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ABSTRACT

IMPROVING DESIGN ASSESSMENT AND SIMULATION

OF LARGE-SCALE DYNAMIC SYSTEMS

By

Tong Zhou

When accurate models of complex large-scale engineering systems are

made, they may involve large numbers of coupled nonlineam'ciifferential

and algebraic equations. It can be both time-consuming and difficult for

the design engineers to get a good assessment of the performance of the

design, especially in a way leading to design improvements. The

objective of this research is to find methods that improve the design

assessment and simulation of complex. large-scale dynamic models,

thereby reducing time spent to gain increasing insight by the engineers.

With respect to simulation efficiency.tfim:problem of implicit R

fields is very important to the bond graph modeling of engineering

systems. Simulation efficiency in such problems may be humeasedinz

reducing the number of iteration variablefix :% new algorithm for

determining the minimum number of iteration variables required in a

model with implicit R fields is presented. The algorithm generates exact

results for implicit R fields containing l-port R nodes and weighted

junction stnunnues (l, O,’TF). An extension is made for causal IRFs

containing multiport R nodes to get the minimum number<fiiiteration



variables. As a further extension the basis order properties of general

junction structures (1, O, TF, GY) were derived by using gyrographs and

a maximum matching algorithm.

To increase insight a new approach to model order reduction and

simplification has been developed in the bond graph framework. A pilot

version has been implemented in software. Power responses measured in

various ways are displayed directly on the bond graph by color coding.

Such a display gives engineers an easy way to see the power

distributions in a large-scale dynamic system under various sets of'

operating conditions. By interpreting this power-based data suitably,

possibilities for model order reduction and simplification can be

identified without detailed analysis or equation manipulation. The power

response data is available for nonlinear models as well as for linear

ones, so the power-based reduction approach may be used for nonlinear

time-varying systems.

The results obtained contribute to the design assessment and

simulation problem by increasing simulation efficiency for certain

classes of models and by increasing the insight about system behavior

available to the design engineers. Further directions of work are

discussed based on the results presented.
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Chapter 1

INTRODUCTION

1.1. Problem Statement

Suppose we have an energy-based structural model (i.e., a bond

graph model) of a large-scale, complex, nonlinear electro-mechanical

system, including its controls. In addition we have a set of nominal

constitutive equations for the energy/power elements and a set of input

functions for the source elements. A simulation can be run to estxflolish

the nominal system response under the conditions noted. We assume that

the response so obtained is satisfactory in terms of required system

performance. This situation represents the nominal design (Rosenberg,

1985).

Now we ask the following question: How much change can be tolerated

in a set of parameters associated with the constitutive equations and

still have the system response meet the performance criterion

acceptably? It is necessary to define an acceptable performance

criterion C quantitatively to attack the question meaningfully. We

assume this has been done in terms of a set of system output variables

y(t).

The most obvious method of attack is to choose a set of values for

a parameter vector P, run a simulation, and assess the resulting y(t)

with respect to the performance criterion C. There is a statistical

version of the problem in which statistics are assigned to the P vector,

and the statistics of y(t) with respect to C are generated. The
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statistical approach is of great value in making cost/benefit analyses

associated with manufacturing and assembly decisions (Prakash, et. a1,

1985).

One deterministic version of the problem is based on worst-case

analysis. We try to find.the lindts on the values for P that push the

response y(t) to the acceptable limits of C. In another version we try

to guarantee that choosing P values with certain boundswdjl meetCZ

acceptably. The first version is the best we can hope to do with a

deterministic approach, given C in an acceptable/unacceptable sense (as

contrasted with a cost function sense). Since setting error tolerance on

performance of many classes of electroqmufimndcal equipment is a common

practice, we will assume that C is stated in an acceptable/unacceptable

sense .

Progress in treating the problem described above will benefit

engineers in discovering and eliminating failure modes characterized by

exceeding dynamic tolerances within the design cycle. Therefore we can

expect to achieve greater reliability and manufacturability of new

products.

1.2 Research Objectives

The particular research objectives are derived from the problem

described above. Given a fairly general class of nonlinear dynamic

systems that are physically (i.e., energetically) based, we expect to

use a numerically-implemented approach, rather than functional analysis,

as the principal tool in improving practical assessmenttxmhniques.

Included in numerical computation are tools for studying thereffects of
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variations in model topology as well as parameter set values<n1the

response y(t) relative to C. The principal goal is to find‘ways both to

reduce computational effort relative to deterministic modeling and to

guide the search for model alternatives automatically.

The main problem of interest, which is related to the efficiency of

simulation, but more concerned with the solution of the system:

equations, is that of coupled.nonlinear algebraic equations that arise

when coupled bond graph R elements exist. The implicJJ: (coupled)

nonlinear algebraic equations are often difficult to solve, and they

typically must be solved iteratively at 6%Kfll integration step. The

primary objectives in this sub-problem are:

l. to develop an automatable method to identify and solve the

coupled nonlinear algebraic equations correctly; and

2. to study possible improvements in the existing solution process

such that the computation cost can be reduced.

In order to make the design process more efficient and

computationally economical, one avenue of approach is to reduce the

order of the system model, since the computation effort typically

increases much faster than the system dimension does, and high-dimension

systems lead to more complicated control design. Since no general

theoretical method is available for assessing the response of nonlinear,

large-scale complex engineering systems. a need arose to find a new

method to consider the possibility of reducing the order of the dynamic

system model. One of the research objectians is to provide a general

purpose nunwrical approach to model order reduction and simplification.

The application of this approach should not be restrictxui'by the
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linearity of the dynamic systems. Also, it should be easy to use and

should provide engineers additional information about the system under

study.

1.3 Dissertation Organization

In pursuit of these objectives the following subjects will be

discussed in the thesis. The dissertation consists of two parts:

improved solution methods for implicit dissipation fields and

power potraits of dynamic system models. Although both problems are

related to the improvement of simulation and design efficiency, they are

rather different in the nature. Therefore, we will discuss then:

separately in the following chapters.

Chapter 2 deals with the implicit dissipatitnl field problem. It

presents results concerning the efficient cmmnmetion of duacoupled

algebraic equations by an iteration process. A procedure for determining

the mirdJmun number of (independent) iteration variables for implicit R

fields with simple and weighted junction structures is given. For

implicit R fields with general junction structures an algorithm for

finding the minimum and maximum flow input variables is described.

In Chapter 3 a brief review of some recent work in the area of

model order reduction is given. This chapter provides a background

relative to the general model order reduction problem and analytically-

oriented methods.

Chapter 4 introduces the power concvpt and its application in bond

graph models. A new tool for exploiting tile pntwn' attrilnites of
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a dynamic system is presented. Some examples are given to illustrate the

potential scope and utility of this method.

In Chapter 5 the results for improving the design assessment tools

are summarized and some future research directions are identified.

The computer simulations used in this research were run using the

ENPORT-7 bond graph/block diagram software. The program was version 7.1

run cum a PRIME 750 under PRIMOS. In several cases noted in the text the

algorithms developed in this research were implemented within the ENPORT

framework on a pilot basis.
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Chapter 2

EFFICIENT COMPUTATION OF IMPLICIT DISSIPATION FIELDS

2.1 Problem Definition

One of the major objectives of improving design assessment is to

automate the process of formulating and solving the state equations

associated with bond graph models of engineering systems (See Appendix

A). A second objective is to provide timely and insightful feedback to

the designer. There are several sources of difficulty in accomplishing

the major objective. The one we wish to focus on here is that of solving

coupled nonlinear algebraic equations that arise when the R elements are

connected in particular ways in the model.7fluainmlicit equations are

often difficult to solve, and they typically must be solved several

times in each integration step. Consequently, it is helpful to be able

to inform the modeler in detail of the existence of such coupling.

Furthermore, increasing the efficiency with which such solutions awe

obtained can dramatically decrease the overall solution time.

The existence of algebraic loops in the equations of a physical

system may not be detected until the sorting or reducing process starts

in most traditional simulation approaches.lhu:their existence can be

verified even before equation formulation when the bond graph approach

is employed. To illustrate the case let us first consider a physical

device shown in Figure 2-1a. In Figure 2-lb. the corresponding bond

graph model has been built. The 1 element represents the inertial effect

and the compliance effect is indicated by a C element in the mechanical

system. The R elements represent energy dissipative effects. The SF



 

   
     

(a)

1 1

7“ f‘\ k

C Ra C Rh

( b ) ( c )

Figure 2-1 A mechanical system with dissipative coupling

(a) Physical system

(b) Bond graph model

(c) Causality assignment
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element indicates an imposed velocity on the left plate (assumed

massless) as an input. It is desired that the state-space equations be

obtained in an explicit form as follows

p1 ‘ 81(P1. 42. V0) (2.1)

QZ a 82(p19 Q2. V0) (2.2)

where p1 is the momentum of mass I and q2 is the deflection of spring C.

Causality can be assigned to the bond graph of Figure 2-lb

according to the general rules (Rosenberg and Karnopp, 1983). After

finishing the first step (assigning required causality to the source SF)

and the second step (assigning the integral causality to the storage

elements C and I), we find that the causality does not fully extend

through the graph. Some acausal bonds (bonds 4, 5, and 6) will be left.

At this stage, we realize that an R-field exists irllflnis system. This

implies that there will be an algebraic loop in the system equations.

Suppose we continue the causality assignment by imposing an

arbitrary causal orientation on one of the two R elements, say, R Then4'

we extend the causal implication through the graph using the constraint

elements (0 and 1). Now the causality assignment has been completed

(Figure 2-lc). The state vector X and input vector U are identified as

follows

If we define F4 and V6 as auxiliary variables, then the auxiliary

equations are readily obtained as



 

p1 - F4 (2.3a)

a2 - V6 (2.3b)

and the constitutive equations are

F4 ’ 84(V4) B 84(V0' Pl/ml' V6) (2-43)

Assume that both R4 and R6 are linear, that is,

F4 - Rava (2.5a)

v - R' r (2.5b)

After some algebraic manipulations to eliminate the auxiliary

variables F4 and V6, an explicit state-space equation set can be

developed; namely,

p1 - -[R4R6/<R4+R6)mlpl + [Rak/(R4+R6)lq2 + [R4R6/<R4+R6>1v0 (2.6a)

qz - -[R4/<R,+R6>mlp1 - [k/(R,+R6>1q2 + [R,/<R,+R6>lvo (2.6b>

Now suppose that the RA and R6 are nonlinear. Then we may have

difficulty solving the auxiliary equations to get an explicit state

form. In general explicit analytic solutions of nonlinear coupled

equations are difficult, if not impossible, to achieve.

From the development above, we see that the process of causality

assignment is an.aid.in the process of identifying the algebraic loops

in dynamic systems. In Figure 2-1, causality on bonds 4” ES, and 6 can

not be determined after assigning causality to source and energy storage

elements. Furthermore, algebraic loops in the matimnmatical sense are
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physically related.to the existence of dissipation fields. In Figure 2-

1, this dissipative field is consisting of nodes Ra"Rb’ and associated

junction structure. Such fields are called implicit R-fields (IRFs).

Reading the partial causality-assigned bond graph of Figure 2-1b, we can

easily identify the R fields from other dynamic fields. It is also clear

that nonlinear algebraic loops in system equations may prevent the

subsequent reduction of the equations to an explicit state-space form.

They may make system simulation very difficult to accomplish.

The solution of algebraic loops may not be very important from a

theoretical point of view. However, especially for nonlinear systems

'where an analytical solution is not always possible, solving the loops

is very computer-time consuming. Often when the model involves implicit:

algebraic equations, the approach is to use iterative solution methods.

These methods can be very costly and they nun; introduce difficulties

related to the existence and uniqueness of solutions.

Several researchers have been working in a bond graph environment,

using three different approaches to these problems. Barreto and Lefevre

(1985) try to avoid hmfljcit algebraic loops by modifying the system

model. Their basic idea is to consider the implicit part of the model

before attempting the simulation and to modify the model suitably so it

can be simulated using only explicit methods.7fimfli'proposed ways to

modify the model include: (1) imposing restrictions in the set of values

of admissible solution; (2) changing the model to fit reality.

The second direction is to improve the cxNMMJtational efficiency

within the implicit solution framework. Lorenz and Wolper (1985) made an

observation on the causality assignment in the case of algebraic loops.
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'Phe algebraic loops are found by a related signal graph and the minimum

number of independent variables of the algebraic loops is the minimum

number of nodes required to break the topological loops. Two general

rules are suggested for assigning causality to the implicit R-fields.

The third direction in which the parasitic physical elements are

added to eliminate the nonlinear coupled R-field has been employed by

Zhou (1984). The method based on bond graph augmentation converts an IRF

into a dynamic subsystem that exhibits the proper static characteristics

at steady-state and employs a two-time-scale integration technique. This

method has a philosophy similar to that of the charge-up method in the

ASTAP program (Zeid, 1985). The charge-up method has proven to be very

reliable, but it is computationally costly. Since all capacitors and

inductors introduced into the original system are assigned a value of 1,

for a typical nonlinear circuit, it would take close to 2OON passes to

arrive at a solution, where N is the number of dynamic elements

introduced. In Zhou's work, an augmentation sequence and a general rule

for parameter selection for arbitrary n-th order subsystems have been

suggested. These have been numerically tested in several cases. The

algorithm appears promising, but it has not been optimized. Granda

(1984) also proposed several approaches to algebraic loops, including

adding a storage element.

In this study we assume that a system bond graph containing one or

more implicit R fields is given. The task is to solve the coupled

algebraic equations efficiently during the system simulation. The

decomposition technique is applied to the IRFs and the relevant

associated vectors. A direct bond-graph-based algorithm for identifying

the minimum number of iteration variables in certain implicit R-field
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problem has been developed (l-lood, et a1., 1987). An advantage of the

algorithm is that it works directly with the bond graph itself. This

algorithm is also extended to IRFs containing multiport R elements. For

an IRF with a general junction structure, a preliminary result on the

basis order is developed which facilitates the efficient solution for

simulation of system containing such IRFs.

2.2 General Solution by Iterative Methods

A bond graph model may characterized by the diagram in Figure 2-2

(Rosenberg and Karnopp, 1985). The system inputs are defined by the

collection of Se and Sf elements and are referred to as the source

field. Dissipative effects from the R elements of bond graph are

grouped into the dissipation field. Dynamic effects are the result of C

and I elements in the model and are represented in the energy storage

field. Eacil<xf these fields has constitutive equations associated with

it. They are coupled by a power-conserving connective multiport

represented by the junction structure.7flu2Peynter junction structure

consists of O and 1 junction elements, (It is named after H. M. Paynter,

the inventor of the bond graph.) and it is invariant. The transducer

field is the collection of the transformers and gyrators, which may have

varying umnhrli. The key vectors of each field are identified in Figure

2-3, where U is the input vector, a function of time; X is the energy

‘variable vector and Z is the coenergy variable vector, the subscripts i

and (1 denote the independent and dependent parts of the storage field;

the output vector of the dissipation field D0 is the function of the

input vector to the field Di; Ti and T0 are the input and output vectors

of the modulated junction field.
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When causality has been assigned to the bond graph according to the

Sequential Causality Assignment Procedure (SCAP) (Rosenberg and Karnopp,

1983), it is possible to identify each separate implicit R-field within

a graph. As a result of assigning causality, a computing diagram can be

generated, based on a set of key vectors for various fields in the

graph. Ignoring the Zd’ Xd vectors, the general equation structure is

given by

U - ¢u(t) (2.7)

2 - ¢X(X) (2.8 )

Do - ¢L(Di) (2.9)

dX/dt - $112 + 81300 + Sl4U (2.10)

Di - S312 + S33Do + S34U (2.11)

for systems with no 2 X vectors (dependent storages). If implicit R-
d’ d

fields exist in the bond graph, then the matrix S33 is non-zero. If S33

is zero, then no implicit R-fields exist, and a straightforward

procedure for integrating the system equations can be employed. If

implicit R-fields exist in the bond graph, then the matrix S33 would be

non-zero. These fields can be identified and isolated by proper use of

causality data. Referring to the field structuring of system equations,

the particular subset of equations with which we are concerned is

D0 - ¢L(Di) (2.9)

Di - S312 + S33Do + SBAU (2.11)

We seek an efficient solution to these equations at each time step,

given values for the Z and U vectors. A more succinct form for the

equations at a given time is



15

Do - ¢L(Di) (2.9)

Di - 333 D0 + C (2.12)

or

Di - S33¢L(Di) + C (2.13)

which lead to the single implicit vector equation, where C is a constant

vector. Clearly, it would be possible to iterate on D1 to obtain a

solution to the problem. There are two useful ways to reach the

solution.

(1). Single-partitioned iteration vector

If an R element with port j has its causality assigned uniquely,

then the corresponding row in the matrix S33 contains all zeros. The

value of D; is determined by D; — Cj. If an R element belongs to a

impliciizll-field therlits corresponding row in the matrix S33 contains

nonzero terms. The Di and DO vectors are reorgnized by gathering all

implicit input and output variables into the subvectors D: and D: ,

respectively, and all explicit input and output variables into the

subvectors D? and DE , such that D. a [D2 , D? ]t, and D - [DE , DI ]t.
1 o 1 1 1 o o o

The superscripts E and I denote the explicit and implicit field,

respectively. Rearranging the matrix 833, the upper part of the matrix

  

S33 15

DE 0 0 DE CE
1 o

- + (2.14)

I I I I
D1 0 833 D0 C   
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If the dimension of the DE and DE vectors is dE’ the dimension.of'

the D: and D: vectors is d1, then the dimension of the implicit

algebraic equation set to be solved is d1. That is,

I I
Do - Q (Di) (2.15s)

I I I I

Di - 833 D O + C (2.15b)

(3). Multiple-partitioned iteration vector

If the bond graph model contains several implicit R-fields and if

the vectors D: and D: are partitioned suitably, the submatrix S§3 is a

block diagonal matrix. Equation (2.15b) may be rewritten as

DIl ‘ S11 DI1 + C11

1 33 o

(2.16)

DIk = SIk DIk + CIk

1 33 o

where each subvector has dimension equal to mi, and m1 + m2 + ...... +

mk — dI' The Di and Do vectors are sorted into explicit and implicit

subsets; then the D: is partitioned according to its fields. This result

in the nonzero submatrix of S33 having a blcmfl<<diagonal form. Now our

task is to solve the following equation set for each local IRF:

D0 = ¢L(Di) (2.17)

D1 = S33 D0 + C (2.18)
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Note that all vectors and matrices in Equations (2.17), (2.18) and.the

following are local representations.

The advantage of treating the implicit R-fields separately is; that

the total computation load is smaller. Since the computation cost of an

iterative solution to the IRFs appears to vary approximately as the

square of the size of the iteration vector, the savings by partitioning

into several IRFs can be substantial. Basically, we have a cost of

k k

a( 2 mi) rather than a( 2 mi)2 by partitioning effectively.

i=1 i=1

An example is given in Figure 2-4. Two implicit R-fields each

contains two l-port R.nodes. The causalities associated with the other

four l—port R nodes are determined uniquely by the SE , C, and I

elements. The dimension of the system vectors Di and D0 is 8. If the Di’

Do vectors are not partitioned at all, the computation time is 11.43 CPU

seconds for a simulation. If the explicit part is separated from the

implicit part, then the dimension of iteration vector D: becomes four,

and the solution time is reduced to 6.43 CPU seconds. If the D: vector

is partitioned into two local IRF vectors, then computation time is

reduced to 5.65 CPU seconds. This represents a 50.6 % savings in

simulation CPU time by partitioning.
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2.3 IRFs with 1-port R Elements

An additional refinement for increasing solution efficiency has

been developed by Hood, Rosenberg, Withers and Zhou (1987). Tfluainethod

uses earlier work on the basis order for bond graph junction structures

(Rosenberg and Moultrie, 1980). In this section we impose two

restrictions on the R-field problem, which still leaves us with the most

common practical subclass of the general problem. (1) A11 R nodes in

implicit fields are l-port. (2) The bond graph does not contain

transformers (TF) and gyrators (GY) in the implicit fields. The

resulting problem is practically important, since many dynamic models of

engineering systems are contained in this subclass. Extension to more

general problems is discussed subsequently.

Now we ask these questions about the solution of a given IRF.

Subjecn: to the restriction imposed above, each obeys local equations of

the form of Equations (2.17) and (2.18). We ask.‘Wflnat is the smallest

number of iteration variables?" "How can such a setlxafbundT'"How

should Equations (2.17) and (2.18) be used for best computing

efficiency?"

To answer these questions one of the important properties of the

junction structure, basis order, will be used. The basis order is given

by two critical numbers, the number of effort inputs (E) and the number

of flow inputs (F) required at the junction structure (JS) ports in

order to determine all internal effort and flow variables and outputs.

The algorijflnn developed in this section will further reduce the number

of iteration variables of an IRF to the mininumicif its E and F. This

algorithm applies to IRFs that contain only l-port R elements.
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The bonds of a given IRF can be sorted into one of three mutually

exclusive sets:

1. the boundary bonds, connecting the IRF to the rest of time graph

(these bonds are causal);

2. the R bonds, incident to R nodes, with which are associated the

local Di and Do vectors; and

3. the remaining bonds, which are internal to the local junction

structure (JS).

First we focus on the simple junction structiuna (SJS) which is

composed only of 0- and l-junction nodes. Earlier work by Rosenberg and

Moultrie (1980) has shown that there are two critical numbers associated

'with a JS. These represent the number of effort (E) and flow (F) inputs

required at the JS ports in order to deterndlmaeall internal variables

and the outputs. For completeness we state the rule here for calculating

the numbers:

- N - B (2.19a)

(2.19b)

where NB is the number of bonds of the JS:

NO is the number of O-junctions;

N is the number of l-junctions;

B0 is the number of bonds incident to the O-junctions;

B1 is the number of bonds incident to the l-junctions.

Next,vm observe that a SJS has a pair of separate but related

transformations associated with it. Namely. input effbrts determine

output efforts, and input flows determine output flows. Furthermore, if‘
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all powers at the SJS ports are oriented outward (or all in), the

associated matrix 833 is skew-symmetric, subject to proper ordering of

the port variables (Ort and Martens, 1973, Perelson, 1975). Now assume

that causality assignment to the IRF has been completed and is

consistent. The proceeding observation allows us to organize Equations

(2.17) and (2.18) in detail as follows.

Sort the D1 and Do'vecbors into a resistance set (r) and a

conductance set (g). The r set has flow inputs to the R ports and effort

outputs whose dimensions are E; the g set has effort inputs to the R

ports and flow outputs whose dimensions are F. Write Equation (2 17) as

er - ¢r(fr) (2.20a)

fg - ¢g(eg) (2.20b)

where er and fr are associated with the rlxnuiset, and f

associated with the g bond set. Write Equation (2.18) as

f - S e + S f + C (2.21a)

e - S e + S f + C (2 21b)

are

Since the SJS transforms efforts to efforts and flows to flows, then Srr

and Sgg must be zero. Consequently, we have

f - S f + C (2.22a)

e - S e + C (2 22b)

Furthermore, we note that the combined set (ff, eg) contains the SJS

outputs,\flfile the combined set (er, fg) contains the SJS inputs. A
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computational algorithm may be derived from this observation.

Algorithm

1. Assign causality to the source and storage nodes, using the

SCAP.

2. Identify each implicit R-field within the partially causal bond

graph.

3. For

a .

each implicit R-field:

Calculate E and F.

If either E or F is less than one, stop. (There is no

guarantee that there are unique outputs from the inputs for

the SJS )

Obtain a complete, consistent causal orientation for the

IRF. (It will obey the E, F numbers.)

Order the R bonds by resistance (r), then conductance (g)

causality. Define the vectors er. fr’ fg’ and e

. Assume that E is less than or equal to F. Use er as the

iteration vector. Make an initial guess eri for er

Use Equation (2.22b) to find eg

. Use Equation (2.20b) to find f8

Use Equation (2 22a) to find fr'

Use Equation (2.20a) to find er.

Compare eri to er. If the error is within tolerance, stop.

Else return to Equation (2.22b) and repeat the sequence

with an updated guess for er.

Note: If E is greater than F. use fg as the iteration

vector. The equation order is then (2.22a), (2 20a),

(2.22b), (2.20b).
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It is observed that the minimum iteration set has the size of min

(E, F}. This is always less than or equal to one half the number of R

bonds. Reducing the dimension of the iteration vector has a significant

positive influence on computing efficiency, as noted previously.

The restrictions placed on the problem structure can be relaxed to

a certain extent without changing the algorithm as stated above. A given

IRF can contain R nodes with more than one port, provided each such R

node is a pure r, or a pure g, type. See Equation (2.20a) and (2.20b) in

this regard. In addition, the R-field junction structure can contain

transformers (TFs), since they do not alter the structure of the effort-

to-effort, flow—to-flow transformation properties. Their effects are

combined irnn: 8. See Equations (2.22a) and (2.22b). The formulas for E

and F need to be modified by introducing the term NT’ which is the

number of transformers in the junction structure. The modified formulas

are:

- B - N (2.23a)

F - N + N - N - B - N (2.23b)

An example of an implicit R-field is shown in Figure 2-5a. The

inputs to the IRF are ea, eb, and ec. The goal is to calculate all R-

field variables. We firstind E and F from the data given in Figure:

E = 6 + l - 3 - 3 = 1 (2.24a)

F = 6 + 3 - 1 - 6 = 2 (2.24b)
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A solution does exist, since both E and F are greater than zero. We

obtain a complete, consistent causal orientation, as shown in Figure 2-

5b. The ordered r bond vectors are defined, based on the causality, as

indicated in the figure. The equations can be written as

e1 - ¢1(f1), (2.25)

f2 - 32(e2), (2.26s)

f3 - ¢3(e3), (2.26b)

f1 - f2 + £3, (2.27)

e2 - -el + (ea + eb), (2.28a)

e3 - -el + (ea + eC). (2.28b)

Since E is less than F, use er - e1 as the iteration variable. The

equation sequence is (2.28), (2.26), (2.27), (2.25).

a 4 6 c

It 51 3‘ External bonds: a, b, C

R-field bonds: 1 - 6
R19//'|\\<\ R3

R2 NB=6.NO-1.N1-3

BO = 3. B1 = 6

(a

.JL.41.1._40_2_.4IF.JL.

I ’1 l
R l .
ij/A‘ 2 R3 er . 1 l t fr l f1 1 t

R, f { fg. f j e = [ e e l

(D)

II

(
D

II

Figure 2-5 An example of an IRF

(a) Bond graph of the R-field

(b) Causality assignment
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2.4 IRFs with Multiport R Elements

2.4.1 Multiport Resistances in Physical systems

Multiport resistances arise in many kinds of physical systems, such

as hydraulic, thermal, and electronic. A well-known example of multiport

resistance can be found in a hydraulic system shown in Figure 2-6a

(Rosenberg and Karnopp, 1983). The four-way control valve is

characterized by four resistances that are formed by the four edges of

the spool lands and corresponding lands in the valve body and modulated

by spool position 2. The bond graph model is depicted in Figure 2-6b.

For a closed-center valve, one can work out the relationships between pm

and Q8 with 2 as a parameter. These relationships are nonlinear since

the pressure drops at individual ports (resistors).are proportional to

flow squared. The algebraic reduction of the R-field can be represented

in.a simplified‘way (Figure 2-7b) and the constitutive laws for the

modulated 2-port R are those shown in Figure 2-7a.

Another example of multiport R element may be found in an

electronic circuit. For a 3-terminal element such as the grounded-

emitter transistor of Figure 2-8a (Rosenberg and Karrmuna, 1983), if we

consider the collector-emitter voltage. e base-emitter voltage,
CE’ eBE’

and the currents i and i the 2-port R representation of Figure
C, 13! E!

2-8b with a mixed causality has the following constitutive laws:

1C = ¢1( eCE’ iB) (2.29)

i (2.30)
eBE ‘ ¢2< ecs, B)

The figure shows a possible connection for a power transistcn: in a
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switching mode. The control current i is switched rapidly between a
B

(low) blocking value and a (high) conducting value. During the blocking,

phase, ic is nearly zero even when e takes on.quite large values.
CE

During the conducting phase e is small even for fairly large currents,
CE

so that the voltage source is effectively applied directly to the load,

the averaged load current can be continuously varied.

 

  

 

Figure 2-8 Power transistor and its bond graph model
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2.4.2 Extension of the Algorithm to an IRF with Multiport R elements

Assume a causal IRF with a number of l-port R nodes and M multiport

R nodes is given as shown in Figure 2-9, where R denotes a set of R

nodes in resistant form (R), C denotes a set of R nodes in conductance

form (C), while RGi denotes a multiport R node with mixed causaliigl. In

addition, U denotes the input variables, while V denotes the output

variables. S characterizes the junction structure. The key vectors are:

to

fr = [ fro’ frl’ ...... , er] .

e - [ e e e ]t'g go, g1, 000000 ’ gM ’

e - [ e e e ]t'

r ro’ rl’ """" ’ rM ’

t

f = f , f , ...... , f ;

s [ so s1 all]

and in an aggregated form,

to

D1 - [ fr’ eg] ,

p - [e , f it
o r g

Ue vf Ve Uf

 

e e
ro , o

R h—‘f IRF JUNCTION STRUCTURE —E—>lf G

ro go

frllérl fgl-‘leg1 ..... erIFrM fgfilng

RCl RGM

   

Figure 2-9 Key vectors in an IRF
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where fr is the flow input vector to the R ports; e is the effort input

‘vector to the G ports; er is the effort output vector from the R ports;

and f8 is the flow output vector from G ports. D1 is the input vector to

R nodes and Do is the output vector from R nodes. The vectors with

subscript o are associated with the l-port R nodes. The vectors with

subscript nlare associated with the m-th multiport R node, where m = 1,

2, ...... , M. The constitutive equations for the l-port R nodes are:

ero - ¢ro( fro) (2.31a)

f - o ( e ) (2.31b)

e = Q ( f , e ) (2.32a)

f - ¢ ( f , e ) m = l, 2, ...... , M (2.32b)

The input Di and the output D0 are linearly relatxxi through the

junction structure of the IRF. The relations between Di and D0 are

represented by the junction structure matrix S for the IRF, namely,

D. = S D + C (2.33)
1 o

where C is a constant vector derived from input vector U. Assuming that

the powers on all bonds of the R-field are directed towards the R nodes,

the local junction structure matrix S has the following form:
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Srogo Srogl "' SrogM

S
0 rlgo 1

O Sf SngO OOOOOO rM I1

8 - ‘ Sgoro Sgorl "‘ SgorM

S 0 S
e glro

0

Sngo "' SngM

where S is skew-symmetric.

The connective Equation (2.33) may be written in some detail as:

f = S f + C (2.34a)

e = S e + C (2.34b)

fr0 a Lro(fgo’ fgl’ ...... , ng) + Cr0 (2 35a)

frm - er(fgo’ fgl’ ...... , ng) + Crm (2.35b)

and

ego = Lgo(ero’ erl’ """ ’ erM) + Cgo (4.36a)

egm - Lgm<ero’ erl’ """ ’ erM) + Cgm (2.36b)

where m = l, 2, ...... , M.

We now seek as an iteration set a minimum satisfactory set of

variablesm IIf we construct a functional diagram to represent the

mathematical relations among the variables basemlcna Equations (2.31),

(2.32), (2.35), and (2.36), it appears as in Figure 2-10. The weight of
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each edge is the dimension of the associated vector. From this diagrann

the algebraic loops can be identified and a minimum iteration set may be

determined by removing a set of edges which break all loops and whose

sum of weights is a minimum. However, for our purpose of identifying

the minimum iteration variables, a simpler variable flow diagram in

Figure 2-11 can be generated such that a vertex represents a vector and

an edge represents a condition of input-output. This diagram enmflnasizes

the computation requirement of which input vectors are needed to

generate a particular output vector without any detail of their

functional relations. For convenience in our initial development let us

ignore the existence of e0, fO temporarily.

The algebraic loops can be identified from this variable flow

diagram. The iteration variable set with minimum dimension can.tu3 found

from its associated loops in the variable flow diagram. The removal of

the verthufi;(iteration variable set) from the variable flow diagram

destroys their associated loops. If the selection can be guided by some

rules, it will facilitate the automatic computation efficiently. For

consistency, we always select.the iteration variables from the input

variables to the junction structure, namely, er and f

Every set consisting of four vertices representing the vectors (er,

ff, eg, and f8)m and the edges among them is defined as a block of the

digraph. Each block connects (M-l) other blocks with the same structure

by 2*(M-l) outgoing edges departing from vertices fg and er, while the

vertices eg and fr connect the (M-1) blocks by 2*(M-l) incoming edges.

All blocks are arranged as shown in Figure 2-11 such tfluat all the

Vertices (\muztors) associated with r-type causality are located at the
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right side, while all the vertices (vectors) associated with g-type

causality are located on the left side of the digraph. The vertex

associated with r-type causality is classified as r-type vertex” vflnile

the vertex associated with g—type causality is classified as g-type

vertex. In order to break all loops in the digraph, it is obvious that

one of the two vertices in each row ( either (e , f ) or (e , f ) )
g g m r r m

must be removed since it is necessary to destroy the loops formed by

these two-vertex sets.

Referring to this digraph with a repeated and symmetrical pattern,

every loop in this digraph contain both g-type and r-type vertices.

Therefore, removal of either all the r-type or all time g-type vertices

breaks all loops. Thus (eg, fg) or (er, fr) can be chosen as a feasible

solution. The size of the selected vertices (vector) set is two times

the dimension of (eg, f8) or (er, fr)' i.e., 2F'or 2E, respectively.

Considering the number of the basis order, E and F. the set of iteration

variables with smaller size can be chosen. Thus the size is given by

N = 2* min { E, F } (2.37)

For convenience in the next development, let us assume the case of

E S F, in which all the vertices on the right side are renmnmxi (If F S

E, then certain arguments are modified suitably ). Although E S F, this

does not guarantee that in every blockLHL lflr s Ng is true. Since the

erms air: the inputs of the junction structure, let us keep these in our

solution temporarily.

Under this condition for a particular block with er removed,

removing fg instead of fr also ensures no loops eumxxriated with this
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‘particular block, because there are no more outgoing edges from this

block. A size reduction may achieved by removal of one of the two

vertices (fg’ fr)m with smaller size. By applying this step to each

block, N can be reduced from Equation (2.37) to

M

N - min { E, F } +mil min { Nr’ Ng }m (2.38)

Can we reduce N further? Suppose that there exists an i-th block

such thatzli . < N .. If vertex e . is removed instead of e ., at least

g1 r1 g1 r1

one loop will be found in the remaining digraph (Figure 2-12). The

reason is the following. Since N . < N_., the vertex f . has been

g1 11 g1

removed, while fri is kept in the last step. Howevwnr, since E 5 F, we

always can find at least one block, say the j-th block, such that Nrj s

N j. In this block, vertices erj and frj have been removed and vertices

e . and f . remain. It is easy to verify that a loop (e ., e ., f .,

81 8] r1 SJ 83

fri’ eri) exists in the remaining digraph. This shows that sucrl

exchange of vertices e . and e . is not allowed. even though N . S N ..

g1 r1 g1 r1

Thus no further reduction on N can be achieved.

Now consider the existence of l—port R nodes. These are represented

by the block consisting of the vertices e_ . f , e , anui f as shown
10 ro go ro

in Figure 2-133. It is a special case of the general blocks, namely, no

two-vertex loops exist. In the case of E <:l’. removing only er0 can

break all possible loops associated with this block. Therefore,

incorporating this advantage3hnx>the result. the smallest size of the

iteration variables for an IRT‘containing both l-port and multiportll

nodes with assigned causalities is given by

M

N = min 1 E, F l + 2 min i N

m=l

r' kgim (2.39)
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Figure 2-12 Loop formed by an improper vertex exchange
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Table 2-1 Possible variable selection

 

 

 

 

F _ E E _ F

M M

( U f ) ( U e

m=0 gm m=0 rm )

N S N + e + f

gm rm g1 g1

Ngm Z Nrm + er1 + fr1

M M

Note here that E - 2 Nrm and F = Z N m' An iteration variable set with

m-O m=O

this property can be identified.

From the analysis above, for each multiport R node four

possibilities exist, which are listed in Table 2-1U 1% simple rule to

determine the minimum iteration variable set for the IRF with multiport

R elements is derived from the variable flow diagram and Table 2—1 as

follows:

M M

1) If F s E, choose ( U f ). else ( U e );

m=0 gm m=0 rm

2) For each multiport R node:

M

a. In addition to ( U f ). if N, s N , choose e ,

m=0 gm 1m gm rm

else e
gm

M

b. In addition to ( U e- ), if N S N , choose f ,

m=0 1m rm gm rm

else f

rm
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An example

4A simple electronic circuit is shown in Figure 2-143. After

assigning causality to the Sf and Se elements, an IRF is identified

(Figure 2-lhb). By assigning suitable causality to ports 3anu15, a

causally completed bond graph is obtained (Figure 2-14c).

 

 

R1 R2

11

' (b)

R: R2

1‘ 1”
sr l-J—*Rm‘,‘-3— 1t—L‘Rr—g— lF—b— Se

(C)

Figure 2-14 An electronic circuit and its bond graph model
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The vectors associated with l-port R nodes are

e = [ e
ro

e

1' 2 ]

fro ' [ fl’ f2]

and

e = f - [0]

8° go

The vectors associated with multiport R nodes are

e

r1 3 fr1 = [O]

fgl - [ f3 1

eg1 = [ e3 ]

and

8r2 - [ ea ]

f - [ f
r2

£82 = [ f5 ]

eg2 - [ e5 ]

we may calculate the numbers E and F by

2

E - 2 dim (erm) - 2 + O + l = 3 (2.40a)

m=0

2

F - 2 dim (fgm) = O + l + l = 2 (2.40b)

m=0

The minimum number of sufficient iteration variables is determined by

2

II

M

min { E, F ) + 2 min { Nr . N }

m=l

min { 3, 2 } + min { O. 1 } + min < 1. l } = 3 (2.41)
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The iteration variables are chosen by the rule as follows: :f3, f5,

and e5. The constitutive equations for the R nodes and the junction

structure are

Do ero: el - ¢l(f1) (2 42a)

e2 - ¢2(f2) (2.42b)

fgo: -----

erlz ....

fgl: f3 = ¢3(fa, e3) (2.43)

er2: e4 = ¢4<f4’ e5) (2.44)

fg2: f5 - ¢5(f4, e5) (2.45)

Di fro: f1 = f3 (2.46a)

f2 - f5 (2 46b)

ego' -----

frlz -----

egl' e3 = - el - eA (2 A7)

fr2 f4 = f3 (2.48)

eg2. e5 = eb - e2 (2.49)

Time iteration variables are fg0 U fgl U ng U eg2' namely, (f3, f5, and

e The iteration process may start with a set of initial guess (£31)
5)'

f5i’ and e51) to (f3, f5, 5).

(2.48), (2.42). (2.44), (2.47). (2.49), (2.45). (2.43). A new set of f

e The iteration sequence order is (2.46),

3 )

f5, and e5 are generated and become updated initial values. Thus the

iteration can be repeatedtnnjl the errors are within specified

tolerance.
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2.4.3 Assigning causality to an IRF Containing one Multiport R node

From the study of iteration variables for a causal IRF containing a

multiport R node, it is clear that if the multiport R node has its

causality assigned in such a way that it is in either complete R-form or

complete G-form ( i.e., either Nrm - O or Ngm - 0), the number of

iteration variables is minimum and equal to the smaller of E and F. If

such a causal assignment is not possible, we should make the additional

iteration variable set as small as possible. That is, either Nrm or N

gm

is the minimum. How can we determine the minimum number of Nrm or Ngm?

How do we assign causality so that the minimum number of iteration

variables can be used? This subsection addresses these questions.

., R areFigure 2-15 is a diagram for an acausal IRF where R1. n

l-port R nodesanui the large R is a multiport R node. Ue and Uf are

input vectors to the IRF and Vf and Ve are output vectors.

Ue‘L Vf Ve-[Uf

Junction Structure

R 3 §

 

   

Figure 2~15 Acausal IRF with multiport R node
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Suppose a multiport R node has n ports. If we start at one of the

ports to trace out a path consisting of alternating bonds and junction

nodes (0, l, TF), the path may end up at a loport R node or the

multiport R node itself. A path starting at and ending up at the same

multiport R node is called a self-loop. Several paths may share some

common ports and common junction nodes. The collection of the ports of

such coupled self-loops and all the junction nodes in the paths, and all

l—port R nodes adjacent to the junction nodes. is defined as an R-block.

Figure 2-16 shows an implicit R-field containing a multiport R node

which has a causally determined bond 7 and three acausal bonds 4, 5, and

6. A self-loop is identified, that is (Rm - 0a - la - Ob - lb - Rm). The

R-block associated with this self-loop consists of node Rm, 0a, R la,
2 l

0b, 1b, and R3.

3 I7 R

1 I 4 5 y 3

Rf“— O —“Rm"— 1b

Figure 2-16 An example of self-loop and R-block
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Before we make a further discussion, we need to have the following

assumptions. First, no redundant R ports exist in the IRF, namely, no

two or more l-port R nodes are allowed to be adjacent to a common

junction node, since such l-port nodes may be aggregated ixnua a single

lrport R node. Second, no short loop exists among the multiple R ports,

namely, no two or more ports of a multiport R node are adjacent to a

common junction node. This has the same reason as for the first

assumption.

It is easy to show that a port of the multiport R node, which is

not contained in any R-blocks, can be assigned with either R-form or G-

form causality. For example, bond 4 of the multiport R in Figure 2-16 is

not in any R—block, it can be assigned with either effort in or effort

out. However, the ports in an R—block, for example, bond 5 and 6, may or

may not be assigned freely depending on the local junction structure of

the R-block.

Each R-block has its own local basis order pair. Let Mi denote the

number of ports associated with the multiport R node hithe idfllR-

block. Let E1 and F1 denote the basis order pair for the i-th R-blockg

Cixmni E and F for a SJS or a WJS. not any subset of ports can always be

assigned in, say, R causality. However. if we assume that any subset of

ports in an R-block with given E and F can be assigned desired causality

obeying E and F, we can derive a possible minimum number of iteration

variables and guide the causality assignment from the discussion on four

types of R-blocks.
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Type 1. M1 is less than or equal to both E1 and Fi'

Since no short loop is allowed in the bond graph, tracing the

causal orientation from a port of the multiport R node will always end

up at a l-port R node. The M1 ports of the multiport R node can be

assigned either all in R-form or G-form. Figure 2-17 illustrates an R-

block of type 1. The local basis order is calculated to be E - 3 and F -

3.‘The number of acausal multiport bonds in the R-block is 2. These two

ports can be assigned either in R-form or G-form.

Type 2. M1 is greater than Ei but less than or equal to Fi'

In this case, Mi ports of the multiport R node can be assigned all

in G-form, but not in R-form. In Figure 2-18. since E1 - l, and F1 - 2,

the twatmflmdports can not be assigned as all R-form. but it may be

assigned as all G-form.

R3 R3

_1/ Rl--1\/
Rm b m b”\

\ ‘l'

/ 4 I \/

0 ""‘ 1 0 la
a a T /\

l \R R.
R2 5 R2

(a) (b)

NB=9. VO=2. 311“”

BO=6, 81:6 211:2

E1=9+2-2-6=3 E1>M1

r1=9+2 2 TH) r1>~1

Figure 2-17 An R-block of type 1
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0,,"""'1a

R

(a)

NB = 6, N0 = 2, N1

BO - 5, B1 - 4 1

E1 - 6 + 2 - 2 - S -

F1-6+2-2-4-

Figure 2-18 An R-block of type 2

l ///,0b

0, — 1,\

R

(a)

NB = 6, N0 = 2 N1

BO = 4, B1 = 3 11

El = 6 + 2 2 - 4 =

Fl = 6 + 2 2 3 =

Figure 2-19 An R-block of
H99

(b)

H
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Type 3, M1 is greater than Fi but less than or equal to E1.

The result is opposite to that in case 2. The R-form can be

assigned on all Mi ports, or F1 ports can be in G-form and the remaining

ports must be in R-form. The causality assignment can be seen from the

example in Figure 2—19.

Type 4. M1 is greater than both E and Fi‘
1

Obviously, the M1 cannot be assigned either complete R-form or G-

form. They can be assigned Ei R-form causalities and (Mi-Ei) G-form

causalities, or inversely. Fi G-form and (Mi-F1) R-form causalities. It

is shown in Figure 2-20.

 

(a) (b)

3 = a 9NB 8. NO 2, N1 _

= = .N = ‘
BO 6. Bl 5. J1 I

‘ = 3 + 3 ._ 4’ ‘ - L: "x :'

L1 D 1 11

F1 = 8 + 2 2 3 = 3 F.1 \ V,

Figure 2-20 An R-block of type 4
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Let NO denote the number of free ports of the multiport R node,

which are not in any R-blocks. An IRF is decomposed and all R-blocks are

identified and classified according to above types. Let Ei’ F1 and Mi

denote the basis order pair and the number of ports of the multiport R

node in the i-th type-l R-block, respectively, where i - l, ..., I. Let

Ej, Fj and M. denote the basis order pair and the number of ports of the

nmltiport node in the;i¢flxtype-2 R-block. respectively, where j a l,

., J. Let E Fk ang M denote the basis order pair and the number of
k!

ports of the multiport node in the k-th type-3 R-blcmflc, respectively,

where k - 1W ..., K. Let E F1 and M1 denote the basis order pair and
1 v

the number of ports of the multiport node in the Imwfli type-4 R-blockg

respectively, where l - l, ..., L. For a particular multiport R node, we

may try to assign asrmnu'R-form causalities as the structure allows.

This process is called the maximum R-form assignment. The maximum G-form

assignment is just its opposite.

In the maximumiflmform assignment, the maximum possible number of

effort outputs and the minimum possible number of flow outputs from the

multiport R can be determined by

I J K L

Er = 2 N1 + E Ej + Z Mk + E E1 + NO (2.50a)

J L

Fr = 2 (Mj- Ej) + 2 (M1- E1) (2.50b)

where Er is the maximum possible number of ports with R causality and Fr

is the minimum possible number of ports C causality for the multiport R

node.
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In the maximum G-form assignment. the minimum possible number of

effort outputs and maximum possible flow outputs from the multiport R

node can be determined by

K L

Eg - Z (Mk- Fk) + 2 (MI- F1) (2.51a)

I J K L

Fg = 2 Mi + 2 Mj + Z Fk + 2 F1 + NO (2 51b)

where Eg is the minimum possible number of ports with R causality and F

is the maximum possible number of ports with G causality for the

multiport R node.

The smallest dimension set is found from Fr and Eg' If Fr 5 Eg , then

the maximum R-form assignment would be used and the number of iteration

variables of IRF would be the minimum. Since Eg is the minimum number

of the R-form bonds, it is the smallest possible size of the vector erl’

i.e. DJ in Rule 1; since F} is the minimum possible number of the G-

r1

form bonds, it is the smallest possible size of f i.e. N in Rule 1.

gl’ g1

By comparing E8 and Fr’ we find smallest additional iteration set to the

set determined by min {E, F}. In general. The minimum possible number of

iteration variables is determined by:

N = min (B, F) + min {E , F,} (2.52)

g 1 m

This result may be applied to guide finacmumality assignment for

the multiport R node in computation automation. Let us discuss the

implications of the above result.
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1. If there are no R-blocks, Fr and E8 are equal to zero. This fact

suggests that the causalities of the multiport R node can freely be

assigned in either complete R-form or G-form.

2. If only type-l R-blocks exist, Fr and E8 are also equal to zero.

(Same as in case 1.)

3. If neither a type-3 nor a type-4 R-block exists, but type-1

and/or type-2 R-blocks exist, Eg = O and the multiport R node can have

complete G-form causalities.

4. If neither a type-2 nor a type-4 R-block exists, but type-l

and/or tqu3-3 R-blocks exist. then Fr = O and the multiport R node can

have complete R-form causalities.

5. If a type 4 R-block exists, then Fr ¢()andiig¢ O.The

multiport R node will not be in complete R-form or G-form for sure.

From the discussion above, if there is no self-loop of the

multiport R node, the multiport R node is not structurally coupled

(Figure 2-21). In this case. from the resulteflxnmn it is easy to see

that thermfltiport R can always be put into either R-form or G-form

completely. The causality can be assigned according to the required

physical laws of the multiport R node. The minimum number of sufficient

iteration variables can be determined by the previous rule, i.e.

N = min i F, F } (2.53)
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Figure 2-21 A multiport R node without structural coupling

For example, if the multiport R node is in complete R-form, the

constitutive and system equations will be reduced to a simpler form

er0 - ¢ro( fro) (2 54a)

er1 - ¢r1( frl) (2.54b)

fgo = ¢go( ego) (2.55)

f = S f (2.56a)
ro rogo go

fr1 = Srlgo fgo (2.56b)

e (2.57)= S e, + S e

go goro io rlgo r1

If the multiport node is associated with self-loops. then this

node is structurally coupled. The multiport R node can or cannot be put

in either R-form or G-form completely, depending on the structure of the

IRF. If the multiport R node can not be put into either R-form or G-form

(i.e.,ndxed fann), the coupling among the ports of the multiport R

node is called essential structural coupling. If the causality is

assigned. we will find a causal loop which smmarts at one of the

multiport node and ends up at another port or the same multiport node.
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A strategy for assigning causality to an IRF containing one

multiport R node is stated as follows:

1. Assign causality to the source and storage nodes, using the

SCAP.

2. Identify each implicit R-field within the partially causal bond

graph.

3. For each implicit R-field:

a . Calculate E and F.

If either E or F is less than one. stop. (There is no

guarantee that there are unique outputs from the inputs for

the IRF.)

If a multiport R node exists. identify all self-loops and

associated R-blocks. For each R-block:

Calculate the local basis order (E. F)m and Mm'

Classify the type for the R-block.

Calculate the pair of (E . F ) and determine the possible

g r m

minimum number of iteration variables by

M

N = min {E, F) + 2 min {B . F_}

i=m g i m

Assign causality to multiport R node first according to

min (Eg’ Fr)m. Obtain a complete. consistent causal

orientation for the IRF. (It will obev the E, F numbers and

<5. mm.)

Order the R bonds by resistance (r). then conductance (g)

causality. Define the vectors er, fr’ f , and e

. Assume that E is less than or equal to F and Eg is less

than or equal to Fr‘ then R = E + Eg' Use e , e and f

ro rrl’ l
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as the iteration vectors. Make an initial guess e ., e
r01 rli’

, eand f . for e

r11 ro
rl’ and frl'

. Use Equation (2.36) to find ego and egl'

. Use Equation (2.3lb) to find fgo'

. Use Equation (2.32a and b) to find er1 and fgl'

. Use Equation (2.35) to find f and f .
r0 r1

. Use Equation (2.31a) to find ero'

Compare eroi’ erli’ and frli to ero’ erl’ and frl' If the

error is within tolerance, stop.

Else return to Equation (2 36) and repeat sequence

with the updated guess for e . e and f .
ro rlrl’

Note:

1. If E is less than F and Fr is less trmn1 Eg' use e ande

ro’ rl’

fg1 as the iteration vectors. The equation order is then (2.36),

(2 31b), (2.35), (2.31a), (2.32).

2. If F is less tfluni E and E8 is less than Fr‘ use fgo’ f and

er1 as the iteration vectors. The equation order is then (2.35),

(2.313), (2.32), (2 36), (2.3lb).

3. If F is less than E and F is less than E . use i? , f , and

r s so 81

e81 as the iteration vectors. The equation order is then (2.35),

(2.31a), (2.32), (2.36).(2.31 b).

The following two examples show how this strategy works. The first

example in Figure 2-22a depicts an isolated IRF with one multiportll

node. The pair of basis orders are calculated first:
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E-8+2-3-5-2 (2.58a)

F-8+3-2-6-3 (2.58b)

At this stage we do not know how to assign causality to this IRF

and also we are not sure that the number E - 2 is the number of the

iteration variables. Now, a self-100p (Rm - 0a - la - Ob - lb - Rm) is

identified, and so the associated R-block (Rm, Oa, la, Ob, 1b, R5). The

local basis orders of the R-block is obtained by:

E1-6+2-2°5=l (2.59a)

F1-6+2-2-4-2 (2.59b)

3

RH 1 ‘4le le

c

4_.{ Sf
0,, 6 \Z/

6 o I‘— 1

0a 18 d a a’\

is [\Se 13L? SC

R2 2

2(a) _ :b‘)

Figure 2-22 Example I
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The number of ports of the multiport R node in this R-block is 2.

Since PH .. 2 > E1 = l, and M1 - F1, this R-block belongs to type 2. We

have F - M - E -=1” and E — M - F = O. It means that this
r l l g l l

multiport R.node may be in complete C-form. but not in complete R-form.

The possible minimum number of the iteration variables is determined to

be:

N - min {2, 3} + min { 0, l} = 2 (2.60)

Based on this result, the multiport R node is assigned to have

complete G-form causality (Figure 2-22b). The associated input and

output vectors are identified and the constitutive and connective

equations are listed as bellow:

er0 e1 = 61(f1) (2.6la)

e5 = ¢5(f5) (2 61b)

erl ---

f ---

go

fgl f2 = ¢2(e2, e3. ea) (2.62a)

f3 = ¢3(e2, e3, ea) (2 62b)

f4 = ¢4(e2, e3, ea) (2.62c)

fr0 f1 = f2 (2 63a)

f5 = fc - f3 - f4 (2.63b)

fr1 --

e ---

go

egl e2 = ea - el (2.648)

e3 = eb + ed - e5 (2.64b)

e4 = e5 (2 64c)
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. . . . t . .

‘The iteration variable is are. [ e1. e5] , and the iteration

sequence order is (2.64), (2.62), (2.63), (2.61).

The second example shows a case in which a multiport R node is not

able to be put in a complete R-form or complete G-form. T he isolated

IRF is given in Figure 2-23a. The pair of basis orders are:

E - 11 + 4 - 3 - 9 - 3 (2.65a)

F - 11 + 3 - 4 - 7 - 3 (2.65b)

Two self-loops are identified, those are (Rm - (M1 - la - 0b - lb

Rm) and (Rm - lb - Oc - lc - Rm). The associated R-block is (Rm, Oa, la,

Ob, lb, Oc, 1c, R6). The local basis orders are:

E1 = 9 + 3 - 3 - 7 = 2 (2.66a)

F, = 9 + 3 - 3 - 7 - 2 (2 66b)

Sc Se

1
3f 11:1— oc/C‘Sf sr 1,347— 0g}Sf

1. a]. .2 i3 5 is 1 a1[ 2 it; 5 8

lifh"' ""'th‘h" lb-‘<: ‘b Iii‘__' (ll—‘7'th‘7"'lb 9 l3

4 (h;"-‘Sf 4 (Efr'4.Sf

0.41— ,a/m 08..., ,3 .0

6 i A§<ESe: 6.i AQNE Se

R6 R6

(a) (b)

Figure 2-23 Example 2
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Since M1 -:3 in this case, we have M1 > E1 and M1 > Fl' This R—block is

of type 2 and Er - 3 - 2 — l, Fgl- 3 ~ 2== 1. It tells that the

multiport R node can not be assigned in either a complete R-form or G-

form. The possible minimum number of iteration variables is determined

by:

N - min {3, 3) + min {1, l} = 4 (2.67)

Assigning causality according to a maximum R-form scheme, the causal

graph is shown in Figure 2-23b. Note here that we may also use the

maximum G-form scheme in this problem. The constitutive equations are

given and the connective equations are derived from the causal graph:

Do: er0 ----

er1 e2 - ¢2(f2, f4, f5, e3) (2.68a)

eA - ¢4(f2, f4, f5, e3) (2.68b)

e5 - ¢5(f2, f4, f5, e3) (2.68c)

fgo f1 - ¢(e1) (2.69a)

f6 - ¢(e6) (2.69b)

fg1 f3 = ¢3(f2, f4, f5, e3) (2.70)

Di fro ----

fr1 f2 = fd - f1 (2.7la)

f4 = fb - (fC - f3) - f6 (2.71b)

f5 = 1?C - f3 (2.71C)

ego e1 = e2 (2.72a)

86 = e4 (2.72b)

eg1 e3 - ee + eS - (ea -éa) (2.73)

The iteration variables are f3, f1, f6’ and e3anuithe iteration

sequence order is (2.71), (2.68). (2.72). (2 73), (2.70), (2. 69)..'The

result can be extended to.aIHU?containing several multiport R nodes if

some modifications are made.
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2.5 IRFs with General Junction Structures

2.5.1 General Junction Structures

The jruuction structure of a bond graph is that portion which

represents the power-conserving features of the modeled system; as such

it can be viewed as a multiport transformation. In an abstract sense,

the junction structure represents the energy topology of a bond graph in

the same way that a generalized linear graph represents the topology of

an electrical network. Many researchers have made investigations into

the properties of junction structures (Karnopp, 1969; Rosenberg, 1971,

1978, 1979; Ort and Martens, 1973; Perelson. 1975). Many system

properties, such as solvability and basis order, are obtained by

studying the junction structures (Rosenberg and Andry, 1979; Roserfiuarg,

1980).

Junction structures are classified as simple (SJS), weighted (WJS),

or general (GJS), according,to whether their junction elements are in

the set (0 and l), (O, l, and‘TF)<nr(O. 1. TF, and CY), respectively.

The properties of SJS are contained in WJS. so we shall not discuss SJS

further.

Thezlnasis order of a WJS is the number of effort variables (E) and

flow variables (F) thatrmun:be specified for a particular WJS to have

all its power variables known. The pair of HZ.EU is a unique property

of a WJS. The principal application of the basis order is to determine,

in advance of assigning causality, the number of independent port effort

and flow variables for a given junction structure. The basis order
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formula for a given SJS or WJS has been derived by Rosenberg and

Moultrie (1980).

The existence of gyrators in a junction structure generally makes

the basis order pair no longer unique. The transformation between input

and output vectors is not in the form of effort—to-effort and flow-to-

flow, since gyrators transform effort to flow (or flow to effort)

simultaneously on their ports. The results obtained.in.the previous

sections may not be applied to IRFs containing gyrators. Existing

luumvledge about the properties of the general junction structure is not

complete. In order to extend the results for minimum iteration variables

to an IRF with gyrators, we must develop some additional properties of

the general junction structure. Until now there has been no general

theory that treats the CJS systematically. In this section we develop

the basis properties of the CJS.

jFirst we introduce the gyrograph, derived from a GJS in an

abstracted form. Then we focus our attention on the relation between

causality in bond graph and the graph matching concept in the gyrograph.

Following this, we present an algorithm for determining,tflne existence,

the Itqninimum, and the F-maximum of the basis order for a GJS. Finally,

some examples are given.

2.5.2 Gyrographs and Maximum Matching

2.5.2.1 Gyrographs

A gyrobondgraph (GBG) is a bond graph formed from a limited set of

multiport nodes, called the primitive set- One such set i4; {1, CY, Se,
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I, R}. See Appendix A for details. The junction structure of any bond

graph can be represented in CBC terms by the use of l junctions and CY

nodes. Although the CBC represents a canonical graph form, its essence

is the same as that of the standard (9 node type) bond graph. The

smaller primitive element set may facilitate the study of some

properties of bond graphs. For our purposes, however, it does not seem

to be a suitable graph representation for applying the well-developed

linear graph theory and associated algorithms to explore the properties

of general junction structures. Therefore we consider a more abstract

form of the CBC, called a gyrograph (CC) (Paynter, 1967; Zeid, 1982).

The CC preserves all the information of the CBC and therefore all the

information of the original bond graph. However, it depicts the

topological information and connectedness more clearly for certain

purposes. Now let us briefly define the gyrograph.

Nodes of a CC are represented by squares and circles. Edges of a CC

are lines. The square nodes are used to mark multiport field elements,

such as Se, 1, and R. These nodes are called environment nodes. The

circles represent l-junctions. An edge represents a gyrobond connector

(i.e., 2 bonds and a CY) between a pair of l-junctions if it joins two

circles. An edge represents a bond if it joins a square and a circle.

The former is called a junction edge. The latter is called an

environment edge. The junction structure is represented by the circles

and the edges; its ports are the environment edges. See Appendix A for

details.

In a CC the set of environment nodes (squares) is denoted by VEn'

The set of junction nodes (circles) is denoted by V The set ofJ .

environment edges is denoted by E The set of junction edges is
En'
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denoted by EJ. The nodes of the CC are denoted by V, where V - VEn + VJ.

The edges of the CC are denoted by E, where E = EEn + E]. No edges are

allowed between the environment nodes. since there are no ports are

defined between elements Se, Sf, C, I, R.

The example in Figure 2-24 illustrates the derivation of a

gyrograph from a standard bond graph model. Consider the R-field of

Figure 2-24a, which has been isolated from a system. Parts b arui<: show

the associated gyrobondgraph and gyrograph, respectively. The nodes and

edges are labeled to show the corresponding elements as the

transformations are made from the SBC to the CBC to the CG.

2.5.2.2 Causality and gyrographs

Standard bond graphs and gyrobondgraphs have the same causality

properties and can be assigned by the sequentia1.cnmasality assignment

procedure. For the primitive set ( I. R. Se. 1. and CY ) we have the

following causal properties:

Se has the effort directed outward:

I has two types of causality, integral and derivative;

R has two types of causality, resistance and conductance;

CY has two permissible causal forms. namely, both efforts directed

inward or both efforts directed outward; and the

l-junction has exactly one flow directed inward.

The complete causality assigned to a gyrobondgraph may be

recognized in the associated gyrograph by the marking on the edges. lfiar

edges in E a marked edge indicates a causal orientation such that both
J)
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Figure 2-24 Graphs of an R-field.

(a) The standard bond graph.

(b) The gyrobondgraph.

(c) The gyrograph.
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efforts are directed as inputs to the gyrator (or equivalently, both

flows are directed as inputs to their adjacent l-junctions). An unmarked

EJ edge of a causal CC indicates the opposite causal state. For edges in

E a marked edge indicates that the flow'is input to the circle (1-E’

junction), and the effort is input to the square (environment node). An.

unmarked EE edge of a causal CC indicates the opposite state.

Figure 2-25 shows causality and its equivalent in three related

graphs: the SBC oi'Figure 2-24, CBC, and its CC. We start with a

complete causality for the SBC in part (a). Part (b) shows the

corresponding CBC causality, and part (c) shows the equivalent causal

information in the causal (i.e., marked) CC. Observe that each circle

node in the CC has exactly one marked incident edge.

2.5.2.3 Causal 665 and the cardinality matching problem

From the pattern of the marked edges in a gyrograph, we shall refer

to an edge-marked CC as a causal CC, since it carllna interpreted as a

causal CBC. A causal CC also leads itself to interpretation in terms of

the cardinality matching problem of standard graph theory. Briefly, the

cardinality matching problem (Syslo, et al. 1983) may be stated as: In a

given graph, find a maximum matching, that is, a matching with as many

edges as possible. The concept of matching is defined next below.

Consider a graph G defined by a set of vertices V and a set of

edges E. By definition, a set of edges M in an undirected graph G = (V,

E) is called a matching if no two edges in M have a node in common. For

example, in Figure 2-26 the edge set {(v1. v6), (v2, v4)L,shown ha

heavy lines, is a matching, because the two edges are not incident to a
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common node. The set {(v1, v6), (v2, v5), (v3, v4” is another matching.

But {(v2, v3), (v3, v4), is not a matching because the edges share a

node, namely v3. A single edge in a graph without self-loops is

obviously a matching.

Clearly, a maximum matching in a graph with n nodes can not have

more than (n/2) edges. It may have fewer edges. With respect to a given

matching M in a graph C, an edge is said to be matched if it is in M.

Similarly, a node x is said to be matched or saturated if it is an end

node of some matched edge, say, (x, y). A node that is not matched is

called an exposed or free node. In Figure 2-26 nodes v3 and v5 are

exposed and the rest are saturated. A path P - (v1, v2, ...... , vk) is

called an alternating path with respect to a given matching M if the

edges of P are alternately in M and not in M. An alternating path that

begins at an exposed node and ends at another exposed node is called an

augmenting path. The maximum matching algorithm is based on Berge's

Theorem that a matching M in a graph G is maximum if C has no augmenting

path with respect to M (Syslo, et al., 1983).

For our later purpose, we introduce the concept of an alternating

cycle. An alternating cycle is an alternating path that begins at an

exposed node and ends at the same node. For example, in Figure 2-26 the

path (v3, v2, v4, v3) is an alternating cycle with respect to matching M

- {(v1, v6), (v2, v4)). So are the paths (v5, v4, v2, v5) and (v5, v4,

v2, v1, v6, v5).

For a l—junction node, exactly one incident bond must be set with a

flow input to the 1-junction. The implication of this requirement in a

gyrograph is that a circle node must have. exactly one marked incident
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Figure 2-26 A graph and one of its matchings

I

edge. In a gyrograph marked with the equivalence of complete causality,

all the circle nodes must have exactly one marked incident edge. Hence

they are all saturated. This property will be utilized to explore the

basis order of a CJS.

2.5.3 Basis Order Algorithm for General Junction Structures

From Equations 2.23a and b we see that the basis variable structure

(E and F pair) for a given WJS is unique. However, for a junction

structure with essential gyrators (Rosenberg, 1979: Breedveld, 1984) the

basis variable structure is not unique. That is. the number of effort

variables (E) and the number of flow variables (F) required as inputs to

determine the general junction structure is not a unique pair.

We here present an algorithm for determining the existence of basis

order properties for an arbitrary CJS. If a basis does exisn:, then we
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can determine the minimum and the maximum flow basis orders, Fmin and

Fmax’ respectively. We will employ the gyrograph and apply a variation

of the standard cardinality matching algorithm to find the properties of

the basis order.

In the study of the junction structure, we will sometimes focus our

attention to the portions of the gyrograph which contains only jLunction

nodes and edges between them; namely, subgraphs induced by junction node

sets. The following definitions are introduced to assist in development.

Definition 1. External junction node: A junction node which is

adjacent to at least one environment node is called an external junction

node. The set of external junction nodes is denoted as VE'

Deflhfixion 2. Internal junction node: A junction node which is

adjacent to no environment nodes is called an internal junction node.

The set of internal junction nodes is denoted as VI'

Definition 3. Junction gyrograph: A subgraph of a gyrograph in

which alleundionment nodes and their incident edges are removed is

called a.jrnn3tion gyrograph. We use the symbol C to denote a junction
J

gyrograph.

For a given gyrograph to have a basis each junction node must

exactly have one marked incident edge. Such nodes are said to be

saturated. This corresponds to each of the l-junctions in the associated

CBG having an incident bond which gives the junction a strong causal

determination. The basis order properties are derived from the junction

gyrograph CJ and the gyrograph CG.
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The nodes in a junction gyrograph GJ may be classified as belonging

to either the external set VE’ or the internal set VI. In a marked

gyrograph the nodes may be saturated or free. The collection of free

nodes in the internal set and external set are denoted as Vi and v: ,

respectively. The collection of saturated nodes in the internal set and

the external set are denoted as V: and VE, respectively.

Let us study the junction gyrograph first. Suppose we have a

maximum matching for a given junction GC. There are four cases (tuit all

mutually exclusive) that can exist. We present each case and discuss its

implications.

Case 1. All the nodes of internal set VI are saturated.7flun1a.basis

solution exists.

Case 2. There exists an alternating path P which starts at a free node

in the internal set VI and ends at a saturated node in the external set

VE' Then we reverse the marking of the edges ( i.e., the edges of P

currently in matching M are removed from the matching and those edges of

P not in M are put into the matching). The size of the matching M is

unchanged and so is the number of saturated nodes. However, the starting

node ir1\L[ is now saturated, while the ending node in VB becomes free.

By repeating this procedure we can move all such free nodes fhxnn Vi to

VE. An example of this case is shown in Figure 2-27a. It depicts a

portion of the maximum matching generated by a maximum matching

algorithm. The matched edges are shown in heavy lines. Along the

alternating path (v, x, y, z, u), node v is a free internal node,

whereas u is a saturated external node. This path can be changed to that

of Figure 2-27b by reversing the markings.of the edges. Thus the node v
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(a) (b)

Figure 2-27 An alternating path.

(a) Before reversing markings.

(b) After reversing markings.

V V

2 y 2 Y

(a) (b\

Figure 2-28 An alternating cycle.

(a) Before reversing markings.

(b) After reversing markings.
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becomes a saturated node, while the node u becomes a free node.

Case 3. There exists an alternating cycle C, which starts and ends at a

. . f .

free node v in the internal set VI and contains at least one external

node u in VE' Then we can reverse the markings of some of the edges of C

to make v saturated and u free. This procedure does not change the size

of the matching set M or the number of free nodes, but it moves the

position of the free node from the internal set VI to the external set

VE' This is illustrated in an example (Figure 2-28). Suppose tflnat after

a maxinnun matching is generated, an alternating cycle C (x, y, z, u, v,

x) is identified. There is a free node x in V The cycle contains nodes1'

z and u which belong to the external set VE. If we choose node u to be

the destination for the free node x, we reverse the markings starting at

the marked edge (u, v) along the partial cycle (u, v, x) until edge (v,

x), such that node x becomes saturated and node u becomes free (Figure

2-28b). We may also choose node 2 to be the destination of the free node

x, by reversing another partial cycle (2. y. x) starting at the marked

edge (2, 3y). From this example, we can extract the fact that any

saturated node of V in the alternating cycle can be the destination of
E

an internal free node in the same cycle.

Case 4. There exist one or more free nodes which may not be saturated by

means of alternating paths and/or cycles. This means that the l-junction

associated with the free node can not be assigned by deterministic

causality. Hence no solution exists for this CJS.

The full saturation of the set V implies the completeness of the
I

deterministic causality assignment to the internal junction nodes, since

every node has one flow input. The free nodes in the set VE may get
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saturated by their adjacent environment nodes. Therefore the existence

of a solution to the CJS can be judged by whether I Vf | - O or not.

(I . | denotes the size of a set.) If an external node is saturated,

then it implies that the associated l-junction has been assigned a flow

input. Thus the adjacent port bond must have effort as input to the l-

junction. If an external junction node is free, then the adjacent port

bond has flow as input to the l-junction. Since a maximum matching

algorithm is applied, the number of free nodes in VE is a minimum. Hence

a maximum matching with all free nodes in set VE gives the minimum

number of flow inputs to the associated CJS, since each external node

has at least one environment edge (i.e., each external l-junction has at

least one port).

Now let us expand the junction gyrograph to include all the

environment nodes. Starting with the maximum matching obtained within

the junction gyrograph, a second maximum matching with respect to the

entire gyrograph may be done such that all the nodes in the set V are
E

saturated. In this process only two cases occur. First, a free node in

the set VE resulting from the first maximum matching can be saturated by

simply marking the incident environment edge. Thus the adjacent

environment node becomes saturated. Since one free external junction

node makes one environment node saturated. Fm. free external junction
in

node will make Fmin saturated environment nodes. In the second case, an

augmenting path starting at an environment node and ending at another

environment node is found. Reversing matching of this path will increase

the size of the matching set M by one and the size of saturated

environment nodes by two. If a maximum matching is found, then the

number of saturated environment nodes will be a maximum. It corresponds

the maximum number of flow input variables; namely, the F-maximum basis.
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An algorithm for determining the existence, the F-minimum basis,

and the F—maximum basis for general junction structures is stated based!

on the above discussion.

Basis Ogder Algorithm for CJS

Assume an unmarked CC derived from a given CJS.

(1) Identify the sets VE’ VI’ and VEn'

(2) Start with the junction gyrograph CJ induced by the node set VB

and VI'

(3) Apply the Pape-Conradt maximum matching algorithm (Syslo, et.

al., 1983) to the junction gyrograph CJ.

* If ( |V§| = O ) then

a solution exists.

Else

Start at a free node v 5 Vi.

If ( there exists an alternating path which ends at a node

u c VE) then

reverse the edges. Therefore we have

f f f .
VI = VI - v, | VI | - | VT | - l, and

f f f ,f

VE a VE'flL | VE |-—| \E | + 1

Go to (*) above.

Elseif ( there exists an alternating cycle which contains a

node u 6 VB ) then

reverse the markings of edges starting from the matched

edge incident with u to the edge incident with v. Therefore

we have

= - 7 = V - 'VI VI \, | V | | | l. and



f f f f
VE-VE+u, IVEI-IVEI+1

Go to (*) above.

Else

No solution exists. Stop.

Endif

Endif

(4) Fmin - | v; |. The minimum number of flow inputs to this

general junction structure is equal to the number of free nodes in the

external set.

(5) Apply the Pape-Conradt maximum matching algorithm to the entire

gyrograph CC.

(7) Fm - S The maximum number of flow inputs to thisV .
ax I En |

general junction structure is equal to the number of saturated

environment nodes.

All bases for a given CJS have F ranging between F.. and F .
min max

From the discussion on the maximum matching for the entire gyrograph we

also deduce that

F = F . + 2k (2.74)

where k --(l, 1, 2, ....., K and K is given bv K = (F - F . ) / 2
~ ma minx

If the F . and the F of a general junction structure obtained by the
min max

above algorithm are the same, it indicates that this CJS has unique

basis order numbers (E, F).
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2.5.4 Examples

2.5.4.1 Example 1

A bond graph with the environment nodes denoted by EN is given in

Figure 2-29a. Its associated gyrobondgraph is identical, auui the

gyrograph is given in Figure 2-29b. The nodes a, b, c and d, in due

gyrograph correspond to the junctions 1a. 11), Lc and 1d in the bond

graph (gyrobondgraph), respectively. The junction gyrograph CJ consists

of nodes a, b, c, and d. Nodes a, b, and c belong to the external set

and node d belongs to the internal set. Applying the maximum matching

algorithm to this gyrograph yielded no free node in the external set.

Thus Fmin - | v: | - 0. By using the result from the maximum matching in

ij we applied the maximum matching algorithm again to the entire

gyrograph (Figure 2-29d). There was one augmenting path {(A, a), (a, c),

(c, C)). Reversing this path yielded a augmentedlnatching set.P1-= {(A,

a), (b, d), (c, C)) (Figure 2-29e). Two environment nodes are saturated.

We found that Fmax = 2. The corresponding causality assignments for Fmin

and Fmax are shown in part f and g.rknjce that the difference between

the F . and the F in this example is 2.
min max

2.5.4.2 Example 2

An arbitrary gyrograph is given in Figure 2-30a. In this graph, VE

- (e. f. g. h. i, j, k), and V = (A, B, C, D. E. F.= (a. b, c, d}. V En
I

C}. We first apply the maximum matching algorithm to its junction

gyrograph CJ which is induced by the set VEenKl\7. A maximum matching
I

may be found, namely, M = {(b. f). (C. g). (CL 11), (e, i), (j, h)).

Since Vf = { O I, a solution does exist (Figure 2-30b). The F-
I



75

RA‘—la‘—-CYd—lb —->RB

\ /

\CY\ /CY/

 

 

  

  

 

CY 1d CY d

\.:/

RC

(a) (b)

RA RA 3

RB d RB - d

RC RC C

(C) (d)

RA‘__41a|-— GYa—qlby—aRB RAF—lalt—- CY4-—1 lb i—bRB

(x.W.ya] (a? 267'

,CY CY 1d CY

\IC GY

1

1c 1c

T 1

RC RC

(e) (f)

Figure 2-29 Example 1

(a) Bond graph and gyrobondgraph

(b) Gyrograph

(c) Maximum matching in CJ

(e) Maximum matching in CC

(e) Causality corresponding to the F-minimum basis

(f) Causality corresponding to the F-maximum basis
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minimum basis was found from Fmin - | VE | = 1. Now we apply the maximum

matching algorithm to the entire gyrograph. An augmenting path is found;

namely, P - {(C, b), (b, f), (f, g), (g, c), (c, E)}. Reversing the

markings of the path made the environment nodes C and E saturated. The

number of saturated environment nodes were increased by two. Thus the F-

S

E | = 3. In this case the flow inputsmaximum is found to be Fm - | V
ax

will be applied to the junctions a, b, and c. Note that we may also find

another solution (a, b, d). Also we noticed that Fmax is greater than

F . by 2 in this case.
min

2.5.5 Remarks on the Algorithm

An algorithm for determining the basis order properties of an

arbitrary CJS has been developed through the use of the gyrograph

representation and the graph matching concept. The existence of a basis

order is determined by the absence of free nodes in the internal set of

the jruuztion gyrograph. The number of free nodes in the external set of

the junction gyrograph gives the F-minimum basis order of the CJS. The

resulting marked gyrograph is further used to determine the F-maximum

basis order by increasing the number of saturated nodes in the

environment set. The possible number of flow inputs.to a CJS ranges

between Fmin and Fmax in steps of 2. We conjecture that if Fmin - Fmax

in a CJS, no essential gyrators exist in the CJS. This remains to be

investigated.

The methodology for determining the basis order of a bond graph

with a general junction structure by using a transformed gyrograph may

be applied to the solution of the implicit R-field problem and the

implicit C(I)-fie1d problem. The identification of the basis properties
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of the IJHMJC variables and determination of feasible inputs can

contribute to improving computational efficiency for large scale

nonlinear dynamic systems.
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Chapter 3

MODEL ORDER REDUCTION METHODS

A simplified model of engineering system is always highly desired

in dynamic analysis, synthesis, and design. The simplification of a

dynamic system model brings many benefits to engineers. First,

repetitive simulations become easier and cheaper to perform, since the

computational load due to large dimension size and the widely separated

system time constants may be reduced dramatically. It happens in the

investigation of the influence on the system performance as some of

system parameters have been varied. Second, the complexity«of a higher

order model often makes it difficult to obtain a good understanding of

the behavior of the system. Salient features of the system, previously

hidden in a mass of detail, may be revealed. Third. controllers may be

designed for the reducedlmxkflq since most currently available control

design methods only work on small-dimension systems.

The simplification of a system model can be achieved by reducing

the model order, or by eliminating the adverse parameters which cause

the computational difficulties. Because of their importance in system

analysis and the design of controllers, model order reduction methods

have received considerable attention over the past three decades. In the

existing literature there are a number of books dedicated to this topic

(Decarlo and Saeks, 1981; Happ, 1971; Jamishidi, 1983; Michel and

Miller, 1977; Sage, 1978; Siljak, 1978; Kokotovic, Khalil, and O'Reilly,

1986) and numerous research papers. The objective of model order

reduction is to find a lower order model which preserves the dynamics of

more complex high order system in both time and frequency domains. The
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techniques in the existing literature can be divided into two groups.

The first group of methods attempts to retain the dominant modes of the

original systems. It includes all aggregation methods and perturbation

methods. Another approach is based on applying an identificatdxni

procedure to input-output data obtained by driving the original system

with a specific input, for example, Walsh functions (Kawaji and

Shiotsuki, 1985). Since the latter is not widely applied in practice, we

will restrict ourselves to the first group. All the methods surveyed

below are concerned with time-domain models. Alternatively, the linear

time-invariant systems in state-space form can be represented in

frequency domain. By far the greatest effort in model order reduction

techniques based on frequency domain has been for single-imunit single~

output systems. We will not discuss these techniques here and in this

regard Jamishidi's book (1983) would be an excellent reference.

3.1 Aggregation Methods

The notion of aggregation was introduced in the control literature

by Aoki (1968). The intuitive idea behind the notion of aggregation is

quite simple. Suppose that S1 is a mathematical description of a

physical system using a given set of variables, and S2 is a consistent

description of the same system using smaller set of variables. Then S2

is termed an aggregate model for S1 and the variables of the system S2

are termed aggregate variables.

In the literature there are a number of aggregation methods. The

most basic aggregation method is the exact aggregation which illustrates

the notion of aggregation most clearly.
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Consider the system

x(t) - Ax(t) + Bu(t) (3.1a)

y(t) - Dx(t) (3.1b)

Let z(t) - Cx(t), where x is a vector of dimension of n and z is a

vector of dimension of r. We want to obtain a new system model with

lower dimension r, i.e.

z(t) - Fz(t) + Gu(t)

= FCx(t) + Gu(t) (3.2a)

y(t) - W2(t) (3.2b)

By the requirement of consistency( or dynamic exactness), for any

u(t) and 2(0) - Cx(O), we need

CA - FC (3.3a)

CB - c (3.3b)

and WC 2 D (3.3c)

If the above equations are satisfied, then the triple (F,G,W) is

said to be a perfect aggregation of duetmiple (A,B,D) relative to the

aggregation matrix C.

Further insight into the nature of the class of matrices for which

dynamic exactness can be achieved is obtairmxilyy realizing that the

aggregation problem as posed for linear system is in fact a problem of

minimum realization. The exactness of the original system and the
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reduced system only can be achieved when there are pole-zero

cancellation in the transfer function of the original system.

However, the aggregate state variables Zi(t) will not in general

correspond exactly to physical variables (Sandell, et al., 1978).

Therefore, an alternative point of view . which may be more useful in

applications, is to regard z(t) as an approximation to physical

variables. In other words in addition to (3.33) and (3.3b), we desire

z(t) z y(t) = Cx<t> (3.4)

where the matrix C picks out components or linear combinations of

components of x(t) that are to be approximated. Of cause, the choice of

the aggregate matrix C can greatly influence the nature of the

approximation.

There are many other aggregation methods such as controllability

matrix approach (Aoki, 1968), continued fraction method (Chen and Shieh,

1969), chained aggregation (Tee, et al., 1977), aggregation via

covariance equivalent realization (Yousuff, et al., 1985) and model

reduction via balanced state-space representation (Pernebo and

Silverman, 1982). All these methods are based on matrix similarity

transformation, therefore, they are not directly applicable to the

general nonlinear problems.

3.2 Modal Method
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The modal method (Davison, 1967) is a well-known model order

reduction method. Consider a generalized linear system in the state-

space form

x(t) = Ax(t) + Bu(t) (3.5a)

y(t) - Cx(t) (3.5b)

Assume that A has distinct eigenvalues A“ A2, .H., Anvfith

negative real part and M is the modal matrix with columns consisting of

the corresponding eigenvectors of A. Define a new state vector u(t)

which is transformed via

_1

0(t) ‘ M X(t) (3.6)

then the system equation can be transformed into

n(t) = . n(t) + . u(t) (3.7a)

    

y(t) = [c,,c,, ...... ,cr]Tn(t) (3.7b)

Suppose tflnat the eigenvalues cluster into dominant and undominant

eigenvalues and that the undominant eigenvalues are asymptotically

stable. If there exist some bi's - O, we can say that the corresponding

states are not controllable, and if there exist some cj's = O, we can
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say that these corresponding states are not observable.lhxm1input-

output consideration, the only important modes are those which are both

controllable and observable. Therefore, we may drop the equations

corresponding to the 1's and j's. Eliminating the uncontrollable and

unobservable modes leads to a minimal realization. By the same

reasoning, we may further approximate the transformed system by dropping

the states which are weakly controllable or weakly observable, that is,

the corresponding bi's and cj's are small.

Since the transformed system matrix has diagonal form, the new

system states are decoupled. We partition n according to the the dynamic

speed, controllability and observability into subblocks as fine

perturbation form:

fi1(t) - J1 01(t) + C1 u(t) (3.8a)

€2fi2(t) - J2 "2(t) + 62 u(t) (3.8b)

fi3(t) - J3 n3(t) + 6363 u(t) (3.8c)

in“) - J. n.(t) + G, u(t) (3.8d)

y(t) = H1n1(t) + H202(t) + H3n3(t) + €4H4fl4(t) (3.8e)

If we set 6i = O, i = 2,3,4, then

Mr) - J. mt) + c. u(t) (3.9a)

,1

y(t) - H1 01(t) - H2J2 C2u(t) (3.9b)

This method is workable theoretically. buttunzadvised in

practice. The computational effort is not trivial for large scale system

since the work involved in eigenanalysis OfiNlTIX.n matrix goes up as

us. The other trouble is from the numerical characteristics of large

scale systems which are ill-conditioned mathematically. Besides, if the
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state variable of the original model x(t) represents physical variables,

the physical nature of the variables will be lost since n1(t) represents

nmthematical variables which in most case do not correspond to any

physical variables.

3.3 Lyapunov Function Method

Stability is one of the most important properties of’a dynamic

system. There are a number of qualitative analysis methods based on this

property for large-scale systems. Lyapunov's second method is an ideal

mechanism for accomplishing the aggregation plan in the stability

analysis of large-scale dynamic systems (Siljak, 1978). Actually, the

Lyapunov method itself can be viewed as an aggregation process. A

stability prOperty, involving several state variables, is entirely

represented by a single variable --- the Lyapunov function. However,

this approach simplifies the stabiliqyrnxmdem. but sacrifices detailed

information about the size of variatfons of each separate state

variable.

The concepts of vector differential inequalities and vector

Lyapunov function have been developed by Matrosov (1962) and Bellman

(1962) and other researchers. The concept associates with a dynamic

system several functions (say 5) in such a way that each of them

determine the desired stability properties iritflne system space ( of

dimension n > s ) wherever the others fail to do so. These scalar

functions are considered as components of a vector Lyapunov function,

and a differential inequality is formed in terms of this function, using

the orighuflqsystem of equations. As in the case of scalar Lyapunov

function, the stability properties of an n-th order system are
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determined by considering only the s-vector differential inequality

Lyapunov functions. This can bring about a considerable reduction in the

dimensionality of a stability problem. It should be mentioned

immediately that there is no general systematic procedure for choosing

vector Lyapunov functions and that is the most serious drawback of the

approach.

3.4 Perturbation Methods

‘The other scheme of model order reduction for large-scale system

is perturbation, which is based on ignoring certain interactions of the

dynamic or structural nature in a system.

Perturbation methods are useful for dealing with a system that can

be approximated by a system of simpler structure. Mathematically, the

difference in the response between the actual and approximated systems

is modeled as a perturbation term driving the latter. In principle they

can be applicable to both linear and nonlinear problems. The

perturbations are divided into two classes of regular and singular

perturbations.

3.4.1 Regular Perturbation Method

The regular perturbations (Kokotovic. et al.. 1969) are those that

appear in the right-hand side of a diffinmmmial equathxu the general

formulation is the following form

x1(t) = f11(xl) + ef12(x2) + b1u1(t) (3.103)

x2(t) - ef21(x1) + f22(x2) + b2u2(t). (3.10b)
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where e is a small positive parameter. The system is connected by the

small (weak) connections ef12(x2) and ef2,(x1) and it can be decomposed

into two completed independent subsystenm by ignoring the weak

connections. The computation of the two independent lower dimensional

problems is fewer than that of the single high dimensional problem. This

effect is enhanced for more than two subsystems.

3.4.2 Singular Perturbation Method

By singular perturbation is meant a perturbation to the left-hand

side of a differential equation (Kokotovic, et al., 1986). Consider a

dynamic system of the form

x(t) - f(x,y,t,e) (slow subsystem) (3.11a)

ey(t) - g(x,y,t,c) (fast subsystem) (3.11b)

where e is a small positive parameter. If we set 6 - 0, then the reduced

slow subsystem becomes

§(c) a f(x,y,t,O) (3.12a)

o - g(x,y,t,O) (3.12b)

If Equation 3.12b has isolated roots y a h(x.t).tfimzlimit model

for the slow system is

dx(t)/dt = f(x,h(x,t),t,0) (3.13)
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The fast or boundary layer system can be obtained by stretching the

time scale from t to r = (t-to)/c as

A

A

SY - g(x,y,to+er,e) (3.14)

T

Under the condition that Rex(g$) s -p < O, the Tichonov Theorem can

be applied such that

x(t) - {{(c) + 0(a) (3.15a)

y(t) - y(t) + h(x,t) + 0(6) (3.15b)

Since the concept involves essentially an asymptotic approximation,

quantitative design results are difficult to obtain --ii:is hard to

say 'how small is small enough'. Furthermore. singular perturbation is

not a coordinate free concept,which may be the reason faréilack of

modeling procedures and prescriptive (computer-oriented) decomposition

techniques for model reduction via the characterization of the fast and

slow scales (Siljak, 1983).

As Sandell and Athans (1978) state: "From the practical point of

view, the main problem with this method is that a nKMhel of a physical

system is hardly ever given in the standard form with the slow and fast

variables separated and the parameter c conveniently appearing in the

left-hand side of the equations. It is a completely nontrivial exercise,

requiring considerable physical insight. to model a physical system with

slow and fast modes in the framework demanded by the theory!" This

problem lSIMNJHElly more severe for a poorly understood large scale

system.
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3.5 Component Connection Methods

3.5.1 Component Connection Method

For reasons of efficiency it is often profitable to handle the

component equations of a system as separate entities. This permits one

to store the different component models separately in computer memory

and to analyze them one at a time. By decomposing a large scale system

into a number of smaller subsystems (components) and connecting them

based on their interactions, the component connection model can be used

(Decarlo and Saeks, 1981).

An interconnected dynamical system may be composed of many

components, each of which has a mathematical model of the following form

dxi/dt - fi(xi’ ai) (3.16a)

bi - gi(xi, ai) (3.16b)

where ai is the vector of input signals for duainth component;bi is

the vector of output signals for the i-th component; and x1 is the state

vector of the i-th component.

The interaction between the i-th component and the rest of

components is described by an algebraic equation

where u is the system input vector. From a theoretical point of
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view, however, it is convenient to lump the n component equations

together, forming a single Composite Component Model. It takes the form

dx/dt - f(x, a) (3.18a)

b - g(x, a) (3.18b)

and

a = L11 b + L12 u (3.19a)

y - L21 b + L22 u (3.19b)

where x is the composite component state vector, a and b are the

composite component input and output vectors. respectively, and 11.and y

are the composite system input and output vectors.

The component connection model divides the system into two sets of"

equations: component equations, characterized by partially decoupled

differential equations, and the connection equation, characterized by

coupled linear algebraic equations.

There are two algorithms based on the component connectiorirmethod.

One is the Sparse Tableau Approach which "stacks" the various component

equations together with the connection equations to form a large, highly

sparse set of simultaneous equations.(fiyen an hunuzvector,1n and a

set of initial conditions, one can solve for a. b, and y by use of

sparse matrix inversion. The other one is the Relaxation Algoridmn,

which builds around a predictor-corrector integration scheme. It can

solve linear and nonlinear systems. The algorithm allows one to use a

different variable order and/or step-size integration routitua:for each

component of the system.
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3.5.2 Diakoptics

It should be mentioned that research on decomposition-aggregation

methods was conducted by Kron in the 19505. He developed a scheme called

Diakoptics (Kron, 1963) whose main procedure can be summarized as

follows

(a) Tear the system apart into logical groups, each of which can

conveniently be analyzed as one unit;

(b) Set up the equations ofeuufixcomponent unit separately, as if

the other units were non—existent;

(c) Set up a "connection matrix" C showing how the various

components are interconnected;

(d) Using the matrix C with the laws of transformation of tensor

analysis, establish the equations of the interconnected system;

(e) Solve the equations piecewise.

It is rare to find a new research paper on Diakoptics in the recent

literature. Harrison pointed that "Diakoptics which has been successful

in solving large electric networks, turned out to be not as successful

in other type of models" (Harrison, 1972).

Karnopp (1970) also stated "All too often. however, the

mathematical style of Kron's presentation obscured even his basic

philosophy and many workers hntflmzfield of system dynamics elected to

ignore his contribution. If we examine the relationship of the

Diakoptics with bond graphs, a junction structure may be regarded as an)

almost physical representation of the tensors Kron discussed". However,
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Kron's basic philosophy of decomposition-aggregation is still

significant to the research on the large scale systems.

3.6 Component Cost Analysis of Large Scale Systems

The performance of a dynamic system is often evaluated in terms of

a performance metric V. The performance metric V might represent the

system energy or a norm of the output error over some interval of time.

A question is "what fraction of the overall system performance metric \7

is due to each component of the system?" Based on the notion of

significance of system component in a dynamic system, the component cost

analysis for linear systems has been deveIOped by Skelton, et al.,

(1980, 1983).

Component cost analysis (CCA) consists of the decomposition of‘V

into the sum of contributions Vi associated with each component state

Xi' where the Vi's satisfy the cost—decomposition property,

V = 2 V. (3 20)

It seems equally natural and basic, therefore, to characterize the

system's behavior in terms of contributions from each of the entities in

the system. The CCA algorithm is summarized as:

Step 1. Determine a performance metric

v = lim E II y ll2 II y IIZ = yty (3.21)
t—*00

for the system
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n n

xi = E Ai.x. +DiW y = E C.x. (3.22)

3'1 J J j=1 J J

Step 2. Compute V. from V.- tr[XCtC].. and

i i 11

0= XAt + AX + DDt ( Ricatti-type equation) (3.23)

Step 3. Rank the component costs in the manner

IV1|Z|V2|Z ..... ZIVI

The 'most critical' component of the system is xl having component

cost V1 and 'the least critical' component of the system isnx having

component cost Vn

Step 4. The least critical components will be deleted from the system.

The accuracy is controlled by the cost perturbatdxni index defined

by

k n

A = 2 V. / 2 V. k s n (3.24)

. i . 1

i=1 i=1

where k is the number of retained components.

3.7. Model order reduction in bond graph models

As has been suggested in the brief discussion about Diakoptics

above, there is in a bond graph model the potential for exploiting

efficient solution techniques. Here we mention two methods, one of which

is based on the Sequential Causality Assignment Procedure (Rosenberg and

KarnOPP, 1983), and is the standard approach for implementing
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computational methods based on bond graphs (Van Dixhoorn, 1977; Granda,

1985; Rosenberg, 1984, 1986). The second method is newer and has not

been implemented computationally at this time.

3.7.1. Sequential causality assignment method

There is a close connection between the Sequential Causality

.Assignment Method and the Component Connection Method. When the

sequential causality assignment procedure has been followed for a bond

graph model, the system equations can be expressed in the form

Z1 - fi(X1, Xd) (3.25a)

Zd - fd(xi' Xd) (3.25b)

Do - g(Di) (3.25c)

U a h(t) (3.25d)

dxi/dt = $1121 + $12( Xd/dt ) + 51300 + SlaU (3.25e)

Zd - Slei + + $24U (3.25f)

Di - S3lZi + + S33Do + S34U (3.25g)

V - 84121 + 342( dXd/dt ) + 343Do + $44U (3.25b)

where X1 is the independent energy (state) vector:

Xd is the dependent energy vector:

U is the system input vector;

V is the system output vector;

Z. is the independent co-energy vector;

2 is the dependent co-energy vector;

D is the dissipation field input vector:

D is the dissipation field output vector



95

In fact, this method decomposes a system into the individual

elements, and then connects them by the junction structure matrix. It

solves not only linear problems, but also very general nonlinear

problems.

3.7.2 Reciprocal system method

There has been an attempt to connect the bond graph modeling

approach with singular perturbation theory (Dauphin-Tanguy, et al.,

1985). It defines the notion of a reciprocal system and then applies the

theorjrcaf perturbation. Thereby greater accuracy on the fast time scale

behaviors of the system can be obtained. However, one must construct a

reciprocal bond graph model. The analysis procedure can be illustrated

as shown in Figure 3-1.

81, S2, S3 and S4 are four different system models. The author

claims thattflds method can be numerically implemented without

udifficulty, even if some matrix.elements differ greatly in magnitude,

because no matrix inversion is required.

 

  
 

Reciprocal

transformation

Initial $1 > 82 Global system

global A

system

Singular

Reciprocal Perturbation

transformation

Fast S4 < S3 Slow

reduced decoupled

system system

Figure 3-1 Reciprocal system method
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3.7.3. Finite mode distributed system models

Finite mode distributed system models (Margolis, 1984) are

extremely accurate in a chosen frequency range, while requiring only a

fraction of the number of equations required by finite difference

methods. The principal drawback is that the normal modes and frequencies

must be obtained before the modeling process begins. This can be a

tedious, if not impossible, task in itself. However, in many instances

the actual system being modeled is composed of nearly uniform structural

elements(such as beams,plates and membranes) for which the modes are

easily obtained. Another problem usually associated with finite mode

models is in the selection of appropriate boundary conditions for

determining the original system modes.

The decoupled modal equations are obtained as

J

mini + kini = .2 Fjwi(xj) (3.26)

j-l

where kin wizmi , mi is the modal mass, wi is the frequencies for the

unforced system, and m1 = m JD Wi2 dD.

The actual system displacement is computed from

W(x,t) - Z Wi(x)ni(t) (3.27)

i=1

The bond graph representation of Equation 3JNSis shown in Figure

3-2. Each of the retained modes is an I-C pair emanating finnn.a common

l-junction. Each I element is armxkfl.mass mi. while the corresponding
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compliance, C, is an inverse modal stiffness or l/miwiz. The external

forcing is properly represented by the Se node associated with the

discrete force Fj(t). These forces are "felt" to each mode by

multiplication with the proper mode shape evaluated at the location of

the force. The TF moduli are nothing more than the mode shapes evaluated

at the location of the respective forces, i.e., TFll - W1(x1), TF12 -

W1(x2), ...., TF1k - W1(xk), ...., TFnk - Wn(xk) . Thus the

transformers (TFs) simply convert the actual force into modal forces

while at the same time converting the modal velocities, i71(t), into

actual system velocities at the force location. In this fashion, the

interactions between the continuum system and the lumped system are

established.

Figure 3-2 Finite modal bond graph model
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Chapter 4

POWER POTRAITS OF DYNAMIC SYSTEM MODELS

All the model order reduction methods surveyed in Chapter 2 have a

common aspect; namely, the starting point is the explicit system

equations or transfer functions. For a physical system of large

dimension, iJzzis not easy work for an engineer to model it by a

mathematical equation representation. Bond graph technology provides a

potentially useful missing link between the physical system and its

mathematical models. It is a computer-oriented modeling language and can

be applied uniformly to many kinds of energy domains. In addition, it

provides a clear picture of system t0pology. A new approach to model

order reduction based on bond graphs is developed such that the model

order reduction can be considered without first having to obtain the

system equations. Let us next introduce the bond graph modeling

technique.

4.1 Graphical Representations of Dynamic System Models

In addition to representing physical system models by explicit

system equations, they may also be represented in graphical forms. Some

examples are schematic diagrams, block diagrams. signal flow graphs, and

bond graphs (Figure 4-1). Each of these representations has its own

strengths and weaknesses. Schematic diagrams depict the configuration of

physical systems in terms natural to particular physical domains, such

as electrical and hydraulic circuits. The mathematical relations of the

components are implied by the associated physical laws. The signal flow
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Figure 4-1 Graphical representations of mathematical modeling
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graphs are similar in certain respects to block diagrams. Only are the

block diagrams briefly discussed here.

Block Diagrams

Block diagram is a pictorial representation of the local cause and.

effect relationships among components of aimxkfl” Blocks may be

aggregated or made more detailed as need arises. Block diagrams provide

a convenient and useful representation for characterizing the functional

relationships among the various components of control systems. The block

diagram model stresses functional properties of modeled objects and

their signal connections. The block diagram is a signal-based modeling

metiuni. Blocks of the model (i.e., nodes of the graph) are connected by

directed lines which represent the direction of unilateral information

or signal fltnv. Block diagram modeling has been widely used in control

system design and simulation. In general, the block diagram is obtained

by represerming the particular mathematical equations, for example, the

control laws. Block diagrams reveal signal relations clearly, but the

power/energy aspects of a dynamic system are not readily accessible.

Bond Graphs

Power and energy attributes of models can be conveniently accessed

by employing a power-based model representation, namely, bond graph

model (Rosenberg and Karnopp. 1983). The bond graph is a pictorial

modeling representation based on power coupling among components. A

bond, the means of energy transfer between multiports,<xnwmcts two

ports. The bond graph is a power-based modeling method, since each tnnui

connector contains a pair of power variables whose scalar product is the



101

power. A half-arrow on the bond represents the positive reference power

direction. Using a rather small set of ideal elements, one can uniformly

construct models of electrical, magnetic, mechanical” lmydraulic,

pneumatic, thermal, and other systems, or mixed systems. Standard

techniques allow the models to be translated into a set of differential

and algebraic equations by hand or by computer. The bond graph model

depicts the physical effects considered by its modeler and their

topological relations. It is easy in practice to modify the model

structure to include additional effects. The bond graph technique has

found many applications in engineering, biology, and even economics (Bos

and Breedveld, 1985).

While bond graphs are excellent for modeling the 'plant' of a

system, they are not well suited for modeling the controls of the plant.

The signal communication aspect is better modeled by block diagrams. A

need for a system model containing both bond graph and block diagram

elements arises when the system being analyzed consists of subsystems

which are best approached with different formalisms. The mixed bond

graph/block diagram graph, developed by Zalewski and Rosenberg (1986)

will be used in this study.

4.2 Uniform Performance Measure ---_ Power

Power is often a neglected aspect of dynamic system response in

system dynamics. We may use a very simple oscillation system as our

illustration example. In Figure 4-2a a sclmummtic diagram depicts the

configuration and the linear parameters. By using Newton's law we may

derive the equation of motion as follows
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mx'+bx+kx=F(t) (4.1)

where a superdot denotes a time derivative.

Figure 4-2b is the equivalent block diagram of the system. You may

well ask: "where is the power?" Neither the schematic diagram nor the

‘block diagram can give you the answer directly. However, aspects of the

power response can be accessed and displayed clearly in its bond graph,

Figure 4-2c. Each bond in the graph contains a pair of power variables,

effort e(t) (force) and flow f(t) (velocity), whose product is power. In

this example, the bond graph gives the following constitutive and

connective equations:

p2 - F2 (4 2)

V2 = m-xpg (4 3)

x,| - V2 (4 4)

F, - kx, (4 5)

F3 - bV3 (4 6)

F2-F1-F3-F, (47)

where Fi is force on bond i,

V. is velocity on bond i,

p is momentum on bond i. and

x is displacement on bond i.

Also associated with each bond in this bond graph is the power. Wi,

denoting the power on bond i, is the product of F1 and Vi’ Also the net

energy transfer, E. can be found from W. d1
1 t l
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.Although the power variables (effort e(t) and flow f(t)) in

different energy domains have different physical meanings and units,

their product in every domain is power. As long as the efforts and flows

have appropriate units (e.g.,

products are the same (e g., watt). Table 4-1 summarizes the power

variables of the bond graph in several energy domains. We can see that

power is a uniquely uniform variable in a multi-domain system. Some

properties of physical systems may be investigated efficiently by using

such a uniform basis.
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in the SI unit system),

 

 

Table 4-1 Powers in various energy domains

Domain Effort. e(t) Flow, f(t) Power, F(t)

Mechanical Translation Force, F(t) Velocity, V(t) F(t)V(t)

Mechanical Rotation Torque, t(t) Angular Vel., (u(t) t(t)m(t)

Electrical Circuit Voltage, V(t) Current, 1(1) V(t)l(t)

Hydraulic Circuit Pressure Volume Flow Rate P(t)Q(t)

1’0) Q0)

Magnetic Circuit Mmf Flux.Rate M(t) on)

W!) 00)

Thermal Temperature Entropy Rate T(t) S(t)

T(t) S(t)

Heat Transfer Temperature Heat Flow Rate T(t)Q(t) *

T0) Q0)

 

* Not a true power.

their power
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It is natural at this point to raise the question, "How can we

exploit the knowledge about powers and energy transfer in a bond graph

model for better understanding of the system dynamics?" Answers may make

a valuable tool for model order reduction. The first step is to make the

power information readily available and accessible.

4.3. Power/energy Visualization

4.3.1 Computation of power variables

Refering the diagram in Figure 2-2 and 2-3 of Chapter 2, the source

field, energer storage field, dissipatMNiffield, and transducer fieLd

are coupled by a power-conserving connective multiport represented by

the junction structure. The Paynter junction structure consists of O and

l junction elements, (It is named after H. M. Paynter, tine inventor of

the bond graph.) and it is invariant. The modulated junction structure

is the collection of the transformers and gyrators, which may have

varying moduli. The key vectors of each field are identified. The system

equations are defined for each field as follows:

Source field U = ¢S(t) (4.9 )

Storage field Zi = ¢i(xi. Xd) (4.10)

2d = ¢d(Xi, Xd) (4.11)

Dissipation field D0 = ¢L(Di) (4.12)

Transducer coupling structure
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To = ¢t(xi’ t)*Ti (4.13)

The invariant connective structure is represented by the junction

matrix and the associated vectors as follows

v - s * v. (4.14)
O 1

v - [z x D U T 1‘
1 i’ d’ o’ ’ o

1'.

v0 — [x1, zd, D1, v, T1]

where Vi is the input vector to the junction field and V0 is the output

vector of the junction field.

Furthermore, the variables of bonds incident to only 0 and 1

junctions are collected in a single vector, Y, which includes both

effort variables and flow variables. The connective relations in the

Paynter.rnumjon structure are defined by the square matrix P which

consists only of the integers O, l.euKi-l. The P matrix can be

decomposed such that

V a P .* V. + P * Y (4.15a)
o 01 1 0y

Y - P .* V. + P * Y . (4.15b)

Yl 1 YY

Since the coefficients of P are all constants,FHOVided dyarequired

inverse exists, we may find a solution for Y from

Y = I-P ' P . av. a. 6(( yy) y1) 1 ( 1 )
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Using (4.16) in (4.15a) we can solve the output vector for the Paynter

junction structure as

-1 ¢

Vo - (Poi + Poy((I - Pyy) Pyi)«~Vi (4.17)

Thus far, we are able to obtain every pair of power variables in a

bond graph model. Therefore we can evaluate the power response on bond i

simply by multiplying the proper pair of the two power variables;

namely,

Wi(t) - ei(t)*fi(t) (4.18)

The powers in a bond graph may be classified into two major types,

namely, external and internal. The external powers are those on the

external bonds which connect physical nodes (Se, Sf, C, I, R), while the

internal powers are those on the internal bonds which are incident only

to 0 or 1 junctions. The power and energy flow on the external bonds are

defined as follows:

Source elements

Q'— Sc (Sf)

W -= e*f (4.198)

"=I:?wm (4.1%)

The net energy transfer on tnelxnmirepresents the energy supplied

to the system during the time period from C1 to t2
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Reeistagce elements

For passive resistors, the power w is always positive, i.e.

W. - e.*f. 2 0
1 1 1

The energy transfer on the bond represents the energy consumption

during the time period from t1 to t2

t2
Ti Itl ei‘kfi d1 (4 20a)

The total energy absorbed is

E a z T. (4.20b)

Capacitance elements

‘3 f
Cl 'n

__———-> C

f1

For springs and other types of capacitors. the power represents the

time rate of change of energv storage. Ifiit>C>the capacitor receives
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energy, while for W < 0 the capacitor releases energy. The net energy

transfer on a bond is computed by

_ t2 _ t2

Ti Itl Wi d1 It: ei*fi d1 (4.21a)

The energy stored is given by

n

E-ETi+E

i-l

0 (4.21b)

Ine a e eme ts

For masses and other types of inertial elements, the power W is the

time rate of change of kinetic energy. If N > O the inertial element

receives energy, while for w < O the inertial element loses kinetic

energy. The net energy transfer on a bond is computed by

-tz =t2~.-Ti It ”1 d1 It ei fi dr (4.223)

1 1

The energy stored is given by

T. + E (4.22b)
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Internel_bonds

The power on an internal bond is the product of its power variables

Wi - ei* fi

4.3.2 Power measures

In a dynamic system the power on a bond is a function of time that

is positive when the power is in the half-arrow direction, or negative,

if it opposes the half arrow. The power history can be displayed in a

usual way to assist system analysis. Figure 4-3 is the power responses

versus time of the example system of Figure 4-2 for ixumat F(t) = 1.0,

'where W.Bl is the power on bond Bl, and so on. Note that W.B3 is always

greater than zero since it is dissipated from this system by the damper.

A

The power conservation 2 W.Bi - 0 is true at all time.

i=1

Power responses versus time show how the powers associated with

different types of physical effects in different energy domains vary.

However, for a large scale dynamic system its bond graph may contain

tens or even hundreds of external bonds and their associated physical

effects, plus many internal bonds. While it is possible to display every

power response history for all bonds in a plot, it is very difficult to

abstract useful information from the vast amount of data. An

alternative way is to display aspects of the power response on the bond

graph itself. Since the power can be evaluated over’aa time perirmi, an

averaged power over that period may refhum:the intensity of the local

interacthmnvdthin the global system. The bond provides the perfect
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place to display this intensity quantitatively by color, width of the

bond, or some other means.

For the purpose of possible decomposition and simplification of the

system model, a statistical measure is introduced as below. The

magnitude of the power reflects the strength of the interaction on a

bond. For a suitable time period the magnitudes of averaged powers on

all bonds are computed and compared to find the relative interaction

strengths. Some possible power measures are:

arithmetic mean W - (l/T) IT W d1 ; (4 23a)

absolute mean W - (l/T) IT | W ldr ; (4.23b)

and root mean square W = [ (l/T) IT W2 dr ]1(2 (4.23c)

For easmetaf implementation the approximate measures corresponding

to the above definitions are employed:

K

arithmetic mean W = (l/K) 2 Wk ; (4.24a)

k-l

K

absolute mean W = (l/K) Z | Wk| ; (4.24b)

k=l

- K 2 1/9

and root mean square W = [ (l/K) 2 Wk ] “; (4.24c)

k=l

where K is the total number of data stored and Wk is the power at the

step k. 13mg range for k can be subinterval within the computed range.

Each operation may be used to make the best display in different cases.

Powers and energy transfers on all bonds can be computed. The energy of

the external nodes may also be computed.
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4.3.3 Scaling and color-coding

Color graphics techniques are being used in the practical worlds of

science and industries as well, to help manageamuiinterpret the vast

amounts of scientific and technical data. Graphics reveal trends and

relationships that would otherwise remain buried underimnnmains of

numerical detail. With the aid of computer, graphic information is

generated, analyzed, and displayed for the power properties in a bond

graph model of a dynamic system. A color graphical display of the power

strength can be shown on a computer screen. which gives user very clear

picture of the power distribution in the bond graph.

In the power display the color of a bond is determined by a

certain scale and classified into a finite groups. There are three

scales available in the computer implementation. They are linear,

logarithmic, and rank-ordered. All bonds are sortxxi into six groups.

each of which is assigned a color from red (highest power) to blue

(lowest power) in the descending order of magnitude.

4.4 Power Method for Model order Reduction and Model Simplification

Since any physical system is energy related, in addition to

the generalized momenta and displacements and the generalized efforts

and flows, the power and energy should also pnxruide insight into the

system dynamics. As discussed above the power on a bond is the product

of its two power variables, effort e and flow f. The ideal elements are

(zonnected by the bonds which are the energy pipes between the connected

elements or subsystems. The time integration of the power is the energy

flow through the bond over the time period. Power can be treated as the

.
.
.
3
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uniform indication of the interaction between two sides of the bond. It:

can be analogue to arielectrical system in which the current through a

line and the voltage across the line are important attributes, but their

product, power, also provides additional knowledge about the system.

The baskzidea behind the notion of power analysis is that the

importance (weight) of a physical effect or a subsystem to the global

system dynamics may be evaluated by the strength of its interaction with

the rest of the system. The averaged power at the bond could be used as

a measure of the strength, therefore, the significance of a physical

effect or a subsystem can be revealed.

The simplification of a dynamic model can be achieved 111 two

stages. The first is at the subsystem levelanmlthe second is at Hue

component level..At the subsystem level we seek to decompose a bond

graph model into a number of subsystems, based on physical insight,

linear/nonlinear separation, and the topology of the junction structure.

At the component level, the importance of each physical effect is

evaluated based on the power interaction with the whole system.

4.4.1 Simplification of physical effects

A power display on a bond graph as shown in Figure 4-4 gives a

clear picture of the power distribution with respect motflmzphysical

effects. A set of the weakest physical effects can be identified

immediately from the powers on the external bonds. Since the power on an

external bond reflects the strength of the interaction with the restz<3f

system, a measure of the power magnitude may suggest the importance of

the associated effect. Weak physical effects carting removed from the
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system on a trial basis. To guide the removal of the weakest physical

effects, some criterion must be set according to the nature of the

effects, the power metrics, and accuracy of the approximation. One

potentially useful measure is the effect index, El, defined as follows:

811 - ( w. / a ) s 100 s (4.25)

where W1 is the absolute mean (or root mean square) power of'tfiue i-th

bond, and Whax is the maximum absolute mean (or root mean square) power

among the all bonds. The use of the effect index will be illustrated

through an example in Section 4.5.

Se-l—I-hllr—4-*C :k

2 3

Figure 4-4 Powers on external bonds
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4.4.2 Decomposition and simplification of subsystems

Elimination of unimportant physical effects may yield a reduced

order model if the ignored effects include the capacitance or inertance.

A model order reduction in the form of decoupling also can be achieved

by decomposing the system into subsystems by removing the least

significant subsystems whose connecting bonds have the lowest level

powers. In this case, a out set of bonds with the low power levels

indicate the weak connections between the subsystems and the "mother"

system, even though the bonds inside of the subsystems may have high

level powers. For example, assuming that in Figure 4-5, bonds 1, 22, and

up to k are internal and they are cut bonds where the system is

decomposed into k subsystems 81’ $2, and up to Sk' By examining the

powers on these bonds we found that one of them, say bond 1, has very

small power compared with the rest of bonds. It shows that subsystem S1

has weak connection to the other subsystems: therefore we can simplify

the system by removing subsystem S1 with a lxnatrisk of removing

significant effect. The resulting computathmusvdll involve separated

subsystems.

Similar to the effect index, the connection index, Cl, is defined

as follows:

CIi - ( a / z wj ) a 100 a < 1.0 (4.26)

j

where W1 is the root mean square ( or absolute mean) power of the cut

bond of the i-th subsystem, Wj's are the power on all the cut bonds

connected to the junction structure.

—u
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"Mother"

31 System sk

     

 

Figure 4-5 Powers on cut bonds

4.4.3 Procedure for model simplification

By using the above suggested effect index and connection index a

general procedure to simplify the system model in a bond graph framework

has been developed. The procedure is described as below:

1. Conduct a simulation under nominal conditions on inputs and

parameters.

2. Identify and remove insignificant subsystems:

a. By applying the connection index criterion, identify the

weakest cut bonds from all cut bonds. thereby the most

insignificant subsystems:
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b. Remove the most insignificant subsystems.

3. Eliminate the unimportant physical effects:

a. By applying the effect index criterion, identify the weakest

external bonds, thereby the most unimportant physical effects;

b. Remove the most unimportant physical effects

The developed method would be best illustrated by some examples in

the following section.

4.5. Examples

4.5.1. A Radar pedestal unit

For illustration, let us model a radar pedestal unit and its

control. A sketch of the radar pedestal unit is shown in Figure 4-6. The

purpose of the drive motor and control system is to set the angular

position of the pedestal about its vertical axis as desired. The system

graph for pedestal position control is shown in Figure 4-7. The system

graph includes a bond graph part for the unit and a block diagram

portion for the feedback control.

The bond graph part models a DC drive motor connected through a

shaft and gears to a pedestal unit. The input voltage to the drive motor

is supplied by node SEE. The dominant effects in the electrical part of

the motor are the inductance (IE) and the resistance (RE). The field

current (signal I) is converted to a torque with no back-voltage effect.
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IM and RM are the motor inertia and fricthnr The shaft has torsional

stiffness (CS). The gears are modeled as an ideal transformer (TF). The

pedestal load is composed of a rotational inertia (IP) and a friction

effect (RP). Two types of power bonds are used, the electrical set (El,

E2, E3) and the mechanical rotation sets (M1, M2, M3 for the motor),

(81, $2, $3 for the shaft), and (P1, P2, P3 for the pedestal). The bond

graph part, starting with the motor input SEE, can be used to

investigate the open-loop characteristics of the drive system and load.

The position feedback control part of the model includes a transfer

function, l/s, which integrates the velocity of the pedestal, w, to get

its position 9. Node SUM compares the position with the desired value,

REF, the error CV is sent to modulate the input voltage of the drive

motor .
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Figure 4-6 A radar pedestal unit

  

  

 

 

 

    
 

REF

FB

SUM TRFN

CV in

V   
SEE AIE ASEM 41M “-50 —->‘TF -—>1P

El [ Ml 31 93 PL F]

El H3 32 P2

E2 M2

[E RE [M RM CS [P RP

Figure 4-7 Bond graph for the radar pedestal unit
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The state equations for the radar pedestal unit system can be

derived as follows:

  

 

P2 -(r2/12)p2 ' kq + (Km/11)Pi (4

9 (1/12)P2 ' (m/I3)p3 (4

P3 mkq ' (rs/13)P3 (4

o' (1/13)P3 <4

The system matrix A and the input matrix B are as follows:

-r1/Il O 0 O 'K

A = 0 1/12 0 -m/I3 O

O 0 0 1/13 0

a - [ K6 0 o o 0 1‘

The parameters for this system are given in Table 4-2.

Table 4-2 Parameters of pedestal model

IE = 0.1 henrys rE a 5.0 ohms

2
IM = 0.25 Lg.m rM = 0.3 N.s/rad

kS = 100.0 N/rad IP = 320.0 kg.m2

rP = 50.0 N.s/rad Ke = 1.0

Ml - 20.0 * I TF = 30.0

 

.27a)

.27b)

.27c)

.27d)

.27e)



Therefore the matrix A and B are evaluated as:
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-50 0 0 0 -1

200 -1.2 -100 o 0

A - o 4 0 -0.09375 0

0 0 3000 -O.15625 0

0 0 0 0.003125 0

B = [ 1 0 0 0 0 1‘

The simplification by removing the weakest physical effects may be

seen clearly from the power distribution of the radar pedestal unit. An

RMS measure of the power on each bond has been computed and the

resulting list of values has been rank-ordered.

response of the system is listed in Table 4-3. The

lists the RMS power value as a percentage of the

The abstracted power

column at the right

maximum value. Figure

Table 4-3 Effect indices

RMS

ORDER BOND POWER

1 M1 0.1059E+02

2 M3 O.8120E+Ol

3 S3 0.4030E+Ol

4 Pl 0.4030E+01

5 SI 0.4023E+Ol

6 P2 0.3739E+Ol

7 M2 O.3239E+Ol

8 P3 0.1506E+01

9 $2 0.2620E+OO

10 E3 0.8605E-01

11 El 0.8662E-Ol

12 E2 0.17llE-Ol

El

100.

76.

38.

38.

37.

35.

30.

.210

000

642

041

041

969

287

575

 
.473

.818

.818

.016

H

O
O
O
N
L
‘



123

Figure 4-8 shows the root mean square powers displayed in six

colors. We found that bonds El, E2, and E3 have the lowest power levels.

However, these are the powers in the controlled field of the motor. The

major power supply of the system is from the armuture. The connector I

separates the two parts. In the main part bond 82 has the smallest

effect index with 2.473%. The physical effect associated with bond 52 is

the shaft compliance. It is expected that the shaft transmits large

torque with small rate of change of the torsional displacement under a

high oscillation frequency. It shows that the compliance of the shaft is

not significant with respect to the general system dynamics and suggests

that the ignoring the element CS would not degrade the model. The

simplified model is shown in Figure 4-9. Since the removal of node CS

causes derivative causality on one of the bonds M2 and P2, the two

inertance IM and IP are combined into a single equivalent inertance IEQ.

The order of the simplified model is reduced by two. The eigenvalues of

these two models are listed in Table 4-4 and their responses are plotted

in Figure 4-10. It is not surprising that the modes with high frequency

are truncated and the responses are almost identical except for the

ripples on the curve of the angular velocity of the original system.
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w SRC

REF

F8 ~ .
SUM TRFN

CV '

 V
SEE -‘1~1E ——>SEM —> 1M —>0 —\TE -—> 1p

5 1 Ni 51 53 P1

53 N3 P2 P3

E2

IE RE RM IEO RP

 

Figure 4-9 Reduced-order model of the pedestal

Table 4-4. Eigenvalues of the original and reduced models

 

 

Original Reduced

-3.86210E-01 i j 2.60896E+Ol

~2.91432E-01 i j 3.67950E-01 -2 91340E-01 : j 3.67800E-01

-5.00010E+01 -5.0004SE+Ol
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4.5.2 An Euler-Bernoulli beam with a vibratory load

As a second example consider a pinned beam with a vibratory load

attached at position x1 and a driving force F(t) acting at position x2,

as shown in Figure 4-11. The beam acts as a coupling element between a

driving force and the load. Following the modal bond graph approach of

Karnopp and Rosenberg (1968) and Margolis and Tabrizi (1984) the

continuous beam is modeled by a modal bond graph with five modes

retairuxi (See Figure 4-12). Mode l is represented by C1, 11; mode 2 is

represented by C2, 12; H”. The modal frequencies of the beam are given

by

2 __

= ’ 4

”i (1 " ) J El/pAL

where “3.15 the i-th modal frequency; E is the Young's modulus; I is

the area moment of inertia; p is the density of the beam material; and L

4

is the length of the beam. In this example, we assume / EI/pAL - 1.0,

2 2 2

so that (.01 - n - 9.87, w2 - (2n) = 39.48, w3 = (3n) - 88.83, w4 -

2 2

(4n) - 157.91, “5 - (Sn) - 246.74. The model mass mi is determined as

follows

E

I

L 2 L 2

I pAYi(x) dx = I pA sin (inx/L) dx

0 O

1 2

J pAL sin (inx/L) d(x/L)

O

pAL [ l - cos(inx/L)]/2 d(x/L)

pLA/2 = M/2 (4.29)
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Figure 4-11 A beam-coupled system
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Figure 4-12 Modal bond graph model for the beam-coupled system
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where M is the mass of the beam. Let M - 10.0 kg; then 1111 = m2 - m3 - m4

- m5 - 5.0 kg. The modal stiffnesses are computed by

k1 - mlwl 487.08 N/m

k2 - m2W2 = 7793.4 N/m,

k3 - msws 39453.8 N/m,

124677.8 N/m,w

‘

I a
a
s 8
a

I

Rs 3 msws 304403.1 N/m.

The parameter values for the lumped mass and spring are chosen to

‘be m - 2.() 'kg and k.- 200.0 N/m. Thus the load natural frequency is

w = 10 0. For a damping ratio 0.1, we choose b = 4.0 Ns/m .

The mode shapes at position xj are determined by

Y; = sin (jnxi/L) i = 1, 2, ..... ; j = 1, 2, .... (4.30)

The mode shapes at the positions of the predescribed force F(t) and

the load are calculated from Equation 4.30 when x = 1405 and x. == 2L/3,
l 2

where L is the beam length. They are

Y1 = [0.5878, 0.9511, 0.9511. 0 5878, 0.0]‘,

Y2 = [0.866, -O.866. 0.0, 0.866. -O.866]t

The RMS power distribution for a unit step force ixunit (E.42) in

the bond graph is given in Table 4-5. The data are coded on the bond

graph in Figure 4-13. Bonds 30 and 20 have zero power because tflua load

is located at a node of mode 5 (x1 = L/S). Bonds 33anu123 have zero

power because the input force is located at a node of mode 3 (i.e., x2 =

2L/3). The lower parmzof the bond graph is the modal representation of
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Table 4-5 The power listing of five-mode model

RMS

ORDER BOND POWER El %

1 1 0.6239E-02 100.000

2 42 0.6181E-02 99.079

3 11 0.5808E-02 93.098

4 21 0.5783E-02 92.692

5 31 0.5783E-02 92.692

6 2 0.21558-02 34.535

7 3 0.2071E-02 33.188

8 12 0.1931E-02 30.956

9 22 0.1892E-02 30.327

10 32 0.1892E-02 30.327

11 38 0.1587E-02 25.443

12 39 0.1491E-02 23.900

13 41 0.1403E-02 22.487

14 36 0.8567E-03 13.731

15 37 0.8567E-03 13 731

16 4 0.7426E-03 11.903

17 16 0.72008-03 11.541

18 26 0.7200E-03 11.541

19 7 0.6410E-03 10.275

20 14 0.5910E-03 9.474

21 34 0.5850E-03 9.378

22 24 0.5850E-03 9.378

23 40 0.4760E-03 7.630

24 9 0.4250E-03 6.813

25 17 0.3908E-03 6.264

26 27 0.3908E-03 6.264

27 15 0.387lE-03 6.205

28 25 0.3871E-03 6.205

29 35 0.387lE-03 6.205

30 8 0.2477E-03 3.970

31 10 0.1760E-03 2.821

32 29 0.7394E-04 1.185

33 19 0.7394E-04 1.185

34 5 0.7855E-05 0.126

35 13 0.7753E-05 0.124

36 18 0.7753E-05 0.124

37 28 0.7753E-05 0.124

38 6 0.3685E-O6 0.006

39 20 0.0000E+00 0.000

40 23 0.0000E+00 0.000

41 30 0.0000E+00 0.000

42 33 0.0000E+00 0.000
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the beam and consists of five modal pairs of C and I nodes. Each pair

may be treated as a subsystem. The subsystem 1 composed by C1 and 11,

and so on. These subsystems connect with the mother system by bonds 11,

12, 13, 14, and 15, respectively. These bonds are cut bonds and consist

a cut set. We can apply the connection index CI to judge the

significance of each individual subsystem. First, we compute the

connection indices as follows

CI - Q11 / (011 + 012 + 013 + 015 + 015)

- 0.005808 / (0.005808+0.001931+0.000007735+0.00059l+0.0003871)

- 0.666

CI - 0.221

CI - 0.000887

CI - 0.0677

CI - 0.0440

By comparison of the Obtained connectjxni indices in Table 7, we

found that the third mode represented by subsystem 3 has the weakest

connection. Therefore, removal of mode 3 should not have much effectzcni

the performance of the whole system. We may try to remove mode 5 and 4,

sequentially.

Table 4-6 The powers on cut bonds

RMS

ORDER BOND POWER CI %

1 11 0.5808E-02 66.567

2 12 0.1931E-02 22.131

3 l4 0.5910E-03 0.887

4 15 0.3871E-03 6.774

5 13 0.7753E-05 4.436

”
'
1
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If a model simplification that ignores the highest three modes is

used ( See Figure 4-14), then the resulting RMS power distribution in

list format is given in Table 4-7. The eigenvalues of the original and

the reduced models are listed in Table 4-8. To further investigate the

behavior of the simplified model as compared to the original model we

plotted the velocities at the input (F.42) and the load (F.37) locations

versus time in Figure 4-15 ('F' denotes flow, hence velocity in ENPORT).

The curves for reduced model are more smooth. The deviations are quite

small. This example shows that the weak connection of a subsystem to the

mother model is a good indicator to lead to a model simplification.

The computational effort is reduced dramatically by the model

reduction. The data in Table 4-9 were obtained by running the models in

a Prime 750 system using ENPORT7-7.l.5. The computation time is

decreased by reducing the number of state variables and eliminating the

high frequency modes. It is most clear when both the fourth and fifth

modes were eliminated.
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Figure 4-14 Reduced model with two modes
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4-7 The power listing of two-mode model

ORDER BOND

\
O
N
V
C
h
U
i
b
U
-
D
N
H 1

42

11

21

31

2

3

12

32

22

38

39

41

36

37

A

16

26

4O

17

27 O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

4-8 Eigenvalues of the

RMS

POWER

.6248E-02

.6147E-02

.5817E-02

.5792E-02

.57925-02

.2154E-02

.2051E-02

.1913E-02

.187SE-02

.1875E-O2

.1582E-O2

.1486E-02

.1398E-02

.8515E-O3

.85155-03

.734OE-O3

.7197E-O3

.7197E-O3

.4739E-O3

.387lE-O3

.3871E-O3

%

.000

.379

.101

.698

.698

.469

.822

.626

.010

.010

.316

.782

.374

.628

.628

.748

.518

.518

.586

.196

.196

original and reduced models

 

 

Original Reduced

0.00000E+00 i j 2.46739E+02

-l.40411E-01 i j 1.57952E+O2

-3.75707E-01 i J 8.90238E+01

-4.12466E-01 i j 3.99433E+Ol ~4.17791E-Ol i j 3.99438E+Ol

-8.06808E-01 i j 1.17678E+Ol -8.17999E-01 i j 1.17833E+01

-2.64687E-01 i j 8.24499E+OO -2.64250E-01 i j 8.25372E+OO

 

Table 4-9 Computer times

 

 

Modes in CPU time

model (sec)

1,2,3,4,5 27.809

1,2,4,5 20.488

1,2,4 13.591

1,2 2.955

 



S
E
A
L
I
N
G

‘

w

2
.
5
0
E
-
0
1

0
.
8
0
E
+
0
0

  

F
B

1
.
2
S
E
i
0
0

0
.
0
0
E
+
0
0

 
  

135

  
 

 
 

 
 

 
 

 
 

 
 

0
.
0
0

1
.
6
0

3
.
2
0

4
.
8
0

6
.
4
0

8
.
0
0

T
I
M
E

3
1
0
E

0

L
E
G
E
N
D
:

W
—
—

F
B

-
-

-

F
i
g
u
r
e

4
-
1
5

C
o
m
p
a
r
i
s
o
n

o
f

i
n
p
u
t

a
n
d

l
o
a
d

v
e
l
o
c
i
t
i
e
s
.

 



136

From the examples above the blue color on the thinnest bonds

indicates the lowest power level and the user can easily spot those

bonds qualitatively, hence the least significant physical effects.

Referring to the power listing, the user obtains the power levels

quantitatively. Such process is very natural and intuitive. The

simplification may be done repeatedly by eliminating the lowest power

bond and associated node, or subsystems. In fact, the beam-load model

experienced three times of reduction, each time a pair of modal C and I

nodes were removed.

Note here that the two examples are linear and time-invariant. It

is for the purpose of making a comparison by using the system

eigenvalues. It is observed that in this power-based method there is no

functional analysis or matrix transformation involved. The method is

INJilt on the solution data obtained in simulation, therefore, no

restriction exists with respect to the linearity of time system in the

problem.

It is clear that since this method must use the simulation data to

find the power distribution, we can not escape the initial computation

for solving the original high-order, complex, or ill-modeled system

model. It may prevent the application in the case that the computer does

not have enough storage space for large number of solution data.
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Chapter 5

SUMMARY AND CONCLUSIONS

In this dissertation two approaches to the design assessment and

simulation of engineering systems were presented. The principal research

objective of providing tools for improving insight and efficiency in

dynamic system design was achieved.

5.1 Implicit R-field Simulation

‘With respect to the simulation of models containing implicit R-

fields, our research has accomplished the following.

1. For a bond graph containing IRFs, the IRFs were identified at

the graph level from causality data. Each IRF was identified separately.

The total computation effort was reduced by this localization of IRFs.

The identification procedure was implemented in software.

2. A new algorithm that finds the minimum iteration set of a given

IRF was presented. This algorithm uses a;finunfion structure property,

the basis order, to determine the minimum number of iteration variables

and applies to IRFs with a simple junction structure and 1-port R nodes.

The minimum number is equal to the minimum of the pair of basis order

numbers, E and F. This number is always less than or equal to one half

the number of bonds on the IRF R nodes.



138

3. To extend the above algorithm to an IRF containing multiport R

nodes and a simple junction structure, a rule to determine the minimum

number of iteration variables for a given causal IRF was deduced from an

equivalent digraph. The coupling of port variables by multiport R nodes

increases the size of the minimum iteration variable set from min {E, F}

M

to min {E, F} + 2 min {Nr‘ Ng ’m . The summation term reflects the

m-l

couplings within multiport R-nodes.

4. Next an acausal IRF with a multiport node and a simple junction

structure was considered. The question was "What assignment of causality

will lead to a minhmnnilmration variable set?". A strategy for

.assigning causality such that the number of iteration variables for an

IRF containing one multiport R node is a minimum was developed. This

strategy also determines such a set of iteration variables.

5. The algorithm described above utilizes the property of effort-

to-effort and flow-to-flow transformations of simple (and weighted)

junction structures. For general junction structures (containing one or

more essential gyrator nodes) we developed a new result that

gives the basis order. The basis order numbers, E and F, are not a

unique pair. In order to find the range of basis order numbers, we

transformed a general junction structure to an associated gyrograrflm. By

using the gyrograph representation and the graph matching concept, an

algorithm for determining the F-maximum and the F-minimum of basis order

for a general jLuurtion structure was developed. The structure of the

basis set was determined to range from Fmin to Fmax by steps of tn“) in

F.
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The author makes the following suggestions for future research on

this topic.

1. The restriction on the number of multiport R node to ones in the

algordlflun for optimum causality assignment in IRFs should be relaxed.

The interactions among multiport R nodes must be considered.

2..Apply the basis order algorithm for general junction structure

to the solution of IRFs with a general junction structure.

3. Implement the algorithms from 1 and 2 above within a bond-graph-

based simulation program, such as ENPORT-7. It will make the software

more powerful and efficient in design assessment and simulation.

5.2 Power Distribution and Display

To increase insight and reduce simulation time an approach to model

order reduction and simplification based on the power distribution

response of dynamic systems was investigated. A new display tool was

developed and implemented in software. A number of examples were

provided to illustrate the use of the tool. To obtain power distribution

attributes the engineering system is modeled by a.tunu1 graph, a

simulation is made under a set of given test conditions, and time

histories of system variables, including powers. are obtained. Various

measures of the power response can be calculated and displayed directly

on the bond graph by color coding. Such displays give engineers an easy'

‘way to visualize power distribution attributes in large-scale, complex

dynamic systems under a given set of operating conditions. Often insight

may be gained into possibilities for model simplification.
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A major advantage of the approach is that it is associated with the

graph model and does not require the engineer to deal with equations.

The power response approach is not restricted to linear models. In the

nonlinear case there are no convenient data of the class of eigenvalues

to which to appeal for insight. Here the power distribution may offer an

efficient way to make a trial assessment of possible model

simplification.

The following issues remain for future development with respect to

the power distribution method.

1. It will be useful to get the existing tools for power response

assessment, now implemented in pilot version, into wide use so that data

regarding modeling approximations can be accumulated. From such shared

experience it may be possible to find guidelines that are automatable

and will provide the engineer with additional insight.

2. We have observed that different power measures, such as mean or

RMS, can yield different insight into the relative importance of parts

of the model. With respect to possible model simplification we are at

the "cut and try" stage. It would be valuable to have some guidelines as

to how to exploit power level distribution data with respectztua system

response. One such question is "What different measures should be

considered for different physical effects, such as power sources, power

dissipation, and energy storage?"

3. Power distribution properties may open a new research (Lirectirni

in control. For example, are there some ways to control a dynamic system

based.on not only signals but also power properties? To answer this
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question we need to study the power properties in a dynamic system

theoretically. The relation of power variables to many important aspects

in control, such as controllability, observability, and stability of a

system, need to be investigated. One may start with a simple linear

time-invariant model.
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APPENDIX : Standard Bond Graphs and Gyrobondgraphs

1. Standard bond graphs

A.standard bond graph consists of elements of the standard set

(Table A-l): C, I, R, Se, Sf, 0, l, TF and CY, which are called

capacitance, inertance, resistance, source of effort, source of flow,

one-junction, zero-junction, transformer and gyrator, respectively. The

elements C, I, R, Se and Sf represent the energy field effects of

lumped-parameter multiport physical components, while the elements 0, 1,

TF, and CY are used to form the junction structure of the bond graph.

The junction structure defines the connection pattern among the field

multiports, and it is power-conserving. The SJS contains only elements 0

and 1, while the WJS contains the elements<3,]” and TF. They share a

common causality structure, in the sense that the effort transforms to

efforn:.and flow transforms to flow. The efforts and flows are disjoint.

Their causal properties are clearly established. The CJS contains

gyrator (GY) as well as the elements 0, l, and TF. The properties of CJS

have not been established.

2. Gyrobondgraphs

The gyrator is a fundamental element in constructing power dual

pairs of elements, such as (C, I), (Se, Sf) and (O, 1). Based on the

gyrators, the standard set can be reduced to a smaller working set (I,

1!, Se, 21 and CY). Bond graphs can be transformed into a canonical form,

gyrobondgraph, from which the properties of the original bond graph cant

be deduced. For example, see Rosenberg [9]. hitfds paper, we will use
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the set (I, R, Se, 1 and CY) as our primitive set for expressing the

gyrobondgraph.

A standard bond graph can be transformed to its associated

gyrobondgraph by the following procedure:

(1) Replace each standard element not in the primitive set by its

equivalent:

(a) an Sf is equivalent to an Se and a CY;

(b) a C is equivalent to an I and a CY;

(c) a TF is equivalent to two CYs in cascade (one of which has

unity modulus), and

(d) a O is equivalent to a 1 and a CY at each port.

(2) Eliminate all pairs of unit gyrators.

(3) Combine all l-junctions that are directly bonded.

(4) Insert l-junctions to meet the adjacency conditions, namely,

(a) each I, R, and Se is adjacent to a l-junction; and

(b) each CY is adjacent to two distinct l-junctions.

(5) Combine any fragments of the graph that require it into

equivalent 1- or R- fields.

3. Gyrographs

The vmnxi, gyrograph, was first used by Professor H. M. Paynter in

1968. He stated that all reduced gyrobondgraphs contain ideal multiport

junction structures consisting solely of interconnected 1's and CY's,

and all such systems are but specializations of a general ideal

multiport we call gyrostructure. A graph, simplified from its

gyrobondgraph is called the gyrograph.
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“To simplify'a gyrobondgraph to a gyrograph the following steps are

used

(1). Replace each l-junction by a corresponding circle.

(2). Replace each gyrator together with its bonds by a edge joining

the two adjacent circles.

(3). Replace each external node by a square.

‘Table

SYMBOL

55...£L.,

c.L_%__.

'f"

R f

A-l Standard node sets

DEFINITION

e - e(t)

f - f(t)

e - ¢KQI

e(t) - u(toh {fodt

f - 4K9)

u(t)-pea» {e-a:

0(esf) a O

8‘ ' M082

m-f' I f2

e, - refz

82 . nfl

f' + f2 - f3 3 0

f1 8 f2 3 f3

NAME

source of effort

source of flow

capacitance

inertance

resistance

transformer

gyrator

common effort

junction

common flow

junction
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