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ABSTRACT

. MEDIAN PLANE MAGNETIC FIELD

DUE TO A PAIR OF CIRCULAR ARC CURRENTS

and

A SOURCE TO PULLER PROGRAM

FOR THE CALCULATION OF ION TRAJECTORIES

By

Stephen Joseph Motzny

An expression for the median plane magnetic field due to a pair of

circular arc currents is derived, as well as an expression for the

average field associated with this geometry. The expressions, which

involve incomplete and complete elliptic integrals, respectively, are

used to find the fields for a sample problem and the results are com-

pared with values obtained by an alternate technique.

A computer program for the calculation of ion trajectories in the

source to puller region of a cyclotron has been written. The program,

called TRAJECTORY, assumes a homogeneous magnetic field and uses measured

electric fields. The equations of motion are numerically integrated in

Cartesian coordinates with T as independent variable via a fourth order

Runga-Kutta progress. Interpolation of fields and potentials involves

a double-weighted three-point routine. TRAJECTORY's orbit predictions

are in excellent agreement with a case which can be solved analytically

and also with the predictions of the orbit code CYCLONE. Using TRAJECTORY,

the energy gain and transit time across the first acceleration gap is

studied for several values of the dimensionless parameter X-



ACKNOWLEDGMENT

I am indebted to Dr. M. M. Gordon for his invaluable advice and

constant support throughout the writing of this thesis. I would also

like to thank Dr. H. G. Blosser for initially directing me toward

source to puller studies and Dr. J. Bishop for his help in "getting

started."

I wish to thank the cyclotron computer staff for keeping the

Sigma-Seven in operation (most of the time) and their advice in pro-

gramming matters.

I would also like to express my appreciation toward Mary Lynn

Devito who helped in the typing of the rough draft. My deepest grat-

itude goes to Sharon Ledebuhr whose patience in typing the final draft

will always be appreciated.

A special thanks goes to my roommates for putting up with me at

times, to my friends for their support and encouragement, and to the

Nuclear Beer group for making Friday afternoons enjoyable.

Finally, I would like to thank my family, whose constant love

and support have made everything possible.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES. . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . v

1. INTRODUCTION . . . . . . . . . . . . . . . . 1

2. MEDIAN PLANE MAGNETIC FIELD DUE TO A PAIR OF CIRCULAR

ARC CURRENTS . . . . . . . . . . . . . . . . 3

2.1 Introduction . . . . . 3

2.2 Derivation of the Median Plane MagneticField. . . . 4

2. 3 Sample Problem . . . . . . . 10

3. A SOURCE TO PULLER PROGRAM FOR THE CALCULATION OF ION

TRAJECTORIES . . . . . . . 23

3.1 Introduction . . . . . . . . 23

3. 2 Description of the TRAJECTORY Program. . . . . . . 24

3.2.1 Equations . . . . . . . . . . . 24

3. 2. 2 Runga--Kutta Integration . . . . . . . . . 29

3.2.3 Fields and Potentials . . . . . . . . . . 29

3.2.4 Input-Output Features . . . . . . . . . . 31

3.3 Reliability of TRAJECTORY. . . . . . . . . . . 32

3.3.1 Comparison with Analytic Solution . . . . . . 33

3.3.2 Comparison with CYCLONE . . . . . . . . . 37

3.4 Source to Puller Calculations in a Measured Electric

Field . . . . . . . . . . . . . . . . . 39

LIST OF REFERENCES . . . . . . . . . . . . . . . 49



Table

2.1

2.2

3.1

3.2

LIST OF TABLES

Page

Fourier decomposition of the median plane magnetic

field for the sample problem being considered.

Radius is in inches and <82 , B3, 85, etc., are

given in gauss. . . . . . . ., . . . . 15

Median plane magnetic field along a = 0° for the

sample problem being considered. This table compares

Bz for the exact case with five different segmented

cases (see text). The numbers in parentheses indicate

computer run times in minutes. Radius is in inches

and fields are in gauss. . . . . . . . . . 21

Comparison of TRAJECTORY and the analytic solution

for the first harmonic acceleration of 1"N” through

homogeneous magnetic and electric fields . . 36

Comparison of TRAJECTORY and CYCLONE for the first

harmonic acceleration of ll’N'“" through a homogeneous

magnetic field and a measured electric field,

1.06.5-A. . . . . . . . . . . . . . . 38

iv



Figure

2-1

2-2

2-3

2-4

2-5

3-1

LIST OF FIGURES

Geometry considered in the derivation of the

median plane magnetic field due to a pair of

circular arc currents. . . . .

Geometry of the sample problem to be considered.

Each circular arc shown actually represents a

pair of circular arcs at z = 11.0 inch. The

current, I = 100 amps, is in a counter-clockwise

sense . . . .

Equi-B-field contours for the median plane magnetic

field of the sample problem being considered. The

contours extend from -6.5 gauss to +8.5 gauss in

0.5 gauss steps. . . . . . . .

Geometry to be considered when calculating the field

due to a line segment. The wire has length a, and

is located at z = +z'. The current, I, flows in

the positive 9' direction. The field is first

calculated in the primed system and then a trans-

formation is made to the unprimed system (see

equations (14)-(16)) . . . . . .

Relation between the radius of a circle, r, and the

location of a straight line segment, r', subtending

the same angle such that the arc length equals the

segment length . . . . . . . .

e E Ekin/qAV at the puller vs. initial R.F. time for

x-values of .05, .10, .15, and .20. For each x,

curves are plotted for h = 1, 2, 3, and 4 . .

e E Ekin/qAV at the puller vs. initial R.F. time for

x-values of .30, .40, .50, and .60. For each x,

curves are plotted for h = 1, 2, 3, and 4 . .

Page

11

14

18

18

42

43



Figure

3-3

3-4

3-5

Page

Some predicted trajectories for ions with X = .4

through field 1.06.5-A. The ions making it

through the puller are running in the h = 1 mode,

and those being pushed back to the source are

running in the h = 4 mode. Both cases are plotted

for R.F. starting times of To = -20°, -30°, -40°

and -50°. The trajectories are superimposed on a

2% contour map of the equipotential lines. The

scale is 8:1. . . . . . . . . 44

Maximum 2 at the puller vs. X for accelerating

modes of h = 1, 2, 3, and 4. . . . . . . . . 47

Initial R.F. time To and transit time At vs.

X for the cases that give maximum source to

puller energy gain. Results are again shown for

h = 1, 2, 3, and 4. . . . . . . . . . . . 48

vi



1. INTRODUCTION

The Accelerator Physics group at the Michigan State University

Cyclotron Laboratory has directed the bulk of its attention in the

last few years to the development of the K+= 500 MeV Superconducting

Cyclotron. My involvement with the group has introduced me to a

very interesting area of research from which the topics of this thesis

were chosen.

The first part of this thesis, Section 2, is related to the mag-

netic fields produced by the trimming coils for the K = 500 MeV machine.

The geometry of these coils is such that the segments that are parallel

to the median plane are in the form of circular arcs. It has been

usual practice to obtain the field from such arcs by appoximating them

as being composed of several short line segments connected end to end.

Section 2 investigates a completely analytic solution to the circular

arc problem and then studies the utility of the resulting expression

in solving a sample problem.

Most of my work with the Accelerator Physics group was involved

with central region calculations and, in particular, with problems

 

1'K refers to the specifications of the cyclotron magnet. The

non-relativistic energy of a particle of charge q and mass m moving

in a magnetic field of strength B at a radius p is given by

E = 3:82 :flqz/m) = K(QZ/A).

With 8 = 48 k6, p = 26 inch, then K = 500 MeV.

1



related to acceleration across the first gap (i.e., the ion-source to

puller-electrode region). For the purpose of these studies, a computer

program for the calculation of ion trajectories in this region was

written. In the second part of this thesis, Section 3, the program is

described, tested, and then used for a few simple, but useful,calcula-

tions.



2. MEDIAN PLANE MAGNETIC FIELD DUE TO A PAIR OF CIRCULAR ARC CURRENTS

2.1 Introduction

The trim coil windings for the K = 500 MeV Superconducting

Cyclotron under construction at Michigan State University will be

wrapped around the pole tips in such a way that the segments of the

windings that are parallel to the median plane form circular arcs

with their centers of curvature coinciding with the machine center.

When calculating the median plane magnetic field due to the trim

coils, the circular arcs can be taken in pairs. One circular arc of

the pair will be from an upper pole tip at z = +2' and the other arc

of the pair will be from a lower pole tip at z = -z', and these arcs ‘

will be symmetric with respect to the median plane. This geometry

simplifies the problem by eliminating all but the z-component of the

median plane field. It is the purpose of this section to derive an

exact expression for the median plane magnetic field due to such a

pair of circular arc currents.

It will be found that this expression involves incomplete ellip-

tic integrals of the first and second kind. There are many computer

subroutines available for the rapid evaluation of these integrals.

One such routine will be described in Section 2.3 where the derived

expression will be used to calculate the median plane magnetic field

for a sample problem.

It is also of interest to obtain an expression for the average

magnetic field due to a pair of circular arc currents. This expression

3
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will be found to involve complete elliptic integrals of the first and

second kind. In the study of the sample problem in Section 2.3, this

expression will be checked.

2.2 Derivation of the Median Plane Magnetic Field

Keeping the notation the same as Smithl, we consider a pair of

circular arc currents (see Figure 2-1), one at z = +2' and the other

at z = -z'. Both arcs have a radius of curvature L with their centers

lying on the 2-axis, and both arcs extend from 6 = 6;, to e = 6;. We

wish to calculate the median plane magnetic field due to these currents

at a distance p from the 2-axis and at an angle 9 with respect to

R-axis.

We begin by writing down the Biot-Savart Law,

§=—E21— 3" X (T-T')
4n -+ -+. if ’

Ir--r I
Cl

and then consider contributions to the integral from both arcs making up

the pair simultaneously. A “+" subscript will indicate variables

associated with the upper arc and a "-" subscript will indicate vari-

ables associated with the lower arc. From Figure 2-1, we see that

‘F = p c050 2 + p sine y ,

F; = L cose'x + L sine' y s z' 2 ,

61; = -L sine'de'x + L cose'de' y .

Hence,

and E -‘F; = (p cose - L cose')x + (p sine - L sine')y I 2'2 ,

81; x (P #F;) = $2' L cose' de' 2 a 2' L sine' de' y

- [L cose' (p cose - L cose')

+ L sine' (p sine - L sine')]d0'2.



x
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N
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Figure 2-1.--Geometry considered in the derivation of the median

plane magnetic field due to a pair of circular arc

currents.
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Adding the contributions from the upper and lower arcs, we see that

only the z-component will survive giving us

cfi'xfi-‘Fw 31;x('F-T;)+cfi_'x(F-Tl) ,

-2 [Lo (cose' cose + sine' sine) - L21d6'2

2 [L2 - Lp cos(e' - 6)] de' 2 .

The quantity [F - Ell can be seen to be

+ +

Ir - r = [L2 + p2 + t“ - 2Lp cos(e' - 6)]la .y

Substitution of the above results into the Biot-Savart Law gives

63

2 1

32 g zflI [L ' Lp COS(9' - 9)] d9 3f2 (2.1)

[L2 + p2 + z'2 - 2Lp cos (6' - 6)]

9'1

As a start to put this integral in a more recognizable form we let

9' - 6 = n + 2o, so that, d6' = 2d¢ , and cos(e' - e) = 25in2¢ - 1.

 

¢2

Then. 8 = “g1 [2L2 - 2Lp (25in2o - 1)] d¢ 3 ,
Z 2fl'¢ [L2 + p2 + 2'2 - 2Lp (251n2¢ ' 1)] I?

1

where .
¢1=§l—-__9.-

2 9

and

;E.

2

¢2 = §1_%_9.- %E..

We can write Bz as (temporarily dropping the limits of integration),

2L2 + 2Lp 4L9 . ]

B = IJILI f[([_ + QIT'I' 212 ‘ (L + 9T1 + 212 517124) (14)

2

f - 4L9 sin2¢ 3/2

(L + o)2 + 2'2

2 _ 2 _ 2

[1+L " Z -kzsin2¢]d¢

.-. 1101 f L'- +P)2+ 2'2 A3-

21 [(L + p)2 + 2'213 [1 - k2 sinzo 1 ’

  

 



where

k2 = 4L“ . (2.2)

(L + p)2 + 2'2

Hence,

  

B = 11111 1,[f d¢ .

z 211 [(L + p)2 + 2'2] 2 (1 - k2 51024));5

+ L2 _ DZ - ZIZ f d¢ F/Y'](2 3)

(L + p)2 + z'2 (1 - k2 sin2¢)fl

The first integral of (2.3) is just the incomplete elliptic integral of

  

the first kind of modulus k, F(¢,k). To evaluate the second integral

of (2.3)2, we write it as

d¢ = 1 (1 - k2) do -

2 ° 2 alt 2 2 ° 2 3]?
(1 - k s1n ¢) 1 - k (1 - k 51" o)

1 k2[ (1 - k2 $1n2¢)d¢ f k2 coszodq: fl]

1 - (1 - k2 sin27/11,) (1 - k2 sin2¢) /

(2.4)

  

   

The first integral of (2.4) is again the incomplete elliptic integral

of the first kind, F(¢,k). We need to evaluate the second integral of

(2.4) This can be accomplished by rewriting it as

f k2 cosch do 3,4?sz coso d(sinc/p)

(1 - k2 Sinzo) (1 - k2 sin2¢)v

and then performing an integration by parts. Let

  

= k2 cos¢ ,

and



(IV = d(§IU¢)

3/2

(1 - k2 Sin2¢)

Then du = -k2 sin¢d¢ and it can easily be shown that

 

 
  

sino
V" 15'

(1 - k2 sinzo)

Hence,

szcoszod¢32= kzsinocoso _f-k2sin2¢d¢

(1 - k2 sinzo) / (1 - k2 sinza)l5 (1 - k2 sin2¢)13

  

k2 51" QCOS¢L f(1 _ k2 Sin2¢)1§ d¢+f d¢ .

(1 - k2 sin2¢)= (l-kzsi‘nzo);5

(2.5)

The first integral on the right of (2.5) is the incomplete elliptic

integral of the second kind of modulus k, E(¢,k), and again the second

integral is F(¢,k). Combining equations (2.4) and (2.5) gives

L 44’ ,- 1 [E(¢.k>- k2c°$‘1’5”"“1’].(2.6)   

1 - k2 sinzol 1 - k2 (1 - k2 sin2¢)15

Using our expression for k2 (equation(2.2», we can show that,

1 =LL+p)2+z'2

1 - k2 (L - p)2 + 2'2

Then substitution of equation (2.6) into equation (2.3) finally gives

us our result:

2 k2 ¢=¢2

32 a 1101 1’ F((Pak) + L -p2 - Z.2{E(<1>,k)"find’cosd’

2n[(L+p)2+z'2]= (L- p)2+z'2 (1-kzsinzcb) ¢=¢1

(2.7)
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For the purpose of evaluating the above expression at the two

limits, the following properties of elliptic integrals are useful:3

F(-¢.k) = -F(d>,k) . (2.8)

E(-¢,k) = -E(¢,k) . (2.9)

F(nn : ¢,k) = 2nK(k) : F(¢,k) , (2.10)

E(nn i ¢,k) = 2nE(k) : E(¢,k) , (2.11)

where K(k)==F(§,k)and E(k) = E(g3k) are complete elliptic integrals of

the first and second kind, respectively.

It is interesting to compare equation (2.7) with the expression

one would obtain for the field due to a pair of complete circular loops.

Smith gives the magnetic field due to a single circular loop.1 For a

pair of circular loops symmetric about the z = 0 plane, the value

obtained by Smith will be doubled. That is,

 
 

8loop 3 gull L [K(k) + L2 - p2 - 2'2 E(k)] - (2.12)

ZwC(L + p)2 + 2'2] 2 (L - p)2 + 2'2

One can easily verify (with the use of equations (2.8)-(2.11)) that

equation (2.7) will reduce to equation (2.12) when we let 61 = o0 and

a, = a, + n (i.e., 63 = a, and 63 = e, -+ 2n).

It is also instructive to evaluate the average field associated

with equation (2.7) at some particular p-value, defined as‘

2n

-1
(32 =fif32 d6

0

For this purpose, it is useful to use the expression for Bz from equation

(2.1) and then switch the order of integration:
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9'2 271'

2 _ I_

(39-1-1— fde. 1121 [L Lp cos(6 9)] d6 3/‘2

2n 2n [L2 +p2+ z'2 - 2Lp cos(e' -e)]

9'1 0

 

The integration over 9 will proceed in exactly the same way as the

integration over 9' proceeded before. However, with the new limits

on this integration, (B2) can easily be seen to reduce to

(32> = ( 9-,-9'1) 2“” [Km + L2 '92' 2'2 E(k)] .
2'" 217 [(L + (3)2 + 2'2115 (L -p)2+ 2‘2

(2.13)

 

 

This well known, but nevertheless interesting, result tells us

that the average field due to a pair of circular arcs is just the field

we would get from a pair of complete circular loops multiplied by the

ratio of the arc length to the circumference of a complete circle.

2.3 Sample Problem

As an example, equation (2.7) will be used to find the median plane

magnetic field for a sample problem The geometry of the problem to be

considered consists of three pairs of circular arcs (see Figure 2-2).

For each pair, the circular arcs are at z = 11.0 inch. All three

pairs have L = 15.0 inch and an angular spread of 46°. One pair is

bisected by e = 0°, another by e = 120°, and the third pair by e = 240°.

Each circular arc carries a current of 100 amps in the counter-clockwise

sense when viewed from above the x-y plane.

The only mathematical difficulties involved in evaluating equation

(2.7) are those associated with finding the values of the incomplete-

elliptic integrals at the two limits. However, most of today's high

speed digital computers are equipped with library subroutines for the
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9 = l20°

+
~
<
>

 

9:240°  
Figure 2-2.--Geometry of the sample problem to be considered. Each

circular arc shown actually represents a pair of

circular arcs at z = 11.0 inch. The current, I = 100

amps, is in a counter-clockwise sense.
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rapid evaluation of many mathematical functions. In particular, the

Michigan State University Cyclotron Laboratory's Xerox Sigma-Seven

computer, which was utilized for all computer calculations in this

thesis, is equipped with a subset of the IBM Scientific Subroutine

package modified for use on the Sigma-Seven.4 One of these subroutines,

EL12, computes the generalized elliptic integral of the second kind,

tan¢

2
1s A+Bt

dt ,

[(1 + t2)(1 + 1029]“ (1 + P)

where k' is the complimentary modulus equal to (1 - k2)15 and 4 is the

usual argument of the elliptic integrals (i.e., F(¢,k) or E(¢,k))and

here is assumed to be between -n/2 and +n/2. By letting A = B = 1,

we get the elliptic integral of the first kind and by letting A = 1 and

B = k'2 we get the elliptic integral of the second kind. (The integrals

can be put in a more standard form by letting k'2 = 1 - k2 and t = tano.)

The method of evaluation used by ELIZ is called Landen's transfor-

mation, which allows one to represent elliptic integrals as very rapid-

ly converging infinite products. Descriptions of Landen's transformation

and the recurrence relations needed for the evaluation of incomplete

elliptic integrals of the first and second kind can be found in a number

of different sources.5’6

In order to check the accuracy of ELIZ, it was used to construct

tables of incomplete elliptic integrals of both the first and second

kind and these were then compared with standard tables.S When all cal-

culations were done with single precision variables, ELI2 was found to

give values for elliptic integrals accurate to six significant figures.

Subroutine ELIZ was used in evaluating the necessary elliptic

integrals for the sample problem being considered. Since ELIZ assumes
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-n/2 s 0 s + n/2, it was often necessary to make use of the relations

(2.8)-(2.11) for the cases when 0 was outside this range. Using

equation (2.7), B2 was calculated for a grid of (p,6) points with p

extending from 0.0 inch to 37.0 inch with Ap = 0.5 inch, and with

06 = 1°. Because of the three-fold symmetry of this problem, it was

only necessary to calculate Bz for 6 = 00 to 6 = 119° and then use

32(p,e + 120°) = Bz(p,0 + 240°) = B(p,9), (0° s e < 120°) to obtain the

field for e = 120° to e = 359°.

A two-dimensional plot of the resulting B-field is shown in Figure

2-3. The equi-B-field contours extend from -6.5 gauss to +8.5 gauss in

0.5 gauss steps. The -6.0, -3.0, 0.0, +3.0 and +6.0 gauss field lines

in the vicinity of 6 = 2400 are pointed out explicitly in the figure.

Rather than listing the field values themselves, it is perhaps

more enlightening to perform a Fourier analysis of the field and give

a list of the Fourier coefficients at each radius value. If we choose

9 == 0°, as in Figure 2-3, then 32 will be an even function of e and all

the sine coefficients will vanish. Also, because of the three-fold

symmetry of this problem, we will only get non-vanishing cosine co-

efficients for harmonic numbers that are multiples of three (i.e., 0,

3, 6, 9...). Table 2.1 lists the Fourier decomposition of the field at

some of the radius values at which the field was evaluated. Notice that

the second column is actually the average field rather than the zeroth

harmonic coefficient B0 (they are, of course, related by <81) = 1/2 B0).

The average B-field from Table 2-1 should be compared with the values

we would obtain from the expression for (82> derived in Section 2.2

(equation (2.9)). This expression can be rewritten as
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(82(p)>= g— 31mm) ,

where A6 represents the total angular spread of the circular arcs for

the geometry we are considering and B (D) is the median plane
loop

magnetic field from a pair of complete circular loops at a radius of

0. For our problem,

A0 3 3 x 46°

2n 360°
 

= .38333

and B (p) can be calculated from equation (2.12). It was found that
loop

(Bz(p)) calculated from the above expression agrees with the values

from Table 2.-1 to six significant figures, with an occasional disagreement

of one unit in the sixth significant figure.

Finally, whenever one is using a computer to perform long extensive

calculations in solving a problem, two important considerations should

always be kept in mind: the amount of computer time it takes to arrive

at a solution to the problem, and how accurately does our solution rep-

resent the real answer to the problem.

It is often advantageous to experiment with alternate approaches

to a problem in an effort to cut down on computer run time and/or in-

crease the accuracy of the calculations. For the sample problem we have

been considering, one can also use an approximate method for determining

the median plane magnetic field which doesn't require the evaluation of

any elliptic integrals. This can be a valuable saver in computer run

time. The procedure is to consider each of our current carrying circular

arcs as being composed of several short line segments connected end to

end. The z-component of the field due to each one of these short seg-

ments can be calculated exactly at all points in the median plane.
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Referring to Figure 2-4,ifwe consider a line segment of length a which

is parallel to the x-y plane and located at z = +2', then it can be

shown that the field at a point (x,y) is given by

   31W [ ,- r ],
z-w1re 4.". (x12+z|2);5 (x12+212+(yl _a)2)2 (x12+zlz+y12);5

(2.14)

where

x' = (x - x1)cose + (y - y1)sin6 , (2.15)

and

y' =-(x - x1)sin6 + (y - y1)cose . (2.16)

Here, (x1,y1) locates an endpoint of the wire and 6 represents the

angle the wire makes with the positive y-axis when rotated counter-

clockwise about (x1,y1). A summation over all the line segments making

up a circular arc will give us the approximate median plane magnetic

field due to that arc, and,finally, a summation over all three pairs

of arcs will give us an approximate solution to our problem.

The accuracy of this method obviously increases with the number

of line segments we divide our circular arcs into, but so does the

computer run time. Therefore, a comparison of computer time and accu-

racy was made between the evaluation of the exact expression for 82,

equation (2.7) and the approximate method described above.

For the approximate method, a computer program named WIRE FIELD

was used7 (with slight modifications for print-out purposes). WIRE

FIELD uses the expressions (2.14)-(2.16) in calculating the median

plane magnetic field. If a 6-symmetry exists in the problem being

solved with WIRE FIELD, the user indicates this by inputting the number

of sectors for which the field will be identical. (For our sample

problem there are three sectors.) The wire segments making up a circular
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Figure 2-4.--Geometry to be considered when calculating the field due

to a line segment. The wire has length a, and is located

at z = +2'. The current, I, flows in the positive 9'

direction. The field is first calculated in the primed

system and then a transformation is made to the unprimed

system (see equations (14)-(16)).

Figure 2-5.--Relation between the radius of a circle, r, and the location

of a straight line segment, r', subtending the same angle

such that the arc length equals the segment length.
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Figure 2-4

\5/ r (AB/2) = r' sin(A6/2)

 

Figure 2-5
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arc in one sector are specified by giving their endpoints in polar

coordinates, (r1,61) and (r2,62), their height above the median plane

2', and their current I. The program will assume a duplicate wire at

z = -z' and also a duplicate pair of wires in each sector.

Circular arcs divided into 1, 2, 4, 8, and 16 segments were studied.

(That is, straight line currents were used to approximate arcs of

06 = 46°, 23°, 11.5°, 5.75°, and 2.875°, respectively. The r-value for

the location of the endpoints of the straight line segments was adjust-

ed in each case so that the segmented arc had the same total length as

the circular arc. The appropriate relation (see Figure 2-5)is given by

(ea/2)

sin(A6/2)

r' = r

where r is the radius of the circular arc and 06 is the angle subtended

by the arc that the straight line segment is approximating.

Table 2.2 compares the median plane magnetic field obtained from

the exact equation and the segmented cases. The values listed are along

a radial line that bisects one of the circular arc pairs (i.e.,6 = 0°).

This is where we expect the most significant differences to occur. The

values listed under the exact case are accurate to at least five signif-

icant figures. The numbers in parentheses under the column headings

represent the approximate computer execution times in minutes to calcu-

late the field at a grid of 120 x 75 points and to write this field to

the line printer and also to a magnetic disc for permanent storage.

From Table 2.2, we see that the biggest differences between the

exact case and the segmented cases occurs in the vicinity of the arcs

(215.0 inch). For the 16 segment case, this amounts to only 0.026 gauss

difference, but this case took 1.4 times more computer time to run.
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In the four segment case, we have a maximum difference of 0.044 gauss,

but this case ran 2.3 times faster than the exact case.

The conclusion to be reached on the basis of this short study is

that if one wants more than a few percent accuracy, then the exact

equation using elliptic integrals is the route to proceed. For the

cases when the circular arcs are divided into approximately 12 or more

segments, the segmented cases take more computer time to run without

the equivalent accuracy.



3. A SOURCE TO PULLER PROGRAM FOR THE CALCULATION OF ION TRAJECTORIES

3.1 Introduction

In the ion-source to puller electrode region of a cyclotron, there

are many problems concerning the acceleration of ions that warrant

study. Some of these include the energy gain in the first acceleration

gap, the ion's transit time across the gap, and the effects that a

D.C. extraction grid placed in front of the ion-source has on the ions.

A nice feature concerning these problems is that they can be studied

independently of the particle's orbit through the rest of the cyclotron.

Therefore, a computer program, called TRAJECTORY, was written for the

calculation of ion trajectories in the source to puller region alone.

The program assumes a homogeneous magnetic field and uses measured

or simulated potential maps for determining the electric fields.

Descriptions of the relevant equations used in TRAJECTORY, the

numerical integration employed, the computation of fields and potentials,

and input—output features,are contained in Section 3.2. The reliability

of TRAJECTORY is tested in Section 3.3 where its predictions are com-

pared with a case which can be solved analytically and also with pre-

dictions from the orbit code CYCLONE.

Finally, in Section 3.4, TRAJECTORY will be used to study some of

the previously mentioned problems. In particular,the energy gain and

transit time across the first acceleration gap for several different

ions will be studied.

23
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3.2 Description of the TRAJECTORY Program

TRAJECTORY is a program for the calculation of charged particle

trajectories in the source to puller region of a cyclotron. It con-

siders only motion in the z = 0 plane and calculates the trajectories

of particles subject to the forces of crossed electric and magnetic

fields. Many of the techniques used in this program have been adapted

from another particle orbit code in use at Michigan State University's

8, and will be described in the sections which follow.Cyclotron Lab

3.2.1 Equations

The relativistically correct equations of motion for a particle of

charge q can be written simply as,

5
4
8
3
+

I
I

mE+ixm, m4)

-L

where E = mi = 7mg? , mo being the particle rest mass and y = (1 - v2/c2) 2

the relativistic gamma factor. If one employs what are known as "cyclo-

"2’8 then equation (3.1) can be put in a form more suitabletron units,

for cyclotron work.

The cyclotron units include the B-field unit 80, the frequency unit

mo, and the length unit a, Bo, usually given in k6, is used to define

wo(=2n\n,) which is the cyclotron frequency for a particle of charge

q and rest mass mo:

The cyclotron radio frequency, ”RF’ is related to mo by,
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where h is the harmonic number and 5 represents a frequency error. The

length unit is taken as the radius at which a particle moving with the

speed of light would travel if rotating at a frequency mo. That is,

and it can be shown that the length unit in inches is given by,

a(in ) = 1000 x mgc2(MeV)

' q/e x Bo kG x 99. 925 x 2.54 '

It is also convenient to represent momenta in units of inches.

This is accomplished by dividing all momenta by mac and multiplying by

the length unit a, or equivalently,

+ +

(.12.), . _a_ ,
1110C 11100.10

Rather than using real time, t, as our independent variable in equation

(3.1), we use a dimensionless quantity T = “RFt called the R.F. time.

With the above changes and employing the cyclotron units, equation (3.1)

can be written as,

wire—(UM),

or, after a little algebra,

ad; (6%)‘mfii—ei 6.9? pm (RTE—)x (3°?) (3'2)

The left hand side of (3.2) has units of inches. If q is given in units

of the electron charge e,‘E in.fi%§i and mac2 in MeV, then the first

term on the right of (3.2) is also seen to be in inches. Since (8/Bo)
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is a dimensionless quantity, the second term on the right also has units

of inches. For convenience of notation, the momentum in inches will

hereafter be written as,

4.

P(in.) = -—E—-

Mama

The present program assumes a uniform magnetic field given by

8¥=-B02. This allows the program to run much quicker than if a grid

of B-field points was input since no interpolation is necessary. The

justification for the uniform field is that 8 will vary very little

over the small source to puller region where this program will be uti-

lized.

Since motion is only considered in the z = 0 plane, we have

P = PX R + Pyy, and E= EX$Z+Ey y. Hence, from (3.2) we then obtain

the equations of motion in cartesian coordinateswhich is the form used

by TRAJECTORY:

 

 

9.81.: 32 fl _ 1 p (3 3)
T h(1+ cl moc" Ex hll + eh y ’ '

69;, g a2 q 1

dt h(1 + 8) "10C2 EV + “(I T EIY PX ° (3.4)

It is also easy to see that,

dx 1

aa’mpx’ (3-5)

91.. 1
(11' h1+e P)" (3.6)

A particle's energy in TRAJECTORY is calculated in two different

fashions. One method uses the particle's momentum, and it can be shown

that the usual relation
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E «mEE‘ + p2c77- moc2 ,
kin

can be put in the form

pZ/az

2

Ekin '“°° W+1 (3'7)
 

where P is again the momentum in inches and a.is the length unit also

in inches. Since P2 = P: + %f and PX and RV are obtained by solving

the equations of motion, this means that we needed to calculate the

electric fields in determining Ekin' And since computing the electric

fields involves taking derivatives of potentials, a small fluctuation

in the potential data may have a pronounced effect on the kinetic

energy calculated from equation (3.7).

It is therefore desirable to calculate kinetic energy by an alter-

nate method which uses only the potential data, and not the associated

fields. This then represents the second method by which a particle's

energy is calculated in TRAJECTORY. This method involves what is know

u 2
as the "J-equation , and it is fairly easy to show how it comes about.

The kinetic energy of a particle can be written as

E = (Y ' 1)m0c2 9

so that

95 =.£L 2 = a 9!. '
dt dt (YmoC ) Y [HOV dt ° (308)

In the last step %%-= Y3 éé- g%- was used. We also have the equations

of motion

Wmfiwxfi).

If we take the dot product of'V and the above equation we obtain



V o 9119231. = q37- E' . (3.9)

Working with the left hand side of (3.9),

vegan-11131.33)

=vmov-g% (Ag-72 +1)

= a 9!.y nmv dt . (3.10)

Hence, combining(3.8)-(3.10) we obtain

fig-=15 E (3.11)

If the potential is given by V = V(x,y,t), then

21.21.21. 21.11 91.
t at 6x dt 6y dt

_ 3%.- E .‘6 (3.12)

Using (3.12), (3.11) becomes,

9§.= (IEL..98L

dt ° at dt ’

or if we put all the total derivatives on the left hand side, and

divide through my “RF we get our result:

61': ° 3T (3.13)

where

J = EJ + qV(x,y,t) . (3.14)
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The J-equation, (3.13), is just another relation that can be numerically

integrated right along with the equations of motion. Once J is found

then the kinetic energy can be obtained simply from (3.14). Comparing

the energy from the J-equation with the energy obtained from equation

(3.7) will give us some idea of the "noise" in the potential data.

3.2.2 Runga-Kutta Integration

The equations of motion, (3.3)-(3.6), and the J-equation, (3.13),

are numerically integrated in TRAJECTORY via a fourth order Runga-Kutta

routine.9 The independent variable is T and the integration step size

in the Runga-Kutta process has normally been taken as one R.F. degree.

This has been found to allow the program to run quickly and with con-

siderable accuracy.

3.2.3 Fields and Potentials

TRAJECTORY allows the user to input two separate potential maps

from which the electric fields are derived. One map corresponds to the

spatial part of the normal radio frequency field, and the second map

(if used) corresponds to a D.C. field. Hence, the potential at some

point (x,y) and at a R.F. time T, will be given by

V(x,y.r) = VDC(X.y) + VRF(X.y) cosr (3.15)

The potential maps consist of rectangular arrays of equally spaced

potential values. These maps are usually obtained through electrolytic

tank or conducting paper measurements, but can also, of course, be

found by other means, such as relaxation.

Fields and potentials at locations lying between the given potential

points are obtained through a double-weighted three-point Lagrange
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8 The advantage of a weighted three point interpolationinterpolation.

over a straight three or four point interpolation is that with this

method the fields as well as the potentials will be continuous.

The procedure actually uses four points in each interpolation.

For example, suppose V1, V2, V3, and V. are the potentials at four

equally spaced points x1, x2, x3, and x. respectively, and we wish to

find the potential at x2 + fs where f is a fractional distance between

x2 and x3 and s is the spacing between the points. Then, using a stan-

lO
dard three-point Lagrange interpolation, we fit a parabola to V1. V2.

and V3 to find the potential at x; + fs:

V'(x2 + f5) =flf7‘_l_1vl + (1- f2)v2 +flf—Zt—1-LV3 ’

and it is easy to show that a three-point Lagrange interpolation using

V2, V3, and V1 also gives for the potential at x; + fs:

v"(x2 + fs) = (1 ’ f4” ' f) v2 + f(2 - f)V3 + iii—l)— v. 

Now, we take a weighted average between V' and V" to get a value for

V(Xz + fs):

V(xz + fs) = (1 - f)V'(x2 + fs) + fV"(x2 + fs) ,

which can be written as,

I.

V(xz + fs) 31:1 ci(f)Vi

where a little algebra shows that the ci(f) are given by,

C1 = f2 -'5(f°+ f)

C2 = 34:3 -'§'f2+1

(3.16)

C3 3 2f2 -'a'f3+A§f

C4 = 15(f3' f2)



31

The field at x; + fs is given by Ex = - --= - -- --, so that,

C

T 1"
M
:

where c5, c5, c7, and c. are just the derivatives with respect to f of

c1, c2, c3, and ct, respectively. That is,

c5 = 2f - éfz - 2

c5 =~§f2- 5f

C7 = 4f - 34:2 4- 1g (3.17)

c, = if2 - f

The above example has been in one-dimension. The extension to

two-dimension is simple:

4 4

+ , + = .f . ..V(X2 fxs yz fys) igl j§1 c1( x) cJ(fy) V13

4 4

Ex(x2 + fxs, y; + fys) = 1&1 jgl ci+4(fx) cj(fy) Vij'ls

4 4

+ + = . . ..Ey(x2 fis, yz fys) 151 j§1 c1(fx) C3+4(fy) V131/s

Hence, in the two dimensional case, the potential and fields at any

given point involve the potentials of a 4 x 4 grid of the input data.

3.2.4 Input-Output Features

The potential data, along with its identification and relevant

geometrical data, is stored in a file on a magnetic disc from which the

program will read it. All other parameters are input via computer cards.

These include the particle's rest mass mac2 and charge q/e, the field

unit 80, the R.F. starting time To, the initial kinetic energy E0, the
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frequency error e, the harmonic number h, the voltages for the D.C. and

R.F. fields, and the initial position and direction of the particle

relative to the source slit. The program will automatically calculate

the R.F. frequency ”RF’ but as an option the user may input a specific

value for this.

The output consists of the particle's position, momentum, and

energy as a function of the RF time T, and the fields and potentials at

the position of the particle.

The equations of motion are integrated until the particle reaches

the edge of the potential field or until it has spent a certain maximum

allowable time in the field.

3.3 Reliability of TRAJECTORY

As a check on the reliability of TRAJECTORY, its predicted orbit

for a few selected cases was compared with the orbits obtained by other

means. In particular, it was compared with (1) a case for which a

completely analytic solution can be obtained, and (2) another orbit

code called CYCLONE.

3.3.1 Comparison with Analytic Solution

A case f0r which a completely analytic solution can be obtained is

that of the non-relativistic approximation to the acceleration of an ion

through spatially uniform electric and magnetic fields. This means

that we assume the magnetic field is given just as before by 8'= -B.2

and for the electric field we will assume the form

E1 + E2 c051 . (3.18)
Ex

5
E, + E, cosr . (3-19)
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The non-relativistic approximation means that we let 7 = 1 in equations

(3.3)-(3.6). This is a valid approximation if the ions are of suffi-

ciently low energy.

If in equations (3.3)-(3.6) we let

2

 

_ a

A ‘ h(1 + 8) me2 ’

and 1

B = h(1 + e) ’

then these equations can be rewritten as (setting 7 = 1)

dPx

677" AEX - BPy ,

gf- = BP ,

g¥- = BPy

With Ex and By given by (3.18) and (3.19), respectively, the above

equations can be solved exactly. If we assume the initial conditions

PX(T0) = PM 1 Py(To) = a X(To) = X0 . and V(To) = 1’0 9 Where ToP

.Yo

is the initial R.F. time, then the solution of these equations can

(painstakingly) be shown to be given by

PX = f1(‘l’) 1' f°s('l') 9

Py = f2(T) "' f6(T) :

X = X0 + [f6(T) ' f6(To)] + [f3(T) ' f3(To)] 1
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Y 5 Yo 1' [f4(T) ‘ f4(T0)] - [fs(T) ' f5(Ton.

where for B f 1 we have

f1(T) = LAB-Ej- + 1 1‘8 [E2 5111(1') '1' BEuCOS(T)] 9

13(1) = A—E—l— + 1 f3 [6. sin(t) - BE,cos(1)J .

f,(«:) = -AE3'r - 14%, [1:2 cos(—r) - BE,sin(T)] .

f1.('[) = AEIT "' mfg-B? [Eu COS(T) '1’ 8E251n('t)] a

f5(1) = C1 COS(BT) - C251n(BT) ,

C1 STH(BT) + C2COS(BT) af6(T)

and

C1 [Pxo' f1(To)] COS(BTo) + [RYO ' f2(T0)] 510(BT01 3

C2 =-[PX0- f1(To)] STH(BTO) + [Bye - f2(To)] COS(BTO) ,

and for B = 1 we have

f1(1:) = -AE3 + 5%: [sin(1) + 21 cos(1)] - 5%- [cos('r) + 21 5111(1)].

me) = A5, + A—fi—‘L [sin(t) + 21 cos(t)] + 5%:- [cos(-t) + 21 $1n('r)].

m.) = 4115,. + 5&1 [2tsin(t) + cos('t)] - 5% [3sin('r) - ZTCOS(T)].

f.(t) = AEIT + 5%4- [2rsin(t) + COS(T)] + Egg, [3sin(t) - 2TCOS(T)],

f5(T) = C1 COS(T) - C2 sin(T),

f5(T) = Cl sin(t) + C2 COS(T),

and
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C1 = [PXO - f1<To)] COSTo '1’ ”3’0 - f2(To)] $71110 ,

C2 =-{Pko - f1(To)] Sinto + [Pyo - f2(To)] cosro .

A computer program was written employing the above equations and

having a similar input and output format to'TRAJECTORY for easy compar-

ison.

In TRAJECTORY, a grid of potentials producing a spatially uniform

electric field was used. The R.F. voltage was adjusted to give a field

equal to the average field that exists in the source to puller region

for a measured field (called 1.06.5-A) when 100 kV is placed on the

puller. That is, the R.F. voltage was adjusted to give 252.74142

kV/inch. (Field 1.06.5-A will be described in Section 3.4.) The

equivalent input for the analytic case was E1 = E2 = E, = 0, and

E. = 252.74142 kV/inch. The magnetic field strength in both cases was

taken as 47.8 kG.

The two programs were then compared for the first harmonic accel-

eration of 1"N” “W = 20.97 MHz). This particle was given a small

initial energy of 40 eV and was initially directed along the electric

field direction. The R.F. starting time was taken as To = -45° (450

before peak field).

Table 3.1 compares TRAJECTORY and the analytic solution for some

selected points along the orbit. We see that for T = 0°, the particle

energies differ by only 1.0 eV out of =:.15 MeV. And at T = 45°, the

particle energies differ by only 6.0 eV out of 2.56 MeV. Differences

in particle positions for the two cases can similarly be seen to be very

minute.

The agreement here is excellent. The slight disagreement as we
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Table 3.1.--Comparison of TRAJECTORY and the analytic solution for

the first harmonic acceleration of 1"N"+ through

homogeneous magnetic and electric fields.

 

 

T0 x (in ) yJ__)___ E (MeV

Anayltic T JECTORY Anayltic TRAJECTORY Anayltic TRAJECTORY

  

 

-45° .000000 .000000 .000000 .000000 .OOOO4O .OOOO4O

-30° .001631 .001631 .018023 .018023 .014901 .014901

-15° .012529 .012529 .071317 .071317 .064844 .064844

0° .042116 .042115 .160461 .160461 .154038 .154039

15° .099285 .099282 .280815 .280814 .274248 .274249

30° .191046 .191039 .422743 .422740 .406300 .406303

45° .321312 .321299 .572360 .572355 .525960 .525966

60° .489934 .489910 .712774 .712768 .612445 .612455
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move to higher particle energies is undoubtedly due to relativistic

effects coming into play since the analytic solution ignores these.

At E = .56 MeV, we have,

y=1+fifir=1+fifi§f§ =1.000043

Although y- 1 is still very small, it is still large enough to produce

deviations on the order of those mentioned above.

TRAJECTORY was also compared with the analytic solution for the

third harmonic acceleration of 1"N”. All other initial conditions

were the same as those described above. Excellent agreement was again

obtained (to the degree mentioned above).

3.3.2 Comparison with CYCLONE

Finally, TRAJECTORY was compared with the orbit code CYCLONE.

CYCLONE is a program for calculating orbits in the central region of a

cyclotron and has been utilized at Michigan State University for several

years. CYCLONE uses a measured (or simulated) potential grid for the

calculation of the electric field, and the magnetic field is input via

its Fourier coefficients.

The same potential grid (1.06.5-A, described in Section 3.4) was

used in both TRAJECTORY and CYCLONE. Both programs used 100 kV maximum

voltage on the puller (giving again (Ey>= 252.74142 kV/inch in the

source to puller region). The Fourier coefficients for the magnetic

field in CYCLONE were input to produce a uniform field of 47.8 kG, the

same field used in TRAJECTORY.

TRAJECTORY and CYCLONE were then used to again study the first

harmonic acceleration of 1"N”. The particle was once again given a
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Table 3. 2. --Comparison of TRAJECTORY and CYCLONE for the first

harmonic acceleration of MN“ through a homogeneous

magnetic field and a measured electric field,

1.06.5-A.

 

 

To x(in. ) y (in. ) E (MeV)

TRAJECTORY CYCLONE TRAJECTORY CYCLONE TRAJECTORY CYCLONE

 

-45° .000000 .000000 .000000 .000000 .000040 .000040

-30° .001385 .001385 .016169 .016167 .011796 .011793

-15° .011120 .011119 .064683 .064675 .058065 .058050

0° .039153 .039147 .154503 .154486 .167267 .167229

15° .096460 .096442 .283363 .283334 .306805 .306750

30° .190414 .190384 .426737 .426698 .377333 .377287

45° .323129 .323084 .546580 .546543 .382733 .382690

60° .482817 .482757 .627917 .627888 .383095 .383052
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small initial energy of 40 eV and the initial R.F. time was To = -45°.

Some of the results are shown in Table 3.2. We see that,fbr the most

part, we have agreement of position and energy to four significant

figures. This is reasonably good considering the programs were written

completely independently. One source of error is due to the fact that

the version of CYCLONE used here automatically biases the ion source

by (initial energy)/q, whereas in TRAJECTORY the ion source remains

grounded. In the case ran here, this amounts to about a one part out

of 10“ difference in the voltage difference between source and puller.

Despite the small deviations here, (on the order of .01%) this

comparison essentially verifies that TRAJECTORY is correctly and

accurately solving the equations of motion.

3.4 Source to Puller Calculation in a Measured Electric Field

In this section TRAJECTORY will be used to study the energy gain

and transit time across the first acceleration gap for various ions.

11 in the respectThese calculations will be similar to those of Reiser

that the results will be reported in terms of the dimensionless param-

eter x defined by

2 2

x = Z—JL—Bv"‘ (3.20)

where according to Reiser l is a reference length, B the magnetic field

strength at a reference point, q/m the charge to mass ratio fOr‘ the

ion, and V is a reference value of the voltages applied to the electrodes.

The nice feature about reporting results in terms of X is that for all

systems having the same x value, the ion trajectories through the system

will be identical. (For relativistic motion, there is the additional
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requirement that qV/moc2 must be the same for the systems being compared.)

The difference between Reiser's calculations and the present ones

is that Reiser assumes that both the magnetic and electric fields are

homogeneous and here only the magnetic field will be assumed homogeneous.

The electric field will be obtained from a previously measured grid of

potentials for the source to puller region called 1.06.5-A.

A contour map of the potential arising from the geometry used is

shown in Figure 3-3. The equipotential lines are 2% contours and extend

from 2% to 98%. Superimposed on the figure are the trajectories for

some of the cases studied here, and will be described later in the text.

In equation (3.20), 2 will be taken as the source to puller gap

width. If we define this as the distance from the ion source slit to

a distance half way through the puller, then for field 1.06.5—A we

have 2 = .367 inch. For these studies we will also take the magnetic

field strength to be 48.0 kG, which is a typical full field value in

the central region of the K = 500 MeV cyclotron. The reference volt-

age will be taken as the maximum R.F. voltage on the puller electrode,

which, in these studies, was taken as 100 kV. These values inserted

into equation (3.20) give (adjusting the units properly)

_ e

X " 1'93" EN" (3.21)

Using TRAJECTORY, the energy at the puller electrode was obtained

for several different X values as a function of the R.F. starting time.

For each x-value, acceleration modes of h = 1, 2, 3, and 4 were studied.

In TRAJECTORY, B and V were kept constant, q/e was taken to be 1.0 and

the mass of the particle was adjusted using equation (3.21) to give the

desired x-value. All ions were given a small initial kinetic energy
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of 40 eV.

The results of these calculations are shown in Figures 3-1 and 3-2

for x-values of .05, .10, .15, .20, .30, .40, .50, and .60. The calcu-

lations were carried out at R.F. starting times ranging from To = -900

(i.e., 90° before peak voltage) to To = 00 (peak voltage) in 5 R.F.

degree step. Rather than plotting the energy at the puller for each

ion, a quantity called 2: is instead used, where e is defined as

E . 51:12.
qAV

Here AV is the voltage difference between the ion source slit and the

location where the ion crosses the line 2 = .367 inch (see Figure 3-3).

Hence, 2 represents the fraction of the total energy available in the

source to puller region that the ion actually obtained. Note that be-

cause of the penetration of the voltages past the puller in the measured

field, we will have AV S (100 kV - Vsource)’ where the equality sign

holds only in the cases where the ion trajectory actually touches or

passes through the puller electrode.

Figures 3-1 and 3-2 exhibit features similar to those obtained by

Reiser with the homogeneous electric field. That is, we observe a

shift in the maximum energy gain to earlier starting times whenever h

or X is increased. Also, note the decrease in the number of ions that

actually reach the puller for the higher harmonics as X is increased

(only those ions reaching the puller are plotted in the figures). For

instance, when X = .4, we see that no ions running in the mode h = 4

made it to the puller electrode. What happened to these ions was that

the R.F. voltage was changing so rapidly that the electric field changed

directions and pushed the particles back toward the source. Figure 3-3
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Figure 3-I.--e E Ekin/qAV at the puller vs. initial R.F. time for

x-values of .05, .10, .15, and .20. For each x,

curves are plotted for h = 1, 2, 3, and 4.
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-90 -so -3o 0 -9o ~60 ~30 0

To - To -

Figure 3-2.--e E Ekin/qAV at the puller vs. initial R.F. time for

x-values of .30, .40, .50, and .60. For each x,

curves are plotted for h = 1, 2, 3, and 4.



44

Figure 3-3.--Some predicted trajectories for ions with x = .4 through

field 1.06.5-A. The ions making it through the puller

are running in the h = 1 mode, and those being pushed

back to the source are running in the h = 4 mode. Both

cases are plotted for R.F. starting times of To = -20°,

-30°, -40°, and -50°. The trajectories are superimposed

on a 2% contour map of the equipotential lines. The

scale is 8:1.
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shows some of these difficult ion trajectories plotted on a contour map

of the source to puller region being used. Also plotted are the trajec-

tories for a case where the ions do make it through the puller slit.

Figure 3-4 plots Ek1n(max.),/qAV at the puller as a function of

X for the modes of acceleration under study. From the figure, we see

that the energy gain decreases with X and the drop off in energy is

especially pronounced in the higher acceleration modes.

Finally, Figure 3-5 plots the initial R.F. starting time To and tran-

sit time AT vs. X for the cases that give the maximum energy gain. It

can be seen that for increasing x, the starting times in each accelera-

tion mode are approaching To = -90° with the rate of approach increasing

with harmonic number. We also see that for each acceleration mode the

transit time,AT = Tpu]]er - Tsource, goes up with increasing x and the

rate of increase goes up with harmonic number. These results essentially

tell us that for increasing X and/or increasing harmonic number the

particles want to spend more R.F. time in the accelerating electric field

in order to gain the most energy.

It should be noted that the curves of Figure 3-5 aren't as smooth

as one would hope them to be. This is due to the fact that the search

for the R.F. starting time that gives the maximum energy gain was only

made in 5 R.F. degree steps. That is, the points used to plot these

curves are only accurate to :5 R.F. degrees in To. And since Ar

Tpu]]er - To, the Ar vs. X curves are also affected.
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Figure 3-4.--Maximum e at the puller vs. X for accelerating

modes of h = 1, 2, 3, and 4.
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