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ABSTRACT

GLOBAL BIOGEOGRAPHY, BIOSTRATIGRAPHY AND EVOLUTIONARY PATTERNS

OR ORDOVICIAN AND SILURIAN BRYOZOA

BY

Michael Edward Tuckey

The data for each of the chapters in this thesis was derived

from a global bryozoan data base assembled for this project. The

data base contains information on nearly all species of

Ordovician and Silurian Bryozoa which have been described in the

literature. The information recorded for each reported occurrence

of a species includes: geographic locality, geologic formation,

lithology of the formation, and colony morphology. Ages of

formations were estimated from recently published stratigraphic

charts. Taxonomy and synonymies of bryozoan clades were assembled

with the advice of Dr. Robert Anstey. The bibliography of sources

for the data base in contained in Appendix A.

Four independent problems were addressed in this thesis:

1) An investigation of the biogeography of Ordovician and

Silurian Bryozoa revealed the existence of four major Ordovician

bryozoans provinces: Baltic, North American, Siberian and

Mediterranean. The Llandeilo-Caradoc was a period of high

provinciality as all four provinces were in existence.

Provinciality was reduced in the Ashgill, as the North American

and Siberian and the Baltic and Mediterranean Provinces merged.

In the Llandovery and Henlock. the temperate latitude Mongolian

Province existed on the northern portion of the Siberian plate.

Silurian provinciality was reduced with the merging of the



North American—Siberian and Baltic Provinces in the Uenlock.

a) An investigation of Ordovician-Silurian radiations of the

Bryozoa revealed that the major center of origin of bryozoan

radiation in the Early Ordovician was the temperate latitude

continent of Baltica. Hithin North America, bryozoan genera

and families mad their first appearances in shallow water and

reef environments along the continental margin, while speciation

rates were highest in offshore areas of the craton.

3) The statistical technique of gradient analysis was found to

be useful for stratigraphic correlation, and faunas from Poland

and Burma were dated by this method.

4). The Late Ordovican mass extinction was found to be a

composite of three separate extinction events. The major

extinction occurred at the end of the Rawtheyan, and was

associated with a marine regression which affected primarily

species from terrigenous lithotopes.
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CHAPTER ONE

BIOGEOGRAPHY OF ORDOVICIAN AND SILURIAN BRYOZOANS



INTRODUCTION

Ordovician and Silurian biogeographic histories have been

compiled for a variety of marine invertebrates. Trilobite

biogeography has been described by Hhittington (1966, 1973) and

Uhittington and Hughes (1978, 1973). Jaanusson (1973), Sheehan

(1979), Boucot and Johnson (1973) and Williams (1973) have

described brachiopod biogeography. The biogeography of

graptolites has been discussed by Skevington (1973) and Berry

(1973, 1979). Other organisms such as corals (Kaljo and Klaaman,

1973), conodonts (Bergstrom, 1973 and Lindstrom, 1976),

palynomorphs (Cramer and Diaz, 1974), echinoderms (Paul, 1976;

Hitzke, Frest and Strimple, 1979), molluscs (Pojeta, 1979;

Rohr, 1979) and stromatoporoids (Nebby, 1980) have also been

subjects of biogeographic analysis. General reviews of Ordovician

and Silurian biogeography have been provided by Ziegler et a1.

(1977), Jaanusson (1979), Boucot (1979), Burrett (1973) and

Spjeldnaes (1981). Although each group of organisms has its own

biogeographic history, similarities are evident in the patterns

of distribution of all major groups.

The Ordovician can be characterized as a period of high

provinciality, with biogeographic differentiation being greatest

in the Lower to Lower Middle Ordovician. An abrupt change

occurred in the Hirnantian (Latest Ashgill), and Silurian faunas

are known to be highly cosmopolitan. For some organisms, a

gradual decrease in provinciality became evident as early as



3

Caradoc time (Williams, 1973). These changes in provinciality

are related to the changing positions of the continents, as the

Iapetus Ocean was gradually closing through the Ordovician

into the Silurian and the continent Baltica was moving from a

temperate southerly latitude towards North America and the

equator. This paper summarizes Ordovician biogeographic

distributions for a number of marine invertebrates (Tables 1—3).

Bryozoan biogeography has not been studied in detail

for the Ordovician and Silurian Periods. Ross (1985) published a

short descriptive paper on Ordovician bryozoan biogeography,

Anstey (1986) described Late Ordovician North American bryozoan

biogeography and Astrova (1965) and Nekhorosheva (1976)

described Ordovician bryozoan biogeography of the Soviet

Arctic. The following analysis is an attempt at a detailed

biogeographic history of the bryozoa, with an analysis of each

stage of the Ordovician and Silurian, using quantitative

techniques and data drawn from a global bryozoan data base of 495

sources newly compiled for this project.

METHODS

The multivariate statistical techniques of reciprocal

averaging, detrended correspondence analysis and cluster

analysis were used to quantitatively determine biogeographic

associations. Gradient analysis methods, such as reciprocal

averaging, have been used extensively in community ecology and



Table 1. Summary

Locality

of Lower Ordovician biogeographic provinces.

8 3 4

{Brachiopods Brachiopods Trilobites Graptolites

 

NA. Midcontinent

NA. Geosyncline

Baltic Platform

Ural Geosyncline

Siberian Platform

Altai Sayan

Northeast USSR

Australia

Hales

Montagne Noire

North Africa

China

1. Jaanusson, 1973

8. Hilliams, 1973

3. Hhittington, 1973

4. Skevington, 1973

Abbreviations: NA.=North America,

Anglo-Frn.=Anglo-French,

Hungaiid-Calymenid,

Northern

Northern

Baltic

Baltic

Northern

Northern

Northern

Northern

Southern

Southern

Northern

Scoto-Appl.

Baltic

NE. USSR

Anglo-Frn.

Anglo—Frn.

 

i Bathyuridl

: Bathyurid:

i Asaphid i

l Asaphid 3

i Bathyuridi

: Bathyurid:

lHung-Caly.l

(Selenopel.l

(Selenopel.l

:Selenopel.:

lHung-Caly.i

Pacific

Pacific

Atlantic

Pacific

Atlantic

Atlantic

Pacific

Scoto-Appl.=Scoto—Appalachian

Selenopel.=Selenopeltis,

NE.= Northeast

Hung-Caly.=



.
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Table 8. Summary of Middle Ordovician biogeographic provinces.

 

1 8 3 4

Locality (Brachiopods Brachiopods Corals Conodonts

NA Midcontinent :8. Northern: American : Amer—Sib.lNA Midcont.

NA Geosyncline {Scoto—Appl.: America : Amer-Sib.: European

Baltic platform 3 Baltic : Baltic :Euro-Asianl European

Ural Geosyncline :Scoto—Appl.: : :

Siberian Platform :C. Northern: American : Amer-Sib.:NA Midcont.

Altai Sayan :Scoto-Appl.: :Euro-Asian:

Northeast USSR lScoto-Appl.i American 1 Amer-Sib.l

Australia 1 l l i Austral.

Hales : Southern (Anglo-Frn. (Euro-Asian: European

North Africa : Southern 1 Bohemian : :

Southern Europe l Southern 1 Baltic l 3

Burma : l Baltic : :

Bohemia : : Bohemia : i

l. Jaanusson, 1973

8. Hilliams, 1973

3. Kaljo and Klaaman, 1973

4. Bergstrom, 1973

Abbreviations: NA.=North America, C.=Central, Scoto-Appl.=

Scoto-Appalachian, Anglo-Frn.=Anglo-French, Amer-Sib.=

American—Siberian, Austral.=Australian



Table 3. Summary of Upper Ordovician biogeographic provinces.

 

1 2 3 4

Locality :Brachiopods Brachiopods Trilobites Corals

NA. Midcontinent (C. NorthernlMid-AmericaiMono-Re
mo.lAmer-Sib.

NA. App. Geosyn. :C. NorthernlN. Europe :Mono-Remo.:

Baltic Platform lHibern-Sal.:N. EurOpe lMono—Remo.lEuro—Asian

Ural Geosyncline : : :Mono-Remo.:

Siberian Platform :8. Northern: lMono—Remo.lAmer-Sib.

Altai Sayan (Hibern—Sa1.: : (Euro-Asian

Northeast USSR lHibern—Sal.l {Mono—Remo.:

Australia : : :Plio-Caly.l

Hales : :N. Europe :Tri-Homal.lEuro—Asian

Montagne Noire : l lTri-Homa1.:

Ireland :Hibern-Sal.l : :

Anticosti :Hibern-Sal.lN. American: :

Alaska lHibern-Sal.l : 1

Missouri (Hibern-Sal.: : 1

North Africa : : Bohemian lTri-Homal.:

Bohemia : l Bohemian l lEuro-Asian

China : : :Plio-Caly.l

1. Jaanusson, 1973

8. Hilliams, 1973

3. Nhittington, 1973

4. Kaljo and Klaaman, 1973

Abbreviations: NA.=North America, App. Geosyn.=Appalachian

geosyncline, Hibern—Sal.=Hiberno-Salairian, C.=Central, N.=

North, Tri-Homal.= Trinucleid-Homalonotid, Plio-Caly=Pliomerina-

Calymenid, Mono-Remo.=Monorakid-Remopleuridid, Amer-Sib.=

American-Siberian
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are similar to factor analysis in that they reduce the

dimensionality of the data matrix. The samples are ordinated

along a gradient between two poles (the samples most ‘

distant from each other along the axis). Reciprocal

averaging has been used by Cisne and Rabe (1978) and Anstey,

'Rabbio and Tuckey (1987a) in Ordovician paleoecological studies.

Another gradient analysis method, polar ordination, was used by

Raymond (1987) to define Devonian phytogeographic provinces

and by Anstey, Rabbio and Tuckey (1987a) in paleoecological

studies. Detrended correspondence analysis (hereafter called

DCA) was used by Anstey, Rabbio and Tuckey (1987b) in a

study of Late Ordovician paleocommunities. This method is an

improvement on reciprocal averaging in that subsequent axes

beyond the first axis are truly orthogonal, whereas in reciprocal

averaging, the second, third and fourth axes are often correlated

with the first axis. A summary of these techniques is provided in

Gauch (1988).

In this study, DCA proved to be the most useful

technique for distinguishing biogeographic units. The input

data matrix for DCA was composed of the number of species

per genus present at each locality. DCA was run with a

separate data matrix for each stage of the Ordovician and

Silurian. Localities of low diversity were not included in the

analysis, with the minimum diversity being 5 to 8 genera,

depending on the overall diversity of the stage. Because of the

limited number of localities and overall low diversity of the

Arenig, low diversity localities were included in that analysis.



Geographic patterns were generally distinguishable on plots of

locality scores for DCA axes one vs. two. Occasionally

biogeographic patterns were obscured by the effects of facies, so

for the Caradoc, patterns were most easily distinguishable on

plots of DCA axes one vs. three. -

Cluster analysis was used by Williams (1973) to define

Ordovician brachiopod provinces and by Raymond (1987) to help

define Devonian phytogeographic provinces. Cluster analysis

differs from gradient analysis in that it measures overall

faunal similarity, and endemic genera, which may be

characteristic of a particular province, have no special

weight. In this study cluster analysis was used as a backup

method to lend support to, or modify gradient analytic methods.

The input data matrix for the cluster analysis consisted of a

matrix of Simpson’s indices of faunal similarity. Clustering was

also done with data matrices of Jaccard coefficients; however

Simpson’s Index gave results more congruent with the gradient

analysis methods. The clustering method used was the average

linkage between group method. In keeping with previous Ordovician

and Silurian biogeographic studies, the term, province, is used

in this paper to refer to a biota characteristic of a particular

continent, although present day provinces are often restricted

to small portions of a continent. Geographic associations within

continents, restricted to major lithotopes, are referred to as

biomes, following Anstey (1986).



ARENIG

Except for one species (Ceramopora unapensis) described by

Ross (1966a) from the Kindblade Formation (Late Tremadoc) of

Oklahoma, bryozoa are first found in rocks of Arenigian age.

However, a Tremadocian fauna from China is currently being

decribed by Spjeldnaes and Hu (Taylor and Cope, 1987).

The most diverse Arenig bryozoan fauna is found in Baltica

in the 81 and B8 horizons of Estonia and Leningrad and in the

Nelidov horizon of Novaya Zemlya. Less diverse faunas are found

in North America in the Kanosh Shale in Utah, the Arenig-Llanvirn

Oil Creek Formation in Oklahoma and the Late Arenig Shinbrook

Formation in Maine. Faunas are also known in Central China and

the North Urals. The species Sagenella vetera is known from

Bohemia and Alwynopong oroggmnus and a generically indeterminate

species have been recorded from Ireland.

Baltic faunas are related by the common presence of

Dianulites at all localities and the presence of Ditto ora,

Esthoniopo:§_and Nicholsongllg at two or more localities.

Oklahoma, Utah and Maine are united by the common presence of

Batostoma, which does not appear in Baltica. North American

and Baltic Provinces are clearly distinguishable on a plot of

locality scores for DCA axes one vs. two (Figure 1). China

is allied faunistically with North America by the presence of

Batostoma and is provisionally assigned to the North American

Province (Figure 8).
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LLANVIRN

During the Llanvirn, bryozoan faunas increased in both

diversity and provinciality. The Baltic Province shows increased

diversities of bryozoans from the B3, Cla and C1b horizons of

Estonia and Leningrad, the Khydey Formation of the North Urals

and the Yuno Yaga horizon in the Novaya Zemlya-Vaygach-Pay Khoy

region. These faunas are characterized by Dianulites, Di lotr a,

Hemiphragma, Nicholsonella and Stictoporg. The North American

Province consists of bryozoans from the Oil Creek and McLish

Formations of Oklahoma, the Chazyan Day Point and Lower Mingan

Formations in the Lake Champlain and Mingan Island areas, and

the Lower Lenoir Formation of Virginia. North American faunas are

again characterized by the common presence of Batostoma at all

localities. Other common North American genera are Phylloooring,

Stictopora, Monotrygella, Chasmatogora, Nicholsonella and

Eridotrypg, Bryozoans also appear in the Elgenchak and

Labistakskaya Formations at Sette Daban on the Eastern Siberian

margin. Provinces are defined on the plot of DCA axes one vs.

two (Figure 3).

Along with provinciality, subprovinces or biomes (Anstey,

1986) can also be observed in the data. The Baltic Province can

be subdivided into two different facies associations or biomes.

Leningrad and Estonia occur in the Baltic Platform Biome and

the North Urals and the Novaya Zemlya-Vaygach-Pay Khoy regions

occur in the Uralian Geosynclinal Biome. Approximate positions of
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geosynclinal and platform facies for the Ordovician, of Siberia,

North America and Baltica, with the island of Novaya Zemlya

observable in the northern part of the Uralian geosynclinal

facies are shown in Figure 4. Virginia, as part of the

Appalachian Geosynclinal Biome is distinguishable from other

North American localities and shares common genera with both

Baltica and Siberia. Its location on the North American

continental margin apparently makes it a possible colonization

site for migrants crossing the Iapetus Ocean. The genera

Cyphotrypg_and Monotryga, which were endemic to Baltica in the

Arenig, appear in Virginia in the Llanvirn. Conversely,

Phyllodictyg, which was endemic to Utah in the Arenig, appears in

Estonia in the Llanvirn, indicating that a limited amount of

migration across the Iapetus was occuring at this time.

Provinces are plotted in their approximate paleogeographic

positions in Figure 5.

A cluster analysis of Llanvirn localities, gave results

similar to gradient analysis, as clusters representing the

Chazyan Reef Biome, the Uralian Geosynclinal Biome and the Baltic

Platform Biome appeared. Virginia clustered more closely with

Sette Daban than with other North American localities. Its

association with Sette Daban is represented by the dotted line

connecting the two localities (Figure 3).
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LLANDEILO

The provincial patterns of the Llanvirn carry through to the

Llandeilo, although there is some blurring of provincial

boundaries due to migration, and an increasing differention of

North American faunas is seen. Provinces are defined on plots

of DCA axes one vs. two (Figure 6). Localities in the Baltic

Province cluster with high scores on axis one, with faunas

occuring in the Clc and C8 horizons in Estonia and Leningrad, and

in the Dyrovataya horizon in the Novaya Zemlya-Vaygach-Pay Khoy

region. Leningrad, however, has a somewhat endemic fauna,

with the endemic genera Scenellopora, Arthrogtylug, and

Hexaporites. Arenig-Llanvirn genera such as Dianulites,

Diolotrypgy Egthoniopora and Hemiphragma continue to be common

and new genera such as Egchydictyg, Egrvohglloporg, Graptodictya

and Mesotrypa appear. The Novaya Zemlya-Vaygach-Pay Khoy area

shows an increasing faunal affinity with North America,

particularly with Appalachian shelf localities. Faunal

similarities between geosynclinal localities on widely separated

continents reflect the presence of many cosmopolitan genera at

these sites. Virginia, Novaya Zemlya and Alabama share the common

genera Nicholsonella, Egchydictyg, Egrvohalloporg, and

Stictogora, indicating an increase in migration across a

narrowing Iapetus Ocean. Alabama and Morocco were closely linked

with Vaygach-Novaya Zemlya in the cluster analysis (dotted lines

connect these localities in Figure 6).

The Siberian Province contains localities clustering with



18

Figure 6. Llandeilo DCA axes 1 vs. 8. Symbols: A=Alabama,

E=Estonia, K=Kotel Island, L=Leningrad, LC=Lake Champlain,

LR=Leni River, =Morocco, MI=Mingan Island, O=Oklahoma,

=Podkammenaya Tunguska River, =Montreal, T=Taimir, V=Virginia,

VR=Viluya River, Z=Novaya Zemyla-Vaygach-Paykhoy. Dotted lines

connecting localities across provincial boundaries indicate

additional faunal similarities detected by cluster analysis.
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low scores on DCA axis one. Faunas occur in the Krivolutski

and’Lower Mangazeyski stages in the Podkammenaya-Tunguska, Leni

and Viluya River valleys on the Siberian Platform, the Engelgardt

horizon on the Taimir Peninsula and in the Lower Malodiring

horizon on Kotel Island. Common Siberian genera are Batostoma,

Nicholsonella, Triqonodictyg, Stictooorg, Phaenogorella and

Sibirgdictyg.

The North American Province consists of localities having

intermediate scores on DCA axis one and is further

differentiated into two subprovinces, or biomes on axis two.

The Chazyan Reef Biome consists of faunas from the Crown Point

and Lower Valcour Formations of the Champlain Basin, the Crown

Point and Laval Formations at Montreal, Quebec, and the Upper

Mingan Formation at Mingan Island. Common genera in this biome

are cryptostomes such as Stictooora, Chasmatopora, Phylloporing

 

and Pachydictxa, and the trepostomes Monotrygella and Batostoma.

The North American Geosynclinal Biome consists of faunas from the

Upper Lenoir, Lower Effna, New Market and Lincolnshire Formations

of the Appalachian shelf in Virginia and Alabama, and the Upper

McLish and Tulip Creek Formations of the Simpson Group in the

Arbuckle Mountains of Oklahoma. Ross (1976) stated that the

Simpson Group strata were deposited in a rift zone or

aulacogen, extending northward from the Ouachita continental

margin. Faunal similarities between Oklahoma and the Appalachian

shelf region may be explained by existence of a continuous

Appalachian-Ouachita shelf biome.

These trends are similar to those which have been found in
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the distributions of brachiopods and trilobites. The Scoto-

Appalachian fauna, which is found in Scotland and in the

Appalachians east of the Helena-Saltville Thrust, has an

amphicratonic distribution, as a similar fauna has been reported

from the west side of the craton, and a related fauna occurs in

the Novaya Zemlya-Pay Khoy region (Jaanusson, 1979). This echoes

the similarities between the bryozoan faunas of Virginia, Alabama

and Novaya Zemlya.

A fourth faunal province, the Mediterranean Province, is

represented by the Llandeilo faunas of Morocco. North Africa is

placed at the approximate position of the South Pole in

paleogeographic reconstructions (Figure 7), and its faunas

have been linked to those of Southern Europe (Spjeldnaes, 1981).

Spjeldnaes has suggested that Mediterranean and Baltic Provinces

were separated by a climatic barrier rather than by a wide ocean.

This is supported by the cluster linkage in Figure 6, in which

Morocco is linked with Novaya Zemyla.

Migration patterns to the continents of North America,

Baltica and Siberia during the Ordovician and Silurian were

established by comparing estimated first appearances of genera on

each continent (Figures 8-10). The Llandeilo is an epoch of high

migration of genera into all three continents. Spjeldnaes

(1981) identified this migration as the first major faunal

exchange across the Iapetus Ocean. Migrations occurred in a

variety of marine invertebrate groups including cephalopods,

trilobites and brachiopods. Bryozoans seem have migrated in

many directions, contrary to Spjeldnaes’ assertion that the
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exchange was one-sided. with few Baltic forms appearing in

North America.

CARADOC

The four Llandeilian provinces are again seen in the Caradoc

(Figure 11). The Siberian Province consists of faunas from the

Upper Mangazeyski and Dolborski horizons of the Siberian

Platform. the Tolmachev horizon from Taimir, the Upper Halodiring

horizon from Kotel Island and the Kulonskaya and Vodopadnenskaya

horizons from Sette Daban. Also included in the Siberian Province

are faunas from the geosynclinal regions of the Siberian plate in

the Altai Sayan, Tuva and Manchuria. Cluster analysis also groups

'Siberian localities with the exception of the Altai Sayan and

Tuva, which are linked with the St. Lawrence River Valley.

These localities share the genera Batostoma, Ceramogora,

Constellarig, Eridotrypg, Hemi hra ma, Homotrxga, Nicholsonella

and Parvghallopora. These localities also cluster closely with

Uralian geosynclinal localities (North Urals and

Novaya Zemyla-Vaygach), again emphasizing the similarity of

shelf faunas from the three major plates. The Siberian province

is characterized by endemic genera such as lnsi nia.

Qarinodictyg, Phaeno orella, Sibiredictvg and Ensigora.

The Mediterranean Province includes faunas from the Bohdalec

Shales of Bohemia and from the Caradoc of Sardinia and the Carnic

Alps. These localities have distinctive genera such as

Monotrygella and the endemic Polyteichus.
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Figure 11. Caradoc DCA axes 1 vs. 3. Symbols:'A=Australia,

a=Alabama, AS=Altai Sayan, B=Bohemia. b=Burma. CA=Carnic Alps,

ck=Central Kentucky, ct=Central Tennessee, E=Estonia, et=East

Tennessee. g=6eorgia. i=Iowa, K=Kotel Island. k=Kansas, lc=Lake

Champlain, LR=Leni River, m=Ninnesota, ma=flaryland, mf=Heaford,

mi=flanitoulin Island. HN=Hanchuria, ms=Hissouri. N=Norway.

n=Central New York, nf=Newfoundland, ni=Northwest Illinois.

nk=North Kentucky, NU=North Urals, O=Oeland, o=Oklahoma,

ot=0ttawa, P=Podkammenaya Tunguska River, p=Pennsylvania,

S=Sweden. SA=Sardinia, SD=Sette Daban, si=South Indiana. sl=St.

Lawrence River Valley, sm=Southwest Mackenzie, sn=Southeast New

York, so=South Ohio, T=Taimir. t=Toronto, TU=Tuvag v=Virginia,

H=Hales-England, w=Hisconsin, VR=Viluya River, Z=Novaya Zemyla-

Vaygach-Pay Khoy. Dotted lines Connecting localities across

provincial boundaries indicate additional faunal similarities

detected by cluster analysis.
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The Baltic Province consists of faunas from Estonia, the

North Urals, the Novaya Zemlya-Vaygach—Pay Khoy area, the

Scandinavian island of Oeland, Sweden, Norway, England-Hales,

Burma, Southeast New York and Newfoundland. The fauna from the

Naungkangyi shales of Burma seems to have its greatest affinities

with the Baltic Province. Hilliams (1973) also classified Burma

with the Baltic Province on the basis of its brachiopods. Burma,

as part of a Southeast Asian microcontinent, is geographically

distant from Baltica (Figure 18).

Spjeldnaes (1981) raised the possibility of an “anti-boreal”

fauna existing in the Northern Hemisphere resembling the south-

temperate Baltic fauna of the Southern Hemisphere. Evidence for

the existence of this fauna comes from the occurrence of

brachipods with Baltic affinities in the Klamath Mountains of

California and Alaska. The Baltic bryozoan species Earvohallogora

tolli, native to Estonia, was reported from the Caradoc of the
 

Inyo Mountains in California by Pestana (1960), and from the

Caradoc of Gaspe, Quebec by Fritz (1941). The fauna from the

Southwest McKenzie mountains in Western Canada also has Baltic

affinities as indicated by the cluster analysis. Bergstrom (1973)

reported that Ordovician conodonts in the Appalachians and in the

western Cordilleran regions of North America also have Baltic

affinities, differing from the North American midcontinent fauna.

Bergstrom attributed these differences to climatic zonation,

suggesting that the North American continent was rotated 90

degrees from its present position, with the equator running

through the midcontinent and the west and east coasts situated in
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the north and south temperate zones, respectively. These findings

appear to support the ”anti-boreal“ fauna hypothesis, however,

most of these localities represent exotic terranes, and their

Ordovician paleogeographic positions are uncertain.

Hestern Newfoundland, Southeast New York and Southern

England-Hales are also included in the Baltic Province. The fauna

from Newfoundland ‘is from the autochthonous region of Hestern

Newfoundland. This region was part of the North American plate

and its Baltic affinities support Sheehan’s (1975) contention

that some Baltic brachiopods also lived in the open ocean and

occupied habitats around the North American continental margin.

The Southeastern New York fauna is also a continental margin

fauna, which is found in the Balmville Limestone and the

Rysedorph Hill Conglomerate. The Rysedorph Hill Conglomerate has

been interpreted as an allochthonous outer shelf deposit, which

was transported westward during the Taconic Orogeny (Vollmer and

Bosworth, 1984). The existence of this "open-ocean fauna“ may

explain the recurrent faunal similarities between the

geosynclinal localities in the Urals, the Altai Sayan and the

Appalachians during~ the Ordovician. This may be a better

explanation of why exotic terranes, such as Burma, have Baltic

faunas. These shelf faunas also retain a local imprint, as

Newfoundland is grouped most closely with Lake Champlain in the

cluster analysis, and Southeast New York is. linked with

Minnesota. In general, shelf faunas have been grouped as a part

of the same biogeographic province as their neighboring platform

faunas by gradient analysis.
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Southern England-Hales, located close to the North American

plate (Figure 12), has a cosmopolitan bryozoan fauna which has

affinities with both Baltica and North America. Seven of the nine

genera present are shared with both Estonia and Northern

Kentucky. Consequently England~Uales clusters closely with

localities from the Cincinnati region in North America, but has

been classified with the Baltic Province by DCA. Bergstrom

(1973) also reported that Upper Middle Ordovician conodont faunas

from Hales contained North American midcontinent elements that

distinguished them from the rest of the Baltic Province.

In the North American Province, the Cincinnati Biome,

previously recognized by Anstey (1986), can be distinguished. The

Cincinnati Biome is composed of faunas from the Lower Kope

Formation (Late Caradoc) of Southern Indiana, Southern Ohio and

Central and Northern Kentucky. Anstey reported the Cincinnati

Biome extended from Northern Kentucky to Southern Ontario in

the Late Ordovician. However, in the Late Caradoc it is in

its incipient . stages of development and is geographically

restricted to the Cincinnati area.

Australia is tentatively grouped with the North American

province, but due to the low diversity of its fauna, its

biogeographic affinities remain problematical.

Two waves of faunal migrations occurred during the Caradoc.

An early Caradoc (Black River) migration event appears to have

taken place in Baltica, North America and Siberia, while a

smaller Late Caradoc migration event affected Siberia and

Baltica (Figures 8-10). Spjeldnaes (1981) also recognized
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the Late Caradoc event (which he termed the Vasalemma wave in

reference to the Vasalemma beds in Estonia), as being

characterized by a migration of American forms into Baltica.

ASHGILL

The Ashgill brought about a significant change in bryozoan

faunas as a breakdown in Caradoc provinciality occurred and a

more cosmopolitan fauna began to emerge. Ashgill provinces are

delineated by DCA axes one vs. two (Figure 13). Two Ashgillian

provinces are discernible: a North American-Siberian Province and

a Baltic-Mediterranean Province.

The majority of Siberian localities are allied with North

America during the Ashgill; however, the Taimir Peninsula,

located on the southern tip of the Siberian plate was

geographically adjacent to Baltica during the Ashgill (Figure

14), and its faunas from the Korotkin horizon have Baltic

affinities . Although the width of the Iapetus ocean has narrowed

considerably, the Baltic Province is still recognizable, as its

faunas from Sweden, Norway, Hales, Estonia, Gotland and Novaya

Zemlya-Vaygach-Pay Khoy are distinguishable from those of North

America. Also included in the Baltic Province is the Ashgill

fauna from Montagne Noire, southern France, which indicates that

the Mediterranean and Baltic Provinces have merged. Sheehan

(1979) noted that brachiopods from the Mediterranean Province

became abundant in Sweden during the Ashgill. He believed that
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Figure 13. Ashgill DCA axes 1 vs. 2. Symbols: a=Alabama,

ai=Anticosti Island, AS=Altai Sayan, bi=Baffin Island, C=South

China, ck=Central Kentucky, CM=Central Mongolia, ct=Central

Tennessee, E=Estonia, ei=Northeast Illinois, G=Greenland,

g=Georgia, BO=Gotland, I=Ireland, i=Iowa, mf=Meaford,

mi=Manitoulin Island, MN=Montagne Noire, ms=Missouri,

mt=Manitoba, N=Norway, n=New York, nk=North Kentucky,

NM=Northwest Mongolia, S=Sweden, si=South Indiana, sl=St.

Lawrence River Valley, SM=South Mongolia, so=South Ohio,

T=Taimir, t=Toronto, TU=Tuva, up=Michigan Upper Peninsula,

v=Virginia, H=Hales, w=Nisconsin, wt=Uest Texas, wy=Hyoming,

Z=Novaya Zemyla—Vaygach-Pay Khoy. Dotted lines connecting

localities across provincial boundaries indicate additional

faunal similarities detected by cluster analysis.
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cold-water Mediterranean genera moved northward with cold water

masses associated with the Ashgillian glaciation in North Africa.

However, Whittington (1973) noted the appearance of Mediterranean

type trilobites (Selenogeltis fauna) in Baltica as early as

Caradoc time.

The fauna from the Portrane Limestone of Ireland is also

grouped with the Baltic Province although this fauna is

distinctive, as it includes the rare genera Discosgarsa and

Ichthyorgchis. The Portrane Limestone is known to be an exotic

terrane representing a volcanic island in the Iapetus Ocean

(Neuman, 1984). Neuman has found that many brachiopod genera made

their first appearances on oceanic islands.

Missouri-Southern Illinois clusters with the Baltic

Province, and much of its fauna is from the Rawtheyan—Hirnantian

age Girardeau Limestone. The Baltic Province conforms well with

the Hiberno-Salarian fauna of Jaanusson (1973). This brachiopod

fauna occurs in carbonate rocks in Sweden, Norway and Ireland

and also in the Altai Sayan and in coastal North American

localities such as Anticosti Island and Perce, Quebec, Alaska

and California. A -brachiopod fauna described by Amsden (1974)

from the Noix limestone of Eastern Missouri and Western Illinois

also has Hiberno-Salairian affinities (Jaanusson 1973). The

existence of a Baltic fauna in the continental interior of the

United States reflects the increasing cosmopolitanism of the Late

Ashgill. The Hirnantian Stage (Latest Ashgill) is associated

with a low diversity “Hirnantian fauna" characterized by the

brachiopods Hirnantia and Dalmanella and the trilobite



37

Dalmanitina. The fauna, occurring in mudstones, is extremely

widespread geographically and has been reported from Bohemia,

Sweden, Ireland, England, Maine, Morocco, the Carnic Alps, Libya,

Quebec, Kazakhstan, Scotland, China, Kolyma, and Anticosti Island

(Rang 1984).

Ashgillian faunas from the Siberian localities of Tuva, the

Altai Sayan, and Northern, Central and Southern Mongolia are

grouped with. those of North American localities by gradient

analysis and particularly resemble faunas from the carbonate

platform Red River-Stony Mountain Biome localities of Greenland,

Baffin Island, Manitoba, Wyoming, Anticosti Island and West

Texas. Distances between the Altai Sayan-Mongolia regions of the

North Siberian plate and Canada and Greenland were not far

(Figure 14) and oceanic currents (Figure 15) may have facilitated

migration between the two areas. The Altai Sayan also shares

faunal similarities with nearby Novaya Zemyla-Vaygach, as

indicated in the cluster analysis. Kaljo and Klaaman (1973) also

have recognized Late Ordovician North American-Siberian and

European Provinces for fossil corals.

Also included in the North American-Siberian Province is a

fauna from Southern China. Similarities between faunas from

Southern China and North America—Siberia suggest an alternative

paleogeographic reconstruction (Figure 16) may be more

applicable. In this reconstruction the South China plate is

positioned in the mid-Pacific, close to the western margin of

North America.

Within the North American plate, the Late Ordovician biomes
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of Anstey (1986) can be recognized. The carbonate platform Red

River-Stony Mountain Biome is represented by the closely grouped

localities of Anticosti Island, Nest Texas, Hyoming, and Manitoba

(Figure 13). Anticosti Island and nearby Baffin Island have been

grouped with the Baltic Province by the cluster analysis as many

of the localities in the Red River-Stony Mountain Biome have

typical Baltic genera. The Maquoketa Biome is represented by the

grouping ‘of Hisconsin, Northwestern Illinois, Northeastern

Illinois and Central Tennessee, and was recognized as a subunit

of the Red River-Stony Mountain Biome by Anstey (1986). The

terrigenous Cincinnati Biome has expanded in size since the

Caradoc and now includes Georgia, Alabama, the St. Lawrence River

Valley, Virginia, Iowa, New York, Manitoulin Island, the Upper

Peninsula of Michigan, Toronto and Meaford Ontario, Southern

Ohio, Southern Indiana and Central and Northern Kentucky. These

localities conform remarkably well to the terrigenous areas of

the Upper Ordovician lithofacies map (Figure 17).

A migration wave of largely North American genera into

Baltica took place during the Hirnantian (Figures 8-10).

Spjeldnaes (1981) has recognized this event as the "Porkuni wave“

in reference to the Porkuni Stage (Hirnantian) of Estonia. This

wave of migration probably contributed to the increasing

cosmopolitanism of Hirnantian faunas.
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Figure 17 Late Ordovician lithofacies, midcontinental United

States, adapted from Frey, 1987.
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LLANDOVERY

Although still faunally distinct, the North American-

Siberian and Baltic Provinces have .begun to merge during the

Llandovery. Faunal provinces are defined on plots of (DCA axes

one vs. two (Figure 18). With further closing of the Iapetus

Ocean, the Baltic province has extended its range and now

includes Anticosti Island, on the Northeast coast of North

America. Llandoverian formations of Anticosti Island and the

Baltic Island of Botland have these genera in common: As ero ora,

Ceramogora, Corvpotrypg, Cuneatogora, Cyghotryga, Fenestella,

Glauconomella, Hallogora, Nematogora, Phaenogora, Ptilodictxa,

ngicggciniug, Thamniscus and Eridotrypg. Sheehan (1975) found

that North American and Baltic brachiopod provinces merged in the

Llandovery when Baltic genera invaded the North American

continent following the Late Ordovician extinctions. North

America, Baltica and Siberia all received relatively large

numbers of immigrants during the Llandovery (Figures B-lO). Eight

genera from the Ashgill of Baltica, Asgerogora, Clathrogora,

Cheilotrxga, Eridotrygella, Fistuligora, Hennigogora, Rhinogora

and Thamniscus newly appear on the North American continent

during the Llandovery. Three of these genera, Asgerogora,

Cheilotrxga and Thamniscus newly appear at Anticosti Island,

giving the fauna a Baltic aspect.

The North American-Siberian Province includes localities

from the Podkammenaya-Tunguska and Viluya River Valleys of the



M

Figure 18. Llandovery DCA axes 1 vs. 2. Symbols: ai=Anticosti

Island, C=Central China, ck=Central Kentucky, E=Estonia,

GO=Gotland, mf=Meaford, =Norway, n=New York, nf=0ntario-Niagara

Falls Region, nk=North Kentucky, NM=Northwest Mongolia,

o=Oklahoma, P=Podkammenaya Tunguska River, PO=Podolia, si=South

Indiana, so=South Ohio, t=Toronto te=Tennessee. TU=Tuva,

up=Michigan Upper Peninsula VR=Viluya River. Dotted lines between

localities across provincial boundaries indicate additional

faunal similarities detected by cluster analysis.
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Siberian Platform, and the midcontinent regions of North America.

The biome partitioning evident in the Ordovician of the North

American continent is not present in the Llandovery, as all

North American localities were former members of the

Ashgillian Cincinnati Biome. The only North American locality

remaining from the Ashgillian Red River-Stony Mountain Biome is

Anticosti Island. A lack of faunas from other localities within

the Red River-Stony Mountain Biome leaves the question as to

whether the entire Red River-Stony Mountain Biome took on a

Baltic aspect in the Llandovery, subject to additional analysis.

The cluster analysis grouped Siberian Platform localities with

the Baltic Province, as indicated by the dotted lines. The

Podkammenaya-Tunguska River Valley locality shares 5 of its 7

genera with Norway, however it also shares 5 genera with Meaford,

Ontario. This. reflects the cosmopolitanism of many genera in the

Llandovery. Appearing in the Llandovery is a third faunal

province, the Mongolian Province, which contains faunas from

Tuva, Northwestern Mongolia and Central China. Podolia was

linked with this province by the cluster analysis. Tuva and

Northwestern Mongolia were situated on the northern portion of

the Siberian plate, while Central China rests on the South China

plate. Faunal provinces of the Llandovery are plotted on the

Silurian paleocontinental reconstruction (Figure 19). Silurian

brachiopods show a similar provincialism in this region as Boucot

and Johnson (1973) described a provincial Tuvaella Community

fauna from the Late Llandovery-Henlock of Southeast Kazakhstan,

Tuva, the Altai Mountains, Mongolia and Manchuria. Ziegler et a1
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(19??) believe that Silurian provinciality was caused by climatic

zonation, with the Mongolian region situated in the north

temperate realm. A comparison of paleocontinental reconstructions

for the Ashgill and Llandovery (Figs. 14 and 19) reveals that the

Siberian continent moved northward during this time interval and

provinciality may have developed as the nvcthern portion of the

Siberian plate moved into north temperate realms in the Late

Llandovery.

The fauna from central China is a low diversity fauna of S

genera from the Late Llandovery Cuijiago and Lojoping Formations

of Northern Sichuan and Southern Shaanxi provinces. Because of

its low diversity, biogeographic conclusions are tentative.

However, its affinities with the Mongolian Province in the

Llandovery, and also in the Henlock may indicate that the South

China plate was also in a north temperate latitude at this time.

Scotese (1986) positioned South China near the equator, in

accordance with Early Cambrian and Permian paleomagnetic data.

South China’s faunal similarity with Mongolia in the Llandovery

and Henlock suggest that it may have drifted northward in the

Ordovician-Silurian and returned to an equatorial latitude by

the Permian.

Podolia (Nest Ukraine) is regarded as belonging to the

Baltic province, although it shares two genera in common with

Central China, Fistuligora and Hennigogora. Podolia was located

on the southern portion of the Baltic plate at this time and the

faunal affinities between Podolia and the Mongolian province can

perhaps be explained by the similar Late Llandovery ages of their
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faunas rather than by geographic proximity.

HENLOCK

During the Nenlock, the merging of the Baltic and North

American-Siberian Provinces was completed. All Baltic and North

American localities group as a single cluster (Figure 20).

Also included in the Baltic-North American-Siberian Province is a

fauna from the Nenlock of Kazakhstan. Kazakhstan is pictured as a

separate continent located in the tropical climatic zone east of

Baltica and North America (Figure 21). Baltic and North American

localities share a number of common genera in the Nenlock, among

them: Asgerogora, Ceramogora, Corynotrypgy Fenestella,

Fistuligora, Hallogora, Monotryga, Ptilodictyg and Sagenella.

A somewhat unusual fauna was described from Northwest Illinois

by Grubbs (1939). This fauna occurred in the Niagaran reefs of

the Racine Dolomite, of Nenlock—Ludlow age, and included endemic

genera such as Pholidogora and Arthrogtylug.

Also reappearing in the Nenlock is the Mongolian faunal

province from the northern Siberian plate. The province is

composed of faunas from the Nenlock of Northwest Mongolia, Tuva,

East Mongolia and Central China. There appears to have been some

longitudinal zonation in this province, as Tuva and Northwest

Mongolia, on the northeastern side of the Siberian plate have
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Figure 20. Henlock DCA axes 1 vs. 2. Symbols: ai=Anticosti

Island, C=Central China, ci=Central Indiana, E=Estonia, EM=East

Mongolia, EN=England, GO=Gotland, KZ=Kazakhstan, mf=Meaford,

N=Norway, n=Hestern New York, nf=Ontario—Niagara Falls Area,

ni=Northwest Illinois, NM=Northwest Mongolia, PO=Podolia,

si=South Indiana, te=Tennessee, TU=Tuva, up=Michigan Upper

Peninsula. Dotted lines connecting localities across provincial

boundaries indicate additional faunal similarities detected by

cluster analysis.
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faunal similarities, while East Mongolia, on the northwest side

of the Siberian plate has greater faunal affinities with Central

China, which suggests a paleogeographic position for South China

as indicated in Figure 16, although at a more northerly latitude.

Podolia was again linked with the Mongolian Province in the

cluster analysis.

The complete merging of the North American and Baltic

Provinces in the Nenlock slightly preceded closing of the Iapetus

Ocean, as Late Silurian folding in Scotland and Norway suggests

that the Northern Iapetus had closed by Ludlow or Pridoli time

(Cocks and McKerrow, 1973).

LUDLDH

The Ludlow was a time of cosmopolitanism among the Bryozoa.

The Mongolian Province of Llandovery-Henlock time has disappeared

as faunas from Mongolia and Tuva now show high faunal

similarities with European and American faunas (Figure 22).

Distinctive faunas again occur in the Niagaran reefs of Northwest

Illinois, and also in the nganhebu and Xibiehu Formations of

Inner Mongolia. Ludlovian faunal gradients are controlled

by the presence of distinctive faunas at single localities rather

than by provinciality. The fauna from Inner Mongolia was located

on the North China plate, and contains the genera Ana hra ma.
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Figure 22. Ludlow DCA axes 1 vs. 2. Symbols: A=Australia,

B=Bohemia. ca=Canadian Arctic. d=Dolgiy Island. E=Estonia,

EN=England, GO=Gotland. i=North Indiana, IM=Inner Mongolia,

MN=Montagne Noire. mv=Moldaviag ni=Northwest Illinois,

NM=Northwest Mongolia, PO=Podolia, S=Sweden. SM=South Mongolia,

te=Tennessee, TU=Tuva, w=wisconsin, Z=Novaya Zemyla-Vaygach-Pay

Khoy..
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Eridotrypg, Homotrxga, Paralioclema and Stictoporg. Although

Llandoverian-Henlock faunas from the South China plate had faunal

similarities with the Mongolia-Tuva region, this fauna from the

North China plate is distinctive in nature.

The cosmopolitan Baltic-North American-Siberian Province

consists of faunas from Southern and Northwest Mongolia, Tuva,

Gotland, Novaya Zemlya-Vaygach-Pay Khoy, Podolia, Sweden,

Estonia. Moldavia, England. Tennessee. Arctic Canada, Australia.

Wisconsin. Northern Indiana, Northwest Illinois. Bohemia and

Montagne Noire (Figure 83). These localities show a high degree

of similarity to one another and contain common Late Silurian

genera such as Fistuligora. Fenestella, Hallopora and Honotrxga.

PRIDOLI

The cosmopolitanism of the Ludlow continued into the

Pridoli. There is little biogeographic differentiation into

provinces among faunas from Estonia, Podolia, Botland, Northwest

Mongolia, South Mongolia, Pennsylvania, Maryland. Nest Virginia,

New York, Oklahoma and Tuva (Figure 24). The fauna from the

Taugantelyski Formation of Tuva shows a high degree of

dissimilarity with other faunas. It is a low diversity fauna of 5

genera: Amplexogora. Eridotrypgllg, Eridotrvpg, Heterotrxpa and

Stigmatella. This fauna has a distinctly Ordovician aspect to it
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as most of these genera were abundant in the Caradoc and Ashgill.

However, Ludlovian faunas from Tuva also contain these

“Ordovician” genera along with more typical Silurian genera such

as Fistuligora. Hallogora and Lioclema.

Another highly endemic fauna is found in the reef community

of the Hamra Formation in Gotland. Along with Fenestella and

Fistulipora are found the endemic genera Saffordotaxis.

Flabellotrxga and Sagenella. These faunas from Tuva and Gotland

are interpreted to be communities within the cosmopolitan Baltic-

North American-Siberian Province. Pridoli faunal provinces are

shown in Figure 25.

DISCUSSION

Patterns in the biogeographic distribution of the bryozoa

are generally consistent with those found in other fossil groups

and can‘ be explained by continental convergence and latitudinal

climatic gradients. However many interesting questions are raised

by anomalous patterns of distribution, such as the presence of a

Baltic fauna in the Ashgill of Missouri, and the presence of

Baltic faunas on both the.east and west coasts of North America

and in Burma.

Spjeldnaes (1981) and Bergstrom (1973) explained the

presence of Baltic brachiopod and conodont faunas on the west

coast of North America by hypothesizing that the west coast of
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North America was above the equator in the north temperate zone.

The coastal faunas were believed to be temperate (antiboreal)

faunas, which mirrored the south-temperate (boreal) Baltic

faunas. This idea is not supported by the continental

reconstructions of Scotese (1986), however, as the west

coast of North America is projected to be lying in equatorial

latitudes through the Ordovician and Silurian Periods. Also,

many of the fossiliferous localities on the west coast are

believed to be exotic terranes. The Klamath Mountain region,

where a Baltic brachiopod fauna has been found, has been

interpreted to be the remnants of an island arc, which was

separated from the continent by a marginal basin (Potter et al.,

1977). Nur and Ben Avraham (1977) suggested that allochthonous

terranes in western North America are remnants of a

microcontinent called Pacifica originally located near Australia.

Other island arc faunas, such as those of the Portrane Limestone,

have also been classified as being of Baltic affinity.

Faunas from Newfoundland, Southeast New York and Anticosti

Island, on the North American east coast, have also been linked

with Baltica. Mitchell (1986) stated that the Shan Plateau area

of Burma was part of a Western Southeast Asia microcontinent

island arc system which collided with Eastern Southeast Asia in

the Triassic. Thus it appears that the Baltic fauna was an open

ocean fauna inhabiting islands and continental margin localities,

as well as the Baltic platform, as Sheehan (1975) stated for

brachiopods, and was not confined to temperate latitudes.

The Baltic nature of the Missouri Ashgillian fauna has
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previously been recognized in formations of Latest Ordovician

(Hirnantian) age by Amsden (1974, brachiopods) and by Elias

(1982, corals). Elias labeled this region of Missouri, Illinois,

and, tentatively, Northeastern Oklahoma, as the Edgewood.

Province, and suggested that the fauna migrated into this region

from the south during the Late Hirnantian transgression, which

resulted from deglaciation. However, the bryozoan fauna in this

region is found in the Fernvale, Maquoketa, Orchard Creek and

Girardeau Formations, which range from Mid Ashgill to Early

Hirnantian in age. This indicates that the Baltic fauna migrated

in at a much earlier time than has previously been recognized.

Caradocian faunas in this region are similar to those recognized

elsewhere in the Midcontinent; therefore the migration of Baltic

bryozoan faunas into this region probably occurred in the Mid

Ashgill.

The Missouri-Southern Illinois region is near the northern

extent of the Mississippi Embayment, and is a seismically active

zone, which was the site of the New Madrid Earthquake. Crustal

instability in this region is related to the presence of a Late'

Precambrian rift zone, termed the Reelfoot Rift (Ervin and

McGinnis, 1975). Precambrian rifting gave way to the development

of the Reelfoot Basin in Cambrian-Ordovician time (Schwalb,

1969). The depositional center of the Reelfoot Basin was located

in western Tennessee in the Cambrian. By the Early Ordovician,

the center of deposition had moved northward into Hestern

Kentucky, and .by Silurian time the center of the basin was

located in Southern Illinois. Schwalb has dated the timing of
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basin development through a series of isopach maps, and related

the thick accumulation of Maquoketa sediments to a downwarping of

the basin which occurred after deposition of the Caradoc age

Kimmswick Limestone. Elevation of the adjacent Ozark and

Nashville Domes was associated with 'basin subsidence through

lateral displacement of mantle material from beneath the rift.

The development of the Reelfoot Basin may be related to

the migration of the Baltic fauna into the Missouri-Southern

Illinois region. First appearances of Baltic genera in this

region occurred during Maquoketa time, which coincides with

evidence for Maquoketa basin subsidence. Perhaps basin subsidence

allowed free migration of Baltic continental margin faunas into

the Reelfoot Basin. This biogeographic information may be

regarded as an independent test for the timing of basin

subsidence. A Baltic brachiopod fauna was described from the

Hirnantian age Keel Formation in the Arbuckle Mountains of

Oklahoma by Amsden (1974). The Arbuckle Mountain region is also

the site of a Precambrian rift zone which developed into an

Ordovician basin (Ross, 1976). Perhaps migration of Baltic

brachiopods into this region was related to synchronous Late

Ordovician basinal subsidence in Oklahoma.

The Reelfoot Basin evidently provided a source for some

migration of Baltic genera into adjacent areas of the continental

interior which led to the formation of the Maquoketa Biome. The

Baltica genera Diglotrzpa and Sceptrogora newly appeared in the

Missouri-Southern Illinois area during Maquoketa time, and

simultaneously appeared in several of the areas which constitute
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the Maquoketa Biome (Northwest Illinois, Northeast Illinois,

Hisconsin and. Central Tennessee). Anstey (1986) also noted the

predominance of Baltoscandian genera in the Maquoketa Biome.

Although most biomes can be related to differences in

lithofacies, the presence of Baltic immigrants differentiates the

Maquoketa Biome from the Red River-Stony Mountain Biome in

Ashgillian carbonate terranes in North America. Nitzke (1987)

attributed Maquoketa phosphorite deposition in the midcontinent

to a transgression in which poorly oxygenated water upwelling at

the Ouachita continental margin deposited the phosphatic shales

and limestones of the basal Maquoketa. The subsiding Reelfoot

Basin may have provided a nearer source for the upwelling of

poorly oxygenated water. The Maquoketa transgression may also

have carried bryozoan larvae from the basin to nearby areas on

the craton, providing immigrants to the Maquoketa Biome.

SUMMARY

Bryozoan biogeography reflects many of the same patterns

observed in earlier studies of brachiopods and trilobites.

Provinciality is high in the Middle Ordovician, with four

provinces recognizable in the Llandeilo and Caradoc (North

American, Baltic, Siberian and Mediterranean). In the Ashgill, a

cosmopolitan fauna emerged as two provinces are recognizable: A

North American—Siberian Province and a Baltic-Mediterranean
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Province.

The merging of the North American-Siberian and Baltic

Provinces took place in the Silurian with continued closing of

the Iapetus Ocean. This merging was a gradual process however, as

Western Newfoundland and Southeast New York had Baltic affinities

as early as Caradoc time. In the Mid Ashgill, the midcontinent

Missouri-Southern Illinois area took on a Baltic aspect, and in

the Llandovery, the Anticosti Island fauna had Baltic affinities.

However, North American localities_ in the midcontinent areas of

Cincinnati, Ohio, Tennessee, New York and Ontario remained

provincial even in the Llandovery, although several Baltic genera

migrated to North America at this time. It was not until the

Henlock when North America, Siberia and Baltica coalesced into a

single province. This complete merging of Baltic and North

American bryozoan faunas postdated the merging of brachiopod and

trilobite faunas, perhaps due to a lower migratory capacity for

the bryozoa, or possibly due to more powerful quantitative

techniques of discrimination used in this study.

Climatic zonation appears to have been important in the

development of provinciality in the Silurian, as a north-

temperate Mongolian Province developed on the northern portion of

the Siberian plate and extended to the northern portion of the

‘South China plate in the Llandovery and Nenlock. The Silurian

closes with a cosmopolitan fauna showing no provinciality in the

Ludlow and Pridoli.
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INTRODUCTION

Bryozoans first appeared in the Lower Ordovician, and like

many other groups in Sepkoski’s (1981) Paleozoic Fauna, greatly

diversified in the Middle Ordovician. Diverse faunas have been

described from three major continental plates: North America,

Baltica and Siberia, and smaller faunas have been described from

Southern Europe, North Africa, Australia, China, and the British

Isles. Hithin continental plates, faunas often differ from

geosynclinal shelf localities to localities on the continental

platform. A major extinction took place in the Late Ordovician,

and global diversity dropped significantly. The major orders of

Bryozoa show differences in the timing of their radiations, with

the trepostomes being most abundant in the Ordovician and

declining in the Silurian relative to the other groups. In the

following review, the early radiation of the Bryozoa is examined

through an analysis of the first appearances of 2156 species of

bryozoans recorded from the Ordovician and Silurian strata of the

world. These data are then used to test hypotheses on the

environmental and geographic factors involved in evolutionary

innovations.
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TIMING OF THE RADIATION

The earliest recorded bryozoan was described from the Late

Tremadoc Kindblade Formation of Oklahoma (Ross, 1966a). Bryozoan

diversity gradually expanded in the Arenig, Llanvirn and

Llandeilo before reaching its maximum in the Caradoc. Early

Ordovician originations were greatest in Baltica; however the

major radiation during the Middle Ordovican was most prominent on

the North American plate. In North America, 464 new species and

31 new genera have been described from Caradocian sediments,

although only two new families appeared (Figures 26, 27 and 28).

The Caradoc radiations coincide with a major eustatic

transgression, which began in the Llandeilo and inundated the

cratonic interior of North America. This Caradocian transgression

has also been reported from the British Isles and Poland

(McKerrow, 1979 and Leggett et al, 1981). The role of

transgressions in inducing radiations was predicted by Fortey

(1984), who associated the flooding of cratonic interiors and

formation of epeiric seas with rapid increases in rates of

speciation in epicontinental areas, due to spatial heterogeneity

and the ”species area effect". Cooper (1977) also related marine

transgressions to biotic diversification and increased rates of

evolution. However the subsequent Llandoverian transgression was

not associated with a major radiation.
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Diversification at the species level continued in the

Ashgill of North America, as 276 new species have been described;

however only seven new genera were reported from North America

during the Ashgill. The rate of speciation was actually highest

during the Llandeilo, in the early stages of the transgression,

as approximately 47 new species per million years appeared

(Figures 29, 30 and 31). Due to the short duration of the

Llandeilo (approximately 4 Ma), the absolute number of new

species originating is much less than the Caradoc. Following the

Llandeilo, the Caradoc and Ashgill have remarkably similar rates

of evolution of new species (approximately 32 new species/Ma)

Rates of evolution of new genera were highest in the Llandeilo

and Llanvirn.

Following the Ashgill, evolutionary rates dropped

considerably in the Silurian, again remaining remarkably constant

through the Llandovery, Henlock and Ludlow at 23 new species/Ma.

Although total diversity dropped considerably following the Late

Ashgill extinctions (Figures 32 and 33), no major

rediversification of the Bryozoa is seen in the Llandovery. This

depression of the speciation rate may be related to the high

incidence of generic extinction observed in the Uenlock through

Pridoli (Figure 34), as existing genera may have gradually

dwindled by not producing enough new species to replace

extinctions. The low evolutionary rates observed in the Silurian

may also be related to the decreasing Silurian provinciality

brought about by continental convergence.

Bryozoan suborders may be divided into two evolutionary
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faunas: fauna one-suborders which radiated during the Ordovician;

and fauna two-suborders which radiated following the Late

Ordovician extinctions (Anstey, personal communication).

Suborders in fauna one experienced a major rise in speciation

rate during the Llandeilo and had their highest absolute numbers

of originations during the Caradoc (Figures 35 and 36). Suborders

in fauna two had higher speciation rates in the Silurian, with

the exception of the Amplexoporina, which diversified greatly in

the Caradoc (Figures 37 and 38). The Late Ashgill extinctions

seemed to have a pronounced effect on evolutionary rates of the

trepostomes, as post extinction speciation rates were

approximately halved in the suborders Halloporina and

Amplexoporina, and remained at low levels for the remainder of

the Silurian. The cryptostome suborders Rhabdomesina,

Fenestellina, and Ptilodictyina and the cystoporate suborder

Fistuliporina, however, experienced increases in speciation rates

from the Ashgill to the Llandovery. Trepostome suborders show

very low species survivorship into the Silurian (Figure 39), and

it is possible that the great reduction in trepostome diversity

caused by the Late Ashgill extinctions is related to the reduced

speciation rates observed in the Silurian. Gould and Calloway

(1980) observed a similar major effect in the Permian mass

extinction on brachiopods in the Mesozoic and Cenozoic. It

appears that the Late Ashgill mass extinction was an event from

which the trepostomes never recovered. The cryptostomes

experienced the highest percentage survivorship into the

Llandovery; however, their speciation rates began to decline

-/_s._
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throughout the remainder of the Silurian. Both cystoporate

suborders (Fistuliporina and Ceramoporina) were greatly affected

by the mass extinction; however the fistuuliporines did not

suffer a depression of speciation rates in the Llandovery and

began diversifying at higher rates in hthe Wenlock and Ludlow,

until a Pridoli decline.

LATITUDE AND CENTERS OF ORIGIN

Darlington (1957) first proposed that the tropics serve as a

center for the evolution of new taxa. Since that time much

research has been done to test this hypothesis for marine

invertebrates. Stehli and Wells (1971) and Durazzi and Stehli

(1972) found that the average ages of recent coral and benthonic

foraminifera genera decreased towards the tropics, while

diversity increased. They concluded that a strong relationship

exists between diversity, temperature and evolutionary rates, and

proposed a model in which the highest generic diversities

correspond with regions of highest temperature in the tropics.

New genera evolve in regions of high diversity and extend their

ranges through time into regions of lower diversity and higher

stress. Hecht and Agan (1972) also found a relationship between

age and diversity of recent and Miocene bivalve genera, with the

tropics again having higher diversities and younger generic ages.

Recent Bryozoa, however, have highest species diversities at

temperate latitudes between 30 and 60 degrees north of the
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equator (Schopf, 1970).

Zinsmeister and Feldman (1984) proposed high latitude,

shallow water, high stress environments to be centers of origin

for new taxa, from studies of first appearances of Late Cenozoic

molluscs, echinoderms and arthropods from Antarctica.

Hickey et al. (1983) proposed Arctic origins for numerous Late

Cretaceous and Early Tertiary land plants and vertebrates. Both

studies stated that polar climatic conditions in the Cretaceous

and Early Tertiary -were mild in comparison with modern

conditions. However Zinsmeister and Feldman emphasized that the

climate was subject to extreme seasonality. They suggested that

the seasonality and isolation of the Antarctic region were the

primary cause of evolution of new taxa.

An opportunity to test these opposing hypotheses on

latitudinal effects on evolutionary innovation is provided

by documenting the early evolutionary history of the Bryozoa.

The early evolution and radiation of the Bryozoa took place on

latitudinally separated continents in the Early to Early-Middle

Ordovician. Continental reconstructions from Scotese (1986)

reveal that from the Late Cambrian to the Llanvirn, the

continents of North America and Siberia were situated in

equatorial realms, North Africa and Southern Europe were situated

near the South Pole, and Baltica was situated in intermediate

latitudes, between 30 and 60 degrees south of the equator.

By Ashgill time, however, Baltica had moved into equatorial

latitudes.

Although a few Early Ordovician species have been recorded
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from China, the predominant record of early bryozoan evolution is

preserved in the Early Ordovician sediments of Baltica, North

America and Siberia. Diversities in the polar continents of

North Africa and Southern Europe are low. Climatically, North

America has been characterized by Spjeldnaes (1981) as having

an equatorial, low latitude climate, while Baltica had a boreal

or intermediate climate. Jaanusson (1972) also concluded that

Baltica occupied a temperate climatic zone,‘ despite the presence

of widespread carbonate deposition. Lindstrom (1972) reported

ice-marked sand grains from the Lower Ordovician of Scandinavia,

indicating that the region did experience some cold climatic

conditions. From the Arenig through the Llanvirn, when Baltica

was situated in the south temperate zone, a total of 18 families,

47 genera and 90 species made their first appearances on Baltica.

During this same time period only 6 families, 24 genera and 23

species appeared on the equatorially located North America, while

0 families, 3 genera and 8 species appeared in Siberia. Only

1 family, 1 genus and 1 species are recorded as appearing in

the polar South Europe-North Africa region (Figures 26, 27 and

28).

The fact that the relatively high latitude, temperate,

continent of Baltica served as the major evolutionary center for

the Bryozoa lends support to the generality of the patterns

observed by Zinsmeister and Feldman and Hickey et al. This

indicates that high latitude, temperate, environments subject to

extreme seasonality may be important centers ,of origin for new

taxa. In the bryozoa, this effect seems to be particularly
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pronounced at the family level. Webby (1984b) also suggested

a probable Baltic temperate latitude origin for the Bryozoa.

THE OFFSHORE-ONSHORE HYPOTHESIS

Sepkoski (1981), in a factor analysis of the number of

families within classes of Phanerozoic metazoans, defined three

evolutionary faunas: (1) a Cambrian fauna dominated by trilobites

and inarticulate brachiopods; (2) a Paleozoic fauna dominated by

articulate brachiopods, crinoids, ostracodes, anthozoans,

cephalopods and stenolaemate bryozoans; and (3) a modern fauna

dominated by molluscs, echinoids, gymnolaemate bryozoans, bony

fish, sharks, demosponges and malacostracean crustaceans.

Sepkoski and Sheehan (1983), Sepkoski and Miller (1985) and

Jablonski et al. (1983) found that the Paleozoic and modern

faunas appear to have had their origins in nearshore environments

and then expanded offshore with time. They suggested that

nearshore environments may be conducive to diversification,

possibly because of the frequent disturbances and stressful

conditions found there, despite higher speciation rates offshore.

An effort was made to test their hypothesis by tabulating

the geographic locations of first appearances of bryozoan taxa

in Ordovician and Silurian formations of North America. Estimated

ages of North American formations were taken from the

stratigraphic correlation charts of Ross et al. (1982), Barnes

et al. (1981) and Berry and Boucot (1970). Global first
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appearances of bryozoan families and genera are strongly

concentrated around the ancient continental margins of North

America (Figures 40 and 41; taxa which appeared at an earlier

time on other continents were not included). Locations which

have high concentrations of originations include: Lake Champlain

(12 genera and 2 families), the Arbuckle Mountains in Oklahoma

(9 genera and 2 families), West-Central Utah (6 genera and 3

families), Southwest Virginia (11 genera and 1 family) and

East Tennessee (6 genera). Also, six generic originations were

recorded from the midcontinental region of Southern Indiana,

most of which were found in the Osgood Formation (Silurian).

PALEOENVIRONMENTS OF EVOLUTIONARY CENTERS IN NORTH AMERICA

The Champlain Basin in New York and Vermont was the major

apparent evolutionary center for North American Ordovician

bryozoan genera. Faunas appear to have originated in the Day

Point and Crown Point Formations of Llanvirn and Llandeilo age,

and are associated with abundant carbonate reefs. Pitcher (1964)

described these reefs as being formed in shallow water. Shallow

water indicators include: quartz silt in the matrix of reefs,

carbonate grainstones, oolites, oncolites, crossbedding and

quartz sand bars in equivalent beds. Walker and Ferrigno (1973)

classified these reefs as being located onshelf, analogous to

modern shelf patch reefs.
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Figure 40. Geographic locations of first appearances of

bryozoan families in North America for the Ordovician

and Silurian. The 2-family contour line parallels

the ancient continental margin. Scale: one inch =

approximately 650 kilometers.
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Figure 41. Geographic locations of first appearances of

bryozoan genera in North America for the Ordovician

and Silurian. The 6-genera contour line parallels

the ancient continental margin. Scale: one inch =

approximately 650 kilometers.
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In Virginia, bryozoans originate mainly in the Llanvirn

through Caradoc New Market, Lenoir and Edinburg Formations.

Fichter and Diecchio (1986) and Read (1980) have classified the

New Market as representing shallow intertidal to subtidal

deposits, the Lenoir as representing a shallow, subtidal

carbonate ramp facies, and the Edinburg as a shelf edge facies

containing carbonate turbidites. The Edinburg contains six of the

11 generic first appearances; however, Fichter and Diecchi state

that most of the Edinburg fauna has been transported from the

shallow shelf as turbidites. Thus it is likely that the Virginia

fauna represents shallow water conditions, although it is

questionable whether the fauna is derived from the innermost

shelf.

Six genera and three families appear in the Arenig-Llanvirn

Kanosh and Lehman Formations of the Pogonip Group in West-Central

Utah. Hintze (1951) described the Pogonip. Group as containing

large amounts of fine quartz arenaceous material and shallow

water indicators such as intraformational conglomerates, ripple

marks, cross laminations and beds of worn and sorted trilobite

fragments. Hintze concluded that the area lay near the eastern

shore of an epeiric sea.

In Oklahoma, the majority of new taxa are found in the

Llanvirn through Caradoc Simpson Group of the Arbuckle Mountains.

The bryozoan bearing. formations of the Simpson Group are the

McLish, Oil Creek, Tulip Creek and Bromide Formations. Ham (1969)

described the Simpson Group as a sequence of formations, each of

which contains a basal sandstone, overlain by skeletal
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calcarenites, carbonate mudstones and shales. Bryozoans are found

in the upper shale and limestone units of each formation. The

Simpson is regarded as being a transitional group of intermediate

depth, which can be differentiated from the underlying shallow

water Arbuckle Group by the absence of hemispherical

stromatolites and from the overlying deep water Viola Limestone,

by the absence of graptolites. However, the McLish has been noted

to contain Girvanella oncolites in great concentrations. The

oldest bryozoan known was described by Ross (1966a) from the Late

Tremadoc Kindblade Formation of Oklahoma. The species Ceramopora

unapensis was found in a carbonate mound unit containing abundant

lithistid sponges, quasisponges, orthid brachiopods and the blue

green alga Girvanella.

The fauna from East Tennessee is found in a large reef from

the Lower Caradoc Holston formation. Six genera make their first

appearances in the fauna. The reef fauna was described by Walker

and Ferrigno (1973), who interpreted the paleoenvironment to be

offshore, on the eastern edge of a carbonate shelf.

In summary, first appearances of bryozoan genera and

families are highly concentrated around the ancient continental

margin of North America. The most diverse localities can be

classified into three paleoenvironmental units:

1. Reefs or carbonate mounds are present in the Chazy Group

of Lake Champlain, the Holston Formation of East Tennessee

and the Kindblade Formation of Oklahoma.

2. Indicators of shallow water or inner shelf conditions are

found in the Chazy Group of Lake Champlain, the Pogonip Group
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of Utah, the New Market Formation of Virginia and the McLish

Formation of Oklahoma.

3. Intermediate mid-shelf envirnoments have been inferred for

the Simpson Group of Oklahoma and the Lenoir Formation of

Virginia. The fauna of the Edinburg Formation was most likely

transported as turbidites into deeper waters, from shallower,

on-shelf localities.

This evidence from first appearances of bryozoan species and

genera does lend some support to the hypothesis that nearshore

environments serve as localities Ifor the origination of higher

taxa. However, some mid-shelf localities also seem to be

evolutionary centers. Reef environments seem to be particularly

important centers for the evolution of new taxa. Previous

research on the onshore—offshore problem only focused on level-

bottom communities and did not include reef communities, because

of an implicit assumption that reef communities had a different

evolutionary history than level-bottom communities. Sheehan

(1985), however, stated that reefs follow the general

evolutionary patterns of level-bottom communities. Reefs and

level-bottom communities do show an interchange of fauna as, taxa

originating in reefs radiated into level—bottom communities. It

would not be surprising if other elements of the Paleozoic fauna,

particularly corals, have similar first appearances of higher

taxa in reefs.
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EVOLUTION AT THE SPECIES LEVEL

Bryozoan speciation patterns in North America differ greatly

from patterns of origination of genera and families (Figure 42).

Coastal localities, which were evolutionary centers for genera

and families, have relatively low numbers .of species

originations. The highest number of species originations is

concentrated in the Cincinnati region, where bryozoans appear in

abundance in the Late Ordovician Kope and Dillsboro Formations of

Southern Indiana, Southern Ohio and Northern Kentucky. Anstey,

Rabbio and Tuckey (1987a) suggested this intracratonic region lay

in an area of relatively deeper water, centered between the

Taconic clastic wedge to the east and the carbonate platform to

the west. Other regions of high species originations include mid»

craton areas such as the Middle Ordovician formations of the

Central Tennessee Basin, the Middle Ordovician formations of

Minnesota, and Middle Ordovician and Silurian strata in Central

and Western New York. These results clearly imply that species-

level evolution is not preferentially concentrated in nearshore

environments. Similar results have been reported by Jablonski

(1980) and Jackson (1974), who found that offshore bivalve taxa

have higher speciation rates than onshore taxa.



Figure 42. Geographic locations of first appearances of

bryozoan species in North America for the Ordovician

and Silurian. The 60-species contour line outlines

cratonic localities in Minnesota, Central Tennessee,

Southern Indiana, Northern Kentucky and Central and

Western New York. Scale: one inch = approximately

650 kilometers.
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OCEANIC ISLANDS AS EVOLUTIONARY CENTERS

Data from exotic terranes have indicated that oceanic

islands were important centers of origin for higher taxa of

Bryozoa. Because of the highly deformed nature of rocks from

these sites, fossil bryozoans are often unidentifiable, or

identifiable only at higher taxonomic levels. Despite this,

island faunas have yielded a number of .first appearances of

bryozoan genera and higher taxonomic groups. Among them are:

1. The Treiorwerth Formation, of the Anglesey region of Southeast

Ireland, contains a Late Arenig bryozoan fauna consisting of

generalized trepostomes and the oldest phylloporinid (Neuman,

1984; Neuman and Bates, 1978).

2. A Late Arenig fauna from New World Island, Newfoundland

contains a number of unidentified trepostomes and the oldest

bifoliate cryptostome (Neuman, 1984; 1976).

3. The oldest fenestrate bryozoan, Alwxnogora orodamnus, was

described from the Late Arenig Tourmakeady Limestone of West

Ireland (Taylor and Curry, 1985).

4. A Late Ashgill fauna from the Portrane Limestone of Southwest

Ireland contains a fauna with the first recorded appearances

of the genera Discosgarsa, Hederella, and Icthyorachis (Ross,

1966b). Icthygggchig had previously been known from Devonian

age rocks, while Discosgarsa had been known from the
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Cretaceous.

5. The oldest described trepostome, Drbigora §E., was reported

from the Lower Arenig Ogof Hen Formation of South Wales

(Taylor and Cope, 1987).

The first four of these localities were described by Neuman

(1984) as exotic terranes representing oceanic islands in the

Iapetus Ocean. Neuman found that oceanic island faunas contain

high percentages of endemic brachiopods, and cited the isolation,

topographic irregularities and lack of competition encountered by

pioneer species in these habitats as factors promoting endemism.

Webby (1984b) noted that clathrodictyid stromatoporoids,

coenosteoid heliolitid corals and several groups of rugose

corals made their first appearances in island arc settings off

the coast of Australia.

DISCUSSION

One possible interpretation of these results is that there

may be a fundamental difference between speciation and the

evolution of higher taxa such as genera and families. Jablonski

and Bottjer (1983) suggested differences in speciation rates

between onshore and offshore species may be related to wider

geographic ranges and an increased frequency of planktotrophic

larval development among nearshore taxa. They further state that

because of their planktotrophic larval development, onshore taxa
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are speciation and extinction resistant, but are more susceptible

to speciation events involving genetic transiliencies, which may

be sources of evolutionary novelty.

The mode of larval development for Ordovician Bryozoa is not

known. However, an attempt was made to compare geographic ranges

of nearshore vs. offshore genera, which might be correlated with

larval type. Geographic ranges of high speciation, offshore

localities (Southern Indiana, Southern Ohio, Northern Kentucky,

Central Tennessee, and Minnesota) and nearshore and reef centers

of evolution of higher taxa (Virginia, Oklahoma, Utah, Lake

Champlain and East Tennessee) are compared in Table 4.

Geographic range is estimated by the mean number of continents

occupied per genus from the Arenig through Caradoc, when

continents were still widely separated, 'and by per cent of

endemic genera (confined to one continent) in each fauna.

Except for Utah, the mean number of continents occupied

per genus is relatively constant for nearshore vs. offshore

localities. Genera from Utah are more widespread, with each genus

occupying an average of 4 continents, and no genera from Utah are

endemic. However, Utah has a diversity of only 6 genera which is

much lower than the generic diversities of other sites, which

range from 26-59. Thus the data from Utah may not be as reliable,

given the low sample size. Other nearshore and reef localities

have a high percentage of endemic genera. This reflects the fact

that many genera appeared at these sites and never migrated to

other continents or invaded the continental interior. Many rare

genera such as Amalgamogorous, Champlainopora, Chazydictxa,
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Table 4. Endemicity of bryozoan genera.

Locality Mean number of continents % Endemic genera

occupied per genus per locality

1. Neagshore and reef:

 

Lake Champlain 2.9 22

Oklahoma 3.2 18

Utah 4.0 0

Virginia 2.8 26

East Tennessee 3.0 21

Mean .2 17.4

2. Offghgrg, intracratonic:

Central Tennessee 3.1 4

Northern Kentucky 2.9 13

Southern Indiana 3.0 12

Southern Ohio 3.0 10

Minnesota 2.9 12

Mean 3.0 10.2
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Cricodictxum, Cystostictoporous, Heminematogora,

Oecioghxlloporina, Trepostomina, Hemiulrichostxlus, Ottoseetaxis,
 

Osburnostxlus, Jordggopogg, and Lammotogora are confined to reef

or continental margin localities. Despite the high percentage of

endemics at these sites, the total faunal assemblages have the

same average generic ranges as the inner cratonic sites. This

indicates that the continental shelf and reef localities have a

mixed fauna, of cosmopolitan (planktotrophic?) and endemic

(nonplanktotrophic?) genera.

Nearshore environments are typically characterized as

unpredictable, high-stress, environments, with the implication

that environmental stress may somehow be related to evolutionary

innovation. In contrast, reefs are characterized as occupying

predictable, low-stress environments. Given the large

contribution of reefs and oceanic islands to evolutionary

innovation in the Bryozoa, perhaps the relationship of

environmental stress to evolutionary innovation has been

overestimated. Reefs and islands are spatially heterogeneous,

isolated environments. They offer the opportunity for species

assemblages of small population size to form, often isolated from

other reefs and islands by large distances. The occurrence of

these isolated units of small population size may be related to

the evolution of novel groups through the founder effect, the

spatially heterogenous nature of the environment and the lack of

selection pressure on pioneer species. Reefs often are found

associated with island arcs and may have provided early

colonization sites for newly evolved species.
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Schopf (1977) viewed the evolution of new taxa as a process

of increasing specialization, whereby specialized forms arise

from generalized ancestors. Generalized taxa have life history

strategies most suited for unstable, nearshore environments.

Perhaps the reason higher taxa often appear in nearshore

environments is because only generalized forms have the

developmental plasticity necessary to allow evolutionary

innovation. Thus, the fact that this process occurs nearshore is

not because of any special evolutionary property of the nearshore

environment, but because the generalized, ancestral forms are

adapted to nearshore habitats.

Reef habitats are most suited for biotically competent,

specialized forms. Reefs were abundant in North America from the

Arenig through the Early Caradoc, but were rare from the Middle

Caradoc through the Middle Ashgill, possibly because of an

increase in terrigenous sedimentation from the Taconic Orogen and

because rising sea levels deposited widespread black shales over

the eastern midcontinent. They reappeared in the Late Ashgill in

the Williston Basin, Mellville Peninsula and Anticosti Island

areas of Canada; however, few novel groups appeared in reefs

after the Early Caradoc.

Gould (1977) outlined how two forms of paedomorphosis

(progenesis and neoteny) can act to preserve morphologic

generality in stable and unstable environments. Progenesis

(the acceleration of reproductive maturation) is a successful

adaptive strategy in unstable environments. Gould states that

when selection is focused on timing of reproductive maturity»
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rather than on morphology, experimental morphologies can

develop because morphology is suddenly released from the

pressures of selection. Specialized adaptive strategies favor

delays in timing of reproductive maturity. In these

circumstances, juvenile features may be preserved in adult states

(neoteny), lending the organisms a certain evolutionary

plasticity. Anstey (1987) has documented several cases of

paedomorphic traits in nearshore Palebzoic bryozoans.

SUMMARY

1. The early radiation of the Bryozoa was largely concentrated

on the continent of Baltica, which was located in a temperate

climatic zone in the Southern Hemisphere.

2. Worldwide diversities and evolutionary rates greatly increased

in the Middle Ordovician, corresponding with a major eustatir

transgression.

3. Following the Late Ordovician mass extinction, Silurian

diversities and evolutionary rates were consistently lower

than in the Ordovician.

4. First appearances of bryozoan genera and families in North

America were largely concentrated in reefs and nearshore and

mid-shelf environments around the ancient continental margin.

5. Oceanic islands also were centers of origin for genera and

higher taxonomic groups of bryozoans and other marine

invertebrates.

6. First appearances of bryozoan species were largely
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concentrated offshore, in the stable craton.

7. Differences in the onshore vs. offshore evolution of taxa

may be related to the presence of taxa with generalized

(and often paedomorphic) morphologies in nearshore areas,

and the spatial heterogeneity provided by the presence of

reefs on the continental shelf.



CHAPTER THREE

GRADIENT ANALYSIS AND BIOSTRATIGRAPHIC CORRELATION
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INTRODUCTION

Gradient analysis has been used to quantify spatial

gradients in the distribution of taxa by ecologists and

paleoecologists. Cisne and Rabe (1978) used reciprocal averaging

to quantify spatial gradients in the distribution of fossils

along an onshore-offshore transect in the Ordovician of New York.

Anstey, Rabbio and Tuckey (1987a) used reciprocal averaging and

polar ordination to quantify spatial gradients in the

distribution of Late Ordovician bryozoan genera in North America

and to quantify stratigraphic gradients in the distribution of

bryozoan genera in a stratigraphic section in the Late Ordovician

of southern Indiana. These stratigraphic gradients were inferred

to represent bathymetric changes in the Late Ordovician epeiric

sea. Cisne, Gildner and Rabe (1984) also constructed bathymetric

curves for stratigraphic sections in New York and the upper

Mississippi Valley, using detrended correspondence analysis.

These sections were then correlated on the basis of synchronous

changes in sea level. The application of gradient analysis to

quantifying temporal gradients in the distribution of fossil

species and genera makes it a potentially useful tool in

biostratigraphy. Other multivariate techniques, such as cluster

analysis and nonmetric multidimensional scaling, have also been

used for quantitative stratigraphic correlations and construction

of assemblage zones. Descriptions of these techniques may be
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found in Brower (1985), Hazel (1977) and Cubitt and Reyment

(1982).

Previous applications of gradient analysis have been high

resolution studies of the presence-absence or abundances of

taxa in measured stratigraphic sections. Changes in abundances

of taxa reflect paleoenvironmental changes associated with

transgressions and regressions. This approach differs from

previous studies in that the presence-absence of species in

formations spanning a long time interval (the Ordovican) is

analyzed. The limited stratigraphic range of species enables

gradient analysis to quantify an "age gradient" unrelated to

short term environmental changes.

To test the biostratigraphic utility of gradient analysis,

an analysis was done of the distribution of bryozoan species in

the Ordovician of Estonia. Estonia was chosen for this analysis

because it has a diverse bryozoan fauna and a complete sequence

of Ordovician formations ranging from Arenig through Ashgill in

age (Figure 43) exposed within a relatively small geographic

area, thus minimizing the potential for spatial variation. The

Balto-Scandian Ordovician formations lie in three major facies

zones. Each zone maintains its individuality and geographic

location throughout most of the Ordovician, and major faunal

changes between formations are usually not associated with a

change in lithology or facies (Jaanusson, 1976).
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Figure 43. The Ordovician stratigraphic sequence of Estonia,

from Alikhova (1976) and Mannil (1966).
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METHODS

Data on the distribution of bryozoans in the Ordovician of

Estonia were compiled from the publications of Bassler (1911),

Mannil (1959) and Modzalevskaya (1953). A data matrix was

compiled, listing the presence or absence of each species of the

bryozoan fauna in each formation of the Estonian Ordovician

sequence. This data matrix was used as input data for the

gradient analytic technique of detrended correspondence analysis,

(hereafter called DCA). DCA and reciprocal averaging are similar

to factor analysis in that they reduce the dimensionality of the

data matrix into a few major axes of variation. Sample scores are

ordinated with respect to their distance between the two poles,

or end points, of each axis. DCA and reciprocal averaging give

identical results on the first axis, but differ on subsequent

axes, as DCA axes are orthogonal, whereas subsequent axes of

reciprocal averaging are often correlated with the first axis.

A discussion of these gradient analytic techniques is provided in

Gauch (1982).
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RESULTS

Ordination scores for the Ordovician formations of Estonia

are given in Table 5. DCA correctly ordinated the Estonian

formations with respect to age on the first axis, with the

exception of the B2 and 83 horizons which were juxtaposed, with

the 83 being classified as older than the B2. The juxtaposition

was probably due to the effect of two species, Diglotrxga

ggtropolitggg and Egrvohgllopogg bicornig, which were listed as

being present in the B2 horizon and abundant in the younger C

and D horizons, but were not recorded from the 83. This had the

effect of making the 82 appear more similar to formations of

younger age. These ordination results clearly indicate that

the first DCA axis serves as an “age" axis for Estonia.

A DATING OF THE ORDOVICIAN ERRATIC BOULDER FAUNA FROM POLAND

A bryozoan fauna from Ordovician erratic boulders from

Poland was described by Kiepura (1962). The fauna is known to be

Ordovician in age, however the precise age of the fauna has

never been determined. A dating of this fauna was attempted by

including the fauna from each boulder in the data matrix with the

Ordovician fauna of Estonia. Boulders containing fewer than 5
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Table 5. First axis DCA ordination scores for the Ordovician

formations of Estonia

  

   

Eigenvalue = 0.819

 

 

Horizon DCA Score 5 of Genera # of Species

F2 683 20 28

F1: 532 18 21

Flb 521 27 34

Fla 502 17 19

E 279 25 32

03 195 47 73

D2 178 45 67

D1 139 39 66

C3 130 34 . 56

C2 101 48 88

C1 52 31 49

B2 15 8 10

83 O 19 32
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species were not included in the analysis. DCA ordination scores

for this analysis are listed in Table 6. The Estonian Ordovician

sequence is again ordinated with respect to age on the first

axis, with the exception of the B2 and B3 horizons and

the C2 and C3 horizons which are juxtaposed, although their

ordination scores are almost identical. Erratic boulders 0.204

from Mochty (province of Warsaw) and 0.17 from Wielki Kack

(province of Gdansk) are classified as being between the F1c

(Pirgu) and F2 (Porkini) horizons in age. Ordination scores for

the two boulders however, are closest to the F2 horizon, which is

Hirnantian (Latest Ashgill) in age. This evidence indicates that

these two erratic boulders from Poland are Hirnantian in age, and

are thus equivalent in age to the erratic boulders from the

Hirnantian of Ojlemyr, Gotland, whose fauna was described by

Spjeldnaes (1984). Schallreuter and Hillmer (1987) also noted the

similarity between the Ojlemyr fauna and the Polish boulder

fauna.

A DATING OF THE NAUNGKANGYI FORMATION OF BURMA

The fauna of the Naungkangyi formation of the North and

South Shan States of Burma was described in a series of papers by

Reed (1906, 1915, 1936). In the North Shan States, the

Naungkangyi is divisible into an upper member of predominantly

shales and a lower member of sandy marls, while in the South
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Table 6. First axis DCA ordination scores for the 0rdovician

formations of Estonia and erratic boulders 0.17 and 0.204

from Poland.

 

 

Eigenvalue = 0.821

 

Horizon DCA Score # of Genera # of Species

F2 659 20 28.

Boulder 0.17 628 10 14

Boulder 0.204 626 16 20

Pic 523 18 21

Flb 512 27 ' 34

F1a 494 17 19

E 307 25 32

D3 210 47 73

D2 205 45 67

D1 150 39 66

C2 143 48 88

C3 140 34 56

C1 83 31 49

82 20 8 10

83 0 19 32
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Shan the Naungkangyi exists as a series of shales and limestone

lenses and is not divisible into upper and lower units (Pascoe,

1959). The age of the Naungkangyi members has been estimated by

Pascoe to range from Llanvirn to Early Caradoc; however, Williams

(1973) included the Naungkangyi fauna in the Upper Caradoc, in

his cluster analysis of brachiopod faunas.

The Baltic affinities of the Naungkangyi fauna have been

recognized by Pascoe (1959), and in Chapter one of this thesis.

Because of the Baltic nature of the Naungkanyi fauna an attempt

was made to estimate the temporal position of the fauna by

including it in a DCA analysis with the Ordovician sequence of

Estonia. Since some of the Naungkangyi bryozoan fauna are

described only to the level of genus, the input data matrix

consisted of the presence or absence of bryozoan species and

genera in the Naungkanyi members and the Estonian formations.

First axis scores again show the Estonian sequence ordinated

by age (Table 7). The Upper and Lower Naungkangyi formations from

the North Shan and the Naungkangyi formation from the South Shan

all cluster in age between the E (Rakvere) and F1a (Nabala)

horizons of Estonia. Ordination scores for the South Shan

Naungkangyi and the North Shan Lower Naungkangyi are closest to

the ordination score for the E horizon of Estonia, while the

Upper Naungkangyi Formation clusters closest to the F1a horizon.

Alikhova (1976) placed the E horizon in the Upper Caradoc and the

F1a horizon in the Lower Ashgill. Thus, this analysis indicates

the Naungkangyi members to be of Late Caradoc to Early Ashgill
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Table 7. First axis DCA ordination Ssores for the Ordovician

formations of Estonia and the Lower Naungkangyi (L-Naung) and

Upper Naungkangyi (U-Naung) Formations of the North Shan States

and the Naungkangyi (S-Naung) Formation of the South Shan States

of Burma.

  

  

Eigenvalue = 0.779

 
  

Horizon DCA Score # Genera # Species

F2 624 20 28

F1: 491 18 21

Flb 487 27 34

F1a 466 17 19

U-Naung 420 5 5

S-Naung 285 9 11

L-Naung 285 7 10

E 284 25 32

D3 213 47 73

D2 199 45 67

D1 140 39 66

C3 132 34 56

C2 112 48 88

C1 67 31 49

B2 58 B 10

83 0 19 32
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age.

SUMMARY

Ordination analysis succesfully classified Estonian

formations of known age along an "age“ gradient on the first

DCA axis, with one exception. When faunas of unknown age,

from the same biogeographic province, were included in the

analysis, the "age" gradient on the first axis remained intact

and the undated faunas were time correlated with Estonian

formations by their positions on the first axis. These results

indicate that gradient analysis is a useful biostratigraphic

tool because of its effectiveness in ordinating temporal

gradients, as well as an effective ecologic tool as ecologists

and paleoecologists have recognized.

This analysis also suggests that bryozoans are useful

tools in biostratigraphy. Despite the fact that paleontologists

such as E.O. Ulrich and R.S. Bassler recognized their

stratigraphic value, bryozoans have rarely been used in recent

biostratigraphic studies. Although species distributions are

often facies-controlled, the relatively short stratigraphic

ranges of many species make them useful for correlation within

biogeographic provinces or subprovinces.



CHAPTER FOUR

THE LATE ORDOVICIAN MASS EXTINCTION
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INTRODUCTION

The Late Ordovician has been recognized as one of four

periods of Phanerozoic mass extinction, that significantly

exceed background extinction levels (Raup and Sepkoski, 1982).

Extinctions in this epoch affected a variety of marine

invertebrates including trilobites, echinoderms, graptolites,

conodonts and corals (Brenchly, 1984). The cause of the

extinctions has been attributed to climatic cooling associated

with the Late Ordovician glaciation, centered in North Africa

(Stanley, 1984), and to the marine regression associated with the

glaciation (Brenchly, 1984; Jaanusson, 1979). An analysis of the

terminal stratigraphic occurrences of Late Ordovician bryozoan

species and genera, drawn from a worldwide bryozoan data base,

indicates that the Late Ordovician extinction of bryozoans is a

composite of three discrete extinction events that significantly

exceed background extinction levels: a Late Caradoc event (Onnian

Stage) and two Late Ashgill events (Rawtheyian and Hirnantian

Stages, respectively). This paper seeks to demonstrate

differences in the fauna affected by each of these separate

events, and to propose extinction mechanisms consistent with

these differences.
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ONNIAN EXTINCTIONS

A Poisson distribution test (Sepkoski and Raup, 1986) which

compares extinction maxima with local minima was applied to test

the significance of extinction peaks for bryozoan species and

genera during the Ordovician and Silurian (Figures 44 and 45). In

addition to a Middle Ordovician (Black River) event, these

extinction peaks rise above the 95% confidence limits: a Late

Caradoc peak, two Late Ashgill peaks and a Mid-Silurian peak.

The Late Caradoc extinction of bryozoan species totaled

over 50% of all Late Caradoc species recorded from the continents

of Baltica, Siberia and Southern Europe; however, only about 25%

of North American species were affected (Figure 46). Endemic

species and genera were significantly more prone to extinction

than cosmpolitan taxa, as taxa confined to one continent

suffered more than taxa on two or more continents (Figure 47).

Extinctions were concentrated among stenotopic species and

genera, as taxa confined to one lithotope suffered higher rates

of extinction than taxa occupying mixed lithologies (Figure 4B).

Brenchly (1984) and Brenchly and Newell (1984) discussed Late

Caradoc extinction events for trilobites and brachiopods and

attributed them to a reduction in provinciality brought about by

plate movements reducing the width of the Iapetus Ocean. This

idea is supported by data on migrations of bryozoan genera, as

Baltica and Siberia, where extinctions were high, received larger
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Figure 44. Ordovician and Silurian extinctions of bryozoan genera

recorded in intervals of 4 million years. The dotted line

represents the 95% confidence intervals of a Poisson distribution

test which compares extinction maxima with local minima. Time

Scale is taken from stratigraphic charts of Ross et al. (1982).
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Figure 45. Ordovician and Silurian extinctions of bryozoan

Species, recorded in intervals of 4 million years. The dotted

line represents the 95% confidence intervals of a Poisson

distribution test. which compares extinction maxima with local

minima. Time scale is taken from stratigraphic charts of Ross

et a1. (1982).
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numbers of migrants during the Late Caradoc, than North America,

where extinctions were low (Figures 8, 9 and 10). Spjeldnaes

(1981) described these migrations as the "Vaselemma" (Estonian E

Horizon) wave and characterized them as being marked by an

invasion of American trilobites, brachiopods and bryozoans into

Europe. Perhaps extinctions in Baltica and Siberia were related

to competition between migrants and stenotopic species which were

unable to expand their range to other lithotopes.

RAWTHEYAN EXTINCTIONS

Although the Late Ashgill extinction appears as a single

peak in Figures 44 and 45, it is a composite of two separate

extinctions, one during the Rawtheyan stage and one during the

Hirnantian (the final stage of the Ashgill). The stratigraphic

divisions of the Ashgill are shown in Figure 49. Rawtheyan

extinctions of bryozoa were concentrated in North America, where

approximately 90% of Late Ashgill species went extinct. Baltica

however, lost only about 5% of its species during the Rawtheyan

(Figure 50). Because stratigraphic data on bryozoan distributions

from Siberia, China and Southern Europe are imprecise, the effect

of the Rawtheyan and Hirnantian extinctions on these continents

cannot be determined. Rawtheyan extinctions were concentrated in

terrigenous and mixed terrigenous/carbonate lithotopes, as

opposed to those of pure carbonates (Figure 51). Extinctions
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et al. (1982).
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rates in terrigenous and mixed lithotopes exceeded 80% compared

to about 35% for carbonate lithotopes. Extinctions were highly

concentrated among species in the orders Trepostomata and

Tubuliporata.

HIRNANTIAN EXTINCTIONS

A second wave of Late Ashgill extinctions occurred during

the Hirnantian and the effects were quite different than those of

the Rawtheyan. Hirnantian extinctions were concentrated in

Baltica, which lost over 80% of its species, as opposed to North

America. which lost approximately 20% (Figure 50). Hirnantian

extinctions were concentrated in carbonate lithotopes as opposed

to terrigenous and mixed lithotopes, with rates exceeding 50% for

carbonates as opposed to approximately 10% for terrigenous and

mixed (Figure 51). Hirnantian extinctions were high among species

belonging to the orders Cryptostomata and Cystoporata.

The magnitude of the Hirnantian extinction was considerably

smaller than the Rawtheyan at the species level. The Hirnantian

extinctions also coincided with a large migratory wave of

North American genera into Baltica (Figure 9). Spjeldnaes (1981)

previously recognized this immigration as the ’Porkuni' (Estonian

F2 Horizon) wave.
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DISCUSSION

Two major causes have been proposed for the Late Ordovician

mass extinction: global cooling (Stanley, 1984), and marine

regression (Brenchly 1984. and others). Stanley’s global cooling

hypothesis does not explain the differing effects of the

extinction on faunas from different lithotopes. Brenchly

attributed the first phase of the Late Ashgill extinctions to the

marine regression which decimated the shelf benthos via the

species-area effect. Jablonski (1985) questioned the role of the

species-area effect in extinctions by demonstrating the

importance of oceanic islands as refuges during marine

regressions. The shelf area around oceanic islands increases

during regressions. This analysis suggests that marine

regressions may cause extinctions by wiping out specific

types of habitats rather than through the species-area effect.

The Rawtheyan extinctions of bryozoan species were

concentrated in areas of terrigenous lithologies in North

America, while areas of carbonate lithologies were relatively

unaffected. Anstey (1986) found that over 50% of the genera in

the terrigenous Reedsville-Lorraine Biome and the mixed

terrigenous-clastic Cincinnati Biome did not survive into the

Silurian. This may be due to the fact that species from carbonate

environments were able to find similar habitats on the carbonate
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shelves of oceanic islands, while species from terrigenous

environments had their habitat destroyed during the marine

regression. An oceanic island bryozoan fauna was described by

Ross (1966b) from the Portrane Limestone of Ireland. This fauna,

of Rawtheyan age, comes from an exotic terrane which was formerly

an island in the Iapetus Ocean (Neuman 1984) and has affinities

with North American and Baltic carbonate faunas. The

disproportionate effect of the Rawtheyan marine regression on

North American faunas is also evident in the brachiopods

(Sheehan 1975), as Baltica was apparently less affected by the

regression.

The presence of oceanic islands probably facilitated

faunal migrations, as the largely carbonate shelves of Baltica

received large numbers of immigrants during the Hirnantian.

Hirnantian extinctions may be related to a reduction in

provinciality associated with this migratory wave. Brenchly

(1984), however, attributed the Hirnantian extinctions to a rapid

rise in sea level at the end of the Hirnantian, which is

evidenced by deposits of Early Silurian black shale at many

Baltic localities. Sheehan (1987) associated this rapid rise in

sea level with the spread of anaerobic conditions in deep water

which led to the extinction of the Foliomena brachiopod

community. Raymond et al. (1987) also associated rising sea level

caused by glacial melting with increased equatorial seasonality

and high equatorial extinctions in Carboniferous brachiopods. The

Hirnantian migrations may, in turn, have been related to rising

sea level, as Hallam (1977) found that cosmopolitanism among
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Jurassic bivalves increased during transgressions.

l.

8.

CONCLUSION

The Late Ordovician extinctions of bryozoa occurred in 3

discrete phases: A. An Onnian phase. B. a Rawtheyan phase.

and C. a Hirnantian phase.

Late Caradoc extinctions were concentrated on the continents

of Baltica. Siberia and Southern Europe and affected primarily

stenotopic and endemic species and genera. The Late Caradoc

was also a time of immigration of new genera onto Baltica and

Siberia.

Rawtheyan extinctions were concentrated among species

occupying terrigenous and mixed terrigenous/carbonate

lithotopes on North America.

Hirnantian extinctions were concentrated among species

occupying carbonate lithotopes on Baltica, and were

correlated with a wave of North American immigrants which

appear in Baltica at that time.

These data appear to be consistent with a hypothesis which

explains the Rawtheyan extinction through a destruction of

terrigenous habitats in North America by a marine regression

and the Hirnatian extinction through a reduction in

provinciality and low oxygen conditions associated with

the ensuing transgression.
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