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ABSTRACT

BIFURCATION OF SYMMETRIC PLANAR VECTOR FIELDS
By

Hyeong-Kwan Ju

The pitchfork homoclinic bifurcation of symmetric planar vector fields
and some codimension three bifurcation of symmetric planar vector fields with
nilpotent linear part are studied.

The set of symmetric planar vector fields with an equilibrium point of
pitchfork type and a symmetric homoclinic orbits at this equilibrium point is
a codimension two submanifold. This is shown using Melnikov's integral
around the homoclinic orbit and studying the asymptotic behavior near the
equilibrium point in RZ. The bifurcation diagram is also obtained.

The bifurcation diagrams of generic 3—parameter families of symmetric
planar vector fields with linear nilpotent part is analyzed and described on
the sphere using abelian integrals. These integrals generate the Picard—Fuchs
equations which in turn gives the number of limit cycles. The topological
equivalence of the bifurcation diagrams is shown to be determined by the
number of limit cycles. This can then be used to determine the topological

equivalence classes of the bifurcation diagrams.
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CHAPTER 1. PRELIMINARIES.

In this chapter we will introduce basic definitions, some fundamental
results concerning the structural stability on the plane, and the center manifold
theorem. Theorems will be stated without proofs. We restrict our interests to

the autonomous vector fields through the dissertation.
§1. Basic Definitions and Structural Stability on the Plane.

Let M be a two-dimensional smooth manifold and % "(M) a set of
C"-vector fields on M. XM is an equilibrium point of feF (M) if

f(xo) =0. Let fes (M) and x_ an equilibrium point of f in M. x _is

0 0

generic if ReM#0 for AeSpec(Df(x)) = {/\1,/\2}. X

, is a sink (resp. source)

if Re\; < 0 (resp. Re); > 0) for i =12, a saddle if AAg < 0, a node
if AAg > 0, and a focus if Im(,\i) #0 for i=12

Let (t;x) be a flow of fe# (M) with ¢(0;x) = x. Then

w(fx) =0 U g(tx), a(fx) =N U g(tx),
seR t>s seR t<s

and are called w- and o-limit set respectively. I' is a closed orbit of x

(periodic orbit with period T) if there is T > 0 such that

e(t+T5x) = ¢(t;x) for teR (and T is a smallest positive such number
possible). If T is a closed orbit whose a— and w-limit set are only a

point {xo} where xis an equilibrium point of f, then TI' is called a

homoclinic orbit at X, Let two points {xo,yo} be equilibrium points in M

with X, # Yo Then T is called a heteroclinic orbit between X, and ¥

if there exists an orbit I' whose only a-limit set is {xo} and  w-limit set

is {y,}.




A family of vector fields FR™ - #"(M) is a universal unfolding of
fe# (M) if m is a minimal dimension of a stable family F with
F(0) = f. For fl, fze.zr(M), f) is topologically equivalent to f2 (and we
denote it f1 - f2) if there is a homeomorphism h: M - M such that for
each ‘xeM, 6> 0 and 0 <t < § h(p}(x)) = ¢i(h(x)) for some € > 0
with 0 < s < e. Note that - is an equivalence relation. If f is an
element of an interior of a topological equivalence class, then f is called to be

structurally stable.
Now let A be a manifold. We want to define the topological

equivalence between two families of vector fields.

Suppose  Fy(i=1,2): A = FT(M) are C. F, is topologically equivalent
to Fy if there exists a homeomorphism g: A - A and for each AeA, F{(})
is topologically equivalent to Fy(g(A)) in the previous sense. Also a family

of vector fields F is structurally stable if F is an element of an interior of

a topological equivalence class in C"'(A,&T(M)). feF (M) is called a
bifurcation point if it is not structurally stable.

Next we want to define the bifurcation point of degree n by induction
which is crucial in the understanding of the bifurcation diagram.

f is a bifurcation point of degree 0 if it is structurally stable.

f is a bifurcation point of degree 1 if (1) f is not a bifurcation point
of degree 0, and (2) there is a neighborhood U of f such that for every g
in U, g - h for some h of degree 0, or g - f.

f is a bifurcation point of degree 2 if (1) f is not a bifurcation point
of degree 0 or 1, and (2) there is a neighborhood U of f such that for every
gin U, g - h for some h of degree 0 or 1, or g - f. Similarly we can

define a bifurcation point of degree n.



From ‘the above definitions we have the following theorem which is
fundamental in the characterization of the bifurcation point of degree 1 on

M = R2.

Theorem (1.1.1). A vector field f .is a bifurcation of degree 1 in
&FT(M), r > 3, if and only if there is a neighborhood U of f and a
submanifold A of codimension one in U such that hR -+ % (M) is
continuous with h(0) = feA and h(a) €U-A for @ # 0 is structurally
stable but h(a;) is not topologically equivalent to h(ay) if aja, < 0.
For h(0)eA, only one of the following occurs:
(1) h(0)eA has an eleméﬁta.ry saddle-node at X, in M. There are no
equilibrium points of h(a) near x, if @ <0 and a saddle and
a node near X, if a>0.

(2) h(0)eA has an elementary focus at. x . There is no periodic orbit of

o
h(a) near x, if “@ < 0 and a periodic orbit near x, if
a > 0.

(3) h(0)en has a periodic orbit < which is stable from one side and
unstable from the other. h(a) for @ < 0 has no périodic orbit
near 4 and h(a) for @ > 0 has two hyperbolic periodic orbit
near 7.

(4) Trace (%(xo)) # 0 and h(0) = feA has a homoclinic orbit 7
at a saddle point x . h(a) for @ < 0 has a saddle near X,
and no periodic orbit near 9, h(a) for o > 0 has a saddle point
and a unique hyperbolic periodic orbit near + which coalesce as
a- 0T

(5) There is a connection between disfinct saddle points (heteroclinic

orbit).



For the proof, see Sotomayor [16] or Andronov et al [1].

Remarks.
(i) Phase portraits are for (1) — (5) in the Theorem (1.1.1) are
given in Figure 1.
(ii) This is the generic situation which arises in the case of one
parameter families (codimension one) of vector fields.
(iii) Schecter [15] described the bifurcation of codimension two which

occurs (1) and (4) simultaneously and showed the bifurcation
diagram of saddle-node homoclinic bifurcation.

(iv) Let FIR%) = {fes"®%)] (=) = ~i(x) for x&?}. Then
f(j’;(lkz) implies f(0) = 0, and we have the following in

Theorem (1.1.1) in a neighborhood of 0:

(6) There is a continuous map h:R - .Z;(IR2) such that h(0) = f
and Spcc(g)i(((])) = {0,A}, A # 0, 0 is an only equilibrium
point which is a saddle for h(a) if & < 0, and there are two
saddles and 0 is a node for h(a) if « > 0. (See also

Theorem (2.3.1) and Theorem in Appendix.)

The phase portraits for (6) are given in Figure 2.
(v) We are interested in the bifurcation diagram of an equilibrium
point which occurs (4) and (6) simultaneously (pitchfork

homoclinic bifurcation) and we will describe it in Chapter 2.



§2. Center Manifold Theorem for the Vector Fields.

Center manifold theorem is one of the most important and necessary
techniques for the nonlinear analysis and the bifurcation problem. It provides
us a benefit of the dimension reduction to a certain number (dimension of the
eigenspace of eigenvalues whose real parts are zero). We introduce the center
manifold theorem of the finite dimension for vector fields (we can get the same
theorem for maps by the discretized version which is the outside of our
interests here). In an obvious way it can be generalized to the infinite
dimensional problem. For details and proofs, for example, see Carr [3], Chow

and Hale [4] or Vanderbauwhede [19)].

Let feZTR™), r > 1, and x(t;x,) be a solution of x = f(x) with

x(O;xo) = x. We say that a set A c R" is an invariant manifold of

o
x = f(x) if for every X €A, x(t;x )eA for all teR. Also a set A is called
a local invariant manifold of x = f(x) if there exists ¢ > 0 such that for
X, €A, x(t;xo)cA for all te(—e¢,€).
Let x = 0 be an equilibrium point of an fe&"(R™), r > 1, and let

the spectrum of Df(0) be Spec(Df(0)) = SP, U SP_ U SP_, where

SP = {AeSpec(Df(0)) |ReA > 0}

SP, = {AeSpec(Df(0))|ReA = 0}

SP_ = {\eSpec(Df(0))|Rex < 0}.
Let E +(resp. E,, E ) be the generalized eigenspace for SP +(resp. SP, SP )

so that R =E, ® E & E_. Now we state the theorem.



Theorem (1.2.1). With above notations and assumptions, there exist local
invariant manifolds WY, W® and W3 tangent to E n E, and E_ at 0
respectively, WY and W% are C' and unique, however, W€ is cr1

and not necessarily unique.

In Theorem (1.2.1) W is called a local center manifold. Usually we

prove the so—called global center manifold for the bounded vector field and then
using a cut—off function in the neighborhood of the equilibrium point of the
(not necessarily bounded) vector field and applying the global center manifold
theorem, we prove the local center manifold. Proof of the existence of the
global center manifold is required to use the implicit function theorem or a

contracting mapping theorem.



CHAPTER 2. PITCHFORK HOMOCLINIC BIFURCATION.

In this chapter we will give a bifurcation diagram and its explanation.
Next we will state formal assumptions for the pitchfork homoclinic bifurcation

and describe main theorems that we should prove. Then proofs will be given.
§1. Introduction.

Let fe ;(D), r sufficiently large (will be determined later), and consider

the following:
(@11) % = f(x), x&?

such that 0 is a pitchfork and there are a pair of homoclinic orbits in D,

I' and -T' which are stable. Then the set of all such vector fields is a
codimension two submanifold with an abpropriate smoothness in zr(D), where
D is a symmetric neighborhood of I' (D is said to be symmetric if
D=D in R

Suppose we have a two-parameter unfolding family of (2.1.1)
(212)  x = f(x,0,0)

where ;'(~,a1,a2)5.$g(D) for each (al,a2)(lk2, such that I’(x,0,0) = f(x).
We would like to find a computable condition on the transversality of the
family (2.1.2) to B (D) at (ay,a5) = (00).

If the transversality condition is satisfied, we have certain smooth

nonsingular parameter coordinates changes (a,a9) = (7),75) = (yshtg),



preserving the origin, and let ;’(x,al,az) = g(x,rl,r2) = f(x"‘l"‘2)‘ then
X = I(x,p1u2) has the bifurcation diagram of Figure 3 in a sufficiently small
neighborhood of (4;,4y) = (0,0). We have two curves, Hy, and Hg, in the
left hand side of the pitchfork bifurcation curve P(:uQ—axis). They meet P
at (”1"‘2) = (0,0) with quadratic tangencies. Hy, and Hj (= the
positive ul—axis) are homoclinic bifurcation curves of codimension one, while
H, is a heteroclinic bifurcation curve of codimension one. Hyp meets P
transversally.
The phase portraits of x = f(x,ul,uQ) in a neighborhood of -TUI' is as
follows: ' '
Aoy =0 (The origin is a pitchfork.)
L. py = 0: two homoclinic orbits at the origin (figure eight).
2. gy > 0: two stable closed orbits inside the stable manifolds.
3.y < 0: onme stable closed orbit surrounding the origin.
B. py >0 (The origi.n is a saddle.)
4 py > 0: two _stable closed orbits inside the stable manifolds.
5. pg = 0: two homoclinic orbits at the origin (figure eight).
6. py < 0: one stable closed orbit enclosing the origin.
C. py < 0 (The origin is a node, and there are two saddles in the
opposite side of the origin.)
Ty above Holz two stable closed orbits inside the stable
manifolds.
8  py on Holz two homoclinic orbits at saddles.
9 between H01 and He: the flow of the vector field with
the initial x in the unstable manifolds of saddles tend to the

origin as t - o.



10. po OD He: two heteroclinic orbits which join one saddle to
the other.

11.  p, below Hei unique closed orbit surrounding three equilibria.

Our techniques can be applied to the investigation of the vector field with
double heteroclinic orbits joining a saddle-node equilibrium point and a saddle
equlhbnum pomt as in Figure 4.

We can extend our results to the more general problem by dropping "the
symmetry condition" on the vector field which will lead to the codimension
three problem. Also we can consider this on the higher dimensional manifold

(of dimension greater than two) in a similar way as in Chow and Lin [5).
§2. Assumptions.

We consider a vector field x = f(x) with fe% ;(D) where r > 3 for
a moment and DCR® a symmetric neighborhood of T, satisfying the following

conditions at the origin in .[R2.
0] Spec(Df(0)) = {0,-A}, A > 0.

Let u be a right eigenvector of the eigenvalue 0 and w be a left

eigenvector of the eigenvalue 0 such that u-w > 0.

(1) w-D3§(0)(u,u,u) > 0.
(111) x = f(x) has a homoclinic orbit I (hence -I') at 0 which

is hyperbolic. (Here we assume that T is stable.)




A homoclinic orbit is hyperbolic if any Poincare return map from a
transversal section of the homoclinic orbit into itself (if defined) doesn't have
eigenvalues with absolute value 1 at a fixed point which is an intersection of

the homoclinic orbit and the transversal intersection.

Remarks.
i) fes{(D) implies w-DH(0)(u,u) = 0.
(ii) Assumptions I and II imply that x = f(x) has a pitchfork at
x = 0 with one negative eigenvalue. (See Appendix.)
(iii) We may assume that u is a tangent vector to I' at 0.

(Otherwise replace it by -u.)

For z,wdRZ, we denote zAw by Jz-w where J = [(1) _(1)] Note that
wAz = —Aw and Jz is a rotation of the vector z by /2 to the positive
direction in angle.

Now let v be a right eigenvalue of Df(0) corresponding to -\ such
that v is tangent to I' at 0. We may assume that uAv > 0 without
loss of generality since if not, one can consider the reflection of the vector field
with respect to the x-axis ((x,~y) - (x,y)) -or y-axis ((-x,y) = (x,y))-

Let x = {‘(x,al,nz) be a two parameter family of vector fields on R?
such that f(-,a;,0)e# (D) for each (ap,ap)® and [(x0,0) = f(x) as

well as

av) w-(D, 32—1 £(0,0,0)(w) > 0,

) fois sufficiently smooth (at least Cll).
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From Assumptions (II) and (IV), perturbation in the positive o
direction makes the origin a saddle from-a pitchfork, while perturbation in the
negative o direction produces a new. pair of saddles from the pitchfork

point(0,0), which becomes a node. -
§3. Statement of the Main Theorems.

We state the theorems whose proofs will be given in the next section
except. the proof of Theorem (2.3.1).' First we state the following. Its proof

will be shown in the Appendix.

Theorem (2.3.1). Under the assumptions (I), (II), and (IV), there is a ¢l
function p(ay), with p(0) = 0, such that for (@,09) near (0.0)
X = %(x,al,aQ) has an equilibrium of pitchfork at 0 if and only if

From the Theorem (2.3.1), we change the coordinates in the parameter
space, say,
=~ Play)

Ty = &
and let

g(x,rl,r2) = f(x,al(rl,r2), 02(71,72))-
Then '

(231) % = glxrm)

is ¢ x =0 isan equilibrium of pitchfork in (2.3.1) if and only if
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7p =0 If 7, <0,0 isanodeof (2.3.1) and there are a pair of saddles
near 0 but oppqsite sides of 0 each other, and if T >0, 0 is a unique
equilibrium point which is a saddle.

 Let 'xo be a point -I' and let '¢(t; xo) be a flow of (2.3.1) with
¥(0; xo) = X, for (71,72_) = 0. We will denote ¢(t; xo) simplyA by ¢(t)

if there is' no confusion.

Let

[ t '
(232) I, = exp(—(j) div g(¢(s),0,0)ds) g(¢(t),0,0) A g%(cp(t),0,0)dt.

-

Then we have the following theorem.

Theorem (2.3.2).

(1) Il' converges.

(2) 1f I, #0, then there exists a Cr_l,function q(ry), with q(0) =0,
such that for (ry,7,) near (0,0) (2.3.1) has a pair of homoclinic orbit at 0
if and only if 7, = q(r;) for 7, > 0, where q(r;) = mr; + o(r) for

some constant meR.

Theorem (2.3.2) gives us an analysis for the bifurcation on the right hand
side of the pitchfork bifurcation curve. Once we have the transversality
condition (I1 # 0), we can change the coordinates in the parameter space
again as in the following. |

Let

| ko= 171
poy = Ty = a(7y),



and let )
f(nphg) = 86T (B1oHy)s Tl ohp))-
Then

(233)  x = f(xph)

is a vector field of CI! since q is ¢l

In (2.3.3) 0 is an equilibrium point of pitchfork if and only if =0
Also B >0 and py =0 if and only if 0 is a saddle and there exist a
pair of homoclinic orbits at 0 near -TUI.

To consider the bifurcations on the left hand side of the pitchfork

bifurcation curve (ul =7 < 0), we need the following.

Let
(2.3.4) Iy = [mexp(—(j)tdiv f(¢p(s),0,0)ds) (¢2(s),0,0) A g‘i—z(v(t),0,0)dt.
Then

Theorem (2.3.3).

(1) I converges.

(2) If I, # 0, then there exists ™ curve fny),  40) = 0, such
that for (u),u,) sufficiently near (0,0), (2.3.3) has a pair of homoclinic (resp.
heteroclinic) orbits near -I'UI' if and only if o= l(uQ) and Iy-pe 2 0
(resp. < 0) where Uny) = m%,ug +'0(u§), m; # 0 a constant in R.

In the expression of L and I, since g(x,0,0) = (x,0,0),
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of

div g(x,0,0) = div f(x0,0), and F(x00) = s
2

x,0,0), we have I =1,

So we denote I, =1, simply by L

Next, we consider the transversality condition of the family of vector
fields x = i‘(x,al,a2) to the vector fields which satisfy the assumptions
(I) = (V). Let D be a symmetric open neighborhood of (not necessarily
-TUT, but) 0. We denote EO by the space of all symmetric vector fields in

D with C'-topology, r 2 11, ie, B = F(D), r > 11. Let

0
B = {fe |f satisfies (I) and (II) at 0, and all other equilibria of f in D
are hyperbolic}.. The Appendix says that EI isa C™! submanifold of
codimension one in L. Also we let %, = {fel |f satisfies (III), and

—TurcD}.

Theorem (2.3.4). The family x = E(x,al,az) under assumptions in the
previous secton is transverse to 2.2 at (01,02) = (0.0) if and only if

I1#0.

We are interested only in a neighborhood of -T'UI. When the
transversality condition (I # 0) is satisfied, Theorems (2.3.1) — (2.3.4) and
Poincare-Bendixon Theorem (plus the hyperbolicity of T') gives our diagram

and its corresponding phase portraits of Figure 3.
§4. Proofs.

Without loss of generality we may consider the neighborhood of T' by

the symmetry property.



A.  Proof of Theorem (2.3.2).

Assume that Ty > 0, and consider the system

x = g(x,7,7)
(2.4.1) 5'1 =0
Ty = 0.

Center manifold theorem shows that there exists a 3-dimensional C

c
loc

Let ¢ be a flow of (2.3.1), and let

W =u u o(t;x,7,,7,)-
C rZ1°2
teR (x,r1,72)6W1

local center manifold W at (0,0,0) tangent to the center space in (2.4.1).

Then each (rl,r2)£ection of W is a curve and (0,0)-section of W is
—TUT.  Let W(rl,12) be a (rl,rz)—section of W. Then for (r,7))
sufficiently near (0,0), W(Tl’r2) is a curve in the neighborhood of -TUT.
Let L be a transversal line segment in IR2 perpendicular to T at Xy
Then for (71,7'2) near (0,0), W(Tl,Tz) intersects L transversally near X,
Hence there exists x(r),7,) such that x(0,0) = x, and

xX(),m9) €W(r,To)NL. Also x(7,75) s ™1 Now we have a C!
family of solution of (2.3.1) ¢(t; X(TI’TZ)’TPT2) (simply wc(t,rl,rQ)) for
(rl,r2) small, such that ng(O,rl,r2) = x(7,79), and so

(6.0,0) = ¢t x,0,0): = (), (L7, 1y)eW(ry,my) for teR.

Note that WC(L,O,TQ) is a branch of the local unstable manifold of the
pitchfork 0 of x = g(x,O,rz) and for >0 «pc(t,'rl,r2) is that of the
saddle 0 of (2.3.1).

Next we define a parameter dependent ot change of coordinates on

R2
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(2.4.2) y(x,r1,1'2) = (yl(x’TI’T2)’ y2(x,71,72))

in such a way that for (x,rl,r2) near (0,0,0)
| (1) y(=x7p579) = —¥(x,779), |
(2) yo(x,7s79) = 0 for (x,7y,7)€(7,75)-section Qf W(I:OC(O), and
(3) yy(elt; x,7y,79), 71,7) = constant for every x in RZ near 0
with y,(x,7;,7,) = constant and for each fixed (-rl,rz).
(2.4.2) is possible because of the symmetry property and the center manifold
theorem. By the change of coordinates (2.4.2), (2.3.1) becomes the following

C™1 differential equation in ‘y:

. 2
(2.4.3) Y 1. =% a(yl’71a7'2)

)}2 = Y2 b(yl,y2,r1,r2)

where a is independent of Yoo b isevenin y = (yl,y2). We also

assume that

(2.4.4) D y(0)u = (1,0) and D_y(0)v = (0,1).

f(~,al,a2)e$; implies g(-,rl,r2)e£ ;, and
a .
w(D, Ba; f(0)u) = w-(D, -3(2—1 g(0)u). So from our assumptions (I), (II),

(IV) and (2.4.4), (2.4.3) becomes

. 3 2
(2.4.5) 1= ¢0(T2)y1(1+y1<p1(y1’r2)) + T1y1902(y1’71’72)
}"2 = —¢3(y1,rl,7'2‘)y2(1+y2¢4(y1,y2,rl,7'2))
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where

cpo-(O), gpl(O), and <p3(0) = A are positive, ¢;,p, and g5 are even in
ypp and ¢, is odd in y, g, = O(]y|). Let V(TI’T2) = Dyx(O,Tl,rz)(O,l).
Then v(0,0) = v and (2.3.1) has an invariant curve at 0eR? tangent to
v(rl,r2). Note that this invariant curve is C™ ! in (r,75) and contains T

for (7,79) = (0,0).

In a similar way as in ¢ (t, T]:To), We can get a ¢l family
o, T1:T9)y (7:79) small; such that ¢ 8t T|:T9) is a solution of (2.3.1) with
% (t,rl,rz) -0 as t - o along the negative v(rl,r2) direction and

tpS(O,rl,rz)cL so that ¢°(t,0,0) = ¢t). (See Figure 5.)
Define 1(7'1’72) = g(4(0),0,0) A {p ( T 2) - ¢(0)]
d(r1,m) = 8(£(0),0,0) A [¢°(0,7,75) — ¢(0)], and
( 1,7'2) (7'1,7'2) - 1(7'1a7'2)-
It is easy to see that d(7;,7)) = 0 if and only if there exist a pair of
homoclinic orbits of (2.3.1) at 0.
ody

1= (0,0) since, if had shown it, by the implicit
2

function theorem I1 # 0 implies that there exists a Cr_1 function q with

We will show that I

q(0) = 0 such that d;(rj,q(r))) =0 for 0 <7 << 1

Hence

I (0,0) + '67_1(0’0) q'(0) = 0, and so
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(4
Let o€ (1) = g((£),0.0) A "’,2 (60,0),
s d 3
£, (0 = 80,00 A GE (:00)
Note that
ad, 9° P
BE(TI’TQ) = g((0),0,0) A ('3%(0’71)72 3‘% (0, 71,7'2

80

gﬁ(w>=p°( - 5 (0).
Ty T2 Ty

While, by definitions of ¢° and <ps,

a—vﬂtoo = D g(¢(1),0,0) J£ tOO +%¢ 1),0,0),

S S
& "T2 1,0,0) = D, g(¢(1),0,0) gf—zco,o) + g%_;(go(t) 0,0)

From these we have equations

5,0 = dv ge)00) £ () + e1.00) 1 F(el0).00),

5,0 = @V 860000} 1) + g(6l0.00) A FE(o(,00),

and their solutions are

0
(246), 47 (0) = o[ (1) exp | div g(p(t).00)
1

0 t
+ [ e[ dv g@(9)0,0) d5) s(p(00) A %
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s 8 ' b :
249), 45 (0) = o5 (1) e (- div g6(000) &)
{ exp (—j div g((s),0,0) ds) g((t),0,0) A %-(go(t)oo
1
= L(ty) + I(t,)

respectively. We will show later that
lim I(t) =0 =lim ’(t).

t» —w ' t-w

First, consider the following.

Lemma (2.4.1).

(24.7), lim 6ﬂ(t00)—0and

t» —w

Proof. Let
<.Pc(t,72) = Y(tpc(t,O,TQ),O,r?): = (y1(t,75),0) for t << -1
then yl(t,r2) >0 for t << -1 and yl(t,r2) is a solution of the scalar

equation

(248) L= o () (14220 (2,7y)).

(See equation (2.4.5).)

2 r—4. Let

% and z°yp, are C

z—?’(1+z2tpl(z,r2))_1 g Hl(TQ)Z_l + Ho(z,79).
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Z
is Cr_6 and H2 is Cr_7, and hence H3(z,r2) =£ H2(s,r2)ds

(0]

Then H 1

is cr 7.

Separation of variables in (2.4.8) gives

(249) - 52 + Hy(rplnz + Hy(z,my) = ¢ (ry)t + Hy(7y)

where H,(7,) depends on the value of y,(t,7)) at some t =t . Hence

H, is ™ From (2.4.9) we have

222(1 - 2 H(r,)%Iz — 22°Hy(z,m)) ™" = ~(p (1)t + Hy(ry))

2

Let w=2° andlet z > 0.

Then

1

= —(900(7'2)13 + H4(7'2))— .

(24.10)  2w(1-H,(ro)winw — 2wH4(yW,7,))”

Let ¢(w,7y) be the LHS of (2.4.10). Then by the assumption (V), ¢ is at
least C! and g%(o’“,@) #0 for 7, near 0. By the implicit function
theorem we can solve ¢(w,r2) =v for w,and let w = % + R(v,rz) be
the solution to ¢(w,7y) = v. Then R is C' and R = O(v?).

From (2.4.10)

(24.11) ¥ = = 5leg(ryt + By + R((py(rlt + Hy(r))™, 7).

So we have

-1/2

¥y = 7; (0y(rt = Hy(ro) ™2 + Ry (0, (ro)t + Hy (1)) 7p)

' 2
where R, (v,7y) = O(v3/ )-
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9y ) :
So a—l(t,r2)~0 as t - —w for 7o mear 0. This implies that

3@—(tr2 B——(LTZ ) - (00) as t- -« and

G
g%tﬂ[] g%mo ) = Dx(0,0,0)(00) = (0.0

BN

as t -+ — o -

Hence we proved (2.4.7)c.
Next, to prove (2.4.7)5, let
Fltry) = ¥(£(4,0,7),0,75) = (0,y5(t,7p))-

Since <ps(t,0,7-2) is tangent to v(0,7y) and F0,79) = 0 as t-w for
each 7, near 0, ;Js(t,rz) >0 for t >> 1, and y2(t,1'2) satisfies a
differential equation
(2.4.12) g% =- ¢3(r2)z(l+z2xp4(z,r2))

or 2 -2
where <p3(0) = A 3 and 2%, are C 7
(See equation (2.4.5)).
Note here that we set 7, = 0 so that @5 and ¢, may be different from
those of (2.4.5). It is easy to get the following from (2.4.12)

(24.13) =z epo5(z,T2) = H6(1'2) exp(—w3(7'2)t)

where Hy and Hg are ™3 and Hg> 0. Since

%(z epo5(z,1'2))| 0# 0, we can solve the equation
7=

(24.14) 2z epo5(z,r2) =v
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for z if z and v are near 0. Let z = R(v,75) De the solution to

(24.14). Then R is C™3 and
(2415) R(0,7,) = 0.

Hence we get the following solution from (2.4.13)

(2.4.16) Yy = R(H6(r2) exp(—<p3(72)t), 72).

(2.4.16) and (2.4.15) imply that

From the definition of ;78,

8 dy
| -g%(t,rz) = (0, 6T—z(t,r2)) L0 as b

Now

a° - 3" ox

af;t,o,O) = D x(¢(t,0),0,0) gf—z(t,O) + aT—Q(wS(t,O),o,O) 40 as t -,
and we complete the proof of Lemma (2.4.1). u]

Now back to the previous problem,
c 0
I.(t) = g(¢(t),0,0) A.g%(t,o,o) exp { div g(¢(s),0,0)ds.

(2.4.17)  g(¢(t),00) 2 0 as t - — m,

(24.18)  div g(¢(t).0,0) = - + O((g,(ra)t + Hy(rp)) ) a5 t -+ - o
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from (2.4.5) and (2.4.11). Hence from (2.4.17), (2.4.18), and (2.4.7), of Lemma
(2.4.1), we have
 lim I(t) = 0.

o

While, from the definition of ;:s, (2.4.15) and (2.4.16),
p(t) = O(exp(-At)) as t - o,
F(t.0) = (0,-C exp(-Mt) + o(exp(-At)))
for t >> 1 and a constant C > 0.
Hence g(¢(t),0,0) = ¢(t)
= D (et 0,0 (1.0)
= {[D,y(0.0,0]" + Ofexp(-M))} - (0,-C exp(-At) + O(exp(-At))).
Also div g(¢(t),0,0) = div g(0,0,0) + D (div g(0,0,0) + O(¢(t)?)
= =X + O(p(t)) = =X + O(exp(-At)) as t - o.

Now, a8 t - o

1(t) = g(¢(t),0,0) p 02 £ (100) exp[—j div g((s),0,0)ds]

t
- 6%(t,0,0) A g(p(t),0,0) exp[—(j) (<A + O(exp(-As)))ds]

B g%(tvo,ﬂ) A {[D,¥(0,00)] 7" + O(exp(-t))} -
(0,-C exp(-At) + O(exp(-At))) exp(At) exp (;)to(exp(_As))dS

Thus lim I(t) = -0 A [D,y(0,0,0)]"" - (0,C exp (j)mO(exp(—/\s))ds) — 0

t= w0

since the integral converges.

Now, back to (2.4.6) ., the LHS of (2.4.6) _ are constant, so as t - o, II(t)

c,s’ C,S

and II(-t) converge, and
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t .
50 = fag (-] div 5(p(s)0.0)d) B(0,00) A F(e(0.00)d

exp(—, j div g(¢(s),0,0)ds) g(¢(t),0,0) gg—(w(t 0,0)d!

0 = lim Ic(t).
t —w

0
]
p;, (0 =
T2 0
since llmI()
tow

Hence I, in (2.3.2) is convergent and is equal to pf_ 0) - psr (0), and so
2 2

ad; .
equal to i 0,0). So we proved Theorem (2.3.2). o
12

Remark. Theorem (2.3.2) gives us a homoclinic bifurcation curve of
codimension 1: {r;,75)|7y = a(7}), > 0}. After change of coordinates in
the parameter space

((rpm9) = (Byobg): By = Ty5 By = Ty — a(7)) (see page 12),
if we consider (2.3.3), for >0 we have two structurally stable connected
components. If I -y >0, then the phase portrait is topologically
equivalent to that for region 4 in Figure 3, and if I1 C gy < 0, then it is
topologically equivalent to that for region 6 in Figure 3. (Note that Figure 3
is d%c;ibed only the case I > 0.)

Existence of limit cycles in phase portraits for region 4 and region 6
is immediate from the hyperbolicity of T, the Poincare-Bendixon Theorem plus
the symmetry property of the vector field. We again emphasize that our

interests are only in the neighborhood of -TUT.

B. Proof of Theorem (2.3.3).

Basically this proof is almost the same as the previous one. However, for

4y < 0 new equilibrium points arise and this makes the proof complicated.
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Through the proof, we aésume that I <0.

Again let us consider the system

X = 1(x0,00)
(24.19) 4y =0
fiy =0

which is L. Using the center manifold theorem in (2.4.19) and so on, we
can define gac(t,pl,uz) of ¢ family. (See equations (2.4.1) and (2.4.2).
Also see Figure 5.) [Note: we will use the same notations even through they
may be different from those in the proof of Theorem (2.3.2).]

Under the same assumptions and change of variables (from x— to
y—coordinates), finally we get to a o1 equation which is almost the same as

(2.4.5):

. 3 2
(2320) [3; = @y()ys(14y) + 1y 0py ity bty)
Yo = ~03(ysbpobg) Yo(l+Yopy(y Yoy o))

where “‘;1""2""3 are even in y;, ¢, = O(ly|) isoddin y = (yl,y2), and
#,(0), 95(0), <p3(0) = ) are positive.
Equilibria of (2.4.20) near (0,0,0) consists of
E, = {0} 8 and
Ey = {(y1:0)pig) 1y = my(y79)}
where ;= py(yq,Hy) s as follows:
"

W(wz) F0 sothat g = ~y%(¢o(u2) + Y%lbl()’%#z))

for some wo(u2) > 0 and ¢1(y?,,u2) by the implicit function theorem.
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2 . —4
Note that ¢0(u2) + y1¢1(y1,u2) is C™*. For #y <0, B does not
give us.any further information concerning the topological qualitative features
since ORZ is a node. So we will consider E, only.

For I < 0, setting o= —62, we have
2 1/2
2421) 8= y,(¥(y) + v, (v )

a8
S 0.
ok 1|y1=0 #
By the implicit function theorem, we can solve (2.4.21) for ¥yp, and we let the

solution to (2.4.21) be

(24.22) y; = p(bmy)-

Since (2.4.21) is odd in yy, p in (2.4.22) is odd in §, ie.,

P(-8sg) = —D(Bssy). Also p(bp) > 0 if 5> 0. i (0) > 0 in (24.20).
So (2.4.22) implies that the equilibrium point (i)(&,u2),0) of (2.4.20) with
o= ~8 is a saddle if §+#0 and (i)(O,uz),O) = (0,0) is a pitchfork.

Now define
(2423)  p(6) = x(P(61),0), ~p)-

Then p(&,pz) sa c? mapping such that for (&) near (0,0),
(0,0) is a pitchfork of x = 1(x,0,115),

P(6g) = asaddie of % = f(x~8pmy) if &> 0,
another saddle of % = f(x~6%p5) if &< 0.

(See Figure 5.)
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From (24.23) %(00) = D, x(0.0,0) @(0,0),0), by the definition of u
u = (D,¥(0.00)(10) = Dx(000) (10).

Hence

(2421) P0,0) = B(00) u.

Now (2.4.20) with 1 = -6 has an invariant curve {(y}.¥5)|y; = P(y))
at the equilibrium point (;;(6,;42),0). For é = 0 (so m o= 0), this invariant
curve is the stable manifold of the pitchfork (0,0), and for & # 0, it is the
stable manifold of the corresponding saddle (1;(6,;:2),0).

) . 2
Let  v(éuy) = Do x((p(éh).0), ~67m)(0,1).  Then x = f(x,~6%pp) has

an invariant curve at p(é,) tangent to V(&) and this invariant curve is
¢ i (6,;;2). For (6,;42) = (0,0), this invariant curve contains T.
Similarly (see the paragraph below (2.4.5)) we have'a ¢ family
ws(t,&p?), (6,u2) small, such that ws(t,é,uQ) is a solution of
X = f(x,—62,u2), ws(t,6,y2) 2 p(8py) as t - o along the negative v(éu)
direction, (ps(O,ﬁ,uQ)cL and  ¢%(t,0,0) = (t).
gas(t,(l,u2) is a branch of the stable manifold of the pitchfork
p(0py) = (0,0) of x = f(x,0,y) andif §¢0, cps(t,ﬁ,uz) is a branch of
the stable manifold of the corresponding saddle p(&,u2) of x = f(x,—-62,u2).
We define
d3(myg) = 1(9(0),0,0) A (¢(01)19) = #(0)),
d3(b5) = 1(£(0),0,0) A (°(0,6,8) — 9(0)).
From now on, we assume that ¢ > 0, and define
dy(bmy) = dS(-8p) — d5(ebmy)

respectively. Hence d; is "™ Ssince dg is ¢! and d; is C'4
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From the definition,
d;(&,pz) = 0 (resp. d;(&ﬂz) = 0) if and only if there exists a pair of
homoclinic (resp. heteroclinic) orbits of x = f(x,—&z,pz) at p(tﬁ,p2)(resp.
from p(26y) to P(Fok).
We will show the following:
(2.4.25) ;5(0,0) < 0 (resp. ;%2(0,0) > 0) and

6d2 :

Suppose we have shown (2.4.25) and (2.4.26). Then (2.4.25) and I, # 0
imply that {(6,u2)|d;(6,p2) =0} isa ™ curve through (0,0) of the
form | '

+
6=m By + 0(/‘2)

where
+

£ 2
(Note that 6 = m™" po + 0(py) and -6 = —m_u2 + o(py).)
' £222 2 _
Henoe p = ~m) "y + olug): = Uuy).
Also, 0 < sgn(é) = sgn(m+p2) = sgn(Iz-uz)‘, so I« po 2 0.
(Resp. 0 sgn(-§) = sgn(-m y) = sgn(ly - y), 0 Iy - iy < 0)
To show (2.4.25) and (2.4.26) , first we construct variational equations for
tpc(t,—ézuz)A and sos(t,*é,uQ)-

Since.



d 9° of
(,0,0) = D_f(¢(t),0,0 aif’—(wo Ty AD00),
X ‘,2 ((t),0,0) ity
S
4 %000 = D g0 00 Hiro0),
d 3 o of
£,0,0) = D_f(¢(t),0,0 £,0,0) + 1),0,0),
T #2( ) (4(t),0,0) ity 7;—(”2‘4’(

if we define

2° (1) = f(¢(t),0,0) A%S;Lctoo

(SN

P5E(1) = 1(¢(t)0,0) A igiggnoo

S
S (1) = 1(p(1).00) A o (L00),
My

we have the following variational equamons.

(G420, G o ) = v (000 5 (1) + (0.00) A F(el0.00),
@42, §AF) = div (p(0)00) 510,
A2, ) = dv (A0.00) £, () + (A0.00) A GAe(D0.0)

If we solve the equations (2.4.27), we have the following:

0
(24.28), 2° (0) = pz2(1.1) exp { div f(¢(t),0,0)dt
1

+ {0 exp{—ét div f(¢(s),0,0)ds] f((t),0,0) A gz—?(w(t),O,O)dt,
1

t
@429, A0 = 57y el ! dv (e 00,
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(2.4.28) I O ps () exp[—jtl div f((t),0,0)dt]

+J exp[] div 1(9(s),0,0)ds] £((£),0,0) A ‘9f (D00
1

Let Ic(tl) be the first term and II(t;) the second term in the RHS of
(2.4.28)0. Also let I(t;) be the first term in the RHS of (2.4.28);. Then
C = g
3,0 = 1) 11Cy),

9;2(0) = It;) + I(t,).

For a moment,. we prove the following:

Lemma (2.4.2).
et

(24.29), lim Mﬂ(t,o,o) =0,
t+—oo 72

S+ :
2420),  lim %(10,0) = + 2(0,0), and
¢

— 0

(2.4.29), lim 7,5"— ,0,0)

t-w

Proof. For (2‘4.29)‘:, see the proof of (2.4.7)C in Lemma (2.4.1). (Note that

2

6§ = 0 corresponds to wyo= -6 = 0.) For (2.4.29)_,, we define

s+’

(2430) ¢ (t8my) = Y6 (00mg), Poiy) = (D(ebng), olt,e8siy)
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for t >> 1, for each (té,p2) near (0,0). By the relationship between the
x—coordinates and the y—coordinates and from (2.4.20),

y2(t,=t§,u2) >0 for t >> 1,
and yz(‘,té,y2) satisfies a differential equation of the form

(2.4.31) %Zf = _‘93(*5#‘2) z(1+z2<p4(z,:t§,p2)).

Here ¢, and z2go4 are C™°.

If we solve (2.4.31) by the separation of variables,

(24.32)  z expl (z,26,py) = Jo(26,49) €xp(—pa(2b,u9)t)

for some J, and J, > 0, both c™®. Since %(z expJ,(2,26,45))| 0 £0
7=

for (*5,112) near (0,0), by the implicit function theorem, we can solve

(2.4.33) =z eprl(z,ié,p2) =v

for z. Let z = R(v,#6,u,) be the solution to (3.4.33). Then R is cro

and
(24.34)  R(0,26,p5) = 0.

Thus from (3.4.32), if we let z = yo and v = the RHS of (3.4.32), then we
get

(2.4.35) yz(taiéyﬂQ) = R(Jz(*éaﬂz) exP(“P3(*5,l‘2)t), *§,ﬂ2)°
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(2.4.34) and (2.4.35) imply that
%, %,
+ - (tE8m), 3,72(t,*6,u2) 40 a3 toaw

From (2.4.30)

88 tu) = (= B, + gyisii)

So
- .
Oei(tbiiy) ~+ (+ Psbpi)0) and
(2.4.36)
ast p
iy i) - %(*64‘2)70) 881" .

s+ " g+
Since g%’—(too)= | X((1.0,0),0,0) %—tOO from (2.4.20) and (2.4.36)

hm—gz——(tOO)-—DXOOO igg.(o,o, =+ Bo00).

Finally for (2.4.29)8, we consider
P (t.6g) = x( S*(t,auz), ).

So—g—too (coo)oo)(a‘—92 3—( %(1,0,0),0,0)
D x(o,o,o)(%’—(o,o),o) + g"—(o,o,o) =0 as t-o
since 3—(0 0) =0 and x(0,0,49) = 0.

So we complete the proof of Lemma (2.4.2). o
By (2.4.30)

(2437) ¢ (00) = Dy(¢™(Lbmy), ) 5 (1.0
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Let &= py =0 in (24.37). Since @*(t,0,0) = ¢t) = f((t),0,0),

f¢(t),0,0) = [D,y(@(t).00] ™ F(,0,0).
From (2.4.30), (2.4.34) and (2.4.35), we obtain ¢(t) = O(exp(-At)) and

(2.4.38)  (£,0,0) = (0,~C exp(=At) + O(exp(-At))) as t + w
where C > 0. Therefore

(2439) f(¢(t),00) = {ID,y(0,00]™" + Ofexp(-\t))} -
(0,—C exp(-At) + o(exp(=At))).

(2.4.38) also gives
div f(¢(t),0,0) = -\ + O(exp(-At)).

Hence
t1 tl

(2.4.40) exp[~] * div (y(s),0,0)ds] = exp(At;)-exp | = O(exp(-As))ds.
0 0

Then, from (2.4.39) and (2.4.40) we have

(2.4.41) lim f(y(t;),0,0) exp[—(j)tl div 1(¢(s),0,0)ds] =
tl-’oo

D000+ (0.-C exp [ Ofexp(-Ae))ds).

Now back to (2.4.28)81, by (2.4.29)S of Lemma (2.4.2)

+
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p%*(o) = f((t,),0,0) A (2 g%ﬁ(tl’o’o)) exp [—(J)tl div f(¢(s),0,0)ds]
= (¢ g%(0,0)) A lir_r.lw f(e(t;),0,0) exp[—(j)t1 div f(¢(s)0,0,)ds]
1
where the limit exists by (2.4.41).
Note’ that
(1) from definitions of d; and p%*,

&id:
_a%(oao) = - p%*(o)v

(2) %(0,0) is a positive multiple of v by (2.4.41) from similar
assumption as (2.4.4),

(3) lim f(<p(t1),0,0) is a negative multiple of wu.

1°®

By above (1), (2) and (3);

s+ &1; | $— ad2
-5 (0) = —55(0,0) (resp. —p; (0) = (0,0)) is a negative (resp.
positive) since u A v > 0 which shows (2.4.25). The proofs of

(2.4.42) lim I.(t) = 0 = lim L(t)

- —w t- o

are immediate by Lemma (2.4.2), and are the same as those in Theorem
(2.3.2). It is easy to see that (2.4.42) shows our final claim (2.4.26).
The only thing we have to notice 'is the smoothness of f we need. In

Cc™™ instead of Cr_l, we

the proof (2.4.29) ¢ in Lemma (2.4.2), since ¢° is
need the smoothness of Clr—10 instead of Cr_7. So r has to be at least 11.

We finished our proof of Theorem (2.3.3). o
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Remark. Theorem (2.3.3) gives us a homoclinic bifurcation curve of
codimension 1: {(—(m+)2ug,u2))| o > 0} = Hy; and a heteroclinic bifurcation
curve of codimension 1: {(—(m_)2y§,p2)|u2 <0} = H,

For ) < 0, we have three structurally stable connected components as
in Figure 4 which is the case I, > 0.

Existence of limit cycles in regions 3, 7, and 11 of Figure 4 is again from
the same reasons, hyperbolicity of TI', Poincare-Bendixon Theorem, and the
symmetry property of the vector field.
=1

Note that I =1L

1 2

C. Proof of Theorem (2.3.4).

Consider a C'-mapping ¥: U ¢ R? » #X(D) with
¥(ay,ap) = {(-,a,0) and W(00) = f(-), where U is a neighborhood of
0.

We want to show that W is transversal to %, at f if I#0.

First, we will show that 22 isa €1 submanifold of 21 of
codimension one.

Let fe22 with pitchfork 0 and let L be a line segment perpendicular
to I' as in the Theorems (2.3.2) and (2.3.3). For ge¥, near f, 0 is
again pitchfork and the stable and center manifolds of 0 are Cr_l—dependent.
on g. Thus their intersection with L are ™1 function of g. Therefore
the function d(0,u) is ™1 even though d*(ﬁ,uz) is only 4
d(g) = 0 if and only if gsxz. It is easy to find a perturbation
f+¢h in % such that %I(':Od(H(h) # 0 and this says that %, is a
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C™!  submanifold of ¥, of codimension one. By Theorem (2.3.1) (or
Appendix), 21 isa C'! submanifold of Eo =% ;(D) of codimension one.
Now let (I)(pl,/t2) = f("”l’”2)‘ Then it is enough to show that ¢

trangverse to Y, at (u).p4y) = (0,0) if and only if I ¢ 0.
Since  P(0,p5)eY; for |py| << 1,

(2.4.43) %5(0,0) is tangent to I,.

Also, if I # 0, then we have

(2.4.44) %I(-,O,O) = %(0,0) - q'(0) % (0,0)
%5(-,0,0) - 7%(0,0)

from the transformation (fl,r2) - (”1’”2) (pl =Ty g = Ty — q(r 1)) and

(2.4.45) 3—(0 0) 3& 0,0)
| 30—2(0,0) = —p'(0) %(',0,0) + 7%(',0,0)

from the transformation (ap,09) = (11,79)(1) = @) - play), 79 = a2).
By assumption (IV) and Theorem (2.3.1),

o . '
(2'4.46). -aa—l is transversal to X, at f.

So (2.4.43), (2.4.44) and (2.4.45) imply that, if I # 0,
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(2.4.46) if and only if %I(.,O,O) is transversal to %, if and only if

?—(0,0) is transversal to X,.
I 1

"’d 0y

| 1
Next f; the fact that I = 0,0) = d (2.4.43),
ext from the fact tha 3T—2( ,0) -3‘72-(0,0) and ( )
I # 0 implies %3;(0,0) is transversal to )32

, .
I =0 implies 5—0,0) =
2

tangent to 22

= hich 0,0) i
iy 0,0) = 0 which says %( ) s

This completes the proof. o




CHAPTER 3. GENERIC 3-PARAMETER FAMILIES OF SYMMETRIC
PLANAR VECTOR FIELDS WITH NILPOTENT LINEAR
PART.

We will study in this chapter the symmetric planar vector fields—which
means the vector fields with the invariance by the rotation of an angle = with
respect to the drigin in the plane—with nilpotent linear part. Also we will
classify the bifurcations of the generic 3-—para.méter families of those vector fields

to be mentioned later.
§1. Introduction.

There are two kinds of k—jet normal form of the vector field with

nilpotent linear part (see Guckenheimer and Holmes [10]).

(3.11), |[x=y+ O(Ix,y|k+1)
K i i k+1
y=2% (aix +bix y) + O(|xy| )
i=2
or
. k k+1
BL1)y [x=y+ ¥ax + O(xy|" ")
i=2

koo
y = _z2bix‘ + O(|xy[¥th
1=

k—jet normal forms (3.1.1) can be shown easily using the normal form

theory.
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A. Nonsymmetric Case.
We assume. that a2b2' # 0 in (3.1.1). Hence terms of order 3 or higher

can be neglected, and we can write it down simply

"
Il
~

(3.1.2),

or

(312), |[x=y + ax?
y = bx2
where ab # 0.

Bogdanov (2] analyzed (3.1.2), and Takens ((17] and [18]) did (3.1.2),
independently.
_ Recently, some of codimension three problems concerning the planar vector
fields with nilpotent linear part with degenerate singularity are appeared. For
example, in (3'1’2)a’ Dumortier et. al. [7] worked for the case a # 0 and
b = 0 (DRS-A), and Medved [13] and Dumortier et. al. [8] for the case
a = 0 and b # 0 (Medved-B, DRS-B) with following versal unfoldings:

x =y

. 2 3
y=x"+ ¢ + y(eg + €3x * x7)

(DRS-A),
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a
(Medved-B),
$'=51+e2x+e3x21x3+xy
X=y
(DRS-B).
y="¢ + ex ¢ S+ y(eg + bx # x2)

B. Symmetric Case

While parallel to the above, we can consider the unfolding of the
symmetric vector fields with nilpotent linear part with degenerate singularity on
the plane. In this case éi = bi =0 for i even. So we assume that

agbg # 0 in (3.1.1). Then, similarly we have

(3.1.3)a X =y

y = axS + bx2y

or

(3.13), |x=y + ax

where ab # 0.

Carr [3] worked (3.1.3), and again Takens l[17] worked (3.1.3),.

For example, in (3'1°3)a’ if aa> 0 and b # 0, the phase portrait near
(0,0) i3 a degenerate saddle of codimension 2 and for a < 0 and b # 0,
it is a degenerate focus of codimension 2. (See Figure 6.)

However, if b = 0 (and a # 0), we have to consider
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(3.1.4) X=y
3

5' = ax + l;x4y
where ab # 0. The phase portrait near (0,0) is a degenerate saddle or focus
(depending on the sign of a) of codimension 3, and mostly we are concerned

with these in this chapter.

If a=0 and b # 0, we have to consider

(315 [x=y

S + bx2y

j = ax
where ;,b # 0.
In this case we have some difficulties which will be discussed later.

In studying the equation (3.1.4) with the case a > 0, basically we
followed the similar ideas as Dumortier et.al.[7]. Since the type of the
equations and its dynamical behaviors are similar. However, the equation
(3.1.4) with the case a <'0 has produced many difficult problems in proving
the existence of limit cycles and new phenomena occur including triple limit
cycle bifurcation. |

We will introduce the bifurcation diagram and the corresponding phase

portraits with a short explanation for the equation (3.1.5).

§2. Versal Deformation (a # 0, b = 0).

First we study the versal deformation of (3.1.4).
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Lemma (3.2.1). Any symmetric perturbation of (3.1.4) with small parameter u

can be transformed into the form

321), |[x=y

34 x4y G(x,p) + y2‘1’(x,y,u),

¥ = oWx + oWy + oy(uxly + x
where uclR3, G(x,O) =1 and ¥(x,y,0) = 0.

Remark. We can take a transformation in the parameters € = goi(u),

i = 1,2,3, such that (3.2.1), becomes

(322), |x=y

y = X + &y + 63x2y £ x5 4 x4yG(x,e) + y2$Il(x,y,e)
where G(x,0) = 1 and ¥(x,y,0) = 0.
Proof of Lemma (3.2.1). Let the following equations

(3:23) [x =y + w(xy.m)

j=axd + bxly + wo (X, 4)

: ,uan

bg the perturbed system of (3.1.4)., where for i = 1,2, wi(x,y,O) =0, w are

sufficiently smooth (say, C*) and symmetric (i.e., wi(—X-y.p) = —wi(x,y,u)).
~.Without loss of generality, we may assﬁme that a = + 1 in (3.2.3)

depending on the sign of the original a in (3.1.4) and b=1 since

otherwise we can take scaling
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p1/3 823 1a12/3
X - X, y~- , b= t.
|a| 1/ 1% " b

By a change of coordinates p = x, q =y + Wy, (3.2.3) becomes

(324 [p=aq
q= p3(a+g;w1) + p4<1(1+%w1)
+ {—p4w1(l+% w) + w2(1+% w)) + p(%—( w)}-

Let & wy(x(p,am), y(Pa)b) = hy() + aho(p) + ’hy(p,a) and
4 i il d
-p w1(1+-5i w)) + w2(1+'3§ w)) + pl35 @)
2
= ¥, (pp) + q¥y(p.1) + q"¥4(p,aH)
for some h, and ¥(i = 1,2,3). |
Then h, =W¥. =0 at p=0 (i = 1,2,3). Hence the equation (3.2.4) is

(3.2.5) p=gq
.3 4 3 2
q = [p“(ath;) + 9] + qp"(1+h)) + p°hy + ¥] + 70,

4

(

where ¢ = p3h3 + p(hy + qh3) + ¥,. By the symmetry property, we can

say that

¥, = ¢ (Wp + By (P00’

Phy + Wy = go() + ea(Wp” + BP0’
for some <pi(i = 1,2,3) and ﬂi (i=1,2). Let F(pu) = a + h1 + ﬂl and
G(py) = 1 + h; + B, Hence (3.2.5) is changed into the following form
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(3.2.6) q

q = ¢()p + pyp)a + ¢3(u)p2q + p°F(p) + pYaG(p) + ¢%.

. e
i

By the Malgrange Preparation Theorem (see Chow & Hale [4], pg. 43),
we get
o, (p + Fpup® = [0, (Wp + sgnF(0,0)p%) A(p.p),
where sgn F(0,00 =a#0, &p0) =1>0,and F and @ are even in p.
Hence in (3.2.6),

.- vo(l) wg(n)
i = [oy(wp * p° +7;%Wq '0%3—”)'92(1'*'%1)4‘1"'%‘12]0-
Again, let u = p, v = q/y#. Then

(327) |0 = o

By the symmetry property, in (3.2.7)
Y2 b
— - = z(u)u + zq(u,p)u
Vi 240 ]

Note that z,=0 at p=0 (i
Let  py(u) = 2,()
o3(k) = zo() + 24(1),
G(up) = zg(up) + zg(up) + G/VA.
Then (3.2.7) is

4 ¥3

I
—
-
.
<
()]
~—r

(32.8), |u= v/
v = [oyu + pyuvegu’y = 0¥ + Glumu'y + §uv)vlVo.
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In (3.2.8) é(u,(]) # 0. (3.2.8) is topologically equivalent to (3.2.1). (For
simplicity we denote @ by ¢, (i = 123) in (32.1),) In (3.28)
$(u,v,0) = 0 and é(u,(l) =717 o

Note that (3.2.2), is versal to

(329), |x=y

¥ = €x * S+ &y + e3x2y + x4y

(For this, see Section 5 of Bogdanov [2].) Hence we will study (3.249)4_ in §3
and (3.2.9)_ in §4 instead of (3.242)+ and (3.2.2)_ respectively.

§3. The Case a > 0.

For reminding (3.2.9)+, it is written down again:

1]

y
y=ex+ S+ yley + c3x2 +xY).

(329, |x

The equilibria in (3.2.9)+ is determined by the equations y = 0 and
x(51+x2) = 0. Hence for ¢ > 0 asaddle (0,0), and for ¢ < 0 a focus
(0,0) and saddles (+/T€T,0) are equilibria.

Let the RHS of (8.2.9)+ be f(xy). Then
; i |
Df (x,0) =

: fl+3x2 E2+€3X2+X4

It is immediate that {e, = 0} is a pitchfork bifurcation surface. In

{e1 > 0}, the phase portrait is topologically constant and it is a saddle at
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(0,0). In {¢; < 0}, several bifurcations occur. We analyze the equation

3.2.9), by drawing the trace of the bifurcation surfaces on the hemisphere
+

S = {e = (€,69€3)|0 < €] = ¢, << 1, 6‘1. < 0}

The bifurcation diagram of equation (3.2.9) + is a cone based on its trace
in S. This trace on S consists of 4 curves: |

(1) Hg Hopf bifurcation curve (e, = 0),

(2) Hy: heteroclinic loop bifurcation curve,

(3) C: semistable limit cycle bifurcation curve, and

(4) P: pitchfork bifurcation curve (e1 = 0).

The curve C joins a point h2 on He to a point ¢, on He’ and
the'curve C is tangent to Hf and He at these points respectively. (See
Figure 7). '

The curves H; and H, on S touch & at b, and b,
transversally and in the neighborhood b, a.nd b, we have the degenerate
saddle bifurcation of codimension 2 (see Figure 6(a)).

There exists a unique unstable closed orbit for the parameter in between
Hy and H, in the neighborhood of b, and a unique stable closed orbit in
between H; and H, in the neighborhood of b, On H; - {hy}, a Hopf
bifurcation of codimension 1 with appearance of an unstable (resp. stable) closed
orbit by crossing the line b,h, (resp. b2h2) from right (resp. left). On
H, - {cy}, a symmetric heteroclinic loop bifurcation of codimension 1 occurs.
By crossing the curve b1c2 of He from left, we have a pair of heteroclinic
loops, then they are destroyed and unstable closed orbit appears. While by
crossing the curve bycy of H e from right, again we have a pair of
heteroclinic loops and then stable closed orbiﬁ appears. The point h2 (resp.
c2) oorreéponds to a Hopf (resp. a heteroclinic) bifurcation of codimension 2.

The curves Hf and He intersect transversally at points bl’ b2 and d.
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The poi_nt' d corresponds to the simultaneous Hopf bifurcation of codimension
1 @d symmetric heteroclinié loop bifurcation of codimension 1. For parameter
values in the curved triangle (dhycy), there. are exactly two closed orbits.

One of them is stable inside an unstable closed orbit. These two closed orbits
coalesce in a generic way when crossing the curve C from left. On C itself

there exist a unique semistable limit cycle.

Theorem (3.3.1). Let X = 85 U H U H, UC be asubset of S, where the
semisphere and curves Hf, He and C are described above. The bifurcation
diagram of (3.2.9)+ in the ball B, = {¢| |e|] < ¢} is a cone

0

homeomorphic to {(szn,s4ro,szr1)|se[0,eo], (,u,ro,rl)eE}. The topological type

of the phase portraits of equation (3.2.9) 4, ina ﬁxed neighborhood of the (0,0)
in R2 is constant in each connected component surrounded by the bifurcation
surfaces (5 components: Rl""’RS’ R, N S = L...,Rg N S =YV), and is
constant in each bifurcation surfaces (9 surfaces: Sl,...,Sg,
S;nS=1,..8,n8 = 9) and curves (5 curves: CirCs;

Cy NS = by,by,chy, and Cy N S = d). (See Figure 8).

172 2

Proof will be given at the end of this section.

The main difficult problem is the determination of the number of limit
cycles.

For this we use the blowing-up method as following for ¢; < 0:

X - 8X g = 821’]
(33.1) y - s2y €y = s4‘ro

t - t/s €g = 512T1
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where 8 > 0. First we will study the neighborhood of Ufl—axis for € <0.
Hence let 7 = -1 in (3.3.1).
Then the equation (3.2.9) + has the form

(332 |x

y
y=-—=x+ O+ sa(ro+r1x2+x4)y.
Let By = 531'0, w o= 5371, Hy = 33, then (3.3.2) becomes
(333) |x=y .
y=-=x+ <+ (y0+uls2+u2x4)y

with o > 0.

By the change of parameters (fl,(z,(a) - (s,ro.rl) - (“2’”0’”1) and the
change of variables (x.y,t) + (s5%,t/s), (3.29), has the form (3.3.2) and
(3.3.3). Note that the equation (3.3.3) has the equilibria (0,0) and (21,0)
where (0,0) is a focus and (+1,0) are saddles.

. Coming back to the equation (3.3.2), if s = 0, it becomes a Hamiltonian

system

(3.34) |x

y
V=x 40
with the first integral
: 2 2
H(x,y) = %— + XQ— = %
The phase portrait of (3.3.4) is shown in Figure 9.
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Every closed orbit surrounding (0,0) corresponds to a level curve
Ty H(x,y) = b, 0 < b < 1/4. On equilibria (#1,0) and heteroclinic loops
joining these equilibria, H(x,y) = 1/4.

| Now we consider (3.3.2) for small s # 0. Every closed orbit of (3.3.2)
should intersect with the interval U = {(x,0)|0 < x < 1} (hence with -U)

and enclosed the point B = (0,0) since the point B has an index 1 for

every 8,7, and 7. We define wy for be[0,1/4] as follows:
1) we-UUU,

Let A, = ((r,,71)8) and W!" be an upper branch of the unstable manifold
of (3.3.2) at (1,0). We define a Poincare map Py: U~ -U (or
' s
-1

Py : -U - U) in the following way.
8

Let be(0,1/4]. Then we can choose De(0,1/4] such that the points wy
and wp are successive intersection points of U and -U respectively with
an orbit so that (i) P y i U--U is defined and P, (w,) = wp if

8 8

-1 -1
Win (<U) # {}, or (i) Py:-U-U isdefined and P, (wp) = wy if
S S

W% n (-U) = {}. (See Figure 10 (a) and (b).)
Let 7(b”\s) be the orbit of (3.3.2) which joins the points w, and
wp. Hence 7(b,A;) is defined for be(0,1/4]. Then we have a lemma.

Lemma (3.3.2).

(1) Every ‘closed orbit of (3.3.2) is expressed by the form 7(b”\s) with
WB = —Wb.

(2) A trajectory 7y = 7(b”\s) of (3.3.2) is a periodic orbit if and only if
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§ dHE,Y) 4 = o

(3.3.5) :
- In particular 7 is a heteroclinic orbit if and only if (3.3.5) is
satisfied for b = 1/4.
(3) For s > 0, condition (3.3.5) is equivalent to

(336) F(b)) = {r( b,/\s)(TO+TIX2+X4)y dx = 0.

(1) is obvious by the symmetry property
H
2) {r dHIXY) 4t = H(wg) - H(w,) and
%ﬂ = x(l-x2) #£0 for x#0 and |[x| # 1.
Hence H(WB) = H(wb) if and only if wp = -w for be(0,1/4).

(3) is immediate since

+HHX | dt = 3(1 +‘rx+x )y ! dt
(3.3.2) (3.3.2)

=3 (ro+r x2+x4)ydx. 0

Let Ii(b) = | xiy dx, i = 0,2,4, where H(x,y) = b.
, T
We will consider F(b,\) as a perturbation of F(b,\)) = F(b,(r,,7;)). The

function F(b,A ) can be written explicitly by
(33.7)  F(b,A) = 7,1 (b) + 7I5(b) + 1(b).

SF(b,A)= S(F(bA) + (F(b,\) - F(b,) )))
= S(F(b,A) + ofs))
= s F(b,/\o) + o(s3).
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Hence by the Lemma (3.3.2) (3),
F(b,A) + €(s) = 0
where €(s) is a smooth function in all variables such that ¢(s) - 0 as

s -+ 0. The limiting position of the closed orbits is given by the solution of
(3.38) F(bA)) =0 for 50

From now on, we denote F(b,Ao) = F(b,O,(rU,rl)) = F(b,(ro,rl)) simply by
F(b) if there is no confusion.

For a moment we study a Hopf bifurcation curve and a symmetric
heteroclinic loop bifurcation curve in (ro,rl)—plane from (3.3.7).
Lemma (3.3.3). The point (0,0) of (3.3.2) is stable (resp. unstable) if
7, <0 (resp. o > 0). It has a Hopf bifurcation of order 1 along the line
H = {(r,m)|7, = 0} except the point h, = (0,0) at which a Hopf
bifurcation of order 2 occurs. Moreover, there are two limit cycles at (ro,rl)

with 7> 0, 7, < 0 around the point (x,y) = (0,0).

Proof. Direct calculation of formulas of the Liapunov's focal values for (3.3.2).

(For formulas, see Andronov et al [1], Medved [13].) ]

Next, we want to change symmetric heteroclinic loops to a homoclinic loop by
using symmetry property as follows:
For x,ydRZ, we define x.y if and only if x =y or x = -y. Let

2

*
R® = R2/. with a quotient topology and let X = {x,~}. Let us regard

our symmetric vector field
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(332) |x=y

X+ 4+ ssy(ro+r1x2+x4)

=
]

in ll2 as
* *
(339) |ax/dt =y :
* * *3 3% *\2 *\4
dy [dt = x + (x)° + 8% (r4m(x )" + (x)7)

*
in the new phase space RY. Then (3.3.9) has only one saddle point

*
(1,0) = {(*1,0)} and a pair of symmetric heteroclinic loops in (3.3.2)

correspond to a homoclinic loop at (1,0)* in (3.3.9). R - {(0,0)*} has a
2-dimensional smooth manifold structure. Note that IRZ* itself is not a
manifold.

Now let D(i = {(x,y)|x>0}. Then the phase space mz* of (3.3.9) can
be thought, of the half-plane R> U (y-axis/-). (See Figure 11.)

Then we can apply (3.3.7) F(b,A)) = 7.1 (b) + mIy(b) + I,(b) to
Joyal and Rousseau (pg. 19 of [12]) on saddle quantity. (Also see Roussarie

(14].)

Lemma (3.3.4). The equation (3.3.2) has a heteroclinic loop bifurcation of
order 1 along the curve H, = {(ry;m) |7y + 71/5 + 3/35 = 0} except the
point 52 = (1/7, -8/7) at which a symmetric heteroclinic loop bifurcation of
order 2 occurs. The curves Hf and He intersect transversally at the point
d = (0, -3/7) which corresponds to a Hopf bifurcation of order 1 with
asymmetric heteroclinic loop bifurcation of order 1 simultaneously. (See Figure

13).
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Proof. See page 19 of Joyal and Rousseau [12], Roussarie [14], Joyal [11].
Note that the trace of the saddle point (1,0) is T+ T +1=0and
W i

517455 # 0. o

Next we study a semistable limit cycle bifurcation in (ro,rl)—space. Equation
(3.3.7) defines a surface in the space (s,(ro,rl)). The following lemma
eliminates ‘the term I,(b) “in (3.3.7).

Lemma (3.3.5). 1,(b) can be expressed in terms of I (b) and I,(b), and

(33.10) .71, (b) = 8l,(b) — 4bI (b).

o

roof. H(x,y) = b on ;Yb' Hence

ydy + (x—xs)dx =0.
4 . 2,2
x ydx = y(2y“+2x°~4b)dx
= 2y3dx + 2x2ydx — 4bydx, and
%) - 3’y
3 3
d(xy”) — 3xy(x"—x)dx

3) = 3x4ydx + 3x2ydx.

yax

d(xy

I

1]

d(xy
Hence

4 = 3 2

x'ydx = 2/7 d(xy”) + 8/7 x“ydx — 4/7 bydx.
Taking integration on 7, gives (3.3.10). o

From (3.3.10), (3.3.7) becomes

(3311)  F(by(r,,my)) = (1, = 4b/TI(b) + (r,+8/7) L,(b).
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Note that IO(O) = L,(0) =0, Io(b) > 0 for be(0,1/4] and 12(b)/Io(b) -0
as b - 0. So the degeneracy of the equation (3.3.11) at b = 0 can be
removed by changing (3.3.11) into the following:

(3312) G(b) (instead of G(b,(r,,7)))) = 7, ~ 4b/7 — (r,+8/7)P(b)

where P(b) is defined by

Iy(b)/I(b)  for be (0,1/4]

(3.2.13) P(b) =
0 for b =0.

Lemma (3.3.6). P(b) defined by (3.3.13) satisfies the equation
(3.3.14) 4b(4b-1) P'(b) = 5P% + (8b+4)P + 4b.

Proof. Let {l(b),u(b)} = T N {y=0} with 1(b) < u(b), and
u(b) i
Ji(b) = {(b) X ¢(x,b)dx
where p(x,b) = [2b-x2+x}/21/2 for xell(b),u(b)].
Then L(b) = 2Ji(b).

From the definition of J;,
Ji(b) Iu(b) W—B;d"i
. = X.
! 1(b) A%

So

(b) i 2
(33.15) I (b) = {?b) —lé%((%?ﬂ—dx = 2b3i(b) - 3L (b) + B, (b).

Also, integration by parts gives us
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. 1 .

(3.3.16)  Ji(b) = 37 [Ji+2(b) - Ji+4(b)] for all i2 0.

From (3.3.15) and (3.3.16), eliminating J; +4(b), we have
(i+3)J; = —J; o + 4bJ; for all i2 0.

In particular,

(3.3.17) 33, = -,

5]y = "J;; + 4bJé.

'
+ 4bJ0

From (3.3.10),
(3.3.18)  7J4(b) = 8J5(b) — 4J (b) — 4bJ (D).
Plugging (3.3.18) into (3.3.17), we have

— N
(3.3.19) (3], = 4bJ! - J

15J, = 4bJ} + (12b-4)JJ.
Solving for J and J, in (3.3.19), we get

(3.3.20) |4b(4b-1)J} = 4(3b-1)], + 5J,
4b(4b-1)J5 = 4b J_ + 20bJ,,.

Hence
-JoJ +J,J! J! J!
2 2 2
P'(b) = ___2______0 0 - - J; - JQP(b)

J0 0
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_ 5P24(8b+4)P+4b i
= Ib(db-1)

Lemma (3.3.7): P(b) also satisfies:
(1) lim P() =-1/5,
b+1/4
(2) P'(b) <0 for 0 <b < 1/4, P'(0)

- 1/2 and P'(b) » —
as b - 1/4.

Proof. P(b) is a solution of the differential equation (3.3.14) with initial

condition P(0) = 0. We can interpret (3.3.14) into the form

(3.3.21) |p = - 5P% — (8b+4) P —4b
b = 4b — 16b2.

The graph of P = P(b) is the heteroclinic orbit from the saddle (0,0) to

the stable node (1/4, — 1/5) in the (b,P) — phase plane (See Figure 12.)
The equation

(3.3.22) 5P% + (8b+4)P + 4b = 0

describes a locus on which the tangential direction of the vector field (3.3.21) is

horizontal. The branch of hyperbola (3.3.22) above the line P = -1/2 denoted

by v is

(33.23) P = P(b) = (—(4b+2) + (16b2+6b+4)L/2)/5.
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The vector field (3.3.21) is transverse to <7 and directed to the right of 1.
Calculation from (3.3.14) and (3.3.23) gives

lim P'(b) = - 1/2 and lim P'(b) = -1

b-0 b-0

Therefore, the graph of P = P(b) is entirely above 7, i.e.,, P'(b) < 0 for
0<b< 1/4

Also we can see that P'(b) - = as b - 1/4. 0
We also need the following lemma.

Lemma (3.3.8). (See also Dumortier et al [7])
P"(b) < 0 for be[0,1/4].

Proof. From (3.3.14) we get
(32b—4)P' + 4b(4b-1)P" = 10PP' + 8P + (8b+4)P' + 4. So if we solve
for P",

(3.3.24) P"(b) = [(10P-24b+8)P' + 8P + 4]/(16b%—4b)

lim P"(b) = lim [(10P'-24)P'+(10P—24b+8)P"+8P~]/(32b—4)
b-0 b-0

= [(-5-24)(-1/2)+8 t1)11(1)1 P"(b) + 8(-1/2)]/(—4).
(Note that lim P'(b) = -1/2.)
b-0

Hence lim P"(b) = -7/8 < 0.
b-0

Now let us suppose that P' has a zero on [0,1/4) and let

b, = min {be[0,1/4)|P"(b) = 0}. Hence P"(b) < 0 for all xe[O,bo). Let
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L be a tangent line of I' at (bo’ p(bo)), where TI' is the graph of P(b).
Since P"(bo) = 0, the order of contact between L and I is at least 2.
Let v be a vector orthogonal to L, and L(u) be a linear parametrization
of L. Also let

£,(b,P) = 4b — 16b%,

f,(b,P) = ~5P? — (8b+4)P - 4b, and

f = (f,,f).
Then the function %(u) =: < f(L(u)),v > has a zero of order at least 1 in u,
with L(uo) = (bo,p(bo)) where <,> is a Euclidean inner product on R,
As P"(b) < 0 on [O,bo), the corresponding arc of I' is situated below L.
The line L cuts the line {b = 0} at a point n_  above a, = (0,0). f
is directed downward at n o f is directed towards the half plane above L
in the neighborhood of b, in L with b < b . Hence ¢(u) must possess
a zero at some u,(#u ) with L(ul)e[no,mo] where n = {b = 0} n {L(u)},
and m = (bo’p(bo)) =T n {L(u)}.

However, f is quadratic. So (u) is a polynomial of degree 2 in wu.

Wu,) = Y(u)) = Yu)) = ¢'(u) =0 with u  # u;
implies 9% = 0, and ' is a line segment. This contradicts to

P'(0) =-7/8<0. @

Now we consider the problem of the semistable limit cycle bifurcation

which is given by C: G(b) = G'(b) = 0 in (7471 )-sPace.

Lemma (3.3.9). C is a smooth curve which connects the points H2 on Hf
and ¢, on He (see Lemmas (3.3.3) and (3.3.4)), and which is tangent to
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Hf and He at these points respectively. On C the semistable limit cycle

bifurcation of the equation (3.3.2) occurs.

Proof. From (3.3.2)

G(b) = (7, — 4b/7) = (r; + 8/T)P(b) on [0,1/4],

G'(b) = - 4/7 — (r,+8/7)P'(b), and

G"(b) = - (r,+8/7)P"(b).

If G(b) = G'(b) = 0, then 7, + 8/7 # 0. Hence by the Lemma
(3.3.8), G"(b) # 0. By the implicit function theorem, there exists b = b(r))
such that G'(b(rl)) =0,and s0 7 = To(b,'rl) = ‘ro(b(‘rl),rl) from
G(b) = 0. Hence 7. = 7,(71) is smooth and the semistable limit cycle

0
bifurcation occurs on C. From G(b) = G'(b) = 0, we get

(33.25) (7, = 4b/7 - %

_ 4
2] ——8/7_717'-(’55.

Note that as b - 0, P(b) - 0, P'(b) - — 1/2, and (ro(b),rl(b)) - (0,0) = h,.

Also as b - 1/4, P(b) » - 1/5, P'(b) » — o, and

dr
(r4(b), 7,(b)) » (1/7, - 8/7) = c,. From (3.3.25), ar—cl) = P(b) along the

curve C: 7o = To(7p)- This implies that T is tangent to H, and H, at

H2 and 62 respectively. 0

Given (ro,rl), the number of limit cycles of equation (3.3.2) is

determined by the number of roots of equation G(b) = 0 for 0 < b < 1/4.
If r, +8/7=0, then G(b) =0 if and only if 7 = 4b/7. So
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7,€(0,1/7) and 7, = -8/7 at which G(b) = 0 has a unique solution
(note that G'(b) # 0).

We suppose that 7, + 8/7 # 0. Then

G(b) = (r,+8/T)[A(b)-P(b))]
where A(b) = (7,4/7b)/(r;+8/7) which is linear in b. The roots of
G(b) = 0 is the intersection of the straight line P = A(b) and the curve
P = P(b) on the (b,P)-plane. Since P"(b) < 0, the graph of P = P(b) is
concave downward. P(b) is independent of 7

o
P(0) = 0, P(1/4) = — 1/5. A(b) depends on 7, and 7, and for

and T and

T + 8/1 >0,
(a) A(0) = 0 (resp. > 0 or < 0)
— (ro,rl)er(resp. is on the RHS, or LHS of Hf).
(b) A(1/4) = - 1/5(resp. > — 1/5, or < — 1/5)
— (1'0,1'1)5He (resp. is above, or below He)‘
(c) The straight line P = A(b) is tangent to the curve P = P(b)
— (To,rl)cC (i.e., G(b) = G'(b) = 0 for some be(0,1/4)).

The bifurcation diagram of equation (3.3.2) is as in Figure 13 and the
relative positions between the straight line P = A(b) and the curve
P = P(b) is as in Figure 14.

Lemmas (3.3.3), (3.3.4) and the implicit function theorem provide us the

following extended results from s = 0 to s > 0. (Also see Dumortier et. al.

[71.)
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Lemma (3.3.10). Let K be a compact neighborhood of
{H(x,y) < 1/4} n {|x|<1} in the (x,y)-plane, and D be a compact
neighborhood of the curved region hydc, in (ro,rl)—p]a.ne. Then there exists
ao(D) > 0 such that the bifurcation diagram of the equation (3.3.2) consists of
three surfaces and three curves in C(D) = (0,a(D)) x D which is as follows
up to a diffeomorphism of C(D) equal to the identity at s = 0:

@ SHf = (0,a(D)) x (Hf - {HZ}) is a surface of Hopf bifurcation of

=

codimension 1,

(2) Sy = (0,0(D)) x (H, - {EZ}) is a surface of heteroclinic loop
A e

bifurcation of codimension 1.
= (0, x is a surface of semistable limit cycle bifurcation
3 SC 0,0(D C i f f istable limi le bift i
of codimension 1,
0 x an 0 x {C5} are curves of Hopf an
4) (0,a(D HQ d (0,a(D 5 f Hopf and

heteroclinic loop bifurcation of codimension 2 respectively.

=

(0,a(D)) = {d} = Sy, N SH is a curve of simultaneous Hopf
f e

bifurcation and heteroclinic loop bifurcation.
Outside these bifurcation sets, the topological type of the phase portraits

of the equation (3.3.2) is constant in K.

For 5¢(0,a(D)), we denote the intersection of the bifurcation diagram of
equation (3.3.2) with the plane {(s,(ro,rl))|s =5} by Wg Then Wg has
a cone structure (see Figure 15).

The bifurcation diagram for the equation (3.2.9)+ with ¢ < 0 can be
constructed from Lemma (3.3.10). The blowing-up (3.3.1) with 7 = -1

gives a transformation ¢:(s,(r,7;)) + (€1,€9€3), and
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(33.26) §((0,(D)) x D) = {(-ss*7 o’ T1)|8€(0 o(D)), (7,,7)eD}.

Let E (D) be the RHS of (3.3.26). Then E, (D) is a cone in
1 1

(61,62,53)—spa,ce around the axis 0¢; for ¢ <0 (see Figure 15).

The bifurcation diagram of (3.2.9) 4 in E CI(D) is the image of those
sets described in Lemma (3.3.10) by the transformation and thus homeomorphic
to cones based on Hf,H ,C,h, c2, and d with curves s - (szn,s4r ,S2T1)
with 7 = -1, or equivalently € - (EI’C%TO’(—EI)TI) for e < 0.

Now we will study the behavior of (3.2.9), in a sector around Oeg—axis

+
for € < 0. In the blowing-up (3.3.1), we take 7, = # 1 instead of
n = —-1. Since both cases T =1 and 7y = -1 are similar, we will
consider the case 7, = 1. By (3.3.1) with 7, = 1, equation (3.2,9)+

becomes

(3327) |x =1y

y = 1 + x>+ s3(ro+x2+x4)y.

Let 3, >0 be fixed. Then for each sc(O,sl] we take a blowing-up again:

X =+ IX 17=—-r2
y—»r2y ro= 1’7
0 )

t - t/r

Then (3.3.27) becomes
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(33.28) |x=1y

3

y=-=x+x° + s3(r(?o+x2)

y + o(r))

which is a perturbation of the Hamiltonian system (r = 0)

(3329 |x=1y

I
s
+
~

y

with first integral
2 2 4
H(x,y) = %— + )2(" - i—
As in Lemma (3.3.2), we have
3,5 —
H(wg) - H(w) = s"1(F(b,7,) + o(r))
where - F(b,7)) = 7.1 (b) + I,(b). Finally it leads to study F(b),7)) = 0,

and get to the following conclusion:

Lemma (3.3.11). In the halfplane {n,ro,rl)ln €0, 7y =1} there is a fixed
compact subset B+, diffeomorphic to a disk having a contact of order 1 with
axis 07, at (n,ro,rl) = (0,0,1), and such that for equation (3.3.27) the
results of Carr-Takens (see page 5481 and, in particular, Figure 3 on page 59
of Carr[3], also Guckenheimer and Holmes [10], Takens [17] and [18]) are valid
for any (n,7,) e BT and any se(0,8,). (See Figure 16.) (3.3.1) with

7) =1 gives a mapping (s,n,ro) - (61,6263)' which maps (0,81] x BT to

gt

_ 2 4 2 + + . .
€5 = {(s“n,s Ty )Ise(O?sl], (n,ro)eBO}. Ef3 is a cone in (51,62,63)—space

around Oeg-axis for €3 > 0 based on Bt. The bifurcation diagram of

(3.3.2) in E':' consists of cones based on Hy, H, and {b;} with
3
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generating curves 8 - (3217,841’0,82). (See Figure 17). For 7, = -1, we can

get a cone E_ around Oe,-axis for e, < 0 based on H, H  and
€3 3 3 P e

{b,} Similarly.
Proof. See Carr [3]. 0

Proof of Theorem (3.3.1). Let Et and E; be the two cones from BT
3 3

and B~ respectively as above. We can choose a compact set D in the
(‘ro,rl)—pla.ne to use Lemma (3.3.10) in such a way that (see Figure 18.)

(1) E, (D) U Et U E; contains a cone C(M) based on a disc
1 3 3

M in the hemisphere S,
(2) oM is tangent to S at the point b, = (0,0,co) and
b2 = (0,0,—60),
(3) M contains the curves S;; NS, S;; NS, and S~ NS where
Hf He C

SHf’ SHe and Sy are defined in Lemma (3.3.10).

Condition (3) is possible because the curve of Hopf bifurcation and the

curve of heteroclinic loop bifurcation in M n Et are connected with the
3

curves He = SHf NS and H, = SHe N S respectively.

To show this, we consider the equations of curves Hf and He' From

Lemmas (3.3.3) and (3.3.4), we have

(3.3.30) Hg 7o =0 and Hy: |7,
6?+6§+€§=62 e%+eg+e§=e(2).

= -1/57) - 3/35
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From (3.3.1)
. (—51)1/2
(3331) 7, = ef(-¢))?
n= f3/(“51):

where € < 0. Substituting (3.3.31) into (3.3.30) we obtain

153 3‘% 2
+ (5_ h 35_)
Let € - 0. Then €7 % €

Ht‘: e? + c§ = eg and He: cf + eg = cg respectively.
This implies that if € = 0, then the curve Hg and He tend to the
points b, and b, in S, hence that H; and He are connected with the

Hopf bifurcation curve and the heteroclinic loop bifurcation curve in M n Et 5
3

Thus we can choose D and M satisfying the condition (1), (2) and
(3). The conclusion of the Theorem, for ¢ near (0,0,150) with ¢ <0,
follows from Lemma (3.3.10) and Lemma (3.3.11), and for € >0 or ¢ =0

but € # (0,0,teo) are obvious. o
84. The Case a < 0
(3.2.9)_ is as follows:

(329)_ |x=y

y=egx- S+ y(52+63x2 + x4)‘
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The equilibria in (3.2.9) is determined by the equation y = 0 and
x(el—xz) = 0. Hence for ¢ < 0 (0,0) is a focus, for ¢ > 0 (0,0) is a
saddle and (iJel,U) are foci.

Let the RHS of (3.2.9)  be f(xy). Then
0 , 1

61—382 , c2+ 63x2+x4 '

ch(x,O) =

It is immediate that {c'l = 0} is a pitchfork bifurcation surface. We
will consider two cases (¢ >0 and ¢ < 0) and by the same way as in
the previous section, we will use a hemisphere section to be easy to understand
the bifurcation diagram.

Next, we combine the above two results to get our complete bifurcation
diagram on the sphere.

First let us consider the case e > 0.
Let

S = {(epegreg) = €|0 < [e] = ¢, << 1}, ST =S n {¢ > 0}.

o
The bifurcation diagram of (3.2.9) is a cone based on its trace with S.
This trace on S consists of 4 curves:

(1) Hg Hopf bifurcation curve,

(2) H_:

o (symmetric) homoclinic loop bifurcation curve.

3) C = C; UGy U CquU Cy: semistable limit cycle bifurcation curve,
and

(4) P: pitchfork bifurcation curve (€, = 0).

The curve Cl joins a point a on Hf to a point e on Ho’ and it
is tangent to Hf and Ho at these points respectively. Also the curve 02

joints a point b1 on P toapoint e on H , and it is tangent to Ho at

0’
e, however, intersects with P transversally at b,. The curve Cg (resp. C,)

joins a point f to a point b2(resp. b3) on P. C3(resp. C4) intersects with
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P transversally at b, (resp. by) and C; meets C, tangentially at f.
(See Figure 19.) In the neighborhood of b, and b, we have the degenerate
focus bifurcation of codimension 2. (See Figure 6 (b).)

The point a (resp. e, f) corresponds to a Hopf (resp. homoclinic loop,
triple limit cycle) bifurcation of codimension 2. At points b3,c,d,g and h

two corresponding bifurcations occur simultaneously.

Theorem (3.4.1). Let ¥ = (SN {¢ =0}) UH UH UC be a subset of
S*. The bifurcation diagram of (3.2.9) in the ball

B = {e = (epreqeq)| lel < €6 2 0}

o€
is a cone hemeomorphic to

2 4 2
{(S nas Toas TI)ISC[O’GO]’ (”aro’T1)€2}°

The topological type of the phase portraits of equation (3.2.9) in a
neighborhood of (0,0) in R% is constant in each connected component
surrounded by the bifurcation surfaces (10 components:

Rl""’RIO’ R1 nst = I,...,R10 nst = X) and is constant in each
bifurcation surfaces (19 surfaces.

Sl,...,Sg, S1 nst = abm,...,S19 nst = eg) and curves (10 curves:

CprsCpp Cp N ST = {by},.,01p 0 ST = {bg}). (See Figure 19 (a)~(d).)

Proof will be given later.

Next let us consider the case ¢ < 0. Let S = 5n {¢ <0}

As before the trace of bifurcations on S~ consists of 3 curves:
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(1) Hg Hopf bifurcation curve,

(2) C: semistable limit cycle bifurcation curve, and

(3) P: pitchfork bifurcation curve (¢; = 0).

In this case (el < 0), the Hopf bifurcation curve is described by
€, = 0 and connects b, and b, at which Carr-Takens bifurcation of
codimension 2 occur. C is tangent to Hf at k and connects k on He
and b; on P. Note that b;,b, and by in Figure 20 (a) are same
points as those in Figure 19 (a) respectively.

Theorem (3.4.2). Let ¥ = (Sn {¢ =0}) UH UC be asubset of S.

The bifurcation diagram of (3.2.9)  in the ball

B = {e = (€1,€063)| |€| < €., €, <0} is a cone homeomorphic to

{(szn, s4ro, s2rl)|se[0,eo], (n,ro,rl)‘eE}. The topological type of the phase
portraits of equation (3.2.9) in a neighborhood of (0,0) in R% is constant in
each connected component surrounded by the bifurcation surfaces (3 components:
Rl,R2,R3, 'RlnS =, I, R2nS = 1II, R3nS = III) and is constant in each
bifurcation surfaces (6 surfaces: S, SG’ 5;NS = bk, S¢nS = b b3) and
curves (4 curves: Cl,...,C4, ClnS = {k},...,,C 4ﬂS = {b3}). (See Figure 20

(a)~d)).
For the proof of this Theorem, see the proof of Theorem (3.4.1).
A. € > 0.
We use the blowing-up technique (3.3.1) for ¢, > 0. First we investigate

the behavior of (3.2.9) in a neighborhood of O¢,—axis for ¢ 2 0. Hence let
n = 1l'in (3.3.1).






69

Then the equation (3.2.9) has the form

(341) |x=y

3 3(

y=x-x"+8 7'0+1'1x2+x4)y.

Equation (3.4.1) has the equilibria (0,0) and (+1,0) where (0,0) is a saddle and

(#1,0) are foci. If s = 0, (3.4.1) becomes a Hamiltonian system

(3.4.2) X

il
«

2 2 4
with the first integral H(xy) = g— - )2(— + 31(— .

The phase portrait of (3.4.2) is shown in Figure 21.

Closed orbits surrounding A = (-1,0) or C = (1,0) (type 1) correspond to
level curves : H(x,y) = b, -1/4 < b < 0 and those surrounding
AB = (0,0) and C at the same time (type 2) correspond to level curves
Th: H(x,y) = b,0 < b < w. 7_1/4 = {A,C}. %o corresponds to a level
curve of a figure—eight homoclinic orbit.

Now we consider (3.4.1) for small s # 0. Every closed orbit of (3.4.1)
should intersect with the interval U = {(x,0)|x>1} and/or -U. Since closed
orbits of type 1 enclosing A is a 1 — 1 correspondence to those of type 1
enclosing C, we only consider the latter.

We define w for be[-1/4,0) as follows:

(a) wy €U, (b) H(wy) = b.

Let A, = ((r,,71)8) and W5(resp. W) be a stable (resp. unstable)
manifold of (3.4.1) at B in the right half-plane. We define a Poincare map
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P,: U~ U in the following way:
S

Let {wy} =W nU and {wy,} =W'nU. For be[-1/4), we can
choose be[-1/4,0) such that the point wy, and wp are successive
intersection points of U with an orbit so that

P’\s: U - U is defined and PAS(wb) = W, P/\S(wbs) = wy, if

H(wy,) < H(wbu)’ and
-1 . — —1 .
Py U= U s defined and P/\z(ws) = w, P)‘S(wbu) = wy, if
H(wy,) < H(w.). (See Figure 22 (a) and (b).)
Let 'y(b,/\s) be the orbit of (3.4.1) which joins the points wy and wp.

Hence 7(b,A)) is defined for be(-1/4). Then we have the lemma.

Lemma (3.4.3).
(1) Every closed orbit of (3.4.1) is expressed by the form 4(b,A;) with

WB = Wb.
(2) A trajectory 7 = 7(b,A;) of (3.4.1) is a periodic orbit if and only if

(3.4.3)

In particular 4 is a homoclinic orbit if and only if (3.4.3) is satisfied for
b = 0.

(3) For s > 0, condition (3.4.3) is equivalent to

2, .4
(3.44) F(bA) = | (7 +7,x"+x") ydx = 0.
¥ by 0!
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P 3\ U - U in the following way:
8
Let {wbs} =WSnU and {wbu} = W' n U. For be[-1/4,0), we can
choose be[-1/4,0) such that the point w, and wp are successive
intersection points of U with an orbit so that
P’\s: U - U is defined and P/\S(wb) = Wp, P)\S(wbs) = wy, if
H(wp,) < H(wbu), and
—1 . —1 -1 .
P’\s: U - U is defined and P’\S(WB) = Wy, P,\S(wbu) = wg if
H(wy ) < H(wbs). (See Figure 22 (a) and (b).)
Let  7(b,A;) be the orbit of (3.4.1) which joins the points wy and wy.
Hence 7(b,A)) is defined for be(-1/4m). Then we have the lemma.

Lemma (3.4.3).
(1)  Every closed orbit of (3.4.1) is expressed by the form +(b,A)) with

WB == Wb.
(2) A trajectory v = 7(b,/\s) of (3.4.1) is a periodic orbit if and only if

Ide

(3.4.3) :

t = 0.

In particular 4 is a homoclinic orbit if and only if (3.4.3) is satisfied for
b = 0.

(3) For s > 0, condition (3.4.3) is equivalent to

2, .4
(3.44) F(b,A) = | (r +7,x"+x7) ydx = 0.
¥ by ° !
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Proof. See the proof of Lemma (3.3.2). a)

Let L(b) = | 7bx‘ydx, i = 0,24, where 7,: H(x,y) = b.

We will consider F(b,\;) as a perturbation of F(b,A ). The function
F(b,AO) can be written explicitly by

(345)  F(bA) = 71 (b) + ryLy(b) + I,(b).

PF(b,A) = S(F(bA) + (F(b) ~ F(bA )
= % (F(b,A)) + O(s))
= s F(b,A,) + o(s3).
Hence by (3) of the Lemma (3.4.3),
F(b,A,) + €(s) = 0
where ¢€(s) is a smooth function in all variables such that ¢(s) - 0 as s -

0. The limiting position of the closed orbits is given by the solution of
(3.4.6) F(b,A)) =0 for s-0.

From now on, we denote F(b,(ro,rl)) = F(b,A,)) = F(b,(7,,7,),0). (Also F(b)
instead F(b,(7,,7;)) if no confusion.)
Equation (3.4.6) defines a surface in the (s,(7,7;))-space. The following

lemma eliminates the term I,(b) in (3.4.5).

Lemma (3.4.4).
(34.7)  TL,(b) = 8L,(b) + 4bI (b).
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Proof. See the proof of Lemma (3.3.5). o
From (3.4.7), (3.4.5) becomes
(3_.4.8) F(b,(1,,m1)) = (1,+4b/T)I (b) + (r,+8/7)Iy(b).

Note that I (-1/4) = I,(-1/4) =0, Io(b) >0 for b>-1/4 and
12(b)/IO(b) -1 as b - -1/4. So we can change (3.4.8) into the following:

(34.9)  G(b) (instead G(b,(r,,7))) = 7, + 4b/7 + (r,+8/7)P(b)

where P(b) is defined by

L(b)/I(b)  for b > -1/4

(3.4.10) P(b) = : o b i/t

Lemma (3.4.5). P(b) defined in (3.4.10) satisfies
(3.4.11) 4b(4b+1)P'(b) = 5P% + (8b—4)P — 4b.
Proof. See the proof of Lemma (3.3.6). 0

Lemma (3.4.6). lim P(b) = w.

— 00

8 .
Proof. (Carr [3]) Let J(B) = | x'y dx where § > 0 is a maximum of
0

the solutions to 54 - 2[5‘2 =4b and y = (2b+x2—x4/2)1/ 2. Then
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P(b) = J2(ﬂ)/J0(ﬂ). Let x = hf.
Then

1.
.y (;) (Bn)' p(h)dh, i = 0,2,

oh) = [,?HE(I 4 2y
Since g(h) < g(1/f) for 0<h <1, J (ﬂ <C [73 for some constant

C; > 0. Also we have J2(ﬂ ) 2 02[35 for some constant C, > 0. Hence
lim P(b) = lim IyB/IB) = o
froo -

00

where

Lemma (3.4.7). P(b) also has the following properties:

(1) lim P(b) = 4/5,
b0

(2) There exists b’k > 0 such that
P'(b) < 0 for bef-1/4b ) — {0} and
P'(b) >0 for b>b.
Also b satisfies: P(b) > 1/2, P"(b) > 0.

Proof. Rewrite (3.4.11) into the form

(3.4.12) |b = 4b(4b+1)

P = 5P2 + (8b4)P — 4b
where '-' = %f . ‘
Since P(-1/4) = 1, the graph of P = P(b) for be[-1/4,0] is the heteroclinic
orbit between the saddle (-1/4,1) and the node (0,4/5) in the (b,P)-plane.
(See Figure 23.) Hence lim P(b) = 4/5. We denote two branches of the

—






4

hyperbola ,5P2 + (8b4)P — 4b = 0 by P(b) (upper) and E(b) (lower).

b=0b=-1/4 P=P0b) and P = P(b) divide (bP)-plane into 9
regions in each of which %% has a constant sign. We denote 4 regions
among them (which are interested in) by A,B, C, and D as in Figure 23.

First one can show that

lim P'(b) = -1/2, lim P'(b) = -,
b0

b+1/4
lim P'(b) = -1, and lim P'(b) = -3/5.
b1/4 b-0

Hence the graph of P = P(b) must stay in region A for -1/4 < b < 0

and enter into region D for 0 < b << 1. In regions A and D, g% < 0.
But P(b) - o as b-o and P(b) » 1/2 as b - w.

Thus there exists b > 0 such that P(b) = P(b) (hence P'(b’) = 0)
and P'(b) >0 for b>1b. Since P'(b) <0 and P(b) » 1/2
as b Pb)=P(b)>1/2. By (34.11),
4b(4b+1)P" = (10P-24b-8) P' + 8(P-1/2). So we have
4b (4b +1)P"(b") = 8(P(b )-1/2) > 0 which implies P"(b') > 0. o

Lemma (3.4.8). P(b) - ¢yb as b - «» for some c¢ > 0.

Proof. From (3.4.11) P'(b) = (5P2-+(8b—4)P—4b)/(4b(4b+1)), we easily see that
it can not be that P(b) - celP
P(b) - cb’ (c#b) as b - o for some reR. Also let
A = 5P2 4 (8b4)P — 4b, B = 4b(db+1).

A/B = {5(P/b)® + (8-4/b)(P/b)~4/b}/{4(4+1/b)}.

P'(b) - erb™ as b o

as b - o for any cldR—{0}. Hence let

5C2b2r—2
(1) Ifr>1,A/B~T—.asb—»oo.
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2, 2r-2
Hence crbr—1 = 3¢ )

This implies r —1 = 2r — 2 and thus r = 1 which contradicts to r > 1.

2 .
@ If r=1,A/B.%3 5 b4

2 :
Hence ¢ = %;F‘SE Since ¢ # 0, ¢ = 8/5, i.e,, P(b) - 8b/5 as b - w.

"(a) P'(b) - 8/57 as b o
Since P'(b*) = 0, there must be b>b such that P"(l;) =0 and
P'(l~>) > 8/5 'but P"'(l~)) < 0. (See Figure 24 (a).) Note that P'(b) > 0
for b>b by Lemma (34.7). P' = A/B implies P'B + P'B' = A’ and
so P"B + 2P"B' + P'B" = A" Hence at b = b, BP" = (10P'-16)P".
Since P'(l~)) > 8/5, P"'(f)) > 0, which gives a contradiction to P"'(l;) <0.

*
Thus P'(b) < 8/5 for any b ¢(b ,»), and there is no local maximum since, if

CoL . - *
there is, then there must be a local minimum point b €(b ), so

0 < P'(b) < 8/5, P"(b) = 0, P"'(b) > 0, however,

)
BP"' = (10P'-16)P' < 0 at b = b so that P"(b) < 0 which is a

contradiction to P"'(t~)) > 0.
(b) P'(b) +8/5 as b - w.

Since there is no local maximum of y = P'(b) on (b*,oo), y = P'(b) is
monotohically increasing. Also we can get a contradiction easily if we assume
that there is an inflection point in the gréph'of y = P'(b) on (b*,oo). So
P'(b) > 0 on (b x). (See Figure 24 (b).)

BP" = (10P-24b-8)P' + 8P4

2

(34.13) B = (5P-12b4) (5P%4(8b-4)P—4b) + (4P-2) (16b+4b).
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Let f(b,P) be the RHS of (3.4.13) and let x = P/b. Then
%}31 = (5x-12-4/b)(5x>+(8-4/b)x—4/b) + (4x-2/b)(16x>+4/b)

— x(5x+4)(5%-8) — (4/b)(18x2=3x12) + (8/bD)(2x+1).
Since fo‘r b >> 1, x(b) = B‘()El is less than 8/5 but near 8/5, we have
x(5x-+4)(5x-8) < 0, and —(4/b)(18x>-3x-12) + (8/b%)(2x+1) < 0. Thus
f(bbP) < 0 for b >> 1. From (3.4.13) this implies that P" < 0 for
b >> 1, a contradiction.
() P'(b) =8/5,b>b, for some b, >> 1.
Then P(n)(bo) =0 for n =23,... (See Figure 24 (c).)
From BP" = (10P-24b-8)P'+8P—4, at b = b
0 = (10P-24b-8)(8/5) + 8P4
which gives P = 8b/5 + 7/10.
While from P'(b) = A/B, we have
25P% + 20(2b-1)P — 4b(32b+13) = 0.
If we solve the following system
P = (8b/5) + 7/10
95P2 + 20(2b-1)P — 4b(32b+13) = 0,
then the solution is (by:P(by)) = (-1/4, 3/10), which also gives a
contradiction because b0 > b* > 0.
By (1) and (2), 1 < 1. |
In this case, A/B - % b™ a5 b5 w

8C bI‘-—l —_ Crbr‘-l

Hence 6 , and so

r = 1/2. 0

b- oo

orollary (3.4.9). lim P'(b) = 0.
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Proof. Easy from Lemma (3.4.8). o

Lemma (3.4.10). If P"(b) = 0 for b > b, then P"(b) # 0.

Proof. P"(b) = 0 gives BP"'(b) = 2(5P'(b)-8)P'(b). Suppose
P"(b) = 0 = P"'(b) for some b > b'. Then P'(b) = 8/5.
From BP" = (10P-24b-8)P' + 8P4, we have
P = 8b/5 + 7/16.
From P' = A/B,
25P% 4 20(2b-1)P — 4b(32b+13) = 0.

X
There is no solution on (b ,w) which satisfies both above. Hence if

P"(b) = 0 for some b > b*, then P"'(b) # 0. u!

Lemma (3.4.11). There exists b**c(b*,oo) such that P"(b) > 0 for
X% X
be(0,b") and P"(b) < 0 for be(b ), but P"(b ) # 0.

Proof. Existence follows from Lemmas (3.4.7) and (3.4.8) since P"(b*) >0
and P"(b) < 0 for b >> 1. Note that from
BP" = (10P-24b-8)P' + 8P—4
= (10(P—4/5) — 24b)P' + 8(P-1/2),
on (O,b*), since 1/2 < P < 4/5 and P' < 0, we have P" > 0.
This says, inflection points exist in (b*,oo). To complete the proof, we will
show the uniqueness: i.e., P"(b;) = P"(by) = 0, by, b26(b*,oo) implies

b, = b

1 2

If P"(b) = 0 at more than one point, then there must exist at least

three points (and an odd number of points) since P"(b*) >0 and P"(b) < 0
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for b>>1 and P"(b) # 0 if P"(b) = 0 (Lemma (3.4.10)).
Suppose P"(b) = 0,1 = 1,23 with by > by > b, > b and
P'(b) # 0 for all be(0bg) — {b,by}. Then P"(b)) < 0,
P"'(b3) < 0 and P"'(by) > 0 (see Figure 25).
At b = b,,
0 < BP"'(b,y) = (10P'(by) — 16)P'(by)
which implies that P'(b,) > 8/5. On the other hand, at b = b,(i=1,3),
0 < P'(b;) < 8/5.
But this contradicts because y = P'(b) has local maxima at b = b, and
by and a local minimum at b = b, so that P'(b,), P'(bg) > P'(b,).

Hence b1 = b2 = b3. 8]

b 3
Corollary (3.4.12). 0 < P'(b) < 8/5 on (b ).

*%
Proof. Lemma (3.4.10) and Lemma (3.4.11) P"'(b ) < 0, so
X%
0 <P( )< 85
b 3

y = P'(b) has a miximum at b = b and P'(b) > 0 on (b ,m).
*
Hence 0 < P'(b) < 8/5 forall b >b. o

Lemma (3.4.13). P"(b) < 0 for be(-1/4,0).

Proof. See the proof of Lemma (3.3.8). o

Now it is time to investigate bifurcation curves in (ro,rl)—pla.ne. The
Hopf bifurcation curve Hy of order 1 in (3.4.1) is given by the equation
G(-1/4) = 0 and G'(-1/4) # 0, that is, Hg T, + 7 + 1 =0 except

(ro,rl) = (-1,0) = a where the Hopf bifurcation of order 2 occurs since
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G(-1/4) = G'(-1/4) = 0 but G"(-1/4) # 0 at a. (Andronov et.al. [1]).
Also the symmetric homoclinic loop bifurcation curve Ho of order 1 in (3.4.1)

is H: 7, + 47/5 + 32/35 = 0 except (ry7) = (0-8/7) = e where the
symmetric homoclinic loop bifurcation of order 2 occurs. (Roussarie [14], Joyal
et.al. [11]).

Clearly Hf and HO intersect transversally at the point
¢ = (4/7,-3/7). (See Figure 26).

The semistable limit cycle. bifurcation curve C is given by the equation
G(b) = G'(b) = 0 for be(-1/4,0) — {O,b*,b**}. C, is a smooth curve
which connects the points a on H, and e on H_, and which is tangent

to Hf and HO at these points respectively.

4
C=u Ci
i=1
where  Tp: G(b) = G'(b) = 0, be(-1/4,0),
*x
T, G(b) = G'(b) = 0, be(0b),
%X kX
Ty G(b) = G'(b) = 0, be(b ;b ),
and Ty G(b) = G'(b) = 0, be(d ).

The behavior of H,, Ho and Cl are same as Hf, He and C in §3 (Cl
oorf%ponds to C in the previous section.) So we concentrate our attention
to C,(i=2,34). The (ro,rl)—plané is divided into 10 regions by curves H,,
Ho’ Ci(i=1,2,3,4) (see Figure 26). Let

CI(Hy) nCI(C,) = {E},Cl(Hf) nCI(H,) = {c},CI(H,) nCI(C,) = {d},

CI(H,) nCI(C;) = {e},Cl(Cy) nCl.(C4) = {f},CI(H,) nCI(C,) = {g},

CI(Hy) nCI(C,) = {h}.
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Lemma (3.4.14).
_The curves Ci(i=2,3,4) satisfy the following properties (see Figure 26).

(1) C;(i=2,3,4) are smooth curves.

(2) C, is tangent to H, at e = (0,-8/7).
*
(3) On (0,b), the slope of C, is decreasing monotonically and tends
. . ~
to -1/P(b), as b - b
(4) H; and T, intersect transversally at d.
kX kX
(5) There is an f = (r,,r; ) in (r,,7;)-plane such that
| okk X% *%
Gb )=G'(b )=G"(b ) =0 at (r,r) =1
XXk * % *%
6) 7, <-8/7 and 1, + 47 /5 + 32/35 < 0.
* kX ’
(7) On (b,b ), the slope of C3 is increasing monotonically and tends

% *+
to -1/P(b) as b-b .

(8) On (b**,oo), the slope of U4 is increasing monotonically and tends
to 0 as b -

(9) C3 and T, are tangent at I.

(10) C;L intersects transversally with Hf at g and with Ho at h
respectively:

(11) C3 nH, = {}.

Proof.
For (1) see the proof of Lemma (3.3.9).
Next, from G(b) = G'(b) = 0, we have
_ _ 4. .. 4P(b
o=t W‘z%)
4

T = 7P7(6) " 8/17.
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d7'1 d7'1 dro 1
(3.4.14) T, = HF/HE = - oy

By (3.4.14), we have properties (2), (3), (4), (7), (8) and (9). (5) is immediate

from Lemma (3.4.11).

Kk
*x *k
6) , =~$b + ﬂ%—*—)-
e ()
= e - 8/T.
()

*%
Hence 7, < -8/7 since P'(b ) > 0.

Xk 4 %k . &
Now T, tsm o+ 32/35 < 0 is equivalent to
*k *k *k
b P'(b ) =P(b )+ 4/5 > 0.
Let f(b) = bP'(b) — P(b) + 4/5.
f(b") = 4/5 - Pb) > 0
fi(b) = bP"(b) > 0 on (b,b ) by Lemma (3.4.11).

*k

Hence f(b ) > 0. In fact,
*  kk
(3.4.15) f(b) >0 on [b.,b .

(10) is clear from (6) and (8). (Note that C4 is concave upward.)

(11) Suppose C3 n Ho # {} and let (1:0,1:1)@3 n HO.

5 4- )
Then 7 + 7 + 32/35 = 0 since (To,rl)eHo.

Also ;0=—4l.)+m and ;1=— 4.—8/7
", TP'(b) )
for some be(b ,b ) since (7.,7)Cs.
Hence C3 n H0 # {} is equivalent to
l.)P'(k.)) = P(l.)) + 4/5 =0 for some f)c(b*,b**)A

However, from (3.4.15),
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~ f(b) = bP'(b) ~ P(b) + 4/5> 0 on (b b ).
Hence C3 nH, = {}. 0

Now we consider the number of limit cycles. For a given (7,7)), the
number of limit cycles of equation (3.4.1) is determined by the number of roots
of equation G(b) = 0 for b > -1/4. The roots of G(b) = 0 for
be(-1/4,0) correépond td the limit cycles of type 1 (two limit cycles for each
root; one surrounds the point ‘A = (-1,0) and the other sufrounds the point
C = (1,0), see Figure 21) and those for be(0,») correspond to the limit cycles

of type 2 (one for each root which surrounds A, B = (0,0) and C

simultaneously).
If r, +8/7 =0, then G(b) =0 if and only if 7 = - 4b/7. Hence
for 7 €(-w,1/7) - {0} (i.e. be(-1/4) - {0}) and 7, = -8/7, G(b) = 0 has

a unique root since G'(b) = 4/7 # 0 and for 7 €(1/7®) and 1, = - 8/7,
G(b) = 0 has no root.

We suppbse that 7 + 8/7 # 0, and rewrite
G(b) = 7, + 7 b + (r,+8/7)P(b) into the form

G(b) = (7 +8/7)[P(b)-A(b)]
where A(b) = —(7,+4b/7)/(r,+8/7).
For given (ro,rl), A is linear in b. Again the rbot of G(b) = 0 is the
intersection of the straight line P = A(b) and the curve P = P(b) on the
(b,P)-plane. The curve P = P(b) is concave downward (P"(b) < 0) on
(-1/4,0) U'(b**,oo) and concave upward (P"(b) > 0) on (O,b**). Thus
points (0,4/5) and (b**,P(b**)) in (b,P)-planeare inflection points.
P'(b) < 0 on (—1/4,b*) and P'(b) > 0 on (b*,oo) so that the point
(b P(b)) is an extreme point. A(b) depends on 7, and 7, while P(b)
does not. Recall that P(-1/4) = 1, P(0) = 4/5.
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A(b) has the following properties;
(1) A(-1/4) = 1 (resp. A(-1/4) > 1, A(-1/4) < 1) if and only if
(_ro,rl)er (resp. is below H,, is above Hp).
(2) A(0) = 4/5 (resp. A(0) > 4/5, A(0) < 4/5) if and only if
(ro,rl-)eH'0 (resp. is below HO, is above Ho)’
(3) The straight line P = A(b) is tangent to the curve P = P(b) for

4
be(-1/4) - {0b°,b } if and only if (r,,7)eU T;
i=1

The relative positions between the straight line P = A(b) and the curve

P = P(b) are as in Figure 27 (a‘) — (h). In the strict sense, I to X in
Figure 26 are different from those in Figure 19, however, we will use the same
notations for convenience.

For g and h in (ro,rl)_—plane, we have associated straight lines, say,
g—P=2A(b) and h— P - A(b). Let B (resp. B) be the solution of
the system

A(b) = P(b) resp. A(b) = P(b)
A'(b) = P'(b) ‘ A'(b) = P'(b).
It is easy to see that b* < b** < b < b < « (see Figure 27 (g) and (h)).

Lemma (3.4.15).

Let K be a compact neighborhood of {H(x,y) < 5} and let D be a
compact neighborhood of the curved region a e gh dc and a curve Tg in
(rd,rl)—plane. Then there exists (D) > 0 such that the bifurcation diagram
of the equation (3.4.1) can be described in C(D) = (0,a(D)) x D as follows
(up to a diffeomorphism of C(D) equal to the identity of s = 0):

(1) SHf = (0,o(D)) x H; is a surface of Hopf bifurcation of

codimension 1.
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(2) Sy = (0,a(D)) x H  is a surface of homoclinic loop bifurcation of
0

codimension 1.

3) S~ = (0,0(D)) x C. (i=1,2,3,4) is a surface of semistable limit cycle
Ci i

bifurcation of codimension 1.
(4) (0,(D)) x {a}, (0,a(D)) x {e}, and (0,0(D)) x {I} are curves of
Hopf, homoclinic loop, and triple limit cycle bifurcations of

codimension 2 respectively.

() (0,0(D)) x (¢} = Ollsyy) N CUlsy )

(0,a(D)) x {d} = CI(SHf) n CI(SC2)
(0,a(D)) x {g} = Cl(Sy ) n C(S )
‘ 0] 4
(0,o(D)) x {h} = Cl(SHf) n CI(S,)
are curves of the corresponding two simultaneous bifurcations.

Outside these bifurcation sets in C(D), the topological type of the phase

portraits of the equation (3.4.1) is constant in K.

Proof. The ﬁaragra,ph after Lemma (3.4.13) plus the implicit function theorem
applied to F(bA) = s3(r I (b) + 7,Ty(b) + I,(b)) + o(s>) give the proof.

For details, see Dumortier et al {7]. O

The blowing—up (3.3.1) with 5 = 1 gives a transformation

¢: (S’(TO,TI)) - (61,62,63),, and

(34.16)  §((0,a(D)) x D) = {(s%str,5%r)|se(0,a(D), (7,,7)¢D}.

Let E, (D) be the RHS of (3.4.16). The bifurcation diagram of (3.2.9) in
1
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E, (D) is the image of those described in Lemma (3.4.15) by the
1 ,

transformation and thus homeomorphic to cones based on _Hf, Ho’ C, and

a - B with curves s - (s217, s4-ro, szrl) with 5 = 1, or equivalently

2
€ - (el, €170 clrl) for ¢ > 0.

Now we will consider the behavior of (3.2.9)_ in a sector around Oeg-axis.

For this we take 7, = #1 instead of 5 = 1 in (3.3.1). Since both cases

1
T =1 and 71 = -1 are similar, we will consider only the case =1

like in §3.3. By (3.3.1) with 7, = 1, equation (3.2.9)_ becomes

(3.4.17) |x =y

y = % — 3 4 s3(ro+x2+x4) y.

Let s; > 0 be fixed. Then for each se(O,sI] we take a blowing—up again:

(3.4.18) g = 2 X - IX
and y - r2y

9
Ty = I'7T, t - t/r.

Then (3.4.17) becomes

(3.4.19) |x =y

y=x-x + s3(f(?0+x2)y + o(r%))

which is a perturbation of the Hamiltonian system (r = 0)
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(34.20) |x =y

with the first integral H(x,y) = ¥—2- - ’2(—2- + i‘f . As in Lemma (3.4.3), we
have |

~ H(wp) - H(w,) = $’1(F(b7,) + o(r))
where F(b7 ) = 7.1 (b) + Ly(b).

Lemma (3.4.16).

In the plane {(17,ro,rl)|1'1 = 1} there is a fixed compact neighborhood
Bt of (n,ro,rl) = (0,0,1) such that for equation (3.4.19) the results of

Carr-Takens are valid for any (n,ro)cB+ and any se(O,sl]. (See Figure 28.)

Proof. Carr [3]. 0

Blowing-up (3.3.1) with 7, =1 (i.e, ¢ = 7732, €g = ros4, €3 = 82)

gives a mapping (s, 7,7,) ~ (€),€9,€65) which maps (0,3;] x BT to
+ 2 4 2 +
E63 = {(s™n, s77.,87)[se(0,8;], (m7 )BT}
E+

€3
BT.

is a cone in (51,52,53)—space around  Oeg-axis (e3 > 0) based on

The bifurcation diagram of (3.4.1) in Et consists of cones based on

3
P—If, ﬁo’ 62, P, Hf and {fl} with generating curves s - (827], S4TO,82).

For 7, = -1, we can get a cone E_
€3-
g Py Hy and {b,} similarly.

around  0eg—axis (e3 < 0) based on
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Now we consider the case ¢ = 0. In (3.2.9)_, if € = 0, we have the
following equation

x=y

y = =3 4 (£2+53x2+x4)y.
After blowing—up ((3.3.1) with 7 = 0), we get

(34.21) |x

y
=3+ 53(ro+7'1x2+x4)y.

If s =0 in (3.4.21), it becomes a Hamiltonian system
X=y
=

with the first integral

2 4
X

(3422) H(xy) = 4 + .
As before, we get a similar lemma of Lemma (3.4.3) and lead to solve
(34.23) F(b))) = 7 1(b) + 7yIy(b) + L,(b) = 0.

where L(b) = | xlydx, 7 H(xy) = b in (3.4.22).
T

(All the same notations will be used again.)

Lemma (3.4.17).

(34.24) 71,(b) = 4b 1 (b).
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Proof. Omit. o
Hence by (3.4.24) we get a new form in F(b,Ao) from (3.4.23).
(3.4.25) F(bA) = (1.+30) 1 (b) + 7L (b)

o 0 0’77 % 12V7/

Let

12(b)/Io(b) for  b>0
(3.4.26) P(b) = .
| 0 for b =

and from (3.4.25) and (3.4.26) we define

1 e 1
(3.427) G(b,/\o) = I(:('Bj F(b,/\o) (ltS limit at b = 0)

4b
=T, t 7+ TlP(b)
(simply write G(b) instead G(b,)\o)).
Lemma (3.4.18). P(b) defined in (3.4.26) satisfies

(34.28) P'(b) = .

Proof. Immediate from 3Io(b) = 4b IO'(b)
5I5(b) = 4b I5(b). O

By (3.4.28),
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(3.4.29) P(b) = £ b, b > 0, £ is a constant independent of b.

If b=1/4 £=P(1/4) =) xlydx/f ydx
' N N

- {1;(2(1--){‘)172 dx/{l (1xH1/2 4x.

For the semistable limit cycle bifurcation, if we solve
G(b) = 7, + 72 + 7,P(b) =
G'(b) = 7 + 7P'(b) = 0,

then we get
[ _ 4
TO = 7 b
;o= B
1~ T
Hence
62 72
3 1 16
2 0 7L

We restrict (3.4.30) to a sphere -S (actually S n {e = 0} = {6%-{-62—6%})

so that the solution is exactly (0, 0y, 03)

2 16

2\1/2
where a, = 2 + ((—2-) 0) / and @3 = ”2 ay (a3 < 0).

7(
We let by = (0,012,03).

The Hopf bifurcation of order 1 occurs at by = (0,0,¢ 0) and
by = (0,0,7¢,)- (G(0) = 0 # G'(0) » 7, = 0~ ¢ = 0).
So SN {¢ = 0} = (by,by) U (by,bg) U (bg,by) U {b;,by, 3}.
In (3.4.27), G(b) = 0 has only one generic solution if ¢ < 0. So on
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(bysby), there is one limit cycle. If €& < ﬁg € OF (eyey) is in the first

quadrant, G(b) = 0 has no solution. So on (bl,b3), there is no limit cycle.

If 0< —;g € < eg and €3 <0, G(b) = 0 has two generic solutions. So
-7

on . (by,bg) there are two limit cycles.

Those limit cycles are generic on (bl,b2) u (b2,b3) u (bl,b3) so that
they still persist if € is a nonzero ‘small number such that ¢ = ((1,62,(3)
isin S.

Let R c S be a compact neighborhood of b3 diffeomorphic to a closed
disk and let D, (resp. Dl’DQ) C S be a compact neighborhood of part of
(bl,bg) (resp. (bl,b2), (b2,b3)) around the circle {(1 =0} NS in such a way

that (1) limit cycle(s) persist on D, (resp. Dy, D2), and (2)
2 & _
(uD)urt uE
i=0 3 %
compact set D in Lemma (3.4.15) such that union of E, D) ns, D, Dy,
1

URD {¢ =0} nS asin Figure 29. We choose a

D,, Et n S, E, nS and R covers hemisphere {¢; > 0} N S. (See
2 € [ 1

Figure 29.)

Let H = qs(st) ns, Hy = ¢(s"0) ns,c = ¢(sci) n's (i=1,2,3,4).
Then we will show that the curves of Hopf bifurcation, homoclinic loop
bifurcation and semistable limit cycle bifurcation (C2 and C3) in
E_(D) n S are connected with those in Et ns (and thus Hp Hj  and

‘1 €q 0
C, with b;) and in E;S NS (and thus Hy, Hj and Cg with by).
We have
Hf: Touh 1=0
f?+(g+£§=(g,(l>0

and
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H : T, + 47/5 + 32/35 = 0
2 2 2 _ 2
| g tegteg=c¢,¢>0
by the transformation (3.3.1)
2
8 = € To = €l€]) 7] = €3/€p, € > 0'.
Let € - 0 on Hf and H'o‘ Then € 0. Hence € - 0 implies
(61',62,63) 5 (0,0,teo) =b, or b2.
Now let Cy: 7, = (7).
' . * . dry :
As b varies from 0 to ’b (i.e., T, varies from 0 to —w), ar—o = f(ro)
- *
varies from -5/4 to -1/P(b) and f'(7)) is monotonically decreasing on
*
(0,b ).

"o

- —= < f(r) < - 57 /4 - 8/7.
P(b ) 0 (0] '
r
Since on the straight lines T == I_’%B*S and 7, = - 2-7'0 - 8/1, if €
tends to 0, then € tends to 0 and Ty @~ ® and thus €3 2 €, Hence

by squeezing, €¢g - 0 and €3 €, as ¢ -0, ie as ¢ =0, (61,62,63) on
C, tends to b,. Similarly, as ¢ -0, (61,62,63) on Cg tends to b,
Next we will show that C, in E_(D) NS is connected with by in
1

Note that T,: (r,7) = (- 2b + 2B 4 _8/7) for be(b )
te that - Cy: (75,7 7+ 7pT ~ 7P 0)-

4P

2 _ _ _ _4 ‘3 4
From ¢,/¢; = Ty = —7b + =pr and =

=71 ==7p - 8/T,
1
asb—»ooP'(b)—»0+, T+ —o and 63/61-’—00,
and ‘

a8 b oo TO—+oo,c2/6%7’oo and e%/62—>0

. 4 4P
since 7, = — »b + mpr - 4b/7 gs b - «.
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— = —2-asb—»oo where ¢ > 0 is a constant in

Lemma (3.4.8).

2
1 ("7PT ’7) 16
TO

~ Hence ¢ -0 but ¢ and ¢ —/-0 as b - o (€,66) on Cy
does not tend to b1 or by as b-wo since ¢ —/- 0. The only other
point at which the number of limit cycle change on {¢; = 0} N'S is b,
Thus (61,62,63) on C4 must tend to b3 as € - 0 and so it must be
that ¢ = £
We have proved Theorem (3.4.1).

B. € < 0.

As in the case ¢ > 0, we use (3.3.1) with 7 = -1 to investigate the
behavior of (3.2.9) in a neighborhood of O¢,—axis for ¢, < 0. Hence the
equation (3.4.31) has the form

(34.31) |x =1y
y =X - X + 33(r0+rlx2+x4)y.
Equation (3.4.31) has the equilibrium point (0,0) which is a focus. If

8 = 0, (3.4.31) becomes a Hamiltonian system

(34.32) |x =1y

y=-xX-X
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with the first integral
2 4

H(x,y) = %—2- + %— + )1(—',
and the phase portrait of (3.4.32) is shown in Figure 30.

Closed orbits surrounding (0,0) correspond to level curves
7b: H(x,y) = b, be(0,). Now'we consider (3.4.31) for small s # 0. Every
closed orbit of (3.4.31) should interéect with the interval U = {(x,0)|x > 0}.
We define w, for be[0,m) as follows:

(a) wy,eU (b) H(wb) = b.
Let A, = ((To’Tl)’S) and we define a Poincare map P/\S: U-U bya
successive intersection points of U with an orbit in an obvious way. (See
Figure 31.)

Let y(b,A)) be the orbit of (3.4.31) which joins the point w, and wg.

Hence 7(b,\;) is defined for be(0,0). Then we have the lemma.

Lemma (3.4.19).
(1) Every closed orbit of (3.4.31) is expressed by the form 7(b”\s) with

WE = Wb.
(2) A trajectory 7y = 'y(b,,\s) of (3.4.31) is a periodic orbit if and only
if

(3.4.33) J QY] 4y = o,
7

(3) For x > 0, condition (3.4.33) is equivalent to
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(3434) FbA) = | (r4rxC+xt)y dx = 0.

Proof. See the proof of Lemma (3.3.2). ]

Following the same procedure as Subsection A, it reduced to solve (see the

paragraphs after Lemma (3.4.2).)

(34.35) F(bA) = 71 (b) + 7jIy(b) + I,(b) =0

where L(b) = | xiy dx, 7, H(xy) = b.
T

Lemma (3.4.20).
(3.4.36)  71,(b) = 4bI (b) — 8Iy(b).

Proof. Similar calculation of the Lemma (3.3.5). 0
From (3.4.36), (3.4.35) becomes
(3.4.37) F(b,(r,m)) = (ry+ 4b/7) I,(b) + () - 8/7)1y(b).

Note that I(0) = L,(0) = 0, I.(b) > 0 for b > 0 and Iy(b)/I (b) -+ 0

as b - 0. So we can change (3.4.37) as follows:
(3.4.38) G(b,(7,m)) = 7, + 4b/T + (r,-8/7)P(b)

(we will denote G(b,(r,,7))) simply by G(b)) where
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I(b)/I,(b) for b >0

(3.4.39) P(b) =
, 0 for b=0.

Lemma (3.4.21). P(b) defined in (3.4.39) satisfies
4b(4b+1) P'(b) = -5P2 + (8b—4)P + 4b

Proof: See the proof of Lemma (3.3.6). u]

Lemma (3.4.22). P(b) also satisfies:
(1) ll)im P'(b) = 1/2 and P'(b) >0 for b >0
0 S

(2) lim P"(b) = —7/8 and P"(b) < 0 for b > 0
b0

hence the graph of P = P(b) is concase downward.

(3) P(b) - myb as b -+ o for some positive constant m.

So
lim P(b) = » and lim P'(b) = 0.

[« 4] — 00

Proof. (1) and (2) are easy calculations from the system of equations
p = -5P% + (8b—4)P + 4b
b = 4b(4b+1). N

which is gotten by Lemma (3.4.21).

See Lemma (3.3.7) and Lemma (3.3.8) for details.

For (3), see Lemma (3.4.8). o
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Now we will compute the bifurcation curves of the equation (3.4.31) in
(r ,rl) plane The Hopf blfurcatlon curve Hf of order 1 in (3.4.31) is
He T, =0 except (7,,7)) = (0,-16/7) = k
where the Hopf bifurcation of order 2 occurs. (Compute the Liapunov's focal
values in (3.4.31).) The semistable limit cycle bifurcation curve C is given
by the equation G(b) —‘G'(b) = 0 for be(0m) and is
C: (1) = (- 90 - ﬂ,r, v + 8/7), be(0).
(See Figure 32.) '

Lemma (3.4.23).

(1) The curve C is.smooth.

~(2) T is tangent to H, at k = (0,-16/7).

- dr
(3) As b - o, the slope (H?l) of C is increasing monotonically and
o :

tends to 0.
Proof. See Lemma (3.4.14). - "o

It works through on the semistable curve almost the same as the case
¢ > 0. For the number of limit cycles, we consider the relative positions of
the curve P = P(b) and the straight line P = A(b) shown in Figure 33,
where A(b) is such that '
G(b) = (r,-8/7)(P(b)-A(b))
so
Ty T 4b/7
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We can get a similar version of Lemma (3.3.15) and, after secondary
blowing-up, Lemma (3.3.16), then using the results for ¢, = 0 ((3.4.21) -
(3.4.30)) and the same idea as before (e1 > 0), we can prove that (61,62,63)
on C tends to by as ¢ -0 and m = {. We omit the details because

the steps are routine repeated arguments of Subsection A.
85. The Case: b # 0.
We ean get the versal deformation of (3.1.5) as follows:

Lemma (3.5.1). Any symmetric perturbation of (3.1.5) with small parameter pu

can be transformed into the form

(351), |x=y

¥ = (1) + oy = xhx + () + Glomx® + yd(x.y.4)y,

~

where RS, G(x,0) = |a|}/? and ¢(xy,0) = o.

Proof. By an appropriate scaling, we can change (3.1.5) into the following

form:

(3.5.2) X =y

y = ax® + ﬂx2y

where o = sgn(a), § = |a|'/2.
Using (3.5.2) to follow the same steps as in the proof of Lemma (3.2.1), we get
(3.5.1),. 0
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Remark. We can take a transformation ¢ = (cp1,<p2,tp3): g — € in the

parameter space so that (3.5.1), becomes

(35.3), [x=1y
- 2, .4 : 2
u = (51""53)‘ X)X + (€2+G(x,u)x +yP(x,y,¢€))y

where G(x,0) = |a]Y/2 (:z¢), d(x,y,0) = 0.
(3.5.3), is versal to

(3.5.4), [x =y = f(xy,e)

. 2, .4 2y .-
y = (el+e3x +x°)x + (egtex)y = f5(xy,6).

of, ofy - 9
Note that div(f) = z=(xy) + -ay—(x,y) = € + x".

Here we are not able to control cx2, hence (3.5.4), can't be regarded as a
pertuibation of the Hamiltonian system: This implies that it's likely hard to
apply to abelian integrals and Picard—Fuchs equations. So probably we have to
approach from other directions.

There is a recent paper by Dangelmayr et.al [6] which introduces an
equation for a laser with saturable absorber. After using a center manifold
theorem and a normal form theorem, they reduced it to the form (3.1.5) with a
leading fifth order term. It described also the bifurcation diagrams and phase
portraits of (3.5.4) without a detailed analysis (Figure 1 (a), (b) and Figure 2
in [6]). |

However, the conjecture of the bifurcation diagrams has a couple of

mistakes, one is a saddle-node homoclinic bifurcation (Sechecter [15]) and the
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other is a pitchfork homoclinic orbit in the symmetric vector field (Chapter 2
of this thesis).

We will describe about (3.5.4) briefly. For simplicity we assume that
¢ =.-1. First, equilibriaL of (3.5.4)_ is determined by the equations y = 0,
(cl'+eés2 ~ x4)x = 0. Hence {¢; = 0} is a pitchfork bifurcation surface and
{'eg + 4¢) = 0, €5 > 0} is a saddle-node bifurcation surface. Also {c2 = 0,
€ < 0} is a Hopf bifurcation of order 1. The number of equilibrium points
are as follows. (See Figure 34.)

(1) ¢ >0:3

(9 -&/4<e <0 and e > 0:1

3

w N

€
(3) (¢ <0 and eg <0 U(e <-7 and €5 > 0): 5.

Bifurcation diagram and phase portraits (Figure 35) are based on numerical
results, Chapter 2 of this thesis, and Schecter [15]. (Also, of course referred
Daﬂgelmayr et.al. [6].)

We divide three cases depeﬁding on the sign of €3

(1) Case 1: e3> 0
- (i) Case 2 € =0
(i) Case 3: €5 < 0,

and codimension two bifurcations are explained in each case.

(i) Case 1: €3 > 0.

For a small but fixed ¢; > 0, we can change (3.5.4)_ into the following

form
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(355 |x=y

. 2 . |2
y=,u1x+p2y+x3(1—x)+xy

by an appropriate scaling, where B = el/cg, o = 52/ €3-

(3.5.5) gives us a local behavior near (u;,4y) = (0,0) (ie.,

Oeg—axis (e > 0); (5) 4 in Figure 35). Also we can see that Takens-Bogdanov
bifurcation occurs at  (s1,45) = (-1/4,1/2) ‘

(i.e, € = (—6%/4,63/2,63); (1) in Figure 35), Hopf-saddle node bifurcation at
(pbty) = (F1/4,0) (ie., € = (- €3/4,0,65); (9) in Figure 35), Hopf-pitchfork
bifurcation at (4 .uy) = (0,1) (i.e., € = (0,€5,€3),65>0; (7) in Figure 35).

(ii) Case 2: €5 < 0.

As above, we have the following: -
xX=y

. 3., ,.2 2
Y = X + poy — x(14+x%) - x7y,

2
where ) = € /€5, llg = — €/ ¢€5.
On 0eg-axis (e5 < 0), we have a Takens-Carr bifurcation ((5)_ in Figure 35)

which is only a codimension two bifurcation.
(iii) Case 3: ¢ = 0.
Symmetric version of cusp bifurcation occurs at (0,¢y,0) ((6) in Figure 35).

In this case (63 = 0), Hopf, homoclinic and semistable bifurcation curves are

tangent to the pitchfork bifurcation curve.
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There are nine different codimension two bifurcation occurring in (3.5.4) .

(See Figure 35).

(1) Takens-Bogdanov bifurcation.

This- bifurcation has an equilibrium point whose linearization is nilpotent.
The equations defining the locus of Takens—Bogdanov bifurcations for a family
x = f(x,)), xlR® are f(x ,\) = 0,
trace Dxf(xo”\) = det D f(x,A) = 0. ‘

A normal form for the Takens—Bogdanov bifurcation is

X=y
— . 2
y—cl+c2stx + Xxy.
(See Bogdanov (2] and Figure 36.)

(2) Saddle-node homoclinic bifurcation.

The vector field of this bifurcation has a homoclinic orbit at an equilibrium
point whose linear part has a simple zero eigenvalue and one nonzero
eigenvalue, and the center direction is a saddle-node codimension one
bifurcation. A homoclinic bifurcation meets the saddle-node bifurcation with

quadratic tangency. (See Schecter [15] and Figure 37.)

(3) Homoclinic bifurcation of order 2.

This is a homoclinic bifurcation at a saddle point where the Jacobian
derivative has a trace 0 and a certain property is satisfied.

The semistable bifurcation curve approaches the homoclinic bifurcation
curve tangentially with infinite order contact. (See Roussarie [14], Joyal [11] and

Figure 38.)
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(4) Pitchfork homoclinic bifurcation.

(Sée Chapter 2 of this thesis and Figure 39.)

(5), Takens—Carr bifurcation.

If a symmetric vector field has a nilpotent linear part at 0, then it occurs
with two distinct qualitative behaviors (depending on the sign of coefficient in
x> in the normal form) whose normal form is as follows:

x =y
y = x+ czy:l:x3+x2y
(See Carr [3] and Figure 40 (a), (b).)

(6) Pitchfork saddle-node bifurcation.
If a pitchfork bifurcation occurs at (0,0) and a saddle-node bifurcation
occurs at an equilibrium point splitted from (0,0) in the symmetric vector

field, we have a pitchfork saddle-node bifurcation. The normal form is as

follows:
X = €x + 52)(3 - %0
y = ay (040).

(See Chapter 6 of Golubitsky and Schaeffer [9] and Figure 41.)

The following are codimension two bifurcation curves where two

codimension one bifurcation curves meet transversally each other:

(7) Hopf pitchfork bifurcation
(8) Pitchfork semistable bifurcation, and

(9) Hopf saddle-node bifurcation.




APPENDIX

Theorem. Let OR® be a pitchfork of fe.s [(R%), r 2 3. Then there is a
neighborhood B of f in % ;(IR2), N a neighborhood of 0 in R and
a: B - R, C™ 1 function such that

(1) geB has a pitchfork as a unique equilibrium point in N if and
only if a(g) = 0. If og) < 0, g has three equilibrium points, origin is
node, other two, both generic, are saddles. If o(g) > 0, g has one saddle
point, origin in N.

(2) off) =0 and deg # 0.

Before proving it, first we introduce some notations and definitions. Let

M be a 2-dimensional smooth manifold. Let fe.#"(M) such that

2
f(p) = 0 for some peM, and f = X f; 3)67 Then define
i=1 i
. 2 - =
Dfp. DpM DpM by Dfp(v) [g,f](p) where g(p) = v

[\

for some g = I g 5% e% (M), and [-,-] is a Lie bracket.
i=1 i

Also define

A(f,p) = Det(Dfp)

o(f,p) = Trace (Dfp).
Let r2> 3 and Spec(Dfp) = {A; =0, Ay} and T,, a corresponding
eigenspace of Dfp and DpM - T, projection (i =12).
For veT,, v # 0, we define A (fp,v)v by mg[sf])(p) = A(f,p,v)v, and
likewise

Ay(fp,v) by m(gs(8.fll(P) = Ay(fp,v,v)v.

Then Al(i=1,2) does not depend on g. P is called a saddle-node of
f if A/(fpyv) #0 for some v #0.

103
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If feZ ;(IR2) and Az(f,O,v,v) # 0 for some v # 0, 0 is called a pitchfork
of f.

Let u be the vector on DpM2 such that 7, v = uv and fi,ui,vi
components of fu,v respectively with respect to a coordinate system (x1 ,x2)

around p. Then

1) Aylip) = vgledle) = 5. 22k

i,j,k J

(p)v

(2) A, does not depend on g, ie., ulg[gf(p) = ulg[eAl(p)
for every ée.ﬁr(M) with é(p) = g(p) =

(3) Let fe.5 (R?), geF"R?). Then
S

1
Az(fap’vav) = u[ga[g’[gaﬂ]](p) =. Ekl Wg‘i&'{— ‘]V Vlu
l’J’ b

(4) Likewise, A, does not depend on g.

Proof of Theorem. Let x = (x;,x;) be a coordinate system around 0

such that x(0) = 0 and af—i(o)fT.(i:l,Q). Then f = élfi 53_1 satisfies
3,%(0) = 3,%((» = %;(0) =0, g}f(—z( 0) = o(f,0),
-ag-g(— = 0 for every ijk = 1,2 since feZ (IRQ)
"’Bflo = A(E0, &_(o) EX_ 0)).
1
That is,
fl(xl,x2) = A2x:f + bx%x2 + Cxlxg + dxg + My (x%)

2 3 2 2 3
f(xl,x2) = 0Xy + ox] + ﬂx1x2 + X + 6x2 + Mz(xl’x2)

2
where  M.(x;,x,) = o(|x]“).
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0 i
Assume 0(f,0) < 0 and Ay(£,0,5—0), 7—0)) > 0
| 270x 1
Let N0 and B0 be neighborhoods of 0 and f respectively such that

. a .
for g= ¥ g 5B the following hold on N :
i=1 % 0

(1) %; <0,

P! k1
(2) A (gOyv. ,v)= % vivkelug > o
ZEVT T PGP0 B
where
2 2
1 -1
v, = - (7)) (
8 2 1
2 2 82 9l
u%=1+< ) %%— )"
2 2
1 .2
g _ _ 8
U == %(% up
1
3) olg) = %I+§—<o

Existence of such N o and B, can be guaranteed because of the

continuity since f satisfies (1), (2), and (3) at O.

2 . 2 2
Take v. =% v. 3,w =3 w 3,and ¥ =3 ub dx.

i1 80 8 2 80 i=1 ' !

where
2
1 dg°\-1 0
Wy (-5;5(5) -5;5(5, Wy 1

If 0eN, is an equilibrium point of g and so A(g,0) = 0, then vg(O) is
an eigenvector corresponding to A = 0, w_(0) is an eigenvector corresponding

g
to A = o(g,0), ud(0) is the covector such that ug(vg) =1 and

&( =
u (wg)
Hence by (2) and (3), non—generic point 0eN of geB  is such that

0(g,0) < 0 and A2(g,0,vg,vg) > 0, i.e., 0 is a pitchfork.
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A 2 .
Define F: B, x N -+ R by F(g,(x),x9)) = g7(x),%9). F s ct
since g2 is and it is an evaluation map. F(f,(0,0)) = 0, gf(‘—(f,(o,o)) =
2

2
9 0,0) = o(£,0) < 0. By implicit function theorem, there exist B, x I,

a neighborhood of (f,0) and I, a neighborhood of 0, I C R (i=1,2)

and F;: B‘1 x I - 12‘ a unique C'—function such that

(*1) F,(f,0) = 0, F(g,(xl,Fl(g,xl))) =0 for every (gx )eB; x I;.
Define Fo: By x I, - R by

(*2)  Fylgx) = g (x,F (8x)).

From (*1) and (*2), we have

oF, 21
(4) ;;q=( 2) Alg)
(5) 62F2so in B, xI
g%— 1 XL
PF

2 _ (81
(6) ;’;— (111) A?(gaoavgavg) > 0.

The computations of (4), (5), and (6) will be later.
Define o B - R by

6 1
o(g) = 3—(g, gﬁIOF (8,0)).
r-1 oF 2
Then a is C and ofg) is the minimum of -a—x—(g,xl) at
1

oF

=0 ¢, by (5) and (6). 3x—f(g,x1) is even in x;.
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(i)v Case 1: a(g) > 0.

There is a unique equilibrium point (0,0)eN  which is saddle since

of
.o(g) > 0 if and only if -5x—2(g,0) > 0 if and only if
1

A(g)(x;) <0 at x; =0 by (4) and (1).

(ii) "~ Case 2: a(g) = 0.

oF
a(g) = 0 if and only if -a-x—Q(g,O) = 0 if and only if
1

A(g)(x;) = 0 at x; = 0. Hence (0,0) is a pitchfork by (6) since g

is symmetric.

(iii) Case 3: a(g) < 0

OF
o(g) < 0 if and only if 2 ,0) < 0 if and only if
Ix; &

A(g)(x;) = 0 at x; = 0. Hence (0,0) is node. Let zeros of Fo(g:x))

be x; = 0, /(g), and —1(g).
That is,

(0,0) and (¢7(g), F,(s:¢1(g))) are zeros of g.

OF
;;%g,iv(g)) > 0 if and only if A(g)(x1(g)) < 0.

Hence (£1(g), Fl(g,iqf(g))) are saddle.

Next,
oF,, oty orl
0 .
0

_ I'/n2
For h—iilhi—ax—lev%”s(m),
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da(h) = lim Q(H_fill-_a(ﬂ.

0
= lim (1/€) off+eh)
0
f+ech
= lim (1/e) [g-a—)—( (f+¢€h,0))
-0
of! ah1
= lim (1/¢) -ax—(O F,(f+¢h,0)) + lim 0,F(f+¢h,0))
e 0 € 0
1
1
= M9 0).

1

Hence daf # 0. 0

Computations of (4). (5), and (6).

So

(4)

(5)

, 2 _
For (gx) eB; x I, g7(x,F(g%))) = 0.

202 2 OF,
) +%FA_1-=0 and then
oF 2 .9
1 g%\ -1
ax—l—‘%;(a%) -
OF 1 1 OF
2 1
<ot
1 1 2 .2
| -1
= + — )
o+ C 8 @&
) .
—(%%)IA(g)

&F 1 oF 1 21 F, &F 1 &°F
2 &g & 1 P gl o OF
= + B + ) (Gx) +
3x2 c?x2 10Xg 0x) = 10X, 0%g axg ox)’ 2ox)

1 OF, 2,1 OF 1 &°F
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since

7{:—?5% =0 (ijk = 1,2),

]

2 OF, 2 OF, OF, 62F
62g + 32g 328 328 %_ _O,and
"”‘1

P BT ax (7% ax2 ™ %, o) ?7“*

2
%#0.

&F 1 OF, OF

(6) 32 = 63% + 33g 6x + 2 63g + 83g 2 6x1) 6x1

&y o (9)(2 ax ox, ox,0x5 X1 0%
Pl O 02F Pl Pl O 3F1)2

+ 2
3, %, axl 0x2 (6x0x2 P 8x)(8x1

, ] oF, 32F 2l Pl O 6°F, &F,

1
a
+ ( + +
ax2 ""1 6x2 0x OX, 8x2 5"1 ax2 3;“50)(3
2
H:gq

1
331 3316F 33
- OE s B et o

1 1% 1 1‘9"2
1 63F1
+ % —
oxy
IF 2 . .2
Since 3)(—1 = - (%) 1 %I and
git 9 (?x? 3x%3x2 2 1
Pe? 021 9122 P’ 053 o
+3 ,
ol By (@) "8 @) o
we have
FF
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For b1b2’ b2b3 and b1b3, See Figure 19 (c)

(d) phase portraits of codimension 2
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Figure 33
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