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ABSTRACT

HYDRAULIC DESIGN OF SPRINKLER IRRIGATION SYSTEM

COMPONENTS USING THE FINITE ELEMENT METHOD

BY

LUIS ALFONSO SALDIVIA

The objective of irrigation has been to increase

both the quality and quantity of food production by

allowing the timely delivery of water to meet crop

requirements. To attain maximum utilization of the

existing water resources it is necessary to employ

irrigation water in the most efficient manner. Proper

hydraulic design of irrigation system considering the

system components such as elbows, tees, gate valves,

sprinklers, and pumps has become the key to irrigation

efficiency.

The primary objective of this research was to

incorporate the system components in the design of

sprinkler irrigation networks. The procedure was based

on the solution of the nonlinear algebraic equations

derived from the finite element formulation of the system

components. The secondary research objective was to

assess the applicability of the finite element

formulation employed in the design of sprinkler

irrigation systems by comparing it to a linear theory

model.
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I . I NTRODUCT ION

Irrigation technology has been known and practiced

for at least 5,000 years. It is an important agricultu-

ral technology, one that has facilitated the development

of many civilizations, particularly in arid regions. The

primary benefits of irrigation have been to increase both

the quantity and quality of food production by allowing

the timely delivery of water to meet crop requirements.

It is estimated that the total irrigated area in the

world has increased from 95 million hectares in 1950 to

approximately 250 million hectares in 1986 (Power, 1986).

While irrigated areas only comprise 20 percent of all

harvested land, it accounts for 40 percent of total crop

output worldwide.

Many different irrigation technologies are employed

throughout the world. These include surface, subsurface,

sprinkler and drip irrigation. Surface irrigation is the

most commonly practiced irrigation method worldwide.

However, since World War II, more efficient forms of

irrigation such as drip and sprinkler irrigation have

increased in popularity. This is primarily due to the

introduction of aluminum, galvanized steel and plastic

pipes in EurOpe and the United States. Sprinkler irriga-



tion and, to a greater extent, drip irrigation apply

water in very controlled and precise amounts. Therefore,

these methods ultimately provide a higher water use

efficiency and greater uniformity than surface

irrigation. In the United States sprinkler and drip

irrigation have expanded to 9 million hectares in the

last two decades and presently account for over 35

percent of the irrigated lands (Irrigation Journal,

1986).

In Michigan, sprinkler and drip irrigation account

for over 95 percent of the land under irrigation or

approximately 175,000 hectares (Irrigation Journal,

1986).

Although Michigan is considered quite humid, the

majority of the measured precipitation occurs with winter

snow. Short term summer droughts are common, thus

irrigation can eliminate the most costly and

unpredictable farming hazard; insufficient moisture at

critical growth periods. In addition, sprinkler

irrigation systems in humid areas such as Michigan have

been designed and operated for frost and freeze

protection, blossom delay, and in some cases crop cooling

(Jensen, 1980).

A common sprinkler irrigation arrangement is a solid

set system. These systems may be installed on the

surface of the ground using portable aluminum pipe and

are usually left in place for the entire growing season.



In a solid set system as shown in Figure l, the water

flows sequentially through the following components: the

water supply and pump set, main line, lateral lines,

riser assemblies, and sprinkler heads. In addition,

elbows, tees, gate valves, and pressure regulating valves

form part of the system.

Because expanding needs of industry along with

increasing population are making great demands on the

limited water supply, conservation of agricultural water

resources has become a worldwide priority. To attain

maximum utilization of the existing water resources it is

necessary to employ irrigation water in the most

efficient manner. Proper design of irrigation systems

considering pressure losses through irrigation components

such as elbows, tees, gate valves, and sprinklers, as

well as along laterals, is the key to irrigation

efficiency.

A. SCOPE AND OBJECTIVES

The ultimate purpose of irrigation design is to

determine the optimal size and arrangement of the system

components (pipes, pumps, nozzles, etc.) so that the crop

water requirements can be met without violating

constraints on water, energy, and investment.

Sprinkler and drip irrigation system design

procedures have been presented by several researchers:
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Figure l. Sprinkler irrigation system and components

(Schwab et al., 1981)



Howell and Hiler, 1974; Keller and Karmeli, 1974; Wu and

Gitlin, 1974, 1983; Pair, 1975; Perold, 1977; Wood, 1980;

Jensen, 1982; and Bralts and Segerlind, 1985.

Lateral length and diameter, orifice spacing, slope,

pressure, flow rate, and uniformity are important

parameters which have been considered in these design

processes. Until now, in considering pressure losses

from the water source to the outlet, only the losses

occurring in the sprinkler or drip lateral were

considered important.

Wood (1980), Howell and Barinas (1980), Finkel

(1982) and Haghighi et al. (1987), suggested that, in

addition to pressure losses in laterals, the pressure

losses across hydraulic components such as elbows, tees

and valves in a network of pipes should be considered in

the system design procedure.

In most of the literature the pressure losses across

hydraulic components have been termed "minor losses", but

since a large number of these components may be present

in a single sprinkler irrigation system, these minor

losses can become significant and alter considerably the

hydraulic design. Thus, a pronounced need has arisen for

the inclusion of tees, elbows and valves in the

irrigation design process.

The design of sprinkler irrigation systems is an

intensive and complicated procedure which involves a

large number of calculations. The use of microcomputer



based iterative techniques removes much of the tedious

work associated with these calculations. This results in

a more detailed analysis with fewer errors when compared

with conventional techniques.

The use of microcomputer based iterative techniques

in the design of network irrigation systems has been

growing steadily. Edwards and Spencer (1972) presented a

computer based design procedure for the analysis of

sprinkler irrigation systems utilizing the Hardy Cross

method. Other investigators that have employed iterative

techniques to solve for flow rates and pressures in drip

irrigation systems, based on assumed end line pressures,

were Solomon and Keller (1974), Wu and Fangmeier (1974),

Howell and Hiler (1974), and Perold (1977). Wood (1980)

included sprinkler irrigation design in his hydraulic

network analysis using linear theory method.

Bralts and Segerlind (1985) developed an interactive

microcomputer program (DESIGNER) which uses the finite

element method to assist in the analysis and design of

drip irrigation submain units. DESIGNER is based on the

iterative solution of a set of linearized flow equations

and the result is a symmetric banded matrix which

requires minimal computer storage. At this point in time

the DESIGNER program only evaluates pressure losses from

lateral lines and does not include pumps and other

essential components of sprinkler irrigation systems.



The purpose of this study is to incorporate system

components such as tees, elbows, gate valves, and pumps

in the design of sprinkler irrigation systems. The

procedure is based on the solution of nonlinear algebraic

equations employing the finite element method.

The specific objectives of this research are :

1. To develop a finite element formulation of

essential sprinkler irrigation components such

as elbows, tees, gate valves, sprinklers,

and pumps.

2. To demonstrate the potential of applying the

finite element formulation to the design of

sprinkler irrigation systems by comparing it to

a linear theory model.



I I . REVI EW OF LITERATURE AND THEORY

In order to understand the vadility of the proposed

design analysis it is necessary to present a review of

important literature and theory. The topics to be

developed in this section are a) basic hydraulics of

sprinkler irrigation, b) methods for the analysis of pipe

networks, and c) analysis of hydraulic components.

A. Basic Hydraulics of Sprinkler Irrigation

A sprinkler irrigation system is composed of a

series of pipes sections and of a number of hydraulic

components such as tees, elbows, valves, and pumps. The

pipes convey the water through the various components and

supply it to the sprinklers at the correct pressure head.

A diagram of a sprinkler irrigation system is presented

in Figure 1.

An important element in sprinkler irrigation design

procedure is the determination of pressure losses

occurring in the sprinkler lateral. This pressure loss

occurs when a fluid is forced through a pipe section

increasing friction and causing energy to be consumed.

This results in a drOp in pressure across the pipe

section.



1. Governing Equations

The analysis of fluid flow through networks of pipes

is based on Newton's laws of conservation of mass and

energy.

Conservation of mass or Continuity states:

3Q = 0 [l]

or that the flow in a network system must be balanced at

every junction (node). In essence, the flow into a node

must equal the flow out.

Conservation of energy states:

2H = o [2]

or that the algebraic sum of the head losses around any

closed network must be zero.

Water flowing in a section of pipe contains three

basic forms of energy: energy due to elevation, due to

pressure, and due to its motion. Jeppson (1982) presents

these three forms of energy in equation form as:

E = 92 + - + - [3]

where E = average kinetic energy per unit mass in

Newton-meter per kilogram,

g = acceleration due to gravity in meters per

squared second,



z = elevation above a reference plane in meter,

P = pressure in the pipe in Newton per squared

meter, and

p = density of the fluid in kilograms per cubic

meter .

Equation [3] is also known as the mechanical energy

equation. When this equation is applied between two

points i and j in a pipe section, a mechanical energy

balance can be formed. This is shown in Figure 2 and in

equation form

g 21 + 2 + Bi + W = g zj + E + Ej + EL [4]

p

where W = work input to the network in Newton per meter

per kilogram, and

E = energy loss per unit mass due to friction and

minor losses in Newton per meter per kilogram.

For turbulent flow, the velocity profile is

negligible and the kinetic energy is simply

E = -
[5]

Writing the mechanical energy balance equation, [4].

in terms of energy per unit weight and incorporating

equation, [5], we find
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Figure 2. Pipe section (Bralts and Segerlind, 1985)
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21 + H1 + - + hm = zj + Hj + - + bf [61

where H — is the pressure head; 7 is the specific

weight,

hm = W/g is the head gain to the network due to

external mechanical energy supply, and

hf = EL/g is the total head loss due to pipe

friction and/or network components.

Equations [1] through [6] form the basis for the

analysis of water flow through sprinkler irrigation

pipes.

2. Hydraulics of Sprinkler Flow

The flow of water through an irrigation sprinkler

follows the same behavior as flow through any orifice.

At the nozzle of the sprinkler the pressure head of the

water is converted to a velocity head. The water flows

out of the nozzle in the form of a jet and breaks down

into drops of water which wet the area within a certain

diameter.

Pair (1975) and Finkel (1982) have shown that the

discharge of a sprinkler depends on the combination of

the inlet pressure head and the nozzle cross-sectional
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area. In equation form

Q = CqA\l29h [7]

discharge in Liters per second,where Q

Cq = discharge coefficient, describing the

ratio of actual to theoretical

discharge capacities,

A = total cross—sectional area of sprinkler

nozzle in squared meters,

h = inlet pressure head in meters, and

g = acceleration due to gravity in

meters per squared second.

The discharge coefficient for small nozzles commonly

varies between 0.95 and 0.98. Some large diameter

nozzles have discharge coefficients as low as 0.80.

Normally the larger the nozzle, the lower the coefficient

(Schwab et al., 1981).

3. Lateral Line Hydraulics

To characterize the energy losses occurring in

sprinkler irrigation laterals, the Darcy-Weisbach and the

Hazen-Williams models will be presented, (Keller and

Karmeli, 1975: Pair, 1975; Finkel, 1982; Jeppson, 1982).
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The Darcy-Weisbach equation is

hf = f - - [8]

where hf head loss due to friction in meters,

f = friction factor,

L = length of pipe in meters,

< ll velocity on pipe in meters per second

D = diameter of pipe in meters, and

g = acceleration due to gravity in meters per

square seconds.

The second equation used to evaluate the friction

head loss is the Hazen-Williams equation, which takes the

following form

01.852

hf = 10.7 L [9]
C1.852 D4.871

 

where Q pipe flow rate in cubic meters per second,

0

II pipe roughness coefficient, and all other

variables are as previously defined.

Jeppson (1982) found it useful, when analyzing the

flow distribution in large pipe networks, to express the

frictional head losses by the exponential formulation
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hf = K Qm [10]

where hf = head loss per unit length of pipe in meters,

K = pipe coefficient,

Q = discharge of pipe in cubic meters per second,

m = empirical head loss exponent which has a value

of 2 when the Darcy-Weisbach equation is used and

1.852 when the Hazen-Williams equation is used.

The pipe coefficient, K, in equation [10] is a

function of pipe roughness, Reynolds Number, length of

pipe, and diameter of pipe.

If the Darcy-Weisbach equation is substituted in

equation [10], then the pipe coefficient K becomes

8f L

K = [11]

g n2 D5

 

If the Hazen-Williams equation is substituted into

equation [10], then the pipe coefficient K becomes

10.7

x = L [12]
C1.852 D4.871

 

The flow of water in a sprinkler lateral with a

number of equally spaced sprinkler outlets will have less

friction loss for a given diameter and length of pipe

than if the flow was constant for the entire length (Wu

and Gitlin, 1975: Pair, 1975). To accurately compute the
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friction loss in multiple outlet laterals it is necesSary

to start at the last outlet on the line and work back to

the supply line computing the friction loss between each

outlet.

Christiansen (1942) simplified this tedious process

by introducing an adjustment factor F to correct the

friction loss assuming that all the water is carried to

the end of the line and that the first sprinkler is one

sprinkler riser spacing from the beginning of the

lateral. Employing the Hazen-Williams model for friction

losses, equation [9].

Q1.852

hf = F 10.7 L [13]
C1.852 D4.871

 

The F value for a finite number of outlets

(sprinklers) can be determined by,

N

l 852

where N = number of outlets (sprinklers) on the lateral

line and

n = number from 1 to N

Jensen and Fratini (1957) modified the above

expression for F values to account for the first
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sprinkler being located one half the sprinkler spacing

from the supply line. In equation form,

2 1 N 1

2N _ 1 (1/2 + N1.852
 

F =
n1.852 ) [15]

l
—
‘
M
l

Wu and Gitlin (1983) calculated F values for both

cases, equations [14] and [15]. Figure 3 shows the F

values against the total number of outlets for both

cases. Case I for placing the first sprinkler one head

spacing (equation [14]) and case II for placing the first

sprinkler one half head spacing (equation [15]). The

shape of the curves in Figure 3 shows that the change of

F values with respect to the number of outlets is

relatively large for a small number of sprinklers (less

than 10). When the number of sprinklers is 10 or more

the change in F values is very small. It is also showed

that the difference between cases I and II is

insignificant when the number of sprinklers is larger

than 10.

It can also be seen in Figure 3 that when the number

of sprinklers is from 5 to 50 for both cases, the F

values ranges from 0.36 to 0.40. Since this is

practically the range of number of sprinklers for most

designs, an average F value of 0.38 can be used in

equation [9] for calculating total friction drop without

causing any significant error.
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Figure 3. Relationship between F-factor and number of

sprinklers on a lateral line for cases I and

II (Wu and Gitlin, 1983).
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Equation [9] is used to calculate only the total

friction drop at the end of the lateral line or submain

unit. However, in order to determine the friction drop

along the line Myers and Bucks (1972) and Wu and Gitlin

(1973) developed an approach to solve for the decreasing

flow rate in drip irrigation lateral lines with respect

to the length of the line. Bralts (1983) presented a

complete development of this approach for the design of

drip irrigation submain units. Parts of his work will be

presented here, but will be applied to the design of

sprinkler irrigation lateral lines.

As the total discharge decreases with respect to the

length of the line, the energy gradient will not be a

straight line but an exponential curve. Assuming an

infinite number of outlets and uniform flow the shape of

the energy gradient line can be expressed by a

dimensionless gradient pressure as derived by Wu and

Gitlin (1975)

R1 = -—— = 1 - (1 - i)m*1 [16]

AH

where R1 = pressure drop ratio in meters per meters,

AHi = pressure drop in meters at length ratio i,

AH = total pressure due to friction in meters,

i = length ratio, (L/E) in meters per meters,

L = total length of the line in meters,
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2 = given length measured from the head end of

the line in meters, and

m = exponent of the flow rate.

Figure 4, defines the variables of equation [16].

When the Hazen-Williams equation is used to compute

the friction loss, the dimensionless energy gradient line

equation [16] can be expressed as:

R, = 1 - (1 - i)2°852 [17]

The usefulness of the dimensionless energy gradient

line resides in its ability to determine the head loss at

any point along the lateral line with respect to the

original total energy head. The total pressure drop for

a sprinkler irrigation lateral line can be determined by

using the total discharge as shown by Wu and Gitlin

(1975).

-an

m+l

AH L [18]

A commonly used form of equation [18] is the

modified form of the Hazen-Williams equation, equation

[9], where the exponent of the flow rate, m, is equal to

1.852 and the roughness coefficient, C, is equal to 150

for smooth pipes. The resulting equation is
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Figure 4. Lateral line notation and dimensionless

gradient line variables (Bralts, 1983).
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-4 Q1.852

H = 3.50x10 D4°871 L [19]
 

where all the variables are as previously defined.

Wu and Gitlin (1983) and Bralts (1983) showed that

the pressure variation along a sprinkler irrigation line

not only contains the head loss due to friction but also

must include the head loss or gain due to slope. The

total energy at any section of a lateral line can be

expressed from the energy equation as

v2

H = z + h +
 

[20]

29

The loss or gain in pressure is linearly

proportional to the slope and length of the line and can

be shown as follows

v2

d( - )

an dz dh 2g

——— = -—- + --- + ----- [21]

dL dL dL dL

dH

where -- = slope of the energy line (-Sf),

dL

dz

-- = slope of the lateral line (-So).

dL

dh

-- = pressure distribution with respect to

dL

length, and
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v2

d( - )

29

-——- = change of velocity head with respect to

dL

length.

The change of velocity head with respect to the

length along the a lateral line can be considered small

and can be neglected therefore the energy equation can be

reduced to

= --- + --- [221

rearranging terms, the pressure distribution along a

lateral line was shown by Wu and Gitlin (1974) to be

dh

-—- = $0 - Sf for downslope conditions and

dL

dh

--— = -So - Sf for upslope conditions

dL

Therefore, the pressure distribution along a lateral

line is a linear combination of the line slope and the

energy slope.

Wu, et al. (1979) expressed the total pressure

variation as a function of the original pressure and to

the variation due to energy slope and line slope. In

equation form

hi = Ho — RiAH + Ri'AH' [23]
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where hi = head for a given length ratio in meters

Ho = original pressure head in meters

RiAH = head loss due to friction in meters, and

Ri'AH' = head loss or gain due to slope in meters

Figures 5 and 6 show the pressure variation along a

lateral line for downslope and upslope conditions

respectively. I

As shown in equation [7], the sprinkler flow is

directly proportional to the pressure head therefore the

sprinkler flow rate at any point along the lateral line

will be equal to a combination of equations [7] and [23]

or

q1 = K(hi)0'5 = K(Ho - RiAH + Ri'AH')0'5 [24]

If equation [24] is divided by the sprinkler flow

equation for the first sprinkler qo, (qo = K h0.5) then

the resulting equation becomes independent of the

coefficient K and takes the following form

q: = <10 (1 - Riéfl + RILAJI' >°-5 [25]

Ho Ho

Equation [25] serves to determine the sprinkler flow

at any point along the lateral line once the sprinkler

flow rate at the original pressure is known.
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4. Design Criteria

The purpose of the sprinkler system is to uniformly

distribute the water to the soil surface of the irrigated

area. The uniformity coefficient, proposed by

Christiansen (1942) is, in general, considered as one of

the best design criteria available for sprinkler

irrigation design.

Christiansen defined sprinkler irrigation uniformity

by the equation

by

0,: = 100 ( 1 - —) [26]

y

uniformity coefficient in a percentage basis,where UC

Ay = absolute deviation from the mean of the

individual observations, and

y = mean depth of observation.

Most recently, the uniformity of sprinkler

irrigation systems has been evaluated employing the

statistical uniformity coefficient presented by Wilcox

and Swailes (1947). The advantage of this formulation is

the use of common statistical parameters such as the

coefficient of variation (Vy), which is basically the

standard deviation over the mean. In equation form

Us = 100 (l ‘ VY) [27]
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where Us statistical uniformity coefficient and

VY = coefficient of variation for the depth of

irrigation water, y.

Edwards and Spencer (1972), Pair (1975), and Wu and

Gitlin (1983) reported that in order to achieve high

uniformity system performance it was essential that the

pressure variation along a lateral line be held to 20 %

so the discharge variation from all the sprinklers along

the lateral line would be maintained to be equal or less

than 10 %.

Wu and Gitlin (1983) expressed the pressure

variation along a lateral line as

Hmax ‘ Hmin

Hvar = 100 [28]

Hmax

 

where Hvar = pressure variation expressed as a

percentage,

Hmax = maximum pressure expressed in meters of

head, and

“min = minimum pressure expressed in meters of

head

The pressure variation Hvarr can be determined from the

maximum and minimum pressures which can be obtained from

the pressure profile using equation [23].

In summary, this section has presented the equations

that govern the pressure losses due to friction of the
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pipes and slope of the ground in sprinkler irrigation

laterals. The dimensionless gradient line concept allows

for the determination of the pressure or flow rate at any

point along the lateral line with respect to the original

total pressure or flow rate.

B. Methods for the Analysis of Pipe Networks

Numerical methods have been Employed in the solution

of a wide range of engineering problems. The combined

efforts of numerical methods and microcomputers have

enhanced the possibility of solving complicated problems

which require iterative procedures.

Hydraulic design of sprinkler irrigation systems

include the solution of nonlinear algebraic equations,

which by their nature, must be solved in an iterative

manner. Several algorithms have been proposed for

solving the nonlinear equations. These include the Hardy

Cross method (Cross, 1936), the Newton-Raphson method,

first used in pipe flow analysis by Martin and Peters

(1963), and the Linear Theory method (Wood and Charles,

1972). More recently, the finite element method has been

proposed by Bralts and Segerlind (1985) and Haghighi et

al. (1987) as an appropriate technique for the analysis

of networks of irrigation pipes. Each of these methods

will be reviewed in this section.
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1. Hardy Cross Method

The Hardy Cross method (Cross, 1936) was one of the

first methods developed for the solution of pipe

networks. This method continues to be very popular and is

used today by many practicing engineers. The Hardy Cross

method is a simplified version of a method of successive

approximations applied to a set of linearized equations

(Wiggert, 1986). The method employs a flow corrective

technique which uses assumed flow rates, based on

continuity, to solve the energy based loop equations of

the network system.

Applying the continuity principle for each junction,

equation [1], becomes

IQ = ZQin = zoout = 0 [29]

The energy equation in the exponential formulation

of equation [10] in terms of the unknown flow rates

becomes

w = R Qm [30]

where W = friction loss for any pipe, including minor

losses as equivalent length,

R = Pipe coefficient function of pipe roughness,

Reynolds Number, length of pipe, diameter,

and all the other variables are as

previously defined.



31

The resulting energy equations are nonlinear and to

obtain a solution require the implementation of a

linearization process, employing a Taylor series

expansion. An example of a Taylor series expansion is

presented in Appendix A.

After this process the equations become

a1 (901)" + nRi (901)“‘1 ( oi - Qoi ) = o [31]

where Qi assumed estimate of discharge and

Qoi estimate of discharge from previous iteration.

The flow correction is introduced as AQ

A0 = Q1 _ Q01 [32]

Substituing equation [32] into equation [31] results

in the following correction term

‘ Ri Qoi “‘1 Qoi

AQ = [33]

nRi Qoi n-l

 

The deviation from zero of the assumed flow rate is

used to determine the correction value. When the

correction value is applied to the assumed flow rate, a

better approximation of the true flow is obtained. The

successive iterations are carried out until the

corrective flows are within a specified tolerance.
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A possible criterion for convergence could be

Qi ’ Qoi

Qi

 

< e [34]

where e = tolerance value.

A second iterative method suggested by Cross (1936)

and later developed by Cornish (1939), called the method

of balancing heads or nodal method, was described by

Barlow and Markland (1969) and by Chenoweth and Crawford

(1974). This method solves the nonlinear equations by

adjusting the heads at each node until the specified

outflows or continuity is obtained. Equation [29]

becomes

EQin - ZQout = 0 [35]

In terms of the head loss

W l/m W l/m

Z(-)in - z(—)out = 0 [36]

R R

The method assumes a set of heads which is

successively corrected at each node. The correction term

then becomes
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W l/m

£(-—-)

AH [37]
 

1 W 1/m - 1

The major disadvantage of the Hardy Cross method is

the slow convergence characteristic and in some cases no

convergence at all. This is due to the fact that it

neglects the change in flow at each node, caused by

iterative head corrections at all connected nodes, except

for the node at which the flow is being calculated.

Several measures, such as the ones suggested by Barlow

and Markland (1969), Dilligham (1967), and McCormick and

Bellamy (1968), have been implemented for improving the

convergence characteristics of this method. Another

drawback of the Hardy Cross method is that a reasonably

good assumption of the flow distribution in the network

is necessary for fast convergence. Epp and Fowler

(1970), and Jeppson (1982) reported that the Hardy Cross

method, either loop or node oriented, is best used for

relatively small, simple networks.

2. Newton—Raphson Method

The Newton-Raphson method is an iterative procedure

which starts with an estimate of the solution and

repeatedly computes better estimates. The Newton-Raphson
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method is illustrated for a one dimensional case as shown

in Figure 7. The goal of this method is to find a

solution to an equation of the form F(x) = 0. The

procedure starts with an initial estimate which is not

too far from the solution, Xm, then, extrapolates along

the tangent to its intersection with the X-axis, and

takes that as the next approximation. This is continued

until either the successive X-values are sufficiently

close, or the value of the function is near zero. In

equation form

X(n+1) = x(n) ' [38]

dx

 

 

new estimate to the solution,where X(n+1)

 

 

x(n) = initial estimate to the solution, and

= correction term

dx

The application of the Newton-Raphson method to

solve simultaneous nonlinear algebraic equations

presented by Jeppson (1982) is similar to the one

dimensional case described above with the following

considerations.



IIx)

 

35

 X I
 

X(n+1) X(n+2) XIII) X

 

Figure 7. The Newton-Raphson method for the one

dimensional case (Shamir and Howard, 1968).
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X(n+1) = XIn) - 0'1 F(x(n)) [39]

vector of new estimates of the solution,where X(n+1)

X(n) = vector of the initial estimate of the

solution,

D"1 = inverse of the Jacobian matrix, and

F(X(n)) = vector of the function of x.

The Jacobian matrix D consists of derivative

elements, which are derivatives of that particular

functional equation.

For the x variable the Jacobian matrix is

.1

F1171 fifl . . . . . 3_Fl

8X1 3X2 3X'

D = 8_F2 3_F2 . . . . . _3_F2

3x1 3x2 axj

ar- ar- . . . . . ar-

'53:} 53:3 57:}

L- .1  
If solving the network with the heads as the

unknowns the vector x becomes the vector H such that

AH(n+1) = AH(n) ’ 2(n) [40]
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nodal head vector estimate of thewhere AH(n+1)

solution,

AH(n) = nodal head vector initial estimate of the

solution, and

Z(n) = solution vector of the linear system or

D(n) z(n) = Fun) [41]

Likewise, if solving the network equations

containing the loop equations as unknowns the vector x is

replaced by the vector AQ such that

AQ(n+1) = AQ(n) ‘ 2(n) [42]

vector of new estimate of correctivewhere AQ(n+1)

flow,

AQ(n) = vector of initial estimate of corrective

flow, and

z(n) = solution vector of the linear system or

0(a) z(n) = Fun [431

The Newton-Raphson method converges quadratically.

This means that when compared to linear convergence of

other methods it requires fewer iterations to obtain a

solution given a certain tolerance value (Jeppson, 1982).

The Newton-Raphson method was first implemented in
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the solution of pipe networks by Martin and Peters

(1963). Subsequently it was used by Giudice (1965), who

added a sensitivity analysis and considered more than one

fixed head, and by Pitchai (1966), who treated networks

with pumps as boundary conditions. Later, Shamir and

Howard (1968), also used the Newton-Raphson method to

present the basis of the formulation for other types of

elements such as pumps and valves. Epp and Fowler (1970)

included a method for reducing the storage requirements

of the matrix coefficients.

The major difference between the Newton-Raphson and

the Hardy Cross methods of solution is that the Newton-

Raphson method iterates on a set of equations

simultaneously, while the Hardy Cross performs iterations

on separate equations, one at a time. Because the

Newton-Raphson method adjusts the flow rate in all the

loops simultaneously, convergence to a solution is much

quicker than that obtained using the Hardy Cross method

(Wood, 1972). This convergence characteristic is very

important for the analysis of networks involving large

numbers of pipes.

There are two major disadvantages of the Newton-

Raphson method. First, it requires the evaluation,

either analytically or numerically, of the first

derivative of each flow equation with respect to each

corrective flow (Lam and Wolla, 1972) and (Bralts, 1983).

Secondly, the convergence of the Newton-Raphson method is
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highly dependent on the initial estimate of the flow

distribution in the network.

If the initial estimate is sufficiently inaccurate

the Newton-Raphson method can lead to slow convergence or

in some cases, no convergence at all (Shamir and Howard,

1968; Wood and Charles, 1972; Jeppson, 1982; Bralts,

1983; Wiggert, 1986).

Another minor drawback of the Newton-Raphson method

is the fact that large networks of pipes, containing

numerous components, can lead to the formulation of large

size matrices. This limitation can be overcome by

employing a bandwidth reduction or renumbering of network

elements and junctions, similar to the procedure proposed

by Epp and Fowler (1970) and Grooms (1972). Jeppson and

Davis (1976) and Chin et al. (1978) described a method

for banding the coefficient, or Jacobian matrix, to

increase the efficiency of computation. This procedure

is a modification of the loop numbering algorithm

proposed by Epp and Fowler (1970).

Gay et a1. (1978) also presented a two node

reordering procedure for water network analysis. This

procedure minimizes the required matrix computations, and

a sparse matrix technique requiring only off-diagonal

non-zero partial derivative elements of the matrix

dramatically reduces storage requirements of the matrix

equation.
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3. Linear Theory Method

The linear theory method of pipe network analysis

was first presented by Wood and Charles (1972). This

technique transforms the loop equations by approximating

the nonlinear energy equations in the following form.

n n-l '

th = 2K1 Qi = 2K1 Qio Q1 = 2K1 Qi = 0 [44]

where hf = head loss in the pipe,

Ki = modified pipe constant,

Qi = actual discharge, and

Qio = approximate discharge.

The loop equations can then be expressed as linear

equations that when combined with the continuity

equations yield "n" linear simultaneous network

equations, which can be readily solved for the discharge

in each line.

An initial approximation of the flow rates can be

obtained by assuming that the modified pipe constant is

independent of the flow rate such that Ki = Ki. The

solution obtained in this manner is very similar to one

which would be obtained assuming laminar flow

distribution in the network, such that the head loss is

assumed to vary linearly with flow rate and be dependent

on line length and diameter (Wood and Charles, 1972). By

far the most common application of the linear theory
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method is with loop equations, rather than nodal

equations.

There are several distinct features of the linear

theory method which make it desirable for network

analyses. Most importantly, it generally converges in

relatively few iterations. This is in part accomplished

by averaging the values of the discharge for the previous

two iterations and employing the average to calculate the

new estimate of flow and the modified pipe constant.

This is expressed as:

Qi-l + Qi-Z

Qio = 2 [45]
 

where Qi_1 flow rate obtained from previous trial and

flow rate obtained from trial previous toQi-2

Qi-l-

Also, the method is notable for its ease in

programming and use in optimization analysis. In

addition, the linear theory method overcomes the

principal disadvantage of the Newton-Raphson method or

the Hardy Cross method by not requiring an initial

estimate of the flow in the network.

Wood and Charles (1972) compared the linear theory

method with the Hardy Cross and Newton Raphson methods in

terms of their convergence characteristics. They found

that the linear theory method converges very quickly and
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more accurately in fewer iterations than the other two

methods.

Wood and Rayes (1981) reported the reliability of

five different algorithms in terms of their convergence

and accuracy: PATH, based on the Hardy Cross method for

closed loops; SPATH, a modification of the PATH algorithm

which calculates all flow adjustments simultaneously

(this algorithm is equivalent to the Newton-Raphson

method): LINEAR, based on the linear theory method and

the linearization of the energy equations; NODE, based on

the Hardy Cross method for the solution of nodal

equations; SNODE, based on the linear theory method and

the linearization of the nodal equations. They found

significant convergence problems for PATH, NODE and SNODE

methods. Both, the SPATH and LINEAR provided accurate

solutions and consistently rapid convergence within a

tolerance value of 0.0005 of the exact solution.

One of the drawbacks of the linear theory method is

that considerably more computer storage is required than

needed by the other methods. If used for loop oriented

networks as recommended by Wood and Charles (1972) and

Jeppson (1982), it uses more equations to solve the

network system than are used by other methods. In

comparison, the Jacobian matrix in the Newton-Raphson

method requires much less storage, since it is a

relatively narrow banded symmetric matrix with as many

rows as loops. The linear theory method requires
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computer storage for NxN (number of pipes) plus 1

coefficient matrix while iteratively solving the

linearized system of algebraic equations.

4. Finite Element Method

The equations which model the flow of water in

irrigation pipes are nonlinear in nature and require

solution by numerical methods. Norrie and deVries

(1978), Segerlind (1984) and others have shown the

applications of the finite element method of solution to

many types of engineering problems governed by equations

of this nature. The finite element method can be

formulated using two types of elements: discrete and

continuous. Discrete element formulation is generally

employed in the analysis of structures. Continuous

element formulation is employed in the solution of heat

transfer, fluid mechanics, and soil mechanics problems

(Segerlind, 1984).

In general the finite element method uses an

integral formulation to generate the equations describing

a problem and employs continuous piecewise equations to

approximate the unknown parameters. The advantages of

employing the finite element method include: 1) efficient

use of computer storage space since the resulting matrix

of coefficients is banded and symmetric, and 2) ease of

data preparation following a systematic procedure of
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incorporating the element contributions to the final

system of equations.

A number of investigators have applied the finite

element method to the analysis of pipe network. Norrie

and deVries (1978) presented a procedure for solving

networks of pipes under laminar flow conditions. In this

case, the friction is a linear function of the flow

velocity thus allowing the direct formulation of pipe

elements without linearizing the flow equations.

Henriksen (1984) developed a finite element approach

for the analysis of networks of pipes. He employed

element conductivities matrices using the method of

weighted residuals. Sections of pipes were the only

element used and results were based on varying the number

of elements that described each pipe.

A finite element model of blood flow in arteries

including taper, branches and obstructions was developed

by Porenta et a1. (1986). This model involves the

formulation of a set of nonlinear equations which are

transformed into a system of algebraic equations that

when solved it yield values of pressure and flow as a

function of time and arterial position.

Haghighi et al. (1987) formulated tee and wye

components based on the linear theory method, nodal head

equations, and the application of the finite element

method. Bralts (1983) and Bralts and Segerlind (1985)

developed a finite element formulation for the analysis
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<>f drip irrigation submain units. The method is based on

the iterative solution of a set of linearized flow

equations. They extended Norrie and deVries formulation

to include turbulent flow conditions in drip irrigation

hydraulic networks. The Galerkin's method of weighted

residual was employed to generate the equations

representing the two types of elements used: pipe and

emitter elements. The following development of the

finite element formulation closely resembles the approach

used by Bralts and Segerlind (1985).

The objective of employing the finite element method

is to arrive at an approximate solution for the one

dimensional differential equation

d2¢

D +Q=0 [46]
 

dx2

Several procedures are available to describe the

approximate solution to the differential equation. Among

the most popular are: l) the finite difference method,

2) the variational method, and 3) methods that weight a

residual. In this case, the Galerkin's method of

weighted residuals has been selected to generate a system

of equations by evaluating the integral

H (12¢

- W(x)(D -- + Q) dx = 0 [47]

dx2

0
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wwhere d = unknown parameters,

W(x) = weighting function, and

D, Q = differential equation coefficients.

Galerkin's formulation employs the shape functions

Ni and Nj to define the weighting function for every

node. Using a sequence of nodes r,s,t, and u as shown in

Figure 8, the residual integral, equation [47] for node 5

 

becomes

Rs = Rs‘e'l) + RS(e) [48]

or

X Xt

s d2¢ d2¢

[Ns(D + Q)](e'l)dx - [Ns(D — + (2)1“)ch [49]

dx2 dx2

xr x5

where Rs‘e-l) and Rs(9) represent the contribution of

elements (e-l) and (e) to node S. Carrying out the

integration of equation [49] for elements (e-l) and (e)

results in

d¢ D QL

RS(e-l) = ”(D — )(e-1)L + " (’¢r + Os) - — [50]

dx =Xs L 2

and

d

Rs(e) = (D _" )(e)L ,

dx

U I
O

L
"

(as - ¢t) - -;- [51]
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(9-1) (9) (e+1)

 

«
*
0

‘
7

Figure 8. Sequence of nodes and elements (Bralts and

Segerlind, 1985).
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For the special case of steady state flow through

pipes, the first derivative term, D(d¢/dx), and the

constant Q are always equal to zero. Therefore , the

residual equation for node 5 becomes

D D

Rs = Rs‘e-l) + Rs(9) = -(-¢r + 05) + -(-¢s + ¢t) = 0 [52]

L L

For a straight pipe element, as shown in Figure 9,

the hydraulic analogy to the residual equation [52]

begins by applying the energy equation and the continuity

equation.

The energy equation, considering Vi = Vj and hm = 0

since there are no external mechanical energy supply such

as a pump, reduces to

P P

21 + — = zj + - + hf [53]

Y Y

01'

21 + Hi = zj + Hj + K Qm [54]

where Hi and Hj are the downstream and upstream static

pressures respectively and all the other variables

already defined.

Linearizing the exponential friction head loss term:

hf = AH = K Qm [55]

results in the following relationship
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Figure 9. Straight pipe element section (Bralts and

Segerlind, 1985).
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0.: K-l/mAHI/m = CpAH
[56]

equation [54] can be rearranged into

 

Kl/m Q = I (21 + H1) - (Zj + Hj) ]l/m [57]

or

Q = Cp (Hi - Hj) + Cp (Zi ’ Zj) [58]

(Zi + H1) - (Zj + Hj)|l-m/m

where Cp = :

Kl/m

is the linearized coefficient for the straight pipe

element and all the other variables are as previously

defined.

The contribution to the residual equation [52]

considers a sequence of nodes as shown in Figure 8.

These nodes are separated by elements (e-l), (e) and

(e+1). Assuming flow into a node is negative and flow

out from a node is positive, the continuity principle

applied to nodes 5 and t results

[59]

I

O- Qs(e-l) + Qs(e)

and

[60]

II

0- Qt(e) + Qt(e+l)

the contribution of element (e) to the residual nodal

equation is Qs(e) and Qt(e) or

Qs(e) = cp(e> (as - at) + cp(e) (zS - 2t)
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and

Qt(e) = -Cp(e) (HS - Ht) - Cp(e) (zs - zt)

in matrix notation

    

F j r W

QS(e) Cp ”Cp HS CpAz

= I I - [61]

L _] L 2

where AZ = Zt - 25

The element matrices, shown in equation [61], are

assembled employing a direct stiffness procedure which

yields a system of equations having the following

standard finite element form (Segerlind, 1984):

{3(8)} = [149)] {0(8)} - {I491} [521

is the element stiffness matrix,



is

ana

net

for

con

pla

fin.
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{0(9)} = HS

Ht

is the vector of unknown pressures, and

AZ

{FIN} = CD = g
"CpAZ "g

is the element force vector.

In summary, this section has shown four numerical

analysis techniques employed in the design of pipe

networks. The finite element method presents a direct

formulation of the system of equations which is

constructed by calculating the element's contribution and

placing the values in the proper position within the

final system of equations.

C. Analysis of Hydraulic Components

Sprinkler irrigation systems commonly contain a

number of hydraulic components such as valves, elbows and

tees that contribute a minor loss to the system. Figure

10 is an illustration of the different components noted

above.
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Figure 10. Sprinkler irrigation components.
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Hydraulic components alter the flow pattern in the

sprinkler irrigation system usually creating turbulence

which results in head loss in addition to the normal

friction loss occurring in the pipes (Jeppson, 1982).

According to Finkel (1982), head loss due to hydraulic

components may amount to from 2 to 20% of the total head

losses in the sprinkler irrigation system and

consequently are not always negligible as is often

assumed.

Head losses occurring in hydraulic components can be

expressed in several different ways. In trickle

irrigation systems it has been customary to assign

pressure losses across fittings as some unspecified

percentage of the total pressure loss occurring in the

system. In water distribution systems, the procedure is

to compute the component losses in one of the following

manners: employing the equivalent pipe concept or as a

function of the velocity head.

The equivalent pipe concept stipulates that head

losses occurring in hydraulic components can be

determined by forming an equivalent pipe. This

equivalent pipe should have the same head loss for any

flow rate as the sum of the frictional loss occurring in

the pipe and the minor head loss occurring in the

component (Jeppson, 1982).

The equivalent pipe is formed by adding a length,

L to the actual pipe length such that the frictional head
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loss in the added length of pipe equals the loss from the

component. The calculation of L is slightly different

depending upon whether the Darcy-Weisbach or the Hazen-

Williams equation is to be used.

Pair, (1975), Miller, (1978) and others have shown

the expression for the head loss occurring in the

components of the network system as a function of the

velocity head as

v2

he = KC " [63]

29

where he = component head loss in meters,

KC = component loss coefficient dimensionless, and

V2

- = velocity head in meters.

29

The component loss coefficient, KC, is a term which

multiplies the velocity head to give the concentrated

head loss at the component. The component head loss

coefficient may vary according to the flow conditions but

is usually convenient to consider it constant for each

component (Wood, 1982). Some values normally used for

common components are given in Table I. Numerically, Kc,

has the same value for English and SI units.

Many researchers have investigated the inclusion of

hydraulic components in the analysis of networks of

pipes. The usual procedure has been to employ one of the

three methods of network system analysis namely, the
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Table 1. Loss coefficients for common components (Wood,

1980).

Component KC

Globe valve, fully open 10.0

Angle valve, fully open 5.0

Swing check valve, fully open 2.5

Gate valve, fully open 0.2

Gate valve, 3/4 open 1.0

Gate valve, 1/2 open 5.6

Gate valve, 1/4 open 24.0

Short-radius elbow 0.9

Medium-radius elbow 0.8

Long-radius elbow 0.6

45 Elbow 0.4

Closed return bend 2.2

Tee, through side outlet 1.8

Tee, straight run 0.3

Coupling 0.3

45 Wye, through side outlet 0.8

45 Wye, straight run 0.3

Entrance

square 0.5

bell mouth 0.1

re-entrant 1.0

Exit 1.0
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Hardy Cross, the Newton Raphson, or the linear theory

method in conjunction with node equations or loop

equations.

Pitchai (1966) used the Newton-Raphson method in

solving a network which included reservoirs and pumps.

In the study, the pumps were treated as reservoirs with

fixed heads until the network was balanced using the

Newton-Raphson method. From this solution, the flow rate

at each node connected with a pump is determined. If the

flowrate does not satisfy the pump characteristic curve,

then the head of the pump is incremented. With this set

of new pressure heads at nodes incident to the pumps, the

network is rebalanced by the Newton-Raphson method. This

process is repeated until the flow rate at each pump node

satisfies, within some tolerance, the pump

characteristics.

Dilligham (1967) employed pumps and reservoirs using

the Hardy Cross method of balancing flows. He

incorporated the pumps and reservoirs directly into the

analysis by assuming that they were connected to the

system at joints.

Shamir and Howard (1968) included valves and pumps

using the Newton—Raphson method and nodal head equations.

They found that the convergence of this method can not be

guaranteed when any of the characteristic functions of

the elements (valves and pumps) in the network do not

have continuous derivatives. This theoretical difficulty
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was overcome in practice by starting the solution with a

good initial estimate.

Lam and Wolla (1972) considered booster pumps using

a modified Newton-Raphson method and linear graph theory.

Instead of evaluating and inverting the Jacobian matrix

at each iteration, the modified Newton-Raphson method,

based on the residue of the functions, uses an iterative

equation to update an approximation to the Jacobian and

its inverse at each iteration. They compared the

modified Newton-Raphson with the standard Newton-Raphson

method and found that, when booster pumps were included,

the modified method converges faster for larger systems

than the standard method.

Lemieux (1972) proposed that booster pumps and other

elements could be included in the network analysis by

using a modified Newton-Raphson method without altering

the form of the Jacobian matrix. He obtained a more

efficient algorithm by employing a Gaussian elimination

procedure.

Kesavan and Chandrashekar (1972) employed a graph-

theoretic model to solve networks that included pumps and

reservoirs. Their approach involved the formulation of

two continuity equations, node and loop continuity. The

nonlinearities associated with the components in the

network were treated as an integral part of the

formulation procedure. The graph-theoretic approach was

compared with the Hardy Cross method showing a faster
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convergence and ease of including components in the

formulation of the equations.

Chenoweth and Crawford (1974) employed the Hardy

Cross method of balancing heads in the analysis of

networks which included pumps and reservoirs. This

method of solution was based on guessing the elevation of

the hydraulic grade line at all the nodes in the system.

The elevation of the hydraulic grade line at each node,

one at a time, is adjusted up or down sufficiently until

continuity is satisfied at that node. Calculations then

proceed from node to node until all the nodes in the

network are covered. To model the pump performance,

points from the head-flow characteristic curve are stored

on a two dimensional array were they can be conveniently

retrieved in each iteration.

Wood and Charles (1973) in the closure paper

mentioned that a generalized procedure could be

implemented to include pumps, reservoirs, valves and

other essential components in the analysis of networks by

the linear theory Method. Jeppson and Tavallace (1975)

found that implementing the above consideration would

slow the convergence of the method and suggested a

modified approach for the inclusion of pumps and

reservoirs in the analysis which greatly improved the

convergence. This involved the addition of a pseudoloop

to connect two reservoirs and also the inclusion of a

linear equation for each pump in the network.
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Dodge et al. (1978) used the Newton-Raphson method

and the nodal formulation of the matrix equation to solve

networks that included constant discharge pumps,

reservoirs, booster pumps, check valves, pressure

regulating valves and sprinklers for fire and

agricultural use. The formulation of the continuity and

energy equations followed Shamir and Howard (1968)

analysis. Since network components were included, a node

reordering provision had to be implemented such that it

reduced the number of computations required. Also a

sparse matrix routine was employed which stored only the

non-zero elements.

Jeppson and Davis (1976) and Jeppson (1982)

presented an efficient method for including pressure

regulating valves in the network analysis. The

introduction of a pressure regulating valve in the

network had no significant effect in increasing the

number of iterations needed or increasing the amount of

execution time required for a solution.

Issacs and Mills (1980) employing a Linear Theory

method for solving junction heads concluded that minor

fittings, pressure regulating valves, and check valves

can be readily included in the manner proposed by Jeppson

and Davis (1976).

Gofman and Rodeh (1981) described a method for

incorporating unknown pipe characteristics such as

pressure regulating valves and booster pumps into loop
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oriented hydraulic network solvers. He found that, when

head generators (booster pumps) were introduced, the

method either may have no solution or may have many

solutions. To obtain a satisfactory solution it required

that some conditions be meet, such as that the number of

head generators be equal to the number of nodes with

fixed pressure.

Chandrashekar (1980) extended his early work on

graph theoretic concepts to include pressure regulating

valves, check valves, and booster pumps in the analysis

of networks. He employed the junction (nodal) head

analysis in the formulation of the system of equations.

He found that if several pressure regulating valves or

check valves, or both, are present, the method may not

yield a correct solution. Numerical problems of

oscillations or slow convergence, or both, may also

occur.

Wood (1981) presented a comprehensive computer

program based on his early application of the linear

theory method to the analysis of network systems. The

computer model is capable of handling any type of pipe

system configuration along with any number of components

such as booster pumps, pressure regulating valves, check

valves and reservoirs.

Ohtmer (1983) formulated different network

components such as valves, bows, tees, pump, knee,

contraction, expansion and diffusers by taking a very
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distinct approach. He used the Newton—Raphson iteration

procedure to solve the nonlinear system of equations and

the graph theory concept to determine the initial flow

rate estimate. To model the network components, he

employed the analogy between the structural network

loaded by moments to the flow in pipe networks. With

this procedure, the flow rate is the equivalent variable

of the moment as the pressure is to the rotation. This

was made possible by applying mesh (force) method to

include the components.

D. Summary

In summary, the literature review has shown that the

finite element formulation can be employed in the design

and analysis of pipe networks. Furthermore, a need has

arisen to include the pressure losses occurring in

elbows, tees, valves and also the contribution of pumps

in the design process. The proposed research will focus

on the formulation of equations that model these

components, employing the finite element method.



I I I . METHODOLOGY

A review of the literature indicates the need for

better sprinkler irrigation design so that water and

energy may be used in the most efficient manner possibly.

In order to achieve maximum efficiency it is

necessary to take into consideration the losses occurring

in the hydraulic components of sprinkler irrigation

systems. The review of the literature also shows the

difficulty of incorporating these hydraulic components

when employing any of the conventional solution

techniques of pipe network analysis. This suggests the

need for a better formulation where in a systematiC‘

manner such hydraulic components can be readily

incorporated in the analysis of sprinkler irrigation

systems.

A. Research Approach

Based upon the need to obtain a more accurate design

of sprinkler irrigation systems including the effects of

losses occurring in the hydraulic components, the

following procedures are proposed for attaining the

research objectives.

63
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Objective 1. To develop finite element formulation of

essential sprinkler irrigation components

such as elbows, tees, gate valves,

sprinklers and pumps.

To achieve objective 1, various sprinkler irrigation

hydraulic components will be formulated employing the

finite element methodology. A computer model will be

designed based on the finite element formulation of the

hydraulic components and on the application of the

dimensionless energy concept to sprinkler irrigation

design. The purpose of the computer model will be to

provide reliable values of pressure and discharge in

order to satisfy the sprinkler irrigation system design.

Objective 2. To demonstrate the potential of applying

the finite element formulation to the

design of sprinkler irrigation systems by

comparing it to a linear theory approach.

To attain objective 2, the finite element based

computer model will be compared to a commercially

available linear theory computer model employed in the

solution of pipe networks. Specifically, both models

will be compared for reliability and accuracy of

solution.



65

B. Theoretical Development

The theoretical development section is composed of

two parts. In the first part, the finite element

formulation of a number of sprinkler irrigation

components is presented. In the second part, an example

implementation is presented.

The following development of the finite element

formulation is an extension of the approach outlined in

the literature review section.

The analysis is based on the mechanical energy

balance equation and the contribution of each of the

system components to the nodal equation. Applying the

mechanical energy balance between two points in a network

system, Figure 11, (neglecting the velocity component) is

Pi Pj

21 + -—— + Hp = zj + -—- + hf + hc [64]

90 90

where the subscripts i and j denote the downstream and

upstream conditions respectively and all other variables

are as previously defined.

Equation [64] can be rearranged into the different

contributions of each element to the system

KC Q2

29 A2

 

(21 + H1) - (zj + Hj) = KQm + Hp [65]

01'



Figure 11. Pipe
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2
KC Q

AH = KQm + ————3— - Hp [66]

29A

where A is the area of the element and AH is defined as

AH = (21 + H1) - (Zj + Hj)

Equation [66] can be separated further into three

equations:

AH = KQm Pipe Section [67]

KC Q2

AH = -—-—- System Components [68]

29A2

AH = -Hp System Pump [69]

starting with equation [67] it can be rearranged into

Q = K‘l/m AHl/m [70]

equation [70] can be linearized in the following form

AH

Q g K-l/m AHl/m ___.

AH

Q = K-l/m AHl/m+l-l

resulting in the following equation
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Q = Cp AH [71]

equation [71] can then be rearranged into

Q = Cp (Hi - Hj) + Cp (zi - zj) [72]

(21 + H1) - (Zj + Hj) (l-m)/m

= 7where Cp Kl/m [ 3] 

is the linearized coefficient for the straight pipe

element. Equation [68], representing the system component

contribution, can be rearranged into

 

 

)3ch2

2 = RC Q2 = AH [74]

29A

or RCl/2 Q = An“2 [75]

and Q = cpC (Hi — Hj) + cpC (zi - zj) [76]

AHl/Z

where Cpc = [77]

Rel/2

is the linearized coefficient for the system components.
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The effects of the pump in equation [69] can be

described in three basic forms:

First, the effect of the pump can be specified

depending on the useful power it puts into the system (in

horsepower or kilowatts). The useful power refers to the

actual power which is transformed into an increase in

pressure head and kinetic energy of the liquid as it

passes through the pump. The useful power can be

computed from a typical head—discharge data set using the

following equation

 

 

P

H = - [78]
P

OQQ

where Hp = operating head in meters,

P = useful power in kilowatts,

Q = discharge in cubic meters per second,

0 = density in kilograms per cubic meters, and

g = acceleration due to gravity in meters per

squared second.

Rearranging equation [78] results into

P

AH = - [79]

090

or Q = Cpp (Hi - Hj) + Cpp (Zi - Zj) [80]
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P

[81]
 

where C = -
PP AHpg

is the linearized pump coefficient.

Alternately, a pump can be described by points of

operating data. A polynomial or an exponential curve can

be fit to this data to obtain a pump characteristic curve

describing the pump operation as

Hp = H1 — ch [82]

where H1 cutoff head in meters,

c and m coefficients derived from each particular

pump application, and all the other

variables as previously defined.

Equation [82] can be rearranged into

AH = - H1 + CQm [83]

or

(AH + Hl)l/m = cl/m Q [84]

where

and

— |(AH + Hl)(1-m)/m

_ cl/m

 

Cpp [86]

is the linearized pump coefficient.
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A third method of incorporating the effects of a

pump into the system of equations is by specifying the

pump discharge pressure. For this application the pump

discharge is considered at a fixed grade node, where both

the pressure and the elevation are known values. The

pump contribution can be written as

AH = Ho => AH = + 20 [87]
 

where H0 is the fixed grade node.

The pump contribution in this case is accounted for

in the forcing vector as

 

( ) _

(21 + H1) - (zj + Hj4(l-m)/m

where Cpp = Kl/m * [89]

is the linearized pipe element coefficient in which the

pump is located.

The sprinkler element can be considered as a

separate component. Rearranging equation [68] and

neglecting the elevation difference across the sprinkler

results into

( ) KCQZ [ ]H- - H- = -————— 90

1 3 29A2
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or

and

(Hi - Hj)l/2 = Kl/ZQ [92]

where

Q = cSp (Hi - Hj) [93]

and

(Hi - Hj)1/2

Csp = [94]

Kspl/Z

is the linearized coefficient for the sprinkler element.

Combining all the linearized coefficients into one

equation results into

zc (AH) [95]I
O u

01'

Q = (Cp + CC + Cpp + Csp) AH [96]

which gives the linearization of all the elements as

shown in Figure 11.

The finite element method utilizes the concept of an

element stiffness matrix and an element force vector to

construct the system of equations. The element matrices

for the pipe element is developed below.

Considering a sequence of nodes as shown in Figure

12. These nodes are separated by elements (e-l), (e) and
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(9“) (9) (E+I)

U
!

(
*
4
)

C

Figure 12. Sequence of nodes and elements (Bralts and

Segerlind, 1985).
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(e+l). Assuming flow into a node is negative and flow

out from a node is positive, the continuity principle

applied to nodes 5 and t results

[97]

I

O- Qs(e—1) + Qs(e)

and

[98]II

0- Qt(e) + Qt(e+l)

the contribution of element (e) to the residual nodal

equation is Qs(e) and Qt(e) or

Qs(e) cp(e) (n5 - at) + cp(e) (zs - z.) [99]

and

Qt(e) -Cp(e) (Hs - Ht) + Cp(e) (zs - zt) [100]

in matrix notation

f r- '1

QSIE) Cp 'Cp HS Cp AZ

[101]

_
_
A II

:
1
:

f
?

I

L L 1

where A2 = Zt - ZS

   

Likewise, the components' (elbows, tees and valves)

contribution to the residual nodal equation is



Qs(e)

QtIE)
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- [102]

The pump contribution is also defined in the same format

as

1

= - [103]

  

Finally, the sprinkler contribution to the residual nodal

equation can be written as

Qs(3)

QtIE)

  

HS cp Az

- [104]

A direct stiffness procedure, similar to the one

employed in structural analysis, is used to incorporate

the element matrices shown in equations [101], [102],

[103], and [104] into the final system of equations.

To demonstrate the direct stiffness procedure a

sprinkler irrigation system as shown in Figure 13 has

been selected. The sprinkler system consists of a

submain and eight laterals. The submain contains seven
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Figure 13. Example sprinkler irrigation system.
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tees and one elbow. Each lateral contains one sprinkler

and one gate valve. The input has been considered as a

fixed grade node where pressure and elevation are known

quantities.

The direct stiffness method is very simple to apply

and only requires the knowledge of the location of the

elements defined by two nodes. The contribution of each

element in the system of pipes and components is

accordingly added or subtracted at the proper location in

the stiffness matrix. An example of the solution matrix

is shown in Figure 14. The direct stiffness procedure

yields a system of equations which has the general matrix

form:

[K] {H} - {F} = {0} [105]

The vector {H} contains the element nodal pressures, the

stiffness matrix [K] contains the algebraic summation of

each element contribution, and the vector {F} contains

the element contribution to the force vector.



Figure 14. Example solution mat rix.
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IV. RESULTS AND DISCUSSION

The results and discussion section consists of a

comparison of the data generated by both finite elements

and linear theory models. Data analysis and

representation will be performed using the PLOT-IT

statistical package. Linear regression analysis will be

performed to determine the correlation between the

junction pressures and sprinkler flows for the finite

elements and linear theory models. Also, the accuracy

and reliability of each model will be assessed in this

section.

A. Computer Models

A computer program (DESIGNER) developed by Bralts

and Segerlind (1985), which uses the finite element

method to assist in the analysis and design of drip

irrigation submain units, was modified to incorporate the

element matrices derived in the methodology section. The

finite element based computer model (SPIRR-FE, see

appendix B) was compared with a computer model based on

linear theory developed by Wood (1980) (see appendix C).

The finite element based computer program (SPIRR-FE)

solves the hydraulic network problem by obtaining values

79
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of pressure and discharge, at the junction and sprinkler

nodes, and employing them to satisfy the sprinkler

irrigation system design. The SPIRR-FE computer program

uses the dimensionless grade line concept as presented in

the literature review to generate initial estimates of

both junction pressures and elevations.

The linear theory model, as presented in the

literature review section, utilizes a different approach

to approximate the initial estimates of flow. Wood's

computer program calculates initial flowrates assuming a

modified pipe line constant which is made independent of

the flowrate. The solution obtained in this manner is

very similar to one which would be obtained assuming

laminar flow distribution in the system.

The results of this section will show that both

techniques for computing the initial flow distribution in

the hydraulic system give very reasonable values as it

does approximately compute a laminar flow distribution.

This gives results which are feasible estimates of the

turbulent flow distribution existing in the sprinkler

system.

B. Model Comparisons

Both the finite element and the linear theory

computer programs provide empirical solutions. For this

reason, comparison of their solution should be made



81

considering a variety of initial conditions. A group of

comparisons were conducted which attempted to cover a

wide range of possible solid set sprinkler irrigation

hydraulic designs.

Five different slope conditions were employed in the

comparisons. They ranged from two percent downhill to

two percent uphill. Also a zero percent slope was

considered. Four different values of component KC

coefficients were also selected. They varied from zero

to three. The purpose of this type of evaluation was to

examine the impacts of the system components and the

sloping ground conditions in the overall sprinkler

irrigation system design.

The comparisons were further divided into two

general situations. The first evaluation procedure

consisted of comparing the results of head and flow

generated in a sprinkler irrigation system, considering

the input node of the system as a fixed grade node. The

second evaluation procedure consisted of comparing the

same system, but including a pump as a source of head

input into the system.

The sprinkler irrigation system selected for the

first evaluation is shown in Figure 15. It consists of a

submain and eight laterals. The submain line has a

diameter of 203.2 millimeters (8 inches) and a total

length of 487.7 meters (1600 feet). The submain line

also contains six tees and one elbow. The lateral
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Figure 15. Sprinkler irrigation system layout.
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lines have a diameter of 50.8 millimeters (2 inches) and

are spaced every 61.0 meters (200 feet) along the submain

line. The lateral lines are 30.5 meters (100 feet) long,

each containing one sprinkler and one gate valve.

In this first evaluation the input node has been

considered a fix grade node, as if the sprinkler system

was being fed by a large pressure main at a constant

pressure equal to 239.1 Kilopascals and at an elevation

equal to 15.2 meters

The Hazen—Williams equation is used for the friction

head calculations with a C value equal to 150 for all the

pipes. Minor loss coefficients associated with valves,

elbows and tees are specified at each of these

components. The sprinklers selected for all the

simulations have rated conditions of 5.7 liters per

second (90 gpm) of discharge at a pressure of 90.5

Kilopascals (30.3 feet) in a 50.8 millimeters line (2

inches). The minor loss coefficient for this type of

sprinkler is equal to 23.

An example output of the finite element computer

model is shown in Figure 16. An example of the output of

the linear theory computer model is shown in Figure 17.

A correlation and linear regression analysis was

performed with the linear theory values as the dependent

variable and the finite element values as the independent

variable. For an exact fit of a model, the intercept and

slope of the resulting equations would be 0.0 and 1.0,
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22.6;
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34.CL
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Figure 16.

output.
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8.00

10.46

150.0

1.052

-2

2.00

10.46

150.0

1.852

200.0

16.3820

0 5

100.0

1

INITIAL PRESSURES (FT)

89.15

134.86

86.53

130.98

84.13

127.41

82.06

124.34

80.43

121.93

79.35

120.32

78.91

119.67

79.22

120.13

00

SPRINKLER FLOWS

GALLONS PER

154.

152.

150.

148.

146.

145.

145.

145.

MINUTE

68

39

26

40

92

93

53

81

KILOPASCALS

266.47

403.10

256.65

391.50

251.46

380.85

245.28

371.68

240.41

364.46

237.18

359.66

235.88

357.72

236.80

359.09

239.13

sunMAIN Ito. (GPMI- 1109.90 (l/s)

Example finite element computer program

FINAL PRESSURES ADJUSTED W/ HEIGHTS IN

FEET

LITERS

75.07

PER SECOND
7

9. 6

w
w
m
m
m
m
m

.62

.45

.36

.27

W

A

.18

.20
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PIPL NC. NCDL NOS. LENGTH DIAuran ROUGMN£5S MINOR Lcss K rIxED 68408

(2507: (INLuLSI

1 0 I 200.0 8.0 150.0 .00 130.00

TNEHE IS A PUMP 1N LINL 1 H11“ 055130 FOUL" . 12.03

2 1 0 100.0 2. 150.0 25.00 46.00

3 I 2 200.0 8.0 150.0 2.00

4 2 0 100.0 2.0 150.0 25.00 42.00

5 2 3 200.0 8.0 150.0 2.00

6 3 0 100.0 2.0 150.0 25.00 38.00

7 3 4 200 0 8.0 15;.0 2.00

8 4 0 100.0 2.0 150.0 5.00 34.00

9 4 5 200.0 0.0 50.0 2.00

10 5 0 100.0 2.0 150.0 25.00 30.00

11 5 6 00.0 8.0 150.0 2.00

12 6 0 100.0 2.0 150.0 5. 0 26.00

13 6 7 200.0 8.0 150.0 2.00

14 7 0 100.0 2.0 150.0 25. 0 22.00

15 7 8 202.0 8.0 150.0 2.00

16 8 0 100.0 2.0 150.0 25.00 18.00

JUNCTION N-H3Lk DEMAND ELEVATION CONNECTING PIPES

1 .00 46.0: 3

2 0. 42 00 3 4 5

3 00 38.00 5 6 7

4 0‘ 34 0: 7 8 9

5 0: 30.00 9 10 11

6 00 26.00 11 12 13

7 0: 22.00 13 14 15

8 .00 18.00 15 16

TH; RLLCLTS ARE OBTAINEQ AFTER 8 TRIALS HI?" AN ACCURACY 0 .00005

TRIAL N2. 6

e ;ATL ALS H2?! 06: SPR. PER LAT

N27: n-Z. COMPONENTS 24 DONN SLOPE

PIPE N2. N23: N35. ILONRITE HEAD LOSS PUMP HEAD MINOR LOSS VELOCITY HL/IOOS

1 0 1 115..00 3.87 39.00 .00 . 0 19.37

2 1 C 145.5: 33.92 .00 80.17 14.90 339.21

3 I 2 1:45.10 3.04 . C 1.38 6.67 15.21

4 2 C 145.64 33.8; .00 45.86 14.87 318.08

5 2 3 899 46 2.3: . 0 1.02 5.74 11.52

6 3 0 146.00 33.99 .00 86.35 14.92 339.88

7 3 4 753.40 1.66 .00 .72 4.81 8.30

8 4 0 147.06 34.42 .00 87.54 15.02 344.21

9 4 5 020.34 I :1 00 .47 3.87 5.55

10 5 0 148.55 35.0‘ .0: 89.32 15.17 150.08

I; 5 6 457.7 .60 .00 .27 2.92 3.30

12 6 C 153.4; 35.89 .00 91.57 15.36 358.88

13 6 7 3:‘.3& .32 .00 .12 1.96 1.5

14 7 0 152.54 36.84 .00 94.19 15.58 308.36

15 7 8 154.84 .09 .00 .03 .99 .44

I; 8 0 114.84 37.8? .00 97.04 15.81 378.68

J.\C‘.ON NUPBER DEMAND GRADE LINE ELEVATION PRESSURE

l .00 166.09 46.03 52.04

2 .0: 161.66 42.00 51.85

3 .00 150.34 38.00 52.15

4 0 155.96 34.00 52.85

5 .0: 54.38 30.00 53.93

6 .03 153.46 26. 0 55.23

7 . 0 153.03 22.00 56.78

8 .00 152.91 18.00 58.46

ThE NET SYSTEM DEMAND - .00

SLHRARY OF INFLCNS(°) AND OUTFLOHS’-) PROM FIXED GRADE NODES

PIPE NUMBER rLounATE

1191.00

-145.90

~145.64

-146.06

THE NT? FLOR INTO THE SYSTEM FROM FIXED GRADE NODES 0 1191.00

135 N57 PLC- 087 Of THE SYSTEH INTO 71385 GRADE NODES 0 -1191.00

Figure 17. Example linear theory computer program

output
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respectively. Deviation from these values indicated

variations on the accuracy and predictability of the

models.

The results of the correlation and linear regression

analysis for the junction heads and sprinkler flows, for

all the simulations studied under the first evaluation

procedure, are presented in Tables 2 and 3 respectively.

Figures 18 through 25 show the values of the junction

head and sprinkler flow relationships graphically for the

four cases selected.

From Tables 2 and 3 and Figures 18 through 25, it

can be seen that under the conditions analyzed here there

is a high degree of correlation in the junction heads and

sprinkler flows between the finite element and linear

theory models. The coefficient of determination, R2,

measures the strenght of the linear relationship between

the finite element and linear theory models. In this

case there was a strong linear association between the

models which validated the finite element solution.

The results of the junction heads comparisons

between both models is presented in Table 4. This table

shows the average percent difference varying from a low

of 0.002 percent (for a sprinkler system with a 1

percent up hill slope and with component coefficients

equal to 1.0) to a high of 0.097 percent (for a sprinkler

system with 2 percent down hill slope and component

coefficients equal to 3.0). These results suggest a
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2. Results of the correlation and linear

regression analysis of the junction heads.

Component

Coeff. KC

-0.030+1.000*X

-0.010+1.000*X

-0.244+1.001*X

0.073+1.000*X

0.004+1.000*X

0.056+1.000*X

0.132+0.999*X

0.255+0.999*X

-0.186+1.001*X

-0.162+1.001*X

0.204+0.999*X

0.390+0.998*X

l.248+0.995*x

-1.028+1.005*X

-0.631+1.003*X

0.453+0.998*x

0.902+0.996*x

3.114+0.986*x

-2.028+l.009*x

-l.297+1.006*x



Table Results of the correlation and linear

regression analysis of the sprinkler flows

Slope

(15)

Component

0.015+0.999*X

-0.042+l.006*x

0.124+0.984*X

-0.173+1.023*x

0.028+0.997*X

-0.013+1.002*X

-0.034+1.006*X

0.115+0.985*X

-0.170+l.023*X

-0.097+1.013*X

-0.012+1.003*X

0.056+0.992*X

0.085+0.989*X

-0.121+1.017*X

0.010+1.000*X

0.010+1.000*X

0.010+1.000*X

0.100+0.987*X

0.093+0.989*X

-0.062+l.010*X
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Figure 18. Comparison of finite element and linear

theory solution for junction heads with 0

percent slope and Kc equal to 0.0.
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Figure 19. Comparison of finite element and linear

theory solution for junction heads with 1

percent upslope and Kc equal to 1.0.
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Figure 20. Comparison of finite element and linear

theory solution for junction heads with 2

percent downslope and Kc equal to 2.0.
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Figure 21. Comparison of finite element and linear

theory solution for junction heads with 2

percent upslope and Kc equal to 3.0.
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Figure 22. Comparison of finite element and linear

theory solution for sprinkler flows with 0

percent slope and Kc equal to 0.0.
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Figure 23. Comparison of finite element and linear

theory solution for sprinkler flows with 1

percent upslope and Kc equal to 1.0.

8.00



9S

 

”100 T 1 *r n 1 1 T I,

7:? LINEAR RECRESSION /

> 950- ” -
Z - Y = 0.010 + 1.000.x

2
’l

% 9.00-l R — 1.000
III 4

_J I

LI. ’I’

35 8.50~ /’ 4
._.l

E
55 ELOO- -

CL

0')

E 7.50~ I. -

8 /’ SLOPE = 2% downhill

E 7-00- COMPONENT -

a: COEFF. Kc = 2.0

:25 6.5O- ..

:3 I,” [1:1]

6.00 T i   T T T r f

6.00 6.50 7.00 7.50 6.00 8.50 9.00 9.50 10.00

FINITE ELEMENT SPRINKLER FLOWS (l/s)

Figure 24. Comparison of finite element and linear

theory solution for sprinkler flows with 2

percent downslope and Kc equal to 2.0.
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Comparison of finite element and linear

theory solution for sprinkler flows with 2

percent upslope and Kc equal to 3.0.
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Table 4. Comparison of junction heads between the

finite element and linear theory models

SLOPE Kc AVERAGE PERCENT

(%) DIFFERENCE

2 0 0 0.011

1 0 0 0.004

0 0 0 0.005

-1 0 0 0.006

-2 0 0 0.008

210"""""""""6:666"""

l l 0 0.002

0 1 0 0.012

2 l 0 0.004

-2 1 0 0.007

2200035""""

1 2.0 0.035

0 2 0 0.041

-1 2.0 0.042

-2 2.0 0.047

2300078"""

1 3 0 0.084

0 3 0 0.087

-1 3 0 0.095
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maximum percent difference or error for the junction

heads in the order of 0.1 percent. This is probably due

to the accuracy of the initial estimates and to the

convergence criteria employed by each model. Also, this

error can be partially attributed to the different

methods employed by each model to solve the final system

of equations.

The results of the total sprinkler flow comparisons

between both models is presented in Table 5. This table

shows the percent difference varying from a low of 0.031

percent (for a sprinkler system with a 2 percent down

hill slope and with component coefficients equal to 0.0)

to a high of 0.194 percent (for a sprinkler system with 2

percent down hill slope and a component coefficient equal

to 3.0). These results suggest a minimum degree of

variation between the sprinkler discharges in each model.

The results of Table 5 also show the components

contribution to the sprinkler system design. As the

component coefficient Kc is increased, the total system

flow rate decreases. Both models simulate this condition

with a high degree of accuracy.

Figures 26 and 27 show the hydraulic grade line for

two of the cases studied; up hill and down hill

respectively. These figures demonstrate the effects on

the hydraulic gradient line due to the main line slope,

the pressure on the laterals and the system components.

It is apparent from Figure 26 that the pressure loss
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Table 5. Comparison of sprinkler flow rate between

the finite element and linear theory models

SYSTEM FLOW RATE (liters/second)

SLOPE Kc PINITE ELEMENT LINEAR THEORY PERCENT

(%) MODEL MODEL DIFF.

2 0.0 51.69 51.71 0.039

1 0.0 55.53 55.55 0.036

0 0 0 59.05 59.07 0.034

-1 0.0 62.34 62.36 0.032

-2 0.0 65.43 65.45 0.031

"5"""6'6m'""66??1""""""66T66""""6'66?

1 1.0 54.47 54.50 0.055

0 1.0 57.92 57.95 0.052

-1 1 0 61.13 61.17 0.065

-2 1.0 64.16 64.19 0.047

"6""“666""""66:66""""""66T66""""6TI66'

1 2 0 53.45 53.51 0.112

0 2.0 56.83 56.89 0.106

-1 2.0 59.98 60.04 0.100

-2 2.0 62.94 63.01 0.111

"6"”"666""""66:66””””””66T66""""66666'

1 3 0 52.48 52.57 0.171

0 3 0 55.79 55.89 0.179

-1 3.0 58.87 58.98 0.187
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Figure 26. Hydraulic grade line representation for 2

percent uphill and Kc equal to 3.0.
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due to the combination of the friction in the lines and

the system components is less than the gain in pressure

due to the slope of the main line. This result suggest a

hydraulic gradient line with a gradual slope along the

main line length.

From figure 27, it can be seen that the combination

of uphill 510pe and pressure loss due to friction reach

an equlibrium point at approximately 180 meters. The

hydraulic gradient line in this case is more horizontal

than in the previous Figure suggesting larger junction

head pressures towards the end of the sprinkler system.

The second evaluation procedure was a comparison of

both models using the same system layout but with the

addition of a pump in line 1 between nodes 16 and 17.

Figure 28 shows the sprinkler irrigation system layout

and the components.

The pump selected in this part of the evaluation

procedure was capable of providing a pressure head

equivalent to 119.6 Kilopascals (40 feet), in addition to

the existing conditions of head and elevation in the

system.

Tables 6 and 7 show the results of the correlation

and linear regression analysis of the junction heads and

sprinkler flows respectively, with a pump in the system.

Figures 29 through 32 show this relationships in a

graphical form for the four cases selected. From these

Tables and Figures it is demonstrated the high degree of
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Table 6. Results of the correlation and linear

regression analysis of the junction heads

with a pump in the system.

Slope Component N Regression Equations R2

(%) Coeff. KC

”'E”"""3T6""""é"""§’;'"6T§§§I6f§§5¥§""’1T666

l 1.0 8 Y = —0.792+1.003*x 1.000

0 0.0 8 Y = -0.991+1.003*x 1.000

-2 2.0 8 Y = -1.739+1.005*x 1.000

Table 7. Results of the correlation and linear

regression analysis of the sprinkler flows

with a pump in the system

Slope Component N Regression Equations R2

(%) Coeff. KC

""5""""3T6""""5"""Q’L”6T6£§IST3331§""’1T666

l 1.0 8 Y = -0.047+1.006*X 1.000

O 0.0 8 Y = -0.015+1.002*x 1.000

-2 2.0 8 Y = -0.097+1.011*x 1.000
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correlation between the finite element and linear theory

solutions.

Table 8 shows the comparison between the junction

heads for each model with a pump in the system. The

results of this table suggest that, for the four cases

selected, the percent difference or error did not exceed

0.022 percent. This corroborates the assumption that a

solution can be considered to compare favorably if the

percent difference between the junction heads did not

exceed 0.1 percent.

Table 9 shows the comparison between the total

sprinkler flow for each model with a pump in the system.

The highest percent difference or error between the

models was found to be equal to 0.142 for a system with a

2 percent up hill slope and with component coefficients

equal to 3.0. This value seems to be in line with the

assumption that a reasonable solution can be obtained

provided the sprinkler flows did not varied by more than

0.2 percent.

Figures 33 and 34 show the hydraulic grade line for

the up hill and down hill cases with a pump in the

system. These figures demonstrate the effects of the

pressure added by the pump to the system. The impacts of

the overall increase of pressure in the system is

reflected in the higher level attained by the hydraulic

grade line.
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Table 8. Comparison of junction heads between the finite

element and linear theory models with a pump in

the system

SLOPE Kc AVERAGE PERCENT

(%) DIFFERENCE

2 3.0 0.022

1 1.0 0.002

o 0.0 0.003

-2 2.0 0.019

Table 9. Comparison of sprinkler flow rate between the

finite element and linear theory models with a

pump in the system

SYSTEM FLow RATE (liters/second)

SLOPE KC FINITE ELEMENT LINEAR THEORY PERCENT

(%) MODEL MODEL DIFF.

2 3.0 63.16 63.25 0.142

1 1.0 68.52 68.56 0.058

0 0.0 72.72 72.75 0.041

-2 2.0 75.07 75.14 0.093
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B. Accuracy and Reliability

The reliability of both computer models was examined

by evaluating a large number of sprinkler irrigation

designs employing each algorithm and assessing the

consistency of each model in arriving to a solution.

Under the 24 simulations studied, an acceptable solution

was always attained.

The accuracy of a solution is a measure of the

exactness to which the basic hydraulic equations are

satisfied for a given irrigation design. The accuracy of

the computer model solutions was determined by comparing

the sprinkler flows and the junction head. The solutions

were considered to compare favorably if the percent

difference between sprinkler flow rates did not exceed 0.2

percent and the percent difference between junction

heads did not exceed 0.1 percent. This criteria was

susscessfully meet in all the simulations studied as

shown in Tables 5 and 9 for the sprinkler flows and in

Tables 4 and 8 for the junction heads.

The convergence criteria is a measure of the speed

at which a relatively stable solution can be obtained.

In this particular case, the convergence criteria

employed by each computer model was different. The

linear theory computer model employed the change in

flowrate between successive trials to Check for

CIJnvergence. The specific convergence criteria employed
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in this method is referred as the relative accuracy.

This criteria roughly states that when the average change

in flow rates between successive trials is less than 0.5

percent, the calculation cease. Although this criteria

is more stringent than others normally applied in

practice, it does not however, assure that the flow rates

are within 0.5 percent of the correct values.

The finite element method arrives at a solution with

a relative accuracy of 0.03 Kilopascals (0.01 feet). The

model uses the criteria that the sum of the total

pressure variations in all the nodes has Changed less

than a predetermined relative accuracy, in this case 0.03

Kilopascals.

C. Summary Discussion

The results and discussion section have demonstrated

the capabilities of the finite element computer model to

simulate a wide variety of solid set sprinkler irrigation

systems. The results comparing the finite element

computer model (SPIRR-FE) and the linear theory model

were very positive. The results strongly support the use

of the dimensionless energy gradient line concept for

initial estimating the junction pressures and elevations.

The reliability of the algorithm employed in the

irrigation system solution is of great importance.

Failure to obtain a solution is an inconvenience and the
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failure to recognize a poor solution may be even a

greater problem because this may lead to poor design or

management of the irrigation system.

No limitations to the SPIRR-FE computer program were

found for the range of analysis reported. The results of

the above comparisons clearly show the validity of the

finite element solution.



V . CONCLUSIONS AND RECOMENDAT I ONS

The objectives of the proposed research have been

addressed in full. A computer program which uses the

finite element method to model essential sprinkler

irrigation system components was developed. The computer

program was compared to a linear theory model which

demonstrated the applicability of the finite element

formulation to the design of sprinkler irrigation

systems. The computer based finite element solution

results in a symmetric banded matrix which greatly

reduces the computer storage.

The specific conclusions of the research are:

l. The finite element method can be used to model

sprinkler irrigation system components such as

elbows, tees, gate valves, sprinklers and pumps.

2. The finite element based computer model, when

compared to a linear theory model, showed very

good correlation for junction pressures and

sprinkler flows.

116
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3. The finite element method converged to reliable

solutions provided reasonable initial pressure

estimates were obtained by employing the

dimensionless gradient line concept.

Recommendations for further research include:

1. Extend the finite element methodology to cover

hydraulic network analysis including systems

with loops.

2. Apply optimization techniques to the finite

element model to obtain the best design possible

given a set of initial conditions.
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TAYLOR SERIES EXPANSION

In the Review of Literature section all the methods

presented in the analysis of pipe networks employed some

form of linearizing the nonlinearities associated with

the energy equations. One of the most widely used

linearizing technique employed in these methods is the

Taylor series expansion. The mathematical basis of this

technique suggests that if a power series £x(n) (x-x(n))

converges to a function f(x) then the coefficients of the

power series should be determined by the values of that

function and its successive derivatives.

Applying this principle to the Newton-Raphson method

suggests that in order to arrive to a solution of f(x) =

0, it is necessary to determine the tangent of the curve

at the first approximation (x(n)). Mathematically the

evaluation of f(x) = 0 can be written as

f"(c)

 

f(x) = f(x(n)) + (x-x(n))f'(x(n) + (x-x(n))2 [A.l]

where C(n) lies between x(n) and x. Solving for x

results in

f(X(n)) 2 f"(c)

x = x(n) - -——-- - (x-x(n)) ---—- [A.2]

f'lme 2f'(x(n))
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01‘

f"(r.)

2f. (X(n))

[11.3]

 

x = x(n+1) ’ ("”‘(n))2

In this case the error of the (n+1) estimate is

proportional to the square of the previous error.
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{******************************************************}

PROGRAM SPIRR-FE(INPUT,LSST);

I SPIRRE-FE

THIS PROGRAM CALCULATES THE JUNCTION HEADS AND SPRINKLER

FLOW RATES OF A SPRINKLER IRRIGATION SYSTEM EMPLOYING

THE FINITE ELEMENT FORMULATION. THE COMPUTER PROGRAM WAS

WRITTEN IN TURBO-PASCAL.

BY

LUIS ALFONSO SALDIVIA

MICHIGAN STATE UNIVERSITY

AGRICULTURAL ENGINEERING DEPARTMENT

1988

{******************************************************}

VARIABLES USED IN THE PROGRAM:

A(1400,2)--THE MAIN DIAGONAL OF THE STIFFNESS MATRIX

A(14oo,1)--THE OFF DIAGONAL OF THE STIFFNESS MATRIX

DELTAHP(1400) - STORES CHANGES IN PRESSURES AND ELEV.

DIFF(1400) — STORES PRESSURES FROM PREVIOUS ITERATIONS

TO CHECK FOR CONVERGENCE

EDIFF - UPPER LIMIT CONVERGENCE CRITERIA

HEIGHT-—ELEVATION OF THE INPUT NODE

HIN—-PRESSURE OF THE INPUT NODE

HINP - PUMP HEAD

ITERDELTA - DIFFERENCE IN PRESSURES BETWEEN ITERATIONS

COVERGENCE CRITERIA

ITS - NUMBER OF ITERATIONS

KS - SPRINKLER CONSTANT

LATC - LATERAL FRICTION CONSTANT

LATD - LATERAL DIAMETER

LATK - LATERAL CONSTANT

LATM - LATERAL EXPONENT

LATS - LATERAL SPACING

M - SUBMAIN EXPONENT

NEL — NUMBER OF SPRINKLERS PER LATERAL

NL - NUMBER OF LATERALS

P(1400) - STORES THE JUNCTION NODES OF THE SPRINKLER

IRRIGATION SYSTEM

RHS(700) - STORES THE VALUES OF THE RIGHT HAND SIDE

OF THE SOLUTION EQUATIONS

0(1400) - STORES THE CHANGES IN FLOW RATE USED TO

CALCULATED THE COMPONENT CONTRIBUTION

120
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SLOPS - SUBMAIN SLOPE

SLOPL - LATERAL SLOPE

SPS - SPRINKLER SPACING

SUBC - SUBMAIN FRICTION CONSTANT

SUBD - SUBMAIN DIAMETER

SUBK - SUBMAIN CONSTANT

UNK - NUMBER OF UNKNOWS

XS - SPRINKLER EXPONENT

Y(1400) - STORES THE SPRINKLER FLOWS

*****************************************************}

{VARIABLE DECLARATION SECTION}

CONST ARRAY SIZE = 700;

TYPE

VAR

ARRAY:SIZEZ = 1400;

ARRAY_TYPE = ARRAY[1..ARRAY_SI2E2] OF REAL;

FILENAME,FILENAM:STRING[20];

LSST,INFILE:TEXT;

A:ARRAY[1..ARRAY_SIZE,1..2] OF REAL;

DELTAHP,DIFF,P,Y,Q:ARRAY_TYPE;

ITERDELTA,EDIFF:REAL;

ITS,UNK,UNK1:INTEGER;

RHS:ARRAY[1..ARRAY_SIZE] OF REAL;

KS,XS:REAL;

TK,TX:REAL; {TEMPORARIES}

KLAT,KSUB,KLAT1,KSUBI:REAL;

SLOPLL,SPS:REAL;

LATS,LATC,LATD,LATK,LATM,SLOPL:REAL;

NL,NEL,NEL1,NSP,NLP:INTEGER;

TSLOPS,TSLOPLL:INTEGER;

HEIGHT,HIN,HINP:REAL;

SLOPS,SUBD,SUBC,SUBK:REAL;

BIAS,MUNK,ID,MP,LNO,I,J,K,CH:INTEGER;

PTEMP,CTEMP,CTEMP1,CTEMP3,EE4,CONSTM,M:REAL;

KCOML,COMKL,DFL,KCOMS,COMKS,DFS:REAL;

SUML,MEANL,SUBFLOW:REAL;

NOL,OFFSET:INTEGER;

{END THE DECLARATION OF VARIABLES}

{****************************************************}

{PROCEDURE TO OPEN A FILE TO READ DATA FROM}

PROCEDURE OPENINFILE;

VAR OK:CHAR;

FLAGl:BOOLEAN;

BEGIN

FLAG1:=FALSE;

REPEAT
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WRITELN('THE FILE TO READ DATA FROM IS ?');

READLN(FILENAME);

WRITELN('THE FILE TO READ DATA FROM 15 ',FILENAME

,‘2 (Y OR N E=EXIT)');

READLN(OK);

CASE OK OF

'Y':BEGIN

FLAG1:=TRUE;

ASSIGN(INFILE,FILENAME);

RESET(INFILE);

IF EOF(INFILE) THEN

BEGIN

WRITELN('UNABLE TO OPEN FILE',FILENAME);

FLAGl:=FALSE;

END;

END;

'N':FLAG1:=FALSE;

'E':BEGIN

WRITELN('NO FILE OPENED PROCEDURE EXITED');

FLAG1:=TRUE;

END;

ELSE FLAGI:=FALSE;

END;{CASE}

UNTIL FLAGI;

END; {END OPENINFILE}

{************‘k*****************************************}

{THIS PROCEDURE OPENS A TEXT FILE TO WRITE TO}

PROCEDURE OPENLSST;

VAR FLAG1:BOOLEAN;

OK:CHAR;

BEGIN

FLAG1:=FALSE;

REPEAT

WRITELN('THE NAME OF THE TEXT FILE TO WRITE TO IS ? ');

READLN(FILENAM);

WRITELN('THE TEXT FILE TO BE WRITTEN TO IS ',FILENAM,

' ? (Y OR N E=EXIT)');

READLN(OK);

CASE OK OF

'Y':BEGIN

FLAG1:=TRUE;

ASSIGN(LSST,FILENAM);

. REWRITE(LSST);

END;

'N':FLAG1:=FALSE;

'E':BEGIN

WRITELN('NO FILE OPENED. PROCEDURE EXITED');

FLAG1:=TRUE;

END;
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ELSE FLAG1:=FALSE;

END; {CASE}

UNTIL FLAGl;

END; {END OPENLSST}

{******************************************************}

{PROCEDURE SETDATA READS THE SUBMAIN, THE LATERALS AND

THE SPRINKLERS INFORMATION FROM A DATA FILE}

PROCEDURE SETDATA;

BEGIN

READLN(INFILE,HIN,HINP,HEIGHT);

READLN(INFILE,NL,NEL);

READLN(INFILE,SUBD,SUBK,SUBC,COMKS,M,TSLOPS);

READLN(INFILE,LATD,LATK,LATC,LATM,LATS,COMKL,

TSLOPLL);

READLN(INFILE,SPS,KS,Xs);

END;

{END SET DATA}

{******************************************************}

{PROCEDURE PRINTDATA WRITES THE INPUT DATA TO A FILE}

PROCEDURE PRINTDATA;

BEGIN

WRITELN(LSST,‘ INPUT PRESSURE (FT) = ',' ',HIN:7:3);

WRITELN(LSST,' PUMP HEAD (FT) = ',' ',HINP:7:3);

WRITELN(LSST,' INPUT HEIGHT (FT) = ',' ',HEIGHT:7:3);

WRITELN(LSST,‘ NUMBER OF LATERALS = ',' ',NL);

WRITELN(LSST,‘ ');

WRITELN(LSST,‘ -----SUBMAIN DATA----- ');

WRITELN(LSST,‘ ');

WRITELN(LSST,‘ DIAMETER (IN) = ',' ',SUBD:5:2);

WRITELN(LSST,‘ CONSTANT K = ',' ',SUBK:6:2);

WRITELN(LSST,' H—W FRICTION COEFF. = ',' ',SUBC:5:1);

WRITELN(LSST,‘ TEES--ELBOWS COEFF. = ',' ',COMKS:4:1);

WRITELN(LSST,' EXPONENT M = ',' ',M:5:3);

WRITELN(LSST,‘ SLOPE % = ',' ',TSLOPS);

WRITELN(LSST,‘ ');

WRITELN(LSST,‘ ------LATERAL DATA----- ');

WRITELN(LSST,‘ ');

WRITELN(LSST,‘ DIAMETER (IN) = ',' ',LATD:5:2);

WRITELN(LSST,‘ CONSTANT K = ',' ',LATK:6:2);

WRITELN(LSST,‘ H-W FIRCTION COEFF. = ',' ',LATC:5:1);

WRITELN(LSST,' VALVES COEFF. = ',' ',COMKL:4:1);
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WRITELN(LSST,‘ EXPONENT M = ',' ',LATM:5:3);

WRITELN(LSST,’ SLOPE % = ',' ',TSLOPLL);

WRITELN(LSST,' LAT SPACING (FT) = ',' ',LATS:4:1);

WRITELN(LSST,‘ ');

WRITELN(LSST,’ -----SPRINKLER DATA---- ');

WRITELN(LSST,' ');

WRITELN(LSST,' SPRINKLER COEFF. = ',' ',KS:7:4);

WRITELN(LSST,‘ SPRINKLER EXPONENT = ',' ',XS:3:1);

WRITELN(LSST,’ SPRINKLER SPAC.(FT)= ',' ',SPS:4:1);

WRITELN(LSST,‘ NO. SPRINKLERS/LAT = ',' ',NEL);

WRITELN(LSST,‘ ');

WRITELN(LSST,‘ ');

END; {PRINTDATA}

{******************************************************}

{FUNCTION POWER RAISES BASE TO THE POWER PWR.}

FUNCTION POWER(BASE,PWR : REAL) : REAL;

BEGIN

IF BASE>0.0 THEN

POWER:=EXP(PWR*LN(BASE))

ELSE

POWER:=0.0;

END; {POWER}

{******************************************************}

{PROCEDURE INITIALIZATION OBTAINS NEEDED VALUES

OF CONSTANTS AND INITIALIZES THE ARRAYS}

PROCEDURE INITIALIZATION;

VAR I,J:INTEGER;

BEGIN

SLOPS:=TSLOPS/100.0;

SLOPLL:=TSLOPLL/100.0;

KLAT:=(LATK*SPs)/(POWER(LATC,M)*POWER(LATD,4.871));

KSUB:=(SUBK*LATS)/(POWER(SUBC,M)*POWER(SUBD,4.871));

DFL:=LATD/12.;

DFS:=SUBD/12.;
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{INITIALIzATION OF THE ARRAYS}

FOR I:=1 TO ARRAY_SIZE DO BEGIN

RHSII]:=0.0;

FOR J:=l TO 2 DO A[1,J]:=o.o;

END;

FOR I:=l TO ARRAY_SIZEZ DO BEGIN

DIFF[I]:=0.0;

END;

ITERDELTA:=0.01;

EDIFF:=0.0;

UNK:=NEL*NL+NL;

UNK1:=UNK+1;

NELl:=NEL+l;

CONSTM:=(1./M)-1.;

END;

{END INITIALIZATION}

{******************************************************1»

{REAL FUNCTION C CALCULATES THE CONSTANTS NEEDED

TO CREATE THE DIRECT STIFFNES MATRIX}

FUNCTION C(I,ID : INTEGER) : REAL;

BEGIN

{SUBMAIN CONSTANT AND COMPONENT CONSTANT}

IF ID=1 THEN BEGIN

KCOMS:=0.00000012498*COMKS*POWER(Ql[I],0.148)

/POWER9DFS,4);

KSUB1:=KSUB+KCOMS;

C:=POWER(ABs(P[I+NEL1]-P[IJ),CONSTM)*

POWER(KSUBl,-1./M);

{LATERAL CONSTANT AND COMPONENT CONSTANT}
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IF ID=4 THEN BEGIN

KCOML:=0.00000012498*COMKL*POWER(QI[II,0.148)

/POWER(DFL,4);

KLAT1:=KLAT+KCOML;

C:=POWER(ABs(P[I+1]-P[I]),CONSTM)*

POWER(KLAT1,-1./M);

{SPRINKLER CONSTANT}

IF ID=5 THEN BEGIN

C:=POWER(ABS(P[I]-P[I+UNK1]),

(-1.+XS))*KS;

END {IF}

‘
0

END; {FUNCTION c}

{******************************************************}

{PROCEDURE INITIAL HEIGHTS WILL GENERATE THE HEIGHTS OF

THE NODES BASED ON SLOPES AND ON THE INITIAL ELEVATION

OF THE INPUT NODE}

PROCEDURE INITIAL_HEIGHTS;

VAR

I,J,OFFSET,BIAS,MP:INTEGER;

BEGIN {INITIAL HEIGHTS}

FOR I:=l TO NL DO BEGIN

{FIRST CALCULATE THE ELEVATION OF THE LATERAL—SUBMAIN

JUNCTION NODE}

OFFSET:=UNK-(I-1)*NEL1;

P[OFFSET+UNK1]:=P[2*UNK1]+(SLOPS*I*LATs);

BIAS:=OFFSET-1;

{PROCESS EACH EMITTER ON THE LEFT LATERAL}

FOR J:=1 TO NEL DO BEGIN

P[BIAS+UNK1]:=P[OFFSET+UNK1]+(SLOPLL*J*SPs);

BIAS:=BIAS-1

END;{FOR J}
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END;{FOR I}

END;{INITIAL HEIGHTS}

{******************************************************}

{PROCEDURE INITIAL PRES WILL MAKE INITIAL ESTIMATES OF

NODE PRESSURES IN ARRAY P, FROM P[1] THROUGH P[UNK]}

VARIABLES

{ DHL---CHANGE IN PRESSURE FOR THE LATERAL

DHS---CHANGE IN PRESSURE FOR THE SUBMAIN

QL----FLOW IN THE LATERAL

QS----FLOW IN THE SUBMAIN}

PROCEDURE INITIAL_PRES;

VAR

OFFSET,I,J,MP:INTEGER;

QL,QS,T1,T2,DHS,DHL:REAL;

BEGIN

{CALCULATE THE SUBMAIN FLOW AND DELTA H BASED ON INPUT

PRESSURE. OR IN THE PUMP HEAD}

QS:=KS*POWER(P[UNK1],XS)*NL*NEL; {PUMP HEAD}

T1:=3.6679/POWER(SUBC,1.852);

T2:=POWER(QS,1.852)/POWER(SUBD,4.871);

DHS:=T1*T2*LATS*NL;

(CALCULATE ORIGINAL PRESSURES STARTING WITH THE

LATERAL CLOSEST TO THE NODE CONTAINIG THE INPUT VALUES}

FOR I:=1 TO NL DO BEGIN

OFFSET:=UNK-(I-1)*NEL1;

P[OFFSET]:=P[UNK1]-DHS*(1—POWER(1-I/NL,2.852))

-SLOPS*I*LATS;

{CALCULATE PRESSURES DOWN THE LATERAL LINE}
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BIAS:=OFFSET—1;

QL:=KS*POWER(P[OFFSET],Xs)*(NEL1);

T1:=3.6679/POWER(LATC,1.852);

T2:=POWER(QL,1.852)/POWER(LATD,4.871);

DHL:=T1*T2*SPS*NEL;

FOR J:=1 TO NEL DO BEGIN

P[BIAS]:=P[OFFSET]—DHL*(1-POWER(1-J/NEL,2.852))

-SLOPLL*J*SPS;

BIAS:=BIAS-1

END; { END LOOP J}

END; { END LOOP 1}

{CHECK FOR NEGATIVE PRESSURE ESTIMATES }

FOR I:=1 TO UNK DO BEGIN

IF P[I] <=0.0 THEN P[11:=0.00001;

END;

{PRINT THE VECTOR CONTAINIG THE INITIAL HEIGHTS AND

PRESSURES ESTIMATEs)

WRITELN(LSST,'INITIAL HEIGHTS (FT) INITIAL PRESSURES (FT)');

FOR MP:=1 TO UNKI DO BEGIN

IF MP=UNK1 THEN

PIUNK11:=HIN;

WRITE(LSST,' ',P[MP+UNK1]:8:2,' ',P[MP]:8:2);

WRITELN(LSST);

END;{PRINTING}

PlUNKI]:=HIN+HINP;

END; {INITIAL_PRES PROCEDURE}

{*****************************************************t*

MAIN PROGRAM

*****************************************************t}

{THIS IS THE MAIN PROGRAM-- IT CALLS SEVERAL PROCEDURES}

BEGIN



129

OPENINFILE;

OPENLSST;

SETDATA;

PRINTDATA;

INITIALIZATION;

{DEFINE CONSTANTS TO BE USED IN THE PROGRAM}

UNK:=NEL*NL+NL;

UNK1:=UNK+1;

NEL1:=NEL+1;

CONSTM:=(1./M)-1.;

P[UNK1]:=HIN+HINP;

P[UNK1*2]:=HEIGHT;

ITERDELTA:=0.01;

NOL:=NEL*NL;

SUML:=0.0;

INITIAL_HEIGHTS;

INITIAL_PRES;

{CALCULATE THE FINAL PRESSURES ESTIMATES. CALCULATE

THE CHANGES IN ELEVATIONS AND STORE THEM IN DELTAHP}

FOR MP:=1 TO UNK1 DO BEGIN

PTEMP:=P[UNK1+MP];

DELTAHP[UNK1+MP]:=HEIGHT-PTEMP;

P[MP]:=P[MP]+PTEMP;

DIFF[MP]:=P[MP];

END; {FOR}

{ADD THE CHANGE IN ELEVATION TO THE ORIGINAL PRESSURE

ESTIMATE}

FOR I:=1 TO UNK DO YII]:=P[I]+DELTAHP[I+UNK1];

{ITERATE UNTIL THE SOLUTION CONVERGES (EDIFF<1.0)}

CONSTM:=(l./M)-1.;

EDIFF:=100.;

ITS:=1;

WRITELN(' SPRINKLER IRRIGATION DESIGN

EMPLOYING FINITE ELEMENT FORMULATION');
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WRITELN( ' ************************‘k***************** ' );

WRITELN(' THE PROGRAM IS ITERATING UNTIL SOLUTION

IS OBTAINED W/IN 0.01 FT.');

WRITELN(' ');

WHILE EDIFF>ITERDELTA DO BEGIN

WRITELN(' ITERATION ',ITS:2,' . ');

WRITELN(LSST,‘ ITERATION ',ITS:2,' . ');

{CREATE THE STIFFNES MATRIX}

FOR I:=1 TO UNK DO A[I,2]:=

FOR I:=1 TO UNK DO A[I,1]:=

FOR I:=1 TO UNK DO BEGIN

IF I=((I DIV NEL1)*NEL1)THEN

0.0

0.0

{THIS IS THE FINAL NODE}

IF I=UNK THEN

A[I,2]:=A[I,2]+POWER(ABs(P{I+11-P[I]),CONSTM)*

POWER(KSUB,—1./M)

{THIS IS A SUBMAIN NODE PLUS A COMPONENT (TEE OR ELBOW)I

ELSE BEGIN

CTEMP:=C(I.1):

A[I,2]:=CTEMP+A[I,2);

A[I,1]:=-CTEMP+A[I,1];

A[I+NEL1,2]:=CTEMP+A[I+NEL1,2];

END {IF}

{THIS IS A LATERAL W/ A SPRINKLER}

ELSE BEGIN

ID:=4;

CTEMP:=C(I,ID);

A[I,2]:=CTEMP+C(I,ID+1)+A[I,2];

A[I,1]:=-CTEMP;

A[I+l,2]:=CTEMP+A[I+1,2];

END; {ELSE}

END; {FOR}

{ ......................................................

FINISH CREATING THE STIFFNESS MATRIX

...................................................... }

{CALCULATE THE RIGHT HAND SIDE OF THE SYSTEM OF EQUATIONS}
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FOR I:=l TO UNK DO BEGIN

IF I=((I DIV NEL1)*NEL1) THEN

{THIS IS A SUBMAIN NODE}

IF I<>UNK THEN

RHS[I]:=0.0

ELSE

{THIS IS FOR THE FINAL NODE}

RHs[I]:=P[UNK1]*(POWER(ABS(P[UNK1J-PlUNK]),CONSTM)*

POWER(KSUB,-1./M))

ELSE BEGIN

{THIS IS A LATERAL WITH A SPRINKLER NODE}

ID:=5;

RHS[I]:=P[I+UNK1]*C(I,ID);

END; {IF}

END; {FOR}

{NOW SOLVE THE EQUATION AX=RHS. FIRST MAKE THE MATRIX

INTO UPPER TRIANGULAR FORM}

NSP:=NEL1+1;

FOR J:=2 TO UNK DO BEGIN

{EXTENDED BANDWIDHT. SUBMAIN NODES}

IF J=NSP THEN BEGIN

EE4:=ABs(A[J-1,1]);

A[J+NEL,2]:=A[J+NEL,2]-SQR(EE4)/A[J-1,2];

RHs[J+NEL]:=RH5[J+NEL]—A[J-1,1]*RHS{J-1]/A[J-1,2]:

NSP:=NSP+NEL1;

END

ELSE BEGIN
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{FOR THE LEFT LATERAL}

EE4:=ABS(A[J-1,1]);

A[J,2]:=A[J,2]-SQR(EE4)/A[J-1,2];

RHle]:=RHs[J]-A[J-1,11*RHs[J-1]/A[J-1,2];

END; {IF}

END; {FOR}

{NOW DO BACKWARD SUBSTITUTION TO FIND THE SOLUTION

SET IN VECTOR P[I]}

i*******************************************************}

NSP:=UNK-NEL1;

NLP:=UNK-NEL1;

MUNK:=UNK-1;

PlUNK]:=RHS[UNK]/A[UNK,2];

BIAS:=MUNK;

FOR I:=1 TO MUNK DO BEGIN

IF (BIAS<>NSP) AND (BIAS<>NLP) THEN

P[BIAS]:=(RHS[BIAS]-A[BIAS,1]*P[BIAS+1])/A[BIAS,2]

ELSE IF BIAS=NSP THEN BEGIN

P[BIAS]:=(RHS[BIAS]-A[BIAS,1]*P[BIAS+NEL1])/A[BIAS,2];

NSP:=NSP—NEL1 END

ELSE BEGIN

PIBIAsl:=(RHs[BIAs]-A{BIAS,1]*P[BIAS+NEL1)I/A[BIAS,2];

NLP:=NLP—NEL1

END;

BIAS:=BIAS-l;

END;

{*******************************************************}

{CHECK FOR NEGATIVE PRESSURE ESTIMATES}

FOR I:=1 TO UNK DO BEGIN

IF P[I]<=0.o THEN

P[I]:=0.00001;

END;
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{CHECK FOR CONVERGENCE. HERE USE THE CRITERION THAT THE

SUM OF THE TOTAL PRESSURE VARIATION IN ALL THE NODES

HAVE CHANGED LESS THAN 0.01 FEET}

EDIFF:=0.0;

FOR I:=l T0 UNK DO BEGIN

EDIF:=ABs(DIFF[I]-P[I]) + EDIFF;

DIFFII]:=PIII;

END;

ITS:=ITS+1;

CALCULATE THE CP'S AND THE CORRESPONDING ELEMENT FLOW

TO BE USED As THE NEW ESTIMATES IN THE SUBMAIN AND

LATERAL COMPONENTS}

FOR I:= 1 TO UNK DO BEGIN

IF I=((I DIV NEL1)*NEL1) THEN

{THIS IS FOR THE FINAL NODE}

IF I = UNK THEN

QILI]:=POWER(ABS(P[I+1]—P[I]),CONSTM)

*POWER(KSUB,-1./M)*(AB5(P{I+1]-P[I])

ELSE BEGIN

Ql[I]:=POWER(ABS(P[I+NEL1)-P[I]),CONSTM)

*POWER(KSUB,-1./M)*(ABs(P[I+NEL1]-P[IJ))

END

ELSE BEGIN

QI[I]:=POWER(ABS(P[I+1]-P[I]),CONSTM)

*POWER(KLAT,-1./M)*(Ass(P[I+1]-P[I]))

END; {IF}

END; {FOR}

END; {WHILE}

{THE SOLUTION HAS CONVERGED. READJUST THE PRESSURES

BY ADDING CHANGES IN HEIGHTS}
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FOR I:=1 TO UNK1 DO BEGIN

PlI]:=P[I]-P[UNK1+I];

IF P[I]<=0.0 THEN P[I]:=o.00001;

END; {FOR}

(DISPLAY THE FINAL PRESSURE ESTIMATES}

WRITELN(LSST,'FINAL PRESSURES ADJUSTED WITH HEIGHTS );

WRITELN(LSST,‘ FEET KILOPASCALS')

FOR I:= 1 TO UNK1 DO BEGIN

IF I=UNK1 THEN

P[UNK1]:=HIN;

WRITE(LSST,' ',P[I]:8:2,' ',P[I]*2.9891:8:);

WRITELN(LSST);

END;

PIUNK11:=HIN+HINP;

{CALCULATE THE SPRINKLER DISCHARGES AND PLACE THEM IN

THE Y MATRIX. DISPLAY THEM IN GPM}

FOR I:=1 TO UNK DO BEGIN

TK:=KS;

TX:=XS;

Y[I]:=TK*POWER(P[I],Tx);

END; {FOR}

{DETERMINE THE SUBMAIN FLOW}

FOR I:=1 TO UNK DO BEGIN

IF (I MOD NEL1) <>o THEN

SUML:= SUML+Y[I];

END;

MEANL:=SUML/NOL;

SUBFLO :=NL*(NEL*MEANL);

SUBFLPS:=SUBFLOW*0.06309;

WRITELN(LSST,'SUBMAIN FLOW(GPM) =',SUBFLOW:8:2

,' (L/S)',SUBFLPS:8:2);

WRITELN(LSST);

WRITELN(LSST,‘ SPRINKLER FLOWS');

WRITELN(LSST,‘ GPM L/s );

FOR I:=1 TO UNK DO BEGIN

IF (I MOD NEL1)<>0 THEN

WRITE(LSST,' ',Y[I]:8:2,' ',Y[I]*0.06309:8:2);

END;

CLOSE(LSST);

END. {END PROGRAM SPIRR-FE}
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LINEAR THEORY COMPUTER MODEL



LINEAR THEORY COMPUTER PROGRAM

1. Introduction

The linear theory model developed by Wood (1980) is

a FORTRAN based computer program capable of carrying out

regular simulations of steady state pressure and flow in

pipe distribution systems. In addition, extended period

simulations can be carried out which simulate the

Operation of the system over a period of time.

The basis of the program is a direct solution to the

basic pipe system hydraulic equations using a

linearization technique and sparse matrix methods to

handle the nonlinear terms in the energy equations.

The linear theory computer program is appropiate for

use on most IBM compatible microcomputer with at least

256K of memory and Microsoft DOS Operating system.

2. Data Coding Guidelines

The input requirements for the linear theory

computer model under the regular simulation mode are

contained in 9 files. All of the required parameters

are readily available or may be easily prepared. This

section will discuss in general each of the files and

parameters.
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II.

III.

IV.
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System Data

a) type of simulation (regular or EPS)

b) flow units (CFS, GPM, MGD, or lit/sec)

C) number of pipes

d) number of junction nodes

e) number of PRV's

f) program options

Label Cards

cards that contain any desired information which

will be used as a label for the computer output

Pressure Regulating Valve (PRV) Data

a) junction node number for PRV

b) pipe number - downstream from PRV

c) grade set by PRV

Pipeline Data

a) connecting nodes

b) length

C) diameter

d) roughness

e) 2 (minor loss coefficients)

f) pump power (or key to read pump data)

9) grade (if this pipe connects a Fixed Grade Node)

h) pipe number (if nonconsecutive numbering

specified)



VI.

VII.

VIII.

IX.
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Pump Data

head-discharge data for three operating points

Junction Node Data

a) demand

b) elevation

C) junction node number

Output Option

a) key for full or limited output.

b) number of junction nodes for summary of

maximum and minimum pressures

C) Number of pipes for limited output

d) number of junction nodes for limited output

e) additional data keying program options

Pipe numbers for limited output option

Juction node numbers for limited output option



APPENDIX D

MODELS SIMULATION DATA
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Slope = 2% uphill

Comp. Coeff. Kc = 0.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"’"’S""""'§2TEE-ZESI"IE§TZS'iZiT§§i”’I§§T£5’i£1?§éi’

4 23.77 (78) 137.50 (46.00) 137.50 (46.00)

6 22.56 (74) 149.81 (50.12) 149.78 (50.11)

8 21.34 (70) 162.54 (54.38) 162.52 (54.37)

10 20.12 (66) 175.86 (58.83) 175.85 (58.83)

12 18.90 (62) 189.97 (63.56) 189.95 (63.55)

14 17.68 (58) 205.07 (68.61) 205.05 (68.60)

16 16.46 (54) 221.38 (74.06) 221.37 (74.06)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"'"'I”""'"""§T§Z’i’§3T§33'""""”"§T§Z‘Z'éif553’

3 5.80 ( 92.01) 5.81 ( 92.04)

5 6.06 ( 96.13) 6.07 ( 96.17)

7 6.32 (100.23) 6.33 (100.27)

9 6.58 (104.35) 6.59 (104.39)

11 6.85 (108.56) 6.85 (108.60)

13 7.12 (112.89) 7.13 (112.94)

15 7.41 (117.40) 7.41 (117.45)
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Slope = 1% uphill

Comp. Coeff. Kc = 0.0

Junction Pressures

Finite ElementJunction Node System Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"m5"-'""56?I3’IEEIWESTBE'ZEETQBIWE56T5§7§ETEST

4 19.51 (64) 176.16 (58.93) 176.15 (58.93)

6 18.90 (62) 182.59 (61.08) 182.57 (61.08)

8 18.29 (60) 189.54 (63.41) 189.54 (63.41)

10 17.68 (58) 197.21 (65.98) 197.19 (65.97)

12 17.07 (56) 205.80 (68.85) 205.80 (68.85)

14 16.46 (54) 215.50 (72.10) 215.48 (72.09)

16 15.85 (52) 226.54 (75.79) 226.54 (75.79)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""I"""""”"333-665353"""mm's'TZYZIBSTEIT

3 6.59 (104.44) 6.59 (104.48)

5 6.71 (106.38) 6.71 (106.42)

7 6.84 (108.43) 6.84 (108.47)

9 6.98 (110.66) 6.98 (110.70)

11 7.14 (113.10) 7.14 (113.14)

13 7.31 (115.79) 7.31 (115.84)

15 7.49 (118.79) 7.50 (118.84)
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Slope = 0%

Comp. Coeff. Kc = 0.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

""'§""""1§T£2766731333731333"’"51336731333-

4 15.24 (50) 214.88 (71.89) 214.85 (71.88)

6 15.24 (50) 215.43 (72.07) 215.42 (72.07)

8 15.24 (50) 216.61 (72.47) 216.59 (72.46)

10 15.24 (50) 218.62 (73.14) 218.59 (73.13)

12 15.24 (50) 221.68 (74.16) 221.67 (74.16)

14 15.24 (50) 225.97 (75.60) 225.97 (75.60)

16 15.24 (50) 231.72 (77.52) 231.71 (77.52)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""1"""""""XSS'ZIESTEET"""""7357115257

3 7.29 (115.62) 7.30 (115.66)

5 7.30 (115.77) 7.31 (115.82)

7 7.32 (116.10) 7.33 (116.14)

9 7.36 (116.65) 7.36 (116.69)

11 7.41 (117.48) 7.41 (117.52)

13 7.48 (118.64) 7.49 (118.68)

15 7.58 (120.17) 7.58 (120.22)
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Slope

Junction Pressures

= 1% downhill.

Comp. Coeff. KC = 0.0

Linear Theory

Pressures

KPa

259.42

253.62

248.30

243.70

240.05

237.57

236.46

236.91

239.13

(ft)

(86.79)

(84.85)

(83.07)

(81.53)

(80.31)

(79.48)

(79.11)

(79.26)

(80.00)

Linear Theory

Flow

liters/sec (gpm)

(127.37)

(125.91)

(124.55)

(123.36)

(122.42)

(121.77)

(121.47)

Junction Node System Finite Element

Number Elevations Pressures

meters (ft) KPa (ft)

""7""m'1638'?SEEMEESTZZ'GESEI"""""""""

4 10.97 (36) 253.54 (84.86)

6 ll 58 (38) 248.32 (83.08)

8 12.19 (40) 243.72 (81.54)

10 12.80 (42) 240.08 (80.32)

12 13.41 (44) 237.59 (79.48)

14 14.02 (46) 236.47 (79.11)

16 14.63 (48) 236.91 (79.26)

17 15.24 (50) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element

Number Flow

liters/sec (gpm)

"""1""""""""5:63-655}?"""""""""""""

3 7.94 (125.86)

5 7.85 (124.50)

7 7.78 (123.32)

9 7.72 (122.37)

11 7.68 (121.72)

13 7.66 (121.43)

15 7.67 (121.54) (121.59)
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Slope = 2% downhill

Comp. Coeff. KC = 0.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"'"E""""'{257153""3BZTIB'ZISITEIMSBZIT($6138I

4 6.71 (22) 292.45 (97.84) 292.42 (97.83)

6 7.92 (26) 281.25 (94.09) 281.21 (94.08)

8 9.14 (30) 270.87 (90.62) 270.84 (90.61)

10 10.36 (34) 261.56 (87.50) 261.54 (87.50)

12 11.58 (38) 253.53 (84.82) 253.50 (84.81)

14 12.80 (42) 246.99 (82.63) 246.96 (82.62)

16 14.02 (46) 242.12 (81.00) 242.11 (81.00)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""1"""""""83175535)""""""5357135373"

3 8.54 (135.37) 8.54 (135.41)

5 8.37 (132.69) 8.37 (132.74)

7 8.21 (130.16) 8.21 (130.21)

9 8.07 (127.85) 8.07 (127.90)

11 7.94 (125.83) 7.94 (125.88)

13 7.83 (124.16) 7.84 (124.21)

15 7.75 (122.90) 7.76 (122.95)
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Slope = 2% uphill

Comp. Coeff. KC 8 1.0

Junction Pressures

Junction Node

Number

Linear Theory

Pressures

KPa (ft)

System Finite Element

Elevations Pressures

meters (ft) KPa (ft)

24.99 (82) 123.66 (41.37)

23.77 (78) 135.72 (45.41)

22.56 (74) 148.07 (49.54)

21.34 (70) 160.91 (53.83)

20.12 (66) 174.44 (58.36)

18.90 (62) 188.90 (63.20)

17.68 (58) 204.52 (68.42)

16.46 (54) 221.58 (74.13)

15.24 (50) 239.13 (80.00)

Sprinkler Flows

123.69 (41.38)

135.73 (45.41)

148.08 (49.54)

160.93 (53.84)

174.44 (58.36)

188.91 (63.20)

204.51 (68.42)

221.58 (74.13)

239.13 (80.00)

Sprinkler

Number

Finite Element

Flow

liters/sec (gpm)

Linear Theory

Flow

liters/sec (gpm)

( 85.84)

( 90.02)

( 94.12)

( 98.21)

(102.35)

(106.61)

(111.03)

(115.67)

( 85.89)

( 90.07)

( 94.18)

( 98.27)

(102.44)

(106.66)

(111.09)

(115.73)
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Slope = 1% uphill

Comp. Coeff. Kc = 1.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

""'S"'""'§6T15’iEEI"'EE§T5§'ZQETEEI'"‘iéiiéa’iééiiii

4 19.51 (64) 173.98 (58.21) 173.99 (58.21)

6 18.90 (62) 180.47 (60.38) 180.48 (60.38)

8 18.29 (60) 187.57 (62.75) 187.59 (62.76)

10 17.68 (58) 195.51 (65.41) 195.51 (65.41)

12 17.07 (56) 204.51 (68.42) 204.51 (68.42)

14 16.46 (54) 214.85 (71.88) 214.85 (71.88)

16 15.85 (52) 226.77 (75.87) 226.75 (75.86)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"“""I""’"’""""’3:SS’IIBBTSEI”’""’"""ETSE'ZEBST£EI'

3 6.45 (102.21) 6.45 (102.27)

5 6.57 (104.15) 6.57 (104.21)

7 6.70 (106.22) 6.71 (106.28)

9 6.85 (108.50) 6.85 (108.56)

11 7.00 (111.02) 7.01 (111.09)

13 7.18 (113.86) 7.19 (113.92)

15 7.38 (117.05) 7.39 (117.11)
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Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevatio Pressures Pressures

meters (f) KPa (ft) KPa (ft)

"”5""""153;'IEBIMEIZIZ’GBT373"-31532756353

4 15.24 (50) 212.31 (71.03) 212.34 (71.04)

6 15.24 (50) 212.94 (71.24) 212.97 (71.25)

8 15.24 (50) 214.30 (71.69) 214.32 (71.70)

10 15.24 (50) 216.63 (72.47) 216.65 (72.48)

12 15.24 (50) 220.18 (73.66) 220.20 (73.67)

14 15.24 (50) 225.21 (75.34) 225.23 (75.35)

16 15.24 (50) 231.98 (77.61) 231.98 (77.61)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"'-"1"'"m"'"XIIZIISTIEI""""""§TEIII13:13)"

3 7.14 (113.17) 7.14 (113.23)

5 7.15 (113.34) 7.16 (113.41)

7 7.17 (113.71) 7.18 (113.77)

9 7.21 (114.34) 7.22 (114.40)

11 7.27 (115.30) 7.28 (115.36)

13 7.36 (116.63) 7.36 (116.70)

15 7.47 (118.41) 7.47 (118.47)

Slope = 0%

Comp. Coeff. RC = 1.0
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Slope = 1% downhill

Comp. Coeff. Kc - 1.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"""3""-""163E7333"ZEN-(53363""5333;753:513'

4 10.97 (36) 250.69 (83.87) 250.72 (83.88)

6 11.58 (38) 245.46 (82.12) 245.49 (82.13)

8 12.19 (40) 241.07 (80.65) 241.10 (80.66)

10 12.80 (42) 237.79 (79.55) 237.81 (79.56)

12 13.41 (44) 235.89 (78.92) 235.90 (78.92)

14 14.02 (46) 235.61 (78.82) 235.63 (78.83)

16 14.63 (48) 237.20 (79.36) 237.21 (79.36)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

""7"“"m""3:82-115;Eli""""""§TS§'ZIEET§Ei“

3 7.77 (123.20) 7.78 (123.27)

5 7.69 (121.88) 7.69 (121.95)

7 7.62 (120.76) 7.62 (120.83)

9 7.57 (119.92) 7.57 (119.99)

11 7.53 (119.43) 7.54 (119.50)

13 7.53 (119.36) 7.53 (119.42)

15 7.56 (119.77) 7.56 (119.83)
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Slope = 2% downhill

Comp. Coeff. KC 8 1.0

Junction Pressures

 

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft KPa (ft) KPa (ft)

"""S'"m"'ETZETIQIWSBS317166227"3663571662;I

4 6.71 (22) 289.10 (96.72) 289.13 (96.73)

6 7.92 (26) 278.01 (93.01) 278.04 (93.02)

8 9.14 (30) 267.87 (89.62) 267.91 (89.63)

10 10.36 (34) 258.99 (86.64) 259.00 (86.65)

12 11.58 (38) 251.62 (84.18) 251.62 (84.18)

14 12.80 (42) 246.02 (82.31) 246.03 (82.31)

16 14.02 (46) 242.44 (81.11) 242.44 (81.11)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""1""""""""5337133333""""""532713331)"

3 8.36 (132.52) 8.37 (132.59)

5 8.19 (129.89) 8.20 (129.97)

7 8.04 (127.45) 8.05 (127.52)

9 7.90 (125.27) 7.91 (125.34)

11 7.79 (123.44) 7.79 (123.50)

13 7.70 (122.03) 7.70 (122.09)

15 7.64 (121.11) 7.64 (121.17)
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Slope = 2% uphill

Comp. Coeff. Kc = 2.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"""E""""§ZT§6'ZQ23"i1£iié§'iZBT§63""I§ET62’1Z6TESI

4 23.77 (78) 134.03 (44.84) 134.12 (44.87)

6 22.56 (74) 146.43 (48.99) 146.52 (49.02)

8 21.34 (70) 159.37 (53.32) 159.44 (53.34)

10 20.12 (66) 173.10 (57.91) 173.16 (57.93)

12 18.90 (62) 187.88 (62.85) 187.92 (62.87)

14 17.68 (58) 204.00 (68.25) 204.03 (68.26)

16 16.46 (54) 221.77 (74.19) 221.76 (74.19)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""I"""”"""’ETSS'Z'QSTééi""""""ETSS'I'EZTSEI

3 5.56 ( 88.13) 5.57 ( 88.23)

5 5.82 ( 92.20) 5.82 ( 92.31)

7 6.07 ( 96.28) 6.08 ( 96.39)

9 6.34 (100.43) 6.34 (100.54)

11 6.61 (104.73) 6.61 (104.83)

13 6.89 (109.23) 6.90 (109.33)

15 7.19 (113.99) 7.20 (114.50)
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Slope = 1% uphill

Comp. Coeff. RC = 2.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

""7""MEETISTEEIWIESf9573%?Eii'miééiéfiééiééi

4 19.51 (64) 171.92 (57.52) 172.02 (57.55)

6 18.90 (62) 178.47 (59.71) 178.57 (59.74)

8 18.29 (60) 185.70 (62.13) 185.80 (62.16)

10 17.68 (58) 193.88 (64.86) 193.96 (64.89)

12 17.07 (56) 203.29 (68.01) 203.35 (68.03)

14 16.46 (54) 214.22 (71.67) 214.26 (71.68)

16 15.85 (52) 226.99 (75.94) 226.99 (75.94)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""1""""""""336735333””””””331735383"

3 6.31 (100.09) 6.32 (100.20)

5 6.44 (102.02) 6.44 (102.13)

7 6.57 (104.11) 6.58 (104.22)

9 6.71 (106.43) 6.72 (106.54)

11 6.88 (109.04) 6.89 (109.14)

13 7.07 (111.99) 7.07 (112.10)

15 7.28 (115.35) 7.28 (115.45)



Junction Node

Number

0
G
P

10

12

14

16

17
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Junction Pressures

System

Elevations

meters (ft)

Finite Element

Pressures

KPa

209.69

209.88

210.58

212.10

214.73

218.76

224.49

232.22

239.13

(ft)

(70.15)

(70.21)

(70.45)

(70.96)

(71.84)

(73.19)

(75.10)

(77.69)

(80.00)

Slope = 0%

Comp. Coeff. Kc = 2.0

Linear Theory

Pressures

KPa (ft)

209.80

210.01

210.70

212.22

214.82

218.83

224.54

232.22

239.13

(70.19)

(70.26)

(70.49)

(71.00)

(71.87)

(73.21)

(75.12)

(77.69)

(80.00)

Sprinkler

Number

Finite Element

Flow

liters/sec (gpm)

(110.78)

(110.83)

(111.02)

(111.43)

(112.13)

(113.20)

(114.70)

(116.71)

Linear Theory

Flow

liters/sec (gpm)

(110.90)

(110.95)

(111.14)

(111.55)

(112.25)

(113.31)

(114.81)

(116.80)



Junction Node

Number

Sprinkler

Number

151

Slope = 1% downhill

Comp. Coeff. Kc = 2.0

Junction Pressures

System

Elevations

meters (ft)

253.63

Finite Element

Pressure

KPa (ft)

247.88

242.74

238.55

235.62

234.27

234.79

237.48

239.13

(82.93)

(81.21)

(79.81)

(78.83)

(78.37)

(78.55)

(79.45)

(80.00)

Sprinkler Flows

Finite Element

Flow

liters/sec (gpm)

(122.08)

(120.66)

(119.38)

(118.32)

(117.58)

(117.23)

(117.36)

(118.05)

Linear Theory

Pressures

253.77 (84.90)

248.03

242.89

238.68

235.75

234.37

234.82

237.45

239.13

(82.98)

(81.26)

(79.85)

(78.87)

(78.41)

(78.56)

(79.44)

(80.00)

Linear Theory

Flow

liters/sec (gpm)

(122.22)

(120.80)

(119.51)

(118.45)

(117.70)

(117.35)

(117.47)

(118.14)
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Slope = 2% downhill

Comp. Coeff. Kc = 2.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft KPa (ft) KPa (ft)

""’§""""'§TZ§'ZESEMERE-853$}""5333673323E

4 6.71 (22) 285.92 (95.65) 286.08 (95.71)

6 7.92 (26) 274.93 (91.98) 275.11 (92.04)

8 9.14 (30) 265.03 (88.67) 265.19 (88.72)

10 10.36 (34) 256.55 (85.83) 256.67 (85.87)

12 11.58 (38) 249.81 (83.57) 249.92 (83.61)

14 12.80 (42) 245.11 (82.00) 245.16 (82.02)

16 14.02 (46) 242.74 (81.21) 242.74 (81.21)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

””1""""""""""533713223}""""""""QTSYZISZEST

3 8.19 (129.79) 8.20 (129.94)

5 A 8.03 (127.22) 8.04 (127.37)

7 7.88 (124.86) 7.89 (125.00)

9 7.75 (122.80) 7.76 (122.94)

11 7.64 (121.14) 7.65 (121.27)

13 7.57 (119.97) 7.58 (120.08)

15 7.53 (119.38) 7.54 (119.47)
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Slope = 2% uphill

Comp. Coeff. Kc = 3.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

""2""""5236752775633726353""ISBT§§726T333

4 23.77 (78) 132.44 (44.31) 132.62 (44.37)

6 22.56 (74) 144.87 (48.47) 145.06 (48.53)

8 21.34 (70) 157.91 (52.83) 158.09 (52.89)

10 20.12 (66) 171.82 (57.48) 171.96 (57.53)

12 18.90 (62) 186.91 (62.53) 187.03 (62.57)

14 17.68 (58) 203.50 (68.08) 203.56 (68.10)

16 16.46 (54) 221.95 (74.25) 221.94 (74.25)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""I’m'"'"‘"ETIE’Z’ESTEST'm'm"$367353?"

3 5.45 ( 86.32) 5.46 ( 86.49)

5 5.70 ( 90.37) 5.71 ( 90.54)

7 5.96 ( 94.44) 5.97 ( 94.61)

9 6.22 ( 98.60) 6.23 ( 98.77)

11 6.49 (102.93) 6.50 (103.09)

13 6.78 (107.50) 6.79 (107.65)

15 7.09 (112.37) 7.10 (112.51)
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Slope = 1% uphill

Comp. Coeff. Kc = 3.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft KPa (ft) KPa (ft)

"”5-"""'SBTEE’EEEE"’IESTES"82:313-"7313775333

4 19.51 (64) 169.98 (56.87) 170.20 (56.94)

6 18.90 (62) 176.58 (59.07) 176.80 (59.15)

8 18.29 (60) 183.94 (61.54) 184.16 (61.61)

10 17.68 (58) 192.35 (64.35) 192.53 (64.41)

12 17.07 (56) 202.14 (67.62) 202.27 (67.67)

14 16.46 (54) 213.63 (71.47) 213.72 (71.50)

16 15.85 (52) 227.19 (76.01) 227.17 (76.00)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""i"""m""ETBYZ'SETEST""""mETBQ'Z'SETZET

3 6.19 ( 98.06) 6.20 ( 98.25)

5 6.31 ( 99.98) 6.32 (100.18)

7 6.44 (102.09) 6.45 (102.28)

9 6.59 (104.45) 6.60 (104.63)

11 6.76 (107.13) 6.77 (107.31)

13 6.95 (110.20) 6.96 (110.36)

15 7.17 (113.72) 7.18 (113.86)
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Slope = 0%

Comp. Coeff. Kc = 3.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"“3"”""1332"?E63”’563T39733T353“”5632;733:353

4 15.24 (50) 207.58 (69.45) 207.86 (69.54)

6 15.24 (50) 208.35 (69.70) 208.61 (69.79)

8 15.24 (50) 210.03 (70.26) 210.28 (70.35)

10 15.24 (50) 212.94 (71.24) 213.15 (71.31)

12 15.24 (50) 217.42 (72.74) 217.57 (72.79)

14 15.24 (50) 223.81 (74.87) 223.80 (74.90)

16 15.24 (50) 232.46 (77.77) 232.43 (77.76)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

'm"1""""""'“ESE"ZIBETEZT'”""WETEE’HBET$33

3 6.85 (108.59) 6.86 (108.81)

5 6.86 (108.80) 6.88 (109.01)

7 6.89 (109.24) 6.91 (109.45)

9 6.94 (110.02) 6.95 (110.22)

11 7.02 (111.19) 7.03 (111.38)

13 7.12 (112.85) 7.13 (113.02)

15 7.26 (115.05) 7.27 (115.20)



Junction Node

Number

156

Slope = 1% downhill

Comp. Coeff. Kc - 3.0

Junction Pressures

System

Elevations

meters (ft)

Finite Element

Pressures

KPa (ft)

250.96

245.23

240.17

236.17

233.57

232.74

234.01

237.74

239.13

(82.04)

(80.35)

(79.01)

(78.14)

(77.86)

(78.29)

(79.53)

(80.00)

Linear Theory

Pressures

KPa (ft)

251.29

245.55

240.47

236.46

233.83

232.94

234.10

237.72

239.13

(82.15)

(80.45)

(79.11)

(78.23)

(77.93)

(78.32)

(79.53)

(80.00)

Sprinkler

Number

Finite Element

Flow

liters/sec (gpm)

7.55

7.46

7.38

7.32

7.28

7.26

7.28

7.34

(119.64)

(118.24)

(116.99)

(115.99)

(115.34)

(115.12)

(115.45)

(116.38)

Linear Theory

Flow

liters/sec (gpm)

(119.88)

(118.47)

(117.22)

(116.21)

(115.55)

(115.32)

(115.62)

(116.53)
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Slope - 2% downhill

Comp. Coef. Kc = 3.0

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"""S'""""§Ti§7I53""5233735333"""SSZTSE’ZSQTEQE

4 6.71 (22) 282.92 (94.65) 283.27 (94.77)

6 7.92 (26) 272.03 (91.01) 272.39 (91.13)

8 9.14 (30) 262.34 (87.77) 262.68 (87.88)

10 10.36 (34) 254.24 (85.06) 254.52 (85.15)

12 11.58 (38) 248.09 (83.00) 248.30 (83.07)

14 12.80 (42) 244.24 (81.71) 244.36 (81.75)

16 14.02 (46) 243.03 (81.30) 243.01 (81.30)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""1"""""""QTIE'ZIESTEU""""""33171367163"

3 8.02 (127.19) 8.04 (127.44)

5 7.87 (124.67) 7.88 (124.91)

7 7.72 (122.38) 7.74 (122.62)

9 7.60 (120.44) 7.61 (120.66)

11 7.50 (118.94) 7.52 (119.15)

13 7.44 (117.99) 7.46 (118.18)

15 7.43 (117.70) 7.43 (117.84)



Junction Node

Number

158

Slope = 2% uphill

Comp. Coeff. Kc = 3.0

Pump Head =

Junction Pressures

System

Elevations

meters (ft)

Finite Element

Pressures

KPa (ft)

236.60

249.41

263.27

278.61

295.90

315.63

338.34

239.13

(79.15)

(83.44)

(88.08)

(93.21)

(98.99)

(105.59)

(113.19)

(80.00)

119.6 KPa

Linear Theory

Pressures

KPa (ft)

249.56

263.40

278.71

295.92

315.56

338.13

239.13

(79.21)

(83.49)

(88.12)

(93.24)

(99.00)

(105.57)

(113.12)

(80.00)

Sprinkler

Number

Finite Element

Flow

liters/sec (gpm)

7.96

8.21

8.49

8.79

(113.01)

(116.14)

(119.26)

(122.60)

(126.20)

(130.14)

(134.50)

(139.35)

Linear Theory

Flow

liters/sec (gpm)

(113.20)

(116.29)

(119.46)

(122.80)

(126.39)

(130.32)

(134.66)

(139.49)
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Slope = 1% uphill

Comp. Coeff. Kc = 1.0

Pump Head = 119.6 KPa

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"""5""""EBTEE'ZEE§"'E§;T§I'?§ET323””’5§£T23’Z§IT5£3

4 19.51 (64) 280.71 (93.91) 280.68 (93.90)

6 18.90 (62) 287.50 (96.18) 287.46 (96.17)

8 18.29 (60) 295.25 (98.78) 295.21 (98.76)

10 17.68 (58) 304.31 (101.81) 304.26 (101.79)

12 17.07 (56) 315.03 (105.39) 314.99 (105.38)

14 16.46 (54) 327.78 (109.66) 327.82 (109.67)

16 15.85 (52) 342.95 (114.73) 343.12 (114.79)

17 15.24 (50) 239.13 (80.00) 239.13 (80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""1"""""""5T1£’Zi§§?6§3""""""ETIE'ZIESTIIK'

3 8.24 (130.54) 8.24 (130.59)

5 8.34 (132.14) 8.34 (132.20)

7 8.45 (133.95) 8.45 (134.01)

9 8.58 (136.03) 8.59 (136.10)

11 8.74 (138.46) 8.74 (138.53)

13 8.91 (141.30) 8.92 (141.38)

15 9.12 (144.60) 9.13 (144.72)
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Slope = 0%

Comp. Coeff. Kc = 0.0

Pump Head = 119.6 KPa

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft KPa (ft) KPa (ft)

""3""—"”£2327;637355:???1693;735:3336};3

4 15.24 (50) 323.02 (108.07) 323.00 (108.06)

6 15.24 (50) 323.84 (108.34) 323.81 (108.33)

8 15.24 (50) 325.57 (108.92) 325.55 (108.91)

10 15.24 (50) 328.53 (109.91) 328.50 (109.90)

12 15.24 (50) 333.02 (111.41) 333.02 (111.41)

14 15.24 (50) 339.34 (113.53) 339.36 (113.53)

16 15.24 (50) 347.79 (116.35) 347.84 (116.37)

17 15.24 (50) 239.13 ( 80.00) 239.13 ( 80.00)

Sprinkler'Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

"""1"""""""3357133353"""""""5357123]?

3 8.99 (142.43) 8.99 (142.48)

5 9.00 (142.61) 9.00 (142.66)

7 9.02 (143.00) 9.03 (143.05)

9 9.06 (143.66) 9.07 (143.72)

11 9.13 (144.67) 9.13 (144.72)

13 9.22 (146.06) 9.22 (146.13)

15 9.33 (147.91) 9.34 (147.99)
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Slope = 2% downhill

Comp. Coeff. Kc = 2.0

Pump Head = 119.6 KPa

Junction Pressures

Junction Node System Finite Element Linear Theory

Number Elevations Pressures Pressures

meters (ft) KPa (ft) KPa (ft)

"”5""""EDIE-Z153-"£63T18713ZT5ET"ZBSTSE’GSZSE)

4 6.71 (22) 391.50 (130.98) 391.67 (131.03)

6 7.92 (26) 380.85 (127.41) 380.99 (127.46)

8 9.14 (30) 371.68 (124.34) 371.79 (124.38)

10 10.36 (34) 364.46 (121.93) 364.55 (121.96)

12 11.58 (38) 359.66 (120.32) 359.71 (120.34)

14 12.80 (42) 357.72 (119.67) 357.68 (119.66)

16 14.02 (46) 359.09 (120.13) 358.96 (120.09)

17 15.24 (50) 239.13 ( 80.00) 239.13 ( 80.00)

Sprinkler Flows

Sprinkler Finite Element Linear Theory

Number Flow Flow

liters/sec (gpm) liters/sec (gpm)

mmI’""""-""3T53’ZIEZTEQE""""""33571923?

3 9.61 (152.39) 9.62 (152.54)

5 9.48 (150.26) 9.49 (150.41)

7 9.36 (148.40) 9.37 (148.55)

9 9.27 (146.92) 9.28 (147.06)

11 9.21 (145.93) 9.21 (146.06)

13 9.18 (145.53) 9.19 (145.64)

15 9.20 (145.81) 9.20 (145.90)
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