EXPERT AND NOVICE CATEGORIZATION OF INTRODUCTORY PHYSICS PROBLEMS

Ву

Steven Frederick Wolf

A DISSERTATION

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Physics

2012

ABSTRACT

EXPERT AND NOVICE CATEGORIZATION OF INTRODUCTORY PHYSICS PROBLEMS

$\mathbf{B}\mathbf{y}$

Steven Frederick Wolf

Since it was first published 30 years ago, Chi et al.'s seminal paper on expert and novice categorization of introductory problems led to a plethora of follow-up studies within and outside of the area of physics [Chi et al. Cognitive Science 5, 121 – 152 (1981)]. These studies frequently encompass "card-sorting" exercises whereby the participants group problems. The study firmly established the paradigm that novices categorize physics problems by "surface features" (e.g. "incline," "pendulum," "projectile motion," ...), while experts use "deep structure" (e.g. "energy conservation," "Newton 2," ...).

While this technique certainly allows insights into problem solving approaches, simple descriptive statistics more often than not fail to find significant differences between experts and novices. In most experiments, the clean-cut outcome of the original study cannot be reproduced. In order to address this, we developed a less subjective statistical analysis method for the card sorting outcome and studied how the "successful" outcome of the experiment depends on the choice of the original card set.

Thus, in a first step, we are moving beyond descriptive statistics, and develop a novel microscopic approach that takes into account the individual identity of the cards and uses graph theory and models to visualize, analyze, and interpret problem categorization experiments. These graphs are compared macroscopically, using standard graph theoretic statistics, and microscopically, using a distance metric that we have developed. This macroscopic sorting behavior is described using our Cognitive Categorization Model. The microscopic compari-

son allows us to visualize our sorters using Principal Components Analysis and compare the expert sorters to the novice sorters as a group.

In the second step, we ask the question: Which properties of problems are most important in problem sets that discriminate experts from novices in a measurable way? We are describing a method to characterize problems along several dimensions, and then study the effectiveness of differently composed problem sets in differentiating experts from novices, using our analysis method.

Based on our analysis method, we find that most of the variation in sorting outcome is not due to the sorter being an expert versus a novice, but rather due to an independent characteristic that we named "stacker" versus "spreader." The fact that the expert-novice distinction only accounts for a smaller amount of the variation may partly explain the frequent null-results when conducting these experiments.

We found that the number of questions required to accurately classify experts and novices could be surprisingly small so long as the problem set was carefully crafted to be composed of problems with particular pedagogical and contextual features. In order to discriminate experts from novices in a categorization task, it is important that the problem sets carefully consider three problem properties: The chapters that problems are in (the problems need to be from a wide spectrum of chapters to allow for the original "deep structure" categorization), the processes required to solve the problems (the problems must required different solving strategies), and the difficulty of the problems (the problems must be "easy"). In other words, for the experiment to be "successful," the card set needs to be carefully "rigged" across three property dimensions.

For my wife Sarah, whose love and care for me knows no bounds. Words cannot express the depth of my appreciation for everything that you have done for me.

Also, to my son David. I hope that the wonder and energy that you have as you explore your world will never wane. Your laugh and your smile help remind me why I am doing this work.

ACKNOWLEDGMENTS

I would like to thank Gerd Kortemeyer, my advisor, for helping me through this process. His advice and support have been invaluable as I have sought to understand both the nuances of expert and novice cognitive structure as well as the difficulties of my students. I will strive to maintain the same excellence in my scholarship as I see in yours.

Next, I would like to thank Dan Dougherty for helping me understand multivariable statistics and introducing me to graph theory and, most importantly, collaborating with me on much of the work that is presented in this thesis. Also, I would like to thank Brian O'Shea for his help in getting an account on the High Performance Computer Cluster, allowing me to run the intensive computations on the computing resource there. Also, I would like to thank Raluca Teodorescu for her help in understanding the various nuances of the TIPP, as well as her assistance in constructing problems which would be diverse along both dimensions of the TIPP. A special thanks to Kristine Frye, who helped me fix one last figure to make the ruler lady happy. Furthermore, I would like to thank the MSU physics faculty and the introductory physics classes in the Fall 2010/Spring 2011 semester for volunteering to sort problems for my study. There are too many of you to name here. Finally, I would also like to thank the anonymous reviewers of the Phys. Rev. ST-PER journal for their extremely helpful input and suggestions on the portions of this thesis that have been published in that journal.

Finally, to my family. To my wife, Sarah, thank you for bearing so much as I have soldiered through graduate school. To my parents, thank you for bringing me up and fostering my curiosity about the world in general. Especially to my Dad, who has been teaching me about the wonderful world of science as long as I can remember. All of you have been

showering me with your love, support, and prayers; without these I would be lost.

TABLE OF CONTENTS

List of	Tables	ix
List of	Figures	X
Chapte	er 1 Physics Education Research and Categorization of Problems . Introduction	1
Chapt	er 2 Literature Review	Ę
2.1	Cognitive Structure	Ę
2.2	Categorization Studies	7
Chapt	er 3 Method Philosophy	14
3.1	Macroscopic versus Microscopic Cluster Comparison	15
3.2	Deterministic versus Variable Nature of Sorting	15
3.3	Parametric versus Non-Parametric Scoring	16
3.4	Visualization of the Data	17
3.5	An Alternative Approach	18
Chapt	er 4 Visual and Macroscopic Properties of Sample Experimental	
	Data	20
4.1	Visualizing Categorizations as Graphs	21
4.2	Number of Categories and Maximal Cliques	26
4.3	Connectedness	27
4.4	Maximum Clique Size	30
4.5	Diameter	30
4.6	Average Path Length	33
Chapt	er 5 Categorization Models	35
5.1	Standard Erdös-Renyi and Barabasi Models	36
5.2	Cognitive Categorization Model (CCM)	37
Chapt	er 6 Microscopic Properties of Sample Experimental Data	47
6.1	Distance Metric	48
6.2	Principal Component Analysis	49

Chapter 7 Parameterizing Subsets	55
7.1 Experimental Parameters	57
7.1.1 Problem Set Creation	60
7.1.2 Expert-Novice Differentiation	60
Chapter 8 Subset Analysis: Data Mining the Categorization Graphs	63
8.1 Monte Carlo analysis	64
8.2 Simulated Annealing Analysis	65
Chapter 9 Conclusion	70
9.1 Outlook	73
APPENDICES	7 6
Appendix A Categorization Model Pseudocode	76
A.1 Pseudocode	77
Appendix B Distance metric	7 9
B.1 Pseudocode	81
Appendix C Visualization technique	82
C.1 Pseudocode	82
Appendix D Problems in the Categorization Set	84
D.1 Prompt	84
D.2 Problems	85
Appendix E Sorter Graphs	103
BIBLIOGRAPHY	146

LIST OF TABLES

Table 2.1	Veldhuis's Matrix Method. Deep Structures are listed along the top. Surface Features are listed along the left. By "terms" Veldhuis includes "physical arrangements of objects and literal physics terms" in the problem text.[3] Veldhuis created this set hoping that experts would group the problems by column and novices would group the problems by row.	10
Table 5.1	CCM Model Parameters	43
Table 7.1	Chapter titles Chapter titles taken from Walker's textbook as a representative list.	61
Table 7.2	TIPP levels A limited hierarchy of the cognitive processes described by the TIPP. Most problems in a standard physics textbook require a highest declarative knowledge process of Comprehension–Integrating, and procedural knowledge process of Retrieval–Executing [5]. The level indicates the numeric value we scored the highest cognitive process required by each problem.	61
Table 8.1	Rigging parameters Variability explained by each of our problem variable groups among our 10-problem subsets. From this we see that the Chapter was an important variable, followed by the TIPP-P statistic	66

LIST OF FIGURES

Figure 4.1	Simple example graph: When two problems are in the same category more than once (problems 1 and 9 as well as problems 3, 5, and 7 in this example) the edges drawn between those two corresponding vertices are thicker. The line width of each edge was taken proportional to the square of the number of connections between two vertices	24
Figure 4.2	MSU physics study sorter graphs: Displayed from left to right are the categorization graphs for representative sorters. Sorters 2 and 16 were experts and sorters 20 and 30 were novices. Sorters 2 and 30 did very little multiple categorization, sorter 20 did a good bit of multiple categorization. Sorter 16 was unique in choosing to categorize each problem between 2 and 3 times. Appendix E contains graphs with each node labeled by the problem number for all sorters, including those shown here.	25
Figure 4.3	Distribution of Number of Categories: Here we see the ECDFs of the number of category distributions for experts and novices separately. The faculty set is displayed using the dashed curve and the novice set is displayed using the dotted curve. We also compare these distributions to a sample $(N=1000)$ shifted binomial distribution with probability $\rho=0.204$. A Kolmogorov–Smirnov test comparing these two distributions suggests that expert and novice categorizations are not distinguishable based on category number $(p=0.4793)$, and both are well approximated by the same shifted binomial distribution.	28
Figure 4.4	Number of 3-cycles: This is the distribution of the number of 3-cycles for experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their 3-cycle distributions ($p = 0.1584$)	29

Figure 4.5	Maximum Clique Size: This is the distribution of the maximum clique size for experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their maximum clique size distributions ($p = 0.0587$)		
Figure 4.6	Diameter: This is the distribution of the diameter of the experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their diameter distributions $(p = 0.6432)$	32	
Figure 4.7	Average Path Length: This is the distribution of the average path length for experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their average path length distributions ($p = 0.3906$)	34	
Figure 5.1	Erdös-Renyi and Barabasi graphs: The two graphs on the top are Erdös-Renyi graphs created using optimized parameters that best fit the 3 cycle distributions of experts and novices. On the bottom, we see two Barabasi graphs.	38	
Figure 5.2	3-cycle distributions Erdös-Renyi model: This is an ECDF of the 3-cycle distribution for sorters and the Erdös-Renyi model. Here the dashed line corresponds to the Erdös-Renyi model while the solid line corresponds to the sorter data	39	
Figure 5.3	3-cycle distributions Barabasi model: This is an ECDF of the 3-cycle distribution for the sorters and the Barabasi model. Here the dashed line corresponds to the Barabasi model while the solid line corresponds to the sorter data	40	
Figure 5.4	3-cycle distributions Here we see the 3-cycle distributions for the different CCMs. The model that fits the best is v3 (Equation 5.3), where the multiple categorization probability is β^C	44	
Figure 5.5	Representative CCM graphs: These are some representative graphs for the CCM using optimized input parameters. Qualitatively they match up much better to the sorter graphs seen in Figure 4.2	46	

Figure 6.1	PCA of the sorter data: Here we see the PCA plot of the sorters. PC1 is the coordinate along the first principal axis, and PC2 is the coordinate along the second principal axis. Sorter known by us to be experts are marked by circles while sorters known by us to be novices are marked by triangles. Each point is labeled on the left by the sorter number. The second principal component discriminates experts from novices.	53
Figure 6.2	Validating the use of PCA on the sorter data: This is a plot of the cumulative relative importance of each subsequent principal component. This shows that most of the variation is well-described by the first two principal components. Therefore using PCA for dimension reduction is an appropriate choice for this data	54
Figure 7.1	Problem Dependence of PCA (Top) This is the PCA plot of the sorters for the entire set of problems from our previous study [6]. Both a Cramer's test ($p = 0.048$) and a Hotelling's test ($p < 10^{-5}$) find the expert and novice groups to be distinct at a 95% confidence level. PC1 is the coordinate along the first principal axis, and PC2 is the coordinate along the second principal axis. Sorters known by us to be experts are marked by circles while sorters known by us to be novices are marked by filled triangles. The second principal component discriminates experts from novices.	58
Figure 7.2	Problem Dependence of PCA This is the PCA plot of the sorters considering only the problems from Singh's study. Both a Cramer's test $(p = 0.041)$ and a Hotelling's test $(p < 10^{-5})$ find the expert and novice groups to be distinct at a 95% confidence level. PC1 is the coordinate along the first principal axis, and PC2 is the coordinate along the second principal axis. Sorters known by us to be experts are marked by circles while sorters known by us to be novices are marked by filled triangles. The second principal component discriminates experts from novices	59
Figure 8.1	Rigging fraction This is a histogram of the rigging fraction for the subsets with a random starting point. The shaded gray box indicates the rigging fraction of the Singh subset. From this, we can see that the Singh subset has more problems in common with its nearest local optimum than does any of the random subsets studied	69

Figure 9.1	key parts of discriminating experts and novices on a categorization task. Deep structure (content), procedural knowledge (the kinds of tasks that a problem requires), and problem difficulty (easy questions tend to work better than hard questions)	72
Figure D.1	Diagram for problem 1	85
Figure D.2	Diagram for problem 4	86
Figure D.3	Diagram for problem 6	87
Figure D.4	Diagram for problem 8	88
Figure D.5	Diagram for problem 9	89
Figure D.6	Diagram for problem 13	90
Figure D.7	Diagram for problem 14	91
Figure D.8	Diagram for problem 17	92
Figure D.9	Diagram for problem 18	93
Figure D.10	Diagram for problem 19	94
Figure D.11	Diagram for problem 27	96
Figure D.12	Diagram for problem 28	97
Figure D.13	Diagram for problem 30	97
Figure D.14	Diagram for problem 34	98
Figure D.15	Diagram for problem 47	102
Figure E.1	The categorization graph of Sorter 1, an expert	104
Figure E.2	The categorization graph of Sorter 2, an expert	105

Figure E.3	The categorization graph of Sorter 3, an expert	106
Figure E.4	The categorization graph of Sorter 4, an expert	107
Figure E.5	The categorization graph of Sorter 5, an expert	108
Figure E.6	The categorization graph of Sorter 6, an expert	109
Figure E.7	The categorization graph of Sorter 7, an expert	110
Figure E.8	The categorization graph of Sorter 8, an expert	111
Figure E.9	The categorization graph of Sorter 9, an expert	112
Figure E.10	The categorization graph of Sorter 10, an expert	113
Figure E.11	The categorization graph of Sorter 11, an expert	114
Figure E.12	The categorization graph of Sorter 12, an expert	115
Figure E.13	The categorization graph of Sorter 13, an expert	116
Figure E.14	The categorization graph of Sorter 14, an expert	117
Figure E.15	The categorization graph of Sorter 15, an expert	118
Figure E.16	The categorization graph of Sorter 16, an expert	119
Figure E.17	The categorization graph of Sorter 17, an expert	120
Figure E.18	The categorization graph of Sorter 18, an expert	121
Figure E.19	The categorization graph of Sorter 19, a novice	122
Figure E.20	The categorization graph of Sorter 20, a novice	123
Figure E.21	The categorization graph of Sorter 21, a novice	124
Figure E.22	The categorization graph of Sorter 22, a novice	125

Figure E.23	The categorization graph of Sorter 23, a novice.	 126
Figure E.24	The categorization graph of Sorter 24, a novice.	 127
Figure E.25	The categorization graph of Sorter 25, a novice.	 128
Figure E.26	The categorization graph of Sorter 26, a novice.	 129
Figure E.27	The categorization graph of Sorter 27, a novice.	 130
Figure E.28	The categorization graph of Sorter 28, a novice.	 131
Figure E.29	The categorization graph of Sorter 29, a novice.	 132
Figure E.30	The categorization graph of Sorter 30, a novice.	 133
Figure E.31	The categorization graph of Sorter 31, a novice.	 134
Figure E.32	The categorization graph of Sorter 32, a novice.	 135
Figure E.33	The categorization graph of Sorter 33, a novice.	 136
Figure E.34	The categorization graph of Sorter 34, a novice.	 137
Figure E.35	The categorization graph of Sorter 35, a novice.	 138
Figure E.36	The categorization graph of Sorter 36, a novice.	 139
Figure E.37	The categorization graph of Sorter 37, a novice.	 140
Figure E.38	The categorization graph of Sorter 38, a novice.	 141
Figure E.39	The categorization graph of Sorter 39, a novice.	 142
Figure E.40	The categorization graph of Sorter 40, a novice.	 143
Figure E.41	The categorization graph of Sorter 41, a novice.	 144

Chapter 1

Physics Education Research and

Categorization of Problems

Physicists oftentimes pride themselves on being resourceful problem solvers. Larkin et al. concluded that the basis of this problem solving ability is the array of cognitive connections between multiple concepts, making each physics concept a part of a coherent whole rather than disparate bits of information [8]. Fuller points out the importance of a good conceptual understanding when he says, "Every physicist knows the importance of having the correct concept in mind before beginning to solve a problem" [9, emphasis mine].

Categorization studies comparing experts and novices started with Chi et al., who studied the categorization of introductory physics problems [1]. This study, to date, has been cited over 3000 times. It has been critical in the study of the differences between experts and novices in many areas, such as Clinical Psychology [10], dinosaur expertise [11], wine tasting [12], and even Star Wars philosophy [13]. All of these studies go back to the same apparently straightforward result in physics: novices categorize introductory physics problems

by "surface features" (e.g. "incline," "pendulum," or "projectile motion"), while experts use "deep structure" (e.g. "energy conservation" or "Newton's second law").

Our understanding of expertise was established by the seminal study done by Chi et al. [1]. However, replicating this experiment has been challenging. More often than not, attempts to verify it fail, as an informal survey among physics education researchers indicated. This is a puzzling fact given the sensibility and popularity of the result of Chi et al.. It has not been until more recently that the physics education research community has begun to understand why this might be while it has been grappling with different understandings of student learning and the conceptualization of expertise [14]. The earlier view held that students strongly hold misconceptions which must be defeated by instruction [14]. This view was limited in explaining how students actually acquire expertise. However, more recently, the view of student learning has become more nuanced [15, 14]. Instead, students have many intuitive resources that they may apply to solving the problems that they face. As students learn, they also learn the productive resources which may be applied to the problems that they face which will lead to positive outcomes. The paradigm shift about the understandings of student learning leads us to reconsider the paradigm that the community has used to understand expertise.

1.1 Introduction

In order to re-examine this understanding, we have designed and carried out a categorization experiment and developed a novel methodology to analyze that experiment [6]. Chapter of this thesis will discuss the developments in our understanding of student learning as well as review categorization studies in physics over the past 31 years. This discussion will include

a summary of the different analysis methods used by each of the research groups, and allow us to understand the advantages and disadvantages of each method.

Chapter will compare and contrast the previous analysis methods used to analyze categorizations. Given the aforementioned difficulties in replicating the seminal experiment of
Chi et al. and the revolution in understanding of learning, we will critique these methods
based on three properties. These are that an analysis method should be problem specific,
objective, and robust against outliers. With these requirements in mind, we will motivate
the need for the method we have developed to fulfill these requirements.

Chapter will introduce the key idea supporting this new method that we have created to describe categorization data. The first step is to convert an individual sorter's categorization into a graph network. Expert and novice sorters' graphs are then compared based on the macroscopic properties of these graphs. We find that the key factor discriminating sorters is not expertise, instead it is their sorting behavior, something we term "stacking" vs. "spreading."

Chapter will develop a statistical model which will seek to find the common pattern behind this macroscopic comparison. In creating this model we choose only a three parameters to describe the group behavior: The number of questions sorted (a parameter fixed by the experiment), the average number of categories, and the multiple categorization parameter. As is customary in categorization experiments, a single problem may be placed into more than one category, and the multiple categorization parameter describes the probability that multiple categorization occurs. Due to the fact that the individual multiple categorization probability decreases with the individual number of categories created, this reinforces the "stacker" vs. "spreader" interpretation.

Chapter will detail how to compare any two categorization graphs to each other using a distance metric we developed and will visualize the relative position of sorters using Principal Components Analysis (PCA) [6]. This visualization technique also confirms the "stacking" and "spreading" behavior observed as the largest source of variation in our categorization experiment. However, the second largest source of variation found by the PCA is due to expertise. This finding suggests that the experiment of Chi et al. has been difficult to replicate because the largest source of variation was not due to expertise. We explore next why a particular set of problems would discriminate experts from novices, while others do not, by considering many subsets of the large problem set categorized by the sorters.

In Chapter we will discuss the different statistics used to describe the problem sets. These include the cognitive and contextual features of the problems as well as the ability that a subset has to discriminate expert and novice sorters. The contextual features of the problems include a problem's chapter and difficulty. The discriminatory properties of subsets are found by using both parametric and non-parametric tests which compare the PCA coordinates of the expert and novice groups.

Finally, in Chapter, we will discuss the results of this subset analysis and determine which properties are important in discriminating experts from novices in a categorization experiment. We will discuss the importance, not only of problem content, but requiring sorters to categorize problems which require diverse solution types.

Chapter 2

Literature Review

2.1 Cognitive Structure

Before we begin discussing categorization studies, we should define what an expert is from a cognitive perspective. We know that we may identify an expert by his skill set, however, using a skill set to define an expert is a rather circular definition, so we will do better. Larkin et al. [8] consider the research on experts in several fields—namely Chess, algebra, and physics—to help us arrive at an answer. Cognitive research has taught us how experts store knowledge and about an expert's ability to access that knowledge. From a cognitive viewpoint, an expert's knowledge of introductory topics may be thought of as a well indexed, easy to access database. Moreover, this database is also well cross-referenced so that the main topics are also easily connected. The difference can be seen in this anecdote regarding Chess experts and novices. If a chess expert is shown a position from an actual match with about 25 pieces on the board and allowed to study it for 5–10 seconds, he will be able to reproduce it with about 90% accuracy, while a novice will typically be able to replace only

about 20–25% of the pieces [8]. This stark difference is due in large part to a memory phenomena called "chunking." [8] Cognitive research has shown that people can only hold relatively few "objects" in short term memory. Chess experts will quickly recognize a familiar pawn structure and placement of key pieces; the difference is therefore easily explained since a chess expert memorizes structures while the novices attempts to remember a position piece by piece. However, people studying chess experts have found out how to "rig the game" so that expert performance reverts back to novice ability. They can do this by putting a position on the board that is purely random which could never happen in a real game. For example, never will a pawn be in the first rank nor the white king adjacent to the black king. Positions like these have none of the familiar chunks that an expert chess player will recognize, therefore the performance on this task will be the same for experts and novices.

In order to compare expert and novice cognitive structures, we need to define our understanding of the underlying process of categorization. Different understandings of the underlying process of categorization will lead to different statistical analysis methods. Chi et al. seem to view categorization as a deterministic process, as evidenced by the "double-check" step in their experimental method. They see any minor replication variation as evidence of an underlying method. On the other hand, one of the phenomena that physics education research has to grapple with is the variability of learner responses to what appear to be identical scenarios, see for example Scherr [16] dealing with problems in relativity and Frank et al. [17] dealing with problems in motion. Rather than interpreting card-sorting outcomes as reflections of stable theories or beliefs, an alternative model is that they are based on ad hoc assemblies of more simple intuitions (similar to "phenomenological primitives," [15] or "resources" [14]) — those are then assembled "on-the-fly," and the particular assembly may

vary depending on circumstances. There is no reason to expect that card-sorting experiments are immune to this variability, and one may thus expect that any sorter who categorizes the same set of problems on separate occasions would return different results, although he or she might even recognize the problems that are used. We cannot control the actual mechanisms potentially underlying these "random" outcomes, but have accounted for the resulting variability in the choice of our statistical methods. In addition, we use sample-based statistics to interpret our categorization data, realizing that our sample is only part of a vastly larger population.

2.2 Categorization Studies

The novice group of Chi et al.'s study was made up of eight students who had just finished the first semester of an introductory university physics class, and the expert group was made up of eight advanced Ph.D. physics students. Both groups were given the instructions to sort the problems "based on similarity of solution" [1]. Problems were allowed to be placed in two (or more) categories if the sorter so desired; we call this "multiple categorization," as opposed to "single categorization," where each problem would have to be sorted in one and only one category.

Each sorter categorized their set in front of a member of the research team according to a uniform protocol. Sorters were required to sort the problems without paper and pencil to prevent them from actually solving the problems. After sorting the problems a second time — to check for consistency — the sorters explained the reasoning for their groupings. After a qualitative analysis of the category names used by more than two sorters, Chi et al.'s group concluded that the key distinction between experts and novices is, quite sensibly, that

experts sort problems based on the physics principle required to solve each problem, while novices sort the problems based on surface features. This difference in categorization, Chi et al. concluded, was an experts' ability to convert contextual cues from the problem texts and figures into the physics principles that are required to solve those problems. The main message from Chi's paper is that this difference in categorization behavior allows experts to be better problem solvers than novices [1].

In order to reevaluate these conclusions de Jong and Ferguson-Hessler studied both expert and novice categorizations of "elements of knowledge" required in a typical Electricity and Magnetism course [18]. In this study, the novice group consisted of 47 first-year students who had just finished the Electricity and Magnetism course, and the expert group consisted of four staff members, each of whom had taught the course for multiple years [18]. The "elements of knowledge" categorized were simply bits of information and ideas needed to solve 12 "classic" E&M problems. For example, in order to find the electric field due to a semi-infinite line of charge with a constant charge per unit length using Coulomb's law one needs four "elements of knowledge." First, a person would need to understand the physical meaning of a semiinfinite line of charge. Second, a person would need to know the mathematical definition of Coulomb's law. Third, a person would need to know the principle of superposition and that an application of this principle would be to take the integral of a vector quantity. Fourth, a person would need to know the relationship between electric force and electric field (de Jong and Ferguson-Hessler defined Coulomb's law for the force only and not the electric field). A total of 65 "elements of knowledge" were placed on individual cards and given to the participants in a random order. The participants were asked to sort the cards into piles and give names to their piles, indicating which, if any, elements were unfamiliar by putting them in a separate pile. de Jong and Ferguson-Hessler found that novices who performed well in the class generally sorted the "elements of knowledge" into groups according to the each classic problem which generated that group. However, the experts' advanced knowledge had been re-organized in a "hierarchical way" useful for upper-level physics applications rather than in the manner of the good novice problem solvers. That is, these elements tended to be organized according to principles (Coulomb's law, Biot-Savart,...) and processes rather than in groups useful for solving "classic" problems.

In a subsequent study, Veldhuis attempted to verify the result of Chi et al. [2]. Veldhuis had three groups, a novice group comprised of 94 introductory physics students, an intermediate group of 5 students who had just finished classical mechanics, and an expert group of 20 physics professors—among whom only 2 had not taught calculus-based physics. Veldhuis created four different categorization sets, one of which was given to each subject to categorize according to a protocol similar to that used by Chi et al.'s group. The first set was created in an attempt to mimic the Chi et al. problem set [3], and the second was a control set with a similar collection of end-of-chapter problems. In contrast, the third and fourth sets were carefully constructed so that each problem had only a single physics principle and a single surface feature from a set of principles and surface features [2]. For example, Table 2.1 shows how the third set was constructed by populating a matrix of four surface and four conceptual features. The fourth set was also "rigged." It had the same number of cards, but only two surface and two conceptual features. Veldhuis could not draw a conclusion from the categorizations from his first two problem sets. However, sets 3 and 4 agreed with Chi et al. in that experts categorize problems based on physics principles while novices show a "more complex behavior." [2, 3] Ironically, Veldhuis observed that distinguishing experts

Table 2.1: **Veldhuis's Matrix Method.** Deep Structures are listed along the top. Surface Features are listed along the left. By "terms" Veldhuis includes "physical arrangements of objects and literal physics terms" in the problem text.[3] Veldhuis created this set hoping that experts would group the problems by column and novices would group the problems by row.

	Newton II ¹	$E cons^2$	$\vec{p} \cos^3$	$\vec{L} \cos^4$
Spring	Prob 16	Prob 2	Prob 4	Prob 9
Ramp	Prob 11	Prob 6	Prob 12	Prob 15
Pulley	Prob 5	Prob 14	Prob 13	Prob 8
Terms	Prob 3	Prob 10	Prob 7	Prob 1

and novices based on surface features of their categorizations failed unless the desired physics features — conceptual and surface — were built into the design of the experiment.

More recently, the work done in Singh's group at the University of Pittsburgh has broadened the application of "card-sorting" to other fields [19, 20, 7, 21]. Mason and Singh compared students in introductory physics courses with both physics graduate students and physics faculty. Mason and Singh created two categorization sets of twenty-four problems each. The first set was created in an attempt to mimic Chi et al.'s set. Seven problems were directly from Chi et al.'s original set, based on examples given in the paper, while the remainder of the Chi et al.'s original set is apparently lost in history. A second set was devised because the results from the first set showed "major differences" with Chi et al.'s data [19, 20], which may not be surprising given Veldhuis's previous results [2, 3]. Each subject, upon reading the problems, filled in three columns on a response sheet: category name, the appropriateness of the category name, and the identity of problems that fit in the category. Mason and Singh then rated each problem's category as "good," "moderate," or "poor" based on each sorter's description of the category. A category was considered "good" if it was based on the underlying physics principles. Finally, the authors asked a

faculty panel to validate their ratings by following the same procedure on a subset of the categorizations.

Mason and Singh found that the problems taken directly from Chi et al.'s original study were placed by novices in "good" categories far less often than they did on average, determining that they were generally from topics more difficult to novice students. For example, difficult topics for novices might have been rotational motion, non-equilibrium applications of Newton's 2nd law, or the Work-Energy theorem [19, 20]. Mason and Singh also found that the superficial category names were far less prevalent in their study than in Chi's original study. It is possible that the shift away from novices' use of superficial category names is due to a change in curricular focus precipitated by Chi et al.'s result. Contrary to the sharp distinction found by Chi et al., Mason and Singh found that there was some overlap between the calculus-based introductory physics students and the graduate students [19, 20].

In a follow-up study, Singh [7] asked graduate student teaching assistants to perform a similar categorization exercise, both as themselves and through the eyes of their students, and compared both types of their categorizations to physics faculty and introductory students. In contrast with Chi et al., Singh considered the physics faculty as the "true experts" and only looked at graduate students as a sort of intermediate group. Similar to Mason and Singh, problem categories were rated to be "good", "moderate," or "poor," validated by a faculty panel. Singh found that the graduate students acting as introductory students performed better on the categorization task than did actual introductory students, thus overestimating their students [7]. Singh found that the professors performed best on the categorization task, distinguishing this group from the categorizations of the graduate students acting as themselves. This suggested that the use of graduate students as an expert group is not

entirely accurate, as their behavior is not truly expert-like.

Finally, in a separate study, Lin and Singh also carried out a categorization study concerning Quantum Mechanics problems [21]. For this task the novice group consisted of twenty-two Junior and Senior physics majors taking Quantum Mechanics. The expert group consisted of six faculty members [21]. In contrast to the previous studies mentioned here, Lin and Singh chose to have a three-member faculty panel evaluate all of the categorizations, scoring each category as either good, moderate, or poor. In contrast to the studies of introductory physics problems, in Lin and Singh's study, the expert group had more variability, as even the faculty panel did not see this task in stark terms. Two of the panel members even said that they disliked using the terms "good" and "poor" to describe a categorization of Quantum Mechanics problems; this reservation was not voiced by the raters in the introductory problem categorization studies [21]. Similarly, the faculty panel members said that sometimes they preferred another categorization choice to their own [21]. All of this, Lin and Singh conclude, was due to the more difficult nature of the problems. In any case, it is clear that no "ideal" set of groupings existed, and it was impossible to simply assign some "score" to a given categorization.

As you can see, interest in replicating the result of Chi et al. has increased in the past decade, possibly due to the fact that the PER community has come to change its understanding of learning. This renewed interest has led to correspondence with the lead author, Chi. Anyone interested in replicating Chi et al.'s experiment would want two things from the original study: The problems used and the analysis method used. However, in correspondence with Mason and Singh, Chi states that all but a few problems from the original study "had been discarded and were not available" [20]. Furthermore, the exact analysis

method Chi et al. used is apparently lost to history as well [22]. From these communications as well as the description of the analysis method from the original paper, it is apparent that Chi et al. did not use all of the problems in their analysis. The truth is simply that so much of the information from Chi et al.'s original study has been lost that we cannot falsify or verify it.

In summary, replicating Chi et al.'s seminal experiment is challenging. More often than not, attempts to repeat it fail, as an informal survey among physics education researchers indicates — however, such null-results do not get published. Yet, as a community of physics educators, we hold a firm belief that deep down there is a significant difference in problem solving behavior between experts and novices, and that categorization is an important piece of the puzzle. Quantifying this difference, however, more often than not, remains elusive.

Chapter 3

Method Philosophy

This chapter will compare and contrast the previous analysis methods used to analyze categorizations. Given the aforementioned difficulties in replicating the seminal experiment of Chi et al. and the revolution in understanding of learning, we will critique these methods based on three properties. These are that an analysis method should be problem specific, objective, and robust against outliers. With these requirements in mind, we will motivate the need for the method we have developed to fulfill these requirements.

While Chi et al.'s method has been the predominant paradigm for follow-up studies, their methodology is based on a certain model of the categorization process. Using a different model, one will arrive at a different methodology. Given the importance of this experimental technique, we believe it is important to understand the underlying model and consider alternatives to its assumptions.

3.1 Macroscopic versus Microscopic Cluster Comparison

Chi et al.'s group looked at a processed version of the category names agreed upon by multiple sorters and counted the number of problems in each category name [1]. Their analysis does not seem to hinge on the identity of the problems in each group, merely the number of problems in that group. For example, if two sorters both used the category name "Conservation of Energy" but one sorter put problems $\{1, 3, 5, 7, 9\}$ in that set and the other sorter put problems $\{2, 4, 7, 8, 9\}$ in that set, Chi et al.'s analysis would count that as two people who both used an energy related variant as a category and both had five problems in that set. In other words, the sets would be treated identically. We argue that it is important that these two groups should be treated differently, as they have few identical elements. We believe that instead of just these "macroscopic" measures (sizes and names of groups), the sorting results should also be compared on the "microscopic" level of individual problems.

3.2 Deterministic versus Variable Nature of Sorting

Different understandings of the underlying process of categorization will lead to different statistical analysis methods. Chi et al. seem to view categorization as a deterministic process, as evidenced by the "double-check" step in their experimental method. They see any minor replication variation as evidence of an underlying method. That is, variation on the second time through the cards is a chance to correct a mistake. On the other hand, one of the phenomena that physics education research has to grapple with is the variability of learner responses to what appear to be identical scenarios, see for example Frank et al. [17].

Rather than interpreting card-sorting outcomes as reflections of stable theories or beliefs, an alternative model is that they are based on ad hoc assemblies of more simple intuitions (similar to "phenomenological primitives," [15] or "resources" [14]) — those are then assembled "on-the-fly," and the particular assembly may depend on circumstances which are dynamic. There is no reason to expect that card-sorting experiments are immune to this variability, and one may thus expect that any sorter who categorizes the same set of problems on separate occasions would return different results, although he or she might even recognize the problems that are used. To wit, replication variation is expected. We cannot control the actual mechanisms potentially underlying these "random" outcomes, but have accounted for the resulting variability in the choice of our statistical methods. In addition, we use sample-based statistics to interpret our categorization data, realizing that our sample is only part of a vastly larger population.

3.3 Parametric versus Non-Parametric Scoring

Previous analysis methods [19, 20, 7, 21] describe each categorization individually with a score, which is either a comparison to an "ideal" categorization set or an individual "grade" of each set. These methods measure performance on the categorization task, where the scoring criteria is an input of the evaluation process — the process starts with assumptions of what properties an expert categorization will have. It may, however, not be clear what an "ideal" set is, which in turn makes the scoring somewhat ambiguous. First, curricular emphasis within any physics program varies over time; as does the researcher's personal categorization. Therefore that researcher may rate the same data differently if he or she were to re-evaluate the same categorization set again. Second, the experiment will not be repeatable from

one group to another using these methods because each individual experimenter's ideal categorization of the same set will be different, possibly creating a large distortion in the analysis. Third, as Lin and Singh found, as topics become more complex, an expert will express uncertainty in his or her own choice, sometimes preferring the choice of another to his or her own. Finally, if one evaluates each categorization subjectively based on the expected deep structure category for each problem, one assumes the deep structure versus surface features distinction rather than letting that be a conclusion of the statistical analysis. We believe that any groupings should emerge from the data itself. In other words, the properties and patterns of what makes a categorization expert-like should be an output of the experiment. Similar to outcomes from non-parametric data-mining, it may not always be clear what these characteristics mean, as they are frequently combinations of many features or latent factors.

3.4 Visualization of the Data

Finally, several studies utilized dendograms to interpret their data, e.g., Veldhuis [2]. While dendograms are intuitive, they are not very stable. Milligan [23] investigated a number of clustering algorithms and compared them using Monte-Carlo generated data from a defined, yet synthetic, cluster model which employed random perturbations. According to Milligan, complete linkage clustering, a type of dendogram analysis, struggles to recover clusters when there are outliers present in the dataset. Another type of dendogram analysis, single linkage clustering, is highly sensitive to noise in the dataset. It is for these reasons that it is important to pre-process any data, for example by removing outliers from the data set, in order to get a dendogram that is clear and interpretable. Interpreting a dendogram is a subjective exercise

as each dendogram will have a unique threshold where the tree has clustered into groups, yet has not begun to coalesce into a single stem on the tree. Some dendograms do not have any distinguishable groups at all. We desired to have an experimental method that required no pre-processing, with a reliable and easily interpretable output suitable for further analysis. As a result, we have chosen a different approach, based on graphs.

3.5 An Alternative Approach

Given the above concerns, we explored a different model of analyzing and interpreting cardsorting data. To describe clustering on an individual problem level, we decided to approach
the analysis as a network. Instead of looking at piles, we decided to look at individual
question cards (nodes in the network) and relationships (edges, in this case due to nodes
"being in the same pile"). Networks are well described by graph theory. As the relationship
"being in the same pile" has no direction (if problem A is in the same pile as B, then B is
in the same pile as A), we are looking at undirected graphs. The resulting graphs have the
advantage of converting an abstract network into an object that can both be visualized and
analyzed using an established canon of mathematical methods.

As scientists, we prefer simple explanations to complex ones, and sought to distinguish experts from novices using the simplest test possible. It is for this reason that we compare these categorizations' macroscopic features before continuing on to microscopic features. The key distinction between the macroscopic and microscopic scales is that the macroscopic scale should not be sensitive to the identity of the problems, while the microscopic scale should be highly sensitive to problem identity. In choosing mathematical methods for further analysis, we were unexpectedly limited by one feature of Chi et al.'s and subsequent studies: the

"multiple categorization," i.e., the fact that one and the same question card is allowed to be in more than one pile. This presented a challenge to several existing algorithms. The key measurement we make is a "distance" measurement between each pair of categorizations. Given these distances, we used Principal Components Analysis (PCA) to visualize the data in a few simple plots.

Chapter 4

Visual and Macroscopic Properties of Sample Experimental Data

This chapter introduces the key idea supporting this new method that we have created to describe categorization data. The first step is to convert an individual sorter's categorization into a graph network. Expert and novice sorters' graphs are then compared based on the macroscopic properties of these graphs. We find that the key factor discriminating sorters is not expertise, instead it is their sorting behavior, something we term "stacking" vs. "spreading."

In order to cognitive structures of physics concepts, we designed and carried out a cardsorting experiment on physics experts and novices at Michigan State University. A total
of 18 physics professors and 23 novices participated in our study. All of the novices had
completed at least the first semester of an introductory physics course at MSU. We gave
each sorter a set of 50 problems to sort based on similarity of solution. The physics faculty
were given the set and allowed to choose a time when they would complete the task at

their convenience while the novices were asked to complete the task during a window of a few hours in an informally supervised setting. Each sorter categorized his or her problems and recorded his groups and group names in a separate packet. Multiple categorization was allowed, but it was in no way communicated to the individual sorters that this practice was expected or endorsed. While this may be problematic if some sorters did not assume that multiple categorization was allowed, it is the standard protocol for these sorts of experiments [1, 7, 20].

4.1 Visualizing Categorizations as Graphs

Analyzing the experimental data in terms of graphs requires a shift in conceptualization. As a simple example, consider ten questions categorized into four categories. Suppose that the first category is Newton's second law and contains problems $\{2,4,6,8,10\}$. Suppose also that the second category is conservation of energy and contains problems $\{1,3,5,7,9\}$, the third category is conservation of momentum and contains problems $\{2,3,5,7\}$, and the fourth category is kinematics and contains problems $\{1,4,9\}$. At this stage in the process, the names of the categories are irrelevant. In order to create a graph of categorization data we represented questions (cards) as the nodes and used each category to create a set of edges. To start out, we summarize the categorization information in a matrix T. This matrix is a Boolean $\{0 \mid 1\}$ table with the items being sorted placed along the rows and the categories in

each column. For this example categorization the T matrix is:

$$T = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

This is then converted into a weighted adjacency matrix X_{ij} representing the number of times that item i and item j are in the same category. Specifically,

$$X_{ij} = \sum_{k} T_{ik} T_{jk} \left(1 - \delta_{ij} \right) \tag{4.1}$$

where δ_{ij} is the Kronecker delta. Note that $X_{ii} = 0$ because in the context of graph theory a term on the diagonal will draw an edge from an object to itself. Thus, X_{ij} represents the number of edges that must be drawn between two vertices i and j on the graph. The graph of this example is shown in Figure 4.1.

Also, from the weighted adjacency matrix, the adjacency matrix A_{ij} can be derived:

$$A_{ij} = \min\left(X_{ij}, 1\right) \tag{4.2}$$

We applied this method to the physics problem categorizations created by each sorter. In doing so, we obtained i) graphs that we may inspect visually ii) adjacency matrices which will be useful for the calculation of certain statistics and iii) weighted adjacency matrices which will be useful when we consider our distance metric.

In order to visualize the graphs seen in Figure 4.1 as well as the other categorization graphs throughout this paper, we utilized the R statistical software's [24] igraph package[25]. There are currently 13 different algorithms programmed into R for determining node placement, and each would cause the same graph to look very different. We initially used the Kamada-Kawai algorithm [26], however, we eventually chose the Fruchterman-Reingold algorithm [27] because it does the best job of illustrating multiple categorization. Finally, the graphs shown in Figure 4.1 do not identify each node. However, there are graphs for all of the sorters in this study shown in Appendix E which do include labels for each problem.

Fig. 4.2 shows the power of the visualization technique: while our sample data had more than 40 participants sorting 50 cards each into any number of piles, flipping through the graphs in less than a minute allowed us to identify the outliers (such as Sorter 16 in the figure) and general features along which to distinguish the sorters.

Multiple categorization can lead to a situation where the above mechanism "collapses" clusters. For example, a sorter may sort three problems, 1, 2, and 3, into three categories, {1,2}, {2,3}, and {3,1}. In the above mechanism, these three categories of two double-categorized problems each will be indistinguishable from one "collapsed" cluster {1,2,3} with three single-categorized problems. One might argue that this collapsing effect is in fact a feature of the mechanism, since with all of the required double-categorization, the original categories would have to have been spurious, yet, as we want to closely represent the original

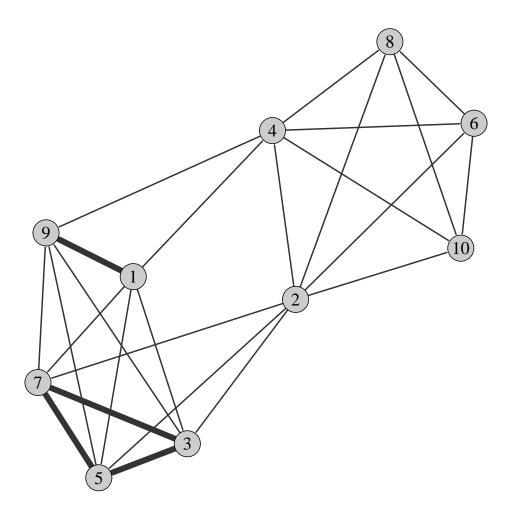


Figure 4.1: **Simple example graph:** When two problems are in the same category more than once (problems 1 and 9 as well as problems 3, 5, and 7 in this example) the edges drawn between those two corresponding vertices are thicker. The line width of each edge was taken proportional to the square of the number of connections between two vertices.

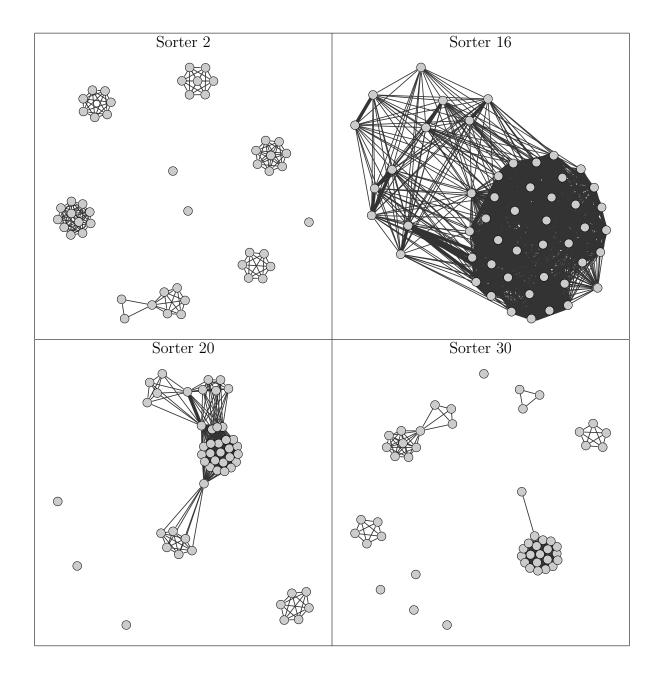


Figure 4.2: MSU physics study sorter graphs: Displayed from left to right are the categorization graphs for representative sorters. Sorters 2 and 16 were experts and sorters 20 and 30 were novices. Sorters 2 and 30 did very little multiple categorization, sorter 20 did a good bit of multiple categorization. Sorter 16 was unique in choosing to categorize each problem between 2 and 3 times. Appendix E contains graphs with each node labeled by the problem number for all sorters, including those shown here.

sorting, we need to be on the lookout for a possible loss of information upon converting each sorting into a graph. We will do this by comparing the number of categories to an analogous statistic from graph theory, the number of maximal cliques.

4.2 Number of Categories and Maximal Cliques

The "number of categories" is a frequently used macroscopic measure of card sorting distributions and not yet particular to graph theory. Chi et al.'s experiment found that experts and novices created, on average, the same number of categories, which is true also in our study: experts created an average of 10.8 ± 4.5 categories, while novices created 11.4 ± 4.4 categories. The large standard deviations indicate a wide distribution of category counts, and thus we decided to extend our comparison to the entire distributions, which includes differences in skewness or shape. For example, a Gaussian distribution and a bimodal distribution with the same mean and standard deviation would be discriminated in our tests whereas they would not be discriminated when only comparing averages. In order to compare two distributions, we consider the Empirical Cumulative Distribution Function (ECDF), which is calculated from each normalized distribution D(x) as follows:

$$ECDF(x) = \int_{-\infty}^{x} D\left(x'\right) dx' \tag{4.3}$$

For the category number distribution the ECDF(x) represents the fraction of sorters who have x or less categories. We used the 2-sample Kolmogorov–Smirnov goodness-of-fit hypothesis test (KS-test). The KS-test statistic is the maximum difference between two ECDFs. Sample distributions from the same population have a known KS-test statistic distribution.

This allows for the calculation of a p-value much in the same way that a p-value is calculated from a T-test. This p-value behaves in the usual way: If p > 0.05, then the distributions are not statistically different at a 95% confidence interval. A KS-test comparing the ECDFs of expert and novice number of categories (see Figure 4.3) demonstrated no statistically significant difference (p = 0.4793). This result confirms and expands Chi et al.'s result regarding the average number of categories for experts and novices. Furthermore, we see that these distributions are consistent with a binomial distribution.

The graph-theoretical equivalent of the number of categories is the number of maximal cliques. A node is a member of a clique if it is connected to all of the other nodes in the clique, and a clique is maximal if there is no other node which may be added to the clique. To investigate the possible "collapse" of categories, we analyzed the ratio of categories to maximal cliques for each sorter, and found that all but four sorters had exactly the same number of maximal cliques as categories, which was not statistically significant (p-value=1.0).

4.3 Connectedness

The number of so-called 3-cycles macroscopically describes the connectedness of a graph, and is the first graph theoretical measure we apply. A 3-cycle is a sub-graph of three vertices where all vertices connect by edges. In our example, shown in Figure 4.1, one of the 24 3-cycles is the sub-graph including vertices $\{1,3,5\}$ because they are all connected by (at least) one edge. However, the sub-graph including vertices $\{1,2,3\}$ is not a 3-cycle because vertex 1 is not connected to vertex 2. This statistic is related to how often a sorter categorizes cards in multiple piles. Contrary to the previous example where 7 of the 10 problems were categorized twice, now consider the following example without any multiple categorization. Suppose the

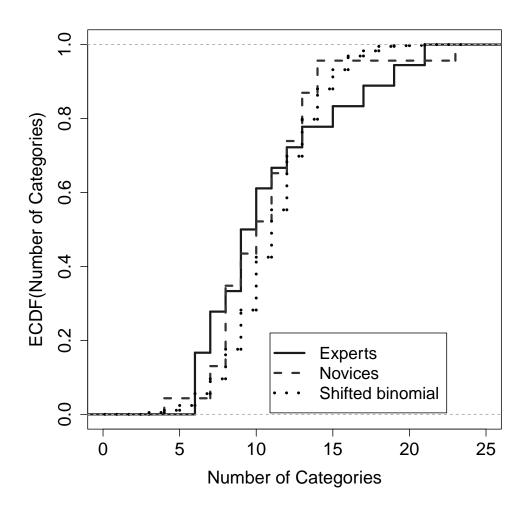


Figure 4.3: **Distribution of Number of Categories:** Here we see the ECDFs of the number of category distributions for experts and novices separately. The faculty set is displayed using the dashed curve and the novice set is displayed using the dotted curve. We also compare these distributions to a sample (N = 1000) shifted binomial distribution with probability $\rho = 0.204$. A Kolmogorov–Smirnov test comparing these two distributions suggests that expert and novice categorizations are not distinguishable based on category number (p = 0.4793), and both are well approximated by the same shifted binomial distribution.

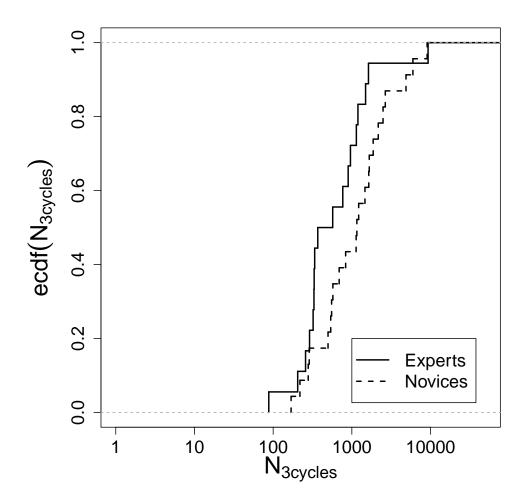


Figure 4.4: **Number of 3-cycles:** This is the distribution of the number of 3-cycles for experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their 3-cycle distributions (p = 0.1584).

conservation of energy category has problems $\{1, 4, 7, 10\}$, the Newton's Second Law category has problems $\{2, 5, 8\}$, and the conservation of momentum category has problems $\{3, 6, 9\}$. In this categorization, where there are no problems multiply categorized, there are only six 3-cycles. As such, the 3-cycle distribution is extremely useful for analyzing the connectedness of graphs. A KS-test comparing the ECDFs of expert and novice 3-cycle distributions (see Figure 4.4) demonstrated no statistically significant difference (p = 0.1584). This result was expected because *connectedness* does not take problem *identity* into account.

4.4 Maximum Clique Size

Our next macroscopic test considers the so-called maximum clique size, which is the size of the largest maximal clique — in our context the maximum clique size is the size of the largest "pile" that a sorter has created. A KS-test comparing the ECDFs of expert and novice maximum clique size distributions (see Figure 4.5) demonstrated no statistically significant difference (p = 0.0587). Similar to the connectedness result in the preceding section, this result was expected as maximum clique size does not take problem identity into account.

4.5 Diameter

The so-called diameter is a macroscopic measure that describes the number of jumps it takes to get between the two least connected points. An example of this statistic is the so-called maximum Erdös number, which says that many mathematicians can be connected to Paul Erdös in 8 steps or less by assuming that two mathematicians are connected if they have collaborated on at least one project. As such, the diameter distribution is extremely useful for comparing the maximum relative sizes of graphs. As most of our graphs are unconnected (not every pair of nodes has a path between them), this introduces a difficulty of how to determine the diameter. While some would choose to find the diameter to be the number of nodes in the graph +1 (or 51 in our case), we chose to ignore all unconnected nodes. This was done to ensure the largest possible variation in our data. If we had made the former choice, the ECDF would have (nearly) looked like a step function which would have given the distributions an artificial look, and caused the differences in the data distributions to be almost entirely determined by the outliers, rather than the group as a whole. A KS-test

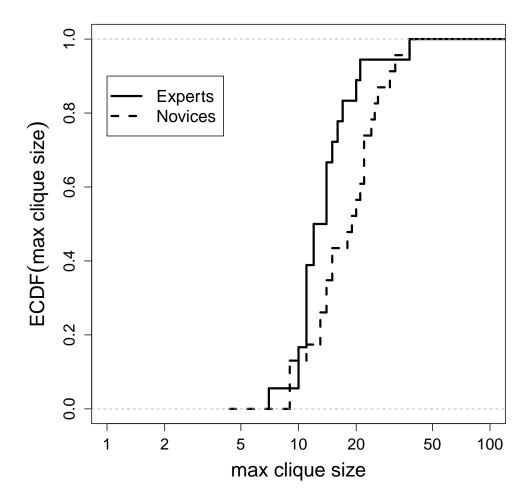


Figure 4.5: **Maximum Clique Size:** This is the distribution of the maximum clique size for experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their maximum clique size distributions (p = 0.0587).

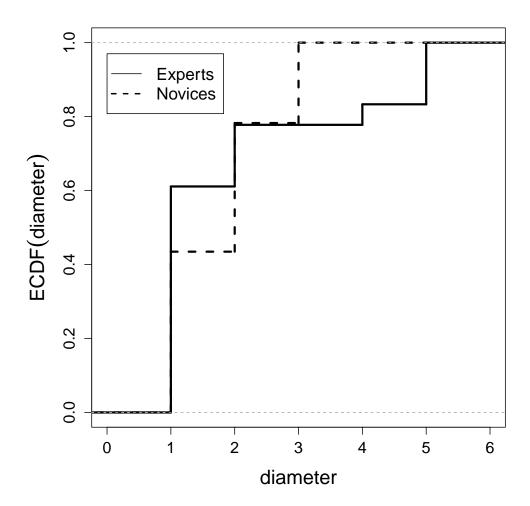


Figure 4.6: **Diameter:** This is the distribution of the diameter of the experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their diameter distributions (p = 0.6432).

comparing the ECDFs of expert and novice diameter distributions (see Figure 4.6) demonstrated no statistically significant difference (p = 0.6432). This result was also expected as diameter does not take problem identity into account.

4.6 Average Path Length

The average path length is a macroscopic measure that describes the average number of jumps it takes to get between all unique pairs of points. As such, the distribution of average path lengths may be used to compare the average relative sizes of the different graphs. The calculation of the average path length is subject to the same difficulty due to unconnected graphs as is the diameter. In this case, we chose to set the path length between unconnected nodes to be 51, rather than ignoring them. In this setting, we feel that this measure includes both the local structure of the graph and a measure of how unconnected the graph is as well. As a result, we note that the range of average path length is much larger than the diameter. However, a KS-test comparing the ECDFs of expert and novice average path length distributions (see Figure 4.7) demonstrated no statistically significant difference (p = 0.3906). This result, combined with all of the previous results suggests that our hypothesis that expert and novice categorizations can not be distinguished without taking problem identity into account has merit.

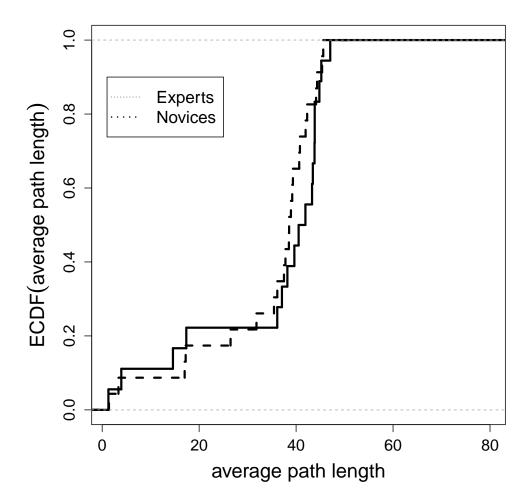


Figure 4.7: **Average Path Length:** This is the distribution of the average path length for experts and novices. A Kolmogorov–Smirnov test suggests that experts and novices are not distinguishable based on their average path length distributions (p = 0.3906).

Chapter 5

Categorization Models

This chapter develops a statistical model which seeks to find the common pattern behind the common macroscopic sorting behavior of experts and novices. In creating this model we choose only a three parameters to describe the group behavior: The number of questions sorted (a parameter fixed by the experiment), the average number of categories, and the multiple categorization parameter. As is customary in categorization experiments, a single problem may be placed into more than one category, and the multiple categorization parameter describes the probability that multiple categorization occurs. Due to the fact that the individual multiple categorization probability decreases with the individual number of categories created, this reinforces the "stacker" vs. "spreader" interpretation.

All of the macroscopic statistical measures, that is, measures which dealt with just the groups of cards and not the individual cards and their identities, yielded no significant distinction between expert and novice sorters. For now, visualizing the data was successful in quickly recognizing outliers (subjects who sort differently), but those outliers were not necessarily more prevalent among experts or novices. We now aim to construct a model

of the categorization process that has the same macroscopic and visual properties as our sample experimental data. Along the way, we learn more about human behavior during categorization tasks.

We started out by using two standard models frequently used in graph theory literature. Unfortunately, neither of these two standard models reproduces the data, in spite of the fact that they are generally considered complementary. We thus created our own model, which generated more realistic model data.

5.1 Standard Erdös-Renyi and Barabasi Models

An Erdös-Renyi model generates a "uniform" graph, that is a graph where any two vertices have a certain fixed probability of being connected [28]. Uniform graphs may be generated as random realizations of a model having two parameters: the number of nodes and the probability that nodes will connect. Barabasi graphs, a kind of a "small-world" graph often used to model social networking connections[29], is created by adding one node at a time, and connecting this new node with the existing nodes on the graph with a probability related to the number of edges already connected to each node $P \propto N^a + b$. The model for a Barabasi graph has three parameters, the number of nodes in the graph, the probability to connect to a node with no other connections (b), and the power (a) by which the number of edges already connected to a node (N) is raised. We describe next the statistical comparison and analysis of graphs generated by these models to the graphs generated by our human sorters.

First, we considered the Erdös-Renyi model. See Figure 5.1 for examples of Erdös-Renyi graphs. In order to determine the best input parameters for our model we optimized these parameters using the standard algorithm "optim" found in R[24]. This was done by calculat-

ing 1000 random graphs from the Erdös-Renyi model using test parameters and calculating the 3-cycle distribution from those graphs. This distribution was then compared to the combined expert and novice 3-cycle distribution from our experiment, and we calculated the KS-test statistic for those two distributions. Ultimately, the parameters that we determined through this optimization for the Erdös-Renyi model were the ones that produced the minimum KS-test statistic between the sorter distribution and the Erdös-Renyi model distribution. See Figure 5.2 for a comparison of the ECDFs for these 3-cycle distributions. While the optimization was only done for the 3-cycle parameter, the minimum KS-test statistic corresponded to $p < 10^{-6}$. We also compared the sorter distributions to the Erdös-Renyi model distribution for maximum clique size, diameter, and average path length for these optimized parameters. In every case we found $p < 10^{-6}$ and therefore the Erdös-Renyi model with optimized parameters does not statistically describe the sorter data. Next we considered the Barabasi model: See Figure 5.1 for examples of Barabasi graphs. We repeated the same optimization process for the Barabasi model parameters and also compared the sorter distributions for 3-cycles, maximum clique size, diameter, and average path length. In every case we find $p < 10^{-6}$ and therefore the Barabasi model does not statistically describe the sorter data. Due to the difficulty that these canonical models have in describing the sorters' behavior we have chosen to create our own model, which we will call the Cognitive Categorization Model (CCM).

5.2 Cognitive Categorization Model (CCM)

As standard models failed to reproduce our experimental data in a satisfactory way, we constructed our own model, which is directly based on the rules of the categorization exper-

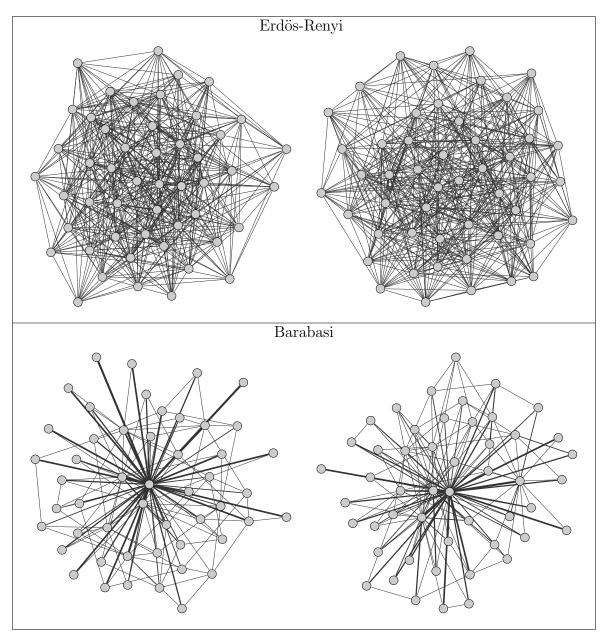


Figure 5.1: **Erdös-Renyi and Barabasi graphs:** The two graphs on the top are Erdös-Renyi graphs created using optimized parameters that best fit the 3 cycle distributions of experts and novices. On the bottom, we see two Barabasi graphs.

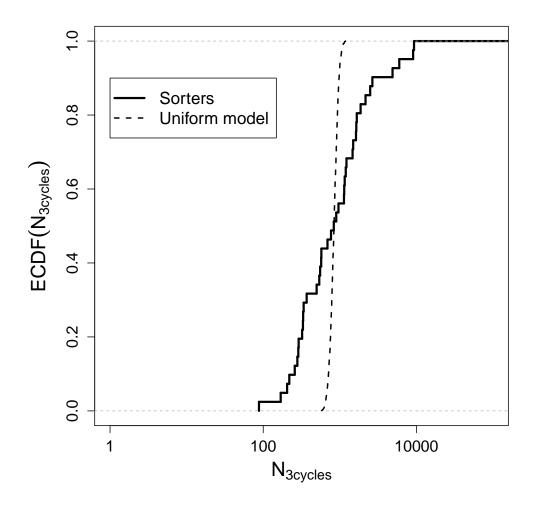


Figure 5.2: **3-cycle distributions Erdös-Renyi model:** This is an ECDF of the 3-cycle distribution for sorters and the Erdös-Renyi model. Here the dashed line corresponds to the Erdös-Renyi model while the solid line corresponds to the sorter data.

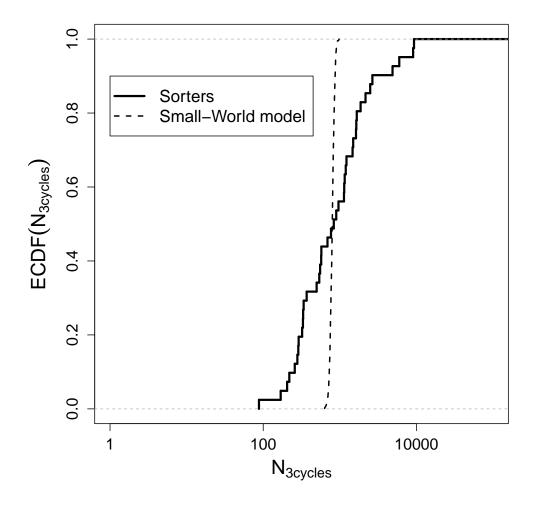


Figure 5.3: **3-cycle distributions Barabasi model:** This is an ECDF of the 3-cycle distribution for the sorters and the Barabasi model. Here the dashed line corresponds to the Barabasi model while the solid line corresponds to the sorter data.

iment:

- 1. All questions must be put into a category.
- 2. All categories must have at least one question in them.
- 3. A question may fall into more than one category.

The latter rule is mathematically cumbersome, but had to be included since it is standard procedure in most experiments, including the one that was the base of our sample data in the previous section.

Our new model, which we call the Cognitive Categorization Model (CCM), has three parameters: The first parameter of the CCM model (Q) represents the number of questions that are being categorized in the experiment. The second parameter is the average number of categories determined by a sorter. As we described in Subsection 4.2, a shifted binomial distribution fits the category number data rather well. A binomial distribution is the "weighted coin" distribution — if you flip a weighted coin N times, what is the probability that you will get "heads" k times? In principle, one can flip a coin N times and get tails every time. By Rule #1, we do not want to allow zero categories, therefore we must introduce a shift. It would also be senseless to create more categories than questions, so we wish to choose a number of categories from between 1 and Q. The simplest way to do this is to generate a number from the binomial distribution between 0 and Q-1 and then add 1 to each of these randomly generated values. The probability of success is chosen to correspond to the final average number of categories. The final parameter is the probability to categorize a card into more than one pile. After each problem has been sorted into a single pile, the algorithm tests whether that problem should be sorted into other categories as well. Our

model, with 2 free parameters is on par with the Erdös-Renyi model (1 free parameter) and the Barabasi model (2 free parameters). In addition to the fact that the CCM parameters are interpretable, the small number of CCM parameters makes this model parsimonious.

Appendix shows the pseudocode for this model. In our code, we implement multiple categorization by generating a random number between zero and one and comparing that number to our multiple categorization probability. However, there are a number of ways that we can model the multiple categorization probability. The simplest way is to allow every sorter to have a uniform probability and say that some percentage of the time a card will be split again. So for this model the multiple categorization probability is constant (CCMv1):

$$P_{\text{multiple}} = \beta_1 \tag{5.1}$$

where β_1 is a constant between zero and one which applies to the entire population. Another way that we consider assumes that a penalty is incurred whenever a card is split (CCMv2):

$$P_{\text{multiple}} = \beta_2^N \tag{5.2}$$

where β_2 is a constant between zero and one which applies to the entire population and N is the number of times that a problem has already been categorized by a random sorter. Finally, we consider a model where the multiple categorization probability depends on the number of categories (C) that a sorter has selected which was determined by the binomial distribution (CCMv3):

$$P_{\text{multiple}} = \beta_3^C \tag{5.3}$$

Table 5.1: CCM Model Parameters

	CCMv1	CCMv2	CCMv3
Parameter β KS statistic Ave. # Categories	0.20	$\beta_2 = 0.08$ 0.28 10	$\beta_3 = 0.81$ 0.08 12

where β_3 is a constant between zero and one which applies to the entire population. The differences between these three choices are so subtle that we cannot see a difference between them by eye using the graphical representation.

In order to determine best-fitting parameters for each of the models we considered, we minimized the KS-test statistic between the data 3-cycle distribution and the model 3-cycle distribution. For the CCM, we used a simple brute-force grid search instead of the standard optimization algorithm found in the R statistical software [24]. The reason for this difference was that the 3-cycle distribution was better approximated with smaller sample sizes for the two standard graph theory models. However, running the standard optimization algorithm for the larger sample sizes required by the cognitive categorization model took much longer and the brute force method quickly became preferable as we could use smaller sample sizes to get some coarse grained resolution. Later, we then used larger sample sizes when we got close to the end result. Once we obtained optimized parameters for the different CCMs, we compare them (see Figure 5.4) to the human sorters based on the 3-cycle distribution.

Table 5.1 shows the respective model parameters and KS statistic. The table also lists the resulting average number of categories of the three CCM models, where only CCMv2 and CCMv3 are in agreement with the actual values (Section 4.2). In any case, the models do not underrepresent the number of categories, so we have another indication that the "collapsing"

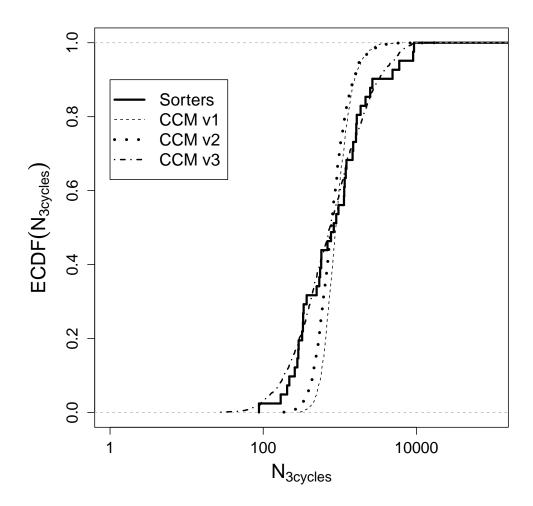


Figure 5.4: **3-cycle distributions** Here we see the 3-cycle distributions for the different CCMs. The model that fits the best is v3 (Equation 5.3), where the multiple categorization probability is β^C .

of categories (end of Section 4.1) does not appear to be an issue with the actual data. Overall, we found that the best fitting CCM is CCMv3, which has a multiple categorization probability that depends on the number of categories (Equation 5.3). Figure 5.5 shows some example CCMv3 graphs; these CCM graphs look much more like the graphs of the human sorters seen in Fig. 4.2 than the Erdös-Renyi and Barabasi graphs in Fig. 5.1.

The success of this model gives us insight into the behavior of our sorters: the probability to categorize a single problem in multiple categories is different for each person, and that probability actually decreases with the number of categories that are created. This model prediction is supported by an observation we made of our sorters. We observed two different sorter behaviors while they worked on the categorization task. It seemed like some people were resolved to make as few piles as possible, we will call these people "stackers." Stackers were more likely to put a problem in multiple categories, deciding that putting a problem into two piles was a better decision than making a new category. As a result a stacker's groups tend to be large and inclusive. The other group of people would spread the problems out on the table that they were working on, we will call these people "spreaders." Spreaders were less likely to put a problem in multiple categories, deciding that making a new category was a better decision than putting a problem into two piles. As a result a spreader's groups tend to be small and exclusive.

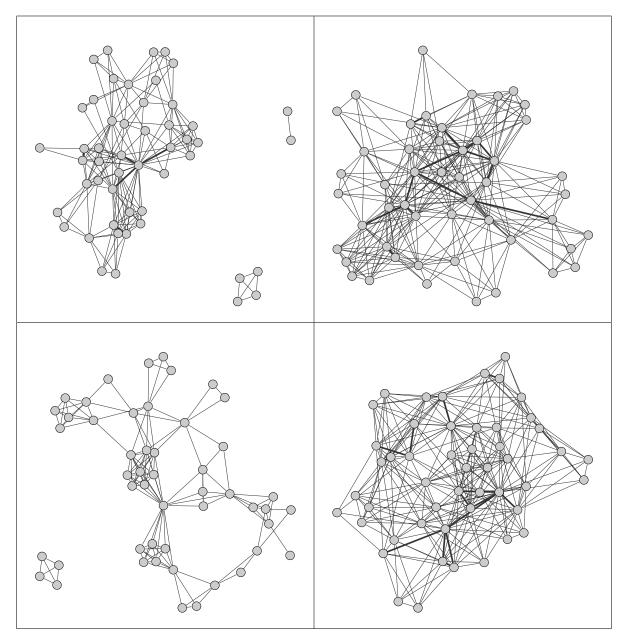


Figure 5.5: **Representative CCM graphs:** These are some representative graphs for the CCM using optimized input parameters. Qualitatively they match up much better to the sorter graphs seen in Figure 4.2.

Chapter 6

Microscopic Properties of Sample

Experimental Data

This chapter details how to compare any two categorization graphs to each other using a distance metric we developed and will visualize the relative position of sorters using Principal Components Analysis (PCA) [6]. This visualization technique also confirms the "stacking" and "spreading" behavior observed as the largest source of variation in our categorization experiment. However, the second largest source of variation found by the PCA is due to expertise. This finding suggests that the experiment of Chi et al. has been difficult to replicate because the largest source of variation was not due to expertise. We explore next why a particular set of problems would discriminate experts from novices, while others do not, by considering many subsets of the large problem set categorized by the sorters.

6.1 Distance Metric

We now create a distance metric as a microscopic measure to compare two sorters to each other. There are several existing distance metrics that will compare two different sortings, including statistical indices such as the Rand Index [30] which can be converted into a distance metric. However, in searching for existing statistical methods that will work for our categorization exercise, we found none that obeyed the rules of our "categorization game," especially the third rule. The Rand index merely counts the number of "agreements." This may be calculated for any two categorizations. However similarity indicies that are not corrected for chance agreements are not as reliable for creating a sort of measuring stick for measuring a "distance" between two categorizations [31, 32]. For this reason Hubert and Arabie created an adjustment to the Rand index. However this adjustment requires that the sub-groups are disjoint, eliminating any utility that the adjusted Rand index has for our study and other similar studies which allow multiple categorization. This story may be repeated for any one of the other statistical indicies that we could find in the statistics literature, and after some consideration, we decided that we needed to invent a new method for analyzing this type of data.

Our distance metric will bypass this difficulty as it is a direct distance metric and not a similarity index. The distance metric is determined by considering the weighted adjacency matrix for each reviewer, and it compares any two graphs generated by two reviewers as long as they have the same number of nodes (which they would for identical card sets). Each element of the weighted adjacency matrix X^r for each reviewer r is:

$$X_{ij}^r$$
 = number of edges between problems i and j (6.1)

The distance metric is:

$$d_{rs} = \frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{r} - X_{ij}^{s} \right|$$
 (6.2)

Our distance metric may be interpreted as the number of edges that need to be added to and removed from one graph to make it identical to another. The factor of $\frac{1}{2}$ is included due to the symmetry of the weighted adjacency matrix. In order to be a statistical distance metric, the distance d between any two categorizations X^r and X^s must satisfy a few properties:

$$d_{rs} \geq 0$$

$$d_{rs} = 0 \iff X^r = X^s$$

$$d_{rs} = d_{sr}$$

$$d_{rt} \leq d_{rs} + d_{st}$$
(6.3)

Appendix contains a brief proof that our metric satisfies these properties. We can use this distance metric to create a symmetric matrix where the distance between sorter i and j appears in row i and column j.

6.2 Principal Component Analysis

The distance matrix we constructed answers the question "How far is sorter i from sorter j?" for every pair of sorters. Since we have 41 sorters, this matrix operates in a 41-dimensional space, which is of course impossible to visualize. Principal Component Analysis (PCA) is a way of reducing high dimensional data back down to something more manageable. PCA is a general term in the statistical community describing a number of techniques involving

the singular value decomposition. To visualize our data, we did a singular value decomposition on the distance matrix. By applying the singular value decomposition to the distance matrix we perform a change of base so that the largest amount of variation is in the first principal component (PC1), the second largest amount of variation is in the second principal component (PC2), and each subsequent component explains less variation than the previous component. This analysis is then projected out onto fewer spatial dimensions, using only the most influential base vectors as a new reduced base.

Contrary to many applications of PCA, ours will not independently allow for interpretation of the groups of sorters that are separated by the analysis. This is due to the nature of
the matrix being analyzed by the PCA. In general, PCA assumes that each row is an observation and each column is a property. For example, in astronomy one could look at several
properties of stars (e.g. the temperature, the metallicity, the absolute brightness, etc.) for
many different stars. The principal components themselves (PC1, PC2, etc.) are linear combinations of these properties. Because of the interpretability of the principal components,
PCA is often able to explain the source of variation between groups of data. However in
our application, that is not true. This is because the properties are the distances from each
sorter and not some fundamental property of each sorter. Therefore, the principal components are linear combinations of sorters, and are not able to aid in interpreting the source
of the variation between these sorters. Any interpretation of the principal components that
we will be able to do is therefore a function of our ability to explain that variability using
other complimentary analysis methods.

For a PCA to be considered successful, the majority of variation must be explained with just a few components. In our case, taking just the first two components explains approximately 87% of the variability in our dataset. We thus focus on this reduced-dimension PCA, which can easily be visualized in Figure 6.1. We can now visualize our sorters and easily interpret what we see. The question of what sorter characteristic results in what behavior of PC1 and PC2 is lost in a 41-dimensional rotation and subsequent projection. In other words, this abstract representation of microscopic data (the distance matrix strongly depends on problem identities) does not boil down to a simple linear combination of macroscopic features.

An early concern was that the outliers (subjects who sort very differently than the majority, e.g., sorter 16 in Fig. 4.2, who is also clearly distinguishable in Fig. 6.1) might strongly influence the PCA, and so the complete analysis was run with and without these particular sorters. We found that the difference that these outliers made in the outcome of the PCA was not significant; in other words, the method we are employing is robust against "noise" in the data introduced by occasional outliers. We thus decided to keep the outliers within the data set.

Making sense of PC1 and PC2 is where the previous work on graph visualization (Section 4.1) and analysis (Sections 4.2 through 4.6), combined with the interpretation of the CCM (Section 5.2) comes together. We can look at the relative placement of our sorters by the PCA, visually analyze their graphs, and attempt an interpretation of the abstract sources of variation found by the PCA. The expert and novice identity of each sorter is a variable known only to us and not a factor in determining the placement of the sorters by the PCA

Analyzing the sorters in order of increasing PC1-coordinate (Fig. 6.1, left panel) shows that this coordinate does *not* distinguish experts from novices. In other words, most variance in the data is not related to the expert or novice identity of the sorters. Instead, when

analyzing the graphs associated with the subjects, it turns out that PC1 mostly reflects the "stacker" versus "spreader" behavior identified through our CCM (Section 5.2), which is quite independent of being an expert or a novice. Based on this result, one could argue that card-sorting experiments most strongly measure how individuals sort, and may thus be more reflecting of what that individual's office or the file system of his or her personal computer looks like than whether or not he or she is a physics expert.

The expert/novice distinction only shows up in PC2. Going along the PC2-axis in the left panel of Figure 6.1, one finds more experts with a high PC2 and more novices with a low PC2. At this point we are both paradoxically hopeful—because expert-novice variation shows up in this PC2—and deeply unsatisfied—because we have no indication about the source of this variation. So far, we have a set that can discriminate experts from novices. Up until this point we have ignored the single experimental "knob" that we can use to control this experiment: The problems themselves. In the next two chapters we will attempt to explain the source of this discrimination between experts and novices by quantifying that discrimination and studying the properties of the problems themselves.

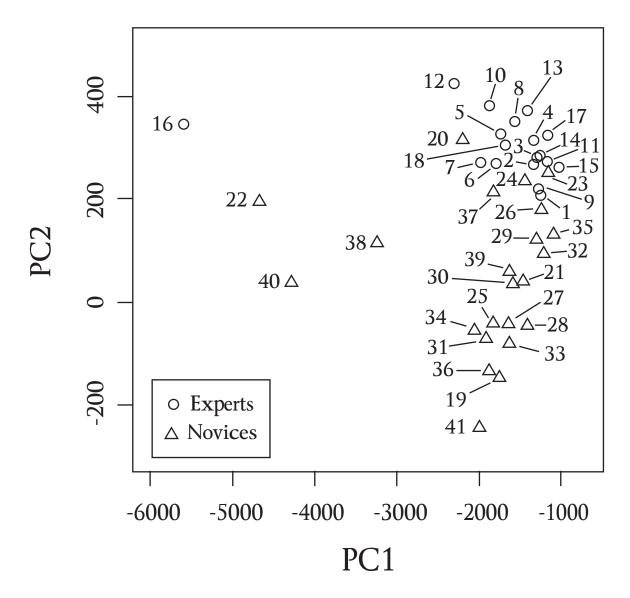


Figure 6.1: **PCA** of the sorter data: Here we see the PCA plot of the sorters. PC1 is the coordinate along the first principal axis, and PC2 is the coordinate along the second principal axis. Sorter known by us to be experts are marked by circles while sorters known by us to be novices are marked by triangles. Each point is labeled on the left by the sorter number. The second principal component discriminates experts from novices.

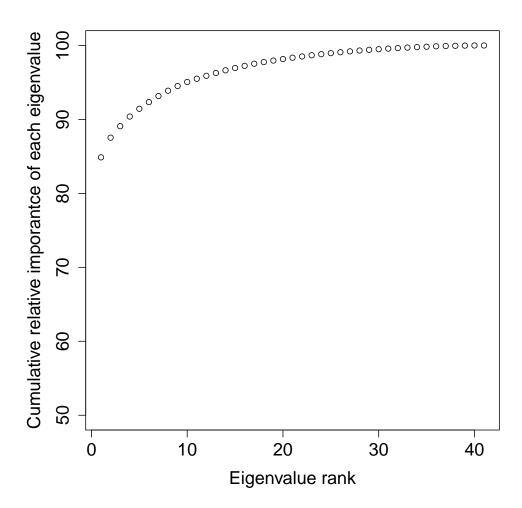


Figure 6.2: Validating the use of PCA on the sorter data: This is a plot of the cumulative relative importance of each subsequent principal component. This shows that most of the variation is well-described by the first two principal components. Therefore using PCA for dimension reduction is an appropriate choice for this data.

Chapter 7

Parameterizing Subsets

In this chapter we discuss the different statistics used to describe the problem sets. These include the cognitive and contextual features of the problems as well as the ability that a subset has to discriminate expert and novice sorters. The contextual features of the problems include a problem's chapter and difficulty. The discriminatory properties of subsets are found by using both parametric and non-parametric tests which compare the PCA coordinates of the expert and novice groups.

We found that the most salient feature of problem categorizations, that is, the first principal component of the PCA, is related to the sorting behavior of the individuals, a personality trait we termed "stacker" versus "spreader" [6]. The meaning of this component was easy to recognize, as it exhibited itself in the stark visual differences between the the sorters' categorization graphs. A stacker tended to generate a few large piles of cards with the same problem being a member of several piles. In contrast, a spreader tended to generate many fine-grained small piles and would rarely allow a single problem to be a member of several piles. Expertise only came in second, as the distinction between experts and novices is

exhibited by the second principal component. Unfortunately, due to the multi-dimensional nature of the Principal Component Analysis and missing visual clues in the graphs, we were unable to infer the source of this variability. However, all indications are that this behavior is problem-specific. After all, variability in student performance while working on problems in relativity [16] and motion [17] is well-documented. It is reasonable to believe that this problem-dependent nature of student reasoning extends from solving problems to the categorization behavior of sorters, as it depends on the particular problems being used. What is the composition of a minimal ideal subset? What problem features need to be present? In other words, instead of picking random problems from the back of chapters in textbooks, how much does a problem set need to be "rigged" in order to be effective in discriminating experts and novices?

Additional evidence for the importance of careful question selection—or "rigging"—was given by Veldhuis [2], who also attempted to verify the result of Chi et al.. Veldhuis created four different categorization sets. The first set was created in an attempt to mimic the Chi et al. problem set [3], and the second was a control set with a similar collection of end-of-chapter problems. In contrast, the third and fourth sets were carefully constructed so that each problem had only a single physics principle and a single surface feature from a set of four principles and four surface features [2]. The fourth set was also "rigged." It had the same number and type of cards, but only two surface and two conceptual features. Veldhuis could not draw a conclusion from the categorizations from his first two problem sets. However, sets 3 and 4 agreed with Chi et al. in that experts categorize problems based on physics principles while novices show a "more complex behavior." [2, 3]. Where on the "rigging continuum" do problem sets need to be constructed in order to achieve measurable results?

Also, can Veldhuis' result be generalized to more complex problems—that is, problems with more than one physics principle and more than one surface feature?

We explore on a microscopic level why particular sets of problems would discriminate experts from novices while others do not, looking at the individual properties of the included problems. The main strategy of our approach is to pick subsets out of our large set of problems, determine how well they distinguish experts from novices, and then examine their composition based on a number of pedagogical and contextual features. Combinatorics dictate that we can effectively sample the entire population for small subsets only, while for larger subsets, we use simulated annealing to optimize selected "starter sets." We do not propose that subset analysis is equivalent to actually giving our sorters many subsets to categorize. Yet, we believe that subset analysis is still able to find the features that should be present in an ideally "rigged" problem set.

7.1 Experimental Parameters

Previously, we designed and carried out a card-sorting experiment on physics experts and novices at Michigan State University, adhering to the experimental method of Chi et al. as closely as possible [6]. A total of 18 physics professors and 23 novices participated in our study. All of the novices had completed at least the first semester of an introductory physics course at MSU. We gave each sorter a set of 50 problems to sort based on "similarity of solution," explicitly following the prompt of Singh [7]. Each sorter categorized his or her problems and recorded the groups and group names in a separate packet. Multiple categorization, i.e., putting a single card into more than one category, was allowed, but not expected.

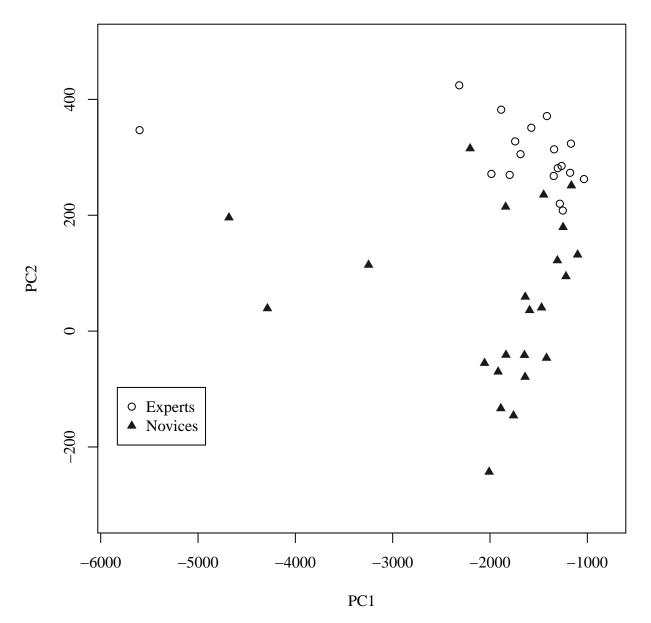


Figure 7.1: **Problem Dependence of PCA** (Top) This is the PCA plot of the sorters for the entire set of problems from our previous study [6]. Both a Cramer's test (p = 0.048) and a Hotelling's test ($p < 10^{-5}$) find the expert and novice groups to be distinct at a 95% confidence level. PC1 is the coordinate along the first principal axis, and PC2 is the coordinate along the second principal axis. Sorters known by us to be experts are marked by circles while sorters known by us to be novices are marked by filled triangles. The second principal component discriminates experts from novices.

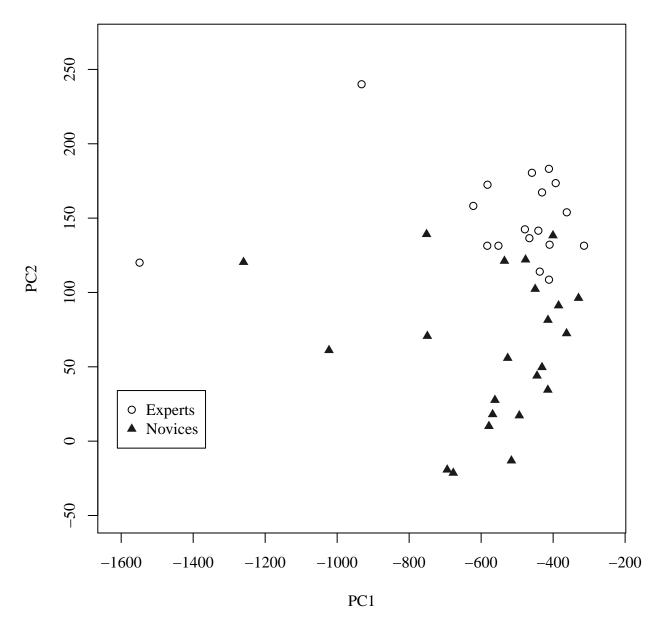


Figure 7.2: **Problem Dependence of PCA** This is the PCA plot of the sorters considering only the problems from Singh's study. Both a Cramer's test (p = 0.041) and a Hotelling's test $(p < 10^{-5})$ find the expert and novice groups to be distinct at a 95% confidence level. PC1 is the coordinate along the first principal axis, and PC2 is the coordinate along the second principal axis. Sorters known by us to be experts are marked by circles while sorters known by us to be novices are marked by filled triangles. The second principal component discriminates experts from novices.

7.1.1 Problem Set Creation

We constructed our initial large set of problems such that was diverse in terms of both content and cognitive demands. We considered two traditional measures, the chapter which a problem is in (using Walker's textbook[4] as a guide) and the problem difficulty as measured by the number of "dots" a problem has. We also included the taxonomic classification according to the Taxonomy of Introductory Physics Problems (TIPP) [5]. The TIPP is useful because it considers two dimensions or knowledge domains, one for declarative knowledge (information) and the other for procedural knowledge (mental procedures) [5]. See Table 7.2 for a list of the TIPP levels included in our study. Higher levels were not included because they are more suited to research projects rather than homework problems [5]. Each problem was therefore classified along four feature dimensions: the chapter in which the problem could be found (CHAP), the problem difficulty (DIFF), as well as the highest complex cognitive process necessary to solve it for both declarative knowledge (TIPP-D) and procedural knowledge (TIPP-P). We did not consider the surface features (as used by Veldhuis [2]) of the problems, since those are not quantifiable.

7.1.2 Expert-Novice Differentiation

Our initial experiment found that experts and novices were separated by the second principal component. While this is visually possible based on figures like Fig. 7.1 and Fig. 7.2, where the experts congregate higher on the PC2 axis than the novices, we needed a way to quantify this differentiation. We considered three statistical tests: the Hotelling's test [33], the Cramer test [34], and the Average Rate of Correct Classification (ARCC) [35]. The Hotelling's test is a standard test used to compare two groups of multivariable data, which assumes that

Table 7.1: Chapter titles Chapter titles taken from Walker's textbook as a representative list.

Chapter #	Chapter Title
1	Introduction
2	One-Dimensional Kinematics
3	Vectors in Physics
4	Two-dimensional Kinematics
5	Newton's Laws of motion
6	Applications of Newton's laws
7	Work and Kinetic Energy
8	Potential Energy and Conservative forces
9	Linear Momentum and collisions
10	Rotational Kinematics and Energy
11	Rotational Dynamics and Static Equilibrium

Table 7.2: **TIPP levels** A limited hierarchy of the cognitive processes described by the TIPP. Most problems in a standard physics textbook require a highest declarative knowledge process of Comprehension–Integrating, and procedural knowledge process of Retrieval–Executing [5]. The level indicates the numeric value we scored the highest cognitive process required by each problem.

Cognitive Process	Sub-process	Level
Retrieval	Recall/Recognize	1
	Executing [†]	2
Comprehension	Integrating	3
	Symbolizing	4
Analysis	Matching	5
	Classifying	6
	Analyzing Errors	7

[†] Procedural Knowledge only

each group's distribution of these data is elliptical [33]. The Cramer test is a non-parametric analog of the Hotelling's test, that is, it does not assume a distribution shape [34]. The ARCC is a statistical test which relies on Linear Discriminant Analysis to determine how well experts and novices are separated by the PCA. We combined all of these measures into a Canonical Correlation Analysis (CCA) [36]. A CCA quantifies the relationship between the predictor variables (in our case the problem statistics) to the explanatory variables (the sorter discrimination statistics). Because CCA assumes linear relationships between the predictor variables and the response variables, we did a log transformation on all of our variables in order to linearize power-law relationships and symmetrize skewed distributions. When analyzing the results of the CCA, we found that the Cramer statistic was an order of magnitude more important than the Hotellings and ARCC statistics. Thus, we ended up just using the Cramer statistics as the CCA for this study. In order to determine which problem properties are most important for predicting sorter discrimination, we found the variability explained by each problem feature dimension (CHAP, DIFF, TIPP-D, and TIPP-P) in this manner:

$$var_{stat} = \frac{cor_{stat}}{\sum_{stats} cor_{stat}}$$
 (7.1)

where cor_{stat} is the correlation coefficient found by calculating a CCA for each group of problem statistics with the sorter discrimination statistics and the summation in the denominator is done over the groups of statistics.

Chapter 8

Subset Analysis: Data Mining the

Categorization Graphs

In this chapter, we discuss the results of this subset analysis and determine which properties are important in discriminating experts from novices in a categorization experiment. We discuss the importance, not only of problem content, but requiring sorters to categorize problems which require diverse solution types and including simpler problems, rather than the most difficult problems.

Can subsets be as effective as the complete set of 50 cards? As a proof of concept, we have compared the sorter visualizations from the entire dataset from our previous study [6] to the subset of problems within that set which we obtained from Singh's study [7]. As you can see in Figure 7.1 and Figure 7.2, the two visualizations have similar properties. Naturally, the sorters have different relative positions, as our distance metric, and consequently our visualization method, was designed to compare categorizations on a microscopic—or problem-specific—level. However, the overall level of expert-novice discrimination is similar,

so the smaller carefully chosen subset would have been sufficient to discriminate experts from novices.

8.1 Monte Carlo analysis

When forming subsets of our 50-problem set, combinatorics limit the sizes of subsets for which we can explore possible combinations. We analyzed 40000 5-problem subsets and 275000 10-problem subsets of our original 50-problem set. Due to the highly parallelizable nature of this problem and the sheer number of subsets studied, this analysis was carried out on the High Performance Computing Cluster (HPCC) at Michigan State University. These numbers of subsets were chosen so that we could be 99% sure we had at least one 5-problem subset with 5 of the 10 best problems in it and one 10-problem subset with 10 of the best 20 problems. This choice has allowed us to effectively sample the populations of 5-problem and 10-problem subsets As these were random subsets, they were quite diverse in terms of the features of the problems within each subset.

In our analysis of the subsets of problems, we found that the ability of these subsets to distinguish experts from novices varied from negligible levels to nearly total separation. Moreover, this behavior was prevalent for both the 5-problem and 10-problem subsets. Using a CCA, we quantified the relationship between the problem statistics and the sorter discrimination statistics for the 5-problem and 10-problem subsets independently. For the 5-problem subsets, we found a correlation coefficient of $r^2 = 0.359$, while for the 10-problem subsets, we found $r^2 = 0.427$. This means that the CCA can account for 35.9% of the variability in the 5-problem subset analysis and 42.7% of the variability in the 10-problem subset analysis. Given this result, it is clear that there was a problem set size effect on the

ability to discriminate experts from novices. However, caution is warranted as discussed in Chapter as subset analysis is not the same as repeating the experiment with fewer cards.

Investigating the relationships found by the CCA further, we found that the most variability is contained in the Chapter variables, followed by the procedural knowledge variables (See Table 8.1). The fact that Chapter variables explained a great deal of variability was not surprising since this was our analog for "deep structure" (i.e. there is a Force chapter, an Energy chapter, a Momentum chapter, etc.). However, more interesting was the prominence of TIPP-P in explaining expert-novice sorting differences. Therefore, it was important that the problem set under consideration ask questions that require more than calculation and include tasks such as making a flow chart of a problem solving strategy. It is possible that the prominence of the TIPP-P statistic is due in part to the nature of the students at MSU. As the physics courses are in a large lecture format and require computerized homework, questions that require hand-grading are few. Therefore these sorts of problems may have "surprised" our novice sorters, which may have affected their ability to sort these problems. Problem difficulty was the next most important statistic. Here we found that the "easy" problems, as determined by a typical textbook author, were the most important in discriminating expert from novice. However, it is also possible that these problems were deceptively easy, or that the novices were over-thinking the problem. Table 8.1 also clearly indicates that the TIPP-D level does not play a large role in discriminating experts from novices.

8.2 Simulated Annealing Analysis

As described earlier, the number of subsets to study grows quickly as the subset size grows (up to 25-problem subsets), and the sheer size of this search space limited exhaustive algorithms

Table 8.1: **Rigging parameters** Variability explained by each of our problem variable groups among our 10-problem subsets. From this we see that the Chapter was an important variable, followed by the TIPP-P statistic.

Problem variable group	Percent variability explained
TIPP-D	5.4
TIPP-P	30.4
Difficulty	22.8
Chapter	41.4

to 10-problem subsets. However, most categorization studies have looked at more problems [1, 2, 7, 20], and we needed to find an optimization algorithm to analyze larger sets. To minimize the problem of being "trapped" in local minima which can trap typical optimization algorithms, we are using Simulated Annealing [37, 38]. Simulated Annealing's optimization routine is based in principle on the metallurgical annealing process whereby impurities are removed from a metal by heating it. If you assume that the parameter that you are interested in minimizing corresponds to the "energy," we allow the algorithm to move to a new state with a probability

$$P\left(E_{\text{old}}, E_{\text{new}}, T\right) = \begin{cases} 1 & \text{when } E_{\text{new}} < E_{\text{old}} \\ \exp\left(\frac{E_{\text{old}} - E_{\text{new}}}{T}\right) & \text{else} \end{cases}$$
(8.1)

where T is a "temperature" which is decreasing with every iteration of the code. For each iteration, we generated new problem sets to study by replacing 2 problems at a time. Each run consisted of 30000 iterations.

As the problem set used by Singh was included in our set, we have used that as a starting point for the Simulated Annealing algorithm, as well as 50 randomly chosen subsets of the same size (25-problems). Again, due to the highly parallelizable nature of this problem this

optimization was performed on the HPCC here at MSU. To extrapolate the results from the 10-problem subsets to 25-problem subsets, we compared the problem statistics and the sorter discrimination statistics for each of these groups of subsets. Since (except for the Singh subset), the 10-problem and 25-problem subsets were chosen at random, we expected that the groups would initially not have significantly different properties. Indeed, we found that these groups are not statistically distinguishable in terms of problem features (p = 0.5621) or sorter discrimination statistics (p = 0.2951).

How much optimization could we achieve by Simulated Annealing? The problem feature coordinates of the optimal subsets were measurably larger $(p < 10^{-8})$ than the initial random subsets (the Singh subset and its "optimized" version did not follow this trend). Not surprisingly, as the algorithm looked for maximum sorter discrimination, we found that the optimal sets had measurably larger $(p < 10^{-15})$ sorter discrimination statistics than the random subsets as well.

As the optimal problem sets found with different starting subsets are not identical, we cannot say that we have found a global optimum, only many local optima instead. However, based on the results from the exhaustive analysis of the 10-problem subsets, the optimized 25-problem subsets are in the top 2% of all possible sorter discrimination statistics.

How much "rigging" happened as the result of optimization, i.e., how different are optimized sets from random ones? If we indicate the set of problems that we started with as S, and the optimized (or best) set of problems to be B, we define the rigging fraction to be:

$$R = \frac{\text{length}(S \cap B)}{\text{length}(S)}$$
(8.2)

where the length simply gives the number of elements in the set, and the rigging fraction

(R) is the fraction of initial problems retained in the optimized set. The rigging fraction is therefore a comparison between a starting set of problems and the nearest local optimum for that set of problems.

To get a feel for the quality of this measure, we again used it first on the Singh subset. Singh noted that she chose her problems carefully: "Many questions... were chosen... because the development of these questions and their wording had gone through rigorous testing by students and faculty members." [7] Indeed, the rigging fraction of the Singh subset was larger than the rigging fraction of any of the random subsets (see Fig. 8.1), which assured us that we found a good measure.

Thus, we found that regular-size 25-problem subsets also require "rigging," and that they should be optimized along the same feature dimensions as the smaller sets discussed in Section 8.1.

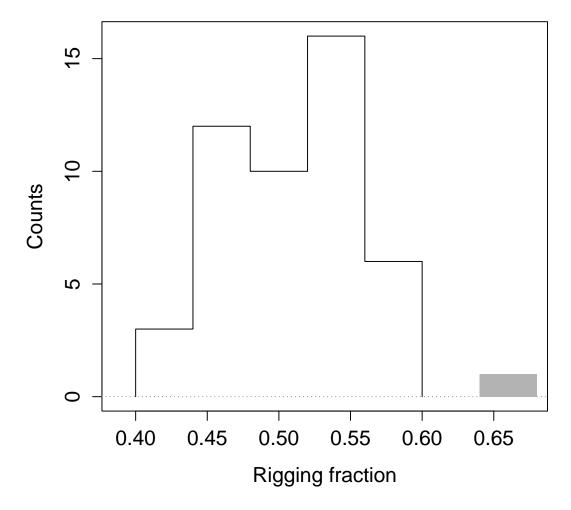


Figure 8.1: **Rigging fraction** This is a histogram of the rigging fraction for the subsets with a random starting point. The shaded gray box indicates the rigging fraction of the Singh subset. From this, we can see that the Singh subset has more problems in common with its nearest local optimum than does any of the random subsets studied.

Chapter 9

Conclusion

In our endeavor to study the categorization behavior of experts and novices, we have developed a method for analyzing expert and novice categorizations. In the process, we have gained insight into different human cognitive structures. Rather than focusing on qualitative differences in category names, we chose to focus on the groupings of problems. In order to do this we have created a method for converting an abstract categorization into a graph, which may then be analyzed. This conversion has laid the foundation for our method of analyzing card-sorting experiments, which is applicable in any experiment where sorters may put any single card into more than one category, a behavior which we name multiple categorization.

Using experimental data, we confirmed the null-results that experts and novices are not distinguishable based on macroscopic features of their card-sorting such as the number of categories. This held true even when employing graph theoretical approaches. We found these null results when comparing categorizations' macroscopic properties, therefore we created the Cognitive Categorization Model (CCM), which provided insight into the general sorter behavior. We found that the best fitting CCM had a multiple categorization prob-

ability that depended on the number of categories which led us to determine that sorters tended toward "stacking" or "spreading" when sorting physics problems. A stacker tended to create a few general categories and multiply categorize more often. A spreader tended to create many specific categories and multiply categorize less often. This stacker vs. spreader behavior is quite independent of the expert vs. novice distinction between our sorters.

As macroscopic properties did not differentiate expert from novice, we studied the microscopic properties of categorizations by creating and utilizing our distance metric. This distance metric compares sorters' categorizations in a manner which takes problem identity into account. In order to visualize the relative position of our sorters as measured by our distance metric, we employed Principal Components Analysis. This allowed us to confirm the stacker vs. spreader distinction as the largest source of variation among sorters. It also fortuitously found the distinction between experts and novices as the second largest source of variation.

As was found by Chi et al., we agree that deep structure was an important feature determining the difference between experts and novices. For this reason it was important to construct a set of problems from a variety of chapters, our analog for "deep structure". Yet, the frequent null results obtained when replicating this experiment, as well as the results of our own statistical analysis, tell us that we must go beyond chapters and consider the pedagogical and cognitive properties of the problems that we select. We found that problems which ask students to perform different procedural tasks (e.g. making a flow chart of how you would solve a problem) are important to distinguish experts from novices. We also found that "easy" problems, as determined by a typical introductory physics textbook author, did a better job of discriminating experts from novices. This is not surprising: a problem is so

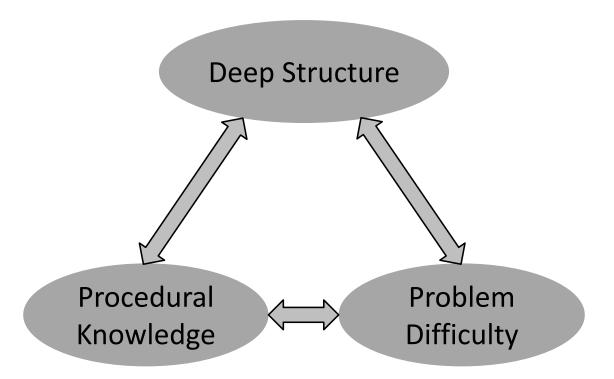


Figure 9.1: **The pillars of expert-novice differentiation.** Here we see the key parts of discriminating experts and novices on a categorization task. Deep structure (content), procedural knowledge (the kinds of tasks that a problem requires), and problem difficulty (easy questions tend to work better than hard questions).

difficult that neither expert nor novice sorters can even figure out what the problem entails, it is likely going to be sorted randomly. Not surprisingly, larger problem sets still need to be carefully constructed along the feature dimensions we found.

While we agree that deep structure is an important feature determining the difference between experts and novices, we conclude that it is not the entire story. It is merely the largest pillar of a three pillar support which includes the procedural knowledge required to solve a problem as well as the difficulty of the problem as well. (See Fig. 9.1) Not only is what you ask (deep structure) important, but also how you ask it. In order to

differentiate experts from novices on a categorization task we also need to ask questions which require different procedural tasks (e.g. make a flow chart). One might have hoped that these experiments would most strongly identify experts based on the types of declarative knowledge and procedural knowledge instead, which are arguably more authentic indicators of expert-likeness in real life. However, the relegation of deep structure from its former lonesome perch as the single salient feature which discriminates experts from novices to part of this triad is still a satisfying result which reflects the understanding gained since Chi et al. published their seminal result.

9.1 Outlook

Even after considering all feature dimensions in this study, only 42.7% of the variability in the 10-problem set was explained. This means that there may be other latent variables, perhaps closely linked to the surface features in each problem, need to be considered. In other words, the remaining variability can possibly only be resolved by intentionally planting surface features, as in Veldhuis' study [2]. Also, we need to understand the process of sorting, not just the outcome. The first step in understanding the process was the development of the CCM. However, as this model is only intended to describe the macroscopic sorting behavior, it is "blind" to the problems, e.g., it cannot even begin to simulate the sorters' reactions to different features of the individual problems.

Likely the only way to gain a better understand of the sorting process will be to deploy a "think-aloud" protocol, where sorters are asked to talk us through their sorting decisions. Combining the ideas gleaned from a think-aloud protocol with a model which can describe the internal cognitive process of categorization will be the key to understanding this outstanding variability and predicting an instrument's ability to discriminate experts from novices.

Ultimately, the goal would be to simulate the process of categorization.

APPENDICES

Appendix A

Categorization Model Pseudocode

As stated earlier, the purpose of the Cognitive Categorization Model was to account for the common macroscopic sorting behavior of experts and novices. In order to do this, we created a statistical model which attempted to model the sorting process. We assumed that there were three rules to this sorting process:

- 1. All questions must be put into a category
- 2. All categories must have at least one question in them
- 3. A question may fall into one category

Once we assumed these three rules, we created a model which has three input parameters:

- 1. The number of questions (which is fixed by the experiment)
- 2. The average number of categories for all sorters
- 3. The multiple categorization parameterization

We fixed the number of questions and optimized the other parameters so that the model would capture the sorters' macroscopic behavior. By only having two free parameters, we know that we have created a model which parsimoniously describes the sorter behavior rather than soaking up statistical variation by over-fitting it.

A.1 Pseudocode

The following pseudocode creates a weighted adjacency matrix for a random categorization according to our best-fitting categorization model. This matrix may then be used to create a graph. Increasing the utility of the weighted adjacency matrix is the fact that many graph theory statistics are calculated using the weighted adjacency matrix or the adjacency matrix (which is a boolean version of the weighted adjacency matrix).

```
for each graph

Q = input parameter # number of questions

beta = input parameter # multiple categorization param.

Cbar = input parameter # avg. number of categories

# Pick the number of categories from the proper distribution.

C = 1 + random deviation from binomial

# Binomial properties: num. trials = Q-1 and avg = Cbar-1

Pmult = beta<sup>C</sup> # multiple sorting probability for CCMv3

# Create boolean T matrix; rows are questions columns are categories

Initialize T

X = shuffle question numbers

Y = shuffle list of category numbers from 1 to C
```

Rule #1: Every category must be used

for all j in 1 to C
$$T(X(j), Y(j)) = 1$$

Rule #2: All questions must be categorized at least once Z = sample the list from 1 to C with replacement Q-C times for all j in 1 to (Q-C)

$$T(X(C+j), Z(j)) = 1$$

- # Rule #3: Each question may be categorized more than once
 for all zero elements left in the T matrix
 - if (random number from 0 to 1 < Pmult) T(element) = 1</pre>
- # Convert T matrix into weighted adjacency matrix (adj) where $adj(i,j) \,=\, T(i,) \,\, dot \,\, T(j,)$

Appendix B

Distance metric

The following distance metric quantifies the number of edges that must be added or removed from a graph to make it identical to another graph:

$$d_{rs} = \frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{r} - X_{ij}^{s} \right|$$
 (B.1)

Where X_{ij}^r is the $(i,j)^{th}$ element in the weighted adjacency matrix for reviewer r. The properties of a metric are as follows:

$$d_{rs} \geq 0$$

$$d_{rs} = 0 \iff X^r = X^s$$

$$d_{rs} = d_{sr}$$

$$d_{rt} \leq d_{rs} + d_{st}$$
(B.2)

The first property is clearly satisfied by considering that we are summing up all positive numbers. The second condition is satisfied because the only way that $d_{rs} = 0$ is if every element of each weighted adjacency matrix is identical and if both weighted adjacency matrices are identical, then $d_{rs} = 0$. The third condition is also met due to the symmetry of the absolute value:

$$d_{rs} = \frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{r} - X_{ij}^{s} \right|$$

$$= \frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{s} - X_{ij}^{r} \right|$$

$$= d_{sr}$$
(B.3)

Finally, we will consider the last condition. First, we will consider the definition of the metric:

$$d_{rt} = \frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{r} - X_{ij}^{t} \right|$$

Next we will utilize the additive identity to insert the X_{ij}^s terms into the absolute value.

$$d_{rt} = \frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{r} - X_{ij}^{s} + X_{ij}^{s} - X_{ij}^{t} \right|$$

Next, we continue with the triangle inequality.

$$d_{rt} \leq \frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left[\left| X_{ij}^{r} - X_{ij}^{s} \right| + \left| X_{ij}^{s} - X_{ij}^{t} \right| \right]$$

Now we distribute the term in front of the sum.

$$d_{rt} \le \left[\frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{r} - X_{ij}^{s} \right| \right] + \left[\frac{1}{2} \sum_{i=1}^{Q} \sum_{j=1}^{Q} \left| X_{ij}^{s} - X_{ij}^{t} \right| \right]$$

And then we simplify using the definition of our metric.

$$d_{rt} \le d_{rs} + d_{st} \tag{B.4}$$

So we have shown that this is a metric.

B.1 Pseudocode

This pseudocode function will compute the distance between two sorters with known weighted adjacency matrices wadj1 and wadj2.

```
dmetric = function(wadj1,wadj2)

Make sure each matrix is square and has same dimensions

diff = abs(wadj1 - wadj2)

dist = 0.5*sum(diff)

return(dist)
```

The distance matrix is then calculated by applying the dmetric function on each pair of sorters' weighted adjacency matricies.

Appendix C

Visualization technique

Principal Component Analysis (PCA) is a general term used to describe a number of visualization techniques based on the Singular Value Decomposition (SVD). For the purposes of this study we define PCA to mean an analysis done on the SVD of the covariance of the distance matrix. Taking the covariance of the matrix under consideration is the standard technique used to ensure that you are not over emphasizing a statistic simply because it varies on a much larger scale.

C.1 Pseudocode

This pseudocode details how a PCA plot is produced. It assumes that you have a square distance matrix (dist), and each dimension of that matrix has a length equal to the number of sorters.

```
# Do the covariance of the distance matrix

DIST = cov(dist)
# Do Singular Value Decomposition (SVD)
```

```
dist.svd = svd(DIST)

# Look at eigenvectors of the SVD

evector1 = dist.svd.U[1]

evector2 = dist.svd.U[2]

# More eigenvectors allow you to study more dimensions of the PCA

# Calculate principal components:

pc1 = dist × evector1

pc2 = dist × evector2

# Note: × indicates matrix multiplication

plot(pc1,pc2)
```

Appendix D

Problems in the Categorization Set

Here is a copy of the prompt given to the sorters as well as the problems that they sorted.

D.1 Prompt

This prompt was heavily based on the prompt from the study by Singh [7].

- You have been asked to group the 50 problems below based upon similarity of solution into various groups on the papers provided. Problems that you consider to be similar should be placed in the same group. You can create as many groups as you wish. The grouping of problems should NOT be in terms of "easy problems," "medium difficulty problems" and "difficult problems" but rather it should be based upon the features and characteristics of the problems that make them similar. A problem can be placed in more than one group created by you. Please provide a brief explanation for why you placed a set of questions in a particular group. You need NOT solve any problems.
- Ignore the retarding effects of friction and air resistance unless otherwise stated.

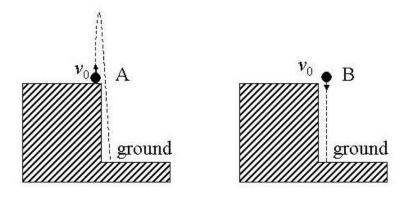


Figure D.1: Diagram for problem 1.

• *Thank you* for your time and cooperation with our study.

D.2 Problems

These are the problems included in our categorization set. Some of the problems are directly taken from the set used by Singh [7].

- 1. Two identical stones, A and B, are shot from a cliff from the same height h and with identical initial speeds v_0 . Stone A is shot vertically up, and stone B is shot vertically down (see the figure below). Which stone has a larger speed right before it hits the ground?
- 2. Body fat is metabolized, supplying 9.3 kcal/g, when dietary intake is less than need. The manufacturers of an exercise bicycle claim that you lose 1 lb of fat per day by vigorously exercising for 2h per day on their machine.
 - (a) How many keal are supplied by the metabolization of 1lb of fat?
 - (b) Calculate the kcal/min that you would have to utilize to metabolize fat at a rate

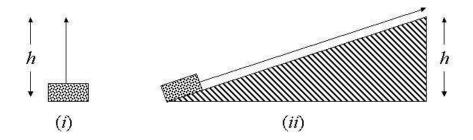


Figure D.2: Diagram for problem 4.

of 1lb in 2h.

- (c) What is unreasonable about the results?
- (d) Which premise is unreasonable, or which premises are inconsistent?
- 3. Block $m_1 = 4kg$ moving with constant velocity $v_1 = 10\frac{m}{s}$ collides inelastically block m_2 which is stationary. After the collision the two blocks move together with velocity $v = 100\frac{m}{s}$. What is unreasonable about the results and how do you know?
- 4. You want to lift a heavy block through a height h by attaching a string of negligible mass to it and pulling so that it moves at a <u>constant speed</u> v. You have the choice of lifting it either by pulling the string vertically upward or along a frictionless inclined plane (see the figure below). How much is the work done by the gravitational force in the two cases?
- 5. A family decides to create a tire swing in their backyard for their son Ryan. They tie a nylon rope to a branch that is located 16m above the earth, and adjust it so that the tire swings 1m above the ground. To make the ride more exciting, they construct a launch point that is 13m above the ground, so that they don't have to push Ryan

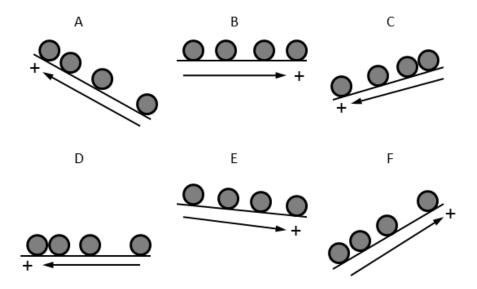


Figure D.3: Diagram for problem 6.

all the time. You are their neighbor, and you are concerned that the ride might not be safe, so you calculate the maximum tension in the rope to see if it will hold. Assume that Ryan (mass 30kg) starts from rest from his launch pad. Is it greater than the maximum rated value of 2500N?

- 6. Rank each case from the highest to the lowest acceleration based on the drawings shown in the figure below. Assume all accelerations are constant and use the coordinate system specified in the drawing. Note: zero is greater than negative acceleration, and ties are possible.
- 7. A dog runs back and forth between its two owners, who are walking toward one another. The dog starts running when the owners are $10.0 \, m$ apart. If the dog runs with a speed of $3.0 \, \frac{m}{s}$, and the owners each walk with a speed of $1.3 \, \frac{m}{s}$, how far has the dog traveled when the owners meet?

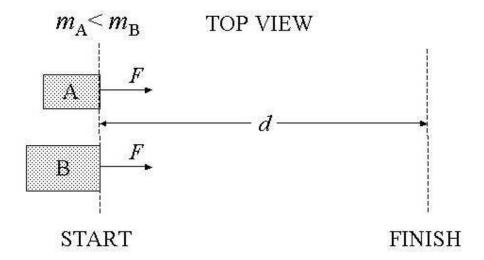


Figure D.4: Diagram for problem 8.

- 8. Two blocks are initially at rest on a frictionless horizontal surface (shown below). The mass m_A of block A is less than the mass m_B of block B. You apply the same constant force F and pull the blocks through the same distance d along a straight line as shown below (force F is applied for the entire distance d). Compare the speed of the blocks after you pull them the same distance d.
- 9. Rain starts falling vertically down into a cart (of mass M) with frictionless wheels which is initially moving at a constant speed V on a horizontal surface (see the figure below). The rain drops fall on the car with a speed v and come to rest with respect to the cart after striking it. Find the speed of the cart when m grams of rain water accumulate in the cart.
- 10. You are given the following problem. You don't need to solve it. You only need to describe the steps that you will follow to find the answers. Make sure that your solving strategy includes as many details specific to this problem as possible.

You are riding on a jet ski at an angle of 35 deg upstream on a river flowing with a

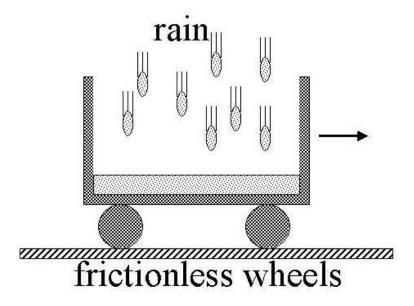


Figure D.5: Diagram for problem 9.

speed of $2.8 \frac{m}{s}$. If your velocity relative to the ground is $9.5 \frac{m}{s}$ at an angle of $20.0 \deg$ upstream, what is the speed of the jet ski relative to the water?

- 11. A force of $9.4\,N$ pulls horizontally on a $1.1\,kg$ block that slides on a rough, horizontal surface. This block is connected by a horizontal string to a second block of mass $m_2 = 1.92\,kg$ on the same surface. The coefficient of kinetic friction is $\mu_k = 0.24$ for both blocks. What is the acceleration of the blocks?
- 12. Three blocks $(m_1 = 1kg, m_2 = 2kg, m_3 = 3kg)$ are in a straight line in contact with each other on a frictionless horizontal table (block with mass m_2 is in the middle). A constant horizontal force $F_H = 3N$ is applied to the block with mass m_1 . Find the forces exerted on m_1 by m_2 and on m_2 by m_3 .
- 13. The figure below shows two blocks on a frictionless inclined plane with an angle of inclination $\theta = 40 \deg$ and the two connected to each other via a massless rope. The rope that connects the two blocks goes around a frictionless, massless pulley and is

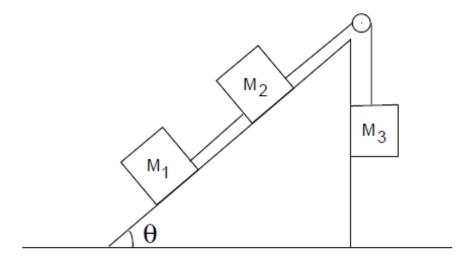


Figure D.6: Diagram for problem 13.

connected to a third block as shown. Find the magnitude of the tension force in the rope between blocks with mass M_1 and M_2 and the acceleration of the blocks.

- 14. The two masses $(m_1 = 5.0kg \text{ and } m_2 = 3.0 kg)$ in the Atwood's machine shown in the figure below are released from rest, with m_1 at a height of 0.75 m above the floor. When m_1 hits the ground its speed is $1.8 \frac{m}{s}$. Assuming that the pulley is a uniform disk with a radius of 12 cm, outline a strategy that allows you to find the mass of the pulley.
- 15. At the local playground, a 16 kg child sits on the end of a horizontal teeter-totter, 1.5 m from the pivot point. On the other side of the pivot, an adult pushes straight down on the teeter-totter with a force of 95 N. In which direction does the teeter-totter rotate if the adult applies the force at a distance of:

(a) $3.0 \, m$?

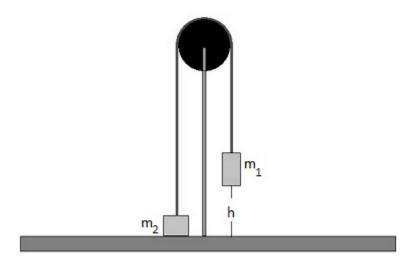


Figure D.7: Diagram for problem 14.

- (b) $2.5 \, m$?
- (c) $2.0 \, m$?
- 16. The brakes of your bicycle have failed, and you must choose between slamming into either a haystack or a concrete wall. Explain why hitting a haystack is a wiser choice than hitting a concrete wall.
- 17. Two blocks are initially at rest on a frictionless horizontal surface. The mass m_A of block A is less than the mass m_B of block B. You apply the <u>same constant force F</u> and pull the blocks through the same distance d along a straight line as shown in the figure below (force F is applied for the entire distance d). Rank the time taken to pull the two blocks by the same distance d.
- 18. A friend told a girl that he had heard that if you sit on a scale while riding a roller

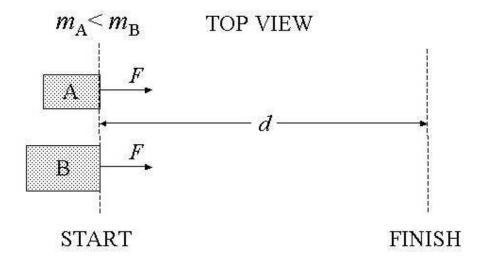


Figure D.8: Diagram for problem 17.

coaster, the dial on the scale changes all the time. The girl decides to check the story and takes a bathroom scale to the amusement park. There she receives an illustration (see the figure on the back), depicting the riding track of a roller coaster car along with information on the track (the illustration scale is not accurate). The operator of the ride informs her that the rail track is smooth, the mass of the car is 120 kg, and that the car sets in motion from a rest position at the height of 15 m. He adds that point B is at 5m height and that close to point B the track is part of a circle with a radius of 30 m. Before leaving the house, the girl stepped on the scale which indicated 55 kg (the scale is designed to be used on earth and displays the mass of the object placed on it). In the roller coaster car the girl sits on the scale. According to your calculation, what will the scale show at point B?

19. You drop two balls of equal mass, made of rubber and putty, from the same height h above a horizontal surface (see the Figure below). The rubber ball bounces up after it strikes the surface while the putty ball comes to rest after striking it. Assume

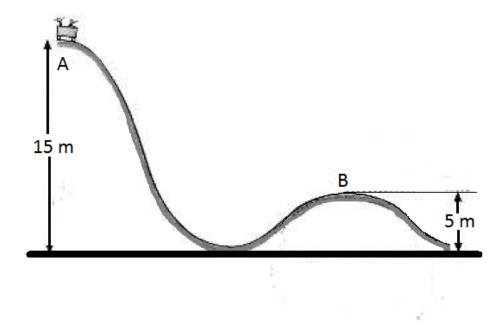


Figure D.9: Diagram for problem 18.

that in both cases the velocity of the ball takes the <u>same time Δt </u> to change from its initial to its final value due to contact with the surface. <u>During time Δt </u>, which of the <u>average forces</u> $\langle F_R \rangle$ or $\langle F_P \rangle$ exerted on the surface by the rubber and putty balls, respectively, is greater?

- 20. A meter stick mass m is held perpendicular to a wall by a string length l going from the wall to the far end of the stick.
 - (a) Find the tension in the string.
 - (b) If a shorter string is used, will the tension increase decrease or remain the same?
- 21. At 3:00, the hour hand and the minute hand of a clock point in directions that are 90.0 deg apart. What is the first time after 3:00 that the angle between the two hands

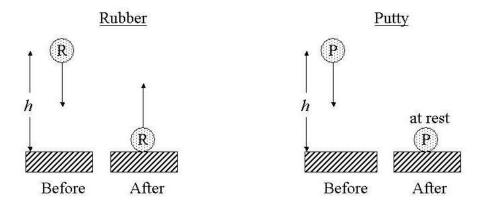


Figure D.10: Diagram for problem 19.

has decreased to 45.0 deg?

- 22. A cyclist approaches the bottom of a gradual hill at a speed of $15\frac{m}{s}$. The hill is 5m high, and the cyclist estimates that she is going fast enough to coast up and over it without peddling. Ignoring friction and air resistance, find the speed at which the cyclist crests the hill? Neglect the kinetic energy of the rotating wheels.
- 23. Two identical stones, A and B, are shot from a cliff from the same height h and with identical initial speeds v_0 . Stone A is shot at an angle of 30 deg above the horizontal and stone B is shot at an angle of 30 deg below the horizontal. Which stone takes a longer time to hit the ground?
- 24. You are given the following problem. You don't need to solve it. You only need to create a flow chart to illustrate the steps you are going to follow to find the answers.

 Make sure that your solving strategy includes as many details specific to this problem as possible.

The press box at a baseball park is 38.0 ft above the ground. A reporter in the press box looks at an angle of 15.0 deg below the horizontal to see second base. What is the

horizontal distance from the press box to second base?

25. You are given the following problem. You don't need to solve it. You only need to create a flow chart to illustrate the steps you are going to follow to find the answers.

Make sure that your solving strategy includes as many details specific to this problem as possible.

The coefficient of static friction between a block and a horizontal floor is 0.35, while the coefficient of kinetic friction is 0.22. The mass of the block is 4.6 kg and it is initially at rest. Once the block is sliding, if you keep pushing on it with the same minimum starting force as in part a), does the block move with constant velocity or does it accelerate?

26. You are given the following problem. You don't need to solve it. You only need to create a flow chart to illustrate the steps you are going to follow to find the answers.

Make sure that your solving strategy includes as many details specific to this problem as possible.

Harry Potter and Voldemort are wrestling inside a cart traveling east at a speed of $45\frac{m}{s}$ directly toward an abyss. Harry then notices the danger and jumps backward due west off of the cart. Ron who stands on safe ground in the back notices that Harry's velocity due west at the jump is $15\frac{m}{s}$ relative to the ground. What is the speed of the cart after Harry jumps off of it? The mass of the cart is 200kg, Harry's mass is 60kg, and Voldemort's mass is 80kg.

27. In the figure below, a horizontal spring with spring constant $k_1 = 8\frac{N}{m}$ is compressed 20cm from its equilibrium position by a 4kg block. Then, the block is released. What would be the maximum compression of a spring $(k_2 = 5\frac{N}{m})$ on the inclined plane when

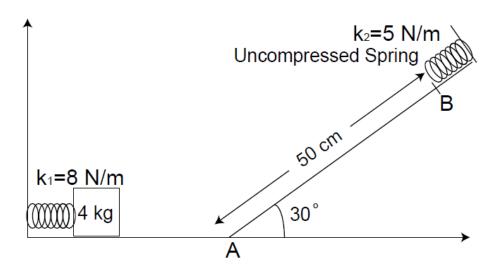


Figure D.11: Diagram for problem 27.

the 4kg block presses against it? Assume that the track is frictionless and the distance from A to B is 50cm where B is the edge of the uncompressed spring on the inclined plane.

28. The labeled vectors in the figure on the back are drawn to scale. For each of the statements fill in the blank with Greater than, Less than, or Equal to.

$$ec{Z}\cdot ec{S}$$
 is ... $0.$
$$|ec{U} imes ec{Z}|$$
 is ... $0.$

The magnitude of \vec{R} ... the magnitude of \vec{H} .

$$ec{U} \cdot ec{Z}$$
 is ... $0.$

$$ec{Y} \cdot ec{J}$$
 is ... 0 .

$$|ec{H} imesec{U}|$$
 is ... $0.$

29. Find the launch angle for which the range and maximum height of a projectile are the

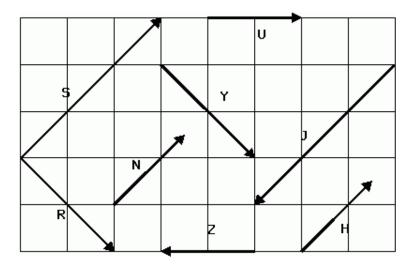


Figure D.12: Diagram for problem 28.

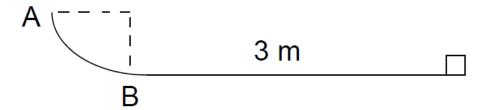


Figure D.13: Diagram for problem 30.

same.

- 30. In the track shown below, section AB is a quadrant of a circle of 1 m radius. A block is released at point A and slides without friction until it reaches point B. The horizontal part is not smooth. If the block comes to rest 3 m from B, what is the coefficient of kinetic friction?
- 31. A slingshot fires a pebble from the top of a building at a speed of $10\frac{m}{s}$. The building is 20m tall. Ignoring air resistance, find the speed with which the pebble strikes the ground when the pebble is fired (I) horizontally, (II) vertically straight up.

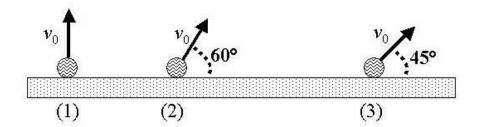


Figure D.14: Diagram for problem 34.

- 32. A compact disk, which has a diameter of 12.0cm, speeds up uniformly from zero to $4.00\frac{rev}{s}$ in 3.00s. What is the tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed is $2.00\frac{rev}{s}$?
- 33. A fish takes the bait and pulls on the line with a force of $2.1\,N$. The fishing reel, which rotates without friction, is a cylinder of radius $0.055\,m$ and mass $0.84\,kg$. How much line does the fish pull from the reel in $0.25\,s$?
- 34. Three balls are launched from the same horizontal level with identical speeds v_0 as shown in the figure below. Ball (1) is launched vertically upward, ball (2) at an angle of 60 deg, and ball (3) at an angle of 45 deg. In order of decreasing speed (fastest first), rank the speed each one attains when it reaches the level of the dashed horizontal line. All three balls have sufficient speed to reach the dashed line.
- 35. You are standing at the top of an incline with your skateboard. After you skate down the incline, you decide to "abort", kicking the skateboard out in front of you such that you remain stationary afterwards. How fast is the skateboard traveling with respect to the ground after you have kicked it? Assume that your mass is 60kg, the mass of

the skateboard is 10kg, and the height of the incline is 10cm.

- 36. Two frictionless inclined planes have the same height but have different angles of inclinations of 45 deg and 60 deg with respect to the horizontal. You slide down from the top which is at a height h above the ground on each inclined planes starting from rest. Find the time taken to reach the bottom in the two cases.
- 37. A turntable with a moment of inertia of $5.4 \times 10^{-3} \, kg \, m^2$ rotates freely with an angular speed of $33 \, \frac{1}{3} \, rpm$. Riding on the rim of the turntable, $15 \, cm$ from the center, is a $1.3 \, g$ cricket. If the cricket walks to the center of the turntable, will the turntable rotate faster, slower, or at the same rate? Explain.
- 38. A 2.0 kg solid sphere (radius = 0.10 m) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.75 m high and 5.0 m long. When the sphere reaches the bottom of the ramp, what is
 - (a) its total kinetic energy?
 - (b) its rotational kinetic energy?
 - (c) its translational kinetic energy?
- 39. Two frictionless inclined planes have the same height but have different angles of inclinations of $45 \deg$ and $60 \deg$ with respect to the horizontal. You slide down from the top which is at a height h above the ground on each inclined planes starting from rest. Find your speed at the bottom of the inclined planes in the two cases.
- 40. A ball is thrown from the top of a 35m high building with an initial speed of $80\frac{m}{s}$ at

- an angle of 25 deg above the horizontal. Find the time it takes to reach the ground.
- 41. On October 9, 1992, a 27 pound meteorite struck a car in Peekskill, NY, creating a dent about $22 \, cm$ deep. If the initial speed of the meteorite was $550 \, \frac{m}{s}$, what was the average force exerted on the meteorite by the car?
- 42. The corners of a square with sides 2.5 m long lie on a circle. Is the radius of the circle greater than, less than, or equal to the length of a side of the square? Explain.
- 43. At amusement parks, there is a popular ride in which the floor of a rotating cylindrical room falls away, leaving the backs of the riders "plastered" against the wall. Suppose the radius of the room is 3.3 m and the speed of the wall is $10\frac{m}{s}$ when the floor falls away. What is the minimum coefficient of friction that must exist between a rider's back and the wall, if the rider is to remain in place when the floor drops away?
- 44. Your friend Dan, who is in a ski resort, competes with his twin brother Sam on who can glide higher with the snowboard. Sam, whose mass is 60 kg, puts his 15 kg snowboard on a level section of the track, 5 meters from a slope (inclined plane). Then, Sam takes a running start and jumps onto the stationary snowboard. Sam and the snowboard glide together till they come to rest at a height of 1.8 m above the starting level. What is the minimum speed at which Dan should run to glide higher than his brother to win the competition? Dan has the same weight as Sam and his snowboard weighs the same as Sam's snowboard.
- 45. Legend has it that Isaac Newton was hit on the head by a falling apple, thus triggering his thoughts on gravity. Assuming the story to be true, estimate the speed of the apple when it struck Newton.

- 46. An astronaut is floating next a space shuttle out in the middle of the intergalactic void (i.e. very far from the influence of any planets or stars). Consider the astronaut and the shuttle to be an isolated system. The astronaut accidentally kicks the shuttle with his feet. Which of the following statements are true?
 - The astronaut can never get back to the shuttle because once you have a certain momentum it cannot be changed.
 - The shuttle and the astronaut move apart from each other with the astronaut's velocity being larger than the shuttle's velocity.
 - The momentum of the shuttle is smaller than the momentum of the astronaut.
 - In order to get back to the shuttle, the astronaut needs a change in momentum.
 - The total momentum of the astronaut-shuttle system might not be conserved, depending on how hard the shuttle was kicked.
- 47. Two small spheres of putty, A and B, of equal mass, hang from the ceiling on massless strings of equal length. Sphere A is raised to a height h_0 as shown in the figure below and released. It collides with sphere B (which is initially at rest); they stick and swing together to a maximum height h_f . Find the height h_f in terms of h_0 .
- 48. A kayaker paddles with a power output of 50.0W to maintain a speed of $1.50\frac{m}{s}$.
 - (a) Calculate the resistive force exerted by the water on the kayak.
 - (b) If the kayaker doubles her power output, and the resistive force due to the water remains the same, by what factor does the kayaker's speed change?
- 49. You are given the following problem. You don't need to solve it. You only need to

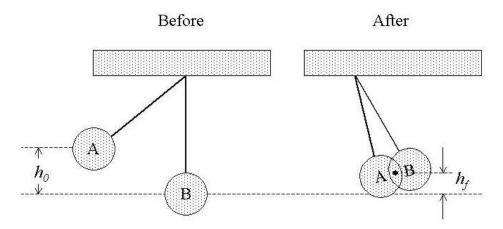


Figure D.15: Diagram for problem 47.

describe the steps that you will follow to find the answers. Make sure that your solving strategy includes as many details specific to this problem as possible.

A 3.5 inch floppy disk in a computer rotates with a period of $2.00 \times 10^{-1}s$. Does a point near the center of the disk have an angular speed that is greater than, less than, or the same as the angular speed of a point on the rim of the disk? Explain. (Note: a 3.5 inch floppy disk is 3.5 inches in diameter.)

50. You are given the following problem. You don't need to solve it. You only need to create a flow chart to illustrate the steps you are going to follow to find the answers.

Make sure that your solving strategy includes as many details specific to this problem as possible.

A 47.0kg uniform rod 4.25m long is attached to a wall with a hinge at one end. The rod is held in a horizontal position by a wire attached to its other end. The wire makes an angle of $30.0 \,\mathrm{deg}$ with the horizontal, and is bolted to the wall directly above the hinge. If the wire can withstand a maximum tension of 1400N before breaking, how far from the wall can a 68.0kg person sit without breaking the wire?

Appendix E

Sorter Graphs

Included here are the graphs of the sorters from our study. Sorters 1-18 are experts and Sorters 19-41 are novices. Each vertex represents a problem, and is labeled by the problem number in our study. The edges are drawn between problems in the same category. Vertex placement has been done using the Fruchterman-Reingold algorithm [27] as it did the best job of displaying multiple categorization. Categories tend to form in large "ball" shapes. Multiple categorization is evident by the appearance of an "arm" out of one of the categories.

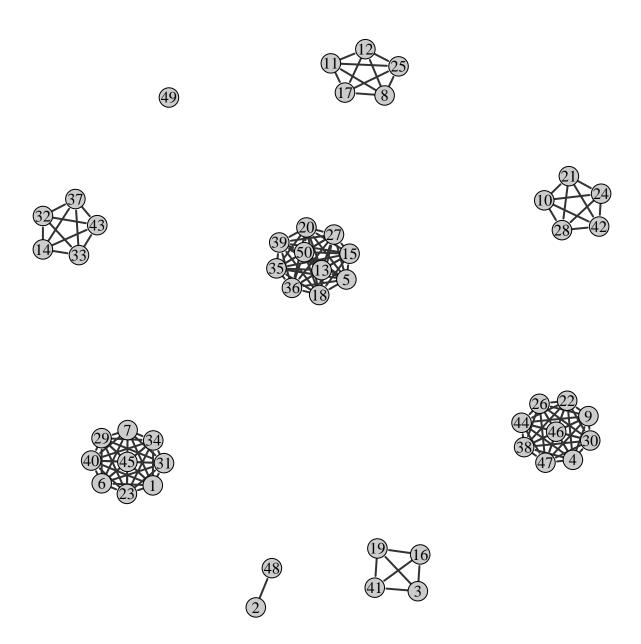


Figure E.1: The categorization graph of Sorter 1, an expert.

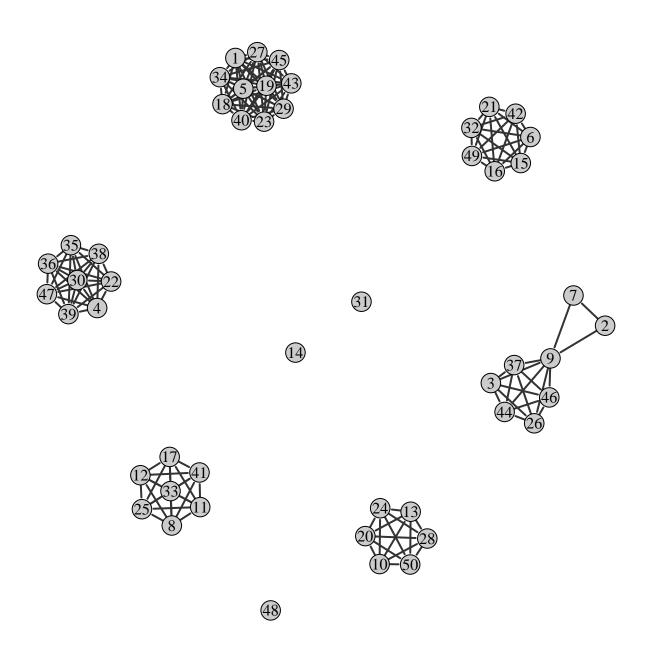


Figure E.2: The categorization graph of Sorter 2, an expert.

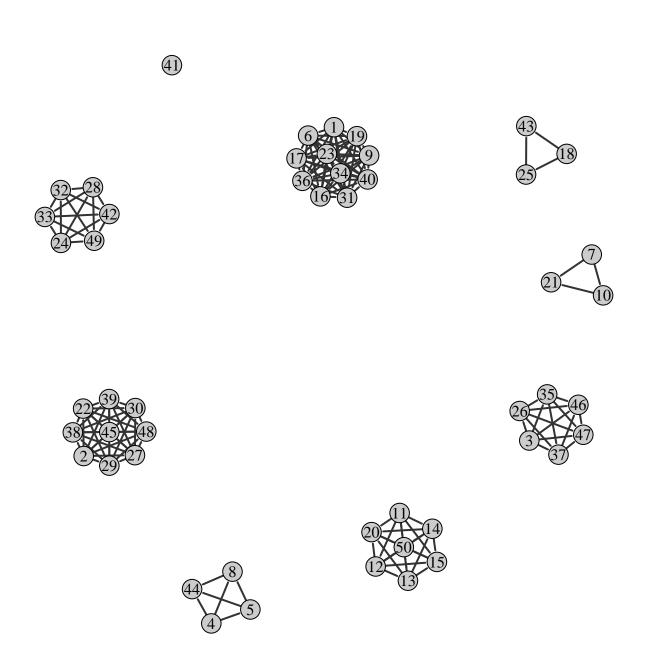


Figure E.3: The categorization graph of Sorter 3, an expert.

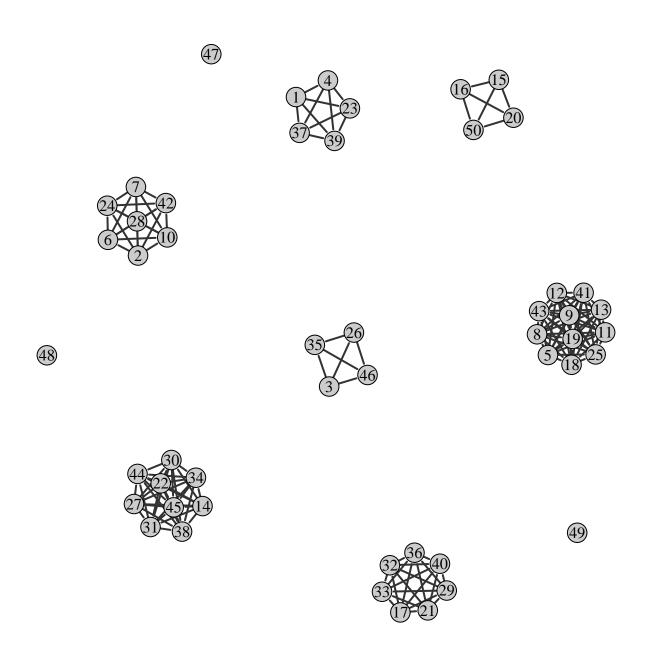
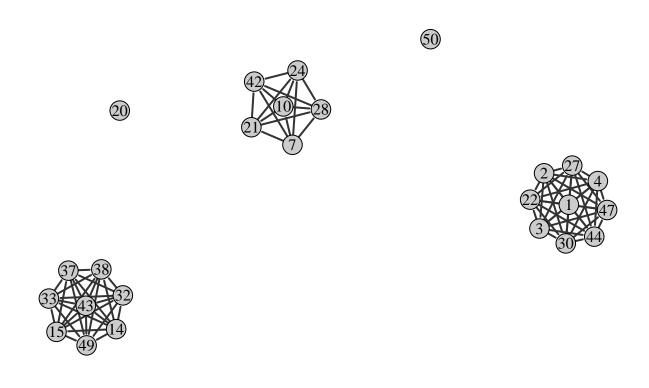


Figure E.4: The categorization graph of Sorter 4, an expert.



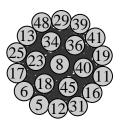
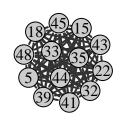
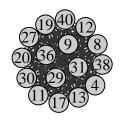
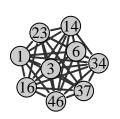


Figure E.5: The categorization graph of Sorter 5, an expert.







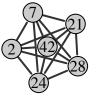


Figure E.6: The categorization graph of Sorter 6, an expert.

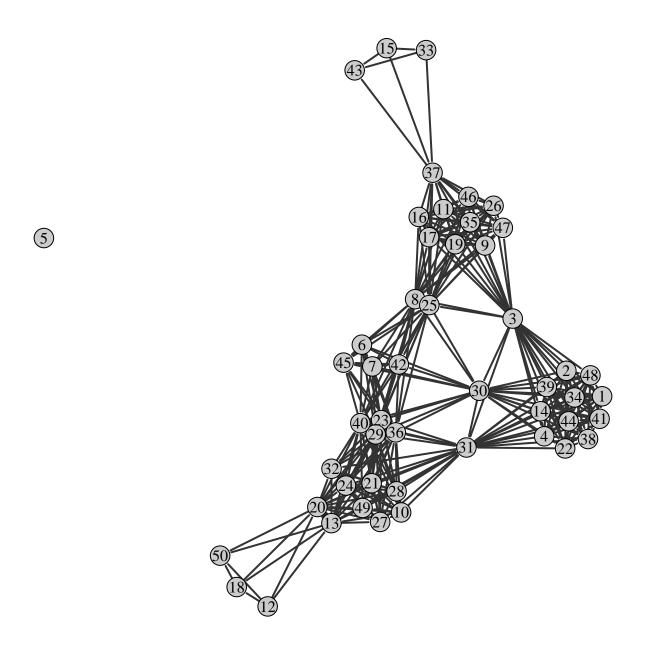
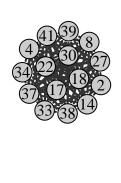
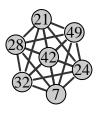
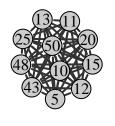
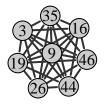


Figure E.7: The categorization graph of Sorter 7, an expert.









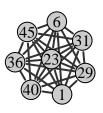


Figure E.8: The categorization graph of Sorter 8, an expert.

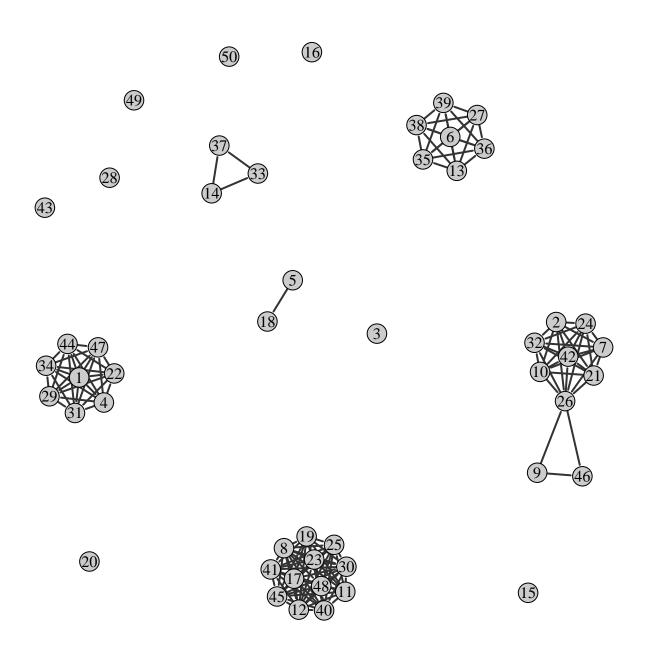
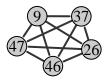


Figure E.9: The categorization graph of Sorter 9, an expert.



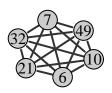




Figure E.10: The categorization graph of Sorter 10, an expert.

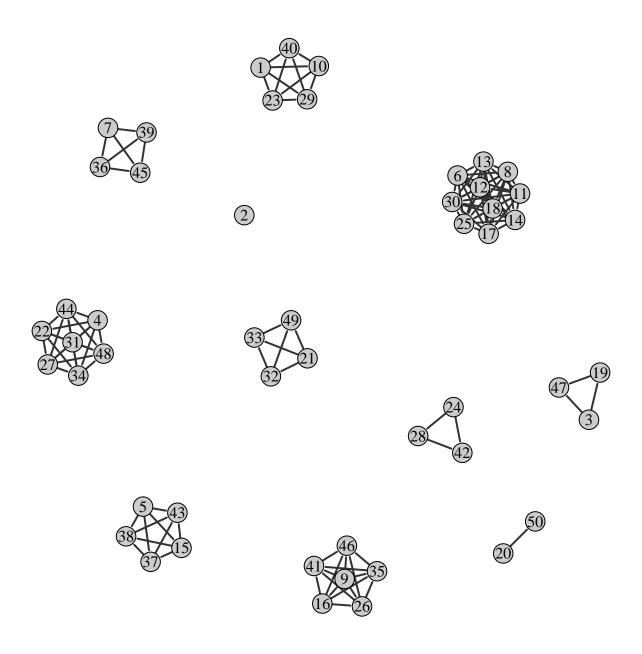


Figure E.11: The categorization graph of Sorter 11, an expert.

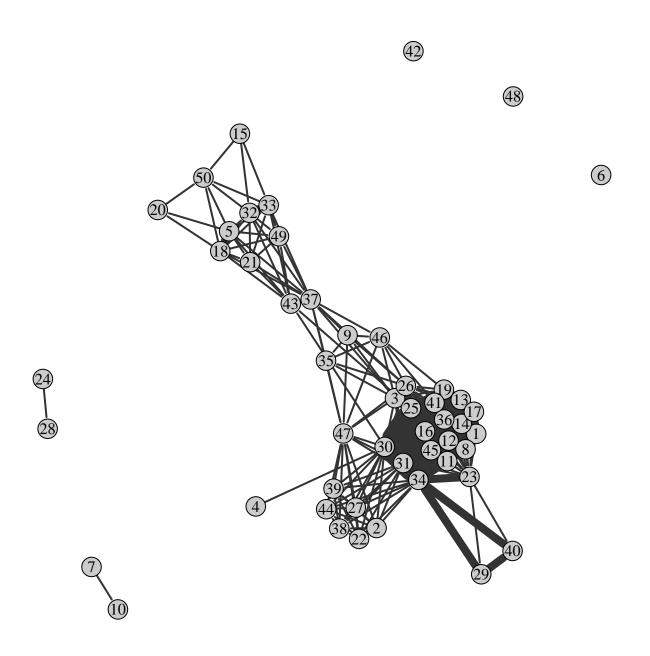


Figure E.12: The categorization graph of Sorter 12, an expert.

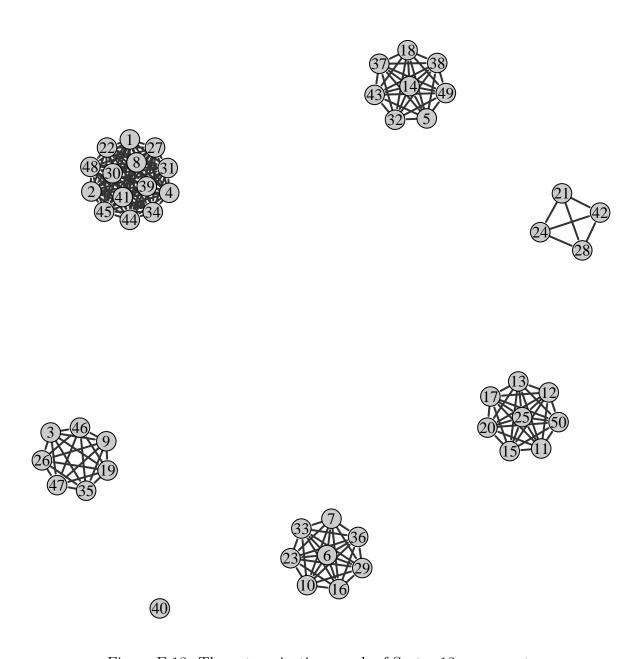


Figure E.13: The categorization graph of Sorter 13, an expert.

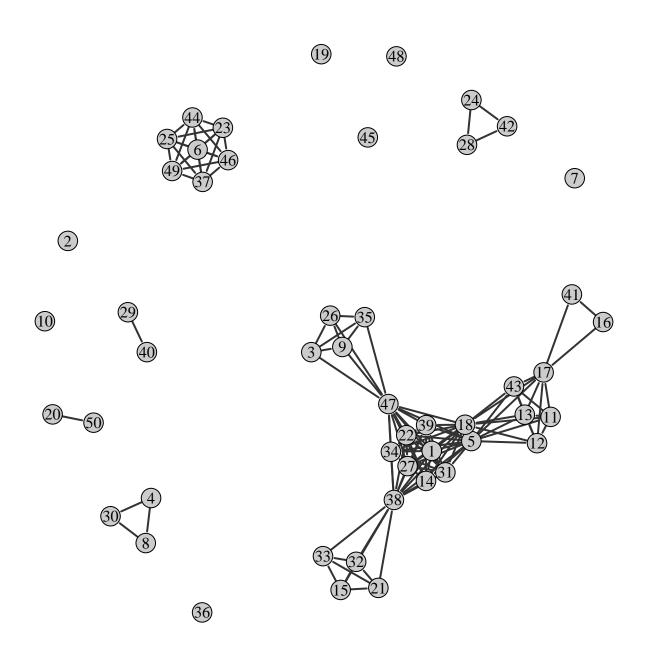


Figure E.14: The categorization graph of Sorter 14, an expert.

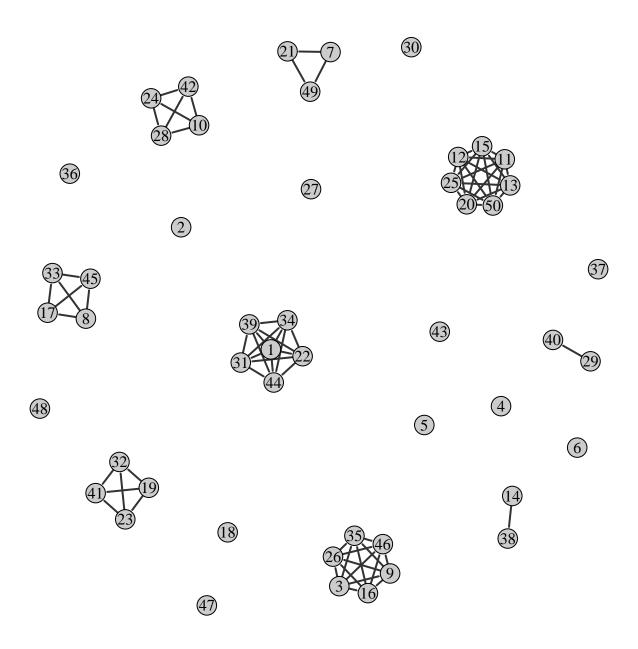


Figure E.15: The categorization graph of Sorter 15, an expert.

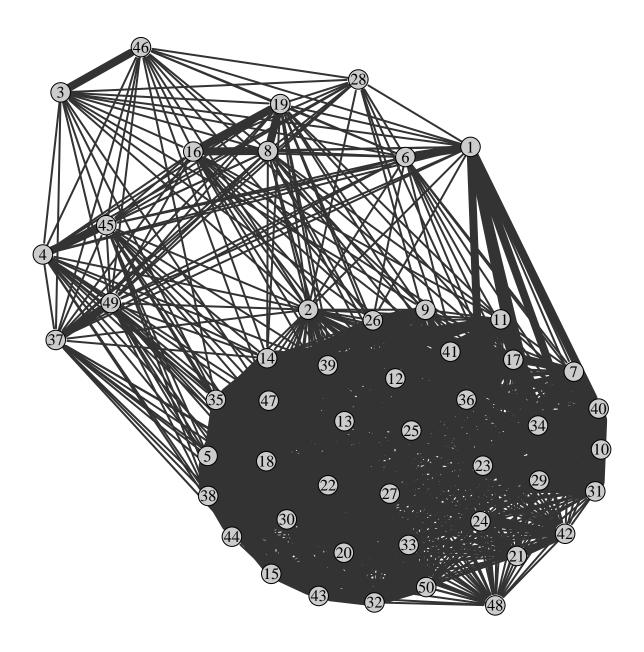


Figure E.16: The categorization graph of Sorter 16, an expert.

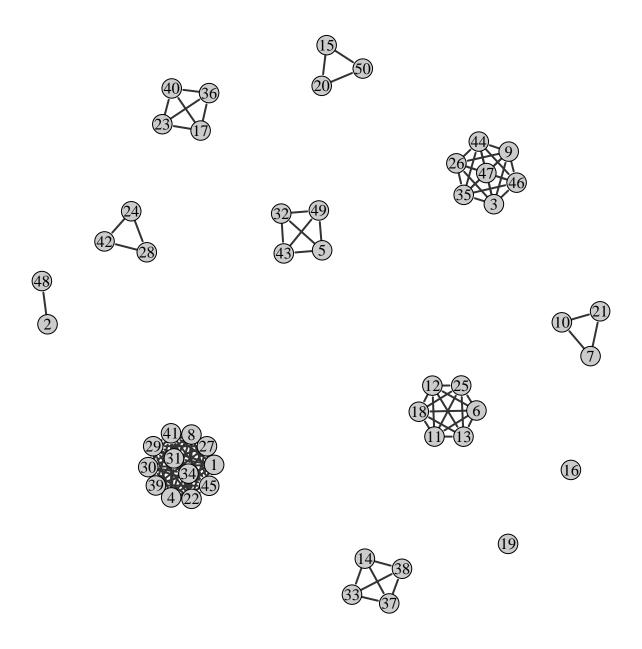


Figure E.17: The categorization graph of Sorter 17, an expert.

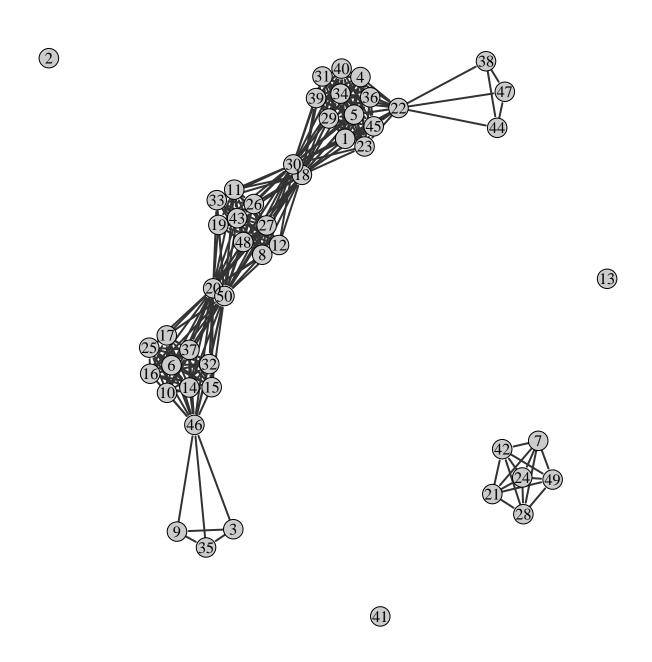


Figure E.18: The categorization graph of Sorter 18, an expert.

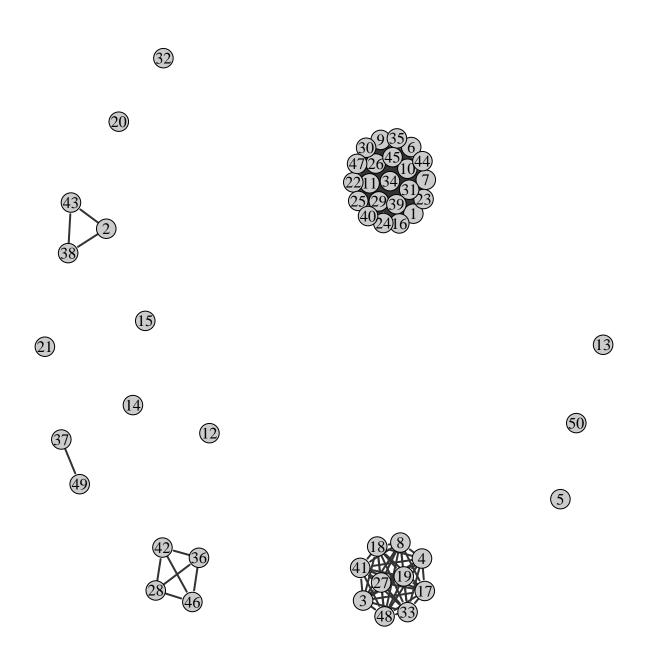


Figure E.19: The categorization graph of Sorter 19, a novice.

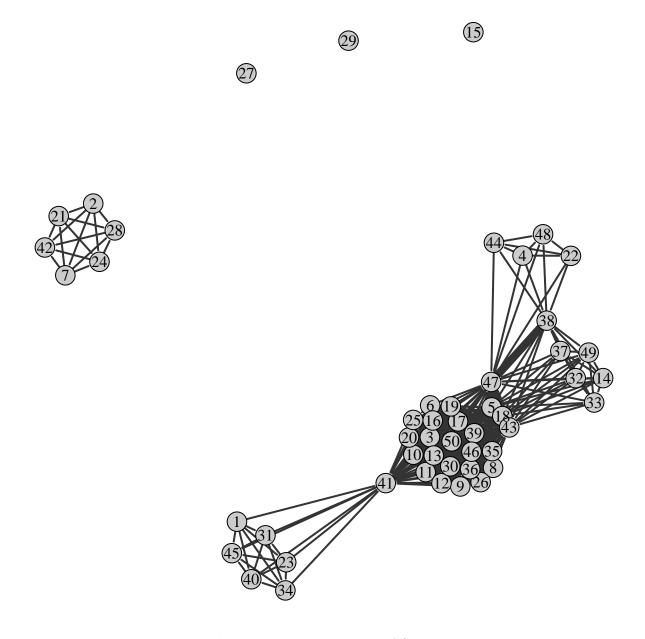


Figure E.20: The categorization graph of Sorter 20, a novice.

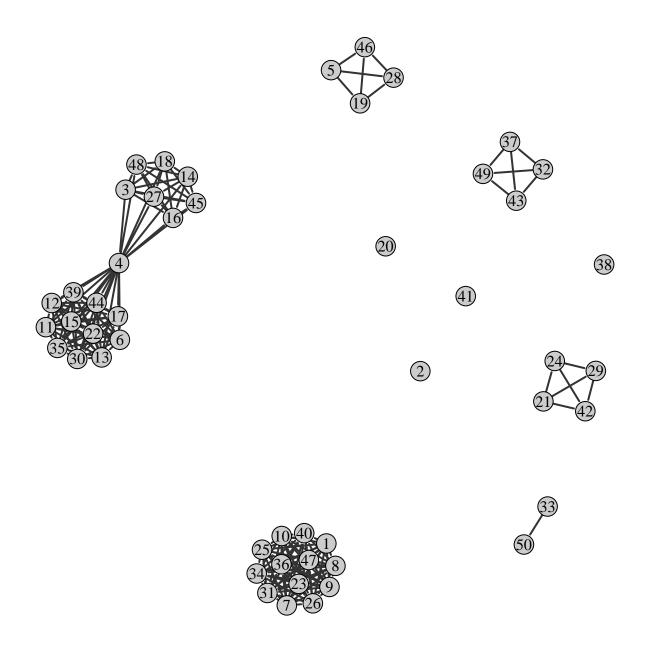


Figure E.21: The categorization graph of Sorter 21, a novice.

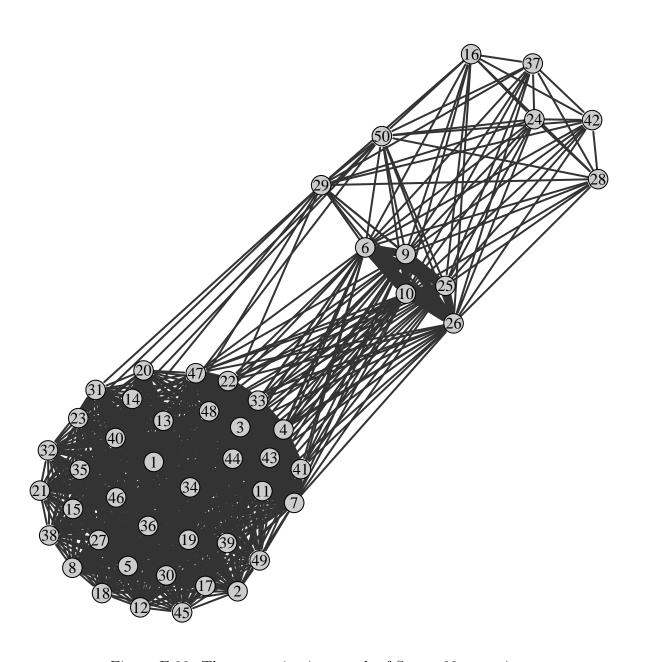


Figure E.22: The categorization graph of Sorter 22, a novice.

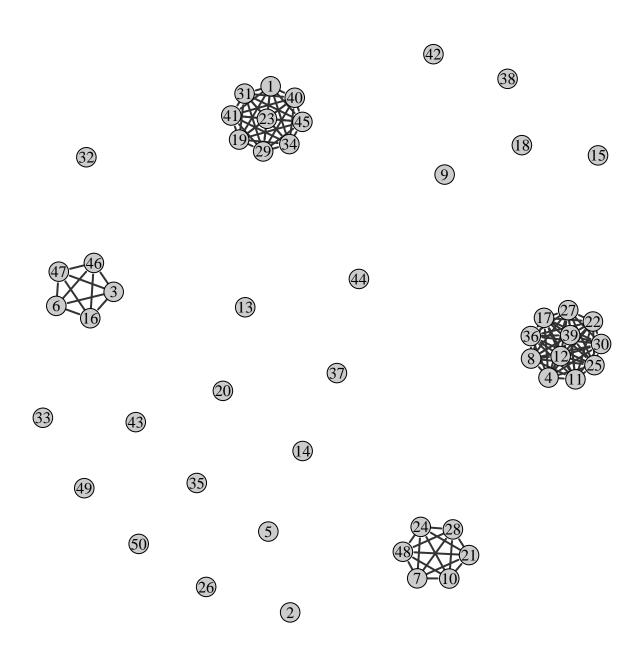


Figure E.23: The categorization graph of Sorter 23, a novice.

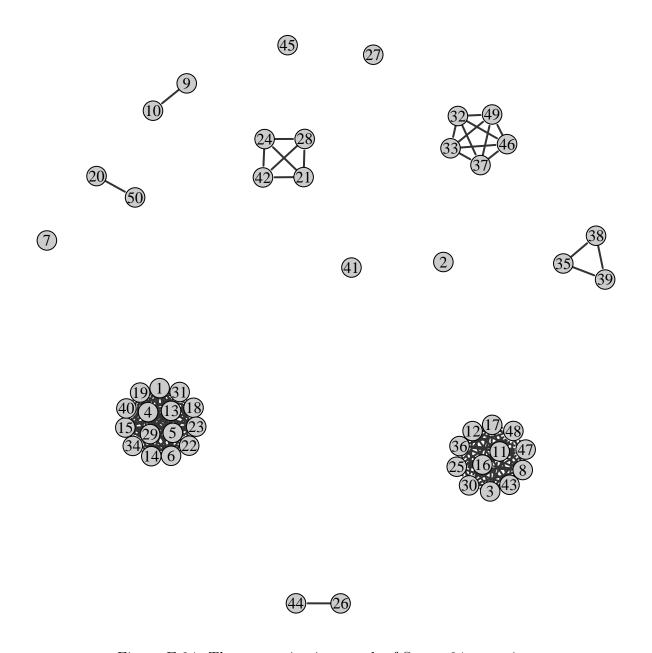


Figure E.24: The categorization graph of Sorter 24, a novice.

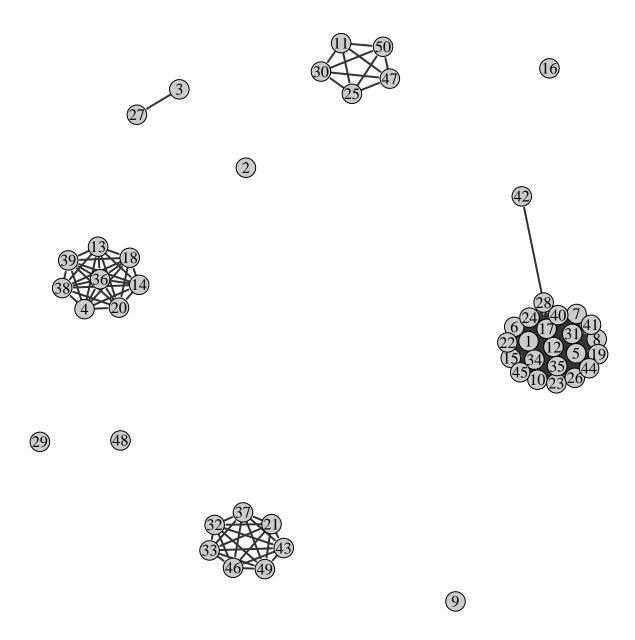


Figure E.25: The categorization graph of Sorter 25, a novice.

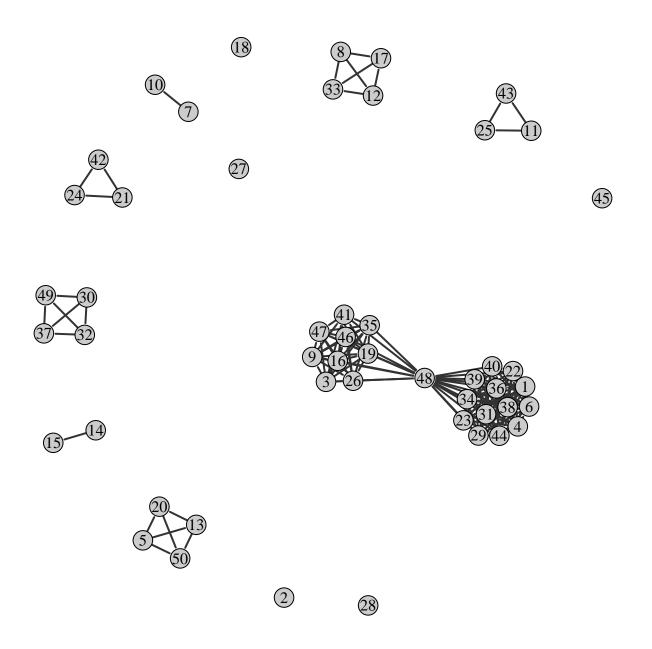


Figure E.26: The categorization graph of Sorter 26, a novice.

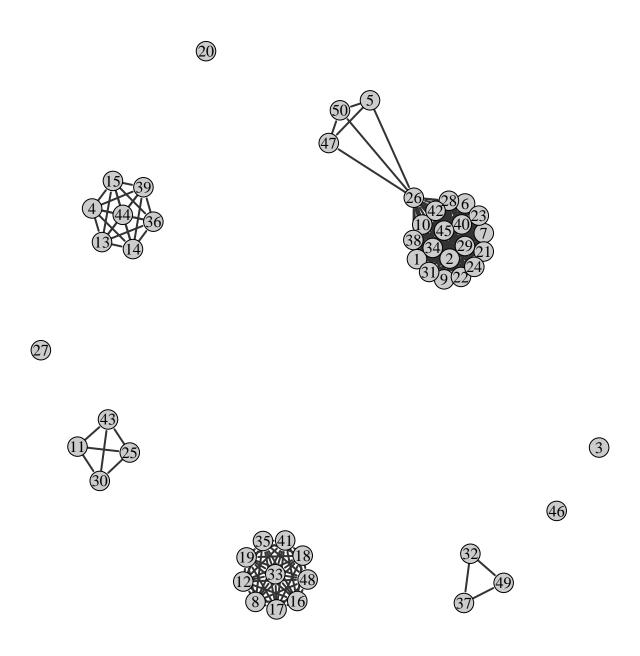


Figure E.27: The categorization graph of Sorter 27, a novice.

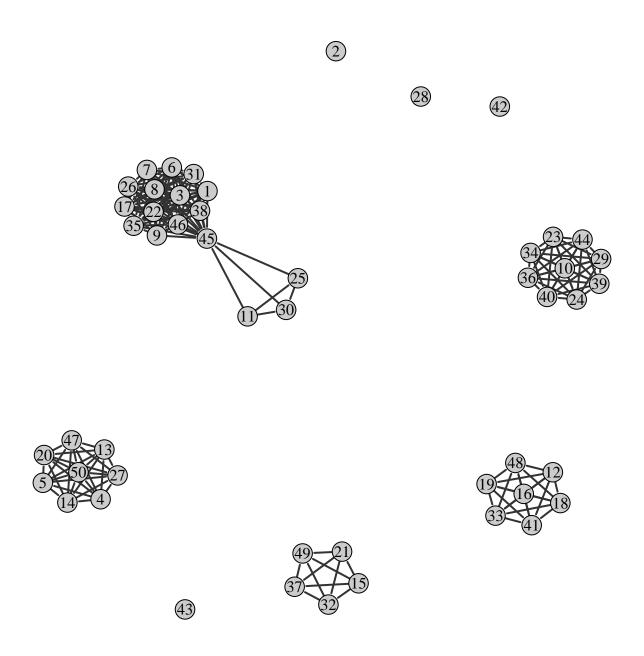


Figure E.28: The categorization graph of Sorter 28, a novice.

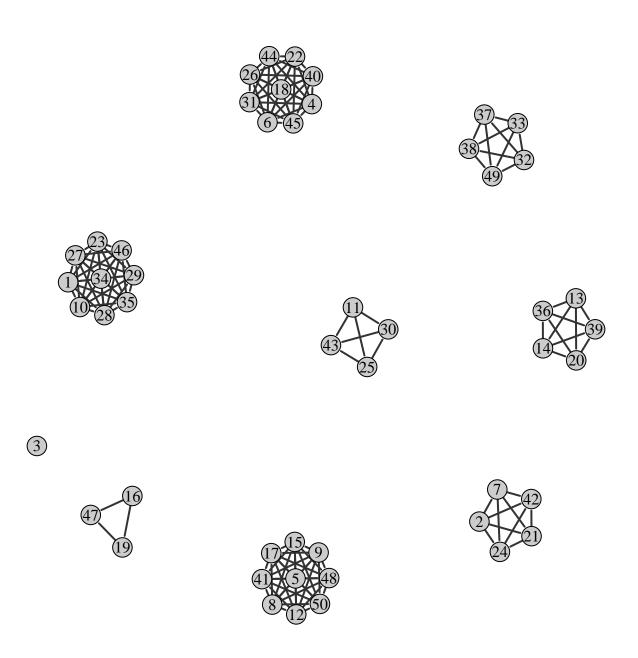


Figure E.29: The categorization graph of Sorter 29, a novice.

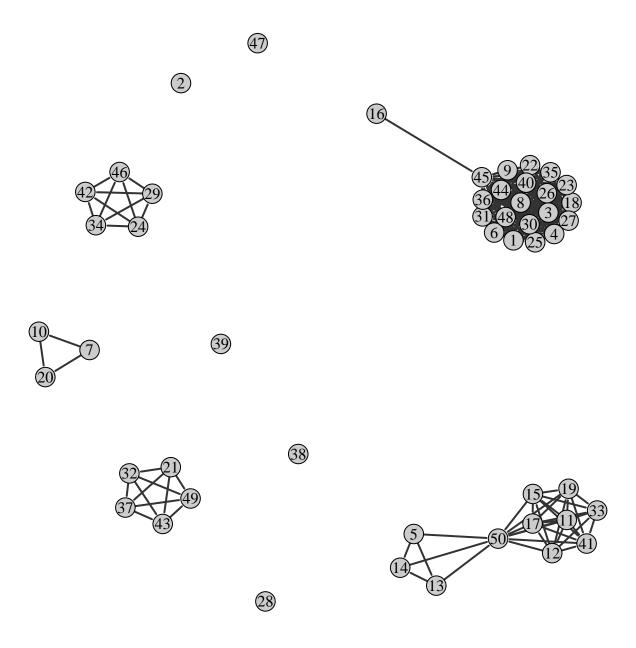
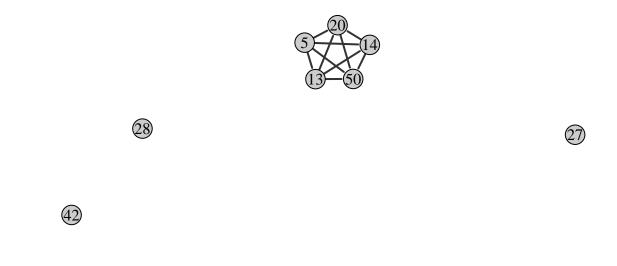


Figure E.30: The categorization graph of Sorter 30, a novice.



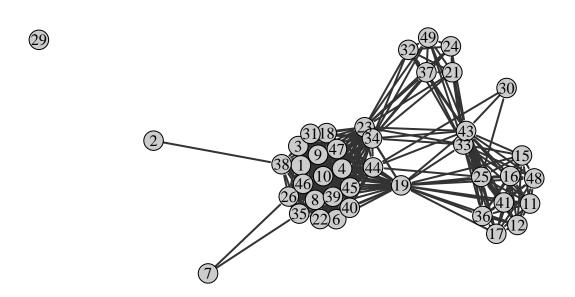


Figure E.31: The categorization graph of Sorter 31, a novice.

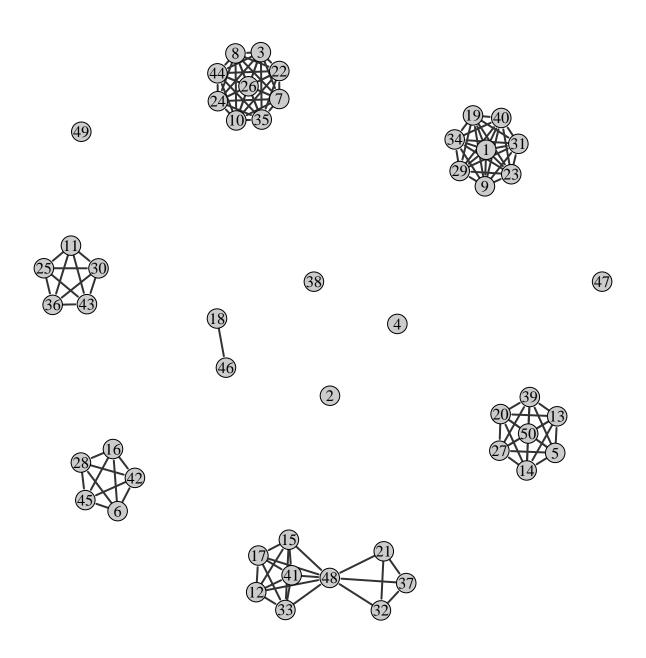


Figure E.32: The categorization graph of Sorter 32, a novice.

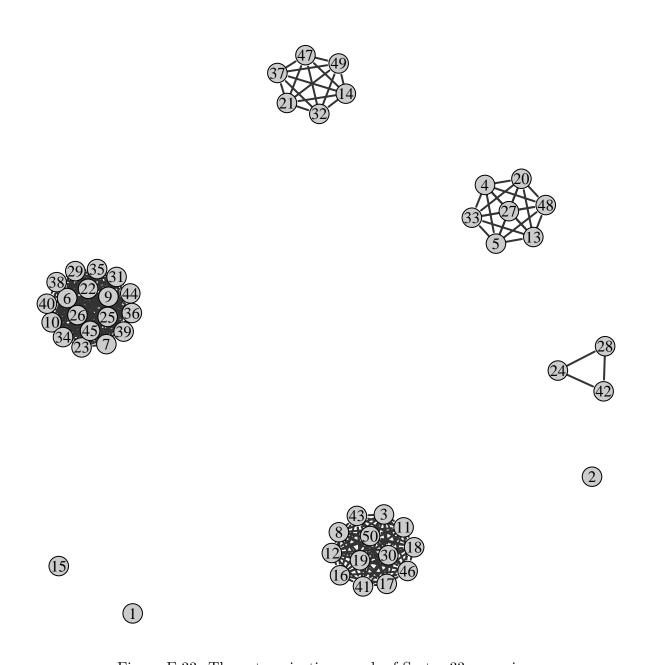


Figure E.33: The categorization graph of Sorter 33, a novice.

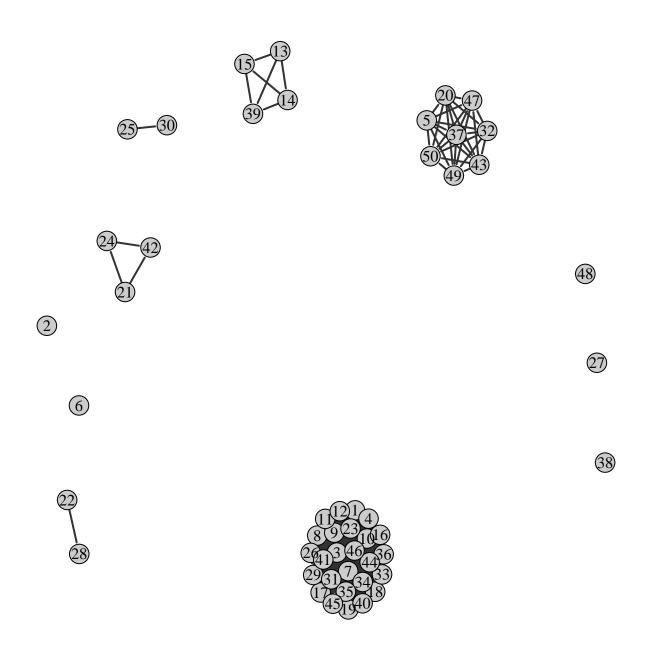


Figure E.34: The categorization graph of Sorter 34, a novice.

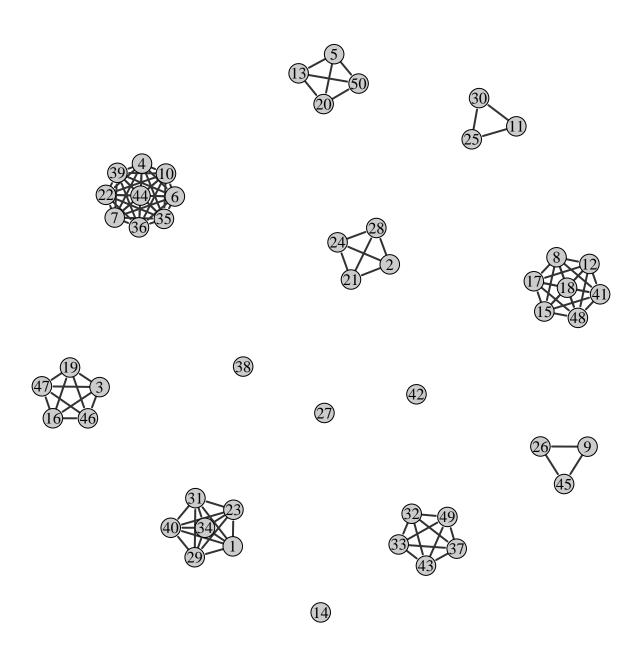


Figure E.35: The categorization graph of Sorter 35, a novice.

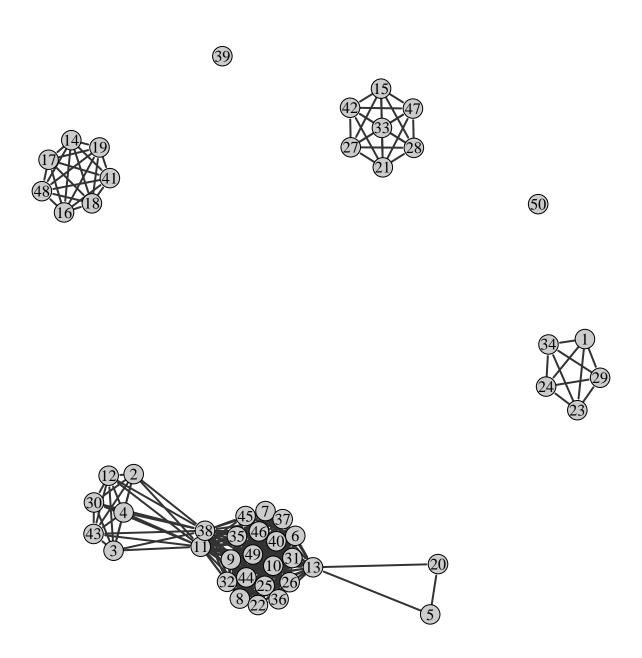


Figure E.36: The categorization graph of Sorter 36, a novice.

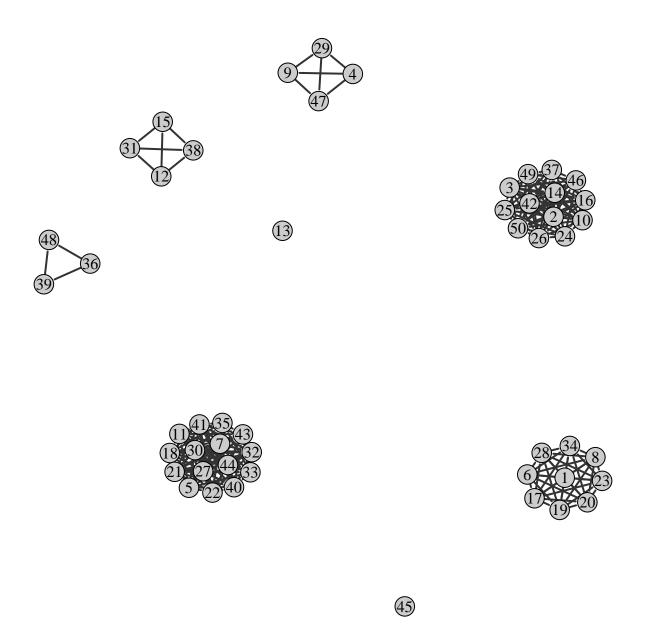
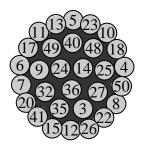


Figure E.37: The categorization graph of Sorter 37, a novice.



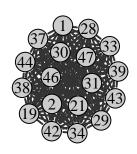


Figure E.38: The categorization graph of Sorter 38, a novice.

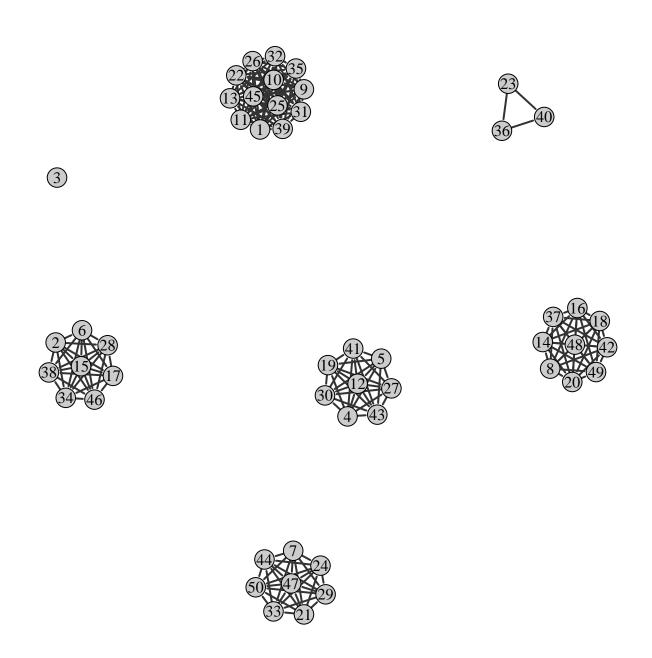


Figure E.39: The categorization graph of Sorter 39, a novice.

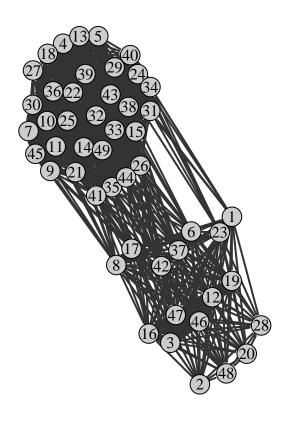


Figure E.40: The categorization graph of Sorter 40, a novice.

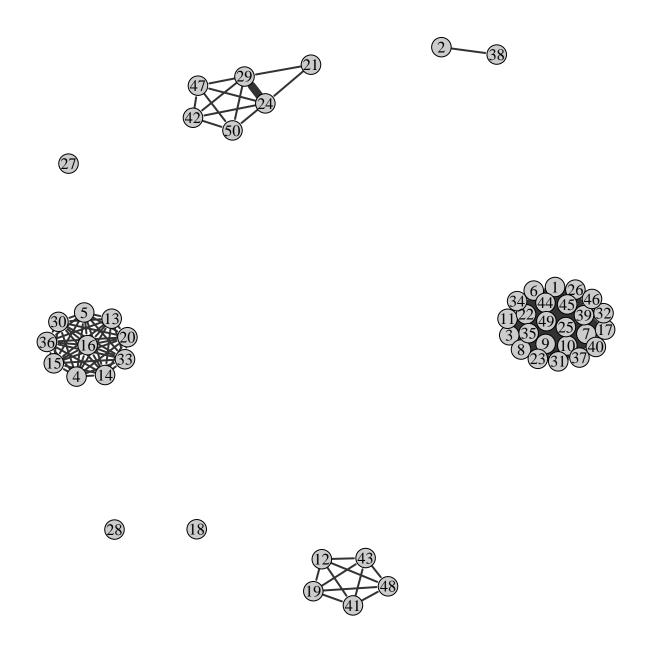


Figure E.41: The categorization graph of Sorter 41, a novice.

BIBLIOGRAPHY

Bibliography

- M. T. H. Chi, P. J. Feltovich, and R. Glaser, Cognitive Science 5, 121 (1981), ISSN 0364-0213.
- [2] G. H. Veldhuis, Science Education **74**, 105 (1990).
- [3] G. H. Veldhuis, Ph.D. thesis, Iowa State University (1986), unpublished thesis.
- [4] J. S. Walker, *Physics* (Pearson Education, Inc., Upper Saddle River, New Jersey 07458, 2004), 2nd ed., ISBN 0-13-101416-1.
- [5] R. Teodorescu, C. Bennhold, and G. Feldman, in *Physics Education Research Conference 2008* (Edmonton, Canada, 2008), vol. 1064 of *PER Conference*, pp. 203–206.
- [6] S. F. Wolf, D. P. Dougherty, and G. Kortemeyer, Phys. Rev. ST Phys. Educ. Res. 8, 010124 (2012), URL http://link.aps.org/doi/10.1103/PhysRevSTPER.8.010124.
- [7] C. Singh, American Journal of Physics 77, 73 (2009).
- [8] J. Larkin, J. McDermott, D. P. Simon, and H. A. Simon, Science **208**, 1335 (1980).
- [9] R. G. Fuller, Physics Today **35**, 43 (1982).
- [10] G. L. Murphy and J. C. Wright, Journal of Experimental Psychology: Learning, Memory, and Cognition 10, 144 (1984).
- [11] K. E. Johnson, P. Scott, and C. B. Mervis, Journal of Experimental Child Psychology 87, 171 (2004).
- [12] G. E. A. Solomon, The Journal of the Learning Sciences 6, pp. 41 (1997).
- [13] M. L. Means and J. F. Voss, Journal of Memory and Language 24, 746 (1985).
- [14] D. Hammer, American Journal of Physics 68, S52 (2000), URL http://link.aip.org/link/?AJP/68/S52/1.
- [15] A. A. diSessa, Cognition and Instruction 10, pp. 105 (1993), ISSN 07370008, URL http://www.jstor.org/stable/3233725.
- [16] R. E. Scherr, American Journal of Physics 75, 272 (2007), URL http://link.aip.org/link/?AJP/75/272/1.

- [17] B. W. Frank, S. E. Kanim, and L. S. Gomez, Phys. Rev. ST Phys. Educ. Res. 4, 020102 (2008), URL http://link.aps.org/doi/10.1103/PhysRevSTPER.4.020102.
- [18] T. de Jong and M. G. Ferguson-Hessler, Journal of Educational Psychology **78**, 249 (1986).
- [19] A. Mason and C. Singh, Master's thesis, University of Pittsburgh, Pittsburgh, PA, USA (2009), unpublished thesis.
- [20] A. Mason and C. Singh, Phys. Rev. ST Phys. Educ. Res. 7, 020110 (2011), URL http://link.aps.org/doi/10.1103/PhysRevSTPER.7.020110.
- [21] S.-Y. Lin and C. Singh, European Journal of Physics 31, 57 (2010).
- [22] M. T. H. Chi, personal communication (2010).
- [23] G. Milligan, Psychometrika 45, 325 (1980), 10.1007/BF02293907.
- [24] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2010), ISBN 3-900051-07-0, URL http://www.R-project.org.
- [25] G. Csardi and T. Nepusz, InterJournal Complex Systems, 1695 (2006), URL http://igraph.sf.net.
- [26] T. Kamada and S. Kawai, Information Processing Letters **31**, 7 (1989), ISSN 0020-0190, URL http://www.sciencedirect.com/science/article/pii/0020019089901026.
- [27] T. M. J. Fruchterman and E. M. Reingold, Software: Practice and Experience 21, 1129 (1991), ISSN 1097-024X, URL http://dx.doi.org/10.1002/spe.4380211102.
- [28] P. Erdös and A. Rényi, Publicationes Mathematicae 6, 290 (1959).
- [29] A.-L. Barabási and R. Albert, Science **286**, 509 (1999).
- [30] W. M. Rand, Journal of the American Statistical Association 66, pp. 846 (1971), URL http://www.jstor.org/stable/2284239.
- [31] L. Hubert and P. Arabie, Journal of Classification 2, 193 (1985), ISSN 0176-4268.
- [32] N. X. Vinh, J. Epps, and J. Bailey, in *Proceedings of the 26th International Conference on Machine Learning*, edited by L. Bottou and M. Littman (Omnipress, Montreal, 2009), pp. 1073–1080.
- [33] H. Hotelling, The Annals of Mathematical Statistics 2, pp. 360 (1931), ISSN 00034851, URL http://www.jstor.org/stable/2957535.
- [34] L. C. Baringhaus and Franz, Journal of Multivari-190 **ISSN** Analysis 88. (2004),0047-259X. URL http://www.sciencedirect.com/science/article/pii/S0047259X03000794.

- [35] B. A. Wiggins, Applied and Environmental Microbiology **62**, 3997 (1996), URL http://aem.asm.org/content/62/11/3997.abstract.
- [36] H. Hotelling, Biometrika **28**, 321 (1936).
- [37] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science **220**, 671 (1983), http://www.sciencemag.org/content/220/4598/671.full.pdf, URL http://www.sciencemag.org/content/220/4598/671.abstract.
- [38] C. J. P. Bélisle, Journal of Applied Probability 29, pp. 885 (1992), ISSN 00219002, URL http://www.jstor.org/stable/3214721.