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ABSTRACT

EXPERT AND NOVICE CATEGORIZATION OF INTRODUCTORY
PHYSICS PROBLEMS

By

Steven Frederick Wolf

Since it was first published 30 years ago, Chi et al.’s seminal paper on expert and novice

categorization of introductory problems led to a plethora of follow-up studies within and

outside of the area of physics [Chi et al. Cognitive Science 5, 121 – 152 (1981)]. These studies

frequently encompass “card-sorting” exercises whereby the participants group problems. The

study firmly established the paradigm that novices categorize physics problems by “surface

features” (e.g. “incline,” “pendulum,” “projectile motion,” . . . ), while experts use “deep

structure” (e.g. “energy conservation,” “Newton 2,” . . . ).

While this technique certainly allows insights into problem solving approaches, simple

descriptive statistics more often than not fail to find significant differences between experts

and novices. In most experiments, the clean-cut outcome of the original study cannot be re-

produced. In order to address this, we developed a less subjective statistical analysis method

for the card sorting outcome and studied how the “successful” outcome of the experiment

depends on the choice of the original card set.

Thus, in a first step, we are moving beyond descriptive statistics, and develop a novel mi-

croscopic approach that takes into account the individual identity of the cards and uses graph

theory and models to visualize, analyze, and interpret problem categorization experiments.

These graphs are compared macroscopically, using standard graph theoretic statistics, and

microscopically, using a distance metric that we have developed. This macroscopic sorting

behavior is described using our Cognitive Categorization Model. The microscopic compari-



son allows us to visualize our sorters using Principal Components Analysis and compare the

expert sorters to the novice sorters as a group.

In the second step, we ask the question: Which properties of problems are most impor-

tant in problem sets that discriminate experts from novices in a measurable way? We are

describing a method to characterize problems along several dimensions, and then study the

effectiveness of differently composed problem sets in differentiating experts from novices,

using our analysis method.

Based on our analysis method, we find that most of the variation in sorting outcome is

not due to the sorter being an expert versus a novice, but rather due to an independent

characteristic that we named “stacker” versus “spreader.” The fact that the expert-novice

distinction only accounts for a smaller amount of the variation may partly explain the fre-

quent null-results when conducting these experiments.

We found that the number of questions required to accurately classify experts and novices

could be surprisingly small so long as the problem set was carefully crafted to be composed

of problems with particular pedagogical and contextual features. In order to discriminate

experts from novices in a categorization task, it is important that the problem sets carefully

consider three problem properties: The chapters that problems are in (the problems need to

be from a wide spectrum of chapters to allow for the original “deep structure” categorization),

the processes required to solve the problems (the problems must required different solving

strategies), and the difficulty of the problems (the problems must be “easy”). In other words,

for the experiment to be “successful,” the card set needs to be carefully “rigged” across three

property dimensions.
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Chapter 1

Physics Education Research and

Categorization of Problems

Physicists oftentimes pride themselves on being resourceful problem solvers. Larkin et al.

concluded that the basis of this problem solving ability is the array of cognitive connections

between multiple concepts, making each physics concept a part of a coherent whole rather

than disparate bits of information [8]. Fuller points out the importance of a good conceptual

understanding when he says, “Every physicist knows the importance of having the correct

concept in mind before beginning to solve a problem” [9, emphasis mine].

Categorization studies comparing experts and novices started with Chi et al., who stud-

ied the categorization of introductory physics problems [1]. This study, to date, has been

cited over 3000 times. It has been critical in the study of the differences between experts

and novices in many areas, such as Clinical Psychology [10], dinosaur expertise [11], wine

tasting [12], and even Star Wars philosophy [13]. All of these studies go back to the same ap-

parently straightforward result in physics: novices categorize introductory physics problems
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by “surface features” (e.g. “incline,” “pendulum,” or “projectile motion”), while experts

use “deep structure” (e.g. “energy conservation” or “Newton’s second law”).

Our understanding of expertise was established by the seminal study done by Chi et al. [1].

However, replicating this experiment has been challenging. More often than not, attempts

to verify it fail, as an informal survey among physics education researchers indicated. This

is a puzzling fact given the sensibility and popularity of the result of Chi et al.. It has

not been until more recently that the physics education research community has begun to

understand why this might be while it has been grappling with different understandings

of student learning and the conceptualization of expertise [14]. The earlier view held that

students strongly hold misconceptions which must be defeated by instruction [14]. This

view was limited in explaining how students actually acquire expertise. However, more

recently, the view of student learning has become more nuanced [15, 14]. Instead, students

have many intuitive resources that they may apply to solving the problems that they face.

As students learn, they also learn the productive resources which may be applied to the

problems that they face which will lead to positive outcomes. The paradigm shift about the

understandings of student learning leads us to reconsider the paradigm that the community

has used to understand expertise.

1.1 Introduction

In order to re-examine this understanding, we have designed and carried out a categorization

experiment and developed a novel methodology to analyze that experiment [6]. Chapter of

this thesis will discuss the developments in our understanding of student learning as well as

review categorization studies in physics over the past 31 years. This discussion will include
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a summary of the different analysis methods used by each of the research groups, and allow

us to understand the advantages and disadvantages of each method.

Chapter will compare and contrast the previous analysis methods used to analyze cat-

egorizations. Given the aforementioned difficulties in replicating the seminal experiment of

Chi et al. and the revolution in understanding of learning, we will critique these methods

based on three properties. These are that an analysis method should be problem specific,

objective, and robust against outliers. With these requirements in mind, we will motivate

the need for the method we have developed to fulfill these requirements.

Chapter will introduce the key idea supporting this new method that we have created

to describe categorization data. The first step is to convert an individual sorter’s catego-

rization into a graph network. Expert and novice sorters’ graphs are then compared based

on the macroscopic properties of these graphs. We find that the key factor discriminating

sorters is not expertise, instead it is their sorting behavior, something we term “stacking”

vs. “spreading.”

Chapter will develop a statistical model which will seek to find the common pattern be-

hind this macroscopic comparison. In creating this model we choose only a three parameters

to describe the group behavior: The number of questions sorted (a parameter fixed by the

experiment), the average number of categories, and the multiple categorization parameter.

As is customary in categorization experiments, a single problem may be placed into more

than one category, and the multiple categorization parameter describes the probability that

multiple categorization occurs. Due to the fact that the individual multiple categorization

probability decreases with the individual number of categories created, this reinforces the

“stacker” vs. “spreader” interpretation.
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Chapter will detail how to compare any two categorization graphs to each other using a

distance metric we developed and will visualize the relative position of sorters using Principal

Components Analysis (PCA) [6]. This visualization technique also confirms the “stacking”

and “spreading” behavior observed as the largest source of variation in our categorization

experiment. However, the second largest source of variation found by the PCA is due to

expertise. This finding suggests that the experiment of Chi et al. has been difficult to

replicate because the largest source of variation was not due to expertise. We explore next

why a particular set of problems would discriminate experts from novices, while others do

not, by considering many subsets of the large problem set categorized by the sorters.

In Chapter we will discuss the different statistics used to describe the problem sets.

These include the cognitive and contextual features of the problems as well as the ability

that a subset has to discriminate expert and novice sorters. The contextual features of

the problems include a problem’s chapter and difficulty. The discriminatory properties of

subsets are found by using both parametric and non-parametric tests which compare the

PCA coordinates of the expert and novice groups.

Finally, in Chapter , we will discuss the results of this subset analysis and determine

which properties are important in discriminating experts from novices in a categorization

experiment. We will discuss the importance, not only of problem content, but requiring

sorters to categorize problems which require diverse solution types.
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Chapter 2

Literature Review

2.1 Cognitive Structure

Before we begin discussing categorization studies, we should define what an expert is from

a cognitive perspective. We know that we may identify an expert by his skill set, however,

using a skill set to define an expert is a rather circular definition, so we will do better.

Larkin et al. [8] consider the research on experts in several fields—namely Chess, algebra,

and physics—to help us arrive at an answer. Cognitive research has taught us how experts

store knowledge and about an expert’s ability to access that knowledge. From a cognitive

viewpoint, an expert’s knowledge of introductory topics may be thought of as a well indexed,

easy to access database. Moreover, this database is also well cross-referenced so that the

main topics are also easily connected. The difference can be seen in this anecdote regarding

Chess experts and novices. If a chess expert is shown a position from an actual match with

about 25 pieces on the board and allowed to study it for 5–10 seconds, he will be able to

reproduce it with about 90% accuracy, while a novice will typically be able to replace only
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about 20–25% of the pieces [8]. This stark difference is due in large part to a memory

phenomena called “chunking.”[8] Cognitive research has shown that people can only hold

relatively few “objects” in short term memory. Chess experts will quickly recognize a familiar

pawn structure and placement of key pieces; the difference is therefore easily explained since a

chess expert memorizes structures while the novices attempts to remember a position piece

by piece. However, people studying chess experts have found out how to “rig the game”

so that expert performance reverts back to novice ability. They can do this by putting a

position on the board that is purely random which could never happen in a real game. For

example, never will a pawn be in the first rank nor the white king adjacent to the black

king. Positions like these have none of the familiar chunks that an expert chess player will

recognize, therefore the performance on this task will be the same for experts and novices.

In order to compare expert and novice cognitive structures, we need to define our under-

standing of the underlying process of categorization. Different understandings of the under-

lying process of categorization will lead to different statistical analysis methods. Chi et al.

seem to view categorization as a deterministic process, as evidenced by the “double-check”

step in their experimental method. They see any minor replication variation as evidence of

an underlying method. On the other hand, one of the phenomena that physics education

research has to grapple with is the variability of learner responses to what appear to be

identical scenarios, see for example Scherr [16] dealing with problems in relativity and Frank

et al. [17] dealing with problems in motion. Rather than interpreting card-sorting outcomes

as reflections of stable theories or beliefs, an alternative model is that they are based on ad

hoc assemblies of more simple intuitions (similar to “phenomenological primitives,” [15] or

“resources” [14]) — those are then assembled “on-the-fly,” and the particular assembly may
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vary depending on circumstances. There is no reason to expect that card-sorting experiments

are immune to this variability, and one may thus expect that any sorter who categorizes the

same set of problems on separate occasions would return different results, although he or she

might even recognize the problems that are used. We cannot control the actual mechanisms

potentially underlying these “random” outcomes, but have accounted for the resulting vari-

ability in the choice of our statistical methods. In addition, we use sample-based statistics

to interpret our categorization data, realizing that our sample is only part of a vastly larger

population.

2.2 Categorization Studies

The novice group of Chi et al.’s study was made up of eight students who had just finished

the first semester of an introductory university physics class, and the expert group was made

up of eight advanced Ph.D. physics students. Both groups were given the instructions to

sort the problems “based on similarity of solution”[1]. Problems were allowed to be placed

in two (or more) categories if the sorter so desired; we call this “multiple categorization,” as

opposed to “single categorization,” where each problem would have to be sorted in one and

only one category.

Each sorter categorized their set in front of a member of the research team according to

a uniform protocol. Sorters were required to sort the problems without paper and pencil

to prevent them from actually solving the problems. After sorting the problems a second

time — to check for consistency — the sorters explained the reasoning for their groupings.

After a qualitative analysis of the category names used by more than two sorters, Chi et al.’s

group concluded that the key distinction between experts and novices is, quite sensibly, that
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experts sort problems based on the physics principle required to solve each problem, while

novices sort the problems based on surface features. This difference in categorization, Chi

et al. concluded, was an experts’ ability to convert contextual cues from the problem texts

and figures into the physics principles that are required to solve those problems. The main

message from Chi’s paper is that this difference in categorization behavior allows experts to

be better problem solvers than novices [1].

In order to reevaluate these conclusions de Jong and Ferguson-Hessler studied both expert

and novice categorizations of “elements of knowledge” required in a typical Electricity and

Magnetism course [18]. In this study, the novice group consisted of 47 first-year students who

had just finished the Electricity and Magnetism course, and the expert group consisted of four

staff members, each of whom had taught the course for multiple years [18]. The “elements of

knowledge” categorized were simply bits of information and ideas needed to solve 12 “classic”

E&M problems. For example, in order to find the electric field due to a semi-infinite line of

charge with a constant charge per unit length using Coulomb’s law one needs four “elements

of knowledge.” First, a person would need to understand the physical meaning of a semi-

infinite line of charge. Second, a person would need to know the mathematical definition of

Coulomb’s law. Third, a person would need to know the principle of superposition and that

an application of this principle would be to take the integral of a vector quantity. Fourth, a

person would need to know the relationship between electric force and electric field (de Jong

and Ferguson-Hessler defined Coulomb’s law for the force only and not the electric field).

A total of 65 “elements of knowledge” were placed on individual cards and given to the

participants in a random order. The participants were asked to sort the cards into piles and

give names to their piles, indicating which, if any, elements were unfamiliar by putting them
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in a separate pile. de Jong and Ferguson-Hessler found that novices who performed well

in the class generally sorted the “elements of knowledge” into groups according to the each

classic problem which generated that group. However, the experts’ advanced knowledge had

been re-organized in a “hierarchical way” useful for upper-level physics applications rather

than in the manner of the good novice problem solvers. That is, these elements tended to

be organized according to principles (Coulomb’s law, Biot-Savart,. . . ) and processes rather

than in groups useful for solving “classic” problems.

In a subsequent study, Veldhuis attempted to verify the result of Chi et al. [2]. Veld-

huis had three groups, a novice group comprised of 94 introductory physics students, an

intermediate group of 5 students who had just finished classical mechanics, and an expert

group of 20 physics professors—among whom only 2 had not taught calculus-based physics.

Veldhuis created four different categorization sets, one of which was given to each subject to

categorize according to a protocol similar to that used by Chi et al.’s group. The first set was

created in an attempt to mimic the Chi et al. problem set [3], and the second was a control

set with a similar collection of end-of-chapter problems. In contrast, the third and fourth

sets were carefully constructed so that each problem had only a single physics principle and

a single surface feature from a set of principles and surface features [2]. For example, Table

2.1 shows how the third set was constructed by populating a matrix of four surface and four

conceptual features. The fourth set was also “rigged.” It had the same number of cards,

but only two surface and two conceptual features. Veldhuis could not draw a conclusion

from the categorizations from his first two problem sets. However, sets 3 and 4 agreed with

Chi et al. in that experts categorize problems based on physics principles while novices show

a “more complex behavior.” [2, 3] Ironically, Veldhuis observed that distinguishing experts
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Table 2.1: Veldhuis’s Matrix Method. Deep Structures are listed along the top. Surface
Features are listed along the left. By “terms” Veldhuis includes “physical arrangements of
objects and literal physics terms” in the problem text.[3] Veldhuis created this set hoping
that experts would group the problems by column and novices would group the problems by
row.

Newton II1 E cons2 ~p cons3 ~L cons4

Spring Prob 16 Prob 2 Prob 4 Prob 9
Ramp Prob 11 Prob 6 Prob 12 Prob 15
Pulley Prob 5 Prob 14 Prob 13 Prob 8
Terms Prob 3 Prob 10 Prob 7 Prob 1

and novices based on surface features of their categorizations failed unless the desired physics

features — conceptual and surface — were built into the design of the experiment.

More recently, the work done in Singh’s group at the University of Pittsburgh has broad-

ened the application of “card-sorting” to other fields [19, 20, 7, 21]. Mason and Singh

compared students in introductory physics courses with both physics graduate students and

physics faculty. Mason and Singh created two categorization sets of twenty-four problems

each. The first set was created in an attempt to mimic Chi et al.’s set. Seven problems

were directly from Chi et al.’s original set, based on examples given in the paper, while the

remainder of the Chi et al.’s original set is apparently lost in history. A second set was

devised because the results from the first set showed “major differences” with Chi et al.’s

data [19, 20], which may not be surprising given Veldhuis’s previous results [2, 3]. Each

subject, upon reading the problems, filled in three columns on a response sheet: category

name, the appropriateness of the category name, and the identity of problems that fit in

the category. Mason and Singh then rated each problem’s category as “good,” “moderate,”

or “poor” based on each sorter’s description of the category. A category was considered

“good” if it was based on the underlying physics principles. Finally, the authors asked a
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faculty panel to validate their ratings by following the same procedure on a subset of the

categorizations.

Mason and Singh found that the problems taken directly from Chi et al.’s original study

were placed by novices in “good” categories far less often than they did on average, deter-

mining that they were generally from topics more difficult to novice students. For example,

difficult topics for novices might have been rotational motion, non-equilibrium applications

of Newton’s 2nd law, or the Work-Energy theorem [19, 20]. Mason and Singh also found that

the superficial category names were far less prevalent in their study than in Chi’s original

study. It is possible that the shift away from novices’ use of superficial category names is

due to a change in curricular focus precipitated by Chi et al.’s result. Contrary to the sharp

distinction found by Chi et al., Mason and Singh found that there was some overlap between

the calculus-based introductory physics students and the graduate students [19, 20].

In a follow-up study, Singh [7] asked graduate student teaching assistants to perform a

similar categorization exercise, both as themselves and through the eyes of their students, and

compared both types of their categorizations to physics faculty and introductory students. In

contrast with Chi et al., Singh considered the physics faculty as the “true experts” and only

looked at graduate students as a sort of intermediate group. Similar to Mason and Singh,

problem categories were rated to be “good”, “moderate,” or “poor,” validated by a faculty

panel. Singh found that the graduate students acting as introductory students performed

better on the categorization task than did actual introductory students, thus overestimating

their students [7]. Singh found that the professors performed best on the categorization

task, distinguishing this group from the categorizations of the graduate students acting as

themselves. This suggested that the use of graduate students as an expert group is not
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entirely accurate, as their behavior is not truly expert-like.

Finally, in a separate study, Lin and Singh also carried out a categorization study con-

cerning Quantum Mechanics problems [21]. For this task the novice group consisted of

twenty-two Junior and Senior physics majors taking Quantum Mechanics. The expert group

consisted of six faculty members [21]. In contrast to the previous studies mentioned here,

Lin and Singh chose to have a three-member faculty panel evaluate all of the categorizations,

scoring each category as either good, moderate, or poor. In contrast to the studies of intro-

ductory physics problems, in Lin and Singh’s study, the expert group had more variability,

as even the faculty panel did not see this task in stark terms. Two of the panel members

even said that they disliked using the terms “good” and “poor” to describe a categorization

of Quantum Mechanics problems; this reservation was not voiced by the raters in the intro-

ductory problem categorization studies [21]. Similarly, the faculty panel members said that

sometimes they preferred another categorization choice to their own [21]. All of this, Lin

and Singh conclude, was due to the more difficult nature of the problems. In any case, it is

clear that no “ideal” set of groupings existed, and it was impossible to simply assign some

“score” to a given categorization.

As you can see, interest in replicating the result of Chi et al. has increased in the past

decade, possibly due to the fact that the PER community has come to change its under-

standing of learning. This renewed interest has led to correspondence with the lead author,

Chi. Anyone interested in replicating Chi et al.’s experiment would want two things from

the original study: The problems used and the analysis method used. However, in corre-

spondence with Mason and Singh, Chi states that all but a few problems from the original

study “had been discarded and were not available” [20]. Furthermore, the exact analysis
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method Chi et al. used is apparently lost to history as well [22]. From these communications

as well as the description of the analysis method from the original paper, it is apparent that

Chi et al. did not use all of the problems in their analysis. The truth is simply that so much

of the information from Chi et al.’s original study has been lost that we cannot falsify or

verify it.

In summary, replicating Chi et al.’s seminal experiment is challenging. More often than

not, attempts to repeat it fail, as an informal survey among physics education researchers

indicates — however, such null-results do not get published. Yet, as a community of physics

educators, we hold a firm belief that deep down there is a significant difference in problem

solving behavior between experts and novices, and that categorization is an important piece

of the puzzle. Quantifying this difference, however, more often than not, remains elusive.
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Chapter 3

Method Philosophy

This chapter will compare and contrast the previous analysis methods used to analyze cat-

egorizations. Given the aforementioned difficulties in replicating the seminal experiment of

Chi et al. and the revolution in understanding of learning, we will critique these methods

based on three properties. These are that an analysis method should be problem specific,

objective, and robust against outliers. With these requirements in mind, we will motivate

the need for the method we have developed to fulfill these requirements.

While Chi et al.’s method has been the predominant paradigm for follow-up studies, their

methodology is based on a certain model of the categorization process. Using a different

model, one will arrive at a different methodology. Given the importance of this experimen-

tal technique, we believe it is important to understand the underlying model and consider

alternatives to its assumptions.
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3.1 Macroscopic versus Microscopic Cluster Compari-

son

Chi et al.’s group looked at a processed version of the category names agreed upon by

multiple sorters and counted the number of problems in each category name [1]. Their

analysis does not seem to hinge on the identity of the problems in each group, merely the

number of problems in that group. For example, if two sorters both used the category name

“Conservation of Energy” but one sorter put problems {1, 3, 5, 7, 9} in that set and the other

sorter put problems {2, 4, 7, 8, 9} in that set, Chi et al.’s analysis would count that as two

people who both used an energy related variant as a category and both had five problems in

that set. In other words, the sets would be treated identically. We argue that it is important

that these two groups should be treated differently, as they have few identical elements. We

believe that instead of just these “macroscopic” measures (sizes and names of groups), the

sorting results should also be compared on the “microscopic” level of individual problems.

3.2 Deterministic versus Variable Nature of Sorting

Different understandings of the underlying process of categorization will lead to different

statistical analysis methods. Chi et al. seem to view categorization as a deterministic pro-

cess, as evidenced by the “double-check” step in their experimental method. They see any

minor replication variation as evidence of an underlying method. That is, variation on the

second time through the cards is a chance to correct a mistake. On the other hand, one

of the phenomena that physics education research has to grapple with is the variability of

learner responses to what appear to be identical scenarios, see for example Frank et al. [17].
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Rather than interpreting card-sorting outcomes as reflections of stable theories or beliefs,

an alternative model is that they are based on ad hoc assemblies of more simple intuitions

(similar to “phenomenological primitives,” [15] or “resources” [14]) — those are then as-

sembled “on-the-fly,” and the particular assembly may depend on circumstances which are

dynamic. There is no reason to expect that card-sorting experiments are immune to this

variability, and one may thus expect that any sorter who categorizes the same set of prob-

lems on separate occasions would return different results, although he or she might even

recognize the problems that are used. To wit, replication variation is expected. We cannot

control the actual mechanisms potentially underlying these “random” outcomes, but have

accounted for the resulting variability in the choice of our statistical methods. In addition,

we use sample-based statistics to interpret our categorization data, realizing that our sample

is only part of a vastly larger population.

3.3 Parametric versus Non-Parametric Scoring

Previous analysis methods [19, 20, 7, 21] describe each categorization individually with a

score, which is either a comparison to an “ideal” categorization set or an individual “grade” of

each set. These methods measure performance on the categorization task, where the scoring

criteria is an input of the evaluation process — the process starts with assumptions of what

properties an expert categorization will have. It may, however, not be clear what an “ideal”

set is, which in turn makes the scoring somewhat ambiguous. First, curricular emphasis

within any physics program varies over time; as does the researcher’s personal categorization.

Therefore that researcher may rate the same data differently if he or she were to re-evaluate

the same categorization set again. Second, the experiment will not be repeatable from
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one group to another using these methods because each individual experimenter’s ideal

categorization of the same set will be different, possibly creating a large distortion in the

analysis. Third, as Lin and Singh found, as topics become more complex, an expert will

express uncertainty in his or her own choice, sometimes preferring the choice of another

to his or her own. Finally, if one evaluates each categorization subjectively based on the

expected deep structure category for each problem, one assumes the deep structure versus

surface features distinction rather than letting that be a conclusion of the statistical analysis.

We believe that any groupings should emerge from the data itself. In other words, the

properties and patterns of what makes a categorization expert-like should be an output of

the experiment. Similar to outcomes from non-parametric data-mining, it may not always be

clear what these characteristics mean, as they are frequently combinations of many features

or latent factors.

3.4 Visualization of the Data

Finally, several studies utilized dendograms to interpret their data, e.g., Veldhuis [2]. While

dendograms are intuitive, they are not very stable. Milligan [23] investigated a number of

clustering algorithms and compared them using Monte-Carlo generated data from a defined,

yet synthetic, cluster model which employed random perturbations. According to Milligan,

complete linkage clustering, a type of dendogram analysis, struggles to recover clusters when

there are outliers present in the dataset. Another type of dendogram analysis, single linkage

clustering, is highly sensitive to noise in the dataset. It is for these reasons that it is important

to pre-process any data, for example by removing outliers from the data set, in order to get a

dendogram that is clear and interpretable. Interpreting a dendogram is a subjective exercise
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as each dendogram will have a unique threshold where the tree has clustered into groups, yet

has not begun to coalesce into a single stem on the tree. Some dendograms do not have any

distinguishable groups at all. We desired to have an experimental method that required no

pre-processing, with a reliable and easily interpretable output suitable for further analysis.

As a result, we have chosen a different approach, based on graphs.

3.5 An Alternative Approach

Given the above concerns, we explored a different model of analyzing and interpreting card-

sorting data. To describe clustering on an individual problem level, we decided to approach

the analysis as a network. Instead of looking at piles, we decided to look at individual

question cards (nodes in the network) and relationships (edges, in this case due to nodes

“being in the same pile”). Networks are well described by graph theory. As the relationship

“being in the same pile” has no direction (if problem A is in the same pile as B, then B is

in the same pile as A), we are looking at undirected graphs. The resulting graphs have the

advantage of converting an abstract network into an object that can both be visualized and

analyzed using an established canon of mathematical methods.

As scientists, we prefer simple explanations to complex ones, and sought to distinguish

experts from novices using the simplest test possible. It is for this reason that we compare

these categorizations’ macroscopic features before continuing on to microscopic features. The

key distinction between the macroscopic and microscopic scales is that the macroscopic scale

should not be sensitive to the identity of the problems, while the microscopic scale should be

highly sensitive to problem identity. In choosing mathematical methods for further analysis,

we were unexpectedly limited by one feature of Chi et al.’s and subsequent studies: the
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“multiple categorization,” i.e., the fact that one and the same question card is allowed to be

in more than one pile. This presented a challenge to several existing algorithms. The key

measurement we make is a “distance” measurement between each pair of categorizations.

Given these distances, we used Principal Components Analysis (PCA) to visualize the data

in a few simple plots.
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Chapter 4

Visual and Macroscopic Properties of

Sample Experimental Data

This chapter introduces the key idea supporting this new method that we have created to

describe categorization data. The first step is to convert an individual sorter’s categoriza-

tion into a graph network. Expert and novice sorters’ graphs are then compared based

on the macroscopic properties of these graphs. We find that the key factor discriminating

sorters is not expertise, instead it is their sorting behavior, something we term “stacking”

vs. “spreading.”

In order to cognitive structures of physics concepts, we designed and carried out a card-

sorting experiment on physics experts and novices at Michigan State University. A total

of 18 physics professors and 23 novices participated in our study. All of the novices had

completed at least the first semester of an introductory physics course at MSU. We gave

each sorter a set of 50 problems to sort based on similarity of solution. The physics faculty

were given the set and allowed to choose a time when they would complete the task at
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their convenience while the novices were asked to complete the task during a window of a

few hours in an informally supervised setting. Each sorter categorized his or her problems

and recorded his groups and group names in a separate packet. Multiple categorization was

allowed, but it was in no way communicated to the individual sorters that this practice was

expected or endorsed. While this may be problematic if some sorters did not assume that

multiple categorization was allowed, it is the standard protocol for these sorts of experiments

[1, 7, 20].

4.1 Visualizing Categorizations as Graphs

Analyzing the experimental data in terms of graphs requires a shift in conceptualization.

As a simple example, consider ten questions categorized into four categories. Suppose that

the first category is Newton’s second law and contains problems {2, 4, 6, 8, 10}. Suppose

also that the second category is conservation of energy and contains problems {1, 3, 5, 7, 9},

the third category is conservation of momentum and contains problems {2, 3, 5, 7}, and the

fourth category is kinematics and contains problems {1, 4, 9}. At this stage in the process,

the names of the categories are irrelevant. In order to create a graph of categorization data

we represented questions (cards) as the nodes and used each category to create a set of edges.

To start out, we summarize the categorization information in a matrix T . This matrix is a

Boolean (0 |1) table with the items being sorted placed along the rows and the categories in
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each column. For this example categorization the T matrix is:

T =



0 1 0 1

1 0 1 0

0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 0

0 1 1 0

1 0 0 0

0 1 0 1

1 0 0 0


This is then converted into a weighted adjacency matrix Xij representing the number of

times that item i and item j are in the same category. Specifically,

Xij =
∑
k

TikTjk

(
1− δij

)
(4.1)

where δij is the Kronecker delta. Note that Xii = 0 because in the context of graph theory

a term on the diagonal will draw an edge from an object to itself. Thus, Xij represents the

number of edges that must be drawn between two vertices i and j on the graph. The graph

of this example is shown in Figure 4.1.

Also, from the weighted adjacency matrix, the adjacency matrix Aij can be derived:

Aij = min
(
Xij, 1

)
(4.2)
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We applied this method to the physics problem categorizations created by each sorter. In

doing so, we obtained i) graphs that we may inspect visually ii) adjacency matrices which

will be useful for the calculation of certain statistics and iii) weighted adjacency matrices

which will be useful when we consider our distance metric.

In order to visualize the graphs seen in Figure 4.1 as well as the other categorization

graphs throughout this paper, we utilized the R statistical software’s [24] igraph package[25].

There are currently 13 different algorithms programmed into R for determining node place-

ment, and each would cause the same graph to look very different. We initially used the

Kamada-Kawai algorithm [26], however, we eventually chose the Fruchterman-Reingold al-

gorithm [27] because it does the best job of illustrating multiple categorization. Finally, the

graphs shown in Figure 4.1 do not identify each node. However, there are graphs for all of

the sorters in this study shown in Appendix E which do include labels for each problem.

Fig. 4.2 shows the power of the visualization technique: while our sample data had more

than 40 participants sorting 50 cards each into any number of piles, flipping through the

graphs in less than a minute allowed us to identify the outliers (such as Sorter 16 in the

figure) and general features along which to distinguish the sorters.

Multiple categorization can lead to a situation where the above mechanism “collapses”

clusters. For example, a sorter may sort three problems, 1, 2, and 3, into three categories,

{1,2}, {2,3}, and {3,1}. In the above mechanism, these three categories of two double-

categorized problems each will be indistinguishable from one “collapsed” cluster {1,2,3}

with three single-categorized problems. One might argue that this collapsing effect is in fact

a feature of the mechanism, since with all of the required double-categorization, the original

categories would have to have been spurious, yet, as we want to closely represent the original
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Figure 4.1: Simple example graph: When two problems are in the same category more
than once (problems 1 and 9 as well as problems 3, 5, and 7 in this example) the edges drawn
between those two corresponding vertices are thicker. The line width of each edge was taken
proportional to the square of the number of connections between two vertices.
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Figure 4.2: MSU physics study sorter graphs: Displayed from left to right are the
categorization graphs for representative sorters. Sorters 2 and 16 were experts and sorters
20 and 30 were novices. Sorters 2 and 30 did very little multiple categorization, sorter 20 did
a good bit of multiple categorization. Sorter 16 was unique in choosing to categorize each
problem between 2 and 3 times. Appendix E contains graphs with each node labeled by the
problem number for all sorters, including those shown here.
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sorting, we need to be on the lookout for a possible loss of information upon converting each

sorting into a graph. We will do this by comparing the number of categories to an analogous

statistic from graph theory, the number of maximal cliques.

4.2 Number of Categories and Maximal Cliques

The “number of categories” is a frequently used macroscopic measure of card sorting distri-

butions and not yet particular to graph theory. Chi et al.’s experiment found that experts

and novices created, on average, the same number of categories, which is true also in our

study: experts created an average of 10.8±4.5 categories, while novices created 11.4±4.4 cat-

egories. The large standard deviations indicate a wide distribution of category counts, and

thus we decided to extend our comparison to the entire distributions, which includes differ-

ences in skewness or shape. For example, a Gaussian distribution and a bimodal distribution

with the same mean and standard deviation would be discriminated in our tests whereas

they would not be discriminated when only comparing averages. In order to compare two

distributions, we consider the Empirical Cumulative Distribution Function (ECDF), which

is calculated from each normalized distribution D(x) as follows:

ECDF (x) =

∫ x

−∞
D
(
x′
)
dx′ (4.3)

For the category number distribution the ECDF (x) represents the fraction of sorters who

have x or less categories. We used the 2-sample Kolmogorov–Smirnov goodness-of-fit hypoth-

esis test (KS-test). The KS-test statistic is the maximum difference between two ECDFs.

Sample distributions from the same population have a known KS-test statistic distribution.
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This allows for the calculation of a p-value much in the same way that a p-value is calculated

from a T-test. This p-value behaves in the usual way: If p > 0.05, then the distributions are

not statistically different at a 95% confidence interval. A KS-test comparing the ECDFs of

expert and novice number of categories (see Figure 4.3) demonstrated no statistically signif-

icant difference (p = 0.4793). This result confirms and expands Chi et al.’s result regarding

the average number of categories for experts and novices. Furthermore, we see that these

distributions are consistent with a binomial distribution.

The graph-theoretical equivalent of the number of categories is the number of maximal

cliques. A node is a member of a clique if it is connected to all of the other nodes in the

clique, and a clique is maximal if there is no other node which may be added to the clique.

To investigate the possible “collapse” of categories, we analyzed the ratio of categories to

maximal cliques for each sorter, and found that all but four sorters had exactly the same

number of maximal cliques as categories, which was not statistically significant (p-value=1.0).

4.3 Connectedness

The number of so-called 3-cycles macroscopically describes the connectedness of a graph,

and is the first graph theoretical measure we apply. A 3-cycle is a sub-graph of three vertices

where all vertices connect by edges. In our example, shown in Figure 4.1, one of the 24 3-

cycles is the sub-graph including vertices {1, 3, 5} because they are all connected by (at least)

one edge. However, the sub-graph including vertices {1, 2, 3} is not a 3-cycle because vertex 1

is not connected to vertex 2. This statistic is related to how often a sorter categorizes cards in

multiple piles. Contrary to the previous example where 7 of the 10 problems were categorized

twice, now consider the following example without any multiple categorization. Suppose the
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Figure 4.3: Distribution of Number of Categories: Here we see the ECDFs of the num-
ber of category distributions for experts and novices separately. The faculty set is displayed
using the dashed curve and the novice set is displayed using the dotted curve. We also
compare these distributions to a sample (N = 1000) shifted binomial distribution with prob-
ability ρ = 0.204. A Kolmogorov–Smirnov test comparing these two distributions suggests
that expert and novice categorizations are not distinguishable based on category number
(p = 0.4793), and both are well approximated by the same shifted binomial distribution.
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Figure 4.4: Number of 3-cycles: This is the distribution of the number of 3-cycles for
experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not
distinguishable based on their 3-cycle distributions (p = 0.1584).

conservation of energy category has problems {1, 4, 7, 10}, the Newton’s Second Law category

has problems {2, 5, 8}, and the conservation of momentum category has problems {3, 6, 9}.

In this categorization, where there are no problems multiply categorized, there are only six

3-cycles. As such, the 3-cycle distribution is extremely useful for analyzing the connectedness

of graphs. A KS-test comparing the ECDFs of expert and novice 3-cycle distributions (see

Figure 4.4) demonstrated no statistically significant difference (p = 0.1584). This result was

expected because connectedness does not take problem identity into account.
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4.4 Maximum Clique Size

Our next macroscopic test considers the so-called maximum clique size, which is the size

of the largest maximal clique — in our context the maximum clique size is the size of the

largest “pile” that a sorter has created. A KS-test comparing the ECDFs of expert and novice

maximum clique size distributions (see Figure 4.5) demonstrated no statistically significant

difference (p = 0.0587). Similar to the connectedness result in the preceding section, this

result was expected as maximum clique size does not take problem identity into account.

4.5 Diameter

The so-called diameter is a macroscopic measure that describes the number of jumps it takes

to get between the two least connected points. An example of this statistic is the so-called

maximum Erdös number, which says that many mathematicians can be connected to Paul

Erdös in 8 steps or less by assuming that two mathematicians are connected if they have

collaborated on at least one project. As such, the diameter distribution is extremely useful

for comparing the maximum relative sizes of graphs. As most of our graphs are unconnected

(not every pair of nodes has a path between them), this introduces a difficulty of how to

determine the diameter. While some would choose to find the diameter to be the number of

nodes in the graph +1 (or 51 in our case), we chose to ignore all unconnected nodes. This

was done to ensure the largest possible variation in our data. If we had made the former

choice, the ECDF would have (nearly) looked like a step function which would have given

the distributions an artificial look, and caused the differences in the data distributions to

be almost entirely determined by the outliers, rather than the group as a whole. A KS-test
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Figure 4.5: Maximum Clique Size: This is the distribution of the maximum clique size
for experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are
not distinguishable based on their maximum clique size distributions (p = 0.0587).
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Figure 4.6: Diameter: This is the distribution of the diameter of the experts and novices.
A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based
on their diameter distributions (p = 0.6432).

comparing the ECDFs of expert and novice diameter distributions (see Figure 4.6) demon-

strated no statistically significant difference (p = 0.6432). This result was also expected as

diameter does not take problem identity into account.
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4.6 Average Path Length

The average path length is a macroscopic measure that describes the average number of

jumps it takes to get between all unique pairs of points. As such, the distribution of average

path lengths may be used to compare the average relative sizes of the different graphs. The

calculation of the average path length is subject to the same difficulty due to unconnected

graphs as is the diameter. In this case, we chose to set the path length between unconnected

nodes to be 51, rather than ignoring them. In this setting, we feel that this measure includes

both the local structure of the graph and a measure of how unconnected the graph is as

well. As a result, we note that the range of average path length is much larger than the

diameter. However, a KS-test comparing the ECDFs of expert and novice average path

length distributions (see Figure 4.7) demonstrated no statistically significant difference (p =

0.3906). This result, combined with all of the previous results suggests that our hypothesis

that expert and novice categorizations can not be distinguished without taking problem

identity into account has merit.
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Figure 4.7: Average Path Length: This is the distribution of the average path length for
experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not
distinguishable based on their average path length distributions (p = 0.3906).
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Chapter 5

Categorization Models

This chapter develops a statistical model which seeks to find the common pattern behind

the common macroscopic sorting behavior of experts and novices. In creating this model we

choose only a three parameters to describe the group behavior: The number of questions

sorted (a parameter fixed by the experiment), the average number of categories, and the

multiple categorization parameter. As is customary in categorization experiments, a single

problem may be placed into more than one category, and the multiple categorization pa-

rameter describes the probability that multiple categorization occurs. Due to the fact that

the individual multiple categorization probability decreases with the individual number of

categories created, this reinforces the “stacker” vs. “spreader” interpretation.

All of the macroscopic statistical measures, that is, measures which dealt with just the

groups of cards and not the individual cards and their identities, yielded no significant

distinction between expert and novice sorters. For now, visualizing the data was successful

in quickly recognizing outliers (subjects who sort differently), but those outliers were not

necessarily more prevalent among experts or novices. We now aim to construct a model
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of the categorization process that has the same macroscopic and visual properties as our

sample experimental data. Along the way, we learn more about human behavior during

categorization tasks.

We started out by using two standard models frequently used in graph theory literature.

Unfortunately, neither of these two standard models reproduces the data, in spite of the fact

that they are generally considered complementary. We thus created our own model, which

generated more realistic model data.

5.1 Standard Erdös-Renyi and Barabasi Models

An Erdös-Renyi model generates a “uniform” graph, that is a graph where any two vertices

have a certain fixed probability of being connected [28]. Uniform graphs may be generated

as random realizations of a model having two parameters: the number of nodes and the

probability that nodes will connect. Barabasi graphs, a kind of a “small-world” graph often

used to model social networking connections[29], is created by adding one node at a time, and

connecting this new node with the existing nodes on the graph with a probability related to

the number of edges already connected to each node P ∝ Na+ b. The model for a Barabasi

graph has three parameters, the number of nodes in the graph, the probability to connect

to a node with no other connections (b), and the power (a) by which the number of edges

already connected to a node (N) is raised. We describe next the statistical comparison and

analysis of graphs generated by these models to the graphs generated by our human sorters.

First, we considered the Erdös-Renyi model. See Figure 5.1 for examples of Erdös-Renyi

graphs. In order to determine the best input parameters for our model we optimized these

parameters using the standard algorithm “optim” found in R[24]. This was done by calculat-
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ing 1000 random graphs from the Erdös-Renyi model using test parameters and calculating

the 3-cycle distribution from those graphs. This distribution was then compared to the

combined expert and novice 3-cycle distribution from our experiment, and we calculated

the KS-test statistic for those two distributions. Ultimately, the parameters that we deter-

mined through this optimization for the Erdös-Renyi model were the ones that produced the

minimum KS-test statistic between the sorter distribution and the Erdös-Renyi model distri-

bution. See Figure 5.2 for a comparison of the ECDFs for these 3-cycle distributions. While

the optimization was only done for the 3-cycle parameter, the minimum KS-test statistic

corresponded to p < 10−6. We also compared the sorter distributions to the Erdös-Renyi

model distribution for maximum clique size, diameter, and average path length for these

optimized parameters. In every case we found p < 10−6 and therefore the Erdös-Renyi

model with optimized parameters does not statistically describe the sorter data. Next we

considered the Barabasi model: See Figure 5.1 for examples of Barabasi graphs. We repeated

the same optimization process for the Barabasi model parameters and also compared the

sorter distributions for 3-cycles, maximum clique size, diameter, and average path length. In

every case we find p < 10−6 and therefore the Barabasi model does not statistically describe

the sorter data. Due to the difficulty that these canonical models have in describing the

sorters’ behavior we have chosen to create our own model, which we will call the Cognitive

Categorization Model (CCM).

5.2 Cognitive Categorization Model (CCM)

As standard models failed to reproduce our experimental data in a satisfactory way, we

constructed our own model, which is directly based on the rules of the categorization exper-
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Figure 5.1: Erdös-Renyi and Barabasi graphs: The two graphs on the top are Erdös-
Renyi graphs created using optimized parameters that best fit the 3 cycle distributions of
experts and novices. On the bottom, we see two Barabasi graphs.
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Figure 5.2: 3-cycle distributions Erdös-Renyi model: This is an ECDF of the 3-cycle
distribution for sorters and the Erdös-Renyi model. Here the dashed line corresponds to the
Erdös-Renyi model while the solid line corresponds to the sorter data.
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Figure 5.3: 3-cycle distributions Barabasi model: This is an ECDF of the 3-cycle
distribution for the sorters and the Barabasi model. Here the dashed line corresponds to the
Barabasi model while the solid line corresponds to the sorter data.
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iment:

1. All questions must be put into a category.

2. All categories must have at least one question in them.

3. A question may fall into more than one category.

The latter rule is mathematically cumbersome, but had to be included since it is standard

procedure in most experiments, including the one that was the base of our sample data in

the previous section.

Our new model, which we call the Cognitive Categorization Model (CCM), has three

parameters: The first parameter of the CCM model (Q) represents the number of questions

that are being categorized in the experiment. The second parameter is the average number of

categories determined by a sorter. As we described in Subsection 4.2, a shifted binomial dis-

tribution fits the category number data rather well. A binomial distribution is the “weighted

coin” distribution — if you flip a weighted coin N times, what is the probability that you

will get “heads” k times? In principle, one can flip a coin N times and get tails every time.

By Rule #1, we do not want to allow zero categories, therefore we must introduce a shift.

It would also be senseless to create more categories than questions, so we wish to choose

a number of categories from between 1 and Q. The simplest way to do this is to generate

a number from the binomial distribution between 0 and Q − 1 and then add 1 to each of

these randomly generated values. The probability of success is chosen to correspond to the

final average number of categories. The final parameter is the probability to categorize a

card into more than one pile. After each problem has been sorted into a single pile, the

algorithm tests whether that problem should be sorted into other categories as well. Our
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model, with 2 free parameters is on par with the Erdös-Renyi model (1 free parameter) and

the Barabasi model (2 free parameters). In addition to the fact that the CCM parameters

are interpretable, the small number of CCM parameters makes this model parsimonious.

Appendix shows the pseudocode for this model. In our code, we implement multiple

categorization by generating a random number between zero and one and comparing that

number to our multiple categorization probability. However, there are a number of ways that

we can model the multiple categorization probability. The simplest way is to allow every

sorter to have a uniform probability and say that some percentage of the time a card will be

split again. So for this model the multiple categorization probability is constant (CCMv1):

Pmultiple = β1 (5.1)

where β1 is a constant between zero and one which applies to the entire population. Another

way that we consider assumes that a penalty is incurred whenever a card is split (CCMv2):

Pmultiple = βN2 (5.2)

where β2 is a constant between zero and one which applies to the entire population and N

is the number of times that a problem has already been categorized by a random sorter.

Finally, we consider a model where the multiple categorization probability depends on the

number of categories (C) that a sorter has selected which was determined by the binomial

distribution (CCMv3):

Pmultiple = βC3 (5.3)
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Table 5.1: CCM Model Parameters

CCMv1 CCMv2 CCMv3

Parameter β β1 = 0.03 β2 = 0.08 β3 = 0.81
KS statistic 0.20 0.28 0.08

Ave. # Categories 6 10 12

where β3 is a constant between zero and one which applies to the entire population. The

differences between these three choices are so subtle that we cannot see a difference between

them by eye using the graphical representation.

In order to determine best-fitting parameters for each of the models we considered, we

minimized the KS-test statistic between the data 3-cycle distribution and the model 3-cycle

distribution. For the CCM, we used a simple brute-force grid search instead of the standard

optimization algorithm found in the R statistical software[24]. The reason for this difference

was that the 3-cycle distribution was better approximated with smaller sample sizes for the

two standard graph theory models. However, running the standard optimization algorithm

for the larger sample sizes required by the cognitive categorization model took much longer

and the brute force method quickly became preferable as we could use smaller sample sizes

to get some coarse grained resolution. Later, we then used larger sample sizes when we got

close to the end result. Once we obtained optimized parameters for the different CCMs, we

compare them (see Figure 5.4) to the human sorters based on the 3-cycle distribution.

Table 5.1 shows the respective model parameters and KS statistic. The table also lists

the resulting average number of categories of the three CCM models, where only CCMv2 and

CCMv3 are in agreement with the actual values (Section 4.2). In any case, the models do not

underrepresent the number of categories, so we have another indication that the “collapsing”
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Figure 5.4: 3-cycle distributions Here we see the 3-cycle distributions for the different
CCMs. The model that fits the best is v3 (Equation 5.3), where the multiple categorization
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44



of categories (end of Section 4.1) does not appear to be an issue with the actual data.

Overall, we found that the best fitting CCM is CCMv3, which has a multiple categorization

probability that depends on the number of categories (Equation 5.3). Figure 5.5 shows some

example CCMv3 graphs; these CCM graphs look much more like the graphs of the human

sorters seen in Fig. 4.2 than the Erdös-Renyi and Barabasi graphs in Fig. 5.1.

The success of this model gives us insight into the behavior of our sorters: the probability

to categorize a single problem in multiple categories is different for each person, and that

probability actually decreases with the number of categories that are created. This model

prediction is supported by an observation we made of our sorters. We observed two different

sorter behaviors while they worked on the categorization task. It seemed like some people

were resolved to make as few piles as possible, we will call these people “stackers.” Stackers

were more likely to put a problem in multiple categories, deciding that putting a problem

into two piles was a better decision than making a new category. As a result a stacker’s

groups tend to be large and inclusive. The other group of people would spread the problems

out on the table that they were working on, we will call these people “spreaders.” Spreaders

were less likely to put a problem in multiple categories, deciding that making a new category

was a better decision than putting a problem into two piles. As a result a spreader’s groups

tend to be small and exclusive.
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Figure 5.5: Representative CCM graphs: These are some representative graphs for the
CCM using optimized input parameters. Qualitatively they match up much better to the
sorter graphs seen in Figure 4.2.
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Chapter 6

Microscopic Properties of Sample

Experimental Data

This chapter details how to compare any two categorization graphs to each other using a

distance metric we developed and will visualize the relative position of sorters using Principal

Components Analysis (PCA) [6]. This visualization technique also confirms the “stacking”

and “spreading” behavior observed as the largest source of variation in our categorization

experiment. However, the second largest source of variation found by the PCA is due to

expertise. This finding suggests that the experiment of Chi et al. has been difficult to

replicate because the largest source of variation was not due to expertise. We explore next

why a particular set of problems would discriminate experts from novices, while others do

not, by considering many subsets of the large problem set categorized by the sorters.
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6.1 Distance Metric

We now create a distance metric as a microscopic measure to compare two sorters to each

other. There are several existing distance metrics that will compare two different sortings,

including statistical indices such as the Rand Index [30] which can be converted into a

distance metric. However, in searching for existing statistical methods that will work for our

categorization exercise, we found none that obeyed the rules of our “categorization game,”

especially the third rule. The Rand index merely counts the number of “agreements.” This

may be calculated for any two categorizations. However similarity indicies that are not

corrected for chance agreements are not as reliable for creating a sort of measuring stick for

measuring a “distance” between two categorizations [31, 32]. For this reason Hubert and

Arabie created an adjustment to the Rand index. However this adjustment requires that

the sub-groups are disjoint, eliminating any utility that the adjusted Rand index has for

our study and other similar studies which allow multiple categorization. This story may

be repeated for any one of the other statistical indicies that we could find in the statistics

literature, and after some consideration, we decided that we needed to invent a new method

for analyzing this type of data.

Our distance metric will bypass this difficulty as it is a direct distance metric and not a

similarity index. The distance metric is determined by considering the weighted adjacency

matrix for each reviewer, and it compares any two graphs generated by two reviewers as long

as they have the same number of nodes (which they would for identical card sets). Each

element of the weighted adjacency matrix Xr for each reviewer r is:

Xrij = number of edges between problems i and j (6.1)
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The distance metric is:

drs =
1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xrij −Xsij∣∣∣ (6.2)

Our distance metric may be interpreted as the number of edges that need to be added to and

removed from one graph to make it identical to another. The factor of 1
2 is included due to

the symmetry of the weighted adjacency matrix. In order to be a statistical distance metric,

the distance d between any two categorizations Xr and Xs must satisfy a few properties:

drs ≥ 0

drs = 0 ⇐⇒ Xr = Xs

drs = dsr

drt ≤ drs + dst (6.3)

Appendix contains a brief proof that our metric satisfies these properties. We can use

this distance metric to create a symmetric matrix where the distance between sorter i and j

appears in row i and column j.

6.2 Principal Component Analysis

The distance matrix we constructed answers the question “How far is sorter i from sorter j?”

for every pair of sorters. Since we have 41 sorters, this matrix operates in a 41-dimensional

space, which is of course impossible to visualize. Principal Component Analysis (PCA) is

a way of reducing high dimensional data back down to something more manageable. PCA

is a general term in the statistical community describing a number of techniques involving
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the singular value decomposition. To visualize our data, we did a singular value decomposi-

tion on the distance matrix. By applying the singular value decomposition to the distance

matrix we perform a change of base so that the largest amount of variation is in the first

principal component (PC1), the second largest amount of variation is in the second principal

component (PC2), and each subsequent component explains less variation than the previous

component. This analysis is then projected out onto fewer spatial dimensions, using only

the most influential base vectors as a new reduced base.

Contrary to many applications of PCA, ours will not independently allow for interpreta-

tion of the groups of sorters that are separated by the analysis. This is due to the nature of

the matrix being analyzed by the PCA. In general, PCA assumes that each row is an obser-

vation and each column is a property. For example, in astronomy one could look at several

properties of stars (e.g. the temperature, the metallicity, the absolute brightness, etc.) for

many different stars. The principal components themselves (PC1, PC2, etc.) are linear com-

binations of these properties. Because of the interpretability of the principal components,

PCA is often able to explain the source of variation between groups of data. However in

our application, that is not true. This is because the properties are the distances from each

sorter and not some fundamental property of each sorter. Therefore, the principal compo-

nents are linear combinations of sorters, and are not able to aid in interpreting the source

of the variation between these sorters. Any interpretation of the principal components that

we will be able to do is therefore a function of our ability to explain that variability using

other complimentary analysis methods.

For a PCA to be considered successful, the majority of variation must be explained

with just a few components. In our case, taking just the first two components explains
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approximately 87% of the variability in our dataset. We thus focus on this reduced-dimension

PCA, which can easily be visualized in Figure 6.1. We can now visualize our sorters and easily

interpret what we see. The question of what sorter characteristic results in what behavior of

PC1 and PC2 is lost in a 41-dimensional rotation and subsequent projection. In other words,

this abstract representation of microscopic data (the distance matrix strongly depends on

problem identities) does not boil down to a simple linear combination of macroscopic features.

An early concern was that the outliers (subjects who sort very differently than the ma-

jority, e.g., sorter 16 in Fig. 4.2, who is also clearly distinguishable in Fig. 6.1) might strongly

influence the PCA, and so the complete analysis was run with and without these particular

sorters. We found that the difference that these outliers made in the outcome of the PCA

was not significant; in other words, the method we are employing is robust against “noise”

in the data introduced by occasional outliers. We thus decided to keep the outliers within

the data set.

Making sense of PC1 and PC2 is where the previous work on graph visualization (Sec-

tion 4.1) and analysis (Sections 4.2 through 4.6), combined with the interpretation of the

CCM (Section 5.2) comes together. We can look at the relative placement of our sorters

by the PCA, visually analyze their graphs, and attempt an interpretation of the abstract

sources of variation found by the PCA. The expert and novice identity of each sorter is a

variable known only to us and not a factor in determining the placement of the sorters by

the PCA

Analyzing the sorters in order of increasing PC1-coordinate (Fig. 6.1, left panel) shows

that this coordinate does not distinguish experts from novices. In other words, most variance

in the data is not related to the expert or novice identity of the sorters. Instead, when
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analyzing the graphs associated with the subjects, it turns out that PC1 mostly reflects the

“stacker” versus “spreader” behavior identified through our CCM (Section 5.2), which is

quite independent of being an expert or a novice. Based on this result, one could argue that

card-sorting experiments most strongly measure how individuals sort, and may thus be more

reflecting of what that individual’s office or the file system of his or her personal computer

looks like than whether or not he or she is a physics expert.

The expert/novice distinction only shows up in PC2. Going along the PC2-axis in the

left panel of Figure 6.1, one finds more experts with a high PC2 and more novices with a

low PC2. At this point we are both paradoxically hopeful—because expert-novice variation

shows up in this PC2—and deeply unsatisfied—because we have no indication about the

source of this variation. So far, we have a set that can discriminate experts from novices. Up

until this point we have ignored the single experimental “knob” that we can use to control

this experiment: The problems themselves. In the next two chapters we will attempt to

explain the source of this discrimination between experts and novices by quantifying that

discrimination and studying the properties of the problems themselves.
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Figure 6.1: PCA of the sorter data: Here we see the PCA plot of the sorters. PC1 is
the coordinate along the first principal axis, and PC2 is the coordinate along the second
principal axis. Sorter known by us to be experts are marked by circles while sorters known
by us to be novices are marked by triangles. Each point is labeled on the left by the sorter
number. The second principal component discriminates experts from novices.
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Figure 6.2: Validating the use of PCA on the sorter data: This is a plot of the
cumulative relative importance of each subsequent principal component. This shows that
most of the variation is well-described by the first two principal components. Therefore using
PCA for dimension reduction is an appropriate choice for this data.
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Chapter 7

Parameterizing Subsets

In this chapter we discuss the different statistics used to describe the problem sets. These

include the cognitive and contextual features of the problems as well as the ability that a

subset has to discriminate expert and novice sorters. The contextual features of the problems

include a problem’s chapter and difficulty. The discriminatory properties of subsets are found

by using both parametric and non-parametric tests which compare the PCA coordinates of

the expert and novice groups.

We found that the most salient feature of problem categorizations, that is, the first

principal component of the PCA, is related to the sorting behavior of the individuals, a

personality trait we termed “stacker” versus “spreader” [6]. The meaning of this component

was easy to recognize, as it exhibited itself in the stark visual differences between the the

sorters’ categorization graphs. A stacker tended to generate a few large piles of cards with

the same problem being a member of several piles. In contrast, a spreader tended to generate

many fine-grained small piles and would rarely allow a single problem to be a member of

several piles. Expertise only came in second, as the distinction between experts and novices is
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exhibited by the second principal component. Unfortunately, due to the multi-dimensional

nature of the Principal Component Analysis and missing visual clues in the graphs, we

were unable to infer the source of this variability. However, all indications are that this

behavior is problem-specific. After all, variability in student performance while working on

problems in relativity [16] and motion [17] is well-documented. It is reasonable to believe

that this problem-dependent nature of student reasoning extends from solving problems to

the categorization behavior of sorters, as it depends on the particular problems being used.

What is the composition of a minimal ideal subset? What problem features need to be

present? In other words, instead of picking random problems from the back of chapters

in textbooks, how much does a problem set need to be “rigged” in order to be effective in

discriminating experts and novices?

Additional evidence for the importance of careful question selection—or “rigging”—was

given by Veldhuis [2], who also attempted to verify the result of Chi et al.. Veldhuis created

four different categorization sets. The first set was created in an attempt to mimic the Chi

et al. problem set [3], and the second was a control set with a similar collection of end-of-

chapter problems. In contrast, the third and fourth sets were carefully constructed so that

each problem had only a single physics principle and a single surface feature from a set of four

principles and four surface features [2]. The fourth set was also “rigged.” It had the same

number and type of cards, but only two surface and two conceptual features. Veldhuis could

not draw a conclusion from the categorizations from his first two problem sets. However,

sets 3 and 4 agreed with Chi et al. in that experts categorize problems based on physics

principles while novices show a “more complex behavior.” [2, 3]. Where on the “rigging

continuum” do problem sets need to be constructed in order to achieve measurable results?
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Also, can Veldhuis’ result be generalized to more complex problems—that is, problems with

more than one physics principle and more than one surface feature?

We explore on a microscopic level why particular sets of problems would discriminate

experts from novices while others do not, looking at the individual properties of the included

problems. The main strategy of our approach is to pick subsets out of our large set of

problems, determine how well they distinguish experts from novices, and then examine their

composition based on a number of pedagogical and contextual features. Combinatorics

dictate that we can effectively sample the entire population for small subsets only, while

for larger subsets, we use simulated annealing to optimize selected “starter sets.” We do

not propose that subset analysis is equivalent to actually giving our sorters many subsets to

categorize. Yet, we believe that subset analysis is still able to find the features that should

be present in an ideally “rigged” problem set.

7.1 Experimental Parameters

Previously, we designed and carried out a card-sorting experiment on physics experts and

novices at Michigan State University, adhering to the experimental method of Chi et al.

as closely as possible [6]. A total of 18 physics professors and 23 novices participated in

our study. All of the novices had completed at least the first semester of an introductory

physics course at MSU. We gave each sorter a set of 50 problems to sort based on “similarity

of solution,” explicitly following the prompt of Singh [7]. Each sorter categorized his or

her problems and recorded the groups and group names in a separate packet. Multiple

categorization, i.e., putting a single card into more than one category, was allowed, but not

expected.
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Figure 7.1: Problem Dependence of PCA (Top) This is the PCA plot of the sorters for
the entire set of problems from our previous study [6]. Both a Cramer’s test (p = 0.048)

and a Hotelling’s test (p < 10−5) find the expert and novice groups to be distinct at a
95% confidence level. PC1 is the coordinate along the first principal axis, and PC2 is the
coordinate along the second principal axis. Sorters known by us to be experts are marked
by circles while sorters known by us to be novices are marked by filled triangles. The second
principal component discriminates experts from novices.
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Figure 7.2: Problem Dependence of PCA This is the PCA plot of the sorters considering
only the problems from Singh’s study. Both a Cramer’s test (p = 0.041) and a Hotelling’s

test (p < 10−5) find the expert and novice groups to be distinct at a 95% confidence level.
PC1 is the coordinate along the first principal axis, and PC2 is the coordinate along the
second principal axis. Sorters known by us to be experts are marked by circles while sorters
known by us to be novices are marked by filled triangles. The second principal component
discriminates experts from novices.
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7.1.1 Problem Set Creation

We constructed our initial large set of problems such that was diverse in terms of both

content and cognitive demands. We considered two traditional measures, the chapter which a

problem is in (using Walker’s textbook[4] as a guide) and the problem difficulty as measured

by the number of “dots” a problem has. We also included the taxonomic classification

according to the Taxonomy of Introductory Physics Problems (TIPP) [5]. The TIPP is useful

because it considers two dimensions or knowledge domains, one for declarative knowledge

(information) and the other for procedural knowledge (mental procedures) [5]. See Table

7.2 for a list of the TIPP levels included in our study. Higher levels were not included

because they are more suited to research projects rather than homework problems [5]. Each

problem was therefore classified along four feature dimensions: the chapter in which the

problem could be found (CHAP), the problem difficulty (DIFF), as well as the highest

complex cognitive process necessary to solve it for both declarative knowledge (TIPP-D)

and procedural knowledge (TIPP-P). We did not consider the surface features (as used by

Veldhuis [2]) of the problems, since those are not quantifiable.

7.1.2 Expert-Novice Differentiation

Our initial experiment found that experts and novices were separated by the second principal

component. While this is visually possible based on figures like Fig. 7.1 and Fig. 7.2, where

the experts congregate higher on the PC2 axis than the novices, we needed a way to quantify

this differentiation. We considered three statistical tests: the Hotelling’s test [33], the Cramer

test [34], and the Average Rate of Correct Classification (ARCC) [35]. The Hotelling’s test

is a standard test used to compare two groups of multivariable data, which assumes that
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Table 7.1: Chapter titles Chapter titles taken from Walker’s textbook as a representative
list.

Chapter # Chapter Title

1 Introduction
2 One-Dimensional Kinematics
3 Vectors in Physics
4 Two-dimensional Kinematics
5 Newton’s Laws of motion
6 Applications of Newton’s laws
7 Work and Kinetic Energy
8 Potential Energy and Conservative forces
9 Linear Momentum and collisions

10 Rotational Kinematics and Energy
11 Rotational Dynamics and Static Equilibrium

Table 7.2: TIPP levels A limited hierarchy of the cognitive processes described by the
TIPP. Most problems in a standard physics textbook require a highest declarative knowl-
edge process of Comprehension–Integrating, and procedural knowledge process of Retrieval–
Executing [5]. The level indicates the numeric value we scored the highest cognitive process
required by each problem.

Cognitive Process Sub-process Level

Retrieval Recall/Recognize 1

Executing† 2

Comprehension Integrating 3
Symbolizing 4

Analysis Matching 5
Classifying 6
Analyzing Errors 7

† Procedural Knowledge only
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each group’s distribution of these data is elliptical [33]. The Cramer test is a non-parametric

analog of the Hotelling’s test, that is, it does not assume a distribution shape [34]. The

ARCC is a statistical test which relies on Linear Discriminant Analysis to determine how

well experts and novices are separated by the PCA. We combined all of these measures into

a Canonical Correlation Analysis (CCA) [36]. A CCA quantifies the relationship between

the predictor variables (in our case the problem statistics) to the explanatory variables (the

sorter discrimination statistics). Because CCA assumes linear relationships between the

predictor variables and the response variables, we did a log transformation on all of our

variables in order to linearize power-law relationships and symmetrize skewed distributions.

When analyzing the results of the CCA, we found that the Cramer statistic was an order of

magnitude more important than the Hotellings and ARCC statistics. Thus, we ended up just

using the Cramer statistics as the CCA for this study. In order to determine which problem

properties are most important for predicting sorter discrimination, we found the variability

explained by each problem feature dimension (CHAP, DIFF, TIPP-D, and TIPP-P) in this

manner:

varstat =
corstat∑

stats corstat
(7.1)

where corstat is the correlation coefficient found by calculating a CCA for each group of prob-

lem statistics with the sorter discrimination statistics and the summation in the denominator

is done over the groups of statistics.
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Chapter 8

Subset Analysis: Data Mining the

Categorization Graphs

In this chapter, we discuss the results of this subset analysis and determine which properties

are important in discriminating experts from novices in a categorization experiment. We

discuss the importance, not only of problem content, but requiring sorters to categorize

problems which require diverse solution types and including simpler problems, rather than

the most difficult problems.

Can subsets be as effective as the complete set of 50 cards? As a proof of concept, we

have compared the sorter visualizations from the entire dataset from our previous study [6]

to the subset of problems within that set which we obtained from Singh’s study [7]. As you

can see in Figure 7.1 and Figure 7.2, the two visualizations have similar properties. Natu-

rally, the sorters have different relative positions, as our distance metric, and consequently

our visualization method, was designed to compare categorizations on a microscopic—or

problem-specific—level. However, the overall level of expert-novice discrimination is similar,
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so the smaller carefully chosen subset would have been sufficient to discriminate experts from

novices.

8.1 Monte Carlo analysis

When forming subsets of our 50-problem set, combinatorics limit the sizes of subsets for

which we can explore possible combinations. We analyzed 40000 5-problem subsets and

275000 10-problem subsets of our original 50-problem set. Due to the highly parallelizable

nature of this problem and the sheer number of subsets studied, this analysis was carried out

on the High Performance Computing Cluster (HPCC) at Michigan State University. These

numbers of subsets were chosen so that we could be 99% sure we had at least one 5-problem

subset with 5 of the 10 best problems in it and one 10-problem subset with 10 of the best

20 problems. This choice has allowed us to effectively sample the populations of 5-problem

and 10-problem subsets As these were random subsets, they were quite diverse in terms of

the features of the problems within each subset.

In our analysis of the subsets of problems, we found that the ability of these subsets

to distinguish experts from novices varied from negligible levels to nearly total separation.

Moreover, this behavior was prevalent for both the 5-problem and 10-problem subsets. Us-

ing a CCA, we quantified the relationship between the problem statistics and the sorter

discrimination statistics for the 5-problem and 10-problem subsets independently. For the

5-problem subsets, we found a correlation coefficient of r2 = 0.359, while for the 10-problem

subsets, we found r2 = 0.427. This means that the CCA can account for 35.9% of the

variability in the 5-problem subset analysis and 42.7% of the variability in the 10-problem

subset analysis. Given this result, it is clear that there was a problem set size effect on the
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ability to discriminate experts from novices. However, caution is warranted as discussed in

Chapter as subset analysis is not the same as repeating the experiment with fewer cards.

Investigating the relationships found by the CCA further, we found that the most vari-

ability is contained in the Chapter variables, followed by the procedural knowledge variables

(See Table 8.1). The fact that Chapter variables explained a great deal of variability was

not surprising since this was our analog for “deep structure” (i.e. there is a Force chapter, an

Energy chapter, a Momentum chapter, etc.). However, more interesting was the prominence

of TIPP-P in explaining expert-novice sorting differences. Therefore, it was important that

the problem set under consideration ask questions that require more than calculation and

include tasks such as making a flow chart of a problem solving strategy. It is possible that

the prominence of the TIPP-P statistic is due in part to the nature of the students at MSU.

As the physics courses are in a large lecture format and require computerized homework,

questions that require hand-grading are few. Therefore these sorts of problems may have

“surprised” our novice sorters, which may have affected their ability to sort these problems.

Problem difficulty was the next most important statistic. Here we found that the “easy”

problems, as determined by a typical textbook author, were the most important in discrimi-

nating expert from novice. However, it is also possible that these problems were deceptively

easy, or that the novices were over-thinking the problem. Table 8.1 also clearly indicates

that the TIPP-D level does not play a large role in discriminating experts from novices.

8.2 Simulated Annealing Analysis

As described earlier, the number of subsets to study grows quickly as the subset size grows (up

to 25-problem subsets), and the sheer size of this search space limited exhaustive algorithms
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Table 8.1: Rigging parameters Variability explained by each of our problem variable
groups among our 10-problem subsets. From this we see that the Chapter was an important
variable, followed by the TIPP-P statistic.

Problem variable group Percent variability explained

TIPP-D 5.4
TIPP-P 30.4
Difficulty 22.8
Chapter 41.4

to 10-problem subsets. However, most categorization studies have looked at more problems

[1, 2, 7, 20], and we needed to find an optimization algorithm to analyze larger sets. To

minimize the problem of being “trapped” in local minima which can trap typical optimization

algorithms, we are using Simulated Annealing [37, 38]. Simulated Annealing’s optimization

routine is based in principle on the metallurgical annealing process whereby impurities are

removed from a metal by heating it. If you assume that the parameter that you are interested

in minimizing corresponds to the “energy,” we allow the algorithm to move to a new state

with a probability

P
(
Eold, Enew, T

)
=


1 when Enew < Eold

exp

(
Eold−Enew

T

)
else

(8.1)

where T is a “temperature” which is decreasing with every iteration of the code. For each

iteration, we generated new problem sets to study by replacing 2 problems at a time. Each

run consisted of 30000 iterations.

As the problem set used by Singh was included in our set, we have used that as a starting

point for the Simulated Annealing algorithm, as well as 50 randomly chosen subsets of the

same size (25-problems). Again, due to the highly parallelizable nature of this problem this
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optimization was performed on the HPCC here at MSU. To extrapolate the results from

the 10-problem subsets to 25-problem subsets, we compared the problem statistics and the

sorter discrimination statistics for each of these groups of subsets. Since (except for the Singh

subset), the 10-problem and 25-problem subsets were chosen at random, we expected that

the groups would initially not have significantly different properties. Indeed, we found that

these groups are not statistically distinguishable in terms of problem features (p = 0.5621)

or sorter discrimination statistics (p = 0.2951).

How much optimization could we achieve by Simulated Annealing? The problem feature

coordinates of the optimal subsets were measurably larger
(
p < 10−8

)
than the initial ran-

dom subsets (the Singh subset and its “optimized” version did not follow this trend). Not

surprisingly, as the algorithm looked for maximum sorter discrimination, we found that the

optimal sets had measurably larger
(
p < 10−15

)
sorter discrimination statistics than the

random subsets as well.

As the optimal problem sets found with different starting subsets are not identical, we

cannot say that we have found a global optimum, only many local optima instead. However,

based on the results from the exhaustive analysis of the 10-problem subsets, the optimized

25-problem subsets are in the top 2% of all possible sorter discrimination statistics.

How much “rigging” happened as the result of optimization, i.e., how different are opti-

mized sets from random ones? If we indicate the set of problems that we started with as S,

and the optimized (or best) set of problems to be B, we define the rigging fraction to be:

R =
length (S ∩B)

length (S)
(8.2)

where the length simply gives the number of elements in the set, and the rigging fraction
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(R) is the fraction of initial problems retained in the optimized set. The rigging fraction is

therefore a comparison between a starting set of problems and the nearest local optimum

for that set of problems.

To get a feel for the quality of this measure, we again used it first on the Singh sub-

set. Singh noted that she chose her problems carefully: “Many questions. . . were cho-

sen. . . because the development of these questions and their wording had gone through rig-

orous testing by students and faculty members.” [7] Indeed, the rigging fraction of the Singh

subset was larger than the rigging fraction of any of the random subsets (see Fig. 8.1), which

assured us that we found a good measure.

Thus, we found that regular-size 25-problem subsets also require “rigging,” and that

they should be optimized along the same feature dimensions as the smaller sets discussed in

Section 8.1.
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Figure 8.1: Rigging fraction This is a histogram of the rigging fraction for the subsets with
a random starting point. The shaded gray box indicates the rigging fraction of the Singh
subset. From this, we can see that the Singh subset has more problems in common with its
nearest local optimum than does any of the random subsets studied.
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Chapter 9

Conclusion

In our endeavor to study the categorization behavior of experts and novices, we have de-

veloped a method for analyzing expert and novice categorizations. In the process, we have

gained insight into different human cognitive structures. Rather than focusing on qualitative

differences in category names, we chose to focus on the groupings of problems. In order to do

this we have created a method for converting an abstract categorization into a graph, which

may then be analyzed. This conversion has laid the foundation for our method of analyzing

card-sorting experiments, which is applicable in any experiment where sorters may put any

single card into more than one category, a behavior which we name multiple categorization.

Using experimental data, we confirmed the null-results that experts and novices are not

distinguishable based on macroscopic features of their card-sorting such as the number of

categories. This held true even when employing graph theoretical approaches. We found

these null results when comparing categorizations’ macroscopic properties, therefore we cre-

ated the Cognitive Categorization Model (CCM), which provided insight into the general

sorter behavior. We found that the best fitting CCM had a multiple categorization prob-
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ability that depended on the number of categories which led us to determine that sorters

tended toward “stacking” or “spreading” when sorting physics problems. A stacker tended

to create a few general categories and multiply categorize more often. A spreader tended to

create many specific categories and multiply categorize less often. This stacker vs. spreader

behavior is quite independent of the expert vs. novice distinction between our sorters.

As macroscopic properties did not differentiate expert from novice, we studied the mi-

croscopic properties of categorizations by creating and utilizing our distance metric. This

distance metric compares sorters’ categorizations in a manner which takes problem identity

into account. In order to visualize the relative position of our sorters as measured by our

distance metric, we employed Principal Components Analysis. This allowed us to confirm

the stacker vs. spreader distinction as the largest source of variation among sorters. It also

fortuitously found the distinction between experts and novices as the second largest source

of variation.

As was found by Chi et al., we agree that deep structure was an important feature

determining the difference between experts and novices. For this reason it was important to

construct a set of problems from a variety of chapters, our analog for “deep structure”. Yet,

the frequent null results obtained when replicating this experiment, as well as the results

of our own statistical analysis, tell us that we must go beyond chapters and consider the

pedagogical and cognitive properties of the problems that we select. We found that problems

which ask students to perform different procedural tasks (e.g. making a flow chart of how

you would solve a problem) are important to distinguish experts from novices. We also found

that “easy” problems, as determined by a typical introductory physics textbook author, did

a better job of discriminating experts from novices. This is not surprising: a problem is so
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Deep Structure 

Procedural 
Knowledge 

Problem 
Difficulty 

Figure 9.1: The pillars of expert-novice differentiation. Here we see the key parts
of discriminating experts and novices on a categorization task. Deep structure (content),
procedural knowledge (the kinds of tasks that a problem requires), and problem difficulty
(easy questions tend to work better than hard questions).

difficult that neither expert nor novice sorters can even figure out what the problem entails,

it is likely going to be sorted randomly. Not surprisingly, larger problem sets still need to be

carefully constructed along the feature dimensions we found.

While we agree that deep structure is an important feature determining the difference

between experts and novices, we conclude that it is not the entire story. It is merely the

largest pillar of a three pillar support which includes the procedural knowledge required

to solve a problem as well as the difficulty of the problem as well. (See Fig. 9.1) Not

only is what you ask (deep structure) important, but also how you ask it. In order to
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differentiate experts from novices on a categorization task we also need to ask questions

which require different procedural tasks (e.g. make a flow chart). One might have hoped

that these experiments would most strongly identify experts based on the types of declarative

knowledge and procedural knowledge instead, which are arguably more authentic indicators

of expert-likeness in real life. However, the relegation of deep structure from its former

lonesome perch as the single salient feature which discriminates experts from novices to part

of this triad is still a satisfying result which reflects the understanding gained since Chi et al.

published their seminal result.

9.1 Outlook

Even after considering all feature dimensions in this study, only 42.7% of the variability in

the 10-problem set was explained. This means that there may be other latent variables,

perhaps closely linked to the surface features in each problem, need to be considered. In

other words, the remaining variability can possibly only be resolved by intentionally planting

surface features, as in Veldhuis’ study [2]. Also, we need to understand the process of sorting,

not just the outcome. The first step in understanding the process was the development of the

CCM. However, as this model is only intended to describe the macroscopic sorting behavior,

it is “blind” to the problems, e.g., it cannot even begin to simulate the sorters’ reactions to

different features of the individual problems.

Likely the only way to gain a better understand of the sorting process will be to deploy

a “think-aloud” protocol, where sorters are asked to talk us through their sorting decisions.

Combining the ideas gleaned from a think-aloud protocol with a model which can describe the

internal cognitive process of categorization will be the key to understanding this outstand-
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ing variability and predicting an instrument’s ability to discriminate experts from novices.

Ultimately, the goal would be to simulate the process of categorization.
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Appendix A

Categorization Model Pseudocode

As stated earlier, the purpose of the Cognitive Categorization Model was to account for the

common macroscopic sorting behavior of experts and novices. In order to do this, we created

a statistical model which attempted to model the sorting process. We assumed that there

were three rules to this sorting process:

1. All questions must be put into a category

2. All categories must have at least one question in them

3. A question may fall into one category

Once we assumed these three rules, we created a model which has three input parameters:

1. The number of questions (which is fixed by the experiment)

2. The average number of categories for all sorters

3. The multiple categorization parameterization
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We fixed the number of questions and optimized the other parameters so that the model

would capture the sorters’ macroscopic behavior. By only having two free parameters, we

know that we have created a model which parsimoniously describes the sorter behavior rather

than soaking up statistical variation by over-fitting it.

A.1 Pseudocode

The following pseudocode creates a weighted adjacency matrix for a random categorization

according to our best-fitting categorization model. This matrix may then be used to create

a graph. Increasing the utility of the weighted adjacency matrix is the fact that many graph

theory statistics are calculated using the weighted adjacency matrix or the adjacency matrix

(which is a boolean version of the weighted adjacency matrix).

for each graph

Q = input parameter # number of questions

beta = input parameter # multiple categorization param.

Cbar = input parameter # avg. number of categories

# Pick the number of categories from the proper distribution.

C = 1 + random deviation from binomial

# Binomial properties: num. trials = Q-1 and avg = Cbar-1

Pmult = betaC # multiple sorting probability for CCMv3

# Create boolean T matrix; rows are questions columns are categories

Initialize T

X = shuffle question numbers

Y = shuffle list of category numbers from 1 to C
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# Rule #1: Every category must be used

for all j in 1 to C

T(X(j), Y(j)) = 1

# Rule #2: All questions must be categorized at least once

Z = sample the list from 1 to C with replacement Q-C times

for all j in 1 to (Q-C)

T(X(C+j), Z(j)) = 1

# Rule #3: Each question may be categorized more than once

for all zero elements left in the T matrix

if (random number from 0 to 1 < Pmult) T(element) = 1

# Convert T matrix into weighted adjacency matrix (adj) where

adj(i,j) = T(i,) dot T(j,)
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Appendix B

Distance metric

The following distance metric quantifies the number of edges that must be added or removed

from a graph to make it identical to another graph:

drs =
1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xrij −Xsij∣∣∣ (B.1)

Where Xrij is the (i, j)th element in the weighted adjacency matrix for reviewer r. The

properties of a metric are as follows:

drs ≥ 0

drs = 0 ⇐⇒ Xr = Xs

drs = dsr

drt ≤ drs + dst (B.2)

79



The first property is clearly satisfied by considering that we are summing up all positive

numbers. The second condition is satisfied because the only way that drs = 0 is if every

element of each weighted adjacency matrix is identical and if both weighted adjacency ma-

trices are identical, then drs = 0. The third condition is also met due to the symmetry of

the absolute value:

drs =
1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xrij −Xsij∣∣∣
=

1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xsij −Xrij∣∣∣
= dsr (B.3)

Finally, we will consider the last condition. First, we will consider the definition of the

metric:

drt =
1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xrij −Xtij∣∣∣
Next we will utilize the additive identity to insert the Xsij terms into the absolute value.

drt =
1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xrij −Xsij +Xsij −X
t
ij

∣∣∣
Next, we continue with the triangle inequality.

drt ≤
1

2

Q∑
i=1

Q∑
j=1

[∣∣∣Xrij −Xsij∣∣∣+
∣∣∣Xsij −Xtij∣∣∣]
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Now we distribute the term in front of the sum.

drt ≤

1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xrij −Xsij∣∣∣
+

1

2

Q∑
i=1

Q∑
j=1

∣∣∣Xsij −Xtij∣∣∣


And then we simplify using the definition of our metric.

drt ≤ drs + dst (B.4)

So we have shown that this is a metric.

B.1 Pseudocode

This pseudocode function will compute the distance between two sorters with known weighted

adjacency matrices wadj1 and wadj2.

dmetric = function(wadj1,wadj2)

Make sure each matrix is square and has same dimensions

diff = abs(wadj1 - wadj2)

dist = 0.5*sum(diff)

return(dist)

The distance matrix is then calculated by applying the dmetric function on each pair of

sorters’ weighted adjacency matricies.
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Appendix C

Visualization technique

Principal Component Analysis (PCA) is a general term used to describe a number of visu-

alization techniques based on the Singular Value Decomposition (SVD). For the purposes

of this study we define PCA to mean an analysis done on the SVD of the covariance of the

distance matrix. Taking the covariance of the matrix under consideration is the standard

technique used to ensure that you are not over emphasizing a statistic simply because it

varies on a much larger scale.

C.1 Pseudocode

This pseudocode details how a PCA plot is produced. It assumes that you have a square

distance matrix (dist), and each dimension of that matrix has a length equal to the number

of sorters.

# Do the covariance of the distance matrix

DIST = cov(dist)

# Do Singular Value Decomposition (SVD)
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dist.svd = svd(DIST)

# Look at eigenvectors of the SVD

evector1 = dist.svd.U[1]

evector2 = dist.svd.U[2]

# More eigenvectors allow you to study more dimensions of the PCA

# Calculate principal components:

pc1 = dist × evector1

pc2 = dist × evector2

# Note: × indicates matrix multiplication

plot(pc1,pc2)
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Appendix D

Problems in the Categorization Set

Here is a copy of the prompt given to the sorters as well as the problems that they sorted.

D.1 Prompt

This prompt was heavily based on the prompt from the study by Singh [7].

• You have been asked to group the 50 problems below based upon similarity of solution

into various groups on the papers provided. Problems that you consider to be similar

should be placed in the same group. You can create as many groups as you wish. The

grouping of problems should NOT be in terms of “easy problems,” “medium difficulty

problems” and “difficult problems” but rather it should be based upon the features

and characteristics of the problems that make them similar. A problem can be placed

in more than one group created by you. Please provide a brief explanation for why you

placed a set of questions in a particular group. You need NOT solve any problems.

• Ignore the retarding effects of friction and air resistance unless otherwise stated.
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Figure D.1: Diagram for problem 1.

• Thank you for your time and cooperation with our study.

D.2 Problems

These are the problems included in our categorization set. Some of the problems are directly

taken from the set used by Singh [7].

1. Two identical stones, A and B, are shot from a cliff from the same height h and with

identical initial speeds v0. Stone A is shot vertically up, and stone B is shot vertically

down (see the figure below). Which stone has a larger speed right before it hits the

ground?

2. Body fat is metabolized, supplying 9.3 kcal/g, when dietary intake is less than need.

The manufacturers of an exercise bicycle claim that you lose 1 lb of fat per day by

vigorously exercising for 2h per day on their machine.

(a) How many kcal are supplied by the metabolization of 1lb of fat?

(b) Calculate the kcal/min that you would have to utilize to metabolize fat at a rate
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Figure D.2: Diagram for problem 4.

of 1lb in 2h.

(c) What is unreasonable about the results?

(d) Which premise is unreasonable, or which premises are inconsistent?

3. Block m1 = 4kg moving with constant velocity v1 = 10ms collides inelastically block

m2 which is stationary. After the collision the two blocks move together with velocity

v = 100ms . What is unreasonable about the results and how do you know?

4. You want to lift a heavy block through a height h by attaching a string of negligible

mass to it and pulling so that it moves at a constant speed v. You have the choice of

lifting it either by pulling the string vertically upward or along a frictionless inclined

plane (see the figure below). How much is the work done by the gravitational force in

the two cases?

5. A family decides to create a tire swing in their backyard for their son Ryan. They tie

a nylon rope to a branch that is located 16m above the earth, and adjust it so that

the tire swings 1m above the ground. To make the ride more exciting, they construct

a launch point that is 13m above the ground, so that they don’t have to push Ryan
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Figure D.3: Diagram for problem 6.

all the time. You are their neighbor, and you are concerned that the ride might not be

safe, so you calculate the maximum tension in the rope to see if it will hold. Assume

that Ryan (mass 30kg) starts from rest from his launch pad. Is it greater than the

maximum rated value of 2500N?

6. Rank each case from the highest to the lowest acceleration based on the drawings

shown in the figure below. Assume all accelerations are constant and use the coordinate

system specified in the drawing. Note: zero is greater than negative acceleration, and

ties are possible.

7. A dog runs back and forth between its two owners, who are walking toward one another.

The dog starts running when the owners are 10.0m apart. If the dog runs with a speed

of 3.0 ms , and the owners each walk with a speed of 1.3 ms , how far has the dog traveled

when the owners meet?
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Figure D.4: Diagram for problem 8.

8. Two blocks are initially at rest on a frictionless horizontal surface (shown below). The

mass mA of block A is less than the mass mB of block B. You apply the same constant

force F and pull the blocks through the same distance d along a straight line as shown

below (force F is applied for the entire distance d). Compare the speed of the blocks

after you pull them the same distance d.

9. Rain starts falling vertically down into a cart (of mass M) with frictionless wheels

which is initially moving at a constant speed V on a horizontal surface (see the figure

below). The rain drops fall on the car with a speed v and come to rest with respect

to the cart after striking it. Find the speed of the cart when m grams of rain water

accumulate in the cart.

10. You are given the following problem. You don’t need to solve it. You only need to

describe the steps that you will follow to find the answers. Make sure that your solving

strategy includes as many details specific to this problem as possible.

You are riding on a jet ski at an angle of 35 deg upstream on a river flowing with a
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Figure D.5: Diagram for problem 9.

speed of 2.8 ms . If your velocity relative to the ground is 9.5 ms at an angle of 20.0 deg

upstream, what is the speed of the jet ski relative to the water?

11. A force of 9.4N pulls horizontally on a 1.1 kg block that slides on a rough, horizontal

surface. This block is connected by a horizontal string to a second block of mass

m2 = 1.92 kg on the same surface. The coefficient of kinetic friction is µk = 0.24 for

both blocks. What is the acceleration of the blocks?

12. Three blocks (m1 = 1kg, m2 = 2kg, m3 = 3kg) are in a straight line in contact with

each other on a frictionless horizontal table (block with mass m2 is in the middle). A

constant horizontal force FH = 3N is applied to the block with mass m1. Find the

forces exerted on m1 by m2 and on m2 by m3.

13. The figure below shows two blocks on a frictionless inclined plane with an angle of

inclination θ = 40 deg and the two connected to each other via a massless rope. The

rope that connects the two blocks goes around a frictionless, massless pulley and is
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Figure D.6: Diagram for problem 13.

connected to a third block as shown. Find the magnitude of the tension force in the

rope between blocks with mass M1 and M2 and the acceleration of the blocks.

14. The two masses (m1 = 5.0kg and m2 = 3.0 kg) in the Atwood’s machine shown in

the figure below are released from rest, with m1 at a height of 0.75m above the floor.

When m1 hits the ground its speed is 1.8 ms . Assuming that the pulley is a uniform

disk with a radius of 12 cm, outline a strategy that allows you to find the mass of the

pulley.

15. At the local playground, a 16 kg child sits on the end of a horizontal teeter-totter, 1.5m

from the pivot point. On the other side of the pivot, an adult pushes straight down on

the teeter-totter with a force of 95N . In which direction does the teeter-totter rotate

if the adult applies the force at a distance of:

(a) 3.0m?
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Figure D.7: Diagram for problem 14.

(b) 2.5m?

(c) 2.0m?

16. The brakes of your bicycle have failed, and you must choose between slamming into

either a haystack or a concrete wall. Explain why hitting a haystack is a wiser choice

than hitting a concrete wall.

17. Two blocks are initially at rest on a frictionless horizontal surface. The mass mA of

block A is less than the mass mB of block B. You apply the same constant force F

and pull the blocks through the same distance d along a straight line as shown in the

figure below (force F is applied for the entire distance d). Rank the time taken to pull

the two blocks by the same distance d.

18. A friend told a girl that he had heard that if you sit on a scale while riding a roller
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Figure D.8: Diagram for problem 17.

coaster, the dial on the scale changes all the time. The girl decides to check the story

and takes a bathroom scale to the amusement park. There she receives an illustration

(see the figure on the back), depicting the riding track of a roller coaster car along with

information on the track (the illustration scale is not accurate). The operator of the

ride informs her that the rail track is smooth, the mass of the car is 120 kg, and that

the car sets in motion from a rest position at the height of 15 m. He adds that point

B is at 5m height and that close to point B the track is part of a circle with a radius

of 30 m. Before leaving the house, the girl stepped on the scale which indicated 55 kg

(the scale is designed to be used on earth and displays the mass of the object placed

on it). In the roller coaster car the girl sits on the scale. According to your calculation,

what will the scale show at point B?

19. You drop two balls of equal mass, made of rubber and putty, from the same height h

above a horizontal surface (see the Figure below). The rubber ball bounces up after

it strikes the surface while the putty ball comes to rest after striking it. Assume
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Figure D.9: Diagram for problem 18.

that in both cases the velocity of the ball takes the same time ∆t to change from its

initial to its final value due to contact with the surface. During time ∆t, which of the

average forces 〈FR〉 or 〈FP 〉 exerted on the surface by the rubber and putty balls,

respectively, is greater?

20. A meter stick mass m is held perpendicular to a wall by a string length l going from

the wall to the far end of the stick.

(a) Find the tension in the string.

(b) If a shorter string is used, will the tension increase decrease or remain the same?

21. At 3:00, the hour hand and the minute hand of a clock point in directions that are

90.0 deg apart. What is the first time after 3:00 that the angle between the two hands
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Figure D.10: Diagram for problem 19.

has decreased to 45.0 deg?

22. A cyclist approaches the bottom of a gradual hill at a speed of 15ms . The hill is 5m

high, and the cyclist estimates that she is going fast enough to coast up and over it

without peddling. Ignoring friction and air resistance, find the speed at which the

cyclist crests the hill? Neglect the kinetic energy of the rotating wheels.

23. Two identical stones, A and B, are shot from a cliff from the same height h and with

identical initial speeds v0. Stone A is shot at an angle of 30 deg above the horizontal

and stone B is shot at an angle of 30 deg below the horizontal. Which stone takes a

longer time to hit the ground?

24. You are given the following problem. You don’t need to solve it. You only need to

create a flow chart to illustrate the steps you are going to follow to find the answers.

Make sure that your solving strategy includes as many details specific to this problem

as possible.

The press box at a baseball park is 38.0 ft above the ground. A reporter in the press

box looks at an angle of 15.0 deg below the horizontal to see second base. What is the
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horizontal distance from the press box to second base?

25. You are given the following problem. You don’t need to solve it. You only need to

create a flow chart to illustrate the steps you are going to follow to find the answers.

Make sure that your solving strategy includes as many details specific to this problem

as possible.

The coefficient of static friction between a block and a horizontal floor is 0.35, while

the coefficient of kinetic friction is 0.22. The mass of the block is 4.6 kg and it is

initially at rest. Once the block is sliding, if you keep pushing on it with the same

minimum starting force as in part a), does the block move with constant velocity or

does it accelerate?

26. You are given the following problem. You don’t need to solve it. You only need to

create a flow chart to illustrate the steps you are going to follow to find the answers.

Make sure that your solving strategy includes as many details specific to this problem

as possible.

Harry Potter and Voldemort are wrestling inside a cart traveling east at a speed of

45ms directly toward an abyss. Harry then notices the danger and jumps backward due

west off of the cart. Ron who stands on safe ground in the back notices that Harry’s

velocity due west at the jump is 15ms relative to the ground. What is the speed of the

cart after Harry jumps off of it? The mass of the cart is 200kg, Harry’s mass is 60kg,

and Voldemort’s mass is 80kg.

27. In the figure below, a horizontal spring with spring constant k1 = 8Nm is compressed

20cm from its equilibrium position by a 4kg block. Then, the block is released. What

would be the maximum compression of a spring (k2 = 5Nm ) on the inclined plane when
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Figure D.11: Diagram for problem 27.

the 4kg block presses against it? Assume that the track is frictionless and the distance

from A to B is 50cm where B is the edge of the uncompressed spring on the inclined

plane.

28. The labeled vectors in the figure on the back are drawn to scale. For each of the

statements fill in the blank with Greater than, Less than, or Equal to.

~Z · ~S is ... 0.

|~U × ~Z| is ... 0.

The magnitude of ~R ... the magnitude of ~H.

~U · ~Z is ... 0.

~Y · ~J is ... 0.

| ~H × ~U | is ... 0.

29. Find the launch angle for which the range and maximum height of a projectile are the
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Figure D.12: Diagram for problem 28.

Figure D.13: Diagram for problem 30.

same.

30. In the track shown below, section AB is a quadrant of a circle of 1 m radius. A block is

released at point A and slides without friction until it reaches point B. The horizontal

part is not smooth. If the block comes to rest 3 m from B, what is the coefficient of

kinetic friction?

31. A slingshot fires a pebble from the top of a building at a speed of 10ms . The building

is 20m tall. Ignoring air resistance, find the speed with which the pebble strikes the

ground when the pebble is fired (I) horizontally, (II) vertically straight up.
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Figure D.14: Diagram for problem 34.

32. A compact disk, which has a diameter of 12.0cm, speeds up uniformly from zero to

4.00revs in 3.00s. What is the tangential acceleration of a point on the outer rim of

the disk at the moment when its angular speed is 2.00revs ?

33. A fish takes the bait and pulls on the line with a force of 2.1N . The fishing reel, which

rotates without friction, is a cylinder of radius 0.055m and mass 0.84 kg. How much

line does the fish pull from the reel in 0.25 s?

34. Three balls are launched from the same horizontal level with identical speeds v0 as

shown in the figure below. Ball (1) is launched vertically upward, ball (2) at an angle

of 60 deg, and ball (3) at an angle of 45 deg. In order of decreasing speed (fastest first),

rank the speed each one attains when it reaches the level of the dashed horizontal line.

All three balls have sufficient speed to reach the dashed line.

35. You are standing at the top of an incline with your skateboard. After you skate down

the incline, you decide to “abort”, kicking the skateboard out in front of you such that

you remain stationary afterwards. How fast is the skateboard traveling with respect

to the ground after you have kicked it? Assume that your mass is 60kg, the mass of

98



the skateboard is 10kg, and the height of the incline is 10cm.

36. Two frictionless inclined planes have the same height but have different angles of incli-

nations of 45 deg and 60 deg with respect to the horizontal. You slide down from the

top which is at a height h above the ground on each inclined planes starting from rest.

Find the time taken to reach the bottom in the two cases.

37. A turntable with a moment of inertia of 5.4×10−3kg m2 rotates freely with an angular

speed of 33 1
3 rpm. Riding on the rim of the turntable, 15 cm from the center, is a 1.3 g

cricket. If the cricket walks to the center of the turntable, will the turntable rotate

faster, slower, or at the same rate? Explain.

38. A 2.0 kg solid sphere (radius = 0.10m) is released from rest at the top of a ramp and

allowed to roll without slipping. The ramp is 0.75m high and 5.0m long. When the

sphere reaches the bottom of the ramp, what is

(a) its total kinetic energy?

(b) its rotational kinetic energy?

(c) its translational kinetic energy?

39. Two frictionless inclined planes have the same height but have different angles of incli-

nations of 45 deg and 60 deg with respect to the horizontal. You slide down from the

top which is at a height h above the ground on each inclined planes starting from rest.

Find your speed at the bottom of the inclined planes in the two cases.

40. A ball is thrown from the top of a 35m high building with an initial speed of 80ms at
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an angle of 25 deg above the horizontal. Find the time it takes to reach the ground.

41. On October 9, 1992, a 27 pound meteorite struck a car in Peekskill, NY, creating a

dent about 22 cm deep. If the initial speed of the meteorite was 550 ms , what was the

average force exerted on the meteorite by the car?

42. The corners of a square with sides 2.5m long lie on a circle. Is the radius of the circle

greater than, less than, or equal to the length of a side of the square? Explain.

43. At amusement parks, there is a popular ride in which the floor of a rotating cylindrical

room falls away, leaving the backs of the riders “plastered” against the wall. Suppose

the radius of the room is 3.3 m and the speed of the wall is 10ms when the floor falls

away. What is the minimum coefficient of friction that must exist between a rider’s

back and the wall, if the rider is to remain in place when the floor drops away?

44. Your friend Dan, who is in a ski resort, competes with his twin brother Sam on who can

glide higher with the snowboard. Sam, whose mass is 60 kg, puts his 15 kg snowboard

on a level section of the track, 5 meters from a slope (inclined plane). Then, Sam takes

a running start and jumps onto the stationary snowboard. Sam and the snowboard

glide together till they come to rest at a height of 1.8 m above the starting level. What

is the minimum speed at which Dan should run to glide higher than his brother to

win the competition? Dan has the same weight as Sam and his snowboard weighs the

same as Sam’s snowboard.

45. Legend has it that Isaac Newton was hit on the head by a falling apple, thus triggering

his thoughts on gravity. Assuming the story to be true, estimate the speed of the apple

when it struck Newton.
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46. An astronaut is floating next a space shuttle out in the middle of the intergalactic void

(i.e. very far from the influence of any planets or stars). Consider the astronaut and

the shuttle to be an isolated system. The astronaut accidentally kicks the shuttle with

his feet. Which of the following statements are true?

• The astronaut can never get back to the shuttle because once you have a certain

momentum it cannot be changed.

• The shuttle and the astronaut move apart from each other with the astronaut’s

velocity being larger than the shuttle’s velocity.

• The momentum of the shuttle is smaller than the momentum of the astronaut.

• In order to get back to the shuttle, the astronaut needs a change in momentum.

• The total momentum of the astronaut-shuttle system might not be conserved,

depending on how hard the shuttle was kicked.

47. Two small spheres of putty, A and B, of equal mass, hang from the ceiling on massless

strings of equal length. Sphere A is raised to a height h0 as shown in the figure below

and released. It collides with sphere B (which is initially at rest); they stick and swing

together to a maximum height hf . Find the height hf in terms of h0.

48. A kayaker paddles with a power output of 50.0W to maintain a speed of 1.50ms .

(a) Calculate the resistive force exerted by the water on the kayak.

(b) If the kayaker doubles her power output, and the resistive force due to the water

remains the same, by what factor does the kayaker’s speed change?

49. You are given the following problem. You don’t need to solve it. You only need to
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Figure D.15: Diagram for problem 47.

describe the steps that you will follow to find the answers. Make sure that your solving

strategy includes as many details specific to this problem as possible.

A 3.5 inch floppy disk in a computer rotates with a period of 2.00 × 10−1s. Does a

point near the center of the disk have an angular speed that is greater than, less than,

or the same as the angular speed of a point on the rim of the disk? Explain. (Note: a

3.5 inch floppy disk is 3.5 inches in diameter.)

50. You are given the following problem. You don’t need to solve it. You only need to

create a flow chart to illustrate the steps you are going to follow to find the answers.

Make sure that your solving strategy includes as many details specific to this problem

as possible.

A 47.0kg uniform rod 4.25m long is attached to a wall with a hinge at one end. The

rod is held in a horizontal position by a wire attached to its other end. The wire makes

an angle of 30.0 deg with the horizontal, and is bolted to the wall directly above the

hinge. If the wire can withstand a maximum tension of 1400N before breaking, how

far from the wall can a 68.0kg person sit without breaking the wire?
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Appendix E

Sorter Graphs

Included here are the graphs of the sorters from our study. Sorters 1-18 are experts and

Sorters 19-41 are novices. Each vertex represents a problem, and is labeled by the problem

number in our study. The edges are drawn between problems in the same category. Vertex

placement has been done using the Fruchterman-Reingold algorithm [27] as it did the best

job of displaying multiple categorization. Categories tend to form in large “ball” shapes.

Multiple categorization is evident by the appearance of an “arm” out of one of the categories.
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Figure E.1: The categorization graph of Sorter 1, an expert.
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Figure E.2: The categorization graph of Sorter 2, an expert.
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Figure E.3: The categorization graph of Sorter 3, an expert.
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Figure E.4: The categorization graph of Sorter 4, an expert.
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Figure E.5: The categorization graph of Sorter 5, an expert.

108



●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

89

10
11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

27

28

2930
31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Figure E.6: The categorization graph of Sorter 6, an expert.
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Figure E.7: The categorization graph of Sorter 7, an expert.

110



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

Figure E.8: The categorization graph of Sorter 8, an expert.
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Figure E.9: The categorization graph of Sorter 9, an expert.
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Figure E.10: The categorization graph of Sorter 10, an expert.
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Figure E.11: The categorization graph of Sorter 11, an expert.
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Figure E.12: The categorization graph of Sorter 12, an expert.
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Figure E.13: The categorization graph of Sorter 13, an expert.
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Figure E.14: The categorization graph of Sorter 14, an expert.
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Figure E.15: The categorization graph of Sorter 15, an expert.
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Figure E.16: The categorization graph of Sorter 16, an expert.
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Figure E.17: The categorization graph of Sorter 17, an expert.
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Figure E.18: The categorization graph of Sorter 18, an expert.
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Figure E.19: The categorization graph of Sorter 19, a novice.
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Figure E.20: The categorization graph of Sorter 20, a novice.
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Figure E.21: The categorization graph of Sorter 21, a novice.
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Figure E.22: The categorization graph of Sorter 22, a novice.
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Figure E.23: The categorization graph of Sorter 23, a novice.
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Figure E.24: The categorization graph of Sorter 24, a novice.
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Figure E.25: The categorization graph of Sorter 25, a novice.
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Figure E.26: The categorization graph of Sorter 26, a novice.
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Figure E.27: The categorization graph of Sorter 27, a novice.
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Figure E.28: The categorization graph of Sorter 28, a novice.
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Figure E.29: The categorization graph of Sorter 29, a novice.
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Figure E.30: The categorization graph of Sorter 30, a novice.
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Figure E.31: The categorization graph of Sorter 31, a novice.
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Figure E.32: The categorization graph of Sorter 32, a novice.
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Figure E.33: The categorization graph of Sorter 33, a novice.
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Figure E.34: The categorization graph of Sorter 34, a novice.
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Figure E.35: The categorization graph of Sorter 35, a novice.
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Figure E.36: The categorization graph of Sorter 36, a novice.
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Figure E.37: The categorization graph of Sorter 37, a novice.
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Figure E.38: The categorization graph of Sorter 38, a novice.
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Figure E.39: The categorization graph of Sorter 39, a novice.
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Figure E.40: The categorization graph of Sorter 40, a novice.
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Figure E.41: The categorization graph of Sorter 41, a novice.
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