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ABSTRACT

SERIES REPRESENTATION FOR PROCESSES WITH
INFINITE ENERGY AND THEIR PREDICTION
By

Arnavaz P. Taraporevala

The purpose of this work is to present series representations for stochastic
processes {X , n € I} whose second moments need not exist. In Chapter I,
we obtain such a representation for SaS processes in terms of e-invariant
exchangeable random variables. For series in e-invariant exchangeable random
variables we associate a dispersion distance and study a prediction problem for
them in terms of minimizing this distance. In case of series in i.i.d. random
variables in the domain of attraction of a stable law our results give those of
Cline and Brockwell. In Chapter II we see that the predictors obtained in
Chapter I are metric projections. In Chapters III and IV we give
nonanticipative series representations in terms of orthogonal random variables.
This problem can be looked at as an orthogonal Wold decomposition in certain
Banach spaces. The definition of orthogonality is based on the concept of a
semi-inner product introduced by Lumer. Under certain geometric conditions
the uniqueness of the semi—inner product is proved. If the Banach space is
Lp, p > 1, our results give the recent work of Cambanis, Hardin and Weron

who use James orthogonality.
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CHAPTER 0
INTRODUCTION

Let {X_ ,n € I} be a second order process with EX = 0 which is

purely nondeterministic. Then Xn has a moving average representation

00

X, = ED 2 k §, Here the {k's are orthogonal and < X , § > =0,

k > n. In case {Xn, n € I} is a purely non—-deterministic Gaussian process
{{k,k € I} are i.i.d. Gaussian random variables. For non-second order
processes with E|X n|p < o (1<p<2) similar orthogonal representations are
studied in [3], [5] and [19]. However even in the symmetric a stable (SaS)
case no distributional properties of {¢;} are obtained. In the non-second
order case, it was shown in [18] that there are severe limitations in the use of
the spectral theory. However the use of the time domain techniques for
processes represented in terms of series of i.i.d. random variables lead to
interesting results ([8]). In this approach a suitable dispersion is defined on a
sequence space through identification of coefficients of i.i.d. random variables in
the series expansion.

In Chapter I we first consider the relationship to the series
representation of a SaS process in terms of exchangeable random variables.
This allows us to define a dispersion distance on the corresponding sequence
space which is shown to be a subspace of ¢ o We then introduce an
appropriate dispersion distance on the space of series in exchangeable random

variables. In case the representing random variables are i.i.d. stable we

get that the dispersion distance is the usual ¢ , distance and if the

exchangeable random variables are i.i.d. (not necessarily stable), then the

distance is weaker than that given in [8]. Using this distance we study for



ARMA processes with exchangeable input analogues of the prediction results of
Cline and Brockwell ([8]). The technique used in the first problem is an

adaptation of that due to Dacunha—Castelle and Schreiber ([10]) which also
suggests an appropriate dispersion distance. As a by product we also obtain
sufficient conditions for the a.s. unconditional convergence for the series in
exchangeable random variables. As a consequence we get some results due to
Cline ([7]). In some cases the minimum -distance predictor obtained
coincides with the metric projection. This will be seen in Chapter II.

Let {X_ ,n € T} be a SaS sequence (1 < & < 2) and
M, = 8p{X| k < n}, where closure is taken with respect to the LP norm
(1 < p < a). Cambanis, Hardin and Weron ([5]) have defined concepts of
right and left innovations and orthogonal Wold decomposition using James
orthogonality. Left innovations (which always exist) and orthogonal Wold
decompositions are in terms of {{ ,n € I} where {, =X -P X and

P is the metric projection on M _,- Right innovations and Wold

n-1
decomposition exist in terms of {(n, n € I} if and only if

E[anxj, j¢n-1] €M, , and in this case ( =X - E[anxj,an—l].
However, James orthogonality is not enough when we consider general Banach
spaces. In Chapter III we define the concept of orthogonality for a Banach
space & using the semi—inner product introduced by Lumer ([17]). If

& = LP, p > 1, then Lumer's construction of the semi—inner product ([25]) is
the same as that considered by Cambanis and Miller ([4]). The Lumer
semi-inner product enables us to extend the definitions of right and left
projections as defined by Cambanis and Miamee ([3]) for a general Banach
space. It is seen in 3] that if {X ,n € I} is a SaS sequence such that
E[anxj,j < n-1] € M| _,, then E[anxj,j < n-1] is the right projection of



XIl on Mn— . In Chapter III we see that Lumer orthogonality implies James
orthogonality. If the Banach space is LP, p > 1, then Lumer orthogonality
coincides with James orthogonaltiy ([25]). Let x = {x ,nel} Cc .§
Mn(gc_)= sp {xm, m < n}, P~ denote the metric projection on M  and r,
denote the right projection on Mn’ n € L. In Chapter III we see that left
innovations always exist if % is reflexive, rotund and has a rotund dual.
Further, left innovations and Wold decompositions are in terms of {¢ ,n € I}

where §, =x, — P In Chapter IV we prove that if & is reflexive,

n n-1%n°
then the right Wold decomposition and innovations exist if and only if

r1(x,) exists for each n. In this case the decomposition is in terms of

{¢pnel} where ( =x -1, (x)



CHAPTER 1
SERIES REPRESENTATION OF STABLE PROCESSES;
DISPERSION DISTANCE AND PREDICTION

For a purely non—deterministic Gaussian process {X , n € I} we can
choose i.i.d. random variables {¢ , n € T} such that {¢ , n € T} forms a
symmetric basis ([16]). In this chapter we first consider the structure of a
symmetric stable process {X ,n € I} of index a (in short SaS) for which
M, (X:o) = ﬁa{xn,n € I} has a symmetric basis. Here ~® denotes the
closure with respect to the norm || ||, defined by (1.1). This motivates
us to study a.s. convergent series in terms of exchangeable random variables.
We define a suitable dispersion distance on this space and consider the
prediction problem with respect to this dispersion. This extends the work of
Cline and Brockwell ([8]).

For a SaS random variable X with characteristic function

EeltX = exp(-7|t|%), ¥ > 0, define

(1.1) IXIl, = [V i 1<¢ac2

7 if 0<a<l
([23]). Then for any 1< p < a, X € LP and
(1.2) |1X]1, = clp.e) 1111,

where ||X]| p denotes the LP norm of X and c(p,a) is a constant

which depends on p and o ([4]). Hence all LP norms are equivalent.



Note that || ||, gives rise to a metric and if o > 1, then Il 11, isa

norm ([23]).
We now start with some basic definitions.

Definition 1.3. A basis {x } of a Banach space is called an

unconditional basis if every convergent series of the form ¥ a x ~ converges
n

unconditionally. A basis {x } of a Banach space is said to be a symmetric
basis if it is equivalent to the basis {x ( n)}’ for any permutation = of the
integers.

Note that every symmetric basis is an unconditional basis.

Definition 1.4. Random variables {{i, 1 <i<n} are said to be
exchangeable if their joint distribution function is invariant under permutations
of {1,..n}. A sequence {{, n € N} of random variables is said to be an
exchangeable sequence if every finite subset is exchangeable. A sequence
{{n, n € N} of random variables is said to be e-invariant if for every n € N
and n-tuple (kl,...,kn) € N consisting of distinct elements the 2%

n—dimensional random vectors (ck €y oenr € fk )s 6. = *1, have the same
171 n n j

probability law.

Let {X ,n € I} be a SaS sequence (a > 1). By the Kolmogorov
consistency theorem (Theorem 36.1 [1]) we may assume that {X , n € I} is
a sequence on (Rl, .,‘(Rl),p). Since (Rl, .ﬂRl)) is a standard Borel space
and p has no atoms, (Rl,.z(Rl),y) is Borel isomorphic to ([0,1], &[0,1]),A)
where ) denotes Lebesgue measure on ([0,1}, H0,1]) ([21] p. 116). Hence



we may assume without loss of generality that {X ,n € I} is a SaS

sequence on ([0,1], &[0,1])). Define
M (X:n) = spP {X;.k < n}

Mp(X:—m) = 2 Mp(X:n)
M (Xiw) = spP {ﬂ M (X:n)}

where ~P denotes closure with respect to the LP-norm || ||p if
1<p<a % denotes closure with respect to the norm || || o defined by
(1.1) and sp denotes linear span.

Let {e), n € N} be a symmetric basis for M (X:o). Following the
proof of Dacunha—Castelle and Schreiber ([10]) we will get for 1 < p < a a
sequence of e—invariant exchangeable random variables {{n,n € N} in

LP(Q,3P) such that E c.e, converges in LP if and only if 1213 ¢ €y
converges in LP(Q,5P). Since f{e , n € N} is a symmetric basis for
M (X:w), we get by (1.2) that {e , n € N} is a symmetric basis for
M p(x:m). Propositions 22.2 and 21.4 [24] imply that {e , n € N} isa
bounded basis for Mp(X:m), 1<{p< a Let

(1.5) 0 < k_< inf||e || < sup|le ||. <K < w
P neN' ™'P pey PP

Since (1.5) is valid for any 1< p < a, {e, n € I} is uniformly integrable.



Let 1<p<q< a Then % = q/p > 1. Further
K32 [lel13 = | ley% = f(ley[P)7 .

Hence sup E(lenlp)7 < Kg < . Therefore {Ienlp, n € N} is uniformly
n

integrable.

Let ”ek . (or o k, ) denote the probability law of
1

"

yoor
n 1

(ekl,...,ekn) for any neN and ky,..k €N distinct. Let S~ denote the

group of permutations of {1,..n}. If o € SIl let

o(eys..ey) = (o(e),...,o(e,)) = (e o(1) e o(n))' Let T denote the group of
multiplication by (cl,...,cn), 6§ = +1, that is ,y € T,
reps-ey) = (1r(eg)-ney)) with 7(ej) = iej. Define

For m<n let l‘: m be the marginal of p; on the first m coordinates.
By (1.5), {;1:31 1 0 2 1} is tight and hence ([1], p. 331) has a weakly
convergent subsequence {p; (1),1 nk(l) > 1} converging weakly to ;-;1.

k ’

Using (1.5) again we see that {": (1),2 nk(l) > 2} has a weakly convergent
k ’

subsequence {43 o\ ,, m (2) 2 2 ing weakly to s, Continuing i

ubsequence {"nk(2),2 n,(2) 2 2} converging weakly to u,. Continuing in

this manner we get for each meN, a probability measure ;:m such that

{”nk(m),m’ n (m) 2 m} converges weakly to pu_~ where

{nk(m), n (m) 2 m} is a subsequence of {nj(m-1), o (m-1) 2 m} and

{n,(0), n, (0) 2 1} = {1,2,....}. Since ”:,m is the marginal of ”g,m+1’ B



defines a sequence {§,, k € N} of e-invariant exchangeable random variables
(by the Kolmogorov consistency theorem) on some probability space (2, FP).

Further, by (1.5), {£,} ¢ LP(Q,3P). We will now show that % c e
n

converges in LP if and only if T c,§, converges in LP(Q, 3P), for any
n

sequence {c } of real numbers. But

P _ P4,
Elkg il —£ legx) +oot e x o [Fdp (xp5e0x )
(1.6)

= 1i P 4,8
= lim &m leyx +..+e x| d”nk(m),m(xl’""xm)'

k-

Since

lc,e, €, +...4¢c_€, e |P < A(p,m) lc.e, e |P
1k, 'k, mk "k ik, k.

j<m j)

< A(p,m)(sup chlp),E |ek,|p,
J<m j<m 7j

where A(p,m) is a constant depending only on m and p, and as
{lenlp,n € N} is uniformly integrable, it follows that the family
{Iclfklek1+-.-+cm(kmekm|p: kl#' ° '#km,(kl,...,km) E Nm, fj=*1, ].Sjsm} iS

uniformly integrable. Fix m € N. For n > m let

1
T = )
n,m n\,m
m!( m)2

|clcklekl |P.
1k #++#k <

€6 =1
k.
J

+...4+C_¢€. €
m km km



The sequence {T _.n >m} is uniformly integrable. We prove this as
follows. Suppose not. Then there exists an 7 > 0 such that for each
€ > 0 there exists a se¢ D and an n 2 m such that A (D) < 5 and

6 Tn’md/\0 > ¢. The definition of Tn,m gives

p
C,€. € +..4+C_¢€ € d\, > ¢
é I 1 k1 k1 m k kml 0

which contradicts the uniform integrability of |c ¢ e +..+c € € |P.
171 m m
The functions T converge in the a(Ll,L‘”) topology along

{n,(m),n, (m) > m} and consequently [ T d)\, converge.
k k 0

n, (m),m

(1.7) I(Tnk(m),m'l)d’\o
= Pg4,8 p
_& legxy+ e X | d“nk( ), (P < )-'Elkg il

Suppose ¥ c e, converges in LP. We now show that I ¢, & converges in
k k

LP(Q, P). Since {6, n € N} is a sequence of e-invariant random
variables, the random variables c &, constitute martingale differences (Remark
2.2.2 [10]) such that E|k2 ck§k|p is an increasing function of n. By the
<n
martingale convergence theorem, X c,§, converges in Lp(ﬂ,.z'P) if and only
n
if lim Elkgnckfklp < o Since {e , n € N} is a symmetric basis for LP
n S
i p
and 121: c,e, converges in LY, we see that the set {E cnanear(n)}’ where =

runs over all permutations of integers and 6n are scalars such that

|6,] <1, is bounded ([16] p.53). Hence there exists a constant K such that
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(1.8) E|c,e € +..4c_6 e |P < K E|c,e,+..+¢c_e_|P
1% %, " mk_%k_| leyey+etepen|

for every choice of kl#---#km with 1 < kj <n for j=1,.,m.

Consequently

8
(1.9) '{m ey xg+te x o |P day (g eerXpg)

p
<K Elcje +..4+c e |5

Using (1.7) and (1.9) we see that X c, &, converges in LP(Q, gP).
n
Conversely suppose that X c { converges in LP(Q,3P). For each m € N
n
there exist random variables e, ,...,e such that
k ko,

p Y
Elclekl+...+emekm| C2E[céy+.+ e 6 |F

Assume otherwise. Then

1 P
) E|ce++ce
m'()lq(# # kg k kl
1

p
> 2E[¢ &+ +e |

which contradicts the fact that
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E|Z c&|P =
j¢ém 7
. 1 p
ll(—l.li} I—n—!n—k(ﬁﬂ—2m pX Elclfklek1+...+cmfkmekm|
( m ) lfkl#"'#kmfllk(m)
fk.-—*l

J

. 1 p
= llm—(—)— ) E|c,e, +..4c_e  |*.
k- m! k™ 1<k #---#k_<n, (m) 1 kl m km
(n ) 1 m-"k
Since ¥ c,§, converges in LP(Q,9P), A =sup E| £ ckﬁklp < .
n m k<m
Therefore E|c,e, +..+ c_e, |P < 2A. Using this and Theorem 22.1 [24] we
1 k1 m km

see that Y ce ||P < 2AK, < o for every m. Therefore ¥ c e

”kSmkkIIp 1 "

converges in LP. By Proposition 2.3.8 [10] I ¢, € converges in LP if and
k

only if £ E|cé |P < ». But
x| Kk
E E|ck§k|p = E |ck|p E|§k|p = E|51|p E |ck|p-

Hence 12(2 C € converges in LP if and only if i) ¢, € converges in

LP(Q,5P) if and only if ¢ = {q} € £, Therefore M (X:w) is isomorphic
to lp (1¢p<a) which can be continuously imbedded in ¢ . Using this

imbedding we can define dispersion(Y,,Y,) = ¥ |cr(ll)—cl(12)|a where

Y, = ScMe e M (Xw), k = 12
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Remark 1.10. Since {Xn, n € I}, is a SoS sequence there exist
. . a
functions {f ,n € I} in L" [0,]] such that

=1
([15]). Further if {Z(s): s € [0,1]} is an independent increment SaS process

I n o
—log E exp(i £ ,\jxkj) = Iljﬁl '\jfkjl | o

with EetZ(8) = exp(-s|t|?), then the process {Y,, n €I} defined by

Y = J(ll f (8)dZ(s)

n

is stochastically equivalent to {X , n € I}. Hence we may consider
M a(x:o)) c L% But every symmetric basic sequence for a subspace of LP,
1 < p < 2, is equivalent to a unit vector sequence in some Orlicz sequence
space ([16] p. 149). This therefore gives a geometric condition on M (X:»)
in order that it has a symmetric basis.

We now introduce some definitions and results on Orlicz spaces which
will be used throughout the thesis. This material is taken from [14] and [27].

For further information the reader is referred to these books.

Definition 1.11. An Orlicz function ¢ is a continuous, even,
nonnegative function, nondecreasing for positive x such that ¢(x) = 0 if

and only if x = 0.

Definition 1.12. A measure 4 on a measurable space (2,9 is

separable if there exists a finite or enumerable subcollection .96 of measurable

sets of finite p—measure having the property that if E is an arbitrary set of
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finite p—measure, there exists to each ¢ > 0 aset F € .9(') such that
WEAF) < e

Note that if s = counting measure on (N, power set of N), then p
is separable.

Let p be a o-finite separable measure on (€2,$). We say that two
measurable functions f and g are equivalent if f =g ae. [g]. Let
A = MN,Fu) be the space of equivalence classes of measurable functions
determined by this equivalence relation. For an Orlicz function ¢ and

f € A define

(113) p 0 = | WDd

and .Z¢ = .Z‘p(ﬂ,&,'u) ={f € K p¢(f) < w}. .i{p is not a linear space in

general.

Example 1.14. Let ¢(x) = elxl _ |x] — 1. Then ¢ is a convex

Orlicz function such that .f!‘p is not a linear space ([14]).

Definition 1.15. An Orlicz function ¢ is said to satisfy the

Az—condition if there exists h > 0 such that
(1.15.1) ¥(2x) < hyp(x) for x 2 0.
mark 1.16. If ¢ satisfies the A2—oondition then .Z‘p is a linear

space ([27], p. 81). The Orlicz function in Example 1.14 does not satisfy the
A,—condition ([14]).
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Examples 1.17. 1) Let ¢(x) = |x|P. Then ¢ is an Orlicz function
satisfying the A,—condition. Further £ is the classical LP space.
2) ¢(x) = (1+]x|) In(1+|x|) - |x| 1is a convex Orlicz function which
satisfies the A,—condition ([14]). Further .Z(p is different from any LP
space ([14]).

Definition 1.18. Two Orlicz functions ¢ and ¢ are said to be

complementary if

(1.18.1) xy < p(x) + ¥y) for all x,y > 0.

Let ¢ be a convex Orlicz function. Then ([14]) ¢ can be
||
represented in the form ¢(x) = [  p(t)dt where p(t), the right derivative
0
of ¢, is a non—decreasing, right continuous, nonnegative function defined for

t 2 0. Then the function q(s) = sup t is a non—decreasing, right continuous

p(t)<s
function defined on the nonnegative reals for which q(t) > 0, t > 0. If
|xI
¥(x) = [  q(s)ds, then ¢ is a convex Orlicz function and ¢ is the
0

complementary function of ¢.

Example 1.19. 1) Let ¢x) = |x|P/p. For t >0,

p(t) = ¢'(t) = t*1. Therefore q(s) = sq'l, where % + % = 1. Hence

q

(2) I ox) = ele —-|x| — 1, then the corresponding complementary function

Yx) = I(')xlq(s)ds _ Ix8

is
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¥x) = (1 + |x]) In(1 + [x]) - |x]
([14]). This is an example where ¢ does not satisfy the A,—condition but

its complementary function ¢ satisfies the A2—condition.

Remark 1.20. In many cases it is impossible to find an explicit formula

2
for the complementary function e.g. ¢(x) = X — 1 ([14]).
For f e MN,Fu) define

(1.21) ||f||(p =inf {A > 0: [ o(f/A)dp < 1}
and

(122) L, =L @) = {fe 4 ||fl|, < o}

¢

In particular we define
(1.23) ¢ o = L ‘p(ll, power set of N, counting measure).

Then L " is a linear space, called an Orlicz space, and || ]| 0 defines a
semi-norm on L o If ¢ satisfies the A2—condition, then L o .Z‘p. If, in
addition, ¢ is convex, then ||-]]| 0 is a norm (called the Luxemburg norm)
and (L‘p, ||-||¢) is a Banach space.

We now assume that the Orlicz function ¢ is convex and satisfies the
Az—condit.ion. Let % denote the complementary function of ¢. If fe L |

4
then |||f|||¢ < o, where
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111, = sup {|J fedul|: geLy, o) < 1}

(1.24)

= sup {J |fg|du geL, p (8) < 1}
and
(1.25) e, < T, < 2 1L,

T 0 is also a norm on L " and is called the Orlicz norm.

xample 1.26. Let ¢(x) = |x|P/p, 1 < p < w. Then ch is the
classical LP space with the usual LP—topology. If f € LP, then

= ¢l/a = pl/p 1,1
I, = o= 111l and [If]], [Ifll, where 5+ & =1

Proposition 1.27. Let ¢ be a convex Orlicz function satisfying the
A2-condition with complementary function 4. Then, for any f € L &
g €Ly,

(1.27.1) [ fg dp < |||f]] I¢, P (8)

Earlier in the chapter we saw that if {Xn, n€l} isa SaS sequence
(e >1) and M a(x:w) has a symmetric basis, then M a(x:ao) is isomorphic
to any lp where 1 < p < a. Since lp C la’ 1 <p < a we can define a

dispersion distance on M a(x:oo) to be the ¢ distance.
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Motivated by this let us consider the space

(1.28) t€ = {{c,}: ﬁ c €, converges as.}

where {{ , n € N} is a sequence of e-invariant exchangeable random
variables. Let F denote the distribution function of ;. Assume that F
is not concentrated at 0. It will be seen later that this is not a stringent

condition. Define
® 22

(1.29) o(x) = [ (x“u® A1)dF(u), x € R,
)

where xAy = min(x,y) for any x,y € R. Then ¢ is an Orlicz function

satisfying the A,—condition. Let ¢ = {c } € ¢ o Then

1]

5 y 2,2
(130) T Pllegl>1 + 5 Eelles)

= % Ec2eA1) = 2 (0) < w
n=1 n°>n "4
Let Y =c & [lc,§,| < 1] Since pv(g) < o,
. o [«
(1.30) DEI Plc &, # Y,) = nil P(lc 6l > 1) <

Hence, by the Borel-Cantelli lemma, P(cn(n # YIl i.0.) = 0. Therefore,
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[« [+
) c,§, converges as. if and only if X Y = converges as.. We shall
n=1 n=1

Q0
now prove that ¥ Y~ converges as. Let F = o{{, k < n}. Since
n=1

F
E|Yn| <1, E n-1 Y, exists and by the e-invariance property of
{{n, n € N}, }\ Y, dP = l{ (-Y,) dP for all A € & ,. Therefore,
-1 ® 2
E Y, =0 for each n € N. In view of the fact that Y E Y, <o
n=1

[ )
(by (1.30)) and by Proposition IV.6.1 [20], ¥ Y = converges as.. Therefore,
n=1

[« o)
X c,§, converges a.s.. Thus we get the following result.
n=1

Proposition 1.31. With the notation as in (1.23), (1.28) and (1.29), we
have ¢ o C lf'

Remark 1.32. If in addition the random variables {{ , n € N} are
independent, it is known ( o=t (see, for example, [2]).
Suppose that {{n, n € N} are e-invariant, exchangeable random

variables . Suppose {cn} is a sequence of real members such that X ¢ én
n

converges as.. Let X =c ¢, XD =x (x| <1, x{®) = x_-x(D).
Then {Xl(ll), Xlglz), m, n € N} is a sequence of e¢-invariant random
variables. Further, as {{ , n € N} is assumed to be an e-invariant

exchangeable sequence
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m

(133) AX, X + X +1,...,ki:0 X))

= x(OexPxDaxPax(Hex(),.. 5 o Hax(H

= _gxl(ll)_xx(f), x(l) x(2)+x(1) x(2)

2).. ,2 (x(1 x{2)))

for each fixed m > 0, n > 1. Let

x{2.

MB

s.= 3 x, s = 2 x{Y, s(2) =
n 0 k
Then for any m < n and ¢ > 0,

k=1
[m <k<n | S Sm > d

= P[ max [2(5{V-s{)+(5{D-s(D)(s{Ds(D)| > 24
m<k<n

< Pl_max |65 651 >

+ P max |(s{V-s(D)4(s{Ds(Dy| > 4.

m <k<n

Using (1.33) we get for any n > m

134) P[ max [S{1) =s(1)| > g <2P[ max [S, =S | > .
(1.34) [msksnl k N ] [msksnl k ~ Sl ]

But [ max |S{N-s(V| > q1 [suplS(l) s{D| > ¢ and

m<k<n
[ max [S,-S | > ¢ 1 [suplS S | > ¢|. Letting n - o in (1.34) we get,
m<k<n
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1.35 Plsup |S{V-s(D| > ¢ < 2P [sup[S.-S. | > .
(1.35) [kzgxlk m > [kgx’;'k ml > €

Suppose {Sl(ll)} diverges with positive probability. Then there exists ¢ > 0
and é > 0 such that for every m fixed

5 <P [sup|S{V=s(1| 5 g < 2P[sup|S.—S | > ¢
[nZIlI)lln m | > € [DZIII)IIH ml > d

so that {Sn} diverges with positive probability. This contradicts the fact
that {S_} converges a.s.. Therefore {S(l)} converges a.s. i.e O)S x(1)
0 ges a.s.. N ges a.s. e I X
converges a.s.. Further supIXl(ll)l <1 so that sup|Xl(11)| € L2 Let
n n

1 [ (1),2
F=o0{§{:k<n} and Q@ ={TE (X; ’)° < }. By Proposition
n

Iv.6.2 [20], ¥ Xl(ll) converges a.s. implies P(@)) = 1. Therefore

£ B lleggyl < 1= E By

- § pe ™2 -5 3 B,
n=1 n=1 ;

If, in addition, {{ , n € N} is a sequence of i.i.d. random
. 2,2 . p .
variables, ¥ E ¢ §" Al < wie I ¢fc)) < o If further {{,n €N} is
n n=1

[0 ]
a sequence i.i.d. SaS random variables with a > 1, then X go(cn) <o
n=1

. . o . . _ _
if and only if 2 le,|” < w. Therefore in this case t6 ={ » = Ly
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Lemma 1.36. Let ¢ = {c } € ¢ o Then 2 &, converges as.
n=1
[
unconditionally. Further ngl ¢, nzl cx(n)f x(n) &5 for every

rearrangement {x(n)} of {n}.

M. Let Yn = Cngn [Icnfnl < 1]. Let n—l r(n) ( ) be a

rearrangement of the series 2 ¢ §,- But
n=1

Q0

)

” E P o(n) # Cam)éat)) = 2, Pler(n)éan)l > 1

n=1

n'ﬁl Plley,l > 1] < w (by (1.30)).

Hence E cr(n)f x(n) COmVerges as. if and only if E Y x(n) CORVerges a.s..

5
= < n-1 ist fi
Let 0{{,(1(), k D} Since EIYI(D)I 1, E YT( ) exists and for
all A € .91'1_1, since A x(n) dP = j ( Yx(n)) dP, we get

Za1 ® 2
E Yr(n) = 0. By (1.30) Y E YI(D)_ 2 E Y < o. Hence, by
n=1

[

[}
P ition IV.6.1 (2 .8.. Theref )
roposition IV.6.1 [20], E Yx(n) converges a.s erefore z c‘_(n)f x(n)

converges a.s.. Hence 2 c 5 converges a.s. unconditionally. Let 5 denote
n=1

the tail o-algebra of {{ , n € N}. Let {x(n)} be a rearrangement of {n}.

m m
Let Sm =j£l Yj, Sm= jEIYT(j), Qm = {ﬁ'(l),...,ﬂ'(m)}A{l,...,m}. By

Corollary 5 in §7.3 [6]
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2 2
ES, -S')>= £ EY2+ % EYY
mTm’ e ) ke K
Hk
- % EY’+ % EE%(.Yk
€Q 1 jkeQ ]
, I % .
= L EY’+ ¥ EEHXN)EH,) = L EY
€Q J jkeQ UK T geq
Hk
. 12 b 2
If {=Q),..,x(m)} > {1,...,j}, then E(S, - Sp) Sk=§:+1 EYJ. -0 as

j - o Hence S - SI;I -+ 0 in probability. But S - E Y a.s. and
n=1

Q0 '
-oZYx()as Hence ¥ Y = 2 Yr()as By (1.30) we get

n=1 n=1
oo

ko = E exoybotey

00
Notation 1.37. For a = {a } € t€ and X = ¥ a ¢, define
n=1

[ ]
PX) = I play).
The minimization problem considered will be with respect to this

translation invariant distance.
Let {{,.n € I} be a sequence of e-invariant exchangeable random
variables. A special type of process which is a moving average in e-invariant

exchangeable random variables is the ExXARMA process given by the stochastic

difference equation

(1.38) X, - X

n a Xn—p =& + 01£n—1+"‘+0q€n—q

n"‘l e p

with transfer function ©(z)/A(z), where



23

(1.38.1) O(z) = 1 + 6z +..+ 0qz‘1

(1.38.2) A@) = 1- az —..m apzp

for z€eD ={z¢€ (: |z|] <1} are such that
(1.38.3) O(z)A(z) # 0 for all z € D.

If

(1384) B _F rX ,eb (note 7, = 1)
-38. 2) = 20 K o =1

(<)
then X =k£0 M €, the convergence being a.s.. Note that {X }

defined this way is a stationary sequence. Conversely suppose that 1 =1

[
and {x } € t‘p. Then X = kEO M6, convergence being as., is a

stationary solution of (1.38) with transfer function ©(z)/A(z) satisfying
(1.38.4). Note that in view of Remark 1.32 in the special case when § are

(]
iid., X xjg_j converges a.s. if and only if {= } € ¢ " As observed earlier
=0

one does not necessarily get this condition for non—-i.i.d. random variables. We

now prove extension of results obtained by Cline and Brockwell ([8]).

Remark 1.39. 1) Suppose {uj} is a sequence such that
(o) m oo IN
T o X Vj’m—j) < ». Then by Lemma 1.36 mﬁl(jﬁl "j’rm—j)fn+l—m

m=1 j=1
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(4

1 z : =3 vX ., .
converges a.s. unconditionally and mﬁl (J_ v _J) €nt1-m 21 ViXpt1-j

2) Suppose 2 «p(u) < o, 2 cp(v) < o for some n € I. Then
j=n+1 j=w

[ )
¥ wv¢ and 2 v{ converges a.s. unconditionally (Lemma 1.36).
j=n+13 j-—

Therefore Y =_2 ”jfj converges a.8.. For Y of this form define
J=o

pY) =j£_mv(vj)-

Theorem 1.40. Let {Xn, n € I} be the process satisfying (1.38) —
(1.38.3). Let Sy be the class of random variables of the form

(1.40.1) Y= % 66+ 5 X

j=n+137 =1 ) n+l1-j

where 2 (p(6)<oo, E gp(Ewr .) < o. For each Y € Sy, define

j=n+l1 m=1 j=11 ™" ]
{E “,xn+1-1 mZ <p(21 YT J) < o and
(1.40.2)
p‘p(Y - 2 aJXn_'_1 J) is minimum}.

j=1

Then PQY consists exactly of one element; namely,

*

® *
Y =X ijn +1-j° Furthermore the mapping Y - Y is linear on Si.
=1
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Proof. Let Y €S, be of the fom Y = 6¢; +3 v

j=n+137 j=1 J *a+1- xl
Then, by assumptions, Lemma 1.36, and Remark 1.39
Y—EaX —26{+2(ua)x r
J_lj n+1-j j-l J -1 n+1-j
a0
Therefore
¢(Y 2} a]Xn_'_1 J) =j_lzl:+1<p(6)+m_2_llgo(1§ (u—a) m—J)
(1.40.3)
> % w(8)-
j=n+1

If v = aj for each j, then

p (Y- 2ax )= 3 W8).
AR O I

Conversely suppose there is an equality in (1.40.3). Since ¢ is an Orlicz

function,

E(Va) —O(mEN).
j=1

If m=1,then 0 = (Vl—al)xo = v-4, and hence v = a. Suppose

Vi = 3m for m=1,....k. Then

0 = (178)) Myt DT 1)k+1) = k17241

so that v 41 = %41 Therefore, by induction on m, Vo = 3 for all m.
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Hence p Y E a.X .) is minimum if and only if Vv, = &, foreach m

‘P( p I o+l

If Y* = 2 VX then the map Y - Y*

J n+1—j}' j=1 4

ie. PY = {jzlu.x _——

is linear on Sy (by our assumptions and Lemma 1.36).

Corollary 1.41. Let {{n, n € I} be i.i.d. random variables satisfying
*
(1.38) — (1.38.3). The the map Y - Y is continuous at 0 with respect to

convergence in probability in both spaces.

(¢ o] [« ]
Proof. Suppose Y(k) = X é(k)g. + X V(k)X € S« for each
j=n+11 j=1 n+1- J

k are such that Y( ) 0 in probability. Then

W= § 0§ (E 40

j=n +1] ) "m=1 j=1 m—j) {n+1-m-

By Corollary 2.3.5 [2], & w(d(") + 3 gp( z: u(k) )40 as
= n+ m=1 m=j

k - o. In particular E g E V(k)xm_.) -0 as k- o
m=1 j= 1) L

Using Corollary 2.3.5 [2] again we get

y© 2% My % (% ng)x 40

j=1 1 n+l-) j=1 m—j)£n+l—m
L 3
in probability. Therefore the map Y - Y is continuous at 0.

Remark 1.42. Suppose {fn, n € I} are i.i.d. random variables which

[« Y
are not necessarily symmetric. Let ¢,(x) = [ [ux|AldF(u) and
-
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Q@
qp2(x) = | u2x2A1dF(u). Then ¢, and ¢, are Orlicz functions satisfying

-

the A,—condition. Let b = {b } be such that 2 ¢y(b,) < . Then as

n=-w

Q0
‘Pz(bn) spl(b ) for alln, X goz(b ) < «. Further
n=-w

2 E[b & I[Ib € | 2 1] < 2 ¢(by) < o Hence, by the Kolmogorov
n=-w n=-w

three series theorem 2 |b §,| converges a.s.. Instead of S, in Theorem
1=—0

1.19 consider é* which is the set of random variables of the form

[«

Y= 3% 6643 vX

j=n+1 31 =g T0Hl
0 m
where )3 ¢1(6) <w, X ¢(¥ wr . <o Then, asin Theorem 1.40,
j-n+1 m=1 = j=1 07
Y = {jg ; Xo11 J} and the map Y - JEIVJXB +1-j is linear on S,.

The proof of the following theorem is similar to Theorem 2.2 in Cline

and Brockwell ([8]) and hence is omitted.

Theorem 1.43. For the ExARMA (p,q) process {X , n € Z}
satisfying (1.38)—(1.38.3) there exists a unique minimum -dispersion linear

x
prediction Xn +k for X k > 1, based on the infinite past Xn, Xn—l’

n+k’
This predictor satisfies the recursive relationship
* k—1
(1.43.1) xn+k = 121 1/; xn+kj + 2 ¢ xn+k—j

j=k

where 1 - 9,z — 2’ ... = A(2)/0(2), z € .
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Remark 1.44. Suppose one has only the data Xn""’xl' For
Y € S, of the form (1.40.1), define the truncated predictor by

Y (n) —JE "an +1-§° By the equality in (1.40.3) we have

(¢ o]
p (Y—Y (n)) - » (Y——Y )=1p (Y—Y (n)) - 2 ‘p(éj)
j=n+
x
But Y-Y (n) = > 6.6 + T Y vx )€ . .
( j=n+1 3] m=n+1 (j=n+1 Jm J) n+1-m
Therefore

pLY-Y () = p (Y=Y )

= 2 4p(5)+ Z o ( 2 u.xm.)— L‘ <p(6)
j=n+1 m=n+1 ]—n+lJ - j=n+1

oo T )
= V. o).
m=n+1 j=n+1J ™7

%*
In particular, if Y = Xn+1,then pcp(xn+l—xn+1) = ¢(1) and

*
X -X (n) = + 2 pr s
n+l1 n+l n+1 j= =n+1 d n+1-j

o = m
T { X

m=n+1 j=n+1 J "m- J}§n+1—m

- £n+1 +

Therefore

* @ m
X .-X_ ..n) =¢1)+ I S g )
K@) =)+ T v

Pl

so for large n the truncation is nearly optimal.
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Let X satisfy

(1.44.1) X, - X a X

n-1 7 %ptnp T ¢n

and let n > p. Then gbj=0 if j2p+ 1 so that
*x
and hence the truncated predictor is optimal. Assumption (1.38.3) reduces to
A(z) #0 V z €D
We state the following lemma and corollary whose proof is similar to

Theorem 1.40 and Theorem 1.43 respectively.

Lemma 1.45. Let X = (xn’xn—l’""xl)‘ Let S«(n) be the class of

random variables of the foorm Y =7 + o' X ~for some » € R and

[ Q@

Z= Y 6¢ suchthat Y (d;) < o. Then, for each Y € Si(n), the
j=n+177 j=n+1

set P X ={aX: p (p(Y - a'X ) is minimum} oonsisfs exactly of one

variable. For Y = Z + v'X , this unique variable is Y = V'X .

Furthermore, the mapping Y - Y is linear on Sy(n).

Corollary 1.46. For the process (1.44.1), provided n > p, there exists

a unique minimum predictor X ., for X_ +k(k 2 1) in terms of X;,..X .

This predictor satisfies the recursive relationship

a a

Xn+k =Aalxn+k—l+"’+ apxn+k—p
with the initial condition Xj = Xj, 1<j<n.

Let {(n, n € N} be ii.d. random variables with the property that

there exists 0 < a < 2 such that
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PG W
(147) lim W =X for each x> 0.
1

t-w
We now prove a result of Cline ([7]). In order to do so we define regularly

varying functions and state a theorem from [12] (p. 275-281).

Definition 1.48. A positive function defined on (0,0) varies slowly at

infinity if for each x > 0,

L(tx

(1.48.1) lim 22

t2w

=L

A positive function U defined on (0,0) varies regularly with exponent p if
and only if

(1.48.2) U(x) = x"L(x)

where -w < p < o and L is slowly varying.
Theorem 1.49. a) If U varies regularly with exponent 9, then

p+1
(1.49.1) tv—(%ﬁ-»p+7+1, P+7+120
p

where

t
(1.49.2) U (t) = | xPU(x)dx.
p 0
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b) If L wvaries slowly at infinity, then
t¢ < L(t) < t€
for any fixed ¢ > 0 and all t sufficiently large.
Suppose {fn,n € N} is a sequence of e—invariant exchangeable
random variables satisfying (1.47) for some 0 < a@ < 2. Let ¢ be defined
by (1.29) and let

(1.50) L(t) = t*P(]¢| >t), U(t) = t7L(t).
By (1.47), L is slowly varying at infinity and U is regularly varying index
—a. By Theorem 1.49a)

2
’-‘Ugi%-ﬂ—a so that
lx

(1.51) U, - X2~ Ux) = X*@-a)P(l§] > x).

Since 2¢(a) = Ea%¢% Al
= P(Jag)|>1) + Ea’¢% [|ag)|<1],
p(a) 2 P(Jag;| > 1) = U(]%r) for each a.

00
But 2p(a) = Ea’¢2A1 = | P(aZ¢2A1>t)dt
0
1
= [ P(a®€A1>t)dt
0
1
< [ Pa?€d>t)dt

0
1/|a|
=2(1) la|? sP(1¢,| > s) ds
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and hence ¢(a) < 2|a,|2 Ul(-l%l-) 8o by (1.51) there exists a constant K
such that
1
w(a) < KU(pgp) = KP(lag;| > 1)

for |a| sufficiently close to 0. Therefore
(1.52) P(ag;|>1) < pa) < KP(|ag;[>1)
for |a] sufficiently close to 0. Theorem 1.49b) gives us

(1.53) (qap ™ < lal™ P(1ag)|>1) < (13p°

for ¢ > 0 fixed and all |a| sufficiently small. (1.52) along with (1.53)
imply there exists constants Kl’ K2 > 0 such that
K,|a] %" < pa) < K,la]*

for ¢ > 0 fixed and |a| sufficiently small. Thus if a = {a } € lp for

[ ]
some p < @, then X a { converges unconditionally and
n=0
Q0 [« )
nEO a & =m20a T(m)c #(m) for any rearrangement {x(m)} of {n} (by

Lemma 1.36).

Let {£, n € I} be a sequence of i.i.d. random variables, which are
not necessarily symmetric, satisfying (1.47). Let L and U be as defined in
(1.50). Let ¢,(a) = E|ag|Al. Then
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0,(3) = Elag A1 = (;)mp(|ag|m>t)dt

1
= [ P(lag]A1>t)dt
1

< (j) P(|a¢|>t)dt

— [ ™ L/ laDet
B ERE '
Let |a| be sufficiently close to zero. Hence for any ¢ > 0
1
t v-a t ¢
< dt.
901(3) s (I) (]3]') (m)
1
— Iala—c j te—ads
0

Let ¢ >0 besuchthat ¢ + 1 — a > 0. Then
la |C!‘—'€ _ l a ' a—€
“’l(a) < e+l1—a = e+l-a -
Since cpz(a) = EazﬁAls cpl(a), we have

(150)  pye) < gyle) < L2

Let 0<d6<1Aa and a={a}el;, Let e=0ab Then €¢>0

@
and e+l-a = a—6+1-a = 1-0>0. By (1.54), X <p2(an) < o and

n=-ow

[ o] (¢ ]
Y y(a;) < o Hence by the Kolmogorov three series theorem % ENN
n=-w n=-w

converges. This result is due to Cline ([7]). Prediction problem for a € {;,
0 < 1Aa was considered by Cline and Brockwell ([8]).Observe that the

dispersion distance used by Cline and Brockwell ([8]) is an appropriate distance.



CHAPTER 11
METRIC PROJECTIONS

In Chapter I we considered a minimization problem in Orlicz sequence
spaces. In a certain class of Orlicz spaces the minimum ¢-dispersion linear
predictor is the metric projection considered by Cambanis, Hardin and Weron
[5). In order to define metric projection we need some concepts from the

geometry of Banach spaces ([13], p. 342]).

Definition 2.1. A function ¢: R - R is said to be strictly convex if

P(Ax+(1-A)y) < Ap(x) + (1-A)(y)
for all A € (0,1), x,y € R.

Definition 2.2. A Banach space (&||-||) is said to be rotund if it
satisfies the following property: if x,y € & are such that x # y and

1
x| = Ilyll =1, then [|5(x+y)]| < 1.

Definition 2.3. Let (%||-||) be a normed linear space, N C %
x € & Define Ay(x) by

Ax) = {yg € N: [|xygl| = inf [[x-y|]}.
N 0 0 yeN
If .?N(x) consists of exactly one element, denoted by Pyx, then Ppx is

called the metric projection of x on N.

Remark 2.4. x € N if and only if Pyx = x.

34
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Example 2.5. Suppose that {(n, n € N} is an symmetric basis for a
subspace % of LP, p>1 Let N C % be a closed subspace and suppose
N =sp {{nk, k € S} where S C N is a finite or a countable subset of N.
Let Y € & Then there exists a sequence of scalars {a } such that
Y = El ang’n, the convergence being with respect to the LP norm. Let

n=

*
Y = Ta & €N. Then
keS Pk Pk

*
(2.5.1) [lY=-Y || > inf ||Y-Z|]. .
P~ 7ZeN p

n
Lt Z= Zb N. Let Y() = & af, Zn) = b ¢ ,
' kes -y © LY = 2 e ) n,<n m bny
% %
Y = Y = = = 0.
(n) nkSnankﬁnk’ Y(0) = Z(0) = Y (0) = 0
Then Y(n) - Y (n) = Y(n) - Z(m) if n < n.
(2.5.2) ie. ||Y(n) - Y*(n)||p = |IY(@) - Z@)]], i n<ny.

Since {{n, n € N} is a basis ([24] p. 58), there exists a constant

K > 1 such that

@53) K [[¥@y) - 2yl > [1¥oy-1) - 2Dl
= ||Y(n;-1) = Y (n)-1)] |p (by (2.5.2)).
*
= 11¥(y) - Yyl
Suppose n; < n < n, Then as {{,n € N} is a symmetric basis,
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n

@34 KIYE) =201y 2 [V aoy D + | ¥ | sl
= 1Y@ - Y @)1,
255) K |I¥m)2ay)llp 2 11T (aymdy) &l

1
n#n2

= [IY@y) - Yyl (by (254))
= |1¥(ag) - Y (ny)] 1,

Continuing in this manner we obtain

(256) K [IY@-Z@I], 2 1Y) - Y @],
Letting n - o we get

@57 KIIY=ZI1) 2 1YY ]

This i8 true for any Z € N. Thus
* %*
Y=Y ||, < inf K||Y-Z]|| < K|]Y-Y [].
P~ ZeN . p
In particular if K = 1, then ||Y-Y || = inf ||Y-Z|| . Therefore the
P ZeN p

3
metric projection of Y on N exists and is equal to Y .

The following proposition gives us conditions when P, x exists.

Proposition 2.6. Let % be a Banach space
a) Then % is reflexive if and only if for every x € % and for every closed

subspace N of & HA(x) # 4.
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b) If & is reflexive and rotund, Pyx exists for each x € &
For proof we refer the reader to Corollary 2.4 [25] and to §2.6.2 (3) [13].

Remark 2.7. PN is continuous, bounded and idempotent but not
necessarily linear. For example let %= LP[0,1], 1<p<2, M = {of: a € R}

where £= 1,170 1 = Yo/m)* Yoa/ay %2 = o1/ " Yo,1/ey
g=1f +1, = 1(0’2/3) + 1(0’1/3). Let x<P” = (sgn x) |x|P for any
x € R, Py fk = akfk, k=1,2, and Pyg= af. By Theorem 1.11 [25],

1 1
[0 Pax = 0 = (16,4070 k=12
0
flg-ay<P1>a)

o1/2M02/3) * o3 ~ o) T B

1/3

=
0
I
0
(j) (2-0)<P1>qx + ]/ (1-a) <P 1>
%( 1/3

9 a <p—1> + 6’(1-3)<p—1>

1+2§1_)T

so that a=———1—.

Lo,1/20,2/3) * 1(o 1/4) = 219,1/2)) P ar
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so that a, = 3/2.

0= [ 1 a,f) P17 d)
1
= | Yo,/2%0,1/3) ~ L0,1/4) ~ 22X, 12" P-1>4)
= £1/4(_a2)<p—l>d,\ + I// (2_a2)<p'l>dA + {/; (_32)<p—l>d/\
= (_a2)<p—l>( + 6) + (2_%)<p—1> 1
so that a, = —12— .Therefore
P11
2
PM(f +f ) — l+2 (0 12)

1+2p'

3 2
#3012 T T Yoa/2)
5p_—f+l
= PM fl + PM f2.

However the following properties are true ([5]).

Proposition 2.8. Let % be a reflexive and rotund Banach space and
N a closed subspace of &
a) Then Py(ax) = aPyx for all scalars o« and for all x € &
Py(x+n) = Pyx + Pyn for all x € & and all n € N.
b) If further N has codimension one in & then Py: #- N is a linear

operator.
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Proposition 2.9. Let ¢ and ¢ be complementary convex Orlicz
functions satisfying the A2—oondition. Assume further that ¢ is strictly
convex. Let N be a closed subspace of L 0 and let f e L J!Nc. Then the

metric projection of f on N, namely PNf exists.

Proof. In view of Proposition 2.6 it suffices to show that L 0 is
reflexive and rotund. Since ¢ and ¢ satisfy the A2—oondition, L 0 is
reflexive ([27 ,p. 154]). Further since ¢ is strictly convex L " is rotund

(22)).
The following proposition shows us that if ¢ is convex, the minimum
p—dispersion linear predictor obtained in Theorem 1.40 is the metric projection

with respect to the distance ||-]]| 0 in ¢ ”

Proposition 2.10. Let ¢ be a convex Orlicz function satisfying the

A,~condition. Let N c L , and fel wnNc be such that

Af = {g € N: pw(f—g) is minimum} consists of exactly one element, denoted

-~

by f o Assume further that

2.10.1 f = .
(2.10.1) af, (af)¢ for any a € R
Then PNf exists and PNf =f o

Proof. For any g € L _ let

¥

-1
= : < 1t.
Ty = {A>0: p (A 7g) < 1}
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Let f. € N and A€ T, .. By (29.1)
1 f-f

p AT EH)) < p ) <1

so that X € Ty -fqp- Hence T; £, c T, _f‘p.Therefore

. -1 .
||f—f‘p| |¢ = inf {pqp(/\ (f—fp)). A€ Tf—fw}
<inf {p (X)) A€ Teg) = 11y,
This is true for any f1 € N. Hence, as f 0 € N, we get

||f£ || . = inf 1=
p'ly fleN” 1y

Therefore PNf exists and PNf =f o

Corollary 2.11. Suppose that {{n,n € I} is a sequence of

e-invariant, exchangeable random variables. Suppose the distribution function

F of (0 is not concentrated at the origin. We further assume that the
[« )

Orlicz function ¢ defined by ¢(x) = | u2x2AldF(u) is a convex function.
0

Assume the conditions of Theorem 1.40 are satisfied. Define
- © . ~ '
N = {{bm}m=_m€l‘p. b, =0 if k2n+l and
n+1-k ]
b, = jEl 3T 41—k otherwise}.
a0

x*

[«

Q
Let¢ Y=3 6642 vX
j=n4+137) j=1

Let a = {a,} and g* = {a;} be defined by
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& k € {n+1n+2,...}
a,k =
n+§—k
. . therwi
= Vi Tpp1-jk Otherwise
. 0 k € {n+1,n+2,...}
a,k =
n+1-k
) YiTn41--k otherwise.
L j=1

*
Then Pya exists and Pya = a .

* -~
Proof. Note that a € ¢ " and a € N. Further by Proposition 1.40
~ * * *
#- a={a} and (aa) = oca
N

%
for any scalar a. Hence by Theorem 2.10, Pya exists and Pya = a .

Remark 2.12. 1) If ¢x) = [x|% 1 < a < 2, then the dispersion
predictor of Cline and Brockwell ([8]) is the metric projection in ¢,
2) Note that in Example 2.5 we consider {fn,n € N} be a symmetric basis
for a subspace & of LP and find conditions for the existence of metric
projection with respect to the LP distance. In Corollary 2.11 we have seen
that for a certain subset Sy, C ¢ . the metric projection exists, the metric here

corresponds to the Luxemburg norm in ¢ o



CHAPTER III
THE LEFT WOLD DECOMPOSITION

Let {X ,n € I} be a stationary second order process with
E X =0 for all n. Then the moving average part of its Wold
decomposition is constructed as follows. Let M, = sp {Xn, n<k}, and
& = Xy - PMk—lxk’ k € I, where Py denotes the projection on M. Let

M_= 2 M_ ={0}. Then observe that {{, k € I, k < 0} is a basis in M,

and Snfk = £ Tk where S is the shift operator on M, = ﬁ{g Mk}

00
given by S X, = X, . . From this we get X, =k2 a, and
=0
Q0

X, = kEO &, - We note that {§: k €T, k < 0} is a symmetric basis

for M, and in case {X :n € T} is a Gaussian process {{.: k € Z, k < 0}
are i.i.d. random variables.

If {X } is a symmetric a stable (SaS) process with a > 1,
Cambanis, Hardin and Weron ([5]) have used the concept of James
orthogonality to define left and right Wold decomposition and innovations. In
this chapter we extend these concepts to general Banach spaces using a
semi—inner product introduced by Lumer ([17]). This gives rise to a definition
of orthogonality. We will see later (Proposition 3.14) that Lumer orthogonality
implies James orthogonality. In case the Banach space considered is LP (p>1)
the two definitions of orthogonality coincide.

We now introduce the concept of a semi-inner product following Lumer
([17]) to extend the definitions of right and left projections defined in [5]. The
Definition 3.1 and Proposition 3.2 are taken from [17). Here F denotes the

field of real or complex numbers.

42
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Definition 3.1. Let & be a vector space over F. A semi-inner
product is said to be defined on & if for any x, y € & there corresponds
aelement [x,y] in F with the following properties:

(i) [x+y,2] = [x,2] +[y,z] for all x,y,z € &
[Ax,y] = Alx,y] for all x,y € & A € F.

(i) [xx] >0 for x#0

(i) byl € [xx] [yy] for all x, y € &

Propogition 3.2. Let & be a normed linear space over F and let
.; denote its dual. For each x € & there exists Wx € .3’ such that
W (x) = (W) = ||x]|> and [|W_|| = ||x||. Forx y € % define
[x,y] = (x,Wy). Then [-,-] defines a semi—inner product.

Remark 3.3. Suppose .; , the dual of & is rotund. Let x € &
By the Hahn—Banach theorem there exists Wx € f such that
* * X
(xW,) = ||x|*|2 and ||W || = ||:||. Suppose x; # x, are in ;z
such that |[|x || = [|x|| and (xx) = ||x||2, k = 1,2. Since & is

1 * %
rotund | |5(x; + x9)|| < ||x||. But
1 * X 1 * x
(6 ) = o))
1 1 1 2 2 2
=3 X)(x) + 3 x5(x) =] x| 1" + [Ix[|7] = ||x]|*
* *
This contradicts the fact that ||%(xl+x2)|| < ||x||. Hence for any x € &
there exists a unique element W _ € % such that [IW_ Il = |Ix|| and
(xW,) = ||x]| |2. Therefore the semi-inner product is uniquely defined in this

case. Note that in a Hilbert space the semi-inner product is the inner product.
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Propogition 3.4. Let % be a reflexive, rotund Banach space such that
its dual f is rotund. Let x € & and M be a closed subspace of &
Then PMx, the metric projection of x on M, is uniquely determined by

[y, xPyx] = 0 for all y € M.
We find the form of Wx for Orlicz function spaces. For this we

need extension of [14] (p. 73 and p.88).

Proposition 3.5. Let ¢ be a convex Orlicz function, let p be its
right derivative and % be the complementary function ¢. Suppose ¢ and
¥ satisfy the Aj—condition. If fe€ L, then p(|f]) € L, and if

1, € 1,
@51)  py (D) < 11811,

Proof. Let.9i={Ee.9;p(E)<oo}. Fora.nyEe.?i,
p(/f])1g € L'p. Further
= . <
gl = sup {é |fgldu:  geLy, pye) < 1}

< sup {/|fg|dp: geLy, py(g) < 1}

That is,
(3.5.2) LRI < I,

If p(|f]) = 0, then (3.5.1) is trivially true. Now assume that
Ey = {x: p([f])(x) # O} # ¢. Let |||f|||‘p < 1. We now show that for
each E € 3, P,/,(D(lfl))lE) < |||f|||¢. Suppose this i3 not true,
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i.e.,suppose there exists F € F such that qu(p(“l)lF) > ||l o Then
FnE0#¢. For xEFnEO,
Wplf](x) = Wp(If1(x) < W) + Wplfl(x)= 1) [p(If] (x).
Therefore
pyBUEDIE) < [ Ifp(1£]) 1gdu
< IRl py(p(1f])1g)  (Proposition 1.27)
< T pyp(1f)1g) - (by (3.5.2))
which contradicts the fact that |||f]]| ¢ < 1. Therefore for each
E € 3, pyp(If)1g) < 111f]1],, Define E) = py(p(If])1g) for each
E € & Then v is a o-finite measure. Further »/E) < |||f]]|] 0 for each

E € &. Therefore sup »E) = a < |||f||| . Hence there exists a sequence
! EeS ¢

{E;} in &, E T such that llll?: UE) = a Let B= g E . Then

a=1yB). If Ey € J, we have

= < .
Pyle(If) = pylpliing ) < 11111,
so that (3.5.1) holds in this case. Now suppose that E; ¢ J. Let
E, = Eyn B®. Let Fe 5, FcE. Suppose F) > 0. Then
a = YB) < ®B) + «F) = ABUF) = lim /E_UF) < Is;:up’u(E) = a
€

n- o

which is a contradiction. Hence »(F) = 0. Since » is o-finite this implies
that »(E,) = 0. Thus as B® = E, U (B® n Ej), we have

uB°) = ®E,) + »B® n Ep) = 0.
Thus o, (p(1£1) = py(alIf1)1g) + oy B(IEDL )

= uB) + 1B = a < [|If]]],
which proves (3.5.1).
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Remark 3.6. The following proposition gives another formula for
evaluating |||-]]] o

Proposition 3.7. Let ¢ and ¢ satisfy the conditions of the previous
% *
theorem. Let f € L 0 and suppose kf = k is a positive number such that

(1) ek 1) = 1
Then
(372) I 18)du = 1118111,

Proof. Let k be defined as above. Then
%
f1f|p(k [f])dp < Sug flfgldp = |||f|||¢-
p,(8)<1

On the other hand, as ¢ and ¢ are complementary functions,

1 *
e, = 5 sug f1f1p(" |81
<1

[I oK Dds + | ¥(g)dy

l,[ SKD + p (o [£]))
= L 511" 1£1)dus

*
= JIflp(k [f])ds < [1IE]11,,

which proves the result.

—x

o
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Corollary 3.8. Let ¢, ¥ be as in Proposition 3.7. Let [°"]¢p be a

semi-inner product defined by the norm |||-|]] o Let f,gel ¢ be such

that k; exists. Then

18111, = 1glplcglgl)dn = Jg(seng)p(kelg)dn

Hence

[tel, = Jilllsl| l¢(sgng)p(kglgl)dﬂ-

Example 3.9. This example shows us that the inner product defined by

Cambanis and Miller ([4]) is a particular case of the semi—inner product defined

a
here. Let (z) = J%L (1<a<2). For x > 0,
¢'(x) = p(x) = x®1 Let f > 0 be such that 1 a %

1. Let 9 be

g
the complementary function of ¢. Then w(y) = J%'— (Example 1.19.1) so

for any k > 0

pPklgD) = 5 JIp(klgh1Pax = 3 § (klghX*Dar

a
=  J(klgh)%ax = 5~ 11gl1%

Hence pw(p(klgl)) = 1 implies

_ k¢ a, _ l/a * [
1= |lgl|% so that k_T%n;, e, kg = 1T

a—l

Hence p(ksgl) = (kglg))® = £ 'ﬁ'“'l 1/;31 gl L.
el [1glle
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By Example 126, ||lgl||,, = #/#|lg||, and hence

* _ al/B 2-a,_,0-1
118111, peglel) = 877 11g1127%g1 .
Thus
tg) = 67P11g11272 | 5= >4y,

where g<a_l> = sgn(g)|g|a_l. Therefore

M&O_Z - lfg<°"1>du.

a
N8ll1% flel ®da

We now assume that (%||-||) is a Banach space over F with
rotund dual space 5. Let [,©] be the semi-inner product defined by the
norm ||:||. The following definition extends the concepts of right and left

projections as defined by Cambanis and Miamee ([3]).

Definition 3.10. Let (%||-||) be a Banach space over F and let
[-,¢] be a semi-inner product defined by the norm ||-||. Let M be a

closed subspace of % and let x € &N M®. The right (resp. left) projection
of x on N is defined as an element r(x|M)(resp.{(x|M)), of M satisfying

(3.10.1) [x,y] = [r(x|M),y] for all y e M
(resp.

(3.10.2) lyx] = [y,{(x|M)] for all y € M).

Here [-,:] is the Lumer semi-inner product.
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Proposition 3.11. Let M be a linear subspace of a Banach space %

and let x € &N N° If r(x|M) exists, it is unique.

Proof. Suppose TN Tg €M are such that
[7¥] = [xy] = [7,y] for every y € M. By definition 3.1(i) we get
[1~7y] = 0 for every y € M. In particular, a8 7,-7, € M,
0= [71—72, 71-72] = ||71—72| |2 go that 7, = 1, (Definition 3.1).

Definition 3.12. Let (%||-||) be a normed linear space over F
with semi-inner product [-,-]. Let x,y € & x is James orthogonal to y,

denoted by xu 7Y if
(3.12.1) x+Ay[] 2 ||x]]
for all A € F. x is said to be orthogonal to y, denoted by xuvy, if

(3.12.2) [yx] =0

Let %, % be two subspaces of & B .1% (resp. .ZiLJ.zz) if x;1x, (resp.
xILJx2) for each x, € F and x, € %,

Remark 3.13. 1) By the form of the semi inner product in LP,
1 < p<w xuy if and only if X5y, ( Theorem 1.11 and Lemma 1.14 [25]).
This is not necessarily true in general. However if x.y then xi;y which

will be seen in Proposition 3.14.
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2) If &% is a Hilbert space then by [25] (p.91), x1y if and only if xigy if
and only if <x, y> = 0 where <-,-> is the inner product.

3) Note that xuy (resp. x1x) does not imply that yix (resp. yiyx). For
example let 1 < p < 2, fl = 21[0’1/4) + 1[1/4,1/2) - 31[3/4,1] and

fo = lig g Then f;, fp€ LP. Let x<P” = |x|P sgnx.

_ <p-1>
Iy 1,1 = I f

=) PtT+1-3Ph >0
_ <p-1>
and [f,,f)] = [ £, f;
=1 Cloayay * Tuyaazz) ~ e
= 1/4 (2+1-3) = 0.
Therefore f2J.f1 but fl is not orthogonal to f2. By the previous remark
f21 Jfl but f1 is not James orthogonal to f2.

Proposition 3.14. Let % be a normed linear space over F and
xy € £ If xuy, then X13y.

Proof. Let A € F. Since xuy, [y,x] = 0. Hence
[xx] = [xx] + Aly;x] = [x+Ay,x].

So
3.14.1)  [xx] = |[x+EAYR]| < [xHAy, x+ay) 2 pox]t/2.
If [xx] =0, then x = 0. Hence ||x+Ay|| = ||Ay]] 20 = ||x]]; i.e.

x15y. Let [xx] > 0. Then from (3.14.1) we get
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1/2 1/2

[x,x] < [x+Ay, x+Ay) ; de |Ix]] € ||x+Ay]]-

Therefore x1 7

Proposition 3.15. Let % be a normed linear space. Suppose {x }
is a sequence in ¥ converging x € & Let y € X

a) If yix for each n, then yix.

*
b) If X Ly for each n, & is reflexive and % is rotund, then xu.y.

Proof. a) If y =0, then y.x. Now assume y#0 so that
|lyl| > 0. Let e > 0. Since x - x, there exists nj € N such that
n 2 n, implies ||x - x|| < ve/[|y[|. But yix; so [x y] =0. Hence
[x,y] = [x—x,, y]. Therefore |[x,y]|2 < [x=xg, xx][y,y] < € for
n 2 ny ie |[[xy]| < e This is true for any ¢ > 0. Hence [xy] = 0.
b) Let Wxn,Wx be elements of 5 corresponding to x , x € & (cf.

Proposition 3.2 and Remark 3.3). Since x_ - x, there exists M > 0 such

that
(3.15.1) ||Wx || = ||xn|| <M for each n.
n
X
Further ||Wx || = ||xn|| - |x|| = ||Wx||.Sin0e & i3 reflexive, &
n

is reflexive ([19], p. 135). Hence by (3.15.1) {W, } has a weakly convergent
n

subsequence {Wx }. Without loss of generality assume that W,
n n
k

* *
converges weakly to an element x € &. Then

*
(152)  Ix ()] = lim |W, (9] < lim [[W, || [Ix]| = ||x]|?
n

N- o0 n N- o
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2 .
But ||x || =W_ (x.)=W_ (x.—x) + W_ (x).Since
n X, X, n X,
IWxn(xn-X)I < ||Wxnll x| ¢ M ||x ][] -0,

b 3
W, (x)+x (x) and ||x ||% - [|x]|1% We get
n

(3.15.3) 1x[12 = x (%),

x
(3.15.2) and (3.15.3) together imply that ||x || = ||x||- By Remark 3.3,

x
x = W,. Since x 1y, 0 = [yx ] = Wxn(y). Hence

ly,x] = W (y) = lim W (y) = 0; ie xuy.
D~

*
Let & be a Ba.na.ch space over F with rotund dual space % and
..3’1, .zz, be closed linear subspaces of & We now define a concept of an
orthogonal (1) decomposition for general Banach spaces. For certain class of

Banach spaces orthogonal decompositions where considered in ([5]).

n
Definition 3.16. The symbol %+..+% (or ¥ .,KJ) denotes the

=1
[+ o]

subspace {x,+...+x: xe.z 1<kén}. F+H+... (or X
J._

X). &= 8.9 F(or K= 2 ® &) means
J) “ﬁ-’ - n( J=1-o J)

.%) denotes the

Il M

subspace 8p U (.
n j
F = '%+"'+‘2;1 a.nd

(3.16.1) F++ B 1 B ++F forall 1<k <n.
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Writing %= $ ©..6 % means that = F+.+F and
‘—

-

(3.16.2) Z+tZ g+ F+.+F forall 1<k<n

00 0
F= LY & &K (resp. = ¥ @ &) means F=
j=]_ -» J j=1 - J J

(3.16.2)) holds for all n.

I 48

.51 and (3.16.1) (resp.
1

Remark 3.17. 1) Note that ® = %90 &. Also, as noted i
m ) Note .%_’ % ‘%‘_ % in

Remark 3.13.1, the statements % = ,ﬁ o % and F= .,Zi ® J& are, in
-3 -
general, distinct.

00
2) Let =X © &% Let 0#x,€ & Forany m<n and
j=1_,J J J

ﬂl’ﬂ2""e F we have by the definition and Lemma 3.14 that
) %
x. || < x. | .

Hence ([24], p. 54) {xj} forms a basis for its closed linear span, i.e. each

X € 8p {xj: j = 1,2,...} has a unique norm convergent expansion

(¢ /]
x= X ijj for some ’\1’ A2,...EF. Note that the same argument cannot be
=1

00
made when F=Y o £X.
j:l -

We now consider Wold decomposition under definition of orthogonality. For

this we need the following proposition .
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Proposition 3.18. Let % be a reflexive Banach space such that .,%”k
is rotund. Suppose there exist subspaces .3;1 and Ln of & such that

(3.18.1) F=% oLe.oL forech n2l,
-

-

Then

(3182) $= T (@L)e(n %)

n=1 = <+ n

Proof. Let .S_m =N ‘2;1’ Kn = Ln 0.0 Ll and Kw = sp (g Kn).

n +

By the definition of ®, K 1.8 for each n. Since % ¢ £, for each n,
. nn - = “n

K 1% foreach n. Let ke UK . Then 3 neN such that k € K_.
n -owo n n n

Hence, a3 K 1% , [xk] =0 for any x € & . But k € K was
— —0 n

arbitrary. Therefore U KDL.Z_m. Let k € Kw. Then there exists a sequence
n
{k,} in g K, such that ||k k|| -0 as n- o Let xe€ & . Since
{k;} c UK, [xk] =0 for each n. By Proposition 3.15 b), [x,k] = 0.
m

This is true for any x € & and k € K. Hence K 1% . Thus in order
-0 ® ® -

to prove (3.18.2) we need to show that %= K +% . Let x€ X Then
x=x, + kll where x, € %, kn € K. Since kn*xn’ kn.Lan (Proposition
3.14). Therefore

Ik [T € ey + xp 11 = [Ix|[;

so that | |x,|| = |Ix - k||

IN

2||x||. Hence the sequences {x } and {k_}

are norm bounded. Since % is reflexive, they have simultaneously weakly
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convergent subsequences {x } and {k } with weak limits x__ and Kk
j : 00 [0 o)
respectively. Hence x = x_,+ km. Since .2;00 is a closed subspace of %

it is convex. Hence .S_w is a weakly closed subspace of & Therefore

x_, € & _. Further there exists a subsequence {ynj} such that

ynj € oo{knl,...,knj} = convex hull {knl,...,knj} and llynj— k || = 0. Hence

k € K. Therefore =K & % .
Q0 00 a0 00

-+

Remark 3.19. From Remark 3.17.2, we recall that any kw € Km has

[+ ]
a unique norm convergent expansion k = X kn, kn € Ln for each n.
n=1

Let us observe that ([25], p. 111) if & is a reflexive, rotund Banach
space and M is a closed subspace of % then PMx, the projection of x

on M, exists for each x € ¥ and satisfies

(3.20) ||x = Pyx|| = inf ||xy]||.
M yeM

*
We now show that if in addition . is rotund, then (x-Pyx)1M. Note
%X
that by the Hahn—Banach theorem ([25] p. 18) there exists x € & such that
* *
lIx || = | |x-Pygx||, x (y) = 0 for every y € M and

*
X (xPyx) = |[x-Ppx| |2. In view of Remark 3.3, X = Thus

x—PMx’
PMx is uniquely determined by the equation

(3.21) [y, xPyx] = 0 for any y € M.
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Remark 3.22. Notice that x = PMx + (x—PMx) and
(x — Pyx)1Pyx. We want to show that this is a unique representation.
Suppose there exists X, € M and y; € & such that

x = Pyx + (I—PM)x =x; +y; and y:M
Since yiiM, we have by Proposition 3.14 that yqt JM so that for any
y €M,

=yl = [y +g=DI2 Hyg = Tl |15

ie. ||xx|| = inl\f{ | |x=y]].

Since Py/x is unique, x; = Py;x. Thus x = Pyx + (I-Pp)x is a
unique representation of x as a sum of an element of M and an element of
& orthogonal to M. In particular xu:M if and only if Pyx = 0.
2) Let Q: £+ M be an operator (not necessarily linear). Suppose
(IQ)&M. Let x € & Then x = Qx + (I-Q)x = Ppx + (I-Py()x. But
Qx € M and (I-Q)xxM. Hence by Remark 3.21 Pyx=Qx. But xe€ &
was arbitrary. Hence PM = Q. Conversely suppose PM = Q. Then by
(3.21), (I-Pp)xuM. Thus Q = Py if and only if (I-Py,) SM.
3) If the Banach space considered is a Hilbert space H with inner product
<-:,+>, then xuy if and only if <x,y> = 0 (x,y € H). In this case PM
is linear for every closed subspace M of H and satisfies (3.21) for any

x € H ([25] p. 57). Then by the above remarks H = M @ M* for any closed
-

subspace M of H where
M' = {y € H: <x,y> = 0 for all x € M}.
Following 5] for x={x ,n € I} C & a Banach space we now give the

left Wold decomposition.
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Define
(3.23) M, = M(x:n) = sp {x: k < n} (past and present of {x })

(3.24) M_ = M(x:w) = sp {UM(x:n)} (time domain of {x })
n

(3.25) M__ = M(x:i-w) = n M(x:n). (remote past of {x })
n

x = {x,} is said to have left innovations if for each n there exists a

subspace Nn(x) = N, so that

(3.26) M(x:n) = M(x:n-1) ® N, (%)

Notice that N_(x) is necessarily one or zero dimensional. x = {x } is said
= N, (%),

to have a left Wold decomposition if there are subspaces N n

- o < n < o, such that
Q@
(3.27) M(x:n) = (ki f N, () f M(x:—w).

Proposition 3.28. Let & be a reflexive, rotund Banach space with a

*
rotund dual space #. Then {x } has left innovations.

Proof. For the sake of convenience let P~ denote the metric
projection onto M(x:n). Since the codimension of M(x:n-1) on & is one,

P _;: M(x:n) - M(x:n-1) is linear. Hence N (x) = (I-P,_;)M(x:n) is a



58

linear subspace. In view of (3.21), N (x)1M(x:n-1). Thus in order to complete
the proof of this proposition we need to prove that
M(x:n) = M(x:n-1) + N (x). Let y € M(xmn). Then
P _,y€Mxn-1) andy-P_,y=(I-P ;) y € N (x). Further
y =P,y + (y-P,_;y). Therefore M(xn) = M(x:n-1) ® N (x).
-

Notation 3.29. For the sake of convenience let Pn denote the metric

projection operator onto M(x:n).

Theorem 3.30. Let & be a reflexive, rotund Banach space with
rotund dual space .,3’ . The following are equivalent:
(i) {x,} has a left Wold decomposition.
(ii) P:M_ - M are linear.
(iii) The operators P : M_-+ M~ commute.
(iv) If Pn,m denotes the restriction of P, on M, then for
all k 2 1, Pn,n+1Pn+l,n+2""Pn-i-k—l,n-l-k = Pn,n+k'

Proof. We will show that (iv) = (ii) = (i) - (iv) and (ii) — (iii).
(iv) - (ii) Assume (iv) holds. By Proposition 2.7 b) each

is linear. Hence by (iv) P is linear for each k > 1 so

P11+t,n+l+1 n,n+k
that Pn is linear on each Mn 1k Since Pll is continuous, Pn: Mao - Mn
is linear.

(ii)) » (i) Assume each P:M - M islinear. Define N = (I_Pn-l)Mn‘
Let z €M, . By (3.21) z.M , and thus z .M , for £2 1. Then

P _¢ 2, =0 (by Remark 3.22.1). Since P_ is linear, we have
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Pz + 2 +tz +l) = 0. Hence using Remark 3.22,

k—1
iM . Therefore M = (L oN ) f M, By

N_+..+N
n (:0 -

n—k+1
Proposition 3.18 we get (i).

(i) » (iv) Suppose {x } has a left Wold decomposition. Then for all n
and {21, Mn+l = Nn+tf Nn+t—1 ®...® Nn+1 3 M  soany ye€ Mn+l

-+ -

is uniquely expressed as y = 2ot Yenppa ety Yy where 2 € Nj
M. her P =y.
and Yp €M, Further nn+t Y = Yo But

Pn,n+l"'Pn+l—l ,n-i-[y )

= Pn,n+l‘"Pn+l—1,n+l(zn+l+ w2y L1+
= Pn,n+1"‘Pn+l—2,n+l--1(zn-l-l—l-"'"zn+l'*'y n)

= Pn,n+l(zn-!-1+y n)=Y n=Pn,n+4y)
and this proves (iv).

(i) » (iii) Assume (ii) holds. Let x € M_ and m < n. Then
P P (x) = P {x{x-P x)}
=P x-P_ (xP x) (a P is linear )
=P_x (Remark 3.22).
But m < n implies Mm C Mn so that me € Mn' Hence
P x = PP _x. Therefore P P x =P P x. Thus P:M -+ M
commute.
(iii) - (ii). Suppose (iii) holds. Since each P is continuous, it suffices to

show that each P~ is linear on each M In view of Proposition 2.7 a)

n+k’
we need to show that each Pn is additive on each Mn +k By Proposition

2.7 a), P is additive on M . Assume P is additive on M ., ,. Let

X|, X9 € M|, be arbitrary. Let yj = P k15 % = (I-P, +k—1)xj’
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j = 1,2. Note that Zlen+k_1~

operator on Mn 4k Thus

By Proposition 2.7, Pn +k-1 is a linear

P (x;4x5) = P (y;+yy+2,+2,)

= Ppyr1Pn (111ygtz;tzy)
=P, P, +k_1(y1+y2+zl+zz) (by (iii))
=P, (v,+Y,)
=Py, + Py, (induction assumption)
= Py Poyra(x) + Py Py (x9)
= Poyk1 Pr¥y + PpypgPa%e (by (i)
=P x + an2

and this proves the result.

Remark 3.31. The above Wold decomposition was proved in [5] for the

case LP,p > 1.



CHAPTER IV
THE RIGHT WOLD DECOMPOSITION

In this chapter we will discuss an extension of the right Wold
decomposition introduced by Cambanis, Hardin and Weron ([5]) by using the
right projection (c.f. Definition 3.10) and Definition 3.16. Throughout this
section we will assume that & is a Banach space over F with rotund dual

3
space % . For this we need the following proposition.

Proposition 4.1. Let % be a reflexive Banach space over F.
Suppose there exist closed subspaces .2;1 and Ln of % with
g = .2;1 ® Ln 0.0 L1 for each n > 1. Then

- -+ -

00 00
F=(r eL)®(n %) andeach ke L ®L has a unique norm
j=]_ - -~ n j=1 - n

(¢ ]
convergent expansion k = lﬁlln’ ln € Ln'

Proof. Let & = 2 Z,K =L ©.8L and K =sp {ll;l K}

-+ =

Then, by a proof similar to the one in Proposition 3.18 (we use Proposition

3.15 a) instead of Proposition 3.15 b)) #= 4 @K . So in order to
ey

complete the proof of the theorem it remains to show that each k € Km has
a unique norm convergent expansion k = ngl ln, ln € Ln' For each n we
can write k = x + k ~ uniquely (follows from the definition of orthogonality)
with x € % and k € K . Inturn we may write k = 4 +.+t

uniquely with lj € Lj' Define Qn: Km - Kn by Q nk = kn' Then

Q, Q, = Q,), - Also by Proposition 3.14.

61
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QI = [lk - Q) k + k||
<k = Qukl| + k[ = [Ixyl| + [lk|]
< llxy + k|| + [[k]| (by orthogonality)
<2 ||k][].

Therefore, by the uniform boundedness principle, {Qn} is a bounded sequence

([9], p- 98). Let k eu K - Then there exists n) € N such that k € K/
n 0

so that k € Kn for each n > ng. Hence an = k for each n > n,.

Therefore s—1im an =k forany k e U Kn' Let k € Kw and 0.
Do n

Let sup ||Qn|| < M. Then there exists k_ € U K_  such that
n e, 1

||k—k(|l < €/(M+1). Further there exists n € N such that k € K~ for
each n > n, so that anc = kc for each n > n,. But n > n, implies
1k - Qukl| = ||k - k, - (Quk - QK|
Sk =k + 11Qll Ik -k || < e

n
k =s-lim Q k = s-lim Y (=
D= o j=1 j

I 28

. lj.
Proposition 4.2. Let % be a Banach space and M a closed
subspace of & Let *M = {y € &: [yx] = 0 for all x € M}. Then *M

is a closed subspace of & Suppose further that for each x € % the right
projection of x on M, r(x|M), exists. Then £= M &'M.

-y
Proof. Let Ypr Yo € M, a), 0y € F. Then for any x € M,

[y, + a5¥9, X = a[y;x] + aylygx] = 0 s0 that ayy; + a,Y,€ *M.
Hence *M is a subspace of & By Proposition 3.15, *M is closed.
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Let % be a Banach space such that r(x|M) € M exists for all x € &
Then by (3.10.1)

[r(x|M), y] = [x,y] for each y € M,

i.e. [xr(x|M), y] =0 for each y € M.
Therefore x — r(x|M) € *M. Further as x = r(x|M) + [x — r(x|M)] and
as r(x|M) € M, &= Me'M.

-
For any sequence x = {x } in a Banach space £ let M(x:n),

M(x:0) and M(x:—w) be as defined in (3.23), (3.24) and (3.25) respectively.
Following [5], we say that {x_ } has right innovations if for each n there is
a subspace N = N (x) such that M(x:n) = M(x:n-1) S N,(x). Note that
N, (x) is necessarily one or zero dimensional. x = {x,} is said to have a

right Wold decomposition if there all subspaces Nn(§), - < n < w such
that

M(x:n) = k°§0 © Ny 1) @ M(xw), M(xn) + Nyy(x) for each

m > n and further each z € kE ® N (g has a unique norm convergent
_.0 -

expansion z = 2 wn K Wi € N(_)

Theorem 4.3. Let x = {x } be a sequence in a reflexive Banach
space. The following are equivalent.
(i) x has right Wold decomposition
(ii) x has right innovations
(iii) r(y) = r(y|M__;) exists for each n and for each

y € U M(x:n).
n
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Proof. We will show that (i) - (ii), (ii) «~ (iii) and (ii),
(iii) + (i).
(i) - (ii). This follows from the definition of right Wold decomposition and
right innovations.

(i) » (iii). Suppose x has right innovations. Let y € UM(x:n). Then there
n

exists n € I such that y € M(x:n). The definition of a right projection and
Proposition 3.11 imply that y = r(y|M(x:m)) for all m > n. Let n < m.
Then there exists y € M(x:n) and Z; € Nj(y,

n+1¢<j<m, such that y = Yo t Zny1 t Zngo etz Note that each

szM(gzn), n +1<j<m Hence for any z € M(x:n),

m
[yl = ly, + 2z, +-+22] = [y2 + 2+l [zj,z] = [ypz]-

Therefore r(y|M(x:n)) exists and is equal to Yy
(iii) - (i1). Suppose (iii) holds. Let L= {rp;(v):yeM} Let
Yp» Yo € Mn’ @), a, € F. Then, for any z € Mn—l’
[egra 1 (v) + agry 4 (39)2]
= ay[rp 1(v7)s 2 + apfr, ,(y5).2]
= oy;2] + aplyya
= [(ayy; + a9¥5), 7]
= [ryg(oqy) + agyg)ial.
Since ayr, ,(y)) + ayr, ,(y)) € M/ _,, by the definition of a right
projection and Proposition 3.11, we have that
ar, 1(y)) + ayr, o(y,) € M, ;. Hence L _, is a subspace of M__,.

Conversely suppose y € M Then y =r _,(y). Thus M _, cL ,.

n-1’
Therefore M, = {r _,(y): y € M_}. Let
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N, =N & ={y-r,_,():ye Mn}' By Proposition 4.2, N is a

subspace of M, and M =M ® N . Therefore x has right

n+1
innovations.
(ii), (iii) - (i). Now assume (ii) and (iii). Then for each n,
M g = {r,1(v): y e M},

Ny={y-rp;(¢):yeM} and
My Mn—l f Np = (Mn-2 f Nn—l) f Np-
We now show that

M = (M &N ® N
n (n-2_' n—l)_’ n

=M ® (N ®N) = ON
n—2_‘(n—1_’ n)

n -2
Let Yy € M 5, ¥9 €N, yg € N- Then there exist 21,2923 € M, such
that Y1 =y 2(1' l(zl))’ Yo = rn_z(rn_l(zg)) - I 1(22)a

Y3 = 23 - l(z3) Since N, , c¢cM _, and M _,uN, N N .

Further Mn 2*Nn 1 But

[y2+)'3a)'1] = [Y2ay1] + [)'3aY1]
= [rn_2(rn_1(z2)),y1] - [rn_l(z), }'1] + lzgayll - [rn_l(z3), yl]
=0

(definition of a right projection and as y, € M o C Mn—l)‘

Therefore M _, + N, f N . Hence M =M _ 2 ® ®N _ © ®N.

Continuing in this manner we get M =M f Nn K+1 _’.... ® N . Using

ey

this and Proposition 4.1 we see that x = {x } has a right Wold

decomposition.

Remark 4.4. In view of Theorem 3.30 and 4.3 this extends the work of
[5].
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