

’2‘ ‘vnfi,

I<

5>,W.
m,’4'.

,3;},

I
"""’*‘r’\’~}fi‘?'..3“i»3, 1".w-yf‘yr

_\

‘anM

v‘

Vf“'

“5533:;

“II

q

.
0

'
l

u
~
'
1
_

-
N
a
.
.
.

'3)?“
I‘Hf‘u

9"-r~.
.“EH'

3-It.
L.‘.:‘,‘,f,rc
A};,‘7‘.“

vfrrngp'wl
‘3'?

3WD!"
kgfigd.

‘

.2'1’“be.,

1‘'9},.m...

I

H...,.(-m'
“{t‘fiivbk')

n...

(YA-t.

q

Ir",

,w‘hv‘fi'

’Vt

-vn'q

"\flrz'x,._
'r-..,‘ .W’

,A.~ :'Z'kpfk'i'f

')\\

E
V
.

'1
-
‘
r
”
.

a"

'I”Mr

-‘*;J .
""f‘l‘.",‘.\

.'\Irl. ...

1F

:xrx

v

k!‘

3)..

233$“

‘f
'n'.-

’."A

“g,“.

6).“{5.4:}:

‘"A"L'Ff'wt'

M'9‘s“.

.3fix

~’>:"~?t‘'1
‘.y'i'xay

27.F,

.

5

$sz63.5
.

‘'u.
0.;.‘y“

'91’€"~i‘i;‘3’.m;
“Arab;

“

"EV/1“"51,

i);J“,-

44,:

,
v

n

"'
‘?f

“Mil
$31..

..

.'‘'

9’:
.

‘t

,1,

(5*?A ‘,‘P'.,"'I’v’ri‘

k,

{him'“$39)”?
,r',:__

f

M
vii) ”1,..
W:

w.
?

2I

1”?”.

.JZAY
u}

I

,

JJ”;
"l‘u
111:.r

if.‘,).'v

"a:5-,.)
A

’59?».9.-:J.55;3., nIt;)3“45‘

’yL’VAJMyQ

5’3.

2»
P

-1r?! ,,‘
«J‘l;i“Ii

"’3';-v
0"-/,.'.:,,

,1J.11}?p.11?

My, 1'4v|

"J

R”)

-“h5

aA”)

F13.

W5W
Hnits,

J“:

3:;’

«Visa

..|

ram,
(3:11”;”A,

’

Mf’
r

~I

),~’

I

9%,).

nn.”

42;:

1IA'

I

>

my.

“(fink

'VI},

'v’A
h|A

1,‘,1
~1:;

J!

a

K
.

D

’
»
r
.
_
~

L
‘

)frr

-r‘.s)

“1!:‘14'3‘3
Ivm7

Vn‘l

'
4
‘
!

x

W‘’i..
“'71?!I”

H"
Han,

Ital,sz

J‘

In,F}

a
“‘5"!

"w:;p‘
'A’v‘,vy"‘).rg‘x

fv‘fi'fl"ift

“’4‘

’3ri’r‘
HPLEA?!

rt
a.

,I

“r4.\ Flu..._.
'n_,,3!le

.h

13:. .I
'L.

1""?!5|,

‘v- ‘H‘

”HT!3.I.“\'
~w

A

In.y

"ri“
Inn
.

'.

kl’s“Q

...3131533.“.;
r}-5.VJ.

n

.3*;{1‘u‘

~:\L'c"_
(3:33;.3""

An

_
/

,
_
,
_

’
J
u
.
,

"
a
&
5
%
1

A
.

r
,
3
:

‘u;g‘-
n

“‘35:“

\5ft“‘-
5.3..

k“a.ap
».,‘.

“'“ang:

‘x
L“:

.‘DmI
u»!,

h‘\'\l “.9.

‘3. pmK
“mud“

\"‘Mu‘.
‘

,-\‘.I_,‘__h‘

‘

I-VJ,"

{film 4’.'

'14

)‘x

J

[Willilllfl/lllllllllHill!!!llIll/IllH/ll/lll
93 00552 6797

This is to certify that the

dissertation entitled

DATA DISTRIBUTION STRATEGIES

FOR PARALLEL DATABASE ACCESSES

presented by

Myoungho Kim

has been accepted towards fulfillment

of the requirements for

#degree in om u er ience

MM

Major professor

DateML

MSU is an Affirmative Action/Equal Opportunity Institution 0—12771

LIBRARY

Michigan State

University

A
U
M
,
.
.
.
n
.
_
4
‘
_
4

MSU
LIBRARIES

m

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

DATA DISTRIBUTION STRATEGIES

FOR PARALLEL DATABASE ACCESSES

By

Myoungho Kim

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1989

‘-
,

I
f

-
'

,
Z
»
”
N

i
5
7
;
:

ABSTRACT

DATA DISTRIBUTION STRATEGIES

FOR PARALLEL DATABASE ACCESSES

By

Myoungho Kim

With the advent of commercially available general purpose multiprocessing sys-

tems, the need for developing appropriate information processing systems are increas-

ingly recognized. Since many database applications require a large number of data

accesses with relatively less computation, exploiting parallel data accesses is important

to improve performance in parallel processing database systems. In this thesis we

investigate data distribution strategies for parallel processing of database systems. The

primary objective is to maximize throughput and minimize response time through con-

current data accesses. We propose database processing models as a general framework,

and then present data distribution strategies for three common types of database applica—

tions. Two of these applications are on multikey hash files and the third application is

on B-tree accesses. First, we present data distribution strategies for partial match

queries. The main contribution here is the development of new data distribution

methods called Fieldwise eXclusive-or (FX) distribution methods to achieve optimal file

distribution. An algebraic property of exclusive-or Operation along with field transfor-

mation techniques are fundamental to these data distribution methods. We show that

the proposed data distribution methods perform better than the others proposed in the

past. We also present efficient data construction methods based on the usage of multi-

key hash directory. Second, optimal distribution for parallel processing of multiattri-

bute range queries is investigated. Here, we show that for various types of

multiattribute range queries there are inherent limitations in achieving optimal distribu-

tion. We extend FX distribution methods to achieve optimal distribution for many use-

ful multiattribute range queries. For both partial match queries and multiattribute range

queries, sufficient conditions for optimal distribution by the proposed distribution

methods are given. Finally, we present node partitioning schemes for B-tree type

indexes. The objective here is to develop a new parallel processing scheme for B-tree

type indexes stored in parallel disks. We show that parallel processing of the proposed

partitioned node B-trees performs better than parallel processing of conventional B-

trees. This work presents a new basis on which parallel processing systems for other

database applications can be designed.

To my parents Han Cheol Kim and

Kye Soon Lee

iv

ACKNOWLEDGEMENTS

I wish to express my appreciation to my advisor, Dr. Sakti Pramanik, for his gui-

dance over the years. Dr. Pramanik provided valuable comments and constant support

in every phase of the preparation of this work. I would also like to thank Dr. Lionel M.

Ni and Dr. Abdol Esfahanian for their many valuable suggestions and comments. I also

wish to express my appreciation to Dr. Dorian Feldman for his encouragement and sup-

port. Without their intellectual advice and inspiration, this dissertation would not have

been possible. I would like to thank all the people who helped me during my stay at

Michigan State University.

Finally, I would like to thank my parents, my wife and my son for their constant

support, patience, and love.

TABLE OF CONTENTS

List of Tables .. ix

List of Figures .. x

Chapter 1. Introduction .. 1

1.1. Database Machines ... 1

1.2. Main Memory Databases .. 3

1.3. Concurrent Dynamic Search Structures ... 3

1.4. Classification of Database Queries ... 4

1.5. Problem Statement .. 5

1.6. Thesis Overview ... 6

Chapter 2. Database Processing Models for Parallel Processing 8

2.1. General Parallel Processing Model for Database Systems 8

2.2. Two Stage Parallel Processing Model for Database Systems 10

Chapter 3. Parallel Processing Strategies for Partial Match Queries 14

3.1. Introduction .. 14

3.2. Definitions and Terminology .. 16

3.3. Basic FX Distribution Method ... 19

3.4. Extended FX Distribution Methods .. 24

3.4.1. Field Transformation Functions for Partial Match Queries 25

3.4.2. I and U Field Transformation Functions ... 27

3.4.3. I and IUx Field Transformation Functions .. 29

vi

3.4.4. U and IUx Field Transformation Functions ... 35

3.4.5.1U1, IU2, . . . , [Ux Field Transformation Functions 40

3.4.6.1, U and IUx Field Transformation Functions ... 46

3.5. Performance Comparison with Other Distribution Methods 53

3.5.1. Probability of Strict Optimality ... 54

3.5.2. Average Response Time .. 55

3.6. Data Construction Methods .. 62

3.6.1. Data Construction Based on Real Global Directory 63

3.6.2. Data Construction Based on Virtual Global Directory 66

Chapter 4. Optimal Data Distribution for Multiattribute Range Queries

.. 68

4.1. Introduction .. 68

4.2. Definitions and Terminology .. 69

4.3. Limitations of Perfect Optimal Distribution ... 73

4.3.1. Type (0 - 2) Range Queries ... 74

4.3.2. Type (0 - 1) Range Queries ... 78

4.3.3. Type 0 Range Queries ... 82

4.4. Optimal Data Distribution Methods for Range Queries 82

4.4.1. Optimal Distribution by Basic FX Distribution Methods 83

4.4.2. Field Transformation Functions for Range Queries 86

4.4.3.1 and UR Field Transformation Functions ... 90

4.4.4.1 and UM Field Transformation Functions .. 92

4.4.5. UR and UM Field Transformation Functions .. 95

4.4.6.1, UR and UM Field Transformation Functions 98

Chapter 5. Node Partitioning Schemes for B-trees .. 100

5.1. Introduction .. 100

5.2. The PNB-tree .. 101

5.2.1. The PNB-tree Operations .. 103

5.2.2. Parallel Disks Configuration for PNB-trees .. 104

vii

5.3. Motivations of PNB-trees ... 106

5.3.1. Compressed Height .. 106

5.3.2. Reduced Frequency of Tree Restructuring .. 107

5.4. Performance Comparison ... 107

5.4.1. Performance Models .. 108

5.4.2. Average Data Retrieval Time .. 109

5.4.3. Threshold Points .. 114

5.4.4. Update Performance .. 115

5.5. Other Strategies for The PNB-tree Organization ... 115

Chapter 6. Conclusions ... 118

List of References ... 121

viii

LIST OF TABLES

Table 3.1. Response Time for F 1=F2=F3=F4=2, F5=F6% and M = 16 59

Table 3.2. Response Time for F 1=F2=F3:2, F4=F5=F6:4 and M = 32 59

Table 3.3. Response Time for F 1=F2=F3=F4=F5=F6:8 and M = 32 59

Table 3.4. Response Time for F 1=F2=F3=F4=F5=F6:8 and M = 64 60

Table 3.5. Response Time for F1=2, F2=F3:4, F4=F5=F6:8 and M =

128 60

Table 3.6. Response Time for F 1=F2=F3=F4=4, F5=F6:8 and M = 256 60

Table 3.7. Response Time for F1=F2=F3=4, F4=F5=F6=8 and M = 512 61

Table 3.8. Response Time for F1=F2=F3=8, F4=F5=F6=16 and M = 512 61

ix

Figure 2.1.

Figure 2.2.

* Figure 2.3.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3.9.

Figure 4.1.

Figure 4.2.

Figure 4.3.

LIST OF FIGURES

General Parallel Processing Model ..

Two Stage Parallel Processing Model ..

Two Level Implementation of H1 for The Two Stage Model

Basic FX Distribution ..

FX Distribution with I And U Transformation

FX Distribution with I And IU 1 Transformation

FX Distribution with I And IU2 Transformation

FX Distribution with U And IU 1 Transformation

FX Distribution with U And IU2 Transformation

FX Distribution with I, U And IU2 Transformation

Strict Optimality When for Any Fields r and s, F,Fs 2 M

Strict Optimality When for Any Fields r, s and t, F,FSF, 2 M

Explicit Representation of Multikey Hash Functions

Example Bucket Distributions ...

Nonexistence of Perfect Optimal Distribution for Type (0 - 2)

Range Queries ..

Figure 4.4.

Figure 4.5.

Bucket Distribution When F 1 = 4, F2 = 4 and M = 8

Nonexistence of Perfect Optimal Distribution for Type (O - 1)

Range Queries ..

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 5.1.

Basic FX Distribution When F 1 = F2 = 4 and M = 4.

FX Distribution with I And UR Transformation

FX Distribution with I And UM Transformation

FX Distribution with UR And UM Transformation

Partitioned Node B-tree ..

9

11

13

19

29

35

36

39

4O

52

56

57

70

72

75

77

80

83

91

96

98

103

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

PNB-tree After Insertion of Key Value 57 .. 105

PNB-tree After Deletion of Key Value 71 ... 105

Data Response Time with Various Data Request Rates 111

Data Response Time with Various Disk Speeds 113

Threshold Points ... 114

Tree Restructuring Cost ... 116

Insertion Time .. 116

xi

CHAPTER 1

INTRODUCTION

There will be many applications for large databases that cannot be performed in an

acceptable response time by current database systems. Since one of the most significant

ways of improving performance is through parallelism, the importance of parallel pro-

cessing in database systems has been increasingly recognized. Parallel processing in

database systems can increase throughput and minimize response time through con—

current data accesses as well as processing data in parallel. However, parallel process-

ing by itself does not necessarily lead to high performance. Some of the reasons are

attributed to overhead due to interprocessor communication, remote memory accesses

and data access conflicts. For parallel database operations external I/O also causes a

serious performance bottleneck [Bor83]. Stone [Sto87] shows that parallel query algo-

rithms in a multiprocessor system may perform poorly than efficient serial algorithms on

a single processor system. The advantage of indexing to reduce external I/O traffic was

also emphasized in that paper. There have been numerous works on improving perfor—

mance of database systems by specialized software/hardware techniques. These include

database machines, main memory resident databases and. concurrent dynamic search

Sti'llCtllI’CS.

1.1. Database Machines

Many proposals have been made in the past for machine architectures for efficient

parallel processing of database operations. Early designs such as CASSM [Su79] and

RAP [Ozk75] exploit the logic per track idea which was first proposed in [81070] as an

alternative to pure associative memories. They are SIMD architectures and focus on

1

parallel scanning of data on secondary storage devices. DIRECT [Dew79] is a logical

extension of the SIMD type associative processors which supports both intra-query and

inter-query concurrency. It assigns the number of processors dynamically to a query

and so it allows users to share the processing power simultaneously. These machines

can be characterized by functional replication approach because processors (or

memories) are basically similar to each other and capable of performing the same set of

functions in parallel. On the other hand, database machines such as RDBM [chh83]

and SiDBM [Le185] have used functional specialization approach which means that dif-

ferent functional units are used for different classes of database operations.

Some database machines such as DBMAC M583] and Delta [Kak85] use an attri-

bute based data model which employs vertical fragmentation concept. They use a verti-

cal fragmentation of a relation to minimize the cost of processing and transferring

unnecessary attributes from disks. Other database machines which use some form of

vertical fragmentation are DBC [Ban79] and a database computer proposed in [Tan83].

Due to the similarity between relational algebra tree and data flow graph, the data

driven computation concept has been proposed as an effective operational method for

relational database machines [Bor82]. GAMMA, proposed in [Dew86], exploits

dataflow query processing techniques. In GAMMA, queries are compiled into a tree of

operators, and each operator is executed by one or more operator processes. With the

exception of a few control messages at the time a query is initiated, execution of an

operator is self-scheduling, i.e., when the process terminates execution, data flows

between the processes without centralized control. There are also other proposals of

database machines using data flow concepts [Bic83, Gli83].

Performance of various database machines are discussed in [Haw82, I-Ii186]. The

results show that the performance improvement depends on the query type as well as the

database machine architecture.

l.2. Main Memory Databases

Since inexpensive large main memory is becoming available, and many database

applications are I/O bound, some work has been done on main memory database sys-

tems to minimize data access time. ESP, presented in [GarL84], consists of multiple

processors, but it operates in SISD mode. ESP uses single data stream with all proces-

sors operating in lock step. The main focus of this machine is to reduce the global

memory access time. SiDBM presented in [Le185], on the other hand, has an MIMD

architecture in which the processors are functionally specialized. Both machines use

shared memory with common bus architecture.

Storage structure for main memory databases has been studied in the past. Dewitt

et al. discussed the access time of AVL trees and B-trees for various memory residency

factors of databases [Dew84]. They have also shown that hash based join algorithms

are very effective for large main memory database systems. Lehman et al. give perfor-

mance results of main memory databases using various types of access methods

[Leh86]. In that paper they have also proposed a T tree as an alternative to other tree

structures. The T tree is a balanced binary tree with many elements per node. It

exploits binary search nature of AVL trees, and good update and storage characteristics

of B-trees. Several other issues of main memory databases have also been investigated

in [Amm85].

1.3. Concurrent Dynamic Search Structures

There have been several proposals on concurrent dynamic search structures to sup-

port parallel processing. Many of them are based on tree structures such as B-trees and

binary search trees. For concurrent B-tree operations, the entire subtree of the highest

affected node is exclusively locked in [Sam76]. Bayer et al. present the algorithms

which Only lock out other writers until the actual modifications must be performed

[Bay77]. This approach distributes exclusive locks mostly in lower sections of the B-

tree and hence it increases the concurrency. Lehman et al. also described algorithms for

concurrent B-tree operations which use only a small number of locks for each tree mani-

pulating process [Leh81]. Concurrent search and insertion algorithms for AVL trees

and 2-3 trees are given in [E1180-a, E1180-b]. There are also several other work on con-

current manipulation of binary search trees [Kun80, Man84].

1.4 Classification of Database Queries

Parallel processing strategy which is appropriate for one database application may

not be appropriate for another. For example, the granularity of parallel processing

which is suitable for one application may not be so for others. Thus, it may be neces-

sary to develop different parallel processing strategies for various types of applications.

We classify database queries based on their parallel processing characteristics, as fol-

lows :

(A1) Single query with multiple hits

(A2) Single query with a single hit

(A3) Single complex query

(A4) Multiple queries accessing the same relation

(A5) Multiple queries accessing different relations

Examples of queries of type A1 are partial match queries and range queries. Here,

intra-query parallel processing is advantageous because a single query requiring many

data records can be processed in parallel [Kim88, Pra88-b, Pra88-d]. Rosenau et al.

have also applied this type of parallel processing for projection operation on a relation

[R0587].

It is rather difficult to exploit parallel processing of type A2 queries because apply-

ing parallelism for this type of query may require finer granularity which may result in

lower throughput of the system. On the other hand, parallel processing may achieve the

lower bound on access time for these types of queries when appropriate software and

hardware architecture is used. Achieving and guaranteeing this lower bound are impor-

tant for many real-time critical applications. Parallel processing strategies for this type

of applications can be found in [Pra86, Pra87, Pra88-a, Pra88-c].

Queries of type A3 include join functions, sorting of files, and complex

qualifications. Several database machines which use functionally distributed architec-

tures have been proposed for this type of queries H3el85, Sch83]. Intra-query parallel-

ism is also advantageous for this type of applications.

For A4 and A5 type queries, many independent queries can be processed in paral-

lel. Transaction processing is an example for these types. The throughput of the system

for these types of applications can be improved by maximizing concurrency among the

queries. Multidirectory hashing proposed in [Cev88] has been shown to be effective for

certain applications of these types.

1.5. Problem Statement

The primary objective of this work is to investigate data distribution strategies for

various types of database applications in parallel processing systems. In this thesis we

will mainly focus on the data distribution strategies for A1 and A2 type queries because

these queries are in fact the most basic types, and data distribution strategies for other

types of applications may be developed based on the strategies used in A1 and A2 type

queries. For queries of type A1, we will investigate optimal data distribution for multi-

key search queries such as partial match retrieval and multiattribute range queries.

Since multikey search queries access a set of records, appropriate data distribution is

very important to facilitate parallel data accesses. Though much work has been done in

the past on designing efficient file structures for this type of applications, data distribu-

tion to enhance concurrency has not been considered much. We will investigate

optimal data distribution and appropriate data construction for this type of applications.

For type A2 queries, we will investigate parallel processing Of tree type indexes for

external databases. Since the B-tree is a common storage structure for this type Of

applications, node partitioning schemes to exploit parallel data accesses tO B-trees will

be investigated.

1.5. Thesis Overview

The remainder of this thesis is organized as follows. In chapter 2 we describe high

level abstraction Of database processing for parallel processing systems. The objective

Of this abstraction is to define a framework which can be used as a basis for more

specific implementation.

In chapter 3 we present Optimal data distribution for partial match retrieval type

queries. The main focus Of this chapter is the development Of new data distribution

methods, called Fieldwise eXclusive-or (FX) distribution methods, for maximizing data

access concurrency. FX distribution methods use bitwise exclusive-or Operation on the

field values which are computed by multikey hashing. We show several useful charac-

teristics Of exclusive-or Operation for Optimal file distribution. Field transformation

techniques are presented to extend the scope Of Optimality in FX distribution methods.

We give sufficient conditions for Optimal distribution by the proposed distribution

methods and show that these methods are Optimal for most partial match queries. We

describe the performance improvement by FX distribution methods over Other methods

proposed earlier. Efficient data construction methods for FX distribution approach are

also discussed.

In chapter 4 we investigate file distribution problems for parallel processing of

multiattribute range queries. Optimal data distribution methods as well as the existence

and nonexistence Of perfect Optimality are investigated. It will be shown that there are

inherent limitations tO achieve Optimal distribution for various types Of range queries.

We give sufficient conditions for the nonexistence Of perfect Optimal distribution for

certain types Of range queries. We extend the FX distribution methods for several use-

ful multiattribute range queries. Sufficient conditions for Optimal distribution for mul-

tiattribute range queries will be described. It will be shown that the proposed data dis—

tribution methods are Optimal for a large class Of multiattribute range queries.

In chapter 5 we investigate the performance of various parallel processing methods

for B-trees. The main focus Of this chapter is a node partitioning scheme for B-trees to

exploit parallel data accesses. The proposed B-tree node partitioning scheme is based

on synchronized disks. Parallel processing Of partitioned node B-trees on asynchronous

disks are also discussed. We also show the performance improvement Of partitioned

node B-Uees over conventional B-trees. Chapter 6 contains concluding remarks.

CHAPTER 2

DATABASE PROCESSING MODELS

FOR PARALLEL PROCESSING

In this chapter we describe high level abstraction of database processing for paral-

lel processing systems. The Objective of this abstraction is to define a framework which

can be the basis of more specific implementation.

2.1. General Parallel Processing Model for Database Systems

We propose an abstract model for parallel processing of database systems. This is

shown in Figure 2.1. The model is based on distributing data and access structures to

enhance concurrency. In the figure, Q5,S represent a set Of parallel access nodes.

These can be main memory modules or disks, depending on the parallel processing

environment. Ai’s denote a set of access structures. As shown in the figure, there are

three mappings that are important for concurrent processing. They are (1) storage allo-

cation for data (2) storage allocation for access structures and (3) key to access structure

mapping.

Storage allocation for data, and storage allocation for access structures determine

the amount of physical access concurrency among the nodes. In practice, these issues

should be considered based on the architectural types Of parallel processing systems. In

other words, a number of factors such as the interconnection structure between the pro-

cessors and the access nodes may contribute to actual system performance. In this

thesis we assume that the parallel access nodes are logically single shared memory.

DATA

Storage Allocation Key-tO-Access Structure

for Data Mapping

Storage Allocation for

Access Structures

A:

Figure 2.1. General Parallel Processing Model

In the parallel processing system, the speed mismatch between computation and

data access time becomes a more serious problem than in the uniprocessor system due to

data access conflict if data are not evenly distributed over access nodes. Generally,

database applications require many data accesses with relatively less computation, and

so degradation of system performanc due to inappropriate storage allocation scheme

may be more significant in database applications than in others.

In addition to physical memory (or device) access conflict, there are other sources

of conflict for concurrent accessing of data. This means that even though two data are

stored in different access nodes, access concurrency can still be reduced. One such

source is the lock contention because the data in the same locking entity cannot be

accessed concurrently when that entity is locked. It has been shown in [Cev88] that

lock conflict causes more serious overhead than the physical memory access conflict in

certain cases. This is because each resolution for a lock conflict takes at least a lock

duration time which is perhaps much longer than one remote memory access time.

10

Each lock duration time may be reduced by using finer locking granularity. However,

lock conflict for critical shared variables, if exist, cannot be avoided. Unfortunately,

most access structures have critical parts which frequently need to be locked, e.g., root

node in the tree type index and directory size dependent variables in dynamic hashing.

Based on the above Observation, in order to achieve high concurrency multiple

independent access structures need to be constructed for each relation to reduce the

amount Of sharing for critical shared variables. By multiple access structures for each

relation, we mean that a set of records pertaining to one relation is partitioned horizon-

tally and each subset Of partition contributes to each independent access structure.

Thus, we need an appropriate mapping from a set of keys to a set of access structures.

Key to access structure mapping determines logical access concurrency while storage

allocation scheme for data and access structure determines physical access concurrency.

For many applications we can simplify the general model such that only a group of

data which are stored in the same access node, say Qi, contributes to a unique subset Of

access structures, say Aj to A, which are also constructed in the same access node. By

this approach storage allocation strategy for data and access structures can be treated

integratedly, and the complexity of processing models can also be reduced. Two stage

parallel processing model shown in Figure 2.2 represents this idea. In the two stage pro-

cessing model the first stage corresponds to data storage allocation and the second stage

corresponds to key to access structure mapping. The two stage model provides a more

systematic design procedure for developing parallel database systems.

2.2. TWO Stage Parallel Processing Model for Database Systems

The basic idea Of this model is to partition data mapping into two stages. As

shown in the figure, the first stage, H1, is called Data Distribution algorithm and the

second stage, H2, is called Data Construction algorithm.

ll

QM—l

Figure 2.2. Two Stage Parallel Processing Model

The data distribution algorithm, which is the same as data storage allocation in the

general model, determines how the data is appropriately distributed to the parallel access

nodes so that maximum concurrency is achieved between the access nodes. The data

construction algorithm, on the other hand, determines the appropriate data structure to

minimize the access time. It receives data from the data distribution algorithm and then

create local access structures such as hashed or indexed files.

In general, the following strategies can be employed for data distribution :

(B 1) Declustering based on query’s data reference pattern

(B2) Random distribution

(B3) Objective specific declustering

(B4) Clustering based on data reference pattern

In method B 1, the data distribution technique takes advantage of the data reference

pattern of a query. For example, if a query references numerous records, the strategy

may be to distribute the data so that these records are stored uniformly among the nodes.

12

This approach is useful for A1 type applications discussed in chapter 1. In method B2,

records are randomly distributed between the nodes. This method is simple, but may

not guarantee a good distribution. In the objective specific method, records are allo-

cated to optimize certain objective functions. For example, in [Pra86] Pramanik et al.

propose a data distribution technique to construct multiple directories for a single rela-

tion, where a record is allocated to the node which has the smallest directory size. It

has been shown in that paper that this approach gives the minimum total directory size.

However, declustering of data may not be always beneficial. For example, if the com-

munication cost between access nodes is large, clustering may give better performance

than declustering. SO, B4 type strategies may depend on the interconnection network.

Data distribution algorithms can be a functional mapping which depends only on

data values. It maps a set of data values into a set of nodes. For example, if node

addresses are determined by hashed values of input data, the distribution algorithm is a

mapping which is independent of time or other system parameters. On the other hand,

the distribution algorithm need not be functional. For example, random distribution

may map the same record to different nodes at different time. Since data accesses are

content-based for most database applications, it is advantageous to make a data distribu-

tion algorithm functional depending only on data values.

Let D be a set of data and ZM = [0, 1, . . . , M-l} be a set of parallel access nodes.

Let a data distribution algorithm be a function from D to ZM. Since actual data are usu-

ally unevenly distributed in the data domain, data distribution algorithms are commonly

designed based on the hashed values of data which are evenly distributed in hashed

address space. Thus, we define data distribution algorithm H1 as a composition of two

functions, H 1(1) and H 1(2), such that H 1‘” is a mapping from D to T and H 1(2) is a

mapping from T to ZM, where T is the set of hashed values. Figure 2.3 shows two level

implementation of H1 for the abstract model in Figure 2.2. This model can be thought

of as one class of the two stage model.

(2)
H1 Q0

H10)

DATA - T

QM—

Figure 2.3. Two Level Implementation Of H1 for The Two Stage Model

Let H2 be a hash-based data construction algorithm and LD be a set of entries in all

local directories generated by H2 for a given file system. If there exists one-to-One

correspondence between T and LD, T is called a real global directory. Otherwise, it is

called a virtual global directory.

When T is a real global directory, the set of all the local directories can be thought

of as a partition of T. H 1(1) is usually static because the use of dynamic hashing for

H 1(1) will cause significant overhead due to intemode data movement. However, static

hashing scheme for H 1(1) may result in very sparse local directories or long overflow

chains. These problems can be avoided by using a virtual global directory, where the

actual local directory is determined by H2.

When T is a real global directory, the ratio lTl/IDI directly affects the data retrieval

time as well as storage utilization. On the other hand, it is more flexible that T is used as

a virtual global directory. The comparison Of these two approaches will be described in

more detail in chapter 3. Functional distribution, and real/virtual global directory con-

cepts are used for parallel processing of partial match queries and range queries

presented in chapter 3 and 4.

CHAPTER 3

PARALLEL PROCESSING STRATEGIES

FOR PARTIAL MATCH QUERIES

3.1. Introduction

Many information processing systems involve the application which accesses the

records in a file having the values of a specific set Of attributes in common. A file is a

collection of records each of which is defined as an ordered n-tuple (r0, . . . , r,,_1) of n

values which are the keys or attributes of the records. When a query is allowed to

specify conditions on more than one attributes, the search performed for this query is

called multikey searching, or associative searching. Multikey searching is used in

queries such as partial match retrieval and multiattribute range queries. A partial match

query is a query where some of the attributes are specified and the rest of them are

unspecified. For example, query q = [Age = *, Department = "mathematics", State =

"Ohio"] is a partial match query, where * denotes don’t care condition. Since each attri-

bute in a file may or may not be specified in a partial match query, a set of records need

to be retrieved. When a file is constructed on parallel devices, it is important to store

these records to maximize concurrency. In this chapter we investigate parallel process-

ing strategies for partial match queries. Optimal data distribution methods and

appropriate data construction methods are described.

It has been shown in [Rot74] that multikey hashing is effective for partial match

retrieval type applications. Multikey hash function, H, for a file consisting of n fields is

an ordered n functions <h1, - - - , h,,> such that given a record r = <r1, ~ ' ~ , r" >, H(r)

= <h1(r1), ~ - - , h,,(r,,)>. H(r) is called a bucket. Rivest [Riv76] and Rothnie, et a1.

[Rot74] have independently proposed the use Of multikey hashing, as an alternative to

14

15

inverted files, to reduce the total search time for partial match retrieval type queries.

The design of multikey hash functions was considered in [Bur76]. The determination

of each field size for minimum search time based on query statistics was also investi-

gated by [Aho79, B0179]. In [4] it has been shown that the problem of finding the

optimal field sizes for multikey hashing scheme is NP-hard. The main focus Of those

research is on minimizing the total number of bucket accesses. Our objective in this

chapter is to achieve maximum parallelism by distributing buckets in multikey hashing.

There are a few heuristic methods for distributing data in partial match retrieval

type queries. Du, et al. have proposed Disk Modulo (DM) distribution method

[DuS82]. The DM distribution method is simple and elegant but does not work well in

many cases. For example, it may not give Optimal distribution if some of the field sizes

are less than the given number of devices. SO, for a large number of parallel access

nodes, the DM distribution method may not be appropriate. Generalized Disk Modulo

(GDM) method has also been proposed in [DuSSZ] to overcome this problem. This

method gives a sufficient condition to achieve optimal distribution. However, no gen-

eral method has been given to find the optimal distribution parameters. In fact, the

problem of finding the optimal parameter values could be very complex [DuS82].

Since DM distribution method does not work well for binary cartesian product file

(binary cartesian product file is a cartesian product file in which each field contains only

two elements), several heuristics have been proposed by [Du86, Sun85] to distribute

buckets in binary cartesian product files. These heuristics are also special cases of the

GDM distribution method. Several useful properties of these modulo based distribution

methods have also been given in [Sun87]. Other approaches such as data distribution

methods based on minimal spanning trees and short spanning paths have been proposed

in [Fan86].

We propose Fieldwise eXclusive-or (FX) distribution methods which give better

performance for a wider range of partial match queries than existing methods. The main

l6

idea of FX distribution methods is the use Of bitwise exclusive-or Operation on the field

values which are computed by multikey hashing. Here, we show several useful charac—

teristics of exclusive-or operation for Optimal data distribution. Field transformation

techniques have been used to increase the scope Of Optimality in FX distribution

methods.

The rest Of this chapter is organized as follows. In section 3.2, we describe

definitions and terminology. In section 3.3, we define Basic FX distribution method

and its optimality conditions. In section 3.4, we present field transformation techniques

to increase the scope of Optimality over the Basic FX distribution method. The

extended optimality conditions for these field transformation schemes are also described.

In section 3.5, we compare the performance of FX distribution methods with those of the

other distribution methods proposed in the past. We discuss efficient data construction

methods in section 3.6.

3.2. Definitions and Terminology

Before describing FX distribution method, it is necessary to introduce some nota-

tions as well as relevant definitions and assumptions.

Definition 3 .1 .

(a) f,- = {0, l, , Fi—l }, a set of hashed values of field i by the i-th hashing function in

multikey hashing.

(b) F,- denotes lfi I .

(c) M denotes the number of parallel devices.

((1) N is the set of all natural numbers including 0.

(e) ZM is the set of all integers from 0 to M-l.

(f) (am_1 a0)3 is a binary notation of an integer, where a,- is a binary digit.

17

I f,- | is assumed to be a power of 2 which is common for hash directory files for parti-

tioned hashing schemes [Aho79]. The number of devices M is also assumed to be a

power of 2. ZM will be frequently used to denote the set of devices.

Definition 32. Let f1 xfzx xf,, be the set of all buckets, where x denotes the carte-

sian product of sets. When the given number of devices is M, data distribution method

is a function fromflezx xf,l to ZM.

Definition 3 .3 . Let R(q) be the set of buckets which satisfy qualifications for a partial

match query q. The distribution method is called strict optimal for a partial match

query in a given file system if each device has no more than [IR (q) l/M] number of

buckets.

Definition 3.4. When the distribution method is strict optimal for all possible partial

match queries in a given file system, it is called perfect optimal for that file system.

Definition 3 .5. The distribution method is called k-optimal, 0 S k S n, for a given file

system consisting of n fields, when it is strict optimal for all partial match queries which

have exactly k unspecified fields.

Thus, the distribution method is perfect optimal, if it is k-optimal for all k = 0, , n.

Note that some authors exclude cases where the number of unspecified fields is 0 (i.e.,

exact match) and the number of unspecified fields is n (i.e., retrieval Of whole file) from

partial match queries.

Definition 3 .6. [+] denotes exclusive-or operation between two bits. We will use the

same notation [+] to denote exclusive-or Operation between integers and sets of integers

as follows. When X = (am_1 a0)3 and Y = (b,,,_1 b0)3 are two integers, X [+] Y

= (am_1 [+] bm_1 a0 [+] b0)3. IfX is an integer and Y = {y1, , yL} is a set of

integers, X [+] Y is defined as {X [+] y,- | y,- e Y} . If both X = {x1, ,xK} and Y =

{y1, ,yL} are sets of integers, X [+] Y is defined as {x; [+] yj l x,- e X, yj e Y}

18

Forexample, ifX1 =2and Y1 =3, thenX1 [+] Y1 = 1. Isz =2and Y2 = {0, 1,2,3},

thean [+] Y2 = {0, 1,2, 3}.

Definition 3.7. [EKYD = Y1 [+] Y2 [+] Y3 - ' - [+] Y".

II

Note that [+] Operator is associative and [+] is a shorthand notation for performing

i=1

exclusive-or operation between sets of integers Y1, Y2, , Y,,.

We assume that precedence of multiplicative Operator * is higher than that Of

exclusive-or operator [+], which means that in the absence of parentheses, multiplication

is done before exclusive-or operation. But the precedence of [+] is assumed to be

higher than that of + (addition). We will leave out the multiplication operator * when-

ever there is no ambiguity (e.g., AB instead of A*B).

When d is a power of 2, and J1, J2 e N, we will use the following relations impli-

citly between exclusive-or Operator and arithmetic Operators + and *.

(1) IfJ2<d, thenJ1d[+]Jz=Jld+Jz

(2) J1d[+]12d=(Jr [+112)d

(3) J1d[+]J2d=Oifandonlyif Jl[+]J2=0

(4) IfJ1<dansz<d, thenJl[+]Jz<d

(5) (J1 [+]J2) mod d :01 mod d)[+] (12 mod d)

Since the proof is straightforward, we leave out the proof. Note that if d is not a power

of 2, the above relations may not hold.

Definition 3.8. Let (as_1 am_1 a0)3 be the binary notation of an integer l, where

m = logzM. We define TM : N —> ZM as a function such that TM(l) = (am_1 a0)3.

Thus, function TM returns only the rightmost logzM bits of domain values. Since we

can add arbitrarily large number of 0’s to the left of the given binary number of an

19

integer 1, function TM is always defined for any power of 2 integer M. It is also easy to

see that for any 11,12 6 N, TM(JI [+] 12) = TM(TM(JI) [+] 12) = TM(J1) [+] TM(JZ).

3.3. Basic FX Distribution Method

Let f1 xfzx xfn be a set of all buckets. The Basic FX distribution method allo-

n

cates bucket <11, , Jn> into device TM [[flUfi], where Jj e f,- forj = l, , n.

1:

Example 3.1. Figure 3.1 shows the bucket distribution by the Basic FX distribution

method, where f1 ={0,1},f2 = {0, 1, 2, 3, 4, 5, 6, 7} and M = 4. In the figure, binary

numbers are used for field values and decimal numbers are used for Device No. (This

convention will be used in all the examples of FX distribution). Here, Device N0 =

TM [J 1 [+] J2], where J 1 6 f1, J 2 6 f2 and TM returns the rightmost two bits of the

result of J 1 [+] J2.

f1 f2 Device No

000 000 0

000 001 l

000 010 2

000 011 3

000 100 0

000 101 1

000 110 2

000 111 3

001 000 1

001 001 0

001 010 3

001 011 2

001 100 1

001 101 0

001 110 3

001 111 2

Figure 3.1. Basic FX Distribution

20

As shown in Figure 3.1, the Basic FX distribution method is strict optimal for any partial

match query in this file system. For example, if f1 value is (001)}; and f2 is

unspecified, then we have to access eight buckets <(001)B,(000)3>, ,

<(001)B,(111)B>. Since each device has two qualified buckets for this partial match

query, the Basic FX distribution method is strict Optimal for this query.

Lemma 3.1. ZM is a set which contains M different nonnegative integers from 0 to M-

1. Let k be some integer such that 0 S k 5 M-1. Then ZM [+] k = ZM.

Proof: Clearly, for any nonnegative integer Aa which is less than M, 0 S k [+] Ad 3

M—1. Thus, it is sufficient to show that for any two different elements of ZM, the results

of exclusive-or with k are different. Let A0 = (a,,,_la,,,_2 - ~ . a0)3 and Ab =

(b,,,_1b,,,_2 . - - b0)3, where m = logzM and at least one a,- ¢ bi, i.e., Aa¢ Ab. Let Aa

[+] k = (c,,,_1 --'c0)B and Ab [+] k = (d,,,_1 . ' «10)3. Assume Aa [+] k = Ab [+] k.

Then c,- = dj for all j = 0, , m—l. Since c,- = d,- implies d} = bj, it follows that aj = b,-

for allj = 0, , m-l. This contradicts the assumption of Ad ¢ Ab. Since 0 S k [+] A,- S

M—l for all A,- e ZM and k [+] A, at k [+] Ab for any two different A, and Ab in ZM, ZM

[+] k is the same as ZM. 1:]

Example 3.2. LetZs = {0,1, 2, 3, 4, 5, 6, 7} and k = 3. Then Zg [+] k = {3, 2, l, 0,7,

6, 5, 4} = 23.

In the proof of Lemma 3.1, it is shown that for any two different nonnegative

integers I, J and any nonnegative integer k, I [+] k is different from J [+] k. We call

this XOR uniqueness property.

We can observe that the property described in Lemma 3.1 (this also implies XOR

uniqueness property) is very useful for optimal file distribution of partial match retrieval

type applications. This property is fundamental, and will be used in various places Of

this chapter to develop further techniques for Optimal distribution.

21

In the following Theorem 3.1 and Theorem 3.2 we will describe the types of partial

match queries for which the Basic FX distribution method gives Optimal distribution.

Theorem 3.1. The Basic FX distribution method is always 0-optimal and l-Optimal.

Proof: (1) O—Optimal : This is trivially true.

(2) l-optimal : Let only one field i be unspecified and TM [5:10p] = h, where Jj is the

specified value of field j. Thus, h gives the projection of the rightmost logzM bits of the

value obtained by the exclusive-or of all the specified values of the query. There are

two cases, F,- SM and F,- > M. When F,- S M, for all I e f,, TM(I) [+] h is different

from each other by XOR uniqueness property. Therefore, the distribution is optimal.

(Note that TM(A [+13) = TM(A) [+] TM(B) = TM(A [+] Tu(B)) = TM(TM(A) [+] TM(B)))-

When F; > M, let F,- = A*M. By Lemma 3.1 f,- [+] h = ZAIM. Since

#{ae ZArM ITM(Ot) = z} = A for any 2 e ZM, the Basic FX distribution method allocates

A number of buckets to each device. (Note that # denotes the cardinality of a set.)

Therefore, the distribution is Optimal. El

Theorem 3.1 says that the Basic FX distribution method is strict optimal for any partial

match query in which the number of unspecified fields is O or 1. Note that in the above

expression, #{Ote ZAtM ITM(0t) = z} = A, A denotes the number of qualified buckets that

correspond to a particular device 2.

Theorem 3.2. For any partial match query which has two or more unspecified fields,

the Basic FX distribution method is strict optimal, if there exists at least one unspecified

field i such that F,- 2 M.

Proof: For partial match query q, let q(f) = {i1, i 2, , ik} be the set of unspecified

fields in which the size of at least one Of these fields is greater than or equal to M.

Without loss of eneralit , assume F - 2M, i.e., F ~ = A- *M for some nonne ative
g y ll ‘1 ll g

integer Ai,- Let h = TM [lel-2f)“1)], where J,- denotes the specified value of field j

22

which is not in q(f). Thus, h is the projection of the rightmost logzM bits of the value

Obtained by the exclusive-or of all the specified field values of the query. By Lemma

3.1, h [+] fl, = ZA,,*M and hence #{Jilefil | TM(h [+] 11",) =2} = A1, for all z e ZM.

Here, we have done exclusive-or of h with the set of values of the unspecified field i 1.

At, gives the number of unique values of the unspecified field i 1 that correspond to a

particular value 2. Now we will exclusive—or the set of values h [+] ft, with a value of

the unspecified field i2. Let J, G fiz. By Lemma 3.1

#{Jilefi1 | TM(h [+]J,-1 [+]J,~2)=z} = At, for all z e ZM. Note that this will not

change the number of unique values of field i1 that correspond to a particular 2. We

also used the property, TM(h [+] J}! [+] J52) = TM(h [+] J11 [+] TM(J,~2)). Thus,

#{(J,~l , J,~2)e fi, xf,2 I TM(h [+]];1 [+]J,-2)=z} = AilFi2 for all z e ZM. Here, the

number of unique values for each 2 is more by a factor F[2 because the size of the

domain has increased by a factor F,2. By continuing this argument, #{(J,-l, ' - - Ive

k k k

filx Xfi, {TM h [+] [+}(J,'P) =2} =Ai,l—IF£,, = (HE-p) / M for all z e ZM.

P: p= p=l

CI

Note that Theorem 3.1 works for partial match queries with zero or one unspecified

field while Theorem 3.2 applies to partial match queries with more than one unspecified

fields.

Corollary 3.1. When all field sizes are no less than the given number of devices M, the

Basic FX distribution method is perfect optimal.

Proof: This is a direct consequence of Theorem 3.2. CI

Theorem 3.1 and 3.2 show general characteristics of exclusive-or operation for

optimal distribution. However, the Basic FX distribution method does not give optimal

distribution for partial match queries with 2 or more unspecified fields, when the size Of

none of the unspecified fields is greater than or equal to M. For example, when M = 16

23

and all others are the same as in Example 3.1, the distribution is not optimal if both

fields are unspecified. Proposition 3.1 gives the conditions for Optimal distribution for

these cases.

Proposition 3.1. Let q(f) = {i1, i 2, , ik} be the set of unspecified fields for partial

match query q, where Fj < M, for all j e q(f). FX distribution is strict Optimal for par-

tial match query q, if there exist a set of fields {[1, , ij} ; q(f) such that

j

Ifilx ><f,-jl 2M and #[(J,-l, J,-j)e fi,>< xfijl TM [[+}(J,P)]=z} =

p:

lfilx xfijl/Mforallze ZM.

Proof: Let FilX ' ' ' XFij =Ai;*M’Ai,- E N, [1,: Z 1. Let h = TM [l[+J’)(J1)], WhCI'C J1

’ a:

denotes the specified value of field 1. The remainder of the proof is similar to that of

Theorem 3.2. C]

Proposition 3.1 says that even though the sizes of all the unspecified fields are less

than the given number of devices M, we can still guarantee optimal distribution, if (1)

there exists a subset of the unspecified fields, the size of whose cartesian product is

greater than or equal to M and (2) the records projected on these sets of fields are distri-

buted uniformly among the M devices. In other words, optimal distribution for a subset

of fields guarantees strict optimal distribution for many queries in which those fields are

unspecified.

However, when the size of none of the unspecified fields is greater than or equal to

M, the conditions given in Proposition 3.1 are not satisfied in the Basic FX distribution

method. Thus, in the next section we propose field transformation techniques for the

fields whose sizes are less than the given number of devices M. These field transforma-

tion techniques increase the scope of optimality by themselves, and can also utilize Pro-

position 3.1. The following paragraph exemplifies the idea of field transformation tech—

niques.

24

Let f1 ={0,1}, f2 = {0, l, 2, 3, 4, 5, 6, 7} and M =16. As we discussed, the

Basic FX distribution method is not perfect optimal for this file system. Let X be an

one-tO-one mapping such that X (f1) = {0, 8}. When the Basic FX distribution method

is applied for the set of ordered 2—tuples, X (f1)xfz, the distribution is perfect Optimal.

(It can be easily verified by substituting (1000);; for (001)B in f1 column of Figure 3.1.)

Now, our Objective is to find a general one-to-one mapping, X, such that the Basic FX

distribution method for X (1‘1)fo gives optimal distribution. It will be shown that for

any values of | f1 I, |f2 l and M, such mapping can be easily found.

We will present several field transformation techniques which give the mapping, X,

described above. Even though the techniques developed here may not achieve perfect

optimal distribution in all the cases, this extended FX distribution method gives strict

optimal distribution for a large class of partial match query.

3.4. Extended FX Distribution Methods

In the previous section the Basic FX distribution method was described. In this

section we extend the Basic FX distribution method by using field transformation tech-

niques.

Let f1 xfzx xf,, be a set of all buckets. Extended FX distribution methods (the

Basic FX distribution method with field transformation techniques) allocates bucket

<11, , J,,>,Jj 6 fl forj = 1, , n, into device TM , where

[+](Xj(Jj))
j=l

i) if Ifjl 2 M, Xj is the identity function,

ii) if IfJ-l < M, X1' is an element of set of injective (one-to—one) functions whose

domains are fl- and ranges are ZM.

Xj- is called a field transformation function.

When Xj is the identity function for all j = 1, ..., n, Extended FX distribution

methods reduce to the Basic FX distribution method. It is easy to see that all the

25

lemmas and theorems that hold for the Basic FX distribution method also hold for

Extended FX distribution methods.

By the above definition, a field transformation function can be any one-tO-one func-

tion. However, we are only interested in the field transformation functions by which we

can achieve strict Optimal distribution for various types of partial match queries for

which the Basic FX distribution method does not give strict optimal distribution.

Since the fields whose sizes are no less than the given number of devices M, do not

cause any problem (whether it is specified or not), in this section we will focus only on

the fields whose sizes are less than M. From now on, we will simply call FX distribution

methods instead of Extended FX distribution methods.

In the following subsections we describe field transformation functions which are

used for the fields whose sizes are less than the given number of devices.

3.4.1. Field Transformation Functions for Partial Match Queries

The field transformation functions developed for FX distribution methods are as

follows.

Definition 3.9. Letfi = {0, . . . , Fl—l}, and let If, I and Marc power of 2.

(l) I z N —> N is an identity function.

(2) When Ifil <M, UM’ 'f" : f, —+ 2,, is afunction such that UM’ 'fi'(z)=1dM"f",

wheredM'Urll =M/If,l.

(3) When lle < M, for x = 1, . . . , y in which y is a maximum integer such that

l f, It < M, 'IUXM' 'f" : f, —> ZM is a function such that

x

IUXM’ 'f" (1) =1 [+] [,[flldkM’ W] where dkM’ 'f" = M/ If, l".

The function IUQI' 'f’ ' is a general notation for functions IUIIW’ 'f’ I , IUIZW‘ If’ I , . . . , etc.

For example, functions IUIIW’ If" and 103" W are defined as follows :

26

(a) When Ifit < M, IUlM’If’l : f, —> 2,, is a funCtion such that

IUIM’ 'f"(l)=1[+]1dM"f",wheredM"f" = M/lf,|.

(b) When Ifil2<M, IUzM’W : f, —> 2,, is a function such that

IUZM' 'f"(1)=z[+] 1d,“ 'f" [+]1d2“"f", where dlM’W = M/Ifil, dzM’W =

M/IfIIZ.

Example 3.3. Letf1={0,1, 2, 3} andfg = {0,1} andM =16.

(a) 016%.): {0. 4, 8, 12}. and [U116'4(fl)= {0[+10. 1[+l4, 2[+]8, 3[+]12} = {0, 5,

10, 15}.

(b) 111216202) = {0, 1[+]8[+]4} = to, 13} and [(1316202) = {0, 1[+]8[+]4[+]2} = [0,

15}.

We have defined basic transformation functions, I, UM' If" , 1U IM’ W, ,

M,|f,l
1U, which will be used in various combinations for optimal data distribution. For

example, for any values of If,- I, lfjl and M, it will be shown that FX distribution

methods distribute ordered 2-tuples in [(73) x UM’ W (fj) optimally.

When X {Ml’lf‘ ' and XZMZ’If’I functions are applied to fields 1', and j, two

transformation methods are said to be the same, if X 1 = X2. For example, UM 1’ 'f‘ '

M2.If,-I M1,!f,l
and U

M2,lf,-I

1 s

are said to be the same transformation methods. But U and

Ml,lf}l M2,!fjl
[U or IU1 and IUZ are said to be difi’erent transformation

methods.

Because of notational complexity, we will leave out the superscripts M, l f,| from

transformation functions and their parameters whenever there is no ambiguity.

It is easy to see that for any proper subset f, of ZM where lf,| is some power of 2, U

transformation function satisfies the requirement of field transformation functions (i.e.,

one-to-one function whose domain is f; and range is ZM). We will show later that IU 1,

. . . , IUJr transformation functions also satisfy this requirement. From the definition of U

27

transformation function we see that the transformed domain elements are equally

spaced. In other words, when they are linearly ordered, any two adjacent elements have

the same distance. Several useful properties of IU1, . . . , IUJr transformation functions

will be described in Lemma 3.7, Lemma 3.9, Lemma 3.11 and Lemma 3.12.

In the following sections, we will present various combinations of field transforrna—

tion functions by which FX distribution methods give optimal distribution. Note that

we focus only on the fields whose sizes are less than the given number of devices.

3.4.2. I and U Field Transformation Functions

In this section we show in Theorem 3.3 that for any values of F,-, Fj and M, FX dis-

tribution methods distribute ordered 2-tuples in I (fi) x U (fj) optimally. Theorem 3.3

uses Lemma 3.2 which is an extended version of Lemma 3.1.

Lemma 3.2. For a nonnegative integer L, let L = aw + b, where w is a power of 2, and

a, b are some nonnegative integers such that 0 S b S w-l. When Z, = {0, 1, , w-l },

Zw [+] L = {aw, aw+1, , (a+1)w-1}.

Proof: Let (1”,-1 - - - lk lk_1 - ~ - [0)3 be a binary notation of L, where [k has weight w.

Then, (1”,-1 [k)B = a. All elements in ZW has the form (0 ...0 bk_1 ' ~ ' b0)3. When

L [+] or for any or e Zw, the result should have the form (l,,,_1 - - ~ [k ck_1 .. ° c0)3

which is aw + (ck_1 c0)B, where (ck_1 co)3 is equal to (lk_1 10)B [+]

(bk_1 - . - b0)3. Thus the proof follows by Lemma 3.1. E]

Theorem 3.3. When there are only two fields i, j whose sizes are less than the given

number of devices M, the FX distribution method with I ()2) and U (fl) is perfect

optimal.

Proof: There are two cases, i.e., FiFj < M and FiFj 2 M. Let dj = M/Fj.

(case 1) FiFj < M (i.e., dj >Fi)

I(f,-) [+] U(fj) = {0, 1,, Fi-1}U{dj, dj+1, , dj+F,--1} U {M-dj, M-dj+1, ...,

‘
1
!

28

M-dJ-+F,--1} by Lemma 3.2. In the right hand side all sets are disjoint and largest ele-

ment is less than M because dj > F}. So, for all z e ZM,

#{(J,-,Jj) e fixfj | I(J,-) [+] U(Jj) = 2} S 1. Therefore, it is 2-optimal. 0 and l-optimal

come from Theorem 3.1.

(case 2) FiFJ-ZM (i.e., dj SF,-)

Let FiFj =A*M (i.e., dj = FilA). In order to be 2-optimal, for all z e ZM,

#{(J;,Jj) e fixfj l 10,-) [+] U(Jj) = 2} should be equal to A.

(1) 0 S U(Jj) S (A-1)dj

For each U(Jj) in this range, I(f,-) [+] U(Jj) = {0, 1,, Fi-l} by Lemma 3.2. Let this

set be So. Since there are A number of such U (Jj) in this range, for all s 6 So

#{(J,-,Jj) e fixfj l OSU(Jj)S(A—l)dj, [(J,) [+] U(Jj) :3} = A.

(2) Adj S U(Jj-) S (2A-l)dj

For each U(Jj) in this range, I(f,-) [+] U(Jj) = {F}, Fi+1, --- , 2F,-—l} by Lemma 3.2.

Let this set be SI. Since there are A number of such U(Jj) in this range, for all s e 51

#{(J,-,Jj) e fixfj | AdjSU(Jj)S(2A —1)dj, l(J,-) [+] U(Jj)=s} =A.

(M/Fi) (M/F;—1)Adj S U(Jj) S M-dj

For each U(Jj) in this range, [(fi) [+] U(Jj) = {(M/F;—1)F,-, (M/Fi—1)F,~+1, . M—l}.

Let this set be SM/F,—1- Since there are A number of such U (Jj) in this range, for all

s e SM,p‘._1, #{(J,-,Jj)e flxfj | (M/Fi—1)AdjSU(Jj)SM-dj, I(J,~) [+] U(Jj)=s} = A.

M/F,—1

Since U Sp = ZM and there are A repetitions for each element in ZM through 1 (ft) [+]

p=0

U(Jj), Jj = O, - - - , Fj—l, it is 2—optimal. 0 and 1-optimal come from Theorem 3.1. C]

Example 3.4. Letfl = {0, 1, 2, 3},f2 = {0, l, 2, 3} and M =16. Figure 3.2 shows the

bucket distribution by FX and DM distribution methods. Note that I (f1) = [0, l, 2, 3}

29

and U(fz) = {0, 4, 8, 12} are I and U transformed values of f1, f2 and denoted by

binary numbers. Here, Device N0 = TM(I (J 1) [+] U (12)) for FX distribution methods,

and Device N0 = (J 1 +12) mod 16 for the DM distribution method, where J 1 6 f1, J 2

6 f2.

f1 f2 I (f1) U (f2) Device No (FX) Device No (DM)

0 0 0000 0000 0 0

0 1 0000 0100 4 l

0 2 0000 1000 8 2

0 3 0000 1100 12 3

1 0 0001 0000 l 1

1 1 0001 0100 5 2

l 2 0001 1000 9 3

1 3 0001 1100 13 4

2 0 0010 0000 2 2

2 1 0010 0100 6 3

2 2 0010 1000 10 4

2 3 0010 1100 14 5

3 0 0011 0000 3 3

3 l 0011 0100 7 4

3 2 0011 1000 11 5

3 3 0011 1100 15 6
Figure 3.2. FX Distribution with I And U Transformation

The FX distribution in Figure 3.2 is perfect optimal. But in DM distribution, the

distribution is skewed. The GDM method can also give optimal distribution by multi-

plying 3 to the first field values and by 4 to the second field values. However, these

parameters should be found by trial and error. On the other hand, FX distribution tech-

niques give a specific method.

3.4.3. I and IUx Field Transformation Functions

In this section we show in Theorem 3.4 that for any values of F,-, Fk, and the given

number of devices M, FX distribution methods distribute ordered 2—tuples in I ()2) x

IUx(fk) optimally. Lemma 3.3 shows IUX transformation functions are injective.

30

Lemma 3.7 shows a useful property of IUX transformation functions which is used to

prove Theorem 3.4. Lemma 3.7 is derived based on Lemma 3.4, 5.3 and 5.4.

Lemma 3.3. Let fk = {0, , Fk-l} such that Fk" < M for some positive integer x.

Then, IUx(fk) is a set of Fk elements between 0 and M-1 (i.e., IU,(fk) is an injective

function).

Proof: (case 1) x = 1.

Assume otherwise. Let d1 = M/Fk. Then there exist two different elements K 1,K2 e

fk such that K1 [+]K1d1= K2 [+] K2d1. Let K’ = K1 [+] K2. (Note that for any two

different nonnegative integers K 1 and K2 there always exists positive integer K’ such

that K’ = K1 [+] K2). By substituting K1 [+] K’ for K2 we have K1d1 = K’ [+] K2d1.

Let K1 = (0 O a, a0)3, K2 = (O 0 b5 b0)3 and K’ = (O 0 e1e0)3, where r,

s, t denote leftmost bit positions in which the binary value is "1" in K1 , K2, K’ , respec—

tively. This implies a, at b, because K ’ = K 1 [+] K2. Since d 1 is a power of 2, d 1 = 26

for some positive integer c. Then, K1d1 = (O O a,+c a1+c ac 0)B, K2d1 = (0

0 bs+c b1+c bc 0)B, where a1+c at b,+c. Since e1+c is zero, a1+c at e,+C [+] b1+c.

This contradicts K 1 d 1 = K’ [+] K2d 1.

(case 2) x > 1

Assume otherwise. Then there exist two different elements K 1, K2 e fk such that

(K1[+]K1d1[+]...[+]K1dx)=(K2[+]K2d1[+]...[+]K2dx), where d1=M/Fki, i

= l, . . . , x. Since K1d1 and K2d1 are the only ones which can have binary value "1"

between bit position logzd 1 and logZM (we considered the rightmost bit position to be

zero), the only way the above equation can be satisfied is K 1 = K 2. Therefore, contrad-

iction. El

Lemma 3.4. When there are only two fields i, k whose sizes are less than the given

number of devices M and F,- 2 Fk, the FX distribution method with I (f1) and IU 1 (fk) is

perfect optimal.

31

Proof: There are two cases, i.e., F1Fk < M and EB, 2M. Let dk = M/F;C and d,- =

M/F1.

(case 1) F1-F,c < M (i.e., dk >F1)

For all K e fk,

1(fi) [+] K [+] de={0, 1, Fi_1}[+]de

= {de, de-i-l, ' ‘ ' , de'i-Fi—l]

The first equality holds by Lemma 3.1, and the second equality holds by Lemma 3.2.

Clearly, no element in ZM is repeated through I (f1) [+] IU1(K), K=O, Fk—l because

dk > F1.

(case 2) FiFk 2 M (i.e., Ci}; 5 F1)

Let FiFk =AM. Then, F1=Adk and Adidk =M. Let K6 fk

i) OSK <A (i.e., OSde < F1)

For each K within this range,

1(fi) [+1K [+]de={0, 1, .Fi-1}[+]de

={0, l, , F1—1}

by Lemma 3.1. Since there are A number of such K’s within this range, there are A

repetitions for each element in Zp'. through I (f1) [+] [U 1 (K), K=0, A-l.

ii) A SK < 2A , (i.e., F1Sde < 2F1)

For each K within this range,

[(fi) [+1K [+1de = {0, 1, --- .Ft—1}[+]de

= {[71, Fri-1, ' ' ' , 2F1—1}

by Lemma 3.1 and Lemma 3.2. Since there are A number of such K’s within this range,

there are A repetitions for each element in Z21:]. - Zp‘. through I (f1) [+] [U 1 (K), K=A,

2A-1.

32

d1) (d1—1)A SK < d1A (i.e., (d1—1)Adk Sde < Adidk)

For each K within this range,

I(f,-) [+] K [+] de = {0, 1, -~ , F1—1}[+]de

={(di_1)Fii(di_1)Fi+1v “' .diFi-l}

by Lemma 3.1 and Lemma 3.2. Therefore, there are A repetitions for each element in

ZM - ZM_pl.. Since there are A repetitions for each element in ZM through

[(12) [+] IU1 (K), K=0, , Fk-l, it is 2-optimal.

O and 1-optimal come from Theorem 3.1 for both case (1) and case (2). E]

Definition 3.10. When Fj < M and d = M/Fj, there are Fj intervals [0, d), [d, 2d), . . . ,

[M-d, M) from 0 to M with interval size d =M/Fj, where "[" and ")" denote "closed"

and "open", respectively.

Lemma 3.5. When there are only two fields i and k such that F1Fk = M, FX distribution

with I (f1) and IU1(fk) is perfect optimal if and only if there is exactly one element of

IU 1 (fk) at each interval from O to M with interval size M/Fk-

Proof: Since F1Fk =M, in order to be perfect optimal distribution for all z e ZM,

#{(J1-,Jk) e f1xf,c | I(J,-) [+] IU1(Jk) = 2} should be equal to one.

(1) Only if : Assume otherwise. Let dk = M/F,c i.e., dk = F1. Then for some inter-

val [ldk, (l+l)dk), there exist two or more IU1(fk) elements. Let u and v be such ele-

ments in fk, i.e., Id;c S u [+] udk S (l+1)d;c — 1 and ldk S v [+] vdk S (l+1)d/c - 1. Then

I(f,-) [+] u [+] udk = I(f,-) [+] v [+] vd,c = {ldk, lei/(+1, , (l+1)dk-1}. The equality

holds by Lemma 3.1 and Lemma 3.2. Note that F; = dk. Clearly, the distribution is not

optimal. Therefore, contradiction.

(2) If : Let 5,, = {aF,-, aF1-+1, ,(a+1)F1-—1}. Since IU1(fk) =

33

’71-]

{idk+C1'li=0, , Fk-l, where OSCISdk}, IU1) [+]IU1(fk) = Use: = ZM by

a=0

Lemma 3.2. Therefore, it is perfect optimal. [:1

Lemma 3.6. For any Fk which is less than M, there is exactly one element of IU1(fk)

at each interval from O to M with interval size M/Fk.

Proof: For any large Fk there always exist M and F1 such that M > F,- 2 Pk and

FiF,‘ =M (we can always find such F,- and M). For such M, F,- and Fk, I (f1) [+]

IU1(fk) gives perfect optimal distribution by Lemma 3.4. For all such Fk, by Lemma

3.5 there is exactly one element of IU1(fk) at each interval from O to M with interval

size M/Fk. Thus the lemma follows C]

For example, whenf1={0, 1, 2, 3},f2 = {0, l, . . .7} and M: 16,1U1(f1) = {0, 5,10,

15} and IU1(f2) = {0, 3, 6, 5, 12, 15, 10, 9}. We can see that there is exactly one ele-

ment of [U 1 (f1) and IU2 (fz) at each interval with size 4 and 2, respectively.

Lemma 3.7. Let f; = {0, , Fj—l }, where F1.16 < M for some positive integer x. Then,

there is exactly one element of IUx(fj-) at each interval from O to M with interval size

M/Fj.

Proof: When x =1, this is true by Lemma 3.6. Whenx 2 2, let d,- =M/F-i, i = 1, . . .,

x. Since (Jd2 [+] . . . [+] de) < d1 for all I e fj, the proof is clear. [3

Theorem 3.4. When there are only two fields i, j and the given number of devices is M

such that F,- < M and Fj" < M, for some positive integer x, the FX distribution method

with 1 (f1) and IUx(fj) is perfect optimal.

Proof: Let d 1=M/Fj.

(case 1) F117} S M (i.e., d1 2F1)

By Lemma 3.7, there is exactly one element of IUx(fj) at each interval from O to M with

interval size d1. Thus, by Lemma 3.2 I(f1) [+] IUx(fj) is a set of all different F1Fj ele—

ments between 0 and M-1.

34

(case 2) F1FI- > M (i.e., d1 <F,-)

Let F1-Fj =AM. Thus, F1=Ad1. Let IUx(fJ-) = {t0, t1, , tp}._1}, where

t0<t1 < <tp}_1.

(1)0 S t1< Ad1 (i.e., 0 S t1 < F,)

For each t1 within this range, I(f,-) [+] t, = {0, 1, , F1—1 }. Since there are A number of

such t1 elements within this range by Lemma 3.7, there are A repetitions for each ele-

ment iani through 10”,) [+] t1, 1 =0, --- , A—l.

(2) Ad1St1< 2Ad1 (i.e.,FiSt1< 2F1)

For each t1 within this range, I(f,-) [+] t1 = {F1, F1+1, ,2F1—1} by Lemma 3.2. Since

there are A number of such 1‘, elements within this range, there are A repetitions for each

element in Zzpl, - Zp‘, through I(f,~) [+] t1, 1 =A, -'- , 2A—1.

(M/F1) (M/F1—1)Ad1 S t1< M/F1-Ad2 (i.e., (M/F1—1)F1 S t1< M)

For each I, within this range, 1(f1) [+] t, = {(M/F1—1)F,~, (M/F1—1)F,-+1, ,

(M/F1—1)F1+F1—1} by Lemma 3.2. Since there are A number of such t1 elements

within this range, there are A repetitions for each element in ZM — Z(713.415. through

M

1(ft) [+] t1. 1 = (F-IM, ,M/FiA—l.

i

Since there are A repetitions for each element in ZM through 102-) [+] t1,

1 = 0, ..., , Fj—l, it is 2-optimal. 0 and l-optimal come from Theorem 3.1. CI

Example 3.5. Letf1 = {0, 1, 2, 3},f2 = {0, 1, 2, 3} and M = 16. Figure 3.3 shows the

bucket distribution by the FX distribution method with 1(f1) and IU1(fz). Here,

IU1(fz) = {0, 5, 10, 15} and Device N0 = TM(I(J1) [+]IU1(J2)), J1 6 f1, .12 6 f2.

We can see that the distribution of Figure 3.3 is perfect optimal.

Example 3.6. Let f1 = {0, l, 2, 3,4,5, 6, 7}, f2 = [0, 1} and M = 16. Figure 3.4

shows the bucket distribution by the FX distribution method with I (f1) and IU2(fz).

35

[(fl) 1U1(f2) DcviCCNO

0000 0000 0

0000 0101 5

0000 1010 10

0000 1111 15

0001 0000 l

0001 0101 4

0001 1010 11

0001 1111 14

0010 0000 2

(”10 0101 7

(X110 1010 8

0010 1111 13

0011 0000 3

0011 0101 6

0011 1010 9

(X111 1111 12
Figure 3.3. FX Distribution with I And [U 1 Transformation

Here,IU2(fz) = {0, l3} and Device No=TM(I(J1)[+]IU2(Jz)),J1e f1,J2 6 f2.

We can verify that the distribution of Figure 3.4 is perfect optimal.

3.4.4. U and IU,‘ Field Transformation Functions

We will show in Theorem 3.5 that for any values of Fj, Fk and M, FX distribution

methods distribute ordered 2-tuples in U (fj) x IUxo‘k) optimally. Lemma 3.8 and

Lemma 3.9 show useful properties of U and IU1 transformation functions, respectively.

These two lemmas will be used to prove Theorem 3.5.

Definition 3.1]. Let S = {51, . . . , 31} be a set of nonnegative integers. Then for any

nonnegative integer c we define S + c = {s1 + c, . . . , s, + c}.

Lemma 3.8. Letfj={0, 1, ...,Fj—l}such thatFj<M. Let dj=M/Fj. Then, for

any nonnegative integer J and c such that OSJ <Fj and O S c < dj,

U03) [+1 (de+c)=U(fj)+c.

36

10(1) IU2U2) DeviceNo

0000 0000 0

0000 1101 13

0001 0000 l

0001 1101 12

0010 0000 2

0010 1101 15

0011 0000 3

0011 1101 14

0100 0000 4

0100 1101 9

0101 0000 5

0101 1101 8

0110 0000 6

0110 1101 11

0111 0000 7

0111 1101 10
Figure 3.4. FX Distribution with I And IU2 Transformation

Proof: By XOR uniqueness property, IU (fj) [+] JdJ-I = Fj. Let ad}- 6 U (fj). Then

adj [+] de should be ij for some [3 e 2;]. Thus, adj [+] de e U(fj). Since

|U(fj) [+] del = F1 and ad,- [+] de e U(fj) for all ad,- 6 U(fj), U(fj) [+] de should

be equal to U(fj). de + c = de [+] c because c < d}. Thus,

U(fj)[+1-/dj[+]C=U(fj)[+]c=U(fJ-)+c. D

Lemma 3.9. Let f,- = {0, , Fj—l} such that Fjx<M for some positive integer x.

Then, for any K1, K2 6 fj, and for any (1 which is a power of 2, K1 mod d = K2 mod d

if and only if IU,(K1) mod d = IU,(K2) mod d.

Proof.“ The proof is an induction on x. Let d1 = M/F-i, i = 1, . . . , x.

(1) Basis. x = 1. We want show that K1 mod d = K2 mod d if and only if

(K1 [+] K1d1) mod d= (K2 [+] K2d1) mod d. Let or = logzd and [3 = log2d1.

Only if : When d S d 1, bit positions 0 to or — 1 of K1 and K2 are not affected by

exclusive-or of K 1d 1 and K2d 1. Therefore, this is true. When d > d1 , let K 1 mod d =

1
|
!

37

K2 mod d = (aa_2 a0)3. Then, (K1[+]K1d1) mod d =

(aa_2[+]aa_2_g aa_3[+]aa_3_13 - - ' a0)3. Clearly, (K2 [+] K2d1) mod d is also

(act-21+]act—2—s aa—3[+laa—3—B ' ‘ ‘ 00hr.

If : Assume otherwise. Then there exist K 1, K2 such that (K 1 [+] K 1d1) mod (1 =

(K2 [+]K2d1) mod d, and K1 mod d at K; mod d. Let K1 mod d = (a01_2 -~ a0)3

and K2 mod d = (ba_2 - - . bo)3. Let i be the rightmost bit position such that a,- ¢ b1.

When i < B, clearly, contradiction. When i 2 B, a1[+]a1_15 = b1[+]b,-_B because

(K1 [+] K1d1) mod d = (K2 [+] K2d1) mod d by the assumption. Since i is the right-

most bit position such that a; at b1, this implies that a,-_13 = b1_13. Therefore, a contradic-

tion.

(2) Induction Step. Suppose this is true for x = p. We want to show that the lemma is

also true for x = p + 1. (Note that we consider only the case where F1”H < M). Let

(K1[+]K1d1[+]...[+]K1dp)=L1, and (K2 [+] K2d1 [+] . . . [+] szp)=L2.

Only If : K1dp+1 mod d is equal to szp+1 mod d. (It is easy to see that K1 mod d=

K2 mod d if and only if K1d’ mod d = sz’ mod d for any (1’ which is a power of 2.)

Since L1 mod d = L2 mod d by induction hypothesis, (L1 [+] K 1dp+1) mod d should be

equal to (L2 [+] K2dp+1) mod d. Note that when d is a power of 2,

(L1 [+] K1dp+1) mod d: (L1 mod d) [+] (K1dp+1 mod d).

If : Assume otherwise. Then there exist K 1, K2 such that

(K1[+]Kid1[+] ' ' ' [+]Kidp+i) mod d = (K2[+1K2d1[+] ‘ ' ' [+]K2dp+1)m0d d, and

K1 mod d at K2 mod d. Let 0t =1og2d and B = logzdp+1. Let K1 mod (1 =

(aa_2 ' - - a0)3 and K2 mod d = (b 13-2 - - - b0)3. Let i be the rightmost bit position

such that a,- ¢ b1. The remainder of the proof is similar to that of case 1, i.e., x = 1.

This completes the induction. [1

Corollary 3.2. Let f,- = {0, , Fj—l} such that Fj" < M for some positive integer x.

Let S, i = O, . . . , d—l be a subset of IUx(fj) whose residue by modulus d is i, where d

is a power of 2 which is less than M. Then, for any such d, ISO! = |S1| = . . . =

38

[511.1 I.

Proof: This is a direct consequence of Lemma 3.9. [:1

Theorem 3.5. When there are only two fields j, k and the given number of devices is M

such that Fj < M and FI“ < M for some positive integer x, the FX distribution method

with U (f,) and IUz(fk) is perfect optimal.

Proof: Let dj = M/Fj.

(case 1) Fij > M (i.e., Fk > dj)

Let Fij =AM. Then A =Fk/dj, i.e., Fk =Adj. Let K C- fk.

(1) K mod d1: 0 (i.e., K = de for some I 6 fl)

By Lemma 3.9, all IUx(K) elements such that K mod dj = 0 has the same residue co by

modulus dj. So, all such IUx(K) can be represented as adj + co for some variable or e

ij and some fixed nonnegative integer (:0 which is less than dj. Since Fk =Adj, there

are A number of IUx(K) such that K mod dj = 0. For such IUx(K), U(fj) [+] IUx(K) =

U (fj) + co by Lemma 3.8. Let this set be S 0. Then there are A repetitions for each

element in So through U(fj) [+] IUX(K), K = 0, d1, ~~ , (A—l)dj.

(2) K mod dj =1 (i.e., K =de + 1, for some I e fj)

By Lemma 3.9 all IUx(K) elements such that K mod dj = 1 has the same residue c1 by

modulus dj. For all such K U(fj) [+] IUX(K) = U(fj) + c1 by Lemma 3.8. Let this set

be S 1. Since there are A number of IU,(K) such that K mod d,- = 1, there are A repeti—

tions for each element in S1 through U(fj) [+] IUX(K), K =1, dj+1, -°~ , (A—1)a’j+1.

(dj-l) K mod dj = dj -1

By Lemma 3.8 and Lemma 3.9, for any IUx(K) such that K mod dj = dj—l,

U(f,-) [+] IUx(K) = U(fj) + Cdrl for some cdl._1 which is less than dj. Let this set be

$111.1. Then, there are A repetitions for each element in de_1 through U (fj) [+] IUx(K),

d—l

K = dj—l, - . - ,Adj-l. By Lemma 3.9, all c,-’s are different each other. So, (J51 =

1:0

39

ZM. Since there are A repetitions for each element in ZM through U (fj) [+] IUx(K),

K = O, - ~ - , Fk—l, it is 2-optimal. 0 and l-optimal come from Theorem 3.1.

(case 2) Fij < M (i.e., Fk < dj)

The proof is almost the same as that of case 1. Here, enumeration ends at Fk—l instead

of dj—l and there exists only one IUx(K) element at each step. El

Example 3.7. Letf1 = {0, 1, 2, 3},f2 = {0, 1, 2, 3} and M =16. Figure 3.5 shows the

FX distribution with U(f1) and IU1(fz). Here, U(f1): {0,4, 8, 12},IU1(fz)= {0,5,

10,15} and Device N0 = TM(U(J1) [+] IU1(12)), 116 f1, J2 6 f2. We can see that

the distribution of Figure 3.5 is perfect optimal.

U(fl) IU1(fZ) Device No

0000 0000 0

0000 0101 5

0000 1010 10

0000 1111 15

0100 0000 4

0100 0101 1

0100 1010 14

0100 1111 11

1000 0000 8

1000 0101 13

1000 1010 2

1000 1111 7

1100 0000 12

1100 0101 9

1100 1010 6

1100 1111 3
Figure 3.5. FX Distribution with U And [U 1 Transformation

Example 3.8. Let f1 = {0, 1, 2, 3, 4, 5, 6, 7},f2 = {0, 1} and M = 16. Figure 3.6

shows the FX distribution with U(f1) and IU2(fz). Here, U(f1) = {0, 2, 4, 6, 8, 10, 12,

14}. 1U2(fz) = {0, 13} and Device N0 = TM(U(Jr) [+] “1202», Jr 6 f1, 12 6 f2.

We can verify that the distribution of Figure 3.6 is perfect optimal.

40

U(fl) [U2(f2) DeviceNo

0000 0000 0

0000 1101 13

0010 0000 2

0010 1101 15

0100 0000 4

0100 1101 9

0110 0000 6

0110 1101 11

1000 0000 8

1000 1101 5

1010 0000 10

1010 1101 7

1100 0000 12

1100 1101 1

1110 0000 14

1110 1101 3
Figure 3.6. FX Distribution with U And IU2 Transformation

3.4.5. IU1 , IU2 , . . . , IUx Field Transformation Functions

In this section we will show that the set of IU1 transformation functions can give

optimal distribution for the case when there are several fields whose sizes are much less

than the given number of devices.

Definition 3.12. Let <k1,...,k,,> and <11,...,l,,>betwo ordered n-tuples. Then,

<k1,...,kn>=<[1,...,ln>,lfk1=11,...,kn=ln. Otherwise,<k1,...,k,,>¢<l1,.

.,l,,>.

Lemma 3.10. When there are only two fields i 1, i 2 such that F12 2 F11 and F122 < M

for the given number of devices M, the FX distribution method with IU 1(f1-1) and

[U2(f1-2) is perfect optimal.

Proof: Assume otherwise. Then, there exist {J11,J12} ; f11, {121,122} ; fig such

that <111er> ¢ 41211222 and (J11[+1111d11)[+1(121[+1121d21[+]erd22) =

(112[+]J12d11)[+](122[+1122d21[+1122d22), Where 6111 = M/Fila 6121 = M/Fi2, 6122

41

(121/F12. (Note that F11F12 < M and d11 2 d21.) The above equation can be rewritten

as [(111 [+]Jr2)d11[+1(121 [+1122)d21] [+] [(er [+]J22)d22[+1111 [+11 121+11211+11221 =

0. Since the second term (delimited by bracket) is less than d21 , and the first term does

not have binary value "1" between bit position 0 and log2d21 - 1, the only way the above

equation can be satisfied is that each term (delimited by bracket) should be equal to zero.

Thus, we have following two equations.

(J11[+1112)d11[+1(121[+1122)d21 = 0

(12111‘1122)€1221+1(111[+]J 121+11211+1122) = 0

(case 1) d11=d21

Then, J11[+]J12[+]Jz1[+]J22 = 0 from the first equation. So, from the second equation

121 is equal to J22 which results in J11 = J12. This contradicts <J11,J21> ¢ <121,J22>.

(case 2) d11 > d21

Let d 11 = pd21, where p is a power of 2. From the first equation, J21 [+]J 22 =

12 (J 11 [+]J 12). Substituting this in the second equation,

(1111+1112)Pd22[+1(111[+1112)[+](111[+1112)P = 0- Thus, the only way this equation

can be satisfied is J 11 = J 12 which implies 121 = J22. Therefore, contradiction. C1

Definition 3.13. We define LMB(J), J e N, to be the leftmost bit position whose value

is "l" in the binary notation of J, and define RMB(J), J e N, to be the rightmost bit posi—

tion whose value is "1" in the binary notation of J. When J = 0, we define LMB(1) =

RMB(J)=-1.

For example, LMB(1) = O, LMB(3) = 1, LMB(10)= 3, RMB(1)= 0, RMB(3) = 0, and

RMB(lO) = 1. Here, we considered the rightmost bit position to be the bit position

ZCI'O.

Theorem 3.6. When there are only 1 fields, i 1, i2, il such that F11 .>_ F1(1_1) 2 2

F11 and F111 < M for the given number of devices M, the FX distribution method with

IU1(f,~1), , IU1(f,-1) is perfect optimal.

42

Proof: The proof is an induction on 1.

(1) When I: 2, this is true by Lemma 3.10.

(2) Suppose this is true until I = k—l. We want to show that this is true for l = k. For

convenience, let these k fields be 1,2, , k. (Note that we only consider the case where

sz 21:1, 11",," < M, and so F1F2...Fk < M.) Let F1, =p,,_1F,,_1 = pk-1pk_2Fk_2 = . ..

=pk-1pk-2 . - °p2F2 =pk_1pk_2 -~p2p1F1, where each pi, i = 1, , k-l, is either 1 or

some power of 2. Let d11 = M/F1, and d21 = M/Fz, dz2 = M0722, and . . . , and d11 =

M/Fk, . . . , d1,}, = M/Fk". Then,

411 =P1d21 =P1P2d31 =P1P2P3I141 = - - -=P1P2 ‘ ‘ 'Pk—2d(k—l)1 =P1P2 ' ' 'Pk—ldkl

6122 =P22d32 =P22P32d42 =- - -=P22P32~-Pk-22d(k—1)2 =P22P32---Pk—12dk2

433 =P33d43 =P33P43dss =. - - =P33P43---Pk—23d(k-1)3 =P33P43---Pk—13dk3

d(k —2)(k-2) = Pk-zk-Zd (k—1)(k —2) = Pk-Zk-ZPk—l k_2dk(k—2)

d(k-1)(Ic-1) =Pk—1k_l deC—l)

Assume otherwise, i.e., there exist {J11,J12} ; f1, . . . , [Jk1,Jk2} ; fk such that

d11, . . . ,Jk1>¢<]12, . . . , Jk2>and

(111[+1111d11)[+](121[+1121421[+1121d22)[+1 . . - [+](Jk1dk1[+] ---1+1Jk1dkk)=

(1121+1112d11)[+](122[+11226121[+]Jzzd22)[+] - - . [+] (szdk2[+] - . . [+1Jk2dkk)

Here, Jkl it La. This is because if Jkl = sz, then <Jll, . . . , J(k_1)1> ¢

<I12, . . . , J(k_1)2> and hence the equality cannot be satisfied by the induction

hypothesis and XOR uniqueness property. The above equality can be rewritten as

[(111[+1112)d11[+](121[+]J22)dzr [+] . . - [+1 (J(k—1)1[+]J(k-1)2)d(k—1)1[+](Jkrl+l/kz)dk1][+]

[(121 [+1122)d22 [+] ~ . . [+](J(k-1)1 [+1J(k—1)2)d(k-1)2 [+](Jk1 [+1Jk2)dkzl [+1

43

[(J(It-2)1 [+11 (k—2)2)d(k-2)(k-2) [+] (J(k-1)1 1+1J(k—1)2)d(k—l)(k—2) [+1 (111 [+1Jk2)dk(k—2)1 [+]

[(J(k—1)l [+] J(k-l)2)d(k-l)(lz—l) [+] (Jkr [+] Jk2)dk(k-1)1 [+1

[(1111 [+] 112M111: [+1 (111 H1112) [+] (121 [+1122)[+]. - 1 [+1011 [+1 J1:2)1 =0-

Now, we will show that each term delimited by bracket (i.e., each line in the above

equation) should be equal to zero.

(1) The k-th term (i.e., the last term) should be equal to zero because the last term can-

not be greater than dk(k_1), and all other terms do not have binary value ”1" between bit

position 0 and logzdk(k_1) — 1,

(2) Suppose (k-1)-th term is not zero. Then, (J(k_1)1 [+] J(k_1)2)d(k_1)(k_1) 2 dk(k_2).

This is because all other terms do not have binary value "1" between bit position

logzdk(k_1) and lngdk(k_2) — 1. So, the only way this inequality can be satisfied is

LMB ((J(k—1)1 [+1 J(k-1)2)d(k—1)(k—1)) 2 RMB((Jkl [+] Jk2)dk(k-2))- (If not we can 566

immediately either (k-l)—th term should be zero or there is no way the whole equation

can be satisfied.) Since RMB ((J(k_1)1 [+] J(k_1)2)d(k_1)(k_1)) should be equal to

RMB((J/cr [+]Jk2)dk(k—1)). and RMB((Jkl [+] Jk2)dk(k—2)) -RMB((Jk1 [+]Jk2)dk(k—1))

= longk, it follows that (J (k_1)1 [+] J (k_1)2) > Fk. This contradicts Fk_1 S Fk. Hence

(k-1)-th term should be equal to zero.

(3) Suppose (k-2)-th term is not zero. Then, (J (k_2)1 [+] J(k_2)2)d (k_2)(k_2) should be

greater than or equal to dk(k_3). This is because first, all the other terms do not have

binary value "1" between bit position logzdk(k_2) and lngdk(k_3) — 1, and second, from

(2) (J (k—1)1 [+] J(k—1)2)d(k—1)(k—1) < dk(k—2) and this implies that

(J(k_1)1 [+]J(k_1)2)d(k_1)(k_2) is less than dk(k_3). (If we multiply Fk_1 to the left-

hand-side, and multiply Fk to the right-hand-side of the inequality

(J(k_1)1 [+] J(k_1)2)d (k_1)(k_1) < dk(k_2), this statement follows). The remainder of the

proof is almost the same as that of case (2)

44

By continuing this argument, all the terms delimited by bracket should be equal to

zero. Thus, we have the following k equalities.

(1111+1112)P1 " 'Pk—l [+] (1211+1Jz2)P2 ' ' 'Pk-l [+1 - - - [+](1(k—1)1[+1J(k-1)2)Pk—1 [+1(Jk1[+11k2)= 0

(~1211‘1'1-722)I722 ' ' 'PIc-r2 [+1 - . . [+] (Jot-m[+11(Ic—1)2)Pk—12 [+1 (Jkl [+1J12) = 0

011-211 [+1J(k—2)2)pk—2k_2Pk—lk—z [+] (Jot—m[+]J(k—1)2)Pz-1k-2 [+1 (111114112): 0

(Jot—1n [+]J(k-1)2)pk-lk-1 [+] (11:1 [+1Jk2) = 0

(Jk1[+1Jk2)dkk [+1 (11114-1112) [+1 - - . [+1 (111 [+1Jk2) = 0

Now, assume pk_1 = 1. Then, from (k-1)-th equality (J (k_1)1[+]J (k_1)2) [+]

(Jk1[+]Jk2) =0, and so from the (k-2)—th equality J (k_2)1 = J (k_2)2. This results in

J(k_3)1 = J(k_3)2 from (k-3)-th equality, and results in J(k_4)1 = J(k_4)2, . . . , J11 =

J 12. So, from the last equality Jk1 = sz, and hence J(k_1)1 = J(k_1)2. This contradicts

<J11, . . . , Jk1> at <J12, ...,sz>. Thus,pk_1 should be greater than 1.

In the (k-1)—th equality, since pk_1 is a power of 2, LMB (Jk1[+]Jk2) should be

greater than LMB (J 01-111 [+]J (k_1)2). (Otherwise, (k-l)—th equality cannot be satisfied.)

By the similar reason, it is easy to see that LMB (Jk1[+]Jk2) > LMB(J1-1[+]J,~2), i = 1,

k-l. Now, from the last equality, since LMB (Jk1[+]Jk2) > LMB (J11[+]J1-2), i = 1, k-l

and dkk is a power of 2, there is no way the last equality can be satisfied. We have

shown that there do not exist {J11,J12} ; f1, . . . , {Jk1,Jk2} ; fk such that

<J11,...,Jk1> ¢ <J12,...,Jk2> and

IU1(J11) [+] . . . [+] IUk(Jk1) =IU1(J12) [+] . . . [+] IUk(Jk2). This completes the

proof for l = k. Thus the theorem follows by the principle of induction. [:1

The following example shows the proof of Theorem 3.6 when l = 3, i.e., for [U 1,

[U2 andIU3.

45

Example 3.9. Let a file consist of three fields 1, 2, 3 such that F3 2 F 2 2 F 1 and F33 <

M for the given number of devices M. Suppose FX distribution with [U 1(f1), IU2(fz)

and IU3(f3) is not perfect optimal. Then, there exist {J11,J12} gf1, {121,122} gfz,

{J31,J32} gf3 such that <J11,J21,J31> at <I12,J22,J32> and

(1111+1111d11)l+1(121[+]Jz1dz1[+1121d22)[+](131[+]Jsrd31[+1131d32[+1131d33) =

(1121+1J12411)[+](1221+]J22421[+1122d22)[+](132[+1132431[+1132432[+1132433)

where d11 = M/F1, d21 = M/Fz, an = d21/F2, (131 = M/F3, (132 = d31/F3, (133 =

d32/F3. Here, J31 at J32. This is because if J31 = J32, then <J11,J21> ¢ <J12,J22>

and hence the equality cannot be satisfied by Lemma 3.10 and XOR uniqueness pro-

perty. The above equality can be rewritten as,

[(111[+1112)d11 [+1 (121[+1122)¢121 [+] (131[+1132)d31] [+]

[(121 [+1122)d 22 [+] (J31 [+1132)432] [+]

[(131[+1132)d33 [+] (J 11 [+1112) [+] (121[+1122) [+] (J31[+1132)] = 0

Let F3 = p2F2 = p1p2F1, where each pi, i = 1,2 is either one or some power of 2.

Then, 411 =Prdzr =prpzdsri and (122 =P22d32-

Now, we will show that each term delimited by bracket (i.e., each line) should be

equal to zero.

(1) The third term (i.e., the last term) should be equal to zero because the last term is

less than d32, and the first and the second term do not have any binary value "1"

between bit position 0 and log2d32 -— 1.

(2) Suppose the second term is not equal to zero. Then, (J 21 [+]J22)d 22 > d31 because

the first term does not have binary value "1" between bit position log2d32 and log2d31 —

1. Hence, LMB ((J21[+]J22)d22) 2 RMB ((J 31 [+]]32)d 31). Otherwise, there is no way

the equality can be satisfied. (Here, note that (121 [+]122)d22 < d21 S d 11). Since

RMB ((J21[+]J22)d22) should be equal to RMB ((J31[+]J32)d32)a and

'
1
!

46

RMB ((131 [+1132)d 31) - RMB ((J31 [+1132)d32) = 10g2F 3. it follows that (1211+1122) >

F3. This contradicts F 2 S F3. Thus, the second term should be equal to zero, and

hence the first term is also zero. Now, we have the following three equalities.

(1111+1112)P1P2d31 [+] (1211+1122)P2d31 [+] (1311+1132)d31 = 0

(1211+1122)P22d32 [+1 (1311+1132)432 = 0

(1311+1132)433 [+] (111144112) [+] (12114-1122) [+1 (13114-1132) = 0

Here, assume p2 = 1. Then from the second equality, (J 21 [+]J22) [+] (J 31 [+]J32) = 0,

and so from the first equality J 11 = J 12 which results in J31 = J32 in the last equality.

This contradicts J 31 at J 32. Thus, P2 should be greater than one.

In the second equality, since p2 is a power of 2, LMB (J31 [+]] 32) should be greater

than LMB (J21 [+]]22). Thus, from the first equality, it is easy to see that

LMB (J 31[+]J32) > LMB (J 11[+]J 12). Then, there is no way the third equality can be

satisfied except J31 = J32 which is contradiction. Therefore, the FX distribution

method with IU1 (f1), [U2(fz) and IU3 (f3) is perfect optimal.

Corollary 3.3. Let a file consist of 1 fields, 1, 2, , . . ,I such that F1 2 F1_1 2 2 F1

and F11 < M for the given number of devices M. Then, for any set of fields

{i 1, ..., ik} g {1, 2, , . . ,1}, the FX distribution method with IU1-1(f1-1), ... ,IU1k(f,-k)

is perfect optimal.

Proof: This is a direct consequence of Theorem 3.6. 1]

3.4.6. I, U and [UK Field Transformation Functions

In this section we show that FX distribution methods can always give perfect

optimal distribution as long as the number of fields, whose sizes are less than the given

number of devices, is no greater than 4. Lemma 3.11 and Lemma 3.12 shows useful

properties of 1U, transformation functions in proving Theorem 3.7.

47

Lemma 3.11. Let fk = {0, . . . , Fk-l} such that Fk‘ < M for some positive integer x.

Let d,- =M/Fki, i = 1, . . . , x. Let K1, K2 6 fk, and or be some power of 2 which is less

than Fk. Then, K1 and K2 are in the same interval of size or from 0 to Fk if and only if

IUX(K1) and IU,(K2) are in the same interval of size ord1 from O to M.

Proof:

Only If : When K 1 and K2 are in the same interval of size or, (K 1 [+] K2) S or-l and

hence (K1 [+] K2)d1 S (a—1)d1. Now,

1Ux(K1)[+]1Ux(K2)

=(K11+1K1d1 [+]---l+]K1dx)[+](K2[+lK2dl[+]---[+]K2dx)

= (K1[+1K2)d1[+1[(K1[+1K1d2[+1 - - . [+]K1dx)[+1(K2[+1K2d2[+] - - - [+]K2dx)1

<(K1[+]K2)d1+d1

The last inequality holds because [(K1 [+]K1d2 [+]. . . [+] K1dx) [+]

(K2 [+]K2d2 [+] . . . [+] szx)] < d1 by the construction of di, i = 1, , x. Thus,

IUx(K1) [+] IUx(K2) < ord1. This implies that IUx(K1) and IUx(K2) are in the same

interval of size ad 1.

If : When IUx(K1) and IUx(K2) are in the same interval of size ord1,

(K1[+1K141[+1-- - [+1K1dx)[+l(K21+lK2dl[+1- -. [+]K2dx)< ad1. 50,

(K1 [+]K2)d1 + [(K1[+1K1d2[+1 - - . [+]K1dx)[+] (K2[+]K2d2[+1 - - -[+1K2dx)]

< (1411. Thus,(K1[+]K2)d1<0td1,andsoK1[+]K2<oc. Cl

Lemma 3.12. Let fk = {0, . . . , Fk—l} such that Fk" < M for some positive integer x.

Let d1 = M/Fki,i= 1,. . .x. Let w = ord1 in which Otis a power of 2, and let B be a

power of 2 which is less than or equal to or. For some nonnegative integer c which is

less than M/w, let 5,10”) = {K e f, | cw SIUx(K) < (c+1)w, K mod [3 = 1'}. Then for

any such w, a, [3, c, ISOWM = |S1(CW)I =. . . 1511“”) I.

Proof: By Lemma 3.7, for any nonnegative integer c which is less than M/w,

#{seIUxUk) I cw Ss < (c+1)w} = or. Let {K1, . . . K01} be the subset offk such that

‘

48

cw SIUX(K,-)<(c+1)w,i=1,...,0t. Then by Lemma 3.11, all K1, . . . , K1,1 are in the

same interval with size or, and hence {K 1, . . . , K01} is a set of or consecutive integers.

Thus the lemma follows. 1:!

Theorem 3.7. When there are only three fields i, j, k whose sizes are less than the given

number of devices M, and Fk" < M for some positive integer x which is greater than 1,

the FX distribution methods with I (f1), U (fj) and IUx(fk) is perfect optimal, if either (i)

there are at least 2 fields r and s such that r ,s e {i,j, k} and F,Fs 2 M or (ii) Fk 2 F]-

Proof.‘ It is clear that (i) is a sufficient condition for perfect optimal distribution by

Theorem 3.1, 3.3, 3.4, 3.5 and Proposition 3.1. So, let us consider only the other case,

i.e., F,FS < M for any r, s e {i, j, k}. We want to show that (ii) is sufficient for perfect

optimal distribution for this case. Let d,- = M/Fj and dkl = M/Fk’, l = 1 , - - - , x.

Then, dj > F11dj> F1, and d,- > (11,1 and d11 > F,-_dk1>F,-.

(case 1) FiFij 2 M

Let FiFj-Fk =AM, and let (1, = Bdk1 and dk1 = CF}, where A,B and C are some positive

integers. Then, FiM/dek =AM or F1=Adlek =ABdk2. Since dj > F1, 10",) [+]

U(fj)=So US1U...USFJ,_1,where

s0 = {0, 1, ...,F1—1}

$1 = {dj, dj'i'l, , dj+F;—1}

Si = {ldj,idj+1, , (i+1)dj+F1~—1}

SFJ-l = ((Fj—1)dj, (Fj—1)dj+1, , (Fj—1)dj+F1'—1}

Clearly, all 51’s are disjoint. By definition 3.11 S,-+c = {idj+c, idj+l+c, ,

idj+F,-—l+c} for any positive integer c which is less than dj. Let K e fk. By Lemma

3.7 there is exactly one element of K[+]de2[+] . . . [+]deJr at each interval from 0 to

dk1 with interval size dk3 (Note that this can be obtained by substituting dk1 for M in

49

Lemma 3.7).

(1)0 S (K [+] K dkz [+] . . . [+]Kd1a) < F,-

Since F,- = ABdkz, there are AB number of IUx(K) such that

US (K [+] K dkz [+] . . . [+]Kd1a) < F1.

(1-1) Kmod B = O (i.e., de1 mod dj = 0)

F~-l

For each IUx(K) within this range, [(f,-) [+] U(fj) [+] IUX(K) = OS,- The equality

i=0

holds due to Lemma 3.1, and Lemma 3.2 (Note that K[+]de1[+] - - - [+]de2 =

de1[+](K [+] de2[+]...[+]Kd/a)). Let this set be T11. Since there are A number of

such IUx(K)’s within this range by Lemma 3.12 (this statement follows by substitute dk1

for M in Lemma 3.12), there are A repetitions for each element in T11.

(1-2) KmodB =1 (i.e., de1 mod (11 =dk1)

F-—1

For each IUX(K) within this range, I(f,-) [+] U(f1) [+] IU,(K) = (J S; + dk1. The equal-

1-

ity holds due to Lemma 3.1 and Lemma 3.2. (Note that dk1<dj.) Let this set be T12.

Since there are A number of such IU1(K) elements within this range by Lemma 3.12,

there are A repetitions for each element in T12

(l-B) K mod B = B —1 (i.e., de1 mod (1, = (B -—1)dk1)

F-—1

For each IUx(K) within this range, I(f,-) [+] U(fj) [+] IU1(K) = L) S,- + (B —l)dk1. Let

i=0

this set be T13. Since there are A umber of such IUX(K) elements within this range,

there are A repetitions for each element in T13.

(2)F1$K[+]de2 < 2F;

(2-1) K mod B = 0

F-—1

For each IU1(K) within this range, [(f1) [+] U(fj) [+] IUX(K) = Q S,- + F1. Let this set

i=0

50

T21. By the same reason as previous, there are A repetitions for each element in T21 .

(2-B) KmodB=B—l

171—1

For each IUx(K) within this range, 1(f1) [+] U(fj) [+] [Ux(K) = US,- + (B —1)dk1 + F1.

1'-

(Note that dk1 >F1.) Let this set be T23. By the same reason as previous, there are A

repetitions for each element in T23.

(C) (C-1)F,- SK [+1de2 < CF,-

(C-l) KmodB =0

For each IUx(K) within this range, I(f,-) [+] U(f1) [+] IUx(K) = U S,- + (C—1)F,-. (Note

i=0

that CF,- = dk1.) Let this set be T51. By the same reason as previous, there are A

repetitions for each element in TC 1.

(C-B) KmodB=B-1

For each IU1(K) within this range, I(f,-) [+] U(f1) [+] IU1(K) =

F.—1

US,- +(B—1)dk1 + (C —1)F,-. Let this set be TCB. By the same reason as previous,

i=0

there are A repetitions for each element in TCB. Now, it is not difficult to see that

i=C,j=B
U T1,- : ZM and all T1,- ’s are d1s301nt. Srnce we already show that there are A repen-

i=1.j=1

_ i=C,j=B .

trons for every element in U T,-- , it is 3-opt1mal. 2-optimal come from Theorem

i=1,j=1

51

3.3, 7, 8. 0 and l-optimal come from Theorem 3.1.

(case 2) F117ij < M

The proof is almost the same as that of case 1. Cl

Corollary 3.4. Let L be the number of fields whose sizes are less than the given

number of devices M. FX distribution methods can be always perfect optimal, if L S 3.

Proof: When L = 0, 1, 2, it follows from Theorem 3.1, 3.2, 3.3, 3.4, 3.5 and Proposi-

tion 3.1. When L = 3, let i, j, k are fields whose sizes are less than M and F,- 2 Pk 2 F1.

Ika2 2 M, apply I (f1), U(f,) and IU1(fk) transformation. Since F1Fk 2 M, the corollary

follows by (i) of Theorem 3.7. If F12 < M, apply 1(f1), U(f,-) and IU2(fk) transforma-

tion. Then the corollary follows by (ii) of Theorem 3.7. [:1

Example 3.10. Let f1 = {0, l, 2, 3},f2 = {0, 1},f3 = {0, 1} and M = 8. Figure 3.7

shows the FX distribution with I(f1), U(fz) and IU2(f3). Here, U(fz) = {0, 4} and

1U2(fs) = {0. 7}. and Device N0 =TM(I(J1)[+]U(12)[+]1U2(13)).Jr E f1.12 6 f2.

J3 6 f3. (Here, we can also verify that the FX distribution with I (f1), U (f;) and

IU1(f3) gives perfect optimal distribution because the file system of this example also

satisfies condition (i) of Theorem 3.7).

We have shown that by various combinations of field transformation functions FX

distribution methods give strict optimal distribution for many types of partial match

queries. Here, it should be emphasized that these field transformation techniques along

with Proposition 3.1 increase the scope of optimality considerably. This is because by

Proposition 3.1 optimal distribution for a subset of fields guarantees strict optimal distri-

bution for many partial match queries in which those fields are unspecified. For exam-

ple, let a partial match query unspecify fields 1, 2, 3, where If1 l = 8, l f2 I = 4, I f3 I =

8, and M = 32. When field 1 is U transformed and field 2 is I-transformed, then regard-

less of field 3, the distribution is strict optimal for this query by Theorem 3.3 and Propo-

sition 3.1.

52

I(f1) U(fz) I(1203) DeviceNO

000 000 000 0

000 000 111 7

000 100 000 4

000 100 111 3

001 000 000 1

001 000 111 6

001 100 000 5

001 100 111 2

010 000 000 2

010 000 111 5

010 100 000 6

010 100 111 1

011 000 000 3

011 000 111 4

011 100 000 7

011 100 111 0
Figure 3.7. FX Distribution with I, U And IU2 Transformation

Now, the summarized results of FX distribution methods are as follows (here, all

the theorems, lemmas and corollary in section 3.3 also hold for (Extended) FX distribu-

tion methods)

Let a file consist of 11 fields and there be M parallel devices. Let L be the number

of fields whose sizes are less than the given number of devices M. FX distribution

methods can be always perfect optimal, when L S 3. Let L be greater than or equal to

4. Let (1qu) be the set of fields which are unspecified for partial match query q. Then,

FX distribution methods are strict optimal for partial match query q, if at least one of the

following conditions holds.

(1) lq,,(f)|=0 or 1

(2) there is at least one field i e qu(f) such that F1 2 M.

(3) | qu(f) I = 2 and transformation methods of two fields in qu(f) are different. (ref.

section 3.4.1.)

53

(4) I q“(f) I = 3 and either

(a) there are at least two fields i, j e qu(f) such that F1F,- .>_ M and transformation

methods of two fields i and j are different, or

(b) transformation methods of three fields in qu(f) are I, U, IUJr for some x 2 2,

and the size of IUx transformed field is not less than the size of U transformed

field.

(5) | qu(f) | 2 4 and either

(a) there are at least two fields i, j e qu(f) such that F1Fj 2 M and transformation

methods of two fields i and j are different, or

(b) there are at least three fields i, j, k e qu(f) such that F1FjFk 2 M and transfor-

mation methods of fields i, j and k are I, U, IUJr for some x 2 2, and the size of

IU, transformed field is not less than the size of U transformed field.

(c) the fields in qu(f) satisfy Theorem 3.6

Note that these are only sufficient and are not necessary conditions.

It is unfortunate that FX distribution methods do not always guarantee perfect

optimal distribution when the number of fields whose sizes are less than M, is greater

than or equal to 4 in general. In fact, it has been shown in [Sun87] that when the

number of fields whose sizes are less than the given number of devices, is greater than or

equal to 4, there is no method which always gives perfect optimal distribution. How-

ever, even for these cases we will show through performance experiments that FX distri-

bution methods still gives near optimal distribution for most queries.

3.5. Performance Comparison with Other Distribution Methods

In this section we compare the performance of FX distribution methods with those

of the DM and GDM distribution method. The performance comparisons are based on

the probability of strict optimality and the average response time for a given partial

54

match query. In section 3.5.1 the probability of strict optimal distribution for partial

match queries is given. In section 3.5.2 we compare the average response time for the

FX, DM and GDM distribution method.

For both section 3.5.1 and 3.5.2, it is assumed that the probability of each field

being specified is same for all fields and some field being specified is independent of

each other.

3.5.1. Probability of Strict Optimality

In this section we show that the probability of strict optimality for FX distribution

methods is much higher than the DM distribution method. Even for the worst case the

decrease of probability of strict optimality for FX distribution is not much. On the other

hand, in the DM distribution the decrease is quite large. Since no general method has

been given to determine the existence of parameter values for strict optimal distribution

in the GDM method, we compare FX distribution methods to DM distribution method

only.

Let the file consist of 7 fields and M = 32. Let F1: 2, F2 =F3 = 4,

F4 = F5 =F6 = 8, F7 = 16. In the DM distribution method the probability of strict

optimal distribution for some partial match query is 0.0547 (computed from the

optimality conditions given in [DuS82]). On the other hand, in FX distribution methods

with IU1(f1), IU2(fz), U(f3), I(f4), U(fs), IU1(f6), 1(f7), the probability of strict

optimal for a partial match query is 0.9531 (computed from the sufficient conditions in

section 3.3 and 3.4). Therefore, in this example FX distribution methods give much

higher probability of strict optimality than the DM distribution method.

Figure 3.8 and 3.9 show the percentage of strict optimal distribution for all possible

partial match queries in a given file system. In these figures DM denotes the results of

the DM distribution method and FX denotes the results of FX distribution methods.

Here, the results are computed from sufficient conditions given for each method. Figure

55

3.8 shows the case where for any two fields r and 3 whose sizes are less than the given

number of devices, F,Fs 2 M. We used files with six and ten fields. In this figure FX

distribution methods used I, U and IU 1 transformation methods.

Figure 3.9 shows the percentage of strict optimal distribution when for any two

fields r and s whose sizes are less than the given number of devices, F,Fs < M, but for

any three fields r, s and t whose sizes are less than the given number of devices, F,F,F1

2 M. Here, in FX distribution methods I, U and IU2 transformation methods are used.

These results show that FX distribution methods give high probability of strict

optimal distribution for partial match queries in typical file systems. However, since

there is no convenient way to compute probability of strict optimal distribution in more

general file systems, in the next section we give results of performance experiments

based on average response time.

3.5.2. Average Response Time

Definition 3.14. For a given partial match query q, r,-(q) is defined as the number of

qualified buckets in device i for a partial match query q. We call this the response size

of device i for a partial match query q. Then, the largest response size for a partial

match query q is defined as MAX(r 1 (q), r2(q), - . - rM_1(q)).

For the response time of a partial match query, we will consider two factors,

namely, largest response size and CPU computation time for bucket address calculation.

In parallel disks environment, largest response size is the most important factor, while in

main memory databases, CPU computation time is more important.

When systems are configured such that the data retrieval time for any device is

almost the same, the response time for a partial match query is determined by the device

which has the largest number of qualified buckets. For example, parallel disks con-

nected to one shared bus, or some of the multiprocessors based on multistage intercon-

nection networks are considered to be such systems.

I
l
l

Percentage of 60 _

Strict Optimal DM

Distribution 40 —

20 —

0 I I I I I I

O 1 2 3 4 5

Number of Fields Whose

Sizes Are Less Than M

(a) Number of Fields = 6

100

FX

80—

Percentage of 60— DM

Strict Optimal

Distribution 40-

20—-

0 I I I I I I I I I I

012345678910

Number of Fields Whose

Sizes Are Less Than M

(b) Number of Fields = 10

Figure 3.8. Strict Optimality When for Any Fields r and s, F,Fs 2 M

57

FX

Percentage of 60 _

Strict Optimal

Distribution 40-

DM

20 —

O I I I I I I

O 1 2 3 4 5 6

Number of Fields Whose

Sizes Are Less Than M

(a) Number of Fields = 6

1

00 FX

80 —

Percentage of 60 _ DM

Strict Optimal

Distribution 40 “

20—

0 I I I I I I I I I I

012345678910

Number of Fields-Whose

Sizes Are Less Than M

(b) Number of Fields = 10

Figure 3.9. Strict Optimality When for Any Fields r, s and t, F,FSF1 2 M

58

Table 3.1 through 3.8 show the largest response size of the DM, GDM and FX dis-

tribution methods for various file sizes with various number of parallel devices. The

number of fields is six for all these experiments. In all these tables, the first column

denotes the number of unspecified fields.

For the GDM method, in order for comparison to be fair, we used seven different

sets of multiplication parameters. These sets are GDMl : 3, 11, 23,37, 49, 53 and

GDM2 : 5, 9, 31, 37, 53,59 and GDM3 :41, 43, 47, 51, 53,57 and GDM4 : 3, 5, 7, 11,

13,17 and GDM5 :3, 7,13, 43, 51, 57 and GDM6 : 2, 3, 5, 7,11,13 and GDM7 :2, 5,

11, 43, 51, 57. Here, the sets of parameters in GDMl, GDM2, GDM3, GDM4 and

GDM5 are chosen based on [DuS82], i.e., relative prime to the given number of devices.

GDM6 and GDM7 are used to include other cases.

For FX distribution methods, field transformation functions applied in each experi-

ment are as follows.

Table 3.1:<I, U, IU2, IU3, I, IU1>, Table 3.2: <U, IU3, IU4, I, IU1, IU2>,

Table 3.3 : <l, U, IU1, I, U, IU1>, Table 3.4: <I, U, IU1, I, U, IU1>,

Table 3.5 : <IU4, U, IU3, I, IU1, IU2>, Table 3.6: <U, IU1, IU3, IU4, I, IU2>,

Table 3.7 : <U, IU3, IU4, I, IU1, IU2> and Table 3.8 : <I, U, IU2,I, U, IU2>.

Here, the sequence of transformation functions denotes the sequence of fields to which

these transformation functions are applied. Heuristics based on the theorems in section

3.3 and 3.4 are used to choose these transformation functions.

In all these tables, each entry is computed as an average value of largest response

sizes from all possible partial match queries for that entry. The tables show that except

for first row out of table 3.4 and 3.8, FX distribution methods give smaller largest-

response-size than all the other methods. FX distribution is also very close to optimal.

It should also be noted that there may exist a set of multiplication parameters by which

the GDM method can give better performance than those of GDMl, GDM2, GDM3,

59

Table 3.1. Response Time for F 1=F2=F3=F4=2, F5=F6=4 and M = 16.

DM GDMl GDM2 GDM3 GDM4 GDM5 GDM6 GDM7 FX Optimal

2 2.1 1.3 1.7 1.4 1.3 1.5 1.3 1.5 1.1 1.0

3 4.4 2.2 3.1 2.2 2.2 2.4 2.3 2.6 1.6 1.2

4 10.3 4.4 6.2 4.3 4.2 4.7 4.5 5.1 3.0 2.7

5 22.3 8.7 12.3 8.2 8.2 9.2 9.0 10.7 6.7 6.7

6 52.0 18.0 26.0 17.0 18.0 19.0 20.0 22.0 16.0 16.0

Table 3.2. Response Time for F 1=F 22F 3:2, F4=F5=F 6:4 and M = 32.

DM GDMr GDM2 GDM3 GDM4 GDM5 GDM6 GDM7 FX Optimal

2 2.4 1.2 1.5 1.3 1.2 1.3 1.2 1.3 1.0 1.0

3 5.7 1.9 2.9 2.1 1.9 2.2 1.9 2.2 1.5 1.1

4 14.8 3.8 6.0 3.8 3.5 4.2 3.5 3.9 2.9 2.2

5 36.0 8.2 13.3 7.8 7.5 8.8 7.8 8.7 6.6 6.0

6 92.0 18.0 28.0 18.0 18.0 20.0 19.0 20.0 16.0 16.0

Table 3.3. Response Time for F 1=F2=F3=F4=F5=F6=8 and M = 32

DM GDMl GDM2 GDM3 GDM4 GDM5 GDM6 GDM7 FX Optimal

2 8.0 3.8 4.5 3.7 3.4 3.9 3.3 3.6 3.2 2.0

3 48.0 19.2 21.9 18.9 18.3 20.2 18.1 18.9 16.0 16.0

4 344.0 133.8 143.3 132.5 131.6 138.0 130.5 132.7 128.0 128.0

5 2460.0 1034.7 1058.3 1031.7 1029.3 1045.3 1026.3 1029.7 1024.0 1024.0

6 18152.0 8210.0 8292.0 8202.0 8200.0 8224.0 8196.0 8198.0 8192.0 8192.0

Table 3.4. Response Time for F 1=F2=F3=F4=F5=F 6:8 and M = 64.

DM GDM1 GDM2 GDM3 GDM4 GDM5 GDM6 GDM7 FX optimal

2 8.0 2.4 2.8 2.4 2.1 2.9 2.1 2.2 2.4 1.0

3 48.0 10.7 11.8 10.6 9.9 12.4 10.2 10.3 8.0 8.0

4 344.0 69.0 73.3 67.5 67.1 75.4 68.3 68.1 64.0 64.0

5 2460.0 522.3 531.3 517.3 516.2 538.2 520.5 517.0 512.0 512.0

6 18152.0 4115.0 4148.0 4102.0 4102.0 4146.0 4114.0 4102.0 4096.0 4096.0

Table 3.5. Response Time for F1=2, F2=F3=4, F4=F5=F6=8 and M = 128.

DM GDM1 GDM2 GDM3 GDM4 GDM5 GDM6 GDM7 FX Optimal

2 4.1 1.2 1.3 1.3 1.2 1.2 1.0 1.4 1.0 1.0

3 17.8 2.8 3.1 2.7 2.5 3.0 2.6 2.9 1.9 1.5

4 81.9 9.6 9.2 8.7 8.2 9.9 8.9 8.8 6.5 6.3

5 351.3 35.3 33.5 32.8 32.2 35.0 35.8 31.8 29.3 29.3

6 1456.0 142.0 134.0 133.0 132.0 135.0 145.0 131.0 128.0 128.0

Table 3.6. Response Time for F1=F2=F3=F4=4, F5=F5=8 and M = 256.

DM GDM1 GDM2 GDM3 GDM4 GDM5 GDM6 GDM7 FX Optimal

2 4.3 1.1 1.1 1.2 1.0 1.1 1.1 1.1 1.0 1.0

3 17.6 1.8 2.0 1.9 2.2 1.8 2.6 1.9 1.4 1.0

4 79.2 5.2 5.1 4.8 6.7 5.0 8.2 4.9 3.7 2.7

5 352.0 18.2 17.3 16.8 26.7 17.5 34.2 17.3 14.7 13.3

6 1592.0 73.0 72.0 70.0 119.0 71.0 155.0 69.0 64.0 64.0

61

Table 3.7. Response Time for F 1=F2=F3=4, F4=F5=F6=8 and M = 512.

 GDM3 GDM4 GDM5 GDM6 GDM7 FX Optimal

O
N
U
I
s
h
W
N

DM GDM1 GDM2

4.8 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.0 1.0

22.8 1.6 1.8 2.0 2.6 1.6 3.2 1.6 1.4 1.0

114.8 4.4 4.8 6.2 9.6 4.5 12.3 4.3 3.5 2.2

569.0 15.8 17.3 25.8 44.8 16.0 58.3 15.5 13.3 12.0

2848.0 70.0 75.0 122.0 220.0 70.0 289.0 69.0 64.0 64.0

Table 3.8. Response Time for F 1=F2=F3=8, F4=F5=F6=16 and M = 512.

 DM GDM1 GDM2 GDM3 GDM4 GDM5 GDM6 GDM7 FX Optimal

O
U
I
J
K
W
N

9.6 1.3 1.4 1.4 1.3 1.3 1.7 1.3 2.3 1.0

91.2 5.3 5.7 5.6 7.7 5.5 10.0 5.5 5.1 3.2

911.2 39.9 40.1 42.2 70.2 40.5 90.3 40.5 37.3 35.2

395.5 392.7 408.67 700.2 397.7 909.5 397.3 384.0 384.09076.0

9176.0 4144.0 4096.0 4096.090404.0 4129.0 4112.0 4313.0 6969.0 4139.0

62

GDM4 and GDM5 in Table 3.1 through Table 3.8. However, even though such set of

parameters exists, those can only be found by trial and error method.

In disk based database systems the computation time is not significant compared to

disk access time. But in main memory databases CPU computation time is important.

Thus, we will discuss CPU computation time for the FX and GDM distribution method.

We use optimized instruction codes for comparing CPU computation time. In the

GDM method we use AND operation to implement modulo function. This is possible

because the number of devices is assumed to be a power of 2. In FX distribution

method, since the multipliers for U and [UK transformation are always power of 2, we

can substitute multiplication by shift operation. Note that we cannot do this in the

GDM method because multipliers in the GDM method are usually chosen from prime or

odd numbers. Function TM is done by AND operation.

In MC68000 processor, computation time of FX methods take much less than that

of the GDM method. (In MC68000, XOR takes 8 cpu clock cycles, ADD takes 4 clock

cycles, AND takes 4 clock cycles, n bit shift takes 6 + 2n clock cycles. But multiplica-

tion takes 70 clock cycles). In intel 80286/80386 processor the ratios of clock cycles

between different operations are almost similar to those of MC68000.

For main memory databases FX distribution methods are much faster than the

GDM distribution method. The computation time of the DM distribution method is less

than that of FX distribution methods, but as is shown in the Table 3.1 through Table 3.8,

the DM distribution method is not suitable for a large number of parallel devices.

3.6. Data Construction Methods

In this section we discuss data construction methods for the file which is distributed

by FX distribution methods. Data distribution methods determine the amount of access

concurrency while data construction methods affect storage characteristics and time for

each bucket access. We will present two approaches of data construction based on the

63

usage of multikey hashed directory. Multikey hashing for a given file with n fields pro-

duce a subset of T, where T = f1 xf2>< xfn. As discussed in chapter 2, T can be used

as either a real global directory or a virtual global directory.

3.6.1. Data Construction Based on Real Global Directory

We will describe methods of using T as a real global directory. Let GD =

[0..F1—l, . . . , O..F,,—1] be a multi-dimensional array in which the range of the i-th

dimension is 0.171-1. This is the same range of multikey hashing for field i. Here, GD

serves as a real global directory. Each element of GD contains the address of a bucket.

When the directory is centralized, the problem is trivial. However, for maximum access

concurrency the directory also needs to be distributed among the access nodes. Data

construction methods for this case will be investigated in the rest of this section.

FX distribution methods partition multi-dimensional array GD into M subsets,

where M is the number of access nodes. Since a directory is also distributed among the

nodes, we have to have efficient storage rule to locate the elements of this multi-

dimensional array. In other words, for each element of GD we have to define the local

address in each device. The similar ideas for distributing the elements of an array have

been used in MDA memory [Bat77] and the prime memory system [Law82].

In order to determine the local address efficiently, we need a few techniques which

are described below.

Definition 3.15. In a given file system, a Minimal Pivot Set (MP8) is any set of fields in

which the size of the cartesian product of those fields is no less than the given number of

devices M, and any subset of an MP8 is not an MP8.

Let there exist an MP8 whose cardinality is no greater than 4 in a given file system (if

not, no efficient method of using T as a real global directory has been found). Let p be

the one of MPS’s whose cardinality is minimum, and p’ be the set of all the remaining

64

fields. In multidimensional array GD, rearrange fields such that those fields in p

become rightmost dimensions.

When IpI = 2, let n-1 and n be two fields in p. Here, field n-1 and n denote the

fields which correspond to (n-1)-th and n-th dimensions in GD, respectively. Then,

apply I—transformation for field n-1 and U-transformation for field n. When Ipl = 3, let

n-2, n-1 and n be three fields in p such that Fn_2 2 F,, 2 Fn_1. Then, apply I, U and

[U2 transformation to field n-2, n-1 and n, respectively. Note that the sequence of fields

is important in above two cases. When |p| = 1, apply I transformation to the field in p.

Let the sequence of elements in GD is based on row-major ordering, i.e, index ele-

ments of high dimensions change first. Then, the storage rule of this multi-dimensional

array is as follows :

For a bucket < J 1, . . . , J,, > produced by multikey hashing (the sequence of fields in

the given bucket is the same as that in GD, i.e., i-th field denotes i—th dimension in GD),

(1) Device No is determined by the FX distribution methods.

(2) The local address for this bucket in the device is Z J1m- + l [2 J1K1]/MJ, where 71

iep’ iep

n n

= H/H Fj]/M, andM: HF-,ifi¢n and7t,-=1,ifi=n.

=i+1 j=i+l

The correctness of the local address calculation can be shown by the following proposi-

tion.

Proposition 3.2. Let GD’ = [0..F1—1, . . . , 0..F,1—1] be a multi-dimensional array,

n

where the content of element [J 1, , J,,] is TM [[+](X1-(Jj))] which is the same as the

i=1

device number computed by the FX distribution method. Let S =

(a0, . . . , aM_1, aM, . . , am, . .) be a linear sequence of the contents of GD’ by row-

major ordering. Let S,- be a subsequence of S such that S,- =

F1 x . . . Xpn

(am, am“, . . . ,a(,-+1)M_1). Then, for any S,-, i =0, ~-- , —M———l , a set of

65

elements in S,- is 2114. (It is assumed that there exists an MP8 whose cardinality is no

greater than 4.)

Proof: When a cardinality of p is one (i.e., there exists a field whose size is no less than

the given number of devices), or the size of the cartesian product of fields in p is M, it

simply follows by Lemma 3.2. For other cases, the arrangement of fields in p ensures

that sequence as shown below.

(case 1) Ipl = 2 (i.e., I(f,,_1) [+] U(fn))

The proof immediately follows by Lemma 3.8.

(case 2) 'PI = 3 (i.eo 1(fn—2) [+] U(fn—i) [+11U2(fn))

Since F,,_2 2F" 2F,,_1, F,,2 < M. Let Fn_2F,,_1F,, =AM and F,,-1F,, = %. Then,

F,,_2 =AD. Let U(fn_1) [+] IU2(f,,) = R. By Theorem 3.5, R has F,,_1F,, distinct ele-

ments which are between 0 to M-l. Let d,,_1=M/F,,_1, i.e., d,,_1 = F,,D. Since

Fn—l

d,,_1 > F,,, by Lemma 3.8, R = U [U (f,,_1) +c i] for F,, different number of ci’s which

i=0

are between 0 to d,,_1. Now it is sufficient to show that there exists exactly one c,- for

each interval of size D between 0 to d,,_1. This guarantees that for any set W of D con-

secutive elements in f,,_2 which are all in the same interval of size D, R[+]W = ZM by

Lemma 3.2.

Now, let d,,1 =M/F,, and d,,2 = M/Fnz. We want to show that for any K1, K2 5

f,, such that K2 > K1, c,- = (K1[+]K1d,,1[+]K1d,,2) mod d,,_1 and cj =

(K2[+]K2d,,1[+]K2d,12) mod d,,_1 are in different intervals of size D. Let dn_1 = Bdn1.

When K 1 mod B at K 2 mod B, it is easy to see that c,- and cj cannot be in the same inter-

val of size D because d,,1>D. Let K1 mod B = K2 mod B. This implies that K1 and

K2 are in the different intervals of size B. Therefore, by Lemma 3.12, K1[+]K1d,,2 and

K2[+]K2dn2 should be in different intervals of size Bdnz between 0 to dn_1. Since

Bdnz = D, the proof follows. E]

66

When a multikey hash function (91 is used for a file V, using T as a real global

directory is advantageous if for most t e T, (91—10) 6 V with reasonable average chain

length. However, an appropriate (91 may not be easily determined for dynamic files

because the file size is not known in advance. Hence, the real global directory may turn

out to be very sparse or to have long overflow chain. Here, it should be noted that

applying dynamic hash function for 81 will cause significant overhead due to intemode

data movement. The virtual global directory approach described in the next section can

avoid this problem.

3.6.2. Data Construction Based on Virtual Global Directory

In the previous section we described the method of using T as a real global direc-

tory. In this section we describe the method of using T as a virtual global directory. '

The idea of the virtual global directory is to use one more hash function (92 which is

local in each device. Let < J 1, . . . , J,, > be an ordered n-tuple produced by multikey

hash function (91 for some record. The local hash function @2 uses this ordered n-tuple

as an input key for its local directory. Since (92 does not affect data distribution,

dynamic hash functions [Fag79, Lar78, Lit80] can be used as (92. When T is used as a

virtual global directory, only the local directories physically exist. Each local directory

can dynamically grow and shrink while the virtual global directory is static.

This two—level mapping data construction is much more flexible than the real glo—

bal directory because the storage utilization of directories is not affected by @1, and

dynamic hash function for local directories can handle dynamic files. Thus, a virtual

global directory approach is appropriate for dynamic files.

One disadvantage of the virtual global directory approach is that it may cause more

probings to find qualified records than in the real global directory. This is because dif—

ferent ordered n-tuples produced by (91 can be mapped into the same local directory

entry by @2.

67

Let V1 be the set of ordered n-tuples produced by @1 for a given file which are

allocated into the same device, and V2 be the range of local hash function (92 in that

device. Let p1 = NH and p2 = IV2l. Let t be an average number of elements in V1

which are mapped into the same v 6 V2 by 62. Then, the probability P that @2_1(v) =

pl

. . l l

forveV2,1s 1venb P= 1—— . Letc= /1. Then,t=—-—.

111

This can be derived by using lim (1 — 1) = e‘l’c, and t =L . For exam-

p1_,°. c111 (l—P)p2

ple, 1: = 1.58 when c = l, and so the number of probings increases. (Detailed description

about average chain length for various hashing algorithms can be found in [Knu73].)

However, since T consists of cartesian product of all fields, many elements in T

may not correspond to any record. On the other hand, the two level hashing scheme

(i.e., the virtual global directory approach) can always achieve efficient storage utiliza-

tion of the directories because the input of 62 is only those n-tuples which have

corresponding records. Even for the case when a real global directory has many empty

entries, the two level hashing scheme can always guarantee efficient storage utilization

with slightly increased number of probings.

CHAPTER 4

OPTIMAL DATA DISTRIBUTION FOR

MULTIATTRIBUTE RANGE QUERIES

4.1. Introduction

In this chapter we describe optimal data distribution for multiattribute range

queries. A multiattribute range query, also called a region query or orthogonal range

query, is an intersection query in which a multiplicity of the attributes are allowed to be

range specified in a query’s qualification. The multiattribute range query differs from

the partial match query in that the range specification is allowed in the multiattribute

range query while it is not allowed in the partial match query.

Several file structures have been proposed for handling multiattribute range queries

(hereafter, a range query denotes a multiattribute range query). These include various

types of specialized tree structures and hash based accesses. In [Ben75] the multidi-

mensional binary search tree, also called k-d tree, has been proposed, which is an exten-

sion of the standard binary search tree. Worst case analyses of these trees can be found

in [Lee77]. There are other types of the tree structure for range searching [Ben79].

Hash based accesses for range queries has also been investigated in the past. In

[Bol81], Bolour proposed box-array addressing functions which is a composition of ran-

domizing function and order-preserving function. It has been shown in that paper that

this hashing scheme is effective for answering small range queries. Several other types

of the file structure for range searching can also be found in [Ben79, Knu73]. A lower

bound on the complexity of range queries has been presented in [Fre81]. The main

focus of those research is on minimizing the number of bucket accesses. However, they

did not consider data distribution to enhance access concurrency. Though there are

68

69

some heuristic data distribution methods for multikey search queries [Du882, Kim88],

range specification in a query’s qualification is not considered in those methods. In this

chapter we will mainly focus on optimal data distribution for multiattribute range

queries to facilitate parallel processing of this type of applications.

A partial match query can be thought of as a special case of a range query because

a range query reduces to a partial match query when each specified range size is only

one. Thus, a partial match query will be treated as a special case of a range query in the

rest of this chapter.

The rest of this chapter is organized as follows. In section 4.2 we describe under-

lying file structure, basic definitions and assumptions. In section 4.3 we show the

inherent limitations for optimal data distribution for some types of range queries. We

describe optimal data distribution methods for range queries in section 4.4. The

optimality conditions for these methods are also given.

4.2. Definitions And Terminology

In this section we describe underlying file structures as well as relevant definitions

and assumptions.

We use partitioned hashed directory as a file structure. In other words, the access

structure for a file with n secondary keys is a partitioned hashed directory consisting of n

fields. This directory is based on multikey hashing scheme, where each hash function is

order-preserving. Multikey hash function is described in chapter 3. Several order-

preserving hash functions have been proposed in [Gar86,Hsi88]. In the following para-

graph we also give a method for implementing order-preserving hashed accesses by

small tables.

One way of implementing order-preserving hash functions is to represent the func-

tion explicitly by a table. Figure 4.1 shows the explicit representation of n functions for

a file consisting of n fields, where hi denotes the function (i.e., table to show the function

70

values) applied to i-th attribute values. Each table of the figure the first column denotes

the interval of key values and the second column denotes the image for any domain

value in that interval.

hi hn

Figure 4.1. Explicit Representation of Multikey Hash Functions

In this structure a file consisting of n fields (i.e., n secondary keys) needs n tables.

Let f,- be the projection of the second column of table i, i.e., f1 = {0, 1, . . . , 7} in Figure

4.1. A bucket is defined as an ordered n-tuple, <b1, . . . , b,,>, such that b,- is an element

of f1. Then, the cartesian product f1 x . . . x f,, represents the multikey hash directory.

As we discussed in chapter 3, this directory can be used as either a global directory or a

virtual global directory.

This representation requires additional storage for the tables as in Figure 4.1. Let

us consider the storage overhead of these tables for the file with five fields. Suppose the

directory consists of thirty thousand (about 215) entries (if a bucket contains 33 records

in average, the file contains about one million records). When all the field sizes are the

same, the size of each field is 8. If each entry of the tables takes ten bytes, the storage

overhead is only 400 bytes because we need 5 * 8 = 40 entries altogether. Thus, the

storage overhead is negligible and these tables can be easily stored in main memory.

P

71

We use a bucket as a unit of data distribution. The main focus of this chapter is to

investigate optimal bucket distribution for range queries in multikey hashing. Since we

are dealing with multikey hash file which is the same as that in chapter 3, all the termi-

nology defined in chapter 3 are also used in this chapter. In the rest of this section we

describe definitions which are necessary in this chapter.

Definition 4.1. r(u, v) denotes the range specification between it and v, where both

boundaries are closed.

We assume that a range query can have three types of field value specification which are

single value, range, and don’t care in which case it is denoted by *. We will not use r(u,

v) to denote a single value (i.e., range size is equal to one) and don’t care (i.e.,

unspecified). We also do not allow cyclic ranges like r(5,2), i.e., 5, 6 , . . . , F,~—l, 0, l,

2. In other words, whenever r(u, v) is a range specification for field i, it is implied that u

< v and, either it =00rv¢F,—l.

Definition 4.2. A range query for files with n fields is denoted by [A 1, A2, . . . , An],

where for each i = l, . . . , n, A,- = *, or r(u, v), or w, where u, v, w 6 f1 and u < v.

We define types of range queries based on the number of range specified fields in a

query’s qualification.

Definition 4.3. When the number of range specified fields is or in a query q, query q is

called type or range query.

Example 4.1. Let q1, q2 and q3 be queries in the file (DEPT, AGE, STATE) such that

q1 = [Math, r(20, 27), Ohio], q2 = [*, r(20, 27), *] and q3 = [r(Math, Physics), r(20,

27), *]. Here, r(20, 27), r(Math, Physics) denote range specification, and "*" denotes

don’t care condition, i.e., the field value is unspecified. Then, q1 and q2 are type 1

range queries, and q3 is type 2 range query. By the above definition a partial match

query such as [Math, *, Ohio] is a type 0 range query.

72

Definition 4 .4. Let R (q) be the set of buckets which satisfy the qualification for a range

query q. The distribution method is called strict optimal for a range query q in a given

file system if each device has no more than [IR (q) I/M] number of buckets.

Definition 45. When the distribution method is strict optimal for all queries in type 0

through type or range queries in a given file system, it is called perfect optimal for type

(0 - 0t) range queries in that file system.

Example 4.2. Let f1 = {0, l, 2, 3}, f2 = {0, l, 2, 3} and M = 8. Figure 4.2 shows

three bucket distributions denoted by Distlibution-l, Distribution-2 and Distribution-3.

For example, the bucket <3, 1> is stored in device 5 for Distribution-l, device 2 in

Distribution—2 and device 7 in Distribution-3.

f1 f2 Distribution-l Distribution-2 Distribution-3

0 0 0 0 0

0 1 1 1 4

0 2 2 2 2

0 3 3 3 6

1 0 4 4 1

1 1 5 5 5

1 2 6 6 3

1 3 7 7 7

2 0 0 7 2

2 1 l 6 6

2 2 2 5 0

2 3 3 4 4

' 3 0 4 3 3

3 1 5 2 7

3 2 6 l 1

3 3 7 0 5
Figure 4.2. Example Bucket Distributions

Let q1 = [r(l, 2), *] and q2 = [*, r(O, 1)]. Then, the Distribution-1 is strict optimal

for query q 1 , but is not strict optimal for query q2. The Distribution-2 is strict optimal

for query qz, but is not strict optimal for query q1. The Distribution-3 is perfect

73

optimal for type (0 - 1) range queries, and hence it is strict optimal for both queries q1

and q2. However, this distribution is still not perfect optimal for type (0 - 2) range

queries because it is not strict optimal for query q3 = [r(O, 2), r(O, 2)].

Definition 4.6. Let a file consists of n fields, and S1, i = 1, . . . , n, be a subset of f1.

Then, M (S 1 , . . . , 5,.) denotes a set of devices at which bucket <b1, . . . , bn>is stored,

where b,- 6 5;. For convenience, when S,- = {s1}, i.e., S1 has a single element, we will

use s,- instead of {s1}.

For example, in Distribution-1 of Figure 4.2, M(0, 0) = {0}, M({0, l}, 0) = {0, 4} and

M({0,1, 2}, O) = {0, 4}.

Since the perfect optimal distribution is the most desirable, it is worth investigating

whether a perfect optimal distribution always exists. It will be shown that perfect

optimal distribution for certain types of range queries does not exist inherently in many

cases. In the following section we discuss nonexistence of perfect optimal distribution

for certain types of range queries. We give data distribution methods for optimal

bucket distribution for various types of range queries in later sections. It will be shown

that the proposed data distribution methods are perfect optimal for certain types of range

queries, and strict optimal for a large class of range queries.

4.3. Limitations of Perfect Optimal Distribution

In this section we will show that there are inherent limitations for achieving perfect

optimal distribution for certain types of range queries. In section 4.3.1 we show that for

files with two or more fields, perfect optimal distribution for type (0 - 2) range queries

does not exist in many cases. In section 4.3.2 it will be shown that for files with three

or more fields, perfect optimal distribution for type (0 - 1) range queries is not always

possible. In both sections the sufficient conditions for the nonexistence of perfect

optimal distribution will be given. In section 4.3.3 we discuss perfect optimal

74

distribution for type 0 range queries.

4.3.1. Type (0 - 2) Range Queries

In this section we show that perfect optimal distribution for type (0 - 2) range

queries does not exist in many cases.

Lemma 4.1. When a file consists of n fields (n 2 2) and the given number of devices is

M, perfect optimal distribution for type (0 - 2) range queries does not exist if there are at

least two fields i and j, and two integers a and b such that 2 S a < F1, 3 S b S Fj and ab =

M.

Proof: It is sufficient to prove the lemma for files consisting of only two fields.

Assume perfect optimal distribution for type (0 - 2) range queries exists. Thus, we have

a distribution for this file system which is perfect optimal for type (0 - 2) range queries.

LetS= {S1, . . . ,sa} beasubsetoffi,wherea_>.2ands1 >0, s2 =s1+1, . . . ,sa =

sa_1+1, and T = {t1, . . . , tb} be a subset offj, where b 2 3 and t2 = t1+1, . . . , tb =

tb_1+1 such that ab = M. In other words, S and T are a and b consecutive values in

field i and j, respectively, where IS x Tl = M. Clearly, when A and B are sets of con-

secutive elements in field i and j, respectively, such that IA x Bl < M, M(A, B) is a set

whose size is IA x Bl. Thus, the sets M(s1, T), . . . , M (sa, T) are mutually disjoint and

M (S, T) = ZM (otherwise, the distribution is not strict optimal for query q1 = [r(s1, sa),

r(t1, tb)]). Since the sets M(s1—1, T), . . . , M(sa—l, T) are also mutually disjoint, and

the size of cartesian product of these sets is M, M (s1—1, T) = M (so, T) (Figure 4.3

gives a pictorial view of these steps). We will show a contradiction for either case

when the size of T is even, or odd.

(case 1) b is even, (i.e., b 2 4)

Let T11 = {t1, . . . , rm}, and T12 = {t1,/2.11,. . . , tb}. The sets M(s1—l, T11) and

M (sa, T11) are disjoint (otherwise, the distribution is not strict optimal for query q2 =

[r(s1-1, Sa), r(t1, t1, 0)]. Note that the number of qualified buckets for qz is less than

75

1". fi Device No

51-1 _____

_ _T_11 _ F _ _>

_ _T_12 _ :

Sl _ _ _ E

. _T_11 _

_T_12 _ :

_ 5 Do not have

_ : qualified

1 E bucket for

Sr ————— I 43

_ -731 _ i

_ _T_12 _ E

sa _____ I

_ _T_1_1 _ L

_T_12

Figure 4.3. Nonexistence of Perfect Optimal Distribution for Type (0 - 2) Range Queries

76

M). Thus, M(s1—1,T11) is equal to M(sa, T12). and M(s1-1, T12) is equal to

M(sa’ T11)'

Now, let us consider range query q3 = [r (s1-1, so), r(t1, 0,1210]. Suppose the

bucket <s1—1, tb12+1> is stored at device mo, and the bucket <sa, 0,1211 > is stored at

device m1. Since tb,2+1 e T12 and M(s1—1, T12) = M(sa, T11), mo is an element of

M(sa, T11). Similarly, m1 is an element of M(s1-1, T11). Thus, device mo and m1

have at least two qualified buckets for query q3. However, the devices in

a-l

UM(sk, {t1,/2+2, , tbj) do not have any qualified buckets for query q3. This contrad-

k=l

lets the assumption.

(case 2) b is odd

Let T11, = {11, . . . , tb’} and T12, = {tb’+1: . . . , tb}, WhCI‘C b, = 'b—:1—. T116 8618

M(s1—1,T11’) and M (sa,T11’) are disjoint (otherwise, the distribution is not strict

optimal for query q4 = [r(s1—l, sa), r(t1, tbr)]. Note that the number of qualified buck-

ets for (14 is less than or equal to M because (a +1)(P;2*i) S ab when a 2 2 and b 2 3).

However, M(s1—1, T) = M(sa,T) and M(s1—1,T11’) n M(sa,T11’) = 0 cannot be

satisfied at the same time because |T11’I > ITI/2. This is a contradiction.

CI

Example 4.3. This example explains the proof of Lemma 4.1 through an example file

system. Let f1 = {0, 1, 2, 3}, f2 = {0, l, 2, 3} and M = 8. Note that this file system

satisfies the conditions of Lemma 4.1. Let buckets be distributed as in Figure 4.4,

where mk, k = 0, , 15, denotes an element in Z 3. Since we have only eight devices,

m1, at m, is not implied by u at v in the table.

Suppose Figure 4.4 is a perfect optimal distribution for type (0 - 2) range queries.

Then, (mo, m1, . . . , m7} = {m4, m5, . . . , m11} =Z3. Otherwise, the distribution is

not strict optimal for at least one of the range queries q1 = [r(O, 1), *] and q2 = [r(l, 2),

77

f1 f2 DeviceNo

0 0 m0

0 1 m1

0 2 m2

0 3 m3

1 0 m4

1 1 m5

1 2 m6

1 3 "l7

2 0 m3

2 1 m9

2 2 mm

2 3 m11

3 0 M12

3 1 "113

3 2 m14

3 3 "215

Figure 4.4. Bucket Distribution When F 1 = 4, F2 = 4 and M = 8

*]. This implies that {m0, m1, m2, m3} = {m3, m9, m11), m11}. Since {m0, m1} and

{m3, m9] are disjoint (otherwise, the distribution is not strict optimal for range query q3

= I r(O. 2). r(O. 1) 1). {mo. m1} = (mm. mm} and {m2 m3} = (mg, m9}. Let us con-

sider the range query q4 = [r(O, 2), r(O, 2)]. Then, the devices which have the qualified

buckets for this range query are m0, m1, m2, m4, m5, m6, m3, m9, m11). Here, m2 is

one of mg or 1719, and m11) is one of mg or m1. Thus, at least two devices have more

than one qualified buckets for this range query. However, m7 does not have any

qualified bucket for q3. This contradicts the assumption.

Lemma 4.2. When a file consists of n fields (n 2 2) and the given number of devices M

is equal to four, perfect optimal distribution for type (0 - 2) range queries does not exist

if there are at least two fields i and j such that F,- 2 3 and FJ- 2 3.

Proof: It is sufficient to prove the lemma for files consisting of only two fields. Sup-

pose perfect optimal distribution for type (0 - 2) range queries exists. Thus, we have a

78

distribution for this file system which is perfect optimal for type (0 - 2) range queries.

Let (mg, m 1 , m2, m3} be the set of four devices. Since any two of buckets <0, 0>, <0,

1> and <0, 2> should not be stored at the same device, let M (0,0) = {mg}, M(O, 1) =

{m1} and M(0,2) = {mg}. Since M(O, {0, 1}) and M(l, {0, 1}) are disjoint (otherwise,

the distribution is not strict optimal for query q1 = [r(O, l), r(O, l)]), and M(l, {0, 1})

and M(2, {0, 1}) are disjoint, M(O, {0, 1}) = M(2, {0,1 }). Since M(O, 0) is not equal to

M(2, 0), M(O, 0) = M(2, l) and M(O, l) = M(2, 0). Thus, bucket <2, 0> is stored at

device m1, and bucket <2, l> is stored at device m0. Since bucket <2, 2> cannot be

stored at any one of the devices m0, m1 and m2 (otherwise, the distribution is not strict

optimal for at least one of the range queries q2 = [2, r(O, 2)] and q3 = [r(O, 2), 2]), M(2,

2) = {m3}.

Now, for any allocation of bucket <1, l> to any one of the devices mg, m 1, m 2 and

m3, the distribution is not strict optimal for at least one of the queries q4 = [r(O, l), r(l,

2)] and q5 = [r(l, 2), r(l, 2)]. This is a contradiction. El

Theorem 4.1. When a file consists of n fields (n 2 2) and the given number of devices

is M, there does not exist a perfect optimal distribution for type (0 — 2) range queries if

(1) there are at least two fields i and j, and two integers a and b such that 2 S a < F1, 3 S

b S F1 and ab = M, or (2) there are at least two fields i and j such that F,- 2 3, F1 2 3 and

M = 4.

Proof: This is a direct consequence of Lemma 4.1 and Lemma 4.2. [3

Thus, there does not exist a data distribution method which guarantees perfect optimal

distribution for type (0 - 2) range queries even for every file with only two fields.

4.3.2. Type (0 - 1) Range Queries

In this section we show that for files with three or more fields, there does not exist

perfect optimal distribution for type (0 - 1) range queries in many cases.

79

Theorem 4.2. When a file consists of n (n _>. 3) fields and the given number of devices

is M, there does not exist a data distribution which is strict optimal for any type 0 range

query that has at most two unspecified fields, and for any type 1 range query that has at

most one unspecified field if (1) there are at least three fields i, j and k such that F,- S F,-

<Fk, and M <F1-F,C SFJ-Fk S 2M, and Fk 2 FJ- + Fij / M, and (2) there are two integers

bandc such thatij = ch =M.

Proof: It is sufficient to prove the theorem for files consisting of only three fields. For

convenience, let these three fields be 1, 2 and 3 such that F 1 S F2 < F3 and M < F 1F3

S F2F3 S2M and F3 2 F2 + F2F3 / M. Suppose the theorem is not true. Then, we

have a distribution which is strict optimal for any query in the theorem. Let cF 3 = M

and bF2 =M. This implies that c < F1 and b < F3. Suppose bucket <0, 0, 0> is

stored at device m0, bucket <0, 0, 1> is stored at m1, . . . , and bucket <0, 0, F3—1> is

stored at mp3_1. Clearly, for any u 6 f1, v 6 f2 and a set W which contains some con-

secutive elements in f3 such that IW | < M, M(u,v, W) is a set whose size is IW I, and

hence m0, . . . , m1.-3-1 are all different. We will show that buckets <0, 0, b> and <c, O,

b> should be stored at device mo. At first, M(O, 0, f3) is equal to M(O, 0, f3) (other-

wise, the distribution is not strict optimal for at least one of the range queries q1 = [0,

r(O, c-l), *] and q2 = [0, r(l, c), *]). Thus, the possible set of devices at which bucket

<0, c, b> can be stored is (mo, . . . , mp3_1}. Bucket <0, 0, b> cannot be stored at any

one of the devices m 1, . . . , mb. Otherwise, for range query q3 = [0, *, r(l, b)], at least

one of the devices m1, . . . , m1, has two or more qualified buckets while there exist a

device which does not have any qualified bucket. Note that the number of qualified

buckets for q3 is M. Bucket <0, 0, b> cannot also be stored at any one of the devices

mb+1, . . . , mp3_1. Otherwise, the distribution is not strict optimal for range query q4 =

[0, *, r(b, F3—1)]. Note that the number of qualified buckets for q4 is less than or equal

to M. Thus, bucket < O, c, b> should be stored at device m0. (Figure 4.5 gives a pic-

torial view of these steps.)

80

f1 f2 f3 Device No

0 0 0

b

0 0 Fir-1

0 1

I) c-1

0 c 0

0 c b

0 c F3-1

1 .

c’-1 :

c 0 O

c o s
c 0 173—1

Figure 4.5. Nonexistence of Perfect Optimal Distribution for Type (0 - 1) Range Queries
I
l
l

81

Now, in order for the distribution to be strict optimal for queries q5 = [r(O, c-l), 0,

*] and 46 = [r(l, c), 0, *], M(c, 0, f3) should be the same as M(O, 0, f3). Thus, the pos-

sible set of devices at which bucket <c, 0, b> can be stored is {m0, . . . , m1.-3-1}.

Bucket <c, 0, b> cannot be stored at any one of the devices m 1 , . . . , mp3_1. Otherwise,

the distribution is not strict optimal for at least one of the queries 47 = [*, 0, r(1,b)] and

qg = [*, 0, r(b,F3—1)]. Thus, bucket <c, O, b> should be stored at device m0. How-

ever, this bucket distribution is not strict optimal for query q9 = [*, r(O, c), b] because

device m0 has at least two qualified buckets for q9 while there exists a device which

does not have any qualified bucket for q9. Note that cF 3 = M and F3 > F2 + F2F 3 /

M imply that the number of qualified buckets for qg is less than or equal to M. This

completes the proof. III

Corollary 4.1. When a file consists of n (n 2 3) fields and the given number of devices

is M, perfect optimal distribution for type (0 - 1) range queries does not exist if the same

conditions of Theorem 4.2 are satisfied.

Corollary 4.2. When a file consists of n (n 2 3) fields and the given number of devices

is M, there does not exist a data distribution which is strict optimal for any range query

that has at most one range specified and at most one unspecified field if (1) there are at

least three fields i, j and k such that F,- < Fj < Fk, and M < F1Fk S Fij S 2M, and F1, 2

Fj + F1F], / M, and (2) there are two integers b and e such that bFJ- = CF1, = M.

Proof: It can be observed that Theorem 4.2 is proved by considering range queries (q1

through qg) which have at most one unspecified field. The only one possible exception

is query qo which may have two unspecified fields if Fj = c + 1. When the condition F,-

S F, < Fk is replaced by F,- < Fj < Fk from those of Theorem 4.2, the query q9 is

guaranteed to be a type 1 range query (i.e., r(O, c) is a range specification) because Fj >

F; 2 c + 1. Thus, the corollary follows. III

By Corollary 4.2, there does not exist a data distribution method which guarantees strict

82

optimal distribution for any range query that has at most one range specified and at most

one unspecified field even for every file with only three fields. This also implies that

there is no data distribution method which guarantees perfect optimal distribution for

type (0 - 1) range queries for every file with only three fields.

4.3.3. Type 0 Range Queries

When each field size and the given number of devices are power of 2, by Corollary

3.4 perfect optimal distribution for type 0 range queries is always possible if the number

of fields whose sizes are less than the given number of devices, is no greater than four.

The data distribution methods for type 0 range queries are also presented in chapter 3.

In [Sun87] it has been shown that perfect optimal distribution does not exist for binary

cartesian product files with n fields, if M 2 4 and n 2 [logZMJ + 2. This result implies

that perfect optimal distribution for type 0 range queries is not always possible for files

with four or more fields. However, for general file systems, sufficient condition for

either existence or nonexistence of perfect optimal distribution for type 0 range queries

has not been found.

We have shown through Theorem 4.1 and Theorem 4.2 that there are inherent limi-

tations to achieve perfect optimal distribution for range queries even for a file consisting

of small number of fields. In the following sections we present optimal data distribution

methods for range queries. These methods are the extended version of FX distribution

methods presented in chapter 3.

4.4. Optimal Data Distribution Methods for Range Queries

In this section we present FX distribution methods for range queries. We describe

basic optimality conditions in section 4.4.1. In section 4.4.2 and the following sections

we will present field transformation functions developed for range queries. The condi-

tions to achieve optimal distribution by these field transformation techniques will also be

83

described. For convenience we assume, from now on, that each field size and the given

number of devices M are power of 2.

4.4.1. Optimal Distribution by Basic FX Distribution Method

In this section we describe conditions for optimal distribution for various types of

range queries by using the Basic FX distribution method. The definition of the Basic

FX distribution method is given in section 3.3.

Example 4.4. Figure 4.6 shows the bucket distribution by the Basic FX distribution

method, where f1 = {0, l, 2, 3}, f2 = {0, 1, 2, 3} and M = 4. Here, Device N0 =

TM [J1 [+] J2], where J1 6 f1, J2 6 f2 and TM returns the rightmost two bits of the

result of J 1 [+] J 2.

f1 f2 Device No

000 000 0

000 001 1

000 010 2

000 011 3

001 000 1

001 001 0

001 010 3

001 011 2

010 000 2

010 001 3

010 010 0

010 011 1

011 000 3

011 001 2

011 010 1

011 011 0
Figure 4.6. Basic FX Distribution When F 1 = F 2 = 4 and M = 4.

We can verify that the distribution of Figure 4.6 is perfect optimal for type (0 - 1)

range queries but is not perfect optimal for type (0 - 2) range queries because it is not

84

strict optimal for query [r(O, 1), r(O, 1)]. In fact, by Theorem 4.1 there does not exist a

perfect optimal distribution for type (0 - 2) range queries for this file system.

Since we have shown that FX distribution methods are strict optimal for mosr class of

type 0 range queries in chapter 3, we will not discuss the cases when only type 0 range

queries are involved.

Lemma 4.3. For any type 0 range query which has at least one unspecified field whose

size is greater than or equal to M, all the devices have equal number of qualified buck-

ets by the Basic FX distribution method.

Proof: The proof is almost the same as that of Theorem 3.2. III

Theorem 4.3. The Basic FX distribution method is strict optimal for any range query,

for which there exists at least one unspecified field whose size is greater than or equal to

the given number of devices M.

Proof: Since a range query is a set of partial match (i.e., type 0 range) queries, and by

Lemma 4.3 we know that equal number of qualified buckets are distributed in all the

devices for each partial match query, the proof immediately follows. I]

Corollary 4.3. The Basic FX distribution method is strict optimal for any range query,

for which there exists at least one range specified field such that the specified range size

is an integral multiple of the given number of devices M.

Proof: When the specified range size is F1, it is easy to see that the effect of the Basic

FX distribution method for this range is the same as that of the Basic FX distribution

method for an unspecified field whose size is F, (note that for any integers J 1 and J2,

TM(J 1 [+] J 2) = TM(J 1) [+] TM(J2)). Thus, the corollary follows. III

Theorem 4.4. The Basic FX distribution method is strict optimal for any range query,

for which there is at most one range specified field and all the other fields are specified

as single values.

Proof: The proof is almost the same as that of Theorem 3.1. E]

1
.

85

Theorem 4.5. When all the field sizes are greater than or equal to the given number of

devices M, the Basic FX distribution method is perfect optimal for type (0 - 1) range

queries.

Proof: When all the fields are specified as a single value, the proof is trivial. When at

least one field is unspecified, the proof follows by Theorem 4.3. The only remaining

case is when one field is specified as a range and all the other fields are specified as sin-

gle values. The proof for this case follows by Theorem 4.4. III

Theorem 4.3, 4.4 and 4.5 show sufficient conditions for optimal distribution by the

Basic FX distribution method. However, the Basic FX distribution method does not

give optimal distribution for many types of range queries. The following proposition

gives the conditions for optimal distribution for these cases.

Proposition 4.1. Let q(f) = {i1, i2, , ik} be the set of range specified or unspecified

fields for a range query q. Let S1} be the set of elements in the range when field iJ- is

range specified, or be f1}. when field i,- is unspecified. Then, FX distribution methods are

strict optimal for a range query q, if there exists a set of fields {1' 1, , ij} c; q(f) such

that |S1l>< ><S,-j| is an integral multiple of M, and #{(J,-1, J,-}.)e

1'

S11>< x51}, | TM [H1019] :2} = |S,-lx x51). I/Mfor allze ZM.

p:

Proof: The proof is similar to that of Theorem 3.2. [I

Let S,- be the set of elements in the range when field i is range specified, or be f1 when

field i is unspecified. Proposition 4.1 says that we can guarantee strict optimal distribu-

tion for a given range query, if

(1) there exists a subset of the range specified or unspecified fields {i 1, . . . , iI} such

that |S1l x - - - x51]. | is an integral multiple of M, and

(2) the records projected on these sets of fields are distributed uniformly among the M

devices.

l
!
I

86

In other words, optimal distribution for a subset of fields guarantees strict optimal distri-

bution for many queries in which those fields are unspecified or range specified.

However, when the size of none of the fields is greater than or equal to M, the con-

ditions given in Proposition 4.1 are not satisfied in the Basic FX distribution method.

Thus, in the next section we propose field transformation techniques for the fields whose

sizes are less than the given number of devices M. Note that the definition of field

transformation functions is given in section 3.4. These field transformation techniques

increase the scope of optimality over that of the Basic FX distribution method. By the

definition of field transformation functions (i.e., one—to—one function), it is easy to see

that all the lemmas, theorems and proposition that hold for the Basic FX distribution

method also hold for FX distribution methods (i.e., the Basic FX distribution method

with field transformation functions).

4.4.2. Field Transformation Functions for Range Queries

In the previous section conditions for optimal distribution have been described

when the Basic FX disribution method is used. In this section we present field transfor-

mation techniques which can improve the performance over the Basic FX distribution

method significantly. The following paragraph exemplifies the idea.

Whenf1 = {0, 1, 2, 3},f2 = {0, 1, 2, 3} and M = 8, the disribution by the Basic FX

distribution method is not strict optimal for many range queies (we can easily see that

the distribution in Figure 4.6 is not strict optimal for many range queries when M = 8).

Suppose X is an one-to-one mapping such that X (0) = O, X (1) = 4, X (2) = 2, X (3) = 6.

When each bucket <u, v > in the file f1 x f2 is stored at the device it [+] X (v), the dis-

tribution is strict optimal for any range query in which field 1 is not specified as a range.

(It can be easily verified by substituting (100)B, (010),; and (110)19 for (0003, (010)];

and (011)B, respectively in f2 column of Figure 4.6. In fact this distribution is perfect

optimal for type (0 - 1) range queries.) Thus, our objective is to find such mapping, X

'
1
:

87

in general, for the given file system. It will be shown that for any values of F 1, F 2 and

M, such mapping can be easily found. The following proposition gives sufficient condi-

tion for the mapping X.

Proposition 4.2. Let a file consist of two fields i, j whose sizes are less than the given

number of devices M, and X be an injective function from N to ZM. Then, FX distribu—

tion method with I-transformation for field i and X-transformation for field j is strict

optimal for any range query in which field i is not range specified, if for any L consecu-

tive valuesJ1, . . . ,JL in fieldjsuch thatLSM/Fi, {X(J1), . . . ,X(JL)} = {kxFi +0): I

x=0, . . . ,L-l, andforallx,k,, e N,kx <M/F1,0Scx <F,-, andko at. ..¢kL_1}.

The proof for the proposition is straightforward from Lemma 3.2 (note that [-

transformation function denotes the identity function). Based on Proposition 4.2, we

describe an idea of how to find the mapping X in the following paragraph.

Let Fj = 8 and M = 16. The sizes of field i in which we are interested are 2, 4, and

8. Note that when the size of field i is greater than or equal to M, by Theorem 4.3 and

Theorem 4.1 the distribution is strict optimal for any range query in which field i is not

range specified. When F,- = 8, in order to satisfy the condition of the mapping X in Pro-

position 4.2, X (0), X (1), . . . , X (7) should be in interval [0, 8) and [8, l6), alternately.

Here, "[" and "(" denote "closed" and "open", respectively. When F,- = 4, X (0), X (l), . .

. , X(7) should be in interval [0, 4), [4, 8), [8, 12) and [12, 16) in turn. Since the

sequence of intervals also has to satisfy the case when F; = 8, the above sequence of

intervals has to be reordered such as [0, 4), [8, 12), [4, 8) and [12, 16). When F,- = 2,

X(O), X(l), . . . , X(7) should be in interval [0, 2), [2, 4), [4, 6), [6, 8), [8, 10), [10, 12),

[12, 14), [14, 16) in turn. Similarly, we have to reorder the sequence of intervals such

as [0, 2), [8, 10), [4, 6), [12, 14),[2, 4), [10, 12), [6, 8), [14, 16).

This idea can be stated as follows : When (a,,,_1 . . . a0)3 is the binary notation of

J e fj, where m = logzM,

88

(1) For any consecutive two J 1, J2 e fj, the most significant bit values of X (J 1) and

X (12) have to be different

(2) For any consecutive four J 1, 12, J3, J4 e fj, two most significant bits (i.e., left-

most two bits) ofX (J1), X (12), X (J3) and X (J4) have to be all different.

(3) Thus, in general for any consecutive d values J1, . . . , Jd e fj, where d is a power

of 2, the logzd most significant bits ofX (J1), . . . , X (13) have to be all different.

Based on these observations we propose the following field transformation functions.

Definition 4.7. Let f; = {0, . . . , Fl—l} such that |f1l is a power of 2, and let

(a, a1ao)B bethe binary notation ofle f1. Then, URM : f1 —) ZM isafunction

such that URM(I) = (a0a1 ° - ° am_2a,,,_1)3, where M is a power of 2 and m = logzM.

Since we can add arbitrarily large number of 0’s to the left of the given binary number

of an integer 1, function UK” is always defined for any power of 2 integer M.

Definition 4.8. Letfi = {0, . . . , F1—1] such that If1l < M, where |f1l and M are power

of 2. Then, UMM' If” : f, —> ZM is a function such that

UMM’ '4' (1) = URMa) [+] (1 mod dM‘ 'f"), where dM' '1’" = M/ I f, I .

Example 4.5. When f1 = {0, 1, 2, 3],f2 = {0, 1, 2, 3, 4, 5, 6, 7} and M =16,

(a) 081601) = {0 8. 4. 121 and UMW‘tfi): {0.9.6.15}.

(b) 0121602) =-{0, 8, 4, 12,2, 10, 6, 14}, and (11416302) = {0,9, 4, 13,2, 11,6,

15}.

Lemma 4.4. When there are only two fields i, j such that I fjl is less than the given

number of devices M, functions URM and UMM‘F’ satisfy the condition of the function

X in Proposition 4.2.

Proof: The proof of the lemma is straightforward from the definition of URM and

MP,
UM CI

89

From the definition of the function UR, we can observe the following relations.

UR-property 1. Let f1 = {0, . . . , Fl—l} such that |f1l < M. Then, for any I 6 f1,

URM(1) = URF‘(1)* M/F1.

The proof of UR—property 1 is straightforward from definition. Since UR F’(f,) = fl,

UR-property 1 says that when the domain size of a function UR is less than the range

size, the values of function UR are the multiples of the range size / the domain size.

UR-property 2. When f1 = {0, . . . ,F1—1} such that F, < M, URM(f1) = UM‘F’(f1).

Since for any I 6 f1 such that If, I < M, URM(l) is a multiple of M/FI, and for any two

different 11 and 12 6 f1, URM(I1) :t URM(12), it is easy to see UR-property 2. Thus, by

UR-property 2, all the lemmas and theorems in [12, 20] which hold for U—transformation

functions also hold for UR-transformation functions. Several useful characteristics of

the function UM will be described in section 4.5.4 and 4.5.5.

Because of notational complexity we will use the following conventions : When

the parameter M of a function UR denotes the given number of devices, we will leave

out the parameter by default. When the parameter of a function UR does not mean the

given number of devices, we will use the notation BI instead of UR. For example, UR F’

in UR-property 1 will be denoted by BIF'. The parameter M and |f1I of function UM

will be left out whenever there is no ambiguity.

Proposition 4.2 defines the class of function X such that FX distribution methods

with I (f1) and X (fj) gives strict optimal distribution for any range query in which field i

is not range specified. That proposition is only for the case when field i is [-

transformed. In the following proposition we generalize Proposition 4.2 to include the

case when other transformation functions are applied to field i.

Proposition 4.3. When a file consists of two fields 1', j whose sizes are less than the

given number of devices M, let X,- and Xj be transformation functions applied to field i

90

and j, respectively. Let d,- = M/F1. Then, FX distribution methods with X1(f,-) and

Xj(fj) are strict optimal for any range query in which field i is not range specified if

(1) X1(f,-) [+]Xj(J1) and X1(f,-) [+]X1-(Jz) are disjoint for any J1, J2 e f,- such that

J1[+]J2 <d,-, and

(2) X1(f,-) [+] Xj(J) =X1-(f1) [+] Xj(J[+](Xd1~) for any J e f, and for any a e N such that

J[+]01d,- SFj-l.

Proof: (1) and (2) in the proposition guarantee that for any J e fj, the sets M (f1, J),

M(f1,J+l), . . . , M(f,-,J+d,~-l) are disjoint if J+d1—1 S Fj-l, and M(f1,J) =

M(f1, J+0td,-) for any or e N such that J+ord1 S Fj—l. Thus, the proof follows.

El

Proposition 4.3 gives general conditions which guarantee strict optimal distribution for a

range query in which field i is not range specified. These conditions will be used fre-

quently in proving theorems.

4.4.3. I and UR Field Transformation Functions

In this section we show that for any two fields i, j and the given number of devices

M such that F,- < M, FX distribution methods are perfect optimal for type (0 - 1) range

queries when I-transformation is applied to field i and UR-transformation is applied to

field j.

Theorem 4.6. When there are only two fields i, j such that Fj is less than the given

number of devices M, the FX distribution method with I—transformation for field i and

UR-transformation for field j is (1) perfect optimal for type (0 - 1) range queries when

F1Fj > M, and (2) perfect optimal for type (0 - 2) range queries when F1F}- S M.

Proof: (case 1) F1FJ- >M

When one field is range specified and the other field is specified as a single value, the

proof follows from Theorem 4.4. When field i is range specified and field j is

91

unspecified, the proof follows from UR-property 2 (i.e., UR (fj) = U (fj)) and Lemma

3.8. When field j is range specified and field i is unspecified, the proof follows by

Lemma 4.4 and Proposition 4.2. When there is no range specification, the proof follows

by UR-property 2 and Theorem 3.4.

(case 2) HF S M

From UR-property 2 and Lemma 3.8, each device has at most one bucket, and therefore

the proof follows. C]

Example 4.6. Let f1 = {0, 1, 2, 3},f2 = {0, l, 2, 3} and M = 8. Figure 4.7 shows the

bucket distribution by the FX distribution method with I (f1) and UR (fz). Here,

UR (fz) = {0, 4, 2, 6} and Device N0 = TM(I(J1) [+] UR (12)), J16 f1, 12 6 f2.

I (f1) UR Ifz) Device No

000 000 0

000 100 4

000 010 2

000 110 6

001 000 1

001 100 5

001 010 3

001 110 7

010 000 2

010 100 6

010 010 0

010 110 4

011 000 3

011 100 7

011 010 1

011 110 5
Figure 4.7. FX Distribution with I And UR Transformation

We can verify that for any type 0 and type 1 range query the distribution of Figure 4.7 is

strict optimal.

92

Before we describe the next section, it is worth considering the following question.

Does there exist three field transformation functions X 1, X 2 and X3 such that for any

two fields whose sizes are less than M, FX distribution methods with any two of X 1, X2,

X3 transformation functions are perfect optimal for type (0 - 1) range queries ? Unfor-

nately, there do not exist such transformation functions because otherwise, it immedi-

ately contradicts Theorem 4.2. For example, let a file consist of three fields 1, 2 and 3

such that F 1 = 4, F 2 = 4 and F3 = 8, and let M = 16. Suppose the above such functions

X 1, X 2 and X3 exist, and let us apply X 1, X 2 and X3 transformation functions to field 1,

2 and 3, respectively. Then, it is easy to see that the distribution for this example file

system should be strict optimal for any type 0 range query which has at most two

unspecified fields, and strict optimal for any type 1 range query which has at most one

unspecified field. However, by Theorem 4.2 we know that there does not exist such dis-

tribution for this file system. This implies there does not exist a transformation function

Y such that FX distribution methods with I and Y-transformation as well as UR and Y~

transformation is perfect optimal for type (0 - 1) range queries for every file with two

fields. Thus, it is inevitable to have some restrictions for perfect optimal distribution for

type (0 - 1) range queries when I and UM-transformation, and UR and UM-

transformation are considered.

4.4.4. I and UM Field Transformation Functions

In this section we show that for any values of F,-, Fk and the given number of dev-

ices M such that F1 S Fk < M, FX distribution methods are perfect optimal for type (0 -

1) range queries when I—transformation is applied to field i and UM-transformation is

applied to field k.

Lemma 4.5. When there are only two fields i and k whose sizes are less than the given

number of devices M, the FX distribution method with I—transformation for field i and

UM-transformation for field k is strict optimal for any range query in which field i is not

93

range specified.

Proof: This is a direct consequence of Lemma 4.4 and Proposition 4.2.

III

Lemma 4.6. When the size of field k is less than the given number of devices M, let d1,

= M/F1,. Then, for any two different nonnegative integers J 1 and J2 such that J 1 and

J; are within the same interval of size dk (i.e., J1 [+] J2 < dk), UM (fk) [+] J1 and

UM (fk) [+] J2 are disjoint.

Proof: LetJ1=J’dk[+]c1andJ2 =J’dk [+] c2, where 1’, c1, c2 6 N, and c1 and c2

are less than dk. Assume the lemma is not true. Then, there exist two different K 1, K 2

e fk such that

UR (K1) [+] (K1 mod dk)[+1JIdk [+101 = UR (K2) [+] (K2 mod dk) [+11’dk [+] 02

Note that UM (K 1) = UR (K 1) [+] (K 1 mod dk) by definition. After removing J ’dk

from both sides of the above equality, we have

UR (K1) [+] (K1 mod dk)[+lc1 = UR (K2) [+1 (K2 mod dk)[+102

This implies that UR (K1) [+] UR (K2) = [(K1 mod dk) [+] c1] [+] [(K2 mod dk) [+] c2].

Since UR (K1) [+] UR (K2) > dk by UR-property 1, and (K1 mod dk) [+] c1,

(K2 mod dk) [+] c2 is less than dk, there is no way the above equality can be satisfied.

This is a contradiction. CI

Lemma 4.7. When the size of field k is less than the given number of devices M,

UM (fk) [+] UM (K) = UM (fk) for any K e fk.

Proof: Since UM (fk) [+] UM (K) are a set of Fk different nonnegative integers, it is

sufficient to show that for any two different K 1, K 2 in fk, (UM (K 1) [+] UM (K2)) e

UM(fk). Let dk=M/Fk. Now,

UM (K1) [+] UM (K2) = [UR (K1) [+] (K1 mod do] [+] [UR (K2) [+] (K2 mod 40]

= UR (K1) [+] UR (K2) [+] [(K1 [+] K2) mod dk]

94

By UR-property 1, UR (K1) [+] UR (K2) is equal to [3150(1) [+] 31’”* (K2)]dk (note

that we defined BIK to denote URK when the parameter K of function UR does not mean

the given number of devices M). This implies that

UR (K1) [+1 UR (K2) =BIF"(K1 [+] K2)dk = UR (K1 [+] K2)

Thus, UM(K1) [+] UM(Kz) = UR (K1 [+] K2) [+] [(KlI+lK2) mod dk] =

UM(K 1 [+]K2). Since K 1 [+] K2 e fk by Lemma 3.2, the proof follows. E]

Lemma 4.8. Let the size of field k be less than the given number of devices M. Then

for any K e fk, UM (fk) [+] UR (K) = UM (fk) [+] (K mod dk), Where d1, = M/Fk.

Proof: Let K e fk. Then,

UM (fit) [+] UR (K) = UM (fk) [+] UR (K) [+] (K mod dk) [+] (K mod dk)

= UM (fr) [+] UM (K) [+] (K mod dk)

Since UM (fk) [+] UM (K) = UM (fk) by Lemma 4.7, the proof follows. E]

Lemma 4.9. When there are only two fields i and k whose sizes are less than the given

number of devices M and F; S Fk, the FX distribution method with I-transformation for

field i and UM-transformation for filed k is strict optimal for any range query in which

field k is not range specified.

Proof: Let dk = M/Fk. By Lemma 4.6, for any two different K 1 and K2 which are in

the same interval of size dk, UM (fk) [+] K1 and UM (fk) [+] K2 are disjoint. Thus, by

Proposition 4.3 it is sufficient to show that for any I 6 f1, UM (fk) [+] J =

UM (fk) [+] (J [+] 0111,,), where Otis any nonnegative integer such that ordk < F1. Now,

UM (ft) [+1 out = UM (it) [+] UR (31h (6»

= UM (ft) [+] (31%) mod do

The first equality holds because UR (31“ (01)) = BIF* (31F* (q))dk by UR-property 1, and

BIF‘ (81 F‘ (01)) = or. The second equality holds by Lemma 4.8. Since at < Fk/d;c

I
I
!

95

(because F1- SFk), this implies that BIF‘ (at) is a multiple of dk for all at = 0, . . . ,

F1/dk—l. Thus, BIF‘ (0t) mod dk = 0 and therefore UM (fk) [+] ordk = UM (fk) for all or =

0, . . . , F1/dk—1. This completes the proof. [I

Theorem 4.7. When there are only two fields i and k whose sizes are less than the

given number of devices M, the FX distribution method with I-transformation for field i

and UM-transformaton for field k is (l) strict optimal for any range query in which field

i is not range specified if F; > Fk, and (2) perfect optimal for type (0 - 1) range queries if

F,- S Fk, and (3) perfect optimal for type (0 - 2) range queries if F1Fk S M.

Proof: For (1) and (2), the theorem is a direct consequence of Lemma 4.5 and Lemma

4.9. When F1Fk S M, since F1—1 < M/Fk, the theorem is a direct consequence of

Lemma 4.6. E]

Example 4.7. Let f1 = {0, 1, 2, 3},f2 = {0, 1, 2, 3} and M = 8. Figure 4.8 shows the

bucket distribution by FX distribution method with 1 (f1) and UM (fz). Here, UM (fz)

= {0, 5, 2, 7} and Device No=TM(I(J1)[+]UM(J2)),J1e f1,J2 6 f2.

We can verify that for any type 0 and type 1 range query the distribution in the figure is

strict optimal.

4.4.5. UR and UM Field Transformation Functions

In this section we discuss the cases of optimal distribution when UR and UM field

transformation functions are used.

Lemma 4.10. Let the size of field k be less than the given number of devices M.

Then, for any K e fk, K mod (1 = UM(K) mod d, where d is a power of 2 which is less

than or equal to M /Fk.

Proof.‘ Let dk = M/Fk.

UM (K) mod d = [UR (K) [+] (K mod dk)] mod d

= [UR (K) mod d] [+] [(K mod dk) mod d]

96

[(fl) UM (fz) Device No

000 000 0

000 101 5

000 010 2

000 111 7

001 000 1

001 101 4

001 010 3

001 111 6

010 000 2

010 101 7

010 010 0

010 111 5

011 000 3

011 101 6

011 010 l

011 111 4
Figure 4.8. FX Distribution with I And UM Transformation

Since UR (K) is a multiple of dk by UR-property 1, and dk is a multiple of d,

UR (K) modd = 0 and (K mod d1,) modd = K mod d. Thus, the proof follows.

[:1

Lemma 4.11. When there are only two fields j and k whose sizes are less than the

given number of devices M, the FX distribution method with UR-transformation for

field j and UM-transformation for field k is strict optimal for any range query in which

field j is not range specified, if (1) F,- 2 Fk or (2) F,Fk S M.

Proof: When one field is range specified and the other field is specified as a single

value, the proof follows from Theorem 4.4. Thus, we have only to consider the case

when field j is unspecified, and field k is range specified or unspecified.

(case 1) F,- ZFk

Let dj = M/Fj and dk = M/Fk. Then, dj S dk. By UR-property 2, UR(fj) = U(f1), and

by Lemma 4.10, UM(K) mod dk = K mod dk for any K in fk. Since d,- S dk, by Lemma

97

3.8 the proof follows.

(case 2) Fij S M

This is a direct consequence Lemma 4.10 and Lemma 3.8. CI

Lemma 4.12. When there are only two fields j and k whose sizes are less than the

given number of devices M, the FX distribution method with UR-transformation for

field j and UM-transformation for field k is strict optimal for any range query in which

field k is not range specified, if (1) F,- S F1, or (2) Fin S M.

Proof: ’ (case 1) Fj S Fk

Let dk = M/F1,. By Lemma 4.6, we know for any two different nonnegative integers J1

and J2 such that J 1 and J2 are within the same interval of size dk (i.e., J 1 [+] J2 < dk),

UM (fk) [+] J1 and UM (fk) [+]12 are disjoint. Thus, by Proposition 4.3 it is sufficient

to show that for any J e fj, UM(fk) [+] UR (J) = UM(fk) [+] UR (J [+] adk), where or is

any nonnegative integer such that ordk < Fj. Now, since J is also an element of fk

because FJ- S Fk, by Lemma 4.8 UM(fk) [+] UR (J) = UM(fk) [+] (J mod dk) for any J

e fj. This implies that

UM(fit) [+] UR (J [+] adk) = UM(fir) [+] [(J [+] (Id/c) mod dk]

= UM(f/t) [+] (J mod dk)

Note that J [+] ord,c is also an element offk. Thus, by Proposition 4.3 the proof follows.

(case 2) Fij S M

This is a direct consequence of Lemma 4.10 and Lemma 3.8. CI

Theorem 4.8. When there are only two fields j and k whose sizes are less than the

given number of devices M, the FX distribution method with UR-transformation for

field j and UM-transformation for field k is (1) strict optimal for any range query in

which field j is not range specified if Fj 2 Fk, and (2) strict optimal for any range query

in which field k is not range specified if FJ- S Fk, and (3) perfect optimal for type (0 - 1)

range queries if F,- =Fk, and (4) perfect optimal for type (0 - 2) range queries if

I!

98

Fij S M.

Proof: The theorem is a direct consequence of Lemma 4.11, Lemma 4.12 and Lemma

3.8. [:1

Example 4.8. Let f1 = {0, 1, 2, 3},f2 = {0, 1, 2, 3} and M = 8. Figure 4.9 shows the

bucket distribution by FX distribution with UR (f1) and UM (fz). Here, UR (f1) = {0,

4, 2, 6}, UM(f2) = {0, 5, 2, 7} and Device N0 = TM(UR(J1)[+]UM(12)), J16 f1, J2

6 f2.

UR (f1) UM (fz) Device No

000 000 0

000 101 5

000 010 2

000 111 7

100 000 4

100 101 1

100 010 6

100 111 3

010 000 2

010 101 7

010 010 0

010 111 5

110 000 6

110 101 3

110 010 4

110 111 1
Figlire 4.9. FX Distribution with UR And UM Transformation

We can verify that the distribution is perfect optimal for type (0 - 1) range queries.

4.4.6. 1, UR and UM Field Transformation Functions

In this section we discuss the cases of optimal disribution when 1, UR and UM-

transformation functions are used.

99

Theorem 4.9. When there are only three fields i, j and k such that F,- SFj SF1, < M,

FX distribution methods can be always (1) perfect optimal for type 0 range queries, and

(2) strict optimal for any type 1 range query which has at most one unspecified field if Fj

=Fk, orFiFk SM.

Proof: (1) is true by Corollary 3.4. Thus, let us consider only the case (2). When

F,- S Fj =Fk, let field i be I-transformed, field j be UR-transformed and field k be UM-

transforrned. When F1Fk SM, let field i be UR-transformed, field j be I-transformed

and field k be UM-transformed. Then, for both cases, the theorem is a direct conse-

quence of Theorem 4.6, Theorem 4.7 and Theorem 4.8. CI

Note that by Theorem 4.2 there does not exist a data distribution method which guaran—

tees strict optimal distribution for any range query in Theorem 4.9 for every file with

three fields.

We have shown through lemmas and theorems that FX distribution methods along

with various combinations of field transformation functions give optimal distribution for

many types of range queries. Here, it should be emphasized that the scope of optimality

is increased significantly by these field transformation techniques along with Proposition

4.1. This is because by Proposition 4.1 optimal distribution for a subset of the fields

guarantees strict optimal distribution for many range queries in which those fields are

range specified or unspecified.

CHAPTER 5

NODE PARTITIONING SCHEMES FOR B-TREES

5.1. Introduction

In chapter 3 and 4 we have described data distribution strategies for multikey

search queries which access a set of records for each query. These are type A1 applica-

tions based on the classification in section 1.4. In this chapter we will investigate data

distribution strategies for parallel processing of type A2 applications, i.e., the database

query which accesses a record based on primary key. The object is to enhance con-

currency by parallel processing of tree type index structure for the database stored in the

external storage. Parallel processing strategy for key based access main memory data-

bases can be found in [Cev88].

B-trees are the most commonly used tree type index structure for external data-

bases [Bay72, Com79]. For the database stored in the secondary storage, the height of

an index tree is the most important parameter in data retrieval time. One approach to

reduce the height of a B-tree is to partition a file horizontally, and construct a B—tree for

each subset of the partition. These B-trees are searched in parallel. When the database

size is D and is partitioned into p subsets, the height of each B-tree is approximately

logf(D /p), where f is the fan-out of an index node. Another approach to reduce the

height of a B-tree is to use a large node B-tree for the whole file. When the size of

index nodes is increased p times, the height of a B-tree becomes about longD. The

second method gives smaller height because D > pf for most practical cases. However,

this approach alone may not improve the overall performance because large nodes result

in long block transfer time and more main memory processing time.

101

We propose a node partitioning scheme for large node B-trees for parallel process-

ing. In the proposed scheme, each node is partitioned into multiple subnodes to be dis-

tributed for parallel processing. We also propose a new approach to process these sub-

nodes. We will call the proposed B-tree structure Partitioned Node B-trees (PNB-

trees), while the standard B-trees will be called conventional B-trees. With respect to

the two stage processing model in Figure 2.2, PNB-trees are based on partitioned node

B-tree data construction, and random or object specific data distribution.

The main results presented in this chapter are that the parallel processing of PNB-

trees reduces access time, increases throughput and minimizes the frequency of tree res-

tructuring. The basic structure of PNB-trees is based on B-trees. However, we use a

different approach to process and search PNB-trees. The PNB-tree approach exploits

parallel scanning by distributing multiple subnodes of a B-tree node among parallel

disks.

The rest of this chapter is organized as follows. In section 5.2 we present the basic

structure of PNB-trees, and the search and update algorithms. The hardware environ-

ment for the PNB-tree construction is also discussed in this section. The important

parameters of the PNB-tree are described in section 5.3. Section 5.4 presents a perfor-

mance comparison between PNB-trees and conventional B-trees. Finally, PNB-tree

construction for various disk technology is discussed in section 5.5.

5.2. The PNB-tree

PNB-trees are constructed on synchronized disks where read/write heads of all the

disks are located at the same position. Synchronizing disks for disk interleaving was

proposed in [Kim86] where multiple disks are interleaved like main memory interleav-

ing. It has been shown in that paper that the response time improves considerably by

using disk interleaving techniques when block size is large. This is because synchron-

ized disk interleaving increases data transfer rate significantly. In PNB-trees,

P
I
}

102

synchronized disks are used to exploit searching in parallel.

The PNB-tree is a B—tree with each node partitioned into s subnodes, and all the

subnodes of a node are stored on s different disks. The format of an index node is

(¢,P0)(K1,P1)(K2,P2) - - - (Km,P,,,) where K,- is the key value and P,- is the address of

the child subnode in each disk. This index node is partitioned into 3 subnodes, and all

the subnodes of a node are accessed by the same address pointer. All the subnodes have

the same format except the first one, where the key value in the first record is omitted.

The leaf nodes which contain the data are also partitioned into s subnodes. However,

PNB-trees differ from conventional B-trees in that the key values within a node in

PNB-trees are not required to be in sorted order. This needs extra computation to deter-

mine the child address, but the amount of data movement between disks is reduced con-

siderably because a subnode does not overflow. The rule of locating a data record is

defined recursively as follows :

Let R = {(4) , Po),(K1, P1), (K2 , P2), ~° , (Km , Pm)} be a current index

node. Then the data record with a key value K is in the descendant node

pointed by P , if (Ky , P,) e R - {(1) ,P0)} and (K —Ky) is the minimum non-

negative value among all (K —K,-) , i = l,...,m . If there is no nonnegative

(K —- K1) , i = l,...,m, the desired record is in the descendant node pointed by

P0.

An example of a PNB-tree with a set of key values is given in Figure 5.1. It shows that

each node is partitioned into two subnodes being stored on disks D1 and Dz. Note that

the values in a node are not kept in sorted order. When the key value e.g., 25 needs to

be searched, we first compute the differences 25 —- Ky for all the key values Ky in the

root node. These values are <—7, 4, -66, -46>. By following the pointer associated with

Ky such that 25 - Ky = 4, the node <21, 25, 23, 29> is obtained. Here it is assumed that

all data values are stored in leaf nodes.

jl

103

Dr D2

3 2 9171

\
O

D1 D2 '01 02101 DZID1 D I

,II IIIII IIII IIIII Eltlll IIIII IIEI

2

IIII 12l-

Figure 5.1. Partitioned Node B-tree

The reason for the use of unsorted nodes is to minimize the inter-device data move—

ment. Suppose that a node is in sorted order, and is partitioned and stored as above.

Whenever a subnode overflows, data movement between disks is required. However,

this does not happen in unsorted node construction because inserted records can be

placed in any subnode of a node.

5.2.1. The PNB-tree Operations

(1) LOOKUP

The lookup of a record starts from the root node and continues until the leaf. All

the subnodes of a node are searched in parallel. Let P be the address of the node

currently being accessed. Initially, P is the address of the root. The lookup procedure

consists of two phases. At first, (K , P) is broadcast to all the disks, where K is the

desired key value. If P is the address of a leaf node, find the record and stop. If not,

each disk finds an index record (K1, P1) in its subnode such that (K —K,-) is the

minimum nonnegative value. In the second phase, find the minimum of these minimum

nonnegative values at each disk. If no nonnegative value is found at any disk, repeat

the first and the second phase by replacing P with P0. Otherwise, repeat the same by

104

replacing P with Pj, where (Kj , Pj) is an index record and KJ- is the overall minimum

nonnegative value.

(2) INSERTION

To insert a record, apply the lookup procedure to find the desired leaf node. We

then insert the record into any place within the node, if it has empty room. If the node

is already full, it is sorted and then split into two nodes. The effect of node splitting on

its parent node is handled recursively in the same way as in standard B-trees. Figure

5.2 shows the PNB-tree configuration after the key value 57 has been inserted into the

tree of Figure 5.1.

(3) DELETION

The node underflow in PNB_trees is handled the same way as in standard B-trees.

PNB-trees have an advantage over B-trees because the holes created by deletion can be

easily filled by any records inserted. This is because the values within a node need not

be kept in sorted order. In conventional B-trees the holes can also be used but only at

the cost of sorting the node each time. Figure 5.3 shows the PNB—tree configuration

when key value 71 is deleted from the tree of Figure 5.2.

5.2.2. Parallel Disks Configuration for PNB-trees

For each disk we assume a simple microprocessor with a few thousand bytes of

memory. All the subnodes of a node are processed locally by these processors. Only

the matched record is sent to the host processor. For the second phase of a lookup pro-

cedure, we use a minimum finding hardware module to which all the disks are directly

connected. This module is a simple extension of a multiple input comparator. As soon

as each disk finds an index record (K1-,P1) such that "the desired key value — K1" is

minimum nonnegative value of that disk, it sends that index record to this minimum

finding hardware. If a disk does not find a nonnegative value, it sends (—1, null). The

105

Dr 1132

III 9 III

A D ‘D D, .D

91 - 98 — 7 - 87 -

Figure 5.2. PNB-tree After Insertion of Key Value 57

Dz

, 51 III

D2 D 1 02 D1 1)2

I 87 II —II II21II25II 23II29I|

 IIII EIEI

Figure 5.3. PNB-tree After Deletion of Key Value 71

106

minimum finding hardware determines the overall minimum nonnegative value and then

broadcasts the corresponding address of the child node to all the disks. When all the

disks reply with (—1, null), the address of a child node is the first pointer in the first sub-

node of a node. Since the communication involved is very simple and communication

distance is short, we expect that the time for these operations is negligible compared to

disk access time.

5.3. Motivations of PNB-trees

The motivations of PNB-trees are to reduce the tree height and to reduce the fre-

quency of tree restructuring. This is because the height of index trees and the frequency

of tree restructuring are very important parameters for the performance of external data-

bases.

5.3.1. Compressed Height

Let s be the number of disks, n be the number of records, r be the size of a data

record, and k be the key size. Let the block size be b bytes and the pointer size be p

bytes, where a block is a unit of data transfer. This block corresponds to a subnode in

PNB—trees and a node in conventional B-trees. Let h be the height of a PNB-tree, where

h includes the level of data nodes. To compute the worst case height we assume every

block to be half-full except the root node. Then, the maximum number of leaf nodes is

approximately

shb b "'2

k+p 2(k+p)

Since we need about 2nr/b data blocks (leaf nodes), the relation

shb b h—z > _2n_r

k+p 2(k+p) _ b

should be satisfied [Knu73]. For all the examples in this chapter we will use r = 200

107

bytes, k = 30 bytes andp = 4 bytes. Then, b 2 2500 if h = 3, s = 4 and n = 1 M. There-

fore, 3 Kbyte block size is enough for making 2 level indices in PNB-trees. Even for

large files with 60 M records, the block size of 5 Kbyte guarantees 2 level indices in

PNB-trees when eight disks are used. On the other hand, 4 level indices are needed for

this file when the conventional B-tree of 5 Kbyte block size is used. To guarantee 2

level indices in conventional B-trees we need to use the block size of about 48 Kbyte.

In this case the block transfer time is quite significant.

The node size of PNB-trees is large, but I/O and computation time improves

significantly because the large node is split into smaller subnodes and these subnodes are

processed in parallel. Since the height of a B-tree decreases with increasing node size,

the number of disk accesses in PNB-trees is minimized. Furthermore, the block transfer

time is reduced because only the subnode contributes to the block transfer time. Note

that the height can also be reduced in conventional B-trees by making the node size

large. But this results in a long block transfer time and more main memory processing

time.

5.3.2. Reduced Frequency of Tree Restructuring

The B-tree restructuring due to node overflow is expensive. One way to reduce the

frequency of tree restructuring is to use a large node. When the node size increases k

times, the frequency of tree restructuring due to node overflow reduces by a factor of

l/ck, where c is slightly larger than one. This is because the number of nodes in a B-

tree decreases almost linearly with node sizes. The detailed analysis for computing the

average number of nodes in a B-tree is given in [Yao79].

5.4. Performance Comparison

In this section we compare the response time of PNB-trees with conventional B-

trees which are stored on parallel disks.

108

5.4.1. Performance Models

For conventional B-trees each data request is directed to the disk which contains

the corresponding B-tree. Thus, a request queue is formed in front of each disk. In

PNB—trees all data requests form one queue.

Let X be a random variable for the disk service time of a single disk. Then, X =

S(seek time) + L(rotational latency) + T(block transfer time). For conventional B-trees

on parallel disks Rotational Positioning Sensing (RPS) miss delay should be added for

disk access time [Kim86]. RPS miss delay happens due to the channel contention by

concurrent disk I/Os. Let X,- be the disk service time for disk i in conventional parallel

disks. Then, X1 = S + L + T + RPS1. We define the disk response time to be the disk

service time plus the queue waiting time for the disk service. The queue waiting time is

computed as follows. The arrival process for disk access requests is assumed to be

Poisson process with mean R. L is uniforrrrly distributed with mean one half of one disk

rotation time, S is assumed to be exponentially distributed and the number of RPS,-

rrrisses is assumed to be geometrically distributed [Kim86]. Since the distributions of S,

L ,T and RPS,- are known, the mean and the variance ofX1 can be computed. We choose

M/G/l queueing model to compute average queue waiting time. In M/G/l queueing

model, the queue waiting time for disk i, denoted W1, is given by

ammmwmfl

2(1-Ri*E 1X11)

where R,- is the request rate for disk i [Ross85]. Thus, the average disk response time for

disk i is E [X1] + W,-. Let Z,- be the disk response time for a j—th level node of a B-tree.

We define the data response time Z to be Z 1 +22 + . - . + 2),, where h is the height of

the B-tree. Thus, the average data response time E [Z] = hE [ZI]. Here, for all

j = 1, ..., h,

s

E%P%2@WHWD
i=1

109

where sis the number of disks. For the PNB—tree model,

R (Var (X)+E [X 12)
E[Zj]=E[X]+ 2(1—R*E[X])

S

for all j = l, . . . , h, where R is equal to 2R1. Note that there is only one queue and

i=1

there is no RPS rrriss delay in the PNB-tree model.

As described in section 5.2, PNB-trees use two phase processing to locate a record.

In the first phase, computation time is overlapped with data transfer time because pro-

cessing can be done concurrently with the data transfer between a disk and a local

buffer. For the second phase, we assume that it takes less than one millisecond to find

the overall minimum value.

5.4.2. Average Data Retrieval Time

In this section we use IBM 3380 disk parameters which are E[S] = 7.2 ms, E[L] =

8.3 ms and block transfer rate = 3 Mbyte/sec. We will compare the performance of

conventional B—trees on parallel disks with PNB-trees on synchronized disks. As typical

examples, four disks and eight disks are used. In conventional parallel disks, data

requests are usually skewed for some disks. The following skewed data request patterns

are used in the performance experiments.

1) 2)

DI D2 D3 D4 DI DZ D3 D4 D5 06 D7 D8

.458 .371 .153 .018 .388 .225 .153 .102999 .000001 .010 .054 .068

Here, Di represents disk i and the number below Di represents the probability that some

request is a disk i request. Note that there is no skewed effect in the PNB-tree model

because there is only one queue. Let the number of records be 1 M and all other param-

eters be the same as in section 5.3.1. When 4 disks are used, the data response time for

conventional B-trees is 70.07 ms while data response time for PNB-tree is 54.09 ms.

110

We have used 4 Kbyte block size with a data request rate of 2 per second. When 8

disks are used, block size is 2 Kbyte and the data request rate is 2 per second, the data

response time of conventional B-trees is 77.85 ms and that for the PNB-trees is 51.85

ms. The root node is assumed to be resident in main memory for all response time com-

putation. The height of the B-tree and the PNB-tree is computed with the assumption

that every node is half-full. We see that the use of small block size for conventional B-

trees may increase the data response time due to the increased height. In PNB-trees we

can have smaller block size with the same height by using more disks. Thus, the

PNB-tree takes advantage of less block transfer time. In conventional disk systems with

small block size, the block transfer time is negligible but the time due to increased disk

accesses is significant.

Many parameters need to be considered in comparing the response time of conven-

tional B-trees on parallel disks and PNB-trees on synchronized disks. This is because

the height of B-trees depends on the block size, the number of records, record size and

key field size. We will use the same values for these parameters as in section 5.3.1 for

the following experiments.

We compare three different B-tree processing models. The first is conventional

B-trees with height 4. The second is conventional B—trees with height 3, and the third is

PNB-trees with height 3. The second model uses an increased block size to reduce the

height of the conventional B-tree. In the figures B, LB and PNB denote the response

time of the first, second and third model, respectively.

Figure 5.4 shows response time for various data request rate when IBM 3380 disk

parameters are used. In Figure 5.4.(a), we used a database containing 1 M records with

eight parallel disks. The block sizes for conventional B-trees are 4 Kbyte and 14 Kbyte.

The block size for the PNB-trees is 2 Kbyte. In the figure PNB-trees are the most

efficient, until 12 data requests/sec. Conventional B-trees of height 3 by using a large

block size is always better than the conventional B-trees of height 4. But for very large

111

100 —

9O —

80 —

Data Response 70 _

Time (ms) 60 — B

50 —

40 —

30

LB

PNB

IIIIIIIIIjj

0 2 4 6 810121416182022

Data Request Rate

(a) l M Records

200 a

180 —

160 —~

140 —

Data Response 120 —

100 —

Time (ms) 80 _ LB

60 —

40 —

20 a

B

PNB

 I I I I I I I I I I j

0 2 4 6 8 10 12 1416 18 2022

Data Request Rate

(b) 60 M Records

Figure 5.4. Data Response Time with Various Data Request Rates

112

files this is not the case. Figure 5.4.(b) shows the case for 60 M records with eight

disks. Here, we use 10 Kbyte and 48 Kbyte block sizes for the conventional B-trees,

and 6 Kbyte block size for the PNB-trees. The PNB-trees are the most efficient, until 21

data requests/sec. Using the large block size in the conventional B—trees turns out to be

the worst. This is because for 48 Kbyte block size the block transfer time is comparable

to one disk access time. Furthermore, it suffers severe RPS miss delay due to the long

block transfer time. On the other hand, PNB-trees perform better than conventional B-

trees for both small and large block sizes.

Figure 5.5 shows the response time comparison for various disk speeds, when data

request rate is 20/sec. Disk speed i in these figures denotes M x "average disk access

time of IBM 3380 disk". Figure 5.5.(a) and 5.5.(b) show the results for 4 parallel disks

with 1 M records and for 8 parallel disks with 60M records, respectively. In Figure

5.5.(a) 4 Kbyte and 14 Kbyte block sizes are used for conventional B-trees, and 4 Kbyte

block size is used in PNB-trees. In Figure 5.5.(b) we used 10 Kbyte and 48 Kbyte block

sizes for conventional B-trees and 6 Kbyte block size for PNB-trees. In this figure we

also see that PNB-trees perform better than conventional B-trees for both small and

large block sizes.

The saturation request rate is defined to be a data request rate which makes the

queue length infinite. The PNB-tree achieves a larger saturation request rate than the

conventional B-tree in the worst case, where every request goes to the same disk. Note

that in PNB-trees the worst case is the same as the average case. When the number of

records is 1 M and 8 disks are used with 4 Kbyte block size, the PNB-tree is saturated at

21 data requests/sec, but the conventional B-tree is saturated at 14 data requests/sec.

Therefore, PNB-trees can handle larger data request rate in the worst case.

One problem of PNB-tree organization is an increased queue length. This is

because all disk requests go to the same queue. For normal data request rate, the queue

length is usually very small(less than 0.1). But for high data request rate(e.g., more

113

35 —

30 —

25 -—

Data Response 20 ._

B

Time (ms) 15 -

10 —

5 __ PNB

0 | | I I I | I I I

1 2 3 4 6 7 10

Disk Speed

(a) 1 M Records

50 —1

40 —

Data Response 30 -

Time (ms) 201 LB

10— B

PNB

O I I I I I I I I I

1 2 3 4 5 6 7 8 9 10

Disk Speed

(b) 60 M Records

Figure 5.5. Data Response Time with Various Disk Speeds

114

than 15 data requests per second which are more than 45 disk access requests per

second, if the height of a B—tree is 3), the queue waiting time is no longer negligible and

the PNB-tree suffers from long queue waiting time.

In the next section the range of data request rates until which the benefit of PNB-

trees is larger than the increased queue waiting time will be given. Note that the range

of data request rates resulting in long queue waiting time is quite dependent on the disk

speed.

5.4.3. Threshold Points

We define the threshold point to be the maximum data request rate until when the

response time of the PNB—tree is smaller than the conventional B-tree. Figure 5.6

shows threshold points for various disk speeds. l M records and 4 parallel disks are

used.

Threshold

Points

 0 I I I I I

0 2 4 6 8 10

Disk Speed

Figure 5.6. Threshold Points

In the figure we can observe that threshold limit increases almost linearly with the disk

speed.

115

5.4.4. Update Performance

As we discussed in section 5.3.2, PNB-trees have an advantage of reduced number

of tree restructuring for insertion/deletion operation. Figure 5.7 shows the total number

of tree restructuring and Figure 5.8 shows the total amount of time for creating files of

different file sizes for conventional B-trees and PNB-trees. Here, eight IBM 3380 disks

with the conventional B—tree of 4 Kbyte and 32 Kbyte block size, and the PNB-tree of 4

Kbyte block size are used. In both figures, B denotes the conventional B-tree of 4 Kbyte

block size, LB denotes the conventional B-tree of 32 Kbyte and PNB denotes the PNB—

tree of 4 Kbyte block size. In Figure 5.7 the conventional B-tree of 32 Kbyte block size

has almost the same shape as that of the PNB-tree. When the insertion/deletion request

rate is high, the advantage of the reduced number of tree restructuring for the PNB-tree

is quite significant.

5.5. Other Strategies for The PNB-tree Organization

In synchronized disks, discussed so far, we use one pointer to locate all the sub-

nodes of a node. When asynchronous disks are used for PNB-trees, multiple pointers

are needed to locate multiple subnodes. Note that asynchronous disks do not use syn-

chronizing disk-arm. In spite of a little bit extra storage to maintain multiple pointers,

this approach gives much better overall storage utilization. This is because the records

can be stored atany place within a node since key values need not be kept in sorted

order. Therefore, we can store the data in a compact form with variable number of sub—

nodes for each node. For this implementation, all the tree operation algorithms are the

same as those in section 5.2. One problem of this approach is the increased disk access

time because the disk access time is determined by the worst case disk position (note

that the second phase of lookup operation requires responses of all disks).

Another approach is to use synchronized disks and keep the key values ordered

within a node. By keeping ordered key values in a node we can eliminate associated

116

500 1

450 —

400 —

Number of 350 _

300 —

Restructuring 250 _ B

200 —

150 —

100 —-

50 — PNB

0

(* 10“)

 IIIIIIIIIIII
051015202530354045505560

Number of Records (* 106)

Figure 5.7. Tree Restructuring Cost

50 _

45 _

40 _

35 — B

30 —

Time 25 _ LB

20—
3

(* 10 SEC) 15_ PNB

10—

5_

0

Insertion

 I I I I I I I I

0 10 20 30 40 506070 80

Number of Records (* 104)

Figure 5.8. Insertion Time

117

minimum finding hardware for each disk. This approach has the problem of increased

number of tree restructuring due to subnode overflow. Note that restructuring operation

is expensive.

We can also use asynchronous disks and keep the key values ordered within a

node. The disk access time for a successful search does not increase in this method.

This is because for a successful search the decision can be made immediately in one disk

without collecting responses from all the disks. Therefore, for a successful search the

disk access time is the same as that of synchronized disks. However, this approach

requires multiple pointers and has the same problem as synchronized disks with ordered

key values.

[
I
t

CHAPTER 6

CONCLUSIONS

We have investigated data distribution strategies for various database applications.

We have proposed a general database parallel processing model and a two stage data—

base parallel processing model which can be used as a framework for more specific

implementation. The general database parallel processing model shows important

issues of parallel database systems. The two stage database parallel processing model is

derived from the general database parallel processing model and is suitable for many

database applications. The objective of these models is to facilitate the design of paral-

lel processing database systems. We have applied these abstract models to three

specific database applications. These are partial match queries, multiattribute range

queries and key based accesses on B-tree type index structures.

We have investigated concurrent data accesses for partial match queries. Much

research has been done on designing efficient multikey hashing schemes for partial

match retrieval type applications. We have focused on optimal bucket distribution in

multikey hashing to achieve maximum access concurrency for partial match queries.

We have presented FX distribution methods which are based on exclusive-or operation.

Field transformation techniques have been used to increase the scope of optimality in

FX distribution methods. Performance of FX distribution methods has been compared

with those of the other existing methods for typical file systems. We have shown that

FX distribution methods give higher probability of strict optimality than the existing

methods. We have also shown that the query response time of FX distribution methods

is better than that of the others.

118

119

Concurrent data accesses on multiattribute range queries has also been investi-

gated. Though much work has been done in designing file systems for multiattribute

range queries to reduce the number of bucket accesses, appropriate data distribution

among the access nodes has not been considered for these applications to enhance access

concurrency. There are several proposals for data distribution methods for multikey

accesses. However, they did not consider range specification in a query. We have

investigated optimal data distribution for multiattribute range queries in parallel process-

ing file systems. Since perfect optimal distribution is the most desirable, the existence

of perfect optimal distribution has been investigated. We have shown for various types

of range queries that there are inherent limitations to achieve optimal distribution. The

results show that optimal distribution does not exist in many cases even for files with

two fields. We have given sufficient conditions for the nonexistence of perfect optimal

distribution for certain types of range queries. We have also developed data distribution

methods for several useful multiattribute range queries. Sufficient conditions for

optimal distribution by these proposed methods have been given. It has been shown

that the proposed data distribution methods are perfect optimal for certain types of mul-

tiattribute range queries, and strict optimal for a large class of multiattribute range

queries.

We have proposed data distribution strategies for B—tree nodes to improve the

response time of file accesses. This approach is based on the partitioned node B-tree

called the PNB-tree. We compared the performance of PNB-trees with conventional B-

trees on parallel disks. PNB-trees reduce the height of B-trees and exploit intra-node

parallel processing. We have shown that the height reduction of the B-tree along with

parallel processing within a node gives better performance than parallel processing of

conventional B-trees on parallel disks. We have also shown that the frequency of tree

restructuring due to node overflow is considerably reduced in PNB-trees.

120

This thesis investigated optimal data distribution for multikey hash files and node

partitioning schemes for B-trees to enhance access concurrency. Some areas of future

research that extend the work in this thesis are described below.

(1)

(2)

(3)

(4)

We have proposed a general model and two stage processing model. Though these

models are independent of the parallel processing architecture, they need to be

tuned and further subdivided into several prototypes to reflect hardware architec-

tures such as cube type interconnection.

In many cases we do not know what the best achievable distribution is for a given

file systems. It is worth while to investigate the existence of optimal distribution

for these file systems. Knowledge of the existence of optimal distribution will

help to deve10p methods for optimal distribution for these file systems.

FX distribution methods have been developed for file systems in which each field

size and the number of parallel access nodes are power of 2. FX distribution

methods need to be extended for non power of 2 file systems.

PNB-trees are developed for files on secondary storage devices. The application

of PNB-tree approach to main memory databases needs to be investigated. Perfor-

mance analyses of PNB-trees are mainly based on disk access time because disk

access time is the most important parameter for the performance of external data-

bases. However, performance analyses of PNB-trees in main memory databases

will require different set of parameters.

LIST OF REFERENCES

[Aho79]

[Amm85]

[Ban79]

[Bat77]

[Bay72]

[Bay79]

[Ben75]

[Ben79]

[B1083]

[B0179]

[B0181]

LIST OF REFERENCES

Aho, A.V. and Ullman, J.D., "Optimal Partial-Match Retrieval When

Fields Are Independently Specified," ACM Trans. on Database Systems,

Vol. 4 No.2 , June 1979, pp. 168-179.

Ammann, A., Hanrahan, M. and Krishnamurthy, R.,"Design of a Memory

Resident DBMS,’ Proc. IEEE COMPCON, 1985, pp. 54-57.

Banerjee, J., Hsiao, D.K. and Kannam, K., "DBC - A Database Computer

for Very Large Databases," IEEE Trans. on Computers, Vol. c-28, No. 6,

June 1979. PP. 414-429.

Batcher, K.E., "The Multidimensional Access Memory in STARAN",

IEEE Trans. on Computers, Feb. 1977, pp. 174-177.

Bayer, R. and McCreight, E.M., "Organization and Maintenance of Large

Ordered Indices," Acta Informatica, 1:3, 1972, pp. 173-189.

Bayer, R. and Schkolnick, H., "Concurrency of Operations on B-trees,"

Acta Informatica, Vol.9, 1977, pp. 1-21.

Bentley, J.L., "Multi-dimensional Binary Search Trees Used for Associa-

tive Searching," Commu. of the ACM Vol. 18, No. 9, 1975, pp. 509-517.

Bentley, J.L. and Friedman, J.H., "Data Structures for Range Searching,"

ACM Computing Surveys, Vol. 11, No. 4, Dec. 1979, pp. 397-409.

Bic, L. and Hartman, R.L., "A Network Oriented Dataflow System," Data-

base machines, Leilich, HO. and Missikoff, M., eds., Springer-Verlag,

1983, pp. 166—187.

Bolour, A., "Optimality Properties of Multiple-key Hashing Functions,"

JACM, Vol.26, No.2, April 1979, PP. 196-210.

Bolour, A., "Optimal Retrieval Algorithms for Small Region Queries,"

SIAM J. Comput. Vol. 10, No. 4, Nov. 1981, pp. 721-741.

121

[Bor82]

[Bor83]

[Bur76]

[Cev88]

[Com79]

[Dew79]

[Dew86]

[Dew84]

[Du85]

[Du86]

[DuS82]

[E1180-a]

122

Boral, H. and Dewitt, D.J., "Applying Dataflow Techniques to Database

Machines," IEEE Computer, August 1982, pp. 57-63.

Boral, H. and Dewitt, D.J., "Database Machines : An Idea Whose Time

Has Passed? A Critique of the Future of Database Machines," Database

machines, Leilich, HO. and Missikoff, M., eds., Springer-Verlag, 1983,

pp. 166-187.

Burkhard, W.A., "Hashing and Trie Algorithms for Partial Match

Retrieval," ACM Trans. on Database Systems, Vol. 4, No. 2, June 1976,

pp. 175-187.

Ceverance, C. and Pramanik, S., "A High Speed KDL-RAM File System

For Parallel Computers," Techinical Report, Computer Science Depart-

ment, Michigan State University, Sept. 10, 1988.

Comer, D., "The Ubiquitous B-trees," ACM Computing Surveys, vol. 11,

no. 2, June 1979, pp. 121-136.

Dewitt, D.J., "DIRECT-A Multiprocessor Organization for Supporting a

Relational Database Management System," IEEE Trans. on Computers,

June 1979, pp. 395-406.

Dewitt, D.J., Gerber, R.H., Graefe, G., Heytens, M., Kumar, KB. and

Muralikrishna, M., "GAMMA : A Performance Dataflow Database

Machines," Proc. Conf. on Very Large Data Bases, 1986, pp. 228—237.

Dewitt, D.J., Katz, R., Olken, F., Shapiro, L, Stonebraker, M. and Wood,

D., "Implementation Techniques for Main Memory Database Systems,"

Proc. ACM SIGMOD, 1984. PP. 1-8.

Du, H.C., "On the File Design Problem for Partial Match Retrieval," IEEE

Trans. on Software Eng. Vol. SE-l 1, No. 2, Feb. 1985, pp. 213-222.

Du, H.C., "A Heuristic Disk Allocation Method for Binary Cartesian Pro-

duct Files," BIT 1986, pp.138-147.

Du, HQ and Sobolewski, J.S., "Disk Allocation for Cartesian Product

Files on Multiple-Disk Systems," ACM Trans. on Database Systems, Vol.

7 No. 1, March 1982, pp.82-101.

Ellis, C., "Concurrent Search and Insertion in AVL Trees," IEEE Trans. on

Computers, Vol. c-29, Sept. pp. 811-817.

[Ell80-b]

[Fag79]

[Fan86]

[Fre81]

[Gar86]

[GarL84]

[G1183]

[Haw82]

[Hil86]

[Hsi78]

[Hsi88]

[Kak85]

123

Ellis, C., "Concurrent Search and Insertion in 2-3 Trees," Acta Infonna-

tica, Vol. 14, 1980, pp. 63-86.

Fagin, R., Nievergelt, J., Pippenger, N. and Strong, H.R., "Extendible

Hashing - A Fast Access Method For Dynarrric Files,"ACM Trans. on

Database Systems, Vol. 4 No. 3, Sept. 1979, pp.315-344.

Fang, M.T., Lee, R.C.T. and Chang, CO, "The idea of De-clustering and

Its Applications," Proc. Conf. on Very Large Data Bases," Aug. 1986,

pp.181-188.

Fredman, M.L., "A Lower bound on the Complexity of Orthogonal Range

Queries," JACM, Vol. 28, No. 4, Oct. 1981, pp. 696-705.

Garg, AK. and Gotlieb, C.C., "Order-Preserving Key Transformations,"

ACM Trans. on Database Systems, Vol. 11, No. 2, June 1986, pp. 213

-234.

Garcia-Molina, H., Lipton, R]. and Valdes, J., "A Massive Memory

Machine," IEEE Trans. on Computers, Vol. c-23, No. 5, May 1984, pp.

391-399.

Glinz, M., "A Dataflow Retrieval Unit for a Relational Database

Machine," Database machines, Leilich, HO. and Missikoff, M., eds.,

Springer-Verlag, 1983, pp. 166-187.

Hawthorn, PB. and Dewitt, D.J., "Performance Analysis of Alternative

Database Machine Architecture," IEEE Trans. on Software Eng, Vol. SE-

8, Jan. 1982, pp. 61-75.

Hillyer, B., Shaw, DE. and Nigam, A., "NON-VON’s Performance on

Certain Database Benchmarks," IEEE Trans. on Software Eng. Vol. SE-

12, No. 4, April 1986. PP. 577-583.

Hsiao, D.K. and Baum, R.I., "Concepts and Capabilities of a Database

Computer," ACM Trans. on Database Systems, 1978, pp. 347-384.

Hsiao, Y.-S. and Tharp, A.L., "Adaptive hashing," Inform. Systems, Vol.

13, No. l, 1988. Pp. 111-127.

Kakuta,T., Miyazaki,N., Shibayama,S., Yokota,H. and Murakami,K.,"The

Design and Implementation of Relational Database Machine Delta," Data-

base Machines, Fourth International Workshop, 1985, pp. 13-34.

[Kh088]

[Kim86]

[Kim88]

[Knu73]

[Kun80]

[Lar78]

[Law82]

[Lee77]

[Leh81]

[Leh86]

[Lei78]

[Le185]

[LitSO]

[Mis83]

124

Khoshafian, S., Valduriez, P. and Copeland, G., "Parallel Query Processing

for Complex Objects," Int’l Conf. on Data Engineering, 1988, pp. 202 -

209.

Kim, M. Y., "Synchronized Disk Interleaving", IEEE Trans. on Computers

Vol.c-35, No.11, Nov. 1986, pp. 978-988.

Kim, M. and Pramanik, 8., "Optimal File Distribution For Partial Match

Retrieval," Proc. ACM SIGMOD, 1988, pp. 173-182.

Knuth, DE. The Art of Computer Programming, Vol. 3 : Sorting and

Searching, Addison-Wesley, 1973, pp. 517-537.

Kung, H.T. and Lehman, P.L., "Concurrent Manipulation of Binary Search

Trees," ACM Trans. on Database Systems, Vol. 5, No. 3, Sept. 1980, pp.

354-382.

Larson, P., "Dynanric Hashing," BIT, 1978, pp. 184-201.

Lawrie, DH. and Vora, OR, "The Prime Memory System for Array

Access," IEEE Trans. on Computers, May 1982, pp. 435-442.

Lee, D.T. and Wong, C.K., "Worst-Case Analysis for Region and Partial

Region Searches in Multidimensional Binary Search Trees and Balanced

Quad Trees," Acta Informatica Vol. 9, 1977, pp. 23-29.

Lehman, PL. and Yao, S.B., "Efficient Locking for Concurrent Operations

on B-Trees," ACM Trans. on Database Systems, Vol. 6, No. 4, Dec. 1981,

pp. 650-670.

Lehman, TJ. and Carey, M.J., "Query Processing in Main Memory Data-

base Management Systems," Proc. ACM SIGMOD, 1986, pp. 239-250.

Leilich, H.O., Stiege, G. and Zeidler, H.Ch., "A Search Processor for Data-

base Management Systems," Proc. of the 4th Int’l Conf. on Very Large

Data Bases, 1978, pp. 280-287.

Leland, MD. and Roome, W.D., "The Silicon Database Machine" Data-

base Machines, Fourth International Workshop, 1985, pp. 169-189.

Litwin, W., "Linear Hashing : A New Tool for File and Table Addressing,"

Proc. of the 6th Int’l Conf. on Very Large Data Bases, 1980, pp.212-223.

Missikoff, MJ. and Terranova, M., "The Architecture of Relational Data-

base Computer Known as DBMAC," Advanced Database Machine

[Ozk75]

[Pra86]

[Pra87]

[Pra88-a]

[Pra88-b]

[Pra88-c]

[Pra88-d]

[Riv76]

[R0887]

[Ross85]

[Rot74]

[Sam76]

125

Architecture, D.k. Hsia0(ed), Prentice Hall, 1983, pp. 109-129.

Ozkarahan, C.A., Schuster,S. A., and Smith, K. C., "RAP-An Associative

Processor for Database Management," Proc. NCC, AFIPS, 1975, pp. 379-

387.

Pramanik, S. and Davis, H., ”Multi Directory Hashing," Technical Report,

Computer Science Department, Michigan State University, Oct. 15, 1986.

Pramanik,S. and Kim, M., "HCB_tree : A B_tree Structure for Parallel

Processing," Proc. Int’l Conf. on Parallel Processing, 1987, pp. 140-146.

Pramanik, S. and Kim, M., "HCB_tree : A Height Compressed B_tree for

Parallel Processing," Information Processing Letters, November 1988, pp.

213-220.

Pramanik, S. and Kim, M.,"Generalized Parallel Processing Models for

Database Systems," Proc. Int’l Conf. on Parallel Processing, 1988, pp.

76-83.

Pramanik, S. and Kim, M., "Parallel Processing of Large Node B-trees,"

IEEE Trans. on Computers (to be published).

Pramanik, S. and Kim, M., "Optimal Data Distribution for Parallel Pro-

cessing of Multiattribute Range Queries," Technical Report, Computer

Science Department, Michigan State University, Nov. 15, 1988.

Rivest, R.L., "Partial-Match Retrieval Algorithms," SIAM J. Computing,

Vol.5, No.1, March 1976, pp. 19-50.

Rosenau, T. and Jajodia, 8., "Parallel Relational Database Operations on

the Butterfly Parallel Processor : Projection Results," Technical Report,

Naval Research Laboratory, July 1987.

Ross, S.M., Introduction to probability Models, Academic Press, 1985, 3rd

Edition, pp. 355-399.

Rothnie, J.B.Jr. and Lozano,T.,"Attribute based file organization in a

paged memory environment," Comm. ACM, Vol.17, No.2, 1974, pp. 63-

69.

Samadi, B., "B-trees in A System with Multiple Users," Information Pro-

cessing Letters, October 1976, pp. 107-112.

[Sch83]

[Slo70]

[Sto87]

[Su79]

[Sun85]

[Sun87]

[Yao78]

126

Schweppe,H., Zeidler,H.Ch., Hell,W., Leilich,H.O., Stiege,G. and

Teich,W.,"RDBM-A Dedicated Multiprocessor System for Database

Management," Advanced Database Machine Architecture, Hsiao, D.K. ed.,

Prentice Hall, 1983, pp. 36-86.

Slotnick, D.L., "Logic Per Track Devices," Advances in Computers, V01.

10, Academic Press, 1970, pp. 291-296.

Stone, H., "Parallel Querying of Large Databases : A Case Study," IEEE

Computer, Oct. 1987, pp. 11-21.

Su, S.Y.W., Nguyen, L.H., Eman, A. and Lipovski, G]. "The Architec-

tural Features and Implementation Techniques of multicell CASSM,"

IEEE Trans. on Computers, June 1979, pp. 430-445.

Sung, Y.Y., "Parallel Searching for Binary Cartesian Product Files," Proc.

ACM CSC Conf., 1985, pp. 163-172.

Sung, Y.Y., "Performance Analysis of Disk Modulo Allocation Method for

Cartesian Product Files," IEEE Trans. on Software Eng., Vol. SE-13, No.

9, Sept. 1987, pp. 1018-1026 .

Yao, A.,"Random 2-3 trees," Acta Informatica, Vol. 9, 1978, pp. 159-170.

“llllllllllllllllllll

