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ABSTRACT

ON PARTITIONING OF ALGORITHMS FOR PARALLEL EXECUTION
ON VLSI CIRCUIT ARCHITECTURES

By

Michael A. Driscoll

Exploiting the potential of multiprocessor architectures and VLSI processor arrays
requires increased understanding of the partitioning of algorithms for parallel execution.
The Data Flow Scheduling (DFS) algorithm partitions acyclic data flow graphs for exe-
cution on message-based multiprocessor architectures to improve execution time and
provides a vehicle for exploring the nature of the partitioning problem. The generality of
the models used for graphs and multiprocessors makes the DFS applicable to a wide
range of algorithms and architectures. The DFS makes use of fine-grained parallelism in
the graph being partitioned and allows parallel execution within individual processors as
well as among separate processors. A heuristic approach and a divide-and-conquer stra-

tegy allow large data flow graphs to be partitioned in reasonable time.

The evaluation of the DFS compared simulated execution times of graphs parti-
tioned using the DFS algorithm with simulated execution times of random partitioning
and with uniprocessor execution of the same graphs. In total, 600 simulations were con-
ducted, varying key parameters of the graphs and multiprocessors such as the number of
processors and functional units, the speed of computation relative to communication, and
the topology, function, and number of nodes in the graphs. The simulation results show

that graphs partitioned by the DFS execute faster than the same graphs execute on



uniprocessors. For some of the simulations, the DFS achieves near optimal partitions. In
almost all cases, graphs partitioned by the DFS also execute quicker than random parti-
tionings of the same graphs. The simulation results also suggest that the computational
complexity of the DFS is O (n2), where n is the number of nodes in the graph being par-

tioned.

Analytic models for the partitioning strategies were developed from the simulation
results. The models show possible areas of improvement for the DFS algorithm and, in
some cases, allow graphs to be partitioned without the use of computationally expensive
simulations. The models show that interprocessor communication dominates the execu-
tion of randomly partitioned graphs, making this strategy unsuitable for architectures
with powerful processors or expensive communication. The models provide a frame-
work for partitioning some graph topologies without using the DFS and suggest several

topics for further research.
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Chapter 1: Introduction

1.1. Problem Statement

The technology used to fabricate Very Large Scale Integrated (VLSI) circuits has
improved dramatically in the last ten years. Current fabrication technology provides the
potential for the creation of remarkably complex and powerful digital circuitry contained
within a single integrated circuit chip. The availability of megabit random access
memories and microprocessors made up of hundreds of thousands of transistors is but

one example of the results of this technological progress.

The potential power of VLSI circuits offers great promise for the creation of Appli-
cation Specific Integrated Circuits (ASIC’s). In the past, the high cost of fabrication has
limited integrated circuit production to general-purpose, programmable designs, which
can be sold in large quantities. ASIC’s, however, are designed to perform a single func-
tion and can be highly optimized for space, power, and speed. This specialization limits
the potential market for ASIC’s, and thus low non-recurring engineering (NRE) and

fabrication costs are a prerequisite for their creation.

The reduction of fabrication costs has increased the importance of limiting NRE
costs, including the high cost of human designers, which are beginning to dominate the
total cost of producing VLSI circuits. As designs have become more and more compli-
cated, the amount of human design time needed to create the designs has risen dramati-
cally. This increase in complexity increases the likelihood of design errors, which also
increases NRE costs. The successful creation of an integrated circuit requires knowledge
in many areas, from theoretical computer science to solid-state physics. No single person
is likely to possess this knowledge, so teams of designers are often used. Design teams
can be expensive as miscommunication between group members can greatly increase the

chance of faulty designs.

Design methodologies can help human designers in managing the complexity of the



VLSI circuit design process. Such methodologies prescribe a rigid sequence of steps to
be followed in the creation of an integrated circuit. Following these steps can reduce
wasted and duplicated effort, reducing design time dramatically. Design methodologies
can also help reduce design errors by verifying that, at each step in the design process,

the design meets specifications.

Even with the use of design methodologies, currently human designers are not fully
exploiting the capabilities offered by VLSI circuit fabrication technology. There is a
very clear need for design methodologies that can be automated. Systems based on such
design methodologies can manage the details of the design, leaving the designer free to

concentrate on high level design issues.

1.2. Research Goal

The overall goal of this research is to develop and evaluate a VLSI circuit design
methodology suited for automation. This methodology would allow the designer to
specify design behavior at a high level of abstraction and would produce a fixed (i.e.,
non-programmable) VLSI architecture suited for implementation as an ASIC. The
evaluation of the design methodology and its suitability for automation requires the

investigation of several difficult problems in computer engineering.

1.3. Objectives

Because of the great complexity inherent in any VLSI circuit design methodology,
the research to be presented in this dissertation will focus on the following research
objectives:

1. Define a design methodology as the basis for an automated VLSI circuit design

system.

2. Identify the basic issues crucial to the automation of the design methodology.

3. Examine one of these basic issues in detail; specifically, develop an algorithm

to efficiently partition parallel algorithms for execution on message-based



multiprocessor systems (and hence for implementation as ASIC’s).
4. Evaluate the performance of the partitioning algorithm.

S.  Model the results of applying the partitioning algorithm. These models will
help improve the algorithm, reduce the need for computationally expensive

simulations, and provide further insight into the problem.

1.4. Thesis Overview

Chapter 2 begins with an examination of some current design methodologies,
highlighting some of their shortcomings. Then a review of research in areas important to
the VLSI circuit design process is presented. This leads to the definition of a new VLSI
circuit design methodology and the identification of key issues that must be investigated
if the methodology is to be automated. The automatic partitioning of parallel algorithms

for multiprocessor execution is selected as the focus of the dissertation.

Chapter 3 presents a model for message-based multiprocessor architectures and
presents an algorithm for automatically partitioning parallel algorithms, expressed as data
flow graphs, for execution on these architectures. Chapter 4 evaluates the performance
of the partitioning algorithm by applying it to a number of test graphs and multiprocessor
architectures and simulating the execution of the resulting partitions. Chapter 5 develops
models for the simulation results presented in Chapter 4. These models allow for the
accurate prediction of the execution times of some of the algorithms partitioned by the
partitioning algorithm. Finally, Chapter 6 presents conclusions, reviews the usefulness of

the research presented herein, and points out directions for future research.



Chapter 2: VLSI Circuit Design Methodologies

2.1. Overview

The design of an integrated circuit generally begins with a specification of the
circuit’s desired behavior. This specification gives a functional description of the design,
along with requirements for speed, chip area, power, testability, etc. A designer or team
of designers translate the specification into a physical implementation. Many paths are
possible in this translation. Each such path is a design methodology, i.e., a set of steps

used to transform a behavioral specification into a physical device.

Gajski [Gajs83] first presented the Y-chart as a method for defining different design
methodologies. A Y-chart consists of three intersecting axes, as illustrated in Figure 1.
Each axis gives a different type of representation for a design in progress. Each type of
representation emphasizes certain facets of the design, while de-emphasizing other
aspects. Points closer to the origin of the axes give less abstract representations of the
design. The finished product can be seen as occupying the origin, at the lowest level of
abstraction, and containing all facets of the design. Note that all possible representations
need not be shown on an axis. Often, only the representations used by the set of metho-

dologies under consideration will be shown.

The behavioral axis depicts representations of a design’s specification, e.g., the
design’s function, power requirements, interface protocols, etc. These representations
give no information about how the specifications will be met by the actual device. Some
examples of behavioral descriptions include algorithms, state diagrams, and Boolean
equations. The structural axis shows representations that define how a design achieves
the design specification, depicting the flow of data and control through ideal components.
Structural representations may be used to develop preliminary estimates of the design’s
ability to achieve the design specification. Examples of these representations include
schematics and block diagrams. The geometrical axis gives representations that are con-

cerned solely with the physical nature of the design. No information is included
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describing the design’s behavior. Chip floor plans and layout masks are examples of

geometrical representations.

The path taken by a design created using a specific design methodology is shown by
placing three types of arcs on a Y-chart. Arcs that move from higher to lower levels of
abstraction (on the same or different axes) indicate a refinement of the design as it moves
towards final implementation at the chart’s center. These arcs map a more abstract
representation to a more concrete representation. Arcs that move from lower to higher
levels of abstraction show a verification that the lower level representation accurately
corresponds to the more abstract representation, i.e., that the mapping from the higher to
lower level preserved the design specification. Finally, arcs that loop at a single
representation show simulation used to determine the characteristics of a design in that

representation.

The Y-chart can be useful in describing design processes other than those used for
VLSI circuit design. Consider the design of a simple low-pass filter, for example, to
illustrate the general form of a design methodology displayed on a Y-chart. The
behavior of the low-pass filter may first be given as a set of parameters, such as low fre-
quency gain and cutoff frequency. Figure 2 shows this as a point on the behavioral axis.
The next step in the design may be to develop a transfer function for the filter that pro-
duces the desired behavior. In the figure, the development is shown as an arc from the
parameter representation to the transfer function, which is still a behavioral representa-
tion. The transfer function is then used to develop a circuit schematic, consisting of ideal
circuit elements such as operational amplifiers and capacitors. This representation
describes how a design achieves its behavior, but gives no details of the physical imple-
mentation of the design. At this level some simulation may take place, as shown by the
looped arc. The simulation results may be compared with the transfer function to verify
the correctness of the schematic. The development of a geometrical representation might

then proceed by selecting actual circuit components and developing a plan for placing the
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components and routing their connections on a printed circuit board, resulting in a physi-

cal implementation evincing the desired behavior.

The development of a VLSI circuit design methodology requires the specification of
steps that translate a design from a behavioral description to a physical device. Section 2
of this chapter examines some current design methodologies, highlights some of their
shortcomings, and discusses previous work in mapping parallel algorithms to parallel
systems, which will be the focus of this dissertation. Section 3 defines a new VLSI cir-
cuit design methodology in light of the information in Section 2. Section 4 identifies key
issues that must be investigated in the implementation of the new design methodology.

Finally, Section 5 identifies one of these issues as the focus of this dissertation.

2.2. The VLSI Circuit Design Process

Several VLSI circuit design methodologies are currently used. The macro- (or
standard-) cell methodology is illustrated in Figure 3. This methodology is used in many
commercial products, including those from LSI Logic and VLSI Technologies [Andr88].
In this methodology, a library of macro-cells is available to the designer. The cells can
be used as basic building blocks for a design and include register-transfer level cells, ran-
dom access memories, read-only memories, simple microprocessors, and cells providing
functionality equivalent to that found in standard TTL integrated circuits. Many macro-
cell based systems also include cell generators for creating some basic blocks, such as
multipliers of various sizes. The designer can view these generators as another set of

building blocks available in the cell library.

Given the macro-cell library, the designer proceeds to create a block diagram of a
circuit that implements the desired behavior. The blocks in the diagram correspond to
cells available in the macro-cell library. The designer creates the block diagram using
standard digital design techniques. The block diagram can be simulated and it can be
verified that the diagram implements the desired function. The block diagram is then

translated (perhaps automatically) into a floor plan for an integrated circuit, which gives
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the placement of the macro-cells present in the diagram. Interblock connections are then
routed. (Again, this may be done automatically.) Finally, fabrication masks for the

integrated circuit are created and a chip is fabricated.

Benefits of the macro-cell methodology include the familiarity to designers of the
block diagram approach and the success that has been achieved in automating the transla-
tion of the block diagram into a physical device. A problem with this method is the

difficulty in automating the development of a block diagram.

Another popular design methodology is the systolic methodology, which is illus-
trated in Figure 4. The basic concepts of this methodology originated with Kung
[Kung82]. In this methodology, behavior is initially specified as an algorithm. The algo-
rithm is translated to systolic form by parallelizing and pipelining transformations. Note
that not all algorithms may be translatable. A structural representation is created by map-
ping the systolic algorithm to a systolic architecture. A systolic architecture consists of
an array of processors which are connected only with their nearest neighbors. A systolic
architecture contains only a few types of processors (ideally, only a single type). The
systolic architecture can be used to develop a physical design in a number of ways,

including using the macro-cell design methodology outlined above.

The systolic design methodology has been used successfully in the creation of many
application specific integrated circuits. Moldovan and Varma [Mold83a,Mold§3b]
developed a framework for describing systolic algorithms and their mapping to systolic
architectures. In their approach, the algorithm is viewed as embedded in a multidimen-
sional space with each point representing a single instance of the computation. Each
point in this space can be viewed as being labeled with an n-tuple of loop indices, where
n is the number of nested loops in the algorithm. Data dependencies are represented as
directed arcs between the points in the space. The dependencies of the algorithm may be

manipulated to place the algorithm into systolic form.



11

Behavioral
Representation

Structural
Representation

Algorithm

Systolic

Architecture
Systolic

Algorithm

\'2
Geometrical

Representation

Figure 4. Systolic Methodology






12

The algorithm and its data dependencies, as represented in the multidimensional
index space, are then mapped to three (or four) dimensional space, i.e., two (or three)
spatial dimensions and time. This mapping gives a high level plan for the layout of an
integrated circuit. Some examples of this methodology can be found in
Quinton[Quin84],which deals with algorithms expressed as uniform recurrent equations,
and in Chen [Chen86a,Chen86b], which show the use of the method for the design of a

dynamic programming solver and a design to perform LU matrix decomposition.

The work of Faroughi and Shanblatt [Faro87a,Faro87b] automates the mapping of a
systolic algorithm from the algorithmic index space to real space and time. In their
approach, the designer must first transform the algorithm to a standard form, in which
primitive computations are grouped to balance the processing load. A set of projection
vectors are then calculated. Each such vector results in a systolic architecture that imple-
ments the algorithm. The performance of these architectures can be evaluated to select
an architecture that best meets the design requirements. This design procedure solves a
major part of the automated mapping problem for a limited but important class of algo-
rithms.

Silicon compilation is a final example of a VLSI design methodology. Module gen-
erators, similar to the cell generators mentioned in the description of the macro-cell
methodology above, can provide the basis for this methodology, which is illustrated in
Figure 5. The original goal of silicon compilation was, as the name implies, to allow the
designer to specify functionality at a high level of abstraction and produce a working
integrated circuit. Some first attempts at this difficult problem include the bristle blocks
system [Joha79] and the Carnegie-Mellon University design system [Park79]. When the
enormity of the problem became apparent, the problem was limited to automatically pro-
ducing designs for a limited class of behaviors. Currently, silicon compilers are limited
to generating specific components such as read-only memories, programmable logic

arrays, etc. These ‘‘silicon compilers’’ are currently available in many commercial
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design systems including those from LSI Logic, VLSI Technologies, and Silicon Com-
pilers, Inc. [Andr88]. Peg, a system for automatically generating programmable logic
array based finite-state machines, is available as part of the well-known University of

California at Berkeley VLSI design tools [Scot85].

Current design methodologies have helped reduce the amount of costly human
design time needed to develop an integrated circuit. However, much work remains to be
done. The example methodologies discussed above illustrate several important points
concerning design methodologies. First, notice that a design methodology need not deal
with the entire design process to be successful. The systolic methodology and the
macro-cell methodology, for example, deal with different portions of the design process
and can be used together in creating a finished design. Second, the ability to estimate a
design’s performance at a high level can help speed the design process. If the chip area
and processing speed of a systolic architecture can be estimated without generating a
physical layout for the circuit, many possible architectures can be evaluated without
incurring the expense of creating layouts for each possibility. Third, design methodolo-
gies currently in use are limited to certain classes of design, e.g., systolic architectures.
Finally, some steps of current design methodologies are not easily automated, e.g., the
creation of a block diagram for the macro-cell methodology. Each of these points will be

discussed in more detail in the following paragraphs.

The first point made above suggests limiting the focus of any new design methodol-
ogy to those aspects of the design process that are not well understood. The selection of
an appropriate structural representation, for example, will allow the use of the already
developed macro-cell methodology, thus reducing the portion of the design task with
which a new methodology must deal. This representation should be similar to the sys-
tolic architecture, which has already been successfully used in designs. For generality, it
should remove the limits on processor types and interprocessor connections that the sys-

tolic architecture imposes. A good example of this is the architecture of the CHiP com-
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puter, as proposed by Snyder [Snyd82,Snyd84]. The CHiP computer is made up of a rec-
tangular grid of processing elements, with adjacent rows and columns separated by rows
and columns of programmable switches. An algorithm to be executed on the CHiP com-
puter is modeled by five components: A graph whose edges give the communication of
the algorithm and whose vertices represent processors; a set of process types which
defines the types of computation performed by the algorithm; an assignment of process
types to processors; a definition of the type of synchronization between the processors;

and a description of the expected input/output data types for each processor.

The second point above mentions the desirability of estimating performance from a
structural representation. Several VLSI circuit models have been proposed and used to
develop theoretical limits on the performance of circuits implementing a specific algo-
rithm. The best example of this work was presented by Thompson [Thom79,Thom80],
who derived good upper and lower bounds on the product of chip area and the square of
execution time. The low-level (i.e. physical) nature of these models makes them unsuit-

able for estimating performance from structural level models.

The third point made above concerns the lack of generality in current methodolo-
gies. Miranker and Winkler [Mira84] propose representing algorithms as general graphs
in an effort to overcome the limits imposed by the systolic methodology. When using a
graphical algorithmic model and a graphical structural model, such as an abstraction of
the CHiP computer, the development of a structural representation from a behavioral

representation become a problem of embedding one graph into another.

The problem of embedding of one graph (the source) into another graph (the host)
has been studied extensively in recent years, both in a theoretical context and with a view
towards applications in VLSI circuitry. Ellis [Elli84] and Simonson [Simo86] treat the
topic theoretically. Since most graph embedding problems are NP-hard, these works
attempt to develop good heuristic algorithms for limited classes of source graphs, host

graphs, or both. Aleliunas and Rosenberg [Alel82] develop several techniques for
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embedding rectangular grids in square grids. Ellis improves some of these algorithms.
This work can be used to square up highly eccentric VLSI circuit layouts. This allows
the area and delay of rectangular layouts to be evaluated to within a constant factor of a

corresponding square layout.

Leiserson [Leis80] and Valiant [Vali81] develop a technique for embedding into
grids any class of graphs with an acceptable separator theorem. A separator theorem
defines the minimum number of edges that must be removed from a graph to form two
disjoint subgraphs belonging to the same graph family as the parent graph (e.g., two sub-
trees of a parent tree). The technique uses a recursive divide-and-conquer approach fol-

lowed by a rejoining of the subproblems to achieve efficient embeddings.

The final point made above calls for new methodologies that are more easily
automated than those currently available. Unfortunately, the high complexity of most
graph embedding problems does not help to achieve this goal. To simplify the task of
automating the methodology, while still retaining the generality of the graph-based
approach, it can be helpful to split the embedding task into multiple steps. Mendelson
and Silberman [Mend87] and Koren and Silberman [Kore83] first partition a data flow
graph into layers, map each layer to a separate row of their hexagonal array, ordering the
nodes in the layer in the process, and finally route interprocessor connections. The
overall usefulness of their method is limited by their processor model, a hexagonal array
of processing elements in which communications are routed through processing ele-

ments, making them unusable for computation.

The problem of partitioning an algorithm for parallel execution is obviously related
to the problem of scheduling tasks for execution in parallel and distributed multiproces-
sor systems. Efe [Efe82] summarizes the conflicting requirements such a scheduler must
meet to achieve good performance. First, the system must minimize interprocessor com-
munication, which is generally more time consuming than intraprocessor communica-

tion. This goal can be satisfied in the extreme by assigning all tasks to a single processor.
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Second, the system must try to balance the processing load among all the processors in
the system. Third, the tasks should be scheduled to take advantage of the parallelism

existing in the set of tasks.

Processor scheduling has a long history of study. Some key points relative to the
current problem are mentioned here. First, most scheduling algorithms require a priori
knowledge of the execution times of each task to be executed, as well as the intertask
communication requirements. Chou and Abraham [Chou82], Efe [Efe82], Ravi, et al.
[Ravi87], and Ho and Irani [Ho83] all require full knowledge of task execution times.
This is usually not practical, given the high granularity of most tasks being scheduled.
However, for VLSI circuit design, tasks can be described at a low level of granularity,
allowing detailed knowledge of execution time requirements.

A second important fact about scheduling is that most scheduling problems are NP-
hard. Thus most researchers have developed heuristic algorithms for scheduling. A clas-
sic example is the critical path scheduling algorithm, first described by Hu [Hu61] and
later evaluated by Adam, et al. [Adam74] and Kohler [Kohl75]. This algorithm is exam-
ined by Granski, et al. [Gran87] in determining its efficiency when implemented in the
hardware of a data flow processor. The use of the critical path scheduling heuristic for
scheduling in a data flow processor is examine by Ho and Irani [Ho83] and was found to
be the most promising of the heuristics tested.

Finally, very little work has been done to quantify the influence of the many vari-
ables present in multiprocessor systems on the schedules that result from various algo-
rithms. This lack of information makes it very difficult to select appropriate algorithms
for specific situations. Indeed, in some cases randomly scheduling tasks to processors
may achieve better results than computationally intensive heuristic algorithms [Dris88].

The work discussed above points out several deficiencies in current VLSI circuit

design methodologies. The nature of high level VLSI circuit design methodologies is

or systems. Key problems

closely related to that of executing algorithms on multipro



18

in both areas include the parallelization of serial algorithms and the mapping of algo-
rithms to multiprocessor systems (or VLSI processor arrays). A problem specific to
VLSI circuits is estimating circuit performance prior to creating a low-level physical
model for the circuit. The design methodology presented in the next section follows
from some of the lessons learned in the study of multiprocessor systems and corrects

some of the shortcomings in current VLSI circuit design methodologies.

2.3. The Algorithmic Design Methodology

The Algorithmic Design Methodology (ADM) is a new VLSI circuit design metho-
dology which places few restrictions on the type of designs that can be developed and
shows promise for complete automation. The ADM begins with an algorithm in the form
of a sequential program in a high level programming language. A VLSI circuit architec-
ture is developed from this algorithm via three transformations. Figure 6 illustrates the
process. The first transformation parallelizes the sequential algorithm to create a scalar
data flow graph. A scalar data flow graph is a data flow graph in which nodes perform

simple operations, taking scalars as inputs and producing scalar results.

The second transformation partitions the scalar data flow graph into a number of
clusters. The partitioning takes place in a manner that attempts to take advantage of
parallelism inherent in the algorithm, balance the computational load among the clusters,
and minimize intercluster communication (which translates into costly interprocessor
communication). The clustered graph is a data flow graph itself, with the clusters becom-

ing nodes and the intercluster arcs becoming arcs in the new data flow graph.

The final transformation embeds the clustered data flow graph into a graphical,
structural model of a VLSI circuit architecture. The model is a VLSI circuit processor
array. One or more clusters of the data flow graph are mapped to each processor in the
array. The model gives the relative placement of the processors (shown as nodes), the
function of each processor (expressed as data flow graphs), and the interprocessor con-

nections (shown as edges). It gives no information about the implementation of each
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processor or the routing of interprocessor connections.

After the development of an architecture, its performance is evaluated by develop-
ing macro-cell level block diagrams for each of the processors. These diagrams are
simulated to estimate the processing time and area for each processor. The area used to
route the interprocessor connections is then estimated, along with the signal delay caused
by interprocessor communication. These two estimates are then combined to give a full

estimate of the proposed architecture’s processing speed and area.

The automation of the new design methodology holds the promise for several
improvements over current methodologies. First, it deals with the translation of a
behavioral specification into a structural specification. Current methodologies do not
handle this transformation well in general. The structural specification can make use of
the successful macro-cell methodology for the creation of a physical layout. Second, the
designer enters the methodology at a familiar, intuitive level, but, unlike the macro-cell
methodology, need not spend time manually creating structural representations for the
design. Third, the use of a graphical model for the algorithm and the VLSI circuit archi-
tecture removes limits on the types of circuits that can be designed. Fourth, the divide-
and-conquer nature of the multiple transformations of the methodology help reduce the
computational complexity that must be dealt with at each step. Finally, the hierarchical
approach, as used in the partitioning of the scalar data flow graph, hides lower level

details at each step in the methodology.

2.4. Key Research Issues

While the automation of the ADM would result in an improvement over current
methodologies, several important issues must be investigated before the automation can
occur. Since many of the ADM’s transformation are, in general, NP-hard, the automa-
tion of the methodology will require the development of heuristic procedures to perform

them. Specifically, the following issues are crucial to the success of the ADM:
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1. The automatic parallelization of serial algorithms to produce scalar data flow
graphs. While progress has been made in the development of optimizing and
parallelizing compilers, most techniques are limited to certain types of paral-
lelism or work with computational units larger than scalar operations

[Aho86,Babb85].

2. The automatic partitioning of scalar data flow graphs to take advantage of
parallelism inherent in the graph, balance the computational load among the
partitions, and minimize interpartition communication. Previous research in
this area has dealt with data flow graphs with few nodes [Ho83] or with limited

classes of algorithms and architectures [Girk88].

3. The automatic embedding of this partitioned scalar data flow graph into the
VLSI circuit architecture model in a manner that produces good designs.
While some procedures do exist for mapping algorithms to VLSI circuit pro-
cessor arrays, the mappings are inefficient in their use of processors

[Mend87,Kore83].

4. The estimation from structural level models of the speed and area characteris-
tics of VLSI circuits. Current estimation techniques use physical models of

VLSI circuits [Thom79,Thom80].

These issues are crucial not only to the success of the design methodology, but also to

many other areas of computer engineering.

2.5. Research Focus

The investigation of the issues defined in the previous section will require many
man-years of research. The work to be presented in this dissertation will be limited to
the investigation of a generalization of one of these issues. Specifically, a heuristic pro-
cedure will be developed to efficiently partition scalar data flow graphs for execution on

message-based multiprocessor architectures in a manner that reduces execution time.
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The procedure will be presented in the next chapter. Chapter 4 will evaluate the pro-
cedure via simulation. Chapter 5 will model the execution times resulting from the
procedure’s application. The results show that it is possible to effectively and automati-
cally partition scalar data flow graphs for multiprocessor execution, and hence for imple-

mentation as ASIC’s.






Chapter 3: The Automatic Scheduling of Data Flow Graphs

3.1. Overview of the Scheduling Problem

Scheduling tasks for execution on computer systems requires the mapping of the
tasks to the computer system hardware in a manner that improves some aspect of system
performance. Early research on the scheduling problem concentrated on scheduling tasks
to uniprocessor systems using multitasking operating systems. Early work in multipro-
cessor scheduling includes work by Sethi [Seth76] and Fernandez and Lang [Fern75].
The general problem of scheduling has been divided into a number of classes. Gonzalez
[Gonz77], for example, classifies scheduling problems by such things as the types of pre-
cedence among the tasks, the number of processors available in the system, and the type

of processors in the system.

The algorithms used to solve various scheduling problems have also been classified.
Coffman [Coff76] uses five different criteria for the classification of algorithms. First, a
static algorithm runs only once, before a set of tasks is executed. A dynamic algorithm,
on the other hand, may run during the execution of the task set. Second, if the scheduling
algorithm has full knowledge of task execution times and communication requirements,
the algorithm is termed deterministic. If an algorithm uses probabilistic models of task
execution times and communication requirements, the algorithm is stochastic. Third, a
preemptive algorithm can suspend a partially executed task and restart that task from the
point of interruption at some later time. Once a nonpreemptive algorithm has scheduled
a task, the task will run to completion. Fourth, scheduling algorithms can be classified by
the system performance measure they attempt to improve. Some of these measures
include response time, number or cost of processors needed, and resource utilization.

Finally, algorithms are classified by the granularity of tasks which they schedule.

Several properties are desirable in algorithms that schedule tasks to multiprocessor
architectures. First, algorithms should be applicable to a reasonably wide range of tasks

and architectures. This can be accomplished by using abstract models for both the tasks
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being scheduled and the architectures on which they execute. If the models accurately
capture the important aspects of actual systems, then implementations of the algorithm
can be tailored to a specific set of tasks and to specific architectures. Second, accurate
estimates of task execution times are crucial in producing good schedules. The execution
times of tasks at a low level of granularity can be estimated much more accurately than
execution times for higher level tasks. Finally, it is important that the scheduling algo-
rithm executes reasonably quickly and that its execution time increases relatively slowly
as the size of the task set being scheduled increases. It makes little sense to use a
scheduling algorithm requiring hours of execution time to schedule a job that only takes
minutes to execute with a poor schedule. But, for some high performance applications
which must execute many times, the increase in NRE costs incurred by the use of expen-
sive schedulers may be justified. Note that the use of low-level granularity is at odds
with quick scheduler execution time, so care must be taken to balance the trade-off

between fast scheduler execution and accurate estimates of task execution times.

The next section describes the model used for parallel algorithms. This is followed
by the definition of the multiprocessor architecture model. Then, a static, deterministic,
nonpreemptive Data Flow Scheduling (DFS) algorithm, which schedules low-level
granularity tasks, is presented. Finally, some comments are made about the properties of
the DFS algorithm. A more detailed presentation of these topics can be found in

Driscoll, et al. [Dris88].

3.2. Parallel Algorithm Model

To accurately represent parallel algorithms, a model should include several pieces
of information. First, the model must be able to represent any low-level parallelism
present in the algorithm. If this parallelism is not represented, it cannot be exploited dur-
ing scheduling. Second, the model should include the data dependencies of the algo-
rithm, i.e., constraints on the order of task execution. Third, the model should be general,

while still hiding enough detail to allow schedulers to have reasonable execution times.
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Finally, the model should be extendible so that new details can be added when required
by specific situations.

The parallel algorithms scheduled by the DFS algorithm are described by an acyclic
data flow graph with nodes performing scalar operations (a scalar data flow graph).
These operations are members of the set of recognized scalar operations,
0 ={00,01," " ,0n-1}. Operations in O may have multiple inputs, but are limited to
producing a single output. Associated with each scalar operation is an operation size,
So (0;), and an execution time, tp,. A scalar data flow graph, G, is defined by a set of
nodes, Tg = {To,T1, - - -, Tk}, and a set of arcs, Ag. The function of each node in T is
given by a vector, Or =(0r,,0r,, " - *,0r,,). The amount of information passing
through an arc in Ag is given by its arc size, Sq (4;).

By representing tasks at the level of primitive operations, this model explicitly
represents low-level parallelism, allowing it to be exploited. Nodes in a data flow graph
execute only when all of their predecessors have executed, thus enforcing an algorithm’s
dependency constraints. In allowing schedulers to operate quickly, the model limits the
types of algorithms that can be represented. These limits can be removed by extending
the model in several areas. Operations that produce multiple outputs can be modeled as a
collection of nodes, each of which has the same inputs and produces one of the
operation’s outputs. Operations with different size inputs and outputs can be included by
extending the definition of operation size to include multiple sizes for each operation.
The most serious limitation imposed by the model is that of restricting the data flow
graphs to be acyclic. For any algorithm in which the number of iterations of a loop is
known prior to execution, the loops can be unrolled to produce an acyclic graph
[Ullm84]. To include algorithms whose loops cannot be unrolled, the model must be
extended to include conditional execution nodes. The addition of such nodes makes it
very difficult to schedule graphs statically, i.e., prior to their execution. The model as

presented allows a large number of useful algorithms to be scheduled even within its lim-
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its, and is thus acceptable.

3.3. Multiprocessor Architecture Model

Multiprocessor architectures can be modeled at many levels of abstraction. In the
work presented here, it is important that the model be general enough to include many
real-world architectures. Another key element is the ability to model the internal struc-
ture of each processor in the architecture so that local parallelism as well as global paral-
lelism can be exploited. As was the case with the model for parallel algorithms, some
generality must be lost to allow the DFS algorithm to operate with reasonable execution
time.

The architecture to which the DFS schedules parallel algorithms is similar to the
data flow machine described by Arvind, et al. [Arvi80]. It consists of a fixed number of
homogeneous processors. The processors communicate via an interconnection network,
allowing each processor to send a fixed amount of data to any other processor in a con-
stant time. Each processor in the architecture consists of a collection of non-pipelined,
heterogeneous functional units. These units are connected to a store/matching unit which
stores intermediate results and provides input data to the functional units. Each processor
also has a communication processor which is connected to the interconnection network
described above. Computations can proceed in parallel at a processor subject only to
data dependency constraints and the availability of functional units. Computation and
communication can proceed in parallel, but a single processor can only be involved in
one communication at any time.

Formally, the architecture is defined by a number of parameters. The number of
processors is represented by np. The number of functional units of each type at a single
processor is given by the vector Fp = (fo,fo,» " - * f0,.,)- The time required to send a
fixed-sized block of data from one processor to another via the interconnection network

is the global communication time, z,.. The amount of data that can be sent in one 7y is
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the global communication data block width, wg.. The time required for a result to pass
from one functional unit, through the store/matching unit, and to another functional unit
within the same processor is the local communication time, ;.. Finally, the execution

times for each type of functional unit available at a single processor are given in the vec-
torX = (too,tol, cee ’tO..—x)'

The architecture model places two important limits on the types of architectures that
can be represented. First, architectures with heterogeneous processors cannot be
modeled. Second, architectures such as the hypercube cannot be modeled, because the
communication time between two processors varies for different processors. These lim-
its allow the DFS algorithm to ignore actual processor assignment while partitioning an
algorithm. Removing these limitations from the model would greatly impede the work-
ing of the DFS. These restrictions may be relaxed by developing a separate algorithm to

map the partitions created by the DFS to specific processors.

The model represents the complexities of each processor very well. Execution can
proceed in parallel at all of a processor’s functional units, subject to the dependency con-
straints of the algorithm. Also note that the architecture of an individual processor could
actually be implemented as a data flow processor or a processor with a local memory and
control unit to sequence operations. The model can easily be extended to include func-
tional units which can perform more than one type of operation (e.g., arithmetic-logic
units). The model as presented is a compromise between the details of actual architec-

tures and the abstraction needed to efficiently schedule computation.
3.4. The Data Flow Scheduling Algorithm

3.4.1. Overview

The DFS algorithm schedules parallel algorithms to reduce the execution time of
the algorithms. The algorithms are expressed as scalar data flow graphs and the architec-

tures are represented using the previously defined multiprocessor architecture model. In
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view of the properties mentioned in the first section of this chapter as desirable for
scheduling algorithms, the DFS algorithm must have several characteristics. First, it
must take advantage of the low-level parallelism inherent in the scalar data flow graph.
Second, to exploit this parallelism, the DFS algorithm must make use of the structure of
individual processors (e.g., multiple functional units). Finally, the execution time of the
DFS algorithm must be reasonable and increase relatively slowly as the number of nodes
in the scalar data flow graph increases. At the lowest level of detail, the DFS algorithm
is quite complex. The reader is referred to Driscoll, et al. [Dris88] for a detailed presen-
tation of the algorithm, including a formal description of the algorithm and proofs of

complexity results.

The DFS algorithm operates in three phases. Figure 7 illustrates the DFS
algorithm’s flow. First, the DFS partitions the graph into a set of initial clusters, based on
some basic properties of the graph. Second, one or more iterations of the global parti-
tioning algorithm occur. For each iteration a heuristic is used to select a pair of clusters
as candidates for merging. The cluster pair is merged into a single cluster if the single
cluster’s execution time would be less than a heuristic estimate of the time needed to exe-
cute the clusters on separate processors and pass results between them. Finally, after the
completion of the global partitioning phase of the DFS, the auxiliary partitioning phase
merges clusters as needed to insure that there are no more clusters than there are proces-
sors in the architecture. The cluster scheduler shown in Figure 7 calculates the time
needed to execute a single cluster or a pair of clusters on a single processor, using a criti-

cal path scheduling algorithm.

3.4.2. Initial Cluster Generation

The initial cluster generation phase of the DFS algorithm partitions the scalar data
flow graph into clusters that are chains of sequential nodes. This is reasonable because a
sequential chain contains no parallelism and thus gains no benefit from being split among

several processors. Each chain begins with a source node, i.e., a node which is the tail of
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no unused arcs. Once a source node has been selected for a cluster, the cluster grows as
nodes which are immediate successors (via an unused arc) to the last added node are
included in the cluster. When a node is added to a cluster, all arcs to that node are
marked as used. Nodes are added to a cluster until there are no unused arcs emanating
from the last added node or the last added node is the head of more than one unused arc
(i.e., the computation branches at the last added node). If the latter case ends the forma-
tion of a cluster, all arcs with the last added node as their head are marked as used.
When the graph’s supply of source nodes has been exhausted, all of the nodes have been
placed in exactly one partition and the initial cluster generation phase finishes. This
scheme of initial cluster generation is of time complexity O (n4), where n is the number

of nodes in the scalar data flow graph [Dris88].

3.4.3. Global Partitioning

The global partitioning phase of the DFS algorithm iterates over the set of clusters,
merging pairs of clusters when its heuristics indicate that doing so reduces response time.
Initially, global partitioning makes use of the set of clusters generated in the initial clus-
tering phase of the DFS. A cluster pair is selected via the global partitioning phase’s first
heuristic. The pair consists of the cluster under consideration in the current iteration of
the phase and the cluster that is responsible for the highest percentage of the current

cluster’s intercluster communication.

Once a cluster pair has been selected, the cluster scheduler calculates the time
needed to execute both clusters on a single processor. The time to execute the clusters on
separate processors and to communicate results between the processors is estimated as
the maximum of the individual clusters’ execution times plus the total time required to
complete all communication between the two clusters. This method of estimating
separate execution time is the global partitioning phase’s second heuristic. It assumes
that the shorter of the two execution times completely overlaps the longer execution

time. This heuristic does not always accurately model the parallel execution of the two
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clusters, but calculating the estimate takes very little time. The use of other heuristics in

forming this estimate is a subject for further research.

A pair of clusters is merged if its uniprocessor execution time is smaller than the
estimate of the time required to execute each cluster of the pair on a separate processor.
After the global partitioning phase finishes with one cluster pair, it moves to the next
cluster in the set and repeats the process. When a complete iteration through the set of
clusters does not merge any pairs, the global partitioning phase halts and the DFS algo-

rithm moves to the auxiliary partitioning phase.

The global partitioning phase of the DFS was shown to be of time complexity
O (n3), where n is the number of nodes in the scalar data flow graph, in [Dris88]. The
derivation of this result did not make use of the divide-and-conquer nature of the DFS
algorithm. Experimental results indicate that the overall time complexity for the DFS

algorithm is O (n2).

3.4.4. Auxiliary Partitioning

After the completion of the global partitioning phase of the DFS algorithm, there
may be more clusters than processors in the multiprocessor architecture. The auxiliary
partitioning phase reduces the number of clusters so that there are no more clusters than
there are processors. First, the auxiliary partitioning phase repeatedly merges the smal-
lest cluster with the cluster that is responsible for the highest percentage of the smallest
cluster’s intercluster communication. (This uses the same heuristic as the global parti-
tioning phase uses to select cluster pairs.) If this process still leaves more clusters than
processors (which can occur if the graph is reduced to a number of disconnected clus-
ters), the auxiliary partitioning phase repeatedly merges the two smallest clusters until
there are no more clusters than processors. The time complexity of the auxiliary parti-
tioning phase of the DFS is O (n4), where n is again the number of nodes in the scalar

data flow graph [Dris88].
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3.4.5. Cluster Scheduler

The cluster scheduler calculates the execution time for one or two clusters executing
on a single processor in the multiprocessor architecture. The critical path list scheduling
algorithm is used to assign nodes to functional units within the processor. A critical path
ordered list is formed for each functional unit type. The cluster scheduler then assigns
nodes to available functional units, choosing the first ready node from the appropriate
list, removing nodes from the cluster after they have completed execution. The time at
which the last node finishes executing is the execution time for the cluster (or pair of
clusters). The time complexity of the cluster scheduler is O (m3), where m is the number
of nodes in the cluster or pair of clusters being executed [Dris88]. Note that the cluster
scheduler executes once for each iteration of the global partitioning phase of the DFS
algorithm and is responsible for a large percentage of the DFS algorithm’s execution
time. The use of other, less time consuming, algorithms for the cluster scheduler is a

subject for future research.

3.4.6. Properties of the Data Flow Scheduling Algorithm

The DFS algorithm has many properties that are desirable for multiprocessor
scheduling algorithms, including applicability over a wide range of tasks and architec-
tures (i.e., generality), the use of accurate estimates of task execution times, and reason-
able speed in generating schedules. The models used for parallel algorithms and mul-
tiprocessor architectures are reasonably general without compromising DFS algorithm
execution speed, allowing many real-world algorithms and architectures to be modeled.
The low-level granularity of the operations in the data flow graph allows accurate esti-
mates of their execution times to be used, improving the quality of the resulting
schedules. This low-level granularity also allows parallelism at each processor in the
architecture to be fully exploited. The divide-and-conquer nature of the DFS algorithm
reduces the algorithm’s time complexity from what would be expected for scalar data

flow graphs, which contain large numbers of nodes. The cluster scheduler portion of the
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DFS limits its attention to the nodes in one or two clusters, while ignoring all other nodes
in the graph. The global partitioning phase of the algorithm, on the other hand, deals
only with clusters and their interconnections, ignoring their internal structure. The simu-
lation results to be presented in the next chapter show that the DFS algorithm achieves

good improvement in parallel algorithm execution times with reasonable time complex-

ity.



Chapter 4: Evaluating the DFS Algorithm

4.1. Approach

Evaluating heuristic solutions to NP-hard problems is generally difficult due to the
time needed to generate optimal solutions for comparison. A common practice is to
compare the algorithm being evaluated with other heuristic algorithms. Granski, et al.
[Gran87], compare selecting a ready data flow graph node for execution on a data flow
processor randomly or by using critical path information. Ravi, et al. [Ravi87], compare

their algorithm with algorithms ignoring some of the information used by their algorithm.

The evaluation of the DFS algorithm uses this type of strategy, making the genera-
tion of optimal partitions unnecessary. The partitions resulting from application of the
DEFS algorithm will be compared with uniprocessor execution of the same graphs and
with multiprocessor execution of random partitionings of the graphs. The comparison
with uniprocessor execution evaluates the DFS algorithm’s ability to make effective use
of the computational power available in multiprocessor architectures. Random partition-
ing divides the graph being partitioned into as many clusters as there are processors in
the architecture by randomly assigning each node in the graph to a cluster. Random par-
titioning completely ignores the structure of the graph and the details of the multiproces-
sor architecture in scheduling the graph. Thus, comparing the DFS algorithm with ran-
dom partitioning evaluates the usefulness of the information employed by the DFS
algorithm’s heuristics.

The DFS algorithm’s main purpose is to reduce the execution times of the algo-
rithms being partitioned. Since this execution takes place on an abstract model of a mul-
tiprocessor architecture, execution times are obtained using a simulator. This simulator
was implemented specifically for the parallel algorithm and multiprocessor architecture
models used in this work. The simulator is written in the C programming language and
currently executes on a VAX 8600 under the Ultrix 2.2 operating system. It schedules

nodes for execution at each processor based on the critical path for each node. The
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simulator is more realistic than the heuristics used by the DFS in that input data items for
a cluster may arrive at different times and it is possible for the execution of two clusters
to partially overlap.

This evaluation of the DFS algorithm concentrates on three aspects of the
algorithm’s behavior. The first is the ability of the DFS to provide reasonable improve-
ment in parallel algorithm execution time as compared with uniprocessor execution and
random partitioning. Second, the time complexity of the DFS algorithm must be low
enough to make its use reasonable. Finally, the ease with which the execution times of
algorithms partitioned using the DFS can be modeled must be evaluated. A number of
different scalar data flow graphs and multiprocessor architectures have been developed
for use in this evaluation. Each of the graphs are scheduled to each of the architectures
using each of the three possible partitioning algorithms (uniprocessor, random, and DFS).
The execution time of each schedule is obtained via simulation. The execution times of
schedules created by the different algorithms are compared to evaluate the improvement
in execution time obtained by use of the DFS algorithm. The time used by the DFS algo-
rithm to create each schedule is used to determine the observed time complexity of the
DEFS as a function of the number of nodes in the test graphs. Finally, the execution times
of the parallel algorithms are examined for patterns as a prelude to modeling the behavior
of the three partitioning algorithms. The results of this evaluation will decide the useful-
ness of the DFS algorithm and provide the basis for the models (to be presented in the

next chapter) of the three partitioning algorithms.

4.2. Evaluation Procedure and Criteria

Many factors influence the behavior of scheduling algorithms. For the parallel algo-
rithm model, any change in the types of computation performed, the number of nodes in
the graph, or the graph’s interconnection topology alters the nature of the scheduling
task. Scheduling a graph with no communication between nodes, for example, is very

different from scheduling a graph with a great deal of communication. In the
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multiprocessor architecture model, any change in the number of processors, the speed
and number of functional units at each processor, or the amount of time needed to com-
municate results within and among processors changes the target of the scheduling algo-
rithm. It may be relatively easy, for example, to schedule a graph to an architecture with
more processors than there are nodes in the graph, while it is difficult to schedule the

same graph to an architecture with few processors.

Formally, execution time is a function of several variables:

’C=T(H,np ,FO yX ’th ,tlc M (G ))’
where

T is the execution time for a partitioning (developed using algorithm IT) of the

graph, G, on the given architecture;
IT is the algorithm used to schedule the graph, G, to the given architecture;
np is the number of processors;
Fo is a vector giving the number of functional units of each function type;
X is a vector of execution times for each function type;
Ioc is the global communication time;
t;c is the local communication time; and

M (G) is a vector of functions, (Mo(G),M(G), - - -,M,(G)), describing charac-

teristics of the scalar data flow graph G .

In justifying the dependence of execution time on the listed parameters, two simple
graphs will be used as examples. Figure 8 shows a graph consisting of a number of com-
pletely disconnected nodes. The nodes in this graph can be executed in parallel and
require no communication. Figure 9 shows a graph consisting of strictly sequential
nodes. None of the nodes is this graph can be executed in parallel and a single communi-

cation is required for each computation.
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Figure 8. Fully Parallel Graph

Figure 9. Fully Sequential Graph
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The dependence of execution time on the number of processors, np, is illustrated by
the fully parallel graph. For this graph, execution time decreases as the number of pro-
cessors increases, provided there are more nodes than processors. Similarly, as entries in
Fo increase, the execution time for the fully parallel graph will decrease, provided there

are enough nodes to make use of the additional functional units.

The effects of functional unit execution times, X, global communication time, z,,
and local communication time, #;., on execution time are illustrated by the fully sequen-
tial graph. The time required to execute this graph on a uniprocessor is the sum of the
execution times and local communication times for each node. For a multiprocessor sys-
tem, the execution time is a sum of the execution times, a number of local communica-
tion times, and a number of global communication times. Thus, if any of X, t,, or #

increases, the execution time also increases.

While specific measures of graph characteristics have not been defined, two factors
do influence execution time. First, the effect of graph topology can be seen in the differ-
ence between the fully parallel and fully sequential graphs. For the fully parallel graph,
the execution time decreases when the number of processors increases. For the fully
sequential graph, the execution time can actually increase with the number of processors.
Second, the functions performed by the graph’s nodes also affect execution time. This
can be seen from the discussion above showing dependence on X. There are other meas-
ures that may have an influence on execution time. The effect of particular graph charac-

teristics seems to be determined by the partitioning strategy used.

Speedup is a useful measure of improvement in the execution time, especially when
trying to isolate the effect of changing a single aspect of the problem, such as the number
of processors in the architecture. Speedup is defined as the ratio of a reference execution
time to another execution time that is under examination. Equivalently, speedup can be
defined as the ratio of a throughput (i.e., the reciprocal of an execution time) to some

reference throughput. Different measures of speedup can be defined by altering the
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definition of the reference execution time. This reference execution time is denoted by 10
and parameters that are held constant in the reference will also be superscripted with 0

(e.g., tg% ). A speedup measure can then be denoted by:

3 70
S @Lnp Fo X e tic G V=7 T X Hgeotic \0)

To usefully measure speedup, care must be used in the selection of parameters
which remain fixed in the reference. Driscoll, et al. [Dris88], fix the reference at one pro-
cessor and vary all other parameters except the partitioning algorithm. This reference
measures the effectiveness of random and DFS partitioning as processors of a given type
are added to an architecture. Here, this measure will be called processor speedup and is

given by:

Sp= TO(H,an=1,F0 X ch oLic ,G)
P @np Fo X tge otic,C)

A more detailed measure of speedup uses the performance of the least powerful
architecture available as a reference. This measure will be called base speedup and is

given by:

Sp= 'CO(H,n;le,F8=(1,1, tte ,l),XO,tg‘?;,tIQ,G)
B T(H,np FO ,X atgc sLie ’G) ’

where X 0,¢0 ,andzQ are the maximum execution and communication times possible

within a family of architectures.

Base speedup results will be included with the simulated execution times to be presented

in the next section.

In evaluating the DFS algorithm the effects of many of the factors mentioned above
are examined. For the algorithms being scheduled, varying the operations performed by
the scalar data flow graph tests the DFS algorithm’s ability to effectively utilize func-
tional units of different types and speeds. Varying the number of nodes in the scalar data
flow graph tests the DFS algorithm’s ability to make use of a limited number of proces-

sors and functional units as the amount of computation increases. Finally, varying the
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interconnection topology of the graph tests the DFS algorithm’s ability to handle a
variety of algorithms.

For the multiprocessor architectures, varying the number of processors tests the
DFS algorithm’s ability to handle situations with too many or too few processors for
algorithms being scheduled. Varying the number of functional units tests the DFS
algorithm’s ability to use more or less powerful processors. Varying the speed of func-
tional units alters the cost of computation relative to communication and tests the DFS
algorithm’s ability to operate with different relative costs. The time for local communi-
cation is assumed to be very small relative to the time for global communication. Thus
any reasonable variation in the local communication time is unlikely to greatly affect
scheduler performance and this parameter will not be varied in this evaluation of the DFS
algorithm. Also, global communication time will not be varied, since varying the speed

of functional units already changes the relative costs of computation and communication.

With the above comments in mind, three different types of scalar data flow graph
topologies are used in the evaluation procedure. First are the binary merge graphs, which
compute vector inner products. Graphs with 127, 255, 511, 1023, and 4095 nodes are
used. Figure 10 illustrates a binary merge graph with 7 nodes. Second are graphs with
the FFT topology, which often occurs in signal processing operations. Graphs with 1024,
2304, and 5120 nodes are used. Figure 11 illustrates an FFT graph with 12 nodes.
Finally, a number of scalar data flow graphs were randomly generated. The generator for
these graphs first chooses the function of each node using a uniform distribution. Then
each input item at each node is chosen as either coming from another node in the graph
or as coming from outside the graph (i.e., the input item is an input for the algorithm),
again using a uniform distribution. Four graphs each of sizes 500, 1000, 2000, and 5000
nodes are used, for a total of 16 graphs.

Two different sets of functional unit speeds were used in developing multiprocessor

architectures for use in the evaluation procedure. The functions modeled are 32-bit addi-
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tion, multiplication, division, and two’s complement. The execution times are derived
from VLSI circuit designs of blocks performing these functions. The slow set of execu-
tion times can be thought of as having small chip area and slow execution, while the fast
set has larger area and faster execution. The execution times of the fast and slow sets,
along with the local and global communication times, are shown in Table 1, scaled so
that local communication time is one. Using these two sets of functional units, eight
multiprocessor architectures are defined by varying the number of processors, the number
of functional units of each type, and the speed of the functional units. To simplify the
evaluation procedure, the number of functional units is identical for each function type
(i.e., Fo=(ng,nr, - - - ,nr)). Table 2 shows the 8 architectures that are used in the evalua-

tion procedure.

In the evaluation, each of the scalar data flow graphs defined above is scheduled to
each of the eight architectures using the three partitioning algorithms. The resulting par-
titions are then simulated to obtain execution times. The time required for the DFS algo-
rithm to partition each graph for each architecture is also measured. These results pro-
vide the information used to evaluate the improvement in execution time obtained by
using the DFS algorithm, the observed time complexity of the DFS algorithm, and the
basic data used in developing models to describe the behavior of the three partitioning

algorithms (uniprocessor, random, and DFS).
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Figure 10. Binary Merge Graph for Eight Inputs

Figure 11. FFT Graph for Four Inputs
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Table 1. Parameters for Fast and Slow Functional Units

Local Global 32-bit | 32-bit | 32-bit 32-bit
Communication | Communication | Integer | Integer | Integer Integer
e tor Addition | Multiply | Division | 2’s Complement
Slow 1 40 4 37 154 3
Fast 1 40 1 6 15 3
Table 2. Multiprocessor Architectures Used in Simulations
Functional Number of Number of
Unit Functional Processors
Speed Units of
Each Type
Al Slow 1 4
A2 Fast 1 4
A3 Slow 3 4
A4 Fast 3 4
AS Slow 1 16
A6 Fast 1 16
A7 Slow 3 16
A8 Fast 3 16







4.3. Simulation Results

4.3.1. Binary Merge Graphs

Table 3 shows the results for uniprocessor execution. The reduction in execution
time obtained by adding more functional units indicates that the binary merge graphs
contain a large amount of potential parallelism. Notice that base speedup improves as
the number of nodes in the graphs increases, indicating that parallelism in the graphs
increases with the number of nodes. Table 4 shows the simulation results for the execu-
tion of binary merge graphs partitioned using the random and DFS algorithms. For ran-
dom partitioning, base speedup is relatively insensitive to changes in the speed and
number of functional units. Base speedup increases relatively slowly as the size of the
graph being partitioned increases, indicating that parallelism is not being fully exploited.
The DFS algorithm consistently outperforms random partitioning, and achieves base

speedups near theoretical maximums as the graphs grow in size.

Table 5 present the time required for the DFS algorithm to partition binary merge
graphs. For these simulations, the growth rate of this execution time is greater than n

and less than n1-5, where n is the number of nodes in the graph being scheduled.
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Table 3. Uniprocessor Execution of Binary Merge Graphs

Number Number of Functional Execution Base
of Functional Unit Time Speedup
Nodes Units of Speed
Each Type
127 1 Slow 2398 1.00
127 1 Fast 396 6.06
127 3 Slow 844 2.84
127 3 Fast 144 16.65
255 1 Slow 4771 1.00
255 1 Fast 782 6.10
255 3 Slow 1626 293
255 3 Fast 272 17.54
511 1 Slow 9512 1.00
511 1 Fast 1552 6.13
511 3 Slow 3222 295
511 3 Fast 532 17.88
1023 1 Slow 18989 1.00
1023 1 Fast 3090 6.15
1023 3 Slow 6372 298
1023 3 Fast 1044 18.19
2047 1 Slow 37938 1.00
2047 1 Fast 6164 6.15
2047 3 Slow 12704 2.99
2047 3 Fast 2072 18.31
4095 1 Slow 75831 1.00
4095 1 Fast 12310 6.16
4095 3 Slow 25326 299
4095 3 Fast 4120 18.41
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Table 4. Multiprocessor Execution of Binary Merge Graphs

Number | Number of | Number of | Functional Random DFS
of Processors | Functional Unit
Nodes Units of Speed |Execution| Base |Execution| Base
Each Type Time |Speedup| Time |Speedup
127 4 1 Slow 2491 0.96 700 3.43
127 4 1 Fast 2207 1.09 186 12.89
127 4 3 Slow 2201 1.09 330 7.27
127 4 3 Fast 2329 1.03 117 20.50
127 16 1 Slow 1337 1.79 334 7.18
127 16 1 Fast 1410 1.70 177 13.55
127 16 3 Slow 1125 2.13 258 9.29
127 16 3 Fast 1092 2.20 117 20.50
255 4 1 Slow 4611 1.03 1297 3.68
255 4 1 Fast 4288 1.11 284 16.80
255 4 3 Slow 4601 1.04 520 9.18
255 4 3 Fast 4210 1.13 158 30.20
255 16 1 Slow 2031 2.35 487 9.80
255 16 1 Fast 1890 2.52 218 21.89
255 16 3 Slow 1893 2.52 302 15.80
| 255 16 3 Fast 1770 2.70 158 30.20
511 4 1 Slow 9249 1.03 2486 3.83
511 4 1 Fast 7968 1.19 478 19.90
511 4 3 Slow 7890 1.21 932 10.21
511 4 3 Fast 9009 1.05 226 42.09
511 16 1 Slow 3506 2.71 788 12.07
511 16 1 Fast 2409 3.95 268 35.49
511 16 3 Slow 3885 245 418 22.76
511 16 3 Fast 3331 2.86 199 47.80
1023 4 1 Slow 16618 1.14 4859 391
1023 4 1 Fast 16727 1.14 864 21.98
1023 4 3 Slow 17006 1.12 1714 11.08
1023 4 3 Fast 16129 1.18 354 53.64
1023 16 1 Slow 6065 3.13 1385 13.71
1023 16 1 Fast 5811 3.27 366 51.88
1023 16 3 Slow 6145 3.09 608 31.23
1023 16 3 Fast 5930 3.20 240 79.12 |
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Table 4. (cont’d.)

Number | Number of | Number of | Functional Random DFS
of Processors | Functional Unit
Nodes Units of Speed |Execution| Base |Execution| Base
Each Type Time [Speedup| Time |Speedup
2047 4 1 Slow 33380 1.14 9600 3.95
2047 4 1 Fast 32528 1.17 1634 23.22
2047 4 3 Slow 32565 1.16 3310 11.46
2047 4 3 Fast 32849 1.15 614 61.79
2047 16 1 Slow 11529 3.29 2574 14.74
2047 16 1 Fast 11370 3.34 560 67.75
2047 16 3 Slow 11653 3.26 1020 37.19
2047 16 3 Fast 11690 3.25 308 123.18
4095 4 1 Slow 65290 1.16 19077 3.97
4095 4 1 Fast 61528 1.23 3172 23.91
4095 4 3 Slow 63889 1.19 6460 11.74
4095 4 3 Fast 62567 1.21 1126 67.35
4095 16 1 Slow 23449 3.23 4947 15.33
4095 16 1 Fast 21771 3.48 946 80.16
4095 16 3 Slow 21653 3.50 1802 42.08
4095 16 3 Fast 21410 3.54 436 173.92
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Table 5. DFS Execution Time for Binary Merge Graphs

Number Number of Number of Functional Execution
of Processors Functional Unit Time
Nodes Units of Speed (VAX 8600)
Each Type (CPU Seconds)
127 4 1 Slow 32.36
127 4 1 Fast 27.71
127 4 3 Slow 27.62
127 4 3 Fast 27.39
127 16 1 Slow 29.70
127 16 1 Fast 2691
127 16 3 Slow 26.88
127 16 3 Fast 27.74
255 4 1 Slow 68.65
255 4 1 Fast 58.40
255 4 3 Slow 58.17
255 4 3 Fast 56.32
255 16 1 Slow 64.54
255 16 1 Fast 5497
255 16 3 Slow 53.92
255 16 3 Fast 56.41
511 4 1 Slow 143.40
511 4 1 Fast 123.21
511 4 3 Slow 120.84
511 4 3 Fast 118.24
511 16 1 Slow 135.80
511 16 1 Fast 115.89
511 16 3 Slow 115.25
511 16 3 Fast 114.50
1023 4 1 Slow 313.16
1023 4 1 Fast 268.97
1023 4 3 Slow 262.33
1023 4 3 Fast 255.10
1023 16 1 Slow 294.15
1023 16 1 Fast 249.36
1023 16 3 Slow 248.38
1023 16 3 Fast 242.24
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Table 5. (cont’d.)

Number Number of Number of Functional Execution
of Processors Functional Unit Time
Nodes Units of Speed (VAX 8600)
Each Type (CPU Seconds)
2047 4 1 Slow 740.17
2047 4 1 Fast 636.32
2047 4 3 Slow 606.14
2047 4 3 Fast 583.25
2047 16 1 Slow 675.95
2047 16 1 Fast 567.88
2047 16 3 Slow 561.48
2047 16 3 Fast 546.50
4095 4 1 Slow 1937.88
4095 4 1 Fast 1675.30
4095 4 3 Slow 1537.35
4095 4 3 Fast 1466.36
4095 16 1 Slow 1649.28
4095 16 1 Fast 1385.78
4095 16 3 Slow 1357.10
4095 16 3 Fast 1318.49
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4.3.2. FFT Graphs

Table 6 gives uniprocessor execution times for the FFT graphs. As for the binary
merge graphs, these results indicate that the FFT graphs are highly parallel in nature.
However, the amount of parallelism in the graphs stays relatively constant as the number
of nodes in the graph increases. Table 7 gives multiprocessor execution times for the
FFT graphs when partitioned using the random and DFS algorithms. The random algo-
rithm results are similar to those for binary merge graphs. Base speedup is relatively
insensitive to changes in the power of individual processors in the architecture. The DFS
algorithm is very sensitive to changes in processor characteristics, providing increased
base speedup as processors become more powerful. The DFS algorithm performs poorly
relative to random partitioning for architectures with 4 processors and a single, slow
functional unit of each type. Also, the base speedup is surprisingly low for the 2304
node graph partitioned for execution on the architecture with 16 processors, each having

3 slow functional units of each type.

Table 8 gives the execution time required by the DFS algorithm to partition the FFT
graphs. For these simulations, the growth rate of this execution time is greater than n!-

and less than n2,
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Table 6. Uniprocessor Execution of FFT Graphs

Number Number of Functional Execution Base
of Functional Unit Time Speedup
Nodes Units of Speed
Each Type
1024 1 Slow 37888 1.00
1024 1 Fast 6144 6.17
1024 3 Slow 12654 2.99
1024 3 Fast 2052 18.46
2304 1 Slow 85248 1.00
2304 1 Fast 13824 6.17
2304 3 Slow 28416 3.00
2304 3 Fast 4608 18.50
5120 1 Slow 189440 1.00
5120 1 Fast 30720 6.17
5120 3 Slow 63159 3.00
5120 3 Fast 10242 18.50
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Table 7. Multiprocessor Execution of FFT Graphs

Number | Number of | Number of | Functional Random DFS
of | Processors | Functional Unit
Nodes Units of Speed |Execution| Base |Execution| Base
Each Type Time |Speedup| Time |Speedup
1024 4 1 Slow 28234 1.34 30784 1.23
1024 4 1 Fast 28172 1.34 4992 7.59
1024 4 3 Slow 28714 1.32 10286 3.68
1024 4 3 Fast 28292 1.34 3215 11.78
1024 16 1 Slow 9874 3.84 3081 | 12.30
1024 16 1 Fast 10664 3.55 1641 | 23.09
1024 16 3 Slow 10634 3.56 2038 | 18.59
1024 16 3 Fast 9972 3.80 1653 22.92
2304 4 1 Slow 65674 1.30 69264 123
2304 4 1 Fast 66052 1.29 11232 7.59
2304 4 3 Slow 63194 1.35 21312 4.00
2304 4 3 Fast 62892 136 6692 12.74
2304 16 1 Slow 21674 3.93 6180 | 13.79
2304 16 1 Fast 21212 4.02 3081 | 27.67
2304 16 3 Slow 23114 3.69 8832 9.65
2304 16 3 Fast 22332 3.82 3056 | 27.90
5120 4 1 Slow 141754 1.34 153920 1.23
5120 4 1 Fast 141612 1.34 24960 7.59
5120 4 3 Slow 142674 133 51319 3.69
5120 4 3 Fast 140172 135 13859 13.67
5120 16 1 Slow 48234 393 13244 14.30
5120 16 1 Fast 47892 3.96 6001 | 31.57
5120 16 3 Slow 46354 4.09 7469 25.36
5120 16 3 Fast 45932 | 4.12 5813 | 32.59
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Table 8. DFS Execution Time for FFT Graphs

Number Number of Number of Functional Execution
of Processors Functional Unit Time
Nodes Units of Speed (VAX 8600)
Each Type (CPU Seconds)
1024 4 1 Slow 792.74
1024 4 1 Fast 743.24
1024 4 3 Slow 707.13
1024 4 3 Fast 653.15
1024 16 1 Slow 647.29
1024 16 1 Fast 602.35
1024 16 3 Slow 646.88
1024 16 3 Fast 592.68
2304 4 1 Slow 4966.77
2304 4 1 Fast 2640.10
2304 4 3 Slow 2559.40
2304 4 3 Fast 2086.56
2304 16 1 Slow 4217.32
2304 16 1 Fast 1892.68
2304 16 3 Slow 2266.71
2304 16 3 Fast 1807.22
5120 4 1 Slow 10678.43
5120 4 1 Fast 10646.77
5120 4 3 Slow 8348.69
5120 4 3 Fast 7857.97
5120 16 1 Slow 7155.11
5120 16 1 Fast 7108.45
5120 16 3 Slow 7102.35
5120 16 3 Fast 6599.98
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4.3.3. Random Graphs

Tables 9a through 9d show the uniprocessor execution times for the random graphs.
Note that the graphs are grouped into four sets only for convenience in presenting these
results. There is no special relationship between the graphs in each set. As was true for
the other types of graphs the uniprocessor results indicate that the random graphs contain
a large amount of parallelism. The amount of parallelism stays relatively constant as the
size of the graph increases. Tables 10a through 10d give the multiprocessor execution
times of the random graphs as partitioned by the random and DFS algorithms. Once
again, the execution time of randomly partitioned graphs is insensitive to changes in indi-
vidual processors. The results for the DFS algorithm seem to indicate that only four pro-
cessors are used even when 16 are available. However, the partitionings are actually
using all available processors in each case. This indicates that some portion of the graph
determines execution time, and that this portion of the graph does not adequately use all
available processors under DFS partitioning. The DFS algorithm does not perform well
with respect to random partitioning when the architecture contains slow functional units.
Unlike random partitioning, the DFS algorithm is sensitive to changes in processor
characteristics.

Tables 11a through 11d give the execution time for the DFS algorithm when parti-

tioning random graphs. The growth rate of this execution time for the graphs used in the

simulations is greater than n1-5 and less than n2.
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Table 9a. Uniprocessor Execution of First Set of Random Graphs

Number Number of Functional Execution Base
of Functional Unit Time Speedup
Nodes Units of Speed
Each Type
500 1 Slow 18942 1.00
500 1 Fast 1845 10.27
500 3 Slow 6314 3.00
500 3 Fast 615 30.80
1000 1 Slow 37730 1.00
1000 1 Fast 3675 10.27
1000 3 Slow 12628 2.99
1000 3 Fast 1230 30.67
2000 1 Slow 72380 1.00
2000 1 Fast 7050 10.27
2000 3 Slow 24178 299
2000 3 Fast 2355 30.73
5000 1 Slow 191422 1.00
5000 1 Fast 18645 10.27
5000 3 Slow 63910 3.00
5000 3 Fast 6225 30.75

Table 9b. Uniprocessor Execution of Second Set of Random Graphs

Number Number of Functional Execution Base
of Functional Unit Time Speedup
Nodes Units of Speed
Each Type
500 1 Slow 21560 1.00
500 1 Fast 2100 10.27
500 3 Slow 7238 2.98
500 3 Fast 705 30.58
1000 1 Slow 39578 1.00
1000 1 Fast 3855 10.27
1000 3 Slow 13244 2.99
1000 3 Fast 1290 30.68
2000 1 Slow 76076 1.00
2000 1 Fast 7410 10.27
2000 3 Slow 25410 2.99
2000 3 Fast 2475 30.74
5000 1 Slow 194348 1.00
5000 1 Fast 18930 10.27
5000 3 Slow 64834 3.00
5000 3 Fast 6315 30.78
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Table 9c. Uniprocessor Execution of Third Set of Random Graphs

Number Number of Functional Execution Base
of Functional Unit Time Speedup
Nodes Units of Speed
Each Type
500 1 Slow 19712 1.00
500 1 Fast 1920 10.27
500 3 Slow 6622 2.98
500 3 Fast 645 30.56
1000 1 Slow 40194 1.00
1000 1 Fast 3915 10.27
1000 3 Slow 13398 3.00
1000 3 Fast 1305 30.80
2000 1 Slow 80542 1.00
2000 1 Fast 7845 10.27
2000 3 Slow 26950 2.99
| 2000 3 Fast 2625 30.68
5000 1 Slow 191884 1.00
5000 1 Fast 18690 10.27
5000 3 Slow 64064 3.00
5000 3 Fast 6240 30.75

Table 9d. Uniprocessor Execution of Fourth Set of Random Graphs

Number Number of Functional Execution Base
of Functional Unit Time Speedup
Nodes Units of Speed
Each Type
500 1 Slow 19712 1.00
500 1 Fast 1920 10.27
500 3 Slow 6622 298
500 3 Fast 645 30.56
1000 1 Slow 38808 1.00
1000 1 Fast 3780 10.27
1000 3 Slow 12936 3.00
1000 3 Fast 1260 30.80
2000 1 Slow 77770 1.00
2000 1 Fast 7575 10.27
2000 3 Slow 26026 2.99
2000 3 Fast 2535 30.68
5000 1 Slow 197120 1.00
5000 1 Fast 19200 10.27
5000 3 Slow 65758 3.00
5000 3 Fast 6405 30.78







Table 10a. Multiprocessor Execution of First Set of Random Graphs
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Number | Number of | Number of | Functional Random DES

of Processors | Functional Unit

Nodes Units of Speed |Execution| Base |Execution| Base
Each Type Time [Speedup| Time |Speedup

500 4 1 Slow 7436 2.55 12936 1.46

500 4 1 Fast 7705 2.46 1260 15.03

500 4 3 Slow 7392 2.56 4312 4.39

500 4 3 Fast 7284 2.60 420 | 45.10

500 16 1 Slow 3630 5.22 12936 1.46

500 16 1 Fast 3062 6.19 1260 15.03

500 16 3 Slow 3146 6.02 4312 4.39

500 16 3 Fast 3056 6.20 420 | 45.10
1000 4 1 Slow 14348 2.63 28490 1.32
1000 4 1 Fast 14327 2.63 2775 13.60
1000 4 3 Slow 14909 2.53 9548 3.95
1000 4 3 Fast 14442 2.61 930 | 40.57
1000 16 1 Slow 5725 6.59 28490 1.32
1000 16 1 Fast 6114 6.17 2775 13.60
1000 16 3 Slow 6742 5.60 9548 3.95
1000 16 3 Fast 6182 6.10 930 | 40.57
2000 4 1 Slow 26748 2.71 52360 1.38
2000 4 1 Fast 26981 2.68 5100 14.19
2000 4 3 Slow 27229 2.66 17556 4.12
2000 4 3 Fast 26367 2.75 1710 | 42.33
2000 16 1 Slow 20199 3.58 52360 1.38
2000 16 1 Fast 9958 7.27 5100 1491
2000 16 3 Slow 10030 7.22 17556 4.12
2000 16 3 Fast 10013 7.23 1710 | 42.33
5000 4 1 Slow 66848 2.86 135674 1.45
5000 4 1 Fast 66727 2.87 13215 14.71
5000 4 3 Slow 67836 2.82 45276 435
5000 4 3 Fast 68767 2.78 4410 | 44.07
5000 16 1 Slow 23271 8.23 135674 1.45
5000 16 1 Fast 23014 8.32 13215 14.71
5000 16 3 Slow 24081 7.95 45276 4.35
5000 16 3 Fast 22662 8.45 4410 | 44.07
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Table 10b. Multiprocessor Execution of Second Set of Random Graphs

Number | Number of | Number of | Functional Random DFS
of Processors | Functional Unit
Nodes Units of Speed |Execution| Base |Execution| Base
Each Type Time |[Speedup| Time |Speedup
500 4 1 Slow 7752 2.78 15246 1.41
500 4 1 Fast 7407 291 1485 | 14.52
500 4 3 Slow 7115 3.03 6622 3.26
500 4 3 Fast 7562 2.85 495 | 43.56
500 16 1 Slow 3059 7.05 15246 1.41
500 16 1 Fast 2717 7.94 1485 | 14.52
500 16 3 Slow 3070 7.02 5082 4.24
500 16 3 Fast 2977 7.24 495 | 43.56
1000 4 1 Slow 14087 2.81 28644 1.38
1000 4 1 Fast 16136 2.45 2790 | 14.19
1000 4 3 Slow 15070 2.63 9548 4.15
1000 4 3 Fast 13802 2.87 930 | 42.56
1000 16 1 Slow 6236 6.35 28644 1.38
1000 16 1 Fast 5541 7.14 2790 | 14.19
1000 16 3 Slow 6738 5.87 9548 4.15
1000 16 3 Fast 5984 6.61 930 | 42.56
2000 4 1 Slow 27946 2.72 53130 1.43
2000 4 1 Fast 27656 2.75 5175 | 14.70
2000 4 3 Slow 27719 2.74 17710 4.30
2000 4 3 Fast 27567 2.76 1725 | 44.10
2000 16 1 Slow 10620 7.16 53130 1.43
2000 16 1 Fast 9902 7.68 5175 | 14.70
2000 16 3 Slow 12358 6.16 17710 4.30
2000 16 3 Fast 10207 7.45 1725 | 44.10
5000 4 1 Slow 97790 1.99 136598 1.42
5000 4 1 Fast 65776 2.95 13305 | 14.61
5000 4 3 Slow 65918 2.95 45584 4.26
5000 4 3 Fast 67082 2.90 4440 | 43.77
5000 16 1 Slow 24479 7.94 136598 1.42
5000 16 1 Fast 23370 8.32 13305 | 14.61
5000 16 3 Slow 22478 8.65 45584 426
5000 16 3 Fast 23974 8.11 4440 | 43.77
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Table 10c. Multiprocessor Execution of Third Set of Random Graphs

Number | Number of | Number of | Functional Random DFS
of Processors | Functional Unit
Nodes Units of Speed [Execution| Base |Execution| Base
Each Type Time |Speedup| Time |Speedup]
500 4 1 Slow 7558 2.61 14476 1.36
500 4 1 Fast 7453 2.64 1410 | 13.98
500 4 3 Slow 7518 2.62 4928 4.00
500 4 3 Fast 7007 2.81 480 | 41.07
500 16 1 Slow 6315 3.12 14476 1.36
500 16 1 Fast 2807 7.02 1410 | 13.98
500 16 3 Slow 3356 5.87 4928 4.00
500 16 3 Fast 3173 6.21 480 | 41.07
1000 4 1 Slow 14762 2.72 27412 1.47
1000 4 1 Fast 13256 3.03 2670 | 15.05
1000 4 3 Slow 15518 2.59 9240 4.35
1000 4 3 Fast 14456 2.78 900 | 44.66
1000 16 1 Slow 5504 7.30 27412 1.47
1000 16 1 Fast 5604 7.17 2670 | 15.05
1000 16 3 Slow 6100 6.59 9240 4.35
1000 16 3 Fast 6297 6.38 900 | 44.66
2000 4 1 Slow 27100 2.97 55594 1.45
2000 4 1 Fast 27376 2.94 5415 | 14.87
2000 4 3 Slow 28792 2.80 18634 4.32
2000 4 3 Fast 26696 3.02 1815 | 44.38
2000 16 1 Slow 10935 7.37 55594 1.45
2000 16 1 Fast 10242 7.86 5415 | 14.87
2000 16 3 Slow 15518 5.19 18634 432
2000 16 3 Fast 14456 5.57 1815 | 44.38
5000 4 1 Slow 67346 2.85 136906 1.40
5000 4 1 Fast 67256 2.85 13335 | 14.39
5000 4 3 Slow 65048 2.95 45738 420
5000 4 3 Fast 65042 295 4455 | 43.07
5000 16 1 Slow 24168 7.94 136906 1.40
5000 16 1 Fast 23820 8.06 13335 | 14.39
5000 16 3 Slow 23829 8.05 45738 4.20
5000 16 3 Fast 25327 7.58 4455 | 43.07




Table 10d. Multiprocessor Execution of Fourth Set of Random Graphs

Number | Number of | Number of | Functional Random DFS
of Processors | Functional Unit
Nodes Units of Speed |[Execution| Base [Execution| Base
Each Type Time |Speedup| Time |Speedup
500 4 1 Slow 8830 2.23 12320 1.60
500 4 1 Fast 7496 2.63 1560 | 12.64
500 4 3 Slow 7152 2.76 4158 474
500 4 3 Fast 7362 2.68 405 | 48.67
500 16 1 Slow 3355 5.88 12320 1.60
500 16 1 Fast 3556 5.54 1200 | 16.43
500 16 3 Slow 3272 6.02 4158 4.74
500 16 3 Fast 3016 6.54 405 | 48.67
1000 4 1 Slow 14878 2.61 28798 1.35
1000 4 1 Fast 16093 2.41 2805 | 13.84
1000 4 3 Slow 14248 2.72 9702 4.00
1000 4 3 Fast 14808 2.62 945 | 41.07
1000 16 1 Slow 11088 3.50 28798 1.35
1000 16 1 Fast 5662 6.85 2805 | 13.84
1000 16 3 Slow 5632 6.89 9702 4.00
1000 16 3 Fast 5808 6.68 945 | 41.07
2000 4 1 Slow 29275 2.66 57596 1.35
2000 4 1 Fast 29168 2.67 5610 | 13.86
2000 4 3 Slow 31759 2.45 19250 4.04
2000 4 3 Fast 28842 2.70 1875 | 41.48
2000 16 1 Slow 10719 7.26 57596 1.35
2000 16 1 Fast 10197 7.63 5610 | 13.86
2000 16 3 Slow 10684 7.28 19250 4.04
2000 16 3 Fast 10922 7.12 1875 | 41.48
5000 4 1 Slow 67158 2.94 140756 1.40
5000 4 1 Fast 67093 2.94 13710 | 14.38
5000 4 3 Slow 68353 2.88 46970 4.20
5000 4 3 Fast 66847 2.95 5025 | 39.23
5000 16 1 Slow 23460 8.40 140756 1.40
5000 16 1 Fast 22882 8.61 13710 | 14.38
5000 16 3 Slow 24598 8.01 46970 4.20
5000 16 3 Fast 23336 8.45 4575 | 43.09
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Table 11a. DFS Execution Time for First Set of Random Graphs

Number Number of Number of Functional Execution
of Processors Functional Unit Time
Nodes Units of Speed (VAX 8600)
Each Type (CPU Seconds)
500 4 1 Slow 277.15
500 4 1 Fast 194.45
500 4 3 Slow 245.87
500 4 3 Fast 181.63
500 16 1 Slow 275.10
500 16 1 Fast 191.11
500 16 3 Slow 241.89
500 16 3 Fast 178.53
1000 4 1 Slow 975.88
1000 4 1 Fast 759.34
1000 4 3 Slow 769.78
1000 4 3 Fast 447.75
1000 16 1 Slow 972.41
1000 16 1 Fast 758.40
1000 16 3 Slow 763.67
1000 16 3 Fast 447.70
2000 4 1 Slow 2953.53
2000 4 1 Fast 1485.37
2000 4 3 Slow 2336.14
2000 4 3 Fast 1278.36
2000 16 1 Slow 2877.93
2000 16 1 Fast 1471.37
2000 16 3 Slow 2324.50
2000 16 3 Fast 1283.85
5000 4 1 Slow 31730.40
5000 4 1 Fast 10065.54
5000 4 3 Slow 14476.42
5000 4 3 Fast 8729.60
5000 16 1 Slow 31572.41
5000 16 1 Fast 10100.74
5000 16 3 Slow 14403.45
5000 16 3 Fast 8584.48
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Table 11b. DFS Execution Time for Second Set of Random Graphs

Number Number of Number of Functional Execution
of Processors Functional Unit Time
Nodes Units of Speed (VAX 8600)
Each Type (CPU Seconds)
500 4 1 Slow 344.32
500 4 1 Fast 199.45
500 4 3 Slow 296.75
500 4 3 Fast 186.65
500 16 1 Slow 342.10
500 16 1 Fast 195.20
500 16 3 Slow 27091
500 16 3 Fast 182.79
1000 4 1 Slow 873.13
1000 4 1 Fast 478.83
1000 4 3 Slow 639.30
1000 4 3 Fast 412.80
1000 16 1 Slow 870.39
1000 16 1 Fast 474.96
1000 16 3 Slow 637.32
1000 16 3 Fast 410.71
2000 4 1 Slow 2767.33
2000 4 1 Fast 1551.52
2000 4 3 Slow 1962.73
2000 4 3 Fast 1320.21
2000 16 1 Slow 2771.63
2000 16 1 Fast 1539.90
2000 16 3 Slow 1944.41
2000 16 3 Fast 1273.62
5000 4 1 Slow 26731.74
5000 4 1 Fast 10749.80
5000 4 3 Slow 15252.81
5000 4 3 Fast 9049.96
5000 16 1 Slow 26782.43
5000 16 1 Fast 10501.85
5000 16 3 Slow 15208.50
5000 16 3 Fast 9072.57
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Table 11c. DFS Execution Time for Third Set of Random Graphs

Number Number of Number of Functional Execution
of Processors Functional Unit Time
Nodes Units of Speed (VAX 8600)
Each Type (CPU Seconds)
500 4 1 Slow 266.60
500 4 1 Fast 219.95
500 4 3 Slow 246.26
500 4 3 Fast 175.62
500 16 1 Slow 263.53
500 16 1 Fast 217.50
500 16 3 Slow 242.10
500 16 3 Fast 173.42
1000 4 1 Slow 844.72
1000 4 1 Fast 520.89
1000 4 3 Slow 702.78
1000 4 3 Fast 441.53
1000 16 1 Slow 845.61
1000 16 1 Fast 508.42
1000 16 3 Slow 701.18
1000 16 3 Fast 443.48
2000 4 1 Slow 2749.98
2000 4 1 Fast 2501.39
2000 4 3 Slow 2171.80
2000 4 3 Fast 1365.53
2000 16 1 Slow 2777.63
2000 16 1 Fast 2484.89
2000 16 3 Slow 2213.31
2000 16 3 Fast 1370.68
5000 4 1 Slow 32575.77
5000 4 1 Fast 11157.41
5000 4 3 Slow 16670.36
5000 4 3 Fast 9805.20
5000 16 1 Slow 32170.55
5000 16 1 Fast 11183.61
5000 16 3 Slow 16694.78
5000 16 3 Fast 9676.86




Table 11d. DFS Execution Time for Fourth Set of Random Graphs

Number Number of Number of Functional Execution
of Processors Functional Unit Time
Nodes Units of Speed (VAX 8600)
Each Type (CPU Seconds)
500 4 1 Slow 304.99
500 4 1 Fast 201.41
500 4 3 Slow 245.96
500 4 3 Fast 179.58
500 16 1 Slow 302.71
500 16 1 Fast 185.68
500 16 3 Slow 243.28
500 16 3 Fast 176.89
1000 4 1 Slow 955.11
1000 4 1 Fast 686.28
1000 4 3 Slow 642.94
1000 4 3 Fast 424.14
1000 16 1 Slow 946.32
1000 16 1 Fast 688.54
1000 16 3 Slow 637.21
1000 16 3 Fast 422.87
2000 4 1 Slow 3284.10
2000 4 1 Fast 1448.37
2000 4 3 Slow 2123.33
2000 4 3 Fast 1242.76
2000 16 1 Slow 3310.79
2000 16 1 Fast 1449.36
2000 16 3 Slow 2098.75
2000 16 3 Fast 1235.31
5000 4 1 Slow 24941.39
5000 4 1 Fast 10591.12
5000 4 3 Slow 17630.94
5000 4 3 Fast 9935.20
5000 16 1 Slow 24307.43
5000 16 1 Fast 10549.28
5000 16 3 Slow 17421.24
5000 16 3 Fast 9483.44
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4.4. Conclusions

The simulation results presented in this chapter show that the DFS algorithm pro-
vides significant improvement over uniprocessor execution of algorithms. The DFS
algorithm also outperforms random partitioning for a number of cases. Random parti-
tioning is not affected by changes in the power of individual processors in a multiproces-
sor architecture. Thus little improvement in execution time can be expected when pro-
cessors are improved if random partitioning is used to schedule algorithms. Random par-
titioning of random graphs is more effective than DFS partitioning of the same graphs
when the slow functional units are used. Modeling the simulation results will be
explored in the next chapter. The execution time of the DFS algorithm grows at a rate
less than n2, where n is the number of nodes in the graph being scheduled, for all the
simulations. This result is significantly less than the theoretical result of n5, which was

cited in the previous chapter.

All of the graphs used in these simulations were shown to contain relatively large
amounts of parallelism. Further simulations could explore graphs containing less paral-
lelism. Examining the performance of the scheduling algorithms on graphs coming from
working computer programs would also be helpful in further evaluation of the DFS algo-

rithm.



Chapter 5: Modeling Multiprocessor Execution Times

5.1. Overview

The work presented in the previous chapters deals with an aspect of the problem of
automatically mapping algorithms to VLSI architectures, specifically the automatic parti-
tioning of algorithms for execution on parallel architectures. The simulation results dis-
cussed in the last chapter show that, for a wide range of cases, significant speedup over
uniprocessor execution can be obtained using the DFS partitioning algorithm. Random
partitioning was shown to produce good speedup in some test cases, occasionally outper-
forming the DFS. This chapter presents heuristic, analytic models describing the execu-
tion times of graphs partitioned using the DFS and random partitioning algorithms.

These models are based on the simulation results.

Such models are helpful for several reasons. First, the performance of the DFS and
random strategies varies widely depending on the data flow graphs and architectures
used. Good models allow the selection of the strategy most suited to a given situation
prior to the execution of the partitioning algorithm. Second, evaluation of a possible par-
titioning currently requires the use of a computationally expensive simulator (which uses
as much as 50000 seconds of VAX 8600 CPU time for large graphs). With very little
computational cost, the models predict the performance of a specific partitioning.
Finally, and most importantly, the models provide further insight into the partitioning
problem, which will allow the expansion of the results obtained in this research to other,

related areas.

To be useful, the models must meet several criteria. First, they must accurately
describe the simulation results. Second, they must be explainable in intuitive terms. It is
certainly possible to develop a set of equations that fit the simulation results, but their
validity outside the bounds of the specific tests performed here requires that they fit the
situation being modeled. Third, the models must behave at various boundaries of the

problem space, e.g., for architectures with one processor or with infinitely fast functional
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units. Finally, since the models are heuristic in nature, it is not claimed that they are the
only models describing the simulation results, but rather that they are useful and helpful

in describing the results and in expanding the bounds of the research presented here.

5.2. General Model

The simulation results suggest that the details of characterization will differ for dif-
ferent partitioning strategies and graph topologies. However, these specific characteriza-
tions are special cases of a more general model which is presented and justified in this

section. Recall that execution time, T, is modeled as a function of several variables:

=t(ILnp ,np X toc stic M (G))

Several properties of the execution time function, f, can be observed without
defining a more detailed model. First, when the number of processors, np, is 1, execu-
tion times obtained using any partitioning strategy must be identical to those obtained for
uniprocessor execution of the same graph. Second, as the number of processors and the
number of functional units of each type, ng, grow, t should be primarily determined by
graph characteristics, e.g., for some graphs some processors and functional units may be
under-utilized because of data dependencies. Third, if the function execution times, X,
approach 0, uniprocessor execution time will approach 0. Fourth, if global communica-
tion time, Ioc, approaches 0 while the entries in X remain non-zero, execution time will
be primarily determined by graph characteristics, np, and ng. In the binary merge graphs
used in the simulations, for example, if 1,.=0, execution time depends on the number of
processors and functional units, up to the limit of parallel operations available in the
graph. Finally, if both z,. and the entries in X go to 0, both uniprocessor and multipro-
cessor execution times go to 0.

The problem being considered by this research is completely defined by the above
parameters and the models to be presented below are given in terms of these parameters

only. In addition, the nature of the simulations whose results are being modeled allow
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two simplifying assumptions. First, each processor in the architecture is assumed to have
the same number of functional units of each type, nr, i.e., Fo =(np,np, - * - ,ng). Second,
the global communication data block width, w,, is assumed to be wide enough to com-
municate any result in a single global communication time, Z,.. In the simulations, the
sizes of all operations and arcs were set equal to wg.. This assumption could easily be

S0 (0;)

o tgc for operation O;.
I {4

relaxed by replacing references to z, with

Given the above assumptions and criteria, the execution time of a graph on a mul-

tiprocessor architecture can be defined as:
~1
T(ILnp,np Xt gcslic M (G ))=agc Ngc tgc +"Zf) 00,10, X0, 10 Nic e
=

where,

T is the execution time for a given partitioning of the graph.

O gives the fraction of the global communication arcs that do not overlap other
operations and communications during graph execution.

ngc is the the total number of global communication arcs for a given partitioning of
the graph.

0, gives the fraction of nodes performing operation O; that do not overlap other

operations and communications during graph execution.

no, is the number of nodes in the graph performing operation O;.

oy gives the fraction of the local communications arcs that do not overlap other
operations and communications during graph execution.

nc is the number of local communications arcs for a given partitioning of the graph.

The above model treats communication identically with operations performed at

nodes in the graph. Given a partitioning, the model works with an augmented graph,

with each arc, A, replaced by a node and two new arcs, one from the head of A to the

new node, and one from the new node to the tail of A. The new node performs an
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operation that either requires #,. (for a local communication) or #,. (for a global com-
munication) to complete. No time is required for data to traverse the new arcs. The only
difference between communications and operations is that the number of global and local
communication nodes is determined by the partitioning of the graph, while the number of
nodes performing a given operation is fixed for a given graph, i.e., nyc and ny. are func-
tions of the graph partitioning, while the np,’s are not. In light of this equivalence, the
following discussion will use operations to refer to both communication and node opera-

tions.

The concept of overlap needs to be more precisely defined. At any instant during
the execution of the graph, several operations may be proceeding simultaneously, i.e.,
they are overlapped. In estimating the execution time of the graph, only one of the
operations needs to be included in calculating the a for that operation type. Several pos-
sibilities are available for choosing which operation to include. As will be shown in the
following sections, different choices may be required for different graphs and partition-
ing algorithms. If an included operation partially overlaps another operation, then some
fraction of the second operation must be included in the o for that operation type as well.

The o’s are functions of the graph, the partitioning, np, nr, fy, ti., and X .

Figure 12 shows a graph that will be used as a specific example of applying the
model. The graph has been partitioned into two clusters, as indicated by the dashed
boxes. Each cluster will execute on a separate processor. Figure 13 illustrates the graph
after augmentation. The nodes have been numbered for reference. Note that the global
communication (node 3) has not been placed in either cluster, as it makes use of the com-
munication processor at both clusters. Figure 14 shows a Gantt chart for the execution of
the graph in Figure 13. The Gantt chart assumes that local communication requires 1
time step, addition requires 4 time steps, multiplication, 37 time steps, and global com-

munication, 40 time steps.
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Example of Model Usage

Figure 12.

Example Augmented Graph

Figure 13.
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Figure 14. Gantt Chart for Example Graph

From the Gantt chart, the various a’s can be calculated. In this example, the longest
operation type is chosen to be included when operations overlap. Since global communi-
cation is the longest operation, 0, must equal one, due to the fact that the longest opera-
tion is included for any overlap. (If the graph contained several global communications

which overlapped, then o, could be less than one to account for this parallelism.)

Looking next at multiplication, node 2 overlaps node 3 for %%— of node 2’s execution.
Thus o =-347-. Moving to addition, note that node 2 completely overlaps node 1, while

nothing overlaps the execution of node 5. It follows that a+=—%-. Finally, for local com-

munication, node 4 is completely overlapped by node 3, and thus o, =0. The execution

time for this partitioning of the graph is then:
— 4 1 -
1:—1x1x40+—37x1x37+—2—x2x4+0x1x1—48

This agrees with the execution time shown in the Gantt chart. Note that for this
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example, the execution time is the longest path through the augmented graph. This is not
generally the case, since the number of functional units and processors will limit the
exploitation of the graph’s parallelism. Obviously, if a Gantt chart is available for a par-
titioning of a graph, there is no need to apply the model to estimate execution time. The
remainder of this chapter develops formulae for the various o’s, which allow the execu-
tion times of graph partitionings to be estimated without full knowledge of the graph’s

execution schedule.

The remainder of this chapter contains four sections. The first section models the
execution of binary merge graphs for uniprocessor execution and both random and DFS
partitioning. The second section does the same for the FFT graphs. The third section
presents models for the execution of random graphs. Finally, the chapter concludes with

a section of general comments on the modeling of the results.

5.3. Modeling Execution Times for Binary Merge Graphs

Among the graph topologies tested, the development of execution time models is
simplest for the binary merge graphs. These graphs are very regular in structure and are

also very simple.

5.3.1. Uniprocessor Execution

The model for uniprocessor execution of the binary merge graphs follows from
completely deterministic information. This model thus produces exact execution times.
Several facts about the binary merge graphs are used in developing the model. First, the
graphs are described as having 27 inputs. Second, a graph has a total of 2”—1 operation
nodes, of which 27-1 perform multiplication and 2#~!-1 perform addition. Finally, a
graph has 2”-2 local communication arcs, which will become local communication

nodes during the augmentation of the graph.

The graph shown in Figure 15 is an example of an augmented binary merge graph

with 8 (23) inputs. It has 4 multiplication nodes, 3 addition nodes, and 6 local
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Figure 15. Example Binary Merge Graph
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Table 12. Model for Binary Merge Graphs on Uniprocessors

Number Functional Actual Predicted

of ng Unit Execution Execution
Nodes Speed Times Times

(Simulated) (Modeled)
127 1 Slow 2398 2398
127 1 Fast 396 396
127 3 Slow 844 844
127 3 Fast 144 144
255 1 Slow 4771 4771
255 1 Fast 782 782
255 3 Slow 1626 1626
255 3 Fast 272 272
511 1 Slow 9512 9512
511 1 Fast 1552 1552
511 3 Slow 3222 3222
511 3 Fast 532 532
1023 1 Slow 18989 18989
1023 1 Fast 3090 3090
1023 3 Slow 6372 6372
1023 3 Fast 1044 1044
2047 1 Slow 37938 37938
2047 1 Fast 6164 6164
2047 3 Slow 12704 12704
2047 3 Fast 2072 2072
4095 1 Slow 75831 75831
4095 1 Fast 12310 12310
4095 3 Slow 25326 25326
4095 3 Fast 4120 4120
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communication nodes. Figure 16 shows a Gantt chart illustrating the execution of the
graph on a single processor with a single functional unit of each type (i.e., np=1), given
that the critical path algorithm is used to schedule computations. Figure 17 shows a
Gantt chart illustrating the execution of the graph on a processor with two functional
units of each type. Notice that the execution time for the graph is determined by the time
taken to complete all of the graph’s multiplications, followed by the time needed to com-

pute one path of additions.

The behavior of the example can be generalized to model uniprocessor execution of
a binary merge tree of any size (subject only to the constraint that the number of inputs
can be expressed as an integral power of two) on a single processor with any number of
functional units. Specifically, since there are no global communications in the graph, o,

is 0. The overlap of multiplications is determined by the number of functional units, giv-

2n-1

nr
ing o =T The number of additions and local communications on one path from
a multiplication to an exit node s n1, so oy=-"71—, and o=-2=L-. This gives the

final equation for uniprocessor execution time of binary merge graphs as

n-1
T:[ 2np “ Xte +(n—1)xt . +(n—-1)x1,.

Table 12 presents a comparison between the results predicted by the model and the
test results for graphs with 128 to 4096 inputs. Both one and three functional units of
each type were used. Two sets of execution times were used. The table shows that the

experimental results exactly match the results predicted by the model.

5.3.2. Random Partitioning

The simulated execution times for randomly partitioned binary merge graphs show
little variance as the number and speed of functional units is varied. The change in

uniprocessor execution time for the same graphs when these parameters are varied indi-
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cates that the graphs contain a great deal of potential parallelism. Therefore, the execu-
tion of random partitionings of the graphs must be dominated by global communication
costs. Thus, the model for random partitioning will include only global communication

operations (i.e., among the o’s, only 0z is non-zero).

The simulation results vary as the number of processors change. Indeed, the nature
of random partitioning is such that the number of global communication arcs, ng, is a

function of the number of processors, np. To see this, note that the probability of a node

1

being assigned to a particular processor is TR Once the head or tail of an arc has been

assigned to a processor, there is a —%}- chance of the arc’s other node being assigned to

the same processor, i.e., of the arc becoming a local communication. Thus, the expected

value of ng is (1 - %)an , where ny4 is the total number of arcs in the graph.

Two things make the derivation of a precise value for o, more difficult than the
derivation of n4 . First, the amount of overlap that occurs in any set of parallel operations
that includes dependency constraints is hard to determine, due to the many possible exe-
cution sequences for the operations. Second, the multiprocessor architecture model used
in developing the DFS algorithm does not currently include a scheduling mechanism for
global communication. The simulator schedules global communication to communica-
tion processors in basically first-come, first-serve order. The order in which communica-
tions arrive is influenced by the arbitrary indices assigned to clusters and nodes by the
simulator. Augmenting the architecture model to include some scheduling mechanism
would ease the problem of deriving o, but the general problem of estimating overlap is

still an area for further research.

However, even with this problem, upper and lower bounds for o, can be
developed. An obvious upper bound occurs when none of the global communications
can overlap, i.e., a,c=1. This might be the case in a graph containing many nodes that

must be executed serially. To develop a lower bound, note that each global
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communication uses the communication processors of two processors in the multiproces-

. n L. .
sor architecture. Thus, at most —f; global communications can proceed in parallel at any

is an upper bound on the amount of overlap. Using

given time. It follows that o, = p

2
these bounds and the estimate of n,. from above, and recalling that binary merge graphs

contain 2”-2 arcs, upper and lower bounds on expected execution time, T; and T, are

given by the following:

@n —2)x(1-7!1—-)xtgc
7= np P s and
2

T,=(2" —2)x(1—#)><tgc.

Table 13. Model for Random Partitioning of Binary Merge Graphs

Number|Number| Number | Average |Lower Bound|Upper Bound|Percent |Percent
of of of of Actual |on Execution [on Execution |Error of |Error of
Nodes | Arcs [Processors| Execution Times Times Lower | Upper
Times (Modeled) | (Modeled) | Bound | Bound
(Simulated)
127 126 4 2307 1890 3780 18.1 63.8
127 126 16 1241 591 4725 524 | 280.7
255 254 4 4428 3810 7620 14.0 72.1
255 254 16 1896 1191 9525 37.2 | 4024
511 510 4 8529 7650 15300 10.3 79.4
511 510 16 3283 2391 19125 27.2 | 482.5
1023 | 1022 4 16620 15330 30660 7.8 84.5
1023 | 1022 16 5988 4791 38325 20.0 | 540.0
2047 | 2046 4 32831 30690 61380 6.5 87.0
2047 | 2046 16 11561 9591 76725 17.0 | 563.7
4095 | 4094 4 63319 61410 122820 3.0 94.0
4095 | 4094 16 22071 19191 153525 13.0 | 595.6

Table 13 compares the modeled results with the results obtained from the simula-

tions, showing the percent error of the bounds relative to the simulation results. (For
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simulated execution time T, the percent error of the lower bound, for example, is calcu-

T—T
! X

= 100%.) Since little variance resulted from changing

lated as the absolute value of

the number and speed of functional units, each set of four simulation results are shown as
a single average in the table. The results are not derived from deterministic information,
so an exact match between the model and the simulation results does not occur. From
the table, it appears that the lower bound is a better approximation than the upper bound.
Notice that the error for t; generally decreases as the number of arcs in the graph
increases. This is reasonable, as having more arcs will, in general, improve the untiliza-
tion of the available communication processors. Also note that the results are poorer
with more processors for a given graph size. This follows from the fact that more com-
munication processors are available, while the number of arcs remains constant. While
the modeled results are a reasonable approximation of the simulation results, improve-
ment needs to be made in the estimation of the overlap among global communication

operations.

5.3.3. DFS Partitioning

The partitioning of binary merge graphs resulting from the application of the DFS
algorithm is highly regular. This regularity allows the model to predict exact execution
times. Figure 18 shows the DFS partitioning for execution on two processors of the
binary merge graph with eight inputs. Figure 19 shows the DFS partitioning of the same
graph for execution on a four processor architecture. The binary merge graphs again
have 27-! multiplication nodes and 27~1-1 addition nodes. Now, however, the number
of global and local communication arcs is determined by the number of clusters into
which the graph is partitioned. Specifically, for 2” clusters, there are 2 —1 global com-
munication arcs and 2" -2" -1 local communication arcs. Notice, each cluster includes a
subtree of the entire binary merge graph and that the computation in each cluster can

proceed in parallel with the other clusters, except near the root of the graph.
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Figure 18. DFS Two Processor Partitioning of Binary Merge Graph
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Figure 19. DFS Four Processor Partitioning of Binary Merge Graph
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Figure 20. Gantt Chart for Two Processors

Figure 20 shows a Gantt chart for the execution of the partitioned 8-input binary
merge graph on an architecture with two processors, with each processor having one
functional unit of each type. Figure 21 shows the Gantt chart for the execution of the 8-
input graph partitioned for an architecture with four processors, each having one func-
tional unit of each type. Notice that, once again, the execution time is determined by the
time required to complete all of the multiplications followed by the time needed to

traverse a path from a multiplication node to the output node of the graph.

The results in the examples generalize to give the following model: There are m

global communication arcs in a path from a multiplication node to the output, so
; extending the results for uniprocessor execution to include multiple proces-

on-1
np2m

sors gives, Ot =T there are n—1 additions on a path from multiply to an output

. m
Ogc=om_1

n-—1

ey Finally, there are n—1-m local communication arcs on a path from

arc, so o=
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Figure 21. Gantt Chart for Four Processors
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multiply to an output arc, o o, =2fl‘:;—;':'1.

The above parameters model the execution of a binary merge graph that has been
partitioned into 2™ clusters by the DFS algorithm. In some instances, the DFS algorithm
chooses m such that 2 is less than np, the number of processors available in the archi-
tecture. Thus to completely model the execution time for binary merge graphs parti-

tioned by the DFS, it is necessary to model the DFS algorithm’s choice of m.

Figure 22. Illustration of DFS Merging Heuristic

The choice of m can be modeled by examining the behavior of the heuristic that
controls the merging of two clusters within the DFS. Figure 22 illustrates this heuristic.
In the figure, two clusters, a and b, are candidates for merging. The communication
between clusters a and b is shown by ¢ in Figure 22. Let the execution time of a on a sin-
gle processor be denoted by #,. Similarly, #, is the time to execute cluster b. Finally,
denote the time needed for the intercluster communication by .. Note that for binary

merge trees there is alway one global communication arc between two clusters that may
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be merged. Thus, z.=t,.. The DFS heuristic states that two clusters will be merged if the
time needed to execute both clusters on a single processor (denoted z,¢5) is less than
max(fg,tp Hgc -

Without loss of generality, assume that ¢,2>t,. Then the DFS heuristic merges clus-

ters a and b when 7, +ty. >2545. When t« 3>t and t« >>1;;, which is the case for the simu-

on-1
np2m

lations, ¢, can be approximated as [ } , with 2" being the current number of clus-

ters. (The division by 2™ follows from the fact that multiplications are evenly distributed

among the clusters for DFS partitioning.) Similarly, 7,4, can be approximated by

n . . . . . .
[ n22'" l since there are twice as many multiplications in the merged cluster.
F

Putting the above results together gives the following model for the execution time

of binary merge graphs partitioned for multiprocessor execution using the DFS.

on-1
nF 2m t* +tgc

P P
np2m *

Select the maximum m in the range 1<2” <np such that <1.

Then the execution time is given by

-1
T=m Xty +[ n2n ] Xtx+(n=1)xt . Hn—-m-1)xt..

2m

Table 14 presents a comparison between the results predicted by the model, which
shows that the experimental results exactly match the results predicted by the model.
Notice also that when the number of processors is set to one, m=0, and the model

reduces to that developed for uniprocessor execution in the last section.
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Table 14. Model for DFS Partitioning of Binary Merge Graphs

Number Functional Actual Predicted Predicted

of np | nr Unit Execution Number of | Execution
Nodes Speed Times Clusters Times

(Simulated) 2m) (Modeled)
127 4 1 Slow 700 4 700
127 4 1 Fast 186 4 186
127 4 3 Slow 330 4 330
127 4 3 Fast 117 2 117
127 16 1 Slow 334 16 334
127 16 1 Fast 177 8 177
127 16 3 Slow 258 8 258
127 16 3 Fast 117 1 117
255 4 1 Slow 1297 4 1297
255 4 1 Fast 284 4 284
255 4 3 Slow 520 4 520
255 4 3 Fast 158 4 158
255 16 1 Slow 487 16 487
255 16 1 Fast 218 16 218
255 16 3 Slow 302 16 302
255 16 3 Fast 158 4 158
511 4 1 Slow 2486 4 2486
511 4 1 Fast 478 4 478
511 4 3 Slow 932 4 932
511 4 3 Fast 226 4 226
511 16 1 Slow 788 16 788
511 16 1 Fast 268 16 268
511 16 3 Slow 418 16 418
511 16 3 Fast 199 8 199
1023 4 1 Slow 4859 4 4859
1023 4 1 Fast 864 4 864
1023 4 3 Slow 1714 4 1714
1023 4 3 Fast 354 4 354
1023 16 1 Slow 1385 16 1385
1023 16 1 Fast 366 16 366
1023 16 3 Slow 608 16 608
1023 16 3 Fast 240 16 240
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Table 14. (cont’d.)

Number Functional Actual Predicted Predicted

of np | ng Unit Execution Number of | Execution
Nodes Speed Times Clusters Times

(Simulated) 2m) (Modeled)
2047 4 1 Slow 9600 4 9600
2047 4 1 Fast 1634 4 1634
2047 4 3 Slow 3310 4 3310
2047 4 3 Fast 614 4 614
2047 16 1 Slow 2574 16 2574
2047 16 1 Fast 560 16 560
2047 16 3 Slow 1020 16 1020
| 2047 16 3 Fast 308 16 308
4095 4 1 Slow 19077 4 19077
4095 4 1 Fast 3172 4 3172
4095 4 3 Slow 6460 4 6460
4095 4 3 Fast 1126 4 1126
4095 16 1 Slow 4947 16 4947
4095 16 1 Fast 946 16 946
4095 16 3 Slow 1802 16 1802
4095 16 3 Fast 436 16 436
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5.4. Modeling Execution Times for FFT Graphs

Modeling execution times for the FFT graphs is more difficult than developing
models for binary merge graphs. Like the binary merge graphs, the FFT graphs are very
regular in structure. However, the structure of the FFT graphs is complex compared with

the simple structure of the binary merge graphs.

5.4.1. Uniprocessor Execution

Although multiprocessor execution of the FFT graphs is difficult to model, unipro-
cessor execution is simple enough to allow an exact model to be developed. Several
facts about the FFT graphs are used in developing this model. First, the FFT’s will be
described as having 2" inputs. Such graphs consist of (n+1)x2" multiply nodes and
2nx2" local communication arcs, which will become local communication nodes during

the augmentation of the graph.

Figure 23 is an example of an augmented FFT graph with 4 inputs. It has 12 multi-
ply nodes and 16 local communication nodes. Figure 24 shows a Gantt chart illustrating
the execution of the FFT graph on a uniprocessor system with a single function unit,
given that the critical path algorithm is used to schedule computations. The execution
shown is very simple, with all local communication overlapped by multiplication, and

execution time determined by the time required to complete the multiplications.
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Figure 24. Gantt Chart for Uniprocessor Execution
Table 15. Model for FFT Graphs on Uniprocessors
Number Functional Actual Predicted
of ng Unit Execution Execution
Nodes Speed Times Times
(Simulated) (Modeled)
1024 1 Slow 37888 37888
1024 1 Fast 6144 6144
1024 3 Slow 12654 12654
1024 3 Fast 2052 2052
2304 1 Slow 85248 85248
2304 1 Fast 13824 13824
2304 3 Slow 28416 28416
2304 3 Fast 4608 4608
5120 1 Slow 189440 189440
5120 1 Fast 30720 30720
5120 3 Slow 63159 63159
5120 3 Fast 10242 10242
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The behavior illustrated in Figure 24 can be generalized to develop a model for
uniprocessor execution of the FFT graphs. Here multiplication is the obvious candidate
for inclusion when it overlaps other operations. Since the graph contains no global com-
munication nodes, &, =0. Also, since all local communication is overlapped by multipli-

cation, oy, =0. Finally, the overlap of multiplications is determined by the number of
[ (n+1 QXZ"l
ng

TESNL . Combining

multiplications and the number of functional units, i.e., 0=

these results gives the final equation:

tz[m_ﬂ&"l "

ng
A comparison of the modeled results and the simulation results is presented in Table

15. Note that the modeled results exactly match the simulation results.

5.4.2. Random Partitioning

As was found for the binary merge graphs, the execution times for the random par-
tionings of the FFT graphs is dominated by communication time. Using a similar deriva-
tion to that used for the binary merge graphs, the following bounds on execution time
result:

1
2nx2n X( I—F)thc

7= ,and
np
2

_ 1
Tu —2” x2n X(l-z;-)xtgc .

Table 16 compares the modeled results with the results obtained from the simula-
tions. Percent error for the upper and lower bounds were calculated as in Table 13. As
for the binary merge graphs, each simulation entry in the table is an average of four parti-
tionings, each with a different combination of number of functional units and functional

unit speed. These results are similar in nature to the results for binary merge graphs.
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Table 16. Model for Random Partitioning of FFT Graphs

Number |Number| Number | Average |Lower Bound|Upper Bound|Percent |Percent
of of of of Actual |on Execution |on Execution |Error of |Error of
Nodes | Arcs |Processors| Execution Times Times Lower | Upper
Times (Modeled) | (Modeled) | Bound | Bound
(Simulated)
1024 | 1792 4 28353 26880 53760 5.2 89.6
1024 | 1792 16 10286 8400 67200 183 | 5533
2304 | 4096 4 64453 61440 122880 4.7 90.7
2304 | 4096 16 22083 19200 153600 13.1 | 595.6
5120 | 9216 4 14096 138240 276480 19 96.1
5120 | 9216 16 47103 43200 345600 83 ] 633.6

Notice that the error for the lower bound is smaller than for the binary merge graphs.
This is reasonable, as the FFT graphs contain more parallelism at all levels and are thus

more likely to keep all of the communication processors busy.

5.4.3. DFS Partitioning

It is very difficult to model DFS partitioning of the FFT graphs due to the complex-
ity of the FFT topology. The initial partitioning phase of the DFS places each node of
the graph into a separate cluster. In the simplest case, the global partitioning phase then
alternately groups nodes vertically and horizontally on alternate iterations. This group-
ing is such that each cluster is an FFT of smaller size than the original graph. Finally, the
auxiliary partitioning phase of the algorithm may further merge clusters, assigning multi-

ple ‘‘sub-FFT’s’’ to each partition.

The auxiliary partitioning phase begins to behave poorly after performing several
merges. Normally, auxiliary partitioning merges the smallest cluster with the cluster to
which it is most closely connected. This is acceptable for several iterations of the auxili-
ary partitioning algorithm. However, a point may be reached where there are several

clusters that are equally connected with all of the smallest clusters. Since no heuristic is
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provided for selecting among the clusters in these circumstances, details of the
algorithm’s implementation force a selection. Unfortunately, with this selection the same
cluster is always merged with the smallest clusters. The final result is a partitioning in
which one cluster is very much larger than all of the other clusters, i.e., the load is not
balanced among the processors. This explains why random partitioning does well com-
pared with DFS partitioning for the processing architectures with only four processors.
For the FFT graphs used in the simulations, the problem with the auxiliary partitioning
algorithm comes into play for those architectures. A reasonable fix for this problem
would be to select among the alternative clusters in a manner that balances the computa-
tional load among the partitions, at least for the FFT graphs. Testing the influence of this

change is a topic for further research.

The operation of the global partitioning phase of the DFS is such that there are two
ways the merging of clusters can proceed. If the number of inputs is such that n+1 is
even (recall that there are 2" inputs to the graph), the partitioning proceeds in a regular
fashion. Figure 25 illustrates this for a graph with 8 inputs. Notice that each partition is
an FFT with 2 inputs. If the number of inputs is such that n+1 is odd, the resulting parti-
tioning is not as regular. Figure 26 illustrates the DFS partitioning of a graph with 4
inputs. Notice that a portion of the graph does not form a smaller FFT. This irregularity
is inherited by subsequent iterations of the global partitioning algorithm, resulting in less
regular partitions, which can take longer to execute. Notice that the DFS partitioning for
the FFT with 2304 nodes for execution on an architecture with 16 processors and 3 slow
functional units of each type results in significantly less base speedup than DFS partition-
ing of either the 1024 or 5120 node graphs. Notice that n+1=9, i.e., n+1 is odd, for this
graph. The same problem does not occur with partitioning the same graph for other
architectures because the point at which the global partitioning phase halts is also

influenced by the architecture.

Notice that for the case when n+1 is even, all of the global communication involves
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arcs between one row of nodes and another. Some of the global communication will
overlap multiplication in the upper row and some will overlap multiplication in the lower
row. This situation presents the same modeling difficulties as were found for random
partitioning. Specifically, it is difficult to estimate the overlap of global communication
with itself and with multiplication, both due to the difficulty of the problem in general
and to the lack of an established mechanism for scheduling the communication. As such,
it is not currently possible to estimate the execution time of FFT graphs that have been

partitioned by the DFS algorithm.
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Figure 25. DFS Partitioning of 8-Input FFT Graph

Figure 26. DFS Partitioning of 4-Input FFT Graph
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While modeling the execution time of FFT graphs partitioned by the DFS algorithm
is difficult, DFS partitionings of the graphs can be created without actually executing the
DEFS algorithm. First, the FFT graph must be numbered as illustrated for an 8-input FFT
in Figure 27. Then each node is labeled with a 4-tuple, (k,/,p,q) such that, for a node
numbered c, ¢ =p 2%k +q+(2k+1)2". In this labeling, k£ and ! define the vertical position
of a node in the graph, while p and g define its the node’s horizontal position. All nodes
in the graph are labeled for the following values of (k,/,p .q):

0<k <ﬁ§i (when n+1 is even);

0<i<2;

2n

0<q <22k,

This labeling easily identifies all of the 2-input FFT’s that make up the full graph.
Specifically, fixing k and varying / over its range while fixing ¢ and varying p from
some r to r+1 (r even) gives a single, 2-input FFT graph. In the 8-input FFT illustrated
in Figure 27, for example, selecting nodes such that k=1, /=0,1, p=0,1, and g =3 results
in the 2-input FFT made up of nodes 19, 23, 27, and 31.

To obtain a DFS partitioning, rules are used to limit the range of 4-tuples that are
included in a given cluster. The simplest case occurs if n+1 is a power of 2. In this case,
clusters are labeled (i,j), with i giving the vertical placement of the cluster and j its hor-
izontal placement. Then for clusters 42 nodes in height and w nodes in width, with both

h and w even, i and j are such that:
0<i <i;ii; and

0gj <2
_j<—u')—.

Then for a given cluster (i,j), nodes labeled with (k,/,p,q) are included subject to

the following rules:
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ih <2k+l <(j+1)h;

if w=1, then j<p 2% +q <(j+1),

if 1<w< 22" , then jw <p 2% <(j+1)w and 0<q <22; and

if w>—22-;k—, then 0<p <—2%'_-;‘—, and g=a+r22k-1), where a is the bit reversal of the

w

binary representation of j, and 0<r < ;2;2;- .

Applying the above rules to the 128-input FFT graph, with £=8 and w=8 results in
the same partitioning that resulted from the application of the DFS algorithm to the same

graph and the multiprocessor architecture with 16 processors.

The rules required to describe all possible cases for DFS partitioning of FFT graph
are rather complex, as illustrated by the above example. However, once the rules are
developed (as in the above example), the DFS partitioning of FFT graphs can be obtained
in time proportional to the number of nodes in the graph, i.e., much more quickly than
they can be obtained by using the DFS algorithm. Since the labeling system given above
models important aspects of the FFT graphs, the system also shows promise for exploring

other partitioning strategies for these graphs.
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5.5. Modeling Execution Times for Random Graphs

Of the three types of graphs used in the simulations, the random graphs are the most
difficult to understand in terms of modeling execution behavior. Their structure is nei-

ther regular nor simple.

5.5.1. Uniprocessor Execution

The simulation results show that the uniprocessor execution times are completely
dominated by the nodes performing division in the graph. Thus, all other computation
and communication is overlapped by division. It should be noted that there are approxi-
mately the same number of nodes performing each operation in the graph. The domina-
tion of the division operation is probably due to the relatively large amount of time

required to perform the operation.

This behavior leads directly to a model in which o, is the only non-zero o.
n,
ng
ny

sion. n, must be measured separately for each graph. So, the uniprocessor execution

Specifically, o=

, where n, is the number of nodes in the graph that perform divi-

time of the random graphs used in the simulation is given by:

n
'c=[—} xt,.
nr

Tables 17a, 17b, 17c, and 17d compare the model results with the simulation

results. The model matches the simulation exactly.
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Table 17a. Model for First Set of Random Graphs on Uniprocessors

Number Functional Number Actual Predicted
of ng Unit of Execution Execution
Nodes Speed Divisions Times Times
(Simulated) (Modeled)
500 1 Slow 123 18942 18942
500 1 Fast 123 1845 1845
500 3 Slow 123 6314 6314
500 3 Fast 123 615 615
1000 1 Slow 245 37730 37730
1000 1 Fast 245 3675 3675
1000 3 Slow 245 12628 12628
1000 3 Fast 245 1230 1230
2000 1 Slow 470 72380 72380
2000 1 Fast 470 7050 7050
2000 3 Slow 470 24178 24178
2000 3 Fast 470 _ 2355 2355
5000 1 Slow 1243 191422 191422
5000 1 Fast 1243 18645 18645
5000 3 Slow 1243 63910 63910
5000 3 Fast 1243 6225 6225

Table 17b. Model for Second Set of Random Graphs on Uniprocessors

Number Functional Number Actual Predicted

of ng Unit of Execution Execution
Nodes Speed Divisions Times Times

(Simulated) (Modeled)
500 1 Slow 140 21560 21560
500 1 Fast 140 2100 2100
500 3 Slow 140 7238 7238
500 3 Fast 140 705 705
1000 1 Slow 257 39578 39578
1000 1 Fast 257 3855 3855
1000 3 Slow 257 13244 13244
1000 3 Fast 257 1290 1290
2000 1 Slow 494 76076 76076
2000 1 Fast 494 7410 7410
2000 3 Slow 494 25410 25410
2000 3 Fast 494 2475 2475
5000 1 Slow 1262 194348 194348
5000 1 Fast 1262 18930 18930
5000 3 Slow 1262 64834 64834
5000 3 Fast 1262 6315 6315
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Table 17c. Model for Third Set of Random Graphs on Uniprocessors

Number Functional Number Actual Predicted

of nr Unit of Execution Execution
Nodes Speed Divisions Times Times

(Simulated) (Modeled)

500 1 Slow 128 19712 19712
500 1 Fast 128 1920 1920
500 3 Slow 128 6622 6622
500 3 Fast 128 645 645
1000 1 Slow 261 40194 40194
1000 1 Fast 261 3915 3915
1000 3 Slow 261 13398 13398
1000 3 Fast 261 1305 1305
2000 1 Slow 523 80542 80542
2000 1 Fast 523 7845 7845
2000 3 Slow 523 26950 26950
2000 3 Fast 523 2625 2625
5000 1 Slow 1246 191884 191884
5000 1 Fast 1246 18690 18690
5000 3 Slow 1246 64064 64064
5000 3 Fast 1246 6240 6240

Table 17d. Model for Fourth Set of Random Graphs on Uniprocessors

Number Functional Number Actual Predicted

of ng Unit of Execution Execution
Nodes Speed Divisions Times Times

(Simulated) (Modeled)

500 1 Slow 128 19712 19712
500 1 Fast 128 1920 1920
500 3 Slow 128 6622 6622
500 3 Fast 128 645 645
1000 1 Slow 252 38808 38808
1000 1 Fast 252 3780 3780
1000 3 Slow 252 12936 12936
1000 3 Fast 252 1260 1260
2000 1 Slow 505 77770 77770
2000 1 Fast 505 7575 7575
2000 3 Slow 505 26026 26026
2000 3 Fast 505 2535 2535
5000 1 Slow 1280 197120 197120
5000 1 Fast 1280 19200 19200
5000 3 Slow 1280 65758 65758
5000 3 Fast 1280 6405 6405
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5.5.2. Random Partitioning

As was the case for both the binary merge and FFT graphs, the execution of random
partitionings of the random graphs is dominated by communication costs. Following a
similar derivation to those used above gives the following lower and upper bounds on
expected execution time:

ny x(l—%)xtgc

1= and
1 np ,

2

— 1
Ty =ng X(I—F)x{gc )

where ny is the number of arcs in the random graph.

Tables 18a, 18b, 18c, 18d compare the modeled results to the simulation results,
with percent error for the bounds calculated as in Table 13. As with the binary merge
and FFT graphs, each entry is an average of four values. The results are similar to those
for the other two graph types, in that the lower bound becomes more accurate as the

number of arcs in the graph increases.
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Table 18a. Model for Random Partitioning of First Set of Random Graphs

Number (Number| Number | Average [Lower Bound|Upper Bound|Percent | Percent
of of of of Actual |on Execution [on Execution |Error of |Error of
Nodes | Arcs |Processors| Execution Times Times Lower | Upper
Times (Modeled) | (Modeled) | Bound | Bound
(Simulated)
500 429 4 7454 6435 12870 13.7 72.7
500 429 16 3224 2011 16088 37.6 | 399.0
1000 883 4 14507 13245 26490 8.7 82.6
1000 883 16 6191 4139 33113 33.1 | 4349
2000 | 1714 4 26831 25710 51420 4.2 91.6
2000 | 1714 16 12550 8034 64275 360 | 4122
5000 | 4342 4 67545 65130 130260 3.6 92.8
5000 | 4342 16 23257 20353 162825 12.5 | 600.1

Table 18b. Model for Random Partitioning of Second Set of Random Graphs

Number [Number| Number | Average [Lower Bound|Upper Bound|Percent | Percent
of of of of Actual |on Execution [on Execution (Error of |Error of]|
Nodes | Arcs |Processors| Execution Times Times Lower | Upper
Times (Modeled) (Modeled) | Bound | Bound
(Simulated)
500 436 4 7459 6540 13080 123 75.4
500 436 16 2956 2044 16350 309 | 953.1
1000 884 4 14774 13260 26520 10.2 79.5
1000 884 16 6125 4144 33150 323 | 4412
2000 | 1759 4 27722 26385 52770 4.8 90.4
2000 | 1759 16 10772 8245 65963 235 | 5124
5000 | 4312 4 74142 64680 129360 12.8 74.5
5000 | 4312 16 23575 20213 161700 14.3 | 585.9
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Table 18c. Model for Random Partitioning of Third Set of Random Graphs

Number |Number| Number | Average [Lower Bound|Upper Bound|Percent|Percent
of of of of Actual [on Execution |on Execution |Error of |Error of
Nodes | Arcs |Processors| Execution Times Times Lower | Upper
Times (Modeled) | (Modeled) | Bound | Bound
(Simulated)
500 444 4 7384 6660 13320 9.8 80.4
500 444 16 3913 2081 16650 46.8 | 325.5
1000 844 4 14498 12660 25320 12.7 74.6
1000 844 16 5876 3956 31650 32.7 | 438.6
2000 | 1732 4 27466 25980 51960 54 89.2
2000 | 1732 16 12788 8119 64950 36.5 | 4079
5000 | 4362 4 66173 65430 130860 1.1 97.8
5000 | 4362 16 24286 20447 163575 15.8 | 573.5

Table 18d. Model for Random Partitioning of Fourth Set of Random Graphs

Number|Number| Number | Average |Lower Bound|Upper Bound|Percent|Percent
of of of of Actual [on Execution |on Execution |Error of |Error of
Nodes | Arcs [Processors| Execution Times Times Lower | Upper
Times (Modeled) | (Modeled) | Bound | Bound
(Simulated)
500 442 4 7710 6630 13260 14.0 72.0
500 442 16 3300 2072 16575 37.2 | 402.3
1000 909 4 15007 13635 27270 9.1 81.7
1000 909 16 7048 4261 34088 39.5 | 383.7
2000 | 1805 4 29761 27075 54150 9.0 819
2000 | 1805 16 10631 8461 67688 20.4 | 536.7
5000 | 4356 4 67363 65340 130680 3.0 94.0
5000 | 4356 16 23569 20419 163350 134 | 593.1
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5.5.3. DFS Partitioning

The execution times for DFS partitioning of the random graphs are dominated by
nodes performing division. Empirically, approximately 30% of these nodes overlap their
execution with other division nodes. However, the difficulty in accurately modeling the
overlap of the graph’s operations prevents the development of any accurate models for
these execution times. Further research is required to develop models for this parallel-

ism.

5.6. General Comments on Modeling Execution Times

The models developed in this chapter provide some important information about the
problem of modeling multiprocessor execution, about improving the DFS algorithm, and
about areas which require further research. Foremost is the fact that it is difficult to
develop models of multiprocessor execution for specific situations, let alone for general
cases, primarily because of the lack of good estimates for the overlap of operations in a
parallel algorithm. It is important to note that the execution of random partitionings of
all three graph types were dominated by communication. This shows the unsuitability of
random partitioning for any graph with a large amount of communication. Before the
models presented here can be refined, a scheduling mechanism for global communica-
tions must be developed and evaluated. The predominance of division operations in the
random graphs indicates that these graphs may not accurately model irregular algorithms
that occur in practice. Further research can identify actual examples of such algorithms

and evaluate the performance of the DFS algorithm when applied to such examples.

Any attempt at improving the DFS algorithm must first correct the lack of load
balancing caused by the auxiliary partitioning phase. It appears that the model presented
for DFS partitioning of FFT graphs can be used as a framework to explore alternate parti-
tionings that may provide better results than the application of the DFS algorithm.
Further research should explore this possibility in more detail. Finally, a key point noted

in the development of all the models presented in this chapter is the extreme difficulty of
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estimating the overlap of operations in a parallel algorithm. The further investigation of
estimation methods would be beneficial to the improvement of the DFS algorithm, and
also to any other methods that might be used to partition parallel algorithms for multipro-

cessor execution.




Chapter 6: Summary and Conclusions

The rapid decrease of the cost of fabricating integrated circuits highlights the impor-
tance of reducing non-recurring engineering (NRE) costs, including the cost of human
design time. Because of the limited market for individual application specific integrated
circuits (ASIC’s), their success depends in part on minimizing NRE costs. An important
method for reducing these costs is the use of design methodologies, i.e., prescribed
sequences of steps to be followed in translating a behavioral specification into a working
device. The high complexity of VLSI circuits suggests that design methodologies suited

for automation will be an important tool in exploiting the potential of ASIC’s.

These facts led to the definition of five objectives for the research presented in this
dissertation. First, define a design methodology suited for automation. Second, identify
research issues crucial to the automation of the design methodology. Third, investigate
one of these issues by developing an algorithm to automatically partition parallel algo-
rithms for execution on multiprocessor architectures. Fourth, evaluate this algorithm via
simulation. Finally, model these simulation results to improve the algorithm, reduce the
computational cost of the simulation process, and to increase understanding of the basic

problem of partitioning parallel algorithms.

Current design methodologies are limited in either the types of designs to which
they apply or in their suitability for automation. Especially lacking are methods for
translating behavioral specifications to structural representations. The complexity of this
problem makes it difficult to perform this translation in a single step. It is also expensive
to translate structural descriptions to geometrical descriptions. Thus, it is desirable to
estimate the performance of a structural design without translating that design to a
geometrical description. In the algorithmic design methodology (ADM) defined in this
dissertation, a designer specifies desired circuit behavior as an algorithm in a familiar,
high-level language. This algorithm is translated to a structural model of a VLSI circuit

architecture. To deal with the complexity of this transformation it is carried out in
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several steps. First, the algorithm is parallelized to produce a scalar data flow graph.
Second, the scalar data flow graph is partitioned to balance the computation load among
the partitions while keeping interpartition communications low. Finally, the partitioned
scalar data flow graph is embedded in the VLSI circuit architecture model. The perfor-
mance of the architecture is estimated by estimating the area needed for each processor

in the architecture and for routing interprocessor connections.

The automation of the ADM requires the resolution of several issues. First,
methods for automatically parallelizing sequential algorithms must be investigated.
Second, techniques must be developed for automatically and efficiently partitioning
parallel algorithms to improve the execution time of those algorithms on multiprocessor
architectures. Third, partitioned parallel algorithms must be embedded into the VLSI cir-
cuit architecture model in a manner that produces designs comparable to those produced
by human designers. Finally, the processing speed and chip area of an integrated circuit

must be estimated from its VLSI circuit architecture representation.

The research presented in this dissertation concentrates on the problem of automati-
cally partitioning parallel algorithms for execution on multiprocessor systems. This
investigation lead to the development of the data flow scheduling (DFS) algorithm. The
DFS algorithm deals with algorithms expressed as acyclic scalar data flow graphs, in
which operations are at a low level of granularity. This allows the DFS algorithm to
effectively utilize all of the available parallelism, subject to the limits of the processing
architecture. The models used for parallel algorithms and multiprocessor architectures
are sufficiently general to be applicable to a range of actual systems, while not impeding
the operation of the DFS algorithm. The DFS algorithm uses a divide-and-conquer
approach to reduce the time required to partition scalar data flow graphs.

The DFS algorithm was evaluated via simulation. In these simulations, several

types and sizes of scalar data flow graphs were partitioned for execution on various mul-

tiprocessor systems. The execution time of algorithms partitioned by the DFS algorithm
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were compared with those obtained when the graphs were randomly partitioned and
when the graphs were executed on a single processor. The results show that the DFS
algorithm significantly reduces execution time over uniprocessor execution of the same
algorithm. The DFS algorithm also produces lower execution times than random parti-
tioning in most, but not all, of the simulations. The simulation results show that random

partitioning is incapable of effectively utilizing powerful processors.

The modeling of the simulation results uncovered several properties of the DFS
algorithm and the partitioning problem. First, it is extremely difficult to develop accurate
models for multiprocessor execution, primarily due to the difficulty of generating good
estimates of the overlap of computations and interprocessor communication. Refinement
of both the multiprocessor architecture model and the understanding of the algorithm
being partitioned will make modeling of the DFS algorithm easier. Second, the execu-
tion of the randomly partitioned graphs was dominated by interprocessor communication,
making this strategy unsuitable for algorithms with large amounts of communication.
Finally, improvements were suggested for both the multiprocessor architecture model
(e.g., the definition of a protocol for scheduling interprocessor communication) and the

DFS algorithm (e.g., the lack of load balancing during auxiliary partitioning).

The investigation of the DFS algorithm has highlighted shortcomings in its behavior
when mapping algorithms to architectures with a restricted number of processors. The
ability of the DFS algorithm to deal with specific algorithms and actual multiprocessing
systems remains to be examined. Modeling the simulations for graphs with the FFT
topology resulted in a method for describing the graphs that holds promise for exploring
partitioning strategies outside the framework of the DFS algorithm. The problem of
estimating parallelism in algorithms is still a very difficult task and any results in this
area would greatly improve partitioning algorithms. Of the four issues crucial to
automating the ADM, only the one concerning partitioning parallel algorithms has been

addressed, leaving the others open for further study.
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