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ABSTRACT

PREVENTING DIARRHEAL INFECTIONS WITH HOUSEHOLD WATER TREATMENT:
LESSONS FROM SIMULATION MODELS

By
Kyle Scott Enger

Diarrheal disease kills two million children per year in developing countries. Diarrhea is
controlled in industrialized countries by systems to remove sewage and distribute clean water.
These systems are difficult to fund, build, and maintain in developing countries, so simpler
technologies are promoted: e.g., household water treatment (HWT), handwashing, and latrines.
These technologies, however, require consistent effort by individuals for proper use and
maintenance, defined here as 'compliance'. Measuring compliance is difficult, and often
neglected.

It is important to understand how the extent and pattern of compliance within communities
affects the prevention of diarrhea by HWT, while accounting for biases in field trials and
characteristics of natural transmission systems, such as the presence of multiple pathogens,
transient spikes of contamination, and multiple transmission routes. This question was answered
by: reanalyzing and generalizing results from a HWT field trial, using a quantitative microbial
risk assessment (QMRA) model to adjust for bias (chapter 3); examining the joint effects of
HWT antimicrobial efficacy and compliance on prevention of diarrhea (chapter 4); and using a
model of diarrheal infection transmission incorporating multiple routes of infection to further
examine efficacy and compliance issues with HWT (chapter 5).

The QMRA model of the field trial found that compliance greatly affected HWT
effectiveness: with low compliance, 10% of diarrhea was prevented; with high compliance, 90%

was prevented. It also estimated source water pathogen concentrations source water that were



consistent with measurements from other developing countries. The model found that the effect
of an imperfect placebo device used during the field trial depended on the assumed level of
compliance during the field trial.

The QMRA model was modified to examine how HWT compliance and antimicrobial
effectiveness jointly altered diarrheal disease risk. Given perfect compliance, increasing
antimicrobial effectiveness always lowered risk. If compliance was incomplete, increasing
antimicrobial effectiveness eventually ceased to lower risk, except in a few scenarios with high
incidence, high compliance, or large water contamination spikes. The pattern of compliance by
communities also influenced risk; e.g., risk was lower if 90% of people used HWT perfectly and
10% never used HWT, than if 100% of people used HWT 90% of the time.

A preliminary transmission model simulated a community in which infected people shed
pathogens, which were ingested by other people via exposure to land, drinking water, their
household environment, or visits from other households. It found similar results to the QMRA
models regarding compliance. Transmission of diarrheal pathogens by household visits appeared
unimportant compared to other routes; however, visits consisted of exchanges of pathogens
between household environments. Other types of visits (e.g., shared child care) might lead to
greater transfer of pathogens and a greater influence of visits on illness. The model also inferred
that viruses and protozoa were attenuated (removed from the system, e.g., by decay or
sequestration) ~10 times faster than bacteria. Future sensitivity and uncertainty analyses will
highlight important aspects of the model and its parameters that contribute to its results.

The amount and pattern of compliance strongly affects diarrhea prevention by HWT.
Further research should be conducted on improving compliance with HWT in developing

countries.
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1. INTRODUCTION
1.1. Brief summary of diarrheal disease and control

Diarrheal disease is a major cause of illness and death in developing countries, particularly
among young children (World Health Organization, 2008). Diarrheal infections are generally
transmitted by the fecal-oral route: ingesting water, food, or soil that has been contaminated by
feces. However, transmission can be influenced (overtly or subtly) by a wide variety of factors,
including: availability of water infrastructure (e.g., piped treated water systems, or other
improved water sources such as carefully constructed wells); sanitation infrastructure (latrines or
sewer systems); personal hygiene; types and quantities of pathogens present; nutritional status;
climate; socioeconomic status; cultural factors; and many others. Therefore, the effectivenesses
of interventions to reduce diarrhea can vary greatly depending on the characteristics of the
community which applies them.

Reduction of diarrheal disease is an important public health goal. This can be
accomplished by many different interventions that improve or modify some of the factors listed
above. Some examples include: water supply improvements (for quality, quantity, or both);
hygiene education (particularly handwashing); a wide array of household water treatment (HWT)
interventions (e.g., boiling, chlorination, filtration); and sanitation (latrine or sewer construction).
Interventions are most effective if they are used and maintained independently by communities
over many years; this is referred to as 'compliance’, or sometimes 'adherence'. High compliance
is difficult to attain in the developing world, where money, materials, skilled personnel, and good
governance are often in short supply. It is unclear how best to measure and maintain compliance
within communities.

The effectiveness of interventions that prevent diarrhea is difficult to measure. Conducting

research investigations in developing countries is inherently challenging due to lack of resources



and infrastructure, and researchers are often faced with linguistic or cultural barriers. Field trials
of interventions are usually impossible to blind; blinding prevents study participants from
knowing whether they are receiving an active intervention or an inactive 'placebo’ intervention.
Blinding is difficult because interventions are usually visually obvious (e.g., a large filter unit, or
people attending handwashing education sessions). Therefore, field trials are likely to be biased
by the expectations of investigators or participants, or by other factors (known or unknown).
Published field trials often lack key contextual information about the communities that
participated in the study, which impedes interpretation of the results.

Although the body of scientific literature concerning diarrhea is enormous and continues to
grow, many aspects of diarrheal disease in developing countries remain poorly understood. There
is a need to synthesize the available information to determine where to prioritize future research.
Chapter 2 summarizes key ideas in this body of literature. Although meta-analyses concerning
various aspects of diarrheal disease continue to be published and are useful, they do not clarify
interrelationships between these aspects. Mechanistic modeling is a useful tool for describing
and simulating complex systems problems such as disease transmission within human
communities. This dissertation uses modeling methods (coupled with published data) to simulate
diarrheal disease transmission. The models allow conclusions to be drawn about appropriate
diarrhea control methods, and identify aspects of diarrhea transmission and control that require
further research.

1.2. Scientific questions
Goal 1: Develop a method to link information from epidemiologic studies with
simulation models (chapter 3). Field studies of interventions that prevent diarrhea are
difficult and time-consuming to perform, and are subject to numerous biases (see page 17

for further discussion). Models based on field studies can be used to infer the effect of



interventions on risk under circumstances that were not actually studied.
Hypotheses: Biases that were observed during a field trial can be corrected by
constructing a model that simulates the trial as closely as possible, and then altering
the model structure (or its parameters) to remove the bias. In a similar fashion, the
outcomes of counterfactual field trials can also be estimated.
Method: Construct a model to simulate an actual field trial. Calibrate the model to the
outcomes of the trial in order to infer the values of unobserved parameters. Use the
sets of inferred parameters in subsequent estimation steps, in which the model has
been modified to simulate desired situations (e.g., differing compliance levels,
elimination of biases).

Goal 2: How does noncompliance with interventions affect diarrheal disease levels

(chapters 4 and 5)?
Hypotheses:

a) Perfect compliance with an intervention by X% of the population is more
effective than 100% of the population using the intervention X% of the time.
Or: the level of effectiveness of an intervention drops more rapidly when
consistent use of the intervention is decreased, as opposed to when overall
adoption of the intervention is decreased.

b) What level of noncompliance renders a specific intervention ineffective (i.e.,
<10% decrease in longitudinal prevalence) under particular conditions? Trials
are seldom powered to detect a decrease this small.

c¢) Linear QMRA models and more complex EITS models incorporating
feedback loops show similar effects of imperfect compliance and differing

compliance patterns on diarrheal disease risk.



Method: Construct QMRA and EITS models of diarrheal disease transmission, apply
a simulated intervention, alter the levels of the two types of noncompliance, and
observe the results in the form of their effects on diarrheal longitudinal prevalence.
Compare the results returned by both model types.

1.3. General assumptions within this dissertation

Control of diarrhea requires sustainable use of interventions over many years by the
communities (or individuals) that currently have high risk of diarrhea. Therefore, the
effectiveness of an intervention is best described by changes in the average level of endemic
diarrheal illness. Although diarrheal epidemics are undeniably important (particularly cholera
epidemics), they represent short-term changes (days or weeks) in diarrheal disease risk. Any
intervention that reduces endemic diarrhea consistently over several years is also likely to
decrease the likelihood or severity of diarrheal epidemics during that time. Therefore, epidemics
are given little consideration in this dissertation.

Although the scientific literature concerning diarrhea in developing countries is vast, the
precise quantitative values of many important parameters for models that describe diarrhea are
unclear. The detailed datasets necessary for validating such models are likewise lacking. Human
communities are also idiosyncratic, and diarrheal disease transmission in a particular community
might be greatly altered by characteristics that are unmeasured or difficult to measure (e.g.,
cultural practices, social structure, education, socioeconomic status, local geology, local climate,
etc.). Therefore, the models described in this dissertation cannot make firm predictions for
specific communities. However, they can still provide general insights about the transmission of
diarrheal infections and how interventions can affect their transmission. They can also indicate

aspects of diarrhea that require further scientific investigation.



2. REVIEW OF DIARRHEAL INFECTION: EPIDEMIOLOGY, INTERVENTIONS,
AND MODELING
2.1. Introduction

Diarrhea is a common disease, particularly among children. Although diarrheal infections
are nearly always transmitted by ingestion of feces, the details of transmission and control are
complicated. Diarrheal pathogens are extremely diverse, including many distinct bacteria,
viruses, and protozoa. Furthermore, these pathogens can be transmitted by different routes, such
as drinking water, food, soil, or household objects. Many different interventions are available,
such as sanitation (latrines), handwashing, or household water treatment; these interventions
impede transmission of diarrheal pathogens on different routes. The transmission and prevention
of diarrheal disease has been extensively studied, giving rise to a vast body of published
scientific literature. Nonetheless, many important gaps in our knowledge remain.

The central goal of this manuscript is to examine the issue of compliance with
interventions to prevent diarrhea, particularly household water treatment (HWT). People in
developing countries are often encouraged to adopt HWT methods, but they may use these
methods inconsistently, or not at all. Although compliance affects estimates of diarrhea prevented
by interventions in field trials, compliance is difficult to measure. Chapters 3, 4, and 5 use risk
assessment models and infection transmission models to simulate field trials and examine the
effect of differing levels and patterns of compliance on prevention of diarrhea. These models
must incorporate existing information about diarrheal pathogens, their transmission,
characteristics of infection and disease, and antimicrobial efficacy of HWT.

This chapter summarizes available knowledge regarding diarrheal infections and their
prevention in developing countries. It begins by concentrating on the epidemiology of endemic

diarrhea in young children (generally under 5 years of age). Diarrheal illnesses which are



strongly epidemic (e.g., cholera) are only briefly mentioned. Interventions for preventing
transmission of diarrheal pathogens are described, beginning on page 38. Application of
simulation models to understand transmission and prevention of childhood diarrhea is discussed
beginning on page 68.

2.2. Definition and measurement of diarrhea

Acute diarrhea is often considered to be 3+ loose or watery stools in 24 hours, not counting
normal soft stools from breastfed babies (USAID et al., 2005). However, the number of
episodes/day and the number of days that are considered to separate episodes vary. Diarrhea
lasting for 14+ days is generally considered ‘persistent’ (Ejemot et al., 2008).

Dysentery is a diarrheal syndrome in which the stools are bloody (T. F. Clasen et al., 2006).
Shigella species are a common cause of this type of diarrhea.

Investigation of childhood diarrhea usually relies on the recall of the parents, which may
be incomplete. Recall of diarrhea in infants by Guatemalan mothers was found to be unchanged
for the two days prior to the interview, but dropped by 37% on the third day (Zafar et al., 2010).
Recall for 4th and prior days was about 50% of that for the first two days. Severe illness was
recalled more reliably. These results were similar to those reported in prior studies (Zafar et al.,
2010). In a review (Kosek et al., 2003) including 27 field studies of diarrhea, 10 interviewed
caregivers weekly or monthly, indicating that diarrhea may be underestimated in those studies.
Fortunately, the remaining 17 studies interviewed caregivers two or more times per week (Kosek
et al., 2003). Use of daily diaries may mitigate some of the effects of infrequent followup.

Differing methods are used to measure changes in diarrheal risk. Incidence rates (the
number of disease episodes over a given time in a certain number of people) are most commonly
used, which may be appropriate when disease transmission is the outcome under study (Morris et

al., 1996). However, the association of longitudinal prevalence (the number of person-days ill



over the total number of person-days observed) with growth faltering and death was stronger
than the association of incidence with growth faltering and death (Morris et al., 1996) in a rural
area of Ghana that was underserved with health services (Ghana VAST Study Team, 1993).
Changes in longitudinal prevalence do not necessarily change incidence; for example, a
treatment regime might reduce longitudinal prevalence by reducing the duration of illness, but
incidence would remain unchanged. Longitudinal prevalence is also appealing because it more
directly measures the extent of illness; a child with persistent diarrhea throughout most of the
study period might contribute only 1 bout of illness to the community's diarrheal incidence, but
is in actuality very sick (Morris et al., 1996). Point prevalence (the proportion of individuals ill at
a given point in time) is sometimes used, but is far from ideal because the burden of diarrheal
disease changes with time. Ratios of the above measures with the intervention group in the
numerator and the non-intervention group in the denominator are used to estimate the magnitude
of effect of the intervention.

Odds ratios are also used to estimate the effectiveness of interventions. Unlike the
previously discussed measures of risk, which are population-based and measure ill people as a
proportion of total people, the odds is the number affected divided by the number not affected.
The odds of illness in a treatment group can then be divided by the odds of illness in a control
group to yield an odds ratio. Although the odds of illness is similar to the risk of illness when the
disease is rare (i.e., the number of non-ill people nearly equals the entire population), this is not
the case for diarrheal illness in many developing countries, and ‘risk’ as measured using odds
therefore appears larger. Odds ratios also tend to be larger than risk ratios. Odds ratios are
commonly used in regression analysis where the effect of an intervention is controlled for
confounding factors, since the parameter estimates are convenient to represent mathematically as

odds ratios. They are also used in case-control studies, where population-based risk cannot be



determined because the study population is not necessarily representative of the actual
population (Hennekens & Buring, 1987).

2.2.1. Persistent diarrhea

Persistent diarrhea is generally considered to last for 14 days or more. This is mainly based
on convenience, and a better definition may be needed that takes nutrient deficiency and growth
faltering into account (Bhutta et al., 2008). Enteroaggregative E. coli, Cryptosporidium, and
Giardia are commonly implicated in persistent diarrhea, but their relative contributions are
unknown (Bhutta et al., 2008). Factors associated with reduction of persistent diarrhea are mostly
unknown, although early feeding of non-human milk to children and multiple acute diarrheal
episodes are important risk factors (Bhutta et al., 2008).

A recent review (Abba et al., 2009) of 20 studies from the 1980s and 1990s in various
developing countries describing pathogens associated with childhood persistent diarrhea found
no particular differences in the types of pathogens isolated from children with persistent diarrhea
and children with no diarrhea. There was also no evidence to conclude that certain pathogens
were more/less common in different regions of the world (most studies were from India and
Bangladesh, though Latin America, southeast Asia, and sub-Saharan Africa were also
represented), although individual studies varied. Enteropathic E. coli (particular types could not
be distinguished) was detected in 25% to 33% of children, and no other pathogen was found in
more than 10% of children. Children with persistent diarrhea were more likely to have at least 1
pathogen detected than children without diarrhea (75% vs. 43%). However, studies tested for
different suites of pathogens, sample size was often small, laboratory procedures were often
poorly documented, and studies commonly did not cover a whole number of years, so seasonality

may have influenced some results.



2.3. Multiple infections

Simultaneous infections by multiple diarrheal pathogens are common. In a review focusing
on norovirus (Patel et al., 2008), 4 of 5 studies of children in developing countries hospitalized
for severe sporadic acute gastroenteritis showed that <7.5% had a mixed infection, although a
Peruvian study was an outlier with 24%. It was not stated which organisms were tested for.

A study focusing on diarrheal parasites of hospitalized patients of all ages in Kolkata, India
(A. K. Mukherjee et al., 2009) showed that mixed infections were the norm. 101/147 patients
infected with Giardia and 66/84 patients infected with Cryptosporidium were coinfected with at
least 1 other pathogen. Vibrio cholerae was most commonly (25% of coinfections) associated
with Giardia, and rotavirus and other parasites (33% and 30% respectively of coinfections) were
most commonly associated with Cryptosporidium. E. coli was also identified in 13% of Giardia
and Cryptosporidium cases.
2.4. Asymptomatic infections

Particularly in developing countries, asymptomatic infection with various diarrheal
pathogens is common (Wenneras & Erling, 2004). Asymptomatic infections can be described by
morbidity ratios, i.e., the proportion of infections that yield illness. Morbidity ratios can be
estimated by stool surveys, where a random sample of a community is chosen and one or more
stools from each person is collected and analyzed, regardless of whether the person has diarrhea
or not. Morbidity ratios vary greatly by pathogen and setting; morbidity ratios tend to be lower in
developing countries than in developed countries due to more frequent exposure, since immunity
is often developed to disease rather than infection (R H Gilman et al., 1988; Cravioto et al.,
1990; Valentiner-Branth et al., 2003; A. H. Havelaar et al., 2009).

Because multiple infections and asymptomatic infections with diarrheal pathogens are

common, it is often difficult or impossible to reliably attribute an episode of diarrhea to a



particular pathogen, even if detailed laboratory results are available.
2.5. Burden of diarrheal disease

Diarrheal disease is common throughout the world. It is usually mild and self-limiting in
healthy, well-nourished people in clean environments, but is an exceptionally serious problem
among children in developing countries (World Health Organization, 2008).
2.5.1. Morbidity

In the late 1980s to mid-1990s, it was estimated that children under 5 years of age in
developing countries suffered from a median of 3.2 diarrheal episodes per child-year of life
(Kosek et al., 2003). Children aged 6-11 months were most at risk, with a median of 4.8 episodes
per child-year. Diarrheal risk may vary drastically depending on location and the degree of
(under)development of the community. Age-specific incidences of diarrhea in developing
countries have not decreased from 1955 to 2000, according to three major reviews that were
conducted sequentially during that time period (Jamison et al., 2006). Gamma distributions can
satisfactorily describe the number of episodes per child and the duration of episodes (Schmidt &
Cairncross, 2009); the gamma distribution has a flexible shape (which can resemble a mound
with a long right tail, or a monotonic decrease), and is defined by two parameters.
2.5.2. Mortality

The approximate mortality rate due to diarrhea in children under 5 years of age in
developing countries is 4.9 per 1000 per year (Kosek et al., 2003), for a total of about 2 million
deaths per year (World Health Organization, 2008; Boschi-Pinto et al., 2008). In contrast to
morbidity, mortality due to diarrhea has substantially decreased since the 1950s-1970s, when the
rate was about 13.6 per 1000 per year (Kosek et al., 2003). This trend appears to be continuing,
at least in part due to promotion of oral rehydration solution and other good practices for care of

children with diarrhea (Jamison et al., 2006). However, the relatively constant levels of incidence
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argue that the root problem of diarrheal disease transmission remains to be addressed, and
diarrheal illness is still a major killer of children. In children under 5 years of age, 17% of deaths
are due to diarrhea; for comparison, 17% of deaths are due to pneumonia, and malaria accounts
for 7% of deaths (World Health Organization, 2008).
About 35% of mortality in children under five years of age due to diarrhea is thought to be
from acute diarrhea, 45% from persistent diarrhea, and 20% from dysentery (R E Black, 1993).
Huge disparities are seen when diarrhea mortality is separated by WHO region (Figure

2.1). The situation was worst in Africa by far (World Health Organization, n.d.).

Figure 2.1. Diarrhea mortality by WHO region

Deaths from diarrhea per 1000 population, by WHO region
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World Africa Americas E. Medit. Europe S.E.Asia W. Pacific

WHO region
[02000: deaths/1000 people ®2004: deaths/1000 people m2008: deaths/1000 people

Chart depicts publicly available data (World Health Organization, 2012).

2.5.3.__Disability-adjusted life vears (DALY5s) attributable to diarrhea

Diarrhea morbidity and mortality can also be measured using DALY's per person lost due

to diarrhea (Figure 2.2). DALY describe years of healthy life that are lost to disease, and they
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are used to compare morbidity between widely varying diseases (Murray & A. D. Lopez, 1996).
Africa loses the most DALY's per person to diarrhea, and this increased from 2000 to 2004
(WHO DALY estimates for 2008 were not yet available at this writing). Since diarrheal disease
is often brief and self-limiting, mortality is responsible for nearly all of the DALY's; even though
death is unlikely for a given diarrheal episode, it contributes many DALYs when it occurs
(because fatalities nearly always occur in children, resulting in the loss of many future years of
life). It has been argued that DALY's for diarrhea should consider long-term sequelae of chronic
gastrointestinal infection (e.g., reduced intelligence and reduced physical fitness); this increases
the number of DALY lost to diarrhea by two to six times, depending on the assumptions used
(Guerrant et al., 2002). However, such sequelae are not included in World Health Organization

DALY calculations.
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Figure 2.2. Diarrhea DALYs by WHO region
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2.6. Changes in diarrheal morbidity over time in individuals

Risk for diarrheal morbidity approximately doubles in the 6th-11th month of age, compared
with the first 6 months of life. This is largely because weaning is a critical time for breast-fed
infants, increasing exposure to pathogens; when weaning commences, diarrheal infections and
risk of death increase markedly (Motarjemi et al., 1993).The risk drops off sharply in one-year-
olds and declines gradually thereafter (Bern 1992). Diarrheal mortality is highest in the first year
of life and drops by roughly a factor of 4 among ages 1-4 years (C Bern et al., 1992).

Although immunity to certain diarrheal pathogens can be acquired (e.g., effective vaccines

against rotavirus and polivirus exist), its importance is somewhat unclear. Diarrheal pathogens
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are very diverse, and immunity from one pathogen serotype does not necessarily confer
immunity to other serotypes of the same pathogen. Furthermore, immunity to diarrheal disease
does not necessarily confer immunity to infection (A. H. Havelaar et al., 2009). Infected people
without diarrhea can still shed pathogens and may still suffer important health effects; for
example, children with asymptomatic cryptosporidiosis grow more slowly than uninfected
children (Checkley et al., 1997). Finally, although diarrheal risk decreases as children age, they
are acquiring immunity at the same time that they are learning to behave more hygienically, and
it is unclear whether improved hygiene or increased immunity is more important for preventing
diarrhea.

Evidence for approximately twofold increased risk of a diarrheal episode following
recovery from a previous episode has been found in some datasets; this risk gradually declines
over several weeks (Schmidt et al., 2009). A similar effect with risk declining more than twofold
over about 13 weeks was seen in an observational study in urban Brazil, and remained even after
adjusting for the age at the time of an episode and age upon enrollment in the study (Genser et
al., 2006). This increased risk was only related to the timing of the prior episode, and not to the
number of previous episodes, indicating that relapsing or intermittent symptoms from the same
infection might be the cause (Genser et al., 2006). This general phenomenon has also been
reported from rural Zaire (Tonglet et al., 1999).

2.7. Diarrhea-malnutrition vicious cycle

The evidence on how diarrhea and malnutrition compound each other has been recently
reviewed (Guerrant et al., 2008). Malnourished children tend to suffer more and longer bouts of
diarrheal illness, approximately doubling the amount of time spent ill. This is partially explained
by damage to the absorptive capacity of the small intestine by enteric illness, as well as by

malnutrition itself which further limits the resources available to repair that damage. Even
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asymptomatic gastrointestinal infections appear to compound this feedback loop. However, the
pathophysiology of these relationships is not well understood. Increased burden of enteric
infection in the first 2 years of life is associated with decreased work productivity, earning
capacity, and cognitive impairment in later childhood and adulthood (Guerrant et al., 2008).

Exclusive breastfeeding in children aged < 6 months protects them from malnutrition if
they develop diarrhea, but exclusive breastfeeding cannot be sustained past approximately 6
months of age (Motarjemi et al., 1993). Any breastfeeding is likely to mitigate the effect of
diarrhea on malnutrition; under some circumstances, partially weaned children can have more
diarrhea or slower growth than completely weaned children, which could be due to energy,
protein, or micronutrient deficit from overreliance on breast milk (Tonglet et al., 1999; McDade
& Worthman, 1998).

It is unclear how diarrhea and malnutrition are linked quantitatively. Both of these
syndromes are broad aggregations of many factors. Although many studies have linked
anthropometric measures of malnutrition to increased diarrheal risk, such associations can
disappear after adjusting for age, sex, time of enrollment (seasonal factors), and the caretaker’s
assessment of the child’s growth (Tonglet et al., 1999).

It may be possible to clarify the action of the diarrhea-malnutrition vicious cycle by
calibrating an infection transmission model to data describing changes in diarrhea incidence
among children who frequently suffer from diarrhea. Children who have suffered a recent bout of
diarrhea are more likely to suffer subsequent bouts (Schmidt et al., 2009), and children who are
stunted or wasted due to repeated episodes of diarrhea are also more likely to suffer further from
diarrhea (Guerrant et al., 1992). Increased susceptibility to new diarrheal infections after
resolution of a previous infection might be modeled by an increase in the probability that a single

pathogen causes disease, which is the interpretation of the k parameter in the exponential dose
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response equation (see Equation 3.2, page 98) (Haas et al., 1999). This increase could be
estimated by calibrating a diarrhea transmission model to field data. The duration of time during
which the probability of infection is increased would also need to be specified; it would probably
be greater than the duration of disease, and might occur even for asymptomatic infection.
2.8. Cyclic or recurring changes (‘seasonality’) in diarrhea incidence

The word 'seasonality' is often used to describe regular changes in disease incidence over
time, often on an annual scale. However, seasons themselves are often distal influences on a
more proximal factor such as temperature or humidity that better predicts the ‘seasonal’ effect
(Fisman, 2007). ‘Seasonal’ changes in disease can be tenuously related (or unrelated) to seasons
or climate, such as children coming together at the beginning of a school term leading to
increased measles transmission (Grassly & Fraser, 2006). The obvious nature of seasons might
lead to overattribution of disease fluctuations to them, or failure to measure other potentially
more informative factors (Fisman, 2007). Therefore, seasonality should be considered as regular
changes in disease incidence or prevalence, rather than changes related to particular seasons of
the year.

Seasonality of diarrhea is variable and depends on local climate as well as the organism.
For example, rotaviral disease tends to increase in cooler, drier weather (K. Levy, A. E. Hubbard
& J. N. S. Eisenberg, 2009), while enterotoxigenic E. coli (ETEC) tends to peak at warm, wet
times (Estrada-Garcia et al., 2009). Seasonal effects can differ depending on the community; for
example, a community whose preferred water source dries up during the the dry season might
experience increased diarrhea at that time due to use of poorer quality source water. In other
areas, the onset of the rainy season might increase diarrheal disease for various reasons, such as
rain washing pathogens from land into source water, or relatively poor nutritional status because

food stores from the previous harvest have been depeted (S. Sutra et al., 1990).
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Apparent ‘seasonal’ (or simply oscillatory) cycles can arise in infectious disease models
that include acquired immunity. This can arise from accumulation of susceptible individuals as
they are born, followed by an increase in disease mediated by an increased proportion of
susceptibles, with a subsequent decline in illness until sufficient susceptible individuals are born
(Grassly & Fraser, 2006). Combining this behavior with seasonal factors can lead to complex
dynamics, including chaos (Grassly & Fraser, 2006).

2.9. Crowding (urban vs. rural)

Overcrowding is associated with increased risk of diarrhea, particularly when coupled with
poor sanitation. This phenomenon has been widely reported during military campaigns and in
refugee camps (Lim & Wallace, 2004). Crowding may occur within the household (many people
in a small dwelling) or in the community as a whole (periurban slums). Crowding within
households is easily measured (number of people sleeping in a room or occupying a hut) and is
associated with diarrhea (Chacin-Bonilla et al., 2008); however, the effect of this type of
crowding on diarrhea is likely to be confounded with many other risk factors, such as low
socioeconomic status and malnutrition. The precise effect on diarrheal risk by crowding at the
community level is more difficult to measure, and also difficult to disentangle from other
determinants of diarrheal risk, such as sanitation and malnutrition. Studies comparing diarrhea in
districts that are more or less densely populated but have otherwise similar populations do not

appear to be available in the published literature.

2.10. Bias in epidemiological studies of diarrhea
Many epidemiological studies concerning diarrheal disease have been published. A recent
systematic review (T. Clasen, I. G. Roberts, et al., 2009) of water quality intervention studies

found 68 studies. Unfortunately, methodological problems are frequent in such studies (V. A.
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Curtis & Cairncross, 2003; T. Clasen, I. G. Roberts, et al., 2009). This is partly because of the
challenging nature of research in developing countries: cultural differences, language barriers,
and infrastructure limitations complicate work in these communities. In field trials of
interventions to prevent diarrhea, bias is a serious problem that is difficult to quantify.

There are two broad types of bias that are particularly important in field trials: selection
bias and information bias. Selection bias occurs when people who are selected to participate in a
study are not representative of the larger population that the study is meant to describe (Last,
1995). For example, investigators might choose communities for an intervention trial that they
think would be particularly likely to comply with the intervention; this would increase the
apparent effectiveness of the intervention. Selection bias hinders generalization of results to
larger populations.

In contrast to selection bias, which generally occurs at the beginning of a study and is
unrelated to the experimental groups within a study, information bias refers to informational
error within the experimental groups. There are several types of information bias that are relevant
to field trials. Probably the least serious is nondifferential misclassification bias, where some
participants are in the wrong experimental group. If misclassification is similar in all
experimental groups (hence nondifferential), then the effect size cannot be exaggerated and a
conservative estimate of the effectiveness of an intervention would be obtained (Rothman, 1986).
However, there are many other types of information bias that are more serious because they yield
different effect measurements depending on the experimental group. For example, courtesy bias
may arise when participants tell the experimenters what they think they want to hear; therefore,
users of a HWT device might report less diarrhea, even if the device is completely ineffective.
This might be deliberate or unconscious behavior by the participant. Recall bias could occur if

participants in different groups differ in how they remember (and report) diarrheal episodes; for
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example, presence of a HWT device in the home might prompt frequent consideration of clean
water and diarrhea, and therefore diarrhea might be more completely recalled. Hawthorne
effects, in which participant behavior is influenced by the knowledge that they are being
observed (McCarney et al., 2007), are another type of information bias. This could act similarly
to selection bias by boosting compliance with interventions, but it might also have different
effects by experimental group. For example, recipients of an intervention might receive more
follow-up during the study, which could alter their participation of the study or their perception
of diarrheal illness. Interviewer bias (Last, 1995) can also arise when investigators know which
experimental group they are studying; for example, interviewers might unconsciously interview
control or intervention participants differently because of their expectations about the
effectiveness of an intervention.

Two important strategies to reduce bias are: 1) random assignment to study groups; and 2)
blinding of the study group assignment to the participants (single-blind) or, preferably, to
participants and investigators alike (double-blind) (Hennekens & Buring, 1987). However, these
strategies are often problematic in field trials because the intervention is visually obvious and
cannot be concealed. A meta-analysis of a wide variety of intervention studies indicates that lack
of blinding can exaggerate a protective effect by about 30% (L. Wood et al., 2008). Therefore, an
unblinded study of an intervention that in fact has no effect would be expected to show a relative
risk of about 0.7, which is similar to the effect size reported by many household water treatment
studies (Hunter, 2009).

2.11. Relative contributions of pathogens to diarrheal etiology

Although dozens of different pathogens can cause childhood diarrhea in developing

countries, pathogenic E. coli, rotavirus, norovirus, Shigella, Campylobacter jejuni, Giardia, and

Cryptosporidium are particularly important. They contribute differently to acute and persistent
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diarrhea. Enterotoxigenic E. coli (ETEC), rotaviruses, and noroviruses are particularly important
in acute diarrhea, but enteroaggregative E. coli (EAEC), Cryptosporidium, and Giardia seem
particularly important in persistent diarrhea (Guerrant et al., 2008).

Estimates of the proportion of disease caused by particular pathogens are difficult to
obtain. However, a review (Lanata & W. Mendoza, 2002) of 266 studies from 1990-2002
indicates that pathogenic Escherichia coli, Giardia, and rotavirus are probably the most common
pathogens in community settings worldwide (Figure 2.3). Rotavirus is remarkable for the large
numbers of inpatient and outpatient visits attributed to it; in contrast, Giardia accounts for few
outpatient and inpatient cases compared to community cases. Coinfections and diarrheal illnesses

of unknown etiology accounted for a large proportion (25-35%) of all cases.

Figure 2.3. Estimated etiology of childhood diarrhea worldwide
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Examination of four WHO subregions (AfroD, AfroE, AmroB, and SearoD) which had

20



five or more community studies covering a wide array of pathogens showed reasonably
consistent proportions of disease attributable to bacteria, protozoa, and viruses. Considering
cases where an etiology was identified, the proportion of cases where bacteria are isolated is
approximately 60% in those four regions (Lanata & W. Mendoza, 2002). Protozoa accounted for
16-34%, and rotavirus accounted for 9-22%. However, since only rotavirus was included, the
contribution of viruses is probably underestimated. Also, it was common for no pathogen to be
isolated (30-55% of cases in those four regions).

There are limitations to the Lanata and Mendoza (2002) review; in particular, the studies
examined might not be representative, since investigators may have chosen to work in regions
with known problems or on their particular pathogen(s) of interest. Pathogens that are more
difficult to detect might be underrepresented.

A more recent review (Abba et al., 2009) examined the etiology of persistent diarrhea
(lasting >14 days) in young children (age ranges varied, but all were under six years), using four
studies from Bangladesh, six from India, five in Central & South America, two in Zambia, one in
Thailand, and one in Viet Nam. Overall, pathogenic E. coli was found in 31%-41% of children
with persistent diarrhea, and in 22%-30% of children without diarrhea. Rotavirus, enteric
adenovirus, Campylobacter, Salmonella, Vibrio cholerae, enterohemorragic E. coli (EHEC),
Giardia, Cryptosporidium, and Entamoeba were all found, but at 10% or less.

Much less information is available concerning the etiology of diarrhea in people older than
five years. Although a recent review (Fischer Walker et al., 2010) found 22 studies, 15 were
inpatient and 7 were outpatient. Of the outpatient studies, only two of them studied more than
one pathogen. Only one study was community-based, and it examined ETEC only. Information
about asymptomatic infection in older children and adults is similarly lacking, and information

about coinfection was usually absent (Fischer Walker et al., 2010). However, the outpatient
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studies indicated similar proportions of diarrhea attributable to bacteria, protozoa, and viruses as
the community studies described in Lanata and Mendoza (2002): 60%, 21%, and 19%,
respectively (Fischer Walker et al., 2010).
2.12. Survey of diarrheal pathogens

Common pathogens causing endemic diarrhea are discussed below, with particular
reference to developing countries. Rotavirus, diarrheagenic E. coli, and Giardia are given special
attention because they are used as model organisms in the simulation models in chapters 3, 4,
and 5 of this dissertation. Numerous parameters are used to describe these organisms' behavior in
the models; they are briefly mentioned here, but are described in detail in the appendix.

2.12.1. Viral diarrheal pathogens

A wide variety of enteric viruses are known to cause diarrhea. In general, they are small
(25-100 nm) nonenveloped RNA viruses that are environmentally stable, although they are

usually vulnerable to chlorine. The combination of flocculation/sedimentation and chlorination in
standard water treatment usually reduces enteric viruses by four log; or more. Due to their small

size, they cannot be removed by most filtration methods.

Rotavirus and norovirus (formerly known as Norwalk virus) appear to be most important
with regard to diarrhea. Among hospital-based studies of children in 11 different developing
countries, rotavirus prevalence was 34.9% on average, and calicivirus (the family that includes
norovirus) prevalence was 10.3% on average, while adenovirus accounted for 6.3% and
astrovirus for 3.5% (Ramani & Gagandeep Kang, 2009). It is unclear whether these proportions
also apply to disease in the community setting. Both rotavirus and norovirus tend to cause more
severe disease than other enteric pathogens (Ramani & Gagandeep Kang, 2009), they are both

highly potent with extremely high shedding, and they are responsible for high proportions of
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severe childhood diarrheal illness in developing and developed countries, with 12% due to
norovirus (Patel et al., 2008) and 33% due to rotavirus (Cook et al., 1990). Norovirus also
accounted for 12% of mild to moderate diarrheal illness in all ages (Patel et al., 2008).
Rotavirus

Transmission and ecology

Rotavirus is primarily transmitted by the fecal-oral route but may also be transmitted
person-to-person, and in some circumstances it might be inhaled (Heymann, 2004). Although
improved santitation and hygiene greatly inhibit transmission of many other diarrheal pathogens,
rotavirus generally infected all children before four years of age in both developing and
developed countries before rotavirus vaccine was available (Cook et al., 1990).

Although there are several different serotypes of rotavirus, allowing repeated infection,
risk of further episodes declines with each additional episode, and the severity of subsequent
episodes also declines (Velazquez et al., 1996).

Rotavirus disease is strongly seasonal in temperate regions, peaking in the winter in the
Americas and in spring or fall in other areas, but is seen year-round with less seasonal change in
tropical regions (Cook et al., 1990). Even within tropical areas, however, rotavirus incidence
tends to be higher under cooler and drier conditions, although there is much heterogeneity (K.
Levy, A. E. Hubbard & J. N. S. Eisenberg, 2009). It is not clear why this is, but drier conditions
might facilitate airborne suspension of droplet nuclei and promote inhalation of rotavirus, and
differing sanitary conditions and episodic local events (such as floods) likely modify any effect
of humidity or temperature (K. Levy, A. E. Hubbard & J. N. S. Eisenberg, 2009).

Dose response

Rotavirus is extremely potent, with an IDs( of approximately 6 focus-forming units (FFU)

(Anon, 2012) as measured in a human feeding study (Ward et al., 1986).
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Symptomology

The incubation period for rotavirus infection is short, 1-3 days (Blaser et al., 2002).
Rotavirus disease consists of fever, vomiting, and watery diarrhea; fever and vomiting usually
last 2-3 days, while diarrhea may continue for 8 days. However, rotavirus infection is frequently
asymptomatic; approximately 60% of young rural children who were shedding rotavirus in
Guinea-Bissau, Mexico, and Argentina did not have diarrhea (Cravioto et al., 1990; Vergara et
al., 1996; Fischer et al., 2002).

Burden of disease

Rotavirus is responsible for about 6% of diarrhea cases in children aged less than five
years in the developing world and 20% of the childhood diarrhea deaths according to a review
(de Zoysa & Feachem, 1985) of 7 studies from the early 1980s. A subsequent review (Parashar et
al., 2003) of studies published from 1986 to 2000 yields a similar estimate of rotavirus
involvement in 8% (IQR 4 to 12) of in-home cases for children under five years of age, and
approximately 20% for outpatient and inpatient cases. Approximately 20% of diarrhea deaths in
low-income countries were due to diarrhea, similar to the earlier estimate. This corresponded to a
1/205 risk of dying from rotavirus by age 5 years, compared to a 1/49,000 risk in high-income
countries (Parashar et al., 2003). The proportion of severe diarrheal disease attributed to rotavirus
has increased over time (Harry B Greenberg & Mary K Estes, 2009). This may be because of
reductions in diarrhea caused by other pathogens; high shedding and high potency means that
rotavirus is particularly difficult to control (Harry B Greenberg & Mary K Estes, 2009).

Persistence in the environment

Rotavirus resists inactivation in the environment. On aluminum or ceramic at 4°C or 20°C
in high or moderate relative humidity, approximately 90-99% is inactivated within the first week,

but further inactivation is much slower; even at 60 days approximately 1% of the original
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amount of virus remained (Abad et al., 1994).
Control

Rotavirus disease is very difficult to control due to high levels of shedding and its
extremely low IDsg( of ~6 virions (Anon, 2012). Two live-virus vaccines have been developed,

RotaTeq and Rotarix, which are both highly effective: 74% against diarrhea and 100% against
severe diarrhea for RotaTeq, and 95% against severe diarrhea for Rotarix (Harry B Greenberg &
Mary K Estes, 2009). It is unclear whether these vaccines will be as effective in severely
underdeveloped environments, although trials are underway (Harry B Greenberg & Mary K
Estes, 2009). Before rotavirus vaccine was available, rotavirus generally infected all children
before the age of four years in both developing and developed countries (Cook et al., 1990).
Correct use of oral rehydration solution (ORS) in diseased children is very effective in
preventing rotavirus mortality (Blaser et al., 2002).

Norovirus

Transmission and ecology

Norovirus is highly potent and is shed in large quantities by infected individuals, and it can
easily be transmitted by person-to-person contact as well as by contaminated food or fomites
(Mattison, 2011).

A substantial fraction of the population lacks a receptor necessary for infection with
Norwalk virus (the first norovirus discovered); these 'secretor-negative' (Se-) individuals appear
innately immune (Lindesmith et al., 2003). In a study population of 77 individuals (49% male,
71% white, 23% black) 28.6% were Se- (Lindesmith et al., 2003). It is unclear how much Se+/-
status varies among human populations. Even if an individual is Se+, they may still be resistant

due to acquired immunity, if they have been exposed to norovirus previously. However,
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noroviruses are diverse, and important characteristics of immunity (duration and cross-protection
among strains) are poorly understood (Lindesmith et al., 2003); furthermore, acquired immunity
following norovirus infection only lasts a few months, after which a previously infected
individual can be reinfected by the same serotype (Carter, 2005).

Peak shedding of norovirus occurred during (31%) or after (69%) disease in 16
experimentally infected volunteers, at approximately 7x1010 genome copies / mL of stool
(Atmar et al., 2008). Virus was detectable for 1 to 9 weeks in stool; however, peak levels only
lasted for one to three days (Atmar et al., 2008). The duration of illness and the incubation period
both averaged two days (Atmar et al., 2008).

Dose response

Like rotavirus, norovirus appears highly potent; however, dose response relationships are
inconclusive. Although some dose response models have been published (Peter F M Teunis et al.,
2008), much of the data used came from feeding studies using viral stocks that had been stored
for long periods and were highly aggregated. The extent to which noroviruses are naturally
aggregated in the environment is unclear.

Symptomology

Norovirus disease is unpleasant, but relatively mild and seldom dangerous (Blaser et al.,
2002). It has an incubation period of about two days, and lasts about two days (Atmar et al.,
2008). Vomiting or diarrhea may onset suddenly; however, the extent of these symptoms varies
greatly among diseased persons (Blaser et al., 2002).

Burden of disease

Norovirus had been primarily considered an epidemic gastroenteritis, but evidence is
mounting that it is an important cause of sporadic gastroenteritis as well. The annual incidence of

norovirus disease in children less than 5 years of age in developing countries is approximately
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197 inpatient cases per 100,000 (Patel et al., 2008). This figure was 118 in industrialized
countries; by contrast, the incidence of outpatient cases was estimated to be 1665 per 100,000
(Patel et al., 2008). It is unclear what the outpatient or community-level incidence would be in
developing countries but it is likely to be substantially larger than the inpatient incidence.

Persistence in the environment

Norovirus is very stable in the environment, although disinfection studies commonly use
surrogate caliciviruses because it is not currently possible to grow human norovirus in cell
culture (Mattison, 2011).

Control

Good hygiene and disinfection practices are essential. No vaccine is available.

2.12.2. Bacterial diarrheal pathogens

Many different bacteria can cause diarrheal illness, including numerous species and strains
from the genera Salmonella, Vibrio (notably Vibrio cholerae, the cause of cholera), Clostridium,
Streptococcus, Yersinia, and Bacillus. However, pathogenic Escherichia coli and Campylobacter
appear to be responsible for particularly large shares of bacterial diarrhea (Figure 2.3, page 20),
and these are discussed in detail below.

Pathogenic Escherichia coli

Important pathotypes of E. coli

Escherichia coli usually resides in the mammalian large intestine, benefiting itself as well
as the host. However, there are several well-established pathotypes of diarrheagenic E. coli
(Kaper 2004, Nataro 1998). With respect to diarrhea, the most important are enteropathogenic E.
coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroinvasive E. coli (EIEC), all of which
produce watery diarrhea. Although enterohemorrhagic E. coli (EHEC) is much more potent than

EPEC, ETEC, or EIEC and can cause severe or lethal disease, EHEC is relatively uncommon,

27



and is not a major cause of diarrhea. Shigella species are highly potent, like EHEC, but they are
less dangerous, although they are an important cause of dysentery; Shigella are very closely
related to E. coli, and are probably technically conspecifics (James B Kaper et al., 2004).
Although EIEC is the E. coli pathotype most closely related to Shigella, EIEC is much less
potent (Blaser et al., 2002; Anon, 2012).

Transmission and ecology

Shedding of ETEC may vary by strain. For E. coli H10407, the geometric mean number of
bacteria per gram of feces was 4.03x107, and it did not differ greatly whether subjects were
symptomatic or not (Levine et al., 1980). For E. coli 214-4, the geometric mean was 5.23x108,
over tenfold higher (Levine et al., 1980).

ETEC can often be detected in apparently healthy people. In developing countries among
healthy 0-11 month olds, and 1-4 year olds, 11.7% and 7.1%, respectively, are estimated to be
colonized with ETEC (Wenneras & Erling, 2004).

ETEC disease tends to be more prevalent in warm, wet weather, which aids its
multiplication in the environment (Qadri et al., 2005; J P Nataro & J B Kaper, 1998). In
Bangladesh, its seasonality is similar in shape and magnitude to that of cholera, with one peak at
the beginning of the hot season (spring) and another in autumn just after the monsoons, when
more fecal material is entering surface water (Qadri et al., 2005).

A household-level case-control study (R E Black et al., 1981) of ETEC was conducted in
the rural Matlab area of Bangladesh. Extensive culturing of water, food, domestic animals, and
family members was carried out. Compared with households testing negative for ETEC, risk of
infection was only slightly higher (10.0% vs. 8.3%) in households where a water source or a

domestic animal was positive for ETEC. In contrast, risk of infection increased 3.5 fold, to
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29.0%, among households for which ETEC was found in stored water or cooked food,
highlighting the importance of exposure within the household. Within households having an
infected member, the proportion of household contacts becoming infected, and the proportion of
those infected contacts actually acquiring disease, declined with age. This is consistent with
development of immunity, since contamination of food and water within the household indicates
that all members are likely to be similarly exposed.

Dose response

Pathogenic E. coli is much less potent than the other pathogens described in this chapter.

Many studies with human volunteers have used disease as the outcome, and their ID5s range
from 2x105 to 1x108. The only available experiment with infection as the outcome used EIEC

(H L DuPont et al., 1971) and had an IDs of 2x106 CFU (Anon, 2012)

Feeding studies of ETEC or EPEC in healthy volunteers typically give 2-3g of NaHCOs,

which neutralizes stomach acid and reduces the infectious dose (Levine et al., 1977). However, it
has been suggested that food as a vehicle would have a similar acid-neutralizing effect (Levine et
al., 1977). ETEC and EPEC do not appear to be transmitted person-to-person, partly because of
their low potency; a study of ETEC-infected volunteers co-housed with uninfected volunteers did
not result in any transmission of infection (Levine et al., 1980). Food was all served individually
to the volunteers over the course of the experiment, so there was no opportunity for ETEC to
spread via that route (Levine et al., 1980).

Symptomology

ETEC disease generally consists of watery diarrhea without fever, although its severity can
vary widely, depending partly on the set of toxins that the strain is carrying (Blaser et al., 2002).

The incubation period lasts from one to two days (Blaser et al., 2002), and ETEC diarrhea in 11
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experimentally infected adult volunteers lasted 82.1 (SD 50.7) hours, with 12.0 (SD 9.29) stools
over the course of the illness (R E Black et al., 1982). These were compared with other
volunteers who were treated with antibiotics; immediate treatment cut diarrheal duration, stool
volume, and hours ill by half.

EPEC disease can be more severe than ETEC, and there are many documented examples
of lethal epidemics in children (Blaser et al., 2002). However, experimental infections in adult
volunteers showed a relatively mild syndrome of less than two days of watery diarrhea after an
incubation period of less than 1 day (Blaser et al., 2002).

Burden of disease

In a recent review (Abba et al., 2009), pathogenic E. coli was by far the most common
pathogen isolated from children with persistent diarrhea in various developing countries; it was
detected in 31% to 41% of children, compared to <10% for other pathogens. Pathogenic E. coli
also predominated similarly among pathogens isolated from asymptomatic cases (Abba et al.,
2009).

Enterotoxigenic Escherichia coli (ETEC) is the most common type of diarrheagenic E.
coli (Qadri et al., 2005). It is probably also the most common cause of childhood diarrhea in the
developing world, responsible for approximately 1/7 of diarrheal episodes in children aged less
than 1y and almost % of diarrheal episodes in 1-4 year olds (Wenneras & Erling, 2004). It can
also cause severe dehydrating cholera-like disease in adults (Qadri et al., 2005). Diagnosis is
complicated since many other Gram-negative bacteria produce similar toxins, so both toxins as
well as the E. coli bacterium must be tested for in order to yield accurate results (Wenneras &
Erling, 2004).

Persistence in the environment

Laboratory studies of E. coli in unfiltered river water in the dark indicate exponential
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decay at a rate of 1.15 day-! (in water taken from above a sewage outfall) to 0.64 day-! (in water
from below a sewage outfall) (Flint, 1987). Filtering or autoclaving the water before adding E.
coli enhanced survival (Flint, 1987). A summary of inactivation rates of E. coli published by
other workers indicates high variability, spanning over 2 orders of magnitude (0.009 to 2 days-1)
at 15-20°C (Pond et al., 2004).

Control

In addition to sanitation and hygiene, proper food preparation and handling (particularly of
weaning foods), is important (Motarjemi et al., 1993). ETEC vaccines are being actively
researched (Harro et al., 2011).

Campylobacter species

Transmission and ecology

In humans, Campylobacter jejuni and, less commonly, Campylobacter coli can cause
gastroenteritides (A. H. Havelaar et al., 2009). Although Campylobacter can be spread by
contaminated food and water, campylobacteriosis is mainly a zoonosis, being primarily
associated with the gastrointestinal tract of birds, especially poultry (Dechesne et al., 2006).
Campylobacter does not grow in water and (like E. coli) are an indicator of post-treatment
contamination in water distribution systems. However, immunity appears to protect against
disease rather than infection, and asymptomatic shedding is common (A. H. Havelaar et al.,
2009). In a comparison of Mexican children aged less than four years and Swedish patients (ages
not given), Swedish patients tended to carry only one Campylobacter serotype, while mixed
serotypes were carried by 42% of Mexican children tested (Sjogren et al., 1989).

Campylobacter epidemiology varies greatly between the developed and underdeveloped
world, probably due to development of immunity early in life. Illness is rare after about five

years of age in developing countries, but occurs among adults in industrialized countries,
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probably because they avoided exposure (and therefore immunity) in childhood (A. H. Havelaar
et al., 2009).
Dose response

In human volunteers, C. jejuni has an ID5 of approximately 900 CFU (R E Black et al.,

1988; Anon, 2012). Neutralization of stomach acid by food or sodium bicarbonate could increase
its potency (Miliotis & Bier, 2003).

Symptomology

Campylobacter can cause acute self-limited watery diarrhea lasting 2-6 days in healthy
humans with an incubation period of about three days (range of 1-7 days), often with fever and
nausea, but seldom with vomiting (Miliotis & Bier, 2003). In developing countries,
campylobacteriosis is typically a disease of very young children; after about age two years,
immunity has been acquired (A. H. Havelaar et al., 2009).

Burden of disease

Campylobacter is a substantial contributor to childhood diarrhea in developing countries;
although it might not generally contribute as much morbidity as diarrheagenic E. coli (Blaser et
al., 2002). Illness is rare after early childhood, due to development of immunity from early
infections.

Persistence in the environment

Campylobacter survival increases with decreasing temperature, and it may survive for
weeks in water samples in the laboratory at 4-10°C (Buswell et al., 1998). It is vulnerable to acid
(although it can pass through the stomach if protected by food), but it can tolerate freezing (1-2
LRVs by freezing and thawing) and salting (about three weeks in 6.5% NaCl at 4°C) (Miliotis &
Bier, 2003).

Control
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Limiting contact with bird feces and proper preparation of meat and eggs is important. It is
somewhat unclear how best to manage household poultry to limit Campylobacter infection in
developing countries. A randomized trial (Oberhelman et al., 2006) of chicken corralling in a
Peruvian periurban community showed similar incidences (about three infections per person-
year) of asymptomatic infections in children less than six years of age between households with
corrals and households without. However, it also found 1/3 higher incidence of diarrhea in
general and twofold higher incidence of symptomatic Campylobacter infection in households
with corrals.

2.12.3. Protozoan diarrheal pathogens

Protozoa are more difficult to culture than bacteria. However, they are larger, and are
generally detected and counted under the microscope once they have been concentrated and
stained with immunofluorescent dyes. They are more easily filtered from water due to their size,
but tend to be more resistant to chlorine and are more potent than many bacterial pathogens.
Cryptosporidium is used as a de facto standard for evaluating water filtration since it is smaller
(5 microns) and more environmentally resistant than Giardia; if Cryptosporidium is
undetectable, Giardia should be as well (American Water Works Association, 1999).

Cryptosporidium parvum and Cryptosporidium hominis

Transmission and ecology

Cryptosporidium belongs to the phylum Apicomplexa and reproduces both sexually and
asexually in the intestinal tract, where it is an obligate intracellular parasite. It has a broad host
range, occurring in most (perhaps all) vertebrates, but it does not cause diarrhea in adult dogs,
cats, or horses, perhaps meaning that these animals are low risk for transmission to humans. Its
oocysts are the infective stage, which are transmitted by the fecal-oral route. Infections in

ruminants seem to be the biggest source of environmental contamination (Miliotis & Bier, 2003).
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Cryptosporidium hominis appears to only infect humans; it was recently shown to be a
separate species from Cryptosporidium parvum, which primarily infects cattle but can also infect
humans (Hunter & R. C. A. Thompson, 2005). Many other species of Cryptosporidium exist, but
do not appear to infect humans (Hunter & R. C. A. Thompson, 2005).

Cryptosporidium is an intracellular parasite within epithelial cells in the small intestine,
which shields it from the host immune response and limits the effects of chemotherapies
(Miliotis & Bier, 2003).

Dose response

Several dose response datasets are available for C. parvum infection in humans. They

provide IDs s ranging from 12 to 455 oocysts (median 165) (Anon, 2012). The two largest

datasets (8 doses each) fit the exponential dose response equation, with ID5ps of 165 and 132

oocysts (H L DuPont et al., 1995; Messner et al., 2001; Anon, 2012). Only one feeding

experiment has been done with C. hominis in humans (Cynthia L. Chappell et al., 2006); the
response measured was disease (rather than infection), and the IDsy was 17 oocysts (Anon,

2012). Therefore C. hominis may be roughly 10 times more potent than C. parvum in humans.

Symptomology

Cryptosporidiosis had a mean incubation period of 5 days and lasted for a mean of 6 days
in 13 volunteers experimentally infected with C. hominis (Cynthia L. Chappell et al., 2006). It is
generally short and self-limited, causing watery diarrhea in healthy people, but is particularly
dangerous to people with AIDS because there is no effective treatment (Miliotis & Bier, 2003).
This can lead to infections lasting months or years, with severe damage to the gut. Infections can
often be asymptomatic in apparently healthy children and adults (Blaser et al., 2002). Disease

duration can be substantially longer in malnourished developing-country children compared with
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people in industrialized countries; mean diarrhea durations of 21 and 13 days have been reported
for C. hominis and C. parvum, respectively, in children under five years of age in a Brazilian
shantytown (Bushen et al., 2007).

Burden of disease

Although Cryptosporidium is ubiquitous throughout the world (Blaser et al., 2002),
cryptosporidiosis prevalence is relatively high (20-27%) (Miliotis & Bier, 2003) in children in
certain underdeveloped contexts. However, it causes little or no symptomatic disease in older
children and adults in developing countries.

Persistence in the environment

Cryptosporidium oocysts are about 5 microns in diameter, and are generally even hardier
than the durable cysts of Giardia. Oocysts are inactivated more quickly at warmer temperatures
(Erickson & Ortega, 2006). Ultraviolet light is effective, yielding 1 to 5 LRV's depending on the
strain and the type/intensity of UV (Erickson & Ortega, 2006). They can survive for months in
cold lakes or streams. They are highly resistant to chlorine. They can be inactivated by heat
>64.2°C for 2+ minutes, or drying at 18-28°C for >4h.

Control

Effective control of Cryptosporidium is generally achieved in municipal drinking water
treatment by filtration yielding nonturbid water (< 1 NTU) (USEPA, 2012). No effective anti-
cryptosporidial medications exist. HWT is particularly important for HIV-infected people to
strictly limit exposure to Cryptosporidium in drinking water, even in industrialized countries.

Giardia species

Transmission and ecology
The currently accepted name for the Giardia species that primarily affects humans is

Giardia duodenalis, although many papers refer to it as G. lamblia or G. intestinalis. Even within
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G. duodenalis, certain assemblages are generally restricted to humans, and earlier beliefs that
giardiasis is a single zoonosis now appear to be incorrect (Caccio et al., 2005). Assemblages
within G. duodenalis may later prove to be separate species (Caccio et al., 2005).

G. duodenalis is a flagellated protozoan that attaches to the small intestinal wall and
absorbs nutrients from the gut lumen. Shedding of cysts varies greatly over time (0 to 2.5x107
cysts/g of feces), even within the same symptomatic individual (Porter, 1916). Because of this,
diagnosis is often based on three specimens collected over several days (Miliotis & Bier, 2003).

Reinfection with Giardia following drug treatment can be extremely rapid; 98% of 44
Peruvian children who were treated had reacquired infection within 6 months (R H Gilman et al.,
1988). Immunity is to symptomatic giardiasis, rather than to Giardia infection.

Dose response

Giardia is a potent pathogen, with an IDs of 35 cysts based on a human feeding study; it

fits the exponential dose response function (Rendtorff, 1954; Anon, 2012).

Symptomology

Giardiasis often presents with diarrhea and flatulence, with foul-smelling foamy stools
(Miliotis & Bier, 2003). In a study of experimentally infected humans (Rendtorff, 1954), it had a
mean incubation period of 14 days; the mean duration of infection was 18 days, not counting two
participants whose infection lasted > 100 days but did not shed during much of that time.
Giardia infection is noninvasive, but can lead to villous atrophy and nutrient malabsorption
(Miliotis & Bier, 2003)

Partial immunity appears to develop, and infections are often asymptomatic (Miliotis &
Bier, 2003); reports exist of 3% of infections being symptomatic among fathers and their

children in Pakistan (Ensink et al., 2006) with a similarly low symptomatic proportion in urban
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Brazilian 6-45 month olds (M S Prado et al., 2005). However, a report (Peréz Cordon et al.,
2008) from a periurban area of Peru with poor sanitation describes 60% of infections among
children aged 1 month to 9 years as being symptomatic.

Burden of disease

Giardia infection is common (prevalence of 2-5%) in the developed world but is 20%-30%
prevalent elsewhere; some communities have been documented with much higher prevalences
(Blaser et al., 2002). Weaned children are more susceptible than adults; prevalence declines
somewhat after adolescence (Blaser et al., 2002). Since asymptomatic infections are so common,
the true health impact of Giardia remains unclear.

Persistence in the environment

Pooling data from two studies (Wickramanayake et al., 1985; deRegnier et al., 1989) yields
an estimate of inactivation at a rate of 0.55/day in water at 20°C. Cysts degrade more quickly in
soil or cattle feces than in water (Olson et al., 1999). The cysts do not tolerate freezing (Olson et
al., 1999).

Control

Effective water treatment and good hygiene limit Giardia transmission. In addition, several
curative chemotherapies for Giardia infection are available (Blaser et al., 2002).

2.12.4. Metazoan pathogens (helminths)

Intestinal tapeworms or roundworms can aggravate the diarrhea-malnutrition vicious cycle,
although light infections are thought to have negligible nutritional consequences. Worms
themselves do not appear to cause much diarrhea (Hall et al., 2008). In addition, poor sanitary
conditions are likely to simultaneously lead to infection with helminths and diarrheal pathogens.
An observational study (Genser et al., 2006) in an urban Brazilian area with poor sanitation

tested children once for Ascaris lumbricoides, Trichuris trichiura, and Giardia species, finding
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that only Giardia was associated with diarrhea incidence.
2.13. Interventions to prevent transmission of diarrheal pathogens

Diarrheal infections nearly always have a major fecal-oral component to their transmission,
and this is the major target of interventions to control diarrhea. Nonetheless, many different types
of interventions are being used and investigated throughout the world. Unfortunately, it is
difficult to ascertain how effective most of these interventions are in actual practice.
2.14. Effectiveness trials of interventions

The scientific literature is replete with results of effectiveness trials of various
interventions in developing countries, with some assessing multiple interventions used
simultaneously. In general, these trials usually take place over a few weeks or months, or perhaps
a full year. They frequently show diarrheal disease reductions of approximately 30%, regardless
of the type of intervention. Although children under 5 years of age are usually studied because
they bear the greatest morbidity and mortality, other groups (all ages, <15 years of age, <3 years
of age, etc.) are sometimes studied. Effectiveness may be measured with incidence ratios
(number of new cases) or prevalence ratios (the number of persons infected at a given time);
these two measures may differ because incidence and duration of illness are not tightly linked
(Schmidt et al., 2009). Unlike clinical trials for determining drug effectiveness, intervention trials
in communities are seldom blinded and may not be randomized, which can lead to bias.
However, practical considerations (e.g., obvious visibility of intervention materials, expense of
conducting research in multiple communities) make clinical trials of community interventions
impractical.

2.14.1. Measures of effect in intervention trials

Field trials of interventions commonly use some type of risk ratio to describe the

effectiveness of the intervention. Many different measures of risks are used, with corresponding
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risk ratios (RRs; also called relative risks), in which the risk in an intervention group is divided
by the risk in a control group. An RR of 1 generally indicates no effect, while an RR < 1 suggests
that the intervention prevents disease, and an RR > 1 would mean that there was more disease in
the intervention group than in the control group. In general, the preventable fraction (PF) is given
by 1 — RR, and describes the proportion of disease that the intervention prevents. Brief
descriptions of common types of risk follow.

Point prevalence (sometimes simply called prevalence) is the proportion of people who are
affected at a single point in time. Its relative risk measure is the prevalence ratio (PR). Since the
amount of diarrhea present in communities can vary greatly over time, point prevalence is not a
very good measure of risk.

Incidence (sometimes called 'incidence rate') is the number of new cases of a disease that
arise in a population over a period of time (often expressed in terms of 1 year). Its relative risk
measure is the incidence ratio (IR).

The longitudinal prevalence (LP) is the number of person-days affected, divided by the
number of person-days observed. Person-days are the product of the number of people observed
and the mean time of observation per person. Its relative risk measure is the longitudinal
prevalence ratio (LPR).

The odds is the number of instances where the disease occurred divided by the number of
instances where the disease did not occur. Its relative risk measure is the odds ratio (OR). Odds
are often used in case-control studies where the association of a particular factor with disease is
being assessed.

All of these measures of risk are specific to a particular population (such as a particular age
group studied in a certain community). The risk of diarrhea in general may be measured, or the

risk of infection or diarrhea from a particular pathogen.
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Although the primary goal of interventions is to lower the risk of diarrheal disease, it is
also useful to measure the antimicrobial effectiveness of these interventions. If an intervention

cannot remove microorganisms in the laboratory, there is no reason to conduct a field study of

that intervention to assess its impact on diarrheal disease. The log;( reduction value (LRV) is

often used to assess water treatment methods; it is calculated by taking the log;( of the number
of a certain microorganism detected in a certain volume of treated water, and subtracting the
log;( of the number of those microorganisms detected in treated water. Thus, an LRV of 1

removes 90% of microorganisms; an LRV of 2 removes 99%, and so on. Very high LRVs (5 or
more, 99.999% reduction; see Table 2.1, page 64 for examples) are often desirable because some
pathogens are both extremely infectious and extremely abundant; thus it might be necessary to
eliminate nearly all of a pathogen in order to reduce risk to an acceptable level. If the LRV is low
(< 2), antimicrobial effectiveness is sometimes described as a simple percentage of a certain type
of microorganism removed or inactivated.

2.14.2. Nature of bias in intervention trials

Effectiveness of interventions as measured by trials is likely to be higher than effectiveness
in actual practice for several reasons:
* The intervention may be discontinued by the population after the study is completed and

the investigators depart from the community.

©  Cost to families or the community (in time or money) may become prohibitive
(Stockman et al., 2007).

o The population may not believe that the intervention is worthwhile, or the
intervention may not be culturally appropriate (Paul, 1955)

© The community might fail to maintain the intervention in good working order because
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they lack the necessary skills, equipment, or money; or maintenance may simply be
forgotten.
* Blinding is difficult or impossible to implement in community-based trials (B. F. Arnold

& Colford, 2007), which can introduce bias:

o Respondents, knowing that they are receiving an intervention, may consciously or
unconsciously underreport diarrheal illness, or comply more effectively with the
intervention, e.g., the Hawthorne effect, or ‘courtesy bias’ (Luby et al., 2006).

o Investigators’ observations may be biased by their expectation that the intervention
will be effective.

* Surveys themselves can alter behavior:

o Question-behavior effects: the survey causes the respondent to think about the topic
more deeply than usual, potentially changing the response or the behavior
(Spangenberg et al., 2008). Question-behavior effects may themselves be altered, for
example, by differing frequency of surveying (Zwane et al., 2011).

* The investigators conducting a trial may themselves introduce bias:

o A trial showing high efficacy might be more likely to be published than a trial that
shows little/no efficacy (publication bias) (Hunter, 2009).

o Investigators receiving outside funds may (consciously or unconsciously)
preferentially report findings that are aligned with the funder’s desires. This may
occur through publication bias or through other means.

Bias might also lead to understatement of effectiveness. For example, a family that has
poor hygiene practices might nonetheless report regular handwashing because it is a socially

desirable answer. In a hygiene education trial, this would overestimate apparent handwashing in
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the absence of an effect on disease, understating effectiveness of the intervention.

Although bias is seldom quantified, a recent meta-epidemiological study (L. Wood et al.,
2008) compared a wide variety of intervention studies (e.g., caesarian sections, smoking
cessation, cancer treatment outcomes, etc.) with good/poor blinding to determine how these
factors influence the reported effect of an intervention. When considering trials with subjectively
reported outcomes, comparison of 104 unblinded trials with 205 blinded trials showed that
unblinded trials tended to have odds ratios that were 25% lower (indicating a bias toward greater
perceived effectiveness) compared to blinded trials (L. Wood et al., 2008). There was a similar
effect regarding proper randomization of participants to treatment groups (allocation
concealment). However, unblinded trials with objective outcomes did not show evidence of bias
(L. Wood et al., 2008). This would seem particularly relevant to interventions to prevent diarrhea
in developing countries since diarrhea reporting can be highly subjective, although such
interventions were not the focus of this meta-epidemiological study.

A few trials report on microbiological outcomes, such as the log reduction of
microorganisms attained by a particular water treatment method. However, most trials consider
reduction of a diarrheal syndrome as the main outcome, without reference to particular
pathogens. Since the ultimate goal of an intervention is to improve health, and it is easier to
measure symptoms in people than to identify pathogens in feces, disease outcomes tend to be
preferred in the literature.

2.15. Compliance with interventions, and long-term sustainability

Compliance with an intervention refers to the extent that people or communities actually
use an intervention. It is often measured in terms of the proportion of people who are using (or
claim to use) an intervention at a particular time. The word 'adherence' is sometimes used in

place of compliance (Aronson, 2007). Sustainability is a related concept that refers to
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maintenance of an intervention in a community over many years (essentially forever) without
outside assistance, and it is notoriously difficult to attain (Shediac-Rizkallah & Bone, 1998).
Compliance is necessary, but not sufficient, for sustainability. An intervention that people comply
with and initially seems sustainable may become unsustainable if conditions change, such as
deterioration of the infrastructure, economy, environment, or political situation.

Household water treatment (HWT) trials tend to be short, rendering sustainability
unmeasurable; only 4 of 35 household interventions reviewed (T. Clasen et al., 2007) lasted one
year or more, while 4 of 6 trials of interventions at the water source lasted three or more years.
These water source interventions included well digging and installation of public taps, and did
not include connection of individual households to the water distribution network (T. Clasen et
al., 2007).

2.15.1. Costs of compliance (monetary and otherwise)

Monetary cost to the user is a key issue in compliance, and this is somewhat controversial.
Some nonzero price, however small, may reduce waste since families willing to use the
intervention would presumably also be willing to pay for it. Establishment of local for-profit
businesses that sell interventions (such as HWT devices) are likely to be sustainable if they are
profitable (Joe Brown et al., 2007); however, even seemingly tiny prices (e.g., $0.08/month) can
impede compliance among very poor people (Stockman et al., 2007). It is also often politically
difficult to allot government resources to marginalized or underprivileged populations
(Batterman et al., 2009).

Like money, time is a limited resource that must be carefully managed, and competing
demands on time (particularly for women) in developing countries mean that the time required
for a new task must be taken from other tasks (Awumbila & Momsen, 1995). Since interventions

to prevent diarrhea generally require daily effort to maintain (e.g., consistent handwashing, or
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daily treatment of drinking water), interventions that require little time and effort to operate
should have higher compliance and a better likelihood of sustainability.

2.15.2. Psychological, social, and cultural aspects of compliance

Even if an intervention’s effectiveness can be significantly demonstrated in a trial and is
adopted initially by the community, the intervention may still fail if the magnitude of the disease
reduction is too small to be perceived easily by individuals, who may therefore fail to recognize
its importance (E. M. Rogers, 2003; Mausezahl et al., 2009). A mother might not notice any
difference between three illnesses per year in her child as opposed to four illnesses per year, even
though this represents a 25% reduction in incidence. Therefore she might not be motivated to
comply with the intervention. Even though the basics of the germ theory of disease are widely
understood in many developing countries, 'germs' are invisible and abstract, and may not
effectively motivate behavior change (V. A. Curtis et al., 2009). Interventions that yield visible
daily benefits, such as savings in time and energy due to improved water supply or construction
of conveniently available and comfortable latrines, may be maintained better by the community
(Waddington et al., 2009).

Habits (a behavior that occurs 'automatically' following a particular stimulus) appear
important for handwashing compliance, and habits are typically established in childhood (V. A.
Curtis et al., 2009). If a habit has not been established, it might be learned or encouraged by
particular motivators. In a review of structured observation studies of handwashing in several
developing countries (V. A. Curtis et al., 2009), disgust from feces and dirty hands was a key
motivator for handwashing. Affiliation (essentially, doing what everybody else is doing) was also
important; although affiliation can promote handwashing if it is common, it can also discourage
handwashing if it is uncommon. Fear was not an effective motivator, except in the context of a

severe immediate threat like a cholera epidemic (V. A. Curtis et al., 2009). These motivations
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might apply similarly to other interventions to prevent diarrhea, such as sanitation or HWT.

Compliance with interventions also depends on cultural factors. Local beliefs about water
or hygiene impact the acceptability of an intervention. For example, women’s cleanliness is often
highly regarded socially, but in some settings cleanliness implies attempting to attract other
women’s husbands (V. A. Curtis et al., 2009). Belief that disease is pre-ordained or that people
are powerless to affect disease (fatalism) can also impede the acceptance of interventions. In
addition, diarrhea is often perceived to be a normal part of child development rather than a
disease (V. A. Curtis et al., 2009). Communities also have different capacities to adapt to
changing conditions, which is based partly on available resources but also on cultural factors
(Batterman et al., 2009).

2.15.3. Examples of compliance measurements in the field

In practice, high compliance is seldom attained. HWT chlorination trials provide
informative illustrations of compliance, because measuring chlorine residuals in stored water
during unannounced home visits is a rapid and objective measurement. As part of a large meta-
analysis of HWT trials, 16 chlorination trials were reviewed (T. Clasen, I. G. Roberts, et al.,
2009), finding mixed evidence for effectiveness (e.g., a significant rate ratio of 0.61 for all ages
across four studies, but a nonsignificant longitudinal prevalence ratio [LPR] of 0.91 for children
under 5 years of age across 5 other studies). Eleven of these trials measured chlorine residuals.
Three of these trials estimated compliance at 49% (Chiller et al., 2006), 44% (Crump et al.,
2005), and 61% (Crump et al., 2005). A fourth trial of 20 families had apparently perfect
compliance because a health worker treated families' water daily , but found no protective effect
(Kirchhoff et al., 1985). ; a possible explanation might be consumption of untreated water
outside the home. A fifth trial (Doocy & Burnham, 2006) was an outlier that differed from the

other trials by its remarkably low LPR of 0.09; it was carried out in refugee camps and reported
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95% compliance. The compliance levels during the remaining trials were unclear. More accurate
measurements of compliance are needed to improve quantitative understanding of its impact on
effectiveness. With respect to HWT, the amount of untreated water consumed appears
particularly important.

The challenges in implementing sustainable interventions are illustrated by the following
example. An evaluation (B. Arnold et al., 2009) of a large HWT and handwashing promotion
campaign in 90 Guatemalan villages, during which families with children under three years of
age were visited for 30 minutes monthly or bimonthly by health educators who promoted various
HWT methods, handwashing with soap, and good nutrition. At the end of the campaign it was
estimated that 70% of participating households were using HWT regularly. However, in an
evaluation of 600 households 6 months after the conclusion of the intervention, various health
measures were no different than in control villages. Longitudinal prevalence of diarrhea, ‘highly
credible gastroenteritis’, cough, or difficulty breathing were all no different, as were
anthropometric measures of malnutrition, and only 37% of intervention households still self-
reported as using HWT. Furthermore, hygienic conditions, soap use, and self-reported
handwashing behavior were no different. Statistically significant, but small, positive differences
were seen in confirmed HWT use, which was 26% using any HWT method.

2.16. Interaction of intervention effects

Interaction of interventions means that their joint effectiveness differs from their combined
individual effectivenesses. Interaction between interventions is common, but may be positive or
negative. In a review (Fewtrell et al., 2005) including 5 studies combining water supply
improvements with sanitation and hygiene education, and found that the effect on childhood
diarrhea was similar in those studies as the effect seen in other studies for water supply,

sanitation, or hygiene alone. There was a similar effect when combining water treatment and
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handwashing in Karachi squatter neighborhoods; there was no additional benefit to combining
the interventions, although each intervention alone cut diarrhea prevalence by about 50% (Luby
et al., 2006).

However, a meta-analysis (Gundry et al., 2004) of 7 household water treatment (HWT)
intervention studies found that the effectiveness of interventions increased as sanitation
improved. Positive interaction between sanitation and source water quality has been observed for
diarrhea (VanDerslice & Briscoe, 1995); furthermore, increased water use and latrine possession
positively interacted to improve infant weight and length in rural Lesotho (Esrey et al., 1992)
(presumably by reducing diarrhea). In general, though, interaction between interventions appears
to be negative, with sanitation an occasional exception. Since good sanitation removes feces
from the environment and therefore drastically reduces the amount of pathogens available, it may
enable greater effectiveness of other interventions by allowing them to act on a region of the
dose-response curve where disease risk is more rapidly declining. A possible explanation for
negative interaction may be found in bias due to difficulty in blinding field trials. For example,
the effectiveness of an intervention in a field trial may be overestimated if the trial is unblinded
and the outcome is subjective (L. Wood et al., 2008). Such a bias would probably be similar
whether a single intervention or two joint interventions are being applied, which would give
results resembling negative interaction.

Since diarrheal illness is transmitted by multiple pathogens over multiple routes, an
intervention that can successfully impede transmission might not reduce pathogen exposure
enough to detectably impact disease in a highly contaminated environment; enough transmission
may occur by alternate routes to maintain high endemicity (Briscoe, 1984). Once conditions are
somewhat improved, interventions which seemed initially to have low effectiveness might yield

larger reductions in disease by further reducing the amount of pathogens into a zone of a dose-
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response curve where disease risk rapidly decreases. This is especially likely if the relationship
between the number of pathogens ingested and the development of disease is nonlinear (Briscoe,
1984). Unfortunately, preexisting characteristics of the area that might affect an intervention trial
are often omitted or not clearly reported; many ‘single interventions’ might be considered
‘multiple interventions’ if prior community development is considered. Furthermore, meta-
analyses attempt to generate overall effectiveness measures for particular interventions, but they
generally lump trials together to obtain a pooled result with little regard for characteristics of the
community before the intervention was implemented.

Even if such characteristics are considered, power may be lacking to determine if
heterogeneity between studies is due to community characteristics. A meta-analysis (Gundry et
al., 2004) examined sanitation, urban/rural setting, type of water source, water storage, and
blinding to see if they affected household water treatment effectiveness, but found no
relationships other than increasing effectiveness with increasing sanitation. Sanitation explained
1/3 of the heterogeneity between those studies, but the remaining 2/3 could not be explained
(Gundry et al., 2004).

Interventions may also interact simply by facilitating each other in the household. For
example, water supply improvements facilitate handwashing simply by making more water
available (Curtis 2000). They might also facilitate activities such as breastfeeding and food
preparation by increasing the amount of time available to the mother, such as by eliminating the
necessity of walking long distances to collect water.

Natural conditions may also interact with interventions. For example, HWT chlorination
was ineffective during abnormally heavy July rains in Karachi, but was effective for most of the

rest of the year (Luby et al., 2006).
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2.17. Descriptions of individual interventions

In general, diarrheal disease should be prevented by preventing feces from entering the
mouth, as illustrated by the classic ‘F-diagram’ (Figure 2.4) (V. A. Curtis et al., 2000); sometimes
'fomites' are also added, denoting an object contaminated with pathogens. Anything that removes
feces or pathogens from the environment has the potential to reduce infectious diarrhea; different
interventions are possible, which act on different parts of the diagram. Interventions are

described in detail below and will be referred to briefly in the context of particular pathogens.

Figure 2.4. Simple F-diagram of transmission of diarrheal pathogens

Fluids

Sanitation

Fields

Fingers

The 'F-diagram’ (so called because nearly all compartments begin with 'F’) illustrates how
diarrheal pathogens can be transferred by different vectors within a community. HWT means
household water treatment. Modified from V. A. Curtis et al. (2000). See Figure 2.7 (page 77) for
a more detailed diagram. For interpretation of the references to color in this and all other
figures, the reader is referred to the electronic version of this dissertation (at Michigan State
University, proquest.com, Google Scholar, or openthesis.org).
2.17.1. Sanitation

Sanitation appears particularly important because it can restrict all routes connecting feces

to other compartments (Figure 2.4). Although developed-country urban sanitation infrastructure

including flush toilets, piped sewer systems, and sewage treatment plants are a highly effective
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ideal, they are prohibitively expensive in many locations. Nonetheless, in crowded urban areas,
this may be the only feasible solution due to the lack of space for building latrines.

Although sanitation seems important intuitively because of its key role in removing feces
from the environment, there have been relatively few rigorous trials establishing its effectiveness
on diarrhea; those available tend to be observational and unrandomized (Barreto et al., 2007;
Henry & Rahim, 1990; Esrey, 1996). Large sanitation construction initiatives tend to be
accompanied by other infrastructure improvements as well as hygiene education, making it
difficult to isolate the effect of sanitation alone (Barreto et al., 2010). A large study (Barreto et
al., 2007) comparing longitudinal prevalence of diarrhea in 0-3 year olds in the city of Salvador
in Brazil before and after the implementation of a sewerage construction program showed
reduction of diarrhea by about 43% in areas of the city with prevalence above 8 days of diarrhea
per child per year. Most areas with lower prevalence of diarrhea did not have significant
reductions in diarrhea, leading to an overall decrease of about 22% in the longitudinal prevalence
of diarrhea. A later study of 0-4 year olds in the same area (Barreto et al., 2010) found a
reduction in prevalence of Giardia infection from 14.1% to 5.3%; the new sewerage connections
alone appeared to account for the greatest share (about 25%) of this decline, with improved
cleanliness in/near the house accounting for an additional 17% (Barreto et al., 2010).

Given available space, several inexpensive and effective latrines can be built with local
materials, such as the ventilated improved pit (VIP) latrine, pour-flush latrines connected to a
hand-dug septic pit, and composting toilets (e.g, SkyLoo). These are considerable improvements
over crude pit latrines, which may be avoided due to stench and risk of collapse. Latrines must
also be carefully located in order to prevent fecal contamination of groundwater.

2.17.2. Water supply improvement

Improvement of the water supply at the source is an intuitively appealing intervention,

50



perhaps because it often involves building large tangible objects like wells, water tanks, or
distribution systems. Provision of a piped connection and tap for each household is ideal but very
expensive, costing approximately $100 per person just for the initial investment (Hutton &
Laurence Haller, 2004). If a tap is absent, water must be gathered outside the household and
stored within the household, where it can be easily recontaminated even if source water quality is
excellent. A recent comprehensive review (T. Clasen, I. G. Roberts, et al., 2009) found variable
results among six source-based interventions (improved wells or public taps, not including
private taps); four studies showed reductions in diarrhea, including an incidence ratio of 0.83 in
6-23 month olds in a rural Bangladeshi setting and a risk ratio of 0.45 in all ages in a rural
Chinese setting.

Although water supply improvements commonly improve both the quantity of water
available to the family as well as its quality, these two improvements have also been studied
separately. Either alone generally yields similar benefits as both together (Esrey et al., 1991).

Water quantity improvement

Improving the quantity of available water, even if it remains contaminated, can be
beneficial by facilitating more frequent washing and therefore improved hygiene. Time and labor
required to gather water indirectly reduce the amount of water available. Basic guidelines for
disaster response (Sphere Project, 2011) have recommended 15 liters per person per day, with a
water point < 500 meters from the house, and < 15 minutes waiting time at the water point.
However, these standards are frequently unmet in developing countries.

Water guality improvement

Improvements in water quality primarily yield benefits through reduced ingestion of
pathogens in drinking water, although it may also reduce the amount of pathogens introduced

into food. This may be particularly important if incompletely cooked weaning foods are made
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with contaminated water (Motarjemi et al., 1993).

The relationship between measured water quality and diarrhea risk is unclear; although
presence of common indicators of poor water quality (turbidity, thermotolerant coliforms, high
heterotrophic plate count) strongly suggest that water is unsafe to drink, the levels of these
indicators are poorly correlated with the amounts of actual pathogens that are present.
Furthermore, apparently clean water may still be contaminated with pathogens. A meta-analysis
of 11 studies measuring E. coli or thermotolerant coliforms found no relationship between
childhood diarrhea risk and the level of the bacterial indicator (Gundry et al., 2004).

2.17.3. Hygiene

Approximately 2 to 6 liters of water are needed daily per person for basic hygiene practices
(Sphere Project, 2011). The best-studied aspect of hygiene with respect to diarrhea is
handwashing, although aspects such as diapering and food preparation are also important.
Handwashing

Failure (or inability due to lack of water) to wash hands provides a route for pathogens to
be transmitted from person to person, as well as between people and their environment. Curtis
and Cairncross (2003) describe 9 studies of handwashing in developing countries finding that 0
to 20% of people (median 13%) washed their hands after defecation or after cleaning a child who
had defecated. Dirty hands can also introduce bacteria such as pathogenic E. coli into food,
where they may multiply (Motarjemi et al., 1993), and mothers are usually responsible both for
cleaning children after defecation and preparing food for the family (V. A. Curtis & Cairncross,
2003). Handwashing may be particularly important in preventing transmission of highly potent
pathogens, such as Shigella sp. (Motarjemi et al., 1993). Accordingly, promotion of handwashing
with soap in developed country daycare facilities has shown significant disease reduction

(relative risk of approximately 0.5), even though the environment would seem to be much less
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contaminated than in a developing country setting (V. A. Curtis & Cairncross, 2003).

Handwashing works best when soap is used, which is fortunately inexpensive. Transient
bacteria are removed equally well by handwashing with ordinary soap and water as with
antiseptics, and resident bacteria on the skin are relatively unaffected by handwashing with soap
and water (Lowbury et al., 1964). Diarrheal pathogens contaminating hands would generally be
transient bacteria. Although antibacterial agents may have residual activity on bacteria that
remain on the skin following handwashing (Lowbury et al., 1964), one formulation of
antibacterial soap was no more effective than ordinary soap in preventing diarrhea or pneumonia
in a Karachi shantytown (Luby et al., 2005). LRVs measured in studies of handwashing are
found in Table 2.1 (page 64).

Highly variable (relative risk from 1 to about 0.25) effectiveness of handwashing on
diarrhea has been reported in a meta-analysis of 20 studies of various age groups, both
observational and intervention-based (V. A. Curtis & Cairncross, 2003). Overall, the relative risk
of diarrheal incidence was 0.57, although many studies were of poor quality.

A meta-analysis (Ejemot et al., 2008) considered five community-based, randomized,
controlled intervention trials of hygiene education that included handwashing; an overall
incidence rate ratio of 0.68 was estimated. This measure was consistent across studies of young
children as well as children aged less than 15 years.

Despite the usefulness of handwashing in preventing diarrhea and other diseases,
perpetuating good handwashing behavior remains a challenge. A 53% reduction in longitudinal
prevalence of diarrhea effectiveness due to handwashing was estimated in squatter settlements in
Karachi (Luby et al., 2006). However, no effectiveness was seen against childhood diarrhea
during a ~13 month followup period that began 18 months after the earlier study concluded

(Luby et al., 2009). Although intervention households were more likely to have a place to wash
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their hands and were more likely to demonstrate better handwashing technique, there was little
difference in longitudinal prevalence of diarrhea between intervention and control households.
Furthermore, intervention and control households had similar spending on soap and were equally
likely to have soap in the house. The authors suggest that frequent reinforcement of handwashing
behavior may be necessary for sustainability; although continued home visits would be
prohibitively expensive, mass media messages might be helpful. However, the similarities in
purchasing and having soap between the intervention and control groups indicate that the price of
soap may be a barrier to sustaining effective handwashing behavior.

Even if water and soap are available, good handwashing practices are uncommon. In 11
developing countries, handwashing with water after defecation was only observed in 45% of
caregivers, and just 17% used soap (V. A. Curtis et al., 2009). Handwashing is largely habit-
driven, meaning an unplanned reaction to something in the environment, such as touching
something unclean (V. A. Curtis et al., 2009). Since habits are largely acquired in childhood,
changing handwashing behavior in a community might require many years; once a community
improves handwashing, it can be very stable over time, because conforming to social norms is a
powerful influence on behavior. However, if the social norm is lack of handwashing, as it is in
many areas, this impedes improvement of handwashing behavior; increased promotion via
broadcast media or visual cues like posters may help redefine social norms while providing cues
that reinforce habits (V. A. Curtis et al., 2009).

Diapering and open defecation

Fecal contamination around the home has repeatedly been linked to increased diarrheal
disease risk (V. A. Curtis et al., 2000), although this relationship disappeared in a study in
Myanmar when adjusted for education and socioeconomic status (Han & K. Moe, 1990).

Latrines do not necessarily remove all fecal contamination, and diarrhea reductions attributed to
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latrines are likely due to removing stools from the environment (V. A. Curtis et al., 2000). Many
cultures do not consider infant stools to be hazardous (Motarjemi et al., 1993), and diapering was
associated with absence of diarrheal illness in children under two years of age in a case-control
study in Nicaragua (Gorter et al., 1998).

Even if diapers or potties are available, feces may still enter the environment if they are not
properly disposed of, such as in a latrine. Yeager et al. (1999) describe conditions in a dry
shantytown area of Peru. Potty-training can be a long and difficult process, during which
defecation in clothes or on the ground is common (Yeager et al., 1999). Even if child feces are
noticed on the floor or near the house, the mother is often too busy to dispose of them
immediately, and disposal in places such as the garbage dump or the street is common;
nonetheless, feces in potties are more likely to be disposed of, and even incomplete disposal may
be helpful (Yeager et al., 1999). Effective potty-training may therefore yield important reductions
in fecal contamination of the environment.

Anal cleansing

Few published scientific papers have studied anal cleansing. Effective soft materials
similar to toilet paper may be unaffordable or scarce, which can lead to increased exposure to
feces (McMahon et al., 2011). Focus groups of Kenyan schoolchildren reported lack of
instruction from their parents and teachers regarding proper anal cleansing, and parents did not
perceive the benefits of toilet paper as worth the cost (McMahon et al., 2011). A study of school
toilets and hygiene in Colombia suggested that simply providing toilet paper, towels, and soap
could be an important method for preventing diarrhea, since that composite factor was associated
with more cases of diarrhea than the number of toilets available (Koopman, 1978).

Food preparation

Diarrheal risk substantially increases following 6 months of age, when infants who were
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exclusively (or mostly) breastfed begin consuming weaning foods, which are often more heavily
contaminated than other foods eaten by the family (Motarjemi et al., 1993). Weaning foods are
often thin porridges which are not thoroughly heated since long cooking makes a porridge that is
too thick for infants, and organisms such as Bacillus cereus and pathogenic E. coli can multiply
in such foods at ambient temperature (Motarjemi et al., 1993). The necessity of feeding infants
several times per day means that food may be prepared in advance and stored at ambient
temperature to save time (Motarjemi et al., 1993). Storage of hot food in vacuum flasks (which
are durable and relatively inexpensive) reduces the rate of cooling, allowing food to be stored
safely for up to 12 hours (Mensah & A. Tomkins, 2003).

Certain traditional grain food preparations that are fermented with lactobacilli can limit
growth of, or actually kill, pathogenic bacteria, principally through the creation of acidic

conditions (pH 3.5 to 4.5) (Adams & Nicolaides, 1997). Production of other compounds, such as
bacteriocins (polypeptide ‘antimicrobials’), hydrogen peroxide, and CO5, may also aid pathogen

inhibition (Adams & Nicolaides, 1997). It is unclear to what extent fermentation inactivates
viruses; based on limited research, rotavirus appears to persist in fermented foods (Mensah & A.
Tomkins, 2003).
Fly control

Although measures such as insecticide treatment can yield reductions in diarrheal illness
due to fly killing, such interventions are not likely to be sustainable (V. A. Curtis et al., 2000).
Sanitation interventions are probably more effective, since they remove feces from the
environment, preventing flies from accessing them (V. A. Curtis et al., 2000).

2.17.4. Household water treatment (HWT), or point-of-use (POU) technology

This is a particularly active area of investigation. Since HWT can be carried out by
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individual families, it can be effective even if infrastructure or community cooperation is limited.
Water is frequently collected outside the home and stored in the home, and even if the source
water is perfectly clean, the stored water may become contaminated when things fall into it, or
when dirty hands or cups are placed in it (A. J. Pickering et al., 2010). HWT can therefore be
more effective than interventions at the water source (T. F. Clasen et al., 2006). HWT can also be
implemented far more cheaply per person than more infrastructure-intensive interventions like
latrines and wells (Hutton 2004). Although HWT seems appealing, it can require substantial
behavioral change or monetary investment, which impede sustainability. There are several
different methodologies, which are described below. LRVs for various HWT methods are given
in Table 2.1, and antimicrobial standards for HWT are given in Table 2.2.

Safe storage

Safe storage refers to use of a storage container that does not allow anything to touch the
water inside, preventing recontamination. This commonly takes the form of a vessel with a
covered top (or a narrow neck) and a spigot at the bottom. It is often combined with other HWT
methods.

A less expensive alternative to safe storage is the ‘two-cup method’, which attempts to
prevent contamination of stored water by using a single, clean, cup which is supposed to be the
only object that touches the stored water. Water is decanted from the storage vessel with the cup
and then poured into another cup to drink. However, it may be difficult (or impossible) to ensure
that the cup remains clean, or to prevent other objects from entering the water.

Boiling

Boiling is the most widely used HWT method, and it is the only method that can reliably

destroy all pathogens (T. Clasen, 2009). However, it requires fuel, which is frequently expensive

or unavailable. Depending on how it is used, boiled water may require cooling, which is time-
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consuming. Stored boiled water is also subject to recontamination in the household.

Solar disinfection (SODIS)

Solar disinfection is accomplished by filling clear 1 to 2 liter polyethylene terephthalate
(PET) bottles with water and placing them in the sun for at least 5 hours, or for two days under
cloudy conditions (EAWAG, 2004). Oxygenating the water (e.g., by shaking the bottles)
increases effectiveness (EAWAG, 2004). The method is primarily suited for treating drinking
water; it is difficult to produce enough water by SODIS for washing or other purposes (EAWAG,
2004). Pathogens in the water are inactivated by a combination of heating and irradiation by
ultraviolet A (UV-A). Relatively clear water of <30 NTU is recommended for irradiation to be
effective (EAWAG, 2004); nonetheless, highly turbid water (>300 NTU) can still be made safer
by SODIS due to solar heating of the water.

Simply heating water using solar energy, for example in a solar cooker or using black or
metal vessels, is a similar method to SODIS. Under sunny conditions temperatures over 60°C
can be attained, which essentially pasteurizes the water, inactivating most microorganisms
(Sobsey, 2002). Even if a solar cooker is used, at least three hours in full sun is required to
inactivate 99% of viruses in 3.8 L of water (Sobsey, 2002).

Disadvantages of these methods include the substantial time and effort needed to fill
bottles and place them in the sun, as well as having to wait for several hours for the method to
work. The method is much less effective on cloudy days.

Although some community trials have shown effectiveness of SODIS in reducing
diarrhea(T. Clasen, I. G. Roberts, et al., 2009; A. Rose et al., 2006), a recent community-
randomized trial in rural Bolivia (M&usezahl et al., 2009) found no effect of SODIS on diarrhea
incidence, longitudinal prevalence, severe diarrhea, or dysentery, despite provision of bottles and

repeated educational sessions demonstrating the method. However, the study was only powered
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to detect a 33% reduction in diarrhea incidence, and the communities lacked sanitation, so other
infection pathways remained open and may have swamped any effect of SODIS. Furthermore,
only about 32% of intervention households were observed to be using SODIS on any given day,
and its use tended to be lower during the cultivation season when families were busy. These
observations highlight the difficulty of implementing SODIS sustainably.
Chlorination

Chlorination can be performed in the home by adding sodium hypochlorite (household
bleach) to water (attaining about 5 mg/L free residual chlorine) (Centre for Affordable Water and
Sanitation Technology, 2008), shaking the container to mix the water, and letting it stand for 30
minutes. This will kill most microorganisms, although Cryptosporidium is a common pathogen
that is resistant. Commercial bleach may be used, or a custom solution may be produced and
sold. Such a solution usually corresponds to one capful of solution for the particular size of
storage vessel that is common in the community; the solution bottles are custom-designed to
accomplish this. Increasing the pH of the solution above 11.9 with NaOH lengthens the shelf life
to 12-18 months, though it should be used within 60 days of opening (Lantagne & Gallo, 2008).
A double dose of hypochlorite solution is often recommended if the water is turbid (Lantagne &
Gallo, 2008), although this may increase the risk of exposure to carcinogenic disinfection
byproducts from the reaction of hypochlorite with organic material in the water. Chlorination is
sometimes combined with a flocculant (e.g., PuR packets) which facilitates settling of particulate
matter, improving its appearance and aiding removal of pathogens. Certain plants such as
Moringa oleifera and Opuntia species can also provide flocculants (S. M. Miller et al., 2008).
Some people find the taste of chlorinated water unappealing, although properly treated water
should not taste strongly of chlorine. CDC’s Safe Water System (SWS) combines chlorination

with safe storage (Lantagne & Gallo, 2008). Devices containing polymer beads that bind
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chlorine or bromine and release it into contaminated water are more expensive than adding
chlorine solution to water, but may be easier to use because they do not require measurement of a
dose; furthermore, bromine has a milder taste than chlorine (Dunk, 2007). Such devices are
effective at inactivating bacteria and bacteriophages (McLennan et al., 2009; Coulliette et al.,
2010).

In a meta-analysis of the effectiveness of HWT chlorination against childhood diarrhea, a
pooled relative risk estimate of 0.71 (0.56-0.89) was determined for children under five years of
age (B. F. Arnold & Colford, 2007). Three studies in urban or peri-urban areas showed a larger
risk reduction (0.63: 0.50-0.80) than the 5 rural studies (0.89: 0.71-1.13). However, the trials
were not carried out over multiple years (the longest one covered 87 weeks), and longer trials
appeared to show lower effectiveness (although this trend was nonsignificant), raising questions
about sustainability.

Recurring costs and interruption in chlorine supply are major obstacles to sustainability of
HWT chlorination. For example, in Malawi, where a chlorination solution (WaterGuard) has
been marketed nationwide, 64% of a nationwide sample (Stockman et al., 2007) of mothers had
heard of the solution, and 12% of those said they were currently using it. Among mothers who
had used WaterGuard in the past but were not using it at the time of the survey, 39% said that
they couldn’t afford it and 34% said that it was “currently unavailable”. The price of WaterGuard
was about $0.08 for one month’s supply. Even if rural families are willing to pay for chlorination
solution, distance (or the cost of transportation) may make it impossible for them to obtain it.
Filtration

The two major types of filters are ceramic filters and sand filters. They are relatively
expensive (initial cost of $20 or more) (Sobsey et al., 2008) and require frequent maintenance.

Ceramic filters need to be scrubbed to remove trapped material that slows flow through the filter;
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sand filters require cleaning of the upper layer of sand to remove sediment and improve water
flow through the filter. Filtration trials have shown relative risks for diarrhea of about 0.4 when
comparing households with filters to those without (Sobsey et al., 2008; T. Clasen, I. G. Roberts,
et al., 2009). Ceramic filters appear more effective at removing bacterial and protozoan
pathogens from drinking water than biosand filters (Sobsey et al., 2008). Filters have the
important advantage of improving the appearance (and often the taste) of the treated water.
Chlorination may also be used on stored filtered water to further improve disinfection and
prevent recontamination.
Biosand filters

The biosand filter (BSF) is a recent improvement on older slow sand filter designs. It
consists of a tall bucket containing a layer of gravel with several feet of sand atop it. The outlet
pipe originates at the bottom of the filter (in the gravel layer), and the mouth of the pipe (where
filtered water exits) is slightly higher than the top of the sand layer. This ensures that the entire
filter column remains wet, allowing an aerobic biofilm to establish itself near the top of the sand.
The biofilm is believed to enhance deactivation of pathogens (Manz, 2009); this is consistent
with results showing increasing deactivation of pathogens (including some viruses) while the
filter ‘matures’ over several weeks (Elliott et al., 2008), but could also be explained by increased
residence time in the filter due to decreased flow rate as pores close over time (Elliott et al.,
2008). Inactivation is drastically lowered (by 1-3 LRV of E. coli) if the amount of water passed
through it daily exceeds its pore volume (Elliott et al., 2008). Although BSFs can often be
constructed in developing-country communities according to instructions that are freely
available, manufacture of properly functioning BSFs requires great attention to detail and
consideration of local conditions (e.g., the characteristics of the sand/gravel available, quality of

cement/concrete, etc.) (Manz, 2007). Although BSFs can produce water on demand, a separate
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container is usually needed to store filtered water (Manz 2007), which is subject to
recontamination if not stored safely.

Ceramic filters

Ideally, ceramic filters have pores that are too small (about 0.2 pm) to allow most bacteria
and protozoa to pass through, although they cannot block viruses (Joe Brown et al., 2007). They
can sometimes be made out of local materials, though quality control can be challenging (Sobsey
et al., 2008). The filters need to be cleaned, and cracks in the filter reduce (or eliminate) its
effectiveness. The two main ceramic filter designs are ‘pot’ (a large ceramic pot-shaped filter
nested inside another vessel that captures the filtered water) and ‘candle’ (a cylindrical filter,
often used inside a plastic receptacle to capture filtered water).

An evaluation of a program to produce, distribute, and promote ceramic pot filters in
Cambodia (Joe Brown et al., 2007) showed that the number of filters in use decreased linearly
over time, with about half of 506 households still using the filter after 24 months. Breakage
accounted for 65% of the disused filters, so replacement filters must be purchased frequently
(they cost $2.50 to $4.00 to produce).

A pilot project in a small Bolivian community (T. F. Clasen et al., 2006) evaluating
imported candle filters indicated that they were effective in reducing diarrhea, but identified
several problems: many users reported inadequate quantity or flow of water, replacement filters
were unavailable, and approximately 8% of the filters were broken 9 months after they were
provided.

Advanced filter technologies

Nanofilters with a pore size small enough to remove viruses have also been built into HWT
devices for use in developing countries (T. Clasen, Naranjo, et al., 2009; Boisson et al., 2010).

Such filters require advanced manufacturing techniques and cannot be produced locally like
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ceramic pot filters. However, they are effective at removing pathogens, and in general should
perform comparably to ceramic filters against bacteria and protozoa, while removing more

viruses than ceramic filters.
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Table 2.1. Log;( reduction values (LRVs) for various interventions

Laboratory* Actual community*
Intervention 00U yirgl PrO0- Bact o Citations Notes
erial zoan  erial
Cryptosporid-
HWT (Sobsey et al., ium resists CI;
chlorination b+ 6+ o 3 3 2008) LRV doesn't
apply to it.
HWT
coagulation &
chlorinaton =~ 9 6 5 7 2-45 (2%‘(’)25)@3’ etal,
(PUR®
sachets)
Chlorinated (McLennan et al., .
polymer beads 6 3 2009; Coulliette ?éllai\r/iii?f;mﬁ
(HaloPure®) et al., 2010) '
Brominated (McLennan et al., .
polymer beads 6 5 2009; Coulliette i’llz)[s{;/isd?f;mﬂ
(HaloPure®) et al., 2010) :
Ceramic (Sobsey et al.,
filtration 6 4 6 2 0.5 2008)
Biosand (Sobsey et al.,
filtration 3 3 4 1 0-5 2008)
Sari filtration V. cholerae
(4 layers of 2 (Hug et al., 1996) attached to
ordinary cloth) particulates.
Nanofiltration (T. Clasen, Pore size of 20
(LifeStraw 6 4 3 Naranjo, et al., nm
Family®) 2009) :
Solar
disinfection 5.5+ 4+ 3+ 3 2 g%%%s)ey etal,
(SODIS)
. (Lowbury et al.,
girﬁd:gishmg 3 0.5 1964; Luby et al.,
P 2001)
(Ansari et al.,
Handwashing 1 0.3 1989; A. J.

without soap

Pickering et al.,
2011)

*LRVs are commonly higher in the laboratory (careful implementation and maintenance)
compared with actual communities (might be improperly used or poorly maintained).
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Table 2.2. Log;( reduction values: standards for household water treatment (HWT)
Bact- . Proto-

Standard . Viral Citation
erial zoan
WHO 'highly protective' target 4+ 5+ 4+ (Sobsey & Joe Brown, 2011)
WHO 'protective' target 2+ 3+ 2+ (Sobsey & Joe Brown, 2011)
Meets 2/3 of
WHO 'interim' target 'protective’ targets (Sobsey & Joe Brown, 2011)
above.

USEPA HWT standard 6+ 4+ 3+ (USEPA, 1987)
USEPA primary drinking water y 4+ 3+t (USEPA, 2012)

standard for treatment facilities

*<500 colonies on heterotrophic plate count; <5% positive samples for total coliforms monthly.
TLRV of 2+ for Cryptosporidium.

Recent controversy surrounding HW1

Three recent reviews (Schmidt & Cairncross, 2009; Waddington et al., 2009; Hunter, 2009)
have questioned whether there is really enough evidence to warrant widespread promotion and
scaling up of HWT, despite substantial investment by WHO, the Gates Foundation, and others to
expand it (Schmidt & Cairncross, 2009). WHO has referred to chlorination and safe storage as
“consistently the most cost-effective” water, sanitation, and hygiene intervention (World Health
Organization, 2002). However, Schmidt and Cairncross (Schmidt & Cairncross, 2009) argue that
the decision of whether to promote HWT primarily rests upon demonstration of a health effect,
since other benefits from HWT are small and the scalability and acceptability (which are critical
to sustainability) of HWT remain unclear. The health effect is difficult to establish because
results from trials vary greatly, and publication bias may be a large problem, particularly
regarding smaller trials (Hunter, 2009). These reviews also conclude that the published health
effect estimates attributed to HWT might be wholly explained by bias (reporter or observer),

since it is difficult or impossible to blind studies of HWT interventions. They therefore call for
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larger, long-term, blinded studies to be carried out to establish whether beneficial health effects
truly exist, before making large investments in expansion of these interventions.

Hunter’s recent review (Hunter, 2009) also showed that intervention effectiveness was
lower among studies with longer follow-up; similar findings have been reported (B. F. Arnold &
Colford, 2007) regarding household water chlorination. This suggests difficulty with
sustainability. However, other explanations might include declining of reporting bias over time or
by a tendency for longer-term studies to be better designed and therefore less subject to bias.
Hunter’s analysis (Hunter, 2009) also shows that effect sizes shown in most HWT trials over
longer periods are roughly within the range that might be explained by bias in unblinded studies
with subjective outcomes (risk ratio of ~ 0.7) (L. Wood et al., 2008). Ceramic filtration is a
notable exception, showing substantial reductions in diarrhea even in long-term trials (risk ratio
of 0.44, 95% CI 0.28 to 0.70) (Hunter, 2009). However, Wood’s (L. Wood et al., 2008)
quantification of bias due to lack of blinding drew on a widely varying set of clinical trials,
nearly all of which were drug trials or therapeutic intervention trials. However, there seems little
reason to believe that HWT trials would be any less susceptible than drug trials to bias due to
lack of blinding.

These assertions have been contested by several noted researchers in the HWT field, who
want current HWT promotion efforts to continue even while additional needed research is carried
out (T. Clasen, Bartram, et al., 2009). Patterns of publication suggesting publication bias in HWT
have been noted elsewhere, but have been interpreted as possibly being caused by trials of
different methods in drastically differing settings (T. Clasen, I. G. Roberts, et al., 2009).

2.17.5. Other interventions

Many other important methods are available to mitigate the impact of diarrheal disease,

such as: nutritional interventions (e.g., encouragement of breastfeeding, zinc supplementation);
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vaccination against rotavirus; and treatment methods (particularly oral rehydration solutions).
However, these interventions are not directly addressed in the research described in chapters 3, 4,
and 5 of this dissertation. The reader may refer to page 235 in the appendices for a discussion of
these methods.

2.17.6. Gaps in knowledge about diarrheal disease interventions

There is relatively little information about real-world effectiveness of interventions outside
of field trials, and high-quality field trials lasting for a year or more are scarce. Use of an
intervention may decline as equipment or infrastructure deteriorate and outside encouragement
of healthy behaviors decreases. People may also forget how to apply the intervention effectively.
This is difficult to investigate because the same communities must be studied over many years.

Intervention trials commonly consider diarrhea as the outcome, without regard to etiology.
Given the differing characteristics of common diarrheal pathogens, it is likely that interventions
will affect different pathogens in distinct ways. The relative abundances of different pathogens in
different areas may therefore affect intervention effectiveness, as well as the interactions of
interventions with each other. However, information concerning antimicrobial effectiveness of
some interventions (particularly HWT methods) is available (Table 2.1, page 64).

The effectivenesses of interventions are likely to differ depending on a community's level
of development, because improvements in sanitation, water supply, or hygiene in an area are
likely to restrict certain routes that pathogens travel in that community. Therefore, an
intervention might prevent a smaller or larger fraction of disease depending on the interventions
that have preceded it (Briscoe, 1984; VanDerslice & Briscoe, 1995). Existing intervention
effectiveness estimates from field trials are likely to be incomplete because they do not take into
account previous interventions (or protective characteristics) that are impacting the community at

the time of the study. Effectiveness studies should carefully describe the status of the community
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in detail before the intervention took place, in order to place the resulting effectiveness estimates
in the context of the community. This would yield a large number of effectiveness estimates
narrowly defined to particular settings. Although they would be difficult to summarize, they
would be useful for validating diarrheal transmission models and the effect of interventions on
the transmission network.

2.18. Infection transmission modeling and its application to diarrheal disease

Classical epidemiological methods (e.g., regression analysis of risk factors associated with
a particular health outcome) are powerful within certain contexts, such as determining factors
associated with illness in a point-source outbreak of disease. However, these methods often
incorporate inappropriate assumptions with respect to infectious disease transmission. For
example, classical statistical methods often assume that outcomes experienced by different
individuals are independent (i.e., are not influenced by other individuals). This is clearly violated
when pathogens are passed from person to person (Koopman, 2004). Modeling allows
formalization of relationships between individuals, as well as between individuals and their
environment, avoiding the false assumption of independence.

Models of infectious disease transmission have been used to guide public health efforts,
particularly with regard to choosing among different control strategies. These include polio
eradication by vaccination (K. M. Thompson et al., 2006), smallpox preparedness planning
(Keeling & Rohani, 2008), and slowing pandemic influenza spread (Cooper et al., 2006).
However, modeling methods have seldom been applied to common childhood diarrhea in
developing countries (but see Eisenberg et al., 2007), despite the magnitude of the problem.

2.18.1. Types of models

In general, models attempt to represent the behavior of a real system in a simplified fashion

according to a defined set of criteria. Models and simulations are used in many disciplines and
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the nomenclature can be confusing and inconsistent. The general classification in Table 2.3 is

based on Haefner (2005) with some modifications:

Table 2.3. Terms commonly used to describe or categorize models

Model descriptor

Key question

Notes

Mechanistic (yes)
Empirical (no)

Does the model explicitly include
the inner workings of the system
being studied?

Empirical models are sometimes
called descriptive or
phenomenological models, and often
constitute simple equations.

Dynamic (yes)
Static (no)

Does the modeled system change
over time?

Continuous (yes)
Discrete (no)

Is time (or other quantities of
interest, e.g., population size)
measured continuously?

Systems of differential equations
usually describe time continuously,
while a system of difference
equations could measure time as a
discrete integer number of days.

Spatially
heterogeneous (yes)
Spatially
homogeneous (no)

Are spatial relationships explicitly
represented?

A spatially heterogeneous model must
also represent space in a continuous
or a discrete manner (discrete space is
divided into cells or zones).

Stochastic (yes)
Deterministic (no)

Are random events included?

Models based on matrices of
probabilities (Markov chain models)
are sometimes called stochastic
models because they track expected
long-run behavior of systems where
behavior of individual units is
uncertain, even if they do not directly
incorporate random events.

compartments (e.g, people, tanks).

Model descriptor |Definition Notes
Quantities (e.g., pathogens, water) Commonly used in models of
Compartmental flow between storage

infection transmission.

Agent-based

The model represents discrete
units whose characteristics
change; relationships between
these units are explicitly defined.

Also called individual-based models.

Network

Describes links between units
(‘nodes"); e.g., person A might
contact persons B & C, but B & C
do not contact each other directly.
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Any model will incorporate some combination of the characteristics described in Table 2.3.
Examples might be a mechanistic dynamic discrete-time spatially homogeneous deterministic
model, or a mechanistic dynamic continuous-time discrete-space stochastic model. A larger
model might also contain a sub-model of a different type. An advantage of mechanistic models is
their ability to explicitly describe interdependence between individuals and groups. The ability to
represent nonlinearities, such as feedback loops, is an important feature as well.

2.18.2. Model verification and validation

Any model must be carefully verified. Model verification means ascertaining that the
model does what its designer intends; i.e., there are no bugs in the algorithm/program (Haefner,
2005). This is separate from whether the designer's intentions are ill-informed or mistaken. Once
the model has been verified, validation statistically compares the behavior of the model to real
systems to assess whether the model can explain or predict the behavior of those systems
(Haefner, 2005). Thorough validation thus requires detailed data collected by carefully designed
experimental or observational studies.

Although model validation may be possible for very simple systems, it is probably
impossible to thoroughly validate a model of a complex or complicated system (Oreskes et al.,
1994). It is unlikely that we can observe everything of importance within a system; furthermore,
any measurement we make of a system contains error (Oreskes et al., 1994). Many aspects of
diarrheal infections are poorly understood; for example, although we know that malnutrition and
diarrhea exacerbate each other, we do not know exactly how, the mechanism is likely to vary
depending on the particular pathogen, and it is unclear how much diarrhea is attributable to
particular pathogens in particular communities. Nonetheless, models of complex, poorly-
understood systems can still provide insight about how the real systems operate, and models can

always be tested to determine whether they approximate certain essential features of the system;
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this might be termed 'weak validation' or 'confirmation'. However, confirmation does not
necessarily mean the model accurately reflects the workings of the real system; further
investigation of the system might reveal inconsistencies (Oreskes et al., 1994).

Although models have limitations (as do all forms of human knowledge), constructing and
assessing them remains useful because they allow us to formalize available knowledge and apply
it to understanding and addressing problems. The process of model building often provides
guidance about the kind of information that needs to be gathered by studies in order to more fully
understand the system. This can occur even if scant data are available for validating or
confirming the model. Modeling is a process that attempts to improve understanding of a
complex system through rigorous description of the system's characteristics and their
interrelationships, followed by comparison of the model against reality, followed by revision of
the model, and so on in a repeating cycle. Analysis of the model and its results may suggest
experiments that could allow more rigorous validation, or provide information to improve the
structure of the model (e.g., by carefully measuring a particular value that greatly alters the
results of the model).

2.19. Modeling transmission of diarrheal infections

Infection transmission models are typically dynamic models, describing the behavior of a
system of susceptible and infected hosts over time. They explicitly describe changes in
transmission depending on the number of people that are infectious. These models are commonly
represented by box-and-arrow diagrams, in which boxes (sometimes called 'compartments')
represent a 'stock’ and solid arrows represent a 'flow'. For example, the classic SIR (Susceptible —
Infectious — Removed) model (Keeling & Rohani, 2008) represents hosts (e.g., people) flowing
in and out of 'susceptible’, 'infectious', and 'removed' stocks, where 'removed' could mean

immunity or death (Figure 2.5).
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Figure 2.5. Schematic of the Susceptible-Infectious-Removed (SIR) model

Y

——

Solid arrows represent hosts flowing between stocks (which represent infection states); dashed
arrows represent the influence of a stock upon a flow. Red and blue arrows represent infection
and recovery, respectively. All letters represent terms in equation 2.1 below. Modified from
Keeling and Rohani, 2008.

2.19.1. Simple mathematical example of a transmission model

Simple infection transmission models can be described deterministically by systems of
differential equations, where the rate of change of the number of persons in a particular stock is
described using first-order rates of individuals entering or leaving the stock. For example, in the
SIR model (Figure 2.5), S, I, and R represent the proportion of the population in the susceptible,
infectious, or immune stocks at any given time (thus, the three stocks sum to 1) (Keeling &
Rohani, 2008):

dS/dt = -BSI dI/dt = BSI —yI dR/dt = yI (2.1)

Transmission is often described by a parameter () that indicates how likely it is for a
contact between an infected and uninfected person to result in a new infection. Assuming that
every member of the population is equally likely to contact every other member, the product of S
and I is proportional to the number of possible contacts where an infectious person can infect a
susceptible person. The rate of recovery (y) is the reciprocal of the infectious period and governs

the recovery of infected people (i.e., the rate of their movement from I to R). The SIR model
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structure can be modified to represent many different systems, e.g.: susceptible or infected (SI) if
immunity is not an issue; susceptible, exposed, infected, or removed (SEIR) where the ‘exposed’
state accounts for the incubation period, etc.

The basic reproduction ratio, Ry, is a particularly important concept in infection
transmission modeling. It is the average number of individuals that an infected individual

directly infects if it enters a completely susceptible population (Anderson & May, 1991). The

infection must die out if Ry is less than 1, because the pathogen would not replace itself

(Anderson & May, 1991). Since populations are seldom completely susceptible, an R
substantially greater than 1 might be necessary for the disease to remain endemic in a population.
The general concept of R can also be applied to subpopulations within a larger population,
describing the number of new infections in one subgroup due to transmission from one other
subgroup (M. G. Roberts & Heesterbeek, 2003). Epidemics may still occur if Ry is < 1 at the
community level if conditions become favorable for transmission within some subgroup,
effectively establishing a local Ry > 1; this can be simulated in stochastic models (Halloran et al.,

2002). Stochastic models can also allow random extinction of the disease in the population,
rendering the population disease-free unless the pathogen is reintroduced.
2.19.2. Environmental infection transmission models

The SIR model and related models described above assume that pathogens are only
transmitted through person-to-person contact. However, many pathogens remain viable in the
environment, and can be transmitted between hosts in many ways (e.g., food, water, or fomites).
Mechanistic models describing the transmission of pathogens through the environment and their
effects on hosts are called environmental infection transmission systems (EITS) models (Li et al.,

2009). These models facilitate the simulation of disease prevention interventions because they
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explicitly represent the numbers of pathogens in the system, which can then be directly modified
by an intervention. The action of an intervention to reduce a particular flow of pathogens reduces
risk to the people who ingest the pathogens. A simple EITS model that could represent
transmission of diarrheal infections can be created (Figure 2.6) from the SIR model described
previously (Figure 2.5), by adding an 'environment' compartment that describes pathogens in the
environment; infectious hosts release pathogens, which can be picked up by other hosts. Since
diarrheal infections seldom confer complete immunity, the 'removed' compartment has been
removed. Note that the two blue stocks represent susceptible or infectious hosts, and the yellow
environment stock represents pathogens. The number of pathogens in the environment stock

influences the rate by which susceptible hosts become infectious.

Figure 2.6. Simple environmental infection transmission system model

Solid arrows represent hosts or
. pathogens flowing between stocks (S
1 and 1 represent susceptible and infected
ﬁ-» hosts; E represents pathogens in the
P environment); dashed arrows represent
pl the influence of a stock upon a flow. Red,
.' blue, magenta, and grey arrows

represent infection, recovery, pathogen
shedding, and pathogen inactivation,

I S respectively. All letters represent terms

e in equation 2.2 below. Modified from Li
et al., 2009.

m

The EITS model in Figure 2.6 is represented mathematically as follows (modified from Li

et al., 2009):
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dS/dt = -piSE + yI dI/dt = piSE —yI dE/dt = s — mE (2.2)
As in the SIR model, y is the rate of recovery of infectious people, although in this model they
become susceptible again instead of becoming removed'. The rate of shedding into the
environment (pathogens per infectious host per day) is represented by s; the inactivation rate of
pathogens in the environment is represented by m; the pickup rate of pathogens by susceptible
people is p; and the probability of infection per pathogen is i. Interventions to reduce
transmission could be simulated by increasing m, or by reducing p. This EITS model is highly
simplified; it can be made more realistic by using quantitative microbial risk assessment
(QMRA) techniques to represent the relationship between environmental pathogens and
infection.

2.19.3. Quantitative microbial risk assessment (QMRA) models

QMRA models are a widely used method for understanding the risk of disease (Haas et al.,
1999). Typically, these models use an exposure step to estimate the dose of pathogens ingested,
followed by a dose response step in which the mean dose of pathogens entering the host is
translated into a probability of infection (or illness, or death) by a dose response equation. These
equations (often called dose response models) assume that a single pathogen has some
probability of causing infection; several possible equations exist, and the most commonly used
are the exponential equation and the beta-Poisson equation (Haas et al., 1999). The parameters of
dose response equations are determined by fitting them to data from experimental studies in
which hosts (sometimes humans) are given differing doses of pathogens by a particular route
(e.g., oral, inhaled, or parenteral), and the proportion of hosts who become infected or diseased
by each dose are recorded. However, it is unclear whether these dose-response relationships
apply to (possibly malnourished or ill) children, or to developing country settings. For ethical

reasons, dose response studies in humans must include only healthy volunteers, who are nearly
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always adults. Although some live attenuated rotavirus vaccine trials with healthy children have
provided dose response data (Vesikari et al., 1985; Pichichero et al., 1990), the vaccine strains of
these pathogens probably behave differently than wild-type pathogens. It is not clear (and
perhaps unknowable) how dose response equations might differ in malnourished (or otherwise
unhealthy) children.

QMRA models are often relatively simple to construct and use (e.g., in an Excel
spreadsheet). However, they cannot fully describe secondary transmission of infection, such as
when a person who becomes infected from the initial exposure passes the infection to additional
people. Therefore, they are particularly good for describing risk from exposures to pathogens
where secondary transmission of infection to additional uninfected people is low. QMRA models
can describe a static response to a particular dose in a particular population, or they can
dynamically describe changes in risk with changing exposure over time. QMRA techniques can
also be used as components of infection transmission models incorporating transmission of
pathogens through the environment.

2.20. Conceptual model of diarrheal disease transmission

Diarrheal disease is characterized by diverse, simultaneous, interdependent modes of
transmission that differ among many different organisms. This makes it a challenging syndrome
to model compared to other infectious diseases. Transmission routes for diarrheal infections can
be described by using stocks to represent pathogens moving between different locations. A good
starting point for this is the ‘F-diagram’ (V. A. Curtis et al., 2000) shown earlier (Figure 2.4, page
49). The F-diagram can be expanded to more faithfully represent the complexities of
transmission and control points for interventions (Figure 2.7). The boxes in each diagram
represent stocks of pathogens, and the arrows represent flow of pathogens between them. Stocks

marked with a + denote areas where some pathogens can multiply. Colored lines indicate where
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interventions remove pathogens, limiting transmission to new hosts. These lines are broken

because no intervention can always inactivate all pathogens using any particular route.

Figure 2.7. Expanded diagram of diarrheal pathogen transmission
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The symbol '+' denotes places where some pathogens might multiply. HWT: household water
treatment. Produced by the author, using V. A. Curtis et al. 2000 as a starting point (see Figure
2.4, page 49).

Figure 2.7 shows that diarrheal infections are transmitted in a variety of complicated ways.
An EITS model with so much detail would be extremely difficult to construct and interpret.
However, the diagram remains useful for considering which routes to include or omit from the
model, and it was used to guide construction of the EITS model described in chapter 5 of this
dissertation.

2.21. Theoretical issues regarding interventions

When an intervention is applied to a disease transmission system, it has a direct effect on
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the individual receiving it by reducing their risk of disease. In addition, it has an indirect effect
on individuals not receiving the intervention by reducing disease transmission within the
community. This has been clearly described (Halloran et al., 2002) from the point of view of
communities Y and N, in which some community Y residents are immunized, but no community
N residents are immunized. Unimmunized people in community Y still benefit indirectly from
immunization because reduction of disease spread lowers their chance of contacting a diseased
person. The overall difference between the two communities is the community-level effect of the
immunization intervention. The difference between the immunized and unimmunized in
community Y is the direct effect of immunization, while the difference between the
unimmunized in community Y and the unimmunized in community N is the indirect effect. The
total effect is the difference between the immunized persons in community Y compared with the
unimmunized in community N. The intervention need not be an immunization; interventions
where adoption is variable in the community, such as handwashing or latrine use, should operate
in a similar way. A comparison of two similar rural Zimbabwean villages, one of which had
partial latrine coverage and the other having no latrines, showed decreased diarrhea among
households lacking latrines in the village with latrines, compared with the village without latrines
(Root, 2001). Systems modeling allows explicit representation of the mechanisms of indirect
effects, and allows investigation of how incomplete participation (termed 'compliance' or
'adherence’) in an intervention decreases the indirect effects of that intervention.

Interaction of control measures against diarrheal illness is common, but may be positive or
negative. A review (Fewtrell & Colford, 2005) considering five studies combining water supply
improvements with sanitation improvements and hygiene education found that the effect on
childhood diarrhea (32% reduction in diarrhea) was similar in those studies as the effect seen

from other interventions alone: water supply (two studies, 33% reduction), sanitation (1 study,
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24% reduction), HWT (eight studies, 34% reduction) or hygiene (seven studies, 46% reduction).
A similar effect was found when combining water treatment and handwashing in Karachi
squatter neighborhoods; there was no additional benefit to combining the interventions, although
each intervention alone cut diarrhea prevalence by about 50% (Luby et al., 2006). However, a
meta-analysis (Gundry et al., 2004) of seven point-of-use intervention studies found that the
effectiveness of point-of-use interventions increased as sanitation improved. Increased water use
and latrine possession positively interacted to improve infant weight and length in rural Lesotho
(Esrey et al., 1992), and positive interaction has been observed between sanitation and source
water quality (VanDerslice & Briscoe, 1995). Sanitation is one of the best studied interventions
with regard to interaction with other interventions, and given its key role in removing feces from
the environment at the point where they are produced, it seems likely to interact particularly
strongly with other interventions. In particular, it seems likely that improved sanitation is
necessary to realize further benefits from other interventions. By mechanistically modeling
transmission of diarrheal infection and the effects of interventions, it should be possible to
predict conditions under which interaction between two interventions is positive or negative.
2.22. Tools and information useful for modeling diarrhea transmission

Intervention trials in communities throughout the world have shown the extent of
effectiveness of interventions under favorable conditions, in terms of effectiveness against
diarrhea in children under 5 years of age without reference to particular pathogens. Important
characteristics of the communities that could impact diarrhea transmission, such as the use of
latrines in the village, nutritional status of the population, or the prevalence of breastfeeding, are
often not given, which makes it difficult to interpret the results. Nonetheless, the available trials
provide indications of the effectiveness of various interventions.

Much useful work has been done within the framework of quantitative microbial risk
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assessment. Dose response equations that translate dose of a pathogen into the probability of
developing disease have been developed for many diarrheal pathogens (Haas et al., 1999).
Distributions have also been developed that describe likely exposure to pathogens on the basis of
how they adhere differentially to different surfaces (e.g., hands compared with a cloth), which
could theoretically allow estimation of a dose.

Basic infection transmission models like the examples described above (Figures 2.5 and
2.6, page 72) commonly assume that individuals mix evenly, i.e., every person has the same
chance of contacting any other person. However, even mixing is unrealistic. People most
frequently contact other people within their own household, people mix preferentially within
their own age group (Mossong et al., 2008), and the nature of the contact affects its intensity,
e.g., contacts at home are more likely to be physical than contacts at work (Mossong et al.,
2008). Home, school, workplace, and leisure contacts accounted for over 80% of all contacts in a
survey carried out in several European countries (Mossong et al., 2008). Even if such factors are
accounted for, people are also likely to have stable (i.e., nonrandom) patterns of connections to
other people over time (Keeling & Eames, 2005). Several other studies (Wallinga et al., 2006;
Bates et al., 2007; Ogunjimi et al., 2009) of how frequently people contact each other in various
ways have been conducted recently, providing information on opportunities for pathogen
transmission. However, with the exception of Bates et al. (2007), those studies were carried out
in industrialized countries.

Epidemiological data concerning diarrheal pathogens also assists model construction.
Factors such as incubation period, period of communicability, immunity, asymptomatic carriage,
and persistence of the organism in the environment are important for describing disease
transmission. Diarrheal disease risk is also known to change greatly with age, with greatest risk

after weaning and decreasing risk thereafter.
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Demographic characteristics are also important since susceptibility to diarrhea varies with
age and young children have poor hygiene and sanitation habits. Transmission within households
is particularly important due to frequent contacts between individuals sharing a household
(Mossong et al., 2008). Information about household composition is available for various
countries through the Demographic and Health Surveys (DHSs) (USAID, 2012).

Many meta-analyses have summarized the effects of drinking water interventions, hygiene
interventions, and nutritional interventions using relative risks of disease comparing groups with
an intervention to groups without an intervention (Gundry et al., 2004; B. F. Arnold & Colford,
2007; Waddington et al., 2009; Ejemot et al., 2008; Lazzerini & Ronfani, 2008; Hunter, 2009).
However, these meta-analyses and the studies that they summarize seldom report useful
information for mechanistic modeling, such as pathogen concentrations in drinking water or the
interventions already used in communities before the studies began.

2.23. Published models relevant to endemic diarrhea transmission

Although transmission models are widely used in infectious disease epidemiology, few
consider diarrhea in humans. Several that model diarrhea directly or provide useful insights to
modeling infectious diarrhea and its prevention are discussed below.

2.23.1. Mechanistic model of diarrheal infection: Eisenberg et al., 2007

A model of diarrheal infection transmission within a hypothetical community of a single
pathogen with complete immunity following infection, considered five transmission routes:
within-household, between-household, household-to-water, water-to-household, and introduction
of pathogens from outside the community (J. N. S. Eisenberg et al., 2007). This allowed
interdependencies between transmission routes; for example, reduction of transmission between
water and households would also secondarily reduce within-household and between-household

transmission. Parameters governing the strength of the transmission routes were varied, and the
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results of a hypothesized water treatment intervention that eliminated all risk from contaminated

drinking water subsequently varied, giving the following results from the model:

1. Low water contamination levels resulted in low preventable fractions of diarrhea from water
treatment.

2. If between-household transmission was low, the preventable fraction increased as within-
household transmission increased, since that route created secondary cases within
households, and these secondary cases could then be prevented by water treatment.

3. If within-household transmission was low and between-household transmission was
increased, the preventable fraction increased at first but decreased again at high levels of
between-household transmission (which created an important alternate route for disease
transmission aside from contaminated water). If within-household transmission was then
increased (i.e., both within- and between-household transmission were high), the preventable
fraction decreased further. In this case transmission could be sustained by contacts between
people, and water treatment therefore prevented little diarrhea.

Analysis of this model showed that the effectiveness of an intervention could vary
drastically depending on transmission characteristics within a community. Since additional
interventions could preferentially alter different transmission routes, it also partially explains
how interactions between various interventions might arise.

2.23.2. Empirical model of diarrheal disease: Schmidt et al., 2009

Schmidt et al. (2009) constructed a model describing diarrheal illness in a population by
drawing the number of illness episodes from a distribution for each individual and then assigning
an onset day and a duration to each episode. Individuals had a subject-specific error assigned to
them to simulate differential susceptibility by individuals. Assignment of episodes was partly

determined by increasing risk during the days following a previous episode, to simulate
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autocorrelation (‘clumping together’) of disease episodes. Individuals in the model were
independent, and transmission between individuals was not modeled. The model’s primary
intended use was to generate simulated datasets to assess different disease surveillance schemes
and explore effects of likely sources of error in surveillance data. Although it is an empirical
model that does not mechanistically simulate disease transmission, the authors provide gamma
distribution parameters drawn from real datasets for episode duration and number of episodes per
year.

An important issue raised by Schmidt et al. (2009) is the likely existence of autocorrelation
of disease episodes within individuals. Some datasets show evidence for increased risk of an
episode during the few weeks following a previous episode. This is reasonable given the fact that
it may take several weeks for the full nutrient absorptive capacity of the small intestine to
regenerate after an episode of acute diarrhea (Chen et al., 1983). In addition, people living in
unhygienic environments often have chronic alterations (lasting for years) of the small intestine
(termed tropical sprue, tropical malabsorption, or tropical enteropathy) which is associated with
diarrhea and similar intestinal abnormalities that lead to malabsorption of nutrients; it is thought
to have a root bacterial cause, partially because it can be treated with antibiotics (Lunn, 2000;
Blaser et al., 2002). Autocorrelation of diarrheal episodes could also be explained by the
existence of intermittent or relapsing infections (Schmidt et al., 2009).

2.23.3. Modeling indirect effects of interventions: Halloran et al., 2002

Modeling non-diarrheal infections can still provide important insights into diarrhea
prevention. A detailed stochastic model of influenza transmission by contact between individuals
in simulated communities has been described (Halloran et al., 2002). Contacts between
individuals within their communities depended on neighborhood and level of school (and

therefore also age). To simulate an intervention, the proportion of individuals vaccinated was
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then increased in some communities. The model was used to investigate the direct and indirect
effects of increased immunization, finding large indirect benefits to unvaccinated individuals.
For example, if half of the population in the intervention community was given a vaccine that
was 70% effective, the unvaccinated population received benefit equivalent to directly receiving
a vaccine that was 40% effective. Indirect benefits to unvaccinated people increased as the
proportion of vaccinated people increased. This scenario is analogous to many other
interventions, in which a particular behavior (e.g., handwashing) is already practiced in a
community at a certain level, and is increased by means of an intervention. However, it is unclear
whether adoption of interventions preventing diarrhea by some individuals would similarly
protect noncompliant individuals indirectly.

2.23.4. Environmental infection transmission system (EITS) models: Li et al., 2009

Much infectious disease modeling work has examined person-to-person transmission, but
diarrheal illness is largely mediated by the environment (Figure 2.4, page 49; Figure 2.7, page
77). An SIR model of influenza transmission with an added environmental (E) compartment,
modeled as a system of differential equations, has been described (Li et al., 2009); a simplified
version of this model is shown in Figure 2.6, page 74. The model used susceptible, infected, and
removed (i.e., immune or dead) compartments to track hosts, while an environment compartment
contained pathogens shed into the environment by infected hosts. Hosts can then pick up
pathogens from E and become infected; pathogens in E are also inactivated at a particular rate.
The model used three different parameter sets to simulate differing transmission modalities:

frequently touched fomites, infrequently touched fomites, and airborne transmission. However,
the Rgs from the three parameter sets were identical; this allowed comparison of the intervention

effectiveness under differing infection transmission conditions. Two interventions were

84



considered: 1) decontamination, increasing the inactivation rate of pathogens in the environment
by 25%; or 2) an 'avoidance measure' (perhaps analogous to improved hygiene) decreasing the
pick-up rate of pathogens from the environment by 25%. When transmission occured via
frequently touched fomites, neither intervention was effective. However, if transmission was
airborne or via infrequently touched fomites, each interventions reduced the incidence of
infection by about a third, with decontamination being more effective than 'avoidance'. Thus the
effectiveness of an intervention depends on the nature of the transmission route it affects, even if
transmission is identical pre-intervention.
2.24. Conclusion

Diarrheal disease in developing countries is characterized by diverse pathogens, multiple
routes of transmission, and numerous interventions to prevent it. A clearer understanding of the
action of interventions on the transmission of diarrhea would be helpful for planning and
implementing diarrhea control programs. Modeling techniques are useful for synthesizing the
large amount of published information regarding transmission and control of diarrhea, and they
can yield further insight about diarrhea transmission and control. Chapters 3, 4, and 5 of this

dissertation describe the development and application of such models.
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3. LINKING A QUANTITATIVE MICROBIAL RISK ASSESSMENT MODEL TO A
HOUSEHOLD WATER TREATMENT FIELD TRIAL

This chapter consists of previously peer-reviewed and published content (including
supplementary material) that has been reformatted and reorganized:

Enger, K.S., Nelson, K.L., Clasen, T., Rose, J.B., Eisenberg, J.N.S., 2012. Linking
quantitative microbial risk assessment and epidemiological data: informing safe drinking water
trials in developing countries. Environmental Science and Technology 46, 5160-5167.

3.1. Abstract

Intervention trials are used extensively to assess household water treatment (HWT) device
efficacy against diarrheal disease in developing countries. Using these data in policy, however,
requires addressing issues of generalizability (relevance of one trial in other contexts) and
systematic bias associated with design and conduct of a study. A published randomized
controlled trial (RCT) of the LifeStraw® Family Filter in the Congo was used as the basis for a
quantitative microbial risk assessment (QMRA) model, to demonstrate the application of models
to water safety and health issues. The QMRA model accounted for bias due to 1) incomplete
compliance with filtration, 2) unexpected antimicrobial activity by the placebo device, and 3)
incomplete recall of diarrheal disease. Effectiveness was measured using the longitudinal
prevalence ratio (LPR) of reported diarrhea. The Lifestraw RCT observed an LPR of 0.84 (95%
CI: 0.61, 1.14). The model predicted LPRs, assuming a perfect placebo, ranging from 0.50 (2.5-
97.5 percentile: 0.33, 0.77) to 0.86 (2.5-97.5 percentile: 0.68, 1.09) for high (but not perfect) and
low (but not zero) compliance, respectively. The calibration step provided estimates of the
concentrations of three pathogen types (modeled as pathogenic E. coli, Giardia, and rotavirus) in
drinking water consistent with the longitudinal prevalence of reported diarrhea measured in the

trial constrained by epidemiological data from the trial. The QMRA model demonstrated the
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importance of compliance in HWT efficacy, the need for pathogen data from source waters, the
effect of quantifying biases associated with epidemiological data, and the usefulness of
generalizing the effectiveness of an HWT trial to other contexts.

3.2. Introduction

The randomized controlled trial (RCT) is considered the gold standard study design in
epidemiology; it is the study design with the least systematic bias, and therefore the highest
internal validity. Two important components of RCT design for internal validity are: the
randomization of subjects to the intervention and the non-intervention groups; and blinding of
the subject and investigator to group assignment. It is difficult to blind HWT interventions
because these devices are visually obvious and cannot be concealed from participants or
investigators. It is also difficult to develop a placebo HWT filter that does not remove pathogens,
but improves the appearance of water like an effective filter (Boisson et al., 2010). Other biases
may also affect the internal validity of an estimate derived from the trial, such as recall bias,
incomplete compliance with the intervention, or unexpected difficulties conducting the trial
(Boisson et al., 2010).

In a recent RCT (Boisson et al., 2010) in rural communities in the Democratic Republic of
the Congo (DRC) using the LifeStraw® Family Filter (LFF; Vestergaard Frandsen Corporation,
Lausanne, Switzerland), investigators attempted to blind the intervention. The LFF is an
ultrafilter with a 20 nm pore size that was shown to remove 99.99999% of Escherichia coli,
99.998% of MS2 coliphage, and 99.97% of Cryptosporidium oocysts from challenge water in the
laboratory (T. Clasen, Naranjo, et al., 2009). For the Lifestraw RCT, investigators developed a
placebo filter resembling the LFF in appearance, weight, operation, and flow rate (Boisson et al.,
2010). The placebo was tested in the laboratory for three weeks against the same three

organisms, and no removal was observed. In the field, however, the intended placebo removed
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on average 91% (95% CI: 88-93%) of thermotolerant coliform bacteria (TTC), a group that
includes E. coli and indicates fecal contamination, from source water (Boisson et al., 2010).
Therefore, the study could only compare a highly effective filter with a poorly effective filter.
Although 65% of people reported using the filter, most filter users also reported drinking
unfiltered water (Boisson et al., 2010). The proportion of unfiltered water that people consumed
was not quantified. The Lifestraw RCT did not find a statistically significant (P < 0.05) effect of
the LFF against diarrhea (Boisson et al., 2010).

Quantitative microbial risk assessment (QMRA) models can examine and account for
biases associated with environmental intervention trials (e.g., imperfect compliance, recall bias,
or an imperfect placebo) and can explore risks associated with contexts different than those
observed in empirical studies. Such models can provide a conceptual framework for
understanding systems that are difficult to explore in the real world. QMRA models have been
used to quantify disease risk in many contexts (J. N. S. Eisenberg et al., 2008; Haas et al., 1999;
Parkin, 2008). The analytic framework for linking QMRA and epidemiological data described
here consists of: 1) a calibration step using a QMRA model to produce results consistent with the
epidemiological study; and 2) an estimation step that examines counterfactual scenarios that
adjust for biases within the study and explores how altered contexts affect risk. The effectiveness
of an intervention in those contexts can then be estimated, even if it was never directly studied
under such conditions.

This chapter describes a counterfactual causal inference framework using a QMRA model
to evaluate the impact of biases on estimates of intervention efficacies. This is illustrated by
simulating the Lifestraw RCT (Boisson et al., 2010) and adjusting for some of its biases, to
estimate the effectiveness of the LFF compared with a perfect placebo under differing levels of

LFF compliance.
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3.3. Materials and Methods

3.3.1. Conceptual framework linking QMRA models to epidemiological studies

Quantitative microbial risk assessment (QMRA) uses environmental contamination data as
inputs to models used to predict risk of infection and/or disease. Epidemiological studies provide
data on patterns of disease measured by incidence or prevalence, and measures of relative risk.
This chapter illustrates a framework for the calibration of risk models by using epidemiological
data from a particular study that describes the risk in a particular context, where the context is
defined by a particular time in a particular geographic setting (Figure 3.1). The calibration
process involved simulating a risk model many times using different input and parameter values.
The parameter sets (or parameter distributions) representing those simulations that were
consistent with the epidemiological study comprised the calibrated model; the parameter
distributions represented the context in which the epidemiological study was conducted. Using
this calibrated model, the epidemiological study was generalized to other contexts in the
estimation step. The estimation step consisted of a set of simulations in which specific parameter
values were varied to describe different contexts, such as alternative intervention strategies or

different ecological or social settings.
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Figure 3.1. Conceptual model for simulation of a randomized controlled trial

Linking QMRA models to epidemiological studies: a conceptual model
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The results from an actual epidemiology study defined a context (e.g., the LifeStraw® Family
Filter randomized controlled trial [Lifestraw RCT] in rural Congo). The calibration phase
provided a set of simulated studies that are consistent with this defined context. Calibration also
estimated values for parameters that were not observed during the real study, thus inferring
unobserved context of the real study. The estimation phase provided simulated studies that were
generalized to other contexts (e.g., higher or lower compliance than was observed during the
Lifestraw RCT).

Results by
context

3.3.2._Model description

For the research described in this chapter, a QMRA model was developed that simulates
the following chain of events:
1. Determination of the concentrations of three pathogen types (bacteria, protozoa, and
viruses) in drinking water, sampled from gamma distributions
2. Calculation of daily doses of pathogens based on their concentrations and the amount of
water consumed

3. Use of dose response functions: convert daily pathogen doses to probabilities of infection
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4. Assignment of infection to individuals, based on the probability of infection
5. Assignment of diarrheal illness, based on morbidity ratios

The same conceptual approach illustrated in Figure 3.1 could also be applied to more
complex models including processes such as transmission dynamics (J. N. S. Eisenberg et al.,
2005; J. N. S. Eisenberg et al., 2007) or environmental fate and transport dynamics (J. N. S.
Eisenberg et al., 2006).

The model describing the Lifestraw RCT conducted in the Congo (Boisson et al., 2010)
follows a simulated population of children under five years of age for 12 months using a time
unit of 1 day. The population was surveyed about their diarrheal symptoms every four weeks,
similar to the Lifestraw RCT. The simulated children ingested bacteria, protozoa, and viruses in
their drinking water, respectively represented by diarrheagenic Escherichia coli, Giardia cysts,
and rotavirus. These three pathogens were chosen because they are major causes of diarrheal
disease in much of the developing world, and they represent the three main taxa of waterborne
pathogens.(Lanata & W. Mendoza, 2002) A child was either susceptible to, immune to, or
infected by each of these three pathogens; we assumed that the infective processes of each
pathogen were independent of each other, and a child could therefore be infected with 0, 1, 2, or
3 types of pathogens simultaneously. Children were divided into two groups; the first group
received the intervention filter, whose log; removal values (LRVs) for E. coli, Giardia, and
rotavirus were 6.9, 3.6, and 4.7 respectively based on laboratory testing (T. Clasen, Naranjo, et
al., 2009). The other group received the placebo filter, whose LRVs were set to 1.05 for all three
pathogens based on the field trial for thermotolerant coliform removal (Boisson et al., 2010).

The model is more completely described by the flowchart in Figure 3.2; the steps of the

flowchart are explained in detail below.
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Figure 3.2. Simulation model flowchart

1. Enter
parameters
(Table 1)
that are
constant
through all
runs

b

2. Randomly pick mean
concentrations (pathogens/L)
for 3 pathogens, and level of

non-waterborne diarrhea
(LPrNW; Table 2)

Legend
Blue: Parameter entry.
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trial (Boisson 2010).
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Step 1: Parameter entry

A simulation run begins by reading 28 model parameters (Table 3.1), which were estimated

from the published scientific literature and are discussed in greater detail in chapter 7 They

remain constant for every simulation run.

Table 3.1. Fixed parameter values used in the QMRA model of the Lifestraw RCT

Description of parameter values Value Reference
Morbidity ratios (proportion of infected who are symptomatic)
Escherichia coli 0.214 (Vergara et al., 1996)
. (Peréz Cordon et al.,
Giardia 0.590 2008)
Rotavirus 0.397 (Fischer et al., 2002)
Duration of infection
I . e shape = 1.775 (Estrada-Garcia et al.,
Escherichia coli (gamma distribution, mean 3 days) scale = 1.690 2009)
. . shape = 3.206 (Kent et al., 1988)
Giardia (gamma distribution, mean 11 days) scale = 3.431

Rotavirus (uniform distribution; mean 2.5 days)

Shape parameter for all gamma distributions of

pathogen type concentrations ¢ 1.85
Period of immunity for all pathogens 7 days
No. children under 5 years of age, intervention group 85
No. children under 5 years of age placebo group 105
Longitudinal prevalence of reported diarrhea for each group
Intervention (LPrraq) 0.0749
Placebo (LPpraq) 0.0896
Longitudinal prevalence ratio of reported diarrhea
(LPRouo) 0.836
Water ingestion 1.178 L/day
Logio reduction values (LRVs), intervention group
Escherichia coli 6.9
Giardia 3.6
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Range 1-4 days

(Kapikian et al.,
1983)

(Boisson et al., 2010)

(Boisson et al., 2010)
(Boisson et al., 2010)

(Boisson et al., 2010)
(Boisson et al., 2010)

(Boisson et al., 2010)
(Akpata, 2004)

(T. Clasen, Naranjo,
et al., 2009)

(T. Clasen, Naranjo,
et al., 2009)



Table 3.1 (cont'd)

Description of parameter values Value Reference
. (T. Clasen, Naranjo,
Rotavirus 4.7 et al., 2009)
LRVs, placebo group, all 3 pathogens
Calibration step 1.05 (Boisson et al., 2010)
Estimation step 0
Dose response function parameters (Anon, 2012)
) i . ) a=0.155 (H L DuPont et al.,
E. coli (enteroinvasive); beta-Poisson parameters Ngg = 2.11x106 1971)
o . (Rendtorff, 1954; ] B
Giardia; exponential k parameter 0.0198 Rose et al., 1991)
. . a=0.2531 (Haas et al., 1993;
Rotavirus; beta-Poisson parameters Nsg = 6.171 Ward et al., 1986)
Chance of remembering diarrhea >2 days in the past 0.54 (Zafar et al., 2010)
Compliance with device use: chance of using device on a given day
Calibration step 0.65 (Boisson et al., 2010)
Estimation step 0, 0.65, or 1.00
Compliance with device use: If using device on a given day, proportion of water treated
Calibration step 2/3 or 1/3

@ The scale parameters for the gamma distributions of pathogen types are determined by the
mean concentration of pathogen types, which is randomly sampled from a uniform distribution

during calibration (Table 3.2).

Step 2: Parameter values inferred through calibration

There are 4 other parameters (Table 3.2) which are unknown and were therefore inferred

during the calibration process:

1. Baseline longitudinal prevalence of reported non-waterborne diarrheal disease in
'children’ (under five years of age; LP,nw). This value was assumed to be the background

LP of diarrhea due to the sum of all transmission pathways except drinking water, as well
as all non-communicable causes of diarrhea;

2. Mean concentration of diarrheagenic Escherichia coli (representing bacteria) in untreated
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drinking water (bacteria/L);

3. Mean concentration of Giardia (representing protozoa) in untreated drinking water
(cysts/L);

4. Mean concentration of rotavirus (representing viruses) in untreated drinking water
(virions/L).

These values are necessary for the model, but no pathogen data exist for these water
sources, nor are there clinical data describing the etiology of diarrheal disease where the
Lifestraw RCT was conducted. The drinking water sources used in the Lifestraw RCT study area
were unimproved, and consisted mainly of surface water and unprotected springs; however, the
water was abundant and naturally clear (Boisson et al., 2010). Diarrheagenic E. coli, Giardia,
and rotavirus were chosen to represent bacteria, protozoa, and viruses because they are common
causes of diarrheal disease in developing countries (Lanata & W. Mendoza, 2002), and they
represent the three major taxa of diarrheal pathogens. The prior distributions for the mean
concentrations of these pathogen types were defined as uniform distributions, with ranges given
in Table 3.2. Posterior distributions for these values were obtained by running multiple

simulations with varying mean concentrations. Model runs returned three key outcomes: the

longitudinal prevalence of reported diarrhea for the intervention (LPp,q) and placebo (LPpq)

groups, and their ratio, the longitudinal prevalence ratio (LPR;,q). These three outcomes were

also estimated by the Lifestraw RCT (Table 3.3). If the outcomes from a model run fell within

the 95% confidence intervals for the outcomes estimated by the Lifestraw RCT, the mean

pathogen type concentrations and the LPyw were retained for use in the estimation step.
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Table 3.2. Ranges for stochastically varying parameters

Uniform distributions used to determine the values of the stochastically varying parameters for
each simulation model run during calibration

Upper limit Upper limit
L Lower o . . .
Description limit (low calibration = (medium calibration
compliance) compliance)
Me'a.n Concentratlor} per L, pathogenic E. 0 7 Ox104 8.0x104
coli in untreated drinking water
Mean concentration per L, Giardia cysts
. A 0 0.95 1.3
in untreated drinking water
Mean conceptrguon per L, rotavirus in 0 0.14 0.18
untreated drinking water
Baseline non-waterborne diarrhea
y e o 0 0.0972 0.0972

longitudinal prevalence (LPw)*

* The upper limit for baseline diarrhea longitudinal prevalence is the upper limit of the 95% CI
for LP in the <5 year old intervention group in the Lifestraw RCT (Boisson et al., 2010).

Step 3: Initiating each run; establishing equilibrium waterborne infection

Once all parameters were available, the simulation run could begin. It was assumed that at
the beginning of a simulated intervention study, each participant was in one of three states
(susceptible, infected, or immune), and that the proportions of participants among these states
were in equilibrium. In the model, this equilibrium was established by initially infecting every
child with all three pathogen types and assigning infection durations randomly from a uniform
distribution ranging from 0 to 50 days (‘equilibration infections'). This range was chosen in order
to prevent extreme oscillations in the proportion infected. In earlier versions of the model, these
oscillations arose because the entire population was initially susceptible, leading to immediate
infection of much of the population, followed by simultaneous recovery, followed by
simultaneous infection. By using a wide range of infection durations for the equilibration
infections, children become susceptible at different times during the equilibration period, thereby

preventing large oscillation artifacts. After children recovered from an equilibration infection,
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they were immune for 7 days, after which they could be reinfected through exposure to
contaminated drinking water; infection durations were subsequently assigned from the
distributions described in Table 3.1. Equilibrium was reached when the temporal trend of the
infection prevalence was flat; the infection prevalence at equilibrium stochastically oscillated
around the mean prevalence. The model reached equilibrium in approximately 60 days (e.g.,
Figure 3.4 and Figure 3.5); the precise time depended on the mean concentrations of pathogens.
The simulated intervention study begins on day 128.

Step 4: Calculating daily doses of marker pathogens

The model included 85 children in the intervention group and 105 in the placebo group,
consistent with the Lifestraw RCT (Boisson et al., 2010). The concentration of each pathogen
type in the source water was sampled from a gamma distribution (Table 3.1) for each child on
each day. The shape parameter of these distributions was always 1.85; the scale parameter was
the randomly selected mean concentration for a particular pathogen, divided by the shape
parameter. The shape parameter was obtained by fitting a gamma distribution to the
thermotolerant coliform (TTC) counts measured by the Lifestraw RCT in untreated source water,
excluding high outliers (over the detection limit of 30,000 CFU / 100 mL; 3.8% of the data).
Each child’s daily dose of a particular pathogen type was determined using the LRVs (Table 3.1)
attributable to the device that child is using:

Daily dose = cd[(1 —w) + w10T] 3.1

where c is the concentration per liter of a pathogen type in untreated water (sampled from a
gamma distribution), w is the proportion of water treated (which varies depending on
compliance), r is the LRV (which varies depending on whether the intervention filter, the placebo

filter, or no filter is being used), and d is the liters of water consumed daily.
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Step 5: Dose response functions

The daily doses of pathogen types were converted to responses (i.e., daily probabilities) per
susceptible person of becoming infected using dose response functions (Anon, 2012; Haas et al.,
1999). These functions were obtained using results from studies in which adult volunteers were
fed widely varying doses of pathogens, and monitored for development of infection. An
exponential dose response function was used for Giardia, and a beta-Poisson dose response
function was used for E. coli and rotavirus:

Exponential: Response = 1 — e-kd (3.2)

Beta-Poisson: Response = 1 — (1 + [d / N5p][2V/ - 1])-« (3.3)

where d is the dose (number of pathogens ingested per day in drinking water), k is the
parameter for the exponential model, and o and N5 are the parameters for the beta-Poisson

model (N5 is the dose at which 50% of the population exhibits the response). As o approaches

infinity, the beta-Poisson dose response function approaches the exponential dose response
function (Haas et al., 1999). A graph of the dose response functions is found in Figure 3.3

(Figure 4.6a, page 138, presents the same information in log-log scale).
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Figure 3.3. Comparison of dose response functions
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Step 6: Assignment of infection

New infections were randomly assigned to susceptible children each day, according to the

response probabilities obtained from the dose response functions.

Step 7: Assignment of infection duration, recovery, and immunity

If a child is infected, they were assigned an infection duration (Table 3.1, page 93) sampled

from a gamma distribution (E. coli or Giardia) or a uniform distribution (rotavirus). Infections

due to the 3 pathogens were tracked independently within each child. Functionally, this was done

using a matrix with 1 row per child and 1 column per pathogen. The entries of the matrix were

numbers of days; positive numbers denoted time remaining until recovery and negative numbers

denoted elapsed time since recovery. Each day, 1 was subtracted from all entries, and an
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individual recovered when an entry reaches 0. Following recovery, the individual was immune
for 7 days; after this, they are once again susceptible and may be reinfected.

The children in the placebo group were identical to the children in the intervention group,
except that the log; reductions attributable to the placebo device were lower (Table 3.1, page
93), and they therefore ingested higher doses of pathogens.

Step 8: Surveying the population about reported diarrhea

Although the model explicitly tracked infection, the Lifestraw RCT measured reported
disease. Since some infections are asymptomatic or unreported, the model had to simulate the
process of people reporting diarrhea in order to output disease measures comparable to the
Lifestraw RCT.

Reporting of diarrhea was simulated via 12 monthly surveys of the population. The mean
of the 12 monthly estimates of prevalence during the year-long study period estimated the
longitudinal prevalence (LP) of diarrhea. More generally, an LP is the proportion obtained by
dividing the person-time affected by the total person-time observed. Each simulated survey
estimated the prevalence of diarrhea by allowing each person to report whether any diarrheal
illness occurred over the previous 7 days, corresponding to the actual survey process during the
Lifestraw RCT. Reporting of diarrhea by people in the simulated community followed these
rules:

1. the most recent infection for a particular child was determined, i.e., the infection with the
longest duration remaining, or if not currently infected, the infection that resolved most
recently;

2. that infection was stochastically determined to be symptomatic or asymptomatic, using

the morbidity ratio (Table 3.1, page 93) as the probability of symptoms given infection;
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3. asymptomatic infections were never reported,;

4. symptomatic illness on that day or the previous 2 days was always reported;

5. symptomatic illness during the previous 3-7 days had a 54% chance of being remembered
(Table 3.1, page 93); if the illness was remembered, it was reported.

The 5t rule came from published recall bias measurements (Zafar et al., 2010). The
prevalence of diarrhea reported by a particular survey was the proportion of people reporting
diarrhea according to the rules above. Averaging the results from the 12 simulated surveys gave
an estimate of the LP.

Step 9. Determining model outcomes corresponding to the Lifestraw RCT

To clarify this process, some terminology is described here. There were several different

longitudinal prevalences (L.Ps) which were tracked or output by the model. LPs were determined
(and subscripted) according to 2 categories: 1) intervention group (y) or placebo group (p); and 2)
waterborne infection (y;), or waterborne diarrhea (y,q), or any diarrhea (,4). In addition, reported
diarrhea was prefixed with ;. For example, the longitudinal prevalence in the intervention group
of any reported diarrhea was LP}.,4. Another parameter, LP, Ny, was defined as the longitudinal
prevalence of reported diarrhea acquired by nonwaterborne routes. LP vy was not affected by
water treatment. Total longitudinal prevalence of reported diarrhea for the intervention group

(LPpaq) or the placebo group (LPp,,q) was obtained by adding LP Ny to LPyaq or LPprag. Since

LPs are proportions and a person might simultaneously carry infection acquired from waterborne
or non-waterborne routes, addition was carried out in this manner to avoid double-counting of

the intersection between the two types of routes:

LPprad = LPrrwd + LPyNw(l - LPrpwg) or  LPpprag = LPpryd + LPinw(1 - LPppyq) (3.4)
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Table 3.1, continued
The effectiveness of the LFF was measured by a longitudinal prevalence ratio (LPR). To

correspond with the Lifestraw RCT, the primary outcome measure was the LPR of any reported

diarrhea (LPR,,q), calculated as follows:

LPR;aq = LPrrad / LPprad (3.5)
Analogous LPs and LPRs could also be calculated for waterborne infection, waterborne

diarrhea, or reported waterborne diarrhea. For example, since the model tracked waterborne

infection daily, the LPs for waterborne infection in the intervention (LPp;) and placebo (LPp,,;)

groups could be used to generate LPRs for waterborne infection (LPR,;), as if the entire

population was observed with perfect accuracy (Figure 3.10, page 113).

Step 10: Repetition of calibration runs

During the calibration step, the simulation model was run 100,000 times. Each run

randomly selected different pathogen concentrations and a background diarrheal longitudinal
prevalence (LP,nw) from a uniform distribution (Table 3.2, page 96). The upper limits of these

uniform distributions were obtained from a simplified calibration process carried out before the

actual calibration step. This process used the idea that the maximum possible concentration of a
particular pathogen type is the concentration that yields the maximum LPp,q consistent with the

Lifestraw RCT if other two pathogen types are absent. For a particular pathogen type, these
values were estimated by examining results from 12 successive model runs. Each of the 12 runs

progressively increased the concentration of a single pathogen type, with concentrations of the

other 2 pathogens set to 0. The smallest concentration yielding an LPp,,q above the 95%

confidence limit for the placebo group (i.e., an LPp,,q > 0.11; Table 3.3) provided the upper limit

of the uniform distribution for that pathogen type's concentration (Table 3.2, page 96). The
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appropriateness of these upper limits were checked by visually examining scatterplots of

pathogen concentration by LPp,q4 after the full calibration step had completed (not shown).

Parameter values and the results from all runs in the calibration step were saved. The time

course of infection and reported diarrhea for two example simulation runs are in Figures 3.4 and
3.5 (page 104). Parameter combinations are selected that yield LPy.,q, LPpaq, and LPR,q values

within the 95% confidence intervals reported in the RCT trial (Table 3.3). These parameter
combinations are then reused in the estimation step of the process.

Among the three pathogen types, high concentrations of one pathogen were associated
with lower concentrations of the other pathogens. This occured because the model was calibrated
to match the level of reported disease seen in the Lifestraw RCT, without reference to the
particular pathogen types. Therefore higher levels of disease from one pathogen type must be
balanced by lower levels of disease from other pathogen types.

Table 3.3. Longitudinal prevalence measures from the Lifestraw field trial

Measure Estimate L((g;(e)/z grgit U(Ig)gg/f, lérgit
imervention group (LPrc) 00749 0.0526 00972
;ﬁiﬁﬁﬁ (Ernigj Ei\;a;fige’ 0.0896 0.0673 0.112
Longitudinal prevalence ratio, 0.84 061 14

intervention/placebo (LPR,,q)

* During calibration, for a simulation model run to be considered consistent with the Lifestraw
RCT, all 3 measures must fall between the lower and upper limits.

3.3.3. Example runs of the model

Graphical output from two runs of the model is shown in Figure 3.4 and Figure 3.5. They

display the time courses of two calibration runs of the QMRA model. Figure 3.4 has higher
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waterborne infection and reported waterborne disease levels than observed in the Lifestraw RCT,

and Figure 3.5 is consistent with the Lifestraw RCT. The simulated surveys of diarrhea are

shown by the purple x symbols; equilibration occurred during the first 128 days, before the first

simulated survey. Each survey asked whether any diarrhea was remembered during the previous

7 days. In contrast, the lines signify daily prevalence of infection, as simulated daily over the

course of the model run.

Figure 3.4. Example run of the model, with higher infection levels than the Lifestraw RCT
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Figure 3.5. Example run of the model, infection levels consistent with the Lifestraw RCT
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3.3.4. Analytical process

The simulation model described above was implemented in two steps: calibration and
estimation (Figure 3.1, page 90).

The calibration step estimated the four unknown parameter values (Table 3.2, page 96) by
constraining the model outputs to the results of the Lifestraw RCT (Table 3.3, page 96). The
calibration step included 100,000 runs. It was conducted for two calibration compliance
conditions, low and medium, because the proportion of water treated by filter users during the
Lifestraw RCT was unknown but believed to be substantially less than 1. Additionally, the
parameters in Table 3.2 (page 96) were randomly sampled from uniform distributions for each
simulation run. If a model run yielded results consistent with the Lifestraw RCT, its set of four

parameter values (Table 1) was used in the estimation step. A run was considered consistent if the

LPprad> LPprag, and LPR,,q all fell within the 95% confidence limits reported from the Lifestraw
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RCT (Table 3.3, page 103).

The estimation step determined effectiveness given: 1) a perfect placebo, and 2) low,
medium, high, or perfect estimation compliance. It consisted of ten model runs for each
parameter set that was consistent with the Lifestraw RCT (totaling >2000 runs) for each of four
estimation compliance levels, assuming a perfect placebo.

The estimation step simulated measurements of LP},,q and LPp,q4, and their ratio LPR .4,

which were calculated in the same way as in the calibration step (number of monthly person-
surveys reporting diarrhea during the previous 7 days, divided by the total number of person-
surveys).

Differing compliance values were used in the calibration and estimation steps. In the
calibration step, ‘calibration compliance’ referred to a set of compliance values describing what
probably occurred during the actual Lifestraw RCT; these were necessary to calibrate the model
to the four parameter values in Table 3.2 (page 96). In the estimation step, ‘estimation
compliance’ referred to a larger set of compliance values that allow the model to make
predictions for several different scenarios. Calibration compliance and estimation compliance
were considered simultaneously in the results because different calibration compliance levels led
to different results in the estimation step.

The QMRA model was programmed in Octave 3.2; the code also runs in MATLAB 7.11.
The program code is in the appendices (chapter 9, page 239). Results were analyzed using R
2.11; the two-tailed Wilcoxon rank sum test (o = 0.05) was used to compare distributions.

3.4. Results
3.4.1. Calibration step
Out of the 100,000 simulation runs in the calibration step, 210 were consistent with the

Lifestraw RCT based on the criteria in Table 3.3 (page 103) and assuming low calibration
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compliance with water filtration. Repeating the calibration step assuming medium calibration
compliance yielded 258 consistent runs. Calibration estimated distributions for two outputs:

1. The longitudinal prevalence ratio (LPR,q) distributions were similar by level of

calibration compliance (Figure 3.6). The estimate from the Lifestraw RCT falls within the

central 95% of the distributions, suggesting consistency between the model and the
Lifestraw RCT. The median LPR,,q estimated by the model differed from the Lifestraw
RCT because the Lifestraw RCT was a single experiment, whereas each distribution of
LPR,q represented over 200 simulated experiments.

2. Simulated concentrations of pathogen types in untreated water (Figure 3.7) were higher
for medium calibration compliance compared with low calibration compliance, which
was necessary to produce LPy.,q and LPp,q values consistent with the RCT. In individual

calibration runs, higher concentrations of one pathogen type were associated with lower
concentrations of the other two pathogen types. The median diarrheagenic E. coli
concentration predicted by the model is lower than the median thermotolerant coliform
(TTC) concentration measured in untreated drinking water in the Lifestraw RCT (Figure

3.7). This is plausible since E. coli are a subset of TTC, and not all E. coli are pathogenic.
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Figure 3.6. Distributions of LPRs consistent with the Lifestraw RCT
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Figure 3.7. Distributions of simulated microbial concentrations
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Simulated distributions of microbial concentrations per liter of untreated water, consistent with
the Lifestraw RCT. Distributions were obtained from the calibration step assuming low (65% of
children treat 1/3 of their drinking water) or medium (65% of children treat 2/3 of their drinking
water) calibration compliance. Thermotolerant coliforms (TTC) measured by the Lifestraw RCT
are also shown for comparison with simulated E. coli. For all three pathogen types, the
concentration distributions differed by calibration compliance (Wilcoxon rank sum test, p <
0.001).

3.4.2. Estimation step

This step estimated LFF effectiveness compared to a perfect placebo for low, medium,
high, and perfect estimation compliance, given low or medium calibration compliance.

Estimation compliance was a major driver of effectiveness. For example, under low,
medium, high, and perfect estimation compliance, the median LPR,4 was 0.86, 0.70, 0.50, and
0.13 respectively, regardless of calibration compliance (Figure 3.8). Additionally, LPy.,q was

significantly greater with medium calibration compliance (compared to low calibration

compliance), for all levels of estimation compliance except perfect (Figure 3.9). This difference
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occurred because both calibration steps (low and medium calibration compliance) were
constrained to the same RCT result; if calibration compliance decreases, the pathogen

concentrations must also decrease for the model to remain consistent with the Lifestraw RCT.
During the estimation step, the higher LPp,,4 for medium calibration compliance was due to lack
of protection from the perfect placebo; therefore, the LPy,q4 values were also higher. The

differences between low and medium calibration compliance decrease as estimation compliance

increases.
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Figure 3.8. LPR distributions for differing compliance assumptions and placebo behavior
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a, b: These pairs of distributions illustrate the effect of the imperfect placebo on LPR, 44,
depending on low (a) or medium (b) calibration compliance. They differed significantly by
imperfect vs. perfect placebo (Wilcoxon rank sum test, p < 2x10-16).
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Figure 3.9. Longitudinal prevalence distributions under differing compliance assumptions

& — —

o i Low calibration -— Medium calibration

— ] compliance 5 compliance

-d - i

© ] x -

— Te) 1

o i :

= o] T L%

© ! 1

() 4 a ! i

= : _ — i 1

t 1 ] : : :

L : 3 — ' p *

o - \i LT | :

L < — | b | x : ¥ L [el —

- H | ! H 1 *

& 7 & T[] x |4 |:|

o s ! ; - - . | —

= . w ; 1 == i d !

Y— LN | i x :f I

© o : i 1 e o

(O] o . x J |

O I H 1 b4 :

C - - ’ ! :

Q@ 4LP from RCT, x N

© . b L

E imperfect placebo

S g7 95% ClI ] [ |

° S Estimated LP - -

= +—= 0O (] (] (] v +~ O (O] () Q Q

el O = < + @] el +

S @23 32 52 o2 ge28s9 32 Ee oe ge

5 5L —8 508 I® £8 59 —c 50 IO £

c cg © %92 o faaf & 25 o &s

3 € =g S € E =€ S e
(@] (@] (@) (@] (@) (@] (@] o
O O o O O O o O

Estimation compliance

Distributions of reported longitudinal prevalence (LP) of diarrhea in the estimation step for the
intervention group, by calibration compliance and estimation compliance.

a, b, ¢, d: Each of these pairs of distributions differed significantly by calibration compliance
(Wilcoxon rank sum test, p < 2x10-16).

Compliance levels: Perfect placebo (100% of children treat 0% of their drinking water), low
compliance (65% of children treat 1/3 of their drinking water), medium compliance (65% of
children treat 2/3 of their drinking water), high compliance (65% of children treat 100% of their
drinking water), perfect compliance (100% of children treat 100% of their drinking water).

Calibration compliance altered the estimated effect of a perfect placebo (Figure 3.8).

Adjustment for the imperfect placebo increased the estimated preventable fraction of disease by
8 percentage points assuming low calibration compliance (median LPR,4: 0.94 and 0.86 for
imperfect and perfect placebo, respectively). Assuming medium calibration compliance, the

preventable fraction increased by 22 percentage points (median LPR,4: 0.92 and 0.70 for
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imperfect and perfect placebo, respectively).
All three pathogen types contributed substantially to infection and disease (Figure 3.10).

Mixed infections accounted for about 2% of infections.

Figure 3.10. Longitudinal prevalence of waterborne infection in the estimation step
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Longitudinal prevalence of waterborne infection (LP,,;) during the estimation step with a perfect
placebo, by pathogen type. LP,,; is higher for medium calibration compliance, compared with
low calibration compliance. Compliance levels: None (0; 0% of children treating 0% of their

drinking water, i.e., perfect placebo), low compliance (L; 65% of children treat 1/3 of their
drinking water), medium compliance (M; 65% of children treat 2/3 of their drinking water), high
compliance (H; 65% of children treat 100% of their drinking water), perfect compliance (P;
100% of children treat 100% of their drinking water).
3.5. Discussion

Results from an epidemiological study may only be relevant to the ecological and social

conditions of the communities studied. However, quantitative microbial risk assessment

(QMRA) models that are calibrated to epidemiologic data can predict risk under scenarios that
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were not actually studied, known as counterfactual scenarios (J. J. Kim et al., 2007; Tuite et al.,
2010). A calibration process to epidemiological data can facilitate the use of QMRA models
where the environmental contamination data required by those models are are difficult to
measure. There are many situations where epidemiological data can be used to provide
parameters to QMRA models, such as in a developing country context where direct measures of
disease risk are frequently measured but environmental contamination data are rare. In this
context, the modeling framework described herein was used to generalize results from the
Lifestraw RCT (Boisson et al., 2010).

Generalizing across different compliance scenarios, this model quantified the relationship

between compliance and HWT effectiveness. Our analysis suggests that perfect compliance in
the Lifestraw RCT communities would yield an LPR,,q of 0.13, suggesting that 87% of reported

diarrhea could be prevented by consumption of treated water. This result, suggesting that only
13% of diarrhea in the Lifestraw RCT community was caused by non-waterborne transmission,
is consistent with a HWT trial in a refugee camp in which there was 95% compliance and an
83% reduction in diarrhea prevalence (Doocy & Burnham, 2006), as well as numerous field trials
of ceramic filters indicating risk ratios < 0.5 (T. Clasen, I. G. Roberts, et al., 2009; Hunter, 2009).
Noncompliance will result in an underestimate of protective effect compared to a situation in
which there is perfect compliance. Additionally, these trials and our risk assessment model do not
account for the interdependency of other transmission routes. Thus, it is unclear whether this
model accurately assesses the proportion of diarrhea associated with drinking water.

The reduction in effectiveness due to the imperfect placebo also depended on the assumed
calibration compliance level during the Lifestraw RCT. Assuming low calibration compliance,

the imperfect placebo decreased effectiveness (preventable fraction) by 8 percentage points.
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Effectiveness decreased 22 percentage points assuming medium calibration compliance (Figure
3.8, page 111).

Compliance has several components. This analysis used a simple formulation in which
each child had a daily probability of using the device; if the device was used, a fixed proportion
of water was treated. In reality, some people may be highly consistent users or nonusers, while
others might use the device occasionally (e.g., drinking untreated water while working outside
the home). Effectiveness might differ given perfect use by 50% of a population, compared to an
entire population treating 50% of their water. These distinctions are further explored in chapter 4.

These results are consistent with the reasonable expectation that increasing compliance
should increase effectiveness. Recent systematic reviews suggest a positive but not statistically
significant relationship between compliance and effectiveness, perhaps due to difficulty in
measuring compliance (B. F. Arnold & Colford, 2007; T. Clasen, I. G. Roberts, et al., 2009;
Waddington et al., 2009). Modeling has shown how even occasional treatment failures by a water
treatment plant could cause high levels of diarrheal disease in populations (Hunter et al., 2009).
Collectively, these results show the importance of consistent treatment of drinking water, by

well-managed municipal plants or by high compliance with HWT. Future studies should examine
the joint effects of compliance and log;y removals by a HWT device. QMRA models can be used

to extend the results shown in Figure 3.8 (page 111) by providing estimates for risk reductions as

a function of both compliance and device efficacy. For example, for a given compliance level,
what are the expected risk reductions when using a device that provides 5 log; removal, versus

a device that provides 3 log; removal (see section 4.4.4, page 150)? Such analyses could

provide performance metrics and standards that address not only microbiological efficacy but

also the correct, consistent and sustained use of a device by the target population.
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3.5.1. Predicting pathogen concentrations in drinking water sources

Few data exist on pathogen concentrations that individuals ingest via drinking water in
developing countries. Calibration of this model used the epidemiological data from the Lifestraw
RCT to predict concentrations of pathogens in untreated water (Figure 3.7, page 109). The
predicted Giardia concentrations are consistent with measurements from southeastern Brazilian
raw water sources (< 0.1 to 3.4 cysts/L) (Razzolini et al., 2010), but lower than other Brazilian
(2.5 to 120 cysts/L) (Neto et al., 2010) or Honduran source waters (2.4 to 21 cysts/L) (Solo-
Gabriele et al., 1998). The predicted diarrheagenic E. coli concentrations are much lower than
the 2.5-105--1.6-107 CFU of enterotoxigenic E. coli detected in sewage-impacted Indian rivers
(Singh et al., 2010). Furthermore, the predicted rotavirus concentrations are substantially lower
than measurements from polluted creeks in Sao Paulo, Brazil (geometric mean, ~2.7 focus-
forming units/L) (Mehnert & Stewien, 1993). It is reasonable that the clear source water in the
Lifestraw RCT site would have lower pathogen concentrations than the above water sources,
many of which were from polluted urbanized environments.

Measuring viable pathogen concentrations in drinking water (and other exposure routes) in
several epidemiological studies would increase the accuracy and precision of risk estimates, as
indicators of fecal contamination (e.g., coliform bacteria or E. coli) correlate poorly with
presence or concentrations of actual pathogens (American Water Works Association, 1999;
Leclerc et al., 2002; Toranzos et al., 1988).

3.5.2. Calibration of microbial risk assessment models

Microbial risk models, like many environmental models, can never be fully validated
(Oreskes et al., 1994). However, they can be confirmed through a calibration process using
epidemiological data. We present a framework that first calibrates using epidemiological data,

and second estimates risks under differing counterfactual scenarios. The calibration process
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transforms uninformed priors to informed posteriors by constraining the model using the
epidemiological outcome data from the Lifestraw RCT. The low percentage of calibration runs
that were consistent (<0.3%) indicates that the trial data imparted substantial information to the
model by constraining the acceptable parameter space. Source water pathogen data would be
useful to further calibrate the model for the Congo field site.

Risk models informed by epidemiological data are powerful tools to generalize beyond the
context in which epidemiological studies are conducted. Models can be used to inform study
design and intervention strategies; epidemiological studies can calibrate these models. Few
published examples take this approach, but see: (J. J. Kim et al., 2007; Tuite et al., 2010). The
framework provided here can facilitate such future research activities. Results from our
examination of HWT field trials indicate that compliance and pathogen concentrations in source
water are particularly important processes to characterize. Data from these processes would
enhance the calibration step, providing the opportunity to describe other unobserved aspects of
the system. Additionally, pathogen measurements from other environmental sources (e.g., hands,
food, feces) would facilitate the extension of our model system to consider transmission by
multiple environmental pathways (Li et al., 2009); such transmission models would allow
investigation of interdependency of multiple transmission routes, and ultimately multiple
interventions.

Although additional data on pathogen concentration and compliance and the extension to
considering transmission are important steps forward in informing intervention strategies, our
analysis provides the important and robust conclusion that effectiveness is highly sensitive to
compliance, suggesting that trials of household level interventions should measure compliance as
carefully and as effectively as possible. Compliance guidelines should be developed for HWT

interventions, in addition to the microbial reduction guidelines for HWT devices recently
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published by WHO (Sobsey & Joe Brown, 2011).
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4. THE JOINT EFFECTS OF EFFICACY AND COMPLIANCE IN HOUSEHOLD
WATER TREATMENT EFFECTIVENESS

This chapter consists of a manuscript and its supplementary material that has been peer-
reviewed and accepted for publication. It has been reformatted and reorganized:

Enger, K.S., Nelson, K.L., Rose, J.B., Eisenberg, J.N.S. The joint effects of efficacy and
compliance: a study of household water treatment effectiveness against childhood diarrhea.
Publication forthcoming in the journal Water Research.

4.1. Abstract

The effectiveness of household water treatment (HWT) at reducing diarrheal disease is
related to the intrinsic efficacy of the HWT method at removing pathogens, how people comply
with HWT, and the relative contributions of other pathogen exposure routes. Although many
HWT methods are efficacious at removing or inactivating pathogens, their effectiveness within
actual communities is decreased by imperfect compliance. However, the quantitative relationship
between compliance and effectiveness is poorly understood. To assess the effectiveness of HWT
on childhood diarrhea incidence via drinking water for three pathogen types (bacterial, viral, and

protozoan), a quantitative microbial risk assessment (QMRA) model was developed. The model
allowed examination of the relationship between log;y removal values (LRVs) and compliance

with HWT for scenarios varying by: baseline incidence of diarrhea; etiologic fraction of diarrhea
by pathogen type; pattern of compliance; and size of contamination spikes in source water.
Benefits from increasing LRV strongly depend on compliance. For perfect compliance,
diarrheal incidence decreases as LRVs increase. However, if compliance is incomplete, there are
diminishing returns from increasing LRV in most of the scenarios considered. Higher LRV are

more beneficial if: contamination spikes are large; contamination levels are generally high; or

119



some people comply perfectly. The effectiveness of a HWT intervention at the community level
may be limited by low compliance, such that the benefits of high LRVs are not realized. Patterns
of compliance with HWT should therefore be measured during HWT field studies and HWT
dissemination programs. Studies of pathogen concentrations in a variety of developing-country
source waters are also needed. Guidelines are needed for measuring and promoting compliance
with HWT, in addition to recently published WHO HWT efficacy guidelines.

4.2. Introduction

An effective intervention can be defined as one that reduces disease (i.e., is efficacious)
and one that people use (i.e., they comply). For example, a drug or vaccine must be protective,
and people must take the drug or receive the vaccine; contaminated water must be correctly
treated, and people must drink the treated water. Both efficacy and compliance must be evaluated
when assessing the ability of an intervention to reduce illness; both are dynamic factors that can
vary over time. Household water treatment (HWT) interventions are an interesting example that
illustrates these two factors, where pathogen removal characterizes efficacy and behavior
characterizes compliance. This chapter examines the joint effects of 1) pathogen removal by a
HWT device, and 2) the degree to which communities use the device. It focuses on the protective
effects of HWT against diarrhea in developing countries, a leading cause of morbidity and
mortality (Kosek et al., 2003).

Household water treatment (HWT) is a common strategy for reducing diarrhea in
developing countries. HWT technologies include chlorination, filtration, solar disinfection
(SODIS), and boiling. Systematic reviews of field trials suggest that HWT is effective in
preventing diarrhea (B. F. Arnold & Colford, 2007; T. Clasen, I. G. Roberts, et al., 2009).
However, lack of blinding and publication bias are important issues in the HWT literature that

may exaggerate effectiveness (Schmidt & Cairncross, 2009; Waddington et al., 2009; Hunter,
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2009); see also pages 17 and 65.

Antimicrobial effectiveness of HWT is commonly measured by log;( reduction values

(LRVs) from laboratory testing. Such tests use indicator organisms to represent the three main
classes of waterborne pathogens: viruses, bacteria, and protozoan cysts. LRVs are a common
metric for assessing different HWT methods (Sobsey & Joe Brown, 2011; Sobsey et al., 2008).
The United States standard for HWT “microbiological water purifiers” is LRVs of 6 for bacteria
(99.9999% inactivation), 4 for viruses, and 3 for protozoa (USEPA, 1987). The World Health
Organization (WHO) recommends that “highly protective” devices have LRVs of 4 for bacteria,
5 for viruses, and 4 for protozoa (Sobsey & Joe Brown, 2011); see also Table 2.2, page 65. The
WHO recommendations use a quantitative microbial risk assessment (QMRA) assuming perfect
compliance and an acceptable risk level of 10-6 disability-adjusted life-years (DALYs) for
diarrheal disease from each pathogen type (Sobsey & Joe Brown, 2011).

In contrast, compliance, the extent to which persons (or a population) use a HWT method,
is often poorly defined and poorly measured. Compliance (sometimes referred to as adherence)
has many dimensions. Individuals might reject a HWT method because of cost, difficulty using
HWT, or taste of treated water. Well-established theory regarding adoption of new technologies
indicates that 10%-20% of a community will not use a new technology, even after acceptance by
most of the community (E. M. Rogers, 2003). Furthermore, preventive practices (such as HWT)
that require consistent individual effort to reduce the probability of an adverse effect have
difficulty spreading. This is because the benefit (e.g., bouts of diarrhea averted) is a ‘non-event’
that is distant in time from adopting the practice; therefore, the benefit gained is not obvious to
the user (E. M. Rogers, 2003). HWT devices might simultaneously be used frequently and

inconsistently. For example, someone might drink treated water at home, but untreated water
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while working. During a HWT field trial in rural Congo, nearly all households sometimes drank
untreated water (Boisson et al., 2010).

Although the variable and incomplete nature of compliance is widely recognized, it is often
unmeasured or incompletely measured by field trials. A review of 30 relatively well-conducted
field trials of water quality interventions found that 7 did not report compliance, and 9 measured
compliance by “occasional observation” only (T. Clasen, I. G. Roberts, et al., 2009).
Furthermore, consumption of treated water was never directly measured (T. Clasen, I. G.
Roberts, et al., 2009). Studies that report compliance find that communities rarely use HWT
methods 100% of the time. For example, a meta-analysis of HWT chlorination studies indicated
a median of 78% of samples having detectable free chlorine (range 36-100% over 12 studies) (B.
F. Arnold & Colford, 2007).

Compliance is difficult to measure and is subject to Hawthorne effects (where people's
behavior changes because they know that they are being observed) and other biases. Participants
in a trial might report that they use the intervention more frequently than they actually do.
Compliance might increase during a trial because study personnel remind people to use HWT
(deliberately or not). Field trials over longer periods show lower HWT effectiveness against
diarrhea; decreasing compliance over time is one explanation (Hunter, 2009). It is particularly
difficult to determine the amount of untreated water that HWT users consume outside the home.

Despite not being well measured, compliance clearly influences HWT effectiveness,
because HWT can only prevent diarrhea if people use it (Duflo et al., 2007). Field measurements
of LRVs tend to be lower than laboratory-measured LRVs for many reasons, such as differing
water quality or suboptimal maintenance of HWT devices (Sobsey et al., 2008). Nonetheless, the
benefits from HWT might be eroded by slight noncompliance. For example, a risk assessment of

diarrheal infection from intermittent treatment by a Ugandan water treatment plant estimated that
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water treatment failure for one day per year increased the annual probability of enterotoxigenic
Escherichia coli (ETEC) infection via drinking water from 0.001 to 0.1 (Hunter et al., 2009).

The relationship between compliance and LRVs (which measure efficacy) can be
illustrated mathematically:

d=u(l-c)+ucl0L 4.1)

where d is the dose of pathogens consumed, u is pathogens per liter of untreated water, c is
compliance (the proportion of drinking water treated), L is the LRV of the HWT method, and one
liter of water is consumed. Using equation 4.1 assuming that source water contains 10,000
pathogens per liter, 5 LRVs of pathogens are inactivated, and 1% of drinking water is untreated,
then 100 pathogens are ingested. For LRVs of 4, 3, 2, and 1, the numbers of pathogens consumed
are, respectively: 101, 110, 199, and 1090. The dose (and therefore the infection risk) is very
similar for LRVs of 5, 4, and 3 (100 to 110 pathogens), which leads to the hypothesis tested in
this chapter: incomplete compliance results in marginal reductions in diarrheal disease as LRVs
increase.
4.3. Materials and methods

To test the hypothesis, a QMRA model was used to simulate waterborne transmission of
diarrheal infection (bacteria, protozoa, and viruses) in children aged less than five years. This
model was based on the model in chapter 3 (Enger et al., 2012) that simulated a randomized
controlled trial of the LifeStraw® Family filter (LFF; a HWT device) in rural Congo (Boisson et
al., 2010). The model was programmed in MATLAB 7.12 and Octave 3.2; results were analyzed
with R 2.11. The model only considered diarrhea transmitted by drinking water, omitting other
transmission routes (e.g., contaminated food, objects, or hands). Parameter values for the model
are summarized in chapter 7 and Table 7.1 (page 230).

Four important concepts in the model are: compliance, baseline incidence, etiologic
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fractions, and short-term contamination spikes. They are described in the following paragraphs.
4.3.1. Compliance

Compliance with HWT within a community was modeled considering three groups of
children: 1) children who exclusively consumed treated water (“perfect compliance”); 2)
children who never consumed treated water (“no compliance); and 3) children who consumed
fixed proportions of treated and untreated drinking water (“partial compliance”). Overall
compliance (c¢) was calculated as follows:

c=(1-(a+n))p+a (4.2)

where a is the proportion of children who always use HWT, n is the proportion of children
who never use HWT, and p is the proportion of water treated by partial compliers. For a given
value of c, three types of compliance at the community level were defined: o) c children with
perfect compliance and the remainder with no compliance; ) ¢/2 children with perfect
compliance, ( 1 — ¢ )/2 children with no compliance, and the remainder partially comply, treating
a fraction c of their daily water intake (Table 4.1); y) all children partially comply by treating a
fraction c of their water. If ¢ = 1 or 0, only compliance type o is possible.

Table 4.1. Compliance among individuals in each model run, given compliance type f8

Overall Proportion of simulated children who are: Proportion of
complian'ce Perfect y Partial water treated.by
(a proportion) compliers Noncompliers compliers partial compliers
1 1 0 0 Nonapplicable
0.99 0.495 0.005 0.5 0.99
0.95 0.475 0.025 0.5 0.95
0.8 0.4 0.1 0.5 0.8
0 0 1 0 Nonapplicable
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4.3.2. Baseline incidence and etiologic fraction

To further generalize the results, differences in the baseline incidence of diarrhea and the
relative contributions of viruses, bacteria, and protozoa to diarrheal incidence (etiologic
fractions) were considered. The average incidence categories were: 0 — 2 (low); 2 — 6 (medium);
and 6 — 12 (high) episodes per child-year (Kosek et al., 2003). Three sets of etiologic fractions
were used (Table 4.2), based on reviews of etiologic studies of childhood diarrhea (Lanata & W.
Mendoza, 2002; Ramani & Gagandeep Kang, 2009); the determination of these etiologic
fractions is discussed in detail on page 129.

Table 4.2. Criteria for the calibration step of the QMRA model

Midpoint and range of etiologic fractions for childhood diarrhea

Description

Bacteria Protozoa Viruses
progtozoa low’ viruses 47.5 to 62.5% 22.51t0 37.5% 7.5t0 22.5%
Virises low [;rotozoa 47.5 10 62.5% 7.510 22.5% 22.5t0 37.5%
Etiologic fractions C.
Bacteria slightly 40% 30% 30%
predominating over 32.5t0 47.5% 22.5t0 37.5% 22.510 37.5%

protozoa and viruses

The incidence ranges were: low, 0-2 episodes per child-year; medium, >2-6 episodes per child-
year; and high, >6-12 episodes per child-year.

4.3.3. Short-term contamination spikes

Measurements from surface waters indicate that concentrations of indicator organisms are
highly variable (Boehm, 2007; K. Levy, A. E. Hubbard, K. L. Nelson, et al., 2009). The
variability of pathogen concentrations is expected to be similar or greater, and abnormally large
spikes of contamination might occur occasionally. Spikes of pathogen concentrations were

simulated on random days, assuming that each spike lasted exactly one day, there were n spikes

125



per year, and the spike height was x fold higher than the mean baseline concentration on days
lacking a spike. For this analysis, x = 1 (no spikes), 10, 103, or 105, and n = 5. To aid comparison
between spike scenarios, the mean number of pathogens in t daily 1-liter samples of source

water was held constant regardless of spike height: b, is the mean baseline concentration in a

scenario without spikes, and by is the mean baseline concentration in a scenario with spikes.

Solving for bg gave the appropriate mean baseline concentration during spike scenarios:
bot=by(t-n) +nxby - bg=byt/(nx +t-n) 4.3)

4.3.4. Calibration step

The simulation was implemented in two steps: calibration and estimation. The calibration
step simulated transmission of diarrheal infection by drinking water in the absence of HWT, and
is described in detail below. It estimated concentrations of bacteria, viruses, and protozoa that
were consistent with: 1) assumptions of low, medium, or high incidence of diarrhea; and 2)
assumptions about the relative importance of these pathogen types to diarrheal etiology (Table
4.2, page 125). The estimation step used these pathogen concentrations to estimate the risk of
diarrhea under various HWT scenarios, defined by different LRVs and different levels of
compliance; estimation is described in more detail on page 130, in section 4.3.5

The calibration step modeled waterborne diarrheal infection and disease in a simulated
community prior to the introduction of an HWT intervention. The calibration step was run 12
times (3 incidence levels x 4 spike heights) and each of these yielded 3 sets of pathogen
concentrations (since there were 3 sets of etiologic fractions), for a total of 36 calibration
scenarios. Each calibration step consisted of 100,000 model runs. Each model run began by
randomly selecting a mean pathogen concentration for each of the three pathogen types

independently. The pathogen concentrations in simulated drinking water were randomly drawn
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daily from a gamma distribution, with the scale parameter determined by the mean pathogen
concentration, and the shape parameter determined by the distribution of thermotolerant

coliforms measured in source water from a rural area of the Congo (Boisson et al., 2010; Enger
et al., 2012). The central 95% of that distribution spanned 1.4 log. Therefore, concentrations

could vary 25 fold from day to day, even in the absence of spikes.

Each calibration run followed 100 simulated children over 1 year with no HWT use. The
output of each run yielded a community incidence of diarrheal disease and etiologic fractions for
the three pathogen types. The mean pathogen concentrations used by a calibration run were
retained for use in the estimation step if: 1) the incidence of diarrhea estimated from the model
run fell into the appropriate range (Figure 4.1d); and 2) the proportions of diarrhea episodes
attributable to bacteria, protozoa, or viruses fell into one of the three sets of etiologic fractions
(Table 4.2, page 125; Figure 4.1e). Thus the calibration process yielded sets of pathogen
concentrations consistent with 9 distinct calibration scenarios for each of the 4 spike scenarios,

for a total of 36 separate calibration scenarios.
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Figure 4.1. Calibration results assuming medium incidence of diarrhea
Calibration results, medium incidence. Black lines denote acceptable ranges for incidence and etiology.
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For this analysis, calibration of the model required consideration of the largest possible
ranges of three joint pathogen concentrations that could conceivably yield an incidence value in
the desired range. Consequently, all calibration steps used ranges of pathogen concentrations that
began at 0 and ended at an empirically determined concentration where the minimum incidence
of diarrhea rose above the highest acceptable incidence value. The resulting distributions of
pathogen concentrations that were consistent with the calibration process had negative skew
(Figure 4.1f) because a scatterplot of randomly selected pathogen concentrations by incidence
forms a gradually increasing band of points (Figure 4.1a, b, & c), and pathogen concentrations
that fall within a narrow horizontal band are accepted.

Determination of etiologic fractions

The etiologic fractions were obtained from a review (Lanata & W. Mendoza, 2002) of 266
etiology studies of inpatients, outpatients, and communities, grouped by WHO subregion. Only
community studies were considered because the inpatient and outpatient cases are a more severe
subset of the full range of diarrhea cases in a given community. Furthermore, only studies from
developing WHO subregions AfroD, AfroE, AmroB, and SearoD were considered, because those
subregions had 5 or more community-based studies covering most major diarrheal pathogens
(Salmonella, Shigella, Campylobacter, enterotoxigenic Escherichia coli [ETEC],
enteropathogenic E. coli [EPEC], Giardia, Cryptosporidium, and rotavirus). When the pathogens
were collapsed into the categories of bacteria, protozoa, and viruses, the four regions broadly
agreed on the proportions of diarrhea cases attributed to these three categories. Among cases of
diarrhea for which an etiologic agent was identified, bacteria predominated (60%), followed by
protozoa (15-30%) and viruses (10-20%). However, the contribution of viruses was probably
underestimated by Lanata and Mendoza (2002), since rotavirus was the only virus examined by

the studies they reviewed. A more recent review (Ramani & Gagandeep Kang, 2009) of hospital-
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based studies of viral gastroenteritis in children in developing countries indicated that about 64%
of cases were attributable to rotavirus (other viral gastroenteritides were attributed to
caliciviruses, adenoviruses, and astroviruses, or had no etiology determined). Using this
information to adjust the conclusions drawn from Lanata and Mendoza’s (2002) work, it is
suggested that bacteria accounted for approximately 55% of episodes and protozoa and viruses
each accounted for 15-30% of episodes, providing a basis for the ranges of etiologic fractions
used for calibration (Table 4.2, page 125).
4.3.5. Estimation step

The estimation step modeled waterborne diarrheal infection and disease in a simulated
community where a HWT intervention is being used. Each estimation scenario used marker
pathogen concentrations from one of the 36 calibration scenarios, for 5000 simulated children
over 50 years. Estimation scenarios were defined by the treatment efficacy of the device and the
level of compliance. Specifically, combinations of three factors were used: 1) LRVs of the HWT
device against all three pathogen types (1, 2, 3, 4, or 5); 2) overall compliance by the community
(c=1,0.99, 0.95, 0.80, or 0); 3) type of compliance by the community (a, {3, or y; described in
detail on page 124). An estimation step was run once for every possible combination of these
three factors, for each of the 36 sets of pathogen concentrations from calibration. Each estimation
step for a given scenario had 70 to 150 model runs. If a particular calibration step supplied more
than 150 sets of pathogen concentrations, 150 sets were randomly sampled for use in the
corresponding estimation scenarios. Incidences and incidence ratios (IRs) were determined for
various combinations of compliance and device effectiveness; IRs were relative to scenarios in
which no HWT was used.

4.3.6. Replication of the WHO model

For comparison, the QMRA model from the WHO HWT recommendations (Sobsey & Joe
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Brown, 2011) was replicated in R 2.11. The model was slightly modified to output incidence
instead of DALY, and its assumption of 94% immunity to rotavirus was eliminated, since the
model developed in this chapter only considers young children. To obtain total diarrhea
incidence from the WHO model, the bacterial, protozoan, and viral diarrhea incidences from its
output were summed.

4.4. Results

4.4.1. Calibration step

Each calibration step (100,000 runs) yielded 70 to 1164 runs consistent with each of the 36
calibration scenarios. An example of typical calibration output is shown in Figure 4.1 (page 128);
if a run was consistent with the incidence criterion (Figure 4.1d), it was tested for consistency
with pathogen mixtures A, B, or C (Figure 4.1e; Table 4.2, page 125).

The resulting pathogen concentrations in untreated drinking water, as suggested by the
model, are shown in Figure 4.2; without spikes, median estimates ranged from 1100 to 120,000
bacteria/L, 0.06 to 1 protozoa/L, and 0.003 to 0.04 viruses/L (Figure 4.2a, b, and c). It is not clear
whether these concentrations are reasonable because pathogen concentrations in source waters
have seldom been measured in developing countries. These estimated concentrations (Figure 4.2)
are generally lower than the few published measurements available from developing countries
(Enger et al., 2012); see also chapter 3, page 116.

Baseline bacterial concentrations during spike scenarios were relatively insensitive to the
size of the spike (Figure 4.2, a, d, g, and j). This was because the dose response functions for the

three pathogen types are such that the probability of E. coli infection increased relatively slowly
with log( increases in dose, compared to Giardia or rotavirus (Figures 3.3 and 4.6, pages 99 and

138). In addition, the morbidity ratio (probability of diarrhea, given infection) was much lower
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(0.214) for bacterial infection, in contrast to protozoan (0.59) or viral (0.40) infection. Therefore,
the maximum contribution to diarrheal morbidity was reached proportionally sooner for bacteria
than for protozoa or viruses (note plateauing of the scatterplot in Figure 4.1a on page 128,
compared with 4.1b and 4.1c). Since all three pathogen types were increased proportionally
during a spike, the impact on overall diarrheal morbidity from protozoa and viruses was

therefore larger during a spike.
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Figure 4.2. Mean baseline pathogen concentrations from calibration
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4.4.2. Estimation step

Each estimation step consisted of 70 to 150 model runs, representing distributions of
incidences and incidence ratios (IRs) of diarrheal disease given a particular scenario. The
medians of all incidence distributions are shown in Figures 4.10-4.13, page 145. Figures 4.4-4.5
and Figures 4.7-4.9 present subsets of those results for clarity, expressed as IRs.

Comparison with the WHO QMRA model

This model and the WHO model (Sobsey & Joe Brown, 2011) produced reasonably
consistent estimates of diarrhea risk reduction, assuming 100% compliance (Figure 4.3). This
occurred despite differing pathogens and parameter values in each model, as well as substantial
differences in model structure (this model considers community-level risk; the WHO model
considers individual risk). The WHO model (modified to assume no viral immunity) best
resembled this model assuming high incidence. However, the WHO model did not account for
repeated episodes of diarrhea in one year, hence its incidence could not be greater than one
episode/child-year for each pathogen type. The WHO model indicated that bacteria contribute
less childhood diarrhea than protozoa or viruses. This model assumed the opposite, based on
reviews of childhood diarrheal etiology (Lanata & W. Mendoza, 2002; Ramani & Gagandeep
Kang, 2009). Consequently, although the WHO model results were somewhat similar to the
results presented here with respect to total incidence of diarrhea, they differed greatly in the
contribution of particular types of pathogens. Furthermore, the WHO model does not account for
repeated episodes of diarrhea. Therefore it cannot return incidences higher than 1 for each

marker pathogen, and differs substantially from this model when the LRV is 0.
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Figure 4.3. Comparison with WHO model

Diarrhea incidence (episodes/child-year) by LRVs,
assuming etiologic fractions A and 100% compliance
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models can be compared by comparing the red lines to the red symbols.

Effect of LRVs given imperfect compliance

If compliance slightly decreased to 99% and there were no pathogen spikes, this model

predicted little or no additional benefit from LRVs above 3 in many scenarios (e.g., Figure 4.4).

If compliance is 80%, there was little benefit from increasing LRVs beyond 2. This behavior was

similar regardless of compliance type (a, B3, y), pathogen mixture (A, B, C), or incidence level

(low, medium, high) (Figures 4.10-4.13, page 145).
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Figure 4.4. Effect of compliance with HWT on the incidence ratio of diarrhea, by LRV
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Assuming medium incidence, compliance type [3, no spikes, and pathogen mixture A. More
scenarios are in section 4.4.3.

If pathogen spikes were included, the incidence ratio increased as spike height increases,
for all LRVs (Figure 4.5). This effect was not due to an overall increase in incidence, because the
model was calibrated to maintain the same incidence (baseline pathogen concentrations were
also reduced to compensate for spike height; Equation 4.3). Rather, the increase in IR was due to
the nonlinearity of the dose-response functions at high doses; during a large spike, reducing dose
x-fold might only reduce risk by a factor less than x (Figure 4.6). Diminishing returns from LRV
increases were still seen when spikes were introduced. Spikes 10 times above baseline gave

similar results as no spikes (Figures 4.10-4.12, page 145).
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Figure 4.5. Effect of compliance and spikes on the IR of childhood diarrhea, by LRVs
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Figure 4.6. Effect of dose response function nonlinearity at high doses
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Since dose response functions are linear when doses are relatively low, reducing dose by a factor
x also reduces the probability of infection by x. If spikes were absent, the pathogen
concentrations used in the model were generally in the linear region. However, at high doses
(such as during spikes), reducing the dose by x might only reduce the probability of infection by
some factor y, where y < x. For example, assuming medium incidence and spike height (sh) of
1000, the daily dose of bacteria ingested during a spike was ~107(chart b). Reducing the dose by
1 LRV, from 107 to 106, reduced the probability of infection by ~1/4. This effect was less marked
for the other two pathogen types (charts ¢ & d), but it is still present. See Figure 3.3 (page 99)
for a semilog plot of chart a.
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Compliance type changed the relationship between LRVs, IR, and spikes (Figure 4.7).
When there were no spikes, the results for compliance types «, 8, and y were similar. However,
as spike height increased, o had the lowest IRs and y had the highest IRs. Figure 4.7 also shows
additional benefit from LRVs 4 and 5 for the highest spike scenario (10°-fold baseline). The
benefits were greatest for compliance type a, in which children either complied perfectly or not
at all. The benefits were smaller but still evident for 3, in which children complied perfectly,
partially, or not at all (see also Table 4.1, page 124). In contrast, under y every child complied

partially, always consuming some untreated water.

Figure 4.7 Incidence ratio of diarrhea by compliance level & type, spikes, and LRVs
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Assuming medium incidence, compliance of 0.8, and pathogen mixture A. See page 124 for a
detailed description of compliance types.

Benefits from higher LRVs was more pronounced under conditions of high incidence, large
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spikes, compliance type «, and high compliance (Figure 4.8). The benefits decreased as

compliance decreased.
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Figure 4.8. Effect of compliance on IR if large contamination spikes occur
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There is little information available regarding pathogen concentrations in source waters in
developing countries; this is why the model was calibrated to obtain these pathogen
concentrations in the first place. If the pathogen concentrations obtained from calibration are too
low, that might make high-LRV HWT appear less effective than it actually was. This was
evaluated with additional estimation runs using pathogen concentrations obtained by calibrating
to high incidence (the three rightmost panels of Figure 4.2, page 133), and multiplying them by
10 or 100. An example is shown in Figure 4.9, and all such runs are shown in Figure 4.14 (page
150). Diminishing returns from increasing LRV's remained apparent. However, LRVs of 4
sometimes represented an improvement over LRV of 3, particularly if incidence was high

Figure 4.14b) or if compliance was 99%.
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Figure 4.9. Effect of compliance on IR with extreme pathogen concentrations
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Estimation results using mean pathogen concentrations 100-fold the calibrated values for high
incidence. Pathogen mixture A, calibration type 5.

Pathogen mixture C tended to give lower IRs than A or B if incidence was high or spike
height was high (Figures 4.10-4.12). As incidence was increased from low to high, the effects of
pathogen mixture and compliance type increased.

4.4.3. Charts of median incidences from all estimation scenarios

Median incidence values from all estimation scenarios are shown below in Figures 4.10-
4.14. Figures 4.4, 4.5, 4.7, and 4.8 above are subsets of Figures 4.10-4.12, expressed as incidence
ratios (IRs) and charted as lines. Figure 4.13 is similar, but uses various combinations of LRVs

for bacteria, viruses, and protozoa that are consistent with recent WHO guidelines (Sobsey & Joe
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Brown, 2011) and USEPA guidelines for HWT (USEPA, 1987). Figures 4.10-4.14 display all
combinations of overall compliance (0, 0.8, 0.95, 0.99, 1), compliance type (a, [3, y), and
pathogen mixture (A, B, C) for a particular combination of incidence levels (low, medium, high)
and spike scenarios (5 spikes per year that are 1x, 10%x, 1000, or 100,000x baseline mean
pathogen concentration). Each symbol represents the median value of a distribution of estimation
results from a scenario defined by a particular combination of these variables. Note that if
compliance equals 0 (complete noncompliance, equivalent to LRV=0) or 1 (perfect compliance),

then only compliance type a is possible.
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Figure 4.10. Detailed estimation results (low incidence)
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Figure 4.11. Detailed estimation results (medium incidence)
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Figure 4.12. Detailed estimation results (high incidence)
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Estimation steps were also run for LRV values that were consistent with existing
recommendations from the WHO and the USEPA (Sobsey & Joe Brown, 2011; USEPA, 1987)
(Figure 4.13). The recommendations consist of sets of three LRVs: bacterial, viral, and
protozoan. These runs did not include spikes. They were divided into 3 groups: I) complete
noncompliance, i.e., 0:0:0; IT) LRVs consistent with the WHO interim target, where two of the
three marker pathogens met the WHO protective type but the third had an LRV of 0; III) as I,
but the third marker pathogen had an LRV of 1; IV) a series of LRVs including the WHO
protective target of 2:3:2 and the WHO highly protective target of 4:5:4; and V) the USEPA
standard of 6:4:3. The WHO protective target was generally more protective than the WHO
interim targets, but there was little difference between the WHO protective target (2:3:2), the
WHO highly protective target (4:5:4), and the USEPA target (6:4:3) unless compliance was 95%

or higher.
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Figure 4.13. Detailed estimation results, WHO/EPA recommended LRVs
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Figure 4.14. Detailed estimation results, extremely high baseline pathogen concentrations
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4.4.4. Assessing impact of high LRVs: significance testing & classification trees

The Wilcoxon rank sum test was used to assess whether incidence significantly differed
depending on LRVs. This was done by considering all scenarios in Figures 4.10-4.12 except
those with overall compliance of 0 or 1, and comparing pairs of scenarios that had identical
compliance levels, compliance type, etiologic fractions, and spike height, but had differing LRVs
(3 vs. 5 for all pathogen types). The Wilcoxon test detected a difference between the two
incidence distributions at p < 0.05 in 153 of the 324 comparisons (47.2%). However, because a
statistically significant difference does not necessarily mean an important difference, two
measures of importance (which were chosen a priori) were further considered: an incidence

difference (ID) > 0.2 diarrheal episodes per child-year, and an incidence ratio (IR) < 0.9.
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Classification trees were then constructed (rpart package version 3.1. for R) to describe which
scenarios showed improvement in diarrheal incidence if LRVs were increased from 3 to 5.

The ID criterion was more restrictive (fewer scenarios met it than the IR criterion) and
therefore the tree was simpler (Figure 4.15). Most of the scenarios meeting the criterion (32/43)
had a spike height of 100,000, and those also had the following 2 characteristics: 1) medium or
high incidence; and 2) some perfect compliers in the community (i.e., compliance types o or ).
Of the remaining 11 scenarios that met the criterion but had a spike height < 105, all of these had
high incidence and a spike height of 1000; further, 10 of them were compliance types « or 3. In
addition, 18 of the 43 scenarios that met the criterion had an overall compliance of 99%.

The IR tree was more permissive (94/324 scenarios met the criterion) and the tree was
structured somewhat differently (Figure 4.16). However, 71/94 had spike heights of 1000 or 105,
and 61/94 had overall compliance of 99%. As with the ID tree, compliance types a and 3 tended
to meet the criterion more frequently than y, and higher incidence also met the criterion more

frequently than medium or low incidence.
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Figure 4.15. Classification tree for incidence difference (ID) criterion
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Figure 4.16. Classification tree for incidence ratio (IR) criterion
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4.5. Discussion

The model developed in this chapter indicated that the risk of diarrhea decreases linearly
(on a log-log scale) with pathogen removal by HWT under perfect compliance conditions. This is
a direct consequence of the fact that the dose response relationships are linear in the range of
pathogen doses that individuals usually receive (Figure 4.6, page 138). These results are
somewhat consistent with those reported in the WHO guidelines on health-based targets for
HWT devices (Sobsey & Joe Brown, 2011). Although the model used in this analysis has a
similar QMRA approach as the WHO model, there are some important distinctions. For example,
the three indicator pathogens used here were pathogenic E. coli, rotavirus, and Giardia, whereas
the WHO guidelines used Campylobacter, rotavirus, and Cryptosporidium. Time-varying
pathogen concentrations were calibrated to reflect realistic diarrhea incidence levels, as well as
realistic etiologic fractions of pathogens. The WHO guidelines assumed constant concentrations
of the pathogens in sewage, and that drinking water was contaminated with 0.01% sewage. Most
importantly, this model relaxed the assumption of perfect compliance, examining the joint effects
of varying compliance and LRVs. Assuming imperfect compliance, its results differed greatly
from the WHO model, particularly for higher LRVs.

For many of the scenarios with imperfect compliance, diminishing health improvements
from increasing LRV's were observed; similar conclusions from a differently structured QMRA
model were published recently (Joe Brown & T. Clasen, 2012). Specifically, when the variation
in pathogen concentration was limited to 25 fold (i.e., no spikes) and compliance was 99%, little
additional diarrhea was prevented for LRVs above 3 (Figure 4.4, page 136). Assuming 80%
compliance, LRVs above 2 prevented little additional diarrhea. If spikes occurred and some of
the population complied perfectly (compliance types a or ), LRVs above 3 sometimes prevented

additional episodes of diarrhea.
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These results indicate the importance of including compliance in risk estimations and in
policy development, and also emphasize the importance of understanding the different
dimensions of compliance. For example, some people may never comply, others may comply
when they are home but not when they are away from home, and yet others may comply only
during periods of perceived high risk. These simulations suggest that, given a particular overall
compliance level within a community (i.e., a proportion of person-time spent complying), HWT
scenarios that include more perfectly complying individuals prevent more diarrhea. Although the
implications of these different dimensions of compliance are not well understood, it is clearly
difficult to obtain long-term, high compliance with household interventions in developing
countries (Makutsa et al., 2001; B. Arnold et al., 2009; Luby et al., 2009).

Difficulty in achieving high compliance with intervention strategies also extends to
sanitation and hygiene interventions. Handwashing compliance is incomplete in both
industrialized (Bischoff et al., 2000) and developing countries, especially with soap (V. A. Curtis
& Cairncross, 2003). Despite the obvious importance of sanitation in removing pathogens from
the environment and breaking the fecal-oral cycle of transmission, approximately half the
population of southern Asia and sub-Saharan Africa openly defecates or has an unimproved
latrine (World Health Organization & UNICEF, 2010). Even if latrines are available, they might
not be used consistently (B. F. Arnold et al., 2010; Banda et al., 2007; Montgomery et al., 2010).

4.5.1. Information needed to inform models of diarrheal infection transmission

Although many of the modeled scenarios had diminishing health improvements beyond 3
LRVs (and sometimes beyond 2 LRVs), scenarios were identified where LRVs above 3 were
beneficial (e.g., Figures 4.7 and 4.8, page 139). Understanding which scenarios are most realistic
requires a better characterization of the variability in pathogen concentrations in source waters,

the relative proportions of pathogens in contaminated water, and the extent to which these
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pathogens are also transmitted through other environmental pathways. These issues are further
discussed below.

Pathogen concentrations in source waters

Little information is available on the variability of pathogen concentrations in source
waters. Even point measurements of pathogen concentrations are scarce (Enger et al., 2012), and
it is unclear what reasonable spike concentrations would be. However, contamination spikes are
plausible due to various mechanisms, including stormwater runoff, defecation directly into
source waters, or washing of contaminated items like diapers. In the absence of spikes, we
assumed that the daily concentration of pathogens varied over a 25-fold range, consistent with
measurements of thermotolerant coliforms in source water in rural Congo (Boisson et al., 2010)
and E. coli in a rural Ecuadorian stream (K. Levy, A. E. Hubbard, K. L. Nelson, et al., 2009).

Etiology of diarrheal disease

The contribution of different pathogens to diarrheal disease is also uncertain and depends
upon ecology, sociology, and infrastructure. Published etiologic fractions include diarrhea from
all transmission routes, not only drinking water; pathogen profiles for different routes, for
example food versus water, will differ. In addition, the true distribution of etiologies may differ
from the distribution of reported etiologies. For example, certain bacteria may be more
frequently identified because they are easier to culture. For this analysis, three broad mixtures of
etiologic fractions were chosen, based on the most comprehensive information available. Future
research, particularly from the Global Enterics Multicenter Study (University of Maryland,
2012), will further clarify diarrheal etiology.

Routes of transmission other than drinking water

Finally, this model only accounts for infection via drinking water. Additional routes of

transmission (e.g., contaminated hands, objects, or food) operate in underdeveloped
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communities. Considering these routes would decrease the apparent effectiveness of a HWT
device, since these routes would affect users and nonusers of HWT alike. This model also does
not account for infection transmission between individuals. Effective HWT would reduce the
number of infected people, thus reducing pathogen shedding, thus indirectly preventing infection
in people not using HWT. This would increase the apparent effectiveness of HWT, assuming
imperfect compliance (Halloran et al., 1991). Although examining effectiveness in the context of
multiple transmission pathways is important, it probably would not affect our general
conclusions about the joint effects of compliance and LRVs on the effectiveness of HWT
interventions.

4.5.2. Conclusions

Recent WHO guidelines (Sobsey & Joe Brown, 2011) provide an important framework for
evaluating the health benefits of HWT devices resulting from their LRVs. However, the
simulation results presented here indicate that prevention of diarrhea byHWT is limited by
compliance. Thus, the classification system in the WHO guidelines incompletely informs HWT
users and promoters regarding effectiveness of devices if < 100% of drinking water is treated.
For promoters of HWT, these simulation results emphasize that facilitating consistent, sustained
use is extremely important when deciding which devices to use for a program, in addition to the
antimicrobial efficacy of the device.

HWT cannot greatly reduce transmission of diarrheal disease by drinking water unless
compliance is high and sustained. More research is necessary to understand the full complexities
of compliance, to explicitly measure compliance in intervention trials, and to incorporate
compliance in development policy. This chapter provides a modeling framework that examines
the impact of compliance on the effectiveness of interventions, as an initial step toward more

complete consideration of compliance by researchers, policymakers, and development workers.
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5. TRANSMISSION MODEL OF DIARRHEAL INFECTION
5.1. Abstract
Although quantitative microbial risk assessment (QMRA) models are useful tools for
describing infectious disease risks in many different circumstances, they ignore two important
characteristics of particular importance for diarrheal infections in developing countries: 1)
secondary transmission effects, and 2) multiple transmission routes.

To further investigate whether: 1) diminishing returns are seen with increasing HWT log;

reduction values (LRVs) under incomplete compliance; and 2) whether the pattern of compliance
within a community affects diarrhea prevention, an environmental infection transmission system
(EITS) model was constructed. The model incorporated household structure, multiple routes of
transmission (including drinking water, environmental exposure, and contacts between
households), and pathogen shedding by infected individuals. It also included simultaneous
transmission of bacterial, viral, and protozoan pathogens. Although the model can simulate the
effects of additional interventions, including sanitation, handwashing, and safe storage of treated
drinking water, this work concentrates upon HWT only.

A calibration step determined values for seven parameters in the EITS model that were
consistent with high diarrheal incidence in developing countries. Subsequently, those parameter
values were reused in estimation steps that applied HWT interventions with varying levels of
antimicrobial effectiveness and varying patterns of compliance to simulated communities. The
results resembled previous conclusions from QMRA models: 1) LRVs above 3 seldom prevent
additional diarrhea, and 2) the pattern of compliance alters HWT effectiveness, even if overall
compliance was held constant. In contrast to the QMRA models, the EITS model indicated that

LRVs above 3 prevented little additional diarrhea, even when compliance was perfect.
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5.2. Introduction

Infection transmission models have been often been used to better understand infectious
diseases, with the goal of improving the health of the population by controlling or stopping
transmission (Keeling & Rohani, 2008). However, transmission models have seldom been
applied to diarrheal disease in developing countries, a particularly severe and widespread public
health problem. Although it is clear that clean drinking water, effective sanitation, and hygienic
behavior can effectively control diarrheal infections, the best ways to achieve these goals are far
from clear, given the serious resource constraints in developing countries.

Modeling systems of transmission of diarrheal infections would allow simulation of
various interventions, providing insight on which interventions, or combinations of interventions,
might yield the largest reductions in diarrheal disease. Environmental infection transmission
system (EITS) models (Li et al., 2009) are particularly suited to modeling diarrheal infections
because they can explicitly describe the diverse pathways that pathogens can take through the
environment (e.g, Figure 2.7, page 77). Furthermore, substantial information is available
regarding pathogen inactivation or removal by various interventions (Table 2.1, page 64), which
can be simulated in an EITS model by removing the appropriate proportion of pathogens from
particular compartments at appropriate times.

The QMRA model in chapter 4 described diminishing returns from increasing household
water treatment (HWT) log;( reduction values (LRVs) when compliance with HWT is imperfect.

However, that model did not account for any secondary transmission effects of HWT. If an
intervention is used by some households in a community, those households will benefit because
some infections will be prevented; however, because complying households have fewer

infections, they release fewer pathogens into the environment, and consequently non-complying
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households benefit also. These secondary transmission effects would prevent additional disease
beyond what was measured in the QMRA model in chapter 4. They might also affect the point at
which diminishing returns are seen from increasing LRVs when compliance is imperfect.

The primary goal of the EITS model described below was to determine whether increasing
LRVs from HWT still leads to diminishing returns given imperfect compliance, in the context of
a model with secondary transmission and multiple transmission routes. In addition, the EITS
model is well-suited to exploring additional questions (which time considerations did not permit
including in this chapter), such as:

* The nature of interaction between two joint interventions: under what circumstances is it
positive, negative, or absent? Previously published research (see page 46 for a summary)
suggests two hypotheses:

o Sanitation usually interacts positively with other interventions.
o Two non-sanitation interventions applied jointly usually interact negatively.

* How much diarrhea prevented by an intervention is due to immediate effects on those
who use it, and how much is due to indirect effects, since healthier people shed fewer
pathogens, reducing risk to the community as a whole?

5.3. Materials and methods

5.3.1. General description of the model

An EITS model was programmed using MATLAB software (version 7.13, R2011b) that
simulated a small isolated community in a developing country (parameter values for the model
are summarized in chapter 7 and Table 7.1, page 230). The community consisted of 200
households with an average of 5 people per household. The community gathered their drinking

water from a surface water source (Figure 5.1). The system had four types of compartments
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containing pathogens: 1) the land where the community resided; 2) the surface water from which
the community obtained drinking water; 3) stored drinking water within each household; and 4)
the household environment, which represented the hands of household members as well as
fomites and surfaces within the household. Since each household (Figure 5.2) contained a stored
drinking water compartment and a household environment compartment, and there was only one
land compartment and one surface water compartment in the community, each model run
contained 2h + 2 distinct compartments, where h is the number of households in the community.
Each compartment contained pathogens of three distinct types: bacteria, viruses, and protozoa.
Each household contained variable numbers of people, who could be either young children less
than five years old (18% of the population), or children/adults aged 5 years or more (82% of the
population). These two types of people are called 'children' and 'adults' for brevity. The only
source of pathogens was infected people, who contaminated the community's land and their
household environment through defecation. Pathogens gradually moved from land into surface
water; randomly scheduled rainfall events increased the rate of this transfer. Households were
randomly connected with one another, allowing exchange of pathogens between households
(Figure 5.1). All pathogens were attenuated exponentially over time in all compartments,
representing a variety of processes that can remove pathogens completely from the system (e.g.,

inactivation; sedimentation; transport in flowing water; percolation below the soil surface; etc.).
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Figure 5.1. Simplified overview of the simulated community

Pathogen flows: [8ll, feces to land; W, visits; IR, land to surface water

Each simulated community contained about 200 households.

Each household contained a group of people and two compartments for pathogens: 1) a
container for stored water, and 2) a more abstract household environment compartment
representing pathogens that were available for ingestion on hands, objects, and surfaces (Figure
5.2). Stored water was collected at the beginning of each day from the community's surface
water; the stored water could subsequently be contaminated by pathogens in the household
environment. Four types of interventions could operate: household water treatment (HWT)
destroyed pathogens in the stored water immediately after collection, safe storage prevented
recontamination of stored water by hands, handwashing prevented contamination of hands after

defecation, and sanitation prevented contamination of land by defecation. Households could
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comply perfectly, incompletely, or not at all with these interventions. Each day, each person
ingested variable doses of three pathogen types (bacteria, viruses, and protozoa, represented by

diarrheagenic Escherichia coli, rotavirus, and Giardia duodenalis) from their household's stored

drinking water, their hands, and the land outside the household.

Figure 5.2. Structure of each household within the simulated community
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The four transfer calibration parameters marked by '*' influence movement of pathogens
between compartments. There are also three attenuation calibration parameters describing
attenuation of the three pathogen types in all compartments; they are not shown in this figure,

but see Table 5.1 (page 169).

The model used discrete timesteps of one day. Each day included four types of events: 1)
contamination events, which represented defecation and were the only source of new pathogens

in the system; 2) pathogen transfers, which described movement of pathogens between
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compartments; 3) exposure events, which described ingestion of pathogens by people and the
subsequent possibility of new infections (i.e., transfers of pathogens from compartments to
people); and 4) pathogen attenuation, which described removal of infectious pathogens from the
system in each compartment over time (corresponding to inactivation, sequestration, or any other
means that could render pathogens unable to ever contact a host). Since many of the parameter
values describing these events are highly uncertain, seven abstract 'calibration parameters' (see
Figure 5.2, page 163, and Tables 5.1 and 5.2, page 169)were varied during each model run in a
calibration step consisting of many thousands of model runs; values of these parameters that
yielded acceptable results were retained for use in subsequent estimation steps. The events
occurred in a particular sequence, as shown in Figure 5.3. To avoid arbitrarily biasing the doses
of pathogens ingested by people, exposure events happened at a variable time each day. This
meant that pathogens introduced into the system at the beginning of each day would be
attenuated for some random fraction of a day before they were ingested, introducing additional

variability into the doses that people received.
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Figure 5.3. Daily progression of the EITS model of diarrheal infections
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Summary of the steps in each model run

The events marked in Figures 5.1-5.3 are explained in more detail below; events that
include calibration parameters are marked with a *.
1. There were two contamination events representing defecation. The total number of

pathogens excreted per infected person is determined by the grams of feces excreted per
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person per day multiplied by the number of pathogens per gram of feces. Adults excrete
more pathogens than children due to higher fecal output, and symptomatic people
likewise excrete more pathogens than asymptomatic people due to higher fecal output.
The pathogens excreted by a person are distributed as follows:

a) Contamination of the land (F1)

*  Most of the pathogens excreted by infected individuals follow this route.

b) Contamination of the person's household environment (Fh); summarizes hand,
surface, and fomite contamination related to anal cleansing

* A small proportion of the pathogens excreted by infected individuals follow this
route.

2. There are four main pathogen transfers:
a) Land to surface water (R); summarizes runoff due to rainfall events, soil erosion,
people washing or bathing in the water, etc.

* This event is defined by daily rates of pathogen transfer from land to water. There
are two rates: a lower one for non-rainy days and a higher one for rainy days (rain
events occur randomly, 14 days apart on average).

b) * Surface water to stored drinking water (Se and Sf), representing daily resupply of
stored water by each household

* All pathogens remaining in each stored drinking water compartment at the
beginning of each day are transferred onto the land (Se); this is a very small
transfer, but is included for completeness.

* Each household's stored drinking water is refilled directly from surface water at

the beginning of each day (Sf). The amount of pathogens transferred is
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determined by multiplying the pathogens in surface water by a calibration

parameter (CPgy); this is analogous to dilution.

c) * Household environment to stored water (H)

* The transfer of pathogens from each household's environment to its stored

drinking water was determined through multiplication by a calibration parameter

(CPy&pn); event 3b (below) also used CPyg ph-

d) * Transfer of pathogens by inter-household visits (V), representing pathogens carried
between households on hands, fomites, food, etc.

* A set of two-way links between households was randomly created at the
beginning of each model run. Each day, a subset of these links was randomly
selected, signifying visits occurring that day. Each visit represented a two-way
transfer of pathogens between the households' environment compartments.
Transfer of pathogens from household A to household B was: (number of
pathogens in household A's environment) / (number of people in household A) *
(calibration parameter CPy, denoting proportion of pathogens transferred).
Household B simultaneously transferred pathogens to household A in the same
manner.

3. There were four exposure events, where susceptible people may become exposed and
subsequently develop infection or disease.
a) Drinking water ingestion (Dw)

* Determined by: (liters of water consumed daily) % (number of pathogens in stored

drinking water) / (volume of stored drinking water container).

b) * Ingestion of pathogens from the contaminated household environment (Dh)
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e The number of pathogens in the household environment multiplied by a

calibration parameter (CPygpp; see also event 2c above).

c) * Ingestion of pathogens from land (DI); summarizing people playing or working in
soil, consumption of locally grown food, etc.

* The number of hand-mouth events per day multiplied by a calibration parameter

(CPpy). Each person's dose was subtracted from the outside environment.

d) Baseline exposure (B)

* FEach day, people were randomly chosen to become exposed to each of the three
pathogen types, independently from the doses they had received. This simulated
importation of infection.

4. Exponential attenuation of all pathogens in all compartments:
a) * Decay of pathogens in all compartments was based on published rates in raw water,

multiplied by 3 independent calibration parameters (one for each pathogen type;

CPatten)~
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Table 5.1. Summary of calibration parameters

Transfer calibration parameters

Transfer of pathogens from surface water to stored drinking water

CP
Sf (analogous to dilution of pathogens in surface water)

cp Transfer of pathogens from the household environment to: 1) stored
H&Dh water; or 2) people, who then ingest them

cp Transfer of pathogens between the household environment compartments
v of a pair of households

CPpy Transfer of pathogens from land to people (who then ingest them)

Attenuation calibration parameters

Daily exponential inactivation/removal rate in all compartments,

CP 4tten (bacteria) bacteria

CPggien (Viruses)  Daily exponential inactivation/removal rate in all compartments, viruses.

Daily exponential inactivation/removal rate in all compartments,

CP, rotozoa
atten (P ) protozoa.

Different calibration parameter values were sampled from uniform distributions (Table 5.2) for
each calibration run of the model.

Table 5.2. Ranges over which calibration parameters were sampled

Calibration parameter Lower limit Upper limit

Transfer calibration parameters (proportions of pathogens transferred)

CPgf 10-6 10-24 ~ 4.0x10-3
CPHs& DR 10-5 10-1.5~ 0.032
CPy 10-5 10-05~0.32
CPp 10-11.5 % 3.2x10-12 10-6
Attenuation calibration parameters (daily rates of inactivation, removal, etc.)

CP 411en (bacteria) 1005~ 0.32 102

CP giten (Viruses) 10 103

CP 411en (protozoa) 100-6 % 4.0 103

Calibration parameters were sampled from uniform distributions on the log; scale. These
ranges were determined empirically before calibration; see page 182 for further explanation.

5.3.2. Technical description of the model

The mechanics of the model are described in detail in the flowchart below (Figure 5.4).
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Figure 5.4. Flowchart of the operations of the EITS model
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Each numbered step in this flowchart is described in detail below.
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Step 1: Enter parameters

Each simulation run began by reading in 53 parameters, 7 of which were calibration
parameters that were randomly varied during the calibration step (Tables 5.1 and 5.2, page 169),
and 37 of which were obtained from published scientific literature. The remaining parameters
were based on expert opinion. Further discussion regarding choice of particular (non-calibration)
parameters is in chapter 7, and the parameter values are summarized in Table 7.1, page 230.

Step 2: Create random number tables and output logs

All random numbers needed for the model run were pre-generated when the model run
began (which reduced processing time). Matrices were also generated to store output from the
model.

Step 3: Set up the simulated community

Assignment of children and adults to households

Simulated communities contained n households (n ~ 200), each containing a certain
number of people randomly drawn from a Poisson distribution whose mean was 5
people/household. If a household was assigned 0 people, it was discarded; thus, the number of
households in the simulated community varied slightly between runs. Children and adults were
randomly assigned to households as follows:

1. The total number of adults in the community was determined by multiplying the number
of people in the community (~1000) by the proportion of the community consisting of
people aged five years or older (0.82) (Ayad et al., 1994); see page 228 for further
discussion.

2. One person in each household was designated an adult.

3. Each remaining adult was randomly assigned to a household that was not already filled

with adults.
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4. Once all adults had been assigned to households, the remaining people were considered
children under five years of age.
Assignment of compliance to households

Compliance with HWT, handwashing, and sanitation was considered to be a characteristic
of the household, not a characteristic of each person. The community had a particular compliance
level and compliance type that was designated at the beginning of each model run. Compliance
was described by overall compliance (proportion of person-time spent complying) as well as
compliance type (o, households complied perfectly or not at all; 3, households complied
perfectly, partially, or not at all; y, all households complied partially; for a more detailed
description, see section 4.3.1, page 124). Using these compliance parameters for the community,
each household was randomly assigned a compliance level for each intervention, describing the
proportion of time that household used it. In some simulations that included HWT, safe storage
was applied to all households complying perfectly or partially with HWT, since safe storage is a
particular characteristic of some HWT interventions.

Data structures for tracking household and person characteristics

Household composition and compliance were stored using a household matrix with one
row per household, and a people matrix with one row per person (Table 5.3). Children were at
the top of the people matrix, and adults were at the bottom. These matrices also explicitly tracked
the amounts of pathogens in household compartments, as well as infection status of individual
people. The household matrix had one row per household, and contained information about
household-level compartments of microbes. The people matrix had one row per person, and
contained information about infection state (-1 = susceptible; 0 = immune; 1 = exposed; 2 =
infected; 3 = diseased), the number of days remaining in the infection state (if susceptible, these

are negative), and the row in the household matrix that each person belonged to. Community-
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level compartments of microbes were tracked separately (by 3-element vectors); 'nMw' is the

number of microbes in the water reservoir, and 'nMlI' is the number of microbes on the land.

Table 5.3. Description of matrices tracking households and people

(nzgrlll-llll)r(le I; Household matrix ("HHs") People matrix ("People")
1 Number of people in the household Infection state (bacteria)
2 Number of adults (aged >= 5 years) Infection state (viruses)
3 Number of children (aged < 5 years) Infection state (protozoa)
4 Number of bacteria in household environment* Time countert (bacteria).
5 Number of viruses in household environment* Time counter¥ (viruses).
6 Number of protozoa in household environment*  Time countert (protozoa).
7 Number of bacteria in household's water g%ﬁiﬁfnﬁ%ﬁ ti};e,ﬁ%z,(;n belongs
8 Number of viruses in household's water E;El)}f;lgf people in the person’s
9 Number of protozoa in household's water Unusedt
10  Unusedt Unusedzt
11 Unusedt Unusedt
12 Unusedt Unusedzt
13 Compliance with sanitation (proportion) Unusedt
14  Compliance with HWT (proportion) Unusedt
15  Compliance with handwashing (proportion) Unusedt
16 Unusedt Unusedt
17 Whether household has safe storage (binary) Unusedt

Infection states: -1 = susceptible; 0 = immune; 1 = exposed; 2 = infected; 3 = diseased

* The only sources of microbes on hands were from a) defecation; or b) inter-household visits.
T Each time counter was an integer denoting the number of days remaining in a particular
person's infection state. Each day, 1 was subtracted from all time counters. When the time
counter reached 0, the infection state changes. If the infection state was 'susceptible’, the time
counter was negative and denoted the number of days a person has spent susceptible to a
particular pathogen. See page 178 for more detail.
T Unused rows were reserved for future expansion of the model, or were emptied as the design
of the model changed during its development.

Generating connections between households
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Households were connected by a randomly generated network to allow pathogens to be
directly exchanged between households. An Erd6s—Rényi random network was generated using
the 'erdrey’ function from the CONTEST toolbox for MATLAB (A. Taylor & Higham, 2008),
using an estimate of mean network degree (number of connections per household) observed in
rural Ecuadorian villages (Zelner et al., 2012).

Initial infection status

Initially, all persons in the village were classified as exposed; this exposure lasted for a
randomly determined period from 0-18 days for each person, after which they developed
infection or disease. This prevented the development of large oscillations in infection prevalence,
in the same fashion as in the QMRA models in the two preceding chapters (see page 96).

Step 4: Start daily loop and tally people in all states

Once the community had been generated, the first simulated day in the community could
begin. The numbers of people in each infection state for each pathogen (exposed, infected,
diseased, immune, or susceptible) were tallied and stored. If the tallies did not agree with the
number of people in the simulated community, an error would occur and the simulation would
end.

Step 5: Defecation

People who were infected with a pathogen excreted pathogens into the environment. For
each pathogen type and each infected person:

P, =fdn (5.1

where P, is the number of pathogens excreted, f is grams of feces excreted daily by a

person without diarrhea, d is the number of defecation events per day (which depends on whether

the person is symptomatic [3 events] or asymptomatic [1 event]), and n is the number of
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pathogens per gram of feces.

Most of these pathogens were deposited on the land, but a small proportion entered the
hands compartment for that person's household:

P, =P,h (5.2)

where Py, is the number of pathogens added to hands by a particular person, and h is the
proportion of feces that remain on the hands (1/1000). The number of pathogens deposited on

land by a particular person is then P; = P, — Pj,. If sanitation or handwashing interventions were

included in the model run, LRVs were then applied to P; and P}, according to sanitation and
handwashing compliance, respectively, in the same way as HWT interventions (see step 7 below,
Equation 5.4).

Step 6: Transfer pathogens from land to surface water

Each day, a small proportion (0.001) of pathogens was transferred from land to surface
water, representing movement of pathogens by processes such as soil erosion, groundwater
movement, laundering or defecating directly into water, etc. If a rain event occurred on a given
day (probability of 1/14), a higher proportion (0.05) of pathogens were transferred from land to
surface water. These proportions probably vary greatly depending on climate and hydrogeology,
and were chosen by expert opinion, due to the absence of data; see page 228 for further
discussion.

Step 7: Transfer pathogens between households via visits

Conceptually, each visit constitutes a contact between 2 people from different households,
each of which gives a proportion of their pathogens to the other. A subset of the possible
connections between households (as determined in step 3, page 171) was randomly chosen,

based on a daily probability (2/7, i.e., twice weekly on average) of a contact occurring for each
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connection. It was possible for a household to visit more than 1 other households per day. For

each visit and each pathogen type, the number of pathogens transferred from one particular
household to one other household (P;) was:
P,=CPy x Py /N (5.3)
where CPy, is a calibration parameter representing the proportion of pathogens transferred

between households during a visit, Py, is the number of pathogens in the household environment

before the contact, and N is the number of people in the household.

Step 8: Resupply stored water & apply household water treatment (HWT)

The first event to occur each day was resupplying the stored water within each household.

For simplicity, any pathogens remaining in the stored water compartment were transferred to the

land, and then a proportion of pathogens in the surface water (calibration parameter CPgf) was

transferred into each household's stored water compartment. Log; reduction values (LRVs)
were then applied to the pathogens in the stored water of each household, depending on the
household's compliance with HWT:

P;=Py(1-c) + Ppcl0-L

(5.4)

where P; is the number of pathogens remaining after treatment, P}, is the number of
pathogens before treatment, c is the proportion of pathogens treated by the household, and L is
the LRV of the treatment method. The value of c for each household was determined at the
beginning of each model run, based on the overall compliance level and the compliance type
within the simulated community (see step 3, page 171). Equation 5.4 was also used to calculate

pathogen removal or inactivation from handwashing or sanitation (described in step 5, page 174).
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Step 9: Pathogen transfer from household environment to drinking water

Pathogens within each household environment compartment could be transferred to its
stored drinking water compartment, simulating recontamination of water when people remove it
from the storage container.

Py = CPhgph * PpS (5.5)
where P; is the number of pathogens transferred, CPygpp is a calibration parameter

describing the proportion of pathogens transferred from hands to water, Py, is the number of

pathogens in the household environment before the transfer, and S equals 0 if the household uses
safe storage, and 1 otherwise. Thus safe storage completely blocked the transfer of pathogens
from the household environment to stored drinking water.

Step 10: First attenuation of pathogens

Pathogens in all compartments were exponentially attenuated (i.e., completely removed
from the system) according to a particular rate r for each pathogen type. Since attenuation
affected the doses of pathogens received by people (Figure 5.3, page 165), it was initially applied
over a random proportion x of the day, after which people ingest doses of pathogens:

P, =Pperx (5.6)

where P, is the number of pathogens remaining in a particular compartment after decay,
and Py, is the number of those pathogens in that compartment before decay. The daily attenuation
rate r was given by three values of a calibration parameter (CP 4,5), one value for each pathogen

type. CP gon Was the only calibration parameter that took different values for each pathogen

type.
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Steps 11 & 12: Decrement all status counters and apply status shifts

At all times, each person had a particular infection status for each pathogen type:
susceptible, exposed, infected, diseased, or immune. A status counter measured the number of
days remaining for that status. Every day, 1 was subtracted from all status counters. When a
status counter reached 0, that person transitioned to the next state: exposed — infected (possibly
diseased) — immune - susceptible (Table 5.3). When a person transitioned from exposed to
infected or diseased, a duration of infectiousness was randomly chosen from a distribution. The
durations of the immune and exposed states were fixed (for parameter values, see Table 7.1, page
230; but recall that the initial exposure duration varied; step 3, page 171).

Step 13: Calculation of daily pathogen doses and dose response

All people ingested daily doses of pathogens, removing those pathogens from the system.
If a person was susceptible to a pathogen, they might become exposed to that pathogen as a
result of that day's dose. The dose of each pathogen type was the sum of three component doses:
pathogens from stored drinking water, pathogens from land, and pathogens from the household
environment.

Pathogens from stored water

Each person's dose of each pathogen type from stored water (D,,) was determined as
follows:

D,=P,/V (5.7)

where P, is the number of pathogens in the household's stored water, I is the amount of

stored water ingested in liters per day (which is higher for adults and lower for children), and V
is the volume (in liters) of the household's stored drinking water container.

Pathogens from land
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Each day, people ingest a dose Dj of pathogens from land, with children ingesting more
pathogens than adults:

D; = CPp; x P)(Z/Z,) for children, and

D; = CPpy x Py for adults, (5.8)

where CPpy is a calibration parameter representing the proportion of pathogens on the land

ingested daily; Pj is the number of pathogens on the land; and Z. and Z, are the numbers of daily
hand-mouth contacts for children and adults (respectively 328/day and 130/day; USEPA, 2011).
D; could be considered to include pathogens from the environment outside the household,

including soil and locally grown food.
Pathogens from the household environment
A proportion of the pathogens in a household's environment at the time of dose calculation

was ingested by its occupants. Children ingested more of those pathogens than adults, as

described immediately above. The dose Dy, received in this manner by a particular occupant was:
Dy = CPygph % Py(Z-/Z,) for children, and
Dy = CPygph % Py for adults, (5.9)
where CPpgpp is a calibration parameter representing the proportion of pathogens in the

household environment ingested daily; and P}, is the number of pathogens in the household
environment.

Dose response: converting pathogen doses to exposure and infection

Each of the three doses D,,, D;, and Dy, were then removed from the appropriate
compartments (stored drinking water, land, and household environment), and were summed for

each person and each pathogen to obtain the total dose for each pathogen received by each
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person. Dose response functions were then used to convert the doses into probabilities of
infection, in the same manner as in chapters 3 and 4 (Equations 3.2 and 3.3, page 98). Based on
the resulting probabilities of infection, it was randomly determined whether each person who
was susceptible to a particular pathogen type became exposed to that pathogen. Any person who
became exposed would eventually develop infection (see steps 11 and 12, page 178), provided
the model run did not end first.

Step 14: Assignment of baseline exposures

In order to force the model to have a minimum non-zero incidence of diarrhea, baseline
exposures were assigned. All people had an equal daily probability per pathogen type S, of being
selected for a baseline exposure. If a person was selected and was also susceptible, their status
was changed to exposed. If a non-susceptible person was selected, nothing occurred.

Sp = (TpBc) / (365M)) (5.10)

where T}, is the proportion of the baseline incidence in children attributable to that
pathogen type (0.5 for bacteria, 0.25 each for viruses and protozoa, based on etiologic fractions

discussed in chapter 4, page 129), M}, is the morbidity ratio in children for that pathogen type,

and B is the baseline incidence of diarrhea in children from all pathogen types. The value for B,

was assumed to be 0.5 episodes per child-year, since measurements of diarrheal incidence in
developed countries are often roughly 0.5 to 1.5 episodes per person-year (M. E. Wilson, 2005),
and the best possible outcome of various interventions in a developing country community
would be to reduce diarrheal incidence to levels found in developed countries.

Step 15: Second inactivation of pathogens

Pathogens in all compartments were then inactivated over the remainder of the day (1 — x)

in the same manner as in step 11, Equation 5.6, page 177.
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Step 16: Continue to next day, or end simulation

Each model run was scheduled to terminate after a certain number of days. Once pathogens
had been inactivated over the final portion of the day, the simulation terminated if the required
number of days had elapsed, or continued to the next day (see step 4, page 174) if not.

5.3.3. Calibration and estimation

All of the parameters used in this model are substantially uncertain, and communities vary
across many characteristics that are difficult to measure, but could nonetheless influence the
transmission of diarrheal infections. In the calibration step, the model was run many times while
varying the values of the calibration parameters (Table 5.2, page 169). If a model run's output
was consistent with certain calibration criteria chosen a priori (Table 5.4), its calibration
parameter values were retained and used for estimation later.

The calibration criteria (Table 5.4) considered incidence and etiologic fractions in children
in developing countries aged less than five years. Observational studies of diarrhea in developing
countries show that the incidence of diarrhea has a wide range, depending on the country and the
community (Kosek et al., 2003); a relatively high incidence of childhood diarrheal disease (6-12
episodes per child-year) was chosen because the calibration step is meant to simulate conditions
in a very poorly developed community with essentially no hygienic or sanitary infrastructure.
Studies of diarrheal etiology also indicate that bacterial diarrhea is generally more common than
viral or protozoan diarrhea; see page 19 for further discussion (Lanata & W. Mendoza, 2002).
However, the importance of differing transmission routes is unknown; therefore, model runs
consistent with the first two criteria were subdivided by the relative importance of transmission
via stored drinking water, so that estimation could be conducted for varying scenarios of high,
medium, and low waterborne transmission.

The sets of calibration parameter values that fit the calibration criteria (Table 5.4) can be
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considered to represent a variety of differing communities. In the estimation step, differing
interventions can be applied to these communities at a variety of compliance levels to determine
the likely effect of these interventions on diarrheal disease.

Table 5.4. Criteria for calibrating the transmission model

Description Units Ciriteria
Incidence of . .
childhood* ep1sod;sé§)re: child- 6to 12

diarrheal disease

proportion of 32.5 to 62.5% bacterial

Etiologic childhood* diarrheal 0
fractions  episodes by pathogen 75103 5% protosoan
type : 27 P
proportion of ) )
Route childhood* diarrheal I\X:Iv(;igry V\Gﬁt:; s(?lmrf; MO:\;;i’e?.OH
importance episodes from drinking /3 to 1(’)0% 13 10 /3 : 0t <1-/3
water

See Table 5.1 (page 169) for descriptions of the 7 calibration parameters that were varied to
obtain these values during the calibration process.
*Children aged less than 5 years.

Determination of calibration parameter ranges

The calibration process used a single set of ranges for the calibration parameters (Table
5.2, page 169). The ranges were determined by running a series of mock calibration processes
consisting of about 30,000 runs each. The first mock calibration process used extremely wide
ranges of calibration parameter values (7 to 9 orders of magnitude). For subsequent processes,
these ranges were gradually narrowed, one calibration parameter at a time, guided by the

distributions of calibration runs within each calibration parameter range that were consistent with
the calibration criteria (Table 5.4). For example, if CPgfwas varied from 10-9 to 10-2, and no
model runs whose results were consistent with the calibration criteria were seen from 10-9 to 10-

8, CPgymight be varied from 10-8 to 10-2 next. Random sampling of all calibration parameters

182



was carried out as if they were uniformly distributed on the log; scale. The calibration process

was done once, producing three mutually exclusive sets of parameters: 1) a set consistent with
predominantly (> 2/3) waterborne transmission; 2) a set with similar waterborne and non-
waterborne transmission; and 3) a set consistent with predominantly (> 2/3) non-waterborne
transmission. Those sets of parameters were then used as the basis for estimation scenarios in
which HWT interventions were applied to the simulated community.

All runs of the EITS model were on MATLAB 7.13 (R2011b; 64 bit). The program code
for the EITS model was originally developed using Octave 3.2.3, but it runs on either Octave or
MATLAB without modifying the code. Each run of the model took about 16 seconds in
MATLAB; for comparison, each run required about 30 seconds in Octave. Output from the
model was analyzed with R 2.15.1.

5.4. Results
5.4.1. Calibration

The calibration step included 228,480 model runs. Calibration runs whose output was
consistent with the criteria in Table 5.4 were considered to represent distinct communities with
differing characteristics that were summarized by their calibration parameter values. There were
1728 (0.756%) consistent runs; of these, 963 (55.7%) had < 1/3 waterborne transmission, 129
(13.2%) had 1/3 to 2/3 waterborne transmission, and 537 (31.1%) had > 2/3 waterborne
transmission.

Charts of calibration output are presented in Figures 5.5 and 5.6. Incidence of diarrhea in
children was highly variable for all transfer calibration parameter values, ranging from roughly

0.5 to 40 episodes per child-year (Figure 5.5). The proportion of cases of diarrhea attributable to

waterborne transmission increased as CPgyincreased or as CPpy decreased (Figure 5.5a and d,
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and Figure 5.6d). Bacterial pathogens generally had lower attenuation rates (CP g0p,) than viral
or protozoan pathogens, though this was not universal (Figure 5.6a). The distribution of diarrheal
incidence in children over all the calibration runs was multimodal (Figure 5.6b) with peaks near
0, 9, and 20 episodes per child-year; the last two peaks roughly correspond with the maximum
incidence levels attainable by each pathogen type, visible on Figure 5.6a where the point clouds
approach their maxima as CP g, decreases. Of the 40,230 (17.6%) calibration runs that met the
incidence criterion, it was common for a single pathogen type to predominate (Figure 5.6c, note

densely clustered dots near each corner of the triangle).
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Figure 5.5. Calibration output from EITS model, transfer parameters

a. Diarrh. incidence by CPsy, all runs b. Diarrh.incidence by CP yzph, all run
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Figure 5.6. Calibration output from EITS model, scatterplots & histograms
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& attenuation, all runs
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Incidence of diarrhea in children was unrelated to the proportion of diarrhea in children

that was waterborne (Figure 5.7). Although incidence of diarrhea appeared slightly lower if 1/3

to 2/3 of diarrhea was waterborne for all pathogens and for bacteria (Figure 5.7, a and b), the

distributions were not significantly different after adjusting for multiple comparisons (Holm
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method, n=12).
Figure 5.7. Simulated diarrhea incidence in children (calibration step)

Incidence of diarrhea, by etiology and route
a. All pathogens  b. Bacteria c. Viruses d. Protozoa
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A, > 2/3 of incidence from waterborne route; B, 1/3-2/3 of incidence from waterborne route; C,
< 1/3 of incidence from waterborne route.

In the calibration runs that were consistent with the calibration criteria (Table 5.4, page
182), six of the seven calibration parameters were associated with diarrheal incidence among

children by multiple linear regression (Table 5.5; for descriptions of the calibration parameters,
see Table 5.1, page 169). In contrast with all other calibration parameters, CPy, (describing

transfer of pathogens between households) was not significantly associated with diarrheal

incidence, or the proportion of incidence that was waterborne (Table 5.5). Substantial portions of
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the variation in incidence was explained by the calibration parameters, with adjusted R2 values

from 0.3 to 0.8 depending on the dependent variable that was used.

Table 5.5. Association of calibration parameters with incidence

Linear regression parameter estimates* and p-values

Dependent Inter: CPhg Fatten

variable cept CPs DH ©Fv. CFDI Bac- Virus- Prowo- R
teria es zoa

Child 67.8 1.67 1.17 0.0303 1.52 -5.51 -9.88 -0.010

incidence, 228,480 2x10- 2x10- 2x10- 2;10_6 2x10- 2x10- 2x10- 2x10- 0.806

all runs 16 16 16 16 16 16 16

Child

41. . 291 -9,

incidence, 537 leg_ 2333_ 0.190 -0.012 g><19()- szg -1.31  -1.32 0.551

consistent 16 16 0.005 0.7 10 16 2x10-9 4x10-9

runs, AT

Child

2. -6.47

incidence, 278 32.5 2;;3_ 0.121 0.0135 0.252 2210_ -1.06 -0.901 0.411

consistent 3x10-4 16 0.4 0.8 0.004 16 0.006 0.01 ’

runs, BT

Chﬂc? 289 0.373 0.400 0.0458 0.890 -3.81 -1.54 0.687

incidence, 963 2x10- 2x10- 1x10- 7777 2x10- 2x10- 5x10- ol 0.284

consistent 16 10 12 : 16 16 13 :

runs, CT

Proportion

of incidence

that is 170 0-209 '20;11%7 'Zox'll((); -0.001 '20;11%)(_) 0.146 0.066 -0.043 ..,

waterborne, 0.1 16 16 0.7 16 4%x10-7 0.0006 0.02 )

consistent

runs

* The log( of the calibration parameters were the independent variables in the linear models.
T A, > 2/3 of incidence was waterborne; B, 1/3-2/3 of incidence was waterborne; C, < 1/3 of

incidence was waterborne.

+ The adjusted R? was calculated by the Im() function in R 2.15.1.
For descriptions of the calibration parameters, see Table 5.1, page 169.

The influence of the calibration parameter values on the proportion of childhood diarrhea

that was waterborne was particularly apparent for the transfer calibration parameters, which were

proportions describing daily movement of pathogens between compartments. Lower values of
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CPg;y (related to dilution of pathogens in surface water) were associated with less waterborne

transmission, and similarly, lower values of CPp; (related to dispersion of pathogens on land)
were associated with less non-waterborne transmission (Figure 5.8, a and d). Lower values of
CPp&ph (describing transfer of pathogens out of the household environment)also favored more
waterborne transmission (Figure 5.8b), though there was a significant tendency (p = 0.009,
Wilcoxon rank sum test, Figure 5.8b) for CPyg pp, values to be higher if 1/3 to 2/3 of
transmission was waterborne (category B), compared with < 1/3 of incidence being waterborne
(category C). There was also some weaker statistical evidence that CPy (describing transfer of

pathogens between households) values were lower if 1/3 to 2/3 of transmission was waterborne
(category B, Figure 5.8¢c), compared with > 2/3 of incidence being waterborne (category A; p =

0.03) or < 1/3 of incidence being waterborne (category C; p = 0.08).
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Figure 5.8. Distributions of transfer calibration parameters

Distributions of transfer calibration parameters,
for runs meeting calibration criteria

a. CPsf b. CPH&DR c. CPy d. CPp
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A, > 2/3 of incidence was waterborne; B, 1/3-2/3 of incidence was waterborne; C, < 1/3 of
incidence was waterborne. Grey horizontal lines represent the ranges over which the calibration
parameters were sampled.

The values of the attenuation calibration factors varied little in relation to the proportion of
incidence that was waterborne, although there was a slight trend for their values to increase as
the proportion of waterborne transmission decreased (Figure 5.9).In general, the values of the

calibration parameters that were consistent with the calibration criteria spanned the ranges over

which they were sampled during the calibration step (Table 5.2, page 169), although the

attenuation parameter values did not quite meet the lower bound. The value of CP g, for
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bacteria was approximately 20, compared with approximately 200 for viruses and protozoa. The
model therefore suggested that protozoa and viruses are attenuated roughly 10 times faster than
bacteria.

Figure 5.9. Distributions of attenuation calibration parameters

Distributions of attenuation calibration parameters,
for runs meeting calibration criteria

a. CPatten, bacteria b. CPatten, Viruses C. CPatten, protozoa
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5.4.2. Estimation
A random sample of 100 parameter sets was taken from each of the three groups of

calibration runs consistent with the calibration criteria. Using these parameter sets, a HW'I
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intervention with LRVs of 1, 2, 3, 4, or 5 against all pathogen types was applied with
community-wide compliance of 50%, 80%, 95%, 99%, or 100%, and compliance types of «, f3,
or y (see page 124 for further discussion of compliance types). The HWT intervention prevented
little or no diarrhea where < 1/3 of childhood diarrhea was waterborne (Figure 5.10c), even if
compliance was perfect. If 1/3-2/3 of childhood diarrhea was waterborne (Figure 5.10b), the
median incidence decreased from 8 episodes per child-year to 3 episodes per child-year if
compliance was perfect and LRVs were 3 or higher; however, if compliance was 50%, median
incidence was approximately 7 episodes per child-year for compliance type y and 6 episodes per
child-year for compliance type a, regardless of LRV. If > 2/3 of childhood diarrhea was
waterborne (Figure 5.10a), median incidence was further decreased, particularly for higher
compliance levels; there were approximately 1.3 episodes per child-year if compliance was
perfect. As found in chapter 4, LRV higher than 3 generally did not prevent additional diarrhea.
There was substantial variation around each of the median estimates displayed in Figure
5.10; interquartile ranges generally spanned about 4 episodes per child-year (data not shown). At

the extremes, incidence levels ranging from 1 to 20 were obtained.
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Figure 5.10. Estimation step, incidence by LRV of HWT
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Although the EITS model is not directly comparable with the QMRA model described in
chapter 4, it is possible to make a rough comparison (Figure 5.11). Both models indicate
decreasing incidence ratios as compliance decreases. However, increasing compliance in the
QMRA model leads to greater risk reductions than in the EITS model. Furthermore, in the EITS
model, there is little or no improvement in IR from LRVs above 3 even if compliance is perfect.
This differs from the QMRA model, where risk continues to decrease as LRV's increase if

compliance is perfect.
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Figure 5.11. Comparison of EITS and QMRA results
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compliance type a: EITS model

o

1E-3

50% compliance
,,,,, 80% compliance
— —-95% compliance
—— 99% compliance
4 =——100% compliance

0 1 2 3 4 5
Log10 reduction values (LRVs)

Incidence ratio (IR) of diarrhea
1E-2

1E-4

b. Incidence ratios with HWT by LRV,
compliance type a: QMRA model (chapter 4)
— -

-
.......................

e e = = o= ===

o

1E-3

_____ 80% compliance
— —~95% compliance
—— 99% compliance
4 ——100% compliance

0 1 2 3 4 5
Log10 reduction values (LRVs)

Incidence ratio (IR) of diarrhea
1E-2

1E-4

195



5.5. Discussion

5.5.1. Calibration step

All calibration parameters were varied over wide ranges; the transfer calibration factors
(describing the proportion of pathogens transferred daily between compartments) varied over 4
or more orders of magnitude (Figure 5.8), and the attenuation calibration factors (describing
inactivation or removal of the three pathogen types) varied over about 2 orders of magnitude
(Figure 5.9). Although 1728 sets of calibration parameters were found that were consistent with
childhood diarrheal incidence values and etiologic fractions that appear common in developing
countries (Table 5.4, page 182), it is not certain that these calibration parameter sets reflect
realistic conditions in developing country communities, because of uncertainty in parameter
values that necessitated calibration in the first place.

All of the calibration parameters strongly influenced the outcome of the model, except for
the calibration parameter describing pathogen exchanges during inter-household visits (CPy)).
The routes influenced by CPy, and CPpy; (which describes ingestion of pathogens from land) are
parallel transmission routes; they both allow pathogens to move from one household to another.
However, the inter-household route influenced by CPpy; is more direct (feces from household A
— land — new host in household B) than the inter-household route influenced by CPy, (feces
from household A — household environment A — household environment B — new host in
household B). Furthermore, the CPpy route links all households with all other households every
day, while the CPy, route links only a subset of households daily. Although removing inter-
household visits might simplify the model without reducing its utility, household structure

remains a useful component of the model (shown by the effect of CPyg pp, on diarrheal incidence
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and the proportion of incidence that is waterborne, Figure 5.8b, page 190).

The values of the daily attenuation rates (CP g,p) of the three pathogen types were very

high, with median estimates of ~20/day for bacteria, and ~200/day for viruses and protozoa.
These correspond to half-lives of 50 minutes and 5 minutes, respectively, and are much faster
than decay rates of ~0.6/day (half life of 1700 minutes, or 1.2 days) for E. coli (Flint, 1987),
norovirus (Pancorbo et al., 1987), and Giardia (Wickramanayake et al., 1985; deRegnier et al.,
1989) measured in unfiltered natural waters at ~20°C (see page 227 for further discussion).
However, attenuation includes many processes in addition to decay that prevent pathogens from
contacting hosts, such as: percolation or burial in soil; sedimentation or settling in water;
ingestion by animals; and removal from the community by flowing water.

5.5.2. Estimation step

The EITS model corroborates the QMRA model in chapter 4 in several respects. Both
models agree that increasing HWT LRVs beyond 3 is unlikely to prevent much additional
diarrhea, although it might provide some benefit for intermediate levels of compliance when
waterborne transmission predominates. Furthermore, in both models, compliance type a (where
people either comply perfectly with HWT or don't comply at all) tends to prevent more diarrhea
in both models than compliance type y (where everyone complies partially with HWT);
compliance type 3 is intermediate between o and y.

The EITS model indicates that HWT can prevent very little diarrhea if waterborne
transmission is low in relation to other transmission routes, even if LRV are high and
compliance is perfect (Figure 5.10c, page 193).

5.5.3. Limitations of the EITS model
Wherever possible, published measurements from peer-reviewed publications were used

for parameter values (see chapter 7 for detailed discussion). However, reliable information from
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developing countries was not available for all parameter values. Furthermore, it is possible that
appropriate values for some parameters were not found during the literature review, despite being
documented in the literature. Ideally, a rigorous meta-analysis would be conducted for each
parameter in this model, but this was not practical given the resources available for the research
and the large number of parameters. Nonetheless, multiple documented measurements were
sought for each parameter; discussions of the decision process for various parameter values are
in chapter 7.

Most parameters used in the model had fixed values. Because few measurements have
been reported for many parameters, it is possible that some of them are improperly specified,
possibly affecting the model's results. However, the seven calibration parameters introduced
variation along all possible routes that pathogens could take within the model. This potentially
allowed the model to self-adjust for missing or misspecified parameter values in the calibration
step, but would also confound sensitivity analysis of the fixed model parameters. The model
could be refined in the future by incorporating updated information regarding its parameter
values, which would mean that the aspects of each route that are covered by each calibration
parameter would decrease, yielding a more completely specified model requiring calibration over
fewer variables or narrower ranges of values.

Although the model suggests that visits between households are a relatively unimportant
route of transmission, this conclusion might depend upon the way visits are simulated. The
model describes visits by an exchange of pathogens between two household environment
compartments (Equation 5.3, page 176), which might represent a brief visit or an exchange of
food or items. However, children are frequently cared for by friends or relatives in different
households, and the entry of an infected child into an otherwise uninfected household could be a

particularly important exposure route. The entry of an infected person into an uninfected
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household for a long period, particularly a small child who defecates in the new household, could
represent a much more intense exposure. In principle, the model could be modified to better
represent such a situation, which might increase the importance of visits to infection
transmission.

This EITS model does not include zoonotic transmission of diarrheal pathogens. Domestic
animals live in close proximity with humans (particularly in rural areas), and can be major
reservoirs of pathogenic E. coli, Campylobacter (C. R. Young et al., 1999), and Cryptosporidium
parvum (Xiao, 2010); however, giardiasis is probably not a zoonosis under most circumstances
(Caccio et al., 2005). The lack of animal sources of transmission in this model may

inappropriately penalize transmission of bacterial and protozoan infections relative to viral

infections. This may partially explain the relatively low attenuation rates (CP g ~ 20) of for
bacteria, compared to viruses and protozoa (CP 4.n ® 200), because selecting lower values of

CP 4¢ten for bacteria than for viruses or protozoa is the only way for the calibration step to favor
bacterial transmission. If the model omits a route that bacteria use preferentially, the calibration
process must select lower values of CP 4., for bacteria than for viruses or protozoa in order to

meet the calibration criteria (Table 5.4, page 182), essentially compensating for the absence of
the bacterial route.

The model also does not explicitly include exposure to pathogens through contaminated
food, although doses of pathogens ingested from the household environment compartments and
the land compartment could be considered to include such exposures. Many bacterial pathogens

can grow in food, and this is not explicitly incorporated in the model either, although the lower
attenuation rates (CPg,p) 0f bacteria compared to viruses or protozoa (Figure 5.5e) could also

be considered to reflect this.
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Transmission of rotavirus in this model might also be inappropriately high because the
model considers adults and children to have the same concentration of virus in their feces,
regardless of whether they are infected or diseased. However, it has been reported that rotavirus
particles are roughly 10 times as concentrated in child feces as in adult feces (Vollet et al., 1979).
Furthermore, rotavirus infections in adults tend to be shorter and milder than in children (Hrdy,
1987); thus adults might also have a shorter period of communicability than children.

5.5.4. Insights gained during the model construction process

The initial formulation of this model used a Gillespie algorithm framework (Keeling &
Rohani, 2008) to model many discrete events occurring at particular rates over time using short
timesteps of variable length separating each event; this resulted in a series of randomly selected
events, separated by time periods of random (but very short) length. This framework was chosen
in an attempt to build upon the previously published model described on page 81, which used
similar methodology (J. N. S. Eisenberg et al., 2007). Although the Gillespie algorithm version
of the model had similar compartments and flows (resembling Figures 5.1 and 5.2, page 162) to
the EITS model described here, there were many thousands of events occurring daily, even
within a very small community (~20 households). In order for the model to run in a reasonable
amount of time, it was necessary to simplify it into a framework with discrete daily time steps.

An original ambitious goal of this work was to construct a highly mechanistic model that
was thoroughly grounded in published theory and measurements. However, in the course of
reviewing the literature, it became clear that many important parameter values were highly
uncertain or completely unknown. Furthermore, there is likely to be large variation in many
aspects of real diarrheal infection transmission networks; for example, hydrogeologic
characteristics affecting contamination of groundwater, or differing cultural practices in areas of

hygiene, food preparation, food cultivation, etc. (for further discussion of uncertainty regarding
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particular parameter values, see chapter 7). In order to incorporate this variation, the calibration
parameters were added to key routes and varied during the calibration process to determine sets
of calibration parameters leading to realistic childhood diarrheal incidence levels (page 181). It is

not clear how to interpret these calibration parameter values, since they encompass many
different processes. For example, the calibration parameter CPpy is a daily proportion of

pathogens from the land that are ingested by each person. It is a crude way of summarizing many
different processes that are poorly understood, for example: dispersal of pathogens over an area;
the likelihood of contacting feces that are clustered in space in unknown ways; ingestion of
pathogens along with soil; transfer of pathogens from soil to skin to mouth; etc. All models
represent a compromise between realism and practicality, since highly detailed models are
difficult to construct and analyze. In the case of this EITS model, some simplifications were
necessary due to lack of information.

The model was originally intended to be a closed system, in which people could only be
infected by ingesting pathogens excreted by other people in the community. However, this led to
frequent stochastic pathogen extinctions during the calibration step, particularly of bacteria. The
probability of extinction was reduced by increasing the size of the community. However,
extinctions remained frequent even if the community had 4000 households, and the model ran
too slowly when simulating such a large community. Since extinction of pathogen types in an
underdeveloped community is unlikely, random exposures of people to all pathogen types were
added to the model, in such a way that a mean baseline incidence rate of 0.5 diarrheal episodes
per child year was obtained (step 14, page 180). The baseline incidence represents importation of
infection from outside the community, or infections arising from pathogen sources that are not

explicitly modeled (e.g., animal feces or imported food).
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5.5.5. Future applications of the model

Readily achievable applications

At this writing, it has not yet been possible to thoroughly explore many aspects of this
complicated EITS model. This section briefly describes additional aspects of the transmission
and prevention of diarrheal infections that could be explored without modifying the model code.

The model is not limited to HWT interventions; it can also simulate the action of sanitation
and hygiene interventions, and assess scenarios in which different interventions are applied
together. Furthermore, it can simulate the effect of safe storage of drinking water, by making the
assumption that each household owning a safe storage container completely blocks transmission
of pathogens from the household environment to stored drinking water. Although many HWT
interventions include a safe storage container, this is not always the case.

The model could be used to assess different interventions simultaneously, or in series.
Field trials report widely varying efficacies for particular interventions; one explanation might be
that a community's response to an intervention might depend upon other interventions that are
already in place. For example, if a community with predominantly non-waterborne diarrhea
transmission (e.g., Figure 5.10c) acquires latrines, diarrheal incidence would decrease, but the
importance of the waterborne route would be larger for the remaining disease transmission; this
would be expected to increase the effectiveness of HWT interventions (Figure 5.10a).
Furthermore, two interventions may interact positively or negatively when they are applied
simultaneously (see page 46 for further discussion). Such scenarios can be simulated using this
model.

The time required for the full benefits of an intervention to be realized may be of interest.
Because the model is dynamic, it can be run for a period of time without an intervention; once an

intervention is applied, diarrheal incidence could be tracked over time to determine how rapidly
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a lower equilibrium is reached. Since giardiasis in particular has an incubation period and disease
duration of roughly two weeks (Rendtorff, 1954; A. M. Jokipii & L. Jokipii, 1977), it might take
months for the full preventive effect of an intervention to be attained. A long time period between
distribution of an intervention and the appearance of its benefits might lead to reduced
compliance by the community because it initially appears ineffective, even if it would have been
effective in the long term.

Although the burden of diarrheal infections and disease in people aged five years or more
is poorly understood, particularly in developing countries, this model explicitly includes them.
Although it is impossible to say whether the model properly accounts for infections in such
people, examination of infection and disease status in the simulated population could generate
hypotheses that future studies might test.

A sensitivity analysis would provide further information about the impact of the 46 fixed
parameter values on the results from the model. Such an analysis would take the form of
repeated estimation steps, modifying each fixed parameter in turn to determine its effect on the
incidence of diarrhea in children, as well as the relative contribution of the waterborne route of
transmission. Although an extremely thorough sensitivity analysis would need to consider
alterations to the calibration parameter sets resulting from changing the fixed parameter values, it
is not practical to recalibrate the model repeatedly in order to explore this effect.

Applications requiring substantial modifications to the model

Additional aspects of diarrheal infection transmission and prevention could be explored
through further modifications to the program code of the model, and subsequent analysis of its
behavior.

Households who are not using a particular intervention might nonetheless benefit directly

because other households in the community are using them; participating households thus
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prevent diarrhea for themselves directly, and prevent diarrhea in the rest of the community
indirectly since fewer people are infected and excreting pathogens. Incidence in noncompliers
could be measured before and after a simulated intervention to determine the magnitude of
indirect protective effects of interventions, in a manner similar to Halloran et al. (2002; see page
83).

Bouts of diarrheal disease, or asymptomatic infections with gastrointestinal pathogens, are
believed to degrade resistance to further bouts of diarrhea, probably through malnutrition and
consequent impairment of immunity (see page 14 for further discussion). Although it is unclear
precisely how this occurs, information is available regarding correlation of diarrheal episodes
within individuals (Schmidt et al., 2009). Calibration parameters could be added that modify the
dose response relationship(s), signifying reduced resistance to infection or disease following a
previous infection, and select values of these parameters that yield distributions of cases within
individuals similar to those observed in the field. Since repeated diarrhea episodes are an
important factor in mortality, this could facilitate estimation of the mortality benefit attributable
to particular interventions.

The model might further be used to examine the emergence of persistent diarrhea. Since
coinfections with diarrheal pathogens are common, a single diarrheal episode might consist of
multiple overlapping infections. Processes by which diarrheal episodes are reported and
measured in the field could be incorporated into the model, in a similar fashion to the
incorporation of imperfect recall in the QMRA model in chapter 3. By calibrating the model such
that the distributions of the durations of modeled diarrheal episodes match observed distributions
of diarrheal episode durations, insight could be gained regarding the development of persistent

diarrhea in developing country communities.
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5.5.6. Conclusions

The results from the EITS model corroborate the conclusions from the QMRA model
regarding compliance (chapter 4): increasing LRV's beyond (approximately) 3 is unlikely to
prevent additional diarrhea, and more diarrhea is prevented if more households comply perfectly
(i.e., compliance type o is superior to compliance types 3 or y). By incorporating multiple
transmission routes, the EITS model also showed that improving compliance with HWT can
greatly improve diarrhea prevention if waterborne transmission accounts for at least 1/3 of
diarrheal incidence. This finding holds even for relatively low HWT LRVs of 1 or 2. More
attention should be paid to improving compliance with HWT, rather than improving the
antimicrobial efficacy of HWT.

The relative importance of the various transmission routes for diarrheal infections are
unknown; in the EITS model, it depends upon the values of the calibration parameters. The
calibration parameters themselves represent a variety of processes which are poorly understood,
such as: transfer of pathogens from soil or objects to hands or mouth; decay or attenuation of
pathogens in many different media, temperatures, or humidities; and many others. However,

transfers of pathogens via households visiting each other (affected by the calibration parameter
CPy) did not greatly affect diarrheal incidence or the proportion of incidence attributable to the

waterborne route, in contrast to the other 6 calibration parameters.

The EITS model is a simplification of an extremely complicated infection transmission
system incorporating multiple pathogens using multiple transmission routes. In addition, many
aspects of diarrheal infection transmission through the environment are poorly understood. The
EITS model attempts to account for this uncertainty through the calibration process; calibration

produces sets of calibration parameter values that could be considered to represent distinct
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communities with differing environmental characteristics. However, it is unknown which sets of
parameter values best represent actual communities. Important aspects of transmission may also
be improperly specified or missing (e.g., conceptualizing visits to represent shared child care
might increase the importance of visits; incorporating domestic animals or foodborne
transmission might favor bacterial infections). Nonetheless, the results regarding compliance are
robust across widely varying sets of calibration parameter values, increasing confidence that they
should also apply in real communities.

Future descriptive studies and field trials results will allow refinement of EITS models for
diarrhea by clarifying appropriate values for parameters and reducing the need for calibration.
Future models will provide guidance for public health and development professionals regarding

effective ways to prevent diarrhea in developing countries.

206



6. CONCLUSIONS

6.1. Summary of research

Despite the large body of literature regarding the transmission of diarrheal infections and
the various interventions used to prevent those infections, much remains to be learned.
Constructing models simulating the transmission and control of these infections can yield
conclusions useful for designing diarrhea prevention programs, and also highlights aspects of
diarrheal infections that require further research. This dissertation describes three such models: a
quantitative microbial risk assessment (QMRA) model simulating waterborne transmission
during a published household water treament field trial (chapter 3); a generalization of that

QMRA model to examine the effect on diarrheal incidence by varying HWT compliance and
antimicrobial effectiveness (measured by log( reduction values [LRVs] under different

scenarios (chapter 4); and a more complex environmental infection transmission system (EITS)
model that further examines compliance and LRVs, as well as multiple routes of transmission
(chapter 5).

By simulating a published field trial (Boisson et al., 2010) of a HWT device (chapter 3),
the model estimated that similar trials with perfect compliance would have found a longitudinal
prevalence ratio for childhood diarrhea of about 0.1, in contrast to an LPR of 0.9 with low
compliance (an LPR of 0.8 was estimated by the actual trial, but was not statistically significant).
Although a goal of the model was to adjust for bias caused by an imperfect placebo HWT device,
uncertainty about the level of compliance greatly influenced the effect of the imperfect placebo.
The model also predicted concentrations of diarrheagenic bacteria, viruses, and protozoa in the
source water of the field study communities that were consistent with the limited published

measurements of pathogen concentrations in other developing country source waters.
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Since the importance of compliance was highlighted by the first QMRA model, it was
modified to determine how childhood diarrhea incidence changed if HWT compliance and LRV
were varied under differing scenarios (chapter 4). These scenarios were defined by various
combinations of: 1) baseline incidence of childhood diarrhea; 2) the pattern of compliance within
the community (put simply, the proportion of people who complied perfectly was varied while
holding compliance constant at the community level); 3) the size of randomly scheduled spikes
of pathogens in untreated drinking water; and 4) etiologic fractions of childhood diarrhea cases
attributable to bacteria, viruses, and protozoa. In general, LRV of 5 prevented little or no
additional diarrhea compared to LRVs of 3. However, LRVs of 5 sometimes prevented additional
diarrhea if incidence was high, there were large contamination spikes, or many people complied
perfectly with HWT.

Although the two QMRA models were informative, they included only the waterborne
route of transmission. Although that route is important, diarrheal pathogens can also be
transmitted by other routes, e.g., contaminated hands, soil, or objects. The relative importance of
these routes is unknown. Furthermore, it was unclear whether findings from the QMRA models
would hold in a more complicated and realistic model. An EITS model was programmed
(chapter 5), using many functions and parameters from the QMRA models, but incorporating
additional functionality such as pathogen shedding by infected people, household structure,
multiple routes of transmission, and attenuation (e.g., decay or sequestration) of pathogens in the
environment.

The EITS model suggested that viruses and protozoa are attenuated roughly 10 times faster
than bacteria in the environment. This may be partially explained by the absence of certain
aspects of pathogen transmission that favor bacteria, such as the ability of bacteria to multiply in

food or within nonhuman animals. The calibration process may have selected lower attenuation
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rates for bacteria in order to meet the calibration criteria, essentially compensating for these
missing pathways. It also suggested that visits between households are a relatively minor route
for transmission of pathogens, though this might differ if the intensity of exposure were greater
during visits (e.g., an infected child being cared for in a different household while the parents
were working).

Further analysis of the EITS model will yield additional results, in particular the
assessment of interaction between two differing interventions applied to the same community.
6.2. Implications for future diarrheal research and prevention efforts

6.2.1. Conduct and description of field trials

Field trials of public health interventions in developing countries are expensive and
difficult to perform, and subject to biases that are difficult to avoid. Models simulating existing
field trials can be used to draw inferences regarding what the trial might have measured under
different conditions. If biases present during a field trial are well understood, the biases
themselves can be simulated within the model, allowing inference of what the trial might have
measured in the absence of bias. Although it is impossible to be sure that a model perfectly
represents what happened, they can nonetheless be useful for generalizing additional knowledge
from field trials.

It is often unclear how to interpret results from a single field trial of a public health
intervention, and modeling field trials requires detailed information about the conduct of the trial
and the study site. Human communities are extremely diverse, and the health impact from an
intervention in one community might differ from the health impact of the identical intervention
in a different community. However, detailed characteristics of study communities are seldom
published, though there are exceptions (Mata, 1978). Table 6.1 lists information that should be

published (likely in supplemental material) about any community that participates in a field trial.
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Although it may not always be possible to gather detailed information about each of these

aspects, qualitative or semi-quantitative assessments of many of them could be quickly obtained

from focus group discussions with several community members. Establishment of multi-year

research relationships between study communities and diverse teams of researchers (e.g.,

epidemiologists, anthropologists, microbiologists, and others) would facilitate collection,

analysis, and publication of this information.

Table 6.1. Important community characteristics for measurement in field trials

Sanitation Water Micro- Social & . Epidemi- | Climate &
& hygiene | S°"'¢® & biologyf | communit Nutritional olo eograph
yg treatment 8y y 8y geography
Open Water Untreated | Community Stuntin Diarrheal Temper-
defecation | source(s) watert cohesion 8 incidencet aturet
Type and Distance to Treated Child care . Dlgrrhgal -
usage of . Wastingt | longitudinal | Humidity+
: water source watert & schooling
latrines* prevalencet
Hanfi- Drlnklng of Human Household Pattern of Diarrheal |Precipitation
washing boiled fecest size breast- mortalityT | frequencyt
practices* water* feeding y q y
Domestic | Other HWT |  Animal Cultural Stanle foods All-cause | Precipitation
animals methods* fecest practices P mortalityt | amountf
Anal Water Government Weaning | Diarrhea in Solar
. consump- FoodTt or NGO o
cleansing . foods adultsT irradiationt
tiont programs*
Attitudes . .
toward child| _"Yater Handst | Fopulation | Dietary | pyq apg | Roads &
feces usaget density fiber rivers
Socio- . Locally
. Protein .
economic important | Urban/rural
source(s) .
status diseases

* Should include repeated measurements of compliance over at least 1 year.
T Should be measured repeatedly over at least 1 year.
T Ideally, pathogens should be directly quantified, though this is difficult.
HWT: household water treatment. NGO: non-governmental organization. HIV: human
immunodeficiency virus.
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6.2.2. Compliance with interventions that prevent diarrheal infections

HWT methods are typically assessed based on their antimicrobial efficacy, assuming
perfect compliance. However, perfect compliance is unattainable. HWT methods would be more
holistically assessed, and public health would be better protected, if HWT guidelines were based
on compliance as well as LRVs. Results from these models also indicate that the currently
recommended LRVs for HWT (particularly 6 for bacteria, 4 for viruses, and 3 for protozoa
(USEPA, 1987), which are sought after in order to advertise that a device 'meets US guidelines')
are higher than necessary, since LRV's of 5 prevented little or no additional diarrhea in most
scenarios studied, compared with LRV of 3. Nonetheless, LRVs above 3 might provide
additional benefit in certain situations, such as when transmission is primarily waterborne,
compliance is high, and large spikes of drinking water contamination are known to occur.

The pattern of compliance within communities is also important. The QMRA and EITS
models agree that, for a given value of compliance at the community level, more diarrhea is
prevented if more people within the community comply perfectly. For example, it is better for
80% of the population to comply perfectly and 20% to not comply at all, than if the entire
population treated 80% of their daily water intake.

Despite its importance, compliance is difficult to measure. At a minimum, the female head-
of-household can be asked if they comply; however, this will probably overestimate compliance
because some noncompliers will claim they comply out of politeness or a desire to give the right'
answer. Less biased methods include structured observation (which can still give biased results
due to Hawthorne effects) or directly measuring drinking water to determine if it has been treated
(this is relatively easy for HWT chlorination methods), Electronic devices have also been
attached to HWT devices to record usage data. However, it is not sufficient to know whether

households are using a HWT method; it is also important to know how much untreated water
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people drink. Even small amounts of untreated water can greatly increase the risk of diarrhea, but
carefully quantifying intake of untreated water would require following people throughout their
community to observe when, where, and how much water they drank. However, it might be
possible to roughly estimate a community's untreated water intake with focus group discussions
about water consumption behavior, perhaps combined with a quantitative estimate of total water
intake (e.g., Akpata 2004).

Every field trial should measure compliance as carefully as possible, since compliance

greatly affects the measured effectiveness of interventions.
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7. APPENDIX A: DISCUSSION OF PARAMETER VALUES USED IN THE MODELS

The models described in this dissertation use a variety of parameter values, most of which
were obtained from peer-reviewed scientific publications. Many of the same parameter values
are used in all three models. Only children aged less than five years were considered in the two
QMRA models described in chapters 3 and 4; both children and 'adults' (defined as people aged 5
years or older) were considered in the environmental infection transmission system (EITS)
model described in chapter 5.

Wherever possible, parameter values were chosen to reflect conditions in developing
countries with warm climates. However, some parameter values only appear to have been
measured in industrialized countries.

Parameter values are discussed roughly in order of progression from exposure to infection
to development of disease to shedding of pathogens.

7.1. Water ingestion rate

The daily water ingestion rate for young children was obtained from a study (Akpata,
2004) which provided bottled water to mothers of 50 rural Nigerian children aged one to three
years, and measured the amount remaining in the bottles at the end of the day. This study
successfully cross-validated itself by obtaining similar estimates when asking mothers to
estimate water intake based on common household measures. Relative humidity during the study
was approximately 87% and mean maximum ambient temperature was approximately 31°C.

For adults, a study of Kenyan distance runners reported a mean daily water intake of 2.3
L/day (Fudge et al., 2008). This value also agrees with U.S. Army planning parameters of 2.3
L/day for the sum of urine and sweat losses during physical work in hot climates (USEPA, 2011),
as well as the water intake of 2.0 L among children aged 7 to 9 years in the Nigerian study

described above (Akpata, 2004).
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The ingestion rates for drinking water described above are much higher than other standard
values measured in industrialized countries, e.g., 317 mL/day for two year olds and 1043 mL/day
for people over 20 years of age (USEPA, 2011). However, people in industrialized countries are
more likely to drink bottled beverages, reducing their exposure to possibly contaminated
drinking water; they are also more likely to reside in cooler (possibly air-conditioned)
environments, which reduces their demand for fluids.

7.2. Hand-mouth contacts per day

Young children mouth hands and objects more frequently than older children or adults,
which indicates that they should have more exposure to pathogens in the environment. Children
aged 0 to 5 years contact their mouths with their hands or an object about 15.8 times per hour,
while children aged 6-10 years have about 8.1 such contacts per hour (USEPA, 2011). Assuming
that this behavior in 6-10 year olds is similar to adults, and further assuming that young children
are awake 12 hours per day while adults are awake 16 hours per day, young children have 330
daily contacts with their mouth while adults have 130. The ratio of these (2.54) was used to
weight environmental exposure to pathogens in the EITS model more heavily for children.

7.3. Log reduction values (LRVs) attributable to interventions

LRVs are particularly relevant to HWT interventions, but handwashing can also be
considered to apply LRVs to pathogens adhering to hands. Such LRVs, as well as USEPA and
WHO recommendations for antimicrobial effectiveness of HWT devices, are summarized in
Tables 2.1 and 2.2, page 64.

7.3.1. LRVs attributable to sanitation

Although sanitation clearly removes pathogens from the environment, it is not

straightforward to assign a simple measure of antimicrobial efficacy to it. The effectiveness of
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sanitation depends on the manner in which it is constructed and located; pathogens may be
carried out of latrines by groundwater or runoff, subsequently contaminating water wells or
surface water sources. Removal of feces from latrines for use as fertilizer is another possible way
for people to be exposed. Nonetheless, to simulate sanitation in the EITS model, it was necessary
to assign some level of antimicrobial efficacy to it. Since anal cleansing materials are often
disposed of in a wastebasket or on the ground rather than in the toilet in developing countries, it
could be considered that a well-constructed and well-situated latrine would remove all feces
from the community, except for those involved in anal cleansing. The amount of feces involved
in anal cleansing was determined as follows: a daily average of 4.4 mg of fecal nitrogen has been
measured on toilet paper (Calloway et al., 1971); feces are approximately 1.9% nitrogen (Rivero-
Marcotegui et al., 1998); thus approximately 0.0044 / 0.019 = 0.23 g of feces would remain on
anal cleansing materials from a single defecation event, which occurs approximately once per
person per day (Weaver, 1988). This figure is roughly corroborated by a report of an average of
0.1 g of feces per set of underwear in university students (Gerba, 2001). Considering that an
adult on a high-fiber diet excretes approximately 225 g of feces daily (Davies et al., 1986),
approximately one thousandth (0.23/225) of daily fecal output would not enter the latrine; this
corresponds to an LRV of 3.

7.3.2. LRVs attributable to intervention and placebo filters in the Lifestraw RCT

The first QMRA model (chapter 3) used log;( reduction values (LRVs) for the LifeStraw
Family Filter (LFF) from a laboratory study of the device (T. Clasen, Naranjo, et al., 2009). In
contrast to the LRV of 6.9 for E. coli reported in the laboratory study, the mean LRV from
functioning LFFs for thermotolerant coliforms (TTC) reported by the Lifestraw RCT was only
2.98; removal of other organisms was not determined during the RCT (Boisson et al., 2010).

However, the mean LRV of 2.98 for TTC was determined by assuming a count of 1 CFU per 100
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mL where TTC were not detected in the filtered water (64% of samples ); the median LRV was
therefore technically > 3.1, and the maximum LRV measurable in any sample taken during the
the RCT was 4.5. Therefore, the average LRV for TTC in the RCT was greater than the value of
2.98 that was reported; it is impossible to know how much greater.

In addition, given the size exclusion treatment mechanism by the ultrafilter membrane in
the LFF (20 nm pore size), it seems unlikely that the treatment performance in the field was
much lower than what was observed in the laboratory. Although TTC might have passed through
some devices due to non-visible leaks in the gaskets or defects in the membrane material, the
presence of TTC in outlet samples was not correlated with specific devices, nor were there trends
in time over the one-year field trial. In addition, intervention and placebo devices were
monitored and repaired as necessary by the study team (Boisson et al., 2010). Thus, a more likely
explanation for the lower LRVs measured in some intervention LFFs is that contamination of the
outlet tube with TTC occurred. Based on this reasoning as well as the detection limit issues
described above, it was determined that the most reasonable LRVs for the intervention LFF
against the three pathogen types were the values determined in the laboratory study (T. Clasen,
Naranjo, et al., 2009).

For the placebo device, the Lifestraw RCT reported a mean LRV of 1.05 (i.e., 91%
removed) for thermotolerant coliforms (TTC) (Boisson et al., 2010). Further analysis of the data
revealed that the LRV varied greatly between -1 (indicating a tenfold higher concentration in
filtered water) and 3 (99.9% removed). There was no evidence that removal by the placebo
increased significantly over time, or was restricted to particular defective devices. It is likely that
some of the observed variability in removal was due to the inherent variability in water quality
and measurement associated with indicator organisms in water sources (K. Levy, A. E. Hubbard,

K. L. Nelson, et al., 2009). Based on the observed performance and the design, mechanisms of
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removal may have included: (1) straining by the prefilter of the LFF, especially if TTC were
attached to larger particles; and (2) adhesion to the biofilm that likely developed on surfaces, in
particular the rubber tubing that replaced the filter membrane cartridge. These mechanisms might
not have occurred during laboratory testing because of the short testing period (3 weeks) and
simpler challenge water quality (no removal of the three test organisms by the placebo device
was measured in the laboratory). Since the mechanism of this reduction is unclear, it is difficult
to predict removal of viruses and protozoan cysts by the placebo device in the field, but it seems
likely that if some bacteria were removed, some viruses and protozoa were also removed. Thus,
the simplest assumption was chosen: application of the same LRV of 1.05 to all three marker
pathogens.
7.4. Dose response functions

Dose response functions are critical for translating estimated dose into a probability of
infection. Such functions can be obtained from studies in which volunteers are fed widely
varying doses of pathogens, and monitored for development of the response (e.g., infection or
disease). These studies have been conducted on healthy adults because it would be unethical to
conduct such studies on children. It is likely that dose response relationships in developing-
country children differ in unknown ways; ill or malnourished children could have decreased
resistance to infection, or they could have increased immunity due to more frequent exposure.
The use of infection as the response, combined with morbidity ratios from developing countries
to determine disease, constitutes a crude means of adjustment for this uncertainty. The dose
response functions used in this model are graphed in Figure 3.3 (page 99, semilog plot) and
Figure 4.6 (page 138, log-log plot), and the equations are given on page 98. The same dose

response functions and parameters were used in all three models.
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7.4.1. Dose response for E. coli infection

Although there are many dose response models describing E. coli disease (Haas et al.,
1999; P F M Teunis et al., 1996), few data are available regarding dose response of E. coli
infection. In published E. coli feeding studies, data regarding E. coli dose and infection are
concentrated in the top half of the dose response curve (i.e., > 50% of the participants become
infected), meaning that the response at low dose levels is very uncertain (Anon, 2012; PF M
Teunis et al., 1996). Only one feeding study (H L DuPont et al., 1971) appears to exist that uses
infection as the response and also includes data in the lower half of the dose response curve; it
had 3 dose levels and 19 participants, who were fed enteroinvasive E. coli (EIEC). The data were
used to fit a beta-Poisson dose response function in R version 2.12, using maximum likelihood
methods (Anon, 2012). Although dose response models of infection are available for
enterohemorrhagic E. coli and Shigella species., they are not appropriate for these models
because they are much more infectious than diarrheagenic E. coli (J P Nataro & J B Kaper, 1998;
Anon, 2012).

7.4.2. Dose response for rotavirus and Giardia

We used previously published analyses to parameterize the dose response functions (J B
Rose et al., 1991; Haas et al., 1993). The feeding data for these fits have also been published
(Rendtorff, 1954; Ward et al., 1986).
7.5. Incubation periods

Incubation periods were only used in the EITS model (chapter 5), not the two QMRA
models (chapters 3 and 4). The incubation period (time from exposure to development of
disease) was assumed to be the same as the prepatent period (time from exposure to detection of
the pathogen in the host, i.e., shedding of the pathogen), although this is not always the case;

Giardia disease tends to precede excretion of cysts by roughly one week (A. M. Jokipii & L.
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Jokipii, 1977).

The median incubation period across nine ETEC outbreaks in the USA was 1.75 days
(Dalton et al., 1999). The mean incubation period for rotavirus disease was approximately 3.2
days in 5 adults who were voluntarily exposed (Kapikian et al., 1983). For Giardia infection, the
prepatent period was used; a study where Giardia cysts were fed to imprisoned adult men gave a
mean of 13.5 days (Rendtorff, 1954), while a study of Finnish giardiasis patients who had
recently visited an area of Russia with endemic giardiasis reported a median prepatent period of
14 days (A. M. Jokipii & L. Jokipii, 1977).

7.6. Morbidity ratios

The morbidity ratio for a pathogen is the number of symptomatic infections in a
community divided by the total number of infections by that pathogen. They can be obtained by
systematically examining stools from a population of children, regardless of their diarrhea status.
Asymptomatic infection with diarrheal pathogens is common, particularly in developing
countries. Morbidity ratios for young children were used in all three models; morbidity ratios for
adults were only used in the EITS model.

7.6.1. Morbidity ratios in voung children

The morbidity ratio for E. coli (0.21) was taken from a study (Vergara et al., 1996) of
children under 5 years of age in a subtropical, rural region of Argentina, in which ETEC and
EPEC were measured in feces quarterly over two years.

The morbidity ratio for rotavirus (0.36) was provided by a cohort study (Fischer et al.,
2002) from birth to age two years in periurban children in Guinea-Bissau, where stool specimens
were collected weekly and 116 rotavirus infections were identified in 94 children.

The morbidity ratio for Giardia (0.59) was obtained from 210 children aged 1 month to 9

years in Peruvian periurban districts with poor sanitation; each child contributed one stool
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sample over the course of a year (Peréz Cordon et al., 2008). Another study (M S Prado et al.,
2005) suggests a much lower morbidity ratio (~0.03) for Giardia in Brazilian children aged 6-45
months, but was not used for these reasons: 1) stool samples were collected repeatedly for each
child over four months, so multiple samples may have been taken during the same infection
episode; 2) information about individual episodes of diarrhea was not provided; 3) its low
morbidity ratio is inconsistent with higher morbidities for Cryptosporidium (Kirkpatrick et al.,
2008; Bushen et al., 2007; Peréz Cordon et al., 2008), which Giardia also represents by proxy in
these models.

7.6.2. Morbidity ratios in adults

Suitable morbidity ratios for diarrheagenic E. coli infection in adults appear to be
unavailable. Although two studies of diarrheagenic E. coli infection in adult Kenyan food
handlers have been published (Oundo et al., 2008; Onyango et al., 2009), they considered
diarrhea only in terms of loose stools, without regard for stool frequency. Since three or more
stools per day is commonly used as a criterion for diarrhea (USAID et al., 2005), these studies
probably overestimated the morbidity ratio by counting 1-2 loose stools per day as diarrhea (they
reported 0.34 and 0.62, respectively). Therefore, the morbidity ratio for E. coli in children
described above (Vergara et al., 1996) was also used for adults.

Morbidity ratios for rotavirus infections in adults are also difficult to find, but they should
be substantially less than morbidity ratios in children due to acquired immunity. In developing
countries, frequent rotavirus exposure throughout life probably contributes to maintenance of
immunity in adults (Bishop, 1996). Morbidity ratios of 5/16 among adults and 6/28 among
children were measured in a prospective study of rotavirus infection in middle-class families
served by a particular pediatric practice in the USA (Rodriguez et al., 1987); although the

morbidity ratio among children in Guinea-Bissau (Fischer et al., 2002).of 0.36 is similar to the
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above ratio of 5/16 in adults, it is rather higher than the morbidity ratio among children in that
pediatric practice. The morbidity ratios from Rodriguez et al. (1987) were not used because they
did not appear representative of rotavirus disease in developing countries, where children are
more likely to acquire serious rotavirus disease and adults may have stronger immunity due to
more frequent exposure. In the absence of better information, a value of 4/18 was used in the
EITS model for the rotavirus morbidity ratio in adults, based a study of 18 adult volunteers
ingesting rotavirus from 0.2g of stool of an ill child, four of whom became ill (Kapikian et al.,
1983). However, only twelve volunteers showed a serologic response, and only five volunteers
shed the virus, four of whom had diarrhea (Kapikian et al., 1983). The volunteers were chosen
partly based on their low antibody titers against rotavirus.

The morbidity ratio for Giardia was obtained from a study of Pakistani men and their
children aged two to twelve years, who lived in an area where untreated wastewater was used for
agricultural irrigation. Although 67.2% of the study population was infected, only 2.8% of the
infected people reported diarrhea during the week before a stool sample was collected (Ensink et
al., 2006), similar to the Brazilian study of young children described above (M S Prado et al.,
2005). Although the number of study participants who were children aged under five years was
not reported, the population is likely to be dominated by persons aged five years or older.

7.7. Durations of illness and infection

Determination of the duration of infection in underdeveloped settings is difficult, since
immunity is incomplete for most diarrheal pathogens, and reinfection is common. What appears
to be a long or intermittent period of infection (or illness) may in fact be multiple reinfections.
Also, when childhood diarrheal disease is studied in developing countries, it is usually done in a
hospital or clinic setting; measurements of the duration of infection or disease are biased upward

in these situations since more severely ill children are more likely to seek care. Also, the duration
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of infection as measured by detection of a pathogen in stool does not necessarily coincide with
the duration of illness. Since information on asymptomatic infection is difficult to obtain, the
duration of illness was assumed to be the same as the duration of infectiousness. The same
durations of illness and infectiousness were used for adults and children.

7.7.1. Duration of diarrheagenic E. coli infection and illness

The duration of E. coli diarrhea (mean of 3.0 days) was obtained from a study (Estrada-
Garcia et al., 2009) of Mexican children aged less than two years, who were monitored
prospectively for the development of infection or disease from diarrheagenic E. coli. A gamma
distribution was fit to these data for use in the three models. A feeding study of ETEC and EPEC
in healthy United States adults found a similar mean duration of illness of 3.4 days (R E Black et
al., 1982). However, a study of 10 ETEC outbreaks among adults in the USA reported median
durations of illness from 4 to 6 days (Dalton et al., 1999).

7.7.2. Duration of rotavirus infection and illness

A mean rotavirus diarrhea duration of approximately 2.5 days was reported by a study
(Kapikian et al., 1983) of four experimentally infected adult volunteers, with durations of 1, 2, 3,
and 4 days. Accordingly, a uniform distribution from 1 to 4 was used for viral infection duration
in all three models.

7.7.3. Duration of Giardia infection and illness

An outbreak investigation of giardiasis from a contaminated water supply system in
Massachusetts yielded a mean duration of Giardia disease of 11.3 days (Kent et al., 1988); a
gamma distribution was fit to these data, and used in all three models. Although a higher mean
duration of 18.3 days was reported in a feeding study of healthy imprisoned men (Rendtorff,
1954), the value from the outbreak was used in the models because it was from a more diverse

population. Cryptosporidium diarrhea in developing countries can be similarly long-lasting;
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mean durations of diarrhea of 21 days for C. hominis and 13 days for C. parvum were reported in
a cohort study of children in a Brazilian shantytown during their first 5 years of life (Bushen et
al., 2007).

7.8. Duration of immunity

Full treatment of immunity to diarrheal infections is extremely complicated, and it is
beyond the scope of this dissertation. For E. coli, Campylobacter, and Giardia, immunity
protects against disease, but does not necessarily prevent reinfection (R H Gilman et al., 1988;
Cravioto et al., 1990; Valentiner-Branth et al., 2003; A. H. Havelaar et al., 2009). For rotavirus,
immunity is long-lasting, but is strain-specific; many differing strains exist, and adults can still
develop rotaviral infection and disease (Wenman et al., 1979; Kapikian et al., 1983; Ward et al.,
1986). Further considering that each pathogen type also represents other similar pathogens (e.g.,
Campylobacter for bacteria, norovirus for viruses, and Cryptosporidium for protozoa), repeated
infections therefore occur for all three pathogen types. Therefore, some information regarding
immunity is already included in these models in the form of the morbidity ratios discussed above
(page 220).

Infection with diarrheagenic E. coli, rotavirus, or Giardia tends to persist for several days,
as long as a week, after symptoms resolve (R E Black et al., 1982; Rendtorff, 1954; Kapikian et
al., 1983). Therefore the QMRA models assumed that immunity from each pathogen lasted 7
days after infection resolved. However, this assumption was reconsidered in the course of
constructing the EITS model, in which each pathogen type had a period of immunity lasting one
day, principally to separate episodes of disease.

7.9. Incomplete recall of diarrheal disease
The probability of remembering and reporting an episode of diarrheal illness is lower if the

illness had resolved longer ago. Pakistani mothers were asked to recall diarrhea in their children
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aged < 5 years (Zafar et al., 2010); the proportion who were reported ill was high for the
previous two days, but dropped sharply for the third day. The amount of diarrhea reported for the
third through the sixth day was similar. Incomplete recall was only considered in the first QMRA
model (chapter 3); the other models measured diarrheal incidence as if it was reported perfectly.
7.10. Fecal excretion of pathogens

7.10.1. Concentrations of pathogens in feces

The numbers of pathogens per gram of feces in infected people have seldom been
measured. Measurements of EIEC and ETEC in six adult male volunteers with dysentery or
diarrhea yielded estimates from 108 to 109 CFU/g (H L DuPont et al., 1971).

The available studies of Giardia cyst concentrations in stool are somewhat problematic.
Although the EITS model uses a mean measurement (5.7x105 cysts/g) from 15 Colombian
children aged three to seven years (Danciger & M. Lopez, 1975), these children were divided
into three groups of five children each: high excretors, low excretors, and mixed excretors. It was
unclear which type predominated, or how the children were chosen for the study, although cyst
concentrations were similar in formed and diarrheic stools (Danciger & M. Lopez, 1975). A
study that quantitated Giardia cysts in the feces of seven ill soldiers (Porter, 1916) presented
detailed time series of cyst concentrations; however, all of these soldiers were ill for several
months, had been ill for at least 1.5 months before examination of their feces, had received
differing chemotherapies, and were probably more severely affected than their peers. Cyst

concentrations varied widely from day to day, ranging from 0 to 2x107 cysts/g.

Although rotavirus particles can reach extremely high concentrations (~1011/g) in stool

when measured by electron microscopy, only a tiny fraction appears to be viable; an average of

2x106 FFU/g has been reported from 5 fecal specimens from rotavirus diarrhea patients (Ward et
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al., 1984).

7.10.2. Amount of feces excreted

To determine the amount of pathogens excreted given a concentration of pathogens in
feces, the volume of feces must also be known. The EITS model used fecal output measurements
from individuals consuming high-fiber diets: Nigerian children aged 6-60 months defecated 109
g on average (SD 54) (Akinbami et al., 1995), while adult British vegans defecated 225g on
average (SD 91) (Davies et al., 1986). Although people living in developing countries might be
expected to consume more fiber than people in industrialized countries, this is not necessarily the
case; a dietary survey of urban adult Nigerian hospital patients and medical students indicated
similarly low daily dietary fiber intake (~8g) and daily stool mass (~140g) as people in
industrialized countries (Ogunbiyi, 1978).

Although the effect of fiber intake on pathogen concentrations in feces is unclear,
gastrointestinal pathogens are associated with the intestinal wall, and therefore the amount of
feces shed might be more related to the internal surface area of the gut that has been colonized,
rather than the mass of feces passing through the gut. Diets higher in fiber yield larger and softer
stools, and promote healthy microbial communities in the gut, leading to improved nutrient
absorption; fiber may also reduce risk of diarrheal disease in some circumstances (Brownawell et
al., 2012). Therefore communities where high-fiber diets are common might experience less
diarrhea and also excrete fewer pathogens into their environment.

The number of daily defecation events would be expected to affect the amount of
pathogens present on hands and in the household environment, because each defecation event
represents an episode of hand contamination with feces. In industrialized countries, healthy
adults and young children generally have between 1 and 2 bowel movements per day (Weaver,

1988); the Nigerian medical students mentioned above had a mean of 0.89 bowel movements per
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day (Ogunbiyi, 1978). Two studies of young children hospitalized for acute diarrhea in Peru and
Bangladesh indicated similar mean daily fecal outputs of 365g and 310g (Lembcke et al., 1989;
S. K. Roy et al., 1997), and a study of Tunisian adults with acute diarrhea reported mean daily
fecal output of 499g (Hamza et al., 1999). Although the Peruvian study reported 9.5 (SD 5.0)
stools during the 24 hours before admission, and the Tunisian study reported 6.3 (SD 2.5) stools
the day of admission, people seeking care are likely to have more severe diarrhea. As a
simplifying assumption, the EITS model used a value of 3 stools/day for all persons with
diarrhea; when multiplied by the fecal output in persons without diarrhea, it roughly matches the
fecal output described in the Peruvian, Bangladeshi, and Tunisian studies above.
7.11. Inactivation, removal, or attenuation of pathogens in the environment

Inactivation of pathogens is highly variable, depending on the type of pathogen,
temperature, humidity, and the microenvironment where the pathogen resides (e.g., water, skin,
feces, soil, etc.). Furthermore, some pathogenic bacteria may multiply in contaminated food. An
exponential decay rate of 0.6 per day was initially considered as a basis for all pathogens in all
EITS model compartments; it was based on daily rates of: 0.64 for E. coli in unfiltered river
water that was bottled and stored at 15°C (Flint, 1987); 0.58 for rotavirus in water from a creek
that received discharges of domestic sewage, which was then bottled and stored at 20°C
(Pancorbo et al., 1987); and 0.55 for Giardia fitted to data from inactivation studies at 15-20°C
in distilled water, tap water, and in situ river water (Wickramanayake et al., 1985; deRegnier et
al., 1989). However, pathogens may be removed from a system by many means beyond simple
decay, such as being transported in water or soil particles, ingestion by animals, sedimentation in
water, sequestration in underwater sediments or underground, etc. Furthermore, pathogen decay
rates can vary greatly depending on temperature, solar radiation, humidity, and other factors.

Since the actions of these various attenuation mechanisms are unclear and are likely to vary
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greatly in different communities, the EITS model assigned varying values to three attenuation
calibration parameters without reference to particular values from the literature.
7.12. Pathogen movement from land to surface water

Modeling the movement and inactivation of pathogens within land and surface water is a
large and complicated area of research, and is beyond the scope of this dissertation. The EITS
model used a few simple parameter values to describe pathogen movement from land to water;

0.1% on dry days, 5% on rainy days, with rain occurring once every 14 days on average. In
chapter 5, the calibration parameters CPpyj, CPgsf, and CPep can be considered to include

variability in scenarios due to hydrogeological considerations.
7.13. Demographic parameters

Infection transmission could be affected by demography and community structure, since
children are more susceptible to diarrheal infections than adults, and people share an
environment with other residents of their household. A household size of roughly five people is
common in many developing countries, although it can range from four to eight (Ayad et al.,
1994). Household size across a wide variety of industrialized and developing countries can be
adequately represented by a Poisson distribution truncated at zero (Jennings et al., 1999). In
many sub-Saharan African countries, on average 18% of each household are children aged less
than five years; however, it is lower in other developing regions, e.g., 12-17% among several
Latin American countries (Ayad et al., 1994).
7.14. Summary table of all parameter values

Table 7.1 summarizes parameter values used in all three models described in this
dissertation. The two QMRA models (chapters 3 and 4) used very similar parameter sets. The

EITS model (chapter 5) also used many of the parameters from the QMRA models, as well as
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some additional parameters. Parameters that were varied during the estimation steps of the three
models are not included here (but see chapters 3, 4, and 5, pages 105, 130, and 183). The
variable names used in the model code are given in the table; the QMRA models are designated
'Q', while the EITS model is designated 'E'. Where necessary, the first and second QMRA models
(chapters 3 and 4) are designated 'Q1' and 'Q2'. Some variables were stored in vectors; where

necessary, the element of the vector is denoted in parentheses, e.g., '"VariableName(1)'.
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Table 7.1. Summary table of all parameter values

Variable name(s) Reference

Description of parameter values, and pages where discussed Value
Water ingestion, young children (page 214) 1.178 L/day
Water ingestion, adults (page 214) 2.3 L/day
Size of stored drinking water container in each household 25L
Daily probability of a rainfall event (page 228) 1/14

Proportion of pathogens moving from land to surface water daily (page 228)

Without a rainfall event 0.001
With a rainfall event 0.05

Logio reduction values (LRVs), intervention group, LifeStraw RCT (pages 87 & 216)

Escherichia coli 6.9
Rotavirus 4.7
Giardia 3.6
LRVs, placebo group, LifeStraw RCT, all 3 pathogen types (page 216)
Calibration step 1.05
Estimation step 0
LRV for handwashing, all pathogen types (page 64) 0.46
LRV for sanitation, all pathogen types (page 215) 3

Additional LRVs, particularly for HWT: see Tables 2.1 and 2.2, page 64.

Dose response function parameters (pages 98 & 218)

230

Q: drinkKids
E: wdd(1)

E: Wdd(2)
E: Ws
E: rRain

(Akpata, 2004)

(Fudge et al., 2008)

Kara L. Nelson, personal
communication

E: xRunoff(1)
E: xRunoff(2)

(T. Clasen, Naranjo, et
al., 2009)

Q1: LRsInt(1)
Q1: LRsInt(3)
Q1: LRsInt(2)

Q1: LRsPla
(Boisson et al., 2010)
E: IHand (Luby et al., 2001)
(Calloway et al., 1971;
E: ISan Rivero-Marcotegui et al.,

1998)

(Anon, 2012)



Table 7.1 (cont'd)

Description of parameter values, and pages where discussed Value

Variable name(s)

Reference

E. coli (enteroinvasive); beta-Poisson parameters

Q: alpha(3)
. . a=0.2531 E: alpha(2)
Rotavirus; beta-Poisson parameters Nsg = 6.171 Q: KorN50(3)

E: KorN50(2)

Giardia; exponential k parameter 0.0198 Q: KorN50(2)

Baseline incidence (infections/person-year) with the three pathogen types (page 180)

Escherichia coli 1.17 E: Baselnf(1)

Rotavirus 0.347 E: Baselnf(1)

Giardia 0.212 E: Baselnf(1)
Incubation periods (page 219)

Escherichia coli (ETEC) 2 days E: latent(1)

Rotavirus 3 days E: latent(2)

Giardia 14 days E: latent(3)

Morbidity ratios for children (proportion of infected who are symptomatic; page 220)

- . Q: MorbidityK(1)
Escherichia coli 0.214 E: MRK(1)
Rotavirus 0.397 Q: MorbidityK(3)

E: MRK(2)
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a=0.155 Q&E: alpha(1)
N5 = 2.11x106 Q&E: KorN50(1

) (H L DuPont et al., 1971)

(Ward et al., 1986; Haas
et al., 1993)

(Rendtorff, 1954; J B
Rose et al., 1991)

(Lanata & W. Mendoza,
2002; M. E. Wilson,

2005)

(Dalton et al., 1999)
(Kapikian et al., 1983)

(Rendtorff, 1954; A. M.
Jokipii & L. Jokipii,

1977)

(Vergara et al., 1996)

(Fischer et al., 2002)



Table 7.1 (cont'd)

Description of parameter values, and pages where discussed Value Variable name(s) Reference
. Q: MorbidityK(2) (Peréz Cordon et al.,
Giardia 0.590 E: MRK(3) 2008)
Morbidity ratios for adults (proportion of infected who are symptomatic; page 221)
Escherichia coli 0.214 E: MRa(1) (Vergara et al., 1996)
Rotavirus 0.222 E: MRa(2) (Kapikian et al., 1983)
Giardia 0.03 E: MRa(3) (Ensink et al., 2006)
Distributions of duration of infection and infectiousness (page 222)

I . . shape = 1.775 ) (Estrada-Garcia et al.,
Escherichia coli (gamma distribution, mean 3 days) scale = 1.690 Q&E: durEc.m 2009)
Rotavirus (uniform distribution; mean 2.5 days) Range 1-4 days Q&E: durRo.m (Kapikian et al., 1983)

. . shape = 3.206 ) .
Giardia (gamma distribution, mean 11 days) scale = 3.431 Q&E: durGi.m (Kent et al., 1988)
Period of immunity for all pathogen types (QMRA models; 7 days Q: ImmuneTimes
page 224)
Period of immunity for all pathogen types (EITS model; page 1 day - immune
224)
Chance of remembering diarrhea >2 days in the past (page 224) 0.54 Q1: remembrance (Zafar et al., 2010)
Number of pathogens per gram of feces (page 225)
Escherichia coli 5x108 E: Mpgf(1) (H L DuPont et al., 1971)
Rotavirus 2x106 E: Mpgf(2) (Ward et al., 1984)
Giardia 5.7x105 E: Mpgf(3) ~ (Danciger & M. Lopez,
1975)
Fecal output, children aged < 5 years, high fiber diet (page 226) 109 g/day E: fpp(1) (Akinbami et al., 1995)
Fecal output, people aged five years or more, high fiber diet 225 g/day E: fpp(2) (Davies et al., 1986)

(page 226)
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Table 7.1 (cont'd)

Description of parameter values, and pages where discussed Value Variable name(s) Reference
f;acgs ;gge)ring household environment per defecation event 023 g E: fHands R(iggﬂ)o-vl\\;la;;ceg tilg.il 112t7&11i,
1998)

Defecation events per day, people without diarrhea (page 226) 1 E: rPoopInf

Defecation events per day, people with diarrhea (page 226) 3 E: rPooplll

Number of mouth contacts per day, children (page 215) 330/day (USEPA, 2011)

Number of mouth contacts per day, adults (page 215) 130/day

Ratio of the above mouth contacts per day, children/adults 2.54 E: wHandMouth .

No. children <5 years, LifeStraw RCT intervention group 85 Q1: nKidsInt (Boisson et al., 2010)

No. children <5 years, LifeStraw RCT placebo group 105 Q1: nKidsPla

Demographic and community information (page 228)
Number of households in the simulated community 200 E: nHH

ye;)Frsoportion of the community that was children aged < 5 0.18 E: pKids (Ayad et al., 1994)
Mean persons per household (Poisson distribution) 5 E: mPHH Je(rﬁl};i(;:?ti’l?ggg)
Mean household network degree (connections per household) 5.3 E: meanDeg (Zelner et al., 2012)
Daily probability of a visit, per household connection 2/7 E: rVisit

Shape parameter for all gamma distributions of pathogen type

concentrations (the two QMRA models only) ¢ 1.85 Q: Shapes (Boisson et al., 2010)

Longitudinal prevalence of reported diarrhea for each LifeStraw RCT group
Intervention (LPrraq) 0.0749 Q1: LongPrevs(2)
Placebo (LPprad) 0.0896 Q1: LongPrevs(1)
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Table 7.1 (cont'd)

Description of parameter values, and pages where discussed Value Variable name(s) Reference
Longitudinal prevglence ratio of reported diarrhea (LPRaq) 0.872 Q1: loqureVKids-
measured by the LifeStraw RCT DesiredRatio
Compliance with device use, first QMRA model: chance of using device on a given day
Calibration step 0.65
Estimation step 0, 0.65, or 1.00

Compliance with device use: If using device on a given day, proportion of water treated

Calibration step 2/3or1/3

a The scale parameters for the gamma distributions of pathogen concentrations in the QMRA models were calculated from the mean

concentrations that were obtained during calibration of the model in chapter 3 (Table 3.2, page 96).
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8. APPENDIX B: ADDITIONAL INTERVENTIONS FOR MITIGATING DIARRHEA

Although this dissertation gives particular attention to household water treatment,
sanitation, and handwashing, there are other important interventions that prevent or mitigate
diarrhea. They are briefly reviewed here.
8.1. Nutritional interventions

Diarrhea and malnutrition form a vicious cycle in which diarrhea leads to malnutrition,
which reduces resistance to disease, which leads to more diarrhea (Motarjemi et al., 1993).
Diarrheal illnesses contribute more strongly to malnutrition than other infections, such as
respiratory infections (Motarjemi et al., 1993). Children with diarrhea often refuse food,
contributing to malnutrition, although they may still accept breast milk eagerly (de Zoysa et al.,
1991). Mothers sometimes believe that food should be withheld from children with diarrhea,
which can further aggravate the diarrhea-malnutrition cycle (C. E. Taylor & Greenough, 1989).
In addition, young children with diarrhea commonly refuse food, leading to (or exacerbating)
malnutrition, but it has been shown in several countries that they do not usually lose their
appetite for breastmilk (Huffman & Combest, 1990).
8.1.1. Breastfeeding

Breast milk can provide all necessary nutrients for infants aged 6 months or less; even in
very hot conditions, breast milk can supply all necessary fluid intake (Huffman & Combest,
1990). In addition, malnourished mothers can still produce sufficient good-quality milk to
support exclusive breastfeeding (Huffman & Combest, 1990). Although the World Health
Organization recommends exclusive breastfeeding for the first 6 months of life, and continuing
to breastfeed until age two and a half years or longer, exclusive breastfeeding is uncommon
(about 35% of infants aged 0 to 4 months) (Hill et al., 2004). Breast milk transfers maternal

antibodies from mother to child, providing passive immunity. Although breastfeeding infants can
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still acquire diarrheal infections, they seldom lead to malnutrition while the child is exclusively
breastfeeding (Motarjemi et al., 1993).

Both exclusive and partial breastfeeding are strongly protective against diarrhea,
particularly in infants. In a review (Feachem & Koblinsky, 1984) of this topic, comparing any
breastfeeding against no breastfeeding, the relative risk for diarrhea was 0.33 in 0-3 month olds,
0.42 for 3-6 month olds, and 0.71 for 6-11 month olds. However, protection from diarrhea does
not appear to continue after breastfeeding has stopped (Feachem & Koblinsky, 1984).

Exclusive breastfeeding appears to be effective enough to neutralize the effects of poor
sanitation on diarrheal risk (VanDerslice et al., 1994; Feachem & Koblinsky, 1984). However,
supplementing breastmilk with small amounts of contaminated water can double diarrheal risk,
and after adding additional foods or weaning, the situation is even worse (VanDerslice et al.,
1994). Dose-response relationships have been observed, with additional non-breastmilk feeds
incrementally increasing diarrheal mortality risk, and breastmilk feeds similarly reducing
mortality risk (Huffman & Combest, 1990).

8.1.2. Zinc supplementation

Zinc deficiency has broad effects, particularly on immunity, but its symptoms are not
obvious (Bhutta et al., 1999). Zinc is not stored in the body and frequent intake is therefore
required (Bhutta et al., 1999). Treating diarrhea with 20 mg/day (10 mg/day for <6 month olds)
oral zinc supplementation for 10-14 days can make disease less severe (USAID et al., 2005).

Several trials of zinc supplementation have been reviewed (Bhutta et al., 1999), finding
that it was effective in reducing both the incidence of diarrhea by 18% and prevalence by 25% in
children under 3 years of age. It was even more effective (41% reduction) on pneumonia
incidence.

Cereal flours can be fortified with zinc, which would make sustained zinc supplementation
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attainable without any particular action by the family, provided that common brands of flour are
supplemented. In the absence of a fortified staple food, regular supplementation seems unlikely
to be sustainable. Zinc fortification of wheat flour is mandatory in Indonesia, Jordan, Mexico,
and South Africa; the latter two countries also require zinc fortification of maize flour (Kenneth
H Brown et al., 2010).

8.1.3. Other nutrients

Vitamin A also appears to be beneficial in reducing mortality and severe diarrhea, but may
not impact diarrheal incidence overall (Long et al., 2007). Iron supplementation may actually
exacerbate diarrhea in some cases (Long et al., 2007). There has been relatively little study of
other micronutrients (Long et al., 2007).

8.2. Treatment of diarrheal illness

There are 5 broad rules for home treatment of diarrhea (USAID et al., 2005):

1. Give more fluids than usual, particularly breastmilk and hygienically prepared oral
rehydration solution (ORS; see below)

2. Supplement the child’s diet with zinc for 10-14 days

3. Continue to feed the child, particularly well-cooked, energy-rich, non-sugary foods that
are easy to digest

4. Return to the clinic if the child is dehydrated or fails to improve after 3 days

5. Do not give antibiotics unless there is blood in the stool, signifying dysentery.

8.2.1. Oral rehvydration salts/solution/therapy (ORS)

Use of ORS drastically reduces dehydration, and consequently death, due to diarrhea. The
original WHO-recommended ORS formulation of ORS from the 1960s reduced dehydration and
death, but did not otherwise impact diarrhea severity or duration (Atia & Buchman, 2009). An

improved lower-osmolarity formula began to be promoted in 2002 (Hill et al., 2004). Compared
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with the original formulation, it has been shown to decrease stool volume in at least 5 trials and
to decrease diarrheal duration in at least 2 trials (Atia & Buchman, 2009). It is unclear to what
extent this might reduce secondary transmission of diarrhea.

Zinc supplementation can also be used in conjunction with ORS. Although it does not
greatly decrease disease duration, it decreases stool output in comparison with ORS alone (Bahl
et al., 2002; Bhatnagar et al., 2004).

8.2.2. Access to care

Improved access to medical care is probably most useful for preventing mortality from
severe or complicated diarrhea. However, it could also impact diarrhea through decreasing the
duration of disease via effective treatment. It might also indirectly prevent disease by promoting
other behaviors, such as handwashing or good nutrition.

8.3. Vaccination

Among the diarrheal pathogens, only rotavirus has a highly effective vaccine; it is 85-95%
effective against severe rotavirus gastroenteritis in children (CDC, 2012). However, a cholera
vaccine that is about 50% effective is available, and vaccines are available for other pathogens
that are transmitted by the fecal-oral route, such as hepatitis A virus, poliovirus, and Salmonella
enterica Typhi (which causes typhoid fever) (CDC, 2012; CDC, 2011). Rotavirus vaccine is not
generally available in developing countries, although rotavirus vaccination programs are being
investigated. The rotavirus vaccine is less effective in children in developing countries,
compared with developed countries, but it remains effective enough to have a large public health
impact (Cherian et al., 2012). However, vaccination against enterotoxigenic E. coli (ETEC) is

considered feasible, and vaccine candidates are being researched (R. I. Walker et al., 2007).
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9. APPENDIX C: SOURCE CODE FOR THE MODELS
9.1. Overview of the source code for the models
All models were written in Octave, which is a freely available open source programming
language for Linux, Mac, or Windows (http://www.gnu.org/software/octave/). Octave and
MATLAB have nearly identical syntax, and the code runs on either platform without
modifications (though it runs faster with MATLAB). There is no formal documentation for these

models, aside from this dissertation; however, the code is extensively commented.

The source code for all three models consists of several text files that can be viewed in any
text editor: one main file and several functions/subroutines that it calls. They have the extension
“.m” and are called 'm-files'. To do a test run of any of the models, copy all m-files to a single
directory, start Octave or MATLAB, set the working directory to that directory (if you don't
know how, type 'help cd'), and type the name of the appropriate main file (omitting the '.m"). If
copies of the source code cannot be found online, the source code can be recreated simply by

copying it from this dissertation and pasting it into a text editor.

All three models should run without errors on Octave 3.2 or 3.3, as well as MATLAB 7.11-

7.13. It is very likely that they will also run on later versions of Octave or MATLAB.

All three models are licensed under the GNU General Public License (see also the
copyright notice on page 4), with the exception of the file “erdrey.m” used in the EITS model,
which is from the CONTEST toolbox (A. Taylor & Higham, 2008) and is reproduced with the

permission of the authors (Des Higham, personal communication, 24 August 2012).

9.2. GNU General Public License
The following license applies to all computer code in this dissertation, except otherwise

noted; see 'erdrey.m' in section 9.5 The license has been copied directly, without modification,
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from http://www.gnu.org/licenses/gpl.txt.

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
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authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate” a work means to do anything with it that, without
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permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
Is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means alll
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
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which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for

the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
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When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is

released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to

"keep intact all notices".

¢) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
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A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as

long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
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may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product” is either (1) a "consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
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The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c¢) Prohibiting misrepresentation of the origin of that material, or

requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
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d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that

material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for

any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
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Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
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sale, or importing the Program or any portion of it.
11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
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receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
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14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
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WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF

SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
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9.3. The QMRA model simulating the Lifestraw field trial (chapter 3)

The model consists of several text files containing necessary functions and subroutines; the
core program is "QMRAv13_20110414.m’. Simulation options are set by the choice of several
values at the top of the files 'QMRAv13_20110414.m' and 'GetTrialParams.m'. These options
default to values that generate a single test run of the simulation.

The source code is found below. The filename of each of the source code files is found in

the copyright information near the top of each file. Each file starts on a new page.
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%QMRA for Lifestraw Family RCT in DRC (Boisson 2010), coded by Kyle S. Enger
(engerkyl@msu.edu) with suggestions from Joe Eisenberg & Bryan Mayer.

%It was used to produce the manuscript, Linking quantitative microbial risk assessment
and epidemiological data: Informing safe drinking water trials in developing countries,
by Kyle S. Enger, Kara L. Nelson, Thomas Clasen, Joan B. Rose, and Joseph N. S.
Eisenberg, published in Environmental Science and Technology in 2012.

o
%{

COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (QMRAv13 20110414.m) is part of QMRAv13 20110414.

QMRAv13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAv13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o)
%}

%Requires Octave 3.2 or later and the octave-image package.
%Also works rather well on Matlab, running about 4x faster. Requires the statistics

toolbox, and possibly others.
%To run, start Octave, change the directory to the location of the program files (using

the 'cd' command), and type 'QMRAv13 20110414°'.
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%This code (QMRAv13 20110414.m) is accompanied by several functions/subroutines, which
need to be in the working directory:

% AssignInf.m: Stochastically assigns infections to individuals with fixed
durations

% AssignInfRand.m: Stochastically assigns infections to individuals with random
durations

% AssignInfIllRand.m: Stochastically assigns infections & illnesses to individuals
with random durations

% CalcDiarrhWeeks.m: Determines whether a week with 1+ days of diarrhea is actually
reported as a 'diarrhea week'

% DRbP.m: Beta-Poisson dose response model

% DRchoose.m: Executes the appropriate dose response model and determines
illness

% DRexp.m: Exponential dose response model

% durEc.m: Randomly pick a duration for E. coli infection

% durGi.m: Randomly pick a duration for Giardia infection

% durRo.m: Randomly pick a duration for rotavirus infection

% ExaminelRun.m: Allows inspection of the complete simulated data from a single
run of this code.

% GetTrialParams.m: Generates a series of trial parameters instead of determining
them stochastically.

% OutQMRAmerge.m: Allows conglomeration of output from multiple model

executions (e.g., if parallel processing).

%Kids are defined as those < 5 yrs of age. All others are considered adults.
%s====Initial housekeeping====

clear all;

Octave = size(ver('Octave'),1l); %Indicator of whether the code is running under Octave
(1) or Matlab (0).

if Octave == 0; format compact; format shortg; end;

StartTime = clock; %Recording start time of simulation. Is used to timestamp output
file.

%signore function time stamp('all'); %sHopefully saves time by preventing Octave from
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checking if functions have changed during the run. However, makes debugging difficult
(altered functions aren't updated).

%====Setting simulation options====More simulation options are in GetTrialParams.m====
badPlacebo = 1; %Whether the simulation is run with an imperfect placebo (1) or a
perfect placebo (0).

loops = 1; %No. Monte Carlo iterations of QMRA, if parameters are chosen
stochastically. If 1, & noStochParams != 1, stores all run info.

noStochParams = 1; %If 1, use GetTrialParams.m to iterate over a series of parameter
choices (not choose them stochastically). Resets 'loops’.

testing = 1; %Equals 1 if testing (production of plots of infection prevalence) is
desired. Only works if there are <= 25 runs.

compliancel@0 = 0; %Equals 1 if device is used perfectly, always, by everyone.
dailyVariation = 1; %Equals 1 if pathogen concentrations are allowed to vary by person by
day, instead of taking a single fixed value.

randomDurations = 1; %SEquals 1 if illness durations are randomized instead of taking
a single fixed value. Renders Duration vector mostly moot (still used to choose start
time of surveys).

storeStatus = 1; %If 1, store infection & disease status, to determine 'actual' (i.e.,
reported & unreported) burden of infection.

%s=====Housekeeping based on simulation options====

%scd ~/Dropbox/Octave/Lifestraw; %Selecting working directory. Assumes Linux.

%cd QMRAvV13; %T0D0O: Update whenever a new version of this code is produced.
%1f randomDurations == 1; IllDurations; end %Reading in necessary functions to randomly
choose illness durations.

if noStochParams == 1; GetTrialParams; end %GetTrialParams.m reads in pathogens/L &

background measure to be tried.
if testing == 1 && loops > 5 && noStochParams == 0;

error('Do not use so many loops with testing code enabled, or you will flood the
screen with graphs');

end

%=====Ending housekeeping. Starting parameter values:=====

*Water concentration and disease parameter values

% These 4 vectors have 3 elements corresponding to our 3 pathogens of interest:
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% [ETEC/EPEC, Giardia, rotavirus]

PDiseaseK = [0.107, 0.064 , 0.098]; PDiseaseK = PDiseaseK / sum(PDiseaseK);
%Proportion of kid diarrhea episodes due to various pathogens, adjusted to sum to 1
(assume unknown episoded are distributed just like known episodes)

PathogensLMax = [2e5, 1.35, 0.18]; %Maximum pathogens/L; minimum is zero for
all. 2fold empirically observed levels that led to LP exceeding the 95% CI for the
placebo group, each pathogen taken individually.

pathogensLcv = sqrt(3407044) / 2509.329; %Coeff. of var. calc. from variance & mean
of 'cfbef' (Boisson 2010 water qual. data), high outliers (>= 30000 CFU) removed.
MorbidityK = [0.214 , 0.59 , 0.397]; %Proportion of infected 'kids' (<5y) with
diarrhea.

Duration = [82.1/24, 18.3, 2.5]; Duration = round(Duration); %Duration of diarrhea
(days)

prevDiarrhBaseKidsMax = 0.0972;

LongPrevs = [0.103, 0.0896]; %Vector of raw long. prev. values from Boisson dataset,
kids w. placebo, then kids w. intervention).

longPrevRangeMult = 0.4; %Deprecated; multiplier (between 0 & 1) to determine acceptable
range for longitudinal prevalence & its ratio.

longPrevKidsDesiredRatio = 0.872; %Ratio from study of long. prev. in intervention kids
to placebo kids.

prevDiarrhBaseKids = LongPrevs(2); %Baseline non-waterborne reported prevalence of
disease. Can be no greater than that observed in the RCT.

ImmuneTimes = [7 7 7]; %sLength of immune period for all pathogens.
%Parameters: population & exposure information. Model by household later.
nKidsInt = 85; nKidsPla = 105; %Boisson 2010.

drinkKids = 1.178; %drinkKidsSD = 0.186; %daily water intake, L/d, kids

pUse = mean([0.685, 0.757, 0.483, 0.670]); %Mean of people using the device the
previous day, int. & placebo, at 8 & 14 months.

pTreat = 2/3; %Proportion of water treated, if device is being used.
Try 1, 2/3, & 1/3.
if compliancel@0 == 1; pUse = 1; pTreat = 1; end; %If perfect compliance is desired,

override above 2 lines.
%Parameters: device effectiveness information
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LRsInt = [6.9, 4.7, 3.6]; %Log reductions [bacteria, viruses, protozoa] by the
intervention device, with upper & lower ranges

LRsPla = [1.05, 1.05, 1.05]; %As above, for 'placebo' device

if badPlacebo == 0; LRsPla = [0 O 0]; end; %If a perfect placebo is being modeled,

override above line.
%Parameters: dose response, order as above [ETEC/EPEC, Giardia, rotavirus]

KorN50 = [2111912, 0.01982, 6.171]; %Exponential k parameter or beta-Poisson N50
parameter
alpha = [0.1549, NaN, 0.2531]; %Presence/absence of alpha value determines

beta-Poisson or exponential dose resp.

%Bias parameters
remembrance = 0.54; %Proportion of diarrhea episodes remembered (and reported) if they

ended >2d before being surveyed; assume perfect recall if episode is on day 0, 1, or 2
%Study parameters - relating to how the study was conducted

recallPeriod = 7; %Number of days in the past over which people were asked to remember
diarrheal episodes

interval = 30; %sInterval between beginnings of recall periods

nRecallPeriods = 12; %Number of recall periods (i.e., number of simulated diarrhea
surveys)

daysBurnIn = ceil(max(ImmuneTimes) + max(Duration) + recallPeriod) * 4; %Days required

for prevalence to reach equilibrium (simulation starts with nobody infected). Allows
ample margin for reaching equilibrium.

%s=====Ending parameter values=====

maxTime = daysBurnIn + (nRecallPeriods-1)*interval; %Time over which to run each
simulation.

%Creating output structure for storing results from main QMRA loop

OutQMRA =

struct('StartTime',StartTime, 'Fit',NaN(1, Lloops), 'KILP',NaN(1, Lloops), 'KPLP',NaN(1, Loops), "
LPR',NaN(1, loops), ...
'EcL',NaN(1, loops), 'GiL',NaN(1, loops), 'RoL',NaN(1,loops), 'PrevBase',NaN(1, loops));

%'Fit' is no longer used.
if storeStatus == 1; %0ptionally creating cell array for more detailed output. Not
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needed for calibration step.

DailyStatus = cell(2, loops); %Each cell in the array needs to contain a matrix
(rows are days, columns are variables).

DailyStatus(:) = {NaN(maxTime,22)}; %1lst row for intervention, 2nd row for
placebo.

%Columns are: 1:3 = new inf. Ec,Gi,&Ro0; 4:6 = new cases; 7:14 = num. inf.
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill.

end;
tic %Starts timer
if noStochParams == 1; loops = size(TrialParams); loops = loops(l); end %Resets loops
if a series of trial pathogens/L values is being used.
for i = 1:loops; %s=====Starting main QMRA loop.===== Loops once for each QMRA run. i
indexes each loop.

%s=====Randomly generating parameters for this iteration=====

switch(noStochParams);

case 0;

PathogensLmeans = rand(1l, length(MorbidityK)) .* PathogensLMax; %SUniform
sampling of the mean value for each pathogen.
prevDiarrhBaseKids = rand(1,1)*prevDiarrhBaseKidsMax;%For Matlab.
case 1; %Pulling parameters from previous runs consistent with RCT.
PathogensLmeans = TrialParams(i,1:3);
prevDiarrhBaseKids = TrialParams(i,4);
otherwise
error('noStochParams must be 0 or 1');
end
OutQMRA.EcL(1i)=PathogensLmeans(1l); OutQMRA.GiL(i)=PathogensLmeans(2);
OutQMRA.RoL(1i)=PathogensLmeans(3);

OutQMRA.PrevBase(i) = prevDiarrhBaseKids; %This line & previous store the varying
parameter values.
%=====End random parameter generation - start setup of values/vectors/matrices used

throughout simulation=====
%sComputing daily doses of pathogens ingested in drinking water, using water drunk
per day and log reduction values
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%Computing parameter values for gamma distribution of pathogens in water

Scales = (pathogensLcv * PathogensLmeans).”2 ./ PathogensLmeans;

Shapes = PathogensLmeans ./ Scales;

%Assigning infections randomly based on responses, assuming infections with
different pathogens are independent.

% A person can have only 1 infection per pathogen.

OutPrevs = struct('KidsInt',NaN(1l,nRecallPeriods), 'KidsPla',NaN(1l,nRecallPeriods));

%Creating struct to hold prevalences from surveys.

%Creating person-pathogen matrices; everybody starts infected for a random amount of
time, to reduce periodicity from constant disease duration.

KidsInt = rand(nKidsInt, length(Duration)) * 2*(max(Duration)+max(ImmuneTimes));

KidsPla = rand(nKidsPla, length(Duration)) * 2*(max(Duration)+max(ImmuneTimes));

if storeStatus == 1; %0ptionally, making corresponding matrices to store disease
info.
KidsIntD = ones(size(KidsInt)); %NaN means never infected, 0 means
uninfected, 1 means infected, 2 means diseased.
KidsPlaD = ones(size(KidsPla)); %Note that everyone starts off infected with
everything, just as with KidsInt & KidsPla above.
end
OutputFields = fieldnames(OutPrevs);
if Octave == 1; fflush(stdout); end; %sForces a write to screen.
%=======(Co0de for testing purposes only=======
if testing == 1; %0nly runs when testing code. These vectors needed for charting

infection prevalence over the entire simulation.

KidsIntInfPrev = NaN(nKidsInt,1); %Creating a vector to hold infection
prevalence info, intervention group.

KidsPlaInfPrev = NaN(nKidsPla,1l); %As above, placebo group.

%s========End code for testing purposes========
%Now storing all person-pathogen matrices, but only if exactly 1 loop is requested.
This repeats at the end of each day.
if loops == 1;
PPmatrices(1l).KidsInt = KidsInt; PPmatrices(1).KidsPla = KidsPla;
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PPmatrices(1l).KidsIntD = KidsIntD; PPmatrices(1l).KidsPlaD = KidsPlaD;

%s========Begin daily loop, t indexes the days=========
for t = l:maxTime;
KidsInt = KidsInt - 1; %Note: a value of 0 signifies the first day of
immunity.
KidsPla = KidsPla - 1;
if storeStatus == 1; %0ptionally, tracking recovery from infection/disease.
KidsIntD(find(KidsInt <= 0)) = 0;
KidsPlaD(find(KidsPla <= 0)) = 0;

end
%sComputing doses in untreated water, varying for each child, each day.
Dose.KidsInt = NaN(nKidsInt, length(Duration)); %Matrix of doses per child

(intervention). Columns are pathogens.
Dose.KidsPla = NaN(nKidsPla, length(Duration)); %Matrix of doses per child

(placebo). Columns are pathogens.

RandComp = rand(max(nKidsInt,nKidsPla),2); %Random numbers for determining
compliance (i.e., use of device).
for j = 1l:length(Duration); %sLooping over pathogens to determine
daily doses for ea. person.
if isnan(Shapes(j)) == 1; %If mean pathogen conc. is set to 0O,

pathogen conc. is always 0.

Dose.KidsInt(:,j) = 0;
Dose.KidsPla(:,j) = 0;
else
if dailyVariation == 1;
Dose.KidsInt(:,j) = gamrnd(Shapes(j),Scales(j), [nKidsInt,1]) *
drinkKids; %Initial untreated dose
Dose.KidsPla(:,j) = gamrnd(Shapes(j),Scales(j), [nKidsPla,1l]) *
drinkKids;
else

Dose.KidsInt(:,j) = PathogensLmeans(j) * drinkKids; %Dose
becomes the mean dose if daily variation is turned off.
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Dose.KidsPla(:,j) = PathogensLmeans(j) * drinkKids;
end
end %Next 2 lines: Determining who complies and has a nonzero dose
(because log reduction would fail on zero dose).
Comp.KidsInt = intersect(find(RandComp(1l:nKidsInt,1l) < pUse),
find(Dose.KidsInt(:,j) > 0));
Comp.KidsPla = intersect(find(RandComp(2:nKidsPla,1l) < pUse),
find(Dose.KidsPla(:,j) > 0));
%sNow applying LRs, if using device. Includes adjustment for partial
treatment of water (pTreat).
Dose.KidsInt(Comp.KidsInt,j) = 10.7(loglO(Dose.KidsInt(Comp.KidsInt,j) *
pTreat) - LRsInt(j)) + Dose.KidsInt(Comp.KidsInt,j) * (1 - pTreat);
Dose.KidsPla(Comp.KidsPla,j) = 10.”(loglO(Dose.KidsPla(Comp.KidsPla,j) *
pTreat) - LRsPla(j)) + Dose.KidsPla(Comp.KidsPla,j) * (1 - pTreat);
end
%sComputing responses (diarrheal illness) using custom functions DRexp() and

DRbP() .
Responses.KidsInt(:,1) = DRbP(KorN50(1),alpha(l),Dose.KidsInt(:,1)); %Note:
response matrices correspond to the person-path. matrices.
Responses.KidsInt(:,2) DRexp (KorN50(2) ,Dose.KidsInt(:,2));
Responses.KidsInt(:,3) DRbP(KorN50(3),alpha(3),Dose.KidsInt(:
Responses.KidsPla(:,1) DRbP(KorN50(1),alpha(l),Dose.KidsPla(:
Responses.KidsPla(:,2) DRexp (KorN50(2) ,Dose.KidsPla(:,2));
Responses.KidsPla(:,3) DRbP(KorN50(3),alpha(3),Dose.KidsPla(:,
switch(randomDurations);
case 1
switch(storeStatus);
case 1
%DailyStatus columns: 1:3 = new inf. Ec,Gi,&Ro0; 4:6 = new cases; 7:14 = num. inf.
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 as inf., but ill.
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KidsIntDold KidsIntD;
KidsPlaDold = KidsPlaD;
[KidsInt,KidsIntD] =
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AssignInfIllRand(KidsInt,KidsIntD,Responses.KidsInt, ImmuneTimes,MorbidityK);
[KidsPla,KidsPlaD] =
AssignInfIllRand(KidsPla,KidsPlaD,Responses.KidsPla, ImmuneTimes,MorbidityK);
for s = 1:6; %Store counts of new infections & illnesses.
if s <= 3; %Infections:
DailyStatus{l,i}(t,s) =
length(intersect(find (KidsIntDold(:,s) == 0), find(KidsIntD(:,s) > 0)));
DailyStatus{2,i}(t,s) =
length(intersect(find(KidsPlaDold(:,s) == 0), find(KidsPlaD(:,s) > 0)));
else %I1llnesses:
DailyStatus{l,i}(t,s) =
length(intersect(find (KidsIntDold(:,s-3) == 0), find(KidsIntD(:,s-3) == 2)));
DailyStatus{2,i}(t,s) =

length(intersect(find (KidsPlaDold(:,s-3) == 0), find(KidsPlaD(:,s-3) == 2)));
end
end
otherwise
KidsInt =
AssignInfRand (KidsInt,Responses.KidsInt,ImmuneTimes);
KidsPla =
AssignInfRand(KidsPla,Responses.KidsPla, ImmuneTimes);
end
otherwise
KidsInt = AssignInf(KidsInt,Responses.KidsInt,Duration,ImmuneTimes);

KidsPla AssignInf(KidsPla,Responses.KidsPla,Duration,ImmuneTimes);

end

if t >= daysBurnIn && mod(t-(daysBurnlIn),interval) == 0; %0btaining results
from diarrhea assessment survey.
%Determining reported diarrhea-weeks. CalcDiarrhWeeks() uses the Person-Pathogen
Matrices, morbidity ratios, and recall of diarrhea episodes to determine if a week was
reported as a week with diarrhea.
KidsIntRD = CalcDiarrhWeeks (KidsInt, remembrance, recallPeriod,MorbidityK);

264



%Whether diarrhea was reported by each particular person. Note age (last column) is
removed from the person-pathogen matrix when inputted to the function.
OutPrevs.KidsInt((t-daysBurnIn)/interval+l) =
sum(KidsIntRD)/length(KidsIntRD); %Getting prevalence for each diarrhea survey
KidsPlaRD = CalcDiarrhWeeks (KidsPla, remembrance, recallPeriod,MorbidityK);
%Like above 2 lines, but kid placebo
OutPrevs.KidsPla((t-daysBurnIn)/interval+l) =
sum(KidsPlaRD)/length(KidsPlaRD) ;
fprintf(1,['Day ',num2str(t),'/',num2str(maxTime),' done--']);
if Octave == 1; fflush(stdout); end; %Forces a write to screen.
end
if testing == 1; %s=====Testing code=====
KidsIntInfPrev(t) = sum(max(KidsInt') > 0) / nKidsInt;%If max value over
all pathogens >0, then there is an infection.

KidsPlaInfPrev(t) = sum(max(KidsPla') > 0) / nKidsPla;%Transposing so that
max is for ea. row instead of ea. column.
KidsIntInfEc(t) = sum(KidsInt(:,1) > 0) / nKidsInt;
KidsIntInfGi(t) = sum(KidsInt(:,2) > 0) / nKidsInt;
KidsIntInfRo(t) = sum(KidsInt(:,3) > 0) / nKidsInt;
KidsPlaInfEc(t) = sum(KidsPla(:,1) > 0) / nKidsPla;
KidsPlaInfGi(t) = sum(KidsPla(:,2) > 0) / nKidsPla;
KidsPlaInfRo(t) = sum(KidsPla(:,3) > 0) / nKidsPla;
end %s======End testing code======
if storeStatus == 1;

%Columns are: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf.
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 = as inf., but ill.
for s = 7:22; %All based on O=uninfected, l=asymptomatic,
2=111.
if s == 7; %sTallying completely uninfected people
DailyStatus{l,i}(t,s) = length(find(sum(KidsIntD') == 0));
DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD') == 0));
elseif s == 8; %sInfected with only Ec
DailyStatus{l,i}(t,s) = length(intersect(find(KidsIntD(:,1) >
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0), find(sum([KidsIntD(:,2) KidsIntD(:,3)]') == 0)"'));

DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:

0), find(sum([KidsPlaD(:,2) KidsPlaD(:,3)]') == 0)"'));
elseif s == 9; Infected with only Gi

DailyStatus{l,i}(t,s) = length(intersect(find(KidsIntD(:

0), find(sum([KidsIntD(:,1) KidsIntD(:,3)]') == 0)"'));

DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:

0), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]') == 0)"'));

elseif s == 10; %sInfected with only Ro
DailyStatus{l,i}(t,s) = length(intersect(find(KidsIntD(:
0), find(sum([KidsIntD(:,1) KidsIntD(:,2)]') == 0)"'));
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:
0), find(sum([KidsPlaD(:,1) KidsPlaD(:,2)]') == 0)"'));
elseif s == 11; %Tallying infected with Ec & Gi only

DailyStatus{l,i}(t,s) =
length(intersect(find(prod(KidsIntD(:,1:2)"') ~= 0), find(KidsIntD(:,3) == 0)));
DailyStatus{2,i}(t,s) =
length(intersect(find(prod(KidsPlaD(:,1:2)"') ~= 0), find(KidsPlaD(:,3) == 0)));
elseif s == 12; %Tallying infected with Ec & Ro only
DailyStatus{l,i}(t,s) =

length(intersect(find(prod([KidsIntD(:,1) KidsIntD(:,3)]') ~= 0), find(KidsIntD(:

0)));
DailyStatus{2,i}(t,s) =

length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') ~= 0), find(KidsPlaD(:

0)));
elseif s == 13; %Tallying infected with Gi & Ro only
DailyStatus{l,i}(t,s) =
length(intersect(find(prod(KidsIntD(:,2:3)"') ~= 0), find(KidsIntD(:,1) == 0)));
DailyStatus{2,i}(t,s) =
length(intersect(find(prod(KidsPlaD(:,2:3)"') ~= 0), find(KidsPlaD(:,1) == 0)));
elseif s == 14; %Tallying infected with Ec & Gi & Ro

DailyStatus{l,i}(t,s) = length(find(prod(KidsIntD(:,1:3)"') ~

0));
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DailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)') ~=

elseif s == 15; %Tallying completely non-ill people
DailyStatus{1l,i}(t,s) = length(find(sum(KidsIntD' .72) <= 3
DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD' .7"2) <= 3));
elseif s == 16; %Ill with only Ec
DailyStatus{1l,i}(t,s) = length(intersect(find(KidsIntD(:,1) ==
2), find(sum(KidsIntD(:,2:3)' .72) <= 2)"'));
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,1) ==
2), find(sum(KidsPlaD(:,2:3)' .7™2) <= 2)"'));
elseif s == 17; %IlL with only Gi
DailyStatus{l,i}(t,s) = length(intersect(find(KidsIntD(:,2) ==
2), find(sum([KidsIntD(:,1) KidsIntD(:,3)]' .72) <= 2)"'));
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,2) ==
2), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]"' .7"2) <= 2)"'"));
elseif s == 18; %Ill with only Ro
DallyStatus{l i}(t,s) = length(intersect(find(KidsIntD(:,3) ==
2), find(sum(KidsIntD(:,1:2)"' .7"2) <= 2)"'));
DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,3) ==
2), find(sum(KidsPlaD(:,1:2)"' .72) <= 2)"'));

elseif s == 19; %Tallying ill with Ec & Gi only
DailyStatus{l1l, 1}(t,s) =
length(intersect(find(prod(KidsIntD(:,1:2)") = ), find(KidsIntD(:,3) <= 1)));

DailyStatus{Z 1} t,s) =
length(intersect(find(prod(KidsPlaD(:,1:2)"') == 4), find(KidsPlaD(:,3) <= 1)));
elseif s == 20; %Tallying ill with Ec & Ro only
DailyStatus{l,i}(t,s) =
length(intersect(find(prod([KidsIntD(:,1) KidsIntD(:,3)]') == 4), find(KidsIntD(:,2) <=

1)));
DailyStatus{2,i}(t,s) =
length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') == 4), find(KidsPlaD(:,2) <=

1)));
elseif s == 21; %Tallying ill with Gi & Ro only

267



DailyStatus{l,i}(t,s) =
length(intersect(find(prod(KidsIntD(:,2:3)"') == 4), find(KidsIntD(:,1) <= 1)));
DailyStatus{2,i}(t,s) =
length(intersect(find(prod(KidsPlaD(:,2:3)"') == 4), find(KidsPlaD(:,1) <= 1)));
elseif s == 22; %Tallying ill with Ec & Gi & Ro
DailyStatus{l,i}(t,s) = length(find(prod(KidsIntD(:,1:3)"') ==

DailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)"') ==

end
end
end
%Now storing the person-pathogen matrices at the end of this day, if exactly 1
loop was requested.
if loops == 1;
PPmatrices(t+1) .KidsInt = KidsInt; PPmatrices(t+1).KidsPla = KidsPla;
PPmatrices(t+1).KidsIntD = KidsIntD; PPmatrices(t+1).KidsPlaD = KidsPlaD;
end;
%sizeof(DailyStatus) %Debug measure - too big for memory?

sdisp([' ']) %Adds line feed to separate the progress counters.
%=========End daily loop, begin more testing code======
if testing == 1;
maxTimePla = find(KidsPlaInfPrev == max(KidsPlaInfPrev)); %Getting time points
of max. prevalence of infection (1lst, if tie).
disp(['lst time point where max. prevalence (placebo) is seen is
‘,num2str(maxTimePla(l))]) SPrinting first point of max. prevalence.
figure(i); %Plotting infection prevalence.
subplot(2,1,1);
plot([1l:maxTime],KidsIntInfPrev, '-Kk');
title 'Daily infec. prev. (red=Ec,green=Gi,blue=Ro,black=any), dots = reported
waterborne prev.';
ylabel 'Proportion affected (intervention)';
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xlim([0 625]);
hold on;
plot([l:maxTime],KidsIntInfEc,'-r');
plot([l:maxTime],KidsIntInfGi,'-g');
plot([1l:maxTime] ,KidsIntInfRo,'-b"');
h5 = plot([daysBurnIn:interval:maxTime],OutPrevs.KidsInt, 'cx"');
set(h5, 'linewidth',2);
legend('{\fontsize{1l0} Any infection (daily)}', '{\fontsize{10} E. coli
infection (daily)}"', '{\fontsize{10} Giardia infection (daily)}', '{\fontsize{10} Rotavirus
infection (daily)}','{\fontsize{10} LP {Irwd} (prior week)}');
hold off;
subplot(2,1,2);
plot([1l:maxTime],KidsPlaInfPrev, '-k');
xlim([0 625]);
xlabel 'Time (simulated days)';
ylabel 'Proportion affected (placebo)';
hold on;
plot([l:maxTime],KidsPlaInfEc,'-r');
plot([l:maxTime],KidsPlaInfGi,'-g');
plot([1l:maxTime] ,KidsPlaInfRo,'-b"');
h5 = plot([daysBurnIn:interval:maxTime],OutPrevs.KidsPla, 'cx');
set(h5, 'linewidth',2);
legend('{\fontsize{1l0} Any infection (daily)}', '{\fontsize{10} E. coli
infection (daily)}', '{\fontsize{10} Giardia infection (daily)}', '{\fontsize{10} Rotavirus
infection (daily)}','{\fontsize{10} LP {Prwd} (prior week)}');
hold off;
end %=========End testing code=========
%Adding baseline prevalence. Corrected for doublecounting (some infected people
would have been infected anyway by baseline transmission).
OutPrevs.KidsInt = OutPrevs.KidsInt + prevDiarrhBaseKids * (1 - OutPrevs.KidsInt);
OutPrevs.KidsPla = OutPrevs.KidsPla + prevDiarrhBaseKids * (1 - OutPrevs.KidsPla);
i %SPrinting i as a debug measure
OutQMRA.KILP(i) = mean(OutPrevs.KidsInt); OutQMRA.KPLP(i) = mean(OutPrevs.KidsPla);
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%0utput long. prevs.
OutQMRA.LPR(i) = OutQMRA.KILP(i) / OutQMRA.KPLP(1i);
if storeStatus == 1; %Storing incidences for intervention group.

OutQMRA.IncInfIntEc(i) = sum(DailyStatus{l,i}(maxTime-364:maxTime,1));
%Yearly infection incidence for E. coli.

OutQMRA.IncIllIntEc(i) = sum(DailyStatus{l,i}(maxTime-364:maxTime,4));
%Yearly illness incidence for E. coli.

OutQMRA.IncInfIntGi(i) = sum(DailyStatus{l,i}(maxTime-364:maxTime,2));
%Yearly infection incidence for Giardia.

OutQMRA.IncIllIntGi(i) = sum(DailyStatus{l,i}(maxTime-364:maxTime,5));
%Yearly illness incidence for Giardia.

OutQMRA.IncInfIntRo(i) = sum(DailyStatus{l,i}(maxTime-364:maxTime,3));
%Yearly infection incidence for rotavirus.

OutQMRA.IncIllIntRo(i) = sum(DailyStatus{l,i}(maxTime-364:maxTime,6));
%Yearly illness incidence for rotavirus.

%As above, for placebo group.

OutQMRA.IncInfPlaEc(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,1));
%Yearly infection incidence for E. coli.

OutQMRA.IncIllPlaEc(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,4));
%Yearly illness incidence for E. coli.

OutQMRA.IncInfPlaGi(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,2));
%Yearly infection incidence for Giardia.

OutQMRA.IncIllPlaGi(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,5));
%Yearly illness incidence for Giardia.

OutQMRA.IncInfPlaRo(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,3));
%Yearly infection incidence for rotavirus.

OutQMRA.IncIllPlaRo(i) = sum(DailyStatus{2,i}(maxTime-364:maxTime,6));
%Yearly illness incidence for rotavirus.

%'Actual' longitudinal prevalences (person-days ill or infected, divided by

total person-days observed).
OutQMRA.LPInfIntEc(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,[ 8 11 12
14]1)))/(nKidsInt*365); %Yearly inf. LP, E. coli.
OutQMRA.LPI1lIntEc(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,[16 19 20
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221)))/ (nKidsInt*365); %Yearly ill LP, E. coli.

OutQMRA.LPINnfIntGi(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,[ 9 11 13
14]1)))/(nKidsInt*365); %Yearly inf. LP, Giardia.

OutQMRA.LPI1lIntGi(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,[17 19 21
221)))/ (nKidsInt*365); %Yearly ill LP, Giardia.

OutQMRA.LPInfIntRo(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,[10 12 13
14]1)))/(nKidsInt*365); %Yearly inf. LP, rota.

OutQMRA.LPI1llIntRo(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,[18 20 21
221)))/ (nKidsInt*365); %Yearly ill LP, rota.

OutQMRA.LPINnfIntMix(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,11:14)))/

(nKidsInt*365); %Yearly inf. LP, mixed.

OutQMRA.LPI1lIntMix(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,19:22)))/
(nKidsInt*365); %Yearly ill LP, mixed.

OutQMRA.LPInfIntAny(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,8:14)))/
(nKidsInt*365); %Yearly inf. LP, any.

OutQMRA.LPI1lIntAny(i) = sum(sum(DailyStatus{l,i}(maxTime-364:maxTime,16:22)))/
(nKidsInt*365); %Yearly ill LP, any.

%As above, for placebo group.

OutQMRA.LPInfPlaEc(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[ 8 11 12
14])))/(nKidsPla*365); %Yearly inf. LP, E. coli.

OutQMRA.LPI1lPlaEc(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime, [16 19 20
221)))/ (nKidsP1a*365); %Yearly ill LP, E. coli.

OutQMRA.LPInfPlaGi(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[ 9 11 13
14]1)))/(nKidsPla*365); %Yearly inf. LP, Giardia.

OutQMRA.LPI1lPlaGi(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[17 19 21
221)))/ (nKidsPla*365); %Yearly ill LP, Giardia.

OutQMRA.LPInfPlaRo(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[10 12 13
14]1)))/(nKidsPla*365); %Yearly inf. LP, rota.

OutQMRA.LPI1l1lPlaRo(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,[18 20 21
221)))/ (nKidsP1la*365); %Yearly ill LP, rota.

OutQMRA.LPInfPlaMix (i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,11:14)))/
(nKidsPla*365); %Yearly inf. LP, mixed.

OutQMRA.LPI1lPlaMix (i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,19:22)))/
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(nKidsPla*365); %Yearly ill LP, mixed.
OutQMRA.LPInfPlaAny(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,8:14)))/

(nKidsPla*365); %Yearly inf. LP, any.
OutQMRA.LPI1lPlaAny(i) = sum(sum(DailyStatus{2,i}(maxTime-364:maxTime,16:22)))/
(nKidsPla*365); %Yearly ill LP, any.

%sLongitudinal prevalence ratios.
OutQMRA.LPRINfIntEc(i) = OutQMRA.LPInfIntEc(i) / OutQMRA.LPInfPlaEc(i);
%E. coli, infection.
OutQMRA.LPRI1lIntEc(1)
%E. coli, illness.
OutQMRA.LPRINfIntGi(1i)
%Giardia, infection.
OutQMRA.LPRI1TlINtGi(1)
%Giardia, illness.
OutQMRA.LPRINnfIntRo(1)
%Rota, infection.
OutQMRA.LPRI1lIntRo(1)
%Rota, illness.
OutQMRA.LPRINnfIntAny(1i)
%Any, infection.
OutQMRA.LPRI1TlIntAny(i)
%Any, illness.

OutQMRA.LPI1lIntEc(i) / OutQMRA.LPIllPlaEc(1i);

OutQMRA.LPInfIntGi(i) / OutQMRA.LPInfPlaGi(1i);

OutQMRA.LPILlIntGi(i) / OutQMRA.LPIllPlaGi(i);

OutQMRA.LPInfIntRo(i) / OutQMRA.LPInfPlaRo(1);

OutQMRA.LPI1lIntRo(1) / OutQMRA.LPIllPlaRo(1);

OutQMRA.LPInfIntAny(i) / OutQMRA.LPInfPlaAny(i);

OutQMRA.LPIllIntAny(i) / OutQMRA.LPIllPlaAny(1i);

end
if mod(i,floor(loops/10)) == 0; %Progress meter
disp(['Loop ',num2str(i),' of ',num2str(loops),' complete.'])
toc
end
end %======Ending main QMRA loop=======

disp(['Program finished.'])

toc S%Qutputs runtime.

OutQMRA.EndTime = clock;

eval(['save Results/OutQMRA',datestr(StartTime,30),'.mat, OutQMRA;']) %Saving output
file.
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if noStochParams == 1 && loops <= 25;
parameters were tested.

%Displaying results if a series of input

out = [OutQMRA.KILP; OutQMRA.KPLP; OutQMRA.LPR; OutQMRA.EcL; OutQMRA.GiL;

OutQMRA.RoL; OutQMRA.PrevBase]';

disp('KILP, KPLP, LPR, EcL, GilL, RoL, PrevBase, PrevBase for 0.84 LPR')

out(:,8) = (0.84 * out(:,2) - out(:,1)) / 0.16
an LPR of 0.84.

%Calc. necessary PrevBase to get

min(out)
mean(out)
max (out)
end
if Octave == 1; %Audio alert when done.
system('aplay -q /usr/lib/openoffice/basis-link/share/gallery/sounds/ok.wav');
else
system('start c:\windows\media\tada.wav');
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").

This file (AssignInf.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Just like AssignIll.m, but loops over columns of the person-pathogen matrix instead of

rows, & should be faster.
%Assigns an illness duration to entries of a matrix, where rows are people and columns

are pathogens
%Positive entries mean the person is infected, negative entries (or 0) mean the person

has recovered

%sInputs:

% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen
matrix)

% Responses: Vector of illness responses (probability of illness given dose), 1
entry per pathogen

% ResponsesNon: Vector of illness responses for people not using any device
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pUse: Probability that a person is not using any device

durations: Vector of durations of illnesses, 1 entry per pathogen
ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen

%The output (matrixQut) is matrixIn with new illness durations assigned to some of its
entries.

o o° o°

function PPmatrix = AssignInf(PPmatrix,Responses,Durations,ImmuneTimes);
sizePP = size(PPmatrix);
Randoms = rand(sizePP); %Random #s for determining infection. One number per person
per pathogen.
%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index
values of people who will be newly infected.
Immunities ones(sizePP(1),1) * ImmuneTimes + PPmatrix;
%Durations ones(sizePP) * Durations;
%Immunities = PPmatrix + ImmuneTimes; %sImmunities gives days left in (infection +
immune period), or a neg. # if susceptible.
for 1 = 1:sizePP(2);
Immunities(:,i) = PPmatrix(:,i) + ImmuneTimes(1i);
NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,1i) <
Responses(:,1))); %Gets indices of newly infected.
PPmatrix(NewlyInfected,i) = Durations(i);

end
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (AssignInfIllRand.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Similar to AssignIll.m, but assigns infection durations randomly.
%Assigns an illness duration to entries of a matrix, where rows are people and columns

are pathogens
%Positive entries mean the person is ill, negative entries (or 0) mean the person has

recovered
sInputs:

% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen
matrix)

% Responses: Matrix of illness responses (probability of illness given dose), 1
row per person and 1 column per pathogen

% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen

%The output (matrixOut) is matrixIn with new illness durations assigned to some of its
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entries.
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m.

function [PPmatrix,PPmatrixD] =
AssignInfIllRand(PPmatrix,PPmatrixD,Responses, ImmuneTimes,MorbidityK);
%rand('state',28)
sizePP = size(PPmatrix);
Randoms = rand(sizePP); %Random #s for determining infection. One number per
person per pathogen.
Randoms2 = rand(sizePP); %Random #s for determining disease, as above.

%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index
values of people who will be newly infected.
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to

account for immunity.

Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same
size as PPmatrix) to assign to newly infected.

Durations(:,1) durEc(sizePP(1));

Durations(:,2) durGi(sizePP(1));

Durations(:,3) durRo(sizePP(1));

for i = 1:s1izePP(2); %Loop, once for each pathogen.
NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,1i) <
Responses(:,1))); %Gets indices of newly infected. Note: 0 or less is susc.

PPmatrix(NewlyInfected,i) = Durations(NewlyInfected,i);
PPmatrixD(NewlyInfected,i) = 1; %Flags newly infected.
NewlyIll = intersect(NewlyInfected, find(Randoms2(:,i) < MorbidityK(i)));
PPmatrixD(NewlyIll,i) = 2;
end
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (AssignInfRand.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Similar to AssignIll.m, but assigns infection durations randomly.
%Assigns an infection duration to entries of a matrix, where rows are people and columns

are pathogens
%Positive entries mean the person is infected, negative entries (or 0) mean the person

has recovered

sInputs:
% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen

o

matrix)
% Responses: Matrix of illness responses (probability of infection given dose), 1

(]

row per person and 1 column per pathogen
% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen
%The output (matrixOut) is matrixIn with new illness durations assigned to some of its
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entries.
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m.

function [PPmatrix] = AssignInfRand(PPmatrix,Responses,ImmuneTimes);

%srand('state',28)

sizePP = size(PPmatrix);

Randoms = rand(sizePP); %Random #s for determining infection. One number per person
per pathogen.

Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to
account for immunity.

Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same
size as PPmatrix) to assign to newly infected.

Durations(:,1) durEc(sizePP(1));

Durations(:,2) durGi(sizePP(1));

Durations(:,3) durRo(sizePP(1));

NewlyInfected = intersect(find(Immunities <= 0), find(Randoms < Responses));

%Gets indices of newly infected. Note: 0 or less is susc.

PPmatrix(NewlyInfected) = Durations(NewlyInfected);

end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (CalcDiarrhWeeks.m) is part of QMRAv13 20110414.

QMRAv13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Calculates whether a given week is reported as a week with diarrhea under the reporting

scheme in the DRC Lifestraw RCT (Boisson 2010).
%It considers reduced recall of past diarrheal episodes after 2d ('remembrance') and

possible distinct diarrhea episodes in the previous 7d.

%It operates on a matrix:
% Rows represent people, columns represent pathogens/illnesses, and entries represent

# of days remaining in the illness.
%It outputs a vector with 1 entry per person, 1 if illness is reported during the week, 0

if not.

function vec = CalcDiarrhWeeks(InMatrix, remembrance,timeWindow,Morbidity);
sizeInMatrix = size(InMatrix);
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Randoms = rand(sizeInMatrix(1l),sizeInMatrix(2));
for j = l:sizelnMatrix(2);

InMatrix((find(Randoms(:,j) > Morbidity(j))),j) = -9999;
end

for i = l:sizeInMatrix(1l); %Loop over all people. Only the most recent episode
(largest entry in a row) is used to assign illness.

%Randoms = rand(1,columns(InMatrix)); %Random numbers for determining
morbidity (these 2 lines moved upward for greater speed)

%InMatrix (i, find(Randoms > Morbidity)) = -9999; %SApply morbidity ratio: if
asymptomatic, infection is set to -9999, and therefore not reported. Note that this
modification is not passed out of this function.

if max(InMatrix(i,:)) >= -2;

vec(i) = 1; %If ill during day 0, 1, or 2, assume illness is always

reported, therefore assign illness.
elseif (max(InMatrix(i,:) >= -timeWindow) & rand() < remembrance);

vec(i) = 1; %0therwise, if ill during days 3-7, randomly determine if
episode is remembered. If so, assign illness.
else
vec(i) = (0); %0therwise, no illness is remembered or reported. Assign no
illness.
end
end
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRbP.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Beta-Poisson dose response model, using N50 (default) or beta as a parameter

%sfunction outvar = DRbP(N50orBeta,alpha,invar, reverse='no',WhichParam='N50"') %0rdinarily,
invar is dose & outvar is response.

function outvar = DRbP(N500orBeta,alpha,invar, reverse,WhichParam) %0rdinarily, invar is
dose & outvar is response.

if nargin == 3;
reverse = 'no'; WhichParam = 'N50°';
end
switch(reverse)
case 'no’
switch(WhichParam)

case 'N50'
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outvar = 1-(1+(invar/N50orBeta)*(2”~(1/alpha)-1))."-alpha;
case 'Beta’

outvar = 1-(1+(invar/N50orBeta)).”-alpha;
otherwise

error(['WhichParam must be "N50" or "Beta"'])
end

case 'yes' %If reverse='yes', invar is response & outvar 1is dose.
switch(WhichParam)

case 'N50'
outvar = N50orBeta * ( ((1-invar).”(-1/alpha) -1) /
(27(1/alpha)-1) );
case 'Beta’
outvar = N50orBeta * ((l-invar).”(-1/alpha) -1);
otherwise
error(['WhichParam must be "N50" or "Beta"'])
end
otherwise

error(['reverse must be "no" or "yes"'])
end
end
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[e]
%{

COPYRIGHT INFORMATION

o
%}

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRchoose.m) is part of QMRAv13 20110414.

QMRAv13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

%Returns a vector of response values, determined by dose response models, for several
pathogens.
%Inputs are vectors with 1 entry per pathogen, all in the same order:

o o° o°

see

o® o°

nonalphas: k parameter (exponential) or N50 parameter (beta-Poisson)
alphas: alpha parameter (beta-Poisson); NA if exponential model is desired
Doses: Doses of pathogens received per individual (under default behavior;
'reverse' below)

morbidities: Morbidity ratios: proportion of infected who are ill

reverse: Defaults to 'no', determining proportion ill from dose. If 'yes',

determines dose from proportion ill.
%The output (outvec) is a vector containing the proportions of exposed who will fall ill.

%SIf

reverse=='yes', outvec is a vector of doses calculated from invec, the proportions
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ill.

%This code requires several custom functions/subroutines in the working directory:
% DRexp.m: Exponential dose response model

% DRbP.m: Beta-Poisson dose response model

%function outvec =
%DRchoose(nonalphas,alphas,invec,morbidities=1, reverse='no') %0ctave

function outvec = DRchoose(nonalphas,alphas,Doses,morbidities, reverse)

if nargin == 3;
morbidities = 1; reverse = 'no';
end
if morbidities == 1;
morbidities = ones(length(nonalphas));
end
switch(reverse)
case 'no’
for i=1:1length(alphas);
if (isnan(alphas(i))) %if alpha is NA, run exponential dose
response
if size(Doses) (1) == 1;
outvec(i) = DRexp(nonalphas(i),Doses(i)) * morbidities(i);
else
outvec(i) = DRexp(nonalphas(i),Doses(:,i)) *
morbidities(1i);
end
else %srun beta-Poisson dose response

outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i)) *
morbidities(1i);

end
end
case 'yes'
for i=1:1length(alphas);
if (isnan(alphas(i))) %if alpha is NA, run exponential dose
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response

outvec(i) = DRexp(nonalphas(i),Doses(i) ./
morbidities(i),'yes','N50"') ;
else %srun beta-Poisson dose response
outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i) ./
morbidities(i), 'yes', 'N50"');
end
end
otherwise

error('reverse must be "no" or "yes"')
end
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRexp.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Exponential dose response model
%sfunction outvar = DRexp(k, invar,reverse='no') %0rdinarily, invar is dose & outvar is
response.
function outvar = DRexp(k, invar, reverse) %This works in Matlab.
if nargin < 3;
reverse = 'no';
end
switch(reverse);
case 'no';
outvar = 1l-exp(-k * invar);
case 'yes'; %If reverse='yes', invar is response & outvar is dose.
outvar = log(1l-invar)/-k;
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otherwise
error(['reverse (last parameter) must be "no" or "yes"'])
end
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durEc.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.
%}

%Functions for calculating vectors of illness durations
function output = durEc(n);
output = round(gamrnd(1.775,1.690,[n,1])); %Shape, then scale
output(find(output == 0)) = 0.1; %Sets zero durations to 0.1 day instead.
Will still function as 1 day.
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durGi.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

%}
%Functions for calculating vectors of illness durations
function output = durGi(n); %Based on a fit of gamma dist. to limited info from Kent GP
1988.

output = round(gamrnd(3.206,3.431,[n,1])); %Shape, then scale

output(find(output == 0)) = 0.1; %Sets zero durations to 0.1 day instead.
Will still function as 1 day.

end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durRo.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.
%}

%Functions for calculating vectors of illness durations
function output = durRo(n); %Based on 4 rotavirus-infected volunteers having durations
of 1, 2, 3, and 4 days (Kapikian 1983).

output = ceil(rand([n,1]) * 4);

output(find(output == 0)) = 0.1; %Sets zero durations to 0.1 day instead.
Will still function as 1 day.
end
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (ExaminelRun.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Examining data from a single run of the QMRA LifeStraw model.
%Converting to susceptible (-9), immune (-1), or diseased (9) for each of the 3

pathogens.

%s====Setting options====

startTime = 96; %Time point at which to start looking at the data. Note that 1st
matrix corresponds to time 0.

recode = 1; %If 1, recode matrix entries to susc./inf./immune.

%====Finished with options, starting processing.====

PPMs = PPmatrices; %Making a copy.
switch(recode);

case 1;
disp(['Recoding raw numbers to susc./inf./immune.'])
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for i = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts
(after equilibrium is reached).
PPMs (i) .KidsInt(PPMs(i).KidsInt <= -7) = -9; %7 day immune period; 0 counts as
the 1st immune day, so at -7 they are susc.

PPMs (i) .KidsInt(PPMs(i).KidsInt > 0) = 9; %Susceptible if a positive
integer.
PPMs (1) .KidsInt(abs(PPMs(1i).KidsInt) != 9) = -1;%Immune if neither of the above
applies.
PPMs (i) .KidsInt(PPMs (i) .KidsInt == 9) = 2; %sInfected person-day marked as 2,
so as to more easily distinguish.
end

for 1 = startTime:size(PPmatrices)(2); %Same as above 'for' loop, but placebo.
PPMs (i) .KidsPla(PPMs (i) .KidsPla <= -7) = -9;
PPMs (i) .KidsPla(PPMs(i).KidsPla > 0) = 9;

PPMs (i) .KidsPla(abs(PPMs (i) .KidsPla) != 9) = -1;
PPMs (i) .KidsPla(PPMs (i) .KidsPla == 9) = 2;
end
otherwise
disp(['Not recoding to susc./inf./immune, output will display raw numbers.'])
end
KidsIntStatusEc = NA(size(PPMs(1l).KidsInt) (1), size(PPmatrices)(2)-(startTime-1));
KidsIntStatusGi = KidsIntStatusEc;
KidsIntStatusRo = KidsIntStatusEc;
KidsPlaStatusEc = NA(size(PPMs(1l).KidsPla) (1), size(PPmatrices)(2)-(startTime-1));
KidsPlaStatusGi = KidsPlaStatusEc;
KidsPlaStatusRo = KidsPlaStatusEc;

for 1 = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts
(after equilibrium is reached).
for j = 1l:size(PPMs(1).KidsInt)(1);
KidsIntStatusEc(j,i-startTime+1)
KidsIntStatusGi(j,i-startTime+1)
KidsIntStatusRo(j,i-startTime+1)

PPMs (i) .KidsInt(j,1);
PPMs (i) .KidsInt(j,2);
PPMs (1) .KidsInt(j,3);

end
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for j = 1l:size(PPMs(1).KidsPla) (1);
KidsPlaStatusEc(j,i-startTime+1)
KidsPlaStatusGi(j,i-startTime+1)
KidsPlaStatusRo(j,i-startTime+1)

PPMs (i) .KidsPla(j,1);
PPMs (i) .KidsPla(j,2);
PPMs (i) .KidsPla(j,3);

end
end
%Now can visually inspect the 6 status matrices that have been output.
%Should be a way to collapse them also (run-length encoding?), but not yet implemented.

function outmatrix = coll(inmatrix,nMaxRuns) %Inefficient but hopefully works.
sizeM = size(inmatrix);
maxk = 1; %Initializing counter to determine the maximum number of runs ever seen
during the function call.
for i = 1:sizeM(1); %Loop over all rows
for j = 2:s51zeM(2); %Loop over each entry per row
if j == 2; %Special procedure for first iteration, since there could
be a transition (or not) between the 1st 2 entries.
k = 1; %sInitiating run counter;
if inmatrix(i,j) !'= inmatrix(i,j-1);
if inmatrix(i,j-1) == -9; dur(k) = -1;
elseif inmatrix(i,j-1) == -1; dur(k) = 0.001;
elseif inmatrix(i,j-1) == 2; dur(k) = 1;
else stop('Unexpected value in matrix (not -9, -1, or 2).')
end
k =k + 1; %Increment run counter
if inmatrix(i,j) == -9; dur(k) = -1;
elseif inmatrix(i,j) == -1; dur(k) = 0.001;
elseif inmatrix(i,j) == 2; dur(k) =
else stop('Unexpected value in matrix (not -9, -1, or 2)."')
end
else %If type of run does not change in 1lst 2 entries
if inmatrix(i,j) == -9; dur(k) = -2;
elseif inmatrix(i,j) == -1; dur(k) = 0.002;
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elseif inmatrix(i,j) == 2; dur(k) = 2;
else stop('Unexpected value in matrix (not -9, -1, or 2).')

end
end
elseif j == sizeM(2); %Special procedure for last iteration - need to
drop it since it is probably incomplete.
dur(k) = 0;
else %If j (the column) is anything greater than 2, but not the last
column:
if inmatrix(i,j) !'= inmatrix(i,j-1); %If there is a transition,
reset the run:
k =k + 1;
if inmatrix(i,j) == -9; dur(k) = -1;
elseif inmatrix(i,j) == -1; dur(k) = 0.001;
elseif inmatrix(i,j) == 2; dur(k) = 1;
else stop('Unexpected value in matrix (not -9, -1, or 2).'")
end
else %If there is no transition, extend the run
if inmatrix(i,j) == -9; dur(k) = dur(k) - 1;
elseif inmatrix(i,j) == -1; dur(k) = dur(k) + 0.001;

elseif inmatrix(i,j) == 2; dur(k) = dur(k) + 1;
else stop('Unexpected value in matrix (not -9, -1, or 2).")
end
end
end
end
if k > maxk;
maxk = k %Updates & displays maxk (largest no. runs seen so far). Use as
guide for entering nMaxRuns.
end
outmatrix(i,:) = padarray(dur, [0, nMaxRuns - length(dur)],0, 'post');

end
outmatrix(:,1) = 0; %Sets all 1st runs to 0 (they are likely to be incomplete).
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mean(outmatrix(find(outmatrix >= 1))) %Print mean duration of illness
end

function z = GraphColl(outmatrix) %Graphs output of above function.

bins = unique(outmatrix(find(outmatrix < 0)));

if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1l)=binsT(2)-1;
binsT(3)=binsT(2)+1; bins=binsT; end

subplot(2,2,1);

hist(outmatrix(find(outmatrix < 0)),bins) %sDurations of susceptibility

bins = unique(outmatrix(find(outmatrix > 0 & outmatrix < 1)));

if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-0.001;
binsT(3)=binsT(2)+0.001; bins=binsT; end

subplot(2,2,2);

hist(outmatrix(find(outmatrix > 0 & outmatrix < 1)),bins) %Durations of immunity

bins = unique(outmatrix(find(outmatrix >= 1)));

if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1l)=binsT(2)-1;
binsT(3)=binsT(2)+1; bins=binsT; end

subplot(2,2,3);

hist(outmatrix(find(outmatrix >= 1)),bins) %Durations of illness
end

%histc(PlaRo(find(PlaRo < 1 & PlaRo > 0)),[0:0.001:max(PlaRo(find(PlaRo < 1 & PlaRo >
0)))]1) %sAwful (but functional) way to get counts of possible values for immunity
length.
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%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (GetTrialParams.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%This script generates a series of parameters for input into the main code, rather than
stochastically generating them.

reps = 1; # of times to run each parameter set.
readParams = 0; %To read parameters generated by a previous model run (1) or not
(0).
paramSets = 10; %# of parameter sets to be run, if generating them
systematically.
%sloops = paramSets * reps; %Deliberately overwrites 'loops' in the main code.
switch(readParams);

case 1;

TrialParams = dlmread('Results/RunsThatFit.csv',"',',1,1); %Access a file

returned by ReadOutput.r.
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paramSets = size(TrialParams, 1); %0verwrites 'paramSets' above.
disp(['Reading parameter values from ',6num2str(paramSets),' trials.'])
case 0;

MinDoses = [2e4, 0, 0]; %Minimum non-zero dose. A good choice is dose that
infects 1% of population (ID1).

ID1s = [7.5697E3, 5.0708E-1, 1.7280E-2]; %ID1 for ETEC, Giardia, & rota.

MinDoses = ID1ls * .1; %Uncomment if ID1ls are desired.

TrialParams = zeros(paramSets,size(MinDoses, 2));

for i = 1:length(MinDoses); %Populating all cells except the 1st row with the
minimum nonzero dose.

TrialParams(2:paramSets,i) = MinDoses(i);

end
TrialParams(2,:) = MinDoses; %1st run is 0 pathogens; 2nd run is the
minimum nonzero dose.
for i = 3:paramSets; %sUncomment the particular line desired. Comment all to
check multiple replicates of the same dose.
%sTrialParams(i,:) = MinDoses * (i-1); %sLinearly increases the dose
on each model run.
TrialParams(i,:) = 2 * TrialParams(i-1,:); %Doubles the dose on each

model run.
%sTrialParams(i,2) = 10 * TrialParams(i-1,2); %Doubles the dose for only 1

pathogen, leaving others constant.

end

TrialParams(:,4) = 0; %Sets a single value for non-waterborne diarrhea
prevalence.

%disp('Will cycle through these parameters, 1 run per set.')

%strialPrevDiarrhBaseKids = 0 %Sets a single value for non-waterborne diarrhea
prevalence.

%sTrialParams %Print to screen, so we see that this file was
executed & to view the trial params.

otherwise;

error('readParams must be 0 or 1');

end

298



%Replicating the parameter sets.
TP = TrialParams; %Making a copy, for use in loop below.
if reps > 1;
for i = 1l:reps-1;
TrialParams = [TrialParams; TP]; %sAppending copies of the parameter sets.

end
end
TrialParams = sortrows(TrialParams); %Sorting so that identical parameter values are
next to each other.
loops = paramSets; %0verwriting 'loops' variable in main QMRA code.
disp(['Using ',num2str(paramSets),' parameter sets, ',num2str(reps),' times each,

totaling ',num2str(loops),' runs.'])

if paramSets <= 25;
disp(['Parameter sets are as follows:'])
TP

end

299



%1
COPYRIGHT INFORMATION

Copyright 2011 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (OutQMRAmerge.m) is part of QMRAv13 20110414.

QMRAvV13 20110414 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRAvV13 20110414 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRAv13 20110414. If not, see <http://www.gnu.org/licenses/>.

o
%}

%Pulls together QMRA output files from multiple Octave threads. Runs surprisingly fast!
clear all;
%First, enter the desired name of the .CSV:
filename = {'Results/MergedOutQMRA.csv'};
%Now enter as many files as necessary, each one containing the 'workspaces' from a
thread.
Files = {'Results/OutQMRA20110315T130458.mat'};
rows = 0; %Initializing variable to count up total number of rows.
for i = 1:length(Files);
eval(disp(['load ',char(Files(i)),' OutQMRA;'])) %Loads the 'OutQMRA' struct stored
in .mat file, overwriting that object if it exists.
%disp(['File ',num2str(i),' took ',num2str(),' to run

300



",num2str(length(OutQMRA.Cal)), ...
%' loops (',num2str(),' per loop.'])
eval(disp(['OutQMRA',num2str(i), '=0utQMRA;"'])) %Copies it and adds a numeric
suffix to the name.
rows = rows + length(OutQMRA.EcL);
end
clear OutQMRA; %Removes the initial copy of the last file loaded.

%CSVmatrix = NA(rows,length(fieldnames(OutQMRALl))-2; %Creating the output matrix. Each
row is a QMRA iteration.
for i = 1l:length(Files);

%1  %For debugging

eval(disp(['OutQMRA = OutQMRA',num2str(i),';'])) %Taking 'OutQMRAx' and creating a
copy called 'OutQMRA' to work from.

OutQMRA = rmfield(OutQMRA, 'StartTime'); OutQMRA = rmfield(OutQMRA, 'EndTime');

CSVmatrix = OutQMRA.Fit'; %Initializing a matrix that will become a .CSV by
transposing the first structure field into it.

for [val,key] = OutQMRA; %This special syntax allows looping over all elements of
the structure.

%key %For debugging

if strcmp(char(key),'Fit') == 0; %Don't do anything for the 'Fit' element
because we took care of that 2 lines before.
CSVmatrix = [CSVmatrix, val']; %sTranspose fields into columns & bind
into the matrix.
end

end
eval(disp(['CSVmatrix',num2str(i),' = CSVmatrix;']))
clear CSVmatrix;

end

CSVmatrix = CSVmatrixl; %Initializing output matrix.

for 1 = 2:length(Files);
eval(disp(['CSVmatrix = [CSVmatrix; CSVmatrix',6 num2str(i),'];']))
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end

fn=fieldnames (OutQMRA) ;

nFields = numel(fn); %shttp://stackoverflow.com/questions/5292437/how-to-concat-cell-
array-of-strings-in-matlab

fn(l:nFields-1) = strcat(fn(l:nFields-1),{',"'});

file = fopen(filename, 'w+');

fprintf(file, '%s',disp([fn{:}]1));

fclose(file);

eval(["dlmwrite('",char([filename]),""',CSVmatrix, '-append');"])

disp(['Done; .mat files have been merged and output to ',char(filename),' in
‘,char(pwd), '/Results/'])
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9.4. The QMRA model investigating compliance and LRVs (chapter 4)

The model (referred to as “QMRA2v5” for short) consists of several text files containing necessary functions and subroutines;
the core program is "Main.m’. Simulation options are set by the choice of several values at the top of the files 'Main.m' and
'GetTrialParams.m'. These options default to values that generate a single test run of the simulation. Other options are set when calling
the function 'Main.m' and are described within that file; for example, the following can be submitted at the Octave (or MATLAB)
prompt to do a test calibration run:

Main(0,1,0,[0 ©0 0],[0 0 O],[1e5 1 .1],1, 'test.csv','NA.csv',1,0,1,0)
The source code is found below. The filename of each of the source code files is found in the copyright information at the top of

each file. Although QMRA2v5 uses some filenames that are identical to those in QMRAv13_20110414, the content of its files differs.
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%Main function for running the model QMRA2v5, used for chapter 4 of Kyle S. Enger's Ph.D.
dissertation,

[o)

% as well as the manuscript "The joint effects of efficacy and compliance: a study of
household water treatment effectiveness against childhood diarrhea".

%Allows multiple runs (e.g., on computing cluster) using different parameters.
%sImplements a QMRA model originally based on Boisson 2010 (PLoS One) RCT of Lifestraw
Family filtration device in the Dem. Rep. of the Congo.

%It was produced by modifying QMRAv13 20110414.

%
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger.
This file (Main.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.
%}

%Requires Octave 3.2 or later.

%Also works well on MATLAB; the results in chapter 4 of the accompanying dissertation
were all produced with MATLAB.
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%If running on MATLAB, requires the statistics toolbox, and possibly others.
%This code (Main.m, the core component of QMRA2v5) is accompanied by several
functions/subroutines, which need to be in the working directory:

% AnalyzeInfectionFromSpikes.m: Optional code to determine the proportion of all
infections that are caused by contamination spikes

% AssignInf.m: Stochastically assigns infections to individuals with fixed
durations

% AssignInfRand.m: Stochastically assigns infections to individuals with random
durations

% AssignInfIllRand.m: Stochastically assigns infections & illnesses to individuals
with random durations

% CalcDiarrhWeeks.m: Determines whether a week with 1+ days of diarrhea is actually
reported as a 'diarrhea week'; not actually used for ch. 4 analysis

% CalibrationLoopFuncCompile.m: Code that calls Main() in order to facilitate parallel
processing of many differently parameterized calibration runs

% DRbP.m: Beta-Poisson dose response model

% DRchoose.m: Executes the appropriate dose response model and determines
illness

% DRexp.m: Exponential dose response model

% durEc.m: Randomly pick a duration for E. coli infection

% durGi.m: Randomly pick a duration for Giardia infection

% durRo.m: Randomly pick a duration for rotavirus infection

% EstimationLoopFuncCompileV2.m: Code that calls Main() in order to facilitate
parallel processing of many differently parameterized estimation runs

% EstimationLoopFuncCompileV2PC.m: As above, but for estimation runs with perfect
compliance

% EstimationLoopFuncCompileV2Untreated.m: As above, but for estimation runs with
complete noncompliance

% ExaminelRun.m: Allows inspection of the complete simulated data from a single
run of this code

% GetTrialParams.m: Generates a series of trial parameters instead of determining
them stochastically

% OutQMRAmerge.m: Allows conglomeration of output from multiple model
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executions (e.g., if parallel processing)

%sFunction arguments to Main():
%spPerfUse: Probability of using the device perfectly
%spNoUse: Probability of not using the device at all
%soverallCompliance: Overall proportion of person-time complying. overallCompliance =

pPerfUse + pTreat * (1-pPerfUse-pNoUse)
%spTreat: Proportion of water treated if using the device imperfectly. Calculated from

pPerfUse, pNoUse, & OverallCompliance.

%LRs: Logl® reductions attributable to the device: vector (bac., protozoa,
viruses)

%PathogensLMin: During calibration, the minimum mean concentration of the 3 marker
pathogens (bac., protozoa, viruses); usually [0 0 O].

%PathogensLMax: During calibration, the maximum mean concentration of the 3 marker
pathogens (bac., protozoa, viruses); [0 0 O] for estimation.

%calibRuns: Number of calibration runs; 0 for estimation runs

%soutFilename: Filename for storing output as a .CSV.

%sinFilename: File containing parameter values from calibration (pathogen
concentrations). Only matters for estimation phase.

smultConc: Multiplier for concentrations obtained from calibration. Used for
estimation step to torture-test extreme concentrations.

%snSpikesY: Number of 1-day pathogen spikes (all 3 pathogens spike at once) per year.
Set to 0 to turn them off.

smultSpikes: Defines size of spikes. Multiplier above mean baseline level.
%suseAllParamSets: If 1, and if estimation runs are being done, use all available

parameter sets from calibration (instead of a subsample of parameter sets).
%Note that more options are available to be set in the first few lines of this function;

% using them as function arguments would have been cumbersome.

function [OutQMRAmatrix OutQMRA] = Main(pPerfUse, pNoUse, overallCompliance, LRs,
PathogensLMin, PathogensLMax, calibRuns, outFilename, inFilename, multConc, nSpikesY,
multSpikes, useAllParamSets); %TODO: Designate necessary output (overall measures &

distributions, plus vals of 1lst 3 params).
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Octave = size(ver('Octave'),1l); %Indicator of whether the code is running under Octave
(1) or Matlab (0).

StartTime = clock;

%s====Setting simulation options====More simulation options are in GetTrialParams.m====
dailyVariation = 1; %Equals 1 if pathogen concentrations are allowed to vary by person by
day, instead of taking a single fixed value.

randomDurations = 1; %Equals 1 if illness durations are randomized instead of taking
a single fixed value. Renders Duration vector (below) mostly moot (it is still used to
choose start time of surveys).

storeStatus = 1; %If 1, store infection & disease status, to determine 'actual' (i.e.,
reported & unreported) burden of infection.

StoreAllDailyStatuses = 1; %If 1, store all daily statuses for all runs in a struct.
%s=====Housekeeping based on simulation options====

if calibRuns > 0;
loops = calibRuns;
noStochParams = 0;

else

noStochParams = 1;

GetTrialParams; %GetTrialParams.m reads in pathogens/L & background measure to
be tried. It contains its own options - check before running.
end
if loops <= 25; testing = 1; else testing = 0; end
if overallCompliance == | pNoUse == 1; pTreat = 0; pPerfUse = 0; overallCompliance = 0;
pNoUse = 1; %Avoids x/0 error below

elseif overallCompliance == 1 | pPerfUse == 1; pTreat = 1; pPerfUse = 1;
overallCompliance = 1; pNoUse = 0; %Avoids x/0 error below
else pTreat = (overallCompliance - pPerfUse) / (1 - pPerfUse - pNoUse);
%Calculating pTreat so as to be able to hold overallCompliance constant over mult.
runs.
end
if pTreat < 0 - eps | pTreat > 1 + eps; error('pTreat of ',num2str(pTreat),' 1is
impossibly > 1 or < 0: check pNoUse, pPerfUse, & overallCompliance!'); end
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*Water concentration and disease parameter values

Several vectors have 3 elements corresponding to our 3 pathogens of interest:
[ETEC/EPEC, Giardia, rotavirus], i.e., bacteria, protozoa, viruses

%sPathogensLMax = [2e5, 1.35, 0.18]; %Maximum pathogens/L; minimum is zero for

all. 2fold empirically observed levels that led to LP exceeding the 95% CI for the

placebo group, each pathogen taken individually.

pathogensLcv = sqrt(3407044) / 2509.329; %Coeff. of var. calc. from variance & mean

of 'cfbef' (Boisson 2010 water qual. data), high outliers (>= 30000 CFU) removed. For

calc. of scaled gamma dists.

o® o°

MorbidityK = [0.214 , 0.59 , 0.397]; %Proportion of infected 'kids' (<5y) with
diarrhea.
Duration = [82.1/24, 18.3, 2.5]; Duration = round(Duration); %Duration of infection

(days). Although length & max of this vector are still used, actual infection duration
is determined by durEc.m, durGi.m, & durRo.m.

prevDiarrhBaseKidsMax = 0.0972; %Upper limit of non-waterborne reported diarrhea
prevalence.

LongPrevs = [0.103, 0.0896]; %Vector of raw long. prev. values from Boisson dataset,
kids w. placebo, then kids w. intervention).

prevDiarrhBaseKids = LongPrevs(2); %Baseline non-waterborne reported diarrhea prevalence.
No greater than observed in the RCT. Only used if no random variation (overwritten
otherwise).

ImmuneTimes = [7 7 7]; %sLength of immune period for all pathogens.

%Parameters: population & exposure information. Model by household later.

%nKidsInt = 85; nKidsPla = 105; %Boisson 2010.

nKids = 100; %No longer simulating an intervention trial - simply a
set of counterfactuals for comparison.

drinkKids = 1.178; %drinkKidsSD = 0.186; %daily water intake, L/d, kids

%spTreat = 2/3; %Proportion of water treated, if device is being used.
Try 1, 2/3, & 1/3.

%if compliancel@0 == 1; pUse = 1; pTreat = 1; end; %If perfect compliance is desired,

override above 2 lines.
%Parameters: device effectiveness information
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%LRs = [6.9, 3.6, 4.7]; %Log reductions [bacteria, protozoa, viruses] by the
intervention device, with upper & lower ranges

%LRsPla = [1.05, 1.05, 1.05]; %As above, for 'placebo' device

%1if badPlacebo == 0; LRsPla = [0 0 0]; end; %If a perfect placebo is being modeled,
override above line.

%Parameters: dose response, order as above [ETEC/EPEC, Giardia, rotavirus]

KorN50 = [2111912, 0.01982, 6.171]; %Exponential k parameter or beta-Poisson N50
parameter
alpha = [0.1549, NaN, 0.2531]; %Presence/absence of alpha value determines

beta-Poisson or exponential dose resp.

%Bias parameters
remembrance = 0.54; %Proportion of diarrhea episodes remembered (and reported) if they

ended >2d before being surveyed; assume perfect recall if episode is on day 0, 1, or 2
%Study parameters - relating to how the study was conducted

recallPeriod = 7; %Number of days in the past over which people were asked to remember
diarrheal episodes

interval = 31; %sInterval between beginnings of recall periods. Must be 31 to avoid

undercounting a year as 360d.

nYears = 1; %For easy adjustment of the length of the simulation. Used later to

properly calculate incidence & LP.
nRecallPeriods = 12 * nYears; %Number of recall periods (i.e., number of simulated

diarrhea surveys)
daysBurnIn = ceil(max(ImmuneTimes) + max(Duration) + recallPeriod) * 4; %Days required
for prevalence to reach equilibrium (simulation starts with nobody infected). Allows

ample margin for reaching equilibrium.

%s=====Ending parameter values=====

maxTime = daysBurnIn + (nRecallPeriods-1)*interval; %Time over which to run each
simulation.

%Creating output structure for storing results from main QMRA loop

OutQMRA =

struct('StartTime',StartTime, 'Fit',NaN(1, Lloops), 'KILP',NaN(1, Lloops), 'KPLP',NaN(1, Loops), "
LPR',NaN(1, loops), ...

309



'EcL',NaN(1, loops), 'GiL',NaN(1, loops), 'RoL',NaN(1,loops), 'PrevBase',NaN(1, loops));

%'Fit' 1s no longer used.

if storeStatus == 1; %0ptionally creating cell array for more detailed output. Not

needed for calibration step.

DailyStatus = cell(1l, loops); %Each cell in the array needs to contain a matrix
(rows are days, columns are variables).

DailyStatus(:) = {NaN(maxTime,22)};

placebo.

%lst row for intervention, 2nd row for

%Columns are: 1:3 = new inf. Ec,Gi,&Ro0; 4:6 = new cases; 7:14 = num. inf.
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiR0);

end;
tic %Starts timer

15:22 = as inf., but ill.

if noStochParams == 1; loops = size(TrialParams,1); end
trial pathogens/L values is being used.

MeanDoses = zeros(loops,size(MorbidityK,2)); %Prepopulating a matrix for storing mean
doses (helps in checking whether spikes are working properly).

for 1 = 1:loops; %s=====Starting main QMRA loop.=====

indexes each loop.

switch(noStochParams);
case 0;

PathogensLmeans = rand(1l, length(MorbidityK))
+ PathogensLMin; sUniform sampling of the mean value for each pathogen.

prevDiarrhBaseKids = rand(1l,1)*prevDiarrhBaseKidsMax;

case 1; %Pulling parameters from previous runs consistent with RCT.

PathogensLmeans = TrialParams(i,1:3) * multConc; %Allows scaling up of dose

values obtained through calibration.

if size(TrialParams,2) <=

prevDiarrhBaseKids
else
prevDiarrhBaseKids
end
otherwise

’

3
0,

TrialParams(i,4);
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%=====Randomly generating parameters for this iteration=====
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error('noStochParams must be 0 or 1');
end
if nSpikesY > 0; %Adjusting the baseline mean downward if spikes are used, so
that overall mean concentrations remain the same.
nSpikes = nSpikesY * nYears;
simTime = maxTime - daysBurnln;
PathogensLmeansBase = PathogensLmeans * simTime/(nSpikes*multSpikes+simTime);

SpikeTimes = randperm(simTime);
SpikeTimes = SpikeTimes(1l:nSpikes);
SpikeTimes = sort(SpikeTimes + daysBurnIn); %Preallocating the times for the

spikes.
SpikeTimes(end + 1) = 0; %Needed to avoid an error when spike counter advances
past the last spike.
nextSpike = 1; %Counter for working through the list of spikes.
else PathogensLmeansBase = PathogensLmeans;
end
OutQMRA.EcL(i)=PathogensLmeans(1); OutQMRA.GiL(i)=PathogensLmeans(2);
OutQMRA.RoL (i)=PathogensLmeans(3);

OutQMRA.PrevBase(i) = prevDiarrhBaseKids; %This line & previous store the varying
parameter values.
%=====End random parameter generation - start setup of values/vectors/matrices used

throughout simulation=====

%Computing daily doses of pathogens ingested in drinking water, using water drunk
per day and log reduction values

%Computing parameter values for gamma distribution of pathogens in water

%Scales = (pathogensLcv * PathogensLmeansBase).”2 ./ PathogensLmeans; %This seems
the same as next line.

Scales = pathogensLcv "2 * PathogensLmeansBase;

%Shapes = PathogensLmeansBase ./ Scales; %This seems the same as next line.

Shapes = 1 / pathogensLcv © 2; Shapes = [Shapes Shapes Shapes]; %Shape parameter is
identical for all 3 pathogen types.

%Assigning infections randomly based on responses, assuming infections with
different pathogens are independent.
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% A person can have only 1 infection per pathogen.

OQutPrevs = struct('Kids',NaN(1l,nRecallPeriods)); %Creating struct to hold
prevalences from surveys.

%Creating person-pathogen matrices; everybody starts infected for a random amount of
time, to reduce periodicity from constant disease duration.

KidsPPM = rand(nKids, length(Duration)) * 2*(max(Duration)+max(ImmuneTimes));

%KidsPla = rand(nKidsPla, length(Duration)) * 2*(max(Duration)+max(ImmuneTimes));

if storeStatus == 1; %0ptionally, making corresponding matrices to store disease
info.
KidsPPMD = ones(size(KidsPPM)); %NaN means never infected, 0 means
uninfected, 1 means infected, 2 means diseased.
%KidsPlaD = ones(size(KidsPla)); %Note that everyone starts off infected with
everything, just as with KidsInt & KidsPla above.
end
OutputFields = fieldnames(OutPrevs);
if Octave == 1; fflush(stdout); end; %Forces a write to screen so that
sim progress can be seen.
%s=======(C0de for testing purposes only=======
if testing == 1 && loops <= 15; %0nly runs when testing code. These vectors

needed for charting infection prevalence over the entire simulation.

KidsInfPrev = NaN(maxTime,1l); %Creating a vector to hold infection prevalence
info, intervention group.

%KidsPlaInfPrev = NaN(nKidsPla,1l); %As above, placebo group.

%s========End code for testing purposes========
%Now storing all person-pathogen matrices, but only if exactly 1 loop is requested.
This repeats at the end of each day.
if loops == 1;
PPmatrices(1l).KidsPPM = KidsPPM;
PPmatrices(1l).KidsPPMD = KidsPPMD;

%s========Begin daily loop, t indexes the days=========
for t = 1l:maxTime;
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KidsPPM = KidsPPM - 1; %Note: a value of 0 signifies the first day of
immunity.
%KidsPla = KidsPla - 1;
if storeStatus == 1; %0ptionally, tracking recovery from infection/disease.
KidsPPMD (KidsPPM <= 0) = 0;
%KidsPlaD(find(KidsPla <= 0)) = 0;

end
%sComputing doses in untreated water, varying for each child, each day.
Dose.Kids = NaN(nKids, length(Duration)); %Matrix of doses per child

(intervention). Columns are pathogens.
%Dose.KidsPla = NaN(nKidsPla, length(Duration)); %Matrix of doses per child

(placebo). Columns are pathogens.
RandComp = rand(nKids,1); %Random numbers for determining compliance (i.e.,

use of device).

for j = 1l:length(Duration); %sLooping over pathogens to determine
daily doses for ea. person.
if isnan(Shapes(j)) == 1; %If mean pathogen conc. is set to O,

pathogen conc. is always 0.
Dose.Kids(:,j) = 0;
%sDose.KidsPla(:,j) = 0;

else
if dailyVariation == 1;
Dose.Kids(:,j) = gamrnd(Shapes(j),Scales(j),[nKids,1]) *
drinkKids; %Initial untreated dose
%Dose.KidsPla(:,j) = gamrnd(Shapes(j),Scales(j),[nKidsPla,1l]) *
drinkKids;
else

Dose.Kids(:,j) = PathogensLmeansBase(j) * drinkKids; %Dose

becomes the mean dose if daily variation is turned off.
%Dose.KidsPla(:,j) = PathogensLmeansBase(j) * drinkKids;

end
end
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%Next 2 lines: Determining who complies and has a nonzero dose (because
log reduction would fail on zero dose).
Comp.Kids.Perf = find((RandComp(l:nKids,1l) < pPerfUse) &
(Dose.Kids(:,j) > 0));
Comp.Kids.Imperf = find((RandComp(1l:nKids,1) > (pPerfUse+pNoUse)) &
(Dose.Kids(:,j) > 0));
%Now applying LRs, if using device. Includes adjustment for partial
treatment of water (pTreat) for imperfect compliers.
Dose.Kids (Comp.Kids.Perf,j) = 10.7(loglO(Dose.Kids(Comp.Kids.Perf,j)) -
LRs(3));
Dose.Kids (Comp.Kids.Imperf,j) = 10.7(logl0O(Dose.Kids(Comp.Kids.Imperf,j) *
pTreat) - LRs(j)) + Dose.Kids(Comp.Kids.Imperf,j) * (1 - pTreat);
end

if nSpikesY > 0 && t == SpikeTimes(nextSpike);
Dose.Kids = Dose.Kids * multSpikes;
%disp(['Time ',num2str(t),', means = ',num2str(mean(Dose.Kids))])
%This line for testing only
nextSpike = nextSpike + 1;
end
MeanDoses(t,:) = mean(Dose.Kids);

%sComputing responses (diarrheal illness) using custom functions DRexp() and
DRbP() .

Responses.Kids(:,1) = DRbP(KorN50(1),alpha(1l),Dose.Kids(:,1)); %Note:
response matrices correspond to the person-path. matrices.

Responses.Kids(:,2) = DRexp(KorN50(2),Dose.Kids(:,2));

Responses.Kids(:,3) DRbP (KorN50(3),alpha(3),Dose.Kids(:,3));

%Responses.KidsPla(:,1) DRbP(KorN50(1),alpha(1l),Dose.KidsPla(:,1));

%Responses.KidsPla(:,2) DRexp (KorN50(2),Dose.KidsPla(:,2));

%Responses.KidsPla(:,3) DRbP(KorN50(3),alpha(3),Dose.KidsPla(:,3));

switch(randomDurations);

case 1
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switch(storeStatus);
case 1
%DailyStatus columns: 1:3 = new inf. Ec,Gi,&Ro; 4:6 = new cases; 7:14 = num. inf.
(0,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiRo); 15:22 as inf., but ill.
KidsPPMDold KidsPPMD;
%KidsPlaDold = KidsPlaD;
[KidsPPM,KidsPPMD] =
AssignInfIllRand(KidsPPM,KidsPPMD,Responses.Kids, ImmuneTimes,MorbidityK) ;
%[KidsPla,KidsPlaD] =
AssignInfIllRand(KidsPla,KidsPlaD,Responses.KidsPla, ImmuneTimes,MorbidityK);
for s = 1:6; %Store counts of new infections & illnesses.
if s <= 3; %Infections:
%DailyStatus{l,i}(t,s) =
length(intersect(find (KidsPPMDold(:,s) == 0), find(KidsPPMD(:,s) > 0)));
DailyStatus{l,i}(t,s) = sum((KidsPPMDold(:,s) == 0) &
(KidsPPMD(:,s) > 0)); %Should run much faster than above.
%DailyStatus{2,i}(t,s) =
length(intersect(find(KidsPlaDold(:,s) == 0), find(KidsPlaD(:,s) > 0)));
else %Illnesses:
%DailyStatus{l,i}(t,s) =
length(intersect(find (KidsPPMDold(:,s-3) == 0), find(KidsPPMD(:,s-3) == 2)));
DailyStatus{l,i}(t,s) = sum((KidsPPMDold(:,s-3) == 0) &
(KidsPPMD(:,s-3) == 2)); %Should run much faster than above.
%DailyStatus{2,i}(t,s) =
length(intersect(find(KidsPlaDold(:,s-3) == 0), find(KidsPlaD(:,s-3) == 2)));
end

end
otherwise
KidsPPM =
AssignInfRand(KidsPPM,Responses.Kids, ImmuneTimes);
%KidsPla =
AssignInfRand(KidsPla,Responses.KidsPla, ImmuneTimes);
end
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otherwise

KidsPPM = AssignInf(KidsPPM,Responses.Kids,Duration, ImmuneTimes);

%KidsPla = AssignInf(KidsPla,Responses.KidsPla,Duration, ImmuneTimes);
end

if t >= daysBurnIn && mod(t-(daysBurnIn),interval) == 0; %0btaining results
from diarrhea assessment survey.
%Determining reported diarrhea-weeks. CalcDiarrhWeeks() uses the Person-Pathogen
Matrices, morbidity ratios, and recall of diarrhea episodes to determine if a week was
reported as a week with diarrhea.
KidsRD = CalcDiarrhWeeks (KidsPPM, remembrance, recallPeriod,MorbidityK);
Whether diarrhea was reported by each particular person. Note age (last column) is
removed from the person-pathogen matrix when inputted to the function.
OutPrevs.Kids((t-daysBurnIn)/interval+l) = sum(KidsRD)/length(KidsRD);
%Getting prevalence for each diarrhea survey
%KidsPlaRD = CalcDiarrhWeeks(KidsPla, remembrance, recallPeriod,MorbidityK);
%Like above 2 lines, but kid placebo
%0utPrevs.KidsPla((t-daysBurnIn)/interval+l) =
sum(KidsPlaRD)/length(KidsPlaRD);

Sfprintf(1,['d',num2str(t),'/"',num2str(maxTime),"'|"']); %Progress counter.
%if Octave == 1; fflush(stdout); end; %Forces a write to screen.

end

if testing == 1 && loops <= 15; %s=====Testing code=====

KidsInfPrev(t) = sum(max(KidsPPM') > 0) / nKids;%If max value over all
pathogens >0, then there is an infection.

%KidsPlaInfPrev(t) = sum(max(KidsPla') > 0) / nKidsPla;%Transposing so
that max is for ea. row instead of ea. column.

KidsInfEc(t) = sum(KidsPPM(:,1) > 0) / nKids;
KidsInfGi(t) = sum(KidsPPM(:,2) > 0) / nKids;
KidsInfRo(t) = sum(KidsPPM(:,3) > 0) / nKids;
%KidsPlaInfEc(t) = sum(KidsPla(:,1) > 0) / nKidsPla;
%KidsPlaInfGi(t) = sum(KidsPla(:,2) > 0) / nKidsPla;
%KidsPlaInfRo(t) = sum(KidsPla(:,3) > 0) / nKidsPla;
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end %s======End testing code======
if storeStatus == 1; %Storing lots of daily information about the model
run.
%Columns are: 1:3 = new inf. Ec,Gi,&Ro0; 4:6 = new cases; 7:14 = num. inf.
(6,Ec,Gi,Ro,EcGi,EcRo,GiRo,EcGiR0o); 15:22 = as inf., but ill.

for s = 7:22; %All based on O=uninfected, l=asymptomatic,
2=111.
if s == 7; %sTallying completely uninfected people
%DailyStatus{l,i}(t,s) = length(find(sum(KidsPPMD') == 0));

DailyStatus{1l,i}(t,s) = sum(sum(KidsPPMD,2) == 0); %Should be
faster than above.
%DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD') == 0));

elseif s == 8; %sInfected with only Ec
%sDailyStatus{l,i}(t,s) = length(intersect(find(KidsPPMD(:,1) >
0), find(sum([KidsPPMD(:,2) KidsPPMD(:,3)]') == 0)"'));

DailyStatus{1l,i}(t,s) = sum((KidsPPMD(:,1) > 0) & (sum([KidsPPMD(:,2)
KidsPPMD(:,3)1,2) == 0)); %Should be faster than above.
%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,1) >
0), find(sum([KidsPlaD(:,2) KidsPlaD(:,3)]') == 0)"'));
elseif s == 9; %sInfected with only Gi
%DailyStatus{l,i}(t,s) = length(intersect(find(KidsPPMD(:,2) >
0), find(sum([KidsPPMD(:,1) KidsPPMD(:,3)]') == 0)'));
DailyStatus{l,i}(t,s) = sum((KidsPPMD(:,2) > 0) & (sum([KidsPPMD(:,1)
KidsPPMD(:,3)1,2) == 0)); %Should be faster than above.
%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,2) >
0), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]') == 0)"'));

elseif s == 10; %sInfected with only Ro
%DailyStatus{l,i}(t,s) = length(intersect(find(KidsPPMD(:,3) >
0), find(sum([KidsPPMD(:,1) KidsPPMD(:,2)]') == 0)"'));

DailyStatus{l,i}(t,s) = sum((KidsPPMD(:,3) > 0) & (sum([KidsPPMD(:,1)
KidsPPMD(:,2)1,2) == 0)); %Should be faster than above.
%sDailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:,3) >
0), find(sum([KidsPlaD(:,1) KidsPlaD(:,2)]') == 0)"'));
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elseif s == 11; %Tallying infected with Ec & Gi only
%DailyStatus{l,i}(t,s) =
length(intersect(find(prod(KidsPPMD(:,1:2)"') ~= 0), find(KidsPPMD(:
DailyStatus{l,i}(t,s) = sum((prod(KidsPPMD(:,1:
(KidsPPMD(:,3) == 0)); %Should be faster than above.
%DailyStatus{2,i}(t,s) =
length(intersect(find(prod(KidsPlaD(:,1:2)"') ~= 0), find(KidsPlaD(:,3) == 0)));
elseif s == 12; %Tallying infected with Ec & Ro only
%DailyStatus{l,i}(t,s) =
length(intersect(find(prod([KidsPPMD(:,1) KidsPPMD(:,3)]') ~= 0), find(KidsPPMD(:,2) ==

0)));
DailyStatus{l,i}(t,s) = sum((prod([KidsPPMD(:,1) KidsPPMD(:,3)],2) ~=
0) & (KidsPPMD(:,2) == 0)); %Should be faster than above.
%DailyStatus{2,i}(t,s) =
length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') ~= 0), find(KidsPlaD(:,2) ==
0)));

,3) ==0)));
2),2) ~=0) &

elseif s == 13; %Tallying infected with Gi & Ro only
%DailyStatus{l,i}(t,s) =
length(intersect(find(prod(KidsPPMD(:,2:3)"') ~= 0), find(KidsPPMD(:,1) == 0)));
DailyStatus{l,i}(t,s) = sum((prod(KidsPPMD(:,2:3),2) ~= 0) &

(KidsPPMD(:,1) == 0)); %Should be faster than above.
%DailyStatus{2,i}(t,s) =
length(intersect(find(prod(KidsPlaD(:,2:3)"') ~= 0), find(KidsPlaD(:,1) == 0)));
elseif s == 14; %Tallying infected with Ec & Gi & Ro

%DailyStatus{l,i}(t,s) = length(find(prod(KidsPPMD(:,1:3)') ~=
0));
DailyStatus{l,i}(t,s) = sum(prod(KidsPPMD(:,1:3),2) ~= 0); %Should
be faster than above.
%sDailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)"') ~=
0));
elseif s == 15; %Tallying completely non-ill people
%DailyStatus{l,i}(t,s) = length(find(sum(KidsPPMD' .72) <= 3));
DailyStatus{l,i}(t,s) = sum(sum(KidsPPMD' .72) <= 3); %Should be
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faster than above.

%DailyStatus{2,i}(t,s) = length(find(sum(KidsPlaD' ."2) <= 3));

elseif s == 16; %Il with only Ec
%DailyStatus{l,i}(t,s) = length(intersect(find(KidsPPMD (
2), find(sum(KidsPPMD(:,2:3)' .72) <= 2)"));
DallyStatus{l,l} t,s) = sum((KidsPPMD(:,1) == 2) &
(sum(KidsPPMD(:,2:3)"' .7"2)' <= 2)); %Should be faster than above.

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:

2), find(sum(KidsPlaD(:,2:3)' .7"2) <= 2)'));
elseif s == 17; %Ill with only Gi

%DailyStatus{l,i}(t,s) = length(intersect(find (KidsPPMD(:

2), find(sum([KidsPPMD(:,1) KidsPPMD(:,3)]"' .72) <= 2)"'));
DailyStatus{l,i}(t,s) = sum((KidsPPMD(:,2) == 2) &
(sum([KidsPPMD(:,1) KidsPPMD(:,3)]"' .72)' <= 2)); %Should be faster than above.

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:

2), find(sum([KidsPlaD(:,1) KidsPlaD(:,3)]"' .72) <= 2)"));
elseif s == 18; %IlL with only Ro

%DailyStatus{l,i}(t,s) = length(intersect(find (KidsPPMD(:

2), find(sum(KidsPPMD(:,1:2)"' .72) <= 2)"'));
DailyStatus{l,i}(t,s) = sum((KidsPPMD(:,3) == 2) &
(sum(KidsPPMD(:,1:2)"' .7™2)"' <= 2)); %Should be faster than above.

%DailyStatus{2,i}(t,s) = length(intersect(find(KidsPlaD(:

2), find(sum(KidsPlaD(:,1:2)"' .72) <= 2)"'));
elself s == 19; %Tallying ill with Ec & Gi only
%DailyStatus{l,i}(t,s) =
length(intersect(find(prod(KidsPPMD(:,1:2)"') == 4), find(KidsPPMD(:,3) < 1)));
DailyStatus{l,i}(t,s) = sum((prod(KidsPPMD(:,1:2),2) = ) &
(KidsPPMD(:,3) <= 1)); %Should be faster than above.
%DailyStatus{2,i}(t,s) =
length(intersect(find(prod(KidsPlaD(:,1:2)"') == 4), find(KidsPlaD(:,3) <= 1)));

elseif s == 20; %Tallying ill with Ec & Ro only
%DailyStatus{l,i}(t,s) =
length(intersect(find(prod([KidsPPMD(:,1) KidsPPMD(:,3)]') == 4), find(KidsPPMD(:
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1)));
DailyStatus{l,i}(t,s) = sum((prod([KidsPPMD(:,1) KidsPPMD(:,3)],2) ==
4) & (KidsPPMD(:,2) <= 1)); %Should be faster than above.

%DailyStatus{2,i}(t,s) =
length(intersect(find(prod([KidsPlaD(:,1) KidsPlaD(:,3)]') == 4), find(KidsPlaD(:,2) <=
1)));

elseif s == 21; %Tallying ill with Gi & Ro only

%DailyStatus{l,i}(t,s) =

length(intersect(find(prod(KidsPPMD(:,2:3)"') == 4), find(KidsPPMD(:,1) <= 1)));
DailyStatus{1l,i}(t,s) = sum((prod(KidsPPMD(:,2:3),2) == 4) &
(KidsPPMD(:,1) <= 1)); %Should be faster than above.

%DailyStatus{2,i}(t,s) =
length(intersect(find(prod(KidsPlaD(:,2:3)"') == 4), find(KidsPlaD(:,1) <= 1)));

elseif s == 22; %Tallying ill with Ec & Gi & Ro

%DailyStatus{l,i}(t,s) = length(find(prod(KidsPPMD(:,1:3)"') ==
8));

DailyStatus{l,i}(t,s) = sum(prod(KidsPPMD(:,1:3),2) == 8); %Should
be faster than above.

%DailyStatus{2,i}(t,s) = length(find(prod(KidsPlaD(:,1:3)') ==
8));

end
end
end
%Now storing the person-pathogen matrices at the end of this day, if exactly 1
loop was requested.
if loops == 1;
PPmatrices(t+1) .KidsPPM = KidsPPM;
PPmatrices(t+1).KidsPPMD = KidsPPMD;

end

%sizeof(DailyStatus) %Debug measure - too big for memory?

if nSpikesY > 0;
DailyStatus{2,i} = SpikeTimes; %Storing the spike times
DailyStatus{3,i} = daysBurnln; %Storing the equilibration duration
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(for debugging)

end
end
sdisp([' ']) %Adds line feed to separate the progress counters.
%s=========End daily loop, begin more testing code======
if testing == 1 && loops <= 15;
maxPrevTime = find(KidsInfPrev == max(KidsInfPrev)); %Getting time points of

max. prevalence of infection (1lst, if tie).

disp(['lst time point where max. prevalence is seen is
",num2str(maxPrevTime(1l))]) %Printing first point of max. prevalence.

figure(i); %Plotting infection prevalence.

%set(fl, 'Position', [5 5 1024 768]);

subplot(2,2,1);

plot([1l:maxTime]"',KidsInfPrev, '-k');

title 'Daily infection prevalence; Xs = reported waterborne prevalence';

ylabel 'Proportion affected'; xlabel 'Time’;

%Sx1im([0 625]);

hold on;

plot([1l:maxTime],KidsInfEc,'-r');

plot([1l:maxTime],KidsInfGi,'-g');

plot([l:maxTime],KidsInfRo,'-b');

h5 = plot([daysBurnIn:interval:maxTime],OQutPrevs.Kids, 'cx');

set(h5, 'linewidth',2);

legend('{\fontsize{10} Any infection}', '{\fontsize{10} E. coli
infection}', '{\fontsize{10} Giardia infection}', '{\fontsize{10} Rotavirus
infection}', '{\fontsize{10} LP {Irwd} (prior week)}');

hold off;

subplot(2,2,2);

semilogy([1l:maxTime],MeanDoses(:,1),"'-r');

title 'Daily mean dose of pathogens in drinking water (untreated)';

ylabel 'Daily mean dose'; xlabel 'Time';

%Sx1im([0 625]);

hold on;
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semilogy([1l:maxTime],MeanDoses(:,2),'-9"');

semilogy([l:maxTime],MeanDoses(:,3),"'-b");
legend('{\fontsize{10} E. coli}', '{\fontsize{10} Giardia}', '{\fontsize{10}

Rotavirus}');
hold off;
subplot(2,2,3);
plot([l:maxTime],sum(DailyStatus{1l,i}(:,1:3),2),"'-k");
title 'Daily infection incidence (new infections each day)';
ylabel 'New infections'; xlabel 'Time';
%Sx1lim([0 625]);
sylim([0 nKids]);
hold on;
plot([l:maxTime],DailyStatus{l,i}(:,1),
plot([1l:maxTime],DailyStatus{1l,i}(:,2),
plot([l:maxTime],DailyStatus{l,i}(:,3),'-b")
legend('{\fontsize{1l0} Total new infections}', '{\fontsize{10} E. coli
infections}', '{\fontsize{10} Giardia infections}', '{\fontsize{10} Rotavirus

infections}');
hold off;
subplot(2,2,4);
plot([l:maxTime],sum(DailyStatus{l,i}(:,4:6),2),"'-k");
title 'Daily illness incidence (new illnesses each day)';
ylabel 'New illnesses'; xlabel 'Time';
%Sx1im([0 625]);
%Sylim([0 nKids]);
hold on;
plot([l:maxTime],DailyStatus{l,i}(:,4),'-r');
plot([l:maxTime],DailyStatus{1l,i}(:,5),'-g9');
plot([1l:maxTime],DailyStatus{l,i}(:,6),"'-b');
legend('{\fontsize{10} Total new illnesses}', '{\fontsize{10} E. coli
illnesses}', '{\fontsize{10} Giardia illnesses}', '{\fontsize{10} Rotavirus illnesses}');

hold off;
if nSpikesY > 0;

-r

’

t-r')
-0

.
’
.
’
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disp([num2str(sum(sum(DailyStatus{l,i}(SpikeTimes(1l:end-
1),1:3)))/sum(sum(DailyStatus{1l,i}(daysBurnIn:end,1:3)))),' of infections due to spikes
(not including equilibration).']);
end
end %=========End testing code=========
%Adding baseline prevalence. Corrected for doublecounting (some infected people
would have been infected anyway by baseline transmission).
OutPrevs.Kids = OutPrevs.Kids + prevDiarrhBaseKids * (1 - OutPrevs.Kids);
%0utPrevs.KidsPla = OutPrevs.KidsPla + prevDiarrhBaseKids * (1 - OutPrevs.KidsPla);
%1 %Printing i as a debug measure
OutQMRA.rLP(1i) = mean(OutPrevs.Kids); %0utput long. prev. of reported diarrhea.
%0utQMRA.LPR(i) = OutQMRA.KILP(i) / OutQMRA.KPLP(i);
if storeStatus == 1; %Storing incidences.
OutQMRA.IncInfEc(i) = sum(DailyStatus{l,i}(maxTime-(nYears*365)+1:maxTime,1));
%Count of infections with E. coli.
OutQMRA.IncIllEc(i) = sum(DailyStatus{l,i}(maxTime-(nYears*365)+1l:maxTime,4));
%Count of illnesses with E. coli.
OutQMRA.IncInfGi(i) = sum(DailyStatus{l,i}(maxTime-(nYears*365)+1l:maxTime,2));
%Count of infections with for Giardia.
OutQMRA.IncIllGi(i) = sum(DailyStatus{l,i}(maxTime-(nYears*365)+1:maxTime,5));
%Count of illnesses with Giardia.
OutQMRA.IncInfRo(i) = sum(DailyStatus{l,i}(maxTime-(nYears*365)+1l:maxTime,3));
%Count of infections with for rotavirus.
OutQMRA.IncIllRo(i) = sum(DailyStatus{l,i}(maxTime-(nYears*365)+1l:maxTime,6));
%Count of illnesses with rotavirus.
%'Actual' longitudinal prevalences (person-days ill or infected, divided by
total person-days observed).
OutQMRA.LPInfEc(i) = sum(sum(DailyStatus{l,i}(maxTime- (nYears*365)+1l:maxTime,
[ 8 11 12 14])))/(nKids*nYears*365); %Yearly inf. LP, E. coli.
OutQMRA.LPI1lEc(i) = sum(sum(DailyStatus{l,i}(maxTime- (nYears*365)+1:maxTime,
[16 19 20 22])))/(nKids*nYears*365); %Yearly ill LP, E. coli.
OutQMRA.LPInfGi(i) = sum(sum(DailyStatus{l,i}(maxTime-(nYears*365)+1:maxTime,
[ 9 11 13 14])))/(nKids*nYears*365); %Yearly inf. LP, Giardia.
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OutQMRA.LPI11Gi(i) = sum(sum(DailyStatus{l,i}(maxTime- (nYears*365)+1:maxTime,

[17 19 21 22])))/(nKids*nYears*365); %Yearly ill LP, Giardia.

OutQMRA.LPInfRo(i) = sum(sum(DailyStatus{l,i}(maxTime- (nYears*365)+1:maxTime,
[10 12 13 14])))/(nKids*nYears*365); %Yearly inf. LP, rota.

OutQMRA.LPI11lRo(i) = sum(sum(DailyStatus{l,i}(maxTime-(nYears*365)+1:maxTime,
[18 20 21 22])))/(nKids*nYears*365); %Yearly ill LP, rota.

OutQMRA.LPINnfMix(i) = sum(sum(DailyStatus{l,i}(maxTime-
(nYears*365)+1:maxTime,11:14)))/(nKids*nYears*365); %Yearly inf. LP, mixed.

OutQMRA.LPI1TWMix (i) = sum(sum(DailyStatus{l,i}(maxTime-
(nYears*365)+1:maxTime,19:22)))/(nKids*nYears*365) ; %Yearly ill LP, mixed.

OutQMRA.LPInfAny(i) = sum(sum(DailyStatus{l,i} (maxTime-
(nYears*365)+1:maxTime,8:14)))/(nKids*nYears*365); %Yearly inf. LP, any.

OutQMRA.LPI1TlAny(i) = sum(sum(DailyStatus{l,i}(maxTime-
(nYears*365)+1:maxTime,16:22)))/(nKids*nYears*365) ; %Yearly ill LP, any.

%Mean daily pathogens per liter.

OutQMRA.PathLMeanEc (1) PathogensLmeans(1);
OutQMRA.PathLMeanGi(1i) PathogensLmeans(2);
OutQMRA.PathLMeanRo(1) PathogensLmeans(3);

end
Sfprintf(1,['d',num2str(t),'/"',num2str(maxTime),"'|"']); %Progress counter.

if 1 == 1; fprintf(1l,['Finished loops: ',num2str(i)]); else; fprintf(1,
['-',num2str(i)]); end;
if mod(i,floor(loops/10)) == 0; %Progress meter
disp(['Loop ',num2str(i),'/',num2str(loops),'. Done in ',num2str((toc/i) *
(Lloops-i) / 60 / 60),'h."'])

toc
end
if 1 == 5; disp(["' ']); disp(['=== Will finish ',num2str(loops),' loops in ~
",num2str(toc*loops/5/60/60)," ===']); end;
end %======Ending main QMRA loop=======

%Converting to a matrix so as to concatenate output from multiple calls, and subsequent
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easy output to .CSV for analysis in R.

OutQMRAmatrix
OutQMRAmatrix(

OutQMRAmatrix(:
OutQMRAmatrix(:
OutQMRAmatrix(:
OutQMRAmatrix(:
OutQMRAmatrix(:
OutQMRAmatrix(:
OutQMRAmatrix(:
OutQMRAmatrix(:

OutQMRAmatrix(
OutQMRAmatrix(
OutQMRAmatrix(
OutQMRAmatrix(
OutQMRAmatrix(
OutQMRAmatrix(
OutQMRAmatrix(
OutQMRAmatrix(

incidence column,

OutQMRAmatrix(

proportion of illness

OutQMRAmatrix(

proportion of illness

OutQMRAmatrix(

proportion of illness

OutQMRAmatrix(

incidence in episodes

Write the results of
dlmwrite(outFilename,

NaN
1, 1)
,2)
13)
14)
,5)
16)
17)
,8)
19)
:,10)
:,11)
:,12)
:,13)
:,14)
:,15)
:,16)
1, 17)
I
:,18)

:,19)
:,20)

:,21)

|| | | U | | B | B

n

loops, 14);

1:1:loo0ps;

pPerfUse;

pNoUse;

pTreat;
overallCompliance;
LRs(1);

LRs(2);

LRs(3);
OutQMRA.PathLMeanEc';
OutQMRA.PathLMeanGi'
OutQMRA.PathLMeanRo'
OutQMRA.LPInfAny';
OutQMRA.LPIT1lAny';
OutQMRA.IncI1llEc';
OutQMRA.IncIllGi';
OutQMRA.IncIllRo';

cl

11Tot.
OutQMRAmatrix(:,14)
from E. coli.
OutQMRAmatrix(:,15)
from Giardia.
OutQMRAmatrix(:,16)
from rotavirus.

per child per year.

OutQMRAmatrix,

%ID designation.

.
’

’

sum(OutQMRAmatrix(:,14:16)"')"';

./ OutQMRAmatrix(:,17);
./ OutQMRAmatrix(:,17);

./ OutQMRAmatrix(:,17);

OutQMRAmatrix(:,17) / (nKids * nYears);

a calibration to a file.
‘-append’);

disp([' Results written to ',outFilename,'.']);
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%Creating the total
%spIncIllEc,
%spIncIllGi,
%pIncIllRo,

%IncI1TLECY,



disp(['Mean path. concs. (Ec, Gi,
Ro):',num2str(mean(MeanDoses(daysBurnIn+l:maxTime,:)))]); %Checking pathogen
concentrations.

%seval(['save Results/OutQMRA',datestr(StartTime,30), " '.mat, OutQMRA;']) %Saving output
file.
if noStochParams == 1 && loops <= 15; %Displaying results if a series of input

parameters were tested.
out = [OutQMRA.rLP; OutQMRA.IncIllEc; OutQMRA.IncIl1Gi; OutQMRA.IncIllRo];
disp('rLP, IncIllEc, IncIllGi, IncIllRo, IncIllAll, pIncEc, pIncGi, pIncRo"')

out(5,:) = sum(out(2:4,:));
out(6,:) = out(2,:) ./ out(5,:);
out(7,:) = out(3,:) ./ out(5,:);
out(8,:) = out(4,:) ./ out(5,:);
%sout = out'

%smin(out)

%mean (out)

%max(out)
end

if StoreAllDailyStatuses == 1; %If storing everything, overwrite OutQMRA with it, so
it can be used within Octave.

OutQMRA = DailyStatus;
end

end %End function Main().
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%0ctave script to obtain proportion of infections that are from spikes.
%Must set StoreAllDailyStatuses == 1 in Main.m. This analyzes the OutQMRA cell array
that's output by Main.m.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (AnalyzeInfectionFromSpikes.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

o)
%}

1;
function Output = pS(mix,inc,sH);
[OutQMRAmatrix OutQMRA] = Main(0,1,0,[0 O0 O0],[0 0 0],[0 O
0],0, 'TestpSpikes.csv',char(['RTF ',mix,"' TrialCalibResults',inc, '5spikesx',num2str(sH),"
.csv']),1,5,sH,0);
startingDay = 128; %From line ~75 of Main.m (burn-in).
nRuns size(OutQMRA,2);
nDays size(OutQMRA{1,1},1);
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output = zeros(nRuns,3); %1st column is all new infections, 2nd is new infections
from spike days, 3rd is new infections from non-spike days.
for 1 = 1:nRuns;
output(i,1)
output(i,2)
output(i,3)
(1:5))), 1:3),2)); %7?*
end
output(:,4) = output(:,2) + output(:,3);
output(find(output(:,1) !'= output(:,4)),:) %Testing whether each row sums
properly.
outputSum = sum(output)
pSpikes = outputSum(2) / outputSum(1l)
output(:,5) = output(:,2) ./ output(:,1);
Output = output(:,5);

sum(sum(OutQMRA{1l,i}(startingDay:end,1:3),2)); %Row-wise sum.
sum(sum(OutQMRA{1,1i}(int32(0utQMRA{2,1}(1:5)) 2));

1:3),2
sum(sum(OutQMRA{1,i} (setxor(startingDay:end, int32(OutQMRA{2,1i}
?

=~ i mn

end

Results = struct([]);

c =1; %Initializing loop counter
inc={'Lo"', 'Med"', 'Hi'};
for i = 1:3;

for j = [10,1000,100000];
fork= [IAI’IBI'ICI];
Output = pS(k,inc{i},j)

eval(char(["Results.",inc{i},num2str(j),k," = Output;"]));
disp(['Col. ',num2str(c),', ',inc{i},"' incidence, spike height
",num2str(j),"', mix ',K])
cC = c+1;
end
end
end
boxplot(struct2cell(Results)); %Need to convert struct to cell array for easy
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boxplotting.

title 'Fig. S3. Proportion of infections occurring on spike days';
ylabel 'Proportion of infections';

%saxis('tic[y]"');

axis([0 28 0 1.1]); %Adjusting axis limits.

text(2.3,1.05, 'Low incidence');

text(11.2,1.05, '"Medium incidence');

text(20.5,1.05, 'High incidence');

ah=get (gcf, 'CurrentAxes'); %Getting handle of the axes that were just created by
boxplot ().
set(ah, 'XTick"',1:27); %Setting tick locations manually.

set(ah, 'XTickLabel', 'A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C|A|B|C]A|B|C")

%Labelling ticks manually with pathogen mixture.
hold on;
plot([9.5, 9.5], [0, 1.1],"'-K"); %Now placing lines to separate boxplots by incidence
and spike height.
plot([18.5, 18.5], [0, 1. 1], -k');
plot([3.5, 3.5], [0, 1],'-k");
plot([6.5, 6.5], [0, 1],'-k');
plot([12.5, 12.5], [0, 1],'-k'
plot([15.5, 15.5], [0, 1],'-Kk'
plot([21.5, 21.5], [0, 1],'-k'
plot([24.5, 24.5], [0, 1],'-k'
ah2 = axes('Position',[0 0 1 1
the size of the plot window.

);
);
-k');
-k");
k') ;
-k');
]’

'Visible', 'off'); %Creating a 2nd set of invisible axes

axis([0 1 0 1]); %Setting the limits of the
above invisible axes.

text(0.005,0.08, 'Pathogen mix:'); %Manually labeling the x axis
using the invisible axes.

text(0.005,0.04, 'Spike height: 10 1073 1075 10 1073 1075 10
1073 1075');

print -dps -mono pInfSpike.ps; %sDoes not work; gives bizarrely colored output with
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many different graphics formats. Simply grabbed a screenshot of the figure window
instead.

%Resulting proportion of infections occurring on spike days.

%L010A = 0.101
%L010B = 0.0997
%L0ol0C = 0.108
%L01000A = 0.581
%L0100OB = 0.580
%L01000C = 0.693
%L0100000A = 0.833
%L0100000B = 0.843
%L0100000C = 0.894
%Med10A = 0.0722
%Med10B = 0.0686
%Med10C = 0.0848
%Med1000A = 0.339
%Med1000B = 0.309
%Med1000C = 0.432
%Med100000A = 0.455
%Med100000B = 0.411
%Med100000C = 0.561
%SH1i10A = 0.0490
%Hi1l0B = 0.0460
%H110C = 0.0603
%Hi1000A = 0.188
%Hi1000B = 0.167
%H11000C = 0.232
%Hi100000A = 0.320
%Hi100000B = 0.275
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%H1100000C = 0.318
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%Just like AssignIll.m, but loops over columns of the person-pathogen matrix instead of
rows, & should be faster.

%Assigns an illness duration to entries of a matrix, where rows are people and columns

are pathogens

%Positive entries mean the person is infected, negative entries (or 0) mean the person

has recovered

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (AssignInf.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

%}

%sInputs:

% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen
matrix)

% Responses: Vector of illness responses (probability of illness given dose), 1

entry per pathogen
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% ResponsesNon: Vector of illness responses for people not using any device
% pUse: Probability that a person is not using any device

% durations: Vector of durations of illnesses, 1 entry per pathogen

% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen

%The output (matrixQut) is matrixIn with new illness durations assigned to some of its
entries.

function PPmatrix = AssignInf(PPmatrix,Responses,Durations,ImmuneTimes);
sizePP = size(PPmatrix);
Randoms = rand(sizePP); %Random #s for determining infection. One number per person
per pathogen.
%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index
values of people who will be newly infected.
Immunities ones(sizePP(1),1) * ImmuneTimes + PPmatrix;
%Durations ones(sizePP) * Durations;
%Immunities = PPmatrix + ImmuneTimes; sImmunities gives days left in (infection +
immune period), or a neg. # if susceptible.
for i = 1:sizePP(2);
Immunities(:,1i) = PPmatrix(:,1) + ImmuneTimes(i);
NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,1i) <
Responses(:,1))); %Gets indices of newly infected.
PPmatrix(NewlyInfected,i) = Durations(i);

end
end
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%Similar to AssignIll.m, but assigns infection durations randomly.

%Assigns an illness duration to entries of a matrix, where rows are people and columns
are pathogens

%Positive entries mean the person is ill, negative entries (or 0) mean the person has
recovered

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (AssignInfIllRand.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

%}

%sInputs:

% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen
matrix)

% Responses: Matrix of illness responses (probability of illness given dose), 1
row per person and 1 column per pathogen

% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen
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%The output (matrixQut) is matrixIn with new illness durations assigned to some of its
entries.
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m.

function [PPmatrix,PPmatrixD] =
AssignInfIllRand(PPmatrix,PPmatrixD,Responses, ImmuneTimes,MorbidityK);
%rand('state',28)
sizePP = size(PPmatrix);

Randoms = rand(sizePP); %Random #s for determining infection. One number per

person per pathogen.
Randoms2 = rand(sizePP); %Random #s for determining disease, as above.

%NewlyInfected = cell(sizePP(2),1); %Initializing cell array to store index
values of people who will be newly infected.
Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to

account for immunity.

Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same
size as PPmatrix) to assign to newly infected.

Durations(:,1) durEc(sizePP(1));

Durations(:,2) durGi(sizePP(1));

Durations(:,3) durRo(sizePP(1));

for 1 = 1:sizePP(2); %sLoop, once for each pathogen.
%NewlyInfected = intersect(find(Immunities(:,i) <= 0), find(Randoms(:,1i) <
Responses(:,1))); %Gets indices of newly infected. Note: 0 or less is susc.
NewlyInfected = find((Immunities(:,i) <= 0 & Randoms(:,i) < Responses(:,1)) ==
1); %Should be much faster than above line.

PPmatrix(NewlyInfected,i) = Durations(NewlyInfected,i);
PPmatrixD(NewlyInfected,i) = 1; %Flags newly infected.
%NewlyIll = intersect(NewlyInfected, find(Randoms2(:,i) < MorbidityK(i)));
%PPmatrixD (NewlyIll,i) = 2;
%----This| =|1is
%taken from line 25 above - should run faster than prev. 2 lines.
PPmatrixD((Immunities(:,i) <= 0 & Randoms(:,i) < Responses(:,i)) & (Randoms2(:
< MorbidityK(i)),1i) = 2;
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end
end
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%Similar to AssignIll.m, but assigns infection durations randomly.

%Assigns an infection duration to entries of a matrix, where rows are people and columns
are pathogens

%Positive entries mean the person is infected, negative entries (or 0) mean the person
has recovered

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (AssignInfRand.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

%}

%sInputs:

% PPmatrix: Matrix with 1 row per person and 1 column per pathogen (Person-Pathogen
matrix)

% Responses: Matrix of illness responses (probability of infection given dose), 1
row per person and 1 column per pathogen

% ImmuneTimes: Vector of durations of immunity, 1 entry per pathogen
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%The output (matrixQut) is matrixIn with new illness durations assigned to some of its
entries.
%It requires the functions durEc(), durGi(), & durRo() in IllDurations.m.

function [PPmatrix] = AssignInfRand(PPmatrix,Responses,ImmuneTimes);

%srand('state',28)

sizePP = size(PPmatrix);

Randoms = rand(sizePP); %Random #s for determining infection. One number per person
per pathogen.

Immunities = ones(sizePP(1),1) * ImmuneTimes + PPmatrix; %Adjusts PPmatrix to
account for immunity.

Durations = NaN(sizePP); %Making & populating a matrix of disease durations (same
size as PPmatrix) to assign to newly infected.

Durations(:,1) durEc(sizePP(1));

Durations(:,2) durGi(sizePP(1));

Durations(:,3) durRo(sizePP(1));

NewlyInfected = intersect(find(Immunities <= 0), find(Randoms < Responses));

%Gets indices of newly infected. Note: 0 or less is susc.

PPmatrix(NewlyInfected) = Durations(NewlyInfected);

end
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%Calculates whether a given week is reported as a week with diarrhea under the reporting

scheme in the DRC Lifestraw RCT (Boisson 2010).
%It considers reduced recall of past diarrheal episodes after 2d ('remembrance') and

possible distinct diarrhea episodes in the previous 7d.

%It operates on a matrix:
% Rows represent people, columns represent pathogens/illnesses, and entries represent

# of days remaining in the illness.
%It outputs a vector with 1 entry per person, 1 if illness is reported during the week, 0

if not.

o
%{

COPYRIGHT INFORMATION
Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").

This file (CalcDiarrhWeeks.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.
%}

function vec = CalcDiarrhWeeks(InMatrix, remembrance,timeWindow,Morbidity);
sizeInMatrix = size(InMatrix);
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Randoms = rand(sizeInMatrix(1l),sizeInMatrix(2));
for j = l:sizelnMatrix(2);

InMatrix((find(Randoms(:,j) > Morbidity(j))),j) = -9999;
end

for i = l:sizeInMatrix(1l); %Loop over all people. Only the most recent episode
(largest entry in a row) is used to assign illness.

%Randoms = rand(1,columns(InMatrix)); %Random numbers for determining
morbidity (these 2 lines moved upward for greater speed)

%InMatrix (i, find(Randoms > Morbidity)) = -9999; %SApply morbidity ratio: if
asymptomatic, infection is set to -9999, and therefore not reported. Note that this
modification is not passed out of this function.

if max(InMatrix(i,:)) >= -2;

vec(i) = 1; %If ill during day 0, 1, or 2, assume illness is always

reported, therefore assign illness.
elseif (max(InMatrix(i,:) >= -timeWindow) & rand() < remembrance);

vec(i) = 1; %0therwise, if ill during days 3-7, randomly determine if
episode is remembered. If so, assign illness.
else
vec(i) = (0); %0therwise, no illness is remembered or reported. Assign no
illness.
end
end
end

340



%sLoop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates
computing cluster use.

%Be sure to check that GetTrialParams.m is configured properly before running this
script.

%Submit as several jobs to parallelize a calibration run (maybe not worth bothering with
job array).

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (CalibrationLoopFuncCompile.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function[OutM OutS] =
CalibrationLoopFuncCompile(indexText,inc,calibRunsText,nSpikesText,multSpikesText,maxEcTe
xt,maxGiText,maxRoText);

%This helps with debugging, since arguments to compiled code can only be text.

index = str2num(indexText);
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RandStream.setDefaultStream(RandStream.create('mt19937ar', 'seed',sum([clock index*10])));
%Sets random stream based on clock & job index.

calibRuns = str2num(calibRunsText);

nSpikes = str2num(nSpikesText);

multSpikes = str2num(multSpikesText);

PathogensLMax = [str2num(maxEcText) str2num(maxGiText) str2num(maxRoText)];

%===Required lines for HPCC

setenv MKL DYNAMIC FALSE

smaxNumCompThreads (1) ; %Throws an error. Recommended, but does not seem to be
necessary.

%s===Parameter entry===

%sswitch inc; %This switch no longer needed since we're passing max pathogen
concentrations into this function.

case 'Lo'; PathogensLMax = [6e3, 0.3, 0.025]; %From QMRA2v2/TrialCalibRuns.m.
case 'Med'; PathogensLMax = [2e4, 0.8, 0.05];

case 'Hi'; PathogensLMax = [1.5e5, 1.6, 0.08];

otherwise; error('inc needs to be Lo, Med, or Hi');

o o o o°

%send

infile = 'nonapplicable.csv';

outfile =

[ 'Results/TrialCalibResults',inc,nSpikesText, 'spikesx’,multSpikesText, '-"',indexText,"'.csv

] ’

%===End parameter entry===

%disp ([ '##### Running

",num2str(size(U,2)), "'*"',num2str(size(T,2)),"'*"',num2str(size(L,2)), '+1="',num2str(combos),
' parameter combinations on ',num2str(size(tempData,l)),' parameter sets from
calibration, should have requested at least that many members in the job array. #####'])

[OutM OutS] = Main(0, 1, 0, [0 0 O], [0 ©@ O], PathogensLMax, calibRuns, outfile, infile,
1, nSpikes, multSpikes);
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disp ([ '##### DONE #####'])
end %End function.
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%Beta-Poisson dose response model, using N50 (default) or beta as a parameter
%sfunction outvar = DRbP(N50orBeta,alpha,invar, reverse='no',WhichParam='N50"') %0rdinarily,
invar is dose & outvar is response.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRbP.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function outvar = DRbP(N50orBeta,alpha,invar, reverse,WhichParam) %0rdinarily, invar is
dose & outvar is response.

if nargin == 3;
reverse = 'no'; WhichParam = 'N50';
end
switch(reverse)
case 'no'

switch(WhichParam)
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case 'N50'

outvar = 1-(1+(invar/N50orBeta)*(2”~(1/alpha)-1))."-alpha;
case 'Beta’

outvar = 1-(1+(invar/N50orBeta)).”-alpha;
otherwise

error(['WhichParam must be "N50" or "Beta"'])
end
case 'yes' %If reverse='yes', invar is response & outvar is dose.
switch(WhichParam)
case 'N50'
outvar

N50orBeta * ( ((1l-invar).”(-1/alpha) -1) /
(27(1/alpha)-1) );

case 'Beta'

outvar = N50orBeta * ((1l-invar).”(-1/alpha) -1);
otherwise
error(['WhichParam must be "N50" or "Beta"'l])
end
otherwise

error(['reverse must be "no" or "yes"'])
end
end
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%Returns a vector of response values, determined by dose response models, for several
pathogens.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRchoose.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

%}

%Inputs are vectors with 1 entry per pathogen, all in the same order:

% nonalphas: k parameter (exponential) or N50 parameter (beta-Poisson)

% alphas: alpha parameter (beta-Poisson); NA if exponential model is desired
% Doses: Doses of pathogens received per individual (under default behavior;
see 'reverse' below)

% morbidities: Morbidity ratios: proportion of infected who are ill

% reverse: Defaults to 'no', determining proportion ill from dose. If 'yes',

determines dose from proportion ill.
%The output (outvec) is a vector containing the proportions of exposed who will fall ill.
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%If reverse=='yes', outvec is a vector of doses calculated from invec, the proportions

ill.
%This code requires several custom functions/subroutines in the working directory:
Exponential dose response model

% DRexp.m:
% DRbP.m: Beta-Poisson dose response model
%sfunction outvec =
%0ctave

%DRchoose(nonalphas,alphas,invec,morbidities=1, reverse='no')
function outvec = DRchoose(nonalphas,alphas,Doses,morbidities, reverse)

if nargin == 3;
morbidities = 1; reverse = 'no';
end
if morbidities == 1;
morbidities = ones(length(nonalphas));
end
switch(reverse)
case 'no'
for i=1:1length(alphas);
if (isnan(alphas(i))) %if alpha is NA, run exponential dose
response
if size(Doses) (1) == 1;

outvec(i) = DRexp(nonalphas(i),Doses(i)) * morbidities(i);

else
outvec(i) = DRexp(nonalphas(i),Doses(:,1i)) *

morbidities(i);
end
%srun beta-Poisson dose response

else
outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i)) *

morbidities(1i);
end

end

case 'yes'
for i=1l:length(alphas);
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if (isnan(alphas(i))) %if alpha is NA, run exponential dose

response
outvec(i) = DRexp(nonalphas(i),Doses(i) ./
morbidities(i), 'yes','N50"') ;
else %srun beta-Poisson dose response
outvec(i) = DRbP(nonalphas(i),alphas(i),Doses(i) ./
morbidities(i), 'yes', 'N50"');
end
end
otherwise
error('reverse must be "no" or "yes"')
end
end
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%Exponential dose response model
%sfunction outvar = DRexp(k, invar,reverse='no') %0rdinarily, invar is dose & outvar is
response.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRexp.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function outvar = DRexp(k, invar, reverse) %This works in Matlab.
if nargin < 3;
reverse = 'no';
end
switch(reverse);
case 'no';
outvar = 1l-exp(-k * invar);
case 'yes'; %If reverse='yes', invar is response & outvar is dose.
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outvar = log(l-invar)/-k;
otherwise
error(['reverse (last parameter) must be "no" or "yes"'])
end
end
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%sFunctions for calculating vectors of illness durations

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").

This file (durEc.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.
%}

function output = durEc(n);
output = round(gamrnd(
output(output == 0) =
still function as 1 day.
end

%Based on ...?

1.775,1.690,[n,11)); %Shape, then scale
0.1
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%sFunctions for calculating vectors of illness durations

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durGi.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

%}
function output = durGi(n); %Based on a fit of gamma dist. to limited info from Kent GP
1988.

output = round(gamrnd(3.206,3.431,[n,1])); %Shape, then scale

output (output == 0) = 0.1; %Sets zero durations to 0.1 day instead. Will
still function as 1 day.
end
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%sFunctions for calculating vectors of illness durations

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durRo.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.
%}

function output = durRo(n); %Based on 4 rotavirus-infected volunteers having durations
of 1, 2, 3, and 4 days (Kapikian 1983).

output = ceil(rand([n,1]) * 4);

output (output == 0) = 0.1; %Sets zero durations to 0.1 day instead. Will
still function as 1 day.
end
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%sLoop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates
computing cluster use.
%Be sure to check that GetTrialParams.m is configured properly before running this

script.
%Differs from EstimationLoopFuncCompile in that only a small number of parameter
combinations are chosen, rather than all possible combinations.

%
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (EstimationLoopFuncCompileV2.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function[OutM OutS] =
EstimationLoopFuncCompileV2(indexText,inc,mix,overallComplianceText,multConcText,nSpikesT

ext,multSpikesText);
Octave = size(ver('Octave'),l); %Indicator of whether the code is running under Octave

(1) or Matlab (0).
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index = str2num(indexText);
if Octave == 0;
RandStream.setDefaultStream(RandStream.create('mt19937ar', 'seed',sum([clock
index*101]1)));
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave
bases the seed on the clock by default).
end
oC = str2num(overallComplianceText);
multConc = str2num(multConcText);
nSpikes = str2num(nSpikesText);
multSpikes str2num(multSpikesText);
%baselines str2num(baselinesText);

%s===Required lines for HPCC
setenv MKL DYNAMIC FALSE

smaxNumCompThreads (1) ; %Throws an error. Does not seem to be necessary.

%s===Parameter entry=== Note that 0 should not be included in L.

P = [0 .1 .2]; %sVector of desired values for proportions of children never using the
device.

SN = [0 .1 .2]; %Vector of desired values for proportions of children perfectly using
the device.

L=1[12345]; %Vector of log reduction values desired (all marker pathogens get the
same LRV).

%sTesting the code using the vectors below.

%SU=[.9 1]

%T=[.9 1]

%SL=[1 2]

%Constructing a matrix with all possible combos of P, N, & L

%[p n 1] = ndgrid(P,N,L);

%Combos = [p(:) n(:) 1(:)1; %T0D0: Build functionality to check N, P,
overallCompliance, and pTreat to ensure they make sense before running.

%Building appropriate combinations of perfect compliers (P; 1lst column) and noncompliers
(N; 2nd column).
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Combos = [oC 0]; %Combo with max possible perfect compliers & max possible
noncompliers (same as [0 1-0C]; [oC 1-0C] is 0/0).
Combos (2, :) [0C/2 (1-0C)/2]; %Combo with intermediate perfect/nonperfect compliers.
Combos (3, :) [0 O]; %Combo with no perfect/nonperfect compliers (i.e., pTreat ==
oC).
CombosT = (oC - Combos(:,1)) ./ (1 - Combos(:,1) - Combos(:,2)) %TODO: doublecheck to
make sure this is right.
if sum(CombosT > 1 + eps) | sum(CombosT < O - eps); error('pTreat out of range (>1 or
<0); check parameter combos.'); end
Combos(:,3) = L(1); %This & subsequent 'for' loop copy the above for each possible LRV.
OutCombos = Combos;
for i = 2:size(L,2);

NextCombos = Combos;

NextCombos(:,3) = L(1);

OutCombos = [OutCombos; NextCombos];

end

Baselines = zeros(1,3); %Creating baseline row. No log reduction & no perfect
compliance.

Baselines(:,2) = 1; %Modifies above, so that 100% never use device.
Combos = [Baselines; OutCombos]; %Baseline as 1st row.

Combos' %0utput results, transposed.

combos = size(Combos,1)

infile =

['RTF_',mix,' TrialCalibResults',inc,nSpikesText, 'spikesx',multSpikesText,'.csv'];
outfile =

[ 'Results/EstResults',inc,mix,nSpikesText, 'spikesx',multSpikesText, 'x',multConcText, 'oC"',
num2str(oC*100),'-"',indexText,"'.csv'];

%===End parameter entry===

tempData = csvread(infile,1,1);

disp(['##### Running 3 * ', num2str(size(L,2)),'+ 1 = ',num2str(combos),' parameter

356



combinations on ',num2str(size(tempData,l)),' parameter sets from calibration, should
have requested at least that many members in the job array. #####'])
if index == 1; %If running the baseline parameters:

[OutM OutS] = Main(Combos(index,1l), Combos(index,2), oC, [Combos(index,3)
Combos(index,3) Combos(index,3)], [0 0 0], [0 0 O], 0, outfile, infile, multConc,
nSpikes, multSpikes, 1);
else %If running the parameters from calibration:

[OutM OutS] = Main(Combos(index,1), Combos(index,2), oC, [Combos(index,3)
Combos(index,3) Combos(index,3)], [0 0 0], [0 0 O], 0, outfile, infile, multConc,
nSpikes, multSpikes, 0);
end
disp ([ '##### DONE #####'])
end %End function.
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%sLoop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates
computing cluster use.

%Be sure to check that GetTrialParams.m is configured properly before running this
script.

%Differs from EstimationLoopFuncCompile in that only a small number of parameter
combinations are chosen, rather than all possible combinations.

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (EstimationLoopFuncCompileV2PC.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function[OutM OutS] =
EstimationLoopFuncCompileV2Untreated(indexText,inc,mix,overallComplianceText,multConcText
,NSpikesText,multSpikesText);

Octave = size(ver('Octave'),l); %Indicator of whether the code is running under Octave
(1) or Matlab (0).
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index = str2num(indexText);
if Octave == 0;
RandStream.setDefaultStream(RandStream.create('mt19937ar', 'seed',sum([clock
index*101]1)));
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave
bases the seed on the clock by default).
end
oC = str2num(overallComplianceText);
multConc = str2num(multConcText);
nSpikes = str2num(nSpikesText);
multSpikes str2num(multSpikesText);
%baselines str2num(baselinesText);

%s===Required lines for HPCC
setenv MKL DYNAMIC FALSE
smaxNumCompThreads (1) ; %Throws an error. Does not seem to be necessary.

%s===Parameter entry=== Note that 0 should not be included in L.

L=1[12345]; %sVector of log reduction values desired (all marker pathogens get the
same LRV).

infile =

['RTF_',mix,' TrialCalibResults',inc,nSpikesText, 'spikesx',multSpikesText,'.csv'];
outfile =

[ 'Results/EstResults',inc,mix,nSpikesText, 'spikesx',multSpikesText, 'x',multConcText, 'oC"',
num2str(oC*100),'-"',indexText,"'.csv'];

%===End parameter entry===

tempData = csvread(infile,1,1);

disp ([ '##### Running ',num2str(size(L,2)),' parameter combinations on a subsample of
",num2str(size(tempData,l)),' parameter sets from calibration, should have requested at
least that many members in the job array. #####'])

[OutM OutS] = Main(1l, 0, oC, [L(index) L(index) L(index)], [0 ©0 0], [0 0 O], O, outfile,
infile, multConc, nSpikes, multSpikes, 0);
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disp ([ '##### DONE #####'])
end %End function.
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%sLoop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates
computing cluster use.

%Be sure to check that GetTrialParams.m is configured properly before running this
script.

%Differs from EstimationLoopFuncCompile in that only a small number of parameter
combinations are chosen, rather than all possible combinations.

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (EstimationLoopFuncCompileV2Untreated.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function[OutM OutS] =
EstimationLoopFuncCompileV2Untreated(indexText,inc,mix,overallComplianceText,multConcText
,NSpikesText,multSpikesText);

Octave = size(ver('Octave'),l); %Indicator of whether the code is running under Octave
(1) or Matlab (0).
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index = str2num(indexText);
if Octave == 0;
RandStream.setDefaultStream(RandStream.create('mt19937ar', 'seed',sum([clock
index*101]1)));
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave
bases the seed on the clock by default).
end
oC = str2num(overallComplianceText);
multConc = str2num(multConcText);
nSpikes = str2num(nSpikesText);
multSpikes str2num(multSpikesText);
%baselines str2num(baselinesText);

%s===Required lines for HPCC
setenv MKL DYNAMIC FALSE

%smaxNumCompThreads (1) ; %Throws an error. Does not seem to be necessary.

%s===Parameter entry=== Note that 0 should not be included in L.

L =[12 3 4 5]; %sVector of log reduction values desired (all marker pathogens get the
same LRV).

infile =

['RTF_',mix,' TrialCalibResults',inc,nSpikesText, 'spikesx',multSpikesText,'.csv'];
outfile =

[ 'Results/EstResults',inc,mix,nSpikesText, 'spikesx',multSpikesText, 'x',multConcText, 'oC"',
num2str(oC*100),'-1-',indexText,'.csv'];

%===End parameter entry===

tempData = csvread(infile,1,1);

nChunks = 20; %# of equal-sized chunks to break the parameter sets into. Add 1 more for
the remainder.

nSets = size(tempData,l);

chunk = floor(nSets/nChunks);

remainder = mod(nSets,nChunks);
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ChunkStarts = linspace(1l,nChunks*chunk+1,nChunks+1);

ChunkStarts(end+1) = nSets+1;

DataChunk = tempData(ChunkStarts(index):ChunkStarts(index+1)-1,:);

z = zeros(size(DataChunk,1),1);

DataChunk = [z DataChunk];

DataChunk = [0,0,0,0;DataChunk]; %Needs surplus 1lst line because Main() will strip the
1st line off (the original R output has column names).

infile = ['TempBaselineChunk', indexText,'.csv'];

csvwrite(infile,DataChunk);

disp ([ '##### Running ',num2str(nSets),' parameter combinations in ',num2str(nChunks+1),"
chunks, should have requested at least that many members in the job array. #####'])
[OutM OutS] = Main(0, 1, 1, [0 0 O], [0 ©0 O], [0 O 0], O, outfile, infile, multConc,
nSpikes, multSpikes, 0);

disp ([ '##### DONE #####'])
end %End function.
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%Examining data from a single run of the QMRA lifestraw model.
%Converting to susceptible (-9), immune (-1), or diseased (9) for each of the 3
pathogens.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (ExaminelRun.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

%}

%s====Setting options====

startTime = 96; %Time point at which to start looking at the data. Note that 1st
matrix corresponds to time 0.

recode = 1; %If 1, recode matrix entries to susc./inf./immune.

%====Finished with options, starting processing.====

PPMs = PPmatrices; $%Making a copy.
switch(recode);
case 1;
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disp(['Recoding raw numbers to susc./inf./immune.'])
for i = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts
(after equilibrium is reached).
PPMs (i) .KidsInt(PPMs(1i).KidsInt <= -7) = -9; %7 day immune period; O counts as
the 1st immune day, so at -7 they are susc.
PPMs (i) .KidsInt(PPMs(i).KidsInt > 0) = 9; %sSusceptible if a positive
integer.
PPMs (i) .KidsInt(abs(PPMs(1i).KidsInt) != 9) = -1;%Immune if neither of the above
applies.
PPMs (1) .KidsInt(PPMs(1).KidsInt == 9) = 2; %Infected person-day marked as 2,
so as to more easily distinguish.
end
for i = startTime:size(PPmatrices)(2); %Same as above 'for' loop, but placebo.
PPMs (i) .KidsPla(PPMs (i) .KidsPla <= -7) = -9;
PPMs (i) .KidsPla(PPMs (i) .KidsPla > 0) = 9
|

PPMs (i) .KidsPla(abs(PPMs(i).KidsPla) '= 9) = -1;
PPMs (i) .KidsPla(PPMs (i) .KidsPla == 9) = 2;
end
otherwise
disp(['Not recoding to susc./inf./immune, output will display raw numbers.'])
end
KidsIntStatusEc = NA(size(PPMs(1l).KidsInt) (1), size(PPmatrices)(2)-(startTime-1));
KidsIntStatusGi = KidsIntStatusEc;
KidsIntStatusRo = KidsIntStatusEc;
KidsPlaStatusEc = NA(size(PPMs(1l).KidsPla) (1), size(PPmatrices)(2)-(startTime-1));
KidsPlaStatusGi = KidsPlaStatusEc;
KidsPlaStatusRo = KidsPlaStatusEc;

for i = startTime:size(PPmatrices)(2); %Starting when the actual simulation starts
(after equilibrium is reached).
for j = 1l:size(PPMs(1).KidsInt) (1);
KidsIntStatusEc(j,i-startTime+1)
KidsIntStatusGi(j,i-startTime+1)
KidsIntStatusRo(j,i-startTime+1)

PPMs (i) .KidsInt(j,1);
PPMs (i) .KidsInt(j,2);
PPMs (i) .KidsInt(j,3);
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end

for j = 1:size(PPMs(1).KidsPla)(1);

KidsPlaStatusEc(j,i-startTime+1)
KidsPlaStatusGi(j,i-startTime+1)
KidsPlaStatusRo(j,i-startTime+1)

end
end

PPMs (i) .KidsPla(j,1);
PPMs (i) .KidsPla(j,2);
PPMs (i) .KidsPla(j,3);

%Now can visually inspect the 6 status matrices that have been output.
%Should be a way to collapse them also (run-length encoding?), but not yet implemented.

function outmatrix =

coll(inmatrix,nMaxRuns) %Inefficient but hopefully works.

sizeM = size(inmatrix);

maxk = 1; %Initializing counter to determine the maximum number of runs ever

during the function

call.

for 1 = 1:sizeM(1); %Loop over all rows
sizeM(2); %Loop over each entry per row

for j = 2:
if j
be a transition (or

= 2; %Special procedure for first iteration, since there
not) between the 1lst 2 entries.
k = 1; %Initiating run counter;
if inmatrix(i,j) !'= inmatrix(i,j-1);
if inmatrix(i,j-1) == -9; dur(k) = -1;
elseif inmatrix(i,j-1) == -1; dur(k) = 0.001;

else

k
elseif inmatrix(i,j-1) == 2; dur(k) = 1;
else stop('Unexpected value in matrix (
end

k =k + 1; %Increment run counter

if inmatrix(i,j) == -9; dur(k) = -1;

elseif inmatrix(i,j) == -1; dur(k) = 0.001;

elseif inmatrix(i,j) == 2; dur(k) = 1;

else stop('Unexpected value in matrix (not -9, -1, or 2).
end

%If type of run does not change in 1lst 2 entries

if inmatrix(i,j) == -9; dur(k) = -2;
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elseif inmatrix(i,j) == -1; dur(k) = 0.002;

elseif inmatrix(i,j) == 2; dur(k) = 2;
else stop('Unexpected value in matrix (not -9, -1, or 2).")
end
end
elseif j == sizeM(2); %Special procedure for last iteration - need to
drop it since it is probably incomplete.
dur(k) = 0;
else %If j (the column) is anything greater than 2, but not the last
column:
if inmatrix(i,j) !'= inmatrix(i,j-1); %1f there is a transition,
reset the run:
k =k + 1;
if inmatrix(i,j) == -9; dur(k) = -1;
elseif inmatrix(i,j) == -1; dur(k) = 0.001;
elseif inmatrix(i,j) == 2; dur(k) = 1;
else stop('Unexpected value in matrix (not -9, -1, or 2).')
end
else %If there is no transition, extend the run
if inmatrix(i,j) == -9; dur(k) = dur(k) - 1;
elseif inmatrix(i,j) == -1; dur(k) = dur(k) + 0.001;

elseif inmatrix(i,j) == 2; dur(k) = dur(k) + 1;
else stop('Unexpected value in matrix (not -9, -1, or 2).')
end
end
end
end
if k > maxk;
maxk = k %Updates & displays maxk (largest no. runs seen so far). Use as
guide for entering nMaxRuns.
end
outmatrix(i,:) = padarray(dur, [0, nMaxRuns - length(dur)],0, ‘post');

end
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outmatrix(:,1) = 0; %Sets all 1lst runs to 0 (they are likely to be incomplete).
mean (outmatrix(find(outmatrix >= 1))) %Print mean duration of illness
end

function z = GraphColl(outmatrix) %Graphs output of above function.

bins = unique(outmatrix(find(outmatrix < 0)));

if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1l)=binsT(2)-1;
binsT(3)=binsT(2)+1; bins=binsT; end

subplot(2,2,1);

hist(outmatrix(find(outmatrix < 0)),bins) %Durations of susceptibility

bins = unique(outmatrix(find(outmatrix > 0 & outmatrix < 1)));

if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1)=binsT(2)-0.001;
binsT(3)=binsT(2)+0.001; bins=binsT; end

subplot(2,2,2);

hist(outmatrix(find(outmatrix > 0 & outmatrix < 1)),bins) %Durations of immunity

bins = unique(outmatrix(find(outmatrix >= 1)));

if length(bins) == 1; binsT=NaN(3,1); binsT(2)=bins; binsT(1l)=binsT(2)-1;
binsT(3)=binsT(2)+1; bins=binsT; end

subplot(2,2,3);

hist(outmatrix(find(outmatrix >= 1)), bins) %Durations of illness
end

%histc(PlaRo(find(PlaRo < 1 & PlaRo > 0)),[0:0.001:max(PlaRo(find(PlaRo < 1 & PlaRo >

0)))]1) %sAwful (but functional) way to get counts of possible values for immunity
length.
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%This script generates a series of parameters for input into the main code, rather than
stochastically generating them.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").

This file (GetTrialParams.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.

%}
reps = 1; # of times to run each parameter set.
readParams = 1; %To read parameters generated by a previous model run (1) or not
(0).
paramSets = 12; # of parameter sets to be run, if generating them
systematically.
%sloops = paramSets * reps; %Deliberately overwrites 'loops' in the main code.
switch(readParams);

case 1;

TrialParamsAll = dlmread(inFilename,"',',1,1); %sAccess a file returned by
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ReadOutput.r. inFilename is an input to Main.m.

paramSets = size(TrialParamsAll, 1); %0verwrites 'paramSets' above.

disp(['Reading parameter values from ', num2str(paramSets),' trials in
',inFilename, ', will winnow down to 150 if greater.'])

if useAllParamSets == 1;

TrialParams = TrialParamsAll;
elseif paramSets > 150;
selectedParamSets = randperm(paramSets);
selectedParamSets = selectedParamSets(1:150);
TrialParams = TrialParamsAll(selectedParamSets,:);
paramSets = size(TrialParams,1);
else TrialParams = TrialParamsAll;
end
case 0;
MinDoses = [0, O, 0.05]; %Minimum non-zero dose. A good choice is dose that
infects 1% of population (ID1).
ID1s = [7.5697E3, 5.0708E-1, 1.7280E-2]; %ID1 for ETEC, Giardia, & rota.
%MinDoses = ID1ls * .1; %Uncomment if ID1ls are desired.
TrialParams = zeros(paramSets,size(MinDoses, 2));
for 1 = 1:length(MinDoses); %sPopulating all cells except the 1lst row with the
minimum nonzero dose.
TrialParams(2:paramSets,i) = MinDoses(1i);

end
TrialParams(2,:) = MinDoses; %1lst run is 0 pathogens; 2nd run is the
minimum nonzero dose.
for 1 = 3:paramSets; %sUncomment the particular line desired. Comment all to
check multiple replicates of the same dose.
%TrialParams(i,:) = MinDoses * (i-1); %Linearly increases the dose
on each model run.
TrialParams(i,:) = 2 * TrialParams(i-1,:); %Doubles the dose on each

model run.

%sTrialParams(i,2) = 10 * TrialParams(i-1,2); %Doubles the dose for only 1
pathogen, leaving others constant.
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end

TrialParams(:,4) = 0; %Sets a single value for non-waterborne diarrhea
prevalence.

%disp('Will cycle through these parameters, 1 run per set.')

%strialPrevDiarrhBaseKids = 0 %Sets a single value for non-waterborne diarrhea

prevalence.

%TrialParams %Print to screen, so we see that this file was
executed & to view the trial params.

otherwise;

error('readParams must be 0 or 1');
end
%Replicating the parameter sets.
TP = TrialParams; %Making a copy, for use in loop below.

if reps > 1;
for 1 = 1l:reps-1;
TrialParams = [TrialParams; TP]; sAppending copies of the parameter sets.

end
end
TrialParams = sortrows(TrialParams); %Sorting so that identical parameter values are
next to each other.
loops = size(TrialParams,1); %0verwriting 'loops' variable in Main().
disp(['Using ',num2str(paramSets),' parameter sets, ',num2str(reps),' times each,

totaling ',num2str(loops),' runs.'])

if paramSets <= 25;
disp(['Parameter sets are as follows:'])
TP

end
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%Pulls together QMRA output files from multiple Octave threads. Runs surprisingly fast!

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (OutQMRAmerge.m) is part of QMRA2v5.

QMRA2v5 is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

QMRA2v5 is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with QMRA2v5. If not, see <http://www.gnu.org/licenses/>.
%}

clear all;
%First, enter the desired name of the .CSV:
filename = {'Results/MergedOutQMRA.csv'};
%sNow enter as many files as necessary, each one containing the 'workspaces' from a
thread.
Files = {'Results/0OutQMRA20110315T130458.mat"'};
rows = 0; %Initializing variable to count up total number of rows.
for 1 = 1:length(Files);
eval(disp(['load ',char(Files(i)),"' OutQMRA;'])) %Loads the 'OutQMRA' struct stored
in .mat file, overwriting that object if it exists.
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%disp(['File ',num2str(i),' took ',num2str(),' to run
‘,num2str(length(OutQMRA.CalL)), ...

%' loops (',num2str(),' per loop.'])

eval(disp(['OutQMRA',num2str(i), '=0utQMRA;'])) %Copies it and adds a numeric
suffix to the name.

rows = rows + length(OutQMRA.EcL);
end
clear OutQMRA; %Removes the initial copy of the last file loaded.

%CSVmatrix = NA(rows,length(fieldnames (OutQMRALl))-2; %Creating the output matrix. Each
row is a QMRA iteration.
for i = 1:length(Files);

%1  %For debugging

eval(disp(['OutQMRA = OutQMRA',num2str(i),"';"'])) %Taking 'OutQMRAx' and creating a
copy called 'OutQMRA' to work from.

OutQMRA = rmfield(OutQMRA, 'StartTime'); OutQMRA = rmfield(OutQMRA, 'EndTime');

CSVmatrix = OutQMRA.Fit'; %Initializing a matrix that will become a .CSV by
transposing the first structure field into it.

for [val,key] = OutQMRA; %This special syntax allows looping over all elements of
the structure.

%skey %For debugging

if strcmp(char(key),'Fit') == 0; %Don't do anything for the 'Fit' element
because we took care of that 2 lines before.
CSVmatrix = [CSVmatrix, val'l; %sTranspose fields into columns & bind
into the matrix.
end

end
eval(disp(['CSVmatrix',num2str(i),' = CSVmatrix;']))
clear CSVmatrix;

end

CSVmatrix = CSVmatrixl; %Initializing output matrix.
for 1 = 2:length(Files);
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eval(disp(['CSVmatrix = [CSVmatrix; CSVmatrix',6 num2str(i),'l;']))
end

fn=fieldnames (OutQMRA) ;

nFields = numel(fn); %shttp://stackoverflow.com/questions/5292437/how-to-concat-cell-
array-of-strings-in-matlab

fn(l:nFields-1) = strcat(fn(l:nFields-1),{',"'});

file = fopen(filename, 'w+');

fprintf(file, '%s',disp([fn{:}]1));

fclose(file);

eval(["dlmwrite('",char([filename]),""',CSVmatrix, '-append');"])

disp(['Done; .mat files have been merged and output to ',char(filename),' in
‘,char(pwd), '/Results/"'])
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9.5. The EITS model (chapter 5)

The transmission model (referred to as “EITSd” for short) consists of several text files containing necessary functions and
subroutines; the core program is ’EITSd.m’. Simulation options are set by the choice of several values at the top of the file 'EITSd.m'.
These options default to values that generate a single test run of the simulation. Other options are set when calling the function
'EITSd.m' and are described within that file; for example, the following can be submitted at the Octave (or MATLAB) prompt to do
one test calibration run:

EITSA('C',1, 'test.csv');

The source code is below. The filename of each of the source code files is found in the copyright information at the top of each
file. Although EITSd uses some filenames that are identical to those in QMRAv13_20110414 or QMRA2v5, the content of its files
differs. EITSd also requires folders named 'Graphics' and 'Results’ in the working directory in order to store output.

All files in the source code that follows are part of EITSd and subject to the GNU General Public License Version 3, except for
erdrey.m, which is part of the CONTEST toolbox at http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest (A.

Taylor & Higham, 2009); erdrey.m is included at the end of the source code for completeness, by permission of the authors (Des

Higham, personal communication, 24 Aug. 2012).
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%Environmental transmission model of diarrheal infection transmission (main file), Kyle
S. Enger, July 2012

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").

This file (EITSd.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

o
%}

%EITSd runs on Octave 3.2 or later.
%Also works well (and runs faster) on MATLAB; the results in chapter 5 of the

accompanying dissertation were all produced with MATLAB.

%If running on MATLAB, requires the statistics toolbox, and possibly others.

%This code (EITSd.m, the core component of EITSd) is accompanied by several
functions/subroutines, which are part of EITSd and need to be in the working directory:
% ApplyLRVs.m: Applies 10gl0 reduction values to stocks of pathogens

% AssignCompliance.m: Given compliance parameters for a community, assigns specific
compliance characteristics to specific households
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% DoseResponse.m: Applies dose response functions to individuals

% CalLoopFuncCompile.m: Code that calls EITSd() in order to facilitate parallel
processing of many differently parameterized calibration runs

% DRbP.m: Beta-Poisson dose response model

% DRexp.m: Exponential dose response model

% durEc.m: Randomly pick a duration for E. coli infection

% durGi.m: Randomly pick a duration for Giardia infection

% durRo.m: Randomly pick a duration for rotavirus infection

% EstLoopFuncCompileBase.m: Code that calls EITSd() in order to facilitate parallel
processing of many differently parameterized baseline (no HWT) estimation runs

% EstLoopFuncCompileHWT.m: As above, but for estimation runs using HWT with imperfect

compliance

% EstLoopFuncCompileHWTPC.m: As above, but for estimation runs using HWT with perfect
compliance

% Inact.m: Inactivates pathogens in all compartments

% PlotMicrobes.m: Generates line charts of flows of microbes during a single
model run

% PlotPeople.m: Generates line charts of people and their infection statuses
during a single model run

% Pooping.m: Determines results of defecation events by infected people

%Also requires in the working directory: erdrey.m, written by Alan Taylor and Des Higham,
U. of Strathclyde,

% freely available at
http://www.mathstat.strath.ac.uk/research/groups/numerical analysis/contest,

% and reproduced and included with EITSd by permission of the authors, though it is not a
part of EITSd).

%Use just the 1lst 3 arguments to run the model with default values for all parameters.
%CalibOrEst: Whether the model is in calibration ('C') or estimation ('E') mode.

%nRuns: Number of runs (calibration), or number of runs per parameter set (estimation).
%soutFilename: Filename for output file containing results.

%inFilename: Used for estimation only. Filename root for .CSV containing parameter values
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from calibration step.
%CF variables: Calibration factors; 1lst value is low end of range, 2nd value is high end

of range.

%CFdecayr: 2x3 matrix: top row is low end of range of decay constant modifiers;
bottom row is high end of range. Columns are bac.-vir.-prot.

%NHHr: Value to replace default for number of households (nHH).

%E variables: LRVs and compliance figures for various intervention scenarios in the
estimation step. Estimation necessitates input of garbage for the CF ranges above.

%dbstop(161); %Setting breakpoint for debugging. Type 'dbquit' at the debug prompt to
quit back to Octave prompt.

function [People LogHHP Log nMw nMl OutMatrix] = EITSd(CalibOrEst, nRuns, outFilename,
inFilename, CFSfr, CFHDhr, CFVr, CFDlr, CFdecayr, nHHr, ElSan, EcSan, ELHWT, ECHWT,
ElHand, EcHand);

if size(ver('Octave'),1)==0; format compact; format longe; end %Fixes annoying default
display characteristics in MATLAB.

if nargin == 3; disp(['Running with default parameter values only.']); end
if CalibOrEst == 'C';

loops = nRuns;

OutMatrix = NaN(loops,87); %Starting output matrix, summarizing results from many
model runs, one row per run.
elseif CalibOrEst == 'E'; %Pull in parameter values from calibration runs that fit the
criteria.

TrialParams = dlmread(inFilename,',"',1,1); %Access a file returned by

ReadOutput.r. inFilename is an input to EITSd.m.
paramSets = size(TrialParams, 1);
if paramSets > 100 & sum([ElSan ELHWT ElHand]) > 0; %If >100 parameter sets and
an intervention is being applied, randomly sample 100 sets without replacement, to use in
estimation step. TODO: Conflicts with sampling of 150 parameter sets in calibration R
code.
selectedParamSets
selectedParamSets

randperm(paramSets);
selectedParamSets(1:100);
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TrialParams = TrialParams(selectedParamSets,:);
paramSets = size(TrialParams,1);

end
%Replicating the parameter sets.
TP = TrialParams; %Making a copy, for use in loop below.

if nRuns > 1;
for 1 = 1:nRuns-1;
TrialParams = [TrialParams; TP]; %sAppending copies of the parameter
sets.
end
end
TrialParams = sortrows(TrialParams); %sSorting on basis of ID number, so that runs
with identical CF values are next to each other.
loops = size(TrialParams,1);

OutMatrix = NaN(loops,88); %Starting output matrix, summarizing results from many
model runs, one row per run. 88th column is the ID of the set of CFs input.

disp(['Using ',num2str(paramSets),' parameter sets, ',num2str(nRuns),' times each,
totaling ',num2str(loops),' runs.'])
elseif CalibOrEst == 'D'; %Running with default parameters only.

loops = nRuns;
end
OutMatrix(:,1) = 1l:loops; %Serially numbering rows.

Octave = size(ver('Octave'),l); %Indicator of whether the code is running under Octave
(1) or Matlab (0).

p.ProgramVersion=7; p.StartTime=datestr(now,31);

%s===Parameter values (struct of parameters created simultaneously). Start with defaults
for parameters that vary in calibration step.

%loops = nRuns; %Number of distinct runs with a given set of
parameters.
CFSf = 1E-8; p.CFSf=CFSf; %Calibration factor: microbe transfer from surface water to

stored drinking water
CFHDh = 0.01; p.CFHDh=CFHDh; %Calibration factor: microbe transfer out of household
environment to stored water or adults (kids are higher; see wHandMouth).
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CFV = 0.066; p.CFV=CFV; %Calibration factor: microbe transfer between households
when a visit occurs (bidirectional). Rota, skin-skin, Ansari 1988.

CFDl = 1E-9; p.CFD1l=CFD1; %Calibration factor: proportion of land pathogens ingested
per adult (kids are higher; see wHandMouth).
CFdecay = [.6 .6 .6]; %Calibration factor: multiplier applied to inactivation

rates in water to convert them to inactivation rates out of water.

%Microbe-specific parameters [bacteria, viruses, protozoans]:===

Mpgf = [5E8 2E6 572000]; p.Mpgf=Mpgf; %Microbes per gram of feces (DuPont 1971, Ward
1984, Danciger 1974).

Mpgf = [0 O O]; p.Mpgf=Mpgf; %For code verification (checking the development
of baseline infections).

KorN50 = [2111912, 6.171, 0.01982]; p.KorN50=KorN50; %Exponential k parameter or beta-
Poisson N50 parameter

alpha = [0.1549, 0.2531, NaN]; p.alpha=alpha; %Presence/absence of alpha
value determines beta-Poisson or exponential dose resp.

MRK = [0.214, 0.36, 0.59]; p.MRk=MRK; %Morbidity ratios for kids.

MRa = [0.214, 0.222, 0.03]; p.MRa=MRa; %Morbidity ratios for adults. Can't find a good
adult MR for E. coli, so reusing the MR for kids.

latent = [round(1.75), round(3.2), round(13.5)]; p.latent=latent; %Latent
(incubation) period.
infill = [round(3.4), round(2.5), round(18.3)]; p.infill=infill; %Duration of

infectivity (assumed the same as duration of disease). NOT USED except for determining
burn-in; see durEc(), durRo(), & durGi().

immune = [1, 1, 1]; p.immune=immune; %sImmune period (assumed).

%gM = [0.6 0.6 0.6]; p.gM=gM; %Daily inactivation rate of microbes in surface
water (assume similar for soil, stored water, & hands) - see Inactivation.xls &
EITSparams.ods. CFdecay used to modify these for application to land & household
environment compartments.

%xHtoW = [0.26 0.26 0.26]; p.xHtoW=xHtoW; %sTransfer from hands to water, per contact.
Half of reduction for E. coli from Pickering 2011.

%p . XxHtoP=xHtoP = [0.34 0.34 0.34]; %Transfer from hands to person's mouth, per contact.
Rusin 2002 (assuming protozoa same as bac & viruses). Since so high & hand-mouth contacts
so frequent, assume all are ingested each day.
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%sxferVisit = 0.066; p.xferVisit=xferVisit; %Proportion of hand pathogens that are
transferred (2-way) during a visit. Rota, skin-skin, Ansari 1988.

1San = [3 3 3]; p.lSan=1San; %LRVs attributable to sanitation. Based on
amount of feces on toilet paper (which often isn't flushed).

LHWT = [6 4 3]; p. U HWT=1HWT; %LRVs attributable to household water
treatment.

lHand = [0.46, 0.46, 0.46]; p.lHand=1Hand; %LRVs attributable to handwashing; Luby 2001,
TTC. Slightly higher than Pickering 2011.
%sCommunity characteristics (people & households):

%nHH = 1000; p.nHH=NnHH; %sApproximate number of households in the
simulated community

nNHH = 200; p.nHH=nHH; %sApproximate number of households in the
simulated community

mPHH = 5; p.mPHH=mPHH; %Mean people per household (truncated Poisson)
pKids = 0.18; p.pKids=pKids; %Proportion of people in the community who are <5y.

meanDeg = 5.3; p.meanDeg=meanDeg; %Mean network degree for households in 18 villages,
‘passing time' network, Joe's Ecuador sites (Zelner 2012).

Water intake and defecation output parameters:

Ws = 25; p.Ws=Ws; %Size of household water storage container, in liters.
Wflow = 0; p.Wflow=Wflow; %sUnused. Simple in/outflow of reservoir, daily rate,
starting with 0 (maybe 25 ft~3/sec, USGS creek measurements).

landArea = 1; p.landArea=landArea; %Unused. Community area, km™2. Presuming people only
poop within their community. Allows calc. of persons per square km.

Wdd = [1.178, 2.3]; p.Wdd=Wdd; %L H20 drunk daily. Akpata 2004, Nigerian children;
Fudge 2008, Kenyan runners (agrees w. USEPA 2011, p. 100).

fpp = [109.3, 225]; p.fpp=Tpp; %Grams of feces excreted daily; Nigerian children and
adult British vegans (both with high-fiber diets).

fHands = 0.23; p.fHands=fHands; %Grams of feces on fingers after defecation
event. Based on daily feces on toilet paper. See EITSparams.ods.

pPoopH20 = 0; p.pPoopH20=pPoopH20; %Unused. Probability that a defecation event goes
straight into the surface water (i.e., not on land).

%sCompliance parameters. 1lst element is overall compliance, 2nd is compliance type:
l=alpha, 2=beta, 3=gamma.
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cSan = [0, 1]; p.cSan=cSan; %sCompliance with sanitation. Defaults to no
compliance; will be varied.

CHWT = [0, 1]; p.cCHWT=CcHWT; %As above, but HWT.

cHand = [0, 1]; p.cHand=cHand; %As above, but handwashing.

%Now, basic daily rates for some key events. All rates are per day.

%rH20Drink = 6; p.rH20Drink=rH20Drink; %Daily drinks from stored water per person.
rPoopInf = 1; p.rPoopInf=rPoopInf; %sDefecation events, per non-ill person

rPoopIll = 3; p.rPoopIll=rPoopIll; %Defecation events, per ill person

rVisit = 2/7; p.rVisit=rVisit; %Visits/contact/day (each contact is a pair

of households - see adjacency list generated below, based on time spent in past week
[Zelner 2012]).

rRain = 1/14; p.rRain=rRain; %Roughly fortnightly rainstorm
XRunoff = [0.001, 0.05]; p.xRunoff=xRunoff; %Daily transfer of pathogens from land to
surface water without rain, and with rain.

wHandMouth = 330 / 130; p.wHandMouth=wHandMouth; %Hand-mouth contacts/day for kids
divided by hand-mouth contacts/day for adults (USEPA 2011). Weights kids as being more
unhygienic.

BaseInf = [1.17 0.347 0.212]; %Baseline infections per person-year. Chosen to give 0.5
diarrheal episodes per child-year (total; half bac., 25% vir. & prot.) when distributed
randomly among the population (CalcBaselineInfectionIncidence.ods).

%===End parameter values; now simulation options===

tMax = 365; p.tMax=tMax; %Number of simulation days desired; daysBurnIn is
then added to it.

daysBurnIn= ceil(max(immune) + max(latent) + max(infill)) * 3; p.daysBurnIn=daysBurnln;
tMax = tMax + daysBurnlIn;

pSafeStorage = 0; p.pSafeStorage=pSafeStorage; %Currently can only be 1 or 0.
Proportion of the community that has safe (household water) storage. Toggles presence of
safe storage for all HWT users in the community.

nML = [0 O O]; p.nMl=nMl; %Initial numbers of microbes on the land

nMw = [0 O 0]; %Initial number of microbes in the reservoir

if loops > 3; storeDetails = 0; else storeDetails = 1; end; %If too many loops, don't
bother storing detailed output.

SummaryResults = NaN(loops,8); %Store summary data from all runs. TODO: fully
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implement?
disp(sprintf('Running %s loops.',num2str(loops)))

for 1 = 1:loops; %Allows multiple model runs. Loops once per run.
disp(sprintf('STARTING RUN %s',num2str(l)))
t=0; %Initialize time counter

LogIncInf = NaN(tMax,9); %Stores daily infection incidence (count of new infections)
for the 3 pathogens: 1:3, kids; 4:6, adults; 7:9, all.

LogIncIll = NaN(tMax,9); %Stores daily illness incidence (count of new illnesses)
for the 3 pathogens: 1:3, kids; 4:6, adults; 7:9, all.

Log = NaN(tMax,33); %Logs daily status summary for all people.
LogK = NaN(tMax,18); %Logs daily status summary for all kids.
LogA = NaN(tMax,18); %Logs daily status summary for all adults.
if storeDetails == 1;
LogHHP = cell(tMax,2); %Stores HHs and People matrices daily.
LogFlux = NaN(tMax,3,11); %Cube to store fluxes of microbes. z is 1:11 (1-

surface water to stored water at resupply; 2-overall visit transfer; 3-not used, but
formerly land-to-hand-to stored water at drinking; 4-rainfall; 5&6-pooping into surface
H20 & land; 7-inactivation; 8&9-kids' dose, water & hands; 10&11-adults' dose, water &
hands) .
tRain = [(1:tMax)',NaN(tMax,1)]; %Logs times of rain events.
end
extinct=0; equilibrium=0; %Initialize extinction & equilibrium flags.

%===Generating the community. Yields a matrix for tracking households and a matrix
(or struct, 1 item per hh?) for tracking persons.===

%HHs has 16 columns: counts of persons, adults, and kids (1:3); counts of microbes
on hands (4:6), stored water (7:9), food (10:12), compliance with sanitation, HWT, and
handwashing (13:15), and amount of water currently stored in the household (16).

containerOK = 0;

while containerOK == 0; %The 'while' loop ensures that no HH has more people than
its stored water container can supply. See the warning near the end.
if nargin >= 9; nHH = nHHr; end %0verriding default number of households

HHs = poissrnd(mPHH,ceil(nHH * (1 + poisspdf(0,nHH))),1); %Generates extra
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households, since some will have 0 persons & will be thrown away.
HHs = sort(HHs(find(HHs > 0)));
NHH = size(HHs,1); %Actual number of households will probably be slightly
lower than the inputted number.
nPeople = sum(HHs);
nKids = round(nPeople * pKids);
nAdults = nPeople - nKids;
HHs(:,2) = 1; %2nd column is the count of adults. Every household has at least
1 adult. TODO: This will break if nAdults < nHH, but this is extremely unlikely.
aA = nAdults - nHH; %Adults that still need to be assigned to a household.
while aA > 0;
HHs(:,3) = HHs(:,1) - HHs(:,2); %3rd column tracks the number of empty
person-slots (potential children) remaining in each household.
candidates = find(HHs(:,3) > 0);
picked = candidates(ceil(unifrnd(eps,size(candidates,1),1))); %This is
like Matlab's randsample(), which Octave lacks.
HHs (picked,2) = HHs(picked,2) + 1;

aA = aA - 1;
end
HHs(:,3) = HHs(:,1) - HHs(:,2); %Now, 3rd column becomes the number of
kids in each household.
Wneeded = sum(HHs(:,2:3) .* repmat([Wdd(2),Wdd(1)],nHH,1),2); %Now error-

checking to make sure no HH exhausts their stored H20.
containerOK = 1;
if sum(Wneeded > Ws) ~= 0;
containerOK = 0;
warning(sprintf('At least 1 household will drink > %sL daily.
Retrying..."',num2str(Ws)))
end
end
HHs = horzcat(HHs,zeros(nHH,13)); %Adding 9 fields for the 3 marker pathogens on
hands (4:6), water (7:9), and food (10:12) in each household.
%Also adding 3 fields to track usage (an aspect of compliance) of sanitation, HWT,
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and handwashing (13:15), and 1 field to track stored water (16).

HHs(:,13) = AssignCompliance(HHs(:,13),cSan); %This household uses sanitation X
of the time. If X > 0, it owns a latrine.
HHs(:,14) = AssignCompliance(HHs(:,14),cHWT); %This household treats their water

X of the time. If X > 0, it has a HWT method.
HHs(:,15) = AssignCompliance(HHs(:,15),cHand); %This household washes hands X of
the time. If X > 0, it has enough soap/water.
HHs(:,17) = pSafeStorage * (HHs(:,14) ~= 0); %ALll households using HWT (partially or
perfectly) have the same safe storage status.
%HHs (:,17) = binornd(1l,pSafeStorage,nHH,1); %Randomly assigning whether the
household has safe storage. TODO: binary, SS or not, village-wide?
%Now generating matrices for tracking each adult and each child.
Adults = zeros(nAdults,8); %Adults, with disease status (1:3) & status counter
(4:6) for the 3 marker pathogens. 7th column designates household.
%sDisease status: -1, susceptible; 0, immune; 1, exposed; 2, infected; 3, diseased
iA =1; %Counter for rows in adults.
for 1 = 1:nHH; %Placing household indices in the 7th column of the matrix, so that
people can be tied to certain households.
pop = HHs(1,2);
Adults(iA:iA+pop-1,7)
Adults(iA:iA+pop-1,8)
iA = 1A + pop;

i;
HHs(i,1); %Adds household size to each adult's record.

end

Kids = zeros(nPeople(l) - nAdults, 8); 9%As above, for kids.

iA =1;

kidHHindexes = find(HHs(:,3) > 0); %Gets households that have kids.

for j = l:size(kidHHindexes,1); %sFor all households with kids...
1 = kidHHindexes(j);
pop = HHs(i,3);
Kids(iA:iA+pop-1,7) = 1i;
Kids (iA:iA+pop-1,8) = HHs(i,1); %Adds household size to each kid's record.
iA = 1A + pop;

end
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LogicalKids = logical([ones(nKids,1l); zeros(nAdults,1)]); %Vector with 1 for each
kid and 0 for each adult. Used later for distinguishing adults from kids.

People = vertcat(Kids,Adults); %Combining into a single matrix, one row per
person, kids on top and adults on the bottom.
People(:,1:3) = 1; People(:,4:6) = ceil(rand(nPeople,3) * max(latent)); %sStart

with everyone exposed with everything, with a random latent period; everyone will
therefore develop infection or disease.

%Now choosing particular values for parameters if calibrating.
switch(CalibOrEst);
case 'C'; %T0D0O: Test.

if nargin == 3;
1; %Do nothing, therefore use default parameter values.
else
checkCFHDh = max(HHs(:,2) + HHs(:,3) * wHandMouth); %The most a HH

could lose from visits is 1-(1-CFV)”max(connx/HH).
if 10 ~ CFHDhr(2) * checkCFHDh > 1;
warning('Upper end of CFHDh range for calibration would result
in more pathogens moving out of the household environment than exist. Adjusting.')
CFHDhr(2) = logl0(1/checkCFHDh);
if CFHDhr(1) > CFHDhr(2); CFHDhr(1) = CFHDhr(2); end
end
if 10”CFVr(2) > 1 - 10”CFHDhr(2); %TODO: This doesn't seem to work.
Currently solving by using ~0.9 for CFVr(2) instead of 1.
warning('Upper end of CFV range for calibration would result in
more pathogens moving out of the household environment than exist. Adjusting.')
CFVr(2) = 1 - CFHDhr(2);
if CFVr(1l) > CFVr(2); CFVr(l) = CFVr(2); end
end
CFSf = 10~ (rand(1) * (CFSfr(2) - CFSfr(1l)) + CFSfr(1)); sUniform
sampling of the surface water to stored drinking water calibration factor (logl0® scale).
CFHDh = 10”~(rand(1) * (CFHDhr(2) - CFHDhr(1)) + CFHDhr(1)); %Uniform
sampling of the from-household-env. calibration factor (logl@ scale).
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CFV = 10”(rand(1) * (CFVr(2) - CFVr(l)) + CFVr(1l)); %sUniform
sampling of the visits calibration factor (loglO scale).
CFDl = 10"~ (rand(1) * (CFDlr(2) - CFDlr(1)) + CFDlr(1)); %SUniform
sampling of the surface water to stored drinking water calibration factor (logl0® scale).
CFdecay = 10 .”~ (rand(1,3) .* (CFdecayr(2,:) - CFdecayr(1l,:)) +
CFdecayr(1l,:)); %sUniform sampling of decay modifiers converting base decay rates to
actual decay rates (logl0O scale).
disp(sprintf('Chosen calib. factors: CFSf=%s, CFHDh=%s, CFV=%s, CFDl=
%s, CFdecayEc=%s, CFdecayRo=%s, CFdecayGi=
%s',num2str(CFST),num2str(CFHDh) ,num2str(CFV),num2str(CFD1l),num2str(CFdecay(1l)),num2str(C
Fdecay(2)),num2str(CFdecay(3))))
end
case 'E'; %Using parameters from previous runs consistent with RCT. TODO:
Update code below (copied from Main.m).
CFsetID = TrialParams(l,1);
CFSf = TrialParams(1,2);
CFHDh = TrialParams(l,3);
CFV = TrialParams(1,4);
CFDl = TrialParams(1,5);
CFdecay = TrialParams(1,6:8);
1San=ElSan; cSan=EcSan; lHWT=ElHWT; cHWT=EcHWT; lHand=ElHand;
cHand=EcHand; 9%Reading in chosen LRV and compliance parameters for a particular
intervention scenario.
otherwise
error('CalibOrEst must be C (calibration) or E (estimation).');
end %end switch block

%Now generating dosing weights for ingestion of pathogens on hands (depends on HH
composition). Kids ingest more pathogens than adults. NO LONGER NEED wtDoses since
pathogens in household environment can now persist from day to day (though they still
exponentially decay).

swtDoses = HHs(:,2:3) .* repmat([rHandMouth(2), rHandMouth(1l)],nHH,1); %Reversing
wtHandMouth to match cols. 2&3 in HHs.
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%swtDoses(:,3) = sum(wtDoses,2);

wtDoses(:,1:2) = wtDoses(:,1:2) ./ repmat(wtDoses(:,3),1,2) ./ HHs(:,2:3);

%Gives proportion of microbes ingested from hands by that household's set of adults
and set of children.

swtDoses(find(isnan(wtDoses))) = 0; %Sets NaN (from dividing by 0) to 0.

chosenOnes = NaN(nPeople,5); %This matrix is used in the defecation step each day.

EffM = zeros(2,9); %This vector stores the number of 'effective'
microbes over the course of the simulation (those that contributed to a new infection,
kids [row 1] & adults [row 21]).

%sConnections between households: See Zelner 2012 (in press, AJPH).

nEdges = round(nHH*meanDeqg/2);

if nEdges > nHH * (nHH-1) / 2;

disp('Community is too small to generate network of desired degree. Creating
fully connected network.')
nEdges = nHH * (nHH-1) / 2;

end

Am = erdrey(nHH,nEdges); %As above, but random graph (Erdos-Renyi). 2nd argument is
the number of edges. Yields a sparse matrix.

[AX Ay Av] = find(Am); %Generating adjacency list (1 row per connection).

Al = horzcat(Ax,Ay,Av); %Note that all connections in the adjacency list are 2-way,
therefore listed twice.

nA = size(Al,1); %Number of possible visits. Each connection has 2 possible
ways to visit (A visits B, or B visits A).

%Now generating all the random numbers needed during the simulation.

nRandCols = tMax+1; %Random number table (and event log) is pre-
generated based on this. One column per day.

RPoopPlace = rand(nPeople,nRandCols); %Random table for defecation location, each
person, each day. Unused if pPoopH20==0 (the default).

%RCompHW = rand(nPeople,nRandCols); %Random table for handwashing
compliance, by household. Compliance is the same for all household members, but is
assessed individually.
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%RCompHWT = rand(nHH,nRandCols); %Random table for household water
treatment compliance.

%RCompSan = rand(nPeople,nRandCols); %Random table for sanitation
compliance, by household. Compliance is the same for all household members, but is
assessed individually.

RVisit = rand(nA,nRandCols); %Random table for determining which visits
happen each day.

RRain = rand(1l,nRandCols); %Random vector for rainfall events.

RDRtime = rand(1l,nRandCols); %Random vector for timing of dose response

events within the day.

RDRpeople = rand(nPeople,3,nRandCols); <%Random cube for determining daily outcome
of dose response for each person & each pathogen. z coordinate is the day.

RMR = rand(nPeople, 3,nRandCols); %Random cube for determining daily outcome
of morbidity ratios for each person & each pathogen. z coordinate is the day.

Rbaseline = rand(nPeople,3,nRandCols); %Random cube for determining baseline
exposures, which later turn into baseline infections. z coordinate is the day.

%0utput sanity check on community size and composition.

disp(sprintf('Simulated community has %s people/km™2, %s households, %s people
%5>=5y, %s<5y). Daily water demand is %s L. Smallest HH is %s, biggest is %s, mean %s
people/HH. Min connections per HH is %s, max is %S, mean is %s. Running for %s days,
preceded by %s days of burn-in, total %s
days.',num2str(nPeople/landArea),num2str(size(HHs,1)),num2str(size(People,1l)),num2str(siz
e(Adults,1)),num2str(size(Kids,1)),num2str(nHH *
Ws),num2str(min(HHs(:,1))),num2str(max(HHs(:,1))),num2str(mean(HHs(:,1))),num2str(full(mi
n(sum(Am)))),num2str(full (max(sum(Am)))),num2str(full(sum(sum(Am)))/nHH),num2str(tMax-
daysBurnIn),num2str(daysBurnIn),num2str(tMax)));

%X = disp(['Simulated community has ',num2str(nPeople/landArea),' people/km~2,
",num2str(size(HHs,1)),"' households, ',num2str(size(People,1l)),' people
(',num2str(size(Adults,1)), '>=5y, ',num2str(size(Kids,1)),'<5y). Smallest HH is
",num2str(min(HHs(:,1))),"', biggest is ',num2str(max(HHs(:,1))),"', mean
",num2str(mean(HHs(:,1))),"' people/HH. Min connections per HH is
",num2str(full(min(sum(Am)))), ', max is ',num2str(full(max(sum(Am)))),"', mean 1is
",num2str(full(sum(sum(Am)))/nHH),'. Running for ',num2str(tMax-daysBurnIn),' days,
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preceded by ',num2str(daysBurnIn),' days of burn-in, total ', num2str(tMax),' days.']);

%sdisp(x)
%==== DAILY LOOP STARTS====
tic
while t < tMax && extinct == 0 && equilibrium == %Keep iterating until max
time is reached or a microbe goes extinct. The 'equilibrium' flag is not currently used.
%swhile t < tMax %For code verification.
t=t+1; %sAdvance to the next day
phase = 1; %Marker for debugging
initialHHs = HHs; initialPeople = People; %Storing copies of these matrices
at the beginning of each day, for debugging.
%if Octave == 1;
% printf('-%s',num2str(t)); %Printing every day (for debugging)
%selse
fprintf('%ss',num2str(mod(t,10))); %Printing last digit of every day (for
debugging)
%send
Sus = People(:,1:3)==-1; %Updating counts of people in various states, for each
pathogen.

nSus = sum(Sus);

nSusK sum(Sus(1:nKids,:));

nSusA sum(Sus (nKids+1:nPeople,:));
Imm = People(:,1:3)==0;

nImm = sum(Imm);

nImmK sum(Imm(1l:nKids,:));

nImmA sum(Imm(nKids+1:nPeople, :));
Exp = People(:,1:3)==1;

nExp = sum(Exp);

NExpK = sum(Exp(1l:nKids,:));
NEXpA = sum(Exp(nKids+1:nPeople,:));
Infec = People(:,1:3)==2; %Would rather use 'Inf' than 'Infec' here, but it

means +infinity to Octave/Matlab.
nInf = sum(Infec);

390



1 microbe.

NnInfK = sum(Infec(1l:nKids,:));
nInfA = sum(Infec(nKids+1l:nPeople,:));
Ill = People(:,1:3)==3;

nIll = sum(Ill);

NITLK = sum(Ill(1l:nKids,:));

NITLA = sum(Ill(nKids+1:nPeople,:));

if sum(sum([Sus;Imm;Exp;Infec;Ill]) == [nPeople nPeople nPeople]) ~= 3;
error('Sum of all possible states ~= total number of people, for at least

")

end

%sAbove are 3-element vectors. Now need # of people infected with anything, but

ill with nothing (nInfNotIll), and # of people ill with anything (nIllAny).

test = sum(abs(People(:,1:3)) .~ 3, 2); %This variable distinguishes 'any

infected & non-ill' from 'any ill"'.

assigning

InfNotIll = test < 27 & test >= 8;

NnInfNotIll = sum(InfNotIll);

NINfNotITlK = sum(InfNotIll(1l:nKids));
NINfNotILlA = sum(InfNotIll(nKids+1:nPeople));
ITlAny = sum(People(:,1:3)==3, 2) > 0;

NITLAny = sum(IlTLlAny);

NITLAnyK = sum(IllAny(1l:nKids));

NITLAnyA = sum(IllAny(nKids+1:nPeople));
%Check for extinction of any microbes.

phase = 2;

%The next loop is not needed since extinctions have been avoided through
baseline infections.
%q{

if t > daysBurnIn + 1; %This avoids an error (negative incidence) if

extinction happens during initial equilibration period.

if sum(People(:,1) <= eps) == nPeople & sum([sum(HHs(:,[4 7

10]1)),nMw(1),nML(1)]) <= 0.01;

extinct = 1; disp(['Sim stopped at time ',num2str(t),' due to
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extinction of bacteria']) %Terminates the event loop after this day is done.
elseif sum(People(:,2) <= eps) == nPeople & sum([sum(HHs(:,[5 8
11]1)),nMw(2),nML(2)]) <= 0.01;
extinct = 2; disp(['Sim stopped at time ',num2str(t),' due to
extinction of viruses']) %Terminates the event loop after this day is done.
elseif sum(People(:,3) <= eps) == nPeople & sum([sum(HHs(:,[6 9
12])),nMw(3),nML(3)]) <= 0.01;
extinct = 3; disp(['Sim stopped at time ', num2str(t),' due to

extinction of protozoa'l]) %sTerminates the event loop after this day is done.
end
end
%}

%1f sum(sum(People(:,1:3) <= eps) == nPeople) >= 1 & (sum([sum(HHs(:,[4 7
10]1),nMw(1),nM1(1)])) <= 0.01 | sum([sum(HHs(:,[5 8 11]),nMw(2),nML(2)])) <= 0.01 |
sum([sum(HHs(:,[6 9 12]),nMw(3),nML(3)])) <= 0.01) );

% extinct = 1; disp(['Sim stopped early due to extinction of at least one
pathogen near time ',num2str(t)]) %Terminates the event loop after this day is done.

%send

%{

if mod(t,50) == 0 && t >= 100; %Test whether system has equilibrated, based

on any infection (without illness). TODO: Never trips. Probably unnecessary anyway.
typeOne = 0.1; %Test whether last 50 days & previous 50 days are drawn
from the same distribution, with this value of alpha.
eqPass = 0; %Number of times the test has failed to reject
hypothesis of same distribution.
if Octave==1; %0ctave and Matlab have different function names for the
Wilcoxon rank-sum test.
[pval,ztest] = u test(Log(t-99:t-50,17),Log(t-49:t,17));
else %if running Matlab:
[pval, reject] = ranksum(Log(t-99:t-50,17),Log(t-
49:t,17), 'alpha', typeOne);
end

392



if pval < typeOne;
eqPass = 0;
else
eqPass = eqPass + 1;
end
if eqPass==2; %If the test fails to reject twice in a row, set the
equilibrium flag, terminating the event loop:
equilibrium = 1; disp(['Sim stopped early; equilibrium apparently
reached near time ',num2str(t)])
end
end

o)
%}

%sDefecation (the only source of microbes). First, partitioning shedding people
into 4 categories. TODO: Fully convert to daily fecal output? Maybe change fpp, rPoopIll,
and rPoopInf.

phase = 3;

chosenOnes(:,1) = IllAny & LogicalKids; %SIll kids.
chosenOnes(:,2) = InfNotIll & LogicalKids; %sAsymptomatic kids.
chosenOnes(:,3) = IllAny & ~LogicalKids; %SIll adults.
chosenOnes(:,4) = InfNotIll & ~LogicalKids; %Asymptomatic adults.
chosenOnes(:,5) = ~ITlAny & ~InfNotIll; %sUninfected people.

if unique(sum(chosenOnes,2)) ~= 1; %T0ODO: Check this.
error('Multiple allocation of some people to different categories.')

end

nMwOld = nMw; nMlOld = nMl;

[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs,
Mpgf, fpp(1)*rPoopIll, fHands*rPoopIll, nMw,nMl, pPoopH20, lHand, 1San,chosenOnes(:,1)); %SI11
kids. Note more poop on hands due to repeated defecation (rPoopIll).

[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs,
Mpgf, fpp(1)*rPoopInf, fHands, nMw,nMl, pPoopH20, LHand, 1San, chosenOnes(:,2));

%sAsymptomatic kids.
[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs,
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Mpgf, fpp(2)*rPoopIll, fHands*rPoopIll, nMw,nMl, pPoopH20, LHand, 1San, chosenOnes(:,3)); %SI11
adults. Note more poop on hands due to repeated defecation (rPoopIll).
[HHs, nMw, nMl] = Pooping(RPoopPlace(:,t), People, HHs,
Mpgf, fpp(2)*rPoopInf, fHands, nMw,nMl, pPoopH20, LHand, 1San, chosenOnes(:,4));
%sAsymptomatic adults.
if storeDetails == 1;
LogFlux(t,:,5)
LogFlux(t,:,6)

nMw - nMwOld;
nMlL - nMlOld;

end
postPoopHHs = HHs; %Making a copy for debugging.

%Next transfer: land to water via rain etc.
phase = 4;
if RRain(t) < rRain;

Runoff = nMl * xRunoff(2);

tRain(t,2) = 1; %Flagging this day as a rainy one.
else
Runoff = nMl * xRunoff(1);
end
nML = nMLl - Runoff; %Removing pathogens from land.
nMw = nMw + Runoff; %Adding pathogens to water.

if storeDetails == 1; LogFlux(t,1:3,4) = Runoff; end

%Now quantifying all possible transfers; then apply them simultaneously (so as
to make them independent).

%sInter-household visits: quantifying microbe exchange.

phase = 5;

chosenVisits = Al(RVisit(:,t) < rVisit,:); %Choosing the visits between
households that actually happen today (conceptualized as 1 person meeting 1 other
person). Throws odd "Undefined function 'visit' for input arguments of type 'char'" error
in MATLAB compiled code, but not in interpreted code.

%The following complexity ('for' loop) is necessary to handle successive visits
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on the same day by the same household.

HU = unique([chosenVisits(:,1); chosenVisits(:,2)]); %List of households
involved in at least 1 visit

nHHv = size(HU,1); %Number of
households involved in at least 1 visit

MH = [HHs(HU,[1 4 5 6]), HU]; MHorig=MH; %Microbes on hands for

all households involved in at least 1 visit. Also includes # people in each household
(column 1) & the index of the household in the HHs matrix (column 5).

for i = 1l:size(chosenVisits,1); %sLooping
once over each visit.

o1
1

MHrowl = find(MH(:,5)==chosenVisits(i,1)); %Microbes on
hands for the 1st HH involved in visit 1i.
MHrow2 = find(MH(:,5)==chosenVisits(i,2)); %Microbes on

hands for the 2nd HH involved in visit 1i.

Mfroml = MH(MHrowl,2:4) ./ MH(MHrowl,1) .* CFV;
Mfrom2 = MH(MHrow2,2:4) ./ MH(MHrow2,1) .* CFV;
MH(MHrowl,2:4) = MH(MHrowl,2:4) - Mfroml + Mfrom2;
MH(MHrow2,2:4) = MH(MHrow2,2:4) - Mfrom2 + Mfroml;
end
for 1 = 2:4;

if abs(sum(MHorig(:,i)) - sum(MH(:,i))) > 1lE-3; %Sums will not be

exactly equal due to machine imprecision (TODO: is something else causing this?).
warning(sprintf('Imbalance in visit transfer, pathogen %s, difference

= %S',num2str(i-1),num2str( sum(MHorig(:,1))-sum(MH(:,1i)) ) ))

end

if abs(sum(MHorig(:,i)) - sum(MH(:,i))) > 1E-1; error('Visit transfer
imbalance too severe! Halting.'); end

end

NetVisitSwapsl = MHorig(:,2:4) - MH(:,2:4); %Converting to a matrix the size
of the Hands columns of the HHs matrix.
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NetVisitSwaps = sparse(repmat(HU',1,3), [ones(1l,nHHv), ones(1l,nHHv)*2,
ones(1,nHHv)*3], NetVisitSwapsl(:), nHH, 3); %TODO: Doublecheck.

if storeDetails == 1; LogFlux(t,1:3,2) = sum(abs(NetVisitSwaps)); end

HHs(:,4:6) = HHs(:,4:6) - NetVisitSwaps; %Applying net microbe exchange
from visits.

%T0D0: Check here that the above transfers are positive? Currently there is a
similar check within Inact().

%===Resupplying stored water, handling rainfall, shedding, and swapping
pathogens .===

phase = 6;

nML = nMU + sum(HHs(:,7:9)); %Dumping out remaining water; pathogens go to the
land. This should be a very small flow.

storedWater = repmat(nMw * CFSf, nHH, 1);

NMw = nMw - sum(storedWater); %Microbes in stored water are removed from
surface water.

HHs(:,7:9) = storedWater; %Household water is resupplied, at source water
conc. of microbes.

if storeDetails == 1; LogFlux(t,1:3,1) = sum(storedWater); end;

HHs(:,7:9) = ApplyLRVs(HHs(:,7:9), 1HWT HHs (:,14)); %Determining compliance
and applying LRVs from HWT.

%Hand-to-stored-water transfer: applying microbe movement. Contamination of
stored water by hands (from drinking, or other decanting of water). Note: not
simultaneous with actual water intake (though perhaps it should be; see DR below).

phase = 7;

MfromHtoW = HHs(:,4:6) .* CFHDh .* repmat(~HHs(:,17),1,3); %Calculating
microbes transferred from hands to water within each HH. Do not need to consider # of
people/HH at this step (more people automatically mean more hand contamination since they
all defecate). Safe storage negates transfer (last term).

HHs(:,4:6) = HHs(:,4:6) - MfromHtoW; %Removing microbes from hands within
each household.
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HHs(:,7:9) = HHs(:,7:9) + MfromHtoW; %Adding microbes to water within each
household.

if storeDetails == 1; LogFlux(t,1:3,1) = LogFlux(t,1:3,1) + sum(MfromHtoW);
end %Adding drinker hand contamination to water-gatherer hand contamination.
%{
for i = 1:3; %sLoop over pathogens
if sum(People(:,i) ~= -1) == 0 & sum(HHs(:,1i+3)) > sum(initialHHs(:,i+3));
%If all are susceptible and overall hand pathogens somehow increase:
warning('Unexplained increase in hand compartments')
warnHHs = HHs; warnPeople = People;

equilibrium = 1; %sTerminates simulation while allowing charts to
happen.

end
end

[e]
%}

%s===Inactivating pathogens in all compartments, over the first part of a day.

phase = 8;

PreSink = sum([HHs(:,4:6); HHs(:,7:9); nMw; nMl]);

[HHs, nMw, nMl] = Inact(RDRtime(t), HHs, nMw, nMl, CFdecay, Wflow, t);

if storeDetails == 1; LogFlux(t,:,7) = PreSink - sum([HHs(:,4:6); HHs(:,7:9);
nMw; nMLl]); end

%Daily bookkeeping here, just before status shifts & dose response - storing
summary of simulation state and checking for problems.
phase = 9;
Log(t,1:24) = [t nSus nImm nExp nInf nIll nInfNotIll nIlTlAny nMw nMl];
%Storing aggregated status of all people.
Log(t,25:27) sum(HHs (:,4:6)); %sTotal microbes on hands in all households.

Log(t,28:30) sum(HHs(:,7:9)); %Total microbes in stored water in all
households.

LogK(t,1:18)

[t nSusK nImmK nExpK nInfK nITlK nInfNotIlTlK nIllAnyK];
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%Storing aggregated status, kids only.
LogA(t,1:18) = [t nSusA nImmA nExpA nInfA nIlTlA nInfNotIllA nIllAnyA];
%Storing aggregated status, adults only.
if storeDetails == 1;
LogHHP{t,1} = HHs; LogHHP{t,2} = People;
end

%sFor each person, increment all counters and assign durations if a status
shifts. TODO: Sum 'Shifters' and log these state transitions daily, to output incidence.
phase = 10;
People(:,4:6) = People(:,4:6) - 1;
Shifters = People(:,4:6) == 0 & People(:,1:3) == 1;
%People whose latent period has just expired...
PeopleStates = People(:,1:3); PeopleStates(Shifters) = 2; People(:,1:3) =

PeopleStates; %...become infected & infectious...
People(:,4:6) = People(:,4:6) + Shifters .* [durEc(nPeople), durRo(nPeople),
durGi(nPeople)]; %...and are assigned durations of infection...

LogIncInf(t,1:3) sum(Shifters(1l:nKids,:));
%...and tallies of these are stored...

LogIncInf(t,4:6) = sum(Shifters(nKids+1:nPeople,:));

LogIncInf(t,7:9) = sum(Shifters);

NewlyDiseased = Shifters & RMR(:,:,t) < [repmat(MRk,nKids,1);
repmat (MRa,nAdults,1)]; %...but some of the newly infected are also randomly
diseased...

PeopleStates = People(:,1:3); PeopleStates(NewlyDiseased) = 3; People(:,1:3) =
PeopleStates; %...and receive 'diseased' status...

LogIncIll(t,1:3) = sum(NewlyDiseased(1l:nKids,:));

%...and tallies of these are stored.

LogIncIll(t,4:6) sum(NewlyDiseased(nKids+1:nPeople,:));

LogIncIll(t,7:9) sum(NewlyDiseased);

Shifters = People(:,4:6) == 0 & (People(:,1:3) == | People(:,1:3) == 3);

%People whose period of infection/disease has just expired...
PeopleStates = People(:,1:3); PeopleStates(Shifters) = 0; People(:,1:3) =

398



PeopleStates; %...become immune...
People(:,4:6) = People(:,4:6) + Shifters .* repmat(immune,nPeople,l);
%...and are assigned a duration of immunity.
Shifters = People(:,4:6) == 0 & People(:,1:3) == 0;
%People whose immunity has just expired...
PeopleStates = People(:,1:3); PeopleStates(Shifters) = -1; People(:,1:3) =

PeopleStates; %...become susceptible...

PeopleCounters = People(:,4:6); PeopleCounters(Shifters) = 0; People(:,4:6) =
PeopleCounters; %...and their time counters are set to 0.

%===Assessing dose response (susceptibles become exposed).===

phase = 11;

Doses = zeros(nPeople,9); %Dose matrix, 1 row/person. Columns 1:3, water;

columns 4:6, land; columns 7:9, household environment.

Doses(1l:nKids,1:3) = HHs(People(1l:nKids,7),7:9) ./ Ws .* Wdd(1l); %Dose from
water, kids.

Doses(nKids+1:nPeople,1l:3) = HHs(People(nKids+1l:nPeople,7),7:9) ./ Ws .*
wWdd(2); %Dose from water, adults.

dHHK = HHs(:,7:9) ./ Ws .* Wdd(1l) .* repmat(HHs(:,3),1,3); %Determining kid
doses from stored water for each HH.

dHHa = HHs(:,7:9) ./ Ws .* Wdd(2) .* repmat(HHs(:,2),1,3); %Determining adult
doses from stored water for each HH.

HHs(:,7:9) = HHs(:,7:9) - dHHk - dHHa; %Actually removing the doses.

%Doses(1:nKids,4:6) = repmat(rHandMouth(1l) * pLandHand * nMl, nKids,1);

Doses(1:nKids,4:6) = repmat(nMl .* CFDl .* wHandMouth, nKids,1);

Doses(nKids+1:nPeople,4:6) = repmat(nMl .* CFDl, nAdults,1l);

nML = nML - sum(Doses(:,4:6)); %Removing land doses ingested by people from
the land.

%Doses(1l:nKids,7:9) = HHs(People(1l:nKids,7),4:6) .*
repmat (wtDoses (People(1l:nKids,7),1),1,3); %Dose from hands, kids.
Doses(1l:nKids,7:9) = HHs(People(1l:nKids,7),4:6) .* CFHDh .* wHandMouth;
%Dose from household environment, kids.
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%Doses (nKids+1:nPeople,7:9) = Hs(People(nK1ds+1 nPeople,7),4:6) .*
repmat (wtDoses (People(nKids+1:nPeople, 7) 2),1,3); %Dose from hands, adults.

Doses(nKids+1:nPeople,7:9) = s(People(nK1ds+1 nPeople,7),4:6) .* CFHDh;
%Dose from household env., adults.
DosesHHenv =

[accumarray(People(:,7),Doses(:,7)),accumarray(People(:,7),Doses(:,8)),accumarray(People(
:,7),Doses(:,9))]; %Converting dose matrix from 1 row per person to 1 row per household.
TODO: Doublecheck.

HHs(:,4:6) = HHs(:,4:6) - DosesHHenv; %Removing pathogens ingested from
household environment.

CDoseH20 = sum(Doses(1:nKids,1:3));

if storeDetails == 1; LogFlux(t,:,8)

CDoseL = sum(Doses(1l:nKids,4:6));

if storeDetails == 1; LogFlux(t,:,9)

CDoseH = sum(Doses(1:nKids,7:9));

if storeDetails == 1; LogFlux(t,:,9) = CDoseH; end

pDoseH20K = CDoseH20 ./ (CDoseH20 + CDoseL + CDoseH); %Proportion of total
community-wide doses from water (kids). TODO: Store for later inspection/analysis.

CDoseH20 = sum(Doses(nKids+1:nPeople,1l:3));

if storeDetails == 1; LogFlux(t,:,10) = CDoseH20; end

CDoseL = sum(Doses(nKids+1:nPeople,4:6));

if storeDetails == 1; LogFlux(t,:,11) =

CDoseH = sum(Doses(nKids+1:nPeople,7:9));

if storeDetails == 1; LogFlux(t,:,11) = CDoseH; end

pDoseH20A = CDoseH20 ./ (CDoseH20 + CDoselL + CDoseH); %Proportion of total
community-wide doses from water (adults). TODO: Store for later inspection/analysis.

%DosesT = Doses(:,1:3) + Doses(:,4:6) + Doses(:,7:9); %Summing doses from
water & hands for each person.

PeopleOld = People; %Copying People in order to assess later how many pos DR
events are about to occur.

[People EffMnew] = DoseResponse(RDRpeople(:,:,t), People, nKids, Doses, KorN50,
alpha, latent); %sDetermining dose response for each person. Includes latent period

CDoseH20; end

CDoselL; end

CDoselL; end
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assignment (TODO: randomize?).
if t >= daysBurnIn; EffM = EffM + EffMnew; end; %Adding today's effective
microbes to the tally.

%Assigning baseline exposures, which will develop into infections after the
latent period expires.

Shifters = Rbaseline(:,:,t) < repmat(BaseInf/365,nPeople,1l) & People(:,1:3) ==
-1; %People randomly chosen to get a baseline infection...

PeopleStates = People(:,1:3); PeopleStates(Shifters) = 1; People(:,1:3) =
PeopleStates; %...are exposed...

PeopleCounters = People(:,4:6); PeopleCounters(Shifters) = 0; People(:,4:6) =
PeopleCounters; %...their appropriate counter(s) (which are neg.) get set to 0...

People(:,4:6) = People(:,4:6) + Shifters .* repmat(latent,nPeople,l);

%...and are assigned a latent period.
Log(t,31:33) = sum(Shifters);

%===Done with dose response and baseline exposures - now inactivating over the
remainder of the day.
phase = 12;
PreSink = sum([HHs(:,4:6); HHs(:,7:9
[HHs, nMw, nMl] = Inact(l RDRtlme( )
if storeDetails == 1; LogFlux(t,:,7) =
sum([HHs(:,4:6); HHs(:,7:9); nMw; nMl]); end
o---Day S act1v1t1es are finished. Now for some bookkeeping.===
phase = 13;
if t == round(tMax/lOG);
fprintf('\nl%% done, %s seconds elapsed, %s days so far, %s sec. per
day\n',num2str(toc),num2str(t),num2str(toc/t));
elseif t == round(tMax/20);
fprintf('\n5%% done, %s seconds elapsed, %s days so far, %s sec. per
day\n',num2str(toc),num2str(t),num2str(toc/t));
elseif t == round(tMax/4);
fprintf('\n25%% done, %s seconds elapsed, %s days so far, %S sec. per

); nMw; nMl]);
, HHs, nMw, nMl, CFdecay, Wflow, t);
LogFlux(t,:,7) + PreSink -
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day\n',num2str(toc),num2str(t),num2str(toc/t));
elseif t == round(tMax/2);
fprintf('\n50%% done, %s seconds elapsed, %s days so far, %S sec. per
day\n',num2str(toc),num2str(t),num2str(toc/t));
elseif t == round(3*tMax/4);
fprintf('\n75%% done, %s seconds elapsed, %s days so far, %S sec. per
day\n',num2str(toc),num2str(t),num2str(toc/t));
end
if Octave == 1; fflush(stdout); end %Forces lines above to write to console.
end %Ends daily loop
%disp(x) %Redisplaying the 'sanity check' from the end of the community setup
phase.
disp(sprintf('\nRun complete, %s sec., %S sec./day, day %s, now outputting &
charting',num2str(toc),num2str(toc/tMax),num2str(t)));
tObsY = (t - daysBurnIn)/365; %Time observed, in years.

IncInfK = sum(LogIncInf(daysBurnIn:t,1:3)) ./ (nKids * tObsY);
IncInfA = sum(LogIncInf(daysBurnIn:t,4:6)) ./ (nAdults * tObsY);
IncInfP = sum(LogIncInf(daysBurnIn:t,7:9)) ./ (nPeople * tObsY);
IncIlTlK = sum(LogIncIll(daysBurnIn:t,1:3)) ./ (nKids * tObsY);
IncIlTlA = sum(LogIncIll(daysBurnIn:t,4:6)) ./ (nAdults * tObsY);
IncIlLlP = sum(LogIncIll(daysBurnIn:t,7:9)) ./ (nPeople * t0bsY);

disp(sprintf ("' Chlld illness incidence %s, adult %s, overall %s, episodes/person-
year, bac-vir-prot.',num2str(IncIllK), numZStr(IncIllA),num25tr(IncIllP) ));

%Storing output from each run in OutMatrix, one run per row. 1st column is the row
number. Start with calibration variables.

OutMatrix(l,2) = CFSf;
OutMatrix(1l,3) = CFHDh;
OutMatrix(1,4) = CFV;

OutMatrix(l,5) = CFD1;

OQutMatrix(1,6:8) = CFdecay;
OutMatrix(1,9:11) = Mpgf;
OutMatrix(l,12:17) = [cSan cHWT cHand]; %Compliance.
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OutMatrix(1l,18) = pSafeStorage; %Whether HWT compliers are using safe storage.

QutMatrix(1,19:27) = [1lSan lHWT lHand]; %Log reduction values.

OutMatrix(1,28:39) = [IncInfK sum(IncInfK) IncInfA sum(IncInfA) IncInfP
sum(IncInfP)]; %Incidence of infection, bac.-vir.-prot.-total, kids, adults and all
people.

OutMatrix(1,40:51) = [IncIllK sum(IncITlK) IncITlA sum(IncIllA) IncIllP
sum(IncIllP)]; %Incidence of illness, bac.-vir.-prot.-total, kids, adults and all people.

OQutMatrix(l,52:60) = EffM(1,:); %Microbes contributing to actual new infections
in kids, by route.

OutMatrix(1,61:69) = EffM(2,:); %Microbes contributing to actual new infections
in adults, by route.

OutMatrix(1l,70) = fHands; %Number of grams of feces on hands per defecation
event.

OutMatrix(l,71) = extinct; *Whether 1+ microbes went extinct.

OutMatrix(l,72) = tObsY; %Amount of time observed.

OutMatrix(1l,73:75) = [nHH nKids nAdults]; %Number of households, kids, and

adults.

OutMatrix(1,76:78) = mean(Log(daysBurnIn:tMax,19:21)); %Mean numbers of microbes in
surface water (excluding burn-in).

OutMatrix(1l,79:81) = mean(Log(daysBurnIn:tMax,22:24)); %Mean numbers of microbes on
land (excluding burn-in).

OutMatrix(1,82:84) = mean(Log(daysBurnIn:tMax,28:30)); %Mean numbers of microbes in
stored drinking water (excluding burn-in).

OutMatrix(1,85:87) = mean(Log(daysBurnIn:tMax,25:27)); %Mean numbers of microbes in
household environment (excluding burn-in).

if CalibOrEst == 'E';
OutMatrix(1,88) = CFsetID; %Storing the ID for the particular calibration
factor set used.
end

%StoreParams(p, 'OutputLog'); %p is a struct holding all the parameter values.

if storeDetails == 1 & CalibOrEst == 'C'; %Plotting a set of graphs for each run,
if only a few runs are being done.
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%Plotting people (kids):

F2=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on
screen with 1024x768 resolution.

x=.05; y=.72; x1=.93; yl=.23; %Values for positioning of 1lst subplot (modify y
for placing 2nd & subsequent subplots).

subplot(3,1,1) %Plotting bacteria

PlotPeople(LogK, tRain, x, y, x1, yl, 'bacteria', 'children <5y', daysBurnln,

nKids) ;

subplot(3,1,2) %Plotting viruses

PlotPeople(LogK, tRain, x, y, x1, yl, 'viruses',6 'children <5y', daysBurnlIn,
nKids) ;

subplot(3,1,3) %Plotting protozoa

PlotPeople(LogK, tRain, x, y, x1, yl, 'protozoa', 'children <5y', daysBurnln,
nKids) ;

eval(['print Graphics/Kids',strrep(strrep(char(p.StartTime),"':","'-"),"
,'-"),'.png']) %Saving chart with datetime in filename w/o0 spaces or colons

%Plotting people (adults):

F3=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on
screen with 1024x768 resolution.

x=.05; y=.72; x1=.93; yl=.23; %Values for positioning of 1lst subplot (modify y
for placing 2nd & subsequent subplots).

subplot(3,1,1) %Plotting bacteria

PlotPeople(LogA, tRain, x, y, x1, yl, 'bacteria', 'people >=5y', daysBurnln,
nAdults);

subplot(3,1,2) %Plotting viruses

PlotPeople(LogA, tRain, x, y, x1, yl, 'viruses',6 'people >=5y', daysBurnln,
nAdults);

subplot(3,1,3) %Plotting protozoa

PlotPeople(LogA, tRain, x, y, x1, yl, 'protozoa', 'people >=5y', daysBurnln,
nAdults);

eval(['print Graphics/Adults',strrep(strrep(char(p.StartTime),"':"',"'-"),"
,'-"),'.png']) %Saving chart with datetime in filename w/o spaces or colons

%Plotting people (everybody):
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F4=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on
screen with 1024x768 resolution.

x=.05; y=.72; x1=.93; yl=.23; %Values for positioning of 1st subplot (modify y
for placing 2nd & subsequent subplots).

subplot(3,1,1) %Plotting bacteria

PlotPeople(Log, tRain, x, y, x1, yl, 'bacteria', 'people', daysBurnln,
nPeople);

subplot(3,1,2) %Plotting viruses

PlotPeople(Log, tRain, x, y, x1, yl, ‘'viruses', 'people', daysBurnIn, nPeople);

subplot(3,1,3) %Plotting protozoa

PlotPeople(Log, tRain, x, y, x1, yl, 'protozoa', 'people', daysBurnln,
nPeople);

eval(['print Graphics/People',strrep(strrep(char(p.StartTime),"':"',"'-"),"
,'-"),'.png']) %Saving chart with datetime in filename w/o spaces or colons

%Plotting pathogens:

F5=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on
screen with 1024x768 resolution.

x=.05; y=.55; x1=.93; yl=.42; %Values for positioning of 1st subplot (modify y
for placing 2nd & subsequent subplots).

subplot(2,1,1) %Plotting pathogens in community.

%sset(gca, 'FontSize',18); %Increases font size on axis tick labels (gca is 'get
current axes').

set(gca, 'Position’', [x y-0*.5 x1 yl]);

if Octave==1; %0ctave and MATLAB handle line properties a bit differently in
graphs.

semilogy(Log(:,1),Log(:,19)+.1,"'-r", " 'linewidth',3,Log(:,1),Log(:,20)+.1,"-

b','linewidth',3,Log(:,1),Log(:,21)+.1,"'-g"', 'linewidth',3); %All 3 of these are thick
lines

else
semilogy(Log(:,1),Log(:,19)+.1,"'-r',Log(:,1),Log(:,20)+.1,"-
b',Log(:,1),Log(:,21)+.1,"'-g"', 'linewidth',3); %A1l 3 of these are thick lines
end
hold on;
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semilogy(Log(:,1),Log(:,22)+.1,"'-r',Log(:,1),Log(:,23)+.1,"-
b',Log(:,1),Log(:,24)+.1,"'-g");

plot(tRain(:,1),tRain(:,2)+80,"' x');

title('Number of microbes in different community compartments')

ylabel('# microbes', 'fontsize',20) %Axis & tick labels overlap on screen, but
output better to .PNG.

legend('Bac., surf. H20', 'Viruses, surf. H20', 'Prot., surf. H20', 'Bac.,
soil', 'Viruses, soil', 'Prot., soil', 'Time of rain events', 'Location', 'SouthEast')

hold off;

subplot(2,1,2) %Plotting pathogens in households.

set(gca, 'Position’', [x y-1*.5 x1 yl]);

if Octave==1;

semilogy(Log(:,1),Log(:,28)+.1,"'-r', " 'linewidth',3,Log(:,1),Log(:,29)+.1,"-

b*,"'linewidth',3,Log(:,1),Log(:,30)+.1,"'-g"', 'linewidth',3); %All 3 of these are thick
lines (stored water)

else
semilogy(Log(:,1),Log(:,28)+.1,"'-r',Log(:,1),Log(:,29)+.1,"-
b',Log(:,1),Log(:,30)+.1,'-g", 'linewidth',3); %A1l 3 of these are thick lines (stored
water)
end
hold on;

semilogy(Log(:,1),Log(:,25)+.1,"'-r',Log(:,1),Log(:,26)+.1,"-
b',Log(:,1),Log(:,27)+.1,"'-g"); %Supposed to graph total pathogens on all households'
hands.

plot(tRain(:,1),tRain(:,2)+80,"' x');

title('Number of microbes in different household compartments')

xlabel('Time (days)');

ylabel('# microbes', 'fontsize',20) %Axis & tick labels overlap on screen, but
output better to .PNG.

legend('Bac., stored H20', 'Viruses, stored H20', 'Prot., stored H20', 'Bac.,
hands', 'Viruses, hands', 'Prot., hands', 'Time of rain events', 'Location', 'SouthEast')

hold off;

eval(['print Graphics/Microbes',strrep(strrep(char(p.StartTime),"':"',"'-"),"
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,'-"),'.png']) %Saving chart with datetime in filename w/o0 spaces or colons.
%Plotting fluxes of microbes.
F5=figure('Position',[100 100 1024 768]); %Putting graph at (100,100) on
screen with 1024x768 resolution.
x=.05; y=.72; x1=.93; yl=.23; %Values for positioning of 1lst subplot (modify vy
for placing 2nd & subsequent subplots).
subplot(3,1,1) %Plotting bacteria
PlotMicrobes(LogFlux, tMax, tRain, x, y, x1, yl, 'bacteria', daysBurnIn);
subplot(3,1,2) %Plotting viruses
PlotMicrobes(LogFlux, tMax, tRain, x, y, x1, yl, 'viruses', daysBurnIn);
subplot(3,1,3) %Plotting protozoa
PlotMicrobes(LogFlux, tMax, tRain, x, y, x1, yl, 'protozoa',6 daysBurnIn);
eval(['print Graphics/Fluxes',strrep(strrep(char(p.StartTime),"':"',"'-"),"
“,'-"),".png']) %Saving chart with datetime in filename w/o0 spaces or colons.
disp(['Charts done.'])
end
disp(sprintf('Whole run took %s seconds.', num2str(toc)))
end %Ends main loop (once per run).
%0outFilename = ['Results/',outFilename];
dlmwrite(outFilename, OutMatrix, '-append');
disp([' Results written to ',outFilename,'.']);
end %Ends function.
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%This function applies log reduction values (LRVs) to stocks of pathogens.

%It simply reduces the input number of microbes (nMin) according to the appropriate LRVs,
and outputs the result.

%This should usually be used with row vectors, 3 values each (bacteria, viruses, and
protozoa, in that order). However, it accomodates multiple rows.

%nNMinput: Vector/matrix containing number of microbes that an LRV might be applied to.

%LRVs: Log reduction values to be applied. 1 column per microbe.
%sCompliance: Proportion of all microbes to which the LRVs are being applied.
%{

COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (ApplyLRVs.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.
%}

function [nMoutput] = ApplyLRVs(nMinput, LRVs, Compliance);

nRows = size(nMinput,1l); %Gets number of households/people that it's acting on.
Compliance = repmat(Compliance,l,size(LRVs,2)); %Replicating Compliance vector so
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it matches the size of nMinput.

LRVs = repmat(LRVs,nRows,1);

nMoutput = nMinput .* (1-Compliance) + nMinput .* Compliance .* 10 .~ -LRVs;
end
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%Function to generate compliance behaviors for individual households given a particular

compliance scheme.
%HHcol: the column in the household matrix that is being populated.
%cv: the compliance vector, i.e., cSan, cHWT, or cHand, 1st value being overall

complance, 2nd being compliance type.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (AssignCompliance.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

o
%}

%T0D0: correlate the household-level compliances assigned to the 3 main interventions?
function [output] = AssignCompliance(HHcol,cv);
ct = cv(2);
switch ct;
case 1; %scompliance type alpha: everyone perfectly complies or doesn't comply
at all
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output = rand(size(HHcol,1),1) < cv(1l); %Randomly assign binary value to
compliance for each household.
case 2; %scompliance type beta: some perfectly comply, some partially comply,
some don't comply at all
output = rand(size(HHcol,1),1);
output(find(output < cv(1)/2)) = 1; %Assigning perfect compliers a
value of 1
output(find(output > 1 - ((1l-cv(1l)) / 2) & output < 1)) = 0; %Assigning
noncompliers a value of 0
output(find(output > 0 & output < 1)) = cv(1l); %Assigning the remaining
partial compliers the overall compliance value
case 3; scompliance type gamma: everyone partially complies
output = cv(1l);
otherwise
error('Compliance type !'= 1, 2, or 3, therefore invalid');
end
end
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%Loop for obtaining parameter values for estimation runs while modifying reservoir size,
pLandHand, etc. Facilitates computing cluster use.

%Be sure to check that GetTrialParams.m is configured properly before running this
script.

%Submit as several jobs to parallelize a calibration run (maybe not worth bothering with
job array).

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (CalLoopFuncCompile.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function[OutM OutS] = CalibrationLoopFuncCompile(indexText,inc,calibRunsText, jobname);
%This helps with debugging, since arguments to compiled code can only be text.
disp(class(indexText))

index = str2num(indexText);
RandStream.setDefaultStream(RandStream.create('mt19937ar', 'seed',sum([clock index*10])));
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%Sets random stream based on clock & job index.
calibRuns = str2num(calibRunsText);
%===Required lines for HPCC
setenv MKL DYNAMIC FALSE
smaxNumCompThreads (1) ; %Throws an error. Recommended, but does not seem to be
necessary.

o

%s===Parameter entry===

infile = 'nonapplicable.csv';

outfile = ['Results/', jobname,'.csv'];
%===End parameter entry===

sdisp ([ '##### Running
",num2str(size(U,2)),"'*"',num2str(size(T,2)), " '*"',num2str(size(L,2)), " '+1="',num2str(combos),
' parameter combinations on ',num2str(size(tempData,l)),' parameter sets from
calibration, should have requested at least that many members in the job array. #####'])

if inc(1:2) == 'Hi‘';

EITSAd('C', calibRuns, outfile, infile, [-11 -2.4], [-10 -1.5], [-8 -.11, [-15 -41, [-1 ©
0;2 3 3], 200); %1lst try; including the max. possible levels for all ranges of transfer
params.

disp ([ '##### DONE #####'])
end %End function.
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%Determine response (infection) given a particular dose, whatever the route.
%These arguments (R, dose, KorN50, alpha) are vectors or matrices, 1 column per pathogen.
%Uses 3 random numbers per person to determine response.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DoseResponse.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.
%}

function [People EffM] = DoseResponse(RDRpeople, People, nKids, Doses, KorN50, alpha,
latent);

nP = size(People,l); %Number of people (rows).

nAdults = nP - nKids;

nM = size(KorN50,2); %Number of types of microbe (columns).

smarker=repmat(['B','V','P"'],nP,1); %Marker that is used to record the type(s)
of microbe that resulted in infection.

DosesT = Doses(:,1:3) + Doses(:,4:6) + Doses(:,7:9); S%Summing doses from water &
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hands for each person.

Shifters = logical(zeros(nP,nM)); %Creating matrix of true/false for storing &
processing outcomes.

DosesT = DosesT .* (People(:,1:3) == -1); %If person is not susceptible, set dose
to 0.

for i = 1:nM  %Loop over the 3 microbes

if isnan(alpha(i))==
response DRexp (KorN50(i),DosesT(:,1));

else
DRbP(KorN50(i),alpha(i),DosesT(:,1));

response
end
Shifters(:,1)
become infected.

RDRpeople(:,1i) < response; %Determines which people will

end
%stags = char(horzcat(ones(nP,1)*88, (marker .* outcome))); %Tags for pos. dose
response events w. appropriate microbe(s) (e.g., 'FoodEatXBV').

%sevent = horzcat(event,tags); %Apply the tags to the event name.

PeopleStates = People(:,1:3); PeopleStates(Shifters) = 1; People(:,1:3) =
PeopleStates; ...People who get a positive response become exposed...
PeopleCounters People(:,4:6); PeopleCounters(Shifters) = 0; People(:,4:6) =
PeopleCounters; %...their appropriate counter(s) (which are negative) get set to 0...
People(:,4:6) = People(:,4:6) + Shifters .* repmat(latent,nP,1);
%...and are assigned a latent period.

Il o°

DosesK = Doses(1l:nKids,:);

DosesA = Doses((nKids+1):nP,:);
ShiftersK = Shifters(1l:nKids, :);
ShiftersA = Shifters((nKids+1):nP, :);

EffMWK = sum(DosesK(:,1:3) .* ShiftersK); %Tallying microbes that contributed to
a new infection.
EffMLK

sum(DosesK(:,4:6) .* ShiftersK);
sum(DosesK(:,7:9) .* ShiftersK);

EffMHK
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EffMWA = sum(DosesA(:,1:3) .* ShiftersA); %Tallying microbes that contributed to
a new infection.

EffMLA = sum(DosesA(:,4:6) .* ShiftersA);

EffMHA sum(DosesA(:,7:9) .* ShiftersA);

EffM = [EffMWK EffMLK EffMHK; EffMWA EffMLA EffMHA];

%People(:,1:nM) = People(:,1:nM) + 2 * outcome; %Assigns exposure (status=1) to
those people (who are susceptible, thus have status=-1).

%People(:,nM+1:nM+nM) = People(:,nM+1:nM+nM) .* loutcome; %Sets counter to 0 for
those people who have a new infection incubating.

%People(:,nM+1:nM+nM) = People(:,nM+1:nM+nM) + repmat(latent,nP,1l) .* outcome;

%Assigns the length of the latent period.

%T0D0: Assign randomly chosen latent period instead.
end
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%Beta-Poisson dose response model, using N50 (default) or beta as a parameter

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRbP.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.
%}

function outvar = DRbP(N50orBeta,alpha,invar, reverse,WhichParam) %0rdinarily, invar is
dose & outvar is response.

if nargin == 3;
reverse = 'no'; WhichParam = 'N50';
end
switch(reverse)
case 'no’
switch(WhichParam)

case 'N50'
outvar = 1-(1+(invar/N50orBeta)*(2"~(1/alpha)-1))."-alpha;
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case 'Beta'

outvar = 1-(1+(invar/N50orBeta)).”-alpha;
otherwise

error(['WhichParam must be "N50" or "Beta"'])
end

case 'yes' %If reverse='yes', invar is response & outvar is dose.
switch(WhichParam)

case 'N50'
outvar = N50orBeta * ( ((1l-invar).”(-1/alpha) -1) /
(2~(1/alpha)-1) );
case 'Beta’
outvar = N50o0rBeta * ((l-invar).”(-1/alpha) -1);
otherwise
error(['WhichParam must be "N50" or "Beta"'l])
end
otherwise

error(['reverse must be "no" or "yes"'])
end

end
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%Exponential dose response model
%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (DRexp.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.
%}
function outvar
if nargin <
reverse
end
switch(reverse);
case 'no';
outvar l-exp(-k * invar);
case 'yes'; %If reverse='yes', invar is response & outvar is dose.
outvar = log(1l-invar)/-k;
otherwise
error(['reverse (last parameter) must be "no" or "yes"'])

DRexp(k, invar, reverse) %This works in Matlab.

’

Inol;

I w

end
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end
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%sFunctions for calculating vectors of illness durations

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durEc.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

[e]
%}

function output = durEc(n);

output = round(gamrnd(1.775,1.690,[n,1])); %Shape, then scale. From Estrada-Garcia
2009.

output(output == 0) = 1; %Sets zero durations to 1 day instead.
end
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%sFunctions for calculating vectors of illness durations

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durGi.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

%}
function output = durGi(n); %Based on a fit of gamma dist. to limited info from Kent GP
1988.
output = round(gamrnd(3.206,3.431,[n,1])); %Shape, then scale
output(output == 0) = 1; %Sets zero durations to 1 day instead.
end
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%sFunctions for calculating vectors of illness durations

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (durRo.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.
%}

function output = durRo(n); %Based on 4 rotavirus-infected volunteers having durations
of 1, 2, 3, and 4 days (Kapikian 1983).

output = ceil(rand([n,1]) * 4);

soutput (output == 0) = 1; %Sets zero durations to 1 day instead.
end
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%sLoop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates
computing cluster use.

%Be sure to check that GetTrialParams.m is configured properly before running this
script.

%Differs from EstimationLoopFuncCompile in that only a small number of parameter
combinations are chosen, rather than all possible combinations.

%mix: Proportion of childhood disease that is waterborne (A, B, or ().

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (EstLoopFuncCompileBase.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

[e]
%}

function[OutM OutS] = EstLoopFuncCompileBase(indexText, jobname);
Octave = size(ver('Octave'),1l); %Indicator of whether the code is running under Octave

(1) or Matlab (0).
index = str2num(indexText);
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if Octave == 0;
RandStream.setDefaultStream(RandStream.create('mt19937ar"', 'seed',sum([clock
index*10]1)));
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave
bases the seed on the clock by default).
end
%===Required lines for HPCC
setenv MKL DYNAMIC FALSE
%smaxNumCompThreads(1); %Throws an error. Does not seem to be necessary.
%===End parameter entry===
disp ([ '##### Running 6 parameter combinations, 2 each from runs that fit for mixes A, B,
C, and Z, no interventions, should have requested at least 6 members in the job array.
####HA'])
if index == | index == 2; %If running the baseline parameters:
EITSd('E',5,['Results/EstBaseA',indexText,'.csv'], 'RTF_A CalHil®6b.csv',1,2,3,4,5,200,[0 O
o],[e 1],[6 0 0],[0 1],[0 0 ©],[0 1]);
elseif index == 3 | index == 4;
EITSd('E',5,['Results/EstBaseB',indexText,'.csv'], 'RTF B CalHil6b.csv',1,2,3,4,5,200,[0 0O
o],[e 1],[6 0 0],[0 1],[0 0 ©],[0 1]);
elseif index == 5 | index == 6;
EITSd('E',5,['Results/EstBaseC',indexText,'.csv'],'RTF C CalHil6b.csv',1,2,3,4,5,200,[0 O
o],[e 1],[6 0 0],[0 1],[0 0@ ©],[0 1]);
elseif index == 7 | index == §;
EITSd('E',5,['Results/EstBaseZ',indexText,'.csv'],'RTF Z CalHil®6b.csv',1,2,3,4,5,200,[0 O
o],[e 1],[6 0 0],[0 1],[0 0@ ©],[0 1]);
else
error('Too many jobs!'")
end
disp ([ '##### DONE #####'])
end %End function.
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%sLoop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates
computing cluster use.
%Be sure to check that GetTrialParams.m is configured properly before running this

script.

%Differs from EstimationLoopFuncCompile in that only a small number of parameter
combinations are chosen, rather than all possible combinations.

%mix: Proportion of childhood disease that is waterborne (A, B, or ().

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (EstLoopFuncCompileHWT.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

[e]
%}

function[OutM OutS] = EstLoopFuncCompileHWT (indexText,mix,overallComplianceText, jobname);
Octave = size(ver('Octave'),1l); %Indicator of whether the code is running under Octave
(1) or Matlab (0).

index = str2num(indexText);
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if Octave == 0;
RandStream.setDefaultStream(RandStream.create('mt19937ar', 'seed',sum([clock
index*10]1)));
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave
bases the seed on the clock by default).
end
oC = str2num(overallComplianceText);

%s===Required lines for HPCC
setenv MKL DYNAMIC FALSE

smaxNumCompThreads (1) ; %Throws an error. Does not seem to be necessary.

%s===Parameter entry=== Note that 0 should not be included in L.

P = [0 .1 .2]; %Vector of desired values for proportions of children never using the
device.

SN = [0 .1 .2]; %sVector of desired values for proportions of children perfectly using
the device.

L=1[12345]; %Vector of log reduction values desired (all marker pathogens get the
same LRV).

%Testing the code using the vectors below.

%SU=[.9 1]

%T=[.9 1]

SL=[1 2]

%sConstructing a matrix with all possible combos of P, N, & L

%[p n 1] = ndgrid(P,N,L);

%Combos = [p(:) n(:) 1(:)1; %T0D0: Build functionality to check N, P,
overallCompliance, and pTreat to ensure they make sense before running.

%Building appropriate combinations of perfect compliers (P; 1lst column) and noncompliers
(N; 2nd column).

Combos = zeros(3,3); %Combo with max possible perfect compliers & max possible
noncompliers (same as [0 1-o0C]; [oC 1-0C] is 0/0).

Combos(:,1) = oC;

Combos(:,2) = [1 2 3];

Combos(:,3) = L(1); %This & subsequent 'for' loop copy the above for each possible LRV.
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OutCombos = Combos;
for 1 = 2:size(L,2);
NextCombos = Combos;
NextCombos(:,3) = L(1);
OutCombos = [OutCombos; NextCombos];

end

%Baselines = zeros(1l,3); %Creating baseline row. No log reduction & no perfect
compliance.

%Baselines(:,2) = 1; %Modifies above, so that 100% never use device.
Combos = OutCombos;

Combos' %0utput results, transposed.

combos = size(Combos,1)

infile = ['RTF_',mix,"' CalHilOb.csv'];
outfile = ['Results/',jobname,'.csv'];
%===End parameter entry===

tempData = csvread(infile,1,1);

disp ([ '##### Running 3 * ', num2str(size(L,2)),' = ',num2str(combos),' parameter
combinations on ',num2str(size(tempData,l)),' parameter sets from calibration, should
have requested at least that many members in the job array. #####'])

%if index == 1; %If running the baseline parameters:

% [OutM OutS] = Main(Combos(index,1l), Combos(index,2), oC, [Combos(index,3)
Combos(index,3) Combos(index,3)], [0 0 O], [0 ©0 O], O, outfile, infile, multConc,
nSpikes, multSpikes, 1);

%selse %If running the parameters from calibration:
EITSd('E',10,outfile,infile,1,2,3,4,5,200,[0 0 O],[0 1],Combos(index,3)*[1 1 1],
[Combos(index,1) Combos(index,2)]1,[0 0 0],[0 11);

%end

disp ([ '##### DONE #####'])

end %End function.
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%sLoop for obtaining estimation runs while modifying pUse, pTreat, and LRVs. Facilitates
computing cluster use.
%Be sure to check that GetTrialParams.m is configured properly before running this

script.

%Differs from EstimationLoopFuncCompile in that only a small number of parameter
combinations are chosen, rather than all possible combinations.

%mix: Proportion of childhood disease that is waterborne (A, B, or ().

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (EstLoopFuncCompileHWTPC.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

[e]
%}

function[OutM OutS] = EstLoopFuncCompileHWTPC(indexText, jobname);
Octave = size(ver('Octave'),1l); %Indicator of whether the code is running under Octave

(1) or Matlab (0).
index = str2num(indexText);
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if Octave == 0;
RandStream.setDefaultStream(RandStream.create('mt19937ar', 'seed',sum([clock
index*10]1)));
%Sets random stream based on clock & job index. Doesn't work with Octave (Octave
bases the seed on the clock by default).
end
%0C = str2num(overallComplianceText);

%s===Required lines for HPCC
setenv MKL DYNAMIC FALSE

smaxNumCompThreads (1) ; %Throws an error. Does not seem to be necessary.

%s===Parameter entry=== Note that 0 should not be included in L.

P = [0 .1 .2]; %Vector of desired values for proportions of children never using the
device.

SN = [0 .1 .2]; %sVector of desired values for proportions of children perfectly using
the device.

L=1[12345]; %Vector of log reduction values desired (all marker pathogens get the
same LRV).

%Testing the code using the vectors below.

%SU=[.9 1]

%T=[.9 1]

SL=[1 2]

%sConstructing a matrix with all possible combos of P, N, & L

%[p n 1] = ndgrid(P,N,L);

%Combos = [p(:) n(:) 1(:)1; %T0D0: Build functionality to check N, P,
overallCompliance, and pTreat to ensure they make sense before running.

%Building appropriate combinations of perfect compliers (P; 1lst column) and noncompliers
(N; 2nd column).

Combos = zeros(4,3); %Combo with max possible perfect compliers & max possible
noncompliers (same as [0 1-o0C]; [oC 1-0C] is 0/0).

Combos(:,1) = 1;

Combos(:,2) = [1 2 3 4];

Combos(:,3) = L(1); %This & subsequent 'for' loop copy the above for each possible LRV.
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OutCombos = Combos;
for 1 = 2:size(L,2);
NextCombos = Combos;
NextCombos(:,3) = L(1);
OutCombos = [OutCombos; NextCombos];

end

%Baselines = zeros(1l,3); %Creating baseline row. No log reduction & no perfect
compliance.

%Baselines(:,2) = 1; %Modifies above, so that 100% never use device.
Combos = OutCombos;

Combos' %0utput results, transposed.

combos = size(Combos,1)

mixOptions='ABCZ'; %Translating the digits 1-3 into letters A-C.
mix=mixOptions(Combos(index,2));

infile = ['RTF_',mix,"' CalHilOb.csv'];

outfile = ['Results/',jobname,mix,'.csv'];

%===End parameter entry===

tempData = csvread(infile,1,1);

disp(['##### Running 4 * ', num2str(size(L,2)),' = ',num2str(combos),' parameter
combinations on ',num2str(size(tempData,l)),' parameter sets from calibration, should
have requested at least that many members in the job array. #####'])

%if index == 1; %If running the baseline parameters:

% [OutM OutS] = Main(Combos(index,1l), Combos(index,2), oC, [Combos(index,3)
Combos(index,3) Combos(index,3)], [0 0 0], [0 0 O], 0, outfile, infile, multConc,
nSpikes, multSpikes, 1);

%else %If running the parameters from calibration:
EITSd('E',10,outfile,infile,1,2,3,4,5,200,[0 0 O0],[0 1],Combos(index,3)*[1 1 1],[1 1],[0
0 0],[0 1]);

%send

disp ([ '##### DONE #####'])
end %End function.
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%Inactivation (attenuation) of microbes in all compartments. Also includes some error
checking.

%Note that CFdecay is now applied to decay in all compartments (in EITS06 and later
versions).

%sFormerly (in EITS05), CFdecay was only applied to land & household environments, not to
surface water or stored drinking water decay.

%{
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (Inact.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

o)
%}

function [HHs, nMw, nMl] = Inact(RDRtime, HHs, nMw, nMl, CFdecay, Wflow, t);
nHH = size(HHs,1);

%if iscomplex(HHs) == 1; %Works in Octave, but not MATLAB.
if sum(sum(imag(HHs))) ~= 0; %Works in both Octave and MATLAB.
error('Complex number in HHs!'); %This was a problem in earlier versions of
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the code.
end
if sum(sign([nMw nMU HHs(nHH*3+1:nHH*16)]) == -1) > 0; %Check for any problematic
negative values.
negs = find(HHs < 0);
[rs,cs] = find(HHs < 0);
warning('\n%s negative values in HHs at time %s, totaling %S, rows %s, cols %S,
vals
%s.',num2str(size(negs,1l)),num2str(t),num2str(sum(HHs(negs))),num2str(rs),num2str(cs),num
2str(HHs(negs)))
When negative values occur, they tend to be in single-person households with
repeated inter-household visits.
if sum(HHs(negs)) > -1E-100;
warning('Very tiny negative values (> -1E-100), setting them to 0.')
HHs (negs) = 0; %Kludge: effectively adds some pathogens to the system to
counteract negative values; however, seldom needed.

else
error('Larger negative values than usual. Stopping.')
end
if sum(sign([nMw nMl]) == -1) > 0;
disp(nMw); disp(nMl);
error('Surface water or land has gone negative! Setting to 0.')
nMw(nMw < 0) = 0; nML(nMLl < Q) = 0;
disp(nMw); disp(nMl);
end
end
%NMw = nMw .* exp((-gM-Wflow) * RDRtime); %Surface water (this line
formerly used in EITS05).
NMw = nMw .* exp(-CFdecay .* RDRtime); %Surface water.
nML = nML .* exp(-CFdecay .* RDRtime); %sLand. Next is household inactivation.
for i = 1:3; %Microbe. Corresponds to the appropriate entry in gM (inactivation
rate).

for j = [0 3]; %Compartment. 0 signifies hands (cols. 4:6 in HHs), 3 signifies
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stored water (cols. 7:9 in HHs).
if j == 0;
HHs(:,i+3+j) = HHs(:,i+3+j) .* exp(-CFdecay(i) * RDRtime);
elseif j == 3;
%HHs (:,1i+3+j) = HHs(:,i+3+j) .* exp(-gM(i) * RDRtime); %This line
formerly used in EITS05.
HHs(:,i+3+j) = HHs(:,i+3+j) .* exp(-CFdecay(i) * RDRtime);
end
end
end
end
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%Function for generating line charts of microbe transfers.
%Need to start the figure, set up subplots, and determine subplot positioning before
calling this function.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (PlotMicrobes.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.
%}

%sLogFlux = NaN(tMax,3,8); %Cube to store fluxes of microbes. z is 1:11 (1l-surface
water to stored water at resupply; 2-net visit transfer; 3-not used, but formerly land-
to-hand-to stored water at drinking; 4-rainfall; 5&6-pooping into surface H20 (not done)
& land; 7-inactivation; 8&9-kids' dose, water & hands; 10&l1l-adults' dose, water &
hands) .

function PlotMicrobes(Log, tMax, tRain, x, y, x1, yl, microbe, daysBurnIn);
if microbe(1:3) == 'bac';
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add = 0;

elseif microbe(1l:3) == 'vir';
add = 1;
elseif microbe(1:3) == 'pro';
add = 2;
else
error('microbe must equal ''bacteria'', ''viruses'', or ''protozoa''.');
end
Log = Log + 0.1; %Avoids plotting zeros.
Y = add + 1; %Y coordinate within LogFlux data cube (denoting microbe type).
set(gca, 'Position', [x y-add*.33 x1 yl]); %1:2; x&y of bottom L corner. 2:3; x&y

of top R corner, minus 1:2.
FluxIn = sum(Log(:,Y,5:6),3);
FluxOut = sum(Log(:,Y,7:11),3);
semilogy(1l:tMax,Log(:,Y,1),"'-b",1:tMax,Log(:,Y,2),"'-c', 'linewidth',3);
hold on;
semilogy(1l:tMax,Log
semilogy(1:tMax,Log
semilogy(1l:tMax,Log
semilogy(1l:tMax,Log
semilogy(1l:tMax,Log
semilogy(1l:tMax,Log
semilogy(1l:tMax,Log(:

,'ob', 'MarkerSize',7)
,'-m','LineWidth',6)
,'-y', 'LineWidth',3)
,'+r', 'MarkerSize',3)
,'-r','LineWidth', 3)
),'+y', 'MarkerSize',3);
), '-y',1:tMax, FluxIn, '+k',1:tMax, FluxOut, '-k');
* 0.5,"' x');
title(['Daily transfers of ',microbe], 'fontsize',20);
ylabel(['# ',microbe], 'fontsize',20) %Axis & tick labels overlap on screen, but
output better to .PNG.
legend('Water resupply', 'Visits', 'Land-water (runoff)', 'Poop onto
land', 'Inactivation', 'Kid dose, water', 'Kid dose, hands', 'Adult dose, water', 'Adult dose,
hands', 'Net pos flux', 'Net neg flux',6 'Time of rain events', 'location', 'southeast')
plot([daysBurnIn daysBurnIn],[0.5 max(max(max(Log)))]l, '-k'); %Sticking a
vertical line on the graph to denote when burn-in ends.
axis ([0 tMax*1.3 0.5 max(max(FluxOut))*1.5]);

o~ o~ o~ o~ o~
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hold off;
end
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%Function for generating line charts of infection status.
%Need to start the figure, set up subplots, and determine subplot positioning before
calling this function.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (PlotPeople.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.
%}

function PlotPeople(Log, tRain, x, y, x1, yl, microbe, host, daysBurnIn, nPeople);

if microbe(1l:3) == 'bac';
add = 0;

elseif microbe(1l:3) == 'vir';
add = 1;

elseif microbe(1:3) == 'pro';
add = 2;

else
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error('microbe must equal ''bacteria'', ''viruses'', or ''protozoa''.');

end
tMax = size(tRain,1);
set(gca, 'Position',[x y-add*.33 x1 yl]); %1:2; x&y of bottom L corner. 2:3; x&y

of top R corner, minus 1:2.
plot(Log(:,1),Log(:,14+add),"'-r',Log(:,1),Log(:,18),"'-k", 'LineWidth',2);
hold on;
plot(Log( ,1),Log(: 2+add),'

m',Log(:,1),Log(:, 1+add) ,Lo
%plot(Log( 1) Log(: 2+add),

m',Log(:,l),Log(:,11+add) ,Lo
r','LineWidth',2,Log(:,1),Log(
in Octave.
hold on;
plot(tRain(:,1),tRain(:,2)-1,"' x');
title(['Daily infection status, ',microbe], 'fontsize',20);
ylabel(['# ', host], 'fontsize',20) %Axis & tick labels overlap on screen, but output
better to .PNG.
legend('Ill', "Any illness', 'Susceptible’, 'Immune’', 'Exposed', 'Infected’', 'Any
infection (no illness)', 'Rain events', 'Location', 'East')

%slegend('Susceptible’, 'Immune', 'Exposed', 'Infected', 'Ill', 'Any infection (no
illness)', 'Any illness', 'Rain events', 'Location', 'East') %For commented-out plot() call
above.

plot([daysBurnIn daysBurnIn], [0 nPeople], '-k');

axis([0 tMax*1.3 0 nPeople+l]);

hold off;

g-' Log( 1),Log(:,5+add),"'-b"',Log(:,1),Log(:,8+add), '-
g(:,1),L0g(z,17)," -k');

'g-"',Log(: 1),Log(:,5+add),'-b',Log(:,l),Log(:,8+add),'-
(:,1), Log( ,14+add), ' -

17),' -k ,Log(:,1),Log(:,18),"'-k", 'LineWidth',2); %Works

9

end
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%Describes results of defecation events (microbes onto hands, land, and surface water) by
a single person.

%1
COPYRIGHT INFORMATION

Copyright 2012 Kyle S. Enger (username "engerkyl" at the domain "msu.edu").
This file (Pooping.m) is part of EITSd.

EITSd is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

EITSd is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt)
along with EITSd. If not, see <http://www.gnu.org/licenses/>.

o
%}

%RPoopPlace: 1 column from the random number matrix determining whether the person
poops into the water or on land.
%People: Rows from the People matrix, each row corresponding to a particular person.

%HHSs : The HHs matrix, corresponding to all households.
%Mpgf: Microbes per gram of feces (3-element vector, 1 element per microbe type).
%fpp: Grams of feces excreted per defecation event (assuming 1 event per day).

Single value; run function once for each desired value.
%fHands: Grams of feces on fingers after defecation event.
%nNMw : Number of microbes in the reservoir (3-element vector, 1 element per
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microbe type).

%SnNML : As above, but number of microbes on land.

%pPoopH20: Probability that the person defecates directly into surface water (instead
of on land).

%RCompHW: 1 column from the random number matrix determining whether the person
handwashes.

%RCompSan: 1 column from the random number matrix determining whether the person uses
sanitation.

%LHand: LRVs from handwashing.

%lSan: LRVs from sanitation.

%schosenOnes: Logical vector of rows in People that are being operated on.

function [HHs, nMw, nMl] = Pooping(RPoopPlace, People, HHs, Mpgf, fpp, fHands, nMw, nML,
pPoopH20, lHand, 1San, chosenOnes);
nPeople = size(People,1);
if size(chosenOnes,1l) ~= nPeople; error('People and chosenOnes do not match up!');
end
MicrobeLoad = repmat(Mpgf,nPeople,l) .* repmat(chosenOnes,1,3) .* (People(:,1:3)==
| People(:,1:3)==3) .* repmat(fpp,nPeople,3); %0nly microbes infecting the person are
shed.
MicrobelLoadHands = MicrobelLoad .* (fHands/fpp);
MicrobeLoadEnv = MicrobelLoad - MicrobelLoadHands;
PeopleCompSanHW = HHs (People(:,7),[13 15]); %Expands household-level compliance to
each person.
MicrobelLoadHands = ApplyLRVs(MicrobelLoadHands, lHand, PeopleCompSanHW(:,2));
%Applying handwashing LRVs to handwashing compliers' hands.
for 1 = 1l:max(People(:,7)); %sLooping over households, to apply new hand
contamination to household 'hands' stock. Would be nice to vectorize, but not sure how.
%PeopleInHHi = find(People(:,7)==1);
MicrobesAdded = sum(MicrobelLoadHands(find(People(:,7)==1i),:),1); %Forces sum of
each column (even if there's only 1 row).
%MicrobesAdded = MicrobelLoadHands(find(People(:,7)==1),:);
HHs(i,4:6) = HHs(i,4:6) + MicrobesAdded;
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end

MicrobeLoadEnv = ApplyLRVs(MicrobeLoadEnv, 1San, PeopleCompSanHW(:,1)); %sApplying
sanitation LRVs to sanitation compliers' feces.

PoopInH20 = RPoopPlace < pPoopH20;

nML = nMl + sum(MicrobelLoadEnv(~PoopInH20,:),1); S%Apply remaining microbes after
sanitation to the land.

NMw = nMw + sum(MicrobelLoadEnv(PoopInH20,:),1); %As above, for the water.
end
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function A = erdrey(n,m)
ERDREY Generate adjacency matrix for a G(n,m) type random graph.
Input n: dimension of matrix (number of nodes in graph).
m: 2*m is the number of 1's in matrix (number of edges in graph).

Defaults to the smallest integer larger than n*log(n)/2.

OQutput A: n by n symmetric matrix with the attribute sparse.

Description: An undirected graph is chosen uniformly at random from
the set of all symmetric graphs with n nodes and m
edges.

Reference: P. Erdos, A. Renyi,
On Random Graphs,
Publ. Math. Debrecen, 6 1959, pp. 290-297.

0 00 0° A° A° A° B° B° O° A° A° B° O° O O O P o°

Example: A = erdrey(100,10);

%Lines 22-26 added by Kyle S. Enger to ensure proper attribution. In all other respects,
this copy of erdrey.m is identical to its original source.

%This file is part of CONTEST, a publicly available MATLAB toolbox:
http://www.mathstat.strath.ac.uk/research/groups/numerical analysis/contest

%See also Taylor A and Higham DJ (2009) CONTEST: A Controllable Test Matrix Toolbox for
MATLAB. ACM Transactions on Mathematical Software. 35 (4).

%This copy of erdrey.m is reproduced in Kyle S. Enger's Ph.D. dissertation by permission
of the authors (Des Higham, personal communication, 24 Aug. 2012).

%The file erdrey.m is not part of EITSd but is used by EITSd, and is included here for
completeness.

if nargin ==
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m = ceil(n*log(n)/2);
end

nonzeros = ceil(0.5*n*(n-1)*rand(m,1));
v = zeros(n,1);
for count = 1:n

v(count) = count*(count-1)/2;

end

I = zeros(m,1);
J = zeros(m,1);
S = ones(m,1);

for count = 1:m
i = min(find(v >= nonzeros(count))):
j = nonzeros(count) - (i-1)*(i-2)/2;
I(count) = 1i;
J(count) = j;

end

A = sign(sparse([I;J],[J3;I],[S;S]l,n,n));
while nnz(A) ~= 2*m

difference = m-nnz(A)/2;
Inew = zeros(difference,1);
Jnew = zeros(difference,1);
for count = 1l:difference
index = ceil(0.5*n*(n-1)*rand);
Inew(count) = min(find(v>=index));
Jnew(count) = index - (Inew(count)-1)*(Inew(count)-2)/2;
end
I = cat(1,I,Inew);
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J = cat(1,J,Jnew);

S = ones(length(I),1);

A = sign(sparse([I;J],[J3;I],[S;S]l,n,n));
end
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10. APPENDIX D: GLOSSARY

Allocation concealment: Conducting a study in such a way that assignment to a particular group
is truly random, and not influenced by either the subject or the investigator. In theory,
adequate allocation concealment should always be feasible.

Blinding: Conducting a study in such a way that the subject (single-blind) or the subject and the
observer (double-blind) does not know which experimental group the subject belongs to.

BSF: Biosand filter, a HWT method consisting of a sand filter in which the outlet pipe starts at
the bottom of the filter and exits the filter above the top layer of sand, thus allowing the
sand to remain wet at all times.

CAMRA: Center for Advancing Microbial Risk Assessment. A multi-university center, it hosts
the QMRAwiki (http://wiki.camra.msu.edu).

CDC: Centers for Disease Control and Prevention (United States government agency).

CFU: Colony-forming unit. A bacterial suspension can be quantitated by spreading a sample of it
on a plate of growth medium. After incubation, the number of colonies are counted. This
estimates the number of colony-forming units in the original suspension. CFUs are often
assumed to represent single bacterial cells, although this assumption may not be accurate if
the bacteria adhere to one another.

DALY: Disability-adjusted life-year. Allows comparison of morbidity among differing diseases.
Diseases are assigned 'DALY weights' based on the duration of disease, the level of
disability caused by the disease, and the chance of death (the ultimate disability). The
concept was developed and expanded by WHO.

Dose response equation (or curve, or model): Relationship of the mean number of pathogens
ingested to the probability of a response, such as infection or disease.

Dysentery: An enteric disease characterized by intestinal inflammation and bloody stools.
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EAWAG: Swiss Federal Institute for Environmental Science and Technology (German acronym).

E. coli: Escherichia coli bacteria. Usually a commensal inhabitant of the mammalian gut, but
some strains can cause disease.

EITS model: Environmental infection transmission system model. Resembles SIR & other
similar models, but directly models pathogens in the environment, in addition to states of
infection by hosts.

Endemic: Describes a disease that is constantly present in a community. Hyperendemic denotes
constant presence at high levels. Endemic disease levels may fluctuate over time, but rapid
increases in disease are described as epidemic.

Epidemic: Temporarily increased levels of a disease in a community.

FFU: Focus-forming unit. Analogous to CFU or PFU, but applies to viruses in cell culture.
Distinct sites that are disrupted on a lawn of cells are considered to have arisen from a
single FFU (and perhaps a single virion, if they do not adhere to one another).

Fomite: A physical object that can become contaminated and thus transfer pathogens between
hosts.

Helminths: Worms.

HWT: Household water treatment. Synonym of POU.

Incidence, or incidence rate: Number of new cases of a disease in a population divided by time
(e.g., cases of diarrhea per child per year). This is a measure of risk.

Incubation period: Time from exposure to a pathogen until the first symptoms develop. Usually
longer than the prepatent period.

ID: Incidence difference. Analogous to incidence ratio (IR), but ID is obtained by subtracting the
incidence in the intervention group from the incidence in the control (non-intervention)

group. Also known as attributable risk.
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IR: Incidence ratio, a comparison of two incidence rates. Generally the incidence in the
intervention group is divided by the incidence in the control (non-intervention) group. It is
a type of relative risk, representing the proportion of the incidence remaining in the
population after an intervention has been applied.

LFF: LifeStraw® Family Filter, a HWT gravity-fed filtration device capable of removing
viruses. It is produced and distributed by the Vestergaard Frandsen corporation.

LRV: Log; reduction value; number of factors of 10 that have been inactivated, e.g., an LRV of

2 means that 99% of microorganisms have been inactivated, LRV of 3 means that 99.9% of
microorganisms have been inactivated, etc.

MATLAB: A software package (MATrix LABoratory) that is useful for programming computer
simulations, among other things.

Matlab: A region of Bangladesh in which many studies of diarrhea have been conducted.

Morbidity ratio: Proportion of infected hosts that develop symptoms. Sometimes called the
illness-to-infection ratio.

NGO: ‘Non-governmental organization’, generally a private nonprofit organization conducting
human development work.

NTU: Nephelometric turbidity units, a measure of cloudiness of water. 0 is perfectly clear. The
USEPA requires that municipally treated water have < 0.3 NTU in > 95% of monthly
samples. Water that is so cloudy that it is opaque might have an NTU of several hundred.

Odds: The number of times an outcome occurs divided by the number of times the outcome does
not occur. When the odds of an outcome in two different groups are expressed as a ratio,
this is termed an ‘odds ratio’ or OR. ORs are analogous to relative risk and approximate
relative risk when the disease is uncommon (in that circumstance, number of

nonoccurrences % entire population), though ORs are often used in contexts where a proper

448



risk measure is unavailable.

ORS or ORT: Oral rehydration solution = oral rehydration salts = oral rehydration therapy.
Giving a formulation of sugar and electrolytes in clean water by mouth to an ill person in
order to replace fluids, electrolytes, and energy lost to diarrhea.

Outbreak: A small or localized epidemic.

Persistent diarrhea: Diarrhea lasting longer than 14 days.

Person-time: Number of persons observed multiplied by the average amount of time during
which each person was observed. Analogous to ‘work-hours’.

PFU: Plaque-forming unit. Analogous to CFU, but applies to bacteriophages (viruses of bacteria)
quantified on a lawn of bacteria. Round cleared areas in the lawn of bacteria are assumed
to have arisen from a single bacteriophage.

POU: Point-of-use water treatment. Synonym of HWT.

Prepatent period: Time from exposure to a pathogen until the pathogen can be detected in the
host. Usually shorter than the incubation period.

Prevalence, longitudinal: Amount of person-time spent ill divided by the total amount of person-
time observed. This is a measure of risk.

Prevalence, point: Proportion of a population ill with a disease at a single point in time.

Preventable fraction: Proportion of disease that is prevented by a public health intervention (such
as household water treatment or handwashing) in a particular population.

Rate ratio: See relative risk. Rates describe occurrence per unit time. Simple proportions are
often incorrectly called rates.

Relative risk: The ratio of two risk measures, used to illustrate the magnitude of an effect. By
convention, relative risks under 1 denote a protective effect, while relative risks over 1

indicate an adverse effect.
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Risk: The likelihood (loosely defined) of a particular adverse outcome occurring. The number of
times a particular outcome occurs divided by the total number of outcomes.

Safe storage: A common attribute of HWT methods, incorporating a storage vessel for water
which has a narrow neck and (usually) a spigot, to prevent hands or other objects from
(re)contaminating the water within.

SIR model: A model of infection transmission in which hosts can occupy 3 states in this order:
susceptible, infectious, and removed (meaning immune or dead). Commonly modeled by a
simple system of differential equations describing the rates by which hosts transfer
between states, though other methods may be used. Often elaborated to include other states
of infection or other orderings of states, e.g., SIS (susceptible-infectious-susceptible), SEIS
(susceptible-exposed-infectious-susceptible), SEIR (suscepible-exposed-infectious-
removed), etc.

SODIS: Solar disinfection, a HWT method in which contaminated water is placed in clear plastic
bottles, which are then placed in the sun. Microorganisms are inactivated by a combination
of UV irradiation and heating.

Sustainability: The ability of an intervention to be accepted by a community and perpetually used
without any input from outside the community. Also pertains to management of resources
in such a way that the resource is not depleted, e.g., using water from an aquifer at a rate
no greater than its rate of recharge.

TTC: Thermotolerant coliforms. E. coli is an organism in this group. Commonly used as an
indicator of fecal contamination of water.

UN: The United Nations.

UNICEF: The United Nations Children's Fund (originally United Nations International

Children's Emergency Fund). An international development charity and agency that
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particularly focuses on children and mothers.

USEPA: Environmental Protection Agency (United States government agency).

UV: Ultraviolet light, which is sometimes used to inactivate pathogens in water.

Weaning: Cessation of breastfeeding and introduction of additional foods, a process that can span
months or years. Initiation of weaning (i.e., cessation of exclusive breastfeeding) is
associated with sharply increased diarrhea risk.

WHO: World Health Organization.

Z-score: Number of standard deviations away from the mean. In nutrition, z-scores refer to
standard distributions defining weight-for-height, height-for-age, and weight-for-age for a
well-nourished reference population. Z-scores of 2 or 3 are commonly used as cutoffs for

adverse nutrition outcomes.
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