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A Design Paradigm

for

Implementing Robotic Control Algorithms in ASIC

By

Steven Siutit Leung

ABSTRACT

The advent of the ASIC (Application-Specific Integrated Circuit) technology has

created a new opportunity for robOtic control — the feasibility of designing single-chip

processors dedicated to the execution of a specific control algorithm. Central to meeting

this challenge is a better understanding of the interactions among robotic algorithms,

computational architectures. and the implementing technology. This research fulfils this

need by developing a paradigm based on the architecture design of an ASIC chip

implementing the algorithm for computing the inverse kinematic solution of a robot

manipulator.

To provide system designers with a logical view of the implementing technology a

broad range of ASIC design knowledge is organized into a conceptual framework

consisting of three frames — design process, design hyperspace, and design repertoire.

Under this framework, IC design is viewed as a process of making design decisions, and

the emphasis is placed on the recognition and evaluation of design alternatives.

The process of making architecture design decisions is generalized into an ASIC

architecture design methodology. The methodology partitions the architecture design

process into three phases of functional unit configuration, communication configuration,

and control configuration. To provide a focus for the decision making process, design

information of each phase is represented by a form conducive to manipulation. To



facilitate the verification and testing process, the behavior of the chip is represented by

an instruction set derived from the control signals. Thus, embodied in this methodology is

the new concept of derived instruction set computer (DISC) design, a manifeStation of

the basic principle of allocating hardware resources based on the tradeoff analysis of the

application needs and the potential benefits in the algorithm-specific processor design

environment.

The execution of the ASIC architecture design methodology is then illustrated by the

design of a gate array chip implementing the closed form IKS algorithm for a robotic

manipulator. The analysis of architectural alternatives has led to the idea of synthesizing

a MAC structure with a cordic core as an on-chip coprocessor. The resultant architecture,

called MACC for Multiplier Accumulator with a Cordic Core, can compute the IKS in 125

instruction cycles, or 445 clock cycles. The architecture requires about 28K effective

gates, or less than 50K actual gates with a gate utilization of 60%. VHDL simulation of

the architecture indicates that a clock rate of 10 MHz is achievable. This clock rate

enables the [KS to be computed in less than 45 us. Compared with a single cordic

processor implementation, the area of MACC is estimated to be about 23% larger, but

the computation time is reduced by more that one third, giving a overall area-time

efficiency of 1.866 over the single cordic processor approach.
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Chapter 1. Introduction

ASIC (Application-Specific Integrated Circuit) technology is revolutionizing the

design, manufacturing, and marketing practices in electronics-related industries [Be186].

The essence of this revolution is that in the pre-ASIC era, system designers dealt with

microprocessors and standard integrated circuits (SICs), a design process of building

systems from chips, whereas ASIC design is inherently a process of integrating systems

into chips. This development necessitates a major change in the discipline of system

design.

Central to meeting this ASIC challenge is a better understanding of the application

requirements, algorithm characteristics, major architecture concepts, implementing

technology, and, most important, their interactions [LeFS88]. While models, paradigms,

or methodologies exist for each of these individual domains, their interactions lack any

model or theory. The application-specific nature of the technology fru‘ther complicates the

effort to formalize these interactions.

The underlying theme of this research is that a decision-making perspective is

conducive to a better understanding of the interactions among algorithm, architecture, and

technology. That is, these interactions are best understood in terms of what design

decisions are involved and how they are made in a practical design. Accordingly, the major

thrust of this research is to develop an architecture design paradigm to expose these

interactions. Principles behind the design decision making process can then be

investigated. Understandings gained from the construction of the paradigm will facilitate

future efforts in implementing application algorithms in ASIC hardware.

One application area that is of particular interest to this research effort is robotics. In

recent years, advancement in technology has led to many novel applications. In these

applications, sensory information is used extensively, and intelligence as well as real-



time response is often required to cope with the unstructured environment or

unpredictable event times. The desired enhanced functionality for the next generation of

robots -- sensory information based adaptability and intelligence, locomotive ability, and

real-time response— are creating new computation demands.

Recognizing the computational needs of robotics control, many researchers in the

robotics community have been devoting considerable effort to developing special

architectures for robotics applications [NiLe85, LeCh87, Or’l’s86, WaBu87]. These

efforts, however, are based on the traditional SIC design approach. In the future, robot

designs will become highly specialized and performance—oriented as required by novel

applications. Robotic systems designed for these applications may not have an immediate

large user base or a prolonged product lifetime due to their experimental nature. Such

product requirements and market characteristics are matched best by ASIC technology.

While the potential advantages of ASIC for robotics hardware design have been generally

recognized [HeI-IKS7], progress in adopting the ASIC technology has been slow. The

development of an ASIC architecture design paradigm based on robotic control algorithms

will help to speed up the transfer of this technology to the robotic community.

Because of its basic role in a robot control hierarchy, the algorithm for computing the

inverse kinematic solution (IKS) is chosen for ASIC implementation. Among various

approaches to computing the IKS, the closed form solution has the appeal of being well

understood, widely applicable, typical of control algorithms in computation characteristics,

and having known non-ASIC implementations. For these reasons, it was selected for

special architecture implementation. By comparing the resultant design with previous

implementations, advantages and tradeoffs of the ASIC approach can be better

understood.

During the course of this research, the VHDL (VHSIC Hardware Description

Language) has been approved by the IEEE as the standard I-IDL. This allows an

architecture design to be documented independent of design approach and, to a lesser



degree, of technology. Moreover, documentation of a design in VHDL is formal since the

design is described by a programming language (for which the syntax is formal) and its

semantics can be verified by running the program. These features are highly desirable

especially for a design being considered as a paradigm. Consequently, the IKS chip is

described in VHDL and verified by extensive VHDL simulations.

1.1 Problem Statement

Future intelligent robots are expected to have the capability of making real-time

decisions in an unstructured environment. The need to process a huge amount of

kinematic and sensory information in real time under various environmental constraints

renders special computer architectures necessary [LeSh88a]. Many robotic control

algorithms, however, are characterized by large-grain computation with strong serial-

dependence. Such characteristics favor algorithm-specific computational hardware

implementation [LeSh88b]. The trend of algorithm-specific design is further reinforced by

the advancement of ASIC technology which makes it cost-effective to implement

application algorithms directly in silicon. System design with ASIC technology, however,

is fundamentally different from the u'aditional off-the-shelf SIC approach. A better

understanding of the interactions among the application algorithm, various architecture

styles, and the implementing technology is needed. In response to these needs, the aim of

this research is to develop a paradigm based on the architecture design of an ASIC chip to

compute the inverse kinematic solution for a robotic manipulator. By illustrating what

design decisions are involved and how they are made, the paradigm will provide guiding

principles for robotic engineers in mapping control algorithms in ASIC.

1.2 Approach

The general approach of this research is to 1) review design approaches and

techniques of existing robotic computer architectures; 2) propose a model representing the

essential aspects of ASIC design activities; 3) investigate the effectiveness of the model



in characterizing computational characteristics of robotics algorithms through the

experiments of implementing the IKS algorithm in ASIC; and 4) construct a design

paradigm based on the experience of the IKS chip design.

The first task, an in-depth analysis and comparison of existing robOtic computer

architectures, serves three purposes. First, the advanced and useful design techniques

can be adopted as part of the design repertoire. Second, critiques on previous designs

enable the avoidance of known pitfalls in design decisions. Third, it is foreseeable that

ASIC technology will coexist and compete with advanced microprocessor technology in

the future. Thus, the study can help to identify areas in which the application of ASIC

technology has the greatest potential for success. For the purpose of ASIC

implementation, the review is focused on two key issues: how specific the architecture

design should be, and what architecture style should be chosen. An understanding gained

from the study will help to differentiate the more promising alternatives from those of less

potential and thus set the stage for the IKS chip experiments.

For the second task, a model representing essential aspects of ASIC design

activities is develOped in accordance with the idea of a "frame" as a representation of

knowledge. This leads to the notion of a conceptual framework which consists of three

knowledge from“ — Process, Hyperspace, and Repertoire. The conceptual framework

provides a logical view of the technology and thus allows engineers to acquire and

accumulate VLSI knowledge systematically. In addition, the development of the

conceptual framework represents a two-way interaction with the construction of the IKS

chip paradigm. On the one hand, the IKS chip design is guided by understandings

embodied in the conceptual framework; on the Other hand. insights gained from the IKS

chip design provide important feedback for improving the framework.

The third task involves designing an ASIC chip architecture for executing the IKS

algorithm The architectrue design proceeds within the ASIC conceptual framework.

Specifically, the IKS algorithm is characterized in terms of its position in the algorithm



space. Architectural altematives in functional units, interconnect topology, and control

strucmre are identified and evaluated. Techniques classified in the design repertoire are

applied with probable modifications. Analysis of the characreristics of the IKS algorithm

leads to the architectural idea of a multiplier-accumulator pipeline overlapped with a

CORDIC (COordinate. Rotations DIgital Computer) core. The IKS algorithm is translated

into a program written in pseudocodes assuming the MACC (Multiplier-Accumulator

with a Cordic Core) datapath. The pseudocode program is then translated into a dataflow

table and further manipulated using spreadsheet software. System timing diagrams,

structural decomposition schemes, and communication links are concurrently developed

and refined with the aid of the dataflow table. The dataflow table enables the designer to

manipulate the computation flow of the application algorithm at the register-transfer level

while maintaining a global perspective of the architecture. Once the interconnection

scheme is satisfactory, the control signal patterns are specified and analyzed. An

encoding scheme and the implementation of the control mechanism are determined. The

conuol signal patterns are subsequently expressed as microcodes and further recast as

the MACC instruction set. The microprogram, a microcode representation of the IKS

computation, is then compiled from the dataflow table. The area and speed parameters of

the resultant architecture are estimated based on data from the cell/functional module

libraries of commercial ASIC products.

The IKS chip design is described in VHDL according to the Circuit’s structural

hierarchy. Low-level building block circuits such as dynamic latches, multiplexers,

shifters, counters, etc., are modeled and tested. Delayed time data are extracred from

commercial gate array libraries and incorporated into the models. These building block

circuits are then connected to form the next-level modules. Each of these modules is

individually tested with regard to its functional specifications. The functional units and the

storage elements are assembled to form the datapath, while various conuol modules are

connected to form the entire control section. The timing aspects and the decoding

mechanisms of the control section are verified. The datapath is then tested for the cordic



Operation and the instruction set. Finally, the datapath is combined with the control

section and additional interfacing logic to form the IKS chip. A C program is developed to

generate realistic IKS input sets and expected outcomes. The VHDL description of the

IKS chip is executed to simulate the IKS computation from input to output on different

data sets.

The fourth task is the construction of the design paradigm based on the IKS chip

architecture design. Central to the effectiveness of the paradigm is the illustration of

interactions among the algorithm characteristics, the architecture styles, and the

underlying technology in terms of architecture design decisions. Therefore, the

investigation of the actual design process and the resultant architecture focuses upon the

following issues:

- What are the major architecture design decisions and their relative importance?

0 What are the alternatives associated with each of these decisions?

. What are the tradeoffs of these alternatives?

. What are the determinant faCtors in making each of these decisions?

0 What are the relationships of these factors and the algorithmic characteristics?

An understanding of these issues is presented in the form of an ASIC architecture

design methodology. The IKS chip architecture design then becomes an example of the

execution of this methodology.

1.3 Organization of the Dissertation

In Chapter 2, an overview of the ASIC technology is presented first. This is followed

by a discussion of issues in designing computer architectures for robotics. The discussion

serves three purposes: 1) to present the field of computational architecture design for

robOtics in general; 2) to analyze how ASIC can be used in robotics; and 3) to review

major advanced architectural concepts from the perspective of understanding their



applicability in robotics. With this background, the basics of robotic kinematics and

previous efforts on architecture design for computing the IKS are reviewed.

A conceptual framework for ASIC design is then presented in Chapter 3. The nature

of design activities is first examined from a transformation perspective and a decision-

making perspective. The conceptual framework organizes the knowledge of IC system

design into three categories: design process, design hyperspace and design techniques.

Key concepts presented in the process frame include the hierarchy approach, the role of

methodology, and a model representing the implementation of methodologies. The

hyperspace frame articulates the role of the design space concept and outlines the framing

of the architecture space and algorithm space as a means to facilitate recognition of design

alternatives. The repertoire catalogs techniques for evaluating design alternatives. These

three frames deal with different aspects of ASIC design, but they are integrated through

an underlying theme of viewing design as a decision making process. That is, system

designers must structure the design process so that the solution space is manageable and

design alternatives are consciously sought and evaluated. Because of the growing

importance of high-level design decisions, the discussion of these concepts will focus on

one particular step — the transformation from task algorithm to architecture specification.

Chapter 4 presents the architecture design paradigm of the IKS chip. It starts with a

discussion of the assumptions and consuaints of the IKS chip design effort. The design

philosophy of this work is examined. The observation that architecture design in the ASIC

environment is fundamentally different from that in the general purpose processor

environment leads to the evolution of a design philosophy called DISC (Derived

Instruction Set Computer). The fundamental principle of DISC states that the instruction

set of an ASIC processor chip should be derived directly from its intended applications.

This design principle is embodied in an ASIC architecture design methodology

developed from a decision-making perspective based on the notion of design space as

delineated in the conceptual framework. The salient feature of this methodology is the

division of the algorithm-to-architecture mapping into three phases with each phase



having its own decision focus. According to the nature of each design phase, the decision

focus is further defined into a form conducive to manipulation. Specifically, the functional

unit profile, the dataflow table, and the control signal pattern profile provide the decision

foci for the design phases of functional unit configuration, communication configuration, and

control configuration, respectively. Alternatives for each phase are discussed.

The execution of this methodology is then illustrated by the architecture design of the

IKS chip. The design is described in accordance with the three design phases prescribed

by the methodology. The entire architecture design is concluded by an evaluation of the

effectiveness of the IKS chip architecture in terms of architecture-level performance, area

required, and resource utilization. Testability issues are also addressed.

Chapter 5 is divided into two parts. The first part deals with the top-down

hierarchical decomposition of the IKS chip. Functional tables of the chip’s circuit modules

are derived from the dataflow table. The design of each circuit module is carried out to

sufficient detail that area and delay time parameters can be estimated from commercial

gate array libraries. The complete design of the IKS chip is then described in VHDL

programs according to the hierarchy of the circuit in a bottom-up fashion. The objective of

the simulation is discussed and the modeling approach is explained. All building block

circuits and functional circuit modules are individually simulated to verify that the program

semantics are consistent with the functional specification of each module. Tested modules

are instantiated as components in the next higher level description, i.e., the MACC

datapath. The VHDL description of the datapath is then simulated to verify the cordic

operation and the operation of the instruction set. Finally, the entire chip is simulated on

realistic data sets from input to output. The results of three simulations are presented.

In Chapter 6, a summary of the major results and contributions of this research is

presented. Implications for robotics architecture design, ASIC system design, and CAD

tool designs are cited. Future research issues are identified and discussed.



Chapter 2. Background

In this chapter, a brief overview of the ASIC technology is presented fust. This is

followed by a detailed discussion of issues in designing computer architectures for

robotics. Previous efforts are reviewed from the perspective of understanding how ASIC

can be applied to robotics. Specifically, two issues are addressed: how specific should an

architecture design be, and what architecture style should be chosen? Then, the basics of

robotic kinematics and previous efforts on architecture design for computing the IKS are

reviewed.

2.1 The ASIC Challenge

The strategic significance of ASIC technology is often compared to the previous

microprocessor revolution. To obtain some insight into this challenge, the basics of the

ASIC technology are reviewed and the impact of ASIC on system design is examined.

2.1.1 ASIC Design Styles

The term ASIC conveys in its meaning a mixture of aspects of design approach,

implementation technology, market orientation, and the subsequent product requirements.

Currently, it covers semicustom designs including programmable logic devices (PLD),

gate arrays (GA), standard cells (SC), and full custom (FC) designs. The dominant

interpretation refers to GA and SC. Figure 1 illustrates the relative merits of these

implementation styles. The major distinction between styles is the degree of design

freedom in layout: FC and SC in masks (with the latter having some restrictions in cell

height and locations for connections), GA in metal interconnects, and PLD in fuses. The

greater the degree of design freedom, the greater is the design effort and the longer the

design turnaround time. On the other hand, under the same fabrication technology, the

achievable performance, measured by the functional throughput rate (FI‘R) in
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Figure 1. Relative merits of various ASIC implementation styles.

Gate°Wcm2, decreases from FC to SC to GA to PLD. In practice, the performance

difference between SC and GA is relatively unimportant compared with that between

semicustom designs and SIC designs; the determining factors in selecting a particular

style are the acceptable design turnaround time and the projected production volume. For

these reasons, GA has been the dominant choice for the past few years [Ber85]. In 1987,

the industry was capable of fabricating arrays with a density of 35K usable gates using a

1.5-um double metal CMOS process with over 200 HO pins. Gate delays of less than 1

ns are typical [Lin87]. With yield densities of up to 150K gates using 1.5-um feature

size already in sight, projections have been made that yield densities can eventually reach

250-500K gates when the linewidth moves down to 1 um or smaller [C0186]. To put this

in perspective of computation power, note that a 16-by-16-bit signed integer array

multiplier can be constructed with less than 2K gates.

Since most ASIC designs are implemented in either GA or SC, attention will be

focused on these two design styles. In gate arrays, all levels of masks except the metal

interconnections are predefined so that the wafer to a large extent can be prefabricated.

This prefabrication of wafers is the main reason for the fast turnaround of prototype gate



11

arrays. For standard cells, all masks are customized, but the height of each cell is fixed to

reduce the design complexity. With the more advanced module generation design

approach, both the height and width of the cells can be varied. With its limited design

freedom, the chip size of the gate array is typically two to three times to that of

handcrafted designs [Hur85, OkSG86, EBCH86]. Compared with standard cells using the

same processing technology, the FIR of the typical gate array is smaller. However, due to

reduced design and processing complexity, the cost of gate arrays is lower for small

production volumes.

As indicated by the dashed lines in Figure 1, a trend appears to link the various

approaches. LSI Logic, for example, offers a "Structural Arrays" technique that combines

both gate arrays and megacells [Waet85, WaRC87]. Other companies, like VLSI

Technology, are offering gate arrays containing large standard cell blocks [McL86]. NEC

is promoting a fully compatible gate array and standard cells package, and the

computerized conversion of a design from gate arrays to standard cells. In contrast to the

conversion approach, IBM has developed a design system that allows the complete

intermix of standard cells and gate array functions. It can turn the unused cell locations

into gate arrays in the background for personalization or for accommodation of minor

design changes. Thus, by prefabricating masks which mainly consist of large standard cell

macros (front-end-of-line masks), the standard cell product can be manufactured in gate

array turnaround time [Hoet87]. Some other companies, like Silicon Design Labs, offer

silicon compilers using a module generation approach to generate megacells [BuMa85].

As a result, the boundary between various semicustom design styles has become blurred.

It is anticipated that a complete path of gate array, to standard cells, and to unconstrained

design will emerge in the next few years. This will provide a more satisfactory solution to

a wide variety of demands in terms of cost, performance, turnaround time, and production

volume. An immediate implication is that design decisions regarding tradeoffs of

implementation styles will become relatively unimportant since migration from one style

to another can be achieved with much less effort. This trend underlines the importance of
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an integrated environment, and inevitably puts pressure on companies that specialize in

only one particular style.

2.1.2 The Cutting Edge

Forces that motivate the technological advancement of ASIC include:

. Better performance;

0 Higher reliability;

0 Lower non-recurring cost;

. Faster design turnaround time;

- Tighter design security.

The first two of these driving forces are also applicable to general IC technology; the

last three factors contribute to the popularity of ASIC. These factors are further examined

in the remainder of this section.

. Better Performance

The demand for better performance has always been a major concern of the

semiconductor industry. Currently, however, performance gain from processing technology

is diminishing [NeVi87]. Clock speeds, the figure of merit in performance measure, of

silicon microprocessor-based systems are limited to 50 MHz for off-the-shelf

components. Moreover, in the SIC design environment, performance is further limited by

compatibility concerns or the need to support the existing technology base. The addition

into hardware of system-supporting functions, such as memory management and

exception handling functions, imposes a penalty on performance in the form of system

overhead per instruction [I-Ien84]. In contrast, such problems have less bearing on ASIC

designs. In fact, the fundamental performance advantage of ASIC design is often not due

to the more advanced processing technology (resulting in, for example, faster gate delay

times), nor is it due to some exotic computation architecture. The advantage of ASIC is

mainly derived from the fact that because of the application-specific orientation, many
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system overhead functions usually associated with conventional microprocessors, or even

RISC (Reduced Instruction Set Computer) processors, can be totally eliminated. Hence,

with simpler control as the norm, the possibility of achieving very high performance

through, for example, pipelining is greatly enhanced. Of course, this higher performance is

measured with respect to the targeted applications, and is achieved at the expense of

flexibility offered by general purpose microprocessors. This fundamental attribute of ASIC

design emphasizes the importance of high-level design, particularly at the architecture

level, for a given task algorithm. Additional advantages include the reduction of the overall

system hardware size which may be critical in such applications as improving the

locomotive ability of a robot or in airborne systems.

0 Higher Reliability

Reliability is a complex matter. On the positive side, reliability at the system or board

level decreases exponentially as the number of components increases. Because of the

higher logic capacities, semicustom chips can replace a moderate to large number of

standard chips and thus improve the system reliability. On the negative side, when

existing designs are implemented in ASIC, previously accessible nodes for testing may

become inaccessible. To maintain the same quality level, measured by the percentage of

undetected defective products, requires a higher quality chip [Mey86]. This requirement

translates into more stringent testing requirements of ASIC designs in general. But

overall, current advancement in IC processing, packaging, and testing technologies have

made greater improvements in IC reliability. For example, the failure rates for molded

linear ICs under the industrial standard 168 hour burn-in test has been reduced from

21.48% in 1979 to 0.22% in 1982 [Pan86]. This is a two order-of—magnitude improvement

in less than five years! As advanced fault-tolerant and testing techniques are

incorporated into IC design, the reliability can be expected to increase. Therefore, by

reducing the number of components at the board level through integration and by profiting

from advancement in processing and testing technology, the ASIC approach offers a

double gain in overall system reliability.
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0 Lower Non-recurring Cost

According to a 1986 survey, non-recurring development expenses for a 3,000-gate

digital IC ranged from well under $10,000 to over $100,000 [VSD386]. Further reduction

in the cost of prototyping is expected. This will open up new opportunities for rapid

prototyping and for the development of products that have either a short lifetime or require

only a small production volume. But the cost factor of IC design must be examined in the

context of the entire product cost at the system level, which includes cost of PCB design,

assembling, and field maintenance. The benefit of ASIC in reducing the system cost,

which accounts for 80% of the total product cost, is dramatic (due to smaller size, fewer

components, less power consumption, reduced assembly cost, etc.) and often outweighs

the development cost [FePa87]. A recent study has identified the level of integration

(LOI) measured by gates per pin as the key determinant of the total IC-related cost, and

ASICs can raise the number of gates per pin from 2 in MSI/SSI to a range of 40-200. The

study further establishes that gate arrays have a lower cost than the MSI designs with

build volumes as low as 1,000 devices if they replace at least 5-10 equivalent MSI/SSI

circuits [FePa86, FePa87]. In fact, replacement of 20-60 equivalent ICs with current gate

array technology is not unusual. A most striking conclusion is that when all cost variables

are taken into account, significant cost-reduction opportunities lie in the virtual

elimination of all M81 in system design.

0 Faster Design Turnaround Time

From an economic standpoint, the timing of new product introductions into the market

is often critical. Such a timing requirement is beginning to be satisfied with the semi-

custom design approach. Faster turnaround time for ASIC production can be attributed to

three reasons. First, most present day ASIC applications are implemented with either

gate arrays or standard cells. For gate arrays especially, the processing time' is

significantly reduced since only metal interconnections need to be processed. Silicon

foundries now advertise lS-day guaranteed service for CMOS 2-layer metal fabrication.

The second reason is that sophisticated software design tools and CAE systems have



15

been developed which reduce the length of the physical design phase by reusing large

portions of proven designs. For example, LSI Logic offers a compiler that can incorporate

a 70-ns, 32-bit multiplier building block into the user’s system and complete all design

tasks, from routing, timing simulation to layout generation, within 48 hours [Ber85].

Finally, the third reason is that less stringent requirements, resulting from a reduced

burden of system supporting functions, are also helping to shorten the design cycle.

- Tighter Design Security

Implementing task algorithms in ASIC hardware offers an effective leverage in

controlling design security. Even though "reverse engineering" is always possible

(particularly in the case of gate arrays) it still poses a considerable obstacle to piracy.

This is especially true when compared with duplicating the software/firmware of, for

example, microprocessor-based designs. By customodesigning critical system com-

ponents, developers now can control the security of the architecture and algorithm. This

factor may play an even more important role in the future.

2.1.3 Impact of ASIC on System Design

The impact of ASIC on system design can be better understood by examining the

interaction patterns among the three domains of algorithm, architecture, and technology

from a historical perspective. Figure 2 illustrates the evolution of these interactions from

the pre-VLSI era to the ASIC era.

In the pre-VLSI era, the boundaries of these three domains were quite clear-cut. On

the one hand, digital logic served well as an interface between architects who build

systems from SICs and the process engineers who worked out the implementations of the

circuits and devices. On the other hand, the instruction set also served well as an

interface between architects and computer users who deve10ped algorithms to be

executed on machines whose behaviors are represented by the instruction sets.

As IC technology progressed to the VLSI era, the feasibility of integrating a large

number of devices on a single chip established closer interacrions between these three
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domains. On the architecture-technology side, the evolution of hierarchical design

methodology as a means to control the complexity and the emergence of powerful CAE

systems occurred. On the algorithm-architecture side, first systolic arrays and later RISC

appeared as innovative architecture concepts that attempt to take advantage of both the

architecture and certain algorithmic characteristics.

The advent of the ASIC era may be visualized as the formation of the overlapping

region as illustrated in Figure 2(c). Compared with the microprocessor revolution in the

pre-ASIC era, it is striking that system designers now must master a body of knowledge

much larger than what was adequate previously. Indeed, integration of circuits is above

all an integration of knowledge from the fundamentals of material properties, processing

technology, device characteristics, circuit techniques, high-level abstractions of logic, and

structural organization (architecture) principles [Seq83]. Integrating knowledge of this

magnitude presents a tremendous hurdle to system designers and has created an

increasingly wider gap between VLSI designers and application engineers. This gap is

most plainly manifested as the disparity between our capability to fabricate and our

capability to design [May85].

Moreover, system-level designs now involve users, CAB tools developers, and

ASIC vendors. Interactions between these three parties are so complex that currently

only the interface between CAB tools and silicon foundries, through the ASIC vendors,

has begun to be standardized The evolving nature of ASIC technology and the diversity

in application areas, design tools, design approaches, and fabrication processes make it

difficult to define clean interfaces between the three parties. Obviously, unlike the case of

microprocessors, broadening the use of ASICs to new applications requires exu'aordinary

effort. This effort, as made clear by the examination of the evolutionary development of

the IC technology, must focus on attaining a better understanding of the interactions

between application algorithms, architecture, and technology.
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2.2 Computer Architecture Design for Robotic Control

In the past few years a wealth of knowledge about computer architecture design for

robotics has accumulated. Among the proposed designs, however, only a few have been

implemented in labs and even fewer have appeared in commercial products. While

previous computational needs are being satisfied due to advances in both design and

technology, new applications continue to create new demands. The present condition of

the robot market has forced researchers to rethink the future direction of the field and, as a

result, a new research agenda has been proposed [Whi86]. In addition, nascent

developments in ASIC technology have created new opportunities and challenges in

architecture design. It now seems appropriate to reexamine previous efforts in robotic

computer architecture designs.

Underlying the forces .of market trends, ASIC technology, and the new robotics

research agenda is the notion of "application specific". In this spirit, some trends in

robotics applications are examined and issues involved in hardware implementations are

considered. For the purpose of ASIC implementation, this study is focused on hardware

designs for control. Selected previous works are then classified with respect to

architecture types, design features, and performance. Based on the observations on

design and application trends, design techniques, and architecture performance, the issue

of how "specific" the architecture should be is addressed. Background on computer

architecture design and the characterization of interactions between algorithms and

architectures is then presented. With this background, four major architecture concepts —

pipelining, RISC, systolic arrays, and multiprocessors — are reassessed for their

applicability in robotics.

2.2.1 Trends in Architecture Design for Robotics

The use of robots in indusu'y has been focused on improving productivity through the

automation of manufacturing. In the early 1980’s, progress in computer technology and AI

(Artificial Intelligence) research generated high expectations of furthering this goal by
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introducing "intelligence" into robots. However, the 1982 forecast of an imminent robot

boom has failed to become reality. In 1986, the sale of robots in the US reached only

$441M (6,219 units), far less than what was projected [R0087]. It has become clear that

in industrial applications, the use of robots is only one of the factors in the automation

endeavor. Indeed, concepts such as design for assembly, environment structuring, and

design-manufacturing integration might have much more to do with productivity than

making robots intelligent [Whi86, Whi87].

At the same time, advancement in the technology has led to many novel applications.

Robots are now operated in clean rooms, hospitals, nuclear plants, the deep seas, and in

the future, in space stations. They are being used to inspect IC circuits, assist in surgical

operations, perform surveillance and maintenance jobs. They are expected to supervise

the fabrication of supercomputer chips in space and to help the elderly and disabled back

on earth. Sensory information is used extensively in these new applications. To cope with

the unstructured environment or unpredictable event times, intelligence and real—time

response are often required. In contrast with traditional industrial applications, many of

these new applications are relatively cost-insensitive but require robots with high

performance and special features.

The differentiation of robotic R&D into these two directions has a profound impact on

robotic computer architecture designs. In next section, some of the technical and economic

implications are explored.

2.2.2 Dedicated Hardware Implementation Considerations

Recognizing the computation demands for next generation robots, considerable

research effort has been devoted to the development of special architectures for robotics.

Future computation requirements, however, must be understood not only in terms of

individual application needs, but also in the context of the overall system organization.

Accordingly, a three-layer hierarchical computation model has been developed for a

generic robotic system to provide a global view, permitting assessment of the
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computational needs for control (manipulative and navigational) and sensory information

processing. The economic implications of the application trends, market characteristics,

and computational requirements on special hardware implementation are discussed.

2.2.2.1 The Robotic Computation Hierarchy

Functions performed by the computer in modern robotic systems are hierarchically

organized. Different computational needs for different applications (e.g., manipulative vs.

navigational) must be examined in the context of the hierarchy in order to obtain an

economical architecrural solution. How the hierarchy is organized strongly influences the

way it is implemented. For a technology as evolutionary as robotics, important

considerations include allowing variation without jeopadizing standardization, and

encouraging growth without destroying stability. These conflicting requirements are not

unusual, particularly for a technology still in its infancy. However, there is a successful

precedent in handling such a situation: the computer networking technology. The key of

that success seems to lie in the fact that the computer networking hierarchy is organized

by layers, which allows greater variations, in an open-architecture fashion. With this in

mind, a robotic computation hierarchy model organized in a similar fashion, as illustrated

in Figure 3, is presented.

In this model, the robotic functions are partitioned and organized into three layers:

management, reasoning and device interaction. The top layer of management is mainly

responsible for various routine tasks such as resource allocation, coordination, and user

interfacing. The bottom layer of device interaction is directly coupled to various devices

which can be divided into the two domains of manipulators/joint-actuators and sensors.

The functions performed by the computer corresponding to these two domains are control

and sensory information processing, each having its own hierarchy. A middle linking layer

of reasoning consists of tasks such as world modeling, temporal and/or geometric

reasoning, causal analysis, decision-making, and planning.
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Figure 3. The three-layer computation hierarchy of a generic robotic system.

With this model, a specific robotic computation system can be viewed as an

instantiation driven by a particular application. In such an instantiation, certain

components of the model robot can be absent or assume different importance. On the

other hand, new application layers can be added on top of the management layer to

provide sophisticated functions for developments such as simulations, FMS (Flexible

Manufacturing System) or CIM (Computer Integrated Manufacturing).

2.2.2.2 The Computational Needs

In the three-layer robotic computation hierarchy, tasks in Layer 2 belong to the

domain of operating systems and thus are of a more general nature. Tasks in Layer 1 are

largely in the research stage and not well understood yet. Since the purpose of this

research is aimed at hardware implementation, the investigation of the computation needs

is focused on control and sensory information processing.
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The computational needs in control can be further divided into manipulator control and

navigation control. In manipulator control, a sampling frequency of 60-100 Hz is

considered adequate due to the mechanical consrants of the arm; however, a sampling

frequency as high as 5 KHz is anticipated [WaBu87]. The number of arithmetic operations

(multiplication and addition) required in each cycle for a six-DOF (Degrees-of-Freedom)

manipulator varies from under 1,500 with the inverse kinematics (Newton-Euler

formulation) to over 6,000 with the resolved m0tion adaptive control method [LuWP80,

LeLe84]. If performed with floating-point operations, the latter figure corresponds to a

throughput requirement of 30 MFLOPS for a latency (response time) of 200 us. Required

types of elementary functions, such as trigonometric function and square root, vary from

algorithm to algorithm.

The computational needs for navigation are-less understood, but experiments confurn

that enormous computation power is needed for perception processing and image-based

world modeling. Also, the necessity for real-time response is obvious. Current

experimental autonomous navigation vehicles can move at only a few kilometers per hour,

and yet the on-board computer is already overwhelmed [Ada86, GoSt87]. If the

navigation speed is to increase by an order of magnitude as planned, then the computation

power must be increased even more due to the more stringent requirements for many

concurrent control processes. Moreover, additional constraints are placed on the size,

weight, and power consumption of the computation hardware because of the effect of

payload on mobility.

Sensors that require special computation processing are associated with two

particular types — visual and tactile. For visual sensing, if one image operation requires a

simple operation on each pixel in an array of 256x256 gray level pixels, then a

computation throughput of 2-4 MIPS is required at 30-60 Hz video frequency. Higher

resolution with color information, combined with more complex image operations, can

easily drive the throughput requirement into the billion operations per second level

[Mon86]. Tactile sensor research is presently in a primitive stage with major emphasis in
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searching for durable and robust materials. While the need for locally processing the

sensor signals is generally recognized, the mechanism to do this is a subject of

controversy [HarSZ, RaTa82, G0184].

2.2.2.3 Economic Considerations

The economics of designing special computer hardware involves two main factors —

market and cost. According to the RIA (Robotic Indusuies Association), the number of

US industrial robots installed in 1986 reached 25K. The market sale is projected to reach

$2,132M (125K units) in 1990 [R0087]. As late as 1984, 80% of robot applications fell

into just a few categories such as welding, spraying, machine loading, and material

handling [ShGS84]. The auto industry has long been the primary user, although its market

share is expected to decline from 60% in 1983 to 30% by 1989 [Coh85]. While the robot

population is small, the number of species is large and growing. A recent robot database

contains 220 industrial robots with payload from under 10 lbs to over 1,000 lbs and

horizontal/vertical reach from a few inches to over 10 feet [McD85].

An0ther element in market consideration is the product lifetime. It is unrealistic to

expect that a computational hardware design will last for decades since robotics and the

related technology are still in a rapidly evolving state. In fact, the average product lifetime

of the Sx controller, a popular controller for indusuial robots from ASEA, is only about 6

years and shortening. The total number of 82 installations in its entire 6-year lifetime is

5,000 [Kee86]. In short, the robot market is characterized by small production volume,

wide diversity, and accelerating dynamics. Predictably, as long as the so-called personal

robot for household chores is not technically and economically feasible, these market

characteristics are unlikely to change dramatically.

On the other side of the equation is the cost. For any specially designed hardware,

the design cost rather than the production cost is usually the dominant component. For

this reason, special IC designs for robotics have been out of the question in the past. But

this situation is changing as ASIC technology becomes more prevalent. Non-recurring
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cost of prototyping ASICs currently runs about $20K for low-complexity designs and is

expected to decline further [HiRa87]. In fact, the latest S3 controller contains several

custom-designed LSI circuits. A recent study has established that gate array designs can

be cost-effective even with production volumes of less than 1,000 units [FePa86].

Moreover, the cost of computer hardware is only part of the total cost of a robotic system.

The benefits of using ASIC parts at the system level can outweigh the higher

development cost. The time-to-market and performance features become the two most

important factors in determining a product’s success as the market moves in the

application-specific and performance-oriented direction. The custom design approach,

even at the IC component level, can be justified since these attributes can be met.

As can be seen from the previous discussion of application trends, new demands for

computation power come primarily from novel applications. Robotic systems designed for

these applications are highly specialized, experimental, and evolutionary in nature, and

thus do not seem to have an immediate large user base. Hence, the strategy of designing

a generic architecture encompassing the entire robotic computation hierarchy may not pay

off, since the product requirements are so diverse and the total market is small and

dynamic. Furthermore, when special hardware design is considered, at least one of the

following conditions is usually present: either the tasks at hand are well understood (thus

the algorithm that the hardware implements is relatively stable), or the required

performance exceeds the capability of existing hardware. Taking all these factors into

consideration, it appears premature to expand hardware design efforts beyond the device

interaction layer. But even within this layer, how general (or specific) should an

architecture design be? Before answering this question, an examination of previous efforts

is useful.

2.2.3 A Survey of Previous Work

In light of ASIC hardware implementation, this study concentrates on architectures

for control functions in the device interaction layer only. As a result, architectures for
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image processing and a number of systems designed for support of programming and

research environments are not included. The main focus is on the design approach and

architecture styles.

A total of 13 designs for robotic control functions are reviewed. They constitute a

collection of architectures rich in intended applications, architecture types, and design

approaches. The selected works are compiled in Table 1. Information on performance,

functional units, and the communication topology is based strictly on published data, while

that of the control scheme in a number of cases is based on this author’s assessment.

Among the 13 designs, over half are multiprocessor systems, especially in the hand

conuol area. Most single processor systems are designed for specific control algorithms.

Two designs are implemented in systolic arrays. In the remainder of this section, design

features are summarized, followed by an analysis of the question of how specific an

architecture design should be.

2.2.3.1 Design Features

Among the 13 designs, most are based on off-the-shelf functional units, but a number

of architectures involve designing special IC chips, sometimes as a component of the

target system. And among those off-the-shelf SIC-based designs, the emphasis is

shifting from the first generation general-purpose microprocessors to the second

generation special functional units such as digital signal processors (DSP), floating-point

processors, or cordic processors.

The intended applications increasingly appear targeted to a specific algorithm. This

trend is perhaps due primarily to the complexity of the algorithms involved, and

secondarily to the generally decreasing hardware cost which makes a narrower

application target economically feasible. This development is in tune with the market

trend of "application specific". In parallel with the narrower target application, more

designs are for processors, in contrast with stand-alone systems, and the design level is

correspondingly shifted down the design hierarchy. From the perspective of the robotic
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computation hierarchy of Figure 3, the strategy of designing processors for the device

interaction layer and attaching them to general purpose computers which handle the upper

two layers’ computation makes sense in the near-term.

Except for systolic arrays for image processing, many of the multiprocessor designs

are not scalable or expandable. In fact, most of these designs are targeted for

implementations that incorporate no more than ten processor units. Also, development

support is generally inadequate except in a few cases where commercial interests play an

important role.

2.2.3.2 Design Approaches

In designing robotic computation hardware for the device interaction layer, the

commitment of an architecture implementation can be classified into four levels of

increasing specificity as follows:

. Domain-specific — specific to a particular domain (i.e., control or sensing) but

general to all tasks within the domain;

. Task-specific — specific to a particular task within a domain (e.g., IDS, IKS,

etc., within the control domain);

. Algorithm (approach)-specific — W150 to a particular approach to a task

(6.3.. algebraic or iterative approach of the IKS);

. Robot-specific — specific to a particular robot or robot family (actuator type,

joint type, etc.).

For an architecture design specific to a particular level, it is assumed that levels

lower than the specified one will be covered. For example, a design for IKS specific to the

task level means that it can handle the IKS computation of various approaches for any

robot. When the commitment level moves from the robot level to the domain level, the

hardware complexity generally increases due to the increasing demands for flexibility. In

practice, if the architecture is dedicated to a robot or robot family, the robot’s mechanical

and geometrical characteristics will favor certain algorithms. Hence, the difference

between the robot level and algorithm level is relatively minor. On the other hand, the
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shift from algorithm level to task level usually requires different types of operations

(trigonometric, square root, etc.) and a more elaborate control structure. And if a design is

already committed to the task level, the increase in hardware complexity due to the shift

to the domain level will be modest. With this in mind, it is not surprising to see that most

of the designs listed in Table 1 are specific to either the algorithm or domain level.

Several factors seem to favor the commitment to the algorithm level for control

implementations. First, flexibility and performance are always antagonistic. However,

performance is emphasized from the application-specific orientation and this requirement

is easier to satisfy through, for example, hardwired logic, if the design is committed to the

less flexible algorithmic level.

Second, the application requirements in positional accuracy, repeatability, payload,

and real-time response tend to govern the choice of robots and subsequently affect the

choice of a particular approach. For example, the robot used for inspecting an IC circuit

will be very different from the one for material handling; consequently their requirements

in accuracy, payload, and sampling rate will also differ. However, even though the

requirements differ widely, for practical reasons they will not be in a continuum but rather

will cluster into several groups evolved from a score or so of robot families. The actual

requirements have a natural bias to the algorithm-specific approach since algorithm

development is strongly influenced by the robot design.

Third, robotic control tasks are characterized by a considerable degree of decoupling

between tasks but high serial dependency within a task [NiLe85]. Because of this

decoupling effect, concurrent execution of these tasks is possible. Since the overall

computation must be done in the sampling cycle, the single system, general-to-all-task

approach will aggregate the performance requirements. An algorithm-specific design

approach, on the other hand, allows relegation of the overall performance requirements

into several components, each with relaxed requirements. Since each component is

tailored to a specific algorithm, higher overall hardware utilization can be achieved. Also,
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this approach represents a truly modular design style which will facilitate flexible

configuration of systems for particular needs.

Fourth, when the architecture is designed for general robotic algorithms, the

hardware is more complex and the demand for software development support grows. In

contrast, with algorithm-specific architecture designs, the design effort is less, not only

because of the simpler hardware, but also because the demand for software support is

minimal or even unnecessary.

Finally, designs with lower hardware complexity will have a definite edge when ASIC

implementation is considered. The small production volume characteristic of the robot

market renders the design effort the major component of the development cost. In this

context, the choice between the domain-specific approach and the algorithm-specific

approach represents the choice of where to direct the design effort. In the former case, it is

a mixture of software, firmware, and board-level hardware. In contrast, the algorithm-

specific approach allows a larger part of the design effort be devoted to the chip-level

hardware, and thus has a greater potential for exploiting the ASIC advantage. When all

these factors are taken into account, the algorithm-specific approach is the most

advantageous choice.

2.2.4 Matching Architecture Styles to Algorithm Characteristics

Hon and Reddy have pointed out that the efficient implementation of an algorithm on a

particular machine is largely shaped by the architecture of that machine. On the other

hand, an architecture type that favors a certain kind of computation may not be as efficient

when other computations are required [HoRe77]. In the application-specific design

environment, the question of exactly what type of architecture is suitable for what type of

algorithm can be examined in the context of robotic applications. The metrics for

measuring the effectiveness of a design with respect to the execution of application

algorithms is presented first. Four major advanced computer architecture concepts are

then reassessed.
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2.2.4.1 Metrics for Evaluating Architectural Effectiveness

A computational system is composed of one or more data processing units organized

for executing algorithms. For the purpose of this study, three types of systems — single

processor, multiprocessor, and systolic array — are of particular interest. The term

concurrent refers to simultaneous execution of processes belonging to different jobs, while

in parallel systems, the processes being executed belong to the same job.

In either single or multiple processor systems, the architecture is characterized by

functional components, communication t0pology, and control structure. The design of a

computer architecture thus involves specification of these three aspects. They can be

specified at various levels such as system (processor-memory-switch), processor,

register-transfer, or logic. Specifying architectural aspects at a lower level entails greater

design freedom, but requires more design effort. In this review, PEs (Processing

Elements) are distinguished from processors. The former are usually used in systolic

arrays and do not have complex control su'uctures. Furthermore, a few designs address

the data flow characteristics of an algorithm and the specifications of the architectural

aspects are more or less of a conceptual nature. Thus, the design level of these

architectures are classified as conceptual.

If a design is for a special purpose such as the execution of a specific algorithm, then

the specifications should be derived from the algorithm so that the resultant architecture

will best match the characteristics of the algorithm. Unfortunately, the mapping between

algorithms and architectures is not one-tome and architecture design still largely

depends on experience and intuition. Hence, it is desirable to have some metrics for

measuring how good an architecture matches a particular algorithm. Care, however, must

be taken in interpreting these metrics. It is necessary to distinguish metrics for specifying

computational requirements from those for measuring design quality. A design that scores

high in one category does not necessarily infer the same good quality in the other. Only

the design that satisfies the computational requirement with good design quality is a cost-

effective one.



31

Computational requirements are usually specified in terms of throughput rate and

latency. The throughput rate measured in MIPS (Million Instruction Per Second) is often

used to indicate the raw computation power of a system. But the MIPS number is usually

evaluated according to the "average" machine cycles per operation (or instruction) based

on some benchmark programs. Furthermore, while the efficiency of the compiler (i.e., the

optimization technique and the ability to take advantage of special features of a particular

machine architecture) is important, it is rarely reflected in the MIPS numbers. Therefore,

when a system is designed for the execution of a specific algorithm, the MIPS number is

not useful. When taking into account the I/O problem, the number of solutions per second

in matching the sampling rate of the target robotic system is a more accurate specification.

Moreover, the throughput rate should not be used to extrapolate how fast the solution can

be computed. This is specified by latency, the time elapsed from the input of the operands

to the time when the result is available.

A popular metric for evaluating the effectiveness of a design is the resource

utilization factor U, defined as the ratio between the total usage time over the total

available time of the measured resource. The utilization factor depends on how the

resource is defined and sometimes may be confusing. For example, the utilization factor

for a MAC (Multiplier-ACcumulator) treated as a single resource can be higher than the

same design with the multiplier and accumulator treated as separate resources. But in the

former case, the clock cycle may be longer, which can result in a longer latency.

Additionally, in pipeline designs, it is not uncommon that the utilization is high and yet

little improvement is obtained in latency. Thus, a more indicative metric is the speedup

factor, S. For single processor systems, the speedup can be obtained only by comparing

the speed with other designs. For multiprocessor systems, the speedup is defined as the

ratio between the execution time using a single processor and that of using

multiprocessors. Amdahl has pointed out that the speedup is limited by the amount of

parallelism inherent in the algorithm which can be characterized by a parameter f, the

fraction of the computation that must be done serially [Amd67]. He thus reasons that the
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maximum speedup of a P-processor system in executing an algorithm as a function of f is

given by

P

Sm”: fP+1-f
(2.1)

Note that SW = 1 (no speedup) when f = 1 (everything must be serial), and Smax = P

whenf= 0 (everything in parallel).

Based on this insight, two different metrics can be developed for a given design. The

absolute effectiveness Ea given by

E ='5a .F.
(2.2)

is an overall cost-effectiveness measure for an architecture design. On the other hand, if

the f factor of an algorithm is known, the relative design effectiveness denoted by E, can be

obtained from

 E-= S . as)

E, can be thought of as an indicator of the design quality. Note that if we assume E, = 1,

then Ea is the maximum, which can be used to assess how suitable a particular architecture

style is for the given algorithm. Essentially, E is limited ultimately by the inherent
a

parallelism of the algorithm, while E, can be viewed as a measure of design ingenuity.

While the absolute effectiveness Ea is treated as the major indicator of how suitable

an architecture style is for a specific algorithm in this study, two main factors will limit the

general applicability of the analysis. First, in eq. (2.1), f is assumed to be something

inherent in the algorithm, but in fact, the actual value is somewhat implementation

dependent, (for example, the number of processors used). Eqs. (2.1) and (2.2) can be

rearranged to obtainf as a function of Ea and P as

3-1—1
-_JL___

f- P_1 . (an
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If "cost-effectiveness" (Ea) is fixed, then f obtained as a function of P represents the

cutoff serial fraction above which an algorithm-architecture pair cannot achieve the

desired cost-effectiveness. It is easy to see that this cutoff value decreases rapidly as P

increases. Intuitively, if the number of processors increases, then the algorithms executed

on that architecture must have a greater degree of parallelism to maintain the same level

of cost-effectiveness.

Second, most of the resource utilization in SIC designs refers to the processor or

functional unit utilization only. Actually, interconnections occupy more silicon area than

functional devices in VLSI and the bus bandwidth usually sets the ultimate limit on

performance. Without taking the utilization of interconnections and busses into account,

the implementation of the same architecture in ASIC may not be cost-effective.

Understanding these limitations can help to reduce the possibility of misinterpreting the

performance data.

2.2.4.2 Assessment of Advanced Architecture Concepts

In this section, four major computer architecture concepts — pipelining, RISC,

systolic array, and multiprocessing — are reassessed for their applicability in robotics

based on the performance data of the architecture designs reviewed in Section 2.2.3.

2.2.4.2.1 Pipelining

Pipelining refers to the partitioning of a process into successive, synchronized stages

such that multiple processes, each in a stage different than others, can be executed in

parallel. Depending on the granularity of the process, three types of pipelining techniques

can be identified. For instruction pipelining (medium grain), the process of the instruction

execution is often partitioned into stages of insu'uction fetch-decode, Operand-fetch, and

execution. Inna-functional unit pipelining (fine grain) divides the execution unit (usually a

combinational circuit) into several segments of equal delay time. Inter-functional unit

pipelining (coarse grain) involves predefming a sequence of frequently encountered

primitive operations such as the well known multiplier I accumulator structure.
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Pipelining techniques are aimed at improving the system throughput, usually at the

instruction level. Since they depend on concurrent execution of different stages of a

computation process, the improvement can be achieved only to the extent that the data

dependency of the algorithm allows it. The instruction and intra-functional unit pipelining

techniques also have the effect of shortening the clock cycle. These two techniques

require only a moderate increase in control complexity and generally less resources than

the inter-functional unit pipelining for which extra functional units must be added. But note

that while the clock cycle is shorter for these techniques, the latency of a single

instruction or operation will be increased because extra delays are introduced to the basic

clock cycle due to the latching of intermediate results. Since the inserted latching delay

cannot be partitioned, the gain in throughput will diminish while the latency continues to

grow as the number of stages increases. Furthermore, if the pipeline resources are shared

with other processes, then the pipeline must be flushed before switching between

processes. When this happens, the idle time will increase as the number of stages

increases. Therefore, the number of stages in an intra-instruction and intra-functional unit

design is usually limited to four or five. Even though the latency of an individual

instruction or function does not decrease, a higher throughput rate in general can shorten

the latency at the job level in varying degrees, depending on the data dependency inherent

in the algorithm and the scheduling of the instruction execution.

Today’s microprocessors all apply pipelining in the instruction execution designs.

However, with the SIC approach, freedom in instruction/functional unit design is limited.

Therefore, in most of the previous works, pipelining is mainly implemented at the inter-

functional unit level. In a number of cases, even though the throughput and resource

utilization are high, the speedup is unimpressive due to the lack of effective means to

shorten the clock cycle. This indicates that the potential benefits of further exploiting

pipelining techniques at lower levels, particularly with ASIC technology, will be

substantial.
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2.2.4.2.2 RISC

The concept of RISC has been a subject of both controversy and modification since its

debut. It is necessary to distinguish the RISC design philosophy from its design

techniques in order to obtain an objective assessment of its usefulness for future rob0tic

computation hardware design. The fundamental principle of the RISC philosophy is to

base the architecture resource allocation decisions on the analysis of the needs of the

target applications and the potential benefits of a specific decision [GiMi87]. In contrast,

other design philosophies may pursue goals such as support of system funcrions, support

of a real-time environment, easy programming, or direct execution of high-level

languages. Commonly cited RISC design features include a single instruction/execution

cycle, load/store instrucrion set, fixed instruction format, hardwired conuol, a large

register set, and a highly pipelined datapath [GiMi87].

If RISC is only an alternative design philosophy for general purpose computer

systems, then it should rightftu be the default philosophy of any special architecture

design. After all, if the architecture is designed for a special purpose, why shouldn’t the

allocation of the architecture’s resources be derived from the analysis of its intended

applications? Hence, for robotic applications, since the architecture design should be

algorithm-specific, RISC is naturally the philosophy of choice.

In fact, the RISC concept has already been incorporated in a few recent works

[WaBu87, JaOr87]. It has been previously pointed out that certain robotic control

computations may require a throughput as high as 30 MFLOPS. Note that this figure is

based on the sheer number of additions and multiplications needed without considering

any parallelism. With the algorithm-specific design approach and the RISC feature of a

single instruction execution cycle, a single chip run at 20 MHz can comfortably satisfy that

computation requirement assuming a 3-stage FPM (Floating-Point Multiplier) in pipeline

with an FPA (Floating-Point Adder) and a conservative speedup of 3. The hardware for

implementing algorithms of this magnitude on a single chip or chip set is within reach of
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today’s ASIC technology. Thus, it appears that most of the robotic conuol algorithms can

be implemented on chips. From this perspective, the RISC concept is likely to play an

important role in future robotic architecture design.

2.2.4.2.3 Systolic Array

A systolic array is a computation structure with the following features:

. Identical processing elements (PEs) are interconnected in a regular fashion;

- Each PE executes simple functions;

. Pipelining is implemented between PBS (and optionally within PBS) with

lockstep synchronization;

. Data streams can flow in single or multiple directions.

Computation techniques based on systolic arrays have been successfully applied to

image processing problems and matrix computations. However, algorithms that are to be

efficiently executed on systolic arrays must have massive fine-grain parallelisms. While

the formulation of the algorithm has some bearing on parallelism of this type, the eventual

judgment is the degree of parallelism inherent in the algorithm and whether data

movement can be achieved by local communication between PBS. The high-level

formulations of some robotic algorithms (typically in matrix form) appear to be conducive

to systolic implementation. But, the U0 is often a major communication bottleneck. In this

case, neither speeding up the PE computation nor adding more PEs can increase the

throughput or decrease the latency. Furthermore, even though systolic arrays have been

designed to implement some basic matrix operations, such as inversion, the overall

efficiency will still be low if only parts of an algorithm can be effectively executed in the

systolic array su'ucture. Because of the few design instances in previous work, whether

systolic arrays can demonsu'ate certain advantages in executing robotic conuol

algorithms is still an open question when comparing it with other computing su-uctures.
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2.2.4.2.4 Multiprocessors

For multiprocessor designs, the architect’s main attention must be shifted from

functional unit designs to the communication aspects of the system. Communication and

the related control problems can be decomposed into three related issues of

interconnection topology between processors and memory, communication protocol, and

synchronization of data. Reviews of these issues can be found in [GaPe85, Kle85,

GFCM87, AtSe88]. Among these issues, a crucial design decision in the context of the

real-time constraint in robotic applications is the choice between shared memory and

message passing.

Message passing is more conducive to computer networks and object-oriented

programming environments. However, not only it is the more restrictive method of the

two, but also it has the disadvantage of considerable overhead due to the protocol

requirement. For example, for a process to read the value of a joint angle, another dummy

process must be created (by the system) to respond to a request message from the

reading process. The latency time for receiving the message back can easily go up to

milliseconds [CFAB86]. This is several orders of magnitude greater than many of today’s

microprocessors basic operation time. This disadvantage seems to entail a severe

performance penalty on multiprocessor systems, such as hypercubes, in which the

interconnection between processors dictates that the communication protocol be based on

message passing. In robotic control applications, processors are likely to be placed in

adjacent locations, and the number of processors is usually small and will not pose a

severe memory contention problem. Thus, with simple control such as priority access,

interprocessor communication based on shared memory can approach the maximum speed

of the bus and is thus preferred.

The parameter Ea is a useful measure particularly for indicating the matching of an

algorithm with multiprocessor architectures. As an example, the Ea values computed from

the performance data of the inverse dynamic computation for the Stanford arm taken fiom
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Table 2. Speedup and Efficiency of a Microprocessor System

for Computing the Inverse Dynamic Equation.

 

Number of Processing Speedup Efficiency

  

 

 

Processors -Time (ms)* S Ea

1 24.83

2 12.42 2.0 1.0

3 8.43 2.945 0.98

4 6.59 3.768 0.94

5 5.86 4.237 0.847

6 5.73 4.3 0.72

7 5.69 4.36 0.623

* From [KaNa85].

[KaNa85] are shown in Table 2. The number of processors used varies from one to seven,

and in each case, the instruction scheduling is assumed optimal. It can be seen that Ea

drops significantly as the number of processors exceeds 4. These results once again

confum the view that robotic conuol algorithms are characterized by moderate to strong

serial dependency and do not have massive inherent parallelisms within a task to support

cost-effective implementation on large multiprocessor systems.

More than half of the designs reviewed in this study are in the category of

multiprocessors. Most of the systems designed for the upper layers are also in this

category. Among the systems for the device interaction layer, most are homogeneous

(using the same functional elements), but the most suiking feature is the invariably ad

hoc approach. The interconnect topology and control structure in most of these designs are

mapped directly from algorithms. Memory organization and process communication are

rarely specified. None of the architectures is designed for concurrent processing .

This situation seems to indicate that the traditional multiprocessor design paradigms

are not quite sufficient for robotic architecture design. There are two main reasons. First,

traditional multiprocessors are mainly concerned with very large scale scientific

computations and widely different environments. But for the device interaction layer,
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especially the control domain, the computational need is relatively small and the

application is fairly specific (the joint actuators). Second, for robotics control the

algorithms are characterized by very large computational granularity, i.e., decoupled

between tasks but high serial dependency within a task. Such characteristics result in

poor hardware utilization when these algorithms are executed in architectures that aim at

a large degree of parallelism.

As architecture designs for robotics are increasingly algorithm-specific and system

designers are capable of using ASIC technology effectively, the emergence of another type

of multiprocessor system is envisioned. This new type of multiprocessor system will be

characterized by dedicated, algorithm-specific, single-chip processors cooperating to

perform the device interaction functions. The distributed conuol methods, interface

standards, and communication protocol designs of such systems for robotic applications

will require additional research effort.

2.3 Robotic Kinematics

Manipulator kinematics is the study of all the geometrical and time-based properties

of the manipulator motion without regard to the forces that cause it [Cra86]. Within the

Device Interaction layer of the robotic computation hierarchy, the position and orientation

of the manipulator are servo-controlled through each individual joint. At a higher level

such as trajectory planning, kinematic information is more conveniently expressed in

Cartesian coordinates. This creates the need to convert the kinematic information

between the two coordinate spaces. The mapping from the joint space to Cartesian space

is known as the Direct Kinematic Solution (DKS), and the inverse mapping, the Cartesian

to joint space mapping, is called the Inverse Kinematic Solution (IKS) [Pau81, Cra86].

The complexity of robot control requires a hierarchical approach such that the entire

problem is decomposed into self-contained modules with human-manageable complexity

and a clearly defined interface [Alet83]. At the Reasoning layer, a trajectory planner may

accept commands from a higher level task algorithm and transform them into a sequence
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of path points. Each path point must be u'anslated further through the IKS to joint angle

set points and passed to the servo-conuol loop of the actuator. The IKS thus plays the

central role in linking the high level algorithm into the lower level control mechanisms. In

this section, the direct and inverse kinematic computations are fast discussed, followed

by a review of previous work on designing special architectures for computing the

kinematic solutions.

2.3.1 The Direct Kinematic Solution

A robot manipulator consists of a number of nearly rigid links connected by joints

which allow relative movement of the neighboring links. The position of each rotational (or

prismatic) link-joint pair is conveniently expressed by a single variable 0,- (or d,) with

respect to its own link coordinate system. A unique 4x4 homogeneous transformation

matrix A,, which is a function of 0, (or d), maps a vector in the link i-th coordinate

system to the link i—l-th coordinate system. Thus, for a six degrees-of-freedom robot

arm, given its six rotational joint variables 9 = (01, 02, 03, 04, 05, 06), the joint space to

Cartesian space mapping is obtained by the successive multiplication of the six

homogeneous transformation matrices,

T =A1-A2-A3-A4-A5-A6 = [n s a p]. (2.5)

The resultant homogeneous matrix T gives the orientation vectors of the wrist, n, s, and

a, and the current arm position, p, all in the world coordinate system. The arm position p

is defined as the vector from the origin of the base to the wrist.

2.3.2 The Inverse Kinematic Solution

More essential in the kinematic calculation is the IKS, which unfortunately has no

unique solution in general as a given position for the robot arm end effector can be

obtained from a number of arm configurations. Approaches for computing the IKS can be

divided into two broad classes of numerical methods and closed form solutions. Numerical
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methods have the advantage of obtaining a general solution given that the su'ucture of the

manipulator is solvable, but because of their iterative nature, the computation is much

slower than the corresponding closed form solution [Cra86]. A major result due to Pieper

[Pie68] is that analytic or closed form IKS exists for a 6-DOF manipulator if three

adjacent joint axes are revolute and intersect at a point with their twist angles equal to 0

or 90 degrees. For this reason, present day robots are designed with such

characteristics. As a result, the closed form solution is chosen for implementation in this

work.

2.3.2.1 Numerical Method

The numerical method for computing the IKS presented in this section is based on the

modified predictor-corrector (MPC) technique by Gupta and Kazerounian [GuKa85]. The

basic approach in this method is to evaluate the joint angle values through integration of

the joint rates by :

e=J'1(e)[5cd+m.] (2.6)

and

9 =1 édt (2.7)

where 6 and O are the vectors of the joint angles and their rates, respectively, and are of

dimension le, (N is the DOF of the manipulator). J '1 is the inverse of a Jacobian which

maps the rate of change in Cartesian space to the joint space and is dependent on the

current positions of the joint angles. id is the desired velocity vector along the u'ajectory.

K is the gain matrix and the K it tennis used to modify the end-effector rate.

In the usual predictor-corrector method, the predictor P is used only once to obtain an

initial value of 6 for computing the joint rate 6:

91 = moo, 9.1, e, 9.3, e , 9-1. 02. 6.3, At)

= 1.54765290 - 1.8675039“l + 2.0172046_2 - 0.6973539_3 (2.8)

+ At[2.002247é0 — 2.031690l + 1.8136090.2 - 0.7432003],
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where At is the time step, and 6 and 9 are the position and angular speed of the joint

angles, respectively, with the subscript denoting the current (0) and past (negative)

values. Once the estimated initial value of 9 is known, eq. (2.6) is evaluated, followed by

the approximation of eq. (2.7) through the corrector C of eq. (2.9):

91= C(e 3130.81.94.10)

= so + At[0.37591 + 079166700 — 0.2083330l + 004166702]. (29)

The process of evaluation-correction is then repeated until 6 has converged or failed. The

At can be used to dynamically control the performance of the algorithm.

Gupta and Kazerounian’s modification is focused on the development of a scheme to

determine the step size At based on an error measure of the difference between the

desired and estimated position/orientation in Cartesian coordinates. At is determined as

follows:

- At is reduced by half if the error due to the new estimate is either (1) greater

than that of the current position and orientation, or (2) greater than the

convergence criteria after 5 evaluation-correction iterations;

0 At is doubled if the error of the new estimate due to the predictor satisfies the

convergence criteria too well.

The modified predictor-corrector algorithm has been shown to be capable of finding an

IKS if a solution exists or otherwise detecting the singularity case. This approach has the

advantage of obtaining the joint rates simultaneously, but the computation takes several

seconds and makes it impractical for real-time conuol.

2.3.2.2 Closed Form Solution

If a closed form solution is possible [Pie68], then the analytic solution for the joint

angles can be obtained as follows. First, obtain the algebraic expressions for elements of

(16 to U1, where U, = Ui-UM - - . U6. Multiplying Afl to the left hand side of eq. (2.5)

recursively starting from i = 1 yields
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T: U2, (2.10)

A11-T=U2, (2.11)

A21A11T = U3, (2.12)

A31A2'1A11T = U4, (2.13)

A4v'1A3‘A2'1Al‘lr = US, (2.14)

A51A4'1A3'1A2'1A'11: U6. (2.15)

If the above equations are solved from top to bottom, the left hand sides are always

defined. Compare the matching elements of both sides of each equation and obtain an

equation containing the sine and/or cosine of only one joint variable, the joint angle

involved can then be solved. As an example based on the PUMA manipulator, the 14 and

24 elements of both hand sides of eq. (2.10) gives

pJr = cosOlU214 + sin01d3, (2-16)

and

py = sin01U214 — coseld3. (2-17)

After eliminating U214 and using trigonometric substitutions to eliminate px and py, 01 can

be obtained by

 

9 =tan'1(-pl)— tan'l d3 (2 l8)
1 py ifl ’2 _ d32 '

where r 2 = p12 + pyz. The complete closed form solution for the PUMA is listed in

Appendix A

2.3.3 Previous Designs Dedicated to Kinematics Computations

The need to compute the kinematic solutions in real-time for intelligent control has

motivated hardware implementations of DKS and IKS. A single VLSI chip architecture to

implement the DKS computation has been proposed [LeSh87]. The design features fixed-

point computation and on-chip calculation of trigonometric functions through table look-up

and interpolation. Simulation results indicated that the DKS can be computed in 10 us.
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Gupta and Kazerounian’s algorithm for IKS has been implemented in an architecture

based on a commercial floating-point arithmetic unit [OrTs86]. To reduce the control

complexity, the gain matrix K in eq. (2.6) is set to 0, the step size is fixed, and the

magnitude is made small enough such that if the evaluation-correction result does not

meet the convergence criteria, it automatically indicates the encounter of a singularity

case. Simulation results indicated that the [KS for a 6-DOF manipulator can be obtained

in 2,389 cycles for a single loop. Hence, with a clock rate of 10 MHz, the IKS can be

computed in less than 0.25 ms.

An architecture has also been developed for computing the IKS closed form solution

based on the cordic processor [LeCh87]. In this design, the closed form solution algorithm

is first partitioned into tasks of roughly equal granularity executable on the cordic

processor. A pipeline of 18 stages is constructed using 25 cordic processors to provide a

throughput rate of one solution per cordic cycle. The number of delay buffers which are

inserted between stages to synchronize the data flow is minimized via linear

programming methods. With off-the-shelf cordic processors, the IKS can be obtained

every 40 us with an initial latency of 720 us.

2.4 Summary

The impact of ASIC technology on system design has been examined. Issues

concerning hardware implementation of robotic control algorithms have been discussed.

Previous work on computer architecture designs for robotics have been surveyed.

Background on kinematic computations have been presented.

The issue of how ASIC can be effectively applied to robotic conuol is addressed from

two angles: the specificity and style of the architecture. Trends in robotic applications and

the consequent market implications point in the direction of an algorithm-specific

hardware design approach. Examination of previous robotic architecture designs reveals

that the architecture styles of pipelining and RISC best match the characteristics of

robotic control algorithms.



Chapter 3. A Conceptual Framework for ASIC Design

[Research is] a strenuous and devoted attempt to force nature into the conceptual

boxes supplied by professional education.

Thomas Kuhn

THE STRUCTURE OF SCIENTIFIC REVOLUTION (1970)

In this chapter, system design in ASIC is compared to that involved with SICs. The

nature of ASIC design is then examined from both a transformation perspective and a

decision making perspective. With this background, a conceptual framework for ASIC

design is presented. This conceptual framework organizes the knowledge of IC system

design into three knowledge frames: design process, design hyperspace and design

repertoire. Key concepts presented in the process frame include the hierarchical approach,

the role of methodology, and a model representing the implementation of methodologies.

The hyperspace frame articulates the role of the design space concept and outlines the

framing of the architecture and algorithm spaces as a means to facilitate recognition of

design alternatives. The repertoire catalogs techniques for evaluating design alternatives.

These three frames deal with different aspects of ASIC design, but they are integrated

through an underlying theme of viewing design as a decision making process. That is,

system designers must snucture the design process so that the solution space is

manageable and design alternatives are consciously sought and evaluated. Because of the

growing importance of high-level design decisions, the discussion of these concepts will

focus on one particular step — the transformation from task algorithm to architecture

specification.
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3.1 The Nature of ASIC Design

The term ASIC became popular only after 1985, but the semicustom design approach

and all the basic ingredients of ASIC had already appeared before 1980. Interestingly,

unlike the previous progress which lead to VLSI, it is difficult to single out a particular

technological innovation, such as a new fabrication process, a memory chip, or a new

microprocessor, that can symbolize the rise of ASIC. And yet this event is affecting a

directional change in the discipline of system design. To gain more insight into this change,

ASIC design and SIC design are first compared and the differences are inspected from two

perspectives.

3.1.1 A Comparison of ASIC Design and SIC Design

ASIC design differs from the traditional SIC approach in a number of ways as

summarized in Table 3. In microprocessor-based SIC designs, the performance is limited

Table 3. A Comparison of Traditional Design and ASIC Design.

Approach

Attribute

 

 

 

SIC Design ASIC Design

Goal/Direction chips to systems systems to chips

Cost constraint component count design effort

Performance functional unit data

limitation design communication

Major design major components design styles

alternatives (e.g., processors) (e.g., GA, SC, FC)

Coupling between loose tight

design steps

Testability nodes accessible must be incorporated

requirement at board level early in the design

Verification breadboarding simulation

Prototyping usually in-house in cooperation

with vendor

Last-minute changes less costly costly

Design guidance informal strong methodology

Tools less CAE dependent CAB intensive
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by the processor. The interconnections between various functional components usually do

not pose a problem. In VLSI, however, interconnects consume up to 70% of the chip area

and affect gate utilization. Also, they become the dominant factor in propagation delays as

the level of integration increases.

Another important issue in the ASIC approach is the testability of the design. In SIC

designs, nodes are accessible for testing, but they may become inaccessible in new ASIC

chips. Testing currently takes 30-50% of the production cost of ASIC chips [Wa187].

System designers must incorporate a test strategy at the very beginning of the design cycle.

3.1.2 A Decision-Making Perspective versus a Transformation Perspective

Design has long been regarded as a half-science, half-art discipline. This is probably

due to the fact that design generally involves three different levels of activities as illustrated

 

in Figm'e 4.

Art Innovation Human ? — Creativity

II

Decision making KBES - Productivity

II

Science Transformation Machine CAD — Productivity

Figure 4. The art-science dichotomy of design activities.

When viewing design as a creative process, hard-to~quantify factors such as individual

talent, intuition, and experience, tend to dominate, moving the design activity closer to the

human/art end. At the opposite end, uansformation techniques derived from analyses can

eventually be carried out by machines no matter how complicated they may be.

Corresponding to each level of design activity is a set of tools on which a whole

generation of design modes evolve. At the bottom are the CAD programs that tackle

various transformation tasks. Building on these programs, KBES (Knowledge-Based

Expert Systems) are developed to facilitate the decision-making process. A shift from a
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design mode using CAD tools in a transformation perspective to a design mode using

KBES in a decision-making perspective is currently underway. While the major objective of

these two generations of tools is to raise productivity, they do not directly address

creativity. One may speculate that the next generation of tools beyond KBES will address

creativity, but currently there is little to suggest what forms such tools must take.

The transformation perspective tends to view design as a process of successive

transformations of specifications from one domain (or absu'action level) to another. This is

a powerful perspective so long as the function of u'ansforming what to what is well defined

But as the design process migrates to a higher level, the specifications are prescribed

according to the user’s needs in terms of functional and performance requirements. These

specifications are usually vague and incomplete; sometimes they may not even be feasible.

In such a situation, the transformation perspective with a suong deterministic tone may not

be adequate.

On the other hand, as a technology matures, major breakthroughs (such as novel

processing technologies, device geomeu'ic structures, circuit techniques, or new system

architectures) occur less frequently. At the same time, knowledge about interactions of a

design and its environment continues to accumulate and will eventually be incorporated into

CAD programs. As a result, design as a decision-making process — that is, the selection

of a solution from a number of alternatives according to a set of cost/performance criteria —

will dominate the design process. From this perspective, the two most important questions

are: what design decisions are to be made and how are they made? In the remainder of this

section, decisions that need to be made in ASIC designs are discussed. The conceptual

framework basically addresses the issue of how these decisions are to be made.

Design decisions can be classified into four categories:

. Software/hardware tradeoffs;

. Processing technology;

. Implementation style;

. Choice of hardware algorithms.
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Decisions on software/hardware u'adeoffs affect the flexibility of the product and thus

are mainly influenced by the need to modify the design in the future. Hartmann has

provided an excellent discussion of this subject [Har86]. The merit of a particular

technology is usually judged by its gate delay, power consumption, noise immunity and

logic capacity. A comparison of various technologies can be found in [80182], while the

reasons for the dominance of CMOS as today’s chosen technology are explained in

[Che86, Sh088]. Implementation style choices include programmable logic devices, gate

arrays, standard cells, and module generators. Economic u'adeoffs between these design

styles have been studied in [FePa87, EBCH86]. Hardware algorithms, as distinguished

from high-level task algorithms, refer to functional module designs in multipliers, ROMS,

RAMs, and PLAs where regularity in the structure can be captured and exploited in a

procedural fashion [Yas86]. Note that the fast three kinds of design decisions are largely

influenced by marketing considerations such as design standards, compatibility

requirements, expandability, product lifetime, and other economic factors. In most cases,

they can be determined before the actual design activity starts. In contrast, even though

the choice of hardware algorithms greatly affects the quality of a design, it may be

necessary to delay this design decision due to the uncertainties in meeting physical

constraints such as chip area, power consumption, I/O bandwidth, or system partitioning.

Furthermore, even when tradeoffs among alternatives are clear, decisions must be made in

context. For example, the tradeoff between the size and delay time of a uansistor is well

understood, but the decision of whether time or area is to be optimized may depend on

whether the uansistor is in the critical delay path of a circuit. It is this dynamic nature of

decision-making and the combinatorial explosion of alternatives, composed mainly of

hardware algorithm choices for various functional units at various levels, that constitutes

the fundamental problem in VLSI design.

3.2 The ASIC Design Process

The fundamental attribute that governs many aspects of the VLSI design process is

the unprecedented complexity which has arisen fiom the combination of the tightly-coupled
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nature of numerous intermediate steps and the seemingly unlimited freedom of design

choices at each step. As a result, the design methodology as well as its implementation —

the CAB tools and the environment in which these tools are integrated —— characterizes

the VLSI design process.

3.2.1 VLSI Design Hierarchy

To combat complexity, the strategy of "divide-and-conquer" must be employed. This

approach is manifested as a hierarchy of design steps. In essence, the hierarchical

approach partitions various aspects of VLSI circuits into abstraction levels and defines the

order among these levels. A methodology is then a particular ordered sequence of steps

linking these abstraction levels. A set of CAB design tools is required for the

implementation of the methodology. Table 4 illusu'ates the generally accepted hierarchical

levels, the abstractions they represent, and the supporting CAB tools they require.

3.2.2 VLSI Design Methodology

VLSI design methodology is a formalization of the VLSI design process. At the

beginning of the evolution of the design methodology, answers to the questions of what to

abstract and how to abstract were largely guided by individual designers. They are

inevitably constrained both by the available resources and the maturity of the knowledge

base. The subsequent partitioning process and the ordering of the abstraction levels either

follow a natural style or are done in an ad hoc manner. CAB tools were first developed

individually for each design task and later combined to form more powerful automated

systems. While this ad hoc style of design methodology implementation is efficient and

may even be necessary at the early stages of development, it is recognized that the side

effects of such an approach are becoming an unbearable burden for the development of

integrated design systems. For example, incompatible data formats require translation

programs which not only become an overhead to the system performance but also

complicate the data management effort. Also, the lack of any industry standard is at least

partially responsible for the still relatively high development cost and the slow proliferation
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Table 4. Hierarchy Levels, Absu'actions, and Supporting Tools.

 

 

 

Absu'action

Hierarchy Level (Aspects Represented) Supporting Tools

System space-time behavior as flow charts, diagrams

instruction, timing high-level languages

and pin assignment

specifications

Architecture global organization of I-lDLs, floor-planning,

functional entities block diagrams,

programs that

estimate areas and

clock cycles

Register transfer binding of data flow synthesis, simulation,

functional modules, verification, and test

microinsu'uctions analysis programs;

programs for

evaluating resource

utilizations

Functional modules primitive operations libraries, module

and control methods generators,

schematic entry, test

generation programs

Logic Boolean function schematic entry,

of gate circuits synthesis programs,

simulation and

verification programs,

PLA tools

Switch electrical properties RC extraction programs,

of transistor circuits timing verification and

electrical analysis

programs

Layout geomeu'ic consuaints layout editor/compactor,

netlist exu'actor,

design rule checker,

floor-planning,

placement and

routing programs
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rate of these systems. The moral seems to be that the success of a hierarchical design

methodology depends, on one hand, on how well its underlying principles reflect the nature

of VLSI circuin and, on the other hand, on how well its external expression supports the

implementation effort. These can informally be called the necessary and sufficient conditions

for efficient implementation of design methodologies.

3.2.3 DOEMA: A Model for Methodology Implementation

A unified conceptual model of the design process is indispensable not only for the

efficient implementation of the hierarchical design methodology, but also for the user to

master the corresponding CAB tools with as little effort as possible. The model should be:

- Concise, consistent, and complete;

. Capable of utilizing existing CAB tools;

- Capable of facilitating CAB development efforts;

- Capable of accommodating future changes;

- Distinctive in the definition of roles for human and machine;

0 Capable of accommodating human intervention to observe and fine-tune;

- Easy for users to learn;

. Representative of aspects common to various abstraction levels;

0 Separate in mechanism and content.

A conceptual view of the design process, so formulated, is illusu'ated in Figure 5. From

a system point of view, this model can be described in terms of Design Object, Design

Engine, System Manager and Expert Assistant (DOEMA). Each of these components will

be discussed in the following sections. Some general aspects of this model are first

discussed.

The fundamental characteristic of this design process model is its handling of level-

specific design process information. Similar to Walker’s thesis-antithesis-synthesis

argument of AI [Wa186], this model can be viewed as a synthesis of the thesis and

antithesis of design methodology. The thesis is that a model of translating specifications
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Figure 5. The DOEMA model for implementing ASIC design methodologies.

from a higher level to a lower level, general to all levels, is possible [Lip83]. However,

because of the wide differences between the subjects of various abstraction levels, the

necessary inclusion of all these differences in a general model makes its execution very

inefficient. The antithesis is that since the subject of abstraction in each level is so different,

a design process model for each translation step should be developed. The execution is

more efficient but it now exhibits a higher development cost. Note that a silicon compiler

can be built from either of these design process perspectives. The synthesis here is

essentially taking a middle ground of the two approaches. It retains the general model idea

of the thesis, but instead of putting everything in this model, it separates the level-specific

information from the subprocesses that are common to all levels.

To represent the design process in terms of an inter-level model is inherently simme,

consistent, and without loss of generality. From the CAB tool developer’s point of view a
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single "design engine" can be built since a general design process model is uniformly

applied to all levels. From the user’s point of view, the model is simple with built-in

consistency; learning efforts are thus minimized. In addition, the open-architecture style of

the DOEMA model allows logic synthesis systems to be built fi'om existing modules or

modules from different vendors. Concurrent design activities at different levels are also

possible.

32.3.1 The Design Object

The design Object of level i is a description of a target design in terms of the

abstractions defined at that level. It may be viewed as a collection of absu'act objects and

is defined as a point in the level i design space. For example, a l6-bit multiplier is an

instantiation of an abstract object called n-bit multiplier at the functional module level. To

describe the object, languages are necessary. Primitives and consu'ucts provided by a

language, however, are based on an evolving understanding of the design space. By using a

language to describe an object, the level i properties of the Object are thus transformed into

the three basic atu'ibutes imposed by the language itself: the description (data) format, the

syntax, and the semantics. In the case of the multiplier, for example, the logical relationship

between the bits (fiom the most significant to the least significant) is encoded into the data

format (a particular order in the numbering of the bits), and the algorithmic/structural

property (such as shift-and—add or array multiply) is embodied in the semantics, all

conforming to the syntax stipulated by the specific language used. Through these three

atu'ibutes, human and machine can communicate.

The concept of design Object plays two important roles in the DOEMA model. First, it

is the place where the dynamic (mechanism) and the static (knowledge about the design

space) aspects of VLSI design intersect. By limiting the intersection to within the

boundary of the design object, the remaining dynamic aspects can be separated as purely

mechanistic, which in nun allows the design engine to be developed Second, it is also the

place where two adjacent levels within the hierarchy interface. Once the data format,
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syntax, and semantics for each level are defined, the coupling of the levels becomes

su'aightforward.

3.2.3.2 The Design Engine

The design engine represents the mundane tasks of VLSI design, and evolves from the

four design subprocesses: transformation, verification, simulation, and test consideration.

They are uniformly present at all design levels. The current state of implementation is

obviously very level-specific. But as a conceptual model, the level-specific information is

best kept separated so that the essential aspects of the design dynamics remain the focal

point.

. The Transformation Process

The transformation process is the most fundamental among the four subprocesses.

This process can be further partitioned into two mechanisms: mapping and selection. The

difference between the two is whether or not high-level decisions are involved. Mapping

represents purely mechanistic and routine procedures (e.g., a transistor is formed by a

diffusion region crossed by a polysilicon path) or involving only low-level decisions which

can be parameterized (e.g., the aspect ratio of a transistor can be related to the transition

time). Selection, on the other hand, represents the most important decision-making

function of the designer or the design system (they are interchangeable in many cases) —

to select a particular circuit implementation from a pool of alternatives given the area-time

' tradeoff. For example, a desired logic function can be realized by a dynamic logic design

instead of a conventional static design. Or, to improve the testability of the circuit, well

known su'uctural techniques such as scan-path methods or built-in self test (BIST) can be

chosen [WiPa83, McC86]. The distinction of the mapping and selection mechanisms

emphasizes the human role in evaluating design alternatives and making design decisions.

. The Verification Process

Verification is the process of confirming that the resultant lower level design object is

indeed the intended design. This process should be distinguished from validation, which
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simply checks for violations of various design rules. In practice, verification is often done by

simulation, simply because a formal approach to prove the correctness of a design either

does not exist or is impractical [WiPa83]. Verification in this model is achieved by first

generating another level i+1 design Object through inverse mapping and then by an

Quivalence test of the two level i+1 object descriptions. For example, CVS (Connectivity

Verification System) was one of the earliest systems built reflecting this approach

[NeVi86]. After the transistor-level design object has been transformed to a

corresponding design object at the layout level, CVS extracts from the layout description

another transistor-level design object. This second version is compared with the original

design object for connectivity equivalence. Similar procedures can be carried out at Other

well understood levels such as logic-gate or gate-uansistor levels [Jac86]. The major

advantage of this approach is its potential for tremendous savings in simulation time. Time

savings of orders of magnitudes at certain levels have been reported [NeVi86]. The

feasibility of this approach clearly depends on the existence Of the inverse mapping and a

canonical representation of a design object. There are some indications that nascent AI

techniques, such as theorem proving and automated reasoning, may play an important role

in this area [KaWo85].

. The Simulation Process

The simulation process involves two steps: that, the generation of an appropriate

model for the design Object according to the level at which it is described; and second, an

analysis of the output and next states given a set of input and states. The simulation

process serves three different purposes: verification, optimization, and fault coverage

indication. Whereas inverse mapping is not well developed, verification is achieved by

extensive simulation. A selection mechanism within this process determines the

appropriate circuit models to be used. It also determines whether global or local simulation

is performed. Since simulation is based on the behavior of the lower level models, the

result must be extrapolated back to the higher levels, a process that is now mostly left to

the designer.
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. Testability Considerations

A unique characteristic in VLSI design is the role of design for testability [WiPa83].

Without the upfront objective of DFT, testing of custom or semicustom circuits of high

complexity is virtually impossible. Test considerations include testability analysis, test

vector generation, and fault coverage estimation [SeAg85, HnWi85]. Test analysis

programs evaluate the testability of a design based on how difficult the values of the

internal circuit nodes can be set (controllability) or reuieved (observability). Test

generation programs attempt to identify and reduce input patterns that will cause as many

faults as possible to be detectable at the outputs. The effectiveness of the test generation

program is measured by the size of the resultant input test vector set and the percentage of

faults it can detect (coverage). Fault coverage is usually approximated through statistical

estimates on random test input vectors. More expensive exact coverage can be obtained

by systematically injecting faults into the circuit and analyzing the simulated outputs

[Hui88].

3.2.3.3 The System Manager

The role of the system manager is to provide an integrated environment in which the

engine operates. This includes design tools management, design data management, and

host system interface.

In the DOEMA model, the tasks represented by the design engine are generic and

they must be instantiated for use at a specific level. For example, the program that

transforms a gate level design into a switch level design is very much different from that

between the switch level and the layout level. In addition to this instantiation function, the

design tools management must provide structure and environment that can integrate tools

fiom different vendors and allow incremental changes. Ideally, this latter service provides

the DOEMA model some flexibility in accommodating the diversity of existing CAD tools.

Design data management is more than routine database management. It must support

hierarchical representations of the design objects, alternative implementations, and
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evolutionary versions [Kat85, BrGr87]. It must also provide conuol mechanisms for secure

and concurrent access and for recovery from system failures. Host system interface

includes a common set of primitive functions such as file system support, process conuol,

and communication protocol. With this interface to the host operating system, the model

can be implemented independent of hardware platforms.

3.2.3.4 The Expert Assistant

Technology breakthroughs, creative innovations, and efficient management can all

contribute to the improvement of design quality. While the former two often bring about

revolutionary effects, they are rare and thus are somewhat out of direct conuol.

Management, in contrast, is something on which one can always have a tight grip. In fact,

the sole purpose of design methodology is aimed exactly at this — the management of

complexity.

VLSI design complexity is a direct result of the large degree of freedom in placing and

interconnecting devices on silicon and, thus, the numerous design alternatives for a given

problem. As invention of new circuit techniques occurs less frequently while knowledge

continues to accumulate, for a majority of system architects the major function as a

designer increasingly shifts toward evaluating existing alternatives rather than creating

new ones. An awareness of various alternatives is thus the precondition for making

judicious design decisions. This intrinsically depends on the system designer’s knowledge

of VLSI technology.

To help the designer master the knowledge, nascent expert system technology based

on Al research may be the key. Contemporary Al thinking perceives that knowledge is of

two kinds: domain knowledge consisting of general rules and specific facts; and meta-

knowledge, the knowledge about the application of rules and the reasoning mechanism.

From this view, expertise is the act of applying domain knowledge to specific problems and

thus can be mechanized once these rules and facts are clearly defined. Thus, expert

systems are constructed with three components: working memory (WM) for representing
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the current state of the problem at hand; a knowledge base containing a set of production

rules of the form "IF (condition in WM> THEN <action>"; and an inference engine that

carries out the reasoning mechanism under a control strategy to determine the next rule to

be activated [FiFi87]. The separation of the domain knowledge (representation) from the

general reasoning mechanism is the essential feat on which the success of the expert

system technology is based. By encoding knowledge in the form of rules, expertise can be

captru'ed and reproduced in machines.

In the DOEMA model, the major function of the expert assistant (a KBES program)

is to facilitate the decision-making process by making the designer aware of design

alternatives. To achieve this goal, the expert assistant requires two kinds of domain

knowledge: one kind for determining when alternatives should be considered, and a second

kind for detemrining what the alternatives are. The former can be captured in the design

schema which serves as a roadmap or overall procedural guide for conducting the entire

design process. Alternatives are encoded as constraint-criteria templates which list all

possible actions in various situations based on previous experience. Such systems are

currently being developed by ASIC vendors [An087].

3.3 The ASIC Design Hyperspace

While the dynamic aspects of VLSI design are represented by the design process

model, the static aspects are best captured in the notion of a design hyperspace.. Static

aspects refer to properties that are inherent in the design objects and are largely stable

over time. The significance of the design space concept lies in its classification power

which allows the designer to accumulate and retrieve knowledge efficiently and thus

facilitates the recognition of alternatives. The relationship between the design process and

the design hyperspace can be represented by Gajski and Kuhn’s Y-chart as shown in

Figure 6, in which the design process is formulated as a methodology traversing through

the design hyperspace in a spiral fashion with more detailed information added toward the

center [BuMa85, GaKu83]. However, the Y-chart does not address the details of

individual levels. And, because of the multi-faceted name of VLSI design, the framing of
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representation of the VLSI design hyperspace.

the design hyperspace is not unique; much depends on the designer’s perspective. In order

to frame it properly, an examination of the space concept is worthwhile.

3.3.1 The Design Space Concept

The space concept is heavily utilized in mathematics as a generalization instrument to

study properties of absuact concepts. Two observations can be made on how mathematic-

ians create the frame of reference for the space under investigation. One observation is

that there are essentially an infinite number of frames one can create for a space. For

example, for a 3D space we have Cartesian, cylindrical, or spherical coordinate frames.
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While these are all valid frames, differences exist in the degree of convenience encountered

in using a particular frame to characterize an Object (in this case, a mathematical function)

under certain conditions. It is obvious that the choice of a particular frame is heavily

influenced by application and guided by experience. On the other hand, no matter which

frame is chosen, they all possess the one fundamental atu'ibute of orthogonality, or mutual

independence of the coordinates. This idea is particularly useful in framing the design

hyperspace, for, if the framing is orthogonal, then the effort of managing the combinatorial

complexity of the design alternatives can be reduced by limiting our attention to only one

dimension at a time.

With this in mind, the concept of the design hyperspace can be explored. The purpose

is twofold: first, to frame the design hyperspace so that the designer can more readily

recognize possible design alternatives. Second, some assurance that the framing can

facilitate the mapping of the design objects is desirable. To achieve these goals, a multi-

level view of the design hyperspace as advocated by Dasgupta and others is adopted

[Da584, Tan84]. An overview of the design hyperspace is shown in Figure 7. Pertinent to

the subject of this thesis, the algorithm space and the architecture space are of particular

interest. Furthermore, since the final target is a VLSI architecture and the goal is to

VLSI Design Hyperspace

Algorithm space Architecture space ° ° °

operation data data functional communication conuol

su'ucture dependency unit

  

Figure 7. An overview of the VLSI design hyperspace.



62

organize alternatives, the investigation begins with the architecture space and the result is

then used to guide the study of the algorithm space.

3.3.2 The Architecture Space

The framing of the computer architecture space has been atuacting attention since Bell

and Newell’s PMS (Processor/Memory/Switch) notation [BeNe7 l]. Despain recently

presented a more modern view of the architecture space as shown in Figure 8 [De584]. A

computer architecture can be characterized by its control concurrency, data specification,

and data in-statement. The conuol concurrency dimension specifies how the atomic

calculations are done. The data specification dimension represents various choices for

specifying where data values are located. The data in-statement dimension refers to the

conditions under which data values may be changed. This framing scheme presents a highly

absuact view of architecture in the sense that it is concemed with the logical aspects of a

computational machine only. Even though such classification has the advantage of covering

a wide range of machines, it may be overkill in the ASIC environment where finding a

suitable architecture to implement the task algorithm in a single chip or a chip set is the
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In view of this, a composite view of the architecture space slanted toward a hardware

implementation perspective is presented. From a highly abstract view, information which

is ultimately represented in the form of electrical signals (charges) in the hardware is

processed in one of two ways — transformation or transportation. To make this fact

explicit, the architecture space is viewed as being composed of three subspaces:

functional unit, communication, and control. The first two subspaces represent resources

corresponding to the transformation and transportation, respectively. The conuol

subspace provides resources for binding them.

. The Functional Unit Subspace

The functional unit subspace is spanned by three dimensions: arithmetic, logical and

storage. Arithmetic units include conventional fixed-point and floating-point adders,

multipliers and the like, as well as specially designed units such as a cordic unit. Logical

units include shifters, multiplexers, decoders, comparators, and other modules for logical

operations. Storage units include latches, flip-flops, registers, and memories. Storage

units can be made to transform information in a limited way; their major role, however, can

be viewed as an interface between transformation and transportation. With this framing

scheme, queues and stacks, for example, can be visualized as a point in the functional unit

subspace indexed by shifters and registers.

. The Communication Subspace

The communication subspace contains the dimensions of interconnect topology,

memory organization, and data reference. Major interconnect topologies for data exchange

networks include direct links, bus, ring, star, tree, crossbar, mesh, and shuffle networks.

Memory organization includes cache, local, and global su'uctures. Data reference refers to

various memory addressing schemes.

- The Control Subspace

The control subspace has the dimensions of synchronization, style, and su'ucture. The

synchronization dimension consists of synchronous and asynchronous control, each
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elaborated by clocking schemes and protocols. The control is also characterized by the

style of instruction execution such as centralized, pipelined, and/or distributed. The

su’ucture dimension includes implementation structures of random logic, PLA, and

microcoding.

When the architecture space is framed in this way, different architectural primitives

with similar high-level appearances naturally tend to cluster close to each other.

Implementation alternatives for a given algorithm are thus more visible.

3.3.3 The Algorithm Space

Even though considerable research effort has been devoted to characterizing

parallelism in programs and algorithms for matching them to languages and architectures,

a better understanding is still being sought [JaGD87]. For the purpose of this work, it is

desirable to have a frame of reference for the algorithm space that has a direct

correspondence with the frame for the architecture space. Kung’s characterization of the

algorithm space provides a starting point.

To characterize parallel algorithms, Kung proposed a three dimensional space

spanned by the dimensions of concurrency control, module granularity, and communication

geometry [Kun80]. Concurrency conu'ol refers to the synchronization methods for correct

execution of parallel algorithms. Module granularity refers to the computational size of a

task module and is hardware dependent. Communication geomeu'y includes various

interconnection patterns for data communication between functional modules. Similar to

this characterization, we view the algorithm space as being composed of tluee subspaces:

operation, data structure, and dependency.

. The Operation Subspace

The operation subspace is spanned by elementary computations seen by the

designer. What the designer sees depends on the availability and his/her knowledge of

hardware primitives. This subjective characteristic is inevitable, because a task algorithm

can indeed be realized in more than one way, thus having more than one image in the
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operation subspace. Consequently, it matters as much for the designer to determine how

"elementary" (i.e., the granularity) the computation primitives should be as to realize

hardware alternatives. A primitive operation represents an event occurring in some entity

or functional unit. Thus, the operation subspace can naturally be aligned to the functional

unit subspace. This suict correspondence between operation and functional unit

subspaces allows the algorithm designer to take the viewpoint of an architect in

considering hardware alternatives.

. The Data Structure Subspace

Data su'ucture is the physical or visible form of the su'uctural properties intrinsic to

the task algorithm. The scope of this subspace is similar to the communication geometry

described by Kung and is illustrated in Figure 9. Data structure has a major impact in

shaping the proper organization of communication resources of an architecture.
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Figure 9. The data structure subspace.

. The Data Dependency Subspace

"Characterizing the data dependencies lies at the heart of the algorithm-to-

architecture mapping problem" [Jam87]. Padua, Kuck, and Lawrie have identified four

kinds of program dependencies which constitute the dependency subspace [PaKL80].

They are flow dependence, anti-dependence, output dependence, and control dependence
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Table 5. Fundamental Data Dependencies.

 

  

    

 

 

 

Depgrdency Type Algorithmic Form Symbol

Flow 5]: x := op(...); 9

Sk: _ := op(... x ...); Q

Anti Sj: _ := op(... x ...); Q

Sk: x := op(...); Q

Output Sf x == 0p(.--); 9

‘ 0

5,: := op(...); Q9

Control Sj: x == op(...); GP

Sk: if (x) then ; 6b

 

as illusu'ated in Table 5. Regular control flow and data flow patterns, such as array

operations, looping, and recurrence, can be expressed in terms of these dependencies.

Mapping dependency patterns to architectures has been intensively studied by others and

is reviewed in [JaGD87].

Algorithms at the task level are invariably developed with specific perspectives. The

abstraction mechanisms or techniques at this level are primarily determined by the nature

of the problem at hand. For example, a control engineer may be concerned with the

eigenvalues or controllability of a matrix without considering how the actual computations

are carried out. However, once the algorithm has been developed and hardware

implementation is considered, the designer must adjust his/her perspective to that of the

computer architect. The foregoing framing scheme of the algorithm space has the

advantage that each of the three architectural resources has a major, though not

exclusive, correspondence with one particular algorithm subspace, namely, functional

units with operation, communication with data structure, and control with data
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dependency. As a result, the designer’s adjustment of his/her perspective to that of the

computer architect is facilitated.

3.4 The ASIC Design Repertoire

The previous two sections have established the two basic concepts of design,

namely, the process, as formalized into methodology and implemented by CAB systems,

and the hyperspace, as the collective logical and physical properties of design objects. In

this section, the actual mapping is considered in more detail, with particular interest

focused on the architecture level.

Setting aside the mechanistic mapping of design objects, design becomes a decision

making practice. Decision implies alternatives. Through methodology the search space is

limited and hence the number of alternatives. Through the framing of the design spaces

their existence is recognized. Then, the logical question to follow is: how should these

alternatives be evaluated? The design repertoire is a collection of analysis techniques for

evaluating design alternatives. It enables knowledge of designs techniques to be

accumulated in a more organized manner and thus minimize possible redundant

engineering efforts.

Research efforts aimed at understanding how the algorithm to architecture mapping

should be done are conducted along two basic lines. The first is to find a suitable

architecture for a given algorithm. The second is to restructure a given algorithm to better

match a given architecture. These two approaches are termed resource configuration (RC)

and algorithm restructuring (AR). In addition, system partitioning techniques have been

developed to improve the productivity of implementation and to meet physical constraints

such as area and I/O pin limitations.

The interaction between algorithms and architecture is not a one way relationship.

Even though we distinguish the RC and AR approaches for classification purposes, no

single approach is adequate. In fact, automatic synthesis programs based on these
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techniques typically combine these approaches in various ways ['I'het83, Tho86]. The

following sections present the current understanding of these techniques.

3.4.1 Resource Configuration

The objective of this technique is to determine an appropriate architecture for a given

(fixed) algorithm. In other words, it is to determine the minimum resources needed to

satisfy some cost-performance criteria. From the perspective of the architecture space,

there are three kinds of resources as explained before: functional units, communication,

and conuol.

Graph algorithms are often used for the configuration of functional resources [De584,

PaKLSO, Kuc77, TsSi86]. The basic idea is to model the elementary computations as

nodes and the data dependencies as arcs connecting relevant nodes. Then the parallelism

or the data dependency can be derived from the upper bound on the size or depth of the

equivalent me. To derive a minimum resource solution, the graph is partitioned into

cliques (or clusters), which correspond to various resources, and serial-to-parallel

uansformation is then applied to generate various alternatives for evaluation.

Communication includes interconnect topology and memory organization/addressing

schemes. Conventional bus structure is well understood with the choice of a particular bus

made according to the application [DaDo86]. Memory bandwidth constitutes the ultimate

performance limit that an architecture of this type can attain since memory and I/O

requirements must be satisfied under these conditions. The disparity between on-chip

and off-chip delay in VLSI favors local communication. The application of special

interconnection networks such as the butterfly connection, the shuffle network, etc., is

often associated with well known domain-specific characteristics of data structure and

data flow patterns, as can be seen in the areas of signal processing and sorting. Memory

su'ucture is crucial to relieve the communication burden, particularly in array-related

operations. Various memory organization and addressing techniques can be found in

[HwBr84].
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Control plays the central role of binding the functional units with the communication

facilities. Configuration of this resource depends on the application and on decisions

regarding the other two resources. Kung has documented conuol patterns for three

categories of applications (signal processing, matrix arithmetic, and non-numeric

applications) in systolic array designs [Kun80, Kun84]. For computation-bound

algorithms, pipelining techniques may improve throughput with modest increases in

hardware. Theoretical bounds on the complexity of an algorithm for synchronous pipelined

processing have been studied in [ScAt77]. As to implementation styles, conu'ol logic is

increasingly implemented in PLA as sophisticated minimization and area optimization

techniques are quite well developed [NeVi87].

3.4.2 Algorithm Restructuring

The objective of AR techniques is to modify either the data su'ucture or the flow

pattern of a given algorithm so that it can be efficiently implemented on a fixed computer

architecture. AR techniques for microprocessor-based designs have previously been

implemented in the Harpy system to evaluate architecture alternatives [BiMR83]. Since

the constraints of the ASIC design environment are significantly different fiom the

microprocessor environment, further development of these techniques is needed. In

particular, the regularity of an algorithm takes on a new dimension of importance.

While all AR techniques are aimed at modifying the data flow patterns within the

constraints of the function and data dependency of an algorithm, the emphasis varies. For

algorithms exhibiting massive parallelism, as in array-type operations, the emphasis is

the data structure and data communication (including processor-to-processor and

processor-to-memory). It has been realized that they are the most critical ingredients in

the performance of an algorithm under a given architecture [GaR084]. Therefore,

resu'ucturing techniques are aimed at either improving the regularity of the data su'ucture

or reducing the data communication. In some situations, dramatic results can be obtained

by simply applying basic elementary operations under the constraint of data dependency.
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More often, AR techniques for this class of algorithms involve partitioning of the array

operands. Especially in pipeline architecture or systolic arrays, global data communication

is reduced or uansformed to local communication. This is achieved by eliminating the need

to store intermediate results by partitioning and scheduling of the operations based on the

characteristics of the assumed architecture [GaRo84, Nin85, Jaet85, Ary85].

For algorithms that do not exhibit parallelism, freedom in restructuring is limited to

better allocation of resources and scheduling of Operations. In this case, algorithms are

represented in data flow graphs and algorithmic or heuristic methods can be applied to

determine optimal allocation and scheduling [PaHa87, Tho86].

3.4.3 System Partitioning

The partitioning of a large system into smaller modules in order to satisfy physical

consu'aints has long been a concern in PCB designs. For ASICs, while the increasing

number of gates that can be integrated on a single chip will lessen the importance of

partitioning, higher integration usually costs more, and there are always some resuictions

on the IC packaging capabilities. More importantly, subsystem sizes, as the result of

partitioning, have a direct impact on productivity. It has been demonstrated that design

activity is most efficient if the design manpower requirement is kept under 29 manweeks

[FePa87]. As a result of better productivity and possibly larger parallel design efforts,

scheduling time can be significantly reduced.

The partitioning of the system in the PCB design environment is generally aimed at

minimizing one or more of the following:

. number of clusters (blocks of circuits that are closely related);

- circuit delays;

0 cluster interconnections;

o variance of cluster sizes.

Semiempirical techniques based on what is known as Rent’s rule have been

developed to relate the average number of pins per module to the average number of
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blocks per module [Hol87, LaRu71].

While techniques previously developed for SIC designs are useful in ASIC design,

different constraints (silicon area-delay time in ASIC vs. board area-delay time in PCB)

mean that it may not be advantageous to have the system partitioned into chips in the

same way that it was partitioned into PCBs. For example, circuit blocks previously

distributed on more than one PCB may now be more efficiently integrated into a single

chip such that the off-chip l/O traffic is reduced. Furthermore, recent study has shown that

partitioning of the system along a functional line can result in a smaller number of pin-outs

and reduced interconnection length [Fer85]. Some projects have been aimed at making

the partitioning problem more u'actable. For example, Palesko and Akers presented an

algorithm for logic partitioning [PaAk83]. But the application of their method is limited to

gate arrays and the partitioning problem as a whole is still much dependent on the

designer’s experience and intuition.

3.5 Summary

A conceptual framework for ASIC design has been described. It is composed of the

three knowledge frames of design process, design hyperspace, and design repertoire. They

address different aspects of how design decisions are made. The global strategy is to limit

the search space through methodology implemented by CAB and KBES. Alternatives are

recognized through a proper framing of the design space.

The conceptual framework equips the system-1C designer with a clear and coherent

view of VLSI design activity and, at the same time, suggests a systematic way to acquire

and accumulate knowledge. In this respect, it provides new goals for engineering

education of future IC designers. This conceptual framework also gives CAB developers a

unified and farseeing view to implement design methodologies in an integrated

environment. Common understanding developed between tool developers and IC

designers as a result of this work can speed up the vital transfer of ASIC technology to a

much wider engineering community.



Chapter 4. The IKS Chip Design Paradigm

Rules, i suggest, derive from paradigms, but paradigms can guide research even in the

absence Of rules.

Thomas Kuhn

THE STRUCTURE OF SCIENTIFIC REVOLUTIONS (1970)

[Ajn example equals one thousand inferences.

Hubert Dreyfus and Stuart Dreyfus

MIND OVER MACHINES (1988)

4.1 Introduction

As is due in any realistic project, the design of the IKS chip has gone through numerous

refinements during its course. Desirable as it may be, documenting all the changes is itself a

formidable task. The multidimensional and iterative nature of the design activity make it

difficult to describe the design process concisely in an essentially linear text. But even if it

can be done, documentation alone is not a substitute for understanding, which is what this

work sets out to accomplish in the development of a paradigm. To achieve this goal, various

design decisions that lead to the final design are examined and organized into the form of an

ASIC architecture design methodology. The design of the IKS chip is then presented as an

execution of this methodology. To better focus on design decisions and to avoid

overcomplexities, the presentation of the structural decomposition of the IKS chip is delayed

until the next chapter where it is presented together with the VHDL simulation results.

Testability issues are addressed in each design phase when appropriate and are assessed

qualitatively as part of the evaluation of the overall design. In the remainder of this section,

the assumptions, objective, and phiIOSOphy of this design effort are first examined.

72
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4.1.1 Assumptions and Constraints

The IKS chip design is based on certain assumptions about its intended use and the

implementing technology. These assumptions reflect a compromise between an ideal

design environment and a practical one with various resources constraints.

It is assumed that there exists a host system to handle the high-level tasks in the

robotic computation hierarchy. Since the 1/0 requirement of the IKS algorithm is very

simple, the IKS chip can appear to the host system as a slave device. Figure 10

illustrates the "black box" specification of the IKS chip’s interface. Note that some of the

signals are for testing only and must be hardwired to proper values as indicated in the

parentheses. I/O signals may be organized into three 16—bit words as shown in Figure

11. The host system obtains the IKS through read/write operations on these I/O ports

following the procedure specified in Figure 12. The host is responsible for setting up the

input transformation matrix and the arm configuration before asserting the signal S to

start the IKS computation. In this way, the chip’s interface to the host is not tied to a

A0 - A3: address of J-Register

CO - 02: Arm configuration control

DO — 031: Bidirectional data llO

BO - 331: Bus B (Open)

r/w: Realel/Writen]

Fr. reset

6‘. Start

D. Done

Ed. Data line enable

clki: Phase 1 clock

clk2: Phase 2 clock

T: Test mode (0)

Tet: Test clock 1 (0)

Tc2: Test clock 2 (0)

Ea: Bus A access (0)

Eb: Bus B access (0)

Si: Scan input (0)

So: Scan output (Open)

Jclr: Clear J Registers (O)

Rclr: Clear R Registers (0) 
Figure 10. The interface of the IKS chip.
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D R S ”W Ed CZ—CO A3-A0

031 - D16

D15 - DO   

Figure 11. Organization of the IKS chip’s signals into three l6-bit words.

 

Step I : Set R = 1, T = 0 for one cycle;

Step 2: SetR = 0, r/w= 1, Ed=0;

Step 3 : Repeat for i = 0 to 8 do /* input: write to J Registers */

Write i to A3-A0 and the corresponding element to D31—D0

according to the table below;

A3A2A1Ao Jx 031 - Do

0-2 JO-J2 a vector

3 - 5 J3 — J5 a vector

6 - 8 J6 - J8 p vector

 

 

 

set Ed = 1 for one cycle, then set Ed = 0;

end repeat;

Step 4 : Set r/w = O, and set S = 1 for one cycle, then wait for D = 1;

Step 5 : Repeat for i = 9 to 14 do /* output: read from J Registers */

Write i to A3—A0 ;

Set Ed = l and read 9i-8 from D3l—D0;

Set Ed = 0;

end repeat.   
Figure 12. Computing procedure using the IKS chip.

particular bus design and can be programmed easily. Incorporation of user-specified arm

configuration in the IKS calculation is possible but not implemented here. Singularity

cases are assumed to be handled by the host. In other words, the host system is

responsible for the final interpretation of the results from the IKS chip. Since parameter

values of the IKS algorithm vary only with different robot manipulators, it is more efficient

to regard them as constants for repeated calculations and thus they are stored in ROMS.

It is assumed that different parameter values can be written into the ROM in the final

steps of the chip’s fabrication.
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Gate array technology is used since it is the preferred choice for designs that require a

small production volume and rapid prototyping. This assumption is made to facilitate the

estimation of area and delay time. The architecture, however, could also be implemented in

standard cells or a full custom design. Basic cells and high-level macrofunctions, such as

adders and multipliers, from commercial gate array libraries are used as the building block

circuits of the IKS chip, and areas and delay times are estimated from databook values

provided by the vendors. While the performance of the chip eventually depends on the

physical design and the vendor implementation, it is nonetheless assumed that the

architecture is independent of the technology in the sense that with a better technology

(measured by, say, the achievable functional throughput rate), the architecture will always

perform better.

4.1.2 Design Philosophy and Objective

A design philosophy is a set of values or stands regarding the approach to a design

task. It is not necessary to judge that a particular philosophy be right or wrong, since it is

largely a product of the interaction between the designer’s objective and his/her

environment (resources constraints and invested interests). On the other hand, however,

knowledge of the design objective and philosophy is an integral part of the design decision

making process, because they are the ultimate justifications of, or attacks on, a designer’s

decision. With this understanding, the design objective is first explained, followed by a

discussion of the philosophical stands of this design effort.

One premise that leads to the decision of implementing the IKS algorithm in an ASIC

chip is that future computation demands primarily come from novel applications which

require real-time response in an often unstructured environment. In this case, the latency

rather than the throughput of the computation is the major concern. For example, if the

robot is interrupted in the middle of a task execution along a predefined trajectory, real-

time response requires that a new uajectory be calculated and executed immediately.

Prolonged delay due to large computation latency may not be acceptable. Hence, the
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objective is to obtain an efficient chip architecture that will compute the IKS with minimal

latency.

' As an algorithm-specific processor, the IKS chip shares some limited common ground

with general purpose processors. In this regard, it is important to learn from experiences in

micrOprocessor designs while being aware of their limitations in algorithm-specific

processor designs. In the arena of microprocessor design, from an architectural viewpoint

and given the technology factor constant, there are basically three routes to achieve higher

processor performance. The first is to increase the microprocessor throughput via parallel

techniques such as pipelining or simply adding more functional units. The second is to

reduce the number of instructions needed for a given algorithm. And the third is to speedup

the execution of individual insu'uctions by reducing the number of clock cycles per

instruction and/or shortening the clock cycle itself. Ideally, all three approaches should be

employed to achieve a higher performance, but in practice they are often incompatible as

taking steps to enhance one aspect may produce adverse effects on the other. In fact,

while the first approach is commonly accepted in today’s microprocessors, the last two

approaches may be viewed as the rationales behind the CISC (Complex Insu'uction Set

Computer) and RISC, respectively. This is because an ever-powerful instruction set is

useful in reducing the number of insu'uctions; the desire to speedup the clock rate,

however, calls for simpler conuol decoding and thus a simpler instruction set.

After several years of debate, the dispute between the CISC and RISC has begun to

subside. While the latest microprocessors such as the 88000 from Motorola and the 80960

from Intel have been developed based on the RISC concept, the current market is still

dominated by CISCs [C0188a,b, Man88]. On the other hand, even "pure" RISC companies

have incorporated CISC features in their latest product [Cus88a,b]. It seems that

following the classic path of theory development, the phase of synthesis has begun' to

emerge now after the prolonged phase of thesis (CISC) and a relatively short phase of

antithesis (RISC).

What can be learned from the debate between RISC and ClSC? Central in the debate



77

is the issue of instruction set design as the focus of the hardware resource allocation

policy. A sound policy is founded on the principle that hardware resource allocation

decisions must be based on a tradeoff analysis of the needs of the target application and

the potential benefits of a specific decision. To a large extent, the argument between RISC

and CISC is not about this principle, but about the perceived "needs" and "benefits" due to

the different invested interests of their advocates. With this in mind, the design of the IKS

chip should adhere to the above stated principle rather than siding purely with either RISC

or CISC.

Another more profound reason for this stand is that despite their differences, both

RISC and CISC are developed for general purpose applications. In this case, the analysis

of the application’s needs is usually based on a set of benchmark programs. Thus, the

results of such analysis are valid only in a statistical sense. There is no guarantee, for

example, that the instruction set is 100 percent useful for a particular algorithm even when

a perfect compiler is assumed. In contrast, in designing algorithm-specific processors such

as the IKS chip, the application algorithm is known prior to the design. Therefore, the

application needs can be identified precisely. The benefits of a design decision can also be

judged not by either the number of instructions (clock cycles) or the clock rate alone, but

by both, i.e., the entire execution time. The implication is that if the insu'uction set is the

focus of the hardware resources allocation, then the insu'uction set for the algorithm-

specific processor not only can be "reduced" from complex instruction sets, but should be

"derived" directly from the algorithm. This thinking leads to the phiIOSOphy of a "derived

instruction set computer (DISC)" design and the development of an ASIC architecture

design methodology that is not driven by a preconceived insu'uction set, reduced or not,

but rather is aimed at deriving an architecture together with its behavioral representation

-— the insu'uction set — from the application algorithms.

4.2 An ASIC Architecture Design Methodology

The development of an ASIC architecture design methodology is an effort to cultivate

a systematic approach to the discipline of algorithm-specific architecture design. In

particular, it is aimed at developing a suategy that provides foci for hardware resources
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allocation decisions and enables these decisions to be made in a systematic manner. An

overview of the methodology is given in the next section; its connection to the conceptual

framework is also pointed out. Decision foci and guidelines for each design phase are then

discussed in the subsequent sections.

4.2.1 Overview

In the ASIC design conceptual framework, it is suggested that recognition of design

alternatives can be facilitated by the notion of the design space. Furthermore, the

structures of the algorithm space and architecture space have been described. The

algorithm space is decomposed into the three subspaces of operation, data structure, and

data dependency. The architecture space is decomposed into the three subspaces of

functional units, communication facilities, and conuol. The idea behind this character-

ization of the design space is that the matching of an architecture to the characteristics of

the target algorithm can be decomposed likewise into the matchings between the three

pairs of corresponding subspaces as illustrated in Figure 13. With this picture, the design

techniques of resource configuration and algorithm restructuring can be visualized as
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Figure 13. Matching the architecture to the task algorithm.
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maneuverings that adjust the foci or projections in the architecture space and the

algorithm space for a better match. An incremental design approach can be viewed as a

process of making such adjustments continuously until a satisfactory solution is found.

Figure 13 also illustrates one possible way to implement this algorithm-

projection/architecture—configuration process. A designer may start from the algorithm

characteristics of operation, data structure, and/or dependency to determine a particular

architecture style and a set of functional units. With the functional units configured, the

dataflow patterns are made explicit, and thus the communication facilities that support

that flow pattern better can be determined. Finally, with both functional units and

communication facilities taking shape, the control structure and mechanisms can be

specified. This design path is presented as an ASIC architecture design methodology as

illustrated in Figure 14. Essentially, the methodology divides the architecture

configuration process into the three phases of functional unit configuration, communication

configuration, and control configuration, with each phase having its own decision focus as

denoted by the heavy-weight frame. The paths where critical decisions are made in each

phase are denoted by heavy-weight arrow lines. It should be emphasized that even

though the methodology presents these three phases in a linear order with limited

interactions between these phases, iterations can be numerous in the actual process,

depending on the designer’s experience. In the next three sections, the decision focus and

guidelines for each of the three hardware configuration phases are discussed in detail.

4.2.2 Phase 1: Functional Unit Configuration

Functional units are circuit modules of two broad categories: operation modules for

arithmetic and logic operations, and storage modules for operands and results. As shown

in Figure 14, the given application (task) algorithm to be implemented is the entry point of

this design phase. To start, the designer must acquaint himself/herself with the algorithm

and identify its characteristics in operations, data su'ucture, and data dependency. From

the identified characteristics, the designer may be able to select a basic architecture style
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and determine where the key design efforts should lie. An algorithm may have a very

simple operation with regular data su'ucture, or it may have very complex operations but

no regularity at all in either its data structure or dependency. One may thus concentrate

the design effort on storage modules in the former case, and on operation modules or the

conuol su'ucture in the latter case. On the surface, decisions in this phase may not appear

to be particularly hard to make since most of the necessary building block modules are

probably available from design libraries. But the decisions are crucial in determining the

effectiveness of the final design as they affect decisions made in the two subsequent

phases. Once these decisions are made, the task algorithm can be u'anslated into a

pseudocode representation for further work in subsequent phases.

4.2.2.1 Decision Focus: The Functional Unit Profile

The functional unit profile contains the essential information about how operations

elementary to the task level are to be realized. It thus serves to establish a link between

the physical hardware entities and the symbolic objects through which an algorithm is

expressed. Information contained in the functional unit profile is divided into three

categories. The first category describes the data formats used by various circuit modules.

This may be viewed as a translation of the software concept of data typing into hardware.

The second category describes circuit modules to be used. This part can be further divided

into operation modules and storage modules. The third category describes certain

"macros" that specify how the higher level operations (patterns) are translated into

groups of operations. For example, in the functional unit profile for the IKS chip, two

macros of mac and cordic are present to describe how certain operation (patterns) are

translated to the multiplier-accumulator operation and the cordic operations, respectively.

The functional unit profile forces the designer to focus his/her attention on the

decisions about circuit modules. It also creates a symbolic name table for hardware

objects to be further manipulated in later design phases. CAD tools can be developed to

automate routines such as bookkeeping functions associated with the profile information

management and the translation of the task algorithm into pseudocode.
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4.2.2.2 Alternatives and Guidelines

Decisions on the choice of functional units have two aspects: the architectural

(global) aspect and the algorithmic (local) aspect. The term algorithm has two implied

meanings: task algorithm refers to the high-level algorithm to be implemented (e.g., the

IKS algorithm in this work); hardware algorithm refers to the algorithm that a circuit

module implements to realize operations elementary to the task level (e.g., uigonomeuic

functions, square rooting, etc.). The algorithmic aspect here refers to the effects of

choosing a particular hardware algorithm.

The experience of this work indicates that in making decisions on functional units, the

architectural aspect, which has a global effect, should be considered first. And, it should

be considered from the characteristics of the task algorithm. The key issue is the choice of

an architecture style that looks more promising given the amounts of parallelism and

regularity exhibited in the task algorithm. Metrics for measuring the effectiveness of

matching an architecture style to a task algorithm have been discussed at length in

Section 2.2.4.1. It provides the first basic guideline to follow in making functional unit

decisions.

More local algorithmic aspects include issues of what and how primitive operations

are to be implemented in hardware, as well as the effects of the I/O requirements, data

su'ucture, and data formats. Some basic guidelines can be stated:

. Keep the I/O and data formats simple;

. Keep the number of data formats small;

0 Choose functional units that can be shared by other hardware algorithms;

0 Use well proven designs;

. Assign a higher resource priority to primitives that are used more frequently.

Because of the local nature of the issues they address, these guidelines should be

applied in the context of the particular design situation. For example, a less frequently

used primitive may have greater impact on the performance, or idle resources may be
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available for performance improvement even though a primitive may have lower resource

priority. The emphasis may shift fi'om case to case. Therefore, the designer must exercise

common sense judgements in applying these guidelines.

4.2.3 Phase 2: Communication Configuration

Communication facilities include interconnection schemes and the data uansfer

mechanisms such as synchronization and timing. Interconnects can be divided into two

classes of busses and direct links. Busses are characterized by multiple sources and

destinations. In processor designs, internal busses are usually based on simple

synchronous schemes and the routes are directly set up by the conuol signals. Also,

precharge mechanisms are often employed to improve the data transfer performance. This

is because the length of the wiring and the number of connections usually make capacitive

loading large. By precharging the bus before a data uansfer, the individual driver cells

need only to discharge the bus. Direct links, on the other hand, are characterized by a

single source and destination pair. They typically are not precharged and their

performance is thus inevitably affected by the physical placement of the connecting

modules. In addition to interconnections, communication also depends on the timing of

both the data and control signals.

The communication needs of an application algorithm depend on the dataflow patterns

for a given set of functional units. To make the dataflow patterns explicit, the pseudocodes

specified from the previous design phase are translated into a dataflow table. The timing

model for system events is fust developed. From the timing model and the desired

dataflow pattem, an initial interconnection scheme may emerge. Aspects of the

interconnections, operations, and timing may depend on the feasibility of the

implementation. Thus, hierarchical decompositions and detailed designs of circuit modules

may proceed in parallel. The detailed circuit design, the timing model, the interconnection

scheme, and the dataflow patterns are intensely interwoven. As the design proceeds

further into more detail, the designer may find it necessary to switch from one of these
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facets to another, or even from one design phase to another. This "context switching" is

facilitated by the representation of the design in a dataflow table, which essentially packs

all the logical aspects of various design facets into a two—dimensional su'ucture and thus

enables the designer to maintain multiple views without changing the representation. As

shown in Figure 14, the dataflow table plays the key role as the central representation of

the logic design; consistencies among specifications in other design facets are maintained

by the consistencies between the dataflow table and each facet. Working with this central

representation, the designer can manipulate the dataflow and refine the interconnection

scheme, timing, and detailed circuit designs simultaneously.

4.2.3.1 Decision Focus: The Dataflow Table

Perhaps the most versatile software tool created by the recent microcomputer

revolution is the spreadsheet program. These programs turn the task of managing multiple

dimensional information into simple editing. The dataflow table is created to take

advantage of such a tool by displaying information relevant to the dataflow of an algOrithm

in a two dimensional structure. Specifically, the time dimension of the flow naturally

coincides with the horizontal direction and has the basic unit of insu'uction cycle. The cycle

can be further partitioned into phases depending on the timing model. In the vertical

direction, there are three kinds of information present. The first contains information that

serves as linkage between the current phase and other design phases. This includes an

index of the task to which the current cycle belongs, the indices of insuuction cycle and

clock cycle. The second kind contains information about the execution details such as

where to get and how to transfer the operands and what operations to perform. The third

one contains other auxiliary information such as comments regarding some of the

particular details of that cycle. Static design information, such as the existence of an

Operation module or an interconnection, is embodied in the su'ucture of the table and is

thus suppressed. This makes the dynamics of the dataflow, specified by the table entries,

more visible. Frequent dataflow patterns are thus more easily recognized. Interconnection

schemes that facilitate those dataflow patterns can be derived. Further finetuning of the
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interconnection scheme involves local manipulations of the dataflow. This can be

accomplished easily by using the built-in table editing functions of the spreadsheet

program. 1

4.2.3.2 Alternatives and Guidelines

For general processor design the goal of communication configuration is to provide a

data transfer bandwidth large enough to support full utilization of the functional units, thus

providing maximum throughput. Such an objective is reasonable in the general case only

because the exact dataflow is not known during the processor’s design. In the algorithm-

specific processor design environment, however, this underlying fact no longer exists. Not

only is the exact algorithm known, but also the exact dataflow can be manipulated from

both the algorithm and architecture sides. Since communication facilities involve the

interconnection scheme, timing, functional circuit designs, and the supporting control

mechanisms, idle resources in one facet may be traded for improvements in the other.

Instead of trying to obtain a maximum throughput, a more productive goal is thus to

negotiate a compromise that balances these various concerns. This can be done by

manipulating the dataflow through the dataflow table. In the remainder of this section,

some options available for this maneuvering are discussed.

. Restructuring ofthe algorithm

This includes techniques of changing the assignment of registers, changing the

operand routing, scheduling a different order of subtask executions, using idle functional

units fOr partial computations, etc. In some situations, the result of the manipulation may

inuoduce extra insu'uction cycles in the execution. If the resultant cycle(s) does not

increase the control signal patterns or exceed the program space available, then it is

generally acceptable.

0 Hardware implementation

Many operations such as transfer of a constant, truncation or shifting of an operand,

and branching can be implemented by hardwiring techniques. In most cases, the added

area and conuol complexity are usually not a problem, but if the hardwired operation is on
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a critical path that determines the clock rate, then it may affect the entire computation

latency.

. Addition Ofdirect links

Each addition of a direct link will generally increase the total possible bandwidth of

the system. The decision is obviously determined by the added link’s utilization as well

as the potential enhancement of dataflow. The designer should also be aware of the

implications on the physical placements of circuit modules.

4.2.4 Phase 3: Control Configuration

As the communication configuration phase concludes, the processor’s execution of

the task algorithm must now be translated into an exact dataflow stream as specified in

the dataflow table. This detailed behavior of the processor is to be realized by various

system events whose occurrence in turn depends on the control vector, i.e., the collection

of the control signals. An insu'uction is then a behavioral interpretation of the control

vector value. The collection of all valid control vector values forms the processor’s

instruction set.

New opportunities have been created in the design of insu-uction sets for algorithm-

specific processors. Taking advantage of these opportunities relies on recognizing the

conuol signal patterns since insu'uctions are no more than the behavioral interpretation of

the conuol signals. While the conuol signals are implicitly determined by the dataflow,

their patterns are obscured by other information in the dataflow table. To make these

patterns more explicit, the control signals are compiled and sorted from the dataflow table

to form the control signal pattern profile. Based on an analysis of the alternatives in

implementing the patterns, an encoding scheme can be determined, possibly accompanied

by some further dataflow manipulations. The control signals are then specified as

microcodes and recast as the processor’s instruction set. The task algorithm is then

transformed into a microprogram compiled from the dataflow table using the processor’s

derived instruction set.
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4.2.4.1 Decision Focus: The Control Signal Pattern Profile

Recognition of any pattern is facilitated by the categorization of the subject

phenomenon. The control signals of the processor can be categorized in a number of ways.

For example, they can be categorized in terms of their timing as phase one or phase two,

or according to the modules to which they belong. In this work, the control signals are

categorized in terms of their clock phase so that they are roughly divided into the two

categories of data transfer routing setup and operation control. A control signal pattern,

consisting of values in these two categories, is essentially equivalent to a control signal

vector without address specifications. To assist modifications, each pattern is associated

with a link list that allows a pattern to be traced back to the corresponding insu'uction

cycles in the dataflow table. Furthermore, the values of the two categories in the pattern

are specified by a mixture of symbolic names and the actual signal values so that the

consistency can be checked by inspection. Again using the spreadsheet software, the

patterns are then sorted and regrouped to make the pattern explicit.

4.2.4.2 Alternatives and Guidelines

For algorithm-specific processor designs, the control vectors for the dataflow are

likely to require relatively small program space. A simple on-chip control store approach

may be possible. This approach is most advantageous since off-chip propagation delays

are eliminated from conu'ol signals and more I/O pins can be used for data transfer to

speed up the testing, etc. This approach also favors the separation of the control and data

storage, the so-called Harvard architecture, since the word size requirements of the two

are likely to be different.

Areas for the on-chip control store can be reduced by encoding the vector values. The

encoding can be carried out in multiple levels, but each level will inucduce a decoding

delay into the control signal propagation. The delays due to the decoding, however, may or

may not affect the performance, depending on whether the control signal decoding

becomes the critical delay path. If the circuit design is decomposed hierarchically along the
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functional line, then it is generally desirable to have the conuol signal relevant to the

circuit module decoded locally since the delay involved is usually tolerable and routing

space can be saved.

The ASIC architecture design methodology prescribes a two-level structure for

implementing the execution control of the task algorithm: the conu'ol signals are encoded

as microcodes, and a particular sequence of the microcodes forms the microprogram. The

encoding space, formed by the unique control vectors that can be represented by the code,

has a size of 2", where n is the number of bits used by the code. Note that each increment

of the code size induces a power of 2 jump in the encoding space. (This phenomenon is

also true for the storage space, including the program space). The encoding efficiency can

be measured by the ratio between the number of defined microcodes and the encoding

space size. The number of control signal patterns in the profile produced from the initial

dataflow may not exactly match the encoding space size. This is the point where the CISC

or RISC comes into the play. If the number of patterns are slightly below some quantum

value, then the CISC approach may be taken to manipulate the dataflow so that the total

cycles are reduced. On the other hand, if the number of patterns just exceeds some power

of 2 value, then the RISC approach may be used to get rid of some infrequently used

patterns, possibly at the expense of the total clock cycles. Alternatives in encoding

schemes may be aimed at minimizing space or time, and the choice depends on the overall

need of the design. Since the encoding scheme is developed from the control signal pattern

profile, it u‘eats the patterns as if they are unrelated. After the microprogram is compiled,

additional opportunities for minimizing the area by exploiting some patterns or

relationships in a microcode subsequence may be possible.

4.3 The IKS Chip Architecture Design

The IKS algorithm to be implemented is specified in Appendix A. The architecture

design of the IKS chip is presented as the result of the execution of the ASIC architecture

design methodology described in the last section. That is, the design process is viewed as
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a series of hardware resource allocation decisions that lead to the final design.

Alternatives and the evaluation of them are emphasized throughout the decision making

process.

4.3.1 Design Decisions on Functional Units

Decisions on functional units for the IKS chip are made as follows. First, the

characteristics of the IKS algorithm are identified. Architectural and algorithmic

alternatives are then explored and evaluated. The evaluation leads to the development of

an architectural idea which becomes the root of the circuit hierarchy. Following the top-

down approach, operation details of each module are refined and specified in the functional

unit profile.

4.3.1.1 The Characteristics of the IKS Algorithm

The IKS algorithm is analyzed in terms of operation, data su'ucture, and data

dependency. For operation characteristics, the IKS algorithm has very simple I/O

requirements (9 input data and 6 output data) provided all computations can be

accomplished on chip. On the other hand, the computation requires a rich set of arithmetic

operations including uigonomeuic functions and square rooting. No explicit logical

operation is required. Table 6 lists the operation counts in various categories. In the first

column, the suict counts of multiplications and addition/subuaCtions are shown. In the

second column, multiplications and additions that are of the form ab+cd are counted

separately. This form of computations can be efficiently executed in the well known

multiplier-accumulator (MAC) structure. However, the statistics clearly indicate that

neither the trig functions nor the MAC operations alone dominate the entire IKS

calculation.

Data structure can be identified from a macro or micro view. From a macro view,

while the input data are vectors, the algorithm itself is highly irregular except that most of

the multiplication and additions are in the form of ab+cd. From a micro view, there are four
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Table 6. Operation Types and Counts in the IKS Computation.

 

 

 

Type Strict Counts With MAC

add/subtract 25 7

multiply 35 1

ab+cd - 17

sine 5 5

cosine 5 5

arctangent 7 7

square root 2 2

 

data types: orientation elements, position elements, angles, and the squares of position

elements. The last type is uansparent to the user. The exact data formats of these data

types are defined in the functional unit profile.

The data dependency is often presented as a directed graph, with nodes and arcs

representing the operation tasks and dependency between the tasks, respectively. Lee and

Chang have decomposed the entire IKS computation into subtasks that are individually

executable in a single cordic step. Figure 15 shows the directed graph of the IKS algorithm

in this formulation [LeCh87]. Inspection of Figure 15 reveals that the IKS algorithm has a

strong sequential data dependency with a scarcity of parallelism. This is not surprising as

it is only a reflection of the nature of the joint-link structure in the robotic arm.

The combination of simple I/O requirements, strong data dependency, and a lack of

inherent parallelism and su'uctural regularity in the IKS algorithm leaves little room for

performance improvement through massive parallel techniques. Since computation of uig

functions and square roots is usually slower than simple add/subtract operations by an

order of magnitude, and since these operations constitute a substantial portion of the total

computation needs, the effectiveness of the architecture will be determined to a large

degree by how the uig functions and square rooting are implemented. Through this initial

analysis, it is recognized that the decisions on operation module designs are the most

critical ones.
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Figure 15. The task graph of the IKS algorithm [LeCh87].
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4.3.1.2 Basic Architectural and Algorithmic Alternatives

In this section, unless otherwise specified, the term algorithm refers only to hardware

algorithms. The strategy is to first consider the architectural alternatives based on the

analysis of the task algorithm in the previous section. The understanding of architecture

alternatives is then used to guide the decisions on algorithmic alternatives.

One architecture alternative is the choice between using single processors or

multiprocessors. The latter can be further divided into two subclasses of heterogeneous

and homogeneous. The lack of inherent parallelism in the IKS algorithm means that

addition of more processors will not speedup the computation very much. Moreover, the

architecture will become less effective as the number of processors increases. Therefore,

the only effective alternative for the multiprocessor approach is to use a coprocessor to

speedup the uig functions and square rooting. But this approach will destroy the I/O

simplicity and is potentially very costly unless the coprocessor itself can be incorporated

on the same chip. As a result, the multiprocessor approach is quickly rejected.

If the single processor approach is adopted, then the processor must be able to

handle uig functions and square root calculations efficiently. This stresses the importance

of finding an efficient algorithm to implement all the needed arithmetic operations. One

particularly attractive alternative is the cordic algorithm [VolS9, Wal71, HaTu80, Sco85,

CaLu87]. It has been demonsuated that the IKS can be computed by using only cordic

processors [LeCh87]. However, a closer look at the underlying cordic algorithm reveals

that each cordic cycle consists of a number of basic adder cycles depending on the word

size. As a result, a raw cordic processor is inefficient in computing the additions and

multiplications. Since a substantial portion of the IKS computation requires multiplication

and addition, using a cordic processor alone implies a heavy penalty on those simple

arithmetic operations.

Another candidate for the single processor approach is to use an MAC structure. A

dedicated multiplier can speedup multiplications, and the MAC su'ucture is especially
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advantageous for operations of the form ab + cd. Also, these operation modules are

readily available in the libraries from ASIC vendors, and since they are usually optimized

and reliable, this choice has an implementational advantage. With the MAC, however, the

computations of the uig functions and square room are quite involved. Various algorithms

that combine hardware and software techniques to compute these functions efficiently

have been proposed [Pen81, Tay81, Far81, HwWX87, BPI‘P87]. These techniques

typically involve either iterations to save hardware, or massive tables to obtain an

answer through lookup and interpolation. Because of the many different types of functions

that need to be computed, the alternative of table lookup technique will require too large

an area and is not practical for a single chip implementation.

The most uoublesome problem in using the MAC structure is the computation of the

arctan function. The common method to compute the arctan is based on power series

expansion. This immediately introduces another unwanted operation, division. Moreover,

to save operations, the power series is usually computed recursively under the form of

xk+1 = Ok -I- bki'xk. With this formulation, the operands for the next step of computation

depend on the results of the current step. This creates a dilemma for the execution in a

pipeline design. On the one hand, if one increases the clock rate through partitioning the

multiplier into stages, with the delay of each stage comparable to the adder, empty cycles

have to be inserted into the iteration steps. This results in more clock cycles being needed

for the entire computation. On the other hand, if the clock rate is made equal to that of the

multiplier, the simple arithmetic operations are penalized. But the most severe

disadvantage of the MAC approach is that unlike cordic processors, algorithms that

implement individual uig functions or square rooting are difficult to combine. As a result,

conuol resources needed for these algorithms may not be shared and design effort for

implementing each of these functions becomes isolated.

Three alternatives of coprocessor, cordic processor, and an MAC structure have been

discussed. Each of these alternatives has its own advantage, but none is satisfactory.

This suggests that a synthesis of the three alternatives may provide a more cost-

effective solution if a way can be found to exploit the advantages while avoiding the
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unfavorable aspects of each alternative. This insight leads to the idea of an architecture

featuring a cordic core embedded into an MAC structure as illustrated in Figure 16. This

architecture is named MACC for Multiplier-Accumulator with a Cordic Core. The cordic

Reg file
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MAC l subroutine l   
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Figure 16. The architecture concept of MACC.

core and the MAC share an adder as indicated by the overlapped area. The cordic core can

be viewed as an on-chip coprocessor or, more aptly, a hardware subroutine that is

responsible for all uig and square root functions. The MACC can also be viewed as a

cordic machine incorporating an on-chip multiplier coprocessor. A quick estimate based on

operation counts indicates that the MACC may be able to achieve a speedup factor of 1.5

over the single cordic processor implementation. Before the functional unit profile of this

architecture is described, a piece of information about the factors that will affect the

accuracy of the computation is needed.

4.3.1.3 Simulation Results of Fixed-Point Calculation

Surveys have shown that the positional resolution requirements of various robOtic

applications range from 01-100 mm for a working range of 1-2 m [HarSZ]. The resolution
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requirement can be satisfied by a l4-bit value. Repeatability requirements of 001-1 mm

are typical [Jar84]. These requirements suggest that the IKS computation can be carried

out in fixed-point calculations, resulting in tremendous saving in hardware resources.

To obtain a quantitative assessment, a simulation program written in C has been

developed to investigate the relationship between the computation error and the word

size. The, simulation flow of the program’s main loop is illustrated in Figure 17. The

 

 

9 DKS (float) —> T

   

 

IKS (n)

   

 

OI(n)——> DKS (float) ——->T1(n)

   

Figure 17. The flow of the fixed-point simulation program.

program first randomly generates a joint angle vector (9) and calculates, using floating

point numbers, the corresponding position and orientation vectors in Cartesian

coordinates (T), which become the input to the IKS program module. The IKS program

then computes the joint angles (91(n)) using fixed-point calculations. Both the input and

all the intermediate calculations are u'uncated to a word size of n bits where n varies from

20 to 24 bits. (In an earlier investigation on direct kinematics calculations, it was found,

somewhat surprisingly, that the simple truncation scheme performs consistently better

than two other leading rounding schemes. Therefore, simple u'uncation is used in the

investigation on IKS.) The new position and orientation vectors (T1(n)) corresponding to

the joint angle vector obtained fiom the IKS program are also computed. Errors between

9 and 91(n), and between T and T1(n), for n = 20 to 24, are computed. A counting

criterion 8 is defined for the error of position elements for each word size. The maximum
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Table 7. Accuracy Disuibution in the IKS Calculation Using Fixed-Point Numbers.
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error (within the counting criterion) in each category is recorded and the error of each

element is counted in terms of the achieved accuracy (in bits). Errors greater than the

criterion are also counted separately but are not collected in the maximum error record. The

accuracy distributions of 91 (qi’s) and T1 (orientation and position elements) from the

simulation on 10,000 joint angle input vectors are shown in Table 7.

The statistics show that if the IKS is computed using fixed—point numbers, the error

due to truncation may not be acceptable for a word size below 20 bits. It also shows that

as the word size increases by one bit, the accuracy distributions retain the same shape but

generally shift one bit towards a higher accuracy as expected. The maximum values

recorded in the intermediate steps indicate that overflow may occur. But the overflow

condition can be eliminated by simply increasing the word size by one bit. Further

simulations of the cordic operation indicate that an extra bit is needed to prevent overflow.

Thus, if the position resolution requirement is 0.1 mm, and if an error rate of 0.1% is

acceptable, then a word size of 26 bits is adequate.

4.3.1.4 MACC Functional Unit Profile

The analysis presented in the previous three sections indicates that the MACC with

fixed-point computation promises a cost-effective architecture for computing the IKS. This

architecture idea is uansformed into more concrete specifications through the development

of the functional unit profile. The MACC functional unit profile consists of three parts: data

formats, circuit modules, and macros.

- Data Format

It has been indicated that an additional log2(n) bits are required internally to achieve

an n-bit accuracy in the cordic [Wal71]. For the desired accuracy of 26 bits, 5 extra bits are

needed. Since 32-bit adders are readily available in most ASIC libraries, the basic word

size is fixed at this value. There are four data formats used in the IKS calculation, but only

the first three are visible to the user. The four data fermats are defined in Figure 18.
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Format 1 — Fractional turn for angles

 

     

0‘ convergent regions

/// III IV I ll

10 [I 00 7 A7 //.
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/ (0.5) (—0.25) (0.0) (0.25) (0.5)

 

Format 2 — Fixed-point for orientation elements

 

   
 
 

-2Sx<2

Format 3 — Fixed-point for position elements

 

   
12 blts

  

-4086 s x < 4086 (mm)

Format 4 — Square of position elements

 

    
23 blts 7‘L

23 23 2

-2 sx<2 (mm)

Figure 18. The four data formats used in the IKS calculation.
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The value of an angle used in the IKS calculation is a number representing a fraction

of a turn. In this representation, the first two bits together indicate the quadrant in which

the angle falls. A value of 0.5 thus indicates an angle of 180 degrees. The cordic core will

operate on quadrants I and IV only; angle values in the II and III quadrants must be

mapped into the I and IV quadrants during a prepossessing step. Another postprocessing

step will map the results of the cordic operation back to the correct quadrants. The

advantage of this representation is that the preprocessing and postprocessing of the angle

values can be implemented in hardware with a small area overhead and the processing

can be carried out while the data is "on the fly".

0 Circuit Modulesfor Operation

The MACC is composed of an MAC and a cordic core. Three adders are needed in the

cordic algorithm. Since the IKS algorithm has strong sequential data dependency,

concurrent execution of MAC and cordic is not particularly useful. Therefore, one of the

adders from the cordic core can be shared with the MAC to save area. The basic

arrangement of the three adders is shown in Figure 19. An inspection of the figure

suggests that the Z adder should be designated as the shared adder since the other two

adders are more logically related. Moreover, the X and Y adders are active only in

executing the cordic algorithm; accordingly, they are treated as a single module. Since only

    

  

 

  

    
 

Figure 19. Basic adder configurations for cordic execution.
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three of the full cordic functions are required by the IKS algorithm, unused functions (such

as division and hyperbolic functions) and their supporting resources are stripped from the

full cordic implementation. A mode variable is used to specify the three functions

performed by the cordic core. The algorithm implemented by the cordic core is specified in

Figure 20. To smooth the transitions between cordic and non-cordic operations, the

preprocessing and postprocessing operations are handled by the main control. The core

thus needs only to fetch the constants and handle the shifting and add/subtract controls

during the iterations.

A 24-by—24-bit two’s complement multiplier is used to generate a 32-bit product.

When used as input to the multiplier, the least significant 8 bits of a datum are truncated.

To maintain the proper data format, the most significant two bits and the least significant

14 bits of the result are discarded.

0 Circuit Modulesfor Storage

The numbers of constants needed by the cordic operations and parameters of the

robot arm are 26 and 6, respectively. They can fit exactly in a 32-word ROM. To simplify

their addressing, the cordic constants are stored from the ROM address 0 so that the

iteration cycle index can be used as the fetching address.

The I register file contains 16 words and is accessible from the outside. The upper 9

words hold the input transformation matrix. The next 6 words store the joint angle values.

The last word is reserved for future use.

The R register file is used as a scratch pad in the IKS computation and is transparent

to the user. After optimizing the register usage, only 8 words are needed for the R

register file. The separation of the R register file from the I register file is primarily based

on performance considerations. This is because two smaller registers would have simpler

decoding and less loading than if they are combined. This results in a faster response.

Moreover, the role of the I register (U0) is different from that of the R register. The

separation of the two allows a more focused performance enhancement objective for each
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mode 1 (sqrt1) mode 2 (sin & cos)

Step1: lnltlallzatlon and Range Reduction

x2=x0,y:=yo; x:=k,y:a0.z:=6;

ifx-y<0then If0.25<z<0.75then

z:z+05;

set "39' set flag;

endif; endif;

 
Step 2: Iteratlon for l = mto n-1

 

mode 3 (sqrt2, atan)

x := x0, y := yo, 2 := 0;

if x < 0 then

X Z= -X. y Z= -y;

set flag;

endif;

where m = 1 for mode 1, and

m = 0 otherwise

an fetch ori;

I I . I . —i I o .0

compute yi, xi . yi .= yi-2 , xi .= xi-2

compute di: if m = 2 then

di := sign(z);

else

di := — sign(y);

endif;

02: compute In parallel: xi+1 := xi - s-di-xi':

yi+1 ""’ yi * di'xi‘

21+1 ‘= 2i " “fat;

Step 3: Post-Processlng

if flag set then if flag set then

“‘0‘ x:=-x; y==-y:
else ,

x :3 x x kn; Ol'ldlf;

endif;

Output: Output: x = cose
_ 2 _

x ' sqrt(xo Y3) y = sine

  

where s = -1 when mode = 1

if flag set then

232+05;

endif;

x := x x k;

Output:

x = sqrt(x§ + yg)

z = 0 . atan(yo / x0)

Figure 20. The algorithmic description for the three modes of the cordic core.
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circuit module and eases the design effort. Another reason is that since eight operands

are potentially needed for keeping all the operation modules busy, separate registers

provide additional transfer facilities. The price paid is two more address bits for the

control word. This is considered justifiable in view of the potential performance gains.

. Macro

Two macros of mac and cordic are defined for translating groups of operations in the

algorithm into special hardware primitives. Their definitions together with the data

formats and the circuit modules are summarized in Table 8.

4.3.1.5 The IKS Pseudocode

As shown in Figure 6, at the highest level of the VLSI design hierarchy, the behavior

of a processor IC is represented by its instruction set. The pseudocode is an intermediate

representation between the task algorithm usually specified in a high-level language and

the chip’s yet to be specified instruction set. With the MACC functional unit profile

specified, the IKS algorithm is translated into a pseudocode program. The IKS pseudocode

program is listed in Appendix B. To facilitate the subsequent design, test, and debug

processes, the MAC and cordic operations are treated as independent tasks and labelled.

Their corresponding roles in the IKS algorithm are also indicated by the equation numbers.

Another C program is developed to simulate the execution of this pseudocode program.

The correctness of the pseudocode program is verified and the computation details of each

task are recorded, which become the test data for the later VHDL simulations.

The completion of the pseudocode specification of the task algorithm signifies the end

of the first design phase, and the attention now shifts from finding an appropriate set of

functional units to interconnecting them.

4.3.2 Design Decisions on Communication Facilities

Decisions on communication resources largely depend on understanding the dataflow

patterns. To make these patterns explicit, the pseudocode program from the last design
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Table 8. Summary of the MACC Functional Unit Profile.

 

 

 

 

position: x_p

pos-square: x_s

Category Specification

Data Name/Notation Representation Range Resolution

format angle: x_a 32-bit fractional turn 0 S x_a < 21t(rad) 1t/2'31(rad)

orientation: x_o 32-bit 2’s complement -2 S x_o < 2 2’30

32-bit 2’s complement -4086 S x_p < 4086(mm) 2'19(mm)

32-bit 2’s complement 2’23 S x_s < 223(mm2) 2'8(mm2)

 

Circuit Name Operation Input Output

 

“mule MPY P:= ml*m2 ml,m2: the most significant P: 32 bits [45:13] ofthe

24 bits of either x_o or x_p, 48-bit full prod. [47:0]

m1, m2: both in x_o format = P in x_o

m1, m2: both in x_p format = P in x_s

ml, m2: one in x_o, one in x_p = P in x_p

Z adder Z := 21 i 22 21, 2.2: 32-bit, same format Z: same format as z’s

X adder X := x1 :l: x2 x1, x2: 32-bit, same format X: same format as x’s

Y adder Y := yl :l: y2 yl, y2: 32-bit, same format Y: same format as y’s

M Read-only memory, 32-word, 32-bit/word

I Register I/O register, 16-word, 32-bit/word

R Register internal, 8-word, 32-bit/wond

 

Macro Name Operation Input Output

 

cordic (l,x,y,-)

cordic (3,x,y,z)

mac (a,b,i,c,d)  
r := sqrt(a2—b2) x = a, y = b; X = r in same format

x,yinsame format asxandy

cordic (2,x,y,z) s := sine, c := cos6 z = 9 in x_a format X = c, Y = s, both in x_o

9 := atan(b,a) = a, y = b; Z = 6 in x_a format

r := sqrt(a2+b2) x, y in same format X = r in same format

as x and y

Z := ab :1: cd a,b,c,d-24 bit Z: 32-bit

a,b,c,dZ: conforming to the formats

specified in MPY and Z adder
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phase is translated into a dataflow table. Heuristic interconnection schemes are developed

and improved upon incrementally. A timing model is simultaneously constructed and refined.

Detailed designs and decompositions of functional circuit modules also proceed in parallel.

The consistency among the interconnection scheme, timing, and data dependency of the

algorithm is maintained through the dataflow table. The dataflow manipulation, the

interconnection configuration, the tinting specifications, and the detailed design of the

functional modules are highly interrelated. Because of its pivotal role in the entire design

process, the dataflow table and its manipulation are described first. The timing model and

detailed timing specifications are presented, followed by a discussion of the decisions

regarding the interconnection scheme of the IKS chip.

4.3.2.1 Editing the Dataflow Table

The IKS dataflow table is created and manipulated using a commercial spreadsheet

program. Figure 21 shows a segment of the IKS dataflow table. For each cycle (column), the

upper part identifies the corresponding task, instruction cycle, and clock cycle. The resource

part has two buses, one multiplier, and three adders. The results of the multipliers and the

three adders are identified by P, and X, Y, Z, respectively. Because of the two—phase

clocking scheme (see next section), the columnar space of each table entry is partitioned into

the left half and the right half corresponding to the two phases. Operand specifications are

assigned in the left half (first phase) and the function types are specified in the right half.

Entries for the buses are specified by a "source : destination" pair.

The initial dataflow of the IKS execution is generated by translating the pseudocode

program into the table entries in two steps. In the first step, the operations of each task are

carried out by assigning the name of the operands (such as register words identified by 11: or

Rx, or the results of other operation modules in the previous cycle) to the appropriate

operation modules in each cycle without concern to how these operands are transferred. In

the second step, from the observations on some basic dataflow patterns, an initial

interconnection scheme is adopted and operands are heuristically assigned to the

interconnections available. (The development of interconnection scheme is explained in detail
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Task T-27 T-28

l-cycle l-85 l-86 l-87 l-88 I-89 l-90 l-91 l-92

clock c-290 c-291 c-292 c-293 c-294 c-295 c-296 c-320

BusA J2:m1 R4zm1 R1 312 R5:y2 2:21

BusB R3:m2 R2:m2 Mi:22

m1 J2 R4

m2 R3 R2

21 P P P P 0 Z 0

22 0 Z 0 Z 0 Mi ang(Z,f)

Zc Z:R1 (+) H Z:R6 (+) (+) Z:R4 (+) A: (+)

x1 0 X

x2 Y Y

Xc
(f) Ax

y1 0 Y O Y

y2 R1 0 R5 X

Yo (+) (+) (f) A!

oommentl setf=1 cordic(3)

in Section 4.3.2.3.) In this initial dataflow table, some operand transfers may be left

      
Figure 21. A segment of the IKS dataflow table.

unassigned due to a lack of data transfer resources.

The initial dataflow table is then examined to observe patterns of operand transfers

and levels of resource utilization. To specify the remaining operand transfers, the table is

edited. The dataflow manipulation essentially negotiates a compromise among various

means of utilizing available idle resources, locally restructuring the task algorithm,

addition of interconnections or cycles, and/or particular hardware implementations. This

follows the decision guidelines discussed in Section 4.2.3.2. This process is repeated

concurrently with the timing specification and the detailed designs of the module circuits

until the interconnection scheme implied by the dataflow table satisfies the data transfer

needs with reasonable utilization.
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4.3.2.2 Timing Model of System Events

Because of testability considerations, the IKS chip follows the level sensitive design

discipline with the synchronization of system events based on a twoophase non-

overlapped clocking scheme. Level-sensitive dynamic latches, controlled by either clock

phase, are used to partition a circuit module such that only combinational logic appears

between latches. Level sensitive refers to the circuit behavior that the output signal of a

latch responds to the value change (logic level) of the data input, after some delay time, as

long as the control signal is enabled. In other words, the steady state of the output signal

(within a clock phase) depends only on the value of the input signal and not on the timing.

An overview of the IKS chip system event tinting model is illustrated in Figure 22.

The box above the tinting diagram shows an example of an adder module with multiple

input sources. The latches are represented by filled solid rectangular boxes; different fill

styles are used to denote the different control clock phases. The two block diagrams next

to the box illustrate the flow of data in the two phases. The effects of the clock can be

viewed as turning on or off a connecting switch above the corresponding latch as shown.

Therefore, during phase one, data flow through the phase-one latch and the Cl block but

the output from C1 is blocked by the open state of the second switch. During phase two,

data from the Cl block flow through the phase-two latch and the C2 block, but the output

from C2 is similarly blocked. Note that the adder module shows a feedback path in its

block diagram, but this feedback path is nonexistent as far as each individual clock phase

is concerned.

The instruction execution implements a pipeline design to achieve a higher

performance. As shown in the diagram, the pipelined execution of the clock 1' instruction

spans two clocks/four phases. In phase one of clock i—l, the clock 1' instruction is fetched

and decoded. In phase two of clock i—l, the bus is precharged and the control signals

related to phase-one events start to propagate. During phase one of clock i, data are

transferred from various sources to designations under the phase-one conuol signals.

Meanwhile, control signals related to phase-two events start to propagate. During phase-
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Figure 22. The timing model of system events with level-sensitive design.

two of clock 2', the designated operations are executed. Note that the transfer of the

execution results is considered part of the data transfer activities of the next instruction.

More detailed timing information for the phase-one events, phase-two events, the cordic

operation, and the multiplier pipelined design are specified in the following sections.
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4.3.2.2.1 Timing of Phase-One Events

Phase-one system events are of two categories: data transfer and logic operations.

Figure 23(a) shows the timing diagram of the operation of a logic circuit module C1 and

the data transfer from a source S to a destination D. From the diagram, it is obvious that

(a) Timing diagram for phase-one events.

  

  

 

 
 

   

  

   

     
 

 

< clock i >

32.] l l l__

l l *—
O1 ‘5

(i) s C

‘c

(i) D + ‘_ @

bus

~4— 101 —u

(ii) C1 @
 

(b) Propagation of control signals (K) related to phase-one events.

(i) Bus data transfer

1: . _.|

K(') . propagate on 62“

. . . FD" otakeeffecton Q1,-

02 01 otumoffon 02,

K(i)

(ii) Phase-one logic circuit

T ..

Kl") . propagate on 02“

Kai) e e o o e o 0 take CffOCt OH 01‘

02 01 0 must remain stable tltru 02,-

Figure 23. Timing model of phase-one events.
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in order for the destination to latch the data, the phase one clock width must satisfy

”‘01 2 rs+ thus + 1D , (4.1)

where 18, tbus‘ and ID are the delay time of the source latch, bus, and destination latch,

respectively. On the other hand, the logic circuits which take effect in phase one can still

experience change after the phase-one clock is dropped, but they should be stable before

the phase-two clock rises. Therefore,

(4.2)
131 +TOZTS+TC1,

where 1C1 is the delay time of the logic circuit C1 and to is the nonoverlapped time

between phase two and phase one.

The effects of this tinting model on the control signals are illustrated in Figure 23(b).

As shown in the figure, control signals that affect phase-one events must be stable before

the phase-one clock rises and they may thus start to propagate during phase-two of the

preceding clock. However, signals that control data transfer (K(i)) must be turned off in

phase-two of the current clock as the buses start to precharge, while signals that control

logic circuit functions (K(ii)) must remain stable through the entire phase-two.

4.3.2.2.2 Timing of Phase-Two Events

Phase-two system events are exclusively operations of logic circuits; the associated

tinting diagram is shown in Figure 24(a). In this case, the phase two clock width needs

only to satisfy

”‘02 2 Ts , (4.3)

where 15 is the delay time of the operand latch. As in the phase-one case, the phase-two

logic circuits delay time must satisfy

‘02 + to 2 ‘3 + 1C2. (4.4)

In contrast to phase-one logic, phase-two logic circuits usually have multiple

sources. Therefore, the signals controlling the phase-two events can be divided into two
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(a) Timing diagram for phase-two events.
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(b) Propagation of control signals (K) related to phase-two events.

(iii) Operand control

‘— TK(iii)—’
- propagate on 01‘

K(iii) ' ' ' 0 must remain stable thru 02‘

Q1  

(iv) Operation control

TK(iv) - propagate on Q1,

K(iv) . , , . . . 0 take effect on 02,.

Q1 02 0 must remain stable thru 01:41

Figure 24. Timing model of phase-two events.

kinds: operand selection (K(iii)) and operation selection (K(iv)). The effects of the timing

model on these control signals are illustrated in Figure 24(b). As shown in the figure,

both of these control signals should be stable before the phase-two clock rises and they

may start to propagate during phase-one of the current clock. Signals that only conuol

operand selection need to remain stable through phase-two of the current clock, but

signals that control circuit functions must remain stable through phase-one of the next

clock.
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4.3.2.2.3 Timing of Cordic Execution

The cordic Operation can be implemented in software or hardware. With the software

approach, the basic conuol signals needed for the iterations are stored as a subroutine in

a separate location in the control store and are executed when needed. This requires

hardware support of branching and returning in the instruction address control. If the

subroutine is stored using a separate addressing space, then a separate counter is

needed. If it is stored in the addressing space of the IKS program instructions, then not

only is the addressing space available to the IKS programming decreased, but also the

program counter design is more complicated. It is noted from the dataflow table that the

basic control signals for establishing the operand routings are the same and the memory

addressing, operand shifting, and iteration counting can all share a common counter.

Hence, if the preprocessing of the operations and postprocessing of the results are

separately implemented, then the hardware implementation of a cordic core just executing

the iteration parts can be very simple. As a result, a hardware approach is adopted.

Figure 25 shows the timing diagram of the cordic execution. Signals labelled pc and

cat are the outputs of the program counter and the cordic counter, respectively. In the

control word, a two-bit field called mode is designated for initiating the control transfer

from the main control unit to the cordic control unit. A nonzero value in this field indicates

a cordic operation. These two bits are fetched from the control store in phase-one and

start to propagate in phase-two. Once the nonzero condition is detected by the cordic

control unit, a signal (cordic) is raised to high to stop the program counter by blocking the

incoming clocking signal. In the mean time, it enables the cordic counter to start counting.

Latches controlled by the appropriate phase are used to latch the cordic counter output for

addressing the ROM and shifting the results of the X and Y adders. When the iteration

finishes, a done signal is raised to high which unblocks the clocking of the program counter

and resets the cordic counter to zero. If the next instruction is a normal operation, the

signal cordic will drop and the interactions between the main control and the cordic conuol

will return to the normal state.
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Figure 25. Tinting diagram of the cordic execution.

4.3.2.2.4 Timing of the Multiplier

From the tinting model of system events, it is clear that the clock rate, one of the

major factors that affect the performance, is determined partially by the delay times of the

operation modules. Using data from the LSI 1.5—um gate array library, a 32-bit adder has

a nominal delay time of 23.5 us, while a l6-by-l6 multiplier has a nominal delay time of

35 ns [L8187b]. A 24cby-24 multiplier is not directly available from the library but can be

generated from a module generator. Furthermore, the layout of the generator result can be

partitioned into pipelined operations [Hin88]. Aucther estimate according to the 1.5-um

Cell Compiler Library from VLSI technology places the 24-by-24 multiplier delay time in

the neighborhood of 80 ns [VTI]. It is desirable to partition the multiplier logic such that

the clock width of phase-two can be set to approximately the same delay time as the

adders. While the physical design of the multiplier is not within the scope of this work, it

is necessary to specify an achievable requirement for evaluation purposes. The multiplier

timing is considered from this perspective.
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Figure 26. Timing diagram of the multiplier.

Figure 26 illustrates the multiplier tinting assuming a 2-stage pipelined design. Now

that since the link from the stage-l result to the Latch-1 is dedicated, the stage-l delay

time can be extended to the first portion of the phase-one. In most two-phase clock

designs, the phase-one clock width is equal to the phase-two clock width [Sh088]. It,

therefore, appears reasonable to expect that even a 80-ns multiplier can be partitioned

into two stages with the clock width close to that of the adders.

4.3.2.2.5 Timing Constraints

The timing constraints discussed in the previous sections are collected and classified

into three categories as shown in Figure 27. To simplify the picture, all the latches are

assumed to have equal delay time. Obviously, the clock rate is determined by the critical

paths of the two phases. Guided by the specified timing constraints, building block circuits

with different area-time tradeoff characteristics can be selected during the physical design

phase.
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1. Phase-one events related:

”£01 + To 2 Tum + max (1C1) (4.5)

Tm 2 Thus + 211m. (4-6)

2. Phase-two events related:

Tm 2 Tlatch (47)

T22 + To 2 ”Clam + max (1C2) (4.8)

13¢2+ To > TMPY1+ 2’13latch - Tm (4.9)

3. Control signals related:

102 + To 2 max (TKO) , TK(ii)) (4.10)

Tm + 102 max (Two , TKM) (4.11)

1:01 + 10>_ Tlatch+ Tdecode (4.12)  
 

Figure 27. Tinting constraints of the IKS chip.

4.3.2.3 The Interconnection Scheme of the IKS Chip

Major operation modules used in the IKS chip include two shifters, three adders, and

one multiplier. To keep the adders and the multiplier busy all the time, resources must be

provided to transfer three data items (two operands and one result) in and out of each of

these operation modules in every cycle. Due to the data dependency as well as the nature

of the coprocessor concept, however, such ideal parallelism does not exist. Therefore, the

goal of the interconnection for the IKS chip is to seek a scheme that balances various

concerns about the utilization of the interconnection, the utilization of a dataflow pattern

(and thus, an instruction), the difficulty and performance implications in circuit design and

implementation, and the total computation time.
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The three adders and the multiplier require a total of 12 interconnection lines for their

operands and results. If all these operation modules are to have equal access to the three

storage modules — the two register files and the ROM — then a bus-based

interconnection scheme is the most sensible solution. With this in mind, the dataflow

pattern is examined to determine the number of busses needed and the way in which

these operation modules and storage modules are to be connected.

The initial dataflow table clearly shows two major distinct dataflow patterns. One is

due to the cordic operation and the other is due to the computation of the type ab + cd.

(These two patterns can be found in Figure 21.) During the cordic iteration steps in cycle

91, the X and Y adders’ results are fed back to both adders with each having its own

result and the other adder’s shifted result as inputs. The Z adder result is also fed back to

the Z adder input, but the Z adder needs another operand from the ROM. The multiplier is

not used in the cycle. In cycles 85 and 86, the multiplier receives operands from the J and

R registers, and the results are accumulated after a two—cycle delay due to the multiplier

pipelining. In this case, the X and Y adders are not used. These two dataflow patterns

suggest the use of local direct links for the X and Y adders, and for the multiplier and the

Z adder. Furthermore, because of its frequent use and relatively low cost, the operand 0 is

hardwired to relevant inputs through multiplexers. Thus, a two-bus system is sufficient to

transfer the data from storage modules to the operation modules during operations

involving 0’s.

Because of the pipelining operation, it is desirable to have the results of the Z adder

stored without using the bus so that the MAC structure can achieve its maximum

throughput. Accordingly, a direct link is added between the Z adder output and the R

register. On the other hand, the results from the X and Y adders can be coupled with other

operations, and therefore, are simply connected to the two busses.

With this initial interconnection scheme, the dataflow table is modified to display the

new dataflow pattern. Since each connection to the bus must be controlled, reducing the

number of connections can reduce the demands on control resources. Accordingly,
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manipulations are made to reduce the need for the storage modules and operation

modules to access both busses. Also, with room in the microprogram space, small

increases in computation cycles are traded for other resource reductions. Specifically, to

reduce the loading effects, if the number of destinations of a data transfer is more than

two, then a cycle is inserted so that a certain Operation is delayed. The utilization of the

interconnection and the routing patterns further reveal that the Y adder output is seldom

used. Consequently, the interconnection between the Y adder output and the bus is

removed; and the result of the Y adder is transferred to the bus via the X adder one cycle

later.

The final interconnection scheme for the IKS chip is shown in Figure 28. Note that

there are two direct links between modules: one from the multiplier to the Z adder input

and one from the Z adder output to the R register file. The local direct links between

modules obviously have placement implications in physical design.

4.3.3 Design Decisions on the Control Structure and Mechanisms

The IKS execution requires less than 128 instruction cycles as found by the final IKS

dataflow table. A simple on-chip control store can be implemented to accommodate the

conuol signals with a very modest area requirement. The MACC control signals can be

classified into four categories of routing control, phase-one operation, operand selection,

and phase-two operation. Each category has its own tinting characteristics as specified in

Sections 4.3.2.2.1. and 4.3.2.22. The definitions of all the contrOl signals are tabulated in

Appendix C. The collection of the control signals forms the control vector of the MACC.

The behavior of the MACC, represented as the MACC instruction, is the high-level

interpretation of system events due to the control vector values. As defined by the tinting

model, each MACC instruction governs the chip’s behavior for a duration of one clock

cycle. The collection of all valid control vector values of the MACC forms the MACC

instruction set.
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Figure 28. The interconnection scheme of the IKS chip.
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As pointed out previously, new opportunities have been created in the design of

instruction sets for algorithm-specific processors. The intended functional behavior of the

MACC is basically the result of a specific sequence of instructions or control vectors. This

control vector sequence creates a pattern which may allow hardware resources for the

control to be more efficiently utilized in a Certain way. To explore this opportunity, the

entries of the IKS dataflow table are transformed and sorted to form a symbolic control

signal pattern profile. Based on the analysis of the control signal patterns, altentative

encoding schemes are considered and specified. The control signals, encoded as

microcodes, are then recast as the MACC instruction set. Finally, the MACC

microprogram for the IKS computation is generated for the control store.

4.3.3.1 The IKS Chip Symbolic Control Signal Pattern Profile

By specifying the contents of operation modules and the operand transfer routes at

each cycle, the IKS dataflow table has implicitly defined the needed control signals which

will, in turn, create the system events of the dataflow. These control signals, however, are

obscured by other information and thus the pattern is not easy to see. To make the control

signal patterns explicit, system events for each cycle specified in the IKS dataflow table

are rearranged such that phase-one and phase-two events are separated. In each

pattern, symbolic names are retained to represent the system events, and thus the

implied control signal values, so that consistency checks can be performed easily. For

example, instead of identifying the sources of a bus as 1, 2, 3, or 4, the symbolic names of

X, Y, Z, P, R, J, and M are used to denote the adders and multiplier results, registers, or

the ROM. Addresses of the ROM and registers are stripped off because they are treated

as parameters of the instruction and are thus irrelevant. Only unique patterns are

collected and grouped, and the instruction cycles where these patterns occur are indexed.

This enables "lonely" patterns (patterns that are used only once or twice) to be quickly

identified. With the help of the dataflow table, analysis is made to see whether lonely

patterns can be eliminated or merged with other patterns without compromising

performance.
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Table 9. The MACC Symbolic Control Signal Pattern Profile.

 

 

 

 

    

Phase_one Phase_two

bus A bus 8 Registers g 3 Instruction

0 Add 7 cycle
00- S D S D J R g 21 22 x1x2 y1y2 (Z,X,Y) f

0 0 0.44.126.127

1 Z 21 M 22 A B X Y Y X c.c.‘ 0 cordic

2 0 Z 0 Y 0 X +.+.+ 2 9

3 0 0 0 Y 0 X x.i.i 0 14.21.52,63.68.95

4 w-Z P 0 Y 0 +.x.+ 0 5.17.29.33.36.87.89.

102,105,107

5 J y2 r 0 A x.x.+ 1 1

6 J y2 r 0 0 0 Y 0 A x.i.i 0 2

7 J 21 r 0 A Z Y 0 +.x,+ 61

8 Z y2 P 0 0 A +.x.+ 26.59

9 Z y2 0 Y 0 A x.+.+ 1 62

10 Z y2 0 0 0 Y 0 A x.i.i 0 120

11 0 P 2 +.x.x 27. 37

12 R y2 r 0 P 2 0 A -,x.+ 1 106.119

13 R y2 r 0 P 2 0 A +.x.+ 1 88

14 R y2 r 0 0 0 Y 0 A x.i.i 0 47,90,108

15 R y2 r 0 P 2 Y A +.x.+ 60

16 J R r w-A P 0 0 Y 0 X +.i.i 0 12,113,118

17 X R R 22 r,w-A 0 B 0 Y —,+.x 22. 23. 55. 69. 70. 96.

97.114.115

18 J m1 R m2 r r P 0 +.x.x 24.25.73

19 J m1 R m2 r r 0 0 Z +.x.x 57.71.72

20 J m1 R m2 r r 0 P 2 X Y +.+.x 54.74.78

21 J m1 R m2 r r 0 P 2 -.x.x 76

22 J m1 R m2 r r.w-Z P 0 +.x.x 75. 77, 79. 81.63.85

23 R m1 R m2 r.r 0 P 2 -.x,x 80.84.86.116

24 R m1 R m2 r.r 0 P 2 +.x.x 58.82.101.104

25 R m1 R m2 r.r P 0 X Y +.+.x 6.34.35.56.100

26 R m1 R m2 r.r 0 0 Z +.x.x 98.99.103.117

27 0 0 Z —.x,x 40

28 1 0 am -lex 48

29 X m1 M m2 1 0 ang +.x.x 0 4.11.16.43.65.92.110.122

30 Z 21 M 22 A B +.x.x 49

31 Z 21 M 22 A B -.x.x 38

32 Z 21 M 22 w-Z A B -.x.x 7.28.39

33 R 21 M 22 r A B +.x.x 30

34 J 21 M 22 r w-Z A B -.x.x 31

35 J 21 M 22 r w-Z A B +.x.x 32

36 R 21 R 22 r.r 0 A B -.x.x 0 18.124

37Ry2Mx2 r 002 OBOA+.+.+08

38Ry2Mx2 r 002 080A+.+.+241

39 P y2 M x2 0 B 0 A x,+.+ 1 13.45

40 X R M x2 w-A 0 B Y 0 x.+.+ 53

41 Z J M x2 w . 3 0 ang 0 B 0 0 +.+.+ 3 19.50.123.125

42 Z J M x2 w 1 0 any 0 B 0 0 +.+.+ 0 66,93,111

 

' The adder control signals are taken from the cordic control unit.
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The final version of the MACC symbolic control pattern profile is shown in Table 9.

The column of phase-one patterns has 8 fields for specifying the sources and destinations

of the two buses, the read/write operations of the J and R registers, the mode signal, and

the operation of the Z_Angle block (see Section 5.1.2.2.2). When data is written to the R

register the source information (bus A or the Z adder) must be specified (see Section

5.1.3.3). The column for the phase-two pattern also has eight fields: six are for specifying

the operands of the three adders; one for specifying the adder operations; and one for

Specifying how the flag is set (see Section 5.1.2.4).

4.3.3.2 Coding Scheme Alternatives

The number of bits in the control signal pattern is 26 (not including the

Register/Memory addresses). Since there are only 42 control patterns, each pattern can

be represented uniquely by a 6«bit opcode. It is desirable to thus store only the opcode

rather than the entire pattern. But the timing of the instruction fetch (including a counter

delay and memory access delay) and the opcode decoding must satisfy the tinting

constraints of eq. (4.12). Two alternatives that do not require changing the tinting model

of instruction execution are considered here.

A brute-force encoding scheme is to use a 6-bit number to encode the signal

patterns. This scheme is simple and the storage area required for the opcode is minimal.

Also, since a 6-bit number can encode up to 64 patterns, the unused coding space allows

the addition of new patterns to either speedup the computation or facilitate testing. The

disadvantage of this approach is that the decoding time may be too long in the overall time

budget of the instruction fetch/decode phase.

The second scheme decomposes the signal pattern into smaller subpattems and

encodes each subpattem separately. Because of the smaller size, each subpattem can be

decoded faster. This scheme, however, may require a larger storage area.

Essentially, the two schemes represent a tradeoff between area and time. To

determine which scheme is adopted for the IKS chip instruction decoding, rough delay
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times for various phase—one event cases are estimated based on the gate delays of major

components. Comparison of the delay time estimates indicates that the phase-one clock

width may well depend on the entire instruction fetch/decode process. In order to achieve

a faster clock rate, the second scheme is chosen.

Observation of the control signal pattern profile reveals that a number of patterns

differ only in adder functions. Separating the adder function encoding results in two opcode

fields. The number of patterns for the larger field is reduced to 29, which can be encoded in

a 5-bit number. The adder operation field can be encoded with a 3-bit opcode. This

encoding scheme, together with the codemap specifications is given in Appendix D.

4.3.3.3 The MACC Microcode and Instruction Set

With the encoding scheme determined, the two opcode fields are combined with the

address fields to form the MACC microcode. Figure 29 shows the format of the MACC

microcode and the entire control vector format after decoding. Because ROM addressing

and the R register read (via Port B) never occur concurrently, they can share the same

address field. The two opcode fields are decoded into two vectors of 20-bit and 6-bit

wide. The first 11 bits for the 20-bit vector are decoded from opcode 1. These signals

control phase-one events (crrl__v1). The remaining bits are concatenated with the 6-bit

vector decoded from opcode 2 to form the phase-two events control vector (crrl_v2).

1 14 1617 21

llOpcode 14k)pcode 72] m .1 addr. H1addr.| M/Fi2 addr

/ \ctrLv1 [11.24] I

11121 141 16171819 0 1 2 4 5

zangxxy y2 2122 2 XY $9th

I— ctr!_.v1[0 101 —“ ctrI_v2

  

 
 

  

Figure 29. The MACC microcode format and the control signals.
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To facilitate documentation and testing, the control signal patterns are recast as the

MACC instruction set by specifying their microcode values and the corresponding

behavioral interpretation of the resulting system events. The MACC instruction set is

shown in Table 10. Each table entry specifies an MACC instruction number, the

microcode, and the operations. The microcode consists of two opcode numbers and four

parameters — one for the mode control, and three for addresses. Only address fields

required by the instruction execution are indicated in the address parameter column. RA

and RB indicate Port A and Port B addresses of the R register, respectively. A square

bracket denotes that the address items inside will be used in actual instruction execution

but they have no effect on the functional results. In the operation field, X, Y, and Z denote

the three adder results. and P denotes the multiplier result. A prime post-superscript

denotes the result of the last cycle. and a double prime pre-superscript in P denotes

results delayed by two cycles due to the multiplier pipelining. J and M stand for the

contents of I register and ROM specified by their addresses, respectively. The function of

ang(Z') and ang(Z',f) are operations of the Z_Angle module (see Section 5.1.2.2.2).

4.3.3.4 The MACC Microprogram for the IKS Computation

In the MACC microcode and instruction set table, the index field contains instruction

cycle information for the IKS execution. The instruction set table is first expanded such

that each entry indexes to exactly one instruction cycle. The entire table is then sorted

using the index as the key. Values of the address fields are specified by tracing back to

the conesponding cycle in the IKS dataflow table via the index. The entire MACC

microprogram for IKS execution is listed in Appendix E.

4.3.4 Evaluation

The effectiveness of the IKS chip architecture is evaluated in terms of area, speed,

and resource utilization. Since the actual performance depends on the actual physical

design, the goal of this evaluation is to provide bounds on these categories. In addition,

testability considerations are addressed qualitatively.
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Table 10. The MACC Instruction Set.

 

 

 

  

 

       

      

Inst. Opcode Parameters

I Operation

0 0 0 0 Z=0. X=Y'. Y=X'

l l 1 >0 Z=Z'(A2)M, X=X‘(Ax)sft[Y‘]. Y=Y'(Ay)sft[X']

2 29 6 0 Z=Z'. X=Y'. =X'. fssign[Z']

3 0 3 0 Z=0, X=(0Y', Y=(0X'

4 2 0 0 RA Z=P', X=Y’. Y=Y', RAt—Z'

5 3 4 o .1 2:0. X=Y'. Y=J. f=sign[y2]

6 3 3 0 J Z=0, X=(f)Y‘, Y=(DJ

7 4 0 0 J Z=J+Z’, X=Y'. Y=Y'+J

8 5 0 0 Z=P', X=Y'. Y=Z‘

9 6 4 0 2:0. X=Y'. Y=Z', f=sign[y2]

10 6 3 0 2:0. X=(OY‘. Y=(t)Z'

11 7 0 0 [RA] Z=P'+Z', X=Y'. Y=RA

12 7 s 0 RA Z=P'—Z', X=Y‘. Y=RA. f=slgn[y2]

13 7 4 0 RA Z=P'+Z'. X=Y'. Y=RA. f-sign[y2]

l4 8 3 0 RA Z=0, X=(f)Y', Y=(t)RA

15 9 0 0 RA Z=P'+Z', X=Y'. Y=Y'+RA

16 10 3 0 J,RA Z=P', X=(0Y', Y=(t)X'. RAt—J

l7 1 l 0 0 RA,RB Z=-RB. X=Y'. Y=0. RAe-X‘

18 12 0 0 J,RB "P=J*RB, Z=P', X=Y‘. Y=0

l9 l3 0 0 J.RB "P=J"'RB, Z=Z'. X=Y'. Y=0

20 14 0 0 J.RB "P=J*RB, Z=P'+Z'. X=X'+Y', Y=0

21 14 2 O J.RB "P=J*RB, Z=P'—Z', X=X'+Y', Y=0

22 15 0 0 LRARB "P=J*RB. Z=P', X=Y'. Y=0, RA(—Z'

23 16 2 0 RA.RB "P=RA"'RB. Z=P'-Z', X=Y’. Y=0

24 16 0 0 RA,RB "P=RA"'RB, Z=P'+Z', X=Y'. Y=O

25 17 0 0 RA,RB "P=RA*RB. Z=P', X=X'+Y', Y=0

26 18 0 0 RA,RB "P=RA*RB, Z=Z'. X=Y'. Y=0

27 I8 2 0 [RA,RB] Z=-Z', X=Y'. Y=0

28 19 2 o [M] Z=-ang[Z',fJ, X=Y'. Y=0

29 19 0 0 M "P=X'*M, Z=angIZ'.fl. X=Y'. Y=0

30 0 0 M Z=Z'+M, X=X‘+Y', Y=Y'+X'

31 l 2 0 M Z=Z'—M, X=X'+Y', Y=Y'+X'

32 20 2 0 RAM Z=Z'-M, X=Y‘,Y=0,RA(—Z'

33 21 0 0 RAM Z=RA+M, X=Y'. Y=0

34 22 2 0 J,RA.M Z=J-M, X=Y'. Y=0, RAt—Z'

35 22 0 0 J.RA.M Z=J+M, X=Y'. Y=0, RAt—Z'

36 23 2 0 RA,RB Z=RA-RB, X=Y'. Y=O

37 24 0 0 RAM Z=Z'. =M, Y=RA

38 24 6 0 RAM z=z', X=M, Y=RA, f=sign[Z']

39 25 4 0 M Z=0, X=M. YsP‘ if i=0; Y=0 if f=l

40 26 0 0 RAM 2:0, X=M, Y=Y', RA<—X'

41 27 7 0 JM Zsanslz']. X=M, vac, n—z'

42 28 o 0 JM Z=ang[Z'.f]. X=M, Y=o, J(-Z' 
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4.3.4.1 Area

The IKS chip design follows the top-down hierarchical approach. With this approach,

the architecture is (structurally) decomposed until its building block circuits can be defined

in terms of some commonly accepted circuit primitives such as logic gates, multiplexers,

and latches. Area requirements of these hardware primitives are, in most cases,

estimated based on the effective gate counts according to LSI Logic’s 1.5-11m gate array

library [LSI87a]. The area of the 24-by-24-bit multiplier is extrapolated from the data of

LSI Logic’s multiplier macrofunctions [LSIS7b]. For the areas of PLAs (Programmable

Logic Arrays) within the main control module, the estimates are based on information

from the databook of VLSI Technology’s Macrocell Compiler [VTI]. The areas of the

higher level modules are obtained by adding up the effective gate counts of the component

modules and the sums are divided by a utilization faCtor. When a design is decomposed

hierarchically, design regularity tends to increase, and as a result, the utilization factor

tends to be higher [LSI87a]. Accordingly, a utilization factor of 0.8 is assumed for the

functional modules. The detailed estimates of each module are tabulated in Appendix F.

Table 11. Area Estimate of the IKS Chip.

 

 

 

 

Module Gate (eff.) Utilization Gate (act.)

mpyer 5288 0.8 6610

2 adder 2809 0.8 351 1

xy adders 6548 0.8 8185

flag 17 0.8 21

rom 427 0.8 534

j reg. 5857 0.8 7321

r reg. 3936 0.8 4920

main ctrl 2999 0.8 3749

cordic ctrl 131 0.8 164

Total 28012 0.8 35015

0.7 30017

0.6 46687
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Table 11 shows the gate count and the area percentage of each module. Note that if

the area taken by the storage modules and the control units are roughly invariant in all

architectures implementing the IKS algorithm, then the addition of a multiplier to a cordic

core only increases the total chip area by 23.3 percent. Looking at it another way, the

addition of two adders (the XY_Adders module) to a MAC only results in an increase of

30.5 percent in total chip area. So the merger of the MAC and cordic in this design

appears economical in area when compared with a SIC coprocessor approach. Also shown

in the table are the total gate count and area of the IKS chip with different utilization

estimates. Current commercial gate array technology with a feature size of 1.5 11m can

provide up to 50K usable gates in a single chip [LSI87a]. From these figures, it can be

seen that the entire IKS chip can be fabricated on one chip even for a gate utilization as

low as 60 percent.

4.3.4.2 Performance

The IKS execution by the MACC (not including I/O) takes 445 clock cycles.

According to the system timing model, the width of the phase-two clock is about the

duration of an adder delay. As the delay time of the 32-bit adder from LSI Logic is less

than 25 ns, a lOO-ns clock cycle appears more than achievable. This leads to a lower

bound estimate of 45-115 computation time. With a more aggressive clocking scheme, it

may be possible to reduce the clock cycle by 30 percent. This clock rate gives an estimate

of a computation time of about 30 us.

These two estimates compare very favorably with previous designs such as Lee and

Chang’s maximum pipelined design which achieves a throughput rate of 40 us using 25

cordic processors. The 40-1ts figure in their design, however, is estimated based on

earlier technology. It actually represents one cordic cycle. To make the comparison more

meaningful, the speedup of both designs are compared to the execution cycles on a single

cordic processor. It has been shown that the single cordic processor execution of the IKS

algorithm takes 25 cordic cycles [LeCh87]. The maximum pipelined design has a latency
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of 18 cordic cycles, i.e., a speedup factor of 1.39. In the MACC design, one cordic cycle

takes an average of 27 cycles, (1 for preprocessing, 24 for iterations, and 2 for

postprocessing.) and thus the total computation time of 445 cycles is equivalent to 16.48

cordic cycles, i.e., a speedup of 1.517. In the last section, the area of the MACC is

estimated to be 1.233 times that of a single cordic processor. Using AT2 as the figure of

merit for estimating the area-time efficiency of an architecture/algorithm design, the

MACC is 1.866 times more efficient than a single cordic processor in computing the IKS.

4.3.4.3 Resource Utilization

The utilization of a hardware resource is defined as the ratio between the number of

cycles that the resource is actually used and the total number of cycles that the IKS

computation takes. Since cycles can refer to instruction cycles or clock cycles, the

utilization can be viewed similarly. The main difference between these two categories is

that a cordic operation is counted as one instruction cycle but requires 24 clock cycles.

Table 12 shows the utilization of operation modules and busses in the two categories.

Viewed at the higher level of instruction cycle, the utilization of these resources are

unimpressive. But when viewed at the level of clock cycle, the level at which the

computation is carried out, the cordic core (the three adders and the two busses) achieves

an average utilization of 80%. It is interesting to note that the multiplier is used only 7.8%

of the time, but it reduces the computation time by one third.

Table 12. Hardware Resources Utilization of the IKS Chip.

 

 

 

   

Resource I-cycles (%) Clock (%)

bus A 94 (75.2) 370 (83.15)

bus B 68 (54.4) 344 (77.3)

multiplier 35 (28.0) 35 (7.86)

z adder 82 (65.6) 358 (80.4)

xy adders 52 (41.6) 374 (84.0)
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Another utilization evaluation involves the control resources. The 7-bit program

counter provides a program space of 128 instruction addresses. The IKS computation

takes up 125 instruction cycles indicating a 97.6% utilization. The 5- and 3-bit decoding

spaces of the two opcode fields achieve 90.6% and 100% utilization, respectively. The

instruction set is 100% useful as expected since it is derived from the algorithm. The

utilization profile of the instruction set is shown in Table 13. Here it is seen that four

instructions, or less than 10% of the instruction set, account for 32.8% of all instructions

used in the IKS microprogram. On the other hand, as many as 20 instructions, or 46.5% of

the instruction set, are used only once in the microprogram. This highly customized

feature of the instruction set, as a result of engineering various hardware resources to

facilitate the dataflow of the algorithm, together with other decisions on resource

allocation, contributes to the MACC’s excellent effectiveness in computing the IKS.

Table 13. Utilization of the MACC Instruction Set in the IKS Calculation.

 

 

 

Frequency Number of instructions Total usage (%)

1 20 20 (16.0)

2 5 10 (8.0)

3 7 21 (16.8)

4 4 16 (12.8)

5 1 5 (4.0)

6 2 12 (9.6)

8 1 8 (6.4)

9 1 9 (7.2)

10 1 10 (8.0)

14 1 14 (11.2)
 

4.3.4.4 Testability Considerations

At the beginning of this design task, it was not completely clear what kind of

functional units should be used, let alone how they would be tested. Therefore, the initial

stages of the IKS chip design could only follow some general guidelines on design for
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testability. These guidelines include [Hna87]:

- Design initializable circuits;

. Avoid redundancy;

. Avoid race conditions;

. Avoid asynchronous timing;

0 Provide access tO device clocks;

. Allow feedback to be Open/closed;

. Provide access to major busses;

. Use wired logic cautiously;

0 Use control and test points;

0 Use circuit partitioning and selective control.

Once the functional units are determined and the interconnection scheme is

developed, the conditions for fme-tuning the approach of design for testability become

ripe. Because of the bus-oriented design and the hierarchical decomposition along the

functional line, each functional module in the MACC datapath is self-contained and has

clear functional definitions. Since these modules are built on vendor-supplied library

modules, well proven test data usually has been developed and can be used. It is

therefore determined that the goal of testability for the IKS chip design is to enable the

individual testing Of these functional circuit modules.

One overriding consideration in adopting a particular testing strategy is the chip’s I/O

capability. The gate anays that can provide the required gate counts for the IKS chip

typically have more than 100 HO pins. But because Of the simplicity of the HQ in the IKS,

many pins will be left unused. Since the functional modules Of the MACC can be accessed

via the two busses, unused I/O pins can be used to directly assess the busses. This will

speedup the data transfer during testing.

Since the input Operands and output results Of the functional modules can be Observed

directly via the two busses, scan capability is not necessary for the internal latches Of the
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modules but level-sensitive design is still required. The only latch that must have scan

in/out capability is the control signal latch from the control store. TO speedup the testing of

the register files, latches that have reset capabilities are selected as the basic cells to

form the registers. The detailed designs of the module circuits are then reexamined for

data transfer conditions during tesring. The only modification needed, as the result Of the

reexamination, is the addition Of a few multiplexers in the XY_Adders module. The details

are described in Section 5.1.2.3.

4.4 Summary

An architecture for computing the closed-fonn solution of the inverse kinematics Of a

robot manipulator has been described. The architecture, called MACC, is based on the

concept of embedding a cordic core in an MAC structure, or looking it another way,

incorporating a multiplier coprocessor into a cordic core. The entire IKS computation

requires 125 instructions, or 445 clock cycles. Based on current gate array technology, the

architecture can be implemented in a single chip. If a clock rate Of 10 MHz is achieved, the

latency Of the IKS computation is less than 45115. Compared with a single cordic

processor implementation, the area Of the MACC is estimated to be about 23% larger, but

the computation time is reduced by more that one third, thus giving a overall area-time

efficiency Of 1.866 over the single cordic processor approach.

Major design decisions regarding the IKS chip design have been documented.

Furthermore, the process Of making these design decisions has been generalized into an

ASIC architecture design methodology. Based on the conceptual framework for ASIC

design, the methodology partitions the architecture design process into three phases of

functional unit configuration, communication configuration, and the control configuration.

For each design phase, the methodology provides a focus for recognizing the interactions

between the algorithm characteristics, architecture styles, and the implementing

technology. Insights on these interactions are generalized into decision guidelines. As an

investigating vehicle, the design Of the IKS chip has led to the development Of a number of
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representations that make essential aspects or features relevant tO a particular design

phase explicit and conducive to manipulation.

The underlying principle Of the ASIC architecture design methodology is that

hardware resource allocation decisions must be based on the tradeoff analysis of the

applications needs and the potential benefits. In the algorithm-specific processor design

environment, this design principle is manifested as a design philosophy characterized by

deriving the processor’s instruction set from the algorithm to be implemented. In this

regard, the ASIC architecture design methodology provides a systematic approach to this

end as demonstrated by the derivation Of the MACC instruction set. By illustrating what

design decisions are involved and how they are made in this process, the IKS chip design

presents a paradigm for the class Of algorithm-specific processor designs.



Chapter 5. Circuit Decomposition and VHDL

Simulation Of the IKS Chip

This chapter describes the detailed designs Of the circuit modules in the MACC

datapath. The designs are canied out to sufficient detail such that area and delay time

parameters can be derived from commercial gate array libraries. Each circuit module is

then simulated in VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware

Description Language). After their functions are verified, the VHDL modules are then

combined to form the MACC datapath. The IKS computation, from input to output, is

subsequently simulated. The modeling approach is explained and the simulation results

are presented.

5.1 Hierarchical Decomposition of the IKS Chip

In Chapter 4, the architecture design process, formalized as the ASIC architecture

design methodology, was described in terms Of resource allocation decisions in the

architecture subspaces of functional units, communication, and control. From the

viewpoint Of the circuit hierarchy, however, the entire process presents only the very first

step in the top-down decomposition process, i.e., from the interface specifications of the

IKS chip as the root (Figure 9) to the MACC datapath as the next level Of detail (Figure

28). As shown in Figure 28, the level-1 specification Of the MACC datapath is in turn

comprised of nine level-2 modules. These circuit modules can be divided into the three

categories of functional units, storage, and control. The complexities Of some circuit

modules make further decomposition necessary. The description Of these modules follows

the logic structure of this decomposition. Figure 30 gives an overview Of the hierarchical

relationship among these modules.
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Level_2 Modules

 

 
 

Functional units Storage Control

(5.1.2) (5.1.3) (5.1.4)

— Multiplier I— ROM — Main

- Z_Adder — I Register C-Store

Adder 16-Word Reg. " Cordic

ZJMEIC r" R Register

r- XY_Adders

Set_Flag 
Figure 30. Organization of level-2 modules.

5.1.1 Notation

The entire IKS chip design has been documented in VHDL. In the process of

describing the circuits in VHDL programs, a notation system for labeling circuit diagrams

has evolved. The system utilizes different symbolic styles to convey design information.

In each circuit diagram, a box Of dotted lines establishes the boundary Of the module as a

VHDL design entity. The box is labeled by a level number which identifies the module’s

level in the circuit hierarchy. Wires in the circuit diagrams become signals in the VHDL

programs and each wire is given a signal name. The names inside the boxes indicate what

the designated signals are called inside the entity. The names outside the boxes indicate

what they are called at the next higher level when the entities are instantiated and

connected as components. If the names Of a signal inside and outside the box (entity) are

the same, then the name inside the box is omitted. In the circuit diagrams, a fine line

indicates a single wire while a thicker line indicates an aggregate Of wires. If that

aggregate of wires is always interpreted collectively, for example, as a number Of a certain

range, then the name is presented in normal typeface to denote a scalar. Otherwise, the
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signal is a vector and is denoted by boldface. If the signal is an element Of a vector

signal, then the element signal will be denoted, in normal typeface, by the same name as

the vector signal but with a subscript indicating its position in the vector. The italic

typeface is used for signals whose functions are addresses or control-related. A control

vector is thus denoted by bold italic. In addition, the filling style of a rectangle is used to

indicate the controlling clock phase Of a latch, with a stipple pattern and a diagonal pattern

denoting U1 and Z2, respectively.

5.1.2 Functional Units

This category contains four modules: the multiplier, the Z_Adder, the XY_Adders,

and the Set_Flag modules. Under the Z_Adder module, two level-3 sub-modules are also

presented.

5.1.2.1 The Multiplier Module

Figure 31 shows the circuit diagram of the multiplier module. Signal names shown
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Figure 31. The circuit diagram of the multiplier module.
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inside the Level 2 box are declared as port names in the VHDL interface. Names outside

the box are the actual signals (declared at a higher level) connecting to these ports.

The multiplier core consists Of a two-stage pipeline implementation (see Section

4.3.2.2.4). It accepts two 24-bit integers and returns a 32-bit product, all in two’s

complement format. The effective gate count Of this module is 5288. With an estimated

utilization Of 80%, the actual gate count is 6610.

5.1.2.2 The Z_Adder Module

The Z adder has a dual role as a part Of the MAC and also as a part of the cordic core.

The MAC part is easy to implement with the provision Of a direct link from the output of

the multiplier. Hardware support for execution of the cordic algorithm presents some

additional requirements on this module. First, the Operation (+/-) is determined

dynamically depending on the signs of the intermediate results during an iteration. This

requirement can be satisfied by simply multiplexing the Operation control signals from the

control store (for normal Operation) and from the cordic control unit. The second

requirement involves some special processing Of the Operands during the cordic

calculation.

Because Of the convergence problem Of the cordic algorithm, the angle operands need

to be preprocessed so that the resultant angles lie in either the first or the fourth

quadrant. Furthermore, if the result is an angle, then post processing may be required to

map the result back to the correct quadrant. Due to the fractional turn representation of

the angles, the mapping Of the angles between quadrants can be easily implemented by

processing the two most significant bits only (see Figure 18). Since this can be done with

only a few gates while the data is being transferred the costs Of area and delay time are

insignificant. Moreover, it can save a number Of cycles and additional storage space.

The processing just described is put into a "black box" called Z_Angle with two

control signals mg and f for specifying the required processing. The dataflow table is

then modified with the notation Of ang(zang, f) indicating the Operations needed. From the
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Table 14. Functional Table Of the Z_Adder Module.

 

 

 

22 21 20 SUM_Z = (21) operation (22):“

_ 0 0 X 0

0 1 X PROD

0 2 X Bus_A

1 0 0 / 1 (Z, / A2) Bus_B

1 1 o /1 PROD (z, / A2 Bus_B

1 2 on Bus_A (z, / At) Bus_B

2 0 0 / 1 (Z, / A2) ang(zang, f )

2 1 0 / 1 PROD (Z, / Az) ang(zang, f)

2 2 0 / 1 Bus_A (Z, / A1) ang(2ang, f)    
 

* 20 . 0(1) => operation a 21(A2);

it the value of Z, or A2 is 0 (1), the Operation is + H.

dataflow table, operations required by the Z_Adder module are summarized in Table 14.

As shown in the table, the control signal Z0 is used to select whether the Operation

control is taken from the control store (ZI) or from the cordic control unit (.42). Two other

control signals 21 and 22 are used to select the Operands. Note that when 22 is equal to 2

("10"), the addend is taken from the output of the Z_Angle block.

The circuit diagram of the Z_Adder module is shown in Figure 32. TO simplify the

description and also facilitate the reuse of modules, the adder core, together with its input

and output latches, is taken out to form a lower level module as indicated by the nested

dotted box.

The total effective gate count Of this module is 2809. With a utilization Of 80%, the

actual gate count is estimated to be 3511.
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Figure 32. The circuit diagram of the Z_Adder module.

5.1.2.2.1 The Adder Sub-module

The Adder sub-module has two input data links and one output data link. During

phase-one, the input Operands are latched and the result of the last computation is also

available for output. The operation is controlled by the signal funct, which changes during

the beginning of the phase-two clock and the signal should remain stable until the phase-

two clock of the next cycle comes. The Adder sub-module uses an estimated 2081 actual

gates.

5.1.2.2.2 The Z_Angle Sub-module

The Z_Angle sub-module performs three operations. The first is a nO-Op in which the

output remains unmodified. Both the second and the third Operations involve

complementing the sign bit. The second one depends on a flag signal, while the third one
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depends on the exclusive-or of the two most significant bits of the input. These operation

requirements are specified in Table 15. The circuit implementation of the functional table is

shown in Figure 33. The Z_Angle sub-module contains only 28 actual gates.

Table 15. The Functional Table Of the Z_Angle Sub-module.
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Figure. 33. The circuit diagram of the Z_Angle sub-module.

5.1.2.3 The XY_Adders Module

The primary role Of the XY_Adders module is to perform the shift-and-add Operation

during the cordic iterations. For some of the inputs whose conesponding positions are

either out-Of-range or near a singularity point, the mode 1 cordic operation may result in
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an Operation attempting to take the square root of a negative number. This condition can

be detected by checking the sign bit of the difference of the two operands (computed via

the Z adder). If this condition occurs, a flag is set. The result is set to zero at the end of

the square root operation. Due to its extensive use, a zero operand is hardwired and

made available to the input latches via multiplexers. This reduces the demand on

resources for data transfer. The functions that the X and Y adders perform are derived

from the dataflow table and are summarized in Tables 16 and 17, respectively. The

Operation controls of the two adders (Xc and Yc) are derived from the same control vector

XY as specified in Table 18. Note that when )2 is equal to 1, the result of the Y adder

output is equivalent to the result after a branch instruction.

Table 16. The Functional Table Of the X Adder.

 

 

 

 

 

 

   

x1 x2 SUM=x

0 0 (xc)*2'i'v

0 1 (Xc) Bus_B

1 0 SUM_X (x9) 2"")!

1 1 SUM_X (Xe) Bus_B
 

* For the definition oi Xe, see Table 18.

Table 17. The Functional Table of the Y Adder.

 

 

 

 

 

 

 

    

y1 y2 SUM_Y

0 0 0

0 1 If! - 1 then 0 else (Ya) Bus_A

0 2 (YJ Bus_A

0 3 (Ya) 2"*x

1 o SUM_Y

11 r- 1 then SUM_Y

1 1 else SUM_Y (YD) Bus_A

1 2 SUM_Y (Vi Bus_A

1 3 SUM_Y (:9) 2'itx
 

* For the definition of Y6, see Table 18.
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Table 18. The Values of the X and Y Adders Control Signals.

 

The circuit diagram of the XY_Adders module is shown in Figure 34. The sign bits Of

the second operand and the result of the Y adder are hardwired for connections outside

the module. The sign information is needed in the preprocessing Of the arctan Operation
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Figure 34. The circuit diagram Of the XY_Adders module.
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and the calculations during the cordic iterations. Testability considerations have led to the

addition Of three multiplexers which enable the two adder outputs and the inputs Of the

two shifters to be accessed via the two busses during testing. In normal operations, the

control signals of these three multiplexers are set tO 0.

The effective gate count of the XY_Adders module totals 6548. With a utilization of

80%, the actual gate count is estimated to be 8185.

5.1.2.4 The Set_Flag Module

The Set_Flag module is the hardware implementation of a flag whose source is

controlled by the signal seJ during phase-two. The circuit diagram of the module is shown

in Figure 35. The value of the flag may be the exclusive-or of the two most significant bits

Of the Z adder output (self = 3), the sign bit of the Z adder output (setf = 2), or the sign

bit Of the y addend (setf = l). The flag value is ready to propagate at phase-one of the

next cycle. This module requires 28 gates.

 

 

 . _. _jL’fIag

 setf 

  l

       
sign_y2 _

sgny2 22 $1

Figure 35. The circuit diagram Of the Set_Flag module.

5.1.3 Storage

This category contains three level-2 modules. They are the ROM, the I Register file,

and the R Register file. A 16-word register file is also described as a level-3 sub-module

within the I Register module.
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5.1.3.1 The ROM Module

The circuit diagram of the ROM module is shown in Figure 36. This module contains a

32-word, 32-bit, read-only memory unit as a level-3 entity. The ROM unit stores 32

constants; the first 26 are used for the cordic calculation and the rest are for the IKS

calculation. In a normal calculation, the address to the ROM comes from the control

vector. During cordic Operation, however, the address is taken from the output of the

counter within the cordic control unit. The effective and actual gate counts of this module

are estimated to be 427 and 534, respectively.

 

 

"""""""""""""""" Level 2 ...........................

address Data_out ROM_B
—————-1——>

32-word 5

ROM .

9an I
 

 

      
 

Figure 36. The circuit diagram of the ROM module.

5.1.3.2 The J Register Module

The J Register module is the only module accessible by the user for I/O during the

chip’s normal Operation. As shown in Figure 37, the module is built around a 16-word

register file. The control signal sel is used to multiplex the two sets of addresses and

read/write signals. During computation (sel=l), the control and address signals from the

chip’s control store are used. Otherwise, those from the chip’s interface (Waddr, Ed, and

r_w) are used. The clr signal is used in conjunction with the address signal to reset

individual register words during testing. (For the assignment of the register’s words, see

Section 4.1.1.) The effective gate count of the I Register module is 5857. The actual gate

count is estimated to be 7321 given a utilization of 80%. This figure is derived based on a
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Figure 37. The circuit diagram of the I Register module.

non-optimized implementation of the 16-word register sub-module. The actual gate count

is likely to be smaller as there appears to be much room for minimization.

5.1.3.2.1 The l6-Word Register File

The circuit diagram Of one possible implementation Of a register file containing 16

words for use in the J Register module is shown in Figure 38. The jth bit cell Of each word

contains a latch whose output is connected to the jth bit of the data bus via a TG

(Transmission Gate) controlled by the word enable signal. The data bus will be

precharged during phase-two, and thus the enable signal must remain low at phase-two

(by the external circuitry). The ith word enable signal, when turned on after decoding

during phase-one, will turn on all the TGs in the ith word. The r/w signal will determine

whether the data is read from or written to the latch. The circuit developed here provides

an upper-bound estimate of the area and read/write time parameters. The actual gate

count of this sub-module with a utilization of 90% is 5757.
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Figure 38. The circuit diagram of a 16-word register file.

5.1.3.3 The R Register Module

The circuit diagram and the functional table Of the R Register module are shown in

Figure 39. The R Register module is constructed on an 8-word, 2-port register file. The 8-

word register file is similar to the 16-word file of the I Register module. The only

modification is the addition of a read-only port with its own address. For data coherency,

the write (via port A) and read (via port B) Operations are not allowed to occur at the

same word simultaneously. There are two possible sources during write Operation: Bus A

and the output of the Z adder. The connection from the Z adder is a direct link from a

tristate output buffer which will be in high impedance when the source is from the bus.

Transmission gates are used to connect the register file’s data I/O port to the chip’s
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operation via Port B cannot occur to the same word simultaneously.

Figure 39. The circuit diagram and functional table of the R Register module.

internal bus so that the bus can be isolated from the I/O port when the source of the write

Operation is the Z adder. The estimated effective and actual gate counts of the R Register

module are 3936 and 4920, respectively.
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5.1.4 Control

This category includes two modules: the main control unit and the cordic control unit.

The main control unit is further decomposed into the control store sub-module.

5.1.4.1 The Main Control Module

The Main Control module controls the execution of the IKS microprogram and the

interface to the user through the signals D, S, and R. The interface function implements

the procedure specified in Figure 12. The module as a whole can be viewed as

implementing the state machine of Figure 40. The chip is initially in the Idle state where

input of the transformation matrix into the I Register may occur. A pulse applied to the

signal S will put the chip in the Run state and start the computation. From this state, the

chip may enter the Stop state when a cordic instruction (signaled by the non-zero value of

m) is encountered. The chip will return to the Run state when the cordic iteration ends.

When the program counter (pc) reaches 127, the IKS computation is complete and the

chip enters the Dane state, where output of the result may proceed. At any point in time,

a pulse on the reset signal R will force the chip to reenter the Idle state.

Idle input

comp=0, pc=0

D=0

ii

5.1—L

output Done compute

-comp=0, pc=127 6:127 comp=l,upc¢0-

D=1 cordic=0

[LI—I. m 3" crdc_end

 
Stop

comp=l, pc¢0

cordic=1

Figure 40. The state diagram of the IKS chip.
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Figure 41. The circuit diagram of the main control module.

The circuit diagram of the main control module is shown in Figure 41. The 7-bit

counter in the module serves as a program counter pointing to the next MACC instruction

in the control store. Before the computation starts, the input to the reset port of the

counter (run__bar) will remain high. The assertion of the signal S will be sensed at phase-

two causing the signal run_bar to drop. This enables the phase-one signal to increment

the counter since the en signal is normally low. The instruction is latched at phase-two

into a 40-bit wide latch with scan-input capability after decoding. This control vector is

split into two parts as shown in Figure 29. The first part includes all control signals

affecting phase-one events. The second part contains all control signals that affect the

phase-two events and they must be held until the phase-one Of the next cycle (see

Section 4.3.2.2.2). When the fetched instruction is a cordic operation, the non-zero value

of the mode signal at will cause the cordic control module to raise the cordic signal to high.

The en signal will then become high and block the phase-one clock from advancing the

counter. The en signal will remain high until the crdc_end signal from the cordic control
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unit becomes high, indicating that the cordic iteration has finished. The counting will then

resume from the next cycle. The counter also stOps when its output reaches 127, i.e., the

end of the IKS microprogram, and the signal from the comparator is connected to the

chip’s external signal D to indicate the end Of the IKS computation. During testing, the

clock input to the counter is directly under the user’s conuol. Another test clock input (not

shown in the diagram) is used to control the shifting Operation of the control vector latch.

The Main Control module requires 2999 effective gates, or 3749 actual gates assuming

80% utilization.

5.1.4.1.1 The Control Store Sub-module

The circuit diagram Of the control store sub-module is shown in Figure 42. It consists

of a 128-word, 22-bit ROM and a decoder. Each word represents a microcode whose

format is shown in Figure 29. The decode sub-module takes the first eight bits of the

microcode (opcodel and opcode2) as input and decodes them into the control signal

patterns according to the code maps specified in Appendix D. The microprogram storage

requires about 1408 actual gates. If the decoding is implemented with two PLAs, about
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Figure 42. The circuit diagram of the control store sub-module.
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226 actual gates will be required. As a result, the actual gate count of the control store

sub—module is estimated to be 2454.

5.1.4.2 The Cordic Control Module

The circuit diagram of the Cordic Control module is shown in Figure 43. This module

performs two functions. The first is to generate the adder control signals from the sign bits

of the Z adder and Y adder according to the cordic algorithm as specified in Figure 14. The

second function involves passing the control from and to the main control unit. This is

accomplished as follows. When m is non-zero, the signal cordic will be raised to the high

State at phase-two, which will inhibit the advancement of the program counter (within the

main control unit). Meanwhile, when either 111 is non-zero or setf is equal to 2, the phase-

One clock signal is allowed to trigger the counter within the cordic control unit. (The setf

signal is used for starting the counter for mode 1 operation. This is because the cordic

algorithm requires that this mode start counting from 1 instead of 0 as in the other two

modes. The setf signal always occurs just before the mode 1 Operation when its value is
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Figure 43. The circuit diagram of the cordic control module.
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2.) During the iteration, the counter output is used for both the shifter control and the

ROM addresses for fetching the cordic constants. When the count reaches 23, the

comparator will assert the signal done, which in turn resets the counter when the phase-

two clock drops. The detailed tinting diagram of the cordic control is shown in Figure 16.

The effective gate count of this module is 131. The actual gate count is estimated to

be 164, assuming a utilization of 80%.

5.2 VHDL Simulation of the IKS Chip

This section describes the VHDL simulation of the IKS chip. The simulation Objective

and modeling approach of this work are first explained. The discussion focuses on model

semantics and parameter values. Simulation results of the IKS chip are then presented.

5.2.1 Simulation Objective and Modeling Approach

Circuit simulations, in general, serve two objectives. The first is to verify that the

circuit as represented by the model is indeed what is intended. The second is to

investigate alternatives that may enhance, ideally in a global way, the circuit performance.

Different simulation Objectives require different modeling approaches, as a particular

modeling approach is a compromise between the modeling costs (both human and

computational) and the degree of accuracy that a model’s simulated results mimic reality.

With the focus on architecture design, the simulation objectives of this work are primarily

to verify the correctness of the chip’s logic design, and secondarily to obtain a worst case

performance estimate. The modeling approach to be discussed in this section reflects

these Objectives.

The validity of verification through simulation depends on two conditions: the

conectness of the model in representing the relevant aspects of the circuit and how

objectively the simulation process recreates the reality. Confidence in using simulation as

a verification means will certainly increase if efforts for modeling and for simulation are

separate. In this regard, simulating the IKS chip’s behavior in VHDL is obviously
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desirable, particularly in view of the recent acceptance of VHDL as the standard hardware

description language by the IEEB.

The validity of verifying the IKS chip design through VHDL simulations then depends

on how the relevant aspects of the circuits are represented in the models. Two issues are

involved here. They are the model semantics and the models’ parameter values. The

encoding of circuit behaviors in the programming semantics has four facets: data structure,

description style, data typing, and delay time. Among these four facets, the data structure

is the most idiosyncratic in that the use of a particular structure largely depends on the

designer’s perception of the Circuit’s characteristics.

As to the second facet, VHDL supports three architecture description styles:

structural, behavioral, and dataflow. The application of these different styles is strongly

related to the hierarchy level of the target circuit module. This is because in contrast to

the top-down direction of circuit decomposition in the detail design, building models for

simulation is generally a bottom-up process. Therefore, a behavioral style is applied to

the bottom-level or leaf-nodes Of a circuit hierarchy since the behaviors of higher level

circuits are constructed from these building block circuits. The further up the hierarchy, the

more convenient it becomes to describe a circuit in a more structural style. The term

dataflow here refers to a description style somewhere between pure behavioral and pure

structural and is usually applied to circuits at intermediate levels.

The remaining two facets of data types and delay time characterize the modeling

approach of this work and are discussed in detail in the following subsections. The method

Of deriving parameter values for the models is then explained.

5.2.1.1 Data Types

Data typing as an abstraction mechanism defines how symbolic objects are

interpreted. In VHDL, all physical realities with dynamic consequences must be

represented by signals in the symbolic domain [LRM88]. By defining signals of certain

types, the designer extracts the relevant aspects from the real circuit for manipulations.
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Aspects of the circuit can be represented in different hierarchical levels. Consider a

two-bit signal interpreted at a higher level as an unsigned number. The event that the

signal’s value changes from 1 ("01") to 2 ("10") may actually occur as two events in

sequence: from 1 to 0 ("01" to "00"), and then from 0 to 2 ("00" to "10"), as the discharge

time may be shorter than the charge time. It is not difficult to see that the complexity for

modeling words of more bits will increase rapidly, especially if one takes into account

other factors such as different loading conditions or the effects of simultaneous switching.

A more accurate model may require simulation of an object’s behavior at the lower bit-

level and give a word-level interpretation every time any single bit has changed its value.

Such a modeling approach requires considerably more computational resources and

may not be necessary since what is relevant also depends on how the modeled object is

used. Signals in the IKS chip can be classified according to usage into three categories of

control, data, and address. Any change is significant for signals performing control

functions as the transition may last long enough to set or reset some circuits. In addition,

such signals are likely to be manipulated through Boolean functions. Therefore, control

signals are essentially bit-types, Their use as vectors is only for convenience in

transferring them from modules to modules.

The data category includes all input operands and output results of the multiplier,

adders, shifters, and memory. The signals of this category are relevant only at the word-

level. The effects of transitions in these signals are generally confined to their respective

functional modules and will not affect other signals, partly due to the non-overlap two-

phase clocking scheme. Furthermore, because of the level-sensitive design discipline, the

value (i.e., the interpretation) Of a data signal takes effect only when the signal is stable.

Therefore, it is sufficient for these signals to use two’s complement integers as the data

types so long as l) the propagation delay of the data signal passing through a circuit

module is no less than the worst-case delay of its component bits, and 2) the width of the

clock phase is long enough such that the setup times for all the d-latches controlled by

that phase are satisfied. The use of integers instead of single bits for data signals not only



152

saves computation effort, it also provides a valuable link between the task algorithm and

the architecture.

Signals that are used for memory addressing have some peculiar properties. On the

one hand, they are more conveniently interpreted as integers similar to the data signals.

On the other hand, unlike the data signals, transition scenarios such as that of the two-bit

signal example may have harmful effects on addresses. For example, when a write

operation is enabled, a fluctuation in address signals may cause the data to be written

into unintended locations. To prevent the inadvertent writing of memory, the system event

tinting model stipulates that the read/write signals take effect only in the data transfer

phase during which the address signals are guaranteed stable. In addition, inside the

VHDL description of storage modules, assertion statements are incorporated to check for

conditions of address changes while writing is in effect. With this protection, the address

signals can be modeled directly as unsigned integers.

5.2.1.2 Delay Time

Major factors that affect the delay time Of a circuit include capacitive loading, signal

value and strength, slew rate, temperature, and coupling between signals. Among these

factors, the capacitive loading is generally accepted as the primary factor. Since all these

factors depend, in varying degrees, on the physical design and because the main focus of

the modeling effort at this stage is to verify the correct functionality of the entire chip, only

the capacitive loading factor is considered in this work. Other secondary factors can be

taken into account by giving a wide enough margin to the results. (Actually, if the review

of an initial design is favorable for physical implementation, architecture bodies that

incorporate more accurate delay time models can be developed to replace the grosser

ones. This progressive simulation strategy is supported by VHDL.)

To model the delay time of a circuit, consider a generic well formed combinational

circuit that performs an operation f on a number of input signals di and produces an output

signal q as shown in Figure 44 (a). The total delay time of the circuit is modeled as
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(a) A generic well formed combinational circuitf
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Figure 44. The delay time model of a generic well formed combinational circuit.

consisting of two parts as illustrated in Figure 44 (b). The first part is called the

data_valid_time and is modeled by the VHDL inertia delay model. This part characterizes

the minimum stable duration t1 of the input signal before the operation f can be performed.

The second part is the pure propagation delay and is modeled by the transport delay (tT)

in VHDL. This part has three components. The first one (‘11) is the pure propagation

delay inherent in the circuit. The other two components model the effects of external

capacitive loadings due to the connecting input devices and interconnects, respectively.
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The data_valid_time part of this delay time model can be thought of as a low pass

filter that eliminates glitches whose duration are shorter than the specified time t1. As

shown in the tinting diagram of Figure 44(c), the first pulse of d, does not make it through

the filter since its duration is less than t1. Once through the filter, however, the input

changes become valid and will activate the process f. The result is the occurrence of a

transaction on qo, which may or may not cause a change of value in qo. If a change does

occur, then the change, called an event, will propagate to q after tT. This chain of events is

illustrated by the second pulse of d, in Figure 44(c). This example also illustrates the

crucial role Of the data_valid_time parameter. In this work, this parameter is assumed to

be constant. In reality, however, it varies dynamically depending on other factors cited

previously. An aggressive design may exceed this limitation and result in either

undetected (the specified time too long) or non-existent (the specified time too short)

glitches on the output signal.

5.2.1.3 Delay Time Parameters

The delay time model presented in the last section has four components. Essentially,

the first two may be derived from data sheets and the last two depend on the physical

design. In this work, if the setup time of a component is available from data sheets, then

that time is used as the inertia delay parameter for that component. Otherwise, the inertia

delay and the inherent part of the transport delay are estimated from both the circuit

schematics and the delay time given in the data sheet. For simple logic gates, the delay

time given in the data sheet is treated as the inherent transport delay.

The second component, interconnect capacitive loading of a signal’s transport delay,

is estimated based on statistics following the rules suggested in [LSI87a]. With this

approach, the interconnect delay is a function of both the circuit’s size and the fanout of

the signal. If the terminals of an interconnect all reside in the same module. then the total

area of the module is first computed from the estimated gate count. The area of the module
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together with the fanout of the signal is then used to obtain an estimate of the wire’s

equivalent loading. If the terminals of a signal do not reside in the same module, then the

area is computed from the areas of the modules involved.

5.2.2 Simulation Results

The modeling and simulations of the IKS chip are carried out in a bottom-up fashion.

Building block circuits including controlled I/O buffers, latches, multiplexers, shifters,

counters, registers, and adders are first tested. The testing typically involves random

generation of a set of data as input to the modules (VHDL programs). The simulated

responses of the output signals are then compared to what is expected from the functional

tables to verify the conectness Of the program semantics.

With all building block circuits thoroughly tested, the level-2 circuit modules, which

use various building block circuits through a VHDL mechanism called component

instantiation, are then described in VHDL programs. Similar to the building block circuits,

these modules are tested for their functionality with random input data.

After the level-2 modules are tested, they are instantiated in another VI-IDL program

conesponding to the level-1 description of the MACC datapath (Figure 28). On this level-

1 module, cordic operation and non-cordic Operations are tested separately. With each

MACC instruction verified, the entire chip is then simulated from input to output on

realistic data sets. The details of the simulations of the cordic operation, the MACC

instructions, and the IKS computation are presented in the following subsections.

5.2.2.1 Simulation of the Cordic Operation

The input and expected output of the three modes of cordic Operations are tabulated in

Table 19. As shown in the table, there are two testings on the mode 1 operation and four

testings on each of the mode 2 and mode 3 operations. A C program is developed to

generate the test data as follows. The program accepts three 32-bit integers as inputs to

the X, Y, and Z adders and a number indicating the mode. It then executes the cordic
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Table 19. Summary of Testing of the Cordic Operations.

 

 

 

 

 

 

    

mode input expected output

=—_————_—'—-=

1 21, 22, with 21> 22 X = sqrt(21*zl - 22*22)

21,22,withzl<22 X=0

z (in lst quadrant) X = cosz > 0, Y = sinz > 0

2 z (in 2nd quadrant) X = cosz < 0, Y = sinz > O

z (in 3rd quadrant) X = cosz < 0, Y = sinz < 0

z (in 4th quadrant) X = cosz > 0, Y = sinz < 0

x, y with x > 0, y > 0 Z = arctan (y,x), Z in lst quadrant

3 x, y with x < 0, y > 0 Z = arctan (y,x), Z in 2nd quadrant

x, y with x < O, y < 0 Z = arctan (y,x), Z in 3rd quadrant

x,ywithx>0,y<0 Z=arctan (y,x),Zin4thquadrant
 

algorithm as specified in Figure 20 and provides the intermediate results (the output of

the three adders) during each iteration. The same input data are then applied to the

VHDL program of the MACC datapath. By comparing the VHDL simulation results with

the C program output, the correctness of the design with respect to the cordic operation is

verified.

The VHDL module for simulating the cordic Operation is the same as the level-l

circuit of Figure 28 except that the main control unit is not instantiated. Instead, the

control vector is directly supplied from the test bench (a package that is a part of the

VHDL simulation environment). In all cordic simulation cases, a clock with IOO-ns cycle

time is used. The phase-one clock turns on at the beginning of each cycle for 30 ns. The

phase-two clock has the same width with a phase-lag of 50 ns. The values of the three

adder outputs at the end of the on-state of the phase-one clock, together with their

function control signals from the cordic control unit, are reported. Also reported are the

values of signals shift (from the cordic control unit) and sgnang (from the Z_Angle

module).

Figure 45 shows the VHDL simulation results of the mode 2 cordic Operation. For

this kind of Operation, the input (2) is an angle in the second quadrant. (In this particular
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case, the input number 1610612736 corresponds to an angle value of 135°.) The angle is

transferred to the Z adder during the second cycle (100 ns). The third cycle is the

preprocessing cycle where the main control unit is still active. During this cycle, the flag is

set to the exclusive-or of the two most significant bits of the Z adder output. Since the Z

adder input is taken from the output of the Z_Angle module with zang = 3, the input angle

2 is transformed to 2' such that -90° S 2' < 90°. The cordic iteration starts at the clock

  

Figure 45. The simulation result of mode 2 cordic operation.

10-SEP-88 19:24:07 VHDL Simulation Report Generator [V 1.1] Page 2

Time | Signal Names l

I

Inc) I SHIFT SUM_X AX SUM_Y AY SUM_Z AZ SGNANG

I

29 I 0 0 ’0' 0 ’0' 0 '1’ '0'

129 I 0 0 '0’ 0 '0' 0 ’1' '0'

229 I 0 0 '0’ 0 '0' 1610612736 ’1' ’1'

329 I 0 652032874 '0' 0 '1' -536870912 '0' '0'

429 l 1 652032874 ’1' -652032874 ’0' 0 '1’ '0'

529 I 2 978049311 '0' -326016437 '1' -316933405 '0' ’0’

629 I 3 896545202 '0’ -570528764 '1’ -149474498 ’0' '0'

729 I 4 825229107 '0' -682596914 ’1' -64469742 '0' ’0'

829 I 5 782566800 '0’ -734173733 '1' -21802411 '0' '0'

929 l 6 759623871 '0' -758628945 '1' -447946 '0' ’0'

1029 I 7 747770294 '1’ -770498067 ’0' 10231892 '1' '0'

1129 I 8 753789810 ’1' -764656112 '0’ 4891647 '1' '0'

1229 I 9 756776747 '1' -761711621 ’0' 2221484 '1' '0'

1329 I 10 758264465 '1' -760233542 '0' 886398 '1’ '0'

1429 I 11 759006880 '1' -759493050 '0' 218854 ’1' '0'

1529 | 12 759377726 '0' -759122442 '1’ -114918 ’0' '0’

1629 l 13 759192394 '1' -759307836 '0' 51968 ’1' ’0’

1729 I 14 759285082. '0' -759215162 ’1' -31475 '0' '0'

1829 I 15 759238744 '1' -759261505 '0’ 10246 '1' '0'

1929 l 16 759261914 '0’ -759238335 '1' -10614 '0' '0'

2029 I 17 759250329 ’0' -759249920 '1' -184 ’0' '0'

2129 I 18 759244537 '1' —759255712 '0' 5031 '1' '0'

2229 I 19 759247433 '1' —759252816 '0' 2424 '1' ’0'

2329 l 20 759248881 '1' -759251368 '0’ 1121 '1' '0'

2429 I 21 759249605 '1’ -759250644 '0' 470 '1' '0'

2529 I 22 759249967 '1' -759250282 ’0’ 145 '1’ '0'

2629 I 23 759250148 ’0’ -759250101 '1’ -l7 '0' '0'

2729 I 0 759250058 '0' -759250191 '0' 64 ’1' '0'

2829 I 0 759250191 ’0' -759250058 '0' 0 ’1' '0'
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cycle of 300 ns and continues until the signal shift reaches 23. During the iteration cycles,

the signal cordic remains high, which inactivates the main control unit The main control

unit is reactivated after the signal shift changes to 23. The clock cycle of 2700 us is the

post-processing cycle. The values of the X and Y adders reported at 2729 ns, however,

are the results of the previous cycle, i.e., cos(z') in X adder and sin(z') in Y adder. The

post-processing in this case is to complement both the sine and cosine values. The

results are reported at 2829 ns, with sinz now in the X adder and cosz in the Y adder. For

this example, the absolute values of sinz and cosz are the same and equal to 759250125.

Hence, the computation achieves an accuracy of 23 bits.

5.2.2.2 Simulation of MACC Instruction Set

The cordic operation (not counting the pre- and post-processing), while taking 24

actual clock cycles to complete, represents only one MACC instruction from the view-

point of the main control unit. Among the 125 microcodes that constitute the entire IKS

microprogram, the cordic operations take up only 14. To control the testing complexity and

facilitate the debugging process, it is desirable to also test other operations before the

entire IKS computation is simulated. At this juncture, the power of eating the chip’s

behavior into the MACC instruction set becomes obvious. Not only does this

substantially reduce the number of test cases, but more important, the high-level

characterization of an instruction concisely specifies what is being tested and thus

enables the teSting effort to be directed efficiently. In addition, the simulation results of

the MACC instruction set can be used for production testing.

The VHDL module for this simulation is essentially the same as the level-1 circuit of

Figure 28 with two modifications on the main conuol unit. The first modification is to

replace the microprogram with a store containing all the MACC instructions except the

cordic instruction. This can be accomplished by simply binding the same microprogram

interface to the new instruction store as an alternative architecture body. The second

modification is to change the stOp criteria from 127 to 42.
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The test bench program controlling the simulation process first initializes both the J

register file and R register file contents to random numbers and then starts the instruction

execution. Signals of functional module outputs, the two register I/O ports, the two

busses, and other key control signals are reported at the end of the on-state of each clock

phase. Using the MACC instruction set table as a guide, the values of relevant signals of

each clock cycle are compared to expected values. This verification process serves to

eliminate mistakes made in describing the connections or in the process of entering data

such as in the code map.

5.2.2.3 Simulation of the IKS Computation

After the cordic operation and the execution of the MACC instruction set are verified,

the microprogram interface is replaced. The stop criteria is also reset to 127. The interface

of the MACC datapath is then modified to conform to the chip’s interface specification of

Figure 10. The IKS chip is now ready for final simulation.

Figure 46 illustrates the flow of the simulation for verifying the architecture design of

the IKS chip. A C program (DKS) is developed to compute the Cartesian position and

orientation (T) of the PUMA robot manipulator for a given joint angle set (9) using

floating-point numbers. The elements of the homogeneous transformation matrix, T,

however, are cast into 32-bit integers conforming to the formats specified in Figure 18.

Another C program (IKS) is developed to implement the pseudocode of Appendix B. This

program accepts the input T and compute the IKS using fixed-point calculations. It also

* IKS i

(C program)

IKS Chip

(VHDL)

 

 

 

 

- 91mm. 

Figure 46. The flow of the IKS chip simulation.
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provides all the intermediate results in each step, which are necessary for the debugging

of the design and the VHDL program. The correctness of the IKS C program is easily

verified by comparing 9 and 91. To reduce the possibility of undetected errors due to

some data peculiarities, 10 joint angle sets are randomly generated and tested. The

homogeneous transformation matrices are then used as input to the VHDL description of

the IKS chip. The correctness of the chip design is verified by the exact match of 91 from

the C program and from the VHDL simulation. Table 20 shows the errors of the IKS

computation with respect to the original joint angle input in one such simulation.

Table 20. The Error of the IKS Computation with respect to

the Joint Angles.

 

 

 

    

i e (rad) 91 (rad) 8 (rad)

0 0.180710 0.180710 0.000000

1 0.074570 0.074570 0.000000

2 0.488663 0.488664 0.000001

3 0.406296 0.406300 0.000004

4 0.006317 0.006317 0.000000

5 0.262054 0.262050 0.000004
 

 
Since in realistic situations the angle values are unknown, the errors of the

computation should be assessed with respect to the position and orientation given.

Therefore, the DKS program is again invoked to compute the position (the p vector) and

orientation (the a and a vectors) from 91. This error in Cartesian coordinates for the

same data set used in deriving the joint angle error of Table 20 is shown in Table 21. In

this table, the last three elements are the position elements and have the unit of mm. The

results indicate that the errors in the orientation elements are negligible, and the errors in

the position elements are well below 0.1 mm.



161

Table 21. The Error of the IKS Computation with respect to

the Position and Orientation.

 

 

 

    

T T1 8

0x 0.138238 0.138238 0.000000

0y -0.865541 -0.865541 0.000000

oz -0.481383 -0.481383 0.000000

ax 0.208535 0.208536 0.000001

ay 0.500591 0.500591 0.000000

02 -0.840191 -0.840192 0.000001

px 135.461063 135.460621 0.000442

py 588.573889 588.572623 0.001266

pz - l 85.233801 -185.233069 0.000732
 

 



Chapter 6. Conclusion

Where a new system concept or new technology is used, one has to build a system

to throw away,

Hence, plan to throw one away: you will, anyhow.

Frederick P. Brooks, Jr.

THE MYTHICAL MAN-MONTH: ESSAYS ON SOFTWARE ENGINEERING (1975)

One objective of this research is to obtain a better understanding of the interactions

between the three domains of algorithm, architecture, and technology in the ASIC design

environment through the development of a paradigm based on the architecture design of

the IKS chip. This objective has been accomplished. Specifically, IC design knowledge

has been organized into a conceptual framework. The process of deriving an architecture

from an application algorithm has been formalized into an ASIC architecture design

methodology and the architecture design paradigm of an ASIC chip implementing the

closed form IKS algorithm has been presented. The next section summarizes major

results on these three subjects. This is followed by a discussion of the implications of this

work and future research issues.

6.1 Summary

To provide system designers with a logical view of the implementing technology, a

conceptual framework for ASIC design has been described from a decision making

perspective. The framework organizes a broad range of IC design knowledge into three

frames of design process, design hyperspace, and design repertoire. Key concepts

presented in the process frame include the hierarchical approach, the role of methodology,

and a model for implementing design methodology in an integrated environment. The

hyperspace frame articulates the design space concept and outlines the framing of the

162
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algorithm space and the architecture space. The repertoire collects various techniques for

evaluating and optimizing the design alternatives. Under this framework, IC design

activities are viewed as a process of making design decisions, and the emphasis is placed

on the recognition and evaluation of design alternatives. The global strategy is to limit the

search space through methodology implemented by CAB and KBES. Alternatives are

recognized through a proper framing of the design space and optimized by various

techniques.

Guided by this framework and based on the experience of the [KS chip design, the

process of making architecture design decisions has been generalized into an ASIC

architecture design methodology. The methodology partitions the architecture design

process into three phases of functional unit configuration, communication configuration,

and the control configuration, with each phase having its own decision focus. In the first

phase of functional unit configuration, the focus is on finding an appropriate architecture

style that best matches the characteristics of the task algorithm. Once the decision is

made and fixed in the functional unit profile, the task algorithm is then translated into a

pseudocode program. In the second phase of communication configuration, the data

dependency inherent in the pseudocode program is unfolded in a dataflow table. From the

desired dataflow pattern, an interconnection scheme is developed. The development of the

system event timing model and the detailed designs of circuit modules also proceed in

parallel. With the aid of the dataflow table, tradeoffs between dataflow maximization and

resource utilization are made. In the final phase of control configuration, the conuol signal

patterns are analyzed to determine an encoding scheme. The control signals are also

recast into an instruction set to facilitate the verification and testing process. Thus,

embodied in this methodology is the new concept of derived instruction set computer

(DISC) design, a manifestation of the basic principle of allocating hardware resources

based on the tradeoff analysis of the application needs and the potential benefits in the

algorithm-specific processor design environment.
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The execution of the ASIC architecture design methodology is then illustrated by the

design of a gate array chip implementing the closed form IKS algorithm for a roboric

manipulator. The analysis of architectural alternatives has led to the idea of synthesizing

an MAC structure with a cordic core as an on-chip coprocessor. The resultant

architecture, called MACC for Multiplier Accumulator with a Cordic Core, can compute the

[KS in 125 instruction cycles, or 445 clock cycles. Based on the current gate array

technology, the architecture can be implemented in a single chip. VHDL simulation of the

architecture indicates that a clock rate of 10 MHz is achievable. This clock rate enables

the IKS to be computed in less than 45 us. Compared with a single cordic processor

implementation, the area of MACC is estimated to be about 23% larger, but the

computation time is reduced by more that one third, giving a overall area-time efficiency of

1.866 over the single cordic processor approach.

6.2 Implications and Future Research

This section examines the implications of this work and identifies future research

issues. The discussion focuses on two areas: robotics and design automation.

. Robotics

This work has demonstrated that ASIC technology can deliver the superior

performance needed for future robotic controllers. Effective utilization of this nascent

technology calls for an algorithm-specific design approach. Functions in the device

interaction layer of the robotic computation hierarchy are particularly suitable for ASIC

implementation. With these functions executed neatly within individual ASIC chips,

transfer of intermediate results are completely eliminated. This relieves the host system

not only from the computation load, but also the communication burden. Thus, the host

system can save these resources for higher level tasks.

Since many robotic control functions share similar algorithmic characteristics with the

IKS algorithm, namely, large granularity, strong serial data dependency, and the

requirement of trigonometric functions, the idea of an on-chip cordic core is particularly



165

attractive. The MACC architecture itself might be modified for executing other control

functions. Hence, prototyping of the IKS chip is of practical interest. But before further

work on physical design of the MACC chip may proceed, certain improvements at the

architecture/logic level can be made. In the IKS algorithm, the configurations of the robot

manipulator (left/right arm, up/down elbow, and flip/noflip wrist) can be specified by the

user. Because of the format of the angle representation, this feature can be incorporated

into the post-processing stage of the relevant cordic operations and efficiently

implemented in hardware. Also, in this design, the algorithm implemented in the cordic

core is based on the original cordic algorithm. More advanced techniques may be adopted

to reduce the cordic iteration cycles. The original algorithm also has some convergence

problem for the mode one operation, which result in large computation errors when the

robot is close to the singularity positions. While the singularity problem is inherent in the

robot arm design, the computation sensitivity to it can nonetheless be reduced. In the IKS

algorithm, the mode one cordic operation is used only twice and simulation results

indicate that the convergence problem occurs only in one particular operation, which also

involves a constant. Thus, it appears that this problem can be solved with some special

hardware tailored to this characteristic without resorting to more sophisticated, and

usually more expensive, solutions.

. Design Automation

As more and more devices can be fabricated in a single chip and powerful CAE tools

for tackling physical design tasks such as placement and routing are available, a new

class of application-specific processor will emerge. To cope with the additional complexity

created by this new situation, the time-proven strategy of ascending the abstraction

ladder appears effective and architecture design has become a convenient focal point. But

as one climbs up the abstraction ladder further and eventually reach the application

domain, the major performance enhancement opportunity may rely more on the designer’s

ability to take advantage of the application algorithm’s characteristics than on the

capability of a particular tool to minimize the number of gates or the routing areas. The
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development of tools suitable for this new design orientation will become the major

challenge for the years ahead.

Under the proposed ASIC architecture design methodology, major facets of the

architecture are represented by a functional unit profile, a dataflow table, and a control

signal pattern profile. The design activities are viewed as making decisions regarding the

manipulations of design information resident in these forms. Furthermore, the new

concept of DISC design has been introduced to improve communication between

designers and test engineers and to facilitate maintenance and redesign/reuse efforts. In

short, this paradigm research effort has fulfilled its role of laying the groundwork for

developing new tools needed for application-specific processor designs.
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The Closed Form IKS Algorithm for the PUMA
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Appendix B.
 

The IKS Algorithm in Psuedocodes

Task 1 (A.1):

Task 2 (A.2):

Task 3 (A.2):

Task 4 (A.2):

Task 5 (A.3):

Task 6 (A.3):

Task 7 (A.8):

Task 8 (A.8):

Task 9 (A.8):

Task 10 (A.9):

Task 11 (A.9):

Task 12 (A.9):

Task 13 (A.10):

Task 14 (A.10a):

Task 15 (A.11):

Task 16 (A.11):

Task 17 (A.11):

Task 18 (A.13):

Task 19 (A.12):

Task 20 (A6):

Task 21 (A.7):

Task 22 (A.4):

Task 23 (A.5):

Task 24 (A.13):

Task 25 (A.13):

Task 26 (A.15):

Task 27 (A.15):

Task 28 (A.13):

Task 29 (A.14):

Task 30 (A.14):

Task 31 (A.15):

Task 32 (A.15):

Task 33 (A.14):

Task 34 (A.15):

Task 35 (A.15):

Task 36 (A.15):

cordic (3, px, py, x), R0 := Z; /* output: X_p, Z_a */

cordic (1, X, d3, x); l"' output: X_p */

cordic (3, X, d3, x); /* output: X_p, Z_a */

J9 := R0 — Z; /* 19:01 */

cordic (2, K1, x, Z), R0 := X, R1 := Y;

R2 := mac (R0, px, +, R1, py);

R3 :=R2—d4, R4 :=R2-I-d4;

Z := pz-a2, X:=px+a2;

R3 := mac (Z, X, +, R3, R4) - K2

/* output: X_o, Y_o */

/* K2 = a3*a3, output: Z_s */

cordic (1, e, Z, x); /* output: X_s */

cordic (3, X, R3, x); /* output: Z_a */

Jll:=K3-Z; /*J11=03*/

cordic (2, K1, x, J 1 1); /* output: X_o, Y_o */

R4 := X + K4;

R3 := mac (R5, R2, —, R4, pz) + R2;

Z := mac (R4, R2, +, R5, pz) + pz;

cordic (3, 2, R3, x), 115 := z; /* output: Z.a */

cordic (2, K1, x, Z), R3 := X, R4 := Y; /* output: X_o, Y_o */

JlO:=115-Jll; /*JlO=02*/

R6 := mac (R0, ax, +, R1, ay);

R5 := mac (R0, ay, -, R1, ax);

R2 := mac (R0, ox, +, R1, oy);

R0 := mac (R0, oy, -, R1, ox);

R7 := mac (R3, az, +, R4, R6);

R1 := mac (R3, R6, -, R4, az);

R6 := mac (R3, R2, —, R4, 02);

R4 := mac (R3, oz, +, R4, R2);

cordic (3, R1, R5, x), J12 := Z; /"‘ Output: Z_a, J12 = 04 */

cordic (2, K1, x, 2), R2 := X, R3 := Y; /* output: X_o, Y_o */

R1 := mac (R2, R1, +, R3, R5);

R5 := mac (R2, R6, +, R3, R0);

R6 := mac (R2, R0, -, R3, R6);

cordic (3, R7, R1, x), J13 := Z; /* Output: Z_a, J13 = 05 */

cordic (2, K1, x, Z), R2 := X, R3 := Y; /* output: X_o, Y_o */

Z := mac (R3, R4, —, R2, R5);

cordic (3, R6, Z, x), J14 := Z; /* Output: Z_a, J14 = 06 */

168



Appendix C.

 

Control Signal Definition

1. Arithmetic/Ego Operation Control

 

 
 

Signal Name Bits Category Operation

Z 2 iv 20 = 0: Zc = ZI

20 = 1: 26 = AZ

XY 2 iv 00: Xc = yo = O

01: Xc=AX , Yc=AY

10: X = Y = f
C C

11: X = Y =

C

self 2 iii 00: f unchange

01: f = y2n.l

10: f = Z

ml

11: f= Zn_1 EB Zn_2

m 2 ii 00: non-cordic mode

others: cordic mode

sft_i 5 ii right shift X and Y 1' bits

z_ang 2 ii 0X: 22 = Z

10: 22=Zwichn- =f®Z

11: 22 = Z wrth Zn-l = (Zn-1 $ Zmz) 6 Zn-

2. Transmission Gate (TG[8:0])

1 ml

 

 

 

Signal Name Index Source Destination

R]-A [8,7] 00: Disable -

01: Z-Adder R Reg. Port 1

10: R Reg. Port 1 Bus A

11: Bus A R Reg. Port 1

R2_B [6] R Reg. Port 2 Bus B

J_A [5] J Reg. Bus A

A_J [4] Bus A J Reg.

M_B [3] ROM M Bus B

X_A [2] X Adder output Bus A

Z_A [1] Z Adder output Bus A

P_A [0] MPYer output Bus A

 

169

l



3. Adder Operand Control

 

 

 

Signal Bits Definition

x1 1 0: X1 =0

1: x1 =X

x2 1 0: x2 = R-shift (Y, i)

1: x2 = Bus B

y] 1 0: yl =0

1: yl = Y

y2 2 00: y2=0

01:y2=BusA iff=0

=0 iff=l

10: y2: BusA

11: y2 = R-shift (X, i)

z] 2 00:21 =0

01:21 =P

10:21 = Bus A

zz 2 00: 22:0

01: x2 = Bus B

10: 22 = Z_ang
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Appendix D.

The MACC Encoding Scheme and Code-Maps

l. Encoding Scheme

 

 

   
 

 

 

l. i n I I r R in

Phase1 Pattern Phase 2 Pattern Encoded Micro

Bus A Bus 8 Reg Reg as Inst.

src dst src dst J R zang 21 22 x1 x2 y 1 y2 Code No.

0 0 0 0 Y O X 0 0,3

2 21 M 22 0 A B X Y Y X 1 1.30.31

w.Z P O 0 Y Y O 2 4

J y2 r O 0 0 0 Y 0 A 3 5.6

J 21 r 0 A Z 0 Y Y 0 4 7

Z y2 0 P 0 0 Y 0 A 5 8

Z y2 0 0 0 0 Y 0 A 6 9. 10

R y2 r 0 P 2 0 Y 0 A 7 11, 12, 13

R y2 r 0 0 0 O Y 0 A 8 14

R y2 r 0 P 2 0 Y Y A 9 15

J R r w,A P O O Y 0 X 10 16

X R R 22 r,w,A 0 B 0 Y 0 0 11 17

J m1 R m2 r 0 P 0 0 Y 0 0 12 18

J m1 R m2 r 0 0 Z 0 Y 0 O 13 19

J m1 R m2 r 0 P 2 X Y O 0 14 20. 21

J m1 R m2 r w.Z 0 P 0 O Y 0 O 15 22

R m1 R m2 r O P 2 0 Y O O 16 23. 24

R m1 R m2 r 0 P 0 X Y O 0 17 25

R m1 R m2 r 0 0 Z O Y O 0 18 26. 27

X m1 M m2 1 0 ang 0 Y O O 19 28. 29

Z 21 M 22 w.Z O A B 0 Y 0 0 ‘ 20 32

R 21 M 22 r 0 A B 0 Y 0 0 21 33

J 21 M 22 r w.Z 0 A B 0 Y 0 0 22 34, 35

R 21 R 22 r 0 A B 0 Y 0 0 23 36

R y2 M x2 r 0 0 Z O B 0 A 24 37

P y2 M x2 0 0 0 0. B 0 N0 25 38

X R M x2 w,A 0 0 O B Y 0 26 39

Z J M x2 w 3 O ang 0 B 0 0 27 40

Z J M x2 w 1 0 ang 0 B 0 0 28 41

0 0 Z 0 Y 0 X 29 2

II.FnInI nrlinln in

Function Encoded

Ac set_f as

+,+ 0 0

cc 0 1

-,+ 0 2

+,f 0 3

+,+ 1 4

-,+ 1 5

+,+ 2 6

+,+ 3 7  
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2. Code-Maps

VALUESIGNALDECODED

 

 

 

  

  

   
R
1
A
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
1
0
1
0
0
0
1
.
0
0
0

R
1
A
1

m
m

T
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0

fl
m

0
0
0
0
1
0
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
0
0
0
1
0
0
1
1
1

1
1
m
m

0
0
1
0
0
1
0
1
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

M
fl
m
”

0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0

“
M
a
m

1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1

.
U
fl
m

1
1
0
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1

W
W

0
1
1
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0

fl
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

W
M

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0

M
m

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

M
P
I
A

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

\
i

W
Z
I
A

0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0

W
m
W
X
I
A

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0

“
H
m
m
M
I
é

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
1
1
1
0

.
U
M
M
A
I
J

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0

w
m
W
J
I
A

0
0
0
1
1
0
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
0
1
0
0
0
0
1
1
0

W
R
2
'
8
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0

mM
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
1
0
1
0
0
0

 

Opcode 1

no.

0
2

5
6

2
5
6
7

0
1
2
3
4
5
6
7
8
9
1
H
1
B
M
1
1
fl
w
w
m
m
2
fl
fl
2
2
2
fl
w

 
 

nRFnFn

w”

0
0
0
0
1
1
0
1

0
0
0
0
0
0
1
1

 

0
1
0
0
0
0
0
0

0
0
0
4
1
0
0
0
0

 

Z XY

0
1
0
0
0
0
0
0

0
0
1
0
0
1
0
0

 

OPCOGB 2 [11101 11110] Ul IO]

0
1
.
2
3
4
5
6
7

 
 

U2



Appendix E.

The MACC Microcode for Computing the IKS

 

Store Parameters

Addr. Clock Opoode 1 Opoode 2 m J R1 M/R2

[7] Cycle [51 [31 [21 [4] [31 15]

0 o 0 O 0 .

1 1 3 4 0 6

2 2 3 3 0 7

3 3 1 1 3

4 27 19 0 0 24

. 5 28 2 O 0 0

a 29 17 0 0 [l [l

7 30 20 2 0 7 30

8 31 24 0 0 7 30

9 32 29 6 0

1O 33 1 1 1

1 1 56 19 0 o 25

12 57 10 0 0 8 7

13 58 25 4 0 3O

14 59 0 3 0

15 60 1 1 3

16 84 19 0 0 [ ]

17 85 2 0 0 6

18 86 23 2 0 O 6

19 87 27 7 0 9 24

20 88 1 1 2

21 1 12 0 3 0

22 1 13 1 1 0 0 1 [ ]

23 1 14 1 1 2 o O 7

24 115 15 O 0 7 1

25 116 12 0 O 6

26 117 5 0 O

27 1 18 7 0 0

28 119 20 2 0 2 31

29 120 2 0 O 3

30 121 21 0 0 2 31

31 122 22 2 0 8 4 31

32 123 22 0 0 8 5 31

33 124 2 o O 6

34 125 17 0 0 3 4

35 126 17 0 O 5 6

36 127 12 0 O [ ] [ ]

37 128 7 0 0

38 129 1 2 O 26

39 130 20 2 O 3 27

40 131 18 2 0

41 132 24 6 O 3 27         
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Addr. Clock Opoode 1 Opoode 2 m J R1 M/R2

42 133 1 1 1

43 156 19 0 0 25

44 157 0 0 0

45 158 25 4 0 [1

46 159 8 3 0 3

47 160 1 1 3

48 184 19 2 0

49 185 1 0 0 28

50 186 27 7 0 11 24

51 187 1 1 2

52 211 0 3 0

53 212 26 0 0 5 29

54 213 17 0 0 0 5 2

55 214 11 0 0 4 [1

56 215 17 0 o 4 7

57 216 13 0 0 8 5

58 217 16 0 0 4 2

59 218 5 0 0

60 219 9 0 0 2

61 220 4 0 0 8

62 221 6 4 o

63 222 0 3 0

64 223 1 1 3

65 247 19 0 0 ll

66 248 28 0 0 15 24

67 249 1 1 2

68 273 0 3 0

69 274 11 0 o 4 I l

70 275 11 0 0 3 [1

71 276 13 0 0 3 0

72 277 13 o 0 4 1

73 278 12 0 0 3 1

74 279 14 0 0 4 0

75 280 15 0 0 0 6 0

76 281 14 2 0 1 1

77 282 15 0 0 o 5 1

78 283 14 0 0 1 0

79 284 15 0 o 5 2 3

80 285 16 2 0 4 6

81 286 15 0 0 5 0 4

82 287 16 0 0 3 6

83 288 15 0 0 2 7 4

84 289 16 2 0 3 2
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Opoode 1
 

Addr. Clock Opoode 2 m J R1 M/R2

85 290 15 0 0 2 1 3.

86 291 16 2 0 4 2

87 292 2 0 o 6

88 293 7 4 0 1

89 294 2 0 0 4

90 295 8 3 0 5

91 296 1 1 3

92 320 19 0 o [1

93 321 28 0 0 12 24

94 322 1 1 2

95 346 O 3 0

96 347 11 0 0 3 [I

97 348 11 0 0 2 []

98 349 18 o 0 2 1

99 350 18 0 0 3 5

100 351 17 0 0 2 6

101 352 16 0 o 3 0

102 353 2 0 0 1

103 354 18 0 0 3 6

104 355 16 0 0 2 0

105 356 2 0 0 5

106 357 7 5 0 7

107 358 2 0 O 6

108 359 8 3 0 1

109 360 1 1 3

110 384 19 0 o []

111 385 28 O O 13 24

112 386 1 1 2

113 410 10 3 0 15 2

114 411 11 0 0 3 [1

115 412 11 0 o 1 [1

116 413 16 2 0 1 5

117 414 18 O O 3 4

118 415 10 3 0 11 0

119 416 7 5 O 6

120 417 6 3 0

121 418 1 1 3

122 442 19 0 0 []

123 443 27 7 0 14 [1

124 444 23 2 0 2 0

125 445 27 7 0 10 []         
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Appendix F.

 

Estimates of Gate Counts and Areas of the IKS Chip

 

 

 

 

 

 

Module gate (eff.) util. gate (act.) area (mm’)

Multiplier

inbuf_24 (2) 234

Iatch_24 (6) 774

Iatch_32 169

mply 4000

outbut_32 111

5288 0.8 6610 9.336158

Z_Adder

inbuf_32 (2) 305

mux3_32 (2) 274

mux2 4

latchh 6

outbuf_32 111

adder_32 2081

z_angle 27.7778

2808.78 0.8 3510.972 4.959

Z_Angle

xora 3

mux2a 4

xorb 3

mux2b 5

latch (2) 10

25 0.9 27.77778 0.039234

XY_Adders

inbuf_32 (2) 305

mux2_32 (3) 411

mux2_32h 169

mux2_32 (3) 411

mux4_32h 197

mux4(2) 12

shift32(2) 718

Iatch_5(2) 52

adder32x 2081

adder32y 2081

outbu1__32 111

6548 0.8 8185 11.56073

Set_Flag

mux4 6

' Iatcha 5

Iatchb 6

 

17 0.80 21.25 0.030014
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Module gate (eff.) util. gate (act.) area (mm’)

 

  

     

  

 

 

 

 

ROM

and 2

mux2_5 20

mm core 256

decode24 10

decod938 128

inv 1

inv_h (5) 10

427 0.8 533.75 0.753884

J_Reg

' and 2

mux2_4 4

mux28 3

mux2b 3

r9916 core 5683

decod924 10

decod924(4) 64

nand (4) 4

inv (84) 84

5857 0.8 7321.25 10.34075

R_Reg

tribut32 96

inv-nand3 3

onnand 2

nand (2) 2

inv (8) 8

T632 64

r698 core 3697

decod938(2) 64

3936 0.8 4920 6.949153

Main

k-127 5

inv 1

and (3) 6

or 2

nand 1

mux2 4

Iatchr 5

cm? 96

Iatchs_25h 200

latchs_15 105

Iatch_1 5h 120

C_Store 2454.44

 

2999.44 0.8 3749.306 5.295629
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Module gate (911.) util. gate (act.) area (mm’)

C_Store

pla_32 156

pla_8 70

mprog 1397

decod824 10

decod624(4) 64

decode38(16) 512

2209 0.9 2454.444 3.466729

Cordic

inva 1

mux28 5

invb 1

mux2b 5

latch (2) 10

nora 1

inv-nand 2

nand 1

inv-and 3

or 2

cntS 64

Iatch_Sh 31

i=23 5

131 0.8 163.75 0.231285

Total 24076 0.8 30095 42.50706

0.7 34394.29 48.5795

0.6 40126.67 56.67608
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