematical example of a transmission model  

Simple infection transmission models can be described deterministically by systems of 

differential equations, where the rate of change of the number of persons in a particular stock is 

described using first-order rates of individuals entering or leaving the stock. For example, in the 

SIR model (Figure 2.5), S, I, and R represent the proportion of the population in the susceptible, 

infectious, or immune stocks at any given time (thus, the three stocks sum to 1) (Keeling & 

Rohani, 2008):

dS/dt = -βSI dI/dt = βSI – γI dR/dt = γI (2.1)

Transmission is often described by a parameter (β) that indicates how likely it is for a 

contact between an infected and uninfected person to result in a new infection. Assuming that 

every member of the population is equally likely to contact every other member, the product of S 

and I is proportional to the number of possible contacts where an infectious person can infect a 

susceptible person. The rate of recovery (γ) is the reciprocal of the infectious period and governs 

the recovery of infected people (i.e., the rate of their movement from I to R). The SIR model 
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structure can be modified to represent many different systems, e.g.: susceptible or infected (SI) if 

immunity is not an issue; susceptible, exposed, infected, or removed (SEIR) where the ‘exposed’ 

state accounts for the incubation period, etc. 

The basic reproduction ratio, R0, is a particularly important concept in infection 

transmission modeling. It is the average number of individuals that an infected individual 

directly infects if it enters a completely susceptible population (Anderson & May, 1991). The 

infection must die out if R0 is less than 1, because the pathogen would not replace itself 

(Anderson & May, 1991). Since populations are seldom completely susceptible, an R0 

substantially greater than 1 might be necessary for the disease to remain endemic in a population. 

The general concept of R0 can also be applied to subpopulations within a larger population, 

describing the number of new infections in one subgroup due to transmission from one other 

subgroup (M. G. Roberts & Heesterbeek, 2003). Epidemics may still occur if R0 is < 1 at the 

community level if conditions become favorable for transmission within some subgroup, 

effectively establishing a local R0 > 1; this can be simulated in stochastic models (Halloran et al., 

2002). Stochastic models can also allow random extinction of the disease in the population, 

rendering the population disease-free unless the pathogen is reintroduced.

2.19.2. Environmental infection transmission models  

The SIR model and related models described above assume that pathogens are only 

transmitted through person-to-person contact. However, many pathogens remain viable in the 

environment, and can be transmitted between hosts in many ways (e.g., food, water, or fomites). 

Mechanistic models describing the transmission of pathogens through the environment and their 

effects on hosts are called environmental infection transmission systems (EITS) models (Li et al., 

2009). These models facilitate the simulation of disease prevention interventions because they 
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explicitly represent the numbers of pathogens in the system, which can then be directly modified 

by an intervention. The action of an intervention to reduce a particular flow of pathogens reduces 

risk to the people who ingest the pathogens. A simple EITS model that could represent 

transmission of diarrheal infections can be created (Figure 2.6) from the SIR model described 

previously (Figure 2.5), by adding an 'environment' compartment that describes pathogens in the 

environment; infectious hosts release pathogens, which can be picked up by other hosts. Since 

diarrheal infections seldom confer complete immunity, the 'removed' compartment has been 

removed. Note that the two blue stocks represent susceptible or infectious hosts, and the yellow 

environment stock represents pathogens. The number of pathogens in the environment stock 

influences the rate by which susceptible hosts become infectious.

Figure 2.6. Simple environmental infection transmission system model

Solid arrows represent hosts or 
pathogens flowing between stocks (S 
and I represent susceptible and infected 
hosts; E represents pathogens in the 
environment); dashed arrows represent 
the influence of a stock upon a flow. Red,  
blue, magenta, and grey arrows 
represent infection, recovery, pathogen 
shedding, and pathogen inactivation, 
respectively. All letters represent terms 
in equation 2.2 below. Modified from Li 
et al., 2009.

The EITS model in Figure 2.6 is represented mathematically as follows (modified from Li 

et al., 2009):
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dS/dt = -piSE + γI dI/dt = piSE – γI dE/dt = sI – mE (2.2)

As in the SIR model, γ is the rate of recovery of infectious people, although in this model they 

become susceptible again instead of becoming 'removed'. The rate of shedding into the 

environment (pathogens per infectious host per day) is represented by s; the inactivation rate of 

pathogens in the environment is represented by m; the pickup rate of pathogens by susceptible 

people is p; and the probability of infection per pathogen is i. Interventions to reduce 

transmission could be simulated by increasing m, or by reducing p. This EITS model is highly 

simplified; it can be made more realistic by using quantitative microbial risk assessment 

(QMRA) techniques to represent the relationship between environmental pathogens and 

infection.

2.19.3. Quantitative microbial risk assessment (QMRA) models  

QMRA models are a widely used method for understanding the risk of disease (Haas et al., 

1999). Typically, these models use an exposure step to estimate the dose of pathogens ingested, 

followed by a dose response step in which the mean dose of pathogens entering the host is 

translated into a probability of infection (or illness, or death) by a dose response equation. These 

equations (often called dose response models) assume that a single pathogen has some 

probability of causing infection; several possible equations exist, and the most commonly used 

are the exponential equation and the beta-Poisson equation (Haas et al., 1999). The parameters of 

dose response equations are determined by fitting them to data from experimental studies in 

which hosts (sometimes humans) are given differing doses of pathogens by a particular route 

(e.g., oral, inhaled, or parenteral), and the proportion of hosts who become infected or diseased 

by each dose are recorded. However, it is unclear whether these dose-response relationships 

apply to (possibly malnourished or ill) children, or to developing country settings. For ethical 

reasons, dose response studies in humans must include only healthy volunteers, who are nearly 
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always adults. Although some live attenuated rotavirus vaccine trials with healthy children have 

provided dose response data (Vesikari et al., 1985; Pichichero et al., 1990), the vaccine strains of 

these pathogens probably behave differently than wild-type pathogens. It is not clear (and 

perhaps unknowable) how dose response equations might differ in malnourished (or otherwise 

unhealthy) children.

QMRA models are often relatively simple to construct and use (e.g., in an Excel 

spreadsheet). However, they cannot fully describe secondary transmission of infection, such as 

when a person who becomes infected from the initial exposure passes the infection to additional 

people. Therefore, they are particularly good for describing risk from exposures to pathogens 

where secondary transmission of infection to additional uninfected people is low. QMRA models 

can describe a static response to a particular dose in a particular population, or they can 

dynamically describe changes in risk with changing exposure over time. QMRA techniques can 

also be used as components of infection transmission models incorporating transmission of 

pathogens through the environment.

2.20. Conceptual model of diarrheal disease transmission

Diarrheal disease is characterized by diverse, simultaneous, interdependent modes of 

transmission that differ among many different organisms. This makes it a challenging syndrome 

to model compared to other infectious diseases. Transmission routes for diarrheal infections can 

be described by using stocks to represent pathogens moving between different locations. A good 

starting point for this is the ‘F-diagram’ (V. A. Curtis et al., 2000) shown earlier (Figure 2.4, page 

49). The F-diagram can be expanded to more faithfully represent the complexities of 

transmission and control points for interventions (Figure 2.7). The boxes in each diagram 

represent stocks of pathogens, and the arrows represent flow of pathogens between them. Stocks 

marked with a + denote areas where some pathogens can multiply. Colored lines indicate where 
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interventions remove pathogens, limiting transmission to new hosts. These lines are broken 

because no intervention can always inactivate all pathogens using any particular route.

Figure 2.7 shows that diarrheal infections are transmitted in a variety of complicated ways. 

An EITS model with so much detail would be extremely difficult to construct and interpret. 

However, the diagram remains useful for considering which routes to include or omit from the 

model, and it was used to guide construction of the EITS model described in chapter 5 of this 

dissertation.

2.21. Theoretical issues regarding interventions

When an intervention is applied to a disease transmission system, it has a direct effect on 
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Figure 2.7. Expanded diagram of diarrheal pathogen transmission

The symbol '+' denotes places where some pathogens might multiply. HWT: household water 
treatment. Produced by the author, using V. A. Curtis et al. 2000 as a starting point (see Figure 
2.4, page 49).



the individual receiving it by reducing their risk of disease. In addition, it has an indirect effect 

on individuals not receiving the intervention by reducing disease transmission within the 

community. This has been clearly described (Halloran et al., 2002) from the point of view of 

communities Y and N, in which some community Y residents are immunized, but no community 

N residents are immunized. Unimmunized people in community Y still benefit indirectly from 

immunization because reduction of disease spread lowers their chance of contacting a diseased 

person. The overall difference between the two communities is the community-level effect of the 

immunization intervention. The difference between the immunized and unimmunized in 

community Y is the direct effect of immunization, while the difference between the 

unimmunized in community Y and the unimmunized in community N is the indirect effect. The 

total effect is the difference between the immunized persons in community Y compared with the 

unimmunized in community N. The intervention need not be an immunization; interventions 

where adoption is variable in the community, such as handwashing or latrine use, should operate 

in a similar way. A comparison of two similar rural Zimbabwean villages, one of which had 

partial latrine coverage and the other having no latrines, showed decreased diarrhea among 

households lacking latrines in the village with latrines, compared with the village without latrines 

(Root, 2001). Systems modeling allows explicit representation of the mechanisms of indirect 

effects, and allows investigation of how incomplete participation (termed 'compliance' or 

'adherence') in an intervention decreases the indirect effects of that intervention.

Interaction of control measures against diarrheal illness is common, but may be positive or 

negative. A review (Fewtrell & Colford, 2005) considering five studies combining water supply 

improvements with sanitation improvements and hygiene education found that the effect on 

childhood diarrhea (32% reduction in diarrhea) was similar in those studies as the effect seen 

from other interventions alone: water supply (two studies, 33% reduction), sanitation (1 study, 
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24% reduction), HWT (eight studies, 34% reduction) or hygiene (seven studies, 46% reduction). 

A similar effect was found when combining water treatment and handwashing in Karachi 

squatter neighborhoods; there was no additional benefit to combining the interventions, although 

each intervention alone cut diarrhea prevalence by about 50% (Luby et al., 2006). However, a 

meta-analysis (Gundry et al., 2004) of seven point-of-use intervention studies found that the 

effectiveness of point-of-use interventions increased as sanitation improved. Increased water use 

and latrine possession positively interacted to improve infant weight and length in rural Lesotho 

(Esrey et al., 1992), and positive interaction has been observed between sanitation and source 

water quality (VanDerslice & Briscoe, 1995). Sanitation is one of the best studied interventions 

with regard to interaction with other interventions, and given its key role in removing feces from 

the environment at the point where they are produced, it seems likely to interact particularly 

strongly with other interventions. In particular, it seems likely that improved sanitation is 

necessary to realize further benefits from other interventions. By mechanistically modeling 

transmission of diarrheal infection and the effects of interventions, it should be possible to 

predict conditions under which interaction between two interventions is positive or negative.

2.22. Tools and information useful for modeling diarrhea transmission

Intervention trials in communities throughout the world have shown the extent of 

effectiveness of interventions under favorable conditions, in terms of effectiveness against 

diarrhea in children under 5 years of age without reference to particular pathogens. Important 

characteristics of the communities that could impact diarrhea transmission, such as the use of 

latrines in the village, nutritional status of the population, or the prevalence of breastfeeding, are 

often not given, which makes it difficult to interpret the results. Nonetheless, the available trials 

provide indications of the effectiveness of various interventions.

Much useful work has been done within the framework of quantitative microbial risk 
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assessment. Dose response equations that translate dose of a pathogen into the probability of 

developing disease have been developed for many diarrheal pathogens (Haas et al., 1999). 

Distributions have also been developed that describe likely exposure to pathogens on the basis of 

how they adhere differentially to different surfaces (e.g., hands compared with a cloth), which 

could theoretically allow estimation of a dose. 

Basic infection transmission models like the examples described above (Figures 2.5 and 

2.6, page 72) commonly assume that individuals mix evenly, i.e., every person has the same 

chance of contacting any other person. However, even mixing is unrealistic. People most 

frequently contact other people within their own household, people mix preferentially within 

their own age group (Mossong et al., 2008), and the nature of the contact affects its intensity, 

e.g., contacts at home are more likely to be physical than contacts at work (Mossong et al., 

2008). Home, school, workplace, and leisure contacts accounted for over 80% of all contacts in a 

survey carried out in several European countries (Mossong et al., 2008). Even if such factors are 

accounted for, people are also likely to have stable (i.e., nonrandom) patterns of connections to 

other people over time (Keeling & Eames, 2005). Several other studies (Wallinga et al., 2006; 

Bates et al., 2007; Ogunjimi et al., 2009) of how frequently people contact each other in various 

ways have been conducted recently, providing information on opportunities for pathogen 

transmission. However, with the exception of Bates et al. (2007), those studies were carried out 

in industrialized countries.

Epidemiological data concerning diarrheal pathogens also assists model construction. 

Factors such as incubation period, period of communicability, immunity, asymptomatic carriage, 

and persistence of the organism in the environment are important for describing disease 

transmission. Diarrheal disease risk is also known to change greatly with age, with greatest risk 

after weaning and decreasing risk thereafter.
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Demographic characteristics are also important since susceptibility to diarrhea varies with 

age and young children have poor hygiene and sanitation habits. Transmission within households 

is particularly important due to frequent contacts between individuals sharing a household 

(Mossong et al., 2008). Information about household composition is available for various 

countries through the Demographic and Health Surveys (DHSs) (USAID, 2012).

Many meta-analyses have summarized the effects of drinking water interventions, hygiene 

interventions, and nutritional interventions using relative risks of disease comparing groups with 

an intervention to groups without an intervention (Gundry et al., 2004; B. F. Arnold & Colford, 

2007; Waddington et al., 2009; Ejemot et al., 2008; Lazzerini & Ronfani, 2008; Hunter, 2009). 

However, these meta-analyses and the studies that they summarize seldom report useful 

information for mechanistic modeling, such as pathogen concentrations in drinking water or the 

interventions already used in communities before the studies began.

2.23. Published models relevant to endemic diarrhea transmission

Although transmission models are widely used in infectious disease epidemiology, few 

consider diarrhea in humans. Several that model diarrhea directly or provide useful insights to 

modeling infectious diarrhea and its prevention are discussed below.

2.23.1. Mechanistic model of diarrheal infection: Eisenberg et al., 2007  

A model of diarrheal infection transmission within a hypothetical community of a single 

pathogen with complete immunity following infection, considered five transmission routes: 

within-household, between-household, household-to-water, water-to-household, and introduction 

of pathogens from outside the community (J. N. S. Eisenberg et al., 2007). This allowed 

interdependencies between transmission routes; for example, reduction of transmission between 

water and households would also secondarily reduce within-household and between-household 

transmission. Parameters governing the strength of the transmission routes were varied, and the 
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results of a hypothesized water treatment intervention that eliminated all risk from contaminated 

drinking water subsequently varied, giving the following results from the model:

1. Low water contamination levels resulted in low preventable fractions of diarrhea from water 

treatment. 

2. If between-household transmission was low, the preventable fraction increased as within-

household transmission increased, since that route created secondary cases within 

households, and these secondary cases could then be prevented by water treatment.

3. If within-household transmission was low and between-household transmission was 

increased, the preventable fraction increased at first but decreased again at high levels of 

between-household transmission (which created an important alternate route for disease 

transmission aside from contaminated water). If within-household transmission was then 

increased (i.e., both within- and between-household transmission were high), the preventable 

fraction decreased further. In this case transmission could be sustained by contacts between 

people, and water treatment therefore prevented little diarrhea.

Analysis of this model showed that the effectiveness of an intervention could vary 

drastically depending on transmission characteristics within a community. Since additional 

interventions could preferentially alter different transmission routes, it also partially explains 

how interactions between various interventions might arise.

2.23.2. Empirical model of diarrheal disease: Schmidt et al., 2009  

Schmidt et al. (2009) constructed a model describing diarrheal illness in a population by 

drawing the number of illness episodes from a distribution for each individual and then assigning 

an onset day and a duration to each episode. Individuals had a subject-specific error assigned to 

them to simulate differential susceptibility by individuals. Assignment of episodes was partly 

determined by increasing risk during the days following a previous episode, to simulate 

82



autocorrelation (‘clumping together’) of disease episodes. Individuals in the model were 

independent, and transmission between individuals was not modeled. The model’s primary 

intended use was to generate simulated datasets to assess different disease surveillance schemes 

and explore effects of likely sources of error in surveillance data. Although it is an empirical 

model that does not mechanistically simulate disease transmission, the authors provide gamma 

distribution parameters drawn from real datasets for episode duration and number of episodes per 

year. 

An important issue raised by Schmidt et al. (2009) is the likely existence of autocorrelation 

of disease episodes within individuals. Some datasets show evidence for increased risk of an 

episode during the few weeks following a previous episode. This is reasonable given the fact that 

it may take several weeks for the full nutrient absorptive capacity of the small intestine to 

regenerate after an episode of acute diarrhea (Chen et al., 1983). In addition, people living in 

unhygienic environments often have chronic alterations (lasting for years) of the small intestine 

(termed tropical sprue, tropical malabsorption, or tropical enteropathy) which is associated with 

diarrhea and similar intestinal abnormalities that lead to malabsorption of nutrients; it is thought 

to have a root bacterial cause, partially because it can be treated with antibiotics (Lunn, 2000; 

Blaser et al., 2002). Autocorrelation of diarrheal episodes could also be explained by the 

existence of intermittent or relapsing infections (Schmidt et al., 2009).

2.23.3. Modeling indirect effects of interventions: Halloran et al., 2002  

Modeling non-diarrheal infections can still provide important insights into diarrhea 

prevention. A detailed stochastic model of influenza transmission by contact between individuals 

in simulated communities has been described (Halloran et al., 2002). Contacts between 

individuals within their communities depended on neighborhood and level of school (and 

therefore also age). To simulate an intervention, the proportion of individuals vaccinated was 
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then increased in some communities. The model was used to investigate the direct and indirect 

effects of increased immunization, finding large indirect benefits to unvaccinated individuals. 

For example, if half of the population in the intervention community was given a vaccine that 

was 70% effective, the unvaccinated population received benefit equivalent to directly receiving 

a vaccine that was 40% effective. Indirect benefits to unvaccinated people increased as the 

proportion of vaccinated people increased. This scenario is analogous to many other 

interventions, in which a particular behavior (e.g., handwashing) is already practiced in a 

community at a certain level, and is increased by means of an intervention. However, it is unclear 

whether adoption of interventions preventing diarrhea by some individuals would similarly 

protect noncompliant individuals indirectly.

2.23.4. Environmental infection transmission system (EITS) models: Li et al., 2009  

Much infectious disease modeling work has examined person-to-person transmission, but 

diarrheal illness is largely mediated by the environment (Figure 2.4, page 49; Figure 2.7, page 

77). An SIR model of influenza transmission with an added environmental (E) compartment, 

modeled as a system of differential equations, has been described (Li et al., 2009); a simplified 

version of this model is shown in Figure 2.6, page 74. The model used susceptible, infected, and 

removed (i.e., immune or dead) compartments to track hosts, while an environment compartment 

contained pathogens shed into the environment by infected hosts. Hosts can then pick up 

pathogens from E and become infected; pathogens in E are also inactivated at a particular rate. 

The model used three different parameter sets to simulate differing transmission modalities: 

frequently touched fomites, infrequently touched fomites, and airborne transmission. However, 

the R0s from the three parameter sets were identical; this allowed comparison of the intervention 

effectiveness under differing infection transmission conditions. Two interventions were 
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considered: 1) decontamination, increasing the inactivation rate of pathogens in the environment 

by 25%; or 2) an 'avoidance measure' (perhaps analogous to improved hygiene) decreasing the 

pick-up rate of pathogens from the environment by 25%. When transmission occured via 

frequently touched fomites, neither intervention was effective. However, if transmission was 

airborne or via infrequently touched fomites, each interventions reduced the incidence of 

infection by about a third, with decontamination being more effective than 'avoidance'. Thus the 

effectiveness of an intervention depends on the nature of the transmission route it affects, even if 

transmission is identical pre-intervention.

2.24. Conclusion

Diarrheal disease in developing countries is characterized by diverse pathogens, multiple 

routes of transmission, and numerous interventions to prevent it. A clearer understanding of the 

action of interventions on the transmission of diarrhea would be helpful for planning and 

implementing diarrhea control programs. Modeling techniques are useful for synthesizing the 

large amount of published information regarding transmission and control of diarrhea, and they 

can yield further insight about diarrhea transmission and control. Chapters 3, 4, and 5 of this 

dissertation describe the development and application of such models.
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3. LINKING A QUANTITATIVE MICROBIAL RISK ASSESSMENT MODEL TO A 

HOUSEHOLD WATER TREATMENT FIELD TRIAL

This chapter consists of previously peer-reviewed and published content (including 

supplementary material) that has been reformatted and reorganized:

Enger, K.S., Nelson, K.L., Clasen, T., Rose, J.B., Eisenberg, J.N.S., 2012. Linking 

quantitative microbial risk assessment and epidemiological data: informing safe drinking water 

trials in developing countries. Environmental Science and Technology 46, 5160–5167.

3.1. Abstract

Intervention trials are used extensively to assess household water treatment (HWT) device 

efficacy against diarrheal disease in developing countries. Using these data in policy, however, 

requires addressing issues of generalizability (relevance of one trial in other contexts) and 

systematic bias associated with design and conduct of a study. A published randomized 

controlled trial (RCT) of the LifeStraw® Family Filter in the Congo was used as the basis for a 

quantitative microbial risk assessment (QMRA) model, to demonstrate the application of models 

to water safety and health issues. The QMRA model accounted for bias due to 1) incomplete 

compliance with filtration, 2) unexpected antimicrobial activity by the placebo device, and 3) 

incomplete recall of diarrheal disease. Effectiveness was measured using the longitudinal 

prevalence ratio (LPR) of reported diarrhea. The Lifestraw RCT observed an LPR of 0.84 (95% 

CI: 0.61, 1.14). The model predicted LPRs, assuming a perfect placebo, ranging from 0.50 (2.5-

97.5 percentile: 0.33, 0.77) to 0.86 (2.5-97.5 percentile: 0.68, 1.09) for high (but not perfect) and 

low (but not zero) compliance, respectively. The calibration step provided estimates of the 

concentrations of three pathogen types (modeled as pathogenic E. coli, Giardia, and rotavirus) in 

drinking water consistent with the longitudinal prevalence of reported diarrhea measured in the 

trial constrained by epidemiological data from the trial. The QMRA model demonstrated the 
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importance of compliance in HWT efficacy, the need for pathogen data from source waters, the 

effect of quantifying biases associated with epidemiological data, and the usefulness of 

generalizing the effectiveness of an HWT trial to other contexts.

3.2. Introduction

The randomized controlled trial (RCT) is considered the gold standard study design in 

epidemiology; it is the study design with the least systematic bias, and therefore the highest 

internal validity. Two important components of RCT design for internal validity are: the 

randomization of subjects to the intervention and the non-intervention groups; and blinding of 

the subject and investigator to group assignment. It is difficult to blind HWT interventions 

because these devices are visually obvious and cannot be concealed from participants or 

investigators. It is also difficult to develop a placebo HWT filter that does not remove pathogens, 

but improves the appearance of water like an effective filter (Boisson et al., 2010). Other biases 

may also affect the internal validity of an estimate derived from the trial, such as recall bias, 

incomplete compliance with the intervention, or unexpected difficulties conducting the trial 

(Boisson et al., 2010).

In a recent RCT (Boisson et al., 2010) in rural communities in the Democratic Republic of 

the Congo (DRC) using the LifeStraw® Family Filter (LFF; Vestergaard Frandsen Corporation, 

Lausanne, Switzerland), investigators attempted to blind the intervention. The LFF is an 

ultrafilter with a 20 nm pore size that was shown to remove 99.99999% of Escherichia coli, 

99.998% of MS2 coliphage, and 99.97% of Cryptosporidium oocysts from challenge water in the 

laboratory (T. Clasen, Naranjo, et al., 2009). For the Lifestraw RCT, investigators developed a 

placebo filter resembling the LFF in appearance, weight, operation, and flow rate (Boisson et al., 

2010). The placebo was tested in the laboratory for three weeks against the same three 

organisms, and no removal was observed. In the field, however, the intended placebo removed 
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on average 91% (95% CI: 88-93%) of thermotolerant coliform bacteria (TTC), a group that 

includes E. coli and indicates fecal contamination, from source water (Boisson et al., 2010). 

Therefore, the study could only compare a highly effective filter with a poorly effective filter. 

Although 65% of people reported using the filter, most filter users also reported drinking 

unfiltered water (Boisson et al., 2010). The proportion of unfiltered water that people consumed 

was not quantified. The Lifestraw RCT did not find a statistically significant (P < 0.05) effect of 

the LFF against diarrhea (Boisson et al., 2010). 

Quantitative microbial risk assessment (QMRA) models can examine and account for 

biases associated with environmental intervention trials (e.g., imperfect compliance, recall bias, 

or an imperfect placebo) and can explore risks associated with contexts different than those 

observed in empirical studies. Such models can provide a conceptual framework for 

understanding systems that are difficult to explore in the real world. QMRA models have been 

used to quantify disease risk in many contexts (J. N. S. Eisenberg et al., 2008; Haas et al., 1999; 

Parkin, 2008). The analytic framework for linking QMRA and epidemiological data described 

here consists of: 1) a calibration step using a QMRA model to produce results consistent with the 

epidemiological study; and 2) an estimation step that examines counterfactual scenarios that 

adjust for biases within the study and explores how altered contexts affect risk. The effectiveness 

of an intervention in those contexts can then be estimated, even if it was never directly studied 

under such conditions. 

This chapter describes a counterfactual causal inference framework using a QMRA model 

to evaluate the impact of biases on estimates of intervention efficacies. This is illustrated by 

simulating the Lifestraw RCT (Boisson et al., 2010) and adjusting for some of its biases, to 

estimate the effectiveness of the LFF compared with a perfect placebo under differing levels of 

LFF compliance. 
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3.3. Materials and Methods

3.3.1. Conceptual framework linking QMRA models to epidemiological studies  

Quantitative microbial risk assessment (QMRA) uses environmental contamination data as 

inputs to models used to predict risk of infection and/or disease. Epidemiological studies provide 

data on patterns of disease measured by incidence or prevalence, and measures of relative risk. 

This chapter illustrates a framework for the calibration of risk models by using epidemiological 

data from a particular study that describes the risk in a particular context, where the context is 

defined by a particular time in a particular geographic setting (Figure 3.1). The calibration 

process involved simulating a risk model many times using different input and parameter values. 

The parameter sets (or parameter distributions) representing those simulations that were 

consistent with the epidemiological study comprised the calibrated model; the parameter 

distributions represented the context in which the epidemiological study was conducted. Using 

this calibrated model, the epidemiological study was generalized to other contexts in the 

estimation step. The estimation step consisted of a set of simulations in which specific parameter 

values were varied to describe different contexts, such as alternative intervention strategies or 

different ecological or social settings.
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3.3.2.     Model description  

For the research described in this chapter, a QMRA model was developed that simulates 

the following chain of events:

1. Determination of the concentrations of three pathogen types (bacteria, protozoa, and 

viruses) in drinking water, sampled from gamma distributions

2. Calculation of daily doses of pathogens based on their concentrations and the amount of 

water consumed

3. Use of dose response functions: convert daily pathogen doses to probabilities of infection
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Figure 3.1. Conceptual model for simulation of a randomized controlled trial

The results from an actual epidemiology study defined a context (e.g., the LifeStraw® Family 
Filter randomized controlled trial [Lifestraw RCT] in rural Congo). The calibration phase 
provided a set of simulated studies that are consistent with this defined context. Calibration also 
estimated values for parameters that were not observed during the real study, thus inferring 
unobserved context of the real study. The estimation phase provided simulated studies that were 
generalized to other contexts (e.g., higher or lower compliance than was observed during the 
Lifestraw RCT).



4. Assignment of infection to individuals, based on the probability of infection

5. Assignment of diarrheal illness, based on morbidity ratios

The same conceptual approach illustrated in Figure 3.1 could also be applied to more 

complex models including processes such as transmission dynamics (J. N. S. Eisenberg et al., 

2005; J. N. S. Eisenberg et al., 2007) or environmental fate and transport dynamics (J. N. S. 

Eisenberg et al., 2006).

The model describing the Lifestraw RCT conducted in the Congo (Boisson et al., 2010) 

follows a simulated population of children under five years of age for 12 months using a time 

unit of 1 day. The population was surveyed about their diarrheal symptoms every four weeks, 

similar to the Lifestraw RCT. The simulated children ingested bacteria, protozoa, and viruses in 

their drinking water, respectively represented by diarrheagenic Escherichia coli, Giardia cysts, 

and rotavirus. These three pathogens were chosen because they are major causes of diarrheal 

disease in much of the developing world, and they represent the three main taxa of waterborne 

pathogens.(Lanata & W. Mendoza, 2002) A child was either susceptible to, immune to, or 

infected by each of these three pathogens; we assumed that the infective processes of each 

pathogen were independent of each other, and a child could therefore be infected with 0, 1, 2, or 

3 types of pathogens simultaneously. Children were divided into two groups; the first group 

received the intervention filter, whose log10 removal values (LRVs) for E. coli, Giardia, and 

rotavirus were 6.9, 3.6, and 4.7 respectively based on laboratory testing (T. Clasen, Naranjo, et 

al., 2009). The other group received the placebo filter, whose LRVs were set to 1.05 for all three 

pathogens based on the field trial for thermotolerant coliform removal (Boisson et al., 2010).

The model is more completely described by the flowchart in Figure 3.2; the steps of the 

flowchart are explained in detail below.
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Figure 3.2. Simulation model flowchart
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Step 1: Parameter entry

A simulation run begins by reading 28 model parameters (Table 3.1), which were estimated 

from the published scientific literature and are discussed in greater detail in chapter 7 They 

remain constant for every simulation run. 

Table 3.1. Fixed parameter values used in the QMRA model of the Lifestraw RCT
Description of parameter values Value Reference

Morbidity ratios (proportion of infected who are symptomatic)

    Escherichia coli 0.214 (Vergara et al., 1996)

    Giardia 0.590
(Peréz Cordón et al., 

2008)

    Rotavirus 0.397 (Fischer et al., 2002)

Duration of infection

    Escherichia coli (gamma distribution, mean 3 days)
shape = 1.775
scale = 1.690

(Estrada-Garcia et al., 
2009)

    Giardia (gamma distribution, mean 11 days)
shape = 3.206
scale = 3.431

(Kent et al., 1988)

    Rotavirus (uniform distribution; mean 2.5 days) Range 1-4 days
(Kapikian et al., 

1983)

Shape parameter for all gamma distributions of 
pathogen type concentrations a

1.85 (Boisson et al., 2010)

Period of immunity for all pathogens 7 days

No. children under 5 years of age, intervention group 85 (Boisson et al., 2010)

No. children under 5 years of age placebo group 105 (Boisson et al., 2010)

Longitudinal prevalence of reported diarrhea for each group

    Intervention (LPIrad) 0.0749 (Boisson et al., 2010)

    Placebo (LPPrad) 0.0896 (Boisson et al., 2010)

Longitudinal prevalence ratio of reported diarrhea 
(LPRrad)

0.836 (Boisson et al., 2010)

Water ingestion 1.178 L/day (Akpata, 2004)

Log10 reduction values (LRVs), intervention group

    Escherichia coli 6.9
(T. Clasen, Naranjo, 

et al., 2009)

    Giardia 3.6
(T. Clasen, Naranjo, 

et al., 2009)
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Description of parameter values Value Reference

    Rotavirus 4.7
(T. Clasen, Naranjo, 

et al., 2009)

LRVs, placebo group, all 3 pathogens

    Calibration step 1.05 (Boisson et al., 2010)

    Estimation step 0

Dose response function parameters (Anon, 2012)

    E. coli (enteroinvasive); beta-Poisson parameters
α = 0.155

N50 = 2.11×106
(H L DuPont et al., 

1971)

    Giardia; exponential k parameter 0.0198
(Rendtorff, 1954; J B 

Rose et al., 1991)

    Rotavirus; beta-Poisson parameters
α = 0.2531

N50 = 6.171
(Haas et al., 1993; 
Ward et al., 1986)

Chance of remembering diarrhea >2 days in the past 0.54 (Zafar et al., 2010)

Compliance with device use: chance of using device on a given day 

    Calibration step 0.65 (Boisson et al., 2010)

    Estimation step 0, 0.65, or 1.00

Compliance with device use: If using device on a given day, proportion of water treated

    Calibration step 2/3 or 1/3

a The scale parameters for the gamma distributions of pathogen types are determined by the 
mean concentration of pathogen types, which is randomly sampled from a uniform distribution 
during calibration (Table 3.2).

Step 2: Parameter values inferred through calibration

There are 4 other parameters (Table 3.2) which are unknown and were therefore inferred 

during the calibration process:

1. Baseline longitudinal prevalence of reported non-waterborne diarrheal disease in 

'children' (under five years of age; LPrNW). This value was assumed to be the background 

LP of diarrhea due to the sum of all transmission pathways except drinking water, as well 

as all non-communicable causes of diarrhea; 

2. Mean concentration of diarrheagenic Escherichia coli (representing bacteria) in untreated 
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drinking water (bacteria/L);

3. Mean concentration of Giardia (representing protozoa) in untreated drinking water 

(cysts/L);

4. Mean concentration of rotavirus (representing viruses) in untreated drinking water 

(virions/L).

These values are necessary for the model, but no pathogen data exist for these water 

sources, nor are there clinical data describing the etiology of diarrheal disease where the 

Lifestraw RCT was conducted. The drinking water sources used in the Lifestraw RCT study area 

were unimproved, and consisted mainly of surface water and unprotected springs; however, the 

water was abundant and naturally clear (Boisson et al., 2010). Diarrheagenic E. coli, Giardia, 

and rotavirus were chosen to represent bacteria, protozoa, and viruses because they are common 

causes of diarrheal disease in developing countries (Lanata & W. Mendoza, 2002), and they 

represent the three major taxa of diarrheal pathogens. The prior distributions for the mean 

concentrations of these pathogen types were defined as uniform distributions, with ranges given 

in Table 3.2. Posterior distributions for these values were obtained by running multiple 

simulations with varying mean concentrations. Model runs returned three key outcomes: the 

longitudinal prevalence of reported diarrhea for the intervention (LPIrwd) and placebo (LPPrwd) 

groups, and their ratio, the longitudinal prevalence ratio (LPRrad). These three outcomes were 

also estimated by the Lifestraw RCT (Table 3.3). If the outcomes from a model run fell within 

the 95% confidence intervals for the outcomes estimated by the Lifestraw RCT, the mean 

pathogen type concentrations and the LPrNW were retained for use in the estimation step. 
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Table 3.2. Ranges for stochastically varying parameters
Uniform distributions used to determine the values of the stochastically varying parameters for 
each simulation model run during calibration

Description
Lower 
limit

Upper limit
(low calibration 

compliance)

Upper limit
(medium calibration 

compliance)

Mean concentration per L, pathogenic E. 
coli in untreated drinking water

0 7.0×104 8.0×104

Mean concentration per L, Giardia cysts 
in untreated drinking water

0 0.95 1.3

Mean concentration per L, rotavirus in 
untreated drinking water

0 0.14 0.18

Baseline non-waterborne diarrhea 
longitudinal prevalence (LPrNW)* 0 0.0972 0.0972

* The upper limit for baseline diarrhea longitudinal prevalence is the upper limit of the 95% CI 
for LP in the <5 year old intervention group in the Lifestraw RCT (Boisson et al., 2010).

Step 3: Initiating each run; establishing equilibrium waterborne infection

Once all parameters were available, the simulation run could begin. It was assumed that at 

the beginning of a simulated intervention study, each participant was in one of three states 

(susceptible, infected, or immune), and that the proportions of participants among these states 

were in equilibrium. In the model, this equilibrium was established by initially infecting every 

child with all three pathogen types and assigning infection durations randomly from a uniform 

distribution ranging from 0 to 50 days ('equilibration infections'). This range was chosen in order 

to prevent extreme oscillations in the proportion infected. In earlier versions of the model, these 

oscillations arose because the entire population was initially susceptible, leading to immediate 

infection of much of the population, followed by simultaneous recovery, followed by 

simultaneous infection. By using a wide range of infection durations for the equilibration 

infections, children become susceptible at different times during the equilibration period, thereby 

preventing large oscillation artifacts. After children recovered from an equilibration infection, 
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they were immune for 7 days, after which they could be reinfected through exposure to 

contaminated drinking water; infection durations were subsequently assigned from the 

distributions described in Table 3.1. Equilibrium was reached when the temporal trend of the 

infection prevalence was flat; the infection prevalence at equilibrium stochastically oscillated 

around the mean prevalence. The model reached equilibrium in approximately 60 days (e.g., 

Figure 3.4 and Figure 3.5); the precise time depended on the mean concentrations of pathogens. 

The simulated intervention study begins on day 128.

Step 4: Calculating daily doses of marker pathogens

The model included 85 children in the intervention group and 105 in the placebo group, 

consistent with the Lifestraw RCT (Boisson et al., 2010). The concentration of each pathogen 

type in the source water was sampled from a gamma distribution (Table 3.1) for each child on 

each day. The shape parameter of these distributions was always 1.85; the scale parameter was 

the randomly selected mean concentration for a particular pathogen, divided by the shape 

parameter. The shape parameter was obtained by fitting a gamma distribution to the 

thermotolerant coliform (TTC) counts measured by the Lifestraw RCT in untreated source water, 

excluding high outliers (over the detection limit of 30,000 CFU / 100 mL; 3.8% of the data). 

Each child’s daily dose of a particular pathogen type was determined using the LRVs (Table 3.1) 

attributable to the device that child is using: 

Daily dose = cd[(1 – w) + w10-r] (3.1)

where c is the concentration per liter of a pathogen type in untreated water (sampled from a 

gamma distribution), w is the proportion of water treated (which varies depending on 

compliance), r is the LRV (which varies depending on whether the intervention filter, the placebo 

filter, or no filter is being used), and d is the liters of water consumed daily.
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Step 5: Dose response functions

The daily doses of pathogen types were converted to responses (i.e., daily probabilities) per 

susceptible person of becoming infected using dose response functions (Anon, 2012; Haas et al., 

1999). These functions were obtained using results from studies in which adult volunteers were 

fed widely varying doses of pathogens, and monitored for development of  infection. An 

exponential dose response function was used for Giardia, and a beta-Poisson dose response 

function was used for E. coli and rotavirus:

Exponential: Response = 1 – e-kd (3.2)

Beta-Poisson: Response = 1 – (1 + [d / N50][21/α - 1])-α (3.3)

where d is the dose (number of pathogens ingested per day in drinking water), k is the 

parameter for the exponential model, and α and N50 are the parameters for the beta-Poisson 

model (N50 is the dose at which 50% of the population exhibits the response). As α approaches 

infinity, the beta-Poisson dose response function approaches the exponential dose response 

function (Haas et al., 1999). A graph of the dose response functions is found in Figure 3.3 

(Figure 4.6a, page 138, presents the same information in log-log scale).
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Figure 3.3. Comparison of dose response functions

Step 6: Assignment of infection

New infections were randomly assigned to susceptible children each day, according to the 

response probabilities obtained from the dose response functions. 

Step 7: Assignment of infection duration, recovery, and immunity

If a child is infected, they were assigned an infection duration (Table 3.1, page 93) sampled 

from a gamma distribution (E. coli or Giardia) or a uniform distribution (rotavirus). Infections 

due to the 3 pathogens were tracked independently within each child. Functionally, this was done 

using a matrix with 1 row per child and 1 column per pathogen. The entries of the matrix were 

numbers of days; positive numbers denoted time remaining until recovery and negative numbers 

denoted elapsed time since recovery. Each day, 1 was subtracted from all entries, and an 
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individual recovered when an entry reaches 0. Following recovery, the individual was immune 

for 7 days; after this, they are once again susceptible and may be reinfected.

The children in the placebo group were identical to the children in the intervention group, 

except that the log10 reductions attributable to the placebo device were lower (Table 3.1, page 

93), and they therefore ingested higher doses of pathogens. 

Step 8: Surveying the population about reported diarrhea

Although the model explicitly tracked infection, the Lifestraw RCT measured reported 

disease. Since some infections are asymptomatic or unreported, the model had to simulate the 

process of people reporting diarrhea in order to output disease measures comparable to the 

Lifestraw RCT. 

Reporting of diarrhea was simulated via 12 monthly surveys of the population. The mean 

of the 12 monthly estimates of prevalence during the year-long study period estimated the 

longitudinal prevalence (LP) of diarrhea. More generally, an LP is the proportion obtained by 

dividing the person-time affected by the total person-time observed. Each simulated survey 

estimated the prevalence of diarrhea by allowing each person to report whether any diarrheal 

illness occurred over the previous 7 days, corresponding to the actual survey process during the 

Lifestraw RCT. Reporting of diarrhea by people in the simulated community followed these 

rules: 

1. the most recent infection for a particular child was determined, i.e., the infection with the 

longest duration remaining, or if not currently infected, the infection that resolved most 

recently;

2. that infection was stochastically determined to be symptomatic or asymptomatic, using 

the morbidity ratio (Table 3.1, page 93) as the probability of symptoms given infection; 
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3. asymptomatic infections were never reported; 

4. symptomatic illness on that day or the previous 2 days was always reported; 

5. symptomatic illness during the previous 3-7 days had a 54% chance of being remembered 

(Table 3.1, page 93); if the illness was remembered, it was reported. 

The 5th rule came from published recall bias measurements (Zafar et al., 2010). The 

prevalence of diarrhea reported by a particular survey was the proportion of people reporting 

diarrhea according to the rules above. Averaging the results from the 12 simulated surveys gave 

an estimate of the LP. 

Step 9. Determining model outcomes corresponding to the Lifestraw RCT

To clarify this process, some terminology is described here. There were several different 

longitudinal prevalences (LPs) which were tracked or output by the model. LPs were determined 

(and subscripted) according to 2 categories: 1) intervention group (I) or placebo group (P); and 2) 

waterborne infection (wi), or waterborne diarrhea (wd), or any diarrhea (ad). In addition, reported 

diarrhea was prefixed with r. For example, the longitudinal prevalence in the intervention group 

of any reported diarrhea was LPIrad. Another parameter, LPrNW, was defined as the longitudinal 

prevalence of reported diarrhea acquired by nonwaterborne routes. LPrNW was not affected by 

water treatment. Total longitudinal prevalence of reported diarrhea for the intervention group 

(LPIrad) or the placebo group (LPPrad) was obtained by adding LPrNW to LPIrad or LPPrad. Since 

LPs are proportions and a person might simultaneously carry infection acquired from waterborne 

or non-waterborne routes, addition was carried out in this manner to avoid double-counting of 

the intersection between the two types of routes: 

LPIrad = LPIrwd + LPrNW(1 - LPIrwd)    or    LPPrad = LPPrwd + LPrNW(1 - LPPrwd) (3.4)
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The effectiveness of the LFF was measured by a longitudinal prevalence ratio (LPR). To 

correspond with the Lifestraw RCT, the primary outcome measure was the LPR of any reported 

diarrhea (LPRrad), calculated as follows:

LPRrad = LPIrad / LPPrad (3.5)

Analogous LPs and LPRs could also be calculated for waterborne infection, waterborne 

diarrhea, or reported waterborne diarrhea. For example, since the model tracked waterborne 

infection daily, the LPs for waterborne infection in the intervention (LPIwi) and placebo (LPPwi) 

groups could be used to generate LPRs for waterborne infection (LPRwi), as if the entire 

population was observed with perfect accuracy (Figure 3.10, page 113).

Step 10: Repetition of calibration runs

During the calibration step, the simulation model was run 100,000 times. Each run 

randomly selected different pathogen concentrations and a background diarrheal longitudinal 

prevalence (LPrNW) from a uniform distribution (Table 3.2, page 96). The upper limits of these 

uniform distributions were obtained from a simplified calibration process carried out before the 

actual calibration step. This process used the idea that the maximum possible concentration of a 

particular pathogen type is the concentration that yields the maximum LPPrad consistent with the 

Lifestraw RCT if other two pathogen types are absent. For a particular pathogen type, these 

values were estimated by examining results from 12 successive model runs. Each of the 12 runs 

progressively increased the concentration of a single pathogen type, with concentrations of the 

other 2 pathogens set to 0. The smallest concentration yielding an LPPrad above the 95% 

confidence limit for the placebo group (i.e., an LPPrad > 0.11; Table 3.3) provided the upper limit 

of the uniform distribution for that pathogen type's concentration (Table 3.2, page 96). The 
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appropriateness of these upper limits were checked by visually examining scatterplots of 

pathogen concentration by LPPrad after the full calibration step had completed (not shown).

Parameter values and the results from all runs in the calibration step were saved. The time 

course of infection and reported diarrhea for two example simulation runs are in Figures 3.4 and 

3.5 (page 104). Parameter combinations are selected that yield LPIrad, LPPrad, and LPRrad values 

within the 95% confidence intervals reported in the RCT trial (Table 3.3). These parameter 

combinations are then reused in the estimation step of the process. 

Among the three pathogen types, high concentrations of one pathogen were associated 

with lower concentrations of the other pathogens. This occured because the model was calibrated 

to match the level of reported disease seen in the Lifestraw RCT, without reference to the 

particular pathogen types. Therefore higher levels of disease from one pathogen type must be 

balanced by lower levels of disease from other pathogen types.

Table 3.3. Longitudinal prevalence measures from the Lifestraw field trial

Measure Estimate
Lower limit
(95% CI)

Upper limit
(95% CI)

Longitudinal prevalence,
intervention group (LPIrad) 0.0749 0.0526 0.0972

Longitudinal prevalence,
placebo group (LPPrad) 0.0896 0.0673 0.112

Longitudinal prevalence ratio,
intervention/placebo (LPRrad) 0.84 0.61 1.14

* During calibration, for a simulation model run to be considered consistent with the Lifestraw 
RCT, all 3 measures must fall between the lower and upper limits.

3.3.3. Example runs of the model  

Graphical output from two runs of the model is shown in Figure 3.4 and Figure 3.5. They 

display the time courses of two calibration runs of the QMRA model. Figure 3.4 has higher 
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waterborne infection and reported waterborne disease levels than observed in the Lifestraw RCT, 

and Figure 3.5 is consistent with the Lifestraw RCT. The simulated surveys of diarrhea are 

shown by the purple × symbols; equilibration occurred during the first 128 days, before the first 

simulated survey. Each survey asked whether any diarrhea was remembered during the previous 

7 days. In contrast, the lines signify daily prevalence of infection, as simulated daily over the 

course of the model run.
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Figure 3.4. Example run of the model, with higher infection levels than the Lifestraw RCT
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3.3.4. Analytical process  

The simulation model described above was implemented in two steps: calibration and 

estimation (Figure 3.1, page 90). 

The calibration step estimated the four unknown parameter values (Table 3.2, page 96) by 

constraining the model outputs to the results of the Lifestraw RCT (Table 3.3, page 96). The 

calibration step included 100,000 runs. It was conducted for two calibration compliance 

conditions, low and medium, because the proportion of water treated by filter users during the 

Lifestraw RCT was unknown but believed to be substantially less than 1. Additionally, the 

parameters in Table 3.2 (page 96) were randomly sampled from uniform distributions for each 

simulation run. If a model run yielded results consistent with the Lifestraw RCT, its set of four 

parameter values (Table 1) was used in the estimation step. A run was considered consistent if the 

LPIrad, LPPrad, and LPRrad all fell within the 95% confidence limits reported from the Lifestraw 
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Figure 3.5. Example run of the model, infection levels consistent with the Lifestraw RCT
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RCT (Table 3.3, page 103). 

The estimation step determined effectiveness given: 1) a perfect placebo, and 2) low, 

medium, high, or perfect estimation compliance. It consisted of ten model runs for each 

parameter set that was consistent with the Lifestraw RCT (totaling >2000 runs) for each of four 

estimation compliance levels, assuming a perfect placebo.

The estimation step simulated measurements of LPIrad and LPPrad, and their ratio LPRrad, 

which were calculated in the same way as in the calibration step (number of monthly person-

surveys reporting diarrhea during the previous 7 days, divided by the total number of person-

surveys).

Differing compliance values were used in the calibration and estimation steps. In the 

calibration step, ‘calibration compliance’ referred to a set of compliance values describing what 

probably occurred during the actual Lifestraw RCT; these were necessary to calibrate the model 

to the four parameter values in Table 3.2 (page 96). In the estimation step, ‘estimation 

compliance’ referred to a larger set of compliance values that allow the model to make 

predictions for several different scenarios. Calibration compliance and estimation compliance 

were considered simultaneously in the results because different calibration compliance levels led 

to different results in the estimation step.

The QMRA model was programmed in Octave 3.2; the code also runs in MATLAB 7.11. 

The program code is in the appendices (chapter 9, page 239). Results were analyzed using R 

2.11; the two-tailed Wilcoxon rank sum test (α = 0.05) was used to compare distributions.

3.4. Results

3.4.1. Calibration step  

Out of the 100,000 simulation runs in the calibration step, 210 were consistent with the 

Lifestraw RCT based on the criteria in Table 3.3 (page 103) and assuming low calibration 
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compliance with water filtration. Repeating the calibration step assuming medium calibration 

compliance yielded 258 consistent runs. Calibration estimated distributions for two outputs: 

1. The longitudinal prevalence ratio (LPRrad) distributions were similar by level of 

calibration compliance (Figure 3.6). The estimate from the Lifestraw RCT falls within the 

central 95% of the distributions, suggesting consistency between the model and the 

Lifestraw RCT. The median LPRrad estimated by the model differed from the Lifestraw 

RCT because the Lifestraw RCT was a single experiment, whereas each distribution of 

LPRrad represented over 200 simulated experiments.

2. Simulated concentrations of pathogen types in untreated water (Figure 3.7) were higher 

for medium calibration compliance compared with low calibration compliance, which 

was necessary to produce LPIrad and LPPrad values consistent with the RCT. In individual 

calibration runs, higher concentrations of one pathogen type were associated with lower 

concentrations of the other two pathogen types. The median diarrheagenic E. coli 

concentration predicted by the model is lower than the median thermotolerant coliform 

(TTC) concentration measured in untreated drinking water in the Lifestraw RCT (Figure 

3.7). This is plausible since E. coli are a subset of TTC, and not all E. coli are pathogenic.
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Figure 3.6. Distributions of LPRs consistent with the Lifestraw RCT

Distributions of longitudinal prevalence ratios from simulation runs consistent with the 
Lifestraw RCT from the calibration step for low (65% of children treat 1/3 of their drinking 
water) and medium (65% of children treat 2/3 of their drinking water) calibration compliance. 
These distributions differed significantly (Wilcoxon rank sum test, p = 0.02). Boxplots include: 
median (heavy line), 25th and 75th percentiles (lower and upper limits of the box), 2.5th and 
97.5th percentiles (X symbols), and range (whiskers).
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Figure 3.7. Distributions of simulated microbial concentrations

Simulated distributions of microbial concentrations per liter of untreated water, consistent with 
the Lifestraw RCT. Distributions were obtained from the calibration step assuming low (65% of 
children treat 1/3 of their drinking water) or medium (65% of children treat 2/3 of their drinking 
water) calibration compliance. Thermotolerant coliforms (TTC) measured by the Lifestraw RCT 
are also shown for comparison with simulated E. coli. For all three pathogen types, the 
concentration distributions differed by calibration compliance (Wilcoxon rank sum test, p < 
0.001).

3.4.2. Estimation step  

This step estimated LFF effectiveness compared to a perfect placebo for low, medium, 

high, and perfect estimation compliance, given low or medium calibration compliance. 

Estimation compliance was a major driver of effectiveness. For example, under low, 

medium, high, and perfect estimation compliance, the median LPRrad was 0.86, 0.70, 0.50, and 

0.13 respectively, regardless of calibration compliance (Figure 3.8). Additionally, LPIrad was 

significantly greater with medium calibration compliance (compared to low calibration 

compliance), for all levels of estimation compliance except perfect (Figure 3.9). This difference 
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occurred because both calibration steps (low and medium calibration compliance) were 

constrained to the same RCT result; if calibration compliance decreases, the pathogen 

concentrations must also decrease for the model to remain consistent with the Lifestraw RCT. 

During the estimation step, the higher LPPrad for medium calibration compliance was due to lack 

of protection from the perfect placebo; therefore, the LPIrad values were also higher. The 

differences between low and medium calibration compliance decrease as estimation compliance 

increases.

110



111

Figure 3.8. LPR distributions for differing compliance assumptions and placebo behavior

Distributions of longitudinal prevalence ratios of reported diarrhea (LPRrad), estimation step for  
the intervention group, by calibration compliance, estimation compliance, and placebo type. 
*: LPRs from the calibration step, and therefore with an imperfect placebo.
a, b: These pairs of distributions illustrate the effect of the imperfect placebo on LPRrad, 
depending on low (a) or medium (b) calibration compliance. They differed significantly by 
imperfect vs. perfect placebo (Wilcoxon rank sum test, p < 2x10-16). 
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Figure 3.9. Longitudinal prevalence distributions under differing compliance assumptions

Distributions of reported longitudinal prevalence (LP) of diarrhea in the estimation step for the 
intervention group, by calibration compliance and estimation compliance. 
a, b, c, d: Each of these pairs of distributions differed significantly by calibration compliance 
(Wilcoxon rank sum test, p < 2x10-16). 
Compliance levels: Perfect placebo (100% of children treat 0% of their drinking water), low 
compliance (65% of children treat 1/3 of their drinking water), medium compliance (65% of 
children treat 2/3 of their drinking water), high compliance (65% of children treat 100% of their  
drinking water), perfect compliance (100% of children treat 100% of their drinking water).

Calibration compliance altered the estimated effect of a perfect placebo (Figure 3.8). 

Adjustment for the imperfect placebo increased the estimated preventable fraction of disease by 

8 percentage points assuming low calibration compliance (median LPRrad: 0.94 and 0.86 for 

imperfect and perfect placebo, respectively). Assuming medium calibration compliance, the 

preventable fraction increased by 22 percentage points (median LPRrad: 0.92 and 0.70 for 
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imperfect and perfect placebo, respectively). 

All three pathogen types contributed substantially to infection and disease (Figure 3.10). 

Mixed infections accounted for about 2% of infections. 

3.5. Discussion

Results from an epidemiological study may only be relevant to the ecological and social 

conditions of the communities studied. However, quantitative microbial risk assessment 

(QMRA) models that are calibrated to epidemiologic data can predict risk under scenarios that 
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Figure 3.10. Longitudinal prevalence of waterborne infection in the estimation step

Longitudinal prevalence of waterborne infection (LPwi) during the estimation step with a perfect  
placebo, by pathogen type. LPwi is higher for medium calibration compliance, compared with 
low calibration compliance. Compliance levels: None (0; 0% of children treating 0% of their 
drinking water, i.e., perfect placebo), low compliance (L; 65% of children treat 1/3 of their 
drinking water), medium compliance (M; 65% of children treat 2/3 of their drinking water), high 
compliance (H; 65% of children treat 100% of their drinking water), perfect compliance (P; 
100% of children treat 100% of their drinking water).
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were not actually studied, known as counterfactual scenarios (J. J. Kim et al., 2007; Tuite et al., 

2010). A calibration process to epidemiological data can facilitate the use of QMRA models 

where the environmental contamination data required by those models are are difficult to 

measure. There are many situations where epidemiological data can be used to provide 

parameters to QMRA models, such as in a developing country context where direct measures of 

disease risk are frequently measured but environmental contamination data are rare. In this 

context, the modeling framework described herein was used to generalize results from the 

Lifestraw RCT (Boisson et al., 2010).

Generalizing across different compliance scenarios, this model quantified the relationship 

between compliance and HWT effectiveness. Our analysis suggests that perfect compliance in 

the Lifestraw RCT communities would yield an LPRrad of 0.13, suggesting that 87% of reported 

diarrhea could be prevented by consumption of treated water. This result, suggesting that only 

13% of diarrhea in the Lifestraw RCT community was caused by non-waterborne transmission, 

is consistent with a HWT trial in a refugee camp in which there was 95% compliance and an 

83% reduction in diarrhea prevalence (Doocy & Burnham, 2006), as well as numerous field trials 

of ceramic filters indicating risk ratios < 0.5 (T. Clasen, I. G. Roberts, et al., 2009; Hunter, 2009). 

Noncompliance will result in an underestimate of protective effect compared to a situation in 

which there is perfect compliance. Additionally, these trials and our risk assessment model do not 

account for the interdependency of other transmission routes. Thus, it is unclear whether this 

model accurately assesses the proportion of diarrhea associated with drinking water. 

The reduction in effectiveness due to the imperfect placebo also depended on the assumed 

calibration compliance level during the Lifestraw RCT. Assuming low calibration compliance, 

the imperfect placebo decreased effectiveness (preventable fraction) by 8 percentage points. 
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Effectiveness decreased 22 percentage points assuming medium calibration compliance (Figure 

3.8, page 111).

Compliance has several components. This analysis used a simple formulation in which 

each child had a daily probability of using the device; if the device was used, a fixed proportion 

of water was treated. In reality, some people may be highly consistent users or nonusers, while 

others might use the device occasionally (e.g., drinking untreated water while working outside 

the home). Effectiveness might differ given perfect use by 50% of a population, compared to an 

entire population treating 50% of their water. These distinctions are further explored in chapter 4.

These results are consistent with the reasonable expectation that increasing compliance 

should increase effectiveness. Recent systematic reviews suggest a positive but not statistically 

significant relationship between compliance and effectiveness, perhaps due to difficulty in 

measuring compliance (B. F. Arnold & Colford, 2007; T. Clasen, I. G. Roberts, et al., 2009; 

Waddington et al., 2009). Modeling has shown how even occasional treatment failures by a water 

treatment plant could cause high levels of diarrheal disease in populations (Hunter et al., 2009). 

Collectively, these results show the importance of consistent treatment of drinking water, by 

well-managed municipal plants or by high compliance with HWT. Future studies should examine 

the joint effects of compliance and log10 removals by a HWT device. QMRA models can be used 

to extend the results shown in Figure 3.8 (page 111) by providing estimates for risk reductions as 

a function of both compliance and device efficacy. For example, for a given compliance level, 

what are the expected risk reductions when using a device that provides 5 log10 removal, versus 

a device that provides 3 log10 removal (see section 4.4.4, page 150)? Such analyses could 

provide performance metrics and standards that address not only microbiological efficacy but 

also the correct, consistent and sustained use of a device by the target population.
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3.5.1. Predicting pathogen concentrations in drinking water sources  

Few data exist on pathogen concentrations that individuals ingest via drinking water in 

developing countries. Calibration of this model used the epidemiological data from the Lifestraw 

RCT to predict concentrations of pathogens in untreated water (Figure 3.7, page 109). The 

predicted Giardia concentrations are consistent with measurements from southeastern Brazilian 

raw water sources (< 0.1 to 3.4 cysts/L) (Razzolini et al., 2010), but lower than other Brazilian 

(2.5 to 120 cysts/L) (Neto et al., 2010) or Honduran source waters (2.4 to 21 cysts/L) (Solo-

Gabriele et al., 1998). The predicted diarrheagenic E. coli concentrations are much lower than 

the 2.5∙105--1.6∙107 CFU of enterotoxigenic E. coli detected in sewage-impacted Indian rivers 

(Singh et al., 2010). Furthermore, the predicted rotavirus concentrations are substantially lower 

than measurements from polluted creeks in Sao Paulo, Brazil (geometric mean, ~2.7 focus-

forming units/L) (Mehnert & Stewien, 1993). It is reasonable that the clear source water in the 

Lifestraw RCT site would have lower pathogen concentrations than the above water sources, 

many of which were from polluted urbanized environments. 

Measuring viable pathogen concentrations in drinking water (and other exposure routes) in 

several epidemiological studies would increase the accuracy and precision of risk estimates, as 

indicators of fecal contamination (e.g., coliform bacteria or E. coli) correlate poorly with 

presence or concentrations of actual pathogens (American Water Works Association, 1999; 

Leclerc et al., 2002; Toranzos et al., 1988). 

3.5.2. Calibration of microbial risk assessment models  

Microbial risk models, like many environmental models, can never be fully validated 

(Oreskes et al., 1994). However, they can be confirmed through a calibration process using 

epidemiological data. We present a framework that first calibrates using epidemiological data, 

and second estimates risks under differing counterfactual scenarios. The calibration process 
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transforms uninformed priors to informed posteriors by constraining the model using the 

epidemiological outcome data from the Lifestraw RCT. The low percentage of calibration runs 

that were consistent (<0.3%) indicates that the trial data imparted substantial information to the 

model by constraining the acceptable parameter space. Source water pathogen data would be 

useful to further calibrate the model for the Congo field site.

Risk models informed by epidemiological data are powerful tools to generalize beyond the 

context in which epidemiological studies are conducted. Models can be used to inform study 

design and intervention strategies; epidemiological studies can calibrate these models. Few 

published examples take this approach, but see: (J. J. Kim et al., 2007; Tuite et al., 2010). The 

framework provided here can facilitate such future research activities. Results from our 

examination of HWT field trials indicate that compliance and pathogen concentrations in source 

water are particularly important processes to characterize. Data from these processes would 

enhance the calibration step, providing the opportunity to describe other unobserved aspects of 

the system. Additionally, pathogen measurements from other environmental sources (e.g., hands, 

food, feces) would facilitate the extension of our model system to consider transmission by 

multiple environmental pathways (Li et al., 2009); such transmission models would allow 

investigation of interdependency of multiple transmission routes, and ultimately multiple 

interventions. 

Although additional data on pathogen concentration and compliance and the extension to 

considering transmission are important steps forward in informing intervention strategies, our 

analysis provides the important and robust conclusion that effectiveness is highly sensitive to 

compliance, suggesting that trials of household level interventions should measure compliance as 

carefully and as effectively as possible. Compliance guidelines should be developed for HWT 

interventions, in addition to the microbial reduction guidelines for HWT devices recently 
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published by WHO (Sobsey & Joe Brown, 2011).
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4. THE JOINT EFFECTS OF EFFICACY AND COMPLIANCE IN HOUSEHOLD 

WATER TREATMENT EFFECTIVENESS

This chapter consists of a manuscript and its supplementary material that has been peer-

reviewed and accepted for publication. It has been reformatted and reorganized:

Enger, K.S., Nelson, K.L., Rose, J.B., Eisenberg, J.N.S. The joint effects of efficacy and 

compliance: a study of household water treatment effectiveness against childhood diarrhea. 

Publication forthcoming in the journal Water Research.

4.1. Abstract

The effectiveness of household water treatment (HWT) at reducing diarrheal disease is 

related to the intrinsic efficacy of the HWT method at removing pathogens, how people comply 

with HWT, and the relative contributions of other pathogen exposure routes. Although many 

HWT methods are efficacious at removing or inactivating pathogens, their effectiveness within 

actual communities is decreased by imperfect compliance. However, the quantitative relationship 

between compliance and effectiveness is poorly understood. To assess the effectiveness of HWT 

on childhood diarrhea incidence via drinking water for three pathogen types (bacterial, viral, and 

protozoan), a quantitative microbial risk assessment (QMRA) model was developed. The model 

allowed examination of the relationship between log10 removal values (LRVs) and compliance 

with HWT for scenarios varying by: baseline incidence of diarrhea; etiologic fraction of diarrhea 

by pathogen type; pattern of compliance; and size of contamination spikes in source water. 

Benefits from increasing LRVs strongly depend on compliance. For perfect compliance, 

diarrheal incidence decreases as LRVs increase. However, if compliance is incomplete, there are 

diminishing returns from increasing LRVs in most of the scenarios considered. Higher LRVs are 

more beneficial if: contamination spikes are large; contamination levels are generally high; or 

119



some people comply perfectly. The effectiveness of a HWT intervention at the community level 

may be limited by low compliance, such that the benefits of high LRVs are not realized. Patterns 

of compliance with HWT should therefore be measured during HWT field studies and HWT 

dissemination programs. Studies of pathogen concentrations in a variety of developing-country 

source waters are also needed. Guidelines are needed for measuring and promoting compliance 

with HWT, in addition to recently published WHO HWT efficacy guidelines. 

4.2. Introduction

An effective intervention can be defined as one that reduces disease (i.e., is efficacious) 

and one that people use (i.e., they comply). For example, a drug or vaccine must be protective, 

and people must take the drug or receive the vaccine; contaminated water must be correctly 

treated, and people must drink the treated water. Both efficacy and compliance must be evaluated 

when assessing the ability of an intervention to reduce illness; both are dynamic factors that can 

vary over time. Household water treatment (HWT) interventions are an interesting example that 

illustrates these two factors, where pathogen removal characterizes efficacy and behavior 

characterizes compliance. This chapter examines the joint effects of 1) pathogen removal by a 

HWT device, and 2) the degree to which communities use the device. It focuses on the protective 

effects of HWT against diarrhea in developing countries, a leading cause of morbidity and 

mortality (Kosek et al., 2003).

Household water treatment (HWT) is a common strategy for reducing diarrhea in 

developing countries. HWT technologies include chlorination, filtration, solar disinfection 

(SODIS), and boiling. Systematic reviews of field trials suggest that HWT is effective in 

preventing diarrhea (B. F. Arnold & Colford, 2007; T. Clasen, I. G. Roberts, et al., 2009). 

However, lack of blinding and publication bias are important issues in the HWT literature that 

may exaggerate effectiveness (Schmidt & Cairncross, 2009; Waddington et al., 2009; Hunter, 
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2009); see also pages 17 and 65. 

Antimicrobial effectiveness of HWT is commonly measured by log10 reduction values 

(LRVs) from laboratory testing. Such tests use indicator organisms to represent the three main 

classes of waterborne pathogens: viruses, bacteria, and protozoan cysts. LRVs are a common 

metric for assessing different HWT methods (Sobsey & Joe Brown, 2011; Sobsey et al., 2008). 

The United States standard for HWT “microbiological water purifiers” is LRVs of 6 for bacteria 

(99.9999% inactivation), 4 for viruses, and 3 for protozoa (USEPA, 1987). The World Health 

Organization (WHO) recommends that “highly protective” devices have LRVs of 4 for bacteria, 

5 for viruses, and 4 for protozoa (Sobsey & Joe Brown, 2011); see also Table 2.2, page 65. The 

WHO recommendations use a quantitative microbial risk assessment (QMRA) assuming perfect 

compliance and an acceptable risk level of 10-6 disability-adjusted life-years (DALYs) for 

diarrheal disease from each pathogen type (Sobsey & Joe Brown, 2011). 

In contrast, compliance, the extent to which persons (or a population) use a HWT method, 

is often poorly defined and poorly measured. Compliance (sometimes referred to as adherence) 

has many dimensions. Individuals might reject a HWT method because of cost, difficulty using 

HWT, or taste of treated water. Well-established theory regarding adoption of new technologies 

indicates that 10%-20% of a community will not use a new technology, even after acceptance by 

most of the community (E. M. Rogers, 2003). Furthermore, preventive practices (such as HWT) 

that require consistent individual effort to reduce the probability of an adverse effect have 

difficulty spreading. This is because the benefit (e.g., bouts of diarrhea averted) is a ‘non-event’ 

that is distant in time from adopting the practice; therefore, the benefit gained is not obvious to 

the user (E. M. Rogers, 2003). HWT devices might simultaneously be used frequently and 

inconsistently. For example, someone might drink treated water at home, but untreated water 
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while working. During a HWT field trial in rural Congo, nearly all households sometimes drank 

untreated water (Boisson et al., 2010). 

Although the variable and incomplete nature of compliance is widely recognized, it is often 

unmeasured or incompletely measured by field trials. A review of 30 relatively well-conducted 

field trials of water quality interventions found that 7 did not report compliance, and 9 measured 

compliance by “occasional observation” only (T. Clasen, I. G. Roberts, et al., 2009). 

Furthermore, consumption of treated water was never directly measured (T. Clasen, I. G. 

Roberts, et al., 2009). Studies that report compliance find that communities rarely use HWT 

methods 100% of the time. For example, a meta-analysis of HWT chlorination studies indicated 

a median of 78% of samples having detectable free chlorine (range 36-100% over 12 studies) (B. 

F. Arnold & Colford, 2007). 

Compliance is difficult to measure and is subject to Hawthorne effects (where people's 

behavior changes because they know that they are being observed) and other biases. Participants 

in a trial might report that they use the intervention more frequently than they actually do. 

Compliance might increase during a trial because study personnel remind people to use HWT 

(deliberately or not). Field trials over longer periods show lower HWT effectiveness against 

diarrhea; decreasing compliance over time is one explanation (Hunter, 2009). It is particularly 

difficult to determine the amount of untreated water that HWT users consume outside the home. 

Despite not being well measured, compliance clearly influences HWT effectiveness, 

because HWT can only prevent diarrhea if people use it (Duflo et al., 2007). Field measurements 

of LRVs tend to be lower than laboratory-measured LRVs for many reasons, such as differing 

water quality or suboptimal maintenance of HWT devices (Sobsey et al., 2008). Nonetheless, the 

benefits from HWT might be eroded by slight noncompliance. For example, a risk assessment of 

diarrheal infection from intermittent treatment by a Ugandan water treatment plant estimated that 
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water treatment failure for one day per year increased the annual probability of enterotoxigenic 

Escherichia coli (ETEC) infection via drinking water from 0.001 to 0.1 (Hunter et al., 2009). 

The relationship between compliance and LRVs (which measure efficacy) can be 

illustrated mathematically:

d = u(1 - c) + uc10-L (4.1)

where d is the dose of pathogens consumed, u is pathogens per liter of untreated water, c is 

compliance (the proportion of drinking water treated), L is the LRV of the HWT method, and one 

liter of water is consumed. Using equation 4.1 assuming that source water contains 10,000 

pathogens per liter, 5 LRVs of pathogens are inactivated, and 1% of drinking water is untreated, 

then 100 pathogens are ingested. For LRVs of 4, 3, 2, and 1, the numbers of pathogens consumed 

are, respectively: 101, 110, 199, and 1090. The dose (and therefore the infection risk) is very 

similar for LRVs of 5, 4, and 3 (100 to 110 pathogens), which leads to the hypothesis tested in 

this chapter: incomplete compliance results in marginal reductions in diarrheal disease as LRVs 

increase. 

4.3. Materials and methods

To test the hypothesis, a QMRA model was used to simulate waterborne transmission of 

diarrheal infection (bacteria, protozoa, and viruses) in children aged less than five years. This 

model was based on the model in chapter 3 (Enger et al., 2012) that simulated a randomized 

controlled trial of the LifeStraw® Family filter (LFF; a HWT device) in rural Congo (Boisson et 

al., 2010). The model was programmed in MATLAB 7.12 and Octave 3.2; results were analyzed 

with R 2.11. The model only considered diarrhea transmitted by drinking water, omitting other 

transmission routes (e.g., contaminated food, objects, or hands). Parameter values for the model 

are summarized in chapter 7 and Table 7.1 (page 230).

Four important concepts in the model are: compliance, baseline incidence, etiologic 
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fractions, and short-term contamination spikes. They are described in the following paragraphs. 

4.3.1. Compliance  

Compliance with HWT within a community was modeled considering three groups of 

children: 1) children who exclusively consumed treated water (“perfect compliance”); 2) 

children who never consumed treated water (“no compliance”); and 3) children who consumed 

fixed proportions of treated and untreated drinking water (“partial compliance”). Overall 

compliance (c) was calculated as follows:

c = ( 1 - ( a + n ) )p + a (4.2)

where a is the proportion of children who always use HWT, n is the proportion of children 

who never use HWT, and p is the proportion of water treated by partial compliers. For a given 

value of c, three types of compliance at the community level were defined: α) c children with 

perfect compliance and the remainder with no compliance; β) c/2 children with perfect 

compliance, ( 1 – c )/2 children with no compliance, and the remainder partially comply, treating 

a fraction c of their daily water intake (Table 4.1); γ) all children partially comply by treating a 

fraction c of their water. If c = 1 or 0, only compliance type α is possible.

Table 4.1. Compliance among individuals in each model run, given compliance type β

Overall 
compliance 

(a proportion)

Proportion of simulated children who are: Proportion of 
water treated by 
partial compliers

Perfect 
compliers

Noncompliers
Partial 

compliers

1 1 0 0 Nonapplicable

0.99 0.495 0.005 0.5 0.99

0.95 0.475 0.025 0.5 0.95

0.8 0.4 0.1 0.5 0.8

0 0 1 0 Nonapplicable
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4.3.2. Baseline incidence and etiologic fraction  

To further generalize the results, differences in the baseline incidence of diarrhea and the 

relative contributions of viruses, bacteria, and protozoa to diarrheal incidence (etiologic 

fractions) were considered. The average incidence categories were: 0 – 2 (low); 2 – 6 (medium); 

and 6 – 12 (high) episodes per child-year (Kosek et al., 2003). Three sets of etiologic fractions 

were used (Table 4.2), based on reviews of etiologic studies of childhood diarrhea (Lanata & W. 

Mendoza, 2002; Ramani & Gagandeep Kang, 2009); the determination of these etiologic 

fractions is discussed in detail on page 129.

Table 4.2. Criteria for the calibration step of the QMRA model

Description
Midpoint and range of etiologic fractions for childhood diarrhea

Bacteria Protozoa Viruses

Etiologic fractions A. 
High bacteria, medium 
protozoa, low viruses

55%
47.5 to 62.5%

30%
22.5 to 37.5%

15%
7.5 to 22.5%

Etiologic fractions B. 
High bacteria, medium 
viruses, low protozoa

55%
47.5 to 62.5%

15%
7.5 to 22.5%

30%
22.5 to 37.5%

Etiologic fractions C. 
Bacteria slightly 
predominating over 
protozoa and viruses

40%
32.5 to 47.5%

30%
22.5 to 37.5%

30%
22.5 to 37.5%

The incidence ranges were: low, 0-2 episodes per child-year; medium, >2-6 episodes per child-
year; and high, >6-12 episodes per child-year.

4.3.3. Short-term contamination spikes  

Measurements from surface waters indicate that concentrations of indicator organisms are 

highly variable (Boehm, 2007; K. Levy, A. E. Hubbard, K. L. Nelson, et al., 2009). The 

variability of pathogen concentrations is expected to be similar or greater, and abnormally large 

spikes of contamination might occur occasionally. Spikes of pathogen concentrations were 

simulated on random days, assuming that each spike lasted exactly one day, there were n spikes 
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per year, and the spike height was x fold higher than the mean baseline concentration on days 

lacking a spike. For this analysis, x = 1 (no spikes), 10, 103, or 105, and n = 5. To aid comparison 

between spike scenarios,  the mean number of pathogens in t daily 1-liter samples of source 

water was held constant regardless of spike height: b0 is the mean baseline concentration in a 

scenario without spikes, and bs is the mean baseline concentration in a scenario with spikes. 

Solving for bs gave the appropriate mean baseline concentration during spike scenarios:

b0t = bs(t - n) + nxbs     →     bs = b0t / (nx + t - n) (4.3)

4.3.4. Calibration step  

The simulation was implemented in two steps: calibration and estimation. The calibration 

step simulated transmission of diarrheal infection by drinking water in the absence of HWT, and 

is described in detail below. It estimated concentrations of bacteria, viruses, and protozoa that 

were consistent with: 1) assumptions of low, medium, or high incidence of diarrhea; and 2) 

assumptions about the relative importance of these pathogen types to diarrheal etiology (Table 

4.2, page 125). The estimation step used these pathogen concentrations to estimate the risk of 

diarrhea under various HWT scenarios, defined by different LRVs and different levels of 

compliance; estimation is described in more detail on page 130, in section 4.3.5

The calibration step modeled waterborne diarrheal infection and disease in a simulated 

community prior to the introduction of an HWT intervention. The calibration step was run 12 

times (3 incidence levels × 4 spike heights) and each of these yielded 3 sets of pathogen 

concentrations (since there were 3 sets of etiologic fractions), for a total of 36 calibration 

scenarios. Each calibration step consisted of 100,000 model runs. Each model run began by 

randomly selecting a mean pathogen concentration for each of the three pathogen types 

independently. The pathogen concentrations in simulated drinking water were randomly drawn 
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daily from a gamma distribution, with the scale parameter determined by the mean pathogen 

concentration, and the shape parameter determined by the distribution of thermotolerant 

coliforms measured in source water from a rural area of the Congo (Boisson et al., 2010; Enger 

et al., 2012). The central 95% of that distribution spanned 1.4 log10. Therefore, concentrations 

could vary 25 fold from day to day, even in the absence of spikes.

Each calibration run followed 100 simulated children over 1 year with no HWT use. The 

output of each run yielded a community incidence of diarrheal disease and etiologic fractions for 

the three pathogen types. The mean pathogen concentrations used by a calibration run were 

retained for use in the estimation step if: 1) the incidence of diarrhea estimated from the model 

run fell into the appropriate range (Figure 4.1d); and 2) the proportions of diarrhea episodes 

attributable to bacteria, protozoa, or viruses fell into one of the three sets of etiologic fractions 

(Table 4.2, page 125; Figure 4.1e). Thus the calibration process yielded sets of pathogen 

concentrations consistent with 9 distinct calibration scenarios for each of the 4 spike scenarios, 

for a total of 36 separate calibration scenarios. 

127



Figure 4.1. Calibration results assuming medium incidence of diarrhea

See text immediately before & after this panel of charts for further explanation.
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For this analysis, calibration of the model required consideration of the largest possible 

ranges of three joint pathogen concentrations that could conceivably yield an incidence value in 

the desired range. Consequently, all calibration steps used ranges of pathogen concentrations that 

began at 0 and ended at an empirically determined concentration where the minimum incidence 

of diarrhea rose above the highest acceptable incidence value. The resulting distributions of 

pathogen concentrations that were consistent with the calibration process had negative skew 

(Figure 4.1f) because a scatterplot of randomly selected pathogen concentrations by incidence 

forms a gradually increasing band of points (Figure 4.1a, b, & c), and pathogen concentrations 

that fall within a narrow horizontal band are accepted. 

Determination of etiologic fractions

The etiologic fractions were obtained from a review (Lanata & W. Mendoza, 2002) of 266 

etiology studies of inpatients, outpatients, and communities, grouped by WHO subregion. Only 

community studies were considered because the inpatient and outpatient cases are a more severe 

subset of the full range of diarrhea cases in a given community. Furthermore, only studies from 

developing WHO subregions AfroD, AfroE, AmroB, and SearoD were considered, because those 

subregions had 5 or more community-based studies covering most major diarrheal pathogens 

(Salmonella, Shigella, Campylobacter, enterotoxigenic Escherichia coli [ETEC], 

enteropathogenic E. coli [EPEC], Giardia, Cryptosporidium, and rotavirus). When the pathogens 

were collapsed into the categories of bacteria, protozoa, and viruses, the four regions broadly 

agreed on the proportions of diarrhea cases attributed to these three categories. Among cases of 

diarrhea for which an etiologic agent was identified, bacteria predominated (60%), followed by 

protozoa (15-30%) and viruses (10-20%). However, the contribution of viruses was probably 

underestimated by Lanata and Mendoza (2002), since rotavirus was the only virus examined by 

the studies they reviewed. A more recent review (Ramani & Gagandeep Kang, 2009) of hospital-
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based studies of viral gastroenteritis in children in developing countries indicated that about 64% 

of cases were attributable to rotavirus (other viral gastroenteritides were attributed to 

caliciviruses, adenoviruses, and astroviruses, or had no etiology determined). Using this 

information to adjust the conclusions drawn from Lanata and Mendoza’s (2002) work, it is 

suggested that bacteria accounted for approximately 55% of episodes and protozoa and viruses 

each accounted for 15-30% of episodes, providing a basis for the ranges of etiologic fractions 

used for calibration (Table 4.2, page 125). 

4.3.5. Estimation step  

The estimation step modeled waterborne diarrheal infection and disease in a simulated 

community where a HWT intervention is being used. Each estimation scenario used marker 

pathogen concentrations from one of the 36 calibration scenarios, for 5000 simulated children 

over 50 years. Estimation scenarios were defined by the treatment efficacy of the device and the 

level of compliance. Specifically, combinations of three factors were used: 1) LRVs of the HWT 

device against all three pathogen types (1, 2, 3, 4, or 5); 2) overall compliance by the community 

(c = 1, 0.99, 0.95, 0.80, or 0); 3) type of compliance by the community (α, β, or γ; described in 

detail on page 124). An estimation step was run once for every possible combination of these 

three factors, for each of the 36 sets of pathogen concentrations from calibration. Each estimation 

step for a given scenario had 70 to 150 model runs. If a particular calibration step supplied more 

than 150 sets of pathogen concentrations, 150 sets were randomly sampled for use in the 

corresponding estimation scenarios. Incidences and incidence ratios (IRs) were determined for 

various combinations of compliance and device effectiveness; IRs were relative to scenarios in 

which no HWT was used.

4.3.6. Replication of the WHO model  

For comparison, the QMRA model from the WHO HWT recommendations (Sobsey & Joe 
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Brown, 2011) was replicated in R 2.11. The model was slightly modified to output incidence 

instead of DALYs, and its assumption of 94% immunity to rotavirus was eliminated, since the 

model developed in this chapter only considers young children. To obtain total diarrhea 

incidence from the WHO model, the bacterial, protozoan, and viral diarrhea incidences from its 

output were summed. 

4.4. Results

4.4.1. Calibration step  

Each calibration step (100,000 runs) yielded 70 to 1164 runs consistent with each of the 36 

calibration scenarios. An example of typical calibration output is shown in Figure 4.1 (page 128); 

if a run was consistent with the incidence criterion (Figure 4.1d), it was tested for consistency 

with pathogen mixtures A, B, or C (Figure 4.1e; Table 4.2, page 125). 

The resulting pathogen concentrations in untreated drinking water, as suggested by the 

model, are shown in Figure 4.2; without spikes, median estimates ranged from 1100 to 120,000 

bacteria/L, 0.06 to 1 protozoa/L, and 0.003 to 0.04 viruses/L (Figure 4.2a, b, and c). It is not clear 

whether these concentrations are reasonable because pathogen concentrations in source waters 

have seldom been measured in developing countries. These estimated concentrations (Figure 4.2) 

are generally lower than the few published measurements available from developing countries 

(Enger et al., 2012); see also chapter 3, page 116.

Baseline bacterial concentrations during spike scenarios were relatively insensitive to the 

size of the spike (Figure 4.2, a, d, g, and j). This was because the dose response functions for the 

three pathogen types are such that the probability of E. coli infection increased relatively slowly 

with log10 increases in dose, compared to Giardia or rotavirus (Figures 3.3 and 4.6, pages 99 and 

138). In addition, the morbidity ratio (probability of diarrhea, given infection) was much lower 
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(0.214) for bacterial infection, in contrast to protozoan (0.59) or viral (0.40) infection. Therefore, 

the maximum contribution to diarrheal morbidity was reached proportionally sooner for bacteria 

than for protozoa or viruses (note plateauing of the scatterplot in Figure 4.1a on page 128, 

compared with 4.1b and 4.1c). Since all three pathogen types were increased proportionally 

during a spike, the impact on overall diarrheal morbidity from protozoa and viruses was 

therefore larger during a spike.
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Figure 4.2. Mean baseline pathogen concentrations from calibration
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4.4.2. Estimation step  

Each estimation step consisted of 70 to 150 model runs, representing distributions of 

incidences and incidence ratios (IRs) of diarrheal disease given a particular scenario. The 

medians of all incidence distributions are shown in Figures 4.10-4.13, page 145. Figures 4.4-4.5 

and Figures 4.7-4.9 present subsets of those results for clarity, expressed as IRs.

Comparison with the WHO QMRA model

This model and the WHO model (Sobsey & Joe Brown, 2011) produced reasonably 

consistent estimates of diarrhea risk reduction, assuming 100% compliance (Figure 4.3). This 

occurred despite differing pathogens and parameter values in each model, as well as substantial 

differences in model structure (this model considers community-level risk; the WHO model 

considers individual risk). The WHO model (modified to assume no viral immunity) best 

resembled this model assuming high incidence. However, the WHO model did not account for 

repeated episodes of diarrhea in one year, hence its incidence could not be greater than one 

episode/child-year for each pathogen type. The WHO model indicated that bacteria contribute 

less childhood diarrhea than protozoa or viruses. This model assumed the opposite, based on 

reviews of childhood diarrheal etiology (Lanata & W. Mendoza, 2002; Ramani & Gagandeep 

Kang, 2009). Consequently, although the WHO model results were somewhat similar to the 

results presented here with respect to total incidence of diarrhea, they differed greatly in the 

contribution of particular types of pathogens. Furthermore, the WHO model does not account for 

repeated episodes of diarrhea. Therefore it cannot return incidences higher than 1 for each 

marker pathogen, and differs substantially from this model when the LRV is 0.
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Figure 4.3. Comparison with WHO model

Colors apply to symbols in the same way as lines; for example, bacterial diarrhea in the two 
models can be compared by comparing the red lines to the red symbols.

Effect of LRVs given imperfect compliance

If compliance slightly decreased to 99% and there were no pathogen spikes, this model 

predicted little or no additional benefit from LRVs above 3 in many scenarios (e.g., Figure 4.4). 

If compliance is 80%, there was little benefit from increasing LRVs beyond 2. This behavior was 

similar regardless of compliance type (), pathogen mixture (A, B, C), or incidence level 

(low, medium, high) (Figures 4.10-4.13, page 145).
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Figure 4.4. Effect of compliance with HWT on the incidence ratio of diarrhea, by LRV

Assuming medium incidence, compliance type β, no spikes, and pathogen mixture A. More 
scenarios are in section 4.4.3.

If pathogen spikes were included, the incidence ratio increased as spike height increases, 

for all LRVs (Figure 4.5). This effect was not due to an overall increase in incidence, because the 

model was calibrated to maintain the same incidence (baseline pathogen concentrations were 

also reduced to compensate for spike height; Equation 4.3). Rather, the increase in IR was due to 

the nonlinearity of the dose-response functions at high doses; during a large spike, reducing dose 

x-fold might only reduce risk by a factor less than x (Figure 4.6). Diminishing returns from LRV 

increases were still seen when spikes were introduced. Spikes 10 times above baseline gave 

similar results as no spikes (Figures 4.10-4.12, page 145).
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Figure 4.5. Effect of compliance and spikes on the IR of childhood diarrhea, by LRVs

Assuming medium incidence, compliance type β, and pathogen mixture A. More scenarios are in 
section 4.4.3.
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Figure 4.6. Effect of dose response function nonlinearity at high doses

Since dose response functions are linear when doses are relatively low, reducing dose by a factor  
x also reduces the probability of infection by x. If spikes were absent, the pathogen 
concentrations used in the model were generally in the linear region. However, at high doses 
(such as during spikes), reducing the dose by x might only reduce the probability of infection by 
some factor y, where y < x. For example, assuming medium incidence and spike height (sh) of 
1000, the daily dose of bacteria ingested during a spike was ~107(chart b). Reducing the dose by 
1 LRV, from 107 to 106, reduced the probability of infection by ~1/4. This effect was less marked 
for the other two pathogen types (charts c & d), but it is still present. See Figure 3.3 (page 99) 
for a semilog plot of chart a.
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Compliance type changed the relationship between LRVs, IR, and spikes (Figure 4.7). 

When there were no spikes, the results for compliance types α, β, and γ were similar. However, 

as spike height increased, α had the lowest IRs and γ had the highest IRs. Figure 4.7 also shows 

additional benefit from LRVs 4 and 5 for the highest spike scenario (105-fold baseline). The 

benefits were greatest for compliance type α, in which children either complied perfectly or not 

at all. The benefits were smaller but still evident for β, in which children complied perfectly, 

partially, or not at all (see also Table 4.1, page 124). In contrast, under γ every child complied 

partially, always consuming some untreated water.

Figure 4.7 Incidence ratio of diarrhea by compliance level & type, spikes, and LRVs

Assuming medium incidence, compliance of 0.8, and pathogen mixture A. See page 124 for a 
detailed description of compliance types.

Benefits from higher LRVs was more pronounced under conditions of high incidence, large 
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spikes, compliance type α, and high compliance (Figure 4.8). The benefits decreased as 

compliance decreased.
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Figure 4.8. Effect of compliance on IR if large contamination spikes occur

Assuming medium incidence, compliance type α, and pathogen mixture C.
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There is little information available regarding pathogen concentrations in source waters in 

developing countries; this is why the model was calibrated to obtain these pathogen 

concentrations in the first place. If the pathogen concentrations obtained from calibration are too 

low, that might make high-LRV HWT appear less effective than it actually was. This was 

evaluated with additional estimation runs using pathogen concentrations obtained by calibrating 

to high incidence (the three rightmost panels of Figure 4.2, page 133), and multiplying them by 

10 or 100. An example is shown in Figure 4.9, and all such runs are shown in Figure 4.14 (page 

150). Diminishing returns from increasing LRVs remained apparent. However, LRVs of 4 

sometimes represented an improvement over LRVs of 3, particularly if incidence was high 

Figure 4.14b) or if compliance was 99%.
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Figure 4.9. Effect of compliance on IR with extreme pathogen concentrations

Estimation results using mean pathogen concentrations 100-fold the calibrated values for high 
incidence. Pathogen mixture A, calibration type β. 

Pathogen mixture C tended to give lower IRs than A or B if incidence was high or spike 

height was high (Figures 4.10-4.12). As incidence was increased from low to high, the effects of 

pathogen mixture and compliance type increased.

4.4.3. Charts of median incidences from all estimation scenarios  

Median incidence values from all estimation scenarios are shown below in Figures 4.10-

4.14. Figures 4.4, 4.5, 4.7, and 4.8 above are subsets of Figures 4.10-4.12, expressed as incidence 

ratios (IRs) and charted as lines. Figure 4.13 is similar, but uses various combinations of LRVs 

for bacteria, viruses, and protozoa that are consistent with recent WHO guidelines (Sobsey & Joe 
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Brown, 2011) and USEPA guidelines for HWT (USEPA, 1987). Figures 4.10-4.14 display all 

combinations of overall compliance (0, 0.8, 0.95, 0.99, 1), compliance type (α, β, γ), and 

pathogen mixture (A, B, C) for a particular combination of incidence levels (low, medium, high) 

and spike scenarios (5 spikes per year that are 1×, 10×, 1000×, or 100,000× baseline mean 

pathogen concentration). Each symbol represents the median value of a distribution of estimation 

results from a scenario defined by a particular combination of these variables. Note that if 

compliance equals 0 (complete noncompliance, equivalent to LRV=0) or 1 (perfect compliance), 

then only compliance type α is possible.
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Figure 4.10. Detailed estimation results (low incidence)
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c. Low incidence,                                      d. Low incidence,
5 spikes/year 1000x baseline             5 spikes/year 10,000x baseline

a. Low incidence,                                      b. Low incidence,
0 spikes/year 1x baseline                      5 spikes/year 10x baseline



Figure 4.11. Detailed estimation results (medium incidence)
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a. Medium incidence,                                b. Medium incidence,
0 spikes/year 1x baseline                      5 spikes/year 10x baseline

c. Medium incidence,                                d. Medium incidence,
5 spikes/year 1000x baseline             5 spikes/year 10,000x baseline



Figure 4.12. Detailed estimation results (high incidence)
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c. High incidence,                                    d. High incidence,
5 spikes/year 1000x baseline             5 spikes/year 10,000x baseline

a. High incidence,                                     b. High incidence,
0 spikes/year 1x baseline                      5 spikes/year 10x baseline



Estimation steps were also run for LRV values that were consistent with existing 

recommendations from the WHO and the USEPA (Sobsey & Joe Brown, 2011; USEPA, 1987) 

(Figure 4.13). The recommendations consist of sets of three LRVs: bacterial, viral, and 

protozoan. These runs did not include spikes. They were divided into 3 groups: I) complete 

noncompliance, i.e., 0:0:0; II) LRVs consistent with the WHO interim target, where two of the 

three marker pathogens met the WHO protective type but the third had an LRV of 0; III) as II, 

but the third marker pathogen had an LRV of 1; IV) a series of LRVs including the WHO 

protective target of 2:3:2 and the WHO highly protective target of 4:5:4; and V) the USEPA 

standard of 6:4:3. The WHO protective target was generally more protective than the WHO 

interim targets, but there was little difference between the WHO protective target (2:3:2), the 

WHO highly protective target (4:5:4), and the USEPA target (6:4:3) unless compliance was 95% 

or higher.
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Figure 4.13. Detailed estimation results, WHO/EPA recommended LRVs
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Figure 4.14. Detailed estimation results, extremely high baseline pathogen concentrations

4.4.4. Assessing impact of high LRVs: significance testing & classification trees  

The Wilcoxon rank sum test was used to assess whether incidence significantly differed 

depending on LRVs. This was done by considering all scenarios in Figures 4.10-4.12 except 

those with overall compliance of 0 or 1, and comparing pairs of scenarios that had identical 

compliance levels, compliance type, etiologic fractions, and spike height, but had differing LRVs 

(3 vs. 5 for all  pathogen types). The Wilcoxon test detected a difference between the two 

incidence distributions at p < 0.05 in 153 of the 324 comparisons (47.2%). However, because a 

statistically significant difference does not necessarily mean an important difference, two 

measures of importance (which were chosen a priori) were further considered: an incidence 

difference (ID) > 0.2 diarrheal episodes per child-year, and an incidence ratio (IR) < 0.9. 
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Classification trees were then constructed (rpart package version 3.1. for R) to describe which 

scenarios showed improvement in diarrheal incidence if LRVs were increased from 3 to 5.

The ID criterion was more restrictive (fewer scenarios met it than the IR criterion) and 

therefore the tree was simpler (Figure 4.15). Most of the scenarios meeting the criterion (32/43) 

had a spike height of 100,000, and those also had the following 2 characteristics: 1) medium or 

high incidence; and 2) some perfect compliers in the community (i.e., compliance types α or β). 

Of the remaining 11 scenarios that met the criterion but had a spike height < 105, all of these had 

high incidence and a spike height of 1000; further, 10 of them were compliance types α or β. In 

addition, 18 of the 43 scenarios that met the criterion had an overall compliance of 99%.

The IR tree was more permissive (94/324 scenarios met the criterion) and the tree was 

structured somewhat differently (Figure 4.16). However, 71/94 had spike heights of 1000 or 105, 

and 61/94 had overall compliance of 99%. As with the ID tree, compliance types α and β tended 

to meet the criterion more frequently than γ, and higher incidence also met the criterion more 

frequently than medium or low incidence.
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Figure 4.15. Classification tree for incidence difference (ID) criterion
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Figure 4.16. Classification tree for incidence ratio (IR) criterion
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4.5. Discussion

The model developed in this chapter indicated that the risk of diarrhea decreases linearly 

(on a log-log scale) with pathogen removal by HWT under perfect compliance conditions. This is 

a direct consequence of the fact that the dose response relationships are linear in the range of 

pathogen doses that individuals usually receive (Figure 4.6, page 138). These results are 

somewhat consistent with those reported in the WHO guidelines on health-based targets for 

HWT devices (Sobsey & Joe Brown, 2011). Although the model used in this analysis has a 

similar QMRA approach as the WHO model, there are some important distinctions. For example, 

the three indicator pathogens used here were pathogenic E. coli, rotavirus, and Giardia, whereas 

the WHO guidelines used Campylobacter, rotavirus, and Cryptosporidium. Time-varying 

pathogen concentrations were calibrated to reflect realistic diarrhea incidence levels, as well as 

realistic etiologic fractions of pathogens. The WHO guidelines assumed constant concentrations 

of the pathogens in sewage, and that drinking water was contaminated with 0.01% sewage. Most 

importantly, this model relaxed the assumption of perfect compliance, examining the joint effects 

of varying compliance and LRVs. Assuming imperfect compliance, its results differed greatly 

from the WHO model, particularly for higher LRVs.

For many of the scenarios with imperfect compliance, diminishing health improvements 

from increasing LRVs were observed; similar conclusions from a differently structured QMRA 

model were published recently (Joe Brown & T. Clasen, 2012). Specifically, when the variation 

in pathogen concentration was limited to 25 fold (i.e., no spikes) and compliance was 99%, little 

additional diarrhea was prevented for LRVs above 3 (Figure 4.4, page 136). Assuming 80% 

compliance, LRVs above 2 prevented little additional diarrhea. If spikes occurred and some of 

the population complied perfectly (compliance types α or β), LRVs above 3 sometimes prevented 

additional episodes of diarrhea. 
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These results indicate the importance of including compliance in risk estimations and in 

policy development, and also emphasize the importance of understanding the different 

dimensions of compliance. For example, some people may never comply, others may comply 

when they are home but not when they are away from home, and yet others may comply only 

during periods of perceived high risk. These simulations suggest that, given a particular overall 

compliance level within a community (i.e., a proportion of person-time spent complying), HWT 

scenarios that include more perfectly complying individuals prevent more diarrhea. Although the 

implications of these different dimensions of compliance are not well understood, it is clearly 

difficult to obtain long-term, high compliance with household interventions in developing 

countries (Makutsa et al., 2001; B. Arnold et al., 2009; Luby et al., 2009). 

Difficulty in achieving high compliance with intervention strategies also extends to 

sanitation and hygiene interventions. Handwashing compliance is incomplete in both 

industrialized (Bischoff et al., 2000) and developing countries, especially with soap (V. A. Curtis 

& Cairncross, 2003). Despite the obvious importance of sanitation in removing pathogens from 

the environment and breaking the fecal-oral cycle of transmission, approximately half the 

population of southern Asia and sub-Saharan Africa openly defecates or has an unimproved 

latrine (World Health Organization & UNICEF, 2010). Even if latrines are available, they might 

not be used consistently (B. F. Arnold et al., 2010; Banda et al., 2007; Montgomery et al., 2010).

4.5.1. Information needed to inform models of diarrheal infection transmission  

Although many of the modeled scenarios had diminishing health improvements beyond 3 

LRVs (and sometimes beyond 2 LRVs), scenarios were identified where LRVs above 3 were 

beneficial (e.g., Figures 4.7 and 4.8, page 139). Understanding which scenarios are most realistic 

requires a better characterization of the variability in pathogen concentrations in source waters, 

the relative proportions of pathogens in contaminated water, and the extent to which these 

155



pathogens are also transmitted through other environmental pathways. These issues are further 

discussed below. 

Pathogen concentrations in source waters

Little information is available on the variability of pathogen concentrations in source 

waters. Even point measurements of pathogen concentrations are scarce (Enger et al., 2012), and 

it is unclear what reasonable spike concentrations would be. However, contamination spikes are 

plausible due to various mechanisms, including stormwater runoff, defecation directly into 

source waters, or washing of contaminated items like diapers. In the absence of spikes, we 

assumed that the daily concentration of pathogens varied over a 25-fold range, consistent with 

measurements of thermotolerant coliforms in source water in rural Congo (Boisson et al., 2010) 

and E. coli in a rural Ecuadorian stream (K. Levy, A. E. Hubbard, K. L. Nelson, et al., 2009).

Etiology of diarrheal disease

The contribution of different pathogens to diarrheal disease is also uncertain and depends 

upon ecology, sociology, and infrastructure. Published etiologic fractions include diarrhea from 

all transmission routes, not only drinking water; pathogen profiles for different routes, for 

example food versus water, will differ. In addition, the true distribution of etiologies may differ 

from the distribution of reported etiologies. For example, certain bacteria may be more 

frequently identified because they are easier to culture. For this analysis, three broad mixtures of 

etiologic fractions were chosen, based on the most comprehensive information available. Future 

research, particularly from the Global Enterics Multicenter Study (University of Maryland, 

2012), will further clarify diarrheal etiology.

Routes of transmission other than drinking water

Finally, this model only accounts for infection via drinking water. Additional routes of 

transmission (e.g., contaminated hands, objects, or food) operate in underdeveloped 
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communities. Considering these routes would decrease the apparent effectiveness of a HWT 

device, since these routes would affect users and nonusers of HWT alike. This model also does 

not account for infection transmission between individuals. Effective HWT would reduce the 

number of infected people, thus reducing pathogen shedding, thus indirectly preventing infection 

in people not using HWT. This would increase the apparent effectiveness of HWT, assuming 

imperfect compliance (Halloran et al., 1991). Although examining effectiveness in the context of 

multiple transmission pathways is important, it probably would not affect our general 

conclusions about the joint effects of compliance and LRVs on the effectiveness of HWT 

interventions.

4.5.2. Conclusions  

Recent WHO guidelines (Sobsey & Joe Brown, 2011) provide an important framework for 

evaluating the health benefits of HWT devices resulting from their LRVs. However, the 

simulation results presented here indicate that prevention of diarrhea byHWT is limited by 

compliance. Thus, the classification system in the WHO guidelines incompletely informs HWT 

users and promoters regarding effectiveness of devices if < 100% of drinking water is treated. 

For promoters of HWT, these simulation results emphasize that facilitating consistent, sustained 

use is extremely important when deciding which devices to use for a program, in addition to the 

antimicrobial efficacy of the device.

HWT cannot greatly reduce transmission of diarrheal disease by drinking water unless 

compliance is high and sustained.  More research is necessary to understand the full complexities 

of compliance, to explicitly measure compliance in intervention trials, and to incorporate 

compliance in development policy. This chapter provides a modeling framework that examines 

the impact of compliance on the effectiveness of interventions, as an initial step toward more 

complete consideration of compliance by researchers, policymakers, and development workers. 
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5. TRANSMISSION MODEL OF DIARRHEAL INFECTION

5.1. Abstract

Although quantitative microbial risk assessment (QMRA) models are useful tools for 

describing infectious disease risks in many different circumstances, they ignore two important 

characteristics of particular importance for diarrheal infections in developing countries: 1) 

secondary transmission effects, and 2) multiple transmission routes. 

To further investigate whether: 1) diminishing returns are seen with increasing HWT log10 

reduction values (LRVs) under incomplete compliance; and 2) whether the pattern of compliance 

within a community affects diarrhea prevention, an environmental infection transmission system 

(EITS) model was constructed. The model incorporated household structure, multiple routes of 

transmission (including drinking water, environmental exposure, and contacts between 

households), and pathogen shedding by infected individuals. It also included simultaneous 

transmission of bacterial, viral, and protozoan pathogens. Although the model can simulate the 

effects of additional interventions, including sanitation, handwashing, and safe storage of treated 

drinking water, this work concentrates upon HWT only.

A calibration step determined values for seven parameters in the EITS model that were 

consistent with high diarrheal incidence in developing countries. Subsequently, those parameter 

values were reused in estimation steps that applied HWT interventions with varying levels of 

antimicrobial effectiveness and varying patterns of compliance to simulated communities. The 

results resembled previous conclusions from QMRA models: 1) LRVs above 3 seldom prevent 

additional diarrhea, and 2) the pattern of compliance alters HWT effectiveness, even if overall 

compliance was held constant. In contrast to the QMRA models, the EITS model indicated that 

LRVs above 3 prevented little additional diarrhea, even when compliance was perfect.
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5.2. Introduction

Infection transmission models have been often been used to better understand infectious 

diseases, with the goal of improving the health of the population by controlling or stopping 

transmission (Keeling & Rohani, 2008). However, transmission models have seldom been 

applied to diarrheal disease in developing countries, a particularly severe and widespread public 

health problem. Although it is clear that clean drinking water, effective sanitation, and hygienic 

behavior can effectively control diarrheal infections, the best ways to achieve these goals are far 

from clear, given the serious resource constraints in developing countries. 

Modeling systems of transmission of diarrheal infections would allow simulation of 

various interventions, providing insight on which interventions, or combinations of interventions, 

might yield the largest reductions in diarrheal disease. Environmental infection transmission 

system (EITS) models (Li et al., 2009) are particularly suited to modeling diarrheal infections 

because they can explicitly describe the diverse pathways that pathogens can take through the 

environment (e.g, Figure 2.7, page 77). Furthermore, substantial information is available 

regarding pathogen inactivation or removal by various interventions (Table 2.1, page 64), which 

can be simulated in an EITS model by removing the appropriate proportion of pathogens from 

particular compartments at appropriate times.

The QMRA model in chapter 4 described diminishing returns from increasing household 

water treatment (HWT) log10 reduction values (LRVs) when compliance with HWT is imperfect. 

However, that model did not account for any secondary transmission effects of HWT. If an 

intervention is used by some households in a community, those households will benefit because 

some infections will be prevented; however, because complying households have fewer 

infections, they release fewer pathogens into the environment, and consequently non-complying 
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households benefit also. These secondary transmission effects would prevent additional disease 

beyond what was measured in the QMRA model in chapter 4. They might also affect the point at 

which diminishing returns are seen from increasing LRVs when compliance is imperfect. 

The primary goal of the EITS model described below was to determine whether increasing 

LRVs from HWT still leads to diminishing returns given imperfect compliance, in the context of 

a model with secondary transmission and multiple transmission routes. In addition, the EITS 

model is well-suited to exploring additional questions (which time considerations did not permit 

including in this chapter), such as:

• The nature of interaction between two joint interventions: under what circumstances is it 

positive, negative, or absent? Previously published research (see page 46 for a summary) 

suggests two hypotheses: 

◦ Sanitation usually interacts positively with other interventions.

◦ Two non-sanitation interventions applied jointly usually interact negatively.

• How much diarrhea prevented by an intervention is due to immediate effects on those 

who use it, and how much is due to indirect effects, since healthier people shed fewer 

pathogens, reducing risk to the community as a whole?

5.3. Materials and methods

5.3.1. General description of the model  

An EITS model was programmed using MATLAB software (version 7.13, R2011b) that 

simulated a small isolated community in a developing country (parameter values for the model 

are summarized in chapter 7 and Table 7.1, page 230). The community consisted of 200 

households with an average of 5 people per household. The community gathered their drinking 

water from a surface water source (Figure 5.1). The system had four types of compartments 
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containing pathogens: 1) the land where the community resided; 2) the surface water from which 

the community obtained drinking water; 3) stored drinking water within each household; and 4) 

the household environment, which represented the hands of household members as well as 

fomites and surfaces within the household. Since each household (Figure 5.2) contained a stored 

drinking water compartment and a household environment compartment, and there was only one 

land compartment and one surface water compartment in the community, each model run 

contained 2h + 2 distinct compartments, where h is the number of households in the community. 

Each compartment contained pathogens of three distinct types: bacteria, viruses, and protozoa. 

Each household contained variable numbers of people, who could be either young children less 

than five years old (18% of the population), or children/adults aged 5 years or more (82% of the 

population). These two types of people are called 'children' and 'adults' for brevity. The only 

source of pathogens was infected people, who contaminated the community's land and their 

household environment through defecation. Pathogens gradually moved from land into surface 

water; randomly scheduled rainfall events increased the rate of this transfer. Households were 

randomly connected with one another, allowing exchange of pathogens between households 

(Figure 5.1). All pathogens were attenuated exponentially over time in all compartments, 

representing a variety of processes that can remove pathogens completely from the system (e.g., 

inactivation; sedimentation; transport in flowing water; percolation below the soil surface; etc.).
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Figure 5.1. Simplified overview of the simulated community

Each simulated community contained about 200 households. 

Each household contained a group of people and two compartments for pathogens: 1) a 

container for stored water, and 2) a more abstract household environment compartment 

representing pathogens that were available for ingestion on hands, objects, and surfaces (Figure 

5.2). Stored water was collected at the beginning of each day from the community's surface 

water; the stored water could subsequently be contaminated by pathogens in the household 

environment. Four types of interventions could operate: household water treatment (HWT) 

destroyed pathogens in the stored water immediately after collection, safe storage prevented 

recontamination of stored water by hands, handwashing prevented contamination of hands after 

defecation, and sanitation prevented contamination of land by defecation. Households could 
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comply perfectly, incompletely, or not at all with these interventions. Each day, each person 

ingested variable doses of three pathogen types (bacteria, viruses, and protozoa, represented by 

diarrheagenic Escherichia coli, rotavirus, and Giardia duodenalis) from their household's stored 

drinking water, their hands, and the land outside the household. 

Figure 5.2. Structure of each household within the simulated community

The four transfer calibration parameters marked by '*' influence movement of pathogens 
between compartments. There are also three attenuation calibration parameters describing 
attenuation of the three pathogen types in all compartments; they are not shown in this figure, 
but see Table 5.1 (page 169).

The model used discrete timesteps of one day. Each day included four types of events: 1) 

contamination events, which represented defecation and were the only source of new pathogens 

in the system; 2) pathogen transfers, which described movement of pathogens between 
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compartments; 3) exposure events, which described ingestion of pathogens by people and the 

subsequent possibility of new infections (i.e., transfers of pathogens from compartments to 

people); and 4) pathogen attenuation, which described removal of infectious pathogens from the 

system in each compartment over time (corresponding to inactivation, sequestration, or any other 

means that could render pathogens unable to ever contact a host). Since many of the parameter 

values describing these events are highly uncertain, seven abstract 'calibration parameters' (see 

Figure 5.2, page 163, and Tables 5.1 and 5.2, page 169)were varied during each model run in a 

calibration step consisting of many thousands of model runs; values of these parameters that 

yielded acceptable results were retained for use in subsequent estimation steps. The events 

occurred in a particular sequence, as shown in Figure 5.3. To avoid arbitrarily biasing the doses 

of pathogens ingested by people, exposure events happened at a variable time each day. This 

meant that pathogens introduced into the system at the beginning of each day would be 

attenuated for some random fraction of a day before they were ingested, introducing additional 

variability into the doses that people received.
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Figure 5.3. Daily progression of the EITS model of diarrheal infections

Summary of the steps in each model run

The events marked in Figures 5.1-5.3 are explained in more detail below; events that 

include calibration parameters are marked with a *.

 1. There were two contamination events representing defecation. The total number of 

pathogens excreted per infected person is determined by the grams of feces excreted per 
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person per day multiplied by the number of pathogens per gram of feces. Adults excrete 

more pathogens than children due to higher fecal output, and symptomatic people 

likewise excrete more pathogens than asymptomatic people due to higher fecal output. 

The pathogens excreted by a person are distributed as follows:

 a) Contamination of the land (Fl)

• Most of the pathogens excreted by infected individuals follow this route.

 b) Contamination of the person's household environment (Fh); summarizes hand, 

surface, and fomite contamination related to anal cleansing

• A small proportion of the pathogens excreted by infected individuals follow this 

route.

 2. There are four main pathogen transfers:

 a) Land to surface water (R); summarizes runoff due to rainfall events, soil erosion, 

people washing or bathing in the water, etc.

• This event is defined by daily rates of pathogen transfer from land to water. There 

are two rates: a lower one for non-rainy days and a higher one for rainy days (rain 

events occur randomly, 14 days apart on average).

 b) * Surface water to stored drinking water (Se and Sf), representing daily resupply of 

stored water by each household

• All pathogens remaining in each stored drinking water compartment at the 

beginning of each day are transferred onto the land (Se); this is a very small 

transfer, but is included for completeness.

• Each household's stored drinking water is refilled directly from surface water at 

the beginning of each day (Sf). The amount of pathogens transferred is 
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determined by multiplying the pathogens in surface water by a calibration 

parameter (CPSf); this is analogous to dilution.

 c) * Household environment to stored water (H)

• The transfer of pathogens from each household's environment to its stored 

drinking water was determined through multiplication by a calibration parameter 

(CPH&Dh); event 3b (below) also used CPH&Dh.

 d) * Transfer of pathogens by inter-household visits (V), representing pathogens carried 

between households on hands, fomites, food, etc.

• A set of two-way links between households was randomly created at the 

beginning of each model run. Each day, a subset of these links was randomly 

selected, signifying visits occurring that day. Each visit represented a two-way 

transfer of pathogens between the households' environment compartments. 

Transfer of pathogens from household A to household B was: (number of 

pathogens in household A's environment) / (number of people in household A) * 

(calibration parameter CPV denoting proportion of pathogens transferred). 

Household B simultaneously transferred pathogens to household A in the same 

manner.

 3. There were four exposure events, where susceptible people may become exposed and 

subsequently develop infection or disease.

 a) Drinking water ingestion (Dw)

• Determined by: (liters of water consumed daily) × (number of pathogens in stored 

drinking water) / (volume of stored drinking water container).

 b) * Ingestion of pathogens from the contaminated household environment (Dh)
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• The number of pathogens in the household environment multiplied by a 

calibration parameter (CPH&Dh; see also event 2c above).

 c) * Ingestion of pathogens from land (Dl); summarizing people playing or working in 

soil, consumption of locally grown food, etc.

• The number of hand-mouth events per day multiplied by a calibration parameter 

(CPDl). Each person's dose was subtracted from the outside environment.

 d) Baseline exposure (B)

• Each day, people were randomly chosen to become exposed to each of the three 

pathogen types, independently from the doses they had received. This simulated 

importation of infection. 

 4. Exponential attenuation of all pathogens in all compartments: 

 a) * Decay of pathogens in all compartments was based on published rates in raw water, 

multiplied by 3 independent calibration parameters (one for each pathogen type; 

CPatten).
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Table 5.1. Summary of calibration parameters
Transfer calibration parameters

    CPSf
Transfer of pathogens from surface water to stored drinking water 
(analogous to dilution of pathogens in surface water)

    CPH&Dh
Transfer of pathogens from the household environment to: 1) stored 
water; or 2) people, who then ingest them 

    CPV
Transfer of pathogens between the household environment compartments 
of a pair of households

    CPDl Transfer of pathogens from land to people (who then ingest them)

Attenuation calibration parameters

    CPatten (bacteria) Daily exponential inactivation/removal rate in all compartments, 
bacteria.

    CPatten (viruses) Daily exponential inactivation/removal rate in all compartments, viruses.

    CPatten (protozoa) Daily exponential inactivation/removal rate in all compartments, 
protozoa.

Different calibration parameter values were sampled from uniform distributions (Table 5.2) for 
each calibration run of the model.

Table 5.2. Ranges over which calibration parameters were sampled
Calibration parameter Lower limit Upper limit

Transfer calibration parameters (proportions of pathogens transferred)

    CPSf 10-6 10-2.4 ≈ 4.0×10-3

    CPH&Dh 10-5 10-1.5 ≈ 0.032

    CPV 10-5 10-0.5 ≈ 0.32

    CPDl 10-11.5 ≈ 3.2×10-12 10-6

Attenuation calibration parameters (daily rates of inactivation, removal, etc.)

    CPatten (bacteria) 10-0.5 ≈ 0.32 102

    CPatten (viruses) 10 103

    CPatten (protozoa) 100.6 ≈ 4.0 103

Calibration parameters were sampled from uniform distributions on the log10 scale. These 
ranges were determined empirically before calibration; see page 182 for further explanation.

5.3.2. Technical description of the model  

The mechanics of the model are described in detail in the flowchart below (Figure 5.4). 
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Figure 5.4. Flowchart of the operations of the EITS model

Each numbered step in this flowchart is described in detail below.
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Step 1: Enter parameters

Each simulation run began by reading in 53 parameters, 7 of which were calibration 

parameters that were randomly varied during the calibration step (Tables 5.1 and 5.2, page 169), 

and 37 of which were obtained from published scientific literature. The remaining parameters 

were based on expert opinion. Further discussion regarding choice of particular (non-calibration) 

parameters is in chapter 7, and the parameter values are summarized in Table 7.1, page 230.

Step 2: Create random number tables and output logs

All random numbers needed for the model run were pre-generated when the model run 

began (which reduced processing time). Matrices were also generated to store output from the 

model.

Step 3: Set up the simulated community

Assignment of children and adults to households

Simulated communities contained n households (n ≈ 200), each containing a certain 

number of people randomly drawn from a Poisson distribution whose mean was 5 

people/household. If a household was assigned 0 people, it was discarded; thus, the number of 

households in the simulated community varied slightly between runs. Children and adults were 

randomly assigned to households as follows:

1. The total number of adults in the community was determined by multiplying the number 

of people in the community (~1000) by the proportion of the community consisting of 

people aged five years or older (0.82) (Ayad et al., 1994); see page 228 for further 

discussion.

2. One person in each household was designated an adult.

3. Each remaining adult was randomly assigned to a household that was not already filled 

with adults.

171



4. Once all adults had been assigned to households, the remaining people were considered 

children under five years of age.

Assignment of compliance to households

Compliance with HWT, handwashing, and sanitation was considered to be a characteristic 

of the household, not a characteristic of each person. The community had a particular compliance 

level and compliance type that was designated at the beginning of each model run. Compliance 

was described by overall compliance (proportion of person-time spent complying) as well as 

compliance type (α, households complied perfectly or not at all; β, households complied 

perfectly, partially, or not at all; γ, all households complied partially; for a more detailed 

description, see section 4.3.1, page 124). Using these compliance parameters for the community, 

each household was randomly assigned a compliance level for each intervention, describing the 

proportion of time that household used it. In some simulations that included HWT, safe storage 

was applied to all households complying perfectly or partially with HWT, since safe storage is a 

particular characteristic of some HWT interventions.

Data structures for tracking household and person characteristics

Household composition and compliance were stored using a household matrix with one 

row per household, and a people matrix with one row per person (Table 5.3). Children were at 

the top of the people matrix, and adults were at the bottom. These matrices also explicitly tracked 

the amounts of pathogens in household compartments, as well as infection status of individual 

people. The household matrix had one row per household, and contained information about 

household-level compartments of microbes. The people matrix had one row per person, and 

contained information about infection state (-1 = susceptible; 0 = immune; 1 = exposed; 2 = 

infected; 3 = diseased), the number of days remaining in the infection state (if susceptible, these 

are negative), and the row in the household matrix that each person belonged to. Community-
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level compartments of microbes were tracked separately (by 3-element vectors); 'nMw' is the 

number of microbes in the water reservoir, and 'nMl' is the number of microbes on the land.

Table 5.3. Description of matrices tracking households and people
Column 
number

Household matrix ('HHs') People matrix ('People')

1 Number of people in the household Infection state (bacteria)

2 Number of adults (aged >= 5 years) Infection state (viruses)

3 Number of children (aged < 5 years) Infection state (protozoa)

4 Number of bacteria in household environment* Time counter† (bacteria).

5 Number of viruses in household environment* Time counter† (viruses).

6 Number of protozoa in household environment* Time counter† (protozoa).

7 Number of bacteria in household's water
Household that the person belongs 
to (row number in 'HHs')

8 Number of viruses in household's water
Number of people in the person's 
household

9 Number of protozoa in household's water Unused‡

10 Unused‡ Unused‡

11 Unused‡ Unused‡

12 Unused‡ Unused‡

13 Compliance with sanitation (proportion) Unused‡

14 Compliance with HWT (proportion) Unused‡

15 Compliance with handwashing (proportion) Unused‡

16 Unused‡ Unused‡

17 Whether household has safe storage (binary) Unused‡

Infection states: -1 = susceptible; 0 = immune; 1 = exposed; 2 = infected; 3 = diseased
* The only sources of microbes on hands were from a) defecation; or b) inter-household visits.
† Each time counter was an integer denoting the number of days remaining in a particular 
person's infection state. Each day, 1 was subtracted from all time counters. When the time 
counter reached 0, the infection state changes. If the infection state was 'susceptible', the time 
counter was negative and denoted the number of days a person has spent susceptible to a 
particular pathogen. See page 178 for more detail.
‡ Unused rows were reserved for future expansion of the model, or were emptied as the design 
of the model changed during its development.

Generating connections between households
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Households were connected by a randomly generated network to allow pathogens to be 

directly exchanged between households. An Erdős–Rényi random network was generated using 

the 'erdrey' function from the CONTEST toolbox for MATLAB (A. Taylor & Higham, 2008), 

using an estimate of mean network degree (number of connections per household) observed in 

rural Ecuadorian villages (Zelner et al., 2012).

Initial infection status

Initially, all persons in the village were classified as exposed; this exposure lasted for a 

randomly determined period from 0-18 days for each person, after which they developed 

infection or disease. This prevented the development of large oscillations in infection prevalence, 

in the same fashion as in the QMRA models in the two preceding chapters (see page 96).

Step 4: Start daily loop and tally people in all states

Once the community had been generated, the first simulated day in the community could 

begin. The numbers of people in each infection state for each pathogen (exposed, infected, 

diseased, immune, or susceptible) were tallied and stored. If the tallies did not agree with the 

number of people in the simulated community, an error would occur and the simulation would 

end.

Step 5: Defecation

People who were infected with a pathogen excreted pathogens into the environment. For 

each pathogen type and each infected person:

Pe = fdn (5.1)

where Pe is the number of pathogens excreted, f is grams of feces excreted daily by a 

person without diarrhea, d is the number of defecation events per day (which depends on whether 

the person is symptomatic [3 events] or asymptomatic [1 event]), and n is the number of 
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pathogens per gram of feces.

Most of these pathogens were deposited on the land, but a small proportion entered the 

hands compartment for that person's household:

Ph = Peh (5.2)

where Ph is the number of pathogens added to hands by a particular person, and h is the 

proportion of feces that remain on the hands (1/1000). The number of pathogens deposited on 

land by a particular person is then Pl = Pe – Ph. If sanitation or handwashing interventions were 

included in the model run, LRVs were then applied to Pl and Ph according to sanitation and 

handwashing compliance, respectively, in the same way as HWT interventions (see step 7 below, 

Equation 5.4).

Step 6: Transfer pathogens from land to surface water

Each day, a small proportion (0.001) of pathogens was transferred from land to surface 

water, representing movement of pathogens by processes such as soil erosion, groundwater 

movement, laundering or defecating directly into water, etc. If a rain event occurred on a given 

day (probability of 1/14), a higher proportion (0.05) of pathogens were transferred from land to 

surface water. These proportions probably vary greatly depending on climate and hydrogeology, 

and were chosen by expert opinion, due to the absence of data; see page 228 for further 

discussion.

Step 7: Transfer pathogens between households via visits

Conceptually, each visit constitutes a contact between 2 people from different households, 

each of which gives a proportion of their pathogens to the other. A subset of the possible 

connections between households (as determined in step 3, page 171) was randomly chosen, 

based on a daily probability (2/7, i.e., twice weekly on average) of a contact occurring for each 
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connection. It was possible for a household to visit more than 1 other households per day. For 

each visit and each pathogen type, the number of pathogens transferred from one particular 

household to one other household (Pt) was:

Pt = CPV × Pb / N (5.3)

where CPV is a calibration parameter representing the proportion of pathogens transferred 

between households during a visit, Pb is the number of pathogens in the household environment 

before the contact, and N is the number of people in the household.

Step 8: Resupply stored water & apply household water treatment (HWT)

The first event to occur each day was resupplying the stored water within each household. 

For simplicity, any pathogens remaining in the stored water compartment were transferred to the 

land, and then a proportion of pathogens in the surface water (calibration parameter CPSf) was 

transferred into each household's stored water compartment. Log10 reduction values (LRVs) 

were then applied to the pathogens in the stored water of each household, depending on the 

household's compliance with HWT: 

Pt = Pb(1 - c) + Pbc10-L

(5.4)

where Pt is the number of pathogens remaining after treatment, Pb is the number of 

pathogens before treatment, c is the proportion of pathogens treated by the household, and L is 

the LRV of the treatment method. The value of c for each household was determined at the 

beginning of each model run, based on the overall compliance level and the compliance type 

within the simulated community (see step 3, page 171). Equation 5.4 was also used to calculate 

pathogen removal or inactivation from handwashing or sanitation (described in step 5, page 174).
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Step 9: Pathogen transfer from household environment to drinking water

Pathogens within each household environment compartment could be transferred to its 

stored drinking water compartment, simulating recontamination of water when people remove it 

from the storage container. 

Pt = CPH&Dh × PbS (5.5)

where Pt is the number of pathogens transferred, CPH&Dh is a calibration parameter 

describing the proportion of pathogens transferred from hands to water, Pb is the number of 

pathogens in the household environment before the transfer, and S equals 0 if the household uses 

safe storage, and 1 otherwise. Thus safe storage completely blocked the transfer of pathogens 

from the household environment to stored drinking water.

Step 10: First attenuation of pathogens

Pathogens in all compartments were exponentially attenuated (i.e., completely removed 

from the system) according to a particular rate r for each pathogen type. Since attenuation 

affected the doses of pathogens received by people (Figure 5.3, page 165), it was initially applied 

over a random proportion x of the day, after which people ingest doses of pathogens:

Pr = Pbe-rx (5.6)

where Pr is the number of pathogens remaining in a particular compartment after decay, 

and Pb is the number of those pathogens in that compartment before decay. The daily attenuation 

rate r was given by three values of a calibration parameter (CPatten), one value for each pathogen 

type. CPatten was the only calibration parameter that took different values for each pathogen 

type.
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Steps 11 & 12: Decrement all status counters and apply status shifts

At all times, each person had a particular infection status for each pathogen type: 

susceptible, exposed, infected, diseased, or immune. A status counter measured the number of 

days remaining for that status. Every day, 1 was subtracted from all status counters. When a 

status counter reached 0, that person transitioned to the next state: exposed → infected (possibly 

diseased) → immune → susceptible (Table 5.3). When a person transitioned from exposed to 

infected or diseased, a duration of infectiousness was randomly chosen from a distribution. The 

durations of the immune and exposed states were fixed (for parameter values, see Table 7.1, page 

230; but recall that the initial exposure duration varied; step 3, page 171). 

Step 13: Calculation of daily pathogen doses and dose response

All people ingested daily doses of pathogens, removing those pathogens from the system. 

If a person was susceptible to a pathogen, they might become exposed to that pathogen as a 

result of that day's dose. The dose of each pathogen type was the sum of three component doses: 

pathogens from stored drinking water, pathogens from land, and pathogens from the household 

environment.

Pathogens from stored water

Each person's dose of each pathogen type from stored water (Dw) was determined as 

follows:

Dw = PwI / V (5.7)

where Pw is the number of pathogens in the household's stored water, I is the amount of 

stored water ingested in liters per day (which is higher for adults and lower for children), and V 

is the volume (in liters) of the household's stored drinking water container.

Pathogens from land
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Each day, people ingest a dose Dl of pathogens from land, with children ingesting more 

pathogens than adults:

Dl = CPDl × Pl(Zc/Za) for children, and

Dl = CPDl × Pl  for adults, (5.8)

where CPDl is a calibration parameter representing the proportion of pathogens on the land 

ingested daily; Pl is the number of pathogens on the land; and Zc and Za are the numbers of daily 

hand-mouth contacts for children and adults (respectively 328/day and 130/day; USEPA, 2011). 

Dl could be considered to include pathogens from the environment outside the household, 

including soil and locally grown food.

Pathogens from the household environment

A proportion of the pathogens in a household's environment at the time of dose calculation 

was ingested by its occupants. Children ingested more of those pathogens than adults, as 

described immediately above. The dose Dh received in this manner by a particular occupant was:

Dh = CPH&Dh × Ph(Zc/Za)  for children, and

Dh = CPH&Dh × Ph  for adults, (5.9)

where CPH&Dh is a calibration parameter representing the proportion of pathogens in the 

household environment ingested daily; and Ph is the number of pathogens in the household 

environment.

Dose response: converting pathogen doses to exposure and infection

Each of the three doses Dw, Dl, and Dh were then removed from the appropriate 

compartments (stored drinking water, land, and household environment), and were summed for 

each person and each pathogen to obtain the total dose for each pathogen received by each 

179



person. Dose response functions were then used to convert the doses into probabilities of 

infection, in the same manner as in chapters 3 and 4 (Equations 3.2 and 3.3, page 98). Based on 

the resulting probabilities of infection, it was randomly determined whether each person who 

was susceptible to a particular pathogen type became exposed to that pathogen. Any person who 

became exposed would eventually develop infection (see steps 11 and 12, page 178), provided 

the model run did not end first.

Step 14: Assignment of baseline exposures

In order to force the model to have a minimum non-zero incidence of diarrhea, baseline 

exposures were assigned. All people had an equal daily probability per pathogen type Sp of being 

selected for a baseline exposure. If a person was selected and was also susceptible, their status 

was changed to exposed. If a non-susceptible person was selected, nothing occurred. 

Sp = (TpBc) / (365Mp) (5.10)

where Tp is the proportion of the baseline incidence in children attributable to that 

pathogen type (0.5 for bacteria, 0.25 each for viruses and protozoa, based on etiologic fractions 

discussed in chapter 4, page 129), Mp is the morbidity ratio in children for that pathogen type, 

and Bc is the baseline incidence of diarrhea in children from all pathogen types. The value for Bc 

was assumed to be 0.5 episodes per child-year, since measurements of diarrheal incidence in 

developed countries are often roughly 0.5 to 1.5 episodes per person-year (M. E. Wilson, 2005), 

and the best possible outcome of various interventions in a developing country community 

would be to reduce diarrheal incidence to levels found in developed countries. 

Step 15: Second inactivation of pathogens

Pathogens in all compartments were then inactivated over the remainder of the day (1 – x) 

in the same manner as in step 11, Equation 5.6, page 177.
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Step 16: Continue to next day, or end simulation

Each model run was scheduled to terminate after a certain number of days. Once pathogens 

had been inactivated over the final portion of the day, the simulation terminated if the required 

number of days had elapsed, or continued to the next day (see step 4, page 174) if not.

5.3.3. Calibration and estimation  

All of the parameters used in this model are substantially uncertain, and communities vary 

across many characteristics that are difficult to measure, but could nonetheless influence the 

transmission of diarrheal infections. In the calibration step, the model was run many times while 

varying the values of the calibration parameters (Table 5.2, page 169). If a model run's output 

was consistent with certain calibration criteria chosen a priori (Table 5.4), its calibration 

parameter values were retained and used for estimation later. 

The calibration criteria (Table 5.4) considered incidence and etiologic fractions in children 

in developing countries aged less than five years. Observational studies of diarrhea in developing 

countries show that the incidence of diarrhea has a wide range, depending on the country and the 

community (Kosek et al., 2003); a relatively high incidence of childhood diarrheal disease (6-12 

episodes per child-year) was chosen because the calibration step is meant to simulate conditions 

in a very poorly developed community with essentially no hygienic or sanitary infrastructure. 

Studies of diarrheal etiology also indicate that bacterial diarrhea is generally more common than 

viral or protozoan diarrhea; see page 19 for further discussion (Lanata & W. Mendoza, 2002). 

However, the importance of differing transmission routes is unknown; therefore, model runs 

consistent with the first two criteria were subdivided by the relative importance of transmission 

via stored drinking water, so that estimation could be conducted for varying scenarios of high, 

medium, and low waterborne transmission. 

The sets of calibration parameter values that fit the calibration criteria (Table 5.4) can be 
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considered to represent a variety of differing communities. In the estimation step, differing 

interventions can be applied to these communities at a variety of compliance levels to determine 

the likely effect of these interventions on diarrheal disease. 

Table 5.4. Criteria for calibrating the transmission model
Description Units Criteria

Incidence of 
childhood* 

diarrheal disease 

episodes per child-
year*

6 to 12

Etiologic 
fractions

proportion of 
childhood* diarrheal 
episodes by pathogen 

type

32.5 to 62.5% bacterial
7.5 to 37.5% viral

7.5 to 37.5% protozoan

Route 
importance

proportion of 
childhood* diarrheal 

episodes from drinking 
water

Mostly 
water:

>2/3 to 100%

Water & non-
water similar:

1/3 to 2/3

Mostly non-
water:

0 to <1/3

See Table 5.1 (page 169) for descriptions of the 7 calibration parameters that were varied to 
obtain these values during the calibration process.
*Children aged less than 5 years.

Determination of calibration parameter   ranges  

The calibration process used a single set of ranges for the calibration parameters (Table 

5.2, page 169). The ranges were determined by running a series of mock calibration processes 

consisting of about 30,000 runs each. The first mock calibration process used extremely wide 

ranges of calibration parameter values (7 to 9 orders of magnitude). For subsequent processes, 

these ranges were gradually narrowed, one calibration parameter at a time, guided by the 

distributions of calibration runs within each calibration parameter range that were consistent with 

the calibration criteria (Table 5.4). For example, if CPSf was varied from 10-9 to 10-2, and no 

model runs whose results were consistent with the calibration criteria were seen from 10-9 to 10-

8, CPSf might be varied from 10-8 to 10-2 next. Random sampling of all calibration parameters 
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was carried out as if they were uniformly distributed on the log10 scale. The calibration process 

was done once, producing three mutually exclusive sets of parameters: 1) a set consistent with 

predominantly (> 2/3) waterborne transmission; 2) a set with similar waterborne and non-

waterborne transmission; and 3) a set consistent with predominantly (> 2/3) non-waterborne 

transmission. Those sets of parameters were then used as the basis for estimation scenarios in 

which HWT interventions were applied to the simulated community.

All runs of the EITS model were on MATLAB 7.13 (R2011b; 64 bit). The program code 

for the EITS model was originally developed using Octave 3.2.3, but it runs on either Octave or 

MATLAB without modifying the code. Each run of the model took about 16 seconds in 

MATLAB; for comparison, each run required about 30 seconds in Octave. Output from the 

model was analyzed with R 2.15.1.

5.4. Results

5.4.1. Calibration  

The calibration step included 228,480 model runs. Calibration runs whose output was 

consistent with the criteria in Table 5.4 were considered to represent distinct communities with 

differing characteristics that were summarized by their calibration parameter values. There were 

1728 (0.756%) consistent runs; of these, 963 (55.7%) had < 1/3 waterborne transmission, 129 

(13.2%) had 1/3 to 2/3 waterborne transmission, and 537 (31.1%) had > 2/3 waterborne 

transmission. 

Charts of calibration output are presented in Figures 5.5 and 5.6. Incidence of diarrhea in 

children was highly variable for all transfer calibration parameter values, ranging from roughly 

0.5 to 40 episodes per child-year (Figure 5.5). The proportion of cases of diarrhea attributable to 

waterborne transmission increased as CPSf increased or as CPDl decreased (Figure 5.5a and d, 
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and Figure 5.6d). Bacterial pathogens generally had lower attenuation rates (CPatten) than viral 

or protozoan pathogens, though this was not universal (Figure 5.6a). The distribution of diarrheal 

incidence in children over all the calibration runs was multimodal (Figure 5.6b) with peaks near 

0, 9, and 20 episodes per child-year; the last two peaks roughly correspond with the maximum 

incidence levels attainable by each pathogen type, visible on Figure 5.6a where the point clouds 

approach their maxima as CPatten decreases. Of the 40,230 (17.6%) calibration runs that met the 

incidence criterion, it was common for a single pathogen type to predominate (Figure 5.6c, note 

densely clustered dots near each corner of the triangle). 
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Figure 5.5. Calibration output from EITS model, transfer parameters

For further explanation, see text immediately before & after this figure.
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Incidence of diarrhea in children was unrelated to the proportion of diarrhea in children 

that was waterborne (Figure 5.7). Although incidence of diarrhea appeared slightly lower if 1/3 

to 2/3 of diarrhea was waterborne for all pathogens and for bacteria (Figure 5.7, a and b), the 

distributions were not significantly different after adjusting for multiple comparisons (Holm 
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Figure 5.6. Calibration output from EITS model, scatterplots & histograms



method, n=12). 

Figure 5.7. Simulated diarrhea incidence in children (calibration step)

A, > 2/3 of incidence from waterborne route; B, 1/3-2/3 of incidence from waterborne route; C, 
< 1/3 of incidence from waterborne route.

In the calibration runs that were consistent with the calibration criteria (Table 5.4, page 

182), six of the seven calibration parameters were associated with diarrheal incidence among 

children by multiple linear regression (Table 5.5; for descriptions of the calibration parameters, 

see Table 5.1, page 169). In contrast with all other calibration parameters, CPV (describing 

transfer of pathogens between households) was not significantly associated with diarrheal 

incidence, or the proportion of incidence that was waterborne (Table 5.5). Substantial portions of 
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the variation in incidence was explained by the calibration parameters, with adjusted R2 values 

from 0.3 to 0.8 depending on the dependent variable that was used.

Table 5.5. Association of calibration parameters with incidence
Linear regression parameter estimates* and p-values

Dependent 
variable

n
Inter-
cept

CPSf
CPH&

DH
CPV CPDl

CPatten

R2‡Bac-
teria

Virus-
es

Proto-
zoa

Child 
incidence, 
all runs

228,480
67.8

2×10-

16

1.67
2×10-

16

1.17
2×10-

16

0.0303
2×10-6

1.52
2×10-

16

-5.51
2×10-

16

-9.88
2×10-

16

-0.010
2×10-

16
0.806

Child 
incidence, 
consistent 
runs, A†

537
41.3

2×10-

16

3.88
2×10-

16

0.190
0.005

-0.012
0.7

0.291
5×10-

10

-9.00
2×10-

16

-1.31
2×10-9

-1.32
4×10-9 0.551

Child 
incidence, 
consistent 
runs, B†

228
32.5

3×10-4

2.65
2×10-

16

0.121
0.4

0.0135
0.8

0.252
0.004

-6.47
2×10-

16

-1.06
0.006

-0.901
0.01

0.411

Child 
incidence, 
consistent 
runs, C†

963
28.9

2×10-

16

0.373
2×10-

10

0.400
1×10-

12

0.0458
0.2

0.890
2×10-

16

-3.81
2×10-

16

-1.54
5×10-

13

-0.687
0.002

0.284

Proportion 
of incidence 
that is 
waterborne, 
consistent 
runs

1728
0.209
0.1

-0.107
2×10-

16

-0.107
2×10-

16

-0.001
0.7

-0.110
2×10-

16

-0.146
4×10-7

0.066
0.0006

-0.043
0.02

0.762

* The log10 of the calibration parameters were the independent variables in the linear models.
† A, > 2/3 of incidence was waterborne; B, 1/3-2/3 of incidence was waterborne; C, < 1/3 of 
incidence was waterborne. 
‡ The adjusted R2 was calculated by the lm() function in R 2.15.1.
For descriptions of the calibration parameters, see Table 5.1, page 169.

The influence of the calibration parameter values on the proportion of childhood diarrhea 

that was waterborne was particularly apparent for the transfer calibration parameters, which were 

proportions describing daily movement of pathogens between compartments. Lower values of 
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CPSf (related to dilution of pathogens in surface water) were associated with less waterborne 

transmission, and similarly, lower values of CPDl (related to dispersion of pathogens on land) 

were associated with less non-waterborne transmission (Figure 5.8, a and d). Lower values of 

CPH&Dh (describing transfer of pathogens out of the household environment)also favored more 

waterborne transmission (Figure 5.8b), though there was a significant tendency (p = 0.009, 

Wilcoxon rank sum test, Figure 5.8b) for CPH&Dh values to be higher if 1/3 to 2/3 of 

transmission was waterborne (category B), compared with < 1/3 of incidence being waterborne 

(category C). There was also some weaker statistical evidence that CPV (describing transfer of 

pathogens between households) values were lower if 1/3 to 2/3 of transmission was waterborne 

(category B, Figure 5.8c), compared with > 2/3 of incidence being waterborne (category A; p = 

0.03) or < 1/3 of incidence being waterborne (category C; p = 0.08).
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Figure 5.8. Distributions of transfer calibration parameters

A, > 2/3 of incidence was waterborne; B, 1/3-2/3 of incidence was waterborne; C, < 1/3 of 
incidence was waterborne. Grey horizontal lines represent the ranges over which the calibration  
parameters were sampled.

The values of the attenuation calibration factors varied little in relation to the proportion of 

incidence that was waterborne, although there was a slight trend for their values to increase as 

the proportion of waterborne transmission decreased (Figure 5.9).In general, the values of the 

calibration parameters that were consistent with the calibration criteria spanned the ranges over 

which they were sampled during the calibration step (Table 5.2, page 169), although the 

attenuation parameter values did not quite meet the lower bound. The value of CPatten for 
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bacteria was approximately 20, compared with approximately 200 for viruses and protozoa. The 

model therefore suggested that protozoa and viruses are attenuated roughly 10 times faster than 

bacteria.

Figure 5.9. Distributions of attenuation calibration parameters

A, > 2/3 of incidence was waterborne; B, 1/3-2/3 of incidence was waterborne; C, < 1/3 of 
incidence was waterborne. Grey horizontal lines represent the ranges over which the calibration  
parameters were sampled.

5.4.2. Estimation  

A random sample of 100 parameter sets was taken from each of the three groups of 

calibration runs consistent with the calibration criteria. Using these parameter sets, a HWT 
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intervention with LRVs of 1, 2, 3, 4, or 5 against all pathogen types was applied with 

community-wide compliance of 50%, 80%, 95%, 99%, or 100%, and compliance types of α, β, 

or γ (see page 124 for further discussion of compliance types). The HWT intervention prevented 

little or no diarrhea where < 1/3 of childhood diarrhea was waterborne (Figure 5.10c), even if 

compliance was perfect. If 1/3-2/3 of childhood diarrhea was waterborne (Figure 5.10b), the 

median incidence decreased from 8 episodes per child-year to 3 episodes per child-year if 

compliance was perfect and LRVs were 3 or higher; however, if compliance was 50%, median 

incidence was approximately 7 episodes per child-year for compliance type γ and 6 episodes per 

child-year for compliance type α, regardless of LRV. If > 2/3 of childhood diarrhea was 

waterborne (Figure 5.10a), median incidence was further decreased, particularly for higher 

compliance levels; there were approximately 1.3 episodes per child-year if compliance was 

perfect. As found in chapter 4, LRVs higher than 3 generally did not prevent additional diarrhea.

There was substantial variation around each of the median estimates displayed in Figure 

5.10; interquartile ranges generally spanned about 4 episodes per child-year (data not shown). At 

the extremes, incidence levels ranging from 1 to 20 were obtained.
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Figure 5.10. Estimation step, incidence by LRV of HWT

193

Compliance α
Compliance β
Compliance γ

0% compliance
50% compliance
80% compliance

95% compliance
99% compliance
100% compliance

0           1           2           3           4           5
Log10 reduction values (LRVs)

0           1           2           3           4           5
Log10 reduction values (LRVs)

0           1           2           3           4           5
Log10 reduction values (LRVs)

In
ci

de
nc

e,
 e

pi
so

de
s/

ch
ild

-y
ea

r
0 

 1
  2

  3
  4

  5
  6

  7
  8

  9
In

ci
de

nc
e,

 e
pi

so
de

s/
ch

ild
-y

ea
r

0 
 1

  2
  3

  4
  5

  6
  7

  8
  9

In
ci

de
nc

e,
 e

pi
so

de
s/

ch
ild

-y
ea

r
0 

 1
  2

  3
  4

  5
  6

  7
  8

  9

Symbols for all 3 charts:

c. Median diarrhea incidence: <1/3 
waterborne transmission

b. Median diarrhea incidence: 1/3 to 2/3 
waterborne transmission

a. Median diarrhea incidence: >2/3 
waterborne transmission



Although the EITS model is not directly comparable with the QMRA model described in 

chapter 4, it is possible to make a rough comparison (Figure 5.11). Both models indicate 

decreasing incidence ratios as compliance decreases. However, increasing compliance in the 

QMRA model leads to greater risk reductions than in the EITS model. Furthermore, in the EITS 

model, there is little or no improvement in IR from LRVs above 3 even if compliance is perfect. 

This differs from the QMRA model, where risk continues to decrease as LRVs increase if 

compliance is perfect.

194



Figure 5.11. Comparison of EITS and QMRA results
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5.5. Discussion

5.5.1. Calibration step  

All calibration parameters were varied over wide ranges; the transfer calibration factors 

(describing the proportion of pathogens transferred daily between compartments) varied over 4 

or more orders of magnitude (Figure 5.8), and the attenuation calibration factors (describing 

inactivation or removal of the three pathogen types) varied over about 2 orders of magnitude 

(Figure 5.9). Although 1728 sets of calibration parameters were found that were consistent with 

childhood diarrheal incidence values and etiologic fractions that appear common in developing 

countries (Table 5.4, page 182), it is not certain that these calibration parameter sets reflect 

realistic conditions in developing country communities, because of uncertainty in parameter 

values that necessitated calibration in the first place.

All of the calibration parameters strongly influenced the outcome of the model, except for 

the calibration parameter describing pathogen exchanges during inter-household visits (CPV). 

The routes influenced by CPV and CPDl (which describes ingestion of pathogens from land) are 

parallel transmission routes; they both allow pathogens to move from one household to another. 

However, the inter-household route influenced by CPDl is more direct (feces from household A 

→ land → new host in household B) than the inter-household route influenced by CPV (feces 

from household A → household environment A → household environment B → new host in 

household B). Furthermore, the CPDl route links all households with all other households every 

day, while the CPV route links only a subset of households daily. Although removing inter-

household visits might simplify the model without reducing its utility, household structure 

remains a useful component of the model (shown by the effect of CPH&Dh on diarrheal incidence 
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and the proportion of incidence that is waterborne, Figure 5.8b, page 190).

The values of the daily attenuation rates (CPatten) of the three pathogen types were very 

high, with median estimates of ~20/day for bacteria, and ~200/day for viruses and protozoa. 

These correspond to half-lives of 50 minutes and 5 minutes, respectively, and are much faster 

than decay rates of ~0.6/day (half life of 1700 minutes, or 1.2 days) for E. coli (Flint, 1987), 

norovirus (Pancorbo et al., 1987), and Giardia (Wickramanayake et al., 1985; deRegnier et al., 

1989) measured in unfiltered natural waters at ~20ºC (see page 227 for further discussion). 

However, attenuation includes many processes in addition to decay that prevent pathogens from 

contacting hosts, such as: percolation or burial in soil; sedimentation or settling in water; 

ingestion by animals; and removal from the community by flowing water. 

5.5.2. Estimation step  

The EITS model corroborates the QMRA model in chapter 4 in several respects. Both 

models agree that increasing HWT LRVs beyond 3 is unlikely to prevent much additional 

diarrhea, although it might provide some benefit for intermediate levels of compliance when 

waterborne transmission predominates. Furthermore, in both models, compliance type α (where 

people either comply perfectly with HWT or don't comply at all) tends to prevent more diarrhea 

in both models than compliance type γ (where everyone complies partially with HWT); 

compliance type β is intermediate between α and γ. 

The EITS model indicates that HWT can prevent very little diarrhea if waterborne 

transmission is low in relation to other transmission routes, even if LRVs are high and 

compliance is perfect (Figure 5.10c, page 193). 

5.5.3. Limitations of the EITS model  

Wherever possible, published measurements from peer-reviewed publications were used 

for parameter values (see chapter 7 for detailed discussion). However, reliable information from 
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developing countries was not available for all parameter values. Furthermore, it is possible that 

appropriate values for some parameters were not found during the literature review, despite being 

documented in the literature. Ideally, a rigorous meta-analysis would be conducted for each 

parameter in this model, but this was not practical given the resources available for the research 

and the large number of parameters. Nonetheless, multiple documented measurements were 

sought for each parameter; discussions of the decision process for various parameter values are 

in chapter 7.

Most parameters used in the model had fixed values. Because few measurements have 

been reported for many parameters, it is possible that some of them are improperly specified, 

possibly affecting the model's results. However, the seven calibration parameters introduced 

variation along all possible routes that pathogens could take within the model. This potentially 

allowed the model to self-adjust for missing or misspecified parameter values in the calibration 

step, but would also confound sensitivity analysis of the fixed model parameters. The model 

could be refined in the future by incorporating updated information regarding its parameter 

values, which would mean that the aspects of each route that are covered by each calibration 

parameter would decrease, yielding a more completely specified model requiring calibration over 

fewer variables or narrower ranges of values.

Although the model suggests that visits between households are a relatively unimportant 

route of transmission, this conclusion might depend upon the way visits are simulated. The 

model describes visits by an exchange of pathogens between two household environment 

compartments (Equation 5.3, page 176), which might represent a brief visit or an exchange of 

food or items. However, children are frequently cared for by friends or relatives in different 

households, and the entry of an infected child into an otherwise uninfected household could be a 

particularly important exposure route. The entry of an infected person into an uninfected 
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household for a long period, particularly a small child who defecates in the new household, could 

represent a much more intense exposure. In principle, the model could be modified to better 

represent such a situation, which might increase the importance of visits to infection 

transmission.

This EITS model does not include zoonotic transmission of diarrheal pathogens. Domestic 

animals live in close proximity with humans (particularly in rural areas), and can be major 

reservoirs of pathogenic E. coli, Campylobacter (C. R. Young et al., 1999), and Cryptosporidium 

parvum (Xiao, 2010); however, giardiasis is probably not a zoonosis under most circumstances 

(Cacciò et al., 2005). The lack of animal sources of transmission in this model may 

inappropriately penalize transmission of bacterial and protozoan infections relative to viral 

infections. This may partially explain the relatively low attenuation rates (CPatten ≈ 20) of for 

bacteria, compared to viruses and protozoa (CPatten ≈ 200), because selecting lower values of 

CPatten for bacteria than for viruses or protozoa is the only way for the calibration step to favor 

bacterial transmission. If the model omits a route that bacteria use preferentially, the calibration 

process must select lower values of CPatten for bacteria than for viruses or protozoa in order to 

meet the calibration criteria (Table 5.4, page 182), essentially compensating for the absence of 

the bacterial route.

The model also does not explicitly include exposure to pathogens through contaminated 

food, although doses of pathogens ingested from the household environment compartments and 

the land compartment could be considered to include such exposures. Many bacterial pathogens 

can grow in food, and this is not explicitly incorporated in the model either, although the lower 

attenuation rates (CPatten) of bacteria compared to viruses or protozoa (Figure 5.5e) could also 

be considered to reflect this.
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Transmission of rotavirus in this model might also be inappropriately high because the 

model considers adults and children to have the same concentration of virus in their feces, 

regardless of whether they are infected or diseased. However, it has been reported that rotavirus 

particles are roughly 10 times as concentrated in child feces as in adult feces (Vollet et al., 1979). 

Furthermore, rotavirus infections in adults tend to be shorter and milder than in children (Hrdy, 

1987); thus adults might also have a shorter period of communicability than children.

5.5.4. Insights gained during the model construction process  

The initial formulation of this model used a Gillespie algorithm framework (Keeling & 

Rohani, 2008) to model many discrete events occurring at particular rates over time using short 

timesteps of variable length separating each event; this resulted in a series of randomly selected 

events, separated by time periods of random (but very short) length. This framework was chosen 

in an attempt to build upon the previously published model described on page 81, which used 

similar methodology (J. N. S. Eisenberg et al., 2007). Although the Gillespie algorithm version 

of the model had similar compartments and flows (resembling Figures 5.1 and 5.2, page 162) to 

the EITS model described here, there were many thousands of events occurring daily, even 

within a very small community (~20 households). In order for the model to run in a reasonable 

amount of time, it was necessary to simplify it into a framework with discrete daily time steps. 

An original ambitious goal of this work was to construct a highly mechanistic model that 

was thoroughly grounded in published theory and measurements. However, in the course of 

reviewing the literature, it became clear that many important parameter values were highly 

uncertain or completely unknown. Furthermore, there is likely to be large variation in many 

aspects of real diarrheal infection transmission networks; for example, hydrogeologic 

characteristics affecting contamination of groundwater, or differing cultural practices in areas of 

hygiene, food preparation, food cultivation, etc. (for further discussion of uncertainty regarding 
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particular parameter values, see chapter 7). In order to incorporate this variation, the calibration 

parameters were added to key routes and varied during the calibration process to determine sets 

of calibration parameters leading to realistic childhood diarrheal incidence levels (page 181). It is 

not clear how to interpret these calibration parameter values, since they encompass many 

different processes. For example, the calibration parameter CPDl is a daily proportion of 

pathogens from the land that are ingested by each person. It is a crude way of summarizing many 

different processes that are poorly understood, for example: dispersal of pathogens over an area; 

the likelihood of contacting feces that are clustered in space in unknown ways; ingestion of 

pathogens along with soil; transfer of pathogens from soil to skin to mouth; etc. All models 

represent a compromise between realism and practicality, since highly detailed models are 

difficult to construct and analyze. In the case of this EITS model, some simplifications were 

necessary due to lack of information.

The model was originally intended to be a closed system, in which people could only be 

infected by ingesting pathogens excreted by other people in the community. However, this led to 

frequent stochastic pathogen extinctions during the calibration step, particularly of bacteria. The 

probability of extinction was reduced by increasing the size of the community. However, 

extinctions remained frequent even if the community had 4000 households, and the model ran 

too slowly when simulating such a large community. Since extinction of pathogen types in an 

underdeveloped community is unlikely, random exposures of people to all pathogen types were 

added to the model, in such a way that a mean baseline incidence rate of 0.5 diarrheal episodes 

per child year was obtained (step 14, page 180). The baseline incidence represents importation of 

infection from outside the community, or infections arising from pathogen sources that are not 

explicitly modeled (e.g., animal feces or imported food).
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5.5.5. Future applications of the model  

Readily achievable applications

At this writing, it has not yet been possible to thoroughly explore many aspects of this 

complicated EITS model. This section briefly describes additional aspects of the transmission 

and prevention of diarrheal infections that could be explored without modifying the model code.

The model is not limited to HWT interventions; it can also simulate the action of sanitation 

and hygiene interventions, and assess scenarios in which different interventions are applied 

together. Furthermore, it can simulate the effect of safe storage of drinking water, by making the 

assumption that each household owning a safe storage container completely blocks transmission 

of pathogens from the household environment to stored drinking water. Although many HWT 

interventions include a safe storage container, this is not always the case.

The model could be used to assess different interventions simultaneously, or in series. 

Field trials report widely varying efficacies for particular interventions; one explanation might be 

that a community's response to an intervention might depend upon other interventions that are 

already in place. For example, if a community with predominantly non-waterborne diarrhea 

transmission (e.g., Figure 5.10c) acquires latrines, diarrheal incidence would decrease, but the 

importance of the waterborne route would be larger for the remaining disease transmission; this 

would be expected to increase the effectiveness of HWT interventions (Figure 5.10a). 

Furthermore, two interventions may interact positively or negatively when they are applied 

simultaneously (see page 46 for further discussion). Such scenarios can be simulated using this 

model.

The time required for the full benefits of an intervention to be realized may be of interest. 

Because the model is dynamic, it can be run for a period of time without an intervention; once an 

intervention is applied, diarrheal incidence could be tracked over time to determine how rapidly 

202



a lower equilibrium is reached. Since giardiasis in particular has an incubation period and disease 

duration of roughly two weeks (Rendtorff, 1954; A. M. Jokipii & L. Jokipii, 1977), it might take 

months for the full preventive effect of an intervention to be attained. A long time period between 

distribution of an intervention and the appearance of its benefits might lead to reduced 

compliance by the community because it initially appears ineffective, even if it would have been 

effective in the long term.

Although the burden of diarrheal infections and disease in people aged five years or more 

is poorly understood, particularly in developing countries, this model explicitly includes them. 

Although it is impossible to say whether the model properly accounts for infections in such 

people, examination of infection and disease status in the simulated population could generate 

hypotheses that future studies might test. 

A sensitivity analysis would provide further information about the impact of the 46 fixed 

parameter values on the results from the model. Such an analysis would take the form of 

repeated estimation steps, modifying each fixed parameter in turn to determine its effect on the 

incidence of diarrhea in children, as well as the relative contribution of the waterborne route of 

transmission. Although an extremely thorough sensitivity analysis would need to consider 

alterations to the calibration parameter sets resulting from changing the fixed parameter values, it 

is not practical to recalibrate the model repeatedly in order to explore this effect.

Applications requiring substantial modifications to the model

Additional aspects of diarrheal infection transmission and prevention could be explored 

through further modifications to the program code of the model, and subsequent analysis of its 

behavior. 

Households who are not using a particular intervention might nonetheless benefit directly 

because other households in the community are using them; participating households thus 
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prevent diarrhea for themselves directly, and prevent diarrhea in the rest of the community 

indirectly since fewer people are infected and excreting pathogens. Incidence in noncompliers 

could be measured before and after a simulated intervention to determine the magnitude of 

indirect protective effects of interventions, in a manner similar to Halloran et al. (2002; see page 

83).

Bouts of diarrheal disease, or asymptomatic infections with gastrointestinal pathogens, are 

believed to degrade resistance to further bouts of diarrhea, probably through malnutrition and 

consequent impairment of immunity (see page 14 for further discussion). Although it is unclear 

precisely how this occurs, information is available regarding correlation of diarrheal episodes 

within individuals (Schmidt et al., 2009). Calibration parameters could be added that modify the 

dose response relationship(s), signifying reduced resistance to infection or disease following a 

previous infection, and select values of these parameters that yield distributions of cases within 

individuals similar to those observed in the field. Since repeated diarrhea episodes are an 

important factor in mortality, this could facilitate estimation of the mortality benefit attributable 

to particular interventions.

The model might further be used to examine the emergence of persistent diarrhea. Since 

coinfections with diarrheal pathogens are common, a single diarrheal episode might consist of 

multiple overlapping infections. Processes by which diarrheal episodes are reported and 

measured in the field could be incorporated into the model, in a similar fashion to the 

incorporation of imperfect recall in the QMRA model in chapter 3. By calibrating the model such 

that the distributions of the durations of modeled diarrheal episodes match observed distributions 

of diarrheal episode durations, insight could be gained regarding the development of persistent 

diarrhea in developing country communities.

204



5.5.6. Conclusions  

The results from the EITS model corroborate the conclusions from the QMRA model 

regarding compliance (chapter 4): increasing LRVs beyond (approximately) 3 is unlikely to 

prevent additional diarrhea, and more diarrhea is prevented if more households comply perfectly 

(i.e., compliance type α is superior to compliance types β or γ). By incorporating multiple 

transmission routes, the EITS model also showed that improving compliance with HWT can 

greatly improve diarrhea prevention if waterborne transmission accounts for at least 1/3 of 

diarrheal incidence. This finding holds even for relatively low HWT LRVs of 1 or 2. More 

attention should be paid to improving compliance with HWT, rather than improving the 

antimicrobial efficacy of HWT.

The relative importance of the various transmission routes for diarrheal infections are 

unknown; in the EITS model, it depends upon the values of the calibration parameters. The 

calibration parameters themselves represent a variety of processes which are poorly understood, 

such as: transfer of pathogens from soil or objects to hands or mouth; decay or attenuation of 

pathogens in many different media, temperatures, or humidities; and many others. However, 

transfers of pathogens via households visiting each other (affected by the calibration parameter 

CPV) did not greatly affect diarrheal incidence or the proportion of incidence attributable to the 

waterborne route, in contrast to the other 6 calibration parameters.

The EITS model is a simplification of an extremely complicated infection transmission 

system incorporating multiple pathogens using multiple transmission routes. In addition, many 

aspects of diarrheal infection transmission through the environment are poorly understood. The 

EITS model attempts to account for this uncertainty through the calibration process; calibration 

produces sets of calibration parameter values that could be considered to represent distinct 
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communities with differing environmental characteristics. However, it is unknown which sets of 

parameter values best represent actual communities. Important aspects of transmission may also 

be improperly specified or missing (e.g., conceptualizing visits to represent shared child care 

might increase the importance of visits; incorporating domestic animals or foodborne 

transmission might favor bacterial infections). Nonetheless, the results regarding compliance are 

robust across widely varying sets of calibration parameter values, increasing confidence that they 

should also apply in real communities. 

Future descriptive studies and field trials results will allow refinement of EITS models for 

diarrhea by clarifying appropriate values for parameters and reducing the need for calibration. 

Future models will provide guidance for public health and development professionals regarding 

effective ways to prevent diarrhea in developing countries.
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6. CONCLUSIONS

6.1. Summary of research

Despite the large body of literature regarding the transmission of diarrheal infections and 

the various interventions used to prevent those infections, much remains to be learned. 

Constructing models simulating the transmission and control of these infections can yield 

conclusions useful for designing diarrhea prevention programs, and also highlights aspects of 

diarrheal infections that require further research. This dissertation describes three such models: a 

quantitative microbial risk assessment (QMRA) model simulating waterborne transmission 

during a published household water treament field trial (chapter 3); a generalization of that 

QMRA model to examine the effect on diarrheal incidence by varying HWT compliance and 

antimicrobial effectiveness (measured by log10 reduction values [LRVs] under different 

scenarios (chapter 4); and a more complex environmental infection transmission system (EITS) 

model that further examines compliance and LRVs, as well as multiple routes of transmission 

(chapter 5).

By simulating a published field trial (Boisson et al., 2010) of a HWT device (chapter 3), 

the model estimated that similar trials with perfect compliance would have found a longitudinal 

prevalence ratio for childhood diarrhea of about 0.1, in contrast to an LPR of 0.9 with low 

compliance (an LPR of 0.8 was estimated by the actual trial, but was not statistically significant). 

Although a goal of the model was to adjust for bias caused by an imperfect placebo HWT device, 

uncertainty about the level of compliance greatly influenced the effect of the imperfect placebo. 

The model also predicted concentrations of diarrheagenic bacteria, viruses, and protozoa in the 

source water of the field study communities that were consistent with the limited published 

measurements of pathogen concentrations in other developing country source waters. 
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Since the importance of compliance was highlighted by the first QMRA model, it was 

modified to determine how childhood diarrhea incidence changed if HWT compliance and LRVs 

were varied under differing scenarios (chapter 4). These scenarios were defined by various 

combinations of: 1) baseline incidence of childhood diarrhea; 2) the pattern of compliance within 

the community (put simply, the proportion of people who complied perfectly was varied while 

holding compliance constant at the community level); 3) the size of randomly scheduled spikes 

of pathogens in untreated drinking water; and 4) etiologic fractions of childhood diarrhea cases 

attributable to bacteria, viruses, and protozoa. In general, LRVs of 5 prevented little or no 

additional diarrhea compared to LRVs of 3. However, LRVs of 5 sometimes prevented additional 

diarrhea if incidence was high, there were large contamination spikes, or many people complied 

perfectly with HWT.

Although the two QMRA models were informative, they included only the waterborne 

route of transmission. Although that route is important, diarrheal pathogens can also be 

transmitted by other routes, e.g., contaminated hands, soil, or objects. The relative importance of 

these routes is unknown. Furthermore, it was unclear whether findings from the QMRA models 

would hold in a more complicated and realistic model. An EITS model was programmed 

(chapter 5), using many functions and parameters from the QMRA models, but incorporating 

additional functionality such as pathogen shedding by infected people, household structure, 

multiple routes of transmission, and attenuation (e.g., decay or sequestration) of pathogens in the 

environment. 

The EITS model suggested that viruses and protozoa are attenuated roughly 10 times faster 

than bacteria in the environment. This may be partially explained by the absence of certain 

aspects of pathogen transmission that favor bacteria, such as the ability of bacteria to multiply in 

food or within nonhuman animals. The calibration process may have selected lower attenuation 
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rates for bacteria in order to meet the calibration criteria, essentially compensating for these 

missing pathways. It also suggested that visits between households are a relatively minor route 

for transmission of pathogens, though this might differ if the intensity of exposure were greater 

during visits (e.g., an infected child being cared for in a different household while the parents 

were working).

Further analysis of the EITS model will yield additional results, in particular the 

assessment of interaction between two differing interventions applied to the same community.

6.2. Implications for future diarrheal research and prevention efforts

6.2.1. Conduct and description of field trials  

Field trials of public health interventions in developing countries are expensive and 

difficult to perform, and subject to biases that are difficult to avoid. Models simulating existing 

field trials can be used to draw inferences regarding what the trial might have measured under 

different conditions. If biases present during a field trial are well understood, the biases 

themselves can be simulated within the model, allowing inference of what the trial might have 

measured in the absence of bias. Although it is impossible to be sure that a model perfectly 

represents what happened, they can nonetheless be useful for generalizing additional knowledge 

from field trials.

It is often unclear how to interpret results from a single field trial of a public health 

intervention, and modeling field trials requires detailed information about the conduct of the trial 

and the study site. Human communities are extremely diverse, and the health impact from an 

intervention in one community might differ from the health impact of the identical intervention 

in a different community. However, detailed characteristics of study communities are seldom 

published, though there are exceptions (Mata, 1978). Table 6.1 lists information that should be 

published (likely in supplemental material) about any community that participates in a field trial. 
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Although it may not always be possible to gather detailed information about each of these 

aspects, qualitative or semi-quantitative assessments of many of them could be quickly obtained 

from focus group discussions with several community members. Establishment of multi-year 

research relationships between study communities and diverse teams of researchers (e.g., 

epidemiologists, anthropologists, microbiologists, and others) would facilitate collection, 

analysis, and publication of this information.

Table 6.1. Important community characteristics for measurement in field trials

Sanitation 
& hygiene

Water 
source & 
treatment

Micro-
biology‡

Social & 
community

Nutritional
Epidemi-

ology
Climate & 
geography

Open 
defecation

Water 
source(s)

Untreated 
water†

Community 
cohesion

Stunting
Diarrheal 

incidence†
Temper-
ature†

Type and 
usage of 
latrines*

Distance to 
water source

Treated 
water†

Child care 
& schooling

Wasting†
Diarrheal 

longitudinal 
prevalence†

Humidity†

Hand-
washing 

practices*

Drinking of 
boiled 
water*

Human 
feces†

Household 
size

Pattern of 
breast-
feeding

Diarrheal 
mortality†

Precipitation 
frequency†

Domestic 
animals

Other HWT 
methods*

Animal 
feces†

Cultural 
practices

Staple foods
All-cause 
mortality†

Precipitation 
amount†

Anal 
cleansing

Water 
consump-

tion†
Food†

Government 
or NGO 

programs*

Weaning 
foods

Diarrhea in 
adults†

Solar 
irradiation†

Attitudes 
toward child 

feces

Water 
usage†

Hands†
Population 

density
Dietary 

fiber
HIV/AIDS

Roads & 
rivers

Socio-
economic 

status

Protein 
source(s)

Locally 
important 
diseases

Urban/rural

* Should include repeated measurements of compliance over at least 1 year.
† Should be measured repeatedly over at least 1 year.
‡ Ideally, pathogens should be directly quantified, though this is difficult.
HWT: household water treatment. NGO: non-governmental organization. HIV: human 
immunodeficiency virus.
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6.2.2. Compliance with interventions that prevent diarrheal infections  

HWT methods are typically assessed based on their antimicrobial efficacy, assuming 

perfect compliance. However, perfect compliance is unattainable. HWT methods would be more 

holistically assessed, and public health would be better protected, if HWT guidelines were based 

on compliance as well as LRVs. Results from these models also indicate that the currently 

recommended LRVs for HWT (particularly 6 for bacteria, 4 for viruses, and 3 for protozoa 

(USEPA, 1987), which are sought after in order to advertise that a device 'meets US guidelines') 

are higher than necessary, since LRVs of 5 prevented little or no additional diarrhea in most 

scenarios studied, compared with LRVs of 3. Nonetheless, LRVs above 3 might provide 

additional benefit in certain situations, such as when transmission is primarily waterborne, 

compliance is high, and large spikes of drinking water contamination are known to occur.

The pattern of compliance within communities is also important. The QMRA and EITS 

models agree that, for a given value of compliance at the community level, more diarrhea is 

prevented if more people within the community comply perfectly. For example, it is better for 

80% of the population to comply perfectly and 20% to not comply at all, than if the entire 

population treated 80% of their daily water intake.

Despite its importance, compliance is difficult to measure. At a minimum, the female head-

of-household can be asked if they comply; however, this will probably overestimate compliance 

because some noncompliers will claim they comply out of politeness or a desire to give the 'right' 

answer. Less biased methods include structured observation (which can still give biased results 

due to Hawthorne effects) or directly measuring drinking water to determine if it has been treated 

(this is relatively easy for HWT chlorination methods), Electronic devices have also been 

attached to HWT devices to record usage data. However, it is not sufficient to know whether 

households are using a HWT method; it is also important to know how much untreated water 
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people drink. Even small amounts of untreated water can greatly increase the risk of diarrhea, but 

carefully quantifying intake of untreated water would require following people throughout their 

community to observe when, where, and how much water they drank. However, it might be 

possible to roughly estimate a community's untreated water intake with focus group discussions 

about water consumption behavior, perhaps combined with a quantitative estimate of total water 

intake (e.g., Akpata 2004).

Every field trial should measure compliance as carefully as possible, since compliance 

greatly affects the measured effectiveness of interventions.
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7. APPENDIX A: DISCUSSION OF PARAMETER VALUES USED IN THE MODELS

The models described in this dissertation use a variety of parameter values, most of which 

were obtained from peer-reviewed scientific publications. Many of the same parameter values 

are used in all three models. Only children aged less than five years were considered in the two 

QMRA models described in chapters 3 and 4; both children and 'adults' (defined as people aged 5 

years or older) were considered in the environmental infection transmission system (EITS) 

model described in chapter 5. 

Wherever possible, parameter values were chosen to reflect conditions in developing 

countries with warm climates. However, some parameter values only appear to have been 

measured in industrialized countries.

Parameter values are discussed roughly in order of progression from exposure to infection 

to development of disease to shedding of pathogens.

7.1. Water ingestion rate

The daily water ingestion rate for young children was obtained from a study (Akpata, 

2004) which provided bottled water to mothers of 50 rural Nigerian children aged one to three 

years, and measured the amount remaining in the bottles at the end of the day. This study 

successfully cross-validated itself by obtaining similar estimates when asking mothers to 

estimate water intake based on common household measures. Relative humidity during the study 

was approximately 87% and mean maximum ambient temperature was approximately 31ºC. 

For adults, a study of Kenyan distance runners reported a mean daily water intake of 2.3 

L/day (Fudge et al., 2008). This value also agrees with U.S. Army planning parameters of 2.3 

L/day for the sum of urine and sweat losses during physical work in hot climates (USEPA, 2011), 

as well as the water intake of 2.0 L among children aged 7 to 9 years in the Nigerian study 

described above (Akpata, 2004). 
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The ingestion rates for drinking water described above are much higher than other standard 

values measured in industrialized countries, e.g., 317 mL/day for two year olds and 1043 mL/day 

for people over 20 years of age (USEPA, 2011). However, people in industrialized countries are 

more likely to drink bottled beverages, reducing their exposure to possibly contaminated 

drinking water; they are also more likely to reside in cooler (possibly air-conditioned) 

environments, which reduces their demand for fluids. 

7.2. Hand-mouth contacts per day

Young children mouth hands and objects more frequently than older children or adults, 

which indicates that they should have more exposure to pathogens in the environment. Children 

aged 0 to 5 years contact their mouths with their hands or an object about 15.8 times per hour, 

while children aged 6-10 years have about 8.1 such contacts per hour (USEPA, 2011). Assuming 

that this behavior in 6-10 year olds is similar to adults, and further assuming that young children 

are awake 12 hours per day while adults are awake 16 hours per day, young children have 330 

daily contacts with their mouth while adults have 130. The ratio of these (2.54) was used to 

weight environmental exposure to pathogens in the EITS model more heavily for children.

7.3. Log10 reduction values (LRVs) attributable to interventions

LRVs are particularly relevant to HWT interventions, but handwashing can also be 

considered to apply LRVs to pathogens adhering to hands. Such LRVs, as well as USEPA and 

WHO recommendations for antimicrobial effectiveness of HWT devices, are summarized in 

Tables 2.1 and 2.2, page 64.

7.3.1. LRVs attributable to sanitation  

Although sanitation clearly removes pathogens from the environment, it is not 

straightforward to assign a simple measure of antimicrobial efficacy to it. The effectiveness of 
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sanitation depends on the manner in which it is constructed and located; pathogens may be 

carried out of latrines by groundwater or runoff, subsequently contaminating water wells or 

surface water sources. Removal of feces from latrines for use as fertilizer is another possible way 

for people to be exposed. Nonetheless, to simulate sanitation in the EITS model, it was necessary 

to assign some level of antimicrobial efficacy to it. Since anal cleansing materials are often 

disposed of in a wastebasket or on the ground rather than in the toilet in developing countries, it 

could be considered that a well-constructed and well-situated latrine would remove all feces 

from the community, except for those involved in anal cleansing. The amount of feces involved 

in anal cleansing was determined as follows: a daily average of 4.4 mg of fecal nitrogen has been 

measured on toilet paper (Calloway et al., 1971); feces are approximately 1.9% nitrogen (Rivero-

Marcotegui et al., 1998); thus approximately 0.0044 / 0.019 = 0.23 g of feces would remain on 

anal cleansing materials from a single defecation event, which occurs approximately once per 

person per day (Weaver, 1988). This figure is roughly corroborated by a report of an average of 

0.1 g of feces per set of underwear in university students (Gerba, 2001). Considering that an 

adult on a high-fiber diet excretes approximately 225 g of feces daily (Davies et al., 1986), 

approximately one thousandth (0.23/225) of daily fecal output would not enter the latrine; this 

corresponds to an LRV of 3.

7.3.2. LRVs attributable to intervention and placebo filters in the Lifestraw RCT  

The first QMRA model (chapter 3) used log10 reduction values (LRVs) for the LifeStraw 

Family Filter (LFF) from a laboratory study of the device (T. Clasen, Naranjo, et al., 2009). In 

contrast to the LRV of 6.9 for E. coli reported in the laboratory study, the mean LRV from 

functioning LFFs for thermotolerant coliforms (TTC) reported by the Lifestraw RCT was only 

2.98; removal of other organisms was not determined during the RCT (Boisson et al., 2010). 

However, the mean LRV of 2.98 for TTC was determined by assuming a count of 1 CFU per 100 
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mL where TTC were not detected in the filtered water (64% of samples ); the median LRV was 

therefore technically > 3.1, and the maximum LRV measurable in any sample taken during the 

the RCT was 4.5. Therefore, the average LRV for TTC in the RCT was greater than the value of 

2.98 that was reported; it is impossible to know how much greater. 

In addition, given the size exclusion treatment mechanism by the ultrafilter membrane in 

the LFF (20 nm pore size), it seems unlikely that the treatment performance in the field was 

much lower than what was observed in the laboratory. Although TTC might have passed through 

some devices due to non-visible leaks in the gaskets or defects in the membrane material, the 

presence of TTC in outlet samples was not correlated with specific devices, nor were there trends 

in time over the one-year field trial. In addition, intervention and placebo devices were 

monitored and repaired as necessary by the study team (Boisson et al., 2010). Thus, a more likely 

explanation for the lower LRVs measured in some intervention LFFs is that contamination of the 

outlet tube with TTC occurred. Based on this reasoning as well as the detection limit issues 

described above, it was determined that the most reasonable LRVs for the intervention LFF 

against the three pathogen types were the values determined in the laboratory study (T. Clasen, 

Naranjo, et al., 2009). 

For the placebo device, the Lifestraw RCT reported a mean LRV of 1.05 (i.e., 91% 

removed) for thermotolerant coliforms (TTC) (Boisson et al., 2010). Further analysis of the data 

revealed that the LRV varied greatly between -1 (indicating a tenfold higher concentration in 

filtered water) and 3 (99.9% removed). There was no evidence that removal by the placebo 

increased significantly over time, or was restricted to particular defective devices. It is likely that 

some of the observed variability in removal was due to the inherent variability in water quality 

and measurement associated with indicator organisms in water sources (K. Levy, A. E. Hubbard, 

K. L. Nelson, et al., 2009). Based on the observed performance and the design, mechanisms of 
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removal may have included: (1) straining by the prefilter of the LFF, especially if TTC were 

attached to larger particles; and (2) adhesion to the biofilm that likely developed on surfaces, in 

particular the rubber tubing that replaced the filter membrane cartridge. These mechanisms might 

not have occurred during laboratory testing because of the short testing period (3 weeks) and 

simpler challenge water quality (no removal of the three test organisms by the placebo device 

was measured in the laboratory). Since the mechanism of this reduction is unclear, it is difficult 

to predict removal of viruses and protozoan cysts by the placebo device in the field, but it seems 

likely that if some bacteria were removed, some viruses and protozoa were also removed. Thus, 

the simplest assumption was chosen: application of the same LRV of 1.05 to all three marker 

pathogens.

7.4. Dose response functions

Dose response functions are critical for translating estimated dose into a probability of 

infection. Such functions can be obtained from studies in which volunteers are fed widely 

varying doses of pathogens, and monitored for development of the response (e.g., infection or 

disease). These studies have been conducted on healthy adults because it would be unethical to 

conduct such studies on children. It is likely that dose response relationships in developing-

country children differ in unknown ways; ill or malnourished children could have decreased 

resistance to infection, or they could have increased immunity due to more frequent exposure. 

The use of infection as the response, combined with morbidity ratios from developing countries 

to determine disease, constitutes a crude means of adjustment for this uncertainty. The dose 

response functions used in this model are graphed in Figure 3.3 (page 99, semilog plot) and 

Figure 4.6 (page 138, log-log plot), and the equations are given on page 98. The same dose 

response functions and parameters were used in all three models.
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7.4.1. Dose response for   E. coli   infection   

Although there are many dose response models describing E. coli disease (Haas et al., 

1999; P F M Teunis et al., 1996), few data are available regarding dose response of E. coli 

infection. In published E. coli feeding studies, data regarding E. coli dose and infection are 

concentrated in the top half of the dose response curve (i.e., > 50% of the participants become 

infected), meaning that the response at low dose levels is very uncertain (Anon, 2012; P F M 

Teunis et al., 1996). Only one feeding study (H L DuPont et al., 1971) appears to exist that uses 

infection as the response and also includes data in the lower half of the dose response curve; it 

had 3 dose levels and 19 participants, who were fed enteroinvasive E. coli (EIEC). The data were 

used to fit a beta-Poisson dose response function in R version 2.12, using maximum likelihood 

methods (Anon, 2012). Although dose response models of infection are available for 

enterohemorrhagic E. coli and Shigella species., they are not appropriate for these models 

because they are much more infectious than diarrheagenic E. coli (J P Nataro & J B Kaper, 1998; 

Anon, 2012).

7.4.2. Dose response for rotavirus and   Giardia  

We used previously published analyses to parameterize the dose response functions (J B 

Rose et al., 1991; Haas et al., 1993). The feeding data for these fits have also been published 

(Rendtorff, 1954; Ward et al., 1986).

7.5. Incubation periods

Incubation periods were only used in the EITS model (chapter 5), not the two QMRA 

models (chapters 3 and 4). The incubation period (time from exposure to development of 

disease) was assumed to be the same as the prepatent period (time from exposure to detection of 

the pathogen in the host, i.e., shedding of the pathogen), although this is not always the case; 

Giardia disease tends to precede excretion of cysts by roughly one week (A. M. Jokipii & L. 
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Jokipii, 1977).

The median incubation period across nine ETEC outbreaks in the USA was 1.75 days 

(Dalton et al., 1999). The mean incubation period for rotavirus disease was approximately 3.2 

days in 5 adults who were voluntarily exposed (Kapikian et al., 1983). For Giardia infection, the 

prepatent period was used; a study where Giardia cysts were fed to imprisoned adult men gave a 

mean of 13.5 days (Rendtorff, 1954), while a study of Finnish giardiasis patients who had 

recently visited an area of Russia with endemic giardiasis reported a median prepatent period of 

14 days (A. M. Jokipii & L. Jokipii, 1977).

7.6. Morbidity ratios

The morbidity ratio for a pathogen is the number of symptomatic infections in a 

community divided by the total number of infections by that pathogen. They can be obtained by 

systematically examining stools from a population of children, regardless of their diarrhea status. 

Asymptomatic infection with diarrheal pathogens is common, particularly in developing 

countries. Morbidity ratios for young children were used in all three models; morbidity ratios for 

adults were only used in the EITS model.

7.6.1. Morbidity ratios in young children  

The morbidity ratio for E. coli (0.21) was taken from a study (Vergara et al., 1996) of 

children under 5 years of age in a subtropical, rural region of Argentina, in which ETEC and 

EPEC were measured in feces quarterly over two years. 

The morbidity ratio for rotavirus (0.36) was provided by a cohort study (Fischer et al., 

2002) from birth to age two years in periurban children in Guinea-Bissau, where stool specimens 

were collected weekly and 116 rotavirus infections were identified in 94 children.

The morbidity ratio for Giardia (0.59) was obtained from 210 children aged 1 month to 9 

years in Peruvian periurban districts with poor sanitation; each child contributed one stool 
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sample over the course of a year (Peréz Cordón et al., 2008). Another study (M S Prado et al., 

2005) suggests a much lower morbidity ratio (~0.03) for Giardia in Brazilian children aged 6-45 

months, but was not used for these reasons: 1) stool samples were collected repeatedly for each 

child over four months, so multiple samples may have been taken during the same infection 

episode; 2) information about individual episodes of diarrhea was not provided; 3) its low 

morbidity ratio is inconsistent with higher morbidities for Cryptosporidium (Kirkpatrick et al., 

2008; Bushen et al., 2007; Peréz Cordón et al., 2008), which Giardia also represents by proxy in 

these models. 

7.6.2. Morbidity ratios in adults  

Suitable morbidity ratios for diarrheagenic E. coli infection in adults appear to be 

unavailable. Although two studies of diarrheagenic E. coli infection in adult Kenyan food 

handlers have been published (Oundo et al., 2008; Onyango et al., 2009), they considered 

diarrhea only in terms of loose stools, without regard for stool frequency. Since three or more 

stools per day is commonly used as a criterion for diarrhea (USAID et al., 2005), these studies 

probably overestimated the morbidity ratio by counting 1-2 loose stools per day as diarrhea (they 

reported 0.34 and 0.62, respectively). Therefore, the morbidity ratio for E. coli in children 

described above (Vergara et al., 1996) was also used for adults.

Morbidity ratios for rotavirus infections in adults are also difficult to find, but they should 

be substantially less than morbidity ratios in children due to acquired immunity. In developing 

countries, frequent rotavirus exposure throughout life probably contributes to maintenance of 

immunity in adults (Bishop, 1996). Morbidity ratios of 5/16 among adults and 6/28 among 

children were measured in a prospective study of rotavirus infection in middle-class families 

served by a particular pediatric practice in the USA (Rodriguez et al., 1987); although the 

morbidity ratio among children in Guinea-Bissau (Fischer et al., 2002).of 0.36 is similar to the 
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above ratio of 5/16 in adults, it is rather higher than the morbidity ratio among children in that 

pediatric practice. The morbidity ratios from Rodriguez et al. (1987) were not used because they 

did not appear representative of rotavirus disease in developing countries, where children are 

more likely to acquire serious rotavirus disease and adults may have stronger immunity due to 

more frequent exposure. In the absence of better information, a value of 4/18 was used in the 

EITS model for the rotavirus morbidity ratio in adults, based a study of 18 adult volunteers 

ingesting rotavirus from 0.2g of stool of an ill child, four of whom became ill (Kapikian et al., 

1983). However, only twelve volunteers showed a serologic response, and only five volunteers 

shed the virus, four of whom had diarrhea (Kapikian et al., 1983). The volunteers were chosen 

partly based on their low antibody titers against rotavirus. 

The morbidity ratio for Giardia was obtained from a study of Pakistani men and their 

children aged two to twelve years, who lived in an area where untreated wastewater was used for 

agricultural irrigation. Although 67.2% of the study population was infected, only 2.8% of the 

infected people reported diarrhea during the week before a stool sample was collected (Ensink et 

al., 2006), similar to the Brazilian study of young children described above (M S Prado et al., 

2005). Although the number of study participants who were children aged under five years was 

not reported, the population is likely to be dominated by persons aged five years or older.

7.7. Durations of illness and infection

Determination of the duration of infection in underdeveloped settings is difficult, since 

immunity is incomplete for most diarrheal pathogens, and reinfection is common. What appears 

to be a long or intermittent period of infection (or illness) may in fact be multiple reinfections. 

Also, when childhood diarrheal disease is studied in developing countries, it is usually done in a 

hospital or clinic setting; measurements of the duration of infection or disease are biased upward 

in these situations since more severely ill children are more likely to seek care. Also, the duration 
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of infection as measured by detection of a pathogen in stool does not necessarily coincide with 

the duration of illness. Since information on asymptomatic infection is difficult to obtain, the 

duration of illness was assumed to be the same as the duration of infectiousness. The same 

durations of illness and infectiousness were used for adults and children.

7.7.1. Duration of diarrheagenic E. coli infection and illness  

The duration of E. coli diarrhea (mean of 3.0 days) was obtained from a study (Estrada-

Garcia et al., 2009) of Mexican children aged less than two years, who were monitored 

prospectively for the development of infection or disease from diarrheagenic E. coli. A gamma 

distribution was fit to these data for use in the three models. A feeding study of ETEC and EPEC 

in healthy United States adults found a similar mean duration of illness of 3.4 days (R E Black et 

al., 1982). However, a study of 10 ETEC outbreaks among adults in the USA reported median 

durations of illness from 4 to 6 days (Dalton et al., 1999). 

7.7.2. Duration of rotavirus infection and illness  

A mean rotavirus diarrhea duration of approximately 2.5 days was reported by a study 

(Kapikian et al., 1983) of four experimentally infected adult volunteers, with durations of 1, 2, 3, 

and 4 days. Accordingly, a uniform distribution from 1 to 4 was used for viral infection duration 

in all three models.

7.7.3. Duration of Giardia infection and illness  

An outbreak investigation of giardiasis from a contaminated water supply system in 

Massachusetts yielded a mean duration of Giardia disease of 11.3 days (Kent et al., 1988); a 

gamma distribution was fit to these data, and used in all three models. Although a higher mean 

duration of 18.3 days was reported in a feeding study of healthy imprisoned men (Rendtorff, 

1954), the value from the outbreak was used in the models because it was from a more diverse 

population. Cryptosporidium diarrhea in developing countries can be similarly long-lasting; 
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mean durations of diarrhea of 21 days for C. hominis and 13 days for C. parvum were reported in 

a cohort study of children in a Brazilian shantytown during their first 5 years of life (Bushen et 

al., 2007).

7.8. Duration of immunity

Full treatment of immunity to diarrheal infections is extremely complicated, and it is 

beyond the scope of this dissertation. For E. coli, Campylobacter, and Giardia, immunity 

protects against disease, but does not necessarily prevent reinfection (R H Gilman et al., 1988; 

Cravioto et al., 1990; Valentiner-Branth et al., 2003; A. H. Havelaar et al., 2009). For rotavirus, 

immunity is long-lasting, but is strain-specific; many differing strains exist, and adults can still 

develop rotaviral infection and disease (Wenman et al., 1979; Kapikian et al., 1983; Ward et al., 

1986). Further considering that each pathogen type also represents other similar pathogens (e.g., 

Campylobacter for bacteria, norovirus for viruses, and Cryptosporidium for protozoa), repeated 

infections therefore occur for all three pathogen types. Therefore, some information regarding 

immunity is already included in these models in the form of the morbidity ratios discussed above 

(page 220). 

Infection with diarrheagenic E. coli, rotavirus, or Giardia tends to persist for several days, 

as long as a week, after symptoms resolve (R E Black et al., 1982; Rendtorff, 1954; Kapikian et 

al., 1983). Therefore the QMRA models assumed that immunity from each pathogen lasted 7 

days after infection resolved. However, this assumption was reconsidered in the course of 

constructing the EITS model, in which each pathogen type had a period of immunity lasting one 

day, principally to separate episodes of disease. 

7.9. Incomplete recall of diarrheal disease

The probability of remembering and reporting an episode of diarrheal illness is lower if the 

illness had resolved longer ago. Pakistani mothers were asked to recall diarrhea in their children 
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aged < 5 years (Zafar et al., 2010); the proportion who were reported ill was high for the 

previous two days, but dropped sharply for the third day. The amount of diarrhea reported for the 

third through the sixth day was similar. Incomplete recall was only considered in the first QMRA 

model (chapter 3); the other models measured diarrheal incidence as if it was reported perfectly.

7.10. Fecal excretion of pathogens

7.10.1. Concentrations of pathogens in feces  

The numbers of pathogens per gram of feces in infected people have seldom been 

measured. Measurements of EIEC and ETEC in six adult male volunteers with dysentery or 

diarrhea yielded estimates from 108 to 109 CFU/g (H L DuPont et al., 1971). 

The available studies of Giardia cyst concentrations in stool are somewhat problematic. 

Although the EITS model uses a mean measurement (5.7×105 cysts/g) from 15 Colombian 

children aged three to seven years (Danciger & M. Lopez, 1975), these children were divided 

into three groups of five children each: high excretors, low excretors, and mixed excretors. It was 

unclear which type predominated, or how the children were chosen for the study, although cyst 

concentrations were similar in formed and diarrheic stools (Danciger & M. Lopez, 1975). A 

study that quantitated Giardia cysts in the feces of seven ill soldiers (Porter, 1916) presented 

detailed time series of cyst concentrations; however, all of these soldiers were ill for several 

months, had been ill for at least 1.5 months before examination of their feces, had received 

differing chemotherapies, and were probably more severely affected than their peers. Cyst 

concentrations varied widely from day to day, ranging from 0 to 2×107 cysts/g. 

Although rotavirus particles can reach extremely high concentrations (~1011/g) in stool 

when measured by electron microscopy, only a tiny fraction appears to be viable; an average of 

2×106 FFU/g has been reported from 5 fecal specimens from rotavirus diarrhea patients (Ward et 
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al., 1984).

7.10.2. Amount of feces excreted  

To determine the amount of pathogens excreted given a concentration of pathogens in 

feces, the volume of feces must also be known. The EITS model used fecal output measurements 

from individuals consuming high-fiber diets: Nigerian children aged 6-60 months defecated 109 

g on average (SD 54) (Akinbami et al., 1995), while adult British vegans defecated 225g on 

average (SD 91) (Davies et al., 1986). Although people living in developing countries might be 

expected to consume more fiber than people in industrialized countries, this is not necessarily the 

case; a dietary survey of urban adult Nigerian hospital patients and medical students indicated 

similarly low daily dietary fiber intake (~8g) and daily stool mass (~140g) as people in 

industrialized countries (Ogunbiyi, 1978).

Although the effect of fiber intake on pathogen concentrations in feces is unclear, 

gastrointestinal pathogens are associated with the intestinal wall, and therefore the amount of 

feces shed might be more related to the internal surface area of the gut that has been colonized, 

rather than the mass of feces passing through the gut. Diets higher in fiber yield larger and softer 

stools, and promote healthy microbial communities in the gut, leading to improved nutrient 

absorption; fiber may also reduce risk of diarrheal disease in some circumstances (Brownawell et 

al., 2012). Therefore communities where high-fiber diets are common might experience less 

diarrhea and also excrete fewer pathogens into their environment.

The number of daily defecation events would be expected to affect the amount of 

pathogens present on hands and in the household environment, because each defecation event 

represents an episode of hand contamination with feces. In industrialized countries, healthy 

adults and young children generally have between 1 and 2 bowel movements per day (Weaver, 

1988); the Nigerian medical students mentioned above had a mean of 0.89 bowel movements per 

226



day (Ogunbiyi, 1978). Two studies of young children hospitalized for acute diarrhea in Peru and 

Bangladesh indicated similar mean daily fecal outputs of 365g and 310g (Lembcke et al., 1989; 

S. K. Roy et al., 1997), and a study of Tunisian adults with acute diarrhea reported mean daily 

fecal output of 499g (Hamza et al., 1999). Although the Peruvian study reported 9.5 (SD 5.0) 

stools during the 24 hours before admission, and the Tunisian study reported 6.3 (SD 2.5) stools 

the day of admission, people seeking care are likely to have more severe diarrhea. As a 

simplifying assumption, the EITS model used a value of 3 stools/day for all persons with 

diarrhea; when multiplied by the fecal output in persons without diarrhea, it roughly matches the 

fecal output described in the Peruvian, Bangladeshi, and Tunisian studies above.

7.11. Inactivation, removal, or attenuation of pathogens in the environment

Inactivation of pathogens is highly variable, depending on the type of pathogen, 

temperature, humidity, and the microenvironment where the pathogen resides (e.g., water, skin, 

feces, soil, etc.). Furthermore, some pathogenic bacteria may multiply in contaminated food. An 

exponential decay rate of 0.6 per day was initially considered as a basis for all pathogens in all 

EITS model compartments; it was based on daily rates of: 0.64 for E. coli in unfiltered river 

water that was bottled and stored at 15°C (Flint, 1987); 0.58 for rotavirus in water from a creek 

that received discharges of domestic sewage, which was then bottled and stored at 20°C 

(Pancorbo et al., 1987); and 0.55 for Giardia fitted to data from inactivation studies at 15-20°C 

in distilled water, tap water, and in situ river water (Wickramanayake et al., 1985; deRegnier et 

al., 1989). However, pathogens may be removed from a system by many means beyond simple 

decay, such as being transported in water or soil particles, ingestion by animals, sedimentation in 

water, sequestration in underwater sediments or underground, etc. Furthermore, pathogen decay 

rates can vary greatly depending on temperature, solar radiation, humidity, and other factors. 

Since the actions of these various attenuation mechanisms are unclear and are likely to vary 
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greatly in different communities, the EITS model assigned varying values to three attenuation 

calibration parameters without reference to particular values from the literature.

7.12. Pathogen movement from land to surface water

Modeling the movement and inactivation of pathogens within land and surface water is a 

large and complicated area of research, and is beyond the scope of this dissertation. The EITS 

model used a few simple parameter values to describe pathogen movement from land to water; 

0.1% on dry days, 5% on rainy days, with rain occurring once every 14 days on average. In 

chapter 5, the calibration parameters CPDl, CPSf , and CPatten can be considered to include 

variability in scenarios due to hydrogeological considerations.

7.13. Demographic parameters

Infection transmission could be affected by demography and community structure, since 

children are more susceptible to diarrheal infections than adults, and people share an 

environment with other residents of their household. A household size of roughly five people is 

common in many developing countries, although it can range from four to eight (Ayad et al., 

1994). Household size across a wide variety of industrialized and developing countries can be 

adequately represented by a Poisson distribution truncated at zero (Jennings et al., 1999). In 

many sub-Saharan African countries, on average 18% of each household are children aged less 

than five years; however, it is lower in other developing regions, e.g., 12-17% among several 

Latin American countries (Ayad et al., 1994). 

7.14. Summary table of all parameter values

Table 7.1 summarizes parameter values used in all three models described in this 

dissertation. The two QMRA models (chapters 3 and 4) used very similar parameter sets. The 

EITS model (chapter 5) also used many of the parameters from the QMRA models, as well as 
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some additional parameters. Parameters that were varied during the estimation steps of the three 

models are not included here (but see chapters 3, 4, and 5, pages 105, 130, and 183). The 

variable names used in the model code are given in the table; the QMRA models are designated 

'Q', while the EITS model is designated 'E'. Where necessary, the first and second QMRA models 

(chapters 3 and 4) are designated 'Q1' and 'Q2'. Some variables were stored in vectors; where 

necessary, the element of the vector is denoted in parentheses, e.g., 'VariableName(1)'.
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Table 7.1. Summary table of all parameter values
Description of parameter values, and pages where discussed Value Variable name(s) Reference

Water ingestion, young children (page 214) 1.178 L/day
Q: drinkKids

E: Wdd(1)
(Akpata, 2004)

Water ingestion, adults (page 214) 2.3 L/day E: Wdd(2) (Fudge et al., 2008)

Size of stored drinking water container in each household 25 L E: Ws

Daily probability of a rainfall event (page 228) 1/14 E: rRain

Proportion of pathogens moving from land to surface water daily (page 228)
Kara L. Nelson, personal 

communication

    Without a rainfall event 0.001 E: xRunoff(1) ..

    With a rainfall event 0.05 E: xRunoff(2) ..

Log10 reduction values (LRVs), intervention group, LifeStraw RCT (pages 87 & 216)
(T. Clasen, Naranjo, et 

al., 2009)

    Escherichia coli 6.9 Q1: LRsInt(1) ..

    Rotavirus 4.7 Q1: LRsInt(3) ..

    Giardia 3.6 Q1: LRsInt(2) ..

LRVs, placebo group, LifeStraw RCT, all 3 pathogen types (page 216) Q1: LRsPla

    Calibration step 1.05 .. (Boisson et al., 2010)

    Estimation step 0 ..

LRV for handwashing, all pathogen types (page 64) 0.46 E: lHand (Luby et al., 2001)

LRV for sanitation, all pathogen types (page 215) 3 E: lSan
(Calloway et al., 1971; 

Rivero-Marcotegui et al., 
1998)

Additional LRVs, particularly for HWT: see Tables 2.1 and 2.2, page 64.

Dose response function parameters (pages 98 & 218) (Anon, 2012)
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Description of parameter values, and pages where discussed Value Variable name(s) Reference

    E. coli (enteroinvasive); beta-Poisson parameters
α = 0.155

N50 = 2.11×106
Q&E: alpha(1)

Q&E: KorN50(1)
(H L DuPont et al., 1971)

    Rotavirus; beta-Poisson parameters
α = 0.2531

N50 = 6.171

Q: alpha(3)
E: alpha(2)

Q: KorN50(3)
E: KorN50(2)

(Ward et al., 1986; Haas 
et al., 1993)

    Giardia; exponential k parameter 0.0198 Q: KorN50(2)
(Rendtorff, 1954; J B 

Rose et al., 1991)

Baseline incidence (infections/person-year) with the three pathogen types (page 180)
(Lanata & W. Mendoza, 

2002; M. E. Wilson, 
2005)

    Escherichia coli 1.17 E: BaseInf(1) ..

    Rotavirus 0.347 E: BaseInf(1) ..

    Giardia 0.212 E: BaseInf(1) ..

Incubation periods (page 219)

    Escherichia coli (ETEC) 2 days E: latent(1) (Dalton et al., 1999)

    Rotavirus 3 days E: latent(2) (Kapikian et al., 1983)

    Giardia 14 days E: latent(3)
(Rendtorff, 1954; A. M. 

Jokipii & L. Jokipii, 
1977)

Morbidity ratios for children (proportion of infected who are symptomatic; page 220)

    Escherichia coli 0.214
Q: MorbidityK(1)

E: MRk(1)
(Vergara et al., 1996)

    Rotavirus 0.397
Q: MorbidityK(3)

E: MRk(2)
(Fischer et al., 2002)

231

Table 7.1 (cont'd)



Description of parameter values, and pages where discussed Value Variable name(s) Reference

    Giardia 0.590
Q: MorbidityK(2)

E: MRk(3)
(Peréz Cordón et al., 

2008)

Morbidity ratios for adults (proportion of infected who are symptomatic; page 221)

    Escherichia coli 0.214 E: MRa(1) (Vergara et al., 1996)

    Rotavirus 0.222 E: MRa(2) (Kapikian et al., 1983)

    Giardia 0.03 E: MRa(3) (Ensink et al., 2006)

Distributions of duration of infection and infectiousness (page 222)

    Escherichia coli (gamma distribution, mean 3 days)
shape = 1.775
scale = 1.690

Q&E: durEc.m
(Estrada-Garcia et al., 

2009)

    Rotavirus (uniform distribution; mean 2.5 days) Range 1-4 days Q&E: durRo.m (Kapikian et al., 1983)

    Giardia (gamma distribution, mean 11 days)
shape = 3.206
scale = 3.431

Q&E: durGi.m (Kent et al., 1988)

Period of immunity for all pathogen types (QMRA models; 
page 224)

7 days Q: ImmuneTimes

Period of immunity for all pathogen types (EITS model; page 
224)

1 day E: immune

Chance of remembering diarrhea >2 days in the past (page 224) 0.54 Q1: remembrance (Zafar et al., 2010)

Number of pathogens per gram of feces (page 225)

    Escherichia coli 5×108 E: Mpgf(1) (H L DuPont et al., 1971)

    Rotavirus 2×106 E: Mpgf(2) (Ward et al., 1984)

    Giardia 5.7×105 E: Mpgf(3)
(Danciger & M. Lopez, 

1975)

Fecal output, children aged < 5 years, high fiber diet (page 226) 109 g/day E: fpp(1) (Akinbami et al., 1995)

Fecal output, people aged five years or more, high fiber diet 
(page 226)

225 g/day E: fpp(2) (Davies et al., 1986)
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Description of parameter values, and pages where discussed Value Variable name(s) Reference

Feces entering household environment per defecation event 
(page 226)

0.23 g E: fHands
(Calloway et al., 1971; 

Rivero-Marcotegui et al., 
1998)

Defecation events per day, people without diarrhea (page 226) 1 E: rPoopInf

Defecation events per day, people with diarrhea (page 226) 3 E: rPoopIll

Number of mouth contacts per day, children (page 215) 330/day (USEPA, 2011)

Number of mouth contacts per day, adults (page 215) 130/day ..

Ratio of the above mouth contacts per day, children/adults 2.54 E: wHandMouth ..

No. children <5 years, LifeStraw RCT intervention group 85 Q1: nKidsInt (Boisson et al., 2010)

No. children <5 years, LifeStraw RCT placebo group 105 Q1: nKidsPla ..

Demographic and community information (page 228)

    Number of households in the simulated community 200 E: nHH

    Proportion of the community that was children aged < 5 
years

0.18 E: pKids (Ayad et al., 1994)

    Mean persons per household (Poisson distribution) 5 E: mPHH
(Ayad et al., 1994; 

Jennings et al., 1999)

    Mean household network degree (connections per household) 5.3 E: meanDeg (Zelner et al., 2012)

    Daily probability of a visit, per household connection 2/7 E: rVisit

Shape parameter for all gamma distributions of pathogen type 
concentrations (the two QMRA models only) a

1.85 Q: Shapes (Boisson et al., 2010)

Longitudinal prevalence of reported diarrhea for each LifeStraw RCT group

    Intervention (LPIrad) 0.0749 Q1: LongPrevs(2) ..

    Placebo (LPPrad) 0.0896 Q1: LongPrevs(1) ..
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Description of parameter values, and pages where discussed Value Variable name(s) Reference

Longitudinal prevalence ratio of reported diarrhea (LPRrad) 
measured by the LifeStraw RCT

0.872
Q1: longPrevKids-

DesiredRatio
..

Compliance with device use, first QMRA model: chance of using device on a given day

    Calibration step 0.65 ..

    Estimation step 0, 0.65, or 1.00

Compliance with device use: If using device on a given day, proportion of water treated

    Calibration step 2/3 or 1/3

a The scale parameters for the gamma distributions of pathogen concentrations in the QMRA models were calculated from the mean 
concentrations that were obtained during calibration of the model in chapter 3 (Table 3.2, page 96).
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8. APPENDIX B: ADDITIONAL INTERVENTIONS FOR MITIGATING DIARRHEA

Although this dissertation gives particular attention to household water treatment, 

sanitation, and handwashing, there are other important interventions that prevent or mitigate 

diarrhea. They are briefly reviewed here.

8.1. Nutritional interventions

Diarrhea and malnutrition form a vicious cycle in which diarrhea leads to malnutrition, 

which reduces resistance to disease, which leads to more diarrhea (Motarjemi et al., 1993). 

Diarrheal illnesses contribute more strongly to malnutrition than other infections, such as 

respiratory infections (Motarjemi et al., 1993). Children with diarrhea often refuse food, 

contributing to malnutrition, although they may still accept breast milk eagerly (de Zoysa et al., 

1991). Mothers sometimes believe that food should be withheld from children with diarrhea, 

which can further aggravate the diarrhea-malnutrition cycle (C. E. Taylor & Greenough, 1989). 

In addition, young children with diarrhea commonly refuse food, leading to (or exacerbating) 

malnutrition, but it has been shown in several countries that they do not usually lose their 

appetite for breastmilk (Huffman & Combest, 1990). 

8.1.1. Breastfeeding  

Breast milk can provide all necessary nutrients for infants aged 6 months or less; even in 

very hot conditions, breast milk can supply all necessary fluid intake (Huffman & Combest, 

1990). In addition, malnourished mothers can still produce sufficient good-quality milk to 

support exclusive breastfeeding (Huffman & Combest, 1990). Although the World Health 

Organization recommends exclusive breastfeeding for the first 6 months of life, and continuing 

to breastfeed until age two and a half years or longer, exclusive breastfeeding is uncommon 

(about 35% of infants aged 0 to 4 months) (Hill et al., 2004). Breast milk transfers maternal 

antibodies from mother to child, providing passive immunity. Although breastfeeding infants can 
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still acquire diarrheal infections, they seldom lead to malnutrition while the child is exclusively 

breastfeeding (Motarjemi et al., 1993). 

Both exclusive and partial breastfeeding are strongly protective against diarrhea, 

particularly in infants. In a review (Feachem & Koblinsky, 1984) of this topic, comparing any 

breastfeeding against no breastfeeding, the relative risk for diarrhea was 0.33 in 0-3 month olds, 

0.42 for 3-6 month olds, and 0.71 for 6-11 month olds. However, protection from diarrhea does 

not appear to continue after breastfeeding has stopped (Feachem & Koblinsky, 1984).

Exclusive breastfeeding appears to be effective enough to neutralize the effects of poor 

sanitation on diarrheal risk (VanDerslice et al., 1994; Feachem & Koblinsky, 1984). However, 

supplementing breastmilk with small amounts of contaminated water can double diarrheal risk, 

and after adding additional foods or weaning, the situation is even worse (VanDerslice et al., 

1994). Dose-response relationships have been observed, with additional non-breastmilk feeds 

incrementally increasing diarrheal mortality risk, and breastmilk feeds similarly reducing 

mortality risk (Huffman & Combest, 1990).

8.1.2. Zinc supplementation  

Zinc deficiency has broad effects, particularly on immunity, but its symptoms are not 

obvious (Bhutta et al., 1999). Zinc is not stored in the body and frequent intake is therefore 

required (Bhutta et al., 1999). Treating diarrhea with 20 mg/day (10 mg/day for <6 month olds) 

oral zinc supplementation for 10-14 days can make disease less severe (USAID et al., 2005). 

Several trials of zinc supplementation have been reviewed (Bhutta et al., 1999), finding 

that it was effective in reducing both the incidence of diarrhea by 18% and prevalence by 25% in 

children under 3 years of age. It was even more effective (41% reduction) on pneumonia 

incidence.

Cereal flours can be fortified with zinc, which would make sustained zinc supplementation 
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attainable without any particular action by the family, provided that common brands of flour are 

supplemented. In the absence of a fortified staple food, regular supplementation seems unlikely 

to be sustainable. Zinc fortification of wheat flour is mandatory in Indonesia, Jordan, Mexico, 

and South Africa; the latter two countries also require zinc fortification of maize flour (Kenneth 

H Brown et al., 2010).

8.1.3. Other nutrients  

Vitamin A also appears to be beneficial in reducing mortality and severe diarrhea, but may 

not impact diarrheal incidence overall (Long et al., 2007). Iron supplementation may actually 

exacerbate diarrhea in some cases (Long et al., 2007). There has been relatively little study of 

other micronutrients (Long et al., 2007).

8.2. Treatment of diarrheal illness

There are 5 broad rules for home treatment of diarrhea (USAID et al., 2005):

1. Give more fluids than usual, particularly breastmilk and hygienically prepared oral 

rehydration solution (ORS; see below)

2. Supplement the child’s diet with zinc for 10-14 days

3. Continue to feed the child, particularly well-cooked, energy-rich, non-sugary foods that 

are easy to digest

4. Return to the clinic if the child is dehydrated or fails to improve after 3 days

5. Do not give antibiotics unless there is blood in the stool, signifying dysentery.

8.2.1. Oral rehydration salts/solution/therapy (ORS)  

Use of ORS drastically reduces dehydration, and consequently death, due to diarrhea. The 

original WHO-recommended ORS formulation of ORS from the 1960s reduced dehydration and 

death, but did not otherwise impact diarrhea severity or duration (Atia & Buchman, 2009). An 

improved lower-osmolarity formula began to be promoted in 2002 (Hill et al., 2004). Compared 
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with the original formulation, it has been shown to decrease stool volume in at least 5 trials and 

to decrease diarrheal duration in at least 2 trials (Atia & Buchman, 2009). It is unclear to what 

extent this might reduce secondary transmission of diarrhea.

Zinc supplementation can also be used in conjunction with ORS. Although it does not 

greatly decrease disease duration, it decreases stool output in comparison with ORS alone (Bahl 

et al., 2002; Bhatnagar et al., 2004).

8.2.2. Access to care  

Improved access to medical care is probably most useful for preventing mortality from 

severe or complicated diarrhea. However, it could also impact diarrhea through decreasing the 

duration of disease via effective treatment. It might also indirectly prevent disease by promoting 

other behaviors, such as handwashing or good nutrition.

8.3. Vaccination

Among the diarrheal pathogens, only rotavirus has a highly effective vaccine; it is 85-95% 

effective against severe rotavirus gastroenteritis in children (CDC, 2012). However, a cholera 

vaccine that is about 50% effective is available, and vaccines are available for other pathogens 

that are transmitted by the fecal-oral route, such as hepatitis A virus, poliovirus, and Salmonella 

enterica Typhi (which causes typhoid fever) (CDC, 2012; CDC, 2011). Rotavirus vaccine is not 

generally available in developing countries, although rotavirus vaccination programs are being 

investigated. The rotavirus vaccine is less effective in children in developing countries, 

compared with developed countries, but it remains effective enough to have a large public health 

impact (Cherian et al., 2012). However, vaccination against enterotoxigenic E. coli (ETEC) is 

considered feasible, and vaccine candidates are being researched (R. I. Walker et al., 2007).
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9. APPENDIX C: SOURCE CODE FOR THE MODELS

9.1. Overview of the source code for the models

All models were written in Octave, which is a freely available open source programming 

language for Linux, Mac, or Windows (http://www.gnu.org/software/octave/). Octave and 

MATLAB have nearly identical syntax, and the code runs on either platform without 

modifications (though it runs faster with MATLAB). There is no formal documentation for these 

models, aside from this dissertation; however, the code is extensively commented.

The source code for all three models consists of several text files that can be viewed in any 

text editor: one main file and several functions/subroutines that it calls. They have the extension 

“.m” and are called 'm-files'. To do a test run of any of the models, copy all m-files to a single 

directory, start Octave or MATLAB, set the working directory to that directory (if you don't 

know how, type 'help cd'), and type the name of the appropriate main file (omitting the '.m'). If 

copies of the source code cannot be found online, the source code can be recreated simply by 

copying it from this dissertation and pasting it into a text editor.

All three models should run without errors on Octave 3.2 or 3.3, as well as MATLAB 7.11-

7.13. It is very likely that they will also run on later versions of Octave or MATLAB.

All three models are licensed under the GNU General Public License (see also the 

copyright notice on page 4), with the exception of the file “erdrey.m” used in the EITS model, 

which is from the CONTEST toolbox (A. Taylor & Higham, 2008) and is reproduced with the  

permission of the authors (Des Higham, personal communication, 24 August 2012).

9.2. GNU General Public License

The following license applies to all computer code in this dissertation, except otherwise 

noted; see 'erdrey.m' in section 9.5 The license has been copied directly, without modification, 
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from http://www.gnu.org/licenses/gpl.txt.

                    GNU GENERAL PUBLIC LICENSE
                       Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

                            Preamble

  The GNU General Public License is a free, copyleft license for
software and other kinds of works.

  The licenses for most software and other practical works are designed
to take away your freedom to share and change the works.  By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.  We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors.  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

  To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights.  Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received.  You must make sure that they, too, receive
or can get the source code.  And you must show them these terms so they
know their rights.

  Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

  For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software.  For both users' and
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authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

  Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so.  This is fundamentally incompatible with the aim of
protecting users' freedom to change the software.  The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable.  Therefore, we
have designed this version of the GPL to prohibit the practice for those
products.  If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

  Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary.  To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

  The precise terms and conditions for copying, distribution and
modification follow.

                       TERMS AND CONDITIONS

  0. Definitions.

  "This License" refers to version 3 of the GNU General Public License.

  "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

  "The Program" refers to any copyrightable work licensed under this
License.  Each licensee is addressed as "you".  "Licensees" and
"recipients" may be individuals or organizations.

  To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy.  The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

  A "covered work" means either the unmodified Program or a work based
on the Program.

  To "propagate" a work means to do anything with it that, without
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permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy.  Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

  To "convey" a work means any kind of propagation that enables other
parties to make or receive copies.  Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

  An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License.  If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

  1. Source Code.

  The "source code" for a work means the preferred form of the work
for making modifications to it.  "Object code" means any non-source
form of a work.

  A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

  The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form.  A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

  The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities.  However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
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which are not part of the work.  For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

  The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

  The Corresponding Source for a work in source code form is that
same work.

  2. Basic Permissions.

  All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met.  This License explicitly affirms your unlimited
permission to run the unmodified Program.  The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work.  This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

  You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force.  You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright.  Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

  Conveying under any other circumstances is permitted solely under
the conditions stated below.  Sublicensing is not allowed; section 10
makes it unnecessary.

  3. Protecting Users' Legal Rights From Anti-Circumvention Law.

  No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
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  When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

  4. Conveying Verbatim Copies.

  You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

  You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

  5. Conveying Modified Source Versions.

  You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

    a) The work must carry prominent notices stating that you modified
    it, and giving a relevant date.

    b) The work must carry prominent notices stating that it is
    released under this License and any conditions added under section
    7.  This requirement modifies the requirement in section 4 to
    "keep intact all notices".

    c) You must license the entire work, as a whole, under this
    License to anyone who comes into possession of a copy.  This
    License will therefore apply, along with any applicable section 7
    additional terms, to the whole of the work, and all its parts,
    regardless of how they are packaged.  This License gives no
    permission to license the work in any other way, but it does not
    invalidate such permission if you have separately received it.

    d) If the work has interactive user interfaces, each must display
    Appropriate Legal Notices; however, if the Program has interactive
    interfaces that do not display Appropriate Legal Notices, your
    work need not make them do so.
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  A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit.  Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

  6. Conveying Non-Source Forms.

  You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

    a) Convey the object code in, or embodied in, a physical product
    (including a physical distribution medium), accompanied by the
    Corresponding Source fixed on a durable physical medium
    customarily used for software interchange.

    b) Convey the object code in, or embodied in, a physical product
    (including a physical distribution medium), accompanied by a
    written offer, valid for at least three years and valid for as
    long as you offer spare parts or customer support for that product
    model, to give anyone who possesses the object code either (1) a
    copy of the Corresponding Source for all the software in the
    product that is covered by this License, on a durable physical
    medium customarily used for software interchange, for a price no
    more than your reasonable cost of physically performing this
    conveying of source, or (2) access to copy the
    Corresponding Source from a network server at no charge.

    c) Convey individual copies of the object code with a copy of the
    written offer to provide the Corresponding Source.  This
    alternative is allowed only occasionally and noncommercially, and
    only if you received the object code with such an offer, in accord
    with subsection 6b.

    d) Convey the object code by offering access from a designated
    place (gratis or for a charge), and offer equivalent access to the
    Corresponding Source in the same way through the same place at no
    further charge.  You need not require recipients to copy the
    Corresponding Source along with the object code.  If the place to
    copy the object code is a network server, the Corresponding Source
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    may be on a different server (operated by you or a third party)
    that supports equivalent copying facilities, provided you maintain
    clear directions next to the object code saying where to find the
    Corresponding Source.  Regardless of what server hosts the
    Corresponding Source, you remain obligated to ensure that it is
    available for as long as needed to satisfy these requirements.

    e) Convey the object code using peer-to-peer transmission, provided
    you inform other peers where the object code and Corresponding
    Source of the work are being offered to the general public at no
    charge under subsection 6d.

  A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

  A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling.  In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage.  For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product.  A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

  "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source.  The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

  If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information.  But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
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  The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed.  Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

  Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

  7. Additional Terms.

  "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law.  If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

  When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it.  (Additional permissions may be written to require their own
removal in certain cases when you modify the work.)  You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

  Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

    a) Disclaiming warranty or limiting liability differently from the
    terms of sections 15 and 16 of this License; or

    b) Requiring preservation of specified reasonable legal notices or
    author attributions in that material or in the Appropriate Legal
    Notices displayed by works containing it; or

    c) Prohibiting misrepresentation of the origin of that material, or
    requiring that modified versions of such material be marked in
    reasonable ways as different from the original version; or
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    d) Limiting the use for publicity purposes of names of licensors or
    authors of the material; or

    e) Declining to grant rights under trademark law for use of some
    trade names, trademarks, or service marks; or

    f) Requiring indemnification of licensors and authors of that
    material by anyone who conveys the material (or modified versions of
    it) with contractual assumptions of liability to the recipient, for
    any liability that these contractual assumptions directly impose on
    those licensors and authors.

  All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10.  If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term.  If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

  If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

  Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

  8. Termination.

  You may not propagate or modify a covered work except as expressly
provided under this License.  Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

  However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
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  Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

  Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License.  If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

  9. Acceptance Not Required for Having Copies.

  You are not required to accept this License in order to receive or
run a copy of the Program.  Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance.  However,
nothing other than this License grants you permission to propagate or
modify any covered work.  These actions infringe copyright if you do
not accept this License.  Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

  10. Automatic Licensing of Downstream Recipients.

  Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License.  You are not responsible
for enforcing compliance by third parties with this License.

  An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations.  If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

  You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License.  For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for

249



sale, or importing the Program or any portion of it.

  11. Patents.

  A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based.  The
work thus licensed is called the contributor's "contributor version".

  A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version.  For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

  Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

  In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement).  To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

  If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients.  "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

  If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
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receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

  A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License.  You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

  Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

  12. No Surrender of Others' Freedom.

  If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all.  For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

  13. Use with the GNU Affero General Public License.

  Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work.  The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
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  14. Revised Versions of this License.

  The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

  Each version is given a distinguishing version number.  If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation.  If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

  If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

  Later license versions may give you additional or different
permissions.  However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

  15. Disclaimer of Warranty.

  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED 
BY
APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE 
COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT 
WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR
PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE 
PROGRAM
IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE 
COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

  16. Limitation of Liability.

  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 
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WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR 
CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, 
INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT 
OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO 
LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU 
OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER 
PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE 
POSSIBILITY OF
SUCH DAMAGES.

  17. Interpretation of Sections 15 and 16.

  If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

                     END OF TERMS AND CONDITIONS
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9.3. The QMRA model simulating the Lifestraw field trial (chapter 3)

The model consists of several text files containing necessary functions and subroutines; the 

core program is ’QMRAv13_20110414.m’. Simulation options are set by the choice of several 

values at the top of the files 'QMRAv13_20110414.m' and 'GetTrialParams.m'. These options 

default to values that generate a single test run of the simulation. 

The source code is found below. The filename of each of the source code files is found in 

the copyright information near the top of each file. Each file starts on a new page.
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%QMRA for Lifestraw Family RCT in DRC (Boisson 2010), coded by Kyle S. Enger 
(engerkyl@msu.edu) with suggestions from Joe Eisenberg & Bryan Mayer. 
%It was used to produce the manuscript, Linking quantitative microbial risk assessment 
and epidemiological data: Informing safe drinking water trials in developing countries, 
by Kyle S. Enger, Kara L. Nelson, Thomas Clasen, Joan B. Rose, and Joseph N. S. 
Eisenberg, published in Environmental Science and Technology in 2012. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (QMRAv13_20110414.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Requires Octave 3.2 or later and the octave-image package. 
%Also works rather well on Matlab, running about 4x faster. Requires the statistics 
toolbox, and possibly others. 
%To run, start Octave, change the directory to the location of the program files (using 
the 'cd' command), and type 'QMRAv13_20110414'. 
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%This code (QMRAv13_20110414.m) is accompanied by several functions/subroutines, which 
need to be in the working directory: 
% AssignInf.m: Stochastically assigns infections to individuals with fixed 
durations 
% AssignInfRand.m: Stochastically assigns infections to individuals with random 
durations 
% AssignInfIllRand.m: Stochastically assigns infections & illnesses to individuals 
with random durations 
% CalcDiarrhWeeks.m: Determines whether a week with 1+ days of diarrhea is actually 
reported as a 'diarrhea week' 
% DRbP.m: Beta-Poisson dose response model 
% DRchoose.m: Executes the appropriate dose response model and determines 
illness 
% DRexp.m: Exponential dose response model 
% durEc.m: Randomly pick a duration for E. coli infection 
% durGi.m: Randomly pick a duration for Giardia infection 
% durRo.m: Randomly pick a duration for rotavirus infection 
% Examine1Run.m: Allows inspection of the complete simulated data from a single 
run of this code. 
% GetTrialParams.m: Generates a series of trial parameters instead of determining 
them stochastically. 
% OutQMRAmerge.m: Allows conglomeration of output from multiple model 
executions (e.g., if parallel processing). 

%Kids are defined as those < 5 yrs of age.  All others are considered adults. 
%====Initial housekeeping==== 
clear all; 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
if Octave == 0; format compact; format shortg; end; 
StartTime = clock; %Recording start time of simulation. Is used to timestamp output 
file. 
%ignore_function_time_stamp('all'); %Hopefully saves time by preventing Octave from 
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checking if functions have changed during the run. However, makes debugging difficult 
(altered functions aren't updated). 
%====Setting simulation options====More simulation options are in GetTrialParams.m==== 
badPlacebo = 1; %Whether the simulation is run with an imperfect placebo (1) or a 
perfect placebo (0). 
loops = 1; %No. Monte Carlo iterations of QMRA, if parameters are chosen 
stochastically. If 1, & noStochParams != 1, stores all run info. 
noStochParams = 1; %If 1, use GetTrialParams.m to iterate over a series of parameter 
choices (not choose them stochastically). Resets 'loops'. 
testing = 1; %Equals 1 if testing (production of plots of infection prevalence) is 
desired. Only works if there are <= 25 runs. 
compliance100 = 0; %Equals 1 if device is used perfectly, always, by everyone. 
dailyVariation = 1; %Equals 1 if pathogen concentrations are allowed to vary by person by 
day, instead of taking a single fixed value. 
randomDurations = 1; %Equals 1 if illness durations are randomized instead of taking 
a single fixed value. Renders Duration vector mostly moot (still used to choose start 
time of surveys). 
storeStatus = 1; %If 1, store infection & disease status, to determine 'actual' (i.e., 
reported & unreported) burden of infection. 
%=====Housekeeping based on simulation options==== 
%cd ~/Dropbox/Octave/Lifestraw; %Selecting working directory. Assumes Linux. 
%cd QMRAv13; %TODO: Update whenever a new version of this code is produced. 
%if randomDurations == 1; IllDurations; end %Reading in necessary functions to randomly 
choose illness durations. 
if noStochParams == 1; GetTrialParams; end %GetTrialParams.m reads in pathogens/L & 
background measure to be tried. 
if testing == 1 && loops > 5 && noStochParams == 0; 

error('Do not use so many loops with testing code enabled, or you will flood the 
screen with graphs'); 
end 
%=====Ending housekeeping. Starting parameter values:===== 
%Water concentration and disease parameter values 
% These 4 vectors have 3 elements corresponding to our 3 pathogens of interest: 
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%       [ETEC/EPEC, Giardia, rotavirus] 
PDiseaseK = [0.107, 0.064 , 0.098]; PDiseaseK = PDiseaseK / sum(PDiseaseK); 
%Proportion of kid diarrhea episodes due to various pathogens, adjusted to sum to 1 
(assume unknown episoded are distributed just like known episodes) 
PathogensLMax = [2e5, 1.35, 0.18]; %Maximum pathogens/L; minimum is zero for 
all. 2fold empirically observed levels that led to LP exceeding the 95% CI for the 
placebo group, each pathogen taken individually. 
pathogensLcv = sqrt(3407044) / 2509.329; %Coeff. of var. calc. from variance & mean 
of 'cfbef' (Boisson 2010 water qual. data), high outliers (>= 30000 CFU) removed. 
MorbidityK = [0.214 , 0.59 , 0.397]; %Proportion of infected 'kids' (<5y) with 
diarrhea. 
Duration = [82.1/24, 18.3, 2.5]; Duration = round(Duration); %Duration of diarrhea 
(days) 
prevDiarrhBaseKidsMax = 0.0972; 
LongPrevs = [0.103, 0.0896]; %Vector of raw long. prev. values from Boisson dataset, 
kids w. placebo, then kids w. intervention). 
longPrevRangeMult = 0.4; %Deprecated; multiplier (between 0 & 1) to determine acceptable 
range for longitudinal prevalence & its ratio. 
longPrevKidsDesiredRatio = 0.872; %Ratio from study of long. prev. in intervention kids 
to placebo kids. 
prevDiarrhBaseKids = LongPrevs(2); %Baseline non-waterborne reported prevalence of 
disease. Can be no greater than that observed in the RCT. 
ImmuneTimes = [7 7 7]; %Length of immune period for all pathogens. 
%Parameters: population & exposure information. Model by household later. 
nKidsInt = 85; nKidsPla = 105; %Boisson 2010. 
drinkKids =  1.178; %drinkKidsSD = 0.186; %daily water intake, L/d, kids 
pUse = mean([0.685, 0.757, 0.483, 0.670]); %Mean of people using the device the 
previous day, int. & placebo, at 8 & 14 months. 
pTreat = 2/3; %Proportion of water treated, if device is being used. 
Try 1, 2/3, & 1/3. 
if compliance100 == 1; pUse = 1; pTreat = 1; end; %If perfect compliance is desired, 
override above 2 lines. 
%Parameters: device effectiveness information 
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LRsInt = [6.9, 4.7, 3.6]; %Log reductions [bacteria, viruses, protozoa] by the 
intervention device, with upper & lower ranges 
LRsPla = [1.05, 1.05, 1.05]; %As above, for 'placebo' device 
if badPlacebo == 0; LRsPla = [0 0 0]; end; %If a perfect placebo is being modeled, 
override above line. 
%Parameters: dose response, order as above [ETEC/EPEC, Giardia, rotavirus] 
KorN50 = [2111912, 0.01982, 6.171]; %Exponential k parameter or beta-Poisson N50 
parameter 
alpha = [0.1549, NaN, 0.2531]; %Presence/absence of alpha value determines 
beta-Poisson or exponential dose resp. 
%Bias parameters 
remembrance = 0.54; %Proportion of diarrhea episodes remembered (and reported) if they 
ended >2d before being surveyed; assume perfect recall if episode is on day 0, 1, or 2 
%Study parameters - relating to how the study was conducted 
recallPeriod = 7; %Number of days in the past over which people were asked to remember 
diarrheal episodes 
interval = 30; %Interval between beginnings of recall periods 
nRecallPeriods = 12; %Number of recall periods (i.e., number of simulated diarrhea 
surveys) 
daysBurnIn = ceil(max(ImmuneTimes) + max(Duration) + recallPeriod) * 4; %Days required 
for prevalence to reach equilibrium (simulation starts with nobody infected). Allows 
ample margin for reaching equilibrium. 
%=====Ending parameter values===== 

maxTime = daysBurnIn + (nRecallPeriods-1)*interval; %Time over which to run each 
simulation. 
%Creating output structure for storing results from main QMRA loop 
OutQMRA = 
struct('StartTime',StartTime,'Fit',NaN(1,loops),'KILP',NaN(1,loops),'KPLP',NaN(1,loops),'
LPR',NaN(1,loops),... 
 'EcL',NaN(1,loops),'GiL',NaN(1,loops),'RoL',NaN(1,loops),'PrevBase',NaN(1,loops)); 
%'Fit' is no longer used. 
if storeStatus == 1; %Optionally creating cell array for more detailed output. Not 
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needed for calibration step. 
DailyStatus = cell(2, loops); %Each cell in the array needs to contain a matrix 

(rows are days, columns are variables). 
DailyStatus(:) = {NaN(maxTime,22)}; %1st row for intervention, 2nd row for 

placebo. 
%Columns are: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf. 

(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill. 
end; 
tic %Starts timer 
if noStochParams == 1; loops = size(TrialParams); loops = loops(1); end %Resets loops 
if a series of trial pathogens/L values is being used. 
for i = 1:loops; %=====Starting main QMRA loop.===== Loops once for each QMRA run. i 
indexes each loop. 

%=====Randomly generating parameters for this iteration===== 
switch(noStochParams); 

case 0; 
PathogensLmeans = rand(1,length(MorbidityK)) .* PathogensLMax; %Uniform 

sampling of the mean value for each pathogen. 
prevDiarrhBaseKids = rand(1,1)*prevDiarrhBaseKidsMax;%For Matlab. 
case 1; %Pulling parameters from previous runs consistent with RCT. 
PathogensLmeans = TrialParams(i,1:3); 
prevDiarrhBaseKids = TrialParams(i,4); 
otherwise 
error('noStochParams must be 0 or 1'); 

end 
OutQMRA.EcL(i)=PathogensLmeans(1); OutQMRA.GiL(i)=PathogensLmeans(2); 

OutQMRA.RoL(i)=PathogensLmeans(3); 
OutQMRA.PrevBase(i) = prevDiarrhBaseKids; %This line & previous store the varying 

parameter values. 
%=====End random parameter generation - start setup of values/vectors/matrices used 

throughout simulation===== 
%Computing daily doses of pathogens ingested in drinking water, using water drunk 

per day and log reduction values 
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%Computing parameter values for gamma distribution of pathogens in water 
Scales = (pathogensLcv * PathogensLmeans).^2 ./ PathogensLmeans; 
Shapes = PathogensLmeans ./ Scales; 
%Assigning infections randomly based on responses, assuming infections with 

different pathogens are independent. 
% A person can have only 1 infection per pathogen. 
OutPrevs = struct('KidsInt',NaN(1,nRecallPeriods),'KidsPla',NaN(1,nRecallPeriods));
%Creating struct to hold prevalences from surveys. 
%Creating person-pathogen matrices; everybody starts infected for a random amount of 

time, to reduce periodicity from constant disease duration. 
KidsInt = rand(nKidsInt,length(Duration)) * 2*(max(Duration)+max(ImmuneTimes)); 
KidsPla = rand(nKidsPla,length(Duration)) * 2*(max(Duration)+max(ImmuneTimes)); 
if storeStatus == 1; %Optionally, making corresponding matrices to store disease 

info. 
KidsIntD = ones(size(KidsInt)); %NaN means never infected, 0 means 

uninfected, 1 means infected, 2 means diseased. 
KidsPlaD = ones(size(KidsPla)); %Note that everyone starts off infected with 

everything, just as with KidsInt & KidsPla above. 
end 
OutputFields = fieldnames(OutPrevs); 
if Octave == 1; fflush(stdout); end; %Forces a write to screen. 
%=======Code for testing purposes only======= 
if testing == 1; %Only runs when testing code. These vectors needed for charting 

infection prevalence over the entire simulation. 
KidsIntInfPrev = NaN(nKidsInt,1); %Creating a vector to hold infection 

prevalence info, intervention group. 
KidsPlaInfPrev = NaN(nKidsPla,1); %As above, placebo group. 

end; 
%========End code for testing purposes======== 
%Now storing all person-pathogen matrices, but only if exactly 1 loop is requested. 

This repeats at the end of each day. 
if loops == 1; 

PPmatrices(1).KidsInt = KidsInt; PPmatrices(1).KidsPla = KidsPla; 

261



PPmatrices(1).KidsIntD = KidsIntD; PPmatrices(1).KidsPlaD = KidsPlaD; 
end;  
%========Begin daily loop, t indexes the days========= 
for t = 1:maxTime; 

KidsInt = KidsInt - 1; %Note: a value of 0 signifies the first day of 
immunity. 

KidsPla = KidsPla - 1; 
if storeStatus == 1; %Optionally, tracking recovery from infection/disease. 

KidsIntD(find(KidsInt <= 0)) = 0; 
KidsPlaD(find(KidsPla <= 0)) = 0; 

end 
%Computing doses in untreated water, varying for each child, each day. 
Dose.KidsInt = NaN(nKidsInt,length(Duration)); %Matrix of doses per child 

(intervention). Columns are pathogens. 
Dose.KidsPla = NaN(nKidsPla,length(Duration)); %Matrix of doses per child 

(placebo). Columns are pathogens. 
RandComp = rand(max(nKidsInt,nKidsPla),2); %Random numbers for determining 

compliance (i.e., use of device). 
for j = 1:length(Duration); %Looping over pathogens to determine 

daily doses for ea. person. 
if isnan(Shapes(j)) == 1; %If mean pathogen conc. is set to 0, 

pathogen conc. is always 0. 
Dose.KidsInt(:,j) = 0; 
Dose.KidsPla(:,j) = 0; 

else 
if dailyVariation == 1; 

Dose.KidsInt(:,j) = gamrnd(Shapes(j),Scales(j),[nKidsInt,1]) * 
drinkKids; %Initial untreated dose 

Dose.KidsPla(:,j) = gamrnd(Shapes(j),Scales(j),[nKidsPla,1]) * 
drinkKids; 

else 
Dose.KidsInt(:,j) = PathogensLmeans(j) * drinkKids; %Dose 

becomes the mean dose if daily variation is turned off. 
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Dose.KidsPla(:,j) = PathogensLmeans(j) * drinkKids; 
end 

end %Next 2 lines: Determining who complies and has a nonzero dose 
(because log reduction would fail on zero dose). 

Comp.KidsInt = intersect(find(RandComp(1:nKidsInt,1) < pUse), 
find(Dose.KidsInt(:,j) > 0)); 

Comp.KidsPla = intersect(find(RandComp(2:nKidsPla,1) < pUse), 
find(Dose.KidsPla(:,j) > 0)); 

%Now applying LRs, if using device. Includes adjustment for partial 
treatment of water (pTreat). 

Dose.KidsInt(Comp.KidsInt,j) = 10.^(log10(Dose.KidsInt(Comp.KidsInt,j) * 
pTreat) - LRsInt(j)) + Dose.KidsInt(Comp.KidsInt,j) * (1 - pTreat); 

Dose.KidsPla(Comp.KidsPla,j) = 10.^(log10(Dose.KidsPla(Comp.KidsPla,j) * 
pTreat) - LRsPla(j)) + Dose.KidsPla(Comp.KidsPla,j) * (1 - pTreat); 

end 
%Computing responses (diarrheal illness) using custom functions DRexp() and 

DRbP(). 
Responses.KidsInt(:,1) = DRbP(KorN50(1),alpha(1),Dose.KidsInt(:,1)); %Note: 

response matrices correspond to the person-path. matrices. 
Responses.KidsInt(:,2) = DRexp(KorN50(2),Dose.KidsInt(:,2)); 
Responses.KidsInt(:,3) = DRbP(KorN50(3),alpha(3),Dose.KidsInt(:,3)); 
Responses.KidsPla(:,1) = DRbP(KorN50(1),alpha(1),Dose.KidsPla(:,1)); 
Responses.KidsPla(:,2) = DRexp(KorN50(2),Dose.KidsPla(:,2)); 
Responses.KidsPla(:,3) = DRbP(KorN50(3),alpha(3),Dose.KidsPla(:,3)); 
switch(randomDurations); 

case 1 
switch(storeStatus); 

case 1 
%DailyStatus columns: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf. 

(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill. 
KidsIntDold = KidsIntD; 
KidsPlaDold = KidsPlaD; 
[KidsInt,KidsIntD] = 
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AssignInfIllRand(KidsInt,KidsIntD,Responses.KidsInt,ImmuneTimes,MorbidityK); 
[KidsPla,KidsPlaD] = 

AssignInfIllRand(KidsPla,KidsPlaD,Responses.KidsPla,ImmuneTimes,MorbidityK); 
for s = 1:6; %Store counts of new infections & illnesses. 

if s <= 3; %Infections: 
DailyStatus{1,i}(t,s) = 

length(intersect(find(KidsIntDold(:,s) == 0), find(KidsIntD(:,s) > 0))); 
DailyStatus{2,i}(t,s) = 

length(intersect(find(KidsPlaDold(:,s) == 0), find(KidsPlaD(:,s) > 0))); 
else %Illnesses: 

DailyStatus{1,i}(t,s) = 
length(intersect(find(KidsIntDold(:,s-3) == 0), find(KidsIntD(:,s-3) == 2))); 

DailyStatus{2,i}(t,s) = 
length(intersect(find(KidsPlaDold(:,s-3) == 0), find(KidsPlaD(:,s-3) == 2))); 

end 
end 

otherwise 
KidsInt = 

AssignInfRand(KidsInt,Responses.KidsInt,ImmuneTimes);  
KidsPla = 

AssignInfRand(KidsPla,Responses.KidsPla,ImmuneTimes); 
end 

otherwise 
KidsInt = AssignInf(KidsInt,Responses.KidsInt,Duration,ImmuneTimes); 
KidsPla = AssignInf(KidsPla,Responses.KidsPla,Duration,ImmuneTimes); 

end 

if t >= daysBurnIn && mod(t-(daysBurnIn),interval) == 0; %Obtaining results 
from diarrhea assessment survey. 
%Determining reported diarrhea-weeks. CalcDiarrhWeeks() uses the Person-Pathogen 
Matrices, morbidity ratios, and recall of diarrhea episodes to determine if a week was 
reported as a week with diarrhea. 

KidsIntRD = CalcDiarrhWeeks(KidsInt,remembrance,recallPeriod,MorbidityK);
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%Whether diarrhea was reported by each particular person. Note age (last column) is 
removed from the person-pathogen matrix when inputted to the function. 

OutPrevs.KidsInt((t-daysBurnIn)/interval+1) = 
sum(KidsIntRD)/length(KidsIntRD); %Getting prevalence for each diarrhea survey 

KidsPlaRD = CalcDiarrhWeeks(KidsPla,remembrance,recallPeriod,MorbidityK);
%Like above 2 lines, but kid placebo 

OutPrevs.KidsPla((t-daysBurnIn)/interval+1) = 
sum(KidsPlaRD)/length(KidsPlaRD); 

fprintf(1,['Day ',num2str(t),'/',num2str(maxTime),' done--']); 
if Octave == 1; fflush(stdout); end; %Forces a write to screen. 

end 
if testing == 1; %=====Testing code===== 

KidsIntInfPrev(t) = sum(max(KidsInt') > 0) / nKidsInt;%If max value over 
all pathogens >0, then there is an infection. 

KidsPlaInfPrev(t) = sum(max(KidsPla') > 0) / nKidsPla;%Transposing so that 
max is for ea. row instead of ea. column. 

KidsIntInfEc(t) = sum(KidsInt(:,1) > 0) / nKidsInt; 
KidsIntInfGi(t) = sum(KidsInt(:,2) > 0) / nKidsInt; 
KidsIntInfRo(t) = sum(KidsInt(:,3) > 0) / nKidsInt; 
KidsPlaInfEc(t) = sum(KidsPla(:,1) > 0) / nKidsPla; 
KidsPlaInfGi(t) = sum(KidsPla(:,2) > 0) / nKidsPla; 
KidsPlaInfRo(t) = sum(KidsPla(:,3) > 0) / nKidsPla; 

end %======End testing code====== 
if storeStatus == 1; 

%Columns are: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf. 
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill. 

for s = 7:22; %All based on 0=uninfected, 1=asymptomatic, 
2=ill. 

if s == 7; %Tallying completely uninfected people 
DailyStatus{1,i}(t,s) = length(find(sum(KidsIntD') == 0)); 
DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD') == 0)); 

elseif s == 8; %Infected with only Ec 
DailyStatus{1,i}(t,s) = length(intersect(find(KidsIntD(:,1) > 
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0), find(sum([KidsIntD(:,2) KidsIntD(:,3)]') == 0)')); 
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,1) > 

0), find(sum([KidsPlaD(:,2) KidsPlaD(:,3)]') == 0)')); 
elseif s == 9; %Infected with only Gi 

DailyStatus{1,i}(t,s) = length(intersect(find(KidsIntD(:,2) > 
0), find(sum([KidsIntD(:,1) KidsIntD(:,3)]') == 0)')); 

DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,2) > 
0), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]') == 0)')); 

elseif s == 10; %Infected with only Ro 
DailyStatus{1,i}(t,s) = length(intersect(find(KidsIntD(:,3) > 

0), find(sum([KidsIntD(:,1) KidsIntD(:,2)]') == 0)')); 
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,3) > 

0), find(sum([KidsPlaD(:,1) KidsPlaD(:,2)]') == 0)')); 
elseif s == 11; %Tallying infected with Ec & Gi only 

DailyStatus{1,i}(t,s) = 
length(intersect(find(prod(KidsIntD(:,1:2)') ~= 0), find(KidsIntD(:,3) == 0))); 

DailyStatus{2,i}(t,s) = 
length(intersect(find(prod(KidsPlaD(:,1:2)') ~= 0), find(KidsPlaD(:,3) == 0))); 

elseif s == 12; %Tallying infected with Ec & Ro only 
DailyStatus{1,i}(t,s) = 

length(intersect(find(prod([KidsIntD(:,1) KidsIntD(:,3)]') ~= 0), find(KidsIntD(:,2) == 
0))); 

DailyStatus{2,i}(t,s) = 
length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') ~= 0), find(KidsPlaD(:,2) == 
0))); 

elseif s == 13; %Tallying infected with Gi & Ro only 
DailyStatus{1,i}(t,s) = 

length(intersect(find(prod(KidsIntD(:,2:3)') ~= 0), find(KidsIntD(:,1) == 0))); 
DailyStatus{2,i}(t,s) = 

length(intersect(find(prod(KidsPlaD(:,2:3)') ~= 0), find(KidsPlaD(:,1) == 0))); 
elseif s == 14; %Tallying infected with Ec & Gi & Ro 

DailyStatus{1,i}(t,s) = length(find(prod(KidsIntD(:,1:3)') ~= 
0)); 
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DailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)') ~= 
0)); 

elseif s == 15; %Tallying completely non-ill people 
DailyStatus{1,i}(t,s) = length(find(sum(KidsIntD' .^2) <= 3)); 
DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD' .^2) <= 3)); 

elseif s == 16; %Ill with only Ec 
DailyStatus{1,i}(t,s) = length(intersect(find(KidsIntD(:,1) == 

2), find(sum(KidsIntD(:,2:3)' .^2) <= 2)')); 
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,1) == 

2), find(sum(KidsPlaD(:,2:3)' .^2) <= 2)')); 
elseif s == 17; %Ill with only Gi 

DailyStatus{1,i}(t,s) = length(intersect(find(KidsIntD(:,2) == 
2), find(sum([KidsIntD(:,1) KidsIntD(:,3)]' .^2) <= 2)')); 

DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,2) == 
2), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]' .^2) <= 2)')); 

elseif s == 18; %Ill with only Ro 
DailyStatus{1,i}(t,s) = length(intersect(find(KidsIntD(:,3) == 

2), find(sum(KidsIntD(:,1:2)' .^2) <= 2)')); 
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,3) == 

2), find(sum(KidsPlaD(:,1:2)' .^2) <= 2)')); 
elseif s == 19; %Tallying ill with Ec & Gi only 

DailyStatus{1,i}(t,s) = 
length(intersect(find(prod(KidsIntD(:,1:2)') == 4), find(KidsIntD(:,3) <= 1))); 

DailyStatus{2,i}(t,s) = 
length(intersect(find(prod(KidsPlaD(:,1:2)') == 4), find(KidsPlaD(:,3) <= 1))); 

elseif s == 20; %Tallying ill with Ec & Ro only 
DailyStatus{1,i}(t,s) = 

length(intersect(find(prod([KidsIntD(:,1) KidsIntD(:,3)]') == 4), find(KidsIntD(:,2) <= 
1))); 

DailyStatus{2,i}(t,s) = 
length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') == 4), find(KidsPlaD(:,2) <= 
1))); 

elseif s == 21; %Tallying ill with Gi & Ro only 
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DailyStatus{1,i}(t,s) = 
length(intersect(find(prod(KidsIntD(:,2:3)') == 4), find(KidsIntD(:,1) <= 1))); 

DailyStatus{2,i}(t,s) = 
length(intersect(find(prod(KidsPlaD(:,2:3)') == 4), find(KidsPlaD(:,1) <= 1))); 

elseif s == 22; %Tallying ill with Ec & Gi & Ro 
DailyStatus{1,i}(t,s) = length(find(prod(KidsIntD(:,1:3)') == 

8)); 
DailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)') == 

8)); 
end 

end 
end 
%Now storing the person-pathogen matrices at the end of this day, if exactly 1 

loop was requested. 
if loops == 1; 

PPmatrices(t+1).KidsInt = KidsInt; PPmatrices(t+1).KidsPla = KidsPla; 
PPmatrices(t+1).KidsIntD = KidsIntD; PPmatrices(t+1).KidsPlaD = KidsPlaD; 

end; 
%sizeof(DailyStatus) %Debug measure - too big for memory? 

end 
%disp([' ']) %Adds line feed to separate the progress counters. 
%=========End daily loop, begin more testing code====== 
if testing == 1; 

maxTimePla = find(KidsPlaInfPrev == max(KidsPlaInfPrev)); %Getting time points 
of max. prevalence of infection (1st, if tie). 

disp(['1st time point where max. prevalence (placebo) is seen is 
',num2str(maxTimePla(1))])  %Printing first point of max. prevalence. 

figure(i); %Plotting infection prevalence. 
subplot(2,1,1); 
plot([1:maxTime],KidsIntInfPrev,'-k'); 
title 'Daily infec. prev. (red=Ec,green=Gi,blue=Ro,black=any), dots = reported 

waterborne prev.'; 
ylabel 'Proportion affected (intervention)'; 
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xlim([0 625]); 
hold on; 
plot([1:maxTime],KidsIntInfEc,'-r'); 
plot([1:maxTime],KidsIntInfGi,'-g'); 
plot([1:maxTime],KidsIntInfRo,'-b'); 
h5 = plot([daysBurnIn:interval:maxTime],OutPrevs.KidsInt,'cx'); 
set(h5,'linewidth',2); 
legend('{\fontsize{10} Any infection (daily)}','{\fontsize{10} E. coli 

infection (daily)}','{\fontsize{10} Giardia infection (daily)}','{\fontsize{10} Rotavirus 
infection (daily)}','{\fontsize{10} LP_{Irwd} (prior week)}'); 

hold off; 
subplot(2,1,2); 
plot([1:maxTime],KidsPlaInfPrev,'-k'); 
xlim([0 625]); 
xlabel 'Time (simulated days)'; 
ylabel 'Proportion affected (placebo)'; 
hold on; 
plot([1:maxTime],KidsPlaInfEc,'-r'); 
plot([1:maxTime],KidsPlaInfGi,'-g'); 
plot([1:maxTime],KidsPlaInfRo,'-b'); 
h5 = plot([daysBurnIn:interval:maxTime],OutPrevs.KidsPla,'cx'); 
set(h5,'linewidth',2); 
legend('{\fontsize{10} Any infection (daily)}','{\fontsize{10} E. coli 

infection (daily)}','{\fontsize{10} Giardia infection (daily)}','{\fontsize{10} Rotavirus 
infection (daily)}','{\fontsize{10} LP_{Prwd} (prior week)}'); 

hold off; 
end %=========End testing code========= 
%Adding baseline prevalence. Corrected for doublecounting (some infected people 

would have been infected anyway by baseline transmission). 
OutPrevs.KidsInt = OutPrevs.KidsInt + prevDiarrhBaseKids * (1 - OutPrevs.KidsInt); 
OutPrevs.KidsPla = OutPrevs.KidsPla + prevDiarrhBaseKids * (1 - OutPrevs.KidsPla); 
i %Printing i as a debug measure 
OutQMRA.KILP(i) = mean(OutPrevs.KidsInt); OutQMRA.KPLP(i) = mean(OutPrevs.KidsPla);
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%Output long. prevs. 
OutQMRA.LPR(i) = OutQMRA.KILP(i) / OutQMRA.KPLP(i); 
if storeStatus == 1; %Storing incidences for intervention group. 

OutQMRA.IncInfIntEc(i) = sum(DailyStatus{1,i}(maxTime-364:maxTime,1));
%Yearly infection incidence for E. coli. 

OutQMRA.IncIllIntEc(i) = sum(DailyStatus{1,i}(maxTime-364:maxTime,4));
%Yearly illness incidence for E. coli. 

OutQMRA.IncInfIntGi(i) = sum(DailyStatus{1,i}(maxTime-364:maxTime,2));
%Yearly infection incidence for Giardia. 

OutQMRA.IncIllIntGi(i) = sum(DailyStatus{1,i}(maxTime-364:maxTime,5));
%Yearly illness incidence for Giardia. 

OutQMRA.IncInfIntRo(i) = sum(DailyStatus{1,i}(maxTime-364:maxTime,3));
%Yearly infection incidence for rotavirus. 

OutQMRA.IncIllIntRo(i) = sum(DailyStatus{1,i}(maxTime-364:maxTime,6));
%Yearly illness incidence for rotavirus. 

%As above, for placebo group. 
OutQMRA.IncInfPlaEc(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,1));

%Yearly infection incidence for E. coli. 
OutQMRA.IncIllPlaEc(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,4));

%Yearly illness incidence for E. coli. 
OutQMRA.IncInfPlaGi(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,2));

%Yearly infection incidence for Giardia. 
OutQMRA.IncIllPlaGi(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,5));

%Yearly illness incidence for Giardia. 
OutQMRA.IncInfPlaRo(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,3));

%Yearly infection incidence for rotavirus. 
OutQMRA.IncIllPlaRo(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,6));

%Yearly illness incidence for rotavirus. 
%'Actual' longitudinal prevalences (person-days ill or infected, divided by 

total person-days observed). 
OutQMRA.LPInfIntEc(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,[ 8 11 12 

14])))/(nKidsInt*365); %Yearly inf. LP, E. coli. 
OutQMRA.LPIllIntEc(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,[16 19 20 
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22])))/(nKidsInt*365); %Yearly ill LP, E. coli. 
OutQMRA.LPInfIntGi(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,[ 9 11 13 

14])))/(nKidsInt*365); %Yearly inf. LP, Giardia. 
OutQMRA.LPIllIntGi(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,[17 19 21 

22])))/(nKidsInt*365); %Yearly ill LP, Giardia. 
OutQMRA.LPInfIntRo(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,[10 12 13 

14])))/(nKidsInt*365); %Yearly inf. LP, rota. 
OutQMRA.LPIllIntRo(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,[18 20 21 

22])))/(nKidsInt*365); %Yearly ill LP, rota. 
OutQMRA.LPInfIntMix(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,11:14)))/

(nKidsInt*365); %Yearly inf. LP, mixed. 
OutQMRA.LPIllIntMix(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,19:22)))/

(nKidsInt*365); %Yearly ill LP, mixed. 
OutQMRA.LPInfIntAny(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,8:14)))/

(nKidsInt*365); %Yearly inf. LP, any. 
OutQMRA.LPIllIntAny(i) = sum(sum(DailyStatus{1,i}(maxTime-364:maxTime,16:22)))/

(nKidsInt*365); %Yearly ill LP, any. 
%As above, for placebo group. 
OutQMRA.LPInfPlaEc(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[ 8 11 12 

14])))/(nKidsPla*365); %Yearly inf. LP, E. coli. 
OutQMRA.LPIllPlaEc(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[16 19 20 

22])))/(nKidsPla*365); %Yearly ill LP, E. coli. 
OutQMRA.LPInfPlaGi(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[ 9 11 13 

14])))/(nKidsPla*365); %Yearly inf. LP, Giardia. 
OutQMRA.LPIllPlaGi(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[17 19 21 

22])))/(nKidsPla*365); %Yearly ill LP, Giardia. 
OutQMRA.LPInfPlaRo(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[10 12 13 

14])))/(nKidsPla*365); %Yearly inf. LP, rota. 
OutQMRA.LPIllPlaRo(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[18 20 21 

22])))/(nKidsPla*365); %Yearly ill LP, rota. 
OutQMRA.LPInfPlaMix(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,11:14)))/

(nKidsPla*365); %Yearly inf. LP, mixed. 
OutQMRA.LPIllPlaMix(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,19:22)))/
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(nKidsPla*365); %Yearly ill LP, mixed. 
OutQMRA.LPInfPlaAny(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,8:14)))/

(nKidsPla*365); %Yearly inf. LP, any. 
OutQMRA.LPIllPlaAny(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,16:22)))/

(nKidsPla*365); %Yearly ill LP, any. 
%Longitudinal prevalence ratios. 
OutQMRA.LPRInfIntEc(i) = OutQMRA.LPInfIntEc(i) / OutQMRA.LPInfPlaEc(i);

%E. coli, infection. 
OutQMRA.LPRIllIntEc(i) = OutQMRA.LPIllIntEc(i) / OutQMRA.LPIllPlaEc(i);

%E. coli, illness. 
OutQMRA.LPRInfIntGi(i) = OutQMRA.LPInfIntGi(i) / OutQMRA.LPInfPlaGi(i);

%Giardia, infection. 
OutQMRA.LPRIllIntGi(i) = OutQMRA.LPIllIntGi(i) / OutQMRA.LPIllPlaGi(i);

%Giardia, illness. 
OutQMRA.LPRInfIntRo(i) = OutQMRA.LPInfIntRo(i) / OutQMRA.LPInfPlaRo(i);

%Rota, infection. 
OutQMRA.LPRIllIntRo(i) = OutQMRA.LPIllIntRo(i) / OutQMRA.LPIllPlaRo(i);

%Rota, illness. 
OutQMRA.LPRInfIntAny(i) = OutQMRA.LPInfIntAny(i) / OutQMRA.LPInfPlaAny(i);

%Any, infection. 
OutQMRA.LPRIllIntAny(i) = OutQMRA.LPIllIntAny(i) / OutQMRA.LPIllPlaAny(i);

%Any, illness. 
end 
if mod(i,floor(loops/10)) == 0; %Progress meter 

disp(['Loop ',num2str(i),' of ',num2str(loops),' complete.']) 
toc 

end 
end %======Ending main QMRA loop======= 
disp(['Program finished.']) 
toc %Outputs runtime. 
OutQMRA.EndTime = clock; 
eval(['save Results/OutQMRA',datestr(StartTime,30),'.mat, OutQMRA;']) %Saving output 
file. 
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if noStochParams == 1 && loops <= 25; %Displaying results if a series of input 
parameters were tested. 

out = [OutQMRA.KILP; OutQMRA.KPLP; OutQMRA.LPR; OutQMRA.EcL; OutQMRA.GiL; 
OutQMRA.RoL; OutQMRA.PrevBase]'; 

disp('KILP, KPLP, LPR, EcL, GiL, RoL, PrevBase, PrevBase for 0.84 LPR') 
out(:,8) = (0.84 * out(:,2) - out(:,1)) / 0.16 %Calc. necessary PrevBase to get 

an LPR of 0.84. 
min(out) 
mean(out) 
max(out) 

end 
if Octave == 1; %Audio alert when done. 
    system('aplay -q /usr/lib/openoffice/basis-link/share/gallery/sounds/ok.wav'); 
else 
    system('start c:\windows\media\tada.wav'); 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AssignInf.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Just like AssignIll.m, but loops over columns of the person-pathogen matrix instead of 
rows, & should be faster. 
%Assigns an illness duration to entries of a matrix, where rows are people and columns 
are pathogens 
%Positive entries mean the person is infected, negative entries (or 0) mean the person 
has recovered 
%Inputs: 
% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen 
matrix) 
% Responses: Vector of illness responses (probability of illness given dose), 1 
entry per pathogen 
% ResponsesNon: Vector of illness responses for people not using any device 
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% pUse: Probability that a person is not using any device 
% durations: Vector of durations of illnesses, 1 entry per pathogen 
% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen 
%The output (matrixOut) is matrixIn with new illness durations assigned to some of its 
entries. 

function PPmatrix = AssignInf(PPmatrix,Responses,Durations,ImmuneTimes); 
sizePP = size(PPmatrix); 
Randoms = rand(sizePP); %Random #s for determining infection. One number per person 

per pathogen. 
%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index 

values of people who will be newly infected. 
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; 
%Durations = ones(sizePP) * Durations; 
%Immunities = PPmatrix + ImmuneTimes; %Immunities gives days left in (infection + 

immune period), or a neg. # if susceptible. 
for i = 1:sizePP(2); 

Immunities(:,i) = PPmatrix(:,i) + ImmuneTimes(i);  
NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,i) < 

Responses(:,i))); %Gets indices of newly infected. 
PPmatrix(NewlyInfected,i) = Durations(i); 

end 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AssignInfIllRand.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Similar to AssignIll.m, but assigns infection durations randomly. 
%Assigns an illness duration to entries of a matrix, where rows are people and columns 
are pathogens 
%Positive entries mean the person is ill, negative entries (or 0) mean the person has 
recovered 
%Inputs: 
% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen 
matrix) 
% Responses: Matrix of illness responses (probability of illness given dose), 1 
row per person and 1 column per pathogen 
% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen 
%The output (matrixOut) is matrixIn with new illness durations assigned to some of its 
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entries. 
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m. 

function [PPmatrix,PPmatrixD] = 
AssignInfIllRand(PPmatrix,PPmatrixD,Responses,ImmuneTimes,MorbidityK); 

%rand('state',28) 
sizePP = size(PPmatrix); 
Randoms = rand(sizePP); %Random #s for determining infection. One number per 

person per pathogen. 
Randoms2 = rand(sizePP); %Random #s for determining disease, as above. 
%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index 

values of people who will be newly infected. 
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to 

account for immunity. 
Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same 

size as PPmatrix) to assign to newly infected. 
Durations(:,1) = durEc(sizePP(1)); 
Durations(:,2) = durGi(sizePP(1)); 
Durations(:,3) = durRo(sizePP(1)); 
for i = 1:sizePP(2); %Loop, once for each pathogen. 

NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,i) < 
Responses(:,i))); %Gets indices of newly infected. Note: 0 or less is susc. 

PPmatrix(NewlyInfected,i) = Durations(NewlyInfected,i); 
PPmatrixD(NewlyInfected,i) = 1; %Flags newly infected. 
NewlyIll = intersect(NewlyInfected, find(Randoms2(:,i) < MorbidityK(i))); 
PPmatrixD(NewlyIll,i) = 2; 

end 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AssignInfRand.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Similar to AssignIll.m, but assigns infection durations randomly. 
%Assigns an infection duration to entries of a matrix, where rows are people and columns 
are pathogens 
%Positive entries mean the person is infected, negative entries (or 0) mean the person 
has recovered 
%Inputs: 
% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen 
matrix) 
% Responses: Matrix of illness responses (probability of infection given dose), 1 
row per person and 1 column per pathogen 
% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen 
%The output (matrixOut) is matrixIn with new illness durations assigned to some of its 
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entries. 
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m. 

function [PPmatrix] = AssignInfRand(PPmatrix,Responses,ImmuneTimes); 
%rand('state',28) 
sizePP = size(PPmatrix); 
Randoms = rand(sizePP); %Random #s for determining infection. One number per person 

per pathogen. 
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to 

account for immunity. 
Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same 

size as PPmatrix) to assign to newly infected. 
Durations(:,1) = durEc(sizePP(1)); 
Durations(:,2) = durGi(sizePP(1)); 
Durations(:,3) = durRo(sizePP(1)); 
NewlyInfected = intersect(find(Immunities <= 0), find(Randoms < Responses));
%Gets indices of newly infected. Note: 0 or less is susc. 
PPmatrix(NewlyInfected) = Durations(NewlyInfected); 

end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (CalcDiarrhWeeks.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Calculates whether a given week is reported as a week with diarrhea under the reporting 
scheme in the DRC Lifestraw RCT (Boisson 2010). 
%It considers reduced recall of past diarrheal episodes after 2d ('remembrance') and 
possible distinct diarrhea episodes in the previous 7d. 
%It operates on a matrix: 
% Rows represent people, columns represent pathogens/illnesses, and entries represent 
# of days remaining in the illness. 
%It outputs a vector with 1 entry per person, 1 if illness is reported during the week, 0 
if not. 

function vec = CalcDiarrhWeeks(InMatrix, remembrance,timeWindow,Morbidity); 
sizeInMatrix = size(InMatrix); 
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Randoms = rand(sizeInMatrix(1),sizeInMatrix(2)); 
for j = 1:sizeInMatrix(2); 

InMatrix((find(Randoms(:,j) > Morbidity(j))),j) = -9999; 
end 

for i = 1:sizeInMatrix(1); %Loop over all people. Only the most recent episode 
(largest entry in a row) is used to assign illness. 

%Randoms = rand(1,columns(InMatrix)); %Random numbers for determining 
morbidity (these 2 lines moved upward for greater speed) 

%InMatrix(i,find(Randoms > Morbidity)) = -9999; %Apply morbidity ratio: if 
asymptomatic, infection is set to -9999, and therefore not reported. Note that this 
modification is not passed out of this function. 

if max(InMatrix(i,:)) >= -2;  
vec(i) = 1; %If ill during day 0, 1, or 2, assume illness is always 

reported, therefore assign illness. 
elseif (max(InMatrix(i,:) >= -timeWindow) & rand() < remembrance); 

vec(i) = 1; %Otherwise, if ill during days 3-7, randomly determine if 
episode is remembered. If so, assign illness. 

else 
vec(i) = (0); %Otherwise, no illness is remembered or reported. Assign no 

illness. 
end 

end 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRbP.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Beta-Poisson dose response model, using N50 (default) or beta as a parameter 
%function outvar = DRbP(N50orBeta,alpha,invar,reverse='no',WhichParam='N50') %Ordinarily, 
invar is dose & outvar is response. 
function outvar = DRbP(N50orBeta,alpha,invar,reverse,WhichParam) %Ordinarily, invar is 
dose & outvar is response. 
    if nargin == 3; 
       reverse = 'no'; WhichParam = 'N50'; 
    end 
    switch(reverse) 

case 'no' 
switch(WhichParam) 

case 'N50' 
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outvar = 1-(1+(invar/N50orBeta)*(2^(1/alpha)-1)).^-alpha; 
case 'Beta' 

outvar = 1-(1+(invar/N50orBeta)).^-alpha; 
otherwise 

error(['WhichParam must be "N50" or "Beta"']) 
end 

case 'yes'  %If reverse='yes', invar is response & outvar is dose. 
switch(WhichParam) 

case 'N50' 
outvar = N50orBeta * ( ((1-invar).^(-1/alpha) -1) / 

(2^(1/alpha)-1) ); 
case 'Beta' 

outvar = N50orBeta * ((1-invar).^(-1/alpha) -1); 
otherwise 

error(['WhichParam must be "N50" or "Beta"']) 
end 

otherwise 
error(['reverse must be "no" or "yes"']) 

end 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRchoose.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Returns a vector of response values, determined by dose response models, for several 
pathogens. 
%Inputs are vectors with 1 entry per pathogen, all in the same order: 
% nonalphas: k parameter (exponential) or N50 parameter (beta-Poisson) 
% alphas: alpha parameter (beta-Poisson); NA if exponential model is desired 
% Doses: Doses of pathogens received per individual (under default behavior; 
see 'reverse' below) 
% morbidities: Morbidity ratios: proportion of infected who are ill 
% reverse: Defaults to 'no', determining proportion ill from dose. If 'yes', 
determines dose from proportion ill. 
%The output (outvec) is a vector containing the proportions of exposed who will fall ill. 
%If reverse=='yes', outvec is a vector of doses calculated from invec, the proportions 
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ill. 
%This code requires several custom functions/subroutines in the working directory: 
% DRexp.m: Exponential dose response model 
% DRbP.m: Beta-Poisson dose response model 

%function outvec = 
%DRchoose(nonalphas,alphas,invec,morbidities=1,reverse='no')  %Octave 
function outvec = DRchoose(nonalphas,alphas,Doses,morbidities,reverse) 
    if nargin == 3; 
        morbidities = 1; reverse = 'no'; 
    end 

if morbidities == 1; 
morbidities = ones(length(nonalphas)); 

end 
switch(reverse) 

case 'no' 
for i=1:length(alphas); 

if (isnan(alphas(i))) %if alpha is NA, run exponential dose 
response 

if size(Doses)(1) == 1; 
outvec(i) = DRexp(nonalphas(i),Doses(i)) * morbidities(i); 

else 
outvec(i) = DRexp(nonalphas(i),Doses(:,i)) * 

morbidities(i); 
end 

else %run beta-Poisson dose response 
outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i)) * 

morbidities(i); 
end 

end 
case 'yes' 

for i=1:length(alphas); 
if (isnan(alphas(i))) %if alpha is NA, run exponential dose 
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response 
outvec(i) = DRexp(nonalphas(i),Doses(i) ./ 

morbidities(i),'yes','N50') ; 
else %run beta-Poisson dose response 

outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i) ./ 
morbidities(i),'yes','N50'); 

end 
end  

otherwise 
error('reverse must be "no" or "yes"') 

end 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRexp.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Exponential dose response model 
%function outvar = DRexp(k, invar,reverse='no') %Ordinarily, invar is dose & outvar is 
response. 
function outvar = DRexp(k, invar, reverse)  %This works in Matlab. 
    if nargin < 3; 
        reverse = 'no'; 
    end 

switch(reverse); 
case 'no'; 

outvar = 1-exp(-k * invar); 
case 'yes'; %If reverse='yes', invar is response & outvar is dose. 

outvar = log(1-invar)/-k; 
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otherwise 
error(['reverse (last parameter) must be "no" or "yes"']) 

end 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durEc.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Functions for calculating vectors of illness durations 
function output = durEc(n); 

output = round(gamrnd(1.775,1.690,[n,1])); %Shape, then scale 
output(find(output == 0)) = 0.1; %Sets zero durations to 0.1 day instead. 

Will still function as 1 day. 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durGi.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Functions for calculating vectors of illness durations 
function output = durGi(n); %Based on a fit of gamma dist. to limited info from Kent GP 
1988. 

output = round(gamrnd(3.206,3.431,[n,1])); %Shape, then scale 
output(find(output == 0)) = 0.1; %Sets zero durations to 0.1 day instead. 

Will still function as 1 day. 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durRo.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Functions for calculating vectors of illness durations 
function output = durRo(n); %Based on 4 rotavirus-infected volunteers having durations 
of 1, 2, 3, and 4 days (Kapikian 1983). 

output = ceil(rand([n,1]) * 4); 
output(find(output == 0)) = 0.1; %Sets zero durations to 0.1 day instead. 

Will still function as 1 day. 
end
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (Examine1Run.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Examining data from a single run of the QMRA LifeStraw model. 
%Converting to susceptible (-9), immune (-1), or diseased (9) for each of the 3 
pathogens. 
%====Setting options==== 
startTime = 96; %Time point at which to start looking at the data. Note that 1st 
matrix corresponds to time 0. 
recode = 1; %If 1, recode matrix entries to susc./inf./immune. 
%====Finished with options, starting processing.==== 
PPMs = PPmatrices; %Making a copy. 
switch(recode); 

case 1; 
disp(['Recoding raw numbers to susc./inf./immune.']) 
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for i = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts 
(after equilibrium is reached). 

PPMs(i).KidsInt(PPMs(i).KidsInt <= -7) = -9; %7 day immune period; 0 counts as 
the 1st immune day, so at -7 they are susc. 

PPMs(i).KidsInt(PPMs(i).KidsInt > 0) = 9; %Susceptible if a positive 
integer. 

PPMs(i).KidsInt(abs(PPMs(i).KidsInt) != 9) = -1;%Immune if neither of the above 
applies. 

PPMs(i).KidsInt(PPMs(i).KidsInt == 9) = 2; %Infected person-day marked as 2, 
so as to more easily distinguish. 

end 
for i = startTime:size(PPmatrices)(2); %Same as above 'for' loop, but placebo. 

PPMs(i).KidsPla(PPMs(i).KidsPla <= -7) = -9; 
PPMs(i).KidsPla(PPMs(i).KidsPla > 0) = 9; 
PPMs(i).KidsPla(abs(PPMs(i).KidsPla) != 9) = -1; 
PPMs(i).KidsPla(PPMs(i).KidsPla == 9) = 2; 

end 
otherwise 
disp(['Not recoding to susc./inf./immune, output will display raw numbers.']) 

end 
KidsIntStatusEc = NA(size(PPMs(1).KidsInt)(1), size(PPmatrices)(2)-(startTime-1)); 
KidsIntStatusGi = KidsIntStatusEc; 
KidsIntStatusRo = KidsIntStatusEc; 
KidsPlaStatusEc = NA(size(PPMs(1).KidsPla)(1), size(PPmatrices)(2)-(startTime-1)); 
KidsPlaStatusGi = KidsPlaStatusEc; 
KidsPlaStatusRo = KidsPlaStatusEc; 
for i = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts 
(after equilibrium is reached). 

for j = 1:size(PPMs(1).KidsInt)(1); 
KidsIntStatusEc(j,i-startTime+1) = PPMs(i).KidsInt(j,1); 
KidsIntStatusGi(j,i-startTime+1) = PPMs(i).KidsInt(j,2); 
KidsIntStatusRo(j,i-startTime+1) = PPMs(i).KidsInt(j,3); 

end 
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for j = 1:size(PPMs(1).KidsPla)(1); 
KidsPlaStatusEc(j,i-startTime+1) = PPMs(i).KidsPla(j,1); 
KidsPlaStatusGi(j,i-startTime+1) = PPMs(i).KidsPla(j,2); 
KidsPlaStatusRo(j,i-startTime+1) = PPMs(i).KidsPla(j,3); 

end 
end 
%Now can visually inspect the 6 status matrices that have been output. 
%Should be a way to collapse them also (run-length encoding?), but not yet implemented. 

function outmatrix = coll(inmatrix,nMaxRuns) %Inefficient but hopefully works. 
sizeM = size(inmatrix); 
maxk = 1; %Initializing counter to determine the maximum number of runs ever seen 

during the function call. 
for i = 1:sizeM(1); %Loop over all rows 

for j = 2:sizeM(2); %Loop over each entry per row 
if j == 2; %Special procedure for first iteration, since there could 

be a transition (or not) between the 1st 2 entries. 
k = 1; %Initiating run counter; 
if inmatrix(i,j) != inmatrix(i,j-1); 

if inmatrix(i,j-1) == -9; dur(k) = -1; 
elseif inmatrix(i,j-1) == -1; dur(k) = 0.001; 
elseif inmatrix(i,j-1) == 2; dur(k) = 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 
k = k + 1; %Increment run counter 
if inmatrix(i,j) == -9; dur(k) = -1; 
elseif inmatrix(i,j) == -1; dur(k) = 0.001; 
elseif inmatrix(i,j) == 2; dur(k) = 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 

else %If type of run does not change in 1st 2 entries 
if inmatrix(i,j) == -9; dur(k) = -2; 
elseif inmatrix(i,j) == -1; dur(k) = 0.002; 
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elseif inmatrix(i,j) == 2; dur(k) = 2; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end  

end 
elseif j == sizeM(2); %Special procedure for last iteration - need to 

drop it since it is probably incomplete. 
dur(k) = 0; 

else %If j (the column) is anything greater than 2, but not the last 
column: 

if inmatrix(i,j) != inmatrix(i,j-1); %If there is a transition, 
reset the run: 

k = k + 1; 
if inmatrix(i,j) == -9; dur(k) = -1; 
elseif inmatrix(i,j) == -1; dur(k) = 0.001; 
elseif inmatrix(i,j) == 2; dur(k) = 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 

else %If there is no transition, extend the run 
if inmatrix(i,j) == -9; dur(k) = dur(k) - 1; 
elseif inmatrix(i,j) == -1; dur(k) = dur(k) + 0.001; 
elseif inmatrix(i,j) == 2; dur(k) = dur(k) + 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 

end 
end 

end 
if k > maxk; 

maxk = k %Updates & displays maxk (largest no. runs seen so far). Use as 
guide for entering nMaxRuns. 

end 
outmatrix(i,:) = padarray(dur,[0, nMaxRuns - length(dur)],0,'post'); 

end 
outmatrix(:,1) = 0; %Sets all 1st runs to 0 (they are likely to be incomplete). 
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mean(outmatrix(find(outmatrix >= 1))) %Print mean duration of illness 
end 

function z = GraphColl(outmatrix) %Graphs output of above function. 
bins = unique(outmatrix(find(outmatrix < 0))); 
if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-1; 

binsT(3)=binsT(2)+1; bins=binsT;  end 
subplot(2,2,1); 
hist(outmatrix(find(outmatrix < 0)),bins) %Durations of susceptibility 
bins = unique(outmatrix(find(outmatrix > 0 & outmatrix < 1))); 
if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-0.001; 

binsT(3)=binsT(2)+0.001; bins=binsT;  end 
subplot(2,2,2); 
hist(outmatrix(find(outmatrix > 0 & outmatrix < 1)),bins) %Durations of immunity 
bins = unique(outmatrix(find(outmatrix >= 1))); 
if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-1; 

binsT(3)=binsT(2)+1; bins=binsT;  end 
subplot(2,2,3); 
hist(outmatrix(find(outmatrix >= 1)),bins) %Durations of illness 

end 

%histc(PlaRo(find(PlaRo < 1 & PlaRo > 0)),[0:0.001:max(PlaRo(find(PlaRo < 1 & PlaRo > 
0)))]) %Awful (but functional) way to get counts of possible values for immunity 
length.
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (GetTrialParams.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%This script generates a series of parameters for input into the main code, rather than 
stochastically generating them. 
reps = 1; %# of times to run each parameter set. 
readParams = 0; %To read parameters generated by a previous model run (1) or not 
(0). 
paramSets = 10; %# of parameter sets to be run, if generating them 
systematically. 
%loops = paramSets * reps; %Deliberately overwrites 'loops' in the main code. 
switch(readParams); 

case 1; 
TrialParams = dlmread('Results/RunsThatFit.csv',',',1,1); %Access a file 

returned by ReadOutput.r. 
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        paramSets = size(TrialParams, 1); %Overwrites 'paramSets' above. 
disp(['Reading parameter values from ',num2str(paramSets),' trials.']) 

case 0; 
MinDoses = [2e4, 0, 0]; %Minimum non-zero dose. A good choice is dose that 

infects 1% of population (ID1). 
ID1s = [7.5697E3, 5.0708E-1, 1.7280E-2]; %ID1 for ETEC, Giardia, & rota. 
MinDoses = ID1s * .1; %Uncomment if ID1s are desired. 
TrialParams = zeros(paramSets,size(MinDoses, 2));  
for i = 1:length(MinDoses); %Populating all cells except the 1st row with the 

minimum nonzero dose. 
TrialParams(2:paramSets,i) = MinDoses(i); 

end 
TrialParams(2,:) = MinDoses; %1st run is 0 pathogens; 2nd run is the 

minimum nonzero dose. 
for i = 3:paramSets; %Uncomment the particular line desired. Comment all to 

check multiple replicates of the same dose. 
%TrialParams(i,:) = MinDoses * (i-1); %Linearly increases the dose 

on each model run. 
TrialParams(i,:) = 2 * TrialParams(i-1,:); %Doubles the dose on each 

model run. 
%TrialParams(i,2) = 10 * TrialParams(i-1,2); %Doubles the dose for only 1 

pathogen, leaving others constant. 
end 
TrialParams(:,4) = 0; %Sets a single value for non-waterborne diarrhea 

prevalence. 
%disp('Will cycle through these parameters, 1 run per set.') 
%trialPrevDiarrhBaseKids = 0 %Sets a single value for non-waterborne diarrhea 

prevalence. 
%TrialParams %Print to screen, so we see that this file was 

executed & to view the trial params. 
otherwise; 

error('readParams must be 0 or 1'); 
end 
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%Replicating the parameter sets. 
TP = TrialParams; %Making a copy, for use in loop below. 
if reps > 1; 

for i = 1:reps-1; 
TrialParams = [TrialParams; TP]; %Appending copies of the parameter sets. 

end 
end 
TrialParams = sortrows(TrialParams); %Sorting so that identical parameter values are 
next to each other. 
loops = paramSets; %Overwriting 'loops' variable in main QMRA code. 
disp(['Using ',num2str(paramSets),' parameter sets, ',num2str(reps),' times each, 
totaling ',num2str(loops),' runs.']) 
if paramSets <= 25; 

disp(['Parameter sets are as follows:']) 
TP 

end 
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%{ 
COPYRIGHT INFORMATION 

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (OutQMRAmerge.m) is part of QMRAv13_20110414. 

    QMRAv13_20110414 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRAv13_20110414 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRAv13_20110414.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Pulls together QMRA output files from multiple Octave threads. Runs surprisingly fast! 
clear all; 
%First, enter the desired name of the .CSV: 
filename = {'Results/MergedOutQMRA.csv'}; 
%Now enter as many files as necessary, each one containing the 'workspaces' from a 
thread. 
Files = {'Results/OutQMRA20110315T130458.mat'}; 
rows = 0; %Initializing variable to count up total number of rows. 
for i = 1:length(Files); 

eval(disp(['load ',char(Files(i)),' OutQMRA;'])) %Loads the 'OutQMRA' struct stored 
in .mat file, overwriting that object if it exists. 

%disp(['File ',num2str(i),' took ',num2str(),' to run 
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',num2str(length(OutQMRA.CaL)),... 
 %' loops (',num2str(),' per loop.']) 
eval(disp(['OutQMRA',num2str(i),'=OutQMRA;'])) %Copies it and adds a numeric 

suffix to the name. 
rows = rows + length(OutQMRA.EcL); 

end 
clear OutQMRA; %Removes the initial copy of the last file loaded. 

%CSVmatrix = NA(rows,length(fieldnames(OutQMRA1))-2; %Creating the output matrix. Each 
row is a QMRA iteration. 
for i = 1:length(Files); 

%i %For debugging 
eval(disp(['OutQMRA = OutQMRA',num2str(i),';'])) %Taking 'OutQMRAx' and creating a 

copy called 'OutQMRA' to work from. 
OutQMRA = rmfield(OutQMRA, 'StartTime'); OutQMRA = rmfield(OutQMRA, 'EndTime'); 
CSVmatrix = OutQMRA.Fit'; %Initializing a matrix that will become a .CSV by 

transposing the first structure field into it. 
for [val,key] = OutQMRA; %This special syntax allows looping over all elements of 

the structure. 
%key %For debugging 
if strcmp(char(key),'Fit') == 0; %Don't do anything for the 'Fit' element 

because we took care of that 2 lines before. 
CSVmatrix = [CSVmatrix, val']; %Transpose fields into columns & bind 

into the matrix. 
end 

end 
eval(disp(['CSVmatrix',num2str(i),' = CSVmatrix;'])) 
clear CSVmatrix; 

end 

CSVmatrix = CSVmatrix1; %Initializing output matrix. 
for i = 2:length(Files); 

eval(disp(['CSVmatrix = [CSVmatrix; CSVmatrix',num2str(i),'];'])) 
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end 

fn=fieldnames(OutQMRA); 
nFields = numel(fn); %http://stackoverflow.com/questions/5292437/how-to-concat-cell-
array-of-strings-in-matlab 
fn(1:nFields-1) = strcat(fn(1:nFields-1),{','}); 
file = fopen(filename,'w+'); 
fprintf(file,'%s',disp([fn{:}])); 
fclose(file); 
eval(["dlmwrite('",char([filename]),"',CSVmatrix,'-append');"]) 
disp(['Done; .mat files have been merged and output to ',char(filename),' in 
',char(pwd),'/Results/'])
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9.4. The QMRA model investigating compliance and LRVs (chapter 4)

The model (referred to as “QMRA2v5” for short) consists of several text files containing necessary functions and subroutines; 

the core program is ’Main.m’. Simulation options are set by the choice of several values at the top of the files 'Main.m' and 

'GetTrialParams.m'. These options default to values that generate a single test run of the simulation. Other options are set when calling 

the function 'Main.m' and are described within that file; for example, the following can be submitted at the Octave (or MATLAB) 

prompt to do a test calibration run:

Main(0,1,0,[0 0 0],[0 0 0],[1e5 1 .1],1,'test.csv','NA.csv',1,0,1,0)

The source code is found below. The filename of each of the source code files is found in the copyright information at the top of 

each file. Although QMRA2v5 uses some filenames that are identical to those in QMRAv13_20110414, the content of its files  differs.
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%Main function for running the model QMRA2v5, used for chapter 4 of Kyle S. Enger's Ph.D. 
dissertation, 
%  as well as the manuscript "The joint effects of efficacy and compliance: a study of 
household water treatment effectiveness against childhood diarrhea". 
%Allows multiple runs (e.g., on computing cluster) using different parameters. 
%Implements a QMRA model originally based on Boisson 2010 (PLoS One) RCT of Lifestraw 
Family filtration device in the Dem. Rep. of the Congo. 
%It was produced by modifying QMRAv13_20110414. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger. 

    This file (Main.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Requires Octave 3.2 or later. 
%Also works well on MATLAB; the results in chapter 4 of the accompanying dissertation 
were all produced with MATLAB. 
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%If running on MATLAB, requires the statistics toolbox, and possibly others. 
%This code (Main.m, the core component of QMRA2v5) is accompanied by several 
functions/subroutines, which need to be in the working directory: 
% AnalyzeInfectionFromSpikes.m: Optional code to determine the proportion of all 
infections that are caused by contamination spikes 
% AssignInf.m: Stochastically assigns infections to individuals with fixed 
durations 
% AssignInfRand.m: Stochastically assigns infections to individuals with random 
durations 
% AssignInfIllRand.m: Stochastically assigns infections & illnesses to individuals 
with random durations 
% CalcDiarrhWeeks.m: Determines whether a week with 1+ days of diarrhea is actually 
reported as a 'diarrhea week'; not actually used for ch. 4 analysis 
% CalibrationLoopFuncCompile.m: Code that calls Main() in order to facilitate parallel 
processing of many differently parameterized calibration runs 
% DRbP.m: Beta-Poisson dose response model 
% DRchoose.m: Executes the appropriate dose response model and determines 
illness 
% DRexp.m: Exponential dose response model 
% durEc.m: Randomly pick a duration for E. coli infection 
% durGi.m: Randomly pick a duration for Giardia infection 
% durRo.m: Randomly pick a duration for rotavirus infection 
% EstimationLoopFuncCompileV2.m: Code that calls Main() in order to facilitate 
parallel processing of many differently parameterized estimation runs 
% EstimationLoopFuncCompileV2PC.m: As above, but for estimation runs with perfect 
compliance 
% EstimationLoopFuncCompileV2Untreated.m: As above, but for estimation runs with 
complete noncompliance 
% Examine1Run.m: Allows inspection of the complete simulated data from a single 
run of this code 
% GetTrialParams.m: Generates a series of trial parameters instead of determining 
them stochastically 
% OutQMRAmerge.m: Allows conglomeration of output from multiple model 
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executions (e.g., if parallel processing) 

%Function arguments to Main(): 
%pPerfUse: Probability of using the device perfectly 
%pNoUse: Probability of not using the device at all 
%overallCompliance: Overall proportion of person-time complying. overallCompliance = 
pPerfUse + pTreat * (1-pPerfUse-pNoUse) 
%pTreat: Proportion of water treated if using the device imperfectly. Calculated from 
pPerfUse, pNoUse, & OverallCompliance. 
%LRs: Log10 reductions attributable to the device: vector (bac., protozoa, 
viruses) 
%PathogensLMin: During calibration, the minimum mean concentration of the 3 marker 
pathogens (bac., protozoa, viruses); usually [0 0 0]. 
%PathogensLMax: During calibration, the maximum mean concentration of the 3 marker 
pathogens (bac., protozoa, viruses); [0 0 0] for estimation. 
%calibRuns: Number of calibration runs; 0 for estimation runs 
%outFilename: Filename for storing output as a .CSV. 
%inFilename: File containing parameter values from calibration (pathogen 
concentrations). Only matters for estimation phase. 
%multConc: Multiplier for concentrations obtained from calibration. Used for 
estimation step to torture-test extreme concentrations. 
%nSpikesY: Number of 1-day pathogen spikes (all 3 pathogens spike at once) per year. 
Set to 0 to turn them off. 
%multSpikes: Defines size of spikes. Multiplier above mean baseline level. 
%useAllParamSets: If 1, and if estimation runs are being done, use all available 
parameter sets from calibration (instead of a subsample of parameter sets). 
%Note that more options are available to be set in the first few lines of this function; 
% using them as function arguments would have been cumbersome. 
 
function [OutQMRAmatrix OutQMRA] = Main(pPerfUse, pNoUse, overallCompliance, LRs, 
PathogensLMin, PathogensLMax, calibRuns, outFilename, inFilename, multConc, nSpikesY, 
multSpikes, useAllParamSets); %TODO: Designate necessary output (overall measures & 
distributions, plus vals of 1st 3 params). 
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Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
StartTime = clock; 
%====Setting simulation options====More simulation options are in GetTrialParams.m==== 
dailyVariation = 1; %Equals 1 if pathogen concentrations are allowed to vary by person by 
day, instead of taking a single fixed value. 
randomDurations = 1; %Equals 1 if illness durations are randomized instead of taking 
a single fixed value. Renders Duration vector (below) mostly moot (it is still used to 
choose start time of surveys). 
storeStatus = 1; %If 1, store infection & disease status, to determine 'actual' (i.e., 
reported & unreported) burden of infection. 
StoreAllDailyStatuses = 1; %If 1, store all daily statuses for all runs in a struct. 
%=====Housekeeping based on simulation options==== 
if calibRuns > 0; 

loops = calibRuns; 
noStochParams = 0; 

else 
noStochParams = 1; 
GetTrialParams; %GetTrialParams.m reads in pathogens/L & background measure to 

be tried. It contains its own options - check before running. 
end 
if loops <= 25; testing = 1; else testing = 0; end 
if overallCompliance == 0 | pNoUse == 1; pTreat = 0; pPerfUse = 0; overallCompliance = 0; 
pNoUse = 1; %Avoids x/0 error below 

elseif overallCompliance == 1 | pPerfUse == 1; pTreat = 1; pPerfUse = 1; 
overallCompliance = 1; pNoUse = 0; %Avoids x/0 error below 

else pTreat = (overallCompliance - pPerfUse) / (1 - pPerfUse - pNoUse);
%Calculating pTreat so as to be able to hold overallCompliance constant over mult. 

runs. 
end 
if pTreat < 0 - eps | pTreat > 1 + eps; error('pTreat of ',num2str(pTreat),' is 
impossibly > 1 or < 0: check pNoUse, pPerfUse, & overallCompliance!'); end 
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%=====Ending housekeeping. Starting parameter values:===== 
%Water concentration and disease parameter values 
% Several vectors have 3 elements corresponding to our 3 pathogens of interest: 
%       [ETEC/EPEC, Giardia, rotavirus], i.e., bacteria, protozoa, viruses 
%PathogensLMax = [2e5, 1.35, 0.18]; %Maximum pathogens/L; minimum is zero for 
all. 2fold empirically observed levels that led to LP exceeding the 95% CI for the 
placebo group, each pathogen taken individually. 
pathogensLcv = sqrt(3407044) / 2509.329; %Coeff. of var. calc. from variance & mean 
of 'cfbef' (Boisson 2010 water qual. data), high outliers (>= 30000 CFU) removed. For 
calc. of scaled gamma dists. 
MorbidityK = [0.214 , 0.59 , 0.397]; %Proportion of infected 'kids' (<5y) with 
diarrhea. 
Duration = [82.1/24, 18.3, 2.5]; Duration = round(Duration); %Duration of infection 
(days).  Although length & max of this vector are still used, actual infection duration 
is determined by durEc.m, durGi.m, & durRo.m. 
prevDiarrhBaseKidsMax = 0.0972; %Upper limit of non-waterborne reported diarrhea 
prevalence. 
LongPrevs = [0.103, 0.0896]; %Vector of raw long. prev. values from Boisson dataset, 
kids w. placebo, then kids w. intervention). 
prevDiarrhBaseKids = LongPrevs(2); %Baseline non-waterborne reported diarrhea prevalence. 
No greater than observed in the RCT. Only used if no random variation (overwritten 
otherwise). 
ImmuneTimes = [7 7 7]; %Length of immune period for all pathogens. 
%Parameters: population & exposure information. Model by household later. 
%nKidsInt = 85; nKidsPla = 105; %Boisson 2010. 
nKids = 100; %No longer simulating an intervention trial - simply a 
set of counterfactuals for comparison. 
drinkKids =  1.178; %drinkKidsSD = 0.186; %daily water intake, L/d, kids 
%pTreat = 2/3; %Proportion of water treated, if device is being used. 
Try 1, 2/3, & 1/3. 
%if compliance100 == 1; pUse = 1; pTreat = 1; end; %If perfect compliance is desired, 
override above 2 lines. 
%Parameters: device effectiveness information 
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%LRs = [6.9, 3.6, 4.7]; %Log reductions [bacteria, protozoa, viruses] by the 
intervention device, with upper & lower ranges 
%LRsPla = [1.05, 1.05, 1.05]; %As above, for 'placebo' device 
%if badPlacebo == 0; LRsPla = [0 0 0]; end; %If a perfect placebo is being modeled, 
override above line. 
%Parameters: dose response, order as above [ETEC/EPEC, Giardia, rotavirus] 
KorN50 = [2111912, 0.01982, 6.171]; %Exponential k parameter or beta-Poisson N50 
parameter 
alpha = [0.1549, NaN, 0.2531]; %Presence/absence of alpha value determines 
beta-Poisson or exponential dose resp. 
%Bias parameters 
remembrance = 0.54; %Proportion of diarrhea episodes remembered (and reported) if they 
ended >2d before being surveyed; assume perfect recall if episode is on day 0, 1, or 2 
%Study parameters - relating to how the study was conducted 
recallPeriod = 7; %Number of days in the past over which people were asked to remember 
diarrheal episodes 
interval = 31; %Interval between beginnings of recall periods. Must be 31 to avoid 
undercounting a year as 360d. 
nYears = 1;         %For easy adjustment of the length of the simulation. Used later to 
properly calculate incidence & LP. 
nRecallPeriods = 12 * nYears; %Number of recall periods (i.e., number of simulated 
diarrhea surveys) 
daysBurnIn = ceil(max(ImmuneTimes) + max(Duration) + recallPeriod) * 4; %Days required 
for prevalence to reach equilibrium (simulation starts with nobody infected). Allows 
ample margin for reaching equilibrium. 
%=====Ending parameter values===== 

maxTime = daysBurnIn + (nRecallPeriods-1)*interval; %Time over which to run each 
simulation. 
%Creating output structure for storing results from main QMRA loop 
OutQMRA = 
struct('StartTime',StartTime,'Fit',NaN(1,loops),'KILP',NaN(1,loops),'KPLP',NaN(1,loops),'
LPR',NaN(1,loops),... 
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 'EcL',NaN(1,loops),'GiL',NaN(1,loops),'RoL',NaN(1,loops),'PrevBase',NaN(1,loops)); 
%'Fit' is no longer used. 
if storeStatus == 1; %Optionally creating cell array for more detailed output. Not 
needed for calibration step. 

DailyStatus = cell(1, loops); %Each cell in the array needs to contain a matrix 
(rows are days, columns are variables). 

DailyStatus(:) = {NaN(maxTime,22)}; %1st row for intervention, 2nd row for 
placebo. 

%Columns are: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf. 
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill. 
end; 
tic %Starts timer 
if noStochParams == 1; loops = size(TrialParams,1); end %Resets loops if a series of 
trial pathogens/L values is being used. 
MeanDoses = zeros(loops,size(MorbidityK,2)); %Prepopulating a matrix for storing mean 
doses (helps in checking whether spikes are working properly). 
for i = 1:loops; %=====Starting main QMRA loop.===== Loops once for each QMRA run. i 
indexes each loop. 

%=====Randomly generating parameters for this iteration===== 
switch(noStochParams); 

case 0; 
PathogensLmeans = rand(1,length(MorbidityK)) .* (PathogensLMax - PathogensLMin) 

+ PathogensLMin; %Uniform sampling of the mean value for each pathogen. 
prevDiarrhBaseKids = rand(1,1)*prevDiarrhBaseKidsMax; 
case 1; %Pulling parameters from previous runs consistent with RCT. 
PathogensLmeans = TrialParams(i,1:3) * multConc; %Allows scaling up of dose 

values obtained through calibration. 
if size(TrialParams,2) <= 3; 

prevDiarrhBaseKids = 0; 
else 
prevDiarrhBaseKids = TrialParams(i,4);  

end 
otherwise 
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error('noStochParams must be 0 or 1'); 
end 
if nSpikesY > 0; %Adjusting the baseline mean downward if spikes are used, so 

that overall mean concentrations remain the same. 
nSpikes = nSpikesY * nYears; 
simTime = maxTime - daysBurnIn; 
PathogensLmeansBase = PathogensLmeans * simTime/(nSpikes*multSpikes+simTime); 
SpikeTimes = randperm(simTime); 
SpikeTimes = SpikeTimes(1:nSpikes); 
SpikeTimes = sort(SpikeTimes + daysBurnIn); %Preallocating the times for the 

spikes. 
SpikeTimes(end + 1) = 0; %Needed to avoid an error when spike counter advances 

past the last spike. 
nextSpike = 1; %Counter for working through the list of spikes. 

else PathogensLmeansBase = PathogensLmeans; 
end 
OutQMRA.EcL(i)=PathogensLmeans(1); OutQMRA.GiL(i)=PathogensLmeans(2); 

OutQMRA.RoL(i)=PathogensLmeans(3); 
OutQMRA.PrevBase(i) = prevDiarrhBaseKids; %This line & previous store the varying 

parameter values. 
%=====End random parameter generation - start setup of values/vectors/matrices used 

throughout simulation===== 
%Computing daily doses of pathogens ingested in drinking water, using water drunk 

per day and log reduction values 
%Computing parameter values for gamma distribution of pathogens in water 
%Scales = (pathogensLcv * PathogensLmeansBase).^2 ./ PathogensLmeans; %This seems 

the same as next line. 
Scales = pathogensLcv ^2 * PathogensLmeansBase; 
%Shapes = PathogensLmeansBase ./ Scales; %This seems the same as next line. 
Shapes = 1 / pathogensLcv ^ 2; Shapes = [Shapes Shapes Shapes]; %Shape parameter is 

identical for all 3 pathogen types. 
%Assigning infections randomly based on responses, assuming infections with 

different pathogens are independent. 
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% A person can have only 1 infection per pathogen. 
OutPrevs = struct('Kids',NaN(1,nRecallPeriods)); %Creating struct to hold 

prevalences from surveys. 
%Creating person-pathogen matrices; everybody starts infected for a random amount of 

time, to reduce periodicity from constant disease duration. 
KidsPPM = rand(nKids,length(Duration)) * 2*(max(Duration)+max(ImmuneTimes)); 
%KidsPla = rand(nKidsPla,length(Duration)) * 2*(max(Duration)+max(ImmuneTimes)); 
if storeStatus == 1; %Optionally, making corresponding matrices to store disease 

info. 
KidsPPMD = ones(size(KidsPPM)); %NaN means never infected, 0 means 

uninfected, 1 means infected, 2 means diseased. 
%KidsPlaD = ones(size(KidsPla)); %Note that everyone starts off infected with 

everything, just as with KidsInt & KidsPla above. 
end 
OutputFields = fieldnames(OutPrevs); 
if Octave == 1; fflush(stdout); end; %Forces a write to screen so that 

sim progress can be seen. 
%=======Code for testing purposes only======= 
if testing == 1 && loops <= 15; %Only runs when testing code. These vectors 

needed for charting infection prevalence over the entire simulation. 
KidsInfPrev = NaN(maxTime,1); %Creating a vector to hold infection prevalence 

info, intervention group. 
%KidsPlaInfPrev = NaN(nKidsPla,1); %As above, placebo group. 

end; 
%========End code for testing purposes======== 
%Now storing all person-pathogen matrices, but only if exactly 1 loop is requested. 

This repeats at the end of each day. 
if loops == 1; 

PPmatrices(1).KidsPPM = KidsPPM; 
PPmatrices(1).KidsPPMD = KidsPPMD; 

end;  
%========Begin daily loop, t indexes the days========= 
for t = 1:maxTime; 
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KidsPPM = KidsPPM - 1; %Note: a value of 0 signifies the first day of 
immunity. 

%KidsPla = KidsPla - 1; 
if storeStatus == 1; %Optionally, tracking recovery from infection/disease. 

KidsPPMD(KidsPPM <= 0) = 0; 
%KidsPlaD(find(KidsPla <= 0)) = 0; 

end 
%Computing doses in untreated water, varying for each child, each day. 
Dose.Kids = NaN(nKids,length(Duration)); %Matrix of doses per child 

(intervention). Columns are pathogens. 
%Dose.KidsPla = NaN(nKidsPla,length(Duration)); %Matrix of doses per child 

(placebo). Columns are pathogens. 
RandComp = rand(nKids,1); %Random numbers for determining compliance (i.e., 

use of device). 

for j = 1:length(Duration); %Looping over pathogens to determine 
daily doses for ea. person. 

if isnan(Shapes(j)) == 1; %If mean pathogen conc. is set to 0, 
pathogen conc. is always 0. 

Dose.Kids(:,j) = 0; 
%Dose.KidsPla(:,j) = 0; 

else 
if dailyVariation == 1; 

Dose.Kids(:,j) = gamrnd(Shapes(j),Scales(j),[nKids,1]) * 
drinkKids; %Initial untreated dose 

%Dose.KidsPla(:,j) = gamrnd(Shapes(j),Scales(j),[nKidsPla,1]) * 
drinkKids; 

else 
Dose.Kids(:,j) = PathogensLmeansBase(j) * drinkKids; %Dose 

becomes the mean dose if daily variation is turned off. 
%Dose.KidsPla(:,j) = PathogensLmeansBase(j) * drinkKids; 

end 
end 
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%Next 2 lines: Determining who complies and has a nonzero dose (because 
log reduction would fail on zero dose). 
            Comp.Kids.Perf = find((RandComp(1:nKids,1) < pPerfUse) & 
(Dose.Kids(:,j) > 0)); 
            Comp.Kids.Imperf = find((RandComp(1:nKids,1) > (pPerfUse+pNoUse)) & 
(Dose.Kids(:,j) > 0)); 

%Now applying LRs, if using device. Includes adjustment for partial 
treatment of water (pTreat) for imperfect compliers. 

Dose.Kids(Comp.Kids.Perf,j) = 10.^(log10(Dose.Kids(Comp.Kids.Perf,j)) - 
LRs(j)); 

Dose.Kids(Comp.Kids.Imperf,j) = 10.^(log10(Dose.Kids(Comp.Kids.Imperf,j) * 
pTreat) - LRs(j)) + Dose.Kids(Comp.Kids.Imperf,j) * (1 - pTreat); 

end 
 
if nSpikesY > 0 && t == SpikeTimes(nextSpike); 

Dose.Kids = Dose.Kids * multSpikes; 
%disp(['Time ',num2str(t),', means = ',num2str(mean(Dose.Kids))])

%This line for testing only 
nextSpike = nextSpike + 1; 

end 
MeanDoses(t,:) = mean(Dose.Kids); 
 
%Computing responses (diarrheal illness) using custom functions DRexp() and 

DRbP(). 
Responses.Kids(:,1) = DRbP(KorN50(1),alpha(1),Dose.Kids(:,1)); %Note: 

response matrices correspond to the person-path. matrices. 
Responses.Kids(:,2) = DRexp(KorN50(2),Dose.Kids(:,2)); 
Responses.Kids(:,3) = DRbP(KorN50(3),alpha(3),Dose.Kids(:,3)); 
%Responses.KidsPla(:,1) = DRbP(KorN50(1),alpha(1),Dose.KidsPla(:,1)); 
%Responses.KidsPla(:,2) = DRexp(KorN50(2),Dose.KidsPla(:,2)); 
%Responses.KidsPla(:,3) = DRbP(KorN50(3),alpha(3),Dose.KidsPla(:,3)); 
switch(randomDurations); 

case 1 
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switch(storeStatus); 
case 1 

%DailyStatus columns: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf. 
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill. 

KidsPPMDold = KidsPPMD; 
%KidsPlaDold = KidsPlaD; 
[KidsPPM,KidsPPMD] = 

AssignInfIllRand(KidsPPM,KidsPPMD,Responses.Kids,ImmuneTimes,MorbidityK); 
%[KidsPla,KidsPlaD] = 

AssignInfIllRand(KidsPla,KidsPlaD,Responses.KidsPla,ImmuneTimes,MorbidityK); 
for s = 1:6; %Store counts of new infections & illnesses. 

if s <= 3; %Infections: 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(KidsPPMDold(:,s) == 0), find(KidsPPMD(:,s) > 0))); 
                                DailyStatus{1,i}(t,s) = sum((KidsPPMDold(:,s) == 0) & 
(KidsPPMD(:,s) > 0));  %Should run much faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(KidsPlaDold(:,s) == 0), find(KidsPlaD(:,s) > 0))); 

else %Illnesses: 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(KidsPPMDold(:,s-3) == 0), find(KidsPPMD(:,s-3) == 2))); 
                                DailyStatus{1,i}(t,s) = sum((KidsPPMDold(:,s-3) == 0) & 
(KidsPPMD(:,s-3) == 2));  %Should run much faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(KidsPlaDold(:,s-3) == 0), find(KidsPlaD(:,s-3) == 2))); 

end 
end 

otherwise 
KidsPPM = 

AssignInfRand(KidsPPM,Responses.Kids,ImmuneTimes);  
%KidsPla = 

AssignInfRand(KidsPla,Responses.KidsPla,ImmuneTimes); 
end 
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otherwise 
KidsPPM = AssignInf(KidsPPM,Responses.Kids,Duration,ImmuneTimes); 
%KidsPla = AssignInf(KidsPla,Responses.KidsPla,Duration,ImmuneTimes); 

end 

if t >= daysBurnIn && mod(t-(daysBurnIn),interval) == 0; %Obtaining results 
from diarrhea assessment survey. 
%Determining reported diarrhea-weeks. CalcDiarrhWeeks() uses the Person-Pathogen 
Matrices, morbidity ratios, and recall of diarrhea episodes to determine if a week was 
reported as a week with diarrhea. 

KidsRD = CalcDiarrhWeeks(KidsPPM,remembrance,recallPeriod,MorbidityK);
%Whether diarrhea was reported by each particular person. Note age (last column) is 

removed from the person-pathogen matrix when inputted to the function. 
OutPrevs.Kids((t-daysBurnIn)/interval+1) = sum(KidsRD)/length(KidsRD);

%Getting prevalence for each diarrhea survey 
%KidsPlaRD = CalcDiarrhWeeks(KidsPla,remembrance,recallPeriod,MorbidityK);

%Like above 2 lines, but kid placebo 
%OutPrevs.KidsPla((t-daysBurnIn)/interval+1) = 

sum(KidsPlaRD)/length(KidsPlaRD); 
%fprintf(1,['d',num2str(t),'/',num2str(maxTime),'|']); %Progress counter. 
%if Octave == 1; fflush(stdout); end; %Forces a write to screen. 

end 
if testing == 1 && loops <= 15; %=====Testing code===== 

KidsInfPrev(t) = sum(max(KidsPPM') > 0) / nKids;%If max value over all 
pathogens >0, then there is an infection. 

%KidsPlaInfPrev(t) = sum(max(KidsPla') > 0) / nKidsPla;%Transposing so 
that max is for ea. row instead of ea. column. 

KidsInfEc(t) = sum(KidsPPM(:,1) > 0) / nKids; 
KidsInfGi(t) = sum(KidsPPM(:,2) > 0) / nKids; 
KidsInfRo(t) = sum(KidsPPM(:,3) > 0) / nKids; 
%KidsPlaInfEc(t) = sum(KidsPla(:,1) > 0) / nKidsPla; 
%KidsPlaInfGi(t) = sum(KidsPla(:,2) > 0) / nKidsPla; 
%KidsPlaInfRo(t) = sum(KidsPla(:,3) > 0) / nKidsPla; 
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end %======End testing code====== 
if storeStatus == 1; %Storing lots of daily information about the model 

run. 
%Columns are: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf. 

(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill. 
for s = 7:22; %All based on 0=uninfected, 1=asymptomatic, 

2=ill. 
if s == 7; %Tallying completely uninfected people 

%DailyStatus{1,i}(t,s) = length(find(sum(KidsPPMD') == 0)); 
                    DailyStatus{1,i}(t,s) = sum(sum(KidsPPMD,2) == 0);   %Should be 
faster than above. 

%DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD') == 0)); 
elseif s == 8; %Infected with only Ec 

%DailyStatus{1,i}(t,s) = length(intersect(find(KidsPPMD(:,1) > 
0), find(sum([KidsPPMD(:,2) KidsPPMD(:,3)]') == 0)')); 
                    DailyStatus{1,i}(t,s) = sum((KidsPPMD(:,1) > 0) & (sum([KidsPPMD(:,2) 
KidsPPMD(:,3)],2) == 0));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,1) > 
0), find(sum([KidsPlaD(:,2) KidsPlaD(:,3)]') == 0)')); 

elseif s == 9; %Infected with only Gi 
%DailyStatus{1,i}(t,s) = length(intersect(find(KidsPPMD(:,2) > 

0), find(sum([KidsPPMD(:,1) KidsPPMD(:,3)]') == 0)')); 
                    DailyStatus{1,i}(t,s) = sum((KidsPPMD(:,2) > 0) & (sum([KidsPPMD(:,1) 
KidsPPMD(:,3)],2) == 0));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,2) > 
0), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]') == 0)')); 

elseif s == 10; %Infected with only Ro 
%DailyStatus{1,i}(t,s) = length(intersect(find(KidsPPMD(:,3) > 

0), find(sum([KidsPPMD(:,1) KidsPPMD(:,2)]') == 0)')); 
                    DailyStatus{1,i}(t,s) = sum((KidsPPMD(:,3) > 0) & (sum([KidsPPMD(:,1) 
KidsPPMD(:,2)],2) == 0));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,3) > 
0), find(sum([KidsPlaD(:,1) KidsPlaD(:,2)]') == 0)')); 
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elseif s == 11; %Tallying infected with Ec & Gi only 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(prod(KidsPPMD(:,1:2)') ~= 0), find(KidsPPMD(:,3) == 0))); 
                    DailyStatus{1,i}(t,s) = sum((prod(KidsPPMD(:,1:2),2) ~= 0) & 
(KidsPPMD(:,3) == 0));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(prod(KidsPlaD(:,1:2)') ~= 0), find(KidsPlaD(:,3) == 0))); 

elseif s == 12; %Tallying infected with Ec & Ro only 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(prod([KidsPPMD(:,1) KidsPPMD(:,3)]') ~= 0), find(KidsPPMD(:,2) == 
0))); 
                    DailyStatus{1,i}(t,s) = sum((prod([KidsPPMD(:,1) KidsPPMD(:,3)],2) ~= 
0) & (KidsPPMD(:,2) == 0));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') ~= 0), find(KidsPlaD(:,2) == 
0))); 

elseif s == 13; %Tallying infected with Gi & Ro only 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(prod(KidsPPMD(:,2:3)') ~= 0), find(KidsPPMD(:,1) == 0))); 
                    DailyStatus{1,i}(t,s) = sum((prod(KidsPPMD(:,2:3),2) ~= 0) & 
(KidsPPMD(:,1) == 0));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(prod(KidsPlaD(:,2:3)') ~= 0), find(KidsPlaD(:,1) == 0))); 

elseif s == 14; %Tallying infected with Ec & Gi & Ro 
%DailyStatus{1,i}(t,s) = length(find(prod(KidsPPMD(:,1:3)') ~= 

0)); 
                    DailyStatus{1,i}(t,s) = sum(prod(KidsPPMD(:,1:3),2) ~= 0);   %Should 
be faster than above. 

%DailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)') ~= 
0)); 

elseif s == 15; %Tallying completely non-ill people 
%DailyStatus{1,i}(t,s) = length(find(sum(KidsPPMD' .^2) <= 3)); 

                    DailyStatus{1,i}(t,s) = sum(sum(KidsPPMD' .^2) <= 3);   %Should be 
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faster than above. 
%DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD' .^2) <= 3)); 

elseif s == 16; %Ill with only Ec 
%DailyStatus{1,i}(t,s) = length(intersect(find(KidsPPMD(:,1) == 

2), find(sum(KidsPPMD(:,2:3)' .^2) <= 2)')); 
                    DailyStatus{1,i}(t,s) = sum((KidsPPMD(:,1) == 2) & 
(sum(KidsPPMD(:,2:3)' .^2)' <= 2));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,1) == 
2), find(sum(KidsPlaD(:,2:3)' .^2) <= 2)')); 

elseif s == 17; %Ill with only Gi 
%DailyStatus{1,i}(t,s) = length(intersect(find(KidsPPMD(:,2) == 

2), find(sum([KidsPPMD(:,1) KidsPPMD(:,3)]' .^2) <= 2)')); 
                    DailyStatus{1,i}(t,s) = sum((KidsPPMD(:,2) == 2) & 
(sum([KidsPPMD(:,1) KidsPPMD(:,3)]' .^2)' <= 2));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,2) == 
2), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]' .^2) <= 2)')); 

elseif s == 18; %Ill with only Ro 
%DailyStatus{1,i}(t,s) = length(intersect(find(KidsPPMD(:,3) == 

2), find(sum(KidsPPMD(:,1:2)' .^2) <= 2)')); 
                    DailyStatus{1,i}(t,s) = sum((KidsPPMD(:,3) == 2) & 
(sum(KidsPPMD(:,1:2)' .^2)' <= 2));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,3) == 
2), find(sum(KidsPlaD(:,1:2)' .^2) <= 2)')); 

elseif s == 19; %Tallying ill with Ec & Gi only 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(prod(KidsPPMD(:,1:2)') == 4), find(KidsPPMD(:,3) <= 1))); 
                    DailyStatus{1,i}(t,s) = sum((prod(KidsPPMD(:,1:2),2) == 4) & 
(KidsPPMD(:,3) <= 1));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(prod(KidsPlaD(:,1:2)') == 4), find(KidsPlaD(:,3) <= 1))); 

elseif s == 20; %Tallying ill with Ec & Ro only 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(prod([KidsPPMD(:,1) KidsPPMD(:,3)]') == 4), find(KidsPPMD(:,2) <= 
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1))); 
                    DailyStatus{1,i}(t,s) = sum((prod([KidsPPMD(:,1) KidsPPMD(:,3)],2) == 
4) & (KidsPPMD(:,2) <= 1));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') == 4), find(KidsPlaD(:,2) <= 
1))); 

elseif s == 21; %Tallying ill with Gi & Ro only 
%DailyStatus{1,i}(t,s) = 

length(intersect(find(prod(KidsPPMD(:,2:3)') == 4), find(KidsPPMD(:,1) <= 1))); 
                    DailyStatus{1,i}(t,s) = sum((prod(KidsPPMD(:,2:3),2) == 4) & 
(KidsPPMD(:,1) <= 1));   %Should be faster than above. 

%DailyStatus{2,i}(t,s) = 
length(intersect(find(prod(KidsPlaD(:,2:3)') == 4), find(KidsPlaD(:,1) <= 1))); 

elseif s == 22; %Tallying ill with Ec & Gi & Ro 
%DailyStatus{1,i}(t,s) = length(find(prod(KidsPPMD(:,1:3)') == 

8)); 
                    DailyStatus{1,i}(t,s) = sum(prod(KidsPPMD(:,1:3),2) == 8);   %Should 
be faster than above. 

%DailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)') == 
8)); 

end 
end 

end 
%Now storing the person-pathogen matrices at the end of this day, if exactly 1 

loop was requested. 
if loops == 1; 

PPmatrices(t+1).KidsPPM = KidsPPM; 
PPmatrices(t+1).KidsPPMD = KidsPPMD; 

end 
%sizeof(DailyStatus) %Debug measure - too big for memory? 
if nSpikesY > 0; 

DailyStatus{2,i} = SpikeTimes; %Storing the spike times 
DailyStatus{3,i} = daysBurnIn; %Storing the equilibration duration 

320



(for debugging) 
end 

end 
%disp([' ']) %Adds line feed to separate the progress counters. 
%=========End daily loop, begin more testing code====== 
if testing == 1 && loops <= 15; 

maxPrevTime = find(KidsInfPrev == max(KidsInfPrev)); %Getting time points of 
max. prevalence of infection (1st, if tie). 

disp(['1st time point where max. prevalence is seen is 
',num2str(maxPrevTime(1))])  %Printing first point of max. prevalence. 

figure(i); %Plotting infection prevalence. 
%set(f1, 'Position', [5 5 1024 768]); 
subplot(2,2,1); 
plot([1:maxTime]',KidsInfPrev,'-k'); 
title 'Daily infection prevalence; Xs = reported waterborne prevalence'; 
ylabel 'Proportion affected'; xlabel 'Time'; 
%xlim([0 625]); 
hold on; 
plot([1:maxTime],KidsInfEc,'-r'); 
plot([1:maxTime],KidsInfGi,'-g'); 
plot([1:maxTime],KidsInfRo,'-b'); 
h5 = plot([daysBurnIn:interval:maxTime],OutPrevs.Kids,'cx'); 
set(h5,'linewidth',2); 
legend('{\fontsize{10} Any infection}','{\fontsize{10} E. coli 

infection}','{\fontsize{10} Giardia infection}','{\fontsize{10} Rotavirus 
infection}','{\fontsize{10} LP_{Irwd} (prior week)}'); 

hold off; 
subplot(2,2,2); 
semilogy([1:maxTime],MeanDoses(:,1),'-r'); 
title 'Daily mean dose of pathogens in drinking water (untreated)'; 
ylabel 'Daily mean dose'; xlabel 'Time'; 
%xlim([0 625]); 
hold on; 
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semilogy([1:maxTime],MeanDoses(:,2),'-g'); 
semilogy([1:maxTime],MeanDoses(:,3),'-b'); 
legend('{\fontsize{10} E. coli}','{\fontsize{10} Giardia}','{\fontsize{10} 

Rotavirus}'); 
hold off; 
subplot(2,2,3); 
plot([1:maxTime],sum(DailyStatus{1,i}(:,1:3),2),'-k'); 
title 'Daily infection incidence (new infections each day)'; 
ylabel 'New infections'; xlabel 'Time'; 
%xlim([0 625]); 
%ylim([0 nKids]); 
hold on; 
plot([1:maxTime],DailyStatus{1,i}(:,1),'-r'); 
plot([1:maxTime],DailyStatus{1,i}(:,2),'-g'); 
plot([1:maxTime],DailyStatus{1,i}(:,3),'-b'); 
legend('{\fontsize{10} Total new infections}','{\fontsize{10} E. coli 

infections}','{\fontsize{10} Giardia infections}','{\fontsize{10} Rotavirus 
infections}'); 

hold off; 
subplot(2,2,4); 
plot([1:maxTime],sum(DailyStatus{1,i}(:,4:6),2),'-k'); 
title 'Daily illness incidence (new illnesses each day)'; 
ylabel 'New illnesses'; xlabel 'Time'; 
%xlim([0 625]); 
%ylim([0 nKids]); 
hold on; 
plot([1:maxTime],DailyStatus{1,i}(:,4),'-r'); 
plot([1:maxTime],DailyStatus{1,i}(:,5),'-g'); 
plot([1:maxTime],DailyStatus{1,i}(:,6),'-b'); 
legend('{\fontsize{10} Total new illnesses}','{\fontsize{10} E. coli 

illnesses}','{\fontsize{10} Giardia illnesses}','{\fontsize{10} Rotavirus illnesses}'); 
hold off; 
if nSpikesY > 0; 
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disp([num2str(sum(sum(DailyStatus{1,i}(SpikeTimes(1:end-
1),1:3)))/sum(sum(DailyStatus{1,i}(daysBurnIn:end,1:3)))),' of infections due to spikes 
(not including equilibration).']); 

end 
end %=========End testing code========= 
%Adding baseline prevalence. Corrected for doublecounting (some infected people 

would have been infected anyway by baseline transmission). 
OutPrevs.Kids = OutPrevs.Kids + prevDiarrhBaseKids * (1 - OutPrevs.Kids); 
%OutPrevs.KidsPla = OutPrevs.KidsPla + prevDiarrhBaseKids * (1 - OutPrevs.KidsPla); 
%i %Printing i as a debug measure 
OutQMRA.rLP(i) = mean(OutPrevs.Kids); %Output long. prev. of reported diarrhea. 
%OutQMRA.LPR(i) = OutQMRA.KILP(i) / OutQMRA.KPLP(i); 
if storeStatus == 1; %Storing incidences. 

OutQMRA.IncInfEc(i) = sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,1));
%Count of infections with E. coli. 

OutQMRA.IncIllEc(i) = sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,4));
%Count of illnesses with E. coli. 

OutQMRA.IncInfGi(i) = sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,2));
%Count of infections with for Giardia. 

OutQMRA.IncIllGi(i) = sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,5));
%Count of illnesses with Giardia. 

OutQMRA.IncInfRo(i) = sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,3));
%Count of infections with for rotavirus. 

OutQMRA.IncIllRo(i) = sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,6));
%Count of illnesses with rotavirus. 

%'Actual' longitudinal prevalences (person-days ill or infected, divided by 
total person-days observed). 

OutQMRA.LPInfEc(i) = sum(sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,
[ 8 11 12 14])))/(nKids*nYears*365); %Yearly inf. LP, E. coli. 

OutQMRA.LPIllEc(i) = sum(sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,
[16 19 20 22])))/(nKids*nYears*365); %Yearly ill LP, E. coli. 

OutQMRA.LPInfGi(i) = sum(sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,
[ 9 11 13 14])))/(nKids*nYears*365); %Yearly inf. LP, Giardia. 
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OutQMRA.LPIllGi(i) = sum(sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,
[17 19 21 22])))/(nKids*nYears*365); %Yearly ill LP, Giardia. 

OutQMRA.LPInfRo(i) = sum(sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,
[10 12 13 14])))/(nKids*nYears*365); %Yearly inf. LP, rota. 

OutQMRA.LPIllRo(i) = sum(sum(DailyStatus{1,i}(maxTime-(nYears*365)+1:maxTime,
[18 20 21 22])))/(nKids*nYears*365); %Yearly ill LP, rota. 

OutQMRA.LPInfMix(i) = sum(sum(DailyStatus{1,i}(maxTime-
(nYears*365)+1:maxTime,11:14)))/(nKids*nYears*365); %Yearly inf. LP, mixed. 

OutQMRA.LPIllMix(i) = sum(sum(DailyStatus{1,i}(maxTime-
(nYears*365)+1:maxTime,19:22)))/(nKids*nYears*365); %Yearly ill LP, mixed. 

OutQMRA.LPInfAny(i) = sum(sum(DailyStatus{1,i}(maxTime-
(nYears*365)+1:maxTime,8:14)))/(nKids*nYears*365); %Yearly inf. LP, any. 

OutQMRA.LPIllAny(i) = sum(sum(DailyStatus{1,i}(maxTime-
(nYears*365)+1:maxTime,16:22)))/(nKids*nYears*365); %Yearly ill LP, any. 

%Mean daily pathogens per liter. 
OutQMRA.PathLMeanEc(i) = PathogensLmeans(1); 
OutQMRA.PathLMeanGi(i) = PathogensLmeans(2); 
OutQMRA.PathLMeanRo(i) = PathogensLmeans(3); 

end 
 

%fprintf(1,['d',num2str(t),'/',num2str(maxTime),'|']); %Progress counter. 
 
if i == 1; fprintf(1,['Finished loops: ',num2str(i)]); else; fprintf(1,

['-',num2str(i)]); end; 
if mod(i,floor(loops/10)) == 0; %Progress meter 

disp(['Loop ',num2str(i),'/',num2str(loops),'. Done in ',num2str((toc/i) * 
(loops-i) / 60 / 60),'h.']) 

toc 
end 
if i == 5; disp([' ']); disp(['=== Will finish ',num2str(loops),' loops in ~ 

',num2str(toc*loops/5/60/60),' h ===']); end; 
end %======Ending main QMRA loop======= 
%Converting to a matrix so as to concatenate output from multiple calls, and subsequent 
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easy output to .CSV for analysis in R. 
OutQMRAmatrix = NaN(loops,14);  
OutQMRAmatrix(:,1) = 1:1:loops; %ID designation. 
OutQMRAmatrix(:,2) = pPerfUse; 
OutQMRAmatrix(:,3) = pNoUse; 
OutQMRAmatrix(:,4) = pTreat; 
OutQMRAmatrix(:,5) = overallCompliance; 
OutQMRAmatrix(:,6) = LRs(1); 
OutQMRAmatrix(:,7) = LRs(2); 
OutQMRAmatrix(:,8) = LRs(3); 
OutQMRAmatrix(:,9) = OutQMRA.PathLMeanEc'; 
OutQMRAmatrix(:,10) = OutQMRA.PathLMeanGi'; 
OutQMRAmatrix(:,11) = OutQMRA.PathLMeanRo'; 
OutQMRAmatrix(:,12) = OutQMRA.LPInfAny'; 
OutQMRAmatrix(:,13) = OutQMRA.LPIllAny'; 
OutQMRAmatrix(:,14) = OutQMRA.IncIllEc'; 
OutQMRAmatrix(:,15) = OutQMRA.IncIllGi'; 
OutQMRAmatrix(:,16) = OutQMRA.IncIllRo'; 
OutQMRAmatrix(:,17) = sum(OutQMRAmatrix(:,14:16)')'; %Creating the total 
incidence column, IncIllTot. 
OutQMRAmatrix(:,18) = OutQMRAmatrix(:,14) ./ OutQMRAmatrix(:,17); %pIncIllEc, 
proportion of illness from E. coli. 
OutQMRAmatrix(:,19) = OutQMRAmatrix(:,15) ./ OutQMRAmatrix(:,17); %pIncIllGi, 
proportion of illness from Giardia. 
OutQMRAmatrix(:,20) = OutQMRAmatrix(:,16) ./ OutQMRAmatrix(:,17); %pIncIllRo, 
proportion of illness from rotavirus. 
OutQMRAmatrix(:,21) = OutQMRAmatrix(:,17) / (nKids * nYears); %IncIllECY, 
incidence in episodes per child per year. 

%Write the results of a calibration to a file. 
dlmwrite(outFilename, OutQMRAmatrix, '-append'); 
disp([' Results written to ',outFilename,'.']); 
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disp(['Mean path. concs. (Ec, Gi, 
Ro):',num2str(mean(MeanDoses(daysBurnIn+1:maxTime,:)))]); %Checking pathogen 
concentrations. 

%eval(['save Results/OutQMRA',datestr(StartTime,30),'.mat, OutQMRA;']) %Saving output 
file. 
if noStochParams == 1 && loops <= 15; %Displaying results if a series of input 
parameters were tested. 

out = [OutQMRA.rLP; OutQMRA.IncIllEc; OutQMRA.IncIllGi; OutQMRA.IncIllRo]; 
disp('rLP, IncIllEc, IncIllGi, IncIllRo, IncIllAll, pIncEc, pIncGi, pIncRo') 
out(5,:) = sum(out(2:4,:)); 
out(6,:) = out(2,:) ./ out(5,:); 
out(7,:) = out(3,:) ./ out(5,:); 
out(8,:) = out(4,:) ./ out(5,:); 
%out = out' 
%min(out) 
%mean(out) 
%max(out) 

end 

if StoreAllDailyStatuses == 1; %If storing everything, overwrite OutQMRA with it, so 
it can be used within Octave. 

OutQMRA = DailyStatus; 
end 

end %End function Main().
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%Octave script to obtain proportion of infections that are from spikes. 
%Must set StoreAllDailyStatuses == 1 in Main.m. This analyzes the OutQMRA cell array 
that's output by Main.m. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AnalyzeInfectionFromSpikes.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

1; 
function Output = pS(mix,inc,sH); 

[OutQMRAmatrix OutQMRA] = Main(0,1,0,[0 0 0],[0 0 0],[0 0 
0],0,'TestpSpikes.csv',char(['RTF_',mix,'_TrialCalibResults',inc,'5spikesx',num2str(sH),'
.csv']),1,5,sH,0); 

startingDay = 128; %From line ~75 of Main.m (burn-in). 
nRuns = size(OutQMRA,2); 
nDays = size(OutQMRA{1,1},1); 
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output = zeros(nRuns,3); %1st column is all new infections, 2nd is new infections 
from spike days, 3rd is new infections from non-spike days. 

for i = 1:nRuns; 
output(i,1) = sum(sum(OutQMRA{1,i}(startingDay:end,1:3),2)); %Row-wise sum. 
output(i,2) = sum(sum(OutQMRA{1,i}(int32(OutQMRA{2,i}(1:5)),1:3),2)); 
output(i,3) = sum(sum(OutQMRA{1,i}(setxor(startingDay:end, int32(OutQMRA{2,i}

(1:5))), 1:3),2)); %??? 
end 
output(:,4) = output(:,2) + output(:,3); 
output(find(output(:,1) != output(:,4)),:) %Testing whether each row sums 

properly. 
outputSum = sum(output) 
pSpikes = outputSum(2) / outputSum(1) 
output(:,5) = output(:,2) ./ output(:,1); 
Output = output(:,5); 

end 

Results = struct([]); 
c = 1; %Initializing loop counter 
inc={'Lo','Med','Hi'}; 
for i = 1:3; 

for j = [10,1000,100000]; 
for k = ['A','B','C']; 

Output = pS(k,inc{i},j); 
eval(char(["Results.",inc{i},num2str(j),k," = Output;"])); 
disp(['Col. ',num2str(c),', ',inc{i},' incidence, spike height 

',num2str(j),', mix ',k]) 
c = c+1; 

end 
end 

end 

boxplot(struct2cell(Results)); %Need to convert struct to cell array for easy 
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boxplotting. 
title 'Fig. S3. Proportion of infections occurring on spike days'; 
ylabel 'Proportion of infections'; 
%axis('tic[y]'); 
axis([0 28 0 1.1]); %Adjusting axis limits. 
text(2.3,1.05,'Low incidence'); 
text(11.2,1.05,'Medium incidence'); 
text(20.5,1.05,'High incidence'); 
ah=get(gcf,'CurrentAxes'); %Getting handle of the axes that were just created by 
boxplot(). 
set(ah,'XTick',1:27); %Setting tick locations manually. 
set(ah,'XTickLabel','A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C')

%Labelling ticks manually with pathogen mixture. 
hold on; 
plot([9.5, 9.5], [0, 1.1],'-k'); %Now placing lines to separate boxplots by incidence 
and spike height. 
plot([18.5, 18.5], [0, 1.1],'-k'); 
plot([3.5, 3.5], [0, 1],'-k'); 
plot([6.5, 6.5], [0, 1],'-k'); 
plot([12.5, 12.5], [0, 1],'-k'); 
plot([15.5, 15.5], [0, 1],'-k'); 
plot([21.5, 21.5], [0, 1],'-k'); 
plot([24.5, 24.5], [0, 1],'-k'); 
ah2 = axes('Position',[0 0 1 1],'Visible','off'); %Creating a 2nd set of invisible axes 
the size of the plot window. 
axis([0 1 0 1]); %Setting the limits of the 
above invisible axes. 
text(0.005,0.08,'Pathogen mix:'); %Manually labeling the x axis 
using the invisible axes. 
text(0.005,0.04,'Spike height:    10     10^3     10^5     10     10^3     10^5     10    
10^3     10^5'); 
 
print -dps -mono pInfSpike.ps; %Does not work; gives bizarrely colored output with 
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many different graphics formats. Simply grabbed a screenshot of the figure window 
instead. 

%Resulting proportion of infections occurring on spike days. 

%Lo10A = 0.101 
%Lo10B = 0.0997 
%Lo10C = 0.108 
%Lo1000A = 0.581 
%Lo1000B = 0.580 
%Lo1000C = 0.693 
%Lo100000A = 0.833 
%Lo100000B = 0.843 
%Lo100000C = 0.894 

%Med10A = 0.0722 
%Med10B = 0.0686 
%Med10C = 0.0848 
%Med1000A = 0.339 
%Med1000B = 0.309 
%Med1000C = 0.432 
%Med100000A = 0.455 
%Med100000B = 0.411 
%Med100000C = 0.561 

%Hi10A = 0.0490 
%Hi10B = 0.0460 
%Hi10C = 0.0603 
%Hi1000A = 0.188 
%Hi1000B = 0.167 
%Hi1000C = 0.232 
%Hi100000A = 0.320 
%Hi100000B = 0.275 
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%Hi100000C = 0.318
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%Just like AssignIll.m, but loops over columns of the person-pathogen matrix instead of 
rows, & should be faster. 
%Assigns an illness duration to entries of a matrix, where rows are people and columns 
are pathogens 
%Positive entries mean the person is infected, negative entries (or 0) mean the person 
has recovered 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AssignInf.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Inputs: 
% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen 
matrix) 
% Responses: Vector of illness responses (probability of illness given dose), 1 
entry per pathogen 
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% ResponsesNon: Vector of illness responses for people not using any device 
% pUse: Probability that a person is not using any device 
% durations: Vector of durations of illnesses, 1 entry per pathogen 
% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen 
%The output (matrixOut) is matrixIn with new illness durations assigned to some of its 
entries. 

function PPmatrix = AssignInf(PPmatrix,Responses,Durations,ImmuneTimes); 
sizePP = size(PPmatrix); 
Randoms = rand(sizePP); %Random #s for determining infection. One number per person 

per pathogen. 
%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index 

values of people who will be newly infected. 
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; 
%Durations = ones(sizePP) * Durations; 
%Immunities = PPmatrix + ImmuneTimes; %Immunities gives days left in (infection + 

immune period), or a neg. # if susceptible. 
for i = 1:sizePP(2); 

Immunities(:,i) = PPmatrix(:,i) + ImmuneTimes(i);  
NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,i) < 

Responses(:,i))); %Gets indices of newly infected. 
PPmatrix(NewlyInfected,i) = Durations(i); 

end 
end
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%Similar to AssignIll.m, but assigns infection durations randomly. 
%Assigns an illness duration to entries of a matrix, where rows are people and columns 
are pathogens 
%Positive entries mean the person is ill, negative entries (or 0) mean the person has 
recovered 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AssignInfIllRand.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Inputs: 
% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen 
matrix) 
% Responses: Matrix of illness responses (probability of illness given dose), 1 
row per person and 1 column per pathogen 
% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen 

334



%The output (matrixOut) is matrixIn with new illness durations assigned to some of its 
entries. 
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m. 

function [PPmatrix,PPmatrixD] = 
AssignInfIllRand(PPmatrix,PPmatrixD,Responses,ImmuneTimes,MorbidityK); 

%rand('state',28) 
sizePP = size(PPmatrix); 
Randoms = rand(sizePP); %Random #s for determining infection. One number per 

person per pathogen. 
Randoms2 = rand(sizePP); %Random #s for determining disease, as above. 
%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index 

values of people who will be newly infected. 
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to 

account for immunity. 
Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same 

size as PPmatrix) to assign to newly infected. 
Durations(:,1) = durEc(sizePP(1)); 
Durations(:,2) = durGi(sizePP(1)); 
Durations(:,3) = durRo(sizePP(1)); 
for i = 1:sizePP(2); %Loop, once for each pathogen. 

%NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,i) < 
Responses(:,i))); %Gets indices of newly infected. Note: 0 or less is susc. 
        NewlyInfected = find((Immunities(:,i) <= 0 & Randoms(:,i) < Responses(:,i)) == 
1);   %Should be much faster than above line. 
        PPmatrix(NewlyInfected,i) = Durations(NewlyInfected,i); 

PPmatrixD(NewlyInfected,i) = 1; %Flags newly infected. 
%NewlyIll = intersect(NewlyInfected, find(Randoms2(:,i) < MorbidityK(i))); 

        %PPmatrixD(NewlyIll,i) = 2; 
        %----This|=====================================================|is 
        %taken from line 25 above - should run faster than prev. 2 lines. 
        PPmatrixD((Immunities(:,i) <= 0 & Randoms(:,i) < Responses(:,i)) & (Randoms2(:,i) 
< MorbidityK(i)),i) = 2; 
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end 
end
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%Similar to AssignIll.m, but assigns infection durations randomly. 
%Assigns an infection duration to entries of a matrix, where rows are people and columns 
are pathogens 
%Positive entries mean the person is infected, negative entries (or 0) mean the person 
has recovered 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AssignInfRand.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Inputs: 
% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen 
matrix) 
% Responses: Matrix of illness responses (probability of infection given dose), 1 
row per person and 1 column per pathogen 
% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen 
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%The output (matrixOut) is matrixIn with new illness durations assigned to some of its 
entries. 
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m. 

function [PPmatrix] = AssignInfRand(PPmatrix,Responses,ImmuneTimes); 
%rand('state',28) 
sizePP = size(PPmatrix); 
Randoms = rand(sizePP); %Random #s for determining infection. One number per person 

per pathogen. 
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to 

account for immunity. 
Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same 

size as PPmatrix) to assign to newly infected. 
Durations(:,1) = durEc(sizePP(1)); 
Durations(:,2) = durGi(sizePP(1)); 
Durations(:,3) = durRo(sizePP(1)); 
NewlyInfected = intersect(find(Immunities <= 0), find(Randoms < Responses));
%Gets indices of newly infected. Note: 0 or less is susc. 
PPmatrix(NewlyInfected) = Durations(NewlyInfected); 

end
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%Calculates whether a given week is reported as a week with diarrhea under the reporting 
scheme in the DRC Lifestraw RCT (Boisson 2010). 
%It considers reduced recall of past diarrheal episodes after 2d ('remembrance') and 
possible distinct diarrhea episodes in the previous 7d. 
%It operates on a matrix: 
% Rows represent people, columns represent pathogens/illnesses, and entries represent 
# of days remaining in the illness. 
%It outputs a vector with 1 entry per person, 1 if illness is reported during the week, 0 
if not. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (CalcDiarrhWeeks.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function vec = CalcDiarrhWeeks(InMatrix, remembrance,timeWindow,Morbidity); 
sizeInMatrix = size(InMatrix); 
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Randoms = rand(sizeInMatrix(1),sizeInMatrix(2)); 
for j = 1:sizeInMatrix(2); 

InMatrix((find(Randoms(:,j) > Morbidity(j))),j) = -9999; 
end 

for i = 1:sizeInMatrix(1); %Loop over all people. Only the most recent episode 
(largest entry in a row) is used to assign illness. 

%Randoms = rand(1,columns(InMatrix)); %Random numbers for determining 
morbidity (these 2 lines moved upward for greater speed) 

%InMatrix(i,find(Randoms > Morbidity)) = -9999; %Apply morbidity ratio: if 
asymptomatic, infection is set to -9999, and therefore not reported. Note that this 
modification is not passed out of this function. 

if max(InMatrix(i,:)) >= -2;  
vec(i) = 1; %If ill during day 0, 1, or 2, assume illness is always 

reported, therefore assign illness. 
elseif (max(InMatrix(i,:) >= -timeWindow) & rand() < remembrance); 

vec(i) = 1; %Otherwise, if ill during days 3-7, randomly determine if 
episode is remembered. If so, assign illness. 

else 
vec(i) = (0); %Otherwise, no illness is remembered or reported. Assign no 

illness. 
end 

end 
end
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%Loop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates 
computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Submit as several jobs to parallelize a calibration run (maybe not worth bothering with 
job array). 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (CalibrationLoopFuncCompile.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = 
CalibrationLoopFuncCompile(indexText,inc,calibRunsText,nSpikesText,multSpikesText,maxEcTe
xt,maxGiText,maxRoText); 
%This helps with debugging, since arguments to compiled code can only be text. 
index = str2num(indexText); 
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RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock index*10])));
%Sets random stream based on clock & job index. 

calibRuns = str2num(calibRunsText); 
nSpikes = str2num(nSpikesText); 
multSpikes = str2num(multSpikesText); 
PathogensLMax = [str2num(maxEcText) str2num(maxGiText) str2num(maxRoText)]; 

%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Recommended, but does not seem to be 
necessary. 
%=== 
%===Parameter entry=== 
%switch inc; %This switch no longer needed since we're passing max pathogen 
concentrations into this function. 
% case 'Lo'; PathogensLMax = [6e3, 0.3, 0.025]; %From QMRA2v2/TrialCalibRuns.m. 
% case 'Med'; PathogensLMax = [2e4, 0.8, 0.05]; 
% case 'Hi'; PathogensLMax = [1.5e5, 1.6, 0.08]; 
% otherwise; error('inc needs to be Lo, Med, or Hi'); 
%end 
infile = 'nonapplicable.csv'; 
outfile = 
['Results/TrialCalibResults',inc,nSpikesText,'spikesx',multSpikesText,'-',indexText,'.csv
']; 
%===End parameter entry=== 

%disp(['##### Running 
',num2str(size(U,2)),'*',num2str(size(T,2)),'*',num2str(size(L,2)),'+1=',num2str(combos),
' parameter combinations on ',num2str(size(tempData,1)),' parameter sets from 
calibration, should have requested at least that many members in the job array. #####']) 

[OutM OutS] = Main(0, 1, 0, [0 0 0], [0 0 0], PathogensLMax, calibRuns, outfile, infile, 
1, nSpikes, multSpikes); 
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disp(['##### DONE #####']) 
end %End function.
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%Beta-Poisson dose response model, using N50 (default) or beta as a parameter 
%function outvar = DRbP(N50orBeta,alpha,invar,reverse='no',WhichParam='N50') %Ordinarily, 
invar is dose & outvar is response. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRbP.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function outvar = DRbP(N50orBeta,alpha,invar,reverse,WhichParam) %Ordinarily, invar is 
dose & outvar is response. 
    if nargin == 3; 
       reverse = 'no'; WhichParam = 'N50'; 
    end 
    switch(reverse) 

case 'no' 
switch(WhichParam) 
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case 'N50' 
outvar = 1-(1+(invar/N50orBeta)*(2^(1/alpha)-1)).^-alpha; 

case 'Beta' 
outvar = 1-(1+(invar/N50orBeta)).^-alpha; 

otherwise 
error(['WhichParam must be "N50" or "Beta"']) 

end 
case 'yes'  %If reverse='yes', invar is response & outvar is dose. 

switch(WhichParam) 
case 'N50' 

outvar = N50orBeta * ( ((1-invar).^(-1/alpha) -1) / 
(2^(1/alpha)-1) ); 

case 'Beta' 
outvar = N50orBeta * ((1-invar).^(-1/alpha) -1); 

otherwise 
error(['WhichParam must be "N50" or "Beta"']) 

end 
otherwise 

error(['reverse must be "no" or "yes"']) 
end 

end
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%Returns a vector of response values, determined by dose response models, for several 
pathogens. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRchoose.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%Inputs are vectors with 1 entry per pathogen, all in the same order: 
% nonalphas: k parameter (exponential) or N50 parameter (beta-Poisson) 
% alphas: alpha parameter (beta-Poisson); NA if exponential model is desired 
% Doses: Doses of pathogens received per individual (under default behavior; 
see 'reverse' below) 
% morbidities: Morbidity ratios: proportion of infected who are ill 
% reverse: Defaults to 'no', determining proportion ill from dose. If 'yes', 
determines dose from proportion ill. 
%The output (outvec) is a vector containing the proportions of exposed who will fall ill. 
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%If reverse=='yes', outvec is a vector of doses calculated from invec, the proportions 
ill. 
%This code requires several custom functions/subroutines in the working directory: 
% DRexp.m: Exponential dose response model 
% DRbP.m: Beta-Poisson dose response model 

%function outvec = 
%DRchoose(nonalphas,alphas,invec,morbidities=1,reverse='no')  %Octave 
function outvec = DRchoose(nonalphas,alphas,Doses,morbidities,reverse) 
    if nargin == 3; 
        morbidities = 1; reverse = 'no'; 
    end 

if morbidities == 1; 
morbidities = ones(length(nonalphas)); 

end 
switch(reverse) 

case 'no' 
for i=1:length(alphas); 

if (isnan(alphas(i))) %if alpha is NA, run exponential dose 
response 

if size(Doses)(1) == 1; 
outvec(i) = DRexp(nonalphas(i),Doses(i)) * morbidities(i); 

else 
outvec(i) = DRexp(nonalphas(i),Doses(:,i)) * 

morbidities(i); 
end 

else %run beta-Poisson dose response 
outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i)) * 

morbidities(i); 
end 

end 
case 'yes' 

for i=1:length(alphas); 
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if (isnan(alphas(i))) %if alpha is NA, run exponential dose 
response 

outvec(i) = DRexp(nonalphas(i),Doses(i) ./ 
morbidities(i),'yes','N50') ; 

else %run beta-Poisson dose response 
outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i) ./ 

morbidities(i),'yes','N50'); 
end 

end  
otherwise 

error('reverse must be "no" or "yes"') 
end 

end
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%Exponential dose response model 
%function outvar = DRexp(k, invar,reverse='no') %Ordinarily, invar is dose & outvar is 
response. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRexp.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function outvar = DRexp(k, invar, reverse)  %This works in Matlab. 
    if nargin < 3; 
        reverse = 'no'; 
    end 

switch(reverse); 
case 'no'; 

outvar = 1-exp(-k * invar); 
case 'yes'; %If reverse='yes', invar is response & outvar is dose. 
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outvar = log(1-invar)/-k; 
otherwise 

error(['reverse (last parameter) must be "no" or "yes"']) 
end 

end
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%Functions for calculating vectors of illness durations 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durEc.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function output = durEc(n); %Based on ...? 
output = round(gamrnd(1.775,1.690,[n,1])); %Shape, then scale 
output(output == 0) = 0.1; %Sets zero durations to 0.1 day instead. Will 

still function as 1 day. 
end
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%Functions for calculating vectors of illness durations 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durGi.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function output = durGi(n); %Based on a fit of gamma dist. to limited info from Kent GP 
1988. 

output = round(gamrnd(3.206,3.431,[n,1])); %Shape, then scale 
output(output == 0) = 0.1; %Sets zero durations to 0.1 day instead. Will 

still function as 1 day. 
end
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%Functions for calculating vectors of illness durations 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durRo.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function output = durRo(n); %Based on 4 rotavirus-infected volunteers having durations 
of 1, 2, 3, and 4 days (Kapikian 1983). 

output = ceil(rand([n,1]) * 4); 
output(output == 0) = 0.1; %Sets zero durations to 0.1 day instead. Will 

still function as 1 day. 
end
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%Loop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates 
computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Differs from EstimationLoopFuncCompile in that only a small number of parameter 
combinations are chosen, rather than all possible combinations. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (EstimationLoopFuncCompileV2.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = 
EstimationLoopFuncCompileV2(indexText,inc,mix,overallComplianceText,multConcText,nSpikesT
ext,multSpikesText); 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
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index = str2num(indexText); 
if Octave == 0; 

RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock 
index*10]))); 

%Sets random stream based on clock & job index. Doesn't work with Octave (Octave 
bases the seed on the clock by default). 
end 
oC = str2num(overallComplianceText); 
multConc = str2num(multConcText); 
nSpikes = str2num(nSpikesText); 
multSpikes = str2num(multSpikesText); 
%baselines = str2num(baselinesText); 

%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Does not seem to be necessary. 
%===Parameter entry=== Note that 0 should not be included in L. 
%P = [0 .1 .2]; %Vector of desired values for proportions of children never using the 
device. 
%N = [0 .1 .2]; %Vector of desired values for proportions of children perfectly using 
the device. 
L = [1 2 3 4 5]; %Vector of log reduction values desired (all marker pathogens get the 
same LRV). 
%Testing the code using the vectors below. 
%U=[.9 1] 
%T=[.9 1] 
%L=[1 2] 
%Constructing a matrix with all possible combos of P, N, & L 
%[p n l] = ndgrid(P,N,L); 
%Combos = [p(:) n(:) l(:)]; %TODO: Build functionality to check N, P, 
overallCompliance, and pTreat to ensure they make sense before running. 
%Building appropriate combinations of perfect compliers (P; 1st column) and noncompliers 
(N; 2nd column). 
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Combos = [oC 0]; %Combo with max possible perfect compliers & max possible 
noncompliers (same as [0 1-oC]; [oC 1-oC] is 0/0). 
Combos(2,:) = [oC/2 (1-oC)/2]; %Combo with intermediate perfect/nonperfect compliers. 
Combos(3,:) = [0 0]; %Combo with no perfect/nonperfect compliers (i.e., pTreat == 
oC). 
CombosT = (oC - Combos(:,1)) ./ (1 - Combos(:,1) - Combos(:,2)) %TODO: doublecheck to 
make sure this is right. 
if sum(CombosT > 1 + eps) | sum(CombosT < 0 - eps); error('pTreat out of range (>1 or 
<0); check parameter combos.'); end 
Combos(:,3) = L(1); %This & subsequent 'for' loop copy the above for each possible LRV. 
OutCombos = Combos; 
for i = 2:size(L,2); 

NextCombos = Combos; 
NextCombos(:,3) = L(i); 
OutCombos = [OutCombos; NextCombos]; 

end 
Baselines = zeros(1,3); %Creating baseline row. No log reduction & no perfect 
compliance. 
Baselines(:,2) = 1; %Modifies above, so that 100% never use device. 
Combos = [Baselines; OutCombos]; %Baseline as 1st row. 
Combos' %Output results, transposed. 
combos = size(Combos,1) 

infile = 
['RTF_',mix,'_TrialCalibResults',inc,nSpikesText,'spikesx',multSpikesText,'.csv']; 
outfile = 
['Results/EstResults',inc,mix,nSpikesText,'spikesx',multSpikesText,'x',multConcText,'oC',
num2str(oC*100),'-',indexText,'.csv']; 
%===End parameter entry=== 

tempData = csvread(infile,1,1); 

disp(['##### Running 3 * ',num2str(size(L,2)),'+ 1 = ',num2str(combos),' parameter 
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combinations on ',num2str(size(tempData,1)),' parameter sets from calibration, should 
have requested at least that many members in the job array. #####']) 
if index == 1; %If running the baseline parameters: 

[OutM OutS] = Main(Combos(index,1), Combos(index,2), oC, [Combos(index,3) 
Combos(index,3) Combos(index,3)], [0 0 0], [0 0 0], 0, outfile, infile, multConc, 
nSpikes, multSpikes, 1); 
else %If running the parameters from calibration: 

[OutM OutS] = Main(Combos(index,1), Combos(index,2), oC, [Combos(index,3) 
Combos(index,3) Combos(index,3)], [0 0 0], [0 0 0], 0, outfile, infile, multConc, 
nSpikes, multSpikes, 0); 
end 
disp(['##### DONE #####']) 
end %End function.
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%Loop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates 
computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Differs from EstimationLoopFuncCompile in that only a small number of parameter 
combinations are chosen, rather than all possible combinations. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (EstimationLoopFuncCompileV2PC.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = 
EstimationLoopFuncCompileV2Untreated(indexText,inc,mix,overallComplianceText,multConcText
,nSpikesText,multSpikesText); 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
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index = str2num(indexText); 
if Octave == 0; 

RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock 
index*10]))); 

%Sets random stream based on clock & job index. Doesn't work with Octave (Octave 
bases the seed on the clock by default). 
end 
oC = str2num(overallComplianceText); 
multConc = str2num(multConcText); 
nSpikes = str2num(nSpikesText); 
multSpikes = str2num(multSpikesText); 
%baselines = str2num(baselinesText); 

%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Does not seem to be necessary. 
%===Parameter entry=== Note that 0 should not be included in L. 
L = [1 2 3 4 5]; %Vector of log reduction values desired (all marker pathogens get the 
same LRV). 

infile = 
['RTF_',mix,'_TrialCalibResults',inc,nSpikesText,'spikesx',multSpikesText,'.csv']; 
outfile = 
['Results/EstResults',inc,mix,nSpikesText,'spikesx',multSpikesText,'x',multConcText,'oC',
num2str(oC*100),'-',indexText,'.csv']; 
%===End parameter entry=== 

tempData = csvread(infile,1,1); 
disp(['##### Running ',num2str(size(L,2)),' parameter combinations on a subsample of 
',num2str(size(tempData,1)),' parameter sets from calibration, should have requested at 
least that many members in the job array. #####']) 
[OutM OutS] = Main(1, 0, oC, [L(index) L(index) L(index)], [0 0 0], [0 0 0], 0, outfile, 
infile, multConc, nSpikes, multSpikes, 0); 
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disp(['##### DONE #####']) 
end %End function.
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%Loop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates 
computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Differs from EstimationLoopFuncCompile in that only a small number of parameter 
combinations are chosen, rather than all possible combinations. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (EstimationLoopFuncCompileV2Untreated.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = 
EstimationLoopFuncCompileV2Untreated(indexText,inc,mix,overallComplianceText,multConcText
,nSpikesText,multSpikesText); 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
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index = str2num(indexText); 
if Octave == 0; 

RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock 
index*10]))); 

%Sets random stream based on clock & job index. Doesn't work with Octave (Octave 
bases the seed on the clock by default). 
end 
oC = str2num(overallComplianceText); 
multConc = str2num(multConcText); 
nSpikes = str2num(nSpikesText); 
multSpikes = str2num(multSpikesText); 
%baselines = str2num(baselinesText); 

%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Does not seem to be necessary. 
%===Parameter entry=== Note that 0 should not be included in L. 
%L = [1 2 3 4 5]; %Vector of log reduction values desired (all marker pathogens get the 
same LRV). 

infile = 
['RTF_',mix,'_TrialCalibResults',inc,nSpikesText,'spikesx',multSpikesText,'.csv']; 
outfile = 
['Results/EstResults',inc,mix,nSpikesText,'spikesx',multSpikesText,'x',multConcText,'oC',
num2str(oC*100),'-1-',indexText,'.csv']; 
%===End parameter entry=== 

tempData = csvread(infile,1,1); 
nChunks = 20; %# of equal-sized chunks to break the parameter sets into. Add 1 more for 
the remainder. 
nSets = size(tempData,1); 
chunk = floor(nSets/nChunks); 
remainder = mod(nSets,nChunks); 
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ChunkStarts = linspace(1,nChunks*chunk+1,nChunks+1); 
ChunkStarts(end+1) = nSets+1; 
DataChunk = tempData(ChunkStarts(index):ChunkStarts(index+1)-1,:); 
z = zeros(size(DataChunk,1),1); 
DataChunk = [z DataChunk]; 
DataChunk = [0,0,0,0;DataChunk]; %Needs surplus 1st line because Main() will strip the 
1st line off (the original R output has column names). 
infile = ['TempBaselineChunk',indexText,'.csv']; 
csvwrite(infile,DataChunk); 

disp(['##### Running ',num2str(nSets),' parameter combinations in ',num2str(nChunks+1),' 
chunks, should have requested at least that many members in the job array. #####']) 
[OutM OutS] = Main(0, 1, 1, [0 0 0], [0 0 0], [0 0 0], 0, outfile, infile, multConc, 
nSpikes, multSpikes, 0); 

disp(['##### DONE #####']) 
end %End function.
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%Examining data from a single run of the QMRA lifestraw model. 
%Converting to susceptible (-9), immune (-1), or diseased (9) for each of the 3 
pathogens. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (Examine1Run.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%====Setting options==== 
startTime = 96; %Time point at which to start looking at the data. Note that 1st 
matrix corresponds to time 0. 
recode = 1; %If 1, recode matrix entries to susc./inf./immune. 
%====Finished with options, starting processing.==== 
PPMs = PPmatrices; %Making a copy. 
switch(recode); 

case 1; 
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disp(['Recoding raw numbers to susc./inf./immune.']) 
for i = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts 

(after equilibrium is reached). 
PPMs(i).KidsInt(PPMs(i).KidsInt <= -7) = -9; %7 day immune period; 0 counts as 

the 1st immune day, so at -7 they are susc. 
PPMs(i).KidsInt(PPMs(i).KidsInt > 0) = 9; %Susceptible if a positive 

integer. 
PPMs(i).KidsInt(abs(PPMs(i).KidsInt) != 9) = -1;%Immune if neither of the above 

applies. 
PPMs(i).KidsInt(PPMs(i).KidsInt == 9) = 2; %Infected person-day marked as 2, 

so as to more easily distinguish. 
end 
for i = startTime:size(PPmatrices)(2); %Same as above 'for' loop, but placebo. 

PPMs(i).KidsPla(PPMs(i).KidsPla <= -7) = -9; 
PPMs(i).KidsPla(PPMs(i).KidsPla > 0) = 9; 
PPMs(i).KidsPla(abs(PPMs(i).KidsPla) != 9) = -1; 
PPMs(i).KidsPla(PPMs(i).KidsPla == 9) = 2; 

end 
otherwise 
disp(['Not recoding to susc./inf./immune, output will display raw numbers.']) 

end 
KidsIntStatusEc = NA(size(PPMs(1).KidsInt)(1), size(PPmatrices)(2)-(startTime-1)); 
KidsIntStatusGi = KidsIntStatusEc; 
KidsIntStatusRo = KidsIntStatusEc; 
KidsPlaStatusEc = NA(size(PPMs(1).KidsPla)(1), size(PPmatrices)(2)-(startTime-1)); 
KidsPlaStatusGi = KidsPlaStatusEc; 
KidsPlaStatusRo = KidsPlaStatusEc; 
for i = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts 
(after equilibrium is reached). 

for j = 1:size(PPMs(1).KidsInt)(1); 
KidsIntStatusEc(j,i-startTime+1) = PPMs(i).KidsInt(j,1); 
KidsIntStatusGi(j,i-startTime+1) = PPMs(i).KidsInt(j,2); 
KidsIntStatusRo(j,i-startTime+1) = PPMs(i).KidsInt(j,3); 
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end 
for j = 1:size(PPMs(1).KidsPla)(1); 

KidsPlaStatusEc(j,i-startTime+1) = PPMs(i).KidsPla(j,1); 
KidsPlaStatusGi(j,i-startTime+1) = PPMs(i).KidsPla(j,2); 
KidsPlaStatusRo(j,i-startTime+1) = PPMs(i).KidsPla(j,3); 

end 
end 
%Now can visually inspect the 6 status matrices that have been output. 
%Should be a way to collapse them also (run-length encoding?), but not yet implemented. 

function outmatrix = coll(inmatrix,nMaxRuns) %Inefficient but hopefully works. 
sizeM = size(inmatrix); 
maxk = 1; %Initializing counter to determine the maximum number of runs ever seen 

during the function call. 
for i = 1:sizeM(1); %Loop over all rows 

for j = 2:sizeM(2); %Loop over each entry per row 
if j == 2; %Special procedure for first iteration, since there could 

be a transition (or not) between the 1st 2 entries. 
k = 1; %Initiating run counter; 
if inmatrix(i,j) != inmatrix(i,j-1); 

if inmatrix(i,j-1) == -9; dur(k) = -1; 
elseif inmatrix(i,j-1) == -1; dur(k) = 0.001; 
elseif inmatrix(i,j-1) == 2; dur(k) = 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 
k = k + 1; %Increment run counter 
if inmatrix(i,j) == -9; dur(k) = -1; 
elseif inmatrix(i,j) == -1; dur(k) = 0.001; 
elseif inmatrix(i,j) == 2; dur(k) = 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 

else %If type of run does not change in 1st 2 entries 
if inmatrix(i,j) == -9; dur(k) = -2; 
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elseif inmatrix(i,j) == -1; dur(k) = 0.002; 
elseif inmatrix(i,j) == 2; dur(k) = 2; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end  

end 
elseif j == sizeM(2); %Special procedure for last iteration - need to 

drop it since it is probably incomplete. 
dur(k) = 0; 

else %If j (the column) is anything greater than 2, but not the last 
column: 

if inmatrix(i,j) != inmatrix(i,j-1); %If there is a transition, 
reset the run: 

k = k + 1; 
if inmatrix(i,j) == -9; dur(k) = -1; 
elseif inmatrix(i,j) == -1; dur(k) = 0.001; 
elseif inmatrix(i,j) == 2; dur(k) = 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 

else %If there is no transition, extend the run 
if inmatrix(i,j) == -9; dur(k) = dur(k) - 1; 
elseif inmatrix(i,j) == -1; dur(k) = dur(k) + 0.001; 
elseif inmatrix(i,j) == 2; dur(k) = dur(k) + 1; 
else stop('Unexpected value in matrix (not -9, -1, or 2).') 
end 

end 
end 

end 
if k > maxk; 

maxk = k %Updates & displays maxk (largest no. runs seen so far). Use as 
guide for entering nMaxRuns. 

end 
outmatrix(i,:) = padarray(dur,[0, nMaxRuns - length(dur)],0,'post'); 

end 
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outmatrix(:,1) = 0; %Sets all 1st runs to 0 (they are likely to be incomplete). 
mean(outmatrix(find(outmatrix >= 1))) %Print mean duration of illness 

end 

function z = GraphColl(outmatrix) %Graphs output of above function. 
bins = unique(outmatrix(find(outmatrix < 0))); 
if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-1; 

binsT(3)=binsT(2)+1; bins=binsT;  end 
subplot(2,2,1); 
hist(outmatrix(find(outmatrix < 0)),bins) %Durations of susceptibility 
bins = unique(outmatrix(find(outmatrix > 0 & outmatrix < 1))); 
if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-0.001; 

binsT(3)=binsT(2)+0.001; bins=binsT;  end 
subplot(2,2,2); 
hist(outmatrix(find(outmatrix > 0 & outmatrix < 1)),bins) %Durations of immunity 
bins = unique(outmatrix(find(outmatrix >= 1))); 
if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-1; 

binsT(3)=binsT(2)+1; bins=binsT;  end 
subplot(2,2,3); 
hist(outmatrix(find(outmatrix >= 1)),bins) %Durations of illness 

end 

%histc(PlaRo(find(PlaRo < 1 & PlaRo > 0)),[0:0.001:max(PlaRo(find(PlaRo < 1 & PlaRo > 
0)))]) %Awful (but functional) way to get counts of possible values for immunity 
length.
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%This script generates a series of parameters for input into the main code, rather than 
stochastically generating them. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (GetTrialParams.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

reps = 1; %# of times to run each parameter set. 
readParams = 1; %To read parameters generated by a previous model run (1) or not 
(0). 
paramSets = 12; %# of parameter sets to be run, if generating them 
systematically. 
%loops = paramSets * reps; %Deliberately overwrites 'loops' in the main code. 
switch(readParams); 

case 1; 
TrialParamsAll = dlmread(inFilename,',',1,1); %Access a file returned by 
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ReadOutput.r. inFilename is an input to Main.m. 
        paramSets = size(TrialParamsAll, 1); %Overwrites 'paramSets' above. 

disp(['Reading parameter values from ',num2str(paramSets),' trials in 
',inFilename,', will winnow down to 150 if greater.']) 

if useAllParamSets == 1; 
TrialParams = TrialParamsAll; 

elseif paramSets > 150; 
selectedParamSets = randperm(paramSets); 
selectedParamSets = selectedParamSets(1:150); 
TrialParams = TrialParamsAll(selectedParamSets,:); 
paramSets = size(TrialParams,1); 

else TrialParams = TrialParamsAll; 
end 

case 0; 
MinDoses = [0, 0, 0.05]; %Minimum non-zero dose. A good choice is dose that 

infects 1% of population (ID1). 
ID1s = [7.5697E3, 5.0708E-1, 1.7280E-2]; %ID1 for ETEC, Giardia, & rota. 
%MinDoses = ID1s * .1; %Uncomment if ID1s are desired. 
TrialParams = zeros(paramSets,size(MinDoses, 2));  
for i = 1:length(MinDoses); %Populating all cells except the 1st row with the 

minimum nonzero dose. 
TrialParams(2:paramSets,i) = MinDoses(i); 

end 
TrialParams(2,:) = MinDoses; %1st run is 0 pathogens; 2nd run is the 

minimum nonzero dose. 
for i = 3:paramSets; %Uncomment the particular line desired. Comment all to 

check multiple replicates of the same dose. 
%TrialParams(i,:) = MinDoses * (i-1); %Linearly increases the dose 

on each model run. 
TrialParams(i,:) = 2 * TrialParams(i-1,:); %Doubles the dose on each 

model run. 
%TrialParams(i,2) = 10 * TrialParams(i-1,2); %Doubles the dose for only 1 

pathogen, leaving others constant. 
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end 
TrialParams(:,4) = 0; %Sets a single value for non-waterborne diarrhea 

prevalence. 
%disp('Will cycle through these parameters, 1 run per set.') 
%trialPrevDiarrhBaseKids = 0 %Sets a single value for non-waterborne diarrhea 

prevalence. 
%TrialParams %Print to screen, so we see that this file was 

executed & to view the trial params. 
otherwise; 

error('readParams must be 0 or 1'); 
end 
%Replicating the parameter sets. 
TP = TrialParams; %Making a copy, for use in loop below. 
if reps > 1; 

for i = 1:reps-1; 
TrialParams = [TrialParams; TP]; %Appending copies of the parameter sets. 

end 
end 
TrialParams = sortrows(TrialParams); %Sorting so that identical parameter values are 
next to each other. 
loops = size(TrialParams,1); %Overwriting 'loops' variable in Main(). 
disp(['Using ',num2str(paramSets),' parameter sets, ',num2str(reps),' times each, 
totaling ',num2str(loops),' runs.']) 
if paramSets <= 25; 

disp(['Parameter sets are as follows:']) 
TP 

end 
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%Pulls together QMRA output files from multiple Octave threads. Runs surprisingly fast! 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (OutQMRAmerge.m) is part of QMRA2v5. 

    QMRA2v5 is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    QMRA2v5 is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with QMRA2v5.  If not, see <http://www.gnu.org/licenses/>. 
%} 

clear all; 
%First, enter the desired name of the .CSV: 
filename = {'Results/MergedOutQMRA.csv'}; 
%Now enter as many files as necessary, each one containing the 'workspaces' from a 
thread. 
Files = {'Results/OutQMRA20110315T130458.mat'}; 
rows = 0; %Initializing variable to count up total number of rows. 
for i = 1:length(Files); 

eval(disp(['load ',char(Files(i)),' OutQMRA;'])) %Loads the 'OutQMRA' struct stored 
in .mat file, overwriting that object if it exists. 
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%disp(['File ',num2str(i),' took ',num2str(),' to run 
',num2str(length(OutQMRA.CaL)),... 

 %' loops (',num2str(),' per loop.']) 
eval(disp(['OutQMRA',num2str(i),'=OutQMRA;'])) %Copies it and adds a numeric 

suffix to the name. 
rows = rows + length(OutQMRA.EcL); 

end 
clear OutQMRA; %Removes the initial copy of the last file loaded. 

%CSVmatrix = NA(rows,length(fieldnames(OutQMRA1))-2; %Creating the output matrix. Each 
row is a QMRA iteration. 
for i = 1:length(Files); 

%i %For debugging 
eval(disp(['OutQMRA = OutQMRA',num2str(i),';'])) %Taking 'OutQMRAx' and creating a 

copy called 'OutQMRA' to work from. 
OutQMRA = rmfield(OutQMRA, 'StartTime'); OutQMRA = rmfield(OutQMRA, 'EndTime'); 
CSVmatrix = OutQMRA.Fit'; %Initializing a matrix that will become a .CSV by 

transposing the first structure field into it. 
for [val,key] = OutQMRA; %This special syntax allows looping over all elements of 

the structure. 
%key %For debugging 
if strcmp(char(key),'Fit') == 0; %Don't do anything for the 'Fit' element 

because we took care of that 2 lines before. 
CSVmatrix = [CSVmatrix, val']; %Transpose fields into columns & bind 

into the matrix. 
end 

end 
eval(disp(['CSVmatrix',num2str(i),' = CSVmatrix;'])) 
clear CSVmatrix; 

end 

CSVmatrix = CSVmatrix1; %Initializing output matrix. 
for i = 2:length(Files); 

373



eval(disp(['CSVmatrix = [CSVmatrix; CSVmatrix',num2str(i),'];'])) 
end 

fn=fieldnames(OutQMRA); 
nFields = numel(fn); %http://stackoverflow.com/questions/5292437/how-to-concat-cell-
array-of-strings-in-matlab 
fn(1:nFields-1) = strcat(fn(1:nFields-1),{','}); 
file = fopen(filename,'w+'); 
fprintf(file,'%s',disp([fn{:}])); 
fclose(file); 
eval(["dlmwrite('",char([filename]),"',CSVmatrix,'-append');"]) 
disp(['Done; .mat files have been merged and output to ',char(filename),' in 
',char(pwd),'/Results/'])
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9.5. The EITS model (chapter 5)

The transmission model (referred to as “EITSd” for short) consists of several text files containing necessary functions and 

subroutines; the core program is ’EITSd.m’. Simulation options are set by the choice of several values at the top of the file 'EITSd.m'. 

These options default to values that generate a single test run of the simulation. Other options are set when calling the function 

'EITSd.m' and are described within that file; for example, the following can be submitted at the Octave (or MATLAB) prompt to do 

one test calibration run:

EITSd('C',1,'test.csv');

The source code is below. The filename of each of the source code files is found in the copyright information at the top of each 

file. Although EITSd uses some filenames that are identical to those in QMRAv13_20110414 or QMRA2v5, the content of its files  

differs. EITSd also requires folders named 'Graphics' and 'Results' in the working directory in order to store output.

All files in the source code that follows are part of EITSd and subject to the GNU General Public License Version 3, except for 

erdrey.m, which is part of the CONTEST toolbox at http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest (A. 

Taylor & Higham, 2009); erdrey.m is included at the end of the source code for completeness, by permission of the authors (Des 

Higham, personal communication, 24 Aug. 2012).
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%Environmental transmission model of diarrheal infection transmission (main file), Kyle 
S. Enger, July 2012 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (EITSd.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%EITSd runs on Octave 3.2 or later. 
%Also works well (and runs faster) on MATLAB; the results in chapter 5 of the 
accompanying dissertation were all produced with MATLAB. 
%If running on MATLAB, requires the statistics toolbox, and possibly others. 
%This code (EITSd.m, the core component of EITSd) is accompanied by several 
functions/subroutines, which are part of EITSd and need to be in the working directory: 
% ApplyLRVs.m: Applies log10 reduction values to stocks of pathogens 
% AssignCompliance.m: Given compliance parameters for a community, assigns specific 
compliance characteristics to specific households 
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% DoseResponse.m: Applies dose response functions to individuals 
% CalLoopFuncCompile.m: Code that calls EITSd() in order to facilitate parallel 
processing of many differently parameterized calibration runs 
% DRbP.m: Beta-Poisson dose response model 
% DRexp.m: Exponential dose response model 
% durEc.m: Randomly pick a duration for E. coli infection 
% durGi.m: Randomly pick a duration for Giardia infection 
% durRo.m: Randomly pick a duration for rotavirus infection 
% EstLoopFuncCompileBase.m: Code that calls EITSd() in order to facilitate parallel 
processing of many differently parameterized baseline (no HWT) estimation runs 
% EstLoopFuncCompileHWT.m: As above, but for estimation runs using HWT with imperfect 
compliance 
% EstLoopFuncCompileHWTPC.m: As above, but for estimation runs using HWT with perfect 
compliance 
% Inact.m: Inactivates pathogens in all compartments 
% PlotMicrobes.m: Generates line charts of flows of microbes during a single 
model run 
% PlotPeople.m: Generates line charts of people and their infection statuses 
during a single model run 
% Pooping.m: Determines results of defecation events by infected people 

%Also requires in the working directory: erdrey.m, written by Alan Taylor and Des Higham, 
U. of Strathclyde, 
% freely available at 
http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest, 
% and reproduced and included with EITSd by permission of the authors, though it is not a 
part of EITSd). 

%Use just the 1st 3 arguments to run the model with default values for all parameters. 
%CalibOrEst: Whether the model is in calibration ('C') or estimation ('E') mode. 
%nRuns: Number of runs (calibration), or number of runs per parameter set (estimation). 
%outFilename: Filename for output file containing results. 
%inFilename: Used for estimation only. Filename root for .CSV containing parameter values 
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from calibration step. 
%CF variables: Calibration factors; 1st value is low end of range, 2nd value is high end 
of range. 
%CFdecayr: 2x3 matrix: top row is low end of range of decay constant modifiers; 
bottom row is high end of range. Columns are bac.-vir.-prot. 
%nHHr: Value to replace default for number of households (nHH). 
%E variables: LRVs and compliance figures for various intervention scenarios in the 
estimation step. Estimation necessitates input of garbage for the CF ranges above. 

%dbstop(161); %Setting breakpoint for debugging. Type 'dbquit' at the debug prompt to 
quit back to Octave prompt. 

function [People LogHHP Log nMw nMl OutMatrix] = EITSd(CalibOrEst, nRuns, outFilename, 
inFilename, CFSfr, CFHDhr, CFVr, CFDlr, CFdecayr, nHHr, ElSan, EcSan, ElHWT, EcHWT, 
ElHand, EcHand); 
if size(ver('Octave'),1)==0; format compact; format longe; end %Fixes annoying default 
display characteristics in MATLAB. 
if nargin == 3; disp(['Running with default parameter values only.']); end 
if CalibOrEst == 'C'; 

loops = nRuns; 
OutMatrix = NaN(loops,87); %Starting output matrix, summarizing results from many 

model runs, one row per run. 
elseif CalibOrEst == 'E'; %Pull in parameter values from calibration runs that fit the 
criteria. 

TrialParams = dlmread(inFilename,',',1,1); %Access a file returned by 
ReadOutput.r. inFilename is an input to EITSd.m. 

paramSets = size(TrialParams, 1); 
if paramSets > 100 & sum([ElSan ElHWT ElHand]) > 0; %If >100 parameter sets and 

an intervention is being applied, randomly sample 100 sets without replacement, to use in 
estimation step. TODO: Conflicts with sampling of 150 parameter sets in calibration R 
code. 

selectedParamSets = randperm(paramSets); 
selectedParamSets = selectedParamSets(1:100); 
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TrialParams = TrialParams(selectedParamSets,:); 
paramSets = size(TrialParams,1); 

end 
%Replicating the parameter sets. 
TP = TrialParams; %Making a copy, for use in loop below. 
if nRuns > 1; 

for i = 1:nRuns-1; 
TrialParams = [TrialParams; TP]; %Appending copies of the parameter 

sets. 
end 

end 
TrialParams = sortrows(TrialParams); %Sorting on basis of ID number, so that runs 

with identical CF values are next to each other. 
loops = size(TrialParams,1); 
OutMatrix = NaN(loops,88); %Starting output matrix, summarizing results from many 

model runs, one row per run. 88th column is the ID of the set of CFs input. 
disp(['Using ',num2str(paramSets),' parameter sets, ',num2str(nRuns),' times each, 

totaling ',num2str(loops),' runs.']) 
elseif CalibOrEst == 'D'; %Running with default parameters only. 

loops = nRuns; 
end 
OutMatrix(:,1) = 1:loops; %Serially numbering rows. 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
p.ProgramVersion=7; p.StartTime=datestr(now,31); 
%===Parameter values (struct of parameters created simultaneously). Start with defaults 
for parameters that vary in calibration step. 
%loops = nRuns; %Number of distinct runs with a given set of 
parameters. 
CFSf = 1E-8; p.CFSf=CFSf; %Calibration factor: microbe transfer from surface water to 
stored drinking water 
CFHDh = 0.01; p.CFHDh=CFHDh; %Calibration factor: microbe transfer out of household 
environment to stored water or adults (kids are higher; see wHandMouth). 
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CFV = 0.066; p.CFV=CFV; %Calibration factor: microbe transfer between households 
when a visit occurs (bidirectional). Rota, skin-skin, Ansari 1988. 
CFDl = 1E-9; p.CFDl=CFDl; %Calibration factor: proportion of land pathogens ingested 
per adult (kids are higher; see wHandMouth). 
CFdecay = [.6 .6 .6]; %Calibration factor: multiplier applied to inactivation 
rates in water to convert them to inactivation rates out of water. 
%Microbe-specific parameters [bacteria, viruses, protozoans]:=== 
Mpgf = [5E8 2E6 572000]; p.Mpgf=Mpgf; %Microbes per gram of feces (DuPont 1971, Ward 
1984, Danciger 1974). 
%Mpgf = [0 0 0]; p.Mpgf=Mpgf; %For code verification (checking the development 
of baseline infections). 
KorN50 = [2111912, 6.171, 0.01982]; p.KorN50=KorN50; %Exponential k parameter or beta-
Poisson N50 parameter 
alpha = [0.1549, 0.2531, NaN]; p.alpha=alpha; %Presence/absence of alpha 
value determines beta-Poisson or exponential dose resp. 
MRk = [0.214, 0.36, 0.59]; p.MRk=MRk; %Morbidity ratios for kids. 
MRa = [0.214, 0.222, 0.03]; p.MRa=MRa; %Morbidity ratios for adults. Can't find a good 
adult MR for E. coli, so reusing the MR for kids. 
latent = [round(1.75), round(3.2), round(13.5)]; p.latent=latent; %Latent 
(incubation) period. 
infill = [round(3.4), round(2.5), round(18.3)]; p.infill=infill; %Duration of 
infectivity (assumed the same as duration of disease). NOT USED except for determining 
burn-in; see durEc(), durRo(), & durGi(). 
immune = [1, 1, 1]; p.immune=immune; %Immune period (assumed). 
%gM = [0.6 0.6 0.6]; p.gM=gM; %Daily inactivation rate of microbes in surface 
water (assume similar for soil, stored water, & hands) - see Inactivation.xls & 
EITSparams.ods. CFdecay used to modify these for application to land & household 
environment compartments. 
%xHtoW = [0.26 0.26 0.26]; p.xHtoW=xHtoW; %Transfer from hands to water, per contact. 
Half of reduction for E. coli from Pickering 2011. 
%p.xHtoP=xHtoP = [0.34 0.34 0.34]; %Transfer from hands to person's mouth, per contact. 
Rusin 2002 (assuming protozoa same as bac & viruses). Since so high & hand-mouth contacts 
so frequent, assume all are ingested each day. 
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%xferVisit = 0.066; p.xferVisit=xferVisit; %Proportion of hand pathogens that are 
transferred (2-way) during a visit. Rota, skin-skin, Ansari 1988. 
lSan = [3 3 3]; p.lSan=lSan; %LRVs attributable to sanitation. Based on 
amount of feces on toilet paper (which often isn't flushed). 
lHWT = [6 4 3]; p.lHWT=lHWT; %LRVs attributable to household water 
treatment. 
lHand = [0.46, 0.46, 0.46]; p.lHand=lHand; %LRVs attributable to handwashing; Luby 2001, 
TTC. Slightly higher than Pickering 2011. 
%Community characteristics (people & households): 
%nHH = 1000; p.nHH=nHH; %Approximate number of households in the 
simulated community 
nHH = 200; p.nHH=nHH; %Approximate number of households in the 
simulated community 
mPHH = 5; p.mPHH=mPHH; %Mean people per household (truncated Poisson) 
pKids = 0.18; p.pKids=pKids; %Proportion of people in the community who are <5y. 
meanDeg = 5.3; p.meanDeg=meanDeg; %Mean network degree for households in 18 villages, 
'passing time' network, Joe's Ecuador sites (Zelner 2012). 
%Water intake and defecation output parameters: 
Ws = 25; p.Ws=Ws; %Size of household water storage container, in liters. 
Wflow = 0; p.Wflow=Wflow; %Unused. Simple in/outflow of reservoir, daily rate, 
starting with 0 (maybe 25 ft^3/sec, USGS creek measurements). 
landArea = 1; p.landArea=landArea; %Unused. Community area, km^2. Presuming people only 
poop within their community. Allows calc. of persons per square km. 
Wdd = [1.178, 2.3]; p.Wdd=Wdd; %L H2O drunk daily. Akpata 2004, Nigerian children; 
Fudge 2008, Kenyan runners (agrees w. USEPA 2011, p. 100). 
fpp = [109.3, 225]; p.fpp=fpp; %Grams of feces excreted daily; Nigerian children and 
adult British vegans (both with high-fiber diets). 
fHands = 0.23; p.fHands=fHands; %Grams of feces on fingers after defecation 
event. Based on daily feces on toilet paper. See EITSparams.ods. 
pPoopH2O = 0; p.pPoopH2O=pPoopH2O; %Unused. Probability that a defecation event goes 
straight into the surface water (i.e., not on land). 
%Compliance parameters. 1st element is overall compliance, 2nd is compliance type: 
1=alpha, 2=beta, 3=gamma. 
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cSan = [0, 1]; p.cSan=cSan; %Compliance with sanitation. Defaults to no 
compliance; will be varied. 
cHWT = [0, 1]; p.cHWT=cHWT; %As above, but HWT. 
cHand = [0, 1]; p.cHand=cHand; %As above, but handwashing. 
%Now, basic daily rates for some key events. All rates are per day. 
%rH2ODrink = 6; p.rH2ODrink=rH2ODrink; %Daily drinks from stored water per person. 
rPoopInf = 1; p.rPoopInf=rPoopInf; %Defecation events, per non-ill person 
rPoopIll = 3; p.rPoopIll=rPoopIll; %Defecation events, per ill person 
rVisit = 2/7; p.rVisit=rVisit; %Visits/contact/day (each contact is a pair 
of households - see adjacency list generated below, based on time spent in past week 
[Zelner 2012]). 
rRain = 1/14; p.rRain=rRain; %Roughly fortnightly rainstorm 
xRunoff = [0.001, 0.05]; p.xRunoff=xRunoff; %Daily transfer of pathogens from land to 
surface water without rain, and with rain. 
wHandMouth = 330 / 130; p.wHandMouth=wHandMouth; %Hand-mouth contacts/day for kids 
divided by hand-mouth contacts/day for adults (USEPA 2011). Weights kids as being more 
unhygienic. 
BaseInf = [1.17 0.347 0.212]; %Baseline infections per person-year. Chosen to give 0.5 
diarrheal episodes per child-year (total; half bac., 25% vir. & prot.) when distributed 
randomly among the population (CalcBaselineInfectionIncidence.ods). 
%===End parameter values; now simulation options=== 
tMax = 365; p.tMax=tMax; %Number of simulation days desired; daysBurnIn is 
then added to it. 
daysBurnIn= ceil(max(immune) + max(latent) + max(infill)) * 3; p.daysBurnIn=daysBurnIn; 
tMax = tMax + daysBurnIn; 
pSafeStorage = 0; p.pSafeStorage=pSafeStorage; %Currently can only be 1 or 0. 
Proportion of the community that has safe (household water) storage. Toggles presence of 
safe storage for all HWT users in the community. 
nMl = [0 0 0]; p.nMl=nMl; %Initial numbers of microbes on the land 
nMw = [0 0 0]; %Initial number of microbes in the reservoir 
if loops > 3; storeDetails = 0; else storeDetails = 1; end; %If too many loops, don't 
bother storing detailed output. 
SummaryResults = NaN(loops,8); %Store summary data from all runs. TODO: fully 
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implement? 
disp(sprintf('Running %s loops.',num2str(loops))) 
for l = 1:loops; %Allows multiple model runs. Loops once per run. 

disp(sprintf('STARTING RUN %s',num2str(l))) 
t=0; %Initialize time counter 
LogIncInf = NaN(tMax,9); %Stores daily infection incidence (count of new infections) 

for the 3 pathogens: 1:3, kids; 4:6, adults; 7:9, all. 
LogIncIll = NaN(tMax,9); %Stores daily illness incidence (count of new illnesses) 

for the 3 pathogens: 1:3, kids; 4:6, adults; 7:9, all. 
Log = NaN(tMax,33); %Logs daily status summary for all people. 
LogK = NaN(tMax,18); %Logs daily status summary for all kids. 
LogA = NaN(tMax,18); %Logs daily status summary for all adults. 
if storeDetails == 1; 

LogHHP = cell(tMax,2); %Stores HHs and People matrices daily. 
LogFlux = NaN(tMax,3,11); %Cube to store fluxes of microbes. z is 1:11 (1-

surface water to stored water at resupply; 2-overall visit transfer; 3-not used, but 
formerly land-to-hand-to stored water at drinking; 4-rainfall; 5&6-pooping into surface 
H2O & land; 7-inactivation; 8&9-kids' dose, water & hands; 10&11-adults' dose, water & 
hands). 

tRain = [(1:tMax)',NaN(tMax,1)]; %Logs times of rain events. 
end 
extinct=0; equilibrium=0; %Initialize extinction & equilibrium flags. 

%===Generating the community. Yields a matrix for tracking households and a matrix 
(or struct, 1 item per hh?) for tracking persons.=== 

%HHs has 16 columns: counts of persons, adults, and kids (1:3); counts of microbes 
on hands (4:6), stored water (7:9), food (10:12), compliance with sanitation, HWT, and 
handwashing (13:15), and amount of water currently stored in the household (16). 

containerOK = 0; 
while containerOK == 0; %The 'while' loop ensures that no HH has more people than 

its stored water container can supply. See the warning near the end. 
if nargin >= 9; nHH = nHHr; end %Overriding default number of households 
HHs = poissrnd(mPHH,ceil(nHH * (1 + poisspdf(0,nHH))),1); %Generates extra 
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households, since some will have 0 persons & will be thrown away. 
HHs = sort(HHs(find(HHs > 0))); 
nHH = size(HHs,1); %Actual number of households will probably be slightly 

lower than the inputted number. 
nPeople = sum(HHs); 
nKids = round(nPeople * pKids); 
nAdults = nPeople - nKids; 
HHs(:,2) = 1; %2nd column is the count of adults. Every household has at least 

1 adult. TODO: This will break if nAdults < nHH, but this is extremely unlikely. 
aA = nAdults - nHH; %Adults that still need to be assigned to a household. 
while aA > 0; 

HHs(:,3) = HHs(:,1) - HHs(:,2); %3rd column tracks the number of empty 
person-slots (potential children) remaining in each household. 

candidates = find(HHs(:,3) > 0); 
picked = candidates(ceil(unifrnd(eps,size(candidates,1),1))); %This is 

like Matlab's randsample(), which Octave lacks. 
HHs(picked,2) = HHs(picked,2) + 1; 
aA = aA - 1; 

end 
HHs(:,3) = HHs(:,1) - HHs(:,2); %Now, 3rd column becomes the number of 

kids in each household. 
Wneeded = sum(HHs(:,2:3) .* repmat([Wdd(2),Wdd(1)],nHH,1),2); %Now error-

checking to make sure no HH exhausts their stored H2O. 
containerOK = 1; 
if sum(Wneeded > Ws) ~= 0; 

containerOK = 0; 
warning(sprintf('At least 1 household will drink > %sL daily. 

Retrying...',num2str(Ws))) 
end 

end 
HHs = horzcat(HHs,zeros(nHH,13)); %Adding 9 fields for the 3 marker pathogens on 

hands (4:6), water (7:9), and food (10:12) in each household. 
%Also adding 3 fields to track usage (an aspect of compliance) of sanitation, HWT, 
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and handwashing (13:15), and 1 field to track stored water (16). 
HHs(:,13) = AssignCompliance(HHs(:,13),cSan); %This household uses sanitation X 

of the time. If X > 0, it owns a latrine. 
HHs(:,14) = AssignCompliance(HHs(:,14),cHWT); %This household treats their water 

X of the time. If X > 0, it has a HWT method. 
HHs(:,15) = AssignCompliance(HHs(:,15),cHand); %This household washes hands X of 

the time. If X > 0, it has enough soap/water. 
HHs(:,17) = pSafeStorage * (HHs(:,14) ~= 0); %All households using HWT (partially or 

perfectly) have the same safe storage status. 
%HHs(:,17) = binornd(1,pSafeStorage,nHH,1); %Randomly assigning whether the 

household has safe storage. TODO: binary, SS or not, village-wide? 
%Now generating matrices for tracking each adult and each child. 
Adults = zeros(nAdults,8); %Adults, with disease status (1:3) & status counter 

(4:6) for the 3 marker pathogens. 7th column designates household. 
%Disease status: -1, susceptible; 0, immune; 1, exposed; 2, infected; 3, diseased 
iA = 1; %Counter for rows in adults. 
for i = 1:nHH; %Placing household indices in the 7th column of the matrix, so that 

people can be tied to certain households. 
pop = HHs(i,2); 
Adults(iA:iA+pop-1,7) = i; 
Adults(iA:iA+pop-1,8) = HHs(i,1); %Adds household size to each adult's record. 
iA = iA + pop; 

end 
Kids = zeros(nPeople(1) - nAdults, 8); %As above, for kids. 
iA = 1; 
kidHHindexes = find(HHs(:,3) > 0); %Gets households that have kids. 
for j = 1:size(kidHHindexes,1); %For all households with kids... 

i = kidHHindexes(j); 
pop = HHs(i,3); 
Kids(iA:iA+pop-1,7) = i; 
Kids(iA:iA+pop-1,8) = HHs(i,1); %Adds household size to each kid's record. 
iA = iA + pop; 

end 
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LogicalKids = logical([ones(nKids,1); zeros(nAdults,1)]); %Vector with 1 for each 
kid and 0 for each adult. Used later for distinguishing adults from kids. 

People = vertcat(Kids,Adults); %Combining into a single matrix, one row per 
person, kids on top and adults on the bottom. 

People(:,1:3) = 1; People(:,4:6) = ceil(rand(nPeople,3) * max(latent)); %Start 
with everyone exposed with everything, with a random latent period; everyone will 
therefore develop infection or disease. 

%Now choosing particular values for parameters if calibrating. 
switch(CalibOrEst); 

case 'C'; %TODO: Test. 
if nargin == 3; 

1; %Do nothing, therefore use default parameter values. 
else 

checkCFHDh = max(HHs(:,2) + HHs(:,3) * wHandMouth); %The most a HH 
could lose from visits is 1-(1-CFV)^max(connx/HH). 

if 10 ^ CFHDhr(2) * checkCFHDh > 1; 
warning('Upper end of CFHDh range for calibration would result 

in more pathogens moving out of the household environment than exist. Adjusting.') 
CFHDhr(2) = log10(1/checkCFHDh); 
if CFHDhr(1) > CFHDhr(2); CFHDhr(1) = CFHDhr(2); end 

end 
if 10^CFVr(2) > 1 - 10^CFHDhr(2); %TODO: This doesn't seem to work. 

Currently solving by using ~0.9 for CFVr(2) instead of 1. 
warning('Upper end of CFV range for calibration would result in 

more pathogens moving out of the household environment than exist. Adjusting.') 
CFVr(2) = 1 - CFHDhr(2); 
if CFVr(1) > CFVr(2); CFVr(1) = CFVr(2); end 

end 
CFSf = 10^(rand(1) * (CFSfr(2) - CFSfr(1)) + CFSfr(1)); %Uniform 

sampling of the surface water to stored drinking water calibration factor (log10 scale). 
CFHDh = 10^(rand(1) * (CFHDhr(2) - CFHDhr(1)) + CFHDhr(1)); %Uniform 

sampling of the from-household-env. calibration factor (log10 scale). 
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CFV = 10^(rand(1) * (CFVr(2) - CFVr(1)) + CFVr(1)); %Uniform 
sampling of the visits calibration factor (log10 scale). 

CFDl = 10^(rand(1) * (CFDlr(2) - CFDlr(1)) + CFDlr(1)); %Uniform 
sampling of the surface water to stored drinking water calibration factor (log10 scale). 

CFdecay = 10 .^ (rand(1,3) .* (CFdecayr(2,:) - CFdecayr(1,:)) + 
CFdecayr(1,:)); %Uniform sampling of decay modifiers converting base decay rates to 
actual decay rates (log10 scale). 

disp(sprintf('Chosen calib. factors: CFSf=%s, CFHDh=%s, CFV=%s, CFDl=
%s, CFdecayEc=%s, CFdecayRo=%s, CFdecayGi=
%s',num2str(CFSf),num2str(CFHDh),num2str(CFV),num2str(CFDl),num2str(CFdecay(1)),num2str(C
Fdecay(2)),num2str(CFdecay(3)))) 

end 
case 'E'; %Using parameters from previous runs consistent with RCT. TODO: 

Update code below (copied from Main.m). 
CFsetID = TrialParams(l,1); 
CFSf = TrialParams(l,2); 
CFHDh = TrialParams(l,3); 
CFV = TrialParams(l,4); 
CFDl = TrialParams(l,5); 
CFdecay = TrialParams(l,6:8); 
lSan=ElSan; cSan=EcSan; lHWT=ElHWT; cHWT=EcHWT; lHand=ElHand; 

cHand=EcHand; %Reading in chosen LRV and compliance parameters for a particular 
intervention scenario. 

otherwise 
error('CalibOrEst must be C (calibration) or E (estimation).'); 

end %end switch block  

%Now generating dosing weights for ingestion of pathogens on hands (depends on HH 
composition). Kids ingest more pathogens than adults. NO LONGER NEED wtDoses since 
pathogens in household environment can now persist from day to day (though they still 
exponentially decay). 

%wtDoses = HHs(:,2:3) .* repmat([rHandMouth(2),rHandMouth(1)],nHH,1); %Reversing 
wtHandMouth to match cols. 2&3 in HHs. 
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%wtDoses(:,3) = sum(wtDoses,2); 
%wtDoses(:,1:2) = wtDoses(:,1:2) ./ repmat(wtDoses(:,3),1,2) ./ HHs(:,2:3);
%Gives proportion of microbes ingested from hands by that household's set of adults 

and set of children. 
%wtDoses(find(isnan(wtDoses))) = 0; %Sets NaN (from dividing by 0) to 0. 

chosenOnes = NaN(nPeople,5); %This matrix is used in the defecation step each day. 
EffM = zeros(2,9); %This vector stores the number of 'effective' 

microbes over the course of the simulation (those that contributed to a new infection, 
kids [row 1] & adults [row 2]). 

%Connections between households: See Zelner 2012 (in press, AJPH). 
nEdges = round(nHH*meanDeg/2); 
if nEdges > nHH * (nHH-1) / 2; 

disp('Community is too small to generate network of desired degree. Creating 
fully connected network.') 

nEdges = nHH * (nHH-1) / 2; 
end 
Am = erdrey(nHH,nEdges); %As above, but random graph (Erdos-Renyi). 2nd argument is 

the number of edges. Yields a sparse matrix. 
[Ax Ay Av] = find(Am); %Generating adjacency list (1 row per connection). 
Al = horzcat(Ax,Ay,Av); %Note that all connections in the adjacency list are 2-way, 

therefore listed twice. 
nA = size(Al,1); %Number of possible visits. Each connection has 2 possible 

ways to visit (A visits B, or B visits A). 
%Now generating all the random numbers needed during the simulation. 
nRandCols = tMax+1; %Random number table (and event log) is pre-

generated based on this. One column per day. 
RPoopPlace = rand(nPeople,nRandCols); %Random table for defecation location, each 

person, each day. Unused if pPoopH20==0 (the default). 
%RCompHW = rand(nPeople,nRandCols); %Random table for handwashing 

compliance, by household. Compliance is the same for all household members, but is 
assessed individually. 
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%RCompHWT = rand(nHH,nRandCols); %Random table for household water 
treatment compliance. 

%RCompSan = rand(nPeople,nRandCols); %Random table for sanitation 
compliance, by household. Compliance is the same for all household members, but is 
assessed individually. 

RVisit = rand(nA,nRandCols); %Random table for determining which visits 
happen each day. 

RRain = rand(1,nRandCols); %Random vector for rainfall events. 
RDRtime = rand(1,nRandCols); %Random vector for timing of dose response 

events within the day. 
RDRpeople = rand(nPeople,3,nRandCols); %Random cube for determining daily outcome 

of dose response for each person & each pathogen. z coordinate is the day. 
RMR = rand(nPeople,3,nRandCols); %Random cube for determining daily outcome 

of morbidity ratios for each person & each pathogen. z coordinate is the day. 
Rbaseline = rand(nPeople,3,nRandCols); %Random cube for determining baseline 

exposures, which later turn into baseline infections. z coordinate is the day. 
%Output sanity check on community size and composition. 
disp(sprintf('Simulated community has %s people/km^2, %s households, %s people 

(%s>=5y, %s<5y). Daily water demand is %s L. Smallest HH is %s, biggest is %s, mean %s 
people/HH. Min connections per HH is %s, max is %s, mean is %s. Running for %s days, 
preceded by %s days of burn-in, total %s 
days.',num2str(nPeople/landArea),num2str(size(HHs,1)),num2str(size(People,1)),num2str(siz
e(Adults,1)),num2str(size(Kids,1)),num2str(nHH * 
Ws),num2str(min(HHs(:,1))),num2str(max(HHs(:,1))),num2str(mean(HHs(:,1))),num2str(full(mi
n(sum(Am)))),num2str(full(max(sum(Am)))),num2str(full(sum(sum(Am)))/nHH),num2str(tMax-
daysBurnIn),num2str(daysBurnIn),num2str(tMax))); 

%x = disp(['Simulated community has ',num2str(nPeople/landArea),' people/km^2, 
',num2str(size(HHs,1)),' households, ',num2str(size(People,1)),' people 
(',num2str(size(Adults,1)),'>=5y, ',num2str(size(Kids,1)),'<5y). Smallest HH is 
',num2str(min(HHs(:,1))),', biggest is ',num2str(max(HHs(:,1))),', mean 
',num2str(mean(HHs(:,1))),' people/HH. Min connections per HH is 
',num2str(full(min(sum(Am)))),', max is ',num2str(full(max(sum(Am)))),', mean is 
',num2str(full(sum(sum(Am)))/nHH),'. Running for ',num2str(tMax-daysBurnIn),' days, 
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preceded by ',num2str(daysBurnIn),' days of burn-in, total ',num2str(tMax),' days.']); 
%disp(x) 
%==== DAILY LOOP STARTS==== 
tic 
while t < tMax && extinct == 0 && equilibrium == 0 %Keep iterating until max 

time is reached or a microbe goes extinct. The 'equilibrium' flag is not currently used. 
%while t < tMax %For code verification. 

t=t+1; %Advance to the next day 
phase = 1; %Marker for debugging 
initialHHs = HHs; initialPeople = People; %Storing copies of these matrices 

at the beginning of each day, for debugging. 
%if Octave == 1; 
% printf('-%s',num2str(t)); %Printing every day (for debugging) 
%else 

fprintf('%s',num2str(mod(t,10))); %Printing last digit of every day (for 
debugging) 

%end 
Sus = People(:,1:3)==-1; %Updating counts of people in various states, for each 

pathogen. 
nSus = sum(Sus); 
nSusK = sum(Sus(1:nKids,:)); 
nSusA = sum(Sus(nKids+1:nPeople,:)); 
Imm = People(:,1:3)==0; 
nImm = sum(Imm); 
nImmK = sum(Imm(1:nKids,:)); 
nImmA = sum(Imm(nKids+1:nPeople,:)); 
Exp = People(:,1:3)==1; 
nExp = sum(Exp); 
nExpK = sum(Exp(1:nKids,:)); 
nExpA = sum(Exp(nKids+1:nPeople,:)); 
Infec = People(:,1:3)==2; %Would rather use 'Inf' than 'Infec' here, but it 

means +infinity to Octave/Matlab. 
nInf = sum(Infec); 
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nInfK = sum(Infec(1:nKids,:)); 
nInfA = sum(Infec(nKids+1:nPeople,:)); 
Ill = People(:,1:3)==3; 
nIll = sum(Ill); 
nIllK = sum(Ill(1:nKids,:)); 
nIllA = sum(Ill(nKids+1:nPeople,:)); 
if sum(sum([Sus;Imm;Exp;Infec;Ill]) == [nPeople nPeople nPeople]) ~= 3; 

error('Sum of all possible states ~= total number of people, for at least 
1 microbe.'); 

end 
%Above are 3-element vectors. Now need # of people infected with anything, but 

ill with nothing (nInfNotIll), and # of people ill with anything (nIllAny). 
test = sum(abs(People(:,1:3)) .^ 3, 2); %This variable distinguishes 'any 

infected & non-ill' from 'any ill'. 
InfNotIll = test < 27 & test >= 8; 
nInfNotIll = sum(InfNotIll); 
nInfNotIllK = sum(InfNotIll(1:nKids)); 
nInfNotIllA = sum(InfNotIll(nKids+1:nPeople)); 
IllAny = sum(People(:,1:3)==3, 2) > 0; 
nIllAny = sum(IllAny); 
nIllAnyK = sum(IllAny(1:nKids)); 
nIllAnyA = sum(IllAny(nKids+1:nPeople)); 
%Check for extinction of any microbes. 
phase = 2; 

%The next loop is not needed since extinctions have been avoided through 
assigning baseline infections. 

%{  
if t > daysBurnIn + 1; %This avoids an error (negative incidence) if 

extinction happens during initial equilibration period. 
if sum(People(:,1) <= eps) == nPeople & sum([sum(HHs(:,[4 7 

10])),nMw(1),nMl(1)]) <= 0.01; 
extinct = 1; disp(['Sim stopped at time ',num2str(t),' due to 
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extinction of bacteria']) %Terminates the event loop after this day is done. 
elseif sum(People(:,2) <= eps) == nPeople & sum([sum(HHs(:,[5 8 

11])),nMw(2),nMl(2)]) <= 0.01; 
extinct = 2; disp(['Sim stopped at time ',num2str(t),' due to 

extinction of viruses']) %Terminates the event loop after this day is done. 
elseif sum(People(:,3) <= eps) == nPeople & sum([sum(HHs(:,[6 9 

12])),nMw(3),nMl(3)]) <= 0.01; 
extinct = 3; disp(['Sim stopped at time ',num2str(t),' due to 

extinction of protozoa']) %Terminates the event loop after this day is done. 
end 

end 
%} 

%if sum(sum(People(:,1:3) <= eps) == nPeople) >= 1 & (sum([sum(HHs(:,[4 7 
10]),nMw(1),nMl(1)])) <= 0.01 | sum([sum(HHs(:,[5 8 11]),nMw(2),nMl(2)])) <= 0.01 | 
sum([sum(HHs(:,[6 9 12]),nMw(3),nMl(3)])) <= 0.01) ); 

% extinct = 1; disp(['Sim stopped early due to extinction of at least one 
pathogen near time ',num2str(t)]) %Terminates the event loop after this day is done. 

%end 
%{ 
if mod(t,50) == 0 && t >= 100; %Test whether system has equilibrated, based 

on any infection (without illness). TODO: Never trips. Probably unnecessary anyway. 
typeOne = 0.1; %Test whether last 50 days & previous 50 days are drawn 

from the same distribution, with this value of alpha. 
eqPass = 0; %Number of times the test has failed to reject 

hypothesis of same distribution.  
if Octave==1; %Octave and Matlab have different function names for the 

Wilcoxon rank-sum test. 
[pval,ztest] = u_test(Log(t-99:t-50,17),Log(t-49:t,17)); 

else %if running Matlab: 
[pval,reject] = ranksum(Log(t-99:t-50,17),Log(t-

49:t,17),'alpha',typeOne); 
end 
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if pval < typeOne; 
eqPass = 0; 

else 
eqPass = eqPass + 1; 

end 
if eqPass==2; %If the test fails to reject twice in a row, set the 

equilibrium flag, terminating the event loop: 
equilibrium = 1; disp(['Sim stopped early; equilibrium apparently 

reached near time ',num2str(t)]) 
end 

end 
%} 

%Defecation (the only source of microbes). First, partitioning shedding people 
into 4 categories. TODO: Fully convert to daily fecal output? Maybe change fpp, rPoopIll, 
and rPoopInf. 

phase = 3; 
chosenOnes(:,1) = IllAny & LogicalKids; %Ill kids. 
chosenOnes(:,2) = InfNotIll & LogicalKids; %Asymptomatic kids. 
chosenOnes(:,3) = IllAny & ~LogicalKids; %Ill adults. 
chosenOnes(:,4) = InfNotIll & ~LogicalKids; %Asymptomatic adults. 
chosenOnes(:,5) = ~IllAny & ~InfNotIll; %Uninfected people. 
if unique(sum(chosenOnes,2)) ~= 1; %TODO: Check this. 

error('Multiple allocation of some people to different categories.') 
end 
nMwOld = nMw; nMlOld = nMl; 
[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs, 

Mpgf,fpp(1)*rPoopIll,fHands*rPoopIll,nMw,nMl,pPoopH2O,lHand,lSan,chosenOnes(:,1)); %Ill 
kids. Note more poop on hands due to repeated defecation (rPoopIll). 

[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs, 
Mpgf,fpp(1)*rPoopInf,fHands,nMw,nMl,pPoopH2O,lHand,lSan,chosenOnes(:,2));

%Asymptomatic kids. 
[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs, 
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Mpgf,fpp(2)*rPoopIll,fHands*rPoopIll,nMw,nMl,pPoopH2O,lHand,lSan,chosenOnes(:,3)); %Ill 
adults. Note more poop on hands due to repeated defecation (rPoopIll). 

[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs, 
Mpgf,fpp(2)*rPoopInf,fHands,nMw,nMl,pPoopH2O,lHand,lSan,chosenOnes(:,4));

%Asymptomatic adults. 
if storeDetails == 1; 

LogFlux(t,:,5) = nMw - nMwOld; 
LogFlux(t,:,6) = nMl - nMlOld; 

end 
postPoopHHs = HHs; %Making a copy for debugging. 

%Next transfer: land to water via rain etc. 
phase = 4; 
if RRain(t) < rRain; 

Runoff = nMl * xRunoff(2); 
tRain(t,2) = 1; %Flagging this day as a rainy one. 

else 
Runoff = nMl * xRunoff(1); 

end 
nMl = nMl - Runoff; %Removing pathogens from land. 
nMw = nMw + Runoff; %Adding pathogens to water. 
if storeDetails == 1; LogFlux(t,1:3,4) = Runoff; end 

%Now quantifying all possible transfers; then apply them simultaneously (so as 
to make them independent). 

%Inter-household visits: quantifying microbe exchange. 
phase = 5; 
chosenVisits = Al(RVisit(:,t) < rVisit,:); %Choosing the visits between 

households that actually happen today (conceptualized as 1 person meeting 1 other 
person). Throws odd "Undefined function 'visit' for input arguments of type 'char'" error 
in MATLAB compiled code, but not in interpreted code. 

%The following complexity ('for' loop) is necessary to handle successive visits 
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on the same day by the same household. 
HU = unique([chosenVisits(:,1); chosenVisits(:,2)]); %List of households 

involved in at least 1 visit 
nHHv = size(HU,1); %Number of 

households involved in at least 1 visit 
MH = [HHs(HU,[1 4 5 6]), HU]; MHorig=MH; %Microbes on hands for 

all households involved in at least 1 visit. Also includes # people in each household 
(column 1) & the index of the household in the HHs matrix (column 5). 

for i = 1:size(chosenVisits,1); %Looping 
once over each visit. 

%i 
MHrow1 = find(MH(:,5)==chosenVisits(i,1)); %Microbes on 

hands for the 1st HH involved in visit i. 
MHrow2 = find(MH(:,5)==chosenVisits(i,2)); %Microbes on 

hands for the 2nd HH involved in visit i. 
Mfrom1 = MH(MHrow1,2:4) ./ MH(MHrow1,1) .* CFV; 
Mfrom2 = MH(MHrow2,2:4) ./ MH(MHrow2,1) .* CFV; 
MH(MHrow1,2:4) = MH(MHrow1,2:4) - Mfrom1 + Mfrom2; 
MH(MHrow2,2:4) = MH(MHrow2,2:4) - Mfrom2 + Mfrom1; 

end 

for i = 2:4; 
if abs(sum(MHorig(:,i)) - sum(MH(:,i))) > 1E-3; %Sums will not be 

exactly equal due to machine imprecision (TODO: is something else causing this?). 
warning(sprintf('Imbalance in visit transfer, pathogen %s, difference 

= %s',num2str(i-1),num2str( sum(MHorig(:,i))-sum(MH(:,i)) ) )) 
end 
if abs(sum(MHorig(:,i)) - sum(MH(:,i))) > 1E-1; error('Visit transfer 

imbalance too severe! Halting.'); end 
end 

NetVisitSwaps1 = MHorig(:,2:4) - MH(:,2:4); %Converting to a matrix the size 
of the Hands columns of the HHs matrix. 
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NetVisitSwaps = sparse(repmat(HU',1,3), [ones(1,nHHv), ones(1,nHHv)*2, 
ones(1,nHHv)*3], NetVisitSwaps1(:), nHH, 3); %TODO: Doublecheck. 

if storeDetails == 1; LogFlux(t,1:3,2) = sum(abs(NetVisitSwaps)); end 
HHs(:,4:6) = HHs(:,4:6) - NetVisitSwaps; %Applying net microbe exchange 

from visits. 

%TODO: Check here that the above transfers are positive? Currently there is a 
similar check within Inact(). 

%===Resupplying stored water, handling rainfall, shedding, and swapping 
pathogens.=== 

phase = 6; 
nMl = nMl + sum(HHs(:,7:9)); %Dumping out remaining water; pathogens go to the 

land. This should be a very small flow. 
storedWater = repmat(nMw * CFSf, nHH, 1); 
nMw = nMw - sum(storedWater); %Microbes in stored water are removed from 

surface water. 
HHs(:,7:9) = storedWater; %Household water is resupplied, at source water 

conc. of microbes. 
if storeDetails == 1; LogFlux(t,1:3,1) = sum(storedWater); end; 
HHs(:,7:9) = ApplyLRVs(HHs(:,7:9), lHWT, HHs(:,14)); %Determining compliance 

and applying LRVs from HWT. 

%Hand-to-stored-water transfer: applying microbe movement. Contamination of 
stored water by hands (from drinking, or other decanting of water). Note: not 
simultaneous with actual water intake (though perhaps it should be; see DR below). 

phase = 7; 
MfromHtoW = HHs(:,4:6) .* CFHDh .* repmat(~HHs(:,17),1,3); %Calculating 

microbes transferred from hands to water within each HH. Do not need to consider # of 
people/HH at this step (more people automatically mean more hand contamination since they 
all defecate). Safe storage negates transfer (last term). 

HHs(:,4:6) = HHs(:,4:6) - MfromHtoW; %Removing microbes from hands within 
each household. 
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HHs(:,7:9) = HHs(:,7:9) + MfromHtoW; %Adding microbes to water within each 
household. 

if storeDetails == 1; LogFlux(t,1:3,1) = LogFlux(t,1:3,1) + sum(MfromHtoW);
end %Adding drinker hand contamination to water-gatherer hand contamination. 

%{  
for i = 1:3; %Loop over pathogens 

if sum(People(:,i) ~= -1) == 0 & sum(HHs(:,i+3)) > sum(initialHHs(:,i+3));
%If all are susceptible and overall hand pathogens somehow increase: 

warning('Unexplained increase in hand compartments') 
warnHHs = HHs; warnPeople = People; 
equilibrium = 1; %Terminates simulation while allowing charts to 

happen. 
end 

end 
%} 

%===Inactivating pathogens in all compartments, over the first part of a day. 
phase = 8; 
PreSink = sum([HHs(:,4:6); HHs(:,7:9); nMw; nMl]); 
[HHs, nMw, nMl] = Inact(RDRtime(t), HHs, nMw, nMl, CFdecay, Wflow, t); 
if storeDetails  == 1; LogFlux(t,:,7) = PreSink - sum([HHs(:,4:6); HHs(:,7:9); 

nMw; nMl]); end 

%Daily bookkeeping here, just before status shifts & dose response - storing 
summary of simulation state and checking for problems. 

phase = 9; 
Log(t,1:24) = [t nSus nImm nExp nInf nIll nInfNotIll nIllAny nMw nMl];

%Storing aggregated status of all people. 
Log(t,25:27) = sum(HHs(:,4:6)); %Total microbes on hands in all households. 
Log(t,28:30) = sum(HHs(:,7:9)); %Total microbes in stored water in all 

households. 
LogK(t,1:18) = [t nSusK nImmK nExpK nInfK nIllK nInfNotIllK nIllAnyK];
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%Storing aggregated status, kids only. 
LogA(t,1:18) = [t nSusA nImmA nExpA nInfA nIllA nInfNotIllA nIllAnyA];

%Storing aggregated status, adults only. 
if storeDetails == 1; 

LogHHP{t,1} = HHs; LogHHP{t,2} = People; 
end 

%For each person, increment all counters and assign durations if a status 
shifts. TODO: Sum 'Shifters' and log these state transitions daily, to output incidence. 

phase = 10; 
People(:,4:6) = People(:,4:6) - 1; 
Shifters = People(:,4:6) == 0 & People(:,1:3) == 1;

%People whose latent period has just expired... 
PeopleStates = People(:,1:3); PeopleStates(Shifters) = 2; People(:,1:3) = 

PeopleStates; %...become infected & infectious... 
People(:,4:6) = People(:,4:6) + Shifters .* [durEc(nPeople), durRo(nPeople), 

durGi(nPeople)]; %...and are assigned durations of infection... 
LogIncInf(t,1:3) = sum(Shifters(1:nKids,:));

%...and tallies of these are stored... 
LogIncInf(t,4:6) = sum(Shifters(nKids+1:nPeople,:));  
LogIncInf(t,7:9) = sum(Shifters); 
NewlyDiseased = Shifters & RMR(:,:,t) < [repmat(MRk,nKids,1); 

repmat(MRa,nAdults,1)]; %...but some of the newly infected are also randomly 
diseased... 

PeopleStates = People(:,1:3); PeopleStates(NewlyDiseased) = 3; People(:,1:3) = 
PeopleStates; %...and receive 'diseased' status... 

LogIncIll(t,1:3) = sum(NewlyDiseased(1:nKids,:));
%...and tallies of these are stored. 

LogIncIll(t,4:6) = sum(NewlyDiseased(nKids+1:nPeople,:));  
LogIncIll(t,7:9) = sum(NewlyDiseased); 
Shifters = People(:,4:6) == 0 & (People(:,1:3) == 2 | People(:,1:3) == 3);

%People whose period of infection/disease has just expired... 
PeopleStates = People(:,1:3); PeopleStates(Shifters) = 0; People(:,1:3) = 
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PeopleStates; %...become immune... 
People(:,4:6) = People(:,4:6) + Shifters .* repmat(immune,nPeople,1);

%...and are assigned a duration of immunity. 
Shifters = People(:,4:6) == 0 & People(:,1:3) == 0;

%People whose immunity has just expired... 
PeopleStates = People(:,1:3); PeopleStates(Shifters) = -1; People(:,1:3) = 

PeopleStates; %...become susceptible... 
PeopleCounters = People(:,4:6); PeopleCounters(Shifters) = 0; People(:,4:6) = 

PeopleCounters; %...and their time counters are set to 0. 
%===Assessing dose response (susceptibles become exposed).=== 
phase = 11; 
Doses = zeros(nPeople,9); %Dose matrix, 1 row/person. Columns 1:3, water; 

columns 4:6, land; columns 7:9, household environment. 
Doses(1:nKids,1:3) = HHs(People(1:nKids,7),7:9) ./ Ws .* Wdd(1); %Dose from 

water, kids. 
Doses(nKids+1:nPeople,1:3) = HHs(People(nKids+1:nPeople,7),7:9) ./ Ws .* 

Wdd(2); %Dose from water, adults. 
dHHk = HHs(:,7:9) ./ Ws .* Wdd(1) .* repmat(HHs(:,3),1,3); %Determining kid 

doses from stored water for each HH. 
dHHa = HHs(:,7:9) ./ Ws .* Wdd(2) .* repmat(HHs(:,2),1,3); %Determining adult 

doses from stored water for each HH. 
HHs(:,7:9) = HHs(:,7:9) - dHHk - dHHa; %Actually removing the doses. 

%Doses(1:nKids,4:6) = repmat(rHandMouth(1) * pLandHand * nMl, nKids,1); 
Doses(1:nKids,4:6) = repmat(nMl .* CFDl .* wHandMouth, nKids,1); 
Doses(nKids+1:nPeople,4:6) = repmat(nMl .* CFDl, nAdults,1); 
nMl = nMl - sum(Doses(:,4:6)); %Removing land doses ingested by people from 

the land. 

%Doses(1:nKids,7:9) = HHs(People(1:nKids,7),4:6) .* 
repmat(wtDoses(People(1:nKids,7),1),1,3); %Dose from hands, kids. 

Doses(1:nKids,7:9) = HHs(People(1:nKids,7),4:6) .* CFHDh .* wHandMouth;
%Dose from household environment, kids. 
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%Doses(nKids+1:nPeople,7:9) = HHs(People(nKids+1:nPeople,7),4:6) .* 
repmat(wtDoses(People(nKids+1:nPeople,7),2),1,3); %Dose from hands, adults. 

Doses(nKids+1:nPeople,7:9) = HHs(People(nKids+1:nPeople,7),4:6) .* CFHDh;
%Dose from household env., adults. 

DosesHHenv = 
[accumarray(People(:,7),Doses(:,7)),accumarray(People(:,7),Doses(:,8)),accumarray(People(
:,7),Doses(:,9))]; %Converting dose matrix from 1 row per person to 1 row per household. 
TODO: Doublecheck. 

HHs(:,4:6) = HHs(:,4:6) - DosesHHenv; %Removing pathogens ingested from 
household environment. 

CDoseH2O = sum(Doses(1:nKids,1:3)); 
if storeDetails == 1; LogFlux(t,:,8) = CDoseH2O; end 
CDoseL = sum(Doses(1:nKids,4:6)); 
if storeDetails == 1; LogFlux(t,:,9) = CDoseL; end 
CDoseH = sum(Doses(1:nKids,7:9)); 
if storeDetails == 1; LogFlux(t,:,9) = CDoseH; end 
pDoseH2OK = CDoseH2O ./ (CDoseH2O + CDoseL + CDoseH); %Proportion of total 

community-wide doses from water (kids). TODO: Store for later inspection/analysis. 
CDoseH2O = sum(Doses(nKids+1:nPeople,1:3)); 
if storeDetails == 1; LogFlux(t,:,10) = CDoseH2O; end 
CDoseL = sum(Doses(nKids+1:nPeople,4:6)); 
if storeDetails == 1; LogFlux(t,:,11) = CDoseL; end 
CDoseH = sum(Doses(nKids+1:nPeople,7:9)); 
if storeDetails == 1; LogFlux(t,:,11) = CDoseH; end 
pDoseH2OA = CDoseH2O ./ (CDoseH2O + CDoseL + CDoseH); %Proportion of total 

community-wide doses from water (adults). TODO: Store for later inspection/analysis. 
%DosesT = Doses(:,1:3) + Doses(:,4:6) + Doses(:,7:9); %Summing doses from 

water & hands for each person. 
PeopleOld = People; %Copying People in order to assess later how many pos DR 

events are about to occur. 
[People EffMnew] = DoseResponse(RDRpeople(:,:,t), People, nKids, Doses, KorN50, 

alpha, latent); %Determining dose response for each person. Includes latent period 
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assignment (TODO: randomize?). 
if t >= daysBurnIn; EffM = EffM + EffMnew; end; %Adding today's effective 

microbes to the tally. 

%Assigning baseline exposures, which will develop into infections after the 
latent period expires. 

Shifters = Rbaseline(:,:,t) < repmat(BaseInf/365,nPeople,1) & People(:,1:3) == 
-1; %People randomly chosen to get a baseline infection... 

PeopleStates = People(:,1:3); PeopleStates(Shifters) = 1; People(:,1:3) = 
PeopleStates; %...are exposed... 

PeopleCounters = People(:,4:6); PeopleCounters(Shifters) = 0; People(:,4:6) = 
PeopleCounters; %...their appropriate counter(s) (which are neg.) get set to 0... 

People(:,4:6) = People(:,4:6) + Shifters .* repmat(latent,nPeople,1);
%...and are assigned a latent period. 

Log(t,31:33) = sum(Shifters); 
 
%===Done with dose response and baseline exposures - now inactivating over the 

remainder of the day. 
phase = 12; 
PreSink = sum([HHs(:,4:6); HHs(:,7:9); nMw; nMl]); 
[HHs, nMw, nMl] = Inact(1-RDRtime(t), HHs, nMw, nMl, CFdecay, Wflow, t); 
if storeDetails == 1; LogFlux(t,:,7) = LogFlux(t,:,7) + PreSink - 

sum([HHs(:,4:6); HHs(:,7:9); nMw; nMl]); end 
%===Day's activities are finished. Now for some bookkeeping.=== 
phase = 13; 
if t == round(tMax/100); 

fprintf('\n1%% done, %s seconds elapsed, %s days so far, %s sec. per 
day\n',num2str(toc),num2str(t),num2str(toc/t)); 

elseif t == round(tMax/20); 
fprintf('\n5%% done, %s seconds elapsed, %s days so far, %s sec. per 

day\n',num2str(toc),num2str(t),num2str(toc/t)); 
elseif t == round(tMax/4); 

fprintf('\n25%% done, %s seconds elapsed, %s days so far, %s sec. per 
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day\n',num2str(toc),num2str(t),num2str(toc/t)); 
elseif t == round(tMax/2); 

fprintf('\n50%% done, %s seconds elapsed, %s days so far, %s sec. per 
day\n',num2str(toc),num2str(t),num2str(toc/t)); 

elseif t == round(3*tMax/4); 
fprintf('\n75%% done, %s seconds elapsed, %s days so far, %s sec. per 

day\n',num2str(toc),num2str(t),num2str(toc/t)); 
end 
if Octave == 1; fflush(stdout); end %Forces lines above to write to console. 

end %Ends daily loop 
%disp(x) %Redisplaying the 'sanity check' from the end of the community setup 

phase. 
disp(sprintf('\nRun complete, %s sec., %s sec./day, day %s, now outputting & 

charting',num2str(toc),num2str(toc/tMax),num2str(t))); 
tObsY = (t - daysBurnIn)/365; %Time observed, in years. 
IncInfK = sum(LogIncInf(daysBurnIn:t,1:3)) ./ (nKids * tObsY); 
IncInfA = sum(LogIncInf(daysBurnIn:t,4:6)) ./ (nAdults * tObsY); 
IncInfP = sum(LogIncInf(daysBurnIn:t,7:9)) ./ (nPeople * tObsY); 
IncIllK = sum(LogIncIll(daysBurnIn:t,1:3)) ./ (nKids * tObsY); 
IncIllA = sum(LogIncIll(daysBurnIn:t,4:6)) ./ (nAdults * tObsY); 
IncIllP = sum(LogIncIll(daysBurnIn:t,7:9)) ./ (nPeople * tObsY); 
disp(sprintf('Child illness incidence %s, adult %s, overall %s, episodes/person-

year, bac-vir-prot.',num2str(IncIllK),num2str(IncIllA),num2str(IncIllP) )); 
 
%Storing output from each run in OutMatrix, one run per row. 1st column is the row 

number. Start with calibration variables. 
OutMatrix(l,2) = CFSf; 
OutMatrix(l,3) = CFHDh; 
OutMatrix(l,4) = CFV; 
OutMatrix(l,5) = CFDl; 
OutMatrix(l,6:8) = CFdecay;  
OutMatrix(l,9:11) = Mpgf; 
OutMatrix(l,12:17) = [cSan cHWT cHand]; %Compliance. 
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OutMatrix(l,18) = pSafeStorage; %Whether HWT compliers are using safe storage. 
OutMatrix(l,19:27) = [lSan lHWT lHand]; %Log reduction values. 
OutMatrix(l,28:39) = [IncInfK sum(IncInfK) IncInfA sum(IncInfA) IncInfP 

sum(IncInfP)]; %Incidence of infection, bac.-vir.-prot.-total, kids, adults and all 
people. 

OutMatrix(l,40:51) = [IncIllK sum(IncIllK) IncIllA sum(IncIllA) IncIllP 
sum(IncIllP)]; %Incidence of illness, bac.-vir.-prot.-total, kids, adults and all people. 

OutMatrix(l,52:60) = EffM(1,:); %Microbes contributing to actual new infections 
in kids, by route. 

OutMatrix(l,61:69) = EffM(2,:); %Microbes contributing to actual new infections 
in adults, by route. 

OutMatrix(l,70) = fHands; %Number of grams of feces on hands per defecation 
event. 

OutMatrix(l,71) = extinct; %Whether 1+ microbes went extinct. 
OutMatrix(l,72) = tObsY; %Amount of time observed. 
OutMatrix(l,73:75) = [nHH nKids nAdults]; %Number of households, kids, and 

adults. 
OutMatrix(l,76:78) = mean(Log(daysBurnIn:tMax,19:21)); %Mean numbers of microbes in 

surface water (excluding burn-in). 
OutMatrix(l,79:81) = mean(Log(daysBurnIn:tMax,22:24)); %Mean numbers of microbes on 

land (excluding burn-in). 
OutMatrix(l,82:84) = mean(Log(daysBurnIn:tMax,28:30)); %Mean numbers of microbes in 

stored drinking water (excluding burn-in). 
OutMatrix(l,85:87) = mean(Log(daysBurnIn:tMax,25:27)); %Mean numbers of microbes in 

household environment (excluding burn-in). 
if CalibOrEst == 'E'; 

OutMatrix(l,88) = CFsetID; %Storing the ID for the particular calibration 
factor set used. 

end 
%StoreParams(p,'OutputLog'); %p is a struct holding all the parameter values. 

if storeDetails == 1 & CalibOrEst == 'C'; %Plotting a set of graphs for each run, 
if only a few runs are being done. 
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%Plotting people (kids): 
F2=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on 

screen with 1024x768 resolution. 
x=.05; y=.72; x1=.93; y1=.23; %Values for positioning of 1st subplot (modify y 

for placing 2nd & subsequent subplots). 
subplot(3,1,1) %Plotting bacteria 
PlotPeople(LogK, tRain, x, y, x1, y1, 'bacteria', 'children <5y', daysBurnIn, 

nKids); 
subplot(3,1,2) %Plotting viruses 
PlotPeople(LogK, tRain, x, y, x1, y1, 'viruses', 'children <5y', daysBurnIn, 

nKids); 
subplot(3,1,3) %Plotting protozoa 
PlotPeople(LogK, tRain, x, y, x1, y1, 'protozoa', 'children <5y', daysBurnIn, 

nKids); 
eval(['print Graphics/Kids',strrep(strrep(char(p.StartTime),':','-'),' 

','-'),'.png']) %Saving chart with datetime in filename w/o spaces or colons 
%Plotting people (adults): 
F3=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on 

screen with 1024x768 resolution. 
x=.05; y=.72; x1=.93; y1=.23; %Values for positioning of 1st subplot (modify y 

for placing 2nd & subsequent subplots). 
subplot(3,1,1) %Plotting bacteria 
PlotPeople(LogA, tRain, x, y, x1, y1, 'bacteria', 'people >=5y', daysBurnIn, 

nAdults); 
subplot(3,1,2) %Plotting viruses 
PlotPeople(LogA, tRain, x, y, x1, y1, 'viruses', 'people >=5y', daysBurnIn, 

nAdults); 
subplot(3,1,3) %Plotting protozoa 
PlotPeople(LogA, tRain, x, y, x1, y1, 'protozoa', 'people >=5y', daysBurnIn, 

nAdults); 
eval(['print Graphics/Adults',strrep(strrep(char(p.StartTime),':','-'),' 

','-'),'.png']) %Saving chart with datetime in filename w/o spaces or colons 
%Plotting people (everybody): 
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F4=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on 
screen with 1024x768 resolution. 

x=.05; y=.72; x1=.93; y1=.23; %Values for positioning of 1st subplot (modify y 
for placing 2nd & subsequent subplots). 

subplot(3,1,1) %Plotting bacteria 
PlotPeople(Log, tRain, x, y, x1, y1, 'bacteria', 'people', daysBurnIn, 

nPeople); 
subplot(3,1,2) %Plotting viruses 
PlotPeople(Log, tRain, x, y, x1, y1, 'viruses', 'people', daysBurnIn, nPeople); 
subplot(3,1,3) %Plotting protozoa 
PlotPeople(Log, tRain, x, y, x1, y1, 'protozoa', 'people', daysBurnIn, 

nPeople); 
eval(['print Graphics/People',strrep(strrep(char(p.StartTime),':','-'),' 

','-'),'.png']) %Saving chart with datetime in filename w/o spaces or colons 
%Plotting pathogens: 
F5=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on 

screen with 1024x768 resolution. 
x=.05; y=.55; x1=.93; y1=.42; %Values for positioning of 1st subplot (modify y 

for placing 2nd & subsequent subplots). 
subplot(2,1,1) %Plotting pathogens in community. 
%set(gca,'FontSize',18); %Increases font size on axis tick labels (gca is 'get 

current axes'). 
set(gca,'Position',[x y-0*.5 x1 y1]); 
if Octave==1; %Octave and MATLAB handle line properties a bit differently in 

graphs. 
semilogy(Log(:,1),Log(:,19)+.1,'-r','linewidth',3,Log(:,1),Log(:,20)+.1,'-

b','linewidth',3,Log(:,1),Log(:,21)+.1,'-g','linewidth',3); %All 3 of these are thick 
lines 

else 
semilogy(Log(:,1),Log(:,19)+.1,'-r',Log(:,1),Log(:,20)+.1,'-

b',Log(:,1),Log(:,21)+.1,'-g','linewidth',3); %All 3 of these are thick lines 
end 
hold on; 
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semilogy(Log(:,1),Log(:,22)+.1,'-r',Log(:,1),Log(:,23)+.1,'-
b',Log(:,1),Log(:,24)+.1,'-g'); 

plot(tRain(:,1),tRain(:,2)+80,' x'); 
title('Number of microbes in different community compartments') 
ylabel('# microbes','fontsize',20) %Axis & tick labels overlap on screen, but 

output better to .PNG. 
legend('Bac., surf. H2O','Viruses, surf. H2O','Prot., surf. H2O','Bac., 

soil','Viruses, soil','Prot., soil','Time of rain events','Location','SouthEast') 
hold off; 
subplot(2,1,2) %Plotting pathogens in households. 
set(gca,'Position',[x y-1*.5 x1 y1]); 
if Octave==1; 

semilogy(Log(:,1),Log(:,28)+.1,'-r','linewidth',3,Log(:,1),Log(:,29)+.1,'-
b','linewidth',3,Log(:,1),Log(:,30)+.1,'-g','linewidth',3); %All 3 of these are thick 
lines (stored water) 

else 
semilogy(Log(:,1),Log(:,28)+.1,'-r',Log(:,1),Log(:,29)+.1,'-

b',Log(:,1),Log(:,30)+.1,'-g','linewidth',3); %All 3 of these are thick lines (stored 
water) 

end 
hold on; 
semilogy(Log(:,1),Log(:,25)+.1,'-r',Log(:,1),Log(:,26)+.1,'-

b',Log(:,1),Log(:,27)+.1,'-g'); %Supposed to graph total pathogens on all households' 
hands. 

plot(tRain(:,1),tRain(:,2)+80,' x'); 
title('Number of microbes in different household compartments') 
xlabel('Time (days)'); 
ylabel('# microbes','fontsize',20) %Axis & tick labels overlap on screen, but 

output better to .PNG. 
legend('Bac., stored H2O','Viruses, stored H2O','Prot., stored H2O','Bac., 

hands','Viruses, hands','Prot., hands','Time of rain events','Location','SouthEast') 
hold off; 
eval(['print Graphics/Microbes',strrep(strrep(char(p.StartTime),':','-'),' 
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','-'),'.png']) %Saving chart with datetime in filename w/o spaces or colons. 
%Plotting fluxes of microbes. 
F5=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on 

screen with 1024x768 resolution. 
x=.05; y=.72; x1=.93; y1=.23; %Values for positioning of 1st subplot (modify y 

for placing 2nd & subsequent subplots). 
subplot(3,1,1) %Plotting bacteria 
PlotMicrobes(LogFlux, tMax, tRain, x, y, x1, y1, 'bacteria', daysBurnIn); 
subplot(3,1,2) %Plotting viruses 
PlotMicrobes(LogFlux, tMax, tRain, x, y, x1, y1, 'viruses', daysBurnIn); 
subplot(3,1,3) %Plotting protozoa 
PlotMicrobes(LogFlux, tMax, tRain, x, y, x1, y1, 'protozoa', daysBurnIn); 
eval(['print Graphics/Fluxes',strrep(strrep(char(p.StartTime),':','-'),' 

','-'),'.png']) %Saving chart with datetime in filename w/o spaces or colons. 
disp(['Charts done.']) 

end 
disp(sprintf('Whole run took %s seconds.',num2str(toc))) 

end %Ends main loop (once per run). 
%outFilename = ['Results/',outFilename]; 
dlmwrite(outFilename, OutMatrix, '-append'); 
disp([' Results written to ',outFilename,'.']); 
end %Ends function.
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%This function applies log reduction values (LRVs) to stocks of pathogens. 
%It simply reduces the input number of microbes (nMin) according to the appropriate LRVs, 
and outputs the result. 
%This should usually be used with row vectors, 3 values each (bacteria, viruses, and 
protozoa, in that order). However, it accomodates multiple rows. 
%nMinput: Vector/matrix containing number of microbes that an LRV might be applied to. 
%LRVs: Log reduction values to be applied. 1 column per microbe. 
%Compliance: Proportion of all microbes to which the LRVs are being applied. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (ApplyLRVs.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function [nMoutput] = ApplyLRVs(nMinput, LRVs, Compliance); 
nRows = size(nMinput,1); %Gets number of households/people that it's acting on. 
Compliance = repmat(Compliance,1,size(LRVs,2)); %Replicating Compliance vector so 
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it matches the size of nMinput. 
LRVs = repmat(LRVs,nRows,1); 
nMoutput = nMinput .* (1-Compliance) + nMinput .* Compliance .* 10 .^ -LRVs; 

end
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%Function to generate compliance behaviors for individual households given a particular 
compliance scheme. 
%HHcol: the column in the household matrix that is being populated. 
%cv: the compliance vector, i.e., cSan, cHWT, or cHand, 1st value being overall 
complance, 2nd being compliance type. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (AssignCompliance.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%TODO: correlate the household-level compliances assigned to the 3 main interventions? 
function [output] = AssignCompliance(HHcol,cv); 

ct = cv(2); 
switch ct; 

case 1; %compliance type alpha: everyone perfectly complies or doesn't comply 
at all 
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output = rand(size(HHcol,1),1) < cv(1); %Randomly assign binary value to 
compliance for each household. 

case 2; %compliance type beta: some perfectly comply, some partially comply, 
some don't comply at all 

output = rand(size(HHcol,1),1); 
output(find(output < cv(1)/2)) = 1; %Assigning perfect compliers a 

value of 1 
output(find(output > 1 - ((1-cv(1)) / 2) & output < 1)) = 0; %Assigning 

noncompliers a value of 0 
output(find(output > 0 & output < 1)) = cv(1); %Assigning the remaining 

partial compliers the overall compliance value 
case 3; %compliance type gamma: everyone partially complies 

output = cv(1); 
otherwise 

error('Compliance type != 1, 2, or 3, therefore invalid'); 
end 

end
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%Loop for obtaining parameter values for estimation runs while modifying reservoir size, 
pLandHand, etc. Facilitates computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Submit as several jobs to parallelize a calibration run (maybe not worth bothering with 
job array). 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (CalLoopFuncCompile.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = CalibrationLoopFuncCompile(indexText,inc,calibRunsText,jobname); 
%This helps with debugging, since arguments to compiled code can only be text. 
disp(class(indexText)) 
index = str2num(indexText); 
RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock index*10])));
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%Sets random stream based on clock & job index. 
calibRuns = str2num(calibRunsText); 
%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Recommended, but does not seem to be 
necessary. 
%=== 
%===Parameter entry=== 
infile = 'nonapplicable.csv'; 
outfile = ['Results/',jobname,'.csv']; 
%===End parameter entry=== 

%disp(['##### Running 
',num2str(size(U,2)),'*',num2str(size(T,2)),'*',num2str(size(L,2)),'+1=',num2str(combos),
' parameter combinations on ',num2str(size(tempData,1)),' parameter sets from 
calibration, should have requested at least that many members in the job array. #####']) 

if inc(1:2) == 'Hi'; 
EITSd('C', calibRuns, outfile, infile, [-11 -2.4], [-10 -1.5], [-8 -.1], [-15 -4], [-1 0 
0;2 3 3], 200); %1st try; including the max. possible levels for all ranges of transfer 
params. 

disp(['##### DONE #####']) 
end %End function.
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%Determine response (infection) given a particular dose, whatever the route. 
%These arguments (R, dose, KorN50, alpha) are vectors or matrices, 1 column per pathogen. 
%Uses 3 random numbers per person to determine response. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DoseResponse.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function [People EffM] = DoseResponse(RDRpeople, People, nKids, Doses, KorN50, alpha, 
latent); 

nP = size(People,1); %Number of people (rows). 
nAdults = nP - nKids; 
nM = size(KorN50,2); %Number of types of microbe (columns). 
%marker=repmat(['B','V','P'],nP,1); %Marker that is used to record the type(s) 

of microbe that resulted in infection. 
DosesT = Doses(:,1:3) + Doses(:,4:6) + Doses(:,7:9); %Summing doses from water & 
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hands for each person. 
Shifters = logical(zeros(nP,nM)); %Creating matrix of true/false for storing & 

processing outcomes. 
DosesT = DosesT .* (People(:,1:3) == -1); %If person is not susceptible, set dose 

to 0. 
for i = 1:nM %Loop over the 3 microbes 

if isnan(alpha(i))==1 
response = DRexp(KorN50(i),DosesT(:,i)); 

else 
response = DRbP(KorN50(i),alpha(i),DosesT(:,i)); 

end 
Shifters(:,i) = RDRpeople(:,i) < response; %Determines which people will 

become infected. 
end 
%tags = char(horzcat(ones(nP,1)*88, (marker .* outcome))); %Tags for pos. dose 

response events w. appropriate microbe(s) (e.g., 'FoodEatXBV'). 
%event = horzcat(event,tags); %Apply the tags to the event name. 

PeopleStates = People(:,1:3); PeopleStates(Shifters) = 1; People(:,1:3) = 
PeopleStates; %...People who get a positive response become exposed... 

PeopleCounters = People(:,4:6); PeopleCounters(Shifters) = 0; People(:,4:6) = 
PeopleCounters; %...their appropriate counter(s) (which are negative) get set to 0... 

People(:,4:6) = People(:,4:6) + Shifters .* repmat(latent,nP,1);
%...and are assigned a latent period. 

DosesK = Doses(1:nKids,:); 
DosesA = Doses((nKids+1):nP,:); 
ShiftersK = Shifters(1:nKids,:); 
ShiftersA = Shifters((nKids+1):nP,:); 
EffMWK = sum(DosesK(:,1:3) .* ShiftersK); %Tallying microbes that contributed to 

a new infection. 
EffMLK = sum(DosesK(:,4:6) .* ShiftersK); 
EffMHK = sum(DosesK(:,7:9) .* ShiftersK); 
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EffMWA = sum(DosesA(:,1:3) .* ShiftersA); %Tallying microbes that contributed to 
a new infection. 

EffMLA = sum(DosesA(:,4:6) .* ShiftersA); 
EffMHA = sum(DosesA(:,7:9) .* ShiftersA); 
EffM = [EffMWK EffMLK EffMHK; EffMWA EffMLA EffMHA]; 

%People(:,1:nM) = People(:,1:nM) + 2 * outcome; %Assigns exposure (status=1) to 
those people (who are susceptible, thus have status=-1). 

%People(:,nM+1:nM+nM) = People(:,nM+1:nM+nM) .* !outcome; %Sets counter to 0 for 
those people who have a new infection incubating.  

%People(:,nM+1:nM+nM) = People(:,nM+1:nM+nM) + repmat(latent,nP,1) .* outcome;
%Assigns the length of the latent period. 
%TODO: Assign randomly chosen latent period instead. 

end
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%Beta-Poisson dose response model, using N50 (default) or beta as a parameter 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRbP.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function outvar = DRbP(N50orBeta,alpha,invar,reverse,WhichParam) %Ordinarily, invar is 
dose & outvar is response. 
    if nargin == 3; 
       reverse = 'no'; WhichParam = 'N50'; 
    end 
    switch(reverse) 

case 'no' 
switch(WhichParam) 

case 'N50' 
outvar = 1-(1+(invar/N50orBeta)*(2^(1/alpha)-1)).^-alpha; 
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case 'Beta' 
outvar = 1-(1+(invar/N50orBeta)).^-alpha; 

otherwise 
error(['WhichParam must be "N50" or "Beta"']) 

end 
case 'yes'  %If reverse='yes', invar is response & outvar is dose. 

switch(WhichParam) 
case 'N50' 

outvar = N50orBeta * ( ((1-invar).^(-1/alpha) -1) / 
(2^(1/alpha)-1) ); 

case 'Beta' 
outvar = N50orBeta * ((1-invar).^(-1/alpha) -1); 

otherwise 
error(['WhichParam must be "N50" or "Beta"']) 

end 
otherwise 

error(['reverse must be "no" or "yes"']) 
end 

end
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%Exponential dose response model 
%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (DRexp.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 
function outvar = DRexp(k, invar, reverse)  %This works in Matlab. 
    if nargin < 3; 
        reverse = 'no'; 
    end 

switch(reverse); 
case 'no'; 

outvar = 1-exp(-k * invar); 
case 'yes'; %If reverse='yes', invar is response & outvar is dose. 

outvar = log(1-invar)/-k; 
otherwise 

error(['reverse (last parameter) must be "no" or "yes"']) 
end 
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end
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%Functions for calculating vectors of illness durations 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durEc.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function output = durEc(n);  
output = round(gamrnd(1.775,1.690,[n,1])); %Shape, then scale. From Estrada-Garcia 

2009. 
output(output == 0) = 1; %Sets zero durations to 1 day instead. 

end
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%Functions for calculating vectors of illness durations 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durGi.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function output = durGi(n); %Based on a fit of gamma dist. to limited info from Kent GP 
1988. 

output = round(gamrnd(3.206,3.431,[n,1])); %Shape, then scale 
output(output == 0) = 1; %Sets zero durations to 1 day instead. 

end

422



%Functions for calculating vectors of illness durations 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (durRo.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function output = durRo(n); %Based on 4 rotavirus-infected volunteers having durations 
of 1, 2, 3, and 4 days (Kapikian 1983). 

output = ceil(rand([n,1]) * 4); 
%output(output == 0) = 1; %Sets zero durations to 1 day instead. 

end
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%Loop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates 
computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Differs from EstimationLoopFuncCompile in that only a small number of parameter 
combinations are chosen, rather than all possible combinations. 
%mix: Proportion of childhood disease that is waterborne (A, B, or C). 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (EstLoopFuncCompileBase.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = EstLoopFuncCompileBase(indexText,jobname); 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
index = str2num(indexText); 
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if Octave == 0; 
RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock 

index*10]))); 
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave 

bases the seed on the clock by default). 
end 
%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Does not seem to be necessary. 
%===End parameter entry=== 
disp(['##### Running 6 parameter combinations, 2 each from runs that fit for mixes A, B, 
C, and Z, no interventions, should have requested at least 6 members in the job array. 
#####']) 
if index == 1 | index == 2; %If running the baseline parameters: 
EITSd('E',5,['Results/EstBaseA',indexText,'.csv'],'RTF_A_CalHi10b.csv',1,2,3,4,5,200,[0 0 
0],[0 1],[0 0 0],[0 1],[0 0 0],[0 1]); 
elseif index == 3 | index == 4; 
EITSd('E',5,['Results/EstBaseB',indexText,'.csv'],'RTF_B_CalHi10b.csv',1,2,3,4,5,200,[0 0 
0],[0 1],[0 0 0],[0 1],[0 0 0],[0 1]); 
elseif index == 5 | index == 6; 
EITSd('E',5,['Results/EstBaseC',indexText,'.csv'],'RTF_C_CalHi10b.csv',1,2,3,4,5,200,[0 0 
0],[0 1],[0 0 0],[0 1],[0 0 0],[0 1]); 
elseif index == 7 | index == 8; 
EITSd('E',5,['Results/EstBaseZ',indexText,'.csv'],'RTF_Z_CalHi10b.csv',1,2,3,4,5,200,[0 0 
0],[0 1],[0 0 0],[0 1],[0 0 0],[0 1]); 
else 
error('Too many jobs!') 
end 
disp(['##### DONE #####']) 
end %End function.
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%Loop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates 
computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Differs from EstimationLoopFuncCompile in that only a small number of parameter 
combinations are chosen, rather than all possible combinations. 
%mix: Proportion of childhood disease that is waterborne (A, B, or C). 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (EstLoopFuncCompileHWT.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = EstLoopFuncCompileHWT(indexText,mix,overallComplianceText,jobname); 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
index = str2num(indexText); 
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if Octave == 0; 
RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock 

index*10]))); 
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave 

bases the seed on the clock by default). 
end 
oC = str2num(overallComplianceText); 

%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Does not seem to be necessary. 
%===Parameter entry=== Note that 0 should not be included in L. 
%P = [0 .1 .2]; %Vector of desired values for proportions of children never using the 
device. 
%N = [0 .1 .2]; %Vector of desired values for proportions of children perfectly using 
the device. 
L = [1 2 3 4 5]; %Vector of log reduction values desired (all marker pathogens get the 
same LRV). 
%Testing the code using the vectors below. 
%U=[.9 1] 
%T=[.9 1] 
%L=[1 2] 
%Constructing a matrix with all possible combos of P, N, & L 
%[p n l] = ndgrid(P,N,L); 
%Combos = [p(:) n(:) l(:)]; %TODO: Build functionality to check N, P, 
overallCompliance, and pTreat to ensure they make sense before running. 
%Building appropriate combinations of perfect compliers (P; 1st column) and noncompliers 
(N; 2nd column). 
Combos = zeros(3,3); %Combo with max possible perfect compliers & max possible 
noncompliers (same as [0 1-oC]; [oC 1-oC] is 0/0). 
Combos(:,1) = oC; 
Combos(:,2) = [1 2 3]; 
Combos(:,3) = L(1); %This & subsequent 'for' loop copy the above for each possible LRV. 
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OutCombos = Combos; 
for i = 2:size(L,2); 

NextCombos = Combos; 
NextCombos(:,3) = L(i); 
OutCombos = [OutCombos; NextCombos]; 

end 
%Baselines = zeros(1,3); %Creating baseline row. No log reduction & no perfect 
compliance. 
%Baselines(:,2) = 1; %Modifies above, so that 100% never use device. 
Combos = OutCombos; 
Combos' %Output results, transposed. 
combos = size(Combos,1) 

infile = ['RTF_',mix,'_CalHi10b.csv']; 
outfile = ['Results/',jobname,'.csv']; 
%===End parameter entry=== 

tempData = csvread(infile,1,1); 

disp(['##### Running 3 * ',num2str(size(L,2)),' = ',num2str(combos),' parameter 
combinations on ',num2str(size(tempData,1)),' parameter sets from calibration, should 
have requested at least that many members in the job array. #####']) 
%if index == 1; %If running the baseline parameters: 
% [OutM OutS] = Main(Combos(index,1), Combos(index,2), oC, [Combos(index,3) 
Combos(index,3) Combos(index,3)], [0 0 0], [0 0 0], 0, outfile, infile, multConc, 
nSpikes, multSpikes, 1); 
%else %If running the parameters from calibration: 
EITSd('E',10,outfile,infile,1,2,3,4,5,200,[0 0 0],[0 1],Combos(index,3)*[1 1 1],
[Combos(index,1) Combos(index,2)],[0 0 0],[0 1]); 
%end 
disp(['##### DONE #####']) 
end %End function.
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%Loop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates 
computing cluster use. 
%Be sure to check that GetTrialParams.m is configured properly before running this 
script. 
%Differs from EstimationLoopFuncCompile in that only a small number of parameter 
combinations are chosen, rather than all possible combinations. 
%mix: Proportion of childhood disease that is waterborne (A, B, or C). 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (EstLoopFuncCompileHWTPC.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function[OutM OutS] = EstLoopFuncCompileHWTPC(indexText,jobname); 
Octave = size(ver('Octave'),1); %Indicator of whether the code is running under Octave 
(1) or Matlab (0). 
index = str2num(indexText); 
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if Octave == 0; 
RandStream.setDefaultStream(RandStream.create('mt19937ar','seed',sum([clock 

index*10]))); 
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave 

bases the seed on the clock by default). 
end 
%oC = str2num(overallComplianceText); 

%===Required lines for HPCC 
setenv MKL_DYNAMIC FALSE 
%maxNumCompThreads(1); %Throws an error. Does not seem to be necessary. 
%===Parameter entry=== Note that 0 should not be included in L. 
%P = [0 .1 .2]; %Vector of desired values for proportions of children never using the 
device. 
%N = [0 .1 .2]; %Vector of desired values for proportions of children perfectly using 
the device. 
L = [1 2 3 4 5]; %Vector of log reduction values desired (all marker pathogens get the 
same LRV). 
%Testing the code using the vectors below. 
%U=[.9 1] 
%T=[.9 1] 
%L=[1 2] 
%Constructing a matrix with all possible combos of P, N, & L 
%[p n l] = ndgrid(P,N,L); 
%Combos = [p(:) n(:) l(:)]; %TODO: Build functionality to check N, P, 
overallCompliance, and pTreat to ensure they make sense before running. 
%Building appropriate combinations of perfect compliers (P; 1st column) and noncompliers 
(N; 2nd column). 
Combos = zeros(4,3); %Combo with max possible perfect compliers & max possible 
noncompliers (same as [0 1-oC]; [oC 1-oC] is 0/0). 
Combos(:,1) = 1; 
Combos(:,2) = [1 2 3 4]; 
Combos(:,3) = L(1); %This & subsequent 'for' loop copy the above for each possible LRV. 
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OutCombos = Combos; 
for i = 2:size(L,2); 

NextCombos = Combos; 
NextCombos(:,3) = L(i); 
OutCombos = [OutCombos; NextCombos]; 

end 
%Baselines = zeros(1,3); %Creating baseline row. No log reduction & no perfect 
compliance. 
%Baselines(:,2) = 1; %Modifies above, so that 100% never use device. 
Combos = OutCombos; 
Combos' %Output results, transposed. 
combos = size(Combos,1) 
mixOptions='ABCZ'; %Translating the digits 1-3 into letters A-C. 
mix=mixOptions(Combos(index,2)); 
infile = ['RTF_',mix,'_CalHi10b.csv']; 
outfile = ['Results/',jobname,mix,'.csv']; 
%===End parameter entry=== 

tempData = csvread(infile,1,1); 

disp(['##### Running 4 * ',num2str(size(L,2)),' = ',num2str(combos),' parameter 
combinations on ',num2str(size(tempData,1)),' parameter sets from calibration, should 
have requested at least that many members in the job array. #####']) 
%if index == 1; %If running the baseline parameters: 
% [OutM OutS] = Main(Combos(index,1), Combos(index,2), oC, [Combos(index,3) 
Combos(index,3) Combos(index,3)], [0 0 0], [0 0 0], 0, outfile, infile, multConc, 
nSpikes, multSpikes, 1); 
%else %If running the parameters from calibration: 
EITSd('E',10,outfile,infile,1,2,3,4,5,200,[0 0 0],[0 1],Combos(index,3)*[1 1 1],[1 1],[0 
0 0],[0 1]); 
%end 
disp(['##### DONE #####']) 
end %End function.
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%Inactivation (attenuation) of microbes in all compartments. Also includes some error 
checking. 
%Note that CFdecay is now applied to decay in all compartments (in EITS06 and later 
versions). 
%Formerly (in EITS05), CFdecay was only applied to land & household environments, not to 
surface water or stored drinking water decay. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (Inact.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function [HHs, nMw, nMl] = Inact(RDRtime, HHs, nMw, nMl, CFdecay, Wflow, t); 
nHH = size(HHs,1); 
%if iscomplex(HHs) == 1; %Works in Octave, but not MATLAB. 
if sum(sum(imag(HHs))) ~= 0; %Works in both Octave and MATLAB. 

error('Complex number in HHs!'); %This was a problem in earlier versions of 
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the code. 
end 
if sum(sign([nMw nMl HHs(nHH*3+1:nHH*16)]) == -1) > 0; %Check for any problematic 

negative values. 
negs = find(HHs < 0); 
[rs,cs] = find(HHs < 0); 
warning('\n%s negative values in HHs at time %s, totaling %s, rows %s, cols %s, 

vals 
%s.',num2str(size(negs,1)),num2str(t),num2str(sum(HHs(negs))),num2str(rs),num2str(cs),num
2str(HHs(negs))) 

%When negative values occur, they tend to be in single-person households with 
repeated inter-household visits. 

if sum(HHs(negs)) > -1E-100; 
warning('Very tiny negative values (> -1E-100), setting them to 0.') 
HHs(negs) = 0; %Kludge: effectively adds some pathogens to the system to 

counteract negative values; however, seldom needed. 
else 

error('Larger negative values than usual. Stopping.') 
end 
if sum(sign([nMw nMl]) == -1) > 0; 

disp(nMw); disp(nMl); 
error('Surface water or land has gone negative! Setting to 0.') 
nMw(nMw < 0) = 0; nMl(nMl < 0) = 0; 
disp(nMw); disp(nMl); 

end 
end  
%nMw = nMw .* exp((-gM-Wflow) * RDRtime); %Surface water (this line 

formerly used in EITS05). 
nMw = nMw .* exp(-CFdecay .* RDRtime); %Surface water. 
nMl = nMl .* exp(-CFdecay .* RDRtime); %Land. Next is household inactivation. 
for i = 1:3; %Microbe. Corresponds to the appropriate entry in gM (inactivation 

rate). 
for j = [0 3]; %Compartment. 0 signifies hands (cols. 4:6 in HHs), 3 signifies 
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stored water (cols. 7:9 in HHs). 
if j == 0; 

HHs(:,i+3+j) = HHs(:,i+3+j) .* exp(-CFdecay(i) * RDRtime); 
elseif j == 3; 

%HHs(:,i+3+j) = HHs(:,i+3+j) .* exp(-gM(i) * RDRtime); %This line 
formerly used in EITS05. 

HHs(:,i+3+j) = HHs(:,i+3+j) .* exp(-CFdecay(i) * RDRtime); 
end 

end 
end 

end
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%Function for generating line charts of microbe transfers. 
%Need to start the figure, set up subplots, and determine subplot positioning before 
calling this function. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (PlotMicrobes.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%LogFlux = NaN(tMax,3,8); %Cube to store fluxes of microbes. z is 1:11 (1-surface 
water to stored water at resupply; 2-net visit transfer; 3-not used, but formerly land-
to-hand-to stored water at drinking; 4-rainfall; 5&6-pooping into surface H2O (not done) 
& land; 7-inactivation; 8&9-kids' dose, water & hands; 10&11-adults' dose, water & 
hands). 

function PlotMicrobes(Log, tMax, tRain, x, y, x1, y1, microbe, daysBurnIn); 
if microbe(1:3) == 'bac'; 
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add = 0; 
elseif microbe(1:3) == 'vir'; 

add = 1; 
elseif microbe(1:3) == 'pro'; 

add = 2; 
else 

error('microbe must equal ''bacteria'', ''viruses'', or ''protozoa''.'); 
end 
Log = Log + 0.1; %Avoids plotting zeros. 
Y = add + 1; %Y coordinate within LogFlux data cube (denoting microbe type). 
set(gca,'Position',[x y-add*.33 x1 y1]); %1:2; x&y of bottom L corner. 2:3; x&y 

of top R corner, minus 1:2. 
FluxIn = sum(Log(:,Y,5:6),3); 
FluxOut = sum(Log(:,Y,7:11),3); 
semilogy(1:tMax,Log(:,Y,1),'-b',1:tMax,Log(:,Y,2),'-c','linewidth',3); 
hold on; 
semilogy(1:tMax,Log(:,Y,4),'ob','MarkerSize',7) 
semilogy(1:tMax,Log(:,Y,6),'-m','LineWidth',6) 
semilogy(1:tMax,Log(:,Y,7),'-y','LineWidth',3) 
semilogy(1:tMax,Log(:,Y,8),'+r','MarkerSize',3) 
semilogy(1:tMax,Log(:,Y,9),'-r','LineWidth',3) 
semilogy(1:tMax,Log(:,Y,10),'+y','MarkerSize',3); 
semilogy(1:tMax,Log(:,Y,11),'-y',1:tMax,FluxIn,'+k',1:tMax,FluxOut,'-k'); 
plot(tRain(:,1),tRain(:,2) * 0.5,' x'); 
title(['Daily transfers of ',microbe],'fontsize',20); 
ylabel(['# ',microbe],'fontsize',20) %Axis & tick labels overlap on screen, but 

output better to .PNG. 
legend('Water resupply','Visits','Land-water (runoff)','Poop onto 

land','Inactivation','Kid dose, water','Kid dose, hands','Adult dose, water','Adult dose, 
hands','Net pos flux','Net neg flux','Time of rain events','location','southeast') 

plot([daysBurnIn daysBurnIn],[0.5 max(max(max(Log)))], '-k'); %Sticking a 
vertical line on the graph to denote when burn-in ends. 

axis([0 tMax*1.3 0.5 max(max(FluxOut))*1.5]); 

436



hold off; 
end
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%Function for generating line charts of infection status. 
%Need to start the figure, set up subplots, and determine subplot positioning before 
calling this function. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (PlotPeople.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

function PlotPeople(Log, tRain, x, y, x1, y1, microbe, host, daysBurnIn, nPeople); 
if microbe(1:3) == 'bac'; 

add = 0; 
elseif microbe(1:3) == 'vir'; 

add = 1; 
elseif microbe(1:3) == 'pro'; 

add = 2; 
else 
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error('microbe must equal ''bacteria'', ''viruses'', or ''protozoa''.'); 
end 
tMax = size(tRain,1); 
set(gca,'Position',[x y-add*.33 x1 y1]); %1:2; x&y of bottom L corner. 2:3; x&y 

of top R corner, minus 1:2. 
plot(Log(:,1),Log(:,14+add),'-r',Log(:,1),Log(:,18),'-k','LineWidth',2); 
hold on; 
plot(Log(:,1),Log(:,2+add),'g-',Log(:,1),Log(:,5+add),'-b',Log(:,1),Log(:,8+add),'-

m',Log(:,1),Log(:,11+add),'-r',Log(:,1),Log(:,17),'-k'); 
%plot(Log(:,1),Log(:,2+add),'g-',Log(:,1),Log(:,5+add),'-b',Log(:,1),Log(:,8+add),'-

m',Log(:,1),Log(:,11+add),'-r',Log(:,1),Log(:,14+add),'-
r','LineWidth',2,Log(:,1),Log(:,17),'-k',Log(:,1),Log(:,18),'-k','LineWidth',2); %Works 
in Octave. 

hold on; 
plot(tRain(:,1),tRain(:,2)-1,' x'); 
title(['Daily infection status, ',microbe],'fontsize',20); 
ylabel(['# ',host],'fontsize',20) %Axis & tick labels overlap on screen, but output 

better to .PNG. 
legend('Ill','Any illness','Susceptible','Immune','Exposed','Infected','Any 

infection (no illness)','Rain events','Location','East') 
%legend('Susceptible','Immune','Exposed','Infected','Ill','Any infection (no 

illness)','Any illness','Rain events','Location','East') %For commented-out plot() call 
above. 

plot([daysBurnIn daysBurnIn],[0 nPeople], '-k'); 
axis([0 tMax*1.3 0 nPeople+1]); 
hold off; 

end
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%Describes results of defecation events (microbes onto hands, land, and surface water) by 
a single person. 

%{ 
COPYRIGHT INFORMATION 

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu"). 

    This file (Pooping.m) is part of EITSd. 

    EITSd is free software: you can redistribute it and/or modify 
    it under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 

    EITSd is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

    You should have received a copy of the GNU General Public License (gpl.txt) 
    along with EITSd.  If not, see <http://www.gnu.org/licenses/>. 
%} 

%RPoopPlace: 1 column from the random number matrix determining whether the person 
poops into the water or on land. 
%People: Rows from the People matrix, each row corresponding to a particular person. 
%HHs: The HHs matrix, corresponding to all households. 
%Mpgf: Microbes per gram of feces (3-element vector, 1 element per microbe type). 
%fpp: Grams of feces excreted per defecation event (assuming 1 event per day). 
Single value; run function once for each desired value. 
%fHands: Grams of feces on fingers after defecation event. 
%nMw: Number of microbes in the reservoir (3-element vector, 1 element per 

440



microbe type). 
%nMl: As above, but number of microbes on land. 
%pPoopH2O: Probability that the person defecates directly into surface water (instead 
of on land). 
%RCompHW: 1 column from the random number matrix determining whether the person 
handwashes. 
%RCompSan: 1 column from the random number matrix determining whether the person uses 
sanitation. 
%lHand: LRVs from handwashing. 
%lSan: LRVs from sanitation. 
%chosenOnes: Logical vector of rows in People that are being operated on. 

function [HHs, nMw, nMl] = Pooping(RPoopPlace, People, HHs, Mpgf, fpp, fHands, nMw, nMl, 
pPoopH2O, lHand, lSan, chosenOnes); 

nPeople = size(People,1); 
if size(chosenOnes,1) ~= nPeople; error('People and chosenOnes do not match up!'); 

end 
MicrobeLoad = repmat(Mpgf,nPeople,1) .* repmat(chosenOnes,1,3) .* (People(:,1:3)==2 

| People(:,1:3)==3) .* repmat(fpp,nPeople,3); %Only microbes infecting the person are 
shed. 

MicrobeLoadHands = MicrobeLoad .* (fHands/fpp); 
MicrobeLoadEnv = MicrobeLoad - MicrobeLoadHands; 
PeopleCompSanHW = HHs(People(:,7),[13 15]); %Expands household-level compliance to 

each person. 
MicrobeLoadHands = ApplyLRVs(MicrobeLoadHands, lHand, PeopleCompSanHW(:,2));
%Applying handwashing LRVs to handwashing compliers' hands. 
for i = 1:max(People(:,7)); %Looping over households, to apply new hand 

contamination to household 'hands' stock. Would be nice to vectorize, but not sure how. 
%PeopleInHHi = find(People(:,7)==i); 
MicrobesAdded = sum(MicrobeLoadHands(find(People(:,7)==i),:),1); %Forces sum of 

each column (even if there's only 1 row). 
%MicrobesAdded = MicrobeLoadHands(find(People(:,7)==i),:); 
HHs(i,4:6) = HHs(i,4:6) + MicrobesAdded; 
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end 
MicrobeLoadEnv = ApplyLRVs(MicrobeLoadEnv, lSan, PeopleCompSanHW(:,1)); %Applying 

sanitation LRVs to sanitation compliers' feces. 
PoopInH2O = RPoopPlace < pPoopH2O; 
nMl = nMl + sum(MicrobeLoadEnv(~PoopInH2O,:),1); %Apply remaining microbes after 

sanitation to the land. 
nMw = nMw + sum(MicrobeLoadEnv(PoopInH2O,:),1); %As above, for the water. 

end
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function A = erdrey(n,m) 

%ERDREY     Generate adjacency matrix for a G(n,m) type random graph. 
% 
%   Input   n: dimension of matrix (number of nodes in graph). 
%           m: 2*m is the number of 1's in matrix (number of edges in graph). 
%           Defaults to the smallest integer larger than n*log(n)/2. 
% 
%   Output  A: n by n symmetric matrix with the attribute sparse. 
% 
% 
%   Description:    An undirected graph is chosen uniformly at random from 
%                   the set of all symmetric graphs with n nodes and m 
%                   edges. 
%  
%   Reference:  P. Erdos, A. Renyi, 
%               On Random Graphs, 
%               Publ. Math. Debrecen, 6 1959, pp. 290-297. 
% 
%   Example: A = erdrey(100,10); 

%Lines 22-26 added by Kyle S. Enger to ensure proper attribution. In all other respects, 
this copy of erdrey.m is identical to its original source. 
%This file is part of CONTEST, a publicly available MATLAB toolbox: 
http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest 
%See also Taylor A and Higham DJ (2009) CONTEST: A Controllable Test Matrix Toolbox for 
MATLAB. ACM Transactions on Mathematical Software. 35 (4). 
%This copy of erdrey.m is reproduced in Kyle S. Enger's Ph.D. dissertation by permission 
of the authors (Des Higham, personal communication, 24 Aug. 2012). 
%The file erdrey.m is not part of EITSd but is used by EITSd, and is included here for 
completeness. 

if nargin == 1 
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    m = ceil(n*log(n)/2); 
end 

nonzeros = ceil(0.5*n*(n-1)*rand(m,1)); 
v = zeros(n,1); 
for count = 1:n 
    v(count) = count*(count-1)/2; 
end 

I = zeros(m,1); 
J = zeros(m,1); 
S = ones(m,1); 

for count = 1:m 
    i = min(find(v >= nonzeros(count))); 
    j = nonzeros(count) - (i-1)*(i-2)/2; 
    I(count) = i; 
    J(count) = j; 
end 

A = sign(sparse([I;J],[J;I],[S;S],n,n)); 

while nnz(A) ~= 2*m 
    
    difference = m-nnz(A)/2; 
    Inew = zeros(difference,1); 
    Jnew = zeros(difference,1); 
    for count = 1:difference 
        index = ceil(0.5*n*(n-1)*rand); 
        Inew(count) = min(find(v>=index)); 
        Jnew(count) = index - (Inew(count)-1)*(Inew(count)-2)/2; 
    end 
    I = cat(1,I,Inew); 
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    J = cat(1,J,Jnew); 
    S = ones(length(I),1); 
    A = sign(sparse([I;J],[J;I],[S;S],n,n)); 
    
end
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10. APPENDIX D: GLOSSARY

Allocation concealment: Conducting a study in such a way that assignment to a particular group 

is truly random, and not influenced by either the subject or the investigator. In theory, 

adequate allocation concealment should always be feasible.

Blinding: Conducting a study in such a way that the subject (single-blind) or the subject and the 

observer (double-blind) does not know which experimental group the subject belongs to. 

BSF: Biosand filter, a HWT method consisting of a sand filter in which the outlet pipe starts at 

the bottom of the filter and exits the filter above the top layer of sand, thus allowing the 

sand to remain wet at all times.

CAMRA: Center for Advancing Microbial Risk Assessment. A multi-university center, it hosts 

the QMRAwiki (http://wiki.camra.msu.edu).

CDC: Centers for Disease Control and Prevention (United States government agency).

CFU: Colony-forming unit. A bacterial suspension can be quantitated by spreading a sample of it 

on a plate of growth medium. After incubation, the number of colonies are counted. This 

estimates the number of colony-forming units in the original suspension. CFUs are often 

assumed to represent single bacterial cells, although this assumption may not be accurate if 

the bacteria adhere to one another.

DALY: Disability-adjusted life-year. Allows comparison of morbidity among differing diseases. 

Diseases are assigned 'DALY weights' based on the duration of disease, the level of 

disability caused by the disease, and the chance of death (the ultimate disability). The 

concept was developed and expanded by WHO.

Dose response equation (or curve, or model): Relationship of the mean number of pathogens 

ingested to the probability of a response, such as infection or disease. 

Dysentery: An enteric disease characterized by intestinal inflammation and bloody stools.
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EAWAG: Swiss Federal Institute for Environmental Science and Technology (German acronym).

E. coli: Escherichia coli bacteria. Usually a commensal inhabitant of the mammalian gut, but 

some strains can cause disease.

EITS model: Environmental infection transmission system model. Resembles SIR & other 

similar models, but directly models pathogens in the environment, in addition to states of 

infection by hosts.

Endemic: Describes a disease that is constantly present in a community. Hyperendemic denotes 

constant presence at high levels. Endemic disease levels may fluctuate over time, but rapid 

increases in disease are described as epidemic.

Epidemic: Temporarily increased levels of a disease in a community.

FFU: Focus-forming unit. Analogous to CFU or PFU, but applies to viruses in cell culture. 

Distinct sites that are disrupted on a lawn of cells are considered to have arisen from a 

single FFU (and perhaps a single virion, if they do not adhere to one another).

Fomite: A physical object that can become contaminated and thus transfer pathogens between 

hosts.

Helminths: Worms.

HWT: Household water treatment. Synonym of POU.

Incidence, or incidence rate: Number of new cases of a disease in a population divided by time 

(e.g., cases of diarrhea per child per year). This is a measure of risk.

Incubation period: Time from exposure to a pathogen until the first symptoms develop. Usually 

longer than the prepatent period.

ID: Incidence difference. Analogous to incidence ratio (IR), but ID is obtained by subtracting the 

incidence in the intervention group from the incidence in the control (non-intervention) 

group. Also known as attributable risk.
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IR: Incidence ratio, a comparison of two incidence rates. Generally the incidence in the 

intervention group is divided by the incidence in the control (non-intervention) group. It is 

a type of relative risk, representing the proportion of the incidence remaining in the 

population after an intervention has been applied.

LFF: LifeStraw® Family Filter, a HWT gravity-fed filtration device capable of removing 

viruses. It is produced and distributed by the Vestergaard Frandsen corporation. 

LRV: Log10 reduction value; number of factors of 10 that have been inactivated, e.g., an LRV of 

2 means that 99% of microorganisms have been inactivated, LRV of 3 means that 99.9% of 

microorganisms have been inactivated, etc.

MATLAB: A software package (MATrix LABoratory) that is useful for programming computer 

simulations, among other things.

Matlab: A region of Bangladesh in which many studies of diarrhea have been conducted.

Morbidity ratio: Proportion of infected hosts that develop symptoms. Sometimes called the 

illness-to-infection ratio.

NGO: ‘Non-governmental organization’, generally a private nonprofit organization conducting 

human development work.

NTU: Nephelometric turbidity units, a measure of cloudiness of water. 0 is perfectly clear. The 

USEPA requires that municipally treated water have < 0.3 NTU in ≥ 95% of monthly 

samples. Water that is so cloudy that it is opaque might have an NTU of several hundred.

Odds: The number of times an outcome occurs divided by the number of times the outcome does 

not occur. When the odds of an outcome in two different groups are expressed as a ratio, 

this is termed an ‘odds ratio’ or OR. ORs are analogous to relative risk and approximate 

relative risk when the disease is uncommon (in that circumstance, number of 

nonoccurrences ≈ entire population), though ORs are often used in contexts where a proper 
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risk measure is unavailable.

ORS or ORT: Oral rehydration solution = oral rehydration salts = oral rehydration therapy. 

Giving a formulation of sugar and electrolytes in clean water by mouth to an ill person in 

order to replace fluids, electrolytes, and energy lost to diarrhea.

Outbreak: A small or localized epidemic.

Persistent diarrhea: Diarrhea lasting longer than 14 days.

Person-time: Number of persons observed multiplied by the average amount of time during 

which each person was observed. Analogous to ‘work-hours’.

PFU: Plaque-forming unit. Analogous to CFU, but applies to bacteriophages (viruses of bacteria) 

quantified on a lawn of bacteria. Round cleared areas in the lawn of bacteria are assumed 

to have arisen from a single bacteriophage.

POU: Point-of-use water treatment. Synonym of HWT.

Prepatent period: Time from exposure to a pathogen until the pathogen can be detected in the 

host. Usually shorter than the incubation period.

Prevalence, longitudinal: Amount of person-time spent ill divided by the total amount of person-

time observed. This is a measure of risk.

Prevalence, point: Proportion of a population ill with a disease at a single point in time.

Preventable fraction: Proportion of disease that is prevented by a public health intervention (such 

as household water treatment or handwashing) in a particular population.

Rate ratio: See relative risk. Rates describe occurrence per unit time. Simple proportions are 

often incorrectly called rates.

Relative risk: The ratio of two risk measures, used to illustrate the magnitude of an effect. By 

convention, relative risks under 1 denote a protective effect, while relative risks over 1 

indicate an adverse effect. 
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Risk: The likelihood (loosely defined) of a particular adverse outcome occurring. The number of 

times a particular outcome occurs divided by the total number of outcomes.

Safe storage: A common attribute of HWT methods, incorporating a storage vessel for water 

which has a narrow neck and (usually) a spigot, to prevent hands or other objects from 

(re)contaminating the water within.

SIR model: A model of infection transmission in which hosts can occupy 3 states in this order: 

susceptible, infectious, and removed (meaning immune or dead). Commonly modeled by a 

simple system of differential equations describing the rates by which hosts transfer 

between states, though other methods may be used. Often elaborated to include other states 

of infection or other orderings of states, e.g., SIS (susceptible-infectious-susceptible), SEIS 

(susceptible-exposed-infectious-susceptible), SEIR (suscepible-exposed-infectious-

removed), etc.

SODIS: Solar disinfection, a HWT method in which contaminated water is placed in clear plastic 

bottles, which are then placed in the sun. Microorganisms are inactivated by a combination 

of UV irradiation and heating. 

Sustainability: The ability of an intervention to be accepted by a community and perpetually used 

without any input from outside the community. Also pertains to management of resources 

in such a way that the resource is not depleted, e.g., using water from an aquifer at a rate 

no greater than its rate of recharge.

TTC: Thermotolerant coliforms. E. coli is an organism in this group. Commonly used as an 

indicator of fecal contamination of water.

UN: The United Nations.

UNICEF: The United Nations Children's Fund (originally United Nations International 

Children's Emergency Fund). An international development charity and agency that 
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particularly focuses on children and mothers.

USEPA: Environmental Protection Agency (United States government agency).

UV: Ultraviolet light, which is sometimes used to inactivate pathogens in water.

Weaning: Cessation of breastfeeding and introduction of additional foods, a process that can span 

months or years. Initiation of weaning (i.e., cessation of exclusive breastfeeding) is 

associated with sharply increased diarrhea risk.

WHO: World Health Organization.

Z-score: Number of standard deviations away from the mean. In nutrition, z-scores refer to 

standard distributions defining weight-for-height, height-for-age, and weight-for-age for a 

well-nourished reference population. Z-scores of 2 or 3 are commonly used as cutoffs for 

adverse nutrition outcomes.
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