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ABSTRACT

ON THE TRANSPORT PROPERTIES AND

DYNAMICS OF DISORDERED SYSTEMS

By

Weizhu Xia

This thesis presents recent studies of the disordered systems in
condensed matter physics. It addresses the problems of effective
steady-state transport properties, such as electric conductivity and
elastic moduli, and dynamic responses of strongly disordered systems.
In Part I, the continuum percolation of a system containing random el-
lipses is studied. The percolation thresholds are obtained, for various
elliptical aspect ratios, from computer simulations. The macroscopic
effective steady-state conductivity for this system is studied by incor-
porating the properties of effective conductivity at low and critical
concentrations of inclusions. A set of semi-phenomenological interpola-

tion formulas is derived and agrees very well with the experimental data



over the whole range of concentrations. In Part 1I, the elastic per-
colation problem of a stretched spring model on the dilute honeycomb
lattice is studied. While we find the similar second order rigid -+
floppy phase transition studied before on the triangular lattice, an ad-
ditional first order rigid + floppy phase transition is found above a
tricritical point. The bulk modulus, as well as some other elastic con-
stants, behave differently when the two different phase transitions
occur. A Landau type phase transition theory is applied to draw an
analogy between the two types of phase transitions. A self-consistant
effective medium theory is also developed for the phase boundary and the
tricritical point observed in the computer simulations. In Part III,
the density of states (DOS) of vibrational excitation spectra of per-
colation networks at thresholds are obtained by computer simulations
using the equation of motion method. A careful study of the low fre-
quency part of the density of states shows that the spectral
dimensionalities, extracted from DOS, agree well with the predictions of
the scaling hypothesis which takes into account the critical scaling be-
haviour of both mass and elastic moduli. This direct method of
obtaining spectral dimensionalities is superior to the random walk

method in the superconducting-normal network.



Part I and Part III are the expanded versions of the following pub-

lished papers:

I. W. Xia and M. F. Thorpe, "Continuum Percolation of Ellipses", Phys.
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GENERAL INTRODUCTION

The study of macroscopic transport properties of inhomogeneous sys-
tems has been a subject of great interest for more than a century. A
good historical review on the subject is given by Landauer1. When
studying the macroscopic properties, solids are classified, at a rela-
tively coarse level, into two catagories: homogeneous materials and
inhomogeneous ones. Inhomogeneous materials (particularly composite
materials) can be treated as a mixture of different consitituent grains.
The consitituents at some typical scale, for example less than grain
size, can be treated as homogeneous. Mineral rocks, sandstones, con-
crete, cast-iron and conductor-insulator alloys are just a few examples.
These composite materials are characterized by the so called effective

transport properties such as electrical and thermal conductivities,

which reflect the average behavior of the bulk materials. As the ap-
plications of composite materials become more and more specialized,
accurate predictions of the overall bulk transport properties are re-
qQuired in order to make effective use of these materials.

While the macroscopic transport properties such as the electrical
and thermal conductivity of homogeneous materials are well understood
and can be found in many handbooks, their counterparts in the in-

homogeneous case are not. As a matter of fact, these transport



properties are very difficult to calculate except for some special cases
where the microscopic geometric structures of composite systems are
simple. Maxwell, Clausius, Mossotti, Lorenz and Lorentz are the names
associated with early attempts to solve this problem.1 Modern theories
started when Bruggeman published an extensive treatment of dielectric
properties of two phase materials in 1935.1 Since then, there have been
many theoretical approches to the problems"u. Among the various ap-
proaches, Effective Medium Theory (EMT)"S’9 and absolute

bound36’7’8

(i.e. upper and lower bounds) are two major ones. The ab-
solute bounds are derived from the variational methods and are useful
when a real calculation is impossible. There are many versions of EMT
which can be regarded as perturbation expansions where calculations can
only be made for relative simple weak inhomogeneous systems (also called
weakly disordered systems). Simple refers to the shape of the geometric
boundaries between the phases and weak means that the transport

properties, (e.g. electric conductivities) of the different phases are

similar. The effective conductivity is calculated by expanding the dif-

ference of conductivities (a small parameter) in a power seriesg. The
results agree well with experiments in most cases. For strong in-
homogeneous systems (also called strongly disordered systems) in which
the ratios of conductivites of the phases are infinite (i.e. mixture of
conductors-insulators or superconductors-conductors), however, the above
perturbation theories fail because the expansion parameters are no

longer small. Absolute bounds (i.e. upper and lower bounds) in this



case turn out to be very large and practically useless. Computer model-
ing of the transport properties has also been impossible, because even
the largest available machines cannot store enough information to
meaningfully discretize the composite systems for complicated geometric
structures. Therefore a semi-phenomenological description for transport
properties of strongly disordered continuum systems is needed in order

to make overall predictions for systems with certain geometric

distributions. To show the underlying physies and simplicity of our ap-
proach, we only consider two phase composite systems in this thesis.

The equations describing the transport properties of processes such
as electric conductivity, thermal conductivity, dielectric displacement,
magnetic induction and diffusion all have the same mathematical
structure. Therefore one only needs to study one of these and then
generalize the results to all cases. We choose electric conductivity
for convenience. The bulk effective conductivity, denoted by Z, is in
general a function of both the conductivity and geometric distribution

of the constituent phases. It can be written as
P> = <ob> = [ o<E> (1)

where <J> and <E> are macroscopic current and applied electric field
which can be measured experimentally. <> denotes the average over
samples with the same constituents and statistical geometric

distributions. In a continuum conductor-insulator composite system,

when the fraction of conductor is below a certain threshold, no current



is able to flow across the system. This threshold can be well described

by a continuum percolation theoryw. Unlike the lattice percolation

11,12

problem , there is no underlying lattice in continuum percolation
problem. In the case of the conductor-insulator disk continuum percola-
tion problem, one can imagine that on an uniform background of
conducting matrix (with finite conductivity oo) identical circular holes

are punched out randomly (overlaps are allowed). As more and more holes

are punched out, the system will not carry any current below a critical

threshold (called percolation threshold) even if a voltage is applied.

Although there is no underlying lattice in continuum percolation problem
concepts such as percolation threshold, correlation length and cluster
size etc. are still similar to those of lattice peroolationw. The con-
ductivity vanishes at percolation threshold according to an exponent
depending on the dimensionality of the problemm. Of course the deter-
mination of the percolation threshold is more difficult in continuum
percolation problems than in lattice percolation especially when the ob-
Jects are irregular. As a matter of fact, the continuum percolation
thresholds even for many regular objects were still unknown. Prior to
this work the percolation thresholds are known only for circles and
parallel ellipses in 2D15. In Part I, we consider the continuum per-
colation of identical random elliptical holes with various aspect ratios
ranging from disk-like objects to needle-like ones. We obtain the per-
colation threshold from computer simulations. Then we develop a set of

semi-phenomenological interpolation formulas for overall bulk behaviors

for composite systems consisting of random identical elliptical holes.



The interpolation formulas are based on the percolation threshold and

the single defect effective medium theory which is exact in the low con-

centration limit.

The transport properties such as electric conductivity, thermal
conductivity, dielectric constant, magnetic permeability and diffusion
coefficient are scalar quantities. Materials also possess elastic
properties. Elastic constants, however, are fourth rank tensors and
therefore elastic composite systems in general are more complicated and
difficult to treat. Due to the nature of the problems we only consider
solids with covalent chemical bondings. In studying elastic properties,
chemical bonds can be thought of as springs with certain elastic energy
potentials depending on the nature of the problems and the atoms serve
as nodes linking up the springs. de Gennes and Stauffer were the
first16 to study the sol + gel phase transition defined below using the
site elastic percolation model on a lattice. In the process of the sol
+ gel phase transition some monomer molecules are initially dissolved in
a liquid solution. As the chemical reactions continue, monomers form
finite polymer molecules (sol molecules) through covalent chemical
bondings. In the sol phase the sol molecules (finite molecules) are
separated by liquid which does not resist any shear deformation, so that
the system in sol phase has zero shear modulus. As the sol molecules
become larger and larger, a micromolecule crossing the whole system (gel
molecule) will eventually appear. Because the gel molecule can resist

the shear deformation, the shear modulus for the system is no longer



zero. Of course the shear modulus will increase as more and more cross
links in gel molecule are built up. The following process
Na,Si0y + 3H,0 | 2NaOH + H,Si0,

is an example of above mentioned sol -+ gel processIo. The molecules of
H4810M are monomers and will stick together to form sol molecules and
eventually gel molecule through covalent chemical bondings. By using an
idealized elastic percolation model, de Gennes and Stauffer were able to
capture the major features of the above sol +» gel phase transitionls.
For example, adding sites and connecting springs correspond to sticking
together sol molecules; the percolation threshold corresponds to the
sol+gel transition point; elastic shear moduli vanishes below percola-
tion threshold and sol -+ gel transition point etec. Other elastic
percolation models can also be used to study the elastic behavior of
compositional chalcogenide glass such as Se

x and y17.

yAsxGe as a function of

1-x- y

While the model proposed by de Gennes (called isotropic force

model) can be used to explain the sol » gel phase transition, it also
serves as a primary model among various elastic percolation models. de
Gennes pointed out that the elastic percolation problem of this model is
identical to the conductivity percolation problem which had been studied

in great detaill1’12. This is reflected by the fact‘6

that the two
problems can be mapped into each other and therefore (a) the percolation

thresholds of elastic and conductivity percolation problems are the



same; (b) the critical exponents describing the vanishing bulk moduli
and conductivity near percolation thresholds are identical. Feng and

Sen18 proposed the central force model and pointed out that the elastic

percolation described by central force model is different from that of
isotropic force model. In fact they belong to different class of the

problems18’19.

For example, in two dimensions the percolation
thresholds, according to Thorpe's constraint counting methodzo, are p, =
g for isotropic force model and Poen = ; for central force model. Here
z is the number of nearest neighbors of a site. In the above two
models, the elastic energies are expressed in quadratic forms of small

21

displacements. Tang and Thorpe recently introduced a rotationally

invariant stretched spring model which leads to a more natural way of

expressing the elastic energy for Hooke springs. It turns out that the
isotropic force model and the central force model are the two extreme
limits of the stretched spring model. Tang and Thorpe pointed out that,
by continuously changing a parameter, the stretched spring model can
serve as a bridging model between the isotropic force model and central
force model. 1In general there is a lot of stress associated with
stretched or compressed springs in this model. Most computer simula-
tions have been done on triangular lattice in the stretched region where
initially every spring is stretched. In second part of this thesis we

study the elastic percolation of stretched spring model on honeycomb

lattice. The motivation of this study is as follows.

17 20

Both the constraint counting method ' and effective medium theory

predict that the percolation threshold for the central force model on



honeycomb lattice is Poen® g This result is unphysical because p must
always equal or less than one. This tells us that the central force
model on a honeycomb lattice is not stable. One may find that the shear
modulus is zero for the honeycomb lattice with the central forces.
There is no such instability on the triangular lattice. Therefore, by
studying the honeycomb lattice with the stretched spring model, we ex-
pect to see some new phenomena associated with the instability not
observed on the triangular lattice. Indeed we have found that the usual
second order rigid + floppy phase transition becomes a first order phase
transition above a tricritical point. We also want to determine the
percolation threshold for the stretched spring model in the central
force limit.

The properties we have just discussed above are the static
properties of the disordered systems. It is also very interesting to
study the dynamic properties of the disordered systems particularly in
the low frequency (or energy) limits. The quantity that concerns us

here is the density of states of vibrational excitations which gives the

number of excitational modes per unit frequency interval. 1In a
homogeneous system, in the very long wavelength or low frequency limit,

the density of states denoted by g(E) has the Debye f‘onn22

gw) de ~ w dw (2)



where w is the frequency of the excitation modes and d is the dimen-
tionality of the problem. The simplest way to obtain the density of
states g(w) is to calculate the excitational dispersion relation (phonon
dispersion relation) on a perfect crystal lattice and consequently ob-
tain g(w). In the long wavelength limit, i.e., the wavelength of
excitation is much larger than the lattice spacing, the lattice is
regarded as a homogeneous continuum and (2) is obtainedzz. One can ask
the question of how the density of states changes when disorder is
introduced. A good review article concerning the general aspects of
this question is given by Elliott et al.23 Here we only hscuss the low
frequency limit. From one's physical intuition, it can be expected that
when the wavelength of excitation is comparable to the length scale on
which the system is disordered the density of states should have dif-
ferent form than (2) because the system is no longer homogeneous. On
the other hand, however, (2) should still be observed in the very long
wavelength limit because then even disordered systems are homogeneous .

Alexander et al.zu pointed out that in dilute disordered system (or in-

homogeneous system) (i) the density of states should have the following

form

d-1
glwdw ~ w dw (3)

where d is called the spectral dimensionality which is different from d

for the homogeneous case; (ii) the density of states has a cross-over



10

from the homogeneous region to the inhomogeneous region at frequency
Wt and (iii) d is an universal quantity for d greater than two. While
it is still controversial whether the results should be applied to some

real amorphous systems at low temperaturezg, there have been con-

25-28

siderable theoretical studies concerning the spectral

dimensionality d.

The studies are done on fractal systemszs'aa. A random fractal

network is inhomogeneous on a length scale less than a certain length

and homogeneous at a scale larger than the length. Therefore it is an

ideal system to observe the cross—over30.

dom fractal networksﬂ. The fractal network chosen in this thesis, as

Of course there are many ran-

well as in many other studies, is a percolation network. The length
scale on which the cross-over happens is now simply the percolation cor-
relation length. Many other methods can also be used to obtain d. The

31 and the random walker met:lmdz‘x2 are the ones

transfer matrix method
used most frequently. It should be pointed out that, when considering
the density of states, the random walker (RW) method is an indirect one
to obtain d. In dilute systems, the RW method gives results as good as
any other method. But this method is not useful for the modelg’3 dis-
cussed in this thesis. 1In part III of this thesis, we study the low
frequency vibrational density of states of a superconducting-normal
networks. In this model the density of states, in the low frequency
limit, has the same form as (3) but with a different spectral dimen-
tionality d due to the different scaling relations. These scaling

relations are supported by the computer simulations.
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Part 1

Continuum Percolation and Effective Macroscopic

Conductivity of Random Composite Systems
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I Introduction

The universal behaviour of the critical exponents that describe
transport quantities such as electrical conductivity, thermal conduc-
tivity, the diffusion constant and elastic moduli of a composite system
near the percolation threshold can be understood by continuum percola-
tion t'.heory.1 Experimental results agree well with the theoretical
predictions of such quantities.2 In designing composite materials it is

more important to know the overall behaviour of the properties of these

materials which are governed by non-universal quantities away from the
critical region. The location of the critical point is also non-
universal. When the concentration of one of the components (for
simplicity, we will consider only two component composite systems) is
extremely low, the behaviour of quantities like the electrical conduc-
tance can be adequately described by the Clausius-Mossotti equation.3
Inbetween these two extremes, an exact microscopic theory or detailed
computer modeling of the transport properties would be very difficult
and neither is currently available. Some progress has been made
recently in studying two elliptical holes in a homogeneous medium.u
However, even here there are still unresolved problems associated with
overlapping inclusions that have prevented a useful generalisation of
the Clausius-Mosotti equations. Computer simulations have also not been
possible because even the largest available machines cannot store enough

information to meaningfully discretise such continuum systems. Thus a

ma jor reasearch tool, that has led to so much of our understanding of
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the response of discrete lattice systemss, has not been available or ex-

ploited yet in continuum systems.

The purpose of this paper is to develop a semi-phenomenological
description of the behaviour of the transport properties of these
systems. Many effective medium theories (EMT) have been developed3’6'11
but are of dubious validity away from the dilute limit, where all these

theories agree. In order to ascertain which of these theories are good

for all concentrations, we have located the critical concentration of

ellipses at percolation. These results are new except for the special

case of circles and provide a most stringent test of effective medium
theories. We find that there are no reasonable EMT for electrical
conductance; all fail to predict the correct critical concentration for

circles. On the other hand, we find one such existing theory to be

clearly superior and adequate for elastic inclusions. This is the asym-

metric reinforced model (also called SCA-A, reinforced problem in

section II B of Thorpe and Sen7). This was originally derived for cir-

cular inclusions by Hill, Budiansky, Wu and Berryman 8-10 using
different self-consistant methods. In the circular limit symmetric and
asymmetric theories are identical. Those results were generalised by

Thorpe and Sen 7

to ellipses for which symmetric and asymmetric theories
are no longer identical. Note however that this theory applies to the

case when the circular inclusions are infinitely hard so that the elas-

tic compliance and not the elastic modulus vanishes at the critical
concentration. We would expect that this effective medium theory should

also be superior for mixtures where the elliptical inclusions are hard.
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The SCA-A for holes does not give a good value for the critical
concentration.

The interpolation formula we develop incorporates the behaviour at
the two extremes (i.e. low concentrations and near the percolation
threshold) for a system containing randomly distributed insulating el-
liptical laminae (i.e. holes) embedded in the uniform background of a
conducting matrix.

The layout of this paper is at follows. In section II we discuss
the geometric aspects of continuum percolation for a system containing
random elliptical laminae in 2D and spheroids in 3D and in section III
we present our computer simulations of the percolation thresholds in 2D
and compare with the results of previous work. In section IV we use our

results to critique effective medium theories by examining their predic-

tions for the percolation concentrations. In section V an interpolation
formula for the electrical conductance is developed and in section VI a
comparison is made between the effective conductivity predicted from our
interpolation formulae and that of experiments.

II Continuum Percolation

(1) Continuum Percolation of Elliptical Laminea in 2D.

In the continuum percolation problem, as well as in percolation on

a lattice, an important quantity to describe the onset of percolation is

12 13

the percolation threshold P, There exist extensive studies - in the

literature of Pe for percolation on various lattices, where P, is the
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fraction of bonds or sites remaining, depending on the type of percola-
tion being studied. In the continuum percolation problem, Po is defined

to be the fractional area occupied by one phase which, in our case is

the area remaining after the elliptical holes are removed. Fig.1.1
shows an example of the system under study and the area covered by el-
lipses has fractional area 1 - p (at the percolation threshold p = pc).
Imagine that a constant voltage is applied across a conducting sheet and
randomly oriented elliptical holes with random centers are punched out.
As more and more material is removed, electric current flow through the
sheet is restricted and vanishes at P, We are interested in how P,
changes as the geometry (i.e. aspect ratio) of one phase changesm’15 or

more presicely how Pe changes as the inclusions change from circles to

needles.



example of random

Fig. 1.1
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We use the aspect ratio b/a to describe the asymmetry of the ellipse

where a and b (with a > b) are the major and minor semi-axes

respectively. Note that the eccentricity of the ellipse is given by
2 ]1/2

In the following discussion, identical, but randomly centered holes

e = [ 1-(bsa)

each with area A are removed from a two dimensional L x L sheet. At

hole concentration n per unit area, and remaining area fraction p, if we

increase the hole density, then the area that is still available to be
removed is pL2. Therefore the additional area removed by changing the
hole density from n to n + dn is pLZAdn. On the other hand, the area

remaining is reduced to pL2-(p+dp)L2, so
pL2-(p+dp)L®= pLZAdn

i.e. dp/p = -Adn

so that p = exp(-An) (1)

where we note that p = 1, when n=0 and p = O when n = «®, This formula

has been used previously for circlesm’17

18 This is because the repeated random

but is true for all shapes if

sufficient randomness is present.

placement of an additional object or hole serves as a measure of the
remaining area. We are of course always thinking of the thermodynamic
limit when the system size is very large. Eq. (1) can be generalized to

three dimensions where A is replaced by the volume of each individal
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hole and n is the hole density per unit volume (this can be visualized
as Swiss Cheese). In the two dimensional case we are studying, A=wab

and at the percolation threshold n=n,, therefore
Pg= exp(-nabnc) (2)

Eq. (2) allows an immediate determination of the percolation threshold
Po for a given a and b once n, is known or vice versa. This equation is
very convenient to use in practice as it only involves counting; no area

evaluation is involved. For circles we find from our simulations that

Pe* exp(-naznc) = 0.33 £ 0.02 (3)

where a is circle radius and n, is density of circles per unit area at

percolation. We have given generous error bars on (3). Our result (3)

19 We also notice that a

19

agrees well with other results for circles.
careful finite size scaling study gives better results, “ but this would
need huge amounts of computer time if it was to be done for all aspect
ratios. Our purpose here is to look at the general trend of how P,
changes with b/a. The percolation threshold for ellipses aligned in one
direction but with random centers is the same as that for random
circles. The reason is as follows. A conformal transformation can al-
ways be performed in one direction on the aligned elliptical system in

order to obtain the random circular case. Obviously the change in the

area A, due to the conformal transformation, exactly cancels the change
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in the ellipse density per unit area. Therefore there is no change in
p=exp(-An) and the percolation threshold is the same as that for the
circular case. This is checked by computer simulations in this work.

In 2D, the background ceases to percolate when the inclusions
percolate. This is because there is no way around the infinite cluster.
Therefore, there is a single percolation concentration. In higher
dimensions, this is obviously not the case and there are two separate
percolation concentrations for the inclusions and the backgrounds.

In continuum percolation involving identical objects, it is useful

to introduce the average excluded area denoted as <aex>.20’21 For given

relative orientations of two identical objects the excluded area is

defined as the area that if the center of one is outside it, the two ob-
Jects have no overlap at all. Average means over all allowed relative

orientations. The excluded area at percolation is defined as

<A__>=zn <a_ > 4)
ex (o] ex

Although the mean coordination number and the critical area or volume

fraction are essentially 1nvar1ant22 in bond and site lattice percola-

tion respectively, <Aex> is not quite such a quasi-universal invariant

12 Our results will be discussed in

quantity and it has a small range.
detail in the next section, but we see from Table 1 that for randomly

oriented ellipses,

3.4 < <A > < U4.5 (5a)
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For ellipses that can only lie in two directions, we see from Table 2

that,

2.8 < <Ae > < 4.4 (5b)

Taking account of the error bars noted in the table captions, both these
sets of results for <Aex> are probably monotonic in the aspect ratio.

The excluded area of two identical ellipses can be defined as

<a > = Ynabk (6)

where k is a geometric factor that is chosen as above so that k = 1 for

circles. For randomly centered and oriented ellipses,23

k= 1/2 + s2/8|zab (7)

where s is the perimeter of an ellipse (this involves an elliptical in-
tegral which can be evaluated numerically). For randomly centered
ellipses that can only lie in the two principal directions the k factor
is different from (7) and not available in a closed form for general
b/a. For parallel ellipses k = 1 but must be computed (using for ex-
ample the contact function described in the next section) for ellipses
at right angles. These two results are then averaged. The values of k
for both these cases have been calculated and are given in Tables 1 and

2 for various aspect ratios.
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From Eqs. (2), (4) and (6), we notice that

Po= exp(- <Aex>/hk) (8)

16-18

which reduces to p = exp(- <A__>/4) for circles when k = 1, In
c ex

the needle limit where b/a is small, and the ellipses are _randomly

oriented, using (7) we have s = l4a and k = 2a/(12b) so that from Eq. (8)

P, = exp[-3.4/(lk)] = exp(-O.hZSuzb/a)

=1 - 4.2 b/a (9)

where we have used <Aex> = 3.4 from Table 1. We note that in this

limit, the result (9) is independent of the precise shape of the

needles. For example they can be elliptical or rectangular. As b/a be-
comes very small, only a few needles are needed to cross the sample and
these have essentially no area so that P, 1 as given by (1). A

similar limit is obtained for needles that can only point horizontally

or vertically for which k = a/(2%b). Using Eq. (8), with A > ™ 2.8

from Table 2, we find that

P = exp[-2.8/(Uk)] = exp(-1.4mb/a)

=1 - 4.4 b/a (10)
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which we notice is close to the result for randomly oriented ellipses
given in (9). Indeed because the values of <Aex> are only known
numerically; the error bars are sufficiently large that Eqs. (9) and

(10) could be identical.

(2) Continuum Percolation of Spheriods in 3D

Various concepts, just described above, for two dimensional per-
colation can be easily generalized to three dimensional case. As we
mentioned earlier, in 2D the background ceases to percolate when the
inclusions percolate. This is because there is no way around the in-
finite cluster and therefore there is a single percolation
concentration. In higher dimensions (e.g. three dimensions), this is
obviously not the case and there are two separate percolation concentra-
tions for the inclusions and the background. For percolation involving
identical insulating spheres the percolation thresholds are Po = .31 for

1nclusions12 to percolate and P, = .968 for background cease to

percolate27. Here, of course, Po refers to volume fraction. It is also
known that the excluded volume <Vex> in 3D is bounded by 12
0.7 < <V_>< 2.8 (5¢c)

- ex’ -

where 2.8 refers to spherical inclusions and 0.7 to very long thin rods.
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Now we consider the following two cases of inclusion percolation
for spheroids of revolution. [see Fig. 1.2 ]
Prolate (a > b, b=c)

Oblate (a > b, a=c)

2b

(b)

Fig. 1.2 (a) A prolate with a>b and b=c; (b) A oblate with a»b and a=c.
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We can also make predictions on the dependence of the percolation
threshold on b/a for small b/a by using the fact that <vex> = nc<vex>
approaches a constant as b/a +0 shown in Eq. (5c).

In the prolate case, we assume <Vex> - Vl'( constant) as b/a » 0.

By the same definition of Eq. (6)

_ 32 2
<Vex> = 3—1!3b k (8a)
and
- 3
<vex> (2a)” . (8b)

In Eq. (8b) the fact that <vex> is proportional to (2a)3 is the result
of averaging over various positions of two very long prolates and it can
be easily seen that the major contribution is from a sphere with radius

2a. So k ~ (a/b)z. Using Eq. (8) we have
p = exp(—Vv'/Qk) (8c)
2
~ exp(-V,(b/a)%)
2
~ 1.0 - V,(b/a) (9a)
An appropriate consatnt is absorbed into V1 in Eq. (9a).
In the oblate case, we can also assume that <vex> - V2' (constant)

as b/a » 0. In this case, however, <vex> = %gﬂazbk, and <vex> ~ (2a)3.

So k ~ (a/b). Using Eq. (8) we have
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P, = exp(-V,'/4k) (8d)

=exp(-V2a/b)

~1.0 - v2 (b/a) (9b)

Again we notice that an appropriate constant is absorbed into V2 in Eq.
(9b).

From Eq. (9a) and (9b) we can see that the dependence of P, on b/a
are different for prolate case and oblate case in the small b/a limit.
In the above arguments, constants V1 and V2 may be determined mathemati-
cally or by computer simulations. We perform computer simulations to
check various predictions in this section for the two dimensional case.

The 3D case can also be checked after modifing the 2D programs.
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III Computer simulations and results

In our 2D computer simulations, the whole system has periodic
boundary conditions in both the x and y directions. For each fixed
aspect ratio b/a about 2000 elliptical laminae are randomly distributed.
The relative orientations are also random. An example of the system un-
der study is shown in Fig. 1.1. As b/a becomes smaller fewer ellipses,
for a given system size, are needed at percolation. To insure consis-
tent statistics, we expanded the system size, while maintaining about
the same number (2000) of ellipses. We determined n, by keeping a
record of whether there are clusters formed by overlaping elliptical
laminae which cross the lower and upper boundaries at the same place
(because of the periodic boundary condition).

In the course of recording clusters we used a very efficient algo-

24

rithm involving a contact function  to determine whether two ellipses

Wwith given centers and relative orientation overlap or not. For two
identical ellipses one centered at the origin and one centered at

(xo,yo) with relative orientation 6, the contact function ¢ is defined

by

b=, °-38,) (8,°-38,)-(9-g ,8,)° (1)

where

2

g,= 3+(a/b - b/a)’sin®e - (xy/a)%- (yy/b)? (12)

85" 3+(a/b - b/a)2sin29 - (xocose+yosine)2/a2
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-(y,cose-x sing)°/b° (13)

0
If ¢ is negative, the two ellipses overlap. If | is positive, and both
g, and g, are positive, the two ellipses also overlap; otherwise the two
ellipses do not overlap. If § = O the two ellipses just touch. A
similar contact function for 3D case can also be found in ref 24. We
only test those ellipses whose centers lie within 2a of each other. We
find the average number of ellipses required for the system to percolate
in both the x and y directions if (as invariably happens) one direction
percolates before the other. Then we average over 25 to 30 samples for
a fixed aspect ratio b/a and use Eq.(2) to evaluate | The errors are
due to the statistical averaging over the P. which have a roughly
Gaussian distribution. We repeat the same procedure for different
aspect ratios b/a that range from 1/400 up to 1.0.

In Fig. 1.3 the percolation threshold Pe is plotted against the
aspect ratio b/a. The results for both randomly oriented ellipses and
ellipses that are aligned along two perpendicular directions are shown.

It can be seen that the two sets of results are indistinguishable within

our limits of accuracy.

We have also evaluated <Aex> using n, found from the computer
simulation and Eqs. (4) and (6) for both randomly oriented and two
direction oriented ellipses. The error bar in our computer simulation
in determining nc is about + 5% ; therefore the error bar in <Qex> is

about * 0.2. Tables 1 and 2 1list Py D k, and <Aex> for various

c’
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aspect ratios b/a for the two cases and they show that in both cases
<Aex> decreases very slowly as b/a decreases.

In the following discussion, we only consider quantities for the
randomly oriented case. The case of only two orientations would give
essentially indistinguishable results. Note that although n, and hence
p, are virtually indistinguishable for a fixed aspect ratio b/a in the
two cases, the quantities k and <Aex> are different as can be seen by
comparing tables 1 and 2.

In Fig. 1.4 we plot f“zuabnc and t‘2: 1-f=1- exp(labnc). The
quantity f‘1 is the total area in the ellipses for a sample of unit area,
not allowing for the overlap effects, whereas f_ is less than f, be-

2 1
cause overlap effects are included.
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1.2 T T T T

0 1 1 | L
0 0.2 0.4 0.6 0.8 1.0

b/a

Fig. 1.3 Percolation threshold P, for various aspect ratios b/a.
Squares are for randomly oriented ellipses while triangles are for ver-
tically and horizontally oriented ellipses. Every point is averaged over
25 - 30 samples each containing ~ 2000 ellipses. The solid curve is the
interpolation formula (28) for Po- The dashed curve is Py» which gives

the initial slope, from Eq. (22).
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Table 1.1

b/a Pe "o k (Aex
1.0000 0.33 2.8 1.000 h.4
0.9000 . 0.33 2.8 1.002 4.y
0.8000 0.33 2.8 1.009 4.4
0.7000 0.3% 2.8 1.028 NS
0.6000 0.35 2.1 1.050 4.5
0.5000 0.37 2.5 1.09% 4.3
0.4000 om 2.3 1M N2
0.3333 0.48 2.10 1.250 5.
0.2500 0.50 1.76 1.832 A,
0.2000 0.54 1.57 1.618 4.0
0.1500 0.62 1.22 1.931 u.0
0.1000 0.70 0.90 2.592 3.7
0.0667 0.78 0.62 3.589 3.1
0.0500 0.83 0.49 4.592 3.5
0.0400 0.86 0.40 5.599 3.5
0.0333 0.88 0.34 6.609 3.5
0.0250 0.91 0.26 8.629 3.5
0.0125 0.949 0.133 16.78 3.5
0.0050 0.979 0.054 41,06 3.5
0.0025 0.990 0.027 81.12 3.4

Table 1.1 Values of Por Moo k, and (Aex) are listed for randomly

orlented ellipses for varlous aspect ratios b/a. The value ol k is ob-

talned by evaluating the perimeter s of the ellipse from an elliptic
Integral and using the formula In the text. The value of n, is obtained
from the simulation with the area of the elllipses fixed at %/8 and then

‘“"’ is obtained from formulas (4) and (6). The error bar In “ex’ is

0 .2.
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Table 1,2

b/a Pe n, k (A"
1.0000 0.33 2.8 1.000 4.4
0.9000 0.33 2.8 1.002 .y
0.8000 . 0.33 2.8 1.009 h.4
0.7000 0.34 2.1 1.024 4.3
0.6000° 0.36 2.6 1.089 4.3
0.5000 0.37 2.5 1.091 8.3
0.8000 0.81 2.3 1.162 4.2
0.3333 0.45 2.06 1.237 4.0
0.2500 0.50 1.80 1.391 3.9
0.2000 0.5 1.59 1.548 3.9
0.1500 0.62 1.24 1.812 3.5
0.1000 0.68 0.97 2.382 3.6
0.0667 0.78 0.65 3.137 3.2
0.0500 0.82 0.51 3.933 3.2
0.0400 0.85 0.42 4.729 3.
0.0333 0.87 0.37 5.525 3.2
0.0250 0.90 0.28 1.7 3.0
0.0125 0.947 0.145 13.48 3.1
0.0050 0.976 0.061 32.58 3.1
0.0025 0.989 0.028 64.4) 2.8

Table 1.2 Values of Por N k, and <Aex) are listed for ellipses with

two allowed orientations. The values of k Is obtain by evaluating the

excluded area <a ,> numerically and then using Eq. (6). The values of
ncare from simulation with the area of the ellipses fixed at 8/8 and

(A"> are obtained by using Eq. (4). The error bar in A 1s ro0.2.
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Fig. 1.4 The quantities f2= 1- exp(uabnc) and f

1° uabnc are plotted
against the aspect ratio b/a for the case of randomly oriented ellipses.
Crosses are for f

2 and triangles are for fl'
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It can be seen that for small b/a these two quantities are the same as
the overlap area for needles is negligibly small. In the circle limit f1
= 1,09 + 0.02; that is the area in the circles at percolation, before
they are thrown down, is greater than unity. Note that if t‘2 is ex-
panded in powers of the density N, the first term is f1 and the
corrections for r body overlap are given by the coefficient of the n:

term.

IV Critique of Effective Medium Theories

There are extensive discussions in the literature on EMT for

3 and elastic moduli'!

dielectric constants of composite materials with
circular or spherical inclusions. A strong assumption is always re-
quired, in deriving these approximations, that the inclusion
concentration is sufficiently low that the overlap of inclusions can be
neglected. However these approximations are often used over the whole
concentration range where they are of dubious validity. In order to
Judge how good various EMT results are when applied to completely perme-
able objects, we see how close their predictions of P, are compared to
our exact (numerical) results. Physical properties, like the conduc-
tivity and all elastic moduli, should vanish at P, when holes are
punched in the medium., Similarly the resistance and all the elastic
compliances should vanish when infinitely hard inclusions are present in
the medium. Infinitely hard means superconducting in the electrical

case and infinitely rigid or undeformable in the elastic case. All

these p_should be the same as it is a geometrical property of the
c
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material. However different EMT give very different estimates for Po
These various EMT predictions for p, can be used as a figure of merit,
when compared to our exact results, to judge how good the EMT is away
from the dilute limit. In what follows we will examine two versions of
EMT for each physical property. Depending on whether we treat the in-
clusion and background symmetrically or asymmetrically, two versions

3

(i.e. symmetric or asymmetric) of EMT can be derived. Thus we have 8

cases to consider, electrical or elastic, symmetric or asymmetric with

inclusions that are either holes (Swiss cheese model) or hard inclusions
(reinforced model). Sen, Thorpe and Milton6 have summarised these
results for the electrical case. These results can also be obtained

from ref. 3. The critical Po for the dilute (Swiss cheese) case are
s
pc-1/2 (14)
pzz(a2+b2)/(a+b)2 (15)

where the superscripts s and a refer to the symmetric and asymmetric
cases respectively. The results for the reinforced case are identical

to (14) and (15).

1

Similar results have been obtained by Thorpe and Sen' for the elas-

tic case. For the dilute (Swiss cheese) model, all the elastic moduli

vanish at

2) 172 -1

p2 =2 [ 1+ [2(arb)?/ (2% 51172 ) (16)
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p2= [0+ ab/(a2+b?) 17! (17)

For the reinforced model, all the elastic compliances vanish at

p3= 1 -2 ( 1+ [2av0)?/ (@2P))V2Y! (18)
(1-p2)'1:2{1+(1-0)(a+b)2/[2ab(1+0)]}/(3-o) (19a)
(1-p2)™ = ((a+b)?/[2b(3-0) 1 + 1/[1- ab(1+0)/(asb)?1}/2 (19b)

where pz is found from Egqs. (19a) and (19b) by eliminating o, the value
of Poisson's ratio at the critical point. If these were exact theories,
all the results (14) - (19) would be identical. Note that there is no
difference between the symmetric and asymmetric cases in the circle
limit for all these results. The above results are shown in Fig. 1.5
as a function of the aspect ratio and we can see that only curve 6
which is the result (19) is reasonable. Indeed all results except for
the reinforced elastic model fail to get even the circle limit correct.
These two approximations for the reinforced elastic model [ Eqs. (18)
and (19)] give P = 1/3 which is the correct result for circles within
numerical error as can be seen from Tables 1 and 2. These results show
that EMT is inadequate, when strong disorder is present, except in the
one special case. In other cases we believe a better procedure is to

develop interpolation formulas.
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1.2 T | | |

b/a

Fig. 1.5 Percolation thresholds Pe predicted from various effective
medium theories and our computer simulations from Fig.1.3., The curves
are marked 1 for Eqn. (14), 2 for Eqn. (15), 3 for Egn. (16), 4 for Eqn.
(17), 5 Eqn. (18) and 6 for Eqn. (19). The squares indicate the exact
percolation thresholds from computer simulations taken from the results

for randomly oriented ellipses in Fig. 1.3.
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We note that Egs. (19) could be used as a useful parametric ap-
proximation to Po when required. It gives P, = 1/3 (compared with 0.33
in Tables 1 and 2) in the circle limit and
Pe = 1 -16/3 (b/a) (20)

in the needle limit. This should be compared with Egs. (9) and (10)

V Interpolation Formulae

(1) Semi-phenomenological Formulation

As we mentioned in introduction, the Clausius-Mossotti equation for
the conductance of a two phase system is exact when one phase has a very
low concentration. All attempts to extend these equations beyond this
region are rather uncontrolled and many versions exist in the
literature. As we discussed in the previous section, all are unsatis-
factory for the electrical case. We therefore develop a simple
interpolation formula that gets all the known limits for the dilute
(Swiss cheese) model correct. We believe that this should be of con-
siderable utilitarian use, Similar formulas can be written down for all
other cases.

For a small number of holes in a material with conductance ZO the

effective conductance L is given by

L=Lyl1 - (1-p)/(1-py)] (21)
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where

p; = (a° + b%)/(a + b)° (22)

The quantity Py is where the initial slope for a small number of

defects3’6

would eventually cross the L = 0 axis when extrapolated and
is a convenient way to express the initial slope. The relation L ~ (p-
pc)t holds only in the small critical region around Po: Our
interpolation formula is designed to link these two limits by assuming

the conductivity has the following form

E = Iy(1.0 + ac + 8eX) (23)
where ¢ = 1 - p and a, B and ) are constants to be determined from the

following,
I~(p-p)¥ asp-p (24)
c c
E=y1-c/(0-p)+00®)] asc-o (25)
and 80 is the conductivity of the sample without any inclusions (¢ = 0).
Of course one would like to include higher order terms in ¢ in Eq. (23).

but since we have no more information other than (24) and (25) it is not

possible to do better. After some simple algebra we find,

L/L,z {1 - c/[t(1-p)] - cz[t(1-pl) - (1-pc)]/[t(l-pl)(1-pc)2)}t (26)
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It is rather inconvenient to use the expressions (19) for Po and so
we make a simpler approximation (27) for Po that is correct in the two

limits b/a = 1, when P, = 1/3 and b/a small, when | 1 - 9/2(b/a)
P, = (1 + Uy)/(19 + Uy) (27)

where y = b/a + a/b is symmetric in a «» b. The result (27) is vir-
tually indistinguishable from the computer simulations in Fig. 1.3 and
is actually superior to (19) as can be seen by comparing Fig. 1.3 and
Fig. 1.5. Of course there is no basis for (27) except that it is cor-
rect in the two limits and fits the simulation data for all aspect
ratios.

By taking t = 1.3,1 and using Eq. (22) for Pz y/(2 + y) and Eq.
(27) for P,» We can determine the effective conductance L,

(220" = 1 - c(2ey)/(20) + B(19 + Hy)[9(2+y)

-(19 + 4y)t]/(324¢t) (28)

which we recommend for use in practice (with t = 1.3) as it reproduces

all the known results (i.e. the value of L for the pure system, with p =
1; the initial slope for small 1 - p; the value of p = Po where L
vanishes with critical exponent t) to within numerical accuracy. Note
that the term in 02 is always small and positive. This is because P; is

always larger than P, for all aspect ratios (1 < pI/pc < 1.5) as can be
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seen from Fig. 1.5. In Fig. 1.6, 2/20 is plotted against p = 1 - ¢
for various aspect ratios b/a and shown as the solid lines. Also in
Fig. 1.6, tlzois plotted against ¢ but with t = 1.0 for the same aspect
ratios and shown as the dashed lines. The two plots are very similar
and only differ a little in the critical region. Clearly the EMT
described in the previous section would give very different results as
the p, are so different.

Because of the equivalence of the problems, the interpolation for-

mula (28) can be used for, the electrical conductivity of sheets

containing holes, the thermal conductivity of sheets containing holes or

the dielectric constant of a medium with holes. In all cases, p=1-2¢

is the fraction of material remaining after the holes have been punched
and y = b/a + a/b where b/a is the ratio of the minor to major axis of
the ellipses.

If the inclusions are superconducting, rather than insulating (i.e.

holes) then the result (28) still holds if we replace L/L. on the left

0
hand side with R/R0 where R is the resistance of the sample and Q) is

the resistance when there are no inclusions (¢ = 0). These two problems

25,26

map on to one another and are exactly equivalent. Note that P; and

Pe given in Eqs. (22) and (27) and the critical exponents are the same.1
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Fig. 1.6 Electrical conductance from the interpolation formula (28) for

various aspect ratios as indicated. The solid curves are for t = 1.3

and the dashed curves are for t = 1.0.
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Finally we note that the interpolation formula (28) has two inter-
esting limiting forms. Using the limiting forms for P; and P, We find
that for circles,

1/t

(/g =1 - 20t s 3¢2(4 - 3t)/(4t) (29)

and for needles,

1/t 2

(£/8) V% = 1 - naL?/(86) + n%42LY(9 - 4e)/(12968) (30)
where we have used Eq. (1) with A = sab and put ¢ = 1 - p = 1 - exp(-
nabn) = n®ab and the length of the needles is L = 2a. The result (30)
is independant of the width b of the needles as would be expected. Here
n is the number of inclusions per unit area. A generalization of above
interpolation formulae to 3D case is straight forward. One only needs
to know P (can be easily found from one defect problem), Po (from com-
puter simulations), and t or s (superconducting diverging exponent near
pc). However Pys Pgo and A (i.e. t or s) in the interpolation formulae
for conductor-insulator (c-i) system and superconductor-conductor (s-c)
system are different now because there is no similar duality, which ex-

ists in 2D, exists in 3D. In fact pc's for c¢-1 and s-c systems are

0.968 and 0.31 respectively.
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(2) Comparision with Experiments

In the previous section we have discussed the formulation of the
interpolation formulas. We think these formulas are useful in the
predictions of overall electric conductivity for practical applications.
The reason is as follows. The actual conductivity of a random composite
system, such as the one studied here, in general is a smooth monotonic
decreasing function of p. If one can develop a formula which is a
smooth nomotonic decreasing function with correct limits in the low and
critical p, then the overall behavior predicted by the formula cannot be
too far away from the real situation. In our case, as we will see
later, the agreement between interpolation formulas and experiments are

2’28done on the

rather good. There have been two recent experiments
conductor-insulator system for which our interpolation formulae have
been developed. Therefore these experiments are a direct test of how
good these interpolation formulae are in predicting the macroscopic con-
ductivity in the whole concentration range. There are no other
predictions, to our knowledge, made by any other theory for overall con-
ductivity in the whole concentration range in conductor-insulator
systems. In the experiment of ref. 2, which we refer to as experiment
I, about 3300 circular holes were drilled on each of two steel and two
molybdenum sheets(these materials are used instead of copper or aluminum
to avoid deformation of holes during the drill). The size of the sheets
are 16cm X 16cm and the radius of the holds is 0.32cm. The thickness of
the sheets are 0.13mm, 0.25mm and 0.38mm respectively. Effects due to

the thickness of samples are negligible after observing no change among
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the samples with different thickness. Also finite size effect only ex-
ists when percolation correlation length is comparable to the system
size L(in the experiment this happens when (p-pc)/pc ~ 2%). The macro-
scopic conductivity is monitored while holes are drilled. The area

fraction is estimated by using the equation

P = exp(-nnaz)

which is explained in section II of this thesis. In the experiment of
ref. 28, which we refer to as experiment 1I, about 650 ~ 700 circular
holes are cut from an metalized myler foil. The size of system is 10cm
X 10cm and the radius of hole is O.4cm. Effects due to sample thickness
can be neglected. The area fraction is measured by weighing the cut
fragments on an accurate scale. Also the macroscopie conductivity is
monitored as holes are cut. The normalized conductivities from inter-
polation formula are plotted in Fig. 1.7 , using Eq. (28) in section V
for circular holds, against area fraction p. We use t=1.3 in the solid
curve and t=1.0 in the dashed curve. The squares and triangles are ex-
perimental results from experiment I and experiment II respectively. We
can see that apart from some fluctuation the general features of the two
sets of experimental data are very close to the two lines in a wide
range of concentrations. The data from experiment II have serious
deviations near the percolation threshold. Experiments near the per-
colation threshold need to be done with extreme care because of critical

and brittle features of the system. Since the percolation threshold is
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wrong in experiment II, we attribute the deviation due to some unex-
pected failure in the experiment. We have sent our comments to authors
in ref. 28. Also we notice that number of holes in experiment II is
much less than that in experiment I. While a serious deviation is ob-
served in experiment II near the percolation threshold the rest of data
points are not effected because the experiment is performed step by
step. The agreement between experiments and our interpolation formulae
is very encouraging and it gives us enough confidence in the interpola-
tion formulae. Therefore we believe, with confidence, our interpolation
formulae shold be very good in predicting the overall features of con-
ductivity in two phase composite systems. Experiments on continuum
percolation with randomly distributed elliptical holes are recommended

for a further check.
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t=1.0

0.8 | — — t=1.3
a Exp 1 J.C. Lobb
A Exp 2 E.N. Martinez

Fig. 1.7 A comparison between interpolation formulae (lines)

Experiments (squares and triangles).

1
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VI Summary of Results

Our main result has been the numerical determination of the per-
colation concentration of randomly centered and oriented ellipses. This
has been done by using a contact function to determine if neighboring
ellipses overlap, and constructing a connectivity table. It is not
necessary to measure any overlap areas to find the areas at percolation;
it is sufficient to merely count the number of ellipses.

We have also determined the percolation concentration of ellipses
when the axes are contstrained to lie in only two Cartesian directions.
The results are indistinguishable, within our numerical accuracy, from
the previous case where all orientations are allowed.

We have used these results to critique various effective medium
theories that have been developed for the electrical and elastic
responses of sheets containing elliptical inclusions. Only one of these
approximations is found to give a reasonable percolation threshold while
all the others fail to describe the electrical conductivity or elastic
properties near the critical point.

We have shown that the percolation concentration is described well

by the formula Po = (1 + U4y)/(19 + U4y) where y = b/a + a/b. Here P, 1s
the amount of material remaining and b/a is the aspect ratio of the
ellipses. We have also developed a simple interpolation formula for the

electrical conductance that is correct both for a few inclusions and

near percolation. The agreements between interpolation formulas and ex-
periments lead us to believe that this kind of formula is superior to

effective medium theories and may have useful practical applications.
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I Introduction

Percolation of elastic networks has been an interesting subject for
the past decade. de Gennes1 was the first to introduce the isotropic
force model for the elastic modulus of a gel. The model is defined on a
lattice and described by elastic energy

Ves [ B (u-u (1)

g
Ay VRS

where B is the spring constant and u, is the small displacement of site

i

i. = 1 when a spring between site i and site j is present with

gij
probability p and gij = 0 if a spring is missing with probability 1-p.
de Gennes pointed out that the elastic percolation problem of this model
is identical to the conductivity percolation problem which has been
studied in great deta11.2’3 This is reflected by the f‘acb1 that the two
problems can be mapped into each other and therefore (i) the percolation
thresholds of the elastic and conductivity percolation problems are the
same; (ii) the critical exponents describing the vanishing bulk moduli

and conductivity near the percolation threshold are identical.

Feng and Senu proposed the central force model described by elastic

energy

1 - "2
V = a {(u,- u)er g (2)
2 <§J) l i ) 1J| iJ



56

where a is the spring constant and r,, is the unit vector from site i to

i
site j. Feng and Sen further pointed out that the elastic percolation

described by potential (2) is different from that of (1). Again this is
reflected by the fact that the percolation thresholds and critical ex-

ponents are different for (1) and (2). In fact they belong to different

class of the problemsu’S. More specifically, in two dimensions the per-

colation thresholds, according to Thorpe's constraint counting method6,

are

NI

for isotropic force model (3)
P = - for central force model. (4)

Here z is the number of nearest neighbors of a lattice. The two models

are special cases of the more general Born model7

1 > a2 - o+ 2
V=g <§J> {al (- Gpdery 17 gy + B (8;-0,)%,, } (5)
Feng and Sen also studied the elastic percolation of Born modelu and
concluded that even with a small nozero B the elastic percolation cross-
overs from the central force model to the isotropic force model. For
example, the percolation threshold Pgen changes to P, of the isotropic

force model (see Fig. 2.1).
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Fig. 2.1 Bulk moduli vs. p for central force model (B = 0, solid line)
and Born model (B/a = 0.1, dash line) for 2D triangular lattice. A

strong crossover is shown in latter case. Fig. is from ref. 4.
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Recently Tang and Thorpe introduced the stretched spring model8

with elastic energy

1 2

(1, -L
<ig>

Kijlliy = Lo)

where K is the spring constant between site i and site j. Kijs have

i3

values of KiJ = 1 with probability p and KiJ

L0 is the spring's natural length and lij is the distance between site i

and site j. Using the relation

= 0 with probability 1-p.

1., = IR, -R, + 04, -0, , (7

where ﬁi and ﬁj are the equilibrium positions of site i and site }j,

potential (6) can be written as

1 2 - 2
V=s [ Kiy (LiJ- Ly)” + L KU(L1J - LO)(uijoriJ)

; a5, 2 - 02 - 3
+3 (;J) Kyy (Q-Lg/Ly ) 8%+ Lo/Ly (@ ey D)+ 08 ) (8)
In (8) L1J = lﬁi - ﬁjl and 511 = ﬁi - ﬁJ. The higher order terms are

neglected. Comparing (8) with (1) and (2) one can see that the
isotropic force model and the central force model are also special cases

of the stretched spring model at LO/Li = 0 and LO/L1 = 1 . Therefore

J J

by changing LO/Li continuously, the stretched spring model can serve as

J
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a bridging model between the isotropic force model and the central force
model. One will also notice that the central force model and stretched
spring model described by (2) and (6) are rotationally invariant while
the isotropic force model described by (1) is not. Most computer
simulations have been done on triangular lattice in the stretched region
where 0 S L

/L1 S 1 while simulations in the compressed region are

0" "1}
still in progress. The major conclusion of Tang and Thorpe is that the
stretched spring force model can serve as a bridging model between the
isotropic force and central force model and the percolation threshold Po
changes with LO/L.

In this paper we study the elastic percolation of the stretched
spring model on honeycomb lattice. The motivation of this study is as
follows:

(1) In honeycomb lattice the number of nearest neighbors (z) is
three so the constraint counting method or effective medium theory6’9
will give Poen” g , which is meaningless, for the central force model.

However, what p = g tells us is that in the central force model the

cen
honeycomb lattice is unstable against dilution. 1In other words, if a
spring is removed and the network is compressed then it will collapse or
have zero elastic bulk modulus. In triangular lattice this is not the
case. Therefore by studying the honeycomb lattice we expect to see some
new phenomena associated with the instability.

(ii) From eq. (8) we notice that there are two quadratic elastic
energy terms of u,

i)

central force components in the stretched spring model. So as LO/L -1

which correspond to the isotropic force and the
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a small isotropic force can help to stablize the network. 1In the limit,
when the strength of isotropic force goes to zero, we should be able to
obtain the correct prediction of the percolation threshold.

(iii) A new effective medium theory must be developed to accom-
modate the phenomena associated with the instability mentioned before.

The layout of this paper is as following. In section II we first
discuss the elasticity of stretched spring model for the perfect lattice
and then use an one defect effective medium theory to estimate the per-
colation threshold as a function of LO/LiJ’
computer simulation results on the honeycomb lattice and the explana-

In section III we present

tions of the anomalous behavior of the elastic moduli associated with
the instability of central force model on the honeycomb lattice. In
section IV we use Landau's phase transition theory to establish a
tricritical point observed in the computer simulations. We also develop
a new effective medium theory which addresses the behavior of the elas-

tic constants and predicts the location of the tricritical point.

I1 Elasticity of Pure Honeycomb Lattice And Estimate of the Percolation

Thresholds
We define the stretched spring model on a perfect honeycomb lattice

with elastic energy (6) defined in section I.

1 2
V = K, (1., - L.) (6)
p <§J> i3'7i) 0
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Here every bond of the lattice is represented by a Hook spring of

strength K, , and natural length L.. 1. K6 is simply the distance between

ij 0 i}
site 1 and site j. As stated in section I, the elastic energy can be

written as (8) for a small external strain. In the rest of discussion

we restrict ourselves in the stretched spring region where 0 S L /L S 1.

0
The physical meaning of each of the terms in expansion (8) are dis-

cussed in ref. 8. Here we just mention them again for reader's

convenience. The first term

1 2

is the static elastic energy term because L is the equilibrium dis-

i)

tance of lattice sites i and j and no u,, is involved. The second term

i
in (8) is

V., = K (L. - L )(u
2 <§j> 1

i° J) (8b)

which is the elastic energy due to the tension of the springs because it

is linear in displacements. The third term

vy = ; I oK., {(-L/L, )5, .2« Lo/L (“iJ’”ij)z}

Gy U 0" 13’ Yij ij (8c)
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is the quadratic elastic energy term of displacements aij‘ This term
determines the elastic moduli of the system. By comparing (8c) with

Born model (5) one can see that

a-= Kij (1-L0/LiJ) (9a)
and B = KiJ(LO/Lij) (9b)
while a+B = KiJ . (9¢)
Notice that LO/LiJ = 1 case corresponds to the central force model while
LO/L1J = 0 case to the isotropic force model. For an arbitary LD/LIJ’

in general, there is a lot of stress in the system due to the stretched
and compressed springs. One may also notice that the full elastic
potential (6) is rotationally invariant because it only involves the

distances between springs.

(1) Elasticity of Pure Honeycomb Lattice.

Now we first discuss the elastic moduli of model (8) without any

dilution (i.e. perfect lattice case). In this case L,, = L ,the lattice

i
spacing, and Kij = K. It can be found in the literature7’10 that the
strain energy can always be written as
1
V=] S € + ! c € L€ (10)
o B aB 2 ofyy aBYT “aB Y1



63

where SaB are the elements of the stress tensor and CQBYT are the second
order elastic constants which are directly associated with the elastic

moduli. The quantity ea is called the strain and defined by

B

ou

caB:E;-B- a,B =x,y

A

where u, and Xg are the components of u =(ux + vy) and r. In two dimen-

sions

e . ¢ .du
XX~ 3x yx = dy

2 v - 9v
€xy © ax Cyy T 3y

Therefore an uniform displacement for a Bravais lattice in two dimen-

sions can be written as

Xe .+ ycyx (11a)

c
n

V = XE€ € . 11b
xy * Yy (110)
Now let us put a small force on the frame which holds the springs

in place of the honeycomb lattice. The lattice will respond to this
small force by rearranging the lattice sites so that the elastic energy

(8) is at a minimun. The response of a Bravais lattice such as the
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square lattice or triangular lattice is a small uniform displacement ex-
pressed in (11a) and (11b). The honeycomb lattice is not a Bravais
lattice but can be regarded as a lattice composed of two interpenetrat-
ing triangular lattices which are Bravais lattices. Thus the response
on the honeycomb lattice will be two identical small uniform displace-
ments such as (11a) and (11b) on the two sublattices and an uniform
relative shift of the two sublattices"’12 . In other words the dis-

placements between any two sites of lattice A and lattice B [see

Fig.2.2] can always be written as

(12a)

=
"
]
m
+
<
™
+
c

(12b)

<
1]
Eed
m
+
<
m
+
<

where x and y are the x and y components of the distance between two
sites. Qantities u' and v' are the relative shifts of the two sublat-
tices in x and y directions and can be determined by minimizing the

elastic energy (8).
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Fig. 2.2 Honeycomb lattice is decomposed into two triangular sublat-

tices A and B. Directions of 51 and 52 are shown.
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Equation (10) can be rewritten as

C
XXXX (62 2 )

0 Sxxcxx + syyeyy + Sxyexy + Syxeyx + <x vy

. (13)

+ C E _E 4+ +C € €
XXYyy XX yy 2 xy yx XYyyX Xy yX

In (13) we have also considered the symmetries of the honeycomb lattice

13

to reduce the number of independent elastic constants ~. By minimizing

the elastic energy with respect to u' and v' one can find that [see

Appendix 1]
2 2

_ _a” +5aB + 48~ 4 -3n K
Cxxxx - CI1 TTa/3 (2B +a) T 2-n 2/3 (14a)
¢ ac, . —gral K (14b)

xxyy - “12 5 2/% (2B + a) 2-n 2/3
2

_x _ _uB"+ 3aB (1 -n) K
nyxy - Cuu © 2/3 (2B + a) 2-n 2/3 (1he)

i ) a8 _ (1-n)(4-n) K
nyyx - Cuu T 23 (@B +a) 2-1n 273 (1hd)

_ _ _ B K

Sy = Syy =T = v B (1 - ”)/§ (14e)

and
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In the second column we have used the conventional notation Cxxxx = C11,

cxxyy = C12, nyxy = Cuu and C

used a = Kn, B = K(1 - n) and n = Ly/L.

— = Cuu. In the fourth column we have

We first see that (14d) is zero when n = LO/L = 1. This is the
case where the instability, as mentioned in the introduction, rises.
It means that even a perfect <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>