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ABSTRACT

PARAMETRIC EMPIRICAL BAYES PROBLEMS

WITH

COST FOR COMPONENT OBSERVATIONS

By

Inna Jung

We consider the empirical Bayes decision problem where the component

problem includes a constant cost per observation and the option to choose in

advance the total number of observations. The usual empirical Bayes decision

problem involves identical components with a given fixed sample size for all

repetitions of the component. The empirical Bayes decision approach with our

component permits data accumulated over past component problems to be used in

selecting both the sample size and the decision rule to be used in the current

component problem. The generality introduced by allowing sample sizes that are

determined stochastically makes the result more useful in applications where,

typically, the choice of sample size is an option based on past data.

The empirical Bayes version involves "independent" repetitions (a sequence)

of the component decision problem. With the varying sample size possible, these

are not identical components. However, we impose the usual assumption that the

parameter sequence Q = (01, 02,...) consists of independent G—distributed

parameters where G is unknown. We assume that G E y, a known family of

distributions. The sample size Ni and the decision rule di for component i of



the sequence are determined in an evolutionary way. The sample size N1 and the

decision rule (11 E DN used in the first component are fixed and chosen in

1

advance. The sample size N2 and the decision rule (12 are functions of

L1 = (X11,....,X1N ), the observations in the first component. The sample size

1

2

)N3 and decision rule (13 are functions of (_)_(_1, L . In general, Ni is an

integer—valued function of (231, L2,...,_)gi_1) and, given Ni’ di is a DN.—valued

1

function of (.)_(1, L2,...,_)_(_i_1). (The action chosen in the i—th component is di(xi)

which hides the display of dependence on (L1, L2,...,;(_i_l).) For a variety of

models, we will construct empirical Bayes rules that are asymptotically Optimal.

We consider both parametric models involving squared error loss estimation

and linear loss testing and show how more general cost functions are covered by the

work. We will simulate one model to assess the small—to—moderate i risk plus cost

behavior of one of the suggested asymptotically Optimal empirical Bayes procedures.
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CHAPTER 1

INTRODUCTION

§ Lt. A Statistical Decisign Prgblem With Cost for Observations

Consider a statistical decision problem with parameter space 9, action

space .A', nonnegative loss function L( . , -) on 9 x .1, unknown prior distribution

G on O and a cost c > 0 per observation. Let X1, X2,... be observations which

are independently and identically distributed with a distribution P 0 given 0,

taking values in a set .z the observation Space. Let Dn be the set of all decision

functions (I: .3” —» .1 where .311 is the observation space for the vector

X = (X1,....,Xn). When 0 is the parameter and a decision rule (1 e Dn is used,

the decision loss plus cost for observing 2; = (X1,....,Xn) is

L(0, d(2(_)) + cn

where we assume that L is integrable for all 0, n and d 6 Dn'

Let Rn denote the risk and Bayes risk of the decision rule (I 6 Dn, i.e.,

(1.1) Rum, d) = Igan. dendPge)

(1.2) Rn(G, d) = [Rn(0, d) dG(6’)

and let rn denote the risk and Bayes risk of the decision rule (1 E Dn including

cost for observations.

Then

(1.3) rn(0, d) = Rn(0, d) + cn

(1.4) rn(G, d) = Rn(G, d) + cn.

We define minimum Bayes risk and minimum Bayes risk plus cost in the usual way.

We assume for each prior G and each n = 1,2,... that a Bayes rule d8 6 Dn

exists. Thus,

(1.5) (11213 Rn(G, d) = Rn(G, d3).

I]



Let

Rn(G) = Rn(G, <13)

and

(1.6) rn(G) = Rn(G) + on.

Since Rn(G) is nonincreasing in n, a minimizer Of rn(G) exists among the

integers 1, 2,.... We will denote a specified minimizer as n* = n*(G) and refer tO

it as an optimal fixed sample size. Therefore, r(G) = rn*(G) is the minimum

Bayes risk in the component across all the possible sample sizes and the

correSponding class of decision rules, i.e.,

(1.7) r(G)=rn*(G) = min {min {rn(G, d)|d E Dn}| n = 1,2,....}.

Moreover, note that Rn*(G) + cn* 5 R1(G) + c < no so that

n*_<_(R1(G)+C)/C<oo. For some components, R1(G) is a bounded function Of G 6 y.

Example 1.1. (Estimation). Let X1, X2,....,Xn be i.i.d. N(0, A) given 0

and let 0 have prior distribution G = N(p, V). Assume A is known. Let

6 = .1: (-oo, oo), L(0, a) = (0—a)2 for (0, a) E O x .1, and let c > 0 denote the

constant cost per observation. Then a Bayes decision function for estimating 0

based on observation X = (X1,....,Xn) is.1,

(1.8) deem) 4%) u + (1 —fix» X,

and

(1.9) rn(G) = (fihiv) + en.

The function AV/(A+nV) + cn is a convex function Of n e (—A/V, 00) with a

minimum at 17=(A/c)1/2 — A/V. Therefore, we can define an Optimal fixed sample

size n* as the smallest positive integer minimizer Of ( 1.9), which is related to 17 by

1 if r] < 1

(1.10) n* = n*(A, V) = n if 17 E {1, 2, 3,....}

[77] or [77] + 1, otherwise

where [ ] denotes the greatest integer function.



§Q. EmirilB sDeii rlm’h n m 1e ize

Commnents

When a statistical decision problem occurs repeatedly and independently

with the same unknown prior G, one can apply an empirical Bayes approach where

G is estimated using data collected from previous repetitions and a Bayes rule with

respect to the estimated G is used in the current component problem. The

empirical Bayes decision approach with our component permits data accumulated

over past component problems to be used in selecting both the sample size and the

decision rule tO be used in the current component problem. The generality

introduced by allowing sample sizes that are determined stochastically makes the

result more useful in applications where, typically, the choice Of a sample size is an

Option and based on past data. We impose the usual assumption that the parameter

sequence (01, 02,...) consists Of independent G-distributed parameters, where G is

an unknown element Of the known class Of distributions y.

The sample size Ni and the decision rule di for the components are

determined in an evolutionary way. The sample size N1 and the decision rule

(11 E DN used in the first component are given nonrandom choices.

1

The sample size N2 and the decision rule (12 are functions of

_)_(_l = (X11"""X1N ), the Observations in the first component. The sample size

1

N3 and the decision rule d3 are functions Of (£1, £2). In general Ni is an

integer—valued function Of (x1,_)_(_2,...._xi‘1) and, given Ni’ di isa DN.—valued

1

function Of (x1, x2,....,xi"1).

Let N = (N1, N2,...) and 51 = (d1, d2,...). We will be concerned with the

risk behavior Of empirical Bayes procedures (N, 51). (Here and henceforth, the term

risk will refer to the expected loss plus cost for Observations.) The risk for the

decision about 0i is



(1.11) ErNi(G, di) = ERNi(G, di) + cENi,

where E denotes the expectation over the earlier Observations L1, L2,"..X—1.

Definitign 1.1. If the empirical Bayes procedure (_N_, g1) possesses the

property:

(1.12) lgm ErNi(G, di) = r(G) for all G E f,

we say it isW. This means that in the limit, the empirical

Bayes procedure has the best possible risk behavior, i.e., achieves minimum Bayes

risk.

For a variety Of models, we will construct empirical Bayes rules that are

asymptotically Optimal. All Of our results concern parametric families Of priors,

y={Gw' wen} where (I is a Specified subset of a finite—dimensional Euclidean space

RP. Families of conjugate priors will be used as the parametric families of priors.

We will identify G by w and replace G accordingly in formulas for risk, etc.

Also, we will use the empirical Bayes approach wherein the prior w is

estimated, say by a, and fi=n*(&)) and draws are used in defining the empirical

Bayes procedure. Note that we have dropped the superscript on d(if The following

table shows how the empirical Bayes procedure evolves using estimates 620

arbitrary, 5.21:5), (x1), a2=aa2 (x1,x_2), 513:“ 3 (x1,x2,x_3),.... The 01, 02, 0

are i.i.d. Gw‘



Table 1.1. Empirical Bayes Procedure with Stochastically Determined Sample Sizes

Para— Sample Decision Observa— Estimated

Stage meter Size Rule tion Prior Risk

. 1 . 1 1
1 01 Nl=n*(w0) d1=daj0 _)_(_ wl(_)_(_ ) E{L(0l,dl(l(_ ))+cN1}

l

2 0 N =n*(&2) d =d. x2 a; (x1 X?) E{L(0 d (X2))+cN }
2 2 1 2 ml -' 2 — ’ — 1’ 2 — 2

= ErN2(w, d2)

3 0 N =n*(&2 ) d =d. x3 a; (x1x2x3) E{L(0 d (X3))+cN }
3 3 2 3 (.22 — 3 - "- ’— 3’ 3 - 3

= ErN3(w, d3)

The convergence Of the sequence Of risks in the last column to the smallest possible

risk r(w) = rn*(w) is the asymptotic Optimality prOperty. The following remark

shows how asymptotic Optimality implies the convergence Of the sample sizes Ni to

the set of Optimal fixed sample sizes.

Bemagk 1.1. Let s(w) denote the set Of integer minimizers of rn(w)

(a) If (N, 51) is asymptotically Optimal at (.2, then

(1.13) P(Ni E s(w)) -1 1 as i—r 00.

(b) If rN (a), di) -» r(w) a.s., then

i

(1.14) P(Ni E s(w) eventually) = 1.

mt. For given w, there exists an 6 > 0 such that for all n’ j! s(w),

rn,(w, d) — r(w) 2 c for all (1 6 Dn" On the event, Ni 9! s(w), rNi(w, di) — r(w) 2 6

so that



13er (01, di) —r(w)] Z 6 PW, ¢ 800)),
i

which yields (1.13) by letting i -+ 00. Since (Ni ii 3(a)) i.O.) implies rN_(w, di) —

1

r(w) 2 c, i.O., (1.14) is proved. a

The following lemma will be used in subsequent chapters in establishing the

asymptotic Optimality prOperty.

Lemma 1.1. For priors w and 11, let n = n*(w), m = n*(u) be Optimal

fixed sample sizes and let (11:), d}; E Dk denote Bayes decision rules with respect tO

O), V for k = 1,2,... Then

(1.15) 0 5 Im (“’1 (1111/1) ‘ TM 5

k k k k
sukaRk(w, du) — Rk(u, dV)| + supkle(w, dw) - Rk(u, dw) |.

Proof. The left inequality follows from the fact that r(w) is the minimum
 

Bayes risk Over choices (I E Dk and sample sizes k. Adding and subtracting

rm(u, (1’3) and noting that rm(1/, (1’3) 3 rn(u, d2) yields

(1.16) rm(w, (I?) — rn(w, d2) S rm(w, (it?) — I‘m(V, (113) + rn(u, (13)) — rn(w, (13)

which together with (1.4) implies the right inequality Of (1.15). n

In Chapters 2 and 3 we develOp a.O. empirical Bayes procedures for squared

loss estimation and linear loss testing and a binomial component. Here the family

Of priors is the beta family. In Chapter 2 we give the results Of computer

simulations that provide estimates Of risk behavior for small to moderate i. In

Chapters 4 and 5 we treat the two loss functions in a normal component with

normal priors.



The quadratic loss function L(0, a) = b(0—a)2, where b > 0, is covered by

our results by factoring b out and replacing c by c/b. Similarly, the linear loss

function for testing with slopes -b and b for its arms is covered by our work.

Our methods cover more general cost functions as well. If the cost function

is c(n) and lim inf c(n) > R1(G), then for any given G, inf {rn(G) |n = 1, 2,....}

is attained, and we can define n*(G) as the smallest minimizer. Moreover, the

proof of Lemma 1.1. applies to give the same conclusion, that is, a bound for excess

risk in terms Of the supremum of differences in decision risks over varying sample

size problems.



§ 1_.3. Literatgta Bgvigw

In the usual empirical Bayes decision problem we are given a stochastic

process (01, X1), (02, X2),.... Of independent and igantiaally distributed random

vectors with the interpretation that, at the ith component problem, Observation Xi

has distribution P0 given the parameter 0i = 0 and 01, 0 ,... are i.i.d. with a

fixed but unknown prior distribution G in a family Of distributions f. The datum

Xi may be a vector Of summary statistics for the Observations taken at the ith

component, e.g., the sample mean or other sufficient statistic based on a sample Of

Specified size taken at that stage. The family Of priors f can be an unspecified

subfamily Of all priors On 9 or a certain parametric family, like conjugate priors.

Morris (1983) uses the terminology nonparametric empirical Bayes (NPEB) for the

former case and parametric empirical Bayes (PEB) for the latter case. Morris

(1983) indicates that PEB is needed to deal with those cases in which number Of

component problems is tOO small for Bayes' theory to approximate well. Robbins

(1951, 1955, 1966) introduced the empirical Bayes problem. Most Of his work and

that which followed Robbins is NPEB. It has mainly concerned constructing

procedures in a variety Of Situations that are asymptotically Optimal, i.e, such that

lim Rk (G, di) = Rk(G) v G e y.

Here k indicates the common sample size taken at each component and on which

both the Bayes and empirical Bayes procedure (1G and di are based.

Two different approaches have been used in constructing empirical Bayes

procedures. The first one is to estimate G from data accumulated from previous

component problems and then to construct a Bayes procedure with respect to the

estimated G. The second approach is to estimate the Bayes procedure (1G with

respect to G directly using data from previous component problems without

estimating G from the previous component problems. The first approach gives



smoother procedures Since the decision rules will be conditionally component Bayes.

O'Bryan (1972, 1976) introduced the nonparametric empirical Bayes decision

problem with non — i.i.d. components by allowing unequal nanranaam sample sizes

in the component problems. He followed the second approach in the situation that

P0 is in the discrete exponential family. O'Bryan (1976) defined asymptotic

Optimality for his case, which is necessarily more general than that Of Robbins

(1951), and showed the asymptotic Optimality Of his procedure. O'Bryan and

Susarla (1975) studied the empirical Bayes decision problem with nonidentical

components in which P 0 is normal with mean 0 and known variance which is

changing from component to component.

Laippala (1985), whose work is motivated by O'Bryan (1976), introduced an

empirical Bayes problem with nonidentical components with cost for Observations

and random "floating" sample Sizes for the components. Laippala (1985) defines the

"Optimal" sample size as

ié = [inf {nlr G) ;r (G)}] A 1
. n+1(

where i is a given fixed integer. This is not Optimal among the set of all fixed

sample sizes Since for all G E y,

r- (G) a r *(G)a
16 n

and for some G E y it is possible to have

riG(G) > rn*(G).

Laippala (1979) defines a floating Optimal sample size i;+1 for use at

(n+1)th component problem which is a function Of the Observations from previous

11 components as well as current Observations. It is pointed out in Gilliland and

Karunamuni (1988) that this rule is not necessarily Optimal when i a 3 and that

the first line Of the proof Of Theorem 1 in Laippala (1985) claiming that i; -—P-+ if;

neglects the boundary set on which the convergence may fail. Laippala's results as



10

claimed are nonparametric in the sense of Morris (1983).

The component problems that we will consider involve squared error loss

estimation and linear loss testing. Many authors have considered the empirical

Bayes problem with independent and identical repetitions Of these components

following Robbins (1956, 1964).

Morris (1983) and Susarla (1982) give general discussions. Singh (1979)

provides results on squared error loss estimation problems. Van Ryzin and Susarla

(1977) and Gilliland and Hannan (1977) develop the theory for monotone multiple

decision problems extending the results for linear loss testing Of Johns and Van

Ryzin (1971, 1972).

All empirical Bayes work cited above involves identical components with the

exception Of the nonrandom sample Size work Of O'Bryan and Laippala. The

variant Of O'Bryan and Susarla (1975) has a linear loss component with a

translation and scale parameter exponential with the scale parameter known and

changing from component to component.

Karunamuni (1985, 1988) and Gilliland and Karunamuni (1988) consider the

possibility Of varying stochastic sample sizes. Gilliland and Karunamuni (1988)

deveIOp the theory for finite state problems. Karunamuni (1985, 1988) studies an

empirical Bayes problem with a sequential component with linear loss and multiple

decision loss structures. He does not treat the Optimal fixed sample size problem.

Rather, assuming a consistent estimator for G, he shows that the risk Of an

empirical Bayes one—step sequential decision procedure converges tO the Bayes risk

attained by the one—step look ahead sequential decision procedure. This is not the

asymptotic Optimality defined by Robbins (1956).



CHAPTER 2

ESTIMATION OF THE BINOMIAL PARAMETER

§2._L Tha Commnent Problem

Suppose that the rate 0 at which defectives are produced by a given

production process varies from day—tO—day. On each day a random sample Of at

least two parts is taken at a cost Of $ .50 per part and an estimate 3’ made with

loss $1000 (AG—0)? If the sequence 01, 0 ,.... is modeled as a stochastic sequence

with independent and identically G—distributed variables with G unknown, then

the empirical Bayes method is apprOpriate. For the case G is restricted to the

Beta (0:, 6) family and the sampling is two—at-a—time, we show how tO construct a

decision procedure with risk plus cost for Observations converging to the lowest

possibly risk, whatever be a and 5. In Section 3 we find that in this case the

envelope risk plus cost is no greater than $18.00 per day, the minimax risk plus cost.

Against the least favorable a=fl=2, the empirical Bayes risk is estimated to be

below $20.00 after 15 days. The empirical Bayes sample size converges to the

Optimal 8x2 = 16 parts here. Other (1, 6 values are tested in the computational

work Of Section 3. In this section and the next we deve10p the empirical Bayes

procedure and prove its asymptotic Optimality.

Let X1, X2,... be i.i.d B(m, 0), where m is a given positive integer and

the parameter 0 have prior distribution G in the beta family f = {Beta (0:, fl)|

a>0, fl>0}. Estimation Of 0 is considered for squared—error loss. Here O = .1=

[0, 1]. Let c > 0 be a constant cost per Observation. Let (I 6 D11 be a decision rule

based on the Observation fin = (X1""’Xn)' The decision loss plus cost for

Observation is given by [0 — d(2(_n)]2 + cn.

The marginal distribution Of Xi is Beta—Binomial. We let 5 and n

denote the first two moments Of G = Beta (0:, 6), that is,

_ _ a

6 _ EGa - n+3

11



12

(2.1)

+1

"=EG”2=(3+%I(21+5+1)1
 

andnotethat 0<§2<n<§<1 Since a>0, fl>0. Also

E(Xi)=m{

(2.2)

B(x?) = me - 17) + m2»,

and from (2.1) it follows that

a:

71-5

In the empirical Bayes application, (2.2) and (2.3) will be useful in the

(2.3)

construction of consistent estimators for a and ,6. We will use the method Of

moments to Obtain estimates Of 5 and n and will use (2.3) to Obtain estimates for

the parameters a and 6.

A Bayes rule exists and is given by the posterior mean Of 0, given X”. The

posterior distribution Of 0, given X11, is Beta (a+an, [3 + mn — an), where

Xn denotes the average Of X1""’Xn'

Hence, a Bayes rule dG 6 DD 18

(1+an

(2.4) dG(Xn) = EFF-TL

_ a + 11 X

— a+B+mn a+ZFan n

if G 2 Beta (0, 6).

Baka 2.1, For G = Beta (0, fl) and G’ = Beta (0’, fl’),

, , 2
(2.5) Rn(G, dG’) = (a’+fli+mn)2 {[(a + 5 ) —mn]1) 



l3

- warmer) -—mn1 5+ («1021,

 

(2'6) an(G, dGI) _Rn(G’$ dG/)i :2 ig— {Ii + '7]— fl’ '1

and

(2.7) R (G) = “fl .
n (a+fl)(a+fi+1)(a+fi+mn)

Prmf. In (2.4) for G’, we see that

  x12
_ _ a’ _ n

Rn(G’dG')—EGE0[0 a’+fl’+mn a’+fl’+mn n

=EGE0[9— (Kn-mo)— ““1 012
a’+,6’+mn

   

a' _ n

a’+fl’+mn a’+fi’+mn

   

I + I ’
2

= 130.130 [(0.51 fll’B+mn 0 ‘ a'+%’+mn) _ (01%;+mn (x11 _ m0))]

 = 1 2{E [(a’+fl’)0—a’]2+n2E E (x -—m0)2}.

[a’+fl’+mn] G G 0 11

Using (2.1)

EG[(a'+fl')9— or]2 = (a' + fl’)2n- 201’(a’+fl’)€+(01’)2

and

nZEGEo (Xn - me)2 = n2EG(Var0 Xn)

--= n2EG[%mN1~ 011= mn (r — 2).

Hence

 

2
1 f I 2 I I I

Rn(G’dG’)=[a,+fl,+ ] {(0 +fl) n—2a(a +fl)€

+ (a)2 + mn (€— 11)}

 

_ [ l ]2{[( I I 2 I I I _ I 2
_ a+fl)—mn]n—[2a(a +fl) mn]§+(01)}i

a’+fl’+mn
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which proves (2.5). Letting G’ = G in (2.5) and using (2.1) leads to (2.7).

Finally, from (2.5) we Obtain (2.6) since

|Rn(G, dG’) — Rn(G’, dG,)| =

I[ 1 ]2{[(a’+fl’)2-nm}(1r-n’)—[2a’(a’+fl’)-mn](€-€’)}|
a’+fl’+mn

 

and

(a’+fl’ ) 2+mn

(a’+fl’+mn )

(a’+fl’) 2-mn

(a’+fl’+mn ) 2

  < <1

   

2a’(a’+fl’)—mn < 2a’ ( a’+,6’)+mn < 2

2 = '
(a’+fl’+mn) ‘ (Oz’+fl’+mn)2

  

  

From (2.7) the minimum Bayes risk including cost for Observations is

(2.8) rn(G) = + cn. 

m6 -—-1

(a+/3)(a+,6+1) (‘1 + 3 + m”)

We seek the Optimal sample size n*. rn(G) is a continuous and convex function of

real 11 > —(a+fl)/n. Consider the equation

 0 = gfirnm) = _(a+flril(rg+fl+l) (01+ fl+ mn)—2 + c.

Its larger solution is

(2.9) u ={(%(a+m?£+5+l,)1/2 — (a + zip/m

and an Optimal fixed sample size n* = n* (a, ,6) is given by

r

 

1 if V<1

(2.10) n*= V if V6 {1, 2, 3,...}

[u] Or [u] + 1 depending on which integer minimizes rn(G)’

 otherwise.

Here [ ] denotes the greatest integer function and we take n* = [u] if both [11] and

[u] + 1 minimize rn(G). By the comment preceding Example 1.1 and the fact

R1(G) 5 .25 for all G, it follows that n* _<_ (.25 + c)/c for all G.

If a and 6 were known constants, we can use dG 6 DH... to achieve
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minimum Bayes risk, i.e.,

r(G) = min {rn(G)|n = 1, 2,...}.

In the next section we Show how (a, B) is estimated in the empirical Bayes

problem with this component and establish the asymptotic Optimality for the

resulting procedure.
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§ 2.2. An Empiricfl Bayea Dagiaian Prmadura

Consider the binomial component problem Of the last section. Let O0, 30

be initial nonrandom estimates Of a, 5 and let N1 = n*(OzO, 30) be the sample

size chosen for the first component. (See (2.10) for the definition Of the optimal

fixed sample size function n*.) Recall that _)_(_1= (X11,X12,...,X1N1) denotes the

vector Of Observations from the first component.

We will define a sequence of estimates Oi, Bi based on (X1, X2,...,_)_(_i).

Then for component i+1, the empirical Bayes sample size is Ni+1 = n*(Ozi, Bi)

and the empirical Bayes estimator Of 0H-

 (2.11) di+l(_xi+1)=a.+ N‘HYi“ ,i=0,1,...

“i + 5i + m Ni+1

(see (2.4)), where

1N1

(2.12) Yi= —2 X.j,i1,,2...

Ni1j=1

We will give estimates based on the method of moments and will find it

useful to consider

i

X?., i = 1, 2,...(2.13) Z. = U.1
1 Ni j

and denote average Of Yj’ Zj,j = 1, 2,...,i as Yi, Zi’ i = 1,2,...

Let .96 be the trivial a—field and let .9} = 0(X1, X2,...,X_j),j = 1, 2,...

The sample size N . is .93_1 measurable, j = 1,2,..., and we see that

J J

E(Yj| .9j_1) = m 5, j = 1, 2,...

N

21

(2.14)

12(sz 2.1) = m (c — n)+m217. 1= 1, 2,...

follow from (2.2.).

Since Y]. 5 m and Zj 5 m2, j = 1, 2,..., the strong law for centerings at
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conditional expectation (see Hall and Heyde (1980, Theorem 2.19)) implies

i
l

YI— To: 13(le ..9j_1) -) 0 3.8.

(2.15) 1 i

From (2.14) and (2.15) we have

Yi -) m5 a.s.

(2.16)

Zi -) m({—n) + m2” a.s.

Lemma 2.1. Let m 2 2. The estimators defined for i = 1,2,... by

Yi

Eli—m

(2.17) . 71 "Yi

”15 anti")—

and

A __ Ei(€i- 2,) +

01: fl—

IIi - Ei

(2.18)

.. _ (l-Ei) (ii-2,) +

fli‘ . _ 2
"i 5i

are as. consistent. (In (2.18) take ratios 0/0 to be 0.)

 

Prmf. The as. convergence Of the estimates (2.17) follows from (2.16). The

as. convergence of the estimates (2.18) then follows from (2.3). 1:)

Refer tO Table 1.1. Let L.) = (0, 3), 6.10 be arbitrary and Oi = (Oi, bi) be

defined by (2.18). Let the sample size sequence N be defined by Ni+1 =

n*(iri, Hi), i = 0, 1,... where n* is defined by (2.10). Let the empirical Bayes
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decision rules S! be defined by (2.11).

Thagram 2.1. Let m 2 2. The empirical Bayes procedure (N, a) defined

above is asymptotically Optimal at each G = (a, [3).

Prmf. By Lemma 1.1 and (2.6),

(2.19) o s erm, d,+1)—- r(G) s 41:, — r) + 212, — nl-

Since IEi — {I 51 and lfii — nl S 2 for all i, the DCT, Lemma 2.1 and (2.19)

imply that ErN +1(G, di+1) -+ r(G). [:1

l

Bamaak 2.2. In the component problem under consideration in this chapter

and the next, the marginal distribution Of a single Observation is Beta—Binomial

with parameters 111, a, B. If m = 1, this is Binomial (1, 01/01 + 6) and the pair

((1, fl) is not identified. Our method Of estimation in the empirical Bayes version

requires that m 2 2. This assumption can be removed if we require that the Ni 2 2

and use estimators based on pooled data. Requiring Ni 2 2 i.O. would suffice but

details Of these variations will not be presented. In Chapters 4 and 5 we Optimize

sample Size over 11 2 2 for the purpose Of simplifying the problem Of estimating the

prior.
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§2.§I-S E Hm B'lQll!’

In this section we treat the empirical Bayes problem Of the last section. All

risks are multiplied by 1000, which corresponds to a component with loss function

1000(a-0)2 and cost 1000c per Observation.

We have calculated the envelOpe risk r(a, fl) and the Optimal sample Size(s)

for various m, c, a, and fl and present some Of the results in Table 2.1. We have

included the mean and standard deviation Of the Beta (0:, 6) prior in each case.

Figure 2.1 below is a graph Of the envelope risk function r(a, a) plotted

against a on a log scale. For this we have chosen m = 2 and c = .001.

A Flgure 2.1 A Risk Envelope
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Table 2.1. n*(a, fl) and r(a, 6)

Prior c=.001 c=.002 c=.001 c=.002

a ,6 p a n* r n* r n* r n* r

0.1 0.1 0.50 0.456 4 9.081 3 12.720 4 7.415 3 10.529

0.1 0.3 0.25 0.366 5 10.151 3 14.371 4 8.320 3 11.699

0.1 0.9 0.10 0.212 4 9.000 3 12.429 4 7.462 2 10.429

0.1 1.9 0.05 0.126 3 6.958 2 9.278 3 5.879 2 7.958

0.2 0.2 0.50 0.423 6 11.760 4 16.503 5 9.638 3 10.529

0.2 0.6 0.25 0.323 6 12.510 4 17.470 3 10.274 3 11.699

0.2 1.2 0.14 0.226 5 11.266 4 15.599 4 9.330 2 10.429

0.2 1.8 0.10 0.173 4 10.000 3 13.500 4 8.286 3 11.455

0.3 0.3 0.50 0.395 7 13.421 5 18.844 5 11.010 4 15.440

0.3 0.6 0.33 0.342 7 14.065 5 19.657 6 11.569 4 16.160

0.3 1.2 0.20 0.253 6 13.111 4 18.105 5 10.818 4 15.111

0.3 1.8 0.14 0.199 5 11.855 4 16.213 5 9.851 3 13.473

0.5 0.5 0.50 0.354 7 15.333 5 21.364 6 12.579 4 17.615

0.5 1.0 0.33 0.298 7 15.602 5 21.594 6 12.838 4 17.877

0.5 1.5 0.25 0.250 7 14.812 5 20.417 6 12.250 4 16.929

1.0 1.0 0.50 0.289 8 17.259 5 23.889 7 14.246 5 19.804

1.0 1.5 0.40 0.262 8 17.266 5 23.714 7 14.295 5 19.796

1.0 2.0 0.33 0.236 8 16.772 5 22.821 6 13.937 4 19.111

1.5 1.5 0.50 0.250 8 17.868 5 24.423 7 14.813 5 20.417

1.5 2.0 0.43 0.233 8 17.768 5 24.109 7 14.775 4 20.289

2.0 2.0 0.50 0.224 8 18.000 5 24.286 7 15.000 4 20.500

3.0 3.0 0.50 0.189 7 17.714 4 23.306 6 14.929 4 19.905

4.0 4.0 0.50 0.167 7 17.101 3 21.873 6 14.547 3 19.072

5.0 5.0 0.50 0.151 6 16.331 3 20.205 5 14.091 3 17.962

10.0 10.0 0.50 0.109 1 11.823 1 12.823 2 11.158 1 12.352
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For m=2, c=.001 and selected a, 6 values, we have made Monte Carlo

estimates Of the empirical Bayes risk Of our procedure with initial starting

estimates 210 = 230 = 1. This is done for stages i = 10, 15,20, 25,50 and 100 and

the results are presented in Table 2.2 along with the standard errors Of the

 

 

estimates.

Table 2.2 Estimated Empirical Bayes Risks (m=2, c=.001)

Estimated Empirical Bayes Risks (Standard Errors)

0 [3 10 15 20 25 50 100 Envelope

Risk

0.1 0.1 10.22 9.83 10.13 10.00 9.28 9.13 9.081

(0.18) (0.07) (0.14) (0.14) (0.05) (0.01)

0.5 0.5 17.31 15.97 15.68 15.56 15.40 15.37 15.333

(0.67) (0.10) (0.05) (0.03) (0.01) (0.00)

1.0 1.0 21.27 19.05 18.26 18.05 17.41 17.32 17.259

(0.73) (0.43) (0.25) (0.28) (0.02) (0.00)

2.0 2.0 21.26 19.67 19.89 19.44 19.09 18.27 18.000

(0.43) (0.25) (0.30) (0.25) (0.20) (0.04)

3.0 3.0 20.43 19.73 19.36 19.75 18.73 18.47 17.714

(0.28) (0.24) (0.21) (0.25) (0.14) (0.17)

4.0 4.0 19.98 19.34 19.05 18.95 18.66 18.10 17.101

(0.29) (0.19) (0.16) (0.16) (0.15) (0.12)

0.1 0.9 12.25 12.58 13.12 13.05 10.69 9.41 9.000

(0.27) (0.34) (0.42) (0.44) (0.31) (0.31)

0.2 1.8 12.79 13.34 13.24 13.28 12.38 10.86 10.000

(0.19) (0.24) (0.29) (0.29) (0.28) (0.17)



CHAPTER 3

TESTING THE BINOMIAL PARAMETER

§ 3.1; The Compgnant Prablem

In connection with the estimation problem for the binomial parameter 0

presented in Chapter 2, we consider a testing problem concerning the value Of 0 in

B(m, 0), where m g 2 is a given integer. As in Chapter 2, we assume the

conjugate prior G=Beta (a, )6) for the binomial parameter 0 and a constant cost

c > 0 per Observation. The hypothesis to be tested is

H0: 05 00 against H1: 0 > 00

for a given 00 E O = [0, 1]. Thus the action space .1 consists Of two actions a0

and a1, where 30 = "accept H0" and a1 = "reject H0". We assume the the

linear loss function L(-, ) go on Ox .1?

1(1), a0) = (0— 00f“.

L(0,a1) =(110 — o)+.

Conveniently, L(0, a0) — L(0, a1) = 0- 00. Let X1,...,Xn be i.i.d. P 0, the

distribution B(m, 0), with support 36’: {0, 1,...,m}. Then P15, the joint

distribution function of _)_(_ = (X1,...,Xn), has support .3“.

Let An denote the set Of all nonrandomized decision functions

(3.2) a. .3“ -) {0, 1}.

When a 6 .55“ is Observed, we take action a“Q and thereby incur the loss

(3.3) L(0,a6(£)) = L(0, a0) — 6(a) [L(0, a0) — L(0, a1)]

= 11(0) 30) " 60$)“- 00)-

The Bayes risk Of 6 E An at G is

(3.4) Rn(G, 6) = EL(0, aay),

where E denotes the expectation with respect tO the joint distribution Of (0, X).

22
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Using (3.3), we can write

(3.5) Rn(G, 5) = 110w - 00)dG(0)

— 2 5(a)[ll(0-00)pg(s) dawn.
136.311 0

X. We see that in (3.5),

(3.6) 13w - oo)p,,(a)dc(0) .. EG(0Ix) - 00

where p0 is the conditional mass function for

and EG(0|X_) is the Bayes estimate Of 0 based on at defined by (2.4):

a + (Xl+. "'Xn)

dG(-)-(-)=I‘3G(0ll(-)=az + [3 + 11111

Thus (3.5) can be written as

(3.7) Rn(G, a) = [$009 — 00)dG(0)

— 2 6(8)1dG(21)— 0,) per),

56.311

 

where p denotes the marginal mass function for X. Since 6(X) takes values 0 or

1, it is clear from (3.7) that Rn(G, b) is minimized by taking

1 if dGI ( X) 2 00

(3-8) 5(309 =

0 othe r w i se

which is a Bayes decision function with respect to G. From (3.8), we Observe that

a Bayes test 6G E A11 is determined by comparing a Bayes estimate (IG 6 Dn

with 00 for each n = 1,2,.... This Observation is useful in that an empirical Bayes

test 6n can be obtained from the empirical Bayes estimate (111 defined in

Chapter 2.

Remark 3.1. Let g, g’ be densities of G = Beta (0:, fl) and G’ = Beta

(0’, 6’). Then we have

(3.9) an(G, 6G,) — Rn(G’, 6G,)
 :21}, I8’(0)-g(0)ld(0)

and
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(310) 13,85. 4(3) — Rn(G)| .<. 213, new) —g(o) )do

for all n = 1, 2...

PM. For 6: 6G, in (3.7)

(311) Ram, 1G,)=11. (0-00)g(0)d0- 2 6G,(a)idG(a)—00)p(r).
0 x6311

Letting G = G’ in (3.11) leads to

(3.12) 8,162 6G,) =1) (0— 00)g’(0)d0- 2 404214618.) — 40111418).
0 56.311

By subtraction,

|Rn(G, 6G,)—Rn(G’, 6G,)
 811010—001 |g(0)-8’(0)|d0

+ 2 1912113104,) |8(0)—8’(0)|d01
n

x63

1

821010—00) lg’(0)-g(0)|d0

521.1, lg’w) —g(0)|d0-

The second statement (3.10) follows immediately from (3.12) by changing the roles

of G and G’. 1:)

From (3.12), Bayes decision risk Of 6G 6 An at G = Beta (07, B) can be

written as

(3.13) Rn(G) = Rn(G, 3G)

= 110(9— 00) g(0)d0-— 2: n[11G(a)— 0015(3), 11 = 1, 2,....

x63

We seek a minimizer Of rn(G) = Rn(G) + cn among the integers

n = 1,2,... By the comment preceding Example 1.1 and the fact that R1(G) S 1

for all G, it follows that a minimizer n** satisfies n** 5 (1+c)/c for all G. We

have chosen tO denote the Optimal sample size function for the test as n** =

n**(a, ,6) to distinguish it from the Optimal sample size n* for estimation. We do
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not have an explicit formula for n** although it is easily computed for any given

a, 5. Thus, using the sample size n** and using 6G E An”, we achieve

minimum Bayes risk r(G).



26

§3_-2.-W

In this section we consider the empirical Bayes decision problem with the

linear loss testing component problem described in the last section. The prior G is

assumed to be in the parametric family f Of beta priors on O = [0, 1]. Let G =

Beta (0:, ,6), where a 6 > 0 are unknown constants. In the sequence Of component

problems resulting from the repetition Of the component, we are given a sequence Of

parameters 01, 0 ,... which are assumed to be i.i.d. G = Beta (0:, 5).

Suppose that we have experienced i component problems by Observing X1:

(X11,...,X1Nl),..., X1 = (Xi1"""XiNi)' At the (i+1)th component problem we will

test

H0: 0i+1-<- 00 against H1: 0i+1 > 00

with the linear loss function given by (3.1). Since 0i+1 ” Beta (07, fl) and a > 0,

B > 0 are unknown, the Optimal sample size n**(a, fl) and Bayes decision rule

6G e An**(a 6) are not directly available, so that the minimum Bayes risk r(G)

cannot be achieved. However, if an estimate Gi Of G is available at this stage, we

estimate the Optimal sample size n**(G) and the Bayes rule 6G E An**(G) at G

by Ni+1 = n**(Gi) and 6i+1 = tiéi E An**(éi) and, thus, define an empirical

Bayes procedure (21,52) as in Table 1.1. For the estimates Of a, B assume m g 2

and let Ai’ 3i begiven by (2.18). Let £10, 230 be arbitrary initial estimates.

Then

(3.14) Ni+1 = n**(Evi, 23,), i: 1, 2,...

and

1 , if d. 1(xiirl) z 00

i+1 1+ _
(3-15) 6(.X_ )=

0 , otherwise

where di+1 is defined by (2.11).
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Lamma 3.1. Let m22 and let O.1’ 6i be the as. consistent estimators, e.g.,

as in (2.18). Let g, denote the Beta density with parameter Oi, 3i and let g be

the beta density with the governing parameter values a, )6. Then

(3.16) gm) -) g(0), 0 < 0 < 1, as.

11991- At each 0, g(0) is a continuous function Of (a, 3). 1:1

jlfhaaram 3.1. Let m 2 2. The empirical Bayes testing procedure (N, .6)

defined by (3.14) and (3.15) is asymptotically Optimal at each G = Beta (07, fl).

Praaf. From Lemma 1.1 and (3.10), it follows that

1 .
(3.17) 0 5 ErNi+l(G, 61+1) — r(G) 5 4 Ej0|gi(0) —g(0) Id0.

Note that the sequence g, — g -) 0 as. on the probability space of the empirical

Bayes problem cross Lebesgue measure on (0, l). The sequence gi + g dominates

lgi — g| and converges to 2g(0) SO by the generalized dominated convergence

theorem, RHS (3.17) converges to zero. :1



CHAPTER 4

ESTIMATION OF THE NORMAL MEAN

§ 4_._1_ Tha Qampanant Prablam

The component problem considered in this chapter is the one introduced in

Example 1.1. Here G = N(p, V) and, letting

(4.1) p = five.

the posterioi distribution Of 0 given )_(_ = (XI, X2,...,Xn) is

(42) NW + (l—p) X. 343V).

With this notation, the Bayes estimator (1.8) can be written

(43) dGQi.) = pp + (l-p)X-

The following remark parallels Remark 2.1.

Remark 4.1. For G = N01, V) and G’ = N(p’,V’),

(4.4) 8,16, «13.) = (I-p')2 % + 2'2 [(11 w)? + V).

(4.5) IRn(G,dG,)-Rn(G’.dG,)l SUV—102+ IV’ -v1

and

(4.6) Rn(G) = fly“

 

Proof. By (4.3), dG,(_X) = p’p’ + (l—p’)X. Since expected squared

deviation is variance plus bias squared,

2

Rn(G1 dG’) = EGEgIP'I" +(1‘P')X— 0]

= EG {(1-10’)2 % + 0’2 (11’ - 02}

= (1-10’)2 %+ 9’2 [V + (u’ - 102]-

Then (4.6) follows by replacing G’ by G above and using (4.1). Since

2 A 2

Rn(G” dGI)=(1_p’) T47 p, V'

it follows that

2 .

Rn(G) dctl - RING“ 93’) = p’2[(u’ -u) + (V -V )l

28
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which yields (4.5). 1:1

We seek the Optimal sample size n* which minimizes

__ _ AV
In(G) — RD(G) + CH —.W + CD

among the integers n = 1,2,.... We consider rn(G) as a function Of real 11 and the

 

equation

2
(1 AV

0 = r (G) = — + c.

6'11 11 (A + nV)2

Its larger solution is

(4.7) 7) = (A/e)1/2 — A/V.

We see that rn(G) is convex in n 6 (—A/V, co) and that the Optimal sample size

n* = n*(A, V) is given by (1.10).

In our empirical Bayes application the variance A of the conditional

distribution N(0, A) is assumed to be unknown but is assumed to be in a given

bounded interval (0, a]. Thus we are taking A tO be a nuisance parameter.

It is convenient, though not necessary, tO require that at least two

Observations be taken in each component Of the empirical Bayes problem so that the

estimation Of A is simple. Therefore, we will Optimize sample size over choices 11

= 2, 3,.... in defining the envelOpe risk. It follows that

2 if 77 < 2

(4.8) n*=n*(A, V): ’7 if r) 6 {2,3,...}

[17] or [n]+1, otherwise

where 7] is given in (4.7).

Since R2(G) = EGE0(X — 61)2 5 A/2, it follows as in the comment

preceding Example 1.1 that n* S (A/2 + 2c)/c. Letting M be the integer

[a/2c + 2] + 1, it follows that

(4.9) 2 5 n*(A, V) 5 M < 00
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for all A and priors G = N(p, V).

Notice that in the component problem

(4.10) EXn = p,

1
(4.11) Eii

ll
M
1
:

2

k 1 k

and, provided 11 2 2,

n

(4.12) E n—if k2101k — Xn)2 = A.
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§fl.AnEmiri B SD iinPr r

In this section we construct a decision procedure for the empirical Bayes

problem with the component Of the last section. The unknown prior G is assumed

to be from the family Of normal distributions f, the family Of conjugate priors.

Let G = N(p, V), where p 6 (-co, co) and V E (0, 00).

Let A0, [10 and V0 be initial nonrandom estimates Of the component

nuisance parameter A and the parameters 11, V of the prior. Let N1=n*(A0, V0).

Then x_1=(x11,....,x1Nl) is observed in the first component. The empirical

Bayes procedure that we will study is defined through sequences Of estimators Ai,

111 and Vi that are (31,...,_X_i) measurable with

 

(4.13) Ni+1 = n*(Ai, Vi)’ i = 0, 1,...

and

i+1 _ . . . . _
(4.14) di+10£ ) — pi+lfli + (1_pi+1)Yi+1’ 1— 0,1,...

where

( ) A‘4.15 p. = i = 0 1...
1+1 ~ ~ . 1 1

i + Ni+lvi

and

N.

- 1 21 x — 1 2(4.16) Yi—N;j=1 iji 1“ 1 7

We now define the estimators iii, A. and V., i = 1, 2,.... Motivated by

(4.10) we define

. _ _l i ._

(4.17) ,rl_v._f.2 Y., 1-1,2,...

the average Of the sample means for the first i components. Motivated by (4.12)

we define

(4.18) A. = S, A a i = 1, 2,...
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where

1 i

i=1 1

is the average Of the sample variances

N.

(4 20) s. = 1 2) (x. ._ v)?
‘ 1 Nj-I :1 1k 1

for the first i components. Finally, motivated by (4.11) we define

A - A — A + . _

(4.21) Vi — [Ti Ai] , l— 1, 2,...

where

. 1 i

(4.22) Ti = .1- 2 T.i

i=1 1

is the average of the average squared deviations from ”i = Yi,

N1
_ 1 2

In (4.23) the centerings change with i, which creates a more complicated stochastic

structure than exists in (4.20). For purpose Of triangulation, we introduce

l

(4.24) 13:; 2: T.,

i=1 1

where

N11 2
(4.25) T: 2 (x. —p)

1 Njk—l 1"

Let 5;, be the trivial a—field and let a]: = c(x1,x2,...,xj), j = 1, 2,.... The

sample size Nj is Jig—measurable and we see that

E Y. . = ' = l 2,....( J| 33.1) fl . J .

. . . = A '=1,2,....

. . = A ° = 1 2,....

Lemma 4.1. The sequences a] = Yi’ Si and Ti are as. consistent for 17, A

and V+A, respectively.
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13m. We will use (4.26) and the theorem on stability about conditional

expectation used earlier, i.e., Hall and Heyde (1980, Theorem 2.19). The sequences

Yi’ Si and Ti are not bounded. However, we will find random variables Y, S and

T that are Square integrable and stochastically larger than their absolute values.

This implies the hypothesis Of Theorem 2.19 that is sufficient for the as.

convergence.

Recall that 2 5 Ni 5 M, i = 1,2,.... Consider the component problem with

sample size M and Observations X1, X2,....XM. Let Y = 2 lle’ S = 2 X? and

T = 2 (Xj - p)2. From the definitions (4.16), (4.20) and (4.25) we see that Y, S

and T are stochastically larger than |Yi | , ISil and ITi | , i = 1,2,.... Also

Y2 5 MS and, conditional on 0, the distributions Of S and T are noncentral

chi—square distributions with second moments that are integrable N(p, V). Thus,

Y, S, and T are square integrable. 1:)

Emma 4.2. The estimator Ti and Vi are as. consistent for V+A and V.

Prmf. We have from (4.23) and (4.25) that

(4.27) Tj — Tji = (Yi — 11)(2Yj -— p — Yi).

Since Y1 = E Yj/i, we have from (4.22) and (4.24), that

(4.28) Ti — Ti = (Yi — 102.

It follows from Lemma 4.1 that Ti is as. consistent for V+A. Using (4.21) and

Lemma 4.1 it follows that Vi is consistent for V. n

flfhaa am 4.1. Let A 5 a. Then the empirical Bayes procedure (N, :1)

defined by (4.13) — (4.23) is asymptotically Optimal at each G = N(p, V).

Prmf. From Lomma 1.1 and (4.5),

—r(G) 3 2031—17)? + 2|vi—vl.(4.29) 0 s r (G, d- )
Ni+l 1+1



34

Let Y, T be the random variables defined in the proof Of Lemma 4.1. Then

for p > 0, E|Yj|2+p g E(Y+1)2+p < co and E|Tj|1+p g E(T+1)1er < 00 for

j = 1,2,.... Hence, the {Y?} and the {Tj} are uniformly integrable. Thus, {11?}

and {Ti} are uniformly integrable and the as. convergence (Lemma 4.1) implies

that

(4.30) E([1i — 102 —) 0

and

(4.31) E|Ti — (V+A)| -» 0.

It follows from the triangle inequality and (4.28) that

(vi—v1 g lTi-Ti' + lTi-(V+A)| + |(V+A)—(V+Ai)|

(4.32)

= (74—7.)2 + IT,—(V+A)I + IAi—AI.

The dominated convergence theorem and Lemma 4.1 imply

(4.33) ElAi—A|-)0

which together with (4.29) — (4.32) establish the result. 1:)



CHAPTER 5

TESTING THE NORMAL MEAN

§ 5.1. The Comp_onent Problem.

In this section we consider linear loss testing Of the normal mean 0 in

N(0, A). Specifically, we consider the problem Of testing

(5.1) H0: 0 S 00 against H1: 0 > 00

with

L(0, a0) = (o— 00)+

L(0, a1) = (00 - o)+.

Using the analysis deveIOped in Section 3.1 for the component Of this section, we

find that for any test 6,

(5.2) Rn(0, 6) = 1°50( 0— 00)dG(0)

— I}, 6(8) [dG(3) — ours) as,

where .2”: (we, 00), f is the marginal density Of N = (X1,....,Xn) and dG is given

by (4.3). A Bayes test versus the prior G is

1 if dG(X) 2 00

0 if dag) < 00.

Throughout this chapter we will take y to be the family Of normal

(53) 6G (.X.) =

distributions N(/1,V) with

(5.4) Be |0| =1 )0) WW: K < .,

where K > 0 is a known constant.

Ramark 5.1. Let g, g’ be densities for G =N(11, V), G: N(11’,V’) in

f. Then

(5.5) an(G. 1G,)-R,,<G', 6G.)| s21 I0—0OI ls’(0)—g(0)|d0

and

35
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(5.6) 8,461) s 2(K + 100))

for n = 1, 2,....

Prmf. (5.5) followsasin (3.9). Let G’ = G in Rn(G’,dG,). Using

“13(25)— 00) 1(8) 51:, 10— 0012; (x) new.

we have

8,62) = Raw. 63) 811°, l0- 0,) so) do

+13, 11:10-00) |g(0) eerie) ex

= 2 [:0 I0—0OI g(0) d0

$21!;I0I8(0)d0+l0011.<..2(K+I00I)

for n = 1, 2,..., which proves (5.6). u

Bemflk 5.2. Let (b be the c.d.f. Of N(0, 1). Then

(5.7) 1 )0) 74940 = 1?)”2 exp (~2p2/V)

+ p [1 — 21> (-)u/~/V)l

and

(5.8) If )0) g’(0)d0-l )0) new) 4317' —p)

+ 1417' —.N1 + 2177') 141—p/m—11—p/m1

+ JVI exp (~2/t’2/V’) - exp (~292/V) l-

M. A direct calculation gives (5.7). Using (5.7) for G’ and subtraction,

LHS Of (5.8) is less than or equal to

163%)”2 exp (—2p'2/v') + p' (1— 244-47470)

— (2,3)”2 exp (-2p2/V) — 70 — 2¢(-u/~/V))|

8 Nil)”2 — (2931/2) exp 1—27'2/v')

+ 1%)”2 lexp (—2p'2/v') — exp (-2142/V)l

+ In’ -u| + 2|u’ -u| ¢(—u’/~/V”)

+ 21p) I¢(—u'/JV0 -¢(—p/N)I
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:3 lu’ _,., + 1777—7171 + 2174 new/m—n—p/NH

+ .47) exp 1—2p'2/v') — exp (-2#2/V) I.

the RHS of (5.8). 1:)

We seek the smallest minimizer n** Of rn(G) = Rn(G) + on, n = 2,3,...

(As in Chapter 4 we are Optimizing over 11 2 2.) It follows as in the comment

preceding Lemma 1.1, that n** 5 (R.2(G) + 2c) /c, so using (5.6) and letting M

denote the integer [{2(K + 1001) + 2c}/c] + l,

(59) 2_<_n**$M<oo

for all G e y.
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§ 5;. An Empirigl Bayea Degisign Prfldura

Suppose that in the component problem of Section 5.1, the prior G=N(u, V)

and the variance A Of the conditional distribution N(0, A) are unknown. We

assume that unknown prior G is in the subfamily y of normal distributions

satisfying

BC | 0| 3 K < co

and that the variance A, a nuisance parameter, is in a bounded interval (0, a].

The constants K and a are known.

In general, the Optimal sample size n** defined in (5.9) is a function Of A

and G = N(p, V), i.e.,

n** = n** (A, 11, V)

for (A, 11, V,) E (0, a] x (—oo, oo) x (0, co).

If the component problem occurs repeatedly and independently with the

same unknown G = N(p, V) and A, the empirical Bayes approach is applicable.

Suppose that we have experienced i components by observing

1 _
i—L — (X11,....,X1N1)3"°7 K _ (Xil"'"’XiNi)

from N(01, A),...,N(0i, A), where 01, 0 , ..... are independent G—distributed

parameters. At the (i+1)th component, we will test

H0: 0i+1 S 00 against H1: 9 > 00.

This will be carried out by determining the sample size N.1+1 and the decision rule

6. E A for i = 0, 1,....
1+1 Ni+1

Let A0, £10, and V0 be nonrandom initial estimates Of A, 11 and V and

A

let N1 = n** (A V0). Then N1 = (X11,....,X1Nl) is Observed in the first07 #0:

component. The empirical Bayes procedure that we will study is defined through

Ai, iii, Vi that are (Nl,....,Ni) measurable with

(5.9) Ni+1 = n**(Ai, 711, V,)
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and

. i+1

0+1

(5.10) 3. (x‘ )=
1+1 0 , otherwise

where di+1(2(_i+1) is defined by (4.14) for i = 0, 1,....

If we use Ai, ”i and Vi defined by (4.8), (4.16) and (4.21) in constructing

(N, t) = ((N1’ N2,...), (61, 62,....)) given by (5.9), (5.10), then it is easy to see that

they satisfy all the consistency prOperties proved in Lemma 4.1, 4.2 and (4.30),

(4.31), (4.33) in Theorem 4.1.

The following lemma is useful in proving the asymptotic Optimality of (N, 15)

that has been constructed above through Ai, iii and Vi i =0,1,....

Emma 5.1. Let gi, g be densities Of Gi = N(i1i, Vi), G=N(p, V) for

i = 0,1,...

Then

(5.11) 12m E 7:01am —g(0)|d0= 0

and

(5.12) lém E 11°00 10— 00) (gin) —g(0)|d0= 0

mat“. Note that gi - g -) 0 a.e. on the measure space Of the empirical Bayes

problem cross Lebesgue measure On (-00, op). Using the same argument as in the

proof of Theorem 3.1., we obtain (5.11).

For (5.12), it suffices to show that

(5.13) lim E [:0 |0| Igi(0) —g(0)|d0= 0.

1

Since |0| lgi(0) - g(0)| -) 0 a.e. on the measure space Of the empirical Bayes

problem cross Lebesgue measure on (—oo, oo), |0| (gi(0) + g(0)) dominates the

integrand |0| Igi(0) —g(0)| and |0| (gi(0) + g(0)) -) 2|0| g(0) a.e. on that
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product space, (5.13) will follow by generalized dominated convergence theorem by

showing that

00 “ 00

(5-14) E11,, l0! (8,09) + 8(0))d9" 2 EL“, |0| 8(0)“-

Using (5.8) applied to g’ = gi ,

oo “ 00

(5-15) IELno |0| 51(0)d0- 1.0, MI 8(9)d0|.

53E|fli—ul +EI1/Vi-1/Vl

+ 217,) El¢(-it,/i/ V,) -¢(—u/JV)I

+ J V, Elexp (at/V,) — exp (—2p2/V) I.

which converges to 0 by the as. consistency and the mean consistency of [ti and Vi.

The proof is completed since

on “ 00

IE].no |0| 8,(0)d0-E 1.0, MI 8(0)d0|

0° ..

$.13 ”.le31(0)d0-I°_°,,|0|g(0)d9|. U

Theoram 5.1. Let A g a. Then the empirical Bayes decision procedure

(N, .4) defined by (5.9), (5.10) through the estimates Ai [ti and Vi given by

(4.18), (4.17) and (4.21) is asymptotically optimal for all G with EG|0| ; K.

Proof. From Lemma 1.1, (5.5), and Lemma 5.1,

0§Er (G,d. )—r(G)
Ni+1 1+1

_S_4 E12,, I0-0ol Ié,(0)—s(0)lcw-»o c1
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