_l—‘—‘ 91063 650 ak «Iflll1»llllllllw _ LIBRARY Michigan State University This is to certify that the dissertation entitled Geochemical Gradients in the Topopah Spring Member of the Paintbrush Tuff: Evidence for Eruption Across a Magmatic Interface presented by Benjamin Charles Schuraytz has been accepted towards fulfillment of the requirements for Doctoral degree in Geology 9%”: m; / a/a/g? / MS U is an Affirmative Action/Equal Opportunity Institution 0- 12771 MSU ’ RETURNING MATERIALS: Place in book drop to LJBRARJES remove this checkout from w your record. FINES will 7 be charged if book is returned after the date stamped below. GEOCHEMICAL GRADIENTS IN THE TOPOPAH SPRING MEMBER OF THE PAINTBRUSH TUFF: EVIDENCE FOR ERUP‘I‘ION ACROSS A MAGMATIC INTERFACE BY Benjamin Charles Schuraytz A DIS S ERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Geological Sciences 1988 ABSTRACT GEOCHEMICAL GRADIENTS IN THE TOPOPAH SPRING MEMBER OF THE PAINTBRUSH TUFF: EVIDENCE FOR ERUPTION ACROSS A MAGMATIC INTERFACE BY Benjamin Charles Schuraytz The Tqmpah Spring Member of the Paintbrush Tuff, southern Nevada, is a classic example of a compositionale zoned ash-flow sheet that is inferred to have resulted from eruption of a compositionally zoned magma body. Geochemical and petrographic analyses of whole-rock tuff samples indicate that the base of the ash-flow sheet and the dominant volume of erupted material is composed of crystal-poor high-silica rhyolite, with a gradational transition into overlying crystal—rich quartz latite. These compositional variations are consistent with a model of progressive eruption of a stratified magma body in which relatively cooler, crystal-poor high-silica rhyolitic magma overlay hotter, crystal-rich quartz latitic magma. Major and trace element chemical analyses of glassy pumice samples and microprobe analyses of coexisting silicate and oxide phenocrysts from within the pumice samples provide closer approximations to the chemical and thermal gradients within the inferred magma body. The magmatic gradients inferred from these data indicate that the transition from high-silica rhyolitic to quartz latitic magma within the chamber was abrupt, rather than gradational, with a distinct liquid-liquid interface separating the contrasting magmas. Benjamin C. Schuraytz Compositicnally and texturally distinct pumice types are present throughout the ash-flow sheet. The degree of heterogeneity within and among the pumice samples increases with increasing stratigraphic height, and becomes most pronounced in the uppermost quartz latite, where the diemical variability among the pumice samples is as great as that of the entire ash-flow sheet. The observed heterogeneities among the pumice samples of the Topopah Spring Member are consistent with predictions of fluid dynamic models in which the velocity field developed near the entrance region of the vents results in simultaneous withdrawal of magma from a progressively greater lateral and vertical extent within the chamber, thereby forming a pyroclastic deposit that becomes increasingly heterogeneous with increasing stratigraphic height. The abrupt transition to chemically variable pumice types, dominated by those of quartz latitic composition, implies that the interface between the magma layers remained relatively stable until drawdown breached the interface and preferentially erupted higher temperature, more mafic magma along with subordinate amounts of the incompletely exhausted high-silica rhyolitic magma. ACKNOWLEDGMENTS I thank my supervisor, Thomas Vogel, who is largely responsible for initiating my interest in igneous processes and my commitment to geologic research, and to whom I owe a debt of gratitude for his continued encouragement and support as a teacher, a colleague, and a friend. Special thanks are extended to Kazuya Fujita who spared no effort in his guidance and support, and whose enthusiasm for science and teaching, even in the wee hours of the morning, will always be remembered and appreciated. I am especially grateful to my committee members, Thomas Vogel, Kazuya Fujita, John Wilband, and David Long, for their helpful reviews and criticisms of this manuscript. I also wish to thank William Cambray for his support through the Department of Geological Sciences at Michigan State University and for sharing his keen field observations during my undergraduate years. Financial support for this research was provided by the Nevada Nuclear Waste Storage Investigation Project and the Nuclear Test Containment Program at Lawrence Livermore National Laboratory. This was made possible through the efforts and interest of Leland Y ounker, to whom I am particularly grateful for his insightful discussions throughout this research project. I also wish to acknowledge the following LLNL personnel: Frederick Ryerson and Kevin Knauss for assistance with the electron microprobe analyses, Robert Heft for providing INAA, and Jan Brown for assistance with sample preparation. ii I am especially grateful to Frank Byers, Jr. for convincing me to focus my dissertation research on the Topopah Spring Tuff, and for sharing his vast experience during several excursions to the southwestern Nevada volcanic field during my tenure as research assistantatlosAlamosNatimalIaboratory. Ialsowishtothank LANL scientists David Broxton and Richard Warren, and Robert Scott of the U.S.G.S. for many stimulating and helpful discussions in the field, and Wayne Morris of LANL for financial support during the summer of 1985. Many people were extremely helpful to me during my studies at Michigan State: I am indebted to John Wilband and Bill Monaghan for their expert assistance with computer software; I thank Loretta Knutson, Cathy Caswell, and Mona Kindell for their skill in cutting through red tape, and Diane Baclawski for assistance in the library. I benefited greatly from discussions with my fellow petrologists, Tim Flood, Jim Mills, Tim Rose, Carolyn Rutland, and in particular, Steve Mattson, to whom I owe many thanks. I also benefited from interactions with my fellow students and friends over the years, in particular, Susan Bullen, Bud Moyer, Jim Newberry, Dave Cook, Cindy McMullen, and Soo-Meen Wee. I extend my deepest appreciation to my dear friend Frederick Kaplan. I am grateful to Dan and Sue Steinberg for their warm hospitality during my visits to Livermore, and to Debra Steinberg for her inspiration at critical moments. Most of all I thank my parents, Irving and Aline Schuraytz, and my family, for their unfailing encouragement and support, and for instilling in me the importance of a good education. iii worm LISTOFm.................................... ................ v IISI'OF Hm... ..... .............. ............................ vi mm................................... ..... .. ............ 1 GENERALGEDIQSICREIATIQB... ..................................... 6 m.................................. ........... . ............ 12 Sanple Selectimlz AnalyticalProcedure ........................................ 15 RESUL'IS........... .......... . .................................... 30 MajorElement Chemistry... ..... . ............................ 30 Coexisting Iron-Titanium Oxides and EStimated Tapereb1res..43 SilicatePhenocrystandGlassChemistry ..................... 53 81mm....... ....... O. ...... O. OOOOOOOOOOOOOOOOOOOOOOOO 54 WCOOOOOOOOOOOO0.00.00.00.00 OOOOOOOOOOOOOOOOOOOOO 65 MIMOOOOCOOOOOCOOOOOOOOO .............. ... ........ 69 Feldspar ...... . ......... 71 m......................... OOOOOOOOOOOOOOOOOOOOOOOOO 78 OtterMineralVariatims....... ........................ 82 DISGJSSICN ....................................................... 83 Originoftbenmiceneterogeneity........ .................. 83 Evidenceforaliquid-liquid Interface....... ........... ....89 MUSIQISHHU ..... . ......... ...... ........................... 92 APPENDIX: MicroprobeAnalyses ofmenocrysts .................... 93 REFERENCESCI’I'ED" .................. .... ........................ 141 iv Table Table Table Table Table Table Table Table Table 8. usrorm Precisicn and Accuracy of Chenical Analyses... ......... 17 Chanical Analyses of Imole Rmices arriilnle-rock‘l‘uffs ........ 18 Micrqarobe Analyses of Ilmenite and Magnetite .......... 93 MicrqarobeAnalyses of Biotite.......... ............. .106 MicroprobeAnalyses of Pyrcnnerxe.......... ............. 119 Microprtbe Analyses of Hornblende... .................. 126 Microprobe Analyses of Plagioclase... ............... ..127 Microprobe Analyses of Sanidineu ................... ..132 Microprobe Analyses of Glass. . ....... . ................ 138 LISTOF FIGURES Figure 1. Distribution and thickness of the Topopah Spring Manner of thePaintbrush'quf (Iimnetal., 1966). Locations of measmed sectiors and dismically analyzed samples indicated bytwoletterID’sasfollows:BB=BustedButte:CP=311Wash: IW=IathropWells:GU=USW-GU3drill hole ......... 8 Figure 2. Measured sections of the Topopah Spring Mather, showing variatiors in depositional mits, welding zcmee, and crystallization zones (Linen et al., 1966). Nunbers on the rightofeadisectioncorresmondtothesanplemmberof dynamically analyzed specimens in Table 2 .............................. 9 Figure 3 . Variation of major elenent oxides with stratigraphic height. Analytical data fran Table 2 . Solid symbols 2 whole panics: open synbols == whole-rock tuff. (A) Busted Butte: (B) 311 Wash: (C) Iathrop Wells; (13) USW-GUB......... ................ 31 Figure 4. Variatim of najor elanent oxides vs. silica. Units in weight percent. Solid symbols = whole pumice: open synbols = whole-rock tiff. Source of analytical data: squares from Table 2 diamonds from Lipnan et al., (1966) ...... . ........................... 34 Figure 5. Cronkite-normalized REE aburrlances (log scale) vs. atcmic nunber. Solid synbols = whole pumice: open symbols = whole-rock tuff. (A) All samples; (B) quartz latite (low-silica rhyolite); (C) high-silica rhyolite ........ 37 Figure 6. (‘hondrite-nornelized REE patterns in relation to stratigraphic position. Solid symbols = whole pumice; open synbols = whole-rock tuff. (A) Busted Butte; (B) 311 Wash: (C) Iathrop Wells; (D) usw-cm ....... ...... ...... . .......... 39 Figure 7. Trace element abundances (ppm) vs. silica (wt. 3;). Solid synbols = whole pumice; open synbols = whole-rock tuff ......... 41 Figure 8 . Inter-element variation of selected trace elements (ppn) . Solid symbols = whole pumice; open symbols = whole-rock tuff ..... . . . . . . . . . ......... . ......... . ............................... 42 vi Figure 9. Fstinated quench temperature and oxygen fugacity determined from coexisting ilmenite and magnetite memcrysts. MD, NNO, and PM: indicatetheexperimental buffer curves for MrO-Mn304, nickel- nickel oxide, and fayalite—magnetite— ,respectively, at 1 bar total pressure (Haggerty, 1976) ....... 49 Figure 10 . Estimated quench temperature of sanples in relation to stratigraphic position in the ash-flow sheet. Solid symbols = whole panics; open synbols = whole-rock tuff. (A) Iathrop Wells; (B) Busted Butte: (C) 311 Wash: (D) USW-GU3. .................. 50 Figure 11. Chanical variation with estimated quench taperature. 8102 in weight %, all other elanents in ppn. Solid synbols = whole pumice: quen synbols = whole-rock tuff ......... 51 Figure 12. Histogram of Mg# for 617 biotite phenocrysts frcm 24 pumice sanples, calculated fran microprobe analyses in Table 4 ....... 56 Figme 13. Mg# of biotite phenocrysts within pumice samples in relation to stratigraphic position in the Busted Butte section ....... 57 Figure 14 . m of biotite paeroerysts within pumice samples in relaticn to wiiole-pumice sio content, estimted giernch taperature, and stratigraphic horizon (U supper leve1;L = lower level). An asterisk following a sanple name indicates a camined sanple of texturally identical pumices (see text) ........ 58 Figure 15 . Omnositional variations of pyroxene phenocrysts within pumice sanples; data fran microprobe analyses in Table 5......66 Figure 16. m ofpyrmaenegiemcrystswithinpnnice sanplesin relatim to whole-pumice content, estimated quench tanperature, and stratigraphic10 izon (U =upper level; L = lower level). An asterisk following a sanple name indicates a carbined sanple of texturally identical pmices (see text) ........... 67 Figure 17. Histogram of M31) for 307 pyroxene phenocrysts from 14 pumice sanples , calculated frun microprobe analyses in mle 5.0.0.0.........OOOOOOOOO......OOOOOOOOO ...... .0... 000000000000 68 Figlne 18. Histogram of Mg# for 22 hornblende phenocrysts from 4 mice samples, calculated fran microprobe analyses in Table 6 ..... 70 vii Figure 19 . Zoning profiles in plagioclase phenocrysts from mice sanples. Each ternary diagram represents a single Wet. Iargeopensquares=edgeanalyses:snellasterisks E 1 Figure 20. Zoning profiles in sanidine phenocrysts frcm pumice sanples. Each ternary diagram represents a single phenocryst. Iargeopensquares=edgeanalyses: snallasterisks=center analyses ............................................................. 75 Figure 21. Cmpositional variations of microprobe edge analyses of feldspar phemnrysts within pumice sanples. Data from Tables 7&8000000000 OOOOOOOOOOOOOOOOOOOOOOO 0...... ......... O OOOOOOOOOOOOO 77 Figure 22. Histograms showing carpositicmal variations in titanium in the bubble walls of pumice sanples . Ti caticms calculated on the basis of 32 oxygens fran microprobe data in Table 9. Light colored square on baseline shows the carposition of the whole-pumice calculated on the same basis frcm the data in Table 2 ........................................................... 79 Figure 23 . Histogram showing cmpositional variations in alminum in the bubble walls of pumice sanples. Al cations calculated cm the basis of32mcygensfranmicroprobedatain Table 9. Lightcoloredsquareonbaselinestmrsthecmpositim ofthewhole—punicecalcnlatedonthesamebasisfrunthedata inTable 2...... ................. ............ . ............. 80 Figure 24. Cross-sectional cartoon of a layered magma body. Circles represent cross-sections through hyperbolic eruption isochrons (Blake, 1981) , indicating the locus of points within themgnadianberofmgmathatwillread‘lthevent simltaneously. ...................................................... 85 viii INTRO DUCTION The common occurrence of systematic compositional and mineralogical zonations within ash-flow sheets provides strong evidence that their source magma bodies were chemically and thermally zoned (for reviews see Smith, 1979: Hildreth, 1981: Mahood, 1981: Bacon et al., 1981: Crecraft et al., 1981: Baker and McBirney, 1985). Recently, interest in how zoned magmas evolve and erupt has focused on the fluid dynamic aspects of magma chambers. The results of scaled laboratory experiments using aqueous solutions have been used to suggest that the interfacial effects of compositionally and thermally contrasting fluid layers may be important in the differentiation of magmas (Huppert and Sparks, 1984: Sparks et al., 1984; Huppert et al., 1984; McBirney et al., 1985; Baker and McBirney, 1985). Theoretical studies of magma withdrawal during eruption indicate that magma from different depths within the chamber will erupt simultaneously and that ash-flow stratigraphy will not simply represent the inverse of the zonations within the magma body (Blake, 1981; Spera, 1984). The purpose of this study is to evaluate key assumptions and predictions of these fluid dynamic models using geochemical data obtained from pumice samples collected from a well known zoned ash-flow shed: -- the Topopah Spring Member of the Paintbrush Tuff. The specific questions addressed herein are: (1) To what degree does the compositional zonation in the Topopah Spring Member represent the inverse of the compositional zonation in 2 the magma body? (2) Was the zmation in the magma body characterized by continuous gradients within a single liquid or by discontinuous gradients within discrete liquid layers separated by a distinct interface. A major emphasis of this study is placed on the heterogeneities among pumice samples that have been observed within all stratigraphic horizons throughout the ash-flow sheet. With few exceptions (Lipman, 1967: Byers et al., 1968: Noble et al., 1969: Rose et al., 1979: Wright and Walker, 1977; Fridrich and Mahood, 1987), this important feature has received sparse attention in previous studies. It has long been realized that ash-flow tuffs and associated mlderas result from the explosive eruption and partial evacuation of large volumes of magma at single points in time (Williams, 1941; Smith, 1960) and that the chemical and mineralogical variability of these mffsmaybeusedtoinferpre-eniptivemagmaticcmditims. Among the first to establish this premise was the study by Lipman et al. (1966) of the Topopah Spring Member of the Paintbrush Tuff. A notable feature of this voluminous ash-flow sheet is the systematic variation in composition with stratigraphic height. The zonation from nearly aphyric high-silica rhyolite upward into phenocryst-rich quartz latite was first described by Lipman et al. (1966) and interpreted by them to reflect the compositional zonation of magma in the source chamber prior to eruption. Subsequent studies of this (Noble and Hedge, 1969: Lipman, 1971; Lipman and Friedman, 1975) and other compositionally variable ash-flow sheets have provided a considerable base of chemical, isotopic, and mineralogical data (for reviews see Hildreth, 1981; Baker and McBirney, 1985). This information has been used to estimate compositional and 3 thermal gradients inferred to be present in the magma chambers. It is these inferred gradients that are fundamental in evaluating various magmatic differentiation mechanisms thought to operate in high-level magmatic systems. The importance of precise reconstruction of the eruptive sequence (and the inferred thermo-chemical gradients) cannot be overemphasized if quantitative tests of differe'rtiation and eruptive mechanisms are to lead to meaningful conclusions. It is axiomatic that a stratigraphic sequence preserves depositional order. This fact combined with the progressive compositional variation observed in ash-flow sheets promotes the tacit assumption that "These systems are normally tapped from the top down." (Smith, 1979, p. 18). That is, the lowermost portions of the erupted sequence are derived from the upper part of the magma chamber and overlying products are derived from successively deeper levels. For example, Cox et a1. (1979) state that "It is essential, in order that the evidence be preserved, that the eruption is not accompanied by excessive mixing of magma from different parts of the chamber. That zoned magma chamber sequences exist at all implies also a lack of convection in the chamber." (Cox et al., 1979, p. 273). This is undoubtedly true with regard to large scale convection, and it should be noted that the authors of the above statement were aware of additional complexities and limitations (Cox et al., 1979, p. 275). The complexities and limitations referred to above are discussed in a detailed study of an ash-flow sheet from the Aso caldera, Japan (Lipman, 1967). Lipman demonstrated that bulk compositions of these tuffs deviate significantly from original magmatic compositions due to eruption, emplacement, and post-emplacement processes. He cited as 4 evidence both chemical and mineralogical heterogeneities within and among individual pumice samples and noted that similar complexities characterize ash-flow tuffs in southwestern Nevada and are probably wideqmead in other ash-flow fields as well. These features, and the conclusions Lipman drew from them, clearly indicate the need to understand the dynamic processes involved in ash-flow eruptions in order to properly assess the primary character of their quenched products. Recent interest in the fluid-dynamical processes involved in high-level magmatic systems has prompted research and the development of models dealing with input and replenishment of magma (Eichelberger, 1980: Huppert and Sparks, 1980: Huppert and Turner, 1981: Huppert et al., 1982b, 1984), internal magmatic differentiation processes (Chen and Turner, 1980: Huppert et al., 1982a: McBirney and Noyes, 1979: Sparks et al., 1984: Turner and Gustafson, 1981: Turner et al., 1983: McBirney et-al., 1985: Baker and McBirney, 1985), and dynamics associated with eruption and magma withdrawal (Wilson et al., 1980: Blake, 1981; Schuraytz et al., 1983; Blake and Ivey, 1986a, b; Spera, 1983, 1984; Spera et al., 1986: Wohletz et al., 1984). The applicability and refinement of these experimental and theoretical models to real systems, however, will require continual geological observation and testing with field evidence. The Topopah Spring Member of the Paintbrush Tuff is a classic example of a compositimally zoned ash-flow sheet for which the field relations are well constrained and for which substantial documentation of characteristic features is available. This study presents new major and trace element chemical analyses and microprobe phenocryst analyses, 5 primarily from samples of glassy pumice. The purpose of these analyses is to determine if there were continuous gradients or discrete, discontinuous zones in the magma body that erupted the Topopah Spring Member. A recurring theme throughout this thesis is the nearly ubiquitous occurrence of chemical heterogeneities among individual pumice samples. While this feature may be a hindrance in that it may obscure primary magmatic variations, it also provides information that cznbeusedtoevaluatedynamicprocessesassociatedwithpetrogenesis. GENERAL GEOLOGIC RELATIONS The Topopah Spring Member (Figure 1) is the lowermost formal unit of the Paintbrush Tuff, a major effusive sequence associated with the Timber Mountain-Oasis Valley caldera complex in southern Nye County, Nevada (Byers et al., 1976). This caldera complex is a major part of the southwestern Nevada volcanic field which was active during the upper Tertiary period. Eruptive activity occurred contemporaneously with extensional basin-range normal faulting (Christiansen et al.,1965: Lipman et al., 1966; Ekren et al., 1968: Christiansen et al., 1977). The Timber Mountain-Oasis Valley caldera complex is comprised of four overlapping and superposed volcanic centers (Byers et al., 1976) , recording evidence of repeated eruptive activity of a high-level magmatic system from 16 to 9 m.y. ago (Kistler, 1968: Marvin et al., 1970). The Paintbrush Tuff consists of genetically related bedded tuff and ash-flow tuff sheets that were erupted 13.2-12.5 m.y. ago from the Claim Canyon cauldron center,* the southernmost part of which is exposed in an arcuate segment along the south side of the Timber Mountain-Oasis Valley caldera complex (Byers et al., 1976). In ascending stratigraphic order, the four major units of the Paintbrush Tuff are the Topopah Spring, Pah Canyon, Yucca Mountain, and Tiva Canycn Mariners. Both the Topopah Spring and Tiva Canyon Members, which * Christiansen et al. (1977) present the alternative view that the Yucca Maintain and Tiva Canyon Members may have been erupted from an overlapping area including the Oasis Valley cauldron segment, centered slightly northwest of the Claim Canyon segment: however, the Claim Canyon segment did subside during eruption of the Tiva Canyon Member. 7 are the most voluminous ash-flow sheets, are compositionally zoned from high-silica rhyolite to quartz latite" In contrast, the Pah Canyon and Yucca Maintain Members are volumetrically smaller by several orders of magnitude and lack extensive compositional zoning. The Pah Canyon Member is lithologiczlly similar to the quartz latitic caprock of the Topopah Spring Member, and the Yucca Mountain Member consists of uniform high-silica rhyolite similar to that at the base of the overlying Tiva Canyon Member. These four ash-flow sheets and associated lavas are thought to record repeated volcanic activity of a single evolving magma chamber that was part of a larger high-level magmatic system. In this context, the Topopah Spring Member represents the tapping of this chamber during a relative "instant", early in its evolution. The Topopah Spring Member is a multiple-flow compound cooling unit that is inferred to have originally covered an area of 1,800 kmz, with an extracauldron volume of 170 km3 (Lipman et al., 1966). An unknown volume of tiff, inferred to be buried beneath the Claim Canyon cauldron, led Byers et al. (1976) to suggest that the total eruptive volume was probably greater than 250 km3. Estimate of the total eruptive volume, however, has been recently revised upward to 1,200 km3 (Scott et al., 1984: F. M. Byers, Jr., personal communication, * The compositional designation of quartz latite and the term caprock synonymously refer to the uppermost sibunit of the eruptive sequence, that is more mafic and crystal-rich than the underlying subunits, and commonly forms an erosion resistant ledge (Lipman et al., 1966: Byers et al., 1976). However, Christiansen et al. (1977) point out that this uppermost subunit contains a much lower Ca/(Na+K) ratio than typical quartz latites and plots in the rhyolite field of the classification scheme of O’Connor (1965). "6°30 1 15"00‘ m“... -' x l n -~........ , \ 1 ' a l . I "- ‘ Touche Peak A B ' _ i , '-. Mountain 0. _. 1 37015. _ “no: Pahma Men I " . . x 4 “2‘33 .. . \" ; afi‘Topopah ' Spring -, .1 ,o' "r r _.' ' r. 1 . 2. '1 11:;3‘05 ‘ :11 \ I o .1 , ......m, .- ah° g ., ‘. Ml l ‘ EXPLANATION t Location of measured section —m-—- Thieknau contains —-0 --- (Dahed where inferred. Ines-val 200 feet) — — — Limit of isopaeh information Figure 1. Distributim and thickness of the Topopah Spring Member of the Paintbrush Tuff (Lipman et al., 1966). Locations of measured sections and diemically analyzed samples indicated by two letter ID’s as follows: BB = Busted Butte; CP = 311 Wash: LW = Lathrop Wells; GU = USW-GU3 drill hole. Lathrop Well: Busted Butte USW GU3 311 Wash (1) (2) (3) Sample (1) (2) (3) Sample (1) (2) (3) Sample (1) (2) (3) Sample ‘ no 41 «.40 200 . - 54.55 , $311: "'\ ,;:;:\§v e .. II ’23!” vi 0 - - on... O oeeeeeoee .IV. V b—“ .W/{A a E LllLLlllLllllLlllLllllllllLllL noon-OI solo-o. oe-eoea lone-lo ...- 0 O ”I §§| iil Egl 150 EEI "I l :- I.|..:|§ 10° L-io I J. § L-.. 3‘. €1-41 3:" , 2 i=5; 3" —,1314 M 5535 II I 4115,11 e {18.19 d 21-2‘ § . 1. . .a. '4'19‘ O EXPLANATION m (a) (3: DMVIONAL UN"! MLDINO zones cannula-non zones emu-mu «um um- and: W m cm GE pmiamdavmeummm E23 Pmlyweldd Emma. E CI'yud-ooorrhvoim m Manama“ mem (locally W flew units) Dandy wowed ”I; Lithoohveei E Adi-mm: Figure 2. Measured sections of the Topopah Spring Member, showing variations in depositional units, welding zones, and crystallization zones (Lipman at al., 1966). Numbers on the right of each section correspmd to the sample number of chemically analyzed specimens in Table 2. 10 1985), making the Topopah Spring Member the most voluminous ash-flow sheet of the Paintbrush Tuff. Figure 1 includes the inferred distribution and thickness of the Topopah Spring Member. Field relations and characteristic lithologic and petrographic feamrs cf the Topopah Spring Member have been thoroughly described by Lipman et al.. (1966). Because the majority of samples analyzed in the present study were collected from outcrops that have been previously described, only a brief summary of the characteristic features noted by Lipman et al. (1966, p. F's-11) is presented here. The Busted Butte section (Figures 1 and 2) is representative of the Topopah Spring Member and serves to illustrate the zonal variations in composition, welding, and crystallization. At Busted Butte, the base of the ash-flow sheet directly overlies genetically related bedded ash-fall material and consists of a 3-m-thick zone of light colored nonwelded pumice and ash. Above this zcne, there is a gradational increase in the degree of welding with increasing stratigraphic height which is evident by the presence of collapsed pumice fragments and darkening of the shard matrix. This zme grades upward into a lS-m-thick densely welded vitrophyre in which the pumice fragments, occurring as black fiamme, contrast against the dark grey shard matrix. There is an abrupt transition at the top of this lower vitrophyre into overlying densely welded crystalline (devitrified) tuft. Above this transition is approximately 145 m of densely welded devitrified tuff that contains several lithophysal zones and in which two depositional contacts between flow units have been identified. The 170-m thickness of tuff described thus far constitutes approximately 90% of the total thickness of the Busted Butte section. 11 This entire thickness is composed of high-silica rhyolite (77-74% 3102) which contains a major phenocryst assemblage of alkali feldspar, plagioclase, biotite, and opaque oxides that increases uniformly upward from approximately 1 to 6%. Within the next 5 m, there is a progressive change from myolite to quartz latite along with a considerable increase in the percentage of phenocrysts. In the remaining 15 m, the total phenocryst assemblage increases to about 21% with the addition of minor amounts of clinopyroxene, quartz, and hornblende, and the whole-rock silica content decreases to approximately 69 wt%. Approximately 4 m above the transition to quartz latite, there is an abrupt change from devitrified tuff to a 3-m-thick upper vitrophyre. The upper vitrophyre grades upward into partly welded and nonwelded tuff, where the upper contact of the Topopah Spring Member is sharply overlain by ash-fall material. The thicknesses of these various subunits vary laterally throughout the ash-flow sheet and several distinct subunits that are recognized at other localities (e.g., the xenolithic subunit at Black Glass Canyon) are absent from the Busted Butte section (Lipman et al., 1966). As noted by Lipman et a1. (1966), these variations are probably due to boththeprogressivedmangeinflmecompositimoftheeruptedmagmaand the mechanical processes of eruption and emplacement. In this study, an attempt was made to evaluate the vertical and lateral compositional variations within the Topopah Spring Member by sampling sections that were widely separated and that spanned the entire range in thickness. However, for reasons discussed in the following section, chemical analyses were performed primarily on samples from the upper and lower margins of measured sections. METHODS a e 'o Because precise reconstruction of thermo-chemical gradients inferred to be present within the magma chamber is crucial to the evaluation of differentiation mechanisms, two primary considerations guided the sampling scheme in this study. First and foremost was the desire to sample individual glassy pumice fragments, based on the assumption that these samples most closely preserve the composition of the magma, with the exception that volatiles have been lost. In contrast, whole-rock tuff samples represent composite mixtures that are subject to sorting and xenolithic contamination during eruption, transportation, and deposition. Although glassy samples were preferred over samples which have undergone vapor phase crystallization and devitrification, it has been shown that even glassy samples have usually been chemically modified as a result of secondary ground water hydration and no longer strictly represent the composition of magmatic liquids (Aramaki and Lipman, 1965; Lipman, 1965; Noble, 1965: 1967). Second was the desire to obtain samples from sections where the entire eruptive sequence was preserved and close stratigraphic control could be maintained, so that the relative position of samples in the magma chamber could be more readily inferred. This consideration was based on the assumption that the compositional zonation of magma within the source diamber is preserved in inverted sequence in the ash-flow sheet. It is usually difficult to satisfy the above criteria within the same measured section. The nature of the densely welded devitrified interior of thick sections precludes obtaining glassy pumice samples 12 13 from the central portion of the eruptive sequence in sections where the entire sequence is present. Glassy pumice fragments are generally confined to the nonwelded to partly welded margins and densely welded vitrophyres. The abundance and size of the pumice fragments also vary vertically in the section (Lipman et al., 1966); however, this is partly due to the effects of welding and devitrification which often obscure the compacted pumice lenses. Although pumice fragments are readily distinguishable in vitrophyres, their compacted nature makes removal quite tedious and sometimes futile. In the theoretical, ideal case, where a given stratigraphic horizon of the ash-flow sheet corresponds to a single stratigraphic level in the magma chamber, the thermo-chemical gradients in the pre-eruptive magma may be reconstructed by randomly sampling individual pumice fragments, vertically throughout the eruptive sequence. However, in the Topopah Spring Member, it is evident that more than one type of pumice is present within a small volume of tuff at any given stratigraphic horizon. The variability among pumice types is readily distinguishable by textural characteristics, most notably those of color, phenocryst content, and vesicular structure. At the base of the ash-flow sheet, at least five distinct pumice types can be recognized 2 and several other pumice fragments with within an area of 200 cm textural characteristics intermediate to these occur within close proximity. None of the pumice fragments observed show distinct compositimal banding or display other macroscopic features indicative of commingling. With increasing stratigraphic height, fewer distinct pumice types are recognizable, as welding tends to obscure the primary textural features. However, individual pumice fragments clearly 14 display a differential response to welding that, in some cases, appears to be independent of size or orientation. At the top of the ash-flow sheet, the number of pumice types is similar to that at the base, although the nature of the textural distinctions are more clearly attributable to differences in phenocryst abundance and vesicularity, as well as color. This pumice heterogeneity has important implications that necessarily influenced the sampling strategy. On the basis of megascopic textural differences among pumice fragments, without addition of chemical and mineralogical data, it is only possible to conclude that the various pumice types have had different histories. Because these differences may or may not correspond to compositional differences (primary or secondary), discussion of hypotheses for the origin of the pumice heterogeneity is deferred‘until the chemical analyses of the individual pumice samples have been presented. In order to evaluate the heterogeneity among pumice samples, each pumice type must be considered separately. Therefore, each section was measured at vertical intervals of 1.5 m, beginning at clearly defined contacts with underlying ash-fall material. At each sampled interval, all in situ, macroscopically distinct pumice types were collected, in addition to a large block of whole-rock tuff that contained the various pumice types. For reasons previously noted, the preponderance of individual glassy pumice samples selected for analyses were collected within 3 m of the upper and lower margins of the ash-flow sheet. Several glassy fiamme and whole-rock tuff samples were also analyzed in order to achieve some degree of continuity throughout the eruptive sequence and to compare the compositions of individual pumice samples 15 with their whole-rocktuff composite mixtures. Every effort was made to perform all analyses on single pumice fragments. In some cases, this was not possible because there was insufficient mass from the small sized pumice fragments to perform ICP, INAA, and heavy mineral separation on a single pumice fragment. However, it is possible to distinguish the various pumice types by textural features such as structure of vesicles, glass color, and phenocryst content. Only pumice fragments that were texturally identical were combined. Eighteen of the 50 pumice samples represent composites of texturally identical pumice fragments and these samples are indicated in the data tables. The data base comprises samples collected from outcrops at the Busted Butte, 311 Wash, and Lathrop Wells sections, and from drill hole USW-GU3, the locations of which are shown in Figure l. The stratigraphic positions of individual samples and their relation to zones of bulk composition, crystallization, and welding are illustrated in Figure 2. Analytical grocedure Fifty whole pumice and 22 whole-rock tuff samples were analyzed in this study. After coarse crushing, the fine fraction was examined petrographically for secondary carbonate, and if calcite was observed, the samples were leached in a mixture of sodium acetate and glacial acetic acid. The samples were then pulverized by hand in an agate mortar. All samples were analyzed by instrumental neutron activation analysis (INAA) at Lawrence Livermore National Laboratory and by inductively coupled plasma emission spectroscopy (ICP) at Barringer Magenta, LTD. Results of analyses of U.S.G.S. standards BCR-l and 16 GSP-l, which were analyzed as unknowns, are reported alongside their published values in Table 1. There was sufficient material from 52 samples to concentrate phenocrysts for microprobe analysis. Heavy minerals from the -60+14O sieve size fractim were separated in bromoform and mounted in epoxy. Analyses of Fe-Ti oxide and silicate phenocrysts from selected pumice samples were collected using a JEOL 733 automated electron microp robe at Lawrence Livermore National Laboratory. Oxide and silicate standards were used for quantitative analysis with the Bence-Albee correction procedure (Bence and Albee, 1968). 17 TABIE 1. Precision and Accuracy of Chemical Analyses. U.S.G.S. standards analyzed as unknowns compared with published concentratiors (Abbey, 1978). A. Oacentrations of U.S.G.S. standard GSP-l determined by irriuctivly coupled plasna missim spectroscopy (ICP) . (Wt. %) Albey (1978) TOP % differane SiO 67.31 67.7 -0.58 A12 3 15.19 15.2 —0.07 F203 (T) 4 . 33 4 . 23 2 . 31 Ca 2.02 2.05 -1.49 MgO 0.96 1.07 -ll.46 T102 0.66 0.59 10.61 MID 0.04 0.04 0.00 Na 0 2.80 2.96 -5.71 K25 5.53 5.06 3.50 9205 0.23 0.35 —25.00 (PPR) Be 1.5 1.1 26.67 V 49 51 -4.08 Ni 9 10 -11.11 Cu 35 33 5.71 Zn 98 107 -9.18 Sr 230 247 -7.39 Ba 1300 1220 6.15 Pb 53 50 5.66 B. Oaxcentratims of U.S.G.S. starriard BCR-l determined by instrunental neutron activaticn analysis (INAA) . 23 (ppn) Abbey (1978) INAA % difference % stand. dev. SC 34 34 0.00 4.24 Cr 16 17 -6.25 6.84 CO 37 39 -5.41 4.18 Rb 47 54 -14.89 5.93 Zr 185 169 8.65 14.60 Sb 0.6 0.7 -16.67 6.78 Cs 0.95 0.98 -3.16 7.21 La 25 27 -8.00 3.54 Ce 54 54 0.00 6.59 Nd 29 27 6.90 12.85 Sn 6.6 6.4 3.03 6.77 DJ 1.9 2.0 -5.26 3.19 '11) 1.0 1.0 0.00 6.63 Yb 3.8 3.6 5.26 9.14 In 0.6 0.5 16.67 8.23 Hf 4.5 * 5.4 -20.00 5.55 Ta 0.88 0.78 11.36 6.09 'Ih 6.0 5.7 5.00 6.99 U 1.8 1.9 -4.56 22.30 1"Flanagan (1969) . qqqqmqqqqe-qqqqmqqqq 18 Table 2. menial Analyses of Whole Rmiess and Whole-rock Tuffs. Sanple No. 1 2 3 4 5 6 Field.NO. EB9-IWR BBS-lAfi BBS-13* EBQ-lC* BBS-5C? BBS-10A* 211.3 $10 70.5 75.9 69.6 70.7 69.2 76.2 A1233 13.8 12.6 15.9 15.7 15.8 12.2 2:303 1.60 1.48 2.12 1.99 2.20 0.90 4.07 0.10 0.56 0.50 1.27 0.65 1490 0.31 0.07 0.40 0.42 0.42 0.12 T102 0.30 0.10 0.47 0.44 0.47 0.11 MhO 0.08 0.05 0.13 0.11 0.09 0.02 Na.0 3.28 3.47 4.09 4.03 4.43 3.35 Kéa 5.98 6.22 6.52 6.01 5.91 6.42 P205 0.09 0.02 0.13 0.11 0.13 0.03 @ Be 2.2 1.9 2.7 3.1 1.8 2.4 SC 5 2 7 7 7 3 ‘V 11 10 17 16 13 3 Cr - - 3 - 4 - CO 0.4 0.1 0.5 0.6 0.5 0.2 Ni <1 <1 <1 <1 2 <1 cu 5 10 3 4 4 4 Zn 78 19 121 124 82 31 Rb 154 171 148 151 138 175 Sr 116 15 179 149 203 28 Zr 391 138 699 603 732 143 Sb 0.3 0.4 0.4 0.3 0.1 0.3 CS 3.96 4.61 3.14 3.39 2.62 4.02 Ba 1390 117 2910 2230 2350 160 La 113 31 200 185 217 48 CE 170 70 320 321 360 101 Nd 61 31 104 93 100 37 Sm 9.2 5.8 12.5 11.8 13.2 6.3 Eu 1.6 0.2 3.2 2.7 3.6 0.4 '11: 0.8 0.7 0.9 0.9 0.9 0.8 Yb 2.8 3.1 3.2 3.3 3.1 2.9 Du 0.6 0.6 0.5 0.5 0.5 0.6 Hf 8.8 5.0 14.9 11.9 14.9 5.8 Ta 0.98 1.35 0.77 0.87 0.80 1.29 Pb 30 25 40 40 15 5 '13) 19.7 22.7 19.9 18.9 20.3 25.1 'U 4.6 4.7 2.9 5.0 2.8 5.0 I- Major element oxides have been recalculated to 100% anhydrous. locations of sanples (see Figs. 1 & 2) indicated by two letter prefix: BB = Busted Butte; Cp=311Wash; IW=IathropWells: GU=Drill Hole USW-GJB. "WR" suffix in field no. indicates whole-rock tuff. An asterisk indicates a carbined sanple of texturally identical pumices . All other sanples are of individual whole pumice. 11 10 --25WR BBS-320M? BBS-ZOOWR BBS-100WR Table 2 (cont'd.) . 8 .7 Field NO. BB9-10C* BBQ-159R Sanple No. 05796882 7305000910 62100nw0350 7 33591431 2396 01960 coco-coco. GROOOOOBSO 7 689%wm6 9m 5n”.0.0.AU.0.nm4..50 sznwanmw eeeeeeoeoe “ED—1.000450 69%nwnmwmn eooeeoeeoo “321000460 4.34.9095 7.nU.34w4..4..14..7. mmzlmmmdu’mnu. % 2 5 mmssmmm 4s 6 8 2 48 7272473 08 O .0 0...... O. 03442200304945002041513 3 4026 5 62 22 2 1 4 8 2 44 238.3613 8.0. O O. .0. 0133076040536&0.nm3051035 < 4B2D 8382 42 8 l 2 37 7.38.1593 15 O .0 077702103242750.0.30.4..1524.. 4825 9372 1 1 2 2 7 29 2990609 25 O I. 0...... O. 045$319010147H2030B0504 3 D63 8819 22 16 313 1 a 4 6 l £4..90.64..8. 6.1 O .0 064367602019413m3nw4..0.092 l 6n05 20411 26 4231 2 9 0 6 27 0798548. 54.. O O. 00.... 0876545020 2 302040.093 9 1.0.27 432mm 111 1 26 $231 mssvsmmmmmsusssmmmmmmmmmnmmu 18 BBB-IOWR 17 BBS-158 BBB-15C 16 20 15 Table 2 (cont’d.) . BBB-20 13 14 Field NO. BBB-85m BBB-853* Sanple No. 44. 17463 9596 10060 7u00000340 7 07333 2295u.10.26nu. 8m.nU.0.0.0.nw34..nm 7 O 7““.nW0.0.0.nU.24..nm 7 mu.0.m0.0.0.34u0. 99mwmnmwm 0.0.0.0... 6u00000340 7 877079u3 4.0960104. 0 00.00.0000 6n00000440 7 O 0 4 41 1278493 32 6140558465002041515 824 2252 22 1 l < 5 6 3 31 527.J593 JJ 7710573685nmnm30.4..1535 81B 2362 l 3 7 8 45 7.37.J54..5 33 I O. 394670596365nmnwlnm&157.5 15317 4382 l 9 7 2 33 4..2.7.n~54..3 55 O O. 05 749650.0.3AU.51524.. 2372 4 2 l 4.1 2394605 41 o O. 0...... O. 0 . 005500021857003061056 25334. 13483 22 2 l l 7 2 2 33 $27.0.483 82 01353970128195nmnw3nm4u100.4.. < 4N3...“ 14372 mssvsawmmmsussmmsmmmnmmmmmmu 21 Table 2 (cont’d.) . 24 BBS-1 23 BB8-2 22 BBB-3A BBB-38 21 20 19 BBB-5 Field NO. BBB-10 Sanple No. 36416 21 4 3384110700 8 2 32 J56.547.5 36. 8u00000250 2211066185605707550.nw2nm4L00.4 369 3 2352 1 1 697mm152 7 1 54555 98.0. 9 2 40 4..57.J555 6.8. LRO.0.0.0.0.L4..& 2211060785005716650.nwL0.4..L0L4 448 D 2362 1 4647 102 5 5554..JJ%550. 8 2 30 0.55J5J4.. 55 O O O. LELLLLLZSO. 22220621647065522 .mnmnwLO.7.L54..5 26120 2493 12 2 2 < 760 732 9 7 05841 800 8 3 38 2278543 88 0.00.00... 0 O O. 0...... O. 8n00000250 22110651 00551545002051014 7 6 2362 32 1 < 375®7602 9 1 38840 0.7.6.0. 8 2 70 528.5555 0.5 0.... O O O. 9u000nw0.24..nw 2212066075805752950.nwan4..L525 7 48 0 2382 l 1 651 714 1 6 819832089 8 9 4.5 557.5555 57. 00.0.00... 0 O I 6D00000240 222206D920fi05.73 6550.0.2.0.5.L024.. 7 4331 23 62 mmuzewmmm em. a:vsmmmmmsusgimmmmmmmmmmu 30 28 29 CP3-1WR CP3-1A CPB-lB CPB-lC 22 27 Table 2 (cont'd.) . 26 25 Field NO. CP3-2A CPS-28 Sanple No. 79416493 8694“110.34..nw 6u.anmnwnmnm35nw 487 3132 128Ah~®nw1nwnw 0010.0.0.0.nw350. A55Ammmmnum0. 8Hwo.nwnmnwnm3.50. 7 9085 497 36693....”960 szmmmmLim 71 emunwmman1 nmm2nm0.nw0.360. 7218 702074 0.00.00... 0521000350 7 mnemmfim 8% 9 4 8 3 43 83.].nw513 55 0 0 0. 2335098944705596850.0.30.51534 4814 2372 1 1 < 8 3 7 6 47 12—I.—I.57.3 0.6 . 0 .0 221108..”05450471%550.nu.20.4..100.4.. 4 471m 23 1 3 5 8 2 41 53—].9563 21 0 0 0. 48 2372 1 1 < 2 0 5 2 7990610 16 0 0 0. 0...... .0 .458408763130347379103001513 5466 7337 1 22 1 4 512 0 4 7 8 62 4..-[.386nw8 89m 0 0 .0 17u50u50131044853 .Imo..ImAU.30.5nU.7m 9452 $020 1 72 31 6 .431 5 8 8 6 7 21 2892787 03 usevsmmmmmsussmmsmmmmmmmhmmu 36 34 35 CPI-2E 23 33 Table 2 (oortt'd.) . 32 31 Field NO. CP3-1D CP4-20WR CP4-6CMR CPI-BWR CPl-BA Sanple No. 400077 3A85110.3mnw 7.”.nU.0.0.0.0.34..0. 498 731.4 3834.... nU.4..70. nmmmmmmfiqdunm sznwnmmuwm o o o o o o o o o 0 3410000440 71 1.71.7 4.45 30.88am?” A30. 1.51.0.nW0.0.4..5nw 7 461.8 0.3.].853W5 nmlmnmmnm360. 0. 2 30 41 166 35 220 0. O 2 .81 152 70 136 39 4.42 0.3 252 157 7 51 164 46 305 0 . 3 111 213 67 3.50 O . 6 17 8 52 145 43 431 O . 2 314 163 278 5 4..3—/.260.4.. 73 35nU.nU.30.51.0..uw4.. 7 6.27.7.583 7.9 .45.U.nU..Imnm4..1.on4.. 8 83836.44 59 0.... O. . 05003051044. 3 32 8 6J884h81. 7”?” 60.nu..40.61.0nu.1. 1. 8A8.1m7.21. nU.8 Onlo.3o.Qn1.534.. 4 ~I.1.Qunw660. 6.0. OanmO.3nan.1.O1../m 91. 1.. .3“... mufimmmwwpu aivgm mmmagimammmnmmmnmmu 42 I.W2-5 41 4O IWZ-A 24 39 Table 2 (cm1t’d.) . 37 38 Field No. CPl-lG CPl-AFB CIPl-AI‘WR Im-A Sanple No. .00. 0.. 0510000460 7 6483055 618234....92 6 «filmmllnwnmnw3 0.10 226u7432 64950 0390 ......o... 7u00000340 7 5694..n.1...%9m.0. «H Amnwnmmnw25nm 19%,..mmm7.mm1 nummnmnmo.35nu. n”.020 5 aumwmmm 4% 0 0 222206516u 5n 9.211065% 8 4.280.380. 0../. 89an3nm91513 6 1.2 839850.9 83 1.38859m4 9.8 1.1.60.nw.lmnw51.533 93 7 0.384664 37 4076003051045 38.4 2.4 1. 6.2.an50.4 4.9. ”6 .5.nU.0.3nU.51.534.. mmxvammmmmauamauammmmmmmnmmu 48 1W4-SB 47 W4 -5A* 46 25 45 Table 2 (corrt’d.) . 1W4-1A IBM-18* 1W4-1C 44 43 Field No. IN2-10 Sanple No. 5599 5.21. 396533 781. 0.0000000. elm-11.000360 7 6 795684 268 000210 cocooooooo 8n00000350 7 coo-...... 0521000360 7 477787 193D../m./w0.1~30. 3...“.110.0.0.36.U. 60.94..n.nm%9 7.n.nm0.nmnm0.350. 7 206 5443 7.4..851wnw110. 8um0.0.0.nw350. m5“... 2 5 mmmgmmm 9W 7 7 7 3180.638 .I.5 0 .2 nw.2nU.3nw1.nm.592 1. 121 9 4 1.. nw2.l.0”563 0.9 0 5 53166nw0..lm0.4..1024 .2362 0 m 0081.641. 90 4 08103081004 5 22 3 9 8 .I.4...I.Q~50~.Im .I.1. 0 4 wsmmznm41515 6 5 0 3.279463 02 5 006:.nm0.9.nw4..1.59.=. 362 32 m2xvammmmmauaammmmmmnmmmnmmu 52 53 54 26 51 Table 2 (cont’d.) . 50 49 Field No. 1W4-10A IN4-10B LW4-15A IW4-158 IN4-15C (113-31M Sanple No. 11938474 9646120530 4310000440 71 1563978 1nw0.5440.56 5 0.5.b10.0.0.4.. 0.14 13 0 445 8680” 3.20 000 nmmmmmm350 sommnwmuwm 7n0.2nu.0.nw34unu. 965%3 3w3 um 0.4..11nw0.0.4..6.0. 301 :n 1684..3 nu...nw num1mnw0350 3%; 5 fi mammm am I 5 7 3 7 25968.].3 84. 154.013%577035 01.910.30.91557m < 984 0097 1 4 811 3 8 6 7 27 3391587 48 0 0 .0 0000000 00 16920884339020611 303030582 17u05 9991 1 21 26 6121 2 3 0 7 4 49 33-I.15nw3 0.9” 0 0 0. 2.2.2308991030457435nwnw3nw515”w5 3835 237.2 1 < 9 5 5 5 47 82.].8552 8.]. 0 0 00 223304403m00458634nm0../m0.4..100.4.. 2146 n .2252 1 < 7 4 8 6 30 383nw539 4.1 158 . 083a667034870nw10.30.1nu.00.3 .2 ”88 13481 4 21.2 3 6 5 4 46 saga/.8537” 66 0 0 00 233408062750403215nU.0..Imo.515nm4.. mamvamMmmmaumammammmmmmmmmmu 60 58 59 27 57 Table 2 (cont’d.) . 56 55 Field No. («113-31AM? GJ3-29WR CUB-289R GU3-23WR (113-21m GUB-ZOWR Sanple No. 29316711 4..0.nU.4..11n~nw—I.0 m 10.nw0.nw430 30470687 anw87331u-J80 duo lfilmmmmdu 7548 096 80.57.9mJM66O I... Lulmnwnw044o 7 .lenmnwmmduduo. 7 1492 645 074812 220 coco-o0... 6210000440 7 4 2 1 37 14..—I.2324.. ~I.—I. 012629w03023660.nw20.4”1023 < 4.05111 5483 0 5 4 44 nw384h539 33 O O. 0. 01325 1042778 2nw3nm nw023 4138 2 mm 3 07 8580w65 63 O .0 4 311 3 9 3 36 5288572 86 O .0 0...... .0 0129n170323447102081003 < 5 75 8974 52 1 3 7 1 6 5 3 36 7489661 81 O .0 0...... O. 02323990578$18102081013 4773 49 6 32 1 3 6 1 3 4 5 2703014 03 O O. 0...... O. 01392830374931114111583 < 5376 9n381 1 42 3 6 2 O 5 my agmzmw‘m‘mz at?immmmauifimmmmmmmmmmmu 66 Gmat 65 (113-10* 28 63 64 («113-11* Table 2 (ca1t'd.) . 62 61 Field No. GUB-l7WR GUB-14VR GU3-12 Sanple No. 25696821 SAHnNSOOO—ISO o 5n10.00035 157 7201 11350. 0650 0.... 6B.0.00.00350 7 ...flmmMflwm fiDOOOOOaJSO 516 0111 67950 1550 0.00.00... 6u00000350 7 m8105543 92 4.110290 0.0.000... 8u10000420 7 9394nmmnmm 8D.O.nW0.nm0.33O 7 20 20 5 ”memmm 9w 7 2 41 23£A£AS n~3 01202310779105nw0.30.5L5,m4 < 5328 6283 22 2 1 6 5 2 36 0.27.3353 55 O .0 060772005290.5nw0.30.4..L0L3 115320 427 1 fl 2 2 4 4..27.n~54..3 34.. O O. 015657605508 450.nm20.4..L524.. < 5 14 332 22 2 1 8 5 2 74 327.9,mfi3 7.5 o O. 013570205m056 5mm20.4L0L4.. < 512R 36 2 1 0 6 2 44 7378523 34 O O. .00.... O. 05407870408055002051034 5816 3373 22 1 1 7 3 2 42 5369514 14 0 O. 0...... O. 01261830422234002051034 < 4m1u 3372 22 maxvmmmmmmauamamammmmmmmmmmu 72 CUB-1* 29 70 71 CUB-5* GUB-2* 69 Table 2 (oont'd.) . Gin-6* 68 67 Field.Nb. GU3-8* CUB-7* Sample No. . 0099 271 330700 04.0 0.0.0.0... 6D10000440 7 380$o mo 9mo 6&10.0.0.0.350. fiAQSMMWJMmm Immmmmm3dunu. 739mo mmmmm 6D.0.nU.O.nU.nU.34..O. 83%w nu7 52 5D.nU.flwnU.0.nm35nm 002 4..1nU.5®.115 O. 6.B.10.0.0.nw350. 7 0 l 2 55 4..2an553 13 321201674570628695nwnm30.4..1525 1.. 6834 4364 1.. 1 2 7 8 9 5 1 45 27w7.Aw213 4..8 0 O O .0 23< . 03136160571295nm0.2nm4..10nw3 4D2D 4372 4 0 8 0 52 5nwnw7.0.nw0. nwl 223.01.. “31.06016.50.0.20.0.nw525 < 03 935 2 a 0 9 2 3 12£w520.1 0.4w 0 O O. 222 . 01213270502$35nwnm7mnm415mmdu < 562E 63 1 7 5 2 2 3O 326.].539m 7.8 3231013W2470522104..0.nm20.4..10nm4 < 84.4 4373 1 1 9 0 1 2 58 93974.96 11 O O O. .000... O. 333 . 015W1410723965003051565 < N3“... 4.373 22 03 o wflgwmmmwm‘w. mivammmmmagimmmmmnmmmgmu RESULTS Major Element Chemistry The major element oxide analyses are reported in Table 2. For purposes of discussion and graphical presentation, all values have been recalculated to 100 weight percent excluding loss on ignition (LOI) , to facilitate comparison between variably hydrated glassy and devitrified samples. The overall range and trend in major element composition of the Topopah Spring Member was first reported by Lipman at al. (1966), based on 13 whole-rock tuff samples and one densely welded crystallized pumice sample. The additional analyses reported in this study are consistent with those provided by Lipman et al. (1966), and also help to clarify the previously addressed question regarding an apparent compositional gap. More important, these additional analyses demonstrate that the textural heterogeneity of pumice samples observed in the field corresponds to chemical heterogeneities among the pumice samples, with a systematic variation in their compositional range with stratigraphic position in the ash-flow sheet. Figure 3 illustrates the variation of the major elements with stratigraphic height in the ash-flow sheet at each sample location. Considering only the whole-rock tuff samples from the Busted Butte section (Figure 3a), 8102 displays a total variation from 77.9 wt. % near the base to 68.5 wt. % near the top, with a pronounced chemical change to lower values of $102 coincident with the transition from crystal-poor tuff to crystal-rich caprock (Lipman et al., 1966). However, the various pumice samples occurring at a given stratigraphic level display a range in Sioz. At the base of the ash-flow sheet, 30 31 m:f s , an Q Long PM man up w;- :D'q, F - ¥ b L p : E t L f ’ j”. > L > L .5. L ’ O + ’ ’ ’ ' 2100+ a > a *o ’u n a ’o *9 L . . . . . . r . . p h b > a Lu *0 ’0 *c a ’0 Le: > a? p r h L b » , L 3 L9. La .9. t t L9. la: ; L (a! 0 Lu— LL— Lc:_ I—‘I— .4— {—5— 007270” 11131517012 3 0 1 2 3 00.31.000.51.000.1023 4 0 3 5 7 00.102 8102 A120: «.203 m one no no2 Mao mac K20 9205 ' o c , a a 3,, 1' -.: -. : : : no E * - t I 'r E ', ...: t E ' E L t - ‘ . k r _L L L 5 L I L E E i I ‘- 100 L ’ 1* .L k r 2 * L : * t i r r t » t r ir F L 100 k L r ‘ . L L , .t F I r ; L f r ,0 . L L [ t ‘ ....L...._.....L___._L_ n» ’ r t 007270” 11131817012 3 0 1 2 3 00.51 00.51.000.1022 4 3 5 7 00.102 8102 M203 30203 (1’) one "00 7102 “no '4on K O P 0* r“. . f. [a [A “ .u' L f t : i L L A l .L L .L o o 2 007270” 111315170 1 2 3 0 ”ML... N a O o b m ' 3102 A1203 “203 (1’) co Moo T102 Mao NezO K20 P208 m . I r on ’ I r o r [I - e r I 9 L. L o i o . o c t . c ; : F : a t. c 2”? o : o : o :1 " z t a : :1 L: a c F 3 : o : o i o c ‘a {c : : t : t :1 E L p t - y. L 5 2m ’ r > - r F L ‘- ’ U ' O t 3 O '0 PO 3 t 3 r 2 f s L : p £ : P t E L i ""I _ ; I : ' it i b y. L r ' t I? P L c. \- n n 2 ‘m I a , a It a [. “:1 __. .. :1 L... f":3 . i C r i I' : ..E ’ t ‘ ' . : : > e C u .. I I. i T. I .0 - I . e I n I L o . e e e - a . a 1: a I (d) o Lt L ".1: 'I L 13.. '_e_ _._a_ i... 007270N11131017012 301230051005100102240 35 700.102 3102 A1203 F0203 (1’1 cao M00 7102 Mac “-20 K20 P205 Figure 3. Variation of major element oxides with stratigraphic height. Analytical data from Table 2. Solid symbols = whole pumice; open symbols = whole-rock tuff. (A) Busted Butte: (B) 311 wash: (C) Lathrop Wells; (D) USW-GUB. 32 all the pumice fragments are high-silica rhyolites, and although individual pumice samples have marked textural variations, they display only a modest range in 5102 content. In contrast, the range in Sioz for pumice samples at the top of the ash-flow sheet is nearly as great as that of the entire section. At this stratigraphic level, there is a compositional variation among pumice samples ranging from high-silica rhyolite to quartz latite (76.2-67.7 wt%). Although no attempt was made to quantify the proportions of the different pumice types at a given stratigraphic level, comparison of the compositions of the various pumice samples with their associated whole-rock tuff composites gives a first approximation of their relative abundances. It must be noted, however, that while sufficiently large whole-rock tuff samples were taken and their lithic fragments removed before powdering, only one whole-rock tuff sample was taken at a given stratigraphic level. Unfortunately, due to the difficulty of removing pumice fragments from the densely welded central portion of the ash-flow sheet, it was not possible to fully evaluate the degree of chemical heterogeneity at every stratigraphic level within the entire eruptive sequence. Although the textural variations of pumice lenses in the densely welded devitrified horizons are less extreme, careful observations allow subtle distinctions among pumice fragments to be made at most suatigraphic levels. Based on data from other pumice samples and the overall chemical similarity of whole-rock tuff samples within the crystal-poor rhyolite, any compositional differences corresponding to these textural differences are likely to be modest as well. 33 The relationship described for Sioz at the Busted Butte section has corresponding variations for all the major oxides and at all sample localities. Figure 3 clearly shows that the chemical compositions of individual pumice samples within a given stratigraphic level are not unique, but display a range in composition. Moreover, pumice samples with compositions similar to those deposited during the early phase of the eruption are present throughout the eruptive sequence. The range in pumice compositions increases with increasing stratigraphic height: however, due to the paucity of pumice analyses from the central portion of the ash-flow sheet, the progressive nature of this increase in range is uncertain. This chemical heterogeneity has profound implications for the reconstruction of inferred chemical gradients in the magma chamber based on ash-flow stratigraphy. The interelement variation of the major oxides with weight percent silica is depicted in Figure 4. The solid symbols represent analyses of pumice samples whereas the open symbols represent whole-rock tuff samples. The overall trends are consistent with the data reported by Lipman et al. (1966). In these previously published analyses (diamond shaped symbols), no data points occur in the interval from 71.8 to 74.7% $102. This apparent gap was thought to be real (Hildreth, 1981) and has been interpreted to indicate the existence of a sharp compositional interface or a narrow transition zone within the magma chamber. The additional analyses reported in this study show an overall continuity in the variation of 3102 , although compositions in this aforementioned interval are significantly under represented. The paucity of compositions in this interval may be due to inadequate sampling of the central portion of the eruptive sequence, because three 34 17’ 1.0L 9" " n 15" ... Q5 . ON - - 3 13» 0 11r- 0'2; J J o s L- 3 E 0.1. “203 (T1 to , I t (‘5 ’- D 19 3 ea c 1 . O m 4‘ 4 2 o n l 1 ;l L J 3. 2 ~ 7 2- a L 9 r- .Dfi... . ON 5? o 1L 37-0 L . . x P L 0 «Fame. 3, o ._J._l l l L l 2. I l L J 10L- o‘::.2£ - " I a .- g. .. roll 066 66 70 72 74 76 066 66 70 72 74 76 76 60 850 $50 2 2 Figure 4. Variation of major element oxides vs. silica. Units in weight percent. Solid symbols = whole pumice; open symbols = whole-rock tuff. Source of analytical data: squares from table 2: diamonds from Lipman et al., (1966). 35 of the six samples that occur in this interval are from the interior of the sequence. Alternatively, it may be that the occurrence of compositions in this interval is the result of limited mixing between compositionally contrasting magmas. This latter view is supported by several lines of evidence. Four of the six samples in this interval are whole-rock tuff samples that contain more than one pumice type, and therefore do not represent the composition of a single parcel of magmatic liquid. The two pumice samples in this compositional interval were collected from the very top of the distal portion of the ash-flow sheet and occur alongside both more silicic and more mafic pumice samples, and thus their relative position in the magma chamber is uncertain; they may represent either mixed liquids or fractionates resulting from differentiation processes occurring near a compositional interface. In spite of the absence of a distinct compositional gap, the hypothesis of the existence of a sharp magmatic interface or a narrow transition zone is consistent with the interelement variation trends. From Figure 4, it is apparent that some of the major oxide trends are not strictly linear, but display a dichotomous distribution with a change in abundance occurring within the interval of the previously noted gap at approximately 74% $102. This is best illustrated by the oxides Fe203(T), and Tioz. The more abundant high-silica rhyolites (>753; SiOZ) do appear to define linear trends, generally having little scatter and showing very slight variation of the corresponding major elements with increasing 5102; this latter feature may be an artifact of the constant sum effect. Notable exceptions are the alkalies which may be mobilized during secondary hydration (Aramaki and Lipman, 1965; Lipman, 1965; Noble, 36 1965; 1967). Although there is a greater density of data points in the high-silica group, these analyses represent an equal number of samples from the upper and lower horizons of the ash-flow sheet. These trends can be interpreted to indicate that high-silica rhyolitic magma was separated from underlying low-silica rhyolitic magma by a distinct compositional interface within a single magma body, and that two compositionally distinct magmas evolved concomitantly. ace eme t Highly charged trace elements, particularly the rare earth elements (REE), are especially useful in evaluating petrogenetic models because they often display relatively large variations in abundance within coeval rocks that have only a modest range in major element composition. In the Topopah Spring Member, there is a strong correlation between the abundance of certain trace elements and major element concentrations. The chemical heterogeneity among pumice samples that is observed with the major elements is also observed with the trace elements. These data further support the hypothesis that a sharp compositional interface or narrow transition zone existed between chemically distinct magmas within a single source chamber. Trace eluent abundances of samples analyzed in this study are presented in Table 2. Figure 5a illustrates the variation in the abundance of seven REE for all samples of the Tqiopah Spring Member. The ordinate value is the ratio of the concentration of an element in the sample to the average concentration of that element in chondrites reported by Haskin et al. (1968). With the exception of one whole-rock tuff sample 37 103- 103 3 ’ 8 E 102; "' 10’E 5 ’ E \ \ e a _ 5 10‘ 3 10‘ im - i (b) 10° 99'. . FLEET"; . 1 NM“. 10° “9°. LSTEKT". L L LYPL.“ 565880626466687072 565860626466687072 Atomic number Atomic number 103; (c) we‘ve 1 we“. we" 56 58 60 62 64 66 68 70 72 Atomicnumbot Figure 5. Chondrite—normalized REE abundances (log scale) vs. atomic number. Solid symbols = whole pumice; open symbols = whole—rock tuff. (A) All samples; (B) quartz latite (low-silica rhyolite); (C) high-silica rhyolite. 38 (CP4-60WR), indicated by the dashed line, there is a lack of samples with intermediate concentrations for the elements La, Ce, and Eu, which allows two major groups of REE patterns to be distinguished. Within each of the two groups, the individual patterns illustrate continuous variation, and most patterns within each group are subparallel, indicating an overall coherence in REE distribution. Several samples, however, have patterns that display a cross-over near Sm, with slight LREE depletion and corresponding HREEenrichment, similar to that observed in the Bishop Tuff (Hildreth, 1977). The REE patterns that lie above the trend of CP4-60WR (Figure 5b), generally correspond to samples of low-silica rhyolite (quartz latite) and all of these samples occur in stratigraphic units that lie above CP4-60WR in the ash-flow sheet. Within this group, the negative Eu anomaly progressively diminishes to predicted values,* as the LREE concentration increases, with up to 7 times the La concentration of the high-silica pumice samples. The REE patterns that lie below the trend of CP4-60WR (Figure 5c) correspond to samples of high-silica rhyolite. These exhibit relatively little variation and are characterized by large negative Eu anomalies and maximum LREE enrichment of approximately 140 times chmdritic abundances. In contrast to the LREE enriched samples, pumice samples that exhibit these trends occur throughout the ash-flow sheet. The REE patterns of individual samples in relation to their stratigraphic positions in the ash—flow sheet are illustrated in Figure 6. The predicted Eu concentration, Eu*, is that calculated by linear extrapolation between the diondrite normalized concentrations of S m and Th on a plot of REE concentration versus atomic number. 103 mung L 1 160 , 101 L 1.x LaOe one. 11: 39 o0 unmuuuumng Atomic number I (0) Atomic number Atomic number 10’ L E 50 " i a! 0 10" (c) Figure 6. whole-rock tuff. (D) US W-GU3. “SBNGZMOBBSNH "OH" (1111 Height (m) 160 . 100~ D LeOe sum: ‘YbLu 10° + A L 505800020400007072 Atomic number Semplelchond 00 L100 Sm :l'b 4 A 1va ‘mumauumnn (b) Atomicnumber 103 10‘ 10° no. man, LYbLu 505000020400007072 (11) Atomic number Chondrite-normalized REE patterns in relation to stratigraphic position. Solid symbols =- whole pumice; open symbols =- (A) Busted Butte: (B) 311 Wash: (C) Lathrop Wells; 40 This systematic chemical heterogeneity among pumice samples, which is most pronounced at the top of the ash-flow sheet, is demonstrable for nearly all elements that have a significant range in concentration (see Table 2). Rather than plotting all the trace elements versus stratigraphic position, it is useful to consider the covariation of selected trace elements for which a large variation has been established. In Figure 7, various trace elements are plotted against SiOZ to illustrate their behavior with increasing differentiation. The elements Ba, Sr, Eu, Zr, and La, all decrease with increasing SiOZ. These trends are consistent with control by fractionation of alkali feldspar, plagioclase, zircon, and chevkinite/perrierite, phases that are petrographically observed in the low-silica samples. In contrast, the elements Ta, Rb, Cs, Th, and Sb display incompatible behavior, all increasing with $102 . A significant feature common to all elements shown in Figure 7 is a marked change in concentration at approximately 74% 5102, similar to that observed for the major element oxides. To illustrate that this rather abrupt change in elemental concentrations is not solely an artifact of the non-linear behavior of Sioz, several of these elements are plotted against each other in Figure 8. The trends of Ta, Rb, Ba, and Hf vs. Th all display apparent inflections for the same abundance of Th, although the changes in abundance are less drastic for the incompatible elements Ta and Rb. Trends of compatible vs. incompatible elements (i.e., Ba vs. Rb) or of two elements that are compatible with different phases (i.e., Ba vs. Zr) generally show greater changes in abundance. 41 L 0- - 315002- a g L ' g3 L w a” 01; 1L1ID1JQ 1b 240: .0.- .. .I .- m . «71 120- o .- ‘ EEG _ Van‘mmm o lJJiLJ 1 LLL #4 4r- _ emu ' _ e- o I 13 2- ~00 _ m- g D [DE] . '13 P o LLI 1 11 1 1*4 600’ I Igfi. . L0 (D rt. war :1- e fin] - a. CD . E! a l o i 14 1 1 1 1 1 1 LJ 240' . owl-'I F E] m _ c: ' 1201- ..1 .. E] El .' 83m _ [D o 1 1 1 1 1 14 1 #1 141 1 as as 70 72 74 70 70 so 3102 Figure7. Te Rb Cs Th Sb Trace element abundances (ppm) vs. silica (wt. %). 2.0 L' 1.5 I 33 _ 1.0" r1! F- %. a . r e34 0.5 L o 1 1 L L l 1 260- . ... 2201' I. ...L @9311- ' m 0'. ' ’ ' Bl a D 140'” . I} - @ 1m 1 1 1 J 1 1 1_1 1 1 1 1 1 1 12F o ‘ e 91- . ... 6- é: ’ a: c- 3- IEI'I‘ ‘mfiw o L LL_L l A J. 1 l l L L4] 30 CD 27 ' II. 24L- 9 m 21L - a. we?- L'E71" 1‘ . " 18 i 1 .141 1 1 1 1 1 1 0.6 L m _ . 06 . r - El . I 0.4L- 2 m ~ I I I 0.2 I‘3 03.33. L m- o 1 1 L L 1 L 1 1 ‘ l 66 66 70 72 74 76 76 60 SK)2 Solid symbols = whole pumice; open symbols = whole-rock tuff. 2F . (.I _ M's ‘3 a1_. 5 E] '- a‘“ .0 o L4LLLL1 1 Th 260v ’ II um" ”'9 ’ o I £13m as“? . a I“ 3.0 ‘.g;f' 100 L11LL1111 Th 161-.“ "I *‘Io’.'m o E 8- 0 “A '3 m . 0 ' I Paw... 0 L 111111111111111 Th 3000f... g 1..m. 81500' 00 1- .0 0 r3 E! L . 0 . 18 21 24 27 Th Figurea. Solid symbols =- whole pumice; open symbols 42 3000E ... , 0. . 31500- 0 E, * I .. 0 d3 @ 0' .ilfifi H 100 140 180 220 260 Rb 240g . c 1“. i- D . a 120» a .. - - “b a? - I o- I 3%35319 4'- 100 140 180 220 200 Rb 3WDL I.' - L . a: 81500- a a C 005 - A”! 00 30 60 90120150180210240 3: 3000 L .r- L- .0 I £1500- c: o ‘ I :y & mfl’ql owe: L .1 .. 0 200 400 600 800 z: Inter-element variation of selected trace elements (ppm). whole-rock tuff. 43 Coexistm' g Iron-Titanium Qggigeg and Estimated Temperatures In conceptual models of magma chambers, probably the least equivocal assumption is that the temperature of magma increases with depth in the chamber. In contrast, the assumption that the composition ofmagmabecomamoremaficwithdepthinthediamberislargely based on inference from the overall whole-rock compositional variation with stratigraphic height within ash-flow sheets. Although this last assumption is considered quite reasonable, previous sections of this paper present clear evidence that pumice samples that most closely represent quenched parcels of magmatic liquid, do not strictly become more mafic with increasing stratigraphic height in the Topopah Spring Member. Therefore, it is desired to isolate some other position dependent parameter that can be used to constrain chemical gradients within the magma chamber. For reasons discussed above, the quenched equilibrium temperature of liquidus phases would appear to be a logical choice. In order to employ the iron-titanium oxide geothermometer and oxybarometer of Spencer and Lindsley (1981), heavy mineral separates from 52 samples were prepared for microprobe analyses and 50 samples contained both magnetite and ilmenite phenocrysts. In many of these samples, either the magnetite or ilmenite or both display visible exsolntion lamellae. The term "exsolution" used herein refers to the occurrence of Ilm-Hemss along (111} cubic spinel planes due to oxidation of Usp-Mtss, and the occurrence of Usp-Mtss along (0001} rhombohedzal planes due to reduction of Ilm-Hems These processes 5' of oxidation (and reduction) generally take place at temperatures above 600°C (Haggerty, 1976, p. 18). As pointed out by Buddington and 44 Lindsley (1964), this is not true exsolution in the classic sense but has been aquted for lack of a better term. Some grains also display oxidation to maghemite and hematite along grain margins and fractures, possibly due to ground water movement through the ash-flow sheet (Lipman, 1971). These grains were not considered for analyses. Previous workers tried to minimize problems of subsolidus oxidation and unmixing during devitrificatim by studying Fe-Ti oxide phenocrysts only from glassy rocks (Carmichael, 1967: Lipman, 1971; Hildreth, 1977). Hildreth (1977) suggested that the exsolved oxide phenocrysts in the Bishop Tuff possibly resulted from protracted cooling in fully crystalline welded zones or were due to emplacement over wet ground of the nonwelded basal portions. However, even when only glassy rocks were considered (i. e., when nonwelded basal pumice samples were compared with densely welded vitrophyre), Lipman (1971) noted that there seemed to be little correlation between degree of oxidation of magnetite phenocrysts and cooling history. Although post-emplacement processes were no doubt werative to some extent in the Topopah Spring Member (Lipman, 1971), the following evidence is used to suggest that exsolution may have resulted from dynamic processes occurring within the magma chamber prior to or concomitant with eruption: ( 1) several individual pumice fragments contain both unexsolved and exsolved oxide phenocrysts; (2) entirely vitric pumice fragments from the nonwelded top and base of the ash-flow, which may have been emplaced over wet ground but were certainly not subjected to slow cooling, contain both unexsolved and exsolved oxide phenocrysts: (3) samples from the central fully crystalline (devitrified) welded zone, where protracted cooling is 45 unequivocal, contain both unexsolved and exsolved oxide phenocrysts. Any secondary alteration process, occurring outside the magma chamber and operating on a local scale (pumice fragment or handsample), should effect all oxide phenocrysts of the same composition more or less equally. If any such process is argued to be compositionally selective, then the presence of variably effected phenocrysts is strong evidence for primary compositional differences. Although the possibility of xenocrystic contamination during emplacement must be considered for whole-rock tuff samples, this problem is avoided for individual pumice samples (Lipman, 1971). Therefore, the exsolved Fe-Ti oxide phenocrysts in the Topopah Spring Member are interpreted to reflect disequilibrium within the magma chamber. Because the compositions of Fe-Ti oxides are extremely sensitive to changes in temperature and oxygen fugacity of the surrounding silicate liquid, if the thermal regime is perturbed, the composition of the phenocrysts will change toward equilibrium with the ambient conditions. For example, during mechanical mixing or convection, magma parcels of greatly contrasting composition and temperature are juxtaposed and may commingle. If mixing is sluggish and the thermal regime changes gradually, zoned phenocrysts may result. However, if disruption of equilibrium occurs suddenly during vigorous mixing of relatively short duration, these oxide phenocrysts may respond by internal exsolution. Carmichael (1967) cites evidence that suggests the Fe-Ti oxides do not rapidly re-equilibrate to a change in environment, and interaction between these phenocrysts and the silicate liquid may be assumed to cease at the time the liquid is quenched. Therefore, with the assumption that exsolution only effects 46 an internal rearrangement of these oxide phenocrysts, rather than a change in bulk mineral composition, it should be possible to assess the bulk composition of a single grain. Several previous studies have attempted to obtain bulk analyses of exsolved Fe-Ti oxide phenocrysts. In a study of Fe-Ti oxides from compositionally zoned ash-flow sheets in southwestern Nevada (Lipman, 1971), which included four reported temperatures for the Topopah Spring Member, bulk compositions of exsolved phenocrysts were obtained by separate microprobe analyses of both the exsolved lamellae and the surrounding matrix. These analyses were then combined based on estimation of the relative contribution of each to the total area of the phenocryst. Rutherford and Hemming (1978) rejected wet chemical analysis because it was apparent that more than one composition of fitanomagnetite occurred in the rocks under investigation and that these phenocrysts contained abundant inclusions. Their solution was to use the scanning capability of the microprobe to analyze several sufficiently large areas across individual grains. This study used similar method to that used by Rutherford and Hemming (1978). Multiple analyses were collected along a trace across each grain, where each analysis was performed by rastering the microprobe beam over an area of 100112. This posed a problem in some cases because the Hence-Albee correction program used in the data reduction (Bence and Albee, 1968) assimes homogeneity of the area being analyzed. This resulted in poor totals for chemical analyses of inhomogeneous regions. Because the microprobe can only determine total ircm, which is reported as Feo, it is necessary to compute a value for Fe203 in order to recast the analyses into stoichiometric oxide 47 minerals and to assess the quality of the analyses (Carmichael, 1967). Because analyses on unexsolved oxide phenocrysts invariably yielded excellent totals, and determinations on the standard both before and after each analytical session were reproducible, the recalculated totals provide some indicatim of the degree of exsolution within the analyzed area. On the average, five grains each of magnetite and ilmenite were analyzed for each sample, with an average of three analyses per phenocryst. In some highly exsolved phenocrysts, as many as 10 analyses were performed. All multiple analyses of single grains were averaged. With few exceptions, unexsolved phenocrysts were internally homogeneous and unzoned, so that averaging of multiple analyses merely increases the precision with which the bulk composition can be reported. For the exsolved phenocrysts, it was assumed that averaging of multiple analyses yields the closest approximation to the bulk composition of the grain prior to exsolution. Those analyses that could not be recast into a stoichiometric oxide phase or that yielded recalculated totals less than 95 wt% were rejected from further consideration. The remaining data set consists of ilmenite and magnetite analyses from 46 samples, of which 25 are from individual pumice samples (Table 3). In order to strictly employ the ilmenite-magnetite geothermometer to obtain an estimated quench temperature for an individual pumice sample, it is necessary to demonstrate that a single pair of ilmenite and magnetite phenocrysts and their surrounding glass coexisted in mutual equilibrium at the time of eruption. This requirement would generally be satisfied if a single composition of magnetite and 48 ilmenite were present within a sample. The range of 20 uncertainties intemperauirearidoitygelifiigacityofthesolutim modelofSpencerand Lindsley (1981) is reported assuming 31% uncertainties in Uspss and Ilm compositions. This is interpreted to mean that if the ss compositional uncertainties in Uspss and Ilmss are 51% within a single sample, then a single population of magnetite and ilmenite may be assumed. However, in the Topopah Spring Member, the average uncertainties in the mole fractions of Uspss and Ilmss within a sample are approximately 3%. It is not clear whether this variation is due to the presence of multiple magnetite and/ or ilmenite populations within a sample, or whether this variation is an artifact of averaging analyses from exsolved phenocrysts. Because it is not possible to resolve this dilemma with the available data, the estimated temperatures and oxygen fugacities presented herein are intended as approximations only. All respective ilmenite and magnetite analyses within a sample have been averaged to yield an ilmenite-magnetite pair for each sample. This approach is not totally without precedent. In a discussion of coexisting iron-titanium oxides of salic volcanic rocks, Carmichael (1967) states that "As there is little to no zoning in all the oxide minerals, the bulk analysis derived from the probe data of between 15 and 20 grains should very closely approximate to their bulk composition." (Carmichael, 1967, p. 43). Although Carmichael was not referring to exsolved phenocrysts, the intra- sample variation in this study is of the same or smaller order of magnitude. Figure 9 illustrates the range in estimated quench temperature and oxygen fugacity for the samples of the Topopah Spring Member based on the mean composition of ilmenite and magnetite phenocrysts within a 49 I W0 NO 25 L 1 I l l I l 600 700 800 900 1000 1100 1200 T (°C) Figure 9. Estimated quench temperature and oxygen fugacity determined from coexisting ilmenite and magnetite phenocrysts. MNO, NNO, and FMQ indicate the experimental buffer curves for Mno- Mn 0 , nickel- nickel oxide, and fayalite-magnetite-quartz, respectively, at 1 bar total pressure (Haggerty, 1976). 50 0325 at 6:03 mounts 2c 3023 u gone—am Edam .3 8.: ooh. om. ooxo . .8 a 2: .8. a M8w .. L .34. . 8n (“1) MM .3 .0... ... 80— Ono Och Illifllul‘lj . .2646: Se Emu: 3n n: «0005 ...—MB 310353 ..I. 30856 sumo 835$ .89 . amp can (W) mil-H .0005 aouufio 05 5 53:3 £503.30 o» cog—30.x 5 endgame mo muaumummaov access emumaHumm .oa 0.53m (W) Mum 51 NP . D a . >- i. t I 0 “we; . 1 a 1 240- . P B )- .. U . a 120- o . - I up 3:0 o 1_1. _ 1 1.1 L 1 ‘1- P m . r- B - 3 _ ... m 2 m m u- . O. _ C! 0 LI!“ Lje 1 1 000. ' I L we :1 400- m'oID L ' El .. E) nah . o A A L 1 ' J; L —] 240- . I. D r- 0 f . ' I - 120- 0 .1 (11 In . I D _ I! I“ I o 1 1 1 11111 L 1_ 16F . D I F E! L I I en a_ . % D D 1 w _ I I o v u 1 1 1 - 1 1 1 1 1_1 A 600 700 800 900 T(°Cl Figure 11. TI 60 Th 8!: 2, I 0% 3 I g I0 1" a f" C] -. - r. o ; LL 1 L 200- ’ I 1Nr‘ .lfl ' El. 1m+L14 1 1. 1 1 1 e1 1 1_1 - J t I . 'o fir- I .- '$.% . - E] _ ma 'fi I 0 4+ 1 141 141 1 1 14 ”L D )- '- 24? t3 ' '9?» . ' I E! I- - fl .. - 080-: .- ‘8 1 1 #41 LL 1 1 1 1 1 1 L LL 1 0.8r F d' 0.4- I 0‘ .. D£ ~- . . a I o 1%; 1 1 1 L1 14 1 1_1 80 . - - al 9 o 72 ' Dc: ' a)" I oo . ' “600 700 800 900 I000 71°01 Chemical variation with estimated quench temperature. Sioz in weight %, all other elements in ppm. pumice; open symbols = whole-rock tuff. Solid symbols = whole 52 sample. Also included are four data points recalculated from analyses previously published by Lipman (1971). These temperatures and oxygen fugacities were calculated according to the method of Spencer and Lindsley (1981) using a modified Fortran version of their computer program TFOZ. The mole fractions of ilmenite and ulvospinel were calculated according to the method prescribed by Stormer (1983), using a modified Fortran version of his computer program OXYCALCZ. This latter program also calculates mole fraction values according to the schemes suggested by Carmichael (1967), Anderson (1968), and Spencer and Lindsley (1981). The deviation among these various methods has been thoroughly discussed by Stormer (1983). For the samples considered in this study, the difference in the calculated temperature and oxygen fugacity using the various methods is invariably less than the estimated model errors including the 20 compositional uncertainty. The temperature data in Figure 9 range from 650 to 985‘C and show nearly continuous variation from approximately 700 to 900°C. Within this range, however, there appears to be a dichotomous distribution of the glassy pumice samples (solid symbols), evident by the absence of data in the interval from 786 to 812°C and the steeper slope of the oxygen fugacity trend for the lower temperature group. As one might predict from the extreme chemical heterogeneity among pumice samples within the uppermost horizon of the ash-flow sheet, the estimated quench temperatures of individual pumice samples at this level span the entire temperature range of the eruptive sequence. Figure 10 illustrates this variation in estimated quench temperature with stratigraphic height at each of the sample locations. The open symbols, which represent samples of whole-rock tuff, show relatively 53 little variation in quench temperature throughout the crystal-poor rhyolite, with a notable increase within the crystal rich caprock. Thus, the degree of heterogeneity in the compositions of the iron-titanium oxides and their respective temperatures, within and among pumice samples at a given stratigraphic horizon, correlate fairly well with the chemical heterogeneity at the same level. Figure 11 illustrates the variation of several trace elements and Sioz with estimated quench temperature. All the trace elements show similar trends when plotted against Sioz (cf. Figure 8), but opposite in direction. There is considerably greater scatter in the distribution of these elements for estimated quench temperatures above 800 C, which distinguishes the two populations that correspond to the high-silica rhyolite and lower silica quartz latite samples. This is most clearly illustrated by the solid symbols which represent the glasq pumice samples. As noted previously, these two populations are more prcnainced for the compatible elements and these elements are more abundant in the quartz latite. It is also apparent that the two somewhat higher estimated temperatures of 981 and 985°C correspond to pumice samples that are among the most mafic in composition. Sil' icate Phenocmst and Glass ggmpggitions A common feature of compositionally zoned ash-flow sheets is the progressive increase in the abundance and variety of phenocrysts with stratigraphic height, which is interpreted to reflect a corresponding increase with depth in the magma body. As noted in the description of the Busted Butte section (p. 10), the variation in phenocryst content increases uniformly upward from 1 to 6% in the high-silica rhyolite, 54 and increases to approximately 21% at the transition to quartz latitic caprock. Although the rate of increase in phenocrysts changes abruptly, Lipman et al. (1966) reported that no discontinuity in phenocryst content or in other physical aspects of the tuffs is evident at this transition, and that the changes appear to be entirely gradational. However, their description of this gradational change in phenocryst abundance is based on observations of whole-rock tuff, and therefore the exact nature of the gradient in phenocryst abundance within the magma body is not clear. In lieu of the discontinuities in chemical composition among the pumice samples, similar discontinuities in phenocryst abundance, composition, and variety may be expected to occur at the interface between magmas of contrasting composition, temperature, and water content. Whether such discontinuities are preserved or obscured would depend on the degree of interaction between the contrasting magmas. Because of the large uncertainties in modal determinations in thin sections of pumice samples with relatively few phenocrysts, the following discussion will emphasize compositional data. Descriptions of the chemical compositions of the phenocrysts will focus on those aspects that are sufficient to evaluate the hypothesis of a magmatic interface and to determine the degree of interaction (commingling) of the contrasting magmas. Bietite Biotite is the only ferromagnesian silicate that occurs throughout the eruptive sequence. Phenocrysts vary in abundance from approximately 0.05% in the high-silica rhyolite to 0.9% in the quartz latite, and typically occur as euhedral grains, 0.5 mm in length. Twenty four pumice samples that are representative of the total 55 variation in pumice composition were selected for analyses. Microprobe analyses of biotite from these samples are presented in Table 4. Individual biotite phenocrysts are relatively homogenous and unzoned, although a few grains were observed with overgrowths of a different biotite composition. This is in contrast to biotites from the Bishop Tuff, which are reported to be the most inhomogeneous phenocryst in the tuffs (Hildreth, 1977). Warren et al. (1984) report an unusual (herringbone) type of alteration for biotite in lithic fragments of the high-silica rhyolite portion of the Topopah Spring Member, and note that biotite with identical alteration is found in the gmmdmass of samples from this horizon. Analyses of these altered biotites (Warren et al., 1984) are 4 to 5 wt.% higher in SiOz than those from fresh samples, and have molecular Mg/(Mg+ Fe) greater than 0.80. No such alteration textiires or compositions were observed in any of the biotites from this study, which are all phenocryst separates from pumices samples. It therefore seems safe to conclude that the altered biotites were derived solely from lithic fragments and were not xenocrysts in the magma. Because individual phenocrysts are generally homogeneous, it was decided that a single analysis near the edge of the grain was the most efficient way to evaluate compositional variations among grains. A single compositional parameter, the molecular Mg/(Mg+Fe) or Mg#. is used to facilitate comparison of the biotite analyses, as iron and magnesium display the largest variation (Barium also shows considerable variation, ranging from below detection in biotites from the high-silica rhyolite (<0.09 wt.% BaO) to a maximum of 4.68 wt.% BaO in biotites from the quartz latite) . The compositional variation of all 56 200 I I I I I I I 150 - " > U _ q C OJ 3 100 *- i U — 0: _ .. L L]- — 50 " '- 0 [Fl TL r-f-I—LT , 0.35 0.45 0.55 0.55 0.75 Blotite Mg# Figure 12. Histogram of Mg# for 617 biotite phenocrysts from 24 pumice samples, calculated from microprobe analyses in Table 4. 57 I h "H." ‘ BustedButte (1) (2) (3) Sample , . ‘ '1». ‘74 : " mm: ". \s L ‘ ...... ‘ V555 0'53 6,7 2 SEE -:}‘ a .5 as; -:. 9 o T d a O lllLLll1 .§:§§5::. . “c as: 100- :g; ...-10 g :.:;:: ‘ 1333;. ---“. OR. . OM ‘ I . so- "3 s 55:: z 3:»). O . :r’ . I 555 5:53:5 43.14 L_-- - , - 1 555‘ I ‘5 . : éI:,17 . . . . \1 .19 ..... .. A 1 21-24 . . .. -.. ..- ... ..... .- 0 Q... 1 .1 ....... 1 o. .0 on ... ... ... . 1 loo; 0 . 1 1 .55 .65 Mg# in Biotite '5 . OI Figure 13. Mg# of biotite phenocrysts within pumice samples in relation to stratigraphic position in the Busted Butte section. 58 ll' Sample SiOz T "C Level + --------- + --------- + --------- +-|l l--+ --------- +-BBQ-10Cx 67.7 862 U . ......... + ......... + ......... llllllnl-+l ........ +-339-sc* 69.2 981 U + --------- + --------- + --------- +||l |---+ --------- +-BB9-IB* 69.6 - U + --------- + --------- + --------- +-l- Illll—+ --------- +-LW1-A 70.6 878 U + ......... ... ......... + ......... +'llll|+ ............ 41.33940! 70.? 890 U + ......... + --------- 4- --------- +-l l|l||+ ------------ +- CP3-2A 70.7 985 U + ......... + ......... + ......... I---| ---. ......... ..-sz-A 70.8 883 U Biotite M¢# Figure 14. Mg# of biotite phenocrysts within pumice samples in relation to whole-pumice Sio content, estimated quench temperature, and stratigraphic horizon U = upper level; L = lower level). An asterisk following a sample name indicates a combined sample of texturally identical pumices (see text). 59 Sample 310: TaC Level + “““““ 4' """"" + ---------- +l ---+ --------- +- CP3-ZB 70.8 884 U + ......... +¢¢l ...... + ........... :lllll--+ ........ +" Lw4-103 70.9 - U 1 ......... 1 ......... . ......... .-- II..-+ ......... +-cpa-10 71.0 862, u + --------- + --------- + --------- +--Il Ill-4» --------- +-LW4-SB 71.3 895 U + ......... ... ......... 4. ....... l'l ll ————— + --------- ‘-LW4-IB3 73.1 695 U + --------- 4.-.]. ----- + --------- +--- l--+ --------- +-Lw2-5 73.2 896 U 0.30 0.40 0.50 0.60 0.70 0.80 Biotite Mzt Figure 14b. 60 I Sample SiOz T °C Level + ------------ Il+ ----------- + -------- + --------- +-339—1At 75.9 815 U + ........ lilll- L L I+---JL--+ --------- + --------- +-603-11x 75.9 743 L. + ......... + ......... .---Llllllll ....... + --------- +-888-38 76.8 762 I. + ......... JJLIIIL ...... I"III-l-l---+-------—--+-BBS—853# 76.9 759 L. + --------- +lllll---l+ --------- + --------- + --------- +-BBB-20 77.0 686 L + ......... .--"IIIJI ..... "I“ ......... + ......... v-BBS-ISB 77.0 778 L . ......... .llll-l---+ ......... + --------- + ---------- CPI-3A 77.9 784 L + --------- +-llll----+ --------- +--I--l---+ --------- +-LW4-5Ax 78.2 - U + --------- + ------ I .--l--l---+ --------- + ----------- BB8—1 78.3 750 L + ........... +| ll I---+ ......... + ......... + --------- .-LW2- 10 78.7 887 u + --------- :-'l'll—--+ --------- + --------- + -------- +-BBS-5 7&8 - L 0.30 0. 40 0.50 0.60 0.70 0. 80 Biotite M8# Figure 14c. 61 617 biotite analyses is presented in Figure 12. There is a total range in Mg# from 0.39 to 0.71, and a clearly bimodal distribution with modes at 0.44 and 0.65 corresponding to the high-silica rhyolite and quartz latite pumice samples, respectively. Biotites with an Mg# in the range of 0.50 to 0.60 are relatively scarce, and within this range, there is a small compositional gap between 0.50 and 0.53. This distribution of biotite compositions is interpreted to reflect the variation of liquidus cmditions in the magma, and is consistent with the idea of a layered magma body. Biotites with Mg#50.50 were derived from the high-silica rhyolitic layer; those with Mg#_>_0.60 were derived from the quartz latitic layer, and biotites within the range 0.535Mg#50.60 were derived from the interfacial region between the two magma layers. The compositional variation of biotites within individual pumice samples is depicted in Figures 13 and 14. Figure 13 illustrates the variation of biotite Mg# in pumice samples according to their stratigraphic position in the Busted Butte section. Figure 14 displays the variation of biotite Mg# for all 24 pumice samples (11 quartz latites, 11 high-silica rhyolites, and 2 intermediate rhyolites) , which are arranged in order of decreasing whole-pumice silica content. All of the quartz latite pumice samples (67.7-71.3 wt.% Sioz) contain biotites with Mg# 2 0.60, with the exception of LW4-1OB which also has a single biotite with an Mg# of 0.43. In contrast, all of the high-silica rhyolite pumice samples (275 wt.% $102) contain biotites that generally have Mg# 5 0.60. Several of the pumice samples contain a few biotites that have compositions distinctly different from the dominant population or display a bimodal distribution. Although the implication of a 62 disequilibrium phenocryst assemblage is clear, extreme caution must be exercised in this interpretation here. It was noted in an earlier section that several of the pumice samples are combinations of texturally identiml pumices fragments, necessitated because of their small size. It is emphasized that the colors of the glass of the different pumice types are sufficiently distinct that the choice of which pumice fragments to combine is straightforward, and it is highly unlikely that pumice fragments from the extremes of the compositional range were combined. While the author has a high degree of confidence that the pumice fragments that were combined were in fact identical, the subjective nature of this choice, and the simple fact that they are not single parcels of quenched magma, makes suspect any attempt to interpret variations within these samples. Therefore, although the heterogeneities are not considered to be artificially induced, the combined samples are indicated by an asterisk to allow the reader to ignore them if desired. In this paper, any of the conclusions based on heterogeneities within samples, will rest firmly on evidence from single, uncombined pumice samples. In Figure 14, five of the nine combined pumice samples display unimodal biotite compositions, so that no artificial heterogeneity appears to have been induced in these samples. Four of these are quartz latites (BBQ-10C, BBQ-5C, BBQ-13, and BBQ-1C), and the fifth sample (LW4-lB) falls between the quartz latite and high-silica groups at 73.1 wt.% 5102. Ten of the samples in Figure 14 display either a bimodal distributicm or a sufficient range in biotite composition to be considered as evidence for magma mixing or commingling. All four of the combined pumice samples that display phenocryst heterogeneity are 63 high-silica rhyolites, and in two of these samples (BBQ-1A, LW4-5A), the expected low Mg# biotites predominate, with only a few biotites in the range of Mg# 0.63 to 0.66. Both of these samples occur within the upper few meters of the ash-flow sheet and are interpreted to reflect limited commingling of the high-silica rhyolitic and quartz latitic magmas during the final stages of the eruptim. The other two combined samples that display hazerogeneity. (BBS-853 and SUB-11) are fiamme from the lower portions of the ash-flew sheet (cf. samples 14 and 64 in Figure 2). The majority of biotites in sample GUB-ll occur within the Mg# range expected for the high-silica rhyolites, and the small amount of heterogeneity is interpreted to indicate commingling of high-silica rhyolitic magma with magma from the interfacial region. Sample BBB-858 clearly displays a bimodal distribution of biotite compositions, with nearly half of the biotite analyses having an Mg# that indicates derivation from the quartz latitic magma and the region near the magmatic interface. Even if one denies the possibility that this sample represents commingled magma because it is a combined sample, the fact that biotites with Mg# 2 0.60 occur at this level suggests that some of the quartz latitic magma was deposited relatively early during the eruption. There are six uncombined, single pumice samples shown in Figure 14 that contain a heterogeneous distribution of biotite phenocrysts, and are considered to be unequivoal evidence of magma commingling on the scale of a single pumice fragment (LW4-IOB, LWZ-S, BBB-38, BBB-20, BBS-158, and BBB-1). Sample LW4-1OB is a quartz latite pumice fragment with all but one of the biotites having Mg# > 0.6; the single biotite with an Mg# of 0.43 is characteristic of biotites from the high-silica 64 rhyolite. Similarly, sample LW2-5 is dominated by biotites in the range of Mg# 0.64 to 0.67, with only four biotites in the range of Mg# 0.43 to 0.44. The phenocryst heterogeneity in this sample (LW2-5, 73.2 wt.% Sioz) is particularly noteworthy in that it supports the hypothesis that the few pumice samples that occur in the interval of the previously noted compositional gap between the quartz latite and the high-silica rhyolite (71.8 to 74.7 wt.% $102) formed from limited mixing of the two contrasting magma types. The other pumice sample that occurs in this interval (LW4-lB, 73.1 wt.% Sioz), appears to have a unimodal distribution of biotite compositions, although the mean Mg# is slightly lower than that of the quartz latites, and several biotites have Mg# < 0.60. The difference in biotite compositions between these two intermediate samples may reflect a difference in the relative positions of the end member magmas in the chamber (i.e., distant from or close to the interfacial region), and hence, in the timing and the degree of equilibrium attained after the mixing event ("commingled" versus "mixed"). Samples BBB-20, BBa-l, 888-38, and BBB-153 are all high-silica rhyolites, and the heterogeneous distribution of biotites within these samples is indicative of commingling of magma from various positions within the rhyolitic layer, and of commingling of high-silica rhyolitic magma with magma from the interfacial region and the quartz latitic magma. In summary, the following conclusions may be drawn from the compositions of biotite phenocrysts and their distribution within and amcmg single pumice samples: ( 1) the bimodal distribution of biotite compositions from the high-silica rhyolite (Mg#=0.44) and the quartz latite (Mg#=0.65) pumice samples, and the relative scarcity of 65 compositions in the interval from 0.5 to 0.6, supports the hypothesis that the transition from high-silica rhyolitic to quartz latitic magma within the chamber was abrupt, with a liquid-liquid interface separating the two contrasting magma types; (2) biotites within the high-silica rhyolite pumice samples range from Mg# 0.39 to 0.50, suggesting that the high-silica rhyolitic magma was zoned, and that biotites in the range of Mg# 0.53 to 0.6 crystallized near the interface: (3) the occurrence of biotites with Mg# 2 0.6 in the lower horizon of the ash-flow sheet, indicates that plumes of quartz latitic magma may have risen into the high-silica rhyolitic magma during early stages of the eruption; (4) the presence of biotite phenocrysts from the extremes of the compositional range, within single pumice fragments, provides evidence that limited magma mixing or commingling between the high-silica rhyolitic and quartz latitic magma occurred during the eruption. W2 Consistent with the hypothesis of a magmatic interface is the ubiquitous occurrence of pyroxene phenocrysts in all of the quartz latitic pumice samples, and the notable lack of pyroxene in the high-silica rhyolitic pumice samples. 0f the 24 pumice samples in whidn biotites were analyzed, 14 contain pyroxene and only one of these is a high-silica rhyolite (LW4-5A). Not surprisingly, only one pyroxene grain was found in this high-silica rhyolitic pumice sample, which also contains a bimodal distribution in biotite composition. In the quartz latite, euhedral pyroxene phenocrysts average 0.5 mm in length and reach an abundance of approximately 0.4%. Microprobe analyses of the edges of pyroxene phenocrysts are presented in Table 5. 66 En E“ Fs Figure 15. Compositional variations of pyroxene phenocrysts within pumice samples: data from microprobe analyses in Table 5. 67 l I Sample 510. 7°C Level + ......... + ........ II---I-IIIII III I-II+---II----+-889-noa 67.7 862 u + ......... IL—I ..... +I---I-I_I+I-IIIIIIII-LI-L--+-889-5c: 69.2 981 u + ......... + --------- + ....... I-+-—II-IIIIIIII----I-+-889-1Bx 69.6 - U . ......... ... ....... I-+ ...... I--II-I-IIIIII-III ..... +-Lw1-A 70.6 878 U . ......... . ......... .--I ...... .-I----III|---..-I---.-...-m. 70.7 .9. u . ......... . ....... ll.----ll-ll.l-|llllIII|ll.."ll-.-¢p3-2A 70,, 935 U + ......... + ...... I-—+ ........ I+IIII--IIII ......... +-Lw2-A 70.8 883 u + ......... + ...... I--+I ..... IIIIJIIIIIIIII ........ +-CP3-ZB 70.8 884 U + ......... + ......... +I ........ +--I ----- I+-I--I----+-Lw4—108 70.9 - u + ......... + ........ I+-I-III-I-IIIIIIII-II ......... +-cpa-10 71.0 862 U + ......... + ......... + ......... +-II-I--I-+I -------- +-LW4-SB 71.3 895 U + ......... + ...... I-I+I-I“II-IIIIII---I-+ --------- +-Lw4-18x 73.1 695 U + ......... + ......... +----I----IIIIII--II+ ......... +-LW2-5 73.2 896 U 0 . 60""-"0:66"-"-BT;B"""ST;§"J“5T63“"--07EEWMM 7” - U PYroxene Mg# Figure 16. Mg# of pyroxene phenocrysts within pumice samples in relation to whole-pumice sic content, estimated quench temperature, and stratigraphic horizon %U = upper level; L = lower level). An asterisk following a sample name indicates a combined sample of texturally identical pumices (see text). 68 40 I r F I 30 - r ~ > U _ ... C _ OJ 3 20 ' r 0' OJ L. .. L "' -... U- I! 10 " .7 0.60 0.65 0.70 0.75 0.80 0.85 Pyroxene Mg# Figure 17. Histogram of Mg# for 307 pyroxene phenocrysts from 14 pumice samples, calculated from microprobe analyses in Table 5. 69 The compositional ranges of pyroxenes within pumice samples are illustrated in Figures 15 and 16. All but two of the pyroxene analyses plot in the augite field (Figure 15), the exceptions being a subcalcic augite (CP3-2A) and a clinohypersthene (BB9-1C). Although there is considerable scatter in the iron-magnesium ratios of the pyroxenes (Figure 16), the mean Mg# of the pyroxenes within each pumice sample falls within a relatively narrow range between 0.74 and 0.79 and lies within one standard deviation of the mean for all pyroxene analyses (Figure 17). Hornblende 0f the 24 pumice samples in which ferromagnesian silicates were analyzed, only four were observed to contain hornblende. Previous sundies of the Topopah Spring Member (Lipman et al., 1966; Byers et al., 1976) reported the presence of trace amounts of hornblende in the quartz latitic caprock only. However, three of the four pumice samples that contain hornblende are high-silica rhyolites, and two of these are from the base of the ash-flow sheet. Microprobe analyses of the hornblende phenocrysts are presented in Table 6, and their compositional variation in terms of Mg# is plotted in Figure 18. Because of the paucity and erratic distribution of hornblende in the pumice samples, they are of little use in evaluating the hypothesis of a magmatic interface. 70 Sample 510. 7°C Level + ......... + ......... +-II-II---+-I-------+---------+- CP3-ZA 70.7 985 u + ......... +---I ..... +I ........ + ....... I-.. ......... +- 888-158 77.0 778 L . ....... IIIIJI ..... + ......... + ......... + ......... +-CP1-3A 77.9 784 L + --------- +'--l-"--+ --------- + --------- + --------- +-LW4-5A¥ 78.2 - U 0.45 0.50 0.55 0.60 0.65 0.70 Hornblende Mg# Figure 18. Histogram of Mg# for 22 hornblende phenocrysts from 4 pumice samples, calculated from microprobe analyses in Table 6. 71 Feldspa; Plagioclase and sanidine together make up approximately 90% of the total phenocryst assemblage in both the high-silica rhyolite and the quartz latite. Plagioclase abundances vary from 0.5% in the high-silica rhyolite to 7.3% in the quartz latite and sanidine abundances vary from 0.4% in the high-silica rhyolite to 11.6% in the quartz latite. Both feldspars occur as well formed crystals averaging 1 mm in length, however, sieve textures and embayed crystal faces are common, particularly in phenocrysts from quartz latitic pumice samples. Microprobe analyses of plagioclase and sanidine phenocrysts are presented in Tables 7 and 8, respectively. The compositional variations of the feldspars are complex, due in part to the strong zoning profiles in some of the phenocrysts. The zoning profiles of plagioclase and sanidine phenocrysts from four pumicesamplesareshowninFiguresBandZO. Thedatapointsineach ternary diagram are from a single phenocryst, with the smaller symbols representing analyses of phenocryst centers and the larger symbols representing analyses of phenocryst edges. In Figure 21, each ternary diagram illustrates the variation of only the edge compositions of feldspar phenocrysts within a single pumice sample. The samples depicted in Figure 21 span the entire range in whole-pumice chemical compositions. Although the variation of feldspar edge compositions within pumice samples is relatively large, and there is overlap between samples, it is possible to distinguish a dominant edge composition that is presumed to be the equilibrium composition for a given pumice sample. In general, the plagioclase in the quartz latitic pumice samples is more calcic, less sodic, more potassic, and contains more 72 An 18 m- o .0 £5 A0 A" Dr CP3-23 U '% b % g 3 AD An 0p 0 g, an AD 07‘ Figure 19. Zoning profiles in plagioclase phenocrysts from pumice samples. Each ternary diagram represents a single phenocryst. Large open squares =- edge analyses: small asterisks = center analyses. 73 An Ab Or‘ 888-158 An A0 00 Figure 19 (cont'd.) . 74 An BBQ-10C Ab. 0r‘ An Ab OP Figure 19 (cont’d.) . 75 An CPS-28 Eh; [1---1-ae__1\ [_ 1-_a-.._,_Y L...__.l [_‘_‘_...___j L_eelm_1_l\ M Z- _1°5___1\ Ab 0r BBQ-10C [_‘i-o- :i\ LAMP»- \ Lew“ R All Or‘ Fflmnxl 20. Zonnr; pnmfiles :hn semkfine Itenomgets lkom Ignace lemqfles. Itch.'Uesemy'dflepzmlrepneimtseasungleldxextryst. large open experes == edge anedyses; smell anflrmuSks == cemanranahwesh An 76 AD Or‘ An 888-158 [,--e_i- A fireelm111§_ [1-88mi \ / ... ..- T Or‘ kanxzzo uxxmfd.). 77 An An I? A g O 1Q ‘v m. An qr; An 7: o 5" 4‘- 60: o .9 3 m I g: (I: 1-1-18111_1\ 0m!!- \ 0P AAAA‘A‘L‘ Or AU Or A An n An Q A” V "a" An ., ”7'3 ’ Q An (a 4? (p .1? a; :65 bl Q Q I Q U 9 Q \I I I ““fihh—Q—ges I u . .\ - _ -- 0! a g -“‘_ 4‘\ 0p ‘9 a, -—-m \ Or‘ m‘*--J..—_1\ 0" m-JS-e---\ 0" 0r~ Ab 0r Figure 21. Compositional variations of microprobe edge analyses of feldspar phenocrysts within pumice samples. Data from Tables 7 and 8. 78 barium than the plagioclase in the high-silica rhyolitic pumice samples. Sanidine in the quartz latitic pumice samples is more calcic, more sodic, less potassic, and contains more barium than the sanidine in the high-silica rhyolitic pumice samples. For example, the dominant plagioclase composition in quartz latitic pumice CP3-2A is An26Ab640r10 compared with An17Ab-760r7 for high-silica rhyolitic pumice BBB-1. Similarly, the dominant sanidine composition in CP3-2A is An4Ab420r54 compared with AnlAb3-70r62 for BBB-1. These compositional differences between feldspars from the quartz latitic and high-silica rhyolitic pumice samples are consistent with the interpretation that the magmatic liquid was compositionally stratified before the onset of crystallization. Furthermore, the compositional differences among feldqnars within single pumice samples provide additional evidence of magma commingling during eruption. W A knowledge of the liquid composition of the Topopah Spring magma is crucial in evaluating the hypothesis that the magma body was layered. Bubble walls of glassy pumice fragments provide the closest approximation to quenched samples of the liquid portion of the magma, and can be easily analyzed using the microprobe, thereby avoiding problems of obtaining clean glass separates and allowing determination of the degree of homogeneity of the glass within a pumice fragment. Microprobe analyses of bubble walls from 10 representative pumice samples are presented in Table 9. 79 Sample 510: ’1' °C Level + ......... + ...... III+ ------ II-II-II ----- I---U ----- +-BBS-IOC¥ 67.7 862 U + --------- + --------- + ------- '-+ --------- ...-o ------- +-BBS-SCt 69.2 981 U + ....... I-+I ........ + --------- I-I-I---III--n ------ +-CP3-2A 70.7 985 U + --------- + --------- +II--I'll-.|'nl----+-U ------- +-CP3-ZB 70.8 884 U + --------- .---IIII--+---0 ..... + --------- + --------- +°LW4-IB* 73.1 695 U + --------- +'--'----'+-ll-IIDI-+ --------- + --------- +-Lw2-5 73.2 896 U +----III-III-I-a----+ --------- + --------- + --------- +-888-38 76.8 762 L +--II-III-+-a ....... + ......... + ......... + --------- +-888-158 77.0 778 1. +----I'I-I+ --------- + --------- + --------- + --------- +-BBB-l 78.3 750 L +---II'ID-"-I ...... + ......... + --------- + --------- +—CP3-1A 78.4 724 U .000 0.015 0.030 0.045 0.060 0.075 Ti Cations/32 Oxygens Figure 22. Histograms showing compositional variations in titanium in the bubble walls of pumice samples. Ti atims calculated on the basis of32 oxygensfrommicrcprobedatainTable9. Lightcolcredsquare on baseline shows the composition of the whole-pumice calculated on the same basis from the data in Table 2. 80 I Sample 510. T ’0 Level + --------- + ------- '-+ -------- I'Il-l-B' -.--l------+-BBQ-IOC$ 67.7 862 U + --------- + --------- + --------- +--Cl ------ +--' ------ +-BBS-50¥ 69.2 981 U +----II--I+--I ...... 4--I--n---+ ...... II-III' ------- l-CP3-2A 70.7 985 U + --------- + --------- + ------- I "D ------ + --------- +-cp3-28 70.8 884 U + --------- +--IIIIL-+ ......... + --------- + --------- +-1.w4-18t 73.1 695 U + ......... + ..... n---+-IIIIIII—I-II--I---+ ......... +-LW2-5 73.2 896 u .--l..-lIBI+I ........ + --------- + --------- + ----- I---+-BB8-38 76.8 7 62 L +l----II-D" -------- + --------- + --------- + --------- +-BBB-ISB 77.0 778 L 0 ...... I.-. ......... + ......... + ......... + ......... +-888-1 78.3 750 1. til---Il..|'«l- --------- + --------- + --------- + --------- +-CP3-1A 78.4 724 U 2.50 2.75 3.00 3.25 3.50 3.75 Al Cations/32 Oxygens Figure 23. Histograms showing compositional variations in aluminum in the bubble walls of pumice samples. Al cations calculated on the basis of 32 oxygenns from microprobe data in Table 9. Light colored square on baseline shows the composition of the whole-pumice calculated on the same basis from the data in Table 2. 81 It was noted earlier that the composition of the glass may differ from that of the magmatic liquid because of volatile loss and secondary hydration. An additional complexity is the possible volatization of sodium by themicroprobe beam (Nielsen and Sigurdsson, 1981). In lieu of these difficulties, discussion of the glass compositions will be limited to consideration of the elements titanium and aluminum, as they are considered to be relatively stable (Lipman, 1965). The glass analyses were recalculated to cation proportions on a 32 oxygen basis, and histograms of the Ti and Al data are presented in Figures 22 and 23. The Ti and Al concentrations in the glass show a general increase in concentration with decreasing whole-pumice $102 content that is parallel to the whole-pumice Ti and Al concentrations. The glass analyses of the high-silica rhyolitic pumice samples show relatively little scatter, and their nearness in concentration to that of their respective whole-pumice is consistent with the low abundance of phenocrysts in these pumice samples. In contrast, glass analyses of the quartz latitic pumice samples show greater variability, and the higher concentration of Ti in the corresponding whole-pumice reflects the influence of the greater abundance of mafic phenocrysts. Glass analyses of the pumice samples with intermediate whole-pumice Sioz content have Ti and Al concentrations that are intermediate between those of the high-silica rhyolitic and quartz latitic pumice samples, consistent with the earlier contention that they are mixed rocks. In particular, sample sz-S shows the greatest degree of glass heterogeneity of the intermediate pumice samples, and also shows the greatest degree of heterogeneity with respect to biotite and feldspar compositions (cf. Figures 14b and 21). 82 It is apparent that there is a greater degree of heterogeneity within pumice samples from stratigraphic levels where there is a greater degree of heterogeneity among pumice samples. This is not surprising considering that the pumice samples from the upper level of the ash-flow sheet were ejected later in the eruption, and thus had a greater cpportunity to commingle with overlying magma of contrasting compositions. e ' e V Several previous studies that include phenocryst data from the Topopah Spring Member have also suggested that the compositional variations of liquidus phases resulted from growth in a magma that was compositionally zoned prior to the onset of crystallization, although these studies used samples of whole-rock tuff (Lipman et al., 1966; Byers et al., 1976; Warren et al., 1984; Broxton et al., 1982). More recent work has suggested that there are also differences in the REE phases between the lower and upper units. Scott et al. (1984) have shown that the REE phase in the rhyolitic units is allanite, whereas in the quartz latitic units the REE phase is perrierite/chevkinite. DIS CUSSION 0 ' ' u 'c te e The chemical, mineralogical, and textural heterogeneity within and among pumice samples in the Topopah Spring Member clearly emphasizes the importance of the scale of observation when evaluating petrogenetic processes. 0n the scale of a handsample of whole-rock tuff, the progressive variation from crystal-poor high-silica rhyolite to crystal-rich quartz latite with increasing stratigraphic height was inferred to reflect the trend toward increasingly more mafic, crystal-rich, high temperature magma with depth in the chamber (Lipman et al., 1966). On the scale of individual pumice samples, however, the relationship between stratigraphic position in the ash-flow sheet and depthinthemagmadnamberneedstobereevaluated because there is a variation in the compositions and estimated quench temperatures among pumice samples at any given stratigraphic level. Rather than assuming a chaotic state in the magma body, this compositional and textural heterogeneity is inferred to result from simultaneous eruption of compositionally contrasting magma from different parts of a magma chamber that was systematically zoned with respect to composition and temperature. Not only is there a host of evidence from other ash-flow sheets that indicates depth-dependent compositional and thermal gradients within magma chambers, but the theoretical fluid dynamic regimeofmagmawithdrawalfromazonedmagmachamberpredictsthat in most cases, the chamber will not be simply emptied in a layer cake fashion. For example, Blake (1981) comments that this view that ash-flow sheets simply represent inverted magma bodies is too 83 84 simplistic because this would require an unrealistic flow pattern of magma renoval. Blake (1981) approached the problem by a mathematical analysis of the removal of magma from a chamber by applying the solution of Weissberg (1962) for the velocity field within a large flat-topped reservoir as a fluid flows upward into a cylindrical conduit. If the diameter of the conduit is considerably smaller than the diameter of the reservoir, fluid will approach the conduit from all directions in a radial fashion, not just from directly below it. At large horizontal distances from the conduit, the radial component of fluid velocity is small in comparison to that directly below the conduit. Hence, the net, or angular velocity field developed near the entrance region to the conduit results in a parabolic velocity profile composed of hyperbolic streamlines along which fluid accelerates towards the conduit (Blake, 1981). By considering this velocity profile, one can determine the sub-circular locus of points within the fluid reservoir that will reach the conduit entrance at the same time. This hyperbolic profile, or "eruption isochron", as defined by Blake (1981), relates position within the reservoir to time of entrance in the conduit for a given eruptive volume. General theoretical solutions describing the dynamics of magma withdrawal and the geometries of evacuation isochrons for assumed boundary conditions have been presented by Blake (1981), Blake and Ivey (1986a, b), Spera (1983, 1984), and Spera et al., (1986). Figure 24 is a highly schematic cross-sectional cartoon that illustrates the general model of a zoned magma body as proposed by Smith (1979), on which several hypothetical eruption isochrons have been superposed. Admittedly, this depiction is a gross 85 \ / Erupted volume High-silica rhyolite ‘ 1 ”W T NN F r/‘ l l i/ “ Quartz latlte i ‘ l l l l ’ ? 7 -------- Dominant volume Eruption of the Topopah Spring Member Figure 24. Cross-sectional cartoon of a layered magma body. Circles represent cross-sections through hyperbolic eruption isochrons (Blake, 1981), indicating the locus of points within the magma chamber of magma that will reach the vent simultaneously. 86 oversimplification, as the actual shapes of the 3-dimensional hyperbolic surfaces will be governned by the geometries of the conduit and reservoir and the physical properties of the magma. For example, eruption through a ring fracture systen, which is more appropriate for the Topopah Spring Member, would be better approximated by a toroidal evacuation isochron with a large width to depth ratio. It is also apparent from geologic field evidence that the conduit plumbing systems of large caldera forming ash flows do not remain constant during the course of eruption. Precise mathematical modeling of the evacuation isochrons for these complex and transient geometries can quickly become intractable. The more immediate goal of this study is to show that the I chemical hezerogeneity of pumice samples in the Topopah Spring Member is consistent with the qualitative predictions of the general fluid dynamic models. Figure 24 shows several of an infinite number of evacuation isodnronsthatconldbeconsidered fromtheonsettothefinal phase of eruption, with that representing the final phase having a volume equal to the total volume of the eruption. Each successive evacuation isochron will draw magma from progressively deeper levels at the expense of magma near the roof of the chamber. However, as illustrated by the largest isochron in Figure 24, magma near the roof of the clnamber is not completely exhausted but is continually erupted along with magma from all levels down to the deepest level tapped. Assuming that the magmatic gradients change monotonically with depth in the chamber, each successive isochron will sample magma of progressively greater differences in chemical and physical properties. Thus, the fluid dynamic model for eruption from a zoned magma chamber predicts 87 that successive volumes of magma leaving the vent will be composite mixtures of magma with increasingly heterogeneous bulk properties. The geochemical data from both the whole-rock tuff and whole pumice samples are consistent with this model for subterranean eruption dynamics. The whole-rock tuff samples, which become more mafic with increasing stratigraphic height in the ash-flow sheet, represent the bulk composition of a given eruption isochron and are composite mixtures of quenched magma from various positions within the magma chamber. The whole pumice samples, which span a progressively greater compositional range with increasing stratigraphic height in the ash-flow sheet, represent the composiin'on of quendned parcels of magma from various positions along the periphery of an evacuation isochron. There are several alternative mechanisms that might give rise to compositional heterogeneity within a "depositional isochron". For example, several ash flows that erupt from laterally separated vents that extend to different depths in the magma chamber could coalesce during emplacement to produce a composite mixture of compositionally contrasting pumice fragments. The possibility of subaerial coalescence during eruption from separate vents along the ring fracture system of the Claim Canyon caldera must be considered and obviates the need for development of criteria to distinguish between the effects of subaerial mixing and subterranean mixing in the magma chamber/vent system. However, it is emphasized that the fluid dynamic considerations dismissed above would be applicable to each of the laterally separate vents or semi-continuous segments along a ring fracture system. It might also be considered that successive portions of a turbulent ash flow could entrain and suspend pumice fragments of different 88 compositions as the ash flow passed over earlier erupted material. Subaerial mixing undoubtedly occurs to some extent, however, it is difficult to conceive of how pumice fragments from the top of the ash-flow sheet, that are identical in composition and estimated quench tenperature to pumice fragments from the base of the sheet, could be continually rafted upward for the duration of the eruptive episode. Spera (1984) has noted that the time interval that a parcel of magma wendsinthesubaerialrealmbeforecomingtorest is on the order of 102 s in comparison to 104-405 8 for the duration of an eruptive episode. Moreover, the heterogeneities in phenocryst and glass compositions within single pumice samples provide clear evidence of subterranean mixing. The ocoirrence of macroscopically banded pumice fragments, such as those observed in the Valley of Ten Thousand Smokes and Crater Lake eruptives (Smith, 1979: Bacon, 1983, Hildreth, 1984) would provide further evidence for subterranean mixing, however, its apparent absence is not a limitation. In a study of the Black Mountain volcanics, Vogel et al. (in press) have documented the occurrence of unzoned, disequilibrium phenocryst assemblages within individual pumice samples that have homogeneous glass compositions. They conclude that the mixing event was vigorous enough to homogenize the liquid, yet short enough to inhibit zoning of the phenocrysts. Whether diverse compositions of a stratified magma body will be simultaneously withdrawn, and the degree to which the diverse compositions may mix will be largely governed by the driving force of the eruption and the viscosities of the magmas (Blake and Ivey, 1986a, b; Campbell and Turner, 1986; Blake and Campbell 1986). 89 E] E I. '3-1' '31! E The geochemical data from glassy pumice samples further constrains the inferred chemical and thermal gradients within the pre-eruptive magma dnamber. In contrast to the whole-rock tuff samples, which are composite mixtures of compositionally heterogeneous pumices fragments, the pumice samples define trends that display abrupt changes in abundance on interelement variation diagrams and apparent compositional gaps for certain elements. Because the pumice samples from the uppermost horizon of the ash-flow sheet span the entire range in major and trace element composition and estimated quench temperature, these gaps do not appear to be an artifact of inadequate sampling of pumice fragments from the central portion of the eruptive sequence. Rather, these gaps and abrupt changes in elemental concentrations are inferred to reflect the changes in composition and temperature across a liquid-liquid interface between chemically and thermally contrasting magmas within a single chamber (Schuraytz et al., 1985). Similar conclusions have been drawn from other pyroclastic deposits in which heterogeneous pumice samples preserve evidence of compositional gaps (Fridrich and Mahood, 1987). This hypothesis of a liquid-liquid interface within the magma body is further supported by the abrupt change in phenocryst compositions and increase in phenocryst content at the transition from rhyolite to quartz latite in the ash-flow sheet. Previous interpretation of this lithologic feature (Lipman et al., 1966) concluded that the abrupt change in crystal content did not result from downward settling of phenocrysts from the rhyolitic magma and simple accumulation in the erupted part of the quartz latitic magma. Because most of the chemical variation is due to differences in groundmass composition, they 90 inferred that crystallization occurred in place within a magma body that was chemically zoned in the liquid state. The more advanced stage of crystallization in the lower, quartz latitic part of the magma chamber, in spite of its higher temperature, could be explained by an increased water content in the upper part of the magma chamber resulting in a lowering of the liquidus temperature. However, as this change in crystal content is more abrupt than gradational, this feature is reinterpreted in light of recent theoretical and experimental fluid dynamic studies. Theoretical interpretation of the ocoirrence of mafic inclusions in silicic lavas (Eichelberger, 1980) and laboratory models of replenished magma chambers have illuminated a host of fluid dynamic phenomena that can result when a relatively hot, compositionally dense liquid is injected below a cooler, less dense liquid (Huppert and Sparks, 1980: Huppert and Turner, 1981: mippert et. al., 1982b, 1984; McBirney et al., 1985; Baker and McBirney, 1985). Of particular interest is a recent experiment (Huppert et al., 1984) in which the viscosity of the cooler and compositionally less dense upper layer was considerably greater than that of the hotter and denser layer below. An immediate effect of this thermally unstable situation is the growth of crystals in the lower layer at the interface due to heat transfer to the upper layer. Crystallization in the lower layer auses the surrounding fluid to become less dense and this less dense fluid was released immediately and continuously from the interface into the overlying layer with no Significant mixing. Subsequent crystallization also occurred within the plumes that had risen from the interface. By varying the initial conditions of 91 temperature, composition, viscosity, and configuration of the various fluid layers, Huppert et al. (1984) have observed numerous double-diffusive effects of relevance to magmatic processes. It has been pointed out that the existence of compositional gaps within pyroclastic deposits does not necessarily mean that one existed in the parental magma chamber (Spera et al., 1986). A short eruption hiatus or an abrupt increase or decrease in magma discharge could produce a compositional gap in the eruptive products of a continuously zoned magma chamber. Spera et al. (1986) maintain that it is impossible to invert stratigraphically controlled geochemical data to obtain in situ magmatic gradients unless one has knowledge of the location of vents and the variation of magma discharge with time. While it is not possible to directly ascertain the discharge rate of the Topopah Spring magma, the oconrrence of bimodal phenocryst compositions within pumice samples fron both early and later stages of the eruption, the overall continuity in estimates of magmatic tenperatures, and the absence of even a partial cooling break at the transition from high-silica rhyolite to quartz latite support the hypothesis of compositional gap within the magma body. The discontinuous chemical gradients and abrupt change in phenocryst content and composition in the Topopah Spring Member are consistent with a model in which a distinct liquid-liquid interface separated relatively high temperature, phenocryst-rich quartz latite from overlying lower temperature, phenocryst-poor high-silica rhyolite in a single magma chamber. The geochemical data from this ash-flow Sheet should provide useful boundary conditions for the evaluation of double-diffusive phenomena in a particular geologic system. CONCLUSIONS The magmatic gradients inferred from chemical analyses and estimated quench temperatures of glassy pumice samples and phenocrysts from the Topopah Spring Member indicate that the transition from high-silica rhyolitic to quartz latitic magma within the chamber was abrupt, rather than gradational, with a distinct liquid-liquid interface separating the two contrasting magmas. Concomitant with eruption, this interface was disrupted, causing magma of contrasting composition and temperature to erupt simultaneously. Although limited mixing occurred as a result of a convergent flow regime, the duration of the eruption interval was not sufficient to exhaust the high-silica rhyolitic magma nor to produce a completely homogeneous magma. This is supported by the chemical and textural heterogeneities observed both within and among pumice samples throughout the ash-flow sheet, and implies that the Topopah Spring Member does not reflect a "simple" inverse stratigraphy of the chemical zonation of magma in the source chamber. Similar heterogeneities observed within other ash-flow sheets emphasize the importance of the appropriate choice of scale for sampling, when evaluating dynamic petrologic processes. 92 APPENDIX 93 Table 3. Micrcprobe Analyses of Ilmenite and Magrnetite. Field No. T102 Cr203 111203 Fe203 FeO M30 Mno Total USP ILM BB9-IWR 0.87 0.00 0.46 64.50 27.91 0.11 2.76 96.61 0.024 7.13 0.02 1.15 51.53 33.56 0.81 1.80 95.99 0.207 9.53 0.01 2.35 46.19 34.57 2.11 1.23 95.99 0.280 8.43 0.00 2.63 47.98 33.56 2.19 1.12 95.92 0.249 * 7.23 0.01 1.94 50.91 32.85 1.60 1.56 96.09 0.210 44.81 0.00 0.56 13.26 34.53 2.14 1.93 97.23 0.862 41.17 0.00 0.50 21.07 29.91 2.75 2.18 97.58 0.778 42.68 0.00 0.53 15.04 33.87 1.01 2.68 95.81 0.842 37.50 0.00 0.35 27.75 27.58 2.30 2.02 97.50 0.709 * 42.33 0.00 0.50 17.91 32.11 2.13 2.13 97.11 0.813 BBS-1A 1.19 0.03 0.51 63.11 27.98 0.12 2.68 95.62 0.033 0.11 0.05 0.24 65.37 25.57 0.06 4.07 95.47 0.003 10.15 0.04 1.46 44.83 37.27 0.37 1.52 95.64 0.310 * 3.16 0.04 0.68 59.11 29.70 0.17 2.74 95.59 0.090 * 35.53 0.01 1.06 29.79 26.44 1.59 2.64 97.07 0.684 BB9-1C 7.42 0.07 1.79 50.91 33.76 1.54 1.02 96.51 0.217 10.36 0.04 2.35 44.91 35.84 1.97 1.14 96.61 0.306 8.36 0.02 1.50 49.16 34.16 1.26 1.79 96.26 0.242 8.56 0.00 2.00 48.13 34.43 1.72 0.95 95.79 0.253 9.43 0.03 1.79 46.87 34.85 1.64 1.53 96.14 0.274 9.46 0.01 2.40 45.66 34.57 2.05 1.02 95.17 0.283 * 8.79 0.03 1.88 48.02 34.56 1.62 1.29 96.19 0.257 41.33 0.02 0.28 19.72 30.96 2.38 1.94 96.63 0.793 34.20 0.03 0.61 32.20 25.49 1.38 2.77 96.68 0.659 41.98 0.02 0.34 18.98 31.46 2.41 1.97 97.16 0.801 37.84 0.02 0.41 26.70 27.29 2.56 2.15 96.97 0.717 * 39.47 0.02 0.39 23.32 29.33 2.23 2.16 96.92 0.755 BBS-5C 12.09 0.04 1.52 42.17 37.21 1.78 1.41 96.22 0.350 9.49 0.03 1.96 47.13 34.22 2.25 1.42 96.49 0.270 6.58 0.03 1.71 52.05 31.31 2.14 1.33 95.16 0.186 8.57 0.04 1.37 49.53 32.98 2.41 1.39 96.29 0.235 * 9.66 0.03 1.68 46.90 34.41 2.16 1.40 96.24 0.274 32.72 0.02 0.35 37.53 23.45 2.43 1.62 98.12 0.609 32.10 0.00 0.33 37.50 23.63 1.99 1.67 97.22 0.608 32.41 0.01 0.34 37.51 23.54 2.21 1.64 97.67 0.608 29.07 0.01 0.37 44.79 18.70 3.06 1.96 97.96 0.523 * 30.74 0.01 0.35 41.16 21.11 2.64 1.80 97.81 0.566 BBQ-1C 6.81 0.02 1.81 52.48 31.98 2.07 1.45 96.62 0.191 9.26 0.02 1.75 47.69 34.28 2.07 1.37 96.44 0.263 9.53 0.02 1.40 47.63 35.13 1.90 1.03 96.64 0.271 8.56 0.04 1.12 49.48 34.81 1.53 0.92 96.46 0.245 * 8.48 0.02 1.48 49.43 34.05 1.85 1.18 96.49 0.241 *nble fraction of ilmenite (IIM) arnd ulvospinnel (USP) calculated according to the method of Stormer (1983). for estimated telperature and oxygen fugacity determinations. Asterisksindicatethemeanvaluesused Field.No. BB9-1C (cont’d. BBB-15WR BBB-ZSWR * BB8-320WR fi% “f3 ) 40.33 0.04 41.39 0.05 47.18 0.02 36.49 0.04 43.46 0.05 41.50 0.04 6.17 0.05 5.27 0.05 5.33 0.05 4.40 0.03 5.52 0.03 5.17 0.05 4.92 0.06 4.95 0.02 5.23 0.04 50.44 0.02 41.89 0.00 42.78 0.00 40.19 0.00 41.50 0.00 43.22 0.00 41.39 0.00 40.39 0.00 41.84 0.00 42.26 0.00 41.84 0.00 1.68 0.02 1.71 0.01 3.46 0.02 2.84 0.01 2.85 0.02 6.36 0.02 3.14 0.00 1.96 0.00 3.15 0.01 42.82 0.01 38.59 0.02 38.53 0.01 33.51 0.01 37.77 0.00 41.21 0.01 40.88 0.01 38.97 0.01 7.72 0.01 5.98 0.00 Table 3 (cont'd.) . C>C>C>C>C>C>C>CDC>F>F>h*k)h‘h)hih‘h‘hih' 35583E38683858838888 OOOOOOOOt-‘HHHHHHHO NNNNQ NHNU Old->00) \leUOGU'Ibi-‘QHSOQOOD “‘1" $2 94 FED 31.42 31.73 36.67 26.32 34.46 31.68 32.95 32.20 33.08 32.02 32.83 32.32 32.82 32.28 32.57 31.23 30.64 29.86 28.12 31.22 30.51 29.72 29.52 30.34 30.80 30.25 31.12 30.21 29.17 32.01 28.49 32.40 32.65 29.90 30.91 32.49 22.43 27.19 23.44 28.27 29.12 29.80 27.56 36.48 33.85 8 hik‘hihlh‘h‘ I O O . . . . . . . 38383§§8£85838388828 533383 NNNNNNNwNNmHHHHHi-‘HNH \lmflum t0 \Om-FHNU'IQ-FH mosmo oumuummuowog 0.0 LON ubUl NM mos uH ........ ........ O OU'Ii-‘UbUIUIU 00 \li-‘NH wUOiN-hu-FUHHOHNONOO ”2" 88 Total 96.44 97.82 97.19 97.06 95.26 97.08 100.05 101.16 101.19 100.58 101.13 100.81 102.00 100.54 100.95 101.37 100.87 101.33 101.29 100.30 102.09 100.24 100.67 100.15 101.24 100.87 96.26 97.14 97.32 97.05 95.27 98.89 96.15 96.78 97.01 98.03 100.02 97.96 97.12 98.18 98.71 97.08 98.25 100.20 99.53 USP 0.169 0.142 0.148 0.122 0.151 0.142 0.135 0.137 0.143 0.051 0.050 0.094 0.087 0.079 0.174 0.098 0.058 0.091 0.226 0.170 IUK 0.782 0.789 0.905 0.690 0.856 0.796 0.898 0.765 0.772 0.721 0.768 0.776 0.758 0.736 0.768 0.769 0.763 0.815 0.675 0.721 0.635 0.714 0.776 0.779 0.730 Field.Nb. BBB-320WR * * BBB-ZOOWR .822. 7.94 7.21 48.11 10.20 9.56 8.89 9.94 9.93 9.94 9.39 10.05 7.98 9.69 48.53 47.76 45.81 47.97 C3203 ’d.) 0.01 0.01 0.00 .00....0000 OOOOOOOOOOOOEEBSBS OOOOOOOOOO OOOOOOOOOOOOOOOOOO 00. 000000000 00000 hih’hih‘h‘h‘h‘hlulhlhlh) 8888888888 8888888888 OOOOOPOOOO 223000 NGNUI Table 3 (cont’d.) . J? JP . . . . O . . . . . . . 0°.HH Hons: col-I 8885fi88388 588888888383333888 8fi88688882 opooon—aoon—u—o oooooon—aoop OOOOOOOOHHHHHHHHHH HI—‘t—‘HH 85883 38203 51.14 53.10 8.87 48.36 49.80 49.80 48.50 47.86 48.67 49.34 48.44 50.21 48.88 6.00 8.07 11.26 7.38 7.62 7.05 7.18 7.86 59.07 54.78 62.42 55.67 56.61 10.91 7.56 8.53 11.17 9.67 54.05 52.98 54.27 53.93 53.78 8.14 11.89 12.66 9.19 10.37 53.51 53.56 53.82 52.61 53.48 95 Feo .mgo .mno 36.19 0.24 1.86 35.51 0.27 1.94 38.67 0.78 3.16 38.92 0.26 1.88 38.36 0.18 1.90 37.17 0.01 2.06 38.09 0.27 2.17 38.15 0.03 2.24 38.58 0.03 2.15 38.07 0.03 1.92 38.78 0.08 2.12 35.04 0.10 2.89 38.17 0.12 2.08 37.03 0.11 6.33 34.49 0.11 8.16 37.54 0.19 3.27 38.41 0.19 4.33 37.79 0.13 5.24 36.96 0.13 6.16 34.78 0.13 8.00 36.76 0.14 5.85 32.22 0.54 0.72 33.83 0.01 1.39 31.36 0.00 1.15 33.46 0.17 1.37 33.18 0.14 1.27 36.70 0.42 4.60 39.45 0.50 3.18 38.75 0.42 3.84 35.58 0.66 5.41 37.46 0.51 4.35 33.93 0.52 2.10 33.58 0.68 2.33 33.83 0.65 2.42 33.93 0.57 2.24 33.81 0.61 2.29 37.59 1.04 4.05 34.93 1.31 4.53 34.40 1.33 4.70 37.66 1.07 3.52 36.25 1.18 4.15 33.17 0.50 2.39 33.21 0.57 2.55 33.63 0.64 2.45 33.26 0.52 2.32 33.33 0.56 2.44 Total 99.08 99.59 99.69 101.32 101.23 99.19 100.50 99.76 100.87 100.14 101.17 97.94 100.47 98.10 98.68 98.37 98.36 99.05 98.73 98.13 98.51 97.04 96.44 97.93 96.92 96.89 99.57 99.31 99.86 99.85 99.66 98.29 97.61 99.02 98.48 98.35 99.43 99.26 99.30 99.52 99.39 97.28 97.59 98.44 96.56 97.59 USP 0.235 0.210 0.295 0.275 0.260 0.287 0.291 0.288 0.274 0.292 0.235 0.281 0.111 0.166 0.063 0.155 0.142 0.188 0.197 0.190 0.191 0.192 0.184 0.188 0.191 0.193 0.188 INK 0.911 0.937 0.914 0.886 0.925 0.922 0.927 0.923 0.918 0.889 0.924 0.914 0.885 0.902 0.917 0.877 0.869 0.907 0.894 96 Table 3 (cont'd.) . Field No. Ti cr’ .Al 88:) ink) 1013 'Dotal 'USP ILM 888-858 (cont’ .) 203 203 Fe203 49.02 0.00 0.10 8.83 38.00 1.18 3.93 101.05 0.912 45.19 0.00 0.13 14.72 33.90 1.37 4.24 99.56 0.849 49.54 0.05 0.11 6.15 39.15 0.91 3.73 99.64 0.938 47.24 0.02 0.06 11.49 35.73 1.21 4.54 100.28 0.883 46.01 0.01 0.21 12.23 34.06 1.33 4.88 98.74 0.872 * 47.58 0.02 0.12 10.31 36.37 1.19 4.24 99.83 0.895 888-20 7.67 0.01 1.14 50.79 34.53 0.54 1.94 96.62 0.224 9.62 0.02 1.10 48.19 36.85 0.43 2.12 98.33 0.277 11.20 0.00 1.00 42.86 38.57 0.00 1.54 95.16 0.342 11.28 0.02 1.18 38.45 0.00 2.07 96.15 0.341 9.76 0.01 1.12 36.88 0.28 1.97 96.75 0.289 47.46 0.06 0.03 35.77 0.62 5.73 99.12 0.902 49.66 0.05 0.09 39.13 0.76 4.12 95.19 0.985 48.60 0.05 0.07 35.58 1.05 6.17 98.82 0.923 49.66 0.04 0.14 38.39 1.03 4.37 97.35 0.961 49.79 0.04 0.08 39.26 0.88 3.90 97.87 0.960 49.27 0.05 0.09 37.91 0.92 4.70 97.76 0.950 7.59 0.01 1.02 34.31 0.71 2.44 98.69 0.211 6.85 0.00 0.85 32.67 0.83 2.99 98.11 0.186 7.01 0.02 0.84 32.46 0.71 3.19 97.01 0.193 7.31 0.01 0.94 33.33 0.72 3.18 98.87 0.199 7.32 0.02 0.98 33.06 0.72 3.21 98.07 0.201 7.12 0.02 1.01 33.58 0.73 2.43 97.81 0.199 7.77 0.00 0.97 34.32 0.71 2.55 98.59 0.216 7.43 0.04 0.93 33.83 0.71 2.65 98.36 0.206 7.33 0.01 0.96 33.59 0.73 2.74 98.27 0.203 48.38 0.01 0.05 37.97 0.95 3.79 96.66 0.943 47.47 0.01 0.05 34.50 1.33 5.74 96.53 0.920 46.80 0.00 0.05 34.84 1.35 4.78 99.33 0.881 47.91 0.00 0.03 35.31 0.63 6.57 97.57 0.924 49.61 0.00 0.00 43.06 0.00 1.53 95.43 0.988 46.43 0.00 0.07 33.29 1.26 6.14 100.63 0.860 46.27 0.00 0.07 32.75 1.52 6.07 100.11 0.859 45.10 0.02 0.05 28.68 1.82 8.52 99.77 0.830 45.10 0.04 0.09 30.56 1.24 7.69 99.18 0.844 44.61 0.03 0.04 31.52 1.38 6.06 98.14 0.845 46.64 0.01 0.05 33.96 1.25 5.68 98.58 0.884 BBB-IOWR 10.75 0.02 1.32 37.32 0.37 2.03 95.72 0.323 9.06 0.03 1.10 35.49 0.42 2.60 97.13 0.261 8.83 0.02 1.05 35.54 0.48 2.07 96.59 0.258 9.63 0.02 1.17 36.17 0.42 2.26 96.47 0.283 51.17 0.03 0.02 39.50 1.15 4.41 96.90 0.993 45.57 0.05 0.06 33.04 1.39 5.39 97.34 0.874 49.82 0.01 0.06 38.27 0.94 4.79 95.70 0.981 48.02 0.04 0.06 37.55 0.59 4.52 97.28 0.932 47.81 0.02 0.07 36.14 1.11 4.81 97.48 0.921 48.15 0.03 0.06 36.46 1.08 4.85 96.95 0.933 97 Table 3 (cont’d.) . Field.No. n10? 0:203 A1203 88203 Fee 890 Mho 'Total USP run 888-38 7.52 0.02 0.89 51.34 34.11 0.51 2.21 96.60 0.216 7.50 0.00 0.88 51.03 33.54 0.60 2.43 95.98 0.214 * 7.51 0.01 0.88 51.18 33.83 0.55 2.32 96.28 0.215 47.61 0.04 0.02 6.84 36.18 0.51 5.65 96.86 0.927 47.60 0.02 0.10 8.51 36.23 1.33 4.15 97.94 0.911 45.95 0.01 0.06 12.20 33.29 0.98 6.20 98.69 0.871 47.14 0.00 0.07 7.93 35.63 1.16 4.63 96.56 0.916 44.44 0.00 0.06 11.68 34.11 0.94 4.12 95.35 0.875 47.49 0.00 0.03 7.10 35.95 1.22 4.52 96.31 0.925 46.59 0.00 0.07 9.88 34.99 1.12 4.85 97.50 0.896 46.57 0.00 0.08 11.29 33.23 1.55 5.81 98.53 0.880 45.98 0.00 0.05 11.48 33.59 1.20 5.55 97.85 0.878 47.48 0.00 0.12 7.92 36.39 0.63 5.12 97.65 0.917 46.21 0.04 0.08 12.45 32.85 1.78 5.46 98.87 0.868 48.63 0.02 0.09 5.54 37.12 1.19 4.43 97.03 0.942 * 46.95 0.01 0.07 9.38 35.13 1.17 4.94 97.65 0.901 888-1 10.21 0.02 1.09 46.52 36.99 0.57 2.04 97.44 0.296 9.79 0.03 1.04 46.81 36.17 0.69 1.99 96.52 0.284 10.52 0.06 0.89 45.27 37.30 0.43 1.85 96.33 0.309 * 10.11 0.04 1.00 46.23 36.70 0.58 1.95 96.61 0.295 48.52 0.02 0.07 7.91 35.87 1.18 5.59 99.15 0.918 48.35 0.01 0.07 6.61 37.32 0.66 4.92 97.94 0.931 48.12 0.01 0.08 8.25 38.00 0.93 3.57 98.96 0.916 49.43 0.01 0.12 4.72 38.98 1.04 3.57 97.87 0.951 47.88 0.01 0.05 8.91 35.40 1.18 5.48 98.91 0.907 * 48.45 0.01 0.08 7.31 37.32 0.98 4.44 98.59 0.925 CP3-2A 12.37 0.03 1.01 41.01 39.28 0.36 1.49 95.55 0.373 13.77 0.06 0.65 39.43 40.60 0.75 1.04 96.30 0.404 12.33 0.04 0.75 42.96 38.93 0.83 1.62 97.46 0.353 8.85 0.02 1.38 48.08 35.19 0.51 2.40 96.43 0.260 9.42 0.02 1.64 46.47 33.18 1.30 3.47 95.50 0.267 * 11.29 0.03 1.10 43.51 37.61 0.62 1.93 96.09 0.333 * 33.74 0.05 0.17 33.49 24.15 1.36 3.72 96.68 0.642 CPS-28 8.95 0.00 2.16 47.97 34.06 1.88 1.77 96.79 0.258 10.07 0.00 2.10 45.46 34.89 1.88 1.78 96.17 0.293 9.67 0.00 1.85 46.77 35.11 1.64 1.68 96.72 0.279 9.05 0.00 1.95 47.46 34.63 1.68 1.36 96.13 0.265 9.10 0.01 2.24 47.89 33.76 2.18 1.83 97.01 0.258 11.04 0.00 2.00 43.84 36.66 1.55 1.54 96.63 0.325 8.75 0.00 2.42 48.08 33.69 1.97 1.85 96.76 0.253 * 9.49 0.00 2.10 46.84 34.65 1.83 1.69 96.59 0.275 41.82 0.00 0.33 18.30 30.82 2.86 1.67 95.79 0.805 41.92 0.00 0.32 19.22 30.08 3.36 1.61 96.51 0.796 41.38 0.04 0.38 20.36 30.45 2.96 1.47 97.04 0.786 38.37 0.00 0.35 24.99 27.85 2.88 1.50 95.94 0.734 42.51 0.00 0.31 17.28 31.19 3.01 1.65 95.95 0.816 37.82 0.02 0.31 27.53 26.55 3.32 1.52 97.07 0.708 * 41.17 0.00 0.33 20.03 30.00 3.03 1.60 96.16 0.787 98 Table 3 (cont’d.) . Field.No. 1102 0:203 .A1203 88203 880 mgo Mho Total USP run CP3-1A. 10.62 0.00 1.17 44.36 37.81 0.27 1.57 95.81 0.321 10.88 0.00 1.03 43.88 37.75 0.31 1.71 95.57 0.326 8.11 0.00 0.80 50.10 35.61 0.20 1.70 96.52 0.239 12.02 0.00 0.98 42.18 38.61 0.33 2.06 96.19 0.356 10.88 0.01 0.98 44.03 37.87 0.31 1.63 95.71 0.326 7.49 0.00 1.00 50.83 34.80 0.35 1.60 96.06 0.222 9.89 0.00 0.94 46.44 36.53 0.49 1.91 96.20 0.290 6.49 0.00 0.77 53.35 34.49 0.28 1.21 96.60 0.191 * 9.26 0.00 0.96 47.43 36.47 0.32 1.61 96.04 0.275 50.79 0.00 0.14 2.17 39.24 1.53 3.66 97.53 0.977 47.63 0.00 0.07 9.06 37.89 1.03 3.07 98.75 0.908 47.61 0.00 0.30 5.52 38.82 0.78 2.57 95.60 0.943 49.65 0.01 0.08 2.32 41.24 0.78 1.99 96.07 0.976 39.63 0.00 0.15 23.35 29.92 1.11 3.69 97.85 0.757 50.28 0.00 0.15 0.83 38.65 1.01 4.70 95.62 0.991 * 47.85 0.00 0.16 6.39 38.23 0.97 3.03 96.63 0.934 CPB-lB 9.92 0.01 1.08 46.69 37.28 0.37 1.65 97.00 0.293 11.53 0.01 1.19 43.70 38.10 0.70 1.87 97.10 «0.337 8.80 0.01 1.26 47.94 35.74 0.45 1.72 95.92 0.263 10.70 0.01 1.17 45.87 38.34 0.40 1.64 98.13 0.314 10.15 0.01 1.14 45.33 37.06 0.40 1.66 95.75 0.304 11.28 0.00 1.29 44.07 38.63 0.38 1.69 97.35 0.335 12.44 0.00 1.29 40.68 39.27 0.36 1.65 95.70 0.377 10.94 0.13 1.33 43.99 38.08 0.41 1.63 96.51 0.330 10.97 0.00 1.53 44.62 38.69 0.33 1.58 97.72 0.329 * 10.72 0.02 1.25 44.90 37.90 0.43 1.68 96.90 0.319 48.65 0.01 0.18 5.21 39.21 0.96 2.79 97.01 0.946 50.05 0.01 0.23 3.05 40.87 0.80 2.68 97.69 0.969 50.01 0.00 0.16 1.84 40.87 0.89 2.48 96.25 0.981 49.71 0.02 0.19 3.34 41.75 0.46 2.10 97.57 0.966 * 49.39 0.01 0.18 3.68 40.28 0.85 2.59 96.98 0.962 CP3-10 9.86 0.04 1.75 46.80 35.42 1.55 1.83 97.25 0.283 9.74 0.02 1.76 46.51 34.84 1.72 1.76 96.35 0.280 9.87 0.01 1.84 46.85 35.45 1.62 1.77 97.40 0.283 10.15 0.02 1.77 47.23 35.87 1.75 1.75 98.53 0.286 9.76 0.02 1.76 46.97 34.81 1.79 1.91 97.02 0.277 9.94 0.01 1.72 46.64 35.57 1.53 1.76 97.16 0.286 9.56 0.02 1.74 46.95 34.82 1.65 1.77 96.50 0.275 10.00 0.04 1.78 46.20 35.41 1.63 1.71 96.77 0.289 * 9.85 0.02 1.76 46.77 35.26 1.65 1.78 97.09 0.282 41.59 0.02 0.21 19.30 31.35 2.30 1.93 96.69 0.798 45.07 0.01 0.19 13.73 32.42 3.18 2.41 97.01 0.854 43.04 0.04 0.16 16.14 32.38 2.48 1.88 96.12 0.830 44.48 0.00 0.19 13.22 33.16 2.62 2.14 95.82 0.860 42.51 0.03 0.18 17.22 31.37 2.58 2.23 96.11 0.817 43.27 0.02 0.18 16.26 32.00 2.69 2.09 96.51 0.828 43.13 0.02 0.25 15.52 32.17 2.56 2.03 95.68 0.835 41.53 0.03 0.23 19.10 30.48 2.64 2.13 96.14 0.797 '* 43.14 0.02 0.20 16.15 31.96 2.64 2.10 96.21 0.829 Field No. CP4-ZOEWR CP4-60WR CPI-3WR CP1-3A T102 5.61 6.12 5.87 5.87 40.53 40.18 44.67 .8 8888888888 8888888888 8 88888888 8888888888888888888 C>C>P‘P‘h'h‘hik‘ C>C>C>C>s>c>c>C>C>C>P*F‘P*F‘P'F‘F‘h‘ OOOOOOOO OOOOOOOOOOOOOOOPOOO 0000000000 0000000000 Table 3 (cont’d.) . B an M0 C>C>C>C>C>S>F‘F‘F‘P‘ 5558558888 1.37 1.14 0.93 1.18 1.16 0.03 0.03 0.01 0.02 0.02 1.17 858858888888888858 . . . 85858858 99 F%% 57.47 55.91 56.76 56.72 24.88 24.06 15.06 20.93 24.08 21.93 50.35 54.07 53.16 51.67 52.30 17.02 19.17 11.95 13.59 15.30 48.01 44.27 44.16 44.56 44.86 43.72 43.14 47.08 44.81 6.93 8.48 7.49 8.10 8.18 8.66 7.37 8.53 8.45 7.99 44.61 44.86 44.61 44.10 43.73 44.35 7.78 8.51 no no) normal 32.59 32.95 32.81 32.79 28.30 28.50 33.08 30.49 29.15 29.82 36.35 34.56 34.25 35.82 35.25 36.02 33.53 37.46 36.54 35.93 37.70 38.00 37.76 38.65 37.84 38.01 38.62 38.26 38.09 35.47 37.95 38.58 38.59 38.92 39.04 40.22 38.42 38.56 38.40 37.84 37.77 37.67 37.40 37.71 37.67 38.79 38.33 OOOOOOOOOO ........ ..... mowmoqmouor-unuuowomun 2%33‘0’155853 mumqoopmoouslunuusssqqe- OOOOOOOO OHOOOE—‘OOHOOOOOOOOOO QQDU'IUUbU OO‘HO‘QNOU‘I 2.53 1.86 2.31 2.23 3.45 3.05 4.36 3.44 2.70 3.38 hlhlhlhlhlrlhlhahapa 8885888558 . . OGQQQ Cumuommmnowtoqowooofigg OHNGO‘QNON hUkuuUUhUQNNUHi-‘HNHH hiklkihif‘hih‘h‘ tslo~q¢n~dnonoeo lo~q.>c><3c>c>c> 8888888888888888888 Table 3 (cont’d.) . B an 000 coopooooooo 88888888888 oooooooopHHOl-HHHH . . . . . . . . . 8888558888888888888 88588808888888888 ooooooooooowwwwwwww 101 F%% 8.07 8.71 8.62 7.82 8.86 8.78 7.73 8.16 7.89 6.45 8.11 47.81 45.84 43.36 44.53 43.98 44.37 45.48 45.45 8.64 11.04 16.21 8.85 10.15 9.98 8.87 8.17 10.17 46.74 45.41 47.35 47.23 49.87 48.46 47.20 47.25 22.18 13.33 18.63 29.25 28.65 19.59 12.43 16.21 19.14 17.94 19.16 FED 37.46 37.55 37.15 37.55 36.84 37.56 37.82 37.65 37.71 38.95 37.62 36.48 35.90 36.52 36.36 37.49 36.19 37.62 36.76 34.65 36.57 32.73 38.73 36.76 37.17 35.43 38.77 36.33 35.32 35.97 35.75 34.47 33.70 34.06 35.49 35.08 29.16 34.50 30.87 26.29 26.00 30.19 34.20 31.18 29.55 27.93 30.10 . . . 0‘0 .. momow dHO‘ngi-‘m pooroooo smomosmo . ...... ggfisgsggggmewmmmgfifl gmoomwmoguuouuumu 4534000me HOPHOOHHPOOOOOOOO . ... UIGONHH alone:unanunnnnnnnnnnisopapacnpapapapa . 8 wuuuuuuuuwu eeeee eeeeee I“ fiwmlfihu mm 0.000. O‘NU‘OQU puouuubhoumuwuuuu . . UWQN ObQUI 0000000 000000000 kihlklh‘hlhlhlhihlr‘h*hih'F‘P‘F‘P‘F‘F‘ bH 97.77 98.55 97.78 97.21 96.72 98.49 98.18 98.02 97.82 97.95 97.89 98.05 98.07 95.95 96.13 95.70 95.58 97.63 97.01 99.39 100.68 99.86 100.58 98.79 100.12 100.44 99.58 99.95 97.00 96.01 97.31 97.00 95.29 96.35 96.06 96.62 95.36 96.11 96.53 97.23 96.45 96.66 96.87 95.81 95.84 96.75 96.35 USP 0.277 0.300 0.327 0.311 0.323 0.312 0.312 0.305 0.282 0.298 0.276 0.272 0.226 0.249 0.272 0.272 ILM 0.917 0.911 0.911 0.919 0.908 0.910 0.921 0.916 0.919 0.934 0.917 0.909 0.888 0.833 0.912 0.896 0.899 0.908 0.918 0.896 0.763 0.861 0.803 0.691 0.694 0.792 0.870 0.826 0.794 0.803 0.796 Field.Nb. 1W2HA IW2-5 EW2-10 T102 8.49 8.89 8.89 10.28 9.09 3 8888888888888888888 8 0000000900000000 OPOOOOOOOOOOOOOOOOO 00 0000000 0 HHSHHHNHOH88P888 8888888888 900009000000 00 UN Table 3 (out'dJ . f & °PPPPPPPPPEEEEFEPPP h) h“ u)h*h:h3h0ho h: as a-uu~ln: a-g}0\5;c>~Jaau:~Ja\8:a~g3nae}~301h'0I n:u:m:a-h-h>nzu:3.a\a\u>UIa\uuua oomwsobasoumosomqnmm OOOOOOOPHHHOHPHO NU HHO\O\OU N0 ngmqququgoq 102 F%% 48.84 48.83 49.77 45.78 48.89 48.67 46.31 45.69 47.84 19.88 17.11 24.02 15.66 30.38 17.00 18.11 20.21 24.62 20.59 45.55 48.31 52.04 51.02 47.10 50.60 48.33 49.38 30.49 22.24 29.64 1.93 30.06 30.72 28.17 26.45 44.80 46.59 46.50 44.92 48.16 48.23 46.38 17.19 20.23 17.55 22.36 19.33 an by) up 34.54 34.32 34.98 35.95 34.64 34.24 35.33 36.90 35.11 30.61 32.42 29.07 32.87 25.15 32.32 31.57 30.62 29.14 30.47 36.88 34.80 32.88 32.15 35.31 32.38 34.67 33.83 26.19 29.89 25.95 40.47 26.30 25.92 26.96 27.94 36.23 34.43 36.00 35.98 35.56 33.89 35.47 32.16 30.29 31.89 29.32 30.92 0 o UIUU‘U'IO‘ hm NNG‘OUO‘HHUIgl-‘OHMUSQUJ: O 0. aunomuuouusun a:«a«35:5:«in:5:5351papapapapapapapapa 0 NNNNHNNNHHHHHHNO O 0 00 00 me‘UINQO \l locum N UUNUNNNHHNNN 00000000000 qum chum lb." 1.53 1.92 1.83 000000000. mmqqmuxno “‘3 HODPO‘UNUIQUNI 0 UIUHGNGU bmmqwmumgwmbuuwu hi8)&)h)?)h)h)hlh)h¢hihlhihiFifi) hiklhohahdhahapihahapa 0 u:u:hahoUIua~Jc> DUIQO P‘t‘f‘t‘t‘h‘f‘h‘h‘h‘h‘h‘ u:u:n.u:n:u:u1t:raua~1ua O\GD£-JLJ\OIA 95.79 97.30 98.50 96.39 97.81 97.03 96.64 97.93 97.22 96.28 96.92 96.99 96.61 97.25 96.56 96.65 97.74 98.01 96.90 95.88 98.14 97.85 97.02 96.73 96.39 97.11 97.13 98.50 97.39 97.97 96.76 98.21 98.36 98.19 98.00 97.42 97.53 98.37 96.78 97.91 97.42 97.69 96.33 98.34 96.47 97.23 97.10 USP 0.247 0.252 0.249 0.297 0.255 0.252 0.287 0.309 0.269 0.303 0.267 0.207 0.213 0.279 0.215 0.260 0.243 0.315 0.282 0.295 0.308 0.269 0.259 0.291 IIM 0.790 0.821 0.748 0.836 0.677 0.822 0.810 0.789 0.744 0.784 0.682 0.767 0.688 0.980 0.685 0.679 0.705 0.723 0.820 0.789 0.816 0.765 0.797 103 Table 3 (cart'd.) . Field.Nb. T10: 0:203 A1203 F9203 880 M90 mno Tbtal USP ILM 1N4-1wa 9.84 0.00 1.78 47.18 35.56 1.57 1.80 97.73 0.281 10.91 0.02 3.34 44.86 36.11 2.42 1.72 99.39 0.317 10.92 0.00 2.68 44.66 36.64 1.95 1.49 98.33 0.320 7.31 0.01 1.76 51.91 31.73 2.19 2.08 96.99 0.200 8.84 0.03 2.07 48.90 34.45 1.77 1.75 97.81 0.252 9.65 0.02 0.91 48.16 36.75 0.44 2.11 98.05 0.276 10.13 0.00 1.84 45.46 36.97 0.98 1.24 96.62 0.305 9.32 0.03 2.38 48.28 35.10 1.97 1.54 98.62 0.267 8.04 0.03 1.81 50.21 34.25 1.11 2.08 97.53 0.232 11.02 0.06 2.51 43.56 35.51 2.12 1.90 96.67 0.322 * 9.72 0.02 2.16 47.08 35.43 1.68 1.75 97.84 0.281 42.60 0.00 0.23 22.81 22.94 6.12 4.40 99.11 0.743 43.89 0.00 0.22 15.21 32.92 2.50 2.07 96.80 0.840 42.79 0.00 0.23 20.56 24.72 5.36 4.15 97.81 0.769 44.37 0.00 0.27 13.66 34.02 2.32 1.72 96.36 0.857 * 43.41 0.00 0.24 18.08 28.63 4.08 3.09 97.53 0.804 1W4-1B 6.83 0.01 1.21 52.45 33.09 0.82 2.16 96.58 0.195 8.48 0.08 1.18 49.74 34.95 0.87 1.97 97.27 0.243 6.62 0.06 1.36 52.29 32.49 0.89 2.31 96.02 0.190 7.13 0.03 1.36 52.54 33.38 0.87 2.47 97.78 0.201 7.16 0.01 1.00 52.14 34.33 0.53 1.75 96.91 0.208 * 7.24 0.04 1.22 51.84 33.64 0.80 2.13 96.91 0.207 48.94 0.02 0.07 6.24 29.98 3.27 8.10 96.62 0.928 48.55 0.00 0.09 4.22 38.19 1.39 2.95 95.39 0.956 * 48.81 0.01 0.07 5.55 32.72 2.64 6.38 96.19 0.938 1W4-5B 9.39 0.00 1.52 49.08 34.26 1.93 2.31 98.49 0.255 7.76 0.00 0.95 50.44 32.88 1.13 2.39 95.55 0.218 8.36 0.00 0.90 49.31 32.78 1.40 2.55 95.30 0.232 8.97 0.00 0.74 47.81 35.08 0.38 2.37 95.35 0.261 * 8.90 0.00 1.28 49.32 33.88 1.59 2.35 97.32 0.245 36.20 0.00 0.18 28.61 27.21 1.68 2.32 96.20 0.698 39.36 0.00 0.07 22.62 29.47 1.90 2.51 95.93 0.760 38.92 0.00 0.04 22.64 28.94 1.81 2.80 95.15 0.758 * 37.67 0.00 0.12 25.63 28.20 1.77 2.49 95.88 0.728 1W4-10wa 9.37 0.02 1.01 48.36 35.29 1.04 2.16 97.25 0.264 9.57 0.04 1.22 47.29 36.51 0.47 1.99 97.10 0.281 7.63 0.04 1.09 51.67 34.06 0.89 2.08 97.46 0.216 * 8.86 0.03 1.11 49.10 35.29 0.80 2.08 97.27 0.254 * 36.39 0.00 0.22 29.96 24.21 2.95 3.21 96.94 0.676 1N4-15wa 3.86 0.05 3.12 59.90 19.92 5.16 6.91 98.92 0.071 10.10 0.00 1.89 46.43 35.07 1.79 2.10 97.37 0.287 16.91 0.03 2.08 31.53 41.96 1.45 1.51 95.47 0.519 * 10.29 0.03 2.36 45.95 32.31 2.80 3.51 97.25 0.277 44.56 0.00 0.38 13.48 34.19 2.23 1.88 96.72 0.859 44.64 0.00 0.17 12.80 33.64 2.19 2.57 96.00 0.865 * 44.60 0.00 0.28 13.15 33.91 2.21 2.23 96.38 0.862 104 Table 3 (ocnt’dJ . Field.Nb. 'Ti Cr Al FEO' ugo Mho Total USP run 0113-3 1m 02 2°3 2°3 Fe2°3 10.70 0.00 1.15 44.60 33.47 1.46 4.00 95.38 0.294 8.85 0.00 1.62 47.71 33.13 1.48 2.72 95.51 0.251 3.53 0.00 2.11 57.50 29.59 1.50 1.42 95.65 0.102 * 8.45 0.00 1.51 48.60 32.42 1.48 3.03 95.49 0.237 * 39.71 0.00 0.64 22.08 28.32 2.98 2.05 95.78 0.762 GUB-ZBWR 6.18 0.03 3.54 52.75 33.44 0.48 3.02 99.45 0.188 8.12 0.02 1.77 51.14 33.12 1.64 2.79 98.60 0.222 6.49 0.03 2.25 53.86 30.36 1.99 3.55 98.54 0.172 * 6.91 0.03 2.61 52.50 32.52 1.27 3.08 98.92 0.196 35.55 0.06 1.19 28.34 27.38 1.90 1.19 95.61 0.699 37.69 0.00 0.35 26.10 25.73 2.30 4.01 96.19 0.715 * 36.97 0.02 0.63 26.86 26.27 2.17 3.07 95.99 0.710 GU3-23WR 11.04 0.02 2.34 43.27 35.53 2.03 1.81 96.04 0.324 9.66 0.01 1.99 46.47 34.78 1.72 1.82 96.45 0.280 12.53 0.02 1.11 40.85 37.91 0.63 2.64 95.68 0.368 * 10.69 0.01 1.96 44.26 35.63 1.63 1.96 96.14 0.312 41.10 0.01 0.44 18.98 29.24 2.24 3.68 95.69 0.794 38.76 0.01 0.65 24.72 26.39 2.81 3.41 96.76 0.732 38.37 0.00 1.15 23.03 27.76 1.83 3.44 95.58 0.749 * 39.41 0.00 0.75 22.27 27.78 2.30 3.51 96.02 0.758 GUB-ZOWR 10.39 0.00 1.22 47.50 38.48 0.17 2.11 99.87 0.300 8.43 0.00 1.41 48.83 36.92 0.08 1.05 96.72 0.259 10.04 0.00 1.92 48.43 39.12 0.14 1.80 101.45 0.295 10.65 0.00 1.36 44.48 39.12 0.24 0.57 96.42 0.328 * 9.92 0.00 1.39 47.20 38.33 0.16 1.42 98.42 0.296 48.38 0.00 0.05 7.18 37.98 0.27 4.98 98.84 0.926 50.44 0.00 0.08 4.10 38.14 0.28 6.63 99.67 0.958 49.24 0.00 0.04 7.14 37.48 0.39 6.03 100.32 0.927 46.63 0.00 0.13 10.25 36.91 0.21 4.59 98.72 0.895 * 49.28 0.00 0.07 6.24 37.78 0.30 5.92 99.60 0.936 GU3-17WR 10.39 0.01 1.38 47.53 37.25 0.11 3.55 100.22 0.293 10.07 0.01 1.41 47.93 38.05 0.20 2.24 99.90 0.291 9.67 0.00 1.88 47.60 36.19 0.21 3.52 99.07 0.280 * 10.04 0.01 1.55 47.68 37.16 0.17 3.10 99.72 0.288 49.81 0.00 0.07 4.62 36.89 0.09 7.64 99.12 0.951 49.60 0.00 0.08 5.69 38.13 0.13 6.16 99.79 0.942 49.09 0.00 0.16 6.13 36.56 0.21 7.12 99.26 0.936 * 49.43 0.00 0.11 5.57 37.01 0.16 7.06 99.35 0.942 GUB-14WR 9.85 0.04 1.25 45.64 37.42 0.10 1.53 95.83 0.301 9.83 0.06 1.31 46.94 37.60 0.23 1.72 97.68 0.293 10.03 0.02 1.62 45.79 36.85 0.11 2.71 97.13 0.300 * 9.87 0.05 1.33 46.21 37.42 0.16 1.78 96.82 0.297 47.72 0.02 0.06 6.46 39.14 0.14 3.48 97.02 0.934 49.48 0.02 0.05 4.42 38.66 0.29 5.25 98.17 0.954 105 Table 3 (cont’d.) . Field No. Ti Cr 0 A1 F630 1490 1810 Total USP IIM 603-14wn.(ccnm.d ) 2 3 2°3 E3203 49.05 0.00 0.06 4.58 37.89 0.13 5.91 97.62 0.952 47.74 0.06 0.08 7.39 39.44 0.15 3.18 98.04 0.925 * 48.44 0.03 0.06 5.76 38.82 0.17 4.38 97.66 0.941 603-11 8.42 0.02 1.22 50.86 36.81 0.25 1.62 99.20 0.245 10.02 0.04 1.02 47.14 37.32 0.23 2.21 97.97 0.291 8.58 0.02 1.13 50.47 36.82 0.27 1.62 98.92 0.250 * 9.02 0.02 1.11 49.45 36.98 0.25 1.81 98.65 0.262 48.93 0.00 0.11 7.61 39.03 0.83 3.45 99.95 0.924 48.44 0.02 0.20 7.60 38.23 0.80 3.85 99.14 0.923 48.42 0.01 0.25 7.54 38.51 0.77 3.61 99.12 0.923 47.99 0.01 0.16 7.89 38.45 0.85 3.15 98.50 0.920 * 48.52 0.01 0.17 7.64 38.63 0.81 3.51 99.30 0.923 95.09 1 4.31 0.60 0.14 96.18 0 4.82 0.91 1.29 95.96 96.36 94.30 95.13 94.31 95.44 96.39 95.99 94.58 95.22 .44 4.38 1.81 0.15 94.76 96.13 7.77 6.09 0.48 2.42 95.25 7.98 6.10 0.42 2.53 95.13 93.25 93.42 94.42 94.85 0.59 8.63 4.37 0.55 0.09 94.92 95.01 5 6.16 0.47 2.52 95.76 2 5.97 0.41 2.25 93.89 71 4.34 0.56 8 2 .87 4.43 0.53 70 4.36 1.15 75 4.34 0.54 72 4.55 0.60 9 9 .76 4.44 0.61 .84 4.60 0.60 .89 4.49 0.57 .82 4.29 1.78 .79 4.28 0.62 .77 4.37 1.03 8 8 8 8 8 8 8 7 7 8 8 8 8 8 8 8 1 8.47 4.13 0.62 1 8.70 4.32 0.52 3 8.68 4.41 0.61 0. 51 8.77 4.20 0.52 mmsmsws 000000000000000000000 .5 .5 .5 0.52 8.55 4.20 0.60 106 Immpflnmmwaofmmfia 23 9.92 4.52 13.84 03 13.63 19 9.65 92 9.67 41 9.63 20 9.76 90 9.83 27 9.80 4 LmLLmL 22211222222 35386 624..23 1 12631.95 53164..34.. uuunnuuwlnnnnnun 925288 .6.4..7.27.7.1... Table 4. 4uuunnn 17326191 .257.7.1588 fi%Ah% m0 m0 m0 my 90 fig m0 momma BBS-1A EBB-13 96.84 00000000000000000 98108950739 4153 18nw97.~1.4..87.7. 4687 O —I.~h~h666666’6.66666 8 3 42126727516 .“WJ63J55A6ASRW .8888888888888 9268100184250 .al.—I.77al.88777778 O. 00...... 0000000000000 0.73 8.67 8.52 0.28 1.30 98.72 0.76 8.37 7.85 0.35 1.49 96.95 0.81 8.64 7.81 0.39 1.21 99.26 0.82 8.23 6.99 0.3 0.83 8.51 7.24 0. 0.77 8.80 7.06 0. 81 8. 72 0. 94 7. 73 .88 .mmnuu1 LnLL uuuu 0 333266411 70 95 7 £336538Qw6nw 0.4hm32w3w 1nuununnlmn1.n1nuuun1u1 2mnnmwwnnmm3 maz mmmmfimm4 13.44 0.06 0.72 7.94 7.72 0.36 1.38 93.70 .9 14.30 14.38 14.80 14.02 14.06 14.51 14.12 0.05 0.75 8. 57 14.44 3 13.24 7 14.53 01L 71 814.56 214.42 .9 43 .7 42 .2 7 4444444 44444 444444 1““.1 llllllfilllllullllllu 751 11426 321 502881385 423 8295—]. 856 59.6174622 00...... 0.... 656656666.4..6.6.6.6.Am56656666 33333333333333333333333 .81 0.39 1.24 97.14 .68 0.31 0.47 96.45 .09 0.30 0.77 97.01 107 Table 4 (cont’dJ 14.34 .19 14.68 .72 14.75 0.07 13 13 27 26 90 fi%AM% mo mo mo mp'go m% mo momma 889-13 (cont’d.) 36.42 14. 37.22 14. 37.04 13. BB9-1C Field No. “4298854425320469945 6988 8821489129030468815 0556 6777777666767677757686756 9999999999999999999999999 2132948995 90801996 469 2 2697236250.04111574 783 3 00.0.00... .....OOOOOOOOO 0221214104 03000022201101 5265102029140500354125230 3332333332343253232333323 ......OOOOOOOO 000000000000000.nwnu.nwnm0.0.0.0.nm0. 8463066035823766 6156699 al.4656dh93nw0u166002 5524..3Q~4“ 5666666666656656666666656 1017395379 9993 752045041 222537.4..80~6 597.3 9nw220u28wo.8 9888887887987899888888898 41830nm683 36232013920114 78878 al.77 77857777.677777 .00.... 00.0.00... 0.00.. 0000000000000000000000000 5 3 .mmo. o m omomo o 0 0.0.0. 0 0. nwnwnw0.nU.0.nmnw WW8” 07786199758 056 3111 389mal.33950~57m 63.2. .24..0.5 4..4..4..14..3 5 M1301861216777028310 6098 2402252550845529441 3369 3 3 mMMMMMMMnM ManMM MMMMMM1 1M0 wmmawnmnfimmmummmnnnnm MLL1.LLL11L1LLLL11LLLLLLLL 279 70957 237983622 290502 23311363fi39m1523532 62.1556 O... O... 7556664663874787745575665 3333333333333333333333333 BB9-5C 0841565197385947426 7781620627628503935 8868684766796768476 9999999999999999999 820258905 727324992 474201671_359778198 000...... 0.00.0... 101322111 110111120 64702775 8844710231 33243337 333394434 0... ......OOOOIOOO 0000000000000000000 00 38 596280315 ~I.—I.78~I.~I.6~I.666676 38287 .83732 6757& 897121367640 241577623397 4311218037775265969 8878777886886877795 0000000000000000000 753 5 54 55 537 000M0m01 00 00.“.0 0.0.0.0.... 00000000000nm0.0.nwnu.0.0.nu. 7554540523504947151 2882828548587928329 3MMDBMBM MwMMMnMMnnn 75523874 155 21 1564..535—I. 6“”.6AM2MWQHAU. EM n51 mnMMMuMnMnmmM 8888888888998888888 444444444 4444 7.4.39 .L555556776556L55 3333333333333333 36.4 37.2 36. 108 Table 4 (cart’d.). A1203 Feo M30 Cao Nazoxzo TiOZMnO BaOTotal J % Si ¢-10C Field.Nb. BBQ-5C (cont’ 1: 9 96.78 95 972286441833659 9068452643345604 O O 0.. 27 2.78 96.32 0 0000000000000000000000 1 7 9 22560 292 511 84705 74646 09434 435 269 98838 66665&&&&&&&&&&&&&&&&i&&& . 9 0.33 3.00 97.76 . 5 0.39 1.63 97.87 2 4031679845 37325 17 9 B5m2nwj85£5315 86697 50.1“7 O. 0.... 8888988878887887876889988 76 8777777787 887 877778 0............OOOOOOOOOOOO 0000000000000000000000000 63 33 3 52 00 00 0 00 ........-._.._.__....._.. 00 00 0 00 77322056174 35011 0271 60 0.2588825nw58 B.nw4“86.9 30.86 4H9 A..4..4u4..4.. 4B..l..111111.._mu.1...n.4 4B.u.1.._n.1n.1. 192 8529 12 801 17096261 485D9349M68wu842 4.57.22835 uuuunuuulnnnlnlununuunnnl mmngmmm «zom%mu Ememxmmam mmuuuunuuuuuuuuuluuuuunlu a” numwwwawmmms m451955933 555 745 4 543554..64.. .333 333 3 3333 33 35. 36. 35. 4 34.6 35.2 36.9 36.2 35.9 34.7 3 3 BBS-853 93.51 95.17 .26 1.20 94.63 0.70 02 88135504 ZBHMJ3AH535R~A 4.21 0.65 0.09 95.07 3 4.48 0.60 0.13 94.50 4.33 0.49 0.10 94.98 4. 38 0.56 0.11 94.72 3. 89 0.79 4. 62 4. 4. 4. L 4. 4. 4. 4 4 4. 9250706 687.7.85nw 88888888888888889 .61 .56 .77 .71 .67 71 .40 .66 .12 maaflmawammamma%m cocoa-0.0.0.0.... 00000000000000000 411.1.” 114m .14m mmmmnuussmn9m9n9 %mnammwa ummwm 4% mmmmmmnnn 152 m 5070 8 745 56411 7.34..1“2 n.1nd613dh263 nu1nnn1nuuuunnnn1 mummwvwnammnsnwnm 666.,m7 756506566766 :33 3:333 92.47 0.73 0.11 94.70 0.58 0.13 93.75 6 0.63 0.12 93.65 0.76 .50 0.28 2.82 95.51 2 .51 .36 0.67 0.12 93.96 .5 .5 46404..4..4.. 109 Table 4 (cont’d.) . 36.21 12.81 Field.Nb. $103.?1203 F90 IMgO C30 ‘Na20~ KQO' T102 .MhD BaO Tbtal Bm4m(mm m&m 651939366433177093246395 666399619747627886813364 557754274567347645688765 999999999999999999999999 9 1 w .......-.............—.. 0 0 $5309660H695$35163566 53 6 6564654555 55655~I.7.5 —I.5 0000000.0.nm00000000.0.0.0.0.0.nu.0. 212 45 985 30 509 4..4..4..4..4..4..4..4..4444444..4..4..4..4..4..4..444 972141 68377266352 2257 96828-I. 0.4..67.857.1360~ 3229 888988898888889988899998 45434555555 52 5 5.55 5 0000... 00.00.00... 000000000000000000nw0.0.0.0.0. .../mm”. “.7.“ .w7...110..—nw.%7....._.. 00 0.nwnu. 00 00000 nmmummwmmmmmwmnwnmawmwna cocooooooooooooooooooooo 00 0 31131m19m4122460591134 0 $5982 39 d..~l..l.7.0u7.834“8533 7. 322222223222112022233232 222222222222222222222222 56 106365672 55399937 unnnnuuununnuuununnnnunu 09 9825 66174645436990 6&4 .&6.9.0w7. .7.7.Qu89m10u319mld..7.5 BB8-ISB 04769390M2113322429 84749480 3815670943 6751575563563064476 9999999999999999999 42 9 22 0 ...._..._........_. 00 0 7745 64557 5 nvnwnmnmnvnvnvnvnvnvnununvnunununvnvn. 5nM_/.b.a.anmmwnunu.qnqo;g.9.016.3.q .4 .4.3,o./ .u.4.4.1,o_b.4.2.d.5 4.4.4.4.4.4.4.1.4.1.4.4.4.9.4.4.4.4.1. mu aamwnmmnmmafls an mo 9888889887998598898 79808209 415205 679 54AJA5£A.J£5£JA.JAA 0000000000000000000 mammmm oumm mnmmn .m 00000000000000000 0 mnmmmnws «:wmm nwmm 99009muu09997n n.9nu. mmans mmmw9 2265047 nwd..50.10~3 61nm0.2316n.2210.0.2628 1222222 222122121 9580320 65363520M4 6387268 J8A3Q~A£1 nu unnnmnlunuaunmnl .mmnammamgn$u.&mmmw 8664555888555965768 333333333333333333 110 Table 4 (ca’tt'd.) . fi%Ah: no mo mo mi 9: fi% mo momma Field NO. BBB-5 7mm11n66 m 3883554....14" 999999999999989999 uanx gunmmwnmmmn 0.nm0.nwo.nu.0.nw0.nu.nwo.o.o.o.ooo 979121 $fi455555m8w 0.0.0.0.0.nmnwo.nmo.o.0.0.nwnw 63 2.]. 34.. 4. 4O 6 .7. .5 9.13 6.34 3.24 6.24 3.43 787672 .9.54..55 .nw 082608127238308 8355. 314..834..52534.. 1:5$8 9mmmnmmnmw 789888878789888888 5%uaum5ww 5&9 000000000000000000 mwmmmmmu um 38mmmn so... .0. - 000000.00 0.0. mmmnwnmo. Gama/22 069 6 594 5A3 9.27. 989 89m999989899999999 8 580573 6 5319697 $595205m9m4528044 0.120.1120.1 21.20.1121 222222222 22222222 910 542521219947 “707%570723355639 mlnnnluunmnnnununn 742960217 18607 02 1245834311.. A3732 0...... 686456555655536555 3333333333333333 33 BBB-3B 6 3540 753400 134544241442323 999999999999999 93 22 ...-........... 00 422250263482617 777777777777677 O I O O O I O O O O O O O O 0 000000000000000 7 274 154382 38 8M914m298344%82 O I O O O 0 I O O O O O O O 0 343444433444434 7078 6819 211 O O O O O O O O O O O O I O 0 888889888989888 631 2 61552 5 3 3 .0.%. .nwm.0.. 0%.M0 O O I. I. O 0 000 00 00 066n03983139078 924 87774845224 unnumumuumuumnm ”mammmmmmmwfinwn B6 ”Du/.66664nl. 6 111.11.117.17.qu 111 swme mammflnmwnuw muLmnnfimnnM Dun 566773505912270 AJAAJfiAJomJJfiJfiJ 657766675555566 333333333333333 BBB-1 56274968702597 33672909405553 0 I O O I I O O O O O O O 0 64246564574656 99999999999999 6 9 1 O .._.-......_.. o 0 9559003M802228 5556276 876665 00001000000000 84805624777194 12703467445643 0 I O O O O O O O O O O O 0 44344444444444 09125637350600 91588190927001 0 O O O O O O O O O O O O 0 88888989898999 2218332w65663 4554555 55545 O O O I O O O O O O O O O 0 00000000000000 646 4849 ”.1 211u.1nwnu.1n.u.1 0.0.0.nw0.0.0.0.0.nw0.0.0.0. 92 9830 756511 29n63—J85 82834..4.. n9nnmmmmmnnnmn mzfimmmmmnnmmmn lmununmunuuun .emmmmmu 4s 66 33 666 333 96.46 92.15 95.16 97.03 94.82 96.36 97.63 93.23 ....flflflfl 00000000 99.8. 0 0 44444444 00...... 97999998 3 7 2 75 5M4a5w44 00...... 00000000 5 5 3 65 omomomoo 00...... 01000000 13886195 70.71~I.79m7 nmmum Table 4 (cart’d.) . aam.um “%MMflflmm nunnnuuu 36.00 Field No. sic:§ A1203 Feo Mgo cao Nazo x20 T102 Mno Ba0 Total Bm4(mmm LMfi 18429031653758476498u11371 27367066304394322997 79324 00...... ......OOOOOOOOOOO 15666565776438656565766655 99999999999999999999999999 00 18 5000 2 780772 06 «m2 22 1121—2u_231772 12... 0000000000 00 010030000 916 9282305328938309800646 343 3434443333743443344343 0............COOIOOOOOOOOO 00000000000000000000000000 $50m25839 9195975294 42806 .78w 97978 5069829858 72977 ......OOOOOOOOOOOOOOOOO 55555555555655565565556555 456110 6797 508121261762 7 20000859089W589508690009W9 ......OOOOOOOOOOOOOO. OI... 89999898988888889878999898 2903271102239114“9502791“9 abo’nwalo7767alo77nlo85wlo77 677766.]. 6 O... O. O. 0...... O. O. 00000000000000000000000000 7 3 2 3 5533 6 .- ... .- .- ...0— ...... .— - .- 0 00 0 0 0000 0000 0 71793611692 2 390130 82 9 0...... I...‘OOOOZO£4O£30 0.2. .8“ uuumwuuumuuuuuuumunummumuu .flwwmn unnmnmawmwuunmmmman nuuuuumunuumuuuuuumuuuunun nnmumsammumngmmnanummnfianm nummmuuummmmummmumuuumunuu 322 9 00876 5624 28593 6 244a4m47789mw8383MW7HQmQUJ—JMJ 57777777777568757647877776 33333333333333333333333333 UWZfiA .u 876 9999999999999 mmmmmunmnnnmm 00.0.0.0... 0000000010000 6.08 7 01 6 49 17 4.91 6.62 6.09 6.61 6 27 81 7 59 5.60 1358889629381... 4437333343634. mmmmmmmmmmmmm 441867 605990 887877 500787 ......CCOOOOC 5555556566555 14471 0796007 02212m8812780 ......OCOCOCO 9999998889889 $99079679 66766666 776 ......C...... 0000000000000 146 533 3 5 .... ...... ..- 000 00 00 222 192244264 347 287097921 0 O O O O I O I O O O O O uuummuuunuuwu mammamgmmwmmn 0............ mummnuunnum1u mwmxmmw%m mm% 0....... 0... O uunuuuunuuunu 99 2 952 nsfimmgsmfl.534 7777777766677 3333333333333 Table 4 (cart’dd . FieldNo. 810::2031100 ago (20 Na:: x20 'I'io2 Mno BaO Total IWZ-A (ccnt’d 36701826 634257 06293951E351962 ......0...0.... 765665768864666 999999999999999 822 53.222. 21 000000 004 0000 663123666176272 344446343434334 ......0......0. 000001000000000 “.825 5MM1711 384 ”97.7. 9.89.8 988 6555556556.55555 man7 MMM mMMMMMl 8880a889QuaunhQu8Qn99. 032933 n:nanm 777677 0......00... .0 0.00000000000000 OMMM1M. MM. . ... 0.nm0.nw0.nw nmo. 0. fiM72M12MMMflQMMM 151.51M51muuuuuu magmas. 32m814m 44unlnnmuu1uuuu 1562441 718 527.8170" 338 nulnnn44uuu 7 99521462 .me9 M3 Ema 4956392 0.... 6.6.6.87.7.87.84..76767 3333 3:33333 LW2-5 97.92 53 0.10 97.14 7 5 97 9. 5. 8 8 8. 6 7 7 6. 4 6 6 6 5 5. 6. 6 5 999999999999999999 2116 194403 49189293354274 .5263.104482nw21210932212202 .10.nU.0010 0000000010000230000010 4335433 61928964065492778578 7364444“5M64443354434215553343 0 .1536 .306709667608405468540584 86 82029120907749977677660 .19 5.79 0.45 4 0. 0. 0. 0 0 0 O 0 0 0 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9 6. 88 0.28 3.13 98.51 5. 6.2 6. 46 6. 5. 6. 6. 5. 4. 5. 6. 6. 5. 6. 5. 5. 6. 5. 5. 5. 5. 6. 6. 4. 4. L 6. 6. 6. 5. 1 1 96 165735 7825552579767 5392 8 won/938050856590499705$9088MW 799789888899988888988889778988988 .7 .0 .0 7552 “:195169wn639161702 35376126 7778 767776 777877677 75556766 m00000000000000000000000000000000 0 3 7 0 ........... .................... 000 0 00 0 0 “:9 5&951334 2129613000443201175 763364 2J84..0.7.7.nv.87.0~6638628 4.4. 444444 44 44 9.994444 M55191111115555115511m1nn 1111 751288355528 121 38073 :2726 nmwl92837946682fi354 53157. $80.9353 4uuunn111nuuu uuuuuuluuuunnnnnnnn 873946 4 61042256 57005267 280323mm4u86826882n“ 2m.nw0.3564..80~$mm mnuuunnnl unnnuuunl llnuuummnunnn1n 55380615 073 2A3 55 7.787..I.768867.—I.-I.7556657767 33333333333333333333333 35.8 38.3 37.7 34.8 36. 55 35. 9* 217. 2 363.53 .6 3 37. 97.12 96.95 0.44 96.42 0.34 95.61 5 0.36 96.67 47 0.11 95.74 93.88 93.51 0.54 0.10 94.25 95.38 0.09 95.35 52 55 45 59 53 5 49 0.51 mmmmmmmmmmmmm mwmuuflmmmum.. 6555554555555 mmMMMMMMMMMMMMM. 8899989999888889 0 84063 11111 42943 77777 ooooooooooooo 0000000000000 no... 00000 89 15 46 Twh4(mmfi4. 14.82 0.07 14.97 14 15 15 14.95 14.93 ..00. muumm 098052043 462900713“. . 0 . 0 . 0 . . . . 0 . . . ununuuuuuuuuuuuu mnwmmm muunuunuuuumuunu numnu 776776 333333 37 04 37 36 38 37 36 37 37 36 FieldNo. 810?sz Fee 1490 (no Nazo K20 1102 11m 330 Total 1142-5 (corrt’d 1142-10 93.00 97.30 99.41 97.69 99.02 99.19 99.18 96.80 98.87 98.78 99.12 98.53 98.23 98.94 98.56 93.84 97.41 97.23 98.18 2346595958732901782 2222722222233232223 . 0. 0 00...... 0 .0.... 0000000000000000000 “75 033023361561“5& .56 766666767667 6 mmmmmmmmmmmmmmmmmmm 9557n1m856606 1613 4042 5 455664 6666 000.000.0000. 44444444444444.4444 4841 02190 277849 . 0 .. ....0........ 8888899998999989999 Mumawsmaam QM 9...»an coo-000.000.0000... 0000000000000000000 mmmmmmmmumummmmmmmm 0000000000000000000 73 13142689492 50 £53m53890174384wflog 0 ......0...... 99099 9900 90 00 0 1 9 119 1911919 900 4811927884847 5 801 AJ22853711474M3 .0.. ............0 1021 22222212322223 2222 22222222222222 38991 8 5556 6 aavaozmmlmsvsaamsmm .0. 000...... . uuuuuunmuunnnununmu 3757210 9 6 797279 ...oooooooooooo 457666766766 333333333333 36.9 36 8 35.6 36 37 37 36.3 95.91 97.43 96.05 96.65 8 4.37 0.67 0.10 95.28 95.66 4.39 0.60 0.10 94.55 .91 4.89 0.76 0.93 94.39 .08 4.56 0.73 0.09 93.83 94.17 96.13 4.33 0.67 0 9 3 .93 4.25 0.77 .28 4.51 0.66 57 9.15 4.26 0.72 8 9 9 8 9 8 9 0.53 9.37 4.31 0.71 15 0.50 9.32 4.26 1.80 0 59 9.12 4.72 0.65 mmmmmmmm 75 6 07M0m 0000000 flnmafl 09 0.03 0.51 9.17 4.48 0.62 0.21 94.52 27 6530 .. J3.33£J MDMDDMBBMM 365970735 038250654 mm.mwmummumn mum ngawmnmm nuumunnumuuu mmmmxflfifl 677686764567 333333333333 LNfi-lB 114 Table 4 (cont’d.) . Field.Nb. A5% mo mp an mwagfi Tmzum aw mml % Si 1W4-1B (cart’ 95.62 94.05 8.64 4.70 0.76 0.80 94.35 9.07 4.44 0.62 0.09 94.74 94.94 94.32 8 9.37 4.41 0.61 0.16 96.47 93.81 95.30 95.62 3 94.61 68 3 10 0.nm0.0.0.0.000000 417uun 1 1 7.0H550.6““2531367 656666 6.667.66Aw 10000000000000000 72 26 .64 35D6 uwnuamwnwuu Audududutdududududutdududududu 4.49 0.67 0.24 96.90 4.57 0.62 0.31 95.18 .08 4.43 0.67 0.20 94.21 .23 4.94 0.69 8.96 4.49 0.68 .25 .19 3263 %611an693—J—I. 4222892002 .On889.80”O”O”On880uOn90n 9.22 4.36 0.70 9.28 4.62 0.66 9 9 9 9 .57 8.83 4.41 0.68 0.89 95.80 .43 9.10 4.52 0.59 0.23 95.24 0. 54 9.20 4.34 0. 70 0.22 96.79 8 9.31 4.31 0.63 53319609 .4..4..A5AJ54“ .5 .4 .4 .3 .4 .57 .50 .5 .5 .3 .4 0.44 9.07 4. 33 0. 62 0.0.nU.0.0.0.nmnwnU.0.0.0.0. mmummum..mmmm 0000000 32 0 46 8 69 4. 64 0. .40 9 6 0 8 3 0 9 16 0.48 9. 14 .11 5 0 45 51mfinwm.0.mm1m10.% 351 4.4.4. 4.4..4u4..4.. 11111u11111 6743525 1818427“ 44444. 4 0 0 0 3 4. 576522 89 44310 3 2nw0.8 3:133nw8 2 uuuuunumuuunn1u 6%5 4.. 1 12 647 036335 “u.4“unamwnmnwnu.a“wmw.lnw.9_a .1mw.amwnw.3uwnu,o.8.onw E15156 mwumu6wummummlm6um6mmumwmmm “mun“ 6M1%:63 mnwaunmmmumwwun nunnnlnnnnnluunlnnnlnnln1unnnnnun 7 14.33 0 69 2. 0. 17 .7.2 .dudu 11 10 83 )1 02 935312 96917998 43137 926760 65.2 JJ8585m36.7.4”5853 7.4..’6.-I.4.. A3253?” 766665666766777567797677776668667 333333333333333333333333333333333 DW4-5A 38639199695433 51465940623278 86541254717455 99999999999999 398 0 7 697612 100.7”0 107122 000 2000000000 1185911874 265 5555255454 253 0.000.000.0000 00000000000100 14203116936 26 92353453597 67 34446443434445 19417509 719 00000000000000 88987887988888 10827 8n034 98 454 47 0 6 5 .4 4 6 nmnmnunmnunmnm11nununwnvnvnv «u oo- 00 mmwmmmmmnmm mmmmmmmmmmm 01 5u.4 290 445 38 2 37.1 44.9 OnOn99D.90u7.0nO”OnOnO“M.“ 238 8&55190 510 4.7.6.59. 4.7.8 1111 11 al.2 20.2. mmwam .mmmm. mam nunn1nu :66 661 2935 567542 0.~I.5524..5265565 333334 3333 37. Table 4 (cont'd.) . fi%A%% mo up an 3mg>gp mmzum Bw'mml Field.Nb. INfi-SB 5166845JJ4734391131061muoOo331486219200214611 318998012272224247318 033740207891969364 0.000. 0.0000.000.00.000...000.000.0000. 7652457.66.562557787785657777767677737577575 999999999999999999999999999999999999999999 2334423473 9 481756 87 062693816 48 64 24JJ7.5JJ38 .5DB112J93. .44%273313718.12§®22. 0... 0.0000000... 0000.0 0.1nw0.nw10.0.0.nm0.000200121 001010100101 000000 520634316546839401939622394919520792142004 434333433242342433233343333233334234444443 0.0.0.0.0.0.0.0. 0 0 .0... . . 0 .0. .0 .0 0 0 .0 0 . 0 0 000000000000000000000000.000000000000000000 1553 50 993 52534243 4933379085 782 Baa—[.8 828 J330~2583$fim8 ”%m4892745090m679 565566565656556566665536656665565656565555 594 8 804125 7055 9 4 802563867 238 w:86. 68m422109m0184m m8 m8 21.0.Aw93312 988888988898898998889998898989889899899999 ”5312232569851fin615670353329807280 4403230 .JJJJJJJJJ$JJJ..J£77££JJ£JJ£JJ£JJ£.JJJJJJJ 000000000000000000000000000000000000000000 o.oo. om .mmmmmm... mx.nnmmmomom1mmmmmmm .mm5 o 000.0.0. 000000 0.00 ooooooooommmmmmmm 0.0.nw maammn .wux auman. u:m um omnmamw .mmmamn 4. 4..4..4..4n4.. 44.4..4..4..4.4..4.. 4...4.4..4.4..44..4..4.. 4.4... 3nu.o.3“19983175155096604105321 0429551. 7138 43712385738328243918740 $388323 lulnnnuuunlnluuuuu4nuun13111n1nn ununnnn4n numan .mmmu Lama unmagmumunmmmau .nmnnnmmfimfi. LLLL11LLLLLLLLL1LLLLLL11LLLLLLLun1uu11uuuu nma7 Lug mgawmwmmmnmum1awnxmmm1 .nm11 .unmmfi 7.56.556.7.66.56.4..6 557.7.6.46.6 7.56.6.7.67.57.Am676575.78676 3333333333 ::33333 3333333333 3 333333 LWA-IOB 94.59 &:M7 muuuuu 087509 52.1538 116 Table 4 (cart/d.) . ) Ah% mo mp an mwaxp Tmzum Bw'mml 1 '93. 1144-108 (cart S Field No. 9239m74 3734 02 o o o o o o o 0 10000400 6 024840 mlmnlzlllsfi o o o o o o o o o o 0 00000000000 8837 52 121 4981M88M554 &&&&&&&iiL& mmfimmwummxm 88898798898 3&4... 324978 8 77 887657 coo-coco... 00000000000 N£flm...m..M 0000 0 0 1570910525a JAAJ£A£J££. uuumuuu usn mmmmwmmx.m& uuuunnnuunn mama nnmumm O 0 O O O O O O 0 O 0 44444 44 44 11111511.”qu 35.06 36.46 CP3-2A 97.01 98.46 8.49 6.40 0.35 1.45 98.01 3 3 2 3 3 3 3 3 2 2 3 2 2 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 633483935182 89642057 740 969019 128375588744n22027521 444mm32545 1 1 0 3 1 1 3 3 0 0 1 1 0 1 1 2 3 1 1 1 1 0 2 1 1 2 1 1 1 1 1 3 0 10728 5728006558029950 00 4339549 22 54454 3331173242335353 ...-......O. ...... O. ......C.’ 66666676666666666666666.666666666 51606M2203 318037 6 “gum““mmmwnfifina 52268 4704 574768 .0. I.60..........OOOOOOOOOOO. ... 888788778888888878888888888888878 8.43 6.40 0.29 1.42 97.94 8.06 7.00 0.32 3.33 99.20 8.59 6.61 0.35 1.80 98.59 $wfimwwmmwaawwwfiawaM$wmnnwmmfinmannmwnn coco...oooooooooooooooooooooooooooooo 0000000000000000000000000000010000000 66 m «mm m mm 00 ._.._..._._..-.-........-......_.._.. o 000 o 00 00 06$44048361313053695759704%726204203m 99 .87—[7944387.38797637m7odh64ham .Joonw32429m6. O O O 0 O O O O O O O O O O O O O I O O O O 4 44444 44 44444 4 44444444444 4 lnllll1B1lnnuuulllllunlulllllllllllnl 46163065666 833753 0 912 11 914 553 n 4 film m 04 O O O JdfiauxaAamnwAfi .aJfijaaa . .anfi .33 73?.” . . . . uuunnnuuu umunuunuuuuumuu uununuuuuun wuwmmmmamunnmwmmummmfiummwanmamaanummm O O O O O O O O I O O O O O O O O O O O O O O O O O O O O O Bwuwnmumummmuuuuuuuuuuwuuuuuumuuuuumu 99 28 0111 60 6 515 5796 91.21 023 86%92m1354mnv81fi3w706 9184ama6osfll43. 6566677555547676766645666656566566647 3333333333333333333333333333333333333 117 Table 4 (ccnt’d.) . Field No. sic? 111203 F60 1190 <20 Nazo 1:20 T102 Mno BaO Total CPS-2A (ccnt’d 871 60730321 6146 39175650204 37 1 03679 94251 Jalufiwuoflw8w747250 5192a96542040680w08mfl6 38563M94864mn 7566586%9089 5616546457657515744553 7666737776566 9999999 9m99 9999999999999999999999 9999999999999 860154071491 659475u75smo38w863 291 52 6620397 2 756434449927 343447 244 451 054.665 3.2122121. .2 111112131220 000000010000000000 000 00 0000000 0 199420201930 4107340562272998298410 3772564570....“4 322333345944 3333333323323222322333 44344344474 4 . 6 6 6 . 6 . . 6 . 6 6 6 6 6 . 6 6 6 6 . 6 . 6 . 6 6 6 6 6 . 6 6 6 6 6 6 6 6 6 6 O 6 6 6 6 6 000000000500 0000000000000000000000 0000000000000 8903 590 695 6111 7 9 862645 471687 1860026500956 4244fl320$162 129151m2m128198m397112 5888478887766 6 . 6 . . 6 6 . . . 6 6 6 6 . 6 6 . . . . . . . . 6 6 6 6 6 6 6 6 6 6 6 . . 6 6 6 6 6 6 6 666666676666 6656666666656556655666 5555555555555 668566911440 36890798 1129801034790 709925633m180 RN94..R~73537727 38288882 9584737729555 109837222 000 . 6 6 6 . . 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 878888888788 8888888888888888888888 9988989999999 461594381884 9 6 1 O 9 9 163 322 26252365 66 6 . . . . . . 6 . . . 6 6 6 . 6 6 6 . 6 . 6 . . . 6 . 6 6 . 6 6 6 . 6 . 6 6 6 6 6 6 6 6 6 6 . 000000000000 0000000000000000000000 0000000000000 6 6 3 6 35 0 6 ..w....nmwm1o.mwm_..mm..m.m.u.o.ow . oo.1....o.m 6 . 6 . . . . . 6 6 . . . 6 6 6 6 . 6 6 6 6 . . 0 00000 0 000 00 O 0 0 O 00 000 o 0 0 9625619911. 6 96961714 6008 1779 33462 51.9 01 . . . . . . 6 6 . 6 . . 6 6 . 6 . 6 6 6 . 6 6 . . 6 6 . 6 . 6 6 6 6 . . 6 . 6 6 6 6 6 6 . 6 . 444 444444 44444444 lllnuuuuuuum umnuuuuuuuuuumnullllll muufillllllll 8.13....818. mm......m.m.mx..m&.m.m ..mflnm&mm.Mflfl unnunuuuuuun unnnnnnnnuuunnnnunuuun uuuuuuumumuuu fi....flfi...%m amaummmxmnmmmfififlfiflmflmm .mmmmmm11.mmfl 6 6 6. 66.6... 6 mummmumunuu munuuumuuuuuunuuuuuuun unnuunuuuuuuu 1 50351. 03 1 3 0231.9 6 633095 2050 68 1 9720715 6.6.6.666... .6....6........6...666 666......6666 655556656458 7757667577667756767675 7677767877776 333333333333 3333333333333333333333 3333333333333 CP3-ZB CP3-1D 97.55 0.33 0.23 97.96 0.42 0.25 96.38 8 0.43 0.56 95.24 0.39 4 0.46 2.29 96.85 118 Table 4 (cart’d.) . Field No. 5131;1203 FeO 1490 (no Na20 1:20 T102 mm 8510 Total CP3-1D (cont’ CPI-3A 0315752429808110120 4230223131933326322 6543616486656761167 9999999999999999999 040 Bulllfimm........... . . . . . . . . 00000000 25958 695m’01167181 545 46544445 43344 00.nwnm0.0.0.0.nmnw0.nw0.nmnmmnm0.nw 90263n6299666339 43 34....”35 6334334330 25 O ......O......... 4444444444444444444 1512259 5358510885 8522567$0098004379 ......C............ 8888868899889986689 26 128176216089 596 5Afl553543444443 234 ......I....... OOOOOOOOOOOOOOOOOOO 3 33 05 no m.o m43m ................... 00 000 0000 596331324313 784 47 33 79 5.43£.243n3nm 99m999999999999 a.Mflflflmumm.mwamsfifim 2110203223211210022 2222222222222222222 wamm&mflmmfimmmflm&mmfi uuunuuunnnuuuuuuuun unmflMfiMMfiflnmfifi&flmam C . 6&65664575766678766 333333333333333 GUB-ll 6B811m663190391703715207 4 408 34791495043844.3538 677556656797666575768685 999999999999999999999999 9 7 6 0 no 1 ........................ 0 00 0 601125333754663972072 8 M656785545777658566565$9 . . . . . . . . . . . . . . . . O . . . . . . . 000000000000000000000000 519927780205433007242195 355333440554454451536554 . . . . . . . . . . . . . . . . . O . . . . . . 444444445444444444444444 4 21.. 7 340418 3209508 . . . . . . . . . . . . . . . . . . . . . . . . 89999988m999988899999998 7221933296 611. 631. 3053 . . . . 576 ......O....... .. 000000000000000000000000 3 37 3 3 m 0 00 0M0 ........................ O 00 00 000 4816266033974799053748 2387048400884524905921un oooooooooooooooooooooooo O 9 9998u989m99898998u99919 136450n52906202m138 21.51. 287403 25217699 279 0484.. ooooooooooooooooooooooo 322302324433232236224032 222222221222222221222222 352044165 72698 6 043 49 357973545m95252“8&936m85 uuumunuummuuunumuuuuuuuu 8551.739 7089 098 45882 76 1443326 170247 859 43348 ........................ 666566551576656568666765 333333334333333333333333 100.45 99.98 98.93 101.17 100.11 98.49 98.49 98.01 97.79 99.29 100.76 100.72 100.72 99.32 99.82 101.72 101.84 100.35 100.96 100.58 99.41 96.76 100.19 100.67 IMHO BaO Total 0.82 1.08 0.55 0.93 0.82 1.10 0.61 0.96 0.44 0.94 0.48 0.90 0.65 0.94 0.62 0.80 0.65 1.00 0.55 1.10 0.80 0.90 0.48 0.96 0.59 1.02 0.52 1.22 0.59 1.04 0.46 0.86 0.44 1.26 0.55 0.96 19.61 1.03 0.41 0.56 0.97 20.48 0.66 0.14 1.03 T102 0.57 0.97 1.80 1.21 0.38 0.84 0.25 1.00 .07 0.59 .38 0. 56 .48 .54 0.64 1.55 0.62 21.38 0.67 21.06 0.64 20.95 0.64 21.59 0.66 21.57 0.74 1.31 0.61 1 1 1. 1 1. 1 21.52 0.73 21.33 0.65 21.24 0.64 21.06 0.64 21.20 0.66 21.07 0.71 21.39 0.62 21.20 0.63 20.96 0.61 2 2 2 2 2 2 2 2 13 438295097 22W143470142 0 ......0... 444434 44.4 111111 885002206060881 936154051713938 .0.. 0 .0. .0.... . 888988988898888 23662 0.000 Microprobe Analyses of Pyroocene. 0.00... 8988889 09513342353 66772328674 oooooooooooooooooooooooo 111111111111111111113111 9195467 4893346 Table 5. 22605 177045 02008753 8102 111203 Feo mo <20 Nazo K20 52.0 52.7 510 52 2 52 5 51 50. 50.4 50.9 52.2 52.6 52.2 51.6 51.9 53.6 52.4 52.3 52.9 52.9 51.9 50.2 52.7 52.5 550-10 Field.Nb. BB9-1B 2919808381 0838062577 6888089998 9999N99999 ...-...... 54171624$0 69719342 1 0 0 0 0 0 0 0 0 0 0 0001011101 1229213173 5554433335 0 0 0 . 0 0 0 0 0 . 0000000000 ...-...... 636 737 7 575 565 .6 0 0 0 0 0 0 0 . 0 00000000 0 “9545w250 6892 263 000....... 000101110 2222222 2 16727730 “94834704 00.00.... 434343 44 111111 12 6593479172 2646408549 00.00.0000 88888988N8 0 55466 7 1”06704”0M on. 0.0.0.. 2121111021 66 632209 64m440625” 00 . 0 0 0.0. 0 9101221231 4555555555 100.30 100.24 96.89 100.28 100.57 99.77 100.80 100.87 0.44 2.10 0.50 0.99 0.71 0.84 0.73 0.98 0.89 0.95 0.27 2.03 0.37 1.41 0.76 0.87 20.61 0.69 21.20 0.58 5 20.45 0.62 1 20.97 0.70 1 21.27 0.57 3 21.07 0.61 0 21.61 0.62 6 20.75 0.64 2 3 6 9 6 8 8 5 umuumnuu gamma” 0...... 8888m89 mmmamwum .0 00.. 11222012 52.2 53.1 50.2 52.1 51 52 52 BB9-5C 120 Table 5 (cont’d.) . Field No. 8102 A120: F80 1430 060 N320 K20 T102 mm 830 Total .) BB9-5C (cont’ 118984209372029069698W53765 331535078046863598219 98655 0.... 00.00.00.0000000000000 6809091001088110991080009m9 9909090000099000990090009 9 1 1 11111 111 11 111 1 ........._........_......._ O4139780737579%98181321316% 99997898386212 88875788999 00.0.0.0...000000000.00.00. 000000001002221001110000000 648369676397032fl29949498$fl6 434644464452334 62435454 4 0.0.0...000......0...00.0.. 000000000OOOOOOOOOOOOOOOOOO ....._.._........._........ 5 6 96 512 5 95.96 9.9.9 96995 5..” 67.6 .199 9.96 000000000000000000000000000 9799 695 98313 9023917285 4132M857n67928as448244245m% 0.1111111110. 0.nm1111011111100. 2222222 2 222222222222222 222 62818305630076 166229 9 ”16923460430312 94..86.7.5m.1 nluuuul unuumunuunuuuuuu 9m99999999999949991995.90199909 7 5 063 156 8193335 3.598%955552 786 530%8755495 0.0.00.0000000000 0.. .0. 0. 111111111110001111111111111 4 328 32868 4294 163137 1””80.3 .894..4..1~fi20.53. 8—I.~I.nw0~8%6 “ 0.. 0. 11213232233113322LLL1L29M222 555555555555555555555555555 BB9-10C 810220414833439713974 754097963150557376558 898989798998879892799 99999999999999999m999 .............__._..._ 029357315D44274321n80 90809992 99989099 18 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 010100011100000110110 769967061614513690809 532424123123528234164 0 0 . . 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 . 0 000000000000000003000 3 3 ...-....._.-......_.. 0 4267 551 908 916 7655““5 $6 666 565 67.5 0 000000000000000000000 52 253 24 6432 00000100000000000001 22222222222222222222 .JnMM9999999999mm n mmuuLuunn1LuuuML1n4 m:nwmm«nn zmsnzmng 788888888888888808998 1739 23976 32 937 7466$54431fl84®539 35m 00...... 0.0.0.0... 000 211111111111111101111 1 O 1285 2 17705404 ZMSWAGAOMA86D780839£A 0 . . 0 0 0 331222132221212222122 555555555555555555555 121 Table 5 (cart'd.). Field No. 8105. 341203 Feo Mgo Cao Nazo K20 T102 Mno Bao Total BB9-10C (cart’ 9 631.54 406617 74345 9%80124M193101WM85555 7888M~8908991180689878 9999 9909990090999999 1 1.1.. 1. O o ....._.._.__..._.._.. 0 698392173919764604408 824278947727789088701 011100011110000100021 9730n41 3 40659186619 2421 44 2.48374213423 O O O O 0 O O O O O O O O O O O O O 0 0 000010000 00000000000 __...__......_.._-_.. 32360 1.329 99322 9 ’D.6.ab..&4..“w“M56.—55. Ans—56.6 .5 ooooooooooooommmnwnmnmnwnm 7333751010319342832 376—JJ3532 0%1J0w332 OOOOOOOIILIIIAWIO O 1 22222222222222222 4 4.. 197 9999999 99 unnnuuununnuuunn 9999n9999999umn999 78888888998888m87881 530521 38624 575302.56 539808 37727 59335892 ooooooooooooooooooooo 110031110011110111101 7970 1.001 2222 7943 3225 4 11mm 929 44....5 08 .11 73 2 2513081987 29 I4..—I.. 88 .6 3837.632336 48 211Lm1221222213121101 5555555555555—55555555 UWlfiA 100.75 99.80 98.77 97.20 99.37 98.29 99.60 100.18 99.26 98.77 99.57 99.18 98.87 98.96 98.99 99.87 99.81 99.44 100.14 98.66 98.91 98.17 98.34 98.66 97.75 99.60 99.22 0.33 1.75 0.24 1.72 0.45 1.13 0.44 1.81 0.33 1.14 0.33 1.26 0.29 1.23 0.44 1.13 0.36 1.27 0.33 1.32 0.32 1.35 0.36 1.28 0.28 1.46 0.25 1.56 0.25 1.48 0.36 1.22 0.35 1.56 0.33 1.38 0.39 1.37 0.26 1.45 0.40 1.32 0.27 1.07 0.26 2.26 0.45 1.03 0.21 1.10 0.33 0.92 0.26 1.05 1.29 0.75 0.89 0.59 0.84 0.72 .51 0.74 .77 0.88 .00 0.60 .31 0.74 .28 0.70 1.19 0.70 21.46 0.69 .7 21.29 0.66 6 21.45 0.66 7 21.25 0.66 7 21.03 0.69 7 21.20 0.66 21.43 0.64 20.98 0.70 20.71 0.64 21.21 0.79 20.76 0.70 20.75 0.64 20.82 0.62 21.09 0.72 21.31 0.61 20.93 0.64 20.86 0.62 21.56 0.59 57471 79 43863028 nunnnnn1nu1n1n1nnnnu1nnnnln 1&5460292742273351500 3603 22 7106273230748608448 39.4..2 ... 998N98888888888889888888788 402 2182 0708 0006 1.. 21.5 2310m3123m1432 2 11111111111111111111LLLLLLL 999994 39368456921m236332 86 0731.5 6788w—Jnd324hdhz Q~4...5385 52863 221.011.231129m1211229m11112122 555555555555555555555555555 122 Table 5 (cart’d.) . fi%A%% no mo m:91mp 90 fi% mo Em hmu Field.Nb. 1W22A 98.79 98.14 99.06 99.86 99.38 100.59 99.84 98.01 99.40 100.63 100.60 100.65 100.97 99.88 - 100.81 0.24 1.24 0.31 1.25 0.32 1.18 0.37 1.36 0.32 1.21 0.23 1.85 0.26 1.28 0.30 1.35 0.37 1.33 0.32 1.17 0.35 1.09 0.25 1.24 0.25 1.60 0.35 1.16 0.10 2.70 915 flaw? ama$676m6a6 m0.0.0.nu.0.0.0.0.0.0.0.0.0.0. 0523 2$u1039um2 55m nU.110.11110.111110. 222222222222222 9132054711 892 6365992997 924 O ......OOOOOOO unnnuuununnnuu ”mummmxuunmanmm 88898988QH900888HH. ..mnufimmm5mwmmfl 111111111111110 5&9 .mxa m:. 9535 5965 LW2-5 37967160855556 82170024375255 99099990899978 99099990999999 1 1 .............. 9926270701M673 6782733293 321 O 0 O O o O O O O 0 O O O 0 00011111011112 25579369235607 43421343444431 0 O O O 0 0 O 0 O O 0 O o 0 00000000000000 .............. 97 810 55 $;7.$“&7.Aw£w 0.0.nmnwnm0.nw0.0.0.0. ommm .muum.. 11nU.11111011 22222222222 6885510 B.‘wd..4..80.7.°~ 321 655 000. 84 73u1 011 222 gas 55m uuuuunnnlnnnuu gunnmunnnnmnmm 7..I.-I.7.88887.8—I.87.nm 1 2 4 5 38185 4 6fl8a2 4444637 0.. O... .0.... 11100111111110 667818 46 9156 18nw7.27 24nd..3 32333223223211 55555555555555 1W4-18 572983276703205845 049505660539080932 589908908987886780 999909909999999990 1 1 1 ......._....._.... 2m2972395140a13235 0 8999590010 91213 O O O O O O O I O O O O O O O O O O 121111112312112222 456693307436061458 222522222252322221 O O O O O O O O O O O O O 0 O O O O 000000000000000000 l 1 .................. 0 935M629226257763fi2 566 675676665656 6 O C O O O O O O O O O O O O O O O I 000000000000000000 5W0404920373u606w5 7 4187749822 437 8 O O O O O O O O O O O O O O O O O O 001100110011110000 222222222222222222 429$2509 03290 787 337 7.4..32 38370 483 O O O O I O O O O O O O wuuuuunnuunuuu111 111 5007278934 479 93261613899MB418 O 0000 00 110 91111999118999n111 941722 878 9589 WWBfiflfififlmm292 7.986. 000011001110100000 mwnwmmnmummmnmnm mmammams wwwowwma am Field.Nb. 1W4-1B (cont’d.) 1W4-5A DW4-SB 1W4-10B CPS-2A 123 fi%A%% no an on 52.16 51.78 50.69 51.75 50.36 51.77 51.68 52.80 52.32 52.17 48.98 51.71 51.49 51.86 51.96 51.79 51.52 52.17 51.87 51.49 52.08 53.39 53.60 51.82 52.84 52.75 52.91 52.80 53.25 53.24 53.59 53.07 52.47 52.67 53.15 52.87 51.49 51.56 51.84 50.28 51.11 50.79 52.30 52.70 52.13 0.95 1.02 0.93 0.79 0.87 0.83 0.85 1.28 1.50 1.32 1.26 1.05 0.93 1.18 00000000 000 N Hmmm QEQOQH %8883883388358fi328833833$ HHHHHHHHPHHHNHHr-‘HPHHHHHHO HHHOOH 9.65 10.07 9.73 9.43 10.26 9.90 10.02 9.01 9.20 8.43 9.75 9.21 8.26 9.06 a UN ”0' kiss 000000me .0 O 0... O ‘0 NHOO‘HO‘DOQU‘Q H 0 bUUUIgNU‘OQUUUDO‘UU :OUWUUQOEUQQU H onqmqomqmwmmmmommmmommmmmm 00.. 0 009(3th 13.59 12.76 12.76 12.83 12.23 13.05 12.46 14.74 13.66 14.62 13.64 13.02 13.97 13.27 14.39 13.42 12.40 14.32 13.80 13.43 11.96 15.32 14.37 14.25 14.27 14.13 13.40 14.45 13.30 14.64 14.47 13.61 14.36 14.70 14.75 14.93 14.19 14.38 14.40 14.02 13.22 14.75 14.67 14.96 14.35 21.63 21.05 21.28 21.26 21.28 21.54 21.04 21.44 21.13 20.65 21.11 21.11 21.55 21.27 21.46 20.98 20.78 21.27 21.72 21.59 14.63 21.51 21.72 21.29 21.60 21.55 21.34 21.50 21.52 21.73 21.53 20.79 22.01 21.50 21.35 21.35 20.98 20.72 20.95 21.38 20.52 21.71 21.54 21.05 21.00 Table 5 (cont'd.) . oogooo $32888 oooooooooooopoppppgppppgr 888328828388§$883§3$$§$32 999999 UUNGNU mom 0‘) c:c>c>c>c>c>c>c>c>c>c>c>g>c>c>c>c>c>c>c>c>c>c>c>c> a.u»uau»n>p-u:uua»9.9.9.01uia-unn-o»u»unn»ununh.o. C)b-h-GI~JC>O\C>¢-h)0\0\b-b-U|U)Uih)\lh‘0\h*hlhlh) i Q-bUID-‘U'IDU h'h'h’r'h'h‘h‘ \0\0¢3ha c: {HOPE-“HO \looqquuoxoooxoor-uo OOOOHOOOOHHOHHHr‘HHl-‘HHHHHO \lOOChNJ-‘b COO UIH\lObOOHHNOngUHHOGSGUQgg g OOOOOOOOPOOOOOOO HNNNNNNHNNNNHHNH mwuwommmpqmmmmmm Irmzu. 100.78 99.64 98.15 98.76 97.92 99.95 98.93 100.16 100.29 99.13 96.93 98.60 98.36 98.73 99.46 98.53 98.91 99.18 99.27 98.77 98.17 102.68 102.73 100.07 101.35 101.28 101.35 101.73 102.75 102.29 102.08 101.39 102.19 101.56 101.83 101.70 98.86 98.85 98.62 97.40 98.58 98.50 99.73 99.84 98.94 124 Table 5 (cart’d.) . Field No. 3102 141203 Feo Mgo Cao 19:0 K20 1102 um BaO Total .) CP3-2A (cart’ ,0 nu5115=31.1.nv1.2. a.4.n.n.n.7.4.1.1.o. 1. .bnm.u.4,o.9.4.9.o.3.8Mm.a,oqlnu150503nvnu05mu1. nvoanvcanVQJOJQVQJnVQJQJcanvnvnVQJQJQUQJOJOJQJQV nuolnvo.nVQJOJQJQJnVQJQJQJQJQJnVQJQJQJQJQJQJQJQJ 1. 1. 1. 1. .1 ................_.._-... ,0.3.9,b.1.4.l.1.J.4munu.4./.I.b.3.4.3.2_5mm.3.2 7U7H7u7.nvnuv.n.n~7u .nwv.nmnananqq,157.=3 can. nunununununununvnvnvnvnunv1.1.1.1.nv1.nvnvnvnunu 7.:37.:3Avnvnvn.057.:.1.=31.nvnv7.9.1.5.7.o,7.:3 1.1.1.151.4.1.4.1.1515.4.5,o.5.8,o,o.4.4.4.J.4.4 ......OOOOOOOOOOOOOOOOOO nununununununununununununvn.nunvnunununununununu .............._........_ .5 9o. 530.1. nuwlq: 9.59999 5999599 555 5339.9 000000000000000000000000 805905 1229 932 0269280 30.4..839m 7745”953m2649643 1110111001100B00000EEB 2222222222222 22222 199.99 9995599999999999 91 muuuuuuuuuuuuuuununlnuln 8W2 HMZO m:84..16.8 988304 92837 .814..~I.82 0 .nm 0 8887887788778mm1 1M1 n.88 9999999 903 63791929594 65$“5fi43273403334 111111111111111111111111 616318 2534674 54svoa5ammmn use. .7571455 .0 O .0. 32223 2232222 110.111111 55555a5555555m555555555 CPS-23 378555323u564m12527315 995687965 694 35831213 8788888887899878888899 9999999999999999999999 ........._._.._....._. 73682790 5364925889 6W0 9199141w9898940106 I C O O O O O O O O O O O I O O O nm111nm10110110001011110 4140610405594096183593 4344344243434532423343 O O O O O O O O O O O O O O O O O O O O O O 0000000000000000000000 5 6 ........-..._.__._.._- 0 90517 5099719 3 00 6 O O O O O O O O O O O O O O O O O O O I O O 0000000000000000000000 4837 20900233 58765461 0 O O O O O O O O O O O O O O O O O O O 6 O 0000811010000000000001 2222122222222222222222 8 563 41 515261 5449 O O O 6 O 433 4 4 n111mnuuunl .1nlnnu 7373061M57976161 583 A0.16—I.3 5 54..93nw 4nw 229 8888788088878889887888 1 5995.5554255..U9555955 1111311111111110111111 5:1m9 974 1 8:23371402 85.4. .1 5 52.5 52. 51. 84 51.78 53.5 51.5 52.0 51.8 52.0 52.0 52.1 53.2 52. 58 125 Table 5 (cart’d.) . Total BaO 9%Ah%,mo mp an mgagp tmzmn Field No . CP3-1D 116814fl4775176.5“29694665710083” 717258 30125351 55974114355599 9709889099”87898777887878797879 99m9999m99 99999999999999999999 0 0 ....—...-....-............_._.. 0 689665-]“6854028968273007mn66703 1031382 9253262233412370 12222 1111111111111011111111122111111 47.509 2%68804296318114646313197 32421.2 31333232444443325353534 I O O O O O O O C 00100 0000000000000000000000000 6 .5 ....—..—-_.__....._...-.._._.. 0 19 131 133109935 26697 7.5 al.-50" 66666677flama—5 6.56nw5 O O I O O 0000000000000000000000000000000 98 1153 5 648233 810165 4..?— M: .8—I.QH_5 $M5fl423224 mm36.3555 1111111L0.111111 222222 22222222222222222222 6407725507617377 6952 627063 “9749954287454212 3635“17.16.8Q~ nunnunnnunnnnnunnulnnnlnnn unul 99999599999999999199n999999 9mm 8888888998867777787777788777777 983318 794854 84192 48 8203337 ”482673%0.4“130.9 94.53.5m3 3330.4..4..Q~ 0...... O... 1201101111111010111111010111110 5128619223008 350942972 071 9 0&79728646981Awfi0w7 853345007.3 000...... .0... 2 21122222321231111222222239Ma/m23 59.355555555555555555555555555555 Field,NO. BBB-15B DW4-5A CPS-2A CP1-3A Table 6. 126 fi%Ah% mo mp an 46.5 46.87 48.14 46.85 47.15 46.24 46.69 46.84 39.51 39.72 40.98 39.84 39.38 45.03 45.79 46.31 47.13 46.65 47.31 45.12 45.56 7.09 6.27 6.19 6.74 6.96 6.56 6.78 6.80 ????? 83288 0\0\~I?\a\a\a\0\ aaagaaa: 18.61 17.24 14.33 18.64 19.38 18.32 17.75 18.00 15.07 14.94 14.07 15.35 15.53 18.28 19.36 19.51 19.30 19.24 19.40 19.51 19.38 11.21 11.99 14.21 11.26 10.99 11.11 11.31 11.57 11.65 11.37 12.29 11.27 11.10 10.93 10.59 10.85 11.00 10.51 11.71 10.44 10.60 10.20 10.51 10.46 10.40 10.28 10.40 10.25 10.49 11.45 11.41 11.54 11.58 11.23 10.11 10.04 9.99 9.97 10.17 10.23 10.00 10.00 my 1.87 1.87 1.91 1.98 1.83 1.72 1.82 ... 0 p NNNNN O. NN-bl-‘U HO‘NGO P’P‘hlf‘r‘h‘k‘h‘ \J\Jh‘GDGDGJ~J hiUlO\C>GDF‘hD:i HPHH!‘ 00°00 00 \lqgflfl Hm Uh) .0 I-‘NOUN “HONO- c>c>c>5>c>c>c>c> $333$$$é Rfischmo e Analyses of Hbrnblende. T102 1.52 1.46 1.22 up UIU 9:hafoh*ha hau>g; #:5th O‘NOUQ OHO‘NO ON F‘F’h‘f‘h‘h‘h‘h‘ u:u:u:n»u»n.n.u> nih‘03hihDh-F'F' hié-F'F‘ c>c><>c>c> f‘hlh'h‘h* P’h)p'UIF' gru:¢.n.o. Dmehd NU UIU'I r'h‘hi a: .h 1.32 1.37 1.34 1.42 1.53 0.27 0.30 0.26 0.23 0.33 Tbtal 99.14 98.26 98.57 99.44 100.08 98.15 98.80 100.96 98.47 99.20 99.78 99.40 98.62 96.42 97.49 98.80 99.48 98.90 101.99 96.78 97.49 127 MummwQdeaofmmmdwa muem fiQAh: mo mo mo m§»go fi% mo $0 mml FRMNQ BBB-10C 8683m108160m03370294609 4235 072631 03470184667 58676767898999099989w87 99999999999999m99999 99 013 3054257240097676011 174 - 3323546534884453443 000 0000000000000000000 97 33 .1.................... 01 55 8866 00 0000 ..................._... 00 0000 22580101797937881790336 0 873224442865014454669 ....................... 11101111111011111101100 332 22 6 07988560860038 ....... .. ........... 33434777776677667767787 1377462 8080 716766 3730953 .4237 .659513“ 03361106 1333334..3 nU. 0.0.nm0.nm0.0.0.0.0. 3&2 smumfiz 25 0 4 0 56 38 4..4..4..334..5 2 22 5 3 55374 22222 2222 mannumnmfimw sawmw :2... .. 60 052 23 50 0 43 60. 66 23.69 0.35 59.34 25.13 0.45 58.83 25.16 0.43 60.16 23.64 0.39 60.35 23.58 0.41 57.32 25.69 0.40 60.99 23.46 0.36 61.32 23.31 0.44 .51 23.26 0.40 .04 22.95 0.41 60 60 EBB-153 58821876357820682w11 95.158596504303407 68 779090990 099990999 999090990m099990999g 1 1 111 1 ..................._ ........-.__...._.._ .......-._._....... 9 47416449486 473 55 5 81222229113n23ln32 O O O I O O O O O O O O I O O O O O O O 01011111101111111111 753 798SW65089515137 378 889nU. 88888949800 0 O O O I O I O O O O O O O O O O O O 78888889888888898899 3 2 36731169 0770 .0 0.. 000...... O... O 63333333333333323333 uummmwfimaflfifimflufiflmmm 00000000000000000000 flmmfiflfimwmmmmmmmflmfiflm 52121211111111111212 22222222222222222222 muunwagmxmwa .nmwm.fifi mamammam “a“. asaammm 99.20 98.35 96.37 98.98 98.68 99.70 99.60 97.76 99.29 100.05 99.88 97.14 99.78 100.08 86216 12731 0.0.00.0... 1110110001 622891 120.9wab.0n 88888QH87888888 11131 $3364.. 33353357.533334.. 128 T&h7(mmfid. .89 0.21 1.72 0.23 .58 0.19 125.35 0.14 61.15 23.27 0.18 0 2 165 23.63 0.20 2 2 2 157 21.62 0.22 63.72 22.46 0.18 63.21 22.13 0.18 63. 97 22.05 0.24 61.08 23.80 0.14 64. 25 21.85 0.20 62. 82 21.83 0.24 61.21 21.29 0.22 63. FEMNQ $.21 an up an c: 0 fl. mo an and 342% Na2 Q % m&53( mvm 3.4.nua37.11qz,o.8.8 9.0.9.11q2a2a1,6.8.9 o.1.o.o.o.n.1.a.7.v. oanquQJQJQJnVQJQJQJ 1. 11 . _ . . . . . . . _ nu . . _ . . . . . . . . . . . . . . . . . .1_I.6.4.1.U.8.4.2.2 22.9,o.4,o,o./.1.3.5 . 0 0 0 0 . . . . . 1.1.11nv11nv111.1.1. n.7.n.q.4.=.1.o.o. n.q.4.7.nuauaaql,o . 0 0 . . 0 . 0 0 . 2.0.2.5.nvavmwnunun. .5 $4 $0 mm& .3.2.2.8.2,o.2.3.2.2 550000 58 122222 21 000.00.... 0000000000 $fl4257331. 7J~J10~A8 221.].15121 222222222 %nmw3 ”7m E $6 sawmsas 7 Q” 2 6 BBB-1 7151513306 7664919460 8758077600 9999099900 1 11 3 8 110 1. . . .0m8w111 0 00000 ......_... ...-...... 191056968” 323322442 . 0 . . . 0 0 . . . 1101111011 96 6837 76 . 0 0 0 0 . 0 . . . 8858888688 2233433523 446485 945 . . 0 0 0 0 0 0 . . 3393333733 ......_... 7004 unmmnmllls nwnmnmnwnwnvnvnvnunu 2.1.1.1... 99.10 - 4.10 7.40 2.07 61.91 23.50 0.12 LWlfiA DW2-5 87610197 70433326 . 0 . . . . 0 0 77798667 99999999 ...-.... ........ ...—.... 7793 2226 LL0.0.L0.LL mm c.1.q.1.4.9. 7.nwn~7.7.o~ .5.8,6.1.I.5.I./ .2.2./.5.3.8.1.5 .2,6,onununa.2.8 1.4.7.7.132w4.1. m. .1mm2 AU. 0.0.0.nan. 3 sanwmn 340663.].22 22222222 oamwma o 1 391 6%55 556 129 Table 7 (ccnt’d.) . Field No. 8102 111203 F60 1430 C20 N620 K20 T102 M10 830 Total LN4-1B 64.22 21.61 0.23 2.81 8.39 2.02 - 99.28 63.07 22.84 0.27 3.73 8.42 1.41 — 99.74 61.77 24.18 0.20 4.64 8.17 1.03 0.11 100.10 63.55 21.84 0.32 2.70 8.75 1.96 - 99.12 62.87 22.37 0.24 3.61 8.64 1.48 - 99.21 64.25 21.23 0.19 2.94 9.00 1.58 - 99.19 63.40 21.53 0.24 3.08 8.47 1.71 - 98.43 61.49 23.35 1.02 3.90 7.68 2.05 0.18 99.67 60.35 23.28 0.88 3.94 7.16 2.01 - 97.62 61.22 22.88 0.82 3.88 7.30 2.39 - 98.49 62.65 23.87 0.79 3.71 8.07 2.27 - 101.36 59.38 22.59 0.75 4.17 7.02 1.91 - 95.82 61.34 23.76 0.82 4.34 7.49 1.91 - 99.66 58.82 22.59 0.79 4.01 6.80 1.96 — 94.97 59.57 22.65 0.72 3.94 7.20 2.08 0.18 96.34 60.53 23.07 0.81 3.85 7.29 2.20 - 97.75 59.44 22.95 0.83 4.23 7.16 1.81 - 96.42 60.98 23.24 0.80 4.06 7.21 2.05 0.15 98.49 59.31 24.48 0.90 5.41 6.88 1.34 0.30 98.62 58.43 22.53 1.01 4.04 7.42 2.28 0.14 95.85 61.37 21.70 0.51 2.36 6.63 4.82 0.43 97.82 60.83 23.13 0.63 4.13 7.70 2.14 0.15 98.71 58.73 22.72 0.65 4.17 7.33 2.10 - 95.70 61.47 23.43 0.60 4.21 7.62 2.15 0.08 99.56 58.80 24.06 0.39 5.53 7.10 1.55 0.34 97.77 60.05 24.91 0.35 5.29 7.27 1.60 0.56 100.03 59.25 23.39 0.39 5.09 7.29 1.76 0.36 97.53 61.37 23.75 0.28 4.75 7.42 2.14 0.31 100.02 58.81 24.58 0.40 5.83 7.07 1.42 0.36 98.47 60.86 24.40 0.35 5.09 7.27 1.79 0.41 100.17 60.58 25.02 0.44 5.15 7.24 1.67 0.24 100.34 58.51 24.11 0.38 5.32 6.73 1.62 0.21 96.88 61.71 24.97 0.36 5.26 7.58 1.73 0.35 101.96 58.61 23.08 0.34 5.23 6.87 1.69 0.36 96.18 59.62 22.38 0.36 5.17 6.48 1.94 0.30 96.25 59.43 25.50 0.41 6.26 7.18 1.21 0.54 100.53 53.66 26.86 0.43 8.82 5.44 0.57 0.40 96.34 55.16 27.53 0.49 8.99 5.71 0.75 0.40 99.08 55.43 26.39 0.49 8.05 5.96 0.84 0.52 97.76 55.86 26.12 0.42 8.11 5.96 0.83 0.56 97.91 58.42 23.54 0.38 5.26 6.99 1.54 0.34 96.56 58.75 23.46 0.38 5.13 7.17 1.80 0.31 97.00 60.39 24.28 0.39 5.15 7.20 1.82 0.50 99.73 59.33 24.67 0.44 5.66 7.15 1.54 0.35 99.26 130 Table 7 (oart’d.) . Field No. 8102 111203 Feo 1490 C30 N620 K20 T102 MnO BaO Total era-23 62.88 21.38 0.28 3.66 7.75 2.59 - 0.18 98.72 63.22 21.72 0.34 3.82 7.55 2.31 - 0.09 99.05 62.09 21.53 0.35 3.84 7.54 2.32 - 0.13 97.80 62.45 22.14 0.30 3.99 7.77 2.08 — - 98.73 63.22 21.98 0.31 3.78 7.77 2.31 - 0.11 99.48 62.82 22.48 0.38 4.65 7.91 1.77 - - 100.01 63.14 21.98 0.29 4.00 7.74 2.25 - 0.08 99.48 65.58 19.30 0.73 2.36 6.34 2.45 0.16 0.08 97.00 62.20 22.19 0.38 4.10 8.11 2.35 - - 99.33 62.67 22.42 0.29 4.14 7.90 2.26 - 0.10 99.78 63.86 21.34 0.17 3.20 7.74 3.49 - - 99.80 64.53 21.57 0.13 3.07 8.28 3.11 - - 100.69 64.17 22.11 0.15 3.91 7.71 2.10 - - 100.15 63.25 22.17 0.20 3.87 8.16 2.40 - - 100.05 62.38 21.72 0.30 4.29 7.97 2.07 — 0.13 98.86 64.25 21.08 0.20 2.84 7.46 4.00 - - 99.83 63.51 21.45 0.15 3.40 7.46 3.34 - - 99.31 62.64 21.59 0.11 3.52 7.55 3.36 - - 98.77 63.42 20.99 0.08 2.86 7.52 3.80 - - 98.67 63.36 21.37 0.13 3.24 7.83 3.09 - - 99.02 63.78 21.55 0.17 3.15 7.96 3.53 — - 100.14 63.18 21.02 0.31 3.35 7.63 3.23 — - 98.72 62.76 21.02 0.30 3.14 7.49 3.48 - - 98.19 62.33 22.41 0.32 4.43 7.94 2.05 - 0.12 99.60 62.42 21.74 0.34 3.75 7.64 2.09 - 0.20 98.18 62.23 22.46 0.30 4.14 7.70 2.20 - 0.09 99.12 61.76 22.05 0.36 4.18 7.78 2.14 - 0.11 98.38 61.48 22.62 0.34 4.75 7.89 1.72 - 0.16 98.96 61.47 22.62 0.34 4.76 7.76 1.77 - 0.07 98.79 60.79 22.49 0.34 4.81 7.97 1.86 - 0.15 98.41 62.65 22.16 0.23 4.08 7.98 2.01 - - 99.11 63.28 21.41 0.19 3.67 7.97 2.24 - - 98.76 62.79 21.86 0.21 4.03 8.16 2.27 — - 99.32 62.29 22.21 0.29 4.17 7.69 2.34 - 0.11 99.10 61.45 22.37 0.36 4.83 7.69 1.76 - 0.11 98.57 62.21 21.64 0.28 4.04 7.72 2.64 - 0.07 98.60 62.42 22.36 0.37 4.28 7.77 2.20 - 0.11 99.51 62.17 23.00 0.30 4.67 7.80 1.90 0.06 0.23 100.13 61.01 23.27 0.32 5.34 7.85 1.48 0.06 0.19 99.52 62.41 22.16 0.34 4.25 7.76 2.18 0.06 0.24 99.40 62.36 22.49 0.33 4.35 8.01 2.08 - 0.14 99.76 62.85 22.26 0.27 4.18 7.88 2.31 - 0.09 99.84 60.86 22.56 0.37 4.67 7.54 2.03 - 0.11 98.14 62.42 21.99 0.22 3.96 7.77 2.42 - 0.10 98.88 62.44 21.93 0.36 4.28 7.81 2.23 - 0.14 99.19 62.91 21.79 0.19 3.64 8.11 2.42 - - 99.06 61.97 22.52 0.35 4.25 7.66 2.17 - 0.23 99.15 61.33 23.01 0.36 4.73 7.93 1.92 - 0.29 99.57 61.26 22.27 0.36 4.41 7.97 2.08 - 0.21 98.56 131 hfle7mmU¢L fiQAhf m0 mo @0 mi go figzmn km find fifldm. CPS-1A 102.54 101.92 101.08 100.63 101.28 102.01 100.34 100.81 100.91 336 14M6 222 22 4 000000000 111111100 3352 5180 7.312 898°”8887.7. 43290393 1886.37.5-Jfl L333l33~h~h nmw mum 000000000 000000000 2m0 wx7m7 34......333 222222 sanma6 mas m6 m:a6%$ 6.6 CPS-13 36592707900381673711$ 97744029417493442946 9 00100011 1010 9mm00000000mmmmm0000m 11111111111111111111 .1 4 0 642 1 ..............-..... 00 0 0 0000 0 0 ..........-..._...... ............_........ 77378770 nus/11434551 44244443 034323223 0 0 0 0 0 0 0 0 001000000111111111111 2.1 4 14 55 0 00000000 00 7.7.8—I.~I.6M65888888888888 4&8728868JM680356108 7363.].7. 4..413~I.6~I.7.4..~I. 773777799334333333333 omo onma JJn6 5&8 mm 2JJn 000000000000000000000 M7.19.6.26.5 1711 1232267 .4..Q~84.. 222222222222222222222 22176561 565698235 9mm .«I.283~I.3 512173635 0 0 0000 0 0 0 55332333 33333 132 MEmm¢eMflwsof$Mfimu mue& fi%Ah%’flfl $9 an mwagp Tszn am fiflfl Field.Nb. BBS-10C 57534763222931.3613 41 8434592090513 6563m89999089910 9999 99999099900 1 1 11 12 1003164680018 46.2385998322620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 3323212222233 8 6 .............—.. 0 0111 mm uwn 1111mwuw ...-0......00... 00 000000000000 34.32627 13 09196 5256331m—30 335.33 0.......00.0.... 8888788888888888 9 60 5292 35 2 4&33“fl4459%fi64m6 ............0... 1121544444444444 0928462329296487 8787978777767788 0000000000000000 0000000000000000 17 0.18 11 0.26 45 0.27 19 29 0.26 60 0.31 2 0.23 7 4 12 0. 6 2 4 6 0 77 0 00000000000000 mwnmmmmmmm 312 903327 .AJA .JAJJfiJ aaaaaaamaa 61.38 20.28 0.20 63 39 20 61.21 20.68 0.25 61 57 20 62 75 20 42 62 BBB-153 98 88 99.56 0.12 99.60 99.34 98.53 99.88 98.69 99.97 0.11 99.34 98.25 98.92 0.09 99.43 100.08 0.09 99.73 0.11 100.03 0.10 99.77 0.11 98.99 99.14 0.14 100.35 0.11 99.68 0.09 98.48 0.16 99.11 98.09 98.16 0.25 4.52 10.17 0.25 4.61 9.84 0.26 4.10 10.29 0.25 4.34 10.37 0.06 0.31 6.07 6.50 0.25 4.21 10.34 0.29 4.69 9.31 0.24 4.07 10.49 0.24 5.48 8.49 0.26 4.52 9.78 0.33 4.39 9.87 0.24 4.23 10.25 0.28 4.29 9.63 0.22 4.20 10.09 0.21 4.14 10.30 0.29 4.73 9.62 0.24 4.18 10.05 0.23 4.25 10.02 0.26 4.14 10.04 0.28 4.24 9.87 98 04 54 32 ... mmfi.Mmmumamflmummmnmwmmflfi 000000000000000000000000 fiflflflfiflfiflfifl$flfiflflflflflflfififlfim mummmmmmmmmmummmmmmmmmmm %nmmnumaxmwmxnmmuuummnmu 2%mwmmwwmawmnmmmmma.6mam 101.31 98.82 4.55 0.43 Eflfi-BB 133 Table 8 (cmt’d.) . agahg no mo mo.mp go fi% mo aw awn BBB-BB (oont’d.) Field.NO. 664w6600175320$04u0396 399 0534326538 58 0412 91091890088887098888 8 90090990099999099999m9 11 1 11 1 1 8 o m ........_._.__...._... 0 0 ......_._......._..... ..................._.. 170 8362 418499 562 «No.9muaawnd99 ~0I~897.989”750 m99999999909999999999m 1%352591 5 5705512253$ 5 Qua/.884h7. 5 7.7.4U8584..9—I.8 O O 4544444444444444444444 4600739960653976106288 O O 3343242233222222333332 oooooooooooooooooooo oooooooooooooooooooooo 2222222222222222222222 0000000000000000000000 wamxmwnnn mm %mnmmm 5w >muuummmuummmmmmmmmmumm 2&2 smmao an unnmxm o 2““ «22225 aaammasam2ms .2 BBB-1 99.00 0.18 101.77 0.10 97.87 0.11 96.77 0.17 98.94 0.14 99.44 98.08 0.16 99.48 0.08 99.51 0.89 0.70 0.05 0.14 0. 0.82 0.56 111111 14 10.66 0.05 36 17 0 3 4 06 10.80 92 00...... 4344444 1606018 .24 4.71 10.34 2 2 2 3 3 3 2 2 0 0 0 0 0 0 0 0 0 no nmn nmmm 0.0.0.0.0.0.000 2mmnmmwmm2 mm msmm2u2 9 313109 8:330.80.5 «mammaas LWlfiA 99.05 101.37 99.80 0.22 100.03 0.11 97.33 0.08 99.42 554 lasezw 00998008 5 94 9M6 Aududu54..du 1375 “5586.“ nmo.nm0.0.nw 1W2-5 028481562 144220206 188887877 m99999999 B 19 20 .. . . . ._ . . 0 00 ...-..__. ...-....— 704995462 312964728 0 O O O O O O O O 99m899998 766176021 874854750 0 I O O O O O O 0 444444445 233222332 552543355 0 O O O O O O O 0 000000000 ......... .E—I. .....— 00. 32610712 No.620u85J6 0. 23338 981 9 0 ““333233. 666666 134 Table 8 (omt'd.) . Field No. :13”: 1212:3 Feo up can Na20 1:20 T102 MnO BaO Total IM6(mmfl 7057145852671014 5625728046613196 8655587775678586 9999999999999999 452845 95655 2 222212n12142v . n2 0000000000000 00 ........._....._ ....._.._._._... 64 5153 99725313 2302 53935539 0.... 7998999797888297 6580 00 18534021 .79 .93702584 .0 7392 o o o 5 311 2354 83 flwm3flwm656.. 6557. 47. 000000000.nmo.o.o.0.0.0. 7 476 79 353088 O. .0.... I O. 00nmo.o.o.o.000000000 2 24amu2mmnwmwu4 &l1&1mnmm1ulmmmmm .mz mammmml .nmma 5m LLmQaLMK .&&6 $26.99 99.40 0.16 100.35 61660018774 42401654021 99980 9007 990.90%9009” 1 11 1.01 0 5 111 1 1 .. . .. .. ... . 000 0 0 6 0 ......... . 0 67656 76 00000. .m0.0 O O O O O 0 00000 000 4 .30 176761 7 85WDM8618J6 O O O O O O 998900—“99m.9 0 1 91 930409 B ““$5657.7.9 0 153612113 63 424..2.1m3nu.4al. 35 3 6 1W4-1B 3105955935439 3343225333332 0.nwo.o.o.nu.nwnmo.0.nmo.nw wfiamwaww 2.86 101.91 0.54 97.19 0.52 96.19 0.60 96.37 0.39 98.20 0.29 99.04 0.84 99.67 0.19 97.28 0.26 99.19 0.45 99.95 1.02 97.84 0.93 99.11 0.46 95.24 0.38 97.19 1.32 101.49 1.24 96.54 0.87 96.04 0.13 100.97 .81 8.37 .54 8.91 .43 9.49 .13 8.37 .40 8.61 4.63 8.84 4.27 8.76 4.67 8.84 4.53 8.23 4.28 8.39 4.57 9.07 4.50 8.83 4.61 9.28 3 4.37 9.10 4 4 4 5 4 84051152 .7.7877788 O. .0. 6 73 0.64 4.51 9.08 0.96 4.69 8.08 0.71 4.38 8.85 0 0. 0. 0. 0. 0. 0 0 0 0 0 0 0 0 088 0.76 007 0.70 19.61 0.78 62 782 20. 17 0.96 61.44 19. 36 0.20 62.25 19.80 0.72 64.312 62.73 21.80 0.30 0.05 0.81 4.85 8.51 62.97 19.25 0.20 61.81 19.41 0.72 61.87 19.10 0.86 63.72 19.05 0.94 63.95 19.66 0.77 63. 78 20. 21 0.78 62.62 19.45 1.04 63. 72 19.78 0.97 63.47 20. 30 1.45 CPB-ZA 135 Table 8 (curt'd.) . Field No. 2 7 3 0711 2852477651 603873227635932252095920662 W 8mu5m6un~478R8124465586fl393539480352386994824356317 67776 5898976897870876085 797977657885500901878987 99999m999999999999m999M99mu9999999999999mm9mm999999 6 126 6 60 830002164502546880 4689331356991208545 w 1Mm100%9m53m93331321473579931852237294556545653236 O O O O o O o O O O o 0 O o 0 0 O O O o O o 0 O O O O o o O O O O O O o O O O o O o O o o O O o o o 01101110100101100000000000000000000102222222522222 m__........._.......................__.........._.. oz mmmmw mmwwmmn i ..._..................._....._......_............. T 00000 0000000 91 80535649048965 7196 19126 36160205375640 2 0 $8 Hm:7 J5n~2£979170945m2840.0.73122955066976560690w6 O o O O 0 O O O O 0 O O O I O O I O O O O O O O O O 0 O I o O O O 0 O O ”M. 99999999999997.8896988899889998m9988898888888888988 0 225 13352130859545220 30636659790913536890648 60 M2 B437.B.%.8.4..560.4.37.33674=~64Jrl~=~24731A£566691253269742M24 o o o O O O O O o o o O O O o O O o O O o I o O I O o O O 54444444445444444444445445444544444444444444344444 393J4512W.77%6 05510450020$3913&932315730245945 46 w 77697767 £457.7.87.7.87.8 7.57.5 7.98.7.7.8nwnwnwnw7.7.7.7. 7.7. 00000000000000000000000000000000000000000000000000 M. ...._...._.._...................................._ 15 42049289980 2456 9:7.30.4..7.2._mmw829 470015 4645380 M 7.7. 7.7.7.2,m7.7.£87.£ 7.7.7.7. 6 445455 44..4 422222 2222222 0 00000000000100000000000000000000000000000000000000 10513540 2 3014 246 7 9 9186 9367357 065 98367 9.“ fi76053711$396364flnn484%9%5$7579$M2590634fi705m~39986 O o O O O O O O O O O O O 0 0 O o o O o O o I O O O O I 0 0 0 0 0 00 0 9 99 9999999999 9 u mmmz m2 m2 omznmz mmmzzmnmmmmz m1 321mmmm121122222291 m1 ) .205514 9 5656 82946 9033 8471.67 59760797696 97731 I O .0.... O. I 212.21.193.14 .12/M333 129m .3333 .12.2 .29033223911211 8 666 66 6666 66666 .eO.“6 “:666 6666 666 65666666566666 CPS-2A (cont’ 136 Table 8 (oart’d.) . fiQAh% no mo m01m§ go fi% mo &m awn Field.Nb. CPS-28 7332108 7003079711 36 1.333533825237463 88 08424.61..”2352392591$56$154687800828497(baa/947 999098888889097989098808 8 8 89888 1 1427162 56261643134933 9 39543714. 2u1801800w22234232422394.mn4.88320598. . _. O O O O O O O O O O O I O I O O O I O O O O O O O O O O O O O O I O O 000011001100101111010000 1.1.0 00112000 ...-..............-....._........_.._.... 7 087 7 77 87 6 8 ...mmmo.....u.wloo.m..om. oo..oommomo..._ O O O O O O 0 O O O O O O O O O O O O O O O 0000 0 0000 0 00 000 0000000 53 323 7192169 6 78 742620139312448 71614 O O O O O O O O O O O O O O O O O O I O O O O O O O O O O O O O 0 0615387372 3732759 84.09 234.9330 62 0972 8w~d78698499 8778878 9895”“669447294999238“ ......OOOOOOOOOOO......OOOOOOOOOOOOOIOO 44444444444444.4.44.454444444444555444444444 10072744. 18236550 3 6485149899033065332 “%57788477fls7687887”6&774777422877887334.4. oooooooocoo...ocoo...oooooooooooooooooooo 00000000000000000000000000000110000000000 61033730315BB48069339 430864084526305 514 JJJJJJJJJJ...JJJJJJJJ.JJJJJJJJJJJJJJJ..JJ 0000000000000000000OOOOOOOOOOOOOOOOOOOOOO mmmmummmmmmgmmMM$aMmmmsmw.mmfiwmmmmw.mmmfim m mmmmmmmm mmmmmmmmmnnmmmmmmmmmmnmmmmmmmm 61 uumunn ”manuamnammwwaunmuam “mnflamnuaflmlz mmmmmmmmmmmmmaawawamwuwuwmaamwaaaamaaawam CPS-1A 8 102.17 2 102.25 8 101.88 2 101.74 0 100.92 100.69 101.99 0 3 1 4 1 0 0 0 0 0 277360 04.0790” n0n0010 1 1111 9917736 9290096 34344.34. 1222132 323332.)“ 0000000 ......- 06 m.1ommn O O O O O I 0 00000 9502 55 6099“ .2 3 0.. O mmmmmmm .3539 «awwmma 11 0 0 2 7 .86 101.27 100.16 100.37 99.31 0.38 99.97 101.73 0.44 102.11 0.10 101.00 0.36 100.36 0.19 102.02 0.13 101.78 0.58 102.34 .07 100.73 10 62 0.27 101.89 T102 MhO BaO Tbtal 0 0 0 5.01 9.22 5.02 9.27 2504.30 653332 00.00.... 000000000 137 Table 8 (catt’dd . 0.17 0.19 0.33 0.22 0.14 0.17 19.73 0.24 20.59 0.14 19.56 - 20.13 0.09 19.80 - 19.98 0.20 2 2 2 3.52226 4.30650 .mmwwanmma fi%)Ah% no mo an my 90 CP3-1A.(cont’ 65 98 20.07 66. 28 20.21 66. 34 20.13 66.17 20.17 66. 24) Field.NO. CPB-lB CP3-1D 4 100.91 2 100.56 100.55 100.13 100.50 100.93 100.20 100.83 100.30 100.63 100.07 100.42 100.17 .2 .6 .11 .44 93892683 A330214..2 .0.00.0.00.0.0nu.0.0.nwnU. 0.44 100.19 1.54 100.60 0.43 99.80 1.34 100.44 0.25 100.10 1.27 101.39 0.31 99.91 0. 42 100.41 .90 10.09 .85 10.05 9.49 2 9.57 1 9.47 . 9 9.37 8 9 8 0 4.67 9.71 4 4 4 4 4 4 5 33 40 46 52 62 0.67 5.05 9.02 0.73 5.08 8.76 0.69 4.87 9.28 0.63 4.93 9.53 0.59 4.87 9.37 0.67 4.99 9.39 0.76 5.07 9.09 0.64 4.80 9.47 0.14 0.70 5.02 9.10 0.45 4.72 9.72 0.53 4.80 9.78 0.56 4.83 9.54 0.44 4.76 9.58 0 41 4.61 9.70 0...... 0000000 4 1ns.mumuuunmumnm1nmmu 0.nw0000.0.nw0.0.0.0.nw0.nm0.nmnmnwnmnw 2 812345621752 205252 870417253990m0 u020323 O. mommooooommoooooooooo 2222222222 66 6 3525 010 ”627wm2m $:5705m476 mama mama6M6 .a6 6m5aammm 100.92 0.27 4.36 10.54 65.85 19.90 CP1-3A 138 MawmmAmMmsdGhs. mnem Field.Nb. fiQAh% mo mo a0 my go fi% mo &0 mml BBQ-5C - 93.80 0.52 3.02 5.00 0.30 68.36 16.39 0.21 BB9-10C 79687644267540299 97198923966890836 34766782542123523 99999999999999999 81 74 5 6 23 11 1 1 ............._... 00 00 0 0 13 7 4 65 0 0 _......_.._-.__.. 00 0 0 1 418411034185627 2.431433233323343 O O O O I O O O O O O O O O O O 0 000000000000000 6882771731937 70 O O 0 O C O O O O O O O O 66666666666566645 70 6 275735178870 0 o o o o o o o 12222222233233333 2773 nawma ”6665565 5696 000000000000000m0 B M 5 83 0 30 .......-......... 0 0 0 00 400 90 2938555539 2.2.1 £:4..4..Aw1385377 O O O O O O nwnmlnmnw110.nmnu.nw000010 860 66781808287 .932. .4..4..920159243 O I I 0 606.66 44 44 61356 514 188834 330.83%m3581 .0.—1.7.434 nm0.0. .On6.6.9 BBB-15B 6216540 1826326 6433224 9999999 ...—... 73 mm..moo 00 000 75 8 oomomo 0.0.0.0.nmnwnm 739 678 905 947 O O O O O O 0 4545444 7303016 0.318887. 2221122 371 314 434 $54.. I O I 000nm0.0.0. 33 00 ._ - _— . . 00 anua us 1nU.0.nan.nU.0. 8852738 3&2A1u4h7. uuunnun BBB-3B 70$5581713 05 0439463 5434442385 9999999999 .......... 9 7 7 O 0 0 1.. 1. 1. 0 0 0 180 74 101nmmw 01 000mmmmmmm 2 2 61 03%0 90Mm . O 0 O C O C C O 0 5555444565 8931 1353 880.” 9.9.29. 2112121L31 182 mmOOOOOOOO 5652 5 ...-0000.4 0000 0 621 420210 734 777466 cocoon-coo 0000000000 n 106298513 445742748 0 O O O O O O O O I nunununnnn 70004M5170 JJAJJ.J£A£ 4433332203 7777777777 BBB-1 33792 08432 54565 99999 ..... 91 6 .01.0 00 0 70068 01100 00000 25425 98900 .0... 44455 94205 81233 .0... 12222 11 78 55fi44 00000 n 1... 0 62 09 65 32 0.. 0 00000 $fi119 695 manna 7 732 0. 333 44454 77777 139 Table 9 (cont/d.). 73.93 12.53 0.84 73.30 12.47 0.59 73.62 12.47 0.65 73.63 12.53 0.58 FieldNo. sicxymzo3 Feo Mgo CaO Nazo K20 T102 MnO BaO Total 8&d(mmfi 1W2-5 91.95 96.50 92.42 94.45 93.08 96.64 96.78 96.28 96.07 95.48 94.20 94.52 92.86 93.77 778 000 .....-........ 000 nuunmmnaum 0 coco-coo. 000000000 26 99 0 7 28 0.26 1 593 54 8 9 882 71mg &m&&m&&mm&& 5 77 6.60 0.24 84 6.36 0.21 “2605031 10 7718242 oooooooooooooo 22232333333322 7 1 0 8802566 764405 3355434u444465 o o o 0.. O. .0.... 00000000000000 nu .00 6%79412 3 54.334 0.0.... 0000000 48 3 3 O 0 28 0.52 47 0 mumunmmu 0.0.4.0... umumluumu 4.21 57288 903 58271 000...... 6077 0090 6766 7767 .20 13 89 0.34 0.06 69.10 14.01 0.70 69.05 14 06 0.30 68.39 13.66 0.60 69 25 14 69 95.15 96.27 97.28 93.35 69.85 13.26 0.92 0.07 0.39 2.98 5.79 0.16 0.14 0.09 93.65 70.52 13.44 0.79 0.07 0.36 3.37 6.22 0.17 0.10 95.04 70.92 13.34 0.76 0.07 0.41 3.06 6.49 0.17 0.09 0.13 95.44 92.50 90.19 0.20 93.77 0.13 95.41 0.19 93.97 0.10 95.10 m .4.4,o 1111oaoav.7.n.9.1. £5A.AJ££JJA5J 11nu111.1.nvnvnu111111111. mymmam.ammmmn finfimfinnuummbfi «4.9.4Mw.4.1.4mw,o.4.4.1 5.7.0, 1.1.nv o30.1.:. . I O O O O O O O O O I O wwammnnnwammw 72.90 13.31 0.85 0.06 0.32 2.75 5.84 0.18 0.06 71.76 13.23 0.85 0.06 0.28 2.64 6.14 0.19 73.47 13.47 0.61 0.06 0.38 2.32 6.81 0.16 69.55 12.97 0.69 0.06 1.15 2.31 6.45 0.17 1W4-lB CP3-2A 93.95 0.14 93.48 0.19 94.43 0.27 93.42 0.16 94.19 0.18 91.95 93.97 uxuwnmnwnn o o o o o o o .- wwwmammwmwmmw &&&&&&&&&&& 2552721317101 32385568226 coo-0...... 33212222332 6394.8 64.16 9 00533 1136M3n ...-.00.... 00000000000 86 7 10 0 ......- o o - 0 0 92% 9mm 9mg 9mm 9mm 0.01 93.44 4.17 5.97 0.28 0.02 0.04 94.18 4.13 5.92 0.37 0.01 2.51 5.68 0.30 0.02 3.87 6.07 0.26 3.43 3.98 0.29 4.65 5.41 0.36 .09 1.44 0.01 0.01 1.81 3.25 0.34 0.05 .69 1.30 0.02 .43 1.01 0.02 .71 1.31 0.02 15.12 1.23 0.02 .55 1.07 25 97 36 67.95 14.51 1.24 9. 7. 9. CPB-ZB 140 Table 9 (omt’d.) . Field.Nb. si .Al Rec 18;: <21: (3 c: 15. umo Bao Total CPB-ZB (0:111:35 2°3 "a2 K2 02 68.26 14.65 1.21 - - 4.35 5.78 0.28 0.03 0.03 94.59 67.93 14.66 1.26 - 4.05 5.14 0.27 - 0.01 93.32 67.65 14.74 1.26 0.04 4.27 6.01 0.32 - - 94.30 68.00 14.76 1.20 0.03 4.25 5.11 0.23 - - 93.58 66.74 14.62 1.27 - 4.21 5.84 0.22 0.02 - 92.92 67.82 14.56 1.30 0.01 4.87 5.88 0.38 - — 94.83 67.56 14.76 1.26 0.01 3.24 5.88 0.33 0.06 0.03 93.13 68.18 14.76 1.26 0.03 4.21 5.07 0.32 0.02 - 93.86 67.41 14.49 1.34 0.02 3.62 6.36 0.34 0.04 0.06 93.70 68.50 14.88 1.27 0.02 3.44 5.86- 0.36 — - 94.33 68.25 14.86 1.27 0.04 4.60 5.97 0.37 - 0.02 95.39 74.97 12.81 0.77 - 2.43 5.20 0.06 - - 96.74 75.15 12.92 0.78 0.03 2.32 4.98 - - 0.07 96.74 74.34 12.34 0.81 0.03 2.38 5.26 0.08 - - 95.71 74.43 12.80 0.73 0.03 2.32 5.15 0.11 - - 95.98 74.78 12.70 0.69 0.08 2.40 5.07 0.14 - 0.09 96.41 75.72 12.64 0.80 0.04 2.38 5.22 0.13 - 0.06 97.42 76.35 12.97 0.82 0.03 1.81 5.08 0.05 - - 97.56 75.84 12.45 0.81 0.04 2.32 5.07 0.06 - - 97.08 75.69 12.71 0.65 0.02 2.36 5.20 0.06 - 0.10 97.29 73.14 12.75 0.82 0.03 2.45 5.03 0.07 - - 94.79 74.88 12.80 0.79 0.02 2.41 5.10 0.07 - 0.09 96.65 REFERENCES CITED REFERENCES CITED Abbey, 8., Calibratim standards, W 1, 99-121, 1978. Anderson, A. T., Oxidation of the La Bladie Lake titaniferous magnetite deposit, Quebec, m1“, 16, 528—547, 1968. Aramaki, S., and P. W. Lipman, Possible leaching of Nazo during hydration of volcanic glasses, W, A}, 467-470, 1965. Bacon, C. R., Eruptive history of Mom'rt Mazama and Crater Lake Caldera, Cascade Range. U-S-An Wm. 19. 57-115. 1983. Bacon, C. R., R. Macdonald, R. L. Smith, and P. A. Baedecker, Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo County, California, W, 86, 10223-10241, 1981. Baker, B. R., and A. R. McBirney, Liquid fractionation. Part III: Geochemistry of zoned magmas and the compositional effects of liquid fractimation. W. 2.4. 55-81. 1985- Bence, A. E., and A. L. Albee, Empirical correction factors for the electron microanalyses of silicates and oxides, J. Geol., 76, 382-403, 1968. Blake, 8., Eruptions from zoned magma chambers, q. Qeol. gog. London, 118, 281-287, 1981. Blake, 8., and I. R. Campbell, The dynamics of magma-mixing during flow in volcanic conduits, W, $1. 72-81, 1986. Blake, S., and G. N. Ivey, Magma mixing and the dynamics of withdrawal from stratified reservoirs, ;. Volgaggl, Geotherm. Res., 21, 153-178, 1986. Blake, S., and G. N. Ivey, Density and viscosity gradients in zoned magma chambers, and their influence on withdrawal dynamics, J. Vglggnol, Geog-germ. R§§., 39, 201-230, 1986. Broxton, D. E., D. Vaniman, F. Caporuscio, B. Arney, and G. Heiken, Detailed petrographic descriptions and microprobe data for drill hols USW-Gz and UE25b-1H, Yucca Mamtain, Nevada, Rep. LA-9324-MS, 168 pp., Los Alamos Nat. Lab., Los Alamos, N. M., 1982. 141 142 Buddingtm, A. F., and D. H. Lindsley, Iron-titanium oxide minerals and synthetic equivalents, 1m, 5, 310-357, 1964. Byers, F. M., Jr., W. J. Carr, P. P. Orkild, W. D. Quinlivan, and K. A. Sargent, Volcanic suites and related cauldrons of Timber Mountain-Oasis Valley caldera complex, southern Nevada, QM 5.9.22... W: 70 PP-: 1975- Byers, F. M., Jr., P. P. Orkild, W. J. Carr, and W. D. Quinlivan, Timber Mountain Tuff, southern Nevada, and its relation to caldron wbeidmce. in Wfii‘l'é. edited by E" B- Eckel. Hem—$921. 199—518... 1.1.9. 87'97. 1968- Campbell, I. B., and J. S. Turner, The influence of viscosity on fountains in magma chambers, m, 21, 1-30, 1986. Carmichael, I. S. E., The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates, 9203mm m1." M, 36-64, 1967. Chen, C. F., and J. S. Turner, Crystallization in a double-diffusive system, W. 3.52. 2573-2593. 1980- Christiansen, R. L., P. W. Lipman, W. J. Carr, F. M. Byers, Jr., P. P. Orkild, and K. A. Sargent, Timber Mountain-Oasis Valley caldera complex of southern Nevada. mam. 5.8. 943-959. 1977. Christiansen, R. L., P. W. Lipman, P. P. Orkild, and F. M. Byers, Jr., Structure of the Timber Mountain caldera, southern Nevada, and its relation to basin-range structure, . u . 521:5. 843-348, 1965. Cox, K. G., J. D. Bell, and R. J. Pankhurst, The Interpretation of Igneous Books, 450 pp., George Allen & Unwin, London, 1979. Crecraft, H. R., W. P. Nash, and S. H. Evans, Jr., Late Cenozoic volcanism an: Twin Peaks, Utah: Part I: Geology and petrology, ,1. W. 3.6. 10303-10320. 1981- Eiczhelberger, J. C., Vesiailation of mafic magma during replenishment of silicic magma reservoirs, Nature, 288, 446-450, 1980. Ekren, E. B., C. L. Rogers, R. B. Anderson, and P. P. Orkild, Age of basin and range normal faults in Nevada Test Site and Nellis Air Force Range, Nevada, in W, edited by E. B. Eckel, W. 11.9. 247-250. 1968. Flanagan, F. J., U. S. Geological Survey standards-II. First compilation of data for the new U. S. G. S. rocks, Geochim. W. L3. 81-120. 1969- Fridrich, C. J., and G. A. Mahood, Compositional layers in the zoned magma chamber of the Grizzley Peak Tuff, Geo eol,9_gy _1_5, 299-303, 1987. 143 Haggerty, S. E., Opaque mineral oxides in igneous rocks, in Oxige Minerals, edited by D. Rumble III, Mineral, Sm, Am, Sho :5 Course Netes. pp. Hg-101-300, 1976. Haskin, L. A., M. A. Haskin, F. A. Frey, and T. R. Wildeman, Relative and absolute Mal abundances of the rare earths, in m WED—2W. edited by L- H- Ahrens. pp. 889- 912, Permagon Press, New York, 1968. Hildreth, E. W., The magma chamber of the Bishop Tuff: Gradients in temperature, pressure, and composition, Ph.D. thesis, 328 pp., Univ. Calif., Berkely, 1977. Hildreth, W., Gradients in silicic magma chambers: Implications for lithospheric magmatism, W, 86, 10153-10192, 1981. Hildreth, W., The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska, ML We. 13. 1-56. 1984- Huppert, H. B., and R. S. J. Sparks, The fluid dynamics of a basaltic magma chamber replenished by influx of hot dense ultrabasic magma, Qogtm . Minerai, Petrol", 15, 279-289, 1980. Huppert, H. E., and R. S. J. Sparks, Double-diffusive convection due to 1“ magmas, W .12. 11'37 1984. Huppert, H. E., and J. S. Turner, A laboratory model of a replenished magma chamber. W. 5.4. 144-152. 1981- Huppert, H. B., R. S. J. Sparks, and J. S. Turner, Effects of volatiles m mixing in calc-alkaline magma systems, m, 222, 554-557, 1982a. Huppert, H. B., J. S. Turner, and R. S. J. Sparks, Replenished magma chambers: Effects of compositimal zonation and input rates, 16.12211 W. .51. 345‘357. 1982b- Huppert, H. E., R. S. J. Sparks, and J. S. Turner, Some effects of viscosity on the dynamics of replenished magma chambers, ,L W. £2. 6857-6877. 1984- Kistler, R. W., Potassium-argon ages of volcanic rocks in Nye and Esmeralda Counties, Nevada, in W, edited by E. B. Eckel, HEB: Gggl, 509. Am" 119, 251-263, 1968. Lipman, P. W., Chemical comparison of glassy and crystalline volcanic rocks, g. S. Geol., Sun. Bgii. iZOi-Q, 24 pp., 1965. Lipman, P. W., Mineral and chemical variations within an ash-flow sheet from Aso caldera, southwestern Japan, Contrib' . Mm eral. Pet;oi., 1g, 300-327, 1967. 144 Lipman, P. W., Iron-titanium oxide phenocrysts in compositionally zoned ash-flow sheets from southern Nevada, m, :3, 438-456, 1971. Lipman, P. W., and I. Friedman, Interaction of meteoric water with magma: An oxygen-isotcpe study of ash- flow sheets from southern Nevada: Wile: fig: 695-702! 1975' Lipman, P. W., R. L. Christiansen, and J. T. O’Connor, A compositionally zoned ash-flow sheet in southern Nevada, 31. S- W. 47 PP-. 1966- Mahood, G. A.,Aaimmaryofthegeologyandpetrology of the Sierra La Primavera, Jalisco, Mexico, W, 86, 10137-10152, 1981 Marvin, R. F., F. M. Byers, Jr., H. H. Mehnert, P. P. Orkild, and T. W. Stern, Radiometric ages and stratigraphic sequence of volcanic and plutonic rocks, southern Nye and western Lincoln Counties, Nevada, W, 81, 2657-2676, 1970. McBirney, A. R., and R. M. Noyes, Crystallization and layering of the Skaergaard intrusion, LEM, 29, 487-554, 1979. McBirney, A. R., B. H. Baker, and R. H. Nilson, Liquid fractionation. Part I: Basic principles and experimental simulations, J. V . WI 23! 1'24! 1985- Noble, D. C., Ground-water leaching of sodium from quickly cooled volcanic rocks, (abstract), W, 59, 289, 1965. Noble, D. C., Sodium, potassium, and ferrous iron contents of some secondarily hydrated natural silicic glasses, Mm, §_2, 280-286, 1967. Noble, D. C., and C. E. Hedge, Sr87/Sr86 variations within individual ash-flow sheets, . Geo . o . 6 - , 133-139, 1969. Noble, D. C., J. C. Drake, and M. K. Whallon, Some preliminary observations on compositional variations within pumice- and scone-flow deposits of Mount Mazama, W, Stage of gregon 2 egg, W,157-164,1969. O’Connor, J. T., A classification for quartz-rich igneous rocks based on feldspar ratios, U, S. 9e91, Suzy, Prof. Bap. 525-5, 879-386, 1965. Rose, W. 1., Jr., N. K. Grant, and J. Easter, Geochemistry of the Los Choccyos Ash, Quezaltenango Valley, Guatamala, eoGl. Soc. Am. Spec. Pap,,1§0,87-99,1979. Rutherford, N. F., and R. F. Hemming, The volatile component of Quaternary ignimbrjte magmas from the North Island, New Zealand, Cent—1W. 9.5. 401-411.1978- 145 Schuraytz, B. C., T. A. Vogel, and L. W. Younker, Pumice heterogeneity in the Topcpah Spring Member of the Paintbrush Tuff: Implications for ash-flow eruption dynamics (abstract), W, 65, 896, 1983. Schuraytz, B. C., T. A. Vogel, and L. W. Younker, Inflections in elemental and mineralogical gradients within the Topopah Spring Member of the Paintbrush Tuff: Evidence for the resolution of compositimal and thermal properties across a magmatic interface, (abstract). W. E. 391.1935- Scott, R. B., F. M. Byers, Jr., and R. G. Warren, Evolution of magma below clustered calderas, southwest Nevada volcanic field (abstract). W. 9.5. 1126-1127. 1984- Smith. R. L.. Ash nova. WM... 1.1. 795-842. 1960- Smith. R. L. Ash-flow magmatism. W229... 189. 5-27. 1979. Sparks, R. S. J., H. E. Huppert, and J. S. Turner, The fluid dynamics of evolving magma chamber-'8. Wm.__19 511-534, 1984. Spencer, K. J., and D. H. Lindsley, A solution model for coexisting iron-titanium oxides, W, §_§, 1189- 1201, 1981. Spera, F. J., Simulatims of magma withdrawal from crustal reservoirs (abstract). W. 5.4.. 876. 1983- Spera, F. J., Some numerical experiments on the withdrawal of magma from crustal reservoirs, W, 89, 8222-8236, 1984. Spera, F. J., D. A. Yuen, J. C. Greer, and G. Sewell, Dynamics of magma withdrawal from stratified magma chambers, m, L4, 723- 726, 1986. Stormer, J. C., Jr., The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides, W, 68, 586-594, 1983. Turner, J. S., and L. B. Gustafson, Fluid motions and compositional gradients produced by crystallization or melting at vertical boundaries» Wiles. 1.1. 93-125. 1981- Turner, J. S., H. E. Huppert, and R. S. J. Sparks, An experimental investigatim of volatile exsolution in evolving magma chambers, .._T_ Wes... 1.6. 263-277- Vogel, T. A., F. J. Ryerson, D. C. Noble, and L. W. Younker, Limits to magmamixingbasedmdiemistryandmineralogyofpumicefragments erupted from a chemically zoned magma body, m, 25, 659-670, 1987 146 Warren, R. G., F. M. Byers, Jr., and F. A. Caporuscio, Petrography and mineral d‘xemistry of units of the Tmcpah Spring, Calico Hills, and Crater Flat tuffs, and older volcanic units, with emphasis on samples from drill hole USW G-1, Yucca Mountain, Nevada Test Site, W, 78 pp., Los Alamos Nat. Lab., Los Alamos, N.M., 1984. Weissberg, H. L., End correction for slow viscous flow through long tubes, w, 5, 1033-1036, 1962. Williams, H., Calderas and their origin, W W. 25. 239-346.1941- Wohletz, K. H., T. R. Mcgetchin, M. T. Sanford II, and E. M. Jones, Hydrodynamic aspects of caldera-forming eruptions: Numerical models, W. 3.2. 8259-3235. 1984- Wright, J. V., and G. P. L. Walker, The ignimbrite source problem: Significance of a co-ignimbrite lag-fall deposit, W, 5, 729-732, 1977. "‘1111111111111