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ABSTRACT

A MODEL FOR MULTILEVEL PATH ANALYSIS

BY

Frank Ford Jenkins

In the past couple of decades there have emerged two

particularly innovative trends in quantitative research

methodology in Education, path analysis and multilevel linear

models. In path analysis, networks of interrelationships

among variables are posited to represent the interconnected

relationships found in real life processes. In multilevel

linear models, analysis techniques have been devised to

represent real life processes as they naturally occur in

hierarchically' nested. contexts. Both. approaches seek; to

represent complexity in a way that corresponds to the

complexity of nature. There is developed in this thesis a

method which combines these two trends into a multilevel

path analysis. Such an approach combines the descriptive

power of both path analysis and multilevel linear models,

resulting in a single model which can define a complex network

of processes for numerous groups simultaneously. The

development of multilevel path models shows promise to

increase the descriptive power and theory building ability

of social science research.

The multilevel path modeling approach I have developed

is a direct extension of the recent developments in empirical

Bayes multilevel regression models. This is a methodology



by which to represent path analysis within numerous groups.

First of all a path model is stipulated for each group. It

is assumed that the path coefficients vary randomly from

group to group. This variation is modeled by a between-

group regression in which group-level variables predict the

path coefficients. Contextual variables at a higher level

of aggregation are introduced as predictors to explain why

processes vary from group to group. When the errors of the

within-group structural equations are assumed to be orthogonal,

estimates for the first-stage and second-stage parameters

are available via the EM algorithm.

Two hierarchical datasets are analyzed using this

technique. The results indicate that novel insights into

sociological processes can be gained by employing multilevel

path models.
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CHAPTER I:

STRATEGIES FOR MULTILEVEL DATA

I r du 0

Educational researchers are faced with the task of

studying quite complex phenomena. Students in classrooms

possess a varied and unique personal histories. These

histories interact with a vast array of inherited traits to

form a matrix of propensities that the researcher must unravel.

In addition to the complexity of the individual, researchers

find that students function within a complicated hierarchy

of social institutions: students are grouped into classes,

classes are nested within schools, schools are nested within

communities and so on to national and international levels.

Instead of bracketing out the complexity of educational

contexts through tightly controlled '1aboratory’ experiments,

educational researchers have usually opted to capitalize on

the rich variability found in schools. By studying natural

settings researchers have hoped to address, and offer solutions

to, problems as they naturally occur in schools.

In the past couple of decades there have emerged two

particularly innovative trends in quantitative research

methodology in education that deal with complexity, path

analysis and multilevel linear models. In path analysis,

networks of interrelationships among variables are posited

to represent the interconnected relationships found in real

1
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life processes. In multilevel linear models, analysis

techniques have been devised to represent real life processes

as they naturally occur in hierarchically nested contexts.

Both approaches seek to represent complexity in a way that

corresponds to the complexity of nature. As of yet, both

approaches have represented disparate lines of inquiry

informing and speaking to each other very little. In this

thesis there will be developed a method which combines these

two trends into a multilevel path analysis. Such an approach

combines the descriptive power of both path analysis and

multilevel linear models, resulting in a single model which

can define a complex network of processes for numerous groups

simultaneously. The development of multilevel path models;

shows promise to greatly increase the descriptive power and

theory-building capacity of social science research.

Path analysis has traditionally emphasized the need for

rich substantive theory. With origins in macro economics

(Theil, 1971) and sociology (Duncan & Featherman, 1973) it

has often been used to model large scale systems, e.g. the

economy, ignoring smaller subunits. For example, a national

analysis might not separately analyze each state economy.

The focus in path analysis is usually on the need to extract

a rich set of variables relevant to the processes being

modeled. In education, sociology and economics, path models

are applied as if one homogenous group were being studied.

The reality of groups imbedded in a hierarchy of social

structure is, for convenience, ignored. This oversight can
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occur in two ways. In the first case what is regarded as a

single uniform group might actually be composed of numerous

dissimilar social units. For instance, students in a school

might be regarded as a homogenous group for the purposes of

a study while the fact is ignored that students are actually

grouped into classroom units within the school. The opposite

sort of oversight that can occur is the case in which the

researcher ignores the fact that the group under study is

one of numerous social units and each unit might exhibit

different relationships among educational processes. For

exampLe, a single classroom might be studied ignoring the

fact that effects estimated for that class mightiunzgeneralize

to other classes due to differences in the classroom context.

In both of these cases if group membership of subjects were

adequately taken into account, it would be possible to model

processes within groups and then explore the generalizibility

of effects across groups.

Educational researchers have long been concerned with

multilevel issues, But traditional research methods have not

provided adequate tools with which to analyzed data arising

in naturally occurring hierarchies. The paradigm of

educational research has been borrowed from the traditions

of agriculture and psychology in which subjects are randomly

assigned to each of several treatment conditions (Raudenbush

& Bryk, 1988). This assures that the expected effect of

confounding factors is zero. In addition the researcher, if

possible, administers treatment to each subject individually,
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thus assuring that the responses of one subject is independent

of the responses of another subject (Raudenbush & Bryk, 1988).

Most educational research deviates from this paradigm

in both of its aspects. Usually students are not randomly

assigned to groups such as classrooms or schools and groups

are usually not randomly assigned to treatments. Unfortunately,

researchers find that they cannot control for confounding

factors occurring tunfll at the group and individual level,

”The problem is that the statistical methods the educational

researcher has inherited from experimental psychology provides

little guidance on how to implement such statistical controls"

(Raudenbush & Bryk, 1988).

The problem is further exacerbated by the fact that

usually the independent factor of interest, or the 'treatment',

is not administered individually to each student. Fbm'example,

school factors effect all students within the school at the

same time. In another example a classroom treatment often

is administered to all the students in a class simultaneously.

If students are affected as a group by independent factors,

they will to some extent have a common group history and

group experience. As a result, group responses will tend to

be correlated, not independent. This lack of independence of

responses violates statistical assumptions 1J1 traditional

linear models.

Because of the problems of analyzing multilevel data by

traditional methods a growing number of methodologists have
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recognized the need to develop new research models which are

multilevel in character.

The roots of multilevel linear models go back to Lindley

and Smith (1972) and Smith (1973) and the definition of the

General Bayesian Linear Model, which defines a linear model

at multiple levels. Later researchers have capitalized on

this theme in research in multilevel contexts (Rubin, 1980;

Strenio, 1981; Morris, 1983; and others). .A single model

using an empirical Bayes approach for a wide range of

educational applications was reviewed by Raudenbush (1984).

The multilevel path modeling approach developed in this

thesis draws its inspiration from the notion of ”slopes as

outcomes" developed by Burstein and others (Burstein, Linn &

Capell, 1978) and is a direct extension of the empirical Bayes

estimation of a multilevel regression, model reviewed by

Raudenbush (1988). What is being proposed is a methodology

by which to represent path analysis within numerous groups.

First of all, a path model is stipulated for each group. It

is assumed that the path coefficients vary randomly from

group to group. In previous multilevel models it has been

assumed that processes are homogenous across groups (Wisenbaker

& Schmidt, 1979; Houang & Schmidt, 1981). The variation of

processes is modeled by a between-group regression in which

group-level variables predict the variance of the path

coefficients. This between-group regression is a way to

explicitly address heterogenous effects across groups. When

variables and the paths among them are properly specified,
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group-level processes which vary from group to group provide

a source of explanation rather than constituting a violation

of a homogeneity assumption.

III PROBLEMS WITH MULTILEVEL CONTEXTS

.As was pointed out above, path analysis research and

traditional educational research have tended to ignore the

nesting of individuals within groups. In nested contexts

the lack of random assignment leads to confounded effects

and the group-wide administration of treatment leads to

correlated responses. As a result four major problems arise

in the traditional analysis of hierarchically nested data.

1. In analysis of variance studies, the assumption of

the independence of the errors of the units of analysis is

violated making statistical tests invalid. This will result

in an inflated actual alpha level, so that "The result

is an unacceptably high type I error rate." (Barcikowski,

1981). This occurs because the precision of the effect is

misestimated. Precision will be overestimated as a function

of' sample size and tntraclass correlation (Walsh, 1947).

Test statistics that are not corrected for this inflation

will have high type I error rates whenever the intraclass

correlation is greater than zero.

2. Aggregation bias can occur so that estimated

relationships at one level of aggregation may be quite

different from those at another level. This most commonly
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occurs when the grouping variable is related to the outcome

(Cooley, Bond & Mac, 1981). For example, consider a regression

analysis predicting student achievement from student SES.

Suppose data is aggregated to class means and average

achievement is regressed on average SES. If students are

tracked into classes according to pretest achievement, the

regression coefficient estimated from class means will probably

be much larger than that estimated from individual scores.

Aggregation bias may also occur simply because processes

at one level are different from processes at another level

(Burstein, 1980: Cooley, Bond & Mao, 1981). This could be

because " Variables have different meanings at different

levels of analysis.” (Burstein, 1980) For example, a variable

may gauge a student's desire to work alone. At the student

level the variable may measure autonomy and motivation. But

aggregated to the class level the 'variable may indicate

group divisiveness.

Alternatively, there may be factors at one level of

aggregation that are absent at another level and which moderate

the process being studied. For example, a school district

might provide low achieving classes with tutors to coach

classes in the state achievement exam. Low achieving

classrooms would increase in mean achievement, thus attenuating

the SES/achievement relationship at the class mean level.

But within each classroom, student SES might still have a

large relationship with achievement.
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3. Cross-level interactions alter individual level

relationships from group to group. Cronbach and Webb (1975)

realized that characteristics of the classroom interacted

with and altered processes occurring among individuals. He

saw this as a barrier to the formulation of scientific

theories. Cronbach believed that the interaction of the

setting with treatment made each study unique rendering it

impossible to generalize beyond each setting and blocking

the establishment of general theory.

4. Concentrating on one level of analysis loses

information at the other level, and ignores cross-level

interactions. Researchers can, for example, pool data within

groups which enables them to take out the mean group effect

and thus ignore group boundaries. This approach ignores

possible setting-by-treatment interactions and assumes all

groups have identical within-group processes. This of course

is only tenable when effects really do happen to be uniform

across groups. At the other extreme, researchers can aggregate

to group means, which leads to the problem described by

Page: "More rigorous investigators are apt to suppress most

of the richness within the classroom by using class means"

(1975 p.339). In this case possible cross-level interactions

are ignored as are problems of aggregation bias. Single-level

analyses must assume that effects are homogenous over groups.

It would be better not make such a restrictive assumption

and model the variation that occurs in effects from one

group to another by group-level variables.
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Path analysis offers promise for establishing theories

in complex social contexts. .A network of variables tested

in a path analysis has an exact correspondence to a network

of processes proposed by substantive theory. lhuzpath analysis

has a history of largely neglecting the issue of hierarchical

nesting of subjects. One of the earliest attempts to address

this issue is found in Schmidt (1969) who articulated a

maximum likelihood technique for partitioning a covariance

matrix into orthogonal within-group and between-group parts.

This approach was later extended by Wisenbaker and Schmidt

(1979) to include structural models. A major limitation of

these techniques is that they required that the group sizes

be equal, constraining the practical applications.

Bianchi (1987) devised a Bayesian estimation technique

which employed the EM algorithm (Dempster, Laird Rubin,

1977) to provide maximum likelihood estimates of latent

random effects in the case of unequal group size. With the

unequal-n solution in hand, it is possible to apply a

partitioned covariance structure solution to natural settings.

Houang and Schmidt (1981) surveyed various methods of

partitioning estimates into orthogonal between-group and

within-group components in a context mostly pertinent to

regression applications. They devised an analytical model

which encompassed most of the partitioning approacheslnuzthey

constrained within-group effects to be uniform across groups..
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These approaches have remedied the first two problems

hierarchical data described above; the proper estimation of

precision and the avoidance of aggregation bias. However

the problem of cross-level interactions, was not addressed

by these models. Because all of these approaches partition

structural parameters into independent within—group and

between-group parts, the within-group partition is a single

set of parameters using information pooled from each of the

groups. This pooling of information is predicated upon the

assumption that the within-group parameters are identical

for all groups. Also, as they have been defined in the

literature, these models do not allow for group level variables

that are not also defined at the individual level.

V T ONA RESE CH AND U L V 0N EXTS

Investigators using quasi-experimental designs have become

increasingly aware of the problems for analysis posed by

multilevel data. As early as 1940 McNemar recognized the

problem of inflated alpha level for statistical tests, although

he did not articulate the causes of what has come to be

known as the "unit of analysis" problem. In educational

research the problem has taken on the aspect of a Devil's

bargain, as stated by Class and Stanley (1970, p.507), "The

researcher has two alternatives, though he is seldom aware

of the second one: (1) he can run a potentially illegitimate

analysis on the experiment by using the 'pupil' as the unit

of statistical analysis, or (2) he can run a legitimate
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analysis on the means of the classrooms, in which case he is

almost certain to obtain statistically nonsignificant results."

In my terms, the bargain is this: We can ignore groups and

get problems one and three, cited above, or we can aggregate

and get problems two, three and four.

More recently, researchers have begun to realize that

they need not accept this no-win approach to research.

Glass and Stanley framed the multilevel problem purely in

terms of problem 1, improper ANOVA estimates. Hopkins (1982)

sought to remedy the dilemma by devising a mixed model ANOVA

approach for individuals nested within groups, and groups

nested. within treatments. Barcikowski (1981) explicitly

defined the relationship between group size, intraclass

correlation, actual effect size, and power in the ANOVA

context. Cooley, Bond and Mao (1981) explain the origin of

several species of aggregation bias and suggest multilevel

structural equation modeling, of sorts, to remedy the

situation.

Most educational researchers have not addressed the issue

of cross-level interactions in multilevel contexts. Cronbach

and Webb (1975) recognized the salience (and magnitude) of this

issue. They contended that characteristics of the research

setting (or, group-level variables) interact with.within-group

treatment effects, destroying the external validity of most

quasi-experiments. Taking this lead, Burstein, Linn and

Capell (1978) addressed the problem of multilevel data in terms

of regression analysis. They suggested a model in which
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regression parameters vary from group to group. In this way

the variability of processes could be defined in the model,

obviating the need to assume homogeneity across groups.

Moreover, Burstein et al, proposed the notion of "slopes as

outcomes", that is, using group characteristics as predictors

for the within-group slopes. In the simplest case, the

relationship between an outcome and a predictor is represented

by a within-group regression weight, or slope. The slopes

from all groups are then treated as outcomes for a second-

stage analysis. In the second-stage analysis group-level

variables predict the slopes in a multiple regression.

Hanushek (1974) proposed using slopes as outcomes as a means

of combining numerous regression studies, but his approach

required slopes tn) be statistically independent. .Although

Burstein, Linn and Capell realized the implication of this

approach for explicating cross-level interactions they did

not delineate the statistical properties of the least squares

estimates they proposed (Houang and Schmidt, 1981), leaving

issues of statistical assessment of estimators and variance

accounted for unresolved.

A problem with slopes-as-outcomes models which is even

more serious than the lack of an overall statistical framework

is the fact that slopes are very unreliable. The sampling

variance of beta weights is usually much larger than sampling

variance of ordinary outcomes, such as means. This

unreliability will often mask the effect of group-level
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predictors (Raudenbush and Bryk, 1986), washing out the

information to be gleaned from modeling the slopes.

Another statistical problem has to do with the fact

that the slopes vary in precision from group to group. For

the second-stage analysis the slopes are outcomes to be

analyzed by an ordinary least squares procedure that assumes

equal precision for each slope. As a result of the violation

of this assumption, the second-stage estimation procedure is

less efficient leading to less precise second-stage parameter

estimates. Because of this, it is more difficult to

demonstrate the relationship between group-level variables

and slopes (Raudenbush & Bryk, 1986).

A final problem has to do with the fact that the

variability of slopes can be partitioned into two components;

parameter variance, which represents the real differences in

the slope parameters from group to group, and sampling

variance, which is the error in slope estimates due to

sampling. Only the parameter variance can be explained by a

between-group model. For example, a between-group model

which explains only a small portion of the total variance

may in fact explain virtually all of the parameter variance.

Unless parameter and sampling variance can be distinguished

it will be very difficult to assess how well the between-

group model accounts for slopes. The slopes-as-outcomes

model does not provide means for partitioning slope variance

(Raudenbush & Bryk, 1986).
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A statistical theory which had promise to flesh out the

slopes as outcomes approach was initiated when Lindley and

Smith (1972) used Bayesian theory to provide alternatives to

least squares estimates of the general linear model. The

result was a hierarchical Bayesian linear model (Smith,

1973) in which structural parameters could be estimated for

a two-stage hierarchy. These derivations assume that the

dispersions and structural coefficients of the prior

distributions are known.

In general, what the family of Bayesian linear models

provide is a scheme in which a model can be specified in two

stages. The first stage describes the data, given first stage

parameter vector, B;

Y - XB + R,

with "X" containing the fixed predictors and "R" containing

the random errors. The second stage describes the first

stage slope parameters, given second stage parameters 1;

B - W1 + U,

with "W" being fixed predictors and "U" being random errors.

A third stage defines the second stage parameters;

1 - AC + L.

This third stage simply defines our prior degree of certainty

about the value of 1 (Smith, 1973). The variance of the errors

are;
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Var(R) - W,

Var(U) - T,

Var(L) - F

The goal is to get Bayesian or posterior estimates of the

first and second level parameters (B and 1), given Y and C.

Note that X, W, C, i, T and P are assumed to be known.

What makes these models peculiarly Bayesian in character

is the notion that the first and second stage parameters, B

and 1, have distributions. When the data are normal these

distributions can be described by linear models. The

motivation for shifting focus from classical estimators is

twofold. First, under most conditions the posterior estimates

of parameters have smaller expected means squared error than

classical estimators (Efron and Morris, 1977). Second, the

notion of parameters as random latent variables can be

conceptually appealing in multilevel contexts where within-

group effects are commonly seen to differ from one group to

another across a population of groups.

The hierarchical Bayes linear model proposed by Lindley

and Smith fits rather naturally into a notion like "slopes as

outcomes" where the first stage parameter 'vector, B, is

interpreted as the within-group slopes, and the second-stage

parameter vector, 1, is interpreted as the between-group

regression coefficients of "B" predicted by group-level

variables found in "W”.

An example of an application of the hierarchical Bayesian

linear model is found in Rubin (1981). This is an instance
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of an empirical, Bayesian application of this model to

educational research. Empirical Bayes is ndifferent from

pure Bayes in that prior distributions of parameters are

estimated from the data, instead of being given. Although

Rubin assumed prior dispersions of the data to be known, he

used the data to estimate the prior location and dispersion

of the second-stage parameters. This study demonstrated how

Bayes and empirical Bayes techniques can give superior

estimates of treatment effects by combining information from

within-group and between-group sources.

Rubin (1981) had used a graphical method to get a maximum

likelihood estimate for second-stage dispersions, which was

an option available in the simplified model he employed.

Generally, though, there was at the time no uniform method

for estimating prior dispersions. Ina order to apply the

hierarchical Bayesian linear model one had to work out a

solution pertinent only to a specific, less complicated case.

V C L HROUG G

Widespread acceptance of the EM algorithm led to a

practical approach for estimating prior dispersions. Dempster,

Laird and Rubin (1977) outlined a general formulation of the

EM algorithm, an iterative computational method which yields

maximum likelihood estimates for a wide variety of estimation

problems. It was termed "EM" because each iteration consists

of an Expectation phase followed by a Maximization phase. The

power of this algorithm is that it will give estimates for
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'incomplete' data when one specifies maximum likelihood

equations for 'complete' data. In linear models with normally

distributed data the 'incomplete' data consist of the observed

outcomes. The 'complete’ data include the observed data plus

certain latent variables, e.g. second-stage errors. If the

complete data were observed it would be a simple matter to

obtain maximum likelihood estimates for dispersions. By

acting 'as if' one had complete data one can greatly simplify

maximization equations. In the expectation phase dispersions

are treated. as known quantities, and. the "complete data

sufficient statistics" needed for the M step are estimated.

Generally, the algorithm works like this: In the "E"

step, parameter estimates from the previous iteration are

used to calculate the conditional expected value of the

"complete data" sufficient statistics, given the observed

(incomplete) data. So in this step, sufficient statistics

are derived as if parameters were known. In the "M" step,

the sufficient statistics from the "E" step are used to

calculate the maximum likelihood estimates of parameters.

So estimates of parameters are derived as if the complete

data had been observed.

By bouncing back and forth between the "E" and the "M"

step, the likelihood converges to a maximum. If the algorithm

is applied to data that is normally distributed, it should

converge to a global maximum and yield asymptotically efficient

ML estimates (Raudenbush, 1984).
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W

The general formulation of the EM algorithm paved the way

for the widespread implementation of the empirical Bayesian

linear model. Strenio (1981) first implemented the EM

algorithm for this purpose. Raudenbush (1984) devised a

mixed model empirical Bayes approach he called the Hierarchical

Linear Model, or HLM. This is a very flexible model that

can be tailored to apply to three, heretofore disparate,

realms of research; School effects research with regression

modeling, meta-analysis with treatment effects, and growth

curve estimation for individual students. Other investigators

have used the EM algorithm in mixed linear models (see Laird

6: Ware, 1982; Strenio, Weisberg & Bryk, 1983; and Mason,

Wong, 5: Entwisle, 1984). Other approaches to dispersion

estimation have been proposed by Goldstein (1986), and Longford

(1985). Raudenbush (1988) reviews these developments.

In hierarchical linear models for school effects research,

there is a single regression model which is estimated in

numerous groups. This regression model is usually

characterized by there being one predictor of interest and

several covariates which control for the confounding effects

of student background characteristics.

In hierarchical linear models for meta-analysis there

is a set of separate studies all focusing on a similar

'treatment' issue. The effect from each group is usually a

standardized mean difference between treatment and non-

treatment groups .
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The HLM of individual growth studies (see Bryk &

Raudenbush, 1987) look at student growth over time on an

outcome of interest, controlling for background characteristics

of the individuals.

Raudenbush (1988) demonstrates how the slopes as outcomes

interpretation of the hierarchical Bayesian linear model can

elucidate all of these research. contexts. This unified

approach to multilevel analysis is characterized by a)

heterogenous effects b) separate estimates of sampling variance

and parameter variance. of the first level parameters c)

posterior estimates which offer smaller expected mean squared

error than corresponding least squares estimates and d)

between-group predictor coefficients of the first level

parameters. This model speaks to all four problems of

multilevel analysis that have been outlined.

V C T OD S

There is an important limitation with the HLM approach:

it only uses one type of model (multiple regression) to

depict within-group processes. In the research paradigms where

the primary interest is with the relationship between several

independent variables and one dependent variable, multiple

regression is conceptually appealing. A multiple regression

depicts a 'many-to-one' type of relationship, as shown in

figure 1.1.
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Figure 1.1

A Many-To-One Relationship

If' this relationship represents the .actual processes

according to substantive theory, a multiple regression defines

a structural equation. But if there are multiple interrelated

outcomes, multiple regression (and ANCOVA, which can be put

in terms of multiple regression) defines a prediction

relationship only and causal imputations can be extremely

misleading. For example, suppose that in actual classrooms,

enjoyment of reading contributes to reading comprehension,

and comprehension contributes to reading achievement:

 Enjoyment > Comprehension > 

Achievement

A regression analysis predicts achievement by enjoyment

and comprehension to give the following:

Achievement - B0 + B1 (Enjoyment) + B2 (Comprehension).

To impute a direct effect of enjoyment on achievement from

what could be a large regression coefficient would quite

distort the picture. Researchers often wish they could draw
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structural conclusions from predictive equations, and not a

few succumb to the temptation to do so (if only in the

sanctuary of their own thoughts).

Muthen and Satorra (1987) surveyed numerous modeling

issues connected with multilevel structural models. They

broached the questions of l) heterogenous group parameters

and 2) correlated within-group responses. The discussion

ranges over a wide variety of issues to do with assumptions

of the nature of regressors, (fixed, random or latent) and

whether various parameters are homogenous or heterogenous

across groups. When they considered strategies for esti-

mating the models they defined, they were less than optimistic:

"It is clear that today's standard structural equation

modeling techniques and software cannot fully serve

the purposes of an appropriate multilevel analysis."

(13.19)

In this thesis the challenge will be taken to start

filling in the gap between theory and implementation for

multilevel structural models.

The model being proposed here deals with a particular

subclass of models considered by Muthen and Satorra. In the

first stage a path model is defined within each group. The

path model is the same for all groups but the path coefficients

can randomly vary from group to group. A single group model

for group j is given by;

Yj - Zij + RJ,
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where R represents a vector of random errors for group j, 23

is a vector of fixed predictors which includes the endogenous

predictors found in Yj» and Bj is a vector of random path

coefficients.

The first-stage parameters are modeled at the second

stage by a between-group regression model of the form:

B - W1+ U,

Where B is the vector of path coefficients from all groups,

W is a set of fixed between-group predictors, 1 is a set of

fixed between-group coefficients and U is :1 set of random

errors.

In terms of Muthen and Satorra (1987) several features

define what subclass of possible hierarchical structural models

this is:

l) The within-group predictors, Zj, are fixed.

2) The within-group coefficients, BJ, are random and

heterogenous across groups.

3) The variance of the second-stage errors, Var(Uj) - r, is

homogenous across groups.

4) The second stage predictors, W, are fixed.

5) The second-stage parameters, 1, are fixed.

Other choices were possible for each of the five options

indicating that there are a large number of different

hierarchical models that can be devised.

An hidden feature of this model is the structure that

defines the path analysis, ZB. This appears to be identical

to a 'regression. model. But. the matrices are specially
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constructed so that "2B" represents a series of structural

equations stacked on top of each other. Details of this

structure will be discussed in chapter two.

I MO E

In subsequent chapters the mathematical model for the

hierarchical path analysis will be defined. Then the computer

algorithm that was developed to implement the model will be

discussed. Finally, the efficacy of the model for explicating

educational research will be demonstrated by using the model

to analyze two actual data sets.

The efficacy of the model for explicating educational

research will be demonstrated by presenting the analysis that

has been done on two actual data sets. The first analysis was

drawn from a large scale research project called the High

School and Beyond study (Coleman, Hoffer & Kilgore, 1982).

This study measured variables at the student level and at

the school level in nearly a thousand schools across the

country. The students were measured on mathematics achievement

and various background variables. It has been found by

various researchers that the relationship between student

background (SES and race) and achievement is less strong in

Catholic high schools than in public high schools (Coleman,

Hoffer & Kilgore, 1982: Hoffer, Greeley & Coleman, 1985). A

conclusion that has been drawn is that Catholic schools are

more egalitarian than public schools since academic success

depends less on students' background in Catholic schools.
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Data from a random sample of 158 schools will be analyzed.

The purpose of the analysis is to explain why Catholic schools

appear more egalitarian than public schools, or rather to

identify the school level characteristics account for the

discrepancy between public and private schools with respect

to the relationship of students' background to students'

achievement.

In a second demonstration of the multilevel path model

variables from a study by Willms (1987) will be reanalyzed.

This data consists of observations taken from 21 secondary

schools in one administrative division in Scotland. Measures

were taken on various student background variables. Students'

academic success was gauged by verbal reasoning score and a

score (”I a comprehensive achievement exam. School means

obtained by aggregating the data the group level were

introduced to measure school context. The original study by

Willms examined mean student achievement, controlled for by

student background and verbal reasoning.

In the present analysis the student level processes will

be construed as a network of causal relationships in which

student background affects academic achievement indirectly

through students verbal. ability. The within-school. path

coefficients will be modeled by a between-school regression

in which school context predicts variations in the processes

by which students achieve educational goals.

It is hoped that these two analyses will demonstrate that

hierarchical path models are feasible emu! that they can
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significantly add to our understanding of educational processes

in their full multilevel contexts.



CHAPTER II:

ESTIMATING MULTILEVEL PATH MODELS

odu o

In this chapter estimators for parameters of the general

Bayesian linear model will be derived. The general Bayesian

model takes the individual form;

Y - A6 + R, (2.1)

where;

Y - is a K by 1 vector of outcomes for an individual,

with K - the number of outcomes;

A - is a K by 3 matrix of predictors, where s is the

number of structural parameters;

6 - is an S by 1 vector of parameters;

R - is a K by 1 vector of random errors.

This model is Bayesian because the parameters in 9 are

assumed to be random terms with a prior probability

distribution.

It will be assumed 6 has a normal prior distribution with mean

zero and dispersion matrix 0. In Bayes terms this represents

our prior belief about the location of the parameter vector,

9, and the precision of this prior belief (represented by

0’1). Estimation in the Bayesian context involves calculating

the posterior distribution of the parameters, that is finding

the posterior density function fKOIY). .After the formula

for the posterior distribution of 8 is derived, the mean

26
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vector of this posterior distribution will be used as the

vector of point estimates of the vector parameter.

By an application of Bayes theorem to continuous

probability densities it can be shown that the posterior

density function is proportional to the product of two

independent density functions; f(6|Y) and f(9) (and a constant

term which drops out). This gives rise to the proportional

relationship, signified by or (see Hoel, Port and Stone,

1971, section 6.3);

new) a f(Y|9)f(9) . (2.2)

The first term, f(Y|6) represents the likelihood. of the

data, and the second term, f(9), represents the prior

distribution of the parameters. This division is fortuitous

because it enables one to develop the likelihood and the

prior distribution separately and bring the results together

in one expression. This greatly simplifies the exposition.

An expression for posterior density of 6 given Y can be

had rather straightforwardly by substituting the normal

probability density functions for f(Y|6) and f(6). Then by

multiplying, combining and simplifying terms a1 probability

density function, f(9|Y), results which is recognizably

normal. This expression will reproduce the standard Bayesian

results for the General Bayesian Linear Model. This general

solution is not hierarchical, i.e. it doesn't define parameters

at two levels of analysis.
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In order to define a hierarchical linear model we must

reparameterize, using the substitutions;

A - [ZW : Z] , (2.3)

and,

-1-

6 _ __,
(2.4)

_U—  

By substituting A and 6 into Equation 2.1 we get;

Y - 2W1 + Z0 + R . (2.5)

By introducing an identity for a new parameter, B, we can

decompose the model into two stages. The identity is,

B - W1 + U

Substituting this into Equation 2.5 leads to a two-stage

expression,

Y - ZB + R (2.6)

and,

B - w», + U . (2-7)

A convenient interpretation for this two-equation

expression is that forms a two-stage hierarchy in which Y -

28 + R represents a linear model within-groups and B - W1 +

U represents a between-groups linear model for the within-

group parameter vector, B (following Smith, 1973).

In this thesis the within-groups model represents a path

model defined within numerous groups in which set of paths for
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each group j, Bj, differs from group to group. The between-

group model is a multiple regression in which group-level

variables, W, predict the group paths, Bj- The hierarchical

Bayes model enables us to model processes at the within-

group and between-group levels of analysis simultaneously,

which is the strength of the multilevel modeling approach.

In this chapter the Bayesian estimates of parameters will

first be derived for the general Bayesian linear model of

Equation 2.1. It will be shown that the general Bayesian

results are valid for the substituted or 'mixed model' case

represented by Equation 2.5. Finally by switching to the

two-stage model in Equations 2.6 and 2.7, it will be shown

that by stipulating a recursive path model at the within-

group level, we can justify the assumptions made in deriving

Bayesian estimates.

Throughout the derivation of the estimates it is assumed

that first and second stage variance matrices are known.

This is usually an untenable assumption. For this reason,

the EM algorithm, an empirical estimating routine, is used

to provide maximum likelihood estimates of the variance

terms. In the last section of this chapter I derive the

likelihood of the data, conditioned on the variance parameters.

It is this likelihood which is maximized by the EM algorithm.

The derivation of the formulas used in the EM algorithm will

be developed in chapter 3.
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I G e e e

The general Bayesian linear model (Smith, 1973) as

depicted in Equation 2.1 was defined for one individual. We

will now define the model in terms of a whole group of N

individuals with K outcomes per individual,

Y - A6 + R,

where,

Y is a Kle vector of outcomes,

A is a KNxQ matrix of predictors,

9 is a Qxl vector of random structural coefficients,

R is a Kle vector of random errors,

N is the total number of individuals,

K is the number of outcomes observed for each

individual, and

Q is the number of parameters in the model.

The variance of the errors is,

Var(R) - W (2.8)

where,

W is a NK by NK variance matrix.

The sampling errors, R, are independent of the parameters

represented by 9. As a result 9 is assumed to have a normal

prior distribution,

6 ~ N (0’ 0) . (2.9)

where,
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0 is a zero vector representing the prior mean and

O is the QxQ prior dispersion matrix.

The assumption of a zero prior mean can be made without loss

of generalizability (Raudenbush, 1984).

In order to find Bayesian point estimates of a model, one

must first derive an expression of the posterior distribution

of the parameters given the data and conditional on the prior

distribution of the parameters. In terms of the general

Bayesian linear model, if we have a prior normal distribution

of parameters, the posterior distribution has the form;

(a | Y,O) ~ N (9*,D9*), (2.10)

where 9* is the posterior mean and D9* is the posterior

variance matrix (Raudenbush, 1984). An explanation of how

to find a posterior distribution by employing Bayes theorem,

the heart of Bayesian estimation theory, is given in the

following section.

Recall from Equation 2.2 that the posterior density is

proportional to the product of the likelihood of the data

and the prior density of 6 or,

f(6|Y) a f(Y|9) f(6)

First we will focus on the likelihood, f(Y|9).

Conditional on 6, the errors of the observations will be

independent across individuals. Also, if we assume that we

have a well-specified, recursive structural equation system,

the errors for K outcomes observed for each individual will

also Ina independent (Land, 1973). This latter assumption
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can be explicitly justified when we couch the model in

hierarchical terms in a later section. Under these assumptions

Land (1973) has shown that the ,joint 'normal probability

density can be depicted as the product of the densities of

the NK separate observations,

N K

f<Yil:-°~»YiKv --- :Yva---:YNK) 'inl knlf(Y1k) - (2-11)

When the errors between individuals and between measures are

uncorrelated, the variance of the errors, 9, is an NK by NK

diagonal matrix. When this is the case, the probability

density function depicted in Equation 2.11 takes the specific

form,

f(Y|6,W) -

(2«)'NK/2 lwl'l/Z exp{-l/2(Y - A9)’ 0'1 (Y - A6)}. (2.12)

This completes half the task» that. of (defining the

likelihood of YE The prior distribution of 6 follows from

the assumptions that 9 is normally distributed with zero

mean and dispersion matrix 0,

£(e) - (2«)'Q/2 lol'l/2 exp{-l/2(6’ 0'1 9)) , (2.13)

All that remains now is to combine f(Y|6) with f(6) to

get f(9|Y). We accomplish this by multiplying Equation 2.12

by 2.13 to get,
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f(6|Y,i,O,A) «

(2«)-KN/2 (2,)-Q/2 |¢|-N/2 Inl-l/Z

expl-l/2(Y-A9)' 0'1 (Y-A9)} exp{-l/2 e' 0'1 e) .(2.14)

By expanding, combining terms, completing the square in

the quadratic term and combining constant terms (see appendix),

Equation 2.14 can be shown to be proportional to the following

density:

f(9|Y,i,O,A) «

exp {-1/2[e-(A'0'1A+o‘1)A'0'1Y]' (A'W'lA + 0'1)

[e-(A'0'1A+0‘1)A'w'1Y]) (2.15)

This is a normal density function with the mean and

covariance of 6 clearly visible. The posterior distribution

of 9 is therefore defined as follows;

(9|Y,0,o,A) ~ N(9*,D9*) , (2.16)

with, 9* - (A'W'IA + 0'1) A'w'lY , and

09* - (A'W'IA + 0'1)

This reproduces standard Bayesian.results (see Raudenbush,

1988). The estimate of 9 will simply be the mean of the

posterior distribution of 9 or, (A'it'lA + 0'1)A'0'1Y, from

Equation 2.16.
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11 e e M el

We can write the mixed model form of the Bayesian model

by substituting Equation 2.7 into Equation 2.6 to yield;

Y - 2W1 + ZU + R

The first level parameter matrix, B, has disappeared so that

the parameters of this model are 1 and U. The parameters

have the prior normal distributions,

1 ~ N(O , F), and

U ~ N(0 , T).

The prior distribution for '1 serves the jpurpose of

representing our state of knowledge about 1 (Smith, 1973).

We assume 1 has an arbitrarily large variance matrix so that

the precision of 1, or P‘l, is near zero. This indicates a

complete lack of knowledge about the prior distribution of

1. Such a distribution has appropriately been termed a

vague prior (Smith, 1973). The mean of 1 is set to zero for

convenience, since with a vague prior the location of the

parameter is arbitrary (Raudenbush, 1984).

Because there is 1H) prior information about '7, it is

functionally equivalent to a fixed effect , while U is

considered to be a random effect (Dempster, Rubin & Tsutakawa,

1981). The combined model, then, loses the hierarchical

character and can be thought of as a one level mixed model.

Both of these conceptualizations, hierarchical and mixed

model, will be used in this chapter. It is important to
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keep in mind that both of these conceptualizations are

equivalent.

The parameters of the mixed model, 1 and U, are assumed

to be independent so that the joint prior covariance of the

parameters equals,

    

‘91- r o

Var ---- - - O. (2.17)

-92- -0 T-

e ode e o a es

The estimating algorithm used in this thesis was designed

in terms of the Bayesian mixed model. This is because the

mixed model affords two statistical advantages over a

hierarchical model; it allows for groups 13) be analyzed

which have data matrices that are not full rank and it allows

for a flexible definition of which effects are fixed and

which effects are random. These issues will be taken up in

the concluding chapter.

A more general way to represent this model is to posit

the following definitions,

A1 - ZW; A2 - Z; 91 - 1; and 92 - U

Substituting these into Equation 2.5 we get the general form

for the mixed model,

Y - A191 + A292 + R, (2.18)

where 91 is the vector of fixed effects and 92 is the vector

of random effects.
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A simple substitution show that there is a correspondence

between the mixed model and the General Bayesian model. If

we set,

A - [A1 : A2] ,and (2.19)

-61-

6 _ __-- . (2.20)

-92-  

and substitute into Equation 2.18, we see that the mixed

model is just a partitioning of the General Bayesian model,

Y - A6 + R

Also note that the variance of 6, O, is simply the joint

covariance of 61 and 62 as defined in Equation 2.18,

91

-92-

The formula for the posterior mean in Equation 2.16, calls

Var (6) - Var

   

for the inverse of O which is,

"r'1 o

  

Recall that the prior precision of 1 is F'l, which is virtually

zero. This leads to the results,

  

(2.21)
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With these definitions in hand, we can now substitute

Equations 2.19, 2.20 and 2.21 into Equation 2.16 to get an

expression of the posterior distribution of parameters in terms

of the general mixed model.

By using various identities and simplifications it is

possible to derive the following mixed model definition of

the posterior distribution of parameters (see Raudenbush,

   

    

1988).

(2.22)

r
w r __ __ l

l_ _ _ *_

91 91 D11 I D12

---- (Y, ¢, 0, A1, A2) ~ N --;- : ...... | ......

-92- -92- I

D21 I D22

. , __ I -_
L. J  

With:

91* - D11A1'(I- 0'1A20'1A2) 0'1Y

92* - C'1A2'W'1 (Y - A191*)

0 - A2'0'1A2 + 1'1

011 - (A1'0'1A1 - A10‘1A20'1A2'0'1A1)

D12 - D21' - - 0111‘11"I"11¥2C'1

D22 - C'1 + C'1A2'W'1A1D11A1'W'1A2C'1

The mixed model solution subsumes the special case in

which the model is strictly hierarchical as in Equation 2.10;

Y - 2W1 + ZU + R ,
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where Z is a matrix of first-stage predictors and W is a matrix

of second-stage predictors. This is equivalent to the general

mixed model in Equation 2.18 only if ZW - A1, 2 - A2, 1 =

91, and U - 92. When these conditions are met ZW, Z, 1, and

U can be substituted into Equation 2.16 to yield simpler

equations for 91*, 92*, and D.

Simpler equations are desirable but there are important

cases in which A2 does not equal 2. For this reason we will

adhere to the more general mixed model approach.

IV e o for t e rarchica Case

In the derivation of posterior estimates for the general

Bayesian linear model, it was assumed that the K outcomes

observed for each individual had independent errors. This

assumption enabled us to devise a simple expression for the

likelihood of the data given parameters (Equation 2.12). In

order to justify this assumption. we must appeal to the

hierarchical form of the Bayesian model.

In the hierarchical path model a vector of first-stage

paths, B, is introduced as the set of parameters,

Y - ZB + R,

B - W1 + U

The probability distribution function of the data conditional

on B is f(Y|B), which is the likelihood of the data parallel

to f(Y|6). Since the only random terms that both 6 and B

contain are 1 and U, conditioning on B is equivalent to

conditioning on 9. For this reason the derivation in this
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section of an expression for the likelihood f(Y|B) will be

pertinent to the expression for the general Bayesian likelihood

in Equation 2.12.

Conditional on first-stage paths, B, the model Y — ZB +

R represents a path model with fixed exogenous predictors in

Z and fixed paths, B. This defines an ordinary, non-Bayesian

path model.

Structure of the First-Stage Path System

In order elucidate the structure of the First-stage path

model we will examine a simple example in which the model

Y - 28 + R represents a two equation path system for an

individual, as illustrated by the path diagram in figure 2.1,

 

Figure 2.1

Path Diagram for a Two Equation System

In this example X is an exogenous variable because it

has no antecedents in the path system, while Y1 and Y2 are

endogenous variables because they both have causal antecedents

defined in the system.

The structure of the matrix equation which depicts this

path system is illustrated by figure 2.2.
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Y - z B + R

_Y1- ‘x o 0‘ 73x17 _R1—

- Byl +

_Y2_ _0 Y1 X- -sz- _R2_

Figure 2.2

Matrix Structure of a Two Equation Path System

This figure shows that each row’ of Z contains the

predictors for one equation. Note that exogenous path are

subscripted with x and endogenous path are subscripted with

y. If we perform the matrix post-multiplication of 2 with B

and properly add elements we see that the matrix equation, Y

- ZB + R is a shorthand way of writing the two equations,

Equation 1 Y1 - XBx1 + R1

Equation 2 Y2 - Y1By1 + XBXZ + R2

_§cursive Path Models
 

Throughout this thesis focus will be restricted to the

subclass of path models which are recursive. A recursive

path model is one in which there are no causal loops. A

simple recursive path model is illustrated by the path diagram

in figure 2.3.

 

x Y3

Figure 2.3

Example of A Recursive Path System
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The arrows stand for causal connections between the

processes represented by X, Y1, Y2, and Y3. In this case X

is an exogenous variable because no antecedents are defined

for it. The endogenous variables are the Y's because they

have causal antecedents defined within the model. Notice

that the causal flow is in one direction, from left to right.

A non-recursive path system is illustrated by figure

2.4. We arrive at this model by simply reversing the direction

of the arrow between Y1 and Y3.

 Y1 :rYz

X Y3

Figure 2.4

Example of A Non-Recursive Path System

If you trace the causal flow from Y1 to Y2 to Y3, you will find

that you will loop back to Y1 again. Any such loop makes a

path model non-recursive.

The reason we are limiting ourselves to recursive path

models is that they define a class of models that have readily

interpretable parameters which are also easily estimated.

Fortunately, recursive path models alsotdescribe most processes

of interest in the social sciences. Hunter and Gerbing

(1980) states that in any non-recursive path system can be

transformed into a recursive one if it is represented
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longitudinally, because causal paths cannot loop backward in

time.

Recursive path models have a certain general structure

which will be exploited in the derivation below. To see the

general structure we must define a £211 recursive model. If

we add some paths to figure 2.1 we will get the full path

model in figure 2.5.

 

 X =TY3

Figure 2.5

Example of A Full Recursive Path System

This model is full in the sense that if any path is added, the

model becomes non-recursive. The individual level equation

system represented in figure 2.6 illustrates the structure.

Y1 - XBxl + R1

Y2 - YlByl + Xsz + R2

Y3 - Y1By2 + Y2By3 + XBX3 + R3

Figure 2.6

Individual Level Equation System - Full Recursive Path Model

All of the terms are scalars. The paths for the endogenous

and exogenous variables have been differentiated. The Bx's

are the exogenous path coefficients and the By's are the

endogenous path coefficients. Notice that the equations

compound in a stepwise fashion. Each equation has as
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predictors a) the exogenous variable and b) all of the

endogenous variables in the equations above it. Every

recursive system can be ordered in such a way as to display

this structure. If we take the endogenous predictors and

put them in a matrix as they appear in the equation system,

we get the structure in figure 2.7.

0 (zero)

B - B 0
y Y1

By2 By3 0

Figure 2.7

Structure of Endogenous Paths in a Full Recursive System

From this we see that in recursive path system the

matrix of endogenous predictors will be a lower triangular

matrix. This is another way to define a recursive system.

This fact will come in handy when defining the likelihood

function of Y in the next section. Note that a less-full

recursive system would have some of the paths missing, so

some of the By's in figure 2.7 would be set to zero. The

general structure would be preserved, though.

ob u ct n of Y

A strong assumption of the individual path model is

that the errors of' the equations, Rk, are ‘uncorrelated.

This assumptions simplifies the probability density function
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(PDF) of Y given B because the dispersion matrix of errors

for the individual, ¢. will be diagonal. In order to exploit

this fact, the PDF of Y must be expressed in terms of R,

which in calculus terms means there must be a change of

variables for the PDFS Standard calculus theory tells us

that with vector variables, in order to express a function

of one variable in terms of a function of another variable,

one must multiply by the determinant of the Jacobian of the

transformation (Hoel, Port & Stone, 1971). In terms of the

probability density functions in question we have,

f(YlB) - f(R|B) |6R / 6Y| (2.23)

where, f(YlB) is the density in terms of the error vector R

and 8R/8Y is the Jacobian of the transformation.

In order to express the density in terms of R we will

have to restructure the model somewhat. First we will put

the matrix equation in terms of R,

R - Y - ZB . (2.24)

As figure 2.1 shows each row of 2 contains the endogenous

and exogenous variables for one equation. For this reason,

some Yk's can appear in both the Y vector and the 2 matrix.

In order to differentiate (Y - ZB) with respect to Y (which

the Jacobian requires) we need to have all of the Yk's in

one vector. This can be accomplished by transforming the

right hand side of Equation 2.7 into a restructured but

equivalent form. To see how this could be done we will

rearrange the scalar terms from figure 2.6 and add some zero

terms,
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Y - ZB + R Matrix Form

Y1 - 0Y1 + 0Y2 + 0Y3 + Bx1X + R1

Y2 - By1Y1 + 0Y2 + 0Y3 + szx + R1 Single Equation

Y1 - By2Y1 + By3Y2 + 0Y3 + BX3X + R1

Figure 2.8

Augmented Single Equation Form of Path Model

This suggests an alternative but equivalent structure

in which the endogenous paths are grouped together in one

matrix and the exogenous paths are grouped together in another

          

matrix;

Y - By Y + Bx x + R

_Y1- ‘0 o 0’ -Y1- -Bx1— —R1—

Y2 - By1 O 0 Y2 + sz X + R2

_Y2_ _By2 By3 0- _Y3_ _Bx3_ _R3_

Figure 2.9

Restructured Single Equation Form of Path Model

Notice that the endogenous path matrix, By, displays the lower

diagonal structure indicative of a recursive path system.

If we multiply this matrix equation and combine the

proper terms we will get the same three equation system in

figure 2.6. This demonstrates that. the two .alternative

structures are equivalent,

ZB + R - ByY + BxX + R

This restructured form provides a convenient expression for

the model in terms of R,
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R - Y-B Y-BXX
Y

Combining terms gives us,

R - (I-By)Y - BxX . (2.25)

This expression for R is also equivalent to the original

expression in Equation 2.23,

Y-ZB - (I-By)Y - BxX

Now Equations 2.24 and 2.25 can be substituted into Equation

2.23 to yield an expression of the PDF in terms of R,

f(YlB) - f(Y-ZBIB) |6[(I-By)Y - BxX]/6Y| . (2.26)

The simplification afforded by a recursive is apparent if we

focus on the Jacobian. Differentiating gives the result,

6[(I-By)Y-BXX]/6Y - I-By

The results, I - By, is a lower triangular matrix which

reflects the structure of recursive path systems,

  

1 0 0

I - By - -By1 1 o

_'By2 ”By3 1-

Because of this structure, the determinant of the matrix is

unity (Land, 1973). Substituting this result into Equation

2.26 yields,
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f(YlB) - f(Y-ZBIB) * 1

- f(Y-ZBIB) (2.27)

The normal probability density for one individual follows

straightforwardly from this form. It is assumed that 1)

there are R outcomes for an individual and 2) the error

vector for an individual is distributed, R ~ N(0,¢), where w

is a K by K diagonal matrix since the errors of the equations

are uncorrelated, 3) this is :1 well-specified recursive

path system which explains why the errors are uncorrelated

(Heise, 1975). The density according to Equation 2.27 and

these assumptions is,

f(YilB) - (2«>'K/2 I¢I'1/2 exp1-1/2<Y-B>' 0'1 <Y-B)}.

(2.28)

The Whole-Group Likelihood

Equation 2.28 gives us the density function for one

individual. Assuming that each individual's response is

independently and identically distributed, the whole-group

likelihood will simply be the product of each individual's

likelihood. If there are N individuals in the group this

leads to the total-N PDF

f(YIGJiJ’) -

(2«)'NK/2 |¢|'N/2 exp{-l/22(1) (Y-B)’ ¢'1 (Y-B)}. (2.29)

where, i is the index for individuals and,

2(1) is the summation over all individuals.
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An important feature of this model is that, since the

dispersions are independent across equations, each equation

of the multiple equation system can be estimated by an

independent regression analysis. Also, the paths estimated

in such a model are full information maximum likelihood

estimates, as established by Land (1973). This will be

important when it comes to implementing estimates with the

EM algorithm, as we will see in chapter three.

W

The distinguishing feature of the hierarchical Bayesian

model is that the structural coefficients differ from group

to group in a way that is described by the second-stage

model. First let us introduce a structural coefficient

vector, Bj, that differs over group, j. The whole group

coefficient vector, B, now represents the parameters from

all groups stacked up vertically,

  

Conditional on B, individuals are independent within and

between groups. As a result the total-N likelihood is the

product of the individual likelihood functions within and

between groups. This results in the addition of a second
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group summation to Equation 2.29. If N - an, is the total

N for all groups, the many group likelihood becomes,

f(YIB.¢) '

(210’va2 I16I'N/2 exei-l/Z X(j) 2(1) (Yij - ziij)' ¢’1

(Yij - 2138)}.

(2.30)

where 2(1) is the summation over individuals in a group and

2(j) is a summation over groups.

This formula can be rendered in a simpler form without

the summations. Since individuals are independent (conditioned

on B) the whole group error variance matrix, W,is a RN by KN

block diagonal with identical blocks equal to W- Since the

equations are uncorrelated each m is diagonal. So 9 is also

a diagonal matrix. For this reason the double summation in

the exponent of Equation 2.30 can be rewritten in terms of

whole group matrices,

f(YlB,W) -

(2«)'NK/2 |0|'1/2 exp{-l/2(Y - zs)' 0'1 (Y - ZB)}.

(2.31)

where Y is KN by 1, Z is KN by JP and B is JP by l. P is

the number of paths in the within-group model.



50

s e e t e Ge an

M

We have described the likelihood for Y conditional on

first-stage parameter matrix B. The likelihood we ultimately

seek is defined in terms of 6. Recall that 6 is a partitioned

matrix containing 1 and U. We can introduce these parameters

into the likelihood by recalling the identity for B found in

the second-stage of the hierarchical model, B - W1 + U

By substituting this identity into Equation 2.31, we

get the substituted form of the likelihood in terms of 1 and

U.

f(Yl'Ytuvw) '-

(2«)'NK/2 lwl'l/2 exp{-l/2(Y-ZW1-ZU)' 0'1 (Y-ZW1-ZU)).

Now use the identities;

A - [ZW : Z], and 6 -

  

Substituting into the last equation yields the General Bayesian

form,

f(Yle,w) -

(2«)'NK/2 lwl'l/z exp{-l/2(Y - A9)’ 0'1 (Y - A6)}. (2.32)
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This is the likelihood that 'was ‘used tn) derive the

posterior estimates for the General Bayesian model. By

showing that the hierarchical likelihood leads to the general

Bayesian likelihood, we have proven that by assuming a

recursive first-stage path model one can derive the general

Bayesian estimates (Equation 2.16).

V e ture 0 he era h a e an M0 e1

The structure of the matrices has been illustrated only

for the single individual model. When considering all

individuals in many groups a special structure has been

devised for the matrices by Strenio (1981) to make elements

conformable in the hierarchical Bayesian linear model. The

whole group model can be constructed by stacking the individual

level matrices in an appropriate manner. For example, if

there are It outcomes and J groups and nj individuals in a

group, the whole group data vector, Y, is a Kinj by 1 vector

which results from vertically stacking the anK by 1 individual

outcome vectors. The sum, an, sums the number of all

individuals over all J groups and will be referred to as N.

The whole group data vector has the form;
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Y11

Y21

  
The error vectors are stacked in a similar way to yield

a total-N error vector, R, with dimension N by 1;

R11

R21

R10

R2.)

  
The individual predictor matrices, zij: are stacked

vertically ‘within each group and. then each group's data

matrix is arranged in a block diagonal;



 

 

 

53

 

 

 

Z11

221

Zj - '

an

with,

__21 __

22
z -

__ ZJ__

Finally, the P by 1 coefficient vectors for each group,

Bj, can be stacked vertically to yield the JP by 1 whole

group vector, B;

__Bl __

B2

B - .

__BJ __

Combining these matrices gives us the first-stage whole

group model:

Y 2 B + R (2.33)

KN x KN x JP JP x 1 RN x l

The second-stage model is stacked by a similar process.

The P by 1 U5 error vectors are stacked just at the Bj vectors

are;



S4

  __UJ __

Similarly, the p by s Wj group-level data matrices are

stacked vertically for each group to yield a Jp by 3 matrix

W:

  __WJ __

But each group-level data matrix has a block diagonal

structure, with each block corresponding to each first-stage

  

coefficient, BPJ;

—_w1 __

w2 (zero)

WJ-

(zero)

__ wP...

with wp - [w1,w2,...,ws]. The diagonal block terms, wp, are

thus row vectors which can be of variable length. In this

way a different set of group-level predictors can predict

each path.

The structure of the 1 vector is no different in the



55

thole group case. Combining these terms leads to the whole

,group second-stage model;

B - w 7 + U (2.34)

Jle JPxSle Jle

The distributional assumptions are similar to the single

group case;

R ~ N(0, W) ,

U ~ N(0, T) ,

7 ~ N(0. I‘)

In addition it is assumed that R, U and 1 are mutually

independent.

As before, F'1 is assumed to be arbitrarily close to a

zero matrix. The structure of W and T differs from the

individual model. Since, conditional on B, individuals are

independent within and between groups, and since it assumed

that individual errors are identically distributed, W will

be a block diagonal matrix with each block equal to the

individual K by K variance matrix, ¢;

¢ (zero)

kxk W

W - kxk.

(zero) . W

__ kxk__  
Nk x Nk
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Due to the fact that errors are independent across

equations, each W is a diagonal matrix of the form,

  

a1 (zero)

02

¢ - .

(zero) 0K

K x K

The structural coefficient vector for a group, Bj, are

assumed to be independent and identically distributed across

groups. As a result the whole group variance matrix T is a

block diagonal with each block consisting of the identical

variance matrix for a groups structural parameters, Bj3

  

7 (zero)

T - pxl r

pxl

(zero) 7

__ pr

JP x 1

This completes the exposition of the hierarchical Bayesian

model.
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VI 0 t

In the derivation for the mixed model posterior

distribution, it is assumed that variance matrices, W and r,

are known. By employing the EM algorithm it is possible to

get maximum likelihood estimates for Ifi and 1, but it is

necessary to have a criterion to judge whether the EM algorithm

has converged to the ML estimates. Therefore the relevant

likelihood of the data, f(Y|¢,r), must be monitored after

each iteration of the algorithm (Dempster, Rubin and Tsutakawa,

1981). In this section I give a derivation of this likelihood.

An expression for the probability density function of Y

given d and r can be obtained from the densities already

defined.

Let us consider several densities, all of which are

conditioned (”1 ¢ and r. Bayes theorem for ‘probability

densities gives us an expression for the posterior density

of 6 given Y, W and r (Hoel, Port & Stone, 1971),

f(9.Yl¢.f)

f(elY,W,T) - 

f(Y|¢.r)

Solving for the PDF of Y given 9 and r,

f(9.Y|¢.T)

f(Y|r/:,t) - . (2.35)

f(elY.¢.f)

 

The likelihood we seek is f(Y|¢,r). We can cast the joint PDF,

f(9,Y|¢,r), into a more useful form by noting that,
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f(9.Y|¢.f)

f(Y|9,¢,r) - . (2.36)

f(9|¢.r)

 

Solving for f(6,Y|¢,r) yields an alternative form of the

joint PDF,

f(ele¢07) - f(Y|99¢07) f(9|¢,r) - (2-37)

Substituting Equation 2.35 into Equation 2.33 gives,

f(Y|9.¢.f) f(9|¢.7)

f(Y|¢,r) - . (2.38)

f(GIY.¢.T)

 

This is the same as the form given by Demptser, Rubin and

Tsutakawa (1981).

The densities on the right hand side of Equation 2.38

have been defined in terms of normal density functions earlier

in this chapter in Equations 2.12, 2.13 and 2.15 respectively.

Substituting in to Equation 2.38 and eliminating some constant

terms reveals the following likelihood,

f(YlW,T) a

|W|’l/zexp{-l/2(Y-AO)'W'1(Y-A9)}IOI'1/2exp{-l/2(6'O'16)}

 

IDSI‘l/2 eXp{-1/2 (e-e*>' 03’1 (e-e*))

with, 03 - (A'W'1A+O‘1) and 9* - (A'W’1A+O‘1)A'W'1Y from

Equation 2.41. Combining terms leads to,

|0|‘1/2|o|'1/2|03|1/2exp(-1/2(Y-Ae)'0'1(Y-Ae)+e'o-1e

- (e-e*>03'1(e-e*>}
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This expression holds for all 6, therefore a convenient

simplification can be had by evaluating the expression at

6-6* (see Dempster, Rubin & Tsutakawa, 1981). The exponential

term reduces to,

exp{-l/2(Y-A9)'W'1(Y-A9)+6*0'19*}

Using the fact that 9* - D3 A'W'lY this can be simplified to;

epr-l/ZYW'1(Y-A9)}

Now the log can taken to yield the final form,

f(Yl¢.r) “

—Lo 9 -Lo 0 Lo 0* -1/2 Y'W'1(Y-A9*) . (2.39)s g s 9

This can be put in terms of the mixed model by

substituting the following terms into Equation 2.39;

  

79*" D I

* 1 * 11 I D12

A - [A1 : A2]. 9 - --;- , De- ...... | ......

-92- I

D21 : D22

  
As a result of these substitutions three terms in Equation 2.16

will change;

1) -Log|0| - - -Log |P| -Log |T|.

  0 T

Because 1 is assumed to have a vague prior, its precision,

F‘l, goes to zero. This implies that I‘ is arbitrarily

large and fixed (Dempster, Rubin & Tsutakawa, 1981), so |F|
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is treated as a constant and is taken out of the effective

part of the likelihood expression.

2) The term Leg|D3| can be reexpressed using a standard

method for taking the determinant of a partitioned matrix,

ID$| - I011| lDzz-021Dl1'1012I

By substituting the equivalencies for D22 and D21 from

Equation 2.22 and simplifying, The expression reduces to,

* -

IDeI - ID11| IC 1|.

where o‘1 - (A2'W'1A2+T‘1)‘1 (Raudenbush, 1987-B).

3) Finally, Y-AG has the mixed model form Y - A191 - A262

Substituting these changes into Equation 2.39 yields

the mixed model log likelihood:

Log P(Y|W,T) «

-1 -1 * *
-Log|W| - Log|T| + Log|D11| + Log|C | - YW (Y-A161-A292).

(2.40)

This last expression is used as the criterion for the EM

algorithm which will be discussed in chapter three.



CHAPTER III

METHODS

I d t o

This chapter will review some of the technical aspects

of implementing multilevel path analysis. First I review

the EM algorithm and explain its rationale. Then the specific

equations will be derived for implementing the EM algorithm

in a multilevel context for estimating variance components.

Next, statistical tests will be discussed. These will

encompass the chi-square test of parameter variance, the R2

statistic for assessing fit of the second-stage model and

the 2 test of second level parameters. Finally there will

be a discussion about the validation of the computer algorithm.

This will focus on the cross-referencing analysis that was

done with the multilevel path analysis program and on the

Hierarchical Linear Model program (Bryk, Raudenbush, Seltzer

& Congdon, 1986).

m t t o o t e E o t

The logic of the EM algorithm is to estimate parameters

for a hypothetically complete set of data from a sample

space which only contains incomplete data. Instead of using

the actual summary statistics found in the data, which are

by definition 'incomplete', the EM algorithm utilizes the

expected value of complete data summary statistics as a

61

 

 



62

substitute for having the 'complete data' statistics. The

advantage of this strategy is that maximum likelihood

estimators based on the assumption of complete data can be

quite simple to derive.

The EM algorithm is an iterative routine which cycles

through an expectation phase and a separate maximization

phase at each iteration. The maximization phase consists of

the calculation of maximum likelihood estimates for parameters

based on the assumption of complete data. Consider a simple

example of variance estimation. Let us assume a model for

individual i;

Y1 - XiB + 3i ,

where,

Y1 is a single outcome,

X1 is a matrix of fixed predictors,

B is a vector of regression coefficients and

e1 is the random error.

We want to estimate a given that Var(e) - 021, the

variance of the errors. If the complete data consists of

observations of Y1 as well as of e1, the maximum likelihood

estimator of 02 is simply defined as,

02 - Z eiz/N ,

where, Xeiz is the "complete data sufficient. statistic",

that is, the sufficient statistic needed to obtain the ML

estimate given that one has observed the complete data.
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In actuality, though, we never observe the ei's. With

the EM algorithm we use the conditional expectation of the

complete data sufficient statistic instead of the actual

complete data sufficient statistic;

E(2612 I Y) .

where Y is the incomplete, i.e. observed, data. The expected

value of the sufficient statistics is calculated during the

Expectation phase of the EM algorithm.

A general schema for the EM algorithm is,

P1 - F{E9(Sufficient Statistics|P0, Incomplete Data))

with,

P0 - Vector of parameter estimates from the previous

iteration of the algorithm,

P1 - Vector of parameter estimates for the present

iteration,

FI } - The estimator of parameter vector P1 assuming

complete

data.

Ep - Expectation over all possible values of P, given the

complete data

Sufficient StatisticslPo, Incomplete Data - sufficient

statistics given previous estimates of parameters

and the observed, incomplete, data.

Note that sufficient statistics are conditioned on the

data. This means that parameter estimates involved in

calculating sufficient statistics will be the Bayesian

estimators derived in chapter two.
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I will use the same model explicated in chapter two for

the EM derivations which has the hierarchical form,

Y - ZB + R

B - W1 + U

The substituted model is,

Y - ZW1 + ZU + R.

As before, by making the substitution of,

A1-ZW; A2-Z; 61-1; and 92-U,

we get the mixed model form, Y - A191 + A292 + R.

Also as before, Var(UJ)-r, and Var(Rij)-¢, where U3 is the p

by 1 vector of parameter errors for the paths of one group

and R11 is the k by 1 vector of sampling errors for person i

in group j. The purpose of the EM algorithm is to estimate r

and W.

V a a r

In. the context. of estimating 1' the 'complete data'

consists of the observed outcome data, Y, and the second-

stage errors, Uj- Assuming complete data the ML estimator

for r is simply,

XUJUJ'/J (Raudenbush, 1987-B),

with, U3 - The p x 1 vector of parameter errors associated

with the p paths in group j.
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J - The number of groups.

With the EM approach we substitute E(UJUj'|Y,ro,¢o) for

UJUJ', at each iteration (Dempster, Rubin, Tsutakawa, 1981).

The expected sufficient statistics for a vector product

like UJUJ', comes out of the definition of variance in standard

statistics theory. The dispersion of Uj, Var(Uj), is defined

as,

Var(Uj) - E(UJUJ') - E(Uj)E(Uj)' (Searle, 1971).

Now we solve for the quantity we seek, the expected value of

the sufficient statistic, E(UJUJ');

E(UJUJ') - E(UJ)E(UJ)' + Var(Uj)

But the EM algorithm requires the expected sufficient

statistics given the 'incomplete' data, Y and parameter

estimates from the previous iteration, '0 and 100, so the

expectation is;

E(UJUJ|Y,10,¢0) - UJ*UJ*' + D*Uj ,

where, U * is the posterior parameter estimate of 92 given in

cgapter two in Equation 2.22, and

D*Uj is the posterior dispersion matrix for 92, also

given

in Equation 2.22.

The connection between.the posterior estimates given known

variances deve10ped in chapter two, and the EM estimating

routine is now explicit. At each iteration you plug in the
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variance estimates from the previous iteration as the 'known'

variance and then you use the formulas for posterior estimates

developed in chapter two to calculate the expected sufficient

statistics.

The maximization phase for the estimation of r is

accomplished by the trivial operation of dividing the expected

sufficient statistics by j,

71 -Z(UJ*UJ*' + D*Uj)/J

This completes one iteration for estimating r.

orm s m ti F st-Sta e Variance Matrix

The first-stage variance term, ¢, is a K by K diagonal matrix

with off diagonals of zero. Because the first-stage errors

are uncorrelated, the variance terms can be estimated by K

separate EM estimation calculations. The K separate estimates

are then arranged along the diagonal of p to provide the

matrix estimate. Each of the K parallel estimates follows

the same format.

The quantity to be estimated in one EM calculation is

the k,k scaler diagonal element of W, 02k. The 'complete

data' in this case consist of the N by 1 observed outcome

vector, Yk, and the N by 1 first stage error vector, Rk.

The complete data maximum likelihood estimate for 02k is,

Rk'Rk -

X X Rzijk/N »

(3)”)
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where, Rk is the N by 1 error vector for variable k,

Rijk is the error for person 1, group j, and outcome

(endogenous variable), k,

N - X(j)“j’ is the total number of individuals in all

groups, and

The double summation indicates summing the squared

errors

over persons and groups.

The derivation of the expected sufficient statistics in

the case of 02k is more complicated than for r. The term Rk

is the N by 1 error vector for outcome k. The mixed model

formula with Rk is,

Yk - Alkelk + A2k92k + Rk

We solve for Rk to get,

Rk - Yk - Alkelk - A2k92k

So the complete data sufficient statistics for 02k is,

XJXiRzijk -

(Yk - Alkelk - A2k92k)'(Yk - Alkelk - A2k92k>

This last formula can be made more tractable by putting the

mixed model into its simpler General Model form using the

substitution,

91k

A - [A1 : A2], and 9k - ----

92k

the sufficient statistic now has the form,

2321R213k '

(Yk - Akek)'(Yk - Akek)
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The expected value for a scalar quadratic of the form Rk'Rk

is,

E(RkRk') - E(Rk)'E(Rk) + Tr{Var(Rk)},

were, TrIVar(Rk)} is the trace of the dispersion matrix

for

the N by 1 vector, Rk.

But for the EM algorithm we need the expectation given

$0, 70 and Y. In the first term we have,

E(Rk|¢0:'OsYk) - Yk - Ak9*k:

where, 9*k is the estimate of the posterior parameter mean for

equation k,found in Equation 2.22 of the last chapter.

The second term, Var(Rk), is the posterior variance of

RR which equals

Var(Yk - Ak9k|¢o,fo,Yk).

This is the same as, Var(-Ak6k|¢o,ro,Yk) which equals,

AkD*ekAk'

The variance matrix, D*9k, is the portion of the posterior

variance matrix, D*9, which is pertinent only to the outcome,

Yk-

The expression can be put in a computationally more

convenient form if we note that TrIAkD*9kAk]'<nu1be permutated

to yield,

TR(AkD*9kAk') - TR(Ak'AkD*ek)

Thus the conditional expected sufficient statistic for

2
a k can be expressed as,

E<RkRk'I¢o.ro.Y> -

(Yk - Akek)'(Y - Akek) + TR(Ak'Aka*9k)



69

This can be translated back to the mixed model form to

yield an equation similar to what was used in the multilevel

path program,

(Yk - Alkelk - A2k92k)'(Yk - A1191k - A2k92k) +

    

_A1'A1 A1'A2- _D*11 D*12_
TR * *

_A2'A1 A2'A2_ .0 21 D 22-

This involves rather large matrices. By multiplying the

partitioned matrices, expanding and simplifying terms this

can be broken down to a tractable computational formula in

terms of group-level variables.

As with the estimation of r, the maximization step is

relatively trivial. The estimated sufficient statistics is

simply divided by N to yield the maximum likelihood estimate

for 02k. The above steps are repeated for all K of the 02

terms and the diagonal terms of p are constructed from these

K estimates.

At this point we have r1 and $1 for one iteration of

the EM algorithm. These variance matrices are then used to

calculate all of the terms in the likelihood expression from

Equation 2.40,

L
-l -l * *

- og|W| - Log|T| + Log|D11| + Log|C | - YW (Y - A191 - A292).

This is the criterion for convergence. The change in the

likelihood is positive from each iteration to the next as

the likelihood increases towards a maximum. If the positive
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change in likelihood is less than .01%, then it is judged

that the algorithm has converged to the maximum likelihood

estimates.

11 est t

Three test statistics are utilized in the program. Two

provide tests for variances and one for second-stage regression

coefficients.

e V a

Recall that the second-stage model for the paths for

group j is,

Bj - W31 + Uj

The variance of Uj is r, which.is a P by P variance/covariance

matrix. The P diagonal elements of r, 'ppv are the parameter

variances of the paths. The larger this variance is the

more the structural parameter varies from group to group.

If the parameter variance is zero, the corresponding path is

considered to be the same for all groups, and is therefore a

fixed quantity. This has great implications for interpreting

an analysis, so it is useful to have a statistical test of

whether the parameter variance of a path is zero.

Such a test is a chi-square statistic which for group j

consists of the ratio of the estimated total variance of the

path (parameter variance + sampling variance) over the

parameter value of the sampling.variance. This ratio is

summed over all J groups;
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g (Total Variance of Bp / Sampling Variance of Bp}

j-l

Since the numerator is the sum of parameter and sampling

variance, under the null hypothesis that parameter variance

is zero, the ratio should be small. Conversely, assuming

the parameter variance is not null, as the parameter variance

gets large so does the test statistic.

A statistic which is estimable in terms of the current

model is, according to Hedges (1982),

J A

j{31‘ij ‘ "197*p)2 / VPPJ’ '

where, ij is the least squares estimate for path p for

stone J.

ij is the second-stage predictor matrix for path p and

group J.

1*p is the posterior estimate of the s by 1, second-

stage

regression coefficient vector for path p,

V*p J is the sampling variance for path p. Its

estImate consists of the p,p element from the matrix,

(zj'9’1z1)‘1, where Z is the first stage predictor

matrix and d is the estimated variance of first -stage

errors. This is the familiar least squares estimate

for sampling variance of a regression weight.

This statistic has an asymptotic chi-square distribution

with J-S degrees of freedom with J equal the number of groups

and S equal the number of second-stage predictors for path

p.

Note that for this to be a true chi-square test it is

assumed variance term for each group, Vppj’ is a known
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parameter. Raudenbush 6: Bryk (1986) point out that since

the sample size over all groups is usually large, this is

not a hazardous assumption. They point out a more serious

problem with the statistic, though. It may be sensitive to

departures in normality of Y and U. Raudenbush and Bryk

suggest that this statistic should be interpreted with caution

unless the probability is very small, e.g. in the .001 range.

T e cent Va iance Ac unted For b the

WW

As we will see in the analysis chapter, two models are

compared in a multilevel analysis, an unstructured between-

group model and a structured between-group model. The

unstructured model stipulates that first-stage paths vary

about a grand mean path;

Y - ZB + R

B - B-Mean + U;

where, B-Mean is the vector of grand mean paths. The motive

behind running this model is to get an estimate of the total

parameter variance of the paths, unconditional an a between-

group regression.

Typically we would proceed to specify a structured

between-group model in a subsequent run;

Y - ZB + R

B - W1 + U,

where the second-stage intercepts are incorporated into 1,

W is the matrix of between-group predictors, and
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1 is the vector of regression coefficients for paths.

The variance of Uj, (7) now represents the residual

variance matrix of the second-stage model, conditional on

the second-stage predictors. In the ideal case where W1

predicts perfectly, the second-stage model would account for

100% of the parameter variance and 1 would be zero. A simple

test for the percent of variance accounted for by the between-

group model is given by Raudenbush and Bryk (1986);

{Var(ij) - Var(BJple)} / Var(ij) .

where, Var(Bj ) is the unconditional parameter variance of

path p. This is the p,p element from the r matrix

estimated in the unstructured between-group model,

Var(B |W ) is the conditional variance of path p.

This 1: t e parameter variance estimated in the

structured between-group model.

This statistic provides a useful criterion by which to

assess overall model performance and it also provides

information for modifying the between-group model for each

path.

- - e s 0

An ordinary 2 statistic can be used to test whether a

second-stage regression coefficient is zero. The standard 2

form is;

 

Standard Error(P - P)
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where;

P is the estimated parameter value,

P is the hypothesized parameter value,

Standard Error (P - P) is the estimated standard error

of the difference score between the estimate and

the hypothesized parameter value.

In terms of the multilevel path analysis this becomes,

*

7 a

*

Dllégs

where, 1*s is the second-stage parameter coefficient, and

 

Dflé?s is the square root of the 5,8 diagonal

term from the posterior sampling variance of the fixed

effect, i.e. from D*91 in Equation 2.22.

This statistic has an asymptotic Z distribution.

Raudenbush & Bryk (1986) contended that statistical

tests of regression coefficients would be more robust to

such violations than chi-square tests of variances.

A note of caution has to do with the sheer number of 2-

tests that can occur. Each path can have numerous between-

group predictors so we could find ourselves performing myriad

non-independent Z-tests. The overall alpha level of the

entire set of Z-tests is unknown. It is therefore advised

that these tests only be use as a rule-of-thumb and not as

proof of the existence or nonexistence of particular effects.
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The computer program to perform the multilevel path

analysis involves thousands of calculations over numerous

iterations of the EM algorithm. Checking the accuracy with

which the statistical formulae were translated into code by

hand calculations would be an unwieldy task, and would be

quite prone to error. It was therefore concluded that the

only reliably accurate way to check the equations and the

design of the program would be to compare it to an already

established estimating program.

The multilevel path model is an elaboration of the

Hierarchical Linear Model devised by Raudenbush (1984), so

the HLM program which estimates this model (Bryk, et al,

1986) is a natural choice for comparison. The difference

between the two models is that the multilevel path model

stipulates a multiple equation system, without intercepts at

the first-stage; while the HLM model stipulates a regression

model with intercepts. I therefore modified the multilevel

path program so that the first-level design could include

intercepts and could be restricted to one equation. With

these modifications the models for the two programs should

be the same. Also, under these conditions the Bayesian

estimating equations of the multilevel path model should

reduce to the HLM case.

To empirically test whether the algorithms were equivalent
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in this case, both programs were used to analyze an identical

dataset stipulating an identical model for the data.

Wm

The data to be given the parallel analysis was drawn

from the High School and Beyond study (Coleman, Hoffer 6:

Kilgore, 1982). This study will be more fully described in

chapter four. For the purposes of exposition I will only

mention that in this analysis the data consisted of measures

on students in 94 schools. The dataset also included measures

at the school level but they were not included in the

validation run.

The within-school model is a standard regression with one

outcome and three predictors. For individual i and group j

this model is,

Math Achievementij - BOj + 813(M1nority Status)1j +

B2J(Gender)1j + B3J(SES)1J + Rij

where;

Math Achievement - a standardized math score,

BOj - is the mean math achievement for school j. The

student level predictors were mean deviated so

that the intercept was the group mean.

Minority Status - Whether the student was a minority,

Gender - Whether the student was male or female,

SES - Socioeconomic status index for student,

R11 - Sampling error.

The between-group model was unstructured,

Bj - B-Mean + Uj ,

where, Bj - The 4 by 1 vector of regression coefficients for
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a group,

B-Mean - The 4 by 1 vector of grand mean paths,

Uj - The 4 by 1 vector of parameter errors.

This model was run on both analysis programs for 20

iterations of the EM algorithm.

The degree of agreement was quite high. The likelihood

function used to monitor the progress of the algorithm,

Equation 2.22, incorporates all the information of the

estimates. 'The value of the likelihood functions for the

two programs differed only from .001% to .02% over the 20

iterations. The estimates for the first-stage error variance

were identical at 1&498. Estimates for the elements of 1

were very close, with differences ranging from .002% to 11%

(see tables 5.1 and 5.2). The posterior estimates for the

second-stage intercepts, 10, were also very much in agreement,

with differences ranging from 0% to .07% (see table 5.3).

The two estimating programs produced virtually identical

parameter estimates when identical models were analyzed. What

little differences there were can be explained by the fact

that the programs were not written in the same programming

language and the form of the equations were not the same.

The HLM program was written in fortran with self-contained

matrix subroutines. The multilevel path model, on the other

hand, was written in SAS, using the Proc Matrix procedure

(SAS Institute, 1985). Rounding errors and the accuracy of

subroutines could differ between the two languages.
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This parallel analysis has established that the multilevel

path program produces sensible results when compared to an

established estimating program for a restricted model. The

soundness of the algorithm has not been established for

other models and other datasets. The program will have to

be run under many conditions before the status of programming

bugs can be thoroughly assessed.



CHAPTER I“

USING THE MODEL

In chapter two the multilevel path model was defined, the

estimators derived and their statistical properties discussed.

In this chapter we ask if this model can be fruitfully applied

to educational research. We need to know a) if the model gives

estimates which have some meaningful correspondence to the

actual processes being studied, and b) if a multilevel path

analysis lends itself to an interpretation which enhances our

understanding about important educational questions. Ihiorder

to demonstrate the meaningfulness and interpretability of the

model I will analyze two educational data sets.

th S h e d a

The first data set is from the High School and Beyond

study (Coleman, et al, 1982). As mentioned in chapter one

this was a very large scale study in which a sample of 998

was taken nationwide. A major focus of the study was the

question, "What is the relationship between students'

characteristics, such as family background and ethnicity,

and academic success?" Previous studies have shown that the

relationship between students' SES and academic attainment

is substantial (Lee, 1986). This finding is of great concern

to many educators because it seems to undercut the ideal of

fairness, equality and equal access to opportunity. The

study by Coleman et al (1981) focused on the relationship

79
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between student background and achievement in high schools of

two types, public and private Catholic. In this study,

background and achievement were examined in a broad context.

Within the schools, student background.information was gathered

on variables such as family SES and student's ethnicity.

Academic measures included number of math classes taken and

mathematics achievement score on a standardized math test.

One of the most controversial conclusions of this study was

that Catholic schools were found to be more egalitarian than

public schools. This claim was made on the basis of the

finding that the relationship between SES and achievement is

not as strong in Catholic schools as it is in public schools,

so that the disequalizing effect of SES on educational outcomes

is smaller in the Catholic sector. This has led to widespread

speculation that not only is much education inequitable in

this country, but that such inequity is concentrated in our

public institutions.

On the face of it, the appearance of inequity in public

schools is alarming and invites speculation about ”What is

wrong with our schools?" In order to gauge the seriousness

of the problem and to devise solutions, the mechanism behind

the inequity must be understood.

Multilevel linear models are particularly well suited for

exploring this question because the issue concerns processes

that arise at different levels of aggregation. The effect of

SES on achievement pertains to students within schools. The

influence that sector has on the SES to achievement
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(SES—A>Ach) effect pertains to a school-level variable (sector)

and its effect on a student-level process. The mechanism which

explains how sector influences the SES-—4>Ach effect would

consist in school-level variables which characteriZe public

and Catholic schools and explain why the two types of schools

function differently. For example, it may be discovered

that certain policies and pmactices characterize Catholic

schools and explain why students of different SES backgrounds

achieve at the same level in these schools.

One effort to bring a multilevel approach to bear on this

issue was the reanalysis of Coleman, et al's study by

Raudenbush and Bryk (1986). They used an approach called

the Hierarchical Linear Model, or HLM, in which a single-

outcome, multiple regression is posited in numerous groups

as the within-group model” The 'variation in the group

parameters over groups is modeled at the between-group model

in such a way that characteristics of the group predict the

group's regression coefficients. Raudenbush and Bryk

demonstrated the existence of inequity within schools by

showing that there are schools which have a positive

SES——>Ach regression slope. Further, they demonstrated that

public schools were less equitable than Catholic schools by

showing that being, in the ‘public sector was positively

associated with a school having a larger SES——>Ach slope.

In other words, sector was introduced as a predictor in the

between-group model. Lee (1986) and Lee and Bryk (1986)

carried this logic further. Their goal was to demonstrate that
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there was a mechanism which explained the greater equity of

Catholic schools. They added variables to the between-group

model which represented policies and practices of schools.

If the proper explanatory policy variables were introduced,

the estimated effect of sector on the SES——>Ach slope would

disappear.

It is noteworthy that Raudenbush and Bryk and Lee and

Bryk upheld the existence of a sector effect because Coleman

et a1. estimated this effect by performing separate student-

level regressions first for the public school students and

then for the Catholic school students. The classroom level

of analysis was ignored, making the results vulnerable to

aggregation bias.

Another possible source of bias is the presence of

confounding variables at both the within-class and the class

levels. Raudenbush and Bryk devised a model that controlled

for confounding variables at both levels of analysis. They

concluded that there remained a sector effect on the

SES/achievement relationship, even when aggregation bias and

confounding factors were controlled for.

In Lee and Bmyk's analysis two outcomes were used as

yardsticks of academic attainment: the number of math courses

taken in high school and math achievement. In the HLM approach

this means that two separate within-class models must be

analyzed. One had math achievement as the dependent variable,

predicted by student background. The other had number of
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math classes as the dependent variable, also predicted by

student background.

The first within-class model had the form:

Ach - Bo + B1(Academic Background) + B2(Minority) + B3(SES)

In the second-stage model, the first-stage slopes, B2

(Minority-->Ach) and B3 (SES-->Ach) are predicted by school

context variables (i.e. average school SES and percent minority

enrollment in school) and school practice and climate variables

(e.g. number of math courses available in the school and level

of disciplinary problems in the school). The parameters, Bo,

the school mean, or B1, serve as statistical controls in this

analysis so the discussion here focuses on B2 and B3. After

school context and school climate variables were taken into

account in the second-stage model, the sector effect

disappeared. So the notion of "inequity" is explained away

and is replaced by the specific climate, policies and practices

of the school.

In the second model, the number of math classes is the

outcome for the within-class regression:

# Classes - Bo + B1(Academic Background)

+ B2(Minority) + B3(SES)

In the subsequent analysis, the between-group predictors

for the B2 (Minority-->Classes) slope and the B3
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(SES-->Classes) slope were school climate variables (i.e.

minority enrollment and school SES). This analysis was much

less conclusive than the previous one. The sector effect was

never explained away.

A limitation of the Raudenbush and Bryk analysis is that

it only modeled one outcome. In Lee's analysis it is contended

that the two outcomes, number of classes taken and achievement,

are both important outcomes which bear on the equity issue.

But the main limitation of Lee's approach is that the two

outcomes of interest must be assessed by two separate analyses.

AS Lee asserts (1986), it is reasonable to assume that the

number of math classes taken has a strong effect on math

achievement. This implies that a properly specified model

would include the effect of Number of Classes on achievement.

Such an analysis requires path modeling and is outside the

scope of the HLM model. The analysis presented in this

chapter employs this sort of within-groups path model.

The issue can be illustrated by path diagrams. A model

similar to the two parallel within-groups regression models

used by Lee would have the form:



 

 

Minority 311 >—Classes

B21

SES 322 > Ach

Figure 4.1

Path Diagram of Two Separate Regression Analyses

A separate regression analysis is run for each outcome.

The slope estimates of one analysis does not effect the slope

estimates of the other analysis. But what if we connect the

separate models by drawing an arrow between the outcomes:

 

 

Minority 311 :7 Classes

B22
B21

/B12

SES 323 >7Ach

Figure 4.2

A Single Path Model Incorporating All Variables

Instead of two regression models we have one path model.

Such a model is different from separate regression models in

two ways 1) an additional relationship, the Classes/Ach effect,

is estimated and 2) some of the previous relationships may be

estimated to have very different values under this model. For
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example, suppose minority status and student SES affect

achievement only by affecting the number of classes taken, i.e.

suppose the actual model is;

 

 

Minority Bll ; Classes

7'

B21

B12

/ 1‘

SES Ach

Figure 4.3

Path Model With Indirect Effect of

Student Background on Achievement

If this represents the state of affairs of the world,

when the Classes/Ach path is added to the model, the estimates

of Minority/Ach and the SES/Ach path will tend towards zero.

Contingencies such as these can only be explored by a path

analysis.

The sample and the Data

In the analysis I performed on the High School and Beyond

data a random sample of 158 schools out of the original base

of 998 schools was employed. In this sample there were 68

Catholic schools and 90 public schools. Four within-group

variables were used in the present analysis:

Minority Status (Minority) - Whether or not the student was

a minority. O-White,

l-Minority.
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SES - A composite index of student's

social class.

Number of Classes (C1asses)- Number of advanced math classes

taken in high school.

Math Achievement (Ach) - Senior year math achievement.

wo a W - ss el

In order to demonstrate the explanatory power of a within-

groups path analysis, we will first estimate the two parallel

but separate regression models illustrated by figure 4.1.

We will then compare these results to an analysis employing

a within-group path analysis as depicted by figure 4.2.

The two regression models have the single-equation form

for person i and group j,

Classesij - B113(minority) + B12J(SES) + R131

Achievementij - B211(Minority) + B22J(SES) + Rij2

The between-groups model is unstructured, i.e. there are

no group-level predictors so that regression parameters vary

about a grand mean,

The results of the parallel regression run can be found

in table 1. In table l-A, the estimated parameter variances

are listed. For each estimated parameter variance there is

a corresponding chi-square test. This chi-square statistic

tests the null hypothesis that the parameter variance is

zero (see chapter 3). A larger chi-square statistic indicates

a less probable result given the null hypothesis. If the

probability of the chi-square test is below some a priori
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critical level, that is grounds for inferring that the

parameter variance is not zero. The exact value of the

critical probability is of course arbitrary, but the customary

.05 value will be assumed.

In table l-A the chi-square tests indicate that all the

parameter variances are significant. In other words every

regression coefficient varies from group to group.

Table l-B shows the weighted average of the coefficients,

with the coefficients from each group weighted by the precision

of the group estimate. This gives us some idea ofzni'average'

regression model from which all the groups deviate. In the

special case in which the coefficient is inferred to have zero

parameter variance the average coefficient represents the

structural relationship for all groups. The 2 test indicates

whether the average coefficient is significantly different from

zero. As we see, all coefficients are different from zero.

This analysis is dramatically more interesting when

compared to the within-group path model in the next section.
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Chi— Parameter

Parameter Square To Total

MWMM

.324 232.616 (.0001 .285

.059 219.700 <.0001 .235

6.692 211.456 <.0001 .270

.688 160.966 .034 .156   
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Average 2

Path Value Statisgig Pgobabiligy

B11 (Minority->

Classes) -.279 -3.620 .0003

B12 (SES->

Classes) .343 10.420 <.0001

B21 (Minority->

Ach) -2.690 -7.318 <.0001

B22 (SES->

Ach) 1.326 9.189 <.0001    
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W1.

In contrast to the parallel regression analyses we now

propose a path model which 1) relates background variables

to both Classes and achievement, but also relates Classes to

achievement as depicted by figure 4.2. The within-group

path model is a two equation system which has the individual

form (for individual i and group j):

Classesij - B11j(minority) + 3121(SES) + R131

Achievementij - B213(Classes) + B22J(Minority)

+ B23j(SES) + R1j2

o etw en- u n l s

The first computer run that is performed with a multilevel

path analysis specifies an 'unconditional' between-group model,

one that stipulates no between-group predictors, as was the

case with the parallel regression analyses. Since the

parameter variance estimate is not conditioned on between-

group predictors it is at its maximum possible value.

Unconditional estimates of parameter variance provide baseline

estimates of the total variance, if any, that may be explained

by future runs which include group-level variables. This

baseline run will also yield the mean slopes across groups,

giving us an idea of what the central tendencies of the

paths are. The unconditional second-stage model takes the

simple form:
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B11 - B11 + U11

B12 - B12 + U12

B21 - B21 + U21

B22 - B22 + U22

B23 - B23 + U23

The ka terms are the average, or pooled-within—group,

estimates of the paths. If there is no parameter variance,

i.e. if Var(Ukp)-0, then the pooled within group path is

characteristic of all groups. Figure 4.4 is a multilevel

path diagram of the baseline model. The bold arrows represent

the first level. (within-group) 'paths. The finely' etched

arrows represent predictive relationships between the second

level (between-group) variables and the first level paths.

In this model only the second-stage errors (Ukp) impinge on

the first-stage paths.
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Figure 4.4

High School and Beyond Data: Baseline Model
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We can see from table l-C that parameter variance is

only a small part of the total variance of the path estimates.

Column five lists the ratio of the parameter variance to the

total variance. The numerator is from column one, the

parameter variance. The denominator is :1 statistic which

represents the sum of parameter and sampling variance. This

ratio, then, is the percentage of total variance represented

by the parameter variance. The estimated parameter variance

of the first three paths accounts for only 28%, 24%, and 22%

of total variance, respectively. The relatively small group

sizes could account for why the sampling variance is large

when compared to parameter variance.

Column four lists the probabilities of the chi-square

tests. From this we see that the first three parameter

variances are significantly different from zero. The parameter

variance for B22 represents only 13% of the total variance,

even though the chi-square test still indicates that this is

a non-zero quantity (p-.007). The last path, B23, has a

parameter variance which is only 9% of total, and indeed the

chi-square indicates this is ‘not significantly different

from zero (p-.95). With virtually no systematic variance to

be explained, it is unlikely that any between-group variables

will predict the B23 path.
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001 a d e 0 ate

a e e V e a

Unagragguged Between-Gggap Mgdel

Chi- Parameter

Parameter Square To Total

Raga Variaace Statistic Eggbability Vagiance

B11

.319 322.601 <.0001 .281

B12 '

.059 219.546 <.0001 .236

B21

.335 210.709 <.0001 .221

B22

2.173 172.674 .0073 .130

B23

.198 104.037 .955 .087    
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This model offers a sharp contrast: to the parallel

regression analyses. First of all let us compare the average

coefficients from the two analyses in tables 1-B and l-D. The

first. two coefficients, Minority/Classes and SES/Classes,

arevirtually unchanged. But the last two coefficients,

Minority/Ach and SES/Ach, have become much smaller. The

average minority/Ach effect went from -2.69 to -l.928, while

the average SES/Ach effect went from 1.326 to .391. From

this we can conclude that on the average, much of the effect

of students' background on achievement is through the number

of classes taken. In other words, student background

determines achievement largely by determining how many classes

the student will take.

It might be argued that we have set up a straw man, that

the HLM approach could have modeled the same two equations as

the multilevel path model, in two separate runs. This is a

viable option but it allows for less satisfactory modeling at

the between-group stage. With the multilevel path analysis

the paths from all equations can be modeled by group variables

as one set. Since the covariances among paths across equations

are accounted for, the simultaneous approach can be expected

to yield more appropriate results for the second-stage model.



Path
 

811 (Minority->

B12

B21

B22

B23

Classes)

(SES->

Classes)

(Classes->

Ach)

(Minority-

Ach)

(SES->

Ach)

Ifihl2_l;2

o d e

MW

Un uct e Be w e -

Average Z

Value Sgatiatia

-.278 ~3.620

.342 10.414

2.951 38.029

>

-1.928 -7.411

.391 3.622  

del

Egobabiiity

.0003

<.0001

<.0001

<.0001

.0003  
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Another striking contrast occurs if we compare the

regression model parameter variances, table l-A, with duzpath

model parameter variances, table l-C. As before, the values

for the first two coefficients are virtually unchanged between

the two models. But the variances for the last two

coefficients have diminished by two-thirds from the regression

to the path models. In fact, the path model variance for

the SES/Ach effect is not significantly different from zero.

The SES/Ach effect is constant over groups when achievement

is controlled for the number of classes taken. Almost all

of the variation in equity is accounted for by variation in

how classes are distributed. The situation is like the path

model depicted in figure 4.3 where SES affects achievement

through Classes. In order to explain apparent differences

in the SES/Ach relationship from school to school, we must

find school-level variables which explain tflua SES/Classes

effect and the Classes/Ach effect. This is the issue taken

up in the structured between-group analysis.

c u wee - ou Anal sis

A second statistical analysis is now presented in which

group-level predictors have been included in the second-stage

model. The three group-level variables that were used in this

analysis are defined as follows:
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Sector - Whether the school belonged to

the public school or the

Catholic sector.

0-Public, l-Catholic.

Ave-SES - Average social class of all

students in the school.

Sd-SES - Standard deviation of students'

social class in a school.

Several models were estimated to explore different

combinations of second-stage predictors. The multilevel path

analysis is highly sensitive to changes in the model. Because

second-stage predictors can be multicollinear and because the

estimation procedure is full information maximum likelihood,

the estimate for one parameter affects estimates for all other

parameters. Note that the first-stage model does not change.

After some exploration a second-stage model of the following

form was settled upon:

B11(minority-->classes) - E11 + 1111(sector) + U11

B12(SES-->Classes) - B12 + 1121(Sector) + 1122(Ave-SES)

+ U12

B21(Classes-->Ach) - B21 + 1211(Sector) + U21

B22(Minority-->Ach) - B22 + 1221(Sd-SES) + U22

B23(SES-->Ach) - 323 + 023

As with the baseline analysis, the intercepts of the

between-group regression are slope averages. This is because

all between-group predictors were mean deviated. A pictorial
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depiction of this multilevel path model is given by figure

4.5. As with figure 4.4, the bold arrows represent the first-

level model and the finely etched arrows representaipredictive

relationship between group-level variables and paths. As

before, the U's are parameter errors.



101

U11 sector

——> CLASSESMINORITY \\\\\‘ 311\\\\\‘

sector

U22 /////' B22 2}/////

U21

sd-ses ,/////

sector

ave-se::::\\‘

0

12\\\ B12

/
SES 323 >>ACH

/
U23

 

Figure 4.5

High School and Beyond Data: Baseline Model
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The striking feature of this model is that sector does

not enter into the relationship between student's background

(i.e. minority status and SES) and achievement. Raudenbush

& Bryk (1986) and Lee (1986) both found such relationships.

We see that sector helps determine B11, the Minority-->Classes

path, B12, the SES-->Classes path and B21, the

Classes-->Achievement path. The implication would seem to

be that once the effect of Classes on Achievement is taken into

account for students within schools, sector no longer

determines the relationship between background and achievement.

Such a conclusion would not be apparent without a path model

at the within-group level.

Sector La important for mediating the relationship between

background and number of classes. The conclusion that we draw

is that sector mediates equity but ag£,by directly influencing

the relationship between students' background and achievement.

Rather, sector influences the indirect relationship between

background and achievement. In other words, Catholic schools

accomplish greater equity in achievement by promoting equity

in classes. This is demonstrated by the sector influence on

the Minority/Classes path and on the Classes/Ach path.

Lee found that this relationship was resistent to being

explained away by school context and school climate factors.

Thus a mechanism which explains how Catholic schools function

differently from public schools, was not found.

Table 2-A gives information about the parameter variances

and helps us to assess how well the between-group model fit
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the data. If between-group variables in the model perfectly

predicted a path, the parameter variance would fall to zero.

Although no model achieves this ideal the last column of

table 2-A, the R2 column, helps us assess how close the

model came to the ideal. R2 is the proportion of parameter

variance accounted for when compared with the baseline analysis

(Raudenbush & Bryk, 1986). The formula is:

Var(B) - Var(B|W)

 R2 -

Var(B)

Var(B) is the parameter variance for a path from the

baseline model. Var(B|W) is the parameter variance from a

model in which the parameter variance is conditioned on group

level predictors, W. The R2 for B11 is .32, so Sector accounts

for 32% of the total parameter variance for this path.

The estimated second-stage regression coefficients are

given in table 2-C. In. column three. we find that the

coefficient for Sector predicting the B11 path is .62. The

2 test of whether this coefficient is different from zero

has a probability less than .0001, which is convincingly

significant.

The test of the usefulness of the model is in what it can

say about school processes. From table 2-B we see that the

average value of 811 is -34, which is significant at

probability"< .0001. This indicates that (”I the average

being a minority leads to having fewer math classes. As we
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have seen, the second-stage regression coefficient of Sector

predicting B11 is .62. This means that going to a Catholic

school will have a positive effect on the B11 path (i.e.

makes the slope less negative by an increment of .62). The

effect of being in a Catholic school (W-l) is demonstrated

by the second-stage regression equation:

A

B11 - -.34 + (l) .62

Being in a Catholic school flips the sign of the

Minority/Classes path from -.34 to; -.34 + .62 - .28. In

public schools being a minority is a disadvantage for taking

math classes, while in Catholic schools it is an advantage.

This defines a disordinal interaction between sector and the

Minority-->Classes path.

Now let us focus attention on the other background

variable, SES. Table 2-B indicates that the average

SES-->Classes path is .35. On average, higher SES students

take more math classes. This B12 path is predicted by two

group level variables:

1) Sector, which has the regression coefficient of -.25. In

Catholic schools the B12 path is smaller indicating that there

is a weaker relationship between SES and number of classes

taken. Catholic schools seem more egalitarian by this

criterion.

2) Ave-SES has a .15 coefficient for predicting B12. In

schools with higher average SES, the student's SES is more

important for determining number of classes taken, i.e higher
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SES schools are less egalitarian.



Path.

B11

B12

B21

B22

B23
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V c s

t u u e wee - o e

Chi- Parameter

Parameter Square To Total

Varianga Sgagiagic Probabilitv YQL13322___

.216 204.312 <.0001 .203

.048 205.549 <.0001 .198

.318 207.220 <.0001 .213

1.849 166.351 .0149 .109

.187 103.918 .955 .082 

.32

.19

.05

.15

 



  

Tabla Z-B

o o d

Averaga Valaa 9f Ragga

tu e etwee -G on el

Average 2

Path Vaiue Statiagia o ab it _

B11 (Minority->

Classes) -.343 -4.705 <.0001

B12 (SES->

Classes) .353 11.010 <.0001

B21 (Classes->

Ach) 2.953 38.323 <.0001

B22 (Minority—>

Ach) -1.868 -7.319 <.0001

B23 (SES->Ach)

.371 3.451 .0006    



B11

B12

B21

1322

B23

Path
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ab 2-

e ata

o t e e cie ts

Second

Second Stage

Stage Regression Z

MMMW

Sector .617 4.34 <.0001

Sector -.246 -3.52 .0004

Ave-SES .149 1.80 .0722

Sector .278 1.82 .069

Sd-SES -7.02 -2.72 .007
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The direction of all the second-stage effects is

coincident with previous research and substantive theory.

The R2 for the B12 slope indicates that these three second-

stage predictors (Ave-SES, Sector and Ave-Classes), account

for 22% of the total parameter variance of the path.

The B21 path, representing the relationship of the number

of math classes a student takes to math achievement, has an

average value of 2.95 (as indicated by table 2-B). Taking more

classes is strongly related to higher achievement. This

relationship is quite variable across schools, with an easily

significant parameter variance indicated in table 2-A. It is

helpful to look at the "parameter to total variance” ratio in

column 4. Twenty one percent of the total variance is

parameter variance even after being conditioned on the second-

stage model.

The single between-group variable that predicts the B21

(Classes-->Ach) path is Sector. The regression coefficient

of B21 on Sector is .28 (re table 2-C) which is only marginally

significant (P - .07). The interpretation that can be given

this is that Catholic schools evidence a somewhat stronger

positive relationship between number of classes and achievement

than public schools. It could be said that classes are more

efficient in Catholic schools, i.e. taking a math class

Creates a greater gain in math achievement in Catholic schools.

TC> find a mechanism for this influence we might inquire into

(”lrricular differences between Catholic and private schools.
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As table 2-A shows, the R2 for B21 is only .05, i.e. only 5%

of the parameter variance is explained by Sector. Sector is

not very important for mediating the Classes to Ach effect,

and there are other factors, not represented in this analysis,

which would explain the path.

The final two paths represent the relationship between

background variables and achievement. Looking at table 2-A

we see that the parameter variance of both paths is a small

percentage of total, account for only 11% and 8% of total

variance. Once the number of classes is controlled for there

is little variation from school to school in the relationship

between student's background and achievement.

The Minority to Achievement path, B22, has an average

value of -1.87 (table 2-B), indicating that being a minority

has a negative effect on achievement. This path is predicted

by the standard deviation of SES for a school (Sd-SES).

From table 2-0 we see that the coefficient for Sd-SES is

-7.0 (significant at a P - .007). This second-stage

coefficient implies that as a school gets more heterogenous

in its social mix, a student's minority status is a bigger

determinant of achievement. The precise interpretation to

give this relationship in terms of school processes would be

difficult to determine without more information about how

the schools functioned. The last column of table 2-A indicates

that Sd-SES accounted for only 15% of the parameter variance

in B22 (Minority-->Ach). Given that the total parameter
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variance for B22 was initially quite small, the import of

the Sd-SES prediction is minimal.

The final path is SES to achievement, B23. It has an

average value of .37, which is significantly different from

zero (p-.0006, from table 2-B). Since there is virtually no

parameter variance in this path, the average value represents

the relationship for every school. As with number of classes

taken, higher SES is associated. with. higher achievement

scores. This holds equally true for the public and the

Catholic sector.

The multilevel path model indicates that the processes

in the schools that are responsible for making the Catholic

seem more 'egalitarian' than public schools pertain to how

math classes are distributed to students. Once we account

for the number of math courses students take, the relationship

between student background and achievement is quite constant

across schools.

11 e na 8 s Sc tt ools

The second dataset that is to be analyzed was first

interpreted by Willms (1985). The dataset I have access to

comes from 20 secondary schools in one administrative division

in Scotland. The total number of students in the dataset is

1292, so on average 65 students were sampled per school. The

original intent of gathering the data was to estimate the

effectiveness of each school based on the school mean on an
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achievement index. In one study, "effectiveness” was

controlled for student level socioeconomic background, and

student level academic background (Willms, 1987). School

”effectiveness“ was also controlled for school level Nunuext"

factors consisting of aggregated SES and academic background.

In the 1987 analysis by Willms, a technique devised by

Longford (1985) was employed for obtaining maximum likelihood

estimates of covariance components in a multilevel mixed

model. Using this technique, Willms was able to estimate

school mean achievement controlled for by variables at two

levels of analysis, i.e. the individual student level and

the school level. In the present analysis the dataset will

be used for a quite different purpose than originally intended.

The present analysis will a) define a path model at the

within-school level, b) will ascertain if the paths vary

from school to school, and c) will explore the possibility

of accounting for path variability with a between-school

model which incorporates school context factors as predictors.

Note that school means, which were the focus of previous

analyses, do not appear in the present model at all.

It will be of technical interest to see how well the

multilevel path analysis performs when there is a small number

of groups, 20 in this case. In contrast, in the previous

analysis of the High School and Beyond data there were 158

schools. Since the Scottish data has a small set of schools

taken from. a Icontiguous geographical area, the range of

variation of the within school processes might be severely
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restricted. This could result in small parameter variance

for paths, and attenuated second-stage regression estimates.

There are five variables which make up the within-class

data set:

Education of Mother (Edmoth) - Educational level of

student's mother.

Occupation of Father (Occfath) - Occupational status of

father. A sociological

index of occupational

status .

Number of Siblings (Numsib) - Number of brothers and

sisters.

Verbal Reasoning Quotient (VRQ)- A verbal IQ battery,

intended to represent

general academic skills.

Achievement (Ach) - An index of measures

covering the last three

years of secondary school.

The first three variables are intended to measure a

student's socioeconomic status. The verbal reasoning score

is intended to capture the student's academic background,

i.e. the academic skills the student enters secondary schools

with (Willms, 1987).

The three school-level variables consist of aggregated

student-level measures and represent school context. It is

often believed that aggregated individual level variables

represent more than simply the average impact of the

individuals' values. For example, if average verbal reasoning

is high, a school might have a more interesting and creative

curriculum, contributing to a positive learning environment,
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even for those students with low verbal reasoning skills.

This is an example of a variable changing its meaning from

one level of analysis to another (Burstein, 1980).

The school level variables are:

Average SES (Ave-SES) - An average socioeconomic

background score. The SES

score for a student was a

weighted combination of

education of mother,

father's occupation and

number of siblings, where

the weights were derived

from principle components

analysis (Willms, 1987).

Average Occupational Status

of Father (Ave-Occfath) - Average of the student's

occupational status index.

Average Verbal Reasoning - Average of the students'

(Ave-VRQ) VRQ score.

F s -S e del

The path model devised on this data set was a two-equation

system similar to the model posited for the High School and

Beyond data. Although it would have been preferable to

demonstrate the multilevel path approach with a very different

model, (e.g. a four equation system with numerous endogenous

predictors) a certain similarity between the two sets of

data constrained the choice of sensible models. The two

equation system has the following form for individual 1,

within group j:
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VRQiJ - B113(Edmoth)1j + 8121(Occfath)1j + B13j(Numsigs;1gl

Achij - B21j(Edmoth)ij + B22j(0ccfath)1j + B23J(Numsibs)1

+ 3241(VRQ) + Rij2

The path diagram depicted in figure 4.6 is more

descriptive. This is parallel to the High School and Beyond

model in general definition” In both cases there are two

equations in the system and in the first equation student

social background ‘variables are antecedents for academic

background. In the second equation social background and

academic background (as an endogenous predictor) are

antecedents for achievement. The parallel is further extended

by the fact that in ‘both studies the SES and academic

background variables were aggregated to the school level to

define school context, but more of this when the second-

stage model is described. The primary reason for the striking

parallel between the two data sets is the fact that they were

compiled for similar reasons, to estimate academic outcomes

which are controlled for factors at two levels of aggregation.

Parallel purpose led to parallel structure.



116

U11

\\\\ U24

EDMOTH 311
 

U21_______‘ .

-21

 

U12-1\“ B12

OCCFATH B22

U22*””"

U13‘-‘—’Bl3

NUMSIBS .132

/

U23

ACH

V
Figure 4.6

Scottish School Data: Baseline Model
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Baseline_Anelxsis

As before, an initial baseline analysis is performed with

an unstructured second-stage model, i.e no school level

variables are stipulated, so the paths vary around the grand

mean:

B11 - B11 + U11

B12 - B12 + U12

B13 - E13 + U13

B21 - E21 + U21

B22 - E22 + U22

B23 - E23 + U23

324 - 324 + 024

Combining this with the first-stage model gives rise to

the multilevel path diagram in figure 3. As before, the

bold arrows represent paths of the first-stage model, and

the finely etched arrows pointing to the paths represent the

impact of school level factors (in the baseline model, random

parameter error) on the paths.

Table 3-A lists the estimated parameter variances of the

paths. By inspecting the chi-square probabilities (column

4) it. is apparent that three paths have no significant

parameter variance. The paths B12, B13 and B24 have chi-square

probabilities of .67, .84 .34 respectivelyu As a result, these

paths will not be modelled with school level predictors.

Table 3-B gives the 'average' betas. These are the

intercepts of the second-stage regressions:
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B11, B12, ... , B24

The average betas coincide with commonsense expectations. 811-

Ave and B12-Ave are positive indicating that a higher level

of mother's education and a higher level of father's

occupational status is associated with higher verbal reasoning

skills. B13 is negative indicating that verbal reasoning

skills are inversely related to size of family. All things

being equal, having a larger family is probably associated

with a generally lower socioeconomic status since more children

means a greater financial ‘burden. The same pattern of

relationship between SES variables and outcome is found in

the second equation. Taken together the paths, B21 (Edmoth-

->Ach) , B22 (Occfath-->Ach) and B23 (Numsibs-->Ach), indicate

that higher SES is associated with greater academic

achievement. The final path, B24, indicates a strong positive

relationship between academic background and achievement.



  

Chi-

Path Parameter Square

Variaaga Statistic oba

B11

.02286 51.66 .0001

B12

.00298 16.79 .67

B13

.00395 13.82 .84

B21

.00494 33.33 .03

B22

.00689 35.23 .02

B23

.01102 45.84 .0008

B24 .00234 22.05 .34   

Parameter

To Total

Vagiance

.60

.23

.39

.35

.45

.57

.25 



Path

B11 (Edmoth->

B12

B13

B21

B22

B23

324

VRQ)

(Occfath->

VRQ)

(Numsibs->

VRQ)

(Edmoth->

Ach)

(Occfath->

Ach)

(Numsibs->

Ach)

(VRQ->Ach)  

Average

.086

.236

-.l70

.093

.111

-.060

.639
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27.

99

.96

.72

.69

.01

.95

61

del
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.046

<.0001

<.0001

.0002

<.0001

.050

<.0001  
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a e t

A number of exploratory runs were made to determineIflfich

of the school level variables predict each path. .As was

mentioned earlier, since this is a full information maximum

likelihood procedure and since predictors are multicollinear,

inclusion. or exclusion of 13 single predictor alters the

entire solution. It is therefore necessary run numerous

trials, testing whole sets of second-stage predictors. The

end product of this exploratory phase is a quite modest

model which has the form:

B11 - B11 + 1111(Ave-VRQ) + 011

B12 - B12 + U12

B13 - B13 + U13

B21 - i521 + U21

B22 - E22 + U22

B23 - 323 + 1231(Ave-SES) + 1232(Ave-Occfath) + 023

324 - 324 + 024

Only two paths have predictors. Table 3-A, for the

baseline model, indicated that B12, B13 and B24 had virtually

no parameter variance and so were not susceptible to

prediction. Two other paths (B21 and B22) although having

significant parameter variance, evidenced no relationship

with the available set of school level predictors. This

raises the possibility that important school level processes
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are not represented and that the model may be misspecified

at the second stage.

Another issue is purely statistical. The degrees of

freedom are quite small in relationship to the number of

parameters being estimated. There are ten fixed effects and

only twenty schools. With more groups a more predictive

between-group model may have been possible.
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Scottish School Data: Structured Model
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The B11 (Edmoth-->VRQ) path is explained by average school

VRQ. The second-stage regression coefficient (table 4-C) is

.25, implying that in schools with a high average VRQ, mother's

education is more predictive of a student's verbal reasoning

than in schools with a low average VRQ. Why this is the case

is a matter of speculation. Perhaps average school VRQ is

indicative of a facilitative school learning atmosphere

where a mother's contribution to the general education of

her children will be reinforced rather than drowned out.

More in-depth information on the nature of the school processes

would be required to illuminate this question. Whatever the

underlying mechanism, Ave-VRQ explained 46 percent of the

total parameter variance, as is indicated by table 4-A.

Also, the chi-square probability of the conditional parameter

variance is .06, which is non-significant by a strict

criterion. 80 the B11 path has been substantially explained

by the model.

A rather different result was found in the second-stage

prediction model for B23 (Numsibs-->Ach). Table 4-C shows that

average school SES has a second-stage regression coefficient

of .61 for predicting B23. Since the average B23 path is

negative (-.06) higher school SES would tend to make this

path less negative, or more positive. School SES has a

large enough standard. deviation that 111 the ‘highest SES

schools the B23 path would flip around and become positive.

Perhaps this is a result of a threshold effect. If the



125

family is financially well off having siblings increases

opportunities for a child to learn. But below a certain

economic threshold, a bigger family means greater financial

burden and greater deprivation for the student. Again, only

process information about schools can begin to answer these

questions.

Another school level variable predicts the B23

(Numsibs-->Ach) path, namely the average occupational status

of father. Surprisingly, this has a negative predictive

coefficient for B23 which equals -.04. The 2 test for this

coefficient is significant at the .01 level. Why an SES-

related variable would predict with an opposite sign as

average SES is mysterious. This suggests that the model is

not fully specified. If other relevant school level variables

could have been added to the model, such an anomaly might

disappear. Table 4-A indicates that the conditional parameter

variance of this path is significant 80, although the present

second-stage model accounted for 38 percent of the parameter

variance, there is more that can be explained.

In sum, table 4-A shows us that three paths (312, B13 and

324) had virtually no between-group (parameter) variation.

These paths can be regarded as constant over schools. One

path, B11, had virtually all of its between-group variation

explained. Another path, B23, had only part of its parameter

variance accounted for. Two paths, B21 and B22, had a

significant amount of parameter variance but none of it was

explained in a second-stage model.



B11

B12

B13

B21

17‘22

B23

324  

Parameter

@MM

.01023

.00401

.00272

.00580

.00743

.00683

.00287  
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Chi- Parameter

Square To Total

bab v Variance

29.43 .06 .43

16.81 .67 .31

13.86 .84 .27

33.48 .03 .42

35.40 .02 .49

29.96 .04 .52

22.16 .33 .31   
.38
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co t

Average Eglgg 9f Bathe
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Average Z

.087 2.48 .013

.232 7.59 <.0001

-.l68 -5.85 <.0001

.095 3.61 .0003

.112 3.99 <.0001

-.059 -2.06 .027

.639 27.02 <.0001 
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B12

B13

B21

B22

B23

Ave-SES .607 3.36 .0008

Ave-Occfath -.040 -2.48 .013
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Although the inability of the analysis to explain much

of the between-group variation.in.paths indicatesznuincomplete

model, .a baseline model is valuable in a multilevel path

analysis. If our interest lies getting precise estimates of

a path model for each group, a multilevel path analysis yields

posterior estimates of paths which have the smallest possible

means square error. If our interest lies in explaining paths

rather than estimating them, a rich and correctly specified

second-stage model is a necessity.

The analyses of both datasets has illustrated the

usefulness in stipulating path models at the between-group

level. In both cases the path model made substantive sense

and yielded sensible results after the analysis was performed.

The multilevel path analysis was less successful in explaining

the between-group variance of the paths. This difficulty is

symptomatic of the fact that the illustrations offered here

were borrowed from datasets that were designed for other

purposes. If the possibilities of multilevel path analysis

are going to be fully realized in the future, studies will

have to be designed for the purpose of explicating a path

model in numerous groups. This means that a rich mix of

process related variables has to be gathered at all levels

of analysis. When there is a more thorough matching of

statistical modeling and research design, substantive theory

will be better informed.



CHAPTER V:

CONCLUSION

I. Introduction

In the preceding chapters it has been argued that a

multilevel path model would merge the statistical traditions

of multilevel analysis and path analysis into a single powerful

analytic tool. In chapter two a statistical model was derived

which represented one type of multilevel path model. Chapter

three reviewed issues associated with the production of a

computer algorithm which would create estimates derived from

the model. Finally analyses of actual datasets were presented

in chapter four utilizing a computer program written according

to the principals outlined in chapter three. The analysis

section demonstrated that the multilevel path model gives

interpretable results when applied to the sorts of datasets

that occur in large-scale educational studies.

In principle, the multilevel path approach would be

pertinent whenever information is presented to the researcher

at two levels of analysis and the researcher is interested

in deducing causal processes at the 'lower' level. The

most obvious example of this is a study of students nested

within numerous schools, the situation in both datasets

analyzed in chapter four. In this instance we are interested

in modelling processes within each of numerous schools. A

less obvious example would be to study a set of individuals

observed at numerous time points. In the previous example a

130
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group was represented by observations on numerous individuals

within a school. In this example the 'group' is represented

by observations at numerous time points within an individual.

If we were studying what contributes to the development of

math skill in early elementary students, we might collect data

on computational skills, understanding of concepts and general

math ability at ten time points. A within-student path model

might take the following form:

 Time s—>fiath Achievement

Computation

Concepts

From such a model we could determine which, if any, math

skills are important for the development of math ability.

This application of the multilevel path model parallels the

applicathmn of the Hierarchical Linear Model to individual

growth curves, as outlined by Bryk and Raudenbush (1987).

These examples suggest that there is 21 wide range of

applicability for the multilevel path models. Nevertheless,

such models are especially useful if certain conditions are

met:

1. There are large datasets. Experience with the related

HLM has shown that data from tens of groups is required in

order to give precise estimates (Raudenbush, 1984). In
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fact, for a given total sample size, it is better to have

many small groups than a few large groups.

2. Similar processes occur in all groups. It is assumed

in the multilevel path model that the same variables are

related by the same causal network in all groups. In a

sense, each set of within-group paths represents a replication

of path model experiment.

3. If there is information available about the nature

of the groups, this information must explain why processes are

different from one group to another. This is because such

variables serve as predictors in a between-group model which

models variation in the within-group paths.

I W ve h Model

W

Although the results in chapter four demonstrated that

application of the multilevel path model can lead to

interesting results, this methodology may not always be

feasible because the algorithm is computationally intensive.

The EM algorithm requires many passes through the data before

it converges, so without a fast mainframe computer and a

healthy computer budget, such techniques may be impractical.

Ironically, one way around this problem may be the 'low

tech' approach. If a version of the estimating program

could be written to work on a micro computer, expense would

not be a factor. The analysis could be set into motion and
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the computer could be left on its own for however long is

required. This could be cumbersome from a time standpoint

though.

WW

Another problem with this type of analysis is a

conceptual, rather than a practical, one. Multilevel path

models will give proper estimates only if the models are

properly specified at both levels of analysis. This imposes

a heavy a priori burden on theory and emphasizes that this

technique is not particularly appropriate for exploratory

purposes.

t al est

A third problem that comes to light is statistical in

nature. The chi-square test for parameter variances is only

approximate. One reason for this is because the statistic

is a function of an estimated regression coefficient that is

the least squares estimate of paths and involves the inversion

of the data matrix for each equation, for each group. There

will often be groups that do not have full rank predictor

matrices. For example, if gender is a predictor and a group

is composed. of all females, the 'variance and covariance

terms for gender will be zero. 4At present, non-full-rank

cases are simply excluded from the calculation of the

statistic, but not from the Bayesian estimates (which do not

require the inversion of data matrices). So the estimates of
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parameters and the test statistics for parameter variances

may be based on two sets of groups.

Another reason that test statistics are approximate is

because they treat dispersion parameters as known quantities.

The error of the dispersion estimates cannot be estimated by

the present program.

III m at ons

Limited H9481 definition

The main limitation of this version of the multilevel

path model is that it represents only one of many feasible

configurations. Muthen and Satorra (1987) define the

conceptual possibilities for defining multilevel structural

models which include: 1) measurement models at the first

and/or second stage 2) random predictors at the first and/or

second stage 3) A path model at the second stage. These

possibilities define 32 different configurations which would

be possible for multilevel path model, of which the present

model is one.

W

In any path analysis it is very useful to have some

criterion by which to assess how well the model fits the

data. In a LISREL model one can test the fit of the model

by employing an omnibus chi-square test based on a likelihood
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ratio test (Joreskog, 1973). An analogous test has not been

developed for the multilevel path analysis. Perhaps a

likelihood ratio test based on the log likelihood of the

data (derived in chapter two) could be devised.

d u anc

The next issue may not be a limitation as such, but a

strong assumption. In the model devised in this thesis, the

first-stage disturbances (or errors) are uncorrelated, meaning

that e is diagonal. This means that the RR are uncorrelated

for the within-group equation system (individual i and group

J);

Y - Z B + R -

equation 1 Y1 - X1 b(x)11 + x2 b(x)l2 + °'° + xq b(x)1q

+ R1

equation 2 Y2 - Y1 b(y)21 + x1 b(x)21 + ~-- + xq b(x)2q

+ R2

equation K YK - Y1 b(y)1<1 + Y2 b(y)K2 +

+ Y(K-1) b<y>K<K-1) + x1 b<x>1<1

+ ... + xq b(x)Kq + Rx

This is a fortuitous assumption because it enables us to

use the separate-equation regression approach to estimate the

paths (Land, 1973). The assumption of uncorrelated
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disturbances is perfectly reasonable assuming that all

pertinent variables are in the model and the configuration

of paths is correct. It is commonly believed that if there

is a variable missing from the path model and that this

variable has a causal influence on two or more endogenous

(outcome) variables, the disturbances will be correlated.

This sentiment is echoed by Hanushek and Jackson (1977) "If

the same explanatory factor is excluded from more than one

equation, the effect of that factor will be present in more

than one error term and will cause the error terms to be

somewhat correlated" (p. 230). In Joreskog's LISREL model

(Joreskog & Sorbom, 1978) one can allow the error terms, Rk,

to be correlated. The motivation behind doing so is to make

up for such missing, confounding predictors (confounding in

that the missing variable is related to at least two endogenous

variables). It is assumed that since gm variables are

almost always left out of any model, correlated error terms

are a way to represent the effect of these missing variables

and the result will be a model that fits the data well.

Hunter and Gerbing have disputed this claim and have

devised two counter examples to disprove it (Hunter & Gerbing,

1981). The first counterexample illustrates a situation in

which a confounding variable is left out of the model but

the resultant path model has uncorrelated errors. The model

can remain well specified even in the face of missing

confounding variables and uncorrelated disturbances if paths

are added to the model which make the connections which
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would have been made if the missing variables had been in

the model. These connections will be indirect causal paths

because they would have been mediated by a missing variable.

As an example I will give a simplified version of Hunter and

Gerbing's illustration. Suppose the complete causal system

 

pictured below; The values are the causal paths for the

population:

8

/\
A C

3 .3 3

D ::E

.3

Now suppose the path model that is specified leaves out

factor 'D'. The usual custom is to leave out all direct paths

associated with 'D'. This leads to the following estimate:

This is a poor fitting model but it could be 'fixed up'

by allowing the disturbances to be correlated. But another
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model could have been specified which would not necessitate

correlated disturbances by simply putting the indirect paths

which would have been mediated by 'D':

One often expects there to be missing intervening

variables, but these can be accommodated by the correct

specification of paths. In a second counterexample Hunter

and Gerbing illustrate a situation in which a misspecified

model is made to display apparent good fit by incorrectly

allowing disturbances of the equations to be correlated.

First we have the actual model;

X d1::Y1"””,¢rr'

\Y

3‘k\\\‘d3

 

Where d1, d2 and d3 are uncorrelated.

A misspecified model will be defined if we leave out the

path from Y2 to Y3;
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X #Y1

Hunter and Gerbing claim that a LISREL analysis on such

a misspecified model will not fit the data well in the sense

that it will not reproduce observed correlation matrix.

But what if we further misspecify the model by stipulating

that the disturbance terms for Y2 and Y3 are correlated (as

is indicated by a curved arrow);

Y
3\63

In this case they claim that a LISREL analysis fits the data

almost perfectly. The moral is that specifying correlated

disturbances does not make up for missing variables. It may

instead cover up misspecified paths.

The upshot of these examples is that there is no analytic

substitute for a properly specified path model; one that has

properly defined paths as well as variables. As a result, in

multilevel path models even more onus is plated.on proper model

specification.
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In the less ideal world of actual data analysis the

equations may in fact be correlated to some extent. It

would be quite useful in the future to do monte carlo studies

to determine how results are effected by mild departures

from the assumption of uncorrelated errors.

IV u u Wo k

e n ec

The multilevel path model defined in this thesis is an

instance of a mixed model, i.e. both fixed and random effects

are present in the combined model (Braun, Rubin and Thayer,

1983). From chapter two the mixed model is given as:

Y - A191 + A292 + R , (5

where 1 is the fixed effect and U is the random effect.

The mixed model is expressed in the combined-level form by,

Y - 2W7 + ZU + R . (S

This in turn can be separated into its two-stage

hierarchical form by equations:

Y-ZB-I-R, (5

B - W1 + U . (5

.1)

.2)

.3)

.4)

By substituting 5.4 into 5.3 we get Equation 5.2. In the

combined form it is apparent that the vector U ,containing the
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random effects, constitutes the parameter differences across

groups and the vector 1, containing the fixed effects,

constitutes the second-stage regression coefficients. If

the chi-square test indicates that one of the parameter

variances is zero, this implies that the parameter error,

Upj: corresponding to path BPJ’ is zero in every group j.

In other words, if a path has zero parameter variance, the

random component constituting the path is null so the second-

stage model for path p is simply:

Bp-Wy

The advantage of the mixed-model formulation is that a

first-stage parameter can be modeled as a fixed effect by

eliminating the corresponding Upj in every group. If J is the

number of groups this can be accomplished by deleting the J

Upj elements from U, and suitably reducing the column dimension

of A2 (or Z) by J. When some paths in fact have no variance,

estimates assuming that these paths are fixed are more valid

than estimates assuming that these paths are random. The

programming needed to fix effects will be the next feature

added to the multilevel mixed model. The analyses presented

in this thesis will be redone with the appropriate paths

defined as fixed effects.

e e W -G u at ode

Another elaboration that can readily be added to

multilevel path analysis is the addition of intercepts to
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the first-stage model. If predictors are also mean deviated,

the intercepts will be group means which are interesting

from a substantive point of view. Presently, the multilevel

path program has the option to add group-mean intercepts to

the path model. This elaboration wasn't presented in the

current analysis because paths were the main focus of the

thesis. The path model for the High School and Beyond defined

for intercepts would have the form (for individual i and

group J):

Classes - Classes + B11(Minority-Minority)

+ B12(SES-SES) + R1

 

Achievement - Achievement + 821(Classes-Classes) +

322(Minority-Minority) + 323(SES-SES) + R2

The advantage of adding group means is that they can be

analyzed in a second-stage model so that we can define the

antecedents of group effects as well as group processes. For

example, it would be interesting to know if Catholic schools

were more equitable (smaller SES->Ach path) but at the expense

of average achievement for the school. The data analysis

presented in this thesis will be rerun with group means in

the near future.
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Wade].

One of the possibilities summarized by Muthen and Satorra

(1987) involved adding a measurement model to the within-group

model. Ignoring measurement error at the first stage tends

to bias estimates of paths and inflate the estimates of

sampling error. The notion of a measurement model in a

multilevel context reiterates many of the issues that arose

with the concept of a within-group path modelling. Do we

assume that the factor structure is the same for all groups?

Do we further assume that the factor loadings constant across

groups? Parallel to the path model formulation, it is my

judgement that the factor structure will be constant across

groups but the actual loadings will vary. This implies that

a measurement model would be formulated by running separate

confirmatory factor analyses which test the same factor

structure, in all groups.

Another central question is how would one best enact a

measurement model simultaneously defined over numerous groups.

The LISREL program currently has the capability of estimating

a measurement model. But executing a separate LISREL analysis

in each of over a hundred groups would be computationally

prohibitive. Also, LISREL is based on large sample estimating

theory which might be inappropriate for the often small

group size to be found in multi-group data bases.

There is another, more conceptual, objection to a LISREL

type approach. LISREL simultaneously estimates measurement
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coefficients and path coefficients. Since LISREL is based on

full information maximum likelihood (as is the multilevel path

program) misspecification errors will tend to bias the path

estimates and visa versa. Heise says of full information

maximum likelihood (FIML) estimation ”All the observed

variances and covariances simultaneously contribute to the

estimation of all the parameters...FIML methods are quite

sensitive to specification error" (Heise, 1975). This is an

especially acute problem if the definition of the measurement

model. is in, an exploratory ‘phase where different factor

structures are being piloted or items are being assessed for

feasibility of inclusion in scales. Imbedding the measurement

part of the model within a larger two-stage path model would

mean that an independent assessment of the quality of the

measurement instruments could not be had.

Gerbing and Hunter site an example where a deliberately

misspecified path model gives incorrect estimates of factor

correlations, "Even though the error was in the causal mode,

LISREL placed aflJ. of the error into the estimated factor

correlations and maintained perfect consistency between factor

correlations and the incorrect path coefficients" (Gerbing &

Hunter, 1980). They conclude that the simultaneous analysis

of measurement and causal models may be suited for correctly

specified models but "There is no a priori reason why a

researcher would induce the additional complexity of

simultaneous analysis of untested. measurement and causal
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models except that the necessary machinery exits for such an

analysis" (p19).

This problem can be avoided if measurement model

definition is a wholly separate phase of the analysis. This

gives the researcher an opportunity to troubleshoot scales

through numerous confirmatory runs. When a valid measurement

structure is confirmed, the latent covariances of factors

are input into the path analysis. This approach was

successfully employed by the author (Jenkins, 1985) in defining

a large scale measurement model for later input into LISREL.

The approach in that study was to first define the measurement

structure through a least squares confirmatory factor analysis

procedure. This structure was then validated by a confirmatory

factor analysis using LISREL. Interestingly the least squares

and LISREL runs gave similar factor loadings.

A measurement model as a separate stage of analysis would

be relatively straightforward to implement with the present

estimation program. A separate routine could be written to

implement a least square confirmatory factor analysis in all

groups simultaneously (see Hunter 6: Gerbing, 1979). Some

summary statistics to represent fit of the model would have

tn) be devised (e.g. average residual correlations; means,

maximum and minimum values of loadings, average factor/factor

correlations, etc.). Variables will be added to and deleted

till a good-fitting factor structure has been defined. Then

the estimated factor/factor correlations for each group

would be fed into the multilevel path program as it exists now.
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w e - e

The issues involved with defining a between-group

measurement model are simpler because only one model has to

be devised, rather than one for every group. If a separate

measurement model analysis were planned, it could be done

via LISREL or a least squares confirmatory package (Hunter &

Gerbing, 1979) and the resulting factor scores could be fed

into the existing multilevel path program.

An attempt to simultaneously define a measurement and a

path model would be part of an effort to define a group-level

path model. This will be discussed in the next section.

It is not immediately apparent that defining a path model

at the group level would be useful. For a group-level path

model first-stage paths would be the second-stage endogenous

variables. I cannot think of a sensible interpretation for

a situation where one within-group path causes another such

path” .A between-group path model would be sensible under

two conditions a) we want to represent a network of

relationships among the group-level variables and b) intercepts

(which are group means) are included in the model as predictors

in the second-stage path analysis. These sorts of intercepts

are the same as group-level variables.
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The easiest way to devise a between-group path model would

be to repeat the same general approach used for the within-

group path model. This would involve defining a simultaneous

equation system in which paths were outcomes and group level

variables (or intercepts) are predictors or outcomes. As

with the first-level model, the errors of the equations

would be uncorrelated

For example consider again the first-stage path model for

the High School and Beyond data. This model, defined with

intercepts and assuming mean-deviated predictors takes the

following form for individual i and group j:

Classes - Classes + B11(Minority) + B12(SES) + R1

Ach - Ach + B21(Classes) + 322(minority) + B23(SES) + R2

There are four variables defined at the group level;

Sector, Ave-SES, Sd-SES, and Ame-Classes. Note that Ave-

Classes and the Classes intercept would be the same variable.

A Possible second-stage path model might be defined as follows:

Sector - 110(Ave-SES) + 112(ET;§§Z§) + 113(Sd-SES) + U11

B11 - 120 + 121(Sector) + U12

B12 - 730 + 131(Sector) + 132(Ave-SES) + U12

821 - 740 + 141(Sector) + U21

B22 - 150 + 151(Sd-SES) + U22

B23 - 760 + U23

Here we see that the model previously defined for the

paths is as it was before, but now there are relationships



148

among the group-level variables and intercepts. Specifically,

all the group-level variables which characterized Sector are

explicitly introduced. as exogenous predictors (the first

equation).

The complexity has increased quite a bit over the

previously defined multilevel path model. Possibly the

greatest problem with these models will be to keep them

simple enough.

This sort of scheme would fit into a second-stage model

which, in matrix terms, looks the same as before:

B*-W1+U

But unlike the previous formulation the outcome vector,

B*, contains more than just paths, it can contain paths,

intercepts and group-level variables. As before for group

j, Var(UJ) - T. But now T is defined as a diagonal matrix,

(i.e. errors are not correlated) for the same reason that ¢

is diagonal; disturbances are independent in a: properly

specified path system. This simple scheme for a group-level

path model would fit into the present estimating program

with little renovation.

ow 3

One may ask, "Why not just do a LISREL model at the group

level?" This is a theoretical possibility; but a between-group

LISREL model would depart from the statistical assumptions
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of the present estimation theory. First of all in the LISREL

model it is assumed that exogenous variables are random. In

the General Bayesian Linear Model exogenous variables are

fixed. Also, with LISREL path coefficients are defined in

two rectangular matrices of fixed parameters. In contrast,

with the Bayesian approach second-stage path coefficients

are defined as a vector of random coefficients with a vague

prior distribution. At present the LISREL model would not

fit into the context of the General Bayesian Linear Model.

The assumption of random exogenous variables at the first or

second stage of the hierarchy would necessitate a reformulation

of the multilevel path model, possibly along lines other

than those developed in chapter two.

This work represents a beginning of the actual estimation

of multilevel path models. This final chapter has suggested

a few ways the present statistical approach could be extended.

There are doubtless other approaches which would further expand

the scope of these models.

Regardless of the analytic form such approaches take in

the future, I hope to have demonstrated that multilevel path

models have promise to be a powerful tool for illuminating

important issues in social science research.
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V UN ON 9

From Equation 2.14 the posterior density of 9 is:

f(6|Y,i,O,A) -

(2«)'KN/2 (2«)'t/2 |w|'1/2 Ifll'1/2

exp{-l/2(Y-A9)' w'l (Y-A6)} exp{-1/2e'0'19} (A.1)

The exponential component is the quadratic Q

Q - (Y-Ae)'w'1(Y-Ae) + e'n'le (A.2)

Expanding terms we get:

Q - Y'w'lY - Y'W'IAG - e'A'w‘lY + e'A'w'lAe + e'n‘le

(A.3)

The first term, Y'W'IY,is not a function of 9 and so is

a constant with respect to the density. The corresponding

term, exp{-l/2Y'¢'1Y}, is taken out of the exponent and put

into the constant term. The remaining terms are combined

and arranged in descending powers of 8 to yield:

Q - 9'(A'w‘1A+0‘1)e - 2Y'W'1A9 (A.4)
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Q now has the general quadradic form:

Q - X'MX - 2B'X , with : (A.5)

l) X - 9

2) M - (A'w'1A+n'1)

3) B - A'n’ly

The square of the quadratic can be completed to put Q into

the algebraically equivalent form:

Q - (X-MB)'M(X-MB) - B'MB ‘ (A.6)

Substituting for X, M and B we get:

Q - [e - (A'w'1A+n'1)A'w'1Y]'(A'w'1A+o'1) (A.7)

[e - (A'0'1A+0'1)A'W'1Y] - Y'w'1A(A'w'1A+n'1)A'W'1Y

The last term, not being a function of 6, can be taken

out of the quadratic and put into the constant to yield:

Q - [e - (A'W'1A+0'1)A'W'1Y]'(A'W'1A+0'1) (A.8)

[e - (A'w'1A+n'1)A'W'1Y]}

Which is the result required for Equation 2.15 in the text.
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