you‘vu—q ,.. “- ‘_»_._., ,. In . ye _ . . . u ‘ r . . . . , . . . {I , a. V . .. . _ x V 9? mm? ., . , , o 51..” agrrwdwn . 3 , .. .. . gm”: _ , . a . ”m. A: S. m mm .mWF . w w. 2 rm mmmm WA mmw m ma ,mm mm mmm m mm m ‘_ -or -‘-A.D... mmmmmnnnmn HL mum» 300096 8267 m,- N Michigan Sate University This is to certify that the thesis entitled OPTIMIZATION TECHNIQUES FOR GRAIN DHYLR DEJIGN AND ANALYSIS presented by David Michael Farmer has been accepted towards fulfillment of the requirements for PhD degreeinAgLinultnnal Engineering ///82/Z £4; Mdmymflum Date (51/ 8J1 0-7639 l I I l 12/ FE .051991 1‘13: . . 32'53 1-7 1. 5.1:" ‘1. .h .. 1 ‘ A: w" i 3 3;“ 1”“ :9 13120132 ABSTRACT OPTIMIZATION TECHNIQUES FOR GRAIN DRYER DESIGN AND ANALYSIS By David Michael Farmer This study uses techniques of mathematical simulation and Optimr ization in development of user-oriented algorithms for analysis and optimal design of selected grain drying systems; digital computer programs and the necessary documentation for their use are included. In Part I, a prototype program is developed for use by equipment manufacturers, extension personnel, and individual fanm operators (via remote time—share computer terminals) in design and economic analysis of batch-in-bin type drying systems. A specialized optimiza- tion technique for minimizing operating cost, subject to constraints on available equipment and product quality, is presented; an empirical model, capable of rapid evaluation, for batch drying of corn is adapted for computational efficiency in the search techniques. Potential use of the package is illustrated by studies of the sensitivity of operating costs to economic and ambient conditions, to design parameters, and to variations in operating and marketing practice. Selected results for the central-Michigan area are: 1. Fuel cost is a much larger component of total Operating cost than telectrical cost. Thus, dryer design changes intended to improve thermal David Michael Farmer efficiency can substantially reduce operating cost. Alternate fuels should be carefully considered by Operators, based on heating value and price. 2. Replacing heat from.fossil fuels by resistance electric heat is not economical for batch dryers at the current energy price levels. 3. Under adverse ambient drying conditions a greater percentage rise in airflow costs than heating costs occurs. 7 A. If drying conditions are such that Optimal airflows are low,» operating costs fall with increasing depth until excessive condensation occurs: the Operating cost reduction per unit depth, hoWever, decreases with increasing depth and must be weighed against increased construction costs. 5. For an equivalent daily grain volume, drying a single batch on a 20-hour schedule is appreciably cheaper than drying twp batches on 10-hour schedules. Part II of the thesis study is concerned with development and digital computer implementation of two algorithms for Optimal design of concurrent-flow dryer, counterflow cooler systems, with and withOut recycle of cooler exhaust air. The Optimization technique of dynamic programming is employed to insure overall Optimal choice of construction and Operating parameters for each system; computer programming techniques designed to minimize time and memory requirements are introduced. The user is permitted maximum freedom in choice of constraints, compon- ent models, and performance criteria in adapting the algorithm to his needs. Examples of the use of both algorithms in the design of corn drying systems are given. Under a single set of ambient and economic conditions, Operating expenses for the dryer—cooler system without David Michael Farmer air recycle were found to be slightly lower than those for the reCycled' air system. mag/g. are Major Professor 61/ym'72” Approved Dep mnt Chairman ‘OPTIMIZATTON TECHNIQUES FOR GRAIN DRYER DESIGN AND ANALYSIS by David Michael Farmer A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Agricultural Engineering (1972) This work is dedicated, in equal measure, to the two who have made it possible: to my wife Ginny for unfailing affection and helpfulness; and to Dr. Fred W. Bakker—Arkema, for inspiration, patience and friendship freely given. ii ACKNOWLEDGMENTS The author gratefully acknowledges the guidance and encouragement of Dr. Fred W. Bakker-Arkema who, by his example, has shown the path of excellence in personal as well as technical pursuits. The friendship and unselfish assistance of students--both past and present-~in the Processing Group have been most appreciated; in the preparation of this work, special thanks are due to Lloyd E. Lerew, the "enigmatuer", and ' to Stephen F. DeBoer, Gonzalo Roe, and Mitchell G. Roth. Appreciation is expressed to Dr. William G. Bickert, Dr. George Coulman, Professor Robert L. Maddex, and Dr. Walter M. Urbain, not only for serving on the guidance committee but also for their help during the course Of study. The partial financial support Of The Andersons, Incorporated, Maumee, Ohio was much appreciated. A note Of thanks is also due to those who assisted in keypunching, Ken Jones and G. R. Shidle, and to the typist, Ms. Georgianna Farmer. iii II. TABLE OF CONTENTS AN ECONOMIC STUDY OF BATCH-IN-BIN DRYER OPERATING COST. . . A. Introduction. . . . . . . . . . . . . . . . . . . . . B. Batch-in-Bin Dryer Simulation Models. . . . . . . . . . C. DevelOpment of the Cost (Objective) Function. . . . . . . D. Optimization Technique. . E. Constraints and Parameter Values Needed for Input . . F. Program.Description and Use of the Algorithm. . . . . . . G. Sensitivity Studies . G.l. Standard conditions and results. G 2. Effect of the heating price. airflow price ratio. . . G 3. Effect of variation in ambient conditions. . . . . . G.h. Effect of variation in grain depth . . . . . . . . . G 5. Effect of variation in required drying time. . . . . G 6. Effect of variation in marketing Options . . . . . . H. Observations on the Performance of the Algorithm. I. Proposal for Dryer Testing. J. Suggestions for Further Study . . . . . . . . . . . . . . OPTIMIZATION OF CONCURRENT DRYER-COUNTERCURRENT COOLER COMBINATIONS USING DYNAMIC PROGRAMMING. . . . . . . . . . . . A. Introduction. B. Dynamic Programming . . . . . . . . . . . . .,. . . . . C. Optimization for Concurrent Dryer-Counterflow Cooler Configuration Without Air Recycle . . . . . . . . C. l. Dryer- -cooler description . . . . C. 2. Development of models for cooler and dryer . . . . . C. 3. Dynamic programming formulation and computer programming . . . . . . . . . . . . . . . . . . iv Page 15 22 27 27 BI 33 36 no A2 A3 A6 A9 A9 53 6A 68 72 Page C.h. Procedure for use of algorithm and an example. . . . 77 D. Optimization for Configuration with Air Recycle . .' . . . 87 D. l. Dryer-cooler description . . . . . . . 87 D. 2. Dynamic programming formulation and cOmputer programming . . . . . . . . . . . 87 D. 3. Example and discussion Of results. . . . . . . . . . 104 D. A. Comparison of three example programs . . . . . . . .. 108 E. Summary and Conclusions . . . . . . . . . . . . . . . . . 110 F. Suggestions for Further Study . . . . . . . . . . . . . . 111 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 APPENDIX A--Computer Program for Part I. . . . . . . . . . . . . . 120 APPENDIX B--Computer Programs for Part II. . . . ... . . . . . . . 123 APPENDIX C—-Subprograms. . . . . . . . . . . . . . . . . . . . . . 144. 11t[([(‘ Table LIST OF TABLES Comparison of experimental data with model simulations. Comparison of QUICK and FXBD models with experimental data. . . . . . . . . Results of parameter studies. Comparison of annual dryer costs for two 9000 bu/yr systems. . . . . . . . . . . . . . . . . . . . Summary of Optimal conditions for three drying systems. . . . . . . . . . . . . . . . . . vi Page 12 30 37 109 LIST OF FIGURES Figure Page 1. Variation in Moisture Content with Depth and Time . . . . . <5 2. Possible Isostere-Isocost Configurations . . . . . . . . . . l8 3. Flowchart of Necessary Data Cards . . . . . . . . . . . . . 23 A. 3 Drying Costs and Corresponding Isostere-Isocost SlOpeS for Standard October Tests . . . . . . . . .'. . . . . 28 5. 3-Dimensional Schematic View Of the Economic Behavior Of the Model with Increasing Bed Depth . . . . . . . . . . 3h 6. 3—Dimensional Schematic View of the Economic Behavior of the model with Increased Elapsed Drying Time . . . . .. 39 7. Common Marketing Options for Shelled Corn . . . . . . . . . Al 8. Schematic Representation Of Crossflow Dryer and Dynamic Programming MOdel . . . . . . . . . . . . . . . . . . . 57 9. Schematic Representation of Combination Dryer—Cooler Without Air Recycle . . . . . . . . . . . . . . . . . . 65 IO. Schematic Representation of Combination Dryer-COOler ‘With Air Recycle . . . . . . . . . . . . . . . . . . . .88 vii NOMENCLATURE a = specific surface area of grain, ft2/ft3 a1,a2,a3,ah,a5 = empirically determined constants, Equation(I.B.lO) bl’b2 = empirically determined functions cl,c2- = empirical constants c8 = specific heat of dry air, Btu/lb-deg F cp = specific heat of product, Btu/lb~deg F cw = specific heat of water, Btu/lb-deg F C8 -= airflow cost, cents per square foot of bed area Ch = heating cost, cents per square foot of bed area DF = dimensionless grain flow rate DM .= dimensionless moisture content DX = dimensionless depth of bed e a: base of Napierian logrithms E = average pounds Of moisture removed per pound of dry air during a specified elapsed time, Equation(I.B.l) F = total value Of the Objective function, cents per square foot of bed area g. = vector functional of systems equations Ga = mass flow rate of air per unit area, lb/hr/ft2 h = convective heat transfer coefficient, Btu/hr/ft2 hfg -= unit heat of vaporization of moisture in grain, Btu/lb H := fuel heat value, Btu/gallon HP = horsepower i a: partial process cost incurred during stage n viii Wu. {X ’3 3| 3‘»? z :3 optimal total process cost Optimal process subtotal oost exponent, dimensionless exponent, dimensionless time constant, hr-1 : exponents, dimensionless moisture content, decimal dry basis average moisture content, decimal dry basis equilibrium.moisture content, decimal dry basis initial moisture content, decimal dry basis stage of the system total number of process stages time, dimensionless depth, dimensionless pressure drop per unit area of bed, inches of water = atmospheric pressure, psia saturation vapor pressure, psia price of electricity, cents per kilowatt—hour price of fuel, cents per gallon airflow rate, cfm of dry air per square foot of horizontal drying surface relative humidity of air, decimal elapsed drying time, hours elapsed drying time, minutes time in hours required to reduce the dimensionless moisture ratio to 0.5 = ambient dry bulb temperature, deg F T = dry bulb temperature of air at an infinite dryer length after a G constant wet bulb process to an equilibrium relative humidity for grain at the initial moisture content, deg F Tinlet inlet air temperature, deg F 1LT = temperature rise of incoming air due to its passage over the motor and fan, deg F ’ E = vector of control or decision variables U = set of all feasible controls V = air velocity, feet/minute x. = bed depth or distance in bed from.air inlet, feet 3-: = vector of state variables = set of all feasible states dimensionless constant dimensionless constant -;‘US >‘ u fan efficiency, decimal >.nnn..NOpoanwo.mom.onHo “mpempmcoo popcosaooon mean: .Aoomavcomaoz mo Hopes on» no muddmou cowpwasaam I * IN... .30 one I mado Nam or: .o Sam «A. one .3 and o Mma.o mda.o II mma.o >.mm m.4a .> mm.om m.a om.o .mma oom.o b ¢>H.O aba.o II o>a.o >.mm m.da .0 mm.mm m.H pm.o .mma obm.o o moa.o mwa.o II Hma.o o.mm m.dH .m mm.om m.a pm.o .mma osm.o m nm~.0 aom.0 1: mam.0 n.mm m.aa .a mm.om m.a om.0 .mwa onm.0 a ommtozz.omm.o u. mmN.0 a.mm m.aa .m om.om m.a om.0 .mma oam.0 m dam.o m>N.o In som.o >.mm m.da .N mm.mm m.a pm.o .mma bom.o N dmm.o mmm.o II 4mm.o >.mm m.da .H mm.mm m.H om.o .MNH oom.o H Aooma.soaemv oma.o H.dm ©.¢H m.m m.mm mmm.a No.0 .moa de.o m . ~30 dam oi: .0.o has 04 no.0 . on 0.3.0 a A memaewumawo Hm0.0 H.am o.ea 0.m .mm aoo.0 no.0 .moa mma.0 o wmmmwda on o>o e oo0.0 H.am 0.4H 0.0 m.ao mmm.0 no.0 .moa mma.o m renews encore $40 in or: as .9 RS no.0 .9: 3.0 a o e no moa.o H.4m o.aa H.m .am 0.H No.0 .moa mme.0 m moa.0 H.am o.aa 0.m .ma aoo.0 no.0 .moa mne.0 m moa.o H.4m 0.4H m.a .JNH mmm.o No.0 .moa Nm¢.o a Ammoa.xwaev ara.0 aoa.0 .11 nea.0 a.am am.aa .oa .mm 000.0 no.0 .moa oam.0 a maa.0 oaa.0 u- aaa.0 H.em em.ea .oa .mm mmo.0 0m.0 .moa oom.0 m nom.0 mam.0 In oom.o H.am am.aa .oa. .oa 0.a 0m.0 .00a omm.o m n80 9N0 03.0 ammo den .34: .3 .mm 0.0. 0m.0 .02 ammo a . Amomansmanwmv no..ooe magmas dawn on mooxaoo .oo one a one oo«.oo0 m sew mafia spoon peace O H” ** * mama . m manhun G pom mm .9 2. .02 amps pom HZMHZOO mmpamHQz ma¢mm>< A<2Hm mZOHeHono BmMB pondom some mCOHpmadaflm Hopes Sufi: pump Hmpcmaflpmaxm mo comwkmmsoo “H magma M-M Nx N = e = 2 (I B 3) m - M - Nx. Nt . . 0 e 2 ‘+ 2 - l where: N = - *ahra<“o'“e> (I B n x 6000°Q/°acatH(Tinlet- TG) and Nt 5 t/tH (I.B.5) The general shape of the moisture profile which develops during a deep bed drying process, given constant inlet conditions and a uniform initial moisture content (Figure I), can be well approximated (aside from cases where large amounts of condensation occur) by'a function of the form: Nm = pj/(pj +yk - 1.) (1.13.6) where: fl,f> O o iij - j = o ’ x-voo ’ XFO . _—_ . oo 0 S k 3245.0 . o. "a ouswwm lNBlNOO BHDISION lO discrepancy, a later version of the model (Holtman et al.,l967; Barre et al.,l970) was tried in which/8 = X: e; for this version j and k were redefined by: xpghfglflM -M ) J 0 ‘3 (1.3.7) Q Pa°a(Tin1et‘TG) k = Kt . (1.3.3) where K is a time constant m1 In2 and m1, m2 are each positive exponents less than one. A good fit to a single drying test was obtained by Barre et al.(l970); however, they failed to report an explicit functional relationship for values of K. Since the available experimental data did not agree well using several trial functional forms for K, a strictly empirical modifi- cation was developed using the available data. The general functional form adopted for K was: £13 at. hdiere a1, ..., ah are constants to be determined. Due-to the appearance cut the parameter K in the expressions for both j and k, a multiplicative Ccnistant as for the expression for k was used to further differentiate tflleltwo dimensionless quantities; thus, in this study: k = aSKt (I.B.ll) Values of the constants a1, a2, ..., a5 are given in Table 1. In searching for constants which would provide the best fit of the model to the data, GAUSHAUS failed to work prOperly. An available pattern Search optimization program, HCLMB (Rosenbrock et al.,l960), was used 11 to determine the constants, again using a least-squares best-fit criter- ion. A comparison of the available data with the values generated by this model is shown in Table 1. Since this model showed improvement over the first considered and was essentially as feet for computer evaluation, it was chosen to represent the process for the subsequent sensitivity studies. This model will henceforth be referred to by its FORTRAN IV subroutine name, QUICK. Because all available experimental data had been used to evaluate the empirical constants used in QUICK, none was on hand for an independent review of the model's authenticity. As a precaution against distortion of the model by the choice of data used in its construction, a secondary check was required; this check was also needed to prevent extrapolation of QUICK beyond the limits of its validity. Tb provide this check on the optima predicted by QUICK, the Michigan State University deep bed drying siimuation 3st (Bakker-Arkema et al., 1971) was employed. This model, which is based on fundamental mass and energy balances, accounts for phenomena (e.g. condensation) which are_ beyond the scope of QUICK. In addition, it can be considered valid over the entire range of input parameters normally used in deep bed drying. JFXBD, which utilizes an iterative method of solution, requires consider- iatfle time for a single simulation; thus it could not be readily used in the Optimization process. Using the experimental data of Table 1 covering inlet air tempera- tfllres from.lOO - 165 deg F and initial moisture contents from.O.296 - C).432 dry basis, simulations were made using the QUICK and FXBD models. From the summary of Table 2, the predicted dry basis final moisture (Huntents of FXBD fall roughly in the range of 3% higher to %% lower 12 Table 2: Comparison Of QUICK and FXBD Models with Experimental Data* Final Moisture Contents, decimal, dry basis Data # ~ Source Data "QUICK" "FXBD" (Farmer,l969) #1 0.2280 0.2065 0.2172 #2 0.2625 0.2670 0.2187 #3 0.1150 0.1180 0.1300 #A 0.1472 0.1t39 0.1410 (Hamdy,l969) #1 0.3335 0.3337 0.31116 #2 0 . 2935 O . 29111. 0 . 308A #3 0.2530 0.2586 0.27h9 #1 0.2120 0.2265 0.2176 #5 0.1910 0.1983 0.2257 #6 0.1700 0.1739 0.2074 #7 O . 1533 O . 1531 0 . 1916 #8 0.1122 0.1359 0.1779 Sum of squares fit = 0.0855 = 1.1738 *‘Conditions for these tests are shown in Table l. 13 than the data values, while the predictions of QUICK are within this range. Optimal drying conditions predicted by QUICK in the subsequent,' sensitivity studies were used as inputs for FXBD. Using the stated A tolerances as a standard, the model QUICK was considered valid only for those trials in which the difference of predicted final average moisture contents fell within this range; for trials in which the difference was greater, QUICK was presumed to be an inadequate model and the results were discarded. C. Development of the Cost (Objective) Function In line with the objective or a unitized economic model from which more complex models might be formed, the cost function was constructed on a per square foot basis. In conventional deep-bed drying, two sources of energy are required: one (typically natural or LP gas) for heating the air, the second (typ- ically electricity) for powering a fan to force the drying air through the bed. A formulation of the heating component of the cost function .for fossil fuels is (Bloome,l970): 60-PFQ(,OaCa +Pw°w)(Tin1et ’ Tam—Amt (1.0.1) Ch = Hath Vfllere [5T is the temperature rise of the incoming air due to its passage OVer the motor and friction with the fan blades. To derive an expression for (LT, the factors influencing its magni- tdhie must be known. Bloome(l970) states that this temperature rise is a f'unction of fan efficiency and Of the static pressure against which the 1A fan operates. This reference cites the following field data: for fans providing an airflow rate Of 12.8 cfm/ft2 through a 16-foot depth of shelled corn, a temperature rise A T of approximately 2 deg F occurs. A 30% fan-motor efficiency factor is given. The corresponding pressure drop, 1.585 inches of water, was calcu- lated from the empirical relation of Thompson (1967): 1.528 . p = x[-5%.-l (I.C.2) Assuming that temperature rise of the air is directly proportional to pressure drOp and inversely proportional to fan motor efficiency, an expression for’AxT was developed: _ _2_ 9.3.9. 3 AT — 2.0 ( 1585 ”MT: ) (1.0.3) If electrical resistance heating is substituted for the conventional fossil fuel sources, the heating component of the Objective function becomes: 60'Q(/Oaca + wcw)(Tinlet - Tamb -ATWEt Ch "" 31.13. (1.0.4) The cost component for airflow arises from the electrical energy lised by the fan motor. The trend toward higher horsepower electrical Inotors on farms, as well as the disadvantage of having an idle tractor, Ilas almost obyiated the use of the power take-off for this application. TPheoretical horsepower required on a per square foot basis for the IRotor-fan combination is (Hall,l957): HP = 33%. - (1.0.5) ,15 Using Equation (I.C.2) to calculate pressure drop, the cost of elece tricity for running the fan and motor is: (1.0.6) 0.746 (HP)P t C _ E a- 7‘f7hn Total Operating cost per square foot is then given by the sum of the heating and airflow costs (Equations (1.0.1) or (I.C.A) and (I.C.6)). The objective fUnction thus has the following form: F = Ch'+ Ca (1.0.7) D. Optimization Technique The following independent variables abstracted from the drying model and objective function are known to influence the fixed bed dryer eco- nomic performance: initial and final moisture contents; bed depth; elapsed drying time; ambient air conditions; fuel and electrical prices; thermal, fan and electrical-mechanical conversion efficiencies; inlet air temperature; and airflow rate. Assuming that a dryer has been purchased and harvesting policy decided upon, only inlet air temperature and air- .flow rate remain amenable to control. Viewed in this perspective, the 11roblem.reduces to a two-independent-parameter minimization of the cost, Ifiinction, subject to constraints on inlet air (or grain) temperature, Eiirflow rate, final moisture content, and time. (The first Optimization technique used on the problem was the pattern Search technique HCLMB. This method, for several reasons, was unsatis- factory for the present problem. For two reasons, convergence to an ' b L. 50 rate per foot of depth of the three types but in doing so subject the grain to considerable stress. Concurrent flow dryers typically remove the majority of the moisture within a relatively short depth and then ' provide a tempering period through the rest of the bed. A Improper drying of the product can cause two major types of damage: reduced milling quality—~caused primarily by overexposure to high temperatures--and stress cracking, with consequent kernel breakage, caused by rapid moisture removal. Thus, choice of dryer design can . greatly influence product quality as well as system capacity, and the two objectives are rarely compatible. Some combination of existing dryer types in a single machine will ultimately be the compromise required to meet the rising raw product standards of the cereal products manu- facturers. A design currently of interest employs a concurrent flow dryer coupled with a counterflow cooler for the grain (Anderson,l97l; Kline et al.,l97l). The concurrent dryer, which exposes the grain to the least stress, is used to remove the majority of the moisture. The counterflow design, used as a cooler, allows the grain to gradually cool, thereby slowly reducing the temperature and moisture gradients within the kernel; this cooler also accomplishes a slight amount Of drying. Some sacrifice in capacity, for a given sized machine, may be expected from.the use of the concurrent dryer instead of the more efficient counterflow design. It is claimed, however, that higher dryer temperatures with consequent higher moisture removal efficiencies can be achieved with a machine of this design combination. In addition, there exists the possibility of recycling to the dryer all or a portion of the air exhausted from the cooler, utilizing the heat energy which has been added to the air during DJ. the cooling process. Despite the promise of high product quality with this machine configuration, Thompson(1967) found that "counterflow cooling immediately following (concurrent) drying was not an adequate substitute ‘for delayed cooling in reducing the susceptibility of the corn to break or form stress cracks." A I Clearly, the Optimal design problem is not a straightforward one. Variation in economic and ambient air conditions, product quality con- ' siderations, temperature, airflow, and depth parameters must all be considered in making design recommendations.' Due to the extreme vari- ability Of weather and product moisture over the short harvest season, as well as the high labor costs and large number of variables involved in the construction of prototype machines, another design technique was required--the use of simulation and optimiZation. Earlier researchers in the field of optimal design of grain drying equipment have been hampered by the lack of adequate models to describe the drying process. Although Hukill(l956) pointed out the inaccuracy of his model of the batch drying process, Ahn et al.(l966) and Schroeder et al.(l965) adapted it for modeling the crossflow dryer. Fortunately, there now exist several more reliable models from which the researcher can choose; these are summarized in Bakker—Arkema et al.(l97l). ‘Within the published drying literature, only two attempts at optimr ization of multistage dryers have been reported. Both Ahn et al.(l966) and Schroeder et al.(l965) used the dynamic programming technique to determine Optimal airflow allocation in multistage crossflow dryers. Because different performance criteria were used, the two studies were not comparable. In related, single-stage Optimization work on grain dryer design, 52 Thompson(1967) employed gradient and one—dimensional search techniques for determination of depth, grain flow and airflow rates in all three basic continuous dryer types. Thygeson et al.(l970) used the differential algorithm technique of Wilde and Beightler(l967) to predict optimal bed depth and gas flow rate in a dryer during the constant rate drying period. The deficiencies of both techniques for the multistage problem are discussed in the following section. In designing an Optimization procedure, one of the initial steps must be the formulation of a perfOrmance criterion or objective function for the system.to be investigated. The criteria used in previous studies Of grain drying optimization fit three separate classifications: min- imization of cost (capital and/or Operating), maximization of throughput, and maximization of quality. Usually these are stated in some combination; the most comprehensive objective function (Thompson,l967) had the following form: drying_sp§ed )6 E = cl ( 6%/hr + 02.f(drylng temperature)dt + c3(heat energy supplied) + ch(fan energy supplied) + c5(size of dryer needed) I (II.A.1) In this thesis study the goal is to develop user-oriented techniques for optimization of two concurrent flow dryer—counterflow cooler combin- ations and to demonstrate their use. Choice of simulation models, constraints, and objective function will be left, insofar as possible, to the user. Adequate instructions for use of the associated computer programs will be given and possible modifications discussed. 53 B. Dynamic Programming Dynamic programming (d.p.) is an optimization technique developed, especially for problems characterized by multistage decision processes. These problems arise, e.g., in a sequential manufacturing process when decisions made during each production step affect the prOperties and accumulated cost of the product at each subsequent step in the process. Other problems of this type originate in such diverse fields as economics, physics, and transportation scheduling. Unlike linear programming, no standard a1gorithm.exists which can be applied to the problem.at hand; instead, dynamic programming is es- sentially a philosophy which allows the user to structure problems of considerable complexity into a form amenable to solutiOn. That is, d.p. is used for determination of all process inputs, outputs, and controls necessary to achieve the objective in the most desirable way (least cost, maximum profit, etc.) for a given process. To be structured into a form for optimization by means of d.p., a problem.must have the following properties (Hadley,l966):- (i) it must be possible to visualize the problem as a sequential decision problem, where each step in the process requires one or more decisions. (ii) the system.must have a measure of performance which is expressible in the same units at each stage of the process. (iii) the parameters measuring the performance of the system and its response to controls which are applied must remain the same at each stage in the process. Some alternative approaches to the optimization of multistage deci- sion processes are discussed by Rosenbrock and Storey(l966), including 56 hill-climbing on parameters, the gradient method in function space, and Pontryagin's method. 0f the available methods only Pontryagin's method and d.p. will always yield the "best" overall solution; the other techniques may converge to a "good", but suboptimal solution. Further difficulties with the. other algorithms arise in the awkward manner in which constraints are handled and in finding an initial feasible solution from which to begin computations. Pontryagin's method has not found wide acceptance in process control problems due to difficulties in formulation of the solution and excessive numerical computations necessary for solution. Although d.p. also suffers from these two disadvantages, it yields a solution which is more useful in the present context. A discussion of the "pros and cons" of d.p., will follow a discussion of the d.p. formulation. In order to explain the dynamic programming principle, some defini- tions and an example are useful; the following notation and description is due to Larson(l968): Let I denote the state vector, the components of which describe the state of the system at each stage in the process. Let 5 denote the control or decision vector, whose components are those variables which may be manipulated to influence the values of the state variables. The stage of the system will be denoted by the scalar index n, which varies monotonically through the N process stages. The system equations describe how the state variables at stage n are transformed into a new vector of state variables at stage n+1 by application of a control vector 5 at stage n. The general relation is: x(n+1) = §(;(n),u(n),n) _ (11.3.1) 55 The performance criterion (objective function) evaluates the per- formance of the system when a given control sequence u(n), ned.,..,N is applied. If the criterion is a cost function, the sequence of controls which minimizes it are sought; a reward function is associated with a maximizing sequence of controls. For the problems considered herein, a cost function criterion is used, hence all further reference will be to minimization of cost. The corresponding objective function takes on the general form: N I = Zn i,fi¢ 132$ 3 z.<¢a. 92:33 .. 52.23 25.56: .32... fian¢i¢w 9.35.0 39.238 use. mZme>w 30...... m: n mosh - ”482.28 «s. p.555; p.25 mzorfiaou use 2.396 33... 5‘ a mafia . ".5528 .. .2 ‘ "moose; ~55 «29:33. up: arms?» 33.. m2 - . main ".3528 azuazoo 2:55... 45:2. “m4m<.¢<> PPS—M Fly—.200 .NDPQO! Joc.50 080~DEPTH11.PBTUMAx-DHAx-DEPTH/i.2STOMIN-0MIN-DEPTH11.25 IFIQ.0E.5..ANU.U.LE.50. )00 To 61 S PRINT 10003 STOP IF![CHECK6.EO.J0PT.AND.(ICHECK7.NE.J80TH.AND.ICHECK7.NE;JHHICH))62 1.64 IFIUHAx.GT.5o..UR,nRrR.LT.5..DR.oHAx.LT,oHINI63.64 PRINT 10005 STOP READ 1001010=PTH.TIRE.TAMBDB.TINLET.THAx.THINSATAHe-TAHHDB+459,59 PRINT ZCCOSJPEDTHpTIHEpIAHBDB PRINT zooss.TIwLPT.THAx.THIN TAHazTAHHDR IFIICHECK6.E0.JUPI.AND.(ICHECK7.E0.JBOTH.OR;ICDECK7.FU.JHHICHII 1645,65 IFITMAx.GT.140..cR.THIN.LT.70..0R.THAx.LT.THINIo46.65 PRINT 10007 STOP READ 10801}ICHFCK35HUHID PRINT socco.uU~In.ICHECK3 Ir:{CHFcK3,en,THHMIU)70.90 IF(HUMID.GT.32.oAND.HUHlD.LT.100.)GO To 78 PRINT 10006 STOP AHHAdasHUH 004'9. oesev:onRR8IATARe.AHeARaIsHseswAPVIPvITGO To 120 IF(ICHECK3.EO.JH1010)100.110 IFIHUHID. 07.3. 01.0ND.HU"ID.LT. 0.1)103.135 Pv= PVHA(HUHIP )THSP= HUHIUTGO T0 120 PRINT 10005 STOP IF‘HUHIDOGTOCUCOARDONUHI00LT0100)1150113 PRINT 10006 STOP 122 115 HSP-HADBRH(ATA“8.HUHIO)SPVIPVHAIHSP) 129 FACTORa(u.?4?¢3cabPHSP)IVSDBHAIATAHBoHSP)TDELX'DEPTH/ZOS c THE FOLLOHIRG SEPJIUN SETS UP FOR THE COST FUNCTIUNDIF 0550: 130 READ 100222FAR=TA.EHETA.THEHETA.ELPRICE.FUPRICt.HTVAL PRINT 20007,rANtTA.EHETA.THERETA PRINT 20075.PLPHICE.FUPRICE.HTVAL IFIICHECK6.E0.JCO$TIGOT014DSPJPRICEsFUPRICE/HTVALSIFIICHECK0.E0.J0 1PTIGOT0150TCALL COSTFUNICOST.TINLET.0)SCOSTP80=COSTIOEPTH-1.25 PRINT 10023.5LCUSI}FULCUST0CUSIDCUSTPBU 140 CALL QUICK(AVEHCUB.TINLETpO)SAVEMCNB‘AVENCDB/I1o‘AVEMCOBISPHINT 110024,TINLeT,O,Av§PCDB.AVEMCHa STOP 150 IFI1CchK7.ET.JaoTHIGO TO TOQIIFIICHECK7.ER;JRNICHI160:170 __,;7 c AIRFLOH IS FIXEU.0NLY INLET TEMP CAN VARY ‘ 160 GUESSlzTHAXSCUE552=THINSJUE3050ALL ZEROINA‘GUE551PGUE55200.0000010 100VER)ITEE:(CUPSSI¢GUESSZIIZ. 105 CALL COSTFUNTCOSTOTEEGQUEISCDSTPBU‘COST/DEPTH’1325 AVEHCHRIXHFI”AL/(1.0XHFINALITPRINT 1002305LC05T0FULCUSToCOSToCOSTE 18U S PRINT 100220TFEoQUEoXMFINALoAVENCHB 5 STOP w~f§C INLET IE"? IS PIREOpONLY AIRFLOH CAN VARY 170 TEE£TIVLET S GUES§130HAX$GUESS230HINSCALL ZEROINAIGUF55100UE552001 1000001,SIDEITUUh'IGJESSI*GUE552)/Zo100 T0 165 180 CALL OPTHHIZ 10001 FORMATIA1037F10007 ' 10002 FORMATI3X.CMCISTURE CONTENT IS NOT IN THE NORMAL RANGE.) 10003 F0”MAT(3X,OAIRFLDH RATE INPUT IS NOT IN THE NURHAL RANGE.) 10004 FORMATI3X.OH=TRULH TEMPERATURE INPUT IS NOT IN NORMAL RANGE.) 10005 FORMATI3X,OA°SOLUTE HUHIDITY IS NOT IN NORMAL RANGE') 10006 I0RMATI3X,ORCLATIVE HUHIDITY INPUT IS INCORRbCT.) 10007 FORHATISX.'I”LFT AIR TEMP BOUNDS ARE INCORRECT.) 10008 FORMATI3X0'AIKFLUN RATE BOUNDS ARE INCORRECT.) 10010 FORMATIBF10.0) 10020 FORMATI2610) 10022 F0RHATI8F1000’ 10023 FORMAT!3Xc°ELbCTeQONPONENT 3'0F7020*FUEL COHPUNENT 3.077620'T0TAL ' icUSToCTS/FTZ 390F7.2a' CTS/BU COST 3‘:F7.29 10024 FORMAT(3X.OIVLFT AIR TEMP, DES F athIOO 71*AIR FLOH RATE CFNIFTZ O 1'0F10.70'FINAL AVE MC; 088 .DF1003D.TINAL AVE "CONE 3 .0F1007’ 20001 FORHATI1HO.3X,OTHE OPTION CHOSEN I5992A10) 20002 FORMATI1fiog3109INIT HC 3 th7. 4:3X:'DESIRED FINAL MC 3 OpF7. 4. 3X; 1'TOP LAYER MCISTURE BOUND 3 '0F7o 403x: 610’ 20003 FORMATI1H0;3v,eATH PRESSURE x P.F7.4o3X.A10) 20004 FORMATIIHOI3YoOAIHFL0H INITIAL GUESS I *9F7a4oJXinPPER BOUND I Q, 1F7,4,3¥,9L0NCR BOUND ' 'F7O4PSXGA10) - 20005 FORMATI1H003Y0*UEU UEPTH,FT I 0pF7.493X,ODRYING TIHE,HR I O.F7.4,3 1xo*6M9IENT TPMPIF 3 ‘0F704’ 20006 FOPRATI1H0;3¥.¢HUMI0ITY : c.F7.4.A10) 20007 FOPMATI1H003Y09hFEICIENCY 0F FAN I 'pF7.403Xo'UF HCTOH I -.F7.4.3X 1,.0F HRATEP : O.FI,4) 20055 FORMATI1ND'3700INLFT TEMP INITIAL GUESSpF ' '0F7o4o3Xo‘UPPEH BOUND 1 3 o.F7. 4.3X,'L0Nh” POUND : 0,F7. 4) ‘ 20075 IURMATI1PO 3YpOthCTRIC PRICE; CTS/KHH- I 0, F7. 40 SX'.FUEL PRICE 0T3 1/GAL 0R /LH 8 ioF7.403xJ’FUEL HEAT VALUE: BTU/GAL OR ILR"0F7o4o//) END APPENDIX B 0000 (’10 (DC) I)“ f) I) (1 123 PROGRAM conLPNFIINPUI. OUTPUT. CHANaTAPEIIPCHANI PROGRAM COOLONE Is THE INITIAL PROGRAM To PE RUN IN THE 3- -PRO0HAM SEQUENCE F05 OPTIMAL DESIGN Or A AON- -AIR- PECYCLE TYPE CONCURRENT DRYER-COUNTEPPLOH CUOLER SYSTEM. ASSOCIATPD SUBPROORAMS REOUIRED-COOLSIM.CSTCOOL:FHCoPSDBoPVHAoRQPS°Vo VSDBHA COMMON/FIXED/TAHPAHAHB.ATAMB.SPVLCDN/INCOOL/XMUIoXTH.XGA.XDP/OUTC0 10L/HOUT.TOUTaTHUUT.XMOUT/PRICE/ELPRICE.TIME.FANETAoEMETA/PRESSIPAT 1M PRINT 55555 READ MAX A“D MIN ALLOHABLE HCS AT THE ENTRANCE TO THE COOLER AND THE NUHPET OF LEVELS USED. CALCULAfy INCREHENT SIZE. READ locDOLXVMXINAXMMMIN.LEVELH DELHPIYMMXIN-XVHNIN)/FLUAT(LEVELH'l) PRINT 4cooc.xHMxIN.XHMNIN,LEVELM.DELM READ MAX AND MIN ALLDHAULE PRODUCT TEMPERATURES AT THE ENTRANCE TO THE CDO.ER AND THE NUHBFR OP LEVELS USED. CALCULATE INCREHENT SIZET READ 1ucco;THMxINoTHHNIN.LEVELTH DELTHaITHHxIM-THMNINI/FLOATILEVELTH-l) PRINT 40001 .THMxIU.THMNIN.LEVELTH.DELTH READ MAX AND MIN ALLUHABLE AIRFLDH RATES THRU THE COOLER AND THE NUMBER OF LEVELS USED. CALCULATE INCREMENT SIZE. READ 10000. G XOUT.GMNDUT.LEVELG DELG- MMXQUT DMNOUTIIFLUATILEVELG- 1) PRINT 4C303.CHXUUT.GMNOUT. LEVELG DELG READ MAX AVE MIN ALLDHABLE BED DEPTHS OF THE COOLER AND THE NUHBER 0F LEVELS USED. CALCJLATE INCHEMENT SIZE. READ 19030}J°THHAX.UPTHHINALEVELD DELD:(ngHHAx-PPTHMINIIFLOAT(LEVELD-l) pRINT 78787."PTH"AX.OPTHMINALEVELDADELD PRINT 40005 READ COOLING AIR IHLET TEMPERATURE AND HUMIDITY PLUS ATMOSPHERIC PRE$§UBE. REA020003.TAMB, HAMB. PATM PEAD MAX ALLOHABLE OUTLET PRODUCT TEMPERATURE AND MAx AND MIN ALLOWABLE OUTLET Hcs, READ zuccagTuouTHx.xHOUTMx.XMOUTMN PRINT 7OUOJ.TAMH.HAHP.PATM PRINT 70001.THOUTMX.XMOUTMX.XMDUTMN ATAHHaTAM5o4S9.69 SPVLCDH:VSDBHAIATAM8.HAMR)/6O. RHTN:RHDHHA(ATAWfioHAHB)$EUN=ENCTRHTN0TAH81 PEAD ELECTRIC PRICEo IIME OVER WHICH OPTIMIZATION IS TO BE PERFORMED. FAN AND MOTOR EFFICIENCIPS, READ 230:0;ELPPICE.TIME.FANETA.EMETA pPINT 4020h0flLPHTCEIquCOFANETAOEMETA QEGIN SEARCH FOR UPPER BOUND IN MC GRID DIMENSION. FIRST CHECK FEASIBILITT OF PIN POSSIaLE OUTLET «g AGAINST CONSTRAINT. PRINT 40307 XHOszIgHIMTYTHSTNVXINTXGASGHXUUTIXDPSDPTHMAX CALL CDOLSIMIS) PRINT 90:05.¥HOUT [FIXMOIT.GT.YHGUTHX)STOP ' CHECK FEASTBILITY OF "IN POSSIBLE OUTLET PRODUCT TEMPERATURE AGAINST 000' STRAINT, XTHzTHWNIN CALL CJCLSIHIII PRINT 40008.THPUT IFTTHOUT.GT.THPUTMX)STOP USING HISECTIOH. FIND UPPER MOISTURE CONTENT BOUND; "HIGHaLEVELHTMLOHa1 MUPTRv=LEVELM 10 15 20 25 30 35 A0 45 124 XMoxswaNxNoanATIMJPTRT-x)tDELHTXTHxTHMxIN CALL COOLSIHT3) IFTX"0UT.GT.XHCUTHX)35015 XTHnTHWNIN' CALL COOLSTHT1) TF(THOJT.GT.THOUTHX)35.20 MLOHBHUPTRY IF‘(”HIGH-MLnH,OLL01‘2504° MUPIHLOH IF(MUP.EU.1)30,45 PRINT 90000 STOP HHIGHIMUPTRY MUPTRY:(HHIGH-PLOH)IQPHLOH SOTOlO FRTNT 400090WUP C PEGIN SEARCH BY DISECTTON FOR LOHER BOUND TN AIRFLUH RATE GRID DIHENSIOuo C USING MAX OUTLET PRODUCT TEMPERATURE CONSTRAINT. 46 50 55 57 60 62 65 70 PRINT 40010 KGHIGHSLEVELGSKGLON81TLONGTRYI1 XUAIGMYOUTSCALL COOLSIMT1) PRINT 40008.THnUT IFITHonT.GT.TH0UTMx)STOP XGA¢RMN00T+FLOAT(LDdGTRT-1IPDELG$CALL COOLSIM(1I IFITHoUT.GT.THOUTNXI55.60 KGLOHaLOHGTRY IF ((KzHIGH-VGLUHI.Ec.1I62.57 LOHGTRY-(KGHIGH-KULONIIZ+KGLON GOTO 50 KGHIGHsLOHGTRY IFI(KGNInH-KzLOH),0T.1)OOT057 LONG-KRHIGH IFTLONG.EQ.LEVFLGI65.70 PRINT 90001 LOHGsLEVPLG PRINT 40011.LEVELG.LORG C REGIN SEARCH BY OISECTTON FOR UPPER BOUND IN PRODUCT TEMP GRID DIMENSIOGA C USING MAX OUTLET PRODUCT TEMPERATURE CONSTRAINT. 75 80 85 9O 95 100 105 PRINT 40012 xMO1=waN1wsvDPIPPTHMAXAXGABGNXOUT xTHaTHwNINtCALL CuoLSIHI1I PRINT 40008.THOUT IFTTHOJT.GT.THnuer>5T0P , KTHHIGusLEVELTNIRTHLOU=1IIUPTATR=LEVELTH xTH=THwN1N.FLUAT(IUPTHTR-1IPDELTHICALL COOLSINTII IFTTHOUT.GT.THOUTDXI95.BD KTHLOHSIUPTHTR ’ IFI(KTUHIGH-PTHLONI.LE.1)85.100 IUPTH24THLOH' IFIIUPTH.EO.I)90.1OS PRINT 90002 STOP KTHHTGusIUPTHTR IUPTHTRsTKTHHIRH-KTNLOHIYZoKTHLOH GOTO 75 PRINT 40009.IUPTH C RESIN SEARCH BY PISECTIOH FOR THE LONER BOUND 0F BED DEPTH. PRINT 40313 XHOI=XNMN101¥0A=GHXOUTIXTH2THHN1N KDHIGH=LEVELOIKULDUSiILDNDTRYa1 125 XDP-DPTHMAXSCALL COOLSIHT1) PRINT 40C08.THnUT IFITHOUT.GT.THOUTMXISTOP 110 xDPsDPTHMTN+rLOAT(LOHUTRY-1IvDELDSCALL COOLSIHT1’ IF!THOUT.GT.THOUTMXI115.120 115 KOLDHsLOHDTRY IFI(KDNTGH-KnLnu),EO.1)122.117 117 L0R0TRv:(KDRTGH-KDLOH)/2+K0L0N GOT0110 120 KDHIGHsLONDTRY ITI(KnNIGH-KPLnNI.GT.1IGOT0117 122 LONDIKDHIGH IF(LONO.EO.LFVFLOI125.130 125 PRINT 90099$STOP 130 PRINT 40011.LEvELD.LDNO C.FIND OPTIMAL FEASIPLE DEPTH AND AIRFLOH RATE CONTROLS. FILLING THE PRODUCT "C“ C TEMPERATURE GRID NITH CORRESPONDING COSTS. PRINT 40016 no 230 III=1.HUP XHOItFLOATIIII-1IPDELN+XMMNIN no 220 JJJ81.IUPTH xTuernAT(JJJ-1ItDELTH¢THMNIN$RESTCST=1D.E25TBESTGA'O.OSBESTDPIOIO DO 210 KKK=LON0.LEVELG KKK1-LONG-KKK+LEVELG XGAsFLOATIKKV1-1IPDELGOGHNOUT DO 200 LlLIthPoLEVELD LLLLILowb-LLL+LEVELD XDPIFLOAT(LLL1-1IPDEL000PTHMTN CALL COOLSIH¢4I IFITHOUT.GT.THOUTHX.OR.XHOUT.GT.XMOUTHX)GOT021O ATOuTaTOUT¢4S9.69 RNOUTanOBHAIATUUT.HOUTI IFTRHOUT.GT.1.IGDTDZOO IFII(XMOUT-EOMIIIAMOI-EUM)I.OT.1.IGOT0200 EQNQUTEEMC(RHUUT.TDUT) IFIEOMnuT.GE.x“UUT)DOTOZOO CALL CSTCOOLTCOST) IFTCOST.LT.BPSTCSTI190.200 190 HESTCSTECOSTcassr§A:xGASREST0P.xpp 200 CONTINUE 210 ~CONTINUE IFTRESTCST.LT.TD.E231211.220 211 HRITET11.33333)IIIbJJJ.6ESTCST.BESTGA.RESTDP PRINT 33333.III.JUJ.DESTCST.BESTGA.BESTDP 220 CONTINUE 230 CONTINUE ENDFILE'11 10000 FORMATTZFloocoTIC) 20000 FORMATIBF10.OI 33333 FORMAT(21533522.15) 40000 FORMATI1XPHAY “C‘PF5.3- MIN MCI-F5.3- NUMBER OF LEVELSIOISO MC 11NCREHENT30F6.4) 40001 FORMAT¢1H0.PRUR TEM”-MAX::F5.0¢ HINIPFS.C' NUMBER OF LEVELSEOISP 1 INCRPHFNT SIZEt'F5.1I 40003 FORMAT¢1H0vAIPPLON RATE'PAXIOF5.OP MINaor5.0- NUMBER OF LEVELsIo 1130 INCREPEPT EIZF=$F5.1.///) 40005 FORMATT1XtADOITIOHAL INFORMATION REOD FOP SOLUTIONPIIII 40006 FORHAT(1H00ELECTHICAL ancEsor4.2c TIME SCALE3'F4.2P FAN EFF-0F4 1.3. MOTOR EFT:tFA.3.///) 40007 FORMATI1XtSEARCH FDR FEASIBLE UPPER BOUND IN MC DIPENSION" 40008 40009 40010 40011 40012 40013 40016 55555 70000 70001 78787 90000 90001 90002 90005 90099 126 FORMATT1H0¢FPR THESE INPUTS. THE MINIMUM OUTLET PRODUCT TEMPERATUR 1E Is or7.2I FoRHATI1HooARJU§TEO UPPER NOOE IS oISc.LOHER NUDE IS 1'///I FURNAT(1X'3EOHCH FOR FEASIBLE LOHER BOUND IN AIRFLOH DIMENSION.) FORMATI1H00UPPFH IDOE ISPISP.AUJUSTED LONER NONE ISPI5.///I FORMATI1Y.SEARCH FOR FEASIBLE UPPER BOUND IN THETA DIMENSION!) FORMATIIXPSEPHCH FOR FEASIBLE LOHER BOUND OF DEPTHPI FORMATI1XERECII ITFRATION. PRINTING INDICES OF MC AND PRODUCT TEMP 1 AND ASSOCIATED COST.AIRFLOH.AND DEPTH.) FORMATI1H1-SET UP GRID SYSTEM AT THE COOLER-DRYER INTERFACEP/III roRMATc1x.INLET CONDITIONS-TEMPI-F7.3t ABS Hun..r5,5. ATM Passs- 1'F5.2I FORMAT<1HocDESIREU OUTLET CONDITIONs-MAX GRAIN TEHP94F738- 1:.F7,4o MIN HC39E7. 4) FURNATI1Hovn€PTH-MAX80F4,20 1CREMENT SIZE:PF5. 3. III) FORMATesx..MCISTURE DIMENSION CONTAINS OALY CNE FEASIBLE LEVEL.) FORMAT(3XQAIQFLU“ DIMENSION CONTAINS ONLY ONE FEASIHLE LEVEL'l/I FORMATI3x.oTHETA UINENSICN CONTIANS ONLY ONE FFASIELE LEVELPI FORMATI1H0.FCR THESE INPUTS. THE MINIMUM OUTLET HC IS «F5.4I FOPHATI3XRDEPTH CONTROL CONTAINS ONLY ONE FEASIBLE LEVELPI END MAX MCI HINSPF4.2* NUHPEH 0F LEVELSPPI3? IN PROGRA“ DRYOI'hclNPUTo OUTPUT. TAPES?) C PROGRAM DRYONE IS THE PND PROGRAN TO BE RUN IN THE 3-PPDGRAM SEQUENCE FUR 3PT- c IHAL DESIGN or A NON-AIR‘RECYCLE TYPE COICURPENT GHYER- COUNTERFLOH GOUIPS C SYSTEM. ASSOCIATEP SURPROGRAMS REOUIReon-cooLERr:.COOLER0.COOLERG.COSIONE. c DRYSIH.EHC. INTERP. PSDB. PVHA.PHPSPV. VSDBHA. DIMENSION INDEY(?I. ICECREHTZI COMMON/CON/CthotUT'ZIVALUESIXMCIN.THIN.GP. SAocA. CP.CV/DOLLARITIHEp 1ELPRICF.FUELPhI. FUELHTOEHETAa FANETA:THERCTl/VECALL/UPTCOSTI o )0 lGCOOLI o I.DCOOL( . I. XNEN(2I. DXINVIZ). X“LUH DELM THLOHoDELTH/ 2PRESS/PATH/IN/suwTENP.HAHa.GIN.DEPTH/GUT/XM.THETA.TOUT. HOUT/SINCO§ 3T/O.TA48.TIN EXTERNAL COOLERC.COOLERO.COOLERG DATA PATH.RHOP;UPH.SA.CA.CP.CV/14.34.38.71.9..239...242..268..95/ NDTH82 BESTCST3100672 GP=RPH01.2444RHUP CuklssA/IGPtCPISCUNztSA/CA c REA0.MIN FPASIRLE Uc VALUE FROM COOLONE OUTPUT. INr;REHENT SIZE. MIN VALUE OF C PC USED IN CUOL0“E PRUGRAN. AND NUMBER OF FEASIBLE LEVELS REMAINING IN COOLONE C OUTPUT. READ 10001.!”LON.DELH.XMNNIfloLEVELH PRINT PCUO..YMLUH.DELH.XMMNIN.LEVELH DXINV(1)=1./1tkn XHHIGH=XHL0H0TLUATILEVEL"-1)PDELH PTNQAH:ITIXIIX“LOH+OEL“/2.-XMMNINI/DELHI c READ MIN FEASIJL‘ PH”U“CT TEMP VALUE FROM COOLONE OuTPUT. INCREMPNT SIZE. *IN C VALUE OF PRODUCT TEHP USED IN COOLONE PROGRAN. Ana NJHRER Gr FEASIRLE Lgve;s C REHAINING ID CO0LU“E UUTDJTG REAQ 1JDG1.THL3H.DELTH.THMNINoLEVELTH PRINT 203010THL040DELTHoTHflNINOLEVELTH DxINV(?)=1./OELT4 THHIGHaTHLJNoILUATILEVELTH-lIPDELTH HINDXTH=IFIXI(THLOuoDELTH/Z.-THMNINI/DELTHI 7 9 C 127 READ LOdEST AIRFLOU RATE.INCREHENT SIZE.AND NUMBER OF LEVELS TO BE USED. READ iuooslGLUA.nELG.LEVELG PRINT 2c0°2IanuODELGDLtVELG READ LOREST INLET alR TEMP. INCREHENT SIZE. AND NUMBER OF LEVELS TO BE USED: READ zuuuszTLUu.nELT.LEVELT PRINT PODD3.TLCR.UELT.LEVELT READ SHORTFST NED PEPTR.INCREHENT SIZE. AND NUMBER OF LEVELS TO BE OSED. READ 1aoc3}DLOw.OtLO.LEVELD PRINT accn4.PL0R.UPLO.LEVELD READ INLET AIR TFHPERATJRE AND HJMIDITY T0 HEATER PLUS ATHOSPHERIC PRES§JRE AND INLET GRAIN PC AND TEMPERATURE TO THE DRYER. READ 13002.TAHP.HAHB.PATH,XHCIN.THIN PRINT 2CD D5.TAPB. HAR8.PATH.XRCIN. THIN READ TIME RASE FnR UPTIHIZATION. ELECTRIC PRICE. FAN EFFICIENCY.HOTOR EEFIC- IEMCY. FUEL HEAT VALue. FUEL PRICE. AND THERMAL EFFICIENCY. READ 1UCC?.TTHP. ELPRICE. FANETA. EMETA.FUELHT. FUELPRI. THERETA PRINT 2: LD6.TIPE. tLPRICE. FANETA. EMETA PPINT 2coo7.FUPLRT. FUELPRI. THERETA READ MAXIHHH A.IR TEMP AND PRESSURE DROP CONSTRAINTS; RElD iUCDZDTVAXopUPOPHX PPINT Pcann.rmAx.PnR9an ATAMQITAHBO4‘9.09 SPVLconuvsoauAIATAP8.HAHBI/6o. RHIN:RRDRHA(ATAMR.HAHBI EOMsENCIPHIN.TAHRI INITIALIZE THE CPST INTERPDLATION GRID TO ABSURD VALUES. DO 9 I-1.LEVFLP DO 7 J-1.LEVFLTH 0PTcosTII.JI-13.E25 CONTINUE CONTINUE READ IN VALUES 0F COST AND CORRESPONDING AIRFLOH AND COOLER DEPTHS. BY c COMPARISON. FILL THE OHIO HITH OPTIMAL VALUES. 11 15 C C 20 C C READ (37.36030)I”.ITH.EXPENSE.GACOOL.DRCOOL IFIEOFI37II25.15 IHtleHINDXM ITHsITR-MINUXTH OPTCOSTIIH3ITHI3EXPENSE GCOOLIIN.ITHIIGACOOL DCOCL(IHDITH)‘DPCUOL GOT011 APPLY IN T'JRN ALL DRYER AIRFLOH RATE .AIR TEMPERATURE. AND BED DEPTH COUTRJLS TO EACH NonAL POINT Of THE GRID. . DO 180 16:1.LEVEL9 IGG:LEUELG-IC+1 GIN:GLOH¢FLOAT(IGG-lIODELG no 170 IT:1.LEVELI ITTzLEVELT-TT’l TIN:TLnH¢FL0LT(III-1IPDELT Do 160 10:1.LthLP IDD:LEVELD-IO¢1 DEPTHanLoquLUAT!InD-1IADELD CHECK MAXINUM AIP Tt“fERATURE AND PRESSURE DROP CUN§TRAINTS; OzGINoNPVLCON PDRoPsnEPTNtIDISR.I031.528 IFIPDROP.GT.PUPUPHXIGOTO160 DELTADCI.378‘4Rd9tPDR0P/FANETA/EHETA SUHTEHPzTIhoRELTADn IF(SUHTEHP.GT.THAX)GOTOlba CALL DRYER SIMULATION TO PREDICT OUTLET GRAIN MC AND TEHPERATUPE AND CHECK Ir 128 C RESULT FALLS WITHIN GRID. CALL DPYSIHI1I IF(KM.GT.XNHIGH)GOT017O Ircxw.LT.anfiu)soTo1¢0 IFITHETA.LT.THLUHIGOT0160 IFTTHETA.GT.THHIGH)GOT0170 APPLY SATUQATION, ABSORPTION , AND EQUILIBRIUM CHECKS TO OUTLET AIR AND HUMIDITY PREDICTIONS 0r DRYER MODEL. CALL DHYSIHI?) ATOUTITOUT¢4S9,69 RHOUTaaHDaHA(ATOUT;HOUTI IF‘RHOUT06T01036010160 IF(((XW-EOHI/IXHCIN-EOH)).GT.1.)GOT0160 EOMOUT-EHCIRHUUT.IOUTI IF(EOHOUT.GE.XM)GUT0160 0 SET UP INTERPOLATION PROCEDURE AND INTERPOLATE. XNENI1IIXHSXHEHC2)ITHETA NSTOPEIO DO 85 1:1.NOIH 85 ICECREMIIIIO INDEXI1I8IFIXI(xn-XHLONI7DELN)¢1 {NEEx(2)aIFIX((THETA-THLOH)/DELTH)*1 vaLstLoquLOATTINDEXI1I-1IvOELH IFIAHSIXVAL-YH).LI.10.E-8)90a100 90 NSTOREzNSTORF¢1$ICECR&M(NSTORE);1 100 XVALITNLON+FLOATIINDEXIZI-1I00ELTH IFIAHSIXVAL-THETA).LT.10;E-B)110n120 110 NSTOREsNSTORF+1$IQECREHINSTUREIUZ 120 IFINSTDRE.EO.NOIH)130:140 130 PARCOSTaOPTCnSTTINDEXII).INDEXT2)) 6070 145 140 CALL INTERPIPAPCOST.NDIH.INDEX.ICECREH.NSTORE.CO0LERO) 145 IFIPARCOST.LT.1.E-R.0R.FARCOST.GT.10.EZZIGOT0160 C EVALUATE COST OF DRYING AND ADD TO INTERPOLATED COST. COMPARE THE RE§ULT T0 C THE CURRENT OPTIMAL COST. CALL COSToNEICnST,PDROP) TRYCOSTaPAPCOSTPCUST IFTTRYCOST.LT.PESTCST I130o160 C IF CURRENT TOTAL COST Is OPTIMAL. REPLACE THE PREVIOUS BEST COST AND INTER- C POLATE TO FIND OPTIMAL COOLER DEPTH AND AIRFLOH RATE. PRINT ALL OPTIMAL C RESULTS. 150 HESTCSTsTRYCDSTSHESTDPHtDEPTHTBESTGIGINSRESTTtTINSBESTHIXHSHESTTH' 1THETA ' . PRINT 20013.9ESTCST,BESTH,BESTTH PRINT 20314.0EST0PH.BESTG,BESTT CALL INTERPICPTDCL INDIHDINDEXOICECREHONSTOREICUOLERD’ CALL 1NTERP(nPTGCL .NDIH.INDEXoICECREH.NSTOREoc00LERGI PRINT 20015.0PTOCL;OPTGCL 160 CONTINUE 170 CONTINUE 160 CONTINUE 10001 FORMATTBF10.coI1oI 10002 FCPHATT8F10.0) 10003 FOPHATI2F10.00I10) 20000 FORMATI1H1¢ MIN [EASIBLE HC8tF5I30 MC INCREHENTzoFs,3.NxN "C IN 1COOLONE-GRlthr5.30 REMAINING FEASIBLE LEVELS"I4,//) 20001 FORMATIlHOo "IN IEASIBLE PRODUCT TEUP80F6.2' PRODUCT TEHP INCREH 1tNTIcF6,2a MIN PRODUCT TEMP IN COOLONE CRID‘*F602’ RFHAINING FEA ZSIBLE LVL8-I3o/l) 20002 FORMATI1HO0LOHFR AIRPLON RATE BOUNDsOF632- INCKEHENTItF6.20 NUHB on 129 15R OF LEVELSI'I4a/l) 20003 FORMAT¢1RooLnRsR AIR TEMP aouNuc.r0.2' INCRERENTa-F6.2o NUMeER 0 1F LEVELS'PIA.//I 20004 FORMATI1HOOLOHER BED DEPTH BOUND-OFQIZO INCRE"ENTIPF4.2* NUMBER 10? LEVELSI-I4.//I 20005 FORMATI1HOPHEATER INLET AIR TEHP3.F562. INLET HUMIDITYIOF654¢ AI 1" PRESSUREIPFO,20 GRAIN INLET HCIPF5.30 INLET GRAIN TEHP80F6.20( 1/2 20006 FORMATtiHORTIHF BASE FOR OPTIMIZATIONSPF4.2* ELECTRIC PRICE'PF4IZ 1' FAN EFFICIENCY-OFScSP MOTOR EFFICIENCY'PF5o30/l) 20007 FORMATI1HQOFUEL HEATIOF7.OP FUEL PRICEEPF502' THERMAL EFFICIENCT 1"F5030//0 20008 FORMATtlHOoHAX AIR TEMP cONsTRAI~T=.r7.2‘ MAX PRESSURE DROP c0~91 IRAINTIOF6.20//) 20013 FORMATI1HOPCURRENI OETIHAL COST'PF1005P OUTLET HC"?5.45 OUTLET 1 GRAIN TEHP'OFéoZI 20014 FORMATIIHOPCURRENI OPTIMAL DRYER DEPTRs.r4.2- AIRFLOH RATEs-r6.2- 1 AIR TEMP3096,2) 20015 FORMATIIHO-OPTIHAL COOLER DEPTH..r5.3. AIRrLOu RATEOPFOIZo/ll) 30000 FORMAT¢2ISISE22.15> 000 n 00 an on END PROGRAM RECONEIINPUT.OUTPUT) PROGRAM RecoNE Is THE FINAL PROGRAM TO BE RUN IN THE s-PROGRAM SEQUENCE F0? OPTIMAL DESIGN Or I NON-AIR-RECYCLE TYPE CONCURRENT DRYER-COUNTERFLOH COOLER SYSTEM. ARsocIATED SURPROGRAMS REOUIRED'COOLS1M.DHYSIM.HOHDEEP.vsnaHA. COMMON/PRESSIPaTM/IN/TREAT.BESTH.O.DESTDPH/OUTIZ.YZ.TOUTDRY.MOUTDM 1Y/INCOOL/BESTH.BESTTHoGIMHEAT.XDP/OUTCOOL/HOUToTOUTpTMOUTIXHOUT/FIX 2XED/TAMB.HAMO,ATAMR.SPVLCON/AITCM/MINCOOL COMMON/VALUES/XMCIN.THIN.OP.SA¢CA:CP.CV EXTERNAL HOHDEEP DATA EPS/.01/ READ. FROM THE DPYONE OUTPUT. OPTIMAL DRYER AIRFLON RATE. INLET AIR TEMC. INLET AIR HUMIDITY} DEPTH. PLUS RESULTING OUTLET MC AND PRODUCT TEIP; READ 10000IBF5T0.BESTT.8ESTH.BESTDPH.BESTM.BESTTH READ INLET AIR TEMP TU HEATER, ATMOSPHERIC PRESSURE. FAN AND MOTOR EFfiIQ- IENCIES. AND DRYER INLET MC AND PRODUCT TEMP. READ 1oooogTINHEAT,PATM.FANETA.EMETA.XMCIN.THIN READ INLET AIR TEMP AND HUMIDITY T0 COOLER.0PTIMAL COOLER oePTH AND COOLER AIRFLOH RATE. READ 10000;TAMR.HAMD.XDP.OINREA1 CALCULATE ACTUAL AIM TEMP ENTERING DRYER. ATARBaYAMB+459.69 O:RESTGoVSDBHA(ATAHB.HAfl6)/60. POROP=RESTDPUPIUI58.I*01.528 THEATORESTTP.37854869PPUROP/FANETA/EHETA SIMULATE DRYER Tn PREDICT OUTLET AIR TEMP AND HUMIDITY. CALL DPYSIHI2> PRINT 20000.TOUTDRY.H00TDRY.XMCIN.TRIN.3£STDPN stLcoucvsnDuA(ATAMa,HAMa)/¢o, DEPTstDPsCALL COULSIMIQ) SIMULATE COOLER TO PREDICT COOLER OUTLET AIR TMEP AND HUMIDITY. PRODUCT TERP AND Mc. ' CALL COOLSIMIAI PRINT 50000.TOUT.HOUT.GIRHEAT PRINT 55000.PE57"oRESTTH 130 PRINT 600000TAHB.HAHB¢DEPTH;XH0UT'THOUT 10000 FORMATIBII0OC’ 20000 FORMATTINIPDDYFR §PECS'UUTLET AIR TEMPSPF6.2' HHHIDITYIPFbil? IN ILET GRAIN NCB‘F5.3P PROD TEWP=OF501* DRYER DEPTHBOF4.20//l 5000 FORMATI1XGC00LER EXIT AIR CONDITIONS'AIR TEMPi'F6,2. HUNIDIT’I'FO 1.4. AIRFLOH RATE'.F602/’0 55000 FOPHATIIXODRYER EXIT GRAIN CONDITIONS-HCIOF4o3' PROD TERPIPF6.2.( 1” 60000 FORMATle'COnLFR §PEC5'INLET AIR TEHP3'F6.2* "UNIDITY3*7605' DE? 1THI0F6.20 OUTLET ”C30F6,4* OUTLET PROD TEHP3*F6021 END OOOG nnnn 131 PROGRAM COOLPRIINPUT. OUTPUTpsIN TAPEIIIGINI PROGRAH COOLER IS THE INITIAL PROGRAM TO BE RUN IN THE A-PROGRAM SEQUENCE COR OPTIMAL DESIGN 0r AN AIRPRECYCLE TYPE CONCURRENT DRYER- COUNTFRFLOH COOLER SYSTEM, ASSOCIATED SURPROGRAMS REDUINED~~COOLSIMo CSTCOOL DEEPMNM. BEECHUTv ENC. HOHDEEP.VSDBHA3RHPSPV.ZEROIN; COMMON/FIXED/TAnquAMB.ATAMB.SPVLCON/INCDOL/XNOI:XTH.XGA.XDPIOUTCO 10L/HOUToTOUTaTNUUI}XMOUT/PRICE/ELPRICEoTIME.FANETA.EMETAIAITCH7HNO 2N/PRESS/PATH/TPIAL/THOUTMX.XMOUTMX EXTERNAL HONDEEP.DEEPMNT.DEEPMNM DATA EPS/.01/ PRINT 40004 READ MAXIMUM AND MINIMUM ALLOHABLE MCS AT THE ENTRANCE To THE COOLER AND TME NUMBER or LEVELS USED, CALCULATE INCREMENT SIZE. READ 10000}XMMXINoXMMNINgLEVELH DELMuIXMMxIN-XMHNINT/FLOATILEVELH-lI PRINT 40000.!MMxIN.XHHNIN.LEVELM.DELM READ MAXIMUM ANU MINIMUM ALLOWABLE PRODUCT TEMPERATURES AT THE ENTRANCE TO THE COOLER AND THE NNMRER OF LEVELS USED. CALCULATE INCREMENT SIZE; READ 1ooao;TquIN.TMMNIN.LEVELTH DELTRETTHMxIN-THMNINIIFLOATILEVELTH- 1) PRINT 40031 ,TquIN.TMMNIN. LEVELTHabELTH READ MAXIMUM AND MINIMUM ALLOHABLE AIRFLON RATES THRU THE COOLER AND THE NUMBER OF LEVELS USED. CALCULATE INCREMENT SIZE. READ 10000;GMXDUT.GMNOUT.LEVELG DELG=IGMXOUT-OMNOUT)lFLOATILEVELG-i) PRINT 40003.nMXOUT.GMNOUT.LEVELG.DELG. PRINT 40005 PEAD MAXIMUM AND MINIMUM COOLER DEPTHS USED. THE INCREMENT SIZE IN HUMIDITY. COOLING AIP INLET TEMPERATURE AND HUMIDITY. ATMOSPHERIC PRESSURE. MAXIMUM ALLOWABLE OUTLET PRODUCT TEMPERATURE; AND MAXIMUM AND MINIMUM ALLONABLE OUTLET MOISTURE CONTENTs, READ ZDDODQDPTHMAX;DPTHMINSREAD 20000.0ELH PEA020000.TAMB;HAMR.EATM READ zsocnzTuODTMx;xMOUTMx.XMOUTMN PRINT 7oono.TA~B.NAMB.PATM PRINT 70001.THDUTMX.XNOUTMX.XMOUTMN PRINT 7000200PT”"AX0DPTHHINoDELH ATAMBOTAMHP469.69 svacoNsvsDBNATATAMB.HAMB)/bo. RHIN=RHDBHA(ATAMBoNAMB)SEONSEMC(RHIN9TAMRI READ ELECTRIC PRICE. TIME OVER MNICH OPTIMIZATION IS To RE PERFORMED: FAN AND MOTOR EFFICIENCIPS. READ ZDCDCIELPPICE.TIME.FANETA.EMETA PRINT 40006.0LPRICE.TIME.FANETA.PMETA RESIN SEARCH FOR UPPER aDUNo IN MC GRID DIMENSION. FIRST CHECK FEASIBILITY OF MIN PossxaLE OUTLET M9 AGAINST CONSTRAINT. PRINT 40007 XMOIszMNINSYTusTHMXINSXGAsGMXOUTIXDPsnPTHMAX CALL COOLSIHISI PRINT 90005.1HOUT IFIxMOHT.G -T.YMOUTHX)GOT0250 CHECK FEASIBILITY OT MIN POSSIBLE OUTLET PRODUCT TEMPERATURE AGAINST CON- STRAINT XTuaTHININ CALL COOLSIHT1I PRINT 40008.THOUT IFTTHOHT.GT.TMOUT"YIGOT0250 USING PISECTION. FIND UPPER POISTJHE CONTENT BOUND; HHIGHaLEVELHTHLUHI1 MUPTRYzLEVPL" 132 10 XHOItxMMNIH+FLOAT("UPTRY-lI‘DELMIXTHBTHHXIN CALL COOLSIHISI IrcXMOUT.CT.XM0UTMxI55.15 15 XTHITHMNIN CALL COOLSIHI1) IF(THOUT.GT.THOUTMX)S5020 20 ”LONEHUPTHY IFI(HHIGH-HLOH).L§.1)25090 25 MUPIMLOH IFIMUP.EO.1)30}45 30 PRINT 90000 STOP 35 MHIGM=MUPTPY 40 "UPTRYI("HIGH-PLOHIIZOHLOH 007010 45 PRINT 40009oMUP C BEGIN SEARCH BY RISECIION FOP LONER ROUND IN AIPFLOH RATE GRID DIMENSION: c USING MAX nuTLET PPunUCT TEMPERATURE CONSTRAINT. 46 PRINT 40010 KCHIGH=LEVELG$VGLUH:ISLONGTRYI1 XCA-GMXOUT CALL COOLSIM I1) PfiINT 40000.TH0UT IFITHOUT.GT.THPUTMXISTOP so XCA=GHNOUT¢FLUAT(LOHGTRY-1IPDELG CALL COOLSIMIII IFITHouT.GT.TMOUTHx)55.60 55 KCLONILOMCTRY IF ((KnHIGM-VGLOHI.EO.1)62.57 57 LONGTRvsIKRHICM-KCLONI/2+KOLOA GOTO 50 so KGHIGHzLOHGTPY Irc(ACHICH-KanwI,GT.1IGoT057 62 LONG=KOHIGH IFcLowc.Eo.LPVFLCIas.70 65 PRINT OODOISSTDP 70 PRINT 40011.LEVELC.LouG c PEGIN SEARCH By RISECTION FOR UPPER BOUND IN PRODUCT TEMP GRID DIMENSION. C USING MAX ouTLET PRODUCT TEMPERATURE CONSTRAINTI PRINT 40012 xMoI:XMMNIHsyuPsnPTMMAXSXGAssMXOUT XTHsTHMNIN CALL COOLSIHI1) PRINT AcaflfipTHOUT IF‘THOUTQGTOTHOUTMX)71072 71 PRINT AOOZUIPTOP 72 KTHMIcuzLEVELTusxTMLOuz1;IUPTRTR=LEVELTH 75 XTHsTHHNIH+FLUtTIIUPTHTHo1IPDELTH CALL COOLSIHIII 80 KTHLON:IUPTHTH , IFIIKT4HIGu-MTHL3H).LE.1)85.100 85 IUPTH=KTML0H IFIIUPTM.EO.1>90.105 90 PRINT 90002 STOP 95 KTHHIGHslUPTHTP 100 IUPTHTR=(KTMRIGH-KTMLORIIZoKTHLOR GOTO 75 105 PRINT 4:009,IUPTM 133 o W.- o: . 0‘ I. c PEGIN SEARCH FOR LnNER SOUND OF BED DEPTH. FIRST CHECK FEASIBILITY OE DIN C POSSIBLE OUTLET PRODUCT TEMPERATURE AGAINST CONSTRAINT. PRINT 40013 XMOI:thNIPSKGAIGMXOUTSXTHITHMNIN qusDPTMMAx CALL COOLSIMIlI PRINT JEUOB.THOUT IFITMOUT.GT.TMOUTHXI106.107 106 PRINT 40020 STOP C CHECK FEASIBILITV OI MIN POSSIBLE OUTLET MC AGAINST CONSTRAINT. 107 CALL COOLSIHISI PRINT OCLOSoXHOUT IFIxMOUT.GT.YhOUTHX,1030109 IOP PRINT 40023$STOP 100 KOUNTIU XDPsDPTHNIN CALL COOLSIHIII IEITHouT.GT.TH0UTHX)1150120 C USING 1-0 SEARCH. FIND DEPIM AT NHICH PRODUCT TEMPERATURE CONSTRAINT IS C SATISFIED. 115 GUE551IDPTHHINTEUESS£=DPTHHAX CALL ZEROII(CUP581.GUESSZ.EPS.DEEPMNT) DPTHMINIIGUESSITGQESSZIIZ, KUUNTIi C USING 1.0 SEARCH, FIND DEPTH AT HHICH MC CONSTRAINT IS SATISFIED. 129 YDFIDPTHMIHICAIL COOLSIMISI IFIxMouT.LT.YMCUTMX.AND.KOUNT.EO.0)150.130 130 GUESS1EDPTPMINIGUESSP=CPTHMAX CALL ZEROINIGUPSSl}GUE552,EPSoDEEPHNH) IFIKOUNT.EG.0)135e14O 135 UPTHMIUIIGUESSIOGQFSSZI/Z. GOT01SU c COMPARE DEDTHS Arn CHOOSE THE MAXIMUM BECAUSE IT SATISFIES BOTH CONSTRAINTSI 140 DPTHMImsAMAXI(PPTHMIN.IIGUESSl’GUESSZIYZ.I, 150 PRINT 10014.0PTHMIN PRINT 40014 nEFINE THE LIMITS PETNEEN HHICH HUMIDITY CAN VARY. THIS IS HELPFUL IN CNOOSING THE INCREMENT 817E IN HUMIDITY. XMOI:xMMNILSXTP:IHMNINIchcquOUTixDP=nPTNMINSCALL COOLSIMIZI HLON=MOUT XHCstMHNIH+FLDAT(“JP-1IODELH XTHzTHMNINOFLUATIIUPTH'1IODELTH XGA:FLCAT(LUwh-1)*PELG¢GPNOUT qu=DPTHMAxsrALL COOLSIMIZ) HHI=HOUT PRINT 4oc15.HLCH.HPI THE USE OF A STOP CARD AT THIS POINT Is RECOMMEMCEC FOR INITIAL GRID STITNSA THE DU LOOP [Ték;T[uN§ TO FILL THE GPID WITH COSTS AND CORRESPONDING COBTRULS RESIN. PRINT 40016 - OD 243 11"10MUP PRODMEFLLATIIII-IIPDELMPXMMNIN DO 230 JJJ:1.I“PTM THETA:FLUAT(JJJ'I)ODEETMATHHNIN :0 220 KKK=LOHCoLtVéLG KKK1zLONG-VKVOLEVEL3 GA=FLOATIKKK1-1)oUFLGocMnouT LSFARC~=0$ISPARCM=C XMDIspacfiMIXTH:IHETAIXGA=GASXDP=DPTHHINICALL COOLSIMI4) Of] COG 134 IHSTARTleIXI(“OUT-HAHBIIDELHI‘Z C PEGIN CHECKS ON PUDEL PREDICTIONS FOR HUMIDITY AT HINIMUM PED DEPTH. C CHECK SATURATION OF AIR. ATouTsTcUT.4s9.69 RHOuTanDaHAIATUUT.MOUTI IF‘RHCHTOGTO1Q,GDIOZSG c CHECK MOISTURE RITIU ION ABSORPTION. IFII(XNOUT-EOMIIIPRODM-EOM)I.GT.1.)GOTO230 C CHECK FOR EOUILIPHUI“. EDMDUT=EMCIRHDUT.TOUII IFIEOMOUT.OE.XVOUTIGOTO 230 C CK OUTLET PRODUCT TEMPERATURE AND MC CONSTRAINTs. IFIXMDUT.LT.YMOUTMNISDT0230 IFITHOUT.GT.THOUTHX.OR.XMOUT.GT.XH0UTHXIL$EARCH'1 C BEGIN CKS ON MODEL PREDICTICNS FOR HUMIDITY AT MAXIMUM BED DEPTH. XDPBDPTHMAXSCALL COOLSIHI4) IHTsPsIFIXI(ROOT-HAMNIIDELH)¢1 IFIIHSTAPT.EO.IIMTOPP1II151.153 C IF VARIATION OF HUMIDITY BETNEEN MAX AND MIN BED DEPTHS IS LT DELH. SKIB T3 C NEXT ITERATION Or INNER 00 LOOP. 151 PRINT 99900 GOTOZZD C PERFORM MODEL FEASIBILITY CHECKS. 153 IFITHOUT.GT.THOUTMX.0R.XHOUT.GT.XMOUTMX)GOT0 230 ATOUTxTOUT+4S9.69 RMOJTaanaHAIATUUT.MOUTI IFIRHOUT.GT.1.IGPT0155 IFI((XMOUT-EOHI/IVRQDH’EOH”oGTolo’GOTOlss EONOUTaEMCIRMUuT.TOUTI IFIEOMOUT.G&.X”UUT)155.154 154 IFIXMouT.LT.VMnUIMN)155.160 15$ ISEARCN=1 C IF NECESSARY BEGIN SEARCH FOR LONER FEASIBLE BOUND ON HUMIDITY DURING THIS 00 C LOOP ITEPATION. 160 IFILSEARCH.NF.1)GUT0181 165 LTPV=IIHTOP-IHSTART)/2+IHSTART 167 HMCN=FL0ATILTHY'1IPOELH+HAM8 GUESSl:DPTHHINTCUESSZSDPTHMAX CALL ZEROINIOUPSSI.GUESSZ.EPS.HONDEEP) XDP:(GJESS1+CUFSSZIl2.$CALL COOLSIHI4) {FITHQUT.GT,THOUTHX.OH.XHOUT.GTo XMDUTMXI170v175 170 IHSTARTzLTRY IF((IHTOP-IHSTLHT’oLEol)2300165' 17S LTRV=ILTPV-INSTARTI/20IMSTART IFILTRV.EO.IPSTARI)180.167 18? IHSTART:LTNY¢1 181 IrIIsEARCH.En.1I185.205 C IF NECESSARY, HEOIN SEARCH FOR UPPER FEASIBLE BOUND ON HUMIDITY DURING {HIS OO 3 LOOP ITERATION. 185 ITPY=IIHTOP-IHSTAHTIIZPIHSTART 187 HNOuzFLOATIITHY-IIPDELHOHAMB 506551=DPTNMINIGugssz=DPTMMAx CALL ZEROINIOUESSI.3UESSZ.EPS.HOHDEEP) xaPztsIESSIoCUPSSZIIZ.TCALL COOLSIMI4) ATDuTxTouT+4S9.69 RHOuT=°HU8HAIATUIT.HOUT) IFIRMOHT.GT.1.)GDTU 190 IFIIIxHOUT-EONIIIPRUDM-EOM)).GT.1.)GOT0190 EDM00T=EMC 30001 FORMAT(1X.AIP TEMPERATUREs-F7.2t Aas HUMIDITYI-F7.So ATH PRESSUN 1E:*F7.2.///) 30002 FORMATI1XoHC-LOHEP BND=PF5.4t UPPER BNOz'F5.4./lv PROD TEMP-LOHEB 1 BND=PF7.2- UPPER 6ND=OF7.2.//I AIRFLOH-LUHER BND:.F7,2. UPPER B 2ND=0F7.2.l/' AIH TFflP-LOHER BND!OF7.2* UPPER HNO=0F7.2.//* ABS Hg SNIDITY.LODER BNU=PF7.S~ UPPER ENDc.F7.S.//l 30003 FORMATIIX.VA?IAst LEVELS-HC=oI4t PROD TEHP=PI4P AIRFLON=PI40 A 11R TEMo=-14n AUS HUN3014.//t INCREMENT SIZE'HC3'FS.4' PROD TEHP| 2.F5.1o AIRFLUU=°P5.1P AIR TEMPSPF5.1* ABS HUH3'F7.5:///’ 30004 FORMATI1x.ECDNOMIC FACTORS-FJEL HEAT VALUE3-F9.0' FUEL PRICE80F91 120 THERMAL EFFICIENCY=OP4.3° TIRE SCALES'F4.1.///) 30005 FORMAT¢110PAX ALLUHASLE COOLER AIR/TOTAL AIR RAT1030P5.3.///7 40000 FCPHAT¢51533P22.15I 50000 FOPMATI1H1.HPAD INFORMATION FROM COOLER SOLUTIUNPIII 50001 FORMATI1XcPEID CONDITIONS OF ADDED AIR'III 50002 FORMATIlXtSET HP ORID SYSTEM AT THE HEATER-DRYER INTERFACE'IIII 50003 FOPHAT¢1X0PRINT INDICES OF FEASIRLE MC.PPOD TEMP.AIRFLOH.AIRTEHP.A 105 HUM; AND ASSUCIATED ACCUHULATED COST.ADDED AIR.ADDED HEAT9/7I 77777 FORMATISX.517.3b22.15I END 0000 no (In nnn 139 PROGRAR DRYERIINPUT. OUTPUT. TAPES?) PROGRAM DRYER IS THE 3RD PROGRAM TO BE RUN IN THE 4-PROGRAH SEQUENCE ION nPTIHAL DES IGN 0. AN AIR- RECYCLE TYPE CONCURRENT DPYER- COUNTERFLUN cOULER SYSTEM. ASSOCIATED SUPPRUGHAMS REOUIRED--0RYCOST. DRYHEAT. DRYSIH.EHO.IEOCOOE. INTERP.PSDR.PVHA,HHPSPV.VSDUHA. DIMENSION INOEXIS).ICECREH(3).INDISI.HAX(3) COPNDN/CON/Cfifia.CUN2/VALUES/XACIN.THIN.GP.SA.CA.CP.CV/DOLLARITIHEo 1ELPRICE.ENETA.FANETA/HECALL/OPTCOST( o . )oxNENIZIoDXINV(2).XHL 20H.OELN.THLOU.D:L]H/PRESS/PATN/IN/SUHTEMP.HIN.GIN.DEPTfi/OUTIXH.THE STA.TDUT.HOUT EXTERNAL DRYHEAT DATA PATH.RHOP.BPh.SA.CA.CP/14.34.36.71.9..239;..262..2607 BESTCST:10.E?2 GPIdPHo1,244oRH0P CONI‘SA/IGPPPPISCUWZOSAICA READ NUMBER OF FPASIPLE LEVELS REHAINING IN Mc. PRODUCT TEMP. AIRFLOH RATE. AIR TEUPERATuRE. AND HUMIDIIY DIMENSIONS. READ 10000.L=VPLM.LEVELIN.LEVELG.LEVELT.LEVELN PRINT 20001.LEUELI4.LEVELTH.LEVELG.LEVELT.LEVELH MAXI1)=LFVELN$HAX(7)2LEVELTSNDIH=3 READ LONER FEASIRLF PC BOUND AND INCREHENT SIZE AT HEATER-DRYER INTEREACE. READ 100023X"LDH.DELH DXINV(1)81./"ELH XNHIGHzxMLOH¢FLOAIILEVELF-1I'DELH PRINT 200 02.YNLUH.¥NHIGH. DELH READ LONER FEASI"LE PRODUCT TEMPERATURE BOUND AND INCRENENT SIZE AT HEAIER- DRYER INTERFACE READ 10002.THLOH.DELTN DXINV(?)I1./OELTH THHIGHzTHLONoFLUAT(LEVELTH-iIOUELTH PRINT 20003.THLUN.THHIGH.DELTH READ LONER FEASIOLF AIRFLOA RATE BOUND AND INCRENENT SIZE AT HEATER-DRYER INTERFACE, READ 10002;GLUD.DELG PRINT 20004.nLOH.DELG READ LONER FEASIRLE AIR TEMPERATURE BOUND AND INCRENENT 5125 AT HEATER-DRYER INTERFAce, READ 130023TLUH.D§LT PPINT R0005.TLGH.UFLT 95.0 LOHER FEASIDLF HUMIDITY BOUND AND INCREHENT SIZE AT HEATER-DRYER INTER- FACE. READ 10002.HLOU. DELH PRINT 20006.HLON. DFLH READ THE LORI R BOUNDS OF EACH DINENSION AS THEY ARE serene ADJUSTMENT-ans. PRODUCT TEIP. AIRFLON RrTE.AIR TEMP.AND HUMIDITY. READ 1ac021XUHNIN.TNHNIN.XLUAG.XLOHT.XLOHH PRINT 2C007.YH“NIN.THHNIN.XL3~fioXLONT.XLOHH quotzxrIxIIvaDNoOELM/2.-XNNNINT/DELHI niugxru=xr1xc(THLU.¢DELIH/?.-THMNIN)/DELTH) H1N3xfi:IFIY((GLUUOPELG/2.-XLDAG)(UELGI NIUJXTEIIIxIITLuuonELT/2.-XL04IIIDELT) MINuxN:1F1x((HLU.+DELH/2;-XLDAH)lDELH) PEAa enUND 0F DRvEP DEPTH AND INcREHENT SIZE. READ 99909.0L0“. UPICN.LEvELn PRINT 20008.‘LOH.DHISH.LEVELD DELD=(DHIGH-"LOHI/FLOATILEVELO'lI READ DRYER INLET GRAIN HC AND TEN? PLUS ECONOMIC FACTORS--TIHE ON HRICH OPT- IMIZATION IS aASPD,ELEcTRIc PRICE.H0TUR FFFICIENCY.FAN EFFICIENCY. AND AT- MOSPHERIC PRESSURE. READ 10002;XMCIN.THIN.TIHE.ELPHICE.EMETA.FANETA.PATM 140 PRINT PCCDOoYDCIN.THIN.PATM PRINT 2001C.TI“E.ELPRICE.E*ETA.FANETA C PEAD CDVSTRAINTS UN VAXIHUH AIR TESPERATURE INTO DRYER AND HAXIHUH PRESSURE C DROP. READ 200C12TrAx.PuRoPHx PRINT 20311.THAX.PPROPHX 215 INDYHArsLEVELG-LEVFLT'LEVELH c INITIALIZE TPE COST INTERPOLATION GRID TO ABSURD VALUES. DO 9 IaloLEVFLM DO 7 J31.LFVFLTH 0PTCnST(1.JoV)=151F25 CONTINUE CONTINUE c READ IN VALUES FROM HEATER OUTPUT AND BY COMPARISON. FILL THE GRID HIIH OPT- C IHAL COSTS. 11 READ(37.30308)IHoITHaINDISIoINDIZIoINDtlIoEXPEWSE IFIE0F(37))22015 15 INSIM-HINDXH ITHleuunquxTH INDISIEINDISI-VINDXG IND(2):IND(2)-HI~DXT IND(1)=IND(1)-HIND¥H CALL IENCODETINDYoINnofiAX.NDIHI IF(EXPFNSE.LT.OPTCOST(IH.ITH.INDY))16017 16 0PTCOSTIIM}ITH}INDYIPEKPENSE 17 GOTO 11 C APPLY IN TURN ALL AIRELDN RATE. INLET AIR TEMPERATURE. AND HUMIDITY COMBINv- C ATIONS NITRIN THE OHIO. . 70 DO 1¢o 16:1.LEVELD IGGILEVELG-IC*1$IHD‘SIIIGG GINECLWR+FLOATIICE-II-DELG IND(3):IGG DO 180 IT=1oLEVtLI ITTaLEVELT-IT*1 T1NaTLOu+FLOATIITT-lI'DELTSINDIZI8ITT DO 170 IH=1aLEVELH HINtHLDW*FL0AT(IH-1IPDELHSINDI1I'IH ATIN=TIN*459.60 RHIN=RHDEHAIATIN.hINI E0H=EMSIRHINoTINI C APPLY ALL DISCRETE DEPTH CONTROLS IN TURN. DO 160 IDEPTU=JaLEVELD . IDH=LEVELD-IREPTH*1 DEPTHan0w+FLUATTIDD-lItDELD ATEHP:TIN+450.69 CAPPHOX:GIHOVSFUHA(ATE”P.HIN)/6O, PQRDP:DEPTN¢IOAPPROX/39.>001.528 CHECK HAquuM AIR TEMPERATURE AND PRESSURE DROP COVSTRAIRTSS IFIPDRRP.GT.PD°UPMY)GOT0160 DELTAnng.378E4P690PDR0P/FANETA/EHETA SUVTEH92T1u+DELTADD IF(SUNTEMP,CT.THAXIGOT0160 ASLM=543TE1PO4'9,69 0:61N9VSDBNATASU”'”IN)/60. CALL DRYER SIMULATION To PREDICT OUTLET GRAIN MC AND TFHRERATURE AND CHECK Ir RESULT FALLS NITRIN GRID. CALL DRYSIUII) IF(xM,GT.XMHTCRIGOTOI7O IF(XH.LT.XHLRH)0010160 'O‘JU! () GT) 141 IFITHETA.LT.THIORIGOT0160 IFITHETA.GT.THRICH)ODT0170 c APPLY SATURATION. ADSOPPTIDN. ANo EQUILIBRIUM CHECKS T0 OUTLET AIR TEMP AND c HUMIDITY PREDIcTIONs UF DRYER MODEL. CALL DRYSIN(9) ATOUTITOUT+4R9.69 RHOUT:RHDBHA(ATUUT.HOUT) IFIRHOUT.GT.1.)GOTO160 IFII(xn-EQHIIIYHCIN-EOHII.GT.1.TGOT0160 EONOUT:ENC¢RHUUI.TOUTI IFIEOHOUT.GE.X“)OOTD160 c SET UP INTERPDLATIDN PROCEDURE AND INTERPOLATE. CALL IFNCODEIINDY.INO.MAx.NDIM) INDEX<1I=IFIYI(X“-XMLOH)/DELN)+1 1005xI2I-IFIYI(THETA-TRLDNIIDELTHI+1 INDEX<3I=INDY XNENIIIEXHIXNENI2IITRETA NSTOREso DD 85 1:1.NOIM 85 ICECREW(I):O XVAL:XML0H0FL0ATTINDEXT1I'1)PDELH IFIAHSTXVAL'YH).LI.10.E*8)900100 9o NsToREsNSTOR=+1SICECRENINSTDREIII 100 vaLETNLoquLUATIINDEXIzI-iItDELTH IFIAHSIXVAL-THFTA).LT.10.E-8)110o120 11n NsTORfiaNsTchogSICECREMINSTORE)32 123 NsToREENSTnRr+1$ICECREMINSTOREIIS IFINSTORF,FO,HPIM)150o14D 130 PARCOST:0PTCOST(INDEXIII.INDEx<2).INDEX(3)9 GOTO 145 140 CALL INTERPIPAPCO§TANDIM.INDEX:ICECREW.NST0RE.DHYHEATI 14S IFIPARCOST.LT.1.E-R.0R.PARCDST.GT.10.E22)GDT0160 c EVALUATE COST OF DRYING AND ADD TO INTERPOLATED COST. COMPARE THE RE§ULT TO c THE CURRENT OPTIMAL c051. CALL DRYCOST!COST.PDROP.O) TRYCOSTaPARCOSTOCUST IrtTRYCOST. LT. RESTCST I150 160 C IF CURRENT TOTAL COST IS OPTIMAL. REPLACE THE PREVIOUS BEST COST AND PRINT THE COPTIMAL cnsr AND CUPHE§PONOING DRYER INLET AIR AND DuTLET GRAIN CONDITIUUS PLUS 0 OPTIMAI DEPTH. 150 RESTCST=TRYCOST$RESTDPH‘DEPTHiflESTGtGINSDESTTPTINSPESTHsHINSBESTH' 1XM$BESTTH3THFTA PRINT 20313.0EsrcST,eesrR,BESTTH PRINT 70014JDESTDEHDBESTGDBEST1DRESTR 160 CONTINUE 170 CONTINUE 180 CONTINUE - 190 CONTINUE 10000 FORMATI8I13) 10002 FORMATIOFlJo J) 20001 FORMAT(1H1-FPACIHLE LEVELS REMAINING IN EACH DIHFNSION-MC3'13R PRO 10 TEWP:¢IS' alRILUN .iATE=013' AIR TEHP=RI3' EU"IDITY='13.//) 20002 FORMATIIHO'MOISTUHE CONTENT FEASIBLE BOULDS'LO”ER‘*F7v4' UPPER'TE 17 49 INCPEH:“T3‘t7o4o//) 20003 FORMATleo-PPUFUCT TEMP FEASIBLE BOUNOS'LOHE""F6o2 UPPER"F6.2' 1 INCREHENTzoFA. Zrll) 20004 FORMATIlhOPLCREH FEASIBLE AIRFLOH RATE Bourozoib.2. INCREHENTEAF¢ 1.2. IACREIEHTzfifb. 2. II) 20005 FDRNAT¢1HocLOREH IEASIBLE AIR TEMP BOUNDsoFé. 2' INCPEMEN73'F6.29/ I/I 142 20006 FORMATI1HD-LOHFR [FASIBLE HUMIDITY BOUNDI-Fbu4' INCREMENT'PF6.40/ 1/) 20007 FORMATTIHORLONER BOUNDS BEFORE ADJUSTMENT-PMC'F5.3* PRODUCT TEMP. 1cF5,2. AIRFLUC RATERRF5.2t AIR TEMPa-F5.2’ MUMIDITY=¢F5.4:I7) 20008 FORMATT1HDoDwYPR DEPTH--LONER HOUNDEAF5,3. UPPER poumnscF5I3. N9 lthR OF LEVEL58'I3o/l) 20009 FORMATIIHOEIULFT CONDITIONS T0 DRYER-~GRAIN HC=RF5,3t GRAIN TEHPI 10F6.49 ATMORPHERIC PRESQUREIOF6o4o//I 20010 F0RMAT(1H0RFCUFU“IC FACTORS'-TIME ON WHICH OPTIMIZATION IS BASEDPY 1F4.2' ELECTRIC PNICE:-F4,2c EFFICIENCIES-MUTUH:¢F4,30 FANaaF4;3 1.//) 20011 FORMAT<1H0.*CONSTRAINTS--MAX AIR TEMP8*F6.2* MAX PRESSURE DROP-org 1020],, 20013 FORMATT1Ho.choENT OPTIMAL COST:.F10.5- OUTLET HC=~PS.4* OUTLET 1GRAIN TEMPERATUREioF5.2I 20014 FORMATTIHOoCHHRENI OPTIMAL DEPTHavF4.2' AIR CONDITIONS-EFLON RATE 1:9F6.2¢ TEMPERATDPE8’F6,20 HUMIDITthFbg4a/(/) 30000 FORMATISI5SE°2.1DA44X) 99999 FORMATIZFICACoIIOI non on on an END PROGRAM RECOVRYIINPJT.OUTPUT) PROGRAM RECOVERY IS THE FINAL PROGRAM TO BE RUN IN THE A-PROGRAM SEQUENCE FOR OPTIMAL DESIGN Or AN AIR-RECYCLE TYPE CONCURRENT DRYER-COUNTERFLOH COOLER SYSTEM. ASSOCIATED SURPROCRAMS REUUIRED-COOLSIM.DHYSIH.HHDEEPR.VSDBHA.ZERDIN. COMMON/PRESS/PATM/lN/THEATaBESTHADoRESTDPH/OUT/tvYZATOUTORYAHOUTOR lY/INCDOL/RESTM.UESTTH.OINHEAT.XDP/OUTCUOLIHOUT.TOUTpTHOUToXMOUT/FI ZXED/TAND.HAHR.ATAHP.SPVLCON/AITCH/MINCOOL COMMON/VALUEC/YMCINoTHIN.GPaSAoCAACPpCV EXTERNAL HONDEFP DATA EPS/.01/ READ (FROM DRYER OUTPUT) OPTIMAL AIRFLDH RATE. INLET AIR TEMP: INLET HUMIDITY DRYER DEPTR. PLO: CORRESPONDING OUTLET MC AND PRODUCT TEMP. READ 10000;OFSTO.UESTT.dESTH.aESTDPH.RESTM.BEsTTH READ (FROM HEATER OUTPUT) THE BASE VALUES 0F MC. PRODUCT TEMP. AIRFLON DATE. Ann HEAT ADDED NEEDED FOR INTERPOLATION. READ 100003RASFM.OASPTR.BASEDA0.OASE0HT READ (FROM HEATER OUTPUT) THE VALUES OF Mc INcPEHENT. AIRFLON RATE. AND HEAT ADDED NEEDED FOR INIEBPDLATION IN THE MC DIMENSION! READ 10000;DFLM.PLUSGAM.PLUSRTH READ (FROM HEATER OUTPUT) THE VALUES OF PRODUCT TEMP ILCREPENT. AIRFLUH RATE. AND HEAT ADDED NFEOEO FOR INTERPDLATION IN THE PRODUCT TEMPERATURE DIMENSIJN; READ 10000;DFLTH.PLJSGAT.PLUSTHT READ INLET MC ANO PRODUCT TEMPERATURE 13 DRYER. READ 100003X"CIN.THIN READ TEMP ANO HU”I"ITY 3F INLET AIR TO HEATER. PLUS FAN AND MOTOR EFFICIENZIES READ 10000$T1nuEAT;RINREAT.FANEIA.EMETA READ TEMP Aun HUNIOITY 3F INLET AIR TO COOLER, PLUb MAX AND MIN POUND? UN COOLER DEPTH. ANS ATMOSPHERIC PRESSURE. READ 10000.TAMPAHA"8.UPTHMAX.OPTH“INAPATH INTERPOLATE TO FIND OPTIMAL AMOUNTS OF ADDED AIR AND HEAT, nHP1:8ASEH.DtLH1HTHP1=aASETHthLTH GAOI=RASEGAD¢IPLUSHAN-RASEGADI'IEMPITBASEMIIDELM CA02:8ASEGAD.(PLOSCAT-BASEGAD)t(aTHPl-RASETHI/DELTR GADDEDI(GADIOGAD2’/2g DHTl‘BASEDHT*(PLHSHTH-BASEDHTI'(BMP1“BASEHI/DELM 143 DHTZ=BASFDHToIPLU§TRT-BASEDHTI-(BTHPl-PASETHIIDELTH DELHFATI(DHTI¢OHT2)/20 C CALCULATE AIRFLOU RATE THROUGH COOLER. GINHEAT:PESTG-OADDED C CALCULATE OUTLET ATR RUMIUITY FROM COOLER. HIN000L=.XVAL.OXINVI1T) RETURN 20 XVAL:THLOH¢FLUAT(INDEX(2)'1)'DELTH AVERAGE=STINTHP(XUNE.XTNO.XNEN(2I.XVAL,DXINVIZ)I RETURN END SURROUTINE COOLERG(AVERAGE,KIP.LMNOP.INDEXI C COOLERG IS CALLEO FROM INTERP T0 INTERPOLATE COOLEH AIRFLOU RATE. DIMENSION INOE¥(2)}LMNOP(2) COMMON/RECALL/OPTCOSTI . ).GCO0L( . ).DCCOL( . I.XNE~(2)oOXI 1NV¢2T,XMLOU.HELH.THLOH.UELTH STINTRD-x-100. DELXTxaxx-,4 A7=xCA.stLCON GOTOI10.15.20.101.IGO C RRODUCT TEWPERATURF CALCJLATIONS, 10 DTH:,3RSS¢OELTR(A6) DTI.6007'D<(TA‘B) DH=264.9'DELH(HAHBI UH:71.93'DELM(A5) DCFM=-.44520OELCPH(A7) DXLI-1R,98*DELX(A§) A3:DTH¢DT+UH¢UM+OCFN*DXL*80o459 IF(IGO.NE.4)°ETURN C HUMIDITY CALCULATIONS. 15 DTH8.00003667aDhLTH(A6) DT=.COuclsoaoDFLTITAMBI DH:.9179'DELH(PAHBI DMx.02305o‘ELM(ASI DCFM:5,474E-7tDELCFMTA7Iio2-6.1lsE-5*DELCFMIA7) OXL=.00078930UFLX(A8) A1=DTH+DT6DH+DP+DCFH¢DXLO.00772 IFTIGO.NE.4)RETURN C AIR TEMPERATURE CALCULATIONS. UTH:,9R2*DELTH(A6) DcFH=2.035-<1.-EXP(.02190vDELCFM(A7))I A2=DTHoOCFM+137.77 C "C CALCULATIONS. 20 DH=.9635*DEL“(A5) DXL=-.u[8260D&LX(A8) A4:DM.OxLo.20555 RETURN END SUBROUTINE COSTFUHICOST.TINLET.O) c SUBROUTINE COSTFUM EVALUATES TRE PROCESS COST. COMMON/ECOU/FAUETA.EHETA.THERETA.ELP9ICE.FUP9ICE.TAHR.FACT0R.ELC0§ lT.FULCOST{OT/DFPTN.TIHE 147 20 ”DROPBDEPTHPTQISB.I0‘1.528TDELT'.378548895899'PDROPIFANEYA/EHETA ELCOST=ORPOROPcTIMEtELPRICEfii.1748031496062-4/EMETA/FANETA FULCOST:FUFRICEOO'FACTORo(TINLET-TAHB-DELTI'TICE/THERETAPOOT COSTIELCOST¢FULCO§TSRETURN END SURROUTINE cnsruugccosr,poqon) c COSTONE EVALUATER THE COST or THE DRYING PROCESS. COMMON/DOLLA°ITI“E.ELPRICE.FJELPRI.FUELHToEMETA.FANETAATHEREYA/SIH 1c05T/D.TAMR.TIN/IN/SUNTENP.HAND.DIN.DEPTH/VALUESIXHCIN.THIN.GP.5A. 2CA.CP,CV ELCOSTxotPnfinpoTINE'ELPRICE'l.174803149606E-4/EMETAIFANETA FULcosrsnIU.ICA+CVoRAnaIccTIN-TANDI/FUELRT/THEHETA-FUELPRItTIns COST=ELCO$T+FULCO§T RETURN END FUNCTION CDSTRTTOI C FUNCTION COSTRT Is U§ED BY 0PTHRIZ To DETERMINE ISOCOST SLOPE. COMMON/Ean/FANETA. EUETA. THERETApELPRICE. FUPRICE. TAMR.FACTOR. ELCO§ 1T. FULCOSTZOT/DFPTH. TINE/CT/COSTLFT. TOFF pDROPIOEPTHPTG/b".)P‘1.528TDELT3.378548695899GPDR0P/FANETA/EHETA ELCOSTao‘PDRnPoTIME'ELPNICE'l.1748031496U65'4/tHETA/FANETA FULCOST-FUPRICE'U'FACTDR0(TUFF PTAHBPDELTI'TIVE/THERETA06OA COSTRTscosTLFT-ELCOST-FULCOST$RETURN END FUNCTION COVERTT) c FUNCTION Coven IS-USEO av OPTHHIZ To FIND THE INTERSECTION or THE c ISOSTERE AITH A TEMPERATURE BOUND. COMMON/FINAL/XMIINAL/UT/DUEATEE CALL OUICKIAVEPCOB)T.UUE)SC0VERBAVEHCDBBXHFINALSRETURN END \ sunanuTINE CSTCOOL(COST) C CSTCOOL EVALUATER THE COST OF THE AIRFLON WHRU THE COUNTERFLOR COOLER- CUHMON/FIXED/TA quHAHB.ATA“8. SPVLCON/PRICE/ELP”ICEoTIHE. FANETAoEMtTA 1TA/INCROL/PRCUM,THETA.GA.DEPTH O=CAcsRvLc0N RuuopzwsrTuoIU/Se.I-P1.526 COST=00PDRUPOIIMFOPLPHICE'Io748031496065'4/EHEIA/FANEIA pETURN END 148 FUNCTION DEEPHIMIUI C DEEPHNH IS USE') IN A 1- 0 SEARCH TO FIND THE BED DEPTH AT HHICH THE HAxInUH C ALLOHAHLE ouTLET MC UCCURS. COMMON/TR!AL/THUUINA.XMOUTMXIINCOOL/XHOI.XTH.XGAoXDP/OUTCOOLIHOUTo 1TOUT.THOUT;XMUUT xDP=D$CALL COOLSIHISI DEEPHNwaxHOUI-xHDUTHx RETURN END FUNCTION DEEPMNTTD) C DEEPMNT Is USED IN A I-U SEARCH TO FIND THE OED DEPTH AT NHICH THE MAKINJN c ALLowARLE nuTLET PDUDUCT TEMPERATURE OCCURS; COMMON/TRIAL/THUUIMX.XHUUTWX/INCOOL/XMOI)XTHDXGAIXDP/OUTCUOL/HOUTO 1TOUTITHOUT;XNUUT XDPEDQCALLCOOLSIH(1) DEEPMNTsTHUUT-THUUTHX RETURN END FUNCTION DIACIT) FUNCTION DIAG IS USED BY OPTHHIZ TO LOCATE THE INTERSECTION OF THE C ISDSTERE HITH THE DIAGJNAL OF THE FEASIBLE REGION. COMMON/FINAL/XNFINAL/STUFF/DIAGSLP QHIH. THIN UNAX.THAX UsnIACSLPoIT- THIN)+QMIN$CALL OUICKIAVEMCDBoT 0) DIAOIAVEMCDB-thINALTRETURN END 7') SUHROUTINE DPYTUST(COST.PDRUP) C DRYCOST EVALUAT89 THE COST OF THE DRYING PROCESS. COMMON/DOLLAP/TIHEoELPRICEoEHETAoFANETA/SIMCUST/Q.ZZ.ZZZ COST=QOPDROPOTINE'ELEHICF’I.174803149606E'4/EfltTA/FANETA PETUPN END sUHRDUTINE DDYUE:TTAVERACE.KIP.LMN0PIINDEX) C DRYHEAT Is CALLED rHoM INTERP T0 PERFORN A LINEAH INTEPPOLATION TN 0"? U’"' C ENSION. DIMENSION INDEx<3IILNHoP<3I COMMON/RECALL/OPICOSTI . . icDELTH STINTRF(XONE.XTNUOXX3XXXpDX)3X0NE*(XYHO'XONE)"XX'XXY)*DX LHNopcle):IUUFXIKIPI X0NE=ODTCOST(LPNU?(1)pLNNOP(2)oLHNOP131) ).XNEHKZ)oDXINV(2)aXHLONoDELHoTHLOH 149 LHNOP(¥IP)IX“DEXTKIP)‘1 xTHUIOPTCOSTILNNOPTIJoLMNOPI2)oLHNOPT32) GOTOTlO.20)onP 1o vaLsxwLOH¢FLUATTINOEX(1)-1)*DELH AVERAGE-STINTRP(XUhE.XTN0,XNEH(1)'XVALeDXINVK13) PETURN 20 XVALxTHLCH¢FLUATTINDEX(2)-1)'DELTH AVERAGF=STINTHP(XUNE,XTNO,XNEH(2)oXVALoDXINV(23) RETURN END SUBROUTINE DOTSIN C DRYSIH PREDICTS THE OUTLET GRAIN MOISTURE CONTENT AND TEMP PLUS THE OUTLET C AIR TEMP AND HUMIDITY. COMMON/CON/CON1.CONZ/VALUES/XHCIN.THIN.OP.SAuCA.CP.CVISIMCOST/AFaZ 12.ZZZ/IN/TIN.H1No§A.DEPTH/OUT/XnaTHETAoTOUToHOUT GOT0(10.218).IGU C OUTLET MC MODEL. 10 ch,69.cAc.,49 DF'HC-CONl DM:1.-(HCosAoDFPTH/GA/CA7(10."(-1.531*AL051C(UF)*5.92)))*'((( 3:9 177-AL0310(UA))l1.n73)'(77.36/(UF‘111o9))*‘629.95'TIN)I428.5'(1.12f 2XMCIN¢,59I-(43?.Eb-THINIISB4.61) C OUTLET PRODUCT TFMEE°ATUPE MODEL. AT!N=T!N¢459.69 - HHIN:RHDBHAIITIN.NIN1 XHE.EHC(HHIN.TINI XMSDH0(XMC!N-XNh)‘XHE THFTA3150.89C85'DEPTH'¢T-O.13458986) IFITHIN.LE.7S.IGCTOZD SLOPEIO.465366360DEPTH0'I'D-28550254) GOTO4O 20 SLOPEIU.46493212'DEPTH**(-0.26856385) 4O DELTEHP=SLOPF*(THIN'75.) THETAzTHETA+DELTENP lF 80 DELTEHDESLOPCvITIN-SQO.) THETAETHETAofitLTEHP IFIAHCIN.LE.C.30)COT01OO DELTEM98-1?8.bo(XHCIN-OoSO) GO TO 122 100 DELTEHD:-183.0(XSOIN*O.30) 120 THETA:THETA*"ELTEHP IFIHIN.LE.L.304)GUTOI40 DELTEHoz157.2727o(HIM-0.004) GOTOlbU 140 UELTEME=205.O(Hl”-C.OO4) 160 THEThz'HETA‘OELTEHP IFIAF.OT.150.)CUTO1UO SLOPEsu.436715L10DFPTH-*(-0.28665312) GOTOZOU 180 SLOPEaa.33196071«DEPTHo-I-o.16561c73I 200 DELTEHPzSLOPF'tAF'150.) 150 THETA-THETAvnELTEHP DELTEMps-ls.7136H4'DEPTHODC“0.37998875’ THETAaTEETA+DELTENP RETURN C OUTLET AIR TEHPEPATURE MODEL. 210 Tourzl1c,2.A=.74¢Expt-o.5492o0EPTHI+37.39~(EXPT-3.351*!XHCIN-D.3)l-I.)*0;2 1-1.)00;2025*FXP(-.1275tDEPTH)t(TIN-SSC.)+,6$55'EXP('0.1348*DEPTH)!(141v.25 2(THIN-75.)‘o4050*FXPT'091575'DEPTH)'(AF'1SUI’ C OUTLET HUMIDITY “ODtLo TEMPURY:0.31710ALUG(DEPTH/0.178)+(Oo0055‘DEPTH‘:41)*(X”CIN'0o3"" 14,4965.6v(DERTH-4.E3x)¢t2+1.14SE-4)t301o331.302 301 EMC =(510RH09H9RH/1.02¢(F1l.17'51*.02833)'RH)5HETURN 302 IFIRH-.34)303,303.304 303 A 9 .34-RH EMC 2(81'A'A0A/1.02052'83B*B/1o02*TF2/.17-52'.92833)*8+(Fl/o17-51' 1. 02633) 'A)$PETURN 304 A8.51.WH EHC I SZ’AOAOA/1.UZ*TFSI.17)*(RH'.34)*(F2/c17'52'n023333)’A5RETURN 309 TO: -.0005373oT+,16?4TF1=-.0007075vTo, 2075$F2=-;0007449tT+.2532 F33'0001C71.T*.5°51551813.8380(4.0F0w9..F1¢6.gp2-F3) 5? 8 13, B38 0‘4,VF3"9. OF296,0F1-FU)$83RH-.66$1F(3,305.305'306 305 A=RH-. 49 EMC: 51"'A"/1 0?‘(Fl/.17-Sl'.02833)‘A*(F07.17Io(.66..RH)5REIURN 306 IFTRH-. 83)307.307.3Da 307 A=.83- -RH EMC: SlvoAwA/l, 0205258a838/1,02¢(F2/,17. .52..02H33).9.(;1/.17 51. 1. 028353)*A SRETURN 308 A:1.0.QH EHC:52“‘A‘A/1.02*(F3/.17)0(RH'.83)+TF2/.17-320,029333)«A$REIUQN END FUNCTION HADRHHIOU.RHI C HAOBPH IS USED TO FIND ABSOLUTE HUMIDITY.GIVEN THE DRY BULB TEMP AND RH, HADBRH:HAPV(PH0PSDP(Dd)) SRETURN END 151 FUNCTION HAPV(PV) C HAPV IS USED TO VINO ABSOLUTE HUMIDITY. GIVEN THE VAPOR PRESSURE. COHHON/PRESS/PATN RAPv-.6219-PVIIRAIR-PVI : RETURN END FUNCTION HLDR (08) C HLDB IS USED TO FIND LATENT HEAT. GIVEN THE DRY BULB TEHP. 501“)” IFID9-491.69) 1.2.? HLDB:1725.864-.05n77IIDa-459.69>5RETURN IFIDR.609.69I 3.4.4 RLDR=IU75.aqss-.5ooes-<09.459.69I5RETURN HLDB=SURTT13546739214’.91252755879DB‘DPIERETURN END FUNCTION HGHOEEPID) C HOHDEEP IS USED IN A 1-0 SEARCH TO FIND THE BED DEPTH AT HHICH THE CURRENTLY C SPECIFIED HUNIDITY OCCURS. COHHON/OUTCODL/HDUToTOUToTHOUTpXHOUT/ATTCH/HNUW/INCOOL/PRODHoTHETA 1,6A,DEDTH DEPTHaOSCALL CDULSTHTZI HOHDEEP-HOUT-HNUH RETURN END SUBROUTINE IENCUUETINDYDINDoHAonDIM) C IENCOUE IS USED TO CONFINE THREE INDICES INTO A SINGLE INDEXS 30 DIMENSION TND‘S’oNAXTS) 1NDY:IUD(1) MAXSIZE=HAX(1) DO 30 V32; anv INDY=IVDTN)‘“AXSIZE-MAXSTZE’INDY NAXSIzE=NAx5Ich~AxINI RETURN END SURROUTINE THTFHP‘VALUEDNDIMOINDEX:ICECREHONST”HEDDUHMY’ C INTERP Is USED TO SET HP INTERPOLATION IN FOUR DIMENSIONS OR LESS; FOR THIS C DROORAN, T40 DIMENSIONS ARE INTERPOLATED. 126 DIMENSION INDEY(5)aICECREHCSIILMNOPISI SUH30.J DO 175 KIR=1.NnI~ DO 125 N=13N0IR LNNORIN>=D 1?7 128 1285 129 130 131 132 1325 133 134 135 1355 1357 136 137 138 1385 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1525 1527 153 154 155 1555 156 157 158 159 160 152 KI1 HATSTOPsMRKSTOP-LUKSTOPEO D0 129 JJsloNDT" lFtJJ-ICECRE”(K))129.127.129 TFTJJ-KIPIIZRoI7SI128 LHNOP(JJ)IINDEX(J4) IFIK-NSTORE31295913001285 KIK¢1 CONTINUE D0 174 1810? IFII-2I1323135.132 MATTHEHIO K81 IF(LMVOP(K).TNDh“K,,13301370133 lFIK-KIP)134,1370134 HATTHEUIK LMNOPIHATTNEUIIINUEXTHATTHERI-I+2 IF(HATRTOP-1)136.13550136 CALL DNNMYIAVERAGE.KIP.LHNOP.INDEX) IFCAVERAGE'lc0E23713570174017§ IFIAvEnAce-O.031745.174o1745 IFII-2I137;142.137 IFIK-NDINI13°.138o139 MATSTOPI1 CALL DWHHY(AVERAG§DKIP0LHN0P0INDEX) TF(AVERAGE'IC9‘23)138501740174 IFIAVERACE-0.0I1745.174.1745 1F(HATTHEH-D)141014Dol41 KIK+1 GO TO 1325 KQK¢1 DO 173 11.102 IF(I-2I1443152}144 lFTlI-2)14501520145 MARK=0 IFTLHN0P(K)'TNDEXTK,315031470150 IFIN-NDINI14R:149I148 KIK¢1 GO TO 146 HATSTOPI1 GO TO 174 IFIK-KIP’151.154o151 MARKzK LNNOP‘MARK)8]NPCK(HARK)-I102 IF(NRKSTOP-13156o15250153 CALL DHMNYIAVERAGE.KIP.LNNOP.INDEX) IF(AVE?AGE-13.EZS)15270173.173 IFIAVFRAGi-C.C)1/45017501745 IF‘ll-2)15‘01590154 IFT‘-NDI”)156p1550155 HRKSTopzl CALL DHMHY(AVERAGE.KIP.LHNOP,INDEX) IF(AVERAGEPICogzs)155501730173 IFIAVERAGE-D.3,1745o17301745 IFTHARK-9)15“ol57(15fl KIK¢1 GO TO 146 K8K¢1 DO 172 1118102 IF'I’2,1601016501601 1601 1602 1603 1605 161 162 163 164 1645 165 166 167 16R 169 171 172 173 174 1741 1742 1745 175 176 153 lFTll-ZI1632o16501602 IFTITI~ZI1603o105o1603 LUKEBO IF(LHNOP(K)'TNDhXCK))1640161o16‘ IF(K-NOIH)16?91°3o162 K2K+1 GO TO 1605 MRKST0931 GO TO 173 1F(K-KIP)1645,166p1645 LUKEPK LHNOP(LUKEI:INDEX(LUKE)'T11*2 IF‘LUKSTDP.1,166D1690166 lF(K-NDIN)1670155(162 KIK¢1 GO TO 1605 LUKSTOPcl CALL DNMHY(AVEPAGE)KTPoLHNOPoINDEX) IFTAVEQAGE'lc0523,17101723172 IFIAVERAGE-0.DI1745o172p1745 CONTINUE CONTINUE CONTINUE IFIAVERAGE-0.031792.174lol742 VALUE'OOO RETURN VALUEaa.0 RETURN SUM-SUMoAVERAGE CONTINUE VALUESSUHYFLOATTNDTH-NSTORE) RETURN END FUNCTION OFFDIAOIO) c FUNCTION orraIAc Is USED av OPTARIZ TO DETERMINE ISOSTEPE SLOPE. COMMON/FINAL/XVFIHAL/ENUT/TONE CALL OUICK‘AVEHCDabTONEDO)SUFFDIAG=XHFTNAL-AVEOCDBSRETURN END SUBROUTINE OPTNHIZ SUBROUTINE OPTHHIZ CONTROLS Z'DIVEHSIONAL OPTIMIZATION COHNON/ICHECV/IFLAC/DT/DEPTH.TINE/FINAL/XHFINAL/OT/OUE.TEE/STUFF/U llAGSLP.ONIh.TNIN.UNAX.TNAX/CT/COSTLFT.TOFF/EOUwC/XNSND,BRON/ENOT/ 2TON5/EcoN1FANETA,EHETA,THERETApELPRICE,FuPRICE.TAN8.FACTOR.ELCOSTo 4FULCOST exTERNAL COVER,SIOE.DIAG.OFFDIAG.COSTRT$KOUNT=NSDIFFP1002iEPS=1.E' 17$EPszz1.Ee4 SURVEY POISTNRF CONTENTS AT EXTREME POINTS CALL QUICKIAVENCDE.THIN.DNIN)ETMNONNzAvENCDBIPRINT 20001.THIN.ONIN 10AVEHCDB '1 CALL DOICK(AVEHCDS,THAX.OHIN)!THXOHN=AVEHCDBTPNINT 20001.THAX,OMIN 12 14 155 17 195 20 31 33 334 337 60 70 81 83 84 86 120 130 141 143 144 154 1.AVEHCDBTCALL OUICK(AVEHCDBoTHIN:OHAX)$T”NOHXIAVEHCDRSPR1NT 20001. 2THINoOWAXTAVEHCUHSCALL QUICKIAVEHCDB.TMAx.oMAXIITMxonxxAvEMcng CHECK LH.TnP,NuoHOTTOH aOUNDS SEQUENTIALLY FOR FINAL AVEMC 1505153 PRINT 20001.TNAX.UHAX AVEMCDaTIFIXHFINAL. GT. TMNUHN, 0R.XNF1NAL LT: I 1MNOHXTGO T0 90 SGUESSlzurlNSSUEssztoHAxsTEEsTMINTCALL ZEROINA(GUE§ ZSLOGUESSZIEPcoSIRE)3025R03(GJE551*GUESSZ)/2.ICALL OUTCK(AVEHCDB TH SIN 025:0)EKOUNT-KOUNT+1$DELTI.1 TEE-TH!N'DELTEGUE551:0%INSGUEssstMAXICALL ZEHU‘NA(GU6551OGUESSZ'§ lPSTSIDE)*IF(TFLAG.NE.1)GOT0 14SDELTsDEL7/2,scutu 12 00VE=12.55L0PEN=60 TO ZOSIF(BNDH,LE;XH8ND)60 To 195$RRINT 2001 10,8NDM;XHBND COSTPBUECOSTLFT/DEPTH'I.assPRINT 20004.c05TLFT.COSTPau.TnIN.ozERo GO TO 70 IF!XMFINAL.GT.THNUNX.0R.XHFINAL.LT.TMXONXIGC T0 70%GUESS18THIN%GUE 15528TMAX$QUExuwAX$CALL ZERO!NA(GUESSIoGUESSZoEPS:COVFR)STZEROI(GU: 2551¢GUFSSZTI°.TCALL OUICK(AVEHCDB.TZERO.CUE)*KUUNT:KOJNT¢1$DELQI;1 OUEIQMAX‘DELC$GUE$51=TWINSGUESSZITMAX$CALL ZERUINA(GUE551IGUESSZ'E 1PSOCOVER7$IFTlrL‘u.NE.1,GOTU 33!DEL0:DELQ72.$GUT0 31 TONE!(GUESSloGUESS?)/2.SSLOPEMODELO/(TZERO-TUNh)SDELTa,1sCALL COST 1FUNIC09TLFTaTZER0.0HAX) TOFF'TZENOoURLTSGUF531'dHAXSGUESSZ'QHTNSCALLZEHUINA(GUESSlteUESSZO 1EPS COSTRT)$TF(1FLAG. NE. 1)SUT0337!DELTIDELT/2 $6070 334 ORIGHTaIGUFS<1+GUh552)/2. TSLOPECI(ORIGHT-QMAX)/DELTSPRINT 20002.TZ 1ERO. OHAKTPRTHTsocnz.SLOPEH.SL0PEC COSTLFTSIEISLOPEC. GT. SLOPEH)GO 1T0 70 IFTBNDH.LE.XMBHD)GO T0 60$PRINT ZCOIOoBNDHoXMBNDSSTOP COSTpanscosTLFT/HEPTn-1.25$PRINT 20004.COSTLFToCOSTPnU.T!ER0p0NAl IFtXMFINAL.GT.THXQHN.0R.XHFINAL.LT.TMXNMX)GO TH 13n$GUESSIBUM1N GUESSZ:OMAXITEE=TMAXSCALL ZEROINA(GUESS1oGUESSZoEPSoSIDE)SOLEBOI 1(GUESSI*GUE592)/2,TCALL OU!CK(AVEMCDB.TEE.QZERU)TKOUNT=KOUNT¢1 GUF581=OMINIC UFSSZRJHAXSDELTs. 1 TEE8THAX'DFLT CT;ALL ZERQINAIGuess1.cuessz.EPs.sIuE>sxrIIFLAG. NE. 1) 160 To 93 s DELTstLT/Z. T 60 To 81 GONE=/2.TSLOPEN=IozERo-OONET/DELTIDELT.,1 CALL COSTFUNTCOSTLFT.THAX.OZERO) TOFFzTNAX+DELTCGUQSSI=OHAX$GUESSZ=ONINTCALL ZEHUINATGUF531oGUESSZv 1EPS.COSTRTI$TF(IFLAG,NE.1)GUTO 86IDELTtnELT/2.$GOTO 84 ORIGHTs(GUFS?1¢GUESS?)/2.ISLOPEC=(BRIGHT-OZEROIIDELT PRINT 20002.Tnax.uzeao PRINT 3000203LCPEH55L0PCC.COSTLFT IFISLOPEC.LT.SLUPEM)60 To ISQIIFIBNDM.LE.XH5N0IGO T0 120 PRINT 2cuas,:NfiH.XWENUTSTOP COSTPBU=COSTLFT/ULPTA.1,25 PRINT 20004.?USTLTT.COSTP8U.Twa.ozEROTsTop IF(XHFINAL.GT,THNNMN.OR.XHFINAL.LT.TMxOHNTGO Tn 19g3nupsglstq1~ GUEssstHAXIOchnhINTCALL ZEROINATGUE581.GUE852.EPS COVERTTTZERos 1 PvDaHRsIAnn-C'PATHIIIB+.155770CJ SRETURN END FUNCTION PVHA (H" c PVHA IS USED TO FIND THE VAPOR PRESSURE. GIVEN THE A85. HUMIDITY. COMMON/FPESS/PAT” PVHAquoPATH/(,6219¢HAI SRETURN END FUNCTION PVTDITHYPVI c PVTG Is USED To LUCATE THE VAPOR PRESSURE AT HHICH EQUILIBRIUM no OF THE Gath 0 000098. COMMON/PRESS/PATM/ANN/PSNB.HPFG.ATNBTXMZERO TEMP3ATkH-(PShn-TRYPV)tHPFG'?.586029106029/IPSWB'PATH)/(1o*0.15577 1.Tnypv/pATu)(TnvuthRYPVIPSDPITEMPIsTEHPrzTEHP-4S9.69 vagszZERO-PHCITNYRH.TEHPFISRETURN END SUBROUTINE QUICKIAVEHCDE.TINLET.O) C SUBROUTINE QUICK SIMULATES THE BATCH-IN-BIN DRYING PROCESS DINEMSICN XMCOPI21) COPMON/PPESS/PAT“/ICHECK/IFLAG/DT/DEPTH.TIHE/BOUND/XMBND.BNUM/AHBI 1PSH8.HDFG,AT“H}XMZER0/OTHERIDELX.PV EXTERNAL PVTG ATINLETtTINLET¢459oo9$PSAT3950H(ATINLETI'RH'PV/PSATSHARstHADBRHIA]. 1INLET,RH)$ATVB:HPUP4A$(ATINLETOHABSo49soo55Ooo001’ TEHgATue-459.59 TPSNH:PSDBIATH6) S HPFGsHLDBIATNB) IFIEHCI1..TRPI.LE,anER0)1,2 1 T0=Twa s 00 TO 3 25 26 65 650 10001 157 GUESS1:.1SGUPSSZIPSNRSCALL ZEROINIGUE581AGUESSZ.1.6-eanT0) IFIIFLAGAEQI1’25026 PRINT 10001 STOP PVATTG:(GUESS1OOUESSZI/29 TGITHB-(PSHB-PVATIG)‘HPFG'Z.5860291060297CP$W8'PATHI/(13'0o15577 1'PVATTG/PATH) XNEzenctRHzTINLET) DELM=XWZERO-XHE :v:(1094.-o.57-TINLETT*(1.*4.39*EXPI~1412.5PDELH>I VONE-v.(TINLFT-70.)0I1.*0.2/DELM) XKI-.0456453°*.0055836759rPSAT'0.33804141'0'°o940613420 stx-TIHE T x-9.o T 00 65 KKI1021 DD-VONP.xR-DELN-x/O/ITINLET-TC)¢22.19316276535 RATIOanPIDDI/IEXPTDDToExPIYT-1.I 1 XHCDFIKKIBHATIOODELfioxHE x:x.DELngNDN=XNCUUI21ISSUH=TXHCDBI1I+XMCOP(21I)/2.$00850LL?2.20 SUN-SUW+XMCDGILL)SAVENCUH=SUHPUELX/DEPTHTRETUHN FDRNATISX.-TNE HODEL CANNOT HANDLE THIS CASE') END FUNCTION RHPSPVID1302) C RHPSPV IS USED TO FIND THE RH, GIVEN THE PARTIAL AND SATURATION VAPOR PRESSURE (I C) ”(I A-D1 s B=02 c 00 10 x ENTRv QHDBHA AIPSDBIDII s BaPVHA(02) RHPSPVIB/A RETURN END FUNCTION SIDFIO) FUNCTION SIDE IS USED BY OPTHHIZ TO FIND THE INTERSECTION OF THE ISOSTERE WITH A TFHPERATURE BOUND, CONMON/FINAL/XNFINAL/UT/OUEATEE CALL QUICKIAVENCDUATEEAU)SSIDE'AVEHCDB'XHFINAL$RETURN END FUNCTION VSDPHA IDB.HA) VSDBHA IS USED Tn FI~Q THE SPECIFIC VOLUME; GIVEN THE DRYBULB TEMP AND 595. HUMIDITY. COMMON [PRESS/PATH VSDBHA=53.SSOUP'(96219¢HA)/144./.6219/PATH$RETURN END 158 FUNCTION HEDDHASIofioflA.Gl.GZoEPS) C NBDBHAS IS USED TO FIND THE NET BULB TEMP,, GIVEN THE DRY BULB TEMP. ANU AQS; C HUMIDITY. C uBL EXTERNAL NFL COMMON ISPECIAL/PVETB AIGITBIGZDTBIUFSPVIPVHA‘HAIDCALL ZEROIN(A;B:EPboNBLISHBDBHAS8‘A09 1)/2.$RETURN END ‘UNCTION HRLITNBI IS THE FUNCTION USED TO DESCRIBE THE NET BULB LINE. COMMON/PRESS/PaTM/SPEC!AL/Pvaoa PHH:PSOB(THBI DBL-Tuu.na-(pwr-PV)/T.2405~(PHD-PATH)«T1.+;15577*PVIPATM))*l,§2195 1-HLDR(THB)) TRFTURN END SUBROUTINE ZFHfiINIAa9;EPS.FUNC) C SUBROUTINE ZEROIN 15 THE 1-OIMENSTONAL zefio-FINDING ROUTINE USED BY C 30TH PARTS OF THE THE§IS. POOVU'IbvaNF-‘b C o C 12 COPMON/ICHECK/TFLAG REAL I." FAtFUNCCA) s FDIFUNCTB> S FC-FA 5 CIA S {FLAGIO IFTSIDN<1.;F°>.Eu,stD~(1..FC)>4oo.1 IFLAGI1 S RETURN IFIADSTFCI'ADSIFFII 2.3.3 CIR $ PaA $ AIC 3 FCIFB S FBIFA S FAOFC IFTAHsrc-a)-?.vtP$) 12.12.4 I:(B-A)cFa/(Fa-FA) S J-LEGVARTI) S H=(C+B)/2. 5 IFTJ-O) 7:507 Is-I*8 S CHIMTIIH'II‘IH'I) I IF(CHINT) 50807 13M IF(ABS¢8-I)-FPS) 9.10.10 I=SIGN(1..(C-H))-EPS*B A38 % Q21 T FA=FH T FbIFUNC(9I IFI5IG”(1.;F°).$IGNI190FCII 1.11:1 CxA$ FC8FA 5 GO TO 1 A:(coB)/2. 1 FA8FUNCTA) 1r(SIcu(1.;rn>.Ea,510~(1..r8)T B=c S RETURN END SUHROUTINE ZFROINA (ADBDEPSDFUNCI C SUBROUTINE ZEROINA I§ THE 1-DINEN5IONAL ZERO-FINDING ROUTINE USED BY 400 0PTHHIZ AND CONTROL. COHHON/ICHECV/IFLAG "EAL I)" FA=FUNC(A) S FD=FQNCIBI I FC=FA S C=A $ IFLAG'O , IF(SIGT(1.;F“),tU!SIGN(1;,FC))400,1 IFLAGI1 S RETURN O POCDVm-bMNP O h.» an» 159 IF(ABS(FC)-Aner9)) 2.3.3 C38 S Q=A S A=C T FC:FB t FBsFA S FA'FC IF(‘BSIC’B,'90'bP§’ 12012.‘ I:(B-A)vFB/(FU-fAI i J=LEGVARIII S M=(C+B)12. 3 IF.hO,SIGN(1..FB)) 88C 5 RETURN END “000000