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ABSTRACT
A NONLINEAR FINITE ELEMENT FOR CURVED BEAMS
By
Bambang Suhendro

A procedure for the computation of nonlinear elastic response of
curved beam structures is presented. The structure is represented by
beam finite elements curved in one plane but deformable in three
dimensional space. The curved axis of the element is represented by a
second order polynomial in the curvilinear coordinates. Geometric
nonlinerities are considered by including the effect of rotations on
the longitudinal strains. In deriving the linear stiffness matrix, the
displacement functions are approximated by cubic polynomials. However,
the incremental (or nonlinear) stiffness matrices are derived by
assuming that the longitudinal displacements are interpolated by linear
polynomials while the interpolations for the other displacements remain
unchanged. The nonlinear terms in the strain expression are averaged
over the element length. Differentiation twice of the strain energy
expression yields the linear stiffness matrix ,[k], and the first and
second order incremental stiffness matrices ,[nl] and [n2], of the
element.

Assuming that the system is elastic and conservative, the
equilibrium equation is obtained from the first variation of the

potential energy. The problem is solved by the Newton-Raphson method

using load increments.
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Bambang Suhendro

A computer program was prepared for the implementation of the
nonlinear equilibrium solution. Numerical results were obtained
involving arches with in-plane and out-of-plane behavior. Various types
of geometry, loading, and support condition were considered.

Numerical results indicated that the proposed method, which is
based on a fixed Lagrangian coordinate system, works very well for
"small displacement problems" ( 2% or less of the arch span) as well
as for "intermediate displacement problems" (2-25% of the arch span).

For all of the numerical problems considered, accurate load-
deflection curve may be obtained by using at most eight elements to
represent the entire arch. For symmetrical problems, only one half of
the arch (four elements) need be considered. Many cases required only
two elements.

Comparisons of numerical results with those of other methods
indicate that the method presented is more accurate and effective than
the others.

The solution procedure based on an updated Lagrangian coordinate
system is also presented. The procedure is necessary if large
displacements (say 25% or more of the arch span) are involved.

In addition to the displacement response, the response of stresses
was also investigated. Furthermore, amplification factors for
displacement and stresses were studied. The result indicated that the
displacement amplification factor was always larger than the stress

amplification factor.
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CHAPTER 1
INTRODUCTION

1.1 GENERAL

The concept of basing structural design on ultimate strength has
gained increasing acceptance in recent years. In general, the
computation of the ultimate strength of a structure would involve load-
displacement relationships that are nonlinear. In other words,
nonlinear analysis of structure becomes necessary. In the past, such
analysis was shunned by engineers because it usually implies a large
amount of computations (in addition to theoretical complexities).
However, current developments in computers are making such analysis
increasingly affor&able for engineering practice.

Nonlinear behavior of structures may be due to geometric changes,
which represent the effect of distortion of the structure on its
response, or to material properties such as a nonlinear stress-strain
relation.

In the present study a procedure for the computation of nonlinear
elastic response of curved beam members is presented. Only geometric
nonlinearity is considered. This study was originated from a search of
an efficient method of ﬁonlinear elastic analysis of arches or curved

structures in two and three dimensional space.
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This chapter describes the objective and scope of the present
work, a literature review of related studies, and the notation used in

the subsequent analysis.

1.2 OBJECTIVE AND SCOPE

Many engineering structures have components that may be considered
as curved beams. Several examples are the ribs of arch bridges, arch
frames, horizontally curved highway bridges, the components of aircraft
frames, ship frames, and vessel frames.

Figure 1-1 illustrates a load-displacement curve of a general arch
structure (herein the terms "arch" and "curved beam" are used
interchangeably) which can be obtained by the solution of the nonlinear
equilibrium equations of the system. The curve "OCD" is called the
"fundamental path". The point (C) on the fundamental path at which the
load is a relative maximum is called a "limit point". Depending on the
properties of the arch and loading, a point of "bifurcation" may occur
before the limit point (i.e., point A) or after the limit point (i.e.,
point A’). Immediately beyond the bifurcation point on the fundamental
path, the structure is unstable, so that the response could follow the
secondary path AB or A’B’. If the bifurcation point occurs before the
limit point, the buckling shape would be "antisymmetrical" (sidesway).
If the bifurcation point occurs after the limit point, C, the arch

would have buckled at C in a "symmetrical" mode (snap through)

8,22)% .

* Numbers in parantheses refer to entries in the list of references.
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It should be noted that the "classical buckling" theory would
assume that, up to the point when buckling takes place , A", the
structure would maintain its original undeformed shape. In other words,
the prebuckling deformation is neglected. At buckling, it goes into an
adjacent equilibrium configuration, B", which would then be unspecified
in magnitude.

Considerable amount of work has been done (see literature review)
on the development of suitable finite element models for the analysis
of curved beams. Most of the previous works have dealt with their
linear or stability analyses in the plane of the structure . Past
studies that had considered out-of-plane behavior have been limited to
buckling analysis (as an eigenvalue problem). Such an analysis
represents a short cut procedure to obtaining the ultimate load based
on the assumption of no displacement, or a linear relation between
displacement and load, prior to buckling. Its application is limited to
those situations where the displacement at the incipient buckling is
small. For more general cases, i.e., when the latter displacement is
not small, it becomes necessary to solve the nonlinear equilibrium
problem and obtain the corresponding load-displacement curve from which
the ultimate load could be determined.

Nonlinear equilibrium analysis is, in general, difficult to
formulate and expensive to carry out the numerical solution. Past
studies that dealt with such analysis of curved structures have been
limited to behavior in the plane of the arch.

The objective of the present study is to develop a three

dimensional nonlinear curved beam finite element which is applicable to
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both linear and nonlinear analyses of arbitrary geometry in two and
three dimensional space.

The curved beam element developed herein represents an improvement
of the previous model presented by Wen and Lange (45) for buckling
analysis. The geometric representation and the displacement functions
have been simplified for more convenient application. However, through
the use of the "average axial strain", the new model is found to be
substantially more effective and accurate than the previous one. The
curved axis of the element is represented by a second order polynomial
in the curvilinear coordinates. In deriving the linear stiffness
matrix, the displacement functions are approximated by cubic
polynomials. The incremental (or nonlinear) stiffness matrices are
derived by interpolating the transverse and longitudinal displacements
respectively by cubic and linear polynomials. A Lagrangian description
of the arch displacements is used.

The present study uses the "incremental stiffness matrices" method
outlined by Mallett and Marcal (24). The strain energy is written in
terms of the displacement variables. Geometrically nonlinear effects
are considered by including both the linear and quadratic terms of the
displacements in the expression for the generalized strains.
Furthermore, following Wen and Rahimzadeh (47), the quadratic
(nonlinear) terms are averaged over the element length . By using these
functions the expression for the strain energy of an element is
derived. This expression consists of three parts : the quadratic

cubic , and quartic terms . Differentiating these expressions twice
yields the linear stiffness matrix, [k], and the first and second order

incremental stiffness matrices, [nl] and [n2], of the element. The
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linear stiffness matrix need be evaluated numerically by Gauss
quadrature method. However, because of the use of lower order
interpolation functions for some displacement components, terms of the
nonlinear stiffness matrices can be and are evaluated in closed form.

Assuming that the system is elastic and conservative, the
equilibrium equation is obtained from the first variation of the
potential energy. This represents a set of nonlinear algebraic
equations. The equation governing the linear incremental behavior is
obtained from the second variation of the potential energy.

The nonlinear equilibrium problem is solved by the Newton-Raphson
method for a series of load increments. Possible instability along the
solution path is also tested by checking the determinant of the tangent
stiffness matrix of the structure at every load increment. In
implementing this method, the convergence check is based on the
unbalanced force vector.

A computer program was prepared for the implementation of the
above described nonlinear equilibrium analysis. Numerical results were
obtained involving arches with in-plane and out-of-plane behavior.
Various types of loading and support condition were considered. To
provide some insight into the effects of variations in the arch profile
on its nonlinear response, semi-elliptic, circular, parabolic, and
sinusoidal shapes having the same rise to span ratio were considered.
The influence of the number of elements on the accuracy of the results
was investigated. The amplification factors for stresses and
displacement were also studied.

The problems were classified into small, intermediate, and large

displacement categories. The small displacement problems are those in
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which the deflection is less than about 2% of the arch span.
Intermediate displacement problems denote those in which the deflection
is of the order of 2%-25% of the arch span. Beyond 25% the problems are
called large displacement ones.

Comparisons of numerical results with those of other methods
indicates that the method presented is very accurate and efficient. The
procedure is generally not sensitive to the load step size. For all of
the numerical problems considered, accurate load-displacement curve may
be obtained by using at most eight elements to represent the entire
arch. For symmetrical problems, only one half of the arch (four
elements) need be considered. Many cases required only two elements.
The method works very well for small and intermediate displacement
problems. Most common practical problems would fall into these
categories.

For very large displacements, it may be necessary to use the so
called "updated Lagrangian coordinates" method of solution as described
in Ref. 47 for straight beam elements. Such a procedure for the curved
element is outlined in Appendix A.

The nonlinear elastic behavior of structures are often discussed
in terms of displacements. The ratio of the displacements obtained from
a nonlinear analysis to that obtained from a linear analysis is called
a (displacement) "amplification factor". Because of its importance in
design application, a look at the maximum stress is taken in this study
also. It was found that the amplification factor for stress was always

smaller than that of the displacement.
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1.3 LITERATURE REVIEW

For a straight beam finite element, it is well known that a cubic
polynomial assumed for the transverse displacement and a linear one for
the longitudinal displacement yield accurate results. Such is not the
case for curved beams.
1.3.1 LINEAR EQUILIBRIUM

Dawe (16) has studied the use of higher order polynomials as shape
functions for curved beams. He pointed out that there was a great
improvement gained by increasing the order of the assumed displacement
components from cubic to quintic. Gallert and Laursen (18) have
presented a mixed formulation of finite elements for arches of
arbitrary shape. They established the convergence proof for this
method. Numerical results indicated that the convergence is rapid.
Mebane and Stricklin (25) have pointed out that rigid body motion could
be considered to be implicitly included in the polynomial form of shape
functions as the number of elements used to represent the structure
increases. Ashwell (1) discussed a class of curved finite elements
(circular) whose shape functions were derived from independent
polynomial expressions for the generalized strains rather than
displacements. It was shown that the convergence of the strain element
was independent of arch types (shallow, thin moderate, thick moderate,
thin deep, and thick deep) and the behavior was superior to other
models.
1.3.2 BUCKLING ANALYSIS

For in-plane buckling analysis (as eigenproblems), Austin and Ross
(2) have compared the solutions of the in-plane buckling of

symmetrically loaded arches between the classical buckling theory and
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the exact, nonlinear buckling analysis. They found that except for
buckling in the symmetric mode (snap-through), the buckling load
obtained with the classical theory was very close to the bifurcation
load obtained with the exact theory. The conclusion, however, was based
on loading types that resulted in relatively small prebuckling
deformations.

Ojalvo and Newmann (30) have reported a basic theoretical work on
the linear elastic stability of a curved beam in space. Ojalvo, Demuts,
and Tokarz (29) followed the preceding work to study the out-of-plane
buckling of a member curved in one plane. Tokarz and Sandhu (40)
developed the linear differential equations and obtained solutions for
the lateral-torsional buckling of a parabolic arch subjected to a
uniformly distributed load. Wen and Lange (45) developed a finite
element model for a beam initially curved in one plane but deformable
in three dimensional space. Geometric nonlinearities have been included
in the analysis. Linear as well as nonlinear eigenproblems were
formulated by setting the structural incremental stiffness to zero and
assuming that the displacement increases linearly with the applied
loads. Their curved beam element could be used to calculate the in-
plane or out-of-plane buckling loads of arbitrary arch geometry. The
curved axis of the element was represented by a fourth order
polynomial. The displacement functions in the three dimensional space
were each approximated by a cubic polynomial.

1.3.3 NONLINEAR EQUILIBRIUM ANALYSIS

Mallett and Marcal (24) presented the general relationships

between the strain energy, the total equilibrium and incremental

equilibrium equations in terms of the usual linear stiffness matrix and
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two nonlinear incremental stiffness matrices. Wen and Rahimzadeh (47)
presented a "Finite Element Average" model for a three dimensional
nonlinear straight beam element, where the nonlinear part of the axial
strain was averaged over the element length. Without such averaging,
the element, which was formulated based on an application of the Mallet
and Marcal work (24), would generally be excessively stiff. The model,
which was based on the Lagrangian coordinate system, worked very well
for nonlinear analysis of frames in two or three dimensional space.
Solution procedures based on fixed and updated coordinate systems were
presented.

For nonlinear equilibrium analysis of arches, Huddleston (20)
studied the inplane behavior of two hinged circular arches with any
rise to span ratio by formulating the problem as a two point boundary
value problem consisting of six nonlinear, first order differential
equations and appropriate boundary conditions. The theory was exact in
the sense that no restriction were placed on the size of the
deflections. The problem was solved by a "shooting method" in which
the boundary value problem was converted to an initial value problenm,
and the Regula-falsi procedure. The formulation was limited to two
hinged circular arches subjected to a vertical concentrated load at the
crown.

Noor, Green, and Hartley (27) developed a curved beam finite
element using the "mixed formulation" for the geometrically nonlinear
analysis of deep arches. While the displacement formulation adopted in
most works, including this one, and most general computer programs for
structural engineering uses only (generalized) displacements at the

nodes as degrees of freedom, the mixed formulation employs both




displacements
formulation was
of transverse
description of
functions were
to solve the re.
seni-elliptic
responses. The
accurate and 1
that of the dis
Belytschl
fornulation for
bent beam whi
displacement f;
defornation ¢
and transverse
cubie shape fy
the modifieq y
shalley arch
corotatimal £
than the lover
Stolarsk
Curveq beap ¢]
Usplacepepy §
Phenongngy Vag
Teduceq inteé

Perforneq 1,



10

displacements and forces at nodes as degrees of freedom. The
formulation was based on a nonlinear deep arch theory with the effect
of transverse shear deformation included. A total Lagrangian
description of the arch deformation and Lagrangian interpolation
functions were used in the formulation. Newton-Raphson method was used
to solve the resulting nonlinear equations. Circular, parabolic, and
semi-elliptic arches were analysed to obtain their inplane nonlinear
responses. They concluded that their mixed model performance was
accurate and less sensitive to variations in the arch geometry than
that of the displacement model.

Belytschko and Glaum (5) presented a higher order corotational
formulation for the "initially curved beam element" (the shape of a
bent beam which was straight before bending) in two dimension. The
displacement fields of each element are decomposed into rigid body and
deformation displacements. The deformation displacements in the axial
and transverse directions are respectively described by linear and
cubic shape functions. The nonlinear equilibrium equation was solved by
the modified Newton-Raphson method. The model was used to solve several
shallow arch problems. It was concluded that the higher order
corotational formulation converges to the exact solution more rapidly
than the lower order one.

Stolarski and Belytschko (37) pointed out that the preceding
curved beam element has the tendency to be too stiff unless the inplane
displacement field is of sufficiently high order polynomials. This
phenomenon was called "membrane locking". To eliminate this effect, the
reduced integration method (i.e., the numerical integration is

performed by using only one or two Gauss points) was used and shown to
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produce reasonably good results. They concluded that the use of higher
order fields for curved element is not necessary if reduced integration
is used.

Calhoun and DaDeppo (8) developed a curved nonlinear finite
element to analyze the inplane behavior of circular arches. No
restrictions were placed on the magnitude of the rotations. The normal
and tangential displacement components were approximated by cubic
polynomials. The element had 4 degrees of freedom at each node, one of
which was nonessential. The problem was formulated as a system of rate
equations that govern the quasi-static deformation of an arch. These
equations were integrated using a Runge-Kutta scheme to obtain load-
deflection response.

By means of a field transfer matrix method, Fujii and Gong (17)
developed a curved beam element of arbitrary geometry for finite
displacement analysis of general planar afches. The arbitrary geometry
was approximated by "blending functions" of third degree. The total
displacements were separated into the rigid-body displacements and the
elastic deformations. Sinusoidal, parabolic, and circular arches were
analysed. The numerical results indicated that the load-displacement
curve of arch problems considered converged to the correct result with

40 elements representing the entire arch:

1.4 NOTATION
The notation shown below has been used in this report
A = area of cross section;

A, B = end nodes of an element;




v
(N2)
(a1
(n2)
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element geometry coefficients;
distance from the y- or x-axis to the extreem fiber;
Young’'s modulus of elasticity;
shear modulus;

moment of inertia of cross section;
moment of inertia of cross section;
structural linear stiffness matrix;
element linear stiffness matrix;
structural secant stiffness matrix;
structural tangent stiffness matrix;
element secant stiffness matrix;

structural initial strain stiffness matrix;
element initial strain stiffness matrix;

torsion constant of cross section;
changes in curvature about x,y,z axes;
curved length of element;
moment about x- or y-axis;

first order structural incremental stiffness matrix;
second order structural incremental stiff. matrix;
first order element incremental stiffness matrix;
second order element incremental stiffness matrix;
concentrated load, axial force;

external load vector;

load increment;

simbol for exact configuration of the structure;
structural generalized displacement vectors;

generalized coordinates, element gen. disp. vector;
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radius of curvature;

radii of curvature at ends of an element;
resistant force vector;

unbalanced force vector related to ith iteration;
element end force vector;

longitudinal axis of curved beam member;
displacements along x,y,z axes, respectively;
strain energy of the structure;

strain energy of an element;
strain energy due to longitudinal strain;
strain energy due to torsion;
quadratic, cubic, and quartic parts of strain energy;
structure global coordinate system;
the coordinates of node A in global coord. system;
the coordinates of node B in global coord. system;
relative position of end nodes of an element;
element coordinate system;
coordinates of node B in element coordinate system;
angle of opening of circular arch;
parameters used for definition of shape functions;
twist of cross section about z-axis;

rotations about x,y,z axes, respectively;
parameters used for definition of shape functions;
normalized variable;

stress at element end;

initial strain at the beginning of ith load incrmnt;

longitudinal strain;
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unbalanced force vector tolerance;

potential energy of the system;

angle of tangent at node B;

rotations about x, y axes, respectively;

angle of tangent at any point in the element;
angle between global X axis and tangent at node A;
angle between global X axis and tangent at node B;
column vector;

rectangular matrix;

row vector.
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CHAPTER II
FINITE ELEMENT MODEL FOR A CURVED BEAM

2.1 GENERAL

As mentioned previously, the finite element model discussed in
this chapter represents an improvement of the previous model developed
by Wen and Lange (45). Although the geometric representation and the
displacement functions have been simplified for more convenient
application. However, through the use of the "average axial strain",
the new model is actually substantially more effective and accurate
than the previous one.

In this chapter the strain-displacement relation is first
presented. Next, two strain energy expressions based on quartic axial
strain function and average axial strain model are described. The
geometric representation and the displacement functions of the element
are then presented. The strain enex‘fgy expressions of a typical curved
element and the corresponding stiffness matrices (including the linear
and nonlinear parts) are derived. Finally, the equilibrium equations
and the equations that govern the linear incremental behavior of a
structure are developed.

2.2 STRAIN-DISPLACEMENT RELATION

Consider a beam element curved in one plane as shown in Figure 2-
1.4 right handed coordinate system, X-, y-, and z-axes, represents the
The displacements

local or member coordinates of the element.

15
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corresponding to those axes are denoted by u, v, and w respectively.
The rotation about z-axis is denoted by B , as shown in Figure 2-2. The
centroidal axis curves in the x-z plane with radius of curvature R,
which may vary. The cross-section of the element is taken to be
constant and has two axes of symmetry. Assuming that plane sections
remain plane after bending deformation, the expression for the
longitudinal strain at a point ({,n) in a section s , measured along

the curved centroidal axis, may be written as

€ IS,f.n- el Ty §fcy ahtes (2210

in which e l is the longitudinal strain at the centroidal axis, and

z
k. =k -k  and s =k - k_ are the changes in curvature of the
X X X y b & b 4
centroidal axis (k, and l-cx — the current and initial curvatures about
the x-axis, respectively; similarly for ky and ky).

For a general case of a beam curved in space, these changes in
curvature have been derived by Ojalvo and Newmann (30). For the element
considered herein, where the initial curvature about the x-axis is

zero , and the initial curvature about y-axis is 1/R , the changes

in curvature of the centroidal axis are given in Reference (45) as

follows
2
d
PR ARTI. (2-2%
= R as?
2
d“u dw 1 d 1 b
L g, e skawa SNET) (2-27)
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The longitudinal strain at the centroidal axis may be written as

dw u 1  du v o, 1 dv2
Gl S0 s SC= e 0 s CeE )T e (@2753)

& &
z o ds R 2 ds R 2 ds

in which the quantity in the first parenthesis is the usual linear hoop
strain in a curved element, and the next two terms (which are
nonlinear), represent the contributions to the strain by the rotations
of the centroidal axis about the y- and x-axes, respectively.
Substituting Equations (2-2) and (2-3) into Equation (2-1), the

expression for the longitudinal strain is obtained :

dw u 1 du w 1 dv 2
€ = € = e@Tre ) kiniCEt RO =)
zdspban . Tas R 2 ds R 2 ds
8 a%y
T TR —2) s (2-4)
R ds
dzu 1 dw d 1
2 A Sl o s o = vk - G O]
ds R ds s

2.3 STRAIN ENERGY EXPRESSION

The expression for the strain energy of the element, Up , may be

written as

(2-5)

where U€ is the strain energy due to the longitudinal strain and Ut is

that due to the shear strain resulting from St. Venant torsion (Note
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that warping is not considered herein as the cross-section is assumed
to be either solid or a closed tubular one). They are given by the

following expressions

E £2 E ez
U i av = [ f dA ds ceee (2-6%)
vol 2 s A
G K 1
t 2
U, - o N o P M (z-sb)
s 2. R

in which ¢ is the longitudinal strain, A is the cross-sectional area, E
and G are the Young’s modulus and shear modulus, and K is the torsion
constant of the cross section. In the preceding equation, the notation
of using a subscript to represent a differentiation has been used,
e.g., ﬂs = dB/ds . This notation will also be used subsequently. The

total strain energy of the element becomes

G K,
dads + [ — (Bg+ = v, ds
2 s 2 R

2-7)

2.4 FINITE ELEMENT FORMULATION
In this section, the definition of coordinate systems, the
geometric representation, the displacement functions, and the strain

energy expression of a typical curved beam element are presented.
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2.4.1 DEFINITION OF COORDINATE SYSTEMS

The global coordinate system used in the analysis (see Figure 2-3)
consists of a single set of cartesian axes with the origin located at
the crown of the arch. The system is oriented with X-axis horizontal,
the Y-axis vertical, and the Z-axis perpendicular to the plane of
curvature. The positions of the nodes of the structure are expressed by
means of this system. The local or element coordinate system ,
illustrated in Figure 2-4, consists of one set of cartesian axes with
its origin located at node A, with the x-axis in the radial direction,
the y-axis normal to the plane of curvature, and the z-axis tangent to
the curved centroidal axis forming an angle ¢A with the global X-axis.
Node B denotes the end node of the element.
2.4_.2 ELEMENT GEOMETRY

Referring to the curved element shown in Figure 2-4, the
coordinates of the nodes A and B , with respect to the global
coordinate system are, ( XA,YA ) and ( XB,YB ) respectively. Their
relative position is defined by XL = XB - XA and Y, = YB - YA .
The coordinates ( Xps Zp ) of node B in the element coordinate system

are given by :

a
= - i (2-87)
Xp XL sin ¢A + YL cos ¢A

b
= i (2-87)
Zp XL cos ¢A + YL sin ¢A

Letting ¢ denote the angle between the element z-axis (tangent at the
end node A) and the tangent at a given point, Figure 2-5 shows that the

angle ¢ is a function of s. It varies from zero at node A to # at node
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B. The radii of curvature R at nodes A and B are respectively denoted

by R1 and R2.

The

The

The

The

are

At any point along the curve, the following relations hold :

dz = ds cos ¢ e (2299

dx = ds sin ¢ (2297
curve is approximated by a second order polynomial in ¢ :

2
s = b ¢ + b, ¢ Co.. (2-10)

radius of curvature is obtained by defferentiating Equation (2-10)

ds
R = — =D

+ 2 b2 ¢ .o (2-11)
d¢

1
element length is given by
L = b, § + b, 6° . (2-12)

boundary conditions used to solve for the coefficients bl and b2

the following :

(1) x, = JBax = [ Rsing d¢ L (2-13%)

b
2) 2z, = [Bdz - [ Rcos¢ df . (2-13%)
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The first boundary condition gives

= (1 - cos §) b1 + 2 (sin 6 - 4 cos 8 ) b2 (2-14)
From the second boundary condition it is found that
6
zp = fo (b +2b,4) cosg d¢
- ( sin 4 ) bl + 2 (6 sin § + cos § - 1) b, ... (2-15)

The resulting coefficients b1 and b2 obtained from Equations (2-14) and

(2-15) are

(1 -cos ) - x, sin §

z B

B

2 [(L - cos §)(8 sin 8 + cos # - 1) - sin § (sin 6 - 6§ cos #)]

(2-15%)

X, - 2b, (sin § - @ cos 8 )
B 2 b
b, = ... (2-157)

(1 - cos §)

Thus, the geometry of the finite element as given by Equation (2-10) is
completely defined by Xp » Zp and the angle §. The accuracy of the
geometric representation presented in this section , for different

numbers of element, is given in Table 2-1.
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2.4.3 DISPLACEMENT FUNCTIONS

As indicated in Equations (2-4) and (2-7), the strain energy of
the curved element considered here depends on four independent
displacement functions, i.e., u, v, w, and 8 , the displacements along
the x, y, z axes and the rotation about the z-axis , respectively.

For the finite element, these functions are approximated by
polynomials in the variable ¢. In deriving the linear stiffness matrix,

the displacement functions are approximated by cubic polynomials

2 3
u o= + @, ¢ + ay ) + a, 1)
v o= ag + ag ¢ + ay ¢2 + ag ¢3
(2-16)
W = «a + a ¢ + « ¢2 + a ¢3
9 10 11 12
2 3
Bo= ey + o b+ a4+ o d

As shown 1in Figure 2-5 , ¢ is related to the arch 1length , s , by

Eq.(2-10). For simplicity, the independent variable ¢ in the preceding

¢
equations may be normalized by defining vy = — , and the displacement
0
functions become
3
+ Aa ¥
+ Ag 73
(2-17)
+ A 3
127
+ A 3
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In deriving the incremental stiffness matrices [nl] and [n2] , however,
while the transverse displacements are still approximated by cubic
polynomials, the longitudinal displacements are approximated by linear

polynomials as follows

= 2 - 3
u = 1 + ¢ + ay ¢+ a, ¢
v = ES + e ¢ + a, ¢2 + 38 453
(2-18)
v = a +oan ¢

In the normalized variable vy = ¢/§ , the above equations can be

written as

- = 2 .5 3
u o= R R Y A T
vo= X o+ 56 Y o+ §7 Sl 7\8 =%
(2-19)
w o= By

The following discussion explains why different approximations
were used for w and B in Equations (2-17) and (2-19).

As will be shown in the following sections, the linear stiffness
matrix [k] is independent of displacements. It can be obtained directly

from the given structural properties and geometry. The shape functions
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defined in Equation (2-17) requires 16 degrees of freedom, 12 of them
are essential (for equilibrium) and 4 of them are nonessential. The
nonessential degrees of freedom can be condensed out, once for all, for
the solution process. The resulting 12 by 12 stiffness matrix is
related to the essential degrees of freedom. It can be transformed
(into global coordinates) and combined with the stiffness matrices of
other finite elements in the usual fashion.

On the other hand, as discussed in later sections, the incremental
stiffness matrices, [nl] and [n2] , are respectively linear and
quadratic functions of the displacements. If the shape functions
Equation (2-17) are used, condensation of the stiffness matrices need
be done each there is a displacement change. This would greatly
increase the cost of computation. Using Equation (2-19) would avoid
such condensations. Of course one could just use Equation (2-19) to
derive [k] also. However, the result would be less accurate than that

from using Equation (2-17).

2.4.4 ELEMENT STRAIN ENERGY AND STIFFNESS MATRICES

In this section, two strain energy expressions are derived. One of
them is based on the quartic axial strain function, Equation (2-4), and
another one is based on the average axial strain model. As will be
shown in Chapter IV , the former model, which follows formally the
usual potential energy formulation of finite element, results in a
nonlinear stiffness that is "excessively high", while the latter model,

obtained from a modification of the former, yields more accurate

results.




|

2441 QUART]
In terms

revritten from

€ = (—

in which

Using the saq



25

2.4.4.1 QUARTIC AXTAL STRAIN MODEL
In terms of the new variable, y , the longitudinal strain may be

rewritten from Equation (2-4) as :

W u u w v
v 1 ¥ 2 1 T,
e = (— - =) + —(— + )"+ —(—)
: R 2 R 4 R 2 R 4
A vy
+ 7 ( = F = L) -xst (2-20)
A\ w
kAl v

B T o T T e

in which

(2-21)

(2-22)
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By use of Equations (2-5), (2-20), and (2-22), the strain energy of the

element may be written as

3 /A sesai(2=23)

in which U2, U3, and UA contain respectively the quadratic, cubic,

and quartic terms of the displacement field variables

E A [ v
fl 2 Al 2 .2
Uah amy = [ =GR 00 F 0T S (GR Brem— Sy R 1)
2 2.0 R4 T ¢ g3 el AL
I
+ d (u_+u R +w_ 8 +w RBZ)Z]d
R393 Y Yss 757 Y
G K. J_l it 5
+ — (R, + v ) ay cees (2-26)
2 o ’% v 2
EA 1 1 2
Uy = m=—=" [ (w_-8u) [(u +8w) +v° ] dy (2-25)
3 2 o Rzﬂz gl
EA b 1
2 2.
U, = — S (G w0 )T ey ]y (2-26)
4 8 o r% T R
where

I§ = IA rlz dA and I = IA §‘2 dA  are the moment of inertia

of the cross section about ¢- and n-axes respectively.
It is noted that the strain energy is a quartic function of

nodal displacements and rotations.
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2.4.4.1.1 LINEAR STIFFNESS MATRIX

As mentioned previously, in deriving the linear stiffness matrix,
the displacement functions are approximated by cubic polynomials given
in Equation (2-17). Upon substituting Equation (2-17) into Equation (2-
24), U2 becomes a function of the coefficients Ai in the displacement

functions (Equation 2-17). By use of the boundary conditions at the

end nodes, these coefficients may be replaced by the nodal displacement

variables. These degrees of freedom are chosen to be

Uy s Yy = the radial displacements

Va o Vg = the transverse displacements ;

wA » Wp = the longitudinal displacements ;

ﬂA » Bg =  the twist about the longitudinal axis ;

du w
eyA’ 6yB = ( ;; + ; ) A, or B = the rotation about y-axis ;
dv
exA’ ng = ( - ;; ) A or B the rotation about x-axis ;

and the "nonessential" degrees of freedom :

dw dw 4p ap
(— , (™)), () , and «—)
gs A ds B as & ds B

These degrees of freedom will be denoted collectively by vector ( q }.

Thus, U2 can be expressed in terms of the element nodal degrees of

freedom { q )

1

U, = { £, (Lq)) dv ceee (2-27)
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in which f2 denotes a quadratic function of the q's
The linear stiffness matrix , [k] , may be obtained as

2 2
a U2 1 a” £

(k] = [k, 1= [—2 1= (f —=2 dy] ... (2-28)
aqi 3q. o aqi aq.

J J

The expressions for the integrands in terms of the q's in Equation
(2-28) are too lengthy to be presented here. They are given in the
subroutine NUMINT of the computer program in Appendix C. It should be
noted that the integrals themselves need be evaluated numerically by
Gauss quadrature.

The linear stiffness matrix developed in this section has a size
of 16 by 16. As mentioned earlier, the nonessential degrees of freedom
would then be condensed out. The resulting 12 by 12 linear stiffness
matrix is then compatible with the incremental stiffness matrices, [nl]
and [n2], developed subsequently.
2.4.4.1.2 INCREMENTAL STIFFNESS MATRICES

The incremental stiffness matrices, [nl] and [n2] , are derived by
assuming that the transverse and longitudinal displacements are
respectively interpolated by cubic and linear polynomials given in
Equations (2-19). As before, by substituting Equations (2-19) into
Equations (2-25) and (2-26), U3 and UA become functions of the
coefficients :i of the polynomials. The degrees of freedom chosen to
replace the coefficients Xi are 1 Uy, Up, V., Vg, W,, Wg, ﬂA’ ﬂB,
eyA , 0yB , oxA , and oxB . These degrees of freedom will be denoted
collectively by vector { q ). The relation between | a } and ( } can

be obtained by use of Equations (2-19) and the above definitions. Thus,
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Uy and U, can be expressed in terms of the element nodal degrees of

freedom { q )
Uy - I £5(0T ) dy cee. (2-29)
o

v, - { £, ((CT)) dy ce.. (2-30)

in which f3 and fa

of the (q's.

are, respectively, cubic and quartic functions

The incremental stiffness matrices , [nl] and ([n2] , may be

calculated from :

3%u, 1 g,
[nl)=(nlyy =0 ——1=[0] ——— a&] ..@3D
aqi aqj o 6qi aqj
a%u, 1 g,
[n2 ] =(n2;, 1 =0 ———1-=1I i ——— dv ] .. (2-32)
aqi 8qj o aqi an

The expressions for the integrands in terms of the 4q's in Equations

(2-31) and (2-32) are also too lengthy to be presented here . The
integrals need be evaluated numerically by Gauss quadrature. They are
given in Appendix D. It should be noted that the elements of the

matrices [nl] and [n2] are respectively linear and quadratic functions

of the displacements.




2.4.6.2 AVERA
An alter

section is to

their average

axial strain i

As before, i
¢an be obtai

Equation (2-1

b use of Eq

elengyy can



30

2.4.4.2 AVERAGE AXTAL STRAIN MODEL

An alternative to the strain energy derived in the preceding
section is to replace the nonlinear terms in the strain expression by
their averages over the element length. Thus, the expression for the

axial strain is rewritten from Equation (2-3) as

dw u 1 L du LA
P e e I T (— + —)% ds
ds R 2 L o} ds R
1 L dv 2
+ — [ (=" ds .. (2-33)
2 L o ds

As before, in terms of y , the expression for the longitudinal strain
can be obtained by substituting Equations (2-2) and (2-33) into

Equation (2-1)

w 1 u w
Y L Y 2
e = (= - =) + — [ (— + =)° R dy
R ¢ R 2L o R 6 R
1 fl v, ) B Viy
+ (— ) R dy + n (— - TV Vg )
2L o R 4 R R242 Y ss
u A\
Yy Y )
¢ ( + u v + + Ty e (2-38)
R292 vy 'ss RZ 9 R sy

By use of Equations (2-5), (2-22), and (2-34), the strain energy of the

element can be written as :

(2-35)
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in which U2 remains the same as given by Equation (2-24), and U3 and

U4 are given by the following expressions

1
U, = EA [ (wv‘ﬁu) M dy c.. (2-36)
(o]
E A 1 )
U, = — [ R6 (M) dy cee. (2-37)
2 o
where
1 u w v
1 Y 2 72
M = — [ [(— + =) + (— )] R dy ... (2-38)
2L o R ¢ R R §

It represents the average of the nonlinear part of the axial strain.
2.4.4.2.1 LINEAR STIFFNESS MATRIX

Since the quadratic term of the strain energy U2 , based on the
average axial strain model, remains the same as that of the quartic
axial strain model, the resulting linear stiffness matrix is exactly
the same as that discussed in Section 2.4.4.1.1. As before, after
integrating numerically, the nonessential degrees of freedom can then

be condensed out to get a 12 by 12 stiffness matrix.

2.4.4.2.2 INCREMENTAL STIFFNESS MATRICES

By use of Equations (2-36) and (2-37) for U3 and UA’ respectively,
and using exactly the same procedure as described in Section 2.4.4.1.2,
the expressions for [nl] and [n2] can be obtained. In this case, the

integrals can be evaluated analytically. The calculation of [nl] and
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[n2] are very lengthy but straightforward. The intermediate
computations are not presented here and expressions for each of those
matrices are given in Appendix B in closed form. As before, the
elements of the matrices [nl] and [n2] are, respectively, linear and

quadratic functions of the displacements.

2.4.5 EQUILIBRIUM EQUATIONS

In the preceding sections, the linear stiffness matrix, [k], and
the incremental stiffness matrices, [nl] and [n2], for the element in
local coordinates have been derived. The structural linear stiffness
matrix , [K], and incremental stiffness matrices, [N1] and [N2], can be
assembled from the corresponding element matrices in the usual fashion
of finite element analysis via the displacement method.

As mentioned previously, the formulation followed in this section
is that described by Mallett and Marcal (24). Assuming that the system
is elastic and conservative , the potential energy of the system , ¢ ,

may be written as :
¢ = U - | Q] (P coo. (2-39)

in which U 1is the strain energy, the sum of the strain energy of the
constituent elements of the structure ; | Q | is the row vector of
the degrees of freedom of the structure ; and ( P ) is the load vector

corresponding to [ Q J. The above equation can be written as :

1 1 1
@ = |Q (- [K] +=[N1] +— [N2] ) (Q - [Q] (B} ... (2-40)
2 6 12
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The first variation of the potential energy produces the equilibrium

equation :

1 1
( [K]l + — [N1] +—-[N2] ) (Q) = (P) ... (2-41)
2 3

This represents a set of nonlinear algebraic equations. The term in the
first parenthesis is called the SECANT STIFFNESS MATRIX.
The equations governing the linear incremental behavior follow

from the second variation of the potential energy and are given by :
( [K] + [N1] + [N2] Yigy AR = (AP co. (2-42)

in which (Q) denotes the displacements at a reference (or the current)
equilibrium position , and ( AQ } and { AP } are the incremental
displacement and load vectors, respectively. The term in the first
parenthesis is called the TANGENT STIFFNESS MATRIX. The subscript (Q)
denotes the fact that the tangent stiffness matrix is to be evaluated
at (Q) = (Q.

Equations (2-41) and (2-42) will be used in the following chapter
to develop a procedure for nonlinear equilibrium analysis of curved

beam structures.
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CHAPTER III

NONLINEAR EQUILIBRIUM ANALYSIS OF CURVED BEAM STRUCTURES

3.1 GENERAL

In the preceding chapter the equilibrium equation, the equation
governing the linear incremental behavior, and the corresponding system
stiffness matrices have been developed. The problem of nonlinear
equilibrium analysis can be solved by more than one procedure of
solution. The most common ones are : (a) direct iteration method; (b)
Newton-Raphson method; and (c) straight incremental method (10,44).

The Newton-Raphson method is used herein. It is a second order
iterative method using the tangent stiffness. The load is applied as a
series of small increments. For each increment an iteration scheme is
employed to continuously update the tangent stiffness matrix as
improved approximations of the incremental deformations are calculated.
The convergence check is based on the unbalanced force vector, which is
evaluated by use of the secant stiffness. The method and the computer
program implementing the solution procedures are described in this
chapter.

3.2 NEWTON-RAPHSON METHOD

3.2.1 CONCEPT

Consider a structure subjected to an external load vector (P). Let .
Q represent symbolically the exact deformed configuration of the

structure. If we assume an iterative process, and in the ith iteration

34
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the approximate configuration Qi is known, we are interested in

improving Qi in such a way that eventually Q, (n > i) would get

sufficiently close to Q.

The load displacement relation can be written as

{P) = (£(@Q)

Using a first order Taylor series expansion about Qi we have

g f
{pP) = (£ (Qi) )y + O ) {a Qi )
3 Q. Q.
3j i
in which, ( £ (Qi) ) may be interpreted as representing the
) g f
resistance of the structure corresponding to Qi , and {
3 Q.
J

the tangent stiffness at Q; - Then the modification to Q is

Ja £ -1
(aQ, ) = | } { P - £(Q) )
i 3 Qj Q i
3 £ -1
= ) { &Ry
9 Qj Q;

in which { A Ri ) is the unbalanced force vector at stage Qi'

The modified displacement is

(3-1)

(3-2)

elastic

) as

Q.

1

(3-3)

(3-4)
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The process may be repeated until either A Qi+k or A Ri+k is
sufficiently small. For one degree of freedom system, the process is
illustrated graphically in Figure 3-1.

The preceding discussion was for the load applied as a single load
increment. Greater accuracy in the solution may be obtained by applying
the load in increments (e.g., AP, 2 AP, 3 AP, ...... , etc.). For
each increment the concept described previously applies.

At the beginning of the increment the geometry of structure may or
may not be updated. As will be discussed in chapter IV, the problems of
nonlinear analysis of arches are divided into small, intermediate, and
large displacement categories. The updated procedure is necessary if
large displacements (more than, say, 25% of the arch span) are
involved. Since practical designs in civil engineering would result in
arches that fall either in the small or intermediate displacement
problem type, the updated procedure is not presented in this chapter,
However, it is given in Appendix A together with the derivation of the

"initial strain stiffness matrix" , [ke ] , which is needed by the
)

procedure.

3.2.2 NEWTON-RAPHSON METHOD FOR FIXED COORDINATES
In this case the geometry of the structure is not updated. The
steps of the calculation are as follows
1) Given the current state
displacement (Q) = (Q)
resistance (R} = (R} = [ Kg ] (Q)

load (P} = {P)
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2) Check if the intended total load has been applied. If it has,

3)

4)

5)
6)

7)

8)

9)

stop. Otherwise, increase load to {P}).

Form the structural tangent stiffness matrix , [KT] , as :
[ K. ] = [ K] + [NL Q)1 + [ N2 Q) ]

Solve for { A Q) from the linear equations,

[Kp 1 (AQ)=(AR)=(P)-(R)

Add {A Q) to the latest {(Q) to obtain a new {Q) = {Q) + {A Q).

Based on the new {(Q) from step 5, evaluate N1({Q)) and N2({Q)).

Form the tangent stiffness matrix [KT], secant stiffness matrix

[KS] , and resistant force vector as :
( KT ] = [ K] + [ NL({Q) ] + [ N2({Q}) ]
1 1

[ K] = [ K] + — [ NL(Q) ] + — [ N2({Q}) ]

S 2 3
Resistant force vector { R} = [ KS ] Q)
Evaluate the unbalanced force vector { A R} as :
(AR} = {(P)-(R)
1f the unbalanced force vector, { A R }, is sufficiently small,
return to 2 . Otherwise , set ({ G)=1{(Q), and { R)={(R),

and return to 3.
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3.2.3 CONVERGENCE CRITERION

In implementing the above Newton-Raphson method, a convergence
criterion based on unbalanced force vector has been used. A tolerance
€ s which has the unit of force or moment, is prescribed for each
group of components (i.e., force or moment) of the unbalanced force
vector.

After the evaluation of the unbalanced force vector in each
iteration the absolute value of each component of the vector 1is
independently compared with the prescribed tolerance. Convergence is

considered achieved if, for each component, this absolute value is less

than or equal to the tolerance.

3.2.4 STRESS COMPUTATION
Referring to the calculation steps presented in Section 3.2.2 ,
element end forces and stresses at every load increment can be obtained
at the beginning of step 9 as follows
a) When the unbalanced force vector , (AR}, is sufficiently small,
form the current element displacement vector, {q), and the

current element secant stiffness matrix, [ks], as

1 . 1
(kg ] =[k ]+ —[nll{g) ]+ = [ n2({q) ]
2 ’ 3
b) Element end forces, { r } = | kS ] {q)
c) Letting P , Mxx , Myy v Cy and cy denote , respectively, the

axial force, the moment about =x-axis, the moment about y-axis,

the distance from the y-axis to the extreme fiber , and the
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distance from the x-axis to the extreme fiber , the stress at

any element end , ¢ , can be computed as

3.3 COMPUTER PROGRAM
In this section, a general description of the computer program
developed for this study is presented. The program was named NANCURVE ,

which stands for Nonlinear Analysis of Curved Beam Structures. As

discussed previously, the program has a capability of solving nonlinear
equilibrium problem of arbitrary curved beam structures either in two
or three dimensional space. The program can also be used for solving
linear equilibrium problems when the [N1l] and [N2] matrices are set
equal to zero. The program itself and the corresponding input data
example are given in Appendix C. The major steps in the program are
described in the same order in which they are executed :

1) The basic information concerning the physical description of
the arch 1is input . This information includes the number of
elements, the number of nodal points, and the type of arch.

2) Parameters which specify whether both [N1] and [(N2] are to be
used , or [Nl] only , or neither of them in the solution of
linear equilibrium problems, are then input.

3) The global coordinates of the nodes are input with the

parameters defining the boundary conditions of the arch.
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4) Next , the maximum number of iterations , the unbalanced force

5)

6)

7)

8)

tolerance , the applied loads ( initial , increment , and total
loads ) and their orientations are specified.

The element data is input . This includes the element number |,
the node numbers at element ends , the modulus of elasticity ,
the shear modulus , the cross sectional area , the moments of
inertia about the two principal axes , and the torsion constant
of the cross section.

From the information input in 1 and 3 , the slopes of the
tangent at the end nodes of each element are calculated . For
arbitrary arch type, however, these slopes are to be input (for
convenience, these are input in step 3 together with the global
coordinates of the nodes) . Next , the coefficients bl and b2
for defining the geometry of each curved element are computed.
The radius of curvature at each node and the element lengths
are then evaluated.

The number of Gauss points , which is needed in the numerical
integration for evaluating the linear stiffness matrix, [k], is
specified. The numbers of Gauss points available in the program
are 2, 3, 4, 5, 6, 10, and 15.

From the information input in 1 and 3 also , the semi bandwidth
of the structural stiffness matrix is computed. The element
linear stiffness matrices are then evaluated and assembled into
the linear stiffness matrix of the structure. This matrix is
assembled in banded format and due to symmetry only the upper

semibandwidth is constructed.
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9) Based on the initial applied load input in 4, a linear analysis

10)

11)

12)

of the arch is performed to obtain the displacements of the

nodal points . The displacements so determined are wused to

compute, for each element, the matrices [nl] and [n2] which are

then assembled ( also in banded format ) into the structure

incremental stiffness matrices [N1] and [N2].

The rest of the steps , which are given previously in section

3.2.2 , can then be performed to obtain the nonlinear response

of the arch . In performing those steps , possible instability

along the solution path 1is tested by checking the determinant

of the tangent stiffness matrix, [KT]’ at every load increment.

Load-displacement relations can then be computed and the

critical or limit load of the structure can also be determined.

By using the end displacements and the secant stiffness matrix

of each element obtained in 10, the element end forces at every

load increment can be computed. Finally , the stresses ( axial

and total ) can be evaluated.
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CHAPTER IV

NUMERICAL RESULTS

4.1 GENERAL

In this chapter a number of numerical examples of inplane and out-
of-plane behavior of arches are considered. Firstly, a comparison of
the finite element solutions of linear equilibrium problems was made
with analytical solutions to show that the method presented is also

reliable for linear case.

When solving nonlinear load-displacement problems, we divide the

problems into "small", "intermediate", and "large" displacement

categories. This is a relative classification. What we mean by a "small
displacement" problem is the case in which the deflection is less than
about 2% of the arch span. "Intermediate displacement" problem means
the deflection is of the order of 2 - 25% of the arch span. Beyond 25%
the problem is called “1arge4 displacement" problem.

Numerical results were obtained involving arches with inplane and
out-of-plane behavior. Various types of loading, support condition,
arch type, and arch geometry are considered. To provide some insight
into the effects of variations in the arch profile on its nonlinear
response, semi-elliptic, circular, parabolic, and sinusoidal arches
having the same rise to span ratio were considered. The influence of

the number of elements on the accuracy of the results was also

investigated.
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In addition to the displacement response, the response of stresses
in the structure is also investigated. Furthermore, amplification
factors for displacement and stresses, which are defined to be the
ratios of nonlinear response to linear response, are studied.

For the numerical results presented herein, no units of the data
have been given. The dimensions of the various quantities are self-
consistent; i.e., if the basic units of length and force are taken to
be inches and pounds, then the values of area, moment of inertia,
concentrated load, and distributed load given would have units of in.2

in.a, 1b., and 1b/in., respectively.

)

4.2 LINEAR EQUILIBRIUM PROBLEMS

Two types of problems were solved. They are linear equilibrium
problems for arches subject to a concentrated inplane load and out-of-
plane load at the crown.
4.2.1 CONCENTRATED INPLANE LOAD AT CROWN

The solution was obtained for two types of arches, circular and
parabolic. In bothr cases the symmetry of the load and of the structure
were used to reduce the number of equations.

The first problem investigated was linear analvsis of semi-
circular arch subjected to a concentrated inplane load at crown. Figure
4-1 shows the difference between the computed radial displacement at
the crown and the analytical solution (Ref. 22), for different numbers
of elements. The numerical data are given in Table 4-1.

The data indicated that the differences with the analytical
solution decrease rapidly with increase in the number of elements.
However, the convergence is seen to be somewhat oscillating within é

very small range of error, i.e.: approximately * 0.25%, when the
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number of elements is more than five. Such behavior would seem to be
the result of the round-off errors accumulated from the increasing
amount of computation as the number of elements was increased. For
shallower arches, the convergence is better and is illustrated in the
following example.

Figure 4-2 and Table 4-2 show similar pattern of results for a
parabolic arch subjected to a concentrated inplane load at crown. The
convergence here is much faster than before. By using only one element,
the error is only about 3%. The errors decrease rapidly from 1.4% for
two elements to 0.03% for five elements. When the number of elements is
more than five, the convergence is still oscillating but the range of
errors is very small, i.e.: * 0.04%.

4.2.2 CONCENTRATED OUT-OF-PLANE (TRANSVERSE) LOAD AT CROWN

The solution was obtained for the semi-circular arch subjected to
a concentrated out-of-plane load at crown. The arch properties remain
the same as described in Figure 4-1. Figure 4-3 shows the difference
between the computed lateral displacement at the crown and the
analytical solution, for different number of elements. By using only 2
elements, the difference is 0.53%. The difference tends to decrease
when the number of elements is increased. The numerical data are shown
in Table 4-3.

4.3 NONLINEAR LOAD-DISPLACEMENT BEHAVIOR FOR SMALL DISPLACEMENT

PROBLEMS

As mentioned previously, the small displacement problem is a class
of problems where the deflection is less than about 2% of the arch

span. Both inplane and out-of-plane problems were considered. The
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influence of the number of elements on the accuracy of the results was
also investigated.

It should be noted that, if only the maximum load carrying
capacity is needed, a short-cut procedure may be formulated in terms of
an eigenvalue problem. Studies on this subject can be found in
References (22) and (45).

The numerical results presented in this section agree very well
with those obtained from eigenvalue solutions discussed in References
(22) and (45).

4.3.1 1INPLANE PROBLEMS
4.3.1.1 A 90°-HINGED CIRCULAR ARCH SUBJECTED TO UNIFORM RADIAL LOAD

The geometry, physical properties and loading condition for this
problem are shown in Figure 4-4. It is well known that this type of
problem has a buckling mode which is antisymmetry or exhibits sidesway.
In order to obtain such mode, a small horizontal perturbing load equal
to 1% of P applied at the crown in +X direction has been' introduced (P
is equal to 5.8905 q).

The resulting load-displacement curves for different number of
elements are depicted in Figure 4-4. The results were obtained with a
load increment of 20 (equivalent to q = 3.395) and an unbalanced force
tolerance €= 1% of the load increment. Different load incremenets
(i.e.: 10, 40, and 50) were also used to solve the problem. It was
observed that the results were not sensitive to the load increment
used. However, near the critical load level, where the displacement

increases rapidly, smaller load increments are needed to get enough
data points for drawing the load-displacement curve. It can be seen

from Figure 4-4 that the left quarter point gradually deflects inward
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until buckling occurs, while the right quarter point initially deflects
inward and when the intensity of the applied load is about 2/3 of the
critical load it deflects outward until buckling takes place. Thus the
final mode is antisymmetric. As expected, the critical load obtained
from nonlinear analysis agrees very well with that obtained from
eigenvalue solution reported in References (22) and (47). It is also
seen that although the behavior is quite nonlinear, the displacements
are small (i.e.: of the order of 0.4% of the arch span).

4.3.1.2 A HINGED PARABOLIC ARCH SUBJECTED TO UNIFORM LOAD

ON HORIZONTAL PROJECTION

The problem considered is illustrated in Figure 4-5. As before, in
order to obtain an antisymmetrical buckling mode, a small horizontal
perturbing load equal to 1% of P (P = 56.25 q) was applied at the crown
in +X direction.

The resulting load-displacement curves for different number of
elements are shown in Figure 4-5. The results were obtained with a load
increment of 200 (equivalent to q = 3.556) and an unbalanced force
tolerance €= 1% of the load increment. The left quarter point
gradually deflects inward until buckling occurs, while the right one
initially deflects inward. When the applied load intensity is about 84%
of the critical load it deflects outward until buckling takes place.
The critical load obtained agrees very well with that of analytical
value discussed in Timoshenko'’s book (39).

4.3.2 OUT-OF-PLANE PROBLEMS
4.3.2.1 A 90°-HINGED CIRCULAR ARCH SUBJECTED TO UNIFORM RADIAL LOAD
Figure 4-6 shows the load-structural system of the problem. This

problem has an out-of-plane buckling mode which is symmetric. To obtain
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such mode, a small lateral perturbing load equal to 0.1% of P (P =
5.8905 q) applied at the crown in +Z direction was introduced. Without
it the resulting response would be inplane behavior. In this case the
rotation degrees of freedom about the x-axis and z-axis at the supports
were restrained. Because of the symmetry of the geometry, loading, and
buckling mode, only one half of the arch needs be considered.

Figure 4-6 also shows the resulting load-displacement curves for
different number of elements. The order of the maximum deflection is
approximately 0.02% of the arch span. At this level of displacement,
the corresponding load asymptotically approaches the buckling load of
the arch obtained numerically by Wen and Lange (45) based on an
eigenvalue solution (in the eigerivalue solution, the small initial
perturbing load was not needed). The responses were obtained with a
load increment of 10 (equivalent to q = 1.698) and an unbalanced force
tolerance €= 1% of the load increment.
4.3.2.2 A HINGED PARABOLIC ARCH SUBJECTED TO UNIFORM LOAD

ON HORIZONTAL PROJECTION

The system considered is identical to that shown previously in
Figure 4-5. As in the previous case, a small lateral perturbing load
equal to 0.1% of P (P = 56.25 q) applied at the crown in +Z direction
was introduced. Because of the symmetry of the geometrv, loading, and
buckling mode, only one half of the arch was considered. For different
number of elements, the resulting load-displacement curves are shown in
Figure 4-7. The results were obtained with a load increment of 20
= 1.0%

f

of the load increment. As in the previous case, the load-displacement

(equivalent to q = 0.3556) and an unbalanced force tolerance ¢

curves indicated ultimate loads very close to the buckling loads
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obtained by Wen and Lange (45) as well as by Tokarz and Sandhu (40)
(from eigenvalue problem solutions).
4.4 NONLINEAR LOAD-DISPLACEMENT BEHAVIOR FOR INTERMEDIATE

DISPLACEMENT PROBLEMS

As defined previously, the intermediate displacement problem is a
class of problems where the deflection is of the order of 2 - 25% of
the arch span. It should be noted that the common practical proportions
of arches fall either in this category or in the previous one, i.e.
the small displacement problem.

The numerical examples presented in this section were chosen
because they had been solved by other investigators using various
different methods of nonlinear analysis. Thus, a comparison can then be
made to examine the accuracy of the proposed method. The example
problems chosen also include a range of rise to span ratios covering
what may be regarded as "shallow" as well as "deep" arches. The
influence of the number of elements on the accuracy of the results was
also investigated.

4.4.1 A 28°-CLAMPED CIRCULAR ARCH SUBJECTED TO A VERTICAL CONCENTRATED
LOAD AT CROWN

The problem, which is illustrated in Figure 4-8, falls into the
type of shallow arch (5). Because this arch remains stable, an
incremental load procedure described in the proposed method could still
be used to determine the entire response.

The load-displacement curves shown in Figure 4-8 were obtained
with a load increment of 2000 and €= 0.5% of the load increment. The
loading was continued until the apex had displaced an amount equal to

approximately 1.5 times the initial rise or 9.5% of the arch span. The
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configuration remains symmetric about the apex throughout deformation.
Different numbers of element, i.e.: 2, 4, and 8, to represent the one
half of the arch were considered.

It can be seen in Figure 4-8 that even when only two elements were
used to represent the one half of the arch, the resulting load-
displacement curve was close enough to that obtained by Belytschko and
Glaum (5) with 10 elements, which is extremely close to an analytical
solution which may be considered to be "exact" (5). When 4 or 8
elements were used, the results were of course better, as also shown in
the figure.

Figure 4-8 also shows the resulting load-displacement curves
obtained by Belytschko and Glaum (5) with 2 and 5 elements. These
results, however, are less accurate than that obtained by the proposed
method with 2 elements.

4.4.2 A 60°-C1AHTED CIRCULAR ARCH SUBJECTED TO A VERTICAL
CONCENTRATED LOAD AT CROWN

The problem is illustrated in Figure 4-9. It was solved with a
load increment of 50 and €= 1% of the load increment. Near the
critical load level, where the displacement increases rapidly, the load
increment was halved to get more data points for drawing the load
displacement curve.

Different number of elements, i.e.: 2, 4, 8, and 16, to represent
the one half of the arch were considered. The results are given in
Figure 4-9. As shown in the figure, the resulting load-displacement
curves for 4, 8, and 16 elements have no significant differences. For 2
elements the curve is somewhat stiffer but is still quite accurate.

Those curves agree very well with that obtained by Calhoun and .DaDeppo
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(8). The critical load obtained and the corresponding crown

displacement also agree very well with those obtained analytically by

DaDeppo and Schmidt (11) and Austin and Ross (2) who used 24 elements

for their eigensolution. In this problem, the order of the maximum

deflection is approximately 5% of the arch span.

4.4.3 A 60°-CLAMPED CIRCULAR ARCH SUBJECTED TO A SKEW CONCENTRATED
LOAD AT CROWN

The problem, which is illustrated in Figure 4-10, was solved with
the same load increment and tolerance € as in the previous example.
Because of the present of the horizontal load, the entire arch was
considered to obtain the response.

The resulting load-displacement curves for different numbers of
element, i.e.: 4, 8, and 16, are shown in Figure 4-10. All of the
curves agree very well with that obtained by Calhoun and DaDeppo (8).
The resulting critical loads also agree well with that obtained by
DaDeppo and Schmidt (11). The maximum deflection is of the order of

4.25% of the arch span. The buckling mode is antisymmetry.

4.4.4 A CLAMPED MULTIPLE RADII CIRCULAR ARCH SUBJECTED TO A VERTICAL
CONCENTRATED LOAD AT CROWN

This problem demonstrates the extended capability of the proposed
method and the computer program for solving an arbitrary arch profile.
As discussed in Section 3.3, the only geometric data which have to be
input are the nodal coordinates and the end slopes of the elements.

The arch has two different radii, R1= 200 and Ro= 100. The two
radii have a common tangent point at the crown of the arch. A vertical

concentrated load is applied at the crown, as shown in Figure 4-11,
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Since the geometry is not symmetry, the entire arch should be
considered. Two different numbers of element, i.e.: 4 and 8, were used
to solve the problem. A load increment of 50 and a tolerance of 2% of
the load increment were used. The resulting load-displacement curves
are shown in Figure 4-11. Both curves agree well with that obtained by
Calhoun and DaDeppo (8). The resulting buckling mode is symmetric. The

maximum deflection is of the order of 6.75% of the arch span.

4.4.5 A HINGED SEMI-CIRCULAR ARCH SUBJECTED TO A VERTICAL CONCENTRATED
LOAD AT CROWN.

The problem is illustrated in Figure 4-12. In this example, its

symmetrical response was analysed. The problem was solved by the

proposed method with a load increment of 1 and = 1% of the load

°f
increment. The resulting load-displacement curves for 4 and 8 elements
representing the one half of the arch are shown in Figure 4-12. As can
be seen in the figure, the results agree very well with that obtained

by using 16 straight beam elements of Wen and Rahimzadeh (47). The

order of the displacement is approximately 25% of the arch span.

4.4.6 A CLAMPED SEMI-CIRCULAR ARCH SUBJECTED TO A VERTICAL
CONCENTRATED LOAD AT CROWN
The problem is illustrated in Figure 4-13. Two thickness ratios of
the arch were considered, namely h/R = 0.05 and 0.005 . The problem
was solved by the proposed method with a load increment of 0.384 EI/RZ.
The resulting load-displacement curves for 3 , 4 and 8 elements
(equivalent to 7 , 10 , and 22 degrees of freedom, respectively)

representing the one half of the arch are shown in Figure 4-13. The
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results agree very well with that obtained by using 6 elements
(equivalent to 37 degrees of freedom) of Noor et al (27) based on a
mixed formulation of finite element. The order of the displacement is

approximately 20% of the arch span.

4.4.7 ARCHES WITH DIFFERENT PROFILES

To provide further comparisons of results with existing
solutions, arches with semi-elliptic, circular, parabolic, and
sinusoidal profiles having the same rise to span ratio, span, and cross
sectional properties were considered. All arches are hinged supported
at their both ends and are subjected to a concentrated vertical load at
crown. The symmetrical buckling of those arches were analyzed by using
different numbers of element. All problems were solved with a load
increment of 100 and an unbalanced force tolerance €~ 1% of the load
increment. The load increment was halved near the critical load level,
where the displacement increases rapidly.

The profiles of a "rectangular frame" and a "triangular frame" may
be regarded as the limiting cases of the arches mentioned above. The
symm.et:rical responses of these frames were also investigated by using
straight beam elemnts of Wen and Rahimzadeh (47). The profiles of these
structures are shown in Figure 4-14.

Figure 4-15 shows the load-displacement curves. From the figure
it is seen that the stiffness of the sinusoidal arch is higher than
that of the parabolic arch; the stiffness of the parabolic arch is
higher than that of the circular arch, which is in turn higher than
that of the semi-elliptic arch. Furthermore, the stiffness of the

"triangular frame" is higher than that of the sinusoidal arch, and the
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stiffness of the "rectangular frame" is lower than that of the semi-
elliptic arch. Thus it appears that for this type of loading, the
shorter the total curved length of the structure, the greater the
stiffness. The reason seems to be that shorter length implies a greater
proportion of the load being carried by axial force than by bending,
and thus greater stiffness.

4.4.7.1 SEMI-ELLIPTIC ARCH

The problem has been solved by using 6 elements (38 degrees of
freedom) of A.K. Noor et al (27) based on a mixed formulation of finite
element. The problem was also solved by using.8 straight beam elements
(23 degrees of freedom) of Wen and Rahimzadeh (47) representing the one
half of the arch.

As shown in Figure 4-15, the resulting load-displacement curve
obtained by proposed method agrees very well with those of other
methods. The problem was solved by using 4 elements (11 degrees of
freedom). The maximum deflection was of the order of 12.5% of the arch
span. ‘
4.4.7.2 CIRCULAR ARCH

Using different approaches, the problem had been solved by
Huddleston (20) analytically, and Fujii and Gong (17). The latter used
20 elements to represent the one half of the arch.

For different numbers of element, i.e.: 2, 4, and 8, the problem
was solved by the proposed method. The resulting load-displacement
curves agree very well with those of other methods, as shown in Figure
4-15. Moreover, the curves seem to asymptotically approach the buck;ing
load obtained by Austin and Ross (2). The maximum deflection is of the

order of 12.5% of the arch span.
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4.4.7.3 PARABOLIC ARCH

The problem was analysed by the proposed method with 2, 3, 4, and
6 elements representing the one half of the arch. For 2 elements, the
behavior seems to be too stiff. For 3, 4, and 6 elements, the curves
are very closed to each other, and they agree very well with that
obtained by Fujii and Gong (17) using 20 elements. As before, the
resulting critical load and the corresponding deflection also agree
with that obtained by Austin and Ross (2). The deflection is of the

order of 12.5% of the arch span.

4.4.7.4 SINUSOIDAL ARCH

The problem has been solved by Fujii and Gong (17) with 20
elements. The result is plotted in Figure 4-15. The figure also shows
the resulting load-displacement curve obtained by the proposed method
with 4 elements. The order of the deflection is about 12% of the arch
span. As can be seen in Figure 4-15, both curves are quite close to

each other.

4.5 STRESSES AND AMPLIFICATION FACTORS
In practice, especially in the preliminary design stage, it is
common that a simpler method so called "amplification factor method" is
used to estimate nonlinear response of structure from its linear
response. Therefore, information regarding the amplification factor,
which is defined to be the ratio of the nonlinear response to the
linear response, is very useful.
In this section, the response of internal stresses in the

structure is first investigated. Two types of stresses, i.e., axial
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stress and total stress (axial stress plus bending stress) are
considered. The results are then used to obtain the amplification
factor for stresses. Similarly, by using the displacement responses the
amplification factor for displacement can also be obtained.

As numerical examples, the resulting stresses and amplification
factors of the problems discussed previously in Sections 4.3.1.2 ,
4.4.1 , and 4.4.2 are presented.

Figure 4.16 shows the axial and total stresses at the left quarter
point of a hinged parabolic arch subjected to uniform load on
horizontal projection. Both linear and nonlinear responses are
presented. The figure also shows the amplification factors for axial
stress, total stress, and displacement. From the figure it is seen that
the displacement amplification factor is larger than the total stress
amplification factor. Near the critical load level, the magnitude of
the displacement and total stress amplification factors are,
respectively, 2.3 and 1.3 . The results were obtained by using 8
elements representing the entire arch.

Figure 4-17 shows the axial force at the crown of a 28° clamped
shallow circular arch subjected to a vertical concentrated load at
crown. In this problem, the axial force initially increases when the
load is increased. However, when the intensity of the load is about
27,000. (i.e., when the crown vertical displacement is about the same
as the initial rise of the arch), the axial force decreases., The
problem was solved by using 8 elements representing the one half of the

arch. The result agrees very well with that obtained by Belytschko and

Glaum with 10 elements.
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The linear and nonlinear responses of the axial and total stresses
are shown in Figure 4-18. The figure also shows the amplification
factors for axial stress, total stress, and displacement. The
amplification factor for axial stress initially increases when the load
is increased. When the load intensity is about 27,000. the
amplification factor decreases. When the load intensities are 30,000.
and larger than 30,000. the magnitude of the axial force amplification
factors are, respectively, equal to one and less than one. From the
figure it is seen that the total stress and displacemet amplification
factors initially increase when the load is increased. When the
intensity of the load is about 30,000. (i.e., when the axial stress
amplification factor is equal to one), the amplification factors
decrease. As in the previous problem, the displacement amplification
factor is larger than the total stress amplification factor. The
maximum magnitude of the displacement and total stress amplification
factors are, respectively, 3.9 and 2.2 .

Figure 4-19 shows the linear and nonlinear total stress at the
crown of a 60° clamped circular arch subjected to a vertical
concentrated load at crown. The figure also shows the amplification
factors for axial stress, total stress, and displacements. The results
were obtained by using 8 elements representing the one half of the
arch. As in the previous cases, the displacement amplification factor
is larger than that of total stress. Near the critical load level, the
magnitude of the displacement and total stress amplification factors

are, respectively, 3.8 and 2.0 .
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CHAPTER V

DISCUSSION AND CONCLUSION

5.1 DISCUSSION

In the preceding chapters the development of a three dimensional
nonlinear curved beam element and its applications to linear and
nonlinear analyses of arches with various geometry in two and three
dimensional space have been presented. From the numerical results
obtained, the features of the proposed method are discussed in the

following sections.

5.1.1 COMPARISON WITH PREVIOUS WORKS

Previous comparisons, as given in Figures 4-8, 4-9, 4-10, 4-11, 4-
12 , 4-13 and 4-15 , indicate that the proposed "Averaged Axial Strain"
model competes very well with the other models.

a) In Figure 4-8 it is shown that by using only 2 elements with
the proposed method , the accuracy of the result is comparable
to that obtained by Belytschko and Glaum (5) with 10 elements,
the result of which is very close to an analytical solution.
The results of Belytschko and Glaum using 2 and 5 elements
indicated considerable differences from the correct results.

b) Figure 4-9 indicates that wusing only 2 elements with the
proposed method , the result is as accurate as that obtained

by Calhoun and DaDeppo (8) wusing 8 elements for the converged

57
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answer . That limit load value also agrees very well with an
analytical solution . The result of Calhoun and DaDeppo with
4 els. showed considerable distance from the correct solution.

c) For the skew loading problem , as shown in Figure 4-10 , the
result obtained by the proposed method with 4 elements
is comparable to that of Calhoun and DaDeppo (8) with 8
elements .kThe resulting limit load also agrees very well with
the analytical solution.

d) For the multiple radii problem, as shown in Figure 4-11 , the
result obtained by the proposed method. using 4 elements
is in very good agreement with the converged result of Calhoun
and DaDeppo (8) using 8 elements.

e) Figure 4-12 indicates that , for the hinged semi-circular arch
problem, the result using 4 elements of the proposed method

is very close to that of Reference 47 wusing 16 straight beam
elements.

f) Figure 4-13 indicates that , for the clamped semi-circular arch
problem , the result using 3 elements (7 degrees of freedom) of
the proposed method 1is in very good agreement with that of
Noor et al (27) with 6 elements (37 degrees of freedom).

g) Figure 4-15 indicates that, for parabolic and circular arches,
the result using 2 elements of the proposed method is close to
that of Fujii and Gong (17) with 20 elements . For sinusoidal
arch , 4 elements of the proposed method gives the result

comparable to that for 20 elements of Fujii and Gong . For the
semi-elliptic arch, 4 elements ( 11 degrees of freedom ) of the

proposed method gives the result comparable to that for 6
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elements (38 degrees of freedom) of Noor et al (27) as well as
8 straight beam elements (23 degrees of freedom) of Ref. 47.

In terms of number of elements needed for accurate results, the
preceding comparisons show that the proposed method is more effective
than the others. Among the compared results, those related to the
clamped semi-circular and elliptic arches of Reference 27 showed the
closest competition . However, the results are still in favor of the
proposed method . Furthermore , as discussed previously , the
formulation in Reference 27 is not as conveniently adaptable for a
general structures computer program as the proposed method, and the
number of degrees of freedom per end node of the element in that

reference is actually twice that in the proposed one.

5.1.2 APPROACHES OF NONLINEAR ELASTIC ANALYSIS

It is generally known that curved beam elements has the tendency
to be too stiff unless the in-plane displacement field is represented
by sufficiently high order polynomials. This phenomenon is called
membrane locking (37).

To overcome this problem, four approaches have been suggested :

a) To use higher order polynomials for the displacement fields.
This approach was taken by Dawe (16) , using quintic functions
for linear analysis.

b) To use a mixed formulation of the finite element , as in the
work of Noor et al (27).

¢) To use "reduced integration" , as suggested by Stolarski and
Belytschko (37).

d) To use the "average axial strain" model, as described herein.
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Using higher order (e.g. quintic) polynomials in a nonlinear
analysis would be much more unwieldy than in a linear one. It would
involve a large amount of work with no guarantee of success. (Perhaps,
that is the reason why it had not been tried thus far.) In approach
(b), as mentioned previously, since both nodal displacements and forces
are considered as degrees of freedom, matrices of larger size are
involved and the formulation is inconvenient for inclusion in a general
structures program. In approach (c), the numerical integration is
carried out by using only 1 or 2 Gauss points, rather than an accurate
evaluation of the integral as defined by the analysis. Thus there is a

"mathematical looseness" or computational artificiality involved, which
does not appear desirable. Furthermore, the possibility of existence of
zero energy mode should be of concern.

The present study indicates that approach (d) overcomes all the
above difficulties. The procedure is simpler and more efficient than
the other approaches, the integration is carried out as it should be,

and the accuracy of the results is generally better.

5.1.3 NATURE OF [nl] AND [n2] MATRICES
The reason why the averaged strain model produces more accurate
results than the unaveraged strain model appears to be the fact that
the averaging process reduces the strain energy and thus decreases the
stiffness to the correct order of magnitude. An analysis is presented
in the following. A similar analysis was also given in Reference 47 for
a nonlinear straight beam element.

Consider a two dimensional curved beam element with the nonlinear

1 u w
strain term |, - — 4+ - )2 , being unaveraged in one case
2 R ¢ R
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and averaged in another . Corresponding to Eqs. (2-20) and (2-34) , the
expressions for U2 are the same. Thus the linear stiffness matrices for
the two cases are identical.

The expressions of U3 for the unaveraged and averaged strain
models may be rewritten respectively from Equations (2-25) and (2-36)

as follows

[+

E A . u w

1, 2
U3 ='_fo(w-l'__)[(_‘1“’_) ] R4 dvy
(unaveraged) 2 R ¢ R R 4 R
.. (5-1)
E A 1 w u 1 1 u v,
Uy =—f0(—l-—)[‘fo(——1+~)Redleedy
(averaged) 2 R§ R L R§ R
... (5-2)
W u
Consider the quantity ( —2X . - ) . It represents the linear part
R4 R

of the axial strain in the element. Experience shows that it is slowly

varying. (In fact, a linear element based on setting it equal to

constant was shown to be very effective (1)). Therefore, the quantity

may be taken as a constant. Consequently, U (Eq.5-2) may be
(averaged)

written as follows (noting fé R g dy =1L1)

E A w u 1 u W
— (s (- e Rea RO Ay -
R 4 R L R ¢ R
EA W u u v,
— =2y (T IR G
2 R 4 R R ¢ R




which is the

The exp!

be rewritten

U,
b(unav

constant. C

1
[i7<2
L

in which ¢
Equation
Constan[,
the oot
fron the
tinite e)
"onlinegy
Eq“ation
Nlustyy,
Cong

foum“E



62

which is the same as U as given in Equation (5-1).
(unaveraged)

The expressions of Ua for the unaveraged and averaged models can

be rewritten from Equations (2-26) and (2-37) as follows

E A 1 u w 2 9
U, = — Jo L=+ =) 1R 6 dy L (5-3)
(unaveraged) 8 R 4 R
E A 1 1 1 u v, 9
v, = — [o U= J; (=T +=)°R 4 dy 1°R 8 dy
(averaged) 8 L R ¢ R
.. (5-4)
EA]_2 u v o,
Let ( —) / ( — 4 - ) = f(y) , and note cthat f(y) 1is not
8 R 4 R
constant. Consequently,
1 1
2
(- Jg tEmrRoay 1P < = [L (e 12 R0 dy . .(5-5)
L L

in which the left term is U, for Equation (5-4) and the right term for

4
Equation (5-3). The preceding follows from the fact that, for f(y) =
constant, the mean (square root of the left side) is always less than
the root-mean-square (square root of the right side) (50). It follows
from the relationship between the displacement formulation of the
finite element method and the principle of potential energy that the
nonlinear stiffness as represented by [n2] is lower for the model of
Equation (5-4) than that of Equation (5-3). The above observation is
illustrated by the following numerical example.

Consider a 2-dimensional curved beam element (circular) having the

following properties :
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7

E = 10 ; R1
A = 2.0 ; L
I = 0.6667 ; 8

It undergoes the following displacements :

u, - 0.01803063 ; up
Wy = -0.00979038 ; wp
oyA = 0.01269580 ; 0yB

]

R2

= 100.

3.06960000

0.03069600

0.08288997

-0.01899512

0.02964475

( The above data is taken from the solution of the problem discussed

previously in Section 4.4.1 at the applied load level of P = 20,000.)
The resulting entries of [nl] matrix for both

unaveraged models are, respectively, given below :

(.22860.2 136863.9  -5419.8 27049 .
-4195.8 27966.6 -136928.
(al] = -27881.8 6275.

av.,
symmetry -31239.

\

(23147.7 136863.5 -6895.5 27337.
-4195.7  27972.9 -136928.
-26706.6 7751.

un.
-31527.

symmetry

4

-136097.
-6.

-27787.

136033.

4183.

-136093.
-6.

-27775.

136029.

4183.

9

4

-8430.
-28492.

6636.

7551.
28737.

-27870.

-6450.
-28508.

7022.

5572.
28730.

-29339.

averaged and




The T

unaveraged T

[“Z]av,‘

2] =

The

are

[k
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The resulting entries of [n2] matrix for both averaged and

unaveraged models are, respectively, given below :

( 4674.60 -71.745 1048.38 -4674.600 -71.745 -135.16)

1.101  -16.09 71.745 1.101 2.07

2019.75 -1048.380  -16.090  -597.57
(n2] =

av.

symmetry 4674.600  71.745  135.16

1.101 2.07

( 2026.16)

[ 5217.50 -80.100 2280.30 -5217.500 -80.100  -138.66)

1.229  -35.00 80.077 1.229 2.12

) 3655.20  -2280.300  -35.000 -1621.70
[n ]U.n.-

symmetry 5217.500  80.100  138.66

1.229 2.12

L 8037.80)

The entries of the linear stiffness matrix, [k], of the element

are
(2767012. 57544 . 4245573, -2763943.  -142440. 4244004 )
6515136.  -13998. 142640. -6513833.  -116310.
[k ] 8687758. -4244003.  -116310.  4343067.
symmetry 2767012. -57544. -4245573.
6515135. -13998.
8687759.
L P
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It may be observed also that [nl] tends to decrease the total
stiffness. It represents the effect of membrane flexure coupling. The
[n2] matrix tends to increase the total stiffness.

For further comparison, the resulting entries of [k], [nl], and
[n2] matrices for nonlinear straight beam element (Ref. 47), which has
the same cross sectional properties, length, and displacements, are

given in the followings

(2766090. 0. 4245396. -2766090. 0. 4245396,
6515507 . 0. 0. -6515507. 0.
[k ] = 8687777. -4245396. 0. 4343889,
symmetry 2766090. 0. -4245396.
6515507. 0.
L 8687777.J

(.23445.5 137616.8  -5997.4 23445.5 -137616.8  -5997.4)

0.0 28166.9 -137616.8 0.0 -28329.7

(nl] = -24546 .0 5997.4  -28166.9 6136.5
symmetry -23445.5  137616.8 5997.4

0.0 28329.7

| -24546.0 |
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(4745.59 0.000 1065.32 -4745.590 0.000 -127.96

0.000 0.00 0.000 0.000 0.00

(n2] - 2047.01 -1065.320 0.000 -603.78
symmetry 4745.590 0.000 127.96

0.000 0.00

{ 2048.42

It is seen that the differences between [n and

1](averaged)

[nll(unaveraged) are not substantial whereas those between the two
versions for [n2] are. A comparison of the stiffness matrices between
the curved (averaged model) and straight elements indicates that, for
this element with a small value of § , the matrices are quite similar.
This of course can not be expected to be the case when § is not small,
Furthermore, when the magnitude of the radius of curvature of the
element is taken to be sufficiently large (and simultaneously the
subtending angle is decreased to result in the same element length),

all entries of the [k], [nl], and [n2] matrices converge to those for

the straight beam element.

5.2 SUMMARY AND CONCLUSION

In‘this dissertation, a three dimensional nonlinear curved beam
element has been developed. It has 12 degrees of freedom in 6
displacements (all "essential") per end node. Thus it can readily be
incorporated'into a general structural computer program.

The element, which is formulated based on the average axial strain
model, is shown to be more accurate, for same number of elements,

than all methods compared. Accurate load-displacement curve may be
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obtained by using at most eight elements to represent the entire arch.
For symmetrical problems, only one half of the arch (four elements)
need be considered.

The method, which is based on the fixed Lagrangian coordinate
system, works very well for small displacement problems (2% or less of
the arch span) as well as for intermediate displacement problems (2-25%
of the arch span). The solution procedure based on an updated
Lagrangian coordinate system is also presented. The procedure is
necessary 1f large displacements (25% or more of the arch span) are
involved.

The amplification factor for displacements seems to be always
larger than the amplification factor for stresses. This fact and its
effects on the amplification factor method, that commonly used in
practice, need be studied more thoroughly.

As mentioned previously, the present study is limited to geometric
nonlinearity. For many practical problems, when geometric nonlinearity
becomes significant, effects of material nonlinearity would become
important at the same time. Thus, future studies of nonlinear analysis

of curved beam structures should include these effects.
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TABLE 2-1 ACCURACY OF THE GEOMETRIC REPRESENTATION
FOR PARABOLIC ARCH (RISE=9.6", SPAN=48")

NO. OF  ELEMENT APPROX . EXACT REMARKS
ELEMENTS # VALUE VALUE
O
L 26.3212 26.3575
1 1 Rl 24.1510  30.0000
R2 53.8679 63.0067
L 12.3115 12.3127 o
1 R1 28.7201 30.0000
R2 35.9910 37.4807 ®
2
L 14.0438 14.0447
2 R1 35.2926 37.4807
R2 60.1671  63.0067
L 8.0937 8.0938
1 R1 29.4501 30.0000
R2 32.6650 33.2562 ® ®
L 8.6351 8.6352
3 2 RL  32.5061  33.2562 ©)
R2  42.7926  43.6711
L 9.6284 9.6284
3 R1  42.5459  43.6711
R2 61.6663 63.0067
L 6.0398 6.0398
1 R1 29.6947 30.0000
R2 31.4995 31.8178
L 6.2729 6.2729 © o
2 R1 31.4457 31.8178 o
R2 37.0694 37.4807
. ®
L 6.7153 6.7153
3 R1 36.9778 37.4807
R2  47.0094  47.5805
L 7.3294 7.3294
4 R1  46.9014  47.5805
R2 62.2310  63.0067
68
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TABLE 2-1 ACCURACY OF THE GEOMETRIC REPRESENTATION
FOR PARABOLIC ARCH (CONTINUED)

NO. OF  ELEMENT APPROX. EXACT REMARKS
ELEMENTS # VALUE VALUE
L 4.8204 4.8204
1 Rl 29.8058  30.0000
R2  30.9599  31.1593
L 4.9410 4.9410
2 Rl 30.9364  31.1593
R2  34.4867  34.7240 e 4
s 5.1738 5.1738
5 3 RL  34.4449  34.7240
R2  40.6379  40.9440
; 5.5048 5.5048
4 Rl 40.5844  40.9440
R2  49.8112  50.2070
L 5.9175 5.9175
] RL  49.7525  50.2070

R2 62.5036 63.0067

L 4.0118 4.0118
1 R1 29.8648 30.0000
R2 30.6675 30.8035
L 4.0820 4.0820
2. R1 30.6546 30.8035
R2 33.1014 33.2562
@ @ ®
L 4.2189 4.,2189
3 R1 33.0797 33.2562
R2 37:291%6 37.4807
6
L 4.4163 4.4163
4 Rl 37.2638  37.4807
R2 43.4358 43.6711
L 4.6666 4.6666
5 R1 43.4046 43.6711
R2 51.7889 52.0801
L 4.9618 4.9618
6 Rl 51.7524 52.0801

R2 62.6600 63.0067
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TABLE 4-2 LINEAR EQUILIBRIUM OF A PARABOLIC ARCH SUBJECTED TO
A CONCENTRATED IN-PLANE LOAD AT CROWN

D)

NUMBER OF DISPLACEMENT DIFFERENCE™ "
ELEMENTS AT CROWN (IN. x 107 (%)
1 0.453155953 2.982
2 0.460521696 1.405
3 0.465530466 0.332
4 0.466613128 0.101
5 0.466937636 0.031
6 0.467273694 -0.040
7 0.467232458 -0.031
8 0.467054924 0.006
9 0.467268255 -0.039
10 0.467500213 -0.088

For one half of the arch

-4
Analytical solution = 0.467085 x 10 in.

Analytical - Numerical

% Difference =
Analytical
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TABLE 4-3 LINEAR EQUILIBRIUM OF A SEMI-CIRCULAR ARCH SUBJECTED
TO A CONCENTRATED OUT-OF-PLANE LOAD AT CROWN

NUMBER OF DISPLACEMENT DIFFERENCE™ ™
ELEMENTS AT CROWN (IN.) (%)
2 2.81090450 0.531
3 2.81890678 0.248
4 2.82110500 0.170
5 2.82034874 0.197
6 2.82473183 0.042
7 2.82618713 -0.009
8 2.82285213 0.108
9 2.81906509 0.242
10 2.82073689 0.183

For one half of the structure

ok

Analytical solution = 2.825930 "

Analytical - Numerical

% Difference =
Analytical
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Figure l1-1 : LOAD-DEFLECTION RELATION
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YV € o

Figure 2-1 : BEAM ELEMENT (Curved In The x-z Plane)
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Figure 2-2 : CROSS-SECTION OF PRISMATIC MEMBER
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Yy

Figure 2-3 : COORDINATE SYSTEMS

X,Y,Z = STRUCTURE SYSTEM
y4 X,y,2 = ELEMENT SYSTEM

Al[XaYal

Figure 2-4 : TYPICAL ELEMENT
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Figure 2-5 : TYPICAL ELEMENT AFTER TRANSFORMATION
TO ELEMENT COORDINATE SYSTEM
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Figure 3-1 : NEWTON-RAPHSON ITERATION
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FIGURE 4-15 :
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A CONCENTRATED LOAD AT THEIR CROWNS
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APPENDIX A

NEWTON-RAPHSON METHOD FOR UPDATED COORDINATES

A.1 GENERAL

The formulation discussed in Chapter II, which is refered to
Lagrange small rotation formulation, and the corresponding solution
procedure described in Chapter III can not be used for large rotation
(displacement) problems. For this class of problem, however, we may
treat the problem as consisting of a series of increments involving
small rotations (displacements). For each increment the concept of
Lagrange small rotation formulation applies. At the beginning of each
increment the geometry of structure should be updated. For a typical
new increment, although the initial displacements in the new
coordinates are zero, the strains are not. The strain, which is called
the "initial strain", would lead to an "initial strain stiffness
matrix". The procedure how to obtain the initial strain stiffness
matrix is presented in the next section.

It should be noted that the geometric representation described in
Section 2.4.2 makes the updated procedure for curved beam element
possible. Without it we would be faced with the problem of defining the
radii of curvature at the end nodes of the updated curved beam element,

which are required for evaluating the updated stiffness matrices.
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X
i+1
i+1z
1+1C
i+

Figure A-1 : CONFIGURATION OF A TWO DIMENSIONAL
CURVED BEAM ELEMENT AT SUCCESSIVE
LOAD INCREMENTS IN UPDATED LAGRANGE

FORMULATION
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A.2 INITIAL STRAIN STIFFNESS MATRIX, [ ke ]
o

Consider a two dimensional curved beam element illustrated in

Figure A-1. The X and Y axes represent the global coordinate system,
i i i

the X and z axes denote the member coordinates, and C the
member configuration at the beginning of the ith load level.
From the stage from configuration ¢ to 1+1C , the former

configuration should be thought as fixed and the latter variable. The
displacement components of i+1C are measured with respect to the member

coordinates of iC. They are the generalized coordinates at the stage of

the analysis. (See the displacement i'uA and iwA in Figure A-1.)
Let i+1e° denote the total strain corresponding to 1+1C , leo
denote the total strain at C , and € = 1+1€o - leo
The strain energy is :
E . E
2
v - [ 2 @ = [ (e + Te )2 — av
o o
2 2
E .
- — (2t e v Pty .. (a-1)
2 o o

Since ieo is independent of the generalized coordinates or
displacements, the last term of U may be dropped. The expression for U

can then be written as :

U = u o+ 1 coe. (A-2)
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where

The tangent stiffness matrix is obtained following

discussed in Section 2.4 . Its m-n entry is equal to :

a2 v a2 v 32 1y
€ . €
1 1 - i i + 1 i
8 9y 8 a5 g a4y 8 95 g I g 95
The first term is exactly as before, with lqm replacing

in i[k] , i[nl] , and i[n2] For the second part ,

something new.

(A-3)

(A-4)

the procedure

(A-5)

9 resulting

we encounter

At the beginning of the ith increment, the initial strain is :

i-1 dw u 1 du

w

j 2
Le seom = = = =+ — gk (—+ =)Pas o«
° j=0 ds R 2 L ds R
1 L dv 2 B d2v
— [, (T)ds + n (= - ) -
2 L ds R ds
d2u 1 dw d 1
¢ | - + = — + w — (=) ] ...(A-6)
ds R ds ds R

in which j denotes the stage of the configuration.
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By substituting Equation (A-6) into Equation (A-4) we have the

following :
i-1 u 1 w
L 2
i'U'Ef[2j((W--)+—--_r(u+—)ds+
o vol j=o s R 2L ° s R
1 B
- L 2 Z i
- fo(vs)ds+n(R v )
1 d 1
¢ (u + = w +w—— (=)))] =
s R S ds R
u 1 w
l[(W-‘)+—'fL(u + =2 4s +
s )
R 2 L R
1 B
L 2 o i
)L fo (Vs)ds+17(R vss)
1 d 1
¢ (u + - w + w — (—))] av ...(A-7)
A T ds R
For two dimensional problem, the previous expression becomes :
i-1 u 1 w
L 2
b, e 0z docw oy — fEu vt as -
‘o vol j=o R 2 L R
1 d 1
¢ (u _+ — w +w — (=) ))] *
s p S ds R
u 1 v,
i[ (w_--—) + — fg ( u + — )" ds -
R 2 R
1 d 1
¢ (u _+ — v +w — (—))] dv ...(A-8)
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. u . 1
It should be noted that the terms : l( w_ -—) , and 1( u _ + = w
s ss s
R R
d 1
+w — (=) have no contribution to the " initial strain
ds R
stiffness " because they are linear in the generalized coordinates.
Therefore :
i i-1 . u 1 L LD
U =E [ [ = d((w--) + — (u+=-) ds -
€ s o s
o vol j=o R 2L R
1 d 1
¢ (u_+ —w_+w — (—))})] *
s p S ds R
1 w
Irb— & (u+ -)%as] av
o s
2L R
(A-9)

In terms of vy , and realizing that ds = R d¢ = R 4 dy , the above
equation can be written as :
i-1 dw u 1 1 du w

. . 2
1U-EfIEJ(( --)+—fo( + = )° RO dy
o wvol j=o R6dy R 2 L R6dy R

2
1 d2u du d27 1 dw w d™y
- (5322 2 +
R°6° dvy dy ds R R4 dy R ds dy

) ] *

YR O dy ] av
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i-1, 1 1 1
WomElfl sl — (v couy e — (s w2y
o sA j=o R 2L °R4
¢ 1 1
- — — +R -
R0(R0u77 f u 7SS+RW+GW157))]*
o1 1
M— f — (uw +sw)? eyl aaas
2 L R 7

(A-10)

Since the cross section is presumed to have two axes of symmetry ,

fA ¢ ( .... ) dA = 0. Therefore the third part of the first term in

Equation (A-10) may be dropped from the equation.

: L il 1 1 .1 )
UE-EAg[zJ(—(w-ou)+—f°—(u7+aw)d7)]*
o j=o R6 2L °R
1 1
ip— 8 — (u +6w)? a1 RO &y
0 Y
2 L R 6

(A-11)

. i .
The initial strain stiffness matrix [ ke ] 1is equal to the
o
second derivative of iUe with respect to the generalized coordinates
o ‘

i

Q -
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A.3 TUPDATED COORDINATES PROCEDURE

The loads are applied in increments. At the beginning of each
increment the geometry of the structure is updated. In addition to the
usual stiffness matrices [k], [nl], and [n2], there is the initial
strain stiffness matrix as explained previously. The steps of the
calculation are as follows :

1) Set load increment ( and check if the intended total load has
been applied ).

2) Determine the most up-to-date geometry of the structure by
using the latest joint displacements and rotations , and update
the linear stiffness matrix.

3) Form the tangent stiffness matrix , [KT] , according to the one
of the following cases :

a) For the first load increment :
[Kp] = [K] + [NL(Q)] + [N2((Q)]
b) For other load increments :

kgl = (K] + [k, ] + [NLGQD] + [(M2¢(@)]

o

in which [K ] is the structure initial strain stiffness
€
o

matrix.

4) Solve for (AQ) from :

(aQ) = [Kp ]'1 (load increment vector)
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5) Add (AQ) to the latest {Q} to obtain a new (Q}.

6) Based on the new (Q), evaluate [N1({Q))] and [N2({Q))].

7) Form tangent and secant stiffness matrices and resistance force
vector as

a) For the first load increment :

[Kp] = [K] + [NL(@QD] + [N2((Q)]
1 1
(K] = K+ — NL@)) + — [(N2@))]

b) For other load increments :

[Kp]l = (K] + [K ] + [NL(QD] + [N2((Q)]

(o]

1 1
= (K] + [K ] + . (NIC(Q)] + S [N2({Q))]

[o}

(K

Resistant force vector = [KS] { Q)
8) Evaluate the unbalanced force vector (AR} as :

{ AR} = 1load increment vector - resistance force vector

9) If the unbalanced force vector , {AR) , is sufficiently small ,

return to 1 .

10) Return to 4 but use the unbalanced force vector as the load

increment vector.







APPENDIX B

INCREMENTAL STIFFNESS MATRICES, [nl] AND [n2],

BASED ON THE AVERAGE AXTAL STRAIN MODEL

B.1 THE FIRST ORDER INCREMENTAL STIFFNESS MATRIX, [nl]

nl

nl

nl

nl

nl

Only nonzero terms are given.

= — [ (18 A3-12 A5+8 A6) Ao + 6 ((3 A2-2 A4) Az +

1,1
(6 A3-2 AS) A3 + (3 A5-4 A6) Ayt 6 (3 A2-3 A3) Ag +

6 (3 A3-A5) Alo} ]

1.2 [ (3Ay28,) Mg + (6 83-2 A) Ay + (3 Ag-b Ag) Ag ]

EA 52
o D [0 (-6 Ag-2 A6 Ag-h A A+ (1) (3 Ay-2 A A,
2 L 12
(6 Ay-2 A Ay + (3 Ag-h A Ay + 8 (3 A3 Ay Ay
)2
(3 aymag) Mg) - = (LS Ay-A) Ay + (3 Ag-A9) A,

1,3

+ (1.5 A3-A4+1.5 A5-2 A6) Aa + 4 (1.5 A2-l.5 A3) Ag +

6 (1.5 A3-0.5 As) Alo) ]

15 = T RLO[(3 A, F12 Agt2 A -T Agks A A+

g

(-6 A4+15 A5-16 A6) Aa + 4 (-12 A1+15 A2-12 A3) Ag +

6 (-3 Ay+15 Ay-4 Ag) ) ]
EARL 6
16 - —:L—— [ (2 4,-2 Ay+A,) Ao + (By-b Ag+Ag) X, +

(A4-2 A5+2 A6) As ]
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nl

nl

nl

nl

nl

nl

nl
nl

nl

nl

1,11

1,12

2,2

2,3

2,5

2,6

2,7
2,8

2,9

2,11

E A
- (- 18 A, +12 A5 - 8B Ag) A
- nl 1,2
E A
_Z_I [0(-9A3+6A5-4A6),\0+
52
(1 - I; ) ((2 8,-3 Ay) Xy + (2 Ag-6 Ay) Xy + (4 Ag-3 Ag) X,
+0 (3 A4-3 8y) A9 + 0 (Ag-3 A3) Ag) -
52
—;— ( (1.5 Ay-A,) A, + (3 Ay-Ag) Ay + (1.5 Ag-2 Ag) X, +
6 (1.5 Ay-1.5 Ay) Ag + 6 (1.5 A3-0.5 Ag) Ay ) ]
EAR24 6
———— [ (6 Ay-5 At A A+~ [ (3 AL A Ayt
2 1L 3 5 6’ "o " 1, 2 4 "2
(6 Ayt Ag) Ay + (3 Ag-8 AL X, + 6 (3 Ay-6 Ag) Ag
+ 6 (3 A3-2 Ag) X ) ]
EAR2 62
———Z—IT—— [ (A,-By) X + (Bg-2 Ag3) Ay + (2 Ag-Ag) Ag ]
EA
— (18 A, - 12 A, +8A.) ]
2 L 3 5 6 o
E A 92
— (1-—) [(3 Ay-2 A,) Agt (6 Ay-2 Ag) A+ (3 Ag-4 Ag) Ag]
2 L 12
E A RL 62
[(3 Ay-2 A)) Ag+ (6 Ay-2 Ag) A+ (3 Ag-4 Ag) Jg]
24 L
EARLS
— (34, - 1244~ 2 A, +7Ag - bag ) A
2 L
nl 1,2
- nl 2.2
- nl 2,3
E A R2 62

24 L
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[(2 A4-3 A2) A6+ (2 A5-6 A3) A7+ (4 A6-3 AS) A8]







nl

nl

nl

nl

nl

nl

nl

2,12

3,3

3,5

3,6

3,7

3,8

3,9
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E AR2 4
- (-6 Ay + 5 Ag - 4 Ag ) Ao
E A 2
;—; [ 87 ( 1.5 A3 + 2 A4 -3 A5 + 2 A6 ) Ao -
02
(1- I; ) 8 ((3 A2-2 Aa) Ay + (6 A3-2 AS) Ay +

(3 A3-2 A4+3 As-h A6) Aa+ 6 (3 A2-3 A3) A9+ 6 (3 A3-A5) AlO

EARL Y :
) L [ 6 1.5 A2 - 4.5 A3 -2 A4 + 3.5 A5 -2 Ag ) Ao

02

- = (B3 Ay - 2A) X+ (6Ay - 249 Ay ¥
24
(3 Ag-2 Ay+3 Ag-b Ag) M+ 0 (3 4,3 4y) g+ (3 Ay-Ag) A g)

2
6
- (1- I; Yy { (2 Al-z A2+A4) Az + (AZ-A A3+A5) A3 +

(Aa-z A5+2 A6) Aa + 8 (2 A1-2 A2+1.5 A3) xg +

8 (0.5 A2-2 A3+0.5 A5) AlO ) ]

EARL S 92

—_— (1 -—) [ (2 A-2 A)*A Y A, + (A -4 AHAL) A
2 L 12 1 274 6 2 375 7

+ (A, - 2Ag5+285) Ag ]

— [ 6 (6A, +2A -6A HLA) N -

3 5

2
56° { (3 A2-2 AA) AZ + (6 A3-2 AS) AB +

(3 A,-2 Ah+3 A5-4 A6) A4+ 6(3 A2-3 A3) A9+ g (3 A3-A5) Alo}

2
0
- (1- —) ((3 A2-2 Aa) Ay t (6 A3-2 A5) Ay (3 AS-A A6) AL

12

3

F0 (3Ay - 385) A9+ 0 (343 A ) Ap) ]

- nl 23

? . . 2
EAZJ g
[ 8 (3 A3+A4-3 Ag+2 A Aj + (L-—) (1.5 A3-A4)'A4 ]

2 L 12







nl 597 =

nl g e =

nl g, =

nl g g =

E AR2 4§

2 L

E AR2 4

2 L

EA

(

112

[ 6 (-1.5A, - A, +2.5A; - 280 X +

3
02

(3 A3~2 A +3 A -4 A6) A4 + 6 (3 A2-3 A3) Ag +

4 5
6 (3 A3- A) Ay )+
02
(1‘ -1_;) ((AZ-AQ) A2"' (2 A3'A5) A3"‘ (A5‘2 A6) A4+

6 (A2-1.5 A3) Ag + 4 (A3-O.5 AS) Alo} ]

02

1- —) [ (AA-AZ) A6+ (A5-2 A3) A7+ (2 A6-A5) A8 ]

12

— 2
(RLG )™ [ (2 Al- 4 A2+ 8 A3+ 2 Ah- 4 A5+ 2 A6) Ao -

2 L

E A RL2

24 L

EARL

]

2 L

EARLY

24 L

2

3

6
] {(2 A1-2 A2+A4) *2 + (Az-a A3+A5) A3 +
(A4-2 A5+2 A6) A4 + 4 (2 Al-2 A2+1.5 A3) A9

+ 8 (0.5 Ay-2 A3+0.5 Ag) Ao) ]
[ (2 A1 -2 A2 + AA) A6 + (A2 -4 A3 + AS) A7 +
(A, - 245+ 2 A,) Ag ]
[ (3 A,-12 A;-2 AHT Ag-b Bg) Ao -
6
I; {(12 A1-9 A2+4 Ah) A2 + (6 A2-18 A3+4 AS) A3
+ (6 A4-9 A5+8 A6) A, t ¢ (12 A1'9 A2+6 A3) Ag

+ 8 (3 A2-9 A3+2 A5) Alo) ]

[(2 A4-3 A2) A6+ (2 A5-6 A3) A7+ (4 A6-3 AS) As]







nl

nl

nl

nl

nl

nl

nl

nl

nl

5,9

5,11

5,12

6,6

6,7

6,8

6,9

6,11

6,12

=N

EARL {6
) L [ 8 (1.5 A2-6 A3-A4+3.5 A5-2 A6) Ao +
02
(1- =) ((2 A)-2 Ay+ )A+(A4A3 5) Ay +
12
(A4-2 A5+2 A6) Aa + 8 (2 A1-2 A2+1.5 A3) Ag +
8 (0.5 A2-2 A3+0.5 A5) Alo) -
02
;Z {(3 A2-2 Aa) A2+ (6 A3~2 AS) A3+(3 AS-A A6) Aa
+8 (3 A)-3 A3) Ag + 8 (3 Ay-Ag) Apg) ]
E A 2
;—— R1 R2 6~ | (-A2+4 A3+A4'3 A5+2 A6) Ao +
L
6
I; {(2 Al-Az) Az + (A2-2 A3) A3 + (AA'AS) Aa +
6 (2 Al-Az) Ag + 8 (0.5 A2-A3) Alo) ]
EAG 2
R1 R2 6~ [ (Aa’Az) A6 + (A5-2 A3) A7 + (2 A6-A5) Ag]
24 L
E A )
——; Rl (2 Al -4 A2 + 8 A3 + 2 A4 -4 A5 + 2 A6 ) Ao
A 2
— R1 [ (2 A1-2 A2+A4) Xg * (A2-4 A3+A5) A, +
4 L
(A4-2A5+2A6))‘8]
- nl 2.6
E A 02
— R1 46 (- —) [ (-2 A +2 A ) A + (- A +4 A3 AS) A +
2 L 12
(-A4+2 A5-2 A6) A8 ]
R1 R2 6° [ (-2 A1+2 A2-Aa) A6 + (-A2+4 A3-A5) A7 +
24 L
(-A,+2 Ag-2 Ag) g ]
E A 2
— R1R2 4% ( - A2 + 4 A3 + A4 -3 A5 + 2 A6 ) Ao

2 L
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nl

nl

nl

nl

nl

nl
nl
nl

nl

nl

7,7

7,8

7,9

7,11

7,12

8,8
8,9
8,11

8,12

9,9

6

(1' _) ((3 A2'2 Aa) A2"' (6 A3'2 As) /\3"' (3 A5'4 A6) ,\4

12
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E A
— [ (18A, - 12 A  +8A_) A -
)L 3 5 6’ "o
8 {((3 A2-2 Aa) A2 + (6 A3-2 As) A3 + (3 A5-4 A6) A4
+ 0 (3 Ay-3 A5) Xg + 0 (3 A3-A5) M) ]
- nl 1,2
E A
— [0 (9A, -6A.+4A )X +
2L 3 5 6 o
92
(1- 1—2') {(3 A2-2 Aa) Ayt (6 A3-2 AS) A+ 3 A5-4 A6) X,
+0(3A2-3A3) A9+0(3 A3-A5) Alo)-
02
j;‘ {((3 A2-2 Aa) A2 + (6 A3-2 AS) A3 + (3 As-a A6) Aa
+ 6 (34,3 4y) Ag + 8 (3 Aj-Ag) o) ]
E AR2 4
———— [ (-6Ay+5A -b&A )X ¥
2 L 3 5 6 o
0
I;— {(9 A2-8 Ah) Az + (18 A3-8 A5) A3 + (9 A5-16 A6) Ah
+ 6 (9 A2-12 A3) Ag + 8 (9 A3-4 AS) Alo) ]
E A 2
— R2 67 [ (AA-AZ) A6 + (A5-2 A3) A7 + (2 A6-A5) A8 ]
4 L
nl 2.2
nl 2.3
-nlomn
-0l oy
EA¥ 0 A )
[— (9 Ay - 6A +4A ) A+
2L 2 3 >
2

+ 6 (3 A2-3 A3) Ag + 4 (3 A3-A5) Alo) ]







nl 491

nl g 19

i

12

nlio 12

in which :
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EAR2 96 8
[ - (-6A, +5A, -4A, )2 +

- {(3 A2-2 Aa) Az + (6 A3-2 A5) As + (3 As-a A6) ,\4 +

0 (38) - 3830 040 (3Ay-Ag) A ) +
)2
(1- I;) ((8,-By) Ay + (Ag-2 A3 Ay + (2 Ag-Ag) A, +
0 (1585 - 8)) Ag+ 8 (054, - Ay ) Ap) |
EAR2§ 62

(1- =) [ (Ay-A,) A+ (2 Aj-AL) A+ (Ac-2 AL) L]
2L 12 2747 76 3757 77 5 6’ ”8

R2% 92 [ ( 2 Ay - 2A5+240) A -

E A
2 L
8
= ((285-2 A) Xy + (4 Ag-2 Ag) Ay + (2 Ag-b A A, +
6 (2A) -3A3) A+ 6 (245 -45) 2, ]

EAS  , ,
R2° 07 [ (Ay-A) Xg + (2 Az-A0) Xy + (Ag-2 A) Ag ]

24 L
EA  ,
— R2° 4% (245 - 2 A5+ 2A5) A

2 L

1 b, +2b, 4
2log(1 2)
2b, 8 by
4 1 b b, +2b, 0
2

- . ]'210g(1 ) ]

6 206b, (26D b,

2
1 2 b 2 b b, +2b, §

— [1- —& 4 L 1og (11—
6% b, 2460, (2 6 by) by

1.5 A,
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2 3

2
L . 3 b, 3 b2 3 b3 b +2 b, §
> 02 b [ 48 b, 2 - 3 1og
) , (26b)* (201 by
2 3
i 4 by 2b5 4 b3
A6 — s (1 - + 2 - 3
8 6% b, 60 b, (2 0 by) (2 0 b)
4 b? by +2b, 0
— log ( <2 ) ]
(2 6 by by

1 2
A - A - —
1 ’ 2
§ by 6 by
4
A, = ; A, = 1.5A
3 34 bl 4 3
3 9
A, = — A, =
5 ’ 6
6 b1 546 b1
The expressions for Ao’ Al, .......... A12 are given by
6 62 R1 42 6 62 R2
A =-=—u, - (L-—m) w, - 6 - —u, + (1-—) w, +
° 2 A 12 A 12 YA B 120 B 12
Al = U
AZ = -4 W + R1 4 gyA
A3 = -3 u, + 2 4 Wy - 2 Rl 4 ayA + 3 ug + 0 wp " R2 4 oyB
Aa - 2 u, - 6 vy + R1 6 0yA -2 ug - 6 wp + R2 4 oyB
Ag = Yy
A6 = - Rl 4 oxA
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A7 = -3 Va + 2 Rl ¢ OxA + 3 Va + R2 4 0xB
A8 - 2 Va R1 ¢ 0XA -2 vp - R2 4 0xB
Ag N

AlO - - wA + Wp

M1 7 A

B.2 THE SECOND ORDER INCREMENTAL STIFFNESS MATRIX, [n2]

Only nonzero terms are given. The expressions for Ay, Ay, ceen Al
and Ao, Al’ ......... A12 remain the same.
EAY
n2 1,1 " A L2 (b1+0 b2) [ (Bl+52+53+54) (18 A3-12 A5+8 A6) +
((2 A4-3 AZ) Ay + (2 A5-6 A3) Ay + (4 A6-3 AS) A,
2
6 (3 A3-3 A2) Ag + 6 (A5-3 A3) 210! ]
EAZ#
n2 1,2 - . L2 (b1+0 b2) [ € (2 A4-3 AZ) A6 + (2 A5-6 A3) A7 +
(4 A6-3 AS) A8 } (2 Ah'3 A2) A2 + (2 AS-6 A3) A3 +
(4 A6-3 AS) A4+ 6 (3 A3-3 A2) A9+ 6 (A5-3 A3) Alo) ]
EAZ
n2 1,3 ~ . L2 (b1+0 b2) 6 [ (B1+BZ+B3+34) (-6 A3-2 A4+6 A5-4 A6) +

0.5 {(3 A2-2 A4) A2+(6 A3-2 A5) A3+(3 A3-2 A4+3 A5-4 A6) Aa

+ 46 (3 A2-3 A3) Ag + 8 (3 A3-A5) Alo) { (2 A4-3 A2) A2

+ (2 A5-6 A3) A3 + (4 A6-3 AS) Aa + 6 (3 A3-3 A2) Ag







n2

n2

n2

n2

n2

1,5

1,6

1,7

1,8

1,9

EA¥

4 L

EA
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(b +6 b ) Rl 4 [ (BI+B +B +BA) (-3 A2+12 A +2 A

-7 A

+

6

3
5+4 A6) + ((2 A1-2 A2+A4) Az + (A2-4 A3+A5) A3
(A4-2 A5+2 A6) Aa + 8 (2 A1-2 A2+1.5 A3) Ag +

(0.5 A2-2 A3+0.5 AS) Alo} {(2 A4'3 AZ) A2 +

(2 A5-6 A3) A3 + (4 A6-3 AS) Aa + 6 (3 A3-3 A2) Ag +

é

(A5-3 A3) Alo) ]

(b +6 b ) Rl 6 {(-2 A1+2 A ) A + (- A +4 A3 5) A7

+

(-A4+2 A5-2 A6) As} {(2 Aa-3 A2) AZ +

(2 A5-6 A3) A3 + (4 A6-3 AS) Aa + 46 (3 A3-3 A2) A9 +

6 (A5-3 A3) Alo) ]

(b1+0 b

+

2) [ (B +32+B3+B4) (-18 A3+12 A5-8 A6) +

{(3 A2-2 Aa) AZ + (6 A3-2 AS) A3 + (3 A5-4 A6) Aa

+ 8 (3 A2-3 A3) A9+ 8 (3 A3-A5) Alo} {(2 A4-3 A2) Az

+

+

(2 A5-6 A3) A3 + (4 A6-3 AS) Aa + 8 (3 A3-3 A2) Ag

6 (A5-3 A3) Alo} ]

(bl+0 b2) [ ((3 A2-2 A4) A6 + (6 A3-2 AS) A7 +

(3 A5-4 A6) As} {((2 A4-3 A2) AZ + (2 A5-6 A3) A3 +

4 A6-3 AS) A4+ 6 (3 A3-3 A2) A9+ 6 (A5-3 A3) Alo) ]

(b+0 by) [ (B +By+By+ B,) 0 (-9 Ag¥6 Ag-b Ac) +

+ Nl =

+

{(3 A2-2 Ah) A2+ (6 A3-2 A5) A3+ (3 AS-A A6) AA
9 (3 A2-3 A3) A9+ 6 (3 A3-A5) Alo) ((2 A4-3 A2) Az
(2 A5-6 A3) A3 + (4 A6-3 AS) Aa + 46 (3 A3-3 A2) Ag

6 (A5-3 A3) Alo) ]




n2 391 <

n2 399 ~

2,2

2,3

n2 2.5 =

n2 2.6 =
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(b+0 by) R2 8 [ (By+By+By+B,) (6 Ay-5 Ag+h Ag)

+ ((AA-AZ) A2 + (AS-Z A3) A3 + (2 A6-A5) Aa +

6 (1.5 A3-A2) A9+ 6 (0.5 AS-A3) Alo) {(2 A4-3 A2) Az

+ (2 A5-6 A3) A3 + (4 A6-3 AS) Aa + 4 (3 A3-3 A2) Ag

+ 0 (A5-3 A3) Alo) ]
(b1+0 b2) R2 4 {(AZ-AA) A6 + (2 A3-A5) X7 +

(A5-2 A6) AS) ((2 A4-3 A2) Az + (2 A5-6 A3) A3 +

(4 A6-3 AS) AA + 6 (3 A3-3 A2) Ag + 6 (A5-3 A3) Alo}

(bl+0 b2) [ (B +B +B +Ba) (18 A3 -12 A5+8 A ) +

{(2 A4-3 A2) A6 + (2 A5-6 A3) A7 + (4 A6-3 A5) Ag)

0
(b1+0 b2) ; {(3 A2-2 Ah) AZ + (6 A3-2 AS) A3 +

(3 A3-2 A4+3 A5

6 (3 A3-A5) Alo) {(2 A4-3 A2) A6 + (2 A5-6 A3) A7 +

b Ag) A, t 0 (3 A3 Ay Ag ¥

(4 A6-3 AS) Ag}

2

(b1+0 b2) [ RL 4 {(2 A1-2 A2+A4) A2+ (Az-a A3+A5) A3

+ (A4-2 A5+2 A6) Ah + 0 (2 A1-2 A2+1.5 A3) Ag +
§ (0.5 A2-2 A3+0.5 A5) Alo) ((2 A4-3 A2) A6 +

(2 A5-6 A3) A7 + (4 A6-3 AS) Aa) ]
(b +4 b ) Rl ¢ [ (Bl+B +B +Ba) (3 A -12 A3 2 A4+7 A

S4B - (2 Ap-2 AjEA) Ag (Ay-4 AgthAg) Ay +

(A4-2 A5+2 A6) As) {((2 A4-3 A2) A6 + (2 A5-6 A3) A7

+ (4 A6-3 AS) Aa) ]

5
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EAY
n2 2,7 = A L2 (bl+0 b2) {(3 A2-2 Aa) AZ + (6 A3~2 A5) A3 +
(3 Ag-b Ag) A, + 8 (3 8,=3 Ag) Ag + 6 (3 Ay-Ag) Apg)
{(2 Ah-3 A2) X6 + (2 A5-6 A3) A7 + (4 A6-3 A5) A8} ]
EAY
02,5 = T (B | (B +B,+B+B,) (-18 Ag+12 Ag-8 AQ) +
{(3 A2-2 Ah) A6 + (6 A3-2 AS) A7 + (3 A5-4 A6) AB)
{(2 A4-3 A2) A6 + (2 A5-6 A3) A7 + (4 A6-3 A5) Ag} ]
EAG 8
n2 2.9 = 2 (b1+0 b2) [ — (@ A2-2 A&) XZ + (6 A3-2 A5) A3 +
4 L 2
(3 As-h A6) Ah + 6 (3 A2~3 A3) Ag + 6 (3 A3-A5) Alo)
{(2 A4-3 A2) A6 + (2 A5-6 A3) A7 + (4 A6-3 AS) Ag) ]
EAY
n2 211 " . L2 (b1+0 b2) [ R2 8 {(AQ-AZ) AZ + (A5-2 A3) A3 +
(2 Ag-Ag) A, + 0 (1.5 Ayay) gt 0 (0.5 Ay A3) A
((2 A4-3 A2) A6 + (2 A5-6 A3) A7 + (4 A6-3 AS) A8} ]
EA N
2,1 T 2 (by+0 by) R2 0 [ (By+By+By+B,) (-6 Ay*5 Ag-b Ag) +
{(Az- 4) A6 + (2 A3-A5) A7 + (A5-2 A6) A8)
{(2 Ah-3A2) A6 + (2 A5-6 A3) X7 + (4 A6-3 AS) Ag) ]
EAS 02 B 3 A 4 A -6 Ag 4 A
= -_— + + +

+ 0.5 ((3 A -2 Aa) A + (6 A -2 A ) A + (3 A -2 At

3 A5-4 AG) A4+ 6 (3 A2-3 A3) Ag + 6 (3 A ) Alo} ]







n2

n2

n2

n2

n2

3,5

3,6

3,7

3,8

3,9

EASJ

4 L
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R1 62

(b1+0 b [ (Bl+B +B +Ba) (3 A -9 A3 -4 A4

2)
7 A5-4 A6) + ((2 A1-2 A2+A4) Az + (A2-4 A3+AS) A3 +
(A4-2 A5+2 AG) Aa + 6 (2 A1-2 A2+1.5 A3) A9 +

6 (0.5 A,-2 A +0.5 AS) Alo) {(@3 A2-2 Aa) Az +

2 3

(6 A3-2 AS) A3 + (3 A3-2 A4+ 3 A5-4 A6) A4 +

g (3 A2-3 A3) A9 + 6 (3 A3-A5) Alo} ]

Rl 62

(b1+0 b2) {(-2 A +2 A2-A4) As + (-A2+4 A3-

1
AS) A7 + ('A4+2 A5-2 A6) A8} {(3 A2-2 A4) AZ +
(6 A3-2 A5) A3 + (3 A3-2 A4+ 3 A5-4 A6) Aa +

6 (3 A2-3 A3) Ag + 6 (3 A3-A5) Alo} ]

02

(b1+0 b2) -;- [(Bl+Bz+B +BA) (12 A +4 A -12 A5+8 A )

+ ((3 A2-2 Aa) AZ + (6 A3-2 A5) A3 + (3 AS-A A6) AA
+ 4 (3 A2-3 A3) A9+ 6 (3 A3-A5) Alo) ((3 A2-2 Aa) Az
+ (6 A3-2 A5) A3 + (3 A3-2 A4+3 A5-4 A6) Aa

+ 6 (3 A2-3 A3) Ag + 0 (3 A3-A5) klo) ]

0
(b1+0 b2) ; {(3 A2-2 Aa) A6 + (6 A3-2 AS) A7 +

(3 Ag-4 Ag) Ag) ((3 8,2 8) X + (6 Ay-2 Ag) Ay +
(3 Ay-2 A,+3 Ag-b A A, *+ 0 (34,3 Ay) Xg +
6 (3 Ay-Ag) Apq) ]

02

(b1+0 b2) —;— [ (Bl+B +B +BA) (6 A3+2 A4-6 A5+4 A6)

£ 0.5 ( (3 Ay2 A) A+ (6 A3-2 A5 A3+
(3 Ag-b Ag) A, + 0 (3 Ay-3 Ag) Ag + 8 (3 A37A5) Ayg)
((3 8,y-2 B) Xg + (6 A5-2 Ag) Ay + (3 A3-2 A,+3 Ag-

4 A6) Aa + 6 (3 A2-3 A3) A9 + 46 (3 A3-AS) Alo) ]







n2 3 9

n2 55

n2 5.6

n2 5.7

N
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R2 42

(b1+0 bZ) ) [(B1+B +B +B4) (-3 Aq -2 A, +5 Ag -4 A )

+ ((AA-A ) A + (A -2 A ) A3 + (2 A6-A5) Aa +

6 (1.5 A ) A + 6 (0.5 A A3) Xlo) {(3 A2-2 Aa) A2

+ (6 A3-2 A5) A3 + (3 A3-2 A4+3 A5

9 (3 8,-3 Ag) Ag + 0 (3 Ay-Ag) M) ]

R2 62

-4 A6) Aa +

(b1+0 b2) { (AZ-AA) A6 + (2‘A3-A5) A7 +

(A5-2 AG) A8) (@3 A2-2 AQ) AZ + (6 A3-2 AS) A3 +
(3 A3-2 A4+3 As-& A6) XA + 6 (3 A2-3 A3) Ag +

6 (3 A3-A5) Alo)

(b1+0 bz) R1 [(B1+B +B +Ba) (2 A -4 A2+8 A +2 A

3
-4 A5+2 A6) + ((2 A1-2 A2+AA) AZ + (Az-a A3+A5) A3 +
<A4-2 A5+2 A6) AA + 6 (2 A1-2 A2+1.5 A3) Ag +

2
6 (0.5 A,-2 A3+0.5 AS) Alo) ]

2
(b,+8 b,) Rl2 02 ((2 A,-2 A +A,) A+ (A -4 AL+AL) A
1 2 1 274 2 2 375 3
+ (Aa-Z A5+2 A6) AA + 0 (2 A1-2 A2+1.5 A3) Ag +
g (0.5 A2-2 A +0.5 A ) A 0} {(-2 A1+2 A2-A4) A6 +

+4 A + (- A +2 A -2 A ) A }

(-By+h Aq-Ag) Ag

(b +6 b ) R1 6 [ (Bl+B +B +Ba) (3 A -12 A3 2 A, +7 A5
-4 A6) + {((2 A1-2 A2+A4) A2+ (A.fa A §A % h\

+ (Aa-z A5+2 A6) Aa + 6 (2 A1-2 A2+1.5 A3) Ag +

8 (0.5 A2-2 A3+0.5 AS) Alo) {(3 A2-2 Aa) AZ +

(6 A3-2 A5) A3 + (3 A3-2 A4+3 As-a A6) Aa +

6 (3 A2-3 A3) A9 + 6 (3 A3-A5) Alo) ]







n2

n2

n2

n2

n2

5,8

5,9

5,11

5,12

6,6
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(b1+0 b2) Rl 4 ((2 A1-2 A2+A ) A + (A -4 A ) A +

(Aa-2 A5+2 A6) Aa + 6 (2 A1-2 A2+1.5 A3) Ag +
6 (0.5 A2-2 A3+0.5 A5) Alo) ((3 A2-2 Ah) A6 +

(6 Ay-2 A) Ay + (3 Ag-d Ag) Xg)
R1 82
(by+9 by — [ (By+B,+By¥B,) (3 Ap-12 Ay-2 A+

7 A.-4 A6) + ((2 A1-2 A2+A ) A + (A -4 A ) A +

5
(A4-2 A5+2 A6) Aa + 6 (2 A1-2 A2+l.5 A3) Ag +
6 (0.5 A2-2 A3

(6 Ay-2 Ag) Ay + (3 83-2 A+3 Agb Ag) X, +

+0.5 AS) Alo) {(3 A2-2 AA) Az +

6 (3 4,-3 Ag) Ag + 6 (3 Ay-Ag) M) |

(b1+0 bz) R1 R2 0 ( (Bl+B2 +B +B4) (-A2+4 A3+A4-3 A5
+2 A6) + {(2 A1-2 A2+A4) A2+ (AZ-A A3+A5) A3 +

(Aa-z A5+2 A6) Aa + 4 (2 A1-2 A2+1.5 A3) Ag +

8 (0.5 A2-2 A3+0.5 AS) Alo} {(AA'AZ) A2+(A5-2 A3) A3
+(2 A6-A5) Aa+ 6 (1.5 A3-A2) A9+ 8 (0.5 AS-A3) Alo}]

2 .
(b1+0 b2) R1 R2 67 ((2 A1-2 A2+A4) Az +

(Ay-t Ayths) Ay + (A, S2 A2 A A, t 0 (2 8172 Ay ¥
1.5 &) Ag + 0 (0.5 Ay-2 AgH0.5 Ag) M) ((Ay-A,) Ag

+ (2 A3-A5) A7 + (A5-2 A6) AS)

2
(b1+0 b2) Rl 0 [ (BI+B +B +Ba) (2 A -4 A2+8 A3+

2 A -4 A5+2 A ) + ((-2 A1+2 A ) A + (- A +4 A3-

Ag) g + (-A¥2 Ag -2 AQ) Ag 12 )






n2 6.7 =

n2 6.8 =

n2 -

6,9
n2 =

6,11

nZ gq9

n2 7.7 =
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(b1+0 b2) Rl ¢ ((-2 A1+2 AZ'AA) A6+ (-A2+4 A3-A5) A7

+ (-Aa+2 A5-2 A6) As) {(3 A2-2 A4) Az +
(6 A3-2 AS) A3 + (3 A3-2 A4+3 A5-4 A6) Aa +

6 (3 A2-3 A3) Ag + 6 (3 A3-A5) Alo} ]

(b1+0 b2) Rl 4 [ (B1+B2+B3+Ba) (-3 A2+12 A3+2 Aa-

7 At4 A6) + ((-2 A1+2 Az- Q) A6+ (-A2+4 A3-A5) A7

5
+ (-A4+2 A5-2 A6) Xs) {(3 A2-2 AA) A6 +
(6 A3-2 AS) A7 + (3 A5-4 A6) A8) ]

R1 62

(b1+0 b2) ((-2 A1+2 AZ'AA) A6+(-A2+a A3-A5) A7

+(-A4+2 A5-2 A6) Aa) (3 A2-2 AA) A2+ (6 A3-2 AS) A3

(3 Ag-b A A+ 0 (3 A)°3 Ay Agh 0 (3 Ay-Ag) Apg)]
(b +0 b,) R1 R2 02 (-2 Ap42 ByoBy) Ag + (-Agh Ag-
AS) A7+ (-Aa+2 A5-2 A6) A8) ((AA'AZ) A2+(A5-2 A3) AB
(2 Ag-Bg) A 0 (1.5 AyoAp) Ag+ @ (0.5 Ag-Ay) o))
(b1+9 b2) R1 R2 02 [ (Bl+BZ+B3+Ba) (-A2+4 A3+A4-3 A5
+2 Ag) + ((-2 A¥2 Byuhy) Ag + (At Ay- Ag) A, +
(-8,42 Bg-2 Ag) Ag) (A=) g + (2 Ay-Ag) Ay +
(AS-Z Ag) Ag) ]

(b +6 by) [ (B +B,+By+B,) (18 Ay-12 A8 AQ) +

((3 Ay-2 B,) g+ (6 8372 Ag) Ay + O Ag-t Ag) At

2
6 (3 Ay-3 Ay) Ag* 6 (3 Ay-Ag) XApg) ]







n2 7.8 =
n2 7.9 =
n2 ;91 <
n2 ;19 ~
n2 8.8 =
n2 8.9 =
n2 g1 ~
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(b1+0 b2) {3 A2-2 A4) Az + (6 A3-2 A5) A3 +

(3 A5-4 A6) X4+ 6 (3 A2-3 A3? A9+ 6 (3 A3-A5) Alo)
{((3 A2-2 A4) A6 + (6 A3-2 AS) A7 + (3 A5-4 A6) Ag)

6
(b1+0 b2) ; [ (Bl+Bz+B3+BA) (18 A3-12 A5+8 A6) +

{(3 A2-2 Aa) A2 + (6 A3-2 A5) A3 + (3 As-a A6) A&+
2

6 (3 A2-3 A3) A9+ 6 (3 A3-A5) Alo) ]

(b1+0 b2) R2 4 [ (Bl+Bz+B3+BA) (-6 A3+5 AS-A A6) +

((3 Ay-2 B) Ay + (6 A3-2 Ag) Ay + (3 Ag-4 Ag) A+
6 (3 Ay-3 Ag) Agr @ (3 Ag-Ag) Apg) ((Ag-B) Xy +
(Ag-2 Ag) Ay + (2 Ag-Ag) A, + 6 (1.5 Ay-Ay) Ag +

6 (0.5 Ag-Ag) Ajg) ]

(b1+0 b2) R2 6 ((3 A2-2 Aa) AZ + (6 A3-2 AS) A3 +

(3 A5-4 A6) A4+ 6 (3 A2-3 A3) A9+ 6 (3 A3-A5) Alo)
{(AA_AZ) X6 + (2 A3-A5) A7 + (A5-2 A6) AB)

(b1+0 b2) [ (B1+B2+B3+Ba) (18 A3-12 A5+8 A6) +

2
{(3 A2-2 Aa) A6 + (6 A3-2 AS) A7 + (3 AS-Q A6) A8} ]

0
(b1+0 b2) ; { (3 A2-2 Aa) AG + (6 A3-2 AS) A7 +

(3 Ag-4 Ag) Ag) ((38,-2 ) Xy + (6 Ay-2 Ag) Ay +
(3 Ag-4 Ag) A* 6 (3 By-3 Ag) Agt 6 (3 Ag-Ag) Ag)
(by+6 by) R2 0 ((3 Ay-2 A,) Ag + (6 Ay-2 Ag) Ay +
(3 Ag-4 Ag) Ag) ((Ay-Ap) Ay + (Ag-2 Ag) Ay +

(2 A6-A5) Aa+ 6 (1.5 A3-A2) A9+ 6 (0.5 A5-A3) Alo)







02 g 12

n2 9.9

n2 911

nZ 9 19

21111

n217 97

EAY

4 L

EAS

4 L

(3 A
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(b1+0 b2) R2 6 | (BI+BZ+B3+BQ) (6 A3-5 A5+4 A6) +
{(3 A2-2 Aa) A6 + (6 A3-2 AS) A7 + (3 As-a AG) A8}
((AA'AZ) A6 + (2 A3-A5) A7 + (A5-2 A6) As) ]

02

(b1+0 bz) -z- ( (B1+32+B3+Ba) (18 A3-12 A5+8 A6) +

{(3 A2-2 Aa) Az + (6 A3-2 AS) A3 + (3 A5-4 A6) x4+
2

8 (3 A2-3 A3) A9+ 4 (3 A3-A5) *10) ]

R2 92

(b1+0 b2) -—;—- [ (BI+BZ+B3+BA) (-6 A3+5 A5-4 A6) +

((A,-Ay) Xy + (Ag-2 Ag) X3 + (2 Ag-Ag) A+
6 (1.5 Ag-A,) Ag+ 8 (0.5 Ag-Ag) Aj0) ((3 A,-2 4)) A,
+ (6 A3-2 A) Ay + (3 Ag-4 A X, + 6 (3 A,-3 A) A
+ 6 (3 Ag-Ag) Ag) ]

R2 92

(b1+0 b2) -;—— {(3 A2~2 AA) AZ + (6 A 32 A % A el

5-4 A6) A4+ 4 (3 A2-3 A3) A9+ 6 (3 A3-A5) Alo)

((AZ'AA) A6 + (2 A3-A5) A7 + (A5-2 A6) A8} ]

2 ,2
(b1+0 b2) R2° 67 [ (BI+BZ+B3+B4) (2 A3-2 A5+2 A6) +
((AA-AZ) Az + (A5-2 A3) A3 + (2 A6-A5) Ah+
2
8 (1.5 Ay-A)) Ag+ 6 (0.5 Ag-Ag) A )7 ]

2,2
(b1+0 b2) R2% 4 {(A4-A2) AZ + (A5-2 A3) A3 +

(2 A6-A5) A4+ 6 (1.5 A3-A2) A9+ g (0.5 AS-A3) Alo}

((AZ-AA) AG + (2 A3-A5) A7 + (AS-Z A6) A8)







1215 12

in which :

EAYJ

2

4 L

2
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2 .2
(b1+0 b2) R2™ 97 [ (B1+32+B3+Ba) (2 A3-2 A5+2

((A)-A,) Ag + (2 Ag-A) Ay + (Ag-2 A) AS)Z ]

2
- A1 Az + A2 Az A3 + A3 A3 + A4 AZ Aa + A5 A3 Aa + A6

20 A, XA, Ay + 4 A2 A3 Ag +0.59 A2 Az AIO +

1

279

1.5 46 A Aa Ag + 6 A3 A3 AlO + 0.54 A5 Aa XlO

2
1

2
A Ag

3

2 2 2 2
6° A Ag + 0.5 6 A2 Ag AlO + 0.25 ¢4 A3 *10

2
+ A2 A6 A7 + A3 A7 + A4 A6 AS + A5 A7 A8 + A6

A6) +

2

Ay

2

Ag







APPENDIX C

COMPUTER PROGRAM

C.1 GENERAL
A general description of the computer program is given in Section
3.3 . A listing of the program, which was named NANCURVE (Nonlinear

Analysis of Curved Beam Structures), is given at the end of this

Appendix. A description of the subroutines used in the program and its

corresponding input data examples are presented in the following.

C.2 DESCRIPTION OF SUBROUTINES

The computer program consists of a main program called NANCURVE,
fourteen subroutines and one function subprogram. The main program
NANCURVE directs the flow of the computations by calling the
appropriate subroutines for each step of the solution procedure. The
subroutine NODDATA reads data regarding the overall geometry of the
arch and the nodal degrees of freedom. It generates the coordinates of
the nodes and the equation numbers. The subroutine BAND computes the
semi bandwidth that the stiffness matrix of the structure will have.
This is done by obtaining the largest difference between the equation
numbers of the nodes of any element.

The subroutine ELEMENT calls the appropriate element subroutine.
All basic information concerning the curved elements, i.e., material,
cross-section, and element properties are read by the subroutine

CURVED. The subroutine also directs the computation of the geometric
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properties of the curved element, which is accomplished by the
subroutine GEOMETRY, the computation of the stiffness matrices of each
element, which is performed by the subroutine NUMINT, and the assembly
into the structure stiffness matrices, which is carried out by the
subroutine ASSEMBLE. The condensation of the element linear stiffness
matrix, from 16 by 16 to 12 by 12, is performed by subroutine REOCON.
Subroutine STCOND prints out the element and structure stiffness
matrices.

The subrout;nes LINSOLN and GAUSSOL solve the system of linear
equations by Gauss elimination. Identification of the displacements
obtained from LINSOLN is carried out by subroutine IDENT. The function
subprogram DET1 evaluates the determinant of the structural tangent
stiffness matrix. Finally subroutine STRESS evaluates the element end
forces and stresses.

It should be noted that in addition to the subroutines mentioned
previously, there are some more subroutines contained in the program.
Those subroutines are necessary for buckling (eigenvalue) analysis,

which is not discussed in the present study.

C.2 VARIABLES USED IN THE COMPUTER PROGRAM

The variable names used in the program are listed below in

alphabetical order :

Al = Lower limit of the numerical integration (= 0.0);
A2 = Upper limit of the numerical integration (= 1.0);
A(M) = Area of the cross-section.of element M;

DETOPTN = Variable controlling the determinant of [ST];

If DETOPTN = O , no control on the determinant of [ST].







DI -
DELTAl =
DELTA2 =
DM -
EIGVALU =
E(N) -
G(N) -
H -
IA(N,I) =
IARCH =
IB(N,I) =
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If DETOPTIN = 1 , execution will be terminated if the
determinant of [ST] < 0.

Total number of horizontal intervals in which the span

of the parabolic arch is divided into;

Allowable tolerance for force components of unbalanced

force vector;

Allowable tolerance for moments of unbalanced force

vector;

Density of the material (set = O in the present study);

Set equal to 3 in the present study;

Modulus of elesticity of element group N;

Shear modulus of element group N;

Height of parabolic or arbritary arch;

Boundary condition code of node N for its Ith degree of

freedom. Initially it is defined as follows :

IA(N,I) = 1 if constrained;

IA(N,I) = 0 if free;

After processing,

IA(N,I) = 0 if initially = 1;

IA(N,I) = equation number for the d.o.f if initially=0;

Variable that identifies the type of arch being studied

If IARCH = 0 , parabolic arch.

If IARCH = 1 , circular arch.

If IARCH = 2 , arbitrary arch;

Additional boundary condition code (in the present

study, set = 0 );







ICAL1

ICAL2

ICAL3

ICAL4

ICALS

ICAL6

ICAL7

IDATA

IDIRCN

IFIX
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Variable controlling print out.

If ICAL1 = 0 , entries of [k], [nl], [n2] are printed.

If ICALl1 = 1 , skip;

Variable controlling print out.

If ICAL2 = 0, element geometric properties are printed.

If ICAL2 = 1, skip;

Variable controlling print out.

If ICAL3 = 0, load vector, [K], [Nl], [N2] are printed.

If ICAL3 = 1, skip;

Variable controlling print out.

If ICAL4 = 0 , initial and nodal loads processed into
load vector are printed.

If ICALA = 1 , skip;

Variable controlling print out.

If ICAL5S = 0 , print load vector & displacement vector.

If ICALS = 1 , skip;

Variable controlling print out.

If ICAL6 = O , print element nodal displacements.,

If ICAL6 = 1 , skip.

Set ICAL6 = 2 if ISTRESS = 1 (to get a nice output);

Variable controlling print out of eigenvalue analysis.

(Set = 1 for the present study);

Variable for checking input data.

If IDATA = 0 , execute the program.

If IDATA = 1 , data check only, skip all computations;

Set equal to 0 for the present study;

Set equal to 1 for the present study;







ILOAD =
IPART =
ISTRESS =
ITERCHK =
IXX(M) =
IYY(M) =
JUSTK =
KT(M) =
L =
LOADDIR =
MAXITER =
MP -
MSUOPTN =
NE -
NODEI (M)=

NODEJ (M) =
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Set equal to 1 for the present study (load is

concentrated at the nodes);

Variable controlling print out.

If IPART=0, intermediate results of the displacement
at every iteration process are printed.

If IPART=1, intermediate results of the displacement
at every iteration process are not printed;

Variable controlling the computations of element end

forces and stresses.

If ISTRESS = 0 , skip.

If ISTRESS = 1 , compute end nodal forces and stresses.

Set equal 1 for the present study,

Moment of inertia about x-axis of the cross-section of

element M;

Mament of inertia about y-axis of the cross-section of

element M;

Set equal to O for the present study;

Torsion constant of element M;

Span of the parabolic or arbitrary arch;

Set equal to -1 for the present study;

Maximum number of iterations;

Number of Gauss points used in the numerical

integration (2,3,4,5,6,10 or 15);

Set equal to 1 for the present study;

Total number of elements in the structure;

Number of node I of element M;

Number of node J of element M;
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NTYPE(N)= Element group N (set equal to 1 in the present study);

NUMEG = Total number of element groups (set = 1 in the present
study) ;

NUMEL(N)= Total number of elements in element group N (set equal
to NE in the present study);

NUMNP = Total number of nodal points in the structure;

N1GOPTIN = Set equal to 0 in the present study;

N1OPTIN = Variable controlling the use of matrix [N1].
If N1OPTIN = 0 , [N1] is not used in the analysis.
If NIOPTIN = 1 , [N1] is used in the analysis;
N20PTIN = Variable controlling the use of matrix [N2].

If N20PTIN = 0 , [N2] is not used in the analysis.
If N20PTIN = 1 , [N2] is used in the analysis;

PINT(N,DOF) = Initial load applied at node N, in the DOFth
direction;

PINC(N,DOF) = Load increment applied at node N, in the DOFth
direction;

PTOT(N,DOF) = Total load applied at node N, in the DOFth
direction;

PRIOPTN = Variable controlling the print out.

If PRIOPTN = 0 , skip.
If PRIOPTN = 1 , intermediate results at every
iteration are printed);

PROTYPE Set equal to 3 in the present study (fixed Lagrangian);

R = Radius of curvature of the circular arch;

Tl,..T8 = Title of problem beeing solved;

For circular arch : angle between a node and the center

T(N)
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line of the circular arch (in degrees);

TT(N) = For arbitrary arch : angle between the slope at a node
and global X-axis (in radians);

TLDOF = Number of total loads applied to the structure;

TOLER

Set equal to O in the present study;
XS = X coordinate of the left most node of parabolic arch;

X(N),Y(N),Z(N) = Global X, Y, and Z coordinates of node N.

C.2.3 INPUT DATA ARRANGEMENT

The input data are arranged in the following order and formats

DATA CARD FORMAT

T1,T2,T73,T4,T5,T6,T7,T8 8A10

NE,NUMNP,NUMEG, IDATA,ICALl,ICAL2,ICAL3,ICAL4,ICALS,ICAL6,ICAL7 1115

IARCH, TLOAD, IDIRCN 315
PRIOPTN,N20PTIN,NLOPTIN, ITERCHK, MSUOPTN, N1GOPTN, IFIX,JUSTK, 8IS

TOLER,DETOPTN  F10.5,15
PROTYPE, EIGVALU, ISTRESS , IPART , LOADDIR 515
R ¥ F15.9
N, (IA(N,I),1-1,6), (IB(N,I),I=1,6),T,Z(N) ~ 15,1213,F15.10,F10.6
TLDOF, MAXITER , DELTAL , DELTA2 215,2F10.6
N,DOF, PINT (N, DOF) , PING(N, DOF) , PTOT (N, DOF) 215,3F10.4 |
NTYPE (N) , NUMEL(N) 215
E(N), G(N) , DM 3E10.2
M, NODEI (M) ,NODEJ (M) ,A(M) , IXX (M) , TYY (M) ,KT (M) 315,4E15.6

2F5.2,15

Al,A2,MP







135

This is for circular arch.
For parabolic arch : H,L,DI, XS 4F10.5
For arbitrary arch : H,L 2F10.5
**This is for circular arch.
For parabolic arch : N, (IA(N,I)), (IB(N,I)) 15,1213
For arbitrary arch :
N, (IA(N,I),I=1,6),(IB(N,I),I=1,6),TT(N),X(N),Y(N),6Z(N) 15,1213,

F9.6,3F10.6
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NONLINEAR ANALYSIS OF BELYTSCHKO'S ARCH (SECTION 4.4.1)

8 9 1 0 1 1 1 1 1 1 1
1 1 1 0
0 1 1 1 1 0 1 0 0.000 0
3 3 1 0 -1
100.0
111111100 O0 O O O0-14.070 0.0
2 01 01 0 1 0 0 O O O O0-12.311 0.0
30101 01 0 0 O O O O0-10.553 0.0
4 01 01 0 1 0 O O O O O -8.79% 0.0
50101 0 1 0 0O O 0O O O -7.035 0.0
6 01 01 01 00 0O O O O -5.276 0.0
701 01 010 0 O O O O -3.517 0.0
8§ 01 01 061 0 OO O O O -1.759 0.0
9 011111 0 0 O O OO 0.0 0.0
1 90 10.0 10.0
9 1 1000.0 1000.0  20000.0
1 8
1.0E+07 4.0E+06 0.0E+01
1 1 2 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
2 2 3 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
3 3 4 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
4 4 5 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
5 ) 6 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
6 6 7 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
7 7 8 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
8 8 9 2.0000E+00 0.6667E+00 0.6667E+00  2.25E+00
0.0 1.0 3
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o

8 9
1 1
0 1
3 3
200.0
1 1
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 90
9 1
1 8
1.0E+06
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
0 1.0

N e e e
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DADEPPO’'S ARCH (SECTION 4.4.2)

1 1

1 0
-1

N e el e e e
OCO0OO0O0O0O0O0OO0
MOOO0OO0OO0OO0OOOO

0
0.0

w O

0.0E+01

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

[eNoNeoNoNoNeoNoNeNo]

1
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1 1
0

-18

-3

[eNeoNoNoNoNeNoNoNa)
[eNeoNeoNoNoNeoloNoRal

500.0

[ e

.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00

-30.
-26.
-22.
.750
-15.
-11.

-7.
.750

1
0.00
000
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000
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500

0.0

e el o

1
0

[eNoNoNeoNoNoNoNoia)
[cReoNeoNeoNoNoNoNo RS/

.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00
.3333E+00

OO NN

.250E+00
.250E+00
.250E+00
.250E+00
.250E+00
.250E+00
.250E+00
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COMPUTER PROGRAM "NANCURVE"

PROGRAM NANCURVE
B T e e e ey
THIS PROGRAM USES THE FINITE ELEMENT METHOD TO ANALYZE
A CURVED ELEMENT IN THREE DIMENSIONS.
OTHER ELEMENTS MAY BE ANALYZED BY ADDING A SUBROUTINE
FOR EACH NEW TYPE OF ELEMENT BEING USED.
NONLINEAR PROPERTIES ARE TAKEN INTO CONSIDERATION IN THE
CURVED ELEMENT.
B

REAL IXX,IYY,KT,LENGTH,II,JJ,N1STTOT

COMMON,/C1/NE , NUMNP , NUMEG, NTYPE(3) ,NUMEL(3) , IPAR, ICALL, ICAL2,
+ ICAL3, ICAL4,ICALS,ICAL6, ICAL7
COMMON/C2/NSIZE,NEQ,NCOND,MBAND, IEIGEN
COMMON/C3/IA(37,8),1B(37,8),X(37),Y(37),2(37) ,RAD,AC

COMMON/C4 /SE(16,16)
COMMON/C5/E(3),G(3) ,NODEI(36) ,NODEJ (36),A(36),IXX(36),IYY(36),
+ KT(36),L(1,36)

COMMON/C6/A1,A2 ,MP,B1(36),B2(36),B3(36)

COMMON/C7/RI(36) ,RJ(36),PHII(36),PHIJ(36),TETA(36) ,LENGTH(36),
+ RIA(36),RJA(36)

COMMON/C8/PN(37,8) ,R(296),PINT(37,8)
COMMON/C9/S (296 ,16) ,SP(296,16) , IDET
COMMON/C10,/D(296) ,D10(1184) ,RC(296),5C(296,16)
COMMON/C11/DN(16),U(36,12),W(37,8),V(37,8)
COMMON/C12/ULOC(36,12) ,RCOL(9) ,MSUOPTN,N1GOPTIN

COMMON/G16 /PRIOPTN
COMMON/C17/A7TOT(36) ,A70LD(36) ,BOL(36,5),BT0(36,5),BE(5)
COMMON/C18 /IARCH

COMMON/C19/TT(36)

DIMENSION DTEMP(296),PTEMP(296),PSTART(296),DTOT(296)
DIMENSION PACTUAL(296),PSAVE(296),DACTUAL(296) ,N1STTOT(296,16)
DIMENSION SOLD(296,16),SRK(296,16),SRN1(296,16),PTOT(37,8)
DIMENSION REFSTRT(37,8),REFPTMP(37,8),SRN2(37,16),PINC(37,8)
INTEGER PROTYPE,EIGVALU, PRIOPTN,DETOPTIN,DOF,TLDOF

READ(60,1010) T1,T2,T3,T4,T5,T6,T7,T8 |
WRITE(61,2020)T1,T2,T3,T4,T5,T6,T7,T8
READ(60,1015) NE,NUMNP,NUMEG,IDATA,ICAL1l,ICAL2,ICAL3,ICALG,

+ ICALS,ICAL6, ICAL7
WRITE(61,2010)NE,NUMNP,NUMEG, IDATA, ICAL1,ICAL2,ICAL3, ICAL4,
+ ICALS,ICAL6,ICAL7

........ READ NODAL POINT DATA

READ(60,1030) IARCH,ILOAD,IDIRCN
WRITE(61,2030)IARCH,ILOAD, IDIRCN

READ(60,6971) PRIOPTN,N20PTIN,N1OPTIN, ITERCHK, : :
+ MSUOPTN , N1GOPTN, IFIX,JUSTK, TOLER , DETOPTN
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6971 FORMAT(8I5,F10.5,1I5)
WRITE(61,6972) PRIOPTN,N20PTIN,N1OPTIN, ITERCHK,
+ MSUOPTN, N1GOPTN, IFIX, JUSTK, TOLER , DETOPTN
6972 FORMAT (10X, 8HPRIOPTN=,12/10X,8HN20PTIN=,12/
+ 10X, 'N1OPTIN=',12/10X, ' ITERCHK=',612/10X, 'MSUOPTN=',12/10X,
+ 'N1GOPTN=',12,10X, ' IFIX~',12,10X, 'JUSTK=',12,
+ /10X, 'TOLER=',F10.5,10X, 'DETOPTN=",12//)
READ(60,1) PROTYPE,EIGVALU,ISTRESS,IPART,LOADDIR
1 FORMAT (515)
WRITE(61,8761) PROTYPE,EIGVALU,ISTRESS,IPART,LOADDIR
8761 FORMAT(10X,’PROTYPE=',12,10X, 'EIGVALU=',12,10X,'ISTRESS=',612/

+ 10X, 'IPART =',I12,10X, 'LOADDIR=',I2//)
C
DX=0.
CALL NODDATA (IARCH,DX)
C
IF(PROTYPE.EQ.2) GO TO 510
C

IF(ITERCHK.EQ.1) READ(60,1013) TLDOF,MAXITER,DELTAl,DELTA2
IF(ITERCHK.EQ.1) WRITE(61,1012) TLDOF,MAXITER,DELTAl,DELTA2
1013 FORMAT(2I5,2F10.6)
1012 FORMAT(' ','TLDOF=',15,5X,8HMAXITER=,I5,5X,7HDELTAl=,F10.6,5X,
+ 7HDELTA2=,F10.6//)
C
WRITE(61,409)
DO 407 N=1,NUMNP
DO 407 I=1,6
PINT(N,1I)=0.0
PINC(N,I)=0.0
407 PTOT(N,I)=0.0
I=0
406 CONTINUE
I=I+1
READ(60,405) N,DOF,PINT(N,DOF),PINC(N,DOF),PTOT(N,DOF)
WRITE(61,410) N,DOF,PINT(N,DOF),PINC(N,DOF),PTOT(N,DOF)
IF(I.LT.TLDOF) GO TO 406
405 FORMAT(215,3F10.4)
409 FORMAT(' ',10X,’ LOADING CONDITIONS : '//,6X,'NODE’,7X,’'DOF’', 16X,

+ 'PINT', 16X, 'PINC',16X,'PTOT'//)
410  FORMAT(' ',3X,I5,4X,I5,11X,F10.4,10X,F10.4,10X,F10.4)
GO TO 513
c
510  CONTINUE
c
Covnn READ AND STORE INITIAL LOAD DATA
C
WRITE(61,2015)
WW=0,
CALL LOAD (IARCH,ILOAD,IDIRCN,DX,WW)
C

513 CONTINUE
IF(PROTYPE.NE.3) GO TO 3021
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SCALE=1.0E+05
DO 5001 I=-1,NEQ
PSAVE(I)=0.0
DACTUAL(I)=0.0
DTOT(I)=0.0

AUTOMATIC GENERATION OF LODPON1 AND CORRESPONDING D.O.F

IF(LOADDIR) 1655,1665,1675
IHORZ=1
IVERT=0
ILAT=0

GO TO 1685
IHORZ=0
IVERT=1
ILAT=0

GO TO 1685
IHORZ=0
IVERT=0
ILAT=1
CONTINUE

IF LOAD WANTED FOR SPECIFIC LOAD LET ITETO=1
CHOSE THE APPROPRIATE VALUES OF LODPON1,LNODE1,AND LDOF1

ITETO=0

IF(ITETO.EQ.0) GO TO 9152
LODPON1=20

LNODE1=8

LDOF1=2

IF(ITETO.NE.O) GO TO 700

DO 200 N=1,NUMNP

DO 300 1=1,6

IF(IA(N,I).EQ.0) GO TO 300
IF(PINT(N,I).EQ.0) GO TO 300
IF(I.EQ.1.AND.IHORZ.EQ.0) GO TO 300
IF(IHORZ.EQ.0) GO TO 909
LODPON1=IA(N,I)

LNODE1=N

LDOF1=I

GO TO 700

IF(IVERT.EQ.0.AND.I.EQ.2) GO TO 300
IF(IVERT.EQ.0) GO TO 499
LODPON1=IA(N,I)

LNODE1=N

LDOF1=I

GO TO 700

IF(ILAT.EQ.0.AND.I.EQ.3) GO TO 1093
IF(ILAT.EQ.0) GO TO 1093
LODPON1=IA(N,I)

LNODE1=N

LDOF1=I
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GO TO 700
1093 PRINT 13
PRINT 14
13 FORMAT (' PROGRAM CAN NOT CALCULATE THE VALUE OF LODPON1 ')
14 FORMAT (' HELP WANTED, PROGRAM STOPPED AT APPR. LINE 266 ')
GO TO 900

300 CONTINUE

200 CONTINUE

700 CONTINUE
WRITE(61,2900) LODPON1,LNODEl,LDOF1l

2900 FORMAT(' ',//11X,'THE D.O.F. IN WHICH LOAD HAS BEEN INCREASED=',
+ 13,//10X,'AT NODE=',13,5X, 'WITH D.O.F.=",13//)

DO 3010 I=1,NUMNP
DO 3010 J=1,6
3010 U(1,J)=0.0
ICHECK=1
1001 DO 3020 I=1,NUMNP
IF(IFIX.EQ.0) X(I)=X(I)+U(I,1)
IF(IFIX.EQ.0) Y(I)=Y(I)+U(I,2)
IF(IFIX.EQ.0) Z(I)=2(I)+U(I,3)
3020 CONTINUE
IF(PRIOPTN.EQ.O) GO TO 4994
WRITE(61,4995)
4995 FORMAT(/,IOX,'NODE',10X,’X(I)’,lOX,’Y(I)',lOX,’Z(I)',/)
DO 4996 I=1,NUMNP
WRITE(61,4997) I,X(I),Y(I),Z(I)
4997 FORMAT(/,10X,I15,3F15.8)
4996 CONTINUE
4994 CONTINUE
3021 CONTINUE i
\

C READ AND STORE ELEMENT DATA
C ************************************%AA%AAA*AAA&AA**%AAAAkk%***Akk
C
IPAR=1
NUMITER=1
C

IF(ICHECK.NE.1) GO TO 5928
DO 100 N=1,NUMEG
READ(60,1020) NTYPE(N) ,NUMEL(N)
CALL ELEMENT(N,IDATA,IARCH)
100  CONTINUE
5928 CONTINUE

IF(PROTYPE.NE.3) GO TO 3335
IF(ICHECK.NE.1) GO TO 3333

3335 CONTINUE
C COMPUTE SEMIBANDWIDTH OF STRUCTURE STIFFNESS MATRIX

--------------------- Sk sk ok e sk o e s Sl sl etk sk iekeok

CALL BAND
IF(JUSTK.EQ.1) GO TO 2110
IF(PROTYPE.NE.3) GO TO 2110
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DO 5745 NN=1,NUMEG
IF(NUMEL(NN) .EQ.0) GO TO 5745
NAME=NUMEL(NN)
DO 5341 K=1,NAME
M=L(NN,K)
IF(MSUOPTN.EQ.1) A70LD(M)=0.0
DO 5341 I=1,5
IF(MSUOPTN.EQ.2) BOL(M,I)=0.0
5341 CONTINUE
5745 CONTINUE
2110 CONTINUE

ASSEMBLE INITIAL LOADS AND NODAL LOADS INTO LOAD VECTOR
SET ARRAYS -S- AND -R- EQUAL TO ZERO

aoaoon

CALL ASEMBLE (M)

3333 CONTINUE
IF(PROTYPE.NE.3) GO TO 3336
IF(ICHECK.EQ.1) GO TO 2111
GO TO 2112

2111 DO 5003 1I=1,NEQ

5003 PSTART(I)=0.0
J=0
DO 415 N=1,NUMNP
DO 420 I=1,6
IF(IA(N,I).EQ.0) GO TO 420
J=J+1
PSTART(J)=PINT(N,I)

420 CONTINUE

415 CONTINUE ;
IF(PRIOPTIN.EQ.0) GO TO 423
WRITE(61,421)

421 FORMAT(’ ',10X,’'PSTART :')
WRITE(61,422) (PSTART(I),I=1,NEQ)

422 FORMAT(' ',8X,F10.5)

423 CONTINUE

2112 IF(JUSTK.EQ.1) ICHECK=2
IF(JUSTK.EQ.1) GO TO 3336
IF(ICHECK.EQ.1) GO TO 3336
IPAR=2

DO 2113 I=1,NSIZE

DO 2113 J=1,MBAND
S(1,J)=0.0

DO 111 N=1,NUMEG

CALL ELEMENT (N, IDATA,IARCH)
CONTINUE

IF(ICAL3.EQ.0) CALL STCONDN

N
P—J
=
w
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—
—

C1901 IF(ITERCHK.NE.O) CALL INVTRNS
1901 IF(ICHECK.EQ.3) GO TO 4988
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IF(N1OPTIN.EQ.0) GO TO 4987
DO 1801 I=1,NSIZE
DO 1801 J=1,MBAND
1801 S(I,J)=0.0
N=1
IPAR=3
CALL CURVED(N, IDATA,IARCH)
IF(ICAL3.EQ.0) CALL STCONDN
4987 CONTINUE
IF(ICHECK.EQ.3) GO TO 4988
IF(N20PTIN.EQ.0) GO TO 4988
DO 7691 I=1,NSIZE
DO 7691 J=1,MBAND
7691 S(I,J)=0.0
IPAR=4
CALL CURVED(N, IDATA,IARCH)
IF(ICAL3.EQ.0) CALL STCONDN
4988 CONTINUE
IF(ICHECK.EQ.2.O0R.PSAVE(LODPON1) .EQ.0.) GO TO 5010

C DO 9436 I=1,NSIZE

C DO 9436 J=1,MBAND

C9436 S(I,J)=0.0

C IPAR=7

C DO 9437 N=1,NUMEG

C IF(NUMEL(N) .EQ.0) GO TO 9437
C CALL KEPSIO1(N)

C9437 CONTINUE
IF(ICHECK.EQ.2) GO TO 5010
DO 3071 I=1,NEQ
DO 3081 J=1,MBAND
READ(4,10) RK

SRK(I,J)=RK

C READ(16,10) RN1STAR -
C SRN1(I,J)=RN1STAR
c N1STTOT(I,J)=RN1STAR

IF(IFIX.EQ.1) S(I,J)=RK

IF(IFIX.EQ.1) SOLD(I,J)=RK
c IF(IFIX.EQ.0) S(I,J)=RK+N1STTOT(T,J)
C IF(IFIX.EQ.0) SOLD(I,J)=RK+N1STTOT(I,J)

3081 CONTINUE
3071 CONTINUE

REWIND 4
C REWIND 16
IF(PRIOPTN.EQ.0) GO TO 7233
C WRITE(61,8005)
c8005 FORMAT(///,10X, 'KEPSIO MATRIX',/)
C WRITE(61,8002) ((SRNl(I,J),J=1,MBAND),I=1,NEQ)

WRITE(61,8008)
8008 FORMAT(///,10X,’'K LINEAR STIFFNESS MATRIX',/)

WRITE(61,8002) ((SRK(I,J),J=1,MBAND),I=1,NEQ)
WRITE(61,8009)
8009 FORMAT(///,10X,’S(I,J) MATRIX',/)
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WRITE(61,8002) ((S(I,J),J=1,MBAND),I=1,NEQ)

7233 CONTINUE
GO TO 5011

5010 DO 4071 I=1,NEQ
DO 4081 J=1,MBAND
IF(N1OPTIN.EQ.1)READ(5,10) RNl
IF(PSAVE(LODPON1).EQ.0O.) READ(4,10) RK
IF(N20PTIN.EQ.1) READ(16,10) RN2
IF(N1OPTIN.EQ.1)SRN1(I,J)=RN1
IF(PSAVE(LODPONI).EQ.O..AND.NZOPTIN.EQ.l)SP(I,J)=RK+.5*RN1+RN2/3.
IF(PSAVE(LODPON1) .NE.O. .AND.N20PTIN.EQ.1)

+SP(I,J)=SOLD(I,J)+.5*RN1+RN2/3.
IF(PSAVE(LODPONI).EQ.O..AND.NlOPTIN.EQ.O)SP(I,J)=RK
IF(PSAVE(LODPONl).EQ.O..AND.NlOPTIN.EQ.O)S(I,J)=RK
IF(PSAVE(LODPONI).EQ.O..AND.NlOPTIN.EQ.l.AND.NZOPTIN.EQ.O)SP(I,J)=
+RK+.5*RN1
IF(PSAVE(LODPONl).NE.O..AND.NlOPTIN.EQ.O)SP(I,J)=SOLD(I,J)
IF(PSAVE(LODPONI).NE.O..AND.NlOPTIN.EQ.O)S(I,J)=SOLD(I,J)
IF(PSAVE(LODPONl).NE.O..AND.NlOPTIN.EQ.l.AND.NZOPTIN.EQ.O)SP(I,J)=
+SOLD(I,J)+.5*RN1
IF(PSAVE(LODPON1) .EQ.
IF(PSAVE(LODPON1) .NE.
IF (PSAVE(LODPON1) .EQ.
+S(I,J)=RK+RN1
IF(PSAVE(LODPONI).NE.O..AND.NlOPTIN.EQ.l.AND.NZOPTIN.EQ.O)
+S(I,J)=SOLD(I,J)+RN1 .

4081 CONTINUE

4071 CONTINUE
IF(N1OPTIN.EQ.1) REWIND 5
IF(N20PTIN.EQ.1) REWIND 16
IF(PSAVE(LODPONl).EQ.O.) REWIND &

IF(PRIOPTN.EQ.0) GO TO 5011
_ IF(N20PTIN.EQ.0) GO TO 4989
WRITE(61,7693)

7693 FORMAT(///,10X,11HN2 MATRIX, /)
DO 7694 1=1,NEQ
DO 7695 J=1,MBAND
READ(16,10) RN2
SRN2(I,J)=RN2

7695 CONTINUE

7694 CONTINUE

4989 CONTINUE
IF(N20PTIN.EQ.1) REWIND 16
IF(N20PTIN.EQ.1) WRITE(61,8002)((SRNZ(I,J),J=1,MBAND),I=1,NEQ)
IF(N1OPTIN.EQ.1) WRITE(61,8004)

8004 FORMAT(//,10X,’'Nl NONLINEAR STIFFNESS MATRIX',/)
IF(N1OPTIN.EQ.1) WRITE(61,8002) ((SRNl(I,J),J=1,MBAND),I=1,NEQ)
IF(PSAVE(LODPONI).NE.O.) WRITE(61,8010)

8010 FORMAT(///,lOX,’SOLD(I,J) MATRIX',/)

IF(PSAVE(LODPONl).NE.O.) WRITE(61,8002)
+((SOLD(I,J),J=1,MBAND), I=1,NEQ)
WRITE(61,8018)

_AND .N20PTIN.EQ.1)S(I,J)=RK+RN1+RN2
_AND.N20PTIN.EQ.1)S(I,J)=SOLD(I,J)+RN1+RN2
__AND.N10OPTIN.EQ.1.AND.N20PTIN.EQ.O)

[eNeo N
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8018 FORMAT(///,10X,'SP(I,J) MATRIX',/)
WRITE(61,8002) ((SP(I,J),J=1,MBAND),I=1,NEQ)
WRITE(61,8009)

WRITE(61,8002) ((S(I,J),J=1,MBAND),I=1,NEQ)

5011 IF(ICHECK.NE.3) GO TO 7001
GO TO 6001

7001 ICHECK=3

GO TO 3339

336 CONTINUE

COMPUTE ELEMENT LINEAR STIFFNESS AND ASSEMBLE INTO STRUCTURE

LINEAR STIFFNESS
T T T T e e I B e e R

OO0 w

DO 2114 1I=1,NSIZE

DO 2114 J=1,MBAND
2114 S(1,J)=0.0

IPAR=2

DO 110 N=1,NUMEG

CALL ELEMENT (N,IDATA,IARCH)
110 CONTINUE

IF(ICAL3.EQ.0) CALL STCONDN

IF(PROTYPE.NE.3) GO TO 3337
DO 1071 I=1,NEQ
DO 1081 J=1,MBAND
READ(4,10) RK
S(I,J)=RK
SP(I,J)=RK
1081 CONTINUE
1071 CONTINUE
REWIND 4
IF(NCOND.EQ.0) GO TO 1809
CALL STCONDN
1809 CONTINUE
IF(PRIOPTN.EQ.0) GO TO 9431
IF(ICHECK.EQ.1l) WRITE(61,8008)
IF(ICHECK.EQ.1) WRITE(61,8002)((S(I,J),J=1,MBAND),1=1,NEQ)
9431 CONTINUE
6001 IDET=1
8002 FORMAT(1X,6(2X,E19.13),/)
CALL LINSOLN
DETRMNT=DET1 (SCALE)
DO 5005 I=1,NEQ
DTOT(I)=DTOT(I)+D(I)
DACTUAL(I)=DACTUAL(I)+D(I)
IF(IFIX.EQ.0) D(I)=DTOT(I)
IF(IFIX.EQ.1) D(I)=DACTUAL(I)
5005 CONTINUE
C IF(NCOND.NE.O) CALL RECOVER
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CALL IDENT
IF(JUSTK.EQ.1) GO TO 3339
C IF(ITERCHK.EQ.0) CALL INVTRNS

IF(ITERCHK.NE.O) GO TO 8537
DO 5763 NN=1,NUMEG
IF(NUMEL(NN) .EQ.0.) GO TO 5763
NAME=NUMEL (NN)
DO 5002 K=1,NAME
M=L(NN,K)
5002  A7TOT(M)=A7OLD(M)+U(M,7)-U(M,1)
5763 CONTINUE
8537 CONTINUE
ICHECK=2
IF(ITERCHK.NE.O) GO TO 2120
DO 2121 I-1,NEQ
R(I)=0.0
2121 PACTUAL(I)=PSAVE(I)+PSTART(I)
GO TO 3342
2120 CONTINUE
GO TO 1901
3339 DO 2001 I=1,NEQ
PTEMP (I)=0.0
IM=I+1
IF(IM.GT.NEQ) GO TO 2001
DO 3901 J=2,MBAND
IF(SP(I,J).EQ.0.) GO TO 1804
PTEMP (1)=PTEMP(I)+SP(I,J)*D(IM)
1804 IM=IM+1
IF(IM.GT.NEQ) GO TO 2001
3901 CONTINUE
2001 CONTINUE
DO 2301 I=1,NEQ
IM=1
IM=1
2108 IF(SP(IM,JM).EQ.0.) GO TO 2201
PTEMP (I)=PTEMP (I)+SP(IM,JM)*D(IM)
2201 IM=IM-1

JM=JM+1

IF(IM.EQ.O) GO TO 2301
IF(JM.GT.MBAND) GO TO 2301
GO TO 2108

2301 CONTINUE
DO 5006 I=1,NEQ
IF(IFIX.EQ.0) PACTUAL(I)=PTEMP(I)+PSAVE(I)
IF(IFIX.EQ.1) PACTUAL(I)=PTEMP(I)

5006 CONTINUE
IF(ITERCHK.EQ.0) GO TO 6975
IF(PRIOPTN.EQ.1) WRITE(61,8011)

8011 FORMAT(15X,'I’,5X, 'PACTUAL(I)', 10X, PTEMP(I)’', 10X, PSAVE(I)',//)
IF(PRIOPTN.EQ.0) GO TO 4990

DO 8012 I=1,NEQ
WRITE(61,8013) 1I,PACTUAL(I),PTEMP(I),PSAVE(I)
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CONTINUE

CONTINUE

FORMAT(10X, I5,5X,E21.15,10X,E21.15,10X,E21.15,/)
WRITE(61,8547)

FORMAT(/, 10X, 'DTOT(I)',/)

IF(IPART.EQ.0) GO TO 1003

DO 8541 MM=1,NEQ

WRITE(61,8542) DACTUAL(MM)

FORMAT(10X,E21.15)

CONTINUE

IF(IHORZ.EQ.1) LODPON2=LODPON1+1

IF(IHORZ.EQ.1) LODPON3=LODPON1+2

IF(IVERT.EQ.1) LODPON1=LODPON1-1

IF(IVERT.EQ.1) LODPON2=LODPON1+1

IF(IVERT.EQ.1) LODPON3=LODPON1+2

IF(ILAT.EQ.1) LODPON1=LODPON1-2

IF(ILAT.EQ.1) LODPON2=LODPON1+1

IF(ILAT.EQ.1) LODPON3=LODPON1+1
WRITE(61,9001)PACTUAL(LODPON1) , PACTUAL(LODPON2) ,PACTUAL(LODPON3),

+ DACTUAL(LODPON1) ,DACTUAL(LODPON2) ,DACTUAL(LODPON3)
FORMAT(’ ',10X,11HPACTUAL(X)=,E21.15,10X,11HPACTUAL(Y)=,E21.15,
+ 10X,11HPACTUAL(Z)=,E21.15//16HDISPLACEMENT (X)=,E21.15,

+ 10X,16HDISPLACEMENT(Y)=,E21.15,10X, 16HDISPLACEMENT (Z)=,E21.15//)
IF(IVERT.EQ.1) LODPON1=LODPON1+1l
IF(ILAT.EQ.1) LODPON1=LODPON1+2
CONTINUE
DO 2115 I=1,NEQ
R(I)=PSTART(I)-PTEMP(I)

IF(PRIOPTN.EQ.0) GO TO 6976

WRITE(61,9731)
FORMAT(//,20X, 'R(I)’,15X, 'PSTART(I)', 15X, 'PTEMP(I)’,/)
DO 9732 IMM=1,3

WRITE(61,9733) R(IMM),PSTART(IMM), PTEMP(IMM)
FORMAT(//,10X,E21.15,10X,E21.15,10X,E21.15,/)
CONTINUE

IF(ITERCHK.EQ.0) GO TO 3342

DO 2451 NN=1,NUMEG

IF(NUMEL(NN) .EQ.0) GO TO 2451
NAME=NUMEL (NN)

DO 2351 K=1,NAME

M=L(NN,K)

NI=NODEI (M)

NJ=NODEJ (M)

DO 2351 K1=1,2

IF(K1.EQ.1) NP=NI

IF(K1.EQ.2) NP=NJ

DO 2251 1I=1,6

IF(IA(NP,I)) 1651,1551,1571

NL=-IA(NP,I)

REFSTRT (NP, I)=PSTART (NL)
REFPTMP (NP, I)=PTEMP (NL)

GO TO 2251
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REFSTRT (NP, I)=0.0
REFPTMP (NP, 1)=0.0

GO TO 2251

IF(IB(NP,I).LT.0) GO TO 1751
NM=IB(NP,I)

GO TO 1851

NL=-IB(NP,I)+NEQ
REFSTRT (NP, I)=PSTART (NL)
REFPTMP (NP, I)=PTEMP (NL)

GO TO 2251

IF(IA(NM,I)) 1951,2051,2151
NL=-IB(NM, I)+NEQ
REFSTRT (NP, I)=PSTART (NL)
REFPTMP (NP, I)=PTEMP (NL)

GO TO 2251

REFSTRT(NP,1)=0.0

REFPTMP (NP,1)=0.0

GO TO 2251

NL=IA(NM,I)
REFSTRT (NP, I)=PSTART (NL)
REFPTMP (NP, T)=PTEMP (NL)
CONTINUE

CONTINUE

CONTINUE

DO 6949 NP=1,NUMNP

DO 6949 J=1,3

KIJ=J+3

PART1=ABS (REFSTRT (NP, J) -REFPTMP (NP, J))
PART2-ABS (REFSTRT (NP,KJJ) -REFPTMP (NP,KJJ))
IF(PART1.GT.DELTAL.OR.PART2.GT.DELTA2) GO TO 6950
WRITE(61,2116) PART1,PART2
CONTINUE

GO TO 3342

WRITE(61,2116) PART1,PART2
FORMAT (10X, 6HPART1=,E21.15,10X, 6HPART2=,E21.15)
NUMITER=NUMITER+1
IF(NUMITER.LE.MAXITER) GO TO 2117
GO TO 900

GO TO 6001

CONTINUE

IF(ITERCHK.NE.1) GO TO 8945
IF(MSUOPTN.EQ.2) GO TO 8945
DO 8538 NN=1,NUMEG
IF(NUMEL(NN) .EQ.0) GO TO 8538
NAME=NUMEL (NN)

DO 8539 K=1,NAME

M=L(NN,K)
TO=(U(M, 8) -U(M,2))/LENGTH(M)
STO=(U(M,3)-U(M,9))/LENGTH(M)
TA=U(M, 6) -TO

TB=U(M,12)-TO

SIA=U(M,5)-SIO
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SIB=U(M,11)-SIO
8539 A7TOT(M)=A70LD(M)+U(M,7)-U(M,1)
++. 5% (TO**2+ST0**2 ) *LENGTH (M)
++LENGTH (M) * (2 . *TA%*2 - TA*TB+2 . *TB**2) /30.
++LENGTH (M) * (2 . *SIA**2-SIA*SIB+2,*SIB**2) /30,
8538 CONTINUE
8945 IF(ITERCHK.NE.1) GO TO 4993
IF(MSUOPTN.EQ.1) GO TO 4993
DO 4992 NN=1,NUMEG
IF(NUMEL(NN) .EQ.0) GO TO 4992
NAME=NUMEL (NN)
DO 5344 K=1,NAME
M=L(NN,K)
ALFA1=U(M, 6)
ALFA2=2 .%(-3.%U(M,2)-2.*U(M,6)*LENGTH(M)+3.*U(M,8) -
+U(M,12)*LENGTH(M) ) /LENGTH (M)
ALFA3=3.%(2.*U(M,2)+U(M, 6)*LENGTH(M) -2.*U(M,8)+U(M,12)
+*LENGTH (M) ) /LENGTH (M)
BETAl=-U(M,5)
BETA2=2.%(-3.*U(M,3)+2.%¥U(M,5)*LENGTH(M)+3.*U(M,9)
++U(M,11)*LENGTH(M) ) /LENGTH(M)
BETA3=3.%(2.*U(M,3)-U(M,5)*LENGTH(M)-2.*U(M,9) -
+U(M,11)*LENGTH (M) ) /LENGTH(M)
BE(1)=(-U(M,1)+U(M,7))/LENGTH(M)+(ALFA1**2+BETA1**2)/2.
BE(2)=ALFA1*ALFA2+BETA1*BETA2
BE(3)-(ALFA2**2+BETA2**2)/2.+ALFA1*ALFA3+BETA1*BETA3
BE(4)=ALFA2*ALFA3+BETA2*BETA3
BE(5)=(ALFA3**2+BETA3%*%2) /2.
DO 5343 1I=1,5
5343 BTO(M,I)=BOL(M,I)+BE(I)
5344 ‘CONTINUE
4992 CONTINUE
4993 CONTINUE
WRITE(61,8649)
8649 TFORMAT(/,10X,'DACTUAL(I)',/)
DO 8653 I=1,NEQ
8653 WRITE(61,8654)  DACTUAL(I)

8654 FORMAT(10X,E21.15)
WRITE(61,399) PACTUAL(LODPON1) ,DACTUAL(LODPON1),

+ DETRMNT , NUMITER
IF(DETRMNT.LE.O. .AND.DETOPTN.EQ.1) GO TO 900
IF (ABS (PACTUAL(LODPON1)) . GE. ABS (PTOT(LNODEL, LDOF1))) GO TO 900
DO 5007 I-1,NEQ
PSAVE (1)=PACTUAL(I)
DTOT(I)=0.0
5007 CONTINUE
IF(JUSTK.EQ.1) GO TO 2118
DO 5281 NN=1,NUMEG
IF(NUMEL(NN) .EQ.0) GO TO 5281
NAME=NUMEL (NN)
DO 5342 K=1,NAME
M=L(NN,K)
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IF(MSUOPTN.EQ.1)  A7OLD(M)=A7TOT (M)
DO 5342 1I=1,5

IF(MSUOPTN.EQ.2)  BOL(M,I)=BTO(M,I)
CONTINUE

CONTINUE

CONTINUE

J=0

DO 450 N=1,NUMNP

DO 451 I=1,6

IF(IA(N,I).EQ.0) GO TO 451

J=J+1

R(J)=R(J)+PINC(N,I)

CONTINUE

CONTINUE

DO 2119 I=-1,NEQ

IF(IFIX.EQ.0) PSTART(I)=R(I)
IF(IFIX.EQ.1) PSTART(I)=R(I)+PSAVE(I)
CONTINUE

IF(PRIOPTN.EQ.0) GO TO 6977
WRITE(61,9735)

FORMAT(///,10X, 'R(1)",/)

DO 9736 IMM=1,NEQ

WRITE(61,9737) R(IMM)
FORMAT(//,10X,E21.15,/)

CONTINUE

ICHECK=3

GO TO 1001

CONTINUE

--------------------------------------------------
HEAXXARARTERKEEKXRKXARIR KWXKXKWK?‘XXKKKXKKXKX)\KAA?\ WRRARNAARARNRNAXANAR AN NHNHKRAARNRNIRNANKN

IF(NCOND.EQ.0) GO TO 801
CALL STCONDN
CONTINUE

SOLVE SYSTEM OF LINEAR EQUATIONS S*D=R
**%%%%%%%;iii*%%*%*%*%%%%%%%%k*%*%*%A%k&A%AA*kAAAk****************
IF(PROTYPE.NE.1) GO TO 601

SCALE=1.0E+05

J=0

DO 4666 N=1,6NUMNP

DO 4888 I=1,6

IF(IA(N,I).EQ.0) GO TO 4888

J=J+1

R(J)-R(J)+PINC(N,I)

CONTINUE

CONTINUE

IDET=1

CALL LINSOLN

IF(PROTYPE.EQ.2) GO TO 1778
IF(R(LODPONI).EQ.PINT(LNODEI,LDOFI)) CALL IDENT
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IF(R(LODPON1) .EQ.PINT(LNODE1l,LDOF1l)) CALL INVTRNS
T3 Sk ekttt e e e s ek e s el st e e e e e e e e e st o e e e s e s o
IN CASE WHICH WE WANT THE END FORCES DUE TO
THE LINEAR SOLUTION SUBROUTINE ENDFORC MAY BE CALLED
AT THIS STAGE(THE FIRST ITERATION OF THE FIRST
LOAD INCREMENT)
B L
IF(R(LODPON1) .EQ.PINT(LNODE1,LDOF1) .AND.ISTRESS.EQ.1) CALL STRESS
IF(PROTYPE.NE.1) GO TO 1778
DETER=DET1 (SCALE)
WRITE(61,399) PINT(LNODE1l,LDOF1l),D(LODPON1),DETER,NUMITER
GO TO 709

NUMITER=0

RECOVER INTERNAL D.O.F."S OF STRUCTURE
B e e

.

e Yoo vkl bkl ket

3

DO 1555 I=1,NEQ
DTEMP(I)=D(I)
IF(PROTYPE.NE.1) GO TO 715
NUMITER=NUMITER+1

CONTINUE

NN=MAXITER+1
IF(NUMITER.EQ.NN) GO TO 9999
IF(NCOND.NE.O) CALL RECOVER

IDENTIFY DISPLACEMENTS FOUND FROM SOLUTION OF S*D=R AND FROM
THE RECOVERY PROCESS
A A S S S B R b R e e S e e e e L

CALL IDENT
TO HAVE NODAL DEGREES OF FREEDOM IN LOCAL COORDINATES

Seste sk o sk s T o e ook e sk T sk ok e s TSk s s S e eSS et e e e Al el sl ok skttt
CALL INVTRNS

DO 180 I=1,NSIZE

DO 180 J=1,MBAND

S(1,J)=0.0

N=1

IPAR=3

CALL CURVED(N,IDATA, IARCH)
IF(ICAL3.EQ.0) CALL STCONDN
IF(NCOND.EQ.0) GO TO 802
CALL STCONDN

CONTINUE

IF(N20PTIN.EQ.0) GO TO 4991
DO 190 I=1,NSIZE

DO 190 J=1,MBAND

$(1,J)=0.0

IPAR=4

CALL CURVED(N, IDATA, IARCH)
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IF(ICAL3.EQ.0) CALL STCONDN
4991 CONTINUE
IF(NCOND.EQ.0) GO TO 899
CALL STCONDN
899  CONTINUE
IF(PROTYPE.EQ.1) GO TO 222
IF(PROTYPE.EQ.2.AND.EIGVALU.EQ.1)  CALL EIGENVL(EIGEN,IDATA)
IF(EIGVALU.EQ.2) GO TO 444
GO TO 900
222  CONTINUE
DO 107 I=1,NEQ
DO 108 J=1,MBAND
READ(4,10) RK
READ(S,10) RN1
IF(N20PTIN.EQ.1) READ(16,10) RN2
IF(N20PTIN.EQ.0) S(I,J)=RK+.5%RN1
IF(N20PTIN.EQ.1) S(I,J)=RK+.S5*RN1+RN2/3.
IF(N20PTIN.EQ.0) SP(I,J)=RK+RN1
IF(N20PTIN.EQ.1) SP(I,J)=RK+RN1+RN2
108  CONTINUE
107  CONTINUE
REWIND 4
REWIND 5
IF(N20PTIN.EQ.1) REWIND 16
IF(NUMITER.EQ.1) GO TO 701
GO TO 702
9999 J=0
DO 16 N=1,NUMNP
DO 17 I=1,6
IF(IA(N,I).EQ.0) GO TO 17
J=J+1
R(J)=R(J)+0.5*PINC(N,I)
17  CONTINUE
16  CONTINUE
DO 333 I=1,NEQ
333 D(I)=DTEMP(I)
WRITE(61,1899) PINT(LNONEL,LDOF1),PINC(LNODE1,LDOF1)
1899 FORMAT(15X,23HLOADINCREMENT IS HALVED/
+15X, 6HPLOAD=, F10.5/15X, SHPINC=,F10.5)
GO TO 1777
701  UOLD=D(LODPON1)
GO TO 778
702 IF(ABS((UOLD-D(LODPONL))/D(LODPON1)).LE.TOLER) GO TO 708
UOLD=D (LODPON1)
GO TO 778
708 DO 2555 I=1,NEQ
2555 DTEMP(I)=D(I)

IDET=3
WRITE(61,1399) PINT(LNODEl,LDOFl),D(LODPONl),NUMITER

1399 FORMAT(//,10X, SHLOAD=,F10.5/10X, 7HDEFLEC=, F15.10/
+10X, 11HITERATIONS=,15)
DETER=DET1 (SCALE)
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WRITE(61,399) PINT(LNODE1l,LDOFl),D(LODPON1),DETER, NUMITER
IF(DETER.LE.O. .AND.DETOPTN.EQ.1) GO TO 900
709 J=0
DO 161 N=1,NUMNP
DO 171 I-1,6
IF(IA(N,I).EQ.0) GO TO 171
J=J+1
R(J)=R(J)+PINC(N,I)
171 CONTINUE
161 CONTINUE
1777 IF(ABS(PINT(LNODEl,LDOFl)).GT.ABS(PTOT(LNODEl,LDOFl))) GO TO 900

GO TO 299
C
444 CONTINUE
C **%*%%%**%*%%%*%%%%*%%%%%k%kk%%%i*%%kk%*%%i%%%kk%A'k&&k%%**%%*kk%k
o TO HAVE EIGENVALUE SOLUTION USING DETERMINANT SEARCH METHOD
C INTHE CASE OF IEIGEN=1 (N1) STIFFNESS MATRIX WOULD
C BE CONSIDERED IN SUBROUTINE NLEIGNP FOR NONLINEAR
c EIGENVALUE PROBLEM.
C FOR IEIGEN=2 (N1+K) WOULD BE CONSIDERED
C **%**%%*k%%%%%%i%%%%%*k%i%k%%i*%%i%%ki%%k%Ak&kkkkkAkkkkiiiiiki%%%k

IEIGEN=1
SCALE=1.0E+05
CALL NLEIGNP(SCALE)
900 CONTINUE
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
10 FORMAT(E21.6)
399 FORMAT(///lOX,5HLOAD=,F15.9/10X,'D(LODPON1)=’,FlS.lO/
+ lOX,12HDETERMINANT=,E25.15/10X,11HITERATIONS=,IS/)
699 FORMAT (6F10.6,15)
1010 FORMAT(AIO,AIO,AlO,AlO,AlO,AlO,AlO,AlO)
1015 FORMAT(11I5)
1020 FORMAT(215)
1030 FORMAT(3I5)

2010 FORMAT(////7X,6HNE  =,13//7X, 6HNUMNP=,13//7X,
+ GHNUMEG=, 13//7X, 6HIDATA=,13//7X,6HICAL1=,13//7X, 6HICAL2=,
+ 13//7X, 6HICAL3=,13//7X, 6HICAL4=,13//7X, 6HICALS=,13//
+ 7X, 6HICAL6=,13//7X, 6HICAL7=,13)

2015 FORMAT(‘1+,15H INITIAL LOADS//7H  NODE,27X,14HLOAD DIRECTION//
+ 7H NUMBER,9X,1HU,9X,1HV, 9K, 1HW, 9X, 1HB, 8X, 2HTY, 8K, 2HTX//)

2020 FORMAT('1’,Al0,A10,A10,A10,A10,A10,A10,A10)
2030 FORMAT(////7X,8HIARCH =,13//7X,8HILOAD =,13//7X,8HIDIRCN =,13)

END

(@]

SUBROUTINE NODDATA (IARCH,DX)

******************************************************************

TO READ AND PRINT NODAL POINT DATA
TO CALCULATE EQUATION NUMBERS AND CONDENSATION NUMBERS AND
STORE THEM IN ARRAYS -IA- AND -IB- RESPECTIVELY

aOaaOaoaon
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REAL L

COMMON /C1/NE , NUMNP, D1(15)

COMMON /C2 /NSIZE,NEQ, NCOND , MBAND , IEIGEN

COMMON /C3/IA(37,8),IB(37,8),X(37),Y(37),2(37) ,R,A
COMMON /C19/TT (36)

..... READ NODAL POINT DATA

WRITE(61,2000)

WRITE(61,2010)

WRITE(61,2015)

IF (IARCH.EQ.0) GO TO 101

IF (IARCH.EQ.2) GO TO 104

READ(60,1010) R

READ(60,1000) N, (IA(N,I),I=1,6),(IB(N,I),I=1,6),T,Z(N)
PI=4.*ATAN(1.)

T=T*P1/180.

X(N)=SIN(T)*R

Y(N)=R*(1.-COS(T))

WRITE(61,2020) N,(IA(N,I),I=1,6),(IB(N,I),I=1,6),X(N),Y(N),Z(N)
IF (N.NE.NUMNP) GO TO 100

GO TO 103

CONTINUE

READ(60,1020) H,L,DI,XS

A=H/ (XS*XS)

DX=L/DI1

DL=0.

READ(60,1000) N,(IA(N,I),I=1,6),(IB(N,I),I=1,6),T,Z(N)
X(N)=XS+DL

Y(N)=A*X(N)*X(N)

WRITE(61,2020) N,(IA(N,I),I=1,6),(IB(N,I),I=1,6),X(N),Y(N),Z(N)
DL=DL+DX

IF (N.NE.NUMNP) GO TO 102

GO TO 103

CONTINUE

READ(60,1021) H,L

READ(60,1001) N,(IA(N,I),I=1,6),(IB(N,I),I=l,6),TT(N),X(N),Y(N)
+ ,Z(N)
WRITE(61,2021)N,(IA(N,I),I=1,6),(IB(N,I),I=1,6),TT(N),X(N),Y(N)
+ ,Z(N)

IF(N.NE.NUMNP) GO TO 106

PROCESS ARRAYS -IA- AND -IB- TO FIND EQUATION NUMBERS AND
CONDENSATION NUMBERS. STORE NEQ"S AND NCOND"S IN ARRAYS IA AND

IB RESPECTIVELY.

NEQ=0

NCOND=0

DO 125 N=1,NUMNP
DO 120 I=1,6
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1000
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IF(IA(N,I).NE.1) GO TO 105
IA(N,I)=0

GO TO 120

IA(N,I)=-1

IF(IB(N,I)) 110,115,120
NCOND=NCOND+1
IB(N,I)=-NCOND

GO TO 120

NEQ=NEQ+1

IA(N, I)=NEQ

CONTINUE

CONTINUE
NSIZE=NEQ+NCOND

....WRITE GENERATED NODAL POINT DATA

WRITE(61,2030)

WRITE(61,2040)

WRITE(61,2050) (N, (IA(N,I),I=1,6),(IB(N,I),I=1,6),6N=1, NUMNP)
WRITE(61,2060) NSIZE,NEQ,NCOND

RETURN

FORMAT(I5,1213,F15.10,F10.6)
FORMAT(15,1213,F9.6,3F10.6)

FORMAT (F15.9)

FORMAT (4F10.5)

FORMAT (2F10.5)

FORMAT(’1’,33H NODAL POINT DATA //)

FORMAT (18H INPUT NODAL DATA //)
FORMAT (7H NODE, 26X, 36HNODAL POINT BOUNDARY CONDITION CODES, 33X,

+ 23HNODAL POINT COORDINATES/7H NUMBER, 21X, 7HIA(N,I),33X,
+ 7HIB(N,I)/11X,2(4X,lHU,&X,lHV,AX,lHW,&X,lHB,3X,2HTY,3X,
+ 2HTX,1OX),9X,4HX(N),8X,4HY(N),8X,4HZ(N))

FORMAT (I5,6X,1215,4X,3F12.3)

FORMAT (I5,6X,1215,4X,F9.6,3F12.3)

FORMAT (///22H GENERATED NODAL DATA //)
FORMAT(7H  NODE, 16X, 16HEQUATION NUMBERS, 22X,

+ 20HCONDENSATION NUMBERS/7H NUMBER, 21X, 7HIA(N,I),33X,
+ 7HIB(N,I)/llX,Z(AX,lHU,éX,1HV,4X,1HW,4X,lHB,3X,2HTY,3X,
+ 2HTX,10X))

FORMAT(I5,6X,1215)
FORMAT('-’,6HNSIZE=,I3,3X,4HNEQ=,I3,3X,6HNCOND=,I3)

END

SUBROUTINE LOAD (IARCH,ILOAD,IDIRCN,DX,WW)

1o ot tanle ato ata ilo o, -
**k&%*%%%%%*i*%%ii;%%%%*%%%%%%%*%%i%k%%%kAkk*****kmA"knnkx**k*****

TO READ AND STORE INITIAL LOAD DATA

****'k*****************************v’c* e Yoo Yo e Fo v e T e Y

v.

REAL LENGTH
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COMMON/C1/NE, NUMNP, D1(15)

COMMON/C3/IA(37,8),IB(37,8),X(37),Y(37),2(37) ,RAD,AC

COMMON /C5/E(3),G(3),NODEI(36) ,NODEJ (36) ,D5(180)

COMMON/C7/RI (36) ,RJ(36) ,PHII(36),PHIJ(36),TETA(36) ,LENGTH(36),
+ RIA(36),RJIA(36)

COMMON/C8/PN(37,8) ,R(296) ,PINT(37,8)

c

C........ CHECK TYPES OF LOADS TO BE READ

C ILOAD.EQ.0 , LOAD IS UNIFORMLY DISTRIBUTED
C ILOAD.EQ.1 , LOADS ARE CONCENTRATED

C

IF (ILOAD.EQ.0) GO TO 200

100 READ(60,1023) MN, (PN(MN,I),I=1,6)
WRITE(61,2020) MN, (PN(MN,I),I=1,6)
IF(MN.NE.NUMNP) GO TO 100
RETURN

200 CONTINUE
READ(60,1020) WW
IF (IDIRCN.EQ.0) WRITE(61,2030) WW
IF (IDIRCN.EQ.1l) WRITE(61,2040) WW
DO 300 NM=1,NUMNP
DO 300 I=1,6

300 PN(NM,I)=0.
DO 400 M=1,NE
NI=NODEI (M)
NJ=NODEJ (M)

c

C........ CHECK IF DISTRIBUTED LOAD IS VERTICAL OR HORIZONTAL
C THEN CONCENTRATE IT AT THE NODES IN COMPONENTS

C IDIRCN.EQ.O0 , VERTICAL

C IDIRCN.EQ.1 , HORIZONTAL

C

IF (IDIRCN.EQ.1) GO TO 350
IF (IARCH.EQ.1) DX=ABS(X(NJ)-X(NI))
PN(NT,1)=PN(NI,1)+DX/2.*W*COS(PHII(M))
PN(NI,3)=PN(NI,3)+DX/2.*W*SIN(PHII(M))
PN(NJ,1)=PN(NJ,1)+DX/2.*W*COS (PHIJ (M))
PN(NJ, 3)=PN(NJ, 3)+DX/2 . *W*SIN(PHIJ (M))
GO TO 400

350  CONTINUE
PN(NT, 2)=PN (NI, 2)+W*LENGTH(M) /2.
PN(NJ, 2)=PN(NJ, 2)+W*LENGTH (M) /2.

400  CONTINUE
WRITE(61,2020) (N, (PN(N,I),I=1,6) 6N=1,NUMNP)
RETURN

1023 FORMAT(IS5,6F7.1)
1020 FORMAT(F10.5)

2020 FORMAT(IS,6X,6F10.3) .
2030 FORMAT(’ -’ ,38HUNIFORMLY DISTRIBUTED VERTICAL LOAD W=,F10.5//)

2040 FORMAT('-',40HUNIFORMLY DISTRIBUTED HORIZONTAL LOAD W=,F10.5//)
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END
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SUBROUTINE ELEMENT (N, IDATA,IARCH)

R S S A A o S S S S S T S S sl e o s db S S S S S T S S e S e o e e e e S e s ok s ok s S ok o

TO CALL THE APPROPRIATE ELEMENT SUBROUTINE
B R SUSUR USSR AN NS

COMMON/C1/NE, NUMNP ,NUMEG,NTYPE(3),D12(11)

IF (NTYPE(N).GT.1l) GO TO 200
CALL CURVED (N, IDATA,IARCH)
RETURN

RETURN

END

SUBROUTINE BAND

e T R S S T e e S e R e R R e e e R e e e e e e ek
TO COMPUTE SEMIBANDWIDTH OF STRUCTURE STIFFNESS MATRIX
DONE BY FINDING THE MAXIMUMN DIFFERENCE BETWEEN THE
EQUATION NUMBERS ASSOTIATED WITH THE NODES OF A

PARTICULAR ELEMENT
B R R U RS e S S TS )

COMMON/C1/NE , NUMNP, D1(15)
COMMON /C2 /NSIZE,NEQ, NCOND, MBAND , IEIGEN
COMMON/C3/IA(37,8),D3(409)

COMMON /C5/E(3),G(3) ,NODEI (36) ,NODEJ (36),D5(180)

MBAND=0

DO 900 M=1,NE

NI=NODEI (M)

NJ=NODEJ (M)

DO 800 I=1,6

IF (IA(NI,I).LE.0) GO TO 800
N1=IA(NI,I)

DO 700 J=1,6

IF (IA(NJ,J).LE.O0) GO TO 700
N2=IA(NJ,J)

MB=N2-N1

IF (MB.LT.0) MB=-MB+l

IF (MB.GT.0) MB=MB+1

IF (MB.GT.MBAND) MBAND=MB
CONTINUE

CONTINUE

CONTINUE

WRITE(61,2000) MBAND

RETURN

FORMAT('1’,20HSEMIBANDWIDTH MBAND=,13)

END
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SUBROUTINE CURVED (N, IDATA, IARCH)
T R R e

CURVED ELEMENT SUBROUTINE
F R e e e e ek e e ek ook

REAL IXX,IYY,KT,II,JJ,LENGTH
COMMON/C1/NE, NUMNP, NUMEG ,NTYPE (3) ,NUMEL(3) , IPAR, ICAL1, ICAL2,
+ ICAL3, ICAL4,ICALS,ICAL6, ICAL7
COMMON /C2 /NSIZE,NEQ, NCOND, MBAND , IEIGEN
COMMON/C4 /SE(16,16)
COMMON/C5/E(3),G(3) ,NODEI(36) ,NODEJ(36) ,A(36) ,IXX(36),IYY(36),
+ KT(36),L(1,36)
COMMON /C6/A1,A2 ,MP,B1(36),B2(36),B3(36)
COMMON /C7 /RI(36) ,RJ(36),PHII(36),PHIJ(36),TETA(36) ,LENGTH(36),
+ RIA(36),RJIA(36)
COMMON/C8/PN(37,8),R(296),PINT(37,8)
COMMON/C9/S(296,16),SP(296,16) , IDET
COMMON/C10/D(296) ,D10(1184) ,RC(296),SC(296,16)
COMMON/C11/DN(16),U(36,12),W(37,8),V(37,8)
COMMON /C12 /ULOC(36,12) ,RCOL(9) ,MSUOPTN,N1GOPTIN
COMMON/C19/TT(36)

GO TO (100,200,300,400),IPAR

..... READ MATERIAL INFORMATION

WRITE(61,2000) NTYPE(N)
READ(60,1010) E(N),G(N),DM
WRITE(61,2020) NUMEL(N),E(N),G(N),bDM

READ ELEMENT AND CROSS SECTION INFORMATION

WRITE(61,2021)

K=0 '

READ(60,1020) M,NODEI(M),NODEJ(M),A(M),IXX(M),IYY(M),KT(M)
WRITE(61,2022) M,A(M),IXX(M),IYY(M),KT(M)

K=K+1

L(N,K)=M

IF(K.NE.NUMEL(N)) GO TO 105

READ AND CALCULATE ELEMENT GEOMETRIC PROPERTIES

IF (ICAL2.EQ.0) WRITE(61,2025)
DO 110 KK=1,K

M=L(N,KK)

CALL GEOMTRY (M, IARCH)
CONTINUE

RETURN

CONTINUE
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..... CALCULATE LINEAR STIFFNESS MATRIX OF EACH ELEMENT AND STORE IN

ARRAY SE(M,I,J). READ LIMITS OF INTEGRATION AND THE MP-POINTS
OF INTEGRATION TO BE USED IN THE GAUSS-LEGENDRE QUADRATURE

IF (IDATA.EQ.0) READ(60,1030) Al,A2,MP
IF (ICAL1.EQ.0) WRITE(61,2030) Al,A2,MP

..... OBTAIN LINEAR STIFFNESS FOR EACH ELEMENT. INTEGRATE NUMERICALLY

INUMEL~-NUMEL(N)

DO 220 K=1,INUMEL

M=L(N,K)

CALL NUMINT (N,M)

IF(ICAL1.NE.O0) GO TO 215
WRITE(61,2032) M

WRITE(61,2034) ((SE(I,J),J=1,6),I=1,6)
WRITE(61,2036)

WRITE(61,2034) ((SE(I,J),J=7,12),I=1,6)
WRITE(61,2038)

WRITE(61,2034) ((SE(I,J),J=1,6),1=7,12)
WRITE(61,2040)

WRITE(61,2034) ((SE(I,J),J=7,12),1I=7,12)
WRITE(1,10) ((SE(I,J),J=1,12),I=1,12)
CONTINUE

REWIND 1

ASSEMBLE LINEAR STIFFNESS OF EACH ELEMENT
INTO LINEAR STIFFNESS OF STRUCTURE

DO 230 K=1,INUMEL

M=L(N,K)

READ(1,10) ((SE(I,J),J=1,12),1=1,12)
CALL ASEMBLE (M)

CONTINUE

REWIND 1

REWIND 9

REWIND 8

WRITE(4,10) ((S(I,J),J=1,MBAND),I=1,NSIZE)
REWIND 4

RETURN

CONTINUE

OBTAIN NONLINEAR STIFFNESS -SEl- FOR EACH ELEMENT.
INTEGRATE NUMERICALLY.

DO 320 K=1,INUMEL
M=L(N,K)
NI=NODEI (M)
NJ=NODEJ (M)

DO 305 ID=1,6
DN(ID)=U(NI,ID)
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305 DN(ID+6)=U(NJ,ID)
CALL NUMINT (N,M)
IF(ICAL1.NE.O) GO TO 315
WRITE(61,2050) M
WRITE(61,2034) ((SE(I,J),J=1,6),I=1,6)
WRITE(61,2036)
WRITE(61,2034) ((SE(I,J),J=7,12),I=1,6)
WRITE(61,2038)
WRITE(61,2034) ((SE(I,J),J=1,6),1=7,12)
WRITE(61,2040)
WRITE(61,2034) ((SE(I1,J),J=7,12),1=7,12)
315 WRITE(2,10) ((SE(1,J),J=1,12),I1=1,12)
320 CONTINUE

REWIND 2
C
C........ ASSEMBLE NONLINEAR STIFFNESS SE1 OF EACH ELEMENT
C INTO NONLINEAR STIFFNESS OF STRUCTURE, S1.
C STORE MATRIX S1
C

DO 330 K=1,INUMEL
M=L(N, K)
READ(2,10) ((SE(1,J),J=1,12),1=1,12)
CALL ASEMBLE (M)
330 CONTINUE

REWIND 2
WRITE(S,10) ((S(I,J),J=1,MBAND),I=1,NSIZE)
REWIND 5
RETURN
c
400  CONTINUE
C
Covvnn OBTAIN NONLINEAR STIFFNESS -SE2- FOR EACH ELEMENT.
C INTEGRATE NUMERICALLY. -
c
DO 420 K=1,INUMEL
M=L(N,K)
NI=NODEI (M)
NJ=NODEJ (M)

DO 405 ID=1,6
DN(ID)=U(NI,ID)
405  DN(ID+6)=U(NJ,ID)
CALL NUMINT (N,M)
IF(ICALL.NE.O) GO TO 415
WRITE(61,2055) M
WRITE(61,2034) ((SE(I,J),J=1,6),I=1,6)
WRITE(61,2036)
WRITE(61,2034) ((SE(I,J),J=7,12),1=1,6)
WRITE(61,2038)
WRITE(61,2034) ((SE(1,J),J=1,6),1=7,12)
WRITE(61,2040)
WRITE(61,2034) ((SE(I,J),J=7,12),1=7,12)
415 WRITE(3,10) ((SE(I,J),J=1,12),I-1,12)
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CONTINUE
REWIND 3

....ASSEMBLE NONLINEAR STIFFNESS SE2 OF EACH ELEMENT
INTO NONLINEAR STIFFNESS OF STRUCTURE, S2.
STORE MATRIX S2

DO 430 K=1,INUMEL

M=L(N,K)

READ(3,10) ((SE(I,J),J=1,12),I=1,12)

CALL ASEMBLE (M)

CONTINUE

REWIND 3

WRITE(16,10) ((S(I,J),J=1,MBAND),I=1,NSIZE)
REWIND 16

RETURN

FORMAT (E21.6)
FORMAT(3E10.2)
FORMAT(315,4E15.6)

FORMAT (2F5.2,15)
FORMAT('1',23H.G RO U P NUMBER ,12//2X,6HNUMBER, 6X, 7HMODULUS

+ ,11X,5HSHEAR,8X,7HDENSITY/4X,2HOF,llX,ZHOF,lZX,7HMODULUS/
+ 1X, 8HELEMENTS, 4X, 10HELASTICITY)
FORMAT(16,3E17.6) :
FORMAT (//8H ELEMENT,9X,4HA(M),10X,6HIXX(M);9X,6HIYY(M),9X,5HKT(M))
FORMAT(16,5X,4E15.6)
FORMAT(//8H ELEMENT,3X,8HNODEI(M),3X,8HNODEJ(M),9X,

+ 19HRADIUS OF CURVATURE,18X,17HNODAL SLOPE ANGLE/8H NUMBER/
+ 39X,5HRI(M),10X,5HRJ(M),15X,7HPHII(M),8X,7HPHIJ(M),7X,
+ 7HTETA(M))

FORMAT('1’,21HLIMITS OF INTEGRATION, 3X,3HAl=,F3.1,3X,3HA2=,F3.1//
+ 26H QUADRATURE FORMULA POINTS, 3X, 3HMP=,12)

FORMAT (' 1’ , 44HUNCONDENSED LINEAR STIFFNESS (SE) OF ELEMENT,I3///
+ 9H BLOCK II)

FORMAT (//1X,6F15.6)

FORMAT(///9H BLOCK 1J)

FORMAT(’1’//9H BLOCK JI)

FORMAT(///9H BLOCK JJ)
FORMAT(’1’ ,48HUNCONDENSED NONLINEAR STIFFNESS (SE1) OF ELEMENT,I3

+ ///9H BLOCK ITI)
FORMAT(’ 1" ,48HUNCONDENSED NONLINEAR STIFFNESS (SE2) OF ELEMENT,I3

+ ///9H BLOCK II)

END

SUBROUTINE GEOMTRY (M, IARCH)

------------------- Jeslelede ek de e ek kb e

------------------------- D T X A E R R Ttk e

------------
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REAL IXX,IYY,KT,II,JJ,LENGTH
COMMON/C1/NE, NUMNP , NUMEG, NTYPE(3) ,NUMEL(3) , IPAR, ICALL, ICAL2,

+ ICAL3,ICAL4,ICALS,ICAL6,ICAL7
COMMON/C3/IA(37,8),1B(37,8),X(37),Y(37),Z(37),R,AC
COMMON/C5/E(3),G(3) ,NODEI (36) ,NODEJ (36),A(36),IXX(36),IYY(36),

+ KT(36),L(1,36)

COMMON/C6/A1,A2 ,MP,B1(36),B2(36),B3(36)
COMMON /GC7 /RI(36) ,RJ(36),PHII(36),PHIJ(36),TETA(36) ,LENGTH(36),

+ RIA(36),RJA(36)

COMMON/C19/TT(36)

XI=X(NODEI (M))
YI=Y(NODEI(M))
XJ=X (NODEJ (M) )
YJ=Y(NODEJ (M))

C........ READ ELEMENT GEOMETRIC PROPERTIES

IF (IARCH.EQ.0) GO TO 100
IF (IARCH.EQ.2) GO TO 190
RI(M)=R
RJ (M)=R
DY=XI/SQRT (R*R-XI*XI)
PHII (M)=ATAN(DY)
DY=XJ /SQRT (R*R-XJ*XJ)
PHIJ (M)=ATAN(DY)
GO TO 200

100  CONTINUE
D2Y=2.*AC
DY=2 . *AC*XI
RI(M)=(1.+DY*DY)**1.5/D2Y
PHII (M)=ATAN(DY)
DY=2 . *AC*XJ
RJ(M)=(1.+DY*DY)**1.5/D2Y
PHIJ (M)=ATAN(DY)
GO TO 200

190  CONTINUE
PHII (M)=TT(NODEI(M))
PHIJ (M)=TT (NODEJ (M) )

200  CONTINUE
XL=XJ -XI
YL=YJ-YI
TETA(M)=ABS (PHII (M) - PHIJ (M))
T=TETA (M)

C........ CALCULATE NODAL LOCAL COORDINATES AFTER ROTATION

ZR=XL*COS (PHII (M) )+YL*SIN(PHII(M))
XR=-XL*SIN(PHII(M))+YL*COS(PHII(M))

Co..ovvt CHECK DATA GENERATION
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IF (ICAL2.EQ.0) WRITE(61,2010) M,NODEI (M) ,NODEJ (M) ,RI (M) ,RJ (M),
+ PHII(M),PHIJ(M),T

........ SOLVE SYSTEM OF EQUATIONS IN CLOSED FORM ,
OBTAIN VARIABLES Bl, B2, RIA(M), RJA(M), AND LENGTH(M),
FIRST CALCULATE COEFFICIENTS OF THE VARIABLES

aoaoao

AAl1l=1.-COS(T)
AA12=2 .%(SIN(T)-T*COS(T))
AA21=SIN(T)

AA22=2 % (T*SIN(T)+COS(T)-1.)

C.o....... CALCULATE B1,B2,RIA(M),RJA(M),LENGTH(M)

B2(M)=(AA11*ZR-AA21*XR)/(AA11*AA22-AA12*%AA21)
B1(M)=XR/AA11-AA12*B2(M)/AAll
LENGTH(M)=B1 (M) *T+B2 (M) *T*T

RIA(M)=B1(M)

RJA(M)=B1(M)+2.*B2(M)*T

IF (IARCH.EQ.2) RI(M)=RIA(M)

IF (IARCH.EQ.2) RJ(M)=RJA(M)

Cooo ... CHECK DATA GENERATION

IF(ICAL2.EQ.0) WRITE(61,2020) XR,ZR,B1(M),B2(M),LENGTH(M),

+ RIA(M),RJA(M)
RETURN

C

2010 FORMAT(//16,5X,15,6X,15,6X,2F15.6,6X,3F15.6)

2020 FORMAT(/10X,3HXR=,F15.10, 3X, 3HZR=,F15.10//10X, 6HB1 (M)=,E15.9, 3X,
+ 6HB2 (M)=,E15.9, 3X, LOHLENGTH(M)=, F13.6//10X, L LHRI (APPROX ) =
+ ,F15.9,10X, 11HRJ (APPROX)=,F15.9//)

END

SUBROUTINE NUMINT (N,M)

DOUBLE PRECISION AO1,A02,A3,A4,A5,A6,BTG,BLG

B R R R £ R R e e
TO INTEGRATE NUMERICALLY THE TERMS OF THE CURVED ELEMENT
STIFFNESS MATRICES SE, SEl, SE2, IT USES THE GAUSS-LEGENDRE
QUADRATURE FORMULA.
THE ROUTINE NUMINT USES THE MP-POINT GAUSS-LEGENDRE QUADRATURE
FORMULA TO COMPUTE THE INTEGRAL OF FUNCTN(GM)*DGM BETWEEN
INTEGRATION LIMITS Al AND A2. THE ROOTS OF SEVEN LEGENDRE
POLYNOMIALS AND THE WEIGHT FACTORS FOR CORRESPONDING
QUADRATURES ARE STORED IN THE Z AND WEIGHT ARRAYS RESPECTIVELY.
MP MAY ASSUME VALUES 2, 3, 4, 5, 6, 10, AND 15 ONLY. THE
APPROPRIATE VALUES FOR THE MP-POINT FORMULA ARE LOCATED IN
ELEMENTS Z(KEY(I))...Z(KEY(I+1)-1) AND WEIGHT(KEY(I))...
WEIGHT (KEY(I+1)-1) WHERE THE PROPER VALUE FOR I IS DETERMINED
BY FINDING THE SUBSCRIPT OF THE ELEMENT OF THE ARRAY NPOINT
WHICH HAS THE VALUE MP. IF AN INVALID VALUE OF MP IS USED, A

TRUE ZERO IS RETURNED AS THE VALUE OF GAUSS.

EesEeNeoNeoNoNeoNoNeNoNeoRoRo N Reo N o)
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REAL IXX,IYY,KT,II,JJ,LENGTH,L1,L2,K,KK,LL,MM,NN,MS
DIMENSION NPOINT(7),KEY(8),Z(24),WEIGHT(24),K(16,16)
COMMON/C1/NE, NUMNP , NUMEG , NTYPE(3) ,NUMEL(3) , IPAR, ICAL1, ICAL2, ICAL3,
+ ICAL4, ICALS,ICAL6,ICAL7
COMMON/C4 /SE(16,16)
COMMON/C5/E(3),G(3) ,NODEI(36) ,NODEJ (36) ,A(36) ,IXX(36),IYY(36),
+ KT(36),L(1,36)
COMMON/C6 /A1,A2 ,MP,B1(36),B2(36),B3(36)
COMMON/C7/RI(36) ,RJ(36),PHII(36),PHIJ(36),TETA(36) ,LENGTH(36),

+ RIA(36),RJA(36)
COMMON/C11/DN(16),U(36,12),W(37,8),V(37,8)
COMMON/C18/IARCH
DATA NPOINT/ 2, 3, 4, 5, 6, 10, 15/

DATA KEY/ 1, 2, 4, 6, 9, 12, 17, 25/
DATA Z / 0.577350269,0.0 ,0.774596669,

1 0.339981044,0.861136312,0.0 ,0.538469310,

2 0.906179846,0.238619186,0.661209387,0.932469514,

3 0.148874339,0.433395394,0.679409568,0.865063367,

4 0.973906529,0.0 ,0.201194094,0.394151347,

5 0.570972173,0.724417731,0.848206583,0.937273392,

6 0.987992518 /

DATA WEIGHT / 1.0 ,0.888888889,0.555555556,

1 0.652145155,0.347854845,0.568888889,0.478628671,

2 0.236926885,0.467913935,0.360761573,0.171324493,

3 0.295524225,0.269266719,0.219086363,0.149451349,

4 0.066671344,0.202578242,0.198431485,0.186161000,

5 0.166269206,0.139570678,0.107159221,0.070366047,

6 0.030753242 /

C
T=TETA (M)
R1=RI (M)
R2=RJ (M)
L1-R1*T
L2=R2*T
c
Covvvnn FIND SUBSCRIPT OF FIRST Z AND WEIGHT VALUE
c
DO 100 I=1,7

IF(MP.EQ.NPOINT(I)) GO TO 200
100 CONTINUE

C
C.o..ooot INVALID MP USED
c
GAUSS=0.0
WRITE(61,2000) GAUSS
RETURN
c
C.o....... SET UP INITIAL PARAMETERS
C

200  JFIRST=KEY(I)
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JLAST=KEY(I+1)-1
C=(A2-A1)/2.

D=(A2+A1) /2.

c

C........ ACCUMULATE THE SUM IN THE MP-POINT FORMULA
C

ccec

IF (IPAR.GE.3) GO TO 543
DO 249 I=1,16
DO 249 J=1,16

249  K(I,J)=0.0

GO TO 248
543 CONTINUE
CccccC
DO 250 I=1,12
DO 250 J=1,12
250 K(I,J)=0.0

248  CONTINUE
IF(IPAR.GE.3) GO TO 390
DO 500 J=JFIRST,JLAST
I=0
IF (Z(J).EQ.0.) GO TO 350
300 I=I+1
IF (I1.EQ.1) GM=Z(J)*C+D
IF (I1.EQ.2) GM=-Z(J)*CtD
GO TO 360
350  GM=D
360  AA=6.*GM*%2-6,%GM
BB=3,%GM**2-4  *GM+1.
CCm3.%GM**2 -2, *GM
DD=12.*GM-6.
EE=6.%GM-4 .
FF=6.%GM-2.
GG=2 . %GM**3-3  *GM**2+1.
HH=GM**3 -2 , *GM**2+GM
II=-2 . %GM**3+3 , *GM**2
JJ=GM#**3 - GM#**2
KK=1.-GM
R=B1(M)+2.%B2 (M)*T*GM
GMSS=(-1./(R¥*3%T))*(2.%B2(M))
GMSG=R*T*GMSS

CHECK WHICH PART OF THE STIFFNESS MATRIX IS BEING COMPUTED
IPAR=2, COMPUTE ARRAY SE
IPAR=3, COMPUTE ARRAY SEl
IPAR=4, COMPUTE ARRAY SE2

oooooooo

aaoooan
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........ INTEGRANDS OF CURVED ELEMENT LINEAR STIFFNESS (SYMMETRIC)

Cl=-E(N)*A(M)*GG/R
C2=(E(N)*IYY (M) /(R*¥*3%T**3) )% (DD+AA*GMSSHR¥**2*T%*2)
C3-(E(N)*IXX(M)*T/R**3)*(-DD/T**2-GMSS*R**2*AA)
C4=G (N)*KT (M) *AA/ (R**3*T)
CS5=(E(N)*A(M)/(R*T) )*(AA+T**2¥HH)
C6=(E(N)*IYY(M)/(R¥*3%T*%3) )% (-T*¥EE-GMSS*R¥**2*T**3*BB+T*AA+
+  GMSG*R*T**2*GG) '
C7=E(N)*IXX(M)*T*GG/R**2
C8=G(N)*KT (M) *AA/ (R**2*T)
C9=-E(N)*A(M)*L1*HH/R
C10-(E(N)*IYY(M)/(R**B*T**B))*(Ll*EE+GMSS*R**Z*T**Z*LI*BB)
Cll-(E(N)*IXX(M)*T/R**B)*(Ll*EE/T**2+GMSS*R**Z*LI*BB)
C12=-G(N)*KT(M)*L1*BB/(R**3*T)
Cl3=E(N)*A(M)*R1*BB/(R*T)
C14-(E(N)*IYY(M)/(R**3*T**3))*(T*RI*BB+GMSG*R*T**Z*Rl*HH)
C15=E(N)*IXX(M)*T*L1*HH/R**2
C16=G(N)*KT (M)*L1*BB/(R**2*T)
Cl7=-E(N)*A(M)*II/R
C18-(E(N)*IYY(M)/(R**3*T**3))*(-DD-GMSS*R**Z*T**Z*AA)
Cl19=-C3
C20=-C4
C21=(E(N)*A(M)/(R*T) ) * (- AA+T**2*JJ)
C22-(E(N)*IYY(M)/(R**3*T**3))*(-T*FF-GMSS*R**Z*T**3*CC-T*AA+

+ GMSG*R*T*%2*11)
C23=E(N)*IXX(M)*T*II/R¥*2
C24=-C8
C25=(-E(N)*A(M)*L2*JJ) /R
025_(E(N)*IYY(M)/(R**3*T**3))*(L2*FF+GMSS*R**Z*T**Z*LZ*CC)
027-(E(N)*IXX(M)*T/R**3)*(L2*FF/T**2+GMSS*R**Z*LZ*CC)
C28=-G(N)*KT (M) *L2%CC/ (R¥*3*T)
C29=E(N)*A(M)*R2*CC/ (R*T)
c3o=(E(N)*IYY(M)/(R**3*T**3))*(T*RZ*CC+GMSG*R*T**Z*RZ*JJ)
C31-E(N)*IXX(M)*T*LZ*JJ/R**Z
C32-G(N)*KT(M)*LZ*CC/(R**Z*T)

SE(l,1)-C1*T*(-GG)+C2*(DD+AA*GMSS*R**2*T**2)
SE(1,2)=0.0

SE(1,4)=0.0

SE(1,6)=0.0

SE(1,8)=0.0

SE(1,10)=0.0

SE(1,12)=0.0

SE(1,14)=0.0

SE(1,16)=0.0 . '
SE(l,3)=Cl*(AA+T**2*HH)+C2*(-T*EE-GMSS*R**Z*T**3WBB+T*AA+
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GMSG*R*T**2%GG)
SE(1,5)=C1*T#*(-L1)*HH+C2*L1% (EE+BB*GMSS#*R**2#T+#%2)
SE(1,7)=C1*R1*BB+C2%* (T*R1*BB+GMSG*R*T#*2+*R1*HH)
SE(1,9)=Cl%(-T*II) -C2%(DD+AAXGMSS*R*%2%T+%2)
SE(L1,11)=Cl%*(-AA+T**2%JJ)+C2% (-T*FF-GMSS#*R**2*T#%3%CC-T*AA+

GMSG*R*T**2*I1)
SE(1,13)=Cl*(-T*L2%JJ)+C2%(L2*FF+GMSS*R#*2+T**2%L2%CC)
SE(1,15)=C1%(R2*CC)+C2% (T*R2*CC+GMSG*R*T**2%JJ)

SE(2,2)=C3*(-DD/T**2-GMSS*R**2*AA)+C4*AA
SE(2,3)=0.0

SE(2,5)=0.0

SE(2,7)=0.0

SE(2,9)=0.0

SE(2,11)=0.0

SE(2,13)=0.0

SE(2,15)=0.0

SE(2,4)=C3*R*GG+C4*R*AA
SE(2,6)=C3%(L1*EE/T**2+GMSS*R**2*L1*BB) - C4*L1*BB
SE(2,8)=C3*R*L1*HH+C4*R*L1*BB
SE(2,10)=C3%(DD/T**2+GMSS*R**2*AA) - C4+AA
SE(2,12)=C3*R*II-C4*R*AA

SE(2,14)=C3% (L2*FF/T**2+GMSS*R**2*L2*CC) - C4*L2*CC
SE(2,16)=C3*R*L2%*JJ+C4*R*L2*CC

SE(3,3)=C5% (AA+T**2%HH)+C6% ( - T¥EE - GMSS*R¥*2# T 3% BB+T*AA+
GMSGH*R*T**2%GG)

SE(3,4)=0.0

SE(3,6)=0.0

SE(3,8)=0.0

SE(3,10)=0.0

SE(3,12)=0.0

SE(3,14)=0.0

SE(3,16)=0.0

SE(3,5)=C5%( - T*L1*HH)+C6% (LL*EE+GMSS*Rx*2%T#*2*L1*BB)

SE(3,7)=C5*R1*BB+C6%* (T*R1*BB+GMSG#R*Tx*2*R1*HH)

SE(3,9)=C5%(-T*I1)+C6% (-DD-GMSS*R#*2#TH*2%AA)

SE(3,11)=C5% (-AA+T**2%JJ)+C6% (- T*FF - GUSS*R¥*#2* T 3%CC-T*AA+
GMSG*R*T**2%11)

SE(3,13)=C5% (-T*L2%JJ)+C6% (L2*¥FF+GMSS*Rix+# 2 T32*L2%CC)

SE(3,15)=C5*R2%CC+C6%* (T¥R2*¥CC+GMSGFR#T*%2*JJ)

SE (4 ,4)=CT*R*GG+C8*R*AA
SE(4,5)=0.0

SE(4,7)=0.0

SE(4,9)=0.0

SE(4,11)=0.0

SE(4,13)=0.0

SE(4,15)=0.0

SE(4  6)=C7% (LLXEE/T#*2+GMSS*R**2+L1*BB)+C8% (-L1*BB)
SE(4, 8)=C7*R*L1*HH+C8*R*L1*BB

SE(4,10)=C7% (DD/T**2+GMSS*R¥**2%AA) +C8% (-AA)
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SE(4,12)=C7*R*II+C8%*(-R¥AA)
SE(4,14)=C7*(L2*FF/T**2+GMSS*R**2%L2%CC)+C8% (-L2*CC)
SE(4,16)=C7*R*L2*JJ+C8*R*L2*CC

SE(5,5)=C9%(-T*L1%HH)+C10% (L1*EE+GMSS*R**2*T**2%L1*BB)

SE(5,6)=0.0

SE(5,8)=0.0

SE(5,10)=0.0

SE(5,12)=0.0

SE(5,14)=0.0

SE(5,16)=0.0

SE(5,7)=C9*R1%*BB+C10O%* (T*R1*BB+GMSG*R*T**2*R1*HH)

SE(5,9)=C9%(-T*II)+CLl0O%(-DD-GMSS*R**2*T**2%AA)

SE(5,11)=C9% (-AA+T**2%JJ)+C10% (- T*FF-GMSS*R**2*T**3%CC-T*AA+
GMSG*R*T**2%11)

SE(5,13)=C9%(-T*L2*%JJ)+CLl0% (L2*FF+GMSS#*R**%2%T**2%L2%*CC)

SE(5,15)=C9*R2*CC+C10% (T*R2*CC+GMSG*R*T**2%R2%JJ)

SE(6,6)=C1l1%(L1*EE/T**2+GMSS*R**2*L1*BB)+C12*(-L1*BB)
SE(6,7)=0.0

SE(6,9)=0.0

SE(6,11)=0.0

SE(6,13)=0.0

SE(6,15)=0.0

SE(6,8)=C11*R*¥L1*HH+C12*R*L1*BB
SE(6,10)=C1l1*(DD/T**2+GMSS*R**2*AA)+C12*(-AA)
SE(6,12)=Cl1*R*II+C12*(-R*AA)
SE(6,14)=C1l1%(L2*FF/T**2+GMSS*R**2%L2*CC)+C12*(-L2*CC)
SE(6,16)=C11*R*¥L2*JJ+C12*R*L2*CC

SE(7,7)=Cl3*R1*BB+C14*(T*Rl*BB+GMSG*R*T**Z*Rl*HH)

SE(7,8)=0.0

SE(7,10)=0.0

SE(7,12)=0.0

SE(7,14)=0.0

SE(7,16)=0.0

SE(7,9)-C13*(-T*II)+C14*(-DD-GMSS*R**Z*T**Z*AA)

SE(7,11)=C13*(-AA+T**2*JJ)+ClA*(-T*FF-GMSS*R**2*T**3*CC-T*AA+
GMSG*R*T**2*11)

SE(7,13)=C13*(-T*LZ*JJ)+014*(L2*FF+GMSS*R**2*T**Z*LZ*CC)

SE(7,15)—C13*R2*CC+014*(T*R2*CC+GMSG*R*T**2*R2*JJ)

SE(8,8)=Cl5*R*L1*HH+C16%R*L1*BB
SE(8,9)=0.0

SE(8,11)=0.0

SE(8,13)=0.0

SE(8,15)=0.0

SE(8,10)=CL5% (DD/T#*2+GMSS*R**2%AA)+CL6% (-AA)
SE(8,12)=CL5*R*II+C16% (-R*AA)

SE(8 ., 14)=CL5% (L2*FF/T#%2+GMSS#R¥*2#L2%CC)+C16% (- L27*CC)
SE(8,16)=CL5*R¥L2%JJ+C16*R*L2*CC
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SE(9,9)=C17*T*(-II1)+C18%(-DD-GMSS*R**2*xT**2%AA)

SE(9,10)=0.0

SE(9,12)=0.0

SE(9,14)=0.0

SE(9,16)=0.0

SE(9,11)=C17*(-AA+T**2*JJ)+C18% (-T*FF-GMSS*R**2*T**3*CC-T*AA+
GMSG*R*T**2*11)

SE(9,13)=C17*(-T*L2*JJ)+C18%(L2*FF+GMSS*R**2*T**2*L2*CC)

SE(9,15)=C17*R2*CC+C18%* (T*R2*CC+GMSG*R*T**2*JJ)

SE(10,10)=C19% (DD /T**2+GMSS*R**2%AA)+C20% (-AA)
SE(10,11)=0.0

SE(10,13)=0.0

SE(10,15)=0.0

SE(10,12)=C1l9*R*II+C20% (-R*AA)

SE(10,14)=C19% (L2*FF/T**2+GMSS*R#**2%L2%CC)+C20% (- L2*CC)
SE(10,16)=C19*R*L2%JJ+C20%R*L2*CC

SE(11,11)=C21%(-AA+T**2%JJ)+C22% (- T*FF-GMSS#R##2*T**3%CC-T*AA+
GMSG*R¥*T**2%11)

SE(11,12)=0.0

SE(11,14)=0.0

SE(11,16)=0.0

SE(11,13)=C21%(-T*L2%JJ)+C22% (L2*FF+GMSS*R¥* 2% T+ 2*L2%CC)

SE(11,15)=C21%R2%CC+C22% (T*R2*CC+GMSGH*R#T#*2*R2*JJ)

SE(12,12)=C23*R*II+C24%(-R*AA)

SE(12,13)=0.0

SE(12,15)=0.0
SE(12,14)-C23*(L2*FF/T**2+GMSS*R**Z*L2*CC)+C24*(-LZ*CC)
SE(12,16)=C23*R*L2%*JJ+C24*R*L2*CC

SE(13,13)=C25*(-T*LZ*JJ)+C26*(L2*FF+GMSS*R**Z*T**2*L2*CC)
SE(13,14)=0.0

SE(13,16)=0.0
SE(13,15)-C25*R2*CC+C26*(T*RZ*CC+GMSG*R*T**Z*RZ*JJ)

SE(l&,14)=C27*(L2*FF/T**2+GMSS*R**Z*LZ*CC)+C28*(-LZ*CC)
SE(14,15)=0.0
SE(14,16)=C27*R*L2*JJ+C28*R*L2*CC

SE(15,15)=C29*R2*CC+C30*(T*RZ*CC+GMSG*R*T**Z*RZ*JJ)
SE(15,16)=0.0

SE(16,16)-C31*R*L2*JJ+C32*R*L2*CC

DO 380 IE=1,16

DO 380 JE=IE,16
K(IE,JE)=K(IE,JE)+WEIGHT (J)*SE(IE,JE)
IF (I.EQ.1) GO TO 300

GO TO 500
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390 CONTINUE

c
Covvvin.. ENTRIES OF CURVED ELEMENT NONLINEAR STIFFNESS SEl
c
c A01,A02,A3,A4,A5,A6, ARE IN CLOSED FORM SOLUTIONS
c
c
IF (IARCH.EQ.1) GO TO 105
BTG = 2.*T*B2(M)
BLG = LOG((B1(M)+BTG)/BL(M))
A0l = BLG/(T*BTG)
A02 = 4.%(1./BTG - B1(M)*BLG/(BTG*BTG))/T
A3 = (1.-2.%B1(M)/BTG+2.*B1(M)*B1(M)*BLG/(BTG*BTG))/(T*T*B2(M))

A4 = 1.5%A3

A5 = 2.%(1.-1.5%B1(M)/BTG+3.*B1(M)*B1(M)/(BTG*BTG)

+ -3.*B1(M)**3*%BLG/(BTG**3))/(T*T*B2(M))

A6 = 1.125*%(1.-4.*%B1(M)/(3.*BTG)+2.*B1(M)*B1(M)/(BTG*BTG)

+ -4 ,*BL(M)**3/(BTG**3)+4 . *B1 (M) **4*BLG/(BTG**4))
+ /(T*T*B2(M)) '
GO TO 106

105 CONTINUE
AOl=1./(T*(B1(M)))
A02=2./(T*(BL(M)))
A3=4./(3.*T*(BL(M)))
Al=1.5%A3
AS5=3./(T*(BL(M)))
A6=9./(5.*T*(B1(M)))

106  CONTINUE

C
C
Covnn LAMDAO TO LAMDA12 ARE WRITTEN AS XLDO TO XLD12
o
XLDO=-0.5*T*DN(1) - (1. =T*T/12.)*DN(3) -R1*T*T*DN(5)/12.-0.5*T*DN(7)
+ +(1.-T*T/12.)*DN(9)+R2*T*T*DN(11) /12.
XLD1=DN(1)
XLD2=-T*DN(3)+R1*T*DN(5)
XLD3=-3.*DN(1)+2.*T*DN(3) -2 .*R1*T*DN(5)+3.*DN(7)+T*DN(9) -
+ R2*T*DN(11)
XLD&4=2 . *DN (1) - T#DN(3)+R1*T*DN(5) -2 . *DN(7) - T*DN(9) +R2*T*DN(11)
XLD5=DN(2)
XLD6=-R1*T*DN(6)
XLD7=-3.*DN(2)+2.*R1*T*DN(6)+3.*DN(8)+R2*T*DN(12)
XLD8=2.*DN(2) -RL*T*DN(6) -2.*DN(8) -R2*T*DN(12)
XLD9=DN(3)
XLD10=DN(9) -DN(3)
XLD13=DN(4)
XLD14=DN(10) -DN(4)
C

C1=E(N)*A(M)/(2.*¥LENGTH(M))
C2=3.%A02-2.%AbL
C3=6.%A3-2.%A5
Cl43 . *AS5-4 . *A6
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C5=3.%(A02-A3)
C6=3.*A3-A5
C7=3.%A3-2.%A4+3 . %A5-4 *%A6

IF(IPAR.EQ.4) GO TO 410

SE(1,1)=C1l%((18.%A3-12.%A5+8 . %A6)*XLDO+T* (C2*XLD2+C3*XLD3+C4*XLD4
)+T*%2% (C5*XLDI+C6*XLD10) )
SE(1,2)=C1*0.5%T#* (C2*XLD6+C3*XLD7+C4*XLD8)
SE(1,3)=CLl*(T*(-6.%A3-2 . %A4+6.%A5-4 . %A6)*XLDO+
(1-T*%2/12 . )% (C2*XLD2+C3*XLD3+C4*XLD4+T* (C5S+XLD9+
C6*XLD10)) -
0. 25%T#%2% (C2*XLD2+C3*XLD3+ (3. %A3-2 . *AL+3  *A5-4 . *A6)*
XLD&4+T* (C5*XLD9+C6%XLD10)))
SE(1,4)=0.0
SE(1,5)=C1*¥R1*T*((-3.%A02+12.%A3+2.%AL-7 . %A5+4 , %A6)*XLDO+
T/12.%((-12.%A01+15.%A02-8 . *A4)*XLD2+(-6.*%A02+
30.%A3-8.%A5)*¥XLD3+( -6 .%A4+15.%A5-16.%A6)*XLD4+
T*((-12.%A01+15.%A02-12.%A3)*XLD9+
(-3.%A02+15.%A3-4 . *A5)*XLD10)))
SE(L,6)=C1%0 . S¥R1*Tx*2% ((2.%A01-2.*A02+A% ) *XLD6+(A02-4 . *A3+AS5)*
XLD7+(AL-2 . *A5+2 . %A6) *XLD8)
SE(1,7)=Cl%(-18.%A3+12.%A5-8.%A6)*XLDO
SE(1,8)=-SE(1,2)
SE(L,9)=CL*(T*(-9.%A3+6.%A5-4 . %A6)*XLDO - (L.-T**2/12.)%
(C2*XLD2+C3%XLD3+C4*XLD4+T* (C5*XLDI+C6+XLD10) )
-0 25*TH*2% (C2*XLD2+C3*XLD3+C4*XLD4+
T# (C5*XLD9+0 ., 5%C3*XLD10)))
SE(1,10)=0.0
SE(1,11)=CL*R2*T*( (6.%A3-5.%A5+4 . ¥A6)*XLDO+T/12.% ((3.%A02-4.%A4)
*XLD2+(6 . %A3 -4 . ¥AS)*XLD3+(3. *A5-8. *A6) *XLD4 +
T#((3.%A02-6.%A3)*XLD9+(3.%A3-2 . %A5)*XLD10)))
SE(1,12)=C1*0 . 5*R2*T#%2% ( (A4-A02)*XLD6+(AS-2.%A3)*XLD7+
(2.%A6-AS5)*XLD8)

SE(2,2)=C1%(18.%A3-12.%A5+8.%A6)*XLDO
SE(2,3)=Cl*(1.-T*%2/12.)%(C2*XLD6+C3*XLD7+C4*XLD8)
SE(2,4)=0.0
SE(2,5)=C1l*¥R1*T*%2/12 % (C2*XLD6+C3*XLD7+C4*XLD8)
SE(2,6)=CL¥R1*T*(3.%A02-12.%A3-2.%A4+7 . *A5-4.*A6)*XLDO
SE(2,7)=Cl*T*0.5%(C2*XLD6+C3*XLD7+C4*XLD8)
SE(2,8)=-SE(2,2)

SE(2,9)=-SE(2,3)

SE(2,10)=0.0
SE(2,11)=Cl*R2*T**2/12.*(-C2*XLD6-C3*XLD7-CA*XLD8)
SE(2,12)=CLl*R2%T*(-6.*%A3+5.%¥A5-4.%A6)*XLDO

SE(3,3)=C1*(T**2*(1.5*A3+2.*A4-3.*A5+2*A6)*XLDO
-(1.-T**2/12.)*T*(C2*XLD2+C3*XLD3+C7*XLD4+
T* (C5*XLD9+C6*XLD10)))

SE(3,4)=0.0
SE(35)=CL*RL*T# (T#(1.5%A02-4 . 5%A3-2. %AL+3 . 5¥A5-2.%A6)*XLDO
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-T**2/24 % (C2*XLD2+C3*XLD3+C7*XLD4+T* (C5*XLD9+C6*XLD10))
-(1.-T**2/12.)*((2.*%A01-2.*%A02+A4)*XLD2+(A02-4 . *A3+A5)*XLD3
+(A4-2.%A5+2 . *A6) *XLD4
+T*((2.*A01-2.*%A02+1.5%A3)*XLD9+(0.5%A02-2.%A3+0.5%A5)*XLD10)))
SE(3,6)=C1*R1*T*(1.-T**2/12.)*((2.*A01-2.*A02+A4)*XLD6+
(A02-4  *A3+A5)*XLD7+(A4-2 . *A5+2 . %A6)*XLD8)
SE(3,7)=C1l*(T*(6.*%A3+2.%A4-6.%A5+4 *A6)*XLD0O - T**2/4 *
(C2*XLD2+C3*XLD3+C7*XLD4+T* (C5*XLD9+C6*XLD10))
=(1.-T**2/12.)*(C2*XLD2+C3*XLD3+C4*XLD4+
T*(C5*XLD9+C6*XLD10)))
SE(3,8)=C1*(1l.-T*%*2/12.)*(-C2*XLD6-C3*XLD7-C4*XLD8)
SE(3,9)=C1l*T*(T*(3.*%A3+A4-3.%A5+2 *A6)*XLDO +
(1.-T**2/12.)*0.5%(3.*%A3-2.*%A4)*XLD4)
SE(3,10)=0.0
SE(3,11)=C1*R2*T*(T*(-1.5%A3-A4+2 .5%A5-2 .*%A6)*XLDO +
T**2 /24 . % (C2*XLD2+C3*XLD3+C7*XLD4+T* (C5*XLD9+C6*XLD10))
+(1.-T**%2/12,)*((A02-A4)*XLD2+(2.*A3-A5)*XLD3+
(A5-2.%A6)*XLD4+T*((A02-1.5%A3)*XLD9+(A3-0.5%A5)*XLD10)))
SE(3,12)=C1*R2*T*(1.-T**2/12.)*((A4-A02)*XLD6+(A5-2.%A3)*XLD7+
(2.%A6-A5)*XLD8)

SE(4,4)=0.
SE(4,5)=0.
SE(4,6)=0.
SE(4,7)=0.
SE(4,8)=0.
SE(4,9)=0.
SE(4,10)=0.0
SE(4,11)=0.0
SE(4,12)=0.0

[eNeNeoNoNoNe

Cl6=2.%A01-2.%A02+A%
C17=A02-4 . %A3+A5
Cl8=AlL-2.%A5+2.%A6
C19=2.%A0L-2.%A02+1.5%A3
C20=0.5%A02-2.%A3+0. 5%A5
C21=0.5%A3-2./3.%A5+2./3.%A6
C22=A5/6.-8./9.%A6+3.%A7

SE(S,5)=C1*((Rl*T)**Z)*((2.*AOl-a.*A02+8.*A3+2.*A4-4.*A5+2.*A6)*
XLDO-T/6.*(C16*XLD2+Cl7*XLD3+C18*XLD4+T*(Cl9*XLD9+
C20+*XLD10)))

SE(S,6)-Cl*R1**2*T**3/12.*(C16*XLD6+C17*XLD7+C18*XLD8)

SE(S,7)=Cl*R1*T*((3*A02-12.*A3-2.*A4+7*A5-4.*A6)*XLDO-T/12.*

((12.*A01-9.*A02+4.*A4)*XLD2+(6.*A02-l8.*A3+4.*A5)*XLD3+
(6.*A4-9.*A5+8.*A6)*XLD4+T*((12.*A01-9.*AO2+6.*A3)*XLD9+
(3.%A02-9.%A3+2.%A5)*XLD10)))
SE(5,8)=-SE(2,5)
SE(5,9)=C1*R1*T*(T*(l.5*A02-6.*A3-A4+3.5*A5-2.*A6)*XLDO
+(1.-T**2/12.)*(Cl6*XLD2+C17*XLD3+C18*XLD4+T*(Cl9*XLD9+
C20*XLD10))-T**2/24.*(CZ*XLD2+C3*XLD3+C4*XLDA+

T (CS*¥XLD9+C6*XLD10)))
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SE(5,10)=0.0
SE(S,11)-C1*R1*R2*T**2*((-A02+4.*A3+A4-3.*A5+2.*A6)*XLDO+T/12.*
((2.%A01-A02)*XLD2+(A02-2.*A3)*XLD3+(A4-AS5)*XLD4 +
T*((2.*%A01-A02)*XLD9+(0.5%A02-A3)*XLD10)))
SE(5,12)=C1*R1*R2*T**3/12.%( (A4-A02)*XLD6+(A5-2.%A3)*XLD7+
(2.%A6-A5)*XLD8)

SE(6,6)=Cl¥R1**2*T**2%(2.*A01-4.%A02+8 . %A3+2.%A4-4  *A5+2 . *A6)*XLDO
SE(6,7)=C1*R1*T**2/2.%(C16*XLD6+C1l7*XLD7+C18*XLD8)
SE(6,8)=-SE(2,6)

SE(6,9)=-SE(1,6)*(1.-T**2/12.)*2./T

SE(6,10)=0.0

SE(6,11)=-SE(1,6)*R2*T/6.
SE(6,12)=CLl*R1*R2*T**2%(-A02+4 . *A3+A4-3 . *A5+2 . *%A6)*XLDO

SE(7,7)=Cl*((18.%A3-12.%A5+8.%A6)*XLDO-T* (C2%*XLD2+C3*XLD3+

C4*XLD4+T* (C5*XLDI+C6+*XLD10+C7 /3. *XLD11+C8/3 . *XLD12)))
SE(7,8)=-SE(2,7)
SE(7,9)=Cl%(T*(9.%A3-6.%A5+4 . *A6)*XLDO+(1.-T*%2/12.)

* (C2*XLD2+C3*XLD3+C4*XLD4+T* (C5*XLD9+C6*XLD10) )

-T*%2 /4 % (C2%XLD2+C3*XLD3+C4*XLD4+T* (C5*XLDI+C6*XLD10)))
SE(7,10)=0.0
SE(7,11)=CL*¥R2*T*((-6.%A3+5.%A5-4.%A6)*XLDO+T/12.%((9.*A02-8.%A4)

*XLD2+ (18 .%A3-8 . %A5)*XLD3+(9.%AS5-16.%A6)*XLDb4+
T*((9.%A02-12.%A3)*XLD9+(9.*A3-4  *A5)*XLD10)))
SE(7,12)=Cl*R2*T*%2/2 . %( (A4-A02)*XLD6+(A5-2.%A3)*XLD7+
(2.%A6-A5)*XLD8)

SE(8,8)=SE(2,2)
SE(8,9)=-SE(2,9)
SE(8,10)=0.0
SE(8,11)=-SE(2,11)
SE(8,12)=-SE(2,12)

SE(9,9)=C1*T*(T*(4.5%A3-3.%A5+2.%A6)*XLDO
+(1.-T**2/12.)*(C2*XLD2+C3*XLD3+C4*XLD4+
T*(C5*XLD9+C6*XLD10)))
SE(9,10)=0.0
SE(9,11)=C1l*R2*T*(T*(-3.%A342.5%A5-2.%A6)*XLD0O + T**2/24 %
(C2*XLD2+C3*XLD3+C4*XLD4+T* (C5*XLD9+C6*XLD10)) +
(1.-T**2/12.)*((A4-A02)*XLD2+
(A5-2.%A3)*XLD3+(2.%A6-A5)*XLD4+T* ((1.5*A3-A02)*XLD9
+(0.5%A5-A3)*XLD10)))
SE(9,12)=CL*R2*T*(1.-T**2/12.)%((A02-A4)*XLD6+(2.*A3-A5)*XLD7+
(A5-2.%A6)*XLD8)

SE(10,10)=0.0
SE(10,11)=0.0
SE(10,12)=0.0

SE(ll,11)-Cl*R2**2*T**2*((2.*A3-2.*A5+2.*A6)*XLDO+T/6.*
((A&-AOZ)*XLD2+(A5-2.*A3)*XLD3+(2.*A6‘A5)*XLD&+
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+ T*((1.5%A3-A02)*XLD9+(0.5%A5-A3)*XLD10)))
SE(11,12)=-SE(1,12)%R2%T/6.

SE(12,12)=CL*R2%*2%T**2% (2, %A3-2.%A5+2 . %A6)*XLDO
DO 400 IE=1,12

DO 400 JE=IE,12

K(IE,JE)=SE(IE,JE)

GO TO 500

CONTINUE

..... INTEGRANDS ON CURVED ELEMENT NONLINEAR STIFFNESS SE2

AS=AQ1*XLD2%%2+A02%XLD2*XLD3+A3*XLD3%%2+A4*XLD2*XLD4

+ +AS5*XLD3*XLD4+A6*XLD4& %% 2

BS=T*(2.*A01*XLD2*XLD9+A02*XLD3*XLD9+0.5%A02*XLD2*XLD10+

+ 1.5*%A3%XLD4*XLD9+A3*XLD3*XLD10+0 . 5*%A5*XLD4*XLD10)

CS=T*%2%(AOL*XLD9*%*2+0 . 5%¥A02*XLD9*XLD10+0.25%A3%XLD10**2)
DS=A01*XLD6**2+A02*XLD6*XLD7+A3*XLD7%*2+A4*XLD6*XLD8

+ +A5*XLD7*XLD8+A6%XLD8**2

MS=AS+BS+CS+DS

DQl=( - C2*XLD2 - C3*XLD3 - C4*XLD4 - T* (C5%*XLD9+C6%XLD10))
DQ2=( - C2*XLD6 - C3*XLD7 - C4*XLD8)

DQ3=0 ., 5*T* (C2*XLD2+C3*XLD3+C7*XLD4+T* (C5*XLD9+C6*XLD10))
DQ4=0.0

DQ5=R1*T*( (2.%A0L-2.%A02+A4 ) *XLD2+(A02-4 . *A3+A5)*XLD3+

+ (A4-2.%A5+2 . *A6)*XLD4+T*((2.*A01-2.*%A02+1.5*A3)*XLD9+
+ (0.5%A02-2.%A3+0.5%A5)*XLD10))

DQ6=R1*T*( (-2.%A01+2.%A02-A4)*XLD6+(-A02+4 . *A3-A5)*XLD7+

+ (-A4+2.%A5-2.%A6)*XLD8)

DQ7=-DQl
DQ8=-DQ2

DQY=0 . S*T* (C2*XLD2+C3*XLD3+C4*XLD4+T5 (C5S*XLDI+C6*XLD10))
DQ10=0.0

DQLL1=R2*T* ( (A4-A02)*XLD2+(A5-2.%A3)*XLD3+(2.%A6-A5)*XLD4+

+ T*((1l.5*%A3-A02)*XLD9+(0.5%A5-A3)*XLD10))

DQ12=R2*T% ( (A02 -AL ) *XLD6+(2.%A3-A5)*XLD7+(A5-2.%A6)*XLD8)
COL=C1*T* (BL(M)+B2(M)*T)/(2.*LENGTH(M))

SE(1,1)=COLl%*(MS*(18.%A3-12.%A5+8.%A6)+DQL**2)
SE(1,2)=C01%*DQ1*DQ2
SE(L,3)=COL%(T*MS*(-6.%A3-2 . %A4+6.*A5-4.*A6)+DQL*DQ3)
SE(1,4)=0.0

SE(L,5)=COL% (RL¥T#MS* (-3 .%A02+12 . %A3+2 . %AL-7 *AS+4.*A6)+DQL*DQ5)
SE(1,6)=C01*DQ1*DQ6

SE(1,7)=-SE(1,1)

SE(1,8)=-SE(1,2) .
SE(1,9)=COL* (MS*T*(-9.%*A3+6.%A5-4 . %A6)+DQL*DQ9)
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SE(1,10)=0.0
SE(1,11)=CO1% (R2*T*MS*(6.%A3-5.*%A5+4 . *A6)+DQL*DQ11)
SE(1,12)=C01*DQ1*DQ1l2

SE(2,2)=COL*(MS*(18.*A3-12.%A5+8.%A6)+DQ2+%*2)
SE(2,3)=C01%DQ2+*DQ3

SE(2,4)=0.0

SE(2,5)=C01*DQ2*DQ5

SE(2,6)=COL* (RL*T*MS*(3.%A02-12.%A3-2 . %A4+7 . *A5-4  %A6)+DQ2*DQ6)
SE(2,7)=-SE(1,2)

SE(2,8)=-SE(2,2)

SE(2,9)=C01%DQ2*DQ9

SE(2,10)=0.0

SE(2,11)=C01%DQ2*DQL1

SE(2,12)=COL% (R2¥T*MS* (-6 .%A3+5 . %A5-L4 . %A6)+DQ2*DQL2)

SE(3,3)=COL% (T*T*MS* (1.5%A3+2.%A4-3 . *A5+2 . *A6)+DQ3#*2)

SE(3,4)=0.0

SE(3,5)=C01%(RL*T*T*0 . 5*MS* (3.%A02-9.%A3-4 *A4+T . *AS-4 *A6)+
+ DQ3*DQ5)

SE(3,6)=C01*DQ3*DQ6

SE(3,7)=-SE(1,3)

SE(3,8)=-SE(2,3)

SE(3,9)=CO1% (T*T*MS* (3 .*A3+A4-3.%*A5+2 . *A6)+DQ3*DQ9)

SE(3,10)=0.0

SE(3,11)=COL% (R2*¥T*T*MS*(-1.5%A3-A4+2.5%A5-2.%A6)+DQ3*DQL1)

SE(3,12)=C01%*DQ3*DQ12

SE(4,4)=0.
SE(4,5)=0.
SE(4,6)=0.
SE(4,7)=0.
SE(4,8)=0.
SE(4,9)=0.
SE(4,10)=0.0
SE(4,11)=0.0
SE(4,12)=0.0

[eNoNeoNeoNeNe]

SE(S,5)-C01*((R1*T)**2*MS*(2.*AOl-a.*A02+8.*A3+2.*A&-A.*AS+2.*A6)
+ +DQ5%*%*2)

SE(5, 6)=C01*DQ5%*DQ6

SE(S,7)=COL% (RI*¥T#MS* (3.%A02-12.%A3-2 *A4+7 .*A5-4 . *A6)+DQ5*DQ7)

SE(5,8)=C01*DQ5*DQ8

SE(S,9)=C01*(R1*T*T*MS*(1.5*A02-6.*A3-A4+3.5*AS-2.*A6)+DQ5*DQ9)

SE(5,10)=0.0
SE(S,11)=COl*(R1*R2*T*T*MS*(-AO2+4.*A3+A4-3.*A5+2.*A6)+DQS*DQ11)

SE(5,12)=C01*DQ5*DQ12

SE(6,6)=COL*( (RL¥T)**2%MS* (2. %A0L-4 *A02+8 . *A3+2 . ¥AL-4 . ¥A5+2.*A6)
+ +DQ6**2)

SE(6,7)=CO1*DQ6*DQ7

SE(6,8)=-SE(2,6)
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SE(6,9)=C01*DQ6+*DQ9

SE(6,10)=0.0

SE(6,11)=CO1*DQ6+DQl1l
SE(6,12)=CO1%(R1I*R2*¥T*T*MS* (-A02+4 . *A3+Ab-3 . %A5+2 . *A6)+DQ6%DQL2)

SE(7,7)=SE(1,1)
SE(7,8)=SE(1,2)
SE(7,9)=-SE(1,9)
SE(7,10)=0.0
SE(7,11)=-SE(1,11)
SE(7,12)=-SE(1,12)

SE(8,8)=SE(2,2)
SE(8,9)=-SE(2,9)
SE(8,10)=0.0
SE(8,11)=-SE(2,11)
SE(8,12)=-SE(2,12)

SE(9,9)=CO1l* (T*T*MS*(4.5%A3-3.%A5+2.%A6)+DQ9**2)
SE(9,10)=0.0
SE(9,11)=CO1l%(R2*T*T*MS*(-3.%A3+2.5%A5-2.%A6)+DQ9+*DQ1l1)
SE(9,12)=C01*DQ9*DQ12

SE(10,10)=0.0
SE(10,11)=0.0
SE(10,12)=0.0 : '

SE(11,11)=COL%( (R2*T)**2*MS* (2. %¥A3-2.%A5+2.%A6)+DQL1**2)
SE(11,12)=C01*DQ11%DQ12

SE(12,12)=COL%( (R2¥T)**2*MS# (2, %A3-2.%A5+2 . ¥A6)+DQL27#*2)

DO 420 IE=1,12
DO 420 JE=IE,12
420 K(IE,JE)=SE(IE,JE)

C
500 CONTINUE
C
C.oo.vvvt MAKE INTERVAL CORRECTION AND -RETURN
CCCC
IF (IPAR.GE.3) GO TO 1
IQ=16
GO TO 2
1 IQ=12
C=1.0
2 CONTINUE
CCcC

DO 550 I=1,IQ

DO 550 J=I,IQ

SE(I,J)=C*K(I,J)
550 SE(J,I1)=SE(I,J)
CCCC
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C
IF (IPAR.EQ.1) CALL REOCON
IF (IPAR.EQ.2) CALL REOCON
C
Ccccce
RETURN
C

2000 FORMAT('1’,15HINVALID MP USED///7H GAUSS=,F4.1)

END
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SUBROUTINE ASEMBLE (M)
s RS E SRR
TO PROCESS AND ASSEMBLE ELEMENT STIFFNESS MATRICES AND NODAL

LOAD VECTORS INTO THEIR CORRESPONDING STRUCTURE ARRAYS.
B e T T

COMMON/C1 /NE, NUMNP , NUMEG, NTYPE(3) , NUMEL(3) , IPAR, ICALL, ICAL2, ICAL3,
+ ICAL4, ICALS,ICAL6, ICAL7

COMMON/C2 /NSIZE,NEQ, NCOND , MBAND , IEIGEN

COMMON/C3/IA(37,8),IB(37,8),D31(113)

COMMON /C4 /SE(16,16)

COMMON /C5/E(3) ,G(3) ,NODEI (36) ,NODEJ (36),D5(180)

COMMON/C8 /PN (37,8) ,R(296) , PINT(37,8)

COMMON/C9/S (296,16) ,SP(296,16) , IDET

IF (IPAR.NE.1) GO TO 90

PROCESSING OF INITIAL LOADS AND NODAL LOADS INTO LOAD VECTOR

IF(ICAL4.EQ.0) WRITE(61,2000)
DO 80 N=1,NUMNP

DO 70 I=1,6

IF(IA(N,I)) 20,70,10

II=-IA(N,I)

GO TO 60

IF (IB(N,I).LT.0) GO TO 30

NN=IB(N,I)

GO TO 35

II=--IB(N,I)+NEQ

GO TO 60

IF (IA(NN,I)) 40,70,50

II=-IB(NN,I)+NEQ

GO TO 60

II=IA(NN,I)

R(II)=PN(N,I)

IF(ICAL4.EQ.0) WRITE(61, 2010) II,N,I,R(II)
CONTINUE

CONTINUE

RETURN

ASSEMBLE ELEMENT STIFFNESS INTO STRUCTURE STIFFNESS

NI=NODEI (M)
NJ=NODEJ (M)

DO 165 Kl=1,2

IF(K1.EQ.1) NP=NI
IF(K1.EQ.2) NP=NJ

DO 160 I=1,6

IF(IA(NP,I)) 105,160,100
II=IA(NP,I)

GO TO 115

IF (IB(NP,I).LT.0) GO TO 110
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NN=IB(NP,I)

GO TO 111
II=-IB(NP,I)+NEQ

GO TO 115

IF (IA(NN,I)) 112,160,113
II=-IB(NN, I)+NEQ

GO TO 115

II=IA(NN,I)

CONTINUE

DO 155 K2=1,2

IF(K2.EQ.1) ND=NI
IF(K2.EQ.2) ND=NJ

DO 150 J=1,6

IF(IA(ND,J)) 125,150,120
JJI=IA(ND,J)

GO TO 145

IF (IB(ND,J).LT.0) GO TO 130
NN=IB(ND,J)

GO TO 132
JJ=-IB(ND,J)+NEQ

GO TO 145

IF (IA(NN,J)) 135,150,140
JJ=-IB(NN,J)+NEQ

GO TO 145

JJ=IA(NN,I)

CONTINUE

FILL-IN STRUCTURE STIFFNESS MATRIX IN BANDED FORMAT
ONLY UPPER SEMIBANDWIDTH INCLUDING DIAGONAL

IF (JJ.LT.II) GO TO 150
IF(K1.EQ.1) IE=I
IF(K1.EQ.2) IE=I+6 ~
IF(K2.EQ.1) JE=J
IF(K2.EQ.2) JE=J+6

CHANGE -JJ- SUBSCRIPT OF FULL MATRIX TO -JJ- SUBSCRIPT
OF BANDED FORMAT. LOOP OVER TERMS OUTSIDE OF BAND

JJ=JJ-1I+1
S(II,JJ)=S(II,JJ)+SE(IE,JE)
CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

FORMAT(’1’,43HINITIAL AND NODAL LOADS PROCESSED INTO LOAD,

+ 12H VECTOR R(I1)//)

FORMAT('O',2HR(,I3,4H)-P(,12,1H,,12,2H)=,Fl6.6)

END
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SUBROUTINE STCONDN

C TR T b T ok Sk T ok ok ok S e S S T S S S S T B S T T S S S S S S S e S e e e R e AR KX KKKk AN
c TO WRITE THE UNCONDENSED STRUCTURE STIFFNESS ACCORDING
C TO THE VALUES OF IPAR=2,3,4 FOR S, S1, S2 RESPECTIVELY
C FAXEH XA H X F AR R ARk o s b s e s o e S e e b o st Aok s b s b s se b b s ok e oot
c
COMMON/C1/NE , NUMNP , NUMEG , NTYPE(3) ,NUMEL(3) , IPAR, ICAL1, ICAL2, ICAL3,
+ ICAL4, ICALS, ICAL6, ICAL7
COMMON/C2/NSIZE ,NEQ, NCOND , MBAND , IEIGEN
COMMON/C8/PN(37,8) ,R(296) ,PINT(37,8)
COMMON/C9/S(296,16) ,SP(296,16) , IDET
c
IF (IPAR.NE.2) GO TO 40
IF (ICAL3.EQ.0) WRITE(61,2050)
IF (ICAL3.EQ.0) WRITE(61,2060) (I,R(I),I=1,NSIZE)
c
Covvvnn WRITE UNCONDENSED STRUCTURE LINEAR STIFFNESS -S- OR UNCONDENSED
C NONLINEAR STIFFNESS S1 OR S2 DEPENDING ON VALUE OF IPAR
C

40 IF (ICAL3.NE.O) GO TO 90
IF(IPAR.EQ.2) WRITE(61,2030)
IF (IPAR.EQ.3) WRITE(61,2040)
IF (IPAR.EQ.4) WRITE(61,2045)
Kl=1
K2=8
K3=MBAND-K1 .
IF (K3.LE.7) GO TO 60
50 WRITE(61,2015) K1,K2
WRITE(61,2020) ((S(I,J),J=K1,K2),I=1,NSIZE)
K1=K1+8
K2=K2+8
K3=MBAND-K1
IF(K3.LE.7) GO TO 60
GO TO 50
60 WRITE(61,2015) K1,MBAND
IF (K3.EQ.0) WRITE(61,2027) ((S(I,J),J=K1,MBAND),I=l,NSIZE)
IF (K3.EQ.1) WRITE(61,2021) ((S(I,J),J=K1,MBAND),I=1,NSIZE)
IF (K3.EQ.2) WRITE(61,2022) ((S(I,J),J=K1,MBAND),I=1,NSIZE)
IF (K3.EQ.3) WRITE(61,2023) ((S(I,J),J=K1,MBAND),I=1,NSIZE)
IF (K3.EQ.4) WRITE(61,2024) ((S(I,J),J=K1,MBAND),I=1,NSIZE)
IF (K3.EQ.5) WRITE(61,2025) ((S(I,J),J=K1,MBAND),I=1,NSIZE)
IF (K3.EQ.6) WRITE(61,2026) ((S(I,J),J=K1,MBAND),I=1,NSIZE)
IF (K3.EQ.7) WRITE(61,2020) ((S(I,J),J=K1,MBAND),I=1,NSIZE)
90 CONTINUE
REWIND 4
REWIND 5
REWIND 16
RETURN
C
2015 FORMAT('-',7HCOLUMNS,IA,7HTHROUGH,IQ)
2020 FORMAT('0’,8El6.5)
2021 FORMAT('0’',2E16.5)
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FORMAT('0’,3E16.5)

FORMAT('0' ,4E16.5)

FORMAT('0’,5E16.5)

FORMAT('0',6E16.5)

FORMAT('0’,7E16.5)

FORMAT('0’ ,E16.5)

FORMAT('1',45HUNCONDENSED LINEAR STIFFNESS OF STRUCTURE (S))
FORMAT('1’,49HUNCONDENSED NONLINEAR STIFFNESS OF STRUCTURE (S1))
FORMAT('1’,49HUNCONDENSED NONLINEAR STIFFNESS OF STRUCTURE (S2))
FORMAT('1’,28HUNCONDENSED LOAD VECTOR R(I)//)

FORMAT(' ',2HR(,I3,2H)=,F16.6)

END

SUBROUTINE LINSOLN
L e e T T e T e ey
TO SOLVE SYSTEM OF LINEAR EQUATIONS S*D=R BY CALLING THE
APPROPRIATE SUBROUTINE
S= STUCTURE"S LINEAR STIFFNESS
D= VECTOR OF D.O.F."S

R= LOAD VECTOR
B R K R & & 2 T e e e e e e S S S R L e S

etttk bbbk bbb ok

COMMON /C1 /NE , NUMNP , NUMEG , NTYPE(3) ,NUMEL(3) , IPAR, ICAL1, ICAL2, ICAL3,
ICALA4, ICALS,ICAL6, ICAL7

COMMON /C2 /NSIZE ,NEQ, NCOND ,MBAND , IEIGEN

COMMON /C8 /PN(37,8) ,R(296) ,PINT(37,8)

COMMON/C9 /S (296,16) ,SP(296,16) , IDET

COMMON /C10,/D(296) ,D10(1184) ,RC(296),5C(296,16)

FILL-IN ARRAY D(I) WITH VALUES OF LOAD VECTOR R(I)
AFTER SOLUTION D(I) WILL CONTAIN THE DISPLACEMENT VALUES

DO 110 I=1,NEQ
D(I)=R(I)

CHECK DATA GENERATION FOR SOLUTION OF EQUATIONS

IF(ICAL5.EQ.0) WRITE(61,2020)
IF (ICALS.EQ.0) WRITE(61,2010) (I,D(I),I=1,NEQ)

SOLVE SYSTEM OF -NEQ- LINEAR EQUATIONS

CALL GAUSSOL

....CHECK DATA GENERATION

IF (ICAL5.NE.O0) GO TO 140
WRITE(61,2000)

WRITE(61,2010) (I,D(I),I=1,NEQ)
RETURN
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2000 FORMAT('1l’,34HDISPLACEMENTS FROM LINEAR SOLUTION//)
2010 FORMAT(' ’',2HD(,I3,2H)=,E25.15)
2020 FORMAT('1l’,31HLOAD VECTOR FOR LINEAR SOLUTION//)

C

NN oONeNeNS]

850
860

END
SUBROUTINE GAUSSOL
R S T
GAUSS ELIMINATION EQUATION SOLVER, BANDED FORMAT
FROM BOOK BY ROBERT D. COOK, FIG. 2.8.1., PAGE 45

CONCEPTS AND APPLICATIONS OF FINITE ELEMENT ANALYSIS
e 2 s ST Ty

COMMON /G2 /NSIZE ,NEQ, NCOND , MBAND , IEIGEN
COMMON/C9/S (296,16) ,SP(296,16) , IDET
COMMON /C10/D(296) ,D10(1184) ,RC(296),SC(296,16)

FORWARD REDUCTION OF MATRIX (GAUSS ELIMINATION)

DO 790 N=1,NEQ

DO 780 L=2,MBAND

IF (S(N,L).EQ.0.) GO TO 780
I=N+L-1
C=S(N,L)/S(N,1)

J=0

DO 750 K=L,MBAND
J=J+1
S(I,J)=S(I,J)-C*S(N,K)
S(N,L)=C

CONTINUE

CONTINUE

FORWARD REDUCTION OF CONSTANTS (GAUSS ELIMINATION)

DO 830 N=1,NEQ
DO 820 L=2,MBAND

IF (S(N,L).EQ.0.) GO TO 820
I=N+L-1
D(I)=D(I)-S(N,L)*D(N)
CONTINUE

D(N)=D(N) /S(N,1)

SOLVE FOR UNKNOWNS BY BACK SUBSTITUTION

DO 860 M=2,NEQ
N=NEQ+1-M

DO 850 L=2,MBAND

IF (S(N,L).EQ.0.)GO TO 850
K=N+L-1

D(N)=D(N) -S(N,L)*D(K)
CONTINUE

CONTINUE

RETURN
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END

SUBROUTINE IDENT

A s S e e e e ek ek ek ot o
TO IDENTFY THE DISPLACEMENTS FOUND IN THE SOLUTION OF
EQUATIONS S*D=R AND THE ONES FOUND IN THE RECOVERY PROCESS

COMMON/C1/NL,NUMNP ,NUMEG,NTYPE(3) ,NUMEL(3),IPAR,ICALl,ICAL2,ICAL3,
+ ICALA4,ICALS,ICAL6,ICALY
COMMON/C2/NSIZE,NEQ,NCOND,MBAND, IEIGEN
COMMON/C3/1A(37,8),1B(37,8),D31(113)
COMMON/C5/E(3),G(3) ,NODEI(36),NODEJ(36) ,A(36),IXX(36),IYY(36),
+ KT(36),L(1,36)
COMMON/C10/D(296) ,D10(1184) ,RC(296),SC(296,16)
COMMON/C11/DN(16),U(36,12),W(37,8),V(37,8)

..... IDENTIFICATION OF DISPLACEMENTS

IF (ICAL6.EQ.0) WRITE(61,2000)

DO 230 NN=1,NUMEG

INUMEL~NUMEL (NN)

DO 230 K=1,INUMEL

M=L(NN,K)

IF (ICAL6.EQ.0) WRITE(61,2010) M

NI=NODEI (M)

NJ=NODEJ (M)

DO 230 Kl=1,2

IF(K1.EQ.1) NP=NI

IF(K1.EQ.2) NP=NJ

DO 220 I=1,6

IF(IA(NP,I)) 160,155,150

NE=IA(NP,I)

U(NP,I)=D(NE)

IF (ICAL6.EQ.0) WRITE(61,2020) NE,NP,I,U(NP,I)
GO TO 220

U(NP,I)=0.

IF (ICAL6.EQ.0) WRITE(61,2020) NE,NP,I,U(NP,I)
GO TO 220

IF (IB(NP,I).LT.0) GO TO 170

NM=IB(NP,I)

GO TO 180

NE=-IB(NP, I)+NEQ

U(NP,I)=D(NE)

IF (ICAL6.EQ.0) WRITE(61,2020) NE,NP,I,U(NP,I)
GO TO 220

IF (IA(NM,I)) 190,200,210

NE=-IB(NM, I)+NEQ

U(NP, I)=D(NE)

IF (ICAL6.EQ.0) WRITE(61,2020) NE,NP,I,U(NP,I)
GO TO 220 .
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U(NP,I)=0.

IF (ICAL6.EQ.0) WRITE(61,2020) NE,NP,I,U(NP,I)
GO TO 220

NE=IA(NM,I)

U(NP,I)=D(NE)

IF (ICAL6.EQ.0) WRITE(61,2020) NE,NP,I,U(NP,I)
CONTINUE

CONTINUE

RETURN

FORMAT('1',35HNODAL DISPLACEMENTS ON EACH ELEMENT)
FORMAT(' -’ ,7HELEMENT,13//)
FORMAT(' ',2HD(,I3,1H),5X,2HU(,I2,1H,,I1,2H)=,E25.15)

END

SUBROUTINE STRESS
R L AR R T T 2

TO COMPUTE NODAL FORCES AND STRESSES IN THE STRUCTURE
e

DIMENSION D(16)

COMMON /C1/NE , NUMNP , NUMEG , NTYPE(3) ,NUMEL(3) ,D11(8)

COMMON/C4 /SE(16,16)

COMMON /C5/E(3) ,G(3) ,NODEI (36) ,NODEJ (36) ,A(36) ,IXX(36),IYY(36),
+ KT(36),L(1,36)

COMMON,/C8/PN(37,8) ,R(296) ,PINT(37,8)

COMMON/C11/DN(16),U(36,12),W(37,8),V(37,8)

WRITE(61,2000)
DO 100 N=1,NUMNP
DO 100 I=1,6
PN(N,I)=0.0

....PROCESS EVERY ELEMENT OF EACH ELEMENT GROUP
DO 200 K=1,NUMEG

INUMEL=NUMEL (K)

DO 190 KK=1,INUMEL

M=L(K,KK)

NI=NODEI (M)

NJ=NODEJ (M)

READ(1,10) ((SE(I,J),J=1,12),I=1,12)

IDENTIFY NODAL DISPLACEMENTS ON EACH ELEMENT

N=NI

DO 110 I=1,6
D(I)=U(N,I)
N=NJ

DO 120 I=7,12
D(I)=U(NI,I-6)
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....0OBTAIN RESULTANT LOADS

N=NI
DO 145 I=1,6

DN(I)=0.

DO 140 J=1,12
DN(I)=DN(I)+SE(I,J)*D(J)
PN(N,I)=PN(N,I)+DN(I)
N=NJ

DO 160 I=7,12

DN(I)=0.

DO 155 J=1,12
DN(I)=DN(I)+SE(I,J)*D(J)
PN(N,I-6)=PN(N,I-6)+DN(I)

WRITE RESULTANT LOADS OF THE NODES OF EACH ELEMENT

WRITE(61,2010) M, (DN(I),I=1,6),(DN(I),I=7,12)
CONTINUE
CONTINUE

....WRITE NODAL RESULTANTS OF STRUCTURE

WRITE(61,2020)

WRITE(61,2030) (N, (PN(N,I),I=1,6),N=1,NUMNP)
REWIND 8

RETURN

FORMAT (E21.6)
FORMAT('1’,31HRESULTANT LOADS ON EACH ELEMENT///)

FORMAT('-’,8H ELEMENT,I3//4X,6HNODE-I,6E15.9//

+ 4X, 6HNODE-J , 6E15.9)

FORMAT('1’ ,48HSTRUCTURE RESULTANTS DUE TO LINEAR DISPLACEMENTS///
+ 1X, 4HNODE, 15X, 3HPN1, 15X, 3HPN2, 15X, 3HPN3, 15X, 3HPN4,
+ 15X, 3HPNS, 15X, 3HPN6//)

FORMAT(’0’,I5,4X,6E15.9)
END

SUBROUTINE EIGENVL (EIGEN, IDATA)

e o e s o b s o o Sk sk o ok S s Sk S Sk ekl et ek kb aketobor
TO SOLVE EIGENVALUE PROBLEM S*X=- (LAMBDA)*S1*X
WILL OBTAIN ONLY THE LOWEST EIGENVALUE AND CORRESPONDING
EIGENVECTOR. USES INVERSE VECTOR ITERATION WITH THE

RAYLEIGH QUOTIENT.
F R ks skak sk S ededebbkab ok okeokokex

P S T S S P T I o e N T fonts
e e T YT e e e Yo Ve T Yo e ek ke ek

>

COMMON /C1/DUMMY (16) , ICAL7
COMMON /C2 /NSIZE,NEQ,NCOND,MBAND, IEIGEN

COMMON /C9/S (296,16) ,SP(296,16) , IDET

COMMON /C10/XB(296) ,YB(296) ,X(296),Y(296) , EIGNVIR(296)
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....ASSUME STARTING SHIFT, STARTING VECTOR, AND

MAXIMUN NUMBER OF ITERATIONS ALLOWED.

WRITE(61,2010)
READ(60,1000) MAX,EPSI,RHO
WRITE(61,2000)MAX,EPSI,RHO
DO 100 I=1,NEQ

X(I)=1.

....OBTAIN VECTOR Y(I) FROM Y(I)=S1(I,J)*X(I)

FIRST CHANGE SIGN OF MATRIX Sl

READ(5,10) ((S(I,J),J=1,MBAND),I=1,NEQ)
REWIND 5

DO 107 I=1,NEQ

DO 105 J=1,MBAND

S(I,J)=-S(I,J)

CONTINUE

CONTINUE

WRITE(5,10) ((S(I,J),J=1,MBAND),I=1,NEQ)
REWIND 5

HORIZONTAL SWEEP OF S1(I,J)*X(I), DIAGONAL NOT INCLUDED

DO 130 I=1,NEQ

Y(I)=0.

II=I+1

IF (II.GT.NEQ) GO TO 130
DO 120 J=2,MBAND

IF (S(I1,J).EQ.0.) GO TO 110
Y(I)=Y(I)+S(I,J)*X(II)
II=II+1

IF (II.GT.NEQ) GO TO 130
CONTINUE -

CONTINUE

....DIAGONAL SWEEP OF S1(I,J)*X(I)

DO 160 I=1,NEQ
II=I

JJ=1

IF (S(II,JJ).EQ.0.) GO TO 150
Y(I)=Y(I)+S(II,JJ)*X(II)
II=II-1

JI=JJ+1

IF (II.EQ.0) GO TO 160

IF (JJ.GT.MBAND) GO TO 160

GO TO 140 |

CONTINUE

START ITERATION PROCEDURE BY STABLISHING THE SYSTEM OF




g
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C EQUATIONS S(I,J)*XB(I)=Y(I) AND SOLVING FOR XB(I).
STORE VALUES OF Y(I) INTO XB(I) FOR GAUSS SOLUTION.

(@]

DO 300 K = 1,MAX
DO 165 I=1,NEQ

165 XB(I)=Y(I)
IF (IDATA.EQ.0) READ(4,10) ((S(I,J),J=1,MBAND),TI=1,NEQ)
IF (IDATA.EQ.1) READ(7,10) ((S(I,J),J=1,MBAND),I=1,NEQ)
REWIND &
REWIND 7
IF (ICAL7.NE.O0) GO TO 176

C........ PRINT DATA SENT TO SUBROUTINE GAUSSOL

WRITE(61,2100) K
Kl=1
K2=6
K3=MBAND-K1
IF (K3.LE.7) GO TO 174
172 WRITE(61,2110) K1,K2
WRITE(61,2115) ((S(1,J),J=K1,K2),I=1,NEQ)
K1=K1+6
K2=K2+6
K3=MBAND-K1
IF (K3.LE.7) GO TO 174
GO TO 172
174 WRITE(61,2110) K1,MBAND
IF (K3.EQ.0) WRITE(61,2120) ((S(I,J),J=K1,MBAND),I=1,NEQ)
IF (K3.EQ.1l) WRITE(61,2121) ((S(I,J),J=K1,MBAND),I=1,NEQ)
IF (K3.EQ.2) WRITE(61,2122) ((S(1,J),J=K1,MBAND),I=1,NEQ)
IF (K3.EQ.3) WRITE(61,2123) ((S(1,J),J=K1,MBAND),I=1,NEQ)
IF (K3.EQ.4) WRITE(61,2124) ((S(I,J),J=K1,MBAND),I=1,6NEQ)
IF (K3.EQ.5) WRITE(61,2125) ((S(1,J),J=K1,MBAND), I=1,NEQ)
C IF (K3.EQ.6) WRITE(61,2126) ((S(1,J),J=K1,MBAND),I=1,NEQ)
C IF (K3.EQ.7) WRITE(61,2115) ((S(I,J),J=K1,MBAND),I=1,6NEQ)
WRITE(61,2130)
WRITE(61,2135) (XB(I),I=1, NEQ)
176 CONTINUE

C
C........ SOLVE SYSTEM OF EQUATIONS S(I,J)*XB(I)=Y(I)
C

CALL GAUSSOL

IF (ICAL7.EQ.0) WRITE(61,2030)
C
Cooooint. OBTAIN VECTOR YB(I) FROM YB(I)=S1(I,J)*XB(I)
C

READ(5,10) ((S(I,J),J=1,MBAND),I=1,NEQ)

REWIND 5
C
C.o....... HORIZONTAL SWEEP OF S1(I,J)*XB(I), DIAGONAL NOT INCLUDED
c

DO 200 I=1,NEQ







210

220

260

-----
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YB(I)=0.

II=I+1

IF (II.GT.NEQ) GO TO 200

DO 190 J=2,MBAND

IF (S(I,J).EQ.0.) GO TO 180
YB(I)=YB(I)+S(I,J)*XB(II)
II=II+1

IF (II.GT.NEQ) GO TO 200
CONTINUE

CONTINUE

....DIAGONAL SWEEP OF S1(I,J)*XB(I)

DO 230 I=1,NEQ
II-I

JJ=1

IF (S(II,JJ).EQ.0.) GO TO 220
YB(I)=YB(I)+S(II,JJ)*XB(II)
II-1I-1

JI=JJ+1

IF (II.EQ.0) GO TO 230

IF (JJ.GT.MBAND) GO TO 230
GO TO 210

CONTINUE

..... COMPUTE RAYLEIGH QUOTIENT

RQ=RHO
Ql=0.0

Q2=0.0

DO 240 I=1,NEQ
QLl=QLl+XB(I)*Y(I)
Q2=Q2+XB(I)*YB(I) -
RHO=Q1/Q2

DO 250 I=1,NEQ
Y(I)=YB(I)/(Q2**.5)

CHECK CONVERGENCE TO DESIRED EIGENVALUE

CHECK=ABS (RHO-RQ) /RHO
IF (CHECK.LE.EPSI) GO TO 310

EIGEN=RHO

DO 260 I=1,NEQ

EIGNVTR(I)=XB(I)/(Q2%%.5)

IF (ICAL7.NE.O) WRITE(61,2035) K,EIGEN

IF (ICAL7.NE.0) GO TO 300

WRITE(61,2040) K,RHO,CHECK,EIGEN

WRITE(61,2050) (XB(I),YB(I),Y(I), EIGNVTR(I),I-=1,NEQ)
CONTINUE

OBTAIN EIGENVALUE AND CORRESPONDING EIGENVECTOR
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310 EIGEN=RHO
DO 320 I=1,NEQ
320  EIGNVTR(I)=XB(I)/(Q2%*.5)
ILAST=K
WRITE(61,2070) ILAST
WRITE(61,2080) EIGEN
WRITE(61,2090) (EIGNVTR(I),I=1,NEQ)
RETURN
C
10 FORMAT (E21.6)
1000 FORMAT(IS,2F10.6)
2000 FORMAT('-',4HMAX=,13///6H EPSI=,F10.6///6H RHO=,F10.6)
2010 FORMAT('1’,45HLINEAR EIGENVALUE PROBLEM (INVERSE ITERATION)//)
2030 FORMAT(’1l’,38HINVERSE VECTOR ITERATION WITH SHIFTING///2X,1HK,9X,
+ 2HXB, 16X, 2HYB, 16X, 3HRHO, 14X, SHCHECK, 15X, 1HY, 15X, SHEIGEN,
+ 12X, 7HEIGNVTR///)
2035 FORMAT('-',2HK=,I3,5X,6HEIGEN=,E15.9)
2040 FORMAT('-',13,39X,E15.9,3X,E15.9,21X,E15.9)
2050 FORMAT(’ ',6X,E15.9,3X,E15.9,39X,E15.9,21X,E15.9)
2100 FORMAT(’'1l’,34HDATA FOR GAUSSOL S(I,J) AND XB(I)//1X,2HK=,I3//)
2110 FORMAT(’-’,7HCOLUMNS,I4,10H  THROUGH,I4)
2115 FORMAT('0’,6E16.8)
2120 FORMAT('0’,E16.8)
2121 FORMAT('0’,2E16.8)
2122 FORMAT('0’,3E16.8)
2123 FORMAT('0’,4E16.8)
2124 FORMAT('0’,5E16.8)
2125 FORMAT('0’,6El6.8)
C 2126 FORMAT('0’,7E16.8)
2130 FORMAT('-',37HVECTOR Y(I), SENT TO GAUSSOL AS XB(I)//)
2135 FORMAT('0’,10X,E15.9)
2070 FORMAT('1’,5X,10HEIGENVALUE,9X,11HEIGENVECTOR, 5X, 6HILAST=,13)
2080 FORMAT(' ',E15.9)
2090 FORMAT(' ',20X,E15.9)

C
END
C
SUBROUTINE NLEIGNP (SCALE)
C S s s sk e s e ok e e s ok S ok T Sk Sk e s o e e e ek e S ok S e e e e e e el ook
C THIS ROUTINE WILL COMPUTE THE EIGENVALUE OF THE
9 QUADRATIC EIGENVALUE PROBLEM (K+L*N1+L*L*N2)*X=0
¢ IT USES THE MODIFIED REGULA FALSI METHOD
C B S B e e S e e ke
C
EXTERNAL DET
REAL L
C

READ(60,1000) XTOL,FTOL,NTOL,DINCR
WRITE(61,2010) XTOL,FTOL,NTOL,DINCR
WRITE(61,2030)
A=0.

100  FA=DET(A,SCALE)
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WRITE(61,2020) A,FA
IF (FA.LT.0.) GO TO 110
A=A+DINCR
GO TO 100
110  CONTINUE
B=A
A=A-DINCR
CALL MRGFLS (DET,A,B,XTOL,FTOL,NTOL, IFLAG, SCALE)
IF (IFLAG.GT.2) GO TO 500
L=(A+B) /2.
ERROR=ABS (B-A) /2.
FL=DET (L, SCALE)
WRITE(61,2000) L,ERROR,FL
500  CONTINUE
RETURN
c
1000 FORMAT(2E10.2,110,F10.5)
2000 FORMAT(////14H THE ROOT IS ,E25.15,10X,12H PLUS/MINUS ,E25.15//

+ 15H DETERMINANT =,E25.15)
2010 FORMAT('1l’,28HQUADRATIC EIGENVALUE PROBLEM///6H XTOL~,E10.2///
+ 6H FTOL=,E10.2///6H NTOL-,13///7H DINCR=,F10.5)

2020 FORMAT('-',E25.15,5X,E25.15//)
2030 FORMAT(////13X,6HLAMBDA,17X,11HDETERMINANT//)

C
END
C
SUBROUTINE MRGFLS (F,A,B,XTOL,FTOL,NTOL,IFLAG,SCALE)
C ook T e Rk ek K F K T Kk T T T e S T S o S st s S S S e e b e e e ek
C ITERATES TO A SUFFICIENTLY SMALL VALUE OF THE DETERMINANT
C OR TO A SUFFICIENTLY SMALL INTERVAL WHERE THE ROOT MAY
C BE FOUND '
C F T 70 5K % ok 5 5k S 9k 2 3 3 Sk S ok d 3 9k 3 o T 9k ok Sk S Yo T e T Y T Y Y Y Y Y Y Y Y e S S S e S e e e S e e e Y e ke ek
C
IFLAG=0
FA=F(A,SCALE)
SIGNFA=FA/ABS (FA)
FB=F(B, SCALE)
C
Covvnnl. CHECK FOR SIGN CHANGE
C
IF (SIGNFA*FB.LE.0.) GO TO 100
IFLAG=3
WRITE(61,2010) A,B
RETURN
C
100  W=A
FW=FA
DO 400 N=1,NTOL
C
Covnnn, CHECK FOR SUFFICIENTLY SMALL INTERVAL
C

IF (ABS(B-A)/2..LE.XTOL) RETURN






300

400

C
2010

2020
2030
C

(@]
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....CHECK FOR SUFFICIENTLY SMALL DETERMINANT VALUE

IF (ABS(FW).GT.FTOL) GO TO 200
A=W

B=W

IFLAG=1

RETURN

W=(FA*B-FB*A)/(FA-FB)
PREVFW=FW/ABS (FW)
FW=F(W,SCALE)

. .. .TEMPORARY PRINT OUT

NM1=N-1
WRITE(61,2020) NM1,A,W,B,FA,FW,FB

....CHANGE TO NEW INTERVAL

IF (SIGNFA*FW.LT.0.) GO TO 300
A=W

FA=FW

IF (FW*PREVFW.GT.0.) FB=FB/2.
GO TO 400

B=W

FB=FW

IF (FW*PREVFW.GT.0.) FA=FA/2.
CONTINUE

IFLAG=2

WRITE(61,2030) NTOL

RETURN

FORMAT(////43H F(X) IS OF SAME SIGN AT THE TWO ENDPOINTS |,

2E25.15)
FORMAT('-',I3,9H L-VALUES,3E25.15//4X,9H F-VALUES,3E25.15//)

FORMAT(////19H NO CONVERGENCE IN,IS5,11H ITERATIONS)

END
FUNCTION DET (L,SCALE)
B R R R
THIS FUNCTION COMPUTES THE VALUE OF THE DETERMINANT
OF THE MATRIX S = K+ L * N1 + L * L * N2
K=LINEAR STIFFNESS OF STRUCTURE
N1=NONLINEAR STIFFNESS OF STRUCTURE (CUBIC TERMS)
N2~NONLINEAR STIFFNESS OF STRUCTURE (QUARTIC TERMS)
L=VALUE OF LAMBDA FOR WHICH S IS COMPUTED
Sk Sk ok A S o S ok ok ok s sk Tk Sk S e el e b ket

REAL K,N1,N2,L
COMMON/C2 /NSIZE,NEQ, NCOND,MBAND , IEIGEN
COMMON/C9/S(296,16) ,SP(296,16) , IDET
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..... COMPUTE MATRIX S=K+L*N1+L*L*N2 (BANDED FORMAT)

IF (L.EQ.0.) GO TO 220
DO 210 I=1,NEQ

DO 200 J=1,MBAND

READ(4,10) K

IF (IEIGEN.EQ.1) READ(5,10) N1
IF (IEIGEN.EQ.2) READ(7,10) N1
READ(16,10) N2
S(I,J)=K+L*N1+L*L*N2

CONTINUE

CONTINUE

GO TO 230

READ(4,10) ((S(I,J),J=1,MBAND),I=1,NEQ)
REWIND &4

REWIND 5

REWIND 16

REWIND 7

FORWARD REDUCTION OF MATRIX (GAUSS ELIMINATION)

DO 390 N=1,NEQ

DO 380 LL=2,MBAND

IF (S(N,LL).EQ.0.) GO TO 380
I=N+LL-1
C=S(N,LL)/S(N,1)

J=0

DO 350 KK=LL,MBAND
J=J+1
S(I,J)=S(I,J)-C*S(N,KK)
S(N,LL)=C

CONTINUE

CONTINUE

....COMPUTE DETERMINANT OF MATRIX S

SCALE DOWN "DET" BY A "SCALE" VALUE AFTER EACH STEP

DT=1.

DO 400 I=1,NEQ
DT=DT*S(I,1)/SCALE
CONTINUE

DET=DT

RETURN

FORMAT(E21.6)
END

SUBROUTINE TILTED (IDATA,SCALE,DX,W)

*************************************************************

TO COMPUTE THE BUCKLING LOAD OF A DECK BRIDGE OR
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A THROUGH BRIDGE DUE TO TILTED LOADS
R S B R B

COMMON/C1/NE,NUMNP,D1(15)

COMMON/C2 /NSIZE,NEQ, NCOND,MBAND, IEIGEN
COMMON/C3/IA(37,8),1IB(37,8),X(37),Y(37) ,H(37),RAD,AC
COMMON/C9/S(296,16) ,SP(296,16) ,IDET

..... CHECK TYPE OF BRIDGE BEING CONSIDERED

IDECK.EQ.O0 , THROUGH BRIDGE
IDECK.EQ.1 , DECK BRIDGE
IDECK.EQ.2 , HALF-THROUGH BRIDGE

READ(60,1010) IDECK,HD
WRITE(61,2000)

IF (IDECK.EQ.0) WRITE(61,2020) IDECK,HD
IF (IDECK.EQ.1) WRITE(61,2010) IDECK,HD
IF (IDECK.EQ.2) WRITE(61,2025) IDECK,HD

....MODIFY MATRIX S1 BY PARAMETER P/H ACCORDING TO

EQUATION NUMBERS IN ARRAY IA(N,I). STORE MATRIX S1

READ(5,10) ((S(I,J),J=1,MBAND),I=1,6NEQ)

REWIND 5

P=WDX

WRITE(61,2030) P

DO 110 N=1,NUMNP

IF (IA(N,2).LE.0) GO TO 110

I=IA(N,?2)

H(N)=Y(N) -HD

WRITE(61,2040) N,H(N)

IF (H(N).EQ.0.) GO TO 100

S(I,1)=S(I,1)-P/H(N)

CONTINUE

CONTINUE

IF (IEIGEN.EQ.0) WRITE(5,10) ((S(I,J),J=1,MBAND),I=1,NEQ)
IF (IEIGEN.EQ.1) WRITE(5,10) ((s(1,J),J=1,MBAND),I=1,NEQ)
IF (IEIGEN.EQ.2) WRITE(7,10) ((S(I,J),J=1,MBAND),I=1,NEQ)
REWIND 5

REWIND 7

SOLVE EIGENVALUE PROBLEM
IF IEIGEN.EQ.0 , SOLVE LINEAR CASE
IF IEIGEN.EQ.1 , SOLVE QUADRATIC CASE

IF IEIGEN.EQ.2 , SOLVE BOTH

EIGEN=0.
IF (IEIGEN.EQ.O0) CALL EIGENVL (EIGEN, IDATA)

IF (IEIGEN.EQ.1l) CALL NLEIGNP (SCALE)
IF (IEIGEN.EQ.2) GO TO 120

RETURN

CALL NLEIGNP (SCALE)



s maow
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CALL EIGENVL (EIGEN,IDATA)
RETURN
C
10  FORMAT(E21.6)
1010 FORMAT(IS,F10.5)
2000 FORMAT(’1’,18H TILTED LOAD CASE //)
2010 FORMAT(////13H DECK BRIDGE///9H IDECK =,12///6H HD =,F10.5)
2020 FORMAT(////16H THROUGH BRIDGE///9H IDECK =,12///6H HD =,F10.5)
2025 FORMAT(////21H HALF-THROUGH BRIDGE///9H IDECK =,12///

+ 6H HD =,F10.5)
2030 FORMAT(////25H LOAD ON EACH COLUMN IS ,F10.5////
+ 16H COLUMN LENGTHS//)
2040 FORMAT('0’,7H H(,12,3H) =,F7.3)
c
END
c
ceee
SUBROUTINE REOCON
c
COMMON/C4/SE(16,16)
DIMENSION ID(4),XA(14)
G
c CONDENSE FROM 16 BY 16 TO 14 BY 14
c
N=16
NC=2
DO 230 K=1,NC
LL=N-K
KK=LL+1

DO 230 L~-1,LL
DUM=SE (KK, L) /SE (KK, KK)
DO 220 M=1,L
220 SE(L,M)=SE(L,M) - SE(KK,M)*DUM
230 CONTINUE
LL-N-NC
DO 250 I-1,LL
DO 240 J-I,LL
SE(1,J)=SE(J, 1)
240 CONTINUE
250  CONTINUE

[+
ID(1)=7
ID(2)=8
[+
c REORDER COLUMNS AND ROWS
c
N=14
NR=2
NC=2

DO 200 K=1,NR
DO 100 J=1,N
XA(J)=SE(J,ID(K))
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100  CONTINUE
DO 120 L=ID(K),N-1
DO 110 J=1,N
SE(J,L)=SE(J,L+1)
110  CONTINUE
120  CONTINUE
DO 130 J=1,N
SE(J,N)=XA(J)
130  CONTINUE
DO 140 J=1,N
XA(J)=SE(ID(K),J)
140  CONTINUE
DO 160 L=-ID(K),N-1
DO 150 J=1,N
SE(L,J)=SE(L+1,J)
150  CONTINUE
160  CONTINUE
DO 170 J=1,N
SE(N,J)=XA(J)
170  CONTINUE
KK=K+1
DO 180 M=KK,NR
ID(M)=ID(M)-1
180  CONTINUE
200  CONTINUE

C
C DO CONDENSATION
C
DO 231 K=1,NC
LL=N-K
KK=LL+1

DO 231 L=1,LL
DUM=SE (KK, L) /SE (KK, KK)
DO 221 M=1,L
221 SE(L,M)=SE(L,M)-SE(KK,M)*DUM
231  CONTINUE
LL=N-NC
DO 251 I=1,LL
DO 241 J=I,LL
SE(I,J)=SE(J,I)
241  CONTINUE
251  CONTINUE

CC
CCCC
RETURN
C
END
C
FUNCTION DET1(SCALE)
C
C 3T AT 3 3 3 T T ok kA 3k 2 3 S 3 b Sk S P o o S T T S Y S e Y Y St S e T Y Y e e e Y Y Y S e Y Y T T B Y e e S e e e ek e ok

C THIS FUNCTION COMPUTES THE VALUE OF THE DETERMINANT OF
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THE MATRIX S=K+N1+N2
S Sk S S R R AR AR R R AN

COMMON/C2/ NSIZE,NEQ,NCOND,MBAND, IEIGEN
COMMON/C9/ S(296,16),SP(296,16),IDET

IF(IDET.EQ.1) GO TO 250
IF(IDET.EQ.2) GO TO 450
DO 490 I=1,NEQ
DO 490 J=1,MBAND
S(I,J)=SP(I1,J)
FORWARD REDUCTION OF MATRIX(GAUSS ELEMINATION)
F TR o 2 T 3ok T T T T T o 3 T T T b o S b S T S e T T R S S S Y Y Y S S S S S S e e Yo S e e Ve e Y T v Y T s s e e e ek e
DO 390 LN=1,NEQ
DO 380 LL=2,MBAND
IF(S(LN,LL).EQ.0.) GO TO 380
I=IN+LL-1
C=S(LN,LL)/S(LN,1)
J=0
DO 350 KK=LL,6MBAND
J=J+1
S(I,J)=S(I,J)-C*S(LN,KK)
S(LN,LL)=C
CONTINUE
CONTINUE
CONTINUE

COMPUTE DETERMINANT OF MATRIX S
SCALE DOWN"DET1" BY A "SCALE" VALUE AFTER EACH STEP
2 T T3 ok T T 7 3k 51 T T 3 3 5 T 3 T 91 9 TR 2% T T 3 T 7 3 T T 2 T S o S S S A e e T Y Y S Y Y Y S e e e S e Y b b e e e ek
DT=1.
DO 400 I=1,NEQ
DT=DT*S(I,1)/SCALE
CONTINUE
DET1=DT
RETURN

END
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APPENDIX D

INCREMENTAL STIFFNESS MATRICES, [nl], AND [n2]

BASED ON THE QUARTIC AXIAL STRAIN MODEL

The following subroutine contains the entries of the [nl] and [n2]
matrices based on the quartic axial strain model.

SUBROUTINE NUMINT (N,M)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
33k 2k e d ok vl ok s v ok sk v ok ok v ok sk e ok o eSSk S ks ok S s s sk sk o skt obet

TO INTEGRATE NUMERICALLY THE TERMS OF THE CURVED ELEMENT
STIFFNESS MATRICES SE, SE1l, SE2, IT USES THE GAUSS-LEGENDRE
QUADRATURE FORMULA.

THE ROUTINE NUMINT USES THE MP-POINT GAUSS-LEGENDRE QUADRATURE
FORMULA TO COMPUTE THE INTEGRAL OF FUNCTN(GM)*DGM BETWEEN
INTEGRATION LIMITS Al AND A2. THE ROOTS OF SEVEN LEGENDRE
POLYNOMIALS AND THE WEIGHT FACTORS FOR CORRESPONDING
QUADRATURES ARE STORED IN THE Z AND WEIGHT ARRAYS RESPECTIVELY.
MP MAY ASSUME VALUES 2, 3, &4, 5, 6, 10, AND 15 ONLY. THE
APPROPRIATE VALUES FOR THE MP-POINT FORMULA ARE LOCATED IN
ELEMENTS Z(KEY(I))...Z(KEY(I+1)-1) AND WEIGHT(KEY(I))...
WEIGHT(KEY(I+1)-1) WHERE THE PROPER VALUE FOR I IS DETERMINED
BY FINDING THE SUBSCRIPT OF THE ELEMENT OF THE ARRAY NPOINT
WHICH HAS THE VALUE MP. IF AN INVALID VALUE OF MP IS USED, A
TRUE ZERO IS RETURNED AS THE VALUE OF GAUSS.

%33k S v sk sk ok vk vk vk sk s sk ok S ok ok B o ok v ok e sk e d Sk ok ok ok b sk s v s sk e s v s vt b bk sk b b ab b bk e ek okt

REAL IXX,IYY,KT,II,JJ,LENGTH,L1,L2,K,KK

+

+

+

DIMENSION NPOINT(7),KEY(8),Z(24),WEIGHT(24),K(16,16)
COMMON/C1/NE ,NUMNP, NUMEG, NTYPE(3) ,NUMEL(3) , IPAR, ICAL1, ICAL2,ICAL3,

ICAL4,ICALS,ICAL6,ICALY

COMMON/C4 /SE(16,16)
COMMON/C5/E(3),G(3) ,NODEI(36) ,NODEJ (36) ,A(36),IXX(36),IYY(36),

KT(36),L(1,36)

COMMON/C6 /A1,A2 ,MP,B1(36),B2(36),B3(36)
COMMON/C7 /RI(36) ,RJ(36),PHII(36),PHIJ(36),TETA(36),LENGTH(36),

RIA(36),RJA(36)

COMMON/C11/DN(16),U(36,12),w(37,8),V(37,8)
DATA NPOINT/ 2, 3, 4, 5, 6, 10, 15/
DATA KEY/ 1, 2, 4, 6, 9, 12, 17, 25/

198







DATA Z

[N I = R VOIS I e
eNeoNeoNeoNeNa]

.987992518
DATA WEIGHT

[o YN O, TN S N VE I R

0.030753242

T=TETA (M)
R1=RI (M)
R2=RJ (M)
L1=R1*T
L2=R2*T

/0.
.339981044,0.
.906179846,0.
.148874339,0.
.973906529,0.
.570972173,0.

/

/ 1.
0.652145155,0.
0.236926885,0.
0.295524225,0.
0.066671344,0.
0.166269206,0.

/

199

577350269,0.0 ,0.
861136312,0.0 0.

238619186,0.
433395394,0.

0

0

0

0

661209387,0.
679409568,0.

,0.201194094,0.
724417731,0.

848206583,0.

,0.888888889,0.
347854845,0.
467913935,0.
269266719,0.
202578242,0.
139570678,0.

568888889,0.
360761573,0.
219086363,0.
198431485,0.
107159221,0.

Coovvlt FIND SUBSCRIPT OF FIRST Z AND WEIGHT VALUE

DO 100 I=1,7

IF(MP.EQ.NPOINT(I)) GO TO 200

100  CONTINUE

C
C.ooovvnt INVALID MP USED
C
GAUSS=0.0
WRITE(61,2000) GAUSS
RETURN
C .
Coviinl, SET UP INITIAL PARAMETERS
C

200 JFIRST=KEY(I)
JLAST=KEY(I+1)-1
C=(A2-A1)/2.
D=(A2+A1) /2.

IF (IPAR.GE.3) GO TO 543

DO 249 I=1,16

DO 249 J=1,16
249  K(1,J)=0.0

GO TO 248

........ ACCUMULATE THE SUM IN THE MP-POINT FORMULA

774596669,
538469310,
932469514,
865063367,
394151347,
937273392,

555555556,
478628671,
171324493,
149451349,
186161000,
070366047,
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CCccC

250

248

300

350
360

4

200

CONTINUE

DO 250 I=1,12

DO 250 J=1,12

K(I,J)=0.0

CONTINUE

DO 500 J=JFIRST,JLAST
I=0

IF (2(J).EQ.0.) GO TO 350
I=I+1

IF (I.EQ.1) GM=Z(J)*C+D
IF (I.EQ.2) GM=-Z(J)*C+D
GO TO 360

GM=D

AA=6 . *GM**2 -6 . *GM
BB=3.*GM**2-4  *GM+1.
CC=3 . *GM**2-2 , *GM
DD=12.*GM-6.

EE=6.*GM-4.

FF=6.%GM-2.

GG=2 . ¥GM#*3 -3  *GM**2+1
HH=GM#**3 - 2 , *GM#**2+GM
IT=-2.%GM*%343  *GM#*2
JJ=GM*%3 - GM**2

KK=1. -GM
R=B1(M)+2.*B2 (M) *T*GM
GMSS=(-1./(R*¥*3*T))*(2.*B2(M))
GMSG=R*T*GMSS

........ CHECK WHICH PART OF THE STIFFNESS MATRIX IS BEING COMPUTED

IPAR=2, COMPUTE ARRAY SE

IPAR=3, COMPUTE ARRAY SE1

IPAR=4, COMPUTE ARRAY SE2
GO TO (370,370,390,410),IPAR

CONTINUE

........ INTEGRANDS OF CURVED ELEMENT LINEAR STIFFNESS (SYMMETRIC)

Cl=-E(N)*A(M)*GG/R

C2=(E(N)*IYY (M) / (R*¥*3*T*%3) )% (DD+AA*GMSS*R**2*T**2)

C3=(E(N)*IXX (M) *T/R**3)%(-DD/T**2-GMSS*R¥*2%AA)

ClmG (N)*KT (M) *AA/ (R*¥*3*T)

CS=(E(N)*A (M) /(R*T) ) * (AA+T**2%HH)

C6=(E(N)*TYY (M) /(R¥*3*T*%3) )% (- T*¥EE-GMSSH*R**2*T**3%¥BB+T*AA+
GMSG*R*T**2%GG)

C7=E(N)*IXX (M) *T*GG/R**2




"
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C8=G (N) *KT (M) *AA/ (R**2*T)

C9=-E(N)*A (M) *L1*HH/R

C10=(E(N)*IYY (M) / (R¥*3*T*%3) )% (LI *EE+GMSS*R**2*T**2*L1*BB)

Cll=(E(N)*IXX(M)*T/R*%3)% (L1*EE/T**2+GMSS*R**2%L1*BB)

C12=-G(N)*KT(M)*L1*BB/ (R**3*T)

C13=E(N)*A(M)*R1*BB/ (R*T)

Cl4m=(E(N)*IYY (M) /(R**3*T*%3) )% (T*R1*BB+GMSG*R*T*2*R1*HH)

C15=E(N)*IXX(M)*T*L1*HH/R#¥%2

C16=G (N)*KT (M) *L1*BB/ (R**2*T)

Cl7=-E(N)*A(M)*II/R

C18=(E(N)*IYY (M) / (R**3*T*%3) )% ( -DD-GMSS*R¥*2*TH*2*AA)

Cl19=-C3

C20=-C4

C21=(E(N)*A (M) /(R*T) ) *(-AA+T**2%JJ)

C22=(E(N)*IYY (M) /(R¥**3%T#%3) )% ( - T*FF-GMSS*R**2*T#*3%CC- T*AA+
GMSG*R*T#%2*I1)

C23=E(N)*IXX(M)*T*II/R**2

C24=-C8

C25=(-E(N)*A(M)*L2*JJ) /R

C26=(E(N)*IYY (M) /(R¥*3%T*%3) )% (L2*FF+GMSS*R¥* 2% T*2%L2*CC)

C27=(E(N)*IXX (M)*T/R¥*3 )% (L2*FF/T#*%*2+GMSS*R**2%L2%CC)

C28=-G(N)*KT (M) *L2*CC/ (R¥**3*T)

C29=E (N)*A (M) *R2*CC/ (R*T)

C30=(E(N)*IYY (M) / (R¥*3*T**3) )% (T*R2*CC+GMSG*R*¥T**2*R2*JJ )

C31=E(N)*IXX (M) *T*L2%JJ /R¥*2

C32=G (N)*KT (M) *L2*CC/ (R¥**2%T)

SE(1,1)=Cl*T#*( -GG)+C2* (DD+AA*GMSS*R¥* 2% T2 )

SE(1,2)=0.0

SE(1,4)=0.0

SE(1,6)=0.0

SE(1,8)=0.0

SE(1,10)=0.0

SE(1,12)=0.0

SE(1,14)=0.0

SE(1,16)=0.0

SE(L, 3)=C1l% (AA+T**2%HH ) +C2% ( - T¥EE - GMSS*RA*2*T**3¥BB+T*AA+
GMSG*R*T**2%GG)

SE(1,5)=C1*T*( - L1)*HH+C2*L1% (EE+BB*GMSSH*R**2*T**2)

SE(1,7)=C1*R1%*BB+C2% (T*R1*BB+GMSG*R*T#*2*¥R1*HH)

SE(1,9)=C1%(-T*I1) -C2%(DD+AA*GMSSH*R#*2*T**2)

SE(1,11)=CL%( - AA+T**2%JJ ) +C2% ( - TXFF - GUSS*R¥*2¥T**3%CC-T*AA+
GMSG*R*T**2%11)

SE(1,13)=Cl%(-T*L2%JJ)+C2% (L2*FF+GMSS*R¥*2*T**2%¥L2%CC)

SE(1,15)=C1%(R2%CC)+C2% (T*R2*CC+GMSGXR*T**2%JJ)

SE(2,2)=C3%(-DD/T**2-GMSS*¥R¥**2*¥AA)+C4*AA
SE(2,3)=0.0
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SE(2,5)=0.0

SE(2,7)=0.0

SE(2,9)=0.0

SE(2,11)=0.0

SE(2,13)=0.0

SE(2,15)=0.0

SE(2,4)=C3*R*GG+CL¥*R*AA
SE(2,6)=C3%(L1*EE/T**2+GMSS*R**2*L1*BB) - C4*L1*BB
SE(2, 8)=C3*R¥L1*HH+C4*R*L1%BB

SE(2,10)=C3% (DD/T**2+GMSS*R¥*2%AA) - C4*AA
SE(2,12)=C3*R*II-C4*R¥*AA
SE(2,14)=C3%(L2*FF/T*%*2+GMSS*R¥*2*L2%CC) - C4*L2*CC
SE(2,16)=C3*R*¥L2*JJ+C4*R¥L2*CC

SE(3, 3)=C5% (AA+T**2%HH) +C6%* (- T*EE-GMSS*¥R**2*T**3*BB+T*AA+
GMSG*R*T**2*GG)

SE(3,4)=0.0

SE(3,6)=0.0

SE(3,8)=0.0

SE(3,10)=0.0

SE(3,12)=0.0

SE(3,14)=0.0

SE(3,16)=0.0 '

SE(3,5)-C5*(-T*Ll*HH)+C6*(Ll*EE+GMSS*R**Z*T**Z*LI*BB)

SE(3,7)=C5*R1*BB+C6%* (T*R1*¥BB+GMSG*R*T**2*R1*HH)

SE(3,9)=C5%(-T*II)+C6%(-DD-GMSS*R¥*2*T**2*AA)

SE(3,11)-05*(-AA+T**2*JJ)+C6*(-T*FF-GMSS*R**Z*T**3*CC-T*AA+
GMSG*R*T**2*11)

SE(3,13)-C5*(-T*L2*JJ)+C6*(L2*FF+GMSS*R**Z*T**Z*LZ*CC)

SE(3,15)-CS*RZ*CC+C6*(T*R2*CC+GMSG*R*T**2*JJ)

SE(4,4)=CT*R*GG+C8*R*AA

SE(4,5)=0.0

SE(4,7)=0.0

SE(4,9)=0.0

SE(4,11)=0.0

SE(4,13)=0.0

SE(4,15)=0.0

SE(&,6)=C7% (LL¥EE/T#*2+GMSS*R¥*2*L1*BB)+C8%(-L1*BB)
SE(4,8)=C7*R*L1*HH+C8*R*L1*BB
SE(4,10)=C7%(DD/T#*2+GMSS*R**2*AA)+C8% (-AA)
SE(4,12)=C7*R*I1+C8% (-R¥AA)

SE(4,14)=C7% (L2%FF/T**2+GMSS*¥R**2¥L2%CC)+C8% (-L2*CC)
SE(4,16)=C7*R*¥L2%*JJ+C8¥R*L2%CC

SE(5,5)-C9*(-T*LI*HH)+C10*(Ll*EE+GMSS*R**Z*T**2*L1*BB)

SE(5,6)=0.0
SE(5,8)=0.0
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SE(5,10)=0.0

SE(5,12)=0.0

SE(5,14)=0.0

SE(5,16)=0.0

SE(5,7)=C9*R1*BB+C10%* (T*R1*BB+GMSG*R*T**2*R1*HH)

SE(5,9)=C9%(-T*II)+C1l0%(-DD-GMSS*R¥*2*T**x2%AA)

SE(5,11)=C9% (-AA+T**2%JJ)+CLO% (- T*FF-GMSS*R¥*2*T**3*CC-T*AA+
GMSG*R*T**2*11)

SE(5,13)=C9%(-T*L2*JJ)+C10% (L2*FF+GMSS*R**2*T**2%L2*CC)

SE(5,15)=C9*R2*CC+C10* (T*R2*CC+GMSG*R*T**2*R2%JJ)

SE(6,6)=C1l1*(L1*EE/T**2+GMSS*R**2*L1*BB)+C12*(-L1*BB)
SE(6,7)=0.0

SE(6,9)=0.0

SE(6,11)=0.0

SE(6,13)=0.0

SE(6,15)=0.0

SE(6,8)=C11*R*¥L1*HH+C12*R*L1*BB
SE(6,10)=C11%(DD/T**2+GMSS*R**2*AA)+C12%(-AA)
SE(6,12)=C11*R*II+C12%(-R*AA)
SE(6,14)=C11*(L2*FF/T**2+GMSS*R**2*L2*CC)+C12*(-L2*CC)
SE(6,16)=C11*R*¥L2*JJ+C12*R*L2*CC

SE(7,7)=C13*R1*BB+C1l4%* (T*R1*BB+GMSG*R*T**2*R1*HH)

SE(7,8)=0.0

SE(7,10)=0.0

SE(7,12)=0.0

SE(7,14)=0.0

SE(7,16)=0.0

SE(7,9)=C1l3%(-T*II1)+C1l4%(-DD-GMSS*¥R**2*T**2*AA)

SE(7,11)=C13*(-AA+T*%2%JJ)+CL4% (-T*FF-GMSS*R**2*T**3*CC-T*AA+
GMSG*R*T**2*11I)

SE(7,13)=C13%(-T*L2%JJ)+C1l4* (L2*FF+GMSS*R¥**2*T**2*L2*CC)

SE(7,15)=C13*R2*CC+C14* (T*R2*CC+GMSG*¥R*T**2*R2*JJ)

SE(8,8)=C1l5*%R*L1*HH+C16*R*L1*BB

SE(8,9)=0.0

SE(8,11)=0.0

SE(8,13)=0.0

SE(8,15)=0.0
SE(8,10)=C15%(DD/T**2+GMSS*R**2*AA)+C16*(-AA)
SE(8,12)=C15*R*II+C16%*(-R*AA)

SE(8,14)=C15% (L2*FF/T**2+GMSS*R**2%L2%*CC)+C16*(-L2*CC)
SE(8,16)=C15*%R*L2*JJ+C16*R*L2*CC

SE(9,9)=C17%T*(-1I1)+C18%(-DD-GMSS*R¥*2*T**2*%AA)
SE(9,10)=0.0
SE(9,12)=0.0
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SE(9,14)=0.0

SE(9,16)=0.0

SE(9,11)=C17%(-AA+T*%2%JJ)+C18% (- T*XFF-GMSS*R**2*T*%*3%CC-T*AA+
GMSG*R*T**2%11)

SE(9,13)=C17%(-T*L2%JJ)+C18% (L2*¥FF+GMSS*R**2*T**2*L2*CC)

SE(9,15)=C17*R2*CC+C18%* (T*R2*CC+GMSG*R*T**2%JJ)

SE(10,10)=C19%*(DD/T**2+GMSS*R**2*AA)+C20% (-AA)
SE(10,11)=0.0

SE(10,13)=0.0

SE(10,15)=0.0

SE(10,12)=C19*R*II+C20%*(-R*AA)
SE(10,14)=C19%(L2*FF/T*%2+GMSS*R**2*L2*CC)+C20%* (-L2*CC)
SE(10,16)=C19*R*L2*JJ+C20*R*L2*CC

SE(11,11)=C21%(-AA+T**2%JJ)+C22% (- T*FF-GMSS*R¥*2*T**3%CC-T*AA+
GMSG*R*T**2*II)

SE(11,12)=0.0

SE(11,14)=0.0

SE(11,16)=0.0

SE(11,13)=C21*(-T*L2*JJ)+C22%(L2*FF+GMSS*R**2*T**2*L2*CC)

SE(11,15)=C21*R2*CC+C22% (T*R2*CC+GMSG*R*T**2*R2*JJ)

SE(12,12)=C23*R*II+C24%*(-R*AA)

SE(12,13)=0.0

SE(12,15)=0.0

SE(12,14)=C23% (L2*FF/T**2+GMSS*R**2*L2*CC)+C24* (-L2*CC)
SE(12,16)=C23*R*L2%*JJ+C24*R*L2*CC

SE(13,13)=C25%(-T*L2*JJ)+C26%* (L2*FF+GMSS*R**2*T**2*L2*CC)
SE(13,14)=0.0

SE(13,16)=0.0
SE(13,15)=C25%R2*CC+C26%* (T*R2*CC+GMSG*R*T**2*R2*JJ)

SE(14,14)=C27%(L2*FF/T**2+GMSS*R**2*L2%*CC)+C28%*(-L2*CC)
SE(14,15)=0.0
SE(14,16)=C27*R*L2%*JJ+C28*R*L2*CC

SE(15,15)=C29*R2*CC+C30% (T*R2*CC+GMSG*R*¥T**2*R2*JJ)
SE(15,16)=0.0

SE(16,16)=C31*R*L2*JJ+C32*R*L2*CC

DO 380 IE=1,16

DO 380 JE-IE,16
K(IE,JE)=K(IE,JE)+WEIGHT (J)*SE(IE,JE)
IF (I.EQ.1) GO TO 300

GO TO 500
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CONTINUE

INTEGRANDS OF CURVED ELEMENT NONLINEAR STIFFNESS SE1l

UD=GG*DN (1)+HH* (L1*DN(5) -T*DN(3) )+II*DN(7)+JJ*(L2*DN(11)

<+

-T*DN(9))

VD=GG*DN(2) -HH*L1*DN(6)+II*DN(8)-JJ*L2*DN(12)
WD=KK*DN (3 )+GM*DN(9)

BD=KK*DN (4)+GM*DN(10) :

UG=AA*(DN(1) -DN(7))+BB*(L1*DN(5) -T*DN(3))+CC*(L2*DN(11)

+

-T*DN(9))

VG=AA* (DN(2) -DN(8) ) -BB*L1*DN(6) - CCXL2*DN(12)
WG=-DN(3)+DN(9)
BG=-DN(4)+DN(10)

C1l=UG+T*WD
C2=WG-T*UD
C3=E(N)*A(M)/(R**2%T)

SE(1,1)=C3*(-2.*AA*GG*C1+(AA**2*C2) /T)
SE(1,2)=C3*(-GG)*VG*AA
SE(1,3)=C3*%(C1l*(-GG*T*(-BB+KK)+(AA*(-1.+HH*T**2))/T)

+AA*C2% (-BB+KK))

SE(1,5)=C3%(C1*L1*(-GG*BB-AA%XHH)+(AA*C2*BB*L1) /T)
SE(1,6)=C3*GG*VG*BB*L1
SE(1,7)=C3%(Cl*AA* (GG-1II)- (AA**2%C2)/T)
SE(1,8)=C3*GG*AA*VG
SE(1,9)=C3%(CLl¥*(-GG*T%*(-CC+GM)+(AA* (1. +JJ*T**2))/T)

+

+AA*C2%(-CC+GM))

SE(1,11)=C3%(C1*L2% ( -GG*CC-AA*JJ)+(AA*XC2*CC*L2) /T)
SE(1,12)=C3*CC*GG*L2*VG

C4=C3/T

SE(2,2)=C4*AA**2%C2
SE(2,3)=C4*VG*AA* (-1 . +HH*T**2)
SE(2,5)=C4*VG*AA* ( -HH*L1*T)
SE(2,6)=C4*C2*AA* (-BB*L1)
SE(2,7)=C4*VG*AA*(-TI*T)

SE(2, 8)=-C4*AA**2%C2
SE(2,9)=CL*AAXVG* (1. +JI*T**2)
SE(2,11)=C4*VG*AA* (-JI*L2*T)
SE(2,12)=C4*AA*C2% ( -CC*L2)
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C5=C4%*(-1.+HH*T**2)
C6=C4*C2*T* (- BB+KK)

SE(3,3)=C5%2,*C1l*T*(-BB+KK)+C6*T* (-BB+KK)
SE(3,5)=C5*C1*BB*L1+C4*C1*T**2% (-HH*L1)* (-BB+KK)+C6*BB*L1
SE(3,6)=C5*VG*(-BB*L1)
SE(3,7)=C5%C1l*(-AA)+C4*CL*T**2*II%(BB-KK)-C6*AA
SE(3,8)=C5*%VG*(-AA)
SE(3,9)=C5*C1*T*(-CC+GM)+C4*C1*T*(-BB+KK)*(1.+JJI*T**2)

+ +C6*T* (-CC+GM)
SE(3,11)=C5%C1*CC*L2+C4*C1*T**2% (-BB+KK)*(-JJ*L2)

+ +C6*CC*L2
SE(3,12)=C5*%VG*(-CC*L2)

C7=C4* (-HH*L1*T)
C8=C4*BB*L1*C2

SE(5,5)=C7*C1*2 . *BB*L1+C8*BB*L1
SE(5,6)=C7*VG*(-BB*Ll1)
SE(5,7)=C7%C1l*(-AA)+C4*C1*BB*L1*(-II*T)+C8%(-AA)
SE(5,8)=C7*VG*(-AA)
SE(5,9)=C7*C1*T*(-CC+GM)+C4*CL*¥BB*L1*(1.+JJ*T**2)

+ +C8*T*(-CC+GM)
SE(5,11)=C7*%C1*CC*L2+C4*BB*L1*(-JJ*L2*T)*C1+C8*CC*L2
SE(5,12)=C7*VG*(-CC*L2)

C9=C4* (-BB*L1)

SE(6,6)=C9%(-BB*L1)*C2
SE(6,7)=C9*VG*(-II*T)
SE(6,8)=C9%C2% (-AA)
SE(6,9)=CO*VG* (1. +JJ*T**2)
SE(6,11)=C9*VG* (-JJ*L2*T)
SE(6,12)=C9%C2%*(-CC*L2)

SE(7,7)=2.%C4*AA*T I*T*C1+CL*AA**2%C2
SE(7,8)=C4*II*T*VG*AA
SE(7,9)=Cl% (- TI*T)*CL*T* (-CC+GM) - C4A*AAXCL* (1, +JI*T**2)

+ -C4*C2%T* (-CC+GM)*AA
SE(7,11)=Ch%* (- II*T)*CL*CC*XL2+C4*AA*JI*L2¥T*C1 - C4*C2*CC*L2*AA
SE(7,12)=C4*II*T*VG*CC*L2

SE(8,8)=Cl*AA**2%C2
SE(8,9)=Cl*(-AA*¥VG)* (1. +JJ*T**2)
SE(8,11)=C4*AAXVGH*JI*L2*T
SE(8,12)=C4*C2*AA*CC*L2

ClO=C4* (1. +JJ*T**2)
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Cl1=C4*T* (-CC+GM)*C2

SE(9,9)=C10%2 *C1*T*(-CC+GM)+C11*T*(-CC+GM)
SE(9,11)=C10*C1*CC*L2+C4*C1*T* (-CC+GM)* (-JI*L2*T)+C11*CC*L2
SE(9,12)=C10*VG*(-CC*L2)

SE(11,11)=C4% (-2 .*JJ*L2*¥L2*T*CC*C1+CC*CC*L2*L2*C2)
SE(11,12)=C4*JJ*L2*T*VG*CC*L2

SE(12,12)=C4*C2*CC*L2*CC*L2

DO 400 IE=1,12

DO 400 JE=IE,12
K(IE,JE)=K(IE,JE)+WEIGHT (J)*SE(IE,JE)
IF (I.EQ.1) GO TO 300

GO TO 500

CONTINUE

....INTEGRANDS ON CURVED ELEMENT NONLINEAR STIFFNESS SE2

WD=KK*DN (3)+GM*DN(9)

UG=AA*(DN(1)-DN(7))+BB*(L1*DN(5) -T*DN(3) )+CC*(L2*DN(11) -T*DN(9))

VG=AA* (DN(2)-DN(8)) -L1*BB*DN(6) -L2*CC*DN(12)

Cl=E(N)*A(M)*AA/(2.*R**3*T**3)
C2=3.% (UGH+T*WD) **2+VG**2
C3=2.*VG* (UG+T*WD)

SE(1,1)=C1*C2*AA
SE(1,2)=C1*C3*AA
SE(1,3)=C1*C2* (- T*BB+T*KK)
SE(1,4)=0.0
SE(1,5)=C1*C2*L1*BB
SE(1,6)=C1*C3*(-L1*BB)
SE(1,7)=-SE(1,1)
SE(1,8)=-SE(1,2)
SE(1,9)=C1*C2%(-T*CC+T*GM)
SE(1,10)=0.0
SE(1,11)=C1*C2*L2*CC
SE(1,12)=C1*C3*(-L2*CC)

Chm3  *¥VG*%2+4 (UGH+T*WD ) **2

SE(2,2)=C1l*C4*AA
SE(2,3)=C1*C3%*(-T*BB+T*KK)

= 1.
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SE(2,4)=0.0
SE(2,5)=-SE(1,6)
SE(2,6)=C1*C4*(-L1*BB)
SE(2,7)=-SE(1,2)
SE(2,8)=-SE(2,2)
SE(2,9)=C1*C3%* (-T*CC+T*GM)
SE(2,10)=0.0
SE(2,11)=-SE(1,12)
SE(2,12)=C1*C4*(-L2*CC)

C5=E(N)*A(M)*T*(-BB+KK) /(2.*R**3*T**3)

SE(3, 3)=C5*C2*T* (- BB+KK)
SE(3,4)=0.0
SE(3,5)=C5*%C2*L1*BB
SE(3,6)=C5%C3%(-L1*BB)
SE(3,7)=-SE(1,3)
SE(3,8)=-SE(2,3)
SE(3,9)=C5%C2*T* (- CC+GM)
SE(3,10)=0.0 .
SE(3,11)=C5*%C2*L2*CC
SE(3,12)=C5%C3*(-L2*CC)

SE(4,4)=0.
SE(4,5)=0.
SE(4,6)=0.
SE(4,7)=0.
SE(4,8)=0.
SE(4,9)=0.
SE(4,10)=0.0
SE(4,11)=0.0
SE(4,12)=0.0

[eNeNoNoNeNe)

C6=E(N)*A(M)*L1*BB/(2.*R**3*T**3)

SE(5,5)=C6*C2*L1*BB
SE(5,6)=C6*C3%(-L1*BB)
SE(5,7)=C6*C2*(-AA)
SE(5,8)=C6*C3*(-AA)
SE(5,9)=C6*C2% (-T*CC+T*GM)
SE(5,10)=0.0
SE(5,11)=C6*C2*L2*CC
SE(5,12)=C6*C3*(-L2*CC)

SE(6,6)=C6*C4*L1*BB
SE(6,7)=-SE(5,8)
SE(6,8)=-SE(2,6)
SE(6,9)=-C6%*C3%( -T*CC+T*GM)
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SE(6,10)=0.0
SE(6,11)=SE(5,12)
SE(6,12)=C6*C4*L2*CC

SE(7,7)=SE(1,1)
SE(7,8)=SE(1,2)
SE(7,9)=-SE(1,9)
SE(7,10)=0.0
SE(7,11)=-SE(1,11)
SE(7,12)=-SE(1,12)

SE(8,8)=SE(2,2)
SE(8,9)=-SE(2,9)
SE(8,10)=0.0
SE(8,11)=-SE(2,11)
SE(8,12)=-SE(2,12)

C8=E(N)*A(M)* (-T*CC+T*GM) /(2. *¥R¥*3*T**3)

SE(9,9)=C8*C2* ( -T*CC+T*GM)
SE(9,10)=0.0
SE(9,11)=C8*C2*L2*CC
SE(9,12)=C8*C3*(-L2*CC)

SE(10,10)=0.0
SE(10,11)=0.0
SE(10,12)=0.0

C9=E(N)*A(M)*L2*CC/ (2. *¥R¥**3*T**3)

SE(11,11)=C9*C2*L2*CC
SE(11,12)=C9*C3*(-L2*CC)

SE(12,12)=C9*C4*L2*CC

DO 420 IE=1,12

DO 420 JE=IE,12
K(1E,JE)=K(IE,JE)+WEIGHT (J)*SE(IE,JE)
IF (I.EQ.1l) GO TO 300

CONTINUE

MAKE INTERVAL CORRECTION AND RETURN

IF (IPAR.GE.3) GO TO 1
1Q=16

GO TO 2

1Q-12

CONTINUE







CCCC

550
CCCC

Ccccc

2000
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DO 550 I=1,IQ
DO 550 J=I,IQ
SE(I,J)=C*K(I,J)
SE(J,I1)=SE(I,J)

IF (IPAR.EQ.1) CALL REOCON

IF (IPAR.EQ.2) CALL REOCON

RETURN

FORMAT(’1’',1SHINVALID MP USED///7H GAUSS=,F4.1)

END
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