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ABSTRACT

BIFURCATION OF SYMMETRIC PLANAR VECTOR FIELDS

By

Hyeong—Kwan Ju

The pitchfork homoclinic bifurcation of symmetric planar vector fields

and some codimension three bifurcation of symmetric planar vector fields with

nilpotent linear part are studied.

The set of symmetric planar vector fields with an equilibrium point of

pitchfork type and a symmetric homoclinic orbits at this equilibrium point is

a oodimension two submanifold. This is shown using Melnikov's integral

around the homoclinic orbit and studying the asymptotic behavior near the

equilibrium point in R2. The bifurcation diagram is also obtained.

The bifurcation diagrams of generic 3—parameter families of symmetric

planar vector fields with linear nilpotent part is analyzed and described on

the sphere using abelian integrals. These integrals generate the Picard—Fuchs

equations which in turn gives the number of limit cycles. The t0pological

equivalence of the bifurcation diagrams is shown to be determined by the

number of limit cycles. This can then be used to determine the topological

equivalence classes of the bifurcation diagrams.
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CHAPTER 1. PRELIMINARIES.

In this chapter we will introduce basic definitions, some fundamental

results concerning the structural stability on the plane, and the center manifold

theorem. Theorems will be stated without proofs. We restrict our interests to

the autonomous vector fields through the dissertation.

§1. Basic Definitions and Structural Stability on the Plane.

Let M be a two—dimensional smooth manifold and .3 r(M) a set of

Cr—vector fields on M. xocM is an equilibrium point of felt” r(M) if

f(xo) =0. Let fc$r(M) and x an equilibrium point of f in M. x0 is
o

generic if ReAtO for AcSpec(Df(xO)) = {A1,A2}. x0 is a m (resp. source)

 if ReAi < 0 (resp. Reai > 0) for i = 1,2, a saddle if A1A2 < 0, a node

 if A1A2 > 0, and a focus if Im()\i) at 0 for i = 1,2.

Let cp(t;x) be a flow of fez r(M) with cp(0;x) = x. Then

w(f,X) = n U <p(t;X), a(LX) = n U 90(t;X),
selR tZS sclR tgs

and are called w— and o—limit set respectively. I‘ is a closed orbit g g  

(periodic orbit with period T) if there is T > 0 such that 

w(t+T;x) = w(t;x) for th (and T is a smallest positive such number

possible). If I‘ is a closed orbit whose a— and w—limit set are only a

point {x0} where x0 is an equilibrium point of f, then P is called a

homoclinic or_bit a_t 50. Let two points {x0,y0} be equilibrium points in M

with x0 at yo. Then F is called a heteroclinic orbit between 50 ml yo  

if there exists an orbit F whose only a—limit set is {x0} and w—limit set

is {yo}-

 



A family Of vector fields leRIn —i .5 r(M) is a universal unfolding of

fee? r(M) if m is a minimal dimension of a stable family F with

F(0) = f. For {1, f2c$r(M), fl is topologically equivalent to f2 (and we

denote it *f1 - f2) if there is a homeomorphism h: M —» M such that for

each ’xcM, 6 > 0 and ‘0 < t < 6, h(w§(x)) = w;(h(x)) for some 6 > 0

with O < s < 6. Note that - is an equivalence relation. If f is an

element of an interior of a topological equivalence class, then f is called to be

structurally stable. 

Now let A be a manifold. We want to define the topological

equivalence between two families of vector fields.

Suppose Fi(i=1,2): A -i .Zr(M) are Cr. F1 is topologically equivalent

to F2 if there exists a homeomorphism g: A —i A and for each AcA, F1(A)

is topologically equivalent to F2(g(/\)) in the previous sense. Also a family

of vector fields F is structurally stable if F is an element of an interior of

a topological equivalence class in Cr(A,$ r(M)). fez r(M) is called a

bifurcation poi—nt if it is not structurally stable.

Next we want to define the bifurcation point of degree n by induction

which is crucial in the understanding of the bifurcation diagram.

f is a bifurcation m o_fm 9 if it is structurally stable.

f is a bifurcation poin_t 9_fm 1 if (1) f is not a bifurcation point

of degree 0, and (2) there is a neighborhood U of f such that for every g

in U, g - h for some h of degree 0, or g ~ f.

f is a bifurcation PM o_f @g‘rfi 2 if (1) f is not a bifurcation point

of degree 0 or 1, and (2) there is a neighborhood U of f such that for every

g in U, g ~ h for some h of degree 0 or‘l, or g ~ f. Similarly we can

define a bifurcation point of degree n.

 



From ‘the above definitions we have the following theorem which is

fundamental in the characterization of the bifurcation point of degree 1 on

M=IR2.

Theorem (1.1.1). A vector field f is a bifurcation of degree 1 in

$7M), r z 3, if and only if there is a neighborhood U of f and a

submanifold A of codimension one in U such that hle -+ .2” r(M) is

continuous with h(0) = M and h(a) eU—A for a a! 0 is structurally

stable but h(a1) is not tapologically equivalent to h(aQ) if ala2 < 0.

For h(0)cA, only one of the following occurs:

(1)

(2)

(5)

at a saddle point x0. h(a) for a < 0 has a saddle near x

h(0)cA has an elementary Saddle—node at X0 in M. There are no

equilibrium points of h(a) near x0 ' if a < 0 and a saddle and

a node near xO if ‘ a > 0.

h(0)cA has an elementary focus at. x0. There is no periodic orbit of

*h(a) ‘near xO if 3 a <. O and a periodic orbit near xO if

a > 0.

h(0)cA has a periodic orbit 7 which is stable from one side and

unstable from the other. h(a) for a < 0 has no periodic orbit

near -7 and h(a) for a > 0 has two hyperbolic periodic orbit

near 7.

Trace (-g)£((xo)) at 0 and} h(0) = feA has a homoclinic orbit 7

o

and no periodic orbit near. 7, Mai) for a > 0 has a saddle point

and a unique hyperbolic periodic orbit near 7 which coalesce as

a -i 0+. I

There is a connection between distinct saddle points (heteroclinic

orbit). '



For the proof, see Sotomayor [16] or Andronov et a1 [1].

Remarks.

(i) Phase portraits are for (1) — (5) in the Theorem (1.1.1) are

given in Figure 1.

(ii) This is the generic situation which arises in the case of one

parameter families (codimension one) of vector fields.

(iii) Schecter [15] described the bifurcation of codimension two which

occurs (1) and (4) simultaneously and showed the bifurcation

diagram of saddle—node homoclinic bifurcation.

(iv) Let sign?) = {f6$r(lR2)l f(-x) = —f(x) for deQ}. Then

fa?)f :(IR2) implies f(0) = 0, and we have the following in

Theorem (1.1.1) in a neighborhood of 0:

(6) There is a continuous map hle a .3 :(IRZ)

and spec(§§(o)) = {on}, A 9e 0, o is an only equilibrium

such that h(0) = f

point which is a saddle for h(a) if a < 0, and there are two

saddles and 0 is a node for h(a) if a > 0. (See also

Theorem (2.3.1) and Theorem in Appendix.)

The phase portraits for (6) are given in Figure 2.

(v) We are interested in the bifurcation diagram of an equilibrium

point which occurs (4) and (6) simultaneously (pitchfork

homoclinic bifurcation) and we will describe it in Chapter 2.

 



§2. Center Manifold Theorem for the Vector Fields.

Center manifold theorem is one of the most important and necessary

techniques for the nonlinear analysis and the bifurcation problem. It provides

us a benefit of the dimension reduction to a certain number (dimension of the

eigenspace of eigenvalues whose real parts are zero). We introduce the center

manifold theorem of the finite dimension for vector fields (we can get the same

theorem for maps by the discretized version which is the outside of our

interests here). In an obvious way it can be generalized to the infinite

dimensional problem. For details and proofs, for example, see Carr [3], Chow

and Hale [4] or Vanderbauwhede [19].

Let fee? r(an), r 2 1, and x(t;x0) be a. solution of x = f(x) with

x(0;x0) = x0. We say that a set A C [Rn is an invariant manifold of

x = f(x) if for every xocA, x(t;x0)cA for all telR. Also a set A is called

a loLal invariant minim of x = f(x) if there exists 6 > 0 such that for

erA, x(t;xo)cA for all tc(—c,e).

Let x = 0 be an equilibrium point of an fafi l.(an), r 2 1, and let

the spectrum of Df(0) be Spec(Df(0)) = SP+ U SP0 U SP_, where

SP+ == {AcSpec(Df(0))|Re)i > 0}

SP0 = {AeSpec(Df(0))|ReA = 0}

SP_ = {AcSpec(Df(0))|ReA < 0}.

Let E+(reSp. E0, E_) be the generalized eigenspace for SP+(l‘eSp. SP0, SP_)

so that [Rn = E+ e E0 69 E_. Now we state the theorem.



Theorem (1.2.1). With above notations and assumptions, there exist local

invariant manifolds Wu, Wc and WS tangent to E+, EO and E_ at 0

respectively, Wu and W8 are Cr and unique, however, WC is Cr—1

and not necessarily unique.

In Theorem (1.2.1) WC is called a loom center manifold. Usually we

prove the so—called global center manifold for the bounded vector field and then

using a cut—off function in the neighborhood of the equilibrium point of the

(not necessarily bounded) vector field and applying the global center manifold

theorem, we prove the local center manifold. Proof of the existence of the

global center manifold is required to use the implicit function theorem or a

contracting mapping theorem.



CHAPTER 2. PITCHFORK HOMOCLINIC BIFURCATION.

In this chapter we will give a bifurcation diagram and its explanation.

Next we will state formal assumptions for the pitchfork homoclinic bifurcation

and describe main theorems that we sh0uld prove. Then proofs will be given.

§1. Introduction.

Let fed? :(D), r sufficiently large (will be determined later), and consider

the following:

(2.1.1) it = f(x), xelR2,

such that 0 is a pitchfork and there are a pair of homoclinic orbits in D,

I‘ and —F which are stable. Then the set of all such vector fields is a

codimension two submanifold with an appropriate smoothness in .2” r(D), where

D is a symmetric neighborhood of I‘ (D is said to be symmetric if

—D = D in R2).

Suppose we have a two—parameter unfolding family 0f (2.1.1)

(2.1.2) x = f(x,al,a2)

where I(-,al,012)€.$;(D) for each (a1,a2)elR2, such that f(x,0,0) = f(x).

We would like to find a computable condition on the transversality of the

family (2.1.2) to Jim) at (01,012) = (0,0).

If the transversality condition is satisfied, we have certain smooth

nonsingular parameter coordinates changes (a1,o2) —» (71,72) —i (”1’M2)’

 



preserving the origin, and let f(x,a1,a2) = g(x,rl,r2) = f(x,,u1,u2), then

x = f(x,p1u2) has the bifurcation diagram of Figure 3 in a sufficiently small

and He’ in theneighborhood of (#1412) = (0,0). We have two curves, H01

left hand ‘side of the pitchfork bifurcation curve P(=p2—axis). They meet P

and H0 (= theat (u1,a2) = (0,0) with quadratic tangencies. H 2

positive 111—axis) are homoclinic bifurcation curves of codimension one, while

01

He is a heteroclinic bifurcation curve cf codimension one. H02 meets P

transversally.

The phase portraits of x = f(x,u1,a2) in a neighborhood of —I‘UI‘ is as

follows: ' i

A. #1 = 0 (The origin is a pitchfork.)

1. p2 = 0: two homoclinic orbits at the origin (figure eight).

2. 112 > 0: two stable closed orbits inside the stable manifolds.

3. p2 < 0: one stable closed orbit surrounding the origin.

B. a1 > 0 (The origin is a saddle.)

4. a2 > 0: two [stable closed orbits inside the stable manifolds.

5. a2 = 0: two homoc1inic orbits at the origin (figure eight).

6. a2 < 0: one stable closed orbit enclosing the origin.

C. ,u1 < 0 (The origin is a node, and there are two saddles in the

opposite side of the origin.)

7. p2 above H01: two stable closed orbits inside the stable

manifolds.

8. a2 on H01: two homoclinic orbits at saddles.

9. #2 between H01 and He: the flow of the vector field with

the initial x in the unstable manifolds of saddles tend to the

origin as t —> oo.

 



10. ”2 on He: two heteroclinic orbits which join one saddle to

the other. .

11. #2 below Hez' unique closed orbitsurrounding three equilibria.

Our techniques can be applied to the investigation of the vector field with

double heteroclinic orbits joining a saddle—nOde equilibrium point and a saddle

equilibrium point as in Figure 4.

We can extend our results to themore general problem by dropping "the

symmetry condition" on the vector field which will lead to the codimension

three problem. “Also we can consider this on the higher dimensional manifold

(of dimension greater than two) in a similar way as in Chow and Lin [5].

§2. Assumptions.

We consider a vector field it = f(x) with fez ;(D) where r > 3 for

a moment and DCIR2 a symmetric neighborhood of l", satisfying the following

conditions at the origin in 112.

(I) Spec(Df(0)) = {0,41}, )1 > 0.

Let u be a right eigenvector of the eigenvalue 0 and w be a left

eigenvector of the eigenvalue 0 such that u'w > 0.

(11) w-D3f(0)(u,u,u) > 0.

(III) x = f(x) has a homoclinic orbit 1‘ (hence —I‘) at 0 which

is hyperbolic. (Here we assume that I‘ is stable.)

 

 

 



A homoclinic orbit is hyp_erbolic if any Poincare return map from a

transversal section of the homoclinic orbit into itself (if defined) doesn't have

eigenvalues with absolute value 1 at a fixed point which is an intersection of

the homoclinic orbit and the transversal intersection.

Remarks

(i) fc.$;(D) implies w-D2f(0)(u,u) =

(ii) AssumptiOns I and II imply that x = f(x) has a pitchfork at

x = 0 with one negative eigenvalue. (See Appendix.)

(iii) We may assume that u is a tangent vector to I‘ at 0.

(Otherwise replace it by —u.)

For z,wdR2, we denote zAw by' Jz-w where J = [(1) 1%]. Note that

wAz = -—zAw and .12 is a rotation of the vector 2 by 7r/2 to the positive

direction in angle. 1

Now let v be a right eigenvalue of Df(0) corresponding to —/\ such

that v is tangent to F at 0. .We may assume that uAv > 0 without

loss of generality since if not, one can consider the reflection of the vector field

with respect to the x—axis ((x,—y) -1 (x,y)) .or y—axis ((—x,y) —i (x,y)).

Let x = f(x, £11,012) be a two parameter family of vector fields on IR2

such that f(-a, a2)6.2’ §(D) for each ((11,02)cIR2 and f(x,0,0) = f(x) as

well as '

(IV) w-D(x53; Moon)>> 0,

(V) f is sufficiently smooth (at least Cu).
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From Assumptions (II) and (IV), perturbation in the positive L11

direction makes the origin a saddle from-a pitchfork, while perturbation in the

negative 011 direction produces a new. pair of saddles from the pitchfork

point(0,0), which becomes a node. '

§3. Statement of the Main“ Theorems.

We state the theorems whose proofs will be given in the next section

except. the proof of Theorem (2.3.1). First 'we state the following. Its proof

will be shown in the Appendix.

Theorem (2.3.1). Under the assumptions (I), (II), and (IV), there is a Cr—1

function p(a2), with p(0) = '0, such that for (011,012) near (0.0)

x = f(x,a1,a2) has an equilibrium of pitchfork at 0 if and only if

011 = p(c12).

From the Theorem (2.3.1), we change the coordinates in the parameter

space, say,

T1 = 0‘1 ‘ p(0‘2)

T2 — “2

and let

30971172) : f(xaa'1(71172)1 0201172))

Then '

(2.3.1) x = g(x,rl,72)

is CPI. x = 0 is an equilibrium of pitchfork in (2.3.1) if and only if
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r1 = 0. ’ If Tl < 0, 0 is a node of (2.3.1) and there are a pair of saddles

near 0 but opposite sides of 0 each other, and if r1 > 0, 0 is a unique

equilibrium point which is a saddle.

' Let x0 be a point -I‘ and let ”cp(t; x0) be a flow of (2.3.1) with

<p(0; x0) = x0 for (71,7'2) = 0. We will denote cp(t; x0) simply. by 1,0(t)

if there is- no confusion.

Let

-oo

00 t .

(2.3.2) 11 = J eXP("l div g(so(S),0,0)dS) g(r(t),0,0) A 35—(r(t),0,0)dt.
0 T2

Then we have the following theorem.

Theorem [2.3.2].

(1) 11‘ converges.

(2) If I1 ,e 0, then-there exists a Cr—l’function q(rl), with q(0) = 0,

such that for (r1,r2) near (0,0) (2.3.1) has a pair of homoclinic orbit at 0

if and only if 72 = q(rl) for r1 2 0, where q(rl) = mr1 + 0(r1) for

some constant mclR.

Theorem (2.3.2) gives us an analysis for the bifurcation on the right hand

side of the pitchfork bifurcation curve. Once we have the transversality

condition (11 at 0), we can change the coordinates in the parameter space

again as in the following. i

Let

I ”1 =671

#2 = 72 — (1(71),
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and let

. f(xiflliflg) = 309710111112), 7'20‘14‘2»:

Then

(2.3.3) _ Sc = fin/11.112)

is a vector field of Cr—1 since q is Cr—l.

In (2.3.3) 0 is an equilibrium point of pitchfork if' and only if [11 = 0.

Also p1 > 0 and 112 = 0 if and only if 0 is a saddle and there exist a

pair of homoclinic orbits at 0 near —FUF.

To considerthe bifurcations on the left hand side of the pitchfork

bifurcation curve (pl = r1 < 0), we need‘the following.

Let-

(2.3.4) 12 = gain—[tow f(cp(s),0,0)ds) f(ip(s),0,0) A %(o(t),o,0)dt.

Then

Theorem (2.3.3).

(1) I2 converges.

(2) If I2 7% 0, then there exists Cr“4 curve ((#2), [(0) = 0, such

that for (111412) sufficiently near (0,0), (2.3.3) has a pair of homoclinic (resp.

heteroclinic) orbits near —PUF if and only if ,u1 = £7012) and 12412 2 0

(resp. S 0) where ((112) = mflig +Ao(,u§), m1 at 0 a constant in R.

In the expression of I1 and 12, since g(x,0,0) = f(x,0,0),
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div g(x,0,0) = div f(x,0,0), and gig—(hop) = gig—(x103), we have 11 = 12.

2 2

So we denote I1 = I2 simply by I.

I Next, we consider the transversality condition of the family of vector

fields it = f(x,al,a2) to the vector fields which satisfy the assumptions

(I) — (V). Let D be a symmetric open neighborhood of (n_ot necessarily

—I‘UP, M) 0. We denote 20 by the space of all symmetric vector fields in

D with Cr—topology, r z 11, i.e., 230 '= $;(D), r 2 11. Let

21' = {feEOIf satisfies (I) and (II) at 0, and all other-equilibria of f in D

are hyperbolic}.. The Appendix says that 21 is a CI—1 submanifold of

codimension one in 20. Also we let E2 = {ftEl|f satisfies (III), and

—1“uI‘cD}.

Theorem (2.3.4). The family x = f(x,al,a2) under assumptions in the

previous secton is transverse to 22 at (ol,a2) = (0.0) if and only if

ItO.

We are interested only in a neighborhood of —I‘UI‘. When the

transversality condition (I it 0) is satisfied, Theorems (2.3.1) — (2.3.4) and

Poincare—Bendixon Theorem (plus the hyperbolicity of F) gives our diagram

and its corresponding phase portraits of Figure 3.

§4. Proofs.

Without loss of generality we may consider the neighborhood of P by

the symmetry property.



A. Proof of Theorem [2.3.2].

Assume that 72 2 0, and consider the system

it = g(x,71,r2) .

(2.4.1) '71 = 0

T2 —

r—1
Center manifold theorem shows that there exists a 3-dimensional C

c

loc

Let <p be a flow of (2.3.1), and let

local center manifold W at (0,0,0) tangent to the center space in (2.4.1).

0 wheels,»= U U

tclR (x,rl,r2)cW10c

Then each (11,72)—section of W is a curve and (0,0)—section of W is

TI‘UI‘. Let W(r1,r2) be a (r1,r2)—section of W. Then for (71,7-2)

sufficiently near (0,0), W(rl,r2) is a curve in the neighborhood of —FUP.

Let L be a transversal line segment in R2 perpendicular to F at x0.

Then for (r1,r2) near (0,0), W(rl,r2) intersects L transversally near x0.

Hence there exists x(r1,r2) such that _x(0,0) = x0 and

x(‘rl,r2) £W(Tl,72)rlL. Also x(7'1,r2) is CPI. Now we have a Cr—1

family ofsolution of (2.3.1) 1pc(t; x(rl,r2),rl,r2) (simply cpc(t,rl,r2)) for

(rl,r2) small, such that wc(0,rl,r2) = x(rl,'r2), and so

cpc(t,0,0) = wc(t; x0,0,0): E w(t), (pc(t,rl,r2)cW(rl,r2) for th.

Note that (pc(t,0,7'2) _ is a branch of the local unstable manifold of the

pitchfork 0 of x = g(x,0,r2) and for T1 > 0, (pc(t,rl,r2) is that of the

saddle 0 of (2.3.1). _

Next we define a parameter dependent Cl?“1 change of coordinates on

R2
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(2”42) Y(X1T117-2) = (2110971172), y2(xaTlaT2))

in such a way that for (x,rl,72) near (0,0,0)

(1) y(-X,T1,T2) = -y(x,r112),

(2) y2(x,‘rl,r2) 5 0 for (x,‘rl,72)t(Trap—section of w‘focw), and

(3) y1(ip(t; x,rl,r2), r1,1'2) = constant for every x in IR2 near 0

with y1(x,rl,r2) = constant and for each fixed 01,72).

(2.4.2) is possible because of the symmetry property and the center manifold

theorem. By the change of coordinates (2.4.2), (2.3.1) becomes the following

Cr“1 differential equation in ‘ y:

o 2

(2-4-3) 3’1 = Y1 a(y1,71,72)

5'2 = Y2 b(y11y217'117'2)

where a is independent of y2, b iseven in y = (y1,y2). We also

assume that

(2.4.4) ny(0)u = (1,0) and ny(0)v = (0,1).

f(-,al,a2)e$; implies g(i,r1,r2)e.$ ;, and

6 " 6 .
W°(Dx 30—1 f(0)u) = w°(Dx “57—1 g(0)u). So from our assumpt1ons (I), (II),

(IV) and (2.4.4), (2.4.3) becomes

" 3 2

(2°45) y1 = ¢0(72)Y1(1+yl¢1(yl172)) + 71y1902(y117'1a72)

5’2 .= “903(y1a7'1a72)yQ(1+y2‘P4(y1iy2aTl172))
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where

(pom), 711(0), and cp3(0) = A are positive, 901,902 and 1,03 are even in

yl, and (p4 is odd in y, 904 = O(|y|). Let v(rl,r2) = Dyx(0,rl,r2)(0,1).

Then .v(0,0) = v and (2.3.1),has an invariant curve at 01is2 tangent to

v(r1,r2). Note that this invariant curve is Cr._1 in (r1,r2) and contains 1‘

for (71,12) = (0,0). 7

In a similar way as in tpc(t,r1,72), we can get a CF1 family

cps(t,rl,r2), (r1,r2) small, such that (ps(t,r_1,r2) is a solution of (2.3.1) with

cps(t,rl,r2) -1 0 as t -i 00 along the negative v(rl,r2) direction and

cps(0,1'1,r2)£L so that cps(t,0,0) = W) (See Figure 5.)

Define diam) = g(so(0).0,0) A {tac(0,r1,r2) — do»

3
diam) = g(¢(0),0,0) A [v2 (0.5.5) — n01], and

c s
d1(rl,r2) = d1(rl,r2) — d1(r1,r2).

It is easy to see that d1(rl,r2) = 0 if and only if there exist a pair of

homoclinic orbits of (2.3.1) at 0.

(9d1
We will show that I = (0,0) since, if had shown it, by the implicit

1 3‘1;

function theorem II at 0 implies that there exists a CF1 function q with

(1(0) = 0 such that d1(rl,q(r1)) = 0 for 0 5 T1 << 1.

Hence

0d 6d

73—71 (0,0) + Fri-(0’0) q'(0) = 0, and so

1 2

ad1 adl
Q'(0) = - 3?; (0,0)/ a}; (0,0). 5 II].

It follows that q(rl) = mr1 + 0(r1), and our proof will be completed.

Claim. I =1 (0,0).

.3
1
n3

3
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G

Let 1:201 = 14001001 A a, (1.0.0).

€
0
1
0

12320) '= station) ,A ‘3, 0.0.01.

[
0

Note that .

EEO-1172) = g(<p(0),0,0) A (#0171172) — 3%(017'11T2D

so

old
1 _ c _ 3

3720.0) - [972(0) PT2(0)-

While, by definitions of we and cps,

Eaflaam =Dx,g()tp(t)0,)0)%(t,0,)0++33-(,,,,o(t)00)

S

a a
3533th =Dg(<p(t),0,)0330,00) +B§5(),<p(t),0,)0

2

From these we have equations

Saga) = div g<at1.0.01 11:201th 013%001A0M1MO

an):2—(t)— div g(<p(t)0,:0)p2(0 + g(cp(t) )A0)),)3%(o(t),),00

and their solutions are

0

(2-4-6)c 0:2(0) = 02201) exp 1 div s(<e(t).0,0) dt

t1

+ 10ex1>(—1d1v aids)00) ds) show001 353000100) d1

t1

I,01 + 11011,
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(2.4.01, 19:2(0) = 1132011 exp (31 div nation) at)

0 .t

+] exp (—(1) div g(go(s),0,0) ds)g(,,)go(t)00A135—(o(t),,)dtoo

1

i a Is(t1).+ II(t1)
 

respectively. We will show later that

lim I(t) =lim IS(t).

t-* —00 ' t-ioo

 

First, consider the following.

 

Lemma (2.4.1 ].

(2.4.7)c lim BLMtOO)=0and

1H -00

(2.47) lim35€§(,,)=t00

Proof. Let

"c .

‘P 03,72) = Y(900(t,0,72),0,72): = (y1(t,r2),0) for t << —1

then y1(t,r2) > 0 for t << —1 and 4y1(t,r2) is a solution of the scalar

equation

(2.4.8) at = <p0('r2)z3 (1+z2wl(z,r2)).

(See equation (24.5).)

‘po and zzwl are Cr_4. Let

Z_3(1+Z2‘P1(Z172))-1 = Z—3 + H1(72)Z—1 + H2(Z17'2)'
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Z

, and hence H3(z,r2) = g H2(s,72)ds

0

Then H1 is Cr‘6 and H2 is of—7

is Cr-7.

Separation of variables in (2.4.8) gives

- ' 1—2
(2.4.9) — Q-z + H1(r2)lnz + H3(z,r2) = (p0(72)t + H4(r2)

where H402) depends on the value of y1(t,7-2) at some t = to. Hence

H4 is Cr_7' From (2.4.9) we have

2 2 2 ' —1 —1
22 (1 — 2 Hl(r2)z lnz — 2z H3(z,r2)) = —-(<p0(r2)t + H4(T2)) .

Let w = Z2 and let 2 > 0.

Then

(2.4.10) 2w(1—H1(r2)wlnw — 2wH3(t/v_v,r2))-1 = —(tp0(r2)t + H4(T2))‘1.

Let ¢(w,r2) be the LHS of (2.4.10). Then by the assumption (V), (I) is at

least C1 and 3%(0+,72) it 0 for 72 near 0. By the implicit function

theorem we can solve ¢(w,r2) = v for w, and let w = 3 + R(v,72) be

the solution to ¢(w,72) = v. Then R is C1 and R = O(v2).

From (2.4.10)

(2.4.11) y? = — %(w0(r2)t + H4(r2))_1 + R((<,00(r2)t + H4(T2))_1, 72).

SO we: have

'y1 =-— 3(w0021t — H4ir211‘1/2 + R1((100(72)t + H4(r211‘1,r21

' 2
where R1(v,r2) = O(v3/ ).
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6y ' ‘ .

So 37—;(tfl2) —1 0 as t —1 —oo for 72 near 0. This implies that

a“ 3Y1
632(th = (aT—2(t,r2),0) a (0,0) as t a — a and

c _ -

31,30,001 = Dyx(ac<t.01.o.01%%:(t01e Dyx<0.0.01(0.01 = (0.01

aSt-l-co.'

Hence we proved (2.4.7)c'

Next, to prove (2.4.7)S, let

~s s

90 03172) : Y(W(t10172)10172) = (013’2(t172))-

Since (ps(t,0,r2) is tangent to v(0,r2) and ws(t,0,7'2) —1 0 as t —> 00 for

each 72 near 0, ws(t,72) > 0 for t >> 1, and y2(t,r2) satisfies a

differential equation

(2412) dz — — (r)z(1+z2 (27))
. ' ' at — $3 2 ‘P4 7 2

' _ 2 r—2
where (p3(0) —— A. tp3 and z (04 are C .

(See equation (24.5)).

Note here that we set r1 = 0 so that ([13 and (p4 may be different from

those of (2.4.5). It is easy to get the following from (2.4.12)

(2.4.13) z epo5(z,72) = H6(72) exp(—tp3(r2)t)

where H5 and H6 are CF3 and H6> 0. Since

%(2 epo5(z,r2))| # 0, we can solve the equation

z=0

(2.4.14) 2 epo5(z,1'2) = v
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for 2 if z and v are near 0. Let 2: R(v,r2) be the solution to

(2.4.14). Then R is (Jr—3 and

(2.4.15) R(0,72) a 0.

Hence we get the following solution from (2.4.13)

(2.4.16) y2 = R(H6(r2) exp(—<p3(7'2)t), r2).

(2.4.16) and (2.4.15) imply that

WZ-(tflé) -+ 0 as t‘ -1 oo.

2

From the definition of 33,

~

8 3y
. 3%“,7’2) = (0, 373W) 4 0 as t .-. so.

Now

a 3 ~s as 0X ~s
£0,001 = Dyxw 0.01.0.0) 31,120.01 + 93(0) (1.01.0.0) .. 0 as t a a,

and we complete the proof of Lemma (2.4.1). 13

Now back to the previous problem,

0

Ic(t) = g(cp(t),0,0) A_35g(t,0,0) exp ] div g(cp(s),0,0)ds.

(2”417) g((p(t)1010) 7) 0 as t’ '7 _ 001

(2.4.18) div g(o(t),o,0) = -1 + O((go0(72)t + H4(T2))‘1) as t a - a
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from (2.4.5) and (2.4.11). Hence from (2.4.17), (2.4.18), and (2.4.7)c of Lemma

(2.4.1), we have

3 lim Ic-(t)— 0.

t-tfiioc

While, from the definition of its, (2.4.15) and (2.4.16),

20) ‘= 0(expi—At11 as t-» a,

$230.01 = (0.4: eta—10 + o(exp(—At111

for t >> 1 and a constant C > 0.

Hence g(vlt),0,0) = (at)

= IDXY(‘P(t),0i0)l_1 $30.01

= {[I>,,y(0.0,011‘1 + 0(exp(-At11} . (0,—c expi—At) + mean—1011.

Also div g((o(t),0,0) = div g(0,0,0) -l- Dx(div g(0,0,0)) + O(<p(t)2)

= —1 + O((p(t)) = —1 + O(exp(—/\t)) as t a a.

Now,as t-ioo

IS(t)= )A03332t,0,0))exp[—]tdiv g( (0(s),0,0)ds]

M
A

t

= —g::L:(t,0,0) A g(cp(t),0,0) expl—(l) H + O(exp(—As)))dsl

= _ 3352““) A {[D,,y(0,0.01]"1 .+ O(exM-MD} °

(0,—C exp(—)it) + O(exp(—/\t))) exp(/\t) exp ([tO(exp(—As))ds.

Thus lim 1S(t) = —0 A [ny(0,o,0)]'1 . ((),—0 exp ([OOO(exp(—/\s))ds) = 0
t-too

since the integral converges.

Now, back to (2.4.6) the LHS of (2.4.6)c s are constant, so as t —) co, II(t)
c,s’

and II(—t) converge, and
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'0 t . I

.p$2(01 = 1 exp<—1 div g(to(s1.0.01ds1 g(WLOiO) A gigs/tonne.

, - “:2 ”t . ,
p,2(01 =(1) each—(1), div 'e(to<s1.o,01ds1 30201.00) A 3%(dt1001dt,

since lim Is(t) = 0 = lim Ic(t). i

t-ioo t—l =00

Hence I1 in (2.3.2) is convergent] and is equal to p: (0) — p: (0), and so

' 2 2

6d .

equal to 371(00). So we proved Theorem (2.3.2). :1
2 .

m. Theorem (2.3.2) gives us a homoclinic bifurcation curve of

codimension 1: {71,7'2)|r2 = q(r1), T1 > 0}. After change of coordinates in

the parameter space

((71,721 2 (141,142): #1 = 711 142 = T2 - 0(a)) (866 page 12),

if we consider (2.3.3), for ”1 > 0 we have two structurally stable connected

components. If I1 - p2 > 0, then the phase portrait is topologically

equivalent to that for region 4 in Figure 3, and if I1 - 112 < 0, then it is

topologically equivalent to that for region 6 in Figure 3. (Note that Figure 3

is desciibed only the case I1 > 0.)

Existence of limit cycles in phase portraits for region 4 and region 6

is immediate from the hyperbolicity of F, the Poincare—Bendixon Theorem plus

the symmetry property of 'the vector field. We again emphasize that our

interests are only in the neighborhood of —I‘UI‘.

B. Proof of Theorem (2.3.3).

Basically this proof is almost the same as the previous one. However, for

111 < 0 new equilibrium points arise and this makes the proof complicated.
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Through the proof, we assume that al 5 0.

Again let us consider the system

, it = foe/41,22)

(2.4.19) [11 = 0'

1.42:0

which is CPI. Using the center manifold theorem in (2.4.19) and so on, we

can define (006,111,112) of CF1 family. (See-equations (2.4.1) and (2.4.2).

Also see Figure 5.) [Noteb we will use the same notations even through they

may be different from those in the proof of Theorem (2.3.2)]

Under the same assumptions and change of variables (from x— to

y—coordinates), finally we get to a CF1 equation which is almost the same as

(2.4.5):

. 3 2
(2.3.20) y1 = ¢0(u2)y1(1+y1) + ”1y1902(y1’”1’”2)

where <p1,(02,<p3 are even in yl, (04 = O(|yl) is odd in y = (y1,y2), and

<p0(0), (02(0), (p3(0) = /\ are positive.

Equilibria of (2.4.20) near (0,0,0) consists of

E1 = {0} x [R2 and

E2 = {(ylt0),01,02)lul = #101,142»

where [11 = p1(y1,)t2) is as follows:

l‘1 . 2 2 2
—2(0,02) i 0 so that 141 = -y-1(¢0(142) + y1¢1(y1,02))

aY1

for some $0012) > 0 and $103,112) by the implicit function theorem.
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' 2 . —4

Note that 2110012) + y1w1(y1,/12) ls Cr . For a1 < 0, E1 does not

give usany further information concerning the topological qualitative features

since 0€R2 is a node. So we will consider E2 only.

For ”1 g 0,_ setting ”1 ‘= —62, we have

' , 2 1 2

(2-4-21) 6 = 21030012) + y1¢1(y1’/‘2)) / -

' 86 ‘
So 0.

5.51'3'120 #

By the implicit function theorem, we can solve (2.4.21) for yl, and we let the

solution to (2.4.21) be

(2-4-22) Y1 = 1105,02)-

Since (2.4.21) is odd in yl, p in (2.4.22) is odd in 6, i.e.,

hating) = —p(6,)l2). Also n(a,n2) >' 0 if s > 0. (00(0) > 0 in (2.4.20).

So (2.4.22) implies that the equilibrium point (p(6,,a2),0) of (2.4.20) with

111 = —62 is a saddle if 6% 0, and (p(0,,u2),0) = (0,0) is a pitchfork.

Now define

(2.4.231 pals) = x(<n(d.t21,01,—62.121.

Then p(6,/12) is a CF4 mapping such that for (6,)12) near (0,0),

(0,0) is a pitchfork of it = f(x,0,p2),

p(§,/l2) = a saddle of it = f(x,—§2,)12) if a > 0,

another saddle of it = ion—52,112) if 6 < 0.

(See Figure 5.)
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From (2.4.23) 330,0) = Dyx(0,0,0) (3%(0,0),0), by the definition of u

u = (ny(0.0,011‘1(1.01 = 0,300.01 (1.01.

Hence

(2.4.24) 330,0) = 330,0) 11.

Now (2.4.20) with 711 = —62 has an invariant curve {(ylty2lly1 = p(6,u2)}

at the equilibrium point (p(6,p2),0). For 6 = 0 (so 121 = 0), this invariant

curve is the stable manifold of the'pitchfork (0,0), and for 6 at 0, it is the

stable manifold of the corresponding saddle (p(6,u2),0).

Let v(6,,u2) = Dyx((p(6,,a2),0), —62,u2)(0,1). Then it = rec—152,112) has

an invariant curve at p(6,p2) tangent to v(6,ll2) and this invariant curve is

CF4 in (6,112). For (6,112) = (0,0), this invariant curve contains 1‘.

Similarly (see the paragraph below (24.5)) we have'a Cr—4 family

(ps(t,6,a2), (6,;t2) small, such that 3180,6422) is a solution of

x = f(x,—62,/12), (ps(t,6,,u2) -) p(6,,u2) as t —) 00 along the negative v(6,,u2)

direction, (ps(0,6,;12)cL and cps(t,0,0) = cp(t).

(ps(t,0,u2) is a branch of the stable manifold of the pitchfork

p(0,_p2) = (0,0) of x = f(x,0,u2) and if 6% 0, ws(t,6,,u2) is a branch of

the stable manifold of the corresponding saddle p(6,/12) of x = f(x,—62,u2).

We define

(15041.02) = f(¢(0),0,0) A ((pcwal‘laHQ) - 10(0)),

(13(51112) =i(d(01,0.01 A (1030,0321 — 2011

From now on, we assume that 6 2 0, and define

d303,) = dgwiwp - dawns)

respectively. Hence d; is CF4t since (15 is CIT1 and d; is Cr_4.
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From the definition,

($05,112) = 0 (resp. d5(6,p2) = 0) if and only if there exists a pair of

homoclinic (resp. heteroclinic) orbits of x = Ion—62,712) at p(t6,p2)(resp.

from 00%) to paid?»

We will show the following:

(2.4.25) ‘ 333mm < 0 (resp. 332mm > 0) and

(2.4.26) (0,0) = I2.

si
li

ca
?

Suppose we have shown (2.4.25) and (2.4.26). Then (2.4.25) and I2 9!: 0

imply that {(6,u2)|d;(6,u2) = 0} is a Cr"4 curve through (0,0) of the

form .

‘5 = [Hi/12 + 0(H2)

where

4

1: 2 ‘

m = ‘ I2/W(0,0) ii 0-

(Note that = m+ a2 + 0012) and —-6 = -m_a2 + 0012).)

Hence p1 = —(mi)2ag + 0013):; [(112).

Also, 0 S sgn(6) = sgn(m+a2) = sgn(12op2), so» I2 . [12 2 0.

(Resp. 0 2 sgn(-6) = sgn(—m—p2) = sgn(I2 . 112), so I2 . a2 5 0.)

To show (2.4.25) and (2.4.26) ,,first we Construct variational equations for

(peat—62412) . . and ¢S(t1i§1#2)-

Since,



 

 

(
'
5

6”2(t,0,0) =¥ Dxf(<p(t),0,0) gigaph) + gfjdw),

g
o
.

(i ‘9 s(t,,)00)—_ Dx,,=tf(<p(t)00)( 3538“,,”0

S

gfiO—(t,0,0) .=Dxf(¢(t),o,0) 35—(t,0,0) + gift—Zedong),
”2 2

m

9
4
‘
;
fi
“

if we define

C

12,320) = mama) A 3536,09),

psi“) = f(so(t),0,0) A (i 3553mm

p;2(t)_ = memos) A 33%qu

we have the following variational equations:

(2.4.27)c % pizza) = div f(go(t),0,0) [$20) + f(m),,00) A6317} (t),,,00)

(2.4.27)Si gf p35“) = div f(<p(t),0,0) pfsfit),

d s _ . t 3 8f
(2.4.27)S Elf pfl2(t) _ le f(<p(t),0,0) pfl2(t) + f(<p(t),0,0) A %(¢(t),o,0).

If we solve the equations (2.4.27), we have the following:

0

(2.4.28)c 612(0) = p;2(t1) exp { div f(go(t),0,0)dt

1

0 t

+ { expl-(g div f(<p(s),0,0)ds]' KW)00) A %M(<p(t)00)

1

.1 t

(2.4L28)S# p%i(0) = p36i(t1) aim-(J) 1 div f(<p(t),0,0)dt],
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t

(2.4.28)S p3 (0) = ps2(.t1) dim—(J) 1 div f(gp(t),0,0)dt]
[‘2 It

0

exp Ht div f(<p(s);0,0)ds] f(go(t),0,0) A %(¢i),o,0)di.+1
.t 0

1

Let Ic(t1) be the first term and II(tl) the second term in the RHS of

(2'4'28)c' Also let Is(t1) be the first term in the RHS of (2.4.28)S. Then

' p;2(0) =Ic(t1) +1101),

p320» =Is(t1) .+H<t1>.

For a moment,. we prove the following:

Lemma (2.4.2).

(2429) 1‘ 53¢} 00) 0.. 1m t, , = , ‘

C t-l—oo #2

a 3* ‘
(2429M lim —§3—(t,0,0) =- i gimp), and

t-loo

S .

(2.4.29)S :im 3%0’0’0) = 0. ~

400

Proof. For (2.4.29)c, see the proof of (2.4.7)c in Lemma (2.4.1). (Note that

5 = 0 corresponds to ”1 = —62 = 0.) For (2.4.29)Si, we define

(2.4.30) ws*(t,6,u2) = y(w3*(t,6,u2), #52412) = (pew), y2(t,i6,u2))
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for t >> 1, for each (i6,p2) near (0,0). By the relationship between the

x—coordinates and the y—coordinates and from (2.4.20),

y2(t,t6,u2) > O for t >> 1,

and y2(o,:k6,p2) satisfies a differential equation of the form

(2.4.31) 4, = -<P3(*5,u2) z(1+22v4(z..~=6.u2)).

.Here <p3 and z2¢4 are Cr—5.

If we solve (2.4.31) by the separation of variables,

(2-4'32) Z eXpJ1(Z,d:5,/12) = J2(*6i#2) exP(_903(i6i/‘2)t)

for some J1 and J2 > 0, both Cr_6. Since %(z epr1(z,i5ifl2))l 0 i‘ 0

z:

for (£6,112) near (0,0), by the implicit function theorem, we can solve

(2.4.33) 2 epr1(z,i6,p2) = v

for z. Let z = R(v,t6,p2) be the solution to (3.4.33). Then R is Cr—6

and

(2.4.34) R(0,i:6,p2) s 0.

Thus from (3.4.32), if we let 2 = y2 and v = the RHS of (3.4.32), then we

get

(24°35) yQ(ta*6iN2) = R(J2(i6,u2) eXp(_903(i51#2)t)i $6,,u2).
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(2.4.34) and (2.4.35) imply that

' W2 W2
2!: ”(t,i6,fl2), Ell—2(t,i6,fl2) —’ 0 as t "i (I).

From (2.4.30)

~Si

g%_(t06,fl2) = (i%(i67”2)3ii%_(i6’”2)t))

So

9330,43) . (4 3%(oo,o2),0) and

(2.4.36)

—%:—:,,)(t§p2 (3L(45,,p2)0) as to...

st - ~s:h

Since 33—(000) = Dyx(<ps*(i,0,0),0,0) Q3fli,0,0), from (2.4.20) and (2.4.36)

lim £953-3);(t,0,0) = Dyx(0,0,0)(i 33(0,0,),0) = 4 330,0).

t-loo

Finally for (2.4. 29)S , we consider

W“6,#2)—" X(‘psi,“ (Sis/‘2) “'62 #12)

6 6x ‘st —+

So 45—:(t00) Dyx<Zo(t,o,0).o.o>(pi’9,,2<o,o),0) + p—u2(o (t.o,0),o,o>

A ax _ 4
Dyx(0,0,0)(g£—2(0,0),0) + 315(0’0’0) _ 0 as t do

. 613 _
Since 372(0’0) = 0 and x(0,0,p2) = 0.

So we complete the proof of Lemma (2.4.2). :1

By (2.4.30)

1.

(2.4.37) os*(t,6,o2) = nywsfitooz), —o2,o2) WW2)
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Let' 6': p2 = 0 in (2.4.37). Since (3314,30) = (p(t) = f((0(t),0,0),

More») = [ny(o(t),o.0)1‘1 romeo).

From (2.4.30), (2.4.34) and (2.4.35), we obtain (00.) = O(exp(—At)) and

(2.4.38) ps*(i,0,0) = (0,43 exp(-At) ,+ O(exp(—/\t))) as t —+ e

where C > 0. Therefore

(2.4.39) f(o(t1),o.0) = {[ny(0,0,0)]’1 + 0(exp(—At))} -

(0,—C exp(—/\t) + o(exp(-At))).

(2.4.38) also gives

div f((p(t),0,0) = -x\ + O(exp(—/\t)).

Hence

(2.4.40) exp[——(()t1 div f(<p(s),0,0)ds] = exp()\t1)oexp (1:1 O(exp(—)As))ds.

Then, from (2.4.39) and (2.4.40) we have

(2.4.41) :im f(cp(t1),0,0) dim—(1:1 div 'f(<p(s),0,0)ds] =

1"“0

[DXY(0,0,0)]_1 ° (0,-C exp ((00 O(exp(-/\S))dS)o

Now back to (24.28)“, by (2.4.29)S of Lemma (2.4.2)
i:
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' =4 . t

offs» = f(so(t1),0,0) A (4 gigs—31.0.0» exp {—3 1 div 4443.034]

1:

= —(4 3540.0» A Iim f(o(t1),o,0) «~2po 1 div f(o(s)o,o.)ds1
131-100 0

where the limit exists by (2.4.41).

Note that

(1) from definitions of d; and psgh,

aid:

2 :l:

73(020) = — pg (0))

(2) 3%(09) is a. positive multiple of v by (2.4.41) from similar

assumption as (2.4.4),

(3) lim f(<p(t1),0,0) is a negative multiple of u.

1"°°

By above (1), (2) and (3),

8+ 6d; 3 s— 6d2
706 (0) = —a—5(O,0) (resp. —p5 (0) '= m— (0,0)) is a negative (resp.

positive) since u A v > 0 which shows (2.4.25). The proofs of

(2.4.42) lim 10(4) = 0 = lim 18(4)

t-l —oo t-ioo

are immediate by Lemma (2.4.2), and are the same as those in Theorem

(2.3.2). It is easy to see that (2.4.42) shows our final claim (2.4.26).

The only thing we have to notice ‘is the smoothness of f we need. In

Cr_4 instead of Cr-l, wethe proof- (2.4.29)c in Lemma (2.4.2), since (as is

need the smoothness of Cr.10 instead of Cr—7. So r has to be at least 11.

We finished our proof of Theorem (2.3.3). o
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Remark. Theorem (2.3.3) gives us a homoclinic bifurcation curve of

codimension 1: {(—(m"')2p§,,u2))|u2 > 0} = H01 and a heteroclinic bifurcation

curve of codimension 1: {(—(mj2p§,,u2)| 112 < 0} = He' -

For “1 < 0, we have three structurally stable connected components as

in Figure 4 which is the case I2 > 0.

Existence of limit cycles in regions 3, 7, and 11 of Figure 4 is again from

the same reasons, hyperbolicity of I‘, Poincare—Bendixon Theorem, and the

symmetry property of the vector field.

Note that I1 = I2 = I.

C. Proof of Theorem (2.3.4).

Consider a Cr—mapping ‘11: U C IR2 —A JISXD) with

\Il(a1,a2) = f(~,al,a2) and \IJ(0,0) = f(-), where U is a neighborhood of

0.

We want to show that ‘1! is transversal to 22 at f if I # 0.

First, we will show that 232 is a CF1 submanifold of 21 of

codimension one.

Let ch2 with pitchfork 0 and let L be a line segment perpendicular

to I‘ as in the Theorems (2.3.2) and (2.3.3). For grill near f, 0 is

again pitchfork and the stable and center manifolds of 0 are CPI—dependent

on g. Thus their intersection with L are Cr—1 function of g. Therefore

the function d(0,n2) is Cr—1 even though di(6,p2) is only CF41.

d(g) = 0 if and only if gc22. It is easy to find a perturbation

f + ch in 21 such that g;|€~=0d(f+ch) # 0 and this says that 22 is a
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Cr—1 submanifold of 21 of codimension one. By Theorem (2.3.1) (or

Appendix), 21 is a Cr—I‘ submanifold of 20 = .2” g(D) of codimension one.

Now let ¢(p1,p2) = f(-,pl,p2). Then it is enough to show that 4) is

transverse to 22 at 041442) = (0,0) if and only if I at 0.

Since ¢(0,fl2)£21 for |p2| << 1,

(2.4.43) $509) is tangent to 21.

Also, if I at 0, then we have

i -

(2.4.44), 331.00) = 33430) — q'(0) 33: (0,0)

1

332400) = 332(00)

 

from the transformation (71,72) —» (#1442) (p1 = T1, #2 = 72 — q(rl)) and

(2.4.45). 3%(03) = 3§I(-,0,0)

 

from the transformation (021,422) -+ (71,72)('r1 = a1 — p(a2), 72 = 02).

By assumption (IV) and Theorem (2.3.1),

6‘1! . '
(2.4.46). 531— IS transversal to 21 at f.

So (2.4.43), (2.4.44) and (2.4.45) imply that, if I ,4 0,
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(2.4.46) if and only if %I(0,0,0) is transversal to 21 if and only if

$403)) is transversal to 21.

”1 .

Next from the fact that I = 3%“) 0) = :d—2(0 0) and (2 4 43)

72 ’ ”2 ’ ' ' ’

I at 0 implies %(0,0) is transversal to 22.

I = 0 implies Sim 0) = gig“) 0) = 0 which says 39;“) 0) is
T2 ’ ”2 3 ”2 3

tangent to 22.

This completes the proof. 0

 

 

  



CHAPTER 3. GENERIC 3—PARAMETER FAMILIES OF SYMMETRIC

PLANAR VECTOR FIELDS WITH NILPOTENT LINEAR

PART.

We will study in this chapter the symmetric planar vector fields—which

means the vector fields with the invariance by the rotation of an angle 7r with

respect to the origin in the plane—with nilpotent linear part. Also we will

classify the bifurcations of the generic 3—parameter families of those vector fields

to be mentioned later.

§1. Introduction.

There are two kinds of k—jet normal form of the vector field with

nilpotent linear part (see Guckenheimer and Holmes [10]).

(3.1.1)a 5t k+1)y + O(Ix,y|

w

k1

+)

 
v =2: (aixi+bixi_1y) + O(|x,y|

1:

01'

k . '

(3.1.1)b it = y + 2 aixl + O(|x,y|k+1)

i=2

k .

i= ,2 bix‘ + 0(lx,ylk+1)
l: 

k—jet normal forms (3.1.1) can be shown easily using the normal form

theory.

38
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A. Nonsymmetric Case.

We assume. that a2b2' at 0 in (3.1.1). Hence terms of order 3 or higher

can be neglected, and we can write it down simply

>
< ll

:
4(3.1.2)a

01‘

(3.1.2)b it = y + 3x2

y — bx2

where ab ¢ 0.

Bogdanov [2] analyzed (3.1.2)a and Takens ([17] and [18]) did (3.1.2)b

independently.

_ Recently, some of codimension three problems concerning the planar vector

fields with nilpotent linear part with degenerate singularity are appeared. For

example, in (3'1'2)a’ Dumortier et. al. [7] worked for the case a at 0 and

b = 0 (DRS-A), and Medved [13] and Dumortier et. al. [8] for the case

a = 0 and b it 0 (Medved—B, DRS—B) with following versal unfoldings:

i=y

° 2 3
y=x +61+y(€2+c3x.ix)

(DRS—A),
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,1 = y

(Medved—B),

y=61+£2x+63x2=tx3+xy

x = y

(DRS—B).

y=‘el + 62X 1: x3 +,y(¢s3 + bx :t x2)

B. Symmetric Case

While parallel to the above, we can consider the unfolding of the

symmetric vector fields with nilpotent linear part with degenerate singularity on

the plane. In this case A, = bi = 0 for i even. So we assume that

a3b3 it 0 in (3.1.1). Then, similarly we have

(3.1.3)a >
< ll

i
<

OI‘

(3.1.3)b it = y + ax

y = bx3

where ab it 0.

Carr [3] worked (3'1'3)a and again Takens [[17] worked (3.1.3)b.

For example, in (3’1°3)a’ if a'> 0 and b at 0, the phase portrait near

(0,0) is a degenerate saddle of codimension 2 and for a < 0 and b at 0,

it is a degenerate focus of codimension 2. (See Figure 6.)

However, if b = 0 (and a 3E 0), we have to consider
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(3.1.4) x = y

y: 33:3 + fix4y

where ab 36 0. The phase portrait near (0,0) is a degenerate saddle or focus

(depending on the sign of a) of codimension 3, and mostly we are concerned

with these in this chapter.

If a = 0 and b at 0, we have to consider

(3.1.5) it = y

where ab it 0.

In this case we have some difficulties which will be discussed later.

In studying the equation (3.1.4) with the case a > 0, basically we

followed the similar ideas as Dumortier et.a.l.[7]. Since the type of the

equations and, its dynamical behaviors are similar. However, the equation

(3.1.4) with the case a < ‘0 has produced many difficult problems in proving '

the existence of limit cycles and new phenomena occur including triple limit

cycle bifurcation. ,

We will introduce the bifurcation diagram and the corresponding phase

portraits with a short explanation for the equation (3.1.5).

§2. Versal Deformation (a it 0. b = 0). '

First [we study the versal deformation of (3.1.4).
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Lemma (3.2.1). Any symmetric perturbation of (3.1.4) with small parameter p

can be transformed into the form

(3.2.1)i it = y

4 2
3 + x y G(x,u) + y ‘I’(x,y,u),i" = 901(40x +' ¢2(u)y + <p3(u)x2y 4 x

where ”CR3, G(x,0) = 1 and \Il(x,y,0) = 0.

Remark. We can take a transformation in the parameters 6i = (aim),

i = 1,2,3, such that (3.2.1)i becomes

(3.2.2), it = y

y = 61X + 62y + 63x2y i x3 + x4yG(x,c) + y2\Il(x,y,c)

where G(x,0) = 1 and ,\Il(x,y,0) = 0.’

Proof of. Lemma (3.2.1). Let the following equations

(3243) 5< = y + w1(x,y,u)

)7 = ax3 + bxliy + w2(x,y,u)

: ,uan

be the perturbed system of (3.1.4), where for i = 1,2, wi(x,y,0) = 0, mi are

sufficiently smooth (say, C°°) and symmetric (i.e., wi(—x,—y,p) = -wi(x,y,p)).

[Without loss of generality, we may assume that a = 4 1 in (3.2.3)

depending on the sign of the original a in (3.1.4) and b = 1 since

otherwise we can take scaling
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81/3 62/3 ' a 2/3

x a x, y —+ , t -+ t.

mm" Ian576 b

By a change of coordinates p = x, q = y + “’1’ (3.2.3) becomes

(3.2.4) p = q

a: p3(a+%;w1‘) + p4qu+§§w1>

+ {—p4wl(1+g’y wl) + “120+;y wl) + mg; w1)}.

2
Let 3; w1(X(p,q,u), y(p,q,u),u) = h1(p,u) + qh2(p,u) + q h3(p,q,u) and

4 0 0 8
-—p w1(1+-5§ wl) + w2(1+-ay wl) + p(—a)—( ml)

2
= ‘1’1(p,u) + (Flam/t) + q ‘1’3(p,q,u)

for some hi and \Ili(i = 1,2,3).

Then hi = \Ili = 0 at p = 0 (i = 1,2,3). Hence the equation (3.2.4) is

(3.2.5) p q

. _ 3 4 3 2
q —- [p (a+h1) + ‘Pll + (ill) (1+h1) + p h2 + W2] + q (1).

where (I) = p3h3 + p4(h2 + qh3) + \II3. By the symmetry property, we can

say that

‘I’l = 901001) + :61(pal‘)93a

2 4

P3112 + W2 = $205) + $3001) + 52(1):”)13

for some (pi(i 2: 1,2,3) and fli (i = 1,2). Let F(p,p) = a + h1 + HI and

G(p,p) = 1 + h1 + )62. Hence (3.2.5) is changed into the following form
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 (3.2.6) 13 q

. 2
q .= @1001) + ¢2(u)q + 903(u)p2q +. p3F(p,/4) + p4qG(p,u) + q (1)-

By the Malgrange Preparation Theorem (see .Chow & Hale [4], pg. 43),

we get

901(44):) + F(p,u)p3 = [291001) + sgnF(0,0)p3l 0m),

where- sgn F(0,0) = a 4 0, 0(p,0) = 1 > 0, and F and 0 are even in p.

Hence in (3.2.6), V

. ~ ' w (u) - so (u) 4 2

q=[cpl(u)pip3+y%§mq+-g%fi,7p2q+%pq+$110-

Again, let u = p, v = q/JP. Then

 

(3.2.7) {1 = vfl}

3 + (95291.)-ié)‘; + 33v + %U4V + (Pi/QW-i: "H .[$14411 11 fl}

By the symmetry property, in (3.2.7)

‘P22 2) 2 4 ‘p3 2
— - — = ZI(M)u + 23(113/1’)“ , — = Z401) + z5(u,p)u ’

w w W
Note that zi = 0 at p = 0 (i = 1,...,5).

Let (920‘) = 210‘):

9030‘) = 2204) + 2404),

601.4) = 2301.2) + 2501.4) + GNP.

Then (3.2.7) is

(3.2.8)i i1 = M)

xv = with: + 22(u)v+23<u>u2v . u3 + é(u,u)u4v + ¢(u,v,u)v2]fll
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In (3.2.8) é(u,0) 96 0. (3.2.8) is topologically equivalent to (3.2.1). (For

simplicity we denote {oi by (pi (i =.1,2,3) in (3.2%.) In (3.2.8)

¢(u,v,0) = 0 and é(u,0) = 1. a

Note that (3.2.2)4 is versal to

(3.2.9)i 5c y

y = 61X 1: x3 + 62y + 63x2y + x4y

(For this, see Section 5 of Bogdanov [2].) Hence we will study (3.2.9)+ in §3

and (3.2.9)_ in §4 instead of (3.2.2)+ and (3.2.2)_ respectively.

§3. The Case a > 0.

For reminding (3.2.9) it is written down again:
+,

(3.2.9)+- 5c
y

y = 61X + x3 + y(62 + €3X2 + x4).

The equilibria in (3.2.9)+ is determined by the equations y = 0 and

x(cl+x2) = 0. Hence for 61 > 0 a saddle (0,0), and for ‘1 < 0 a focus

(0,0) and saddles (w c |,0) are equilibria.

Let the RHS of (3.2.9)+ be f€(x,y). Then

2 ( ) 0 .1Df x,0 =

6 €1+3X2 c2+c3x2+x4

It is immediate that {61 = 0} is a pitchfork bifurcation surface. In

{51 > 0}, the phase portrait is topologically constant and it is a saddle at
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(0,0). In {61 < 0}, several bifurcations occur. We analyze the equation

(3.2.9)+ by drawing the trace of the bifurcation surfaces on the hemisphere

S = {£'= (61,62,63)|0 <' |c| = 60 << 1, 6.1. '5 0}.

The bifurcation diagram of equation (3.2.9)+ is a cone based on its trace

in S. This trace on S consists of 4 curves: 4

,(1) Hf: Hopf bifurcation curve (62 = 0),

(2) He: heteroclinic 100p bifurcation curve,

(3) C: semistable limit cycle bifurcation, curve, and

(4) P: pitchfork bifurcation curve (61 = 0).

The curve C joins a point h2 on Hf to a point c2 on He’ and

thecurve C is tangent to Hf and He at these points respectively. (See

Figure 7). ‘

The curves Hf and .He’ on S touch (‘38 at b1 and b2

transversally and in the neighborhood b1 and b2 we have the degenerate

saddle bifurcation of codimension 2 (see Figure 6(a)).

There exists a unique unstable closed orbit for the parameter in between

Hf and He in the neighborhood of b1 and a unique stable closed orbit in

between Hf and He in the neighborhood of b2. On Hf — {h2}, a Hopf

bifurcation of codimension 1 with appearance of an unstable (reSp. stable) closed

orbit by crossing the line b1h2 (reSp. b2h2) from right (reSp. left). On

He — {c2}, a symmetric heteroclinic 100p bifurcation of codimension 1 occurs.

By crossing the curve blc2 of He from left, we have a pair of heteroclinic

loops, then they are destroyed and unstable closed orbit appears. While by

Crossing the curve b2c2 of He from right, again we have a pair of

heteroclinic loops and then stable closed orbit appears. The point h2 (resp.

c2) corresponds to a H0pf (reSp. a heteroclinic) bifurcation of codimension 2.

The curves Hf and He intersect transversally at points b1, b2 and d.
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The point. d corresponds to the simultaneous HOpf bifurcation of codimension

1 and symmetric heteroclinic 100p bifurcation of codimension 1. For parameter

values. in the curved triangle (dh2c2), there. are exactly two closed orbits.

One of them is stable inside an unstable closed orbit. These two closed orbits

coalesce in a generic way when crossing the curve C from left. On C itself

there exist a unique semistable limit cycle.

Theorem (3.3.1). Let Z = BS U Hf U He U C be a subset of S, where the

semisphere and curves Hf, He and C are described above. The bifurcation

diagram of (3.2.9)+ in the ball 1360 = {fl lcl _<_ c0} is a cone

homeomorphic to {627554702,3 T1)|S€[0,€0], (u,7’or1).62} The t0pological type

of the phase portraits of equation (3.2.9)+ in afilxed neighborhood of the (0,0)

in IR2 is constant in each connected component surrounded by the bifurcation

surfaces (5 components: R1,...,R5, R1 n S = I,...,R5 n S = V), and-is

constant in each bifurcation surfaces (9 surfaces: 31,...,Sg,

31.“ S = 1,...,S9 n S = 9) and curves (5 curves: 01,...,C5,

C1 n S: b1,b2,c2,h2, and C5 n S: d). (See Figure 8).

Proof will be given at the end of this section.

The main difficult problem is the determination of the number of limit

cycles.

For this we use the‘blowing—up method as following for ‘1 < 0:

x -) sx _ 61 == 327)

(3.3.1) I y —» 32y - c2 = 8470

t -) t/s c3 = 3271
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where. s > 0. First we will study the neighborhood of Gel—axis for ‘1 g 0.

Hence let 17 = —1 in (3.3.1).

Then the equation (3.2.9)+ has the form

(3.3.2) 5: = y

y: -—x + x3 + S3(T02+71x+x4.)y

Let ”0 = S370, p1 = S3T1, p2 = 33, then (3.3.2) becomes

(3.3.3) x = y

. 3 2 4
y = —x + x + (p0+pls +u2x )y

with p2 > 0.

By the change of parameters (61,62,63) —1 (s,,T0. T1) —+ (#2410411) and the

change of variables (x,y,t) —) (sx,32y,t/s), (3.2.9)+ has the form (3.3.2) and

(3.3.3). Note that the equation (3.3.3) has the equilibria (0,0) and (41,0)

where (0,0) is a focus and (41,0) are saddles. I

_ Coming back to the equation (3.3.2), if s = 0, it becomes a Hamiltonian

system

ll(3.3.4) x y

y=—x+x3

with the first integral

2 x2 x4

H(X,y) :2L+—_1_'

The phase portrait of (3 ..34) is shown in Figure 9.
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Every closed orbit surrounding (0,0) corresponds to a level curve

7b: H(x,y) = b, 0 < b < 1/4. On equilibria (41,0) and heteroclinic loops

joining these equilibria, H(x,y) = 1/4.

- Now we consider (3.3.2) for small 8 at 0. Every closed orbit of (3.3.2)

should intersect with the interval U = {(x,0)|0 S x 5 1} (hence with -U)

and enclosed the point B = (0,0) since the point B has an index 1 for

every 3,7 and T1. We define wb for bc[0,1/4] as follows: I
o

(1) wbc—UUU,'

(2) H(wb) = b.

Let )‘s = ((70,71),s) and Wu be an upper branch of the unstable manifold

of (3.3.2) at (1,0). We define a Poincare map P/\ : U -) —U (or

‘ s

—1

PA : -U -+ U) in the following way.

8

Let bc(0,1/4]. Then we can choose Be(0,1/4] such that the points wb

and WE are successive intersection points of U and —U respectively with

an orbit so that (i) PA : U —1 —U is defined and PA (wb) = wb- if

s s

—1 -1

W11 n (—U) )6 {}, or (ii) PA : —U -> U is defined and PA (W5) = wb if

s . s

W“ n (—U) = {}. (See Figure 10' (a) and (b).)

Let 7(b,)18) be the orbit of (3.3.2) which joins the points wb and

WE. Hence 7(b,)\s) is defined for bc(0,1/4]. Then we have a lemma.

Lemma (3.3.2).

(1) Every'closed orbit of (3.3.2) is expressed by the form 7(b,/\S) with

WE = -Wb.

(2) A trajectory 7 = 7(b,AS) of (3.3.2) is a periodic orbit if and only if
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)dH" dt=0.(3.3.5) t

' In particular 7 is a heteroclinic orbit if and only if (3.3.5) is

satisfied for b =(1/4.

(3) For 3 > 0, condition (3.3.5) is equivalent to

(3.3.6) F(b”\s) s £(b,AS)(TO+T1xz+X4)deO=.

(1) is obvious by the symmetry property

(2) )yw dt = H(WB) — H(wb) and

, fl%z‘n=x(1‘xz)1‘0 for x150 and |x| #1.

Hence H(WB) = H(wb) if and only if WE- : —wb for be(0,1/4).

(3) is immediate since

#Hx | dt=s3(01242+Tx+x)y| dt

(.3 3. 2) (3.3.2)

= s(TO+ r1x2+x4)ydx. [I]

Let Ii(b) = J xiy dx,1= 0,,,24 where 7b: H(x,y)-— b.

7b

We will consider F(b,/\S) as, a perturbation of F(b,/\O) = F(b,(ro,rl)). The

function F(b,AO) can be written explicitly by

(3.3.7) F(b,AO) = 7010(b) + 7112(b) + 14(b).

3114,23): 33(F(b,)\0) + (rams) — F(b,AO)))

= 33(F(b,AO) + o(s))

= s3 F(b,AO) + 0(33).
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Hence by the Lemma (3.3.2) (3),

F(b,/\0) + c(s) = 0

where. 6(3) is a smooth function in all variables such that {(3) a 0 as

s -1 0. The limiting position of the_closed orbits is given by the solution of

(3.3.8) F(b,AO) = 0 for s e 0.

From now on, we denote F(b,/\0) = F(b,0,(7'0,1'1)) = F(b,(7'0,7'1)) simply by

F(b) if there is no confusion.

For a moment we study. a Hopf bifurcation curve and a symmetric

heteroclinic loop bifurcation curve in (To,rl)—plane from (3.3.7).

Lemma (3.3.3). The point (0,0) of (3.3.2) is stable (resp. unstable) if

To < 0 (resp. To > 0). It has a Hopf bifurcation of order 1 along the line

Hf = {(TO,T1)]T0 = 0} except the point 112 = (0,0) at which a Hopf

bifurcation of order 2 occurs. Moreover, there are two limit cycles at (70,71)

with r > 0, T1 < 0 around the point (x,y) = (0,0).
0

Proof. Direct calculation of formulas of the Liapunov's focal values for (3.3.2). 

(For formulas, see Andronov et al [1], Medved [13].) 0

Next, we want to change symmetric heteroclinic loops to a homoclinic loop by

using symmetry property as follows:

For x,yc|R2, we define x-y if and only if x = y or x = —y. Let

2
* *

R = lR2/~ with a quotient topology and let x = {x,—x}. Let us regard

our symmetric vector field
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(3.3.2) 5:
y

—x + x3 + s3y(ro+rlx2+x4)<
<
.

II
in (R2 as

*

(3.3.9) dx /dt = y . .

:1: >1: ' :1: 3 3 :1: >1: 2 :1: 4

dy/dt=x +(x) +sy(r0+rl(x) +(x))

:1:

in the new phase space [R2 . Then (3.3.9) has only one saddle point

=1: ‘ '

(1,0) ; {($1,0)} and a pair of symmetric heteroclinic loops in (3.3.2)

. . >1: >1: >1:

correspond to a homoclinic loop at (1,0) in (3.3.9). [R2 — {(0,0) } has a

. . *

2—dimensional smooth manifold structure. Note that IR2 itself is not a

manifold.

2*

Now let IR: = {(x,y)|x>0}. Then the phase space IR of (3.3.9) can

be thought of the half—plane IR: U (y—axis/-). (See Figure 11.)

Then we can apply (3.3.7) F(b,/\o) = 7010(b) + 7112(b) + 14(b) to

Joyal and Rousseau (pg. 19 of [12]) on saddle quantity. (Also see Roussarie

[14])

Lemma (3.3.4). The equation (3.3.2) has a heteroclinic loop bifurcation of

order 1 along the curve He ‘= {(70,71)er + 7-1/5 + 3/35 2 0} except the

point E2 = (1/7, —8/7) at which a symmetric heteroclinic loop bifurcation of

order 2 occurs. The curves Hf and He intersect transversally at the point

a = (0, —3/7) which corresponds to a Hopf bifurcation of order 1 with

asymmetric heteroclinic loop bifurcation of order 1 simultaneously. (See Figure

13).
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Proof. See page 19 of Joyal and Rousseau [12], Roussarie [14], Joyal [11].

Note that the trace of the saddle point (1,0) is 1'0 + Tl + 1 = 0 and

$0462) 4 0. 1:1

Next we study a semistable limit cycle bifurcation in (To,rl)—space. Equation

(3.3.7) defines a surface in the space (s,(ro,rl)). The following lemma

eliminates'the term I4(b) ' in (3.3.7).

Lemma (3.3.5). 14(b) can be expressed in terms of 10(b) and 12(b), and

(3.3.10) ,7I4(b) = 812(b) — 4130(1)).

Proof. H(x,y) = b on 5b. Hence

ydy + (x—x3)dx = 0.

4 _ 2 2
x ydx — y(2y +2x —4b)dx

= 2y3dx + 2x2ydx — 4bydx, and

y3dX = d(xy3) - 3xy2dy

d(xy3) — 3xy(x3—x)dx

d(xy3) - 3x4ydx + 3x2ydx.

Hence

4 ._ 3 2
x ydx —— 2/7 d(xy ) + 8/7 x ydx — 4/7 bydx.

Taking integration on 7b gives (3.3.10). C]

From (3.3.10), (3.3.7) becomes

(3.3.11) F(b,(ro,rl)) = (To — 4b/7)10(b) '+ (71+s/7) 12(1)).
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Note that 10(0) = 12(0) = 0, 10(b) > O for bc(0,1/4] and 12(b)/Io(b) -1 0

as b -1 0. So the degeneracy of the equation (3.3.11) at b = 0 can be

removed by changing (3.3.11) into the following:

 
(3.3.12) G(b) (instead of G(b,(1'0,7'1))) = To — 4b/7_ - (71+8/7)P(b)

 
where P(b) is defined by

—I2(b)/Io(b) for be ( 0,1 /4]

(3.2.13) P(b) =

0 for b = O.

 

Lemma (3.3.6). P(b) defined by (3.3.13) satisfies the equation

2
(3.3.14) 4b(4b—1) 131(1)) = 5P + (8b+4)P + 4b.

Proof. Let {I(b),u(b)} = 7b n {y=0} with 1(b) 3 u(b), and

Jib —- H(b)i bdx,(1—{b we)

where <p(x,b) = [2b—x2+x4/2]1/2 for xc[l(b),u(b)].

Then 11(1)) = 2Ji(b).

From the definition of Ji’

(b) Iu(b) Xi

J! = X.

1 l(b) W15]

So

(b) x. x 2
(3.3.15) Ji(b) = {(b) 1% = 2bJ](b) — J]+2(b)+ 2J+4(b)].

Also, integration by parts gives us

 



55

. 1 .

(3.3.16) Ji(b) = 1+1 [J]+201) - J]+4(13)] for all 1 2 0._

From (3.3.15) and (3.3.16), eliminating Ji+4(b), we have

(i+3)Ji = —J]+2 + 4in for all i 2 0.

In particular,

(3.3.17) 3.] = —Jé + 4bJ(')

5.1 = -J] + 4bJé.

From (3.3.10),

(3.3.18) 7J2'1(b) = 8Jé(b) — 4J0(b) — 4bJC')(b).

Plugging (3.3.18) into (3.3.17), we have

_ 1_ 1
(3.3.19) 3.1O _. 413.10 J2

1512 = 4ng) + (12b-4)Jé.

Solving for J6 and J], in (3.3.19), we get

(3.3.20) 4b(4b—1)J(') = 4(3h-1)J0 + 5.12

4b(4b—1)Jé = 4b JO + 2013.12.

Hence

—J'J +J J' J' J'

P'(b)= 2; 2°=—JZ—T°P(h)

Jo o

 

O
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_ 5P2+(8b+4)P+4b D

‘ 4b(4b—1) -
 

Lemma (3.3.7): P(b) also satisfies:

(1) lim P(b) = -1/5 ,

b—+1/4

(2) P'(b) < O for 0 < b < 1/4, P'(O)

— 1/2 and P'(b) -1 -00

as b —1 1/4.

Proof. P(b) is a solution of the differential equation (3.3.14) with initial

condition P(O) = 0. We can interpret (3.3.14) into the form

. _ 2
(3.3.21) p — — 5P

1‘) = 4b — 16b2.

— (8b+4) P —4b

The graph of P = P(b) is the heteroclinic orbit from the saddle (0,0) to

the stable node (1/4, - 1/5) in the (b,P) -— phase plane (See Figure 12.)

The equation

(3.3.22) 5P2 + (8b+4)P + 4b = 0

describes a locus on which the tangential direction of the vector field (3.3.21) is

horizontal. The branch of hyperbola (3.3.22) above the line P = —1/2 denoted

by 7is

(3.3.23) P = P(b) s: (—(4b+2) + (16b2+6b+4)1/2)/5.
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The vector field (3.3.21) is transverse to 7 and directed to the right of 7.

Calculation from (3.3.14) and (3.3.23) gives

lim P'(b) = — 1/2 and lim P'(b) = —1.

b—10 b—10

Therefore, the graph of P = P(b) is entirely above 7, i.e., P'(b) < 0 for

0 5 b < 1/4.

Also we can see that P'(b) -+ --00 as b -1 1/4. 13

We also need the following lemma.

Lemma (3.3.8). (See also Dumortier et a1 [7])

P"(b) < 0 for b6[0,1/4].

Proof. From (3.3.14) we get

(32b-4)P' + 4b(4b—1)P" = 10PP' + 8P + (8b+4)P' + 4. So if we solve

for P",

(3.3.24) P"(b) = [(10P—24b+8)P' + 8P + 4]/(16b2—4b)

lim P"(b) = lim [(10P'—24)P'+(10P—24b+8)P"+8P’]/(32b—4)

b-10 b—10

= [(—5—24)(-1/2)+8 lim P"(b) + 8(—1/2)]/(—4).

_)

(Note that lim P'(b) = —1/2.)

b—10

Hence lim P"(b) = —7/8 < 0.

b—10

Now let us suppose that P' has a zero on [0,1/4) and let

bO = min {be[0,1/4)|P"(b) = 0}. Hence P"(b) < 0 for all xr[0,b0). Let
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L be a tangent line of I‘ at (b0, p(bo)), where I‘ is the graph of P(b).

Since P"(bo) = 0, the order of contact between L and I‘ is at least 2.

Let v be a. vector orthogonal to L, and L(u) be a linear parametrization

of L. Also let

f1(b,P) = 4b - 16b2,

f2(b,P) = —5P2 — (8b+4)P — 4b, and

f = (f1,f2).

Then the function (Mu) s: < f(L(u)),v > has a zero of order at least 1 in uO

with L(uo) = (b0,p(bo)) where <,> is a Euclidean inner product on IR2.

As P"(b) < 0 on [0,b0), the corresponding arc of I‘ is situated below L.

The line L cuts the line {b = 0} at a point 110 above 070 = (0,0). f

is directed downward at no. f is directed towards the half plane above L

in the neighborhood of bO in L with b < b0. Hence (b(u) must possess

a zero at some u1(#uo) with L(u1)c[n0,m0] where 110 = {b = 0} n {L(u)},

and m0 = (b0,p(bo)) = F n {L(u)}.

However, f is quadratic. So 1/)(u) is a polynomial of degree 2 in u.

¢(u0) = ¢'(u0) = 111(u1) = 1/2'(u1) = 0 with 110 at 111

implies (b 5 0, and I‘ is a line segment. This contradicts to

P'(O) = — 7/3 < o. 11

Now we consider the problem of the semistable limit cycle bifurcation

which is given by C: G(b) = G'(b) = 0 in (70,71)-space.

Lemma (3.3.9). C is a smooth curve which connects the points H2 on Hf

and 52 on He (see Lemmas (3.3.3) and (3.3.4)), and which is tangent to
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Hf and He at these points respectively. On C the semistable limit cycle

bifurcation of the equation (3.3.2) occurs.

m. From (3.3.2)

G(b) = (To -— 4b/7) — (71 + 8/7)P(b) on [0,1/4],

G'(b) = — 4/7 — (71+8/7)P'(b), and

G"(b) = - (71+8/7)P"(b).

If G(b) = G'(b) = 0, then 71 + 8/7 76 0. Hence by the Lemma

(3.3.8), G"(b) )6 0. By the implicit function theorem, there exists b = b(rl)

such that G'(b(rl)) = 0, and so 7'O = T0(b,1'1) = 70(b(7'1),71) from

G(b) = 0. Hence To = O(1'1) is smooth and the semistable limit cycle

bifurcation occurs on C. From G(b) = G'(b) = 0, we get

(3.3.25) 7'0 = 4b/7 —%

Ti=‘53/7‘71ri713).

Note that as b -+ 0, P(b) -1 0, P'(b) —1 — 1/2, and (70(b),71(b)) -1 (0,0) = h2.

Also as b -1 1/4, P(b) —1 — 1/5, P'(b) —1 — co, and

d7

(70(b), 71(b)) a (1/7, — 8/7) = c2. From (3.3.25), 37% = P(b) along the

curve C: To = 70(71). This implies that C is tangent to Hf and He at

52 and 62 respectively. :1

Given (70,71), the number of limit cycles of equation (3.3.2) is

determined by the number of roots of equation G(b) = 0 for 0 < b < 1/4.

If 1'1 + 8/7 = 0, then G(b) = 0 if and only if T0 = 4b/7. So
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706(0,1/7) and 1'1 = —8/7 at which G(b) = 0 has a unique solution

(note that G'(b) at 0).

We suppose that 1'1 + 8/7 96 0. Then

G(b) = (r1+8/7)1A(b)—P(b))1

where A(b) = (70—4/7b)/(71+8/7) which is linear in b. The roots of

G(b) = 0 is the intersection of the straight line P = A(b) and the curve

P = P(b) on the (b,P)—plane. Since P"(b) < 0, the graph of P = P(b) is

concave downward. P(b) is independent of r
o

P(O) = 0, P(1/4) = — 1/5. A(b) depends on To and 71, and for

and TI, and

T1 + 8/7 > 0,

(a) A(O) = 0 (reSp. > 0 or < 0)

+——1 (T0,Tl)£Hf(l‘eSp. is on the RHS, or LHS of Hf).

(b) A(1/4) = —- 1/5(resp. > — 1/5, or < — 1/5)

1—1 (7'0,1'1)6He (reSp. is above, or below He)‘

(c) The straight line P = A(b) _is tangent to the curve P = P(b)

1—1 (70,71)6C (i.e., G(b) = G'(b) = 0 for some bc(0,1/4)).

The bifurcation diagram of equation (3.3.2) is as in Figure 13 and the

relative positions between the straight line P = A(b) and the curve

P = P(b) is as in Figure 14.

Lemmas (3.3.3.), (3.3.4) and the implicit function theorem provide us the

following extended results from s = O to s > 0. (Also see Dumortier et. al.

[7].)
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Lemma (3.3.10). Let K be a compact neighborhood of

{H(x,y) 5 1/4} 11 {|x|$1} in the (x,y)—plane, and D be a compact

neighborhood of the curved region h2dc2 in (To,rl)—plane. Then there exists

a(D) > 0 such that the bifurcation diagram of the equation (3.3.2) consists of

three surfaces and three curves in C(D) = (0,a(D)) x D which is as follows

up to a diffeomorphism of C(D) equal to the identity at s = 0:

(1

V

SHf = (0,a(D)) x (Hf — {H2}) is a surface of Hopf bifurcation of

codimension 1,

(2

V

SHe = (0,a(D)) x (He — {E2}) is a surface of heteroclinic loop

bifurcation of codimension 1.

(3) SC = (0,a(D)) x C is a surface of semistable limit cycle bifurcation

of codimension 1,

A

A

V

(0,a(D)) x {H2} and (0,a(D)) x {62} are curves of Hopf and

heteroclinic loop bifurcation of codimension 2 respectively.

A

U
s

V

(0,a(D)) x {d} = SHf n SHe is a curve of simultaneous Hopf

bifurcation and heteroclinic loop bifurcation.

Outside these bifurcation sets, the topological type of the phase portraits

of the equation (3.3.2) is constant in K.

For §c(0,a(D)), we denote the intersection of the bifurcation diagram of

equation (3.3.2) with the plane {(s,(1'0,71))|s = E} by Wg. Then W-S— has

a cone structure (see Figure 15).

The bifurcation diagram for the equation (3.2.9)+ with ‘1 < 0 can be

constructed from Lemma (3.3.10). The blowing—up (3.3.1) with 17 = —1

gives a transformation ¢:(s,(70,71)) —) (51,52,53), and
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(33-25) ¢((0,0(D)) x D) = “-52184T0,82T1)|86(00(1)» (T0 T1)€D}o

Let E6 (D) be the RHS of (3.3.26). Then E]E (D) is a cone in

1 1

(61,62,63)—space around the axis 061 for 61 < 0 (see Figure 15).

The bifurcation diagram of (3.2.9)+ in E]E (D) is the image of those

1

sets described in Lemma (3.3.10) by the transformation and thus homeomorphic

to cones based on H ,He,C,Hz,52, and d with curves 3 -1 (3217,3470,827'1)

with 17 = —1, or equivalently 61 -1 (cl,c%ro,(—el)rl) for 61 < 0.

Now we will study the behavior of (3.2.9) in a sector around 063—axis
+

for 61 _<_ 0. In the blowing—up (3.3.1), we take 71 = :1: 1 instead of

17 = —1. Since both cases 71 = 1 and 71 = —1 are similar, we will

consider the case 71 = 1. By (3.3.1) with T1 = 1, equation (3.2,9)+

becomes

(3.3.27) x = y

3 3( 2 4)
y=7]x+x +s To+x+x y.

Let 31 > 0 be fixed. Then for each se(0,sl] we take a blowing—up again:

x-+rx 7)=—r2

y-1r2y 7' =r2?
o o

t-1t/r

Then (3.3.27) becomes
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(3.3.28) x = y

y = -x + x3 + s3(r(?0+x2)y + o(r3))

which is a perturbation of the Hamiltonian system (r = 0)

(3.3.29) x = y

y -x+x

with first integral

2 2 4

H(x,y) = g— + g— — 31—.

As in Lemma (3.3.2), we have

H(wE) — H(wb) = s3r(F(b,?O) + o(r))

where 'F(b,?0) = ?OIO(b) + 12(b). Finally it leads to study F(b),?0) = 0,

and get to the following conclusion:

Lemma (3.3.11). In the halfplane {17,70,71)|1) S 0, T1 = 1} there is a fixed

compact subset B+, diffeomorphic to a disk having a contact of order 1 with

axis 070 at (17,70,71) = (0,0,1), and such that for equation (3.3.27) the

results of Carr—Takens (see page 54—81 and, in particular, Figure 3 on page 59

of Carr[3], also Guckenheimer and Holmes [10], Takens [17] and [18]) are valid

for any (17,70) 6 13+ and any sc(0,sl]. (See Figure 16.) (3.3.1) with

71 = 1 gives a mapping (3,17,70) -1 (61,6263) which maps (0,31] x B+ to

E-l- _ 2 4 2 + + . .
£3 — {(3 11,8 70,3 )|sc(0,sl], (17,70)cBO}. E63 1s a cone in (51,62,63)—space

around 063—axis for 63 > 0 based on B+. The bifurcation diagram of

(3.3.2) in E: consists of cones based on Hf, He and {1—51} with

3
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generating curves 3 -1 (8211,841'0,s2.) (See Figure 17). For 1'1 = —1, we can

get a cone E around 06 —axis for < 0 based on H , H and
63 3 3 f e

{'62} Similarly.

Proof. See Carr [3]. 1:1

Proof of Theorem (3.3.1). Let E: and E; be the two cones from B+

3 3

and ‘B— respectively as above. We can choose a compact set D in the

(70,1'1)—-p1ane to use Lemma (3. 3. 10) in such a way that (see Figure 18.)

(1) E6 (D) U E: U E; contains a cone C(M) based on a disc

1 3 3

M in the hemiSphere S,

(2) 8M is tangent to BS at the point b1 = (0,0,(50) and

b2 = (0,0,-co),

(3) M contains the curves SHf n S, SHe n S, and SC 11 S where

SHf’ SHe and SC are defined in Lemma (3.3.10).

Condition (3) is possible because the curve of Hopf bifurcation and the

curve of heteroclinic loop bifurcation in M n E: are connected with the

3

curves Hf = SHf n S and He = SHe n S respectively.

To show this, we consider the equations of curves Hf and He' From

Lemmas (3.3.3) and (3.3.4), we have

(3.3.30) Hf: To = 0 and He: To =—1/57'1 — 3/35

2 2 2 _ 2 2 2 2 _ 2
€1+€2+€3—60 €1+€2+€3—€0.
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From (3.3.1)

3 = (—r1)1/2

(3.3.31) To = (52/(—1€1)2

7'1 = 53/(—€1)a

where 61 < 0. Substituting (3.3.31) into (3.3.30) we obtain

6 e 2
2 2 2 2 1 3 2

Hfzcl+c3=60 and H:61+(-5—- )
2 2 .

e + 63 = 60 respectively.
__1_

35

Let (1 -> 0. Then 63 —1 :1: 60.

This implies that if 61 —1 0, then the curve Hf and He tend to the

points b1 and b2 in as, hence that Hf and He are connected with the

Hopf bifurcation curve and the heteroclinic loop bifurcation curve in M n E: .

3

Thus we can choose D and M satisfying the condition (1), (2) and

(3). The conclusion of the Theorem, for 6 near (0,0,ieo) with 61 < 0,

follows from Lemma (3.3.10) and Lemma (3.3.11), and for 61 > 0 or £1 = 0

but 6 ,4 (0,0,i60) are obvious. n

§4. The Case a < 0

(3.2.9)_ is as follows:

(3.2.9)_ 5r = y

y = 61X — x3 + y(1€2+63x2 + x4).





66

The equilibria in (3.2.9)_ is determined by the equation y = 0 and

x(cl—x2) = 0. Hence for ‘1 < 0 (0,0) is a focus, for 61 > 0 (0,0) is a

saddle and (an/51,0) are foci.

Let the RHS of (3.2.9)_ be f€(x,y). Then

0 , 1

61-382 , 62+ 63X2+X4 .

Df€(x,0) =

It is immediate that {61 = 0} is a pitchfork bifurcation surface. We

will consider two cases (cl > 0 and ‘1 < 0) and by the same way as in

the previous section, we will use a hemisphere section to be easy to understand

the bifurcation diagram.

Next, we combine the above two results to get our complete bifurcation

diagram on'the sphere.

First let us consider the case 61 > 0.

Let

S = {(61,62,63) = (ID < |c| = 60 << 1}, 5+ = S r1{e1 2 0}.

The bifurcation diagram of (3.2.9)_ is a cone based on its trace with S.

This trace on S consists of 4 curves:

(1) Hf: Hopf bifurcation curve,

(2) HO:

(3) C = C1 U C2 U C3 U C4: semistable limit cycle bifurcation curve,

(symmetric) homoclinic loop bifurcation curve.

and

(4) P: pitchfork bifurcation curve (61 = 0).

The curve C1 joins a point a on Hf to a point e on Ho’ and it

is tangent to Hf and H0 at these points respectively. Also the curve C2

joints a point b1 on P to a point e on H and it is tangent to H0 at
0,

e, however, intersects with P transversally at b1. The curve C3 (resp. C4)

joins a point f to a point b2(resp. b3) on P. C3(resp. C4) intersects with
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P transversally at b4 (reSp. b3) and C3 meets C4 tangentially at f.

(See Figure 19.) In the neighborhood of b1 and b2 we have the degenerate

focus bifurcation of codimension 2. (See Figure 6 (b).)

The point a (reSp. e, f) corresponds to a Hopf (reSp. homoclinic 100p,

triple limit cycle) bifurcation of codimension 2. At points b3,c,d,g and h

two corresponding bifurcations occur simultaneously.

Theorem (3.4.1). Let 2 = (S n {61 = 0}) U Hf U HO U C be a subset of

8+. The bifurcation diagram of (3.2.9)_ in the ball

+ ,

B = {c = (61,62,63)] [c] 5 60,61 2 0}

is a cone hemeomorphic to

2 4 2

{(8 17,3 70,8 T1)|86[0,6Ol, (11.70.7063)

The topological type of the phase portraits of equation (3.2.9)_ in a

neighborhood of (0,0) in R2 is constant in each connected component

surrounded by the bifurcation surfaces (10 components:

R1,...,R10, R1 n 8"” = 1,...,R10 1) S+ = X) and is constant in each

bifurcation surfaces (19 surfaces.

81,...,Sg, S1 r1 S+ = aboo,...,S19 n SJr = eg) and curves (10 curves:

C1,...,CIO, 01 n 3+ = {bl},...,c10 11 3+ = {b3}). (See Figure 19 (3)—((1).)

Proof will be given later.

Next'let us consider the case 61 < 0. Let S— = S n {61 g 0}.

As before the trace of bifurcations on 8’ consists of 3 curves:
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(1) Hf: Hopf bifurcation curve,

(2) C: semistable limit cycle bifurcation curve, and

(3) P: pitchfork bifurcation curve (61 = 0).

In this case (61 < 0), the HOpf bifurcation curve is described by

(,2 = 0 and connects b1 and b2 at which Carr—Takens bifurcation of

codimension 2 occur. C is tangent to Hf at k and connects k on Hf

and b3 on P. Note that b1,b2 and b3 in Figure 20 (a) are same

points as those in Figure 19 (a) respectively.

Theorem (3.4.2). Let E = (S n {61 = 0}) U Hf U C be a subset of S.

The bifurcatiOn diagram of (3.2.9)_ in the ball

B- = {c = (61,62,63)] If] S 60’ 61 S 0} is a cone homeomorphic to

2
{(8277, 8470, s T1)]SE[0,€O], (17,70,706) The t0pological type of the phase

2 is constant inportraits of equation (3.2.9)_ in a neighborhood of (0,0) in IR

each connected component surrounded by the bifurcation surfaces (3 components:

R1,R2,R3, ’RlflS = I, R2118 = 11, R308 = III) and is constant in each

bifurcation surfaces (6 surfaces: S1,...,86, 81118 = blk, S608 = b1b3) and

curves (4 curves: C1,...,C4, 01118 = {k},...,C4nS = {b3}). (See Figure 20

(EU-((1))-

For the proof of this Theorem, see the proof of Theorem (3.4.1).

A. 61 > 0.

We use the blowing—up technique (3.3.1) for 61 > 0. First we investigate

the behavior of (3.2.9)_ in a neighborhood of Del—axis for ‘1 2 0. Hence let

1) = 1m (3.3.1).
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Then the equation (3.2.9)_has the form

(3.4.1) 5: = y

3" = X — X3 + S3(TO+Tlx2+x4)y.

Equation (3.4.1) has the equilibria (0,0) and (41,0) where (0,0) is a saddle and

(41,0) are foci. If s = 0, (3.4.1) becomes a Hamiltonian system

(3.4.2) x = y

2 2 4

with the first integral H(x,y) = %l— — g— + 21(— .

The phase portrait of (3.4.2) is shown in Figure 21.

Closed orbits surrounding A = (—1,0) or C = (1,0) (type 1) correspond to

level curves 7b: H(x,y) = b, -—1/4 < b < 0 and those surrounding

A,B = (0,0) and C at the same time (type 2) correspond to level curves

7b: H(x,y) = b, 0 < b < oo. 7_1/4 = {A,C}. 70 corresponds to a level

curve of a figure-eight homoclinic orbit.

Now we consider (3.4.1) for small 3 it 0. Every closed orbit of (3.4.1)

should intersect with the interval U = {(x,0)|x21} and/or —U. Since closed

orbits of type 1 enclosing A is a 1 — 1 correspondence to those of type 1

enclosing C, we only consider the latter.

We define wb for b6[-1/4,oo) as follows:

(a) wch, (b) H(wb) = b.

Let As = ((70,71),s) and WS(resp. Wu) be a stable (resp. unstable)

manifold of (3.4.1) at B in the right half—plane. We define a Poincare map
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PA : U —1 U in the following way:

3

Let {wbS} = WS n U and {wbu} = W11 n U. For b6[—1/4,oo), we can

choose Bc[—1/4,oo) such that the point wb and WE are successive

intersection points of U with an orbit so that

PAS: U -1 U is defined and PAS(wb) 2 WE, PAS(wbs) = wbu if

H(wbs) < H(wbu)’ and

—1 . —1 —1 .
PAS: U -1 U 13 defined and PAS(WB) = wb, PAS(wbu) = wbs 1f

H(wbu) < H(wbs)' (See Figure 22 (a) and (b).)

Let 7(b,)rs) be the orbit of (3.4.1) which joins the points wb and WE.

Hence 7(b,AS) is defined for b6(-1/4,oo). Then we have the lemma.

Lemma (3.4.3).

(1) Every closed orbit of (3.4.1) is expressed by the form 7(b,/\S) with

WE : who

(2) A trajectory 7 = 7(b,)\S) of (3.4.1) is a periodic orbit if and only if

(3.4.3)

In particular 7 is a homoclinic orbit if and only if (3.4.3) is satisfied for

b = 0.

(3) For s > 0, condition (3.4.3) is equivalent to

(3.4.4) F(b,/\S) (r0+r1x2+x4) ydx = 0.

isms)
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P/\ : U —1 U in the following way:

8

Let {wbs} = WS (1 U and {wbu} = Wu (1 U. For b€[-1/4,oo), we can

choose Bc[-1/4,oo) such that the point wb and WE are successive

intersection points of U with an orbit so that

PAS: U -+ U is defined and PAS(wb) = W5, PAS(wbs) = wbu if

H(wbs) < H(Wbu)’ and

—1 . —1 —1 .
PAS: U -1 U 18 defined and PAS(WB) = wb, PAS(wbu) 2 W133 1f

H(wbu) < H(wbs). (See Figure 22 (a) and (b).)

Let 7(b,AS) be the orbit of (3.4.1) which joins the points wb and wb-.

Hence 7(b,/\S) is defined for b€(—1/4,oo). Then we have the lemma.

Lemma (3.4.3).

(1) Every closed orbit of (3.4.1) is expressed by the form 7(b,)\S) with

WE = Wb.

(2) A trajectory 7 = 7(b,)\s) of (3.4.1) is a periodic orbit if and only if

Ide

t t=0.(3.4.3)

In particular 7 is a homoclinic orbit if and only if (3.4.3) is satisfied for

b = 0.

(3) For s > 0, condition (3.4.3) is equivalent to

2 4

).4.4 Fb,)\ E: T 7x x(3 ) < ,) 17mg) 0+1 + ydx : 0.
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Proof. See the proof of Lemma (3.3.2). 1:1

Let Ii(b) = I xiydx, i. = 0,2,4, where 7 : H(x,y) = b.
. 7b b

We will consider F(b,/\S) as a perturbation of F(b,)r0). The function

F(b,/\O) can be written explicitly by

(3.4.5) F(b,AO) = 7010(b) + 7112(b) + 14(1)).

s3F(b,/\S) = s3(F(b,AO) + (F(b,AS) — F(b,AO)))

= s3 (F(b,AO) + O(s))

= s3 F(b,/\O) + 0(33).

Hence by (3) of the Lemma (3.4.3),

F(b,)\o) + c(s) = 0

where c(s) is a smooth function in all variables such that c(s) -+ 0 as s —1

0. The limiting position of the closed orbits is given by the solution of

(3.4.6) F(b,)\0) = 0 for s —1 0.

From now on, we denote F(b,(7'0,71)) E: F(b,/\O) = F(b,(7'0,71),0). (Also F(b)

instead F(b,(ro,71)) if no confusion.)

Equation (3.4.6) defines a surface in the (s,(70,71))—space. The following

lemma eliminates the term I4(b) in (3.4.5).

E_mma_(3_w‘e4).

(3.4.7) 714(b) = 812(b) +' 4bIO(b).
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Proof. See the proof of Lemma (3.3.5). 1:1

From (3.4.7), (3.4.5) becomes

(3.4.8) F(b,('ro,71)) = (70+4b/7)Io(b) + (71+8/7)I2(b).

Note that IO(—l/4) = I2(—1/4) = 0, Io(b) > 0 for b > —1/4 and

12(b)/Io(b) —+ 1 as b —1 —1/4. 33 we can change (3.4.8) into the following:

(3.4.9) G(b) (instead G(b,(70,71))) = 70 + 4b/7 + (71+8/7)P(b)

where P(b) is defined by

12(b)/Io(b) for 7 b > —1/4

(3.4.10) P(b) = 1 for b = _1/4 .

Lemma (3.4.5). P(b) defined in (3.4.10) satisfies

(3.4.11) 4b(4b+1)P'(b) = 5P2 + (8b—4)P — 4b.

Proof. See the proof of Lemma (3.3.6). B

Lemma. (3.4.6). lim P(b) = 00.

b-mo

Proof. (Carr [3]) Let Ji(fl) = I xiy dx where 6 > 0 is a maximum of

0

the solutions to 64 - 232 = 4b and y = (2b+x2—x4/2)1/2. Then
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P(b) = J2(fl)/Jo(fl). Let x =_hfl.

Then

1 .

1,01) = F? g (410‘ 14111411. 1 = 0,2,

where

g(h) = 1530—1141 + 012-1111”.

Since g(h) S g(l/fl) for 0 S h g l, JO()6) 3 C133 for some constant

C1 > 0. Also we have J2Ifl) Z 0255 for some constant C2 > 0. Hence

lim P(b) = kiln J2(fl)/J0(fl) = 00. D

(D (D

Lemma (3.4.7 ). P(b) also has the following properties:

(1) lim P(b) = 4/5,

b—10

(2) There exists b* > 0 such that

P'(b) < 0 for bc[—1/4,b*) — {0} and

P'(b) > 0 for b > b*.

Also b* satisfies: P(b*) > 1/2, P'l'(b*) > 0.

Proof. Rewrite (3.4.11) into the form

(3.4.12) 6 = 4b(4b+1)

P = 5P2 + (8b—4)P — 4b

_ (1
Where "I — Hf . '

Since P(-1/4) = 1, the graph of P = P(b) for bc[-—1/4,0] is the heteroclinic

orbit between the saddle (-1/4,1) and the node (0,4/5) in the (b,P)—plane.

(See Figure 23.) Hence lim P(b) = 4/5. We denote two branches of the

_’
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hyperbola .5P2 + (8b—4)P — 4b = 0 by P(b) (upper) and P(b) (lower).

b = 0, b = —1/4, P = P(b) and P = P(b) divide (b,P)-plane into 9

regions in each of which g; has a constant sign. We denote 4 regions

among them (which are interested in) by A,B, C, and D as in Figure 23.

First one Can show that

nmnm=4mlmnm=m,

b—1-1/4 b30

lim P'(b) = —1, and lim P'(b) = —3/5.

b+1/4 . b—10

Hence the graph of P = P(b) must stay in region A for —1/4 < b < 0

 

and enter into region D for . 0 < b << 1. In regions A and D, g]; < 0.

But P(b)-100 as b-+oo and P(b)-11/2- as b—tm.

Thus there exists b* > 0 such that P(b*) = P(b*) (hence P'(b*) = 0)

and P'(b) > 0 for b > b*. Since P'(b) < 0 and P(b) .. 1/2

as b .. e, F(b*) = P(b*) > 1/2. By (3.4.11),

4b(4b+1)P" = (10P—24b—8) P' + 8(P—1/2). So we have

4b*(4b*+1)F"(b*) = 3(F(b*)—1/2) > 0 which implies P"(b*) > 0. 1:1

Lemma (3.4.8). P(b) ~ CA? as b -1 00 for some c > 0.

Proof. From (3.4.11) P'(b) = (5P2+(8b—4)P—4b)/(4b(4b+1)), we easily see that

lb
it can not be that P(b) .. ce as b -1 00 for any c,chR—{0}. Hence let

P(b) ~ cbr (c¢0) as b -1 00 for some rclR. Also let

A = 5P2 4 (8b—4)P — 4b, . B = 4b(4b+1).

ME = {5(P/b)2 + (8—4/b)(P/b)—4/b}/{4(4+1/b)}.

P'(b) ~ crbr—1 as b —1 oo. .

502b2r-2

(1) _Ifr>1,A/B~—m———. as b—1m.
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2 2r—2
r—l _ 5c b

. Hence crb —— —1-6——. -

This implies r— 1 = 2r — 2 and thus r = 1 which contradicts to r > 1.

2 . .

(2) If. r.=1,A/B..5c'+8c as b—>oo.’
1 .

2 .

Hence c = éE—Gj—SE. Since c 9% 0, c = 8/5, i.e., P(b) ~ 8b/5 as b -1 oo.

‘ (a) P'(b) .. 3/5+ as b a .0.

Since P'(b*) = 0, there. must be h > b* such that P"(b) = 0 and

P'(b) > .8/5 but P“(b) s 0. (See Figure 24 (3).) Note that P'(b) > 0

for. b > b* by Lemma (3.4.7). P' = A/B (implies P'B + P"B' = A' and

so P"'B + 2P"B' + P'B" = A". Hence at b = b, BP'” = (10P'—16)P'.

Since P'(b) >~ 8/5, P"'(b) >' 0, which gives a contradiction to P“(b) S 0.

*

Thus P'(b) S 8/5 for any b ((1) ,oo), and there is no local maximum since, if

~

. _ ‘ , *

there is, then there must be a local minimum point b C(b ,oo), so

~ ~ ~

0 _< P'(b) < 3/5, P”(b) = 0, P"'(b) 2 0, however,
-

BP'” = (10P'416)P' < 0 at b = b so that P"'(b) < 0 which is 3

~

contradiction to P"'(b) > 0.

(b) P'(b) -1 8/5- as b —1 00.

Since there is no local maximum of y = P'(b) on (b*,oo), y = P'(b) is

monotonically increasing. Also we can get a contradiction easily if we assume

that there is an, inflection point in the graph'of y = P'(b) on (b*,oo). So

P"(b) > 0 on (b*,e). (See Figure 24 (b).)

BP" = (10P—24b-8)P' + 8P—4

BQP"
(3.4.13) —2—— : (5P—12b—4) (5P2+(8b—4)P—4b) + (4P—2) (16b2+4b).
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Let f(b,P) be the RHS of (3.4.13) and let x = P/b. Then

$23 = (5x—12—4/b)(5x2+(8—4/b)x-4/b) + (4x—2/b)(16x2+4/b)

= x(5x+4)(5x—8) — (4/b)(18x2—3x—12) + (8/b2)(2x+1).

Since for b >> 1, x(b) = 2‘82) is less than 8/5 but near 8/5, we have

x(5x+4)(5x—8) < 0, and —(4/b)(18x2—3x—12) + (8/b2)(2x+1) < 0. Thus

f(b,P) < 0 for b >> 1.3 From (3.4.13) this implies that P" < 0 for

b >> 1, a contradiction. ,

(c) P'(b) = 8/5, b 2 b6 for some bO >> 1.

Then P(n)(bo) = 0 I for n = 2,3,.... (See Figure 24 (c).)

From BP" = (10P—24b—3)P"+3P—4, at b = b0

0 = (10P—24b—8)(8/5) + 8P—4

which gives P .Q—.. 8b/5 + 7/10.

While from'uP'(b) 2: A/B, we have

2 + 20(2b—1)P —4b(32b+13) = 0.25P

If we solve the following system

P = (8b/5) + 7/10

2 + 20(2b—1)P — 4b(32b+13) = 0,

then the solution is (b0,P(bO)) = (—1/4, 3/10), which also gives a

*

contradiction because bO > b > 0.

25P

By (1) and (2), r < 1.

In this case, A/B ~ 213—8 bf"1 as b —1 00.

Hence £13% br"1 2 crbr_1, and so

r = 1/2. 1:1

b—mo

Cor llar 3.4.9 . lim P'(b) = 0.
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Proof. Easy frOm Lemma (3.4.8). 1]

Lemma (3.4.10). If P"(b) = 0 for b > b*, then P"'(b) it 0.

M. P"(b) = 0 gives BP"'(b) = 2(5P'(b)—8)P'(b). Suppose

P"(b) = 0 = P"'(b) for some b > b*. Then P'(b) = 3/5.

From BP" = (10P—24b—8)P' +_8P—4, we have

P = 8b/5 + 7/10.

From P' = A/B,

25P2 + 20(2b—1)P - 4b(32b+13) = 0.

*

There is no solution on (b ,oo) which satisfies both above. Hence if

P"(b) I: 0 for some b > b*, then P”'(b) # 0. El

Lemma (3.4.11). There exists b**€(b*,oo) such that P"(b) > 0 for

** ** **

bc(0,b ) and P"(b) < 0 for bc(b ,oo), but P"'(b ) 7t 0.

3):

Proof. Existence follows from Lemmas (3.4.7) and (3.4.8) since P"(b ) > 0
 

and P"(b) < 0 for b >> 1. Note that from

BP" = (10P—24b—8)P' + 8P—4

= (10(P—4/5) — 24b)P' + 8(P—1/2),

on (0,b*), since 1/2 < P < 4/5 and P' < 0, we have P" > 0.

This says, inflection points exist in (b*,oo). To complete the proof, we will

show the uniqueness: i.e., P"(bl) = P"(b2) = 0, b1, b2€(b*,oo) implies

b1 = b2.

If P"(b) = 0 at more than one point, then there must exist at least

*

three points (and an odd number of points) since P"(b ) > 0 and P"(b) < 0
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for b >> 1. and P"'(b) at 0 if P"(b) = 0 (Lemma (3.4.10)).

Suppose P"(bi) = 0, i = 1,2,3 with b3 > b2 > b1 > b* and

P"(b) 4 0 for all be(0,b3) — {b1,b2}. Then P"'(bl) < 0,

P"'(b3) < 0 and P"'(b2) > 0 (see Figure 25).

At b = b2,

0 < BP"'(b2) = (10P'(b2) — 16)P'(b2)

which implies that P'(b2) > 8/5. On the other hand, at b = bi(i=1,3),

0 < P'(bi) < 8/5.

But this contradicts because y = P'(b) has local maxima at b = b1 and

b3 and a local minimum at b = b2 so that P'(bl), P'(b3) > P'(b2).

Hence b1 2 b2 = b3. D

*

Corollary (3.4.12). 0 < P'(b) < 8/5 on (b ,oo).

**

Proof. Lemma (3.4.10) and Lemma (3.4.11) P"'(b ) < 0, so

0 < P'(b**) < 8/5.

** *

y = P'(b) has a miximum at b = b and P'(b) > 0 on (b ,oo).

*

Hence 0 < P'(b) < 8/5 for all b > b . 1:1

Lemma (3.4.13). P"(b) < 0 for bc(—1/4,0).

Proof. See the proof of Lemma (3.3.8). 13

Now it is time to investigate bifurcation curves in (70,71)—plane. The

Hopf bifurcatidn curve Hf of order 1 in (3.4.1) is given by the equation

G(—1/4) = 0 and G'(—l/4) at 0, that is, Hf: To + T1 + l = 0 except

(70,71) = (—1,0) = 3: where the HOpf bifurcation of order 2 occurs since
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G(—1/4) = G'(-1/4) = 0 but G"(—1/4) # 0 at E. (Andronov et.a1. [1]).

Also the symmetric homoclinic 100p bifurcation curve HO of order 1 in (3.4.1)

is HO: To + 471/5 + 32/35 = 0 except (70,71) = (0,—8/7) = e where the

symmetric homoclinic 100p bifurcation of order 2 occurs. (Roussarie [14], Joyal

et.a1. [11]).

Clearly Hf and H0 intersect transversally at the point

E = (—4/7,—3/7). (See Figure 26).

The semistable limit cycle. bifurcation curve C is given by the equation

G(b) = G'(b) = 0 for b6(—1/4,00) - {0,b*,b**}. C1 is a smooth curve

which connects the points 5 on Hf and E on H0, and which is tangent

to I-l'f and H0 at these points respectively.

4

C = U C1

i=1

where U1: G(b) = G'(b) = 0, bc(—l/4,0),

c2: C(b) = G'(b) = 0, be(0,b*),

C3: G(b) = G'(b) = 0, br(b*,b**),

and C4: G(b) = G'(b) = 0, bc(b**,oo).

The behavior of H, H0 and C1 are same as H, He and C in §3 (U1

corresponds to C in the previous section.) So we concentrate our attention

to Ci(i=2,3,4). The (To,rl)—plane is divided into 10 regions by curves H,

HO, Ci(i=1,2,3,4) (see Figure 26). Let

Cl(Hf) 001ml) = {a},c1(nf) nCl(HO) = {E},Cl(Hf) 001(c2) = {a},

01(H0) 001ml) = {é},Cl(C3) nCl(C4) = {f},Cl(HO) 001(134) = {g},

C1(Hf) nCl(C4)‘= {H}.
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Lemma (3.4.14).

.The curves Ci(i=2,3,4) satisfy the following properties (see Figure 26).

(1)

' (2)

(3)

(11)

Proof.

' C

Ci(i=2,3,4) are smooth curves.

2 ‘ is tangent to H0 at 5 = (0,—8/7).

*

On (0,b ), the s10pe of C2 is decreasing monotonically and tends

:1: =1:_

to —1/P(b), as b-1b .

Hf . and C2 intersect transversally at d.

** **

There is an 1' = (To ,71 ) in (ro,rl)—plane such that

' ** ** **

G(b ) = G'(b ) = G"(b ) = 0 at (70,71) = f.

** **

T1 < —8/7 and To

* **

On (b ,b ), the s10pe of C3 is increasing monotonically and tends

* *+

to —1/P(b) as b-1b.

**

+ 471 -/5 + 32/35 < 0.

**

_ On (b ,oo), the SIOpe of C4 is increasing monotonically and tends

to 0 as b—1oo.

C3 and C4 are tangent at f.

C; intersects transversally with Hf at g and with H0 at H

respectively.

C3 r1 H0 = {}.

For (1) see the proof of Lemma (3.3.9).

Next, from G(b) = G'(b) = 0, we have

T 2

7'1: — 7% — 3/7.
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d7'1 1

By (3.4.14), we'have properties (2), (3), (4), (7), (3) and (9). (5) is immediate

from Lemma (3.4.11).

**

**

(6) r0 = — f; b + £19.41
7P'(b )

._ 4 _

‘ 7P'(b ) 8.”
** **-

Hence 71 <—8/7 since P'(b )> 0.

q

)
_
.
1

II

** 4 ** . -

Now 70 + 5— .71 + 32/35 < 0 1S equivalent to

** ** **

b P'(b )—P(b )+4/5>0.

Let f(b) = bP'(b) — P(b) + 4/5.

f(b*) = 4/5 — P(b*) > 0

- *

f'(b) = bP"(b) > 0 on (b ,b**) by Lemma (3.4.11).

Hence f(b**) > 0. In fact,

* **

(3.4.15) f(b) > 0 on [b ,b ].

(10) is clear from (6) and (8). (Note that C4 is concave upward.)

(11) Suppose C3 11 H0 at {} and let (7 1'13)cC 11 HO.

 

.0,

Then 70 + 371+32/35 = 0 since (70,71)6H0.

Also 7'0:— 7b+man 71:- -—8/7

7P‘ (b) ~ ~ 7P'(b)

for some bc(b* ,b* *) since (70,71) (C3.

Hence C3 11 Ho # {I is equivalent to

bP'(b)— P(b)+ 4/5: 0 for some bc(b*,b**).

However, from (3.4.15),
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' ' f(b) = bP'(b) — P(b) + 4/5 > 0 on (b*,b**).

Hence C3 11 HO = {}. 13

Now we consider the number of limit cycles. For a given (70,71), the

number of limit cycles of equation (3.4.1) is determined by the number of roots

of equation G(b) = 0 for b > -—1/4. The roots of G(b) = 0 for

bc(—1/4,0) correspond to the limit cycles of type 1 (two limit cycles for each

root; one surrounds the point 'A = (—1,0) and the other surrounds the point

C = (1,0), see Figure 21) and those for b€(0,oo) correspond to the limit cycles

of type 2 (one for each root which surrounds A, B = (0,0) and C

simultaneously).

If 1'1

for 706(m,1/7) -— {0} (i.e. b6(-—1/4,oo)- {0}) and 71 = —8/7, G(b) = 0 has

+ 8/7 = 0, then G(b) = 0 if and only if To = — 4b/7. Hence

aunique root since G'(b) = 4/7 at 0 and for T06(1/7,oo) and 71 = — 8/7,

G(b) = 0 has no root.

We suppose that 71 + 8/7 )6 0, and rewrite

G(b) = To + $- b + (71+8/7)P(b) into the form

G(b) = (T1+8/7)IP(b)-A(b)l

where A(b) = —(ro+4b/7)/(rl_+8/7).

For given (70,71), A is linear in b. Again the root of G(b) = 0 is the

intersection of the straight line P =_A(b) and the curve P = P(b) on the

(b,P)—plane. The curve P = P(b) is concave downward (P"(b) < 0) on

(-—1/4,0) U(b**,oo) and concave upward (P”(b) > 0) on (0,b**). Thus

points (0,4/5) and (b**,P(b**)) in (b,P)-planeare inflection points.

P'(b) < 0 on (—1/4,b*) and P'(b) > 0 on (b*,oo) so that the point

(b*,P(b*)) is an extreme point. A(b) depends on 70 and 71 while P(b)

does not. Recall that P(-1/4) = 1, P(O) = 4/5.
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A(b).;has the following properties;

(1) A(—1/4)_ =1 (resp. A(—1/4) > 1, A(—1/4) < 1) if and only if

_ (70,71)er (resp. is below Hf, is above Hf).

(2) A(O) = 4/5 (reSp. A(O) > 4/5, A(O) < 4/5) if and only if

(TO,T1')€HO (reSp. is below H0, is above Ho)'

(3) The straight line ' P = A(b) is tangent to the curve P = P(b) for

4

bc(-—1/4,oo) — {0,b*,b**} if and only if (r0,r1)c U Ci.

. i=1

The relative positions between the straight line P = A(b) and the curve

\

 

P = P(b) are as inFigure 27 (a) — (h). In the strict sense, I to X in

Figure ‘26 are different from those in Figure 19,. however, we will use the same

notations for convenience.

For g and H in (70,71)_—plane, we have associated straight lines, say,

g H P = A(b). and H 4..) P =3 H(b). .Let b (reSp. B) be the solution of

the system

A(b) = P(b) reSp. K(b) = P(b)

F(b) = P'(b) ' F(b) = P'(b).

It is easy to see that b* < b** < B < B < 00 (see Figure 27 (g) and (h)).

Lemma (3.4.15).

Let K be a compact neighborhoOd of ' {H(x,y) S b") and let D be a

compact neighborhood of the curved region 5 5 g H d E and a curve 1' g in

(76,rl)—plane. Then there exists a(D) > 0 such that the bifurcation diagram

of the equation'(3.4.1) can be described in C(D) = (0,a(D)) x D as follows

(up to a diffeomorphism of C(D) equal. to the identity of s = 0):

(1) SHf = (0,a(D)) x. Hf is a surface of H0pf bifurcation of

codimension 1.
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(2) SH = (0,a(D)) x H0 is a surface of homoclinic 100p bifurcation of

- o

codimension 1. I

(3) SC. = (0,'a(D)) x Ci (i=1,2,3,4) is a surface of semistable limit cycle

1

bifurcation of codimension 1.

(4) (0,003)) X {5}, ‘(0,a(D)) X {5}, and (0,0(D)) x {T} are curves of

H0pf, homoclinic 100p, and triple limit cycle bifurcations of

codimension 2 respectively.

(5) (0.4(D)>x161 = (21(st) 1‘1 cusHO)

(0,a(D)) x {El} 2 Cl(SHf) n Cl(SC2)

(0.44m) x {a} =‘ 01(SH ) n Cl<sC )
_ o 4

(0,a(D)) x {H} = C1(SHf) n Cl(S4)

are curves of the corresponding two simultaneous bifurcations.

Outside these bifurcation sets in C(D), the t0pological type of the phase

portraits of the equation (3.4.1) is constant in K.

Proof. The paragraph after Lemma (3.4.13) plus the implicit function theorem

applied to F(b,AS) = s3(rOIO(b) +' 7112(b) + I4(b)) + 0(s3) give the proof.

For details, see Dumortier et a1 [7]. 1:1

The blowing—up (3.3.1) with 17 = 1 gives a transformation

(1): (S,(7'0,7'1)) -1 (61,62,63),, and

(3.4.16) ¢((0,a(D)) x n) = {(82,84TO,S271)[SC(0,01(D)), (r0,r1)tn}.

Let Ef (D) be the RHS of (3.4.16). The bifurcation diagram of (3.2.9)_ in

1
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EC (D) is the image of those‘described in Lemma (3.4.15) by the

1 .

transformation and thus homeomorphic to cones based on H , HO, O, and

3: - h with curves 3 -1 (S217, 841'0, szrl) with 17 = 1, or equivalently

2
61 -1 (61, 617'0, 617’1) for 61 > 0.

Now we will consider the behavior of (3.2.9)_ in a sector around 063-axis.

For this we take 7 = *1 instead of 17 = 1 in (3.3.1). Since both cases
1

T1 = 1 and 71 = —1 are similar, we will consider only the case T1 = 1

like in §3.3. By (3.3.1) with 71 = 1, equation (3.2.9)_ becomes

(3.4.17): x = y

y = 17x — x3 + S3(TO+X2+X4) y.

Let s1 > 0 be fixed. Then for each se(0,sl] we take a blowing—up again:

2
(3.4.18) 17 = r x -1 rx

' and y —1 r2y

2_

TO = T To t —1 t/r.

Then (3.4.17) becomes

(3.4.19) it = y

y = x - x + s3(r(?o+x2)y + 0(r3))

which is a perturbation of the Hamiltonian system (r = 0)
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(3.4.20) 5r II

<
<

4
x

with the first integral H(x,y) = 5—2— — g— + 1— . As in Lemma (3.4.3), we

have I .

. H(wB) — H(wb) = s3r(F(b,?o) + o(r))

where F(b,'r'0) = 7010(b) + 12(b).

Lemma (3.4.16).

In the plane {(17,70,'r1)|71 = 1} there is a fixed compact neighborhood

B+ of (17,70,71) = (0,0,1) such that for equation (3.4.19) the results of

Carr—Takens are valid for any (1),T0)6B+ and any sc(0,s1]. (See Figure 28.)

Proof. Carr [3]. Cl
 

Blowing—up (3.3.1) with 71 = l (i.e., £1 =' 7782, 62 = 7034, 63 = 32)

gives a mapping (s, 17,70) -1 (61,62,63) which maps (0,31] x B+ to

+ _ 2 4 , 2 +

E+

‘ 3

3+.

is a cone in (51,62,63)—space around 063—3X1S (63 > 0) based on

The bifurcation diagram of (3.4.1) in E: consists of cones based on

3

Hf, HO, C2, P, Hf and {51} with generating curves s —1 (S277, 3470,32).

For 1'1 = —1, we can get a cone E-
c3.

‘11,, 1‘10, 63, P, Hf and {'62} similarly.

around 063—axis (£3 < 0) based on
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Now we consider the case ‘1 = 0. In (3.2.9)_, if ‘1 = 0, we have the

following equation

it = y

y =‘ —x3 -I- (62+e3x2+x4)y.

After blowing—up ((3.3.1) with 7) = 0), we get

(3.4.21) it y

y = —x3 + s3(ro+7'1x2+x4)y.

If s = 0 in (3.4.21), it becomes a Hamiltonian system

x=y

i=—x3

with the first integral

2 4
__ X

(3.4.22) H(x,y) _ g— + 4— .

As before, we get a similar lemma of Lemma (3.4.3) and lead to solve

(3.4.23) F(b,/\O) = 7010(b) + 7112(b) + 14(b) = 0.

where Ii(b) = ) xiydx, 7b; H(x,y) =' b in (3.4.22).

7b

(All the same notations will be used again.)

Lemma (3.4.17).

(3.4.24) 714(b) = 4b 10(b).  
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Proof. Omit. :1

Hence by (3.4.24) we get a new form in F(b,AO) from (3.4.23).

(34 25) F(bA ) = (r +4b) 1 (b) + r1 (b)
' ° ’ o o 7— o 12 '

Let

12(b)/Io(b) for b > 0

(3.4.26) P(b) = .

I 0 for b = 0

and from (3.4.25) and (3.4.26) we define

. 1 . . .

4b
= TO + T— + T1P(b)

(simply write G(b) instead G(b,)t0)).

Lemma (3.4.18). P(b) defined in (3.4.26) satisfies

(3.4.28) P'(b) = %B .

Proof. Immediate from 310(b) = 4b IO'(b)

51 b) = 4b Ié(b). n2(

By (3.4.28),
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(3.4.29) P(b) = Z 75, b 2 0, l is a constant independent of b.

If b = 1/4, 4: P(1/4) = J x2ydx/J ydx

' ' 71 71

= I1X2(1*X4)1/2 dx/I1 (1-x4)1/2 dx.

_1 _1

For the semistable limit cycle bifurcation, if we solve

G(b) = To + 1% + T1P(b) = 0

G'(b) = f; + 71P'(b) = 0,

then we get

_ 4
T0 — 7' b

. _ - 846
1 _ W’

Hence

62 r2

3 . 1 16
(3.4.30) — = ——- = —

62 To 732

We restrict (3.4.30) to a Sphere ~S (actually S n {51 = 0} = {€2+€3=60})

so that the solution is exactly (0,072,a3)

8 8 2 2 1/2
- —- + (I ) + 6 )

7132 fig 0

We let b3 = (0,07 ,a3).

2_16
and 3—7702(073<0).where 072 = 7

The HOpf bifurcation of order 1 occurs at b1 2 (0,0,60) and

= (0,0,—eo). (G(O) = 0 # G'(0) —1 To = 0 —1 62

so 3 0 {c1 = 0} = (b1,b2) u (b2,b3) u (b3,b1) u {b1,b2,b3}.

b = 0).
2

In (3.4.27), G(b) = 0 has only one generic solution if 62 < 0. So on
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(b1,b2), there is one limit cycle. If 6% < fig (2 or (62"3) is in the first

quadrant, G(b) = 0 has no solution. So on (b1,b3), there is no limit cycle.

If 0 < $3 ‘62 < 5% and 63 < 0, G(b) = 0 has two generic solutions. So

7!

on . (b2,b3) there are two limit cycles.

Those limit cycles are generic on (b1,b2) U (b2,b3) U (b1,b3) so that

they still persist if 61 is a nonzero small number such that c = (61,62,63)

is in S.

Let R C S be a compact neighborhood of b3 diffeomorphic to a closed

disk and let D0 (resp. D1,D2) C S be a compact neighborhood of part of

(bl,b3) (resp. (b1,b2), (b2,b3)) around the circle {(1 = 0} n s in such a way

that (1) limit cycle(s) persist on _Do (resp. D1, D2), and (2)

2 ,

(u D.) 11 13+ 0 E" u R 3 {61: 0} n s as in Figure 29. We choose a

i=0 1 63 63

compact set D in Lemma (3.4.15) such that union of E6 (D) n S, D0, D1,

1

D2, E: n S, E; n S and R covers hemisphere {cl 2 0} 11 S. (See

- 1 3 '

Figure 29.)

Then we will show that the curves of Hopf bifurcation, homoclinic loop

bifurcation and semistable limit cycle bifurcation (C2 and C3) in

E6 (D) n S are connected with those in E: n S (and thus Hf, H0 and

l 3

C2 with b2).with b1) and in E23 11 S (and thus Hf, H0 and C3

We have

:Hf: T+T1+1=0

and
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H: To + 41'1/5 + 32/35 = 0

2 2 2 _ 2
_ “€1+62+€3—€0,61>0

by the transformation (3.3.1)

. _ _ 2 _
. s — E, To — 62/61, 1'1 — 63/61, 61> 0.

Let ‘1 -+ 0 on Hf and H0' Then 62 -1 0. Hence (1 —1 0 implies

(61,62,63) —'1 (0,0,ieo) = b1 or b2.

Now let C2: 71 = f(ro).

. *
d71

, . . _ 1
As b varies from 0 to, .b (i.e., 7'0 varies from 0 to —oo), 37—0 — f (To)

- *

varies from —5/4 to —1/P(b ) and f'(70) is monotonically decreasing on

(0,b*).
7 .

0 .
——-T< f(r) <—5r/4—8/7.

P(b ) ° 0- .
7

Since on the straight lines 71 = — —O—,,.— and 71 = — 27 - 8/7, if 61

P(b) ' 0

tends to 0, then 62 tends to 0 and To -1 — co and thus 63 —1 60. Hence

by squeezing, c2 -1 0 and 63 -1 60 as 61 -1 0, i.e. as 61 -+ 0, (61,62,63) on

C2 tends to b1. Similarly, as ‘1 -1 0, (61,62,63) on C3 tends to b2.

Next we will show that C4 in IE6' (D) n S is connected with b3 in

1

R.

Note that U~(r r‘) — (— 4b +4P — 4 —8/7) for bc(b** )
. -, 4611'- 7 7P“ 715T 1°°-

2_ _ 4 4P ‘3_ _ 4
From 62/61—T0—-7b+7p‘r and q—T1—-7P-r-8/7,

as b -1 oo P'(b) -+ 0+, 7'1-1 — co and 63/61"1 — co,

and '

[as b-160 70-100,62/6¥7160 and 6962-10

since To =.—i§-b+%];-4b/7 as b-loo.
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in: #10:.-.
o ‘2 ‘2 ‘2 ‘2 2

and

Ti (‘ 7f“ ' $2 16
—= 4 4P 47%b4m where c>0isaconstantin

. o (— 7b + 7F) _7c

Lemma (3.4.8).

. Hence 61 -i 0 but 62 and, £3 -/-+ 0 as b -» oo. (61,62,63) on C4

does not tend to b1 or b2 as b -i 00 since 52 —/—» 0. The only other

point at_which the number of limit cycle change on {61 = 0} n S is b3.

Thus (61,62,63) on C4 must tend to b3 as- ‘1 —) 0 and so it must be

that c = Z.

We have proved Theorem (3.4.1).

B. 61 < 0.

As in the case 61 > 0, we use (3.3.1) with 77 = —1 to investigate the

behavior of (3.2.9)_ in a neighborhood of Del—axis for 51 S 0. Hence the

equation (3.4.31)_ has the form

(3.4.31) ii = y

y = -—x - x3 + 83(TO+T1X2+X4)y.

Equation (3.4.31) has the equilibrium point (0,0) which is a focus. If

s = 0, (3.4.31) becomes a Hamiltonian system

(3.4.32) )1 = y

y=-——x——x
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withthe first integral

'H(x,y)=g3+)§&+i:

and the phase portrait of (3.4.32) is shown in Figure 30.

Closed orbits surrounding (0,0) correspond to level curves

(7b: H(x,y) = b, b€(0,oo). Now. we consider (3.4.31) for small 3 1: 0. Every

closed orbit of (3.4.31) should intersect with the interval U = {(x,0)|x 2 0}.

We define Wb for b€[0,oo) as follows:

(a) wch (b) H(wb) = b.

Let As = ((70,71),s) and we define a Poincare map PAS: U -+ U by a

successive intersection points of U with an orbit in an obvious way. (See

Figure 31.)

Let 7(b,/\S) be the orbit of (3.4.31) which joins the point wb and WE.

Hence 7(b,)\s) is defined for b€(0,oo). Then we have the lemma.

Lemma (3.4.19).

(1) Every closed orbit of (3.4.31) is expressed by the form 7(b,AS) with

WB = Wb. V

(2) A trajectory 7 = 7(b,)\s) of (3.4.31) is a periodic orbit if and only

if

(3.4.33) 1 dH if (it = 0.

(3) For x > 0, condition (3.4.33) is equivalent to
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(3.4.34) F(b,A ) ’2: J (7' +7 x2+x4)y dx = 0.
s o 1

Proof. See the proof of Lemma (3.3.2). a

Following the same procedure as Subsection A, it reduced to solve (see the

 paragraphs after Lemma (3.4.2).)

(3.4.35) F(b,)\o) = 7010(1)) + 7112(3) + 14(3) = 0

 

where Ii(b) = J xiy dx, 7b; H(x,y) = b.

7b

Lemma (3.4.20).

(3.4.36) 714(b) = 4bIO(b) — 812(b).

Proof. Similar calculation of ’the Lemma (3.3.5). D

From (3.4.36), (3.4.35) becomes

(3.4.37) F(b,(ro,rl)) = (70+ 4b/7) 10(3) + (7'1 — 8/7)I2(b).

Note that 10(0) = 12(0) = 0, 10(1)) > 0 for b > 0 and 12(b)/Io(b) .. 0

as b -+ 0. So we can change (3.4.37) as follows:

(3.4.38) G(b,(TO,T1)) = TO + 4b/7 + (71—8/7)P(b)

(We will denote G(b,(TO,T1)) simply by G(b)) where
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I2(b)/Io(b) for b > 0

(3.4.39) P(b) _=

. 0 for b =

Lemma (3.4.21). P(b) defined-in (3.4.39) satisfies

4b(4b+1) P'(b) = —5P2 + (8b—4)P + 4b

 

Proof.- See the proof of Lemma (3.3.6). 0

Lemma (3.4.22). P(b) also satisfies:

(1) lim P'(b) = 1/2 and P'(b) > 0 for b > 0

b—»0 ' '

(2) tlyi’m P"(b) = —7/8 and P"(b) < 0 for b > 0

0

hence the graph of P = P(b) is concase downward.

(3) P(b) ... mJb’ as b —i 00 for some positive constant m.

 

So ,

lim P(b) = 00 and lim P'(b) = 0.

b—ioo ' b-ioo

Proof. (1) and (2) are easy calculations from the system of equations

13 = -5P2 + (8b—4)P + 4b

13 = 4b(4b+1). . D

which is gotten by Lemma (3.4.21).

See Lemma (3.3.7) and Lemma (3.3.8) for details.

For (3), see Lemma (3.4.8). o
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Now we will compute the bifurcation curves of the equation (3.4.31) in

To,rl)—plane. The H0pf bifurcation curve Hf of order 1 in (3.4.31) is

Hf: .To

where the Hopf bifurcation of order 2 occurs. (Compute the Liapunov's focal

:0 except (70,11) = (0,—16/7) = IE

values in (3.4.31).) The semistable limit cycle bifurcation curve C is given

by the equation G(b) =-G-?_(b) = 0 for b€(0,oo) and is

4 4P 4
CI (TO’TI) = (- 7b _.7PT’ - TPT + 8/7), b€(0,oo).

(See'Figure 32.) ‘

Lemma 3.4.23 .

(1) The curve C issmooth.

1 (2) C is tangent to Fl'f at E: (0,—16/7).

' ' ~ d7

(3) As b -+ 00, the SIOpe (a—Tl) of U is increasing monotonically and
o .

tends to 0.

Proof. See Lemma (3.4.14). ~ ' n

It works through on the semistable curve almost the same as the case

‘1 > 0. For the number of limit cycles, we consider the relative positions of

the curve P = P(b) and the straight line P = A(b) shown in Figure 33,

where A(b) is such that '

G(b) =,(r1—8/7)(P(b)—A(b))

SO

To + 4b/7

43:77.7...
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We can get a similar version of Lemma (3.3.15) and, after secondary

blowing—up, Lemma (3.3.16), then using the results for 61 = 0 ((3.4.21) —

(3.4.30)) and the same idea as before (61 > 0), we can prove that (61,62,63)

on C tends to b3 as 61 4 0 and m = t. We omit the details because

the steps are routine repeated arguments of Subsection A.

§5: The Case: b at 0.

We can get the versal deformation of (3.1.5) as follows:

Lemma (3.5.1). Any symmetric perturbation of (3.1.5) with small parameter p

can be transformed into the form

(3.5.1)i x =- y

9: (41(4) + 423(4))? .4 x4)x + (42(4) + Gm)? + y¢(x,y,u))y,

where ”(R3, G(x,0) = [all/2 and ¢(x,y,0) = 0.

Proof. By an appropriate scaling, we can change (3.1.5) into the following

form:

(3.5.2) x = y.

ly=ax5+flx2y

Where a = 8311(5), fl = (AH/2.

Using (3.5.2) to follow the same steps as in the proof of Lemma (3.2.1), we get

(3.5.1)4' D



98

Remark. We can take a transformation (a = ((p1,(p2,(p3): p «—» e in the

parameter space so that (3.5.1)i becomes

(3‘5°3)¢ x = y

- _ 2 4 . 2
u —- (61+63X ix )x + (62+G(x,p)x +y¢(x,y,e))y

_ i 1/2 ._ _
where G(x,0) - |a| (.=c), ¢(x,y,0) — 0.

(3.5.3)4 is versal to

 

(3.5.4)i x = y :2 f1(x,y,c~)

. 2 4 2 _
y = (€1+€3X =sz )x + (62+CX )y :: f2(x,y,c).

Bfl 6f2 ' 2

Note that div(f) = y(xq) + W(x,y) = 62 + cx .

Here we are not able to control cx2, hence (3.5.4)4 can't be regarded as a

perturbation of the Hamiltonian system. This implies that it's likely hard to

apply to abelian integrals and Picard—Fuchs equations. So probably we have to

approach from other directions.

There is a recent paper by Dangelmayr et.al [6] which introduces an

equation for a laser with saturable absorber. After using a center manifold

theorem and (a normal form theorem, they reduced it to the form (3.1.5) with a

leading fifth order term. It described also the bifurcation diagrams and phase

portraits of (3.5.4)_ without a detailed analysis (Figure 1 (a), (b) and Figure 2

in [6]). I '

However, the conjecture of the bifurcation diagrams has a couple of

mistakes, one is a saddlehnode homoclinic bifurcation (Sechecter [15]) and the
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other is a‘pitchfork homoclinic orbit in the symmetric vector field (Chapter 2

of this thesis). I

We will describe about (3.5.4)_ briefly. For simplicity we assume that

c = .—1. First, equilibria of (3.5.4)_ is determined by the equations y = 0,

(614-5382 — x4)x = 0. Hence. {cl = 0} is a pitchfork bifurcation surface and

{£3 + .461 = 0, 63 > 0} is a saddle—node bifurcation surface. Also {62 = 0,

£1 < 0} is a Hopf bifurcation of order 1. The number of equilibrium points

are as follows. (See Figure 34.)

(1) 61 '> 0: 3

 

(2) —£§/4<€1<0 and c3>021

2
c
3

(3) (£1<0 and c3<0)U(61<—1— and €3>0)25.

Bifurcation diagram and phase portraits (Figure 35) are based on numerical

results, Chapter 2 of this thesis, and Schecter [15]. (Also, of course referred

Dangelmayr et.a.l. [6].)

We divide three cases depending on the sign of 63;

(i) Case 1: 63 > 0

(ii) Case 2: g, = 0

' : (iii) Case 3: e3 < 0,

and codimension two bifurcations are explained in each case.

(i) Case 1: 63 > 0.

For a small but fixed 63 > 0, we can change (3.5.4)_ into the following

form
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(3.5.5) 5: = y

. , 3

y=u1x+u2y+X( 1—x2) + x2y

by an appropriate scaling, where 441 = 61/63, p2 = 62/63.

(3.5.5) gives us a local behavior near (p1,;r2) = (0,0) (i.e.,

063—axis (63 > 0); (5)+ in Figure 35). Also we can see that Takens—Bogdanov

bifurcation occiirs at (111,142) 2 (—1/4,1/2) ’

(i.e.,.e = (—c§/4,e3/2,c3); (1) in Figure 35), H0pf—saddle node bifurcation at

(141,442) = (—1/4,0) (i.e., c = (- €3/4,0,€3); (9) in Figure 35), Hopf—pitchfork

 

bifurcation at 011,432) = (0,1) (i.e., c = (0,63,63),63>0; (7) in Figure 35).

(ii) Case 2: 63 < 0.

As above, we have the following:-

x = y

- 3 2 2
y=u1x+u2y-X(1+X)-Xy,

‘ 2

On 063—axis (63 < 0), we have a Takens—Carr bifurcation ((5)_ in Figure 35)

which is only a codimension two bifurcation.

(iii) Case 3: c3 = 0.

Symmetric version of cusp bifurcation occurs at (0,62,0) ((6) in Figure 35).

In this case (63 = 0), HOpf, homoclinic and semistable bifurcation curves are

tangent to the pitchfork bifurCation curve.
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There are nine different codimension two bifurcation occurring in (3.5.4)_.

(see. Figure 35).

(1') Takens—Bogdanov bifurcation.

This— bifurcation has an equilibrium point whose linearization is nilpotent.

The equations defining the locus of Takens—Bogdanov bifurcations for a family

5: = f(x,A), de2 are f(xO,A) = o,

trace Dxf(xo”\) = det Dxf(xo”\) = 0.

A normal form for the Takens—Bogdanov bifurcation is

 

x = y

_ . 2
y—61+£2six +xy.

(See Bogdanov [2] and Figure 36.)

(2) Saddle—node homoclinic ' bifurcation.

The vector field of this bifurcation has a homoclinic orbit at an equilibrium

point whose linear part has a simple zero eigenvalue and one nonzero

eigenvalue, and the center direction is a saddle—node codimension one

bifurcation. A homoclinic bifurcation meets the saddle—node bifurcation with

quadratic tangency. (See Schecter [15] and Figure 37.)

(3) Homoclinic bifurcation of order 2. g

This is a homoclinic'bifurcation at a saddle point where the Jacobian

derivative has a trace 0 and a certain prOperty is satisfied.

The semistable bifurcation curve approaches the homoclinic bifurcation

curve tangentially with infinite order contact. (See Roussarie [14], Joyal [11] and

Figure 38.)
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(4) Pitchfork homoclinic bifurcation. .

(see Chapter 2 of this thesis and Figure 39.)

(5)a: Takens—Carr bifurcation.

If a symmetric vector field has a nilpotent linear part at 0, then it occurs

with two distinct qualitative behaviors (depending on the sign of coefficient in

x3 in the nbrmal form) whose: normal form is as follows:

it = y

y: clx+ c2yix3+x2y

(See Carr [3] and Figure 40 (a), (b).)

 

(6) Pitchfork saddle—node bifurcation.

Ifa pitchfork bifurcatiOn occurs at (0,0) and a saddle—node bifurcation

occurs at an equilibrium point Splitted from (0,0) in the symmetric vector

field, we have a pitchfork saddle—node bifurcation. The normal form is as

follows:

x = 61X + €2X3 — x5

r = cry ((#0)-

(See Chapter 6 of Golubitsky and Schaeffer [9] and Figure 41.)

The following are codimension two bifurcation curves where two

codimension one bifurcation curves meet transversally each other:

(7) Hopf pitchfork bifurcation I

(8) Pitchfork semistable bifurcation, and

(9) Hopf saddle—node bifurcation.



APPENDIX

Theorem. Let OeIR2 be a pitchfork of 11:33‘ :(IR2), r _>_ 3. Then there is a

neighborhood B of f in 42‘ $0112), N a neighborhood of 0 in R2 and

a: B —i R, Cr"1 function such that

(1) ch has a pitchfork as a unique equilibrium point in N if and

only if d(g) = 0. If d(g) < 0, g has three equilibrium points, origin is

node, other two, both generic, are saddles. If d(g) > 0, g has one saddle

point, origin in N.

(2) d(f) = 0 and dozf 9f 0.

Before proving it, first we introduce some notations and definitions. Let

M be a 2—dimensional smooth manifold. Let fee? 1(M) such that

2

f(p) = 0 for some pcM, and f = 2 fi 3%. Then define

i=1 i

. 2 _, = =Dfp. DpM Dp2M by Dfp(v) [g,f](p) where g(p) v

for some g = 2 gi 3:3— 63 1.(M), and [,o] is a Lie bracket.

i=1 i

Also define

A(f,p) = Det(Dfp)

a(f,p) = Trace (Dfp).

Let r 2 3 and Spec(Dfp) = {A1 = 0, A2} and Ti’ a corresponding

eigenspace of Dfp and iri: DpM -» Ti projection (i = 1,2).

For chI, v i 0, we define A1(f,p,v)v by 7rl[g,[g,f])(p) = A1(f,p,v)v, and

likewise

A2(f,p,V) by 7rllg,ls,[3,flll(p) = A2(f4>,v,V)V-

Then A1(i=1,2) does not depend on g. P is called a saddle—node of

f if A1(f,p,v) at 0 for some v ¢ 0.

103
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If fee?)r :(IR2) and A2(f,0,v,v) ,4 0 for some v ,4 0, 0 is called a pitchfork

of f.

i
2 such that 7r, v = uv and fl,ui,vLet u be the vector on DpM

components of f,u,v respectively with reSpect to a coordinate system (x1,x2)

around p. Then

(1) 41333) = ulg,[g,fll(p) 131‘”62915mv’vku,

(2) A, does not depend on g. i.e., ulg,[g,fll(p) = uisisimp)

for every ges%r(M) with g(p) = g(p) =

(3) Let fc$;(lR2), ge$r(lR2). Then

A2(f,p,vV)—_ 11[g [g [g{1le):

63fi jk 1
2 p) v v v u.

i,i,k,1 afiak‘f‘l ‘

(4) Likewise, A2 does not depend on g.

Proof of Theorem. Let x = (x1,x2) be a coordinate system around 0

2 .

such that x(0) = 0 and 33—(0)6Ti(i=1,2). Then f: 2 fl 3:— satisfies

i i=1 i

1 1 2 2
f f f f

"35(0) 1' £50» 2 331(0)- 0, 3;“)0) = 0(fa0),

azfi (0)__ 0 f 2
W or every i,j,k—— 1,2 since fee? S(IR ),

33413 a
—3-(0)= A2670, (0), (0))-
6x1 33‘? 3‘71—

That is,

1
f (x1,x2) = A2x:13 + bx%x2 + cxlx?2 + dxg + M1(x1,x2)

2 3
f(x1,x2) = 0x2 + axl

2
where Mi(x1,x2) = 0(le ).

2 2 3
+ flxlx2 + 7x1x2 + 6x2 + M2(x1,x2)
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0 0
Assume a(f,0) < 0 and A2(f,0,3x—(0), 571(0)) > 0

Let N and B be neighborhoods of 0 and f respectively such that
o

for g—- 2gi 3;ch the following hold on NO:

=1g i

(1) 42.

H
O

0,

2

6‘“ 'k1
(2) A(0,,vv)=2 vvaug>0

2g i,j,k,1 j k 1gggl

where

v1=1v2 = -(§§3)'1(§3)
g ’g 2 1

2 2 1
—2 a —-1

ui=<1+<31L1 3% >
2 1 2

1 2
g_- -1. s

“2‘ 3,3,) 1,,

1 2

(3) a(g)=%+%§<0

Existence of such N0 and B0 can be guaranteed because of the

continuity since f satisfies (1), (2), and (3) at 0.

[
\
D

2 . 2

Tk =2 ‘6 =02 ia,ad 8=2u5d.3.8 Vg i=1Vga;,WgH:1Wg3x—l D 11 i=1 1 X1

where

2 1
1 __ a -1 0 2 _

wg .. (Big) £3 wg ._ 1.

If OcN0 is an equilibrium point of g and so A(g,0) = 0, then Vg(0) is

an eigenvector corresponding to A: 0, Wg(0) is an eigenvector corresponding

to A = a(g,0), ug(0) is the covector such that ug(vg) = 1 and

Hence by (2) and (3), non—generic point OeNO of chO is such that

o(g,0) < 0 and A2(g,0,vg,vg) > 0, i.e., 0 is a pitchfork.
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Define F. B0 xNO'-11R by F(g,x(,x2))= g2(x1,x2). F is Cr

since g2 is and it is an evaluation map. F(f(00)): 0, gF—(f(00

2

m 0,0) = a(f,0) < 0. By implicit function theorem, there exist B1 x I1

2

a neighborhood of (f,0) and I2 a neighborhood of 0, Ii C IR (i=1,2)

and F1: B.1 x I1 -» 12. a unique Cr—function such that

(*1) F1(f,—0)— 0, F(g,x(1F(g,x1))) E 0 for every (g,x1)1€B1 x 11.

Define F2: B1 x I1 —+ IR by

(*2) _ F2331) = 631313311).

From (*1) and (*2), we have

2 = g —1

(6) 3x7— (111) [A2(810,Vgivg) > 0-

The computations of (4), (5), and (6) will be later.

Define a: Bo -+ [R by

0F 1
2 0

d(g) = 571(310) = 3%(0F(3,0))

r—l 6F2
Then a is C and d(g) is the minimum of ax—(g,x1) at

1

0F

x1 = 0 611 by (5) and (6). Hx—i(g,x1) is even in x1.
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(i). Case 1: d(g) > 0.

There is a unique equilibrium point (0,0)6N which is saddle since

0f

-a(g) > 0 if and only if BX—2(g,0) > 0 if and only if

1

A(g)(x1) < 0 at x1 = 0 by (4) and (1).

(ii) ' Case 2: d(g) = 0.

1) f f 6F2( 1 f fag =‘ 0 i and onlyi g,0 = 0 i and onlyi

3Y1

A(g)(x1) = 0 at x - 0. Hence (0,0) is a pitchfork by (6) since g1 _

is symmetric.

(iii) Case 3: d(g) < 0

BF

d(g) < 0 if and only if gx—2(g,0) < 0 if and only if

, 1

A(g)(x1) = 0 at x1

be x1 = 0, 7(3), and -7(g)-

That is,

= 0. Hence (0,0) is node. Let zeros of F2(g,x1)

(0,0) and (47(3), F1(3,i7(3))) are zeros of 3

BF2
3x—1(g,i7(g)) > 0 if and only if A(g)(*7(3)) < 0-

Hence (i7(g), F1(g,i7(g))) are saddle.

Next,

0F2 Bil Bfl

“(fl = ax—lfiiol = Emil-’10,”) = 3,750.0) = 0

2
__ 0 r2

For h_i:1hi3’q€£3(m)’
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(101(1)) = lim a(f+ch)—a(f)

6
6+0

= lim (l/c) a(f+ch)

£40

1
. f+eh

= 11m (1 e 0,F (f+fh,0))]

= lim (1/€)-g)f(—1(0,F1(f+eh,0)) + lim 6111 0,F1(f+ch,0))

6-10 61 6-10 1

6241 F1 0111
= W010 f+ch,0) + (0,0)

1 2 ) Bfi |c=0 H1

1 .

= 12512409).

. 1

Hence dof 76 0. 1:1

Computations of (4), (5), and [6).

For (g,xl) (B1 x 11, g2(x1,F1(g,x1)) E 0.

s a 2 2 (Fl (1 ho + = 0 an ten

W1 % in _
2 2

1_ 0 -1

“in“ 31‘??? '

6F 1 1 6F
2 8 1

(4) = + 35x;

3? 1 3’71

1 1 2 2
- -1

= 3% + 3%, <— 34 (ii)
1 1 2
2 .

—1

= (3,55) A(3)

()02F2 621 82101“, (321 3218F1)(8F1) g£1021?

5 ——§ = —5— + 37%),— + ax—éx— + +

0x1 0x? 123’? 12 6x23371551— 20x2

2 31 62F
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since
i .

fl = 0 (iajrk = 112),

.1

3223233111 32232 1121

52+axlaxzexl+(ar%r+g§—ax—laq+%g2—=Oiand
1 1.2

 

031 6381 0F1 8F1

  

 

  

  

(QT 3+ 2 8x+2( + 23x)6x
6x1 0x1 3x16x2 1 6x16x2 6X10x2 1 1

62g1 0F1 62F1 a3 1 a3 1 (Fl 6F12
+ 2 . + ( '1' ——§_ ) ( )3x 6x Bx 2 "(J—x a?

1 2 1 0x1 6x16x2 6x2 1 1

. 2 63
32g16F162F1 321 a216F1 61F1 01 Fl

+ 2 + (37%; + g ) + 5%; —

8x3 3X1 0:512 1 2 (9x3 3X1 (9x? 0x?

_a3§1+3 8381 0F1+963g1 (6F1)2+.6;38_1_(g§3)3

— 6x ax2ax 3X1 ”ax‘ 2 3X1 3 1
1 1 2 13x2 ax2

1 63F1

+ 3%; T

6‘1

8F 2 2
. 1 g -1 a

Slnce — - and

6i1 ( 2) 1

03F 2 2 2 2 2
1 a —1 a3 a3 3i —1 3

———-(£—) [—§-+—-5—(-3( ) 3,55)
(2613 2 0x1 6x?8x2 332 1

632 32—13122 032953—33
+2x—Lag) (31,—) -—i( 1321

2 3 2x ’

0x16x2 2 1 6x2 2

we have

63F
2 g _

—3'ax1 (111) - A2(gavgavg) _ 0'
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For ble’ b2b3 and b1b3, See Figure 19 (c)

(d) phase portraits of codimension 2
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Figure 21: Level curves of (3-4-2)
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