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ABSTRACT

GLOBAL BIOGEOGRAPHY, BIOSTRATIGRAPHY AND EVOLUTIONARY PATTERNS
OR ORDAOVICIAN AND SILURIAN BRYOZOA

By

Michael Edward Tuckey

The data for each of the chapters in this thesis was derived
from a global bryozoan data base assembled for this project. The
data base contains information on nearly all species of
Ordovician and Silurian Bryozoa which have been described in the
literature. The information recorded for each reported occurrence
of a species includes: geographic locality, geologic formation,
lithology of the formation, and colony morphology. Ages of
formations were estimated from recently published stratigraphic
charts. Taxonomy and synonymies of bryozoan clades were assembled
with the advice of Dr. Robert Anstey. The bibliography of sources
for the data base in contained in Appendix A.

Four independent problems were addressed in this thesis:

1) An investigation of the biogeography of Ordovician and
Silurian Bryozoa revealed the existence of four major Ordovician
bryozoans provinces: Baltic, North American, Siberian and

Medi terranean. The Llandeilo-Caradoc was a period of high
provinciality as all four provinces were in existence.
Provinciality was reduced in the Ashgill, as the North American
and Siberian and the Baltic and Mediterranean Provinces merged.
In the Llandovery and Wenlock, the temperate latitude Mongolian
Province existed on the northern portion of the Siberian plate.

Silurian provinciality was reduced with the merging of the



North American-Siberian and Baltic Provinces in the Wenlock.

2) An investigation of Ordovician-Silurian radiations of the
Bryozoa revealed that the major center of origin of bryozoan
radiation in the Early Ordovician was the temperate latitude
continent of Baltica. Within North America, bryozoan genera
and families mad their first appearances in shallow water and
reef environments along the continental margin, while speciation
rates were highest in offshore areas of the craton.

3) The statistical technique of gradient analysis was found to
be useful for stratigraphic correlation, and faunas from Poland
and Burma were dated by this methad.

4). The Late Ordovican mass extinction was found to be a
composite of three separate extinction events. The major
extinction occurred at the end of the Rawtheyan, and was
associated with a marine regression which affected primarily

species from terrigenous lithotopes.
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CHAPTER ONE

BIOGEOGRAPHY OF ORDOVICIAN AND SILURIAN BRYOZOANS



INTRODUCTION

Ordovician and Silurian bioqeographic histories have been
compiled for a variety of marine invertebrates. Trilobite
biogeography has been described by Whittington (1966, 1973) and
Whittington and Hughes (1972, 1973). Jaanusson (1973), Sheehan
(1979), Boucot and Johnson (1973) and Williams (1973) have
described brachiopod biogeography. The biogeography of
graptolites has been discussed by Skevington (1973) and Berry
(1973, 1979). Other organisms such as corals (Kal jo and Klaaman,
1973), conodonts (Bergstrom, 1973 and Lindstrom, 1976),
palynomorphs (Cramer and Diaz, 1974), echinoderms (Paul, 19763
Witzke, Frest and Strimple, 1979), molluscs (Pojeta, 1979;

Rohr, 1979) and stromatoporoids (Webby, 1980) have also been

sub jects of biogeographic analysis. General reviews of Ordovician
and Silurian biogeography have been provided by Ziegler et al.
(1977), Jaanusson (1979), Boucot (1979), Burrett (1973) and

Sp jeldnaes (1981). Although each group of organisms has its own
biogeographic history, similarities are evident in the patterns
of distribution of all major groups.

The Ordovician can be characterized as a period of high
provinciality, with biogeaographic differentiation being greatest
in the Lower to Lower Middle Ordovician. An abrupt change
occurred in the Hirnantian (Latest Ashgill), and Silurian faunas
are known to be highly cosmopolitan. For some organisms, a

gradual decrease in provinciality became evident as early as



3

Caradoc time (Williams, 1973). These changes in provinciality
are related to the changing positions of the continents,; as the
Iapetus Ocean was gradually closing through the Ordovician
into the Silurian and the continent Baltica was moving from a
temperate southerly latitude towards North America and the
equator. This paper summarizes Ordovician biogeographic
distributions for a number of marine invertebrates (Tables 1-3).
Bryozoan biogeography has not been studied in detail
for the Ordovician and Silurian Periods. Ross (1985) pﬁblished a
short descriptive paper on Ordovician bryozoan biogeography,
Anstey (1986) described Late Ordovician North American bryozoan
biogeography and Astrova (1965) and Nekhorosheva (1976)
described Ordovician bryozoan biogeography of the Saoviet
Arctic. The following analysis is an attempt at a detailed
biogeographic history of the bryozoa, with an analysis of each
stage of the Ordovician and Silurian, using quantitative
techniques and data drawn from a global bryozoan data base of 49S

sources newly compiled for this project.

METHODS

The multivariate statistical techniques of reciprocal
averaging, detrended correspondence analysis and cluster
analysis were used to quantitatively determine biogeographic
associations. Gradient analysis methods, such as reciprocal

averaging, have been used extensively in community ecology and



Table 1.

Summary of Lower Ordovician biogeographic provinces.

1 a 3 4
Locality iBrachiopods Brachiopods Trilobites Graptolites
NA. Midcontinent | Northern | ¢ Bathyurid! Pacific
NA. Geosyncline i Northern (Scoto-Appl.! Bathyurid: Pacific
Baltic Platform ¢ Baltic ¢ Baltic ¢ Asaphid | Atlantic
Ural Geosyncline | Baltic : i Asaphid !
Siberian Platform ! Naorthern | i Bathyurid!
Altai Sayan ! Northern | ' H
Nor theast USSR ! Northern | NE. USSR | Bathyurid!
Australia i Northern tHung-Caly.: Pacific
Wales ¢ Southern | Anglo-Frn.i!Selenopel.! Atlantic
Montagne Noire { Southern ! Anglo-Frn.i:Selenopel.:
North Africa H ' iSelenopel.! Atlantic
China { Northern | {Hung—Caly.:! Pacific
1. Jaanusson, 1973
2. Williams, 1973
3. Whittington, 1973
4. Skevington, 1973

Abbreviations: NA.=North America, Scoto-Appl.=Scoto-Appalachian

Anglo-Frn.=Anglo-French,

Hungaiid-Calymenid,

NE.= Nor theast

Selenopel .=Selenopeltis,

Hung-Caly.=



Table 2. Summary of Middle Ordovician biogeographic provinces.

1 e 3 4
Locality {Brachiopods Brachiopods Corals Conadants
NA Midcontinent iC. Northern: American Amer—-Sib. i NA Midcont.
NA Geosyncline {Scoto-Appl.: America Amer-Sib.:! European
Baltic platform i Baltic i Baltic Euro-Asiani! European

Ural Geosyncline i(Scoto-Appl.!
Siberian Platform (C. Northern! American

Amer—-Sib. INA Midcont.

Nor theast USSR {Scoto-Appl.: American | Amer-Sib.!

Altai Sayan 1Scoto-Appl.: Euro-Asiani
Australia : H ! Austral.
Wales { Southern iAnglo-Frn. (Euro—-Asian! European
North Africa { Southern | Bohemian :
Southern Europe i Southern | Baltic '
Burma : i Baltic '
Bohemia ' i Bohemia H

1. Jaanusson, 1973

2. Williams, 1973

3. Kaljo and Klaaman, 1973
4. Bergstrom, 1973

Abbreviations: NA.=North America, C.=Central, Scoto-Appl.=
Scoto-Appalachian, Anglo-Frn.=Anglo-French, Amer-Sib.=
American-Siberian, Austral.=Australian



Table 3. Summary of Upper Ordovician biogeographic provinces.

Locality

1

2 3 4
{Brachiopaods Brachiopods Trilabites Corals

NA. Midcontinent
NA. App. Geosyn.
Baltic Platform
Ural Geosyncline
Siberian Platform
Altai Sayan

Nor theast USSR
Australia

Wales

Montagne Noire
Ireland
Anticosti

Alaska

Missouri

North Africa
Bohemia

China

1. Jaanusson, 1973
2. Williams, 1973

iC. NortherniMid-AmericaiMono—Remo.!Amer-Sib.
iC. NortherniN. Europe
tHibern-Sal. i!N. Europe

iC. Northern
tHibern—-Sal.
tHibern—-Sal.

tHibern-Sal.
iHibern—-Sal.
iHibern—-Sal.
tHibern-Sal.

3. Whittington, 1973
4. Kaljo and Klaaman, 1973

N. Eurape

N. American

Bohemian
Bohemian

{Mono—-Remo. !
{Mono—Remo. {Euro-Asian
{Mono—Remo. !
{Mono—Remo. :Amer—-Sib.
H tEuro-Asian
iMono—Remo.
iPlio—Caly.
iTri—-Homal.
1 Tri—-Homal.

Euro-Asian

Tri-Homal.
tEuro—-Asian
Plio-Caly.!

Abbreviations: NA.=North America, App. Geosyn.=Appalachian
geosyncline, Hibern-Sal.=Hiberno-Salairian, C.=Central, N.=
Trinucleid-Homalonotid, Plio-Caly=Pliomerina-
Calymenid, Mono—Remo.=Monorakid-Remopleuridid, Amer-Sib.=

North, Tri-Homal.=

American-Siberian
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are similar to factor analysis in that they reduce the
dimensionality of the data matrix. The samples are ordinated
along a gradient between two poles (the samples most
distant from each other along the axis). Reciprocal
averaging has been used by Cisne and Rabe (1978) and Anstey,
~Rabbio and Tuckey (1987a) in Ordovician paleoecological studies.
Another gradient analysis method, polar ordination, was used by
Raymond (1987) to define Devonian phytogeographic provinces
and by Anstey, Rabbio and Tuckey (1987a) in paleocecological
studies. Detrended correspondence analysis (hereafter called
DCA) was used by Anstey, Rabbio and Tuckey (1987b) in a
study of Late Ordovician paleocommunities. This method is an
improvement on reciprocal averaging in that subsequent axes
beyond the first axis are truly orthogonal, whereas in reciprocaa
averaging, the second, third and fourth axes are often correlated
with the first axis. A summary of these techniques is provided in
Gauch (1982).

In this study, DCA proved to be the most useful
technique for distinguishing biogeographic units. The input
data matrix for DCA was composed of the number of species
per genus present at each locality. DCA was run with a
separate data matrix for each stage of the Ordovician and
Silurian. Localities of low diversity were not included in the
analysis, with the minimum diversity being S to 8 genera,
depending on the averall diversity of the stage. Because of the
limited number of localities and overall low diversity of the

Arenig, low diversity localities were included in that analysis.



8

Geagraphic patterns were generally distinquishable on plots of
locality scores for DCA axes one vs. two. Occasionally
biogeographic patterns were obscured by the effects of facies, so
for the Caradoc, patterns were most easily distinguishable on
plots of DCA axes one vs. three. |

Cluster analysis was used by Williams (1973) to define
Ordovician brachiopod provinces and by Raymond (1987) to help
define Devonian phytogeographic provinces. Cluster analysis
differs from gradient analysis in that it measures ove;all
faunal similaritys; and endemic genera,; which may be
characteristic of a particular province, have no special
weight. In this study cluster analysis was used as a backup
method to lend support to, or modify gradient analytic methods.
The input data matrix for the cluster analysis consisted of a
matrix of Simpson’s indices of faunal similarity. Clustering was
also done with data matrices of Jaccard coefficients; however
Simpson’s Index gave results more congruent with the gradient
analysis methods. The clustering method used was the average
linkage between group method. In keeping with previous Ordovician
and Silurian biogeographic studies, the term, province, is used
in this paper to refer to a biota characteristic of a particular
continent, although present day provinces are often restricted
to small portions of a continent. Geographic associations within
continents, restricted to major lithotopes, are referred to as

biomes, following Anstey (1986).



ARENIG

Except for one species (Ceramopora unapensis) described by

Ross (1966a) from the Kindblade Formation (Late Tremadoc) of
Oklahoma, bryozoa are first found in rocks of Arenigian age.
However, a Tremadocian fauna from China is currently being
decribed by Spjeldnaes and Hu (Taylor and Cope, 1987).

The most diverse Arenig bryozoan fauna is found in Baltica

in the Bl and B2 horizons of Estonia and Leningrad and in the
Nelidov horizon of Novaya Zemlya. Less diverse faunas are found
in North America in the Kanosh Shale in Utah, the Arenig-Llanvirn
011 Creek Formation in Oklahoma and the Late Arenig Shinbrook
Farmation in Maine. Faunas are also known in Central China and
the North Urals. The species Sagenella vetera is known from

Bohemia and Alwynopora aorodamnus and a generically indeterminate

species have been recorded from Ireland.
Baltic faunas are related by the common presence of
Dianulites at all localities and the presence of Dittopora,

Esthoniopora and Nicholsonella at two or more localities.

Oklahoma, Utah and Maine are united by the common presence of
Batostoma, which does not appear in Baltica. North American
and Baltic Provinces are clearly distinguishable on a plot of
locality scores for DCA axes one vs. two (Figure 1). China

is allied faunistically with North America by the presence of
Batostoma and is provisionally assigned to the North American

Province (Figure 2).
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LLANVIRN

During the Llanvirn, bryozoan faunas increased in bath
diversity and provinciality. The Baltic Province shows increased
diversities of bryozoans from the B3, Cla and Cib horizons of
Estonia and Leningrad, the Khydey Formation of the North Urals
and the Yuno Yaga horizon in the Navaya Zemlya-Vaygach-Pay Khoy
region. These faunas are characteri;ed by Dianulites, Diplotrypa,

Hemiphragma, Nicholsonella and Stictopora. The North American

Province cansists of bryozoans from the 0il Creek and MclLish
Formations of Oklahoma, the Chazyan Day Point and Lower Mingan
Formations in the Lake Champlain and Mingan Island areas, and

the Lower Lenoir Formation of Virginia. North American faunas are
again characterized by the common presence of Batostoma at all
localities. Other common North American genera are Phylloporina,

Stictopora, Monotrypella, Chasmatopora, Nicholsonella and

Eridotrypa. Bryozoans also appear in the Elgenchak and
Labistakskaya Formations at Sette Daban on the Eastern Siberian
margin. Provinces are defined on the plot of DCA axes one vs.
two (Figure 3).

Along with provinciality, subprovinces or biomes (Anstey,
1986) can also be observed in the data. The Baltic Province can
be subdivided into two different facies associations or biomes.
Leningrad and Estonia accur in the Baltic Platform Biome and
the North Urals and the Novaya Zemlya-Vaygach-Pay Khoy regions

occur in the Uralian Geosynclinal Biome. Approximate paositions of
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geosynclinal and platform facies for the Ordovician, of Siberia,
North America and Baltica, with the island of Novaya Zemlya
observable in the northern part of the Uralian geosynclinal
facies are shown in Figure 4. Virginia, as part of the
Appalachian Geosynclinal Biome is distinguishable from other
North American localities and shares common genera with both
Baltica and Siberia. Its location on the North American
continental margin apparently makes it a possible colonization
site for migrants crossing the lapetus Ocean. The genera
Cyphotrypa and Monotrypa, which were endemic to Baltica in the
Arenig, appear in Virginia in the Llanvirn. Conversely,
Phyllodictya, which was endemic to Utah in the Arenig, appears in
Estonia in the Llanvirn, indicating that a limited amount of
migration across the Iapetus was occuring at this time.
Provinces are plotted in their approximate paleogeographic
positions in Figure S.

A cluster analysis of Llanvirn localities, gave results
similar to gradient analysis, as clusters representing the
Chazyan Reef Biome, the Uralian Geosynclinal Biome and the Baltic
Platform Biome appeared. Virginia clustered more closely with
Sette Daban than with other North American localities. Its
association with Sette Daban is represented by the dotted line

connecting the two localities (Figure 3).
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LLANDEILO

The provincial patterns of the Llanvirn carry through to the
Llandeilo, although there is some blurring of provincial
boundaries due to migration, and an increasing differention of
North American faunas is seen. Provinces are defined on plots
of DCA axes one vs. two (Figure 6). Localities in the Baltic
Province cluster with high scores on axis one, with faunas
occuring in the Clc and C2 horizons_in Estonia and Leningrad, and
in the Dyrovataya horizon in the Naovaya Z2emlya-Vaygach—-Pay Khoy
region. Leningrad, however, has a somewhat endemic fauna,
with the endemic genera Scenellopora, Arthrostylus, and
Hexaporites. Arenig-Llanvirn genera such as Dianulites,

Diplotrypa, Esthoniopora and Hemiphragma continue to be common

and new genera such as Pachydictya, Parvohallopora, Graptodictya
and Mesotrypa appear. The Novaya Zemlya-Vaygach—-Pay Khoy area
shows an increasing faunal affinity with North America,
particularly with Appalachian shelf localities. Faunal
similarities between geaosynclinal localities on widely separated
continents reflect the presence of many cosmopolitan genera at
these sites. Virginia, Novaya Zemlya and Alabama share the caommon
genera Nicholsonella, Pachydictya, Parvohallopora, and
Stictopora, indicating an increase in migration across a
narrowing Iapetus Ocean. Alabama and Morocco were closely linked
with Vaygach—-Novaya Zemlya in the cluster analysis (dotted lines
connect these localities in Figure 6).

The Siberian Province contains localities clustering with
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Figure 6. Llandeilo DCA axes 1 vs. 2. Symbols: A=Alabama,
E=Estonia, K=Kotel Island, L=Leningrad, LC=Lake Champlain,
LR=Leni River, M=Morocco, MI=Mingan Island, 0=0k1ahoma,
P=Podkammenaya Tunguska River, @Q=Montreal, T=Taimir, V=Virginia,
VR=Viluya River, Z=Novaya Zemyla-Vaygach-Paykhoy. Dotted lines
connecting localities across praovincial boundaries indicate
additional faunal similarities detected by cluster analysis.
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low scores on DCA axis one. Faunas occur in the Krivaolutski
and” Lower Mangazeyski stages in the Podkammenaya-Tunguska, Leni
and Viluya River valleys on the Siberian Platform, the Engelgardt
horizon on the Taimir Peninsula and in the Lower Malodiring
horizon on Kotel Island. Common Siberiaﬁ genera are Batostoma,
Nicholsonella, Triqonodictya, Stictopora, Phaenoporella and
Sibiredictya.

The North American Province consists of localities having
intermediate scores on DCA axis aoane and is further
differéntiated into two subprovinces, or biomes on axis two.

The Chazyan Reef Biome consists of faunas fraom the Crown Point
and Lower Valcour Formations of the Champlain Basin, the Crown
Point and Laval Formations at Montreal, Quebec, and the Upper
Mingan Formation at Mingan Island. Common genera in this biome
are cryptostomes such as Stictopora, Chasmatopora, Phylloporina
and Pachydictya, and the trepostomes Monotrypella and Batostoma.
The North American Geosynclinal Biome consists of faunas from the
Upper Lenoir, Lower Effna, New Market and Lincolnshire Formations
of the Appalachian shelf in Virginia and Alabama, and the Upper
McLish and Tulip Creek Formations of the Simpson Group in the
Arbuckle Mountains of Oklahoma. Ross (1974) stated that the
Simpson Group strata were deposited in a rift zone or

aulacogen, extending northward from the Ouachita continental
margin. Faunal similarities between Oklahoma and the Appalachian
shelf region may be explained by existence of a continuous
Appalachian-Ouachita shelf biome.

These trends are similar to those which have been found in
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the distributions of brachiopods and trilobites. The Scoto-
Appalachian fauna, which is found in Scotland and in the
Appalachians east of the Helena-Saltville Thrust, has an
amphicratonic distribution, as a similar fauna has been reported
from the west side of the craton, and a related fauna occurs in
the Novaya Zemlya—-Pay Khaoy region (Jaanussons; 1979). This echoes
the similarities between the bryozocan faunas of Virginia, Alabama
and Novaya Zemlya.

A fourth faunal province, the Mediterranean Province, is
represented by the Llandeilo faunas aof Morocco. North Africa is
placed at the approximate position of the So;th Pole in
paleogeographic reconstructions (Figure 7), and its faunas
have been linked to those of Southern Europe (Spjeldnaes, 1981).
Sp jeldnaes has suggested that Mediterranean and Baltic Provinces
were separated by a climatic barrier rather than by a wide ocean.
This is supported by the cluster 1linkage in Figure 65 in which
Morocco is linked with Novaya Zemyla.

Migration patterns to the continents of North America,
Baltica and Siberia during the Ordovician and Silurian were
established by comparing estimated first appearances of genera on
each continent (Figures 8-10). The Llandeilo is an epoch of high
migration of genera into all three continents. Spjeldnaes
(1981) identified this migration as the first major faunal
exchange across the Iapetus Ocean. Migrations occurréd in a
variety of marine invertebrate groups including cephalopods,
trilobites and brachiopods. Bryozoans seem have migrated in

many directions, contrary to Spjeldnaes’ assertion that the
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exchange was one—-sided, with few Baltic forms appearing in

North America.

CARADOC

The four Llandeilian provinces are again seen in the Caradoc
(Figure 11). The Siberian Province consists of faunas from the
Upper Mangazeyski and Dolborski horizons of the Siberian
Platform, the Tolmachev horizon from Taimir, the Upper Malodiring
horizon from Kotel Island and the Kulonskaya and Vodopadnenskaya
horizons from Sette Daban. Also included in the Siberian Province
are faunas from the geosynclinal regions of the Siberian plate in
the Altai Sayan, Tuva and Manchuria. Cluster analysis also groups
Siberian localities with the exception of the Altai Sayan and
Tuva, which are linked with the St. Lawrence River Valley.

These localities share the genera Batostoma, Ceramopora,

Constellaria, Eridotrypa, Hemiphragma, Homotrypa, Nicholsonella

and Parvohallopora. These localities also cluster closely with

Uralian geosynclinal localities (North Urals and
Novaya Zemyla-Vaygach), again emphasizing the similarity of
shelf faunas from the three major plates. The Siberian province

is characterized by endemic genera such as Insignia,

Carinodictya, Phaenoporella, Sibiredictya and Ensipora.

The Mediterranean Province includes faunas from the Bohdalec
Shales of Bohemia and from the Caradoc of Sardinia and the Carnic
Alps. These localities have distinctive genera such as

Monotrypella and the endemic Polyteichus.
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Figure 11. Caradoc DCA axes 1 vs. 3. Symbols: A=Australia,
a=Alabama, AS=Altai Sayan, B=Bohemia, b=Burma, CA=Carnic Alps,
ck=Central Kentucky, ct=Central Tennessee, E=Estonia, et=East

Tennessee, g=Georgia, i=Iowa, K=Kaotel Island, k=Kansas, lc=Lake
Champlain, LR=Leni River, m=Minnesota, ma=Maryland, mf=Meaford,

mi=Manitoulin Island, MN=Manchuria, ms=Missouri, N=Norway,
n=Central New Yaork, nf=Newfoundland, ni=Northwest Illinois,
nk=Nor th Kentucky, NU=Nor th Urals, =0eland, o0=0klahoma,
ot=0ttawa, P=Podkammenaya Tunguska River, p=Pennsylvania,

S=Sweden, SA=Sardinia, SD=Sette Daban, si=South Indiana, s1=St.
Lawrence River Valley, sm=Southwest Mackenzie, sn=Southeast New
York, so=South Ohio, T=Taimir, t=Toronto, TuU=Tuva, v=Virginia,
W=Wales-England, w=Wisconsin, VR=Viluya River, Z=Novaya Zemyla-
Vaygach-Pay Khoy. Dotted 1lines connecting 1localities across
provincial boundaries indicate additional faunal similarities
detected by cluster analysis.
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The Baltic Province consists of faunas from Estonia, the
North Urals, the Novaya Zemlya-Vaygach-Pay Khoy area,; the
Scandinavian island of Oeland, Sweden, Norway, England-Wales,
Burma, Southeast New York and Newfoundland. The fauna fraom the
Naungkangyi shales of Burma seems to have its greatest affinities
with the Baltic Province. Williams (1973) also classified Burma
with the Baltic Province on the basis of its brachiopods. Burma,
as part of a Southeast Asian microcontinent, is geographically
distant from Baltica (Figure 12).

Sp jeldnaes (1981) raised the possibility of an "anti-boreal"
fauna existing in the Northern Hemisphere resembling the south-
temperate Baltic fauna of the Southern Hemisphere. Evidence for
the existence of this fauna comes from the occurrence of
brachipods with Baltic affinities in the Klamath Mountains of

California and Alaska. The Baltic bryozoan species Parvohallopora

tolli, native to Estonia, was reported from the Caradoc of the
Inyo Mountains in California by Pestana (1960), and from the
Caradoc of Gaspe, Quebec by Fritz (1941). The fauna from the
Southwest McKenzie mountains in Western Canada also has Baltic
affinities as indicated by the cluster analysis. Bergstrom (1973)
reported that Ordovician conodonts in the Appalachians and in the
western Cordilleran regions of North America also have Baltic
affinities, differing from the North American midcontinent fauna.
Bergstrom attributed these differences to climatic zonation,
suggesting ;hat the North American continent was rotated 90
degrees from its present position, with the equator running

through the midcontinent and the west and east coasts situated in



30

&m“ 85uUtAOld UPaUR I3} IPAW _EEE_ asutaold dtjteg

I

asutAaoug uetaaqilg == 32UlAOJg ued1J3WY Y3jJoN
9841 ¢3S3301S5 WOJ) UOTI3DNI3SUODAL
stydesboaboatey *sasutaold {euney Jopeae) 21 aanbt 4

q = ™~
VOoLL'TVeE % ANVIONE

kw.

<Emo HLNOS
NVISHMVZV i

VNIHD HLJON VTTODNOR

/(l\\\\




3
the north and south temperate zones, respectively. These findings
appear to support the "anti-boreal” fauna hypothesis, however,
most of these localities represent exotic terranes, and their
Ordovician paleogeographic positions are uncertain.

Western Newfoundland, Southeast New York and Southern
England-Wales are also included in the Baltic Province. The fauna
from Newfoundland is from the autochthonous region of Western
Newfoundland. This region was part of the North American plate
and its Baltic affinities support Sheehan’s (1975) contention
that some Baltic brachiopods also lived in the open ocean and
occupied habitats around the North Americén continental margin.
The Southeastern New York fauna is also a continental margin
fauna, which 1is found in the Balmville Limestone and the
Rysedorph Hill Conglomerate. The Rysedorph Hill Conglomerate has
been interpreted as an allochthonous outer shelf deposit, which
was transported westward during the Taconic 0Orogeny (Vollmer and
Bosworth, 1984). The existence of this "open—-ocean fauna" may
explain the recurrent faunal similarities between the
geosynclinal localities in the Urals, the Altai Sayan ‘and the
Appalachians during the Ordovician. This may be a better
explanation of why exotic terranes, such as Burma, have Baltic
faunas. These shelf faunas also retain a local imprint, as
Newfoundland is grouped most closely with Lake Champlain in the
cluster analysis, and Southeast New York isv linked with
Minnesota. In general, shelf faunas have been grouped as a part
of the same biogeographic province as their neighboring platform

faunas by gradient analysis.
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Southern England-Wales, located close to the North American
plate (Figure 12), has a cosmopolitan bryozoan fauna which has
affinities with both Baltica and North America. Seven of the nine
genera present are shared with both Estonia and Northern
Kentucky. Consequently England—-Wales clusters clasely with
localities from the Cincinnati region in North America, but has
been classified with the Baltic Province by DCA. Bergstrom
(1973) also reported that Upper Middle Ordovician conodont faunas
from Wales contained North American midcontinent elements that
distinguished them from the rest of the Baltic Province.

In the North American Province, the Cincinnati Biowme,
previously recognized by Anstey (1986), can be distinguished. The
Cincinnati Biome is composed of faunas from the Lower Kope
Formation (Late Caradoc) of Southern Indiana, Southern Ohio and
Central and Northern Kentucky. Anstey reported the Cincinnati
Biome extended from Northern Kentucky to Southern Ontario in
the Late Ordovician. However, in the Late Caradoc it is in
its incipient - stages of development and is geographically
restricted to the Cincinnati area.

Australia is tentatively grouped with the North American
province, but due to the 1low diversity of its fauna, its
biogeaographic affinities remain problematical.

Two waves of faunal migrations occurred during the Caradoc.
An early Caradoc (Black River) migration event appears to have
taken place in Baltica, North America and Siberia, while a
smaller Late Caradoc migration event affected Siberia and

Baltica (Figures 8-10). Spjeldnaes (1981) also recognized



33

the Late Caradoc event (which he termed the Vasalemma wave in
reference to the Vasalemma beds 1in Estonia), as being

characterized by a migration of American forms into Baltica.

ASHGILL

The Ashgill brought about a significant change in bryozoan
faunas as a breakdown 1in Caradoc provinciality occurred and a
more cosmopolitan fauna began to emerge. Ashgill provinces are
delineated by DCA axes one vs. two (Figure 13). Two Ashgillian
provinces are discernible: a North American-Siberian Province and
a Baltic-Mediterranean Province.

The majority of Siberian localities are allied with North
America during the Ashgill; however, the Taimir Peninsula,
located on the southern tip of the Siberian plate was
geographically adjacent to Baltica during the Ashgill (Figure
14), and its faunas from the Korotkin horizon have Baltic
affinities . Although the width of the lapetus ocean has narrowed
considerably, the Baltic Province 1is still recognizable, as its
faunas from Sweden, Norway, Wales, Estonia, Gotland and Novaya
Zemlya—Vaygach—-Pay Khoy are distinguishable from those of North
America. Also included in the Baltic Province 1is the Ashgill
fauna from Montagne Noire, southern France, which indicates that
the Mediterranean and Baltic Provinces have merged. Sheehan
(1979) noted that brachiopods from the Mediterranean Province

became abundant in Sweden during the Ashgill. He believed that
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Figure 13. Ashgill DCA axes 1 vs. 2. Symbols: a=Alabama,
ai=Anticosti Island, AS=Altai Sayan, bi=Baffin Island, C=South
China, ck=Central Kentucky, CM=Central Mongolia, ct=Central

Tennessee, E=Estonia, ei=Nor theast Il1l1inois, 6G=Greenland,
g=Georgia, GO0=Gotland, I=Ireland, i=Iowa, mf=Meaford,
mi=Manitoulin Island, MN=Montagne Noire, ms=Missouri,
mt=Mani toba, N=Norway, n=New Yark, nk=Nor th Kentucky,
NM=Nor thwest Mongolia, S=Sweden, si=South Indiana, sl1=St.
Lawrence River Valley, SM=South Mongolia, so=South Ohio,
T=Taimir, t=Toronto, TU=Tuva, up=Michigan Upper Peninsula,
=Virginia, W=Wales, w=Wisconsin, wt=West Texas, wy=Wyoming,

=Novaya Zemyla—Vaygach-Pay Khoy. Dotted 1lines connecting
localities across provincial boundaries indicate additional

faunal similarities detected by cluster analysis.
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cold-water Mediterranean genera moved northward with cold water
masses associated with the Ashgillian glaciation in North Africa.
However, Whittington (1973) noted the appearance of Mediterranean
type trilobites (Selenopeltis fauna) in Baltica as early as
Caradoc time.

The fauna from the Portrane Limestone of Ireland 1is also
grouped with the Baltic Province although this fauna is
distinctive, as it includes the rare genera Discosparsa and

Ichthyorachis. The Portrane Limestone is known to be an exotic

terrane representing a volcanic island in the Ilapetus Ocean
(Neuman, 1984). Neuman has found that many drachiopod genera made
their first appearances on oceanic islands.

Missouri-Southern Illinois clusters with the Baltic
Province,; and much of its fauna is from the Rawtheyan—-Hirnantian
age Girardeau Limestone. The Baltic Province conforms well with
the Hiberno—-Salarian fauna of Jaanusson (1973). This brachiopod
fauna occurs in carbonate rocks in Sweden, Norway and Ireland
and also in the Altai Sayan and in coastal North American
localities such as Anticosti Island and Perce, GQuebec, Alaska
and California. A brachiopod fauna described by Amsden (1974)
from the Noix limestone of Eastern Missouri and Western Illinois
also has Hiberno-Salairian affinities (Jaanusson 1973). The
existence of a Baltic fauna in the continental interior of the
United States reflects the increasing cosmopolitaniém of the Late
Ashgill. The Hirnmantian Stage (Latest Ashgill) is associated
with a low diversity "Hirnantian fauna" characterized by the

brachiopods Hirnantia and Dalmanella and the trilobite
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Dalmanitina. The fauna, occurring in mudstones, is extremely
widespread geographically and has been reported from Bohemia,
Sweden, Ireland, England, Maine, Morocco, the Carnic Alps, Libya,
Quebec, Kazakhstan, Scotland, China, Kolyma, and Anticosti Island
(Rong 1984).

Ashgillian faunas from the Siberian localities of Tuva, the
Altai Sayan, and Northern, Central and Southern Mongolia are
grouped with those of North American localities by gradient
analysis and particularly resemble faunas from the carbonate
platform Red River-Stony Mountain Biome localities of Greenland,
Baffin Island, Manitoba, Wyoming, Anticosti Island and West
Texas. Distances between the Altai Sayan—Mongolia regions of the
North Siberian plate and Canada and Greenland were not far
(Figure 14) and oceanic currents (Figure 135) may have facilitatea
migration between the two areas. The Altai Sayan also shares
faunal similarities with nearby Novaya Zemyla-Vaygach, as
indicated in the cluster analysis. Kal jo and Klaaman (1973) also
have recognized Late Ordovician North American-Siberian and
European Provinces for fossil corals.

Also included in the North American—-Siberian Province is a
fauna from Southern China. Similarities between faunas from
Southern China and North America-Siberia suggest an alternative
paleogeographic reconstruction (Figure 16) may be more
applicable. In this reconstruction the South China plate is
positioned in the mid-Pacific, close to the western margin of
North America.

Within the North American plate, the Late Ordovician biomes
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of Anstey (1986) can be recognized. The carbonate platform Red
River-Stony Mountain Biome is represented by the closely grouped
localities of Anticosti Island, West Texas, Wyoming, and Manitoba
(Figure 13). Anticosti Island and nearby Baffin Island have been
grouped with the Baltic Province by the cluster analysis as many
of the localities in the Red River-Stony Mountain Biome have
typical Baltic genera. The Maquoketa Biome is represented by the
grouping of Wisconsin, Nor thwestern Il1linois, Northeastern
Il1linois and Central Tennessee, and was recognized as a subunit
of the Red River-Stony Mountain Biome by Anstey (1986). The
terrigenous Cincinnati Biome has expandéd in size since the
Caradoc and now includes Georgia, Alabama, the St. Lawrencé River
Valley, Virginia, Iowa, New VYork, Hanitouiin Island, the Upper
Peninsula of Michigan, Toronto and Meaford Ontario, Southern
Ohio; Southern Indiana and Central and Northern Kentucky. These
localities conform remarkably well to the terrigenous areas of
the Upper Ordovician lithofacies map (Figure 17).

A migration wave of largely North American genera into
Baltica took place during the Hirnantian (Figures 8-10).
Sp jeldnaes (1981) has recognized this event as the "Porkuni wave"
in reference to the Porkuni Stage (Hirnmantian) of Estonia. This
wave of migration probably contributed to the increasing

cosmopolitanism of Hirnantian faunas.
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LLANDOVERY

Although still faunally distinct, the North American-
Siberian and Baltic Provinces have vbegun to merge during the
Llandovery. Faunal provinces are defined on plots of DCA axes
one vs. two (Figure 18). With further closing of the Iapetus
Ocean, the Baltic province has extended its range and now
includes Anticosti Island, on the Northeast coast of North
America. Llandoverian formations of Anticosti Island and the

Baltic Island of Gotland have these genera in common: Asperopora,

Ceramopora, Corynotrypa, Cuneatopora, Cyphotrypa, Fenestella,
Glauconomella, Hallopora, Nematopora, Phaenopora, Ptilodictya,
Semicoscinium, Thamniscus and Eridotrypa. Sheehan (1975) found
that North American and Baltic brachiopod provinces merged in the
Llandovery when Baltic genera invaded the North American
continent following the Late Ordovician extinctions. North
America, Baltica and Siberia all received relatively large
numbers of immigrants during the Llandovery (Figures 8-10). Eight
genera from the Ashgill of Baltica, Asperopora, Clathropora,
Cheilotrypa, Eridotrypella, Fistulipora, Hennigopora, Rhinopora
and Thamniscus newly appear on the North American continent
during the Llandovery. Three of these genera, Asperopora,
Cheilotrypa and Thamniscus newly appear at Anticosti Island,
giving the fauna a Baltic aspect.

The North American-Siberian Province includes localities

from the Podkammenaya-Tunguska and Viluya River Valleys of the
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Figure 18. Llandovery DCA axes 1 vs. 2. Symbols: ai=Anticosti
Island, C=Central China, ck=Central Kentuckys E=Estonia,
G0=Gotland, mf=Meaford, N=Norway, n=New York, nf=0Ontario-Niagara
Falls Region, nk=Nor th Kentuckys NM=Nor thwest Mongolia,
o=0klahoma, P=Podkammenaya Tunguska River, PO=Podolia, si=South

Indiana, so=South Ohio, t=Toronto te=Tennessee. TU=Tuva,
up=Michigan Upper Peninsula VR=Viluya River. Dotted lines between
localities across provincial boundaries indicate additional

faunal similarities detected by cluster analysis.
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Siberian Platform, and the midcontinent regions of North America.
The biome partitioning evident in the Ordaovician of the North
American continent is not present in the Llandovery, as all

North American localities were former members of the

Ashgillian Cincinnati Biome. The only North American locality
remaining from the Ashgillian Red River-Stony Mountain Biome is
Anticosti Island. A lack of faunas from other localities within
the Red River-Stony Mountain Biome leaves the question as to
whether the entire Red River-Stony Mountain Biome took on a
Baltic aépect in the Llandovery, subject to additional analysis.
The cluster analysis grouped Siberian Pl;tform localities with
the Baltic Province, as indicated by the dotted 1lines. The
Podkammenaya—-Tunguska River Valley locality shares S of its 7
genera with Norway, however it also shares 5 genera with Meaford,
Ontario. This‘ reflects the cosmopolitanism of many genera in the
Llandovery. Appearing in the Llandovery 1is a third faunal
province, the Mongolian Province, which contains faunas from
Tuva, Northwestern Mongolia and Central China. Podolia was

linked with this proyince by the cluster analysis. Tuva and
Narthwestern Mongolia were situated on the northern portion of
the Siberian plate, while Central China rests on the South China
plate. Faunal provinces of the Llandovery are plotted on the
Silurian paleoccontinental reconstruction (Figure 19). Silurian
brachiopods show a similar provincialism in this reéion as Boucot
and Johnson (1973) described a provincial Tuvaella Community
fauna from the Late Llandovery—-Wenlock of Southeast Kazakhstan,

Tuva, the Altai Mountains, Mongolia and Manchuria. Ziegler et al
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(1977) believe that Silurian provinciality was caused by climatic
zonation, with the Mongolian region situated in the north
temperate realm. A comparison of paleoccontinental reconstructions
for the Ashgill and Llandovery (Figs. 14 and 19) reveals that the
Siberian continent moved northward during this time interval and
provinciality may have developed as the n -thern portion of the
Siberian plate moved into north temperate realms in the Late
Llandovery.

The fauna from central China is a low diversity fauna of S
genera from the Late Llandovery Cuijiago and Lojoping Formations
of Northern Sichuan and Southern Shaanxi provinces. Because of
its low diversity, biogeagraphic conclusions are tentative.
However, its affinities with the Mongolian Province in the
Llandovery, and also in the Wenlock may indicate that the South
China plate was also in a north temperate latitude at this time.
Scotese (1986) positioned South China near the equator, in
accordance with Early Cambrian and Permian paleomagnetic data.
South China’s faunal similarity with Mongolia in the Llandovery
and Wenlock suggest that it may have drifted northward in the
Ordovician-Silurian and returned to an equatorial latitude by
the Permian.

Padolia (West Ukraine) is regarded as belonging to the
Baltic province, although it shares two genera in common with
Central China, Fistulipora and Hennigopora. Podolia was located
on the southern portion of the Baltic plate at this time and the
faunal affinities between Podolia and the Mongolian province can

perhaps be explained by the similar Late Llandovery ages of their



L9

faunas rather than by geographic proximity.

WENL OCK

During the Wenlock, the merging of the Baltic and North
American-Siberian Provinces was completed. All Baltic and North
American localities group as a single cluster (Figure 20).

Also included in the Baltic-North American-Siberian Province is a
fauna from the Wenlock of Kazakhstan. Kazakhstan is pictured as a
separate continent located in the tropical climatic zone east of
Baltica and North America (Figure 21). Baltic and North American

localities share a number of common genera in the Wenlock, among

them: Asperopora, Ceramopora, Corynotrypa, Fenestella,

Fistulipora, Hallopora, Monotrypa, Ptilodictya and Sagenella.

A somewhat unusual fauna was described from Northwest Illinois
by Grubbs (1939). This fauna occurred in the Niagaran reefs of
the Racine Dolomite, of Wenlock-Ludlow age, and included endemic

genera such as Pholidopora and Arthrostylus.

Also reappearing in the Wenlock is the Mongolian faunal
province from the northern Siberian plate. The province is
composed of faunas from the Wenlock of Northwest Mongolia, Tuva,
East Mongolia and Central China. There appears to have been some
longitudinal zonation in this province, as Tuva and Northwest

Mongolia, on the northeastern side of the Siberian plate have
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Figure 20. Wenlock DCA axes 1 vs. 2. Symbols: ai=Anticosti
Island, C=Central China, ci=Central Indiana, E=Estonia, EM=East
Mongolia, EN=England, GO=Gotland, KZ=Kazakhstan, mf=Meaford,
N=Norway, n=Western New York, nf=Ontario-Niagara Falls Area,
ni=Nor thwest Illinois, NM=Nor thwest Mongolia, PO=Podolia,
si=Saouth Indiana, te=Tennessee, TU=Tuva, up=Michigan Upper
Peninsula. Dotted 1lines connecting 1localities across provincial
boundaries indicate additional faunal similarities detected by
cluster analysis.
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faunal similarities, while East Mongolia, on the northwest side
of the Siberian plate has greater faunal affinities with Central
China, which suggests a paleogeographic position for South China
as indicated in Figure 16, although at a more northerly latitude.
Podalia was again 1linked with the Mongolian Province in the
cluster analysis.

The complete merging of the North American and Baltic
Provinces in the Wenlock slightly preceded closing of the Iapetus
Ocean, as Late Silurian folding in Scotland and Noru;y suggests
that the Northern lapetus had closed by Ludlow or Pridoli time

(Cocks and McKerrow, 1973).

LUDLOW

The Ludlow was a time of cosmapolitanism among the Bryozoa.
The Mongolian Province of Llandovery-Wenlock time has disappeared
as faunas from Mongolia and Tuva now show high faunal
similarities with European and American faunas (Figure 22).
Distinctive faunas again occur in the Niagaran reefs of Northwest
Illinois, and also in the Guganhebu and Xibiehu Formations of
Inner Mongaolia. Ludlovian faunal gradients are controlled
by the presence of distinctive faunas at single localities rather
than by provinciality. The fauna from Inner Mongolia was located

on the North China plate, and contains the genera Anaphragma,



54

Figure 22. Ludlow DCA axes 1 vs. 2. Symbols: A=Australia,
B=Bohemia, ca=Canadian Arctic, d=Dolgiy Island, E=Estonia,
EN=England, GO=Gotland, i=North Indiana, IM=Inner Mongolia,
MN=Montagne Noire, mv=Moldavia, ni=Nor thwest Illinois,
NM=Nor thwest Mongolia, PO=Podolia, S=Sweden, SM=South Mongolia,
te=Tennessee, TU=Tuva, w=Wisconsin, Z=Novaya Zemyla—-Vaygach-Pay
Khoy..
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Eridotrypa, Homotrypa, Paralioclema and Stictopora. Although
Llandoverian—-Wenlock faunas fraom the South China plate had faunal
similarities with the Mongolia-Tuva region, this fauna from the
North China plate is distinctive in nature.

The cosmopolitan Baltic—-North American-Siberian Province
consists of faunas from Southern and Northwest Mongolia, Tuva,
Gotland, Novaya Zemlya—-Vaygach-Pay Khoy, Podolia, Sweden,
Estonia, Moldavia, England, Tennessee, Arctic Canada, Australia,
Wisconsin, Northern Indiana, Northwest 1Illinois, Bohemia and
Montagne Noire (Figure 23). These localities show a high degree
of similarity to one another and contain 'common Late Silurian

genera such as Fistulipora, Fenestella, Hallopora and Monotrypa.

PRIDOL 1

The cosmopolitanism of the Ludlow continued into the
Pridoli. There 1is 1little biogeographic differentiation into
provinces among faunas from Estonia, Podolia, Gotland, Northwest
Mongolia, South Maongolia, Pennsylvania, Maryland, West Virginia,
New York, Oklahoma and Tuva (Figure 24). The fauna from the

Taugantelyski Formation of Tuva shows a hiéh degree of
dissimilarity with other faunas. It is a low diversity fauna of S5

genera: Amplexopora, Eridotrypella, Eridotrypa, Heterotrypa and

Stigmatella. This fauna has a distinctly Ordovician aspect to it
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as most of these genera were abundant in the Caradoc and Ashgill.
However, Ludlovian faunas from Tuva also contain these
"Ordovician” genera along with more typical Silurian genera such
as Fistulipora, Hallopora and Lioclema.

Another highly endemic fauna is found in the reef community
of the Hamra Formation in Gotland. Along with Fenestella and
Fistulipora are found the endemic genera Saffordotaxis,
Flabellotrypa and Sagenella. These faunas from Tuva and Gotland
are interpreted to be communities within the cosmopolitan Baltic-
North American-Siberian Province. Pridoli faunal provinces are

shown in Figure 25.

DISCUSSION

Patterns in the biogeographic distribution of the bryozoa
are generally consistent with those found in other fossil groups
and can be explained by continental convergence and latitudinal
climatic gradients. However many interesting questions are raised
by anomalous patterns of distribution, such as the presence of a
Baltic fauna in the Ashgill of Missouri, and the presence of
Baltic faunas on both the east and west coasts of North America
and in Burma.

Sp jeldnaes (1981) and Bergstrom (1973) explained the
presence of Baltic brachiopod and conodont faunas on the west

coast of North America by hypothesizing that the west coast of
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North America was above the equator in the north temperate zonre.
The coastal faunas were believed to be temperate (antiboreal)
faunas,; which mirrored the south—temperate (boreal) Baltic
faunas. This idea is not supported by the continental
reconstructions of Scotese (1986), however, as the west

coast of North America is projected to be lying in equatorial
latitudes through the Ordovician and Silurian Periods. Also,

many of the fossiliferous localities on the west coast are
believed to be exotic terranes. The Klamath Mountain region,
where a Baltic brachiopod fauna has been found, has been
interpreted to be the remnants of an igland arcs which was
separated from the continent by a marginal basin (Potter et al.,
1977). Nur and Ben Avraham (1977) suggested that allochthonous
terranes in Western Nor th America are remnants of a
microcontinent called Pacifica originally located near Australia.
Other island arc faunas, such as those of the Portrane Limestone,
have also been classified as being of Baltic affinity.

Faunas fraom Newfoundland, Southeast New York and Anticosti
Island, on the North American east coast, have also been linked
with Baltica. Mitchell (1986) stated that the Shan Plateau area
of Burma was part of a Western Southeast Asia microcontinent
island arc system which collided with Eastern Southeast Asia in
the Triassic. Thus it appears that the Baltic fauna was an open
ocean fauna inhabiting islands and continental margin localities,
as well as the Baltic platform, as Sheehan (1973) stated for
brachiopods, and was not confined to temperate latitudes.

The Baltic nature of the Missouri Ashgillian fauna has
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previocusly been recognized in formations of Latest Ordovician
(Hirnantian) age by Amsden (1974, brachiopods) and by Elias
(1982, corals). Elias labeled this region of Missouri, Illinois,
and, tentatively,; Northeastern Oklahoma, as the Edgewood.
Province; and suggested that the fauna migrated into this region
from the south during the Late Hirnantian transgression, which
resulted from deglaciation. However, the bryozoan fauna in this
region is found in the Fernvale, Maquoketa, Orchard Creek and
Girardeau Formations, which range from Mid Ashgill to Early
Hirnantian in age. This indicates that the Baltic fauna migrated
in at a much earlier time than has previously been recaognized.
Caradocian faunas in this region are similar to those recognized
elsewhere in the Midcontinent; therefore the migration of Baltic
bryozoan faunas into this region probably occurred in the Mid
Ashgill.

The Missouri-Southern Illinois region is near the northern
extent of the Mississippi Embayment, and is a seismically active
zone, which was the site of the New Madrid Earthquake. Crustal
instability in this region is related to the presence of a Late
Precambrian rift 2zone, termed the Reelfoot Rift (Ervin and
McGinnis, 1973). Precambrian rifting gave way to the development
of the Reelfoot Basin in Cambrian—-Ordovician time (Schwalb,
1969). The depositional center of the Reelfoot Basin was located
in Western Tennessee in the Cambrian. By the Early Ordovician,
the center of deposition had moved northward into Western
Kentucky, and by Silurian time the center of the basin was

located in Southern Illinois. Schwalb has dated the timing of
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basin development through a series of isopach maps, and related
the thick accumulation of Maquoketa sediments to a downwarping of
the basin which occurred after deposition of the Caradoc age
Kimmswick Limestone. Elevation of the adjacent O0Ozark and
Nashville Domes was associated with basin subsidence through
lateral displacement of mantle material from beneath the rift.

The development of the Reelfoot Basin may be related to
the wmigration of the Baltic fauna into the Missouri-Southern
Illincis region. First appearances of Baltic genéra in this
region occurred during Maquoketa time, which coincides with
evidence for Maquoketa basin subsidence. Perhaps basin subsidence
allowed free migration of Baltic continental margin faunas into
the Reelfoot Basin. This biogeographic information may be
regarded as an independent test for the timing of basin
subsidence. A Baltic brachiopod fauna was described from the
Hirnantian age Keel Formation in the Arbuckle Mountains of
Oklahoma by Amsden (1974). The Arbuckle Mountain region is also
the site of a Precambrian rift zone which developed into an
Ordovician basin (Ross, 1976). Perhaps migration of Baltic
brachiopods into this region was related to synchronous Late
Ordovician basinal subsidence in Oklahoma.

The Reelfoot Basin evidently provided a source for some
migration of Baltic genera into adjacent areas of the continental
interior which led to the formation of the Maquoketa Biome. The
Baltica genera Diplotrypa and Sceptropora newly appeared in the
Missouri-Southern 1Illinois area during Maquaoketa time, and

simultanecusly appeared in several of the areas which constitute
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the Maquoketa Biome (Northwest Illinois, Northeast Illinois,
Wisconsin and Central Tennessee). Anstey (1986) also noted the
predominance of Baltoscandian genera in the Maquoketa Biome.
Al though most biomes can be related to differences in
lithofacies, the presence of Baltic immiqrants differentiates the
Maquoketa Biome from the Red River-Stony Mountain Biome in
Ashgillian carbonate terranes in North America. Witzke (1987)
attributed Maquoketa phosphorite deposition in the midcontinent
to a transgression in which poorly oxygenated water upwelling at
the Ouachita continental margin deposited the phosphatic shales
and limestones of the basal Maquoketa. The subsiding Reelfoaot
Basin may have provided a nearer source for the upwelling of
poorly oxygenated water. The Maquoketa transgression may also
have carried bryozoan larvae from the basin to nearby areas on

the craton, providing immigrants to the Maquoketa Biome.

SUMMARY

Bryozoan biogeography reflects many of the same patterns
ocbserved in earlier studies of brachiopods and trilobites.
Provinciality is high in the Middle Ordaovician, with four
provinces recognizable in the Llandeilo and Céradoc (Nor th
American, Baltic, Siberian and Mediterranean). In the Ashgill, a
Caosmopolitan fauna emerged as two provinces are recognizable: A

Naorth American—-Siberian Province and a Baltic—Mediterranean
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Province.

The wmerging of the North American-Siberian and Baltic
Provinces took place in the Silurian with continued closing of
the Iapetus Ocean. This merging was a gradual process however, as
HWestern Newfoundland and Southeast New Yaork had Baltic affinities
as early as Caradoc time. In the Mid Ashgill, the midcontinent
Missouri-Southern Illinois area toock on a Baltic aspect, and in
the Llandovery, the Anticosti Island fauna had Baltic affinities.
However, North American localities in the midcontinent areas of
Cincinnati, Ohio, Tennessee; New York and Ontario remained
provincial even in the Llandovery, although several Baltic genera
migrated to North America at this time. It was not until the
Wenlock when North America, Siberia and Baltica coalesced intoc a
single province. This complete merging of Baltic and North
American bryozoan faunas postdated the merging of brachiopod and
trilobite faunas, perhaps due to a lower migratory capacity for
the bryozoa, or possibly due to more powerful quantitative
techniques of discrimination used in this study.

Climatic zonation appears to have been important in the
development of provinciality in the Silurian, as a north-
temperate Mongolian Province developed on the northern portion of
the Siberian plate and extended to the northern portion of the
South China plate in the Llandovery and Wenlock. The Silurian
Closes with a cosmopolitan fauna showing no provinciality in the

Ludlow and Pridoli.
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TIMING AND BIOGEOGRAPHY OF THE EARLY RADIATION OF THE BRYOZOA
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INTRODUCTION

Bryozoans first appeared in the Lower Ordovician, and like
many other groups in Sepkoski’s (1981) Paleo2oic Fauna, greatly
diversified in the Middle Ordovician. Diverse faunas have been
described from three major continental plates: North America,
Baltica and Siberia, and smaller faunas have been described from
Southern Europe,; North Africa, Australia, China, and the British
Isles. Within continental plates; faunas often differ from
geosynclinal shelf localities to localities on the continental
platform. A major extinction took place in the Late Ordovician,
and global diversity dropped significantly. The major orders of
Bryozoa show differences in the timing of their radiations, with
the trepostomes being most abundant in the Ordovician and
declining in the Silurian relative to the other groups. In the
following review, the early radiation of the Bryozoa is examined
through an analysis of the first appearances of 2136 species of
bryozoanﬁ recorded from the Ordovician and Silurian strata of the
world. These data are then used to test hypotheses on the
environmental and geographic factors involved in evolutionary

innovations.
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TIMING OF THE RADIATION

The earliest recorded bryozoan was described from the Late
Tremadoc Kindblade Formation of Oklahoma (Ross, 1966a). Bryoczoan
diversity gradually expanded in the Arenig, Llanvirn and
Llandeilo before reaching its maximum in the Caradoc. Early
Ordovician originations were greatest in Balticaj; however the
ma jor radiation during the Middle Ordovican was most prominent on
the North American plate. In North America, 464 new species and
31 new genera have been described from Caradocian sediments,
although only two new families appeared (Figures 26, 27 and 28).

The Caradoc radiations coincide with a major eustatic
transgression, which began in the Llandeilo and inundated the
cratonic interior of North America. This Caradocian transgressicn
has also been reported from the British Isles and Poland
(McKerrow, 1979 and Leggett et al, 1981). The role of
transgressions in inducing radiations was predicted by Fortey
(1984), who associated the flooding of cratonic interiors and
formation of epeiric seas with rapid increases in rates of
speciation in epicontinental areas, due to spatial heterogeneity
and the "species area effect". Cooper (1977) also related marine
transgressions to biotic diversification and increased rates of
evolution. However the subsequent Llandoverian transgression was

not associated with a major radiation.
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Diversification at the species level continued in the
Ashgill of North America, as 276 new species have been described;
however only seven new genera were reported from North America
during the Ashgill. The rate of speciation was actually highest
during the Llandeilo, in the early stages of the transgression,
as approximately 47 new species per million years appeared
(Figures 29, 30 and 31). Due to the short duration of the
Llandeilo (approximately 4 Ma), the absolute number of new
species originating is much less than the Caradoc. Following the
Llandeilo, the Caradoc and Ashgill have remarkably similar rates
of evolution of new species (approximately 32 new species/Ma)
Rates of evolution of new genera were highest in the Llandeilo
and Llanvirn.

Following the Ashgill, evolutionary rates dropped
considerably in the Silurian, again remaining remarkably constant
through the Llandovery, Wenlock and Ludlow at 23 new species/Ma.
Although total diversity dropped considerably following the Late
Ashgill extinctions (Figures 32 and 33), no ma jor
rediversification of the Bryozoa is seen in the Llandovery. This
depression of the speciation rate may be related to the high
incidence of generic extinction observed in the Wenlock through
Pridoli (Figure 34), as existing genera may have gradually
dwindled by nat producing enough new species to replace
extinctions. The low evolutionary rates observed in the Silurian
may also be related to the decreasing Silurian provinciality

brought about by continental convergence.

Bryozoan suborders may be divided into two evolutionary
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faunas: fauna one-suborders which radiated during the Ordovician;
and fauna two-suborders which radiated following the Late
Ordovician extinctions (Anstey, personal communication).
Suborders in fauna one experienced a major rise in speciation
rate during the Llandeilo and had their highest absolute numbers
of originations during the Caradoc (Figures 35 and 36). Suborders
in fauna two had higher speciation rates in the Silurian, with
the exception of the Amplexoporina, which diversified greatly in
the Caradoc (Figures 37 and 38). The Late Ashgill extinctions
seemed fo have a pronounced effect on evolutionary rates of the
trepostomes, as post extinction speciation rates were
approximately halved in the suborders Halloporina and
Amplexoporina, and remained at 1low levels for the remainder of
the Silurian. The cryptostome suborders Rhabdomesina,
Fenestellina, and Ptilodictyina and the cystoporate suborder
Fistuliporina, however, experienced increases in speciation rates
from the Ashgill to the Llandovery. Trepostome suborders show
very low species survivorship into the Silurian (Figure 39), and
it is possible that the great reduction in trepostome diversity
caused by the Late Ashgill extinctions is related to the reduced
speciation rates observed in the Silurian. Gould and Calloway
(1980) observed a similar wmajor effect in the Permian mass
extinction on brachiopods in the Mesozoic and Cenozoic. It
appears that the Late Ashgill mass extinction was an event from
which the trepostomes never recovered. The cryptostomes
experienced the highest percentage survivarship into the

Llandovery; however, their speciation rates began to decline

-y -
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throughout the remainder of the Silurian. Both cystoporate
suborders (Fistuliporina and Ceramoporina) were greatly affected
by the mass extinction; however the fistuuliporines did not
suffer a depression of speciation rates in the Llandovery and
began diversifying at higher rates in the Wenlock and Ludlow,

until a Pridoli decline.

LATITUDE AND CENTERS OF ORIGIN

Darlington (1937) first proposed that the tropics serve as a
center for the evolution of new taxa. Since that time much
research has been done to test this hypothesis for marine
invertebrates. Stehli and Wells (1971) and Durazzi and Stehli
(1972) found that the average ages of.recent caoral and benthonic
foraminifera genera decreased towards the tropics, while
diversity increased. They concluded that a strong relationship
exists between diversity, temperature and evolutionary rates, and
proposed a wmodel in which the highest generic diversities
correspand with regions of highest temperature in the tropics.
New genera evolve in regions of high diversity and extend their
ranges through time into regions of lower diversity and higher
stress. Hecht and Agan (1972) also found a relationship between
age and diversity of recent and Miocene bivalve genera, with the
tropics again having higher diversities and younger generic ages.
Recent Bryozoa, however, have highest species diversities at

temperate latitudes between 30 and 60 degrees north of the
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equator (Schopf, 1970).

Zinsmeister and Feldman (1984) proposed high latitude,

shallow water, high stress environments to be centers of origin
for new taxa, from studies of first appearances of Late Cenozoic
molluscs, echinoderms and ar thropods from Antarctica.
Hickey et al. (1983) proposed Arctic origins for numerous Late
Cretaceous and Early Tertiary land plants and vertebrates. Both
studies stated that polar climatic conditions in the Cretaceous
and Early Tertiary  were mild in comparison with modern
conditions. However Zinsmeister and Feldman emphasized that the
éliuate was subject to extreme seasonality. They suggested that
the seasonality and isclation of the Antarctic region were the
primary cause of evolution of new taxa.

An opportunity to test these opposing hypotheses on
latitudinal effects on evolutionary innovation is provided
by documenting the early evolutionary history of the Bryozoa.

The early evolution and radiation of the Bryozoa took place on
latitudinally separated continents in the Early to Early-Middle
Ordovician. Continental reconstructions from Scotese (1986)
reveal that from the Late Cambrian to the Llanvirn, the
continents of North America and Siberia were situated in
equatorial realms, North Africa and Southern Europe were situated
near the South Pole, and Baltica was situated in intermediate
latitudes, between 30 and 60 degrees south of the equator.

By Ashgill time, however, Baltica had moved into equatorial
latitudes.

Although a few Early Ordovician species have been recorded
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from China, the predominant record of early bryozoan evolution is
preserved in the Early Ordovician sediments of Baltica, North
America and Siberia. Diversities in the polar continents of

North Africa and Southern Europe are low. Climatically, North
America has been characterized by Spjeidnaes‘(1981) as having

an equatorial, low latitude climate, while Baltica had a boreal
or intermediate climate. Jaanusson (1972) also concluded that
Baltica occupied a temperate climatic zone, despite the presence
of widespread carbonate deposition. Lindstrom (1972) reported
ice—marked sand grains from the Lower Ordovician of Scandinavia,
indicating that the region did experience some cold climatic
conditions. From the Arenig through the Llanvirn, when Baltica
was situated in the south temperate zone, a tot;l of 18 families,
47 genera and 90 species made their first appearances on Baltica.
During this same time period only & families, @24 genera and 23
species appeared on the equatorially located North America, while
O families, 3 genera and 8 species appeared in Siberia. Only

1 family, 1 genus and 1 species are recorded as appearing in

the polar South Europe-North Africa region (Figures 26, 27 and
28).

The fact that the relatively high latitude, temperate,
continent of Baltica served as the major evolutionary center faor
the Bryozoa lends support to the generality of the patterns
observed by Zinsmeister and Feldman and Hickey et al. This
indicates that high latitude, temperate, environments subject to

extreme seasonality may be important centers of origin for new

taxa. In the bryozoa, this effect seems to be particularly



88
pronounced at the family level. Webby (1984b) also suggested

a probable Baltic temperate latitude origin for the Bryozoa.

THE OFFSHORE-ONSHORE HYPOTHESIS

Sepkoski (1981), in a factor analysis of the number of
families within classes of Phanerozoic metazoans, defined three
evolutionary faunas: (1) a Cambrian fauna dominated by trilaobites
and inarticulate brachiopods; (2) a Paleozoic fauna dominated by
articulate brachiopads, crinoids, ostracodes, anthozoans,
cephalopods and stenolaemate bryozocans; and (3) a modern fauna
dominated by molluscs, echinoids, gymnolaemate bryozoans, bony
fish, sharks, demosponges and malacostracean crustaceans.
Sepkoski and Sheehan (1983), Sepkoski and Miller (19835) and
Jablonski et al. (1983) found that the Paleozoic and modern
faunas appear to have had their origins in nearshore environments
and then expanded offshore with time. They suggested that
nearshore environments may be conducive to diversification,
possibly because of the frequent disturbances and stressful
conditions found there, despite higher speciation rates offshore.

An effort was made to test their hypothesis by tabulating
the geographic locations of first appearances of bryozoan taxa
in Ordovician and Silurian formations of North America. Estimated
ages of North American formations were taken from the
stratigraphic correlation charts of Ross et al. (1982), Barnes

et al. (1981) and Berry and Boucot (1970). Global first
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appearances of bryozoan families and genera are strongly
concentrated arocund the ancient continental mmargins of North
America (Figures 40 and 415 taxa which appeared at an earlier
time on other continents were not included). Locations which

have high concentrations of originations include: Lake Champlain
(12 genera and 2 families), the Arbuckle Mountains in Oklahoma

(9 genera and 2 families), West-Central Utah (&6 genera and 3
families), Southuest Virginia (11 genera and 1 family) and

East Tennessee (6 genera). Also, six generic originations were
recorded from the midcontinental region of Southern Indiana,

most of which were found in the Osgood Formation (Silurian).

PALEOENVIRONMENTS OF EVOLUTIONARY CENTERS IN NORTH AMERICA

The Champlain Basin in New York and Vermont was the major
apparent evolutionary center for North American Ordovician
bryozoan genera. Faunas appear to have originated in the Day
Point and Crown Point Formations of Llanvirn and Llandeilo age,
and are associated with abundant carbonate reefs. Pitcher (1964)
described these reefs as being formed in shallow water. Shallow
water indicators include: quartz silt in the matrix of reefs,
carbonate grainstones,; oolites, oncolites, crossbedding and
quartz sand bars in equivalent beds. Walker and Ferrigno (1973)
classified these reefs as being located onshelf, analogous to

modern shelf patch reefs.
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Figure 40. Geographic locations of first appearances of
bryozoan families in North America for the Ordovician
and Silurian. The 2-family contour line parallels
the ancient continental margin. Scale: one inch =
approximately 650 kilometers.
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Figure 41. Geographic locations of first appearances of
bryozoan genera in North America for the Ordavician
and Silurian. The &6—-genera contour line parallels
the ancient continental margin. Scale: one inch =
approximately 630 kilometers.
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In Virginia, bryozoans originate mainly in the Llanvirn
through Caradoc New Market, Lenoir and Edinburg Formations.
Fichter and Diecchio (1986) and Read (1980) have classified the
New Market as representing shallow intertidal to subtidal
deposits, the Lenoir as represenfing a shallow, subtidal
carbonate ramp facies, and the Edinburg as a shelf edge facies
containing carbonate turbidites. The Edinburg contains six of the
11 generic first appearances; however, Fichter and Diecchi state
that most of the Edinburg fauna has been transported from the
shallow shelf as turbidites. Thus it is likely that the Virginia
fauna represents shallow water conditions, although it is
questionable whether the fauna is derived from the innermost
shelf.

Six genera and three families appear in the Arenig-Llanvirn
Kanosh and Lehman Formations of the Pogonip Group in West-Central
U@ah. Hintze (1931) described the Pogonip Group as containing
large amounts of fine quartz arenaceous material and shallow
water indicators such as intraformational conglomerates, ripple
marks, cross laminations and beds of worn and sorted trilobite
fragments. Hintze concluded that the area lay near the eastern
shore of an epeiric sea.

In Oklahoma, the majority of new taxa are found in the
Llanvirn through Caradoc Simpson Group of the Arbuckle Mountains.
The bryozoan bearing~ formations of the Simpson Group are the
McLish, Oil Creek, Tulip Creek and Bromide Formations. Ham (1969)
described the Simpson Group as a sequence of formations, each of

which contains a basal sandstone, overlain by skeletal
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calcarenites, carbonate mudstones and shales. Bryozoans are found
in the upper shale and limestone units of each formation. The
Simpson is regarded as being a transitional group of intermediate
depths; which can be differentiated from the underlying shallow
water Arbuckle Group by the absence of hemispherical
stromatolites and from the overlying deep water Viola Limestone,
by the absence of graptolites. However, the McLish has been noted
to contain Girvanella oncolites in great concentrations. The
oldest bryozoan known was described by Ross (1966a) from the Late
Tremadoc Kindblade Formation of Oklahoma. The species Ceramopora
unapensis was found in a carbonate mound un;t containing abundant
lithistid sponges, quasisponges, orthid brachiopods and the blue
green alga Girvanella.

The fauna from East Tennessee is found in a large reef from
the Lower Caradoc Holston formation. Six genera make their first
appearances in the fauna. The reef fauna was described by Walker
and Ferrigno (1973), who interpreted the palecenvironment to be
offshore, on the eastern edge of a carbonate shelf.

In summary, first appearances of bryozoan genera and
families are highly concentrated around the ancient continental
margin of North America. The most diverse localities can be
classified into three palecenvironmental units:

1. Reefs or carbonate mounds are present in the Chazy Group
of Lake Champlain, the Holston Formation of Easf Tennessee
and the Kindblade Formation of Oklahoma.

2. Indicators of shallow water or inner shelf conditions are

found in the Chazy Group of Lake Champlain, the Pogonip Group
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of Utah, the New Market Formation of Virginia and the McLish
Formation of Oklahoma.

3. Intermediate mid-shelf envirnoments have been inferred for
the Simpson Group of Oklahoma and the Lenoir Formation of
Virginia. The fauna of the Edinburg Formation was most likely
transported as turbidites into deeper waters, from shallower,
on-shelf localities.

This evidence from first appearances of bryozoan species and
genera does lend some suppaort to the hypothesis that nearshore
environments serve as localities ‘for the origination of higher
taxa. HHowever, some mid-shelf localities also seem to be
evolutionary centers. Reef environments seem to be particularly
important centers for the evolution of new taxa. Previous
research on the onshore-offshore problem only focused on level-
bottom communities and did not include reef communities, because
of an implicit assumption that reef communities had a different
evalutionary history than level-bottom communities. Sheehanr
(1985), however, stated that reefs follow the general
evolutionary patterns of level-bottom communities. Reefs and
level-bottom communities do show an interchange of fauna as, taxa
originating in reefs radiated into level-bottom communities. It
would not be surprising if other elements of the Paleozoic fauna,
particularly corals, bhave similar first appearances of higher

taxa in reefs.
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EVOLUTION AT THE SPECIES LEVEL

Bryozoan speciation patterns in North America differ greatly
from patterns of origination of genera and families (Figure 42).
Coastal localities,; which were evolutionary centers for genera
and families, have relatively low numbers 'of species
originations. The highest number of species originations is
concentrated in the Cincinnati region, where bryozoans appear in
abundance in the Late Ordovician Kope and Dillsboro Formations of
Southern Indiana, Southern 0Ohio and Northern Kentucky. Anstey,
Rabbio and Tuckey (1987a) suggested this intracratonic region lay
in an area of relatively deeper water, centered between the
Taconic clastic wedge to the east and the carbonate platform to
the west. Other regions of high species originations include mid-
craton areas such as the Middle Ordovician formations of the
Central Tennessee Basin, the Middle Ordovician formations of
Minnesota, and Middle Ordovician and Silurian strata in Central
and Western New York. These results clearly imply that species-
level evolution is not preferentially concentrated in nearshore
enviromnments. Similar results have been reported by Jablonski
(1980) and Jackson (1974), who found that offshore bivalve taxa

have higher speciation rates than onshore taxa.



Figure 42. Geographic locations of first appearances of
bryozoan species in North America for the Ordovician
and Silurian. The 60-species contour line ocutlines
cratonic localities in Minnesota, Central Tennessee,
Southern Indiana, Northern Kentucky and Central and
Western New York. Scale: one inch = approximately
650 kilometers.
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OCEANIC ISLANDS AS EVOLUTIONARY CENTERS

Data from exotic terranes have indicated that oceanic
islands were important centers of origin for higher taxa of
Bryozoa. Because of the highly deformed nature of rocks from
these sites, fossil bryozoans are often unidentifiable, or
identifiable only at higher taxonomic levels. Despite this,
island faunas have vyielded a number of .first appearances of
bryoczoan genera and higher taxonomic groups. Among them are:

1. The Treiorwerth Formation, of the Anglesey region of Southeast
Ireland, contains a Late Arenig bryozoan fauna consisting of
generalized trepostomes and the oldest phylloparinid (Neuman,
19843 Neuman and Bates, 1978).

2. A Late Arenig fauna from New World Island, Newfoundland
contains a number of unidentified trepostomes and the oldest
bifoliate cryptostome (Neuman, 198435 1976).

3. The oldest fenestrate bryozoan, Alwynopora orodamnus,; was
described from the Late Arenig Tourmakeady Limestone of West
Ireland (Taylor and Curry, 19835).

4. A Late Ashgill fauna from the Portrane Limestone of Southwest
Ireland contains a fauna with the first recorded-appearances

of the genera Discosparsas Hederella, and Icthyorachis (Ross,

1966b). lIcthyorachis had previously been known from Devonian

age rocks; while Discosparsa had been known from the
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Cretaceous.

S. The oldest described trepostome, Orbipora sp., was reported
from the Lower Arenig Ogof Hen Formation of South Wales
(Taylor and Cope, 1987).

The first four of these localities were described by Neuman
(1984) as exotic terranes representing oceanic islands in the
Iapetus Ocean. Neuman found that oceanic island faunas contain
high percentages of endemic brachiopods, and cited the isolation,
topographic irregularities and lack of competition encountered by
pioneer species in these habitats as factors promoting endemism.
Webby (1984b) noted that clathrodictyid stromatoporoids,
coenosteoid heliolitid corals and several groups of rugose
corals made their first appearances in island arc settings off

the coast of Australia.

DISCUSSION

One possible interpretation of these results is that there
may be a fundamental difference between speciatioh and the
evolution of higher taxa such as genera and families. Jablonski
and Bottjer (1983) suggested differences in speciation rates
between onshore and offshore species may be related to wider
geographic ranges and an increased frequency of planktotrophic
larval development among nearshore taxa. They further state that

because of their planktotrophic larval development, onshore taxa
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are speciation and extinction resistant, but are more susceptible
to speciation events involving genetic transiliencies, which may
be sources of evolutionary novelty.

The mode of larval development for Ordovician Bryozoa is not
known. However, an attempt was made to compare geographic ranges
of nearshore vs. offshore genera, which might be correlated with
larval type. Geoagraphic ranges of high speciation, offshore
localities (Southern Indiana, Southern O0Ohio, Northern Kentucky,
Central Tennessee, and Minnesota) and nearshore and reef centers
of evolution of higher taxa (Virginia, Oklahoma, Utah, Lake
Champlain and East Tennessee) are compared in Table 4.
Geographic range is estimated by the mean number of continents
occupied per gernus from the Arenig through Caradoc, when
continents were still widely separated;, and by per cent of
endemic genera (confined to one continent) in each fauna.

Except for Utah, the mean number of continents occupied
per genus is relatively constant for nearshore vs. offshore
localities. Genera from Utah are more widespread, with each genus
occupying an average of 4 continents, and no genera from Utah are
endemic. However, Utah has a diversity of only 6 genera which is
much lower than the generic diversities of other sites,; which
range from 26-359. Thus the data from Utah may not be as reli;ble,
given the low sample size. Other nearshore and reef localities
have a high percentage of endemic genera. This reflects the fact
that many genera appeared at these sites and never migrated to

other continents or invaded the continental interior. Many rare

genera such as Amalgamoporous, Champlainopora, Chazydictya,
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Table 4. Endemicity of bryozoan genera.

Locality Mean number of continents % Endemic genera
occupied per genus per locality

1. Nearshore and reef:

Lake Champlain 2.9 22
Oklahoma 3.2 18
Utah 4.0 o
Virginia 2.8 26
East Tennessee 3.0 21
Mean -2 17.4
2. Offshore, intracratonic:

Central Tennessee 3.1 4
Nor thern Kentucky 2.9 13
Southern Indiana 3.0 12
Southern Ohio 3.0 10
Minnesota 2.9 12
Mean 3.0 10.2
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Cricodictyum, Cystostictoporous, Heminematopora,

Geciophylloporina, Trepostomina, Hemiulrichostylus, Ottoseetaxis,

Osburnostylus, Jordanopora, and Lammotopora are confined to reef

or continental margin localities. Despite the high percentage of
endemics at these sites, the total f#unal assemblages have the
same average generic ranges as the inner cratonic sites. This
indicates that the continental shelf and reef localities have a
mixed fauna, of cosmopolitan (planktaotrophic?) and endemic
(nonplanktotrophic?) genera.

Nearshore environments are typically characterized as
unpredictable, high-stress, environments, with the implication
that environmental stress may somehow be related to evolutionary

innovation. In contrast, reefs are characterized as occupying

predictable, low—stress environments. Given the large
contribution of reefs and oceanic islands to evolutionary
innovation in the Bryozoa, perhaps the relationship of
environmental stress to evolutionary innovation has been

overestimated. Reefs and islands are spatially heterogeneous,
isolated environments. They offer the opportunity for species
assemblages of small population size to faorm, often isolated from
other reefs and islands by large distances. The occurrence of
these isolated units of small population size may be related to
the evolution of novel groups through the founder effect, the
spatially heterogenous nature of the environment and the lack of
selection pressure on pioneer species. Reefs often are found
associated with island arcs and may have provided early

colonization sites for newly evolved species.
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Schopf (1977) viewed the evolution of new taxa as a process
of increasing specialization, whereby specialized forms arise
from generalized ancestors. Generalized taxa have life history
strategies most suited for unstable, nearshore environments.
Perhaps the reason higher taxa often appear in nearshore
environments is because only generalized forms have the
developmental plasticity necessary to allow evolutionary
innovation. Thus, the fact that this process occurs nearshore is
not because of any special evolutionary property of the nearshore
environment, but because the generalized, ancestral forms are
adapted to nearshore habitats.

Reef habitats are most suited for biotically competent,
specialized farms. Reefs were abundant in North America from the
Arenig through the Early Caradoc, but were rare from the Middle
Caradoc through the Middle Ashgill, possibly because of an
increase in terrigenous sedimentation from the Taconic Orogen and
because rising sea levels deposited widespread black shales over
the eastern midcontinent. They reappeared in the Late Ashgill in
the Williston Basin, Mellville Peninsula and Anticosti Island
areas of Canadaj; however, few novel groups appéared in reefs
after the Early Caradoc.

Gould (1977) outlined how two forms of paedomorphosis
(progenesis and neoteny) can act to preserve morphologic
generality in stable and unstable environments. Proéenesis
(the acceleration of reproductive maturation) is a successful
adaptive strategy in unstable environments. Gould states that

when selection is focused on timing of reproductive maturity,
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rather than on morphology, experimental morphologies can

develop because morphology is suddenly released from the

pressures of selection. Specialized adaptive strategies favor
delays in timing of reproductive maturity. In these
circumstances, juvenile features may be preserved in adult states
{neoteny), lending the arganisms a certain evolutionary
plasticity. Anstey (1987) has documented several cases of

paedomorphic traits in nearshore Paleozoic bryozoans.

SUMMARY

1. The early radiation of the Bryozoa was largely concentrated
on the continent of Baltica, which was located in a temperate
climatic zone in the Southern Hemisphere.

2. Worldwide diversities and evolutionary rates greatly increased
in the Middle Ordovician, corresponding with a major eustat:
transgression.

3. Following the Late Ordovician mass extinction, Silurian
diversities and evolutionary rates were consistently lower
than in the Ordovician.

4. First appearances of bryozoan genera and families in North
America were largely concentrated in reefs and nearshore and
mid-shelf environments around the ancient continental margin.

S. Oceanic islands also were centers of origin for genera and
higher taxonomic groups of bryozoans and other marine
invertebrates.

6. First appearances of bryozoan species were largely
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concentrated offshore, in the stable craton.

Differences in the onshore vs. offshore evolution of taxa
may be related to the presence of taxa with generalized
(and often paedomorphic) morphologies in nearshore areas,
and the spatial heterogeneity provided by the presence of

reefs on the continental shelf.
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GRADIENT ANALYSIS AND BIOSTRATIGRAPHIC CORRELATION
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INTRODUCT ION

Gradient analysis has been used to quantify spatial
gradients in the distribution of taxa by ecologists and
paleocecologists. Cisne and Rabe (1978) used reciprocal averaging
to quantify spatial gradients in the distribution of fossils
along an onshaore-offshore transect in the Ordovician of New York.
Anstey,; Rabbio and Tuckey (1987a) used reciprocal averaging and
polar ordination to quantify spatial gradients in the
distribution of Late Ordovician bryozoan genera in North America
and to quantify stratigraphic gradients in the distribution of
bryozoan genera in a stratigraphic section in the Late Ordovician
of southern Indiana. These stratigraphic gradients were inferred
to represent bathymetric changes in the Late Ordovician epeiric
sea. Cisne, Gildner and Rabe (1984) also constructed bathymetric
curves for stratigraphic sections in New York and the upper
Mississippi Valley, using detrended correspondence analysis.
These sections were then correlated on the basis of synchronous
changes in sea level. The application of gradient analysis to
quantifying temporal gradients in the distribution of fossil
species and genera makes it a potentially useful tool in
biostratigraphy. Other multivariate techniques, such as cluster
analysis and nonmetric multidimensional scaling, have also been
used for quantitative stratigraphic correlations and construction

of assemblage zones. Descriptions of these techniques may be
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found in Brower (1985), Hazel (1977) and Cubitt and Reyment
(1982).

Previous applications of gradient analysis have been high
resolution studies of the presence—absence or abundances of
taxa in measured stratigraphic sections. Changes in abundances
of taxa reflect palecenvironmental changes associated with
transgressions and regressions. This approach differs from
previous studies in that the presence—-absence of species in
formations spanning a long time interval (the Ordovican) is
analyzed. The limited stratigraphic range of species enables
gradient analysis to quantify an "age gradi;nt“ unrelated to
short term environmental changes.

To test the biostratigraphic utility of gradient analysis,
an analysis was done of the distribution of bryaozoan species in
the Ordovician of Estonia. Estonia was chosen for this analysis
because it has a diverse bryozoan fauna and a complete sequence
of Ordovician formations ranging fraom Arenig through Ashgill in
age (Figure 43) exposed within a relatively small geographic
area, thus minimizing the potential for spatial variation. The
Balto-Scandian Ordovician formations lie in three major facies
zones. Each zone maintains its individuality and geographic
location throughout most of the Ordovician, and major faunal
changes between formations are usually not associated with a

change in lithology or facies (Jaanusson, 1976).
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Figure 43. The Ordovician stratigraphic sequence of Estonia,

from Alikhova (1976) and Mannil (1966).
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METHODS

Data on the distribution of bryozoans in the Ordovician of
Estonia were compiled from the publications of Bassler (1911),
Mannil (1959) and Modzalevskaya (1953). A data matrix was
compiled, listing the presence or absence of each species of the
bryozoan fauna in each formation of the Estonian Ordovician
sequence. This data matrix was used as input data for the
gradient analytic technique of detrended correspondence analysis,
(hereafter called DCA). DCA and reciprocal averaging are similar
to factor analysis in that they reduce the dimensionality of the
data matrix into a few major axes of variation. Sample scores are
ordinated with respect to their distance between the two poles,
or end points, of each axis. DCA and reciprocal averaging give
identical results on the first axis, but differ on subsequent
axes, as DCA axes are orthogonal, whereas subsequent axes of
reciprocal averaging are often correlated with the first axis.

A discussion of these gradient analytic techniques is provided in

Gauch (1982).
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RESULTS

Ordination scores for the Ordovician formations of Estonia
are given in Table S. DCA correctly ordinated the Estonian
formations with respect to age on the first axis, with the
exception of the B2 and B3 horizons which were juxtaposed, with
the B3 being classified as older than the B2. The juxtaposition
was probably due to the effect of two species, Diplotrypa
petropolitana and Parvohallopora bicornis, which were listed as
being present in the B2 horizon and abundant in the younger C
and D horizons, but were not recorded from the B3. This had the
effect of making the B2 appear more similar to formations of
younger age. These ordination results clearly indicate that

the first DCA axis serves as an "age" axis for Estonia.

A DATING OF THE ORDOVICIAN ERRATIC BOULDER FAUNA FROM POLAND

A bryozoan fauna from Ordovician erratic boulders from
Poland was described by Kiepura (1962). The fauna is known to be
Ordovician in age, however the precise age of the fauna has
never been determined. A dating of this fauna was attempted by
including the fauna from each boulder in the data matrix with the

Ordovician fauna of Estonia. Boulders containing fewer than 3
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Table 5. First axis DCA ordination scores for the Ordovician
formations of Estonia

Eigenvalue = 0.819

Horizon DCA Score # of Genera # of Species

Fa 683 a0 28
Flc 3532 18 a1
Fib 521 27 34
Fla 502 17 19
E 279 25 32
D3 195 47 73
De 178 43 &7
D1 139 39 &6
c3 130 34 36
ca 101 48 212)
Ci1 S2 31 49
B2 15 8 10

B3 o 19 32
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species were not included in the analysis. DCA ordination scores
for this analysis are listed in Table 6. The Estonian Ordovician
sequence is again ordinated with respect to age on the first
axis, with the exception of the B2 and B3 horizons and

the C2 and C3 horizons which are juxtaposed, although their
ordination scores are almost identical. Erratic boulders 0.204
from Mochty (province of Warsaw) and 0.17 from Wielki Kack
(praovince of Gdansk) are classified as being between the Flic
(Pirgu) and F2 (Porkini) horizons in age. Ordination scores for
the two boulders however, are closest to the F2 horizon, which is
Hirnantian (Latest Ashgill) in age. This ev}dence indicates that
these two erratic boulders from Paland are Hirnantian in age, and
are thus equivalent in age to the erratic boulders from the
Hirnantian of Ojlemyr, Gotland, whose fauna was described by

Sp jeldnaes (1984). Schallreuter and Hillmer (1987) also noted the
similarity between the Ojlemyr fauna and the Polish boulder

fauna.

A DATING OF THE NAUNGKANGYI FORMATION OF BURMA

The fauna of the Naungkangyi formation of the North and
South Shan States of Burma was described in a serieé of papers by
Reed (1906, 1915, 1936). In the North Shan States, the
Naungkangyi is divisible into an upper member of predominantly

shales and a lower member of sandy marls, while in the South
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Table 6. First axis DCA ordination scores for the Ordovician
formations of Estonia and erratic boulders 0.17 and 0.204
from Poland.

Eigenvalue = 0.821

Horizon DCA Score # of Genera # of Species
Fe &59 20 a28 |
Boulder 0.17 628 10 14
Boulder 0.204 626 16 20
Flc 523 18 21
Fib 512 27 - 34
Fla 494 17 19
E 307 25 32
D3 210 47 73
D2 205 43 67
D1 150 39 &6
ce 143 48 as
Cc3 140 34 356
C1 83 31 49
B2 20 8 10

B3 (o] 19 32
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Shan the Naungkangyi exists as a series of shales and limestone
lenses and is not divisible into upper and lower units (Pascoe,
1959). The age of the Naungkangyi members has been estimated by
Pascoe to range from Llanvirn to Early Caradoc; however, Williams
(1973) included the Naungkangyi fauna in the Upper Caradoc, in
his cluster analysis of brachiopod faunas.

The Baltic affinities of the Naungkangyi fauna have been
recognized by Pascoe (1959), and in Chapter one of this thesis.
Because of the Baltic nature of the Naungkanyi fauna an attempt
was made to estimate the temporal position of the fauna by
including it in a DCA analysis with the Ordovician sequence of
Estonia. Since some of the Naungkangyi bryozoan fauna are
described only to the level of genus, the input data matrix
consisted of the presence or absence of bryozoan species and
genera in the Naungkanyi members and the Estonian formations.

First axis scores again show the Estonian sequence ordinated
by age (Table 7). The Upper and Lower Naungkangyi formations from
the North Shan and the Naungkangyi farmation from the South Shan
all cluster in age between the E (Rakvere) and Fla (Nabala)
horizons of Estonia. Ordination scores for the South Shan
Naungkangyi and the North Shan Lower Naungkangyi are closest to
the ordination score for the E horizon of Estonia, while the
Upper Naungkangyi Formation clusters closest to the Fla horizon.
Alikhova (1976) placed the E horizon in the Upper Caradoc and the
Fla horizon in the Lower Ashgill. Thus, this analysis indicates

the Naungkangyi members to be of Late Caradoc to Early Ashgill
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Table 7. First axis DCA ordination Ssores for the Ordovician
formations of Estonia and the Lower Naungkangyi (L-Naung) and
Upper Naungkangyi (U-Naung) Formations of the North Shan States
and the Naungkangyi (S—Naung) Formation of the South Shan States
of Burma.

Eigenvalue = 0.779

Horizon DCA Score # Genera # Species
Fa 624 20 28
Flc 491 18 21
F1lb 487 27 34
Fla 466 17 19
U-Naung 420 S S
S—-Naung 283 9 11
L—-Naung 285 7 10
E 284 23 32
D3 213 47 73
De 199 435 &7
D1 140 39 66
c3 132 34 Sé6
ce 112 48 88
C1 &7 31 49
B2 S8 8 10

B3 0 19 32
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age.

SUMMARY

Ordination analysis succesfully classified Estonian
formations of known age along an "age" gradient on the first
DCA axis, with one exception. When faunas of unknown age,
from the same biogeographic province, were included in the
analysis, the "age" gradient on the first axis remained intact
and the undated faunas were time correlated with Estonian
formations by their positions on the first axis. These results
indicate that gradient analysis is a useful biostratigraphic
tqol because of its effectiveness in ordinating temporal
gradients, as well as an effective ecologic tool as ecologists
and paleoecologists have recognized.

This analysis also suggests that bryozoans are useful
tools in biostratigraphy. Despite the fact that paleontologists
such as E.O0. Ulrich and R.S. Bassler recognized their
stratigraphic value, bryozoans have rarely been used in recent
biostratigraphic studies. Although species distributions are
often facies—controlled, the relatively short stratigraphic
ranges of many species make them useful for correlation within

biogeographic provinces or subprovinces.
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INTRODUCTION

The Late Ordovician has been recognized as one of four
periods of Phanerozoic mass extinction, that significantly
exceed background extinction levels (Raup and Sepkoski, 1982).
Extinctions in this epoch affected a variety of marine
invertebrates including trilobites, echinoderms, graptolites,
conodonts and corals (Brenchly, 1984). The cause of the
extinctions has been attributed to climatic cooling associated
with the Late Ordovician glaciation, centered in North Africa
(Stanley, 1984), and to the marine regression associated with the
glaciation (Brenchly, 19843 Jaanusson,; 1979). An analysis of the
terminal stratigraphic occurrences of Late Ordovician bryozoan
species and genera, drawn from a worldwide bryozoan data base,
indicates that the Late Ordovician éxtinction of bryozoans is a
composite of three discrete extinction events that significantly
exceed background extinction levels: a Late Caradoc event (Onnian
Stage) and two Late Ashgill events (Rawtheyian and Hirnantian
Stages, respectively). This paper seeks to demonstrate
differences in the fauna affected by each of these separate
events,; and to propose extinction mechanisms consistent with

these differences.
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ONNIAN EXTINCTIONS

A Poisson distribution test (Sepkdski and Raup, 1986) which
compares extinction maxima with local minima was applied to test
the significance of extinction peaks for bryozoan species and
genera during the Ordovician and Silurian (Figures 44 and 45S). In
addition to a Middle Ordovician (Black River) event, these
extinction peaks rise above the 9534 confidence limits: a Late
Caradoc peak, two Late Ashgill peaks and a Mid-Silurian peak.

The Late Caradoc extinction of bryozoan species totaled
over 30% of all Late Caradoc species recorded from the continents
of Baltica, Siberia and Southern Europej; however, only about 25%
of North American species were affected (Figure 46). Endemic
species and genera were significantly more prone to extinction
than cosmpolitan taxa, as taxa confined to one continent
suffered more than taxa on two or more continents (Figure 47).
Extinctions were concentrated among stenotopic species and
genera, as taxa confined to one lithotope suffered higher rates
of extinction than taxa occupying mixed lithologies (Figure 48).
Brenchly (1984) and Brenchly and Newell (1984) discussed Late
Caradoc extinction events for trilobites and brachiopods and
attributed them to a reduction in provinciality brought about by
plate movements reducing the uidth of the Iapetus Ocean. This
idea is supported by data on migrations of bryozoan genera, as

Baltica and Siberia, where extinctions were high, received larger
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Figure 44. Ordovician and Silurian extinctions of bryozoan genera
recorded in intervals of 4 million years. The dotted line
represents the 95% confidence intervals of a Poisson distribution
test which compares extinction maxima with local minima. Time
SCale is taken from stratigraphic charts of Ross et al. (1982).
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Ordovician and Silurian extinctions of bryozoan
sSpecies, recorded in intervals of 4 million years. The dotted
line represents the 95% confidence intervals of a Poisson

distribution test. which compares extinction maxima with local
minima. Time scale is taken from stratigraphic charts of Raoss

et al. (1982).

Figure 4S.
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numbers of migrants during the Late Caradoc, than North America,
where extinctions were low (Figures 8, 9 and 10). Spjeldnaes
(1981) described these migrations as the "Vaselemma" (Estonian E
Horizon) wave and characterized them as being marked by an
invasion of American trilobites, brachiopods and bryozoans into
Europe. Perhaps extinctions in Baltica and Siberia were related
to competition between migrants and stenotopic species which were

unable to expand their range to other lithotopes.

RAWTHEYAN EXTINCTIONS

Although the Late Ashgill extinction appears as a single
peak in Figures 44 and 45, it is a composite of two separate
extinctions, one during the Rawtheyan stage and one during the
Hirnantian (the final stage of the Ashgill). The stratigraphic
divisions of the Ashgill are shown in Figure 49. Rawtheyan
extinctions of bryozoa were concentrated in North America, where
approximately 90X of Late Ashgill species went extinct. Baltica
however, lost only about S% of its species during the Rawtheyan
(Figure S50). Because stratigraphic data on bryozoan distributions
from Siberia, China and Southern Europe are imprecise, the effect
of the Rawtheyan and Hirnantian extinctions on these continents
cannot be determined. Rawtheyan extinctions were concentrated in
terrigenous and mixed terrigenous/carbonate lithotopes, as

opposed to those of pure carbonates (Figure S1). Extinctions
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Figure 49. The stratigraphic stages of the Ashgill, from Ross
et al. (1982).
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rates in terrigenous and mixed lithotopes exceeded 80X compared
to about 35% for carbonate lithotopes. Extinctions were highly
concentrated among species in the orders Trepostomata and

Tubuliporata.

HIRNANTIAN EXTINCTIONS

A second wave of Late Ashgill extinctions occurred during
the Hirnantian and the effects were quite different than those of
the Rawtheyan. Hirnantian extinctions were concentrated in
Baltica, which lost over 80X of its species, as opposed to North
America, which lost approximately 204 (Figure S50). Hirnantian
extinctions were concentrated in carbonate lithotopes as opposed
to terrigenous and mixed lithotopes, with rates exceeding 50% for
carbonates as opposed to approximately 10X for terrigenous and
mixed (Figure 351). Hirnantian extinctions were high among species
belonging to the orders Cryptostomata and Cystoporata.

The magnitude of the Hirnantian extinction was considerably
smaller than the Rawtheyan at the species level. The Hirnantian
extinctions also coincided with a large migratory wave of

North American genera into Baltica (Figure 9). Spjeldnaes (1981)
previously recognized this immigration as the ’Porkuni’ (Estonian

F2 Horizon) wave.
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DISCUSSION

Two major causes have been proposed for the Late Ordovician
mass extinction: global coocling (Stanley, 1984), and marine
regression (Brenchly 1984, and others). Stanley’s glabal cooling
hypothesis does not explain the differing effects of the
extinction on faunas from different lithotopes. Brenchly
attributed the first phase of the Late Ashgill extinctions to the
marine regression which decimated the shelf benthos via the
species—area effect. Jablonski (1983) questioned the role of the
species—area effect in extinctions by demonstrating the
importance of oceanic islands as refuges during marine
regressions. The shelf area around oceanic islands increases
during regressions. This analysis suggests that marine
regressions may cause extinctions by wiping out specific
types of habitats rather than through the species-area effect.

The Rawtheyan extinctions of bryozoan species were
concentrated in areas of terrigenous lithologies in North
Americas; while areas of carbonate lithologies were relatively
unaffected. Anstey (1986) found that over 50X of the genera in
the terrigenous Reedsville-Lorraine Biome and the mixed
terrigenous—clastic Cincinnati Biome did not survive into the
Silurian. This may be due to the fact that species from carbonate

environments were able to find similar habitats on the carbonate
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shelves of oceanic islands,; while species from terrigenous
environments had their habitat destroyed during the marine
regression. An oceanic island bryozoan fauna was described by
Ross (1966b) from the Portrane Limestone aof Ireland. This fauna,
of Rawtheyan age, comes from an exotickterrane which was formerly
an island in the Iapetus Ocean (Neuman 1984) and has affinities
with North American and Baltic carbonate faunas. The
disproportionate effect of the Rawtheyan marine regression on
North American faunas is also evident in the brachiopods
(Sheehan 1975), as Baltica was apparently less affected by the
regression.

The presence of oceanic islands probably facilitated
faunal migrations, as the largely carbonate shelves of Baltica
received large numbers of immigrants during the Hirnantian.
Hirnantian extinctions may be related to a reduction in
provinciality associated with this migratory wave. Brenchly
(1984), however,; attributed the Hirnmantian extinctions to a rapid
rise in sea level at the end of the Hirnantian, which is
evidenced by deposits of Early Silurian black shale at many
Baltic localities. Sheehan (1987) associated this rapid rise in
sea level with the spread of anaerobic conditions in deep water
which led to the extinction of the Foliomena brachiopod
community. Raymond et al. (1987) also associated rising sea level
caused by glacial melting with increased equatorial seasonality
and high equatorial extinctions in Carboniferous brachiopods. The
Hirnantian migrations may, in turn, have been related to rising

sea level, as Hallam (1977) found that cosmopolitanism among
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Jurassic bivalves increased during transgressions.

CONCLUSION

1. The Late Ordovician extinctions of bryozoa occurred in 3
discrete phases: A. An Onnian phase, B. a Rawtheyan phase,
and C. a Hirnantian phase.

2. Late Caradoc extinctions were concentrated on the continents
of Baltica, Siberia and Southern Europe and affected primarily
stenotopic and endemic species and gener;. The Late Caradoc
was also a time of immigration of new genera ontoc Baltica and
Siberia.

3. Rawtheyan extinctions were concentrated among species
occupying terrigenous and mixed terrigenous/carbonate
lithotopes on North America.

4. Hirnantian extinctions were concentrated among species
occupying carbonate lithotopes on Baltica, and were
correlated with a wave of North American immigrants which
appear in Baltica at that time.

S. These data appear to be consistent with a hypothesis which
explains the Rawtheyan extinction through a destruction of
terrigenous habitats in North America by a marine regression
and the Hirnatian extinction through a reduction'in
provinciality and low oxygen conditions associated with

the ensuing transgression.
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