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ABSTRACT

Sequential estimation of functionals of the survival curve under
random censorship with applications in M-estimation.
by
Mohammad Hosesein Rahbar

Sequential point and interval estimation procedures for functionals of the
survival curve F (of the form [ydF and [Fdy) are considered when the
underlying observations may be subject to random censorship.

In the point estimation problem, the loss is measured by the sum of the
squared error of the estimator and cost of observations made with per unit
cost ¢ being constant.

The sequential estimator defined here is shown to be risk efficient and
normal a3 ¢ tends to zero under certain regularity conditions on functions
¥, F and the censoring distribution.

For the interval estimation, the sequential procedure is shown to be
consistent and the corresponding stopping rule is shown to be efficient as the
width of the interval decreases to zero.

In both estimation problems, the asymptotic distribution of the stopping
rule is obtained.

Finally, as an application the consistency and efficiency of a sequential
fixed width interval estimation procedure using M-estimation i8 shown for the
location parameter in a location model when the error distribution is
symmetric and continuous and the censoring distribution is continuous but

unknown.
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Chapter 0
Introduction and summary:

The problem of estimation of various functionals of the survival curve
from censored data is of fundamental importance in epidemiological and
reliability studies, clinical trials and life testing. In most clinical trials ethical
reasons and the paucity of laboratory specimens compel consideration of
statistical procedures in which the sample size is not specified in advance of
experimentation.

In this thesis, sequential point and interval estimation procedures for
functionals of the survival curve F (of the form [ydF and [Fdy) are
considered when the underlying observations may be subject to random
censorship. When censoring is present, as is generally the case in several
survival studies, one observes a random sample {(Z;,4,): 1<i<n} where
Z;= min(X,,Y;) and &= [X;<Y;] with life times X,'s, having common survival
curve F and censoring times Yi's, independent of Xi's, having common survival
curve G and [A] denoting the indicator function of the set A.

Consider the natural estimator of 4, bn= / t/xil;‘n, where l‘?n is a suitable
estimator of F based on the above random sample.

In the point estimation problem we consider the loss structure
L(c) = a(bn- 0)2 + cn where a is a given positive constant. The
associated risk is R (c)=E(L (c)). The problem is to determine the sample
size which minimizes the risk R _(c) for a given positive cost per observation
c.

In the interval estimation problem we construct a confidence interval for
&F) of prescribed width 2d and coverage probability (1-2a) where 0<2a<1.
In either case, the best fixed sample size procedure (BFSSP), say n,
possessing the desired property depends on unknown functions F, G and



therefore no fixed sample size procedure minimizes the risk universally for all
F, G. In order to resolve this difficulty we define a sequential sampling rule
(often called stopping time) similar to the rule considered by Robbins (1959).
Essentially, this rule, say N, samples observations sequentially, updates a
suitable estimator of F, G in the BFSSP and stops sampling as soon as the
number of observations exceeds that of the estimated BFSSP. Thus one is led
to solve these problems using sequential procedures.

In the point estimation problem, the performance of the procedure
(N,dy) is usually measured by (i) Relative risk, (R /Ry), and (ii) The regret,
r*(c) = R*— R0 where R* is the risk due to using stopping time N and R0 is
the risk in the BFSSP. In (i) if lim (R /Rg) = 1, 88 ¢ tends to zero, the
sequential procedure is said to be risk effident. In (ii) if r (c) = O(c), the
sequential procedure is said to have bounded regret.

In the interval estimation problem, the performance of (N,IN) is
measured by the (iii) Coverage probability, P[6ely] and (iv) Expected sample
gize, E(N), where I is the fixed width interval estimator using sample size N.
In (iii) if lim P[0EIN]=1—2a, the procedure is said to be consistent. In (iv) if
EN/ny— 1, the procedure is said to be efficient where in (jii) and (iv) limits
are taken as d tends to zero.

We now give a brief review of the literature on sequential point and
interval estimation.

Sequential point and interval estimation problems have received
considerable attention ever since the fundamental paper of Robbins (1959) for

the estimation of the mean of a normal population. He considered

xl,x2,...,xn iid N(p,a2) and the loss function Ln = alfn— p| + n, where fn

is the sample mean based on n observations and a is some positive known






constant. He assumed that the cost of sampling is proportional to the sample
size and showed that when o is known the BFSSP is n0=(aa/J'2TI)2/ 3. For
this sample size the risk is R0=E(Ln )=3n0. All this presupposes that we

0

know 0. When ¢ is unknown he suggested to take the sample size

N = inf{n>3: nz(aén/mz/ 3} where 5121 is the sample variance. Starr
(1966) proved the risk efficiency and Starr and Woodroofe (1969) showed that
the regret is bounded in the above case.

In the nonparametric context, Ghosh and Mukhopadhyay (1979) were
first to prove the risk efficiency for the mean problem under the condition
that the eighth moment is finite. Sen and Ghosh (1981) considered sequential
point estimation of estimable parameters based on U-statistics under the

2'*'8< o, for some positive real number 8, where g is the

condition that E|g|
kernel corresponding to the parameter. Estimation of the mean is a particular
case with g as the identity function. Chow and Yu (1981) have proved risk
efficiency for the mean problem provided an rth moment is finite for some
r>2. Sequential point estimation of location based on some R-, L—, and
M-estimators are discussed in Sen (1980) and Jureckova and Sen (1981).
Sen's book (1981) has an excellent survey of the above mentioned articles.

Gardiner and Susarla (1983) were the first to consider the sequential
point estimation of the mean problem, in a nonparametric context when
censorship is present. They did not find the asymptotic distribution of the
stopping time except for the case of an exponential survival time. (See
Gardiner, Susarla and van Ryzin (1985b)).

In this thesis we propose a sequential point and an interval estimation

procedures for functionals of the form [¢dF and [Fdy when the underlying
observations may be subject to random censorship. We shall show that the



sequential point estimation procedure is risk efficient and asymptotically
normal a8 c¢ tends to zero, under certain regularity conditions on functions

¥, F and the censoring distribution. For the interval estimation problem, the
sequential procedure is shown to be consistent and efficient as the width of the
confidence interval decreases to zero. In both estimation problems, the
asymptotic distribution of the underlying stopping time is obtained. Thus our
results are generalizations of Gardiner and Susarla (1983) and Gardiner,
Susarla and van Ryzin (1985b).

In Chapter 1, we collect various preliminaries and necessary prerequisities
of asymptotic properties of the product-limit (P-L) estimator. Most of the
results are taken from Gill (1983), Foldes and Rejto (1981), Cheng (1984), Lo
and Singh (1986), Gardiner, Susarla and van Ryzin (1985a) and Schick, Susarla
and Koul (1987). Hence some of the proofs have been omitted. We also
state the results regarding to the asymptotic normality and the almost sure
representation of the estimator of 02, the asymptotic variance of
nl/ 2( / ¢dﬁ‘n—] ¥dF), which are new and crucial for obtaining the asymptotic
distribution of stopping times in Chapters 2 & 3 and we give an almost sure
representation of nl/ 2( / wdf“n—] ¥dF), for ¢ in a class of functions v, (defined
later in Chapter 1).

Chapter 2 is divided into three sections. The first two develop our
model and some examples are discussed. In Section 3 the risk efficiency of
the sequential point estimation procedure and the asymptotic normality of the
underlying stopping time are presented.

In Chapter 3 we discuss the properties of the sequential fixed width
confidence interval and the related theorems.

Chapter 4 deals with a sequential fixed width confidence interval

procedure for the location parameter of a location model under random



censorship when the distribution of the error is symmetric around zero but
unknown.

Finally, proofs of Theorems 1.3 and 1.4, the asymptotic normality, almost
sure representation and a rate of convergence of the estimator of 02, the
asymptotic variance of nI/ 2( J dxil;‘n-[ ¥dF), which are crucial for obtaining the
asymptotic distribution of the stopping time in Chapters 2 & 3, are placed in
Appendices.



Chapter 1

1.1 Preliminaries and some notations

Let {Xi: i21} be a sequence of nonnegative iid rv's (survival times) with
continuous survival function F on R+=[0,oo), F(0)=1. The corresponding
censoring rv's {Y;: i21} are also assumed iid, independent of {X;: i21}, with
continuous survival function G taking values on R' and G(0)=1. The
observable data are {(Z;,4): i21} where Z;= min(X,,Y;), 6= [X;<Y;] and [A]
denotes the indicator function of the set A. For an estimator of F we select
the product-limit (P-L) estimator, f“n, which was first introduced by Kaplan
and Meier (1958), based on {(Z;,4): 1<i<n} defined by

(Z,<t,6=1]
1.1.1) F (1) =1 K(Zi)—ll for t<Z
(Lt 55 TR ()
=0 for tZZ(n)

n
where K(t)= 1 +i£1[Zi>t], t20, and Z(1)< Z(2)< e Z(n) are the order

statistics of {Z;: 1<i<n}. By the continuity of F and G ties among the
observations may be disregarded with probability one. Throughout we shall
need the following notations.

Let (X;,B;), 21 be copies of the R*x {0,1} with Borel o—fields and
X % [
(X ,A) =1I(X;,B,). Let P =P G denote the product measure induced by
i=1 ,

{(Zi,ﬁi): i21} on A" and E = EF,G denote the expectation under P.

Let P = {P: F, G €F} where F = {the class of continuous survival
functions} and § = &(F) be a real valued functional on F. The estimator
bn= 0(15‘11) of @ has been studied by many authors including Breslow and
Crowley (1974), Wellner (1982), Gardiner and Susarla (1983), Gill (1983), and
Millar (1985). For {bn} to be consistent for 0, certain conditions have to be



satisfied by the pair (F,G). For example, in Schick, Susarla and Koul (1987)
is stated that "when estimating &(F), the p—th quantile of (1-F), we need at
least the condition G(#(F))>0, for the sample quantile to be consistent.
Generally, O(f‘n) is not consistent for AF) if &(F) depends on parts of F that
lie beyond the upper support point 7;= inf{x: G(x)=0} of G." Similarly
define r; and let r=rg= min(rg,75). Let (Z,8) be a copy of (Z;,6;). Let

:I(t) = P[Z<t,6=1], fi(t) = P[Z<t,6=0] and H(t) = P[Z>t]. Note that
ﬁ(s) = —({stG, ?I(s) = —(])sGdF and H(t) =1 - I-I(t) - ﬁ(t).

Throughout, except in Chapter 4, all unspecified integrals are considered
on Rt Throughout this thesis L™ stands for (1/L)" for any positive function
L; D, denotes "convergence in distribution"; a.s. stands for almost sure with
respect to probabitity measure P; N(p,az) will stand for the normal
distribution with mean y and variance 02 and the index in the summations
runs from 1 through n unless it is otherwise specified; ¥ denotes the class of
all real valued monotone functions on R and let

W, = {¥e¥ : ¢ is constant on [Tw) for some T<7},

A(t) = [Fdy, A_(t) = | F dpt0,
) = )¢ (®) [t{m)“ B0

» @
t -9 N
C(t) = [ H°dH, o<t<r,
0

a

2,2 2 .2 2 .25
o —jAdC,an—jAnn K “dH ,

t . .
(1.1.2) Iyi(t) = (])A' dc), 0, for i,j = 1,2,34,
(1.1.3) £(Z,5t) = C(ZAt) - {6 HY(Z)}[Z<t], t20
and

I(Z,0) = - J&(Z,6¢)F(t)d(t)
(1.1.4) = SA(Z)H1(Z) - T'}(2).



The following lemma is taken from Theorem 1 of Lo and Singh (1986)
and Theorem 3.4 of Gardiner, Susarla and van Ryzin (1985a) and will be
stated without proof.

Lemma 1.1: If F and G are continuous® and T<7, then on [0,T] and for p>0,

(1.1.5) F(t)- F(t) = FO){n'S &Z,6:t) + r (1)

with

(1.1.6) sup|r ()] = O((@tn 0)¥/%) s,

and

(1.1.7) sup [lr, (&)l = O(x™)

where || . ||p denotes the Lp norm and sup is taken over [0,T] and &(Z,6;t) is
as in (1.1.3).

Assumption 1.1: Let T be a positive constant such that T<7. Let ¢ be a

monotone nondecreasing function defined on R such that ¥(x) = b, for

x>T, where b is a constant.

Theorem 1.1: Under Assumption 1.1 and assumptions of Lemma 1.1,

(11.8) nl/2(wiF - fwiF) - 07283(2,6) = O/ 4{in n}3/%), as.

Proof: Integration by parts and Assumption 1.1 and (1.1.5) allow us to write
n!/2(8,- ) = o'/2(jpaF - It/JdF)

= -l (B F ay
=n -1/2 z J(Zi,éi) - n1/2rn
where J is as in (1.1.4), r (t) is as in (1.1.5) and r: = Jr Fdy. Note that
by (1.1.6) and Assumption 1.1,
o= Jr (OF(t)dut)

IN

sup |r_(t Fd
(2, Iy (01} JFay
=0 (n_lln n)3/ 4 as.,
from which (1.1.8) is immediate. o



Corollary 1.1: Under assumptions of Theorem 1.1,
(1.1.9) a!/2(ryaF - rwaF) 2 N(o, ).
Proof: One can show that J(Z,6) is a bounded random variable with mean
zero and variance 2. Therefore by the central limit theorem (CLT) and
(1.1.8), (1.1.9) is immediate. o
Theorem 1.2: Under the assumptions of Theorem 1.1 and for s>0,

{ns/ 2|bn- 9)%: n21} is uniformly integrable (UI).
. Proof: Recall the representation

al/%(9 - 9 = 0253z, 6) - /%

Note that it suffices to show that {ln-ll 2EJ(Zi,Ji)|3: n>1} and
{|n1/ 2r;.;ls: n>1} are both UI. Since for t>T, A(t) = 0 and H(T)>0,
{3(Z;,6,): i21} is a sequence of bounded random variables. Thus an
application of the Marcinkiewicz—Zygmund inequality implies that for any p>0,

sup E[n/253(2,,8)|P<w,
n>1

which implies {|n™1/283(Z,,6)|% n21} is UL Recall that r.=/r_(t)F(t)dy(t).
By the Holder inequality, Fubini Theorem and (1.1.7) we have that for any
p>0,

(1.1.10) Elr;|p= o ?/?),
Note that (1.1.10) implies that {|n1/ 2r;'_;lsz n21} is Ul, which completes the
proof of the theorem. o
Remark 1.1: Schick, Susarla and Koul (1987) gave a sufficient condition for
an iid representation of n1/ 2( / ql;dlA?‘n- J¥dF), where ye¥, the class of all real
valued monotone functions on RY. They have shown that

n1/2(f'/ﬂf"n- JWdF) - n—1/22J(Zi,6i) = op(l).
Our Theorem 1.1 gives the corresponding almost sure representation for 1/;&\111,

a subclass of W.
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Theorem 1.3 (The almost sure representation and asymptotic normality of
o?): Let ye¥,. For F, GeF,

1/2,°2 2, _ -1/2 1/2

n/%(o-0") =n 7LV, + n Rn,5

where
Vi 4 2wi,1 + Wi’2’
a0
wi,l = f{f E(Zi,ai;S)F(s)dqb(s)}d[‘u’
2 -2 -1 0
Wi,2 = A (Zi)H (Zi)éi— 2[/H [Zi>.]d[‘21 + 0%
and
n1/2Rn,5—-) 0, a.s..
Furthermore
- *
— /%52 A Ny,
where

*_ oo 2 -1 -2 4
(1112)  y = 6/T] dly — 4/H T, dly, + [H “dl,, - 0"

Proof: See Appendix A.

Theorem 1.4: Let 1/)6‘1’1. For F, GeF, and for each €¢>0, and all r<eo,
(1.1.13) P[|o2- o%|2 ¢ = O(™).

Proof: See Appendix B.



Chapter 2
Sequential point estimation of functionals of the survival curve
under random censorship

2.1 Introduction:

In this chapter we consider the sequential point estimation of functionals
of the form [yYdF and [Fdy where ve¥; and FeF.

Given a sample of size n, {(Zi,éi): 1<i<n}, we estimate @ by, bn= / t/)df?n,
subject to the loss function
(2.1.1) L (c) = a(f,~ )%+ cn
where a i8 a positive constant and c¢ is the cost per unit observation.
The object is to minimize the risk in estimation by choosing an appropriate
sample size. From Corollary 1.1, we have that
(2.1.2) ol/%(8 - -2 N(0,0?), 83 0 — w.
Recall that in Theorem 1.2, it is shown that (under certain conditions) the
sequence {ns/ 2|bn- 8|%: n>1} is UI for 8>0. Therefore it follows from (2.1.2)
that
(2.1.3) E(0 - 6% = 10% + oa)), 550 —

Now if o is known, then the risk
(2.1.4) R () =EL|(c)= 0 lac® + co + o(n-l)

1/ 2, with

is approximately minimized by the BFSSP, n; ¥ bo, where b = (a/c)
corresponding minimum risk

(2.1.5) R, = Rnog 2n,,

However, since ¢ is unknown, the BFSSP cannot be used and therefore we
describe a sequential procedure for choosing a sample size whose risk will be
close to R0 for small c. Let

(2.1.6) N, = inf{n2n; : n2b(o + n—h)}

11
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where h is a positive constant to be selected later. Since NCZbN;h a.s., we
may assume n; = int(bl/ (H'h)) where int(x) denotes the greatest integer < x.
Then our scheme utilizes the estimator chof @ with associated risk
(2.1.7) R*=R:=ELNC= a E(ch- 02 + ¢ EN,,

We now consider some examples before we present the main results of
this chapter.
2.2 Examples
1. A form of winsorized mean: Let T<r, and
(2.2.1) ¥(x) = (xAT)[x20]
and 0 = ~[ydF, FeF. Note that § = —[¢dF = -E@(Z)&d; , where d.is
the jump of the P-L estimator at Z, when a sample of size n is observed.
Since in the absence of censorship the jumps of the P-L estimator reduce to
(1/n), bn reduces to an estimator of § where the ordinary empirical process F
replaces f“n above. In this case bn turns out to be the average of all the
observations which lie in [0,T) and all the observations greater or equal to T

replaced by T. When using the P-L estimator to estimate E(XAT), the

- T.
estimator 4 = | F (t)dt, T<r, is used. Susarla and van Ryzin (1979) have
0

R M_.
generalized the estimator to get the mean by taking u = [ n Fn(t)dt,
0
where M T «, a8 n — o, with certain restrictions on {M_}. Gill (1983)

. M
indicates how M, can be replaced by Z(n) in the estimator p = [ " Fn(t)dt.
0

Remark 2.2.1 (taken from Remark 4.1 of Gardiner and Susarla (1983))

If the problem of interest is the estimation of the mean survival time observed
T

on the duration [0,T], where T<r, that is, E(XAT) = [ F(u) du, then by
0

taking ¢ as in (2.2.1) we get a% = Ty,(T). One encounters this situation of
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estimation of E(XAT), T finite in some decrement models. See Gardiner

(1982) and Hoem (1976) and (1987). Analogous remarks hold for the problem

T
of sequential estimation of E(X|X<T) = T- (1-F(T))"}/ (1-F(u))du, with, of
0

course, a different expression for the asymptotic variance, 02.

2. A form of winsorized sample moments:

Let k>0, ¥(x) = (xAT)X[>T] and FeF. Consider § = —/ydF_ as an
estimator of # = —fy¥dF. Note that if the mean of F is known, we can
estimate the variance of F by taking bn= -/ ddﬁ‘n where

Wx) = 9x) = AT [RT] - 42
and pp denotes the mean of F.
3. A form of mean residual life:

The mean residual life function is defined by

o(t) = F_l(t){mF(s)ds - - F_l(t){m(s—t)dF(s).

T
Our interest is in estimation of AF) = F_l(t) | F(s) ds, for a fixed t, t<T.
t

If we know F(t), for example at t = med(F), F(t) = 1/2, then our scheme
estimates 4 by bn = [Fdy, where ¥(x) = F-l(t){(th)AT}[xzo]} and therefore
the asymptotic variance of this estimator is P = F_2(t){1‘21(T) - Ty, (1)}
In the case that F(t) is unknown, one can use f-‘n(t) as an estimator of F(t)
with, of course, a different expression for the asymptotic variance.
4. Kaplan-Meier M—estimator

This example will be discussed in detail in Chapter 4.
2.3 Main results of this chapter:

In the sequel all limits are taken as ¢ | 0 or b | «. We shall drop the
subscript ¢ in Nc, ;. and on various entities when there is no possibility of

confusion.
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Remark 2.3.1 Throughout all the proofs are given for &F)=/ydF, where 9 is
as in Assumption 1.1. Note that handling the case that &(F)=/Fdy where 9
is as in Assumption 1.1, is very similar. In the case that i is monotone
nonincreasing on R and constant on [Tw), we can reduce the problem to the
above case by writing &F)=-/-¢ dF. Hence all of the results hold for ye¥,
and @ of the form [ydF and [Fdy where FeF.

The following results hold under Assumption 1.1.
Theorem 2.3.1: With N defined in (2.1.6) and for each PeP,

(2.3.1) nalN — 1 as,
and
(23.2) E|ng'N - 1| — 0.

Theorem 2.3.2 (Risk efficiency): With N and R defined in (2.1.6) and
2.1.7),

(2.3.3) R*Ral——o 1.

Theorem 2.3.3 (Asymptotic distribution of N): Let h>1/2 and N as in
(2.1.6), then

(2.3.4) nl/ 2N - 125 No,x/(40%)
and
(2.3.5) N1/2 _ ni/2 24 N(0,7/(164%)

N _ s
where v = 6/ P%ldr2l -4/ H ll‘11‘“‘31 +/H 2dl‘41 - o,

Proof of Theorem 2.3.1: By definition of Nc’ lim N o 8.8, also if
0<c1<c2, we have
1/2,° -h - ~h
N 2 (afcy) oy + ND) > (afe)/¥ oy + NN,
¢ 1 ¢ 1

Hence by definition of Nc we obtain Nc > Nc a.s.. Thus Nc is nondecreasing
1 2

as ¢|0. From (1.1.13) and the Borel-Cantelli lemma, it follows that

{aﬁ: n21} is a strongly consistent estimator of % Since N 1w, as8.,



15
(2.3.6) od = as.
Recall that b = (a./c)l/ 2 By definition of N, we can write
- - . -h

boy $b(oy+ND)<N<b (o + (NP + 1.
So that on dividing all sides by n; and using (2.3.6) we get
OIN — 1, as..

The next lemma is very similar to Lemma 1 of Gardiner and Susarla

(1983) which gives a rate on the tail behavior of the stopping rule N which is
crucial for the proof of (2.3.2).

Lemma 2.3.1: For each O<e<1 and for any r<w,

(2.3.7) P[N<ny(1-¢)] = o(c{r1)/2(1+h)

and

(2.3.8) > P[N>n] = o(c{"1)/2),
n2n,(1+e)

Proof: Recall that ny® bo and n,= bl/ (1+h) Let n, = ny. = int(no(l-—e))
and ng = ng, = int(n0(1+c)). By definition of N, N2n,;, as.. For
sufficiently small ¢ we have n, <n,, and on the set [N5n2], nzban, for some
n €{n,,...,.n,}. Therefore, for small c,
P[N¢n,)] < P[. b'ln for some n €{n,,...,nn}]
< P[a <b 2n2 a for some né{n,,...,n,}]

< P[a2 <{(1 e) l)a for some ne{n,,...,ny}]
n
< 22P[|o' — o%|2¢(2~€) 0.
n=n,

Thus (1.1.13) and the usual integral approximation for sums yield
P[N<n,] < const. ]n2 X Tdx

— O( —(l'—l))
_ o(c(r-l)/2(l+h))‘
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To show (2.3.8), consider n2ng. Then on the set [N>n], we have that
k<b(:rk+ k_h), for all ke{nl,...,n}. For c¢ sufficiently small and n2ng,
P[N>1] ¢ Plo, > b7ln - o

IN

P[c;n— o> b-ln3 - b-lno - ngh]
P[;n— o> (1/2) ed]
P[|;7121— a2|> (1/4) (202].

IN

IN

The last relation holds because
2~ & = (0.~ 0) + 20(0 - 0)
> (1/4) 0% + oPe
> (1/4) 2o,
Therefore using an integral approximation for sums and similar arguments as
in the previous case leads to (2.3.8). This completes the proof of Lemma

23.1. o

Now we are ready to prove (2.3.2). Let 0<e<l, D = [n,<N<ny] and D
be the complement of the set D. Write

-1 -1 -1 1
Nno -1 = NnO [N$n2] + (Nno - l)[D] + Nno [N>n3] - [m

Note that N5n2, implies that Nna1 < 1-e. Hence

E|Nngl- 1| ¢ (1-¢) P[N<n,] + € + ng' SP [N>n] + P[D]
0 2 0 n2n

= O(c(r_l)/2(l+h)) + €+ nEIO(c(r_l)ﬂ) + o(1)
= o(1), since r>1 and ¢ is arbitrary.
This completes the proof of Theorem 2.3.1. 0o
Proof of Theorem 2.3.2 (Risk efficiency): Note that
R'Ry' = (2cnp) {a E(B- 0% + ¢ EN}
= (2¢) M {ang! E(8y- 6 + ¢ EN/nj}.
Thus the theorem will be proved once we establish

(2.3.9) lim a(eng) 'E(0- 6% = 1
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For this, clearly it suffices to show that

(2.3.10) lim a(eng) ™ E{(f5~ #%D]} = 1
and
(2.3.11) lim a(cag) 'E{(8y - O2[D]} = 0.

First consider (2.3.11). Note that by the maximal inequality for reverse
martingales, (1.1.8) and (1.1.10),

sup [ln(8, — 8)%l= O(1), s>0.
n15n5n2

Therefore by the Holder inequality, Lemma 1.1, Lemma 2.3.1 and similar

arguments as in the proof of Theorem 1.2 we get, for s>2 and 0<h<s-2,
n

. 9 2 . 9
Bl(Oy- 0°N<nj)} = B B{(8, 0){N=n])
|

n
2 R
£ {8, 2, P*/5N=n])
Il=ll1

I

n

(z E|6- 812} /3P SNen,))
n=n1

< {sup lln(8- HAM T o /P oNG))
n1$n$n2 n=n;

_ o1/ {2s(1+h)}y 0(0(3-1)2/{23(1+h)})
= o(cl/ 2), since 0<h<s-2.
Similar arguments yield
E{(0y- 0)%N>ngl} = ofc'/?).
Thus by last two rates, (2.3.11) is immediate. Note that for (2.3.10), it
suffices to show that, for some Co»
(2.3.12) {a(cno)_l{(bN— 0)2[D]}: 0<c<cy} is UL
and

(2.3.13) a(cno)'l(bN- 0012
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where x% denotes the chi square distribution with one degree of freedom.
Recall that a.(cno)'1 =bo ! = noa"2. For (2.3.12), it suffices to show that
for some s>1,

sup E{noa—2(bN - 0)2[D]}s<oo.

0<c<cy
Note that
207 2 -2 p 2
E{ngo (8- 8)“[DI}*¢ (ngo*)*(E max(8 - 6~}
n, <n<n
2 3
. *
(2.3.14) < const.(ngo 2)s{(E max |Tn|2s) + E max |rn|2s}

_ — *
where J = n 1ZIJ(Zi,Iii), and r_ is as in Theorem 1.1. Since J is a reverse

martingale, by the maximal inequality,

(2.3.15) E{ max ITnl28 = O(n2_s).
n2<11_<_n3
Now using Lemma 1.1, and the usual integral approximation for sums yield
* n
(2.3.16) E max |rn|2s$ 53 Elr:‘ll28
n2<n5n3 n=n,
[
< const.¥X n 28
n=n,
= O(ny %)
1-2
= O(ny ™).
Now consider the first term in the R.H.S. of (2.3.14). By (2.3.15),
(2.3.17) (ngo 2)® E( max |T_|%) = o(1).
n2<n5n3

Similarly for the second term in the R.H.S. of (2.3.14), using (2.3.16), we

obtain
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(2.3.18) (noa )SE max |r*|2s}= O(nl—s)
n,<n<ng
Since 8 can be taken greater than one, (2.3.17) and (2.3.18) imply

(2.3.12). As for (2.3.13), it follows from the fact that [n2<N5n3]-» 1, as.,
Anscombe's and Slutsky's Theorems, Corollary 1.1 and Theorem 1.2. 0o
Proof of the Theorem 2.3.3: By definition of Nc’
b(oy+ N D)SN<b(oy_+(N-1)D)+1.
By dividing all sides by n,, adding (-1) to all sides and multiplying each side
by n1/2, we get
1/2(0N/a -1)+o n1/2N—h< nl/z(N/n0 1)

< nO/ (o dN 171 +(N-1) n1/2/a +n,

By (3.2.1) and since h>1/2, the limiting distribution of no/ 2(N/n0— 1) i8 the

-1/2,

same as that of nl/2(aN/o - 1). From (1.1. 11) we obtain
0/ %oy - o) N, /(46D)
which is equivalent to
ng/2(on/o - )2 N(o,7 /(40"
which implies (2.3.4). By taking the square root transformation, we obtain
N1/2_ 0 /2 D, N0,y /(160%)

which completes the proof of Theorem 233. o




Chapter 3
Sequential fixed width confidence interval for functionals of the survival
curve under random censorship
3.1 Modd
Suppose a random sample of size n, {(Zi,éi): 1<i<n} has beén observed.
We wish to construct a confidence interval I for § = &F) = [ydF and
0 = [Fdy, of prescribed width 2d such that, asymptotically as n tends to
infinity, the coverage probability is at least (1-2a). We assume F, G €F and
1/)&‘1'1. Note that by Remark 2.3.1, it suffices to consider § = [YdF and 9 as
in Assumption 1.1.
Notice that for each n an appropriate estimator of @ is bn= / dzdfi‘n,
where i?n is the P-L estimator of F.
In the rest of this chapter all unspecified limits are considered as d tends
to zero. For a given positive real number d and o€(0,1/2), in view of (1.1.9),
let us take I = (6., §_+d) with n = ny defined by

(3.1.1) ng = inf {k21: k 2 a2 zi 02}
where z y is the upper 100y percentage point of the standard normal

distribution. Then we have

lim P [0€Ind] = 1-2a

and

. 2 -2 -2, _

lim {n4d“z "¢ °} = 1.
Since F and G are unknown, the specification of the "optimal" sample size in
(3.1.1) cannot be made. We are therefore led to construct a sequential
procedure in which the sample size is a positive integer valued random

variable N = Nd’ and the desired confidence interval for 4 is

20
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Iy = (bN—d, bN+d). Motivated by (3.1.1), we define the stopping time
N = Nd’ by

(3.1.2) Ny = inf {konyg: k 2 b(eZ + K))

where b=d_2z‘21 and h is a positive constant. Since N;>b Nah, a.s., we
may assume n1=n1d=b1/ (H'h). Note that g the optimal sample size, is
asymptotically equivalent to Dy = Doy =b02, that is, ndn6(1l — 1.

In the rest of this chapter we shall drop the subscript d in N 4 g’ Pod
and on various entities when there is no possibility of confusion. All
unspecified limits are considered as d tends to zero or b tends to infinity.

3.2 Main results of this chapter:
The following results hold under Assumption 1.1.
Theorem 3.2.1: For each positive real number h and F,GeF, (N,IN) is both

consistent and efficient. In fact we shall show that for each PeP,

(3.2.1) lim P[ely] = 1-2a

and

(3.2.2) lim E|Nng' - 1] = 0.
Theorem 2.2: Let h>1/2 and F, GeF, then

(3.2.3) nb/2(ag!N - 1) 2 NG,y /6%

or equivalently
E 3
(3.2.4) NY/2_ oll2 D, N0,y (a0t
*
where v is as in (1.1.12).
Proof of Theorem 3.2.1: By definition of Nd’ lim N d = ™ as. Furthermore
if 0<dl<d2, we have Ndlsz2 a.s., that is, Nd is nondecreasing as d

decreases.
Note that it follows from the representation (1.1.8) that { bn} is strongly

consistent estimator of § and we have seen in Chapter 2 that {0121} is a
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strongly consistent estimator of 02. Since N{w, a.s.,

bN — 0 as.,
and
(3.2.5) od = as.
From (3.1.1) and (3.1.2), and for d sufficiently small,

2 2 2 2 2 2
(3.2.6) 2,0 ¢dny <d” +2,0
and
-1 "2 - "2 -h

(3.2.7) bng' of < N/ng ¢ b gl { o, + (N-1)"}
whence (3.2.6), (3.2.7) together with (3.2.5) yield

d2n0 — zi o
and
(3.2.8) ng'N — 1 as.

To show (3.2.2), we need a rate on the tail behavior of the stopping time N ;.
Since the method of obtaining this rate is analogous to Lemma 2.3.1, we state
a similar lemma without proof.

Lemma 3.2.1: For each 0<e<1, and any r<m,

(3.2.9) P [N¢ng(1-¢)] = 0(a2(r1)/(1+h),

and

(3-2.10) £ P[N>n] = 0(d*())
n2n3

where n, = n,, = int(no(l-c)) and ng = ngy = int(n0(1+c)).

Now by (3.2.8) and Lemma 3.2.1 and arguments similar to those used in the
proof of the Theorem 2.3.1, (3.2.2) obtains. From representation (1.1.8),
Theorem 1.2, Anscombe's Theorem and (1.1.9), it follows that,

(3.2.11) N2, - 6) 24 N(0,0?)

from which we get
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Plfely] = Plly-d < 0 < O+ d]

(3.2.12) = PINY2|8- 0] < a N2,
Since d Nl/2_, 0z, 8.3., (3.2.12), (3.2.11) and Slutsky's theorem establish
(3.2.1). o
Proof of Theorem 3.2.2: From (3.1.1), (3.1.2) and similar arguments as the
one used in the proof of the Theorem 2.3.3, show that the asymptotic
distribution of ntl)/ 2(Nn61 — 1) is the same as that of n(I)/ 2(:71% - 02)/02, from
which (3.2.3) is immediate. Now (3.2.4) follows from (2.3.3) by square root
transformation, that is,

nd/ 22512 _ 1) B N0,y f(aot),

and the converse is similar. This completes the proof of Theorem 3.2.2. o



Chapter 4
Sequential fixed width confidence interval for a location parameter
under random censorship using M-estimation

4.1 Model

Let ¢ and Y be independent random variables and
(4.1.1) X=A+c¢ AcO
where © is an open subset of the real line R with compact closure.

The following notations will be used only in this chapter. Let
F(t) = P[e>t], G(t) = P[Y>t], Fp= F(--A), Hy= F5G, ¢,= W --4),

8 t
Ha(t) = = | GdF,, {X: i21} be iid rv's with the same distribution function
- ®

as X, {Y;: 21} be iid rv's, independent of {X;: i21}, with the same
distribution function as Y, and (1-F), (1-G) are continuous distribution
functions and all of the unspecified integrals are on the whole real line.

When dealing with survival time data, one can take X,'s to be log;, or
In of the survival times. The problem considered in this chapter is the
sequential interval estimation of A using M-estimation based on {(Zi,éi): i>1}
where Z.= min(X,,Y;) and &= [X<Y;].

Let F, be the P-L estimator based on {(Z;,6;): 1<i<n}. An M-estimator
of A is defined as the solution in t of
(4.1.2) A () = [¥x-t)dF(x) = 0
for some given function 9. In the absence of censorship, if
Yx,A) = —gzlog f(x—i;)lt= A Where f i3 the density of the measure induced by
X on R with respect to the Lebesgue measure, then the solution to (4.1.2), is
the Maximum Likelihood Estimate (MLE). Huber (1964) proposed
M-estimation as a generalization of (MLE), with desirable robustness

properties. Two important examples which are mostly used for the problem of

24
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locating the center of a symmetric distribution, say A, are the Huber

M-estimate by taking Huber ¢ function defined by

(4.1.3) ¥(x) = {(-TVx)AT}
where T is a positive constant and Tukey's biweight
(4.1.4) #x) = x(1-A)? [|x|<1)

in which case the defining equation becomes
J¥(x—)dF 5 (x) = 0.

In practice it is usually necessary to estimate the scale parameter of the
underlying distribution, but this will not be considered in this thesis.
4.2 Assumptions and some preliminary results:
Assumption (Al): F is symmetric about zero and F,G are continuous.
Assumption (A2): Let M and T be constants such that |A|<M, for all A€©,
G(T+M)>0 and F(T)>0. Let ¥ be a monotone nondecreasing, continuous,
skew symmetric function and has two continuous bounded derivatives 1/)', ¢"
on (-T,T) and 9 is constant on {x: x>T}u{x: x<-T}.
Assumption (A3): 7= [ ¢'dF # 0.
Assumption (A4): t = A, is an isolated root of the equation
(4.2.1) Ap(t) = Jx—t)dF 5(x) = 0.
Remark 4.2.1: For nondecreasing ¥, An may be written as

A = 1/2 (sup{t: A (t)<0} + inf{t: A_(t)>0}).

The next lemma is similar to Lemma 7.2.A of Serfling (1980) which has
been considered for the case of no censoring. Now we are following the same
lines of proof to get similar results in the presence of censorship.

Lemma 4.2.1: Under Assumptions (A2) and (A4), a sequence of solutions
{An} to the equation (4.1.2) exists and converges to A, a.s..

Proof: Let ¢ be a given positive real number and An as in Remark 4.2.1.
Then Ap(A-€)<0<Ap(A+e). We will show that A (t)—AR(t), as., for each
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t for which |t|<M. Assumption (A2) and integration by parts yields
| THx-0)dF(x) = [Hx-F o) = |[(Fy(x) = FA(x)) diix-1)].
Note that, for any c<rHA,
sup|F_(t) — F(t)|— 0, as..
t<c

Thus for all t such that |t|<M, we conclude that A (t) — Ap(t), as..
Therefore

P[A-¢<A_<Atg 1.0] = P[A (A-€)<0 and A_(A+€)20; i.0] = 1
where i.o. stands for infinitly often. Since ¢ is arbitrary,

An—» A as. o
Lemma 4.2.2: Under Assumption (A2) and for {T } a sequence of random
variables such that |Tn|$M, as., and T — A, as., where M is as in
Assumption (A2),
(4.2.2) J#x=T )dF _(x)—]$(x-A)dF 5 (x), 8.
Proof: Using the triangle inequatity, Taylor's expansion and integration by
parts we have
| /#x-T,)dF, (x) — [¥{x-A)dF p(x)|

< THT)A(Fy(x) = FA())|+|/{#(x-0) = $xT,)}dF ()]

= [(F () - FAGOMYX-T )| + |[(T,-A) (T, )dF A(x)
where ’?‘n is between T and A and qb'(x—'?‘n) = th W(x-t)| t=;n' Since 9,
w'are bounded, Tn — A, as., and
supMuC*n(x) ~Fp()|— 0 as,

x<T+
the lemma is immediate. o

Remark 4.2.3 The results of our previous chapters which are given for life

times (nonnegative random variables) with or without the restriction of T<7,
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can be extended to the case of any random variable with similar restrictions
on the distributions (1-F), (1-G) and the function .
Theorem 4.2.1: Suppose Assumptions (A1) through (A4) hold and let An be
a solution sequence of (4.1.2), then
al/%(A - ) 24 N(,02)
where
N

(4.2.4) 0% = 0a(F,G) = 72[A] Hx® dH,
and

[

t
Proof: Since y is differentiable, so is the function

where din is the jump of the P-L estimator at Z. Therefore we have
A a . . , N .
J¥x-B )dF (x) = [#(x-D)MF,(0) = [(Ag- A)Y (x-A,)dF,(x)
N . , N
where |A_— A|<|A - A] and ¢ (x-A ) = 52 Wxt)|,_% . Since
n

,\n([ln) == AF(A) = 0, integration by parts and some algebra yield
oV/2A - 8) = 5,7 2 - F a4
-11/2
= % !/ (% 40)

where ¥ = f¢'(x—Zn)dﬁ‘n(x) and L = [(F - Fp)dy,.

Recall the representation (1.1.8) and note that under Assumptions (A2)
and (A3) and similar arguments as is used in the proof of Lemma 4.2.2 yield
S}n—o 7, a.8., and [&yn#o]—a 1, a.8.. Thus by Slutsky's Theorem (4.2.3) is
achieved. 0o
Remark 4.2.2: Under the Assumption (Al), A is the median of (1-F).
Gardiner, Susarla and van Ryzin (1985a) estimated A by the sample median,
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m = ﬁ;1(1/2) = inf{t: ﬁ‘n(t)51/2} which is shown to have the following
properties:

(i) For each positive constant s,

(4.2.5) Im - All, = 0(!/?)

(ii) If F A has a density f A and is positive at A, then

(4.2.6) o!/%m - ) 24 No,Co(8)/(4 13(0)))

t N
where Cp(t) = | Hp°dH,. Also they have suggested the use of
¢ ¢
~ A2 -~ .
C,(m)/(4f (m)) as an estimator of C A(A)/(4fz2§(A))’ where
5] -
C,(t) =( _ojo £I]{n+1/n)-2dHn, and f is a suitable estimator of the density fp

In this chapter our results do not require the existence of a density.
However we use m = ﬁ‘;l(l/2), as a preliminary estimate of A in the
estimation of the asymptotic variance o2, Let

2 e (=222
(4.2.7) o (m) = (f¢ (x—m)an(x)) JALdC

where

At) = {”ﬁn(s)dw(s-él).

Remark 4.2.3 In the absence of the censoring, Carroll (1978) has an almost
sure expansion for M-estimates. In his paper he states that for (4.2.7) to be
a consistent estimate of az, we need F to be symmetric and 9 skew
symmetric. Reid (1981) calculated the influence curve for Kaplan—Meier
M-estimate and has found the above asymptotic normality by the influence
function approach.
4.3 Sequential fixed width confidence interval for the location parameter A

In the rest of this chapter all the limits are considered as d tends to
zero. In view of (4.2.3), for a given positive real number d and o€(0,1/2)
we take I = (An-d, z&n+d) with n = n, defined by
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(4.3.1) ng = inf{k2l: k2 b ag }
where b = d~ zz Then we have
lim P[A€l ] = 1-2a
and
lim {nb—loz2} =
Since F, G and A are unknown, the specification of the "optimal" sample size
in (4.3.1) cannot be made. We are therefore led naturally to construct a
sequential procedure in which the sample size is a stopping time N = N d
(4.3.2) Ny = inf{ken;: k 2 b(oP(m)+k 1))
where n, is as in (3.1.2) and ;2(;11) is given by (4.2.7).
Before we present the properties of the above sequential procedure and
the stopping time, we provide some preliminary results.
The following lemma is stated in Sriram (1987).
Lemma 4.3.1 (Lemma 1 of Sriram (1987)): Let U , V be any sequence of
random variables and a, b # 0 and 8>0 be real numbers. If
P[|U_-a|2¢] = O(n7®) = P[|V-b|2¢], for every >0,

then
P[|U,/V - a/b|2] = O(n™), for every e>0.

Now we shall show that for each positive ¢ and some r>1,
(4.3.3) P[|o2(m) - 02| 2 { = O@™).
Note that by Lemma 4.3.1 and the Assumption (A3), it suffices to show that
(4.3.4) P[|/# (x-m)dF(x) - 7] 2 d = O(n™)
and
(4.3.5) P[|/AZdC - [A2H A2dH Al 2 €] =00

First consider (4.3.4). By Taylor's expansion
I (x-m)dF (x) = [¥ (x-A)dF (x) + (m-2)/9 (x-A )dF (x)
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where Z\n is between A and m Now by the above expansion, Assumption
(A2) and integration by parts we have

E| /9 (x-m)dF (x) - 7/%'< const.{E|m-A| X+ JE|F - F,|¥dy (x-4)}.
Now by (4.2.5), the representation (1.1.8), Lemma 1.1 and Marcinkiewicz—
Zygmund inequality we have

E| /% (x-m)dF (x) - 7|* = o@™)
which, by Markov's inequality, implies (4.3.4). A similar calculation to that
done in the proof of Theorem 1.4, which is shown in Appendix A, and
consideration of the extension explained in Remark 4.2.3, leads to (4.3.5).
This completes the proof of (4.3.3).
Recall that ng, the "optimal" sample size, is asymptotically equivalent to

Dy = Ngq = bag. In the following, whenever there is no possibility of
confusion, the subscript d of Nd’ ny and no4 will be dropped. Now we state
the main results of this chapter.
Theorem 4.3.1 Under Assumptions (A1) through (A4) and for h>0, (N,Iy) is
both consistent and efficient, that is, for each A€e© and Pe€P,

(4.3.6) lim P[A€ly] = 1-2a
and
(4.3.7) lim E|N ng' -~ 1] =0

Proof: Note that by definition of Nd’ N 4 — o as. Furthermore it can be
gshown that N d is nondecreasing as d decreases (see Chapter 2 or 3 for similar
arguments). Therefore by Lemma 4.2.1,

AN — A, as.,
and (4.3.3) together with Borel-Cantelli lemma yield
:71% (1;1) — aZ, a.s..
From the definition of N and n, and arguments similar to those in Chapter
3 we obtain, for d sufficiently small,
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(4.3.8) iy N—1 as,

and

(4.3.9) d? ng — zi aZ

Note that, as in Chapter 3, for showing (4.3.6) we need to show that
(4.3.10) N2(Ag- 8) 24 No,03).

Recall that

NY2 (A 2) = BTN Ly (ol
and

— (T = -1 *
where J 5 and ry A are the same as J and r , given by (1.1.4) and Theorem
1.1, respectively when F is replaced by F A Now write

%

- _ _ * _

- TN T p - Gy ) N2 T AN

where
TN = NTIEIA(Z,,8).

Therefore by (1.1.8), Anscombe and Slutsky's Theorems, (4.3.10) is immediate
and so is (4.3.6). To show (4.3.7) we need similar rates as the one given in
Lemma 3.2.1. Note that all we need to get such rates is (4.3.3). Hence,
following the same lines of proof of Lemma 3.2.1 and Theorem 3.2.1, we
obtain (4.3.7) which completes the proof of Theorem 4.3.1. o
Remark 4.3.1 The asymptotic normality of the stopping time N g can be
obtained by arguments similar to those given earlier in Chapters 2 & 3 but
obtaining the exact form of the asymptotic variance is an-immersely tedious

calculation. Thus one can establish
1/2 - D
nl/2(N, ng'- 1) 2 N(0,9
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and
NY/% n}/2 D Neo,a/e)
but the exact computation of § is difficult.



APPENDICES
Appendix A

The almost sure representation and the asymptotic distribution

of the estimator of the asymptotic variance of the estimator

of functionals of the form &F)=/ydF and &F)=/Fdy, of survival

curve F under random censorship

We shall present here the proof of Theorem 1.3. To the best of our
knowledge this is a new result. In the sequel ¢€\I’1 and all the limits are
considered a8 n tends to infinity. Note that by Remark 2.3.1, it suffices to
consider 9 as in Assumption 1.1. Recall that

t . .
Iyi(t) = [ AWdC, t 20, i,j =1,2,3,4,
0

t N
K(t) = 1 + £ [Z>t], C(t) = | H 2dH, t<r,
0

A(t) = [ Fdy, A (t) = J F;‘ndw, 0<t <o

t,o t,0

and
"9 22,27 2 2.2 .
o, = JAn°K dH , o° = JA“H “dH.
Proof of Theorem 1.3:
To simplify notation let ¢ = 112AnzK-2 and ¢ = A2 B2, We write
- N N
w202 - o) = '/2(jp dH, - foiH )
1/2 N S ] IS ]
= 0/ {[(py~ ©)d(H - H) + [(p- ¢)dH + [pd(H - H)}
(A1) = /% D+ D,+ Dy ), say.

Note that
Y= P = (tp,ll/ 2 Y2y g 2(40,11/ 2_ 1
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o2 M2 = ik (A - A) + A@KT- HY)

= HY(A- A) + A@K™- B + (A~ Ak - HT)
=B, + Rn,l

1 - 1 -1
where B = H'(A - A) + A(nK™'- H™) and Ry ;= (A~ A)K - H™).

Therefore

2 -1
Y- = (Bn+ Rn,l) + 2AH (Bn+ Rn,l)'

We simplify to get

(A.2)

where

¢~ ¢ = 2AH2{(A - A) - AH(H - H)} + Ry,

_ 2 -1 2,.-3 p N U [ |
Ry 9= (By+ Ry )+ 2AH R+ 2A°H “(H - H) - 2A°H (H - nK™).

Therefore

Note that

and

it follows from (A.1) and (A.2) that

-1 o
D, = 2/(A~ Ay, - 2fH Y(H - H)dly + [R  ,dH

we can rewrite U1 and U2 as

U= J{ (F,- F)dg}dry,

= o l2/A%H (2> ] - H) dH
= n'S/H {(Z,>+] - H} dTy,.

Recall the representation (1.1.5). We rewrite U, as

where

U1 = U3 + Rn,4

Uy= 17 5{] €2, b)),
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and

Q@
Ry 4= I(] ryFd¢)dry,

and r_ is as in (1.1.5). Hence

n1/2(;712l - 62) = 2111/2U3 - 2n1/2U2
(A.3) + 0 V28 (A%z)n 4 (2)6- o) + 0/R
where Rn,5= D, + R7,3 + 2 Rn,4' Ai;;er some alg/ebra on (A.3) we get

1/2,°2 2, -1/2 1/2

n (an—a)-n IV, +n Rn,5
where

11 Wi

(4
W, = J{] &(2;,8:8)F(s)dg(s)}dT) )

and

2 -2 -1 0

Wig = A%Z)H %(2))5- 2JH 7[Z;>-]dly; + o

Under assumptions of Theorem 1.3, {V;: i21} is a sequence of bounded iid rv's
with mean

EV

= EW = EWI,2 = 0.

1 1,1
To obtain the almost sure representation of 02 we need to show that
n1/2Rn’5 — 0 as.,
3

in addition if we show that the variance of V,is 7, then (1.1.11) will be
achieved by the central limit theorem. First we compute the variance of Vl'
Let (Z,9), V, W1 and W2 be copies of (Z1,61), Vl’ Wl,1 and Wl’2
respectively, then
(A4)  Var V = EQW+ Wy)? = 4EW? + EW2 + 4EW, W,

In the following we use repeatedly the Fubini Theorem, integrations by
parts and the identities
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] t
(fedf)? = 27g(0)] gdH)dH(),

Eg(Z) = [ed(-H)

and
N
E{g(Z)s} = [gdH.
Now we are ready to compute Ewg. Since W2 has mean zero,
E{A%(2)H X(2,)6- 2/H 1 [Z,>-]dT,)} = - o
Therefore
EW2 = E{A*@)H(2)8) + 4E(/H (2> ]dr,,)°
— sE{AX ) H Y 2)5/H 7 Z> T, ) - ot
Note that
8
E(/H}(Z>-]dT,,)? = 2E{(J( ! H[2> -JdTy, )H ) (8)[Z>]dTy, (5)}
- 2/(6'fl‘ldr2l)dr21
= 2fH71(J dr,,)dT,,
and

L _ _ a0
E(A%2)HX(2)s/H (2> 1dTy,} = [H7L(J dTy))dT,,.
We simplify to obtain

2 -2 -1,,” 4
(A.5) EW, = [H “dly; + 4/H (] dTy)dly, - o".

To simplify notation, throughout £(Z,6;t) will be abbreviated to &(t).
Since E£(8)é(v) = C(sAv) for s,v<r,

EW? = E(J] §6)F(s) du(s)r;)?

) t o
= 2B{/((] Py (| (Pay)ry, ()T, (1)

© t o
= 2/{J F@{] 1 CloAvFv)dn)}dr, ()} du()}ary 1)
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Now consider the most inner integral on two sets [s<v], [s>v] and note that

on the set [s<v], u<t<s<v. Hence

EW2= 2 {“Acw;}rn(t)dru(t)

® t 8
+ 2]{{ F(s){(j) {‘{ Cth/)}dI‘u(u)}dtp(s)}dl‘ll(t).
Integration by parts on the inner integral of the second term on the R.H.S. of
the last equation yields
2 _ ® 2
Now integration by parts on the middle term of the R.H.S. of the last
equation gives
(A.6) EW] = /(2,3 + Tpp)dly,.
Now we consider EW1W2.
@
EW,W,= E{A%2)H%(2)é/{] C(ZAs)F(s)dy(s)}dT,}

- E(W @ @)1 Favjary)
- 2E(J[ C(ZAS)F(s)dw(s)dr [H (2> 1dT,,}
+ 2E(HLZ){J ;F(S)dtl’(S)}dI‘ll}!H-I[Z> ‘Jdly; }

(A.7) = E{Ql" Q2" 2Q3+ 2Q4}a say.
To compute EQ,, consider Q; on the two sets [Z<s] and [Z>s]. Therefore, by

Fubini Theorem
EQ, = [{] B(CEZ)AXDH X(2)A2<])F(e)dgs)dry )
+ [ EAX R 2 (2) 8258} Co)F (s)du(s)}dT
= (1/2)J(J Tp,Fdy)dr, + f{fca)(fdrm)F(s)dw(s)}drl1-

Similar arguments yield
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EQ, = [{ EAX2)H @) 425 F(s)due)}dr,
= {7 Eary FEeweary,
Similar arguments as is used in the computation of EQ1 yield
EQy = E(/] CZ)[Z<IFE)We)r, ) (/B (2> 1dry))
+ E (/] C(s)[Z>8]F(s)dW(s)dr;)(/H[Z>]dTy,))

- um{ésn'l(u){z Cd(-H)}dT'y, (u)}F(s)dy(s)dl'}

L o
+ 1] C(s){ {) H™'(u)H(sVu)dT'y, (u)}F(s)dy(s) dT.
We consider the last term in the last equation on two sets [s<u] and [s>u]

and simplify to obtain

BQg= {J{] B u)C(u)R(u)-ClH(e)+] HACHIT, () FMW}aT,
+ I CEH() (])SH—ldI‘m}F(s)dw(s)dI‘u

+ J1[ GO ary Flo)ags)}ar,
Finally, similar but simpler arguments yield
EQ,= E(/{/ dz<sH(2)F(s)dw(s)}dT,)(/H (2> 1dT))
K (I)SH_I(u){ l]lsH—ld?I}dI‘m}F(s)d¢(s)}dl‘l1.
By substituting EQ, through EQ, in (A.7) we obtain

EW,W, = -/ { éstI‘m}F(s)dgl;(s)dI‘u
(A.8) ~ 11 CG) gde‘m}F(s)dw(s)dI‘u

o 8
-1 H l4r,, JF(s)dy(s)dr, .
Now substitution of(A.5), (A.6) and (A.8) in (A.4) and some algebra yield

_arp 2 -1 -2 4
EV = 6/T,7dly, — 4/H T;,dly, + [H“dT,, - o".
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We need the following lemma to obtain the almost sure representation of
al/2(2 - ).

Lemma A.1: Under Assumption 1.1, for continuous F, G, T<r and a<1/2,

(i) n%lH - H| -0 as,
a N N
(i) n®H, - H| -0 as,
(iii) 0%k - YT 0 as,
(iv) n®F - FI] — 0 as,
(v) n%A - Al] =0 as.
where || - || denotes the sup norm and || - ll'g means the sup is taken over

the closed interval [0,T].

Proof: (i) and (ii) follow from Glivenko—Cantelli Theorem. Let ¢>0. Since
H is monotone nonincreasing and H(T)>0, (iii) also follow from
Glivenko—Cantelli Theorem. (iv) follows from Theorem 2 of Shorack and
Wellner (1986) page 308. To show (v) note that

® v " T
%A - AT = 0% (F - F)dyllg < const.[n®(F~ F)[I3.
Hence (v) is implied by (iv). This completes the proof of the lemma. o
Recall that Rn,5 = D+ Rn,3+ 2Rn,4' We shall show that

(a) nl/ 2D1 — 0, as.,
(b) n1/ 2Rn,3 — 0, as,,
(c) nl/ 2Rn,4 — 0, as..

Now recall the representation (A.2) of (¢n- ¢). To show (a) holds, we
shall show that each term has such a property. Consider the first term, we

want to show that
N N
nl/22AH2(A_— A)A(H_ - H) — 0, as.
This follows from Assumption 1.1, Lemma A.l (ii) and (v) and similar

arguments as are used in the proof of Lemma 2 of Lo and Singh (1986). All



40

other terms can be handled similarly. By similar arguments, it can be shown

that (b) holds. ‘To show (c) holds note that R , = J{ {1 Fdy} dr,,, where
r, is a8 in (1.1.5). Therefore it easily follows, from Lemma 1.1, that
ol2R 0, as.
Thus we have the almost sure representation of 3121 and by the CLT (1.1.11)
follows. o
Appendix B
Rate of convergence of the estimator of the
asymptotic variance, o= / Azﬂ_zd?l

In this section we shall present the proof of Theorem 1.4. We shall
show that for each ¢>0, and r<w, (1.1.13) holds. Note that it suffices to
prove the theorem for r>1.

The following arguments are very similar to that of Gardiner and Susarla
(1983) Appendix A, except we are giving a shorter proof using the
representation (1.1.5) and Lemma 1.1.

Proof of Theorem 1.4: Let us write
o o= [aKY(AZ- AD)H_+ [A%nZK2- W OAH, + [AZHZd(H - H)
= Tn,l + Tn,2 + Tn,3’ say.
First we examine Tn,2‘ Since K =1 + an,
B2 072k? = B2 (H_+ o))
= -n"%- 207 'H - (H - H)>- 207 (H - H) - 2H(H - H)

so that on substitution we have

5
(B.1) Tyl < jEIITnﬂjl.

To handle the terms in (B.1) we shall use the following result for Binomial

moments.
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Lemma B.1: Let U be a Binomial random variable with parameters (n,p).
Then for any k > 1

E(1 + U ¥ <k (op)” K
Proof: See Koul, Susarla and van Ryzin (1981), Moment Lemma, Page 1283.
o

Recall that

5]
T, =/A% (0K 20 2){-0" 220~ B(H -H)?-207) (H _-H)-2H(H_-H)}dH.
We want to compute the rth moment of Tn o for r>1. Consider the Tn 21
term. Note that
I | 2 -2 -2
Tn,21 = TEAY(Z,)H (Z)K “(Z,).
Therefore
E|T. o |F ¢ n7'% E{6A%(2,)H 2 (Z,)K2(Z.)}
n,21! = i i i i’t:

In the following E, stands for a conditional expectation given (Z,6), and
all ¢;'s are constants may depend only on r. Note that given (Zj,6j),
(K(Zj)-l) is the sum of (n-1) Bernoulli random variables with probability of
success of H(Zj). Thus it follows, from Lemma B.1, that

E|T, 91" ¢ en {E(AT()H N (2E, (K ¥ (2)})

< E(AT@H T (2)(nH(2)) )

n,21

N
= cn AT H 44N,
Under Assumption 1.1 and for F, GeF, it follows that the last integral is

finite. Hence

-2
(B.2) E|Tn,211’ = O(n”“N.
Exactly in similar manner we can bound E|T, ,o| and show that
(B.3) E|Tn’22|r = O(n™).
Recall that

023 = -0 e 2A%H 2 - B)))(2)- 5,
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Thus

E|T < cE{(n’k2A%H%(H - B))'(2)- 8}
= B AZHIE, {(H - B)ZK ).
By the Holder inequality, for p>1 and q = (1 - 1/p)—1,

E {(H,- B*K ™} ¢ Elfp(x'm)El{

Hence by Lemma B.1 and an application of the Marcinkiewicz—Zygmund

' r
n,23

q
(|H,~ H|%),

inequality yields

N
E|T, " ¢ ¢, 2" [H Z AT (uH) Z (o™ Fn)!/ %1
which implies
(B.4) E|Tn,23|r = O(n™Y).
Similarly for
Tpo4 = ~2S(K2A%H%(H - H))(Z,)-6,
and
Tpo5 = ~20 e’k A% (1 - H))(Z)- 6,
it can be shown that
2
(B.5) E|T, 541" = 073
and
2
(B.6) E|T, o5 T = o™
From (B.2) through (B.6) we conclude that
(B.7) ElTn,2|2r = o).

N
Now we consider the term T_, = [n’K %(A%- A®)dH_. Note that by
Cauchy-Schwarz inequality we have
2,2 _ 2
AZ- A2 = (A- A + 2A(A- A)
[ ] - 0 -~
= ( F Y% - FFY2ap)? + 2A(] (F- F)dy)

< (I F2F - F)2Rdy)([ Fdy) + 2A(J (F - F)dv).
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Therefore

251020 2 v 2 o 25201 (% ad
|Tn,1|s|jn AK “(] F “(F - F) qup)dHn|+2|]n AK “(J (F - F)dy)dH_|.
Integration by parts on last two integrals yields

D T, S AN, S 2 c 9, 9 N -
|Tn,1| <ce I (j) n“AK“dH )F~“(F - F)“Fdy|+2c| ]((]) n°AK™“dH_)(F - F)dy|

= c5|Tn,11| + 2c6|Tn,12|’ say.
Since Tn’11 and Tn’12 are very similar, we just show that
E|Tn,12|2r= o(™).
Note that
ITy 1ol € E®F(F - F)] (j)'n2AK'2d§n}
where E(®) ig the integral on [0,0) with respect to Fdy.
Then by the Holder inequality, for r>1,

E®{F(F - F)| j'n"’AK""dﬁn}
0

IN

(E(n){ | F_I(I:\n_ F) I {)D2AK—2d§n}r)l/r{E(n)(l)}l_l/r

IN

-1, " OF Ty —2r 1)
¢ EO|FY(F - F)|r(]) nZATK2'dH ).

Hence

IN

2 -1,7 21, 41, 2r,,—4r .
E|T, | e ED(F(F - )] r(j)nrA KHaH, )

where Ein) =E® E(n). Let p—1+ q_l = 1 and p>1. By the Holder
inequality

. . N

0
- . N
< {Egn)IF_l(Fn— F)|2rp}l/p{E£n) i ndr Aer—4rdHn}q}1/q.
0

We shall show that the second term in the R.H.S. of the last inequality is

finite and the first term is of order O(n""), r>1. Recall the representation
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. N
(1.1.5) and Lemma 1.1. First we show that E{™){ ! a#fAZKgH )<,
N N
: " 4qr , 2qry—4
Ein){ {) n4rA2rK—4rdHn}q < csEin){ 6 pdar 2ary qrdHn}
. N
< cgE{/ n*TAZIKgH }A(0)
0
= ¢ e E5A%YZ)K1Y(2,))
= ¢gMIE{AZY(Z)E K *19(2)}
N
< ¢;p/ATIHYH < o
Now by the Marcinkiewicz-Zygmund inequality and (1.1.7), it follows that
B |F (- B)PP = o),

Since p>1,

E|Tn 1ol = O(@™).
Similarly

E|'rn 11l = o@™).
Therefore
(B.8) E|T, 2r| = O(n_r)

Finally, note that T n3 = ]A2H"2d(H H) is an average of n iid mean
zero bounded random variables. Thus an application of the Marcinkiewicz—
Zygmund inequality yields

(B.9) E|Tn?;| = 0(@™), r>1.

Therefore (B.7), (B.8), (B.9) and Markov's inequality imply (1.1.13). o
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