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ABSTRACT

Experimental Investigation of Nonlinear
Oscillations of a Base Excited

Flexible Cantilever Beam.
By

Syed Masroor Hasan

A study is made of the nonlinear response of a flexible cantilever beam
excited by a sinusoidal base motion. Experimental results are presented which
exhibit a variety of unusual and potentially dangerous phenomena such as chaos,
multi-mode interaction, multiple steady-states and a very high order subharmonic
response. Particular attention is focused on resonances which can occur at frequen-
cies well removed from the excitation frequency. In addition, the partial integro-
differential equation is obtained which governs the planar motion of the beam. It
takes into account the effects of large curvature and axial deformations and
includes up to order three nonlinearities. For a single mode response, the equation
can be reduced to Mathieu’s equation with a cubic nonlinearity. The stability of
the trivial solution of this equation is studied using a perturbation technique and
the results are compared to experimentally obtained data. In conclusion, the
pointwise dimension is estimated for the chaotic motion observed, and the results

suggest that the chaotic motion can be modelled by three orthogonal modes.
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CHAPTER 1
INTRODUCTION

1.1 Scope of the Work

Recently, there has been a growing interest in the dynamical behaviour of
flexible structures. Such structures are becoming more common as designers are
continualy striving to make efficient use of newly available materials and make
lighter, less expensive products. There is often the need to reduce the weight to a
bare minimum, in order to reduce the inertial loading on the system. This is par-
ticularly desirable if the application involves high speed machinery e.g. robot
arms. Another area in which flexibility is a problem is that of space structures. In
a zero gravity environment a structure does not have to be designed to withstand

its own weight. The resulting designs are often very flexible.

The main aim of this work is to experimentally investigate the dynamical
behaviour of a flexible structure. A relatively simple model is chosen, viz. a cantil-
ever beam of dimensions 55.88 cm x 1.27 ¢cm x 0.0508 cm and it is excited by a
sinusoidal base motion in the longitudanal direction. Chapter 4 catalogues the
various types of vibration phenomena observed. A number of these have received
attention in the past, such as main parametric resonances, multiple steady-states
and the jump phenomenon. However, less well documented behaviour was also
observed, including chaotic response, multi-mode interactions and very high order

sub-harmonic responses.

Before discussing the experimental observations, the governing equation of
motion of the system is derived in Chapter 2. It is valid for in-plane motions with
large curvatures and it includes up to third order nonlinear terms. In this thesis,
limited use is made of the equation of motion, but it will act as a sound starting

point for future studies in this area. The equation is also used to predict the

1



theoretical stability of the trivial solution. This is undertaken in Chapter 3 and

the results are compared with the experimental results in Chapter 4.

Chapter 5 is concerned with a more detailed study of the chaotic response. A
discussion is presented as to the use of dimension calculations and and such a cal-
culation is undertaken for the chaotic motion observed in the cantilever.

1.2 Literature Review

A review article by Sathyamoorthy [1982] surveys recent advances in the area
of nonlinear analysis of beams. Most of the works dealing with planar motion are
devoted to the study of axially restrained simply supported beam which take into
account the nonlinearities due to mid-plane stretching. See, for example Wojnow-
sky Kreiger [1950], Evensen [1968], Ray and Bert [1969], Mei [1973], Nayfeh et al.
(1974], and Bhashyam and Prathap [1980]. A few studies have dealt with the
oscillations of beams with no axial restraint in which the nonlinearities arising
from the effects of large curvature and longitudinal inertia are also considered, see

Wagner [1965], Alturi [1973], and Luongo et al. [1986].

There have been a number of works related to the non-planar response of
beams. For example, Crespo da Silva and Glynn [1978a] investigated the
bending-bending-torsion of a beam. In part two of the paper, Crespo da Silva and
Glynn [1978b], they extended the work to include the effects of a transverse force.
Ho et al.[1975, 1976] studied a similar problem but did not consider the torsional
motion. Hyer [1980] investigated the non-planar response of a base excited cantil-
ever 'using the method of multiple scales, and presented numerical results for a
specific beam excited near its fundamental and its second natural frequencies.
Luongo et al. [1984a] considered the free non-planar motions of an inextensible
elastic beam, supported in an arbitary manner without any axial restraints. A
thorough mathematical investigation of Euler’s elastica has been completed by

Caflish and Maddocks [1984].



Tseng and Dugundji [1971] reported on what seems to be the first observa-
tion of chaotic motion in a physical structure. They completed a theoretical and
an experimental investigation of the bending response of a buckled beam sub-
jected to a harmonic excitation. Although it was not named as chaos a "snap-
through" response was observed both numerically and experimentally. The work
was later expanded to include torsional responses, Dugundji and Mukhopadhyay
[1973]. The text by Evan-Iwanowski [1976] reports on a number of experimental
results relating to the steady-state, or almost steady-state response of beams.
Evensen and Evan-Iwanowski [1966] investigated the stability of a column sub-
jected to axial excitation. Handoo and Sundararajan [1971] studied a similar prob-
lem. Haight and King [1969] investigated planar and the non-planar stability of a
rod due to an axial excitation. In a related work, Haight and King [1971] studied
a similar problem but with a lateral excitation. Takahski [1979] reported on the
stability of multi-mode, steady-state, planar response of a nonlinear beam. Dowell
et al. [1977] devised an experiment to investigate the dependence of the bending
and torsional natural frequencies on the static deflection of a hingless rotor blade
A detailed investigation by Bux and Roberts [1986] reported on the complex
modal interactions that can occur as a consequence of internal resonances. They
studied both theoretically and experimentally, the behaviour of a system of cou-

pled beams. Housner and Belvin [1986] studied the transient response of a slender

guyed boom.

Works reporting on the experimental existence of chaos in structures include
those by Moon and Holmes [1979], Moon [1980], Shaw [1985] and Burton & Kolo-
with [1088].



CHAPTER 2
THE GOVERNING EQUATION FOR PLANAR MOTION

The planar vibration of a base excited cantilever beam is studied. The equa-
tion of motion is derived using Hamilton’s Principle (see Goldstein [1980] pp 35-
37), and terms arising from large curvature and from the resulting axial
deflections are included. The equation of motion contains nonlinearities up to
order three. Galerkin's method is used to reduce the partial differential equation
of motion to a nonlinear ordinary differential equation by making use of the eigen-

functions of the linearized system.

The following assumptions are made to simplify the problem,
i) the beam is inextensible,
ii) there is no warping or shear deformation,
ili) the effects of rotary inertia are neglected,
and
iv) the cross-sectional dimensions and the material properties of the

beam are constant along the length.

Consider a slender beam of length ! and mass m per unit length as shown in
Figure 2.1. The base of the beam is located at the origin of the coordinate axes
and has a known harmonic displacement in the x-direction of bsin(Q2,¢t), b being
the magnitude of the displacement and 02, the excitation frequency. Let S be the
path coordinate measured along the undeformed arc center line. For the planar
motion, the deformed shape of the beam is defined by a displacement of «(S,t)

and v(S,t) in x and y direction respevtively, and by a rotation of the beam'’s cross

section of 4(S,t).

Noting assumption (iii) and (iv), the total kinetic energy of the beam is given

by,
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Figure 2.1: Cantilever beam and coordinate system

Figure 2.2: Angle of ratation of a differential
element of beam.



]
T(¢)= -;- m (42(S,t) + 92 (S,t)) dS (2.1)
[\]

where a dot denotes partial differentiation with respect to the time ¢ and m is the

mass per unit length.

Noting assumption (i), the total potential energy of the beam is the elastic

potential energy due to bending , and employing the usual notation, is given by,
b1
V)= [ 7 EI u?(S,t) dS (2.2)
0

In the above equation, u is the curvature of the center line.
The Lagrangian function (see Meirovitch [1967] pp 44) is given by
L{t)=T((t)-V ()
[

L(t)={[—;—m(i2+62)——;-E1u2]dS (2.3)

We now seek to express u(S,t) in terms of the displacement component v(S,t).
From assumption (ii) and Figure 2.2, the rotation 6(S,t) is related to the displace-

ment derivatives by

tan 0 = T":',— (2.4)

where the prime denotes the partial differentiation with respect to S. The expres-

sion for the strain (see Appendix A) in terms of displacement components is
e(S.t)=[(1+¢ P+ov'2)V2_ (2.5)

Expanding this using the Taylor series we get,
(S,t) =+ + -;—v'ﬂ (2.6)
Noting assumption (i), equation (2.6) reduces to

I TRk 2.7)



The curvature expression is given by,

B(S,t)="0 (S.) (28)
Using equation (2.4) and equation (2.7) the curvature can be written as (see
Appendix B)

W(S,t) =8 (S,t)=v "(l+-;—v '2) (2.9)

Substituting equation (2.9) into equation (2.3) yields
I
L(t)=[[5m (&% )= 3 BI (v (145 v '3 JdS (2.10)
0

The partial differential equations of motion can now be obtained by using the
Hamilton’s principle (see Goldstein [1980] pp 36), which requires that
t2 1

s!{L(t)=o

t2 1
6!{[%-"1(é2+62)-%EI(v"(l+%v'2))2]dS-O (2.11)

After taking variations with respect to « and v, performing integration by parts
of the terms in equation (2.11), and rewriting them as the coefficients of variations

6 and év, which must vanish so that equation (2.11) holds, we arrive at:

t3 1

J J(-mii)ou + (=mi— EI (v """ 40" v '2 4 400" """ 4 v ''3))6v]dS=0 (2.12)
)

In order to eliminate the function u(S,t) from the above equation, we integrate

equation (2.7) with respect to S to obtain
T
u (S,‘)SU (0,!)—];"'243 (213)
0

At the base of the beam (5=0), the v displacement is given by u (0,t) = bsin(2, t),

hence



S
u (S,t) = bsin(Q2, ) — % [or2ds (214
0
Therefore
e
4= —(?fv '24S) — b Q% sin (Q, t) (2.15)

0

Substituting equations (2.14) and (2.15) into equation (2.12) we get
t2 1 1S ” ] 1 s
[ [l-mv'(=[fv'%S) + mv "' (f(5fv '2dS)
t, 0 20 s 20
mb 0, %sin(Q, ¢)[(1-S)v "' = V ]
(~m=EI(v'"""" 49" v 4400 "0 """ 4 0''3))5v] dS =0 (2.16)
The stationary condition leads to the partial governing integro-differential equa-
tion which determines v(S,t). The equation is
mi)'+EI(v INl+v ey, 12+4v Tytly Ill+v us)
1 s ! 1 s
+ mv '(—fv '24S) — my "(I(—-fv 1245)
2 0 ) 2 0
= mb 0, %in(, t)[(1=S)v "' —v '] (2.17)

Introducing the following non-dimensional terms,

= S
S=T

t=wt (where w=(-%)‘/2 )
m

- ﬂ, ~ b
-—L b= (2.18)

we can non-dimensionalize equation (2.17). Dropping tilde for convenience, we get
s

ii+v"" +vll!lvl2+4vlvllvlll +v"3+v’(%fu'2d5)
0

L s
v ! [f(5[v '2d5)dS] = bsin(@t)[(1-S)v ' = '] (2.19)
S 0



where dots and primes represent partial derivatives with respect to the new time ¢

and new arc length $ respectively.

The Galerkin’s Method (see Meirovitch [1967] ) can be used to reduce equa-
tion (2.19) to a ordinary differential equation. The displacement v(S,t) is assumed

to be an eigenfunction of the linearized system, and a solution is sought of the
form
v (S,t) = ¢,;(5)q;(t) (2:20)
where ; = 1,2,3...........
The mode shape ¢,(S) of the linearized system is given by (see, for example
Thompson [1981] pp 218-221),
#;(S) = cosh(r; S)—cos(r; S)—K;(sinh(r; S)—sin(r; S) (2.21)

where

cosh(r; S )+cos(r; S)
= “sinh(r, S )+sin(r; S)

(2.22)

The values of r; and K; as tabulated by Young and Felgar [1949] are as follows:
Table 2.1

Values of K; and r;

il K r;

1 | 0.7341 | 1.8751
1.0185 | 4.6941
0.9992 | 7.8548

o W N

1.0000 | 10.99554

The substitution of equation (2.20) into equation (2.19) results in

Qj¢j + q,-¢,-'”’ + Qj3[¢j““¢j'2+4¢j'¢j u¢’_ Il'+¢j K]
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S 1 S
+9;(0;9;+9;°8,' [¢; '2dS~9,'" [([4;'2dS)dS)
0 00

= bQ%in(Qe)[(1-S)¢; "' =4, ') (2.23)

An application of the Galerkin Method in the usual manner leads to the ordinary

differential equation of the motion,

g + (a;j+8;bQ%in(Qe))g; + 7,9;°+2,(9;%0;+9;9,7] = 0 (2.24)

The constants which appear in equation (2.24) are defined by

1
a;=[6;'"""(S)$;(S)dS=r}  (2.25a)
1]

1
,1’,,___.[(45,_: (XX ¢j' 2¢j+4¢j: ¢j: ' ¢J_I " ¢j+¢’_n 3¢,-)dS (2.256)
0

1 s 1 S
N=[(8;'([¢;'2dS)-9¢,'" ({(f%-' )¢, dS (2.25¢)
0 0 0
1
Bi=— [l(1-5)¢;"' — ¢,'|¢;dS (2.25d)
0

The constants e/, 8;, 7;, and \; can be obtained by numerical integration of equa-

tions (2.25). For j = 1-4, these evaluate to:
Table 2.2

Values of 8;, 7;, and );

J Bj j Aj

1 1.57 40.44 4.60

2 8.65 13.4x10° 145

3 | 25.00 | 26.4x10* 10%

4 | 50.21 | 1.75x10° | 3.65x10°




CHAPTER 3
STABILITY ANALYSIS

3.1 Introduction

The governing equation for planar motion obtained previously admits a
trivial solution (¢;(¢)=0). In this section we study the stability of this solution for a
main parametric resonance, i.e for a forcing frequency in the region of twice the
natural frequency. The boundaries between stable and unstable solutions are
obtained using Lindstedt-Poincare Method. The method is explained in detail in

Nayfeh & Mook [1979] (pp 54-56) and only those steps pertinent to this particular

problem will be included here.

3.2 Reduction to Mathieu’s Equation

Recalling equation (2.24), the general equation of motion is
Gj+(a;+B;bQ%sin(e))g; +7; 4>+ ; (4,74 +9; 4;%)=0

Since the stability of the trivial solution is sought we can drop the nonlinear

terms, which yields

§j + (o; + B;bWsin(Qt) )g; = 0 (3.1)
The above equation is now reduced to the form whose stability has been studied
by Nayfeh & Mook [1979] (pp 300-301). Let T-%l and substitute this into equa-

tion 3.1, noting that the dots are now derivatives with respect to new time ¢, we

get
. daj (2
qj+[ﬁ-+4ﬂ,-bsnn(2t)]q,- =0 (32)
Let

11
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4a;
and
€;=28;b (3.3b)

and dropping the over bar for convenience, the equation 3.2 becomes
4;+(6+2¢;sin(2t) )g;=0 (3.4)

which is the standard form of Mathieu’s equation.

3.3 Stability Analyais

The stability analysis is carried out using Lindstedt-Poincare technique which
is valid for small ¢(€~0.035 in our case). Before application of the method, a
damping term should be introduced into equation (3.4) to account for small
energy losses in the physical system. The general form of the stability diagram is
not affected by the value of the damping coefficient, provided the damping is
small. The system we are considering is very lightly damped. Therefore, instead of
accurately modelling the damping, we will assume it to be viscous with a
coefficient, ¢;u, of 0.001. Even if we choose ten times higher damping coefficient, it
results in altering the boundaries between stable and unstable regions, by less
than 1%. Adding this to equation (3.4) and dropping subseript j for convenience

results in
7 +(5+2¢sin(2t))q +2ueg =0 (3.5)

Now we will follow the method as outlined by Nayfeh & Mook [1979] (pp 300-
301), to obtain boundaries between the stable and unstable regions. Using a first

order approximation, let

q(t:€)=qo(t)+eq\(t)
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¥ e)=1+¢5,
Substituting these into equation (3.5) results in
(qo+eq1)+[(1+€6))+(2esin(2¢ ))](go+eq )+ 2em(go+eq1)=0

Equating like powers of ¢, we get

602

qo+90=0 (3.84)

q1+41= —[6,+2sin(2t )] g0 —240 (3.86)
The solution of equation (3.6a) is
go=aqcos(t )+besin(t)
Substituting this back into equation (3.6b) we get
q1+91= —[6,+2sin(2t )] [agcos(t )+bosin(¢ )] -2/ o[b ocos(t )—agsin(t )]
and expanding the terms in the above equation, we get
q1+91= —[(61a0+bo+2ubo)]cos(t )~ [6,bo+ao—2uac)sin(t )+ Non Secular Producing Terms

Now eliminating secular producing terms, we get

S1a0+(14+2p)bo=0 (3.7a)

(1—2p)ag+6,bp=0 (3.75)
For a non-trivial solution to exist

5 1424
1-2u § =0

=> 6 =+ [ 1—4p® /2 (3.8)
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The transition curves seperating stable regions from unstable region are
d=14¢€4
=> §=1 % [ — 4(ep)]'/? (3.9)
These are approximate transition curves seperating stable region from
unstable region in § — ¢ space as shown in Figure 3.1. They hold for any single

mode response (j=1,2,3...). In the next chapter we shall compare this theoretical

result to the experimentally obtained stability boundaries for the fourth mode.
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Figure 3.1: Transition curves seperating stable
and unstable regions.



CHAPTER 4
EXPERIMENTAL RESULTS

4.1 Experimental Set-up:

A sketch of the existing experimental set-up is shown in Figure 4.1. The test
specimen consists of a flexible steel cantilevered beam attached to a B&K type
4808 electromagnetic shaker. The beam is forced through a sinusoidal base excita-
tion in the axial direction. The acceleration of this motion is proportional to the
magnitude of the forcing term, | ;602 | as it appears in equation (2.24). It is

measured by an accelerometer attached to the head of the shaker.

The response of the beam is measured by two strain gages attached near the
root of the cantilever. They are positioned on each side of the beam and can
detect both in-plane and out-of-plane motions. The signals from the accelerometer
and strain gages are analyzed and recorded on a HP 5423A structural dynamic

analyzer. A block diagram of the experimental set-up is shown in Figure 4.2.

The first five linear natural frequencies associated with a motion in the x-y
plane (i.e a transverse vibration in the flexible direction) were measured as 0, =
1.0 Hz, 0, = 8.0 Hz, 9, = 22.5 Hz, N, = 44.8 Hz, and 0y = 72 Hz. These com-
pare well with the theoretical, linear natural frequency values of 1.24 Hz, 7.75 Hz,
21.74 Hz, 42.63 Hz and 70.47 Hz respectively (see, for example, Hartog [1980] pp
153, 432).

4.2 Linear Stability and Planar Steady State Motions

It is well documented that the dynamic stability of a beam excited by a
sinusoidal displacement in the axial direction is given by a Strutt diagram (see
Haight & King [1969]). In the displacement-frequency parameter space there are

wedge shaped boundaries which separate the stable and unstable regions. The

16
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static equilibrium position

lateral vibration v(S,t)

<+

beam dimensions 55.88 cm x 1.27 cm
x 0.0508 cm

strain gages

accelerometer.
bsin.‘fl,-t

V/ 7 /7 /2

shaker

Figure 4.1: Sketch of existing experimental set-up
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Figure 4.2: Block diagram of the experimental set-up
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nose of these regions occur at forcing frequencies that are equal to twice the linear
natural frequencies of the system (see Chapter 3). They also occur at multiples

and combinations of these natural frequencies.

Figure 4.3 presents experimental data which defines one of these regions for
the cantilever beam. It is associated with instability of the fourth in-plane mode
of the system which results from a forcing frequency in the region of 89.6 Hz.
Similar results can be obtained for other modes. The level of force corresponds to
a range in the base acceleration between zero and 40 m/s2. The data points

correspond to a transition from a trivial response to a non-trivial response.

Figure 4.4 presents a comparision of the experimental data with the theoreti-
cal Strutt diagram, obtained using equation (3.9). The comparision can be made
by noting the following relationships for mode 4 from equations (3.3a) and (3.3b),
and recalling from equation (2.25a) that a, = r !,

4"‘

6= 7

where
r=10.99554 from table 2.1
B=50.21 from table 2.2
It should be noted that the experimental natural frequency is used in place of the
theoretical linear natural frequency, to transform the experimental values of the
forcing frequency to the variable 6. The experimental data points compare reason-

ably well with the theoritical predictions.

One should recall that the stability diagram presented in Figure 4.3 only
predicts what happens to the trivial solution. Linear theory, which is valid for the
trivial case, predicts that the trivial solution will grow exponentially in an

unstable region (see, for example Nayfeh & Mook [1979] pp 338). However, as the
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response grows the linear theory is no longer valid and the effects of non-linearities
cannot be ignored. If the response remains inplane and contains essentially one
mode, the motion is governed by the nonlinear Mathieu equation as derived in
Chapter 2, equation (2.24) (also see Evan-Iwanowski [1976]). This equation admits
nontrivial, steady-state solutions. Approximate solutions to this equation can be
found (see, for example, Nayfeh & Mook [1979] pp 169, 338-348) and it can be
shown that non-trivial, steady-state solutions exist over a range of forcing fre-
quency. The general form of the variation of the amplitude of the steady-state
solutions, as a function of the forcing frequency, is sketched in Figure 4.5a. The
experimental results presented in Figure 4.5b substantiate these theoretical predic-
tions. The data for Figure 4.5b was obtained by measuring the amplitude of the
response at various values of the forcing frequency. The base acceleration is kept
constant at 7.81 m/s?2 throughout. A typical time trace of the forcing term and
the associated response are shown in Figure 4.6 along with their corresponding
Fourier transforms. It can be noted that the frequency of the response is one half

of the frequency of the excitation. This corresponds to a main parametric reso-

nance.

The frequency response curve of Figure 4.5b shows the possible existence of
multiple steady state solutions. At a frequency, say of 89 Hz, two stable steady
state solutions can be obtained, one at A (trivial) and the other at B (non-trivial).

The response adopted depends on the initial conditions of the system.

4.3 Chaos

If the level of force is increased, corresponding, say, to a base acceleration of
31.44 m/s% then the amplitude response curve presented in Figure 4.7 results. As
might be expected, the response amplitudes are larger. However, an interesting

additional feature develops. At large amplitudes the response becomes chaotic.
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The chaotic motions observed for the model are associated with the non-planar
response of the cantilever. The particular type of non-planar response observed
has, to the best of the author’s knowledge, not been reported in the literature. To
appreciate the physics of this response, the reader is referred to Figure 4.1 in
which the static equilibrium position (s.e.p) of the cantilever is depicted. In this
position the stiffness associated with a rotation about the x-axis (torsion) and the
stiffness associated with the bending in the x-z plane are very high compared to
the bending stiffness in the x-y plane. However, when the beam deflects in the x-y
plane, these stiffnesses reduce drastically. An oscillation out of the x-y plane can
now occur but can only be sustained while the beam remains away from the s.e.p..
When this out of plane oscillation occurs, the beam gets locked-over on one side of
the s.e.p.. It is this out-of-plane motion that is at the heart of the chaos which has
been observed. For example, if the phasing of the out of plane motion is just
correct, then, as this motion passes through the x-y plane, it is possible for the
beam to snap through to the other side of the s.e.p.. Even if this snap through
does not occur, the resulting motion is highly sensitive to small perturbations,

especially as the beam approaches the s.e.p..

The various kinds of chaotic response observed in and about the "zones of
chaos” (see Figure 4.7) are classified as:
i) Transient Chaos,
ii) Intermittent and Steady-State Chaos,
The experimental results for these responses are presented and discussed in the fol-
lowing sub-sections.

4.3.1 Transient Chaos

The appearence of chaotic motions for a short period of time, before settling
down to steady-state trivial or non-trivial value is termed transient chaos. Such

transient chaos appears in the system when the response is quite large, e.g point C
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on Figure 4.7. It is then possible to observe transient chaos, if the system is per-
turbed from its steady-state. The transient chaotic response never remains choatic,

but always returns to either the trivial or the non-trivial, single mode steady-state

value.

Transient chaos in the beam was observed when the system was perturbed
from its steady- state, in-plane, mode 4 motion by gently tapping the model with
one’s hand. The system was being forced at 87 Hz and level of force was 31.44
m /s%. Time traces of the forcing term and the response along with their associated
Fourier transforms are shown in Figure 4.8. Note that the Fourier transform of
the response shows a broad band power spectra which is typical of a chaotic
motion. The transient chaotic motion subsided and the beam returned to single

mode 4, in-plane, steady-state motion after approximately 250 cycles of forcing

term.

As in all nonlinear phenomena, it is important to allow a long enough period
of time to pass before pronouncing that the final form of the response has been
reached. A sufficient time to classify chaos as transient or steady state is a matter
of judgement of the investigator, but we considered 30,000 cycles of forcing fre-
quency as a sufficient time for pronouncing the chaos as steady state.

4.3.2 Intermittent and Steady-State Chaos

Intermittent chaos is a burst of chaotic motion occuring between periods of
regular motion (see Moon [1988] pp 59,181), whereas steady-state chaos refers to
the fact that the response remains chaotic for all time even when perturbed more

than an infinitesimal amount.

Refering to Figure 4.7, if the frequency is decreased enough, an out of plane
mode is excited and a chaotic response results. The physical system’s response was
observed to cycle back and forth between chaotic and mode 4 motions indicating

a transition to chaotic motion via the intermittency route, as reported by Burton
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and Kolowith [1988]. The intermittent chaos was observed for a downward sweep
of frequency at a constant level of force. It appeared that the time spent in
chaotic bursts increased as compared to time spent in periodic motion as the level

of force was increased.

Steady-state chaos in this system occurs if the frequency is decreased enough.
The system may achieve steady-state chaos with or without going through the
intermittency route. However, if intermittent chaos is present, an increase in the
level of force results in éteady state chaos. An example of such a steady state
chaotic response is shown in Figure 4.9. The cantilever was being forced at 87.1
Hz and the level of the force corresponds to 40 m/e2. The system was responding
in a single, mode 4 motion prior to the onset of the chaos. The chaotic response
shown is very complex in the sense that although only a few modes are present,
they come and go in a chaotic manner. The Fourier transform of the response
presented in Fig. 4.9 suggests that the 2nd, 3rd, and 4th, in-plane (x-y plane)
vibration modes are involved in the chaotic motion. A similar observation was

made by Burton and Kolowith [1988].

An example of the system attaining steady-state chaos without going through
the intermittent chaotic stage was observed while the system was responding in
the third transverse in-plane mode. The cantilever was forced at a frequency of 45
Hz. The time traces shown in Figure 4.10 show the cantilever’s response for the
third mode in plane transverse vibration. When the frequency was decreased to 43
Hz while keeping the level of force constant, the cantilever jumped into chaotic
motion without going through intermittent chaos. The time trace along with its
Fourier transform of this response are shown in Figure 4.11. Clearly,the response
has developed into a very complex form. Even when perturbed a little it remains

in this state for all time.
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4.4 Multi-Mode Interaction

Internal resonance, i.e when the natural frequencies of a system are commen-
surable, can greatly enhance the coupling between modes. Haddow et al. [1984]
showed experimentally and theoretically the effect of internal resonance on a two
degree-of-freedom system. Barr [1980] described the possibility of a “cascading” of
energy through the modes of a multi-degree-of-freedom system as a result of inter-
nal resonances. It is believed that such a "cascading” is occuring in this experimen-
tal model when a high frequency input gives rise to a low frequency, high ampli-
tude response. Experimental results showing the existence of this phenomenon are
presented and discussed in the sub-sections to follow.

4.4.1 Extremely Low Subharmonic Response

Although Dugundji and Mukhopadhyay [1973] reported on the theoretical
possibility of exciting a low frequency mode in an axially excited thin beam, no
experimental results have been reported in the literature . Such a response was

observed in our physical system.

Figure 4.12 shows a time trace of the input and the output for an initial time
close to zero. This is for a forcing frequency of 190 Hz. Figure 4.13 again shows the
input and output some 30 seconds later. Note that the scales have been changed
in order to better show the form of the response. It should be stressed that the
forcing function remains the same in Figures 4.12 and 4.13. Over the 30 seconds, a
high order sub-harmonic with a period about 40 times higher than the forcing
term has developed (see Figure 4.14 which shows Fourier transforms of Figure
4.13). Moreover, there has been an extremely large increase in the amptitude of
the response. This is a consequence of the energy input being transformed from a
small amplitude at a higher frequency to a large amplitude at a very low fre-

quency.
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4.4.2 Modal Interaction and Beating Phenomenon

Another class of interesting response has been observed. It results from a
combination resonance which in turn excites a regular parametric response. Figure
4.15 shows the waterfall plot of the frequency content of this interaction for an
initial time close to zero. The waterfall plot gives the variation of the frequency
content of a time signal as a function of time. The system was forced at a fre-
quency of 385.60 Hz, which is close to 12th linear transverse natural frequency.
In this case, the response frequency was the same as the forcing frequency. Such a

response is consistent with a secondary parametric instability.

The forcing frequency acts as a parametric excitation term for the combina-
tion resonance case of Q,~0, + 0, Where N,= 44.8 Hz and Q,,= 337.5 H: are the 4th
and 12th linear transverse natural frequencies respectively. We believe that the
nonlinearity adjusts the frequencies of the 4th and 12th mode so that the resonant
frequency combination is satisfied. This results in exciting the 4th and 12th linear
mode of the system, and we see the model responding at 45 Hz and 337.5 Hz,
simultaneously, after approximately 350 cycles of forcing frequency. See Figure
4.15. After 2200 cycles of the forcing frequency, another regular main parametric
response is generated at 22.5 Hz. This occurs because the response at 45 Hz acts as
a parametric excitation on the third linear mode (i.e 0y =225 Hz). Thus the
response is now a combination of several modes and the model is responding

simultaneously at frequencies of 22.5 Hz, 45 Hz, 337.5 Hz and 385.6 Hz.

Figure 4.16 shows the waterfall plot of the response discussed above some 10
seconds later (i.e some 3,850 cycles of the forcing frequency). The forcing fre-
quency is the same. Note that the third and fourth modes have not attained
steady-state. Instead, there is a continual exchange of energy between these
modes. This is an example of a beating phenomenon. Another response is gen-

erated at 409 Hz which is not accounted for. This response appears after response
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at 22.5 Hz is generated and the system starts exhibiting beating phenomenon.

Both the waterfall plots presented in Figures 4.15 and 4.16 span an interval
of time corresponding to approximately 3500 cycles and 2400 cycles of forcing
term respectively. The form of the response shown in Figure 4.17 remained

unchanged even after some 30,000 cycles of the forcing term.

The response presented above is a consequence of internal resonance. It is
important to note that a high frequency, low amplitude input, eventually leads
to a large amplitude response which is at a very low frequency.

4.4.3 Combination Resonance

An interesting observation regarding a combination resonance was made
while the physical system was in a chaotic regime born from a fourth mode oscil-
lation. If the system was preturbed in a suitable manner, the chaos disappeared
and the solution becomes periodic. The response was observed to be a combination
of several modes. A time trace depicting this motion is presented in Figure 4.17
along with its Fourier transform. The system was being forced at a frequency of
85.5 Hz with a base excitation of 40 m/s*. Figure 4.18 shows the response before

the combination resonance was attained.

It was interesting to note that this combination could not be attained by
starting from the trivial solution. Presumably, the domain of attraction of the
combination resonance was very small and, perhaps coincidently, the chaotic
motion passed closed to it. However, its response was relatively robust in the
sense that once the combination resonance had been attained, it was insensitive to

perturbations.
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CHAPTER 5
DIMENSION ESTIMATE

5.1 Introduction

For continous systems the number of modes necessary for a full dynamical
description becomes large, and in theory sometimes infinite. From a practical
standpoint one must truncate this model to just a few mode shapes, i.e those
modes which contain the most information about the ’true’ system dynamics.
Most often modal truncations are based upon retaining only the most energetic

mode shapes.

Since chaotic systems produce power spectra with many peaks, or even of
continous form, it is often unclear how many modes should be retained. The

Hausdorff dimension D (see Burge et.al [1984] pp 148), is defined as

D =limNE (51
0 lnl

€

where N(e) is the smallest number of hyperecubes necessary to cover the attractor
(see Guckenheimer and Holmes [1986] pp 256-257). This can be regarded as the
average number of linearly independent coordinates necessary to describe a dissi-
pative dynamical system. Thus the Hausdorff dimension gives the modeller a tool

by which to approximate the number of active modes in a system.

However, the Hausdorff dimension has the following drawbacks:
i) The computation is very time consuming since it converges slowly when the
dimension of the phase space is greater than two (see Burge et al. [1984] pp
149).
ii) It is a geometric measure. It does not account for the frequency with which

the orbit might visit the covering cube (see Moon [1987] pp 214).

45
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Therfore, we must use an alternative way of estimating the dimension of a
dynamical system. Some of these which can be used are (see Moon [1987] pp 214):
i) Pointwise dimension as discussed by Farmer et al. [1983] and defined as

—Ng=(r)

d = lim lim———o (5.2)
8y=00 r==0 logr

where n, is the total number of data points , and it consists of counting the

number of data points Ny{r) within a hyper-sphere of radius r, centered at a

point z, on the attractor.

ii) Correlation dimension C(r) as described by Grassberger »snd Procaccia

(1983b] and estimated by

C(r)= llm — Z 20(1-—- |z -2 |) (5.3)

ﬂ' ,-l ‘ tm=]

where n, is the number of reference points, z; are the reference points (vectors),
z; are the rest of the points on the attractor, n, is the number of data points,

and 60 equals 1 when its argument is positive, and O when its argument is nega-

tive.

In this work the dimension of the chaotic motion of the cantilever beam is
computed using the procedure and computer programs as described by Klewicki et
al. [1988]. Pointwise dimension is used to estimate the dimension of the system,
since Holzfuss and Meyer-Kress [1985] showed it to be more accurate than the
correlation dimension estimate used by Grassberger and Procaccia [1983b]. Before

discussing this, the concept of coordinate reconstruction will be introduced.

Often, one cannot measure all of the variables (coordinates) necessary to
describe (embed) the phase trajectories of a given system. It is for this reason
that techniques of phase portrait reconstruction from a single measured variable

have been developed. The basic idea behind phase portrait reconstruction is that
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any N-dimensional system can be described, at any instant, by the measurement
of N independent variables pertinent to that system. Implicit in the following
method is that, at least indirectly, any measured variable (assuming the resolution
of the probe is adequate) contains all of the information about the dynamics as
prescribed by the equations of motion. Thus the method involves constructing

independent coordinates from a single time series.

There are two known methods by which independent coordinates may be
constructed from a single time series. These methods were developed concurrently
in a heuristic manner by Packard et al. [1980], and formally by Takens [1981].
Takens proved that for a N-dimensional dynamical system, one may be assured to

embed its attractor with at most 2N +1 reconstructed coordinates of the form;
X (t) = [X(t), X(t=7),...... X (t—nT)]
or

d*(X)

Xa(e) = (X)X (E) oy

where X(t) is the experimentally measured time series, and r is a time delay. That
is the reconstructed coordinates may be created either by time delaying or
differentiating the measured variable. Due to constraints such as the order of the
system, and problems with higher order differentiation of the experimental data,
the time delay method is usually preferred. In this work, the time delay method

is used to compute the dimension estimate.

The computation of a dimension estimate using measurement from only one
location on the cantilever beam involves four basic steps, i.e
i) acquisition of data,
ii) estimation of the optimal time delay r,

iii) phase coordinate reconstruction using the optimal time delay,
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and

iv) computation of the dimesion estimate.

These four steps, as they pertain to the computer programs used, are out-
lined in the flow chart of Figure 5.1. For more details the reader is referred to

Klewicki et al. [1988].

5.2 Acquisition of Data

The data used for dimensional analysis was collected from a chaotic motion
arising from the cantilever’s third mode motion. The base excitation frequency

was 45.0 Hz, and a sampling rate of 1000.0 Hz was used. Record lengths of

40,000 samples were used.

5.3 Estimation of Optimal Time Delay

The process of choosing the time delay used in the phase coordinate recon-
struction procedure is subjective (see Klewicki et al. [1988]). Figure 5.2 presents
the unnormalized autocorrelation of the data collected from the cantilever beam
for various time delays. The curve exhibits a sharp decrease in the first 25 ele-
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