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ABSTRACT

EXTENDED RULES FOR THE CLASSIFICATION

OF DEPENDENT PARAMETERS

By

Kosgallana Liyana Durage Gunawardena

In this dissertation we consider the classification problem in which the

unknown states .6 = (01,02,..... ,0n) are dependent.

We first review the compound approach to the construction of decision

rules and then introduce the extended compound approach as a general

approach to the construction of rules with favorable risk behavior. In most

empirical Bayes literature, the {0i} are assumed to be i.i.d.. The

construction of decision rules in the i.i.d. case is very simple. The problem

becomes considerably more complex if the {0i} are dependent, since

the Bayes risk may depend on n and the class of distributions on {0i}

may be of such high dimension so as to make accurate estimation impossible.

The extended compound decision theory developed by Gilliland and Hannan

(1969) is utilised to obtain decision rules in the case when {0i} are

dependent.

The one—dimensional case is generalized to two dimensions where the

indices are positions in an integer lattice. The two—dimensional case has

applications in image segmentation and pattern recognition where the image is

a matrix of parameters Q = {0U} taking values in a finite set 9 . The



observed image is a random matrix X having a distribution depending on

Q. Here Q may reasonably be assumed to be the realization of a Markov

random field in some applications. The extended compound approach to the

image case is described with the choice of a neighborhood system on the

lattice.

Many simulations were run to compare the risk behavior of the

extended compound rules with that of other rules. The simulations performed

show that the extended rules perform better than the other empirical Bayes

rules that have been pr0posed.
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CHAPTER 1

INTRODUCTION

In this thesis we consider the classification problem in which each of n

observations is to be classified as belonging to one of two classes.

1.1 A Literature Review

In most of the work relating to the classification problem, the successive

classes are assumed to be independent. In many situations, though, it is

unreasonable to assume that the successive classes are independent. One of

the earliest, if not the first, papers to consider positively correlated classes

and that a more sensitive scheme of classification can be obtained by

exploiting this correlation is due to Cox (1960).

In Cox (1960) a sequence of batches {Bi} is to be classified based on

the number of defectives in random samples of predetermined fixed size. The

{Xi} are random observations, where Xi is the number of defectives in the

sample from batch Bi' The {Xi} are assumed to be independent and

have a Poisson distribution with mean mi, given the sequence {mi},

where 111i is the true but unknown batch quality. To complete the model,

the sequence {mi} is assumed to be a realization of a two—state Markov

chain with specified states and known transition matrix. Cox suggests using

some other X's in addition to xi in making the decision about the 1th

batch. In particular he suggests a one-step back rule based on (Xi_1,Xi) and

a one—step forward, one—step back rule based on (xi-l’xi’xi+1).

Preston (1971) seems to be the first person to consider the empirical

Bayes approach to a classification problem in which the set of parameter

values is a realization of a stationary Markov chain. The model considered



by Preston is very specialized. The random observation X is assumed to

have the following conditional distribution:

P(X=0|0=0)=1,P(X=1|0=1)=p,P(X=0|0=1)= l—p

where p is known. It is assumed that the unknown classifications {0i}

are a realization of a stationary Markov chain with unknown transition

matrix and that the observations Xi are independent conditional on {0i}.

At stage n, the transition probabilities are estimated based on the partial

sequence x = (X1,X2, ..... ,Xn) and substituted into the Bayes rule for the

decision about 0n.

Devore (1975) considers the Robbins' (1951) component with Markovian

{0i}. The Robbins' component has normal conditional distributions

N(20 — l, 1) and independent observations conditional on {0i}. In Devore

(1975), the {0i} sequence is assumed to be a realization of a stationary

two-state Markov chain with

P(0=0) = P(0=1) = .5

and transition matrix

.5(1 + 1r) .5(1 — 1r)

for a or 6 [—1,1].

.5(1 — 1r) .5(1 + 7r)

The above model can be considered as a generalization of the model with

repetitions of the Robbins' component problem with independent 0i and

probabilities P(0=0) = P(0=1) = .5. For this model, the simple compound

rule g0 = (wgmg,..... ,tpg) defined by

1 > 0

«2?: decide 0, = if xi ‘ i= 1,2, ..... ,n
0 < 0



is the minimax classification rule for Q = (01,0 , ..... ,on).

Devore studies the prOperties of classification rules for 0i based on

linear functions of X.'s within the context of his problem. The two rules

J

considered are those resulting from Optimization over classes of linear rules:

Rule 1

Among all the rules in the class given by:

1 2 k

if Xi + aXi_l i = 2,..... ,n

<k

decide 0.

choose that rule, i.e., a and k, which minimizes the probability of

misclassification of 0i.

Rule 2

Among all the rules in the class given by:

1 2 0

de01de 0i = 0 1f aXi_l + Xi + aXi+1 < 0 1 = 2, ..... ,n

choose that rule, i.e., a, which minimizes the probability of misclassification

of 0i.

In both cases the choice can be made independent of i for i 2 2. The

optimum rules have k=0 and a as a function of 1r. When 1r is unknown,

a moment estimator 5r based on X is used for r and a "plug—in" rule

based on ir is considered.



Hill et al. (1984) consider the application of parametric empirical Bayes

theory to the same classification problem, which they call the two—crOp model

on the transect. In Hill et a1. (1984), {0i} represents the sequence of crap

types (classifications) on a transect with each 0i = 0 or 1. Let Xi be the

h
random observation at the it pixel. The Xi is assumed to have density

f0.(-) where both f0 and fl are known. The Xi's are assumed to be

1

conditionally independent given {0i}. The sequence of cr0p types is assumed

to be a Markov chain with transition probability matrix

D p£=[00 01].

p10 p11

If the Markov chain is stationary, then the common marginal distribution for

Oiis

p10
p = P(0=0) = —— .

I’10‘LI’01

The induced prior density on Q satisfies

(1.1) P(§) or exp(¢lN -¢2F)

where

n

N = 2 01

i=1

F "' E (01 0i+1)
1—1

p11



and

pp
¢2=110 1100

p01910

if the end—points are ignored in the derivation of P(_0). Letting

flog)

fax.) ’

 

(1.2) Z. = log

we have

HEEL”) = iEl f1(xi) f0(xi)

n

 

f

(1-3) =.“ fo("i) [f

n

i=1

Using (1.1) and (1.3), the posterior density of 9, given 2E: is approximately

n—l

(1.4) «an a expli: setups-<12 131 (oi—emf].

Morris et a1. (1985) reports that the exact Bayes approach gives a

complicated joint posterior for Q whose maximization is non-trivial and that

efficient likelihood estimation of the parameters of the Markov chain is

difficult.



Taking f0.(-) to be N040” a) Hill et al. (1984) use empirical Bayes

1 1

theory to classify and to estimate the posterior probability for each class.

The parameters 110, "1 and a are assumed to be known.

With f0.(-) = N010) a), (1.2) reduces to

1 1

_ l

Zi — "’ $2 (1‘0 - fll)(2Xi - ”0 - 1‘1)

 

 

”1'”0 - 1
where 6 = a and p = 2 (u0+pl) .

_ _ l _ ‘1- - .—

Let Z‘H?Zi and rj—nEXZHjZXZi Z).

Then E7 = 6205 - p)

~ _. _ i - _
Erj - 64p(1 p)(pll p01), 1 — 1,2,----- .

The unknown parameters p11 and p01 are estimated by solving the

equations

6205 - p) = 7
(1.5)

fps - non — p0,) = r1 .

Instead of maximizing (1.4) over all possible Q, Hill et al. (1984)

develop a formula for the posterior log odds ratio for each component i. The

posterior log odds ratio is approximated by a moving average

P(0-=1|§)
(1.6) log P(0i=0ll(_) - p .Z. . Z. .

j§1 WJ( 1—1 + 1+1)
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where wj = (p11 - p01)j. Hence, the Bayes decision rule, where the loss is

the average number of misclassification for 01,0 , ..... ,Qn, is approximated by

the rule

1 if RHS (1.6) > 0

(1.7) decide 0i

0 otherwise .

Hill et al. (1984) use (1.5) to estimate p and p11 — p01, substitute the

estimates into (1.6), and use (1.7) for classification. Thus, they have

developed a set empirical Bayes decision procedure for the Robbins'

component and Markov prior. We will refer to procedures with j restricted

to {1} in (1.6) as HEB3 and to procedures with j restricted to {1,2}

in (1.6) as HEB5.

In Chapter 2, Section 1 we derive an exact expression for the induced

posterior density on Q , where the end-points are included. We also give an

algorithm for the maximization of the joint posterior, and classification rules

are derived based on this maximization.

The work reviewed thus far concerns models with a certain common

underlying structure. The important features of this structure are:

1. There is a sequence of unobservable parameters { 0i} where

0i=0 or 1, i=l,2,..... .

2. Conditional on {0i}, independent X1,X2,...... are observed

where Xi ~ P 0i, i = 1,2, ..... . The two distributions P0 and P1 are

assumed known.

3. The parameter sequence {0i} has a (joint) distribution G.
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4. There is a decision bi to be made about 0i, specifically, a

classification as 0 or 1, i = 1,2, ..... .

For each n we let Q= (01,02, ..... ,Qn) and X = (X1,X2,..... ,Xn)

denote partial sequences, let G denote the distribution of Q and let PQ

denote the conditional distribution of 2; given Q. We consider the set

compound decision problem and allow the bi to depend on X_,

i = 1,2, ..... 11.

There are two loss functions that are commonly considered with

this structure. They are

as Heb=§§ga¢h1
1:

and

(1.9) Lani) =12 t i]

where square brackets denote indicator functions. Ll defines the loss as the

average number of misclassifications across the 11 components. L2 defines

the loss as 0 or 1 depending upon whether all 11 components are correctly

classified or not.

At stage n, a Bayes rule with respect to g and L1 is determined

by taking bi as 0 or 1 depending upon which maximizes the posterior

probability distribution of 0i given _X_, i = 1, 2, ..... ,n. Most of our work

concerns comparing rules relative to loss L1 and we refer to the Bayes

rules in this case as simply "the Bayes rules." A Bayes rule with respect to

g and L2 selects Q to maximize the posterior probability of Q given

X. We refer to such a rule as a MAP rule following the common usage of

"Maximum a—Posteriori" to describe such a rule. Of course, a Bayes rule

has components that are based on the marginal distributions of the posterior

of Q given X.



There may be an ordering or spatial structure to the index set {1,2,..... }

that suggests certain classes of priors G for certain problems. The

one—dimensional case with order of indices representing spatial or time order

is called the transect case. We consider the transect case in Chapter 2.

Here G might be taken to be a simple product measure

G = Glelelx..... or a Markov chain, depending upon the degree of

dependence that is being modeled. In the literature cited previously, i.e. Cox

(1960), Preston (1971), Devore (1975) and Hill et al. (1984), the 0i are

assumed to be the realization of a stationary Markov chain. In most

empirical Bayes literature, the 0i are assumed to be i.i.d. G1 where G1

is unknown.

In the i.i.d. Gl case, the Bayes rule and the MAP rule are very

simple since a conditional distribution for Q given _X_ is the product of

the conditional distributions of Qi given Xi; i = l,2,...,n. In the Markov

chain case, the Bayes and MAP rules are sufficiently complicated so as to

have motivated researchers to impose simplifying assumptions. Recall, for

example, that Cox (1960) takes P0, P1 to be Poisson, G to be a known

Markov chain distribution and derives restricted Bayes rules, specifically, 3i

restricted to be Bayes with respect to the class of rules that are (xi—1’ Xi)

(or (xi-1’ Xi, Xi+1)) measurable. Preston (1971) takes the very special

case P0 is degenerate on 0 and P1 is Bernoulli B(l, p) and assumes

G to be from the family of stationary Markov distributions. Preston

considers Bayes, MAP and restricted Bayes rules. Devore (1975) takes

P0 = N(—l, 1), P1 = N(1, 1) and assumes G to be from a special

one—parameter family of symmetric stationary Markov distributions. Hill et

al. (1984) take P0 = N(p0, a), P1 = N011, a) (without loss of generality

N(—1, 1) and N(1, 1)) and assumes G is from the family of stationary
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Markov distributions. They derive an approximation to the Bayes rule.

Preston (1971), Devore (1975) and Hill et al. (1984) give estimators for the

transition probabilities defining G and, therefore, consider the empirical

Bayes model in a case where the parameter sequence is not i.i.d..

1.2 A General Approach

Consider the decision problem involving Q introduced in last section

and suppose that the loss function is L1. Then a decision rule Q is evaluated

in terms of average number of errors ( misclassifications ) across the 11

components. We will first review the compound approach to the construction

of Q and will then introduce the extended compound approach as a general

approach to the construction of rules with favorable risk behavior. There is

a long history of work on the two—state compound decision problem including

Robbins (1951), Hannan and Robbins (1955), Hannan and Van Ryzin (1965),

Van Ryzin (1966), Gilliland, Hannan and Huang (1976), and on the extended

version including Gilliland and Hannan (1969), Ballard and Gilliland (1978),

Ballard, Gilliland and Hannan (1975), Vardeman (1975), (1980), (1981). Our

review will be relatively brief and the arguments will be heuristic.

For a (compound) decision rule Q, the compound risk at Q and n is

(1.10) MM) = E, L1(M).

where L1 is defined in (1.8). If G111 is the empirical distribution of

01,02,..... ,0n and R1 is the Bayes enve10pe risk function in the component

problem, then the modified regret of Q at Q and n is
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(1.11) 11(1):) = s(1.1)-R1(G,1,).

Let y be a given class of distributions G on {0i.} For each 11

let 9 denote the class of all (set) compound decision rules Q with Qi a

function of X, i=1,2,..... ,n. Let B,(Q,Q) denote the Q expectation of

B,(Q,Q). Suppose that Q(Q) minimizes R(Q,Q) among all rules Q in a

We call Q(Q) a Bayes response and denote the minimum Bayes risk as

B(Q). Then any rule Q can be judged by its Bayes risk relative to that of

Q(Q), i.e., by the excess

(1.12) 9111.1) = 3111.1) - file).

Note that this is not simply the Q expectation of (1.11). Any sequence of

rules Q such that

(1.13) iimn DELI) = 0 for all (3 e y

is said to beWM.

If y is a singleton set, i.e., G is assumed known, then the only

difficulty that arises in the Bayes decision problem is in calculating a Bayes

response Q(Q), since it may be a complicated function of Q and X. In

the literature reviewed in the last section, Cox (1960) took G to be a

known Markov chain.

Robbins (1956), (1961) introduced the empirical Bayes decision problem

by assuming that G is unknown and using X to estimate Q or Q(Q).

( As introduced by Robbins, only the component observations X1,X2,..... ,X.
l

are available for making the decision about 0i, i=1,2, ..... so that his version
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is sequence in nature.) Robbins proposed (bootstrap) empirical Bayes rules of

the type Q(Q) where Q is an estimate of Q and rules of the type

where the Bayes response is estimated directly without estimating Q.

It is obvious that the class y of priors to which G is assumed to

belong must be restricted for the empirical Bayes approach to produce

reasonable methods. Robbins chose y to be the class of all symmetric

products

y = { Glelelx..... lo, e V1}

in which case the Bayes risk enve10pe is simply B(Q) = R1(Gl),

independent of n. This is the assumed structure for f in most empirical

Bayes literature where much of the effort concerns finding sequence rules Q

that are component-wise asymptotically Optimal, such that

. ‘ 1
(1.14) 11mi E [ 0i if 0i] = R (GI) for all G1 6 fl,

where bi depends on X through X1,X ’Xi' The feasibility of2, .....

constructing sequence empirical Bayes rules that are asymptotically optimal

for this f is quite apparent. Since the observed random variables

X1,X2,..... are i.i.d. according to the G1 mixture PGl of P0 and P1,

if G1 is identified by PG , then consistent estimation of G1 is

1

possible.

Of course, the restriction to product measures is unreasonable in

applications for which the parameters 01,02, ..... are correlated. In the last

section, we reviewed examples of empirical Bayes problems where y went

beyond the product case.
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The empirical Bayes problem becomes considerably more complex if the

class of distributions contains distributions that are not symmetric product

measures. The excess risk (1.12) is the apprOpriate measure of efficiency for

a decision rule Q , but problems arise in the construction of bootstrap

empirical Bayes rules. For one thing, y may be of such high dimension so

as to make accurate estimation of Q or Q(Q) based on X impossible

except for very large 11. Moreover, Q(Q) may be such a complicated

function of Q and X so as to make estimation difficult and B,(Q) may

depend on n.

The dimensionality problem is not severe when y is a family of

Markov distributions. For the two—state component we are considering, the

stationary Markov distributions are indexed by two real parameters. The

literature reviewed in the last section concerned this family.

The second problem has led investigators to approximate the functional

form of a Bayes response Q(Q) and to estimate the approximation. For

example, (1.7) is an approximation to the decision rule Qi(Q) in the

transect case with stationary Markov prior. Truncating the range of j in

( 1.6) to various neighborhoods of i produces additional approximations.

The extended compound decision theory developed by Gilliland and

Harman (1969) suggests a general approach for finding empirical Bayes

decision rules in our applications. It provides a logical and systematic

method for finding approximations to Bayes rules. It solves the

dimensionality problem and the approximation problem by defining envelope

risk in terms of that resulting by restricting decision rules to a class

9“ C .9 . Basically, the restriction is limited so that the enve10pe risk is

close to Bayes risk B,(Q) and, at the same time, the restricted Bayes

decision rules are simple enough to be easily estimated. Finally it should be
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noted that this approach leads to compound decision rules which have

controlled risk behavior conditional on Q whereas the competitors that we

test have not been shown to enjoy this more robust risk behavior.

We will now give some details to illustrate this approach. This will

require introduction of the extended envelope theory and I‘k construct of

Gilliland and Harman (1969). The parameter vector Q belongs to the

parameter set Q = 911 where 9 = {0,1}, in our case. Suppose that

associated with each index i E I = {1,2, ..... ,n} is an (ordered) k—tuple of

indices, .1; e Ik, where i is the last index in 4*. We let Q‘l‘ denote

the restriction of a to 4*, i e 1. An example with k = 3 is provided

by 4* = (i-l, 1+1, i) and (z? =(oi_1, ”1+1, 0,). (One can avoid

endpoint problems by using the mod-n arithmetic on I to define the Q1:

for all i E I or simply by restricting the indices, say to i = 2,3, .....,n-l in

this example.)

The decision problem concerning the last component of a k—tuple with

the decision based on independent obsevations based on all k parameters is

called 11. Pk construct by Gilliland and Hannan (1969). Thus, we see that

associated with n, the compound decision problem Q, and a neighborhood

system 1* are n I‘k-decision problems with parameters Qll‘,Q12‘, ..... ,QE.

With G: denoting the empirical distribution of this sequence and Rk

denoting the Bayes envelope risk for the I‘k decision problem, the

k-extended modified regret for a decision rule Q is

(1.15) Likes) = mas) - R“(G,‘§).

which subsumes (1.11) as a special k=1 case. Note that we are

suppressing the display of dependence on I * by displaying only the size
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k of the neighborhoods. As shown by Gilliland and Hannan (1969), for

k
k > 1, the R are more stringent envelopes than the (unextended)

component enve10pe R1 = R, and, since G111 is a marginal of (3:,

(1.16) Rk(G:) g R1(G111) for all Q, n.

The enve10pe risk Rk(G:) is the envelope to compound risk obtained by

minimizing over the class d‘ of compound decision rules Q where Qi is

a fixed function of X? i = 1,2, ..... ,n. (The function does not depend on i.)-1,

We are interested in the Bayes risk obtained by taking expectation of

compound risk with respect to the distribution Q on Q. Suppose that G

is a strictly stationary distribution on 01,02, ..... with common marginal Gk

on Q‘i‘, i= 1,2,...... . Theorem 3 of Gilliland and Hannan (1969) shows, in

our application, that any compound decision rule Q satisfying

(1.17) lim supn Dk(Q,Q) _<_ 0 for all Q

also satisfies

(1.1s) lim snpn pk(g,k) g o for all Q

where

(1.19) shes) = sash — R“(G“)-

Suppose that the neighborhood structure is such that Rk(Gk) is close

to Bayes risk B,(Q) for all C E y, specifically, suppose that

(1.20) 11km“) 5 mg) + c for all G, n.
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If Q is an asymptotic solution to the extended compound problem, i.e.,

satisfies (1.17), then, by (1.12), (1.18) and (1.20),

(1.21) lim supn med) g c for all C e y.

Thus, the compound decision rule will be asymptotically c—Bayes. The

extended rules we prOpose can be shown to satisfy (1.17) by suitable

adaptation Of the sequence extended work Of Ballard, Gilliland and Hannan

(1975).

Recall from the last section that Preston (1971), Devore (1975) and Hill

et al. (1984) consider approximations to the Bayes response Q(Q). They

examine the component Qi(Q) as a function Of X and approximate it by

a. function Of Xj for j in a neighborhood of i, i E I. In the empirical

Bayes situation where G is an unknown stationary Markov distribution,

they propose empirical Bayes procedures that estimate G using X and

plug these estimates into the component approximations. They give no

rationale for the approximations. In contrast, the extended compound

approach provides a rationale for determining the neighborhood structure. It

should be large enough to control the excess Rk(Gk) - mg) and small

enough to allow for efficient estimation Of the Optimal decision procedure in

the corresponding restricted class of compound decision rules 9“. We find

in our risk calculations in latter chapters that the extended compound rules

outperform the competitors selected for comparison.
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1.3 The Imsge Problem

We have called the case where the index set I = {1,2, ..... } the transect

case. Besides the transect case, we will consider the two—dimensional case

where the indices index positions in an integer lattice, for example, the

pixels in an image. We call this the flags case. Here {oij} may

reasonably be assumed to be the realization Of a Markov random field in

some applications.

A brute force calculation Of the MAP estimate for the image Q with

n = leN2 requires a search for a maximum across 211 calculated posterior

probabilities. There has emerged a considerable literature dealing with the

computational issues that arise in the MAP approach to image reconstruction

2 = 65,536 and, therefore, asince an image may easily have n = 256

posterior that is supported by 265’536 points. (LANDSAT 1—3 scanned the

earth every 18—19 days recording images on a 3240x2340 lattice. Ripley

(1986).)

In the typical empirical Bayes approach to the two—dimensional case, the

unknown Markov random field distribution has parameters that define the

conditional distribution for each 0ij given values of am in a Specified

neighborhood. It follows that the posterior probability for 0ij given X

depends most heavily upon the Xkl for (k,l) in a neighborhood of (i,j).

The result is that approximations to Bayes rules and MAP rules are possible

and that estimates Of the parameters based on X provide for the

construction Of empirical Bayes procedures for classifying the components of Q.

The extended compound approach has the same advantages in the image

case as in the transect case. In fact, Swain et al. (1981), Tilton et al.

(1982) have used the compound decision theory approach to develOp rules tO

classify image data. A difficulty encountered in the implementation Of the
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rules is the estimation of GE. A "classify—and—count" method is prOposed

to estimate Gk with the use Of a training set Of data (a set Of data with11’

known classifications or a representative sample from the image data). First,

the training set of data is classified by using uniform prior probabilities and

then from this classification estimates Of G: are Obtained by counting the

occurences of Qll‘.

We will use the extended compound approach in the image case

and compare the rules with the empirical Bayes classification rules suggested

by Morris et al. (1985), Morris (1986) on selected images.

1.4 Summary

In this Chapter we have reviewed the most relevant literature and have

set the stage for later work where the risk behavior Of extended compound

decision rules is compared with that Of other rules.

In Chapter 2 we develop the details of the transect case. We derive an

algorithm for the calculation of the MAP rule. We introduce an empirical

MAP rule and describe further the empirical Bayes classification rules of Hill

et al. (1984). The extended compound rules are developed and some results

of simulations to determine risk behavior for the various rules are

summarized.

In Chapter 3 we develOp the details Of the image case. We introduce

the empirical Bayes classification rules Of Morris et al. (1985), Morris ( 1986).

The extended compound rules are deveIOped and some results Of simulations

to determine risk behavior for the various rules are summarized.

In Chapter 4 we give the results of the many simulations that were run.

In the transect case, only Q generated as Markov chains are considered. In

the image case both fixed pattern and randomly generated Q are considered.
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Risks conditional on Q are estimated in every case.

In image segmentation literature, the performance Of a classification rule

is Often measured by the quantity "per cent classified correctly" (PCC). The

measure PCC is related to the loss function Ll by PCC = 100(1 - Ll).

However, a higher PCC does not necessarily mean that the image reproduced

will be perceived to be better than one with a lower PCC. Swain et al.

(1981) suggests measuring the performance of classification rules in two ways,

one Of which is PCC. The other measurement is "average by class accuracy"

(ACA). The ACA is obtained by first computing PCC for each class and

then taking their arithmetic average. ACA will show whether the

classification rule favors one class more than the others. We will report risk

behaviors in terms of PCC.



CHAPTER 2

THE TRANSECT CASE

2.1 Introduction

In this chapter we consider the classification on a transect. Let

0i 6 O = {0,1}, i = 1,2, ..... . For the empirical Bayes application, it is

assumed that parameter sequence {0i} has a stationary Markov chain

distribution G as its prior. We derive an empirical MAP rule and

extended compound rules for the classification Of Q. The risk performances

of these rules are evaluated in comparison with the empirical Bayes rules

(1.7) suggested by Hill et al. (1984).

Let {Xi} denote the random observations. For our calculations, we

take the Robbins' component. Thus, the Xi are conditionally independent

given {0i} with Xi ~ P0i, where P 0i is the normal distribution with

mean 20i - 1 and variance 1. We let f0 denote the density Of P0 . The

sequence of states {Qi} is assumed to be a realization of a two state

stationary Markov chain with initial probability distribution

(2.1) P(0=0)=p=1—P(0=1), 0<p<1

and transition matrix

1—66

(2-2) 2 = _ _ , 0 < 6 < 1.

i {in 1" i-l-p ]

If 6 is close to 1 there are likely to be long sequences of 0's and 1's in

{0i} and 6 = p corresponds to independence.

20
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It can be easily shown that the Markov chain defined by (2.1) and (2.2)

is stationary. We will sometimes denote g by

p
.12 = 00

p10

The induced density on Q is

9(3)

1—0 0 n

1(1-p)1 .11
1:

=1)

_ 1

—p[‘§2] .9 p00

11

II

 

mm =

2

n—1 1_—2

n

= me, = 01) £2 mi

p10

 

p01

p11

= 01' 01—1 = 91-1)

1-0. 0. 1—0.
1 1 1—1

[ J [P10 p11

1—0. 0. 0.
1 1 1—1

p00 p01 ]

[1’10 ]0H [”01 J01 [Poo p11] 0,40,

poo p00 p01 p10

]”i-1 [pm It [p00 m}M

p00 p00 p01 p10

In the above derivation, the end—points of Q are included and all the

entries in g are assumed to belong to (0, 1). When pij E {0, l}, the

obvious modifications have to be done to RHS (2.3).
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2.2 Classification by Maximum Posterior Probability (MAP)

In this section we derive the MAP rule. The MAP rule is Bayes with

respect to the loss function

L2(Q,;0) = [Q#2]

and chooses a state sequence which maximizes f(_0_|x_). Here

(2.4) mg) = ii [J— exp {- 1(x. - 20. + 1)2}]

— i=1 .m— P ' ‘

and

{(54) = RHS(2.3) x RHS(2.4).

 

 

 

Thus,

logf(x,_) =—g-ilog21r-%E (x. -20. + 1)2

+log [p p001] + 01 log [1:2]

11 p p p

+2 0i—llog—0+ 0i log————Q-1 + 0i_10il0g 30—1-1

i=2 P00 P00 P01P10

— n1 2 1 E 12 1‘Q'Og T-§i_l(xi+ ) +08(PP001)

+ 22 xiifl + 010g [1:2]
,_.1

P P10 P0__1_ P00P11
+2 0i_110 0+ 0i 10 + 0 010g

i=2 8—P00 15—P00 ‘1 ‘ [P01P10

(2.5) =a+2 bii0+c2 0,49,,
i=1 i=2
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where

a = I21--log21r—%i21 (xi +1)2 +log(pp361),

b -2x +10 1:2p_10 -2 +101-

1— l g D p—OO ._ X1 3 T’

P P

bi=2xi+log[_1_0,m] m...

Poo

1_2

b=2 n+lo _0_p1=2x+10[1_6]
n gpo0 n g T’

and

C = log P00P11 = log 6(1-2p+p6).

P01P10 p(1-—15)2

Maximizing f(Q|x) is equivalent to maximizing (2.5). A brute force

maximization of (2.5) is simply out of the question because there are 2n

possible values of Q to be searched. Traditionally, dynamic programming

[ Bertsekas (1976), Cooper and C00per (1981) ] has been used to find

"Optimum" solutions to multistage decision problems. An Optimum solution

has generally been one that maximizes or minimizes a performance or cost

functional.

Dynamic programming techniques have been used in signal processing

problems [Scharf and Elliot (1981)] and image segmentation [Hansen and

Elliot (1982)]. The multistage decision problem we consider is formulated in
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a probabilistic framework and the criterion of optimality is MAP. The cost

functional (2.5) is a multivariable likelihood function and (2.5) is maximized

by the following dynamic programming recursion [see Appendix].

Let A? = 0 Ai = b1

For 1 _<_ i 5 n—l, let

A(i)+1 = mmA?’ Ai)

(2.6)

A? =max(A9+h. , Ai+h +c).
1+1 1 1+1 1 1+1

Then,

mgx log f(x,Q) = a + max (Ag, A111).

Note that, A12 is the value of

k k

max Xbi0i+c20i_li ,

(01,02. . . ’0k-1) i=1 i=2

(2.7)

with 0k = o and All( is the value of (2.7) with (IR = 1.

The MAP rule is given by

1 if A}2A?

ll H

I
A

“
0

I
A

§(2.8) decide 0i

0 otherwise
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As stated before, few modifications have to be done on (2.3) and (2.5)

when pij e {0, 1}; i, j = 0, 1. We shall consider the following three cases

in addition to the one already considered. These cover all of the nontrivial

possibilities. In all four cases the cost functional is maximized by using (2.7)

and the state sequence is classified using (2.8).

0 1

Casel. 0<p<-5, P: .

In this case (2.3) reduces to

1—0_ 1 0 11 1-0.

11(2) -— p 0-9)

0. Q.

1 £21510 ‘ p11) “lin. 0,) i (o. 0)1} .

For all Q e on with (0i ”1) e e2 - {(0, 0)}; i = 2,3, ..... ,h
_1’

KM) = RHS (2-4) x p 0-13) .112 (p10 p11)
1:

and (2.5) becomes

0
i

I] 11

log f(x,Q) = a + 2 bioi + c 2 0H

i=1 i=2

where

1n 2
a=—g-log21—?i:1(xi+l)+10gp,

_ 1" _
b1 — 2X1 + log ['32 ° p10] — 2X1,

bi=2xi+log[ ], 1<i<n,
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and

In this case (2.3) reduces to

1-0101 n l-i0 0i1—0i_1

PM) = P 1(1-p)i1_1_2{(P001P01) [(0i_1101)#(1 1)”

Forall oeen with(9i_1,0.)692-{(1, 1)}; i=2,3,..... ,n

1—1001 n 1-010i1—0i_1

{(252) = RHS (2'4) " P 1(1 ‘ P) in21(P00 P01)

and (2.5) becomes

n

i=1

where

1n 2
a =—n§log27r-§i21(xi+l) +logp+(n—1)logp00,

= 1_-p_ . ._1_ = [1-]b1 2xl + log [ p p00] 2x1 + log 5-59- ,

 



27

and

In this case (2.3) reduces to

11 1-0 0i1-0i_1

p<1>=10 = 01 n{(Poo p01) [(0,_1, o) i (1 1)}}

For all Q E 911 with (oi—1’ 0i) 6 92 - {(1, 1)} and 01 = 0; i = 2,3, ..... ,n

n li—Q 0i1—0i_

f(§1.€) = RHS (2'4) x iI=12(Pool P01)

and (2.5) becomes

11

log f(x,Q) = a + 2 bioi

i=1

 

where

1 P 2
a = — 3— log 21 — 2121 (xi + 1) + (n-l) log p00 ,

b=2x+log—1-— =2x+log[l]
1 1 p00 1 T ’

P 1 1— .

P00

and

b = 2xn + log p0——1- = 2x + log [1'6].
11 p00 11 T
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2.3 Empirical MAP

In order to implement the MAP rule (2.8) we need to obtain estimates

for the unknown parameters of G. The proposed estimates are based on

2(_. When plugged into (2.8) the result is an empirical MAP rule.

. Xi’ is an unbiased estimate

1 1I
I
M
:

(ii) Let Zi = [sgn Xi 1‘ sgn Xi+l]’ i = l,2,...,n-1 and

_ l n—l

= a7 _ - b is an unbiased estimate for p(1—b),

where a = .5[<I>(1) - <I>(-1)]‘2 1.0731 and b = 2a «1(1) <I>(-1) 2 .2865.l
l

Proof

(i) Since E(Xi|0i) = 20i —1 and E(0i) = l—p the proof of (i) is immediate.

(ii) We have Zi = [sgn Xi at sgn Xi+1]

Then,

and the RHS (2.9) is evaluated by partitioning on (0i, 2+1) as follows.
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Let RHS(2.9) = 2(pl+p2+p3+p4)

where

P1 = P(Xi 3 0’ X1+1 < 01 0i = 0’ “1+1 = 0)

p3 = P(xi 2 0, xi+1 < 0, 0, = 1, em = 0)

and

p1, p2, p3, p4 can be evaluated without much difficulty. For example,

P1 = P(Xi

= P(Xi

= (1 - <1’(1))‘1’(1)1511

= 9(-1)<1>(1)6p

and similar computations yield

p, = mania-0p

p3 = («rustic-6)

p4 = 2(1)<I>(-1)11—p—p(1—01 .

Z 01Xi+1< ””1 = 019m: 0) PM = 01‘1“: 0)

Olli = 0)P(Xi+1 < 0|0i+l = 0)6pI
V

RHS (2.9) = 2p(l-6) [c(1) — <1>(—1)]2 + 2e(1)<1>(—1).

 

zi-2<1>(1)<1>(-1) J
= _ 5,

E [mums—1))2 p“ )
and this completes the proof. :1
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Since 0 5 p, 6 5 1, it is natural to truncate U11 and Vn—l at 0 and

l and use the modified estimators

I

Un = Un[0 < Un < 1] + [Unz 1]

I

Vn—l

The unknown parameters p and 6 are estimated by solving the

= Vn_1[0 < Vn_1 < 1] + [Va-1 2 1].

equations

D = 111’,

(2.10) p(1 _ 5) = vii-1'

2.4 Classification by Extended Compound Bayes Rules

We begin this section with a brief review of the I‘k construct

introduced by Gilliland and Harman (1969) when applied to the finite—state,

finite—action compound decision problem. Consider a component decision

problem with states 0 E 9 = {1,2, ..... ,m} indexing possible distributions

P0 E .9: {P1,P2, .....,Pm} where Pi (i=1,2, ..... ,m) are distinct probability

measures on (..S .3. The actions a e .1: {1,2, ..... ,n}. Let the loss

function L(0, a) be such that

0$L(0,a)<oo forall Qeeandaex.

Let (p be a component decision rule. Then 1;: is a fl-measurable

mapping into .A' *, the (n—l)-dimensional simplex of probability measures on

A Let R(i, ) denote the risk of the component decision rule (p at state

1. Then

R(i,so) = 1 (1% Lot) w] dpi.
1:1 J
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Let P: Poleo2x..... xPoN and 52: (91,392, .....,gN) where for each

*

a, 59a is a fl—measurable mapping into .1 . Let Ra(Q,5g) denote the

risk in the a component decision for the compound rule 53 and let

B(Q,(Q) denote the compound risk at N repetitions. Then »

11

R0122) =1 (Elwyn sad-1dr

and

N

has) =11; 03111022) -

For the above description of the component decision problem, we will

now describe the I‘k construct. The I‘k decision problem has states

Qk = (01,02, ..... ,Qk) E 9k, observations _Xk = (X1,X2, ..... ,Xk) distributed as

ng = P0 xPo x ..... x130 e 51‘ and 0k is to be classified. The loss

1 2 k

matrix Lk is mkxn with Lk(Qk,a) = L(0k,a).

Let Rk(Qk,<p) denote the risk of a decision rule (p in the I‘k

decision problem at state Qk. Then

k

R (2w) = EIkasjekm

n

= [[jglLWksJ) soj(£k)ldng

Il .
k= [[jgleks) ‘Pj(¥.k)f_0_k(-’5k)d”
(5k)

where fgk(xk) = iI'If0(x1)
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Letting Rk(G,<p) denote the Bayes risk of (,0 versus a prior G on

61‘, we have

Rk(G,tp) = Ele(Qk,¢)l

k
= 2 R (0 ,¢)G-k 0

”1 -k

D

(2.11) = ”121 ¢j(2£k)[ EkkaJHflkgflngndpkO—(k) .

The Bayes enve10pe in the I‘k decision problem is given by

Rk(G) = inf Rk(G,<p).

‘P

Let

(2.12) A'(Z(.k)
J L(0kaj)f£k(£k)GQk-=13

2k

From (2.11) it follows that a I‘k Bayes rule has all of its mass placed on

the j's which minimize Aj(xk).

The incorporation of asymptotic risk objectives, for the compound

decision problem, more stringent than the usual standard R1(GN) is an

important develOpment in compound decision theory. This was discussed in

Section 1.3 of Chapter 1. The advantage of using these extended rules in

classification problems is due to the fact that these rules benefit from

empirical dependencies in the state sequence 01,02, ..... ,QN. Ballard and

Gilliland (1978) have studied the finite risk performance of extended decision

rules for the sequence version of the compound decision problem with

Robbins' component.
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The criterion for the classification rules is minimizing the risk and the

concept of the P1‘ decision problem is useful for constructing rules for this

purpose. We consider both the I‘2 Bayes and [‘3 Bayes rules. For the

application of I‘2 to the compound decision problem, the 0i are grouped

as of =(0i_1, 0,) with oi to be classified; for the application of r3

to the compound decision problem the 0i are grouped as

I? = (0i_1, 0H1, 0i) with 0i to be classified. For each {0i} and 11

let G2 be the empirical distribution of £242,..... ,Q: and let GEL2 be
n—l

the empirical distribution of 53$",..... ”6:4.

For the 1‘2 decision problem, the state space is

92 = {(i. i): 1.1 = o, 1}

and we let p2 = {pijz i, j=0,1} be a probability measure on 92.

Taking L(Q,a) = Ll(0,a) = [ 0 #a ] in (2.12), we obtain

A032) = 0(x1)f1("2)P01 + f1("1)f1("2)P11

and

A132) = 0(x1)f0("2)P00 + f1("1)f0("2)P10 °

A F2 Bayes rules versus p2 is given by

(2.13) decide 0k =

0

>
1 - 1

1‘ f1(Xk) E pilfi(Xk—l) {0(Xk) .E piofi(Xk—l)'
1—0 < 1—0
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This is equivalent to

 

1 Z 1 i§0p10f1(xk-l)

decide 0k = if Xk 2 log I

0 <.E0P11fi(Xk-1)

which can be written as

 

1 2

(2.14) decide 0k = if Xk C(p(Xk_1))

0 <

where

lE PilfiP‘)

p“) = i s mp.. x

1—0 j=0 ‘1 ‘

and

C(9) = $103 [L32] -

The Bayes enve10pe in the [‘2 decision problem is

2 2 __ x x

11(2) — Ixx1 {X2:x2$c(p(xl))} [f0( 1)})01 + f1( 1)P11]f1(x2)dx1dxg

f x f x f dx (1
+ Ix1 {x2zx2>{:(p(x1))} [0( 1)P00 + 1( 1)P10] 002) 1 x2
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= 1x1 [f0("1)P01 + f1(x1)P11]°(c(P(xl)) 4W1

“I" le [f0(x1)p00 + f1("1)P10][1 " ¢(C(P(x1)) + 1)]dx1

1

(2.15) = igo Ifi(x1)[p,0{1- <I>(c(p(x1)) + 1)} + pil<I>(c(p(x1))-1)ldx1.

For the F3 decision problem, the state space is

e3 = {(i, j, k): i, j, k = 0, 1}

and we let p3 = {pijkz i, j, k = 0, 1} be a probability measure on 93.

In this case (2.12) gives

1

E f101<(§3)P10k

1

A(x)=2

0'3 i=0 k=0

1 1

=f 2 2 f.x f x p.
0(X2). “(=0 1( 1)k( 3) 10k

1:

and

1

E0 fillt(3‘-3) Pilk

l

A(x)=2

1‘3 i=0k-

1 1

= f1("2)iE0 kE0 fi(xl)fk(xk)pilk -



36

The I‘3 Bayes rule versus p3 is given by

1

(2.16) decide 0! = if

0

1 1 2 1 1

f1(x£) iE0 kEopilltin‘t-l)fl<(xt+1) £009) iE0 kEoPiokin‘t—l)flt(xt+1) -

<

This is equivalent to

decide 0! = if

1

kE0 piOkfi(Xl-1)fk(xl+l)

>
<

N [
0
|

0
%

“
1
4
4
1
(
t
h

O

1

0 kE0 pilkfi(Xt-l)fk(xl+l)

which can be written as

l 2

(2.17) decide 0! = if Xl c(p(X[_l, Xt+1))

0 <

where

1 1

2 2 pi

_ 1: =

NEW-g: 213 ‘1]: f()f()

p... . X y

i=0 j=0 k=0 ‘1‘“ 1‘

lkfi(x)fk(y)
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It can be shown that the Bayes envelope in the I‘3 decision problem is

19(3):}; I A(-)dx

B x1"3[{x2=x2.<.C(p(x1.x3))} 1x3 2

+ j A ( ) ] dx dx

{x2=x2><=(p(x1,x3))} 053% l 3

1 1

= igo kgo Ix1 Ix3 fi("1)fli("3)[P101t{1 — ‘P(C(p(x1, x3)) + 1)}

+ pilk <I>(c(p(xl, x3)) - 1)] dxldx3 .

The estimation of the I‘2 and 1‘3 Bayes rules versus empirics in the

compound problem depends on the construction of estimates for G121 and

G3. The estimates for these empirical distributions are then plugged into

(2.14) and (2.17) in place of p2 and p3 yielding extended compound

Bayes rules. We follow Hannan (1957), Robbins (1964), Van Ryzin (1966)

and Ballard (1974) in the construction of unbiased estimates.

Definition 2.1

h = (110’ hl) is said to be an unbiased estimator of the family

.9: {P0, P1} if

Eihj(X)=[i=j] i,j=0,1

where Ei denotes expectation with respect to Pi .
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From h_ one obtains unbiased estimators of 9 k by taking

_ . k
hik(xk) — hi1(xl)hi2(x2).....hik(xk) for all 1k E 9 .

Such an estimator is called a product estimator [Ballard (1974)]. The

unbiased estimator we use for {P0, P1} is the kernel function used by

Robbins (1951):

{(x) = (r0007 110‘»

where r0(x) = é-(l — x) and rl(x) = £1 + x).

These are used to produce estimators for the components of G121 and

G3 as follows:

‘2 _ 1 n

and

. —1
3 _ 1 n

(2.19) (3114;in — _2n— E2 ri(Xa_1)rj(Xa)rk(Xa+l) , n 2 2 .

These estimators are unbiased and consistent for the components of G34

and G24. The extended compound rule ER2 is formed by substituting

(2.18) for pij in (2.13) and letting k = 2,3, .....n . Similarly, the extended

compound rule ER3 is formed by substituting (2.19) for pijk in (2.16)

and letting l = 2,3, ..... ,n—l .
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2.5 Comparison of the Methods

Even though we have suggested two types of classification rules, MAP

and extended, our main interest is in the performance of the extended rules.

Chapter 4 describes in more detail the simulations and the classifications

obtained using various rules. As an example, we present some of the PCC

comparisons for the extended rule ER3 and its competitor HEB3 defined

following (1.7) in Chapter 1. Table 12 in Chapter 4 gives more detailed

information on the performance of these two rules.

In 100 simulations for each of 84 different (p, 6) combinations:

A. with p = 50 mmmngnts

(i) In 76 (90%) cases the ER3 has a higher PCC than the HEB3. The

improvement of ER3 [=PCC of ER3 - PCC of HEB3] has a mean of 3.74

with standard deviation 2.62.

(ii) In 8 (10%) cases the HEB3 has a higher PCC than the ER3. The

improvement of HEB3 has a mean of .82 with standard deviation .48.

B. with n = 299 cgmmnents.

(i) In 75 (89%) cases the ER3 has a higher PCC than the HEB3. The

improvement of ER3 has a mean of 2.30 with standard deviation 2.25.

(ii) In 9 (11%) cases the HEB3 has a higher PCC than the ER3. The

improvement of HEB3 has a mean of .33 with standard deviation .24

It was also observed that the ER has a very high improvement over

HEB when either p is very small ( < .1) or 6 is very large ( >.9).
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In implementing the empirical MAP rule (2.8), the unknown parameters

(p,6) were estimated by using Proposition 2.1 and the following convention

was used in cases where either the estimates were undefined or truncation

was necessary. Let u,v denote un , v respectively.
n—l

(i) If{usO}U{0<ug.5,v30} then decidea110i=l.

(ii) If {u > .5 , v s 0} then decide all 0i = 0.

(iii)If{u21,v,>_1}u{.5<u<1,u_<,v} then

(iv) MAP rule (2.8) for the remaining (u,v).

decide 02

We used the estimators following from (2.10) for substitution into the

HEB3 and HEB5 rules. Hill et al. (1984) also have pr0posed estimators (1.5)

for (p,6) which they apparently used to implement their empirical Bayes

rules. The method of estimating (p,6) did not effect the performance of the

empirical MAP rule. However the same was not true for the HEB rules.

The HEB rule with j=1 (HEB3) and the parameters estimated by (1.5) had

a better performance than the same rule with the parameters estimated by

(2.10) whereas the HEB rule with j=2 (HEB5) and the parameters

estimated by (2.10) had a better performance than the same rule with the

parameters estimated by (1.5). However even with the improvement, the

HEB rules remained inferior in performance to the ER3 rules.



CHAPTER 3

THE IMAGE CASE

3.1 Introduction

In this chapter we consider the following classification problem.

Suppose we have a rectangular array of pixels and on pixel (i,j) we have

the random observation Xij' Pixel (i,j) has a true but unknown

classification 0i)" The {Qij} gives rise to a two dimensional image. The

observed image {Xij} has a distribution depending on {Qij}. Because of

the spatial correlations inherent in images, {Qij} is considered to be a

realization of a Markov random field (MRF) in some models. This can be

viewed as a variation of Robbin's empirical Bayes problem, with the

parameters being dependent. As in Chapter 2, tools developed for extended

compound decision problem will be applied to derive decision rules based on

X to reconstruct the image. Here Q and X_ denote restrictions to an

leN2 rectangle of indices and n = NlN2 .

In Chapter 2 the sequence {0i} was assumed to be a realization of a

two—state Markov chain. This prior distribution can be considered as a

special case of a more general class of Markov distributions for {0i}. To see

this and to set the stage for the introduction of a MRF, we rewrite (2.3) as

follows:

n—l n

.E 0i .3 01-101
_ n—l 1_—p P10 ”1 P01 on P01P10 '=2 P00P11 1:2

P(.Q) - P P00 — — _—

P P00 P00 p00 P01P10

II II

1: 1:
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where

C(n, p, 6) = 170351 = min—l,

a : 40g 1_-B BE

1 P P00 ,

P P

(17i--—log——0%-—l—0 , 1<i<n,

P00

P01
an — -log [p—OO ],

and

 

P00P11
[3 =—log .

p01P10

Let :Qi denote the vector obtained by deleting the ith component from

Q.

Qi = (61,02, ..... ’oi—l’oiH’..... on)

If Q is a Markov chain, then it can be shown that

~ ' P(01|02) i = 1

(3.2) P(0i|Qi) = « P(0i|0i_1,0i+1) 1 < i < n

5 P(0n|0n_l) i = n 

and from (3.1) for 1 < i < n

"%0rPfiIfi—1+9i+fl
= e

(33) P(0i|0i-l’ 01+1) He'arflwi—fi 0i+l)
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From (3.3) an expression for the log odds ratio for the ith class is

given by

P(Q.=l|0._,0. )

P(Q.=0|0. ,0. )
1 1—1 1+1

The expressions (3.1) and (3.2) can be generalized into more complex

situation than the one dimensional Markov chain considered above. We shall

concentrate on discrete two dimensional random fields defined over a finite

leN2 rectangular lattice of pixels. Let

L={(i,j)|igigN1,lsj5N2}.

Definition 3.1

A collection of subsets of L,

I= {N(i, in (i. 1') e L}.

issaid tobeanemmmmdystemon L ifforall (i,j)EL,

(i) (i, i) 1! N(i, i)

and (ii) (k, l) E N(i, j) implies (i, j) e N(k, l).

N(i, 1') is called thenew (i. i).

A hierarchically ordered sequence of neighborhood systems that are

commonly used in image segmentation and pattern recognition are I,

.6,...... where for each (i, j) e L ( except for boundary pixels ) .61

consists of four pixels neighboring (i, j), .12 consists of the eight pixels

neighboring (i, j) and so on. The neighborhood systems .I , .6, I , .12,

and .15 are shown in Figure 1.
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5 4 3 4 5

4 2 1 2 4

3 1 (i,j) 1 3

4 2 1 2 4

5 4 3 4 5

Figure 1. Neighborhood systems A;

In Figure 1, J; = {Nn(i, j)} where symbolicaly Nn(i, j) = {k: k 5 n}.

.11 is called the nearfit neighbor (NN) system and J; is called the

nthMAW-

Definition 3.2

Let I be a neighborhood system defined on L. A random field

6 = {Pijl (i, 1') E L} is a Mmmndgnhfiekl with respect to I if

(34) P(4,,-I 14,-) = would?)

for each (i, j) e L, where Q? denotes the restriction of Q to N(i, j).

The Markov chain on the transect Q results in this structure by

taking

N01= {2}

N(i) = {i—l, 1+1}, 1 < i < 11,

N0!) = {11-1};

(cf. (3.2) and (3.4)).
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It should be noted that any random field is a MRF with respect to the

neighborhood system N(i, j) = L for all (i, j) E L. A MRF is not

characterized by specifying the conditional probabilities (3.4) yet (3.4) is

termed theW of the random field. A difficulty with the

above characterization of a MRF is the unavailability of the joint

distribution. These difficulties are overcome by characterizing a MRF

through its Gibbs distribution. To do this we will introduce additional

concepts.

Definition 3.3

A gflgue of the pair (L,.I ), denoted C, is a subset of L such that

(i) C consists of a single pixel

or (ii) (i, j) e C and (k, 1) e C z: (i, j) e N(k, l)

for (i, j) at (k, l).

The collection of all cliques of (L,.l ) will be denoted by 8’.

For the Markov chain

9' = {{1}, {2},..... ,{n}, {1, 2}, {2, 3}, ..... {n—l, n}}.

The type of cliques associated with .11, .6 are shown in Figure 2.
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1

1 (iii) 1

1

«ii neighborhood system cliques in II

2 1 2

1 (i,j) 1

2 l 2

.12 neighborhood system cliques in 6

Figure 2. Neighborhood systems I] and «if? and their associated cliques

Definition 3.4

Let .I be a neighborhood system defined over a lattice L and 16’

the collection of all cliques of (L,J’ ). A random field Q = {oij |(i, j) E L}

has amm(CD) or equivalently is a giibbs rapdgm field (GRF)

with respect to .I if its joint distribution is of the form

-U(Q)

(35) 11(1) = 9—2—

where

= 211(4) CE{gt/C(10)

Z = (Um).

1
:
0
4
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The U, VC(~) and Z in Definition 3.4 are termed, respectively, the

energy function, the potential associated with clique C, and the partition

function. The only condition on the otherwise fully arbitrary clique potential

VC is that it depends on the pixel values in clique C. That is, oij and

0k] may appear together in a term is U(-) only if (i, j) and (k, l) are

neighbors.

Comparison of (3.1) and (3.5) gives

V{i}(0i)=azi0i , ISiSn,

V{i-1,i}(0i-l’ 91) = 591—1 0i . 2 5 i 5 n '

The origin of GD lies in physics and statistical mechanics literature. The

source of revived interest in GD, especially is the context of image

segmentation and pattern recognition is due to an important result known as

Hammersley—Clifford theorem. This result establishes a one—to—one

correspondence between MRF and GRF. Unlike the MRF local

characterization (3.4) the GD characterization (3.5) provides the joint

distribution of the random field and is free from consistency problems. A

detailed treatment of MRF and GRF can be found in Besag (1974, 1986),

Kinderman and Snell (1980).

3.2 Introduction to Image Segmentation

The image segmentation process is an important component of scene

analysis and reconstruction of noisy images. As such it has received

considerable attention in computer vision and image processing literature.

The general image segmentation problem can be viewed as a two dimensional

classification problem. The data are collected in two spatial dimensions,

specially on a rectangular lattice of points called pixels. Each pixel is

assumed to have a true but unknown fixed classification.
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Suppose, we have a N1xN2 rectangular array L of pixels and we

observe Kij’ a vector of intensities, at pixel (i, j). Let 0ij denote the

label of pixel (i, j) and

oij E 9 = {1,2, ..... ,m}.

The observed image is a random field X = {Xij} defined over L. The

image random field X_ is assumed to be a function 0 "scene random field"

Q = {Qij} and a corruptive "noise random field" X each defined over L.

The functional relationship between the random fields is such that at each

pixel the image random variable is a function of the scene random variable

and the noise random variable at that pixel, that is

Xij = fij(_Y_,Q) for all (i, j) E L.

However, the interest is mainly in the case of additive noise where

fij(X,Q) = Yij + aij for all (i, j) E L.

The use of MRF as models for the distribution of the scene random

field have been prevalent in the image segmentation literature for some time

now. Geman and Geman (1984), Ripley (1986) are two, among the

many papers which contain detailed references about the use of MRF in

image segmentation. The MRF model has the spatial distributional pr0perties

that have proven to be useful in segmentation studies.

The objective in image segmentation problems is that, given a image

realization X, to determine the scene realization Q that has given rise to

X. The scene realization Q is, of course, invisible and can not be obtained

deterministically from 2;. So the problem is to obtain an estimate

Q = Q(X) of the scene, based on a realization X- A Bayes decision

theoretic approach requires the specification of a loss function. The two loss

functions L2 and L introduced in Chapter 1 lead, respectively, to
1
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(1) maximum a posteriori estimation

and

(2) maximization of the posterior marginal probability at each pixel.

A major reservation regarding (l) is purely computational. A brute

force maximization is simply out of the question because there are mn

possible scene configurations for the maximization to be done over.

Exceptions occur by design in the subclass of MRF considered. Derin et al.

(1984), Geman and Geman (1984) have obtained MAP rules using a

procedure from combinatorial Optimization known as simulated annealing.

The simulated annealing is used on a subclass of MRF's called Markov mesh

random fields (MMRF), where an additional assumption that the columns of

the scene constitute a Markov chain is made. Still there are computational

difficulties in implementing the Bayes smoothing algorithm of Derin et al.

(1984), Geman and Geman (1984). For example, for a binary image on L,

at each step of the algorithm there are on the order of 2N2 calculations to

be performed. In order to overcome the above computational difficulties the

image is processed in relatively narrow strips. The overlapping strips are

chosen in such a way that the union of the middle sections of the strips give

the entire image. Haslett (1985) has proposed an approximation to (2) based

on maximum likelihood discriminant analysis for a subclass of MRF, called

the Pickard (1977) random field (PRF). An important feature of PRF is

that the columns and rows of Q separately form a Markov chain. An easily

proven fact for a Markov chain is that Qi_1 and 0”] are conditionally

independent given 6i. In Haslett's (1985) derivation of the classification

rules, it is assumed that the four random variable 6. Q.
1,ji:1’ lil,j are

conditionally indpendent given oij'
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In the next section we introduce the empirical Bayes approach to image

reconstruction which is based on estimating parameters of the MRF. In

Section 3.4 we will give details of the construction of extended compound

rules for the image application; these rules have favorable risk behavior that

does not require distributional assumptions. We introduced the MRF because

three of the tested images in our simulations were generated as a MRF.

3.3 Classification by Empirical Bayes Rules

In this section we describe the empirical Bayes rule pr0posed by Morris

et al. (1985), Morris (1986) for the classification of a binary image,

9 = {0,1}.

Let Xij be the random observation on pixel (i, j) and oij the

true but unknown classification of the pixel (i, j), i,j = 1,2,..... . We let Q

and X be restrictions of {Qij} and {Xij} to the leN2 rectangular

lattice L.

The specific empirical Bayes model considered by Morris et al. (1985),

Morris (1986) has

(a) Xij ~ N(-56(20ij-1), 1) independently, with 6 a known

constant, conditional on {Qij}.

(b) {Qij} has a distribution G that is spatially isotrOpic (invariant

under translations and rotations) with

p = P(Qij = 0) for all (i, j)

and

pt,“ = corr. (Qij, 0i for all (i, j) and (t, u).
+t,j+u)
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Even with the structure (a) and (b), the exact form for each marginal

posterior probability P(Qij=1|)$) is quite complicated. Morris et al. (1985),

Morris (1986) suggest a logistic form as a good approximation to this

probability, with accuracy increasing as 6 -+ 0. Furthermore, the logistic

fimction is approximated by a discriminant function, which predicts

P(0ij=1|X) from the "ring" averages, these being averages of those data

values in Specified locations relative to the pixel (i, j). The ring locations

R0, R1,.....,R5 with center at pixel (i, j) are indicated by the integers in

Figure 1 with R0 being the singleton pixel (i, j). The four nearest

neighbors marked 1 make up R1, the next four marked 2 make up R2, and

so on.

Define the discriminant function Aijm) as

P(Qij=1|2(_)

P(6ij=o|x) '

The approximation proposed in Morris et al. (1985), Morris (1986) is based

 (3.6) i,j(x) = log

on a moving average of the form

r

.. e 1:2 ..(3.7) AUQQ) log p +£01qu

where Xijt is the average of the observations in the ring Rt centered at

pixel (i, j) and 7t depends on X and Q. In (3.7),

_ — _ 1

3tij,0 - Xij 1 Xij,1 - 4(Xi,j—1 + Xi—1,j + Xi,j+1 + Xi+l,j)

and so on, with suitable modifications at the edges of the lattice.
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Define the nx(r+1) matrix

  

xn'X _le ‘ X1""" 3:11,: " Xr

X12”? 5:121 " x1 ''''' X.12; " X.1

Y =

Xn_x Xn,l _ X1°°°° Kn; - Xr

with X, X1,..... ,Xr the average of Xi.,inj1,..... ’Xij,r , respectively.

If oij were observable, RHS(3.7) can be estimated by

 x ~ 1 1 x -AUL) log 1=-'6+RSS(Q)tWotan,” m,(4)),

where z) = % is} oil. and W), mt(Q), 1133(1) defined as follows:

Let 144) = (110(4), b1(4):.....b,(4))'

X = (xix11°-1—r')

mm) = (1110(4) m1(4)m,(4))'

 

0(4) = n‘1Y4

s = nor'v)‘l .

Then

12(2) = SC(fl)

(f) = + C Qin 14 2;;:7) ( )

RSS(£)= P(1:4) C(250(2).
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(3.8) can be simplified by letting

r

13.0th) (351M - mtg» = 81+82

r

where S1 = tgotho) (in,t — it)

= I. b(£), y. is the (i, j)th row of Y

(i,j) (i,j)

= 114', , (Y'Y)"‘C(4)
(1.1)

and

82 = téobdg) (it - 11143))

 

_ 2'0—1 '

— 270-?) C (MGM)

_ ‘0—5 ' ' -1

- 4(1-4) nC(4)(Y Y) 0(4). 

With the above simplifications (3.8) reduces to

..x g l. __n_ ' 0;?) ' ' -1 ,
(3-9) A,J(_) 103 149+ 1233(4) 10s) + 90-?) 0(9 (Y Y) 0(4)

Let ct

those in Rt' That is

denote the sample autocovariance of elements in R0 with

_ 1 — _ - _
Ct — H izjxij(xij,t Xt) t — l,2,....,l‘.
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Proposition 3.1

Let a = .5 + 4’11: and (“3(4) = (661(1-fi),5—1c1—n—2n1,....,Flcr-n—2nr)'

where X = % .2.Xij and nt is the number of pixels in ring Rt' Then

1,1

ii and (3(4) are unbiased estimates for '0 and C(fi) respectively.

Proof: see Morris et al. (1985). n

In applications nt is very small compared to n2. Thus a nearly

unbiased estimate of ct(£) is 5'1ct (t = 1, 2,...,r). Plugging in the

estimates (“1 and (3(9) into (3.9), Morris et al. (1985), Morris (1986)

obtain their empirical Bayes rule as

1 if i,jzo

decide 49“.:

0 otherwise

We investigate the risk behavior of the Morris rule based on the four

nearest neighbors and based on the eight nearest neighbors. We call the

rules MEB4 and MEB8.



55

3.4 Classification by Extended Rules

In this section tools deveIOped for extended compound decision problem

are used to obtain classification rules which enables us to reconstruct the

image. These rules will be called extended rules.

Let aij e .1 = {0, 1} be the action taken with respect to the pixel

(i, j) and let Lwij’aij) be the loss incurred by taking action aij when the

true classification of the pixel (i, j) is aij' As in Section 2.4 assume that

0$L(0,a)<ao oeeaex

The average loss suffered over the n classifications is

M4. 4) = -3; istwfi, zen-(sh

and the risk

(3.10) R(4. a.) = E [M4, 4.)]-

In order to apply the extended compound approach, that was introduced

in Section 1.2, to the image case, we choose a neighborhood system for the

leN2 lattice. Our computations will concern compound rules designed to

achieve the asymptotic risk behavior (1.17) for a particular neighborhood

structure and k = 5. Specifically, that neighborhood system is the nearest

neighbor system [1 defined in Section 3.1. For simplicity of exposition,

we develop our ideas in terms of this system although all results hold more

generally.

It is also convenient to measure risk on the sublattice

“LDIZSiSN-LZSjSNfU
1

since here every lattice point has a complete neighborhood N(i, j) consisting

of four nearest neighbors. On the sublattice, n = (NI-2)(N2—2)

classifications are made.
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As in Section 1.2, we let flij and xij denote restrictions of f and

K to the positions N(i, j) U {(i, j)}. For our neighborhood system, k = 5

and £2sz (0i,j—1’ 0i-l ,j’011+1’0i+1,j’ 0ij)

We now derive the form of the 1‘5 rule that has compound risk

R5(G151). Let 51 be a compound rule such that

where d is a I‘5 decision rule.

Notations

X : k-vector of observations

flk : k—vector of parameters

XE]. : k-vector of observations with X.. as

4':

1]

j : k—vector of observations with 0” as kt"h

kth component.

component.

From (3.10) the compound risk of a rule of the form (3.11) over the

subarray is

R(4. d) = 31-}; iszw, d(_,,))1

=1- 2 230 EL( d_..)

n flkeek {(i1j)'0ij=0k} [ 0k ( ”)1

(3.12)
= 2 -1- 2 ] L(0 , d( k))f(_k|£k)d¥k

.

flkeek
n {(i,j)zoij=gk}

k x x
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Letting Gfiwk) denote the relative frequency of the occurrence of _Qk

in the subarray _Q, (3.12) can be written as

M4. «1) = 2 6,134") I wk. d(xk))f(xklflk)dxk

leek

(3.13) =1 2 k 6134“) M4,. d(xk))f(zik|£k)dxk-

_ 69

Note that G1; is simply the empirical distribution of the flij across the

subarray.

A rk Bayes rule d* with respect to G: is obtained by

minimizing the integrand in (3.13) for each Xk. Thus,

d*(2(_ij) = the action a which minimizes

(3.14) 01.391. 61,34“) wk, a)f(2i,j|4“) .

Taking L(0, a) = L1(0, a) = [0 # a], (3.14) reduces to

d*(xij) = the action a which minimizes

k

2 1 0,44“) fen-I4“)

_ 69

1.4a

= the action a which maximizes

(3.15) 013636]; Gfi<4“)i(z,jl4“) .

if.
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Since the Xij's are assumed to be class conditionally independent

k

«ah-I4“) =021 f(Xa|0,,)

and (3.15) becomes

d*(£ij) = the action a which maximizes

r

(3.16) ska“)kn: 1(xaI00) f(Xij|a).

the“

1f.   

Taking k = 5 and

fij = (”i,j—1’ 0i—1,j’ 0i,j+1’0i+1,joij)

with oij to be classified, (3.16) gives the [‘5 Bayes rule as

(3.17) decide 0.. = 1 if

4 4

2 5 03(45) nlr(xa|40) f(Xij|l) z z 5 0151045)01:11axaloa) f(Xijl0)

e 9 a: 05 e 9

'05: 1 95: 0

and

0.. = 0 otherwise.

As in Section 2.4, we will estimate Giws) by unbiased product

estimators. For example, G:(o,o,o,o,0) is estimated by C(o,o,o,o,0)

where

(‘3(0,0,o,o,0)

n1 n2
_ l

_ n1- 112- £2 jEZ r0(Xi,j-l)l'0(xi-1,j)r0(xi,j+1)1'()(xi+1,j)1'0(xij)-
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where 111 = N1-1 and n2 = N2—1.

We refer to the extended compound decision rule that is obtained by

substituting the product estimates based on kernel r into (3.17) as ER4.

3.5 Comparison of the Methods

The performance of the extended rule (ER) of Section 3.4 was compared

with the empirical Bayes rule (MEB) of Section 3.3 based on 2 different sets

of neighbors, the four nearest neighbors (R1) and the eight nearest neighbors

(R1 and R2). The rules were tested on both deterministic and stochastic

images, details of which is given in Chapter 4. In a total of 150 simulations

with 6 different images, in 149(99%) cases the ER had a higher PCC than

the MEB based on 4 neighbors and in 142 (95%) cases the ER had a higher

PCC than the MEB based on 8 neighbors. We also considered revised

classifications using the ER, which were done in the following way. After

obtaining the initial classification by the ER, revised estimates of Gfiuk)

were obtained by computing the relative frequencies of _Qk from the

reconstructed image and then (3.17) was used to obtain the revised

classification. The process was repeated. It was observed that in most cases

there was no change in the PCC after the third revision. Furthermore all

the revised classifications had a higher PCC than both of the empirical Bayes

rules.



CHAPTER 4

SIMULATIONS.

4.1 Introduction.

Consider the component decision problem with XI 0 ~ P0 where

P0 = N(po, l), 0 E 9 = {0, 1} and p1 > no. The Bayes rule versus a

probability measure p on 0 = 0 and l - p on 0 = 1 is

 

1 2

(4.1) decide 0 = if (1 - p)f1(X) pfO(X)

0 <

which is equivalent to

1 2

(4.2) decide 0 = if X c(p)

0 <

where

_ 1 1

(4-3) c(p) — 2 (#0 + #1) + ”1 - #0 log [1%]

The Bayes risk R(p) is given by

(4-4) R(p) = (H) ¢(C(p) - #1) + pll - “C(10) - #0)]-

We shall call the Bayes rule versus the uniform prior on 9 the simple rule

(SR). Then (4.2) and (4.3) gives the simple rule as

(4.5) decide 0: (I) if X 2 ago + 141)

<

and (4.4) become

(44) R(-5) = «as, + 41)) .

60
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Table 1 below gives the Bayes risk and the theoretical value of the

PCC when classification is performed with the SR, in the special case when

”0 = “”1 = “I‘-

Table l. Bayes risk and PCC for the SR

‘5 Bug risk PCC
 

.25 .4013 59.87

.50 .3085 69.15

.75 .2266 77.34

1.00 .1587 84.13

1.50 .0668 93.32

1.75 .0401 95.99

2.00 .0228 97.92

The PCC of the SR is a reasonable measure against which to

compare the performance of other classification rules. In our simulation

studies we have taken 11 = 1 so that, if a decision rule is to be of any

practical use, then its PCC has to be at least 84.13. The simulation

programs were written by Mr. G. Heidari under the supervision of the

author. The programs are in Turbo Pascal, Version 87. Standard normal

deviates were generated in pairs (2], z2). Using the inverse probability

transform for the Raleigh distribution and a uniform (0, 1) random variable,

a radius R was generated. Using the uniform (0, 21), an angle (4 was

generated and (zl, 22) determined by 21 = R cos 1.) , 22 = R sin 11).
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4.2 Simulations on the Transect

In our simulation studies the .0 sequence was generated as a Markov

chain with the parameters (p, 6) specified by (2.1) and (2.2). A total of

of 84 different combinations of (p, 6') were considered, with

p = 0, .01, .10, .20, .30, .40, .50

6 = 0, .10, .20, .30, .40, .50, .60, .70, .80, .90, .99, 1.00 .

The observable Xk(k = 1,2,..... ,n+1) were generated as

Xk = Zk + 20k-l

where Z1‘ is i.i.d standard normal. For each (p, b), 100 replications were

performed with n = 50 and n = 200. The simulated data were classified

by the following 5 decision rules.

1. EMAP: Empirical MAP rule (2.8)

2. ER2: r2 Bayes rule

3. ER3: I‘2 Bayes rule

4. HEB3: Empirical Bayes rule of Hill et al. (1.7) with j = 1.

5. HEB5: Empirical Bayes rule of H111 et al. (1.7) which j = 2.

Tables 2 - 11 display the mean and the standard error of the PCC for the 5

decision rules. (All tables appear at the end of this Chapter.) The ER3 and

HEB3 when used for classifying 0i are (Xi—l’xi’xi+1) measurable. Table

12 compares the performance of ER3 versus HEB3.
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4.3 Classification of Images

Due to the complexity of the simulation of the true image as a MRF

only special types of patterns and MRF were considered. The patterns

considered were

1. checkerboard size 25 x 25

2. road sign size 25 x 25

3. great lakes size 31 x 44.

In the case of MRF simulations, the Markovian dependence of 0ij was

restricted to only one side. In particular, we assume

(4.7) P(0ij|rest) = P(0..0|ij—l’ai—lj)'

MRF of type (4.7) with additional simplifying approximations were considered

by Hansen and Elliott (1982), Haslett (1985). In our simulations the MRF

was generated as (4.7) by specifying values for the 4 parameters

p1 = Puij = ”Mg—1 = 0’ ‘i-1,j = 0)

p2 = PM)“ = "I‘m—1 = 0’ ‘r—1,j = 1)

p3 = P(0ij = 0|0.,J._1 = 1, oi—l,j = 0)

p4 = Puij = ”lag—1 = 1’ ‘1-1,j = 1)

The MRF simulated were of size 31 by 44. In each of the images the lattice

was extended to size 27 by 27 or 33 by 46 is an obvious way, in order to

provide the border pixels with enough neighbors. The conventions used in

obtaining the image was to color the pixel black if 0 = l and white if

0 = 0. As in the transect case, for each pixel (i, j) the observable Xij

were generated as

where Zij is i.i.d. standard normal.
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The image segmentation was performed by the following 4 decision rules

1. ER4: Extended rule (3.16) with 4 neighbors

2 SR: Simple rule (4.5)

3. MEB4: MEB rule (3.7) with 4 neighbors

4 MEBS: MEB rule (3.7) with 8 neighbors

After obtaining the image by using ER4 three revisions (lRER, 2RER,

3RER) of the extended rule (3.16) were implemented. The method of

revision is as follows. At the kth (k 2 1) revision, the data were classified

using ER4 with the empirics (3151(f5) estimated from the (k—l)St revision

(0th revision is the classification obtained by using ER4)

For each image 25 simulations were performed. Morris et al. (1985)

reports their findings based on one simulation except for one image where 10

repetitions were done. Tables 13—18 give the PCC for the decision rule used

on the 6 images. For each image we have reconstructed (Figures 3—14) the

best and the worst (based on the PCC of ER4) classification. Figure 15

shows a reconstruction of the great lakes pattern along with the PCC and

the ACC at each stage.
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4.4 Conclusion

The simulations performed with regard to the transect case show that

overall the 1‘3 Bayes rule performs better than the existing empirical Bayes

methods proposed by Hill et al. (1984).

The simulations performed with various images, both deterministic and

stochastic, show that again the extended rules perform better than the

empirical Bayes rules suggested by Morris et al. (1985), Morris (1986).

In a total of 150 simulations with various images, MEB4 had a higher

PCC than ER4 only once. Furthermore in 142 simulations the ER4 had a

higher PCC than even MEB8. All of the revised extended rule classifications

had a higher PCC than both MEB4 and MEB8. For some images, great

lakes pattern and MRF with (p1, p2, p3, p4) = (.80, .40, .50, .60), the

simple rule performed better than both the MEB4 and MEB8 rules in all 50

simulations, whereas for ER4 only 3 simulations had a lower PCC than the

simple rule. Even in those 3 instances the revisions took care of that. The

revisions of the extended rules had a small improvement on the PCC and no

more than 3 revisions were needed to produce stability.

The work of Geman and Geman (1984) falls within the empirical Bayes

structure in that the hyperparameters are estimated from the marginal

distribution of the data. It will be of interest to compare the performance of

the extended rules with the method of simulated annealing proposed by

Geman and Geman (1984).
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Table 6. The PCC for the HEB5 rule with n = 50

p= .00 01 10 .20 .30 .40 .50

6:.00 90.90 84.44 78.66 79.84 82.48 97.46

1.89 2.47 1.74 1.13 .65 .31

.10 89.80 86.64 82.04 78.46 81.28 91.44

2.06 2.35 1.57 .90 .55 .43

.20 89.66 85.56 83.14 82.78 81.60 86.40

1.89 2.26 1.55 .92 .62 .55

.30 82.58 85.76 84.36 81.96 81.22 83.28

2.65 2.35 1.42 .81 .65 .54

.40 86.38 87.24 84.62 83.84 82.86 81.22

2.33 2.12 1.32 .90 .53 .57

.50 88.92 92.80 86.78 86.02 83.58 80.92

2.16 1.39 1.40 .81 .62 .58

.60 90.90 88.08 86.20 86.96 85.04 80.16

1.89 2.20 1.87 .87 .74 .64

.70 87.18 86.88 85.82 87.38 85.40 83.44

2.36 2.26 2.10 .98 .84 .58

.80 90.90 88.18 89.40 91.60 88.26 85.82

1.89 2.27 1.69 .91 .79 .59

.90 87.18 86.98 87.10 89.50 90.72 90.72

2.36 2.30 2.29 1.90 1.10 .64

.99 89.18 90.62 89.60 89.08 89.54 89.90

2.12 1.97 2.27 2.09 2.01 1.89

1.00 87.52 88.76 86.84 90.04 90.16 86.42

2.36 2.27 2.31 2.02 1.94 2.48
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The PCC for the ER2 rule with n
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86.96 84.20

.56 .53

87.52 85.82

.57 .59

88.74 87.12

.56 .58

92.28 90.20

.56 .60

96.62 97.62

.44 .32

98.28 98.22

.25 .25

50

93.52

.46

89.80

86.08

.58

83.88

.52

82.94

82.04

82.46

84.74

86.50

.57

90.22

.49

96.56

.41

98.22

.27
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Table 11. The PCC for the ER3 rule with n = 200

p= .00 .01 .10 .20 .30 .40 .50

6: .00 99.16 98.35 92.10 89.19 88.71 90.14 95.05

.10 .12 .20 .23 .26 .24 .20

.10 99.23 98.16 92.13 88.72 86.45 87.33 90.99

.11 .15 .19 .23 .23 .23 .25

.20 99.08 98.42 92.09 88.08 85.48 84.96 87.52

.11 .14 .17 .22 .26 .28 .24

.30 99.26 98.55 92.45 88.20 85.82 83.30 85.00

.10 .12 .21 .22 .24 .25 .26

.40 99.26 98.21 92.87 88.72 85.29 84.06 84.52

.09 .14 .20 .27 .30 .27 .24

.50 99.28 98.72 93.52 89.15 86.19 84.14 83.65

.11 .12 .18 .25 .26 .23 .22

.60 99.10 98.25 94.23 90.43 87.99 85.58 84.11

.10 .13 .21 .22 .26 .22 .26

.70 99.27 98.45 94.73 91.71 89.19 87.04 85.30

.09 .12 .23 .27 .25 .27 .26

.80 99.12 98.74 95.68 92.49 90.85 89.02 88.52

.10 .15 .20 .24 .23 .31 .26

.90 99.11 98.66 96.60 94.46 93.10 91.80 91.22

.07 .17 .21 .22 .20 .21 .24

.99 99.10 98.98 98.40 97.23 96.95 96.30 95.99

.10 .13 .19 .26 .27 .30 .24

1.00 99.26 99.21 99.16 99.12 99.14 99.16 99.23

.09 .09 .11 .10 .12 .10 .10
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Table 12. The performance of the ER2 rule versus the HEB3 rule

A. n=50

p=.00 01 10 20 .30 40 50

6:.00 4.64 7.86 5.96 4.40 2.94 0.74 -1.50

.10 3.70 5.48 5.34 3.82 2 18 0.92 -1.32

.20 6.22 5.08 3.76 2.54 1 14 1.16 -0.90

.30 9.10 5.64 2.62 2.18 l 30 0.42 -0.32

.40 5.78 7.70 2.74 2.36 0.58 0.28 0.44

.50 6.72 4.28 4.14 1.00 0.80 0.68 0.34

.60 4.64 5.50 4.08 0.68 0.84 0.88 0.90

.70 8.90 9.38 4.58 0.48 0.70 0.28 0.48

.80 4.64 5.52 3.14 0.50 -0.10 -0.96 0.16

.90 8.90 9.88 5.32 3.86 0.60 -0.54 —0.90

.99 5.68 4.12 5.26 5.38 4.62 4.10 3.78

1.00 6.72 5.70 5.86 4.54 4.10 5.04 7.48

76/84 90% ER3 better: mean = 3.74 std. dev. = 2.62

8/84 10% HEB3 better: mean = .82 std. dev. = .48

B. n=200

p= 00 01 10 .20 30 40 50

6:.00 4.68 4.31 3.29 2.74 3.18 1.97 -0.80

.10 4.92 4.97 1.38 1.14 1.82 1.06 -0.33

.20 5.69 7.78 1.19 0.44 0.75 0.69 0.29

.30 6.62 4.07 0.70 0.30 0.25 0.53 0.26

.40 5.17 3.37 0.28 0.40 0.21 0.24 0.52

.50 2.83 2.34 0.42 0.03 0.57 0.50 0.35

.60 4.30 7.18 0.02 0.04 0.46 0.69 0.51

.70 5.13 2.45 -0.16 -0.04 0.30 0.73 0.49

.80 5.88 1.74 1.22 -0.25 —0.11 0.30 0.70

.90 5.48 2.28 0.67 -0.29 —0.58 -0.45 0.05

.99 8.65 2.75 3.28 1.67 2.82 0.09 0.67

1.00 7.18 2.25 4.47 4.11 6.27 2.26 2.80

75/84E89%; ER3 better: mean = 2.30 std. dev. = 2.25

9/84 11% HEB3 better: mean = 0.33 std. dev. = 0.24



lRER

94.868

94.575

95.528

95.015

96.554

95.381

95.601

95.528

96.554

95.968

94.648

95.968

95.528

95.748

95.894

95.528

95.674

94.795

94.721

95.601

95.088

95.821

95.821

95.674

94.868

95.478

.542

2RER

94.795

94.721

95.528

94.868

96.481

95.455

95.601

95.528

96.408

95.894

94.648

95.821

95.455

95.601

96.114

95.528

95.674

94.941

94.941

95.601

95.235

95.748

95.601

95.674

94.795

95.466

.499

77

3RER

94.795

95.015

95.455

94.868

96.481

95.381

95.601

95.528

96.188

95.894

94.648

95.821

95.455

95.601

96.041

95.601

95.674

94.941

94.941

95.601

95.161

95.748

95.601

95.601

94.868

95.460

.462

SR

83.871

83.798

84.824

83.871

84.897

83.871

83.284

84.091

85.557

85.191

85.264

85.557

85.337

84.971

85.484

84.091

83.798

83.138

84.531

83.358

84.091

84.824

84.604

82.845

84.091

84.370

.800

MEB4

71.408

70.894

69.941

71.408

71.188

70.528

72.067

70.894

71.774

70.455

71.188

70.894

72.727

71.848

71.334

70.528

71.041

69.795

70.455

70.528

70.088

70.015

71.334

69.868

71.848

70.962

.756

Table 13. The PCC with the GREAT LAKES pattern

MEBS

73.680

73.837

73.900

73.680

74.194

72.947

73.607

73.314

73.754

72.874

72.874

73.021

74.633

73.387

74.707

73.754

73.240

72.581

72.727

72.287

72.141

73.974

72.067

72.067

74.633

73.337

.784



ER4

90.560

91.360

93.600

89.440

90.720

92.480

90..720

93.120

91.520

89.600

91.360

92.960

92.000

92.480

91.360

88.480

92. 160

93.280

92.320

92.960

92.000

93.440

mean 91.706

s.d. 1.467

lRER

91.360

92.480

93.440

89.280

92. 160

94.080

91.360

93.120

92.320

89.760

89.760

91.520

91.840

92.800

93.760

92.320

90.400

92.000

93.440

93.280

93.920

93.600

92.640

93.920

92.186

1.441

78

SR

82.720

83.520

85.760

83.200

84.000

85.440

83.840

84.480

83.040

82.560

84.480

84.800

84.160

83.520

84.800

85.440

83.840

85.920

86.240

84.960

87.040

84.800

85.280

85.280

84.531

1.128

Table 14. The PCC with the CHECKERBOARD

MEB4

88.000

89.120

92.320

87.680

89.600

90.400

90.880

89.280

90.720

88.000

87.840

88.960

89. 120

91.040

89.440

91.840

89.760

87.520

90.080

90.080

89.760

91.840

90.720

90.040

90.880

89.731

1.412

pattern

MEB8

89.280

90.240

93.440

89.600

90.880

92.320

90.880

92.160

89.440

89.600

89.920

91.840

90.240

92.800

88.800

90.560

91.680

91.200

94.240

91.840

91.520

92.000

90.867

1.533

 



Table 15. The

79

PCC with the

2RER

95.520

97.280

93.600

96.160

95.360

96.960

95.200

94.720

94.080

95.040

95.840

95.680

94.560

95.360

95.520

96.640

96.640

96.640

95.200

95.040

95.840

95.578

.912

3RER

95.680

97.600

95.360

93.440

96.160

95.520

96.640

95.200

94.720

94.080

95.040

96.000

95.520

94.880

94.560

95.680

95.520

96.640

96.640

96.320

96.000

95.200

95.200

96.640

95.840

95.603

.908

SR

83.360

87.680

85.760

83.200

84.000

83.040

86.560

85.120

83.520

84.640

82.720

83.520

86.720

82.400

83.840

83.840

86.400

86.880

85.280

85.920

84.640

85.280

84.000

88.000

86.560

84.915

1.607

ROAD SIGN pattern

MEBS

91.360

95.200

93.440

90.880

90.560

90.560

94.080

92.320

92.800

92.320

90.720

89.280

93.440

90.720

92.160

91.040

93.760

92.320

92.640

91.360

92.000

92.000

91.360

93.760

92.000

92.083

1.359



Table 16. The PCC with the (.90,.50,.50,.10) MRF

ER4

89.223

88.416

89.003

88.196

2RER

89.809

88.563

89.003

88.710

87.977

88.636

87.683

88.416

88.050

89.809

87.683

89.516

89.150

88.270

87.977

90.396

88.343

87.830

88.563

88.710

88.343

90.029

88.856

88.710

90.469

88.780

.814

80

3RER

89.736

88.416

88.930

88.710

88.123

88.563

87.683

88.636

88.123

89.809

87.683

89.443

89.223

88.343

87.977

90.396

88.343

87.903

88.636

88.490

88.416

90.029

88.930

88.563

90.323

88.777

.784

SR

85.191

84.164

83.431

84.897

84.018

83.871

83.358

83.871

83.651

84.677

84.897

84.384

84.677

83.871

83.211

85.924

83.871

82.258

84.897

83.504

83.504

84.018

84.384

85.777

85.337

84.226

.854

MEB4

87.537

86.804

86.510

86.364

86.510

86.657

86.070

87.648

85.777

86.657

86.804

87.170

86.510

86.144

84.971

88.270

85.411

85.264

87.243

86.217

86.437

87.023

87.243

88.636

87.390

86.691

.867

pattern

MEBS

88.270

87.170

86.950

86.657

87.023

87.023

85.997

87.454

85.777

87. 170

87.097

87.610

88.050

86.437

86.364

88.416

85.997

85.264

87.317

86.217

86.730

87.463

87.097

87.830

88.343

87.029

.822
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Table 17. The PCC with the (.01,.10,.01,.90) MRF pattern

ER4

91.569

91.569

92.229

93.035

92.595

92.889

92.815

93.768

92.962

92.595

92.595

92.082

92.815

93.475

91.642

93.109

93. 109

93.475

93.328

93.182

93.035

93.842

92.082

92.522

92.669

mean 92.760

ad .633

lRER

91.496

93.182

93.035

93.182

93.548

93.548

92.522

93.475

93.182

92.375

92.962

92.522

94.135

93.475

92.155

93.109

92.595

94.282

93.255

92.889

93.548

94.282

92.449

92.742

93.328

93.091

.658

2RER

91.569

92.669

93.182

93.035

93.622

93.622

92.522

93.548

93.475

92.302

92.962

92.669

93.915

93.109

92.009

93.328

92.742

94.355

93.402

92.522

93.402

94.355

92.742

92.669

93.255

93.079

.666

3RER

91.642

92.962

93.182

93.109

93.622

93.402

92.595

93.255

93.402

92.155

92.962

92.595

94.062

93.255

92.009

93. 182

92.669

94.501

93.548

92.522

93.402

94.208

92.669

92.742

93.109

93.070

.661

SR

82.771

83.871

82.258

82.918

83.871

84.091

83.211

84.897

84.457

84.238

84.824

82.331

85.191

83.724

83.138

83.798

82.478

84.897

84. 164

83.798

82.258

85.997

82.918

84.091

82.771

83.718

1.002

MEB8

90.616



Table 18.

ER4

85.924

82.771

86.217

84.091

85.191

84.824

84.457

86.730

85. 117

84.531

86.290

85.411

85.557

84.311

83.358

85. 191

84.531

85.630

85.264

85.337

83.724

84.971

86.510

85.484

84.164

mean 85.023

ad .972

2RER

85.117

83.578

86.217

84.018

85.630

84.824

84.604

86.730

84.897

86.437

85.924

85.117

85.924

84.677

82.478

86.290

84.677

85.850

85.850

84.824

83.431

85.191

86.510

85.777

84.164

85.149

1.063

82

3RER

84.897

83.798

86. 144

83.944

85.630

85.044

84.531

86.730

84.824

86.657

85.777

84.824

86.070

85.117

82.405

86.364

84.751

85.850

85.704

84.677

83.504

85.337

86.584

85.850

84.311

85.173

1.067

SR

84.311

81.965

84.897

84.018

85.044

83.431

85.557

85.484

84.164

85.191

84.897

84.018

85.557

84.677

82.551

83.724

84.897

83.724

83.944

82.918

84.384

85.557

84.311

83.724

84.302

.942

MEB4

83.724

81.158

83.724

82.625

83.284

82.185

83.358

84.604

82.625

83.578

84.384

83.798

84.238

83.358

81.745

83.211

82.478

83.651

83.065

81.745

82.038

83.431

84.164

83.504

82.991

83.147

.885

The PCC with the (.80,.40,.50,.60) MRF pattern

MEBS

83.944

81.085

83.358

82.771

83.184

82.331

83.358

84.897

82.771

83.504

84.238

84.018

84.238

83.211

81.672

83.358

82.405

83.724

83.138

81.745

81.891

83.211

84.238

83.138

83.211

83.144

.915
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In Figures 3 — 15 the images are arranged as shown below.

  

      

  

      

  

TRUE IMAGE ER 4

SR 1 RER

MEB 4 2 RER

      

  

MEB 8 3 RER
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Original Picturu

Tho Great Likll 31 by 44

  
Rulol:

Rovision I l on Rul¢41

  

 

Rov1|1an u 2 an Ru1I41

 

Rov151on I 3 on Rule41

 

Figure 3. GREAT LAKES: The best classification
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urxganA chturo

Tho Grunt Lakcn 31 by 44

 
Figure 4. GREAT LAKES: The worst ciassification
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Original Pictur.

Chockor Board :5 by 25 Rulabx

R 1 l

u . z Rovisxon h 1 on Rule4:

. JI 1Jh| Iili

Ru1a21 Rovxslon I 2 on Rulubn

 

Ru1a31 Rovtsxan u 3 an RUII4|

Figure 5. CHECKERBOARD: The best classification
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Original Pictur-

Chcckor Board 23 by 25

  

Ruins:

 

Figure 6. CHECKERBOARD:

Rulo4l

H
E
P

Rlvxsxon h i on Ru1041

Rovusxon 0 2 on Rulo‘r

Rovxsron fl 3 on Rul¢41

The worst classification
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Orthnal Picture

Road Sign 23 by 23 Ruto41

 

newtszon O 1 on Rulo41

 

Rov1aton a 2 :n Ru1¢41

  
Ruler Raylston fl 7 on Rulc41

  
Figure 7. ROAD SIGN: The best classification



Figure 8.
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Original Picture

Road Sign 25 by 25

 

Rulots

 

RuleZ:

 

Rule}:

      
0..

I

ROAD SIGN:

Rull4t

 

Rcvssxon I 1 on Ru1e4:

 

Rovxsxon I 2 on Ruie4:

    

an

Rov1sion u I on Ruled:

  

    

9:

  

The worst classification
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Rulo4:91.92.93.94l 0.90 0.50 0.50 0.10

Orthnal Picture

 

Povns1on I 1 on Rulc4rRu1l1:

n u 2 an EulndrRovnsxu

 

Rovxsxon u 3 on Rull4l

 

 
The best classificationMRF (.90,.50,.50,.10):Figure 9.



Oriqxnal Picturo

91.92.93.941 0.90 0.50 0.50 0.10 Rut-4'

 

RIVlsxon n l on Ruled:

h

Rovtstan n 2 )n Pule41

  
Figure 10. MRF (.90,.50,.50,.10): The worst classification
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°"‘°‘““ “flu" (DI-0.01 92-u.1o 9380.01 94.0.90)

I I III-'- ::%I 'II I

'7 v. ‘5 '3’!“-

 
Figure 11. MRF (.01,.10,.01,.90): The best classification
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O'AQInIl'Ptcturo (pl-0.01 92-o.1o 93-0.01 94-0.901

    
..I'IW'II- IIII. l'l:1:ll‘:O I

LI.II:I.II...I'. L'-

II n.._M I-

 

   

  

 

    
   

’1 A - ll

._~5‘.,1-¢'

.'' .0,0":- 1::..I II. a

'”nix-5:628:45:

 

     

    

 

    

     

       L I III. II. I'O'I I'I I... .

lfiqfilfld'],-. l .1 L;':

 
Figure 12. MRF (.01,.10,.01,.90): The worst classification
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Figure 13. MRF (.80,.40,.50,.60): The best classification
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Figure 14. MRF (.80,.40,.50,.60): The worst classification
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Orthnal Picturox Rcvxsxon . 1 on tho Rolult of Ruln4 1

 

PCC =96.04Z

PCCO '83.41Z

PCCI =°8.35'

ACA 390.88%

Rov1s1un G 3 on the Result of ”ulna 1

 

PCC =°e.192

. - .. Pcco =34.a:x

2250:”;ASSQ PCCl =va.:7z
a ow '1: II- 0

etc: =a:.::x “c“ ‘°““3‘

ACA aes.esx

 

Rclult of Rulodr -

RIVIIIOh I 9 on thl Rnlult o6 Rulo‘ 1

  
PCC I95.16%

PCC I96.ll%
PCCO '80.57Z

PCCO n93.312
PCC! I97.83Z

PCCI I9B.O9X
RCA .99.202

ACA .91.7OZ

Figure 15. GREAT LAKES CLASSIFICATION BY SR and ER4
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APPENDIX

DYNAMIC PROGRAMMING RECURSION

Suppose

(A.1) ADM”): 131 aiifl + Embi0i_191

where 11%: (01,02... .011), oi e {0, 1}.

Let A?=0,A%=al.

For 1 S i 5 n—l, let

0 1
Ai+1 = max (A9,AAi)

1 _ 0 1

Ai+l — max (Ai + ai+1’ Ai + ai+1 + bi+l)

Then,

max ADM”): max (A0, A1).

2"

Proof:

The underlying similarity of all dynamic programming processes is the

creation of a set of functional equations of a particular type, called recurrence

relations.

(A.1) can be written as

(A.2) Ana“) = An_l(£“—l) + an0n + bn0n_1011

From (A.2)

max ADMD) = max max1An_1(Qn1 ), max1An_l(£111))+ all + ”11011-1

e“ 1‘“ 2“

_ l
— max (An’ An)

97
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where

0 —1)
An = maxAn_l()f1

011-1

1
An=maxAn__ll(£n)+an +bnn_0

011-1

Using (A.2) again, we get

 

0 _An—max mix-VAD2LQD2),max2_An2(,Qn2)+an———1+bn10n2

0 in

= max (A0 A )
n-1’ n—1

and

1
An = max max An_2m“)+an, max2An_‘W‘)+an__l+bn1011-2+an+bn

 

on—2 0n—2

 

_ 0 1
—max(An_l+ a,A1+a +b)

Proceeding as above, we obtain for 1 5 i 5 n—1

0 0 1
Ai+1 = "1&va A1)

A1 =max(A0+a
i+1 i+1’ Ai + aLi+1+ bi+1)

Letting A? = 0 and A% = a1,

we get

max ADM“) = max (A2, A111). 1::

on

Note that,

A? = .max Aim‘) and A} ‘max Aid).

[2 ; 0i=0} {2‘ ; 01:1}
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