


Lot A4S

-
MICHIGAN STATE UNIVERSITY LiBRARIES &

AT,

1293 37 4297

LIBRARY
Michigan State
University

This is to certify that the
dissertation entitled
Minimum Distance Estimation In

An Additive Effects Outliers Model

presented by
Sunil Kumar Dhar

has been accepted towards fulfillment
of the requirements for

Ph.D. degreein _Statistics

Ko

]

Major professor

Date__April 8, 1988

MSU is an Affirmative Action/Equal Opportunity Institution o121




MSU

LIBRARIES
A —

'~

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.




MINIMUM DISTANCE
ESTIMATION IN AN ADDITIVE EFFECTS
OUTLIERS MODEL

by

Sunil Kumar Dhar

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Statistics and Probability
1988



51774+5)

ABSTRACT
MINIMUM DISTANCE ESTIMATION
IN AN ADDITIVE EFFECTS OUTLIERS MODEL
BY
SUNIL KUMAR DHAR

Consider the additive effects outliers (A.0.) model where one observes
Yj,n = Xj + Vi 0 <j<n, with Xj = pXj_l + & j=0,41,42... |p| <1. The
sequence of r.v.8 {Xj, j ¢ n} is independent of {vj,n’ 0<j<n} and Vi 0<j<n,
are i.i.d. with d.f. (1—7D)I[x >0] + 7nLn(x), x€eR,0¢ T $L where the d.f.s L.
n 2 0 are not necessarily known and ej's are i.i.d.. This thesis discusses the class
of minimum distance estimators of p defined by Koul (1986, Ann. Stat. 14,
1194—1213) under the above A.O. model. These estimators are shown to be
asymptotically normally distributed and their influence functions are also
computed. .

The second part of the thesis presents the asymptotic behavior of another

class of minimum distance estimators defined by Heathcote and Welsh
(1983, J. Appl. Prob. 20, 737-753) under the above model. This class of estimators
is obtained by minimizing the negative of log modulus square of the empirical
characteristic function (e.c.f.) of the residuals Yj,n —th_l o
function of t, for each value of the e.c.f.. Uniform consistency and uniform strong

1<j<n,asa

consistency of these estimators are proven, uniformity being taken over all possible
estimators defined above. The weak convergence of these estimators to a Gaussian

process is also established under the above A.O. model.



In both the problems it is observed that the asymptotic biases vanish if
yn Ty = o(1) orif yn T = 0O(1) and Z, -0 in probability, where Z isar.v.
with the d.f. Ln. The asymptotic biases are non—vanishing when yn T, 7 and

ZIl -+ Z in probability, where Z issomer.v.and 0 < v< 1.
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CHAPTER 1.
0. Introduction and Summary.
Let F and L,n20, be symmetric distribution functions (d.f.s)
on the real line R, symmetric about 0. Throughout this thesis F is
assumed to have a density f 2 0. Let {y, n > 0} be a sequence of

numbers in [0,1] converging to 0 as n - . Define

(0.1) B (x):= (1-7y) Ilx 2 0] + 7 L (x), xe€R,

where I[A] denotes the indicator function of the set A. Let

‘j’ j = 0, £1, #2_..., be independent and identically distributed (i.i.d.) I

random variables (r.v.s), with Ecg < . Let vj o 0 <j<n, beiid.
ﬂn I.v.S.

We consider the model in which one observes, at stage n, r.v.s Yj .

0 < j < n, satisfying

02) Y. =X, +

ion j vj,n’ j=0,1, ..., n,

with {Xj} obeying the autoregressive model of order one (AR(1)), viz.

(0.3) X. = pXj_1 + € lp| < 1, j =0, %1, £2,..,

j ik

where {Xj} is stationary. Moreover, {Xj’ j € n} is assumed to be
independent of {Vj,n’ 0 <j<n},n>0. This chapter studies the
problem of estimating p.

Denby and Martin (1979) called the model in (0.2) and (0.3) the

additive effects outliers (A.O.) model. All the above assumptions on



{Yj’ 0<j<n}, {Xj}, {Vj,n’ 0 <j<n} and {cj} will be referred to as the
model assumptions. The assumptions on {Vj,n’ 0 < j < n} reflect the
situation in which the outliers are isolated in nature. Isolated outliers are
defined by Martin and Yohai (1986) as the outliers any pair of which are
separated in time by a nonoutlier. Martin and Yohai (1986, page 796,
Theorem 5.2 and Comment 5.1) also made the assumption of independence
of the process {Xj, j ¢n} and {vj,n’ j=10,1,2 ..,n},n20.

In practice, an appropriate model for time series data with outliers
may be difficult to specify. Fox (1972) and Martin and Zeh (1977) point
out the importance of finding the difference between various types of
outliers in order to effectively deal with them. The two types of outliers
in time series analysis that have received considerable attention are A.O.
and innovations outliers (I1.0.). In the I.O. model one observes Xj of
(0.3), and that large data points are consistent with the future and perhaps
the past values. On the other hand, in the A.Q. model outliers are
generally not consistent with the past or future values of the unobservable

process X.. The additive effects outliers may occur due to measurement

errors like Jkey punch errors (Denby and Martin, 1979) or round off errors
in which case L is taken to be uniform d.f. on the interval [-.5, .5]
(Machak and Rose, 1984).

Denby and Martin (1979) studied the least squares estimator,
M-estimators and a class of generalized M—estimators (GM-estimators) of p
under the above models; they took F and Ln to be .A(O,crg) and
.4(0,02), respectively. Under their A.O. model all of these estimators have

non—-vanishing asymptotic biases with a possible reduction in biases for

GM-estimators.



This chapter of the thesis studies the behavior of the class of
minimum distance estimators of Koul (1986)(KL) defined under the A.O.
model (0.2) and (0.3). To define this class of estimators, let h be any
Borel measurable function from R to R, H be any non—decreasing

function on R, define

n
(04)  Sp(xt) = n 1/2j§1h(Yj_l,n){I[Yj Cx o+ Y] -

= J
and

(0.5)  M(t) = J s2(xt) dH(x), teR.

Denote ;;h(H) to be a measurable minimizer of M, if it exists. Then
;)h(H) satisfies
(0.6) ii’lf M(t) = M[py (H)].

KL studied this class of estimators under the I.0. model. Among
other things, he proved that the estimator with h(x) = x has the
smallest asymptotic variance within a certain class of estimators ;;h(H).

Section 1 gives the assumptions that facilitate the small and large
sample study of ;)h(H). It also contains a proof of the existence of
;)h(H). Section 2 discusses the asymptotic distribution of the proposed
class of estimators. Theorem 2.1 uniformly approximates M(t), t € R, by
a quadratic function of t, uniformity taken over small closed
neighborhoods of the true parameter p. Its proof uses the technique
presented by KL (proof of Theorem 3.1) and Koul and DeWet (1983, proof
of Theorem 5.1). The techniques of Koul and DeWet (1983, Corollary 5.1)



and Koul (1985, Lemma 3.1, Theorem 3.1) are used to obtain an
asymptotic approximation for yn [;;h(H) - p| in Theorem 2.2.

Throughout this thesis, the asymptotic bias of ;;h(H) is defined as
the mean of the asymptotic distribution of yn [;Jh(H) - p]. Section 3
contains the study of the asymptotic normality of a suitably standardized
;h(H) and its asymptotic bias.  Section 3 thus begins by reproducing in
Theorem 3.1, the Central Limit Theorem (C.L.T.) for ~mixing set of
processes proved by Withers (1981, Theorem 2.1, and 1983). Lemma 3.2
gives a general method to verify that the set of processes involved in the
approximation of yn [;)h(H) - p], is o—mixing. Definitions of {-mixing
and a-mixing sets of processes are as in Withers (1981) and have been
restated in this section for the sake of completeness. Using Ibragimov and
Linnik (1975, Theorem 17.2.2), the Lemma 3.3 gives a general method to
compute the asymptotic variance. Theorem 3.1, Lemma 3.2 and Lemma
3.3 are used to prove, in Theorem 3.4, the asymptotic normality of
Jﬁ[;)h(H) — p), when appropriately centered. At this point, Remark 3.0
disscusses conditions under which the model assumption of symmetry of I’
or Ln's about 0, could be dropped in the study of the asymptotic behavior
of ;)h(H). Theorem 3.5 contains conditions under which ;’h(H) has
vanishing and nonvanishing asymptotic bias and Remark 3.1 states the
corresponding asymptotic normality results.

As in KL, Remark 3.2 notes that the optimal estimator which
minimizes the asymptotic variance is the one with h(x) = x. For this
estimator we see that p and the asymptotic bias of ;)h(H) have the
same 8ign.

Remark 3.3 gives a smaller set of sufficent conditions which imply the

assumptions of Section 1. Remarks 3.4 and 3.5 discuss these assumptions



when H(x) = x or H is bounded, respectively.

Remark 3.6 points out that all the assumptions of Section 1 are
satisfied by h(x) = x, H given by dH = {F(1 - F)}'dF and F
either equal to the d.f. of a double exponential or .4(0,02).

Finally, using Martin and Yohai (1986, Definition 4.2), under some
regularity conditions, the influence function of ;h(H) is computed in
Remark 3.7. The influence function turns out to be proportional to the
asymptotic bias of ;’h(H)’

Before proceeding further, observe that the process {Xj} is stationary
ergodic and Xj—l is independent of ‘j’ j 2 1. From the assumptions on
vj’n's and Xj's it can be seen for each n, that the process {(Xj, vj,n)’
0 < j < n} is stationary ergodic and hence so is {Yj,n’ 0 <j<n}.

These observations will be used in the sequel repeatedly.

Notation. Throughout this thesis, by op(l) (Op(l)) is meant a sequence
of r.v.s that converges to zero in probability (is tight or bounded in

probability). Also, let ZIl be a r.v. with d.f. Ln, n > 0.

1. Assumptions and existence.
This section contains a list of assumptions that will be used
subsequently. Using some of these assumptions it also contains a proof of

the existence of ;’h(H) of (0.6). We begin by stating the

Assumptions.
. Al =
Az nyy = O(1), where 7 € [0,1].

A2: H is a non-decreasing continuous function such that



|H(x) - H(y)| = [H(=x) - H(-y)| ¥V x, y € R.

Note. H generates a unique Lebesgue-Stieltjes messure, hence H will

also be used to represent a measure in the sequel repeatedly.

Ag: (a) 0< EX% < o (b) For some §> 0,0 < E|h(X0)|2+5 < o
Ay EX2h%(X) < o
. 2+6
Ag: For some §>0, sup E | [h(Xj+2)|"""dL (z) < o .
n
A6: xh(x) 20 Vx or xh(x)<0 Vx.
A7: 0<Jfk dH < w, where k =1, 2.
Ag (a) sup J Ef(x-Z,) dH(x) < = . (b) Tm J B (x-Z,) dH(x) < w .
n n
Ay 3Cy> 0 such that J |f(x-u) - f(x)| dx < Clul, V u € R.

A (@) lim J E| X |h3(X,)[f(x+5X,) — f(x)] dH(x) = 0,

() lim | EX2h%(X)[f(x+sX,) - f(x)]* dH(x) = 0.
s-0
In all the assumptions to follow 0 < Cn € R are such that Cn -+ 0.

c
Ay () Tm gé; L}“ JEU | X, |B2(X )i(x+5X ) dLn(z)]dH(x) ds < .

n
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(b) T jC“I E[Xghz(XO)J (x+sX2) dLn(z)] dH(x)ds < .

n

Ay sup j EU |Xg+2| [b(Xg+2)| Ef(x+z-iZ,) dLn(z)] dH(x) < w,
holds with (a) j = 0 and (b) j = 1.
3 rll'lﬁj EU (Xg+2) 202Xy +2) B (x4 232, ) dLn(z)] dH(x) < w,

holds with (a) j = 0 and (b) j = 1.

C
Ay T 7(13; IC“J EU |X0+z|h2(X0+z){J f(x+pz-+5[X+2]-u) dL_(u)}-
n
odLn(z)] dH(x) ds < w,

holds with (a) j = 0 and (b) j = 1.

C

Als: Ililﬁi 7(17;J nJ EU (X0+z)2h2(xo+z)J f2(x+pz+s[X0+z]—ju) dL_ (u)]-
<y

-dLn(z)] dH(x) ds < w,

holds with (a) j = 0 and (b) j = 1.

A T | Eh2(Y0’n)Gn(x+pv0,n)[1 - Gy(x+pvg )] dH(X) < o
A,, T [ Eth(X +2)[E{F(x+p2-iZ. )-F(x—pz—iZ. ) }]%dL (z)]dH(x) <o
17 ] 0 n n n ’

n
holds with (a) j = 0 and (b) j = 1.

Note. In Remarks 3.2 — 3.6 various sets of sufficient conditions that imply

the above assumptions are given.



Existence.

Lemma 1.1. Assume that A2 and A6 hold. Then
either (i) HR) = » or (ii) H(R) < »« and h(0) = 0,
implies the existence of ;)h(H).
Proof. The proof will be given only for the case xh(x) > 0 V x € R;
the proof in the case xh(x) < 0 V x € R is exactly the same, with h
replaced by -h.

Define

c(x):= —1/2h(0) jélI[Yj—l’IF Ol{I[Yj,nS x] - I[- Yj,n< x]}, x €R,

(1.1)

-1/2 %
d:=n Y [h(Y. IY. # 0], b:= max |Y. |.

Observe that c¢(x) = 0 for |x| > b and hence c¢ is H-integrable.

Now rewrite

n
(12)  Sy(xt) =n 1/2 jilh(Yj_l’n)I[Yj_l,n# 0]{1[3{1.,Il $HYp gt x] —

The first term on the r.h.s. of (1.2) is bounded by d. Hence

(1.3)  cfx) —d < §p(xt) € d + cfx), t, x € R
Further xh(x) > 0 implies
(14)  S(xt) —ec(x) +d as t — %

Moreover, under A2, H is continuous and by calculations similar to

those in KL (equation (2.1) — (2.3))



(15)  M(t) = n} ??h(Yi_l, DB(Y; g IHCY, -ty ) -

- H(—Yj,n'*‘tY.

j—l,n) | - | H(Yi,n—tY

) - H(Yj,n—tY

i-1,n i-1,0 1)

Hence M is continuous on R. Now consider

Case (). HR) = o. If d = 0 then from (1.3) M = | c2dH. Hence a
trivial measurable minimizer exists. Now let d > 0. Since c¢ and 2
are H-integrable,

J (c(x) £ d)% dH(x) = »
Hence from (1.4) and the Fatou Lemma,

Mt) 9o a3 t — %
This and the continuity of M ensure the existence of a measurable
minimizer of M.
Case (ii). H(R) < o. From (1.1), h(0) = 0 implies that ¢ = 0. Thus
(1.3), (1.4) and the Dominated Convergence Theorem (D.C.T.) give

M(t) — d°HR) as t — * w.

This with (1.3) and the continuity of M ensure the existence of a

measurable minimizer of M. o

2. Asymptotic approximation of ph(H) when centered.
For stating the main results of this section we need some more
notation. Let G denote the d.f. of v, + €,j < n. Since v, =~ and
’

J J Jin
€ are independent,

(2.1) G, (x) = (1-1 )F(x) + 7 EF(x-Z ), x¢€R

A density of Gn is
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(22) g (x) = (17 )f(x) + 7, Ef(x-Z)), x¢€R

Define

2
23) Q) = [[s,600 + /% - p{a ) + 2,x0}] aHEO, v e R,
where a (x) = EYOh(YO)gn(x + pvy) and a (x) = a (—x), x € R.

We shall first uniformly approximate M by Q, uniformity taken
over small closed neighborhoods of p. Using this approximation we obtain
the asymptotic approximation of ;)h(H) in terms of the minimizer of Q.

From here on we shall suppress n in the r.v.s v.

i’ a and Yj,n’

etc., for the sake of convenience.

Theorem 2.1. Let all the model assumptions (0.1) — (0.3) hold. Further

let Al - A4, A7, A8 and AIO - A17 hold. Then for any 0 < b <

El  sup  [M(t) - Q(t)|| = o(1).
nl/2| 4| <b

Proof. The techniques used in here are as in KL. Define, V x, t € R,

-1/2 n -1/2
w = . —pV. . < . -
(x,t) = {n jElh(YJ_l)I[vJ Vi te € xtn t'YJ—I]} p(x,t)
(2.4) with
(x,t) = n1/2 DEI h(Y. ;)G (x+n—1/2tY +pv. ;)
HXL) = 2o L FU7n 1Y)

J:
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Note that the jt‘h

(vj—l’ Yj—l)' From (0.4) and (2.4) we get

summand in W(x,t) is conditionally centered, given

25) S0 Y 4p) = Wxt) + Wiext) + plxt) + p(-x.t) -

n
_ n‘1/2.g

h(Y: ).
j U

1
From (0.5) and (2.5),

Mo/ 2e4p) = “W(x,t) — W(x0) + W(=x,t) — W(=x,0) +
+ Syx0) + tlale) + a(x)) + Wxt) W) -

2
—ta(x) + p(xt) - p(x,0) - ta(x)] dH(x).

From the above representation of M(n—l/ 2l;+p), using (2.3), the Holder

inequality, the Transformation Theorem for integrals and A2,
M 2%4p) - Q7 2t4p) |

(26) < 8[W(t) - WO)|Z + 8lu(t) - w(0) - tal2 +

1/2 1/2
+«mwn+m+gn@/mwm-wm@)+

1/2
+ (lue) - o) - tal )|

where  W(t), S, (p) and p(t) are functions W(x,t), S;(x,t) and p(x,t)
with their integrating variables suppressed and | |I?I denotes the square

of the L2(H)—norm. From (2.6) it suffices to prove:
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. _ _ 2 —
(i) ]lzt?lslg |s(t) — w(0) - ta|g = o(1).

. _ 2 _
(ii) 1|3t%|’»1<1g [W(t) - W(0)| g = o(1).

2
(iii) IIm E sup |S;(p) + tla + 2 ]|y < =
n [t|<h B H

Proof of (i). Define
h¥(x) = h(x)I[xh(x) > 0] and h™(x) = h(x) -hT(x) Vx €eR

Replacing h with h* in each of the functions a and p gives new
functions, say a* and p*.

From the inequality (a+b)2 < 2a®+ 2b%, a and b in R,

lW(6) - 1¥(0) - a*(0)| 2
2

+ + t,n_l +
2.7) < 2J [p (%) — §¥(0,%) - 3 T Y (Yj)gn(x+pvj)] dH(x) +

n—1 2
+ 2 [L 2 YhA(Y gy (xetovy) - a(9)| dH(x)

= 1(t) + 2t711, It] < b,

where I(t) and II represent the first and the second integral on the

r.h.s. of (2.7), respectively. From (2.2) and (2.4) we can rewrite

I(t) = Hn'l/?nilv nt(Y.)(1- )jn—l/zt[f(mv +pv)f(x+pv)] ds +
jmo VT N
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+ q ” [f(x+sY +pviz) — fctpvia)] ds dL (z)}] dH(x)

(28) < 4(1 - 7)2J -1/2, ° 20 Y2n%(Y,).

[f(x+sY+pv.) — f(x+pv)]2ds dH(x) +
- J ] J

n—1

+ 4712J 02y v22(Y,).
j=0

n_I/ 2

J -1/2, J [f(xtsY p+pviz) = f(x+pvi2)|dL, (2) ds dH(x).
-n

J

Inequality (2.8) follows from the Cauchy Schwartz inequality and the
moment inequality. Use (2.8), the Fubini Theorem, the stationarity of
{(vj, Yj), 0 < j < n}, (0.1) and (0.2) to get

172
Esup 1(t) < 4n}/%(1-y 3bJ ° EX2h%(X ) [f(x+sX)~(x)]dH(x) ds +
[t]<b /2,

4l g on /2 2,2
7,(1-7,) bJ J EU (Xg+2) 22 (X +2)-

-[f (X+8[X0+Z]+pz) — f(x+p2))2 dLn(z)] dH(x) ds +
2.9)
1/2.2 o2 9.2
+ 4n 'rn(l-'rn)bj "y J [EXOh (xO)J [f(x+5X,2) -
-n
- f(x—z)]2dLn(z)] dH(x) ds +
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+ 40!/2)3p J s J EU (Xg+2) h2(Xy+2)-
b

U [f(x+s(X 0-i-z)+,oz—u) - f(x+pz—u)]2dLn(u)] dLn(z)] dH(x) ds.

A1 and the continuity property Alo(b) show that the first term on
the r.h.s. of (2.9) converges to zero. The remaining terms of (2.9) go to

zero by Al’ A4, A8(b), All’ A13 and A15. Thus

(2.10) E ?lﬁ)(b I(t) = o(1).

Now consider

EIl = J E[l )3 Y (Y g, (xovy) - (x)] dH(x)

(211) < 2(1-y, 2J [ 2 YJh( Y)fxov) -

2
- EYoh*(YO)f(x+pv0)] dH(x)

+

n—1
+ 2»,;‘:] E[-Ili.zo th*(vj)J f(x+pvi) dLy(2) -
J:

, 2
o (YO)J f(x+pvgz) dL (z)] dH(x).

The inequality (2.11) follows from (2.2) and the inequality
(a+b)® < 22%+ 2b%, a and b in R From A, A, Ag(b), A 4(b) and
the stationarity of (vj’Yj)’ 0 <j<n-1, the 2nd term in (2.11) goes to

zero as n - o and the first term can be written as
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201 (1- ) J Var{Y h*(Y)f(x+pvy)} dH(x) +

(2.12)

-2 g 01 . +
+ ey 8 (n—J)I Cov{Y b *(Y)f(x+pvy),
J:

, th*(Yj)f(x+pvj)} dH(x).
The first integral in (2.12) can be written as
(1-7n)Ex§h2*(x0)J 2(x) dH(x) +
+ 1, EU (Xo+2)2{b* (X +2)} H(x+02) dLn(z)] dH(x) -

- (=1 EXh* (X[ ) dH(x) -

_ 27n(1—'yn)EX0h*(X0): f(x)EU (Xg+2)h*(Xg+2)i(x+p2) dLn(z)] .
-dH(x) -

_ 7121 J[EJ (Xg+2)h*(Xg+2)f(x+p2) dLn(z)] 2dH(x),

which in turn converges to Var[XOh*(XO)]J f2dH. This follows from Ay
A4, A7, A13(a), the moment inequality and the Holder inequality. Hence
the first term in (2.12) converges to zero. The second term in (2.12) can

be written as

n—1
4n—2(1—7n)4.21 (n-1)Cov{Xgh*(Xp), Xh*(X)) J f2dH +
J=
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+ 4072y (19 ) i (n—J)J COV[X b (X)),
i1
, J (Xj+2)b*(X;+2)f(x+02) dLn(z)] dH(x) +
(2.13)

+ 4n" 7(17) )

2 (0j) J COV[Xh (X)),

,J( (IR (Xy+2)f(x-+p2) dLn(z)] dH(x) +

+ 4n 7 (1 7n) E (n—J) COVU (X0+z)h*(X0+z)f(x+pz) dL_(2),

iz
: J (X;H2)B (X +2)(x+02) dLn(z)] dH(x).

By assumptions Al’ A4, A7, and A13(a) and the Hoélder inequality, the

second, third and the fourth terms in (2.13) go to zero. Since,

(2.14) Var{n~ E Xh(X)} =
j=1

n ! Var[Xgh*(X)] + 2 g (nj) Cov{Xyh*(X,), X;h (xJ)}
J_

to prove that the first term in (2.13) goes to zero, from A,, A, and (2.14)

it suffices to prove that

(215) Var{n! 3 th (X)} 40 asn-a
j=1

But from A and the Stationary Ergodic Theorem

(216) nl3% Xh*(X;) + EXgh*(Xg)  as..
=1
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Also, from A,, the sequence {th*(Xj)} is uniformly integrable of order

n
2, hence so is the sequence {n—1 X th*(Xj)}, which follows clearly from
=1
Chung (1974, exercise 9, p. 100). Thus, from (2.16), (2.15) follows, which

in turn gives

(217) EI -0 asn - o
Thus (2.10) and (2.17) applied to (2.7) prove (i).

Proof of (ii). Replace the h in W by h* and call the new r.v. W™

Fix t in [-b,b]. Using the Fubini Theorem and the fact that the

jth summand in W* is conditionally centered, given (vj—l’ Yj—l)’

E|W*(t) -~ W*(0)| 5

p— n — |
(218) =n 1] z E[{h*(yj_l)}2E[{1[vj+ej <xbn Ry v ] -

-1/2

- I[vj+cj < x+pvj_1] - G (x+n tY-_1+pvj_1) +

J

+ Gn(x+pvj_1)}2|(vj_l,Yj_l)]] dH(x),

which can be dominated by
2 -1/2
QJ E{h*(YO)} |G (x+n / tYo+evg) — G, (x+pvg)| dH(x).

Using (2.1), the Fubini Theorem and representation of F in terms of its

density, this term can be dominated by
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/2
2(1-1,) 2J J E| X, |b2(X )f(x+Xg9) dH(x) ds +
/2,

212
+ 27, (1-7,) J J EU |X0+z|h2(X0+z)f(x+pz+s[X0+z])-
dLn(z)] dH(x) ds +

(2.19)
172,
+ 27 (1-7) J J EU |X o |h(X)(x—2+X ) dLn(z)] :

. dH(x) ds +

/2y

+ 272 J JEU |X0+z|h2(X0+z)J f(x-u+[Xg+2ls+pz) -

—l 2b
. dL_(u) dLn(z)] dH(x) ds.

From A,, Ag(a), A, and Am(a) the first term in (2.19) converges to zero.
That the remaining terms also converge to zero, follows from A, All(a)

and A14, giving
(2200  E|W*(t) - WH0)|2 ~ 0, t € R

Thus to complete the proof of (ii), use the monotone structure of

W* and 4*, the compactness of [-b,b], Tm E|a.|}2I < o and (i), just
n

as in Koul and Dewet (1983, p. 929, Theorem 5.1, proof of (ii)). The

details are similar, hence deleted.
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Proof of (iii). From (2.5) taking t = 0, we get

(2.21)  S(x,p) = W(x,0) + W(-x,0) +

10D
+ n 1/2j£1h(Yj_l){Gn(x+pvj_l) - Gn(x—-pvj_l)}.
We shall now proceed to prove that
(222) Tim E[S(p)| % < .
n

Using the fact that the summands in W are conditionally centered, the

stationarity of the process (Vj’Yj)’ 0 < j < n-1 and the Fubini Theorem,

E | w(0)? dH

SR S 9
. = . —pV. . < - .
(2.23) u En jﬁlh (YJ__I){I[VJ Vi tE < x| Gn(x+pvj_l)} dH(x)

J Eh2(YO){I[v1—,ov0+¢s1 < x| - Gn(x+pv0)}2 dH(x)

The lim sup of the r.h.s. of (2.23) is finite by Aj, Ag(b) and A4

Next, using the stationarity of (vJ YJ) 0 <j<nl,

EJ {n"l/2 z h(Y)[G 2(x+pv;) = Gy(x-pvl}? dH(x)

(2.24) = J Eb%(Y)(G, (x+ovg) — G (x-pvg)l® dH(x) +
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—1
+ 2 ljg (n—j) E[h(Yo)[Gn(x+pv0) - Gn(x—pvo)]h(Y.)-
(G, (x+pv) = G (x-pv; )]] dH(x).

The lim sup of the first term on the r.h.s. of (2.24) is finite by (0.1),
A1 and A17. The expression inside the sum in the second term on the

r.h.s. of (2.24) can be written as

(225)  (n-)E] B[[ bXgalG, (x+p2) = Gy(xp2)] dLy(2)-
J h(Xj+z)[Gn(x+pz) - G, (x-2)] dLn(z)] dH(x),

which follows from the independence of {Xj’ j £ n} and

{vj’ 0 < j < n} and the latter being i.i.d. ﬂn. Thus applying the
Cauchy-Schwartz and the moment inequalities to the integrand in (2.25)
and using the stationarity of {Xj}’ the second term on the r.h.s. of (2.24)

can be dominated by

(226)  (a-1)o EU h2(X g +2)[G, (x+02) — G (x-p2)|2dL (z)]dH( )

From A, and A,, the lim sup of (2.26) is finite. Hence (2.22) holds. The

17

proof of (iii) now follows from Iim E|a|12{ < o, which in turn follows
n

from (2.2), A4, A7, A8(b) and A13. This also completes the proof of the

theorem. o

Note. In Theorem 2.1, the proof of (2.15) gives an alternate way to prove

KL's equation (14), p. 1211.
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In order to prove the next theorem, analogous to the definition of
;Jh(H), define ;’h(H) with M replaced by Q. Using the definition of
p(H), (0.4), (2.3) and the fact that S,(-,p) is even,

Sh(/’) [a+a] dH
|a+@.|121

V(o) - p) = - |

(2.27)

Sh(p)a

= - 2] A an.
|a+§|H

Theorem 2.2. In addition to the assumptions of Theorem 2.1, let us
assume that A holds and also for each n let ;)h(H) be a measurable

minimizer of (0.5); then

(228) o' 2oy () - p] = 0!/ () - 4} + 0 (1).

Proof. The line of proof is as follows:
(i) Forany 7 >0 and 0 < z < o there exists a N and b,

0 < b <w depending on n and 2z such that

P( inf M(n_l/2t+p) >z)21 -7 Vn>N.
[t|>b

(i) VA loy(H) - p] = O(1) and
Vi loy(H) - ] = 0,(1).

(i) Mlpy(H)] = Qlpy(H)] + o (1) and
M[Ph(H)] = Q[Ph(H)] + °p(1)~
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Proof of (i) follows exactly as in Koul and Dewet (1983, Corollary
5.1) or Koul (1985, Lemma 3.1).

Proof of (ii) follows from (i), (2.22) and the reasoning given in Koul
(1985, Theorem 3.1).

Proof of (iii) follows from (ii) and Theorem 2.1. From (iii) and

(2.27) we get

(229)  nlpy(H) - py ()] |a+alf = o (1).

From (2.2), (2.3) and the symmetry of the function g, w.rt. to the
y—axis, we get

latal 2 = 4(1-7 )2 [EXh(X )2 J g dH +

9 2
(2.30) + ‘&J [EJ (Xo+2)h(Xy+2)[g, (x+02)+g, (—x-+02)] dLn(z)] dH(x) +

+ 47 (1-7)EXgh(X,) J gn(x)EU (Xg+2)h(Xy+2) -
- [y(xton) gy (-x+p2)]) dLy(2)] dH(x).

From Al’ A2, A4, A7, A8(b), A12, the moment and the Holder

nd rd

inequalities, the 2" and 3~ terms on the r.h.s. of (2.30) go to zero and

the 15 term converges to
_ 2( (2
(231)  2q = 4[EXgh(X,)] Jf dH.

From A, Ag and A;, the r.hs. of (2.31) is strictly greater than zero.

Hence from (2.29) the proof is complete. o
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Note. In order to study the limiting distribution of nl/ 2[/A)h(H) - p] we
need to appropriately center (2.28). In view of the Theorem 2.2, for fixed
h and H, the asymptotic behavior of ;’h(H) will not be affected if for each
n> 0, ;Jh(H) is replaced by any convex combination of the measurable

minimizers of (0.5). Further note that the proofs of Theorems 2.1 and 2.2

only need Ehz(XO) < o instead of A3(b).

3. Asymptotic Normality and Influence function of ;)h(H).

In this section we apply Withers (1981), (1983) C.L.T. for ¢mixing
sequence of arrays. We also discuss the sufficient conditions under which
the asymptotic bias of ;)h(H) is vanishing or nonvanishing. Finally we
compute the influence function and show that it is directly proportional to
the asymptotic bias of ;)h(H). To study the limiting distribution of
yn [;)h(H) - p] when centered, from (2.27), (2.30), (2.31) and Theorem

2.2, we need only to study

-1-1/2 2
31) -qlnY I B )

when centered, where q > 0 is as in (2.31) and

X X

(32) (%) = J adH - [ adH
Let

b = ER(YQ)$ (Y,~pY,) and
(3.3)

&0 = DY )B (YY) =y 1 <GS
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From (0.1), (0.2) and (3.2),

y -y
W) = (=1 EXh(X)|[ &, 4B - [ g, an] +

-

y
(3.4) + 7nU EJ (Xg+2)h(X+2)g, (x+02) dL_(2) dH(x) -

-y
- J EJ (Xg+2)h(Xg+2)g, (x+02) dL (2) dH(x)].

—w

From (3.4), Ag, A3(b), A4, A5, A7, A8(a), A12 and 7, € [0,1], note that
§j p 1 €3 ¢n are real valued r.v.s and By < for all n > 0.
For the sake of completeness we shall reproduce the following

definitions and theorem from Withers (1981 and 1983) and use them to

n
prove the asymptotic normality of n—l/ 2y fj o
=1

Consider a series of random processes

(35)  &={g n21), where & ={§,,d <j<N},

which are not necessarily real (although possibly complex), defined on some
probability space (2,.4P), with d, N integers such that
—o$d <N <o and N, -d, "o a n-ow For any (not

necessarily real) r.v.s 0, ¢ we set

A(0) = the o-algebra generated by 4,
(3.6)
o6,¢) = sup|P(InJ) - P()P(J)|,
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where sup is over all I € #M4), J € M¢). Define

a (k) = max ks Y, €. yoes
n(®) d <j<N - ka({gdn’n ﬁl’n} {€J+k,n an,n})
(3.7
k) =  max e (k), 0<k <o
“ {n: k<N -d n

The set of processes ¢ is said to be o-mixing if a(k) - 0 as

k @ w. Set
£ (k,u) = max supICov[exp{iu gl 6 ¢ 1,
n i - = p°p,n
dnSJSNn k p=d,
(e 30 ae )
, exp{-u ”
p=j+k p’p,n

for u real, 0 <k < dn - Nn’ n > 1, where sup is over {JSj = 0 or 1}

and the covariance of complex r.v.s means that

Cov(0,¢) = Ef ¢ — EF ES.
Now set

(3.8) {k,u) = max ¢ (ku), 0 < k < o, u real.
{n:k<N _-d }

The set of processes ¢ is said to be ¢mixing if for all real u,

fku) - 0 as k - o. From Ibragimov and Linnik (1971, p. 307), as
pointed out by Withers (1981), £ (k,u) < 16 a (k), 0 ¢ k < w, Vue€R,
thus

(3.9)  fk,u) <16 a(k), 0 <k < w, u real.
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Henceforth assume dn =1 and N = I Define

S _(a,b a-}i}-b b S S
= . < < < n- =
(a.b) o4l {Ln, 0<a,l n-a, S 2(0:m),
2 _ - _ ;
oy = Var Sn and Cn(j) = supICov(fd,n, {m’n)l, 0<j<n,

where sup is over {d, m:|d - m| 2 j},

(310) cfj) = {n'f“j‘in};n(”’

Theorem 3.1. (Withers, 1981, Theorem 2.1, 1983). Assume that the
following hold: For some 7 > 0 and m20, ¢ satisfies the moment

inequality

14+n/2+49
(311)  sup E|S_(ab)|**" = O(b 1
a,n

) as b - w

€ is (-mixing and for all real u
(3.12)  dk,u) = o(k—é) a k- o where §=27,/7.

(3.13) 02——»oo as n — o, 1i_m_a2/n>0
n et

and

00 -
(3.14) ¥ c(j) < o
=0

Then

o 1S~ ES,) — K0,1) in distribution.
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Lemma 3.2. Let 0n, w be Borel measurable functions from R to R and
gj,n = 0n(Yj—l,n’Yj,n)’ 1<j<n n>1 Let Yj,n = w(Xj,vj’n), where
{Xj’ j =0, 21, #2..} is a stationary process that is strongly ay—mixing
(Ibragimov and Linnik, 1971, Definition 17.2.1) and the sequence of

o 0 ¢ <n} is independent of {Xj’ 0 <j<n},

independent r.v.8 {vj
n>0. Then ¢ asin (3.5) with d =1 and N = n, is strongly

aﬁ—mixing with
(3.15) o < oy

M* In (36) let 0 = (61,11’°"’Ej,11)’ ¢ = (€j+k’n""’€n,n)a
[ = (6 pebye) € Byl and 3= (63 pronbyn) € Bl
where B, € 2 (R)), the Borel o-field, and B, € .2 (an—J"k'*'l),

1 <j<n, 24j < j+k < n. Let us suppress the n in Vin and define

)

b f R+ L R

[xo,xl,...,xj] - [0n(x0,x1),...,0n(xj_l,xj)],
T . . pitl, it

v,j+l

[XO’xl""’xj] - [w(xo,vo),...,w(xj,vj)]

%
and Ty*,n—j—k+2 by replacing in TY’j 410 vV by v and j by

*
n-j-k+1, where v = (vO, Vl""’vj) and v = (vj+k—1""’vn)’ Then,

|P(InJ) - P(OP(J)| =
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= [P{wtXgvphidXyv} € 67(B)),
{‘”(xj+k-1"’j+k—1)v"’“(xn"’n)} € ¢ nirr1(By)] -

_ p[{w(xo,vo),...,w(xj,vj)} € —1-(3 )]’ .
'P[{“’(xj-l-k 1 +k—1)’ X Vo)) € 6 n—_]—k+1(B )H

(3.16)

IN

B[|P[(XgrX;) € T, L 1Oy, (Xjy g ynXy) €

1 -1
€ Ty*,n—j-k+2¢1,n-j-k+1(B2)] -

—P[( X)) € Tv 19T By ] P[(ka LX) €

-1

€ Tv n—]—k+2¢l n—j-k+1(Bo) ]| (VO’“"Vj’vj+k—1""’Vn)]‘

Inequality (3.16) holds because for all k > 2, (VO""’vj’vj +k—1""’vn)
is a sequence of independent r.v.s and independent of (XO,...,XD). From
the definition of strongly a—mixing sequence of stationary r.v.s, and the
stationarity of {Xj}, we see that the r.h.s. of (3.16) can be bounded by.
ay. Taking sup over all B, and B,in 2(®) and 2 ®"I*H
and then taking max twice as in (3.7), we get that (3.15) holds. o

Note. The proof of the Lemma 3.2 goes through even when w and ¢ are

replaced by w, and 0j,n for each j and n.
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Lemma 3.3. Define §j p 88 in Lemma 3.2 satisfying all the conditions
there. In addtion, let {vj p 0838 n} be identically
(3.17)  distributed B, with 7 € [0,1], Ty = o(1) and ay

[« ]
satisfying, for any n >0 X ax(j)” < .
=1

Further let 6@ and h, be real valued Borel measurable
(3.18)  functions with @ defined on R% and h on R, such that

8 (xy) < Ch(x) and 4 (x,y) » 8(x,y) for each x, y € R,

0 < CeR Let for some 6> 0,

(319)  Elh((Xy)* < = and sup EJ |h(w(Xp2) | 2oL (2) < o
n

where w(-) =uw(-,0); then

n
(3.20) nlo? = nlvar ¥ £ o 72,
n j=1m

where

(3:21) r2=Varw(w(x0),w(x1)1+2j§1<:ovw{w(xo>,w(xl)},o{w(xj),w(xj+1)}1.

Proof. From the definition of Y. 's and the conditions satisfied by X.'s

Jn J
and v; n's, {Y 0 < j < n} is stationary, hence we can write

i’

1

-1 2 2n—1 .
(3.22) n o = Var({l,n)"'ﬁjEl(n-J)Covwn(YO,n’Yl,n)’on(Yj,n’Yj+1,n)]'

From (0.1), the definition of Yj n's and the conditions satisfied by Xj's

'
and vj,n S,
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(3:23) Var(§y ) = (1-1,) *BO{Xgh(X )} +
+ 11 B[ B{ulXp) X 2)} dLy(a) +
+ 1, B| B{uXga)uXp v, )} dLy(a) - (B )

which in turn converges to the first term on the r.h.s. of (3.21). The
above convergence follows from 1y = o(1), (3.18), (3.19) and the D.C.T..
From (0.1), the definition of Yj '8 and the conditions satisfied by Xj's

and vj n's, for j > 2, we get
COV[%(YO,H,YI,H), (Yj,n’Yj+l,n)]

= (1-7,)*Cov |8, {ufXgh(X )}, G {ulX) (X, )} +

+ 1y(1-1)°Cov|[ 8 (X)X}, [, (X)X, DML (2)] +

+ y(-n)30ov| [ 8 fulXg.2) X ML (@), 8, {uf X)) X, )} +

+ 1(1-1)°Cov [0, {(Xg) X 2)} ALy (2).8 {uX) (X, )} +

+ 1y(1-1,)3Cov [ 8wl X )X )| X))l X; 2Ly ()] +

+ 120-1,)200v [0 X)X )}, [[ 8, {uXpm) X, )
dL,_(2) dLn(u)] +

(324)  + 2h(1-1)%Cov|[ G {ulXpheX,2)} dL(a),
| gtutxpanax;, ) d @) +
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+ -y Pcov[[ 8 {uXg)uX W)} dLy(2) dLy(u),
| 0 (X)X, )] +

+ 7121(1'711)200"[[ 0 {u(Xy2)ulX,)} dL(2),
, J O {fX;) Xy 12)} dLn(z)] +

+ -)Pcov] [ 4 {uXga) X))} dLy(a),
| 8wt e, ) aL )] +

+ 7§(1-7n)200vU 0_{(X) X, 2)} dL_(2),
[ g tutx) X, 2} diy@)] +

+ 73(1-7H)COVU 6 {(Xp2)(X,)} dL_(2),
] g expanex;, ) @) )] +

+ 23(1=1,)00v[[[ 8 {wtXpa)e(X W)} dLy(2) dL (),
[ gaxpaex ) ar )] +

+ 3-)Cov| [ 8, {wXg)ulX,.2)} dL(2),
| gaeXpm0tX; 0} dLy(@) diy )] +

+ 73(1‘711)00"“] bp{uXg2),(X,u)} dLy(z) dL(u),
j 8, {X),0(X; .2} dLn(z)] +

+ icov Uf 6_{(Xp2),(X}u)} dL_(2) dL (u),
] g lexpanex;, ) dL @) dr ).
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From computations similar to those in (3.24), 7, = o(1), (3.18), (3.19)
and applying the D.C.T., show that for j = 1

(325)  Cov[6,(Yp,Y)), 6,(Y;Y;4 )] =
Covlo{“’(xo)’w(xl)}’ 0{w(xj)vw(xj+1)}]

Similarly, from (3.24), (3.25) holds for j > 2. In general, any covariance
on the r.h.s. of (3.24) can be represented by

Cov[¢n2(XO,X1), 4:113()(1.,Xj +1)].
From (3.18) and (3.19) we see for each n > 1

2
(326) E|¢o(XpX)I20 <) <o and

2+6
E|¢,5(XgpX)“T0 < ey <m0 < c € R

1 %2
Applying Ibragimov and Linnik (1971, Theorem 17.22) to the sequence {Xj}
with ¢ =1, 7=j-1,22 &= ¢,(XpX) 1 = 93X, ), and
from (3.26),

. 16/(2+6
(3.27) |COV[¢n2(X0,X1), ¢n3(xj’xj+1)]| <C ax(.]_l) /(24 ),
where 0 < C € R depends only on Cpr Co and 4. Thus from the
conditions satisfied by @y in (3.17), (3.25), (3.27) and the D.C.T. for
counting measure, we see that the second term on the r.h.s. of (3.22)

nd

converges to the 2 term on the r.h.s. of (3.21). Hence (3.22) and the

convergence of (3.23) to the appropriate limit imply that (3.20) holds. ©
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Theorem 3.4. (i) Under (3.17) — (3.19) and the assumption ? >0

12 3 N
X {{1 o E§j o} ° A0,7°) in distribution.
J-— b

(ii) Let A; — A, and all the model assumptions (0.1) to
(0.3) hold. Then

(3.28) nl/ 2[ph( )-p + unq_l] - .4(0,0121) in distribution,

where

(329) of = q 2 EXgh(Xp)2ER®(Xy)E¥(e)),

y
(3.30) ¢(y)=deH—J fdH VyeR,

q is as in (2.31) and g as in (3.3).

Proof. We shall prove (i) and then prove (ii) using a special case of (i).

In view of Theorem 3.1 we shall first show that (3.11) holds for ¢ as in
(3.5) and (3.17). Let n =46 asin (3.19) and n; = 14+§/2 then

Saah 2+

(3.31) ANl

IN

EI”( On’

I

C{U-1 EI{wX} Z+0 + 4 B[ In{uXp2)} 17 dL,(2).
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The above inequality follows from the definition of Yj n's and the

conditions satisfied by Xj's and Vi n'% (0.1), (3.18) and the Jensen
inequality . From (3.19), (3.11) is satisfied. From the Lemma 3.2 and
(3.9), (3.12) is satisfied. From Lemma 3.3 and 72 > 0, (3.13) is satisfied.

Since {Yj, 0 < j < n} is stationary, ;n in (3.10) can be written as

Cn(j) = SUpICOV[fl’n, €|d—m|+1,n”’

where sup is taken over {d, m: |d-m| > j}. From this, (3.10), the
same argument as in (3.26) to (3.27) and (3.19), we get

(332)  c(j) < 8Cay (1), v > 2.

From the conditions satisfied by ay in (3.17), (3.19) and (3.32), (3.14) is
satisfied and hence the C.L.T. holds for &.

proof of (ii). We shall first show that the C.L.T. holds for ¢ as in (3.3)
and (3.5). Thus take in (i), 6 (x,y) = h(x)¥,(y-px), x, y € R, Yj’ Xj and

Vin 33 in the model assumptions (0.1) — (0.3) with w(x,y) = x+y.

00
Note Xj can be a.s. represented as X pkcj
k=0

Ag and Pham and Tran (1985, Theorem 2.1) with & = 2, A(k) = 4",
/3y s

k- Using A3(a),

we get that {Xj} is strongly ay-mixing with ay(n) < C pl p|
Also note from Ay Aq, A8(a) and (2.2)

X X
(3.33) J 8, dH-»J fdH uniformly in x.

00 00
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Thus the r.h.s. of (3.4) converges to EXoh(XO)zp(y), uniformly in y, by
(3.33), A}, Ag and Aj,. By A, ¢ is bounded and hence ¥, is
uniformly bounded. Since F is symmetric about 0 and ¢ is an odd,
Et/)(el) = 0. Thus letting 6(x,y) = h(x)¢(y—px)EX0h(X0), X,y €Rin

Lemmma 3.3 we see 72 = 0§q2. From (3.29), (3.30), A5 and A,

alzlq2 > 0. We now see that all the conditions of (i) are satisfied. Hence
C.L.T. holds for ¢ as in (3.3), (3.5). Thus from (2.27), (2.30), (2.31) and

Theorem 2.2, (ii) holds. o

Remark 3.0. One of the assumptions under which we have studied the
asymptotic behavior of ;)h(H) as an estimator of p is F and L 's are |
symmetric about 0. One could generalize the results by making an
attempt to discard this assumption. A careful study of the results shows
that due to this change, the arguments involved in the proof of (2.22) fail.
The proof of the Theorem 2.2 can be easily modified without this
assumption of symmetry or any additional assumptions. In view of the
Theorem 3.1, the Lemmas 3.2 — 3.3 and the Theorem 3.3(i) we see no
addtional modifications are needed to incorporate this change. Thus it only
remains to modify the arguments from (2.21) — (2.26). Note in (2.21) and
(2.24) we need to replace Gn(x—pvo) by 1 -G (—=x+pvy), since G is

not symmetric. Thus in view of (2.24) we will now need

Iim | Eb? - - 1)2 ® .
lem J Eh (YO)[Gn(x+pv0) + G (=x+pvy) 1] dH(x) <
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Case (i). Let F be symmetric about 0 but Ln's need not be symmetric
about 0. In this case (2.25) can be replaced by

(n-3)7% (1) "B (X)B(X) | [B{F(x-2,)+F(-x2,)-1)17dH(x) +

+ (1-1)[ [E(Pe-2 )+F(x-2_)1}]-

-E[h(XO)J EB(X;+2)(G, (x+02)+ Gy (x+p2)-1] dL, ()] dH(x) +

+ (1) [E{P(x-2 ) +F(=x-Z_)-1}]-

~E[h(Xj)J EB(X+2)[G (x+p2)+ Gy (x+p2)-1] dL, (2)]dH(x) +

+ J E[[ h(Xy+2)[G (x+2)+G _(-x+pz)-1] dL_(2)-
j h(X+2)[G (x-+p2) +Gy (x+p2)-1] dL (2)] dH(x)].

Thus in view of the arguments involved in (2.26) and under proper
assumptions Theorem 2.1 holds.
Case (ii). Both Ln's and F need not be symmetric about zero. In this

case we will need to assume for each n > 1,
Eh(YO)[Gn(x+pv0)+Gn(—x+pv0)-l] = 0,

after that we can use the same technique as presented in Lemma 3.3 and

some limit theorem to prove (2.22).

Theorem 3.5. Let all the model assumptions (0.1) — (0.3), A Ay Ay,
Ag, Ag, A8(b), Ajg and Ao — A, hold; then
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(@) If h is a continuous function on R and Z, -7 in distribution

and ‘/ﬁ7n”7c then ﬁpn-»p,where 0<17, €R and

(3.34) p= 7C[EX0h(XO)]J f(x)EIh(X0+z){F(x—pz)—F(x+pz)}dLn(z) dH(x).
(b) If either Z - 0 in distribution or i) T, @ 0 then Jyn py 0.
Proof. From (2.27) and (3.1) - (3.3),

VB u, = E j Sy (p)a dH.

For large enough n we shall justify the interchange of expectation and

integral above using the Fubini Theorem. Consider

(3.35) J E|Sy(p)| |a dH < U ESZ(p) dH]I/ 2“ a2 dH] 12

Inequalitity (3.35) follows from the Holder and the moment inequalities.
That the lim sup of the r.h.s. of (3.35) is finite follows from (2.22) and
the same reasoning as in (2.30) and (2.31). Thus, by the stationarity of

the process (vj—l’ Yj—l)’ the independence of (v. ., Y. ,) and

i S

v; + & 1 <j<n, and (0.1), for large enough n, we get

(3.36) VA p = Jﬁ»,nj a(x)EJ h(Xg+2)[G(x-pz) — G(x+p2)] dL_(2) dH(z).

Using (2.1) and (2.2), (3.36) can be rewritten as
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Vi 2, (11 EXgh(X) [ 10B[ h(Xg+2)[Flx-2) - Fxhpa)]
- dL_(z) dH(x) +

+ 8 20 EXGh(Xp)l| EF(x-Z)E] -
+ B(Xq+2)[F(x-pa) ~ Fcbr)] dL,(s) dR(z) +
(3.37)
+ 4 7121(1‘711)] E[ (Xp+2)h(Xy+2)g, (x+07) dLn(z)]-
E| h(Xy+2)[F(x—pz) — F(x+72)] dLn(z)] dH(x) +

+ 4 A a(x)EJ B(Xy+2)E[F(x—p2-Z_) — F(x+pz-Z )ldL_(2)dH(x).

The fourth term in (3.37) converges to zero by A A17(b), the same
reasoning as in (2.30), (2.31) and the Holder inequality. The third term in
(3.37) converges to zero by Aps A13, A17(a), the Holder and the moment
inequalities. That the second term in (3.37) converges to zero follows from
Ap, Ay, Ag(b), Aj,(a), the Holder and the moment inequalities.

For each x € R,

EJ h(Xy+2)[F(x—2) - F(x+p2)] dL_(2)
(3.38)
, EJ h(X,+2)[F(x—p2) - F(x+p2)] dL(2),

where L is d.f. of the r.v. Z; we get (3.38) from A5, Z,+7 in
distribution and the D.C.T..

The proof of (a) and (b) now follows from the convergence of the
first term in (3.37) to the appropriate quantity which itself follows from

Al’ A4, A5, A7, (3.38) and the D.C.T..
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Remark 3.1. From Theorems 3.4 and 3.5 (a) we see
yn [;)h(H) -p) = N (- q_l, 0121) in distribution
and from Theorems 3.4 and 3.5 (b) we see

yn [;;h(H) - p] - #(0, 0121) in distribution.

Remark 3.2. KL has shown that the function h(x) « x, x € R minimizes

0121. Let p x(H) be the estimator corresponding to h(x) = x, and

measure H. Then, the asymptotic bias of ;)x(H) under Theorem 3.5 (a)

looks like

-1
[2EX§J f2dH] »,CJ f(x)EZ[F(x+pZ) — F(x=pZ)] dH(x),
which has the same sign as the sign of p.

Remark 3.3. Consider

2
S,: The function defined by q,(u) = J [f(x+u) _ f(x)] dH(x),

u € R, is bounded and continuous at 0.

So:  The function defined by q2(u) = J f(x+u) dH(x), u € R, is

bounded and continuous at 0.

2.2
S5 su Ej (1Xq1+121)26%(Xy+2) dL_(2) < .

S .

R rlilﬁE:zfl <

Then under Sl’ S2, S3 and S4, we can show that the assumptions in

Section 1 reduce to A1 - A7, A9 and A16’
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Proof. A8(b) follows from Sl’ A7, the Fubini Theorem and the inequality
(3.39) J f(x+u) dH(x) < 2j [f(x+u) - f(x))? dH(x) + 2J 2 dH.

As(a.) follows from S, and the Fubini Theorem. A,, follows from the
Fubini Theorem, A3(b), A, and the Bounded Convergence Theorem. A,
follows from the Fubini Theorem, 82, S3 and the moment inequality. A13
follows from the Fubini Theorem, S,, S5, A; and (3.39). Ay (a) and A,
follow from the Fubini Theorem, boundedness in S2, S3, A3(b), A n A5
and S,. A,,(b) and A5 follow from the Fubini Theorem, boundedness in
Sl’ S3, A4, S4, A5, A7 and (3.39). Further, A17(b) can be bounded by

9 Pzl 2
J EJ h%(X,+2) [E| J f(x+u-Z_) du” dL_(z) dH(x),
—p|z]
which in turn is

plzl
(340) < 2p j EJ h%(Xy+2)|z|E J 2(x+u-Z_) du dL(z) dH(x),
-p|z|

using the moment inequality. That the lim sup of the r.h.s. of (3.40) is
finite follows from the Fubini Theorem, S,, S5, A, and (3.39). A17(a)

follows similarly as above.

Remark 3.4. In the case when H(x) = x, all the assumptions of

Section 1 reduce to Al’ 83, S4, A3 - A7 and Ag.

Proof. Note that A2 and S, are trivially satisfied. In view of A and the
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translation invariance of the Lebesgue measure, to prove S1 we need only
prove that J f(x)f(x+u) dH(x) is bounded as a function of u and is
continuous at 0. Boundedness follows easily by the Ho6lder inequality and
the translation invariance of the Lebesgue measure. From A., f € L2(H),
hence from Rudin (1974, Theorem 3.14), we have for any 7 > 03 a

continuous function ¢” vanishing outside a compact set such that

(3.41) |q5,7 - fIH <
Consider

U §(x)(x+s) dH(x) — J F(X)E(x+t) dH(x)I

< ” f(x) [f(x+s) - ¢,,(x+8)] dH(X)| +
(3.42)

r

+ || f(x

N’

:¢”(x+s) _ ¢ﬂ(x+t)] dH(x)| +

+ |[ g 0cr0) - f(x+t)] dH(x)l.
The continuity of J f(x)f(x+u) dH(x) as a function of u now follows
from (3.41), (3.42), An, uniform continuity of the function ¢77’ the Holder
inequality and the translation invariance of the Lebesgue measure.

We shall now prove that A, holds. Note A, holds if Ajg holds,

where

Al (a) J F(x)[l - F(x)] dH(X) < o .

(b) Tm J EF(x-iZ,){1 - EF(x-Z_)} dH(x) <o, j =0, L.
n
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(¢) Tim JEU h%(Xy2)F (x-+92)[1-EF(x+pz-Z )] dLn(z)] dH(x) < w.
n

(d) HEJ Eth(X0+z)EF(x+pz—jZn)[1—EF(x+pz—jZn)]dLn(z)] dH(x)
n

<w,j=0,1
Since F is continuous and E[¢;| < o, we have
o 0
(3.43) J [l - F(x)] dx < » and J F(x) dx < w.
0 - o
Thus
® 0
J F(x)[1 - F(x)] dx < J [l - F(x)] dx + J F(x) dx < w.
0 —w

Using the Fubini Theorem, the translation invariance of the Lebesgue
measure and A, we see that AIG(d) with j = 0 follows from Azﬁ(a) and
also to prove AIG(b) with j = 1 is the same as to prove AIG(d) with
i=1 AIG(b) with j = 1 can be rewritten as

m F(x)[1 - F(xz+u)] dx dL_(z) dL_(u)

344) = [[[ PeOI - Fxz+u)) ax dL_(2) dL_(u) +
g
+ F(x)[1-F(x—2+u)] dx dL_(z) dL_(u).

-

The second term in (3.44) is bounded by the 2nd term in (3.43). Now
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consider the first term in (3.44), which can be written as

[[| Feon - Poxarultiu > 2] ax dL @) dL () +
(3.45)

+ m Fx)[1 - F(xz+u)]Ilu < z] dx dL_(z) dL_(u).

The first term in (3.45) is bounded by the first term in (3.43). Rewrite
the second term in (3.45), using change of variable and splitting the range

of integration as
JJJ F(x+z-u)[l - Fx)|Ifu < z] dx dL (z) dL (u) +
(3.46)

+ m F(x+z-u)[1 - F)]lfu < 7] dx dL_(z) dL_(u).

The first term in (3.46) is bounded by 2E|Zn|. Hence from S, we get
that the lim sup of the first term in (3.46) is finite. The second term in
(3.46) is bounded by the first term in (3.43); consequently AIG(b) and
As(d) with j = 1 hold. By the Fubini Theorem, the symmetry of L 's
about 0 and the translation invariance of the Lebesgue measure, AI6(c) .can

be written as

M E{J n%(X,+2) dL_(2)) J F(x)[1 - EF(x-Z_)] dH(x),

*
which is the same as proving A16(b) with j = 0, in view of A.
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Proceeding exactly as in (3.44) - (3.46) and using (3.43), S, and A,
we get that A;s(c) holds.

Remark 3.5. In case H generates a finite measure, all the assumptions
of Section 1 reduce to A1 - A7, Ag, AIO(b)’ All(b)’ A15 and, A8(b) and
A13 with lim sup replaced by sup.

Proof. From A'5 and the fact that H generates a finite measure, we see
A16 and A17 are easily satisfied. Using the Holder inequality, A5 and
A15(b), we see A 4(b) holds. Using the Hélder inequality, A and Als(a),
we see A, (a) holds. Using the Holder inequality, A3(b) and A, (b), we
see A;,(a) holds. Using the moment inequality and A;3 with lim sup
replaced by sup, we see A, holds. Using Ag(b), A;o(b) and the Holder
inequality, we see Am(a) holds. Using A8(b) with lim sup replaced by

sup and the moment inequality we see A8(a) holds.
Remark 3.6. For H given by

dH = F-(T:F)’ where f(X) = 2_1exp{—|x|}, x € R,

[Note here we could take f to be the density function of a .4(0,02).] we
shall show that in view of Remark 3.3, the assumptions in Section 1 reduce

to Al’ A3(b), S3, A4 - A6, and

Ss: [im E exp|Z | < o,
n

S T Ej b2(Xg+2)exp{ |z} dL ().
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Proof. Note
F(x) = 1 — 2 lexp{~x} if x>0
= 2_lexp{x} if x<0.

Let x, u € R, and note

exp{-k|x]|-j|x+ul} _ _ —1x[7]
(347) F OO [1F ()] < exp{(k-1)|x|}[2 - exp{-|x|}] ",

where k, j = 1, 2. Since the r.h.s. of (3.47) is integrable over the real
line, applying the D.C.T. to the functions in (3.47), we get S, S, and A,
hold. Let x, u € R. From the inequality

el ol
2 2

< 270 |u] [exp{-lx-ul} + exp{-IxI}]
and the translation invariance of the Lebesgue measure, we see
[ 1) - 1601 ax < Jul.

X * *
Since A,q implies A,., we shall verify A, . holds. A, and Am(a) are
trivially satisfied from definition of H. A3(a) follows trivially from the

0 .

a.s. representation of X, as X pjc_j. S5 implies S, holds. Using Ag,
=0

S and Sg, lengthy calculations show that A ¢(b) — () hold.

If in addition to the restrictions of this remark we assume h(x) = x,

then the assumptions in Section 1 reduce to A1 and S5. For these
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assumptions to be satisfied we could choose Z, to be .4(0,02) and
Ty = n_I/ 2 for all n.

Remark 3.7 (Influence function). We shall define a functional T on a

subset, say PO’ of the set of all stationary ergodic measures on
R™®, B, where R™® is a collection of all sequences of the type

y = (+s Y_3» Yo ¥p» Yore) and B is the Borel o-field on R,

Proceeding as in Martin and Yohai (1986, equations 3.1 — 3.3), the
functional T, u € P, is defined as T(u) satisfying the equation

2
(3.48) %gj U h(yg){Ily; € x+tygl = Il-y; < x-tygl} du(y)] dH(x) = 0,

where P, is the set of all stationary ergodic measures on R, 9,
such that the integral in (3.48) exists and is differentiable. Further, T(yx)
minimizes the double integral in (3.48) as a function of t, and of all the
minimizers it is defined as the one with the smallest magnitude. Under
the assumptions A,, A6 and following the same argument as in Section 1,
we see that (3.48) has at least one solution which minimizes the double
integral in (3.48), as a function of t. For the sake of completeness, let us
repeat the definition of the time—series influence functional as in Martin
and Yohai (1986, Definition 4.2). For T as in equation (3.48) and u;
the measure generated by the process (0.2) where 7 = 7 and

L, =L Vn, the influence functional (IF) of T is defined as

0

T(u)) - T(ny)

(349) IF = lim —Y Y
70 v
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provided the limit exists.
In (3.48) taking pu = y}, then computing the innermost integral and
differentiating within the integral sign w.r.t. t under some regularity

conditions, we get T7 = T(p;,y) satisfies

(350) | |A-DEBXQHGOHT-aXg) - GlxAT™-4IXg)} +

+ 7EJ h(Xg+2){G(x+[T-p](Xy+2)+p2) — G(x—T7-](X(+2)-p2)} dL(z)]-
[ -DEX X EHTT-p1Xg) + gx-ATT-p1Xp)} + 1E[n(Xg+2)(X+2)
{gxHTT=p](Xg+2) +02) +g(x{TT-p)(Xg+2)+p2)}L2) | dH(x) = 0.

Note in (3.50) G and g both depend on 7. Setting 5 = 0 in (3.50)
we see TO = T(p;),) satisfies

(351) | BR(X{FOHT'pIXg) - FOAT'-AX )}
-EX (X {(fxHT]Xg) + f(x-{T0-p]X )} dH(x) = 0.

Assuming the derivative of F exists and equals f we see from Ag that
0 = p is the only solution to (3.51) which makes the double integral in

0

(3.48) with pu = p v minimum. Thus differentiating the l.h.s. of (3.50)

Y
under the integral sign w.r.t. 7, then setting v = 0, solving for g-l;—H:o,

we get

IF = _IEXOh(XO)J f(x)EJ h(X+2){F(x+p2)-F(x-pz)} dL(z)dH(x).

Note that IF = - 'ygl(asymptotic bias of yn [,;h(H) - p]), where the

bias is computed under the assumptions of Theorem 3.5 (a).



CHAPTER 2
0. Introduction and Summary.
Heathcote and Welsh (1983)(H-W) proposed a class of minimum

distance estimators p (s) of the vector p in an autoregressive model of

order k, defined so as to minimize

-2 -1 8 AL
M (t,5) = - s “log|(n-k) ° ¥ expfis(X; - X._,t)}
- j=k+1 yoo-r

as a function of t, where )_(;_1 = (XX gnXj -

Here we shall study the behavior of this class of estimators of
p € (-1,1), when k = 1, under the A.O. model (1.0.2) — (1.0.3). The
model assumptions of this chapter exclude the assumption F, Ln's
symmetric about 0 and Ecg < ®, but assume the first moment of €
exists and E¢y = 0.

Section 1 contains the definition of a class of minimum distance
estimators ;;n(s), s € ¢, of p where o is a compact set of the type
[-b,—a] U [a,b], 0 < a < D.

The main result in Section 2 is stated under Theorem 2.5, wherein it
is proved that the sup norm distance between ;)n(s) and p converges to
zero in probability or almost surely, the sup being taken over . This
convergence in probability (almost surely) is referred to as uniform (strong)
consistency of the estimators. The idea of the proof of Theorem 2.5 is
taken from Csorgd (1983). Lemmas 2.1 to 2.4 are used to prove this
result. Lemma 2.1 uniformly approximates exp {- szMn(t,s)}, under the

model (1.0.2) ~ (1.0.3), by exp {- s°M_(t,8)} with Y, replaced by

48
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Xj, where uniformity is taken over all s € ¢/ and t in some compact
set K containing the true value p in its nonempty interior. Remark
2.1 uses Lemma 2.1 to give sufficient conditions under which p is the
unique global minimum of the limit of M_(t;s) for each s € ¢. Lemma
2.2 contains a standard result. For the sake of completeness, Lemma 2.3
gives a Glivenko—Cantelli type result for empirical d.f. of stationary ergodic
random vectors from Gaenssler and Stute (1976). Lemma 2.4 finds the
uniform limit of exp{— szMn(t,s)} under the A.O. model for

(s,t) € ¢« x K.

Section 3 contains the discussion on the weak convergence of the
process {yn [;)n(s) - p}, 8 € ¢} and its asymptotic bias. This section
begins by obtaining an approximation for yn [;)n(s) — p] using the Taylor
series expansion. Theorem 3.1 gives the uniform limit of the coefficient of
yn [;;n(s) - p] in the above expansion. Using this theorem, the techniques
as in H-W and the results from Billingsley (1968), Theorem 3.2 proves
the weak convergence of the process {yn [;)n(s) - p], 8 € &}, when
appropriately centered, to a Gaussian process in C(<)-space. The finite
dimensional distribution convergence of the above process is proved by
using the C.L.T. for {mixing set of processes of Withers (1981 and 1983)
and Billingsley (1968). Remark 3.1 observes that the asymptotic bias of
the process ;Jn(s) converges uniformly to zero if either 4n 1, = o(1) or
v 7, = O(1) and Z, = op(l) and that it converges uniformly to a
function if Z - Z in probability and yn T, @ 7 where Z_ s the r.v.
associated with L, and Z is a r.v.. The corresponding weak
convergence results for the process {yn [;)n(s) - pl, s € ¢} under the

above observations are also stated in this remark.
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1. Definition of a class of estimators.
Define
o = [-b, -a] U [a,b], 0 < a < b,

_ 2 -1 ¢ . 2 .
(1L.1)  Mp(ts) = -3 " log| n jElexp{ls[Yj’n— Yj—l,nt]}l if se o

Il
B |
T e

2 ; =

j=1

Let K be a compact set containing the true parameter p in its
nonempty interior. Then p (s) for each s € &’ U {0} denotes a
measurable minimizer of M_(-,8) when restricted to K. For M = asin

(1.1), p, can be uniquely defined to be sample continuous on ¢

Further ;;n(s) satisfies

(1:2) inf My(1) = My(sy(s))

Note that ;)n(O) is the least squares estimator which has been studied in
detail by Denby and Martin (1979) under the A.O. model; hence we shall

not allow s to be zero.

2. Uniform (strong) consistency of ;n(s), 8€ d

In this section we prove uniform (strong) consistency of the estimators
;)n(s), s € ¢ The idea of the proof for this result is taken from
Csorgd (1983) and H-W.
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Lemma 2.1. For each n, let an = Xjn + vj o’ j=201,.,n ber.vs.

n
Let & = ) |v: | ALl Let K c R% be such that,
=1 b

¢, .= sup {|s|]}, ¢, = sup {|st]} and ¢, _ + ¢, <cC<a
l,n (t,S)EKn 2,n (t,S)EKn l,n 2,n

Then

n
@ e [n 1j§1[e"p{is[Yj,n" tY; g nl} — explis(X; ;- tXj—l,n]}]I
b n -

< [(e42) v 4k

Proof. The Triangle inequality and |eit - eis| <[t —s] A2

t, s € R, show that the L.h.s. of (2.1) can be bounded by

(2.2) n—ljgl[{cl,nlvj,nl + CoplVignll A 2
The expression inside the sum in (2.2) is bounded by
[cl,nlvj,nl A2 + [c2,n|vj—l,nl A 2]

The r.h.s. of (2.2) is now dominated by
[(cl,n V2 + (c2,n vV 2)]k,.

From which the lemma follows. o
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Note. Under condition:

(a) K, - 0in prdbability
(2.3) or

o0
(b) X Enn < w,
n=0

L.h.s. of (2.1) converges to zero in probability or a.s., the latter follows
from the Markov inquality and the Borel-Cantelli Lemma applied to K-
In the case when Vin are B, distributed for any d.f. L in (1.0.1),

_ ’ _
Ex, = n "(n+1)7,E{|Z | A 1}, and thus 7, =o(l) or L 7, < =
become sufficient conditions in (a) or (b). Further note from here on we
shall supress the n in the random variables (r.v.s) Yj , and Vi
Remark 2.1. We shall now present the sufficient conditions for the unique

true value p to be the global minimum of the limit of M_(t,s) for

each se o Fix §>0 and s € & From (1.1) we get

n
4)  My(peds) - My(ps) = - 5 tog| | 3 expislY; ~ ()Y )} 1%/
J=
13 : 2
/I S expis[Y, - oY, 417,
j=1 J J
The r.h.s. of (2.4) can be written as

- s—2log[|n_lj§1[eXD{iS[Yj- (P*5)Yj_1] - exp{is[Xj— (P*é)xj_ll} +
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2
@9+ el (20X, ]| /572 feplitv- 0¥, ) -

2
- exp{is[X; - pX;y]} + expfislX; = pX;yT}| |-

From Lemma 2.1 and the Stationary Ergodic Theorem (S.E.T.), (2.5)

converges in probability (a.s.) to
-2 2 2
(2.6) -8 lOg{|¢x1_ (/)*5)X0(8)| /|¢€1(3)| }

where ¢X denotes the characteristic function of a r.v. X. Under the

assumptions |¢, (s)| > 0 and [y ()| <1, (26) >0 Vse o
1 0

Thus for sufficiently large n, with large probability (with probability 1), a
minimum is achieved at the true value p. If the distribution of € is

infinitely divisible then |q1>e (8)] >0 Vs e o issatisfied. Also, if the
1
distribution of ¢, is not lattice type then |¢y (3)] <1 Vs e o
0

follows from ¢y (s) = @y (pﬂ)qbc (8) and Chung (1974, Theorem 6.4.7).
1 0 1

Lemma 2.2. If ¢n(.t.) are characteristic functions on RX such that

¢,(t) » ¢(t) for each t € le, then for any compact subset K of R

t) — ¢(t)| = 0.
sup |6,(t) — &(t)]

Proof. The proof follows from Ash (1974, p. 333, Theorem 3.2.9). o
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Lemma 2.3. Let X,, X2,... be a sequence of strictly stationary and

ergodic random vectors taking values in R, Then

(2.7 P(IIm sup |Fp(%p5eXp )-F (g% )| = 0) = 1,
—00<X} ,Xgy 5 +o0yX} <@

where Fn(xl’x2""’xk) is the joint empirical distribution function based on
XyX, and F(xg,...,x,) is the joint distribution of the random vector

Xl.
Proof. See Stute and Schumann (1980) and Gaenssler and Stute (1976). ©

To state the next lemma, let

n
(28)  Dy(ts) = %jglexp{is(v,.—wj_l)} - 9(5)8x (slo-1D)].
(ts) € K x

Lemma 2.4. Let {Xj} be as in (1.0.3) with cj's iid.. Let v; o' be as

in Lemma 2.1. Then

(a) under (a) of (2.3)

(2.9) sup D (t;s) » 0 in probability
(t,s)eKxe’

(b) under (b) of (2.3), (2.9) holds with convergence in probability

replaced by a.s. convergence.
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Proof. We shall give the proof of (b). The proof of (a) follows similarly.
From the triangle inequality we get

-12 . 12 . I
2.1 D < =X - X-—X- t
(210) D_(ts) € ln jzlexp{ls(YJ Y, )} - n jzlexp{ls( Xt

+ o 2 explinXi X0} - 6, (9) o Gl

That the first term on the r.h.s. of (2.10) goes to zero a.s. follows from
condition (b) of (2.3). Since {(Xj_l,cj)} is a stationary ergodic sequence,

Lemma 2.3 yields

1 D
1 =P(sup |[n § I[ej < xp, Xj—l < x9] = F, (x))Fx (x5)| = 0)
]—1 1 0
xl’x2€R
n . .
(2.11) < P( sup |§ exp{lslcj+1s2xj_l} - ¢(1(sl)¢x0(s2)| -+ 0),
(3 sz)eleK2J_

where K, and K, are any compact subsets of R. The inequality (2.11)
follows from the Continuity Theorem and Lemma 2.2. In particular, taking

K, = ¢ and K, = {s(p-t): s€ & teK} in (211), we get

(2.12) P( sup In_l.g exp{is(X:—X;_;t)} — ¢, (s)dy (s[p-t])|~ 0)= L.
j=1 1 1 0
(t,8)eKxe’

Now the lemma follows from (2.10) and (2.12). o
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Next, set
(213)  M(ts) = - 5"logl 4, () Glot)I%, () € K x o

Note that

(2.14) M(t,s) > M(p,s) V 8 and hence inli M(t,8) = M(ps) V s.
te

Theorem 2.5. Let Xj's and v.i n's be as in Lemma 2.4 with

(2.15) |¢61(s)| >0 and 0 < |¢X0(s[p—t])| <1 8s€ ¢ and

t € K - {p}.
Then the following statements hold:
(a) Under (a) of (2.3),

(2.16) sup |;Jn(s) - p| -+ 0 in probability.
s€o’

(b) Under (b) of (2.3), (2.16) holds with probability convergence

replaced by almost sure convergence.

Proof. The proof of (b) is as in Csorgd (1983, p. 345, Theorem 4.1). We
shall give the proof of (a). From (1.1) and (2.13),

M, (t:8)-M(t.5)| < Colog[{Dn(t,S)/l¢61(S)I2I¢x0(8[p—t])l2} + 1),
where C, = sup{s_2: s € o/}. Since

inf  |g, (6)I%16x (slotDI% > o,
(s,t)eikK 1 0
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Lemma 2.4 and the above inequality imply that

(2.17) sup IM_ (t,8) — M(t,8)| = op(l).
(t,8)eKxe/

From (1.2), (2.14) and (2.17)

(2.18) sugJMn(;n(s),s) - M(p,s)l = sufJinf M, (ts) — inf M(ts)
S€E 8€ teK

teK
= op(l).
For 6§ > 0,let K(6) = K — {t:|t—p| < 6}. Then, (2.17) also implies

(2.19) sugJinf My(ts) - inf M(ts)| = o (1).
8¢ teK ( ) teK( 6)

Suppose that

(2.20) sup| ;n(s) — p| does not converge to zero in probability.
s€o/

Then 13 Mg 1 > 0 and a sequence of integers n 1 o such that
(221)  P(up|p, () = ol > m) > 1
see? Tk 1 0

Let 7 = 37 linf |IM(p,8) —inf M(t,s)|. From assumption (2.15), > 0.
s€ef teK(n,)
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From (2.18), (2.19) and (2.21), 3 ko(n,no) such that ¥V k > kg(m,n,)

my < P[supIM (b, (8)) - M(p8)| < 1, sup|p_ (s)=p| > 7 ]+
0 s Dk Dk seef Tk 1

<thm (0. (5)8) - M(p;8)| < m, sup|p_ (s)-p| > my,
se? Dk Dk see? Dk ]

,sup| inf M_ (t,8) — inf M(ts)| < 17] +
se/ teK(n)) "k teK(n,)

+ Plsup|M, (p, (5)9) - M)l < n suplp, () = ol > m,
se/ Pk Pk seof "k !

,sup| inf M_(t8) - inf M(t,s)| 2 1)] + 1g/2
sedf teK(n;) 'k teK ()

(2.22) <PhMM (0. (s).8) — M(ps)| < m, sup|p. (s) = p| > ny,
0oy see? Dk 1

s€Eo/
,sup| inf M_ (t,s) = inf M(t,s)| < 17] + 3n,/4.
seo’ teK(n,) " teK () 0

From the definition of 5, the first term on the r.h.s. of (2.22) is zero,
which leads to a contradiction. Therefore (2.20) must be false and hence

the result. o

Note. The proof of Theorem 2.5 does not use the existence of f nor -
does it use any of the moments of € OF Zn' Note that under the
assumptions ¢.'s ii.d. and |p| < 1, {Xj} of (1.0.3) is invertible and

J
strictly stationary ergodic.
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3. Weak convergence of the process +n (;:n(s) -p),8€d.

In this section we prove the weak convergence of yn [;)n(s) -p as
a C(¢) valued random element. The idea of the proof for this result is
taken from H-W. The C.L.T. given by Withers (1981 and 1983) has been
used to prove its finite dimensional distribution convergence. We also
discuss the behavior of its asymptotic bias.

Recall from (1.1) that to minimize Mn(t,s) w.r.t. t is equivalent
to maximizing Urzl(t,s) + Vg(t,s), where for (t,8) € K x &,

11
U (t8) =n jzl cos(s[Yj - th_l]),
15
31)  V(ts) =n jEI sm(s[Yj - th_l])
and
U n = Vn = 0, otherwise.
_ o-10 2 2
Let m =2 g (U + V). Then
1 . :
(32) my(ts) = -5 .Ele—l{Unsm(S[Yj—th—-l]) - Vncos(s[Yj—th_l])},
(t,8) € K x o,
= 0, otherwise.

By the Taylor series expansion

(33)  my(p(6)9) = my(ps) + F Mt —505)02n®) ~ Al

where

(34 17,0 - ol

I

lo,(s) — o, 8 € o
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Theorem 3.1 below shows that % mn(t,s) uniformly in s,

t=p(s)’

converges in probability to a negative number. Hence
(3.5) sup |m (o, (8):8)] = o,(1).

Thus from (3.3) and (3.5) we see that in order to prove the weak
convergence of 4n (;)n(s) - p), it suffices to study the weak convergence of

the process m (p,8), s € & Before stating the next theorem, note that

(3:6)  gmy(ts) = s2{U_(t,9) 32 U (t5) + V(t.5) ﬁz V(1) +

a2 ot
[a % ts)]2 [a U(ts)]} teK, s€ o
¥ 3
4 1
d U (ts) = -sn Z Y. sm(s Y. -tY. .]),
= gly _
g’t’ Vy(ts) = sn El Yj cos(s[Y th—I])’
_2-1% 2
(3.7 % Un(t,s) = - s“n '21 Yj_lcos(s[YJ th_l]),
n
& v (t,8) = snly y? sm(s[Y D,
—a—t-? n j=1 -1 J_l

for all (t,s) € K x . From here on it will be understood that sup is

taken over all s € ¢, unless specified otherwise.

Theorem 3.1. In addition to the assumptions of Theorem 2.5(a) and all
the model assumptions (1.0.1) — (1.0.3), assume Iim EZI21 < w.
n
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Then
(38)  sup|o my(ts)l,_yq) + 16, () 'EXg| = 0p(0)

with r = p_ or ﬁn.

Proof. Throughout this proof we shall need sup of each of the following

random functions

2 2
(39) U, [V,I, |gt Un|, Igt vn|, |gt2 Un|, I(Q%2 Vn|

taken over all (t,8) € K x &, to be bounded in probability, which is
evident from (3.1), (3.7), Ecg < o, the S.E.T. and

n
3100 Enl%v2

=1 J 7nEZ121 -0,
J:

-1~

which in turn follows from the Iim EZ121 < o.
n

We shall now prove (3.8) with r = Zn; the proof for r = p R E
exactly the same. From the triangle inequality the expression inside the

sup on the Lh.s. of (3.8) can be bounded by
|g€ mn(t’s)|t='ﬁ(s) - % mn(t,s)l ‘t{ fg(s)l +

(311) + |g{ mn(t,s)I{(:g(s) —%mn(t,sﬂ:(:)lzl +

+ 'g{ m (t8) |, + |¢61(S)|2EX§|
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Here, and in what follows, |, _ p means that in the given
Y=X

expression replace Yj by Xj and t by p etc. The first term in

(3.11) can be dominated by

Cy lﬁg Up(68)|4—5() 32 U (tS)I\t(—),E()I +

+ |U,(p(s)8) - S)S)I ” n“)lt p()l *
=X

(3.12) + |82 vV (t3)] =5(s 32 V(”)'t p(S)|

S\ ACODERACOL) |Y=X| |§2 vn(t,s)lgg(s)|
2 2
* |[% LACOINEN IS [% Un“’s)"t{:‘gs)] |+

2 2
+ l[gE Valt9) e - [gi v, (t3)] ‘t{zg(s)] |]

nd, 4th’ 5th 6th

That the sup norms of the 2 and terms in (3.12) go to
zero in probability follows from (3.1), (3.7), (3.9), (3.10), the Lipschitz

property of the sine and cosine functions, the S.E.T. and

(3.13) sup lo(s)| = Op(1),



63

which in turn follows from Theorems 2.5(a) and (3.4). As the sine and
cosine share similar properties, it now remains only to show that the sup

3rd

norm of the term in (3.12) goes to zero in probability in order to

prove that the sup norm of (3.12) goes to zero in probability. Accordingly

|§2 Vi(t8) | y505) = 32 V(ts)lt "(S)l
(314) <A ?: sin(s[Y,-p(6)Y;_DIYS X2 +

+ s%n” | J?_l{sin(s[Yj—ﬁ(s)Yj_l]) - sin(s[Xj—ﬁ(s)Xj__l])} .

Let C; = sup{s2} and G, = sup{|s|3}; then the r.h.s. of (3.14) can be

dominated by

+

Cl[ JE IXJ 1Vj- 4+ Ele 1

(3.15)

+ Cyln

—1 2 -1 2
2x LIyl + 17 zx 1|v11|]

This follows from (1.0.2), the fact that the sine function is bounded by 1
and Lipschitz of order 1, with constant 1. That the sup norm of the
expression (3.15) goes to zero in probability follows from (1.0.1), (3.10),

2
(3.13), E¢

< o, [Im EZ121 < o, the Markov inequality applied to each of
n

the averages in (3.15) and the independence of {Xj’ j ¢n} and {Vj’

0 < j < n}. This completes the proof that the sup norm of the first term

of (3.11) is op(l). We shall now show that the sup norm of the second
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term in (3.11) is op(l). It can be dominated by

@ U ()], _ -
-x —3 nlt=p
- at Y=X

U (p9)] I +
Y=X

Col_ U(t9)] , _= ey U (p(8).9)]
”a? y=gl) "n

+M¥vumtmwwmm
Y=X
_ gz v, (t9)] 1= Valeo)l_ | +

(3.16)

2 2
|[a Vy(ts)] |t=§(8) - [% Vales) I@iﬁl *

..<

« g veo] 1y~ (g 0ol |

From (3.4), (3.7), (3.9), the Lipschitz property of the sine and cosine
functions, Theorem 2.5 (a) and the S.E.T., the sup norm of the third and
terms in (3.16) goes to 0 in probability. Since the sine and cosine
functions satisfy similar properties, to prove that the sup norm of the
expression in (3.16) converges to zero in probability we only need now

nd

prove that the sup norm of the 2° term in (3.16) converges to zero in

probability. It can be dominated by

(3.17)
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From (3.1), (3.4), (3.9), the Lipschitz property of the sine function and

nd torm in (3.17) goes

Theorem 2.5 (a), we get that the sup norm of the 2
%*
to zero in probability. Let s = sup{|s|}. The sup norm of the first

term in (3.17) can be dominated by

n N
318) Cp B X3 [1sIX;lsup ay() - pl} £ 2];
j= see/
this follows from (3.1), (3.4) and the sine function being bounded by 1 and
the inequality |sin(s) — sin(t)| < [8 —t| A 2, t, s € R. It remains to

prove that (3.18) goes to zero in probability. Let ¢ > 0 be arbitrary, then

Vn>n0(m)
(3.19) (‘jg X2 [t |xJ1|sup|p()—p|}A2] > ¢)
< P(n ‘2 X3y [(1X; g IsupJog(s) ~ o} 4. 2] > 6

j=

-1
, suplpn(S) —pl ¢m™) + m
seef

-1

I

FLEXZ[fs |Xglm 1} A 2] + m

This follows from (2.16), the Markov inequality and the stationarity of
{Xj}. In (3.19), taking limit as n - o and then m - o, Ecg < o and
the D.C.T. give (3.18) converges to zero in probability.

H-W proved in their Theorem 2 that the sup norm of the third term

n (3.11) goes to zero a.s.. This completes the proof of (3.8) as well. o
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Next, set u(s) = Ecos[s¢;] and v(s) = Esin[s¢;], s € R. Also, by
the random elements X and Y satisfying X, (8) =Y (s) + Bp(l) we
shall mean gggy |X,(8) = Y, (8)] = op(l).

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Also let
(2) J |f(x-u)4(x)| dx < Clu|, u € R, for some 0 < C € R,

(b) Var[cos(se;)] > 0, Var[sin(se;)] > 0,
Var[u(s)sin(se;) - v(s)cos(sel)] >0, s € ¢ and

(c) sup E|Zn|2+a <o 0< E|51|2+a< w, a > 0,
n

hold. Then
(3200 a2 (-) = p + p ()]

converges weakly in C(¢/) to a Gaussian process with mean 0 and

covariance

EX2166)| 160)1172(st)  he.s),

where
2h(t,s) = u(s-t)[u(s)u(t) + v(s)v(t)] +
+ u(s+t)[v(s)v(t) — u(s)u(t)] + v(s-t)[v(s)u(t) — u(s)v(t)] -
— v(s+t)[u(s)v(t) + v(s)u(t)]
and

-1
(3.21) m(s) = s [% mn(t’s)|t=ﬁ(s)] [Ecos[s(cl+vl—pv0)] .

+ Evgsinfs(e; +vy-pvy)] - Esin[s(cl+v1—pv0)]Evocos[s(el+vl—pv0)]].
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Proof. From (3.1), (3.3) and (3.5) — (3.7) we get

2/ (s) - p)s 9 w69 =(s)

= V25 v, (U (ps)sinlY Yy ]) — Vy(ps)oosslY Y, )
Z
+5,(1)

1/2J§ Y,y [{Boosls(e; +v,-pvg)l}sinls(e;+vipv_y)
- {Bsins(e+vy-pv)l}eosls(etvipvi_p)]| -
(32) -n' § Y; ; {sinls(ejhvipvy )] - Esinls(e;+vy-pvg)]} -

g VA {Uy(ps) - Boos(e+v,pvg]} +

11 _ '
n jil Yj_l{cos[s(cj+vj pvj_l)] — Ecos[s(e; +v;—pvy)]}

Vi V(o) - Bsinls(e+v-pvg)l} -

- {n“ljlej_l} [Esin[s(cl+V1-PV0)] :
.,/ﬁ{Un(p,s) - Ecos[s(cl+V1—PV0)]} -
~ Ecos[s(e; +v;-pvg)V{V(p.s) — Esin[s(e; +v,—p VO)]}] + o)

We shall now proceed to prove that the sup norm of the second, third and
fourth terms in (3.22) converge to zero in probability. To achieve this we
shall prove
(323) VA {Uy(ps) - E cosls(eg+vypvpl),

VB {V,(p) - E sinfs(e +v,-pvol}, s € o,
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converges weakly in C(¢¥) to a Gaussian process,

(3.241) supln_l-g Yj__l{sin[s(cj+vj—pvj_l)] — Esin[s(e;+v,—pvp)]}| = op(l)

and

n

. -1 =
(3.24ii) sup|n j_Ele_l{cos[s(cj+vj—,0vj_l)] — Ecos[s(¢e; +v;—pvy)l} = op(l).

In view of (3.22) — (3.24), to study the weak convergence of
nl/ 2[,;111— p+ pn)] it suffices to study the weak convergence of the first

term in (3.22) when centered.

Proof of (3.23). Denote

{Ln(s) = cos[s(ej+vj—pvj_1)] — E cos[(e;+v,—pvg)] Vs e o

see afk) =0 Vk22 Also,s€ o because 7, — 0

and Yy - pY,_, are independent for all [ik| > 2 we

1

(3.25) n aﬁ = Efin(s) + 2(n—1)n—1E£1,n(s)§2,n(s) — Var[cos(seg)],

which is positive because of the assumption (b), 0121 as in Theorem 1.3.1.

The remaining conditions of Theorem 1.3.1 are trivially satisfied.

Hence from Billingsley (1968, p. 49) the finite dimensional

n
3.26 distributions of n_l/ 2 Y €. (s) converge to that of a Gaussian
. 1 J n g
J: ?

process. Also, for any s, t € o

(3.27) 1~3|nl/2.1211 £ (9 - 128 e ()2 =

¢
j j=1 "
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Var[fl’n(s)-fl’n(t)] + (%)COV[EI’D(S)"EI,D(Q’ fg,n(s)'fg,n(t)]-

From the Cauchy-Schwartz inequality and the Lipschitz property of the
cosine function the r.h.s. of (3.27) is dominated by Clt—s|2, where
0<CeR

Thus from Billingsley (1968, Theorem 12.3) the process

(3.28) n -1/2 3 ) £ n(8) is tight, and its weak convergence to a Gaussian
j=1
limit in C(e/)-space follows from Billingsley (1968, Theorem 8.1).

The weak convergence of the second process in (3.23) to a Gaussian limit

in C(¢)-space follows similarly.

Proof of (3.24). The L.h.s. of (3.24i) without the sup can be dominated by

-1 3 -1 : :
2n jEllvj_ll + |n jElxj_l{3111[s(cj+vj pvj—l)] sm[sej]}l +
(3.29)

+ |n-1§ XJ 1 sm[sc]l + |n JZ XJ__1|

That the first term in (3.29) goes to zero in probability follows from the
assumption (c) and 7, = ©0(1).  From the Lipschitz property of the sine
function, the Cauchy-Schwartz inequality, the S.E.T., assumption (c) and
T = o(1), sup norm of the second term in (3.29) converges to zero in
probability. That the sup norm of the third term in (3.29) converges to
zero a.s. follows from H-W (Lemma 3.1). The last term in (3.29)
converges a.s. to 0 by the S.E.T.. The proof of (3.24ii) is similar.
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It remains to study the weak convergence of the first term in (3.22)

when centered. To that effect let
§J a(8) =Y, [{E cos(s(e;+v, pvo)]}sm[s(c AV pv]—l)]
- {E sin[s(el+vl—pv0)]}oos[s(cj+v 1)]] sa m, (t, s)|t=5(s)” 0 (8)-

We shall first prove the finite dimensional distributions convergence of

-1/2 % .
n ) fj o(+) using Theorem 1.3.4. Take
j=1 b

6 (xy) = x[{Ecos[s(cl+v1—pv0)]}sin[s(y—px)] ~ {Esin[s(e, +v,-pv)]} -
cosfs(y-p)]
0(x,y) = x{u(s)sin[s(x—py)] — v(s)cos[s(x—py)]}, x, y €R,

h = x, Xj Yj v; as in the model assumptions with w(x,y) = x+y,

X, ¥y € R, in Theorem 1.3.4. Since X. = Epke _ &S, using
J k=0 J°

assumptions (a) and (c) and Pham and Tran (1985,Theorem 2.1) with

6=2, Ak) = pk, gives {Xj} to be strongly a-mixing with
(3.30) ak) < Cp|p|2k/3, Yk > 2, for some Cp > 0.

By assumption (b) and (c), 7 = EX% Va.r[u(s)sin(sco) - v(s)oos(sco)] >0
for each s € ¢ Thus all the conditions of Theorem 1.3.4 are satisfied.
Hence the C.L.T. holds for ¢ as defined above, for each s € . Now

using the argument as in (3.26) we get the required finite dimensional
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distributions convergence. Since for all i and j with |i—j| > 2, €, v

and v;; are independent of {(viuYy)s k = i1, i},

(331)  Covlg (1), & ()] =0 Vs, te o

Using (3.31), the same argument as in (3.27) and (3.28), we get
n
/2y fj n(+) converges weakly in C(o)-space to a Gaussian process
=17
with mean 0 and covariance Exgh(t,s). Thus from (3.3) — (3.5), (3.8),
Billingsley (1968, Theorem 4.1) and (3.22), we get (3.20). a]

Remark 3.1. From (3.8), the assumption yn T = O(1) and simple
computations using (1.0.1), we can see that n p, in Theorem 3.2 can be

replaced by

(332) y(s) = - s—1|¢61(s)|_2[EX§]_1 [Ecos[s(el+vl—pv0)]-

*Evgsin(s(e;+v,-pvg] - E sin[s(el+v1—pv0)]Ev0cos[s(el+vl—pv0)]].

Note that Vn(S) represents the asymptotic bias of nl/ 2(/A)n(s) - p).

Consider the following assumptions:

(@) Vi 7 = o).

(b) vn 7, = O(1) and Z -~ 0 in probability.

(c) ymn Ty 27 and Z - Z in probability.
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Using (1.0.1) and the continuity of the sine and cosine functions, one
concludes that under (a) or (b), sup |y, (s)| — O and hence vi p in
ses

Theorem 3.2 can be replaced by 0. Using the Lipschitz property of the
sine and the cosine functions, the condition (c) implies that

sup v (s) — p(s)| — O, where
see/

(98 zsinls(e;-02)) dL@)} u(s) +

+ 2y EJ cosls(e;+27(1-p)2)]cosls2 (1+p)z] dL(z)] -

(632)  us) = =716, O EX

- {7EJ zcos[s(€;—pz)] dL(z)}[v(s) + 27EJ sin[s(cl+2_1(1—p)z)-

. cos[s2-1(1+p)z] dL(z)H.

Consequently n pn(s) in Theorem 3.2 can be replaced by u(s).

Note. If f is a double exponential or .4(0,02) density, Z  is

such that Iim E|Zn|3 < w® and 7, = o(l), then simple calculations
n

show that all the conditions of Theorem 3.2 are satisfied. oo
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