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ABSTRACT

ELECTROMAGNETIC FIELDS INDUCED IN AND

SCATTERED BY BIOLOGICAL SYSTEMS EXPOSED TO

NONIONIZING ELECTROMAGNETIC RADIATION

BY

Donald Edward Lives ay

This thesis presents a technique for calculating the electric field

induced in a finite biological body having arbitrary shape and composi-

tion, when the body is irradiated by an electromagnetic wave. A know-

ledge of the induced field is important to researchers investigating the

biological effects of nonionizing radiation.

As an introduction to the study of induced electromagnetic fields in

biological media, a plane slab model of a human trunk is analyzed. The

electromagnetic field induced in the model by a uniform plane wave is

obtained by two methods: (1) by a direct application of bomdary condi-

tions, and (2) by transmission line techniques. A group of numerical

examples illustrates the behavior of the human trunk ‘model at various

frequencies from 100 Hz to 10 GHz.

The problem Of calculating the electric field induced in a finite body

is considered next. An integral equation for the induced electric field

is derived using the free-space dyadic Green's function. The method

of moments is then us ed to transform the integral equation to a matrix

equation for numerical solution. Techniques for calculating the external

scattered field, and for using symmetry to reduce the matrix size, are



Donald Edward Lives ay

included. A variety of numerical examples, along with some experi-

mental data, are presented to illustrate the versatility and the accuracy

of the 'mO‘ment solution. In addition, the computer program us ed to

calculate the numerical examples is described, and instructions for its

us e are given.
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CHAPTER I

INTRODUC TION

In recent years there has been a growing concern over the possible

health hazards of nonionizing electromagnetic radiation. A variety of

responses to such radiation have been observed in humans and animals.

Some of these reactions are caused by an increase in body temperature,

while others are triggered directly by the induced electromagnetic field.

Before valid safety standards for exposure to nonionizing radiation can

be established, the conditions which elicit a particular response must

be known. Thus, it is necessary to determine the electric field inten-

sity which produces a nonthermal reaction, and to establish the temper-

ature at which a heat- induced effect occurs. The temperature, however,

can be derived from the intensity of the internal electric field. Cons e-

quently, valuable insight into both thermal and nonthermal effects can

be gained if the induced electric field can be calculated.

The mathematical complexity of the problem is enormous. It is

therefore necessary, in a practical theoretical study, to approximate

the biological system of interest by a relatively simple model which can

be readily analyzed. Some commonly used 'models are the plane slab

I 7], [16], the conducting sphere [6 ], [17], and the dielectric cylinder

[ 4]. However, these models are Often grossly oversimplified, and the

conclusions drawn from their behavior have only limited validity.

This thesis presents a technique for calculating the electric field

induced inside a finite biological body having arbitrary shape and



composition, when the body is irradiated by an electromagnetic wave.

The free- space dyadic Green's function [ 1] is used to derive an integral

equation for the induced electric field; the method of 'moments is then

used to solve the equation numerically. The calculation of the scattered

field is also discussed.

A plane slab model of a human trunk is studied in Chapter 11. Two

methods of calculating the induced field due to a uniform plane wave are

presented: (1) solving the system Of linear equations generated by the

boundary conditions on the electric and magnetic fields, and (2) using

transmission line techniques. A number of numerical exaanples illus-

trate the behavior of the human trunk 'model at various frequencies from

100 Hz to 10 GHz.

Chapter III is devoted to calculating the induced field in a finite

biological body having arbitrary shape and composition. An integral

equation for the induced electric field is derived using the free-space

dyadic Green's function. The method of moments is then us ed to con-

vert the integral equation to a matrix equation for numerical solution.

Details for using symmetry to reduce the matrix size, and for calculat-

ing the scattered field, are given. The chapter concludes with a variety

of examples illustrating the versatility of this numerical technique.

Some calculations of the scattered field from saltwater cylinders are

compared with experimental data, with good agreement.

Chapter IV contains a description and listing of the computer pro-

gram used to obtain the numerical results presented in Chapter III.

Instructions for its use, along with some illustrative examples, are also

included.



CHAPTER II

INTERACTION OF AN ELECTROMAGNETIC PLANE WAVE

WITH A PLANE SLAB MODEL OF A PHYSIOLOGICAL SYSTEM

Since humans and animals have such complicated shapes and struc-

tures, an attempt to directly analyze their electromagnetic absorption

and scattering properties would be a formidable task. It is therefore

necessary to approximate these complex physiological systems by simp-

ler models for which the scattering problem can be readily solved. In

this chapter we will discuss the Often-used plane slab model, which, in

some cases, can provide useful data about heating patterns in the ori-

ginal system.

2. 1. Qualitative DescriLtion of the Plane Slab Model
 

A general N-slab system, shown in Figure 2. 1, consists of N con-

tiguous plane layers of tissue, each having uniform thickness and infinite

cross-section. The tissue composing each layer is linear, homogene-

ous, and isotropic, although its electrical properties do vary with

frequency. We assume that the entire array contains no sources, and

that the incoming electromagnetic field is a uniform plane wave, inci-

dent normally upon the first slab. The coordinates are defined so that

one axis is perpendicular to all of the boundaries in the model. Both of

the vacuum regions enclosing the system extend to infinity along this

axis, so that no reflected wave exists in the vacuum on the right. Be-

fore considering a specific example, we shall discuss two methods of
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determining the electromagnetic field inside an arbitrary N- slab

configuration.

2. 2. Maxwell's Equations and Plane Wave Solutions for a General

N- Slab System
 

For a mathematical description of the model, we refer again to

Figure 2. 1. We have chosen the coordinates so that the z- axis is per-

pendicular to all of the boundaries in the system. The incident wave

impinges on the array from the left, traveling in the +z direction, with

the electric field vector linearly polarized along the x— axis. At any

point 1", E(?) denotes the electric field while PM?) represents the mag-

netic field. The space occupied by the ntil layer will be indicated by Ln'

In the discussion which follows, we can economize on our descriptions

by regarding the vacuum regions as additional ”layers" Of the system;

we will refer to the region z < (11 as Lo’ while we denote the region

z > dN+l by LN+1' With this notation in mind, let us select a layer at

random, say Li' and investigate the behavior of the electromagnetic

field within it.

As indicated in Figure 2. l, the i2 layer has permittivity 6i Farad/

meter, permeability pi Henry/meter, and conductivity (Ti mho/meter.

Its input plane is located at z = di’ where "do” is at - OO. It will be

convenient to represent the electric and magnetic fields inside Li by

EN?) and Hifi"), respectively. Thus, for I" 6 Li’

E5) = Eifi’) (2. 2. la)

m?) fiifi?) (2. 2.1b)

i = 0,1,. .. ,N+l.

We assume a harmonic time variation of ejwt, which we shall henceforth

suppress. Since each layer is linear, homogeneous, isotropic, and

source-free, Maxwell's equations for Li are



Vx E15) = - jwpifii(?) (2.2.2a)

vxfiifi’) = (ei+jwei)Ei(I-’) (2.2.2b)

v-EiG) = 0 (2.2.2e)

v-fiifi’) = 0 (2.2.2d)

i = 0,1,...,N+1.

Maxwell's equations may be combined in the usual manner to ob-

tain the vector Helmholtz equation for EEG"):

v2 E16) + R? E16?) = 0 (2. 2. 3a)

where kiz = 02,11 61 - jwuio-i (2. 2. 3b)

1 = 0,1,...,N+1.

Since the incoming uniform plane wave is incident normally on the

first slab, we expect to Obtain uniform plane waves in each layer of the

system. Therefore, we anticipate a solution to Equation (2. 2. 3a) of the

form

-jk.z jk.z

E4?) = Ei(z) = x(Aie 1 + Bie 1 ) (2.2.4)

i : 0,1,...,N+l

where Ai and Bi are complex constants, as yet undetermined. Ai

specifies the amplitude and phase Of a wave traveling in the +z direc-

tion, while Bi gives the amplitude and phase of a wave moving in the

-z direction. Ao represents the incident wave, and is known in ad-

vance. Also, since our model precludes any reflections in LN+1’ we

must take BN+1 = 0.

From Equation (2. 2. 2a), fiifi') is given by

—> —-> _ . —>

Hi(r) _ —qui[vx Ei(r )] . (2.2. 5a)

Substituting Equation (2. 2. 4) in Equation (2. 2. 5a) yields



 ll

~
<
I
>

fiifi’) = Hi(z) (2.2.5b)

i = 0, 1, . . . , N+1

where L. denotes the characteristic wave im edance of L., and is
1 p 1

given by

 

I1). .

§=i=I Ill 1:01 N+1(225c). k vei'J(Ui/w) , ,oo., o o o
 

Let k1 = Bi - Jai.

Then, using Equation (2. 2. 3b), we Obtain

1/2

 

“161 “i
(ii = Re(ki) = w 2 1"(3?) +1 . (2.2.7a)

i

pi is the wave number in the igl- layer; it is also defined by

2
51 = 755 (2.2.7b)

i

where Xi is the wavelength in Li' <1i represents the attenuation con-

stant in Li’ and it is given by

 

“6. 0'

ai = -Im(ki) = w l+(———) - 1 . (2.2.8)

2. 3. Boundary Conditions
 

To completely specify the electromagnetic field in the it—h- slab, we

must determine the constants Ai and Bi in Equations (2. 2. 4) and (2. 2. 5b).

We can do so by imposing boundary conditions on EH") and HG’). Elec-

tromagnetic theory tells us that the component Of E(?) and the compo-

nent of HG") which is tangent to an interface between disparate media

must be continuous there. A reference to Figure 2. 1 and to Equations

(2. 2. 4) and (2. 2. 5b) shows that both Efi’) and m?) are tangent to all

boundaries in our model. Therefore, the boundary conditions imply



that E (1:) and PM?) must be continuous throughout the system. We may

use Equation (2. 2. 4) to express the continuity of the electric field at

z=dnby

- jkn_ ldn jk d - jkndn j kndn

e + B e ) = (Ane + Bne ) (2. 3.1)

(An- 1 n- l

n = 1,... ,N-I-l.

From Equation (2. 2. 5b), we Obtain the expression for the continuity Of

the magnetic field:

-jk_d jk_d —jkd jkd

e n1n_B enln) (Ae nn_Benn)

= n n (2.3.2)
4. Q
n-l n

  

n =1,...,N+1 .

These relationships are illustrated in Figure 2. 2. For convenience, we

shall take (11 = 0 with no loss Of generality.

2. 4. Matrix Representation of Boundary Conditions

As the index n of the previous section assumes all possible values,

Equations (2. 3. l) and (2. 3. 2) generate a set of 2N + 2 simultaneous

linear equations relating the unknown A's and B's. This algebraic sys-

tem has a solution if the A's and B‘s also number 2N + 2.

The N tissue layers contribute 2N unknowns, since there are two

for each slab. In addition, we must evaluate Bo and A A0 and

N+l'

BN+1’ of course, have already been specified. The system of equa-

tions therefore contains 2N + 2 unknowns, enabling us to solve it.

We define the following column vectors:
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{
b
t
d
l
b
t
fi

N
I
—
o
I
-
I
O

¢ = : Qnfila) 4% = A a.a1b)

.
o
o
O
O
I
—
I
o
—
t

1
1
>

o

    -AN+1J -03

The system of 2N + 2 linear equations may then be cast into the

form

IGNI= R, a.a2)

where [C] is the (2N + 2) x (2N + 2) matrix shown on page 11.

The vector LIJ may be written as

-l
q] : [C] 4,0 .

(2. 4.3)

After the A's and B's have been evaluated, the electromagnetic

field in Li can be found by using Equations (2. 2. 4) and (2. 2. 5b)

2. 5. Solutionjj Transmission Line Analogy
 

Equation (2. 4. 2) will be solved by a computer in most cases. Since

the boundary conditions relate the coefficients in adjacent layers only,

most Of the elements of [C] are zero. Thus, particularly if N is large,

considerable computer storage will be wasted, making the matrix

method uneconomical to use. We can calculate the coefficients in

Equations (2. 2. 4) and (2. 2. 5b) a different way, by exploiting the sim-

ilarities between our slab model and a uniform transmission line [12].

The pertinent quantities are shown in Figure 2. 3. As before, the

input plane of Li is located at z = di' The input impedance to Li is

denoted by Zin' Clearly, Zin is the "load" impedance for Li-l' At
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the boundary 2 = di’ we define a reflection coefficient l"i and a trans-

mission coefficient Ti:

 

 

i-l
I‘i — A. (2.5.1a)

1-1

Ai
Ti 2 A. (2.5. lb)

1-1

1 = 1, O O . , N+l 0

We will derive expressions for F1 and '7’i by using the boundary condi-

tions on E(?) and HG") at z = di’ and by using the definition of impedance.

The impedance Zi(z) in Li is given by

 

-jkiz jkiz

Eix(z) [Aie + Bie ]

71“”) = W = 4’i -jk.z jk.z 9'5"")

13’ [Aie 1 - Bie 1]

where Qi is the characteristic impedance Of Li’ given by Equation

(2. 2. 5c).

Thus, Zin may be written as

 

 

-Jkidi Jk d

i [Aie + Bie 1]

Zin = Zi(z:di) = C’i -Jkid. Jkld (2°5°3a)

[A e 1 - B 1]

or

jZkidi

Zi : 1,;[1‘LI‘i-rle ] (2 5 3b)

in i jZkidi ' °

[1 " 1“1+1" 1

The boundary conditions at z : di are

-jk._ d. jk._ d. -jk.d. jk.d.

A. e 111+13. e111=A.e 11+I:3.e11L (2.5.4a)
1-1 1-1 1 1

-jk._ d. jk. d. -jk.d. jk.d.
Ai-1e 111_Bi-1e 1-11 Aie ll-Bie 11

z
(2.5.4b)  

C’i- 1 13i
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By using the relationship expressed in Equation (2. 5. 3a), we re-

write Equation (2. 5. 4b) as

 
 

-jk._ d. jk._ d. -jk.d. jk.d

Ai-1e 111'B1-1e 111 Aie 11+Bie 11

L = i (2. 5. 5)

i-l Z.

In

Substituting Equation (2. 5. 4a) into Equation (2. 5. 5) and dividing by

 
 

Ai—l y1elds

-jk. d. jk. . -jk. . jk.

e 1-11_1_.ie 1-11 1-11+I..18111

.—_ , (2. 5. 6)

gi-l 2?
1n

We can readily solve Equation (2. 5. 6) for F1:

(2? - g. ) -j2k. d.
ri = In 1-1 e 1-1 1 (2. 5.7)

(Zin + gi-l)

 

We may rewrite Equation (2. 5. 4a) as

 

-jki- ldi jki- ldi -jkidi jkidi
Ai-l[e + I‘ie ] : Ai[e + ri+l e ] (2. 5. 8)

Hence, Ti is given by

[e'Jki—I i + 1.. eJki-ldi]

Ti = -'kT 1 ek d (2. 5. 9a)

[e J i i + I‘ eJ i i]
i+l

By substituting Equation (2. 5. 7) into Equation (2. 5. 9a), we Obtain

i2 z? J(IT‘S-.1)d

7' = ' m e arr1 1 J . .

Zin+§i-l[l+1‘i+le 11]

i=1,...,N-l-l .

 (2. 5. 9b)

By examining Equations (2. 5. 3b), (2. 5. 7), and (2. 5. 9b), we see

that we can determine Zin’ Pi, and Ti if we know PH Our procedure1°

is motivated by this observation.
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S1nce BN+1 = 0, 1t follows that FN+2 = 0. Thus, from Equat1on

(2. 5. 3b), 25:1 is simply go, the characteristic impedance of free

space. Using Equations (2. 2. 5c), (2. 5. 7), and (2. 5. 9b), we calculate

FN+1 and TN+1° We then repeat the procedure, evaluatIng ZN, I‘N, TN,

ZN- 1, and so on, until I‘ and 'T have been determined at each boundary.

Next, we calculate the coefficients, using Equations (2. 5. 1a) and

(2. 5.1b):

B0 = I‘l A0 (2. 5. 10a)

A1 = 71 A0 (2. 5. 10b)

B1 = FZA1 = 1727le (2.5.10c)

A2 = TZAI = 7271 AC) , (2.5.10d)

and so forth. In general, Ai and Bi are given by

A1 = TiTi-lTi-2° ° ° ' ° ° ° 7271Ao (2'5'113)

Bi = ri+1717i_1 . . ..... 72'7le (2.5.11b)

Finally, we use Equations (2. 2. 4) and (2. 2. 5b) to determine the elec-

tromagnetic field in Li‘

2. 6. Numerical Results for a Plane Slab Model of the Human Trunk
 

The model depicted in Figure 2. 4 was chosen to represent a human

trunk. The system is 19. 9 cm thick, and comprises 7 layers: two

layers of skin, each 0. 2 cm thick; two layers of fat, each 3. 0 cm thick;

two layers of muscle, each 5. 0 cm thick; and a layer of bone, 3. 5 cm

thick.

Table 2. 1 lists the electrical properties of each type of tissue at

various frequencies from 100 Hz to 10 GHz. Since physiological tissues

are essentially nonmagnetic, it has been assumed that pi = no in each

slab.
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Frequency Muscle, Skin Fat, Bone

(Hz) 6/60 0'(mho/m) I 03/60 0-(mho/m)

102 1,438,039 0.2 71,902 0.04

103 539,265 0.2 21,571 0.04

106 2,000.0 0.4 200.0 0.043

107 160.0 0.625 40.0 0.045

108 71.7 0.889 7.45 0.048

3::108 54.0 1.37 5.7 0.069

61:108 52.47 1.49 5.6 0.086

9::108 51.09 1.59 5.6 0.101

1.5x109 49.0 1.77 5.6 0.121

2.45::109 47.0 2.21 5.5 0.155

‘5:r109 44.0 3.92 5.5 0.236

1010 39.9 10.3 4.5 0.437

Table 2. 1. Frequency Dependence of Conductivity and Relative

Permittivity for Muscle, Skin, Fat, and Bone.
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The electric field intensity E and the power density P have been

calculated in each layer of the system at each of the frequencies given

in Table 2. l, and the results are shown in Figures 2. 5 through 2. 16.

AC has been taken to be 1. The distributions of E and P at each fre-

quency are plotted only for 0 s z s 8. 5 cm, as explained below.

At low frequencies, up to about 10 MHz, the electric field is nearly

constant throughout the entire model. Therefore, the power density in

the second half of the system is merely a mirror image of that in the

first half. At higher frequencies (100 MHz and above), the power den-

sity is nearly zero beyond the first muscle layer; hence, the latter

portions of the system are of little interest.

As noted before, the electric field is nearly constant throughout

the system for frequencies up to 10 MHz. The heating of each layer is

therefore uniform, with the skin and muscle layers heated the most.

We also note that E and P are generally larger at frequencies above

100 MHz than they are at lower frequencies. The maximum value Of E

occurs in the skin layer at 600 MHz. At 600 MHz and above, the ratio

of the power density in the skin to that in the muscle becomes large.

Thus, most of the power in the incident wave is dissipated in the skin

layer; relatively little penetrates to deeper layers of tissue. Based on

this model, the use of high frequencies for diathermy is questionable,

since little heating would occur deep in the body. Indeed, a patient

would suffer severe burns on the skin before he would experience any

significant heating of internal structures. Of course, this model does

not take into account the cooling effects of perspiration and circulation

of the blood. In addition, the accuracy with which the system of Figure

2. 4 represents an actual human trunk is questionable.
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CHAPTER III

INTERACTION OF AN ELECTROMAGNETIC WAVE

WITH AN ARBITRARY PHYSIOLOGICAL SYSTEM

Although the plane slab model is a useful analytical tool, it has

several obvious limitations. There are many important biological struc-

tures which cannot be represented by a plane slab model. Therefore,

we need to develop a method of analyzing finite physiological systems

with arbitrary shapes .

3. 1. Description of Problem and Method Of Solution
 

In this chapter we will develop a numerical method for studying the

electromagnetic absorption and scattering characteristics of a finite,

source-free physiological system. The system, also referred to as a

biological body, has an arbitrary shape and composition, and is located

in a source-free region of free space. The body is illuminated by an

electromagnetic field having an assumed harmonic time variation of

ejwt, as shown in Figure 3. 1.

Although the system is, in general, inhomogeneous, we assume it

to be linear and isotropic. The permeability, permittivity, and con-

ductivity of the biological body are ME"), 65"), and 01?), respectively.

All losses in the system may be accounted for by the conductivity; thus,

66.") is real. Since biological tissues are essentially nonmagnetic, we

can assume that “(1’) : “o with negligible error.

By manipulating Maxwell's equations for the incident electromag-

netic field and for the total electromagnetic field, we Obtain a tensor
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integral equation for the unknown electric field inside the system. Then,

using a pulse-function expansion of the unknown field in conjuncticn with

point-matching, we employ the method of moments [ 2 ] to solve the

integral equation numerically. Once the internal electric field has been

determined, we may, if desired, calculate the field scattered externally

by the body.

3. 2. Integral Equation for Internal Electric Field

The constituent vectors ER?) and 13116:) of the incident electromag-

netic field satisfy Maxwell's equations for a source-free region of free

space:

vinfi') = -jw,,roi-Ii(1-') (3.2.la)

Vx HR?) = jweoEl(?) (3.2.1b)

v- Eifr’) = 0 (3.2.1C)

v- 15%?) = 0 (3.2. 1d)

#0 and 60 are the permeability and permittivity, respectively, of free

space. Eifir) and Hi(?), of course, are known functions of I".

When the incident electromagnetic field impinges on the physiologi-

cal system shown in Figure 3. 1, it creates a distribution of induced

charges and currents throughout the system. These charges and cur-

rents are the sources for a secondary or scattered field, denoted by

Esfi") and Hs (1"). Thus, E(?) and H(?), representing the total electro-

magnetic field at each point, may be written as the sum of the two par-

tial fields:

EG’) EH?) + E‘NF) (3. 2. 2a)

m?) I116?) + 111%?) (3. 2. 2b)

Since E16?) is known, the problem will be solved if we can obtain an ex-

pression for ESG") inside the body.
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First, we must relate Esfir) to its sources through Maxwell's equa-

tions. We begin with Maxwell's equations for the total electromagnetic

field inside the physiological system:

Vx E6?) = - jwuo m?) (3.2.3a)

v x in?) = o-(r’)E(r') + jwe(‘r’)E(r') (3. 2. 3b)

v - [o(r’)‘E’(r’) + jw€(r’)E(r’)] = o (3.2.3C)

v - in?) = 0 (3.2. 3d)

Since Maxwell's equations are linear, we substitute Equations (3. 2. 2a)

and (3.2. 2b) into Equations (3.2. 3a) and (3.2. 3b), and Obtain

V x Eifi'.) + V x ESE.) - jwuo fiifif) - jwuo H36.) (3. 2. 4a)

v x 316') + v x Ham «mam + WM?) - 60] 1‘6?)

+ jw€o[fii(?) + ‘E’SG‘H (3. 2. 4b)

Subtracting Equations (3. 2. 1a) and (3. 2. 1b) from Equations (3. 2. 4a)

and (3. 2. 4b), respectively, we have

v x E3('r’) = - jwnofisfi’) (3. 2. 5a)

Vxfisd’) = w?) +J'UI€(?) - 60 11a?) + jweofisa’) (3.2.sb)

Defining an equivalent volume current density jeqfir) by

Teqfi’) = 7(r’)E(‘r") , (3.2.6a)

where 75’) = «(3’) + jw[e(i-’) - so] , (3.2. 6b)

we may rewrite Equation (3. 2. 5b) as

Vx 13136?) = 3’ (r’) «+ij E8(‘r’) (3.2.7)
eq 0

The equivalent current density is non-zero only inside the physiological

system, and has two components: a(?)E(?) represents the conduction

current flowing in the body, while jw[€(?) - 60] E5.) gives the polariza-

tion current.

The equation of continuity for Teqfi?) defines an equivalent volume

charge density peqfi"):
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v-fi’eq(r)+jwpeq(r) = o (3.2.8a)

from which

->

_ .1 . 7’peq(r) _ 0‘7 Teq(r) (3.2.86)

Taking the divergence of Equation (3. 2. 7) and using Equation (3. 2. 8b)

gives

8 _, pg (1")

v-E(r) -—-‘1— (3.2.9)
" e

0

Finally, taking the divergence of Equation (3. 2. 5a), we have

V' fisfi’) = 0 (3.2.10)

Equations (3.2. 5a), (3.2. 7), (3. 2. 9), and (3. 2.10) constitute Maxwell's

equations for ESG") and H35"):

VxESG?) = - jwuofis(?) (3.2.11a)

Vx $3155) a Teqfi’) + jwco E35?) (3. 2. 11b)

v- E91?) = sic peqfi’) (3.2.11c)

v- fi8(‘r’) = 0 (3.2.11d)

Since peqfi") is related to jeq(?) by Equation (3. 2. 8b), we can ex-

press ESG’) as a function of jeq(?) only. Furthermore, we may think

of jeqfir) as a current existing in free space, since only no and 60 appear

in Equations (3. 2. 11a) through (3. 2. 11d). Note, however, that Teqfi’)

depends upon the total electric field E(?), which is still unknown. It

is this fact which leads us to an integral equation for E(?).

The scattered electric field Esfi") can be written in terms of Teqfir')

by using the free- space tensor Green's function 35“, 13') [ l ], given by

8&2?) = - jOHOI‘I" + -E-%II(?,?) , (3.2. 12a)

0

where
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-jkol?- 1"!

(JG-2}") = _, _, . (3.2.126)
411'Ir- r'I

‘1‘ = M+M+Qé , (3.2.12c)

and k0 : L04“ 6 ,

OO

 

Let V denote the volume occupied by the physiological system. If

1" is outside Of V, the relation between 335:) and Teqfih) is simply

ES(F) = I? (15) - ‘G’(r’,‘r")dv' (3.2. 13)

V eq

If 1". is inside V, however, difficulties arise because GG", 1'") is singular

at 1°" = i". We can remedy the difficulties by using a modified tensor

—>—>

rrGreen's function 55-: 11"), first introduced by Van Bladel [18]. (”N , 1)

is given by

Cid-Zr") P.V.€(?.?') - Yogi); T"

O

 (3.2. 14)

where G(?, 15) is defined by Equation (3. 2. 12a), and the P. V. symbol

denotes the Principal Value, to be defined presently.

Thus, when '1"> is inside the physiological system, Equation (3. 2. 13)

is replaced by

 E36?) = 5384?!) - [R v. 86-2?!) - Tétgw-coflidv' (3. 2. 15a)

01'

8 -* --> —-p 9 Te (if)

E (r) = P. V.Svj'eq(r') - C’(r,r')dv' — 33.—3?;- (3.2. 156)

The P. V. symbol, then, refers to the principal value of the integral in

Equation (3. 2. 15b), obtained by excluding from V a small sphere of

radius 7? centered at i", then taking the limit as T) -> 0.

By substituting Equation (3. 2. 15b) into Equation (3. 2. 2a) and re-

arranging terms, recalling that Teqfi?) : T(?)E(?), we obtain the desired
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integral equation for EG"):

[1 + —-S§)€:]Er( )- p.175 t(?|)E(r") - G(?,?')dv' : EH?) (3.2.16)
3jw V

Equation (3. 2. 16) may be classified as a Fredholm integral equation of

the second kind. Eifi") and 7(1'") are, of course, known quantities.

E6") is the unknown total electric field inside the body. A solution to

Equation (3. 2. 16), based on the method of moments, will be discussed

in the next section.

3. 3. Moment Solution of Integral Equation
 

The inner product of E5“) and GE: 15) in Equation (3. 2. 16) may be

represented as a matrix product:

xx(E’. F') nyd’. 3'5) zefi’. i5) axe")

Emu-66.?) = cyxu r) GW(?.?') 63,263") Eva-"1

sz(r, r') Gzy(r, r') Gzz(r, r') Ez(r")

(3. 3. 1)

To make the analysis as general as possible, it will be convenient to

introduce the following notation:

3 = z (3. 3.2)

Physically, Gx x (1",1‘") is the xp component of the electric field at the

Observation poiliitqr maintained by a unit xq component of current at the

point 1"".

If the expression for CH", 1") given in Equation (3. 2. 12a) is used to

evaluate the inner product of E5") and C(r’, 1'" ), and if the resulting ex-

pression is compared to Equation (3. 3. 1), we find that

2
-> ~> _ , ' _L a —D --D‘

Gx x(1°.1") — - quoI:5pq + k2 MIMI-'1' ) (3.3.3)

P ‘1 o ‘1 P

13.9 = 1.2.3.
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where fipq is Kronecker's delta. A straightforward evaluation of Equa-

tion (3. 3. 3) (see Appendix A) gives, after some rearranging,

 

. -jc1

—-> —+ -1wu0koe 2 0 Z

G (r,r') : [(0. -1-JO)6 +cosO c080 (3-(1 +3ja)]
x x 4 3 pq x x

P q 1711 P CI

(3.3.4)

where

o. = k R R = ?- r'I

O

x - x' x - x'

C086 -_— ii C086 — J—A

x R x R

P C1

" _ "’1 _ I 1 1

r " (X1! X2, X3) r - (X 9 x2) x3)

Equation (3. 2. 16) comprises three coupled scalar integral equations.

Using Equation (3. 3. l), we write each scalar component of Equation

(3.2.16) as

[1 + 3jw€ :IEx (1‘) - P. V-S 7(r')[ 2: Gx x (r,r')]Ex (r')]dV' : Ex (r)

o 19 V q—1 p q q p

P =19293° (303- 5)

We can use the method of moments to transform Equation (3. 3. 5) into a

matrix equation for each value of p. The resulting coupled matrix equa-

tions may then be combined into a single matrix equation for E(?).

First, we partition the body into N cells, or subvolumes, and

assume that 7(1?) and E(?) are constant throughout each cell. We denote

the rnth subvolume by Vm' and we let Fm denote the position of a repre-

sentative interior point of Vm, as shown in Figure 3. 2. Thus, the

integral in Equation (3. 3. 5) may be written as

X

3

P. v.5 7(F')[ 2 Ox (3?, 31-")Ex (15)]dv'

V q=1 P 9 9

I
I

I
I
M
W

P. my 7(?')Gx x (?,?')Ex (1")dv' (3.3.6a)

1 v9 139 q
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3 N

= E 2: P. v.5 7(‘r")G (r’,‘r")E ("r‘)dV' (3.3.66)
x X x

q=1 n=l V p q q

3 N -> -9 -9 —>

= Z Z 7(rn)Ex (rn) P. V.S Gx x (r,r')dV' (3.3.6c)

q=ln:1 q VII p q

Hence, Equation (3. 3. 5) becomes

[1+ :IE (r) - 2 E 7(r )E (r )P.V.5 G (r, r')dV' : E (r)
X n X n V X x x106

J o p q=1n=1 q n pq P

(3. 3. 7)

Next, we require that Equation (3. 3. 7) be satisfied at each ‘r’m

That is,

[l +WIEX (rm) - E 23 7(rn)Ex (rn)P.V.S Gx x (rm, r')dV'

o p q=1n= q Vn p q

i —.

- Exp(rm) (3.3.3)

Equation (3. 3. 8) can be rewritten in the following form:

3 N n? )
—> -+ -> m -e

E Z [7(rn)P.V.S Gx x (rm, r')dV' - 6pq6mn(l +W)]Ex (In)

q:l n=l Vn p q o q

i —.

: - Ex (rm)
(3. 3. 9)

P

m = 1,2, . . ,N

P = 1:213-

Let [Gx x ] be the NxN matrix whose elements Gin: are given by

P q P q

mn -b .. ...' ' 7(?m)

Gx x - 'T(rn)P. v.5 Gx x (rm,r )dV - 6pq°mn[l +W]

P q Vn P q 0

(3.3.10)

m,n : 1,2,... ,N.

P.q = 1.2.3-
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Then, Equation (3. 3. 9) is simply

3 N .

z: 2: OX x EX (rn) - - Ex (r ) (3.3.11)

q=ln=1 p q q p

m: 1,2,...,N

    

P = 19293-

We also define the N-dimensional column vectors [Ex ] and [E:{ ],

P P

given by

r. ‘T “ i “P -!

Ex (r1) FEX (r1)

P P

. i .

IEx ] = . . (3.3.12a) [Ex ] = . . (3.3.12b)

P o p s

—> i _.

LEX (rN)..I LEx (rN)..l

P P

P = 1.2.3.

The summation over n in Equation (3. 3. 11) represents the inner product

of the mth row of [Gx x ] with [Ex ]. As m ranges over all values from

P q

l to N, Equation (3. 3. 11) becomes

3 .
1

E [Gx x ][Ex] = - [Ex]. p = 1,2,3. (3.3.13)

q=1 pq q p

After performing the summation over q for each value of p, we Obtain

the following set of linear equations:

[GHHEXHIGXYHEYI+[zeHEz] = - [12:] (3.3.14a)

[GYXHEXI + [GWJIEYI + [Gyzll E2] = - [BI] (3.3.146)

[sz][Ex] + [Gzy][Ey] + [Gzz][Ez] = - [E12] (3. 3. Me)

Equivalently, we have

[ten] EIny] :[zel‘ [[EXJI PIES]

'fé"i'IiE:"1'I'I'<§"1' T151 — - "It‘i' (3 3 15)
---1r>.=_-'.--yy.-.'--.v.3-___v- ‘ ----.z ' '

IIszI Hazy] EIGZZL _[Ez]‘ _[E;] _      
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Equation (3. 3. 15) may be written in compact form as

[G][E] = - [Ei] (3.3.16)

Equation (3. 3. 16) is the matrix representation of Equation (3. 2. 16).

[G] is a 3N x 3N matrix, while [E] and [Ei] each have 3N components.

We can find the total electric field in each of the N subvolumes by solv-

ing Equation (3. 3. 16) for [E].

3. 4. Calculation of Matrix Elements
 

In this section we develop explicit expressions for the elements of

each N x N submatrix [Gx x ], p,q = 1,2, 3. The m,nth element of

P q

[Gx x ] is defined by Equation (3. 3. 10):

P '1 _.

mn .. —> —> firm)
G : 7(r )P.V.SG (r ,r')dV'-6 6 [l+—.—-—]
x x n x x m pq mn 33006

P q Vn P q 0

(3.4.1)

We will first evaluate the Off-diagonal elements; 1. e. , m f 11. Since

Fm f Vn’ the integrand in Equation (3. 4. 1) is continuous throughout Vn’

so we need not take the principal value. Thus, the Off-diagonal elements

of [Gx x ] are given by

P q

Gmn = WINS G (r’ ,P)dV' (3.4.2)
x X n X X m

Pq V1.l Pq

mfn

Poq=11293°

The integral in Equation (3. 4. 2) can be evaluated numerically by any

convenient method.

If the dimensions of Vn are small compared to the free- space wave-

length Ao, we can approximate Gin: by assuming that the integrand in

P q

Equation (3. 4. 2) is constant over the region of integration. With this

assumption, Equation (3. 4. 2) becomes



Gx x = 7(rn)Gx x (rm,rn)AVn (3.4.3a)

P q q

m {n

where

AV : SI dV' . (3.4.3b)
n

V
n

Writing ? and 1" as

m n

-—<> m m m

rm = (x1 ,x2 ,x3 ) (3.4.4a)

_. n n n

rn : (XI’XZ' x3) , (3.4.4b)

—’

and using Equation (3. 3. 4) to evaluate G (r , F ), we Obtain an
x x m n

approximate expression for the off-diagonal matrix elements. The re-

 

sult is

. -> -jamn

mn _ - JL‘)"‘okoT(1-n)AVne [( 2 l . )6

x x — 3 amn - - Jamn pq

P ‘1 41rd
mn

+ cos 03m cos 0:“1 (3 - a2 + 3jamn)] (3. 4. 5a)

P q

m ;f n

where

o. :kR , R = I? -?| (3.4.56)
mu 0 mn mn m n

m n m n

mn x ' x mn x - X
cos 0x : —ER—B , cos 0x : __9____9 (3. 4. 5c)

p mn q mn

If the biological body is cylindrical, experience has shown that

using Equation (3. 4. 5a) often produces inaccurate data. When the cylin-

der axis is perpendicular to Eifir), numerical integration of Equation

(3. 4.2) leads to nearly the same solution as using Equation (3. 4. 5a).

The two methods generate different solutions, however, when the axis

of the cylinder is parallel to Eifi"). We will soon see why.

Figure 3. 3 shows a cylindrical body illuminated by a uniform plane

wave at normal incidence, with ER?) linearly polarized along the x- axis.
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The only significant component of both E5") and EEG-T) is the x- component.

Therefore, it will be instructive to compare the values of Gxx(?m,1?n)

for the two cases illustrated in Figure 3. 3.

In Figure 3. 3a, the axis of the cylinder is perpendicular to EiG-I),

so that ?m and 1:1 have very nearly the same x-coordinate. Thus,

according to Equation (3. 4. 5c),

2

(cos 02‘") = 0. (3.4.6a)

G (1'. ,1? ) , the Green's function for perpendicular polarization, is
xx m n_]_

therefore given approximately by

 

. -j°‘mn

G (r ,r = 3 (o. - l - JO. ) (3.4. 6b)
xx m n_]_ 417a mn mn

mu

2 Z . . . .
If o‘mn << 1, we can neglect the amn term 1n Equat1on (3. 4. 6b), obtammg

 

-ja.

-> -» j“)I‘okoe . 4
Gxx(rm’rn_]_ — 4" 3 (1 +Jamn) (3. .6c)

o‘rnn

The axis of the body is parallel to Eifi") in Figure 3. 3b, so that

Fm and ;n have approximately the same y- and z-coordinates. Hence,

 

 

2

(cos 0?) = 1 (3. 4. 7a)

‘Il. -. ' O O O O

Gxx(r m' r11).I , the Green a function for parallel polarizat1on, 1s

approximately

. damn

-. —» " quo ko e 2 . 2 .
(r ,r e [(a -1-Ja. )+(3-a +330. )]

xx m n" 41”? mn mn mn mn

mu

(3. 4. 7b)

damn

j(We R0 8 .
= -2 4 A3 (1 +Jamn) (3.4.7C)

11’ (1

Therefore,



IGxx(rm,rn)“I ~ I xx(?m,?n)_l_| (3.4. 7d)

1f arznn << 1 .

Since Gx x (1", 15) varies as (of-3 for small a, the largest matrix ele-

ments are those for which “inn << 1. These elements are approximately

twice as large for parallel polarization as they are when Eifir) is per-

pendicular to the cylinder axis. Thus, for parallel polarization, the

matrix elements should be evaluated more accurately to obtain reliable

data.

The diagonal elements of [Gx x ] may be written as

p q (*1'T r

:2: = 7(?n)I: x - 5PqI1+ 335%] (3.4.8a)

P q P q o

where

In = P. v.5 G (? ,?')dv' (3.4. 8b)
x X x x n

P q Vn P q

It is easily verified that Gx x (?, ?1), defined in Equation (3. 3. 3), is

P q

also given by

G (? ?1) - -'w [a +-1— 82 LIN-1??) (3 4 9)
xx ’ ' J"o pq ZDx'Dx' ' "

P q k0 P q

All derivatives in Equation (3. 4. 9) are taken with respect to the

variables of integration, so we may set '1? : ;n at the outset. Then,

since Gx x (?n, 15) is a function of (x11 - x'), (y11 - y'), and (zn - z') only,

we can define a coordinate system centered at “r'n, and set as; : 0. Thus,

146.?) = «)4?» = ¢(r') = —— (3.4.10)

where
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Cons equently ,

2
4. _ ->, _ . 1 3 ,

C'x x (0,r ) 7 Gx x (r ) 7 'quoI:6pq +1.2 W]Mr)

P ‘1 P 9 o P ‘1 (3.4.11)

To evaluate I: x , we will approximate Vn by a sphere Sn of equal

volume centered about the origin of the new coordinate system, as

shown in Figure 3. 4a. The radius an of the sphere is given by

3Avn 1/3

an a (T) (3.4.12)

Thus,

1n = P. v.5 G (?')dv' (3.4.13)
X x X x

P q 511 P q

The variables of integration are merely dummy variables, so we will

omit the primes from here on.

It is easily shown that

Z 2

Sign =Mflf2fs+l%lfl[5 friq] (3.4.14)
xp xq er r r r r pq r r

In the spherical coordinate system illustrated in Figure 3. 4b, we have

% : sine cos¢ (3.4.15a)

§ a sine sincI; (3.4.15b)

Z

-r- :: C089 (3.4.15c)

dV = r2 sinedrdedo (3.4.15d)

Therefore, since the ratio of x,y, or z to r is a function of 0 and (I) only,

we write

xx

quw=$f Aq=MA utm

P q

Then, using Equations (3.4. 16) and (3. 4. 14), Equation (3. 4. 11) becomes
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2

prxq(r) ‘ ‘ J“’“o ¢(r)§pq + kZI er fxpxq(9'4’)

0

d

+ 11‘ "PP (qu fxpxq(9.4>))] (3.4.17)

We now substitute Equation (3. 4. 17) into Equation (3. 4. 13) to obtain

11 217 1r

1 = - jwuonlim %q5:11p(r)rZodrS d4) sin0d0

0

2n nf

+—-2- ang-igilr2 drS d4) (0,4)) sin0d0

k0 n dr2 0 O fxpxq

a

1 n (r) 2" 1'

+3577 grit?— rdr.) d4) [qu ' fx x (9.6)] “made0 o p q

3.4. 18)

Integrating the second term of Equation (3. 4. 18) by parts and combining

the result with the third term gives

 

11’
n

e

I = - jwu af¢(r)r2:.dr5‘1rd¢ s1n0d0
xpxq

01171310 qu
0

2t 1t
1

.+_,Z[,Z 9%929DIS d¢ fxx (0,¢)s1n0d0

k0 n o 0 P ‘1

a

211' 7r

1 11d r .+7 5' _%.I_) ,drS' d4, [5pq - 3fx x (9.9)] s1n0d0

ko n 0 0 P ‘1

(3.4.19)

In the third term of Equation (3.4.19), 5:ngiliéflrdr becomes in-

finite as 1740. However, using Equation (3. 4."16) and Equations (3.4. 15a)

through (3. 4. 15¢), it is readily verified that

211'

5 d4) o[asPq - 3fx x (9.9)] sinede = 0 (3.4.20)

0 P q

Poq = 19203-

The third term of Equation (3. 4. 19) is therefore zero for all finite

values of T), and contributes nothing as THO. Thus, Equation (3. 4. 19)

becomes
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n

I: x : - jwpo lim 41r6 S «firzdr

P q ”:0 pq n

3‘n 211' 1r

+-1—-[r2£15I’—(—r-)- ]I d.) f (6.9) sin0d0 (3.4.21)
2 dr x x

k n o o p q

It can be readily demonstrated that

211’ 11‘ 4P5

5 d¢ fx x (0,<I>) sine d0 :-§—6Pq (3.4.22)

0 O p q

We then have

 

 

 

 

n .
I : - pr 471'6 unnans.II;(r)r2 dr
xpxq o pq 771310

+ __1_2[Zde” an] (3.4.23)

3k r n

e-jkor

Recalling that Ip(r):_——Z-1;-;— , we obtain

n -Jk r 'Jkor 3'n

I: x = -jwuofi lim 5 e o rdr + -—lz[r2§;(e r ) ]

p q pq 7740 n 31:0 1')

(3.4.24)

A straightforward evaluation of Equation (3. 4. 24) gives

- iju 6 -jk a

In a 'Z’Pq[e °n(l+jk a)-1] (3.4.25)
x x O n
p q . 3ko

The desired expression for the diagonal matrix elements is found

by substituting Equation (3. 4. 25) into Equation (3. 4. 8a):

 

Zj n?) - k a r(?n )

ngx = -5Pq ““02 n [eJon(1+jkoan)-l]+[l “FEED-1%:

p q 3ko

(3.4.26a)

01'

n j(duos —> . -> 'jkoan .
Gx x s —.223 3['r(rn) + JOEO] - 27(rn)e (1 + Jkoan)

p q 3ko

(3. 4.26b)
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If the actual shape of Vn differs appreciably from that of a sphere,

Equation (3. 4. 25) can be applied to a small sphere surrounding 1;; the

integration over the remainder of Vn can be done numerically.

3. 5. Reduction of Matrix Size for Special Cases of Cross-Sectional

Symmetry

 

 

It is possible in some cases to reduce the number of unknowns in

Equation (3. 3. 16), thereby effecting a substantial saving in computer

storage space. To illustrate the method, we will consider the cubical

body shown in Figure 3. 5.

We will assume that the incident electric field is a plane wave,

given by

EN?) = 4E0 e-Jk°z , (3.5.1)

and that Eifi") is incident normally upon the face of the cube.

The body's cross section is symmetrical about the z-axis, and

about the planes x : O and y : 0. We will assume that the electrical

properties of the cube are likewise symmetrical. The planes of sym-

metry divide the cube into four quadrants, which are indicated by Roman

numerals in Figure 3. 5. We could proceed with the calculation of Ed?)

inside the body in a purely straightforward manner; that is, we could

partition the cube into, say, 4N subvolumes (N in each quadrant), and

compute Ea") in each cell. However, under the assumed conditions,

we need only determine EG") in one quadrant; the electric field in the

other quadrants can be Obtained by utilizing the symmetry of the body.

Thus, as we shall show, we can determine EG’) at 4N points in the cube

by solving a matrix equation involving the unknown electric field at only

N points.
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Following a procedure similar to that us ed in Section 3. 3, we

partition the first quadrant into N cells, or subvolumes, and assume

that 11?) and E ('1?) are constant throughout each cell. We denote the

rnth subvolume by Vm , and its location by ;m , where the subscript

”1" refers to the firsthuadrant. By reflectinglel and le about the

plane x : 0, the z- axis, and the plane y : 0, we Obtain their respective

images in the other quadrants: Vm and Fm in the second quadrant,

2 2

V and I" in the third, and V and '1': in the fourth. By
m m m m

3 3 4 4

assumption,

7(1‘ ) = TI? ) = TI? ) = 75" ) . (3.5.2)
m1 m2 m3 m4

We require that Equation (3. 2. 16) be satisfied at each ?m . Pro-

1

ceeding as in Section 3. 3, we have

3 N mnl _' mnz _’ mn3 _.

Z ZIG E (r )+G E (r )+G E (r)
x x x x x x n x x x n

q=ln=l Pq q l Pq q 2 Pq q 3

mn4 _. 1 _.

+ G (r )] : - E (r ) (3. 5. 3a)
x x x n x m
p 4 l

m = 1920- 0 :N s

P = 19203:

where _.

7(1' )
mnl _. ml

._ I I _ _.__.__
C'x x 7(rn )P. V. Gx x (rm ,r )dV 6pq6mnIl + 3jw€ :I

P 9 1 Vn P q l o

1 (3. 5. 36)

and

mu --> -> ---->

G J = T(r )5 G (r ,r')dV' , (3. 5. 3c)
x x n x x m

P q 1 Vn. P q 1

J
j = 2, 3,4 .

The principal value has been omitted in Equation (3. 5. 3c) because the

integrands are continuous throughout the regions of integration.
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Under the assumed conditions of symmetry and normal incidence,

with E16.) linearly polarized along the x-axis, we can determine by in-

spection (and verify by computation) the following relations:

Exfi’nl) = EXIrnZ) = Ex(rn3) = Ex(rn4) (3. 5.4a)

EY(rn1) : - Ey(rn2) : Ey(rn3) : - Ey(rn4) (3.5.4b)

Ez(rnl) = - Ez(rn2) = - Ez(rn3) = EZ(?n4) (3.5.4c)

Thus, Equation (3. 5. 3a) may be rewritten as

N mn1 mn2 Inn3 mn4 _.

E [G + G + G + G ] (r )
x x x x x x x x x n

n=l p 1

N mnl mnZ mn3 mn4 _.

+2 ny-ny+ny-ny Ey(rn)

n=l P P P P 1

N mnl mnz mn3 mn4 _> 1

+ 23[ze -ze -ze +ze]Ez(rn) : -E (rm) (3.5.5)

n=l P P P P 1 P 1

Let wx x] , WK y] , and WK 2] be NxN matrices whose respective

P P P

elements are given by

mn mn1 mn2 mn3 mn4

J4xx = C'xx +Gxx +CIxx +Gxx (3.5.6a)

P P P P

mu m mn mn

fig“; =nyl‘Gx:2+ny3‘ny4 (3.5.66)

P P P P P

mn mnl mnz mn3 mn4

fl = G -G -G +G (3.5.6c)
x z x z x z x z x 2

P P P P

p : 1,2,3.

Equation (3. 5. 5) then becomes

2 Z x x Ex (rn ) : - Ex (rm ) (3.5.7)

(1:1 n: P q q 1 P 1
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As explained in Section 3. 3, Equation (3. 5. 7) is equivalent to the

following as m and p range over all possible values:

‘644...] 1,4,1,15wIlTIExlll ’[Eill:

------ L------h ---x.-- ----- --‘—l

I517}.-I.[f].-wxe]. If I}. z " Ii]- (3'5'8)

L [42x]: [#zy1':- [#ZZ]_) [EZ]1 L[Ez]1.l

where [Ex ] and [E3: ], p : 1, 2, 3, are defined by Equations (3. 3. 12a)

      

and (3. 3. 12b), respgctively. The subscript "1" again refers to values

in the first quadrant.

We may write Equation (3. 5. 8) in more compact form:

OWE]1 = - [Bill (3.5.9)

where M] is a 3Nx3N matrix, and both [E]1 and [Ei]l have 3N com-

ponents. After we solve Equation (3. 5. 9) for [E]l, we obtain [E]z,

[E]3, and [E]4 via Equations (3. 5. 4a) through (3. 5. 4c). Had we solved

Equation (3. 3. 16) for [E] in the entire body, we would have had 12N

unknowns. Thus, we have reduced the number of unknowns (and the

matrix size) by a factor of 4. However, the amount of computation

needed to evaluate each matrix element has increased by the same

factor.

We can sometimes reduce the number of unknowns by an additional

factor of 2, at the expense of computation time, by decomposing the

incident plane wave into symmetric and anti- symmetric modes. We

will again use the cubical body to briefly outline the method.

The origin of the coordinate system will be located at the center

of the cube, with the axes oriented as shown in Figure 3. 6. The planes

x : 0, y : 0, and z : 0 divide the cube into eight octants. We partition

the first octant into N subvolumes, as before, and denote the rnt'h
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subvolume and its location by Vm and Fm , respectively. Again,

1 l

V and I" have images in each of the other octants. We assume

m1 m1

that

n? )='r(? )='r(? )='r(?)

m1 m2 m3 m4

= 76’ )= N? )= n? )= n? ), (3.5.10)

m5 m6 m7 m8

where the numerical subscript once again refers to the octant in which

the point is located.

The incident electric field, given by Equation (3. 5. 1), can be

written as

EN?) = E163” E3?) , (3. 5.11a)

where

Eisfi’) = QED cos koz (3.5.11b)

Eiafi’) = - £on sinkoz. (3. 5.11c)

Eisfi'.) represents a symmetric mode of exciting the cube, while Eiafi")

is an anti- symmetric mode. E185?) and E25?) are illustrated in Figures

3. 7a and 3. 7b, respectively.

Let E86?) be the internal electric field induced by E:(?). The

components of E8 (3") obey the following relations:

Ea? )=E(i-’ )=E(i-’ )=E(‘r’)
X8 m1 X8 m2 X8 m3 XS m4

= xs(rm ) = Exs(rm ) = Ex3( m > = Emum ) (3.5. 12a)

5 6 7 8

E -> : - E -> = E -. = _ "’

ys(rm1) ys(rm2) ys(rm3) ys( m4)

= Eys(rm5) = - Eys(rm6) = Eys(rm7) = - Eys(rm8) (3,5,1zb)
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Ezs(_.ml) = - Ezs(rm2) = ' Ezs(rm3) = Ezsfirm“)

--E (i? )=E (5’ )=E ('1‘r )=-E (i? ).(3.5.12c)
28 m5 ZS m6 28 m7 Z8 m8

Similarly, let Eafir) be the field induced by E25”. Then, the

components of E87?) satisfy

Exauml) = Exa(rm2) = Exa(rm3) = Exa(rm )

= - Exa(rm ) — - Exa(rm ) — Exa(rm ) = - Exa(rm ) (3.5. 13a)

5 6 7 8

E -> = - E —-> = E «b = - E ->

ya(rml) ya(rm2) ya( m3) ya(rm4)

= — Eya(rm5) = Eya(rm6) = - Eya(rm7) = Eya(rm8) (3. 5. 13b)

Eza(rml) : - Eza(rm2) " ' Eza(rm3) — za(rm4)

: Eza(rm5) = - Eza(rm6) : - Eza(rm7) = Ezahfma) . (3. 5. 13C)

The total electric field inside the cube, with Eifir) given by

Equation (3.5. l), is found in three steps. First, using E26.) as the

incident field, we require that Equation (3. 2. 16) be satisfied at each of

the N points in the first octant. Proceeding as we did in the first part

of this section, we use Equations (3. 5. 12a) through (3. 5. 12¢) to reduce .

the number of unknowns by a factor of 8. After we solve the resulting

matrix equation for EEG.) in the first octant, we can find Es G") in the

other octants via Equations (3. 5. 12a) through (3. 5. 12c).

Next, we use Eiafir) as the incident field, and compute Eafi") in the

first octant. We can again reduce the number of unknowns by using

Equations (3. 5. 13a) through (3. 5. 13c). Once we have found Eafr’) in

the first octant, we obtain Eafi") in the other octants by employing

Equations (3. 5. 13a) through (3. 5. 13c).
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Finally, because of the linearity of Equation (3. Z. 16), the total in-

duced electric field in the cube due to ER?) is simply

EG") = E8(?)+Ea(?) . (3.5.14)

Although we have reduced the number of unknowns by decomposing

Eifi") into symmetric and anti- symmetric modes, there are obvious

disadvantages. First, we must solve two problems: a body excited by

Eifi"), and a body excited by E253. Second, each matrix element will

contain eight terms. Finally, we must pay careful attention to the alge-

braic sign of the field components in the various octants when we add

ESG") and Ea(?). Nevertheless, if computer storage space is limited,

the decomposition of Eifi") into symmetric and anti- symmetric modes

may prove useful.

3. 6. Calculation of External Scattered Field

We will frequently be interested in finding the scattered field out-

side the physiological system. Once EG") has been determined inside

the body, the external scattered field is given by Equations (3. 2. 6a)

and (3.2. 13):

EN?) = S 7(‘r")E(I~") . §(?,?')dv' . (3.6.1)
v

Using the notation developed in Section 3. 3, we may write each scalar

component of ESQ?) as

3

E; (I?) = SV—r(?i)[qz:lcx x (?,?)E (35)]dV' (3.6.2)
x

P Pq ‘1

l
l

I
-
I

‘

N

-

W oP

Since the volume V has been partitioned into N cells, with '11?) and

Ear) assumed to be constant throughout each cell, Equation (3. 6. 2)

becomes
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N 3

E:P(?) = 1121-ng 7(i’n)[(1)21prxq(I-’,?')Exq(?n)]dv' (3.6.3a)

or

E8 (E’) = I): ;7(?)E (I?) c (?I-‘mv' (3 6 3b)
xp n=l q=l n xq n Vn xpxq ' ' ‘

p = 1,2,3.

The integral in Equation (3. 6. 3b) has the same form as the integral

in Equation (3. 4. 2), so it can be evaluated by the methods outlined in

Section 3.4. Therefore, after we have found the N values of EG") in-

side the physiological system, we can determine the scattered field at

any exterior point by using Equation (3. 6. 3b).

3. 7. Numerical and Experimental Results
 

A number of simple biological models have been studied using the

moment solution of Equation (3. Z. 16). The results in this section illus-

trate the variety of problems which can be solved by this method. Since

techniques for probing the induced field inside a conducting medium are

still being perfected, the only experimental results to be presented are

those describing the scattering from finite conducting cylinders. The

data presented in this section is grouped into 4 general categories:

testing and convergence, determination of the internal electric field,

the external scattered field, and an investigation of the symmetric and

anti- symmetric modes discussed in Section 3. 5.

The incident electric field for all of the examples had a magnitude

of 1 Volt per ‘meter, and was polarized along the x- axis. Where pos-

sible, the symmetry methods of Section 3. 5 were used; in most such

cases, an illustration indicates the portion of the body in which the induced

field was calculated. The subvolumes in all of the examples were cubes,
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so that the expression for the diagonal matrix elements would be rea-

sonably accurate, and the induced field was calculated at the center of

each subvolume. Equation (3. 4. 5a) was used to evaluate the off- diagonal

'matrix elements for the examples shown in Figures 3. 11 through 3. 18.

For the other examples, the off-diagonal elements were computed by

numerically integrating Equation (3. 4. 2).

A. Testing and Convergence

This group of calculations was performed to test the convergence

of the numerical solution, and to acquire confidence in its accuracy.

The following two examples examine the convergence of the solution

as the size of each subvolume in the body is decreased. In the first

test, a 2. 45 GHz plane wave illuminated a muscle cylinder whose dimen-

sions in wavelengths were 3 x 1/2 x 1/2. The incident electric field

was parallel to the axis of the cylinder, so that the induced field had

essentially only an axial component. The cylinder was divided into a

variable number of subvolumes, and the induced field was calculated

for each configuration. The models for 6, 48, and 162 subvolumes are

shown in Figures 3. 8a, 3. 8b, and 3. 8c, respectively. The edges of

each cell 'measured 1/2, 1/4, and 1/6 wavelength, respectively.

Figure 3. 9 shows the electric field intensity along the axis of the

cylinder for each 'model depicted in Figure 3. 8. Since none of the sub-

volumes lie on the axis in Figure 3. 8b, the average of the fields in the

front and back of the cylinder have been plotted to facilitate a compari-

son with the results from Figures 3. 8a and 3. Be. All three models

are in good agreement, indicating that using subvolumes as large as

even 1/2 wavelength ‘may yield useful data in some cases.
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In the next test, the cube of muscle illustrated in Figure 3. 10a was

considered. The cube was exposed to a 2. 45 GHz plane wave, and each

of its edges measured 1 wavelength. The cube was treated as a single

cell, and the electric field at its center was calculated. Next, the cube

was partitioned into 27 subvolumes, as indicated in Figure 3. 10b. The

induced field was again determined, and the field intensity in the center

cell was compared to the value obtained from the first calculation. The

procedure was repeated for the quarter-wavelength cube shown in

Figures 3. 10c and 3. 10d, and the results are presented in Table 3. 1..

Noting that the two values agree well for the quarter- wavelength cube,

and recalling the results of the previous test, we will take 1/4 wavelength

as an upper bound for the largest dimension of any subvolume.

The last example was chosen to evidence the accuracy of the method.

An electrically small dielectric cube (measuring 4 cm x 4 cm x 4cm)

was irradiated by a plane electromagnetic wave, for various values of

frequency and dielectric constant, as illustrated in Figure 3. 11. We ex-

pect the electric field near the center of the cube to be very nearly equal

to the electric field near the center of a sphere with the sane dielectric

constant in a uniform electrostatic field. The field E in the sphere is

given by

E = -é—3Tz- Ei , (3.7.1)

1'

where E1 is the externally applied field, and er = 6/60. The table in

Figure 3. 11 shows that the nuInerical solution is consistent with this

expectation.

B. Internal Electric Field

This group of examples is devoted to calculating the induced field

in bodies of various shapes and sizes, with both uniform and nonuniform



F
r
e
q
u
e
n
c
y

=
2
.
4
5
G
H
z

0

)
e
’
o
’
e /

\
\

/
/

x
\

/

T
\
/

1
<

\
:

/
/
(
b
)

1
.

V
4 T

6
=
4
7

6

(
C
)

°

0'
=
2
.
2
1
m
h
o
/
m

 
 

 
 

 
 

///

 
 

 
 

F
i
g
u
r
e

3
.

1
0
.

T
w
o

c
u
b
e
s

o
f
m
u
s
c
l
e

i
l
l
u
m
i
n
a
t
e
d
b
y

a
2
.
4
5
G
H
z

p
l
a
n
e
w
a
v
e
,

t
r
e
a
t
e
d

a
s

s
i
n
g
l
e

c
e
l
l
s

i
n

(
a
)
a
n
d

(
c
)
,

a
n
d
d
i
v
i
d
e
d

i
n
t
o
2
7
c
u
b
i
c
a
l
s
u
b
v
o
l
u
m
e
s

i
n

(
b
)
a
n
d

(
d
)
.

T
h
e

e
d
g
e
s

o
f
t
h
e
c
u
b
e
s
m
e
a
s
u
r
e

o
n
e
w
a
v
e
l
e
n
g
t
h
a
n
d

1
/
4
w
a
v
e
l
e
n
g
t
h
,

r
e
s
p
e
c
t
i
v
e
l
y
.

66



67

 

 

 

Number Size of [El center Figure

of cells each cell (Volts/m) reference

1 A O. 0789 3. 10a

27 x/3 0.0922 3.10b

1 x/4 0.0592 3.10c

27 x/12 0.0556 3.10d    

Table 3. l. Induced electric field at the center of

the muscle cubes shown in Figure 3. 10

for various numbers of subvolumes.

IE1) = l V/m.
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[El] = l V/m \

f )‘o 6 )‘e 3 [El center

(Hz) (cm) r (cm) 61. '1' Z (Volts/m)

7 3 3
10 3 x 10 5. 0 1. 342 x 10 0. 4286 0. 4172

6 4 4
10 3 x 10 5. 0 1. 342 x 10 0. 4286 0. 4172

3 7 7
10 3 x 10 5. 0 l. 342 x 10 0. 4286 0. 4172

3 7 6
10 3 x 10 20. 0 6. 708 x 10 0. 1364 0.1124

3 7 6
10 3 x 10 51. 7 4.172 x 10 0. 0559 0. 0503     
 

Figure 3.11. Electric field induced at the center of a dielectric

cube, for various values of frequency and dielec-

Incident electric field is a planetric constant.

wave.
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incident fields. The variety of examples presented here underscores

the versatility of the moment method.

A 300 MHz plane wave iInpinges upon a plane conducting layer in

Figure 3. 12, with the incident electric field perpendicular to the plane

of the layer. The dimensions of the layer are 6 cm x 4cm x 0. 5 cm,

and its permittivity and conductivity are 70 60 and l mho/meter,

respectively. The induced electric field, which has essentially only an

x-component, is shown in Figure 3. 13. The field is nearly uniform

near the center of the layer, and is approximately 60/] 6 + 0/jwl times

the incident field. This result can be anticipated from the boundary

conditions on E. In Figure 3. 14, the plane of the layer is parallel to

Ei; the x- and z-components of the induced field are presented in

Figures 3. 15 and 3. 16, respectively. By is small compared to Ex and

E2. We note that Ex is about ten times larger than it was when the

layer was perpendicular to Ei. In some parts of the layer, E2 is about

as large as Ex’ even though the incident field has only an x- component.

This example shows that the induced electric field in a conducting body

depends very heavily upon the body's orientation with respect to the in-

cident field.

Figure 3. 17 depicts a system of two tissue layers, fat and muscle,

illuminated by a plane wave at 100 MHz. The body measures 161cm x

12 cm x 4cm, and each layer is 2 cm thick. In Figure 3. 18, the com-

ponents of the induced field are shown. The magnitude of Ez is com-

parable to that of Ex in some portions of the fat layer; this result

cannot be predicted by the plane slab model, since it assumes only an

x-component in the body. In addition, the two models produce different

values for Ex in the system. The plane slab model predicts that
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Figure 3. 17. A block of tissue composed of a fat layer and a

muscle layer, illuminated by a plane wave at

100 MHz.
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‘Fat layer (2cm thick) Muscle layer (2cm thick)
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= 100 MHzFrequency

/m0. 197 V

10 V/m at the5’:

The electric field induced in the block of tissue pictured

Only 1/4 of each layer is shown above.

For a corresponding plane slab model,

at the center of the fat layer, and Ex

center of the muscle layer.

in Figure 3. 17.

Figure 3. 18.
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Ex = 0. 197 V/m at the center of the fat layer, and that Ex = O. 210 V/m

at the center of the muscle layer.

In the next example we examine the induced axial electric field and

the power density in cylinders of salt water, having 1 Normal, 2 Normal,

and 5 Normal concentrations, and having various lengths. A typical

cylinder, along with the coordinate system, is shown in Figure 3. 19.

At 9.45 GHz, the lengths of the cylinders are approximately )‘0/4’

Xo/Z, A0, and 3Ao/2, where X0 is the free- space wavelength. The

electric field intensity, power density, and total absorbed power for

each cylinder are given in Figures 3. 20 through 3. 25.

For a given cylinder length, the field distribution has the same

general shape for all concentrations, although the total absorbed power

is generally greater for the higher salt concentrations. We also note

that the total absorbed power Pt reaches a relative maximum when the

cylinder is about xo/z in length.

The next two examples investigate the effect of an inhomogeneity

in a cylinder, as illustrated in Figure 3. 26. Figure 3. 26a shows a

muscle cylinder, measuring 10cm x 1mm x lrnrn, illuminated by a

Z. 45 GHz plane wave polarized parallel to the axis of the cylinder. In

Figure 3. 26b, we have a similar muscle cylinder with a segment of fat

1cm long at its center. The induced axial field and the power density

for both cylinders are plotted in Figures 3. 27a and 3. 27b, respectively.

Since the electric field in the inhomogeneous cylinder is normal

to the muscle-fat boundary, it obeys the boundary condition

(a-M + jw€M)EM = (ch + jweF)EF , (3. 7. 2)

where the subscripts M and F refer to muscle and fat, respectively.

Thus, near the boundary, both the electric field and the power density
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E(v/m)

E(V/m)

E(V/m)

Etvfin)

Figure 3. 20.
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0. 6 ~-

0. 4 0 h = O. 1.13 lo

0. z .. Concentration = l N

O ‘ 6 = 50 6

o o. 2 °

x/xo cr = 20. 37 'mho/m

O. 8 -- _
Frequency - 9. 45 GHz

0. 6 0 h = O. 227 X0

0, 4 ..

0, 2 ..

   

h=0.510 X0

  

 

  

 

0 0.2 0.4 0.6 0.8

Electric field E along the axis of the saltwater cylinder

shown in Figure 3. 19, for h/).B = 0. 113, 0.227, 0. 510,

and 0. 737. Concentration of t e salt solution is l Nor-

mal, and the frequency is 9. 45 GHz.
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2 Concentration = 1 N

-3 3

P(x lO mW/cm )1 h=0.ll3Xo

P = 4. 97 nW

O t

0 0.2 E ___ 50 6

x/Xo O

a = 20. 37 mho/m

5T Frequency = 9. 45 GHz
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P 10'3 w/- 3) 3"
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Figure 3. 21. Power density P along the axis of the saltwater cylinder

shown in Figure 3. l9, and total absorbed power Pt, for

h/Xo = 0. 113, 0.227, 0. 510, and 0. 737. Concentration

of the salt solution is 1 Normal, and the frequency is

9. 45 GHz.
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0. 6 -- Concentration = 2 N

E(V/m)

6:426

O

a" = 23.41 mho/m
 

 

Frequency = 9. 45 GHz
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E(V/m) o. 4 ..
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E(V/m) °

0.6

h = 0.737 x
O

E(V/m)

0 4 r : c a r ; r 4

o 0.2 0.4 0.6 0.3
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Figure 3. 22. Electric field E along the axis of the saltwater cylinder

shown in Figure 3. 19, for h/Xo = 0.113, 0. 227, 0. 510,

and 0. 737. Concentration of the salt solution is 2 Nor-

mal, and the frequency is 9. 45 GHz.
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Xx/ 0

Figure 3. 23. Power density P along the axis of the saltwater cylinder

shown in Figure 3. l9, and total absorbed power Pt, for

h/kO = 0.113, 0. 227, 0.510, and 0. 737. Concentration

of the salt solution is 2 Normal, and the frequency is

9. 45 GHz.
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Figure 3. 24. Electric field E along the axis of the saltwater cylinder

shown in Figure 3.19, for h/K = 0. 113, 0. 227, 0. 510,

and 0. 737. Concentration of the salt solution is 5 Nor-

mal, and the frequency is 9. 45 GHz.
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Frequency : 9. 45 GHz
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Pt = 87. 64 nW

   

_3 3 h = 0. 510 X
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Figure 3. 25. Power density P along the axis of the saltwater cylinder

shown in Figure 3. l9, and total absorbed power Pt' for

h/>.o = o. 113, 0.227, 0. 510, and o. 737. Concentration

of the salt solution is 5 Normal, and the frequency is

9. 45 GHz.
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‘ -———-— Homogeneous muscle cylinder

J. 'l ------ Inhomogeneous muscle cylinder
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(a) Induced electric field E, and (b) power density P along

the axes of the muscle cylinders shown in Figure 3. 26.

The frequency is 2.45 GHz, and IE1] = l V/m. Each

cylinder was partitioned lengthwise into 100 subvolumes

of equal size.
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in the fat are larger than in the muscle, thereby creating a local ”hot

spot". However, the overall heating near the center of the inhomo-

geneous cylinder is considerably less than that for the homogeneous

muscle cylinder.

In Figures 3. 28 and 3. 29, the roles of the fat and muscle have been

reversed. We again see a "hot spot” on the fat side of the muscle-fat

interface in the inhomogeneous cylinder. However, the heating near

the center of the cylinder is markedly greater when the 'muscle segment

is present. Thus, the temperature of a cylindrical fat structure exposed

to electromagnetic radiation could be significantly increased by the

presence of one or more small 'muscle segments.

An inhomogeneous layer of fat is exposed to a 600 MHz plane wave

in Figure 3. 30. The layer ‘measures 5 cm x 5 cm x 1cm, and has a

1 cm x 1 cm x 1 cm cube of 'muscle imbedded near its center. Figures

3. 31 and 3. 32 show the x- and y-components, respectively, of the in-

duced field; E2 is negligible. We note that Ex becomes quite large in

the subvolumes immediately above and below the muscle cube, while

the field in the ‘muscle is small. Again, this is due to the boundary

condition expressed in Equation (3. 7. 2).

As the last example in this group, we examine the induced field

produced by nonuniform illumination of a homogeneous muscle layer.

The layer measures 2. 5 cm x 2. 5 cm x 0. 5 cm, as shown in Figure

3. 33, and is illuminated in a small area near one corner by a 600 MHz

plane wave. Ex and By are presented in Figures 3. 34 and 3. 35, re-

spectively; the z-component is negligible. Ex is largest in the sub-

volume which was directly irradiated, and decays rapidly as we move

away from the site of incidence. EY varies considerably throughout
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(a) Induced electric field E, and (b) power density P

along the axes of the fat cylinders shown in Figure 3. 28.

The frequency is 2.45 GHz, and IE1] = l V/m. Each

cylinder was partitioned lengthwise into 100 subvolumes

of equal size.



plane wave at 600 MHz.

An inhomogeneous fat layer illuminated by a uniformFigure 3. 30.
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the layer, but we note that its maximum value is attained in a subvolume

other than the one illuminated.

C. External Scattered Field

In the following group of examples, we examine the backscattering

characteristics of various thin cylinders exposed to uniform plane waves.

The incident field is parallel to the cylinder axis, so that only an axial

field is induced. Equation (3. 6. 3b) is used to compute the backscattered

field. The 0 dB reference for all figures in this group is IE8] =

0. 01|Ei|.

The first example investigates how the phase angle of 'T affects the

scattering behavior of a cylinder. We note that 7', given by Equation

(3. 2. 6b), can be thought of as a complex conductivity, having a mag-

nitude I?" and a phase angle <1). Teq is purely a conduction current

when 4) = 0°, while (0 = 90° implies that Teq is solely a polarization

current; if 4; = 45°, the conduction and polarization components of qu

are equal.

In Figure 3. 36 we have plotted the backscattering, calculated at a

distance of 30cm, as a function of length for three different cylinders.

The magnitude of ‘T was 100 in all three cylinders, but (I) was different

for each one; the respective values were 0°, 45°, and 90°. We note

that the backscattering increases with 4). Although all three cylinders

exhibit a resonance at xo/z, the peak grows sharper as 4) increases.

This occurs because the losses in the cylinder decrease as 4) grows

larger. Hence, for a fixed value of [TI , the scattering will increase

with the ratio of polarization current to conduction current.

We compare theory and recent experimental results [10] in the

next four examples. In each case, the scattered field was determined



1
4

.
.

1
2

«
I
.

(gp) flutzaueosnoeg

F
r
e
q
u
e
n
c
y

=
1
0
G
H
z

7
:
1
0
0
e
j
d
)

.
.

.
g
/

O
d
B

r
e
f
e
r
e
n
c
e
:

I
E
8
]

=
.
0
1
I
i
i
]

.
’
D
a
r
n
/
D
,

2
h

 

97

  
A

A
"

.
.

O
I

‘
-

A
0

H
¢

“
'
9
0

'
fi
t

2
a
:
1
.
5
m
m

5
°
\

0
,

2-
..

.2
.,

.
45

°

0
—
0

4)
-.-
0
°

  
F
i
g
u
r
e

3
.
3
6
.

7r

4.

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

Z
h
/
x
o

II

P

B
a
c
k
s
e
a
t
t
e
r
i
n
g
f
r
o
m
t
h
r
e
e
d
i
f
f
e
r
e
n
t
h
o
m
o
g
e
n
e
o
u
s

c
y
l
i
n
d
e
r
s
e
x
p
o
s
e
d

t
o
a

1
0
G
H
z

p
l
a
n
e
w
a
v
e
.

T
h
e
m
a
g
n
i
t
u
d
e

o
f

’
T
w
a
s

1
0
0

i
n
e
a
c
h
c
a
s
e
,

b
u
t
t
h
e
r
e
s
p
e
c
t
i
v
e
v
a
l
u
e
s

o
f
t
h
e
p
h
a
s
e

a
n
g
l
e

o
f

7
'

w
e
r
e

0
°
,

4
5
°
,

a
n
d

9
0
°
.

T
h
e
o
b
s
e
r
v
a
t
i
o
n
p
o
i
n
t
w
a
s

3
0
c
m
f
r
o
m
e
a
c
h
c
y
l
i
n
d
e
r
.



98

15 cm from the corresponding cylinder. Figures 3. 37 and 3. 38 illus-

trate the backscattering from salt water cylinders at 9. 45 GHz. The

concentrations of the salt solutions are 1 Normal and 5 Normal, re-

spectively. In both figures the agreement between theory and experi-

ment is very good. We note the absence of resonances at xo/z, even

though, as we recall, the total absorbed power reaches a relative 'maxi-

mum at this length (see Figures 3.21, 3. 23, and 3. 25).

Although the assumptions we made in developing the moment solu-

tion are not valid for a good conductor at microwave frequencies unless

the number of subvolumes is extremely large, an attempt has been

'made to calculate the backscattering from a brass cylinder at 9. 45 GHz.

We have compared the theoretical results with experiment in Figure

3. 39, and find the agreement to be surprisingly good. Although the

current in the brass cylinder is essentially a surface current, the model

used here can provide useful data on scattering from metallic cylinders.

In Figure 3. 40 we have compared the relative backscattering from

a 1 Normal saltwater cylinder and a brass cylinder at 9. 45 GHz. The

experimental results agree well with theory. When the cylinder lengths

are odd multiples of xo/z, the brass cylinder exhibits resonances, and

scatters more than the saltwater cylinder. At lengths which are even

multiples of Ito/2, the saline solution scatters ‘more. Thus, it is pos-

sible that a cylindrical biological structure, such as 'man, could scatter

more microwave energy than a similar metallic cylinder.

D. Symmetric and Antisymmetric Modes

In Section 3. 5, we discussed the decomposition of an incident plane

wave E1 into a symmetric component E; and an antisymmetric component

E2, given respectively by Equations (3. 5. 11b) and (3. 5. 11c). When the
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plane wave impinges upon a biological body, each of these components

induces a partial field inside the body; E: excites a symmetric mode

E8, while E: induces an antisymmetric mode Ea. The total electric

field E inside the body is simply the sum of E8 and Ea. The examples

in this group illustrate some of the characteristics of the symmetric

and antisymmetric 'modes. In each example, both Es and Ea exhibit

nearly linear polarization; they differ ‘markedly, however, in their spa-

tial distributions. E8 is generated 'mainly by the incident electric field,

while Ea is due primarily to the incident magnetic field.

Figure 3. 41 shows the symmetric 'mode E8 in a muscle layer mea-

suring 5 cm x 5 cm x 0. 5 cm, irradiated by a 1 GHz plane wave. Ei is

parallel to the plane of the layer, while Hi is perpendicular to it. The

magnitude of the symmetric ‘mode is greatest at the center of the layer,

and decreases toward the edges. We note that E8 is roughly parallel to

Ei throughout the layer. I

The antisymmetric 'mode Ea in the same layer is illustrated in

Figure 3. 42. Ea is small near the center of the layer, and generally

increases toward the edges. In contrast to the symmetric mode, the

field lines of the antisym'metric mode circulate about I11. IEsI and

[Ea] are roughly equal in this example.

Since E8 and Ea are not in phase, the total electric field in the layer

is elliptically polarized. The ellipse traced out by the electric field vec-

tor in each subvolume is plotted in Figure 3. 43. The polarization varies

throughout the layer from almost linear to nearly circular.

Figure 3. 44 depicts a 100 MHz plane wave irradiating a loop of

muscle measuring 10 cm x 10 cm x 1 cm. Ei and Hi are parallel and

perpendicular, respectively, to the plane of the loop. The symmetric
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The symmetric "mode of the electric field in a muscle

layer exposed to a 1 GHz plane wave. The symmetric

mode is induced by the symmetric component (cos k02 Q)

of Ei. Only 1/4 of the layer is shown above.
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The antisymmetric mode of the electric field in a

'muscle layer exposed to a 1 GHz plane wave. The

antisymmetric mode is induced by the antisym-

metric component (-j sin koz A) of E1. Only 1/4 of

the layer is shown above.
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Figure 3. 43. The total electric field induced in a muscle layer by a

1 GHz plane wave. Only 1/4 of the layer is shown above.
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and antisyrmnetric modes are illustrated in Figures 3. 45 and 3. 46,

respectively. We note that is is largest in the segments of the loop

which are parallel to Ei. As in the previous example, Ea circulates

about the incident magnetic field. Because the loop in this example is

electrically small, [Ea] is generally much less than IE5" Therefore,

the total electric field in the loop has not been plotted.

Two features characterize the symmetric 'mode: it is excited by

the incident electric field, and it resembles an oscillating dipole. The

antisymmetric mode, on the other hand, is a circulatory field generated

by the incident magnetic field.
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Figure 3. 45. The symmetric mode of the electric field in the loop of

muscle shown in Figure 3. 44. The symmetric mode is
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incident field. Only 1/4 of the loop is showg above.
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CHAPTER IV

A DESCRIPTION OF THE COMPUTER PROGRAM USED

TO DETERMINE THE INDUCED ELECTRIC FIELD

IN AN ARBITRARY, FINITE PHYSIOLOGICAL SYSTEM

This chapter includes a description of the computer program us ed

to obtain the numerical results presented in Chapter III. A listing of

the program deck and instructions for its use are also provided.

4. l. DescriLtion of the Program
 

Figure 4. 1 shows a rectangular block of tissue, illuminated by an

electromagnetic plane wave. Only normal incidence will be considered

here. 9 The incident field is given by

. -jk 2

E‘(?) = {ée ° . (4.1.1)

PROGRAM BLOCK will calculate the induced electric field and the

power density at a prescribed number of uniformly spaced points inside

the tissue block by solving the matrix equation

[G] [E] = — [Ei] . ‘ (4. 1. 2)

Given the necessary data, the program constructs a mathematical model

of the body, calculates the elements of [G], then solves Equation (4. l. 2)

for [E]. If the user wishes, BL¢CK will also calculate the external

scattered field.

The block of tissue is partitioned into N identical rectangular sub-

volumes, and the induced electric field is calculated at the center of

each subvolume. Since the program can accommodate a matrix [G] of

any size up to 100 x 100, N can be no larger than 33 in the most general

111
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 Ei

  
1:11 <

Figure 4. 1. An electromagnetic plane wave, incident normally

upon a rectangular block of tissue.
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case. Often, however, by exploiting the body's symmetry (if any) and

by neglecting certain components of the induced field, we can, in effect,

increase this number several times. In fact, we can use as many as

400 subvolumes in certain cases. The details will be given in Section

4. 3.

The following options are available to the user:

1. The block of tissue can be homogeneous or inhomogeneous.

2. The block may be illuminated unifome over its cross-

section, or only in selected areas.

3. The user can neglect certain components of the induced

field, thereby reducing the size of [G] and increasing the

limit on the number of subvolumes allowed. If the parti-

tioning scheme has even symmetry, the us er can further

reduce the size of [G].

4. The scattered field may be calculated at any point outside

the block, using either rectangular or spherical polar

coordinates .

4. 2. Structure of the Data File
 

The data file for PROGRAM BLOCK, showing the input variables,

their FORMAT specifications, and their locations within the file, is

outlined in Table 4. 1. A detailed description of the variables is given

in Section 4. 3.

A sample partitioning scheme for an arbitrary block is shown in

Figure 4. Z. The block is divided into layers along the z- axis; each

layer is partitioned into rows and columns of subvolumes along the x-

and y- axes, respectively. The simplest model for the program to work

with is a block in which each layer is homogeneous, and whose cross-



 

CARD NO. COLUMNLS) VARIABLE NAME FORMAT

1 48 NDIV 11

2 1-5 COMP =I= A5

11-20 FMEG F10. 0

.21-28 IQARR(J), 1:1, 8 811

3 1-2 Nx 12

6-7 NY 12

11-12 NZ 12

4 1-10 DXCM F10. 0

11-20 DYCM F10. 0

21-30 DZCM F10.0

5.1,...,5.Nz 1-10 RLEPI F10.0

11-20 SIGl F10.0

6 41-47 FILEl * A7

6a, 6b, ...... 1-2 1x 12

(Subfile #1) 6-7 IY 12

11-13 INDEXl A3

7 38-44 FILEZ * A7

7a, 7b, 1-2 Mx 12

(Subtiie W#2) 6-7 MY 12

11-12 MZ 12

21-30 RLEPZ F10. 0

31-40 SIGZ F10. 0

41-43 INDEX2 A3

8 33-39 FILE3 * A7

8a, 8b, . . 1-5 COORD =I< A5

(Subfile ”#3) 11-20 C1 F10. 0

21-30 c2 F10. 0

31-40 C3 F10. 0

41-43 INDEX3 A3

51-56 ACTION A6

72 AXIS >I= A1

  

Table 4. 1. The structure of the data file for PROGRAM BLOCK. 11

any of the variables 'marked with an asterisk does not 'match

its prescribed codes, the program will be aborted.
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Figure 4. Z. A block of tissue partitioned into rows, columns,

and layers of subvolumes along the x-, y-, and z-

axes, respectively.
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section is uniformly illmninated by the incident wave. Hence, BLOCK

uses the first few data cards to construct such a model; the us er makes

any necessary changes with the remaining data cards. The next few

paragraphs describe this procedure.

The first four cards contain variables which describe the geometry

of the tissue block. The "fifth card" is actually a "subfile" containing

one card for each layer of subvolumes. Each card in this group speci-

fies the relative permittivity and conductivity of its respective layer.

If a particular layer is inhomogeneous, its data card gives the preva-

lent values of 6r and 0- in that layer.

The program uses the above data to construct the simple model

described above. The remainder of the data file consists of three sub-

files which enable the user to 'make any desired changes. On Card 6,

for example, he indicates whether or not the incident field is collimated,

illuminating only selected portions of the block. If it is collimated,

each card in the first subfile (Cards 6a, 6b, etc. ) locates one incident

beam. If the block is uniformly illuminated, Subfile #1 is omitted.

Similarly, Card 7 indicates whether any of the layers in the body

are inhomogeneous. If so, each card in Subfile #2 (Cards 7a, 7b, etc. )

specifies the location and electrical parameters of one inhomogeneity.

The subfile is excluded if each layer is homogeneous.

On Card 8, the user states whether or not he wishes to calculate

the scattered field. If he does, each card in the third subfile provides

the data needed to calculate the scattered field at one exterior point.

Otherwise, the subfile is omitted.
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4. 3. Description of the Input Variables
 

In this section we describe the function of each input variable and

explain how it is used in PROGRAM BLOCK. The variables are pre-

sented in their order of appearance in the data file.

NDIV -- This variable allows the us er to control the accuracy with

which the elements of [G] are evaluated. Each subvolume is di-

vided into NDIV3 identical cells in order to perform the numerical

integration. Thus, as NDIV is increased, the matrix elements

will be evaluated more accurately, although at greater cost. Using

NDIV = 1 leads to the approximation given by Equation (3. 4. 5a).

Setting NDIV = 2 usually gives satisfactory results at a reasonable

cost. Beginning in Column 1, the first card reads:

NUMBER OF DIVISIONS PER EDGE FOR INTEGRATION = Z.

COMP -- In some cases, various components of the induced field are

so small in comparison with the others that they may be assumed

to be zero. Consequently, considerable time, cost, and computer

storage can be saved. The program can accommodate a matrix [G]

of any size up to 100 x 100. If all three components of E are non-

zero, [G] is 3N x 3N, thereby allowing up to 33 subvolumes. If

the internal field has only x- and y-components, [G] is 2N x ZN,

enabling us to use up to 50 subvolumes.

The limit is 100 subvolumes if Ex is the only nonzero com-

ponent of the induced field, since [G] is N x N in that case. COMP

is a 5-character code indicating which components of the internal

electric field are assumed to be nonzero. Only the three cases

discussed above are permitted; their respective codes are "X,Y, Z",

”XANDY", and "XONLY". Any other code will abort the program.
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FMEG -- FMEG is the frequency of the incident field, in MHz.

IQARR -- As shown in Figure 4. 3, the body under consideration may

NX,

exhibit up to four quadrants of symmetry. We can take advantage

of this to save time, money, and storage. Because the induced

field will also be symmetrical, [E] is calculated only in the first

quadrant of the block. The number of unknowns in Equation (4. l. 2)

is therefore reduced up to 4 times. IQARR is an array indicating

which quadrants of symmetry are present. The block's geometry

and partitioning scheme are specified in the first quadrant only;

this configuration is then reflected into the appropriate quadrants

to obtain a model for the entire block. The quadrants may be listed

in any order; blanks and duplicates will be ignored. Quadrant l is

automatically supplied by the program. Since no combination of 3

quadrants can be symmetrical, any such combination on the data

card will abort the program.

NY, NZ -- NX, NY, and NZ represent the number of partitions

along the coordinate axes in the first quadrant. Thus, in Figure

4. 3, the block's first quadrant will be divided into NX rows of sub-

volumes along the x- axis, into NY columns along the y- axis, and

into NZ layers along the z- axis.

DXCM, DYCM, DZCM -- These are the x-, y-, and z-diInensions,

respectively, of each subvolume, in centimeters. For best results,

each subvolume should be a cube.

RLEPl, SIGl -- If a particular layer is homogeneous, these variables

are the relative permittivity and conductivity, respectively, of that

layer. They represent the predominant values of er and 0 if the

layer is inhomogeneous.
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Figure 4. 3. A block of tissue divided into 4 synnnetrical quadrants.

If the incident field is likewise symmetrical, calculating

the induced field in only one quadrant will determine the

induced field in the entire block.
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FILEl -- FILEl, FILEZ, and FILE3 are 7-letter codes which indicate

whether or not their respective subfiles are to be included in the

data file. The code is "NULISET" if the subfile in question is to

be omitted, and ”FOLLOWS" if the subfile is to be included. Any

other code will abort the program. FILEl signifies whether the

incident field is uniform or collimated. Beginning in Column 1,

the data card reads:

DATA FILE FOR NONUNIFORM ILLUMINATION = Egia‘fié.

IX, IY -- The colli'mated incident field impinges upon the intersection

of the IXth row and the IYth column of subvolumes in the first quad-

rant. If symmetry is us ed in calculating the induced field, the in-

cident field and the tissue block must have the same quadrants of

symmetry.

INDEXl -- INDEXI, INDEXZ, and INDEX3 identify the last card of their

respective subfiles by the code "END" or ”END FILE". They are

blank elsewhere.

FILEZ -- FILEZ denotes whether or not there are any inhomogeneities

in the block. Beginning in Column 1, the data card reads:

DATA FILE FOR INHOMOGENEOUS LAYERS = NULLSET
mews -

See FILEl for details.

MX, MY, MZ -- These variables locate an inhomogeneity in the body.

It is found at the intersection of the MXth row and the MYth column

of subvolumes in the MZth layer.

RLEPZ, SIGZ -- These are the relative permittivity and conductivity,

respectively, of the subvolume identified by MX, MY, and MZ as

the inhomogeneity.

INDEXZ -- See INDEXl for details.
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FILE3 -- FILE3 indicates whether or not the scattered field is to be

computed. Beginning in Column 1, the card reads:

NULLSET
DATA FILE FOR SCATTERED FIELD = F¢LL¢WS .

See FILEl for details.

COORD -- This 5-character code identifies the coordinate system in

CI,

which the field point will be expressed--either rectangular or spher-

ical polar coordinates. The respective codes are ”RECT. ” and

”POLAR". Any other code will abort the program.

C2, C3 -- These are the coordinates of the field point. In rectangu-

lar coordinates they represent x, y, and z, respectively, in meters.

The coordinate system is shown in Figure 4. l or 4. 3. If polar

coordinates are used, Cl is the r-coordinate, in meters, while C2

and C3 give 6 and 4), respectively, in degrees. The origin of the

polar coordinate system is the center of the block, as shown in

Figure 4. 4. The polar axis of the spherical system may be changed

by the user, as explained below.

INDEX3 -- See INDEXl for details.

ACTION, AXIS -- These alphabetic codes are blank unless the user

wishes to substitute a new polar coordinate system for the one shown

in Figure 4. 4. ACTION and AXIS are ignored if the coordinate sys-

tem being used is rectangular. The new coordinate system will be

right-handed. ACTION expresses the user's intent to change the

system, and AXIS names the new polar axis. To alter the polar

coordinate system, the card reads, beginning in Column 51:

X

CHANGE POLAR AXIS TO Y .

z
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Any character other than "X”, “Y", or "Z" will abort the program.

If "CHANGE" is incorrectly punched, it will be ignored. The mes-

sage ”CHANGE POLAR AXIS TO Y", for exaznple, will construct

the coordinate system shown in Figure 4. 5. We note that Ei is

perpendicular to the new polar axis. By suitably orienting the

block of tissue in the original system, this technique enables the

user to study scattering from bodies illuminated by a wave polar-

ized along the y- axis, without changing the program.

To get a better understanding of how these variables are used, we

will discuss some examples in the next section.

4. 4. Usingthe Program
 

We will construct the data files for two sample problems in this

section, in order to see how the input variables are used. After we

examine the data files, we will discuss some of the important features

of the printed output.

First, we consider the block of tissue shOwn in Figure 4. 6, which

comprises a homogeneous layer of fat and a homogeneous layer of mus-

cle. The face of the block measures 4 cm x 4 cm, and each layer is

1 cm thick. The incident field is a 915 MHz plane wave, and it illum-

inates the body uniformly. In addition, we wish to calculate the scattered

field at the point x = y = 0, z = - 1 meter.

Letting NDIV = 2, the first data card looks like this:

NUMBER OF DIVISIONS PER EDGE FOR INTEGRATION = 2.

The block is symmetrical in all four of the quadrants shown in

Figure 4. 3, and we cannot assume that any components of the induced

field are zero. Thus, the second card is:

X,Y,Z 915. 1234
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Figure 4. 5. An alternate spherical polar coordinate system for

scattering calculations. This system uses the y- axis

as the polar axis.
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a — 0. l mho/m 0‘ = 1.60 mho/m

Figure 4. 6. A block of tissue composed of a homogeneous fat layer

and a homogeneous layer of 'muscle, illuminated by a 915

MHz plane wave.
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The first quadrant has been partitioned into 8 subvolurnes--two rows

and two columns in each layer. Each subvolume is a cube 'measuring

1 cm x 1 cm x 1 cm. The next two cards, therefore, appear as follows:

02 02 02

1.0 1.0 1.0

At 915 MHz, the pennittivity of fat is 5. 6 60, and its conductivity

is about 0. l mho/meter. The values for muscle are 51 6° and l. 60

'mho/meter, respectively. This data appears on the next two cards as

shown below:

5.6 0.1

51.0 1.60

Since the illu‘rnination is uniform, and since each layer is homo-

geneous, the next two cards are:

DATA FILE FOR NONUNIFORM ILLUMINATION = NULLSET

DATA FILE FOR INHOMOGENEOUS LAYERS = NULLSET

We will compute the scattered field in rectangular coordinates.

The scattering file contains only one card, so the last two data cards

are:

DATA FILE FOR SCATTERED FIELD = FOLLOWS

RECT. 0. O. -1. END FILE

In the second example, we will calculate only the induced field in the

inhomogeneous layer of fat shown in Figure 4. 7. The layer measures

3 cm x 3 cm x 1 cm, and each subvolume is 1 cm x 1 cm x 1 cm. The

subvolume in the 2nd row, 3rd column, is composed of muscle, as

shown in the figure. The incident field is again a 915 MHz plane wave,

but it illuIninates only the subvolume in the lower left- hand corner of

the layer (IX = IY = 1).

MI I

I

' O  
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Figure 4. 7. An inhomogeneous layer of fat, illuminated only in one

corner by a 915 MHz plane wave.
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The configuration of subvolumes shown cannot be obtained by

reflecting a smaller group of subvolumes about one or more axes of

symmetry. Hence, only the first quadrant of Figure 4. 3 can be used.

Since the z-component of the induced field in a single layer of subvolmnes

is often negligible, we will assume that only Ex and By are nonzero. We

will again use NDIV = 2.

The data file for this example is as follows:

NUMBER OF DIVISIONS PER EDGE FOR INTEGRATION = 2

XANDY 915. 0 1

03 03 01

1.0 1.0 l. 0

5.6 O. 1

DATA FILE FOR NONUNIFORM ILLUMINATION = FOLLOWS

Ol 01 END FILE

DATA FILE FOR INHOMOGENEOUS LAYERS = FOLLOWS

02 03 Ol 51. O l. 60 END FILE

DATA FILE FOR SCATTERED FIELD = NULLSET

The printed output from the second exaInple is shown on Page 129.

Although most of the items in the output are self- explanatory, a few of

them need to be explained. The indices of each subvolume in the first

quadrant (the row, column, and layer) are given under the coluznns

marked ”IX", "IY", and "12". The column labeled "N" gives a simple

numbering scheme which assigns a single index to each subvolume in

the first quadrant.

The column marked "IRR" is blank when the incident field illuminates

the block uniformly. When Ei is collimated, an "X" appears under the

"IRR” column next to each subvolume which is directly irradiated by

the incident wave.
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"DELTA X", "DELTA Y", and "DELTA Z" at the bottom of the

page denote the dimensions of each subvolume.

The output describing the scattered field from the first example is

shown on Page 131. Most of the columns on the page have two headings

separated by a ”/”. The first heading in each pair is employed when

rectangular coordinates are used; the second heading is used when

polar coordinates have been given. Thus, in our example, the first

three numbers are the x-, y-, and z-coordinates, respectively, in

meters, of the field point. The next three numbers are E2, E3, and

E: at that point. The "POLAR AXIS" column is blank when rectangular

coordinates are us ed.

The magnitude of each field component, as well as the magnitude

of the total field, is also given in dB. The 0 dB reference is [ES] 2

0. 01 [Bil .

When polar coordinates are used, the first three columns of num-

bers give, respectively, the r-coordinate of the field point in meters,

and the 0- and ¢-coordinates in degrees. The next three columns show

3 s s
Er’ E9, and Ed) at that point.

4. 5. Listing of Program and Subroutines

The listing of PROGRAM BLOCK and its subroutines begins on

Page 132. A "$" is used to separate consecutive FORTRAN statements,

allowing 'more than one statement per card. The program requires

approximately 70000 octal words of storage.
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CHAPTER V

SUMMARY

This thesis has presented a technique for calculating the electric

field induced in a finite biological body having arbitrary shape and com-

position, when the body is irradiated by an electromagnetic wave. A

knowledge of the induced field is important to researchers investigating

the biological effects of nonionizing radiation.

As an introduction to the study of induced electromagnetic fields in

biological 'media, a plane slab model of a human trunk was analyzed. It

was noted that the electromagnetic field induced in the model by a uni-

form plane wave can be obtained by two methods: (1) by a direct

application of boundary conditions, and (Z) by transmission line tech-

niques. A group of numerical examples was presented to illustrate the

behavior of the human trunk model at various frequencies from 100 Hz

to 10 GHz.

The problem of calculating the electric field induced in a finite

body was considered next. An integral equation for the induced electric

field was derived using the free- space dyadic Green's function. The

method of 'moments was then us ed to transforIn the integral equation to

a matrix equation for numerical solution. Techniques for calculating

the external scattered field, and for using symmetry to reduce the ma-

trix size, were included. A variety of numerical examples, along with

some experimental data, were presented to illustrate the versatility

and the accuracy of the moment solution. In addition, the computer
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program used to calculate the nmnerical examples was described, and

instructions for its use were given.

The numerical technique presented in this thesis has a serious

drawback: if a researcher wishes to study a model which must be

sectioned into a large number of subvolumes, his computer system

must be able to invert enormous matrices. Such a case might occur

if one or more of the following applies: (1) very high frequencies are

used; (2) the 'model is quite large; (3) the model's shape or composition

is complicated; (4) a "fine-grained” solution is required. Thus, a use-

ful topic for further research would be that of developing an efficient

way to invert very large matrices.

Also, a great deal of work has yet to be done on probing the induced

field in a body of biological material. There is at present a conspicuous

lack of experimental data on this subject.
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APPENDIX A

EVALUATION OF THE SCALAR COMPONENTS

OF THE FREE-SPACE DYADIC GREEN'S FUNCTION

The free-space dyadic Green's function may be written as

 
 

-jko|?-?'|

563,?!) = -jwuoh’ + VZV] e _. _. , (Al)

k0 41rlr-r'l

where? :_: QQ+A9+ AA

and k0 = walpoeo .

The scalar components of 86", r") are given by

Z
-t-*, _ . l a

Gx x (r,r) ' -Jw“o[¢ 6pq+--2'Fx_5q{x_':l ’ (A2)

pq k0 q p

p9q = 192,3 9

where

-jkoR

4. = MR) — 37m.— . (A3)

1/2
—> 2 2

R: Ir-r'l :(ul+u2+u3) ,

u. : x.-x' 1 = 1,2,3 ,
1 1

and xlzx, x2:y, x3=z

5 6R 1’2ince R— = R , we have

P

a”. _ gem _ d :12

x dR Exp " 3% R ' (A4)

Then,
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2 u u u

8 8 d 3 d 8

b—aLxx = Fifi—15) = fiqu<<—i%) + %% ”(VJ—1?)

u 2 Bu

=_2d 3R+_Li‘1’-[R -u 33]. (A5)
R dR 5xq R2 dR xq p 5xq

Or,

2 u u 2 u u

3’93 _ 239$ .Léil: -173] A
x x ' R2 dRZ+RdR 6pq R ’ (6)

Bu

since —8—2 = 6

x Pq

Substituting Equation (A6) into Equation (A2) and rearranging terms

gives

G (F r") — -jwu [(¢+._l__di)5 4.3233(fl- iffl’.)] (A7)

xpxq o kiR dR pq 1(ng dRZ R dR

With ((1 given by Equation (A3), it can be readily demonstrated that

$5; = -¢[jko+-Ilz] . (A8)

Thus,

—(—=-1.1.-(jk.+%1- [was

= :97 +¢[jko+ lif . (A9)

Or,

$=¢[fi3+2;2-ki]. (A10)

Substituting Equations (A8) and (A10) into Equation (A7) gives

Gxx (?,?) : -jw“o [4" +(-lR—+jko)]6

p q k

 

‘1 ‘1 z ijo 2 1 . )]
+§§[¢(-—2+ R -ko)+%(-§-+Jko . (All)

0
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Equation (All) may be rewritten as

 

_. _. -quo¢ Z Z
G x (r,r') = TT[(kOR - l- jkoR)6

xp q koR Pq

11233 2 2
+ R R (3 - koR +3JkoR)] . (A12)

32Lett1ng o. : koR, cos 6x = R ,

P

11

cos ex = —R3 , and using Equation (A3),

q

we have

—>—» -jw“okoe-Ja Z . Z .
GK 1: (r,r') = a; [(o. -1-Ja)(‘5pq + cos 9): cos 9x (3-0. +3Jo)] ,

p q 41m p 9

(A13)

which is Equation (3. 3. 4).
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