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ABSTRACT

A FINITE ELEMENT ANALYSIS OF PLATED BONES

BY

Michael Hart Schwartz

In an effort to study the mechanics of plated bones, a

finite element model was created and verified through a

process of mesh refinement. A series of load cases and

material property modifications were analyzed in order to

demonstrate the model's capabilities. Increasing plate

stiffness resulted in shunting of stress away from the bone

and into the plate. It was found that the load bearing role

of the fasteners reversed under a reversal of applied load.

Finally, it was found that for plates with a small Young's

modulus, the bone underwent a rotation about its axis due to

fastener pattern asymmetry. Results are displayed in the

form of line graphs and stress plots, and recommendations

for future modelling considerations are made.
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I . INTRODUCTION

Long bones are the elements of the skeletal system

designed to supply the majority of the support for the body.

They consist of two architecturally distinct parts, a hollow

shaft (diaphysis) comprised of compact bone, and two ends

(epiphyses) consisting of a spongy (cancellous) bone

interior covered with a thin layer of compact bone. It is

the compact bone in the diaphysis which is responsible for

the strength of the entire bone; therefore, the integrity

of the diaphysis is imperitive for normal function.

Occasionaly, whether through accident, or surgical

procedure, a diaphyseal fracture may occur. In this event,

the objectives for treatment are twofold. First and

foremost, active function of the joints of the part must

take place. Secondly, the sight of the fracture and its

surrounding areas must heal in. a manner so that their

original strength is returned. Unfortunately, these two

goals tend to be counteractive. In general, the

immobilization required for union to occur causes

osteopenias of the bone characterized by a thinning of the

cortical layer and an increase in the diameter of the

haversian canals.

In order to facilitate both of the goals of healing,

the use of internal bone plating was developed and advanced

in the early and mid 1940'S (Horowitz,Key,Murray)(13'14'19).

By securing a plate across the osteotomy, the sight is fixed

1
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thus allowing the bone to withstand the stresses and strains

associated with re-mobilization of the limb while still

maintaining close proximity of the fragments at the

osteotomy.

Internal bone plates do not, however, provide a

complete solution to the problem. If the plate is too

rigid, stress is shunted away from the bone, through the

plate, and the tissues around the osteotomy atrophy and

become weak. If the plate is too flexible, motion occurs at

the osteotomy and poor reduction of the fracture follows,

again resulting in a weak structure. Bones fixed by

flexible plates have the additional problem that they run a

high risk of failure by means of plate fracture or fastener

pullout.

In order to investigate these phenonena, analytical

models have been developed which can yield the stress and

displacement fields of the plate and bone, thus allowing

conclusions to be drawn about the effectiveness of different

designs without the need for costly and time consuming

experiments. While early researchers employed composite

beam theory for this end, advances in digital computers and

new software resulted in the widespread use of the finite

element method as a means for accurately predicting the

mechanical response of plated fractures.

The following paper describes research to develop a

finite element model of a plated long bone. A verification

process will be documented for each model, from the one
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dimensional strength of materials solution to the final

finite element mesh. Finally, the results obtained from a

series of load configurations and variations of material

properties will be displayed and the pertinence to possible

design or operative modifications as well as Wolff's law

will be discussed.



II. SURVEY OF LITERATURE

In 1892, Julius Wolff(36) proposed a set of hypotheses

based. on. experimental observation 'which stated, that the

architecture of bone is determined in some way by the stress

field to which it is subjected. Since that time, a great

deal of effort has been put forth by the scientific

community to study the results and ramifications of what are

commonly known as Wolff's laws. One example of this is a

1979 study by Goodship and associatesuzl in which

unilateral ulnar ostectomies were performed on young pigs in

order to cause an increased stress level in the adjacent

radius. The animals were sacrificed after three months and

cross sections of the radii were taken. It was discovered

that in the affected radius, the total area of the bone as

well as the area enclosed by the periosteal perimeter

increased by a factor of two over the contralateral limb.

It was also found that the total area of the hypertrophied

radius approached the area of the ulna and radius combined

of the contralateral leg.

Another example of the implications of Wolff's laws is

shown in a 1973 study by Uhtoff and Jaworskimz) which

examined the effect of non-traumatic immobilization of

beagle forelimbs. The results of the study showed that bone

responded to a dramatic decrease in stress in three stages.

During the first six weeks, there was a steady loss of bone

mass up to 16 %. The next two to four weeks were
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characterized by rapid remodelling of the bone up to 10 % of

its original mass. In the final stage, the bone underwent

slow but persistant loss of bone up to thirty two weeks post

immobilization at which time a total of 30 - 50 % of the the

total bone mass was absent.

In 1941, C.R. Murrayug) introduced internal fixation

of bones using steel plates as a method of treatment for non

union fractures of long bones citing their ability to

accomplish

"...ear1y reduction with a minimum of violence to bone and

soft. parts, supplemented. by 'measures. designed to reduce

pathological reaction in the tissues, as rigid a fixation of

the bone fragments as is possible and the institution of

active function in all the joints of the part as soon after

injury as possible.".

He went on to state reasons why pins and wires,

traction-suspension and pin-plaster techniques fail to

satisfy these conditions. Further work was done in this

area by Horwitz (1945)(13) and Key (1945)(14) who described

in detail the operative procedures necessary as well as some

qualitative post operative data such as time required before

weight bearing could occur. In both of these papers, the

authors cited the possibility of infection, the difficulty

of the operation, difficulty of removal and the possibility

of non-union of the fracture as the primary shortcomings of

the procedure.

As mentioned above, the early works on bone plating

described only qualitative results and operative techniques,

however, Rahn (1971)(21) was succesful in demonstrating that
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primary bone healing, that is, healing not due to a spanning

callus, can in fact be accomplished with the use of steel

plates. In this study, adult male rabbit tibiae were

osteotomized. with. a. 100 micrometer' saw then fixed. with

plates. The animals were then sacrificed at times ranging

from three to nine weeks and longitudinal sections of the

tibiae were taken. Rahn stated that the observed

remodelling of the Haversian spaces at the site adjacent to

the plate, the formation of an interposed layer of tissue at

the cortex opposite the plate and the absence of any sub-

periosteal callus were evidence of primary healing.

In the late 1960's, concern began to arise about the

possible weakening of the healed bone resulting from the use

of internal fixation plates with large bending stiffnesses.

In 1969, Perren et. al.(20) theorized that reduction of

mechanical strain due to excessively rigid internal fixation

was the primary cause of spontaneous refracture of bones

upon removal of plates.

Cochran‘lo) measured these strains in plated and

unplated bones subjected to physiological loads. Dog femurs

were mounted on a special testing apparatus and loads were

applied to specimens with and without attached plates.

Strains along the bone were collected for over 1000 loading

trials. Cochran found that fixing a plate to the bone

caused a mean reduction of strain in the bone of up to 45 %,

including an 84 % reduction in the region directly beneath

the plate.
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Prompted by the works of Perrin and Cochran and their

study of Wolff's laws, interest in the side effects of rigid

internal fixation. grew. 131 1971, Uhtoff‘ and Dubuc‘31)

published. the results of a Study in 'which they firmly

concluded that cortical thinning and subsequent weakening of

the bone are a direct result of the stress shunting effected

by the application of a rigid plate.

The study consisted of osteotomizing dog femurs, fixing

rigid plates to them and examining the healing process at

regular intervals from two to twenty four weeks. Careful

examination revealed three primary characteristics. The

first of these was the discovery that osteopenia had occured

in the bone and was most pronounced directly beneath the

plate. The second was that a reduction in the diameter of

the bone had occured and that this reduction was caused by

periosteal resorption. Finally, it was found that there was

a persistance of woven bone at the osteotomy implying that

normal remodelling of the cortical bone had not occured.

All these characteristics increased. with time, and

diminished upon the removal of the plate, and all were

similar to~ the results observed in cases of non traumatic

protection;from stress. It was therefore concluded that the

application of the rigid plate had caused a rerouting of

stress away from the bone, and the subsequent atrophy of the

tissue. 1

It was apparent that stress shunting due to the

applicatign of plates with high bending stiffnesses greatly
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compromised the integrity of the healed bone, so in 1975

Akeson et. al.(1) undertook a study to examine what effects

reducing the stiffness of the plate had on the healing

process. The material chosen for the study was a graphite-

fiber methylmethacrylate resin composite (GFMM). They found

that. osteotomized. canine femurs plated. with. GFMM. plates

showed 7% less porosity and over 10% more cortical bone than

those plated with Vitallium, a material approximately one

order of magnitude stiffer. In a follow up study in 1976,

Woo and Akeson(37) took longitudinal sections of bone from

similarly treated canine femurs and tested them for strength

and mechanical properties. The only significant difference

in the mechanical properties of GFMM plated, Vitallium

plated or unplated bone was an increase of 12.5% in the

strength of the bone plated with GFMM. Similar results were

independently obtained and reported in 1976 by Tonino(3°)

using a plastic polytrifluormonochloroethylene (PTFCE)

plate. Both research groups attributed this increase in

strength to the fact that more bone mass was retained by the

systems plated with the softer material.

It was well documented that bone plates offer the best

option for fixation of diaphyseal fractures in many cases

(Murray 1941(19)). It was also known that excessively rigid

fixation caused various osteopenias (Cochran 1969(10),

Uhtoff 1971(31), Uhtoff 1978(32)). It had been shown that

plating with more flexible plates resulted in a

significantly stronger healed structure (Akeson 1975(1),
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Tonino 1976(30), Woo 1976”“). There was also evidence

that plating with an excessively flexible material could

result in non-union of the osteotomy as well as failure of

the plates (Bynum 1971(5), Godfrey 1971(11), Laurence

1969(17), Rahn 1971(21) ). What was now needed were

analytical and experimental techniques which could yield

detailed information about the stress and displacement

fields as well as internal forces in the plate bone system,

thus allowing examination of the response to variations in

material properties, plate geometry, fastener location and

loading. Once these relations were established, more

effective plating techniques could be developed.

Attempts to analyze the human skeletal system are not

new. In 1917, Koch(15) employed beam theory and elementary

mechanics in order to determine the internal forces and

stresses in the human femur. Koch attempted to show that

the stress trajectories in the head of the femur

corresponded to the paths formed by groups of trabeculae.

Although these findings have since been disputed and

modified by modern analytical techniques, Koch's work stands

as a breakthrough in the popularizing of mathematical

modeling of bones.

In 1972, Rybicki et. al.(25) compared the beam theory

solution obtained by Koch to the solution obtained using a

finite element method. It was found that in the shaft of

the femur, the results corresponded well, but at the head of

the femur, an area unlike a slender member and in the
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proximity of applied loads, the trajectories calculated from

the beam model differed significantly from those offered by

the finite element analysis.

In 1974, Rybicki(26) employed the same two analytical

methods in conjunction with a strain gauge experiment to

examine the mechanics of plated fractures. The results

Rybicki obtained. were: among the first of an analytical

nature which clearly displayed the stress shunting theorized

by previous researchers. :rt was shown that under

compressive loading, certain areas could be shielded from up

to 75% of the stress found in the same region of an unplated

bone. It is important to note that in his research, only a

limited number of cases were analyzed. However, Rybicki

stressed. that the close correspondence between the

analytical and experimental results supported his assertion

that beam theory and finite element analysis could be used

to examine bone plating.

With advances in finite element software, and the

mounting evidence that analytical techniques could yield

important data concerning the mechanics of bone plating,

papers on the subject began to appear with regularity. In

1977, Simon et. al.(27) conducted a study to try and

evaluate the accuracy and practical uses of one, two, and

three dimensional finite element models of internal fixation

plates by comparing the results of the finite element models

with strain gauge measurements. They concluded that in

order to obtain accurate information concerning contact
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stresses, stresses and forces in screws and stresses in

areas near fasteners or applied loads, three dimensional

models were necessary. If the area of interest was

significantly far from any of these locations, one or two

dimensional models served equally well.

By the mid 1970's, finite element methods had gained

widespread acceptance in the scientific community, including

those concerned with the field of Biomechanics. This was

due in part to the increase in work on the mathematical

foundation of the method, and in part to the repeated

successes of the method on problems from a wide range of

fields. Researchers now began to eXploit the power of

computers and software to examine theoretical problems in

bone plating.

Woo et. al. (38) conducted an in depth study

incorporating both experimental and one dimensional finite

element techniques to explore the stresses and remodelling

characteristics of bones plated with GFMM compared to bones

plated with Vitallium.

Rybicki and Simonen(26) used a two dimensional model

to examine the effects of screw angle, plate pretension and

end loading due to remobilization. Their model was able to

predict with limited accuracy the contact surface of the

fracture, as well as the stress distribution on this

surface.

In 1984, Cheal(8) carried out a three dimensional

finite element analysis of a compression plate fixation
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system and compared the results to those of a composite beam

theory model. The analysis consisted of a greatly

simplified quarter symmetric model made up of a limited

number of 20 node isoparametric linear elastic elements.

The interface between the plate and bone was modelled with

one dimensional truss elements thus preventing

interpenetration, but failing to allow for stress free

seperation of the plate from the bone. The three screws in

this system were modelled _using three dimensional beam

elements. This introduced an incompatibility, but it was

considered small enough to ignore due to the high stiffness

of the screws. A.pmeload was added to both the plate and

the screws, and the model was subjected to a general set of

representative loading conditions. For verification of the

model, a strain gauge experiment was run in parallel with

the analysis and good correspondence was reported.

Among Cheal's findings are three that are of particular

interest. First, it was found that although qualitatively,

good correspondence between the finite element and composite

beam theory existed, the beam model tended to overestimate

the shift in the neutral axis which occurs in such a system.

Second, Cheal noted that for most load cases, the screw

furthest removed from the osteotomy exhibited an increase in

shear stresses and bending moments of two to three times

over the innermost and middle screws. Finally, the finite

element model showed a reduction in stress up to 90 % in the

region directly beneath the plate, most prominent near the



13 .

osteotomy. These results and their implications will be

discussed later. The importance of the paper lies in the

fact that it clearly demonstrates the ability of a highly

simplified finite element model to yield accurate and

important results which may point the researcher in the

direction of possible problems associated with bone plating,

as well as their solutions.



III. BEAM ANALYSIS

The problem examined in this research is expressed for

clarity of terms in a simplified diagram (Figure 1). The

system consisted of a long bone, 2, severed by a transverse

diaphysial osteotomy, 4. The bone is fixed for healing by

an internal plate, 1, which is attached to the bone in

several places by fasteners, 3, and mounted so that the

osteotomy lies directly beneath the center of the plate.
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Figure 1. Plated Bone.
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The system is subjected to forces and moments which are

created by both the external reaction forces resulting from

restricted. mobilization, as ‘well as the internal forces

caused by the flexion and extension of muscle groups in the

region.

As a first approximation of the behavior of this

system, certain assumptions were made. The bone and plate

were treated as slender members subjected to loads causing

small deflections. The cross sectional properties of the

plate were determined by treating it as a semicircular arc

with outside and inside radii of 1.75 and 1.25 cm

respectively. The bone was treated as a cirular region with

outside and inside radii of 1.25 and .75 cm respectively.

The fasteners were modeled as simple Hookean springs having

a linear force deflection relationship. The Young's modulus

of the plate was given by its manufacturer, and the modulus

of bone was taken from van Buskirk and Ashman(32). These

simplifications allowed the standard moment curvature

relations from elementary beam theory to be used.

The osteotomy was treated as a plane of symmetry and

the load was considered to be a pure bending moment. With

the known material constants and geometric properties (E, I,

A, etc.), the resulting statically indeterminate system was

formulated and solved as described below (Figure 2).

The :moment equations of this system. were expressed

using singularity functions of order 1, located at li to

model the moments due to the spring forces.
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Figure 2. Beam Model.

Mb = -Fsl*<x-ll> — ... - st*<x-lj> (2)

Integrating equation (1) and imposing the boundary

conditions vp(0) = vp'(0) = 0 yields;

v = Ma*x2/(2*E *Ip) + Fsl*<x-ll>3/(6*E *Ip) + ...
P P P

+ st*<x-lj>3/(6*Ep*1p), (3)

and
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vb = -Fsl*<x-11>3/(6*Eb*lb) - ... -

st*<x—lj>3/(6*Eb*Ib) + C3*x + c4 (4)

The geometric compatability boundary conditions,

vp(li) - Vb(1i) = Psi/Ki, (5)

are imposed, yielding:

.-1 3

C3*li + C4 " tl: '(11‘13') /(6*Eb*Ib) -

i=1

3 _
(li-lj) /(6*Ep*Ip) ] * FSj - FSi/Ki —

.. 2
— Ma*li /(2*Ep*Ip) (6)

Next, a contact condition which depends on the sign of Ma'

vb(0) - vp(0) = 0, Ma < 0 (7)

or,

vb(lp) - vp(1p) = 0, Ma > o (8)

was added, yielding either:

c4 = o (9)

or,
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- N
3

03*1p + c4 + gig -(1p-lj) /(6*Eb*Ib) _

(1 -1j)3/(6*Ep*1p)] * Fs. = Ma*lp2 /(2*E *IJ p p). (10)

P

Finally, force and moment equilibrium were included to add

two more equations, where R is the contact force generated.

Fs1 + Fs2 + ... + st + R = 0 (11)

Fsl*11 + Fsz*12 + ... + st*1j + R*1p = Ma. (12)

Thus for n springs, n+3 equations were obtained for n+3

unknowns: Fsl, Fs2,..., an, R, C3 and C4. Solving these

equations and substituting into (3) and (4) gave the

displaced shape.

To interpret the results from this model, a number of

things need to be considered. First, since the spring and

the reaction forces 'were all assumed in. compression, a

negative sign on any of these indicated a tensile force

Second, since the gap between the plate and bone is assumed

to be zero, a compressive spring force actually corresponds

to a contact force between the plate and bone. Given an

infinite number of springs distributed along the length of

the plate, these forces would give a qualitative picture of

the pressure distribution on the contact surface for a unit

width. Third, geometric arguments reveal that the angle

of separation of the fracture, theta, is equal to tan-—1 C3,
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and the downward displacement of the bone, Va, is equal to

C4 (Figure 3). Finally, it can be noted that the displaced

shape (Figure 4) has a certain amount of interpenetration.
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In order to eliminate this, an iterative solution would be

needed. 131 upward bending, the amount of this

interpenetration was small and the effect on the solution

minimal as evidenced by comparison to experimentally

obtained slopes and displacements. In downward bending,

however, the interpenetration was extensive and resulted in

misleading results. Since the strength of materials model

was only a first approximation of the problem, and the

iterative solution posed complicated and time consuming

problems, the downward bending problem was not solved.

In order to demonstrate the utility of this model, a

series of analyses were performed. The value of Ep was

varied from 2.65 x 109 Pa to 530 x 109 Pa, 5.3 x 109 Pa

corresponding to an actual, tested material, while the rest

of the material and physical parameters were held constant.

Figures 5 and 6 show the displacement and slope of the

bone at the osteotomy obtained from the beam model, the

finite element model, (to be described in the following

section), and an, experimental study (Melkerson 1987)(18).

It was seen that in the case where experimental data was

available, the results of all three methods corresponded

well (10 %). It was also seen that the trends exhibited by

the finite element model and the strength of materials model

were very similar. This was interpreted as verification of

the validity of the beam model. It was therefore concluded

that if non union of the fracture due to cortical separation

in the plane described by the beam model is the primary



.
b
c
n
fl

(
9

(
d
e
g
)

21

 
 

1:) 0 Beam

5T , A F.E.M.

.5“ [:1 Exp.

.4~-

.3--

.2“

.1-—

s l : --

1.0 2.0 10.0

E (x 5.3 GPa)

Figure 5. Displacement vs. Stiffness

0 Beam

A F.E.M.

D Exp.

 
 

 
E (x 5.3 GPa)

Figure 6. Slope vs. Stiffness



22

concern of a study, this model is able to yield valuable

information needed for evaluation of various plates.

Figure 7 shows the spring forces associated with the

analysis described above. It was seen that the spring
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closest to the osteotomy, F1, carried the majority of the

load on the system. It was also seen that for plate

stiffnesses up to 53 x 109 Pa, the rest of the springs were

in compression thus implying a contact surface exists in

this region of the bone. Finally, it was noted that as the

plate increased in stiffness, the forces in the springs

approached a linear distribution as would be expected from a

simple static analysis.

The beam model indicated that increasing the stiffness

of the plate could facilitate the reduction of both cortical

separation and fastener forces thus reducing the

possibilities of non-union and fastener failure. What is

not shown by this model, however, is the stress shielding

known to occur under such a modification. It is also not

clear from a one dimensional model what effect (if any)

fastener pattern may have on out of plane displacements.

For these reasons, a more sophisticated model was needed.

Despite some shortcomings, such as the inability to

provide stresses, the strength of materials model has a

number of useful benefits: it helps to develop a frame of

reference for understanding how the system will respond to

certain changes in loading, material combinations and

geometries; it also yields some basic information about the

magnitudes and trends of certain key quantities such as

fastener forces, contact forces and the displaced shape of

the system. In addition, these results are obtained with

virtually no computing costs or time expenditures by the
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researcher. It is, therefore, deemed to be a useful, albeit

crude, design tool.



IV. FINITE ELEMENT ANALYSIS

The second method employed to study the mechanical

behavior of the plate-bone system was a three dimensional

finite element analysis. The pre-processing, solution and

much of the post-processing of the model was accomplished

using Swanson Analysis Corporation's ANSYS program, revision

4.2.

The first step in any finite element modelling project

is the development of a mesh which gives a converged

solution. In mathematics, the term convergence has a number

of implications. For example, a continuous function, f(x),

can be represented exactly by an infinite series called a

Fourier expansion,

f(x) = c£[anwircos(nx) + bn*sin(nx)], -7Tg x 571' (13)

.n=1.

where an and bn are constants. Since this series is

uniformly convergent, the truncated series can be examined

and written as f(x) = %[an * cos(nx) + bn * sin(nx)] +

e(x), where e(x) is an gfiror term. An upper bound for the

error can then. be found and thereby a complete

characterization of the accuracy of the finite approximation

can be determined (Wienberger) (34). The creation of a

finite element model is analogous to the representation of a

continuous function by a truncated series. In the finite

element method, a continuous function, displacement, is

25
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approximated in a piecewise manner by a set functions of a

specified order called shape functions. Elements are simply

collections of these shape functions, arranged in a manner

to give the proper geometry. Given an infinite number of

elements, a representation. of the. displacement could. be

obtained accurate to within an arbitrarily small error. For

obvious reasons, this is not possible, therefore the analog

of a truncated series was created using a finite number of

elements. Since the behavior of the solution to a boundary

value problem is highly sensitive to the initial conditions,

boundary conditions and geometry, it is not possible, in

general, to obtain an exact expression for the error

introduced by the truncation process. In order to get an

approximation of the magnitude and behavior of this error,

the technique of mesh refinement is often used (Reddy)(23).

Mesh refinement is the process in which the number of

elements in a particular model is increased, and the

resulting solution is compared to that obtained from the

initial mesh. If key quantities, such as stresses or

displacements, do not differ significantly between the two

meshes, the model is said to give a converged solution.

In the case of this research, the problem of finding a

suitable mesh density was more complicated than

aforementioned, since the desire was to create a model which

could undergo modifications in its shape, loading and

material properties while still yielding' a: converged

solution. Such a model could then be used to assess or
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develop design modifications by simply stretching,

stiffening or reloading it mathematically without having to

repeat the whole process of model generation, refinement and

verification.

The search for a suitable mesh began with the model

depicted in Figure 8 (shaded elements represent fastener

location). It had a flat cross section and an
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Figure 8. Model 1.
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asymmetric fastener pattern. The model consisted of 180

solid elements and 26 gap elements. The gap elements were

located at every interface node not occupied by a fastener.

In order to mimic the bending response of a curved plate and

circular bone, the Youngs modulus of the plate and bone were

adjusted accordingly (App 1).

The elements selected to model the plate and bone were

ANSYS STIF 45 type. STIF 45 is a three-dimensional, eight

node, isoparametric elements 'The element also contains

three nodeless degrees of freedom which allow for a second

order shape function in all three directions. This type of

element, although nonconforming, has been shown to produce a

dramatic increase in accuracy for problems which are loaded

primarily in bending (Wilson)(35).

The gap between the bone and plate was modelled using

ANSYS STIF 40 combination elements. STIF 40 is a non-

linear element, represented schematically in Figure 9. This

element was chosen to allow for stress free separation of

the plate and bone. In order to accomplish this, STIF 40

requires an iterative solution. When the status (open or

closed) of all gaps remains unchanged for an entire

iteration, the solution has been reached. For the models to

be described, a simple elastic gap was simulated by setting

K1 and C were equal to 0.0, and K2 to 200,000 N/m as shown

in the verification example provided by Swanson.

Taking advantage of the symmetry and skew symmetry of

the problem, only half of the plate-bone system was
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Figure 9. Interface Element.

modelled. The dimensions of the plate were 40mm x 5mm x

25mm, the bone had the same thickness and width, but had an

increase in length of 20mm to accomodate for St. Venant's

effect.

Displacement boundary conditions were imposed on the

system. At the left end of the plate, nodes in the cross

section of the plate were constrained in the y and 2

directions to model the skew symmetry of the system. One of

these nodes was further constrained in the x direction in

order to prevent any rigid body motions. Nodal forces were

applied at the right end of the bone to create a net moment

about the x axis, thus modelling the primary moment

encountered in vivo.
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Three refinements were performed on the initial mesh.

The number of elements along the length of the plate was

increased from seven, to fourteen, to twenty eight elements,

with the accompanying change in the bone. These models

consisted of 180, 360, and 720 solid elements and 26, 52,

and 104 interface elements respectively. Since the

variations in stress through the thickness and across the

width of the plate and bone were approximately linear and

constant, and the size of the problem was largely a function

of the number of nodes in the cross section, the number of

elements in these directions was not altered. The second of

these conditions was the most important since the available

version of ANSYS was not able to accomodate the increase in

problem size.

Figures 10 and 11 display the bending stress and y

displacements associated with the refinement from the seven

to the fourteen to the twenty eight element long model. The

line of nodes chosen for the display is at the top center of

the plate, adjacent to the row of elements containing three

fasteners. The twenty eight element long model was selected

over the fourteen element model since it offered an increase

in accuracy, especially in the area of the fasteners, with

only a moderate increase in computing time.

The next step in the verification process was to change

to a more realistic geometry featuring a curved cross

section as shown in Figure 12. Once again the Young's

modulus of the bone was altered in a similar manner as was
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Figure 12. Model 2

described earlier. Since the plate was now depicted by its

proper’ cross section, its ‘modulus. needed. no adjustment.

Figures 13 and 14 display stresses and displacements for the

fourteen and twenty eight element long models for the new,

more realistic model. It was found that for the new.
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geometry, no increase in mesh density was needed to obtain a

converged solution.

The final step in the development of the finite element

model was the completion of the bone cross section so that

it corresponded to the actual shape. The reason for this

was that although the bending response of the system could

be adjusted by varying the Young's modulus of its

components, the stress response, and. in jparticular, the

shift of the neutral axis, would be distorted by the

difference in centroidal location between a semi circular

arc and a complete circle.

In order to accomodate this change in the mesh while

remaining within the size limits of the available processor,

certain modelling compromises were necessary. The first of

these was a decrease in the density of the mesh in areas not

adjacent to the plate. In this region, the elements were

increased in size over their neighboring elements by 17

degrees in their angular span, .0025m in their radial span.

The resulting model, shown in Figure 15 , was hypothesized

to give an increase in the accuracy of the solution in and

directly beneath the plate due to the geometrical arguments

given above. In addition, the solution in the rest of the

bone, although quantitatively suspect due to the sparsity of

elements, would, never the less, be qualitatively correct.

This modification was therefore deemed acceptable since the

areas in which stresses were the primary interest were the
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Figure 15. Model 3.

plate and the part of the bone directly beneath it (Cochran

1969(10), Rybicki 1974(26), Uhtoff 1971(3ll).

The second, and more serious modelling compromise,

caused by size limitations, was the creation of 'free nodes'

upon refinement of the mesh (Figure 16). In order to
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Figure 16. Free Nodes.

determine the extent of the error caused by the free nodes,

a number of them were examined in detail.

Characterization of the exact effect of these free

nodes would be nearly impossible, so in order to get an idea

of the amount of error involved, a quantity which will be

referred to as incompatible shear was defined and calculated
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as follows. The xy components of this shear are shown in

Figure 17 as phi and psi, and can be interpreted as follows:
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Figure 17. Incompatible Shear

if the free node, marked by an open circle, had been

attached to element 3, the entire group of elements would

have sheared by an amount theta. Since the free node is

unconstrained, it displaces thus creating the incompatible

shears.
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A number of such groups of elements were examined and

the incompatible shear in all planes was found to be on the

order of 10% of the total shear ( max(phi,psi)/(theta) ).

It is difficult to gauge the importance of this number,

however, there are reasons to feel that it is in an

acceptable range. First of all, the shear stress in this

region is not of great importance as it is in the bone and

far removed from the fasteners. Second, the region where

free nodes occur is confined to two lines of nodes, and the

rest of the model is free of this type of incompatibility.

Given a larger processor, this type of modelling would be

discouraged, but in light of the limitations imposed in this

case, it seems to be a reasonable approach.

Repeating’ ‘the :mesh. refinement. process described

earlier, Figures 18 and 19 were obtained. Displayed are the

stresses and displacements described for previous models.

Another consideration in the verification of the model was

whether or not the converged solution corresponded to

experimentally obtained data. No quantitative stress data

were available, however it was known from experimental

studies, both in vivo and in vitro, that failure of the

plates was often initiated at the outside of the fastener

closest to the osteotomy(Melkerson(18)). The finite element

model predicted maximum tensile stress at the nodes

corresponding to this location. Another measure of the

correlation between the model and the actual system was the

displaced shape of the system, which was very accurate as
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would be expected since finite element analyses based on a

displacement formulation generally yield very accurate

displacement results.

The results of the verification process indicated that

the final finite element model yielded accurate results for

the stresses and displacements over a wide range of material

properties, geometries and loads. It was, therefore,

concluded that the model could be used to examine in detail

the mechanical response of plated fractures under a variety

of loads, plate materials and geometrical alterations. In

the following sections, the power of the model will be

demonstrated through a number of examples.



V. RESULTS AND DISCUSSION

There are four primary ways in which failure of a

plated bone can occur:

1. Fracture of the plate or bone due to excessive

stress.

2. Fracture of the bone due to atrophy caused by

stress shielding from plates with high bending

stiffnesses.

3. Failure of the fasteners by either excessive

stressing or pullout.

4. Non union or poor union of the osteotomy due

to excessive motion.

For an analytical model to be of use in the analysis of

bone plating, it must be able to yield information

pertaining to all of the aforementioned modes of system

failure. In order to demonstrate the ability of the finite

element model developed in this research to do just that, a

number of situations involving load and material property

alterations were analyzed.

The first set of results, displayed in Figures '20

through 23, show the primary stress (bending /(Tzz) on cross

44
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Figure 20. Bending Stress (up)

Scale: -110 MPa 110 MPa

(Dk. Blue) (Red)
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sections taken every .5 cm (.125 * LP)' along the length of

the plate, for upward and downward bending moments of 10 N-

m. The Young's modulus for the plate in these figures is

5.3 x 109 Pa.

For the upward bending mode, the nodes at the osteotomy

were allowed to displace freely, thus modelling a newly

fractured bone. For the downward bending mode, the nodes at

the osteotomy were constrained in the axial (z) direction,

thus modelling a healed bone. These two conditions yield

the worst case scenarios for failure types 1 and 2

respectively. A newly fractured bone cannot carry axial

tension, thus the plate is exposed to an extreme tensile

load. A healed bone is able to carry axial loads, thus the

stress shielding found for this physical condition is the

important quantity to examine.

Since the primary loading on the system is bending,

tensile failure due to high bending stress would be the

likely cause of type 1 failure. It can be seen that for

upward and downward bending, the maximum tensile stress

occurs near fastener 1 and fastener 5 respectively. It is

also seen that the magnitude of this stress is approximately

seven times greater in upward bending.

The values of the maximum bending tensile stresses in

the plate and bone, 110 MPa and 15 MPa respectively, along

with the ultimate tensile strengths of these materials, are

the quantities needed to determine the possibility of type 1

failure. It should be noted that the problem size
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limitations restricted the mesh density around the

fasteners, and therefore, stress concentrations are not

represented by the maxima obtained from this model.

The next figure (Figure 24) displays the bending stress

at the osteotomy for downward bending load of 10 N-m and a

range of plate moduli: 2.65, 5.3, 10.6 and 53.0 x 109 Pa.

Historically, the emphasis in bone plating analysis has

been placed on the role of stress shunting, known to be the
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major cause of type 2 failure. This stress shunting is

clearly seen at the cross section shown, which is known to

be the primary area of bone atrophy. The magnitude of the

maximum bending stress in this region of the bone drops

steadily from 4 MPa to approximately zero for the given

increase in plate modulus from 2.65 GPa to 53 GPa. The

model would allow a similar analysis to be performed for any

region of the bone under a wide range of loads and plate

moduli.

In Figures 25 through 28, the shear stress, sz' and

normal stress, Uyy' in the fasteners are displayed for

loads of plus and minus 10 N-m. The modulus of the

fasteners is equal to the modulus of the plate, 5.3 x 109 Pa

in this case.

These stresses can be used as a criterion for judging

the possibility of tensile, shear or pullout failure of the

fasteners. Of particular interest is the occurence of an xz

shear. Under the applied load, the likely origin of this

stress is torsion of the fasteners, induced as a result of

their asymmetric pattern. Although the magnitude of this

stress is relatively small for the given load, material and

fastener pattern displayed, other combinations of these

parameters could result in much larger, and potentially

failure causing magnitudes.

The normal stress shown occurs as a result of the

fasteners bending in the yz plane and extending or

compressing in the y direction. A large positive magnitude

of this stress would indicate the likelihood of both pullout



52

of this stress would indicate the likelihood of both pullout
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Figure 25. Fastener Stresses, (up, O'yy)

Scale: -100 MPa. 100 MPa

(Dk. Blue) (Red)
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Figure 26. Fastener Stresses (up, CTXZ)

Scale: ~13 MPa 13 MPa

(Dk. Blue) (Red)



 

    
Figure 27. Fastener Stresses (down, CTyy)

Scale: -2.5 MPa \ 2.5 MPa
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Figure 28. Fastener Stresses (down, CTXZ)
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and tensile failure of the fasteners. It is important to

notice that there is a definite reversal of fastener load

bearing between upward and downward bending of the bone.

This is in contradiction with the results reported by

Cheal(8). The most likely causes of this discrepancy are

Cheal's use of one dimensional beam elements to model the

fasteners and the inability of his model to allow stress

free seperation of the plate from the bone.

The in plane displacements of the bone at the osteotomy

were available from the strength of materials model and were

presented earlier along with the corresponding results from

the finite element model. The out of plane angular

displacement, however, is a three dimensional quantity, and

therefore, could not be seen in the results of the beam

model. Figure 29 depicts this angle for clarity, while

 

    
Figure 29. Out of Plane Rotation
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Figure 30 shows the variation of this angle with plate

stiffness for an upward bending load of 10 N-m.
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Figure 30. Rotation vs. Stiffness
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For a plate modulus of 5.3 x 109 Pa, corresponding to a

nylon like material, this angle is over 2°. In the past,

the materials used for plating were very stiff, steel or

titanium for example. In this case, the out of plane

rotation was insignificant, and therefore, attention was not

paid to fastener pattern. With the mounting evidence on the

detrimentel effects of these plates, a trend has developed

to attempt to construct plates from more flexible materials

such as plastic or nylon. The result of this is a dramatic

increase in the magnitude of the out of plane rotation, and

therefore, a dramatic increase in the possibility of type 4

failure.



VI . CONCLUSIONS

It was shown in chapter 3 that for loads of upward

bending, the strength of materials model gave accurate in-

plane displacements and fastener forces. This data could be

used to evaluate the potential of fastener failure and non-

union of the bone. It was later shown, however, that if

plates with low bending stiffnesses were used, the out of

plane rotation became a significant factor. In this case,

the beam model failed to give an accurate assesment of

failure potential.

The finite element model was shown, in chapter 4, to

yield a converged solution for the stresses and three

dimensional displacements in the system. Furthermore, in

chapter 5, this data was shown to yield. the necessary

information for evaluation of all four potential failure

modes in the form of: the stress field throughout the system

for given loads and material properties, the normal and

shear stresses in the fasteners and the in and out of plane

displacements of the bone at the fracture sight.

The finite element model also exhibited a reversal in

the load bearing role of the fasteners under a reversal in

the applied load. One of the reasons this could be seen was

the ability of the model to allow for stress free separation

of the plate and bone. Recently, Beaupre et. a1. (1988)(4)

performed a finite element analysis in which the frictional

nature Of the plate bone interface was included. Their

57
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paper stated that failure to account for this effect may

tend to overestimate the amount of stress shielding actually

occuring.

Given a larger processor, a number of refinements would

be made to the model presented in this paper. First, a

frictional interface would be included for the reasons

mentioned above. Next, a more realistic modelling of the

fastener shapes and their boundary conditions would be

included in order to more accurately assess the possibility

of fastener failure due to bending and shear. Finally, the

mesh density in the region surrounding the fasteners would

be increased in order to obtain stress concentration values,

thus facilitating a more realistic conclusion on the

possibility of plate and bone failure due ‘to excessive

stresses.

Although some compromises were made in the models

presented, they nevertheless have many merits which have

been described above. Just as the strength of materials

model acted as a starting point for the the finite element

model, so then should this finite element model act as a

foundation for further analyses, experimental or analytical,

of the mechanics of plated bones.



APPENDIX



APPENDIX 1

The following calculations ‘were 'used. to adjust. the

moments of inertia for the plate and bone in the beam and

finite element models.
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Figure 31. Cross Section i.

 

 

    
Figure 32. Cross Section ii.
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Table 1. Cross sectional properties.

 

i ii iii iv—

A(mm2) 125.00 117.81 78.54 314.14

d(mm) 0.00 13.63 9.19 0.00

Ixx(mm4) 260.417 v22,239.6 6828.7 16,689.7

Ix.x. 260.47 354.5 194.7 16,689.7

The actual cross sections are:

1. Plate (ii)

2. Bone (iv)

When the plate or bone are represented by a shape other

than. their true cross section, their Youngs ‘moduli are

multiplied. by“ the. appropriate choice from 'the following

list.

Ip/Ii = 1.3614, Ib/Ii = 64.09, Ib/Iiii = 85.8

Figure 35 demonstrates that these adjusted values yield

valid bending responses. Displayed is the y-displacement,

for an upward bending load, for all three cross sectional

representations.
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