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ABSTRACT

ON THE TRANSPORT PROPERTIES AND

DYNAMICS OF DISORDERED SYSTEMS

BY

Heizhu Xia

This thesis presents recent studies of the disordered systems in

condensed matter physics. It addresses the problems of effective

steady-state transport properties, such as electric conductivity and

elastic moduli, and dynamic responses of strongly disordered systems.

In Part I, the continuum percolation of a system containing random el-

lipses is studied. The percolation thresholds are obtained, for various

elliptical aspect ratios, from computer simulations. The macroscopic

effective steady-state conductivity for this system is studied by incor-

porating the properties of effective conductivity at low and critical

concentrations of inclusions. A set of semi-phenomenological interpola-

tion formulas is derived and agrees very well with the experimental data



over the whole range of concentrations. In Part II, the elastic per-

colation problem of a stretched spring model on the dilute honeycomb

lattice is studied. While we find the similar second order rigid +

floppy phase transition studied before on the triangular lattice, an ad-

ditional first order rigid + floppy phase transition is found above a

tricritical point. The bulk modulus, as well as some other elastic con-

stants, behave differently when the two different phase transitions

occur. A Landau type phase transition theory is applied to draw an

analogy between the two types of phase transitions. A self-consistant

effective medium theory is also developed for the phase boundary and the

tricritical point observed in the computer simulations. In Part III,

the density of states (DOS) of vibrational excitation spectra of per-

colation networks at thresholds are obtained by computer simulations

using the equation of motion method. A careful study of the low fre-

quency part of the density of states shows that the spectral

dimensionalities, extracted from DOS, agree well with the predictions of

the scaling hypothesis which takes into account the critical scaling be-

haviour of both mass and elastic moduli. This direct method of

(finaining spectral dimensionalities is superior to the random walk

method in the superconducting-normal network.



Part I and Part III are the expanded versions of the following pub-

lished papers:

I. H. Xia and M. F. Thorpe, "Continuum Percolation of Ellipses", Phys.

Rev. A. (1988) (in press)

111. R. A. Day, H. Xia and M. F. Thorpe, "Spectral Dimensionality of

Random Superconducting-normal network", Phys. Rev. B, 37, 1339,

(1988). This is contained in the appendix.
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GENERAL INTRODUCTION

The study of macroscopic transport properties of inhomogeneous sys-

tems has been a subject of great interest for more than a century. A

good historical review on the subject is given by Landauer‘. When

studying the macroscopic properties, solids are classified, at a rela-

tively coarse level, into two categories: homogeneous materials and

inhomogeneous ones. Inhomogeneous materials (particularly composite

materials) can be treated as a mixture of different consitituent grains.

The consitituents at some typical scale, for example less than grain

size, can be treated as homogeneous. Mineral rocks, sandstones, con-

crete, cast-iron and conductor-insulator alloys are Just a few examples.

These composite materials are characterized by the so called effective

transport properties such as electrical and thermal conductivities,
 

which reflect the average behavior of the bulk materials. As the ap-

plications of composite materials become more and more specialized,

accurate predictions of the overall bulk transport properties are re-

quired in order to make effective use of these materials.

While the macroscopic transport properties such as the electrical

and thermal conductivity of homogeneous materials are well understood

and can be found in many handbooks, their counterparts in the in-

homogeneous case are not. As a matter of fact, these transport



properties are very difficult to calculate except for some special cases

where the microscopic geometric structures of composite systems are

simple. Maxwell, Clausius, Mossotti, Lorenz and Lorentz are the names

1 Modern theoriesassociated with early attempts to solve this problem.

started when Bruggeman published an extensive treatment of dielectric

properties of two phase materials in 1935.1 Since then, there have been

many theoretical approches to the problems1'u. Among the various ap-

proaches, Effective Medium Theory (EMT)1’5’9 and absolute

bounds6’7’8 (i.e. upper and lower bounds) are two major ones. The ab-

solute bounds are derived from the variational methods and are useful

when a real calculation is impossible. There are many versions of EMT

which can be regarded as perturbation expansions where calculations can

only be made for relative simple weak inhomogeneous systems (also called
 

weakly disordered systems). Simple refers to the shape of the geometric

boundaries between the phases and 219.115. means that the transport

properties, (e.g. electric conductivities) of the different phases are

similar. The effective conductivity is calculated by expanding the dif—

ference of conductivities (a small parameter) in a power seriesg. The

results agree well with experiments in most cases. For strong in-

homogeneous systems (also called strongly disordered systems) in which

the ratios of conductivites of the phases are infinite (i.e. mixture of

conductors-insulators or superconductors-conductors), however, the above

perturbation theories fail because the expansion parameters are no

longer small. Absolute bounds (i.e. upper and lower bounds) in this



case turn out to be very large and practically useless. Computer model-

ing of the transport properties has also been impossible, because even

the largest available machines cannot store enough information to

meaningfully discretize the composite systems for complicated geometric

structures. Therefore a semi-phenomenological description for transport

properties of strongly disordered continuum systems is needed in order

to make overall predictions for systems with certain geometric

distributions. To show the underlying physics and simplicity of our ap-

proach, we only consider two phase composite systems in this thesis.

The equations describing the transport properties of processes such

as electric conductivity, thermal conductivity, dielectric displacement,

magnetic induction and diffusion all have the same mathematical

structure. Therefore one only needs to study one of these and then

generalize the results to all cases. We choose electric conductivity

for convenience. The bulk effective conductivity, denoted by Z, is in

general a mnction of both the conductivity and geometric distribution

of the constituent phases. It can be written as

<3) = <oE> = zeFf<E> (1)

where (J) and (E) are macroscopic current and applied electric field

which can be measured experimentally. 0 denotes the average over

samples with the same constituents and statistical geometric

distributions. In a continuum conductor-insulator composite system,

when the fraction of conductor is below a certain threshold, no current



is able to flow across the system. This threshold can be well described

by a continuum percolation theory‘o. Unlike the lattice percolation

11,12

 

problem , there is no underlying lattice in continuum percolation

problem. In the case of the conductor-insulator disk continuum percola—

tion problem, one can imagine that on an uniform background of

conducting matrix (with finite conductivity 00) identical circular holes

are punched out randomly (overlaps are allowed). As more and more holes
 

are punched out, the system will not carry any current below a critical

threshold (called percolation threshold) even if a voltage is applied.
 

Although there is no underlying lattice in continuum percolation problem

concepts such as percolation threshold, correlation length and cluster

size etc. are still similar to those of lattice percolation13. The con-

ductivity vanishes at percolation threshold according to an exponent

depending on the dimensionality of the problem”. Of course the deter-

mination of the percolation threshold is more difficult in continuum

percolation problems than in lattice percolation especially when the ob-

jects are irregular. As a matter of fact, the continuum percolation

thresholds even for many regular objects were still unknown. Prior to

this work the percolation thresholds are known only for circles and

parallel ellipses in 2015. In Part I, we consider the continuum per-

colation of identical random elliptical holes with various aspect ratios

ranging from disk-like objects to needle-like ones. We obtain the per-

colation threshold from computer simulations. Then we develop a set of

semi-phenomenological interpolation formulas for overall bulk behaviors

for composite systems consisting of random identical elliptical holes.



The interpolation formulas are based on the percolation threshold and

the single defect effective medium theory which is exact in the low con-

centration limit.

The transport properties such as electric conductivity, thermal

conductivity, dielectric constant, magnetic permeability and diffusion

coefficient are scalar quantities. Materials also possess elastic

properties. Elastic constants, however, are fourth rank tensors and

therefore elastic composite systems in general are more complicated and

difficult to treat. Due to the nature of the problems we only consider

solids with covalent chemical bondings. In studying elastic properties,

chemical bonds can be thought of as springs with certain elastic energy

potentials depending on the nature of the problems and the atoms serve

as nodes linking up the springs. de Gennes and Stauffer were the

first16 to study the sol + gel phase transition defined below using the

site elastic percolation model on a lattice. In the process of the sol

¢ gel phase transition some monomer molecules are initially dissolved in

a liquid solution. As the chemical reactions continue, monomers form

finite polymer molecules (sol molecules) through covalent chemical

bondings. In the sol phase the sol molecules (finite molecules) are

separated by liquid which does not resist any shear deformation, so that

the system in sol phase has zero shear modulus. As the sol molecules

become larger and larger, a micromolecule crossing the whole system (gel

molecule) will eventually appear. Because the gel molecule can resist

the shear defamation, the shear modulus for the system is no longer



zero. Of course the shear modulus will increase as more and more cross

links in gel molecule are built up. The following process

Na SiO2 3 + 3H20 . 2NaOH + HuSiO
u

is an example of above mentioned sol + gel processm. The molecules of

”1181011 are monomers and will stick together to form sol molecules and

eventually gel molecule through covalent chemical bondings. By using an

idealized elastic percolation model, de Gennes and Stauffer were able to

capture the major features of the above sol + gel phase transition 16.

For example, adding sites and connecting springs correspond to sticking

together sol molecules; the percolation threshold corresponds to the

sol+gel transition point; elastic shear moduli vanishes below percola-

tion threshold and sol + gel transition point etc. Other elastic

percolation models can also be used to study the elastic behavior of

compositional chalcogenide glass such as Se

x and y17.

1-x-yASxGey as a function of

While the model proposed by de Gennes (called isotropic force

Mel) can be used to explain the sol + gel phase transition, it also

serves as a primary model among various elastic percolation models. de

Gennes pointed out that the elastic percolation problem of this model is

identical to the conductivity percolation problem which had been studied

“’12. This is reflected by the fact16 that the twoin great detail

problems can be mapped into each other and therefore (a) the percolation

thresholds of elastic and conductivity percolation problems are the



same; (b) the critical exponents describing the vanishing bulk moduli

and conductivity near percolation thresholds are identical. Feng and

Sen18 proposed the central force model and pointed out that the elastic

percolation described by central force model is different from that of

isotropic force model. In fact they belong to different class of the

problems18’19. For example, in two dimensions the percolation

thresholds, according to Thorpe's constraint counting methodzo, are pc =

g for isotropic force model and pcen = 121 for central force model. Here

2 is the number of nearest neighbors of a site. In the above two

models, the elastic energies are expressed in quadratic forms of small

displacements. Tang and Thorpe recently” introduced a rotationally

invariant stretched spring model which leads to a more natural way of
 

expressing the elastic energy for Hooke springs. It turns out that the

isotropic force model and the central force model are the two extreme

limits of the stretched spring model. Tang and Thorpe pointed out that,

by continuously changing a parameter, the stretched spring model can

serve as a bridging model between the isotropic force model and central

force model. In general there is a lot of stress associated with

stretched or compressed springs in this model. Most computer simula-

tions have been done on triangular lattice in the stretched region where

initially every spring is stretched. In second part of this thesis we

study the elastic percolation of stretched spring model on honeycomb
 

lattice. The motivation of this study is as follows.

17 20
Both the constraint counting method and effective medium theory

predict that the percolation threshold for the central force model on
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honeycomb lattice is pcen= 13‘. This result is unphysical because p must

always equal or less than one. This tells us that the central force

model on a honeycomb lattice is not stable. One may find that the shear

nndulus is zero for the honeycomb lattice with the central forces.

There is no such instability on the triangular lattice. Therefore, by

studying the honeycomb lattice with the stretched spring model, we ex-

pect to see some new phenomena associated with the instability not

observed on the triangular lattice. Indeed we have found that the usual

second order rigid » floppy phase transition becomes a first order phase

transition above a tricritical point. We also want to determine the

percolation threshold for the stretched spring model in the central

force limit.

The properties we have just discussed above are the static

properties of the disordered systems. It is also very interesting to

study the dynamic properties of the disordered systems particularly in

the low frequency (or energy) limits. The quantity that concerns us

here is the density of states of vibrational excitations which gives the

number of excitational modes per unit frequency interval. In a

homogeneous system, in the very long wavelength or low frequency limit,

the density of states denoted by g(E) has the Debye f'orm22

g(m) dw ~ to do) (2)



where m is the frequency of the excitation modes and d is the dimen-

tionality of the problem. The simplest way to obtain the density of

states g(m) is to calculate the excitational dispersion relation (phonon

dispersion relation) on a perfect crystal lattice and consequently ob-

tain g(m). In the long wavelength limit, i.e., the wavelength of

excitation is much larger than the lattice spacing, the lattice is

regarded as a homogeneous continuum and (2) is obtainedzz. One can ask

the question of how the density of states changes when disorder is

introduced. A good review article concerning the general aspects of

this question is given by Elliott et al.23 Here we only discuss the low

frequency limit. From one's physical intuition, it can be expected that

when the wavelength of excitation is comparable to the length scale on

which the system is disordered the density of states should have dif-

ferent form than (2) because the system is no longer homogeneous. On

the other hand, however, (2) should still be observed in the very long

wavelenLth limit because then even disordered systems are homogeneous .

Alexander et al.2u pointed out that in dilute disordered system (or in-

homogeneous system) (i) the density of states should have the following

form

5-1

g(w)dm ~ w dw (3)

where a is called the spectral dimensionality which is different from d

for the homogeneous case; (ii) the density of states has a cross-over



10

from the homogeneous region to the inhomogeneous region at frequency

woo; and (iii) 8 is an universal quantity for d greater than two. While

it is still controversial whether the results should be applied to some

29
real amorphous systems at low temperature , there have been con-

siderable theoretical studiesz‘j"?8 concerning the spectral

dimensionality d.

The studies are done on fractal systemszS-za. A random fractal

network is inhomogeneous on a length scale less than a certain length

and homogeneous at a scale larger than the length. Therefore it is an

ideal system to observe the cross-over30. Of course there are many ran-

dom fractal networks". The fractal network chosen in this thesis, as

well as in many other studies, is a percolation network. The length

scale on which the cross-over happens is now simply the percolation cor-

relatitn1.length. Many other methods can also be used to obtain a. The

31 and the random walker method32 are the onestransfer matrix method

used most frequently. It should be pointed out that, when considering

the density of states, the random walker (RW) method is an indirect one

to obtain 21'. In dilute systems, the RW method gives results as good as

any other method. But this method is not useful for the model33 dis-

cussed in this thesis. In part III of this thesis, we study the low

frequency vibrational density of states of a superconducting-normal

networks. In this model the density of states, in the low frequency

limit, has the same form as (3) but with a different spectral dimen-

tionality a due to the different scaling relations. These scaling

relations are supported by the computer simulations.
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I Introduction

The universal behaviour of the critical exponents that describe

transport quantities such as electrical conductivity, thermal conduc-

tivity, the diffusion constant and elastic moduli of a composite system

near the percolation threshold can be understood by continuum percola-

tion theory.1 Experimental results agree well with the theoretical

predictions of such quantities.2 In designing composite materials it is

more important to know the overall behaviour of the properties of these
 

materials which are governed by non—universal quantities away from the

critical region. The location of the critical point is also non—

universal. When the concentration of one of the components (for

simplicity, we will consider only two component composite systems) is

extremely low, the behaviour of quantities like the electrical conduc-

tance can be adequately described by the Clausius-Mossotti equation.3

Inbetween these two extremes, an exact microscopic theory or detailed

computer modeling of the transport properties would be very difficult

and neither is currently available. Some progress has been made

recently in studying two elliptical holes in a homogeneous medium."

However, even here there are still unresolved problems associated with

overlapping inclusions that have prevented a useful generalisation of

the Clausius-Mosotti equations. Computer simulations have also not been

possible because even the largest available machines cannot store enough

information to meaningfully discretise such continuum systems. Thus a

major reasearch tool, that has led to so much of our understanding of
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the response of discrete lattice systemss, has not been available or ex-

ploited yet in continuum systems.

The purpose of this paper is to develop a semi-phenomenological

description of the behaviour of the transport properties of these

systems. Many effective medium theories (EMT) have been developed3'6'11

but are of dubious validity away from the dilute limit, where all these

theories agree. In order to ascertain which of these theories are good

for all concentrations, we have located the critical concentration of

ellipses at percolation. These results are new except for the special

case of circles and provide a most stringent test of effective medium

theories. We find that there are E reasonable EMT for electrical

conductance; all fail to predict the correct critical concentration for

circles. On the other hand, we find one such existing theory to be

clearly superior and adequate for elastic inclusions. This is the asym—

metric reinforced model (also called SCA-A, reinforced problem in

7).section II B of Thorpe and Sen This was originally derived for cir-

cular inclusions by Hill, Budiansky, Wu and Berryman 8‘10 using

different self-consistant methods. In the circular limit symmetric and

asymmetric theories are identical. Those results were generalised by

Thorpe and Sen 7 to ellipses for which symmetric and asynmetric theories

are no longer identical. Note however that this theory applies to the

case when the circular inclusions are infinitely hard so that the elas-

tic compliance and not the elastic modulus vanishes at the critical

concentration. We would expect that this effective medium theory should

also be superior for mixtures where the elliptical inclusions are hard.
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The SCA-A for 92.135. does not give a good value for the critical

concentration.

The interpolation formula we develop incorporates the behaviour at:

the two extremes (i.e. low concentrations and near the percolation

threshold) for a system containing randomly distributed insulating el-

liptical laminae (i.e. holes) embedded in the uniform background of a

conducting matrix.

The layout of this paper is at follows. In section II we discuss

the geometric aspects of continuum percolation for a system containing

random elliptical laminae in 20 and spheroids in 3D and in section III

we present our computer simulations of the percolation thresholds in 20

and compare with the results of previous work. In section IV we use our

results to critique effective medium theories by examining their predic-

tions for the percolation concentrations. In section V an interpolation

formula for the electrical conductance is developed and in section VI a

comparison is made between the effective conductivity predicted from our

interpolation formulae and that of experiments.

II Continuum Percolation

(1) Continuum Percolation of Elliptical Laminea in 2D.

In the continuum percolation problem, as well as in percolation on

a lattice, an important quantity to describe the onset of percolation is

12 13
the percolation threshold pc. There exist extensive studies in the

literature of pc for percolation on various lattices, where pc is the
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fraction of bonds or sites remaining, depending on the type of percola-

tion being studied. In the continuum percolation problem, pc is defined

to be the fractional area occupied by one phase which, in our case is
 

the area remaining after the elliptical holes are removed. Fig.1.1

shows an example of the system under study and the area covered by el-

lipses has fractional area 1 - p (at the percolation threshold p = pc).

Imagine that a constant voltage is applied across a conducting sheet and

randomly oriented elliptical holes with random centers are punched out.

As more and more material is removed, electric current flow through the

sheet is restricted and vanishes at pc. We are interested in how pc

changes as the geometry (i.e. aspect ratio) of one phase changes”’15 or

more presicely how pc changes as the inclusions change from circles to

needles.
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We use the aspect ratio b/a to describe the asymmetry of the ellipse

where a and b (with a > b) are the major and minor semi-axes

respectively. Note that the eccentricity of the ellipse is given by

e = [ 1—(h/a)2 11/2.

In the following discussion, identical, but randomly centered holes

each with area A are removed from a two dimensional L x L sheet. At

hole concentration n per unit area, and remainipg area fraction p, if we

increase the hole density, then the area that is still available to be

removed is pL2. Therefore the additional area removed by changing the
 

hole density from n to n + dn is pLzAdn. On the other hand, the area

remaining is reduced to pL2-(p+dp)L2, so

pL2-(p+dp)L2= pL2Adn

i.e. dp/p -Adn

so that p exp(-An) (1)

where we note that p = 1, when n=0 and p = 0 when n = CD. This formula

has been used previously for circles16’17

sufficient randomness is present.18 This is because the repeated random

but is true for all shapes if

placement of an additional object or hole serves as a measure of the

remaining area. We are of course always thinking of the thermodynamic

limit when the system size is very large. Eq. (1) can be generalized to

three dimensions where A is replaced by the volume of each individal
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hole and n is the hole density per unit volume (this can be visualized

as Swiss Cheese). In the two dimensional case we are studying, A=11ab

and at the percolation threshold nznc, therefore

p0: exp(-nabnc) (2)

Eq. (2) allows an immediate determination of the percolation threshold

pc for a given a and b once no is known or vice versa. This equation is

very convenient to use in practice as it only involves countin ; no area

evaluation is involved. For circles we find from our simulations that

p0: exp(-na2nc) = 0.33 t 0.02 (3)

where a is circle radius and ne is density of circles per unit area at

percolation. We have given generous error bars on (3). Our result (3)

19 We also notice that a

19

agrees well with other results for circles.

carefu1 finite size scaling study gives better results, but this would

need huge amounts of computer time if it was to be done for all aspect

ratios. Our purpose here is to look at the general trend of how pc

changes with b/a. The percolation threshold for ellipses aligned in one

direction but with random centers is the same as that for random

circles. The reason is as follows. A conformal transformation can al-

ways be performed in one direction on the aligned elliptical system in

order to obtain the random circular case. Obviously the change in the

area A, due to the conformal transformation, exactly cancels the change
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in the ellipse density per unit area. Therefore there is no change in

p=exp(-An) and the percolation threshold is the same as that for the

circular case. This is checked by computer simulations in this work.

In 2D, the background ceases to percolate when the inclusions

percolate. This is because there is no way aggpgg the infinite cluster.

Therefore, there is a single percolation concentration. In higher

dimensions, this is obviously not the case and there are two separate

percolation concentrations for the inclusions and the backgrounds.

In continuum percolation involving identical objects, it is useful

to introduce the average excluded area denoted as (aex>.20’21 For given
 

relative orientations of two identical objects the excluded area is
 

defined as the area that if the center of one is outside it, the two ob-

jects have no overlap at all. Average means over all allowed relative

orientations. The excluded area at percolation is defined as

(A >=n <a > (H)
ex C ex

Although the mean coordination number and the critical area or volume

fraction are essentially invariant22 in bond and site lattice percola-

tion respectively, (Au) is not quite such a quasi-universal invariant

12

 

quantity and it has a small range. Our results will be discussed in

detail in the next section, but we see from Table 1 that for randomly

oriented ellipses,

3.A < (A > < “.5 (5a)
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For ellipses that can only lie in two directions, we see from Table 2

that,

2.8 < <Ae > < 11.11 (5h)

Taking account of the error bars noted in the table captions, both these

sets of results for (Aex) are probably monotonic in the aspect ratio.

The excluded area of two identical ellipses can be defined as

(aex) = Anabk (6)

where k is a geometric factor that is chosen as above so that k = 1 for

circles. For randomly centered and oriented ellipses,23

k: 1/2 + s2/812ao (7)

where s is the perimeter of an ellipse (this involves an elliptical 11r-

tegral which can be evaluated numerically). For randomly centered

ellipses that can only lie in the two principal directions the k factor

is different from (7) and not available in a closed form for general

b/a. For parallel ellipses k = 1 but must be computed (using for ex-

ample the contact function described in the next section) for ellipses

at right angles. These two results are then averaged. The values of k

for both these cases have been calculated and are given in Tables 1 and

2 for various aspect ratios.
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From Eqs. (2), (4) and (6), we notice that

p0: exp(- (Aex>/4k) (8)

16-18 In
which reduces to p0: exp(- (Aex>/4) for circles when k = 1.

the needle limit where b/a is small, and the ellipses are randomly

oriented, using (7) we have s = 4a and k : 2a/(12b) so that from Eq. (8)

pc = exp[-3.4/(4k)] = exp(-O.42512b/a)

z 1 - 4.2 b/a (9)

where we have used (Aex> z 3.4 from Table 1. We note that in this

limit, the result (9) is independent of the precise shape of the

needles. For example they can be elliptical or rectangular. As b/a be-

comes very small, only a few needles are needed to cross the sample and

these have essentially no area so that pc + 1 as given by (1). A

similar limit is obtained for needles that can only point horizontam

or vertically for which k = a/(21b). Using Eq. (8), with (Aex) ~ 2.8

from Table 2, we find that

p0 = exp[-2.8/(4k)] = exp(-1.4nb/a)

z 1 - 4.4 b/a (10)
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which we notice is close to the result for randomly oriented ellipses

given 1J1 (9). Indeed because the values of <Aex> are only known

numerically; the error bars are sufficiently large that Eqs. (9) and

(10) could be identical.

(2) Continuum Percolation of Spheriods in 3D

Various concepts, just described above, for two dimensional per-

colation can be easily generalized to three dimensional case. As we

mentioned earlier, in 2D the background ceases to percolate when the

inclusions percolate. This is because there is no way around the in-

finite cluster and therefore there is a single percolation

concentration. In higher dimensions (e.g. three dimensions), this is

obviously not the case and there are two separate percolation concentra-

tions for the inclusions and the background. For percolation involving

identical insulating spheres the percolation thresholds are p0 = .31 for

inclusions” to percolate and pa = .968 for background cease to

 

percolate27. Here, of course, pc refers to volume fraction. It is also

known that the excluded volume (Vex) in 3D is bounded by 12

0.7 < <v > < 2.8 (So)
.. 33.

where 2.8 refers to spherical inclusions and 0.7 to very long thin rods.
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Now we consider the following two cases of inclusion percolation

for spheroids of revolution. [see Fig. 1.2 ]

Prolate (a > b, b=c)

Oblate (a > b, a=c)

 

 

 

2b

(b)

,Fig. 1.2 (a) A prolate with a>b and b=c; (b) A oblate with a7b and a=c.
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We can also make predictions on the dependence of the percolation

threshold on b/a for small b/a by using the fact that (Vex) = nc<vex)

approaches a constant as b/a +0 shown in Eq. (5c).

In the prolate case, we assume (Vex) o V1'( constant) as b/a + 0.

By the same definition of Eq. (6)

(vex) e ggaabZt (8a)

and

~ 3
(Vex) (23) . (8b)

In EXL. (8b) the fact that (vex) is proportional to (2a)3 is the result

of averaging over various positions of two very long prolates and it can

be easily seen that the major contribution is from a sphere with radius

2a. So k ~ (a/b)2. Using Eq. (8) we have

po = exp(-V,'/4k) (8c)

~ exp(-V1(b/a)2)

2

~ 1.0 - V1(b/a) (93)

An appropriate consatnt is absorbed into V1 in Eq. (9a).

In the oblate case, we can also assume that (Vex) + V ' (constant)
2

as b/a o O. In this case, however, (vex) = ggnazbk, and (Vex) ~ (2a)3.

So k ~ (a/b). Using Eq. (8) we have
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p0 = exp(-V2'/4k) (8d)

=exp(-V2a/b)

~1.0 - V2 (b/a) (9b)

Again we notice that an appropriate constant is absorbed into V in Eq.
2

(9b).

From Eq. (9a) and (9b) we can see that the dependence of pc on b/a

are different for prolate case and oblate case in the small b/a limit.

In the above arguments, constants V and V2 may be determined mathemati-
1

cally or by computer simulations. We perform computer simulations to

check various predictions in this section for the two dimensional case.

The 3D case can also be checked after modifing the 2D programs.
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III Computer simulations and results

In our 2D computer simulations, the whole system has periodic

boundary conditions in both the x and y directions. For each fixed

aspect ratio b/a about 2000 elliptical laminae are randomly distributed.

The relative orientations are also random. An example of the system un-

der study is shown in Fig. 1.1. As b/a becomes smaller fewer ellipses,

for a given system size, are needed at percolation. To insure consis-

tent statistics, we expanded the system size, while maintaining about

the same number (2000) of ellipses. We determined nc by keeping a

record of whether there are clusters formed by overlaping elliptical

laminae which cross the lower and upper boundaries at the same place

(because of the periodic boundary condition).

In the course of recording clusters we used a very efficient algo-

rithm involving a contact functionzu to determine whether two ellipses
 

with given centers and relative orientation overlap or not. For two

identical ellipses one centered at the origin and one centered at

(x0,y0) with relative orientation 9, the contact function 111 is defined

by

where

g1: 3+(a/b - b/a)23in26 - (xo/a)2- (yo/b)2 (12)

32: 3+(a/b - b/a)2sin26 - (xocose+yosin6)2/a2



3O

2
-(y0cosO-x sinO)2/b (13)

0

If m is negative, the two ellipses overlap. If u is positive, and both

g1 and g2 are positive, the two ellipses also overlap; otherwise the two

ellipses do pp; overlap. If m = O the two ellipses just touch. A

similar contact function for 3D case can also be found in ref 24. We

only test those ellipses whose centers lie within 2a of each other. We

find the average number of ellipses required for the system to percolate

in both the x and y directions if (as invariably happens) one direction

percolates before the other. Then we average over 25 to 30 samples for

a fixed aspect ratio b/a and use Eq.(2) to evaluate pc. The errors are

due to the statistical averaging over the pc which have a roughly

Gaussian distribution. We repeat the same procedure for different

aspect ratios b/a that range from 1/400 up to 1.0.

In Fig. 1.3 the percolation threshold pc is plotted against the

aspect ratio b/a. The results for both randomly oriented ellipses and

ellipses that are aligned along two perpendicular directions are shown.

It can be seen that the two sets of results are indistingpishable within

our limits of accuracy.

We have also evaluated (Aex> using nc found from the computer

simulation and Eqs. (4) and (6) for both randomly oriented and two

direction oriented ellipses. The error bar in our computer simulation

in determining "c is about 1 51 ; therefore the error bar in Mex) is

about t 0.2. Tables 1 and 2 list pc, n k, and (Aex> for various
0’
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aspect ratios b/a for the two cases and they show that in both cases

<A6x> decreases very slowly as b/a decreases.

In the following discussion, we only consider quantities for the

randomly oriented case. The case of only two orientations would give

essentially indistinguishable results. Note that although nc and hence

pc are virtually indistinguishable for a fixed aspect ratio b/a in the

two cases, the quantities k and (Aex) are different as can be seen by

comparing tables 1 and 2.

In Fig. 1.4 we plot f =11abnc and f = 1 -f = 1 - exp(tabnc). The
1 2

quantity f is the total area in the ellipses for a sample of unit area,
1

not allowing for the overlap effects, whereas f2 is less than f1 be—

cause overlap effects are included.
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Fig. 1.3 Percolation threshold pc for various aspect ratios b/a.

Squares are for randomly oriented ellipses while triangles are for ver-

tically and horizontally oriented ellipses. Every point is averaged over

25 - 30 samples each containing ~ 2000 ellipses. The solid curve is the

interpolation formula (28) for pc. The dashed curve is pl,1niich gives

the initial slope, from Eq. (22).
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Table 1.1

bl‘ pc nc k (“ex

1.0000 0.33 2.8 1.000 11.11

0.9000 . 0.33 2.8 1.002 11.11

0.8000 0.33 2.8 1.009 11.11

0.1000 0.311 2.8 1.021 1 5

0.6000 0.35 2.1 1.050 11.5

0.5000 0.31 2.5 1.093 11.3

0.1000 0.111 . 2.3 1.111 11.2

0.3333 0.1111 2.10 1.2511 11.1

0.2500 0.50 1.16 1.1132 11.0

0.2000 0.511 1.51 1.618 11.0

0.1500 0.62 1.22 1.931 11.0

0.1000 0.10 0.90 2.592 3.1

0.0661 0.18 0.62 3.589 3.1

0.0500 0.83 0.119 g 1.592 3.5

0.0100 0.86 0.110 5.599 3.5

0.0333 0.88 0.311 6.609 3.5

0.0250 0.91 0.26 8.629 3.5

0.0125 0.919 0.133 16.111 3.5

0.0050 0.919 0.0511 111.06 3.5

0.0025 0.990 0.021 81.12 3.11

 

Table 1.1 Values of pc, no, k, and (Rex) are listed for randomly

oriented ellipses for various aspect ratios b/a. The value of k is ob-

tained by evaluating the perimeter s of the ellipse from an elliptic

integral and using the formula in the text. The value or 11C is obtained

from the simulation with the area of the ellipses fixed at I/8 and then

(hex) is obtained from formulas (4) and (6). The error bar in (Rex) is

t O .2.
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Table 1.2

b/a pc nc k (Au

1.0000 0.33 2.8 1.000 9.»

0.9000 0.33 _ 2.8 1.002 11.11

08mm , 033 28 um» mu

0.1000 0.39 2.1 1.029 9.3

0.6000' 0.36 2.6 1.049 4.3

0.5000 0.37 2.5 1.091 1.3

0.!000 0.91 2.3 1.162 9.2

0.3333 0.45 2.06 1.237 4.0

0.2500 0.50 1.80 1.391 3.9

0.2000 0.51 1.59 1.598 3.9

0.1500 0.62 1.21 1.812 3.5

0.1000 0.68 0.97 2.342 3.6

0.0667 0.78 0.65 3.137 3.2

0.0500 0.82 0.51 3.933 3.2

0.0100 0.85 0.42 1.129 3.1

0.0333 0.87 0.37 5.525 3.2

0.0250 0.90 0.28 1.111 3.1

0.0125 0.991 0.115 13.18 3.1

0.0050 0.916 0.061 32.58 3.1

0.0025 0.989 ' 0.028 64.41 2.8

 

Table 1.2 Values of pc, no, 11, and (Ae > are listed for ellipses with
x

two allowed orientations. The values of k is obtain by evaluating the‘

excluded area (aex) numerically and then using Eq. (6). The values of

neare from simulation with the area of the ellipses fixed at I/8 and

(hex) are obtained by using Eq. (9). The error bar in <Ae‘> is t 0.2.
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Fig. 1.4 The quantities f2: 1 - exp(uabnc) and f1: 11abnc are plotted

against the aspect ratio b/a for the case of randomly oriented ellipses.

Crosses are for f2 and triangles are for f1.
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It can be seen that for small b/a these two quantities are the same as

the overlap area for needles is negligibly small. In the circle limit f1

= 1.09 1 0.02; that is the area in the circles at percolation, before

they are thrown down, is greater than unity. Note that if f2 is ex-

1 and the

corrections for r body overlap are given by the coefficient of the n:

panded in powers of the density nc, the first term is f

term.

IV Critique of Effective Medium Theories
 

There are extensive discussions in the literature on EMT for

3 and elastic moduli11dielectric constants of composite materials with

circular or spherical inclusions. A strong assumption is always re-

quired, in deriving these approximations, that the inclusion

concentration is sufficiently low that the overlap of inclusions can be

neglected. However these approximations are often used over the whole

concentration range where they are of dubious validity. In order to

judge how good various EMT results are when applied to completely perme-

able objects, we see how close their predictions of pc are compared to

our exact (numerical) results. Physical properties, like the conduc-

tivity and all elastic moduli, should vanish at pc when holes are

punched in the medium. Similarly the resistance and all the elastic

compliances should vanish when infinitely hard inclusions are present in

the medium. Infinitely hard means superconducting in the electrical

case and infinitely rigid or undeformable in the elastic case. All

these pc should be the same as it is a geometrical property of the
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material. However different EMT give very different estimates for pc.

These various EMT predictions for pc can be used as a figure of merit,

when compared to our exact results, to judge how good the EMT is away

from the dilute limit. In what follows we will examine two versions of

EMT for each physical property. Depending on whether we treat the in-

clusion and background symmetrically or asynmetrically, two versions

3
(i.e. synmetric or asymetric) of EMT can be derived. Thus we have _8_

cases to consider, electrical or elastic, symmetric or asymmetric with

inclusions that are either holes (Swiss cheese model) or hard inclusions

(reinforced model). Sen, Thorpe and Milton6 have summarised these

results for the electrical case. These results can also be obtained

from ref. 3. The critical pc for the dilute (Swiss cheese) case are

s
pc-1/2 (14)

p::(82+b2)/(a+b)2 (15)

where the superscripts s and a refer to the symmetric and asymmetric

cases respectively. The results for the reinforced case are identical

to (14) and (15).

7
Similar results have been obtained by Thorpe and Sen for the elas-

tic case. For the dilute (Swiss cheese) model, all the elastic moduli

vanish at

2 1/2 -1

0: =2 1 1 + [2(a+b)2/(82+ b )1 1 (16)
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pg: [1 + ab/(a2+b2) 1" (17)

For the reinforced model, all the elastic compliances vanish at

pg: 1 - 2 { 1 + [2(a+b)2/ (a2+b2)]1/2}-1 (18)

(1-p2)-1:2{1+(1-0)(a+b)2/[2ab(1+0)])/(3-0) (19a)

(1—p:)“=[(a+h)2/[at(3—o)1 + 1/[1- ab(1+o)/(a+b)2]}/2 (19b)

where p: is f0und from Eqs. (19a) and (19b) by eliminating 0, the value

of Poisson's ratio at the critical point. If these were exact theories,

all the results (14) - (19) would be identical. Note that there is no

difference between the symmetric and asymmetric cases in the circle

limit for all these results. The above results are shown in Fig. 1.5

as a function of the aspect ratio and we can see that only curve 6

which is the result (19) is reasonable. Indeed all results except for

the reinf0rced elastic model fail to get even the circle limit correct.

These two approximations for the reinforced elastic model [ Eqs. (18)

and (19)] give pc = 1/3 which is the correct result for circles within

numerical error as can be seen from Tables 1 and 2. These results show

that EMT is inademiate, when strong disorder is present, except in the

one special case. In other cases we believe a better procedure is to

develop interpolation formulas.
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Fig. 1.5 Percolation thresholds pc predicted from various effective

medium theories and our computer simulations ownn Fig.1.3. The curves

are marked 1 for Eqn. (14), 2 for Eqn. (15), 3 for Eqn. (16), 4 for Eqn.

(17), 5 Eqn. (18) and 6 for Eqn. (19). The squares indicate the exact

percolation thresholds from computer simulations taken from the results

for randomly oriented ellipses in Fig. 1.3.
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We note that Eqs. (19) could be used as a useful parametric ap-

proximation to pc when required. It gives p0 = 1/3 (compared with 0.33

in Tables 1 and 2) in the circle limit and

pc 5 1 - 16/3 (b/a) (20)

in the needle limit. This should be compared with Eqs. (9) and (10)

V Interpolation Formulae

(1) Semi-phenomenological Formulation

As we mentioned in introduction, the Clausius—Mossotti equation for

the conductance of a two phase system is exact when one phase has a very

low concentration. All attempts to extend these equations beyond this

region are rather uncontrolled and many versions exist in the

literature. As we discussed in the previous section, all are unsatis—

factory for the electrical case. We therefore develop a simple

interpolation formula that gets all the known limits for the dilute

(Swiss cheese) model correct. We believe that this should be of con-

siderable utilitarian use. Similar fermulas can be written down for all

other cases.

For a M number of holes in a material with conductance 20 the

effective conductance E is given by

Z = 20[1 - (i-p)/(1-pl)] (21)
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where

DI = (a2 + b2)/(a + b)2 (22)

The quantity pI is where the initial slope for a small number of

3,6
defects would eventually cross the E = 0 axis when extrapolated and

 

is a convenient way to express the initial slope. The relation II‘~ (p-

pc)t holds only in the small critical region around pc. Our

interpolation formula is designed to link these two limits by assuming

the conductivity has the following form

2 = 20(1.0 + co + 8oz)A (23)

where c = 1 - p and a, B and l are constants to be determined from the

following,

E~(p-p)t asp+p (24)
c c

E = £0[1 - c/(1 - pl) + O(c2)} as c + 0 (25)

and to is the conductivity of the sample without any inclusions (c = 0).

Of course one would like to include higher order terms in c in Eq. (23).

but since we have no more information other than (24) and (25) it is not

possible to do better. After some simple algebra we find,

2/20= |1 - c/[t(1-p1)] - 02[t(1-p1) — (1—pc)]/[t(1-pl)(1-pc)2]}t (26)
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It is rather inconvenient to use the expressions (19) for pc and so

we make a simpler approximation (27) for pc that is correct in the two

limits b/a : 1, when p0 = 1/3 and b/a small, when pc z 1 - 9/2(b/a)

pc : (1 + 4y)/(19 + 4y) (27)

where y = b/a + a/b is symmetric in a H b. The result (27) is vir-

tually indistinguishable from the computer simulations in Fig. 1.3 and

is actually superior to (19) as can be seen by comparing Fig. 1.3 and

Fig. 1.5. Of course there is no basis for (27) except that it is cor-

rect in the two limits and fits the simulation data for all aspect

ratios.

By taking t = 1.3,1 and using Eq. (22) for p1: y/(2 + y) and Eq.

(27) for pc, we can determine the effective conductance E,

(z/xo)‘/t = 1 - c(2+y)/(2t) + c2(19 + 4y)[9(2+y)

-(19 + 4y)t]/(324t) (28)

which we recommend for use in practice (with t = 1.3) as it reproduces

all the known results (i.e. the value of 2 for the pure system, with p =

1; the initial slope for small 1 - p; the value of p = pc where 2

vanishes with critical exponent t) to within numerical accuracy. Note

that the term in c2 is always small and positive. This is because pI is

always larger than pc for all aspect ratios (1 i pI/pc .<_ 1.5) as can be
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seen from Fig. 1.5. In Fig. 1.6, 2/20 is plotted against p = 1 - c

for various aspect ratios b/a and shown as the solid lines. Also in

Fig. 1.6, Z/Eois plotted against 0 but with t = 1.0 for the same aspect

ratios and shown as the dashed lines. The two plots are very similar

and only differ a little in the critical region. Clearly the EMT

described in the previous section would give very different results as

the pc are so different.

Because of the equivalence of the problems, the interpolation for-

mula (28) can be used for, the electrical conductivity of sheets

containing holes, the thermal conductivity of sheets containing holes or

the dielectric constant of a medium with holes. In all cases, p = 1 - c

is the fraction of material remaining after the holes have been punched

and y = b/a + a/b where b/a is the ratio of the minor to major axis of

the ellipses.

If the inclusions are superconducting, rather than insulating (i.e.

holes) then the result (28) still holds if we replace 13./II on the left
0

hand side with R/RO where R is the resistance of the sample and lb is

the resistance when there are no inclusions (c = 0). These two problems

25,26
map on to one another and are exactly equivalent. Note that pI and

pe given in Eqs. (22) and (27) and the critical exponents are the same.1
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Fig. 1.6 Electrical conductance from the interpolation formula (28) for

various aspect ratios as indicated. The solid curves are for t - 1.3

and the dashed curves are for t = 1.0.
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Finally we note that the interpolation formula (28) has two inter-

esting limiting forms. Using the limiting forms for pI and pc, we find

that for circles,

(2/20)‘/t : 1 - 2o/t + 302(4 - 3t)/(4t) (29)

and for needles,

1/t 2
(2/20) = 1 - nflLZ/(8t) + n 02Lu(9 - 4t)/(1296t) (30)

where we have used Eq. (1) with A = 11ab and put c = 1 - p = 1 - exp(-

11abn) 5: n11ab and the length of the needles is L = 2a. The result (30)

is independant of the width b of the needles as would be expected. Here

n is the number of inclusions per unit area. A generalization of above

interpolation formulae to 3D case is straight forward. One only needs

to know pI (can be easily found from one defect problem), pc (from com-

puter simulations), and t or s (superconducting diverging exponent near

pc). However p1, pc, and l (i.e. t or s) in the interpolation formulae

for conductor—insulator (c-i) system and superconductor-conductor (s-c)

system are different now because there is no similar duality, which ex-

ists in 2D, exists in 30. In fact pc's for c-i and s-c systems are

0.968 and 0.31 respectively.



46

(2) Comparision with Experiments

In the previous section we have discussed the formulation of the

interpolation formulas. We think these formulas are useful in the

predictions of overall electric conductivity for practical applications.

The reason is as follows. The actual conductivity of a random composite

system, such as the one studied here, in general is a smooth monotonic

decreasing function of p. If one can develop a formula which is a

smooth nomotonic decreasing function with correct limits in the low and

critical p, then the overall behavior predicted by the formula cannot be

too far away from the real situation. In our case, as we will see

later, the agreement between interpolation formulas and experiments are

2 ’28done on therather good. There have been two recent experiments

conductor-insulator system for which our interpolation formulae have

been developed. Therefore these experiments are a direct test of how

good these interpolation formulae are in predicting the macroscopic con-

ductivity in the whole concentration range. There are no other

predictions, to our knowledge, made by any other theory fer overall con-

ductivity in the whole concentration range in conductor-insulator

systems. In the experiment of ref. 2, which we refer to as experiment

I, about 3300 circular holes were drilled on each of two steel and two

molybdenum sheets(these materials are used instead of copper or aluminum

to avoid deformation of holes during the drill). The size of the sheets

are 16cm X 16cm and the radius of the holds is 0.32cm. The thickness of

the sheets are 0.13mm, 0.25m and 0.38mm respectively. Effects due to

the thickness of samples are negligible after observing no change among
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the samples with different thickness. Also finite size effect only ex—

ists when percolation correlation length is comparable to the system

size L(in the experiment this happens when (p-Dc)/pc ~ 21). The macro-

scopic conductivity is monitored while holes are drilled. The area

fraction is estimated by using the equation

p = exp(-nna2)

which is explained in section II of this thesis. In the experiment of

ref. 28, which we refer to as experiment 11, about 650 ~ 700 circular

holes are cut from an metalized myler foil. The size of system is 10cm

X 10cm and the radius of hole is 0.4cm. Effects due to sample thickness

can be neglected. The area fraction is measured by weighing the cut

fragments on an accurate scale. Also the macroscopic conductivity is

monitored as holes are cut. The normalized conductivities from inter—

polation formula are plotted in Fig. 1.7 , using Eq. (28) in section V

for circular holds, against area fraction p. We use t=1.3 in the solid

curve and t=1.0 in the dashed curve. The squares and triangles are ex-

perimental results from experiment I and experiment 11 respectively. We

can see that apart from some fluctuation the general features of the two

sets of experimental data are very close to the two lines in a wide

range of concentrations. The data from experiment 11 have serious

deviations near the percolation threshold. Experiments near the per-

colation threshold need to be done with extreme care because of critical

and brittle features of the system. Since the percolation threshold is
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wrong in experiment 11, we attribute the deviation due to some unex-

pected failure in the experiment. We have sent our comments to authors

in ref. 28. Also we notice that number of holes in experiment 11 is

much less than that in experiment 1. While a serious deviation is ob-

served in experiment 11 near the percolation threshold the rest of data

points are not effected because the experiment is performed step by

step. The agreement between experiments and our interpolation formulae

is very encouraging and it gives us enough confidence in the interpola-

tion formulae. Therefore we believe, with confidence, our interpolation

formulae shold be very good in predicting the overall features of con-

ductivity in two phase composite systems. Experiments on continuum

percolation with randomly distributed elliptical holes are recomended

for a fUrther check.
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VI Sumary of Results

Our main result has been the numerical determination of the per-

colation concentration of randomly centered and oriented ellipses. This

has been done by using a contact function to determine if neighboring

ellipses overlap, and constructing a connectivity table. 11.13 not

necessary to measure any overlap areas to find the areas at percolation;

it is sufficient to merely 992p; the number of ellipses.

We have also determined the percolation concentration of ellipses

when the axes are contstrained to lie in only tw_o_ Cartesian directions.

The results are indistinguishable, within our numerical accuracy, from

the previous case where all orientations are allowed.

We have used these results to critique various effective medium

theories that have been developed for the electrical and elastic

responses of sheets containing elliptical inclusions. Only one of these

approximations is found to give a reasonable percolation threshold while

all the others fail to describe the electrical conductivity or elastic

properties near the critical point.

We have shown that the percolation concentration is described well

by the formula pa = (1 + 4y)/(19 + 4y) where y = b/a + a/b. Here pc is

the amount of material remaining and b/a is the aspect ratio of the

ellipses. We have also developed a simple interpolation formula for the

electrical conductance that is correct both for a few inclusions and

near percolation. The agreements between interpolation formulas and ex-

periments lead us to believe that this kind of formula is superior to

effective medium theories and may have useful practical applications.
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I Introduction

Percolation of elastic networks has been an interesting subject for

the past decade. de Gennes1 was the first to introduce the isotropic

force model for the elastic modulus of a gel. The model is defined on a

lattice and described by elastic energy

_1 _2
V - 2 <Ij>B (01 ”j) giJ (1)

where 8.13 the spring constant and u is the small displacement of site
i

i. 841::1 when a spring between site i and site j is present with

probability p and 81.1 = 0 if a spring is missing with probability 1-p.

de Gennes pointed out that the elastic percolation problem of this model

is identical to the conductivity percolation problem which has been

studied in great detail.2’3 This is reflected by the fact1 that the two

problems can be mapped into each other and therefore (i) the percolation

thresholds of the elastic and conductivity percolation problems are the

same; (ii) the critical exponents describing the vanishing bulk moduli

and conductivity near the percolation threshold are identical.

Feng and Sen“ proposed the central force model described by elastic
 

energy

_ 1 . _ + .“ 2
V - 2 <§J> a {(ui uJ) rij' giJ (2)
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A

where a is the spring constant and rij is the unit vector from site i to

site j. Feng and Sen further pointed out that the elastic percolation

described by potential (2) is different from that of (1). Again this is

reflected by the fact that the percolation thresholds and critical ex-

ponents are different for (1) and (2). In fact they belong to different

class of the problemsu’s. More specifically, in two dimensions the per-

colation thresholds, according to Thorpe's constraint counting method6,

are

for isotropic force model (3)

N
I
N

for central force model. (4)

N
I
:

cen

Here 2 is the number of nearest neighbors of a lattice. The two models

are special cases of the more general Born model7

1 = g (2 {01(81- 5J1-21J12 g,J + e (61-8,)231J } (5)
1j>

Feng and Sen also»studied the elastic percolation of Born model" and

concluded that even with a small nozero B the elastic percolation cross-

overs from the central force model to the isotropic force model. For

example, the percolation threshold pcen changes to p0 of the isotropic

force model (see Fig. 2.1).



57

 

   
 
 

1112

’1)

010L
0

47

.d/
[O

11118L /;

,3/

’/
’0

K 006*-
lo/

(1.11 = 0.1 “I;

\/§/
004) ,’/

O

x / \v - 0
.° /’

)- I

002 ’0; O;

’0’ /

’0’

0 -°"°’ J 1

oz 04 ‘ 06 06 10

Fig. 2.1 Bulk moduli vs. p for central force model (B = 0, solid line)

and Born model (8/0 = 0.1, dash line) for 20 triangular lattice. A

strong crossover is shown in latter case. Fig. is from ref. 4.
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Recently Tang and Thorpe introduced the stretched spring model8

with elastic energy

2
v : X Kuui - L ) (6)

<1j> J 0

where K is the spring constant between site i and site j. K 's have

13 1J

values of Kij = 1 with probability p and KiJ = 0 with probability 1-p.

L0 is the spring's natural length and lij is the distance between site i

and site j. Using the relation

1.=|R.-§+G.-Gl, (7)

where R1 and R1 are the equilibrium positions of site i and site j,

potential (6) can be written as

_ 1 _ 2 _ . .n

v - 2 (§J>K1J (LiJ L0) + (§J)KiJ(LiJ LO)(uiJ r11)

+ g { KiJ {(1-L0/L1J) 6112 + LO/L1J(aij.;ij121 + 0(613) . (a)

<1j>

In (8) L11 = 1R1 - R11 and uij = u1 - uJ. The higher order terms are

neglected. Comparing (8) with (1) and (2) one can see that the

isotropic fOrce model and the central force model are also special cases

of the stretched spring model at L /L1 = 0 and L /L1 = 1 . Therefore

J 0 J

continuously, the stretched spring model can serve as

0

by changing LO/LiJ
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a bridging model between the isotropic force model and the central force

model. One will also notice that the central force model and stretched

spring model described by (2) and (6) are rotationally invariant while

the isotropic force model described by (1) is not. Most computer

simulations have been done on triangular lattice in the stretched region

where O S LO/L1J

still in progress. The major conclusion of Tang and Thorpe is that the

S 1 while simulations in the compressed region are

stretched spring force model can serve as a bridging model between the

isotropic force and central force model and the percolation threshold pc

changes with L /L.
0

In this paper we study the elastic percolation of the stretched

spring model on honeycomb lattice. The motivation of this study is as

follows:

(i) In honeycomb lattice the number of nearest neighbors (z) is

three so the constraint counting method or effective medium theory6’9

will give p , which is meaningless, for the central force model.
cen= 3

However, what p = g tells us is that in the central force model the
cen

honeycomb lattice is unstable against dilution. In other words, if a

spring is removed and the network is compressed then it will collapse or

have zero elastic bulk modulus. In triangular lattice this is not the

case. Therefore by studying the honeycomb lattice we expect to see some

new phenomena associated with the instability.

(ii) From eq. (8) we notice that there are two quadratic elastic

energy terms of u.

1.1

central force components in the stretched spring model. So as LO/L -> 1

which correspond to the isotropic force and the
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a small isotropic force can help to stablize the network. In the limit,

when the strength of'isotropic force goes to zero, we should be able to

obtain the correct prediction of the percolation threshold.

(iii) A new effective medium theory must be developed to accom-

modate the phenomena associated with the instability mentioned before.

'The layout of this paper is as following. In section II we first

discuss the elasticity of stretched spring model for the perfect lattice

and then use an one defect effective medium theory to estimate the per-

colation threshold as a function of LO/Lij' In section III we present

computer simulation results on the honeycomb lattice and the explana-

tions of the anomalous behavior of the elastic moduli associated with

the instability of central force model on the honeycomb lattice. In

section IV we use Landau's phase transition theory to establish a

tricritical point observed in the computer simulations. We also develop

a new effective medium theory which addresses the behavior of the elas-

tic constants and predicts the location of the tricritical point.

11 Elasticity of Pure Honeycomb Lattice And Estimate of the Percolation

Thresholds
 

We define the stretched spring model on a perfect honeycomb lattice

with elastic energy (6) defined in section I.

V : g X K. (1. - L 2 (6)
(1]) ij ij 0)
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Here every bond of the lattice is represented by a Hook spring of

strength K and natural length L l is simply the distance between
ij 0' ij

site i and site j. As stated in section I, the elastic energy can be

written as (8) for a small external strain. In the rest of discussion

we restrict ourselves in the stretched spring region where O S LO/L S 1.

The physical meaning of each of the terms in expansion (8) are dis-

cussed in ref. 8. Here we just mention them again for reader's

convenience. The first term

(8a)

is the static elastic energy term because L is the equilibrium dis-

13

tance of lattice sites i and j and no 0 is involved. The second term

ii

in (8) is

v2 = <£1110.iJ - L0)(uiJ-rij) (80)

which is the elastic energy due to the tension of the springs because it

is linear in displacements. The third term

2 A 2}1 . .

v3 = 2 <§J> KiJ {(1-LO/L1J) 0H + LO/Lij(uijorij) (80)
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is the quadratic elastic energy term of displacements 01 This termJO

determines the elastic moduli of the system. By comparing (80) with

Born model (5) one can see that

a = Kij (1'L0/Lij) (9a)

and B = Kij(L0/Lij) (9b)

while a + B = Kij . (90)

Notice that LO/LiJ = 1 case corresponds to the central force model while

LO/Lij = 0 case to the isotropic force model. For an arbitary LOILij ,

in general, there is a lot of stress in the system due to the stretched

and compressed springs. One may also notice that the full elastic

potential (6) is rotationally invariant because it only involves the

distances between springs.

(1) Elasticity of Pure Honeycomb Lattice.

Now we first discuss the elastic moduli of model (8) without any

dilution (i.e. perfect lattice case). In this case L = L ,the lattice

ii

Spacing, and K = K. It can be found in the literature7’10

13

strain energy can always be written as

that the

(10)
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where 808 are the elements of the stress tensor and COBYT are the second

order elastic constants which are directly associated with the elastic

moduli. The quantity £08 is called the strain and defined by

E :3;- a,B=x,y

A

where ua and x8 are the components of 0 =(ux + vy) and F. In two dimen-

sions

-32 -93

Exx ' 3x ny ' 3y

-2! -3!

8xy ' 3x eyy ' 31

Therefore an uniform displacement for a Bravais lattice in two dimen-

sions can be written as

xexx + yeyx (11a)I
:

I
I

V = x6 + e . 11b

xy y yy ( )

Now let us put a small force on the frame which holds the springs

in place of the honeycomb lattice. The lattice will respond to this

small force by rearranging the lattice sites so that the elastic energy

(8) is at a minimun. The response of a Bravais lattice such as the
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square lattice or triangular lattice is a small uniform displacement ex-

pressed in (11a) and (11b). The honeycomb lattice is not a Bravais

lattice but can be regarded as a lattice composed of two interpenetrat-

ing triangular lattices which are Bravais lattices. Thus the response

on the honeycomb lattice will be two identical small uniform displace-

ments such as (11a) and (11b) on the two sublattices and an uniform

11’12 In other words the dis-relative shift of the two sublattices

placements between any two sites of lattice A and lattice B [see

Fig.2.2] can always be written as

u : xe + ye + u' (12a)

v : xe + ye + v'
(12b)

where x and y are the x and y components of the distance between two

sites. Qantities u' and v' are the relative shifts of the two sublat-

tices in x and y directions and can be determined by minimizing the

elastic energy (8).



 

'
"
\

.
1

Fig. 2.2 Honeycomb lattice is decomposed into two triangular sublat-

tices A and B. Directions of 81 and 62 are shown.
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Equation (10) can be rewritten as

C

+ S E + S E + S E + S E + __xxxx (62

0 xx xx yy yy xy xy yx yx 2 xx

C

+ C e e + -§l§l(£2 + £2 ) + C e e .
xxyy xx yy 2 xy yx xyyx xy yx

(13)

111 (13) we have also considered the symmetries of the honeycomb lattice

to reduce the number of independent elastic constants13. By minimizing

the elastic energy with respect to u' and v' one can find that [see

 

Appendix I]

c _ c _ o2 + 508 + 432 _ u - 33 K

xxxx ' 11 ’ 2/37(2B + a) I 2 - n 273

02+ 08
- - - ___fl___ K

Cxxyy ' C12 ' 2/3 (28 + a) ' 2 — n 273

C _ E _ 132+ 308 _ g<1 - g) K

xyxy ' 44 - 2/3 (28 + a) ' 2 - n 273

_ _ aB _ (1-n)(4-g) x

nyyx ‘ Cut ’ 273'728'1 a) ' 2 — n 273

and S = S = 0.

(14a)

(140)

(14c)

(14d)

(14e)
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In the second column we have used the conventional notation Cxxxx = C11,

Cxxyy = C12, nyxy = C44 and nyyx = C44' In the fourth column we have

used a = Kn, B = K(1 - n) and n = LO/L.

We first see that (14d) is zero when n = L /L = 1. This is the
0

case where the instability, as mentioned in the introduction, rises.

It means that even a perfect honeycomb lattice can not resist a shear

distortion in the central force limit. We will see later that this in-

stability gives an extra zero frequency mode beside the accoustic modes

in the dynamic matrix and leads to the wrong prediction for the

percolation threshold pcen = g. We can also see that

Equation (15) just reflects the fact that honeycomb system, due to the

geometric symetry, is isotropic in any direction.8 The bulk modulus is

defined by

1

B : 2(C11+ C12) . (163)

Using (14a) and (140) we obtain

K _

B : 27g . (10b)

Equation (16b) just states that bulk modulus is a constant independent

of n. The bulk modulus is, however, unstable against dilution in the
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central force model limit, that is, the bulk modulus will be zero if one

spring is removed when n = L /L = 1. It can also be seen that

$10,, - 51111) = T. (17)

Equation (17) reflects the fact that the strain energy is rotationally

invariant.8

(2) Estimate of the Elastic Percolation Thresholds of Honeycomb Lattice

We now discuss the theoretical estimate of elastic percolation

thresholds of model (8). The method was first developed by Feng, Thorpe

and Garboczi9 to calculate the percolation threshold for the central

force model. Tang and Thorpe8 generalized it to the stretched spring

model. In ref. 9 authors obtained the percolation threshold for the

central fOrce model (2)

p =— . (18)

11

For two dimensional honeycomb lattice p = 3. Obviously this is un-
cen

physical because p must always equal or less than one. This unphysical

threshold p = g is associated with the instability of the central
cen

force model on honeycomb lattice. This is clearly seen by the vanishing

shear modulus C44 = 0 in previous discussion. The consequence of this

vanishing shear modulus will be discussed. In ref. 8 the estimate of

the percolation threshold is obtained by removing a sipgle wing and
 

calculating the energy change AE afterward. A straight line is then
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used to extrapolate AE to a point in the p axis where the energy is zero

(see Fig. 2.3). Of course the elastic energy generally does not

decrease linearly against dilution but with some curvature. Therefore

the approach is just an estimate of the percolation threshoLd. We call

this estimate, denoted by p(B), the extrapolated intercept or the ini-

tial slope of the elastic energy and p(B) is different from the actual

percolation threshold. However, in some cases, for example in the

isotropic force model and the central force model, this theory gives

very accurate predictions. One may also wish to calculate the similar

extrapolated intercepts ( or initial slopes) from tension (T) and elas-

tic modulus (B) curves (see Fig. 2.3) denoted by p(T) and p(B)

respectively. The extapolated intercept is often used as a guide to

roughly locate the percolation thresholds and it is very helpful in com-

puter simulations.
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Fig. 2.3 The extrapolated intercepts for elastic energy (E0), tension

(T) and bulk modulus (B). It is clear that thses intercepts overes-

timate the actual percolation threshold.
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A derivation of p(E) using the same method in ref. 8 for elastic energy

(8) is given below. P(T) and p(B) can also be obtained in the similar

manner after differentiating the elastic energy with respect to L.

Notice that in the LO/L = 1 limit (8) corresponds to the central force

model. During the course of derivation we will point out the crucial

step which may lead to the wrong prediction. The previous derivation

was on a Bravais lattice and it is now generalized to the honeycomb lat-

tice which is composed of two interpenetrating Bravais sublattices. p(

E) of the stretched spring model (8) can be written as [see Appendix II]

K .. .. iR-R6 .. 1Eo85

p(E) = 285’ X E Tr{—88(A + 0) + 880 e + 888 e I (19)

8

where sum over 6 extends over nearest neighbors and sum over if is

restricted to the first Brillouin zone. In (19) the Ra's are the posi-

tion vectors of nearest neighbors once a site is chosen and 8's are the

corresponding unit vectors in Ra's directions. Matrices A, B, C and D

are defined by

4D + D"1 1
_-1 -

A ‘ DAB (‘DAB AA BB BA)

B : 0‘1 (-0'10 + 0'1
-1

BB AB AA BB BA)

(20)

c = 11’1 (-0‘10 + D‘1
—1

AA AA AB BA BB)
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-1 -1 -1 -1
D — DBA (-D D + D

AA AB BA BB)

where 2 X 2 Matrices DAA’ DAB’ DBA and DBB are the following.

0 _ 3(o + 28)/2 0 0 _ ’31 '32

AA ’ 0 3(a + 2 B)/2 AB “
-a -a

2 3

h I M

0 _ a1 a2 0 _ 3(a + 28)/2 0

BA ‘ ‘ 3 * BB ‘ 0 3(a + 28)/2
a a

2 3

ik /3a ik J33 ik /3a + ik /3a

and a1 = 88 1 + (B + g o)e 2 + (B + g a)e 1 2

ik /3a 1k /3a

a2 - a]; e 2 (1 - e 1 )

ik1/3a ik2/3a ik 732 + ik /3a
a 1 2

a3 :(a + B)e + (B + H)e + (B + u)e .

a

In above expressions 0 : K(LO/L), B : K(1-iTyTJ and a1 is the complex

..

conjugate of a1. k1 and k2 are the k components along the b1 and 8;

directions.[see Fig. 2.2]

In the central force limit (LO/L = 1), p(B) = pcen should be given

by (19) as a special case. By simply substituting B = 0, however, one

will find that matices A, B, C and D do not exist because matrices (-

-1 —1 -1 -1
DABDAAI DBBDBA) and (-DAADAB+ DBADBB) can not be inverted. One may
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recall that in the central force limit the shear modulus is zero. It is

this vanishing shear modulus which introduces a zero frequency in the

dynamic matrices so that the determinants of the two matrices are zero.

. . -1 -1
This is a crucial step. If one ignores the fact that (-DABDAf DBBDBA)

-1 1
AADAB+ DBADBB) are no longer invertable and symbolically works

out the algebra, one may indeed find pee“: g. So now we understand that

and (-D

the unphysical prediction is associated with the instability of the

central force model on the honeycomb lattice. To obtain the correct

pm) in the central force limit one shold allow a small 8, which helps

to stablize the network, and take the limit 8 + 0. Following this proc-

cedure one will obtain the correct extrapolated intercept p(E) = pcen =

1 in the central force limit. Obviously it is hopeless to write down an

explicit function of L /L for (18) because it is so complicated.
0

However, the values of p(E) can be calculated by using a computer. In

Fig. 2.4(a) P03) is plotted against LO/L. Clearly p(B) goes to one

when LO/L = 1. The extrapolted intercepts p(T) and p(B) are also

plotted in Fig. 2.4(a) for honeycomb lattice. The same quantities for

triangular lattice are plotted in Fig. 2.4(b). By comparing two figures

we find (i) on the triangular lattice and the honeycomb lattice both

pm) and p(T) approach 32 and 1 respectively as LO/L + 1. However, the

slopes for approaching L /L a 1 are different. (ii) while p(B) ap-
0

proaches two thirds as L /L . 1 on the triangular lattice that of the
0

honeycomb lattice stays almost constant. This means the initial slopes

for bulk modulus on honeycomb lattice change very little as LO/L changes

from zero to one. This is an unique feature of the honeycomb lattice
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suiich will explain the sudden discontinuities in B in the next section.

In Fig. 2.4(a) we also plot the corresponding quantities (in symboles)

from one defect computer simulations. There are some small dis-

crepancies between the theoretical curves and the simulation data

points. They are expected and will be explained in the following

paragraph. We can also develop a more sophisticated effective medium

theory which is capable of dealing with more defects and we will discuss

it in section IV.
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Fig. 2.4 (a) the quantities p(B), p(T) and p(B) vs. LO/L (solid

lines). The corresponding quantities from one defect computer simula-

tions are also plotted; (b) the same quantities for the triangular

lattice from ref.9.
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(3) Parabolicity of Effective Elastic Potential

We have discussed above how to obtain the estimate of the percola-

tion thresholds (extapolated intercepts) using a one defect effective

medium theory. We can also ask what the effective spring constant each

spring will have when one spring is removed from the system. Suppose a

spring between site i and site j is removed. According to ref. 9 the

effective spring constant will be

 

K - ,, K (21)

where K = a + B is the original spring constant of the Hooke springs and

a = p(E) can be calculated from (19). Notice that K8 is defined in
ff

the neighborhood where the distance between site i and site j is L (the

lattice spacing). We can also consider the case where one spring is

removed and the network is allowed to relax so that the distance between

site i and site j is Leq a L. Tang and Thorpe8 found

a

= L - [.03
(22)

1-a

L

eq

In obtaining Leq in (22), however, the authors used the effective spring

11 .

l—fii—K for small deformation near Leq which is not

a

constant Keff =

justified. Fig. 2.5 is a schematic drawing of elastic potential when

one spring is removed. The whole curve may not be a parabolic, however,
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for small 81 close to Leq it is indeed parabolic.[see Fig. 2.6] The

point indicated by L is the point where a spring is removed and the dis-

tance between site i and site j is L. Since the whole curve is not

parabolic the effective spring constants deduced from points close to Le

q and L may not be the same. We use K: to denote the effective spring
ff

constant near Leq' In Fig. 2.6 we show some of the computer simulation

/L. We can see that

b

eff

are calculated from the potential curves near 81 = O. In Fig. 2.7 we

results for the elastic potential for different L0

for small Al the potentials are indeed parabolic. The values of K

plot K6 and K: vs. L /L. The solid line is for Ke
ff 0

It can be seen that K:

ff and the squares

are for K

ff

b .
in general is less than Keff‘

eff' ff

The difference in Kgff and Keff explains the discrepancies in Fig.

2.4(a) because one uses Ke to calculate the solid line while computer
ff

simulation are done in the neighborhood where the effective constant is

b

Keff'

We can now conclude that for small 81 close to Leq the elastic

potentials are parabolic but with K:

is availabe to calculate K:

different from Ke No theory
ff ff'

ff. The second derivative of elastic poten-

a

tial at L gives Keff = 1-:;E-K which can be obtained from the one

a

defect effective medium theory.
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Fig. 2.5 Schematic drawing of the equilibrium positions when a spring

is removed and the corresponding elastic potential.
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III Computer Simulations And Effective Medium Theory Approach
 

Now we discuss the computer simulation results. Simulations are

done in the stretched spring region where 0 S Lo/L S 1 for the model

with elastic energy (6) on the honeycomb lattice. The numerical tech-

niques to relax the network and obtain the static energy(E0), internal

tension (T) and various elastic constants are as follows. Interested

readers will find more details from ref. 8.

(i) For a given L the honeycomb network is diluted by randomly0’

removed springs with probability 1-p.

(ii) The resulting network is then relaxed using the same methods

and criteria as in ref. 8.

(iii) After the relaxation is completed the static energy (E0) and

tension (T) are calculated.

(iv) Various elastic constants are consequently obtained by apply-

ing certain designated small strains in two opposite directions in

order to eliminate the linear terms in the elastic energy.

In our computer simulations we calculate the following major

quantities: static elastic energy (E0), internal tension (T) (called

pressure in ref.8), bulk modulus (B) and the quantity b = % (CH-C12).

For some samples we also calculate some additional quantities such as "s

= 5 (C44 + 544) and "r = 31; (C44 - 544) to check the relations (15) and

(17). In Fig. 2.8 quantities E T and B are plotted against probabil-
O,

ity p for L /L = 0, 0.4, 0.7, 0.8, 0.86 and 0.9. The solid lines are
0

the least square fit curves through the data points of the corresponding

quantities.
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Fig. 2.8 Static eneryg E tension T and bulk modulus B are plotted vs.
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p for L /L = O, 0.4, 0.7, 0.8, 0.86, 0.9. Discontinuities in B is
0

clearly observed. The solid lines are the least square fits to the

corresponding data points.
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We observe the following features in the graphs

(1) Quantities such as E0 and T decrease almost linearly for small

O/L . This is

8
similar to what Tang and Thorpe have observed on triangular lattice .

p and vanish at the percolation thresholds for all L

(ii) The bulk modulus 8 also decreases almost linearly for small p

and vanishes at the percolation thresholds for LO/L < 0.8. For Lo/L 2

0.8 there are sudden drops in bulk modulus B at the percolation

thresholds and the magnitudes of the discontinuities increase as Lo/L

increases. We start to see the discontinuity about L /L 8 0.8. There
0

is some rounding in the discontinuities near the percolation thresholds

due to finite size effects and averaging over many different

configurations. This is because each different configurations has a

distinct discontiniuty at a slightly different percolation threshold and

the average Just smears out the distinct discontinuity. In the limiting

case when LO/L = 1 we can think of the magnitude of the discontinuity as

one.[see discussion below]

In Fig. 2.9 we present two sets of typical results that can serve

to check the two equivalence relations (15) and (17). Fig. 2.9(a) is

for LO/L = 0.6 and Fig. 2.9(b) is for 1.0/L = 0.9. One can see that

these two relations are still true in the diluted lattice network where

springs are randomly removed. Also the discontinuity in bulk modulus B

does not have any effect in the two equivalence relations.
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Fig. 2.9 Equivalence relations T : 2ur (15) and b = "s (17) are checked

for LO/L = 0.6 and 0.9.
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It is also interesting to see which quantities have discontinuities

at percolation thresholds and which do not. From Fig. 2.9(b) and Fig.

2.10 it is clear that quantities such as E T, us, up and b are con-
0’

tinuous while B, C11 and C12 are discontinuous at the percolation

thresholds. We will discuss the discontinuity in detail below. From

Fig. 2.8 one can determine the percolation thresholds for different

LO/L. In Fig. 2.11 the percolation thresholds from the computer simula-

tions are ploted against L0 0

not 1 - g = g . This is because our system is not large enough. By

/L. One may notice that pc for I. /L = O is

studying different system sizes and using an extrapolating method one

may obtain more accurate percolation thresholds. Our purpose here is to

show that pc changes with LO/L. Fig. 2.11. is called the phase diagram

because it indicates two phases. The region above the curve is the

region corresponds to the concentration above percolation thresholds and

therefore is called rigid phase while the region below the curve is the

floppy region and there is a rigid-floppy phase transition cross the

boundary.6’1u
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Percolation Threshold vs Lo/L
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Fig. 2.11 The actual percolation thresholds for the stretched spring

model from computer simulations are plotted against LO/L.
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(2) Physical Reasons For Discontinuity
 

We have seen above that simulation results indicate that for LO/L 2

0.8 quantities such as C C 2 and B have discontinuities at the per-
11’ 1

colation thresholds. Since the three quantities are related by B = %

(CH+ C12) and the deformations associated with CI1 and B are more

readily visualized we consider C11 and B here. He only need to discuss

the case for B since the arguments applies equally well to C11.

Now let us consider model (6) on a honeycomb lattice with LO/L = 1

which is the central force limit. The perfect lattice has bulk modulus

 

1

B = 573' K. Once the system is diluted , for example one spring is

removed, then the bulk modulus is zero. The arguments are the

following. Suppose the spring between site i and site J is removed.

Since each spring is at their natural length then the positions of all

sites will not change at all when the spring is removed. If one tries

to measure the bulk modulus by applying small strains at the boundaries

one will find that sites i and site 1 can simply pop in with their

natural lengths and by doing so to allow other springs to retain their

natural lengths.[see Fig. 2.12] This deformation will cost no energy

and therefore the bulk modulus is zero. This is verified in computer

simulations. In the triangular lattice at the central force limit this

argument is not true because site i and site J are connected each by

five springs and they can not simply pop in with their natural lengths

and by doing so to allow other springs to retain their natural lengths.
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. /

Fig. 2.12 Site 1 and site j pop in with their natural length and by

doing so to allow other springs to retain their natural length which

results in the zero bulk modulus.
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Notice that when LO/L : 1, above argument is also not true on the

honeycomb lattice because every spring is stretched and removing Just

one spring is not enough to relax the remaining springs (which are of

order of N) without any change in energy. This is also verified by com-

puter simulations. Now we can conclude that in the central force limit

( i. e. LO/L = 1) the honeycomb lattice will have zero bulk modulus if a

 

single spring is removed in the central force limit. One may also

recall that shear modulus vanishes even without removing any springs.

We will use these instability arguments in the following discussions.

Now we proceed to discuss the physical reasons for the discon—

tinuities in bulk modulus at the percolation thresholds from the

effective medium theory point of view. As we mentioned earlier a more

sophisticated effective medium theory which is capable of dealing with

more defects can be developed. The procedures of constructing such a

theory are as follows. When many spring are removed, we can imagine an

effective medium surrounds the remaining and missing springs. He can

calculate the energy fluctuation of the remaining and missing spring

surrounded by the effective medium. The fluctuation in tension between

the effective medium and the remaining and missing springs can also be

calculated. In this effective medium lattice all springs will have ef-

fective strength Keff and effective natural length L: Obviously the
ff'

effective spring constant will be weaker. By requiring that the fluc-

tuation of elastic energy and tension be zero, a set of self-consistant

recursive relations can be derived. The detail of this effective medium

theory will be in section IV. In this section we emphasize here that in
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the proccess of constructing a multi-defect effective medium theory, one

will always obtain an effective medium network with an effective spring

and an effective spring natural length L: So for a
ff’

f/L . 1 , as we argued above in the

constant Keff

given 1.. /L when the quantity Loef
0

central force limit, the bulk modulus will be zero even if only one ef-

fective spring is removed. Since the bulk moduli abouve the percolation

thresholds, for L /L 2 0.8 , have finite magnitudes which is roughly
0

controlled by the initial slopes in Fig. 2.11 (a), then the bulk moduli

at the percolation thresholds require sudden discontinuities to go to

zero. Therefore a more sophisticated effective medium theory should be

able to explain the sudden discontinuities and predict the percolation

O

thresholds when L eff/L - 1.

0

eff

medium theory point of view. To see how it is related to real physical

The quantity L /L discussed so far is purely from an effective

quantities which can be measured, at least in a computer simulation

sense, one may do the following analysis. From (8a) and (We), the

static energy and internal tension for the perfect honeycomb lattice are

2 2

E20 = W ( 1- LO/L) K (23a)

1
T : T( 1- LO/L)K . (23b)

If one uses the physical pictures given by the effective medium theory

then one can write down the static energy and internal tension similar
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to (23a) and (23b) when springs are removed. By replacing K and LO/L

0

with Keff and Leff/L , we have

2 0 2

E0(p) ’ 7‘5 ( 1‘ Leff/L) Keff (2%)

T = 1 ( 1- L0 /L) x (zub)
(p) 7‘? eff eff

where p is the probability that a spring is present. Of course EO(p)

and T(p) are also functions of L /L, but for a given L /L they are func-
0

tions of p. Obviously quantities Lgf

0

f./i. and Keff are also functions of

. 0
p for a given LO/L. For convenience we denote Leff/L by “eff' What we

.are trying to do here is to extract Keff and "eff from computer simula-

tion results of E0(p) and T(p) and to see whether they are still

meaningful and useful when comparing with other simulation results.

From (20a) and (2ub) we have

2

p)“
(25a)

Keff : 2T( 003)

1.0 -”eff = 30(p)/2T(p) . (25b)

Now we make least square fits, which are plotted in solid lines in Fig.

2.8 , to discrete data points of E0(p) and T(p) to obtain values of Keff

and ”eff against p. In Fig. 2.13 "eff is plotted against p for LO/L =

O, 0.2, 0.4, 0.6, 0.7, 0.8, 0.86, 0.9 and 0.95. We notice that maximun
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value of "eff is one for L /L 2 0.8. As we explained before, the bulk
0

modulus drops to zero when "eff hits one.
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One may also recall the equations (111a)-(111d) and (16b) for elasticity

of pure honeycomb lattice. By replacing K and n with Keff and "eff one

may write down immediately the similar equations for systems with some

springs removed. They are as follows

u ‘3”err Keff

n K
_ eff eff

C12 - ———2- new 273" ‘26“

 

 

Cuu ‘ 2 - "eff 2) (26°)

2(1 - n ) K
_ 1 eff eff

K

B = 2%: . (268)

Equation (26e) indicates that B is proportional to Ke Now we use
ff'

K and n extracted from B0(p) and T(p) and calculate 611(p) ,
eff eff

C‘l‘HP)’ B(p) and b(p) using (26a-e). The results are plotted vs. p in

solid lines in Fig. 2.1“ for L /L = 0, 0.“, 0.7, 0.8, 0.86 and 0.9.
0

Also plotted in Fig. 2.1" are the corresponding quantities from computer

simulations (in symbols).
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In Fig. 2.14 all quantities are normalized to §%§-. From Fig. 2.1“ we

observe the following features:

(1) The agreements between simulation results of C11, Cu”, b and B

and the calculated corresponding quantities using only Ke f and
F

from E and T(p) are very good.
”err 0(9)

' 1

(ii) Keffs decrease to zero with p for L0

finite at the percolation thresholds for L

/L < 0.8 while those stay

>
O/L - 0.8.

Therefore by combining the observations of Fig. 2.13 and 2.111 we can

conclude that

(i) Keff and "eff are very meaningful and useful quantities to

study in the stretched spring model.

(ii) As more and more springs are removed, the static energy ED

for L /L < 0.8 andand tension T approach zero with vanishing Keff O

the bulk moduli decrease to zero continuously.

. . _ >
(111) E0 and T approach zero with vanishing 1.0 ”Eff for BD/L -

0.8 while K stay finite and the bulk moduli have
effs

discontinuities.

(iv) The two different regions can be distinguished by whether Keff

decreases to zero continuously or stays at a finite value at the

percolation thresholds.

One more interesting quantity to study is the ratio of CH“ to C . From
11

(26a) and (260) we find

(1 - n )(4 - n )
Egg ; eff eff (27)

11 u ' 3neff
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In Fig. 2.15 we plot Gnu/C from computer simulation results, vs. p.
11’

The corresponding solid lines in Fig 2.15 are calculated values of (27)

using only K6 and "eff extracted from E0(p) and T(p)‘ Again they
ff

agree very well. The last point of each curve indicates the ratio of

Cull/C11 at percolation threshold. We call this critical ratio of

C11/CHQ' We can see that critical value of CHM/C11 changes from one for

LO/L = 0 to zero for LO/L = 1. In Fig. 2.16(b) critical values of

CM/C11 are plotted vs. L /L. We can see that it is quite close to a
0

straight line. The point where CM/C11 = 0 corresponds to that where

discontinuities in B begin to show up. Fig. 2.16(a) is the same as Fig.

12.11. We can locate the point on the phase diagram where quantity C,m

/C11 is zero by comparing the two graphs. In phase transition language,

it turns out (see next section) that there are two types of phase tran-

sitions across the boundary. In the region L /L < 0.8, where Gun/€11
0

are finite, the rigid to flopy phase transitions are of second order, as

8111
studied before ’ , while those for L /L 2 0.8 are first order.

0

Therefore there is a tricritical point about L /L ~ 0.8 in the phase
0

diagram Fig. 2.15(a) to separate the two different types of the phase

transitions. Using Landau type phase transition theory we can also

study the smoothness of phase boundary at the tricritical point.
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1.2 1 F 1 I

 

 

 

0.u4 *-

(3.2! '-

   

Fig. 2.15 CHM/C11 are plotted vs. p. The symbols are from direct com-

puter simulation results of C11 and CM! and the corresponding solid

lines are the calculated curves using (27). The data set from bottom to

top are for L /L = 0, 0.2, 0.u, 0.6, 0.7, 0.8, 0.86, 0.9 and 0.95.
0
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Fig. 2.16 (a) is the same as Fig. 2.10. In (b) the critical ratio

CNN/C11 is plotted vs. LO/L. A tricritical point about LO/L a 0.8 is

located.
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IV Tricritical Point and Effective Medium Theory

We have seen in the previous section that the phase diagram Fig.

2.11 can be devided into two regions in which bulk modulus (or Keff) be-

haves differently. For LO/L S 0.8, the bulk modulus (or Keff) decreases

with decreasing p and vanishes at the percolation threshold. The phase

transition in this region is of the conventional second order rigid e

6’1“. For LO/L > 0.8, on the other hand, the

bulk modulus (or Keff) drops discontinuously at the percolation

floppy phase transition

threshold and the transition in this region is of a first order phase

transition. In order to understand this we first study the Landau type

phase transition theory and draw an parallel analogy between the phase

transition theory and what we have observed in the computer simulations.

(1) Landau Phase Transition Theory and the Tricritical Point

In a conventional Landau type phase transition theory35’16 the free

energy can be written as

F : %a M2 + &b M“ + £0 M6 - H M (28)

where M is the order parameter which indicates the phase transition, H

is the external field, a, b, and c are the phenomenological constants

independent of M. In (28) the coefficients of M3 and M5 terms are zero

due to the symmetry of the system. In the magnetic model, for example,
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M is the magnetization and H is the external magnetic field. When con-

sidering a second order phase transition, b > O and 0 can be neglected.

Thus the free energy has the following form

_1 2 1 ‘1
F—éaMirr'bM-HM (29)

and gg=aM+bM3-H (30)

2

a—E:a+3bM2

(31)

The sufficient condition for the maximum and minimum of the free energy

(30) is

_35 3 -
3M _aM+bM -H-0

325
Depending on whethere —5 is greater than zero or less than zero the

311

free energy will be at minimum or maximum. For the convenience of the

discussion we set a = aO(T-Tc) where T can be regarded as the

temperature. The different cases are discussed below. We use 1? to

denote the order parameter at the minimum or maximum.

(1) When H = 0, T > To (i.e. a > 0) and b > 0, it is easy to see

that ii = 0 is the only minimum. Therefore in this phase the order

parameter is zero.
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(ii) When H = O, T < To and b > 0, it can be shown that M = 1 11+ =

aO(Tc- T) 1/2 ‘—

[ --1;--] are the minima of the system. Thus in this phase as T

+ Tc ( a critical point) the order parameter M decreases continuously to

zero.

Combining (i) and (ii) we see that the order parameter decreases to

zero and is continuous at the critical point T = To. Therefore the

transition is of the second order. In the case when b is equal or less

than zero, we must consider the M6 term. So the free energy is

FzgaM2+l11bMu+ch6-HM (32)

and ggzah+bii3+ci15~ii (33)

320 2 ii
——5 = a + 3b M + 50 M (3“)

an

For convenience c is set to be positive. When H = 0, using -3% = 0, we

expect the free energy reaches minimum or maximum at R = 0i.:.” + and 1

M_ where

2__1__ 2 M?
N: - 20 [-b 1_(b — MaO(T - Tc)c) ] (35)

Now we discuss the following cases when H 0.

(i) If a < 0, it can be shown that i 1 11+ correspond to two min-

ima while B = O to a maximum.
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(ii) If aO(T—Tc) > O, and b > 0 then 51 = O is the only minimum and

therefore in this phase the order parameter is zero.

(iii) If aO(T-Tc) > 0 and b < 0 then the minima of the free energy

occur at H = 0, 1_M+. It can be shown that F 2 0. So fi = :_M+ may
(:M+)

not be the lowest minima. This is true in the phase where E = ().is the

lowest minimum. Since F( : 0, the location of the other two minima is

0)

determined by requiring F(+M ) : 0. Thus we have three co—minima in

—+

. . 3F

this phase. USing F(1M+) - O and 3M M=IH+- O we obtain

Ha (T-T )
2 _ O c

H+ - - -—-—E———— (36)

From (iii) we can conclud that in one phase B = O and in the other

flaO(T1-Tc)]

b 1

der parameter changes discontinuously at the critical point T

where T is the
b 1

first order phase transition point. The phase boundary for the first

1/2
phase B = H = [- In general T x T , therefore the or-

+ C

1. The

 

. . . c) 1/2
Jump or the discontinuity in M is AM : [- ]

order transition is determined by equating (35) and (36)

Ha (T -T )

i.e. 533—1-. 1 (02- 11a0(T1- Tc)c)1/2] = - 0 b‘ ° (37) 

From (37) we obtain

_ 1/2
b - -‘1[caO(T1 - Tc)/3]
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_ 3b
or T —T + 16 (38)

In Fig. 2.17 we plotted the phase boundary T vs. b. For b < 0 the phase

transition is of the first order while for b > O the transition is of

the second order. The two regions meet at b = 0 where the discontinuity

AM vanishes. This point is called the tricritical point. We also

notice that the first derivative, with respect to b, of the phase bound-

ary at the tricritical point is continuous.
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b < o 5‘0 b > 0 b

Fig. 2.17 The phase boundary is plotted vs. b. For b < 0 the transi-

tion is first order while b )0 the transition is second oder. b = 0 is

the tricritical point.
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With above phase transition picture in mind, we are ready to draw

an analogy between the conventional Landau theory and the observation in

the simulations. An analogy between the phase transition theory and the

geometric percolation theory was suggested almost two decades ago17. Of

course this was restricted to the second order phase transition. The

quantity p, the probability that a spring is present, corresponds to the

temperature T in the phase transition theory. Thus the percolation

threshold corresponds to the critical transition temperature. The quan-

tity similar to the order parameter in percolation theory is the

probability, denote by P(p)’ that a site chosen at random belongs to the

infinite cluster. P‘D) is a much more difficult quantity to study in

the elastic percolation problem than in the geometric percolation

problems. The bulk modulus, on the other hand, is a much easier quan--

tity to study and has the same behavior as P(p), so we choose the bulk

modulus as the order parameter. The analogy is quite obvious now. For

LO/L S 0.8, the bulk modulus decreases continuously to zero and is con-

tinuous from rigid phase to floppy phase. Therefore the transition is a

second order phase transition. For LO/L > 0.8 the bulk modulus drops to

zero discontinuously from the rigid phase to floppy phase and the tran-

sition is a first order one. There is a tricritical point around L /L ~
0

0.8 to separate the phase diagram into two regions. Here LO/L is

similar to b in the phase transition theory. Our computer simulation

results indicate that there is a tricritical point near L /L ~ 0.8, and
0

a more accurate determination of the tricritical point needs more com-

puter simulations. This tricritical point can be determined from the
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phase transition theory once the phenomenological constants a, b and c

are known, but unfortunately this is not the case here. Thus we have to

determine the tricritical point from an new effective medium theory

described below.

(2) Effective Medium Theory

We start discussing the effective medium theory by first consider-

ing the case where only one spring is removed. As shown in Fig. 2.5,

when a spring is removed the distance between the sites, where the

spring is removed, will change from L to Leq' Let us assume that the

resulting spring network will have an effective elastic constant Ke if

the distance is restored back to its original length before any spring

is removed [also see discussions in appendix 11]. Therefore after one

spring is removed the elastic energy is decreased by

21 2 1
AB = - 2K(L - LO) - 2 Ke(L - Le )q (39)

where K and LO are the spring constant and natural length of the removed

spring. The first term is due to the missing spring and the second term

is due to the relaxation afterward. By minimizing AF with respect to L

we have

8A8
a L = K(L - L0) + Ke(L - Le ) = 0 (no)

9

From (“0) we obtain



 

K

Leq — L + K ( L - L0) (41)

e

' a

Using Ke : K 1 -*a where a is equal to P(E) as in (19), (01) becomes

a

a

L = L - L03 (“2)

eq '_——_—_3.

1 - a

a

We have discussed in section II that K8 2 K l-:;§- is Just an approxima-

a

tion, but it is a rather good approximation. Substituting (42) back to

a

(39) and using Ke = K 1 -.a , the energy change AE can be written as

a

 

AB = - 1 K (L - L )2/( 1 - a.) (#3)
2 0

Eq. (“3) indicates that removing one spring decreases more elastic

energy than %K(L - L0)2. This is because the network is under tension

(L at L0) and the relaxation to Leq releases an additional amount of

elastic energy.

Now let us add a spring of spring constant K' and natral length L6

in the place of the missing spring. The elastic energy will increase by

2 2

AB = + gK'(L' - L6) + % Ke(L' - L ) (4“)

eq
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Again the first term is simply due to the added spring and the second

term is due to the relaxation of the distance from Leq to L' afterward.

By minimizing AF with respect to L' we have

3A8

 

5? = K(L' — L5) + new - Leq) = 0 (“5)

So

K L + K'L '

. - e as 0

L ' x' +xe (“6)

where Ke and Leq are the same as defined before. Substituting (“6) back

to (nu) and using (42), the energy change can be written as

 

The net energy change after replacing a single spring of K and Lo with

K' and L6 is then

- K [
" I

2(1 - a )

K.

i i

K‘a + K(1 -a )

 

(L - L a*- L' + L'a*)2 - (L- L )2] (N7)
0 0 0 0
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If K' = 0, Eq. (47) is reduced to (H3). If K' = K and L6 = LO then AB =

0 as expected. So (“7) is checked.

We now construct an effective medium theory using (117). For a

given LO/L at p, from the effective medium point of view, we can imagine

an effective medium elastic network of N effective springs with spring

constant KC1 and natural length Lt? Here the superscript a denots the

quantities of the effective medium network. Of course Ka and L: are

functions of p for a given LO/L. Let us replace n effective springs

with n springs of strength K1 and natural length L Therefore the to-
01‘

tal energy of the resulting effective network, using (117) and replacing

 

 

* with a, is

c x x L - L“
_ _ _NK 0 2 _1_ i e 0 _ c 2

E ' E0 * AB ’ 2 (L ‘ L0) * 2 Z x + x l 0 L01 * L0]
1 1- a

1 Ka(L - Lg)2

- 2 X a (118)

i 1 - a

a 1- aa a a a
where Ke = K a and a = a ( LO/L). The fisrt term, denoted by

a

EO’ in (118) is the static elastic energy of a perfect effective medium

network similar to (2ua). The second and third term, denoted by A8, are

the energy fluctuations due to replacing n effective springs with

springs of K1 and L . In (118) we neglect the interactions between the
Oi

replaced springs. The tension is defined by T = 33'; . In 20, T = -

‘ av

511'.- %E Using (‘13) we obtain

‘1
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a
KK L-L

BE: 0 0 ie 0 01
T ~ - ——»= T + AT = ~NK (L - L ) - X [ - L + L ]

3L 0 0 i “1* xe 1_ aa 01 0 1_aa

0 a a

i 1-a L ii e 1-a (1-a)

K a L - L“ K“(L — L“)2

gl (x +1x )2 Eazl g ’ LOi * L812- % ace 1 ("9)
i i e a 1-a i (1-a)

a Baa a a

whereb =--a- andn =LO/ L. In obtaining (119) one should realize

an

that Ke and aa are also the functions of L. The first term in (119) is

the static tension, denoted by To, similar to (24b) and the second term

and third term are the fluctuations of tension, denoted by AT, in the

diluted effective medium network. By requiring

1
1

O< AE > (5021)

(AT) 11 0 (50b)

we obtain two equations describing the effective medium network. In

(50), <> implies the ansemble average. The two equations are

 

a a a2

3i—.“:“3 ——3-..+ 32 3: ““23”
i i e 1-a i 1-a
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a a 2

K (L - LO)

- i . + l - -' 1 (51b)
802 1_ a“ 01 0 2Ni (1 _ a(1)2

  

1

-— (———)
2N§ K1+ Ke

In our case K1 = K and L01 = LO with probability p, and lg = O with

probability 1-p. So (513) and (51b) become

a 2
- K (L - L )

___e __0 _ L . Lg]? . 0 (52a) 

   

a 1 _

a - L0 + L0] 0 ' a ’
1— a 1-a

x K L - L“

e 0 - L + La]
0 0 0

  

L e 1- a (1 - aa)2

Ka(L - Lg)2

a)2 1 (52b)
  

a L - L

_ L a 2 1

[ + L ] -
a2 1_ as 0 O 2 (1 _ a

5

a

Eq (52b) can still be simplified by using (52a) to eliminate the second

term in the left hand side of (52b). By using Ke = [(0 -———1" a
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defining 0“ = Ka/K, n“ = Lg/L and n = LO/L (52a) and (52b) can be writ-

ten as

a a a (1 - naaa - n mac)2 = ( 1 - na)2 (53a)

a + Q (1-a )

(I. a a O. a (1 c

I 1 - n“ + (00- n)(1- a°)l 1 - n“ 21a“ + Q“(1 - a“)]

Here superscript a is used to indicate the effective medium network. Ka

and na are the quanties characterising the effective medium network and

should be compared with Keff and n from section III. Eq. (53a) and
eff

(53b) are the self-consistant recursive equations. For a given LO/L,

Eq. (53a) and (53b) must be solved self-consistantly and iteratively

ii

3a a a
“LO/L) . We obtain K and n

ii ii

starting from p=1, aa = a and ba = b =

as functions of p and these values should be compared with the values

deduced, using (25a) and (25b), from the computer simulations. The per-

colation threshold pc can also be calculated as a function of n using

(53a) and (53b). We use nt to denote the value of n at the tricritical

a/K = 0 at the percolation threshold thuspoint. For n < nt, Qa = K

(53a) and (53b) are solved iteratively for a given n < nt untill Qa = 0.

For n > nt, no : Lg/ L = 1 at the percolation threshold, again (53a) and

(53b) are solved iteratively for a given n > nt untill na = 1. In the

neighborhood sufficiently close to the tricritical point, (50a) and

(50b) can be further simplified. After some lengthy algebra we obtain
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2

[1 + ba(1 - n )l = 1 (sue)

aa + Qa(1-aa)

  

a a a a

L1 - 0H: " C /2) = ab (10" Q) a (Sub)

[ 1 + b (1 - n)! Zia + 9 (1 - a )i

0 32a“ 0
At the tricritical point 0“ = 0 , n = 1 , a?1) = 

where c =

301“)2

1, 83(1) = 0.958, and c?1) = 0.16. Thus from (548) we obatin

1 - nt = 0 ba 02 = 0.186

2b + c —b

 

or nt = 0.8111

Using 0“ = 0, "t = 0.811, a?1) = 1, b (1) = 0.958 and (51a) we obtain

or 1 - pt = 0.280

Thus the effective medium theory gives the location of the tricritical

point at po = 0.28 and nt = 0.81. In Fig. 2.18 we plot the phase bound-

ary obtained from the effective medium theory and from computer

simulation results (squares). The tricritical ponit is also marked in

the figure. The value of "t is very close to our estimates LO/L ~ 0.8

from the computer simulation result. We notice that pc, determined from
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the computer simulations, at L /L = 0, is 0.38 instead of 1-Zsin(i'-8-) =
0

0.316 which is the exact result3. This is due to the finite size

effect. As the system size becomes larger and larger one should be able

3
to extract the exact value by using a scaling rule . It is more impor-

tant here to known how pc changes with L /L. The most interesting
0

feature in Fig. 2.18 is that the first derivative of pa, with respect to

LO/L, is not continuous at the tricritical point. In Landau phase tran-

sition theories, as we have discussed, the first derivative at the

tricritical point is continuous. The discrepancy may be due to the

negligence of the interactions between the springs in the effective

medium theory. An effective medium theory capable of dealing with the

interactions is very complicated and technically impossible to apply.

After obtaining KCl and "a as functions of p, we can use equations

(26) to calculte various quantities such as E0(p)’ T(p), and B(p)’

Notice that Eq. ('18) and (‘19) are the same as (211a) and (2%) when (AB)

0 and <AT> = 0, which determine the effective medium network. In Fig.

2.19 we plot na against p for L /L = 0, 0.2, 0.11, 0.6, 0.7, 0.8, 0.86,
0

0.9, 0.95. The corresponding results from the computer simulations

using (25b) are also plotted (symbols). The overall agreement is

satisfactoy. The agreement are very good for small 1-p, as we can ex-

pect, and above the tricritical point. In Fig. 2.20 we compare the

quantities E(p), T(p)’ and B(p) obtained from the effective medium

theory and the computer simulations. We can see that the agreement, in

general, is also quite good although the effective medium theory overes-

timates the percolation thershold in some cases. Therefore we conclude
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general, is also quite good although the effective medium theory overes-

timates .the percolation thershold in some cases. Therefore we conclude

that the new effective medium theory works quite well for the honeycomb

spring network under tension although it has some shortcoming. It

predicts a tricritical point and the different behavior of K“ and 0° in

the first and second phase transition regions. These are the most

sucssesful features of the effective medium theory.
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Fig. 2.18 The phase boundary from the effective medium theory ( solid

line) and computer simulations (squares) are plotted against n. The

tricritical ponit is marked.
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Fig. 2.19 The quantity na is plotted vs. p for LO/L = 0.0, 0.2, 0.11,

(L6, 057,(L8, 0.86, 0.9 and 0.95 (solid lines). The corresponding

quantities from the computer simulations are also plotted (symbols).
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Fig. 2.20 The quantities E0, T and B calculated [WmMIthe effective

medium theory (solid lines) are compared with the corresponding quan-

tities from computer simulations (symboles) for LO/L = 0.0, 0.”, 0.7,

0.8, 0.86 and 0.9.
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V Conclusions
 

We have studied the elastic percolation problems of the stretched

spring model on the honeycomb lattice and found two types of rigid s

floppy transitions. In the region where L /L S 0.81, the rigid s floppy
0

transition is the conventional second order phase transition studied

before8 while in the region where L /L > 0.81 the transition is a first
0

order phase transition. The difference between the two types of transi-

tion is that the bulk modulus is continuous in the second order phase

transition and discontinuous in the first order phase transition.

Landau phase transition theory can be applied to explain the two types

of phase transitions and the tricritical point observed in the computer

simulations. A new self-consistant effective medium theory has been

developed to calculate various elastic constants, phase boundary and the

tricritical point. The agreement between the effective medium theory

and the computer simulation results is quite good. We have also found

that the the elastic percolation threshold of the stretched spring model

is 1 rather than 3 in the central force limit on the honeycomb lattice.
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I. Introduction

It is well known that the vibrational excitation density of states

for homogeneous systems obeys the Debye law

g(m)dm ~ md - 1d0) (1a)

in the low frequency or long wavelength limit. Here in is the vibra-

tional frequency, g(m) is the density of states and d is the

dimensionality of the problem. Naturally one can ask such question as

what happens to (1a) when disorder or inhomogeneity is introduced.

Obviously Eq (1a) will breake down for inhomogeneous systems. However,

for certain disordered systems, Eq (1a) simply takes the following form1

~

g(w)dw ~ wd - 1d0) (1b)

where 8 is called the spectral dimensionality which is different than d.

A fractal network is a suitable inhomogeneous system for studying quan-

tity 8. There have been extensive studies on dilute random percolation

networks, which are fractals, in the past five years1-8. If we think of

the vibrational model as an array of springs, then the vibrational equa—

tions of motion are very similar to those of diffusion and a tight-

binding Hamiltonian [see (2a) below]. Because of the similarities among

the diffusion equation, equations of spring vibrations and the equations

of motion for a system described by a tight binding Hamiltonian (or an
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elastic Hamiltonian) it is clear that there are two approaches to

evaluating 8.

One approach is to examine the low frequency dynamical response of

the system described by the Hamiltonian

_ +_+

H - <1§> ViJ(aiai aiaJ) (2a)

where the V1 are randomly distributed on the nearest neighbor bonds ac-

J

cording to the probability distribution

P(V1J) = 05(V - V13) + (1 - p) 8(Vij) (2b)

and we restrict the sum to sites on the infinite cluster. The ai, a;

are either Bose or Fermi operators (the results are the same when only

one particle excitations are considered) and the diagonal term is

present in (2a) to preserve translational invariance. This dilute tight

binding Hamiltonian describes the physics of several different random

systems; dilute magnetic systems, random resistor networks and random

scalar elastic networks. By scalar elasticity we mean for example dis-

placements perpendicular to the elastic network. Symbol E has the unit

of energy and when h:1 we call it frequency for convenience. The low

frequency density of states at pc is predicted to behave as

5-2)

g(E) ~ E (3)

N
I
L
—
o
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where 8 is the spectral dimensionality that can be expressed a31-2

E = ———————- (4)

and t is the conductivity exponent. The quantities B and v are the

geometric exponents8 which govern the probability of being on the in-

finite cluster, and the correlation length, respectively. The fractal

dimensionality a = d - B/v. Direct numerical evaluation of the density

3
of states in two dimensions on dilute spin systems has confirmed equa-

tion (4) and that a is close to 4/3 which Alexander and Orbach1 have

conJectured to be the value of 8 in all dimensions except 1D.

An alternative approach is to study the anomalous diffusion of a

random walker on the infinite percolation cluster. Scaling arguments"2

,4 suggest that the mean square displacement (r2) scales with time as

(r > ~ t (S)

and k = -—-£-B- where t, B and v were defined previously. By relating

the probability of return to the origin with the density of states,1 one

obtains a = 8k in agreement with Eq. (4).

Numerical simulations of random walks on dilute systems are a good

indirect way of obtaining the spectral dimensionality 3 using Eq. (5)
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and the relation 8 = k8. Values of 8 obtained in this ways

3

agree with

direct simulations of the low frequency density of states at pc.

The randomly dilute problem discussed above can be considered as a

random system of strong bonds V3 and weak bonds Vw in the limit VS+V,

szo. The other limit, Vsom, VH¢V, is also of considerable interest and

is the subject of this article. It would describe a random supercon-

ducting network or the elastic properties of a system with rigid grains

weakly coupled by soft springs. In the general problem, the density of

states is divided into bands: a high frequency band associated with in-

ternal modes of the clusters of strong bonds and a low frequency band

associated with vibrations of the soft regions. In the limit

sz 0 Vs» 1, the low frequency band becomes a delta function at the

origin and the spectral dimension describes the low frequency edge of

the high frequency band. In the limit Vw » 1, Vs .. on, the high fre-

quency band is driven off to infinity and the delta function broadens.

There will be a different spectral dimension associated with this low

frequency edge.

In diffusion language, the superconducting limit is the problem of

9 10-12
termite diffusion which has been the subject of considerable work

and some controversy. In principle, it should provide information about

the density of states and the spectral dimension 8 for the problem but

in practice this is not the case because the random walk is completely

dominated by the distances moved on the superconducting clusters. As

has been pointed out by Hong et al.,11

<r2> ~ tk because even at time zero, (r2> ~ g2-B/v’ the average radius

there is no region where
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of the superconducting clusters. The low frequency excitations we are

interested in are associated with the small, time dependent contribution

to <r2> superimposed on the divergent £278”. Clearly this is impos-

sible to obtain numerically and we therefore believe that direct

simulations of the low frequency response is the best way to evaluate

the spectral dimension.

From ones physical intuition and experiences one will also expect

that (a) the contributions to the lower frequency part of the vibratitui

density of states are associated with the collective vibrational modes

of clusters and because such collective modes involve large masses

therefore result in lower frequencies; (b) those of high frequency part

are due to the internal vibrational modes of clusters or local vibra-

tional modes which are associated with small masses and therefore with

higher frequencies. While the lower frequency part can be explained

using scaling hypothesis, the major features in high frequency part can

by explained by Just consider the local vibrational modes. The layout

of this paper is as follows. In section II we describe the procedures

of obtaining Density Of States (DOS) for Hamiltonian (1) by using

Equation Of Motion technique (EOM) and present the computer simulation

results for spectral dimensionality 8. In section III we present the

scaling cross-over hypothesis to describe the cross-over from phonon

region to anomalous region for systems above two dimensions and in sec-

sion IV one dimensional case is treated seperately because of unconmon

features in one dimension.
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11. Density of States

In this article we obtain the density of states and hence the

spectral dimension 8 for the superconducting case. The system is

described by the Hamiltonian (2a) but with the interaction strength

distribution

) + (1 - p) 5(V - V ) (6)P(vi ) = p 5(Vm' v1
J J 1J

where Von = w in the superconducting limit. The wavefunction of the sys-

tem at time t can be written as

|T(t)> = X ck(t) ak*|0> (7a)

k

where ID) is the vaccum state, ak+

ck(t) the amplitude of excitation at site k at time t. By substituting

the creation operator at site k and

|T(t)> into Schr8dinger equation

ih éigéfill = H lT(t)> (7b)

with Hamiltonian H of (1) then (7b) becomes

ih X a+l0> ac (t)/3t = Z V (a+ a - aTa
k k k ijk ij i i i j

We are interested in how amplitudes ck(t) evolve with time t. By using

) a;io> ck(t) <7c)

either commutation or anticommutation rule



] = 5 (7d)

the equations of motion for ck(t) in (70) are now

ih 5;;— = z; vk,(ck- e2) (7)

Here the ck's are the amplitudes of the wavefunction on the k site.

Two sites k and 2 connected by a bond V on have the same
k2:

amplitude so that ck = c2 can be considered as a single site of mass 2.

This process is repeated for all superconducting bonds so each supercon-

ducting cluster has one degree of freedom and a mass M equal to the

number of gitgg in the cluster. We consider a site connected to no sue

perconducting bonds to be a cluster of size 1. The equations of motion

for the clusters so defined are

. k

1h MK 77': = {V nk2(ck - CQ) (8)

where k,2 are now cluster indices and n is the total number of normal
k2

_ 1

bonds between the k and the 2 cluster. By defining le ck = ck, we have

the Hermitian equation of motion

 

 

C

ih-aT-sXVnkQ[-M-:-- ] (9)
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13

14,15

which we solve numerically using the equation of motion technique.

If the original system has N sites,there are only Nf clusters

so we have reduced the number of degrees of freedom by a factor of f.

For small p

f:1-%2+... (10)

where z is the number of nearest neighbors and p is the probability that

a bond is present. The number of clusters in equation (10) actually is
 

the sum of number of monomers, dimers, trimers and etc. normalized to

total number of sites. Here monomers, dimers, trimers and etc. have

mass of one, two, three and etc. respectively. For square lattice, as

shown in Fig. 3.1 , the probabilities of having monomers, dimers and

trimers are (1-p)”, 2p(1-p)6 and 6p2(1-p)8 respectively. In above ex-

pressions powers of p represent the presence of bonds and powers of'(1-

p) represent the absence of bonds. The coefficients in the front

indicate number of different configurations one can possibly have with

fixed number of bonds. The probabilities of having clusters of less

than five bonds can also be written down by just inspection and those

15
for more than five bonds can be obtained by using graph theory .

Therefore by definition the number of clusters at p on square lattice is

f : (1-p)” + 2p(1-p)6 + 6p2(1-p)8+ ... (10a)
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Extending (10a) to a general lattice with z nearest neighbors we can

write down immediately the contributions from monomers, dimers and

trimers etc.

2‘2 *2(z'1)+ ... (10b)f = (1-p)z + 3 p(I-p)22’2+ 2(2—1)pz(1-p)

So f is a function of p and 2. For given 2 in order to find f(pc) we

have to add the contributions from higher order clusters which can be

found in ref. 15. For small p equation (10) can be easily obtained from

(10b).
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Fig. 33.1 Diagrams of monomer, dimers, trimers. The solid lines repre-

sent springs and the dashed lines represent missing springs. There are:

one configuration for monomer, two for dimers and six for trimers

(omitted here).
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Note that f decreases to a very small value at pc. In the square net

and simple cubic lattice we find it is 0.098, and 0.27 respectively.16

Thus setting V0° strictly equal to infinity reduces the effective size of

the system, especially in 2D, although there is some initial time cost

in identifying all the clusters. This advantage cannot be acheived by

setting Va large and taking a limiting process. Note also that f is

finite at pc for d l 2 but it is 22:9 in 1D which affects the scaling

arguments for d as we discuss later.

The equations of motion were integrated forward in time from 0 + T‘

13
using standard methods. The first few points were obtained using a

fourth order Runge-Kutta algorithm and subsequently a fourth order Adams

17
integration scheme was used. The density of states g(E) is obtained

from Fourier transforming the result of the time integration.

+0:

g(E) = %;,‘ Z M1 c1(t)c:(0)eiEtdt (11)

i
-0

13
This integral is converted to one over positive times only. Random

13
phases are put on the clusters so that only the on-site terms required

in (11) are retained in the limit of a large system. This is a standard

way to obtain densities of states in the equation of motion technique.

In Fig. 3.2 we show the superconducting clusters of one sample at

p = 0.475 on 40x40 square lattice. On each lattice site there is a

single mass. The solid lines represent rigid springs with Vs“: while

missing lines represent the weak springs with VN+1. Dots are the masses
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surrounded by weak springs. In Fig. 3.3 , we show results for the

square lattice at p0 = $3 The results are from averages over 25 samples

of 100 x 100 networks. Because of the reduction in size due to the f

factor only ~ 1000 amplitudes had to be monitored. The insert shows a

log-log plot at low frequencies. In Fig. 3.4 , we show similar results

for the simple cubic lattice8 at p0 = .2491. The results are fnmn

averages over 25 samples of 21 x 22 x 23 networks. Because of the

reduction due to the f factor only ~ 2800 amplitudes had to be

monitored. The insert shows a log-log plot at low frequencies. We ex-

amined a single sample with about 16 times as many sites in both 2D and

30 and found no significant changes in the slopes in the log-log plots.

There are two ways to obtain the spectral dimensionalities. One is

simply measuring the slopes of the log-log plots in the inserts. We use

a least square fit program to find the slopes. The slope in Fig. 3.3 is

1.05 1 0.1 which leads to 3 = 4.1 t 0.2 from Eq. (3) in 20. Similar

mesurments of insert of Fig. 3.4 gives a slope of 1.9 i 0.15 and hence

8 = 5.8 t 0.3 in 3D. Another method is associated with the crossover

scaling hypothesis which will be discussed in next section therefore we

postpone the discussion of the method.
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Fig. 3.2 A sample of bond percolation network on square lattice at

p::CL475. The solid lines represent rigid springs and the missing

lines represent soft springs. The dots are the masses surrounded by

soft springs.
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Fig. 3.3 The density of states for a random square lattice of supercon-

ducting and normal bonds at pc 2 -2-. The insert shows the low energy

data on a log-log (base 10) plot. The straight line drawn is a least

squares fit to the data points shown from which 8 is obtained via Eqn.

3. The energy is in units with V : 1. The energy values of major

peakes are also indicated.
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Fig. 3.4 Same as Fig. 3.3 except for a simple cubic lattice at

pc : .249. The insert shows the low energy data on a log-log (base 10)

plot. The energy is in units where V = 1. The values of peaks are also

indicated.
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As we mensioned earlier in the introduction, the higher frequency

(or energy) part of spectra are due to local vibrational modes.

Therefore the sharp features at higher frequencies in Fig. 3.3 and Fig.

3.4 can be explained by just considering these local vibrational modes.

Since all sites are always connected in superconducting case (i.e. stm

and Vus1), at percolation threshold, we can imagine that (1) there is an

infinite cluster (largest spaning cluster in computer simulations); (2)

there are clusters of different sizes interconnected by weak springs ;

(3) there are 'pockets' inside the infinite cluster and large clusters

where small masses are surrounded by weak springs and connected back to

big clusters. The latter situation is very similar to the case where

small islands are surrounded by inland lakes and the lakes are sur-

rounded by continents. Here small masses correspond to smll islands,

weak springs to inland lakes and big clusters(including the infinite

cluster) to continents. The collective vibrations contribute to low

frequency part of spectra. Now we consider the vibrational modes of

'pockets' . We assume that big clusters to which the small masses at-

tached are very massive and therefore almost stationary. As shown in

Fig. 3.5(a) a single mass is attached to big clusters (represented by

the shaded area) with four weak springs of strength Vw which we can al-

ways assume to be one. The vibrational frequency is simply E = 4 for

four neighbors in the 2d square lattice. In Fig. 3.5(b) each site has

four springs and there is one spring between the two sites so the

secular equation can be written as
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= 0 (12a)

Equation (12a) gives eigenvalue of E = 3 and E = 5. In Fig. 3.5(c) two

masses, connected by a massless infinite rigid spring, give a frequency

of E = g = 3. Configuration such as one shown in Fig. 3.5(d) gives a

secular equation

-1 4 - E -1 = 0 (12b)

  

which gives eigenvalues of E = 4 - l2 , 4, 4 + /2. Fig. 3.5(e) gives a

frequency of E = g = 2.67. Of course we can go on to exhaust all pos-

sible configurations and obtain the corresponding eigenvalues. However

the above local vibrational modes are enough to explain the sharp fea-

tures in Fig. 3.3 at frequencies E = 2.6, 3, 4, 5, 5.4. The relative

heights of the peaks are related to the relative abundances of these lo-

cal vibrational modes which can not be estimated by a simple argument.
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Fig. 3.5 EHagrams showing the vibration modes of 'pockets' in 2D. The

solid lines represent rigid springs and the dashed lines repnesent soft

springs. The shaded areas represent infinite masses.
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Similarily the maJor peaks in 3D case (seeiFig. 3.4) can be ex-

plained in a similar manner. For example, Fig.3.6(a) gives E = 6 for

six neighbors in 3D simple cubic; Fig. 3.6(b) gives

  

6-E -l

-1 6-E :0 (120)

which yields E = 5 and E = 7; Fig. 3.6(c) gives E = 1% = 5; Fig. 3.6(d)

gives

6 - E —1 0

-1 6 - E -1 : 0 (12d)

0 -1 6 -E  

Idiich results in E = 6 — J2, 6, 6 + J2; and Fig. 3.8(e) gives E = %fl :

4.67. So peaks at frequencies 5, 6, and 7 can be explained. Again the

relative heights of the peaks depend on the relative abundances of dif-

ferent modes. We also notice that the relative frequency differenc/es

form secular equations in 3D is smaller than those in 2D. Therefore

the frequencies in 3D are more close to each other and evenly dis-

tributed which results in less spiky spectrum than in the 2D case.



Fig. 3.6 Same as Fig. 3.5 except for 3D simple cu bic lattice.

 

143



11m

111 Scaling Arguments
 

The scaling argument for 8 is given below following the ideas

developed for the dilute case.7’8 It is easiest to use the language of

phonons, i.e. vibrations on a network of normal and infinitely rigid

springs. The results apply equally well to any system described by the

tight binding Hamiltonian (1) with the probability distribution (6).

Close to pc and for systems of size L much greater than the correlation

length i ~(pc-p)-v we expect the system to appear homogeneous with an

effective elastic modulus Y ~ (pc-p)'8 where s is the superconducting

exponent. Because the system is fully connected, all sites contribute

to the inertia in the long wavelength limit, the total mass M~Ld and

thus the mass density p is noncritical, i.e. it is independant of E.

The low frequency excitations are phonons with a sound velocity

02(g) ~ Y/p ~ gS/” . (13)

For wavelengths l~§ the fractal structure of the lattice becomes

important. The excitations are no longer phonons and we have a fracton-

phonon crossover. The crossover frequency is given by

(A) ~£££l ~ E-(Z "' S/V)/2 . (1”)

co g

Using a Debye type theory we can write the normalised density of states

for the phonons as
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d

p(o) ~ C(g)’d (£3) od" /Nf . (15a)

To alltnv for the fracton-phonon crossover we introduce a scaling func-

tion h(m/mco) into (15a) and obtain

d-
d

1
) w h(w/mco) /Nf . (15b)p(m) ~ cm'd {-3,-

For d.3 2, f is noncritical and so the critical behaviour of p(m) is

-ds dS/V

p(w) ~g21) wd-l h(g ) ~ wCOZ-S/V (dd-1 h(lfi )) (16)

CO CO

where we have used (13) and (14). In the low frequency (phonon) regime

x = ”/wcoi<<1 and h(x) + constant, so that p(w) ~ md-1 as expected. For

m > ”00’ the fracton regime, we rewrite (16) as

- ds/v

2d 2-s/v
 -1 ~

2-..). i3 l he wad“ r(-“1 1 mi
woo woo woo

p(w) ~ w

ds/v

- 2 - s/v

where r(x) = x h(x) is expected to tend to a constant for large

x because p(m) should be independent of g or equivalently of “co in this

limit. Equation (17) defines the spectral dimension,

~ _ 2d
d---——-2_s/v (18)
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We have discussed scaling relations for vibrational modes. Exactly
 

parallel arguments can be made in all dimensions for tight binding

Hamiltonians where E ~ me ~ 02k2 leading to

 

 

g(E) ~ E . (19)

Comparing Eq. (18) with the result for dilute systems Eq. (11), we

notice the following differences.

a) The numerator involves d rather than a. The excitations in the

superconducting case can explore the whole system whereas in the dilute

case, Eq. (11) is obtained for excitations on the infinite cluster. If

the finite clusters are included in the dilute case6 the d is also re-
 

placed by d in Eq. (u).

b) The conductivity exponent t in Eq. (11) is replaced by the su-

perconducting exponent -s in Eq. (18).

c) The exponent B does not appear in Eq. (18). In the dilute sys-

tem, the probability of being on the infinite cluster scales as (p -

pc)8. In the low frequency dynamical response of the infinite cluster,

this is the inertia term and appears in (14). In the superconducting

system, all sites are connected and so contribute to the inertia which

is independent of p.

Good estimates of s/v for 2D and 3D are given in Ref. 18. Using

s/v = 0.977 :t 0.010 and 0.85 t 0.011 in 2D and 30 respectively, gives
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a = 3.91 2 0.014 in 2D and '5 = 5.2 1 0.2 in 3D. This is in good agree-

ment with our results in 20 and reasonable agreement with our results in

30 where the numerical results are less accurate because the lattices

had smaller linear dimensions.

The agreements between the predicted values of d and the computed

ones is of course evidences for the existence of the cross-over scaling

hypothesis. He now use the scaling property of the system to obtain the

best value of 3. By using the equivalence of E ~ m2, equation (17) can

be written as

5/2 -1
g(E) : E r(E/Eco) (20a)

where r(E/Eco) is the cross-over scaling function and

(2-s/v)v2

co “’co lp - pcI (20b)

Eco is obviously different for different p close to pc. For different

p, g(E) vs. E curves are expected to be different. However, if we res-

cale the E axis by 1'/Eco then all curves g(E) plotted against E/Eco for

different p's must fall into a single universal curve if the scaling

hypothesis exists. From equation (20a) we can see that if we divide

g(E) by Ed/2 ’1 we will get the scaling function r(E/Eco). Since the

p's are away from pc we expect some phonon excitations in the density of

states curves. In the anomalous region, g(E) ~ BC“2 ‘1, so the scaling
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function r(E/Eco) has to be a constant in that region in order to have

the correct g(E) ~ E d/2 '1 behaviour. 0n the other hand, in the

phonon region g(E) Ed/2 '1 so r(E/Eco) has to behave as

-ds/v

(E/Eco)2(2-S/V) . Therefore we can write

constant E > Eco

r(E/Eco) ~ -ds/v (200)

(E/E )2(2'3/”) E < E
co co

For convenience we define

y = 5/2 - 1 (21a)

and x = (2 - s/v)v (21b)

so equation (20a) and (20b) become

_ y
g(E) - r(E/Eco) E (223)

x
Eco - Eolp - pcl (22b)

In Fig. 3.7 g(E)/Ed/2 '
1_ .
- r(E/Eco) is plotted vs. E/Eco using the best

values of x and y for p = 0.1175, 0.1180, 0.1185, 0.1190 and 0.1195 where p0

= 0.5 is the percolation threshold for the 2D square lattice. It can be
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seen that all curves fall into a universal curve extremely well. The

procedure of obtaining the best values of x and y is as follows: we

first plot g(E)/Ey vs. E/Eco by using rough estimates of x and y, so

curves scatter a little bit. Then we fine tune x and y so that all the

curves fall into a universal curve. The best values of x and y are

1.37 1 0.03 and 0.95 I 0.03 respectively. Therefore from (21a) we

obtain a = 3.90 t 0.06. We see that this value ofd is closer to the

predicted value of 3.91 i 0.04. The previous method of obtaining d is

simply measuring the slope of log - log plot of low frequency part of

spectra at percolation threshold and basically it only uses the informa-

tion at percolation thershold. Clearly the latter method of extracting

a is better because we have more information and we can fine tune the

«mirves to result in the best value of 3. However, this method requires

much more computer time. In 3D case we can not get as good results as

in 20 because the system sizes are not large enough to produce smooth

curves for different p's, but it can be done easily by using a.

supercomputer.
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TABLE 3.1

d 5 (This work) 5 = 2d/(2 - s/v)

2 3.90 i 0.06 3.91 z 0.0“

3 5.8 1 0.3 5.21 1 0.2

 

Table 3.1 Comparing the spectral dimensionality 5 obtained directly 111

this work with the scaling relation (18). Values of s/v are taken from

Ref 18.
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Fig. 3.7 r(E/Eco) is plotted against E/ECO for p = 0.975, 0.H80, 0.U85,

0.M90 and 0.995 where p:0.5 is the percolation threshold. It shows good

scaling behavoir.
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IV. One Dimensional Case

The scaling in 10 is rather different because f = (1 - p) ~ E-1 is

critical. We start with the Debye form for the integrated density of
 

states (See Eq. (15)).

1(u1) ~§ C(gl’d (ald de[£- ] (23a)

00

Setting d = 1 and keeping only the critical terms we have

1 E.

- 2v m
In») ~g m 11(5—1

CO

~ if; I Hifi’; 1 (23b)
00 CO

~ Rtfi 1
00

where R(x) = xH(x) is expected to tend to a constant for x large. In

this limit we have I(w) ~ md which leads to d = 0 in 10. This result is

expected because in the limit p = p0 = 1 we have a perfect superconduct-

ing,chain which is completely rigid and thus has only one degree of

freedom. This can be considered as a zero dimensional object for which

5 = d = 0.

In 1D there are still excitations associated with rigid clusters of

length less than g. Because the probability of neighboring clusters
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having the same mass M is small, we can treat each cluster as an

 

Einstein oscillator of frequency m2 = 51'. The probability of a cluster

having mass M is

M-i
P(M) = (1 - p) p (293)

where we have chosen the mass of a single site to be one, so M is an

integer. The density of states

P(M) lgfllp(w) m

80

E 3
»

M-1
9) p v

 

p(w) = (1

2

= (1 - p) p(2V/m '1) 5% . (Zub)

0.)

For (1-p) small, we can write p Z e-(I-p) and thus

1 - 9 e-2V(1-p)/m?_51
p(w) : p

m

which to leading order in (1-p) gives

p(m) = “V(1-p)/m3
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or equivalently in tight binding language

2
g(E) : 2V(1 - p)/E . (24a)

The exponential can be replaced by unity as there are other terms 0(1-

p)2 that we have neglected in deriving Eq. (240).

This result is special to 1D. In higher dimensions if we tried to

consider the superconducting clusters as Einstein oscillators they would

have a frequency

2 niV

mi = i— (25)

i

where ni = Z "ii is the number of surface bonds connecting cluster i to

Hi

other clusters bonds and M is the mass of the i cluster. However, for
1

n1
superconducting clusters we find numerically that H— ~ constant of order

i

1, unlike in 1D where n = 2 always and H can take any value. In 1D,
i i

the likelihood of having two adjacent clusters with the same mass, and

hence the same frequency, is small. Therefore the modes do not

hybridize and remain localized with d = 0. However for d 12, the

likelihood of adjacent clusters having the same Einstein frequency is

high, as all the heavier clusters have essentially the same frequencies.

Therefore the Einstein modes from the heavier superconducting clusters

hybridize forming extended low frequency modes with 3 > 2.
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In 1D we cannot do simulations at pc = 1 so we have worked at small

(i-p). For frequencies u1< «$0 or equivalently for wavelengths

A > g ~(1-p)"1 which is the typical length of a rigid cluster, we expect

phonons with a constant density of states

-1

p(w) ~ C(p) /f‘ . (26)

Because the linear chain Just involves adding springs in series in the

static limit, we have

1

————- (27)

/V(1 - p)E

g(E) :.%;

In Fig. 3 .8 we have plotted p(m) against 1» [or equivalently

(fl? g(E) against JE] for p = 0.9, 0.99 and and 0.999. The results were

obtained from chains of 20000 clusters (Nf = 20000) using a transfer

19
matrix technique. The results have been rescaled by plotting /E(1-p)
 

g(E) against i/E/(i-p) to show the scaling behavior. In Fig. 3.9 we

have plotted JE g(E) against JE for p = 0.999 and the two limiting

-1

curves JEg(E) = [2n/V(1 - p)] and ng(E) 3/2
2y(1-p)/E for low and

high energies respectively.
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Fig. 3.8 The density of states for a Hmukm1linear chain of SUpercon-

ducting and normal bonds of p = 0.9, 0.99 and 0.999. The results are

rescaled as indicated to show the scaling behavior. The energy is in

units where V = 1.
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The linear chain results for p = 0.999 and the two limiting

(2") and (27), are shown. The energy is in units where
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V Conclusions
 

He comment on our results compared to previous work on the

"termite" diffusion problem. Alder et al.10

<r2> ~ tk with k = 1+s/[2v+(t-B)] which, using‘d = kd is at variance

have predicted that

with our results. However it has been pointed out previously that this

result is wrong 12 and Hong et al.11 argue that there is no regime where

<r2>~tk because (r2) is dominated by diffusion on the superconducting

clusters. Random walks on the superconducting clusters are related to

eigenstates in the high frequency band which we are not considering.

The lxnv frequency states in which we are interested are related to ran-

dom walks on the normal clusters and their dependance on the normal-

superconducting interface. These walks were studied by Coniglio and

Stanley‘?0 who used scaling arguments to find (r2> ~ tk with k : 2/(2-

s/v). Using 3 = dk this agrees with our equation (18). It is

appropriate to use d = 3k because the number of sites on normal clusters

is not critical. Numerically, it would be very difficult to focus on

these walks and exclude the random walks on the superconducting cluster.

In summary, we have evaluated the density of states of random su-

perconducting normal networks at the percolation threshold and found the

spectral dimension d which governs the low frequency density of states.

Our values of 3 agree very well in 2D and reasonably well in 3D with our

predictions for 5 using scaling theory. In this problem, as in the ran-

dom resistor network problem, a is also related to anomalous diffusion

but in contrast to the random resistor network problem, it cannot be ob-

tained from numerical simulations of random walkers.
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APPENDIX I

Elasticity of Pure Honeycomb Lattice

The elastic moduli of model (8) in part II of this thesis is

derived below. Without any dilution (i.e. perfect lattice case) L1 = L

J

, the lattice spacing, and K11 = K. To avoid any confusion we change

uiJ to 911 taureserve the notation u for x component of fiij' The elas-

tic energy can be written as

v = g X K(L - L0)2 + X K(L — L0) (fiiJ-riJ) +
(13> <13)

1 2 ‘ 2

+ 2 <§J> K{(1 — 1.0/LNiJ + LO/L (fiiJ riJ) 1 + ... (1)

As mentioned in the thesis the strain energy can always be written as

1

S * 2 Z CaBYI EQBEY‘I (2)

where 308 are the elements of the stress tensor and 00871 are the second

order elastic constants which are directly associated with the elastic

moduli. The quantity 608 is called the strain and defined by
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EU

2 = -—9 a B = x y
08 3x ’ ’

B

where ”(1 and x8 are the components of samll displacement 61.1 and posi-

tion F. In two dimensions

E -29. ,3 .22
xx ' 3x yx ' 3y

.- -21 E -21
xy ‘ 3x yy ' 3y

If x and y are the x and y components of the distance between site i and

J then it is conventional [see Kittel] to define the uniform displace-

ment fiij in two dimensions as

So

u = xexx + yeyx (3a)

v = xe + ye (3b)
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(3a) and (3b) are the uniform distortion on a Bravais lattice when a

small force is applied.

Now let us put a small force on the frame which holds the springs

of a honeycomb lattice. As discussed in the thesis the displacements

(i.e. the distortions) between any two nearest neighbor sites of the

sublattice A and sublattice B [see Fig.2.2] can always be written as

u = xe + ye + u' (9a)

v : xe + ye + V' (9b)

where x and y are the x and y components of the distance between two

sites. Qantities u' and v' are the relative shift of the two sublat-

tices in the x and y directions and can be determined by minimizing the

elastic energy (1).

In Fig. 2.2 the three neighbors of site 0 are labled by 1, 2 and

3. If the coordination of site 0 is chosen as (0, 0) then the coor-

dinates of 1, 2 and 3 will be

0: (0,0) 1: (J13 a, - ga)

2: ( 2 a, - ga) 3: (0, a)
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where a is the lattice spacing. So the relative displacements of site 0

to site 1, 2 and 3 will be

- B. a .
U01 - 2 aexx + ény+ U

v =13 a e + as + v'

01 2 xy 2 yy

u = - 13 as e + u'

02 2 xx 2 yx

£3 a .
v02 - - 2 a Exy + 2Eyy + v

u03 = - aeyx+ u'

- _ 1
vO3 - aeyy+ v (5)

If we take the parallelogram in Fig. 2.2 as a unit cell then the elastic

energy per unit cell for perfect lattice can be written as
 

0 -
1

1

V _ V0 + 2NdB [2(J3 ”01 + V01) + é(-/3u02 + V02) - V03) +

+ N I 8(u 2 + u 2 + u 2 + V 2 + v 2 + V 2)
d 2 01 02 03 01 02 03

2
+ 31 &(/3 u01 + v01)2 + &(-/3u02 + v02) + yogi} (6)
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where B = K(1 - LO/L) and a = DO/L. W) is just the static elastic

energy independent of 61.1. In (6) we have also used r

A A

01’ r02 and r03

which can be easily calculated. Nd in (6) is a constant which is as-

sociated with the area of unit cell. Now we minimizing the elastic

energy (6) with respect to u' and v' i.e.

3V
55] = 0

(7a)

3V _
and 5;, — 0 . (7b)

Substituting all equations in (5):hux>(6) and solving (7a) and (7b) we

obtain

 

 

a(£yx - Exy)

“ ' 2(2a+B) ‘83)

1 0(Exx - Eyy)

V ‘ ' 2(2a+B) (8")

Now substituting (83) and (8b) back into (6) and compare (6) with (2)

which can be written as

V - S E + S E + S E + S E +

xx xx yy yy xy xy yx yx

Cxxxx 2 2 Cx x 2 2
--- (E + ) -l-l(€ + E ) +E + C E E +

2 xx yy xxyy xx yy 2 xy yx
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C e e , (2')
xyyx xy yx

it is straight forward although a little bit lengthy to show that

_ _ _ B _ _ K

T - SXX - Syy -/§ - (1 U)/§

 
 

 

c _ c _ a2 + 5aB + 932 _ u ‘ 3" K

xxxx ' 11 ' 2/3 (28 + a) ' 2 - n 273

c _ c _ a2+ aB _ __g__ x

xxyy - 12 ' 2M; (28 + a) ' 2 - n .273

 

  

c _ 5 _ 932+ 3aB _ (1 - x

xyxy ’ 99 - 275(28 + a) ' 2 - n '273

- - GB _ (9—nl(1-n) K

nyyx ’ Cuu ' 2/§ (23 + a) ' 2 - r1 273‘

In the second column above we have used the conventional notation C

xxxx

= C11’ cxxyy = 012, nyxy = C99 and nyyx = C99° In the fourth column

we have used a = Kn, B = K(1 - n) and n = LO/L. We have also considered

the sysmmetries of the honeycomb lattice to reduce the number of inde-

pendent elastic constants.
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APPENDIX I I

Percolation Thresholds of Stretched Spring Model

on Honeycomb Lattice

We give a derivation of the percolation thresholds p for the stretched

spring model in part II of this thesis.

The method here is the same as that of Tang and Thorpe but it is

genralized to the honeycomb lattice which is a no-Bravais lattice. A

honeycomb lattice is composed of two interpenetrating triangular

sublattices. We start by writing down the forces on the sublattice A

and sublattice B. [see Fig. 2.2] Using the elastic energy (8) in part

II of this thesis we have

AA = - gr?“ = - 3 g (GA - 65) - (1)8 [(EiA - 58).;A51;A5 (1a)

#8 = - 3&3 - 3 g (uB - as) - (1% [(6B — 68).},3511338 (1b)

Here the subscripts A and B are used to denote the quantities of sublat-

tice A and B respectively and the symbole 8 is used for nearest

neighbors of A and B. Now substituting the Fourier transformations of

displacemnets and forces



into (1a) and (1b) and

have [for each k]

where

Ak

Bk

Ak

Ak

C
1

3
’

l
l

Z
l
—
b

W
M

H
»

D

1
1

Z
l
—
s

W
M

"
2
1
6

w

11

Z
I
—
n

W
M
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(2a)

(2b)

(3a)

(3b)

writing the results in the matrix form we will

- DAA(k)uA

- DBA(k)U

Ak '

’ DAB(k)uBk

DBB(k)uBk

Bk

Bk '

(9a)

(9b)
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Here the superscripts x and y denote the x and y components. Subscript

  

k denotes the kth Fourier component. 2 X 2 Matrices DAA’ DAB’ DBA and

DBB are the following.

D _ 3(a + 2B)/2 o D _ 'a1 ’a2

AA ' 0 3(a + 23)/2 AB '
-a -a

a a

D - ’ai '32 D _ 3(a + 2B)/2 0

BA ’ * * BB ' 0 3(a + 2B)/2

-a -a
2 3 . .

ik1/3a 3 ik2/3a 3 ik1/3a + ik2/3a

and a = Be + (B + a)e + (B + a)e
1 9 H

a - a“; eik2/3a (1 - eik1/3a)

2 ‘ H

ik /3a ik J33 ik /3a + ik /3a
a 2 a 1 2

a3 :(a + B)e + (B + a)e + (B + 9)e

n

where a is the complex conjugate of a and a = KL /L, B = K(1-LO/L). k
0 1

and k2 are the k's components in the 61and 62 directions. [see Fig. 2.2]

From (9a) and (9b) we can solve uAk and uBk in the following fOrm

D-1F - D F — (—D"B + 0‘10 )u (5a)
AB Ak BB Bk ' AB AA BB BA Ak

1F D F = (-D
- 1

AA Ak ‘ BA Bk
"B + B‘ D

D AA AB BA BB)uBk
(5b)
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By defining

-1
A - DAB (-D

-1-1 -1

ABDAA+ BB BA)

-1

BB

- -1 -1

('DABDAA* DBBDBA)

(6)

-1 -1

AA (‘DAADAB* DBA BB)

0 n U

-1 -1 -1 -1

BA ('DAADAB* DBADBB) '

D n :
3

(5a) and (5b) can be written as

UAk : AFAk + BFBk (7a)

uBk : CFAk + DFBk (7b)

Here symbols for matrices A, B, C and D shold not be confused with the

subscripts.

After removing a spring the two sites move along the direction of

the missing;spring (see Fig. 2.9). In order to calculate the effective

spring constant of the resulting network in this direction one needs txi

pull the two sites back along the same direction. So the net force is

A

in the direction of unit vector rAB‘ Thus



13A5 f rABSAa (8a)

F35- r 'BA5B5 = —r ”A3535 (8b)

The Fourier transformation of FAk and FBk are

ik-R

fiAk = X PAse A6 (93)

6

ik-R

er . z is“. 35 . (9b)
5

Substituting (7a) and (7b) into (2a) and using (8a), (8b), (9a) and (9b)

we have

’ 1 ik-RA *

uA ‘ R E 8 ”AK

iE-A -iE-B -iE~A .
_ f A A B
_ N {X e (Ae - Be ) rAB (103)

k5

Similarily

1kofi -1Eofi ~1koR .
+ f B A B
uB - n g e (Ce — De ) rAB (105)
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$0

+ f “ AB ‘
éuAB - rAB.(uB - uA) - fl Eg rAB[-(A + D) + Be + Ce ) ]rAB

In the summation

RAB = R8 and rAB : 0
0

Therefore following Tang and Thorpe

, iE-AAB -1EoAAB 1

lp = a = 2%; {X Tr {551-(A + D) + Be + Ce (12)

k6
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We compute the spectral dimensionality 3 of random superconducting-normal networks by

directly examining the low-frequency density of states at the percolation threshold. We find that

a? -. 4. HO. 2 and 5.8 l 0.3 in two and three dimensions, respectively, which confirms the scaling rela-

tion d=2dll2--s/r'). where .r is the superconducting exponent and v the correlation-length ex-

ponent for percolation. We also consider the one-dimensional problem where scaling arguments

predict, and our nunrerical simulations confirm. that a .-.-0. A simple argument provides an expres-

sion for the de'nsity of states of the localized high-frequency modes in this special case. We com-

ment on the connection between our calculations and the "termite" problem of a random walker on

a random superconducting-normal network and point out dilllculties in inferring d from simulations

of the termite problem.

I. INTRODUCTION

1 he question of dynamics on dilrrte random systems at

the percolation threshold has been the snbi'ect of consid-

erable attention in the past live years." The infinite

cluster at percolation is a fractal, so that the excitations

are qualitatively diiTcrent to those on a regular Euclidean

lattice and are governed by an additional dimension, the

spectral dimension :7.” liccause of the similarities be-

tween the dillusion equation and the equations of motion

for a system described by a tight-binding Hamiltonian (or

an elastic Hamiltonian) it is clear that there are two ap-

proaches to evaluating (7.

()nc approach is to examine the Ionifrcqrrency dyrrorrri-

col response of the system described by the llamiltonian

. t l

(1.))

where the I". are randomly distributed on the nearest-

nrighbor bonds according to the probability distribution

rrr;,1~p5(r-'_r,,) (11416113,) . 121

and we restrict the sum to sites on the infinite cluster.

The 0,. a,’ are eitirer llose or Fermi operators (the results

are the same when only one particle excitations are con-

sidered) amt the diagonal term is present in (I) to

preserve translational invariance. 'l’lris dilute tight-

bindiug llamiltonian describes the physics of several

dill'crcnt random systems; dilute magnetic systems, ran-

dom resistor networks, and random scalar elastic net-

works. liy scalar elasticity we mean for example dis-

placements perpendicular to the elastic network. The

lmv-frequcncy density of states at p, is predicted to

behave as

gtI-Ii~ 1;" 4'”. (.1)

where J is the spectral dimensionality that can be ex»

pressed :rs' I

37.

= ___-e_._
(o

and t is the conductivity exponent. The quantities I} and

v are the geometric exponents“ which govern the proba-

bility of being on the infinite cluster. and the correlation

length, respectively. The [racial dimensionality is

J=d ——/3/v. Direct numerical evaluation of the density

of states in two dimensions' on dilute spin systems has

-coniirmed Eq. (4) and that d is close to t which Alex-

andcr and ()rbach' have conjectured to be the value of d

in all dimensions except one dimension t 1 l1).

An alternative approach is to study the anomalous

dillusion of a random walker on the infinite percolation

cluster. Scaling argumentsm" suggest that the mean

square displacement (r’) scales with time as

(r’)~r* (51

and

where t. B, and 1' were defined previously. liy relating the

probability of return to the origin with the density of

staies,‘ one obtains r7 =r7k in agreement with liq. (4).

Numerical simulations of random walks on dilute sys-

tems are a good indirect way of obtaining the spectral

dimensionality :7 using liq. (S) and the relation (7:417.

Valrre old obtained in this way" agree with direct simula-

tions‘ of the lmv~lreqncncy density of states at pr.

'l‘hc randomly dilute problem discussed above can be

considered as a random system of strong boruls l', and

weak bonds 1'", in the limit 1", —- i’, l',,.—-~t). ‘lhc other

limit, V, ~ em. l’m-il’. is also of considcrablc interest

and is ilrc subject of this article. It would describe a ran-

dom superconducting network or the elastic properties of

49.10 (€1l988 'l Ire American Physical Society
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a system with rigid grains weakly coupled by soft springs.

lo the general problem. the density of states is divided

into hands: a highlrcqueucy banrl associated with inter-

nal modes of the clusters of strong homls and a Iow-

frean-ncy baud associated with viluatiorrs of the sott re-

gions. In the limit I’wurll, V,—»I', the low~frcquency

band bccorrres a 5 function at the origin and the spectral

dimension describes the low-frequency edge of the high-

lrcanney hand. In the limit I’, ~> l’, l’, -.. on, the high-

frequency band is driven off to infinity and the 6 function

broadens ‘I here will be a different spectral dimension as-

sociated u itlr this low-frequency edge.

In diffusion language. the superconducting limit is the

problem of ternrite diffusion. which Iras been the subject

of considerable work'" ti and sonrc controversy. In

"i ll“ iple. it slrorrlrl provide irrforrrratiorr about the density

of states amt the spectral dimension of for the problem bill

in pram-tire this is not the case because the ramlorrr walk is

completely dominated by the distances rrrovcd on the su-

pereorrrlrrerrng clusters. As has been pointed out by llong

et of. " there is no region where (r’) ~t‘ because even

at time 7cm. (r’) ~ ‘6’ n". the average radius of the su-

'rr'rr'ntttlttt‘littg clusters. 'I Ire low-frequency excitations

we are interested in are associated with the small, time-

dependent contribution to (r’) superimposed on the

rliverpent _U "“1 ('learly this is impossible to obtain nu-

merically and we therefore believe that direct simulations

of the low frequency response is the best way to evaluate

the sper tral dimension.

II. IIENSI I Y OI’SI‘A I IsS

In this paper we obtain the density of states. arnl hence

the spectral dimension d for the srrperconrlrrr-tr‘rrg (use.

llre system is described by the llanriltorriarr lll brrt with

the interaction strength distribrrtiorr

I't l'”) ‘pfil I", .- r") I II plbf V~ "'I‘ , I6)

uhcre l‘. er} itt the superconducting limit. 'I he equa-

tions ot motion for the llarrriltorriarr (ll are

I‘f‘

I“ “If " Z'IIH'I "4",, (7,

f
f

u here the r, arc the amplitudes of the “use frrrrctiorr on

the l site.

luo sites I. arrrl I. connected by a hood I", '2 m. have

the some amplitudes so that r, -.c, can he considered as a

single srte of ruass 2. 1 his process is repeated for all so-

percorrdrn ting borrrls so each snpcrcondrrr ting cluster has

one deprce of freedom and a rrrass M equal to the rrrrrrrbcr

of sites in the cluster. We consider a site connected to no

superconducting bonds to be a cluster of sire l llre

equations of motion for the clusters so rletirred are

MM, 't --- Z I'nufr-t --~r,l , till

I

I

where AJ are now rlnstcr indices and n“ is the total

number of normal bonds between the Ir and the Icluster.

lly defining trlf‘ ”we, erg. we have the Iferrnr'tr'rm equa-

tion of rrrotiorr
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'* '” “’Z-Z‘Z;I a (9)

which we solve numerically using the equation of rrrotiorr

leclrnique.‘

if the original system lras N sites. there are only Nf

clustersH so we have reduced the rrrrrnbcr of degrees by a

factor of I. For smallp

fr|_.zf"... . (Ill)

2

where z is the rnrrrrber of nearest neighbors. Note that f

decreases to a very small value at m. In the square net

and simple cubic lattice we find it is 0.098 and ".27. re-

spectively." 'l‘lrus setting I", strictly eqrral to infinity

reduces the ell'eetive’sizc of the system, especially in II).

although tlrete is sonre initial tirrre cost in identifying all

the clusters. 'I his advantage cannot be arhreverl by set-

ting f’, large and taking a limiting process. Note also

that f is finite at pr for d _> 2 brrt it is zero in II) which

affects the sealing argrrmcrrts for d as we discuss later.

the equations of motion were integrated forward in

tirrre from 0 . 1' using standard methods. H 'I Ire first few

points were obtained using a fourth-order Runge-Kutta

algorithm and subsequently a fourth-order Adams in-

tegratiorr scheme was used. "' ‘l he density of states glffl

is obtained from l’ourier transforming the result of the

time integration,

. i "' o r'r

sir-.1: ii}. 23M, f” mm. (file'rft. on

This integral is converted to one over positive times

only. " Random phases" are put on the elrrsters so that

only the ou-site terms required in It It are retained in the

limit of a large system. 'I his is a standard way to obtain

densities of states in the cqrration rrl rrrotiorr technique.

In Fig. l we show results for the square lattice at

 

   

p, -.- ;. the results are from averages over 25 sarrrples of
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lilti. l. ‘Ihe density of states for a random square lattice of

superconducting and rmrrrrnl bonds at p, ~ : ‘l he insert shows

the low-energy data on a log-log tbase lftl plot, llre straight line

drawn is a least squares fit to the data points shown from which

d is obtained via liq HI. 'I Ire energy is in nrrits with l' -. l.
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4‘”?

Ion -' ttttt networks. ltecausc of the reduction in size due

to the I factor only ~ ttltltl anrplitrrdcs had to he rnorri-

torcd. the insett.shows a log log plot at low lrcqucuces

“ltlr'lt gises a slope ot' l.tlS t tl.t leading to rl: it till

horn liq Lil. ln Hg. 2 we show sirrrilar results for the

simple crrhic latticefl at p. - 1124'”. the results are tronr

rut-rage over 2‘ samples of It X22.-£2l networks. He-

came of the reduction due to the f lactor only ~2lttltl

amplitudes had to he nronitored. 'l he insert shows a log-

log plot at low frequencies wlrictr gives a slope of

I ‘t I H, t5 arnl hence cl .2 5.8 t it. .t. We exaruirred a single

sample with about to tirrres as rrrarry sites in truth 2|) and

ill amt found no significant changes in the values of il.

l he sharp features at higher energies in Figs. l and 2 will

he discussed in a subsequent puhticatiou. H

lll. SCAHNG ARGllMliN'l’S

the scaling argument for (l is given trelow following

the ideas developed for the ditrrte case.U It is easiest to

use the language of phonons. i.e., vihratious on a network

ol rrorrrurl and irrlirritely rigid springs. The resrrlts apply

equally well to any system descritred by the tight-binding

ltaruittouian ill with the probability distribution (6).

(.‘tose to p. amt for systems ot size I. much greater than

ttre correlation length g ~lpr ——pl' ' we expect the system

to appear homogeneous with an ellective elastic modulus

t' - tp‘ — pl ' where s is the superconducting exponent.

tlecause the system is fully connected, all sites contribute

to the inertia in the long-wavelength limit, the total mass

M -- I. ‘ and ttrrrs the mass density p is noncritical, i.e., it

is independent of g. 't he low-frequency excitations are

phonons with a sound velocity

t."t§l~t'/p~§"". tl2l

lor wavelengths X~§ the fractal structure of the lattice

he. oures irrrportarrl. The excitations are no torrger plur-

Irons and we have a fracton-phonon crossover. 'l'he

crossover lrequency is given hy

(’t l .
(it ~ —..§.~§ l2 slit/2.

(l3)

é
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I lti. 2. Same as Fig. l except for a simple crrhic lattice at

r, ll 24'”. the insert shows the low energy data on a log log

tlr.r'.c till plot. 'l he energy is in units where l' : l.
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Using a Dchye-type theory we can write the rrornralired

density ol states for the phonons as

r!

2!?" ..." '/~/.

'lo allow or the fracton phonon crossover we introduce a

scaling function lr tar/cowl into (N) and otrtaiu

cl

1.

I’llrll‘Clgl d 2'" "l" 'hlltl/ltl",

Irlml~ ('tgr " on

t/Nf. usr

l-‘or cl 2 2, f is noncritical and so the critical hehasior ol

ptml is

(ll

pilots; “Wm." 't.

",I 0

w
’1: It 2r- - slmd ”I “_a_

ll6l

(cl

~(

(I!

where we have rrsed (Ill amt (H). In the low-frequency

(ptronorrl regime x =ar/mm << I and Ir txl- oconstant. so

that p(ml~m" " as expected. For ar>nr the tractorr

regime, we‘rewrite US) as

 

wJI/lh-ll

(0 ur
p(a”~wllll/‘I~I/Vl-l ...... h _—

a)“ (0,",

- (ll

Ma" 'r . rm
(0",

wtrere rtxl=x “"""“"lrtxl is expected to tend to a

constant for x large because ptmt should be independent

of g or equivalently of to", in this tirrrit. Equation tl7l

detines the spectral dimension,

tl8l

We have discussed seating relations for vibrational

modes. Exactly parallel arguments can he nrade in all di-

rrrensiorrs for tight-binding llmniltoniunr where

15' ~ ml - elk ’ leading to

gtlil~ Is" "’1. on

Corrrparing liq. (lit) with the result for dihrte systems

liq. (4). we notice the following dill'erences.

(a) The rrrrrrrerator involves «I rather than (7. ‘l he exci-

tations in the superconducting case can explore the whole

system whereas in the ditrrte case. liq. t-tl is ohtairred lor

excitations on the infinite cluster. It the finite clusters are

included in the dilute case.“ then (7 is also replaced by rl

in liq. t4).

ltrl The conductivity exponent t in liq. Ht is replaced try

the srqwrconductirrg exponent - s in liq. ttttt.

tcl 'l tre exponent I! does not appear in liq ttttt. tn the

dilute system. the prohahility ol' treiug on the irrlirrite clus-

ter scales as in p. l". to the low-[requency dyuarrrical
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TAlll F. I. Comparison of the spectral dimensionality :7 ob-

tained directly in this work with the scaling relation. Values of

s/v are taken from Ref. t8.

M .7---__.fi.—_s ”-.--.. -. .._~_._..+._._....-«._..._—__ .
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I 1

response of the infinite cluster, this is the inertia ternr and

appears in (4). In the superconducting systenr, all sites

are connected and so contribute to the inertia which is irr-

deperrdeut ofp.

Good estimates of s /v for 20 and 3t) are given in Ref.

l8. Using s /r'.-.-fl.977.l.0.flt0 and 0.85.t0.f)4 in 2D and

3f). respectively, gives (7 =3.9t_l 0.04 in 2!) anrl

r7:- 5.) t 0.2 in JD. We see from Table I that this is in

good agreement with our rcsrrlts in 2t) and reasonable

agreement with our results in JD where the rrrrnrerical re-

sults are less accurate becarrse the lattices had srrraller

linear diruerrsiorrs.

l\'. ONE DIMENSION: A SPECIALCASE

the scaling in It) is rather different because

I r-(l rl~§" is critical. We start with the Debye

fornr for the integrated density of states [sec liq. IlSl]

2 If mm

or

Itr.rr~-§jct§l"’l!’— lm"11[v"’-l. (20)

Setting if <- l and keeping only the critical terms we have

“""‘-§' """"...Ill 5". l

  

tr)“,

‘ _“l- l" i .9.

Ir)", (rlm

~R 1" l. (2|)
mm

 

where R txl- .vlllxl is expected to tend to a constant for

x large. In this tirrrit we have [lath-tr)" which leads to

rl - ft in II). This result is expected because in the lirrrit

p -p, - l we have a perfect superconducting clrrrirr which

is completely rigid and thus tras only one degree of free-

drrrrr. 1 his can be considered as a zero-dimensional oh-

jcct for which if t-rl PO.

In If) there are still excitations associated with rigid

clusters of Icngthless than 5. lteearrse the probability of

neighboring clusters having the same mass M is srrrall, we

can treat each cluster as an Einstein oscillator of frequen-

cy mi ll'/.tl. the probability of a ctrrster having mass

I" is

PM“ U -/'lp'" '. (22)

where we hare chosen the mass of a single site to he one.

so .t! is an integer. 'l he density of states
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Plft)7’—’p(M) rial" r

(r)

so

)lril“f l l M '36-’2-I t " l’ I’ V

=( I --ptp”"""" “4i, . (23)
trl

For (l—-pI small. we can write [9 ze ” "' and tlrrrs

plmlzi:B-e ~1l'fl-pl/ar’i': '

P or“

which to leading order in f l -- pl gives

plrrrl=4Vl l —pl/rrr“ .

or equivalently in tight-binding language

grrn=2m u-pl/EI. on

The exponential can be replaced by unity as there are

other terms Oil-17)2 that we have neglected in deriving

Eq. (Ml.

This result is special in It). In higher dimensions if we

tried to consider the superconducting clusters as Einstein

oscillators they would have a frequency

rr- l’

("31.-A?" ,
(25)

where n, = 2,” m, is the nurrrher of surface bonds corr-

rrectirrg cluster i to other clusters bonds and M, is the

nrass of the i clrrster. However. for superconducting clus-

ters we find numerically that n,/M, ~const of order I.

unlike in II) where n,=2 always and M, can take any

value. In It) the likelihood of having two adjacent clus-

ters with the same mass, and hence the sarrre frequency. is

snrall. Therefore the modes do not hybridize and rerrrairr

Iocali7ed with (l r-fl. ltowever for rl ,5 2. the likelihood of

adjacent clrrsters having the sarrre liinstein frequency is

high. as all the heavier ctrrsters have essentially the same

frequencies. therefore. the liiustcin rrrodes from the

heavier superconducting clusters lryhridi7e forming ex-

tended low-frequency modes with (l > 2.

to II) we cannot do sirrrrrlatiorrs at p, '— I so we have

worked at srrratl ll-pl. l-‘or frequencies or ("’m or

equivalently for wavelengths A>§~It~ pl ' which is

the typical length of a rigid cluster. we espect phonons

with a constant density of states

[tlml~('lpl '//. rzm

llccarrse the linear chain just irrsnlvcs adding springs in

series in the static limit, we have "

. l
tell-J: --»-> I '-. t27l

2n [hurtful-:1"

In lig. .l we have plotted ,rtml against m [or equivalent-

ly t'lz'gflz'l against \' l-.' I for p "it“. 0.9". and ".000.

'l he results were obtained from chains of 20000 clrrsters



4934

 

p=0.900

pnO 990

pr0.999

[
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(
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two-p)]”

FIG. 1. 'I he density of states for a randorrr linear chain of su-

perconducting aml normal bonds of p :09. ".99, aml 0.999.

The results are rescaled as imlicated to show the scaling behav-

ior. The energy is in units where I' = I.

le :r2fltlflfll using a transfer matrix tee/grimif The

results Ira‘yeébcerLrescalcd by plotting l”l'.’ll-—p)xll'.'l

against V E/ll pl to‘show the scaling bilravior. In Fig.

4 we have plotted Vngl-Il against Vl'.‘ for p =0.99‘)

aml the two limiting curves

v‘Egmzlzm/WITFH '

and

Vl-fgflfl: 2m I flow-"3

for low and high energies, respectively.

V. CONCLUSIONS

We corunrent on our results compared to previous

work on the "termite" diffrrsion problcrrr. Alder et ul.'"

have predicted that (r!) ~ (I with

I.- =-l ls/I2r I-lt -flll

which. using cl =rlk is at variance with our results. How-

ever. it has been pointed out previously that this result is

wrong” and Ilong et al." argue that there is- no regime

where (r’) ~ t‘ because (r’) is dominated by diffusion

on the superconducting clusters. Random walks on the

superconducting clusters are related to eigenstates in the

high-frequency band which we are not considering. The

low-frequency states in which we are interested are relat-
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V
’
E
g
(
E
)

     
FIG. 4. The linear chain results for p :0. 999 are shown as a

solid litre mrd the two limiting forms Eqs. (Ni and (27) are

shown as dashed lines. The energy is in units where l" a: I.

ed to random walks on the rrorrmrl clusters and their

dependence on the nornral-supercouducting interface.

These walks were studied by Coniglio aml Stanley” who

used scaling arguments to lirrd (r1) ~t" with

k =2/(2—s/vl. Using d==dk this agrees with our Eq.

(l8). It is appropriate to use 3=dk rather than «7 =Jk.

because the number of sites on normal clusters is not crit-

ical. Numerically, it would be very ditlicult to focus on

these walks and exclude the random walks on the super-

conducting cluster. '

In summary, we have evaluated the density of states of

random superconducting normal networks at the percola-

tion threshold and found the Spectral dimension r7 which

governs the low-frequency density of states. Our values

of (7 agree reasonably well with our predictions for r? us-

ing scaling theory. In this problem. as in the random

resistor network problem, i? is also related to anomalous

diffusion but in contrast to the random resistor network

problem. it cannot be obtained easily from numerical

simulations of random walkers.
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