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ABSTRACT

SPATIAL STRUCTURE AND SPATIAL INTERACTION

by

Engdawork Desta

Traditional, gravity-type, spatial interaction models

are commonly employed for predicting spatial flows. It has

been reasoned that the models are not fully specified

because they miss a vital variable representing the

influence of spatial structure on spatial interaction.

Spatial structure, which is defined as the relative

location of interacting centers, is assumed to vary from

area to area. The absence of a variable representing this

variation in the interaction model formulation causes the

parameters of the spatial separation variable (usually

distance) to vary locationally too. This happens because

the distance measure, in addition to representing the effect

of spatial separation which is expected to be constant over

space, is also found to measure accessibility, which is

location specific. Therefore, including a variable to

represent the effect of spatial structure during calibration

is believed to specify'the model correctly. The prediction



capacity of the model is at the same time expected to

improve as a result of removing the misspecification by way

of including a spatial structure variable.

The attempt in this research, thus, has been to

substantiate the role played by spatial structure in up-

grading the usefulness of the traditional family of spatial

interaction models in terms of their specification and

prediction capability. The exercise involved calibration of

the different versions of the traditional family of spatial

interaction models using four different spatial flow data

(telephone calls and rail passengers flows in Ethiopia, and

Vehicle and bus passengers flows in the State of Michigan).

During the calibration of each model various ways of

entering the effect of spatial structure have been

considered with the help of a computer program designed for

this purpose. Comparisons are then made between the

traditional spatial interaction models with spatial

structure variables and those without them using coefficient

of variation for assessing improvements in the model

specification, and standardized-root-mean-square-error

(SENSE) as a goodness of fit measure.

The results of the exercise show that all the model

calibrations do not behave in exactly the same way when the

spatial structure variable of one type or another is

considered. The effect varies not only by data type but



also by type of model calibration. In general, this study

has shown that the various ways of entering the effect of

spatial structure impacts the models differently. In the

case of the.dOubly constrained’model calibration, including

spatial structure variables reduces the models' usefulness.

At best, the models remained unaffected. The constraints of

this model, which are defined similarly as the spatial

structure variables, seem to play the role of the spatial

structure variables in addition to serving as balancing

factors.

The approach used in this research is believed to

contribute to further understand the behavior of spatial

interaction models and the practical significance of spatial

structure effect. Suggested future research includes a

closer look at spatial structure as a new variable versus

the balancing factors which are available as integral parts

of the production, attraction and doubly constrained’model

calibrations.
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INTRODUCTION

Geographers are interested in describing and explaining

the distribution and variation of phenomena over space. The

gravity model is among the many tools they use to

investigate spatial patterns and spatial processes. This

model is the most widely used mathematical descriptions of

spatial interaction. It is commonly applied in such areas

as transportation, marketing, migration and various

locational studies.

The gravity model measures interaction by relating the

magnitude (often population size) of pairs of interacting

places such as cities, and some measure of the spatial

separation between them. The basic assumption expressed by

this model may be stated as follows: interaction between two

places is directly proportional to the relative attraction

of each place and inversely proportional to some function of

the distance between them. Large cities, for example, are

expected to generate or attract more interaction than small

cities. And, the farther two places are apart, the less



they interact (U.S. Department of Commerce, Bureau of Public

Roads, 1965).

In spite of its popularity, the gravity model still

requires improvements so that spatial interactions can be

estimated more accurately. A number of studies have

indicated that the traditional gravity model, which

represents scale and distance impacts, is not fully

specified. That is, the model does not include all the

variables that explain interaction over space. An important

element that the traditional gravity model does not consider

has been noted as a spatial structure effect (Gould, 1975;

Fotheringham, 1981, 83, 84; Baxter, 1986).

Spatial structure is also sometimes referred to as

spatial pattern. However the two are not treated in exactly

the same way. Usually, spatial pattern represents a

subjective description of the configuration of phenomena

over space. On the other hand, spatial structure is more

specific because some form of measurement is applied to make

it an objective representation of spatial pattern so that

comparison of the locational importance of centers could

easily be made. Hence, numerical values are assigned to

individual locations within a system of interacting origins

and destinations. This might be performed in a number of

ways; the time it takes to reach one center from all the



other centers of the system, or cost of travel, or simply

the distance separating them.

Indices of spatial structure derived from only distance

values may not be sufficient however to represent the

relative locational importance of a center. In the case of

cities, for instance, the volume and types of services

rendered by them are also important spatial characteristics.

Therefore, in order to make objective comparisons between

locations in a given system of origins and destinations of

flows, some function of the size and/or characteristics of

each city may be used together with one or the other of the

distance measures to model individual relative locational

importance. This approach which is similar to Stewart’s

population potential (1941), is described in more detail in

Chapter 2.

Interaction over space is defined as the movement or

flow of people or goods between locations. The problem

challenging many geographers and scholars in other

disciplines, is determining the factors which explain the

volume of flow between origins and destinations. Most of

the discussions in this respect have revolved around the

role of the friction factor, normally, the coefficient of

the distance measure (Price, 1948; Anderson, 1950). In

spite of the volume of work produced, there are still

unanswered, but important, practical and theoretical



questions regarding interaction over space. The effect of

spatial structure on interaction has not been given

sufficient attention. Some of the attempts made in this

regard are discussed in Chapters 1 and 2.

This study is designed to investigate the strength of

the influence of spatial structure on spatial interaction.

The work involves observation of the behavior of the

traditional (also called general) family of gravity models

(Wilson, 1967) using various types of spatial flow data and

various methods for the inclusion of the effect of spatial

structure.

The problem statement, the specific questions of the

research and hypotheses are presented in Chapter 3. The

various types of spatial flow data used in this study and,

the methods of analysis are described in Chapter 4. Chapter

5 has the results and analysis. Finally, a summary of the

study and concluding remarks are presented in Chapter 6.



CHAPTER 1.

SPATIAL INTERACTION MODELS

1.1. The Gravity Abdel

Spatial interaction models are adaptations of the

gravity model advanced by Newton in 1686. In simple terms,

Newton's Law of Gravitation states as follows (Pollard 1969,

p. 70):

Every body attracts every other body with a

force proportional to their two masses

directed toward each other, and also

proportional to the inverse square of their

distance apart.

The mathematical representation of this statement is

generally given as:

F12 = g(M1M2)/d122 (1)

where:

F12 = attraction force between M1 and M2

M1,M2 = two attracting masses

g = universal constant

d12 = distance between M1 and M2



Spatial interaction models used by geographers are

modifications of Equation 1. As introduced earlier,

potential interaction between two places (generally towns or

areas) is explained in terms of some measurement of the size

of the places and some measurement of the distance between

them. Later improvements of interaction models are also

based on similar principles.

112..Developlents in Spatial Interaction Abdeling'

Carey (1858, 59) made the first adaptation of the

gravity concept of human interaction. According to him,

(Carothers 1956, P. 95):

The force of interaction between two

concentrations of population, acting along

a line Joining their centers, is directly

proportional to the centers and inversely

proportional to the square of the distance

between them.

His spatial interaction formulation is thus given as:

T11 = 3(P1P1)/d112 (2)

where:

T15 = the force of attraction between

concentration i and J

P1,P5 2 two concentration of population

d15 2 distance between concentration i and j

g = a constant of proportionality

(similar to the gravitational

constant of physics)



Later, Ravenstein (1885) applied the law of gravitation

to social interactions. Many researchers have since then

been involved in studying spatial flows by further modifying

Newton's gravity model for social science purposes (for

example, Young, 1924; Reilly, 1929; Price, 1948; Anderson,

1955, Wilson, 1967, 71; Griffith, 1976).

The most problematic component of the gravity model

when applied to social science purposes has been the:

friction factor (Stewart, 1941; Price, 1948; Anderson, 1955;

Zipf, 1941, 42). Opposition to the use of the gravity-type

spatial interaction model, as'a result, concentrated mostly

on the inability of the distance variable to measure the

true effect of friction between interacting locations.

Probably, one of the first men to react against the gravity-

type spatial interaction model was Stouffer (1940).

According to him, distance and interaction are not

necessarily related. Instead, he writes (p. 846):

... the number of persons going a given distance

is directly proportional to the number of

opportunities at that distance and inversely

proportional to the number of intervening

opportunities. (emphasis added)

By opportunities is meant, the number of potential

destinations that are available to a given origin.

Stouffer's intervening opportunities model initiated further



research ( for example, Isbell, 1944; Stewart, 1947;

Strodtbeck, 1949; Carrothers, 1956; Shneider, 1959;

Tomazinis, 1962; Clark, 1962; Miller, 1972; Baxter and

Ewing, 1979) and today it is, probably, the main contender

of the gravity-like interaction models (Price, 1948; Ikle,

1954; and Carroll, 1955).

Unlike the ideas of Zipf (1941, 42, 46, 47), and

Stewart (1941, 47, 48, 50), among others, the distance

relationship with interaction has been reported to vary

instead of being a simple inverse of the square value.

Thus, various exponents for distance were introduced by

Price (1948) and Anderson (1955) such that Equation 2 may be

modified and restated as:

T15 = 3(P1P1)/d119 (3)

The beta (6) value represents the effect of spatial

separation between interacting population concentrations

which is assumed to vary for various types of spatial flows

within and between a system of origins and destinations.

The above modification has been found too simple and

insufficient to account for observed differences in

generation or attraction of flows of centers in different

circumstances. Suggestions were forwarded to modify the

population (masses) factors (Roether, 1949; Stewart, 1950;



Dodd, 1950 and Anderson, 1955, 56). This has been done in

two ways: first, to account for variations in population

characteristics such as income, education and gender, some

form of weights have been attached to the population

variables. A modified version of Equation 3 with the

weights considered is given as:

T1: = 8(9Pi ¢P1)/d119 (4)

where:

T15 = interaction between i and J

P1,P5 = population of i & j

8 = weighting factors for P1

¢ = weighting factors for P5

B = parameter to be estimated

g = scale parameter

d15 = distance between i and j

The second suggestion, in addition to the weights, is

raising the population factors to some power. The reason

for this is to control for size and/or agglomeration effects

of population or activities. With the mass exponents

included the new spatial interaction model is stated as

follows:

T1: = 8(9P10 ¢P1a)/d159 (5)

where:

T15 = interaction between i and j

P1,P5 = population of i & j

8 = weighting factors for P1

¢ = weighting factors for P5
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Q,a,B = parameters to be estimated

g = scale parameter

d15 = distance between i and 3

Later, Equation 5 has been further refined and a family

of four interaction models have been developed (Wilson,

1971). If, for example, in an origin-destination flow

matrix of n by m dimension, the attributes, that is,

propulsiveness power'of the origins (8P1) is measured by V1

and the attractiveness of the destinations (¢P5) is measured

by W5, the total flow constrained version, the first of the

family of spatial interaction models, could be stated as

follows:

T15 = 3 V10 W50 d159 (6)

where:

T15 = estimated flow from i to 3

V1 = origin propulsiveness

W5 = destination attractiveness

d15 = distance between i and j

g = scale parameter

Q,a,B = parameters to be estimated

Equation 6 is very similar to Equation 5. In Equation

6, information is available for only total flows. The

scaling constant g insures that the sum of the estimated

interactions from the model is equal to the sum of the

actual interactions. This is done by comparing total actual

flows with total predicted flows. The scaling constant is

computed using the following formula:
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nm

g = T/ZZV10 W50 d159 (7)

H

where:

am

22V19 W5a d15B

ii

estimated total flow

1111

T = 22T15

11‘

actual total flow

The production constrained model, the second version of

the set, is stated as follows:

T15 = A1 01 W56 d159 (8)

where:

T15 = estimated flow from i to j

n

A1 = 1/(2W5a d159) = production constraint

1 (balancing factor)

01 = known origin totals

W5 = destination attractiveness

d15 = distance between i and J

In this model, information about the number of trips leaving

each center is known but where they end up is not. The

constraint, A1, insures that the estimated outflow is equal

to the known outflow, that is, 2T15 = 01 for all 3. The

1

production constrained model forecasts destination inflows

that are unknown.
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The third version, the attraction constrained model,

on the other hand, forecasts unknown origin outflows on the

basis of known incoming flows. The constraint, B5, insures

that the estimated inflow is equal to the known inflow, that

18, m

ZT15 2 D5 for all i. This model is given as:

1

T15 = B5 D5 V10 d159 (9)

where:

T15 = estimated flow from i to 3

II

B5 = 1/(2V10 d159) = attraction constraint

1 (balancing factor)

V1 = origin propulsiveness

D5 = known destination totals

d15 = distance between i and 3

Finally, the doubly constrained version, the most

refined of the family of gravity models, is given as:

T15 = A1 B5 01 D5 d159 (10)

where:

T15 = estimated flow from i to j

01 = known outflow totals

D5 = known inflow totals

ll

A1 = 1/(2B5 D5 d159)

J'

:1

B5 = 1/(2A1 O1 d15D)

1
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This model is formulated from known inflows and known

_outflows. Because they are interdependent, the production

and attraction constraints, A1 and B5, are optimized

iteratively. Often a value of 1.00 is assigned to B5

and with that A1 is estimated. Then using the estimate of

A1, B5 is calculated. The process continues until

successive values of A1 and B5 show no change. Their

purpose is the same as given for the production and

attraction constrained versions (Equations 8 and

9). That is, A1 and B5 mathematically insure that 2T15 = 01

and 2T15 = D5 respectively. These constraints contfol that

the estimated total outflows and total inflows balance with

the actual total outflows and.total inflows with respect to

each propulsion and attraction center within the given

system of origins and destinations. Since the constraints

of the singly and doubly constrained’models are origin and

destination accessibilities, they can also be used as

measures of relative locational competition with respect to

each other (Wilson, 1967).

In each of these versions, it is same principle

operating which derives the simple gravity model. That is,

the estimated flow between given pairs of locations is an

increasing function of the propulsiveness and attractiveness

of the locations and a decreasing function of the spatial

separation between them. Instead of using distance as a

measure of spatial separation between locations, cost of
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travel (Isard and Freutel, 1954) and travel time (Carroll,

1955; Anderson, 1956) have also been suggested.

One of the major reservations of using the traditional

set or family of gravity models in the social sciences has

been associated with the lack of adequate theoretical

backing to support their adaptation. In trying to overcome

this problem, Wilson (1967) introduced a plausible

theoretical explanation of the gravity-type spatial

interaction models based on statistical mechanics. In 1970

he showed the derivation of the model by entropy

maximization methodology.

Long and Uris (1971) suggested a change in the

definition of spatial interaction after empirically

observing the improvement of their work over previous

attempts. Their definition reads as follows (p. 155):

The amount of interaction originating at

one place and terminating at another is

proportional to the population of the places

and inversely proportional to the distance

between the places and to the population

lying at lesser distance from the origin than

the destination does. The size of the effects

will differ for interactions taking place

within and between city size groups, that is,

.. for interactions within and between

hierarchies.

What has been done is actually a synthesis of the gravity

and intervening'opportunities models as shown below:
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T11 = 3(P10P14)/(d1191117) (11)

where:

T15 = passenger from i to j

Pi,P5 = population of i and j

d15 = distance between P1 and P5

115 = the sum of population of

centers intervening between

i and j

g = scale parameter

Q,a,T = parameters to be estimated

A test of Equation 11 on airline data of 1960 is

reported to have given improved results (Long and Uris, p.

156). This approach has been contested by Miller (1972).

According to him the gravity and intervening'opportunities

methods are competing'measures of interaction implying that

they may not be used together. The reason being that the

gravity model hypothesizes decreasing interaction with

increasing distance while the opportunities model

hypothesizes decreasing interaction with increasing

intervening population.

When the gravity model is compared with the intervening

opportunities model, Long and Uris found out that "for trips

from large to small cities, intervening opportunities has a

slight edge and for trips from small to large cities

distance does" (p.160). Miller’s work, however, shows that

opportunities are better explanatory variables than distance
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although the way he interprets his results is not

sufficiently clear.‘

However, more attention has been given to the gravity—

type spatial interaction models. Refinements of these

models have been intensified over the past fifty years.

Some of the works in this regard are presented in the

following Chapter.



CHAPTER 2.

THE QUESTION OF SPATIAL STRUCTURE

2. 1 . nearstical Perspectire

The question of the friction (also called distance-

decay, deterrence, distribution or spatial separation)

factor, as indicated earlier, has been one of the most

important concerns in spatial interaction modeling. Curry

(1972, p. 132) comments that

Any calibration is specific to particular

spatial pattern of origins and destinations

and may be substantially meaningless. Different

degrees of clustering will exhibit different

frictional terms even if friction is known to

be constant. (emphasis added)

The clearest reflection of the problem is revealed in

attempts to calibrate a simple gravity model (Equation 6,

p. 10) for individual nodes of a network. For example, one

could estimate the parameters of Equation 6 for each i (if

the number of flows from each were sufficient). Thus, it is

possible to produce estimates of beta, the distance

parameter, for each node i. If the model is properly

specified, these beta values should all be equal. However,

the simple gravity (and more complex ones too, Equations 8,

17
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9 and 10, pp. 11-12) produces beta values which vary

significantly, within the same network. The general

hypothesis is that variation in the beta values occurs

because the traditional gravity models do not include the

influence of spatial structure on interaction necessitating

a closer look at the problem summarized by Curry. If the

general hypothesis is right, that is, if the spatial

configuration of interacting centers, that is the relative

locations of points in a network (which is presumably

different for different points within a given system of

origins and destinations) is believed to be the cause for

the friction factor to vary over space, introducing a

spatial structure variable into the traditional gravity

models will give constant frictional values over space.

Cliff and Martin (1974), basing their argument on the

works of Olsson (1970), Curry (1972), Johnston (1973),

disagree by noting that the frictional effect of distance is

not seriously affected by a map pattern, particularly for

interurban flows. According to them, the confounding

effects of spatial interaction variables may only be

relevant for intraurban interactions.

Long (1969) argues that the greatest weakness of the

gravity model is its lack of concern for the influence of

alternative destinations of travel between pairs of cities.

For him, Stouffer's intervening opportunities model is not
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satisfactory because it totally ignores the effect of

distance. Long suggests that the position of a city within

a spatial structure and distance together with intervening

opportunities need be considered (Equation 11, p. 15). "The

components of the gravity model are," he writes, " elements

in a traveller's decision and he makes these decisions on

the basis of alternatives" (p.107). Similar notions of

distribution of opportunities other than the interacting

bodies influencing total interaction has been extensively

discussed by Rushton (1969), and Glejser and Dramies (1969).

As in the previous case, the shortcoming of the gravity

model is emphasized because of its failure to take into

account the spatial structure effect although Glejser and

Dramies did not come up with a satisfactory mechanism of

measuring this effect and incorporating it with the gravity

model.

Using the same argument, Ewing (1974) writes in

agreement with those researchers who believe in the

influence of alternative locations on interaction. To this

end he writes (P. 85):

The distance to alternative destinations change

as the origin point changes and each different

set of such distances will differently affect

the migration probabilities from their

respective origins.
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Ewing assumes that this condition equally applies to the

intervening opportunities model. Cesario (1975) also

elaborates on the same notion, in a step by step manner; how

a failure to consider relative locations in the gravity

model affects interaction.

The friction factor also worries Gould (1975). In a

study based on Curry's finding, (p.83) he states:

. . distance parameters appear to index the

relative accessibility of a location .... The

supposed effect of distance is not really a

distance effect in any traditional or behavioral

sense, but rather a matter of where a group is

located within a set of information generation

regions.

Gould's comment substantiates Curry's observation. The

distance exponents of a single system of origins and

destinations do not remain constant over space. Instead of

measuring the spatial separation effect, they represent

accessibilities of the individual origins and destinations,

making the behavioral interpretation of the friction factor

impossible.

Probably, it was Claesson (1964) who first formally

presented the relationship between spatial structure and

spatial interaction (Griffith, 1975). Claesson's findings,

include: (i) the presence of a systematic change in

attraction fields attributable to population variations
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taking place within the center; that is, as the population,

and hence, the hierarchical position of an urban center

increases, distance becomes less of a deterrence; (ii) the

existence of a relationship between the attractiveness of a

given place within the urban hierarchy and that of its

subordinate centers; and (iii) the fact that differences

between these fields are not only influenced by population

and distance but also by the size and spacing of neighboring

centers (Griffith, p. 733). After experimenting with the

effect of the location of centers, Griffith states (p. 738):

The gravity models fail to discriminate between

components of interaction, that is, the masses

and distance variables, by not being able to

‘ capture their individual effects explicitly.

The attempt to measure spatial structure and consider

it in calibrating the traditional gravity models is, in

part, to be able to separate the effect of these individual

variables.

A thorough discussion of the spatial relationships

between individuals, and individuals and groups has been

made by Knippernberg and DeVos (1983). They note the

importance of the context, referred to differently as

structural, compositional, group-level, or neighborhood

effects influencing individual decisions. According to

them, the traditional gravity model places too much emphasis

on individual effect, that is, the effect of the
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propulsiveness and attractiveness power of individual

centers, without giving attention to the context under which

each interacting location finds itself (pp. 120-128).

Therefore, it may be appropriate to consider influence

multi-directionally, that is, how locations as a group

relate with an individual center in addition to how

individual centers relate with a group within a system of

spatially interacting locations.

The assumption “that the choice of one place over

another has nothing to do with all other places in the

system is, Sheppard writes, "open to serious question"

(1978, p. 397). In another work, he makes it even more

explicit by stating the interdependence between spatial

interaction and spatial structure (1979, p. 438). In

support of the influence of alternative locations in trip

making he, writes (1984, p. 370):

. . the spatial structure or relative location

of population profoundly affects the number of

trips made of any given length.... what spatial

structure of population refers to is the spatial

distribution of those attributes affecting trip

generation propensity or destination attractiveness.

The attributes of population, such as income and

education, are spatially distributed and the pattern of

their distribution varies from one location to another. The

distance separating the population locations can also have

various attributes, such as, bad or good communication and
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costly fares. All of them can have some influence on

interaction. Consideration of accessibilities of

alternative locations is assumed to capture the effect due

to variations in the relative locations of places and make

the gravity model more useful.

In referencing Curry (1972), Sheppard comments that the

unpredictable variation of the distance exponent, or beta,

may be due to the fact that the spatial pattern of origins

and destinations is different in each study area (1984, p.

370). He also notes that there is a possibility for the

beta estimator to be affected by spatial structure of

population if some of the statistical assumptions made

during model calibration are ignored (p. 372).

The problem associated with the estimation of the

distance parameter in the gravity-type spatial interaction

models has been the prime concern of Fotheringham since

1979. He writes that differences in spatial opportunities

over space result in different distance exponents (1983, p.

34). He (1981) remarks strongly that accurate estimates can

be made if other elements of the spatial system, that is,

the size and configuration of origins and destinations, are

also modeled. According to him, (pp. 15 & 20):

The usual interpretation of the distance decay

parameter which is taken to describe the

relationship between the observed interaction

pattern and distance is actually false because
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the spatial structure effect is not taken care

of. (emphasis added)

and

.. . the principle which operates but which

is ignored in gravity modeling is that the more

accessible a destination is to all other

destinations in a spatial system, the less

likely it is that that destination is a

terminating point for interaction from any

given origin.

With such qualifying statements, Fotheringham develops a set

of equations he calls competing destinations models. He

does this by adding, to the traditional family of gravity

models, a variable that represents the competing position of

an interacting destination in relation to other destinations

available for an interacting origin. The variable he then

introduces represents the spatial structure effect which he

believes will correctly specify the traditional gravity

models.

The additional variable makes the model statement more

complete. As a result, over'and under'predictions of

spatial flows, which result from the misspecification of the

traditional gravity models, are expected to be corrected.

(Fotheringham, 1983, Baxter, 1988). This is in addition to

the constraints of the family of gravity models (PP. 11-12)

which can also be, as indicated earlier, measures of

competition (Wilson 1967).
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In summary, although the gravity model borrowed from

physics is the basis of spatial interaction models, a number

of important modifications have been made to make it

suitable for social science purposes. But, the changes made

to the gravity model have not resulted in sufficiently

improved spatial interaction models so far. The problems

associated with correctly specifying spatial interaction

models, as have been addressed by the different researchers,

have far reaching theoretical and practical consequences.

The models have not served the purpose in the social

sciences satisfactorily because the theories of physical and

social sciences are probably only partially compatible with

each other as far as spatial interaction modeling is

concerned (Shneider, 1969). As a result, many alterations

have been made to the basic model. As Knudsen (1986)

remarks, spatial interaction models are associated with very

high error margins also. If a model is not based on a well

founded theory, satisfactory performance may not be expected

from its application. Hua (1979, p. 117) also writes, "..

the failure to yield a truly predictive model is rooted in

their lack of a causal foundation". Emphasis therefore

needs to be placed on identifying the underlying problem of

the model statement or specification. This study attempts to

address this problem by measuring the effect of spatial

structure variables on the distance parameter and origin-
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destination flow estimates of the traditional gravity

models.

The practical aspect of the problem of spatial

interaction modeling is actually dependent upon the

soundness of the theory on which it is based. If the

theory, which is the guiding principle, is not clear in the

first place, interpretation of results will become

difficult. Hence, for example, the inability to precisely

determine the role of the spatial separation element-is both

a question of theory and a practical problem of methodology.

Hence, attempts made to improve the performances of

interaction models should look to theoretical explanations

and the means for their practical realization.

2. 2. Measuring Spatial Structure

2.2.1. Introduction

Having established the influence of spatial structure

on spatial flow theoretically, the next step is to verify it

in empirical terms. If flows reflect not only the influence

of the factors of propulsiveness and attractiveness of

locations but also the impact exerted by the specific

spatial position each interacting origin and/or destination

occupies in relation to all others, then, the traditional

gravity model statements are not complete since they do not
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consider the influence of the spatial structure of the

interacting locations (Lendent, 1981). As explained before,

the absence of a variable of spatial structure in the

gravity model statement misspecifies it, and when

calibrating this misspecified’model, the distance parameters

will vary spatially because of the influence of spatial

structure. This has to be expected because the number, size,

and relative location of any given system of interacting

places are rarely identical. What this implies is that

parameter estimates of spatial flow will be location

specific, that is, different for individual nodes in a

network (Thomas and Hagget, 1974). But how is spatial

structure measured so that its effect could be accounted

for?

Let us, for example, take a hypothetical situation

where there is only one destination and a number of origins.

Let us assume that the origins have the same power to

generate trips and they are equidistant from the single

destination. The destination will not face any competition

because there is no other destination. If all else is

assumed constant, the flow from any one of the origins to

the destination measured by a gravity-type model will be

identical. The influence of spatial structure which is made

up of a number of origins of equal propensity to generate

trips and a single destination will be constant.
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Suppose one more destination is added to the picture.

If this new destination is also equidistant to all the

origins, and its attractiveness power is the same as the

already existing destination, the flow from the origins will

be shared between them since the power of’attractiveness of

the two destinations is the same, all other things being

equal.

If we alter the attractiveness power of one of the

destinations, immediately, the pattern of flow changes

because of the change in the relative attractiveness of the

two destinations. The two destinations may not, however, be

competing with each other as long as there is still a need

for additional destinations. Spatial structure becomes

meaningful here if it represents the position of the

destinations relative to each other.

If the propulsiveness power of the origins is altered,

the number of trips generated by each of them is expected to

vary. The flow structure will likewise change giving a

varying relative importance to individual origins.

If spatial structure is defined as the configuration of

locations in a given system of origins and destinations,

then both the above conditions qualify. But, some kind of

distinction may be necessary between destinations competing
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with each other for flows from origins, and origins

competing for a destination.

Such hypothetical situations may be useful to direct

thought processes although reality may not lend itself to

the very simplistic assumptions. It is only by design that

we can think of uniform attractiveness or propulsiveness of

destinations and origins. For all practical purposes they

may not exist. Because of spatial variations in the -

distribution of phenomena, each spatial element exhibits a

unique locational advantage or disadvantage. In the case of

urban centers, for example, the pattern of flows is expected

to follow, partly, the relative accessibility of each center

involved in the interaction process. As suggested by the

various researchers, the traditional gravity model does not

capture this aspect of spatial interaction. Measuring

spatial structure and incorporating its effect in this model

is an attempt to specify it more correctly so that accurate

predictions and generalizations could be made.

2L2.2. Illustrating'Spatial Structure.fleasurement:

2.2s2.1..Population.Pbtential-type Spatial Structure Measure

A population potential-type approach is used to create

spatial structure variables (Stewart, 1948; Sheppard, 1979).
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Origin and destination based spatial structure measures with

and without the interacting origins and destinations are

computed using simple interaction and distance matrices

created for this purpose. Fotheringham has applied a

similar notion to observe the effect of spatial structure on

interaction (1981). Observing the difference in the level

of influence between a vector and matrix accessibility

values is one of the questions addressed in this study.

The mathematical form of population potential is:

11

V5 2 k 2(P1/d15) (12)

1:1

where:

V5 = influence

P1 = population of i

d15 2 distance between i & j

n = total centers

k = constant

Suppose we have flow data of a system of five

interconnected origins and destinations as presented below:
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Table 1

Interaction (Flow) Matrix

 

 

 

 

 

 

Orig/Dest 1 2 3 4 5 Total

1 --- 5 2 6 9 22

2 7 --- 2 3 2 14

3 3 6 --- 8 9 26

4 2 8 1 --- 4 15

5 6 3 7 1 —-— 17

Total 18 22 12 18 24 94

Table 2

Distance Matrix

Qrigznest 1 2, 3 4 5

1 --— 2 6 8 2

2 2 --- 3 7 4

3 6 3 --- 4 5

4 8 7 4 --- 7

5 2 4 5 7 —-
 

The graph of this data set may be represented as

follows:
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Figure 1

A System of Five Interacting Locations
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Suppose in the picture above, location 1 (i) is flow

origin, location 2 (j) flow destination, and the rest are

alternative destinations for origin 1. (For our purpose,

let us concentrate on the flow from origin 1 (i) to

destination 2 (j)). A spatial structure measure that will

be made a component of the traditional gravity model to

predict the flow from origin 1 to destination 2 may be

computed following the population potential-type approach

(Equation 12).

The spatial structure measurement may be origin based,

that is, computing the accessibility of location 1 to all

the destinations. The formula and the diagram associated

with it is as follows:
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n

215 = 1/2(Wk/d1k) (13)

k=1

(ktid)

where:

215 = accessibility of an

interacting origin with

destinations

Wk = a weight of destination k,in this

case total inflow

dik = distance between the

interacting origin 1 and

destination k. '

n = total locations in the system,in

this

case 5.

Figure 2

Origin Based Potential-type Spatial Structure

without the Interacting Destination

 

(1) 1 \ Nov 4,02 (1)

// \ \\\

K// \ \ \ \

(k) 50 \\ \403 (k)

N
C)

4 (1:)

From the given data and distance matrices, this origin based

accessibility measure results in the following values:



34

Table 3a

Origin Based Potential-type Accessibility

 

 

ing/Dest 1 2 3 4 5

1 --- .062“ .040 .040 .066

2 .080 --- .057 .053 .064

3 .060 .081 --- .066 .067

4 .105 .115 .113 --- .119

5 .096, .072 .059 -059 ---
 

[For example, .062“ = 1/((12/6)+(18/8)+(24/2))]

If location 2, the interacting destination with origin 1, is

included in the computation, since in interactions, nodes

serve as origins and destinations of flows simultaneously,

then 215 becomes 21 which is a vector of the following

values:

11

21 = 1/2(Wk/d1k) (14)

k8].

(kti)
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Figure 3

Origin Based Potential-type Spatial

Structure with the Interacting Destination

/

 

\
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Table 3b

Origin Based Potential-type Accessibility

 

_,Q&Dl__lalues

1 .037

2 .046

3 .051

4 .085

“w_5llMWM1051

Alternatively, a destination based accessibility could

be computed (Figure 4) as a measure of the relationship of

an interacting destination, location 2, with other

destinations, locations 3, 4 and 5, available for a given
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interacting origin (Fotheringham, 1981). This time the

formula becomes:

11

P15 2 1/2(Wk/d5k) (15)

k=1

(ktid)

where:

accessibility of an interactingP15

destination with other destinations

Wk = a weight of destination k,in this

case total inflow '

dik = distance between the

interacting origin 1 and

destination k.

n = total locations in the system (5)

Figure 4

Destination Based Potential-type Spatial

Structure without the Interacting Origin
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o
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From the flow and distance matrices above, the destination

based accessibility, that is, P15, gives the following

matrix values:
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Table 4a

Destination Based Potential-type Accessibility

 

 

_Q&D Al 2 3 4, 5

1 --- .080“ .060 .105 .096

2 .062 --- .081 .115 .072

3 .040 .057 --- .113 .059

4 .040 .053 .066 --- .059

5 .066 -064 .067 .119 ---
 

[For example, .080“ = 1/((12/3)+(18/7)+(24/4))]

If location 1, the interacting origin with location 2, is

considered as one of the destinations and is included in the

computation, then P15 becomes P5 and a vector of the

following values will result:

P1

11

= 1/Z(Wk/d5k)

k=1

(kid)

(16)
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Figure 5

Destination Based Potential-type Spatial

Structure with the Interacting Origin

 

Table 4b

Destination Based Potential-type Accessibility

 

0&D 1 2 3 4 5

As could be observed in the tables above, the values of

the origin based potential-type spatial structure measures

(Tables 3a and 3b) are similar with the Fotheringham-type

(destination based) spatial structure values (Tables 4a and

4b) except that the respective tables are transpose of each

other.

2.2.2.2. Distance-type Spatial Structure Measure

A question addressed in this study also relates with

comparing connectivity matrices (Griffith and Jones, 1980)
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as a purely distance measure of spatial structure.. Instead

of a population potential-type approach, therefore, origin

and destination based spatial structure indices with and

without the interacting centers, are produced, in a similar

manner conducted above, using the distance values separating

each location of the system of origins and destinations for

the same interaction and distance matrices. Considering the

same centers, that is, location 1 and 2 as the interacting

origin and destination respectively, an origin based

accessibility of only the distance variable may be stated as

follows:

- n

215* = 1/(V1/2d1k) (17)

k=1

(kti.J)

where:

215* = distance accessibility of an

interacting origin with destinations

Vk = a weight of origin i,in this

case total outflow

dik 2 distance between the

interacting origin i and

destination k.

n = total locations in the system (5)
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Figure 6

Origin Based Distance-type Spatial Structure

Variable without the Distance between the

Interacting Origin and Destination
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The matrix values, that is, indices of spatial structure

derived using Equation 17 are given in Table 5a.

Table 5a

Origin Based Distance-type Accessibility

 

 

0&D, 1 2 3 4 5

1 --- .070“ .049 .048 .070

2 .063 --- .051 .042 .047

3 .106 .135 --- .119 .111

4 .104 .107 .135 --- .107

5 .070 .049 .047 .044 ---
 

[For example, 070‘ = 1/((18/6)+(18/8)+(18/2))]
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If the distance between the interacting origin and

destination, that is, centers 1 and 2, is included in the

computation, then, 215: becomes 21* which is a vector of the

following values:

11

21* 2.1/(Vi/2dik) (18)

k=1

Figure 7

Origin Based Distance-type Spatial Structure

Variable with the Distance between the

Interacting Origin and Destination
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Table 5b

Origin Based Distance-type Accessibility

 

0&D Values

.043

.037

.088

.084

(
fi
b
Q
N
I
—
e

.038

Similarly, the equation of the destination based

version of the distance accessibility indices may be stated

as follows:

where:

P15:

W1

dkj

n

P:1* = 1/(W1/2dk1) (19)

k=1

(k:i.j)

distance accessibility of an

interacting destination with other

a weight of the interacting

destination,in this case total

inflow

distance between the other

destinations and the interacting

destination.

total locations in the system (5)
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Figure 8

Destination Based Distance-type Spatial Structure

Variable without the Distance between the Interacting

Destination and origin
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The matrix values of Equation 15 is presented below:

Table 6a

Destination Based Distance-type Accessibility

 

 

0&D l 2 3 4 5

1 --- .063“ .106 .104 .070

2 .070 --- .135 .107 .049

3 .049 .051 --- .135 .047

4 .048 .042 .119 --- .044

5 .070 .047 .111 -107 ---
 

[For example, .063“ = 1/((22/3)+(22/7)+(22/4))J

If the distance between the interacting centers, that is,

locations 1 and 2 is included in the derivation of the
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spatial structure indices, then, P151 becomes P5: and the

matrix collapses to a vector values shown in Table 6b below

11

P5: = 1/(W5/2d15) (20)

k=1

Figure 9

Destination Based Distance-type Spatial Structure

Variable with the Distance between the Interacting

Destination and origin

 

4 (k)

Table 6b

Destination Based Distance-type Accessibility

 

0&D 1 2 3 4 5
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As in the case of the population potential-type spatial

structure, the origin and destination based distance-type

spatial structure values (Tables 5a and 5b versus Tables 6a

and 6b respectively) are transpose of each other. For close

inspection, the figures above are presented together below.



Figure 10

Summary of Spatial Interaction Measures
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Figure 10 (con'd).
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As indicated earlier,

these pairs: (P15 and 215),

and (P5* and 21*)

is a transpose of

between the pairs

the other.

(PJ and 25.))

the matrices above show that,

(Fiji and 211*).

are identical except that each one of them

The transpositional difference

is a function of the direction of

measuring the accessibility of an interacting destination
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(applied by Fotheringham) and the accessibility of an

interacting origin (introduced here).

The vector, P5, the destination based spatial structure

measure, is the transpose of A1, the constraint of the

simple production constrained model (Equation 8, p. 11)

because 21 is defined in the same way as A1 in this

exercise. The difference between the population potential

measure and the destination to destinations or origin to

destinations measure is, as indicated above, the number of

centers included in the computation of the indices. The

transpositional difference between 21 and P5 however, cannot

be removed partly because of the direction of measuring

spatial structure and partly because vectors 21 and P5

exclude one center and the matrices, 215 and P15, leave out

two of them.

If all the points in the network are considered in

computing the spatial structure values (Equation 12, p.30),

all the matrices will become vectors of identical values in

every respect implying that the direction of measuring

accessibility does not matter. Consequently, instead of

relative origin or destination accessibilities, there will

be relative location accessibilities. This would imply that

Fotheringham's destination based accessibilities may not be

more meaningful than the origin based accessibilities since

it is the few excluded points in a given network, while
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computing spatial structure measures, that explain the

difference between the two approaches.

If origin to destinations accessibility is interpreted

as how the origin relates with the destinations, a reverse

measure of destinations to origin accessibility may be

similarly interpreted as how the destinations relate

themselves with the origin. A composite (multiédirectional)

accessibility measure may, therefore, be a more complete

representation of the influence of spatial structure.

This study concentrates on observing the effect of

these various ways of accounting for spatial structure on

the specification and prediction capabilities of the family

of the traditional gravity models discussed in Chapter 1.



CHAPTER 3.

AN EXPANSION OF THE PROBLRH

3.1. Introduction

The influence of spatial structure on spatial

interaction has been, as referenced earlier, well known by

geographers and others for a long time. However, attempts

to include its influence in the calibration of spatial

interaction models have not been made until recently

(Griffith and Jones, 1980; Fotheringham, 1983; Baxter,

1986). These researchers conclude, as some others have done

before them, that the gravity model formulation of spatial

interaction needs to consider the influence of spatial

structure for accurate parameter estimation and for a better

model prediction capability.

This study is concerned with analyzing the effect of

_spatial structure on spatial interaction in various types of

spatial flows. The major problem of the research, hence,

involves calibration of the traditional family of spatial

interaction models presented in Chapter 1 with and without

the various formulations of spatial structure variables.

The influence of spatial structure on spatial interaction

49
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is, then evaluated both in terms of model specification and

model performance measured by the coefficient of variation

of betas over space and standard error of estimates

respectively. More about methods is presented in Chapter 4.

3.2; Research questions

A major problem of the traditional gravity model is

that it does not perform as well when applied to locations

different from where it is calibrated. Researchers

suggested that this happens because the model is

misspecified (Curry, 1976; Baxter, 1982; Fotheringham,1983).

Misspecification occurs, basically, for one or more of three

reasons: if a model does not have all the explanatory

variables; if a model has more variables than are actually

necessary; and/or if a wrong functional form has been

applied in the process of calibrating the model (Pindyck and

Rubinfeld, 1980; Kennedy, 1984).

In the case of the gravity model, it is usually the

first and to a limited extent the third reasons that explain

the problem of model misspecification. Absence of an

explanatory variable when it is needed in a model

misspecifies the model; and unless and until the nature of

the missing variable is known the model’s reliability is

suspect (Fotheringham, 1980).
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The major research questions addressed in this study

are stated hereunder.

3.

3.

2.

2.

1.

2.

Curry (1972) and Gould (1975) write that parameters

of the distance variable in the gravity model are

indices of accessibility. Fotheringham (1983)

states that the degree of misspecification of the

gravity model depends on the structure of the

spatial system under consideration. How will

introducing spatial structure variables affect the

specification of the traditional gravity models

across various spatial systems of origins and

destinations?

If all origins and destinations of a given spatial

system are equal in size and are also equidistant

from each other, then the population potential-type

spatial structure measure becomes constant for all

the centers. But this is very unlikely. If, only

varying sizes of origins and destinations, that

is, intervening opportunities, are considered, the

role of distance, and hence the relative spatial

locations of origins and destinations will be

totally disregarded. It is conceivable too that the

effect of intervening opportunities and spatial

separation be complementary or competing aspects of
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- spatial interaction (Miller, 1972). How will the

distance-type spatial structure measure affect

the specification and goodness of’fit of the gravity

model?

Will the specification and goodness of fit of the

gravity model be different if the spatial structure

measure considered in the calibration process

includes the interacting origin or destination?

The total flow constrained’and the production

constrained versions (Equations 6 and 8

respectively, pp. 10 & 11) of the family of spatial

interaction models are reported to be the most

misspecified’ones (Fotheringham, 1983). Observation

of these models shows that they are different from

the attraction and doubly constrained’models because

they do not have a destination constraint value.

The total flow constrained’model does not have an

origin constraint value either. The attraction

constrained model, however, has been reported to

perform well, although it also does not have a

production constraining value. It has been

suggested that these origin and destination

constraints are also measures of relative

accessibility or competitions (Wilson, 1967) since

they are similarly defined as P5 and 21 (the
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potential-type destination and origin based

accessibilities respectively). What will be the

effect of using the constraints or accessibility

values, that is, A1 and B5, as spatial structure

measures, on the specification and predictive

capability of the gravity model?

3.2.5. If a model could be fully specified, that is, have

all the relevant variables, then the parameter

estimates are expected to correctly reflect the

behavior of spatial interaction, provided

calibration of the model is performed with the right

functional form, that is, power, exponentiation or a

combination of the two (Thomas and Haggett, 1982).

But good specification of a model may not be

necessarily associated with high goodness of fit

measure (Pindyck, 1980; Fotheringham, 1984). How

will the goodness of fit of the models be affected

by the addition of spatial structure variables?

3.3..Hypotheses

3.3.1. Introduction

As has been pointed out the traditional gravity model

has been found deficient because it does not take into



54

account the spatial structure effect. If this spatially

varying component of spatial interaction is captured, the

assumption is that it may be possible to follow similar

approaches to construct models for use at various places and

times. Before recommendations are forwarded, however, the

significance of spatial structure variable in influencing

spatial interaction has to be established. Hence, to

evaluate the statistical significance of the questions

raised above, the following hypotheses have been formulated

with respect to the family of gravity models described in

Chapter 1, and the various spatial interaction data

presented in Chapter 4.

3.3.2..Major.flypotbeses

The specification and predictive capacity of the

family of spatial interaction models are

significantly improved when variables of spatial

structure are considered in calibrating them.

3.3.3. subehypotheses

3.3.3.1. The significance of the specification of

the traditional family of interaction

models is improved for all spatial flows

when destination based population potential-
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type spatial structure measures are used in

estimating the distance parameter.

The models with the destination based population

potential-type spatial structure measure, P15, (Equation 15,

p. 36) to be calibrated to test hypothesis 1 are the

following:

a) Total flow constrained version:

T15 = g V10 W56 d15B P15 (21)

where:

T15 = flow from i to j

nm

4 T/22V10 W56 d159 P15 = scale parameter
8 - o o

:1

V1 = origin propulsiveness

W5 = destination attractiveness

d15 = distance between i and j

11

P15 = 1/2(W5/d15) = spatial structure measure

[(31

(kti.J)

b) Production constrained version:

T15 = A1 01 W56 d159 P15 (22)

where:

T15 flow from i to j

Ai

II

1/(2W56 d159 P15) = scale parameter

1'
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01 = known origin propulsiveness

W5 = destination attractiveness

d15 2 distance between i and j

11

P15 = 1/2(W5/d15) = spatial structure measure

k=1

(kti.J)

Since the interest in this exercise is associated with the

distance-decay parameter (8), the mass parameters, 9 and a

are set to 1.0 and will be ignored from now on. A value of

-1 is assigned for all the parameters of the spatial

structure measures because flow between an origin and

destination and accessibility of the interacting destination

to other destinations or accessibility of the interacting

origin and other destinations is assumed to have inverse

relationship. The inverse relationship corrects

(overprediction and underprediction of the traditional

gravity models for accessible and inaccessible locations

respectively (Fotheringham, 1983).

3.3.3.2. The significance of the specification of

the traditional family of gravity models

is improved when a destination based distance-

type spatial structure measure is considered in

estimating the parameters of the models for each

data set.

The models to be calibrated to test hypothesis 2 are

the following:
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a) Total flow constrained version:

T15 = g V1 W5 d15B P15: (23)

where:

Tij = flow from i to j

(
I
Q l

llln

- T/ZZ(V1 W5 d159 P15t) = scale parameter

ii

V1 origin pr0pulsiveness

destination attractiveness

distance between i and j

:
1
2

:
2
.

I
I

I
I

I
I

d15

ll

1/(W5/2d15) = spatial structure measure

k=1

(kti.J)

P15:

b) Production constrained version:

T15 = A1 01 W5 d159 P15* (24)

where:

T15 flow from i to j

In

A1 1/(2W5 d159 P15t) = scale parameter

J

01 known origin propulsiveness

destination attractiveness

distance between i and j

1
!
:

4
;
.

I
I

I
I

I
I

d15

11

P15: 1/(W5/Zd15) = spatial structure measure

k=l

(kti.J)

3.3.3.3. The significance of the specification of

the spatial interaction models also



58

improves when origin based population

potential-type spatial structure measures

are considered in estimating the distance

parameter of the models for each data set.

The models to be calibrated to test hypothesis 3 are:

a) Total flow constrained version:

T15 = g V1 W5 d159 215 (25)

where:

T15 = flow from i to j

g = T/22V1 W5 d159 215 = scale parameter

V1 = origin propulsiveness

W5 = destination attractiveness

d15 = distance between i and j

Zij = l/§(Wj/dik) = spatial structure measure

(121:1)

b) Production constrained version:

T15 = A1 01 W5 d159 215 (26)

where:

T15 = flow from i to 5

ll

A1 = 1/(ZW5 d15B 215) = scale parameter

1'

01 known origin propulsiveness

destination attractiveness2 t
o
.

I
I

I
I
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d15 = distance between i and j

n

Zij = 1/2(W5/d15) = spatial structure measure

k=1

(R11.J)

3.3.3.4. The significance of the specification of

the traditional family of gravity models

is improved when an origin based distance-type

spatial structure measure is considered in

estimating the parameters of the models for each

data set.

The models to be calibrated to test hypothesis 4 are:

a) Total flow constrained version:

T15 = g V1 W5 d159 215* (27)

where:

T15 = flow from i to j

DI

g = T/22V1 W5 d159 215* = scale parameter

15

V1 = origin propulsiveness

W5 = destination attractiveness

d15 2 distance between i and j

n

215* = 1/(W5/2d1x) = spatial structure measure

k=1 ‘

(kti.J)

b) Production constrained version:

T15 = A1 01 W5 d159 215* (28)
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where:

T15

A1

01

d15

215*

flow from i to j

I

1/(2W5 d15B 215*) 2 scale parameter

3'

known origin propulsiveness

destination attractiveness

distance between i and j

n

1/(W5/2d15) = spatial structure measure

k=1

(k1113)

3.3.3.5. The significance of the specification of the

family of gravity models is improved when

destination based composite (multi-directional)

spatial structure is used in estimating the

parameters of the models.

The models to be calibrated to test hypothesis 5 are:

where:

T15 =

N

l

V1

W5

d15

a) Total flow constrained version:

T15 = g V1 W5 d159 P15 P15* (29)

flow from i to j

nm

- T/ZZV1 W5 d159 P15 P15* = scale parameter

ii

origin propulsiveness

destination attractiveness

distance between i and j



P15 2

n

P11* = 1/(W1/2d11)

k=1

where:

3.3.3.6.

T15

A1

01

W1

d15

P15

n

P15* = 1/(W1/2d15)

k=1

:1

1/2(W1/d11)

k=l
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spatial structure measure

(kti,J)

spatial structure measure

(k1113)

b) Production constrained version:

T15 = A1 01 W5 d159 P15 P15* (30)

flow from i to j

I

1/(ZW5 d159 P15 P15*) = scale parameter

3

known origin propulsiveness

destination attractiveness

distance between i and j

n

1/2(W5/d15)

k=1

spatial structure measure

(kti.j)

spatial structure measure

(kti.j)

The significance of the specification of the

family of gravity models is improved when

origin based composite multi-directional instead

of a uni-directional spatial structure measure is

used in estimating the parameters of the models.

The models to be calibrated to test hypothesis 6 are:
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a) Total flow constrained version:

T15 = g V1 W5 d15B 215 215* (31)

where:

T15 = flow from i to i

an

T/22V1 W5 d159 215 215* = scale parameter3 :

ii

V1 = origin propulsiveness

W5 = destination attractiveness

d15 = distance between i and j

n

215 = 1/2(W5/d15) = spatial structure measure

k=1

(kti.J)

n

215* = 1/(W5/2d15) = spatial structure measure

k=1

(k1i13)

b) Production constrained version:

T15 = A1 01 W5 d159 215 215* (32)

where:

T15 = flow from i to j

ll

A1 = 1/(2W5 d159 215 215*) = scale parameter

1'

01 = known origin propulsiveness

W5 2 destination attractiveness

d15 = distance between i and j

n

215 = 1/Z(W5/d15) = spatial structure measure

k=1

(kt115)

n

215* = 1/(W5/2d15) = spatial structure measure

k=1

(kti,J)
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3.3.3.7. The specification of the family of the

spatial interaction models is best when

the specific origins and destinations

(in a system of origins and destinations),

and the distance between the interacting

origin and destination are considered in the

measurement of spatial structure and model

parameters estimated.

The total flow constrained'models to be calibrated to

test hypothesis 7 are the following. The production

constrained versions which could be stated similarly have

also been calibrated.

where:

T15

m

H

V1

W1

d15

21

a) With origin based population potential-

type spatial structure measure

Tij = g V1 W5 d15B 21 (33)

flow from i to j

nm

T/ZZV1 W5 d159 21 = scale parameter

ii

origin propulsiveness

destination attractiveness

distance between i and j

n

1/(2Wk/d1k) = spatial structure measure

k=1

(kti)
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b) With origin based spatial structure

measure of only the distance-type spatial

structure measure

T15 = g V1 W5 d159 21* (34)

where:

T15 = flow from i to j

nm

3 = T/ZZ V1 W5 d159 21* = scale parameter

ii

V1 2 origin propulsiveness

W5 2 destination attractiveness

d15 2 distance between i and j

n

21* = 1/(V1/Zd1k) = spatial structure measure

It: 1

c) With destination based population

potential-type spatial structure measure

T15 = g V1 W5 d159 P5 (35)

where:

T15 2 flow from i to j

nm

T/22V1 W5 d159 P5 = scale parameter
8 = . 1

11

V1 = origin propulsiveness

W5 = destination attractiveness

d15 = distance between i and j

11

P5 = 1/2(Wk/d5k) = spatial structure measure

k=1

(ktj)
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T15

V1
'Wi

d15

P5*
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d) With destination based spatial structure

measure of only the distance-type spatial

structure measure :

T15 = g V1 W5 d159 P5* (36)

flow from i to j

nm

T/22V1 W5 d159 P5* = scale parameter

ii

origin propulsiveness

destination attractiveness

distance between i and j

n

1/(W5/2d5k) = spatial structure measure

k=1

3.3.3.8. The specification of the traditional gravity

models are significantly improved if they are

calibrated with the constraints of the production

and attraction constrained models.

The models to be calibrated to test hypothesis 8 are

the following:

a) Total flow constrained version:

T15 = g V1 W5 d159 A1 B5 (37)
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where:

T15 = flow from i to j

nm

g = T/22V1 W5 d159 A1 B5 2 scale parameter

15

V1 = origin propulsiveness

W5 = destination attractiveness

d15 = distance between i and i

ll

A1 = 1/(2W5 d15B) = spatial structure measure

.1

:1

B5 = 1/(ZV1 d159) spatial structure measure

1

a) Production constrained version:

T15 = A1 01 W5 d15B B5 (38)

where:

3.3.3.9.

T15 = flow from i to j

I!

A1 = 1/(2W5 d159 B5) 2 scale parameter

J

01 = known origin propulsiveness

n

1/(2V1 d159) = spatial structure measureB5 =

1

W5 = destination attractiveness

d15 = distance between i and j

A gravity model with origin or destination based

spatial structure measure results in the same

significant goodness of fit of predicted

flows.
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The beta values of the models stated above are

estimated following the procedure described in the following

chapter. Evaluation and analysis of the hypotheses are then

presented in Chapter 5.



CHAPTER 4.

DATA AND METHODS OF ANALYSIS

4. 1. He Data

4. 1 . 1 . Introduction

Model building is based on a number of assumptions. In

order for the model to have wide applicability, the

assumptions have to be evaluated using various data sets.

If, on repeated experiments, the results of the model are

consistently validating the assumptions, then,

generalizations about certain events can be made safely.

It is desirable that models be understandable with

minimum effort. Models are also expected to account for

causality; To produce a useful model, probably, the best

strategy is to subject it to various types of data and

observe its performance.

In this study, four data sets are used; two of them are

from the State of Michigan, and two are from Ethiopia. The

diversity of these data sets in type and place of origin, is

believed to give the opportunity for comparing the effect of

spatial structure on spatial interaction.

68
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4.1.2. He Michigan Vehicle Flow Data

Vehicle flow data for 25 major cities (Appendix 1a) in

the State of Michigan were obtained from the Michigan

Department of Transportation. Some adjustments had been

made to the data in order to bring them to the common year

of 1975. This year was chosen because many other surveys

had been made during this time. The 1975 annual vehicle

flow in the state was used as a weight to transform the data

which forms a complete 25 by 25 origin and destination flow

matrix. The distance matrix accompanying this data has been

taken from an intercity distance map of the State of

Michigan published in 1978. It reports distances along the

shortest road path between pairs of cities.

4.1.3. The Michigan Public.Passenger.Fiow.Data

These data are the average daily flow of bus passengers

between 15 cities (Appendix 1b) within the State of Michigan

for a typical month of 1985. The source of the data is,

again, the State of Michigan Department of Transportation.

The data forms a 15 by 15 origin and destination flow

matrix. The distance matrix is taken from the same source

used for the vehicle flow data.
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4.1.4. The Ethiopian Rail Passengers Fiow.0ata

These are intercity flows for 22 cities (Appendix 1c)

in Ethiopia for 1982. The flow of passengers here is along

a rail line and, historically, the cities were established

as a result of the railway line. The distance matrix is,

therefore, a combination of one or more of the segments

making up the separation between two cities along the line.

4.1.5. The Ethiopian Telephone Flow.Data

The telephone-call data are for 13 major cities,

regional capitals, (Appendix id) for 1984. These flows are

different from the rest in that they may be influenced very

little by neighborhood effects. Yet, they are interaction

data and the gravity formulation has been applied to predict

their flow volumes. The distance matrix is the shortest

distance along main road routes.

Both the rail passengers and the telephone-call data

are obtained from publications of the Ministry of Transport

and Communication of Ethiopia.
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4.2. Methods of Analysis

The usual statistical methods applied in interactional

studies are various forms of multivariate approaches. The

most common ones are regression and category analysis

(Ewing, 1974; Stetzer, 1976; Miller and Mayer, 1984; Baxter,

1979): While the total flow constrained version of the

family of spatial interaction models is often calibrated

with the ordinary least squares approach without any serious

difficulty, the parameters of the production, attraction and

doubly constrained’models are best estimated using maximum

likelihood estimators (Wilson, 1971; Oppenheim, 1979).

In this study, the distance exponents of, especially,

the origin specific models are estimated using a special

computer program written for this purpose because

insufficient number of observations limited the use of the

regression approach. The program is based on Baxter's

simple program designed for system wide calibration of the

basic family of gravity models (1976). Using the computer

program, the best distance exponents have been derived from

a range of values through an intensive search process as

described below.

Each data set is subjected to a search process to

derive the best distance exponent for each point in each
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system. The best beta is that distance exponent which gives

the best goodness of’fit as measured by the standard-root-

mean-square-error, SRMSE (Knudsen and Fotheringham 1986,

p. 132). The formula of the SRMSE is:

{22(t15 - t15)3/m x n}1/2/(22t15/m x n) (39)

15 15

where:

t15 = matrix of observed flows

t15 = matrix of predicted flows

m x n = dimension of matrix

In order to derive the best beta, a range of values .

extending between -5.00 and 2.00 is used. (This range has

been arrived at in a preliminary experiment conducted on a

sample of the data sets. About 90% of the runs fell within

this range). The computer program searches through the

range beginning at -5.00 by a step of 0.01, and when it

reaches 2.00, it prints out the best beta. Between -5.00

and 2.00 there are 700 runs at an increment of 0.01. The

best beta is one of these 700 distance exponents which

results in the best goodness of fit ( i.e., lowest SRMSE).

When the best exponent happens to be outside the given

range, reruns are done until it is obtained. In order to

obtain an origin specific distance exponent, the above

procedure is repeated for all the cities (nodes) of the

various data sets. Thus, over five and a half million

computer runs have been procesSed to come up with the-best
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beta and goodness of fit values for all the various flows

described above.

It is possible to improve the fit of the model by

changing the increment, for example, to 0.001. The problem

with reducing the increment is, the increased length of time

the computer requires to identify the best beta. Instead of

700 runs as in the case of 0.01 increment within the same

range, a total of 7000 model runs are required to get the

best distance exponent for one city. The time is increased

even more when calibrating a production, attraction, or

doubly constrained’model. The longest time is associated

with the doubly constrained’model since it needs to converge

the balancing factors by an iterative process. In general,

the computer gives quick results if models have few

variables, are not constrained, and the matrix order is

small.

The SRMSE of estimates is preferred to such goodness of

fit measures as the Chi-square, Absolute Entropy Difference,

Phi Statistics, Coefficient of Determination and Absolute

Psi since it has been shown to be the best of them

(Fotheringham and Knudsen, 1986), especially, for models of

spatial interaction. All the others are produced by the

program, however, optimality is determined by the SRMSE.

The goodness of’fit of each model with a variable or

variables of spatial structure is then compared with the
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goodness of fit of the traditional spatial interaction

model, hereafter, referred to as the basic model (the model

without any of the designated spatial structure variables).

The effect of spatial structure on the spatial

distribution of the beta values is assessed with measures of

coefficient of variation (C.V.). The distance exponents _

(beta values) derived from calibrating the spatial

interaction models with spatial structure variables are

compared with the beta of the basic model by way of'

coefficient of variations. If all the distance exponents

are similar over space, the coefficient of variation becomes

zero. Higher coefficient of variations are, therefore,

indications of higher variations in the distribution of

betas. A spatial interaction model with high coefficient of

variation is considered misspecified because the distance

exponent is not measuring spatial separation alone. It is

also representing the effect of spatial structure variable

(Curry, 1972; Gould, 1975; Fotheringham, 1983). The

exercise here is to see if the introduction of a spatial

structure measure significantly affects the specification of

the traditional spatial interaction models by way of

reducing the C.V. of the betas.

The significance of the difference between two

coefficient of variations is determined using the following
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formula introduced by Gregory (1963, p. 130) and applied in

interaction model assessments by Fotheringham (1983, p. 29):

S.E.= lV1-V2l/[(V13/2n1) + (V22/2nz)]1/2 (40)

where:

V1 = coefficient of variation of the first

case

Vz = coefficient of variation of the second

case '

n1 = observation of the first case

n2 = observation of the second case

Regression approach has been also used to see model

significance for system-wide calibrations. Although the

level of goodness of fit may be observed from the method

applied for origin specific calibrations, it is not possible

to see the improvement in model specification since a single

beta value is estimated for all the centers of a given

system of origins and destinations. The regression approach

renders the possibility of appreciating the importance of an

included variable by way of increasing the adjusted

coefficient of determination (R2).



CHAPTER 5.

RESULTS AND ANALYSIS

5.1. Introduction

The empirical results are presented in this chapter.

In all cases, the estimation process is done according to

the procedure explained in Chapter 4. Each data set is

subjected to the same standard of calibration to derive the

beta values which give the best goodness of fit measured by

SRMSE for each origin of each data set.

Since the problem of misspecification and prediction

capability are reported to be more pronounced in the total

flow constrained (Equation 6, p. 10) and production

constrained (Equation 8, p. 11) versions (Fotheringham,

1983), this study also gives more attention to these models.

However, reference will also be made to the doubly

constrained’model (Equation 10, p. 12) for part of the

discussion.

76
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5. 2. The Origin Specific Total Flow Constrained Model

This model is given as:

T15 = g W5 d1591 (41)

where:

T15 = interaction between T15

nm

8 = T/ZZV1 W5 d15B1

ii

W5 = weight of destination

d15 = distance between i and j

nm

T = 22T15

ii

The propulsiveness variable (V1) is usually ignored since it

is a constant subsumed in the g. The beta value estimated by

the computer search process is specific to a single origin.

Parameters Q and a are as stated in Chapter 3, set to 1 and

hence forced not to vary.

5.2.1. the Telephone.Data

Table 7 shows a summary of the coefficient of

variations of the estimated beta values along with the

goodness of’fit (SRMSE) measures. The models that resulted

in significantly improved goodness of fit are only two:
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(a) T15 = g W5 d1591 P15* (42)

(b) T15 g W5 d15B1 P5* (43)

P15* and P5* as defined in Equations 19 (p. 41) and 20

(p. 43) are destination based distance-type configurational

measures. The average-standardized-root-mean-square-error,

(ASRMSE) of the models have been reduced from 27.98 to 21.28

in the case of model 42 and to 21.17 in the case of model

, 43. The two models are very similar because the difference

between P15* and P5* is the excluded or included distance

which lies between the interacting origin and destination.

thus, the correlation between P15* and P5* is, normally,

expected to be high.

In Table 7, none of the models with the spatial

structure measure of one sort or another resulted in lower

coefficient of variation to make them signifcantly better

specified than the basic model. However, the models with

variables 215*, P5* and the composite bi-directional

variable (P5,P5*) are better specified than the basic model

because the coefficient of variation associated with the

models with these variables, 1.15, 0.90, and 1.08

respectively are lower than the coefficient of variation of

the basic model which is 1.23. The spatial structure

measure which best specified the basic model is, however,

variable P5* although not statistically significant. In
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fact, the model with P5* is the best in terms of goodness of

 

 

fit too.

Table 7

Origin Specific Total Flow Constrained Model

Calibration of the Telephone Data.

Model C.V. G.F. .Ma.B. Mi.B. N.B. P.B.

Basic 1.23 27.98 4.73 -1.39 2' 11

with 215 1.80 31.80 5.85 -3.99 3 10

215* 1.15 28.05 4.79 —1.22 2 11

P15 1.42 32.16 5.15 -1.33 2 11

P5 1.24 31.77 7.19 —1.00 1 12

P15* 1.34 21.28“ 0.22 -0.93 10 3

P5* 0.90 21.17“ 0.11 -0.94 10 3

C5 1.54 31.39 4.95 -1.95 2 11

P15,P15* 1.89 22.41 0.68 -1.41 10 3

P5,P5* 1.08 22.17 0.47 -1.44 10 3

211.211* 2-31 32.65 4.19 —3.85 10 3
 

The lower the C.V.(coefficient of variation) the better

The lower the G.F.(goodness of fit) the better

‘ = significantly better than basic at 0.05 level

Ma.B. = maximum beta

Mi.B. = minimum beta

= total number of centers with negative betasN.B.

P.B. total number of centers with positive betas

In the origin specific total flow constrained’model of

the telephone flow data, the hypothesis of significant
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improvement in model specification has not been achieved.

Variables P15* and P5* have, however, significantly improved

the goodness of'fit of the basic model.

5.2.2. The Ms Data

The results from the bus data are summarized in Table

8. Three models have better goodness of fit than the basic

model. They are models with P15* and P5* (the distance-type

spatial structure measures) and the following with origin

based distance-type spatial structure variable.

T15 = g W5 d15B1 215* (44)

However, it is the models with variables P15* and P5* which

resulted in significant improvement in goodness of fit. The

goodness of fit measures due to variables P15* and P5* are

almost identical for the reason explained earlier.

The spatial structure variable that significantly

improved the goodness of’fit of the basic model also

significantly improved its specification. Significant

improvement in model specification are also attained when

the destination based accessibility measures, P5 and P15
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Table 8

.Origin Specific Total Flow Constrained Model

Calibration of the Bus Data

 

 

Model, C.V. G.F. Ma.B. Mi.B. N.B. P.B.

Basic 6.36 82.21 0.96 -0.87 11 4

With 215 19.15 82.92 1.30 -0.88 9 6

215* 8.11 82.18 1.05 -0.79 7 8

P15 3.95“ 88.90 1.03 -1.23 11 4

P5 2.34“ 88.74 0.93 -l.24 '11 4

P15* 1.46“ 75.00“ 0.12 -0.64 11 4

P5* 0.74“ 74.62“ 0.01 -0.67 14 1

C5 2.45“ 90.13 1.15 -1.52 4 11

P15,P15* 1.88“ 83.07 0.44 -1.17 11 4

P5,P5* 1.88“ 82.29 0.66 -1.25 13 2

211.211* 4.93 83-92, 1.39 -0.80 8 7
 

(with and without the interacting origin respectively) are

included in the calibration of the basic model. The best

specification is provided by the model with variable P5*.

The coefficient of variation is reduced to 0.74 from 6.36.

Including B5 (measured in this exercise by C5), the

constraint of the attraction constrained model (Equation 9,

p.12), which may be considered, as mentioned earlier, as a

measure of competition, and the pairs (P15,P15*) and
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(P5,P5*) also give significantly improved specifications.

The pair of variables represent composite bi-directional

measure (the population potential-type and the distance-type

spatial structure variables together).

C5 is different from the production constraint value,

A1 (Equation 8, p.11) because it uses the propulsiveness

instead of the attractiveness values as a measure of mass of

a center. Thus, the origin specific model with the

attraction constraint (a variable in this case) may be given

as:

T15 = g W5 d15B1 C5 (45)

where:

n

C5 = 1/(2V1 d159)

1

The coefficient of variation of Equation 45 is 2.45. It is

better specified than the model with P15 (the destination

based potential-type spatial structure measure without the

interacting origin). But-the goodness of’fit of Equation 45

is worse than the basic model. So also are the equations

with variables P15 and P5.

Here, the hypothesis of significant improvement in

goodness of’fit as well as specification has been found
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valid for models with the distance-type spatial structure

measures, that is, variables P15* and P5*. The others, P15,

P5, C5, and the composites (P15,P15*) and (P5,P5*) are found

important for only specification purpose.

5.2.3. no Railway Data

The spatial distribution of the centers of this data is

different from the rest of the data sets. Here, all of the

centers are strictly along the railway line (Appendix 10).

The treatment of this data is, however, the same as the

others. As shown in Table 9, the models with the same

spatial structure measures, P15* and P5* (Equations 42 and

43 respectively, p. 78) have significantly better goodness

of fit than the basic model. The pairs of composite

variables (P15,P15*) and (P5,P5*) which are actually multi-

directional measures also give significant goodness of fit.

As the correlation between P15* and P5* is high, the

difference between the goodness of fit of the models with

these spatial structure measures is small. In this case, in

fact, the goodness of’fit measures of the models are

identical (71.79). Similar situation is observed in the

case of the goodness of’fit of the composite multi-

directional variables. If the precision level is increased

to more than two decimal places, differences however

insignificant will be observed. The goodness of fit of the

model with the origin based distance-type spatial structure
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measure, 215* is only marginally better than the goodness of

fit of the basic model.

Unlike the previous cases, it is the specification of

the basic model which turned out to be the best. However,

the coefficient of variation of this model (1.13) is not

significantly better than the coefficient of variation of

the models with the destination based spatial structure

variables, P5 (1.14) and P15 (1.38) and also the models with

variables 215* (1.36) and C5 (1.18).

In this data set, there is no overlap between models of

the significantly better goodness of'fit and the basic model

which, in this particular case, is the best specified. This

would mean that good predictions are attainable if spatial

structure variables like P15* or P5* are considered but at

the expense of badly specified’models. This is because the

coefficient of variation of the models with the same spatial

structure variables shows that the betas of these models are

highly spatially variable and hence are very badly

specified.
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Table 9

Origin Specific Total Flow Constrained Model

Calibration of the Railway Data

 

MQdal_____________Ql1l_____QlEl___MalBl___MilBl__.NmBn_JEnBl

Basic 1.13 113.43 0.20 -1.06 18 4

With 215 2.90 121.01 0.79 -1 08 13 9

215* 1.36 113.19 0.40 -0.98 17 5

P15 1.38 127.31 0.34 -1.07 15 7

95 1.14 126.88 0.21 -1.16 16 6

9154 4.14 71.79“ 0.31 -1.01 3 19

P5* 3.06 71.79“ 0.26 -1 09 10 12

05 ‘1.18 115.78 0.16 -1.05 16 6

915.915: 2.15 79.26“ 2.73 -0 19 7 15

95.95: 6.67 79.01“ 2.63 -1:50 10 12

211-215* 4-43 120.85 0.98 —1.00 12 10
 

The hypothesis of significantly better model

specification than the specification of the basic model is,

therefore, not confirmed in this specific case. Variables

P15* and P5* are accepted only for improving the goodness of

fit of the basic model.
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5.2.4. The Vehicle Data

In this case also the models with the destination based

spatial structure variables (P15* and P5*) resulted in the

best and significant improvement in prediction power. Other

models with variables P15, P5, the pairs (P15.P15*),

(P5,P5*), and C5 are also significantly better in their

capability of replicating the data they are calibrated with

than the basic model.

The model with the origin based spatial structure

measure of only the distance variable, 215*, has'a lower

coefficient of variation than the basic model but not

significantly so to be accepted under the specified

hypotheses. The models that gave significantly improved fit

are also significantly better specified than the basic

model. Variable P5* is the most effective in specifying the

model and also giving the best goodness of fit.

The hypothesis of significantly better specification is

thus true for models with destination based spatial

structure variables including variable C5. The goodness of

fit of the same models has also shown significant

improvement over the goodness of'fit of the basic model.
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Calibration of the Vehicle Data
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Table 10

 

 

Model Civic G.F- Ma.B. Mi.B. N.B. ”2*BL

Basic 4.68 168.57 1.87 -2.25 18 7

With Zij 6.74 171.82 1.95 -2.26 15 10

213* 3.69 168.66 1.89 -2.18 17 8

Pij 3.21“ 160.48“ 0.83 -1.75 17 8

P5 2.51“ 160.54“ 0.81 -1.76 19 6

P13: 2.46“ 139.28“ 1.02 -5.00 21 4

P5* 1.73“ 138.73“ 0.94 -0.76 21 4

05 2.40“ 162.10“ 0.84 -1.81 18 7

Pij,Pij* 2.61“ 170.26 2.90 -1.49 21 4

PJ,PJ* 2.26“ 168.95 2.82 -1.52 21 4

ZLJJZiit 8-34 171.93 2.63 -2.26 16 9
 

5. 3. me Origin Specific Production Constrained Hodel

The basic origin specific version of the production

constrained’model is given as:

Tij = A1 0i W5 dijfli (46)
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where:

T15 = flow from i to J

A1 = 1/(EW5 d159) = scale parameter

01 = known production propulsiveness

d?5 : destination attractiveness

distance between i and J

5.3.1. the Telephone Data

The results from estimation of the distance exponent

using the production constrained model and the telephone

data are summarized in Table 11.

Unlike in the case of the total flow constrained

estimates, the destination based distance-type spatial

structure measures variables P15* and P5* (Equation 42 and

43, p.78) have not been found to improve the production

constrained’model calibration. The origin based distance-

type spatial structure measure has not been important

either. For this data set and models, the best goodness of

fit comes from using the origin based population potential-

type spatial structure measure, Z15. The composite variable

(215,215t) is also a significant contributor; so also are

variables P15, P5 and C5. The model statements that have

shown improvements discussed above are the following:

T15 = A1 01 W5 d1591 Z15 (47)
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T15 = A1 01 V5 d15B1 Z15 Z15: (48)

T15 = A1 01 W5 d1591 C5. (49)

T15 = A1 01 W5 d1591 P15 (50)

T15 = A1 01 W5 d1591 P5 (51)

In this case, the spatial structure variables

identified for significantly improving the goodness of fit

also significantly improved the specification of the same

models (with the exception of the origin based composite

variable). The best specified’model, that is the model with

variable C5 is not, however, the best predictor. Its

coefficient of’variation drops to 0.56 from 0.78.
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Table 11

Origin Specific Production Constrained Model

Calibration of the Telephone Data

 

MQdcl____________Qili_____QiEi___MaiBi___MiiBi.__fliBi__EiBi

Basic 0.78 0.56 -0.22 *5.32 13 0

With Z15 0.72“ 0.29“ -0.11 -2.73 13 0

215* 0.84 0.57. -0.13 -5.20 13 0

P15 0.70“ 0.36“ 0.12 -3.58 12 1

P5 0.63“ 0.37“ -0.02 -3.65 13 0

P15* 1.18 1.71 -0.19 -8.85 13 0

P5* 1.05 2.08 -0.25 -7.48 13 0

C5 0.56“ 0.39“ -0.01 -3.85 13 0

P15,P15* 1.19 1.77 0.10 -8.17 13 0

P5,P5t 1.02 1.92 -0.17 -9.00 13 0

211LZ15* 0.80 0.30“ -0.03 -2162 13 0
 

The hypothesis of significantly better model

specification because of considering the attraction

constraint, B5, measured by C5 has been found to be true

here. The goodness of fit of the same model is also

significantly improved. Further, the origin based

population potential-type spatial structure measure, Z15 has

also resulted in significantly improved goodness of fit.

Although the specification of the basic model with variable
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Z15 has not been improved significantly, the change for the

better is appreciable enough to receive serious attention.

5.3.2. Ibo Bus Data

There is not a single spatial structure variable that

significantly contributed to the goodness of'fit of the

basic model here (Table 12). Not only are the models with

the additional spatial structure variables deteriorating in

their predictive capacity, none, except the one with

variable P15, has even a marginally better goodness of fit.

Variable P5* reappears as a significantly better

specifier'of the basic model although the best specified

model is the one with the pair variable (P5,P5*). Variables

P15, P5 , P15: and C5 also contribute to the improvement of

the basic model but not significantly.
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Table 12

Origin Specific Production Constrained Model

Calibration of the Bus Data

 

 

_ngdg1 C.V. G.F Ma.B. Mi.B. N.B. 2.3.

Basic 1.17 0.59 1 20 -1 41 13 2

With Z15 1.59 0.68 1.27 -1.27 12 3

Z15: 1.32 0.93 1.29 -1.90 13 2

P15 0.99 0.56 0.69 -2.22 12 3

P5 0.84 0.87 0.54 -2.23 12 3

P15* 0.81 1.30 0.02 -2.34 14 1

P5* 0.67“ 1.32 -0.16 -2.44 15 0

C5 0.85 0.85 0.47 -2.37 12 3

P15,P15# 0.82 1.45 0.14 -2.69 14 1

P5,P5* 0.56“ 1.41 -0.16 -2.80 15 0

215.215: 2.17 0.83 1.39 -1.24 12 3
 

The hypothesis of model improvement is, hence, accepted

for (P5,P5*), and P5* spatial structure measures and that

only for better specifying'the model. Only variable P15 has

a marginally better goodness of fit than the basic model.
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5.3.3. the Railway'flhta

In the case of the railway data, the best goodness of

fit of the production constrained’model is attained without

including any of the spatial structure variables (Table 13).

But the coefficient of variation is significantly improved

with the addition of a number of them.

Table 13

Origin Specific Production Constrained Model

Calibration of the Railway Data

 

 

Model C.V. G.E. 1Ma.B. Mi.B. N.B. 2.3.

Basic 7.22 0.94 13.52 -1.98 14 8

With 215 7.39 1.04 11.77 -2.27 13 9

Z15: 6.07 0.98 13.53 -1.76 14 8

P15 67.78 1.96 8.33 -2.57 14 8

P5 28.04 1.05 8.35 -2.58 15 7

P15* 2.93“ *1.27 >100.00 -1.22 13 9

P5* 2.09“ 1.35 8.50 -1.33 14 8

C5 12.01 0.96 10.62 -2.46 14 8

P15,P15* 1.84“ 1.11 11.50 -1.19 14 8

P5,P5* 2.47“ 1.02 33.75 3.22 18 4

ZiiLZ15t 5.89 1105 11.78 -2-05 14 8
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This time it is the composite variable (P15,P15*) which

specify the basic model best. Variables P5*, P15* and the

pair (P5,P5*) also significantly improve the specification

of the basic model. Although not significantly, variables

215*, and the pair (Z15,Z15*) are also better specified.

Although its specification is significantly better than

the basic model, the coefficient of variation associated

with the destination based distance-type spatial structure

is not the result of the best beta estimates. The best beta

of one of the centers could not be estimated because the

constraint, A1 had been reduced to a value of zero.

The hypothesis of model improvement is again, valid

here only partially for the indicated spatial structure

measures.

5.3.4. me Vehicle Data

Variables P5 and C5 improved the goodness of fit of the

basic model significantly. In terms of specification, P15*,

the pairs (P15,P15*) and (P5,P5*) are significant measures.

Variables P15, C5 and the composite (P5,P5*) also improve

the basic model’s coefficient of variation but they are not

significant.
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Table 14

Origin Specific Production Constrained Model

Calibration of the Vehicle Data

 

 

Model C . V. G . F . Ma , B . Mi . B . . 11.. B.i_._.__P_._B_._

Basic 0.48 0.76 -1.19 -5.86 25 0

With Z15 0.51 0.85 -1.07 —6.01 25 0

215* 0.50 0.88 -1.10 -5.77 25 0

P15 0.40 0.75 -1.04 -4.84 25 0

P5 0.38 0.69“ -1.11 -4.91 25 0

P15* 0.32“ 1.06 -0.85 -4.43 25 0

P5* 0.41 1.06 0.87 -4.49 25 0

C5 0.36 0.74“ -1.02 -4.86 25 0

P15,P15* 0.33“ 1.16 -0.91 ~4.91 25 0

P5,P5* 0.31“ 1.10 -0.97 -4.98 25 0

211.215: 1.27 0.82 4.58 ‘-5.06 23 2
 

As can be seen in the table above, the spatial

structure measures which improve the specification of the

basic model do not at the same time improve the goodness of

fit of the basic model.

5. 4. Origin Specific Doubly Constrained Hodel

In estimating the distant exponent of the interaction

data of the various data sets, none of the spatial structure

measures significantly improved the specification and/or
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goodness of fit of the basic model. In only the bus data,

variables P15 and Z15 showed better model specification and

,prediction respectively. Variables P5 and P5* also

specified the basic model better.

In general, the doubly constrained spatial interaction

model statement turned out to be the best specified without

any spatial structure measure. Its goodness of fit is also

the best across the various data sets. Fotheringham's work

(1983) also confirms the same thing although in his case,

only one method of including the spatial structure influence

(P15) is used.

5.5. system Hide calibration

Unlike the origin specific distance exponents, which

are as many as the number of origins in the system, this one

has a single, over-all, beta value representative of all of

the nodes involved in the calibration process. It is, in a

way, an averaging condition although the mean of the system

wide and individually estimated betas have not been found to

balance with each other.

The following table shows the details of the goodness

of fit and the beta values of the different models which

resulted from subjecting them to the same computer search

process as the origin specific model calibrations. To
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illustrate the effect of the spatial structure measure on

spatial interaction, the different data sets are calibrated

using the production constrained’model statements. As could

be seen in the table, the goodness of’fit of the telephone

and vehicle data are improved by variables P15, P5, and C5.

The bus data shows no improvement at all; and the rail data

goodness of’fit is improved by variables Z15 and the

composite (Zij,Zi5*). The goodness of’fit of the four data

sets could be compared since the SRMSE is a standardized

measure. Thus, in general, the rail data has the worst and

the telephone the best goodness of fit.

Except for some cases, the spatial structure variables

that significantly improved the goodness of fit of the

origin specific calibrations also to improved the goodness

of fit of the system-wide calibrated models. The composite

variable (Z15,Z15t) of the telephone data, 215 and again the

pair (Z15,Z15*) of the railway data, and P15 of the vehicle

data show improvements in goodness of fit in the system-wide

calibration. These variables have not significantly

affected the goodness of fit of the origin specific

calibrations of the respective data sets.

Since it is not possible to test the significance of

model improvement in a system wide calibration following the

same procedure as in the origin specific case, a multiple

regression estimation has been performed. This approach



98

allows one to observe whether or not adding a spatial

structure variable adds appreciably to the coefficient of

determination (R3) or to the T statistics, and whether the

models and the variables included in the calibration are

significant or not.

Table 15

System Wide Production Constrained Model Calibrations

 

_______Tslsphone______Bus______Bail._______Yshicle

Model_____Beta1_GiEi___Bsta__fiiEi___Beta__GiE;___jkuuL_liaEi

Basic -0.39 0.70 -2.60 0.89 3.01 2.28 -1.68 1.58

With

Z15 -0.21 0.41 0.00 0.95 1.50 2.27 -1.44 -1.64

215* -2.90 0.70 -0.06 0.96 1.50 2.37 -1.55 1.60

P15 —0.59 0.51 -0.39 1.07 1.58 2.37 -1.56 1.43

P5 -0.93 0.44 —0.62 0.98 1.50 2.35 -1.78 1.38

P15* -0.52 1.79 -0.47 1.68 10.71 4.15 -2.02 1.72

P5* -0.62 1.79 -0.65 1.62 10.69 4.15 -2.13 1.71

C5 -0.91 0.48 -0.63 0.96 2.72 2.42 -1.80 1.36

P15P15* -o.7o 1.74 -o.50 2.00 14.40 2.76 -2.10 1.72

P5,P5: -1 08 1.72 -0.90 1.85 14.30 2.85 -2.40 1.66

't - - ._11161

As mentioned in Chapter 4, normally, the production

constrained version is calibrated using maximum likelihood

estimation techniques as the introduction of the balancing
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factors makes the relationship of the variables somewhat

complex. However, if a model's specification is correct,

(which this study assumes to be true when spatial structure

variables are considered), the choice among the available

calibration methods (ordinary least squares versus maximum

likelihood) has been reported not to be that critical

(Stetzer, 1976; Baxter and Ewing, 1979; Baxter 1982;

Willenkens, 1982; Sen, 1985).

The use of the ordinary least squares multiple

regression model in place of maximum likelihood’may not be

commendable in all circumstances, since the statistical

assumptions required by the different estimation techniques

may not always be met. It is, therefore, advisable to

examine the nature of the distribution of the variables

before attempting to use the least squares multiple

regression approach for all gravity model versions. In this

study, application of the ordinary least squares method

saved time without losing very much precision of the

regression estimates. The use of the ordinary least squares

method is encouraged because a preliminary investigation of

a maximum likelihood’and a least squares estimates of a

‘production constrained’model resulted in similar distance

parameters.

The variables have been square-root (SQR) transformed

before calibrating the models. The choice of SQR over the
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commonly used logarithmic transformation is made because the

former approach resulted in better adjusted R2 values than

the latter method and also the problem of zero interaction

is not encountered.

As could be observed in Table 16, the effect of the

spatial structure measures on the interaction of the

different data sets is more or less consistent. However,

there are some clear variations on the increment of the R2

value between the data sets and also models.

For the telephone data, the different spatial structure

variables hardly affected the goodness of fit value. Also,

there is not appreciable difference between the fit of the

total flow and production constrained’models. This may mean

that the usefulness, and in turn, problems of the different

versions of the gravity-like models could possibly be data

specific. In the other data sets, differences observed in

the R2 value because of calibrating the total flow

constrained’or the production constrained’models are more

pronounced than differences because of calibrating models

with spatial structure variables. This can mean that the

improvement in the R2 values is a condition of the

.production constraint (A1) rather than the effect of an

additional spatial structure variable.
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Table 16

Coefficient of Determination from System Wide

Multiple Regression Calibration of the Total

and Production Constrained Models

 

 

  

 

 

 

 

 

 

 

Telephone Bus Rail___1ehigle

M O D E L

z 2 z 2

Total Flow Consd. 0.89 0.63 0.39 0.40

(14.61) (0.79) (27.91) (7.66)

Basic

Production Consd. 0.93 0.81 0.62 0.59

(15.34) (0.80) (28.09) (7.58)

Total Flow Consd. 0.90 0.55 0.40 0.45

(14.21) (4.0) (27.69) (7.37)

Z15

Production Consd. 0.92 0.66 0.63 0.61

(16.13) .(4.0). (27-71) (7.38)

Total Flow Consd. 0.90 0.63 0.39 0.42

(14.13) (0.79) (27.93) (7.55)

215* '

Production Consd. 0.93 0.81 0.80 0.58

(15.41) (0.80) (28.05) (7.65)

Total Flow Consd. 0.90 0.63 0.40 0.43

(14.14) (0.74) (27.87) (7.46)

Z1

Production Consd. 0.93 0.81 0.63 0.60

(14.66) (0.79) (27.87)_ (7.49)

Total Flow Consd. 0.90 0.63 0.39 0.41

(14.19) (0.79) (27.93) (7.56)

21*

Production Consd. 0.93 0.81 0.62 0.57

(14.74) (0.80) (28.05) (7.74)

Total Flow Consd. 0.90 0.64 0.39 0.46

(13.75) (0.78) (27.82) (7.32)

P15

Production Consd. 0.92 0.81 0.63 0.42

(15.76) (0.80) (27182) ((8.60)

Total Flow Consd. 0.90 0.64 0.39 0.44

(13.97) (0.77) (27.91) (7.43)

P1

Production Consd. 0.92 0.81 0.62 0.59

(16.31) (0.80) (27.920 (7.56)

Total Flow Consd. 0.91 0.63 0.45 0.42

(13.85) (0.79) (24.48) (7.54)

P15*

Production Consd. 0.93 0.81 ------ 0.61

(15.61) (0.79) ------ (7.42)
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Total Flow Consd. 0.91 0.63 0.39 0.42

(13.56) (0.79) (27.93) (7.54)

P5*

Production Consd. 0.93 0.81 ------ 0.60

(15.10) (0.80) ------ (7.42)

Total Flow Consd. 0.90 0.65 0.39 0.44

(13.96) (0.77) (27.94) (7.41)

Ci

Production Consd. 0.92 0.81 0.62 0.64

(16-28) (0.80) (28.01) (7109)

Total Flow Consd. 0.91 0.63 0.39 0.44

(13.41) (0.78) (27.84) (7.35)

P15,P15#

Production Consd. 0.94 0.81 0.63 0.62

(13.74) (0.80) (27.83) (7.26)

Total Flow Consd. 0.91 0.63 0.39 0.44

(13.54) (0.79) (27.93) (7.43)

P1,P5*

Production Consd- 0.93 0.81 0.63 0.61

Total Flow Consd. 0.91 0.63 0.40 0.43

(13.41) (0.78) (27.68) (7.40)

Z15,Z15*

Production Consd. 0.94 0.81 0.63 0.61

(14.36) (0.80) (27-64) (7.41)

Total Flow Consd. 0.92 0.64 0.40 0.51

(12.23) (0.78) (27.59) (6.85)

Z15,P15

Production Consd. 0.94 0.81 0.63 0.65

(13.81) (0.79) (27.60) (7-00)

Total Flow Consd. 0.91 0.66 0.39 0.49

(13.09) (0.76) (27.87) (7.06)

Z1,P5

Production Consd. 0.94 0.81 0.63 0.63

(14.27) (0.78) (27.87) (7.15)

Total Flow Consd. 0.91 0.63 0.39 0.45

‘ (13.06) (0.79) (27.95) (7.39)

Z1t,P5s

Production Consd. 0.93 0.81 0.62 0.59

_. (1

Total Flow Consd. 0.92 0.63 0.39 0.44

(12.89) (0.79) (27.95) (7.39)

215*,P15t

Production Consd. 0.94 0.81 0.62 0.60

__ (13.88) (0.80) (28.00) (7.48)
 

‘(numbers in parenthesis are standard errors of estimate)
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According to the popular statistical literature of

regression, a variable may not contribute to the goodness of

fit measure if it is collinear with an already considered

variable in the calibration process (Pindyck and Rubinfeld,

1980). To what extent this has been the case could be

observed from a table of intercorrelations of the included

variables. In this exercise, an intercorrelation of all the

variables has been performed by data set (Appendix 2a-2d).

Observation of these tables shows that there is a high

relationship among the destination based spatial structure

measures, specifically among P15, P5 and C5. Variables P15*

and P5* although destination based, have very low

association with the other variables. As explained earlier,

the pairs, P15 and P5 and P15* and P5*, are strongly

correlated, as are Z1 and Z15, and 21* and Z15t. This

confirms that the effect of the matrix values of spatial

structure on spatial interaction will not be very different

from the impact of the vector values. Further, the

correlation values indicate that the effect of spatial

structure on individual points in a given network is similar

even when some of the points are not included in computing

the spatial structure values. However, the finding in this

exercise shows that in almost~all cases, the vector values

improved the specification and goodness of fit of the basic

model better than the matrix values. This implies that more

complete spatial structure measures will have stronger

impact on the performance of interaction models.
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Other high correlations are also observed between the

production constraint (A1) and the propulsiveness measure

(V1); 0.93, 0.85, 0.82, and 0.88 for the telephone, bus,

rail and vehicle related variables respectively. Fairly

high relationships are also observed among some more

variables such as between V1, P15 and Z15; and also between

215*, P15 and the constraint A1. The relationship among the

rest of the variables is in general low and inconsistent.

The SRMSE goodness of fit and the regression R2 values

are very different, probably for two major reasons. The

first may be a problem of aggregating the calibration of the

models. That is, the system wide calibration obviously

generalizes and as a result may distort actual conditions.

The second, and probably no less important is the R2 value

itself. It has been reported (Knudsen and Fotheringham,

1986) that the R2 is an unsatisfactory goodness of fit

measure since it is not sensitive to changes in model

specifications. Therefore, it may not be reflecting the

true effect of the spatial structure variables.

There has been a special encounter during the process

of calibrating the production constrained’model with the

destination based distance-type spatial structure variables

(P15* and P5*) using the regression approach. The reason is

that the constraint, A1 became infinitesimally small when
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generating it in the search process and as a result it

turned out to be a constant of zero values. The beta

estimated by the search process from the same production

constrained’model with variable, P15*, has particularly been

large, over 100 (Table 13, p. 92).

5.6. Negative and Positive Betas

In the various origin specific calibrations, not all

the betas that correctly specify a model or give the best

goodness of'fit are negative. Positive beta values were,

initially, considered as something meaningless (Linnman,

1966). Later, Fotheringham (1984) and Fotheringham and

Dignan (1984) added a new meaning to the direction of the

distance exponents. The kind of relationship that exists

between destinations has been stated as competitive if the

betas are negative. If the calibrations of the models

result in positive beta values, then agglomerative (i.e.,

concentration of interacting origins and destinations within

short distances) forces are said to be in order. In this

exercise, when a spatial structure variable is added to the

model, not only the values of the betas change, but so also

the direction of some of them. Although a clear pattern

across the different models and data sets is not observable,

“the betas of some centers switch from negative to positive

Values or vice-versa when a model is calibrated with one or

the other of the spatial structure variables and/or models.
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However, there is a tendency of positive betas to associate

themselves with big centers and the negative ones with

smaller centers. There seems to be some kind of consistency

between high proportion of negative betas and significance

of models in either specification, predictive capacity, or

both, especially, for the best models. The percent of

centers that changed direction is given by model and data

type in the following table:

The production constrained’calibration of the model

with variable P15 for node 3 of the telephone data, for

instance, results in a positive beta associated with it.

The same model calibration with variable Z15 gives a

negative beta estimate for the same node.

Furthermore, the distance of the beta values from zero

in either directions is different for different model

Table 17

Percent of Centers that Switched Direction

Associated with a Given Spatial Structure Variable

 

WM

Total 92.13 13.33 40.91 52.00

Production 7.69 20.00 50.00 48.00

.Dthlc_1_1__1169__1____13133«_____3613§_.__m_3§iflfl.
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calibrations with the various spatial structure measures.

If the previous assumptions are right, an increasingly

negative beta is a sign of the significance of distance

impacting interaction. An increasingly positive beta, on

the other hand, is indicative of the importance of

agglomeration effect.

5.7. consistency of’tbe Effects of’Spatial Structure

variables on centers of’a system

The correlation of the best beta estimates, from the

different model calibrations with the various spatial

structure variables, shows that the effect of the addition

of spatial structure variable is more model specific than is

data specific. Variations are observed between the total

flow constrained and production constrained models across

data sets. These variations seem to be consistent across

the different model calibrations for all data sets. The

correlation between the best betas of the basic model and

the best betas derived from calibrating models with the

various spatial structure variables are given in the

following table.

Each value in Table 18 represents the degree of

association between the best beta calibration of the basic

model and the best beta calibration of other models with the

various spatial structure measures. High correlation values

(are indicative of similar trend in the beta values of the



Correlation between best betas of the basic

model and other models with various spatial
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Table 18

structure variables by Center of System

 

Vehicle

 

 

 

- Telephone Bus Rail

Model ‘

Tt Pr Db Tt Pr Db Tt Pr Db Tt Pr Db

ZiJ .28 072 076 099 098 094 099 099 .99 1.9 1.0 .97

Z£J. l.“ 1.0 100 093 .87 090 099 100 1.0 .86 100 .99

P‘i log .91 092 088 079 099 .75 097 .98 .90 093 .92

P5 .31 .92 .92 .99 .84 .92 .74 .97 .95 ..92 .93 .90

P‘Jfi 633 067 .19 -056 .47 094 -035 079 .71 -037 038 .61

PJ. 031 .69 all -063 046 093 06“ .65 029 -067 031 062

c, 1.0 .89 .89 .81 .77 .99 .91 .98

P‘JP‘J‘ 040 .82 -066 039 -016 076 -058 .29

PJPJt '.50 .42 -.12 .30 -.29 .97 -.58 .24

114ZJJ“-023 073 098 098 .98 log .74 014

Tt = total flow constrained

Pr = production constrained

Db = doubly constrained

various model calibrations for each node in a system of

interacting nodes, and low correlation values are indicative

of irregular trends in beta values. In general, there is a

consistently similar trend in correlation values across

nodes of the various data sets and the different model

calibrations. Among the exceptions is, for example, the

association between the beta values of the total flow
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constrained’model calibrated with variable Z15 and the beta

values of the basic total fiow constrained model of the

telephone data. The correlation value between the two is

only 0.28. The correlations of the betas in the other data

sets are high although the calibrated models are the same

total fiow constrained’ones and the included spatial

structure measure is also the same Z15. Similar conditions

are observed for variables P5, P15*, P5* and the pairs

(Z15,Z15*). Most of the betas derived from the different

models are, however, highly intercorrelated. Only 19.73% of

the associations have values below 0.50, and only 11.54% are

negatively correlated.



CHAPTER 6.

SCENARY, CONCLUSIONS AND IMPLICATIONS

6.1. Summary'

The empirical analysis in Chapter 5 of this study has

shown that the effect of a spatial structure measure may be

generalized at different levels. It has been determined

that in general:

(a) There are different ways of representing spatial

structure which improve the specification of the basic model

or give a better goodness of’fit, or both. This has been

observed across the different data sets and model

calibrations in this study.

(b) The effects of the different spatial structure

measures have not been the same in all the cases under

investigation. This statement relates to the magnitude of

model improvement due to the addition of a given spatial

structure measure, and also the consistency of impact of a

spatial structure variable on interaction across the data

sets and models.

110
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(c) When ranked in terms of frequency of improving a

model, both in terms of model specification and goodness of

fit, the best spatial structure measure of significant

effect has been P5*, the vector of the destination based

distance-type spatial structure measure.

(d) Observation of the pattern of the betas shows that

both positive and negative distance exponent estimates are

possible in interaction model calibrations even without

spatial structure variables. With additional variables or

constraints, the proportion of the negative betas tend to

increase although the switch in direction of the exponents

does not show any appreciable pattern.

As a direct consequence of the above conditions, only

some of the stated hypotheses have been accepted (Tables 19

and 20). Thus, the major hypothesis which proposed

significant improvement in model specification and goodness

of’fit has been found true for only some of the cases. Some

of the spatial structure measures improved the specification

and goodness of’fit of the models; some of them improved

only one of the two; a good number of them showed better

situations even though the improvements were not significant

at 0.05% level; and others gave worse results than the basic

model.
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Sub-hypothesis 1 (p. 54) proposed significantly

improved specification and goodness of fit of models when

Table 19

Significant Results of the Origin Specific

Total Flow Constrained Model Calibrations

 

 

 

 

 

 

 

Telephone 1 Bus E Rill_._+_xl§hicle

Basic

With Z11

215*

P11 + + +

P5 + + +

P11: + + + + + +

P5* + + + 1+ + +

05 + + +

P15,P15* + + +

P1.P1* + + +

Z15.Z11*
 

destination based accessibility measures are included in the

calibration process. This hypothesis has not been accepted

across data sets and model calibrations. Of the total flow

calibrations of the different data sets, variables P15

and/or P5 have significant impact on only the vehicle data
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Table 20

Significant Results of the Origin Specific

Production Constrained Model Calibrations

 

 

 

 

 

 

 

 

Telephone 1 Bus 1 Rail___i_~1ehigle

Model C-V. G.E. l C.V. G.E. : C.V. G.E. J C.V. G.E.

Basic

With Z15 + +

Z15:

P11 + +

P5 + + +

P11: + +

P5: + +

C1 + + +

P15,P15:
+ +

P1.P1: + + +

-Z15-Z11:
 

in specification as well as fit of model. The impact of

these variables in the bus data has been only in improving

the specification of the model.

The production constrained’calibration of the four data

sets with the same spatial structure measures shows a

different picture. They have impacted the specification and

fit of all of them except the railway data. However, they

have not been found as best model specifiers in all of the
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data sets. except the models with variable P5 which resulted

in the best fit for the bus and vehicle data.

Sub-hypothesis 2 (p. 56) which proposed a possible-

model improvement with spatial structure measure of only the

distance variable has been partly accepted. The destination

based spatial structure measure, P5: has not only improved

the models which it is a part, but it turned out to be the

best model specifier’and predictor for the total flow

constrained model calibration of the telephone, bus and

vehicle data. It is also an important addition for the

,production constrained'calibration of the data sets except

for the telephone one.

The origin based spatial structure measure of the

distance variable (hypothesis 4, p. 59), on the other hand,

showed only some insignificant impact on the total flow

constrained calibration of the telephone and the production

constrained’calibration of the railway data.

The third sub-hypothesis (p. 58) proposed model

prediction and specification improvements with origin based

accessibility measures. This hypothesis is accepted for

only the production constrained’calibration of the telephone

data and that for only giving a significantly improved

goodness of fit. The coefficient of variation associated



115

with the same model shows only a slight improvement over the

basic model.

Sub-hypothesis 5 and 6 (pp. 60 & 61) which proposed

better model specification and goodness of fit with multi-

directional measures also falls short of full acceptance.

Only in the production constrained’calibration of the

vehicle data has the pair variables (P5,P5:) resulted in the

best specified model although the fit of the model is only

second from the last. The destination based bi-directional

spatial structure measures also showed significant impact in

specifying'the total flow constrained’model for the bus

data, and in giving improved goodness of'fit for the railway

data.

Sub-hypothesis 7 (p. 63) proposed that including the

interacting origins and destinations while deriving the

spatial structure measures brings a difference in model

improvement. Although not significantly, variables P5, P5:

Z1 and Z1: gave better results than variables P15, P15:,

Z15, and Z15: in almost all cases. Significant differences

between the two sets is not expected since they approximate

each other. But, there have been instances where the vector

values in some data sets are significant while the matrix

values are not.
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Sub-hypothesis 8 (p. 65) proposed improved model

specification and/or goodness of fit because of including

the production and attraction constrained’models balancing

factors as spatial structure measures. Especially, B5

(measured by C5) has been found to improve the specification

and performance of the basic model significantly.

The last of the sub-hypotheses (p. 66) proposed the

same goodness of’fit from models with origin or destination

based spatial structure measures. This hypothesis has not

been accepted at all. The significant goodness of fit

measures of models with origin and destination based

accessibilities are all different. Further, including

destination based spatial structure measures seem to give

better goodness of’fit than the origin based spatial

structure variables. Even variable C5 which at times

impacted the models usefulness significantly, is a

destination based measure. But, when it comes to the

system-wide calibrations (the goodness of’fit measure here

being R3), there does not seem to be any notable difference

between one or the other of the spatial structure measures

in influencing the model's fit. Even those variables that

significantly improved the goodness of fit of the origin

specific calibrations, as measured by SRMSE, hardly show any

improvement in the R2 in many of the cases (Table 21). The

maximum improvement because of introducing a spatial

structure variables (P15 and P15: of the vehicle and railway
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data respectively) in the total flow constrained model

calibration is only 0.06.

Table 21

Adjusted R3 Values of the Models with the Spatial

Structure Variables that Significantly Improved the

Goodness of Fit of the Basic Model as Measured by SRMSE

 

Telephone______Bus______Rail_____1ehiole_

 

 

Model Ra Ra Ra 32

Total Flow Cons.

Basic 0.89 0.63 0.39 0.40

P15 -- -- -- 0.46

P1 -- -- -- 0.44

P15: 0.91 0.63 0.45 0.42

P5* 0.91 0.63 0.39 0.39

C5 -- -- -- 0.44

P15,P15: -- -- 0.39 --

P1.P1: -- -- 0.39 --

Production Cons.

Basic 0.93 0.81 0.62 0.59

Z15 0.92 -- -— --

P15 0.92 -- -- --

P5 0.92 -- -- 0.59

C1 0.92 -— -- 0.64
 

In the case of the production constrained calibration,

the level of improvement is even lower than this. Except
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for the vehicle data, where the goodness of fit of the basic

model is improved by 0.05 because of including variable C5,

the rest have virtually the same R2 value.

6.2. conclusions and Implications

This study has shown that different methods of

including the spatial structure effect have different

impacts on interaction modeling. But still generalizations

are possible. Probably, a major concluding generalization

is that the specification and prediction capability of

spatial interaction models are likely to improve if some

representative variable of spatial structure is included

during calibration. But there are difficulties associated

with identifying the correct variable, especially, regarding

the theoretical justification that could be associated with

the selection of one type of spatial structure over another.

The fact that there is not any conclusive support to a

single spatial structure measure that could be applicable

over all data sets and model calibrations may be an

indication of one or the other, or a combination of the

following:

(a) The spatial structure measure for different data

sets are possibly different.
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(b) The constraint of a model may possibly be

sufficient to take care of the spatial structure

effect; if another variable of similar definition

is included, it may distort the impact of the

new variable on interaction.

(0) The nature of the spatial structure variable needed

may be different for different model calibrations,

that is, total flow, production or attraction

constrained’models and/or data type.

The measurements of spatial structure, as exercised

here and in previous studies, are not without problems.

Both the population potential-type and distance-type spatial

structure measures are not independent of the variables of

the basic gravity model. The confounding effect is a result

of both the distance and mass variables. Spatial structure

may be an important element if it does not interfere with

the already included distance and mass terms in the gravity-

type spatial interaction models.

In calibrating the gravity model, with the various

spatial structure variables, the role of the mass terms is

ignored since they are forced not to vary. The adjustment

for model specification and performance is thus only a

partial one. Therefore, the fact that the distribution over

space of the distance exponents is approaching a constant
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value may not guarantee that the model is also approaching

full specification.

There is also a possible problem associated with

coefficient of variation (C.V.) as a measure of spatial

structure. If, after adding a spatial structure measure,

the mean of the betas becomes zero, the C.V. of their

distribution will be undefined. Further, if, after the

inclusion of a spatial structure measure, all the beta

values distributed over space become zero, it would mean

that spatial structure has totally replaced the spatial

separation effect. Will this be an advantage or could it be

considered as an improvement over the basic model's

specification?

The question of constraints is an intriguing one. Why

the basic production constrained’model performs better than

the basic total flow constrained model, that is, without

adding a spatial structure variable to the model statements,

and like-wise why the deubly constrained’model results in

the best specification and goodness of’fit of models give

important clues as to whether a spatial structure variable

is a necessary addition to interaction modeling. It is

tempting to think this way because the constraints of the

doubly constrained’and attraction constrained models can

also serve as spatial structure variables, be it origin or

destination based accessibility. As mentioned in Chapter 4,
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Wilson (1967) in fact. writes that these constraints are

used as accessibility or competition measures as may be

required. In Fotheringham's study, and in this one, the

addition of any spatial structure measure to the doubly

constrained’model brought insignificant or no improvement at

all. In most cases, in fact, it has reduced the model's

usefulness. The constraint of the attraction constrained

model (B5) has also improved the specification and goodness

of fit of a good number of the origin specific models in .

this study. As shown in Table 21 too, the use of spatial

structure variables has not been found encouraging since the

R3 values (assuming that it measures goodness of fit

correctly) of the new models are not improved appreciably to

justify the effort.

However, this may not mean that spatial structure does

not influence flow at all. The question is rather, whether

it is necessary to create a new variable or interpret

existing constraints as spatial structure measures. It has

been shown in Chapter 2 that after all, the origin based and

destination based spatial structure measures are transpose

values of each other. Variable C5, which measures

attraction constraint (B5), is different because the

propulsiveness values are used to derive it. It could not

be used as the B5 of the doubly constrained’model because,

here, the balancing factors are iteratively determined.

Nonetheless, including variable C5 in both the total flow
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constrained’and production constrained’calibration has

resulted in improved model performance.

Although, in general, the addition of a particular type

of spatial structure variable results in improved model

specification and/or goodness of fit (SRMSE), the magnitude

of contribution is dependent on the type of spatial flow and

the model used to estimate the parameters. Since at times

some of the spatial structure variables reduced the

specification and/or goodness of fit of the basic medel, the

response of the specific model to the configuration of the

locations under study need be examined closely. The

improvement in model performance using the linear spatial

structure measure of the railway data (Appendix 1c) has not

been particularly encouraging. Thus, further research is

still necessary to determine theoretically the variable

effect of spatial structure measures on different flow

systems.

The coefficient of variation and goodness of fit

measures used in this study are standard measures.

Therefore, they could be used across different model

calibrations of different or the same data sets.

Observation of the various tables of beta and goodness of

fit values shows that the production constrained’model

calibrations are superior to the total flow constrained
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model calibrations in goodness of fit measures. The

coefficient of variation however may or may not be better.

Why different points in the same network of origins and

destinations have different beta values associated with the

best goodness of fit and vic-versa even after including the

spatial structure variable is something that needs further

investigation. In other words, why does one model

associated with a given node have a better specification

and/or fit than another node of the same system, given that

they are treated identically? If according to the

assumption, the accessibility indexing role of the distance

variable is eliminated by the introduction of the spatial

structure variable, should the coefficient of variation and

SRMSE not approach zero? If these measures are not at

fault, it means that spatial interaction models are still

far from becoming satisfactory representatives of reality.

A potential source of error in interaction modelling is

the quality and sufficiency of the data used to calibrate

the models. The data used in this kind of study represents

only a sub-set of the universe of interactions. As long as

we are not treating a closed system, some of the points in a

network will be left out. The order of an interaction

matrix is, therefore. an important consideration since the

spatial structure measures are dependent, as are the

interaction values, on the number of the points considered
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in the sub-system. To this effect, some evidence has been

provided by Ewing (1986). While commenting on Fotheingham's

airline data, Ewing reports that the distance cut-off point

(160 miles) considered by Fotheringham to avoid modal

competition gives a wrong impression of his findings. Ewing

argues that when the cut-off point is increased to 1000

miles (which apparently decreases the number of points

interacting by air), he gets a different spatial structure

effect. According to Ewing, in fact, the improvement in

model specification advocated by Fotheringham is "...the

result of contamination of the data by a modal share effect.

And the apparent success of his model in reducing the

spatial variation is ...coincidental" (p. 547).

The implication of the various questions raised and the

remarks made above is that the concept of spatial structure

needs further refinement. What this study has shown is that

the 'independent' variables of the gravity-type spatial

interaction models could neither be easily measured nor

defined. Thus, it may be appropriate to consider various

other ways of improving the accuracy of an interaction model

before settling on only including a spatial structure

measure of one kind or the other. Plausible theoretical

backing is also necessary for using a particular set of

measures as correct model specifiers, best predictors or

both. Further research is in order to be able to understand
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the role of the spatial attributes that influence the

generation and attraction of trips. A spatial structure

measure may not be the only missing variable.
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Appendix 1 a

Michigan: Cities of Bus Passengers Flow Data
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Appendix 1 b

Michigan: Cities of Vehicle Flow Data
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Appendix 1 c

Ethiopia: Cities of Rail Passengers Flow Data
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.Apmnnudix:il«d

Ethiopia: Cities of Telephone Flow Data
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Appendix 2a

Simple Correlation of the Variables of the Telephone Data

T15 d15 V1 W5 C5

T15 1.000

d15 -0 292 1.000

V1 0.587 -0 171 1 000

W3 0.638 -0.159 ' -0.083 1.000

01 0.171 0.368 -0 020 0.269 1.000

P5 0.215 0.394 -0.026 0.337 0.993

P5: -0.430 0.153 0.054 -0.674 0.018

21 0.181 0.349 0.308 -0.028 -0.083

Z1: -0 383 0.153 -0.652 0.056 -0 002

P15 0.599 0 055 0.637 0.225 0.725

P15: -0.406 0.071 0.076 -0.670 0.018

211 0.602 0.055 0.203 0.631 0.052

2111 -0.357 0.071 -0.649 0.077 -0.031
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Appendix 2a (Con'd).

P5 P5: Z1 Z1:

P5 1.000

P5: -0.046 1.000

21 -0.083 0.004 1.000

211 0.004 —0.083 -0.046 1.000

P15 0.729 -0.020 0.095 -0.404

P15: -0 047 0.994 -0 022 -0.109

215 0.095 -0 404 0 729 —0.020'

2151 -0.022 -0.109 -0.047 0.994

P15 P15: Z15 Z15:

P15 1.000

P15: 0.003 1.000

215 0.199 -0.414 1 000

Z15: -0.414 -0.126 0.003 1.000



Simple

T15

815

V1

W1

C1

P1

P5:

Z1

Z1:

P15

P15:

Z15

*215:
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Appendix 2b.

Correlation of the Variables of the Bus Data

T15

.000

.302

.570

.419

.041

.084

.180

.027

.189

.006

.178

.054

.187

I
I

O
0

0
0
0
0
0
0
0
0
0

d15

.000

.118

.187

.366

.383

.242

.383

.242

.246

.223

.236

.223

-0.

.000

.069

.005

.003

.024

.047

331

.140

.028

.045

.331

W1

.000

.098

.199

.430

.014

.031

.192

.431

.164

.036

C:

.000

.990

.231

.071

.017

.953

.231

.124

.020
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Appendix 2b (con'd).

P5 P5: Z1 Z1:

P5 1.000

P5: 0.303 1.000

Z1 -0.071 -0.022 1.000

21: -0.022 -0.071 0.303 1.000

Pij 0.963 0.299 -0.138 -0.094

P15: 0.303 0.999 -0.025 -0.074

Z15 -0.138 -0.094 0.963 0.299

Z15: -0.025 -0.074 0.303 0.999

P15 P15: Zij Z15:

P15 1.000

P15: 0.303 1.000

Z15 -0.168 -0.096 1.000

Z15: -0.096 -0.076 . 0.303 1.000
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Appendix 2c.

Simple Correlation of the Variables of the Railway Data

T15 d15 V1 W5 C5

T15 1.000

d15 0.115 1.000

V1 0.260 0.126 1.000

W5 0.280 0.119 -0.046 1.000

C5 0.082 -0.137 -0.016 0.293 1.000

P5 0.133 -0.065 -0.026 . 0.474 0.908

P5: —0.071 0.052 0.010 -0.253 -0.408

Z1 0.139 -0.065 0.537 -0.023 -0.043

Z1: -0.054 0.052 -0.210 0.012 0.019

P15 0.155 -0.170 0.145 0.455 0.835

P15: -0.069 0.021 0.010 -0.250 -0.405

Z15 0.165 -0.170 0.517 0.147 0.022

215: -0.054 0.021 -0.207 0.010 0.012



P5

P5:

Z1

Z1:

P15

P15:

Z15

215:

P15

P15:

Z15

Z15:

P5

.000

.326

.048

.016

.929

.323

.056

.015

P15

.000

.290

.221

.033

P5:

1.000

0.016

-0.048

-0.300

0.991

-0.035

-0.044

P15:

1.000

-0.033

-0.038
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Appendix 20 (Con'd).

Z1

1.000

-0.326

0.056

0.015

0.929

-0.323

215

1.000

-0.290

Z1:

1.000

-0.035

-0.044

+0.300

0.991

Z15:

1.000
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. Appendix 2d.

Simple Correlation of the Variables of the Vehicle Data

T15 d11 V1 W5 Ci

T15 1.000

d15 -0.308 1.000

V1 0.268 -0.283 1.000

W5 0.266 -0.259 -0.037 1.000

C5 -0.152 0.519 0.024 -0.571 1.000

P5 -0.154 0.518 0.024 -0.579 0.999

P5: —0.087 0.420 0.013 -0.327 0.724

Z1 -0.156 0.518 -0.584 0.024 -0.042

Z1: -0.086 0.420 -0.322 0.014 -0.030

P15 -0.126 0.508 0.070 -0.578 0.997

P15: -0.086 0.413 0.010 -0.327 0.724

Z15 -0.129 0.508 -0.582 0.073 -0.068

Z15: —0.086 0.413 -0.322 0.010 -0.025
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Appendix 2d (Cont'd)

P5 P5: Z1 Z1:

P5 1.000

P5: 0.723 1.000

Z1 -0.042 -0.030 1.000

Z1: -0.030 -0.042 0.723 1.000

P15 0.998 0.721 -0.069 -0.045

P15: 0.723 1.000 -0.025 -0.041

Z15 -0.069 -0.045 0.998 0.721

215: -0 025 -0 041 0.723 1.0001

P15 P15: Z15 Z15:

P15 1.000

P15: 0.721 1.000

Z15 -0.094 -0.040 1.000

Z15: -0.040 -0.040 0.721 1.000
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