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ABSTRACT 

ESTIMATION OF RIVER CHARACTERISTICS FROM REMOTE SENSING DATA 
 

By 
 

Thomas Gabriel Almeida 
 
 

A framework for estimation of river characteristics from observational data is presented using 

model inversion methodology. At the center of the method is a cost function defined by the error 

in observational versus modeled data (e.g., velocity). This cost function is extended through the 

use of Lagrange multipliers such that an inverse (or ‘adjoint’) model is developed, which is used 

to obtain a gradient of the cost function with respect to the river characteristic that is to be 

estimated. Using an appropriate descent algorithm, a model result fitting the data best and 

constrained by the original model equations is obtained. For this work, the model equations are 

the shallow water equations describing the flow of water in an open channel, in two-dimensions. 

The specific characteristic to be estimated is bathymetry. The observational data is in the form of 

simulated pseudo-steady-state velocity measurements (either surface or depth-averaged), and 

may be either sparse or full-field. A correlation between surface velocity and depth-averaged 

velocity is used to allow the use of two-dimensional modeling with three-dimensional data. The 

hydrostatic assumption inherent in the shallow water equations is shown to have an impact on 

the ability of the algorithm to accurately estimate the bathymetry; this impact is not more than 

that of resolution and noise typical of most experimental data. The ability of the algorithm to 

estimate bathymetry given different types, quantity and quality of velocity data is quantified. The 

bathymetry estimation is shown to be accurate and robust for multiple observational surface 

velocity data configurations on two different rivers. 
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INTRODUCTION 
 
 

‘Can we navigate the river in our boat?’ 

‘If so, what is the best path?’ 

‘If not, how far will we have to carry the boat?’ 

These are simple questions, but depending on the situation and the data available, the path to the 

answers could be very complicated. This represents the motivation behind the current research: 

estimating the depth of a river, given perhaps minimal information about the river in question. 

 

Although the work contained in this dissertation is reduced to the specific problem of estimating 

river depth from surface velocity measurements, it is important to note that the methodology 

developed can be generalized to estimating other, perhaps multiple characteristics given different 

types of data. Ongoing work will focus on applying the methodology to other problems, not 

limited to specific equations, characteristics or data types. 

 

The problem statement could be framed: ‘If I need to know the spatially-varying depth of a 

certain reach of a river, what kind of data do I need?’ That information could then be passed on 

to others that can design their observational collection system(s). The data collection and river 

depth estimation algorithm can then be coupled together. As a first step towards this goal: How 

well can we estimate the depth, based on the quantity and quality of the available data? 

 

There are many researchers in multiple disciplines working to better understand rivers. In 

conducting this research, the author has had the privilege of meeting and interacting with some 

individuals and groups within this ‘river community’. The numerous strands of research can be 



 

 2 

grouped into disciplines, such as biologists, ecologists, physical hydrologists, etc. Similarly, a 

majority of the work being done can generally be separated into two larger groups: 

experimentalists and numerical modelers. The topic of this dissertation can be seen as an 

intermediary between these two, generally within the hydrodynamics and physical oceanography 

discipline. Data assimilation, in general, is intended to be a way of bridging the gap between 

observations and models. If one is to effectively generate and use tools that bring together 

experimental data with numerical modeling tools, one must invest in understanding at least some 

portion of the two. Understanding the state of the art in both is essential to producing a new 

‘product’ that reinforces and multiplies their individual capabilities. 

 

The data discussed in this dissertation is surface velocity. The methodology presented has been 

found to be stable, robust and accurate given data that covers a significant portion of the river to 

be studied. At present, the two most viable sources of this data are remote-sensing platforms and 

instrumented drifters. There is very little data of either of these types that has been made 

available, and an even smaller subset of those have accompanying full-coverage river depth 

measurements. More often, researchers have point observations of velocity profiles and depths, 

which can be used to obtain very accurate estimates of river discharge rates. This dissertation 

differs from their work in that the discharge rate is not as important to the ‘end-user’ as a map of 

river depth. Recent advances in remote sensing platforms such as along-track interferometry 

show promise in the future ability to obtain full-coverage velocity vector data along a river, but 

each system has different parameters that result in data that is of varying resolution and quality. 

For an airborne platform, reaching a resolution of 20m with RMS error in velocity of 20cm/s is 

attainable. Instrumented drifters can offer higher resolution, but there is very little information 
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about the velocity field near the banks of the river, as they tend to preferentially distribute along 

deeper channels, where the water is moving more swiftly. 

 

The ‘river community’ has been developing and using numerical tools to simulate river flow for 

many years. The most basic form of numerical modeling, in traditional computational fluid 

dynamics, is direct numerical simulation (DNS), where fluid flow is resolved at all time and 

spatial scales by solving the Navier-Stokes equations. The upper limits of DNS are always 

increasing as numerical techniques, software and hardware are improving continually. That said, 

the Reynolds numbers of the rivers in this study are completely unfeasible for DNS at this point. 

In addition, the effects of vegetation and sediment transport only make the problem more 

difficult and computationally intensive. In river modeling, it has been found that the dominant 

effects of turbulence can be captured through the use of an appropriate treatment of the bottom 

friction; the free stream turbulence is secondary (Nelson and Smith (1989)). Most modelers 

currently use simple and robust turbulence models (e.g., two-equation k-ε models with a standard 

turbulent eddy viscosity approximation), with acceptable results (Nelson, et al. (2005)). 

 

While it is generally accepted in the community of river modelers that precise modeling of the 

flow in rivers would be captured best by solving the full Navier -Stokes equations, it has also 

been found that utilizing the hydrostatic assumption to reduce computational cost and complexity 

can be done without great loss of fidelity. Some in the community rely almost exclusively on 

two-dimensional, depth-averaged simulations, utilizing shallow-water equation solvers (Steffler 

and Blackburn (2002)). Some researchers have devoted resources to the development of 

secondary flow models (so-called 2.5D models) that include some of the more dominant three-
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dimensional flow effects within a two-dimensional framework (Kalkwijk and Booij (1986)). 

More recently, some groups have turned to three-dimensional hydrostatic solvers in their work. 

These methods and solvers were originally intended for modeling coastal regions, but in certain 

situations, accurately capture enough of the physics to aid in the understanding of river flows 

(Landon, Özkan-Haller and Wilson (2012)). To predict the flow in a river, there exists a 

minimum set of inputs that can vary depending on the modeling approach. In all approaches, one 

must know, a priori, the river bathymetry (a spatially varying map of the river bottom 

topography measured downwards from a fixed vertical datum), the river flow rate, some measure 

of the bottom friction, and some information about the downstream boundary. For the equations 

to be solved, this represents a sufficient set of conditions to make the problem well posed 

(assuming constant properties). River flow is inherently transient, but for this work, a steady-

state approach has been adopted, and all of the simulations have been conducted such that the 

river flow has reached a stationary state. The details of the numerical simulations included in this 

work are presented in appropriate chapters. 

 

In this work, a methodology is presented that relies on the use of the shallow water equations. A 

derivation of the shallow water equations from the Navier-Stokes equations is included in 

Appendix A. The method and algorithm require observations of the river surface velocities. The 

observational data used to drive the algorithm herein is entirely simulated. It is notable, however, 

that any realistic sources of data (or observations of river velocities) will include all of the 

physics of water flowing in a river, and thus the approximations of the solvers must be 

understood. The algorithm has been exercised on multiple sets of data, with each set intended to 

aid in the understanding of the limits of the algorithm and the effects of the modeling 
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assumptions. For the generation of the observational data, three methods are used (before down-

sampling and/or degrading of the data): two-dimensional depth-averaged hydrostatic solver; 

three-dimensional hydrostatic solver; and three-dimensional non-hydrostatic solver. The effects 

of the different modeling approaches to generating observational data are investigated, and the 

algorithm is shown to be robust and accurate. 

 

The remainder of this dissertation is organized as follows: In Chapter 1, the objectives of the 

research are described, and a summary of relevant research is given as background and 

motivation. In Chapter 2, the analytical and numerical methodology is described, with special 

care taken to describe the derivation of the adjoint equations and solver, as well as the overall 

assimilation algorithm. Chapter 3 is devoted to the exercising of the model, including studies on 

the impact of different modeling approaches and both quantity and quality of data. Concluding 

remarks are included in Chapter 4, with some insights as to the future applications of the 

algorithm and methodology. 
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CHAPTER 1 
BACKGROUND AND MOTIVATION 

 

1.1 Statement of Objectives 

The objective of the research program described in this dissertation is to develop a methodology 

for the estimation of river characteristics given velocity measurement data, to develop an 

algorithm to implement that methodology, and to exercise the algorithm to determine the 

usefulness of the approach in a real-world situation. To that end, there are four critical steps that 

have been accomplished: 1) establish a mathematical framework for the methodology; 2) 

develop the numerical tools needed to solve said equations; 3) validate the model/algorithm on 

‘perfect’ simulated data; and 4) exercise the model/algorithm on different data sets (types of 

data, quality of data, different rivers/geometries, e.g.). These steps are described in detail in 

subsequent sections of this work, but a brief, general description of these objectives is given 

here: 

 

The first step has been accomplished by developing an adjoint model using variational analysis, 

starting from the equations that describe the flow of water in rivers. For the second step, an 

adjoint solver has been developed along with an algorithm that calculates the adjoint variables as 

well as the gradient, while monitoring the value of the cost function. The most significant part of 

this step was the development of the adjoint solver; the forward model (Delft3D) is used to solve 

for the velocity field in the river, given a flow-rate, bathymetry (estimate), and a bottom-friction 

coefficient. The algorithm and model has been tested on simulated data, generated using D3D for 

a known bathymetry. This observational data was then used to evaluate the model and algorithm. 

For the final two steps, various simulated data have been down-sampled and/or degraded (by 



 

 7 

adding noise) to fully exercise the model. The algorithm has also been tested on two different 

rivers. 

 

1.2 Summary of Previous Research 

The fidelity of any model is dependent on the fidelity of the model inputs. In order to accurately 

model the flow of water in a river, one needs to know as much as possible about the river in 

question. To first order, the most significant characteristics are the river discharge rate and the 

river depth or bathymetry. Many researchers have spent a great deal of time and effort on how 

best to obtain accurate estimates for these two variables. There are many experimental methods 

for assessing these parameters, but most of the methods are expensive and time-consuming. 

More importantly, they typically require the ability to be in the river. The applications of river 

modeling are vast, covering a broad range of environmental, commercial and military concerns. 

With many of these applications, it may be very difficult or impossible for one to have access to 

the river of interest. Thus, it has become evident that more effort should be devoted to assessing 

the capabilities of alternative methods in parameter estimation. 

 

The estimation of bathymetry using remotely sensed data is not a new concept. There are 

researchers around the world investigating this problem. These various groups have different 

overall aims and requirements. Several groups have investigated estimation of ocean bathymetry 

on very large scale. This data can be useful in predicting wave propagation and tidal flows, 

including erosion effects. For example, Bell (1999) used X-Band radar images to estimate near-

shore ocean bathymetry, with promising results, providing useful data for tidal estimation 

applications. On an even larger spatial scale, Sandwell and Smith (2001), used geosat altimeter 
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data to estimate ocean bathymetry. Their spatial resolution was on the order of 1km, which can 

be very useful for large-scale modeling. Van Dongeren, et al. (2008) used an assimilation 

approach to estimate bathymetry, using a wave roller model. The data used were wave celerity 

from video imagery, or roller dissipation from radar. This methodology shows much promise for 

nearshore estimation. 

 

Other groups have investigated rivers, in particular. Hilldale and Raff (2007) directly measured 

river bathymetry using LiDAR. Their resolution and estimation errors were excellent, even on 

small scales, but the LiDAR is mounted on a helicopter, and they take care to note that to get a 

discernable return from the river bottom, they must have relatively clear water, and can only go 

to depths of about 10m. Fonstad and Marcus (2005) and Jordan and Fonstad (2005) used 

remotely sensed imagery in combination with simple 1D channel models with good fidelity, 

although the bulk parameters such as depth, slope and stream-power are the focus; the cross-

stream variation in depth, for example, is not something that would result from their approach. 

Hyperspectral imagery was shown to be a potentially powerful tool in river bathymetry 

estimation by Legleiter, et al. (2009). One requirement of this approach is for the signal to be 

dominated by bottom-reflected radiance. 

 

Other groups have studied large rivers. Durand, et al. (2008) used an assimilation approach to 

estimate the bathymetry and slope of a 240km reach of the Amazon River. The reported errors 

are excellent, but the spatial resolution is low (~270m), which is not a problem on such a large 

river. Similarly, Smith and Pavelsky (2008) investigated another large river, the Lena in Siberia. 
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They used satellite data covering a 316km heavily braided reach of the river, primarily focused 

on seasonal variation of discharge rates. 

 

Both data assimilation and model inversion have a wide range of applications. The most notable 

of these applications is in global (and local) weather prediction. The ability to predict future 

weather patterns is of great importance to people around the globe, and so a large amount of 

resources have been devoted to maturing the process. There are huge amounts of data available 

from the various global entities that use these approaches. Bennett (2002) describes the various 

techniques and approaches in detail. From a mathematical viewpoint, these methods appear to be 

suitable to many additional applications. Additionally, Navon (1998) gave a nice summary of the 

state-of-the-art in adjoint parameter estimation. 

 

Wang, et al. (1992) used a very similar methodology to that proposed for this work. They used 

variational data assimilation (VDA) to estimate the initial conditions for atmospheric predictions. 

They presented some interesting findings with regards to the sensitivity of the convergence of the 

cost function reduction to various perturbations. For example they discussed how the cost 

function is highly sensitive to errors in data where the most intensive events occur. (I also found 

it interesting that the shallow-water equations (SWEs) are used for atmospheric modeling.)  Li, et 

al. (1993) applied VDA to global geopotential modeling to estimate large-scale ocean currents 

using a semi-Lagrangian SWE model. Other groups have contributed to oceanographic 

predictions (e.g. Bertino (2003) and Egbert and Erofeeva (2002)). 
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The use of variational methodology is not limited to environmental modeling. These techniques 

have been successfully applied to other physical phenomena, such as electro-magnetic wave 

propagation (using the Maxwell’s equations). Rekanos and Räisänen (2003) applied inverse 

modeling to find buried scatterers. They solved Maxwell’s equations using a finite-difference 

time-domain (FDTD) method and formulated the inverse model with Lagrange multipliers, using 

a similar to methodology as presented in this work. They were able to successfully reconstruct an 

accurate permittivity field using seven transmitters/receivers (5% RMS error in permittivity over 

the field). 

 

More recently, a different approach to estimating river bathymetry from surface velocities has 

been pursued by Landon, Özkan-Haller and Wilson (2012) at Oregon State University. They 

have implemented a Kálmán filtering approach that uses a covariance matrix of velocity and 

bathymetry generated by multiple ensemble simulations of a river using the Regional Ocean 

Modeling System (ROMS). Their initial results are promising. However, the approach is 

dependent on the number of ensembles, and remains computationally expensive. 

 

The subject of the current research is to take these wide-ranging efforts and applications and 

apply them in a new way, developing a methodology to estimate river characteristics 

(specifically bathymetry) using remotely sensed data. Specific requirements on the accuracy of 

the algorithm have not yet been established, though the values reported in this dissertation have 

been accepted thus far as being sufficiently accurate for the potential end-users’ needs; the 

purpose of this research is to establish a capability. The algorithm development is complete, and 

the modeling framework is in place. The algorithm has been exercised on multiple data sets, 
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using two different rivers. The details of the models, algorithms, rivers and results are presented 

in detail in subsequent chapters. 
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CHAPTER 2 
GOVERNING EQUATIONS AND METHODOLOGY 

 

2.1 The Forward Model 

The shallow water equations (SWEs), including the effects of bottom roughness can be used to 

estimate the flow of water in a river in a two-dimensional, depth-averaged sense. The vertical 

coordinate system with regards to the water column is shown in Figure 2.1. 

 

 
Figure 2.1. Vertical coordinate system. For interpretation of the references to color in this and 

all other figures, the reader is referred to the electronic version of this dissertation. 
 

A derivation of the SWEs is given in Appendix A. Throughout this dissertation, tensor notation 

is used; repeated indices represent a summation over the indices. The equations for water surface 

elevation (continuity) and velocity components (momentum) are  

∂η
∂t
+
∂ HU j( )
∂x j

= 0  and          (2.1) 

∂Ui
∂t

+U j
∂Ui
∂x j

= −g ∂η
∂xi

− gn2Ui
U jU j( )

1
2

H
4
3

 ,       (2.2) 
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where the total water depth H is defined as the sum of the water surface elevation (measured 

upwards from a vertical datum) and the bathymetry (measured downward from the same datum), 

H = η + h. The last term in the momentum equation arise from the momentum loss due to 

bottom friction, using the Chézy formulation 

τ b,i =
ρgUi U jU j( )

1
2

CD
2 .         (2.3) 

The Chézy bottom roughness coefficient, CD, is related to the Manning roughness coefficient, n, 

through 

CD =
H
1
6

n
.           (2.4) 

 

2.2 Variational Framework 

The parameter estimation begins with the cost function, or penalty functional, which is 

constructed using the error in the observational versus modeled data 

J = uj − û j,n( ) uj − û j,n( ){ }
n
∑ ,                      (2.5) 

where û j,n  are the observed velocities (surface or depth-averaged), and uj  represent the model 

estimated velocities, interpolated to the observation locations. 

 

We wish to minimize this measure of the error between the modeled and observed data. To do 

this, the cost function is augmented through the use of Lagrange multipliers to constrain the 

solution such that the model equations are satisfied, leading to 
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J = uj − û j,n( ) uj − û j,n( ){ }
n
∑ δ x − x̂n( )
#

$
%
%

∫∫∫

+α
∂η
∂t
+
∂ HU j( )
∂x j

(

)
*

+*

,

-
*

.*

+Vi
∂Ui
∂t

+U j
∂Ui
∂x j

+ g ∂η
∂xi

+ gn2Ui
U jU j( )

1
2

H
4
3

(

)
**

+
*
*

,

-
**

.
*
*

/

0

1
1
1
1

dx1dx2dt.

    (2.6) 

To ensure the uniqueness of the bathymetry estimate, regularization should be included in the 

construction of the cost function: 

 

J = uj − û j,n( ) uj − û j,n( ){ }
n
∑ δ x − x̂n( )
#

$
%
%

∫∫∫

+α
∂η
∂t
+
∂ HU j( )
∂x j

(

)
*

+*

,

-
*

.*

+Vi
∂Ui
∂t

+U j
∂Ui
∂x j

+ g ∂η
∂xi

+ gn2Ui
U jU j( )

1
2

H
4
3

(

)
**

+
*
*

,

-
**

.
*
*

+φ1h
2 +φ2

1
2

∂h
∂x j

/

0

1
1

2

3

4
4
∂h
∂x j

/

0

1
1

2

3

4
4

(
)
*

+*

,
-
*

.*

5

6

7
7
dx1dx2dt.

     (2.7) 

For this work, the regularization terms have been set to zero, with minimal effect. A necessary 

condition for the minimum of J is that the first variations with respect to each of the functional 

variables are zero. To minimize this cost function, we first find the gradient of the cost function 

with respect to each of the variables/parameters concerned. At the minimum, all components of 

the gradient must vanish. Taking the first variation of the cost function with respect to η, Ui, α, 

Vi and h and setting them equal to zero does this. It is clear that the original model equations are 
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recovered when taking the first variation of J with respect to α and Vi. The first variation of J 

with respect to η leads to 

δJη = α
∂δη
∂t

+
∂ δηU j( )
∂x j

"

#
$

%$

&

'
$

($

)

*

+
+
+

∫∫∫

+Vi g∂δη
∂xi

−
4
3
gn2Ui

U jU j( )
1
2

H
7
3

δη

"

#
$$

%
$
$

&

'
$$

(
$
$

.

/

0
0
0
0

dx1dx2dt.

     (2.8) 

Setting this equal to zero and integrating by parts results in: 

0 =
∂ αδη( )
∂t

−
∂α
∂t
δη +

∂ αU jδη( )
∂x j

−
∂α
∂x j

U jδη
#

$
%

&%

'

(
%

)%

*

+

,
,
,

∫∫∫

+ g
∂ Viδη( )
∂xi

− g
∂Vi
∂xi

δη −
4
3
gn2ViUi

U jU j( )
1
2

H
7
3

δη

#

$
%%

&
%
%

'

(
%%

)
%
%

.

/

0
0
0
0

dx1dx2dt.

   (2.9) 

Since the integral is over an arbitrary region, the terms in the integrand must vanish 

independently. Since δη is arbitrary, the collection of terms multiplying it must go to zero. This 

yields the adjoint form of the continuity equation: 

−
∂α
∂t

−
∂α
∂x j

U j = g
∂Vi
∂xi

+
4
3
gn2

U jU j( )
1
2

H
7
3

ViUi( ) .      (2.10) 

The other terms that are not proportional to δη involve the boundary and initial conditions. These 

must vanish as well, and are discussed in more detail (as a full set for both α and Vi) below. 

Finally, we apply a formal time reversal by substituting in t’=-t : 
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∂α
∂t '

+ −U j( ) ∂α∂x j
= g

∂Vi
∂xi

+
4
3
gn2

U jU j( )
1
2

H
7
3

ViUi( ) .      (2.11) 

Applying the same methodology in taking the first variation of J with respect to Ui results in the 

‘adjoint momentum’ equation: 

∂Vi
∂t '

+ −U j( ) ∂Vi∂x j
= H ∂α

∂xi
− Vj

∂U j
∂xi

−Vi
∂U j
∂x j

#

$

%
%

&

'

(
(

− 2 ui − ûi,n( ){ }
n
∑ δ x − x̂n( )− gn

2

H
4
3

Vi U jU j( )
1
2 +

Ui

U jU j( )
1
2

VjU j( )
*

+

,
,
,
,

-

.

/
/
/
/

.

   (2.12) 

For brevity, the last term on the RHS in each of the equations (2.11) and (2.12) will be denoted 

Sbf,α and Sbf,v, respectively. 

 

Establishing the correct boundary conditions is critical to obtaining an accurate adjoint solution, 

both for open boundaries (inflow and outflow), and for closed (land-water) boundaries. Analysis 

of the variational equations (2.9, e.g.) at the boundaries leads to the following contributions to 

the cost function: 

δJη =
∂ αδη( )
∂t

+
∂ αU jδη( )

∂x j
+ g

∂ Vjδη( )
∂x j

"

#

$
$

%

&

'
'dx1dx2 dt∫∫∫  and     (2.13) 

δJUi
=

∂ ViδUi( )
∂t

+
∂ αHδUi( )

∂xi
+
∂ ViU jδUi( )

∂x j

"

#

$
$

%

&

'
'dx1dx2 dt∫∫∫ .     (2.14) 
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Again, the choice of δη and δUi are arbitrary. Using the appropriate forward model boundary 

conditions (full-slip for cases where the boundary layer cannot be resolved, as in most 

geophysical simulations), 

∂Ut
∂xn

= 0; Un = 0;
∂η
∂xn

= 0 ,         (2.15) 

together with the above derived equations at a land-water boundary, reduces the boundary 

conditions for the adjoint variables to: 

∂Vt
∂xn

= 0; Vn = 0;
∂α
∂xn

= 0 .         (2.16) 

 

For the estimation of bathymetry, the first variation of J with respect to h is calculated, leading to  

δJh =
∂ αU jδh( )

∂x j
−
∂α
∂x j

U jδh
#

$
%

&%
− Sbf ,αδh

'

(

)
)
)

∫∫∫

+φ1hδh−φ2
∂2h

∂x j∂x j

+

,

-
-

.

/

0
0
δh
1
2
%

3%

4

5

6
6
dx1dx2dt.

      (2.17) 

It can be shown that in order to reduce the value of the cost function, the gradient of h, δh, 

should be proportional to and opposite in sign to the sum of its coefficients: 

δh∝U j
∂α
∂x j

+ Sbf ,α −φ1h+φ2
∂2h

∂x j∂x j

$

%

&
&

'

(

)
)

.       (2.18) 

 

2.3 The Adjoint Solver 

The adjoint equations can be interpreted as advection equations with source terms involving 

gradients of the variables. In the formulation of the adjoint numerical scheme, it was determined 
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that using a finite volume formulation would lend itself to better handling these equations/source 

terms. To do so, continuity is applied to equations (2.11) and (2.12) which results in the final 

conservative form of the equations: 

∂Hα
∂t '

+
∂H −U j( )α

∂x j
= gH

∂Vi
∂xi

+HSbf ,α  and       (2.19) 

∂HVi
∂t '

+
∂H −U j( )Vi

∂x j
= H 2 ∂α

∂xi

−H Vj
∂U j
∂xi

−Vi
∂U j
∂x j

#

$

%
%

&

'

(
(
− 2H ui − ûi,n( ){ }

n
∑ δ x − x̂n( )−HSbf ,v .

    (2.20) 

 

To solve the adjoint equations, a new finite-volume solver has been developed (ADJ2DI). The 

solver is fully implicit, utilizing a Gauss-Seidel scheme.  It can run on an arbitrary (nearly) 

orthogonal, curvilinear grid, and can be run in parallel on multiple processors. The forward 

model, D3D utilizes an alternating direction implicit method, but this method proved to be 

unstable for the adjoint equations, due to the nature of the source terms. In the new solver, at 

each point the equations are fully coupled by solving for the three variables successively, as 

opposed to solving for the entire field for each variable before moving on to the next variable 

field. This was shown to be necessary, as the first-order coupling between adjoint variables is 

through gradient and divergence operators.  

 

Some modifications to the ADJ2DI solver were necessary to obtain a solution in low velocity 

regions. There are two important facets to the solver, one is to ensure diagonal dominance of the 

matrix equations, and the other is to deal with decoupling of the equations in low velocity 
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regions. To ensure the diagonal dominance (of the full solver matrix, including α and Vi), a 

‘pseudo-variable time stepping scheme’ was implemented. At each point, the matrix coefficients 

consist of the typical advection diagonal and off-diagonal terms. In addition, there are off-

diagonal terms due to the coupling between variables. It turns out that these ‘off-variable’ matrix 

coefficients drive the diagonal dominance and the stability of the solver. To circumvent this 

problem, an additional (spatially-varying) term was added to the diagonal term. This term, ϕDD, 

is calculated by including all of the coefficients on all of the variables in the model equations for 

a spatial location. We multiply a ‘diagonal dominance factor’, fDD, (currently a value of 2 is 

used) by the sum of the absolute values of the off-diagonal (and off-variable) coefficients and 

subtract the absolute value of the diagonal coefficient. This is done for each of the variables, and 

at each spatial location, following the general structure: 

φDD ≈
1
dt
= fDD Al

l
∑ + Bl

l
∑

#

$
%%

&

'
((− Ap .       (2.21) 

Here the Al coefficients represent the advection operator (l is the index over neighboring cells, N, 

S, E and W for a five point computational molecule) and the Bl coefficients represent the off-

diagonal coefficients. When solving for the variable, the ϕDD term is added to the diagonal term, 

and an additional term appears on the right-hand side of the equation multiplied by the previous 

value for the variable at that location: 

α p
n+1 =

Qp,α − Alαl
l
∑ +φDD,αα p

n

Ap +φDD,α
, with       (2.22) 
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Qp,α = g
∂V1
∂x1

+ g
∂V2
∂x2

+ Sbf ,α .         (2.23) 

Here, Qp,α includes the entire right-hand side of the α equation. It is clear that in the limit of a 

steady-state solution, the terms involving the ϕDD drop out. 

 

The other important modification to the solver is in the treatment of low velocity regions. Here, 

an approach is described that is similar in nature to the SIMPLE algorithm that is used to 

calculate the pressure correction to ensure continuity in some Navier-Stokes solvers. In the 

SIMPLE algorithm, the velocity and pressure corrections are related using the discrete equations 

for momentum and continuity, such that the pressure correction can be written in terms of the 

velocity field (see Patankar (1981) and Ferziger and Perić (2002)). The shared methodology is 

that we wish to write the α equation solely in terms of α (and similarly for Vi). Even with the 

diagonal dominance term included, when the velocity approaches zero, the equations de-couple 

to the point that the α equation does not contain any terms that have α in them. In these regions, 

the source terms drive the solution to diverge. For this reason, a numerical approximation was 

included to make these source terms implicit within the larger solution matrix. This results in the 

gradient of α being essentially replaced with a Laplacian operator on Vi in the Vi equation, and a 

similar substitution for the divergence of Vi results in a Laplacian operator on α in the α 

equation. 
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For clarity, here the tensor notation is expanded into component form. The numerical 

approximation for α is given in equations (2.22) and (2.23), and the approximation for V1 is as 

follows: 

V1,p
n+1 =

Qp,v1 − AlV1,l
l
∑ +φDD,v1V1,p

n

Ap,v1+φDD,v1
 , with       (2.24) 

 Qp,v1 = H
∂α
∂x1

−V2
∂U2
∂x1

+V1
∂U2
∂x2

+ 2 u1 − û1,n( )δ x − x̂n( )
n
∑ + Sbf ,v1 .    (2.25) 

To make the source terms in the α equation implicit, we separate the source terms in the V1 

equation (and similarly the V2 equation) into terms involving α and the rest, denoted with a tilda. 

Qp,v1 = −V2
∂U2
∂x1

+V1
∂U2
∂x2

+ 2 u1 − û1,n( )δ x − x̂n( )
n
∑ + Sbf ,v1  .    (2.26) 

Then the RHS of α can be modified as: 

Qp,α = g
∂V1
∂x1

+

= g ∂
∂x1

H ∂α
∂x1

Ap,v1+φDD,v1

!

"

#
#
#
#

$

%

&
&
&
&

+ g ∂
∂x1

Qp,v1 − AlV1,l
l
∑ +φDD,v1V1,p

n

Ap,v1+φDD,v1

!

"

#
#
#

$

%

&
&
&
+

   (2.27) 

Finally, the terms with α in them can be converted into off-diagonal coefficients on α (Bl,α), 

while the rest of Qp,α can be calculated and used as a ‘typical’ source term. Similar numerical 

approximations making the coupling source terms implicit and circumventing the low-velocity 

issue are applied to all variables. As with the SIMPLE algorithm, in the limit of a converged 

solution, the approximation becomes exact. 
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2.4 The Assimilation Algorithm 

The final solution is of the form of an estimated bathymetry, along with a forward solution using 

that bathymetry to obtain the flow field. To find the bathymetry that minimizes the cost function, 

we utilize a gradient descent algorithm. A simplified block diagram of the algorithm is shown in 

Figure 2.2, and the full algorithm, as implemented, is outlined as a flow chart in Figure 2.3, with 

a short description following.  

 

 
Figure 2.2. Simplified algorithm flow chart. 
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Figure 2.3. Algorithm flow chart. 
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First, an initial guess bathymetry is generated using knowledge of the land-water boundary of the 

river. Then an initial forward simulation is run. Using the resultant flow field, the adjoint 

equations are then solved using the error between the predictions and observations as input. At 

this point, the forward and adjoint results are used to calculate the gradient of the cost function 

with respect to the bathymetry. This gradient is used to adjust the bathymetry to reduce the error 

in the computed flow.  A correction proportional to the gradient is added to the present 

bathymetry estimate. A golden section search is used to determine the scale factor for the 

correction to the bathymetry, i.e. how far to go in the direction indicated by the gradient. When 

the minimum of the cost function is obtained using this gradient, a new adjoint solution is 

obtained using the new bathymetry and most recent forward solution. A new gradient with 

respect to h is calculated, and the golden section search is repeated. This new gradient could be 

combined with the previous gradient, if using a conjugate gradient method, which can increase 

rate of convergence in some cases. The entire process is repeated until the cost function has 

reached an ‘absolute’ minimum. 
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CHAPTER 3 
RESULTS AND DISCUSSION 

 

The goal of the project under which this research is funded is to develop methods for river 

characterization from remote sensing data.  The objectives are stated in Chapter 1. The analytical 

and algorithmic framework was discussed in Chapter 2, and the focus of this chapter is on 

implementing and exercising the algorithm. While the data is to be surface velocity 

measurements, it is important to understand the types of data that may be available in real 

applications. The first type might come from optical imagery on an airborne platform. The data 

most likely will have some kind of error associated with it. Therefore, it is important to 

investigate the following questions: what is the best estimate possible, assuming perfect full-field 

(depth-averaged or surface) velocity data; how does the reduction of quantity and/or quality of 

data affect the ability to make a prediction; and what are the implications of having surface data 

versus, for example, depth-averaged data. It is also important to understand any potential effects 

of modeling assumptions. 

 

The project began with some simple river simulations. Several models were compared and 

tested. The decision was made to move forward building the assimilation and inverse modeling 

capability around the forward simulation tool, Delft3D. This tool was developed, delivered and 

maintained by Deltares in the Netherlands. The source code has recently been released as open-

source, and we have downloaded and installed to the latest version of the model. Delft3D is 

primarily an ocean circulation simulation tool that can be setup to run in two-dimensions (depth-

averaged) or three-dimensions using a so-called terrain following boundary-fitted methodology 

utilizing a sigma coordinate system. The model is run on a staggered Arakawa-C grid using an 
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alternating direction implicit time stepping scheme. For more details on the numerical aspects of 

the Delft3D solver, see Deltares (2011). 

 

3.1 Snohomish River 

3.1.1 Geographical Context 

The first simulations conducted under the project were for both the Skagit River and the 

Snohomish River in Washington State. The results presented here are from simulations of the 

Snohomish River. The portion of the Snohomish River that is currently being investigated is a 

2.2 km reach characterized by a sharp bend in a meandering section of the river. The average 

width of the river in this reach is about 120m. Chris Chickadel at the Applied Physics Laboratory 

at the University of Washington provided the bathymetry. The known bathymetry of the river 

has many interesting features, including significant bathymetric variation in the form of deep 

pools and smaller bars. The region of interest is shown in Figure 3.1. Note that in Figure 3.1 and 

subsequent two-dimensional plots of the Snohomish River, the axes labels are omitted for space. 
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Figure 3.1. The Snohomish River: region overview and bathymetry. This reach is 

approximately 2.2km long with an average width of 120m. The sharp bend in the river is located 
at 122.191°W, 47.948°N. In this figure and subsequent two-dimensional figures, the axes labels 

are omitted for space. 
 

The Snohomish River has been deemed an excellent region for exercising our algorithm 

development, given the available data. Using simulated data to conduct the first tests has been 

helpful in previous work. The bathymetry, as received is on a 8101x3336 grid with a spatial 

resolution of 25cm. For initial testing, this has been down sampled to a boundary fitted, 

orthogonal curvilinear grid with an average resolution of 3m (722 x 35 cells in the downstream 

and cross-stream directions, respectively). 
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The original simulations aided in the understanding of the benefits and limitations of the models. 

Several investigations were conducted to test different handling of the boundary conditions for 

river flows. For the testing of the algorithm, a steady-state, depth-averaged flow field was 

desired. To that end, the upstream/inflow forward boundary condition was set to a relatively low 

total volumetric flow rate of 50 m3/s, and the effects of bottom friction were included, using a 

Manning roughness coefficient of 0.05 s/m1/3. The downstream/outflow forward boundary 

condition that proved to have the least impact on the velocity and water depth was that of a 

Neumann BC, with dη/dy = -0.0001. The domain was also extended (4 km) to the North to 

ensure that the boundary condition had a minimal impact on the region of interest. The results 

from a Delft3D simulation of the Snohomish River using the ‘true’ bathymetry are shown in 

Figure 3.2. The inlet is in the southeast corner, and the outlet is at the north. The forward 

simulation is run for 12 hours, with a time step of 4 seconds. The forward simulations require 2 

minutes on 8 CPU.  
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Figure 3.2. ‘True’ simulation results of Snohomish River: (a) bathymetry, (b) velocity 
magnitude, (c) water surface elevation with velocity vectors, and (d) total water depth. 

 
 
 

3.1.2 Depth-Averaged (2D) Velocity Data 

After determining the best forward model setup, the initial testing of the adjoint solver and 

assimilation algorithm given fully consistent, full-field depth-averaged velocity data began. This 

is an important step in testing the algorithm and provides an upper limit on the performance of 

the method; while the final data will not be depth-averaged data, the underlying hydrodynamics 

are being represented as such. This will allow for the separation of errors due to methodology 

and those due to model assumptions. There are three sub-sections to isolate and compare the 

effects of data resolution and noise, given data that is consistent with the model. 

 

 

 

(a) (b) 

(c) (d) 
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 3.1.2.1 Full-Field Data 

The best possible performance of the algorithm is for data that is at the model resolution with no 

noise and consistent with the hydrodynamics (depth-averaged). It is important to note that the 

algorithm can predict bathymetry only to within an additive constant; to remove this ambiguity, 

total water depth is used for all comparisons, unless noted otherwise. This is also the variable of 

importance for the potential end-users. A comparison of the ‘true’, first guess, and final depth is 

shown in Figure 3.3. A similar comparison for velocity magnitude is shown in Figure 3.4. 

 
Figure 3.3. Comparison of the total water depth for noise-free, full-resolution, depth-

averaged velocity data: (a) ‘true’ depth, (b) initial depth, and (c) final estimate of depth. 
 
 

 
Figure 3.4. Comparison of the velocity magnitude for noise-free, full-resolution, depth-

averaged velocity data: (a) ‘true’ velocity magnitude, (b) initial velocity magnitude, and (c) 
final estimate of velocity magnitude. 

 

(a) (b) (c) 

(a) (b) (c) 
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After 30 line minimizations, the cost function, a measure of the error variance for the estimated 

velocity field, shows a decrease of about 99%, as seen in Figure 3.5. The RMS velocity error is 

reduced to 0.011 m/s, and the depth error is reduced to 0.38 m.  

 
Figure 3.5. Cost function progression. 

 

A point-by-point comparison of the estimated versus simulated ‘true’ results is shown in Figure 

3.6. A similar plot is shown in Figure 3.7. Here, the ‘true’ variables are put into 20 equally 

spaced bins, and both the estimated and ‘true’ are averaged over the ‘true’ bins. Inspection of 

these results show excellent velocity agreement, while the total water depth show a small bias for 

shallow water; the algorithm over-predicts the shallow depths. In contrast, the algorithm 

accuracy decreases with increasing depth, consistently under-estimating depths beyond 3 m. In 

Figure 3.7, the colors represent the number of data points in each statistical bin; note that there 

are a relatively small number of data points in the deeper regions of the river. 
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Figure 3.6. Point-by-point comparison of estimated versus ‘true’ (a) total water depth and 

(b) velocity magnitude for noise-free, full-resolution, depth-averaged velocity data. 
 

 
Figure 3.7. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 
velocity magnitude for noise-free, full-resolution, depth-averaged velocity data. The error 
bars represent one standard deviation of the error between estimated and ‘true’ for each bin of 
the ‘true’ variable, and the colors represent the number of data points in each statistical bin. 

 

Velocity comparisons versus ‘true’ total water depth are given in Figure 3.8, and depth 

comparisons versus ‘true’ velocity magnitude are shown in Figure 3.9. There is no strong 

correlation between water depth and velocity, as shown in Figures 3.8(a) and 3.9(a). This is 

attributed to the competing effects of continuity and bottom friction. Upon inspection of the 

(a) (b) 

(a) (b) 
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errors in the estimates, Figure 3.8(b) shows that the largest velocity errors are in the deepest 

water, while in Figure 3.9(b) the largest depth errors are in the low-velocity regions. 

 
Figure 3.8. Velocity magnitude statistics versus total water depth for noise-free, full-

resolution, depth-averaged velocity data. 
 

 
Figure 3.9 Total water depth statistics versus velocity magnitude for noise-free, full-

resolution, depth-averaged velocity data. 
 

 

3.1.2.2 Sparse Data 

After the ceiling has been established for the best possible bathymetry estimation, the potential 

impact of realistic data types can be explored in more detail. The first source of error 

(a) (b) 

(a) (b) 
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investigated is data resolution. This is covered in additional detail in the corresponding section 

regarding three-dimensional data. However, to separate the impact of three-dimensionality and 

data resolution, the first set of data is that of depth-averaged velocity data down-sampled to 20 m 

resolution, with no noise. At this resolution, there are about six data points across the river. The 

total water depth field comparison is shown in Figure 3.10, followed by the velocity magnitude 

comparison in Figure 3.11. 

 
Figure 3.10. Comparison of the total water depth for noise-free, 20m-resolution, depth-

averaged velocity data: (a) ‘true’ depth and (b) final estimate of depth. 
 

 
Figure 3.11. Comparison of the velocity magnitude for noise-free, 20m-resolution, depth-

averaged velocity data: (a) ‘true’ velocity magnitude and (b) final estimate of velocity 
magnitude. 

 

The statistics of the bathymetry estimation are similar to those of the full resolution case 

discussed in Section 3.1.2.1, but the RMS error in velocity has increased to 0.015 m/s, and the 

(a) (b) 

(a) (b) 
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RMS depth error has nearly doubled to 0.63 m. The statistically binned plots are shown in Figure 

3.12. 

 
Figure 3.12. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 
velocity magnitude for noise-free, 20m-resolution, depth-averaged velocity data. The error 
bars represent one standard deviation of the error between estimated and ‘true’ for each bin of 
the ‘true’ variable, and the colors represent the number of data points in each statistical bin. 

 

 
3.1.2.3 Noisy Data 

To further exercise the algorithm, and in particular to verify robustness, it is necessary to 

understand the effect of adding noise to the data. Hence, the second source of error investigated 

is data noise. This is also covered in additional detail in the corresponding section regarding 

three-dimensional data. However, to separate the impact of three-dimensionality, data resolution 

and data error, the second set of data is that of depth-averaged velocity data down-sampled to 20 

m resolution, with 20 cm/s RMS noise added, sampled from a Gaussian distribution. The total 

water depth field comparison is shown in Figure 3.13, followed by the velocity magnitude 

comparison in Figure 3.14. 

 

(a) (b) 
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Figure 3.13. Comparison of the total water depth for 20cm/s RMS noise, 20m-resolution, 

depth-averaged velocity data: (a) ‘true’ depth and (b) final estimate of depth. 
 

 
Figure 3.14. Comparison of the velocity magnitude for 20cm/s RMS noise, 20m-resolution, 

depth-averaged velocity data: (a) ‘true’ velocity magnitude and (b) final estimate of 
velocity magnitude. 

 

The statistics of the bathymetry estimation are similar to those of the 20 m resolution case 

discussed in Section 3.1.2.2, but the RMS error in velocity has increased again to 0.091 m/s, and 

the RMS depth error has nearly doubled to 1.12 m. The statistically binned plots are shown in 

Figure 3.15. 

 

(a) (b) 

(a) (b) 
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Figure 3.15. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 
velocity magnitude for 20cm/s RMS noise, 20m-resolution, depth-averaged velocity data. 

The error bars represent one standard deviation of the error between estimated and ‘true’ for each 
bin of the ‘true’ variable, and the colors represent the number of data points in each statistical 

bin. 
 

The previous three sub-sections are included to provide evidence of the ability of the models and 

algorithm to converge to a reasonable solution given data that has been degraded in both quantity 

and quality. They also give an initial understanding of the impact of quality and quantity of data 

on the ability of the algorithm to accurately predict river bathymetry. These effects are 

investigated in further detail after first including three-dimensionality in the model. 

 

3.1.3 Surface (3D) Velocity Data 

Solving the depth-averaged flow in a river is significantly less computationally expensive than 

solving for the entire three-dimensional velocity field. If it would be possible to obtain a good 

bathymetry estimate given only surface velocity data while using a predominantly two-

dimensional flow solver, the algorithm would be deemed useful for the end-users. If the accuracy 

penalty were quantifiable, then it would be even more so. In the community of researchers 

(a) (b) 



 

 38 

studying river flows, it is generally assumed that the correlation between surface and depth-

averaged velocity is strong. A general rule of thumb is the surface velocity is about 30% greater 

than the depth-averaged velocity, though the ratio varies depending on bottom roughness (Rantz 

(1982) and Plant, Keller, Hayes and Spicer (2005)). This has been verified using simulated data 

in the following section.  

 

3.1.3.1 Depth-Averaged to Surface Velocity Correlation 

To determine a correlation between depth-averaged velocity and surface velocity, the Delft3D 

model has been configured with 15 vertical layers (on a terrain-following σ–coordinate system). 

A comparison of the 3D surface velocity and 2D depth-averaged velocity fields is shown in 

Figure 3.16. 

 
Figure 3.16. Comparison of the velocity magnitude: (a) 3D surface velocity magnitude and 

(b) 2D depth-averaged velocity magnitude. 
 

A scatter plot of the velocity comparison for two different rivers in is shown in Figure 3.17, 

along with a least-squares linear fit; the Kootenai River will be discussed in more detail in 

Section 3.2. The correlation is very high for these rivers. Using these two sets of data, a linear 

depth- to surface- velocity empirical model was developed and implemented in the algorithm, 

such that 

(a) (b) 
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This form is used to ensure that the empirical surface velocity goes to zero when the depth-

averaged velocity goes to zero, without changing direction. 

 

 
Figure 3.17. Surface velocity versus depth-averaged velocity for (a) Snohomish River and 

(b) Kootenai River. 
 

For the remainder of this chapter, the empirical relationship is used in the bathymetry estimation 

algorithm, and it is shown to work very well. The empirically modeled velocity is used in the 

calculation of the cost function and adjoint data source terms. The advection velocities are not 

modified for the adjoint solver. 

 

3.1.3.2 Full-Field Data 

It is necessary to understand the effect of using the empirical surface-to-depth-velocity 

correlation. The first step in assessing the correlation is to use full-resolution, noise-free data. 

The simulated surface velocity is generated by running the Delft3D model with 15 vertical σ-

(b) (a) 
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layers. Then, the river bathymetry is estimated using the correlation to ‘reconstruct’ the surface 

velocity from 2D, depth-averaged simulations. The total water depth field comparison is shown 

in Figure 3.18, followed by the velocity magnitude comparison in Figure 3.19. 

 
Figure 3.18. Comparison of the total water depth for noise-free, full-resolution, surface 

velocity data: (a) ‘true’ depth and (b) final estimate of depth. 
 

 
Figure 3.19. Comparison of the velocity magnitude for noise-free, full-resolution, surface 
velocity data: (a) ‘true’ velocity magnitude and (b) final estimate of velocity magnitude. 

 

The statistics of the bathymetry estimation are similar to those of the 2D assimilation case 

discussed in Section 3.1.2.1; the RMS error in velocity is now 0.018 m/s, and the RMS depth 

error is 0.50 m. The statistically binned plots are shown in Figure 3.20. 

 

(a) (b) 

(a) (b) 
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Figure 3.20. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 

velocity magnitude for noise-free, full-resolution, surface velocity data. The error bars 
represent one standard deviation of the error between estimated and ‘true’ for each bin of the 

‘true’ variable, and the colors represent the number of data points in each statistical bin. 
 

This case provides an estimate of the ability of the empirical correlation to effectively estimate 

the surface velocity from a two-dimensional simulation. The following sub-sections are intended 

to investigate the impact of reduced resolution surface velocity data. The effects are separated 

into resolution effects and data noise-level effects. 

 

3.1.3.3 Data Resolution 

The effect of data resolution can be investigated by degrading the ‘true’ surface velocity data. 

First, the effect of resolution with out any noise is shown to be similar to that seen in the two-

dimensional bathymetry estimation, as in section 3.1.2.2, down-sampling the surface velocity to 

20m resolution. The total water depth field comparison is shown in Figure 3.21, followed by the 

velocity magnitude comparison in Figure 3.22. 

 

(a) (b) 
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Figure 3.21. Comparison of the total water depth for noise-free, 20m-resolution, surface 

velocity data: (a) ‘true’ depth and (b) final estimate of depth. 
 

 
Figure 3.22. Comparison of the velocity magnitude for noise-free, 20m-resolution, surface 
velocity data: (a) ‘true’ velocity magnitude and (b) final estimate of velocity magnitude. 

 

With respect to statistics, those of the bathymetry estimation using low resolution surface 

velocity data are similar to those of the 2D assimilation case discussed in Section 3.1.2.2, 

although the RMS error in velocity has increased to 0.030 m/s, and the RMS depth error has 

increased to 0.69 m. The statistically binned plots are shown in Figure 3.23. 

 

(a) (b) 

(a) (b) 
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Figure 3.23. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 

velocity magnitude for noise-free, 20m-resolution, surface velocity data. The error bars 
represent one standard deviation of the error between estimated and ‘true’ for each bin of the 

‘true’ variable, and the colors represent the number of data points in each statistical bin. 
 

The correlation has been shown to be robust with respect to the empirical correlation. Further, 

data from a real sensor system will typically exhibit noise, and there is usually a trade-off 

between resolution and noise level. Here, the effect of resolution is estimated by holding the 

error in the data fixed while varying the resolution of the data. Three cases, all with 20cm/s noise 

with resolutions varying from 10m to 40m are examined. At 10m resolution, there are 10-12 data 

points across the river, and at 40m resolution, there are only 2-4. The estimated depths are shown 

in Figure 3.24, and the ‘true’ velocity comparisons are in Figure 3.25. 

 

 

 

 

 

(a) (b) 
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Figure 3.24. Comparison of the total water depth for fixed surface velocity data noise level 
(20cm/s): (a) ‘true’ depth, (b) estimated depth for 10m resolution data, (c) estimated depth 

for 20m resolution data, and (d) estimated depth for 40m resolution data. 
 

 
Figure 3.25. Comparison of the ‘true’ surface velocity magnitude for fixed data noise level 

(20cm/s): (a) full-resolution, noise-free velocity, (b) velocity for 10m resolution data, (c) 
velocity for 20m resolution data, and (d) velocity for 40m resolution data. 

 

The statistics for the data resolution comparison are shown in Table 3.1, and a comprehensive 

comparison is shown in Figure 3.26, through the use of the binned statistics. It is notable that the 

algorithm performs equally well on data that is at 20m resolution and 40m resolution. However, 

if the bias (mean) error is removed, the variance in the depth error does decrease as the resolution 

increases. 

 

 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Table 3.1. Bulk estimation statistics for different data resolutions with fixed noise level 
(20cm/s). 

Resolution [m] Mean Depth 
Error [m] 

RMS Depth 
Error [m] 

Mean Velocity 
Error [m/s] 

RMS Velocity 
Error [m/s] 

10 0.0602 0.7139 -0.0243 0.1328 
20 0.4811 1.0555 -0.0641 0.1423 
40 0.2153 1.0430 -0.0480 0.1226 

 

 
Figure 3.26. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 
velocity magnitude with fixed surface velocity error (20cm/s). The error bars represent one 
standard deviation of the error between estimated and ‘true’ for each bin of the ‘true’ variable. 

 

 

3.1.3.4 Data Noise 

In this section, the effect of data noise level is estimated by holding the resolution of the data 

fixed while varying the noise in the data. Three cases, all with 20m resolution data with noise 

levels varying from 10cm/s to 40cm/s are examined. The estimated depths are shown in Figure 

3.27, and the ‘true’ velocity comparisons are in Figure 3.28. 

 

 

(a) (b) 
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Figure 3.27. Comparison of the total water depth for fixed surface velocity data resolution 
(20m): (a) ‘true’ depth, (b) estimated depth for 0cm/s noise data, (c) estimated depth for 
10cm/s noise data, (d) estimated depth for 20cm/s noise data, and (e) estimated depth for 

40cm/s noise data. 
 

 

 

 

 

 

 

 

(a) (b) (c) 

(d) (e) 
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Figure 3.28. Comparison of the ‘true’ surface velocity magnitude for fixed data resolution 

(20m): (a) full-field, noise-free velocity, (b) velocity for 0cm/s noise data, (c) velocity for 
10cm/s noise data, (d) velocity for 20cm/s noise data, and (e) velocity for 40cm/s noise data. 

 
 

The statistics for the data noise level comparison are shown in Table 3.2, and a comprehensive 

comparison is shown in Figure 3.29, through the use of the binned statistics. 

 

Table 3.2. Bulk estimation statistics for different data noise levels with fixed resolution 
(20m). 

Data RMS 
Error [cm/s] 

Mean Depth 
Error [m] 

RMS Depth 
Error [m] 

Mean Velocity 
Error [m/s] 

RMS Velocity 
Error [m/s] 

0 0.2126 0.6943 -0.0045 0.0300 
10 0.3203 0.8758 -0.0181 0.0713 
20 0.4811 1.0555 -0.0641 0.1423 
40 0.7096 1.3158 -0.1954 0.2993 

 

 

(a) (b) (c) 

(d) (e) 
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Figure 3.29. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 
velocity magnitude with fixed surface velocity resolution (20m). The error bars represent one 
standard deviation of the error between estimated and ‘true’ for each bin of the ‘true’ variable. 

 

 

3.1.4 Hydrostatic Assumption 

To this point, all of the simulations have been conducted using a hydrostatic solver. In this 

section, the modeling error that is associated with this assumption is shown to be no more 

significant than the typical errors associated with using real data. That is to say that actual 

surface velocities collected in an experiment would be similar to those resulting from a 

simulation using a hydrostatic solver. The most significant advantages of utilizing the hydrostatic 

assumption are computational efficiency and robustness. The Delft3D model can be run in non-

hydrostatic mode, but there are some limitations. The use of a σ-grid is not allowed and the 

model cannot be run in parallel. To obtain similar vertical resolution as the previous simulations, 

the vertical grid was uniformly spaced at a resolution of 20cm. To truly infer the difference 

between the two model results, both were run using the same vertical grid configuration. These 

(a) (b) 
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simulations were also conducted at twice the horizontal resolution of the previous bathymetry 

estimation for more accuracy. 

 

A comparison of velocity fields is shown in Figure 3.30. It is worth noting that the surface 

velocities obtained using the hydrostatic model with fixed vertical resolution and higher 

horizontal resolution result are slightly lower than those obtained at lower resolution on a σ-grid. 

The most striking difference between the two surface velocities is the relative uniformity of the 

non-hydrostatic case. It does not reach the same peak magnitude upstream, and is slightly higher 

downstream. The lower velocity regions are very similar. 

 
Figure 3.30. Comparison of the velocity magnitude: (a) 2D depth-averaged velocity, (b) 3D 

hydrostatic surface velocity, and (c) 3D non-hydrostatic surface velocity. 
 

The hydrostatic assumption does potentially impact the empirical correlation that has been used 

thus far. The correlation is shown and compared to the previous hydrostatic data in Figure 3.31. 

Because the original correlation still fits the data and for consistency, no adjustments were made 

with respect to the empirical depth-averaged to surface velocity correlation in the bathymetry 

estimation algorithm. 

(a) (b) (c) 
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Figure 3.31. Surface velocity versus depth-averaged velocity correlation for (a) low-

resolution hydrostatic model and (b) high-resolution non-hydrostatic model. 
 

 

To assess the impact of the hydrostatic assumption, bathymetry estimation was conducted using 

the full-field non-hydrostatic surface velocity as the observational data. The results are compared 

to the results using hydrostatic surface velocity data in Figure 3.32. 

 
Figure 3.32. Comparison of the total water depth: (a) 2D ‘true’ depth, (b) 3D hydrostatic 

estimated depth, and (c) 3D non-hydrostatic estimated depth. 
 

With respect to statistics of the bathymetry estimation, the RMS error in velocity has increased to 

0.057 m/s, and the RMS depth error has increased to 0.80 m. The statistically binned plots are 

shown in Figure 3.33. The largest errors in the estimation are in the low velocity and low depth 

(a) (b) (c) 

(b) (a) 
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regions, but overall, the hydrostatic assumption appears to have no more effect than the effects of 

‘real’ data resolution and noise. 

 
Figure 3.33. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 

velocity magnitude for different types of forward model. The error bars represent one 
standard deviation of the error between estimated and ‘true’ for each bin of the ‘true’ variable. 

 

 

3.2 Kootenai River 

3.2.1 Geographical Context 

To further exercise the algorithm and models, bathymetry estimation was conducted for the 

Kootenai River in Idaho. The reach that is currently being investigated is a 20 km reach 

characterized by several bends in a meandering section of the river. The average width of the 

river in this reach is about 200m. Rich McDonald at the USGS provided the bathymetry. The 

bathymetry represents a collection of various different data sets over multiple years, using 

different experimental techniques (e.g., LiDAR and surveys). The region of interest is shown in 

Figure 3.34. Note that in Figure 3.34 and subsequent two-dimensional plots of the Kootenai 

River, the axes labels are omitted for space. 

(a) (b) 
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Figure 3.34. The Kootenai River: region overview and bathymetry. This reach is 

approximately 20km long with an average width of 200m. The sharp bend in the river in the 
northwest is located at 116.418°W, 48.786°N. In this figure and subsequent two-dimensional 

figures, the axes labels are omitted for space. 
 

This reach differs from the Snohomish River in length (20km versus 2km) and flow-rate 

(220m3/s versos 50m3/s). The bathymetry has been interpolated onto a boundary fitted, 

orthogonal curvilinear grid with an average resolution of 7m (2718 x 26 cells in the downstream 

and cross-stream directions, respectively). Recall that the Snohomish River simulations had a 

nominal resolution of about 3m. 

 

The upstream/inflow boundary condition was set to a total volumetric flow rate of 220 m3/s, and 

the effects of bottom friction were included, using a Manning roughness coefficient of 0.05 
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s/m1/3. The downstream/outflow forward boundary condition was the same as the Snohomish 

River outflow treatment. The domain was extended (8 km) to the North to ensure that the 

boundary condition had a minimal impact on the region of interest. The results from a Delft3D 

simulation of the Kootenai River using the ‘true’ bathymetry are shown in Figure 3.35. Similar 

to the Snohomish, the inlet is in the southeast corner, and the outlet is at the north. The forward 

simulation is run for 24 hours, with a time step of 4 seconds. The forward simulations require 15 

minutes on 8 CPUS.  
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Figure 3.35. ‘True’ simulation results of Kootenai River: (a) bathymetry, (b) velocity 

magnitude, (c) water surface elevation with velocity vectors, and (d) total water depth. 
 

Only two cases were conducted for the Kootenai, with the intent of assessing the robustness of 

the algorithm/models: 2D, full-field representing a best-case scenario; and a 3D, sparse noisy 

case. Results are presented below. 

(a) (b) 

(c) (d) 
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3.2.2 Full-Field Depth-Averaged (2D) Velocity Data 

The best possible performance of the algorithm is for data that is at the model resolution with no 

noise and consistent with the hydrodynamics (depth-averaged). A comparison of the ‘true’, first 

guess, and final depth is shown in Figure 3.36. A similar comparison for velocity magnitude is 

shown in Figure 3.37. Because this is a different river, the initial guess is once again included to 

show the significant changes in both fields as a result of the assimilation. 

 
Figure 3.36. Kootenai River comparison of the total water depth for noise-free, full-

resolution, depth-averaged velocity data: (a) ‘true’ depth, (b) initial depth, and (c) final 
estimate of depth. 

 

(a) (b) (c) 
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Figure 3.37. Kootenai River comparison of the velocity magnitude for noise-free, full-

resolution, depth-averaged velocity data: (a) ‘true’ velocity magnitude, (b) initial velocity 
magnitude, and (c) final estimate of velocity magnitude. 

 

After 30 line minimizations, the cost function shows an overall increase in match between 

observed and estimated velocity fields of about 95%. The RMS velocity error is 0.020 m/s, and 

the depth error is 0.75 m. The statistically binned plots are shown in Figure 3.38. The maximum 

depth for which the algorithm accurately estimates depth has increased (relative to the 

corresponding Snohomish case) to about 7m. While the RMS depth error is higher than seen in 

the Snohomish results, it is important to note differences in the model setup and the rivers 

themselves. The velocities are very similar, but the Kootenai River is much wider and deeper; 

also, the model resolution has increased from 3m to 7m. Still, the largest errors are again 

observed in regions with fewer data points. 

 

(a) (b) (c) 
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Figure 3.38. Kootenai River statistical comparison of estimated versus ‘true’ (a) total water 
depth and (b) velocity magnitude. The error bars represent one standard deviation of the error 

between estimated and ‘true’ for each bin of the ‘true’ variable, and the colors represent the 
number of data points in each statistical bin. 

 

These results indicate that the methodology should be robust to different rivers, though more 

exercising and characterization of the influence of various model inputs on bathymetry 

estimation is necessary (e.g., average bed slope and bottom friction coefficient impacts). 

 

3.2.3 Sparse, Noisy Surface (3D) Velocity Data 

As a final test of the algorithm, synthetic data was generated from a 3D model of the Kootenai 

River, down-sampled to 20m resolution, with 20cm/s RMS noise added. This corresponds with 

the similar Snohomish River case described in Sections 3.1.3.3 and 3.1.3.4, but the Kootenai is 

also wider, and 20m resolution data results in 8-10 data points across the river. A comparison of 

the ‘true’, first guess, and final depth is shown in Figure 3.39. A similar comparison for velocity 

magnitude is shown in Figure 3.40. The empirical correlation between depth-averaged and 

surface velocity has not been modified (for consistency). 

 

(a) (b) 
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Figure 3.39. Kootenai River comparison of the total water depth for 20cm/s RMS noise, 
20m-resolution, surface velocity data: (a) ‘true’ depth and (b) final estimate of depth. 

 
 

 
Figure 3.40. Kootenai River comparison of the velocity magnitude for 20cm/s RMS noise, 

20m-resolution, surface velocity data: (a) ‘true’ velocity magnitude and (b) final estimate of 
velocity magnitude. 

 

(a) (b) 

(a) (b) 
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With the data degraded as such, the RMS velocity error has increased to 0.136 m/s, and the depth 

error is 1.21 m. The statistically binned plots are shown in Figure 3.41. 

 
Figure 3.41. Kootenai River statistical comparison of estimated versus ‘true’ (a) total water 

depth and (b) velocity magnitude for 20cm/s RMS noise, 20m-resolution, surface velocity 
data. The error bars represent one standard deviation of the error between estimated and ‘true’ 
for each bin of the ‘true’ variable, and the colors represent the number of data points in each 

statistical bin. 
 

This is the final case investigated as a part of this work. Further discussion of all results follow in 

the next section. 

 

3.3 Summary of Results 

A complete listing of all thirteen cases used to exercise the bathymetry estimation algorithm is 

provided in Table 3.3. The bathymetry estimation has been shown to be a function of the river, 

the forward model setup, the data resolution, and the data noise level. The algorithm and all 

accompanying models have been shown to be robust to model (river) geometries, as well as to 

various amounts of data degradation. The resultant RMS depth errors fall between 0.3m and 

(a) (b) 
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1.3m, showing very good overall performance. The algorithm results follow expected trends in 

depth errors versus data noise level (Section 3.1.3.4).  

 

Table 3.3. Complete listing of all cases. 

River 

Forward 
Model 
[2D/3D; 
Non-
Hydro] 

Data 
Resolution 
[m] 

Data 
RMS 
Error 
[cm/s] 

Mean 
Depth 
Error 
[m] 

RMS 
Depth 
Error 
[m] 

Mean 
Velocity 
Error 
[m/s] 

RMS 
Velocity 
Error 
[m/s] 

Snohomish 2D;Hydro 3 0 0.0016 0.3774 0.0036 0.0111 
Snohomish 3D;Hydro 3 0 0.2086 0.5005 -0.0078 0.0178 
Snohomish 3D;Non-

hydro 
3 0 0.3489 0.7998 -0.0376 0.0568 

Snohomish 2D;Hydro 20 0 0.0500 0.6267 0.0023 0.0215 
Snohomish 2D;Hydro 20 20 0.4463 1.1107 -0.0692 0.1393 
Snohomish 3D;Hydro 20 0 0.2126 0.6943 -0.0045 0.0300 
Snohomish 3D;Hydro 20 10 0.3203 0.8758 -0.0181 0.0713 
Snohomish 3D;Hydro 20 20 0.4811 1.0555 -0.0641 0.1423 
Snohomish 3D;Hydro 20 40 0.7096 1.3158 -0.1954 0.2993 
Snohomish 3D;Hydro 10 20 0.0602 0.7139 -0.0243 0.1328 
Snohomish 3D;Hydro 40 20 0.2153 1.0430 -0.0480 0.1226 
Kootenai 2D;Hydro 7 0 -0.1003 0.7535 0.0129 0.0205 
Kootenai 3D;Hydro 20 20 0.0178 1.2131 0.0089 0.1356 

 
 

The algorithm performance for different input data resolution and noise level is summarized in 

Figure 3.42. The plots include all 3D, hydrostatic cases for both rivers. The most curious aspect 

of Figure 3.42(a) is that the model performance does not decline with an increase in data 

resolution from 20m to 40m, as indicated by the red circles. It is important to note that most 

remote sensing platforms, in post-processing of the images used to construct a velocity field, 

must trade off between higher resolution and lower noise level. Considering that and the results 

of the bathymetry estimation algorithm, it seems that for a given river (in particular a given river 

width), there is an optimal trade-off. To put it another way, there is a minimum number of data 
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points required across the river to estimate the cross-stream profile of river depth. If that 

threshold is met, reducing the noise level would be better than increasing the data resolution. The 

2.2km reach of the Snohomish River averages 120m in river width, such that 40m resolution data 

provides between three and four data points across the river.  

 
Figure 3.42. Depth estimation error comparison for varying (a) data resolution and (b) 

data error. The blue symbols represent all 3D, hydrostatic cases; the red circles indicate 
Snohomish River cases with fixed data error in (a) and fixed data resolution in (b). 

 

 

An important test of the algorithm is to show that it performs well on different types of rivers. 

While there are a multitude of different types of rivers and river classes, this study is based on 

meandering reaches, and the algorithm has been shown to be robust for two substantially 

different river reaches. This is shown in the model comparisons in Figure 3.43. The difference in 

river scales is obvious, and the overall algorithm performance is very good for both. The 

Kootenai River is wider, deeper, and longer, and has higher maximum velocities. For 

computational efficiency, the model resolution was lower in the Kootenai setup. That is the most 
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likely reason for the slightly better performance on the Snohomish River, rather than the 

algorithm itself. 

 

 
Figure 3.43. Statistical comparison of estimated versus ‘true’ (a) total water depth and (b) 

velocity magnitude for different rivers and models. The error bars represent one standard 
deviation of the error between estimated and ‘true’ for each bin of the ‘true’ variable. 

 

Finally, the overall depth estimation errors attributable to the hydrostatic assumption have been 

shown to be on the order of those due to realistic data resolution and noise levels (Section 3.1.4), 

though there is a notable difference in the errors as a function of downstream distance. When the 

surface velocity data is from a full-resolution non-hydrostatic model, the algorithm over predicts 

upstream depths and under predicts downstream depths for the Snohomish River under the 

specific conditions used here. This is most likely due to an inconsistency between the bottom 

slope and bottom friction for the hydrostatic assumption, and warrants further study. For 

practical use, the hydrostatic assumption coupled with the depth-averaged to surface velocity 

empirical correlation should be sufficient. 

(a) (b) 
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CHAPTER 4 
CONCLUSIONS 

 
 
The mathematical framework for the estimation of river bathymetry using velocity data has been 

completed. A numerical solver for the adjoint variables has been developed and tested; this has 

been inserted into an algorithm that can be used to estimate the bathymetry in rivers. The 

algorithm has been exercised on multiple sets of data for two different reaches of two rivers. The 

results show that the proposed methodology can provide an accurate estimate of river bathymetry 

given surface velocity data. The effects of different types of data, three-dimensionality, and 

experimental errors have been assessed. 

 

The mathematical framework, outlined in Section 2.2, is defined by first defining a cost function 

representing the error between modeled and observed surface velocities. The cost function is 

then constrained through the introduction of Lagrange multipliers representing the adjoint 

variables, multiplied by the shallow-water equations. Variational calculus is applied to the 

augmented cost function, resulting in the adjoint equations and the gradient with respect to the 

bathymetry. 

 

Numerical tools have been developed to solve the adjoint equations and calculate the gradient of 

the bathymetry. Three important aspects of the adjoint solver, described in Section 2.3, were 

shown to be necessary to achieve stability requirements. Even though the adjoint equations 

appear similar in nature to the shallow-water equations, there are source terms involving the 

gradients of the adjoint variables that make existing numerical techniques unstable. The 
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algorithm incorporates an iterative gradient descent technique that drives the cost function to a 

minimum by adjusting the bathymetry. 

 

In Chapter 3, algorithm results were presented for multiple sets of velocity data on two different 

rivers. The algorithm was proven to be robust for 2D and 3D data, with data resolutions varying 

from 3m to 40m and at data noise levels varying from 0cm/s to 40cm/s. For fully consistent 

depth-averaged, noise-free, full-resolution velocity data, the algorithm produces bathymetry 

estimates that are well within acceptable limits for the potential end-users. As expected, the 

algorithm produces bathymetry fields that are accurate up to a maximum depth, after which the 

water depth is under-estimated. This effect is amplified when using surface velocity data. 

 

To allow the use of depth-averaged methodology given surface velocity observations, an 

empirical correlation was defined (in Section 3.1.3). The correlation was proven to be robust for 

the two rivers studied, resulting in very good bathymetric estimation. The empirical relationship 

was derived using a hydrostatic model, but the non-hydrostatic effects that are present in realistic 

rivers were shown to have no more impact on the algorithm than the effects of noise and 

resolution in typical observational data. The correlation that is implemented in the algorithm is 

consistent with previous observations of river velocity fields. The correlation has not been fully 

tested for robustness with respect to additional river types, such as steeper bottom slopes and 

varying bottom frictions. The two rivers used for model and algorithm testing represent typical, 

low-bottom slope meandering reaches. Further work would be necessary to expand the algorithm 

to braided reaches with significantly different conditions. 
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Overall, the bathymetry fields predicted by the algorithm result in RMS depth errors that lie 

between 0.3m and 1.3m RMS error, with the best model performance in low velocity and low 

depth regions. For the rivers investigated here, the low velocity and low depth regions of the 

rivers are notably small; in part, this explains the degraded performance in those regimes. Due to 

computational expense, the larger river model setup was at a lower resolution than the small 

reach. This model resolution affects the algorithm performance. Though not fully investigated, it 

appears as though a metric based on data resolution versus model resolution (or even river width) 

may aid in understanding algorithm performance. 

 

This work represents the beginning of the development of a tool or component of a set of tools 

that will aid in practical situations such as directing dredging in large rivers after a storm even in 

which sediment transport has made traveling routes depths uncertain and most measurement 

techniques difficult (due to suspended sediment. Future planned development of this algorithm 

will revolve around exercising on actual experimental data of different types. This will greatly 

aid in the further understanding of the impact of modeling assumptions on the data and in the 

model’s ability to estimate depth given that data. Additionally, the methodology can be applied 

to other aspects of river characterization, such a bottom friction estimation. 
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APPENDIX A 
SHALLOW WATER EQUATIONS 

 
The shallow water equations (SWEs) can be derived from first principles or by integrating the 

Navier-Stokes equations. In this section the latter method will be used. The vertical coordinate 

system is defined in Figure 2.1. 

 

Conservation of mass for fluid flow is defined by the continuity equation (in tensor notation, 

with Einstein summation convention) 

∂ρ
∂t
+
∂ρuj
∂x j

= 0 .          (A.1)
 

Likewise, conservation of momentum, in its most general form is defined by the Navier-Stokes 

equations 
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where  is the stress tensor for Newtonian fluids, given by 

τ ij = µ
∂ui
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+
∂uj
∂xi
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2
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Here δij  is the Kronecker delta. It should be noted that bi represents the summation of all body 

forces. In river flows, the effects of the Coriolis force are negligible such that the only significant 

body force is due to gravity. This is verified upon examination of the Rossby number, which is 

the ratio of inertial to Coriolis forces and is defined by 

Ro = U
fL

,           (A.4) 

€ 

τ ij
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where f is the Coriolis parameter, approximately 10-4 for intermediate latitudes. For large Rossby 

numbers, the effects of Coriolis can be considered negligible; for most rivers, the Rossby 

numbers are typically between 10 and 1000 (using the mean velocity magnitude and river width 

as the velocity and length scales).  

 

River flow is incompressible but turbulent. The Reynolds numbers are very high due to the 

properties of water and the large length scales. For this reason, it is necessary to include the 

effects of turbulence on the mean flow. This is typically handled through the use of the 

Reynolds-averaged Navier-Stokes  (RANS) equations. The equations are exact, though the 

quality of a RANS model solution is dependent on the turbulence closure used. In deriving the 

shallow-water equations, an eddy viscosity concept is presented here. 

For incompressible fluid flows, assuming constant properties (density and viscosity), the 

continuity and RANS equations reduce to (here the overbar represents averaging) 

∂u j

∂x j
= 0  and           (A.5)
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= −
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∂x j∂x j
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The third term on the RHS is due to the Reynolds decomposition ui = ui + !ui( ) , and can be 

modeled with an eddy viscosity such that 

−ui"uj" =ν t
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∂x j

+
∂u j
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&&
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(
))−
2
3
kδij .         (A.7) 

The eddy viscosity (νt) and the turbulent kinetic energy (k) are calculated separately using an 

appropriate turbulence model. For this work, a two-equation k-ε model is used with  
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ν t = cµ
k2

ε
.           (A.8) 

For more details and general information on turbulence modeling in hydraulic applications, see 

Rodi (2000). This results in the closed form of the RANS equations (here the overbar has been 

removed for simplicity) 

∂uj
∂x j

= 0  and           (A.9)
 

∂ui
∂t

+uj
∂ui
∂x j

= −
1
ρ
∂p
∂xi

+
∂
∂x j

ν t
∂ui
∂x j

#

$
%%

&

'
((+ gi .       (A.10) 

 

Utilizing the hydrostatic assumption (the vertical velocities are small relative to the horizontal 

velocities, and the acceleration of the vertical velocity is small relative to the other terms in the 

vertical momentum equation) and assuming gravity is in the x3 direction (g3 = g), reduces the u3 

momentum equation to 

∂p
∂x3

= ρg .           (A.11) 

Integrating over depth from η to an arbitrary depth z results in the hydrostatic pressure 

distribution 

p = ρg η − z( ) .           (A.12) 

This leads to the pressure gradient in the horizontal momentum equations at depth z 

∂p
∂xi

= ρg ∂η
∂xi

.           (A.13) 
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Note that the horizontal gradient of z is zero, as this is simply a vertical coordinate. To obtain the 

depth-integrated SWEs, we integrate over depth. First, the continuity equation (applying the 

Leibnitz rule) 
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      (A.14) 

At z = -h, we have a no-slip boundary condition, as well as no normal flow 

ui z=−h = 0 ,           (A.15) 

and at the surface (z = η), we also have no relative normal flow 

∂η
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which reduces the depth-integrated continuity equation to 
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∂
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Defining the depth-averaged velocity as 

Ui =
1
H

ui dz
−h

η
∫           (A.18) 

further reduces the depth-integrated form of continuity to 
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∂η
∂t
+
∂ HU j( )
∂x j

= 0 .          (A.19) 

For the depth-averaged momentum equations, we first augment the left-hand side with the 

product of the velocity and the continuity equation such that the left-hand side becomes (in 

conservative form) 
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Then we integrate over depth (again, applying the Leibnitz rule): 
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Next, we assume that the horizontal velocity profiles are uniform such that 
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and utilize the surface and bottom boundary conditions for the velocity to reduce the left-hand 

side to 

∂HUi
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+
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∂x j

.          (A.23) 

For the right-hand side of the horizontal momentum equations, the integral form is 
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The first term results from the surface elevation being independent of depth, and the second term 

can be separated into two components: horizontal diffusion (dominated by turbulent diffusion) 

and vertical diffusion (dominated by surface and bottom stresses), such that 
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where the overbar on the eddy viscosity indicated a depth-averaged horizontal eddy viscosity. In 

many river flows, the effects of the wind stresses can be neglected at the surface, but the bottom 

stress is important. The bottom stress can be modeled in many ways, but we chose to use a 

Chézy formulation in junction with a Manning coefficient correlation. The bottom stress is then 

τ b,i =
ρgUi U jU j( )

1
2

CD
2 ,         (A.26) 

where n is the Manning coefficient, with units of s/m1/3. Putting together the two sides of the 

momentum equations results in 
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The effects of the viscosity (both turbulent and molecular) are generally dominated by the 

bottom friction; when explicitly including the bottom friction, the additional turbulent effects are 
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small relative to the other terms on the right-hand side. Rearranging and recasting the depth-

averaged momentum equations in non-conservative form, the SWEs are defined by 

∂η
∂t
+
∂ HU j( )
∂x j

= 0  and          (A.28) 
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