
11

w ”‘3.“
(1-021. 0

‘23:...
,"‘~\ ' \'.

"““kz'v’ci‘
“5.5: "L213“

in.“w:5., . "ht...”
$3

" -'\‘EEV
.‘q‘i-”1‘53

(-

H,&L.; ufT-‘IA.

2373.2?»- “

\.~~

\‘."",§3-.'

I
_,

A
H
'
?
{
7
;
,
:
Z
I
L
'
3
'

‘
1
1
‘
:
5
'
1
"
.
”

u
G

n
.
4
,

:
3
2
;

e
a

{
4
7
“

H
r
?

I

:5
2.

ifW
2:23.”

.523.75;,

r 1?;"wv’vI
' r' r I2. -
LEE-5LY,“

Inn;3'-

. "cl-.1;
U0".Erik?' ‘3":

5,”-.1
24‘}?

.é“; .myfig‘i’fl
'3.” ,- '1' “@9525.v, x .' ~ .' “‘42?!”,4 ,. 19¢”
QT .5 w"

5:..

IJim.. J.r' \ “1,24%; .41.

1.3%... _

wax?
" ‘

“.300 ‘

‘5 '57
I" "5",..- (Veg,

r’t4’13"}? 3’55: .' ’
“.711:J. « L‘T’mfi"

25a “‘5$53125? '- 4 V’
.3,rt"f{\fltidf'"}'1‘ul "3;. ”3 ‘‘ ‘

I" JEUJ"' 3334‘,”

"J 7:?

"7"13’;Iffl

2.?mi . . ‘ I " 4'
79;!» 33%?» .

";é'!/”Wig,” ' 5%; Iif: m%-:_*‘fig, M'- ;

f/fi'fll'firvyl'ré . .

’ .
' if! ' V U... ., _ I. ,"V ’ f3)?

(A'IJ.’.’/u' .S'f"?:14;
. l'l’l‘. .1...

.1 ?
J.-

Wm-n’:*4545%

d:\"\qvv "

II

MICHIGAN STATEU

IIIIIIII II IIIIIIIIIIII IIIIII
23 00551 4595

LIBRARY I

Michigan State

University I

This is to certify that the

thesis entitled

TESTABILITY DESIGN OF THE DKS CHIP

presented by

TEJ PAL SINGH

has been accepted towards fulfillment

of the requirements for

Master's degree in Electrical Engineering

fiajor professor

0-7639 MSUis an Affirmative Action/Equal Opportunity Institution

MSU
LlBRARlES

“

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

TESTABILITY DESIGN OF THE DKS CHIP

By

Tej Pal Singh

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

1988

ABSTRACT

TESTABILITY DESIGN OF THE DKS CHIP

By

Tej Pal Singh

A VLSI chip has been recently proposed to calculate the Direct Kinematic Solution

(DKS) for real time rob0tic control. It was not considered feasible to implement such a

complex chip without any testability features integrated into it during the design Stage.

Standard Design-for-Testability (DPT) structured approaches require a lot of area over-

head (upto 20%). Thus a modification of the existing DPT techniques called Bus Scan

Testing (BST) has been developed that makes use of the internal bus available on the

chip to access all the storage components in the circuit. The design modifications

required to implement BST on the DKS chip “are described. The test vectors required to

test the DKS chip are generated and lastly, the test application process is simulated. Per-

formance evaluation results indicate that BST required lesser area overhead, shorter test

vector length, and lesser test application time than LSSD.

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

I.

II.

III

IV.

VI.

INTRODUCTION

BACKGROUND

2.1 Design for Testability

2.1.1 Ad Hoc Techniques

2.1.2 Structured Techniques

2.1.3 Analysis of Structured Techniques

2.2 The Direct Kinematic Solution (DKS) Chip

TESTABILITY CONSIDERATIONS FOR THE DKS CHIP

BUS SCAN TESTING

4.1 Design Modifications

4.2 Operation

4.3 Performance

DKS CHIP TESTABILITY AND INPUT/OUTPUT DESIGN

5.1 Design Modifications

5.2 Input/Output Design

TEST GENERATION

6.1 Test Generation Methods

6.2 Test Vector Generation

6.3 Test Generation for Combinational Circuits

iii

Page

vi

O
N
O
N

18

18

22

27

31

39

43

45

45

5o

53

54

55

57

VII. TESTING THE DKS CHIP 64

7.1 Test Application Process 64

7.2 Performance Evaluation 69

VIII. CONCLUSION 67

APPENDIX A 75

APPENDIX B 78

APPENDIX C 91

BIBLIOGRAPHY 106

iv

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5. 1

6.1

LIST OF FIGURES

The DKS chip block diagram.

Raceless D-type flip-flop with scan path.

Configuration of Sean Path in circuit.

Shift Register Latch

Level Sensitive Scan Design. .

LSSD double latch design.

LSSD L1/L2* latch design.

Polarity-hold-type addressable latch.

Set/Reset type addressable latch.

Scan/Set logic.

LFSR as a parallel signature analyzer.

Generalized internal bus architecture system.

Implementation of BST.

Three designs for TSRL.

TSRL cells interconnected to form a shift register.

SRL cells at the output of control logic section.

SRL and TSRL cells connected in to a single shift register.

Extra SRL cells for providing additional control signals.

BST implemented on circuit with two internal busses.

BST implemented on the DKS chip.

Various test vectors applied to a slice of the RCA adder.

Page

10

10

12

12

13

13

16

16

17

17

28

3O

32

35

35

36

36

42

46

60

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

7.1

7.2

LIST OF TABLES

Control signals added to the DKS chip for implementing BST.

I/O pins required for testing the DKS chip.

I/O pins required for the DKS chip.

D-propagation table for an Inverter.

D-propagation table for an AND Gate.

D-propagation table for an AND Gate.

Partial D-propagation table for a Full Adder.

D—propagation table for a 2-to-1 multiplexer.

Test application time for various modules in the DKS chip.

Comparison of the estimated overheads for the DKS chip.

vi

Page

49

49

52

58

58

58

59

59

72

72

I. INTRODUCTION

The number of components on a single IC has been steadily increasing over the last two

decades. Due to this, more complex circuits in terms of both transistor count and circuit func-

tion are being built and the problem of testing such circuits has become critical. Currently, a

significant effort is being devoted to the aspect of Design-For-Testability (DFI') in which the

circuitry for testing the chip is incorporated onto the chip during the design process.

In the past, rigorous testing was only carried out on military and aerospace projects [1].

But now, the requirements and usage of integrated circuits in everyday life have become so

great that the reliability of such circuits has become essential. The progress in DFI‘ and IC

testing techniques has only partially offset the increasing complexity of the systems. One rea-

son for this state of affairs is that the equipment to test a particular circuit must be an order of

magnitude faster than the circuit itself [2].

Various factors affect the testing cost of a circuit and there is a tradeoff between the test

cost and the repair cost. The cost of testing will be less if the fault coverage of the tests is less,

which leads to higher repair costs in the system. It has been estimated that if the cost of testing

an IC is 3 cents, then the cost of testing the same on a board is 30 cents, on the system is $3,

and in the field is $30 [3]. Thus, it is of utmost importance that the chips be properly tested

first and only then inserted into boards and systems.

Test generation for M81 and LSI was initially done by a functional model or by a heuris-

tic approach rather than by logic simulation and fault simulation techniques. The reason was

that there was little interaction between the design engineer and the test engineer. The test

engineer usually got the device from a product engineer without much documentation. Full

logic information was rarely available to the test engineer or the user. This led to a time

consuming, costly, and ineffective test process which was often an overkill for the device [4].

With the advent of VLSI, some efficient test generation algorithms were developed based

mostly on stuck-at fault models. The test vectors could then be generated by fault simulation,

which further requires good logic simulation. Many CAD systems have been developed to han-

dle logic and fault simulation. However, even with these efficient algorithms and increasing

CPU speeds, the time required to generate test vectors for complex VLSI devices is often

intolerable. This is especially true for sequential circuits because the output of such circuits

depends on the current state of the circuit apart from the primary inputs. Algorithms for for test

generation of sequential circuits are still in the research stage. Thus methods to decrease the

cost and time required to generate and verify test vectors must be found.

The concept of DFT has evolved from the realization that the only method to significantly

reduce the cost of testing is to include circuiU'y on each chip to facilitate such testing. This has

led to the development of some techniques which the designer can incorporate into a design

with various degrees of effort. They result in reduction of the complexity of the full testing

process from test generation and verification to test application, which makes testing faster and

more economical. These DFT techniques are, in some cases, general guidelines to improve tes-

tability; others are hard and fast rules. The designer can select among these techniques depend-

ing on their cost of implementation, specific test requirements and their effectiveness on

specific types of circuits.

Recently, a single chip implementation of a circuit to find the Direct Kinematic Solution

(DKS) of a robot arm was developed which has an internal bus architecture [5]. Figure 1.1

shows the block diagram of this DKS chip. The aim of the designer was to do all the calcula-

tions on a single custom designed IC. The chip is expected to reduce the computation time for

the DKS by three orders-of-magnitude when compared to the time required by a 16-bit

microprocessor [5]. However, for reasons enumerated earlier, it was not considered feasible to

implement this complex chip without any testability features on it.

F
‘
D
'
J
O
-
‘
I
Z
D
O

Z
D
H
—
I
O
F
'
I
M

O
H
G
'
I
D
I
"

I
0

~
1
1

)
I
"

Figure 1.1. The DKS chip block diagram [5].

\I/ ‘l/ I a e I a :|, El!

[I N P U R T J

Angle Reglster‘s

sxc—W r——-—- _

DEL SIN / CUS

ll< 1100 T04))ll

Constants LX

\ [J

1, M2 M1 ,5

B [— J l—] B

U U

S S

B M P Y 1 A

M3 J, r‘

s I
j x

1 D

G E

N
L

M P Y 8 6;

..___J
J

l A2 I A11, \F r—
m J __ F j

i A D n E R

CreQJI J R

Sreg ""91

<——r 3—W—

%
[:1 u T P n R T J

v w - - ' - ' v v

Systems with bus architectures have been identified as being relatively easy to test. In

fact, bus architecture itself is one of the ad hoc approaches to DFI‘ suggested in the literature.

But, it has always been assumed that the bus is available externally and thus can be easily

observed. However, on a chip with an internal bus architecture, the bus is not available at the

pins and the problem of testing becomes as complex as any other IC. Such is the case with the

DKS chip.

Scan design methodology has emerged as one of the most promising DFI‘ techniques

being implemented to test sequential circuits. These techniques conceptually convert a sequen-

tial circuit to a combinational one so that well proven combinational testing techniques can be

used. Moreover, they provide a structured approach to the problem and thus can be easily

adapted to design automation. Various scan techniques could be applied to the DKS chip.

Though Level Sensitive Scan Design (LSSD) and Random Access Scan (RAS) techniques

seemed to be good choices at first glance, they don’t exploit the internal bus available on the

chip. It seems obvious that if somehow the bus could be used to access all the components

connected to it on the chip, the overhead in area required for extra testability components may

be reduced.

This thesis begins with a background section (Chapter II) which is divided into two parts.

The first part explains the importance of DFI‘ and the various techniques that have been

developed. The second part then gives a brief overview of the DKS chip, its importance, its

development, and its structure. In the Chapter III of the thesis, the DKS chip is studied in con-

text of its testing problems. The applicability of the various DFT techniques are then discussed.

Finally, the justification for modifying the earlier scan techniques to apply them to the DKS

chip is given.

In the Chapter IV of this thesis, a new DFI' technique called Bus Scan Testing (BST) is

developed that can be applied to circuits with an internal bus architecture. The design

modifications required to implement BST are first discussed. This is followed by the descrip-

tion of its operation on a chip. The advantages and disadvantages of BST over other scan

techniques are also presented.

The next three chapters of the thesis are devoted to the specific testing aspects of the

DKS chip. First, the modifications required in its design to incorporate BST are presented in

Chapter V. Next, the test vectors required to test the chip are generated in Chapter VI assum-

ing a functional fault model for the circuit. Then, the actual test application process is

described and simulated in Chapter VII.

Finally, the performance of the DKS chip with BST is evaluated and compared with the

estimated figures for other DPT techniques in Chapter VIII. The thesis concludes with a sum-

mary and directions for future work in this area.

II. BACKGROUND

The problem of testing can be divided into three parts: test generation, test verification,

and test application. The test generation problem is to generate a set of test patterns that can

adequately exercise the system by providing a sufficient fault coverage. The generation of tests

is subject to constraints imposed by circuit access, the tester, and time required to run the tests.

The test vectors are generated so as to test specific faults (single stuck-at, bridging, etc.) or to

test the functionality of the circuit. Test verification evaluates the test vectors and tries to prove

that they are effective (sufficient) towards the end goal of verifying the correct functioning of

circuit. This is usually done by making use of logic fault simulators. The last part of the testing

process is the actual application of the tests to the circuit. Automatic Test Equipment (ATE)

and in-circuit board testers are use to apply the tests, make and record measurements, and in

some cases trace the fault to specific areas in the circuit.

2.1. Design For Testability

All the three parts of the testing process are becoming more complex as the ratio of

number of devices per chip to the number of pins increases. The costs of testing have gone up

considerably. This has given rise to the concept of Design For Testability (DPT) to reduce the

cost and effort required to test ICs.

The goal of DFI‘ is to ease the process of test generation and verification by taking some

steps during the design process itself. Some extra effort during the design process can save a

lot of effort during the test and can also help automate the testing in certain ways. It is

appropriate here to note that we are talking here about explicit testing which is carried out while

the circuit is not in use, as opposed to implicit/concurrent testing which refers to on-line testing

to detect errors that occur during system operation.

The first task here is to define what is meant by testability of a circuit, and how is it

quantified. Testability can be loosely defined as follows [6]:

A circuit is testable if a set of test patterns can be generated, evaluated and applied in

such a way as to satisfy pre-defined levels of performance, defined in terms of fault-

detection, fault-location, and test application criteria, within a pre-defined cost budget

and timescale.

Controllability and observability are the two measures used to quantify testability of a

given circuit. Controllability refers to the ease of producing a specific internal signal value by

applying signals to the circuit input leads, while observability is the ease with which the state

of internal signals can be determined at the circuit output leads. Various methods have been

proposed which estimate the testability of a circuit without having to run an Automatic Test

Pattern Generation Program (ATPG). ATPG will of course be the direct way to measure testa-

bility but it turns out to be very expensive in terms of both cost and time. It may also not give

clear indications as to how testability of a particular circuit can be improved.

Several programs have been developed to measure the testability of a circuit. TMEAS

(Testability Measure Program) [7], SCOAP (Sandia CY/OY Analysis Program) [8],

CAMELOT (Computer Aided Measure for Logic Testability) [9], and VICTOR (VLSI

Identifier of CY,TY,OY, and Redundancy) [10], are some of the programs written for this pur-

pose. TMEAS and CAMELOT calculate two values (controllability and observability) for each

node of the circuit, while SCOAP calculates a vector of six values for each node. VICTOR can

only be used for measuring the testability of combinational circuits.

The main objective of DFI‘ techniques is to increase the controllability and observability

of a circuit. The techniques developed for DFI‘ have been classified into two categories: ad hoc

techniques and structured techniques. The ad hoc techniques are aimed at the designer and

present him with a set of design features which case the testing of a chip. They are not always

applicable to all types of designs. The structured techniques on the other hand can be applied

to almost all types of designs. They provide the designer with a set of rules leading to the

design of a testable circuit.

2.1.1. Ad Hoc Techniques

The ad hoc techniques present the designer with a list of design features that help increase

the testability of the circuit and points to those features that create testing problems for the cir-

cuit. Some ad hoc techniques identify alternative preferable implementations where ever appli-

cable. Some aspects of the important ad hoc techniques are listed below [3,6,11].

1) Extra Test Points: The most direct way to enhance the testability of an IC is to add extra

test points at critical places in the circuit. Multiplexers and demultiplexers may be used to keep

the pin count down and still provide more access to the circuit.

2) Initialization Circuitry: Initialization of all stored logic devices to a known state is impor-

tant before carrying out any test. It is even more helpful if all such devices can be individually

initialized to specific values.

3) Partitioning: It has been shown that the cost of testing a circuit increases from somewhere

in between square to cube of the complexity of the circuit. Thus partitioning the circuit into

smaller parts and testing them part by part is much cheaper and easier than testing the full cir-

cuit as an entity.

4) External Test Clock: It should be possible to disconnect an IC’s internal clock, if any, and

connect an external test clock in its place. Thus the tester is able to perform single step opera-

tions, and reduce the speed of the circuit if required.

5) Feedback Loops: If all feedback loops present in the circuit can be broken, then the test-

ing becomes much easier. Tristate control and tester inhibit logic are some of the ways of

achieving this objective.

6) Bus Architecture Systems: If a bus architecture is used, it then becomes possible to test

each component connected to the bus individually by floating all other components. This serves

to partition the circuit.

Some other design features that are to be avoided to maximize testability during circuit

design are wired logic, high fanout points, deep sequential circuits (like counters), monostables,

potentiometers, and asynchronous logic. It has been found that such features on a chip make

their testing more complex. AnOther suggestion that is given with respect to the test program is

to avoid its dependency on ROM type devices which are more subject to changes during and

after the design process.

2.1.2. Structured Techniques

The techniques to be described under this section reduce the sequential complexity of the

system thus increasing the circuits’ controllability and observability. They provide access to

many points in the IC without assigning one pin to each point; typically four pins are required

irrespective of the number of test points. They also transform a sequential circuit into a combi-

national circuit thus drastically reducing the number of vectors required to test it. The cost of

all this, however, is that the test process becomes serialized, i.e., all vectors in to and out of

the 1C are transmitted in serial. Also, most of these techniques require a large area overhead

(up to 20%). However, these disadvantages are often offset by their advantages for most of the

complex chips. The various techniques will now be explained.

1) Scan Path: The scan path technique was the first structured approach to DFI‘ and was intro-

duced by members of Nippon Electric Co., Ltd. in 1975 [13]. It makes use of raceless Dtype

flip-flops which have two latches connected in series where the first latch has two inputs and

two clocks as shown in Figure 2.1. All latches in the circuit under test are converted to these

raceless D-type flip-flops. There are two modes of operation for the flip-flops: normal mode

and test mode. In the normal mode, the flip—flop works as usual with a D input and C output

using the system clock 1. However, during the test mode, the flip—flop takes its input from

scan-in and uses test clock 2. The first flip-flop in the circuit is connected to a Scan-In (SI)

line. After that, the input of each flip-flop is connected to the output I of the previous flip-flop.

3

3

3:...

Output

rOC

(scan out)

Clock 2 (‘fi DO—j

Test . .

Input 1”—0

(scan I“) 00 ‘0

System , .

Data H

Input ——no r‘

t_;

a .12

L 1 x
jV

Latch 1

Clock 1 DC>——‘

V

Latch 2

Figure 2.1. Raceless D-type flip-flop with scan path [3].

P"f"--"‘""""""""""""""""""""""""" 1

:Logtc Card : Test

11 C i
‘ : Output

: ”'4 : (Scan out)

'
1

Test : i

Input C}: o e o :

(Scan in) :
:

‘
1

5 PH FF2 FF3 E

'
1

i clock..__, clock clock :

: 2 2 2 :

'
1

'
I

Clock 2 : LI . . . :

O—:—-—-f
:

'
t

C '

r I l I L

Figure 2.2. Configuration of Scan Path in circuit [3].

10

11

The output I of the last flip-flop goes to a pin called Scan-Out (SO). This essentially produces

a long shift register spanning all the latches in the circuit (Figure 2.2). The test is carried out

in following steps:

Step 1: Shift in and out a test pattern through the shift register. This tests all the flip-

flops for correct operation.

Step 2: Shift in a test pattern and set all the primary inputs of the circuit to a test vector

value.

Step 3: Apply one system clock to latch the response of the combinational networks in

the circuit into the flip-flops.

Step 4: Scan out the contents of the shift register. The next test pattern can be scanned-

in from the SI pin concurrently.

During normal operation of the circuit, the SI inputs and SO outputs of the flip-flops are

not used and clock 2 is kept at 1 for the entire period. Thus the raceless D-type flip-flop acts

just like a normal D—latch. Since only one system clock is used here, the circuit is exposed to a

race condition between the two latches in series. The next approach uses two system clocks to

rectify this problem.

2) Level Sensitive Scan Design: This technique (LSSD for short), was first presented by T.

W. Williams and E. B. Eichelberger of IBM Corp. [14]. Since then many modifications have

been suggested [15,16,17,18] and it has gained large popularity 'among other manufacturers.

LSSD is similar to Scan Path, but because it is level sensitive, the constraints on circuit excita-

tion, logic depth, and handling of clocked circuitry are not imposed. It uses a Shift Register

Latch (SRL) as shown in Figure 2.3 as the basic design elements instead of raceless D-type

flip-flops,. The SRL contains two latches in series operated by separate non-overlapped clocks

to avoid races. These SRLs are again threaded, as in the case of Scan Path, to act as a shift

register during test mode while they act as normal D-latches during normal system operation

(see Figure 2.4). To operate the SRL, scan clock A is set to 1 to enable data from Scan In (SI)

+Ll

+L2

0L]

0 - o

l

”'1

C 0L2

 D» L:

BC—

Figure 2.3. Shift Register Latch [3].

Comb’.

Inputs not-one!

netwodt

_:>Y

C1 0—

A 91.11 o—“

Seen In 0———J‘

C2 or 8 mm C?

Figure 2.4. Level Sensitive Scan Design [3].

12

Comln

national

netwmk

N

Inputs . Output

Scan Out

\

Yl

Cl

A $11111

Scan In

C2 or B shilt

Figure 2.5. LSSD double latch design [3].

r"""_—"'"-""'l

UH)

CLKHI>

SDI

Ll latch

L2'

CLK(2)

0(2)
‘- ______ 13 leg-clu— J

Figure 2.6. LSSD L1/L2* latch design [6].

l3

14

to be latched into L1. Scan clock A is then returned to 0, latching SI and then B is set to l to

transfer data from L1 to L2. Data is finally latched in L2 when B returns to zero.

Two configurations using these SRLs are possible. First is a double-latch configuration as

shown in Figure 2.5, where the output of the SRL is taken from L2 for both system mode and

test mode. Here, both the latches are in the system path thus increasing the propagation delay.

A single-latch configuration (Figure 2.3), on the other hand, takes system output from latch L1

and test output from latch L2. Thus only latch L1 remains in the system path. This also implies

that now latch L2 is redundant during system operation, leading to a significant hardware over-

head cost for improving testability. A modification of the single-latch configuration was

recently suggested [17], where L2 is also used as an independent latch during normal system

operation. This Ll/L2* latch (Figure 2.6), thus results in a very small hardware overhead. The

only restriction is that now both the inputs can not be taken from the system simultaneously.

3) Random Access Scan: The objective of Random Access Scan (RAS) is the same as that the

earlier two methods i.e. to reduce a sequential circuit to a combinational circuit and to have

complete controllability and observability. However, RAS does not uses a scan path for this

purpose. It allows each latch in the circuit to be separately accessed to clear/preset it or

observe it using an addressing scheme (thus the name random-access) [19]. Polarity-hold type

or set/reset type addressable latches can be used (Figures 2.7 and 2.8). They are addressed by a

shift register and a decoder. The working of RAS is described next.

The address of the latch to be controlled or observed is entered serially from the scan

address line using the scan clock and decoded using the latch select decoder. The latch is then

cleared or preset using the CLR or PR line respectively. The procedure is repeated for all the

applicable latches and then primary inputs are applied to the IC. After one system clock, all the

applicable latches are again addressed one by one and data observed at the SDO pin. It should

be noted here that data can be scanned out even during normal system operation. Also, the test

is slow because each latch has to be separately addressed and set before each test and then

15

read after each test.

4) Scan/Set Logic: This scheme is also similar to the first two techniques. Here also there is

no scan path present like RAS. The shift registers are present, but they are not in the system

path. They are independent of all the latches in the system. In a single clock the full shift

register is loaded with values from the system latches. Then the data is shifted out from the

shift register using the scan clock (Figure 2.9). The reverse operation is followed to load the

system latches, i.e., first data is scanned in to the shift register and then loaded into the system

latches by a single system clock [20]. An advantage of scan/set logic is that the data can be

clocked in and out of the shift register while the main circuit is in full operation.

5) Built-In Self Tests: This approach of Built-in Self Test (BIST) is a widely used method for

testing ICs as well as boards. There are quite a few methods available to employ self testing

in a circuit. Built-in Logic Block Observation (BILBO) [21], syndrome testing [22], testing by

verifying Walsh coefficients [23], and autonomous testing [24] are some of the techniques

available. The advantages of these techniques is that they use an on-chip pseudo random test

generation process. However, they only give a golno-go indication for the chip without any

diagnostics.

6) Signature Analysis: [25] Signature analysis lies somewhere between the ad hoc and struc-

tured techniques. It requires that some design rules be followed during the design stage, but its

objective is not the same as for structured techniques (to increase controllability and observa-

bility of the circuit). Signature analysis is based on Linear Feedback Shift Registers (LFSR) as

illustrated in Figure 2.10. These are shift registers with feedback tapped off from some inter-

mediate points and fed to the input through XOR gates to preserve linearity. The circuit is first

initialized and a fixed number of clock pulses applied to it. The resultant value in the shift

register is the signature to be compared with a correct signature.

r .90.}
SDI C,P

PDQ—d ’

-CK O ‘ 0

fit)

scx o——Do_J soo

X.Adr C} r

Y-Adt o

Figure 2.7. Polarity-hold-type addressable latch [3].

Data

-CK

- CL

PR

X-Adr

Y-Adt
Figure 2.8. Set/Reset type addressable latch [3].

l6

64 btt seroal

shill requster

”—‘l 1 Sit-FCN

Scan 1000! o——-—u—t l 2 o e e 64 r—O Scan Output

\ ll 1 San-Hm ll

I 0....l SVStem Sequence Logic r—O W

0—1 ”'0

S m o 0 System

1:33:13 __: : LOutputs

LO—l "—0 J

Figure 2.9. Scan/Set logic [3].

Z1 ’22 ‘23 24

~11 0 ~10 0 ~10 0 ~10

?C I 7 Cl 7 C 1 Cl

Clock -

Pulses 01 02 O 3

Figure 2.10. LFSR as a parallel signature analyzer [12].

17

18

2.1.3. Analysis of Structured Techniques

The various structured techniques described above can drastically reduce the effort

required for IC testing by adding some extra effort during the design phase. Moreover, each is

easy to automate, because of their strict structured approach. Several companies such as IBM,

Fujitsu Ltd., Sperry-Univac, and Nippon Electric Co., who are basically mainframe manufac-

turers, have realized the importance of DFI' and have ongoing research efforts in this area.

Despite the advantages of these techniques, there has been a slow growth in their usage

because of two main disadvantages.

Firstly, most of the techniques require an extra silicon area overhead and an increased

number of pins to implement them on an IC. LSSD and scan path have a 4 to 20% area over-

head associated with them and RAS may require up to twice that figure [3]. Thus it is impor-

tant to somehow modify the existing techniques to decrease the area overhead. All the scan

techniques also require at least 4 pins on the 1C dedicated to testing.

Secondly, these techniques tend to serialize the test process because the full test vector

has to be scanned in and out one bit at a time. The process is repeated for each test pattern

applied to the circuit, though the next vector in sequence can be scanned in during the same

time as the current pattern is being scanned out. The test application times increase consider-

ably because of this serialization. Built-in tests and signature analysis do better in this aspect,

since they use an on-chip pseudo-random test generation process.

2.2. The Direct Kinematic Solution (DKS) Chip

A robotic manipulator with multiple degrees of freedom can be controlled by a computer-

ized system for automatic or remote operation. However, the computer must accurately know

the position (usually an angle) of each joint of the robot at all times. For this purpose, one

transducer is required for each joint of the robot. These transducers feed back the position

information to the computer at regular intervals. The computer can thus calculate the position,

velocity, and acceleration of the arm of the robot at any given time. It is conventional to

19

express all the positions in terms of a reference world coordinate system. The Direct Kinematic

Solution (DKS) converts the joint angle vector received from the robot to the reference

system’s coordinates.

A homogeneous transformation method has been developed to solve the DKS effectively.

The method requires successive multiplications of transformation matrices. Any joint i is

represented by the angle 9, in its own coordinate system. A,, a function of 6,, maps vector in

the link i‘“ coordinate system to link i-l”‘ coordinate system. Thus the joint space to cartesian

mapping is:

T: Al'Az‘Ag'A4'A5‘A6 = [n S a p] [2.1]

where n, s, and a give the orientation of the wrist and p gives the arm position.

It has been shown in [5] that the matrices A2, A3, and A, can be modified to make them more

symmetric without any change in the final result. The values of the matrices A,- before (2.2) and

after (2.3) the modification are as follows:

C10 “510 Cz-Szoazcz C30 53 03C:

A 510 C10 A- 52 C200252 A 5304530353

1" 0-100 2'0014, 3"0100

o o 01 o o 01 oo o 1

c.0—s,o C505“, C,-s,00

__ 5,0 40 _ Sso-Cso sCsoo

A“ o-1o d, A5“ 010 0 A6" 0 01416 [23]

o o 01 oo 01 o o 01

C2 "-520 0 C30 53 a; gt 0 -54 a3

_ SzCzoazSo __ Sao—Cao _ 40 40

‘2‘ o 01d2 ‘3‘ 010 0 A4“ 0—1 0 d, [23]

0 0 01 00 01 0 0 01
Also only two out of the three orientation vectors are required to fully specify the orien-

tation of the wrist. Thus s can be dropped making A, a 4-by-3 matrix.

In real-time robotic systems, this computation may have to be carried out tens or even

hundreds of times a second to track the exact position of the robot arm. This requires a lot of

computations and a computer (or a controller as the case may be) may not be able to handle it

20

especially along with the other computations required for proper operation of the robot. Thus,

it is necessary to either decrease the computation time of the DKS or to use a coprocessing

chip dedicated to compute the DKS in real-time.

A VLSI ASIC design to calculate the DKS in hardware has been recently developed [5].

It was shown that it would reduce the computation time by three orders-of-magnitude over that

required by a 16-bit microprocessor. This was further verified when the design was imple-

mented on a general-purpose signal-processor [26] and the results showed a marked improve-

ment in the time required to calculate the DKS. However, the chip has still not been imple-

mented in ASIC form. The main reason is that it is not considered feasible to implement such

a complex chip without any testability features on it.

Figure 1.1 shows the block diagram of the DKS chip as in [5]. It assumes MOS technol-

ogy and uses a two-phase nonoverlapped clock. It shows that the chip is based on two internal

busses A and B. The input from the robot is latched in a register, and after processing, the

results are stored in an output register. The circuit is organized as a finite state machine and the

control section, along with a counter, controls the flow of data on the chip. The basic computa-

tional structure consists of a two-stage multiplier and an adder in a pipeline, both using two’s

complement fixed-point arithmetic. They are supported by a number of registers to store inter-

mediate results. The control logic, constants and all table values for the calculation of sines and

cosines are stored in a ROM.

The first step is to compute sines and cosines of the input angles. A method for sine-

generation proposed by Ruoff was found to be best suited for the chip [27,5]. It is based on a

ROM look-up table with linear interpolation using the multiplier-adder pipeline available on the

DKS chip. It was shown that an 18-bit word length of 256 entries would be required to get the

accuracy necessary for DKS calculation [5].

The algorithm to calculate the full DKS was developed and described in RTL [5]. Sym-

bolic simulation showed that once the six input angles are stored in the angle registers, it takes

73 steps (system clocks) to calculate the full DKS using this circuit [5].

'21

It was estimated that about 4,300 standard cells are required to implement the DKS chip,

assuming a 10% estimation error and a 70% cell utilization. The IBM’s Master Image approach

shows that the chip can be implemented with 1.25 pm NMOS technology with a chip edge of

about 5.6 mm. The CMOS chip will require a total of 5,317 cells with the chip edge being

about 6.34 mm thus verifying the feasibility of the DKS chip using current technology [5].

III. TESTABILITY CONSIDERATIONS FOR THE DKS CHIP

The DKS chip has been designed for the PUMA robot. But, before it can be manufac-

tured, a prototype will have to be fabricated to verify the design and logic on the chip. This

requires better diagnostic capability for the tests to do design verification for the circuit, apart

from testing for interconnection faults on the chip. Further, the chip will have to be modified a

little to use it for other robots, and again new prototypes will have to be made for each new

design. Thus, the testability design should be such that it will work for all of them and is

geared towards prototype testing rather than manufacturing testing, the latter being applicable to

those chips which are manufactured in large quantities.

Why is testing the DKS chip so difficult? Well, consider the possibility that the chip is to

be tested by the same method as is used for small ICs, which is exhaustive testing. The

number of test patterns required to test any sequential circuit is at least 2"“), where m is the

number of primary inputs to the circuit and n is the number of latches in the circuit [3]. The

DKS chip has a 12-bit primary input and has nineteen 18-bit latches, six 12-bit latches, one 1-

bit latch, one 7-bit counter and one 36-bit latch taking the total number of latches to 458. Thus

the number of test vectors required to test the DKS chip by exhaustive testing is at least 247° !

Even if one pattern is applied to the chip every 1 usec, it will takeilo127 years to test it!

Apart from this problem, which is common to every large sequential circuit, the DKS

chip also has a ROM which stores the control logic, values for sine and cosine generation, and

constants of the transformation matrices of the DKS. Since the contents of the ROM will differ

for each robot, the values stored in it must be verified for correct results. Each cell in the ROM

should be individually verified as some of the locations are used more than the others during

normal robot operation, and a functional test may not be able to detect all the errors. The ROM

22

23

is embedded within the chip and thus not accessible from any primary inputs and outputs. Thus

any testing procedure for the DKS must be able to test the ROM by exhaustive testing.

In conclusion, it can be summarized that the following two problems have been identified

for testing the DKS chip:

0 To test the complex sequential circuit effectively without having to resort to exhaus-

tive testing.

0 To test the embedded ROM exhaustively.

With these goals in mind, methods to solve these problems can be scrutinized to select

the one which is closest to the goals and economical too. As mentioned in the last chapter,

DFI‘ techniques are being adopted widely to resolve testing problems. So, first the list of

important ad hoc techniques can be discussed to see if any of them is applicable to the DKS

chip [3,6,11], otherwise one of the structured techniques can be used.

The first ad hoc approach is to add extra test points on the chip to increase its controlla-

bility and observability directly. This method requires one pin for each node in the circuit that

needs to be controlled and observed. Clearly, this is not practical for any chip of the size of the

DKS chip.

The second approach is to partition the circuit so that each part of the circuit can be

tested independently of the others. Though the DKS chip can be very easily partitioned because

of its bus architecture, still it does not in any way increase its controllability and observability.

Since this approach does n0t meet our test goals, it is not suitable for the DKS chip.

The next ad hoc approach is bus architecture systems which is very close to the

specifications of the DKS chip which also has a bus architecture. But again the same problem

arises that the DKS chip uses internal busses that are neither controllable nor observable. So

this scheme is also not directly suitable for the DKS chip.

Signature analysis is a DFI‘ technique that lies between ad hoc and structured techniques.

It can be applied to most of the circuits and requires some modifications during the design

stage. The drawback of this approach is that it lacks diagnostic ability and is thus only used to

24.

give a go/no-go decision for a chip. This is hardly the problem for the DKS chip where the

main objective is to get good diagnostic information to test the prototype. There are some other

built-in and self-test techniques available but they also lack on the same grounds and are more

useful for implicit testing which is carried out when the chip is on-line in a system.

One of the structured approaches to DFT may be applied for testing the DKS chip as

they are general in nature and applicable to all types of circuits. The main objective of the

Structured DPT approaches is to increase the controllability and observability of all the storage

components in the circuit. If all the storage components in the circuit can be set directly from

outside the chip, the circuit is transformed into a combinational circuit for testing purposes.

Thus efficient and automatic test generation and verification algorithms that have been

developed for combinational circuits can be applied. The same mechanism is also used to pro-

vide access to the embedded ROMs in the circuit, thus solving both the problems for testing

the DKS chip.

The structured techniques, however do have some drawbacks. One is that they serialize

the test application process which further results in long test vectors and long test application

time. They also require up to 20% silicon overhead on the chip as well as 4 to 6 extra pins on

the chip dedicated to testing [3]. In some of the techniques, the system performance also

decreases when simple latches are converted to more complex ones to make them easily

testable.

The DKS chip has to be first studied to decide which of the structured techniques is most

applicable to it. Referring Figure 1.1 and [5], it is observed that most of the latches in the DKS

chip are connected to either of the busses A or B. Only the outputs of M1, M2, A1, and A2

latches are not connected to the bus, and M3, delay latch, and the angle registers are not con-

nected to the bus at all. The angle registers are 12-bit wide and they can be set directly from

the input port pins. All the other latches, registers and both the busses are 18 bits wide, and the

output port is 16 bits wide. There are 11 control signal fields spanning 36 bits, and therefore a

36-bit control signal latch is required at the output of the control logic section.

25 .

The latches in the circuit can thus be classified into the following five categories with

most of them falling into the second one:

1) The 12-bit angle registers.

2) The 18-bit latches that are connected to the bus.

3) The l8-bit latches that are not connected to the bus.

4) The 36-bit control signal latch and the 7-bit counter.

5) The l-bit delay latch.

If any of the scan techniques is applied to the DKS chip, all of these latches

behave in a similar manner as far as required design modifications are concerned. For

example, if LSSD or scan path technique are used, all of these latches can be con-

verted to polarity hold Shift Register Latches (SRL) or raceless D-type flip-flops

respectively, and then interconnected to form a single long shift register. These SRLs

operate as normal latches during normal system operation, but during the test mode

they act as a shift register so that the data can be scanned into the register from one

pin on the IC and scanned out through another pin. Thus using only these two pins for

I/O and two pins for clock signals, the full problem of controllability and observability

is resolved. A quick calculation shows that if either of LSSD or scan path technique is

applied to the DKS chip, the resultant test vector length will be 470 bits (12-bit pri-

mary input and 458 latches), and the area overhead as will be shown in Chapter VIII

would be approximately 17%.

The scan/set testing, and RAS testing techniques approach the problem in a

slightly different manner. Scan/set testing also employs a shift register to scan data in

and out of the chip, but the register is not in the system path. This register can set and

load data from up to 64 points in the circuit. The DKS chip has 458 latches, so this

scheme is not feasible if all of the latches have to be made controllable and observable.

RAS on the other hand employs an addressing scheme to select each latch uniquely

and can both set it and observe it just as random access memory works. This approach

26

requires more area overhead and more extra pins than the other scan techniques and

thus is rejected.

Thus, LSSD and scan path techniques are the only ones which closely meet the

specific testability requirements of the DKS chip. LSSD is always preferable to scan

path because it provides a level-sensitive hazard free design and some improvements to

basic LSSD are also available to closely match the requirements of the chip under test.

But LSSD requires a 20% area overhead on the chip. The next logical step is to look

for ways to somehow decrease the area overhead by taking advantage of the particular

architecture of the DKS chip.

Earlier in the ad hoe techniques, it was noticed that partitioning and bus architec-

ture system techniques came very close to solve the DKS chip’s testing problem. The

only reason that they could not be applied to the DKS chip was that they did not pro-

vide access to storage components in the circuit which is precisely the objective of the

structured techniques. It seems quite obvious that if the busses can be somehow util-

ized to get access to the latches that are already connected to them (category 2), the

area overhead may be reduced by a significant amount. It was this idea that prompted

the development the Bus Scan Testing (BST) technique, which is applicable to all

internal bus architecture systems. It takes the concepts of circuit partitioning and bus

architecture systems, and modifies LSSD to provide access to the bus and other parts

of the circuit. The following chapter describes BST and how it can be applied to any

internal bus architecture system.

IV. BUS SCAN TESTING

Bus Scan Testing (BST) has been developed for those integrated circuits which use one

or more internal busses to transfer data within the chip. Usually bus architecture systems are

considered very easy to test as compared to other circuits, as explained earlier in the ad hoc

techniques. The reason is that such systems are usually divided into modules which use the bus

to transfer data among them. Thus, partitioning is inherent in these systems and partitioning a

circuit always reduces the complexity of the testing process. Each module of the circuit can be

tested independently of the others by putting all the other modules in high impedance state.

However, in the internal bus architecture ICs like the DKS chip, the bus is itself not accessible

and it is very difficult (if not impossible) to put circuit modules on the chip to high impedance

states directly from the outside of the chip. BST uses a modification of the earlier scan tech-

niques to make the bus accessible at the pins of the ICs and to control data flow on the bus

inside the chip.

The philosophy behind BST is the same as that of the structured scan techniques. That is,

if all the latches on a chip can be controlled and observed from the pins of the IC then the

sequential circuit is transformed into a combinational one for testing purposes. Doing so

enables the test engineer to use efficient algorithms and design automation tools that have been

developed only for combinational circuits for generating and verifying test vectors for the cir-

cuit.

Consider a hypothetical circuit with an internal bus architecture to understand how the

BST technique can be applied and how it works. Figure 4.1 shows the block diagram of such a

system. The circuit block has various combinational and sequential parts, communicating

through the internal bus. The control section manages the flow of data through the bus, and in

27

r”_.__._.

M1

0 -——>
I] M2

N L

T

R A

E T M3

l-—>
L C

CI

(3 H

I

C

———>

Mn

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

l

I

I

I

I

I

I

I.

F"—_—F—60_TP_D'T_§1I_ ——————————

M Combinational

Circuit Modules

Figure 4.1. Generalized internal bus architecture system.

28

i, CLOCK U, INPUTS

—_

[
I
]

S Sequential Circuit

or

Storage Elements

fl

_I

29

and out of the chip. The input and output blocks may consist of just buffers/drivers, or they

may be circuits in themselves. To make the circuit as general as possible, it will be assumed

here that they are in fact sequential circuits.

The following assumptions will be made for the circuit to explain the design

modifications and operation of the BST technique:

0 The circuit uses synchronous logic with an external two phase non-overlapped

clock.

0 The bus is precharged before any data transfers take place on it.

o All data transfers on the bus are deterministic.

o The control logic section provides signals for all data transfers on the bus and its

output latch is operated by the system clock.

The first step to implement BST is to logically partition the circuit under test. For bus

architecture circuits, this only amounts to clearly identifying the various circuit modules con-

nected to the bus. Though no restrictions are placed on the structure of the modules, some of

the modules will be easier to test than the others. The modules which consist only of a combi-

national network with at the most one latch at its input, or the ones which consist of only

storage components, will require less test time than those where a lot of combinational as well

as sequential networks are intermixed. Thus the partitions should be kept as simple and homo-

geneous as possible. The reason will become clear when the operation of the BST technique is

explained. It is also assumed here that each module in general may have a combinational net-

work as well as some storage components (latches) in it. Since the process to test combina-

tional circuits is independent of the process to test the storage components, so if one of them

does not exist in the module under test, then the respective part of the test can be skipped.

First, the design modifications required to implement BST on the chip will be discussed.

Then the procedure for testing such a chip will be explained in detail and lastly, its perfor-

mance will be evaluated.

_l

I

I

l

I

I

I

I

l

l

I

I

I

I

I

l

I

I

I

I

I

I

I

I

I

J

I,
500

 r____i£Q%_____flJEEL____

—_l_——.__

M8

M3

T's'ZlF—__—

M1

fifiB

9
\
7

9
9

_
_

_
_

S
R
L

S
R
fi
I

C
O
N
T
R
O
L

L
U
G
I
C

_

Mn

—————_‘——

_

A,B,En SDI

 l

I

l

l

l

I

l

I

l

l

l

l

I

I

l

l

I

l

l

I

l

l

I

I

L

Figure 4.2. Implementation of BST.

30

31

4.1. Design Modifications

Figure 4.2 shows the proposed scheme applied to the type of circuit earlier shown in Fig-

ure 4.1. The part of the circuit which is based on the bus architecture will be considered first.

Testability considerations for the rest of the circuit will be dealt with later in this section. The

objective of BSI‘ is to exploit the bus to access those latches that are already connected to it.

Thus individual circuitry to access each latch can be avoided, thereby decreasing the area over-

head. At this point it is observed that the problem can be split into two parts. One is to provide

access to the bus (and thus all latches connected to it) and other to provide means to control

data flow on the bus from outside of the chip. BST requires two modifications to resolve these

problems and each of them will be explained in detail now.

To get full access to the bus, a logic structure is needed that can perform the following

three functions :

o Shift (scan) in and out test vectors.

0 Set the bus to the test vector value.

0 Load data from the bus.

It would seem that a shift register with parallel load can satisfy these requirements. How-

ever, this presents two problems. First, the outputs of each shift register cell are the same

points at which it is to be loaded in parallel. Second, its output will have to be tristate since it

is to be connected directly to the data bus.

80, the basic shift register should be modified to satisfy the above mentioned require-

ments. We chose to modify the Shift Register Latches (SRL) used in LSSD for this purpose

because they are level-sensitive and thus less prone to logic hazards and race conditions. A

Two-way SRL (TSRL) is proposed to provide two-way (bi-directional) access to the bus. Vari-

ous logic structures were considered and three of them seemed to be quite promising. Figures

4.3 shows the structure of all three TSRL candidates.

The first structure, Figure 4.3a, can shift data from SI to 80 when the two-phase non-

overlapped clock (A & B) is applied to it. Its other output is through a tristate buffer so that it

(a)

31

bA ()

B

1310

E

E _L_

7L are

$1 [:14

A 1: L2 (C)

""'____ II

En 2 —<I so

3 a

Figure 4.3. Three designs for TSRL.

32

33

can be safely connected to the bus. This buffer is controlled by the it? signal which is provided

at one of the pins of the 1C. To load the bus, the bus is also connected to the input of the first

latch and is controlled by a signal E that is provided internally by the control logic of the IC.

This design suffers from two drawbacks. One is that it is susceptible to a race condition

because both the input and output of L1 are connected to the bus. The second drawback is that

although A and B is a set of two phase non-overlapped clocks, E and B is not, and it would

have to be somehowinsured that B does not go high when E is high to avoid any hazard con-

dition.

The second design, Figure 4.3b, resembles the first one except for the fact that bus input

along with the signal E are now moved to the second latch. Thus it does not suffer from the

race condition but still the second drawback is there. Here, A and E should not go high at the

same time.

From the above two designs it was realized that we would have to use only one bidirec-

tional line from the TSRL to the bus. 80 the third design, Figure 4.3c, was developed. It

satisfies all the requirements and does not suffer from any hazards. It is now explained here in

detail.

The TSRL of Figure 4.3c consists of two D flip-flops, L1 and L2, connected in series.

The first latch L1 is a clocked D flip-flop with a tristate output. The input to L1 is Scan-In

(SI), the clock is test clock A, and the tristate output is controlled by the enable signal EX. The

output of L1 is connected to the bus line through a transmission gate (a pass transistor in

NMOS), as well as to the input of L2. The transmission gate is controlled by the complemen-

tary signals E and E. This gate can thus transfer data from output of L1 to the bus and from

the bus to the input of L2. L2 is a clocked D flip-flop with clock B and output Scan-Out (SO),

which is not a tristate output. If A and B are two-phase non-overlapped clocks then this struc-

ture does not suffer from any of the hazard conditions.

The TSRL works in two modes: normal mode and test mode. In the normal mode of opera-

tion, the signal E is kept low so that the output BIO is in a high impedance state and thus does

34

not interfere with the bus signals. The circuit can function normally as if the TSRLs were not

present on the chip. In the test mode, however, the TSRL has been designed to perform the

previously mentioned three fitnCtions. Firstly, it can act as a cell of a shift register with input

SI and output 80. The output $0 of each TSRL is connected to the input 81 of the next TSRL

to make a shift register. In this SHIFT operation, E and E? are both held low to disable the

transmission gate and enable the tristate output of L1. A and B are two phase non-overlapped

test clocks to avoid-any hazard conditions. The number of shifts is equal to the number of

periods for which this test clock is applied.

The other two Operations of the TSRL are used to SET and LOAD the bus respectively.

The SET operation is used to set the bus line connected to BIO from the contents of the L1. In

this case E7 is held low to enable the output of L1, and E is held high to enable the transmis-

sion gate. Lastly, the LOAD operation latches the data on the bus line into L2. For this opera-

tion, E; and E are both held high to disable the output of L1 and enable the transmission gate.

Then a single pulse of the B clock is applied to latch the bus data into L2.

Once these TSRL cells are connected to each line of each internal bus in the circuit and

interconnected to form a shift register, full access to the bus is available from the external pins

as shown in Figure 4.4. A test vector can be shifted into them from the Scan Data In (SDI) pin

and the bus can be set to that vector through the transmission gates. To remove a test vector,

first the data from the bus can be loaded into the TSRL cells and then can be shifted out

through the Scan Data Out (SDO) pin.

The second modification to implement BST is required to gain control over the data flow

on the bus from outside the chip. To achieve this objective, the output latch of the control logic

section is converted into polarity hold Shift Register Latch (SRL) of the type used in LSSD

(Figure 2.3). These SRL cells are also arranged into a shift register and connected in the same

scan path as that of the TSRL cells as shown in Figures 4.5 and 4.6. The SRL also has the

same two modes of operation, but works in a little different way. In the normal mode, it just

acts like a normal latch with input D and output +L1 using the system clock C. In the test

BUS

SDO(-———
‘ TSRL

TSRL

TSRL SO

TSRL
(3'— SDI

 S

l
i
m
”

Figure 4.4. TSRL cells interconnected to form a shift register.

CONTROL LOGIC

I.)

SDI ———)

SRL

I

Control

Signals

c

A

l l l B

‘9’SRL L9 SRL 9L9 SRL

. Ia +I_2a soo

+L1

Figure 4.5. SRL cells at the output of control logic section.

35

CONTROL LOGIC

c

A

B
I I I I

SRL 9 SRL —> SRL 9-) SRL L2
. . . . _.—l) |+—-_>SDO

r-i-—---i--“i————————1—-—:
I Control Signals +LI I

I I

I CIR c u I T I

I I

I B U S I

I L T I

I._....._ ______________ ...ll. _____L.._......_I

TSRL E . TSRL TSRL so TSRL‘ESI SDI

 e
l
m

Figure 4.6. SRL and TSRL cells connected in to a single shift register.

GNDJ:

"3" c

A

I I l l B

9 SRL L91 SRL 9 SRL 9—) SRL

SDI —-9 i - - - - ———'—) 11:29 To other

, SRLs

I I I I“
Control Signals E

Figure 4.7. Extra SRL cells for providing additional control signals.

36

37

mode, however, it takes its input from I, uses test clocks A and B and its output +L2 is con-

nected to the input I of the next latch in sequence.

This arrangement of an SRL at the control output makes it possible to set the control

latch directly during the test mode, bypassing the control logic. When the next system clock is

applied, then data transfers on the bus take place according to the current control signals in the

control latch which have been set in the test mode. It should be made sure that all system

operations are clocked, otherwise inadvertent operations are possible when test vectors are

scanned in and out of the SRL cells.

The input of the first SRL cell in the scan path is connected to the external pin SDI and

the output of the last one is connected to the input of the first TSRL cell. Then, the output of

last TSRL cell is connected to the external pin SDO as shown in Figure 4.6. Test clocks A and

B and the enable signal 51' are also provided through external pins. The other enable signal E

for the transmission gates of the TSRL cells is provided internally in the following manner. It

is the output +L1 of a SRL cell, whose normal input D is connected to ground (Figure 4.7),

and the input I and output +L2 are connected to other SRL cells. Thus in normal circuit opera-

tion, E is always low and in the test mode it can be set to any value just like any other SRL. E

is just the complement of E and thus can be taken directly from the same cell’s output. This

SRL cell can be visualized as an extension of the control latch and the TSRL as just another

register connected to the bus. All data transfers through the bus are thus controlled by the SRL

which can be set from outside.

The SRL and TSRL cells form the basic structure of the BST technique through which

the bus is made fully controllable and observable. However, there may be some storage com-

ponents in the circuit which are not connected (partially or fully) to the bus. The design

modifications required for them and rest of the circuit which is not based on the bus architec-

ture are similar and are described next. Again, the objective to test the rest of the circuit is to

convert it to a combinational one and this is only possible if all the storage components are

made fully controllable and observable. There are two methods available in BST to attack this

38

problem and both are described now along with their pros and cons.

One method is to connect all the inputs and outputs of such storage components to the

bus. The points will have to be connected using tristate buffers, pass transistors, or transmis-

sion gates (depending on the technology), so as not to interfere with the normal operation of

the bus. Control signals would have to be added to transfer data between these latches and the

bus. Note that these control signals need not appear in the control logic section as they are not

required for normal circuit operation. Only the output latch of the control logic needs to be

extended to include these extra control signals in the same way as it was added to provide the

E and E signals of the TSRL. One SRL cell will have to be added for each group of latches

connected to the bus, and the input D of each cell is connected to ground permanently so that

the transmission gates are off during normal circuit operation. Thus, the latches that were not

connected to the bus earlier can now transfer data to and from the bus during the test mode.

The second method of providing access to the registers is to convert them to SRL cells

and connect them in the scan path exactly as is done in LSSD. Thus they can be set and

scanned using the LSSD approach as such. Therefore, LSSD and BST can co-exist on the

same chip, BST for testing the bus architecture part of the circuit and LSSD for rest of the cir-

cuit.

The second method of using LSSD requires more area in most cases than the first

approach of connecting the latches to the bus. It also lengthens the size of the test vectors. But

in some cases, using LSSD may reduce the total test time, if one part of the circuit is quite

independent of that part of the circuit which is connected to the bus. This would allow some

tests to be done in parallel which is otherwise not possible with BST. LSSD will also have to

be used if the width of the latch under question is not the same as the bus-width.

39

4.2. Operation

The testing process is generally divided into three parts: test generation, test verification,

and test application. Tests can be generated automatically on computers for all the combina-

tional networks in the circuit using one of the available algorithms (like the D-algorithm,

PODEM—X, adaptive random test generation, or compiled code Boolean simulation). Test

verification is a little more complicated, but mostly a single stuck-at fault model is assumed

sufficient to find the fault coverage [9,36] for the test vectors generated earlier (fault simula-

tion). A fault coverage of 95 to 98% is considered sufficient to test any circuit economically

[9]. Lastly, these test vectors are applied to the circuit. This is a 3+n step process for the BST

technique (where n is the number of partitions of the circuit), and is now explained in detail.

1. Test the SRL and TSRL cells: Scanning in a set of vectors and then scanning them out tests

all the SRL and TSRL cells in the scan path. Flush test and shift test are usually considered

sufficient to test shift registers [9]. In flush test, first a single one in a set of zeroes is passed

through the register followed by a zero in a set of ones. In shift test, the sequence 00110011...

is shifted through the register. The SHIFT operation of the TSRL is used for this purpose.

These tests don’t test the transmission gates in the TSRL cells, which are tested along with the

bus in the next step.

2. Test the internal bus(ses): The test vector is scanned into the TSRL using the SHIFT opera-

tion. Then a SET and a LOAD operation is performed consecutively in the same clock cycle to

test the bus. The latched data is then scanned out and compared with the input that was

applied. If the vectors are not the same, then there is a fault on the corresponding bus lines,

transmission gates, or any one of the modules connected to them. Faults on busses are usually

very difficult to locate and fault diagnosis in this case is limited to identifying the bus lines on

which faults exist.

3. Test the control logic: The control logic is usually either hardwired, or microcoded in a

ROM with a counter at its address lines. To test the control logic, the circuit is first RESET to

initialize the system, and then one system clock is applied. This latches the first control

40

sequence into the control logic’s SRL. This sequence can be shifted out through the SDO pin

by the SHIFT operation. Another system clock will latch the second control sequence into the

SRL, which can be then similarly observed. This process continues until all states of the con-

trol logic have been verified and the system returns to its original state. If the control logic is

microcoded, the counter’s latch cells will also have to be converted to SRL cells, included in

the scan path, and tested with the other SRL cells in step 1.

4. Test the circuit modules: Since the circuit has already been partitioned into n modules, this

step has to be repeated 11 times to test each of them separately. The test vectors required to test

each module are generated ahead of time. The procedure to test any one part of the circuit

involves the testing of the latches in that module first, and then the application of test vectors

to those latches and primary inputs to test the combinational part of the module. The following

steps are required to test each latch in that module:

a) Shift the test vector into the TSRL shift register and the control vector into the SRL shift

register of the control latch (SHIFT operation).

b) Apply one system clock. The control signals are set such that they transfer data from

TSRL to the latch under test during the first phase of the clock and from the latch to the

TSRL during the second phase.

c) Shift the TSRL’s data out through the SDO pin (SHIFT operation). (Actually this step can

be combined with step a such that when the data in the TSRL is being shifted out, the next

test vector can be shifted in at the same time.)

After all the input and output latches in the module have been tested, the combinational

network can then be tested using the following steps :

a) Set all the latches and primary inputs that directly effect the combinational network under

test. Each latch/register can be set by a SHIFT operation followed by 3 SET operation with

appropriate control signals. If the module under test is a fully combinational one, then the

input to the network can be applied directly from the TSRLs.

41

b) Apply one system clock to do a single operation of that module. The output of the module

may go to an output latch or directly to the TSRL through the bus. If the output goes to an

output latch then control signals to transfer data from that latch to the TSRL are scanned in

and a LOAD operation performed. It is for this reason that the SRLs are kept in the scan

path before the TSRLs, so that if the TSRLs are not required to be set to any particular

value it is then possible to scan in just the control vector itself.

c) The result which is now latched in the TSRL is scanned out. Again this step can be

merged with step a and the next test vector can be scanned in simultaneously with this

step.

The testing of that part of the circuit which is based on the internal bus architecture is

now camplete. The procedure to test the rest of the circuit depends on which of the two

options was used during the testability design of that circuit. If all the latches in that part of the

circuit were connected to the bus then that circuit acts just like one more module in the bus

architecture and is tested accordingly, as explained in the previous few paragraphs.

On the other hand, if the second option is used then all the latches are converted to SRLs

and the LSSD technique can be used. The testing of these parts can thus be carried out using

LSSD in parallel with the testing of the other parts of the circuit using BST. When the test

vector is scanned in, it includes the values for all the SRLs as well as the TSRLs. Next, when

a system clock is applied, the data from the SRL cells is applied to the combinational circuit

and latched into its output SRL cells. This data can be shifted out and verified for correctness.

One more thing needs to be pointed out before completing the discussion of BST. If there

is more than one internal bus in the circuit, BST can still be applied with the same

effectiveness. The other busses may be internal or external and controlled from inside or from

outside the chip, as long as data transfers on them are deterministic. Figure 4.8 shows an

example of how BST can be implemented on a circuit with two internal busses. It can be

easily extended to any number of busses. The same E signal can be used for all of them to

transfer data from and to the TSRLs at the same time.

.1

I

I

I

I

I

I

I

I

l

I

I

I

I

I

I

I

I

I

I

I

l

I

I

I

_l

O

I
l
m

T
S
R
L
I

T
S
R
L

T
I

_
v
w

s
:

\
u
/

A
?

\
u
fl

—

C
_
l
I
I
I
I
I
I
A
I
.
I
I
I
_
1
I
I
I
I
I
_

_

a
_

_
_

_
_

B
U

S
B

U
S

_
_

_
v

E
_

w
.

m
m

m
_

e
.

_
fl

_
_
U

_
_
O

A
;

\
7

\
_
/

\
7
_

_

_
_

_
.
_

.—

 r____sIe_9E£391<_____fliN£U_T.5______

S
R

L
A
I
—
S
R
H
m
l
w
I

C
U
N
T
R
U
L

L
U
G
I
C

_

A,B,En SDI

Figure 4.8 BST implemented on circuit with two internal busses.

42

43

4.3. Performance

The reduction of silicon overhead from LSSD to BST can be quickly figured out by

using a simple example. If a circuit has 10 registers of 16 bits each wnnected to the bus, and

the LSSD approach is used, it would be required to convert all the 160 latches involved to

SRL cells. In BSI‘, however, only 16 TSRL cells need to be added to the circuit and the con-

trol latch converted to SRL cells to access the the 16-bit bus and thus all of the 10 registers. In

fact, the number of TSRL cells will remain constant at 16 irrespective of the number of latches

connected to the bus. Only the control signal latches have to be converted to SRLs. Thus, the

more the number of latches connected to the bus, the lesser the proportional area overhead.

This is unlike all Other scan techniques, where the area overhead increases in direct proportion

with the number of latches in the circuit.

The second advantage of using BST over other scan techniques is that there is no perfor-

mance degradation during normal operation of the circuit. To implement LSSD or scan path in

a circuit, all latches in the system have to be modified resulting in an increased time delay for

each of them. In BST, no such modifications are required thus avoiding any performance

degradation for those modules in the circuit that are connected to any of the busses.

Another advantage of using BST is that it results in shorter test vectors than either of

LSSD and scan path techniques. This directly follows from the fact that there are less SRL and

TSRL cells in BST than the others. Thus at any time, fewer of these cells have to be set in

BST leading to shorter test vector lengths.

BST, however, does suffer from one disadvantage when compared to the other tech-

niques. Since many latches are connected to a bus, only one of them can be set from the

TSRLs at one time. Further, the structure of BST had been optimized to test one circuit

module at a time. Both of these characteristics of BST lead to longer test application times than

would be required by LSSD for the same circuit. LSSD can set all the latches in the circuit at

one time and can thus test most of the circuit modules in parallel.

44 .

In conclusion, it can be adjudjed that the advantages of reduced area overhead, no perfor-

mance degradation, and shorter test vectors because of partitioning outweigh the only disadvan-

tage of a little longer test application time. Thus BST should be used for testing all internal bus

architecture systems. The area overhead in BST can be further reduced by converting one of

the system latches into TSRL cells, instead of adding extra TSRL cells at the expense of a

more complicated design.

V. DKS CHIP TESTABILITY AND INPUT/OUTPUT DESIGN

The testability considerations for the DKS chip were presented in chapter 111 and a deci-

sion was justified that one of the scan techniques must be used to improve its testability. Then,

a new technique Bus Scan Testing was presented in Chapter IV. Since the DKS chip has two

internal busses, the advantages of using BST over the other scan techniques make it the obvi-

ous choice. This chapter explains what modifications are required in the design of the DKS

chip for the purpose of incorporating BST. The input/output design is then presented which

completes the design of the DKS chip in all respects.

5.1. Design modifications

The basic Strength of the bus architecture (and thus BST) lies in their ability to be

quickly partitioned. One glance at the DKS chip’s block diagram (Figure 1.1) gives clear evi-

dence to that effect. It is observed that most of the blocks are connected to the bus and are

either purely sequential or purely combinational in nature. The only sequential circuits present

on the chip are the latches and registers and the most complicated combinational networks are

the two stage multiplier and the adder. Thus each block in Figure 1.1 can be considered a

module and each of them can be tested independently.

Now that the DKS chip is partitioned, each module or a group of modules can be

analyzed one by one to take appropriate steps to make each of them easily testable. Since the

main objective of the BST approach is to make all the storage elements in the circuit controll-

able and observable, design modifications are required only for such modules which have one

or more storage elements. The latches and registers in the DKS chip have been classified into

45

ooooooooooooooooooooooooooooooooooooo

Angle Reglsters

. we r

2"":5LDELk—I er/cns]

T I I I

s

R < ' ° - - I’ not) T(x) \I

LIE f I

. , T

. Constants LX r——J < s

L] R

L

g ‘ 3], M2 M1 ,L
N B L j [__I B

T U k—<—-
D 9'U

R P 3 s

n s B M P Y 1

L A

A 113 V ~I. 1' PT

[I R s L 1 2X

(3 s g 4—-<} 2

I N I.

C L M P Y a A
S v

S .___I

E L92 @Joq“
T L 1 _

r <———<}——- F ,r>—>

n

N A D 11 E R

Creg q, s<l‘—

as R

I'- Sre

s <———1 fl 1

R L

L F ,

_[a u T P n R T .

7F ‘1' ’ ’ ’ ' ' \II \I/ v

SDI 015 014 01 00 sec

Figure 5.1 BST implemented on the DKS chip.

46

47

be discussed now.

The latches of category 2 and 4 are easily dealt with by using the basic BST structure.

Since the latches of category 2 are already connected to the bus and conn'ol signals which

transfer data among them through the busses already exist, they meet exactly the specifications

of the BST design. Thus one TSRL cell is connected to each bus line of both the busses,

which are then interconnected to form a shift register. Next, all the output latches of the control

logic section and the counter (category 4) are converted to SRL cells.

One SRL cell is added to provide the E and E signals to the TSRL cells. The input D of

this SRL is connected to ground so that during normal circuit operation, E is always low thus

keeping the output of TSRLs in a high impedance state. Finally all of these SRL and TSRL

cells are interconnected to form a single shift register, the input of which is from the external

pin SDI and output to another pin SDO.

Most of the latches of category 2 have either their input or their output connected to the

bus, but not both. To make them fully controllable and observable, they should have their

inputs as well as outputs connected to the bus. Thus the outputs of M1, M2, A1, and A2

latches and the output of the adder which feeds Creg, Sreg and the register file are connected

to the bus through transmission gates as shown in Figure 5.1. One control signal will be

required for each set of transmission gates connected to the bus. So five SRL cells are added in

the scan path to control the 5 sets of transmission gates with their D-inputs connected to

ground to disable the transmission gates during normal circuit operation.

The remaining latches of categories 1, 3, and 5 are those which are not connected to the

bus. Since there are two options available for the purpose, each option will be assessed for

each category of latch separately. The first option is to connect both their inputs and outputs to

the bus and the second one is to use the LSSD approach which converts each latch to an SRL.

LSSD will be preferred only if the latches in question are quite independent of the part of the

circuit based on the bus structure or if the width of the latch is greater or much less than the

bus width.

48

The angle registers of category 1 are 12—bits wide and their input is directly connected to

the input pins of the IC. Thus they are already controllable so only their output needs to be

made observable. If LSSD is used 72 (12x6) of these latches will have to be converted to SRL

cells and the test vector length will also increase by the same amount. On the other hand, if

their 12-bit output is connected to the least significant 12 bits of one of the two 18-bit busses,

the overhead will be 12 transmission gates and one SRL cell, and the test vector length will

only increase by one bit. The most significant 6 bits of the bus can be ignored when the angle

registers are scanned out through the bus. Thus this alternative is much more economical than

using LSSD in this case. So 12 transmission gates are added to connect the output of the angle

registers to bus A and one SRL cell is added in the scan path to control these transmission

gates with its D-input connected to ground.

The only latch that falls into category 3 is M3. Since it is 18-bits wide and is in middle

of the part of the circuit based on the bus architecture, there is no reason to use LSSD. So 18

transmission gates are used to connect the input of M3 to bus A and the same number to con-

nect its output to bus B. Two SRL cells are added in the scan path to control the two set of

transmission gates with their D-inputs connected to ground.

The last category (5) contains just a single l-bit delay latch. Since its 1-bit widm is far

less than the 18-bit bus width, it is best to use LSSD in this case. The delay latch only needs

to be converted to an SRL cell and then connected in the scan path with other SRL and TSRL

cells. The resultant increase in test vector length is only one bit.

This concludes the design modifications required on the DKS chip to be able to use the

BST technique for testing it. The various control signals that have been added to the chip in

the process are summarized in Table 5.1. The next section now describes the 110 design of the

DKS chip.

Table 5.1. Control signals added to the DKS chip for implementing BST.

No. Control Signal Function

1 EXGt Enable transmission gate of TSRL

2 MO Connect M1 to bus A and M2 to bus B

3 A0 Connect A1 to bus A and A2 to bus B

4 M31 Connect bus A to input of M3

5 M30 Connect output of M3 to bus B

6 Av Connect angle registers to bus A

7 AT Connect bus A to register file

Table 5.2. U0 pins required for testing the DKS chip.

No. 1/0 pin Normal Connection

1 A clock Ground

2. B clock Ground

3 En +5V

4 SDI Ground

5 SDO Open

49

50

5.2. Input/Output Design

When the DKS chip design was presented in [5], the I/O design was not finalized

because it was assumed that DFI‘ will have an impact on its design. Now that the design of the

DKS chip is complete in all other respects, the 110 design can be finalized. The U0 signals can

be broadly classified into two categories: test I/O and operational U0. The five test I/O pins

required to implement BST have already been described in the previous section. These pins are

only used during the testing process. Table 5.2 summarizes the various test pins and at what

values to tie them during normal system operation of the circuit.

The operational I/O signals are used in both the normal as well as test mode of the cir-

cuit. They include all power lines, control signals, as well as data I/O lines. Following is a

brief description of all the pins required on the IC.

1.

3.

V“ and Ground: These two pins provide power to all the chip circuitry. Since TTL compati-

ble CMOS technology is being used for the IC, the V“, pin has to be connected to the posi-

tive terminal of a +5V power supply and Ground pin to its negative terminal.

411 and 62: The DKS chip requires an external two-phase non-overlapped clock which is

provided through these two pins.

RESET: This pin is connected to the counter of the control logic section and to all Other

latches and registers in the circuit which have a CLEAR signal available. It is an active high

signal. Externally, it can be connected to the controlling computer and/or to a small

power-on reset circuitry.

Chip Select (ES): The U0 of DKS chip is designed so that it can serve as a part of a full

robot control system. Most computerized systems use data and address busses to transfer

data from the CPU to all the other chips in the system. When a chip is selected by the

CPU, the address is decoded and then an appropriate chip is selected by the CE signal. It is

an active low signal, thus it allows data transfers to and from the system bus only if this

signal is held low.

.51..

5. SITE and DINO — DINll: These 13 pins work together to input data from the system into the

angle registers of the chip. Data input DINO to DINll is the 12-bit input port of the chip

which is connected to the input angle register-S. If STE- (Shift and Input Latch Enable) and

aare both law, then during phase one of the system clock, data from all angle registers is

shifted to the next lower register in sequence and data at the input port is latched into

angle register-5. Thus all the six angle registers can be set in six system clocks by applying

one angle in each clock cycle in sequence from 0 to 5.

6. m Once all the angle registers are set, then calculation of the DKS can begin. The

changing of this signal START from high to low signals the counter of control logic to start

counting until all the 73 states required to calculate the DKS are over. If at the end of 73

states, m7 is still low, the calculation starts all over again otherwise the counter stops

and the chip does nothing until some other external signal becomes active.

7. WDVAL, andDOUTI) — DOUT15: These pins provide the final values from the register

file to the output port. The 00070 to DOUT15 (Data Output) pins provide the 16-bit tristate

output that can be connected to the system data bus. When SO—UT (Shift Out) and CE are

both low then during phase one of the system clock data from each register in the register

file is shifted to the next higher register and the contents of register-8 are provided at the

output pins. The DVAL (Data Valid) pin is then taken high at the end of phase 1 of the

system clock to signal the system that data on the bus is valid data. DVAL is kept high

until either C—S goes high or until the beginning of the next clock cycle.

8. HALT: This is an emergency signal that stops all operations on the chip by stopping the

control logic state counter. The data in the chip is undefined after this signal is given so

that the only valid operations after a HALT signal are a RESET or a SILE with CE and DIN.

Table 5.3 summarizes all the operational I/O signals for the DKS chip. There are a total

of 38 pins including the 12-bit input data and the 16-bit output data pins. The number of pins

required to implement BST is five taking the grand total to 43. This number is well within the

capacity of the inexpensive Dual-in Line Packages (DIPs).

Table 5.3. 1/0 pins required for the DKS chip.

I/O Pin Function

Vcc +5V Power supply

GND Power supply ground

¢i phase 1 clock

¢2 phase 2 clock

RESET Reset all latches

_ ES Chip Select

S7175- Shift and input latch enable

DINO - DIN 11 12 bit angle input

@173? Start DKS claculation

DOUTO - DOUTIS 16 bit data output

SOUT Shift out data

DVAL Data valid at DOUT pins

HALT Emergency stop

VI. TEST GENERATION

Test generation involves finding a set of input vectors for the circuit under test which

allow for the detection of faults by observing the primary outputs of a circuit. One such set of

vectors is the complete set of all possible input vectors of the circuit under test (Exhaustive

testing). Though such a test would test the circuit for all possible faults, it requires a very long

time to run, especially for complex sequential circuits, and thus, is not practical.

Success of a testing process is generally measured in terms of the percent fault coverage

against a pre-defined set of faults. Many different types of faults can occur on an IC. Stuck-at-

zero, stuck-at-one, bridging faults, open circuit faults and CMOS-stuck-open faults are just a

few categories. There may also be multiple faults in the circuit. Usually a single stuck-at fault

model is assumed and then test vectors generated for the model. It has been shown that this

model is able to detect many of the bridging, open circuit, and multiple faults too, and is thus

considered sufficient for the testing of most circuits [3].

It is here, during the test generation process, that the importance of the DFI‘ techniques is

realized. All the structured DFI‘ techniques are aimed at reducing sequential circuits to combi-

national ones for testing purposes. Further, the circuit can be partitioned along functional lines

and test vectors can be generated for each of the partitions independent of the others. This

becomes possible with the DFI‘ techniques because they provide full access to all the partitions

in the circuit.

The goal of test generation for the DKS chip is severalfold and in the order of impor-

tance is:

1. chip design verification;

2. fault detection using fault simulation;

53

.54.

3. manufacturing testing.

Only the first two are of our interest here because the chip is being initially fabricated as

a prototype. If manufacturing testing is to be done eventually, the test vectors developed here

can be applied and more added to increase the fault coverage if necessary.

There are two types of test strategies that can be used to test a circuit. One is structural

testing and the other is behavioral (or functional) testing. Structural testing requires a low level

(at least gate level) description of the circuit and a fault model. It is used to verify the physical

device against the logic design, which is assumed to be correct. Thus a design verification is

not possible by this method.

Behavioral testing, on the other hand, tests the functional behavior of the circuit. Various

device descriptions above the gate level can be used to test a circuit. It is usually used when a

gate level description of the circuit is not available.

The test goals for the DKS chip at this stage closely match the requirements of

behavioral testing. One reason is that gate level description of the circuit is not available and

second is that design verification is required for it. Thus if test vectors could be generated to

test the functionality of the circuit, then they can be used independently of the implementation.

6.1. Test Generation Methods

There are four methods available to generate tests for a circuit: manual test generation,

universal tests, pseudo-random test patterns, and algorithmic methods. Manual test generation

is only possible for very small circuits or some special components like RAMs. It is usually

based on the intuition of the designer with no guarantee for success.

Universal tests provide a general set of vectors to test all or a subset of any circuit

without any calculation or simulation. Exhaustive testing lies under this category, which is

obviously impractical for large circuits. Some other test sets have also been prepared for PLAs

and a few specific types of circuits. However, at this time no universal tests really exist that

can handle all circuits.

55

Pseudo-random testing technique uses random numbers as test vectors for the circuit.

Still, a fault model and description of the circuit is required to calculate the fault coverage.

Probabilistic methods are also being used nowadays to find the expected fault coverage using

random patterns [29,30,31]. It is very difficult to do a design verification using this method.

The most widely used test generation method is the algorithmic approach. This approach

is mostly based on path sensitization techniques whose aim is to provide a path from the pri-

mary inputs to all points in the circuit and then from there to the primary outputs. D—algoridrm

[28,32], PODEM [33], and compiled code Boolean simulation [34] are a few of the algorithms

developed for this purpose. Most of these algorithms are deterministic and can find a test vec-

tor if it exists. However, even such techniques become very time consuming for large circuits

and thus are not very attractive for VLSI.

Since the DKS chip has been partitioned into modules and all the modules can be tested

independently, the type of test generation method used for each can be selected individually.

The next section deals with the selection of the test process as well as actual test vector gen-

eration for each type of module in the chip.

6.2. Test Vector Generation

The various circuit modules on the DKS chip can be classified into the following six

categories:

0 SRL and TSRL cells;

0 control logic ROM;

0 busses A and B;

0 ROM to store table values;

0 storage latches (LX, M1, M2, M3, Al, A2, Creg, Sreg, and 2-stage delay);

0 shift registers (angle registers and register file);

0 combinational circuits (MPYl, MPYZ, and Adder).

-S6

The test patterns required to test the SRL and TSRL cells are specified in the BST tech-

nique. The same two tests (shift test and flush test) can be used here without any further

changes. Similarly the procedure to test the control logic ROM and the internal busses has

been completely specified in the BST procedure. Thus no test vectors are required to be gen-

erated for the first three categories of modules.

The next category of modules is the ROM to store table values. There is no other method

to test a ROM other than by exhaustive testing. Moreover, it can be easily used now since the

input and output of ROM are both accessible through the TSRL cells. Since the input angles

are 12 bits each, 212 (4096) test patterns are required to verify all the ROM contents along with

the SIN/COS combinational circuitry at its input. Five test vectors are also required to verify

the contents of the ROM used to store the five constants.

Test vectors for all the latches are required next. Since the latches are only used to store

18 bit data and are not intended for any other special operation, they can be simply tested by

using the following four vectors for each latch. First is a set of all zeroes, then a set of all

ones, then a sequence of 00110011.... and lastly a sequence of 11001100... . These vectors can

detect all stuck-at faults as well as most of the shorting and bridging faults in the latches.

The six angle registers and the nine registers in the register file constitute the sixth

category. As has been already identified in Chapter IV, shift tests and flush tests have been

found sufficient to test all shift registers. Thus the same tests that are used to test SRL and

TSRL cells can be used here also.

The last category of modules is the combinational circuits. The 18-bit Baugh-Wooley

multiplier and the 18-bit Ripple Carry Adder (RCA) are the only two combinational circuits on

the chip. Test vector generation of these circuits is not as easy as has been for the other

modules. Thus various test generation methods are discussed in the next section and one of

them chosen to test the combinational circuits.

57

6.3. Test Generation for Combinational Circuits

The first and the easiest method would be to do an exhaustive test of each combinational

circuit. Since each of these circuits operates on two 18-bit operands, the number of test vectors

required to exhaustively test them will be 23‘ each. Since it requires approximately 100 clock

cycles to apply one test vector to each circuit and assuming a clock speed of 10 MHz (since

the DKS chip has been designed for l to 14 MHz), the time required to test each of them is

about 8 days. Such a long time to test any circuit is totally unacceptable, so this method is dis-

carded.

The next method is to generate test vectors manually. This is also not suitable considering

the size of the 18-by-18 multiplier and adder. Test generation by hand usually relies on intui-

tion of the designer who observes the truth table of the circuit and decides what tests to use.

AnOther method is to use pseudo-random test patterns. Though random patterns have

been used to test many circuits with good results, their disadvantage is that they do not pro-

vide ample capability for the type of design verification which is important for the DKS chip

as a prototype.

The last method is to use one of the algorithmic methods to generate teSt vectors for each

of the modules. Computerized test generation programs are usually used for all large combina-

tional circuits. Since both the multiplier and the adder have very regular structures, the

extended D-algorithm as proposed in [35] was chosen to generate test vectors for the functional

tests. The extended D-algorithm was chosen because it is a simple extension of the D-

algorithm, which is the most widely used algorithm for generating test vectors for combina-

tional circuits.

The basic components used for the adder and the multiplier are inverters, AND gates,

XOR gates, Full Adders (FA), and 2-to-1 multiplexers. The D-propagation tables for these

components are first made as shown in Tables 6.1 to 6.5. The tables show how a logical value

D at one of the component’s inputs will be reflected at its output. The aim of D-algorithm is to

provide test vectors so that each node in the circuit can reach the value D from its primary

Table 6.1. D-propagation table for an Inverter.

Input Output

U
I
U
H
O

U
U
I
O
H

Table 6.2. D-prOpagation table for an AND Gate.

AND 0 1 D D x

o 0 0 o 0 0

1 o 1 D D X

D o D D o x

D o D o D x

x o x x x x

Table 6.3. D-propagation table for an XOR Gate.

XOR 0 1 D D x

o o 1 D D x

. 1 1 o D D x

D D D 0 1 x

D D D 1 0 x

x x x x x x

58

Table 6.4. Partial D-propagation table for a Full Adder.

O
O
D
D

Sum Cout

D
D
D
D

D

O
D
I
O

0
0
0
.
1

1

D
D
0
1
D

ABCin
D
O
D
D

D
D
D
D
D
D

Table 6.5. D-propagation table for a 2-to-1 multiplexer.

m
1
0
1
D
D
0
D
_
D
1

C
0
1
1
0
1
D
D
D
D

B
X
0
1
X
D
0
1
0
1

A
1
X
X
D
X
0
0
1
1

59

b1 0|

* o

8A2 ———)o M u x é—SM

o ' * 0

81°12 ——)~ M u x '6—3‘“

n 1

1 n

D (3.3
n 0 c F A ‘ H

c.(—— F A 'é—CH ' f

_’ 5

n

s.

s,

(a) (b)

_b| 0|

b1 _ °I D I 1

1 n

1 1 {—o—smo 3A2——) M u x '

saa ————) M U x 'é—SM

1
1 n D

o D (.1...C
€— ‘ 1

C1 D ‘ F A CH C. F A '-

U
I

<
-
—
—
i

”
2
2
:
.

(c) (‘1’

Figure 6.1. Various test vectors applied to a slice of the RCA adder.

6O

61

inputs and its effect should be directly observable at the circuit’s primary outputs.

To generate test patterns for the adder, consider the slices of the RCA adder as shown in

Figure 6.1. Each of the slices shows a different input vector being applied to it and the output

that it will produce (which is incidentally the same in all the cases). Each figure actually

represents two tests since each D has to first be replaced by a 0 and then by a 1. Observe that

ifalltheseeighttestsareperformed,theneachnodeinthecircuitgoestoa0aswell astoal

at one time or another.

The inputs to each slice can be set independently of the others except for the carry-in

which is propagated from the previous slices. A carry-in of 0 for each slice can easily be

achieved by forcing all the inputs of all other slices of the adder to zeroes. The only exception

is the first slice where the carry-in is connected to SA. For the first three vectors when SA-O,

the first slice behaves in a manner similar to the others. However, when SA-l (fourth vector),

the sum is equal to D and carry out is 1.

Thus eight tests are required to test each of the slices in the adder, taking the total

number of test vectors for the adder to 144 (18x8). Appendix A shows all the test vectors gen-

erated for the Adder. Only four test vectors are shown for each slice. The D can be first

replaced by a 0 and then by a l to get the actual eight vectors. Again, since the expected result

for each set of four test vectors is the same, one result is shown after each set of four vectors.

The last module in the circuit for which tests have to be generated is the multiplier,

which is an 18-by-18 Baugh-Wooley array multiplier. It is the most complex module of the

DKS chip with regard to size. It is made of 309 full adders, 324 AND gates, and 36 inverters.

The whole array is regularly structured except for the last two rows and the last slanting

column. On close observation it is found that if the sum and carry outputs of each of the full

adders is set to D and is made observable at the output, all stuck-at faults at the nodes can be

detected. From the D-propagation table of the full adder, it is seen that if one of the inputs is

0, another is 1, and yet another is D, then the sum is D— and the carry-out is D. The sum can be

propagated down to the output if all the carry-ins for other FAs are zeroes. That can easily be

62-

achieved with a (0,0,0) input to all other adders. The carry-out can be similarly propagated

down in the next higher column. So two tests are required to test the output nodes of each of

the FAs, one with D=0 and the other with Dal. Thus the expected result will be all zeroes

except for a 5 in that column and a D in the next higher bit column.

However, there are a few complications. One is that when trying to set a particular node

to 1 or D, the inputs to some other full adders may also be set to a non-zero value in the pro-

cess. This will be reflected in the output as a 1 or a D in those particular columns. So the

expected result has to be changed in those columns. Another piculiarity is the last FA for 83,

where one of the inputs is always set to 1. When testing the FA above it which has 27,-, and I?”

as its inputs, the last FA receives a D carry-in and a 0 from the carry-out of its predecessor. So

its output is equal to 5 instead of a D.

Based on these observations, test vectors were generated for all the PAS. Since there are

309 full adders and the lowermost row of 19 FAs is tested at the same time as the one above

it, 580 (29OX2) test vectors are required to test the multiplier. Appendix B gives the full list of

test vectors along with the expected results for each vector.

This completes the test generation process for the DKS chip. A few things need to be

pointed out regarding the matter of test verification, which always follows a test generation

process. The purpose of test verification is to prove that the test vectors that have been gen-

erated are sufficient to test the circuit. The latches and registers in the DKS chip use standard

shift and flush tests, so there is no need to verify the vectors. Similarly, the ROMs are being

tested exhaustively, so the question of test verification does not arise at all. The only modules

that need test verification are the adder and the multiplier.

Fault coverage for a circuit is measured in terms of the percentage of faults covered by

the tests with respect to the fault model of the circuit. For both the adder and the multiplier, a

functional stuck-at model was assumed to generate test vectors. Since test vectors to test each

node in the functional circuit were individually generated by hand, a 100% fault coverage was

achieved. However, it has to be emphasised that a general stuck-at fault model was not

63-

assumed, so the fault coverage with respect to such a model will be less than the 100% figure

shown here.

The expected results for each test vector were generated with respect to the circuit con-

nections. To confirm that the results actually matched the test vector inputs to the adder and

multiplier, a random sample of 30 vectors for each of them was selected. More vectors were

selected near the boundaries where probability of error is higher. The input vectors for the

adder were then added by hand and the results always matched the expected results generated

(see Appendix A). Similarly for the multiplier, the test vectors were multipled by hand and

again results matched the expected results shown in Appendix B.

This concludes the test generation and verification process for the DKS chip. The next

chapter deals with the process of applying these vectors to the chip once it has been fabricated.

VII. TESTING THE DKS CHIP

Test application is the final phase of a testing process and can begin after the chip has

been fabricated and test vectors generated and verified. The tests are applied to the chip under

test with the help of Automatic Test Equipment (ATE). The ATE consists of a test bed on

which to place the chip under test. It is then programmed to apply the test vectors to the chip

and store the results in its memory. Most ATEs can also compare the results with the expected

results and generate diagnostics, depending on their capability.

The procedure to test a chip without any structured DFI‘ features is different from the

procedure for a chip with DFI‘. Further, it also depends on which of the DFI‘ techniques has

been used. In the earlier chapters, it was shown that BST is the most suitable technique for the

DKS chip. The process to test a chip with BST in general was explained in Section 4.2. It

involves testing each module on the chip one at a time independently of the others. The pro-

cedure to test the DKS chip in particular is explained in the first section of this chapter. The

second seetion then evaluates the performance of the testing process.

7.1. Test Application Process

The DKS chip has been partitioned into modules and each of them is tested indepen-

dently of the others. Since there are two internal busses on the DKS chip, it is possible to test

two modules at a time. So an effort is made to test two modules in parallel whereever possible.

To test any two modules in parallel, it should be possible to set both of them independently,

but at the same time. Also, it should be possible to scan out their outputs without any resource

conflicts.

64

65

The procedure to test each module depends on its type: whether it is a ROM, a latch, a

register, a delay element, or a combinational circuit. Also, the sequence in which some of the

modules have to be teSted is crucial because some of the modules are accessed through some

other ones. The sequence in which the various modules are tested for the DKS chip is listed

next.

1) Test the SRL and TSRL cells.

2) Test the bus and the transmission gates of TSRL cells.

3) Test the control logic ROM.

4) Test the angle registers and constants ROM.

The input of the angle registers is from the chip’s primary inputs and the ROM does

not require any input except for the address which is provided from the control logic. The

output of angle registers is through bus A TSRLs and of the constants ROM through bus B

TSRLs. Thus their are no resource conflicts among these two modules. Though the angle

registers require more test vectors than the ROM, some time is still saved by testing both of

them at the same time.

To test the angle registers, first set all of them to the test vector values using the normal

DKS chip’s input process. Then, scan in control signals to transfer data from one of the

registers and one of the constants to the TSRLs of bus A and B respectively. Apply one

system clock and scan out the TSRL contents to verify the results. The procedure is

repeated for each test vector and then for each angle register and each constant in the ROM.

5) Test the M1 and M2 latches.

Since M1 uses bus A for both its input and output, and M2 uses bus B, there are no

resource conflicts among them. To test these latches, test vectors for each of them along

with the control signals required to set them, are scanned in. One system clock is applied

and then control signals to transfer data into the TSRLs are scanned in. Again one system

clock is applied to transfer the data and the results are scanned out.

.66

6) Test the A1 and A2 latches.

The same procedure that was used to test M1 and M2 can be used here.

‘7) Test the LX latch and the C-register.

The LX latch uses the angle registers for its input, and M1 latch and bus A for its out-

put. On the other hand, the C-register uses bus B for its input as well as output, so both of

these latches can be tested at the same time. Since the angle registers and M1 have already

been tested at this point, they can now be used for providing access to the LX latch.

To test them, set one of the angle registers to the LX latch’s test vector value and set

TSRL for bus B to the test vector value of the C-register. Transfer data from that angle

register to LX latch and then to the M1 latch. Now load the TSRLs of bus A from M1 and

of bus B from C-register and scan them out. Repeat the procedure for all the test vectors.

8) Test the two-stage delay (LA) and the S-register.

The two stage delay uses bus A for its input, and A1 and bus A again for its output.

The S-register, on the other hand, uses bus B for its input as well as output. Since there are

no resource conflicts among them, they can be tested in parallel.

First the test vectors for both of them are scanned into their respective TSRLs and then

one system clock is applied to set them. Two more system clocks are applied to give two

clock delays and set the A1 latch from the two stage delay’s output. Lastly, A1 and the C—

register are both loaded into the TSRLs, the data in which is then scanned out.

9) Test the M3 latch and the register file.

The M3 latch uses bus A for its input and bus B for its output, while the register file

uses bus B for its input and bus A for its output. Each register in the register file is to be

tested independently of the others. So the M3 latch can be tested while testing one of the

registers and rest of the registers can be tested alone.

To test both of the modules together, both sets of TSRLs are set to test vector values.

One system clock is then applied to transfer data to M3 and the register under test. Control

signals to transfer data back into the TSRLs from the modules are scanned in and one

67

system clock is applied to load the TSRLs. The data in the TSRLs is then scanned out.

10) Test Dx and Tx ROM tables.

There is only one input for the two parts of the table ROM and it is through the angle

registers. The output of Dx is through bus B and the output of Tx is through bus A. Since

the ROM is to be tested exhaustively, the small combinational circuit at its input can also

be included in the tests. The test vector is first scanned into one of the angle registers and is

applied to the ROM during the next system clock cycle. The data at their output is then

transfened to the respective TSRLs and scanned out.

11) Test the MPYl unit.

The first part of multiplier requires two inputs: one from the M1 latch through bus A

and the other from the M2 latch through bus B. Since it utilizes both the busses for its

inputs, nothing else can be tested in its parallel. First, both its input latches M1 and M2 are

set to test vector values through the TSRLs. One system clock is applied and the result of

the operation is stored in the M3 latch, which can be scanned out through the TSRLs of the

bus B. The prowdure is repeated for all the test vectors.

12) Test the MPYZ unit.

The procedure to test MPY2 is the same as for MPYl except that only M3 needs to be

set to the test vector value. Its output is latched into A2 and is scanned out through the

TSRLs of bus B.

13) Test the adder.

The procedure to test the adder is exactly the same as for MPYl, except that Al and A2

are used for input instead of M1 and M2, and its output is directly latched into the TSRLs

of bus B through the pass transistors.

This completes the test application process for the DKS chip. To show that this applica-

tion process is really feasible and adequate for testing the DKS chip, the process was simu-

lated. Appendix C gives the complete listing of the simulation program. Given the structure of

the DKS chip along with the modifications suggested in Chapter V to implement BST, the

68

objective of the simulation is to show that this application process provides access to all the

modules on the chip through the scan path. Following is an explanation of the simulation pro-

gram.

The chip structure is simulated in two functions: phase_ane and phasc_two. Each of the

functions simulates all the operations performed during the respective clock cycles. The only

parameters that can be passed or accessed from these functions are the control signals and

TSRL cell values. Also, no other function in the rest of the program can use or set any of the

modules in the circuit except for the control signals and the TSRL cells that are accessible

through the scan path and the I/O signals.

The main program first initializes the ROM contents to some specific values and sets all

control signals, latches, and registers to an undefined value (-1). Then the main program calls

one function each to test each / each-pair of the modules, as numbered in sequence from 2 to

13 earlier in this Chapter. Thus each of the modules is tested independently of the odrers. The

module number 1 is the shift register of SRL and TSRL cells themselves that are assumed to

be accessible and thus do not need any simulation.

Each function to test modules, first prints the name of the module it is testing and then

reads the number of test vectors from the test vector file. The steps required to actually test the

modules are exactly as explained in that particular section in this Chapter and they are all

repeated for the number of test vectors for that module. The only operations that these func-

tions can perform are:

0 set SRL control signals;

0 set TSRL cells (from the test vector file);

0 reset the chip (set the counter of control logic to zero);

0 set I/O signals;

0 call phase_onc and phase_lwo functions;

69

0 print the contents of TSRL cells.

Restricting the operations that can be performed by the modules to these is in accordance

with the objective of the simulation.

The simulation ran successfully showing that it is possible to access all circuit modules of

the DKS chip using the SRL and TSRL cells. It also verified the test application process as

detailed earlier in this Chapter. The simulation proves the feasibility of using BST on the DKS

chip. The performance of the DKS chip with BST is now evaluated in the next section.

7.2. Performance Evaluation

The performance of a DFI‘ technique can be evaluated in terms of the following parame-

ters:

1. Area overhead required on the chip to implement the technique;

2. Number of 1C pins dedicated to testing;

3. Test application time;

4. Test vector length.

The performance of the testing process of the DKS chip will be compared among the

three possibilities that are present to test it. First is to design the chip without any testability

features and test it. The other two are to either implement LSSD or BST during the design pro.

cess and then test it. A measure of performance for each of the four parameters above will be

calculated for the three test possibilities.

The first parameter is the area overhead required to implement the DFI‘ technique.

Clearly, there will be no area overhead if none of the DFI‘ techniques is used at all. If LSSD is

used then all 458 latches have to be converted to SRLs. This amounts to an area overhead of

17%. On the other hand, if BST is used then 44 latches have to be converted to SRLs, and 7

SRLs. 36 TSRLs, and 138 pass-transistors have to be added. This is equivalent to an area

overhead of a little less than 10% on the DKS chip.

70

The second parameter of performance is the number of additional pins required on the

chip that are dedicated to testing. These pins do not provide any function during the normal

operation of the circuit and since I/O pins are very precious in VLSI, every effort should be

made to keep them to a minimum. Of course, if none of the DFT technique is used, no extra

pins will be required. LSSD requires four extra pins (SDI, SDO, and clocks A and B), while

BST requires five of them (the above four and 271').

The primary and the most important measure of a testing process is the test application

time. The objective of the DFI‘ techniques is to reduce the time required to test the chip. Since

the DKS chip has a 12-bit data input and 458 latches, the number of test vectors required to

test the chip exhaustively is 2‘2“" = 2‘”. This converts to a testing time of 10‘” years. If BST

is used then the chip is partitioned and each module is available separately for testing. Table

7.1 shows the number of test vectors and the corresponding time required to test each of the

modules. It has been assumed that 100 clocks at 1 MHz clock speed are required to apply one

test vector, since the length of the scan path is 80 and a few system clocks may have to be

applied in the process. The total number of test vectors required are 5,629, so the total time

required to test the DKS chip using BST is 0.56 secs.

If LSSD is used, then the length of scan path is 458 and thus 458 useconds are required

to apply each test vector. However, all the modules can be tested in parallel now. So the total

time required to test the DKS chip will be the same as for the module which has the most

number of test vectors. Table 7.1 shows that the ROM requires 4096 test vectors, so the t0tal

time required to test the chip is 4096x458usecs - 187 secs = 3 mins.

The last parameter for measuring the performance of a DF’I‘ technique is the test vector

length. If none of the DFI‘ techniques is used, then the only access to the chip circuitry is

through the 12-bit data input pins on the chip. Thus the test vector length is only 12 bits. How-

ever, if some structured DFI‘ technique is used, then the test vector also includes all cells in its

scan path, in addition to the 12-bit primary data input. Larger test vector lengths require ATEs

with greater capacities to handle them, so it should be kept as small as possible. Since the

71

number of latches in the DKS chip is 458, the test vector length is 458 + 12 a 470. On the

other hand, if BST is used, two sets of TSRLs are added (2xlS = 36), control logic output latch

is converted to SRLs (37), and 7 SRLs are added to control extra signals, taking the total test

vector length to (36 + 37 + 7 + 12) or 92.

The various performance measures are summarized in Table 7.2. LSSD requires more

time for testing the chip, a larger area overhead, and a longer test vector length as compared to

BST. The only disadvantage of using BST is that it requires an extra pin over LSSD. Since the

advantages of BST far outweigh its only disadvantage, it is concluded that BST should be

implemented on the DKS chip to improve its testability.

Table 7.1. Test application time for various modules in the DKS chip.

Module Number of Total time

name test vectors (msec)

SRL and TSRL cells 4 0.4

Busses 4 0.4

Control logic 73 7.3

Angle registers 24 2.4

Constants ROM 5 *

M1 and M2 4 0.4

A1 and A2 4 0.4

LX 4 0.4

C-register 4 *

LA 4 0.4

S-register 4 *

Register file 36 3.6

M3 4 *

Dx and Tx ROM 4096 409.6

MPYl 616 61.6

MPY2 616 61.6

Adder 144 14.4

TOTAL 5629 562.9
Table 7.2. Comparison of the estimated overheads for the DKS chip.

DFT Area Overhead Number of Test vector Test Application

technique (%) extra pins length (bits) time (secs)

none - — 12

LSSD 17 4 458 187

BST 10 5 85 0.56

I"The time taken to test these modules is not used in the calculation of the total time because they are tested in parallel

with other modules.

72

VIII. CONCLUSION

The objective of this thesis is to incorporate DFT into the design of the DKS chip. It has

been recognized that testing VLSI chips is by no means a trivial process. Design for testability

techniques are being used nowadays to design the chips in such a way that they are easily

testable. This is especially true for semi-custom ASICs that require fast turnaround times and

can pay the price of a little area overhead on the chip. For these reasons, it was decided that

some DFI‘ technique must be implemented on the DKS chip.

The DKS chip has two internal data busses and it was observed that if they could be

somehow used to provide access to the majority of the storage elements on the chip, then the

area overhead required to implement a DFT technique can be reduced. This idea developed

into a new DFT technique - Bus Scan Testing (BST), that can be applied to all internal bus

architecture systems. BST integrates the concepts of partitioning, bus architecture systems and

scan techniques to provide access to all the storage elements in the circuit It results in a reduc-

tion of area overhead and shortens the test vector length. However, in some cases it may result

in longer test application times than the other structured DFT techniques.

Appropriate modifications were made in the design of the DKS chip to implement BST.

TeSt vectors were then generated separawa for each of the partitioned modules in the DKS

chip. The test application procedure for the DKS chip was then drawn out that included the

sequence in which various modules had to be tested and the steps to test each of them. A

simulation was then carried out to show that the modifications made on the DKS chip and the

test application process can provide access to all circuit modules and is sufficient to test the

DKS chip. Lastly, the testability design of the DKS chip was evaluated which confirmed that

BST was the best available DFT technique that could be applied to the DKS chip.

73

74

The BST technique, as described, provides many advantages over Other DFT techniques

for internal bus architecture systems. However, there is still further scope of improvement. One

is to try to convert one of the circuit latches themselves to TSRLs and then use BSI‘. Though

the idea seems to be plausible, further simulations and tests are required to prove that it will

not cause problems during normal circuit operation.

One area in which BST lacks diagnostic abilty is bus faults. Though BST detects most of

the bus faults on the chip, it does not give any indication as to the location of the faults. If

such a system can be developed, then even the control busses can be tested in addition to the

data busses being tested now.

APPENDICES

APPENDIX A

APPENDIX A

TEST VECTORS FOR ADDER

g = 3

ba ba ba ba ba ba ba ba ba ba ba ba ba ba ba ba ba ba 8A1 8A2

bit#17 161514131211 1009080706050403020100

O oooooooooooooooooooooooooooooooooom 0 0

0 01010101010101010101010101010101011g

oooooooooooooooooooooooooooooooooooar O 0

.
—

0

Result: 000000 00000000 00dg

0 1010101010101010101010101010101010g101

Result: 00000000000000001d

000000000000000000000000000000001d00

010101010101010101010101010101011g01

00m0000000000000000000000000000d100

10101010101010101010101010101010g110e
-
I
r
-
I
e
-
I
r
-
e

0
0
0
—
0

#
0
0
0

Result: 00 0000 0000 0000 Odgx

0000000000000000000000000000001d0000

010101010101010101010101010101lgOlOl

000000000000000000000000000000le000

1010101010101010101010101010 lOgl 1010N
N
N
N

0
0
H
0

H
0
0
0

Result: 00 0000 0000 0000 ngx

oooooooooooooooooooooooooooordoooooo

0101010101010101010101010101 13010101

oooooooooooooooooooooooooooodroooooo

101010 1010 1010 10101010 10 lOlOgl 1010100
0
:
0
0

0
0
H
0

~
0
0
0

Result: 00 0000 0000 000d gOOx

4 OOOOOOOOOOOOOOOOOOOOOOOOOOldOOOOOOOO 0 0

4 01 0101 01010101010101 01 01 01 1g01 010101

4 OOOOOOOOOOOOOOOOOOOOWOOOOleOOOOOOO 0 0

3
.
:

O

75

4

76

10101010101010101010101010 g1 10101010

Result: 00 0000 0000 OOdg 000x
M
M
M
U
I DONOOOOOOOOOOWOOOOOOOOIdOOOOOOOOOO

010101010101010101010101 1g0101010101

OOOOOOOOOOOOOOOOOOOOOOOOdIOOOOOOOOOO

101010101010101010101010g1 1010101010

ResultOOOOOOOOOOOnglXJOx

0
0
0
0

00000000000000000000001d000000000000

0101010101010101010101 1g010101010101

MCDOOOOOOOOOOOOOOOOWleOOOOOOOOOOO

101010101010101010 10 10 gl 101010101010

Result: 00 0000 0000 ngO 000x

~
3
~
J
~
l
~
l 00m00000000000000001d00000000000000

01010101010101010101 1g01010101010101

00w0000000000000000d100000000000000

10101010101010101010g110101010101010

Result: 00 0000 000d gOOO 000x

c
o
c
o
c
e
o
o

OOWOOOOOOOOOOOOOOldOOOOOOOOOOOOOOOO

010101010101010101 1g0101010101010101

OOWOOOOOOOOOOOOOOleOOOOOOOOOOOOOO

101010101010101010gl 1010101010101010

Result: 00 0000 OOdg 0000 000x

O
‘
D
‘
O
‘
O OOWOOOOOOOOOOOOIdOOWOOOOOOOOOOOOOO

01010101010101011g010101010101010101

OOWOOOOOOOOOOOOdIOOWOOOOOOOOOOOOOO

1010101010101010gl 101010101010101010

Result: 00 0000 0ng 0000 000x

10

10

10

10

00w00000000001d00000000000000000000

010101010101011301010101010101010101

oooooooooooooodloooooooooooooooooooo

10101010101010g110101010101010101010

Result: 00 0000 ngO 0000 000x

ll OOWOOOOOOOOMOOOOOOOOOOOOOOOOOOOOOO

0
0
—
‘
0

0
0
~
0

0
0
I
-
‘
0

0
0
H
0

0
0
-
‘
0

0
0
H
0

#
0
0
0

#
0
0
0

H
0
0
0

#
0
0
0

H
0
0
0

H
0
0
0

77

ll 010101010101lg0101010101010101010101

11 oooooooooooodroooooooooooooooooooooo

11 101010101010g1 1010101010101010101010

Result: 00 000d gOOO 0000 000x

12 00m0000001d000000000000000000000000

12 01010101011g010101010101010101010101

12 oooooooooomoooooooooooooooooooooooo

12 1010101010g11010101010101010 101010 10

Result: 00 00dg'0000 oooo 000x

13 oooooooordoooooooooooooooooooooooooo

l3 010101011g01010101010101010101010101

l3 OOOOOOWdIOOOOOOOOOOWOOWOOOOOOOOOO

13 10101010g1 10101010101010101010101010

Result: 00 Ong 0000 0000 000x

l4 oooooordoooooooooooooooooooooooooooo

14 0101011g0101010101010101010101010101

14 000000d10000000000000000000000000000

14 101010gl1010101010101010101010101010

Result: 00 ngO 0000 0000 000x

15 oooordoooooooooooooooooooooooooooooo

15 0101 1g010101010101010101010101010101

15 OOWdIWOOOOOOOOOOOOWOOWOOOOOOOOOO

15 1010g1 101010101010101010101010101010

Result: 0d g000 0000 0000 000x

16 oordoooooooooooooooooooooooooooooooo

16 01 1g0101010101010101 0101010101010101

16 00d1oooooooooooooooooooooooooooooooo

16 10 gl 10101010101010101010101010101010

Result: dg 0000 0000 0000 000x

17mmmmmmmmmmmmmmmmmm

17 1g 01 0101010101 0101 01 or 01 or or 0101 0101

17mmmmmmmmmmmmmmmmww

17 gl 10101010 10101010 10 1010 10 10 1010 1010

Result: g0 0000 0000 0000 000x

0
0
-
‘
0

0
0
-
‘
0

0
0
~
0

0
0
H
0

0
0
v
-
e
0

.
-

0
0
-
‘
0

H
0
0
0

#
0
0
0

#
0
0
0

#
0
0
0

#
0
0
0

H
0
0
0

APPENDIX B

2.

288288888888888888

888388888888888888

282888888888888888

882888888888888888

228888888888888888

88%888888888888888

:88883888888888888

28%888888888888888

288828888888888888

85%888888888888888

288288888888888888

82%388888888888888

282888888888888888

883888888888888888

228888888888888888

888888888888888888

:88828888888888888

283%88888888888888

288288888888888888

883888888888888888

28:888888888888888

828888888888888888

228588888888888888

8%8888888888888888

288388888888888888

238888888888888888

282888888888888888

83%888888888888888

228888888888888888

838888888888888888

:82888888888888888

288888888888888888

223888888888888888

388888888888888888

:28888888888888888

85883388882:223232

2323333333223B2sB3

EggMO"—m¢20m>Pam;

mEQZmnE<

2%

SE

2%

3%

39

2%

29

E:

E:

2%

2%

2?

22

3%

33

3%

np_a

ma_a

mama

mama

._am«

~ana

neon

neon

~n_a

~a_a

_a~a

~a~u

Sea

anon

_n_a

_n~a

“sou

upon

nuau

much

”was

o—au

uuau

nova

nova

moau

nac—

yuan

anon

eacu

eaau

much

much

swam

swam

u—aa

u—aa

nova

nova

nuc—

nuc—

moan

muau

gnaw

each

each

swam

swam

once

swam

u—aq

w—aq

scam

scam

”new

nma_

ago»

one»

seam

nova

much

much

naau

whom

90

88888888888888£858

888888888888888888

888888888888883888

888888888888888828

888888888888888888

88888888888888888:

888888888888883882

888888888889888888

88888888888888E888

888888888888288888

88888888888888E888

888888888888825888

88888888888888E888

888888888888858885

88888888888888E888

888888888888888885

88888888888888E828

888888888888888825

88888888888888E885

88888888883888888:

88888888888888E882

888888888898888888

888888888888888888

888888888882888888

888888888888832888

888888888888288888

8888888888888£8888

8888888888888:8885

8888888888888£8288

888888888888882888

8888888888888£8888

888888888888888288

888888888888838888

888888888888888828

8888888888888£8888

88888888858888888:

888888888888838888

888888888288888858

8888888888888E8888

888888888888888588

888888888888EE8888

888888888882888888

8888888888888E2888

888888888888288885

8888888888888E8588

888888888888828888

8888888888888E8888

nuao

nuaa

swag

anaq

u—am

spam

noac

noaw

awa—

swa—

yuan

”man

gnaw

aqau

sea»

woaa

nuau

nuau

eaaa

maaa

uuaq

uuaq

spam

gnaw

u~aw

w~ao

noa_o

sea—o

u—oa_

u_oa~

moan

mean

umau

nmaw

”gag

snag

uoau

naau

nuao

euaa

uaaq

waaq

wuam

nuam

gnaw

gnaw

w_a_o

mo

888888888885885—885

coaxvooaxvooaxvooaxvoo.x.go.x05a_uvOOAXVnoaxu

888888888858888985

coaxunxvooAHVQOAHUAXVOCAXHAKVOO.x—no.guaxvo—.xu

88888888858888882 5

Axvoo.xvoo.xvooAxvcoAKVQOAXVOOAXunoAxvoonxv~o

ocaxvooaxvooaxvochv~a.x.oo.xvoo.xvoo.xvoo.~—

AxvooAXVOGAxvooaxvooAxnooAx.coax—mo.xvooaxvo—

88888888388889.5585 5

OCAXVOOAXVOGAXVcoAx.coaxvoc.x_on”:VOOAXVOOAXV

88888888888889.8585

ooAxvooAxvooAxvoofixvooaxvoo.x_n®.9—Axvooaxvoo

888888888828885885

coax.coAxvooaxvooaxvoOAXVooxxvanAx.uc.xvooaxv

888888888883858885

coaxvooaxvooAxvcoAxVQOAXVcanvnw.xvcu.xVOOAXV

coaxvoc.xvooAxvooAxuooaxvoo.xv.g.oo.xvoo.xv—o

coAxucoax.coaxvooaxvooaxvnoaxvnmAx.co”:UOOAXV

888888888885898885

ooAxVooAxuoo.xvooAxvooAx_oc.xuam.uuaxvonAxvoo

888888888858883885

coAxeQQAXVooAxvoo.xvoo.xvoo.xvnm.xVOOAXV~0Axv

888888888588888985

coax“coax.coaxVOOAXVOAAXVQOAXVamAXVoo.xuo_Axv

88.888888588888885— 5

ooAxchAXVooaxvooax.QOAXVOOAXVQmAxvoGAXVCO”=5

oo.xuoo.xuax.cofixvun.xuax.ocARUAXVOCAXUAXVoo ~—

coAxvoOAXVOOAxVcoax—coaxvcc.xvam.uunxvooaxvou

88888888888888885 5

OOAXVOOAxvoo.xvooaxvoonxvooAnvmuAxvooaxvcoAxv

88888888388888.8585

OOAXVOOAXVQOAXVOOAxvooaxvoo.k_mo.:uaxvooaxvoo

8888888885—88885885

888888888888598888

88888888889885.8885

coax.ooAxvooaxvooaxvooax.no.x_«o.xv~5.xvooaxv

888888888883 588885

ooAxVooAxvooAxvooAxuooAx_oc.x_wo.xvo_Axvooaxv

8888888888855—88885

ooAxvOOAXVco.xvooaxvooxxvooax_moaxvcoquooAxV

88888888885885—8885

coAxvooaxvooaxvooaxvonAxvoo.w_moAugnxvonAxvoo

888888888588885—885

oo.xvoo.x.coaxvooaxvQOAXVoo.x_moAx.55.x.~oAxV

88888888588889.8385

coAxvocaxvooaxvoofixuooAx.ooAxnmcax.oo.xvo_Axu

88888885888888885— 5

828888a88888888888

288888888828888888

888888888888888888

288888888288888888

882888%88888888888

288888882888888888

888888a88888888888

288888828888838888

888288a88888888888

288888288888888888

888888388888888888

288882888888888888

888828%88888888888

888828888888888888

888888%88888888888

288288888888888888

888882%€8888888888

282888888888888888

888888388888888888

228888888888888888

888888388888888888

:88888888888388888

888888888888888888

288888888882888888

888888388888888888

288888888828888888

828888388888888888

288888888288888888

888888388888888888

288858882888888888

882888888888888888

288888828888888888

888588388888888888

288888288888888888

888288888888888888

288882888888888888

888888383888888888

288828888888888888

888828388888888888

288288888888888888

888888388888888888

288888888888888888

888888§88888888888

228888888885888888

88888%888888888888

:88888888882888888

28888%8888%8888888

5

o_pna

o_ana

apes

apes

”an“

”on“

use“

has“

one“

cabs

new“

news

«can

«can

So:

ngo_a

~s__a

~a__a

g~~

”pNes

~_aOs

mason

__s_a

__s_a

ocean

o_a-

mama

man“

was“

was“

new“

”on“

one“

one“

was“

man“

«on.

can“

mama

mama

«ao_.

uses.

_p_sa

~n__.

__sOu

“egos

o~p_a

288888828888888888

8888288a8888888888

288888288588888888

8888888%8888888888

288882888888888888

8888828$8888888888

888828888888888388

888888538888888888

888288888888888888

8888882%8888888888

282888888888888888

88888883€888888888

228888888888885888

888888838888888888

:88888888888883888

288888888888888888

288888888888828888

888888838888888888

288888888888288888

828888838888888888

288888888882888888

888888838888888888

288888888828888888

882888838888888888

288888888288888888

888888838888888888

288888882888888888

888288888888888888

2888888:8888888888

888888888888888888

288888288888888888

888828888888888888

288882888888888888

888888838888888888

288828888888888888

888882838888888888

288288888888888888

888888888888888888

282888888888888888

888888288888888888

228888888888888888

588888388888888888

:88888888888828888

288888888888888888

288888888888288888

888888fi88888888888

288888888882888888

am

now“

cams

coma

wooua

moo—a

va-u

wag—a

menus

man—a

Nan—a

Nam":

unvua

~av~a

vmnoa

vfinou

age—a

nfiaua

N—ama

«gnaw

-nn~

~«pma

ounce

o—ava

mama

anmu

meow

meow

nabs

noun

coma

coma

mama

mean

vaoua

vooua

np—aa

mpfifia

NpN~a

NpN~a

aom—a

wan—a

nupoa

mason

Nanua

Nan—a

umnma

-pma

288888888888888888

288888888888888288

888888883888888388

288888888888882888

828888883888888888

288588888888828888

888888883888883888

288888888888288888

882888883888888888

288888888882888888

888888888888888888

288888588828888888

888288888888888888

288888888288888888

888888888888888888

28888888:888888888

888828883888888888

288888828888888888

888888883888888888

288888288888888888

888882883888888888

288882888888888888

888888883888888888

288828888888888888

888888283888888888

288288888888858888

888888853888888888

282888888888888888

888888828888888888

288888888888888888

8888888%8888888888

:88888888888888388

2888888%888888%888

288888888888882888

8888888a8888888888

288888888888828888

828888888888888888

288888888888288888

8858888fi8888888888

288858888888888888

8828888a8888888888

288888888828888888

888888838888888888

288888888288888888

8882888$8888888888

288888882888888888

8888888%8888888888

mm

n~aaa

naa—a

vaaNu

vaaNu

n—ama

n—ann

N—aaa

N—ava

-ana

auana

o—aaa

o—aaa

mafia

mama

mama

mama

hama

hama

oaoaa

caoaa

ma—_a

na—au

vamaa

van—a

mam—a

nan—a

Nav—a

Navaa

aanua

mama“

naaou

mfiaOa

vaaaa

waaaa

n—aNu

n—aNa

N—ama

«Hana

agava

auaaa

o—anu

ouana

macs

mama

mama

mana

hama

882888888388888888

888888888388888888

882888882888888888

888888888882888888

882888828888888888

888888888388888888

882888288888888888

888888888328888888

882882888888888888

888888888358888888

882828888888888888

888888888888888888

882288888888888888

888888888888888828

828888888888888882

88888888a888888888

8288888888888888z8

8%8888883888888288

828888888888888288

88888888$388888888

828888888888882888

88%888883888882888

828888888888828888

88888888a888888888

828888888888288888

888%88888888828888

828888888882888888

88888888fi888888888

828888888888888888

88888888fi888288888

828888888288888888

88888888%888888888

828888882888888888

88888888a882888888

828888828888888888

88888888fi888888888

828888288888888888

888888883828888888

828882888888888888

88888888%888888888

828828888888888888

8888888%%388888888

828288888888888888

888888883388888888

822888888888888888

888888883888888888

:88888888888888828

vm

mama

mac—a

mac—a

baa—a

ba—aa

cam—a

mam—a

manua

nan—a

vav—a

vav—a

nan—a

mamaa

b—aoa

h—aoa

baa—a

o—a—a

n—aua

m—ana

vaama

vaama

n—ava

m—ava

N—ana

N_ana

~_a©a

——aoa

o—aha

o—aha

mama

mama

mama

mama

haoaa

haona

cam—a

wag—a

namaa

mam—a

van—a

van—a

mav~a

macaa

nan—a

Nanua

aaaoa

o—aoa

888888888838888888

888822888888888888

88%888888888888828

888288888888888882

888888888a88888858

888288888888888828

888888888a88888288

888288888888888258

888888888fi88888888

888288888888882888

888888888%88882888

888288888888828888

888888888388888888

888288888888288888

888888888%88828888

888288888882888858

888888888388888888

888288888828888888

888888888$88288888

888288888288888888

888888888388888888

888288882888888888

888888888882888888

888288828888888858

888888888a88888888

888288288888888888

888888888328888888

888282888888888888

888888888338888888

888228888888888888

8%8888888888888828

882888888888888882

888888888388888888

8828888888888888zs

888888888388888288

888888888888888288

888888888€88888888

882888888888882888

888888888888882888

882888888888828888

888888888388888888

882888888888288888

888888888388828888

882888888882888888

888888888388888888

882888888828888888

namaa

man—a

h_ama

haama

o—ama

aaama

n—ava

muava

v—ana

v—ana

m—aaa

n—aoa

Naaba

N—aha

aaama

uaama

o—ama

o—ama

maoaa

maoaa

ma—aa

ma—aa

ham—a

hauaa

camaa

canaa

mavaa

navua

vamaa

van—a

baa—a

baa—a

o—ama

o—aNa

naama

naama

vaava

v—ava

naana

maana

Naaaa

Naaaa

muaba

aaaha

oaama

oaama

8888888883882888883s

mm

888882888888888882

8888888888$8888888

8888828888888888zs

888888888838888288

888882888888888288

888888888838888888

888882888888882888

8888888888fi8882888

888882888888828888

8888888888a3888888

888882888888288888

8888888888fi8828888

888882888882888888

888888888838888888

888882888828888888

888888888833288888

888882888288888888

888888888838888888

888882882888888888

8888888888fi3888888

888882828888888888

888888888883888888

888882288888888888

888%88888838888828

888828888888888882

888888888838888888

888828888888888828

888888888838888288

888828888888888288

888888888838888888

888828888888882858

888888888838882888

888828888888828888

888888888838888888

888828888888288888

888888888838828888

888828888882888888

888888888838888888

888828888838888888

888888888838288888

888828888288888888

888888888838588888

888828882888888888

888888888832888888

888828828888888888

888888888838888888

888828288888888888

om

haaaa

a—ana

a_ana

n_aaa

n—aaa

v—aha

v—aha

n—ama

m—ama

Naama

Naama

uuaoaa

aaao—a

o—auua

ouaa—a

mamaa

mau—a

mam—a

mam—a

haw—a

havaa

can—a

canaa

haana

haana

a—aaa

a—aaa

m—ana

n—ana

vaaaa

v—aoa

nuana

n—ama

Naama

Naama

"mama

auama

o—ao—a

o—aoaa

maaua

ma—aa

mam—a

maaaa

hanaa

hanaa

wav—a

oav—a

88888888888835888823:

888888882828888888ozza

888888888888388888

888888882288888888

888888a88888§88828

888888828888888882

88888888888fi888888

888888838888888828

88888888888a888288

888888828888888258

88888888388a888588

888888828888882888

88888888888a882888

888888828888828888

888888888883888888

manaa

mam—a

Saba

Sana

a—aha

a—aha

n—ama

m—ama

v—ama

v—ama

Sac—a

n—ao—a

NE—_a

888888838888388858«ma—"a

888888888883828888

888888828882888888

888888888838888888

888888828828888888

88888888888fi388888

888888828288888888

888888888883388888

888888822888888888

88888%888883888828

888888288888888882

888888888888888858

8888883888888888:8

888888888888888288

888888288888888288

888888888888888888

888888283888882888

888888888888882888

888888288888828858

:amaa

Saga

9amaa

oaamaa

mav—a

maza

mam—a

man—a

Sana

Sana

a—aoa

a—aOa

naaha

m—aha

Eama

3ama

n—ama

naama

888888888883885888N—aoaa

8888880—88888388858Sac—a

888888888883828888:aZa

888888388883888858:aSa

888888888883858888033a

88888828883889.8858o—aN—a

88888888888338.8888

88888828828888.8858

88888888888359.8888

88888828288888.5858

888888888883888888

888888938888888858

88883888888888880—8

hm

mam—a

man—a

mavaa

mav—a

bamaa

ban—a

haava

888888888882828888

888888888888833888

888888888882288888

888888888388888828

888888888828888882

888888888888888888

888888888828888828

888888888888888288

888888888828888258

888888888888838888

888888888828882888

888888888888832888

888888888828838888

888888888888838888

888888888828288888

888888888888838888

888888888822888888

888888883888888828

888888888288888882

888888888888%88888

8888888882888888zs

888888888888388288

888888888288888258

888888888888888888

888888888288882858

888888888888382888

888888888288828888

888888888888388888

888888888288288888

888888888888$38888

888888888282888888

888888888888338888

888888888228888888

888888838888388828

888888882888888882

888888888888388888

8888888838888888zs

888888888888388288

888888882388888288

888888888888388888

888888882888888888

888888888888382888

888888882888828888

888888888888885888

888888883888288888

888888888888828888

888888882882888888

mm

m~a¢~a

Nuanaa

Naan_a

huama

h—ama

o—aoaa

o—aoaa

n—aaua

n—a—aa

v—auaa

v—aN—a

maam—a

n—am—a

N—avaa

N—av_a

guan—a

uaanaa

h—ama

h—ama

a—ama

o—ama

n—aoaa

m—aoaa

vaaaaa

v—aaaa

m—aN—a

m—aNaa

N—anaa

Nuanaa

aaav—a

a—av~a

O—anaa

Guam—a

h—aha

huaha

o—ama

cuama

m—ama

m—ama

vuao—a

vaao—a

maaaaa

maaaaa

N—auaa

Nmamaa

aaam—a

aaamaa

888888888888888388

888888888888888885

888888888888888888

888888888888888288

888888888888888838

888888888888888838

888888888888888888

88888888888888888:

888888888888888838

8888888888888888ze

888888888888888828

888888888888888282

888888888888888338

8888888888888883:8

8888888888888§8828

888888888888882882

888888888888888888

888888888888883828

888888888888888388

888888888888882388

888888888888388828

888888888888828882

88888888888888fi888

8888888888888388:8

88888888888888fi388

888888888888828288

888888888888888388

888888888888822388

88888888888a883828

888888888888288882

888888888888883888

8888888888882888:8

888888888888883288

888888888888288888

888888888888883888

888888888888282858

888888888888883888

888888888888228888

888888888888888828

888888888882888882

8888888888888fi8888

vnao—a

v—aaaa

m—aa—a

m—aaaa

a—ao—a

o—aa—a

b—aw_a

h—ao_a

h—an—a

h—anaa

b—av—a

h—av—a

o—an~a

o—an—a

h—anaa

h—anma

o—avaa

a—av—a

n—an—a

nmanaa

nuaN—a

baaN—a

o—am~a

a—an_a

n—av_a

m~av~a

v—amma

Vuanaa

h~aaua

baa—aa

o—am—a

o—am—a

n—an—a

n—am—a

vuavaa

v—avua

n—anaa

nuan—a

h_aoaa

h—ao—a

anaaua

88888888888388883833a

8888888888888fi8288

888888888882888288

888888888888838888

888888888882882888

888888888888833888

mm

n—aN—a

maaN—a

v—anaa

vuam_a

n—avaa

AxvooAxvooaxvooAxvooAxvooAXVOOAXVooAxVo—Axvmu

88.88888888888880—:=v

oo.xunxvoo.xufixvoo.xuuzwOOAXUAXVOOAXVoOAXVAxvoo

5:“ooAxVCOAXVcoaxvooaxvooaxvooaxvCOAXVoo_xvac

AxvooAxvooAxvooAXVOOAXVaofixvoofixvooAxVQOAXVoc

Axvo—AxvooAXVOOAXVOQAXVOOAXVQOAXVoo.xvoo_xvac

AxvooAXVOOAXVOOAxvooAxvu_AXVOOAXVQOAXVOOAXVOO

ooAxVoa.xvooAxvooAxvooaxvooaxvooAxvooaxvuc.25

ooAxUAXVOOAXVAXVOOAXVAxVOU.zuaxvooaxuaxvooaxvoo

Axvoofixvo—AxvooAxvooaxvooaxvooAxvooaxvooaxvao

ooAxvooaxvoo.xvoo.xvooaxvu—AxvooAxVOOAXVQOAXV

ooAxvoo.xun=coAxvooaxvoo.xvooAxvooAxvoo_xvac

.xvooaxvCOAXVOOAxvooaxvooAxv"OAXVooaxvooAxvoo

AXVQOAXVOOAXVO_AXVOOAXVOOAxuoo.xvoo.xvoo_xvao

Axvoonxvooax.OOAXVocaxvooAxvv—.xvooAxVOOAXVOO

ooAxvooAxvooAxvoaAxvooaxvooAxVOOAXVooAxvuc.zu

Ax.ooAxvOOAXVooAxvooAxvooAxvov.zuooAXVooAxVoo

AXVOOAXVOOAXVOOAXVO—AxvooaxvooAxvooAxvooaxvmo

ooAxvooAxvooAxvooAxvooAxvooAxvvaAxvooaxvooaxv

COAXVOOAXVOOAXVOOAXVO~.xvooaxvooaxvooaxvuo.=u

Axvooaxvcoax.OOAXVOOAXVOOAXVOOAmvao.xvooAxvoo

AxvooaxvCOAXVooAxvooAxvoaAXVOOAXVooAxVoo_xv_o

AxvooAXVOOAXVooAXVOOAXVooAXVooAxvvaAxvooaxvoo

ooAxvooAxvooAxvooAxvcoAxvo—AxVGOAXVooAXVuc.:u

ooAx.ooAxvooAXVOOAXVOOAXVOOAXVOOA¥Vaoaxvooaxv

ooAxvooAxvoonxvooaxvooaxvooazflooAxvooAxvuo.:v

AxvooAxVooAxvooAXVOOAXVOOAXVOOAXVoouzfloonxvoo

ooAxvooaxvooAxvooaxvooAxVOOAXVo—Axvooaxvao.:u

ooAxvooaxvooAxvooaxvooaxvooAXVOOAXVCD.ZVOOAXV

oofixvooAxvooAxVOOAXVOOAxVooAxvoofizucoaxvvo.:v

_.om

haahaa

h—ah_a

cam—a

cam—a

~ao—a

aacma

nae—a

maaaa

mac—a

mac—a

vac—a

vac—a

nae—a

mac—a

baa—a

vac—a

baa—a

haaaa

macaa

mac—a

mac—a

maoaa

oaaaaa

o—ao—a

uaaoua

aaaoaa

N—ao—a

Naaeaa

naaaaa

naaaaa

APPENDIX C

APPENDIX C

SIMULATION PROGRAM FOR TESTING OF THE DKS CHIP

#include <stdio.h>

#include <ctype.h>

static int shift_register [31];

static int *EnLl .. shift_register ;

static int *EXGt - shift_register + 1;

static int *MO - shift_register + 2;

static int *AO - shift_register + 3;

static int *Av = shift_register + 4;

static int *M3I - shift_register + 5;

static int ‘M3O - shift_register + 6;

static int ‘AT - shift_register + 7;

static int ‘Ev - shift_register + 8;

static int ‘V - shift_register + 9;

static int ‘sc - shift_register + 10;

static int ‘Et - shift_register + 11;

static int *EM - shift_register + 12;

static int ‘Madr - shift_register + 13;

static int ‘T - shift_register + 14;

static int *TRadr= shift_register + 15;

static int *L - shift_register + 16;

static int ‘LRadr- shift_register + 17;

static int ‘Ml - shift_register + 18;

static int ‘M2 - shift_register + 19;

static int ‘Alzd - shift_register + 20;

static int *Albs - shift_register + 21;

static int ‘A2 .. shift_register + 22;

static int ‘Gate - shift_register + 23;

static int ‘CTRL - shift_register + 24;

static int *SGN - shift_register + 25;

static int *Lc - shift_register + 26;

static int ‘Tc - shift_register + 27;

static int *Ls = shift_register + 28;

static int ‘Ts - shift_register + 29;

static int *Etla = shift_register + 30;

static int tsrl_A, tsrl_B, one_delay[2];

91

92

static int Adder, MPYI, MPYZ, LX__latch, LA_latch[3], constants [5];

static int A1_latch, A2_latch, M1_latch, M2_latch, M3_latch;

Static int c_register, s_register, register__file[9], angle_register[6];

static int counter, TXPORT‘, DXPORT, Tx, Dx;

static int sile.din;

static int bus_A, bus_B, Sign_Al, Sign_A2;

static int test_stepS. test_vector;

FILE ‘0);

/* Program to simulate the testing of the DKS chip *7

main()

{

set__undef(); /"' Set all signals to undefined value */

init_rom 0; /* Initialize ROM contents */

fp - fopen ('tvfile" , "r"); /" Open the test-vector file *I

/* Test all modules in parallel where possible */

test_bus ();

test_con_logic ();

test_angle_and_cons ();

test_M1__M2 ();

test_A1_A2 ();

test_LX_creg ();

test_LA_sreg 0;

test_M3__rfile 0;

test_Dx_Tx ();

test_MPYl ();

test_MPY2 ();

test_Adder 0;

}

test_bus ()

{

int i;

printf ("\nTest Bus ");

test_steps - getvec (); /"‘ Read number of test patterns */

/* Repeat the following procedure for all test patterns */

93

for (i-l ; i<-test_steps ; i++) {

reset_signals (); /"' Set TSRLs and SRLs */

tsrl_A - getvec ();

tsrl_B - getvec 0;

‘EnLl - *EXGt - 1;SRLs

phase_one (); /"' Apply phase one of system clock */

tsrl_A - tsrl_B - 0;

*EnLl - 0;

phase_one ();

dump_scan_path O; /‘ Scan-out results "'I

}

return (0);

}

test_con_logic ()

{

int i;

printf ("\nTest control logic ”):

reset 0; /* Reset the control logic counter */

/" Repeat the following procedure 73 times to test each state *I

for (i=0 ; i<-7 ; i++) {

phase_one 0; /* Apply one system clock */

phase_two 0;

dump_sr1s 0; I“ Scan out SRL contents */

printf (”\n");

}

return (0);

}

test_angle_and_cons 0

{

int i;

printf ("\nTest angle registers and constants");

for (i=0 ; i<-5 ; i++) { /* First set all the angle-registers */

reset_signals ();

sile - 1;

din - getvec (); /“' from the test vector file. */

Phase_0ne O;

phase_two 0;

}

for(i-O;i<-5 ;i++){

reset_signals 0; /* Now transfer each angle-register */

*V - *Madr - i; /"‘ and constant one at a time to */

*Av - ‘EM = ‘EXGt = 1; /"‘ TSRLs of bus A and B respectively */

Phil-90.006 0;

Phase_two 0;

dump_scan_path 0; /* and scan-out the results. */

1;

return (0);

}

test_M1_M2 ()

{

int i;

printf ("\nTest M1 and M2 ");

test_steps - getvec 0;

for (i-l ; i<=test_steps ; i++) {

reset_signals 0;

‘MI - 2;

‘M2 - *EnLl - ‘EXGt = 1;

tsrl_A - getvec 0;

tsrl_B - getvec ();

phase_one 0:

Phasc_two O;

reset_signals 0;

‘MO - ‘EXGt - 1;

Phase.0ne 0;

Phase_tw0 O;

dump_scan_path 0;

}

return (0);

}

test_Al_A2 ()

{

int i;

printf ("\nTest Al and A2 ");

test_steps - getvec 0:

95

for(i=1 ; i<=test_steps ; i++) {

reset_signals O;

‘Albs - *A2 - 2;

*EnLl - ‘EXGt - 1;

tsrl_A - getvec ();

tsrl_B - getvec O;

phase_one 0;

phase_two O;

reset_signals 0;

‘A0 I *EXGI - I;

phase_one 0;

phase_two 0;

dump_scan_path O;

}

return (0);

}

test_LX_creg ()

{

printf ("\nTest LX and C-register ");

reset_signals ();

sile - 1;

din - getvec ();

tsrl_B - getvec 0;

911888308 0;

phase_two O;

reset_signals 0;

‘EV - l;

‘V - 5;

Phasaone 0:

phase_two ();

reset_signals 0;

*AT - *EnLl - *EXGt - *Ml - l;

Phil-tame O;

Phase_two 0;

reset_signals ();

*EXGt - ‘MO - *T‘c = 1;

phase_one O:

PhaSC_tw0 O;

dump_scan_path 0;

return (0);

}

test_LA_sreg ()

96

printf ("\nTest LA and S-register ");

reset_signals 0;

‘Etla - ‘EXGt - ‘EnLl = *AT‘ = 1;

tsrl_A - getvec ();

tsrl_B - getvec ();

Phase_0ne 0;

phase_two 0;

phase_one ();

phase_two 0:

reset_signals ();

*Alzd - 1;

phase_one O;

phase_two O:

reset_signals ();

‘EXGt - ‘AO - ‘Ts 1;

phase_one ();

phase_two O;

dump_scan_path 0;

return (0);

}

test_M3_rfile ()

{

int i;

printf ("\nTest M3 and Register file ");

for(i-0;i<-8;i++){

reset_signals 0;

*M31 - *AT - *EXGt - *EnLl = 1;

tsrl_A - getvec ();

tsrl_B - getvec ();

*LRadr - i;

13118863030:

phase.two 0;

reset_signals 0;

*M30 - ‘T‘ =- ‘EXGt = l;

*TRadr a i;

phase_one ();

phase_two ();

dump_scan_path ();

97

return (0);

}

test_Dx_Tx ()

{

printf ("\nTest Dx and Tx ");

reset_signals ();

sile = 1;

din - getvec O;

*V - 5;

Phase.one O:

phase_two ();

reset_signals ();

*Ev - 1;

‘V - 5;

Phase_one 0;

phase_two ();

reset_signals 0;

*Et - *EXGt - 1;

phase_one ();

phase_two ();

dump_scan_path 0;

return (0);

}

test_MPYl ()

{

int i;

printf ("\nTest MPYl ");

test_steps - getvec 0;

for (i-l ; i<-test_steps ; i++) {

reset_signals 0;

*M1 - 2;

‘M2 - ‘EXGt - 'EnLl -= 1;

tsrl_A - getvec ();

tsrl_B - getvec ();

Phaseyne 0:

Phase_tw0 O;

reset_signals ();

phase_one 0;

phase_two ();

reset_signals 0;

*M30 - ‘EXGt - l;

.
"
E
l
-
\
I
I
I
'

_

98

phase_one O;

phase_two ();

dump_B_only 0;

}

return (0);

}

test_MPYZ ()

{

int i;

printf (”\nTest MPYZ ");

test_steps - getvec 0;

for (i-l ; i<-test_steps ; i++) {

reset_signals 0;

*M31 - *EXGt - *EnLl = 1;

tsrl_A = getvec ();

phase_one ();

phase_two 0;

reset_signals 0;

*A2 - 1;

phase_one O;

phase_mo O;

reset_signals 0;

*A0 :- ‘EXGt = 1;

phase_one 0;

phase_two ();

dump_B_0n1Y ()3

}

return (0);

}

test_Adder ()

{

int i;

printf ("\nTest Adder ");

test_steps == getvec 0:

for (i-l ; i<-test_steps ; i++) {

reset_signals ();

*Albs - ‘A2 a 2;

*EXGt =- ‘EnLl = 1;

tsrl_A = getvec O:

tsrl_B - getvec ();

Phase.0ne O;

phase_two O;

reset_signals 0;

‘Gate - ‘EXGt - 1;

Phase_0ne 0;

Phasatwo O;

dump_B_only 0;

}

return (0);

}

/* This function simulates all functions performed in the phase-one

of the system clock of the DKS chip ‘/

phase_one ()

{

int i;

int error_code = 0;

counter++ ;

if(‘EnLl +‘MO+"AO+*AV+*T+*Et>l)

error_code-1;

if(*EnLl +‘MO+"‘AO+*TC+*Ts+*EM+*M30+ *Gate+ *Et> l)

error_code - 2;

if (‘EnLlul && ‘EXGtu-l) {

bus_A - tsrl_A;

bus_B - tsrl_B;

}

if (‘MOul) {

bus_A - Ml_latch;

bus_B - M2_latch;

}

if (‘AO-ml) {

bus_A - A1_latch;

bus_B - A2_latch;

}

if (*Avnl) {

bus_A a angle_register [‘V];

100

}

if (*Tc-al) {

bus_B - c_register;

}

if (‘Ts-al) {

bus_B - s_register;

}

if(‘EMul) {

bus_B - constants [*Madr];

}

if (*TB-l) {

bus_A - register_file [‘T'Radr];

}

if (*M30=-1) {

bus_B - M3_latch;

}

if (*Gatenl) {

bus_B - Adder;

}

if (‘Etnl) {

bus_A - TXPORT;

bus_B - DXPORT;

}

if (sile--l) {

for (i=0 ; i<-4 : i++)

angle_register [i] - angle_register [i+1]:

angle_register [5] .. din;

}

if (*Ev--l) {

TXPORT - Tx;

DXPORT - Dx;

LX_latch - angle_register [*V];

}

if(*M1 a- 1){

Ml_latch - LX_latch;

}

101

if (‘Ml -- 2) {

Ml_latch - bus_A;

}

if (*M2==1) {

M2_latch - bus_B;

}

one_delay [l] - one_delay [0];

LA_latch [2] - LA_latch [l];

LA_latch [l] =- LA_latch [0];

if(*Alzd && *Albs)

error_code - 3;

if(*Alzd u 1) {

A1_latch .. LA_latch[2];

}

if(*Alzd == 2) {

A1_latch =- 0;

}

if(*Ale --1){

A1_latch - Adder;

}

if("'A1bs--2){

A1_latch - bus_A;

}

if (*A2 -- 1) {

A2_latch - MPYZ;

}

if (*AZ -- 2) {

A2_latch . bus_B;

}

if (*M3l) {

M3_latch = bus_A;

}

else {

M3-latch = MPYl;

}

}

102-

if (I'Etlaas-l) {

LA_latcth] - bus_A;

}

if((‘AT&&‘Lc)||(*AT&&"Is))

error_code-4;

if (‘ATnl) {

c_register - bus_B;

s_register - bus_B;

register_file [*Uladr] - bus_B;
} .

if (‘L--l) {

register_file [‘LRadr] - Adder;

}

if(‘15“1) {

c_register - Adder;

}

if (‘LS==1) {

s_register - Adder;

}

if((l‘EnLl-nl) && *EXGt==1) {

tsrl_A = bus_A;

tsrl_B - bus_B;

}

if (error_code != 0)

printf ("Error code - %d \n“, error_code);

return (0);

/"' This function simulates all functions performed in the phase-two

of the system clock of the DKS chip */

phase_two ()

{

int i;

bus_A = -l;

bus_B = -l;

MPYl = Ml_latch * M2_latch / 2;

103

MPYZ .. 2 * M3_latch;

if (! *CI'RL) {

Sign_Al .. one_delaym;

}

else {

Sign_Al - 0;

Sign_A2 - ‘SGN;

}

if (Sign_Al==1)

A1_latch - -A1_latch;

if (Sign_A2=-1)

A2_latch - -A2_latch;

Adder - A1_latch + A2_latch;

Tx = Dx = angle_register [*V];

for (i=0 ; i<-30 ; i++)

shift_register [i] - counter " 10;

return (0);

}

/"' Scan out (print) the contents of both sets of TSRLs */

dump_scan_path ()

{

printf (“\ntsrl_A s %d", tsrl_A);

printf (“\ntsrl_B - %d\n", tsrl_B);

return (0);

}

/‘ Scan out (print) the contents of TSRLs of bus B only */

dump_B_only ()

{

printf (”\ntsrl_B - %d\n", tsrl_B);

return (0);

}

/* Print contents of all the SRLs in the scan path */

dump_srls 0

104

int i;

for(i-0;i<-30;i++)

printf ((i9610 - 0) ? ”\n%d " : "%d ”, shift_register[i]);

return (0);

}

/"' Reset the control logic counter and all control signals */

reset ()

{

counter - 0;

reset_signals 0;

retum(0);

}

/* Reset all control signals */

reset_signals ()

{

int i;

for(i-0;i<-30;i++){

shift_register [i] - 0;

}

‘EnLl - 0:

‘EXGt - 0;

sile - 0;

din -0;

retum(0);

}

/* Initialize ROM contents at beginning of the program */

init_rom ()

{

int i;

for(i=0;i<-4;i++){

constants [i] - i "' 25;

}

retum(0);

}

/"' Set all latches and registers to undefined values. */

set_undef ()

{

int i;

105

counter -= Adder - MPYl - MPY2 - -1;

LX_latch .. LA_latch [0] - LA_latch [1] -= LA_latch [2] :- -1;

A1_latch - A2_latch - -1;

Ml_latch a: M2_latch :- M3_latch = -1;

c_register - s_register .. -1;

sile - din - -1;

tsrl_A - tsrl_B - -1;

for(i-O;i<-8;i++)

register_file [i] - -1;

for(i-0;i<-4;i++)

angle_register [i] a -1;

for (i=0 ; i<-3O ; i++)

shift_register [i] - -1;

retum(0);

}

getvec ()

{

int temp;

fscanf (fp, "%d\n", &temp);

return (temp);

}

BIBLIOGRAPHY

10.

ll.

12.

13.

14.

15.

16.

BIBLIOGRAPHY

P. K. Lala, "Fault Tolerant and Fault Testable Hardware Design", Prentice Hall, 1985.

R. G. Bennetts. "Introduction to Digital Board Testing", Crane, Russack, and Co., Inc.,

1982.

r.w. Williams, and K. P. Parker, "Design for Testability - A Survey", Proc. of the

IEEE, Vol. 71, no. 1, Jan 1983, pp. 98-112.

E. R. Huatek, "Integrated Circuit Quality and Reliability", Mercer Dekker, 1987.

S. S. Leung, and M. A. Shanblatt, "A VLSI Chip Architecture for the Computation of

the Direct Kinematics Solution", Dept. of Electrical Engineering, Michigan State

University.

R. G. Bennetts, "Design of Testable Logic Circuits", Addison-Wesley Publishing Co.,

1984.

J. E. Stephenson, and I. Grason, "A Testability Measure for Register Transfer Level

Digital Circuits", Proc. 6th IEEE Fault Tolerant Computing Symp., 1976, pp. 101-117.

L. H. Goldstein, "Controllability/Observability Analysis for Digital Circuits", IEEE

Tran. Circuits and Systems, CAS-26, No. 9, 1979, pp. 1685-1693.

R. G. Bennetts, C. M. Maunder, and G. D. Robinson, "CAMELOT: a Computer-Aided

Measure for Logic Testability", IEE Proc., Vol. 128, Part E, no. 5, pp. 177-189.

I. M. Ratiu, et. a1. , "VICTOR: A Fast VLSI Testability Analysis Program" Proc. IEEE

Test Conf., 1982, pp. 397-401.

J. P. Roth, "Computer Logic, Testing, and Verification", Pitman, 1980.

E. J. McCluskey, "Logic Design Principles: with emphasis on Testable Semicustom

Circuits", Prentice Hall, 1986.

S. Funatsu, N. Wakatsui, and T. Arima, "Test Generation SyStems in Japan", Proc.

12111 Design Automation Systems, June 1975, pp. 114-122.

T. W. Williams and E. B. Eichelberger, ”A Logic Design Structure for Testability",

Proc. 14th Design Automation Conference, 1977, pp. 463-468.

G. H. Stange, "A Test Methodology for Large Logic Networks", Proc. IEEE 15th

Design Automation Conference, pp. 103-109.

T. P. Singh, S. S. Leung, and M. A. Shanblatt, "Bus Scan Testing for lntemal Bus

Architecture Systems", Sixth IEEE VLSI Test Conf., Mar. 1988.

106

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

107

M. G. Mercer, and M. A. Breuer, "Scan Path with Look Ahead Shifting (SPLASH)",

1986 Intl. Test Conference. pp. 696-704.

M. R. Mercer, and V. D. Agrawal, "A Novel Clocking Technique for VLSI Circuit

Testability", IEEE J. of Solid State Circuits, Vol. SC-19, No. 2, Apr. 1984, pp. 207-

211.

H. Audo, "Testing VLSI with Random Access Scan", Digest IEEE Compcon, 1980,

80CH1491-OC, pp. 50-52.

James H. Stewart, "Future Testing of Large LSI Cards", Dig. Papers 1977 Semicon-

ductor Test Symp., Oct. 1977, pp. 6-17.

B. Konemann, J. Mucha, and G. Zwiekoff, "Built—In Logic Block Observation Tech-

nique", Pmc. IEEE Test Conf., pp. 37-41.

J. Savir, "Syndrome Testable Design of Combinational Circuits", IEEE Trans. Comput-

ing, Vol. C-29, June 1980, pp. 442-451.

A. K. Susskind, "Testing by Verifying Walsh Coefficients" Proc. 11th Ann. Symp. an

Fault Tolerant Computing, June 1981, pp. 206-208.

E. J. McCluskey and S. Bozorgui, "Design for Autonomous Test", IEEE Trans. Com-

puting, Vol. C-30, Nov. 1981, pp. 866-875.

H. J. Nodig, "Signature Analysis - Concepts, Examples, and Guidelines", Hewlett

Packard J., May 1977, pp. 15-21.

V. Seshadri, "A Real_Time VLSI Architecture for Direct Kinematics", Robotics and

Automation Conf., 1987.

C. F. Ruoff, "Fast Trig Functions for Robot Control", Robotics Age in the beginning,

ed. by C. T. Helmets, Hayden Book, 1983.

S. K. Jain, and V. D. Agrawal, "Test Generation for MOS Circuits Using D-

algorithm", Proc. 20th Design Automation Conference, June 1983, pp. 65-70.

J. Savir, G. Ditlow, and P. H. Bardell, "Random Pattern Testability", Proc. 13th Intl.

Symp. on Fault Tolerant Computing, June 1983, pp.80-89.

P. Agrawal, and V. D. Agrawal, "Probalistic Analysis of Random Test Generation

Method for Irredundant Combinational Networks", IEEE Trans. Computers, Vol. 024,

No. 7, July 1975. PP.691-695.

E. B. Eichelberger, and E. Lindbloom, "Pattern Coverage Enhancement and Diagnosis

for LSSD Logic Self-Test, IBM J. of Research and Development, Vol. 27, No. 3, May

1983, pp. 265-272.

J. P. Roth, "Diagnosis of Automata Failures - A Calculas and a Method", IBM J. of

Research and Development, Vol. 10, July 1966, pp.278-291.

i
,
l
i

l
i
t
i
t
i
l
l
t
’
l
l
l
.

i
i

33.

34.

35.

36.

37.

108

P. Goel, and B. C. Rosales, "An Automatic Test Generation System for VLSI Logic

Structures", Proc. 18th IEEE Design Automation Conference, 1981, pp. 260-268.

V. Agrawal and P. Agrawal, "An Automatic Test Generation System for ILLIAC IV

Logic Boar ", IEEE Trans. Computers, Vol. C-21, No. 9, Sept. 1972, pp. 1015-1017.

Y. H. Levendel, and P. R. Menon, "Test Generation Algorithms for Computers HDLs",

IEEE Trans. Comp., Vol. C-31, No. 7, July 1982, pp. 577-588.

J. P. Mucha, "VLSI Testing - Problems and Solutions", VLSI 85, Elsivier Science

Publishers B. V., 1986. PP. 363-370.

Stephen Y. H. Su, and Tonysheng Lin, "Functional Testing Techniques for Digital

LSI/VLSI Systems", ACM/IEEE 2lst DAC Proc., 1984, pp. 517-528.

