

THEMS

This is to certify that the

thesis entitled

DYNAMIC RECRYSTALLIZATION OF BORON DOPED $^{\rm Ni}_3^{\rm Al}$ POLYCRYSTAL DURING HIGH TEMPERATURE COMPRESSION TEST

presented by

Hang-Fei Yung

has been accepted towards fulfillment of the requirements for

M.S. degree in Metallurgy

Majør professor

U

Professor G. Gottstein

Date 2 - 24 - 39

February-24-1989

O-7639

MSU is an Affirmative Action/Equal Opportunity Institution

RETURNING MATERIALS:

4 44. . .

Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

DYNAMIC RECRYSTALLIZATION OF BORON DOPED Ni₃Al POLYCRYSTAL DURING HIGH TEMPERATURE COMPRESSION TEST

BY

HANG - FEI YUNG

A THESIS

Submitted to

Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Metallurgy, Mechanics and
Materials Science

1989

ABSTRACT

DYNAMIC RECRYSTALLIZATION OF BORON DOPED Ni₃Al POLYCRYSTAL DURING HIGH TEMPERATURE COMPRESSION TEST

BY

HANG-FEI YUNG

The features of dynamic recrystallization (DRX) of Ni_3Al and pure Ni during compression at temperature between 0.5 - 0.8 of the temperature (Tm) and strain rate between 2 x 10^{-3} S⁻¹ and $2 \times 10^{-5} \text{ S}^{-1}$ were studied. From the metallographic observation and stress - strain behavior, it was found that DRX actually occured during high temperature deformation. For the given deformation condition only a single maximum of the flow curve was observed for $\mathrm{Ni}_3\mathrm{Al}$, while an oscillation flow behavior was found for Ni. The microstructure of $Ni_{3}Al$ always underwent grain refinement, while the microstructure of Ni underwent grain coarsening during DRX. The observations are in line with the prediction that a transition from sigle peak to multiple peak flow behavior only occurs for $D_0 / 2D_S = 1$. For Ni an activation analysis of σ_R yielded a strss exponent, n = 6.8. and an activation energy, Q = 57.79 kcal / mole. An activation analysis for Ni₃Al was not feasible since n and Q depend on temperature.

ACKNOVLEDGEMENTS

I am grateful to my advisor, Professor G.Gottstein, for his kindly instruction and necessity support for experiment. Also, I would like to thank my colleague, S.R.Chen, for his technical assistance and discussion and others who exchanged view on the DRX experiment. Finally, I would like to appreciate my wife for her mental support and fortitude during the past two years.

TABLE OF CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	v
1. INTRODUCTION	1
2. LITERATURE SURVEY	2
2.1 Effect of Strain Rate on Grain Size of DRX	5
2.2 Effect of Temperature on the DRX Grain Size	. 7
2.3 Microstructure Change Corresponds to the DF	8 × × × × × × × × × × × × × × × × × × ×
3. EXPERIMENTAL PROCEDURES	
3.1 Machine	10
3.2 Specimen Preparation	10
3.3 Mechanical Test	13
3.4 Microstructure Observation	13
3.5 Protection	16
4. RESULTS	
4.1 The True Stress - True Strain Curve	17
4.2 Metallographic Examination	17
5. DISCUSSION	
5.1 Evidence of the DRX	55
5.2 The Grain Size of the DRX	62
6. CONCLUSIONS	65
7. REFERENCES	66

LIST OF TABLES

Table	Page
1. The σ_R & σ_S under various test condition for Ni ₃ Al with	
$D = 170 \mu m.$	22
2. The σ_R & σ_S under various test condition for Ni ₃ Al with	
D _o = 9 μm.	22
3. The σ_R & σ_S under various test condition for pure Ni with	
$D_o = 136 \mu m$.	30
4. The D _s under various test condition for Ni ₃ Al with	
$D_{o} = 170 \mu m$.	30
5. The D_s under various test condition for Ni_3Al with	
D _o = 9 μm.	49
6. The D_s under various test condition for pure Ni with	
$D_0 = 136 \ \mu m$.	49

LIST OF FIGURES

		Figure Captions	Page
Fig.	1.	(a) Effect of strain rate on the flow curves. (b) Effect of temperature on the flow curves [3].	3
Fig.	2.	A microstructure mechanism map for distinguishing between the occurrence of two types of DRX[18].	4
Fig.	3.	Predicted stress - strain curves for DRX. (a) A steady state curve for the condition when $\varepsilon_{\rm c} < \varepsilon_{\rm x}$. (b) a cyclic flow curve when the $\varepsilon_{\rm c} > \varepsilon_{\rm x}$ [3].	6
Fig.	4.	The metallograph of Ni ₃ Al annealed at 800°C for 4 hours.	11
Fig.	5.	The metallograph of prestrained Ni_3Al (60 %) annealed at 800°C for 1 hour.	12
Fig.	6.	The metallograph of pure Ni annealed at 1000°C for 30 min.	14
Fig.	7.	The metallograph of pure Ni when waited for the thermal equilibrium at 1000°C for 1 hour.	15
Fig.	8.	The flow curves of Ni ₃ Al ($D_0 = 170 \ \mu m$) which were compressed at 650°C with various strain rates.	18

Fig.	9.	The flow curves of Ni_3Al ($D_0 = 170 \mu m$) which were	
	,	compressed at 750°C with various strain rates.	19
Ei-	10	The flow summer of Ni Al (D. 170 cm) which were	
rig.	10.	The flow curves of Ni_3Al ($D_0 = 170 \mu m$) which were	
		compressed at 850°C with various strain rates.	20
Pi~	11	The flow curves of Ni Al (D. 170 um) which were	
rıg.	11.	The flow curves of Ni_3Al ($D_0 = 170 \mu m$) which were	
		compressed at 1000°C with various strain rates.	21
Pi~	12	The flow curves of Ni Al (D = 170 um) which were	
rig.	12.	The flow curves of Ni ₃ Al ($D_o = 170 \mu m$) which were compressed with strain rate 2 x $10^{-3}S^{-1}$ at various	•
			23
		temperatures.	
n	12	Mbs 61 6 Nd 41 / D	
rig.	13.	The flow curves of Ni ₃ Al ($D_0 = 170 \mu m$) which were	
		compressed with strain rate 2 x 10^{-4} S ⁻¹ at various	
		temperatures.	24
5 7	• •		
Fig.	14.	The flow curves of Ni_3Al ($D_0 = 170 \mu m$) which were	
		compressed with strain rate 2 x 10^{-5} s ⁻¹ at various	
		temperatures.	25
	•		
Fig.	15.	The flow curves of Ni_3Al ($D_0 = 9 \mu m$) which were	
		compressed at 800°C with various strain rates.	26
Fig.	16.	The flow curves of Ni_3Al ($D_0 = 9 \mu m$) which were	
		compressed with strain rate 2 x 10^{-4} s ⁻¹ at various	

27

temperatures.

Fig.	17.	The flow curves of pure Ni ($D_0 = 136 \mu m$) which were	
		compressed with strain rate 2 x 10^{-4} s ⁻¹ at various	
		temperatures.	28
Fig.	18.	The flow curves of pure Ni (D_o = 136 μm) which were	
		compressed at 850°C with various strain rates.	29
Fig.	19.	The metallograph of Ni ₃ Al ($D_0 = 170 \mu m$) after	
		compression test at 650°C with 2 x 10^{-3} s ⁻¹ shows the	
		necklace structure along the existing grain boundary.	32
Fig.	20.	The metallograph of Ni ₃ Al ($D_0 = 170 \mu m$), compressed	
		at 650°C with 2 x 10^{-4} S ⁻¹ , shows the necklace structure	
		along the existing grain boundary.	33
Fig.	21.	The metallograph of Ni ₃ Al ($D_0 = 170 \mu m$), compressed	
		at 650°C with 2 x 10^{-5} S ⁻¹ , shows the necklace along the	
		existing grain boundary.	34
Fig.	22.	The metallograph of Ni ₃ Al ($D_0 = 170 \mu m$), compressed	
		at 750°C with 2 x 10^{-3} S ⁻¹ , shows the necklace along the	
		existing grain boundary.	35
Fig.	23.	The metallograph of Ni ₃ Al ($D_0 = 170 \mu m$), compressed	
-		at 750°C with 2 x 10^{-4} S ⁻¹ , shows the necklace along the	
		existing grain boundary.	36

- Fig. 24. The metallograph of Ni₃Al ($D_0 = 170 \, \mu m$), compressed at 850°C with 2 x $10^{-3} \, \text{S}^{-1}$, shows the grain growth within the necklace.
- Fig. 25. The metallograph of Ni₃Al ($D_0 = 170 \ \mu m$), compressed at 850°C with 2 x $10^{-4} s^{-1}$.
- Fig. 26. The metallograph of Ni₃Al (D_o = 170 μm), compressed at 850°C with 2 x $10^{-5} s^{-1}$.
- Fig. 27. The metallograph of Ni₃Al ($D_o = 170 \ \mu m$), compressed at 1000°C with 2 x 10^{-3} S⁻¹.
- Fig. 28. The metallograph of Ni₃Al (D_o = 170 μm), compressed at 1000°C with 2 x 10⁻⁴s⁻¹.
- Fig. 29. The metallograph of Ni₃Al ($D_o = 170 \mu m$), compressed at 1000°C with 2 x 10⁻⁵s⁻¹.
- Fig. 30. The metallograph of Ni₃Al ($D_0 = 9 \mu m$), compressed at 600°C with 2 x $10^{-4} s^{-1}$.
- Fig. 31. The metallograph of Ni₃Al ($D_o = 9 \mu m$), compressed at 750°C with 2 x $10^{-4} s^{-1}$.
- Fig. 32. The metallograph of Ni₃Al ($D_0 = 9 \mu m$), compressed at 800°C with 2 x 10^{-3} s⁻¹.

Fig. 33.	The metallograph of Ni_3Al ($D_0 = 9 \mu m$), compressed	
	at 800°C with $2 \times 10^{-4} \text{s}^{-1}$.	46
F1g. 34.	The metallograph of Ni ₃ Al ($D_0 = 9 \mu m$), compressed at 800°C with 7 x 10^{-5} S ⁻¹ .	47
Fig. 35.	The metallograph of Ni ₃ Al ($D_o = 9 \mu m$), compressed at 850°C with 2 x $10^{-4} s^{-1}$.	48
Fig. 36.	The metallograph of pure Ni, compressed at 650°C with $2 \times 10^{-4} \text{s}^{-1}$.	50
Fig. 37.	The metallograph of pure Ni, compressed at 850°C with $2 \times 10^{-3} \text{s}^{-1}$.	51
Fig. 38.	The metallograph of pure Ni, compressed at 850°C with $2 \times 10^{-4} s^{-1}$.	52
Fig. 39.	The metallograph of pure Ni, compressed at 850°C with $2 \times 10^{-5} \text{s}^{-1}$.	53
Fig. 40.	The metallograph of pure Ni, compressed at 1000° C with $2 \times 10^{-4} \text{S}^{-1}$.	54

Fig. 41. The relationship of strain rate and σ_R for Ni $_3Al$ with $D_o \,=\, 170~\mu m. \eqno 56$

Fig. 42. The relationship of the temperature and $\sigma_{\!R}^{}$ for Ni $_3^{Al}$

with $D_0 = 170 \mu m$.

57

Fig. 43. The relationship of the strain rate and σ_R for Ni₃Al with D_o = 9 µm.

58

Fig. 44. The relationship of the temperature and σ_R for Ni₃Al with D_o = 9 μm .

59

- Fig. 45. The relationship of the strain rate and σ_R for pure Ni. 60
- Fig. 46. The relationship of the temperature and σ_R for pure Ni. 61
- Fig. 47. The relationship of σ_S and final grain size for Ni₃Al. 63
- Fig. 48. the relationship of $\boldsymbol{\sigma}_{\boldsymbol{S}}$ and final grain size for pure Ni. $\,$ 64

1. INTRODUCTION

The dynamic recrystallization (DRX) of the material with $L1_2$ structure such as Ni_3Al [1] and Zr_3Al [2] has been reported to explore the fracture mode by using tension test.

In order to observe the kinetic of the grain growth under DRX process of the Ni $_3$ Al, we chose various compression test conditions and prepared two different initial grain sizes (D $_0$). Controlling Z value and D $_0$, we supposed that the transition of DRX flow curve for Ni $_3$ Al from continuous to periodic should be taken place because lower Z value and smaller D $_0$ tend to the occurrence of multipeak. Finally, we found that the behavior of the DRX can be related to the recrystallization stress (σ_R) and the final grain size (D $_S$) has relationship to the steady-state flow stress (σ_S).

The DRX behavior of pure Ni was compared with Ni $_3$ Al because Ni $_3$ Al has a large amount of Ni and the similarity of the melting temperature (Tm), i.e. 1395°C, 1450°C, also to inspect the D $_0$ is independence of D $_S$.

2 LITERATURE SURVEY

Materials would soften due to the recrystallization while they are subjected to deform at high temperature, above half of the melting temperature, which called dynamic recrystallization (DRX).

Since 1939, the topic of DRX has been mentioned in the creep test of Pb [3]. Up to now, several reports in this field have been stated in various deformation tests, such as torsion test [4,5,6,7,8,9], tension test [1,2,10,11], rolling test [12,13,14], and compression test [15,16,17,18]. According to these authors, the most remarkable phenomenon when material is deformed at elevated temperature with given strain rate ($\dot{\epsilon}$) is the flow stress-strain (σ - ϵ) curve with a characteristic shape, either periodic (multipeak) or continuous (single peak) (Fig. 1) [3].

This dynamic-softening process is thermal-activated, giving a dependence of σ on $\dot{\epsilon}$ and temperature which can be expressed in terms of the Zener-Hollonom parameter, Z, (Fig. 2) [18]

$Z = \dot{\epsilon} \exp (Q/RT)$

where, Q is activation energy. The style of the flow curve can be changed from periodically to continuously as the Z value is increased. On the other words, when the Z is decreased the flow curve shows from single peak to multipeak. Therefore, when the temperature is decreased or the $\dot{\epsilon}$ is increased, the single peak will occur and the multipeak takes place with increasing temperature or decreasing $\dot{\epsilon}$.

Correspond to the initial grain size (D_0) and steday-state recrystalized grain size (D_S) , when the oscillation flow curve appears, the grain coarsening occurs $(D_O << D_S)$, and when the continuous flow

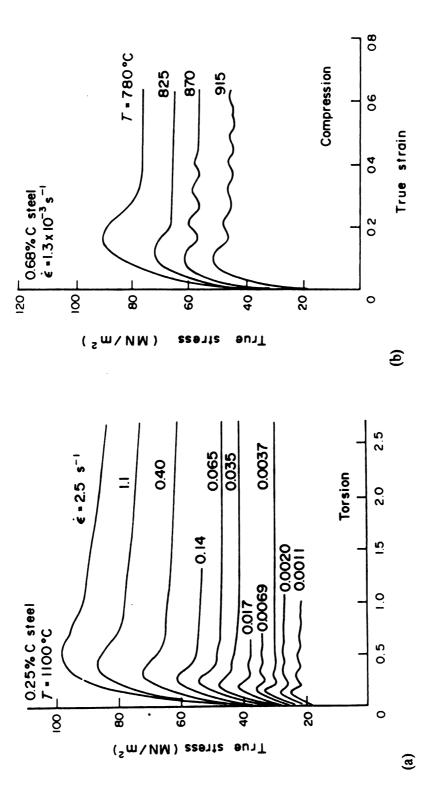
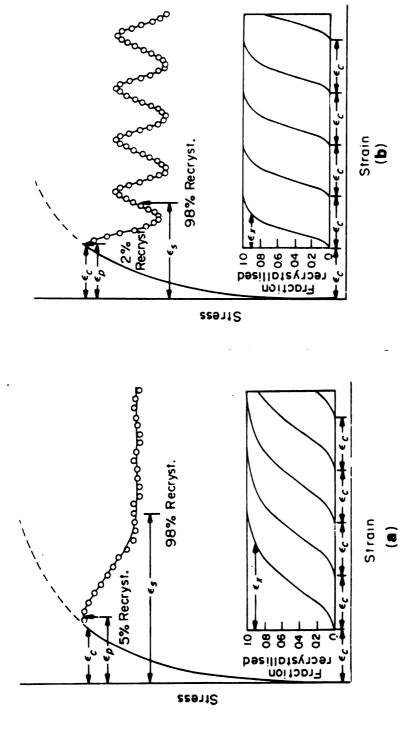


Fig. 1. (a) Effect of strain rate on the flow curves. (b) Effect of temperature on the flow curves [3].



Fig. 2. A microstructure mechanism map for distinguishing between the occurrence of two types of DRX[18].


curve shows means the specimen is undergoing grain refinement (D $_{\rm o}$ >> D $_{\rm S}$).

2.1 Effect of Strain Rate on Grain Size of DRX

When the material undergoes DRX, the dislocations substructure develops in the initial stage of deformation which means the new cell structure is smaller and has more tangled cell walls [18].

At higher $\dot{\epsilon}$, a finer tangled cellular structure is developed throughout all the grain, which does not leave grain boundary segment long enough to bulge. With increasing strain, some tangles build up to high misorientations, the nuclei create within each grain. The density is higher near the grain boundary because the higher strain. By the time, steady-state flow is attained, new small equiaxed grains have replaced the original ones.

According to the Fig. 3a [3], before recrystallization (RX) is complete, the region which first recrystallized reaches the critical strain for a second nucleation. Under this condition, the dislocation densities at the center of the recrystallized grains have increased with further straining the material, which tend to grow another nuclei. Because nucleation or necklace structure occurs at the existing boundaries, the dynamic grain size attains the final stable dynamic grain size(D_S). Therefore, continuous deformation results in work hardening to take place within the dynamic recrystallized grains and reducing the driving force for growth. Hence, the final stable grain size is refined, and leaves a single peak stress - strain curve.

curve for the condition when $\epsilon_{c} < \epsilon_{\chi}$. (b) a cyclic flow curve Fig. 3. Predicted stress - strain curves for DRX. (a) A steady state [3]. when the $\epsilon_c > \epsilon_x$

Conversely, at lower strain rate, the grain undergoes coarsening due to nucleation production by bulging of the pre-existing grain boundary. In this case, the impingement of boundary results in the termination of a new dynamic grain growth. From the observation of stress-strain curve (Fig. 3b), the nucleation of all new grains occur at when $\varepsilon > \varepsilon_{\rm X}$ [$\varepsilon_{\rm C}$: critical strain for the initiation of RX, $\varepsilon_{\rm p}$: peak strain for RX, $\varepsilon_{\rm x}$: strain for the completion RX]. Therefore, the growth is restricted to the region $\varepsilon_{\rm x}$ until the material reaches another RX can be initiated. Hence, one RX cycle is virtually complete before the next cycle starts and results in a multipeak stress-strain flow curve.

However, normally higher strain rate gives rise to higher flow stress, or vice versa [4,10]. Thus, when the material is subjected to deform with lower strain rate at high temperature, the RX stress, σ_R , is lower than at high strain rate under the same test condition and shows periodic σ - ϵ curve [4].

2.2 Effect of Temperature on the DRX Grain Size

First of all the test temperature for RX should be higher than 1/2 Tm at least. As has been mentioned previousely, temperature has something to do with DRX because of the Z value.

At given &, the Z value will be increased as temperature is decreased which results in a single peak stress-strain curve. Because a higher density of nuclei is given rise to the increasing in subgrain density as the Z value increases [18]. Inversely, increasing temperature at given strain rate will increase the RX process [13] and

decrease the Z value which results in a multipeak behavior and the appearance of the grain coarsening. Also, σ_R the decreases as the temperature increases which can be described in terms of the empirical relation [11],

$$\sigma_{\rm p} = A \dot{\epsilon}^{1/m} \exp (U/mKT)$$

where, A, m, U are constants. Therefore, RX is periodic at lower stress when temperature is increased, and becomes continuous with increasing stress when temperature is decreased [4].

2.3 Microstructure Change Corresponds to the DRX

The effects of strain rate and temperature on the DRX have been discussed a while ago. Both effects have mentioned one important feature, that is microstructure change, either grain coarsening or refinement, under different test conditions. Also, the shape of the DRX stress-strain curve is dominated by the final grain size. In case grain coarsening ($D_0 << D_S$) takes place, the curve shows periodically and grain refinement ($D_0 >> D_S$) pans up a continuous curve. From the map (Fig. 2), however, changing the D_0 seems that the shape of the flow curve can be altered. Thus, it is to be expected that the rate of DRX process decreases, i.e the transition from periodic to continuous behavior, with increasing D_0 [15]. Nevertheless, it is found that the domination element, D_S , is normally related to the σ_S , in terms of $\sigma_S = \sigma_0 + AD^{-1}$

where, σ_0 , A, n are constants. Formularily, σ_S is only dependent of D_S but D_0 [8]. Changing D_0 will not affect the shape of the flow curve. However, it increases the probability of the transition. It is clear

that decreasing the $\mathbf{D}_{\mathbf{O}}$ will increase the rate of the RX and decrease the flow stress of RX.

It is not necessary, however, that D_S should be larger than D_O to produce an oscillation curve. Sakai et al. [3,18] cited the criterion for the transition, D_O /2 D_S = 1. Under this example, the oscillation flow curve occurred when we found that $D_S < D_O < 2D_S$, it is considered that the grain coarsening take place due to the small final grains resulting from the growth of the RX nuclei.

3. EXPERIMENTAL PROCEDURES

The material, Ni_3Al , with composition Ni-76, Al-24 and B-0.24 a/o, was supplied by Oak Ridge National Lab.

The pure Ni was ordered from Materials Research Corporation with Ag, Al, Cu, Fe, K, Li, Mg, Mo, Pb, Si, Sn, Ti, V, Zr less than 10 ppm, 0-14ppm and N-1ppm.

3.1 Machine

The expriment machine is MTS 810 with 458.20 microconsol which was linked to Znith AT personal computer to remote control the MTS unit and to record the data. The vacuum furnace was set up on the MTS with Centorr S60 - 26350 temperature control unit. The thermocouple was placed at the edge of the cental ceramic rod.

3.2 Specimen Preparation

As-casted Ni₃Al was machined to 5 mm height and 3 mm diameter cylinder by using electric discharge machine (EDM). To keep a normal stress on the surface when applied axisymetric compression load, the sample surfaces were grinded to very flat with flatness no larger than 1/1000 and very perpendicular to the cylindric surface, i.e. aligned by the EDM. All of the specimens were annealed at 800° C for 4 hours in the vacuum furnace at a pressure of approximately 10^{-5} Torr, and allow us to get a grain size with $170~\mu m$ (Fig. 4). The small grain size sample, with $9~\mu m$ (Fig. 5), was obtained from the above material with large

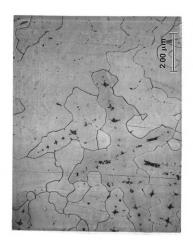


Fig. 4. The metallograph of Ni_3Al annealed at $800^{\circ}C$ for 4 hours.

Fig. 5. The metallograph of prestrained $\mathrm{Ni}_3\mathrm{Al}$ (60 %) annealed at 800°C for 1 hour.

grain size which was undergone the compression test with strain rate = $2 \times 10^{-4} \text{S}^{-1}$ at room temperature initially, then, annealed at 800°C for 1 hour in vacuum(about 10^{-6} Torr).

The Ni specimen, with 10.62 mm long, for compression test was cut from pure Ni rod (dia. = 6.35 mm) by diamond saw with speed 150 rpm, and annealed at 1000°C for 30 min in vacuum furnace to get 136 μ m (Fig. 6) initial grain size. The result of thermal equilibrium, i.e. at 1000°C, for 1 hour, seems little effect on the initial grain size (Fig. 7).

3.3 Mechanical Test

The Ni₃Al specimens with larger grain size for DRX experiment were compressed at 650°C, 750°C, 850°C, and 1000°C with three strain rate($2 \times 10^{-3} \text{s}^{-1}$, $2 \times 10^{-4} \text{s}^{-1}$, $2 \times 10^{-5} \text{s}^{-1}$). The Ni₃Al samples with smaller grain size were tested at 600°C with stain rate = $2 \times 10^{-4} \text{s}^{-1}$, 750°C with strain rate = $2 \times 10^{-4} \text{s}^{-1}$, 800°C with strain rate = $2 \times 10^{-3} \text{s}^{-1}$, $2 \times 10^{-4} \text{s}^{-1}$ and $2 \times 10^{-5} \text{s}^{-1}$, as well as 850°C with strain rate = $2 \times 10^{-4} \text{s}^{-1}$.

The Ni specimens were compressed at 650°C with strain rate = 2 x 10^{-4} s⁻¹, 850°C with strain rate = 2 x 10^{-3} s⁻¹, 2 x 10^{-4} s⁻¹ and 2 x 10^{-5} s⁻¹, and 1000°C with stain rate = 2 x 10^{-4} s⁻¹.

In order to get thermal equilibrium among the grips, spacers and samples at test temperature, all samples were loaded in the vacuum furnace about 1 hour. The cooling process is after deformation.

3.4 Microstructure Observation

Fig. 6. The metallograph of pure Ni annealed at 1000°C for 30 min.

Fig. 7. The metallograph of pure Ni when waited for the thermal equilibrium at 1000°C for 1 hour.

After the accomplishment of the DRX test, the Ni₃Al samples were grinded out about 1mm in order to observe the inner structure and polished by LECO VP-50 autopolisher, i.e. from GRIT 600 to 0.3 micron. The specimens for microscopic examination were, then, immerged in the etching reagent, reagent marbles, which has the following composition,

CuSO₄ 5g

HCl 20 ml

H₂O 20 ml

at 25°C for 10 seconds.

The Ni for metallographic observation were cut by diamond saw with 150 rpm and polished by LECO autopolisher, then, etched by the following solution,

Nitric Acid 67 ml

Glacial Acetic Acid 33 ml

Hydrochloric Acid 1 ml

at 25°C for 4 seconds

3.5 Protection

In order to protect the grips of the test machine during high temperature, we made two stainless steel spacers and inserted ${\rm Al}_2{\rm O}_3$ thin plat (about 1mm) between the grips and the spacers. Meanwhile, to protect the spacers, we put the ${\rm Al}_2{\rm O}_3$ thick plates (about 3mm) and ${\rm Al}_2{\rm O}_3$ rods (10mm height, 12.5mm dia.) and smeared BN powder on the touching surfaces of the rods and specimens.

4. RESULTS

4.1 The True Stress - True Strain Curve

The experiment results for Ni₃Al with D_o = 170 μ m (Fig. 4) at 650°C - 1000°C (T/Tm = 0.55 - 0.76) can be observed that almost all curves (Fig. 8 - 11) undergo the maximum stress which mean the DRX to be initiated, then, drop to certain stresses and keep a steady state flow stress (σ_S). The DRX curves show single peak due to very large D_o. From the Table 1, the effect of strain rate and temperature on the DRX indicates that higher strain rate and lower temperature gives rise to higher σ_R and σ_S . Fig. 8 - 11 show the strain rate effect and Fig. 12 - 14 show the temperature effect.

For the Ni₃Al with fine initial grain size (D_0 = 9 µm) the DRX flow curves (Fig. 15,16) show only single peak and, like larger D_0 , σ_R and σ_S have the same relationship to strain rate and temperature, i.e. higher strain rate and lower temperature result in a higher flow stress (Table 2). Only the single peak shows up for Ni₃Al is associated with the connection of D_0 and D_S . We will discuss below.

For pure Ni with D = 136 μ m, it reveals the multipeak DRX process (Fig. 17, 18), and same results for σ_R and σ_S (Table 3) under our test conditions.

4.2 Metallographic Examination

When material undergoes the DRX process the D_S affects the type of the flow very much. For the Ni₃Al with D_O = 170 μ m, the necklace

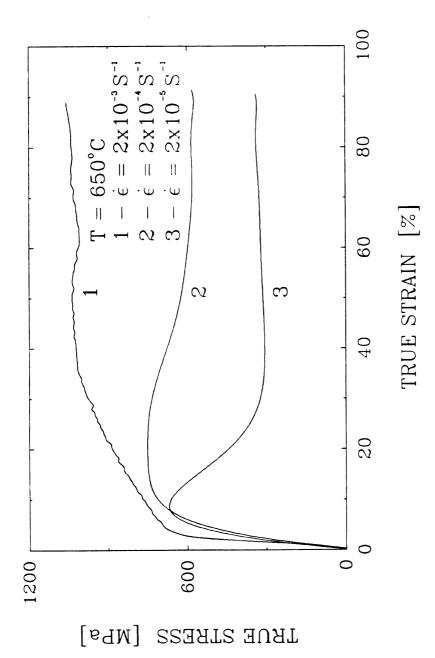


Fig. 8. The flow curves of Ni₃Al (D_0 = 170 µm) which were compressed at 650°C with various strain rates.

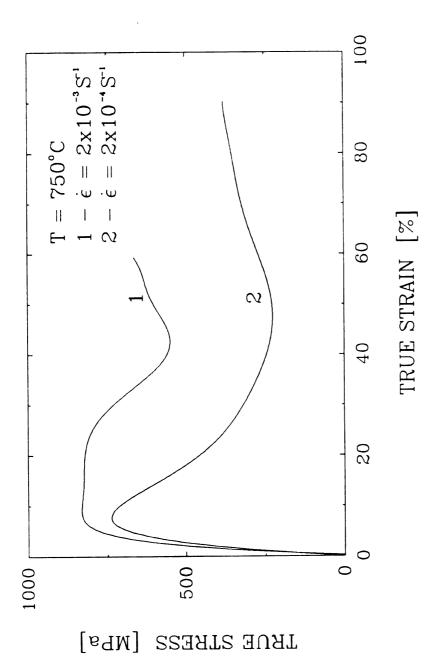


Fig. 9. The flow curves of Ni₃Al (D_o = 170 µm) which were compressed at 750°C with various strain rates.

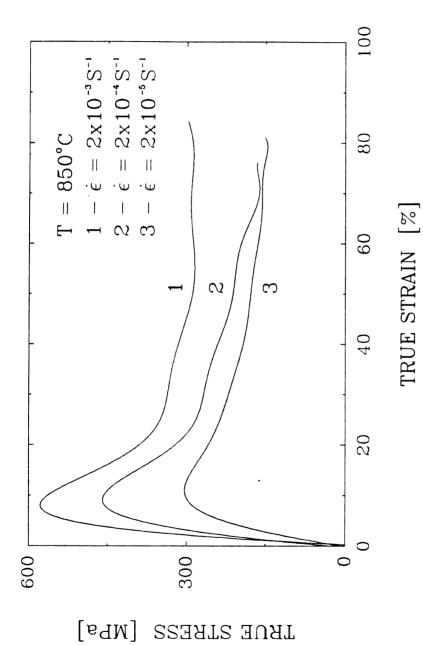


Fig. 10. The flow curves of Ni₃Al (D_0 = 170 µm) which were compressed at 850°C with various strain rates.

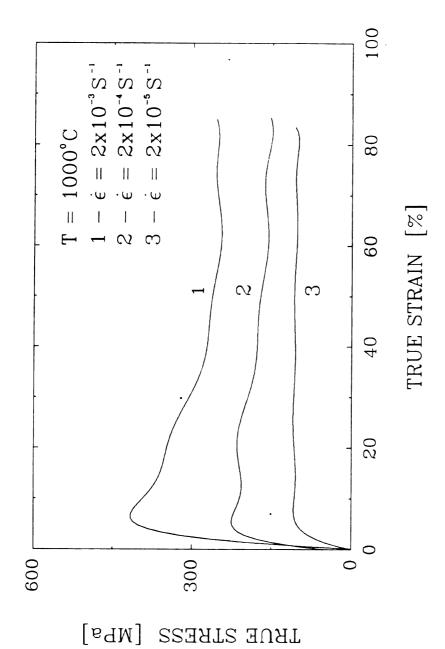


Fig. 11. The flow curves of Ni₃Al (D_o = 170 µm) which were compressed at 1000°C with various strain rates.

Table 1. The σ_R & σ_S under various test condition for Ni $_3$ Al with D $_o$ = 170 μm

σ _R (σ) T°C ε	2×10 ⁻³ s ⁻¹	2×10 ⁻⁴ s ⁻¹	2×10 ⁻⁵ s ⁻¹
650	1035	757	694
	(1096)	(584)	(348)
750	833 (660)	703 (422)	
850	593	462	319
	(295)	(195)	(144)
1000	408	219	114
	(258)	(159)	(110)

Note: The unit for σ_R & σ_S is MPa.

Table 2. The σ_R & σ_S under various test condition for Ni $_3Al$ with $D_{_O}$ = 9 μm .

T°C E	2×10 ⁻³ s ⁻¹	2×10 ⁻⁴ s ⁻¹	7x10 ⁻⁵ s ⁻¹
600		837 (781)	
750		536 (485)	
800	479 (421)	330 (293)	298 (256)
850		228 (194)	

Note: The unit for σ_R & σ_S is MPa.

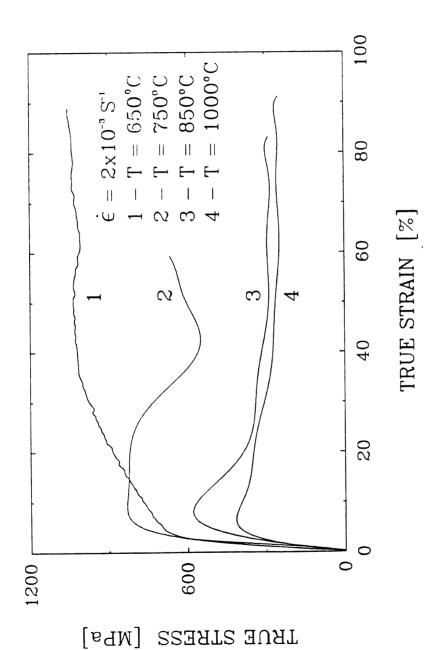
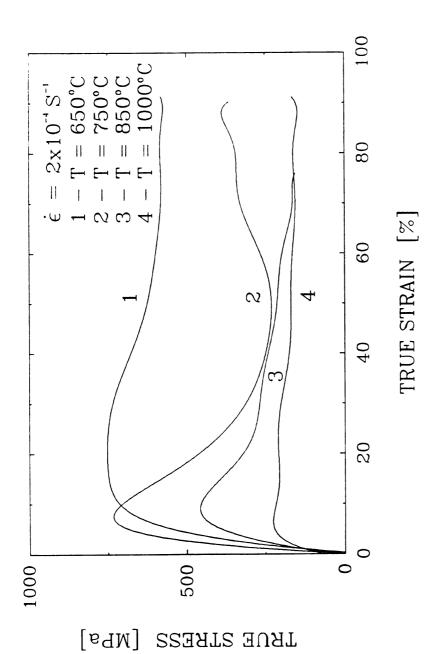



Fig. 12. The flow curves of Ni₃Al (D₀ = 170 μ m) which were compressed with strain rate 2 x 10⁻³S⁻¹ at various temperatures.

with strain rate 2 x $10^{-4}s^{-1}$ at various. Fig. 13. The flow curves of Ni₁Al

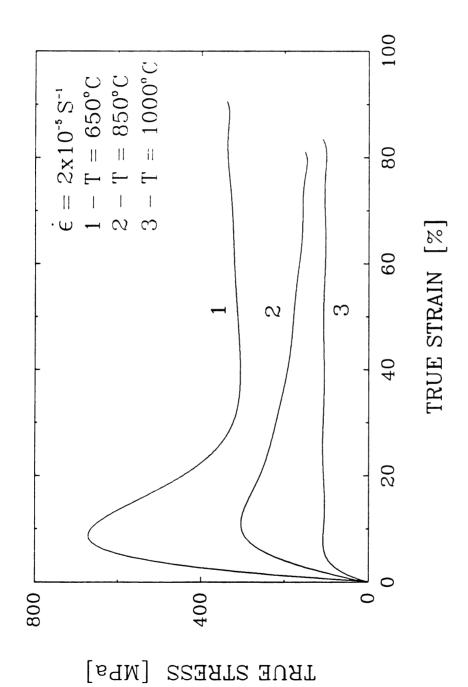


Fig. 14. The flow curves of Ni₃Al (D_o = 170 μ m) which were compressed with strain rate 2 x 10⁻⁵S⁻¹ at various temperatures.

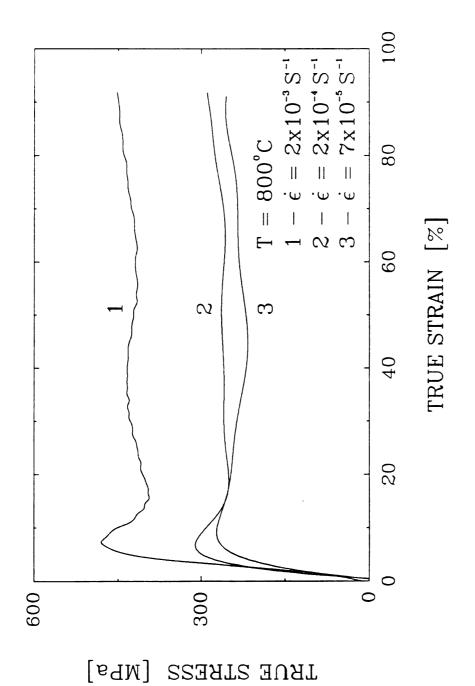
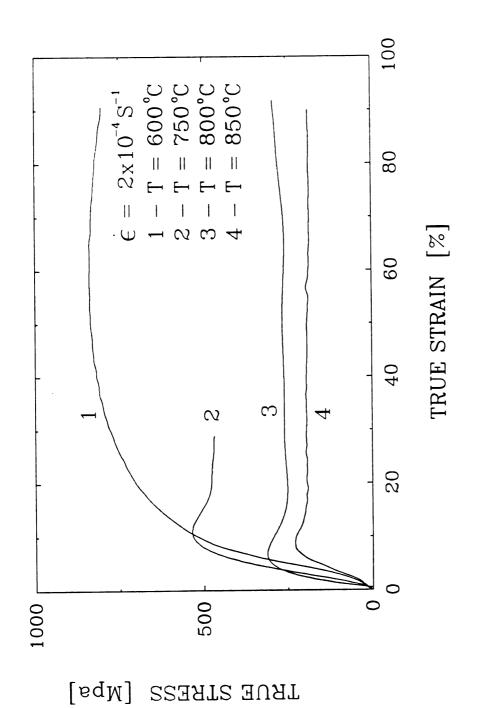



Fig. 15. The flow curves of Ni₃Al (D_0 = 9 µm) which were compressed at 800°C with various strain rates.

The flow curves of Ni₃Al (D_o = 9 μm) which were compressed with strain rate 2 x 10⁻⁴S⁻¹ at various temperatures. Fig. 16. The flow curves of Ni₁Al

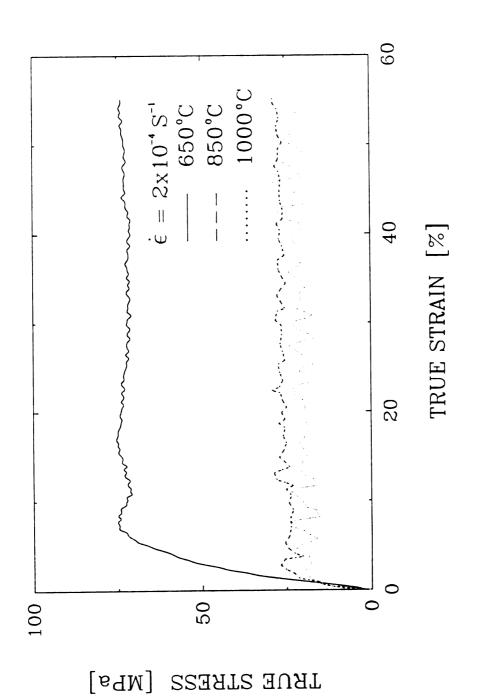
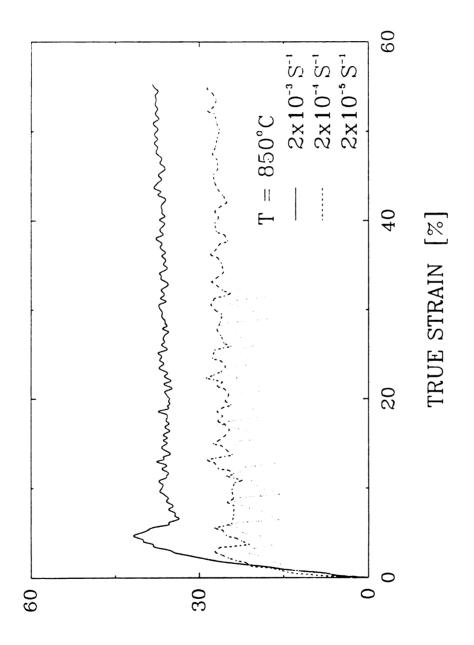



Fig. 17. The flow curves of pure Ni (D = 136 μm) which were compressed with strain rate 2 x $10^{-4} \rm S^{-1}$ at various temperatures.

TRUE STRESS

[Wbg]

Fig. 18. The flow curves of pure Ni ($D_{\rm o}$ = 136 μm) which were compressed at 850°C with various strain rates.

Table 3. The σ_R & σ_S under various test condition for pure Ni with $D_{_{\rm O}}$ = 136 μm .

σ _R (σ) ε T°C	2×10 ⁻³ s ⁻¹	2×10 ⁻⁴ s ⁻¹	2×10 ⁻⁵ s ⁻¹
650		75 (85)	
850	44 (36)	28 (25)	22 (23)
1000		20 (20)	

Note: The unit for σ_R & σ_S is MPa.

Table 4. The D under various test condition for Ni $_3$ Al with D = 170 μm .

D _S &	2×10 ⁻³ s ⁻¹	2×10 ⁻⁴ s ⁻¹	2×10 ⁻⁵ s ⁻¹
650	1.7	3	3.5
750	2	2.5	
850	3	4	6
1000	8	14	30

Note: The unit for D_S is μm .

structure (Fig. 19 - 23) with very tiny nuclei occurs along the original grain boundary while it is subjected to compress at 650°C and 750°C. Until 850°C, the small grains (Fig. 24 - 26)almost grew up within the old grains and replaced them. This phenomenon is remarkable when the strain rate lowered to 2 x 10^{-5} S⁻¹(Fig. 26). At 1000°C, we can observed that grain growth (Fig. 27 - 29) occurs very strikingly and becomes larger (Fig. 29). Considered the flow curve and compared with the initial grain size (D_o = 170 µm) in Table 4, all of the D_S are much smaller than the D_o , give rise to a single peak flow curve.

As narrated before, the smaller of D_0 , the higher of chance of the transition from single peak to multipeak. We prepared a much smaller D_0 which was prestrained to 60 % at room temperature and annealed at 800°C for 1 hour to inspect whether the transition would take place or not.

A series of metallographs (Fig. 30 - 35) were taken, we can discover that the D_S is smaller than D_O . The largest one, D_S = 4.4 μ m (Table 5), is interesting. Applying the transition criterion, D_O / $2D_S$ = 1, we found the appearance of the single peak behavior. Therefore, all of the curves show the samples undergo the continuous RX process.

As for the pure Ni with D = 136 μ m, carefully compared with each D (Table 6), it is out of question that occur the oscillation RX process (Fig. 36 - 40).

Fig. 19. The metallograph of Ni₃Al (D $_{\rm p}$ = 170 µm) after compression test at 650°C with 2 x 10⁻³S⁻¹ shows the necklace structure along the existing grain boundary.

, shows the necklace structure Fig. 20. The metallograph of Ni₃Al ($D_o=170~\mu m$), compressed at 650°C with 2 x $10^{-4} \rm s^{-1}$, shows the necklace structur along the existing grain boundary.

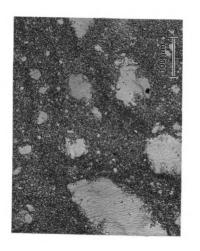


Fig. 21. The metallograph of Ni₃Al ($\rm D_o=170~\mu m$), compressed at 650°C vith 2 x 10⁻⁵S⁻¹, shows the necklace along the existing grain boundary.

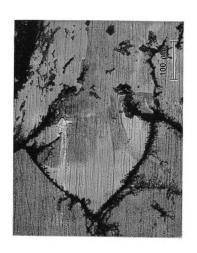


Fig. 22. The metallograph of Ni₃Al ($\rm D_o=170~\mu m$), compressed at 750°C vith 2 x 10^3S^{-1}, shows the necklace along the existing grain boundary.

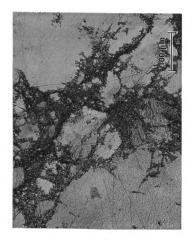


Fig. 23. The metallograph of Ni₃Al ($D_o=170~\mu m$), compressed at 750°C vith 2 x $10^{-4}S^{-1}$, shows the necklace along the existing grain boundary.

Fig. 24. The metallograph of Ni₃Al ($D_o=170~\mu m$), compressed at 850°C vith $2~\times10^{-3}S^{-1}$, shows the grain growth vithin the necklace.

Fig. 25. The metallograph of Ni $_3A1$ (D_o = 170 μm), compressed at $850^{\circ}C$ with 2 x $10^{-4}S^{-1}$.

Fig. 26. The metallograph of Ni $_341$ (D_o = 170 μm), compressed at $850^{\circ}C$ with 2 \times $10^{-5}S^{-1}$.

Fig. 27. The metallograph of $\rm Ni_3Al$ ($\rm D_0=170~\mu m$), compressed at 1000°C with 2 x 10^{-3}c^{-1}

Fig. 28. The metallograph of Ni₃Al (D_0 = 170 µm), compressed at 1000°C $_L$ with 2 x 10-4s-

 D_0 = 170 µm), compressed Fig. 29. The metallograph of Ni₃Ai at 1000° C with 2 x 10^{-3} S

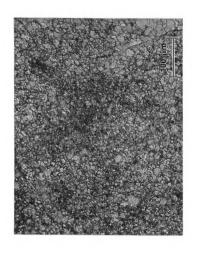


Fig. 30. The metallograph of Ni₃Al ($^{D}_{o}$ = 9 μm), compressed at 600°C with 2 \times 10 $^{-4}S^{-1}$.

Fig. 31. The metallograph of Ni₃Al ($D_o=9~\mu m$), compressed at 750°C with 2 \times 10 $^{-6} \rm g^{-1}$

Fig. 32. The metallograph of Ni Al ($D_{\rm e}=9~\mu m$), compressed at 800°C with 2 \times 10 $^{-3}S^{-1}$.

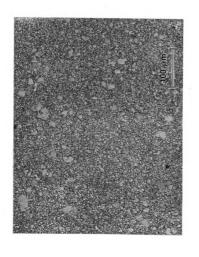


Fig. 33. The metallograph of Ni₃Al ($\rm D_{o}$ = 9 μm), compressed at 800°C with 2 \times 10 $^{-4}S_{-1}^{-1}$.

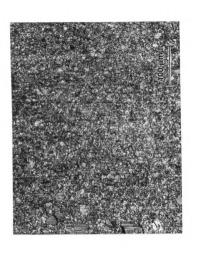


Fig. 34. The metallograph of Ni_3Al (D_ = 9 μm), compressed at 800°C with 7 x 10^5S^-1.

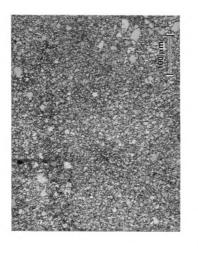


Fig. 35. The metallograph of Ni,Al (D_o = 9 μm), compressed at 850°C with 2 x 10^-4 $_5^{-1}$.

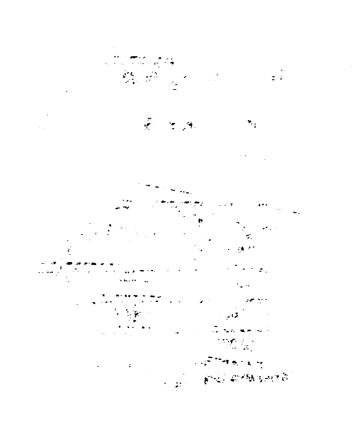


Table 5. The D_S under various test codition for Ni_3Al with D_o = 9 μm .

D _S ε	2×10 ⁻³ s ⁻¹	2x10 ⁻⁴ s ⁻¹	7×10 ⁻⁵ s ⁻¹
600		1.8	
750		2.3	
800	2.5	3.3	3.8
850		4.4	

Note: The unit for D_S is um.

Table 6. The $D_{\mbox{\scriptsize S}}$ under various test condition for pure Ni with $D_{\mbox{\scriptsize O}}$ = 136 μm .

D _S &	2×10 ⁻³ s ⁻¹	2×10 ⁻⁴ s ⁻¹	2x10 ⁻⁵ s ⁻¹
650		144	
850	330	816	911
1000		849	

Note: The unit for D_S is µm.

Fig. 36. The metallograph of pure Ni, compressed at 650°C with 2 \times $10^{-4}\mathrm{s}^{-1}$

Fig. 37. The metallograph of pure Ni, compressed at 850°C with 2 $\times~10^{-3}\mathrm{s}^{-1}$

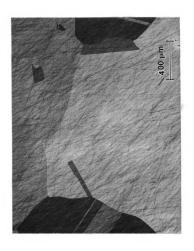


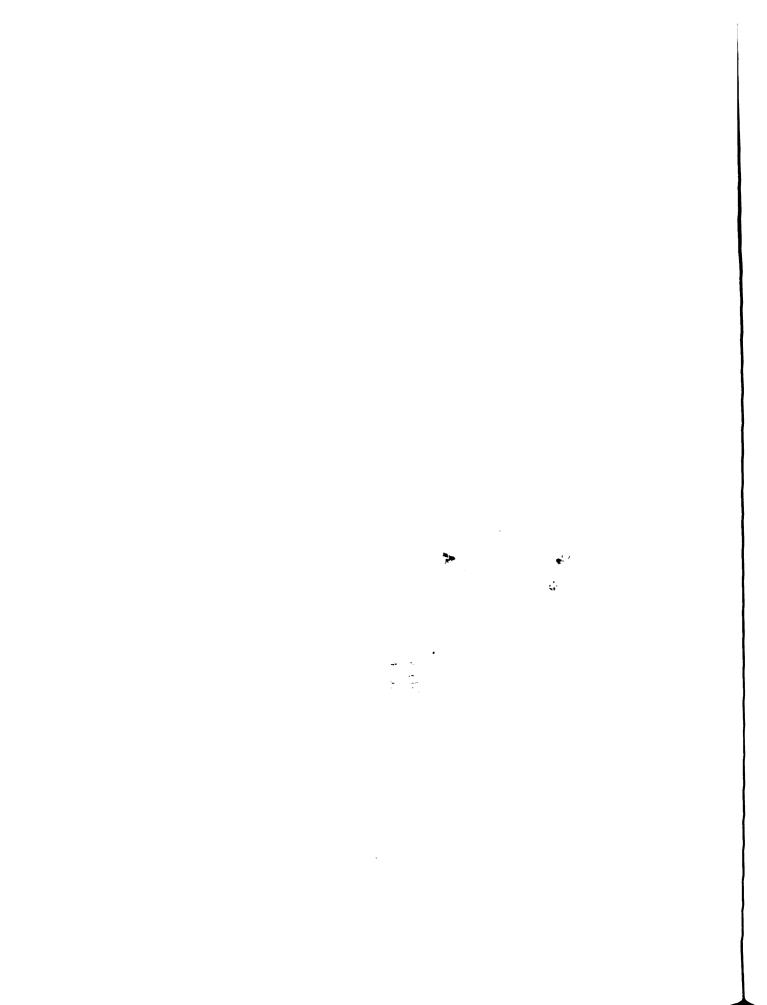
Fig. 38. The metallograph of pure Ni, compressed at $850^{\circ}\mathrm{C}$ with 2 X $10^{-4}\mathrm{S}^{-1}$.

Fig. 39. The metallograph of pure Ni, compressed at 850°C with 2 \times $10^{-5} \rm S^{-1}$.

Fig. 40. The metallograph of pure Ni, compressed at $1000^{\circ}\mathrm{C}$ with $2 \times 10^{-4}\mathrm{S}^{-1}$.

5. DISCUSSION

5.1 Evidence of the DRX


Due to the Z = $\dot{\epsilon}$ exp (Q / RT), we have found that the Z value increases as the increasing $\dot{\epsilon}$ and reducing temperature, which causes a grain refinement process associated with the single peak flow curve. By contrast, the Z value decreases as decreasing $\dot{\epsilon}$ and increasing temperature results in a grain coarsening process correspondence to the occurrence of the multipeak flow curve.

In our experiment, only the single peak flow curve appears for Ni₃Al because D_S is much smaller than D_o = 170 μ m. Even we prepared a tiny D_o (= 9 μ m), the grain refinement showed up because work hardening rate balanced the nucleation rate throughout the deformation process gives rise to the kinetic of growth controlled. Therefore, the dimension of the D_o is independent of the characteristic of the DRX flow curve.

The dependence of the $\dot{\epsilon}$ & T on σ_R has been plotted for Ni₃Al (Fig. 41 - 44) and Ni (Fig. 45, 46), by an Arhennius - type, $\dot{\epsilon} = A \ \sigma_R^n \ \exp \left(-Q \ / \ RT \ \right)$

where, A, n are constants, showing that the RX stress as a function of $\dot{\epsilon}$ & T. Higher ϵ and lower T give rise to a higher RX stress.

The peak in flow curve represents the rate of work hardening is just balanced by the rate of softening due to RX [4]. Therefore, the $\dot{\epsilon}$ and T dependence of the σ_R is determined by the RX process. The activation energy (Q) for RX process can be determined from Fig. 41-43 for Ni₃Al, and 57.79 kcal / mole for pure Ni, determined from Fig.

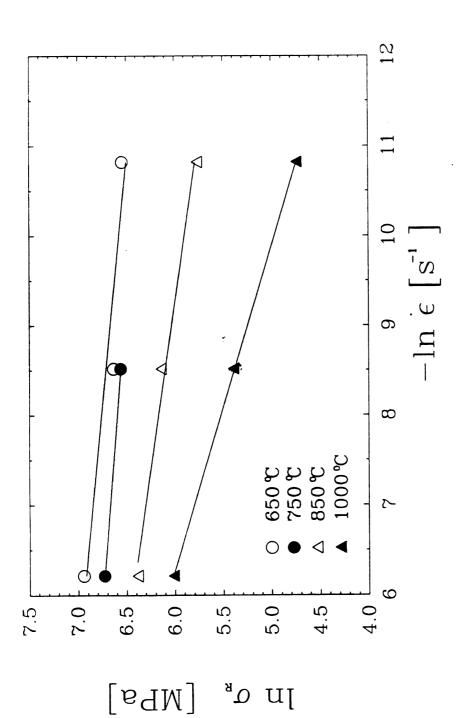


Fig. 41. The relationship of strain rate and σ_R for Ni₃Al with D₀ = 170 µm.

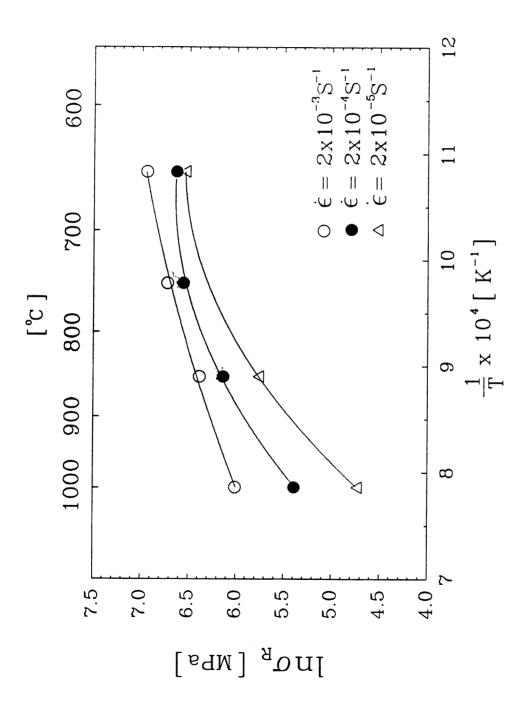
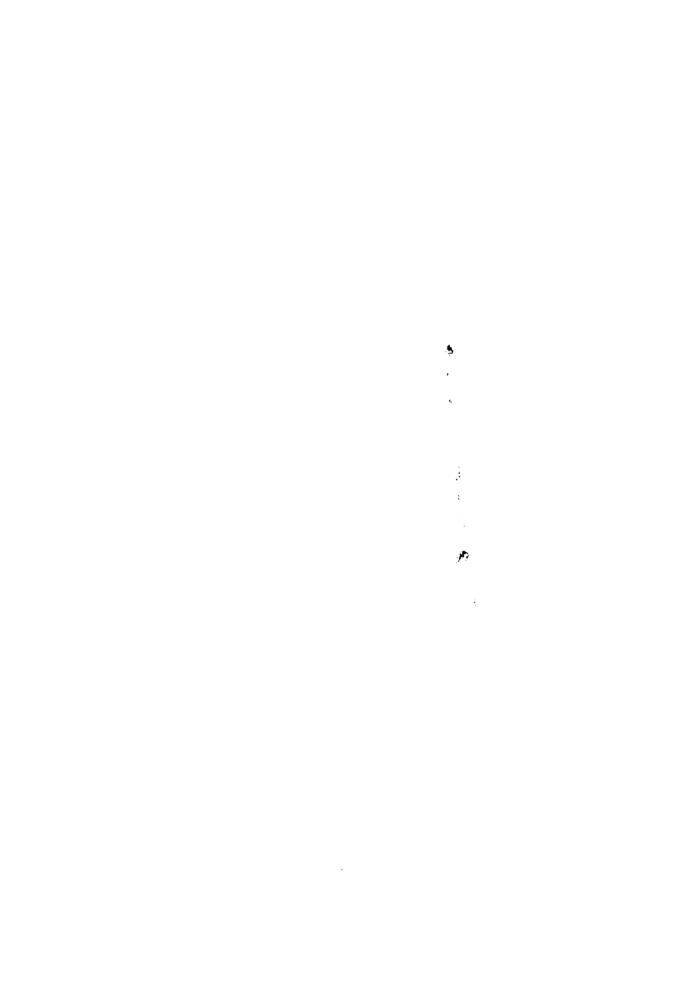



Fig. 42. The relationship of the temperature and σ_{R} for Ni $_{3}$ Al with $D_0 = 170 \, \mu m$.

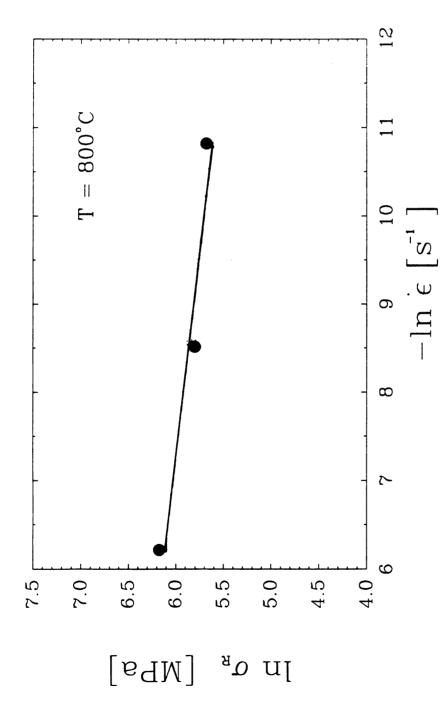


Fig. 43. The relationship of the strain rate and $\sigma_{
m R}$ for Ni $_3$ Al with

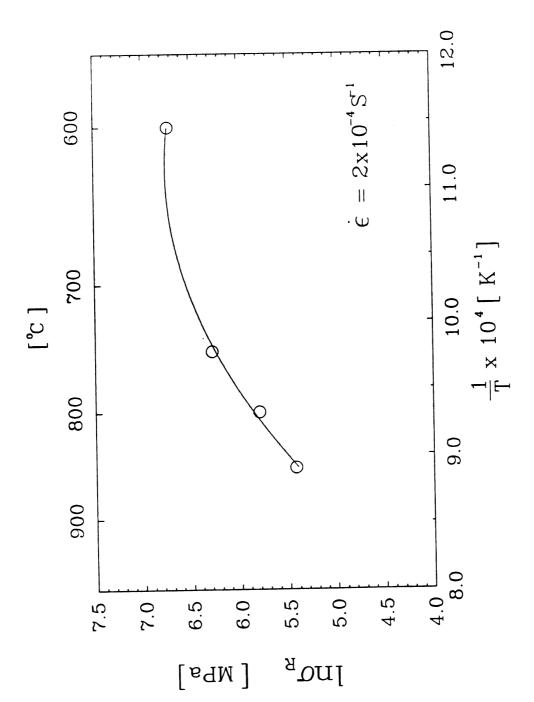


Fig. 44. The relationship of the temperature and σ_R for Ni $_3$ Al with

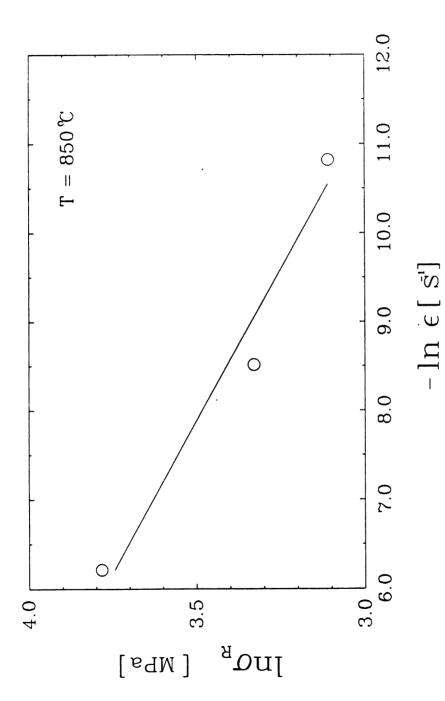


Fig. 45. The relationship of the strain rate and σ_{R} for pure Ni.

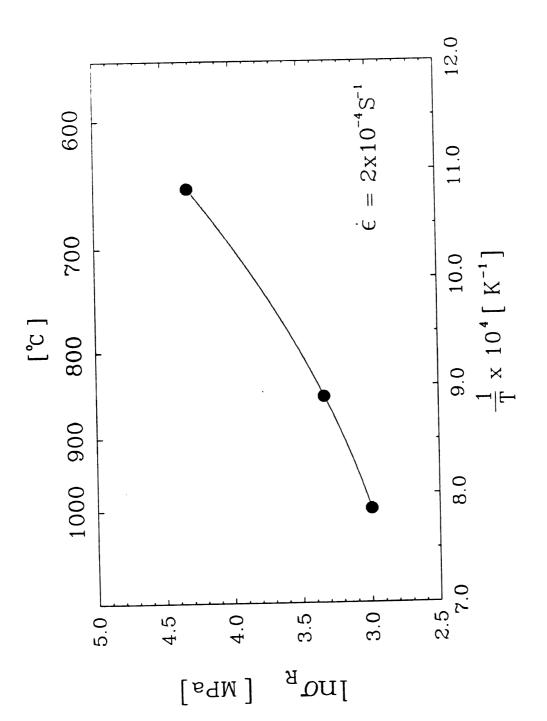


Fig. 46. The relationship of the temperature and σ_{R} for pure Ni.

45,46. For Ni₃Al, we found the activation energy is different under different test condition. Also, we found that under the same test condition, larger D_0 will need larger σ_R to initiate the RX process. The Q = 57.79 kcal / mole for the Ni is very closed to the Luton's result [3], i.e. Q = 56 kcal / mole under hot torsion test.

5.2 The Grain Size of the DRX

The shape of the DRX flow curve is dominated by the transition criterion, $D_{\rm O}$ / $2D_{\rm S}$ = 1. Normally, the grain refinement process results from the production of necklace which nucleation takes place at the original boundary. Continuous straining the dynamic recrystallized grains gives rise to the occurrence of another necklace and reduces the growth process of the first necklace structure. Therefore, for Ni_3Al , it is always shows single peak flow curve, under our test condition, due to the grain refinement process.

The grain coarsening process for Ni is owing to the necklace can not be produced along the existing boundary by strain hardening. In this case, the growth of each new dynamic grain is terminated by boundary impingement, and form the metastable with grain Smaller than final grain [3]. Therefore, it makes Ni show the periodic DRX feature.

Consider the $\sigma_{\mbox{\scriptsize S}}$ correspondence to $\mbox{\scriptsize D}_{\mbox{\scriptsize S}}$, there is an empirical relationship [3,18],

 $\sigma_S = \sigma_0 + A D_S^{-n}$ where, σ_0 , A, n are constants. From Fig. 46,47, n = .709 for Ni₃Al and n = .7 for pure Ni, which proves that final grain size only depends on the steady – state flow stress, and does not depend on the material and initial grain size.

÷ ; ; ; *

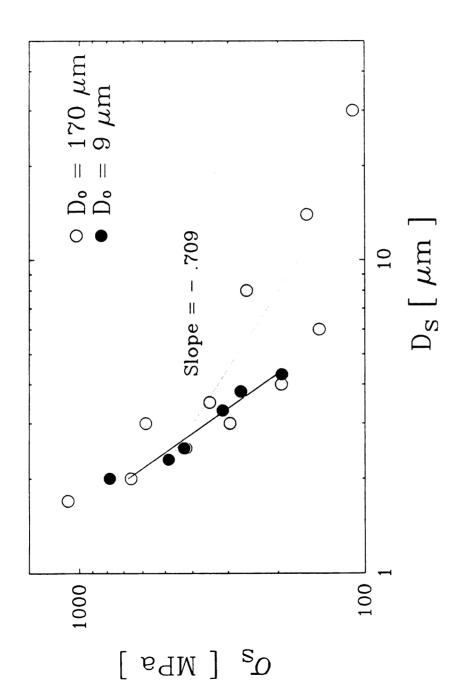


Fig. 47. The relationship of σ_{S} and final grain size for Ni $_{3}$ Al.

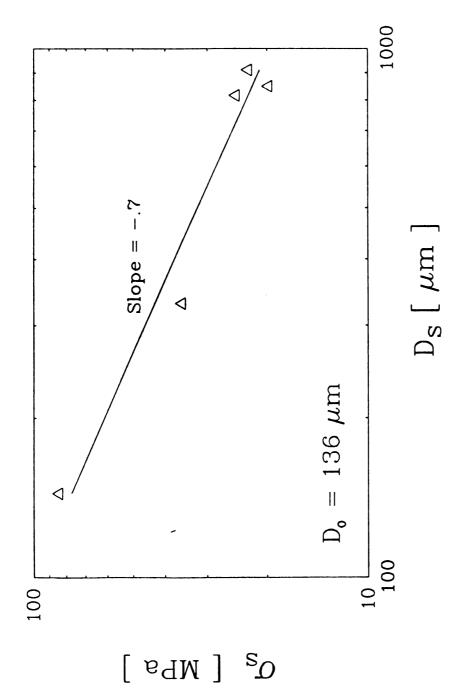


Fig. 48. the relationship of $\sigma_{\rm S}$ and final grain size for pure Ni.

6. CONCLUSIONS

The dynamic recrystallization (DRX) behavior of Ni₃Al and pure Ni has been studied during high temperature compression test at different temperatures and strain rates. The results are summarized in the followeing.

- 1. The DRX behavior is initiated when a certain strss, the recrystallization stress (σ_R) is attained. The σ_R can be changed by changing the Zener Hollomon parameter Z = ϵ exp (Q / RT). The stress increases with increasing Z i.e. higher strain rate and lower temperature .
- 2. Under the given conditions, the flow curve of Ni₃Al exhibited always a single maximum. Correspondingly, the microstructure always underwent grain refinement. In contrast, Ni always revealed an oscillating flow curve and correspondingly, always grain coarsening. The resilts are in line with the prediction that a change of flow behavior is only observed
- $D_0 / 2D_S = 1.$
- 3. The σ_R was found to decrease with decreasing grain size.
- 4. A thermal activation analysis yielded the values n = 6.8 and Q = 6.8
- 57.79 kcal / mole for Ni. For Ni₃Al, it was found that n and Q depended on temperature so that a tradition activation analysis is not feasible.
- 5. In Ni the steady state grain size depended only on the steady state flow stress. The relation is a power law with exponent -0.7. For Ni₃Al it was found that this expinent is not constant but increases strongly for small grain size (< 10 μm).

7. REFERENCES

- [1] I. Baker, D. V. Viens and E. M. Schulson: Scripta Metall., vol. 18, 1984, pp. 237 240
- [2] E. M. Schulson : Met. Trans., vol. 9A, 1978, pp. 527
 538
- [3] T. Sakai and J. J. Jonas : Acta Met., vol. 32, 1984,
 pp. 189 209
- [5] H. J. McQueen and S. Bergerson : Met. Sci., vol. 6, 1972, pp. 25 - 29
- [7] H. P. Stüwe and B. Ortner : Met. Sci., vol. 8, 1974,
 pp. 161 167
- [8] J. P. Sah, G. J. Richardson and C. M. Sellars : Met. Sci., vol. 8, 1974, pp. 325 - 331
- [9] Rolf Sandström and Rune Lagneborg : Acta Met., vol. 23, 1975, pp. 387 - 398
- [10] G. Gottstein, D. Zabardjadi and H. Mecking: Met. Sci., 1979, pp. 223 227
- [12] C. M. Sellars and J. A. Whiteman : Met. Sci., 1979, pp. 187 - 194
- [13] J. C. Blade: Met. Sci., 1979, pp. 206 210

- [15] W. Roberts, H. Boden and B. Ahlblom: Met. Sci., 1979, pp. 195 - 2.5
- [16] K. J. Gardner and R. Grimes: Met. Sci., 1979, pp. 216 222
- [17] M. G. Akbén, I. Weiss and J. J. Jonas : Acta Met., vol. 29, 1981, pp. 111 - 121
- [18] T. Sakai, M. G. Akben and J. J. Jonas : Acta Met., vol. 31, 1983, pp. 631 - 641
- [19] H. J. McQueen and J. J. Jonas in "Recovery and Recrystallization During High Temperature Deformation "in Treatise on Materials Science and Technology, vol.
 - 6, 1975, pp. 393 493