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A B S T R.A C T

THERMOGRAVITATIONAL THERMAL DIFFUSION

OF ELECTROLYTE SOLUTIONS

BY

YUAN XU

Thermogravitational Thermal Diffusion (TGTD) is used to separate the

components of fluid mixtures. The development of a.sem:<xf macrosc0pic

partial differential equations from nonequilibrium thermodynamics and

hydrodynamics Which describes the TGTD of electrolyflxn; is presented

here.

The goal of the research is the solution of the set of partial

differential equations for TGTD columns with or without reservoirs

at the ends. The solutions are obtained analytically under a variety of

'boundary and initial conditions. Through perturbation approaches, we

obtain a complete set of temperature,velocity, and concerMnnation

distribution functions for binary electrolyte solutions in the TGTD



column forlxniithe time-dependent regime and the steady state. The

space derivatives of the steady state concentration function confiums

previous results. However, the approach here is new and the results are

more complete. The average steady state concentration distribution

function along the TGTD column can be used to calculate the thermal

diffusion factor of binary electrolyte solutions.

The time-dependent solution of the concentration equation allows us

to estimate the relaxation time required to reach steady state, and the

solution can be used as a guide for designing the TGTD column.

The reservoir theory of the TGTD column based on an isothermal

diffushnlnmdel is also reported here. Due to the complexity of the

theory, we obtain only a rough but simple formuhatx>accountjfinrthe

reservoir effect on the TGTD column early in the experiment. The formula

can be applied to calculate the thermal diffusion factor of electrolyte

solutions while the concentration-time-dependence is still linear if the

TGTD coltmuiis connected to reservoirs at the ends. We may also use the

formula to guide the proper design of the reservoirs and to explain

recent strange experimental results.
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C H A P T E R 1

INTRODUCTION

A. THERMAL DIFFUSION

Application of a temperature gradient to an electrolyte solution.or'

to any multicomponent liquid or gas mixture causes redistribution of the

components. The motion of the components leads to the establishment of a

concentration gradient which ultimately achieves a constant value that

depends on the thermodynamic and transport properties of the system. The

final concentration distribution is not uniform.

Thermal diffusion in salt solutions was first demonstrated by Ludwig

[1856] and was re-discovered by Soret [1879], who more thoroughly

investigated the phenomenon. Thermal diffusion of aqueous salt solutions

is often called the Soret Effect. Very few binary non-electrolyte

solution (Wereide [1914]), aqueous electrolyte and nonJelectrolyte

solution.systems (Eilert [1914]), were studied before World War II. The

Soret Effect has since been studied in liquid alloys (Winter and

Drickamer [1955]), in mixtures of molten salts (Hirota, Ma:sunaga, and



Tunaka [1943]) , and in solutions of macromolecules and polymers (Debye

and Bueche [1954], Gaeta and Cursio [1969]). Several studies have been

made of mixtures of organic liquids (Prigogine [1950], Rutherford,

Dougherty, and Drickamer [1954], Horne and Bearman [1962-68] , Turner,

Butler, and Story [1967], Turner and Story [1969], Johson and Beyerlein

[1978], Ma and Beyerlein [1983]). Thermal diffusion in gases is well

known and has been extensively investigated both experimentally and

theoretically (Furry, Jones, and Onsager [1939], Bardeen [1940], Jones

and Furry [1946], Crew and Ibbs [1952], Greene, Hoglund, and Halle

[1966], Rutherford [1973], Santamaria, Saviron, and Yarza [1976],

Navarro, Madariaga, and Saviron [1983]).

There are two major experimental thermal diffusion methods,

thermogravitational thermal diffusion (TGTD) and pure thermal diffusion

(PTD). PTD is characterized by a vertical temperature gradient directed

so that there is no density induced convection (for most mixtures this

requires that the system is heated from above). PTD is theoretically

simpler since the steady state concentration gradient is proportional to

the temperature gradient. The operational theory based on Onsager

thermodynamics has been developed by deGroot [1947] , Rutherford [1954] ,

Bierlein [1955], Agar [1960], Horne and Anderson [1970], and Navarro g;

11. [1983] for both electrolyte and non-electrolyte solutions. A good

summary of early work was given by Tyrrell [1961].

TGTD is experimentally quite different from PTD. In TGTD, the

mixture is contained between two vertical plates or two cylindrical

columns. The outer and inner surfaces are kept at different

temperatures. Thermal diffusion takes place horizontally. In solutions

of electrolytes, the solute usually moves towards t cold region and

solvent to the warm region. Because of the density gradient produced in



the horizontal direction by thermal expansion under the temperature

gradient, natural convection deve10ps due to gravity. The solute

enriched fluid nearer the cold wall descends to the bottom of the

column, and the less concentrated solution near the hot wall ascends to

the top of the column. Of the two vector components of the steady state

concentration gradient, the vertical component is independent of the

magnitude of the horizontal temperature gradient. The horizontal

component of the steady state concentration gradient is smaller than

what would be caused by PTD because convection reduces the concentration

difference. Clusius and Dickel [1938] invented this technique and

applied it to separate gaseous isotopes. The theory of TGTD for

separation of gaseous isotopic materials was developed by Furry;

Jones,and Onsager [1939] , and reformulated by Furry and Jones [1946] .

Uranium isotope separation by TGTD was of considerable interest in both

Germany and the United States during World War II. Bardeen [1940]

studied the time dependent theory of TGTD for gases.

The operational theory of TGTD for liquid mixtures was outlined by

Debye [1939], Hiby and Wirtz [1940], deGroot [1945] and Prigogine

[1950]. The theory was similar to that of gases. Horne and Bearman

[1962, 1966, 1968] developed the detailed operational theory of TGTD for

liquids at steady state. The phenomenon is a very complicated function

of the geometric parameters of the column and the physical properties of

the solution.

B. OBJECTIVES OF THE RESEARCH

Although the working theory of TGTD has been treated extensively, it

has not previously been approached using a full, rigorous nonequilibrium



thermodynamic analysis including time as a variable. All previous

approaches followed the general pattern of Furry, Jones and Onsager

[1939] , which was developed for gases. Only a few experimental TGTD

studies of electrolyte solutions have been reported (Hiorta, Matsanaga,

and Tanaka [1942, 1943, 1944, 1950], Gillespie [1941,1949], Alexander

[1954], Longsworth [1957], Gaeta, Cursio, Perna, Scala, and Belluccl

[1969, 1982], and Naokata and Kimie [1984]).

Thermal diffusion in electrolyte solutions has attracted a good

deal of attention because the Soret coefficient and the heat of

transport are important characteristics of ion-ion and ion-solvent

interactions for nonequilibrium situations. Interest in electrolyte

solutions has accelerated in recent years due to three developments: (1)

increased, efficient use of TGTD as a means of separating liquid

solution components (Naokata and Kimie [1984]); (2) improved approaches

to the long sought but so far elusive goal of an explicit usable

molecular theory of coupled mass and heat flows in mixtures (Wolynes

[1980] , Kahana and Lin [1981], Mauzerall and Ballard [1982], Calef and

Deutsch [1983], Fries and Patey [1984], Petit, Hwang, and Lin [1986],

and Kincaid, Cohen, and Lopez de Haro [1987]); and (3) the published

reports of Gaeta, Perna, Scala, and Bellucci [1982], whose TGTD

experiments appear to imply phase transition behavior in dilute sodium

chloride and potassium chloride solutions. Petit, Renner, and Lin

[1984] , using a pure thermal diffusion technique, and Naokata and Kimie

[1984], using a TGTD technique, did not find the behavior suggested by

Gaeta, et a1. Since Gaeta, et a1. and other TGTD experimentalists used

for [their experimental calculations only the very approximate equations

developed long ago for gas mixtures (Furry, Jones, and Onsager [1939])

and since the Gaeta, et a1 results are so intriguing, it is appropriate



to obtain accurate time-dependent equations for TGTD in electrolyte

solutions. The results may be readily adapted to nonelectrolyte liquid

mixtures and to gas mixtures.

The principal objective of the research reported here was to describe

TGTD of electrolyte solutions by equations based on the thermodynamics

of irreversible process and hydrodynamics. We formulate rigorously a

set of partial differential equations and upon applying certain

assumptions, we solve these differential equations analytically, . where

possible, to obtain the temperature, velocity, and concentration

distributions in a cylindrical TGTD column.

The results presented here should lead to a greater understanding of

TGTD in general. More specifically, it is hoped that these results lead

to clarification of the recent contradictory experimental results and

that the working equation derived from our theoretical results can be

used to calculate Soret coefficients at both the steady state and at

early time in a TGTD experiment in electrolytes.

C. PLAN OF THE DISSERTATION

Chapter 2 begins with some basic assumptions for the nonequilibrium

thermodynamic and hydrodynamic equations of TGTD . On the basis of these

fundamental assumptions, we formulate a set of TGTD transport equations,

and we discuss, in detail, the physical significance of these transport

equations. Because of the importance of boundary and initial conditions

the entire chapter 3 is devoted to them. In chapter 4, we obtain the

equation for the temperature distribution. The temperature equation is

solved analytically by a perturbation scheme. We give, for the first



time, a complete time and space dependent temperature distribution

functiLHI. Chapter 5 deals with the velocity distribution in the column.

Chapter 6 describes the steady state concentration distribution. The

concentration derivative with respect to the vertical variable agrees

with previous results (Horne and Bearman [1967]). The result presented

here is more complete than theirs.

we devote chapter 7 to the time dependent solution of the

concentration equation of a column without reservoirs. It is found that

the steady state result is independent of whether or not there are

reservoirs, and the result agrees with the steady state solution

derived in the previous chapter. Chapter 8 deals with the concentration

distribution in top and bottom reservoirs. The partial differential

equation for diffusion is solved, and it is seen that the

concentration distribution in the two reservoirs is a very complicated

function of reservoir dimensions and time. We show again that at steady'

state, the average concentrations in the reservoirs are the same as they

would be at the two ends of a TGTD column without reservoirs. For the

rest of chapter 8, we derive a working equation from which the Soret

coefficients can be determined, if the average concentration change with

time in the two reservoirs can.be measured. We also discuss the

contradictory TGTD experimental results.

Finally in the last chapter, we discuss the need for some numerical

calculations to obtain a better working equation as well as some of the

mathematical difficulties for deriving a limiting form for the sum of

the infinite series at small times.



C H A P T E R 2

FUNDAMENTAL EQUATIONS OI" TGTD

A. INTRODUCTION

In this chapter, we use the set of basic hydrodynamic and

thermodynamic equations to develop the theory of TGTD for liquids.

These equations can be found in the literature of thermodynamics of

irreversible processes and of fluid mechanics (de Groot and Mazur,

[1962], Fitts, [1962], Horne [1966]).

After presenting the fundamental equations of nonequilibrium

thermodynamics and of hydrodynamics, we transform the set of coupled

partial differential equations to the Hittorf reference frame, the frame

most suitable for electrolyte solutions. The transformed equations are

then solved under experimental initial and boundary conditions

appropriate to TGTD. In order to facilitate the solution, a number of

carefully specified assumptions and simplifications are made.

B. BASIC ASSUMPTIONS



The “thermodynamics of irreversible processes" could also be called

the "thermodynamic-phenomenological theory of irreversible processes",

for it consists of both a thermodynamic and a phenomenological part. The

thermodynamic part of the theory follows the terminology of classical

thermodynamics extended to the nonequilibrium regime. The

phenomenological part of the theory introduces a postulate new to

macroscopic theory, the "phenomenological equations" or the "Onsager

equations", which are mathematically expressed as

m

Ji-Eaijxj; (1-1,2,3-o-)

j-l

These homogeneous linear relations are the phenomenological equations,

where J1 is the ith generalized flux and XJ. is the jth generalized

driving force. The quantities a are called phenomenological

iJ'

coefficients or Onsager coefficients. Thus the assumption is the linear

dependence of the generalized fluxes on the generalized forces. The

generalized fluxes and the generalized forces all individually vanish at

equilibrium. The "Onsager reciprocal relations" aij - aji are motivated

by the molecular theoretical foundation ( especially by the notion of

microscopic reversibility ), and have been proved correct in all

experimental tests in near-equilibrium systems.

In general, matter in a gravitational, centrifugal, or

electromagnetic field constitutes a continuous system in which

properties such as concentration, density, pressure, temperature and the

chemical potentials depend, even in equilibrium, on the space

coordinates in a continuous way if we exclude the phase boundaries and



do not consider discontinuous fields. We restrict our derivations to the

case of time-invariant (stationary) conservative force fields, as

represented by the earth's gravitational field, the centrifugal field at

constant angular speed, and the electrostatic field. We assume isotropic

media and exclude the polarization of matter.

In a continuous system, intensive properties such as density,

pressure, temperature, and concentration depend on the space coordinates

in.a continuous manner.fflnun those quantities are, in general,

functions of time and position for irreversible processes. Only in the

case of a steady state are intensive state functions constant in time,

although they still may depend on the position coordinates. In summary,

the general assumptions are:

(1) The system is isotropic.

(2) External force fields are constant in time.

(3) Electric and magnetic polarization of the material do not appear.

(4) For electrical phenomena, the Lorentz force which acts on moving

charges in magnetic fields, can be neglected.

(5) The irreversible processes take place near equilibrium.

(6) Electrical fields can be neglected for TGTD of electrolyte

solutions because of bulk electroneutrality.

C. MASS BALANCE

For a continuous, isotropic, nonreacting binary mixture, the

equations of conservation of mass are
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ac

-—1 + V-(ci vat - 0 , 1 a 1, 2 . ( 2 - 1 )
i)

where Cl is the molar density of component i and V1 is its local vector

velocity. The operator a/at denotes the derivative with respect to time

at fixed position, so the equation is a local balance equation. The

barycentric velocity v is the mass-fraction sum of the component

 

velocities.

‘v - wlvi + w2v§ , ( 2 - 2 )

with

xiMi
wi - M - ciMi/p , i - 1, 2 ( 2 - 3 )

where w i is mass fraction, xi mole fraction, Mi is molar mass of

component i, M is mean molar mass,

and p is density,

where V is the molar volume of the solution. The equation for

conservation of'total.mass is obtained by summing Eq. ( 2 - 1,2, and 3
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), with the familar result

3% + V-(pv) - O . (2-6)

Eq. (2-6) is the local total mass balance equation, which is called

the equation of continuity of matter in hydrodynamics. If we introduce

the diffusion current density or diffusion flux

B .
ji - ci( vi - v ) , 1 - 1, 2

with v defined by Eq. (2-2), then Eq. (2-1) becomes

— + V-(civ)+V-(j§)-0.

D. MOMENTUM BALANCE

A general form for momentum balance is:

8v

p—— + pV‘VV + v-n - E c.K = 0 ,

at 1 1

(2-7)

(2-8)

(2-9)

where v is the barycentric velocity, Ki is the molar external force

acting on species i , and II is the pressure tensor, which for viscous

fluids is (Fitts, [1962]),
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n-[(%q-¢)V-V+P]l-2nsym(VV). <2-10)

where n and o are, respectively, the shear and bulk viscosity, 1 is the

unit tensor, P is pressure, and

sym(Vv)-%(Vv+VvT), (2-11)

where (vv)T is the transpose of Vv. Eq.(2-9) becomes, with Eq.(2-10),

av

p—+pv0Vv+V-[(§‘n-¢)V-V+P]1-2VOnsym(VV)-§c.l(.-O , ( 2 - 12 )

at l 1

The term E ciKi is the resultant of the force density of the external

forces.

The equation of momentum balance for a Newtonian fluid subject to no

external field except gravity leads to the equation of motion (Horne

[1966]).

8v 2

p-—+VP+pg&Vo[(-n-¢)V-v]+pvav-2V-nsyva=0 , ( 2 - 13 )

at 3

where g represents the gravitational field.

E. ENERGY BALANCE
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The most useful form of the equation of energy transport for

experimental purposes is (Horne [1966]),

J
o
:

£1

at<
l
l
u
0
3

“FVbVT-av'VP-agg-(n3Pl):Vv+V-q

+J?-V[fi.-<M1/M2>fi2]-o <2 - 14>

where Cpis the molar constant pressure heat capacity, T is the

temperature, a is the thermal expansivity,

(aV/a'l')?’x1 (c9/J/c'3T)p,x1

a__.,__ _-— (2-15)
V p

The thermal and mass flux terms in Eq.(2-4) contain the heat flux q and

the molar diffusion flux j? relative to the barycentric velocity, which

is given by Eq.(2-7). Note by Eq.(2-2,3,and 7),

B B

M1.11 + M2.12 ' 0- ( 2 ' 16 )

The last term on the left hand.side of Eq (2-14) contains the partial

molar enthalpies H1 and H2; this term is proportional to the heat of

mixing (Ingle and Horne [1973]; Rowley and Horne [1980]).

F. ONSAGER EQUATIONS
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The Onsager equations that relate the heat and matter fluxes to the

partial derivatives of temperature and chemical potential are:

B

T

B

' jg - Ozlval + 022VT/J2 + 020VIDT, ( 2 " 17 )

with

VTpi-Vpi+§iw, (2-18)

where ”i is the chemical potential of component i and §i is its partial

molar entropy.

The Onsager coefficients Oi]. are not all independent (Bartelt and

Horne [1969]),

1 1 1 1

2 2

E MiMj oij - o - E MiMjOij ( 2 - 19 )

1-1 j=1

In the independent Onsager coefficients 002,(h¢, and.000, Eqs.(2-l7)

become
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'12--[VTflz‘(“z/M1)vf#1]012(Mi/M2)+020V1nT - ( 2 - 20 )

Now (Horne [1966]),

vffll ‘ V1VP ‘ (x2/x1)p22vx2 ‘ M18

Vfflz ' V2VP ' (x2/x1)p22Vx2 ‘ M28 ( 2 ’ 21 )

where

ng-(ap22/8x2)T P=(RT/x2)[1+(61nf2/61nx2)T P] ( 2 - 22 )

and f2 is the mole fraction based activity coefficient of the solute. In

the experimentally measurable properties mole fraction, pressure, and

temperature, Eqs.(2-20) become:

pi#22 V2 V1 V1

x1M1 M2 M1 ( 2 _ 23 )

B fiflzz v2 V1

'j2-'01 2mvx2 ‘01 2M1[M—2-'M—1']VP+02 OVIHT .

G PRACTICAL TRANSPORT EQUATIONS

Although Eqs.(2-1,l3,14, and 23) suffice as the differential
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equations for TGTD in a binary fluid system, they are not those used in

practice. In this section we first convert to more common transport

parameters such as the mutual diffusivity D, the Soret coefficient a,

and the thermal conductivity x. In order to identify the Onsager

coefficients of Eqs.(2-23) with conventionally tabulated parameters, it

is necessary to define precisely the experimental conditidns that

underlie the various definitions. A particularly important result of

this section is the identification of the Soret coefficient 0*

determined in TGTD experiments on electrolytes.

The thermal diffusion factor a2 is defined(Horne and Bearman [1962])

by the experimental equation for the steady state of one-dimensional

pure thermal diffusion experiment in the absence of a pressure gradient,

dx2 dlnT

dz ' “2x1“ dz ( 2 - 24 )

By Eqs.(2-27 and 28)

M2

- 0 0 =———— . 2 - 25a2 ( 20/ 12)[ Mx2p22 ] ( )

Note that (11 - -a2 when 021 is defined by the equation symmetric to

Eq.(2-24). The Soret coefficient is simply (deGroot [1945], Haase

[1969])

a-az/T <2-26)

The sedimentation coefficient 52 is defined by the experimental
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equation for the isothermal equilibrium one-dimensional composition

gradient due to a pressure gradient,

 

dxz dP

3;“ - -szx1x2E; ( 2 - 27 )

whence

[M1M2 ][ \7, V1] (2 28

s - ~ "“ - - . -

2 Mx2/‘22 M2 M1 ' )

Again, 31 - -52 if 51 is defined symmetrically. Note that $2 is not a

transport property since sedimentation is an equilibrium phenomenon.

'To obtain the relationship between 012 and the mutual diffusion

coefficient D defined by Fick's Law, consider the Fickian flux j?

defined relative to the volume velocity vy,

j: - ci(‘vi - vV ), vV - clVl'vl + c2V2v2 . ( 2 — 29 )

where ciVi - ( xiVi/V ) is the volume fraction of component i. Fick's

First Law is the experimental equation for the relationship between the

one-dimensional Fickian diffusion flux j: and the concentration gradient

in a binary, isothermal, isobaric system,

11; - D( dci/dz) (2 - 30)
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By Eq.(2-33),

~ F ~ F

V111 + V232 ‘ O ( 2 - 31 )

the definition of D in Eq.(2-30) is consisternzxvith Eq-(2-31) and the

general Gibbs-Duhem result for uniform temperature and pressure

V1dc, + v2dc, - o . ( 2 - 32 )

The relationship between the Fickian diffusion fhncjg and the

barycentric molar diffusion flux jgis

jg - p( V,/M, )jg . ( 2 - 33 )

where we have used Eqs.(2-7,l6, and 29).

To complete the relationship between D and 012, we need the

relationship between dxz and dc2, which we obtain from x2 - CQV auui the

chain rule for dV

av - ( V, - V, )dx2 + a VdT -3 VdP , ( 2 - 34 )‘

where 6 is the isothermal compressibility. Then

Vac, --( v,/v )dx, - x2e dT + x28 dP . ( 2 - 3s )
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For the one dimensional, isothermal, isobaric Fick's experiment, from

Eq.(2-34,36 and 38)

- 35 - [Ml/(pV>ID[V1/V21<dx./dz> . < 2 - 36 )

or

- J? - [Ml/(fiv>10<dx2/dz> .

and by Eqs.(2-25 and 23),

Vii2fl22

] ( 2 - 37 )

D - - 012[ x1M1M2

The heat of transport Q* is experimentally obtained, in principle,

by determining the heat flux due to matter flux under isothermal

conditions. Thus (Bearman, Kirkwood, and Fixman [1958], Rowley and Horne

[1980]), for VlnT - o,

*

q - Qiji ( 2 - 38 )

and by Eq.(2-24),

  

* M2 Q02 2 39

Q" '[!h ][Q.J ' ‘ ' ’

By Eqs.(2-16 and 42),
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Q’f--(M1/M2>Q’§. (2-40)

With Eqs.(2-25 and 39) Onsager reciprocity implies

* fixzflzz

Q2"[—]02- (2-41)

Two thermal conductivity parameters must be distinguished, in

principle, in thermal diffusion experiments. At the beginning of the

experiment, when no chemical potential gradient has developed, Fourier's

First Law is

- q - nOVT ( 2 - 42 )

and, by the first of Eqs.(2-24).

K0 - Goo/T ( 2 ‘ 43 )

At the steady state of a thermal diffusion experiment, the diffusion

flux vanishes and Fourier's Law in the form

-q-rcmVT, (2-44)

combined with Eq.(2-20) yields

 

002020 002020 ],1

"m ‘ [ 000 + (Mz/M1)[ 012 ]]T = "o + (Mz/M1)[ "ffi:;
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*

- no + x1x2[ Vi )anD . ( 2 - 45 )

With "practical" transport parameters replacing Onsager

coefficients, the flux equations are

M
B 1

- 12 - [ z: ]D[ Vx2 - XlxzaVI + x1x2529E ] ( 2- 46 )

Following is a summary of theerelationships between the Onsager

coefficients and the practical transport parameters:

M1M, MIT

012 ' ' x1x2[ ;;;;;§fi2]0 . 020 ' ' x1x2[ -§fi_ ]UD

M? *

Although the volume frame of reference is the basis of Fick's Law

and is the reference frame of choice for concentrated electrolyte

solutions and for non-electrolyte mixtures, the Hittorf frame, with the

solvent velocity as reference velocity, is the better choice for dilute

solutions. Moreover, the composition variable usually chosen for dilute

solutions is the molar concentration c2 rather than mole fraction x2.

With Eq.(2-34), the first of Eq.(2-45) becomes:

MV
B 1 ~ ~

-j2-[vlfi]D[Vc2-(clczvla-c2a)VT+(c1c2V1s2-c23)VP]. ( 2 - 48 )
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The Hittorf diffusion flux is defined by

H

32 ' C2( v2 ' v1 )- ( 2 ' 49 )

To obtain the relationship between the Hittorf flux and the molar

‘barycentric fluxq it is useful to add and subtract V'in Eq.(2-49), and

to use Eq.(2-l6), where

3’2 - c2[v2-v-(v1-v)]-jE-(c2/c1)j?

C2M2B .13 ~ .
- j: + c m 32 == [M/(x1M1)J§ . (2 - 50)

1 1 .

 

Note, for later use, that

v-w1v1+w2vz--w1(v2-v1)+v2--(w1/c2)j}2{+v2 ( 2 - 51 )

or

x1M1 CIMI

C2V2-C2W R jz-C2v+ p j2 . ( 2 ' 52 )

By Eqs.(2-48 and 50),

H * * *

-j2-D (Vtz-cza VT+c252VP) , ( 2 - 53 )

where

* ~

D ' D/( Clvl )
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Note that c1171 is the volume fraction of solvent and is nearly equal to

unity. Even for 0.5 M sodium or potassium chloride solutions, however,

the difference, 1 - clV1 - c2V2 is about 0.02, and for 1”()li solutions

is about 0.04. It is thus not prudent to replace of], with 1 if 1% or

better accuracy is desirable.

'The equation of mass concentration for the solute is, from Eq.(2-

1).

302

5? + V-(czvz) - 0 . ( 2 ' 55 )

With Eqs.(2-52 and 53), this becomes

302 DM1 * *

'a—t’ -v.[v1—p [VCz'a C2VT+S C2VP]‘C2V]=O . ( 2 - S6 )

Eq.(2-56) describes the concentration distribution in space and in time.

Obviously, this equation cannot be solved alone because it is coupled

with equations for temperature, pressure, and fluid velocity.

H. SIMPLIFYING ASSUMPTIONS
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A typical TGTD apparatus is shown in Fig. 1. For the thermal steady

state the constant temperature TH of the inner cylinder, radius r1, is

maintained hotter than the constant temperature TC of the outer

cylinder, radius r2 (a.cylindrical jacket surrounds the apparatus). To

begin the experiment the apparatus is filled with a solution.of

concentration c3 and is allowed to come to isothermal equilibrium, which

is also the sedimentation equilibrium of Eq.(2-27). By Eq.(2-13)

aP/az - - pg ( 2 - 57 )

at mechanical equilibrium (Bartelt and Horne [1970]),and the pressure is

constant in both of the other two directions. By Eqs.(2-53 and 57)

( 2 - 58 )

] z -0.7 X 10“ m3kg—1 and sjpg z - 3.0 X 10"5m-1

(see table 2-1). Thus, c2 varies by only 0.003% per meter. This is

undetectably small in most thermal diffusion experiments. Similarly, for

R
I
F
-
<
1

] z —0.7 x 10-‘ m3kg-1 and sjpg z -2.0 x 10-5m-1. Thus,

for practical purposes, (1) the composition is uniform at the beginning

of the thermal diffusion experiment amml (2) pressure gradient

contributions to the composition gradient are always negligible..An

immediate consequence is that Eqs.(2-53 and 56) become
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ac2 DMI *

.2 [-—-[w]]

I. VELOCITY EQUATION

The equation for the convective velocity in a gravitational field is

Eq.(2-l3). This equation, as it stands, cannot be solved exactly because

it is nonlinear. Moreover, the quantities n and ¢ are functions of

pressure and temperature and in general '7 and 46 are not constant

throughout the fluid. In most cases, however, the viscosity coefficients

'vary only slightly in a fluid which does not contain large temperature,

composition, or pressure gradients, and they can then usually taken to

be constants. We do this here.

The next simplification comes from the so-called incompressibility

assumption. This is based on Eq.(2-6) and the chain rule equation for

the pressure dependence of the density of a pure isothermal substance.

At steady state,

Vp - pfl VP. ( 2 ' 60 )

The conservation Eq.(2-6) can be rewritten as

erv + v-Vp - 0 , ( 2 - 61 )

which, when combined with Eq (2-64), yields
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V-v-i-fiv-VP-O. (2-62)

Thus, if 8 - 0, then the fluid is incompressible and V-v - 0. It is

customarily assumed that the total density is constant throughout the

system. This would be ludicrous for TGTD because the chief driving force

is the thermal expansivity of the fluid. We do assume that the

divergence of the velocity vanishes in the steady state and also for the

time dependent state. Eq.(2-13) becomes

8v

p-—+pv-Vv-2V°nsym(Vv)+pg+V-P=O ( 2 - 63 )

at

For subsequent use, note that V-v= 0 implies that the vertical

component of v is independent of the vertical direction i_f the other

components of'v vanish.

J. THE TEMPERATURE EQUATION

The temperature equation has been discussed in great detail for both

TGTD and PTD (Horne and Bearman [1967], Horne and Anderson [1970]). The

chief simplifying result is that all terms but the first and V-q are

‘very small in Eq.(2-14). The initial heat flow is caused by the

temperature gradient. Since the steady temperature distribution is

established very quickly, the flow of heat is dominated by thermal

conduction rather than heat of transport or heat 5 mixing. Under these

assumptions, Eq.(2-14) yields
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5 3T

TSP _- o u -

v at ”“1 0, <2 64)

or

‘6 6T

=p — - O - -v at v (NW) 0, (2 65)

where n - - Goo/T. That is, we neglect both the contribution of the heat

of transport term and the difference between no and mm. Eq.(2-65) is the

well-known heat conduction equation of Fourier.

K. SUMMARY

In this chapter, we have obtained the three basic partial

differential equations describing TGTD for binary electrolyte solutions.

They are

‘ép 6T

V at - V-(nVT) - 0

av

p- + pv(-Vv) - 2V-qsym( Vv )1 - pg + V-Pl = 0

at

6c2 DM1 *

These three equations will be solved under experimental boundary and

initial conditions appropriate for TGTD.
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Table 2-1

Approximate values of some thermodynamic and transport properties

for'().5M binary aqueous NaCl and KCl solutions at 25°C. Solute is

component 2, solvent (H20) is component 1

 

 

Property NaCl soln. KCl soln. References

-2 -1
M1/10 kg.mol 1.80 1.80

-2 -1
M2/10 kg.mol 5.84 7.46

\7,/1o'5m3mo1’1 1.8 1.8 a

V2/10'5m3mo1'1 1.81 1.97 a

3 -3
p/lO kg m 1.02 1.02 b

p-1(ap/6c)T P /1o'5m3mol'1 3.9 4.5 c

a/1o"‘1<'1 -2.29 -2.86 d

p/lo'lopa'1 4 92 4.48 d

EP/103J.kgilx'1 4.03 4.1 e

n/1o‘lJ.s'1K'1m'l 6.04 5.99 f

x'1(an/aT)C/1o'3x’1 2.45 2.47 f

5 3
n'1(an/ac)T/1o’ m mo1'1 -9.2 -2.25 f
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Table 2-1 ( continued)

n/10'3kg.s‘1m‘l 0.93 0.9 g

-1 -1
n (an/8T)c/K -0.02 -0.02 g

n'1(an/aC)T/10'6m3mo1‘l 0.9 3.5 g

0/10'9m25'1 1.47 1.85 d,h

0'1(80/ac)T/10‘51:13mo1‘1 0.5 3.7 d,h

-1 -1 .
D (aD/aT)C/K 0.02 0.02 1

M1, M2, V1, V2 are, respectively, the molar masses of water,

salts, and partial molar volumes of water and salts, p the density , a

thermal expansivity, B isothermal compressibility, CP heat capacity, n

thermal conductivity, :7 shear viscosity and D diffusion coefficient of

the salt solutions.

Millero F.J., J. Phys. Chem. 74, 356(1970)

Timmermans , "Phys. Chem. Constants of Binary Systems", Interscience

Publisher Inc., New York (1960)

Batuecas T.,Iunh Real Acad. Cienc. Exactas, Fis. Natur. Madrid.,

61(3), 563(1967).



d)

e)

f)

8)

h)

i)
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Harned H.S., "Phys. Chem. of Electrolyte Solutions", Reinhold

Publishing Co., New York, 88(1958).

Simard M.A., and Fortier J.L., Can. J. Chem. 59, 3208(1981).

Out, D.J.P., and Los J M., J. Solution Chem. 9(1), 19(1980).

Kestin j., Sokolov M., and Wakeham W. A., J. Phys. Chem. Ref. Data,

7(3), 941(1978)

Rard J.A., and Miller D.G., J. Solution Chem. 8(10), 701(1979).

Estimated on assumption that the product nD is independent of

temperature



CHAPTER 3

BOUNDARY AND INITIAL CONDITIONS

A. GENERAL REMARKS

The set of partial differential equations that describe general TGTD

cannot be solved without experimental boundary and initial conditions.

The expression "experimental boundary and initial conditions" is

intended to imply that the conditions may vary under different TGTD

column designs and specific experimental operations. (Tyrell [1961],

Horne and Bearman [1962], Gaeta et a1 [1982], Naokata and Kimie [1984]).

The apparatus in question here (Fig.3-1) consists of two vertical,

concentric cylinders closed at both ends, and it contains an electrolyte

solution. At the beginning of the experiment the system in the TGTD

column is effectively homogeneous, which means that the temperature and

concentration are uniform throughout the annulus and the fluid is

static, and the convection velocity is zero. In fact, there is an

initial concentration gradient in the column due to the gravitational

force but this concentration gradient is experimentally undetectable, as

31
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already discussed in chapter 2. we assume that the apparatus is

cylindrically symmetric and that all physical properties are independent

of the azimuthal coordinate.

B. BOUNDARY AND INITIAL CONDITIONS FOR TEMPERATURE

The experiment starts when a horizontal temperature difference is

imposed by suddenly increasing the temperature of the inner wall

relative to the outer wall. For a brief interval, the temperature of the

fluid in the column remains uniform due to the time required for thermal

conductionLthrough the walls. This phenomenon is called the "warming-up

effect" (Horne and Anderson, [1970]. There is also a slight lag because

it is not possible experimentally to change the wall temperatures

instantaneously.

It is, nevertheless, possible to determine empirically the time

required for both the inner wall and the outer wall to reach their

steady state temperatures. This time depends for both walls on the

column material and thickness as well as the means of maintaining the

temperatures of the inner and outer walls. A useful way to take account

of the warming-up effect is (Horne and Anderson [1970])

l -t/‘rH

TH(r1,t) - TM + §AT( l - e )

1 -t/rC ( 3 - l )

TC(r2’t) - TM - 2AT< l - e ) ,

where AT is (TH-TC), the applied temperature difference, TM is the
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arithmetic mean temperature, and TH and r are, respectively, the
C

relaxation times at the hot and cold walls, best obtained

experimentally. Usually the walls reach their steady state temperature

distribution much sooner than the over-all system attains its steady

temperature distribution. The initial condition for temperature is

T(r,t-0) - T ( 3 ' 2 )M .

Eqs.(3-l and 2) are the boundary and initial conditions for the

temperature equation given by Eq.(2-69).

C. BOUNDARY AND INITIAL CONDITIONS FOR VELOCITY

The initial condition for velocity stems from the requirement that

at zero time, the system in the TGTD column is uniform, and there is rm)

convection. Then the vertical and radial components of'v are initially

vz(r,z,0) - 0 - vr(r,z,0) . ( 3 - 3 )

Because the fluid is contained within the column, all velocity

components vanish at the cylinder boundaries:

Vr(r1,z,t) = 0 . Vr(r2,z,t),

vr(r,0,t) - 0 - vr(r,L,t),

Vz(r1,z,t) - 0 - vz(r2’zvt)v
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vz(r,0,t) - 0 - vz(r,L,t). ( 3 - 4 )

D. BOUNDARY AND INITIAL CONDITIONS FOR CONCENTRATION

“For concentration, the experimental initial condition is that at the

beginning the concentration is uniform when we ignore the sedimentation

equilibrium concentration distribution.

c2(r,z,0) - cg . (3 - 5)

We can say nothing a priori about the concentration at the boundary

at any time later than zero because the concentration varies at every

point of the boundary. This causes no difficulty, however, because the

theoretical boundary condition is that the diffusion flux perpendicular'

to the wall vanishes at the wall for all times. This is because neither

the solvent nor the solute leaves the column. Thus the boundary

conditions for concentration are

j§r(r1,2,t)- O - jgr(r2vzst)9
(3 " 6 )

where jgr is the radial component of the flux jg. The vertical component

of the flux vanishes at the top and bottom of the apparatus. The

presence or absence of reservoirs determines the form of the

corresponding equations. We deal with this in chapters 7 and 8.
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Figure (3-1)

Schematic profile of TGTD apparatus (not to scale). Radius r1 is

maintained at higher constant temperature T the outer cylinder radius
R)

r2 is maintained at lower constant temperature TC' 26r=a is the

annular spacing and h is the height of the reservoirs. (We assume that

the two reservoirs are identical).
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A. PERTURBATION SCHEME

In general the thermodynamic and transport parameters are not

constants, but instead, they depend on composition and temperature. To

take into account the temperature and composition dependences of

coefficients, we formally use the perturbation scheme of Horne and

Anderson [1970], which is based on the fact that the thermodynamic and

transport properties vary only slightly with composition and

temperature. For any coefficient L, we write

L-i+e[(T-TM)LT+(c,-cg)ic]‘

+£2[%(T-TM)2£TT+(T-Tk)(C2’C3)£Tc+%(CQ-Cg)2£CC]

+O(e3), ( 4 - l )

where

37
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L - L( TM,cg ),

- 21 ' - QL
LT a [ 6T ] TM,cg ’ LC 3 [ 6c2]TM,c2 ’

- ELL - _L_2L

LTT ' [ 6T2 ] TM,cg ’ LTC ' [ aTac2 ] TM,cg ' ( 4 ‘ 2 )

with TM the mean temperature, and c3 the initial uniform concentration

A

of solute. When 5 = 1, L - L. Except for the ordering parameter c,

Eq.(4-1) is simply a Taylor’s series expansion of a property L about the

mean temperature and initial concentration. For the variables T and C?

the perturbation expansions are

T-TM+0, 6-00+€61+€292+€363+... (4-3)

c2 - cg + 1, 7 - 70 + £11 + 6272 + 6373 + . . .

Substitution of Eqs.(4-3) into Eq.(4-1) yields

L-L+e o ' +7 1 +52 192' +7 0 ' +l721 +9 ’ +7 1
011 °c 2°LTT °°ch2°cc 1L1 10

+0(€3). ( 4 - 4 )

The partial differential equation for temperature, Eq.(2-69)

becomes, in cylindrical coordinates,
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ET _ 2L T

at r ar[ n ari] ’ ( 4 ' 5 )

where

Since mass diffusion is very slow compared with thermal conductirnl, the

concentration terms in Eq.(4-4) have no effect on the temperature

distribution at the outset. Moreover, neither v nor n is sufficiently

dependent on concentration that the small concentration.gradient.at

steady state has any discernible effect on the steady state temperature

distribution. Substitution of Eqs.(4-3 and 4) into Eq.(4-5) yields, with

neglect of concentration terms,

as, 80, ac,
- l

at +Eat +5 at +O(e ) [u+evT00+c (uT01+2uTT60)]

xlé‘ E+ex 0 +52(n 0 +ln 62) X raga-Her331+e'"rifl2
rar T ° T 1 2 TT 0 8r 6r 8r

+0(€3) . ( 4 - 6 )

The zeroth-order equation is

80, as
_ _ "ll. r_°

at wcr ar[ 6r ’ ( 4 ' 7 )

with boundary and initial conditions

00(r1,t)-%AT[1-e-t/T]; 00(r2,t)=%AT[e-t/T-l]

00(1‘. '0)-0 . (4 -8 )
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where we assume that the warming-up relaxation time T - Th ‘Tc is the

same at the inner wall as it is at the outer.‘This assumption is

experimentally testable, and may be removed, if necessary, vdthout

appreciable increase in complexity.

The first order equation is

as, 89 a 80 aa
_ _--_a_ r—1 -_°L r_° - 12. _° _

6t V~r6r[ 8r ]+VTKr 6r 6r +V'cTrc’ir raoar ’ ( 4 9 )

with boundary and initial conditions

o,(r,,c)-0-o,(r,,c); a,(r,,0)=0 . ( 4- 10 )

The second order equation is very similar, and like Eq.(4-9)

contains terms involving lower order solutions. We shall demonstrate

that the maximum contribution of 01 to the temperature distribution is

negligible and shall then neglect 01 and all higher order contrdlnitions

to the temperature distribution.

B. STEADY STATE TEMPERATURE DISTRIBUTION

We first solve the steady state problem for 00 and 01. At steady

state,

d 80,

a;[ r5; ] = O , ( 4 - 11 )
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with

a, ( r, ) - 1AT;00( r, ) - -%AT . ( 4 - 12 )

The steady state problem for 01 is

d0 n d0

L r—1 —.—I d— —o - -

dr[ dr ] + n dr[ ro°dr 0 ’ ( 4 13 )

with boundary condition Eq.(4-10).

The solution of the zeroth order steady state equation is

60 - - [ I:T%f7f:7 ][ 1n( r/./r2r1 ) ]. ( 4 - l4 )

For 91 the solution is

o,--%(nT/k) IEIEI7EIT] [1n( r/r2)]ln(r/r1) ( 4 - 15 )

The maximum contribution of 01 to T occurs at i» - /r2r1, the geometric

mean annular radius, and is

o.< i ) - %< nT/k >< AT )2 ( 4 - l6 )

For ( nT/n ) - ( alum/6T )TMz 0.002/K and AT z 10K, ( 01 )max z 0.05K.
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This is negligible compared with T z 300K.
M

For thermal diffusion, the temperature gradient is more important

than the temperature itself. It is therefore necessary to compare the

derivative r( dao/dr ) with r( dal/dr ). By Eq.(4-14)

80,

r; - -AT/1n( rz/r1 ) - ( 4 ' 17 )

By Eq.(4-15)

do, _ AT 2 _

r5?” - - ( KT/ n )[ I;7;;7;:; ] 1n( r / r ) . ( 4 - 18 )

Thus, in the steady state,

rig-rE%--[AT/ln(r2/rl)][1+(nT/E)[AT/1n(r2/r1)]ln(r/r)].( 4 - 19 >

The maximum contribution of the first order term occurs at the walls,

where the bracketed term in Eq.(4-l9) becomes [ 1 i %( nT/ 2 )AT ].

For ( nT/ R ) - 0.002I(—1 and AT - 10K, the maximum contribution of 61,

to the gradient is less than 1%.

Further insight into the steady state temperature gradient is gained

by converting the logarithmic radial dependence to a linear form by

using a transformation similar to that of Horne and Bearman [1962].

r - res , s - 1n( r/r ); i = frzr1 , s(rl) = -6
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s(r2) - 6 , 5(2) = O , (rz/rl) = e26 , ( 4 - 20 )

-5-8'-. -
rz-rl-r(e -e )=2r31nh6z2r6-a ,

then

a. - -s< 9% ); a. - %< 4T / k >< 52 - s2 )< fi§ >2 < 4 - 21 >

and

T-TM-s(%§)+%<nT/k><62-s2)(%%>2

-TM-%(AT)(s/6)+%(nT/k)(AT)2[1-(s/6)2] ( 4 - 22 )

Further,

35--<%§)[1+%<~T/k><41><s/6>]- ( 4 - 23 )

[
N
I
H

2:
12
;

C. TIME DEPENDENT TEMPERATURE EQUATION

The zeroth order time dependent temperature problem with initial

and boundary conditions is displayed in Eqs.(4-7 and 8). Since the first

order contributions are negligible in the steady state, we henceforth

retain only the zeroth order term. We solve the zeroth order time-

dependent problem by Laplace transform. Multiplication of Eqs.(4-7 and

8) by e-pt and integration from zero to infinity yields

(0

80 80

-pt_° _, -pt 1 L ]._°

e atdt I e Qr ar[ 6r dt ’

0
%
8

0

Q m

I 00(r1,t)e-ptdt - I %AT[ e-t/T - l ]e-ptdt , ( 4 - 24 )

o o
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Q

J00(r2,t)e-ptdt "

0

%AT[ 1 - e't/' ]e'ptdt ,

0
"
—
0
8

where p is a complex number, Q-wc, and we drop the subscript for 0.

Integrating the left hand side of the first equation of Eqs. (4-24) by

parts, and defining

Q

0 - I o e'Ptdt , ( 4 - 25 )

o

and then performing the integrations for the two boundary conditions, we

obtain the transformed differential equation and boundary conditions.

 

_fld2 1.51% A

dr2 + r dr ' on - 0 ’

A A1 1
9(r1:P)"2[p(p7+1)], (4'26)

I
D

H

 

A l

0(r2:P)" 2[p(p1’+1)]

The transformed partial differential equation is an ordinary

differential equation with two constant boundary conditions, which can

‘be solved easily. The solution of Eqs.(4-26) is a linear combination of

modified zeroth order Bessel functions of the first and second kinds

(Watson [1958], Abramowitz and Stegun [1970]),

2 (r,p) - AIO(Ar) + BKO(Ar) ,
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A2 - p/Q . ( 4 - 27 )

The two constants are obtained from the required boundary conditions,

with the result

 

3(1. )-
AT

x

'9 2p<pr+1>[K0<Ar2>Io<Ar1>‘Ko<*r1>lo(*r2)1

{K0(Ar)[Io(Ar1)+Io(Ar2)]-I0(Ar)[K0(Ar,)+Ko(Ar2)]} . ( a - 28 )

For greater simplicity of notation, we write

AT

”Wmf(r,p) .

f(r,p) K0(Ar)[10(Ar1)+Io(Ar2)]-10(Ar)[K0(Ar1)+Ko(Ar2)]}G(r,p)-'1

G(r,p)-K0(Ar2)Io(Ar1)-K0(Ar1)Io(Ar2) . ( a - 29 )

'To obtain the solution for 0 (r,t), we must find the inverse transform

of Eq.(4-29). That is, we must evaluate the inverse transform integral

a (r,t) - 5%?19 e pto (r,p)dp . ( 4 - 30 )

The integral is performed along any simple closed contour 6 around po

described in the positive sense, such that the integral is analytic on

the contour 6 and interior to it except at at the point po itself, where

p0 is a singular point in Slde the contour.. The straightforward way to

evaluate Eq.(h-BO) is by Cauchy's residue theorem,
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o (r,t) - 5%; 0 e+pt00(r,p)dp - E pn<r.t>. ( a - 31 >

n

where pn(r,t) is the nth residue of the integrand, at the rnfli isolated.

singular point of the integrand. From Eq.(4-29), this integrand is

ATept

2p(pr + 1) f(r,p) . ( 4 - 32 )0 (r,p)ept -

The singular points for 9 (r,p)ept are those that make the denominator

vanish. These singular points are those at p - O, p - - l/r as well as

those such that

f(r,p) - m

or C(r.P) ‘ K0(Ar2)Io(Ar1) ' K0(Ar1)lo(xr2) ' 0 ( 4 ' 33 )

The next step is to evaluate the residues (Spiegel [1964], Churchill,

Brown, and Verhey [1974]). Because the integrand has a simple pole at

p-O, the residue there is

Zim pATept

p + 0 2p(pr + 1)

ii “ t
p<r.c.0> - p T 0 pa <p.r>ep - f(r,p)

£im ATept

- p 4 0 2(pT + 1) f(r.P) ( 4 ' 34 )

or

m K0(Ar)[10(Ar1)+Io(Ar2)]-Io(xr)[K0(Ar1)+Ko(Ar2)]

‘

2

p +0 K0(Ar2)IO(Ar1)-K0(Ar1)Io(Ar2)

 

r

( 4 - 35 )
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From Eq.(4-27), A.approaches zero as p approaches zero, and we can use

the limiting forms for Bessel functions of small arguments.

RIu(z) (z/2)”/r(u + 1), v ¢ - 1, - 2, - 3, . . .

Ko(z) z - lnz , ( 4 - 36 )

where F(u + 1) is the Gamma Function of order v. Of course, 10(2)»1 as

 

2+0. Then

p(r c 0) - .1 21m ' 21“(*r) ' [ ' 1n(xr‘) '1n(xr2) ]. . 2 p 4 o [ - 1n(Ar2) + 1n(Ar1) ]

1n r r /r2 » '
AT [ 1 2 1 AT _lairzrl_ . ( 4 - 37 ) 

' ‘5 1n( r,/r2 ) ‘ 1n(r1/r2)

This is the residue at p - 0.

The pole at p - -l/r is also a simple pole, so

p<c.-1/r> - gif(_1/,)( p + 1/r >0 (r.p>ept

41 -t/7 21m i2_:_lALi

2 ‘ p »<-1/r> p<pr + 1) f‘r’p)

- - AI .-t/' 11m f(r,p) . < a - 38>
2 p *(-l/r)

Now as p+(-1/r), then A+i/J(7Q) by Eq.(4-27).

Let

X - 1/(JTQ) . < a - 39 >
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Then A-vii as p»(-l/r). Some of the useful Bessel Function identities

that permit conversion between real and complex arguments are

10(2) Jo(iz) )

J0(2) ‘ Jo(‘z) ,

H;(z) Ju(z) + iYV(z) ,

( 4 - 4o )2

Hv(z) JV(z) - iYV(z) ,

5. «vi/2 1 .
KV(z) 21e Hy(1z)

1 mni sin(1-m)yn.1 sinmun 2

Hu(ze ) - sinyw dv(z) - sinvn Hu(;) ’

 

where JV and Yu are, respectively, Bessel functions of the first and

1 2

second kind of order v, and Hy(z) and Hv(z) are, respectively, Hankel

functions of the first and second kind of order v.

Of specific use for evaluating p(t,-1/r) from Eqs.(4-38 and 29) are

- - - 2 -

Io(iAr) - J0(Ar) , Ko(iAr) - -(n/2)iHo(Ar) . ( 4 - 41 )

These yield, for G(-1/r)

G(-1/r) - Ko(iir,)10(iir,) - Ko(iir,)10(iir2)

- n/2[ Jo(i r,)Yo(ir,) - Jo(ir,)Yo(ir2) ] . ( 4 - 42 )

Similarly, the numerator of f(r,-1/r) is, from Eq.(4-29),
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Ko(iir)[10(1Xr,)+10(iir2)]-Io(iir)[Ko(iir,)+xo(iir,)] -

«/2{Jo(ir)[Yo(ir,)+yo(ir,)]-Yo(ir )[Jo(ir,)+Jo(ir2)]}. ( 4 - 43 )

Then the residue at ~1/r is

p<r.c.-1/r) - - fil e't/' f(r.-1/r>, < 4 - 44 >

v ‘i —

_{J0(Sr)[Yo(ir,)+yo(ir,)]-Yo(ir )[Jo(ir,)+Jo(ir,)]}

f(r.-1/r) ~ _ _ _ - .

[J0(A r2)Yo(Ar1)-Jo(Ar1)Yo(Ar2)]

The last set of singular points contains those that make G(r,p)

vanish. We must evaluate the residues at these singular points as p

approaches any one of the roots of G(r,p). In general, the procedure for

evaluating residues at these roots is algebraically very tedious, and is

not of great interest. In fact, we work out the residues here because of

the absence of published results in the literature; the method, however

is available (Bateman [1954] , Roberts and Kaufman [1966]). We assume

that there are no duplicate roots, that all roots are real, that all

roots are isolated, and that the derivative of G(r,p) exists as the

argument approaches any one root. Rewrite Eq.(4-29),

 

A pt _ ATept a Ngr,t,pz

o (r:P)¢ 2P(PT + 1) f(r:P) D(r,p) v ( a ' 45 ).

where the numerator is

N(r,t,p) - [K0(Ar)[ 10(Ar1) + 10(Ar2) ]
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- Io(Ar)[ K0(Ar1) + K0(Ar2) “(Hept , ( 4 - 46 )

and the denominator is

D(r,p) - 29(pr+1)G(r.p)

With these definitions, the residues can be evaluated

flimt N(r.t,Q)
, 4 - 47

pe -q§ dD(r.p>/dp ( )
pn(t.r) -

where -q; is the nth root of G(r,p), and pn‘t,r) denotes the residue at

the nth root of G(r,p).

We evaluate dD(r,p)/dp first.

dD/dp - 2p( pr + l )[ r2K5(Ar2)lo(Ar1) + r1K0(Ar2)Ié(Ar1)

‘ r1K6(Ar1)Io(Ar2)~r2Ko(Ar1)16(Ar2) ](dA/dp)| 2

P ' -qn

- (Qp51/2 p< pr+1>[r2K5<Ar2>Io<Ar1>+r1Ko<Ar2>Ia<Ar.)

- r1K6(Ar1)Io(Xr2)-r2Ko(Ar1)15(Ar2)] ( 4 - 48 )
-_2

p qn

Here K5 and 16 denote respectively the derivatives of K0 and Io with

respect to Ar. In deriving Eq.(4-47), we have used the fact that D(r,p)

vanishes for p = -q; and Eq.(4-33). Now define
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E - r/JQ ( 4 - 49 )

and rewrite Eq.(4-48) with the help of Eq.(4-27)

dD/dp - Jp<pr+1>[E2[K5(JpE2>Io<Jp?1>-K.</pE.>Ia</pE.>]

+¥1[Ko</p?2)Ia</pr1>-Ka</p?.>Io<JpE2)]]p_,q2 .( 4 - 50 >

n

As p+-q: , one has to consider two cases for Jp.

Case 1: Jp 4 iqn.

Case 2: /p 4 ~iqn.

For case 1 Eq.(4-47) is

dD/dpl g-iq<-rq§+1)[E2[Ka<ian2>Io<ian1>-Ko<ian.>Ia<ian2>]
p+-q

+E,[Ko(1an,)15(ian,)-K5(ian,)Io(ian,)]] . ( 4 - 51 )

Using the relations among Bessel functions

16(2) - I1(Z) , K6(Z) ' ”K1(Z) , ( 4 ' 52 )

then

dD/dpl pi_q;-iqn(-rq;+1)[E1[Ko(iqn?2)11(iqn?1>+K1(iqn?1)Io(iqn?2)]-

E,[K,(ian,)Io(ian,)+Ko(ian,)I,(ian,)]] . ( 4 - 53 )
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To rewrite Eq.(4-50) in terms of the Bessel functions of'tflua first and

second kinds, we use

IV(z) - e'(”"i)/2JV(12), -« < arg(z) s w/Z

Jy(zem"i) - em"”iJu(z), m - i 1, i 2, . . - ( 4 - 54 )

mni -mxui

) - eYu(ze YV(z) + 2isin(mun)cos(vn)JV(z)

Making use of these relations and Eqs.(4-37), then

Kl(ian1) - “/2[ J1(an1) + iY1(an1) ] ,

K,(ian,) - «/2[ J,(an,) + 1Y,(an,) ] , ( 4 _ 55 )

Ko(iqn?,) - in/2[ Jo(an,) + 1Yo(an,) ] ,

Ko(ian,) - in/2[ Jo(an,) + iYo(an,) ]

Thus we have converted, for case 1, the modified complex Bessel

functions of the first and second kinds into the Bessel functions of the

first and second kinds, which involve no complex arguments. The same

work must be done for case 2, namely, for /p = -iqn. Substituting Jp - -

iqn into Eq.(4-47) we derive

dD/dp--iqn(l—q:r)[E2[K5(-iqnf2)IO(-iqnfl)-Ko(-ian1)Ia(-iqn?2)]+

El[Ko('iqn;2)16('ian1)'K6(‘ian1)Io(‘iqn;2)]]p__q:
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--iqn<1-qgr>[E2[-K.<-iqn?2>Io<-iqn?1>-Ko<—ian.>I.(-iqn?2>]+

f1[Ko(-iqn§2)Il(-iqnfl)+K1(-ian1)Io(-ian2)]]p__q: . ( 4 - 56 )

For case 2, we need to convert K1, K0, 11, I0 into J1, J0, Y1, Y0. These

relations can be worked out, but we omit the details and only list these

relations

Io(-ian) - Jo<qn?) , I.<-ian> - -J1<an> .

Ko(-ian) - in/2[ Jo(an ) + iYo(an ) ] ,

K,(1an) - iw/2[ J,(an ) + iY,(an ) ] . ( 4 - 57 )

2

To obtain dD/dp, as p -+ -qn, in terms of J0, J1, Y0, Y1 , we substitute

Eqs.(4-52) into Eq.(4-50) and Eqs.(4-S4) into Eq.(4-53). With lengthy

algebraic operations and great care, the results are:

for Im(qn) > 0 ,

(dD/dp) 1; ~ ~ ~ ~ ~

[iqn(1-q;1)] p4-q:' 2{r1[Jo(r2qn)Y1(r1qn)-J1(r1qn)Yo(r2qn)]+

f2[J1(rzqn)Yo(E1qn)-Jo(r1qn)Y1(rzqn)]} ; ( 4 - 58 )

for Im(qn) < O
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(dD/dp) «1{~

- - 2 4- 2
[ iqn(1 an)] p qn 2

— r1[JO(E2qn)Y1(E1qn)‘J1(Elqn)Yo(E2qn)]+

E,[J,(E,qn)yo(f,qn)-JO(E,qn)Y,(E2qn)]} . ( 4 - 59 )

Because Eq.(4-58) is identical with Eq.(4-59), we conclude that as p v -

q;, the function dD/dp is single valued even though two choices, Jb - i

iqn, are made. In order to obtain the residues of Eq.(4-44), we evaluate

the function N(r,p) for the two cases /p - i iqn.

For Im(qn) > 0, from Eq.(4-43)

-q2t

1’1

N(r,p)-(«/2)ATe {J0(Eqn)[Y0(E1qn)+Yo(r2qn)]

-Y,(Eqn)[JO(E,qn)+JO(E,qn)]} . ( 4 - 60 )

For Im(qn) < 0, from Eq.(4-43), then

-q2t ~ ~ ~

N(r,p)-(w/2)ATe n {Jo(rqn)[Yo(r1qn)+Yo(r2qn)]

-Yo(Eqn)[JO(E,qn)+Jo(E,qn)]} . ( 4 - 61 )

where E-r/JQ. Because Eqs.(4-6O and 61) are the same, we consider only

Im( ) > O, for evaluation of the residues at sin ular oints 2 for n -qn
8 P qn

1, 2, 3, o o 0 from Eq.(4-47). Combining Eqs.(4-S8,60) and Eq.(4-47), to

give the residue at the nth singular point qn ,
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_ 2
qnt

pn(rst)- (Q27'1)q X{90(Eqn)[Y0(E1qn)+Yo(;2qn)]

II n

-Yo<Eqn>[ J0<E1qn> + Jo(22qn> ]}+

‘{E1[30(E2qn)Y1(Elqn)'J1(Elqn)Yo(E29n)]

+E,[J,(E,qn)Yo(E,qn)-Jo(§,qn)y,(E2qn)]} , ( 4 - 62)

- qflt

-<AT)e (Tn/Bn>/[qn<qgr-1)1

where

Tn'{Jo(§qn)[Y0(E1qn)+Yo(Ezqn)]'Y0(Eqn)[ J0(E1qn) + J0(E2qn) ]}

Bn'Ei[Jo(;2qn)Y1(Ean)'Jl(Elqn)Yo(E2qn)] +E2[J1(E2qn)Yo(E1qn)-

J0(E1qn)Y1(E2qn)] ( 4 ‘ 63 )

In this equation E-r/JQ, Q-rcV/Cp, and p --q;"l is the nth root of Eq.(4-

33). In general there are infinitely many roots. The sum of these

residues is

Q

p(r,t) - E Pn(r,t)

n-l

( 4 - 64 )

The complete inverse Laplace transform of Eq.(4-31) is

m

+ r,t

p=-1/T E pn< )|P=-q§

n=1

0(r.t)=p(r.t) ( 4 - 65 )
  

p=0+p(rv t)
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2 w -q2t
-- (AT)AT lnLrlrz/r ] +lA(AT) e -t/T+§ TnATe n

2 1n( rl/rg ) 2 (qgt-1)ann’

n=1

 

-{Jo(ir)[Yo(ir,)+yo(ir,)]-Yo(ir) Jo(ir,)+Jo(ir,)]}

A - , 4 - . ( 4 - 66)

[Jo(i r,)Yo(ir,)-Jo(ir,)Yo(ir,)]

D. ASYMPTOTIC SOLUTION

For electrolyte solutions, n=0.6J.s.m-1K—1, V=l8xlO-°m3mol-1,

Cp-4X103J.kg-1K-1, and hence Q-1.5xlO-7m2s—1. For metal walls, 7260 sec

(Anderson and Horne [1970]), and X-l//(1Q)=333m—1. For r2-1.1cm, and

r1-1.0cm, irz3.3, and we may use the asymptotic relations

1 1

)3 (cosz-fin), Yo(z)=[ fl: ]; (SinZ-ifl) ( 4 ' 67 )
J°(z)-[ a:

  

to simplify Eq.(4-66),with the result,

1 sin{i(r-r1)}//r1- sin{i(r2-r)}//r2

A--(r2r1/r)2
 

251n{i(t,-r,)) ' ( 4 ' 68 )

where i-1//(Qr). Note that i(r2-r,)eo.33. Since the

argument of sin is small, we may simplify Eq.(4-66) by taking

sin(z)zz whence, after some algebra,
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(r-r)

A'/r(/r2-/r1) ' ( 4 ' 69 )

To simplify the infinite sum term requires the roots of Eq.(4-33). To

obtain these roots, we use

Io(iZ)-Jo(Z). Ko(iZ)=(iW/2)[Jo(Z)+iYo(Z)]. ( 4 - 70 )

so that Eq.(4-33) becomes

G(r,p)'Jo(xn)Yo(Pxn)'Jo(#xn)Yo(xn) , ( 4 ' 71 )

where xn-anI and p-(Ia, /r1 ). The nth root of Eq.(4-71) is given by

(Abramowitz and Stegun [1970])

  

n1rr1 r2‘r1 r2-r1 3

x- - ..[[ 1]. (.42.
n rz-r1 8n1rr2 nu

Retaining only the leading term of Eq.(4-72) since the rest of terms are

much smaller, we have

 

n1rr1

x - , and q - 9519. . ( 4 - 73 )

Since ;_;££§_’ the arguments in Tn and Bn of Eq.(4-63) are about 10nn

2' 1

for r2-r1-0.1. We may confidently use asymptotic expansions of Eqs. (4-

66) for all the Bessel functions, along with



58

  

Y1(z)--Jo(z), J1(z)—Yo(z). ( 4 - 74 )

Then

2(r,-r,) n

Tn--[—;;3;7;—][(-1) /r1+/r2]sin[nn(r-r1)/(r2-r1)]

Bn-2(-1)“(r,-r,)2/(n«2r) , ( 4 - 75 )

and

pn<r.t)--n,?T§;}}:.e:n:t:;;[<-1>“/r.+/r2]sin[[r:_:1]<r-r.)] .

'( 4 - 76 )

where

r'-(r2-r.>2/<«2Q> . < 4 - 77 >

For r,-r,-o.1cm and Q=1.5x10'7m25‘1, r'- 0.6755, and pm is better

expressed as

pn(r.t)-

(I)

n -n7t/r'

-§ AT(-1) e (r2-r1)2[(-1)n/rl+/r2]sin[[ n ” ](r-r1)]

[ n31'37/(I‘Q) ] rz-r1

 
 

n-l

( 4 - 78 )

where we ne lect 1' com ared with n27. The com lete as totic solution
8 P P YmP

is a combination of Eqs.(4-62,6S,69 and 78).

114T11n(r/r) (r-r) -t/r

0(r,t)z- 1n(r1/r2) +2/r(/r2-/r1)e
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w

n énzt/r'

+7 .662)... [][[11
n-l

  

( 4 - 79 )

This solution satisfies the boundary and initial conditions. It is

reduced considerably if we (1) neglect all but the first term of the

infinite series, an excellent approximation for t>l sec., and (2)

convert from the radial variable r to the linear variable 5 by using

Eqs.(4-20); then

 

0(r.t)-AT[[ 2: ](e-t/T-1)+%,sin[%fl]«ft/1'] < 4 - so >

and

T(r,t)-TM+0(r,t) ( 4 - 81 )

Eq.(4-80) is of the form (Carslaw and Jaeger [1959], Horne and Anderson

[1970]), usually found for one-dimensional cartesian system.

E. DISCUSSION OF THE SOLUTION

The general solution of 9(r,t) consists of two parts, the steady

state and time dependent part. The time required to reach the steady

state temperature distribution is controlled by two relaxation times. 1

is the relaxation time which characterizes the time interval required

for a column wall to reach its steady state temperature from the instant

it is brought into contact with a reservoir of the desired temperature.

1 is nearly the same for both the inner and the outer walls of the
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column. Another relaxation time 1' hathat of the fluid, which

characterizes the time interval required for the fluid to achieve a

steady state temperature gradient, after the temperature gradient is

established at the walls. The relaxation time 1 depends mainly on the

thickness, heat capacity, and thermal conductivity of the column

material. The relaxation time of the fluid depends on the thermal

conductivity, heat capacity, density, and the square of the annular gap

width a. The relaxation time ratio r'/r affects the time dependent

temperature distribution significantly only for large values of a. After

about at most 47 of starting the experiment, the temperature

distribution in a TGTD column is the steady state distribution. The

steady state temperature gradient is established long before the

concentration begins to change detectably. This has been taken as an

assumption by many authors (Jones and Furry [1946], Tyrell [1961],

Navarro et al [1983]). It is important to note that we assume here that

the relaxation time of the walls is much larger than that of the fluid

in the annulus. If, however, the column is made of non-metal the thermal

conductivity of the material will be very small. This leads to a much

larger relaxation time, and if it is much larger than one minute, then

Eq.(4-66) cannot be simplified. Under such a situation one has a very

complicated form for the temperature distribution and mass diffusion

will develop before the steady state temperature is reached. This will

in turn lead to a much more complicated situation for the velocity

equation as well as for the concentration distribution.

In this chapter we solved both the steady state and the time

dependent temperature equations. Our zeroth order solution for steady

state agrees with previous results. The time dependent temperature

distribution has not been obtained for the TGTD column before due to its
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complicated form. The temperature distribution as a function of r and

time is given in Fig.4.l. The equation used for the plot is Eq.(4-79).

Numerically, except at short time, say t<O.Sr, Eq.(4-79) is in good

agreement with Eq.(4-80).
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Figure(4-l)

Temperature distribution in a TGTD column, for r -l.0cm, rz-l.lcm,

AT-lOK, TM-298K. The lines from top to bottom represent individually

the temperature distributions at t-w, 100 sec., 60 sec., 30 sec., 10

sec., and 0 sec. Eq.(4-79) is used for the plot.
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C H A.P T E R 5

VELOCITY DISTRIBUTION

A. PERTURBATION AND OTHER ASSUMPTIONS

If we neglect all vr terms (Horne and Bearman [l962,l967]) and

assume that the fluid is incompressible, then by Eq.(2-67)

2:
12

R
I
C

o
>
m

e
l 22az+g-o, (5-1)

2
’
]
?

+

‘
O
I
H

with v-vz, w-(n/p)-constant, and homogeneous boundary and initial

conditions

v(r1,t)-0-v(r2,t),

v(r,0)-0 . ( 5 ' 2 )

Following the general perturbation expansions of the temperature

and concentration given by Eqs.(4-l to 4), the perturbation assumptions

64
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here are

p - 5+[5T00+;C70]+

1 - - 12- - - 2
e zongT+0010pTC+270pCC+91pT+71pC +O(6 ) ,

v - vo + ev1+ €2V2 + . - - . ( 5 - 3 )

where in order to accommodate both (1) the essential equivalence«of

ap/az and —pg and (2) the physical requirement that convection in a

temperature field is due to temperature-induced density differences, we

have assumed 5T and 5C to be zeroth order. Thus,

ap/az--5g. <5-4)

The zeroth order velocity equation is then

av, w Q_ av, _ _ _ _

E';arra—£+8(PT90/P+PC7O/p)’0’ (5‘5)

with

”1: [[aT]P,c,]TM,cg 8", ”c [[ac,]T,P]Tm,eg ' ( 5 6 )

where a is the thermal expansivity evaluated at (TM,cg).

Since p - clM1 + c2M2,

a2
6C1

[302]T,P - [602]T,PM1
'1' M2 = -(V2M1/V1)+

M2



66

M1M2

- -§:—[( Vl/M1)-(V2/M2 )1 . ( 5 - 7 )

and Eq.(S-S) becomes

avo ai- 3V0 MIMZ

3; -rarr3; -ga00+g-:§:[(VI/M1)'(V2/M2)170:0 - ( 5 - 8 )

Since this equation contains the concentration term 70, the velocity

cannot be found unless 70 is known. On the other hand, by Eq.(2-63), '10

cannot be found unless V0 is known.

The composition dependence of the density has been the object of much

concern in thermal diffusion studies. Its effect on TGTD was called

"l’effet oublie" - the forgotten effect-by deGroot [1945]. Horne and

Bearman [1968] showed that the steady state effect on thermal diffusion

is about 1% for liquid mixtures of carbon tetrachloride and cyclohexane,

the system in which the effect should be maximal because of the great

difference in densities of the two pure components. The forgotten effect

should be considerably less important for electrolyte solutions.

In order to solve Eq.(S-B), we suppress the concentration term 10 in

Eq.(5-8) and later evaluate its importance after determining 10. With

this suppression Eq.(S-B) reduces to

6v,

5: - r 6r r 5; - g as, - 0 . ( S - 9 )
 

We showed in chapter 4 that the steady state temperature
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distribution is established within about 2 minutes after the beginning

of the experiment. Convection starts as soon as tflua'temperature

difference is imposed but becomes established only after the temperature

gradient is established. It is satisfactory for our purpose (determining

7) to use the steady state result for the temperature distribution. We

shall see that the velocity distribution becomes steady very rapidly.

Since higher order perturbation contributions to the velocity depend

on very small terms [see Eq.(5-3)], we obtain only the zeroth order

result.

B. SOLUTION OF THE ZEROTH ORDER EQUATION

The partial differential equation for the convective velocity vo-v

with boundary and initial conditions is

5%-? grrgf-geoo-o, v(t,r,)=o, v(t,r,),

v(t-0,r)-0 . ( 5 - 10)

Let

v (r,t) - ((r) + {(r,t) ( 5 - 11 )

The f(r) term represents the steady state velocity. Furthermore, to

satisfy the boundary and initial conditions, we require that E(r,t)

vanish as time goes to infinity. Both £(r,t)enul§(r) vanish at the

walls. With Eq.(S-ll), Eq.(5-10) yields

- gee, = o , ( 5 - 12 )

fi
l
S

C
L
I
C
-

H 3
%
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{(r1) - 0 - ((rz) .

and
2:
12
:

'
1

l
8

er
»

:1
2

I

O . ( 5 ' 13 )

€(r15t) ' 0 - €(r2,t)

503,0) - -§(r) 9

where the t-O condition for 6 takes the specified form because

v(r,0)-0.

From Eq.(4-14),

1n r r
00(r) - - AT[ ——‘-—4—)—1n(r2/r1)] , (5 - 14)

where r - J(r1r2). Thus,

d g§__gaAT Ingrzrz -

dr r dr w r[ 1n(r2/r1) ] ° ( 5 15 )

Successive integration of Eq.(5-15) and imposition of the boundary

conditions yield

_
1_ 2 Meg _r_- , L 1-—

{(r) 4q1n(r1/r2)[r2[1n r 1] r§[ln r2][2 1n(r1/r2)]

l

_r__1_____

-r§[ln r1] 2-ln(r2/r1)]] I ( 5 - 16 )
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To solve Eq.(5-13), we assume a solution of form

€(r.t) - W(t)X(r) . ( 5 - l7 )

Then

dW/dt + AZW - 0 , ( 5 - 18 )

and

2 2

X(r1) -O-X(r2) v

where A2 is the separation constant. The solution for W(t) is

W(t) - Ke-AQC ( 5 - 20 )

where K is a constant of integration.

To solve Eq.(5-l9), we make the independent variable transformation

2 - Ar/JE ; ( 5 - 21 )

then Eq.(5-24) becomes

es; 162””,
dz2 + 2 dz ’ ( 5 ' 22 )

X(zl) - O - X(22)

Eq.(5-22) is Bessel's differential equation of order zero, whose

solution is a linear combination of zeroth-order Bessel functions of the

first and second kinds.
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X(z) - AJo(z) + BYo(z) . ( 5 - 23 )

To satisfy the boundary conditions, we must have

A - -BYo(zl)/Jo(zl),

One of the solutions is

X(z) - B[ Jo(z,)Yo(z ) -Jo(z )Yo(zl) ] . ( 5 - 25 )

The general solution is

m -A§t

f(r.t) - E Ban(Anr/Jw)e . ( 5 - 26 )

n-l

where An is proportional to the nth root of Eq.(5-24). Moreover,

0, n # m

r

I §Xm(z)xn(z)dr - 2 Jg(z,) ( 5 - 27 )

‘1 «213/6[Jg(z,) ]' n ' m

 

For simplicity of notation, we abbreviate by z, 21, and 22 what are

actually z(n), 21(n) and 22(n), with

z(n)-Anr//B . ( 5 - 28 )
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The initial condition is, from Eq.(5-l3),

m

e<r.t-0> - E anxn<xnr/Jw> = - ((r)

n-l

Using Eq.(5-27), we obtain from Eq.(5-29)

r2

-J r§(r)Xn(Anr//w)dr

r1

J2(z )

2 [ o 1 - 1 ]
nzkg/w Jg(z2)

 

Bn(An) -

 

( 5 - 29 )

( 5 - 30 )

The solution of Eq.(5-13) is Eq.(5-26), with the constants Bn(An)

obtained from Eq.(5-30). The difficulty is evaluation of the integral

r2

I r§(r)Xn(Anr/Jw)dr .

r1H

with ((r) given by Eq.(5-l6). The calculation is extremely complicated

due to the combinations of Bessel functions and rg’(r). With the help of

Tranter [1968], after considerable work, we find that the integral has

the very simple form

r2

Then

I

I§g(r)xn(,\nr//e)dr --L:r%122{[Yo(zl)/Yo(zz)]+l} .

n

( 5 - 31 )
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BaAan{[Y°
(zl)/Yo(z

z)] + 1}

9 (5-32)

20): {[Jo(z1)/Jo(22)] - I}

Bn(An) -

and

[Y (2 )/Y (z )]+1

o 1 ° 2 %[Jo(zl)Yo(z )-J0(z )Yo(z,)]e‘*§t
 

vz(r,t)-§ -a «w

n-l 2"*§ [J0(zi)/Jo(22)]-l

 

B ATag r —E— 1 l
+4flln(r1/r2)[r [1n r 1] r1[1n r2][2 1n(r1/r2)]

l

_r__1._________

-r§[ln r1][2-1n(r2/r1)]] ’ ( 5 - 33 )

with.An proportional to the nth root of Eq.(5-24) and z(n) given by

Eq.(5-28).

C. ASYMPTOTIC FORM OF THE SOLUTION FOR LARGE ARGUMENT

This form of the velocity is very complicated. It simplifies

quickly once we determine that the roots of Eq.(5-25) are large and

therefore that the argument 2 is large enough to express the Bessel

functions asymptotically.

By Abramowitz and Stegun [1970] the roots qn of Eq.(5-25) can be

written as a series expansion (this approach was also used in Chapter 4,

Eq.(4-72),

qn/JE - fin+ p/fln+ (g-p2)/flg + ° ' . . ( 5 - 34 )

fin ‘ nn/[(r2/r1 '1)] .
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P ' -l/[8(r2/r1)] .

‘

 

25[ (rz/rl)3 - 1

g - 6(4r2/r1)3(r2/r1-l)

 

Thus for r2/r1 - 1.1,

ql/JE - 31.4 -(o.12/31.4)+(o.13/31.42)+--.e31.4

and

qn/JS - 10nfl . ( 5 - 35 )

Now z(n) -rAn/J;, with

An-nnjz/(r2-r1) , ( 5 - 36 )

and therefore

z(n)-rnx/(rz-rl) . ( 5 - 37 )

Since zlenn, asymptotic Bessel function formulas can be used to

simplify the expression for the time dependent part of the velocity.

Repeated use of Eq.(4-65) yields

2 AT m [(‘1)n/r2fjr1] . nn(r-r1)

”Fa/r «3 $1“ a

n—l

e-n2(n2w/a2)t
 

€(r9t)- ( 5 ' 38 )

The viscous relaxation time («zw/a) is very large since w-n/p

le‘°mzs“1. Then (1r1'c.3/a2)=1r"’s-1 for a=0.lcm, and the convection steady

state is attained about 0.4 second (4/n2) after the establishment of
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the steady state temperature gradient. We may thus ignore the time-

dependent part of the velocity equation.

Use of the steady state convection velocity function for the

treatment of a TGTD column has been taken as an assumption by previous

authors (Jones and Furry [1946], Tyrrell [1961] , and Navarro et a1.

[1983]). We here have established a solid foundation for the assumption

by solving the time dependent velocity equation.

D. STEADY STATE VELOCITY PROFILE AND DISCUSSION

As discussed above, the time-independent part of the convective

velocity suffices for solving the concentration equation. It is

convection that brings about a measurable concentration gradient along

the column. The steady state velocity distribution as a function of r is

displayed in Figure(5 -). Clearly, {(r) vanishes at r1 and r2 and

effectively at r. The vertical velocity is positive (upward) for the

warmer portion of the annulus because the density there is smaller and

the material rises against gravity; similarly, the velocity is negative

in the cooler portion of the annulus.

Because the algebraic form of ((r) is 1n(r) dependent and it is not

easy to work with the logarithmic form in solving the concentration

equation, we use the linear transformations given by Eqs.(4-20).

Applying these transforms, and neglecting the time-dependent terms,

Eq.(5-32) becomes

v(s) --m§%’6fl‘m[(l-s)(cosh26-e25)+(s-62)6-sinh26] . ( 5 - 39 )
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If we expand the hyperbolic functions and the exponential functions and

truncate after the first order in 6, we find

v(s)z-2%%§ga2[l-(s/6)2]{(s/6)-6[l+(s/6)2]+0(62)} . ( 5 - 4o )

Ignoring the second and higher terms in the curly-bracketed part of this

equation introduces as much as 10% error since 0.0526, but yields a

very simple form for the steady state vertical velocity,

v(s) z -é%§%Ia2[l-(s/6)2](s/6) . ( 5 - 41 )

This equation has previously been derived by Jones and Furry [1946] and

Horne and Bearman [1962]. For careful work, the second term in the curly

brackets of Eq.(5-40) should be retained.

The vertical velocity is directly proportional to the gravitational

constant, the thermal expansivity, the temperature difference, and the

square of gap width, and is inversely proportional to the kinematic

viscosity (n/fi).
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Figure(5-l)

Steady state convection velocity profile. r and AT are the same as in

Fig.(4-1). Eq.(5-l6) is used for the plot. If Eq.(5-4l) is plotted

against s/6, the diagram will be symmetric at s=0.
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C H A P T E R 6

STEADY STATE CONCENTRATION DISTRIBUTION

A. SOLUTION OF THE CONCENTRATION EQUATION

In this chapter, we establish the steady state concentration

distribution by using a perturbation scheme based on the smallness of

the Soret coefficient. The result here is of considerable use in finding

the zeroth order time-dependent solution of the concentration equation

in the next chapter.

To obtain the steady state radial concentration distribution, we use

Eq.(2-76) for steady state,

DM1 *

V-[ V__ [ VC2 - a c2VT ] - C2V’] - 0 . ( 2 - 76 )

1P .

For reasonably small temperature gradients, the properties represented

~

by p, V1, and D are constants to be evaluated at the mean temperature

78
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and initial composition. In that case,

* *

(6-1)

where,

0*211- 6 2
”17.7 ('>

Since Vtv, V2T, and vr are all zero, Eq.(6-l) becomes

ac 82c 6c
*1 Q_ 2 * 6T *___2 __2 -

D r ar[r5; -c20 r5;]+D 622 -vzaz O ’ ( 6 3 )

*

where we have also taken a to be constant. The wall boundary conditions

are from Eq.(3-6),

6c2

-— -c 0*g1 =0

6r 2 dr r1,r2
(6-4)

Additional boundary conditions are required to obtain c2 as a

function of both r and 2. These, too, stem from conservation

requirements. By symmetry, the average value of c2 at the vertical

center plane must be the initial concentration. Thus,

L

( 6 - 5 )

with
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r,

J rfdr

r1 ‘

<r>-—-—. (6-6)
r r2

rdr

r1

In the steady state, Gauss' theorem requires that

I (V-c2v§)dV- (c2v2)-ds , ( 6 - 7 )

V s

or, by Eqs.(6-3 and 4),

1

In the linear variable 5 defined by Eq.(4-20), Eqs.(6-3 and 4)

become

a 8C2 *AT i2 25 6C2 _2 25 82C2

85(83 +c20 26].D*e v5; -r e 622 ’

ac, *AT

[5; “=20 ELI-0 ' ‘ 6 ’ 9 ’

where we have used the steady state temperature result of Eq.(4-21),

£1141. <6-10>

Further simplification is obtained by defining
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x-(s/6), x(-6)--l, x(6)-l. ( 6 - ll )

Then, with Eq.(5-4l) for the velocity,

8 3C2 6C2 1 6202

- -— _- - 2 - - 2 __ __ 2 ___
ax[ax +ec2] 9(1 x )[x 6(1 x )]82 4a (1+26x)322 ,

8c,

[5; +ec2]i1-O . ( 6 - 12 )

where

* _ 62agvla‘AT

e-a AT/2, a=26r, e=__I92;M:D— . ( 6 - l3 )

If‘we neglect the terms of order 6 and neglect the second z-derivative

of c2, then

a ac2 6c2 6c2

3;[5; +ec2]--6x(l-x2)3; , [5; +£C2]i1=0 . ( 6 - 14 )

Moreover, Eqs.(6-6 and 8) become

l l

2] c2(x,L/2)dx-cg ,

-l

‘1 1 6C2

I [2325; +9x(l-x2)c2]dx-0 . ( 6 - 15 )

-1

Now assume that c2 is separable according to
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cz-e'Kz[cg+U(x)]+¢(z)+R(x) , ( 6 - l6 )

where K is a constant and c3 is the initial concentration. Substitution

of Eq.(6-l6) into Eqs.(6-l2) yields

d dU
E;[a;+e(c3+u)]-k6(c3+U><1'X2)X

'

[§E+e(cg+U)]i1-O , ( 6 - l7 )

and

d2

E;[gfi+eR]--ex(l-x2)§§ ,

[§§+ea]i1-o . -( 6 - 18 )

In order to satisfy Eq.(6-18), (dQ/dz) must be constant, or

¢-A+Bz, ( 6 - 19 )

where A and B are both constants.

Eqs.(6-l8 and 19) are satisfied if

93+eR-[-Bex2(2-x2)2]/4 . ( 6 - 20 )
dx

This yields, through first order in e,

R- E%—BG[(15x-10x3+3x5)-% 6(15X2-5x4+x6)]+C(l-ex) , ( 6 - 21 )
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where B and C are to be determined by using Eq.(6-15). The w and R parts

of the second of Eqs.(6-15) are

 

1 2

I [$35.4 56 B92x(l-x2)(15x-10x3+3x5)-eer2(l-X2)]dx'0, < 6 - 22 >

-1

'where only'even terms appear because odd terms vanish upon integration.

This yields

1 315 2 -l
B-%5£c[1+3232] . ( 6 - 23 )

Since (a/9)-192nM1D/(pagV1a3AT)z0.01 for aalmm and AT-lOK, we safely

neglect the second term in the denominator of Eq.(6-23), and

21. -
B- 496 . ( 6 24 )

* - 4 -

Note that (e/G)-96a nMID/(pagV1a4)z0.05m 1 for 0 =10 3/K.

To solve Eqs.(6-l7), we suppose that

U-euo+52u1+0(€3),

K9-£k°+€2k1+9(€3) - o o . ( 6 - 25 )

Then

1.10

d —+cg]--koc3x(1-x2) ,
dx dx

uo



84

l

I x(l-x2)uodx-0 , ( 6 - 26 )

-l

where the last of Eqs.(6-26) is from the second of Eqs.(6-15) with

neglect of tenms of order (a/e)2 compared to the retained term. The

results are

0%

uo-- §6[25x-70x3+21x5] . ( 6 - 27 )

ko-Zl/‘l .

Thus, through terms of order 5,

 

c - c°-:E§(25x-70x3+21x5) ex -2162 +zl£C(z-L/2)+C

2 2 80 P 49 4e

ecg

-§6—x(25-70x2+21x‘) ( 6 - 28 )

By the first of Eqs.(6-15),

21 L
C-c3-c3exp[-‘Zé a] , ( 6- 29 )

and then

[1—11—)1—[[— 11112-8

 

ecg
21 z 21 L-§6—x(25-70x2+21x‘)[8XP[’
4; ]-exp['-Z§ 5]]

ecg

-§6—x(25-7Ox2+21x4) . ( 6 - 3O )



85

B. DISCUSSION OF THE SOLUTION

Eq.(6-30) is the steady state concentration distribution function.

However, for practical application of Eq.(6-30) and because

e/9z0.OSm—1, we expand all exponential terms to first order in 5. Then

0. 0

C2 °2+ 49c2 48 2 2 z2.. 1— 111- I
ec°

-§Bz{x(25-70x2+21x4))[1+Z%é[%-z]] , ( 6 - 31 )

01‘ 2 . 2112.1.
-c2 -§6x(25-70x +21x ) 1+ 49 2-2

and

acg *

— __.A_I£ 0 _42 2 21 ‘ 21.6 L-

8x 32°2[[1 5 x *5 x 1 4e 2

T * 42 21
z-—§%cg[l-§—x2+§—x‘] , ( 6 - 32 )

acg Zl£ e

_-- 0 - _ 2 4

62 49c2[l 36x(25 70x +21x )]

*

50 4nDMla

z- 1 co

angvla‘ 2

 

( 6 - 33 )

Eqs.(6-32 and.33), the derivatives of our zeroth order solution of

the steady state concentration Eq.(6-31), agree with the previous

results (Horne and Bearman [1967, 1968]). The present result is more

accurate at higher order, and for the first time we obtain explicitly

the steady state concentration distribution itself rather than the first

derivative. The previous results for the first order derivative cannot

Ina integrated to obtain our results because the integration constant is
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usually a function of z. This function is important also for the time

dependent solution.

In chapter 5 , we assumed that the forgotten effect is not important

for electrolyte solutions. We then neglected the composition dependence

of the density in solving the velocity equation. This assumption can be

verified if one knows the steady state concentration function. Since the

concentration difference for TGTD reaches its maximum in the steady'

state, the forgotten effect should be maximal then.The effect is now

easily estimated with the help of Eq.(6-31). The 70 in Eq.(5-8) is, from

Eq.(6-31)

.21; o _Zl£ L L_

7° 49°? 1 49 2 2 z ’

ecg

-§6—{x(25-7Ox2+21x‘))[1+;%é[%-z]] , ( 6 - 34 )

10 has its maximum at z=0 and x=1 and 70z(21/8)ch(e/6). Using the data

3
given in table 1, for cg-0.5 mol dm- , L-0.1 m, and e/9z0.0S m'l, then

70:6.3 mol m'3. The fourth and fifth terms of Eq.(5-8) are, then,

respectively, for AT-lOK (and suppression of g in both terms),

00 oz 1 . 5x10_3 ,

M1M2

-:§:[(V1/Ml)-(V2/M2)]1oz 0.28x10-3.

Thus, the fifth term is at most about 18% of the fourth term for KCl

solutions, and at most about 12% for NaCl solutions. For higher
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concentrations, longer tubes or smaller temperature differences, neglect

of the concentration term in Eq.(S-8) must be re-examined.



CHAPTER7

TIME DEPENDENT CONCENTRATION DISTRIBUTION

INTHECOLUHNWITHTUOENDSCLOSED

A . INTRODUCTION

Although the time dependent solution of the concentration equation

for liquid mixtures is very important for both theoretical and practical

purposes, an accurate time dependent solution has not previously been

achieved. The TGTD experiments for binary liquid solutions involve a

very long waiting period, usually several hours, to achieve the steady

state concentration distribution. The time dependent equation usually

used to calculate liquid thermal diffusion coefficients from non-steady

state experimental data is based on the approximate theory of Furry and

Jones [1946], derived for gaseous mixtures. An assumption in that theory

is that the convection velocity profile is a step function. In this

chapter we present the derivations of the time dependent concentration

distribution in the annulus and of the working equations for both steady

state and time dependent evaluation of Soret coefficients. The steady

state working equation applies to a column with or without reservoirs,

88
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but the time dependent working equation is applicable only to a column

without reservoirs.

B. TIME DEPENDENT DIFFERENTIAL EQUATION

Our starting equation is Eq.(2-60)

3C2 DM1

v.[
*

5E - VIp [Vbz-a c2VT]-c2v]=0 . ( 7 - l )

In cylindrical coordinates, the equation is

ac 62c Be Be
* 2 :k 2 2 2

r r 6r ar azz'VzE'EE (7'2)

As before, we assume that the temperature and convection velocity are

both time independent. With the independent variable transformation

relations Eqs.(h-ZO),

a 3C2 6C2 1 62C2 £02302

-' — _ 2 _ _ 2 — — 2 — _— _ _

8x[6x +ec2]+9(l x )[x 6(1 X )]az +4a (1+26X)azz D*3t ( 7 3 )

where we have made use of Eqs.(6-10,ll, and 5-41). The initial condition

is Eq.(3-3), but the boundary condition depends upon the design of the

column. For a column without reservoirs, i.e. both ends closed, the

boundary condition is
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J§(x.z.t)-0. x-il . j§(X.z,t)-O, z=0,L . ( 7- a )

To solve Eq.(7-3), we assume that the solution consists of two

parts, Y and R:

c2-Y(x,z,t)+R(x,t) . ( 7 - 5 )

We call R(x,t) the pure thermal diffusion effect in the TGTD column.

Eq.(7-3) becomes, with Eq.(7-5)

BY BY 82Y wzaY 62R 6R wzaR

— — _ 2 — 2——_— — — —_— _- -

ax[ax+‘Y]+9(1 x )xaz+“ 622 D*at+ax2+‘ax D*ac 0 ' ( 7 6 )

w2-32/4, ( 7 ' 7 )

where we ignore terms of order 6. We require that both Y and R must

satisfy the following two equations as well as boundary and initial

conditions:

aY aY 62Y w26Y

5x[5;+eY]+6(1-x2)x5;+w23;3-;*52-0 , ( 7 - 8 )

BY

[5;+€Y]x-il-O; Y(x,t-O)-O ,

82R 6R wzaR 6R

5x3+€5;-;*5f‘0 , [3;+6R]x=i1-O , ( 7 - 9 )

R(x,t—0)-cg
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Eq.(7-9) is easy to solve, but Eq.(7-8) is solvable only by use of a

perturbation approach.

C. SOLUTIONS OF DIFFERENTIAL EQUATIONS.

The solution of Eq.(7-9) is

co

 

 

 

266° n e

R(x,t)- 2e"X-aecge"x (“”)2[1‘(‘1) ‘ 1x ( 7 - 10 )

ee-e-e n-l [62+(nfl)2]2

6 I‘Qfl!2+§2ln*t
[cos[(x+l)n«/2]- nu sin[(x+l)nx/2]]exp[- a2 ]

We call R(x,t) the pure thermal diffusion effect in the TGTD column

because R(x,t) is analogous to the time dependent pure thermal diffusion

results of Horne and Anderson [1970]. Note that R + cg+e(e)

as C”.

To solve Eq.(7-8) we try

Y-eK(L/2'z)[cg+u(x,z,t)] , ( 7 - ll )

then

azu au Bu

5;;+eg;-9Kx(l-x2)[cg+u]+ex(l-x2)5;

azu au au *

+w2[ Egg-2K5;+K2[cg+u]]- b252=0 , b2=w2/D , ( 7 - 12 )
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au

[5;+e(cg+u)]x_i1-O , u(t-0)--cg

We take u(x,z,t) as a perturbation term because u(x,z,t) is much smaller

than initial concentration cg except at the boundaries, where it takes

its extreme values. Thus, Eq.(7-12) becomes

azu au

ax2+63;'

au

6Kx(l-x2)[cg+Au]+9x(l-x2)5; ,

azu an au

+w2[ 3;;-2K52+K2[c3+xu]]-b23E=O , b2=w2/D* , ( 7 - 13 )

au

[3;+e(cg+u)]x_i1-O , u(t-O)=-cg , and

u(x,z,t)-E Anun(x,z,t) . ( 7 - l4 )

n-O

Combining Eqs.(7-l3 and 1A) and noting that the summation variable is a

duemmy variable, we obtain

azuo an, auo azuo auo

3;;+e5; +9x(1-x2)5; +w25;; -2Kw25; +(Kw)2c3-9Kx(l-x2)c3

an,

- bzgz -O . ( 7 - 15 )

6‘10

[5; +e(cg+uo)]x_il-O; uo(t=0)=-cg

For n20 the general form of the perturbation equations is
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azun Bun aun 82un aun

___ __ _ 2 __ 2——— - 2__ 2 - - 2
6x2 +£8x +6x(l x )62 +w 822 2Kw 62 +(Kw) un_1 9Kx(l x )un_1

au

-b?En-O , < 7 - 16 >

Bun

[5; +euan-il-O , un(t-O)-O .

To solve Eq.(7-15), we note that one of the terms, that duee to

convection, is a function of x only. We assume

uo(x,z,t)-Wo(x,t)+¢o(x,z,t) . ( 7 - l7 )

Then

62Wo 6W0 6W0

___ __ _ _ 2 o, 2__ -
-8x2 +€6x 9Kx(l x )c2 b at 0 , ( 7 18 )

6WD

[5; +‘(°3+W°)]x-:1'O; Wo(t-O)=-c3 ,

and

62¢o 6¢o 2 8¢o 262¢o 26¢o 2 o 26¢o

ax? +eax +ex(1-x )az +w 622 -2Kw az +(Kw) c2-b at =0 ,

a¢o

[ax +c¢o]x_i1-O , ¢o(t-0)-O . ( 7 - 19 )

Since the boundary condition for Eq.(7-18) requires tflmat 6Wo/at and

awo/ax are order of e, we omit terms of second order in e and find

32w, awO
___ _ _ 2 o_ 2__ = ,
6x2 er(1 x )c2 b at o ( 7 20 )

with

aw0

-— +ecg-O at x--1,l, Wo(x,O)--cg . ( 7 - 21 )
at
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Eq.(7-20) is a second order linear inhomogenous partial differential

equation whose solution (Boyce and DiPrima [1977]) is

CD

 
 

- - n - 2 _ 2wo(x,t)-cg 1(éflig [462 (nu/2b) t_2i:§2[ _ (::)2][1_e (nu/2b) t]

n-l

xcos[n«(x+1)/2]+ech-cg . ( 7 - 22 )

As time goes to infinity, Eq.(7-22) becomes

m n

Wo(x,t)--cg [1-(2:;)l329K [1-'(::)2]cos[nw(x+l)/2]

n-l

+ec3x-c3 . ( 7 - 23 )

Now

_:_ In]

c3} [1 (:«)‘326K[1_ z%%32]cos[nn(x+l)/2]

n-l

-c2K9(x3/6-x5/20-x/4) . ( 7 - 24 )

This identity may be verified by expanding the right hand side of Eq.(7-

24) in terms of cos[n«(x+1)/2] for x from -1 to 1. Applying this

identity we rewrite Eq.(7-23) as

W0(x)--ch9(x3/6-x5/2O-x/4)+ech-cg . ( 7 - 25 )

If, as we expect, from chapter 6, K9=215/4, then
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CS

Wo(x)--§66[25x-7Ox3+21x5]-cg . ( 7 - 26 )

Now'we turn to Eq.(7-19). First we ignore the (wK)2 term in this

equation. Then

62¢o a6, 2 a6, 262¢o 26¢0 26¢0

6x2 +eax +9x(l-x )az +w 622 -2Kw 5; -b 5: =0 ,

a6,

[5; +e¢o]x_fl=0. ¢o<c=0>=o . ( 7 - 27 >

j§(x,z,c)-o, z=O,L .

If we first integrate Eq.(7-27) for x from ‘1 to 1 and then use the

boundary condition for x, Eq.(7-27) becomes

1 3260 1 a6, 1 a6, 1 660

w2 5;; dx-J 2Kw25; dx +J f(x)5; dx-sz 5; dx-O , ( 7 - 28 )

with f(x)-6x(1-x2) and

1 82¢0

x-ii'I F(")axazd" '
 

l 6¢o 8¢0

I f(x)5; dx-E; F(x)

 

F(x)- f(x)dx . ( 7 - 29 )

32¢o

To derive an expression.for'axaz, we integrate indefinitely the first
 

equation of Eqs.(7-27) with respect to x then differentiate with respect

to 2. Thus
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32¢o 3¢o 2 33¢o 232¢odx 62¢o 2 32¢o

5;5;--eaz -w 62de+JZKw dx-ZJ.f(x)a2 dx+b I azatdx

Now substituting this expression into Eqs.(7-29) and rearranging to

3¢o

give Hf(x)zdx, we use this integral to

1 3¢o

eliminate I f(x)5; dx in Eqs.(7-28). This leads to

-1

2 ___ , 2__ __
w 622 dx 2Kw 62 dx+az F(x)

1 82¢o 1 63¢0

+J:F(x)[IF(x):::odx]dx-2Kw2I F(x)[j‘5;; dx]dx+w2I F(x) 5;; dedx

1 62¢o 1 5¢o 6¢0 l 6¢0

I x=il++6! F(x)——“dx

 

 

l a¢o

-bzl:F(x)[1:22::dx]dx-sz 5; dx-0 . ( 7 - 3O )

In order to simplify Eq.(7-30), we assume that for the zeroth order

approximation, ¢o is independent of x. This is effectively true for TGTD

of the liquid mixture because the concentration gradient along the z

direction due to fluid convection along the same direction is much

larger than the concentration gradient due to the temperature gradient

along the x direction. Making use of this assumption, we have the

following very simple equations

2 32¢o 2 6¢o 26¢o

[2w +E]az2 +[-4Kw +H]az -2b at -0 , ( 7 - 31 )

and
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1 l

HerF(x)dx , E-IF2(x)dx . ( 7 - 32 )

-1 . -1

To derive Eq.(ffifl), we have applied the odd and even function

'properties of'f(x) and F(x) respectively. The two constants H and E are

easily evaluated:

F(x)-9(x2/2-x4/4-1/4); H--859/30; E-1692/315 . ( 7 - 33 )

By Eqs.(6-13), GzO.lm, €25x10-3, ale-3m, and K-Zle/(46)-O.25m-1. Then

EszlO'amz and fizl.3x10'4m. Thus E>>2w2—a2/2=5x10'7m2 and

fi>>4Kw2-a2Kz2.Sx lO-7m. Neglecting Zen2 and Asz, Eq.(7-3l) becomes

62¢o a¢0 a¢0

5;; -(H/E)5; -(2b2/E)3; =0 . fi--H . ( 7 - 34 )

Now fi/E-Zle/(he). From Eqs.(6-25 and 27) 215/(49)-K. Thus fi/E-K. We have

thus obtained from the time-dependent equation the K factor, which is

very important in TGTD (Tyrrell [1961], Horne and Bearman [1967]).

Although the general approaches are quite different, the factor K

appears independently in both the steady state and the time-dependent

solutions for TGTD. This result supports the validity of the assumptions

made earlier in this section.

To solve Eq.(7-34), the boundary condition in the z direction must

be known. For a column closed at both ends the flux along the column at

both top and bottom must vanish, and from this condition we must be able

to derive a proper boundary condition for the 2 component. The flux

along the z direction for TGTD can be written as (ch. 2)



98

6C2

jz-vz(x)c2-D*5; . ( 7 - 35 )

By the second of Eqs.(7-4), jz vanishes at the boundary, so

vz(x)c2-D 5; -O , at z-O,L . ( 7 - 36 )

Since c2 is the sum of R(x,t) and Y(x,z,t) by Eq.(7-S), we have

gE-v(x)Y/D*+v(x)R(x,t)/D* , at z-0,L, ( 7 - 37 )

where we drop the subscript. Keeping in mind that starting from Eq.(7-

37) all the following mathematical manipulations are true only at z-O

and L, we then combine Eq.(7-ll) with Eq.(7-37) to obtain

K(z-L/2)z

fig K(cg+u)-v(x)(cg+u)/D*+v(x)R(x,t)e /D* . ( 7 - 38 )
62'

At this point, we introduece a perturbation device. With the help of

Eq.(7-14), in orders of An Eq.(7-38) becomes

au

EEO-x<c2+uo)-v<x>(c3+uo>/D*+v<x>R(x.t>eK(z'L/2)/D*. < 7 — 39 >

32 -[v(x)/D +K]un , n21 . ( 7 - 40 )

The zeroth order equation can be rewritten in terms of Wo(x,t) and

¢o(X.2.t)
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3¢* 0 *

D 5; -[v(x)+D K][cg+Wo(x,t)+¢o(x,z,t)]

+eK(z'L/2)R(x,c)v(x), ( 7- 41 )

where we used Eqs.(7-l7). Eq.(7-41) cannot be used as it stands, because

both W0 and R are time dependent. However the relaxation times of W0 and

* -

R are typically of order (a2/n2D*). Taking az0.1cm, D le 5cmz/sec. for

n~1,the relaxation time is about 100 seconds. Thus the exponential

*
- 2 2

factor 9 (nu) D t/a is very small after about 8 minutes. The relaxation

time along the column height is a few hours or longer (Naokata and Kimie

[1984]). By comparing these two relaxation times, we see that the steady

state concentration in the x direction is reached when the vertical

concentration gradient is still insignificant. On the other hand, the

horizontal concentration gradient is very small compared to the vertical

gradient and we therefore take only steady state parts for Wo(x,t) and

R(x,t). This introdueces no significant error but simplifies our

vertical boundary condition tremendously. Hence Eq.(7-41) becomes

*3¢o
D 5; -[v(x)+D*K][Wo(x)+¢o(x,z,t)]+eK(z‘L/Z’RS<><)v<x>. < 7- 42 >

where Wo(x)-Wos+cg, and both WOs and RS are steady state concentrations.

The following treatment for boundary conditions is the same as before

for differential equation ¢0. We first integrate Eq.(7-42) for x from -1

to l and note that v(x)/D*-4f(x)/a2, f(x)=ex(l-x2). After some

computations we end up with
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a¢ 1 1

E;;°-fi¢o+I f(x)wo(x)dx+eK(z'L/2)J f(x)RS(x)dx , ( 7 - 43 )

where H and E are defined by Eqs.(7-33). The two integrals are evaluated

easily.

1 l l .

I f(x)Wo(x)dx-I f(x)[Wo§x)+c3]=26c36/8OI (x-x3)[25x-70x3+21x5]dx-0

 

l Zecg 1 ex heecg

.______ _ 2 ' z- -I f(x)dex e -5 9I x(l x ) e dx 15 . ( 7 44 )

_1 e -e _1

To evaluate these two integrals, we used Eqs.(7-lO and 26), expanded

'EX

e

and neglected terms of order 62 in deriving the second integral.

 

Finally,

8¢o heecg

__ _ _ R(z-L/Z) _
az K¢o 15E e , z O,L . ( 7 - 45 )

Because by Eqs.(7-34) ee=30fi/8, then

a¢o _
5; -K[¢o-cgeK(z L/2)

] ! 2-0,L 0 ( 7 ' 46)

Eq.(7-46) is the boundary condition subject to differential equation (7-

34). Having Eq.(7-46) in hand, we can solve Eqs.(7-34) without

difficulties. The equations to be solved are
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32¢o - 3¢o 2 a¢o

5;; -(H/E)5; -(2b /E)at =0 .

6¢

EEO-K[¢o-cgeK(Z-L/2)] , z-0,L , ( 7 ' 47 )

¢o(z,t-O)-0 .

K(z-L/2) -
We first let ¢o(z,t)-$ (z,t)-chze . Then in terms of ¢

628 a; a8
_-__2_=

822 K62 2b /Eat O ’

63

5; -K$ , z-0,L , ( 7 ' 48 )

a (z,t=O)-chgeK (2-1/2) ,

where we have neglected terms of order K2 in the first of Eqs.(7-48).

The method of solving Eqs.(7-48) can be found in any partial

differential equations text book. The solution is

 a-Bo$o(z)+§ Bn$nrn(c), Bo-[1-E§KL-1]cg ,

n-l

‘LZK BE 2 1_(_1)neKL/2] -E

B“ L [L] [(K/2)2+(nfl/L)Y]2 , Tn(t)=exP[E[(K/2)2+(n’r/L)2]t] ,

$o-€K(Z-L/2)

 

KL

$n-[cos(nwz/
L)+(2nfl)sin(

nnz/L)]eK(z-
L/2)/2

 

( 7 - 49 )

Thus the solution for Eq.(7-47) is
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m

¢o(z,t)-Bo$o(z)+§ BnanTn(t)-chgeK(z'L/2) . ( 7 - 50 )

'n=1

C. DISCUSSIONS OF THE TIME DEPENDENT SOLUTION

In this section we discuss some of the results derived in this

chapteru IIt is clear that we have solved the problem of the

concentration distribution as a function of space and time to zeroth

order. This has not been done before. Now it is possible to predict the

concentration at any point any time in the column while the experiment

is in progress.

For convenience in discussing our solution, we combine Eqs. (7-5,ll

and 17) and write

c2(x,z,t)-eK(L/2-z)[cg+Wo(x,t)+¢o(z,t)]+R(x,t),

 
 

m - - n - 2 - 2

wo(x.c)-c3 175% [4“ (mt/2b) c-3i:._1)<2[ _ 7.1152] (1-, (mt/a) c”

n-l

xcos[nw(x+l)/2]+ech-Cg .

m n KL/2

( t)-0 KL 1 1((2-1/2) + o} -_2_K[M]2 [1'('1) ' ]
¢o 2, c2 _KL' e C2 L L [(K/2)2+(n«/L)2]2

l-e n-l

 

x[cos(nnz/L)+(§n:
)sin(nnz/L)]eK(z—

L/2)/2

xexp[-f[(KL/2)2+(n«)2]]-ch3eK(z-L/2) ,
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Zecg m 2 n e

R(x,t).._,-ex-4,co,-ex§ (n1r) [1-(-1> e 1

‘e‘e-e [62+(n1r)2]2

e Ignxzz+gzlp*c

x[cos[(x+1)nn/2]- nu sin[(x+l)nn/2]]exp[- a2 ] ,

362880D* L 2
_ 2 2 ___—___. __n___

-

1 2b L /E a5 [ATpoag] . ( 7 51 )

Where K, e and 0* all have been defined before.

The solution is the sum of three terms. ¢o(z,t) is a function of

column height and time only, while R(x,t) is a function of column width

and time only. We call ¢o(z,t) the pure convection contribution to TGTD.

¢o(z,t) does not directly depend on the temperature gradient. Instead,

the temperature gradient affects only the progress towards steady state

concentration distribution along the column height because the

relaxation time is inversely proportional to (AT)2. A higher temperature

gradient leads to faster convection and a higher velocity redueces the

time required to reach steady state. When sttady state is attained ¢o is

independent of'AI. In.general, from the definition of 1, large AT,

thermal expansivity a, density p, gravitational force g (if the

experiment is performed on a planet with large g) and small viscosity 0

*

will lead to a small relaxation time. Since a, n, D and p0 are almost'

constant and do not change much duering the course of the experiment for

small AT, the dimensions a and L, the annular gap width and column

height, are very important in setting 1. Usually the column height can

vary from a few centimeters up to about half an meter. Experimentally
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Naokata and Kimie [1984] have verified the strong dependence of r on L.

A longer column requires a longer time to reach steady state, but will

Lead to a higher concentration difference along the column. When steady

state is established one has the largest separation of solute from

solvent along the column. This can be seen from our numerical

calculations (Figs.7-l, 2, and 3)). Up to now in this discussion we have

been using Eqs.(7-Sl) for the relaxation time. The real relaxation time

is r/[(KL/2)2+(nx)2]. (KL)2 is usually very small compared with «2

'unless L.is over 10 meters, which is unlikely. We therefore ignore this

term and use only r'-r/x2 hereafter.

The most important factor which affects the r' is a“, the annular

spacing of the column. A small change in a will change 1' very

significantly. To obtain a higher concentration gradient, one prefers a

narrower annular spacing, but the time required to reach steady state

increases dramatically with smaller a. It is interesting to note that

when the annular spacing approaches zero there is no thermogravitational

thermal diffusion because convection of the fluid will not occur.

To finish the discussion, we compare the steady state with that

obtained in chapter 6. At steady state the functions 450(2), Wo(z,x) and

R(x,t) take the following forms

 

26c°

KL 2 -ex

¢°(z)-[1_e-KL -1-Kz]c3 . R(X)=ee-e'6 e

‘C3 K(L/2- )
Wo(z,x)--‘§6—[x(25-70x2+21x3)]e z . ( 7 - 52 )

With c2(x,z) -$o(z)+wo(z,x)+R(x) , ( 7 - s3 )

L 603 L

c2(x,z)-c3+ch[‘2'-z]- 8O [x(25-70x2+21x3)]{1+K(§-z)}
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e

-cg[l-‘—86x(25-70x2+21x3)]{1+K(I§'—z)}. ( 7 - 54 )

Here we have expanded all exponential terms up to first order fort!( and

c. This result is the same as Eq.(6-31). Although the general approaches

of chapter 6 and.7 are very different, the steady state results are the

same for the zeroth order solution. This validates the assumptions made

in dealing with the time dependent solution.

Figures(7-l, 2, and 3) display the concentration distribution. These

curves are calculated from Eq.(7-Sl).

D . WORKING EQUATIONS

The measurements of solute concentration at the two ends of the TGTD

column can be made at either steady state or transient state (Gaeta,

Perna, Scala, and Bellucci [1982], and Naokata and Kimie [1984]). The

advantage of steady state measurements is that the concentration

gradient has reached its extreme values at both ends, so it is easy to

measure with a relatively small error. The disadvantage is that it is

very time consuming to reach steady state. Because of this, one also

measures the concentration change at early times. In order to use our

theory to account for the experimental results at early times, some

further work is needed.

Because experimentally one monitors the average concentration'change

at the column ends, it is necessary to convert our concentration

distribution equation by averaging along the annular dimension.

Mathematically, we evaluate the integral
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r2

I rc2(r,z,t)dr

r

 

<c2(z,t)>-* 1 . ( 7 - 55 )

r2

rdr

r1

With x as variable, Eq.(7-55) is

l

I rc2(x,z,t)e26xdx

1

l

I e26x dx

-1

 

<c2(z,t)>- ( 7 - 56 )

where we have used Eqs.(4-20). The next step is to substitute c2(x,z,t)

given by Eqs.(7-Sl) into Eq.(7-S6) to evaluate the integral. We omit the

lengthy details of calculations and simply write down the result.

(c (z, t)>-A -A2t m -A2t

2 i Bw(z) n ]+C+§ Ene n J +[-ELjEi-1-Kz]

 

 

-1, 3,s-- n-l 1“

+eK(L/2-z)/2 E Gn(z)e-t/r'(n) , ( 7 _ 57 )

n-l

with

46
1-(-l)ne

B (2)-6466 [ ][1(n«)2[(nx)211]1eK(L/2-z)/2’ A-26/(e46-l),

“ (n«)2[(46)2+(n«)2] .

8KL(2n«)2[( 1)“eKL/2-1 KL

G (2)-7 V, 1rZ—n-fl—[cos(n1rz/L)+sin(nnz/L)] ,

“ [(KL)2+(2mr)2 ]
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2[e45-26_1 15

c V, - , 362880D* 9L 2 -2

-[ '26] ’ Tn a6 ATp ag (In) ’
l-e (26-c) °

46- e

1-(-1)ne ]( )“e -1]
2

A3—[19§%—]D*, En--3266«2 62 2 ~ . ( 7 - 58 )

[;2+(n«)2] [(:6-1:)2+(n1r)2]

Now we define a new function

A<c2>-c2(0,t)-c2(L,t) ( 7 - 59 )

Thus A<c§> represents the concentration difference between the bottom

and top of the column. Substituting Eqs.(7—52) back into Eq.(7-57), then

letting z-O and L respectively, Eq.(7-59) becomes

 

A<c2> 8 e-t/rfi

cg -KL[l-;2§ (2n+1)2]

n-O

+-—§—(1+e5)sinh(KL/2)[1-e‘*3t], ( 7 - 6O )

*

where A3 is the first term of A3—(2n+1)2«2D /a2. The reason for just

-A2t

taking the n-O term is that e n is nearly zero for n21 when t260

seconds. To derive Eq.(7-60) we have used relation

 

'- . ( 7 - 6l )

m 42 12

1-(n«)2[(nn)2-1] l

«4(2n+l)‘ 960

n-l
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We also have ignored terms such as (KL)2, (46)2, in comparison with

(mt)2 term, and have expanded terms like e26 and 846. Eq.(7-60) redueces

to zero at time zero.

As time goes to infinity, we have the maximum for A<c2>, which is

A<c2>

'23——-KL+Z%%£(1+e45)sinh(KL/2)
2

5 4 D AT
~_Q_2_fl__L |__Q -

Eq.(7-62) is the working equation for steady state evaluation of the

Soret coefficient. A<co> is er'nerimentally measured. By solving Eq. (7-

62) for 0* one obtains the Soret coefficient.

Eq.(7-60) is the working equation before steady state, and can be

used at any time duering the experiment. To avoid the series, it is

desirable to derive a simple equation which can be applied to a certain

a)

-t/r'

time period. To do this we must evaluate Em. We redefine this

1 n=0

term as

” -p(2n+l)2 * .
f(fl)‘ _£_____; ’ #_ 2é2%§%2_ __nL__ 2 -1t, ( 7 _ 63 )

(2n+l) a « ATpoag

n-O

then for small p
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- 2 - 2dgifll" e p(2n+l) z-Jme p(2n+l) dn ( 7 - 64 )

n-l

The integral is tabulated (Gradshteyn and Ryzhik [1980]), and Eq.(7-64)

becomes

 

gfifiui-(w/fl)1/2 [l-ezfljufl ( 7 _ 65 )

or f(p)-(«p)l/Zerf(/p)+l/(2e‘#)-(xp)l/2/2+C; where erf stands for

error function and the constant is evaluated at p-O. Thus

 

1/2 -p 1/2 .

f(p)_11g12erf(1u)+% _ 13%) +§2_ ( 7 _ 66 )

N
I
H

By expanding Eq.(7-66) in powers of p and retaining only the first two

terms, we derive

m

/2 -p(2n+l)2

f(p)==1r2/8-‘(§£1 z} -%§;:I;;—— ( 7 - 67 )

n—O

The accuracy of Eq.(7-67) depends on how small p is. Table 7-1 gives a

comparison between the function f(p) and the infinite summation. As we

can see from the table, for about 1% error, p. can be as big as 0.7.

Taking p be 0.5 , Eq.(7-67) will be a very good approximation. Because

t1r2a°(ATpoag)2

#- * . (7-68)

362880D (’71.)2
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if pz0.5, z3 to 7 hours, depending on the values of L, a and.AT. With

the constraints, the time dependent working equation for a column

without reservoirs is

A<c2> AKLJp 26¢

c° ' 3/2+ 15
2 x

 sinh<KL/2)[1-e‘*3t] . ( 7 - 69 )

We also give two additional working equations, which can be used for

measurements at either the top or the bottom,

  

<c2(0,t)>-cg 2KLJp -KL _ 2

+54 . 22][1-.Aot] ,
cg ' ”3/2 15 3

  

cg " 3/2 15 3 ( 7 ' 7° )
1f

<c2(0,t)>-c3 ZKL/p -KL _ 2

-66[ e 2W2][1-€ AOC]



lll

Figure(7-1)

Concentration distribution as a function of column width x at a

given time t and column height 2. For cg-O.5mol./dm3,

AT-lOK, column height L-lOcm, From top to bottom, line 1 represents the

concentration distribution at t-l hour, z-O (bottom of the column); line

2, t-O.2 hour, z-O; line 3, c-o, ‘2; line a, c-o.2 hour, z-lOcm (top of

the column); line 5, t=l hour, z-lOcm. Note that the TGTD steady state

concentration distribution as a function of column width for any 2 is

not linear because of convection along the column. At t-l.0 hour, the

distribution is almost steady state for L-lOcm. However, for PTD, the

staedy state concentration distribution is linear (Bierlein [1955],

Horne and Anderson [1970]).
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Figure(7-2)

Concentration distributions as functions of column height at a given

x and t. Parameters are as in Fig.(7-l). Upper group curves ,from top to

bottom, represent the concentration distribution at x-l (at cold wall)

and t-w, 0.5 and 0.25 hours respectively. Lower group curves from top to

bottom, are at x--1 (at hot wall) and t=oo, 0.5, and 0.25 hours

respectively.
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Figure(7-3)

Concentration distributions as function of time t at a given x and

2. Parameters are as in Fig.(7-l and 2). Upper group curves:(at Um;

bottom of the column, z-O), from top to bottom, x-l, 0 and -1. Lower

group curves:(at the top of the column, z=10cm), from top to bottom,

x-l, O, and -l.
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Figure(7-4)

Average concentration distributions at the top and bottom of the column

as function of time t for a given column height L. Here, parameters as

in Fig.(7-1) and Eq. (7-57) are used for the plots. Upper group curves

are from top to bottom, at L—50cm, 30cm, and 10cm, and at z-O. Lower

group curves, from top to bottom, L=10cm, 30cm, and 500m and at z-L.
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Table 7-1

Numerical comparision between the infinite summation and its.asymptotic

form for a given p.

 

 

 

” _ 2
e p(2n+l) £2- « 1/2

“ (2n+1)2 8 2

n=0

0.00 «2/8 «2/8

.01 1.14507785 1.14507758

.1 .953450989 .953451000

.5 .6078 .60704

 

We have summed up to 500 terms in evaluating this infinite summation.



C H A P T E R 8

THEORY OF RESERVOIRS

A. GENERAL REMARKS

In chapter 7, we discussed the time-dependent theory of a column with

both ends closed. However, for the experimental purpose of evaluating

Soret coefficients, the column with both ends closed is not the most

useful. This is because the annular gap is usually very small axui it is

not easy to measure the concentration difference between the two ends,

except at steady state. Many of the experimental studies of Soret

coefficients have used a TGTD column with reservoirs connected to both

ends of the column. The volumes of the reservoirs vary from about 15 Lu)

to 500cm3, and the two reservoirs may have equal or different volumes

(de Groot [1945], Prigogine, de Brouckere, and Amand [1950] , Horne and

Bearman [1962], Beyerlein and Bearman [1961+], Gaeta, Perna, Scala, &

Belluccl [1982], Naokata and Kimie [1984]).

In general the temperature gradient is applied only to the column,

120
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not to the reservoirs. Initially, the column and the reservoirs are

filled with solution, with the concentration distribution uniform for

the whole system. After the temperature gradient is applied to the

column, solute will, in general, migrate downward and solvent upward.

After a while, the lower reservoir becomes more concentrated than the

solution in the column, and inside the reservoir, isothermal diffusion

begins. Similarly, isothermal diffusion occurs inside the upper

reservoir because the solute concentration is smaller at the entrance to

the upper reservoir than it is within the reservoir. At steady state,

the reservoir concentrations are the same as the concentrations at the

entrances to the reservoirs. Thus the difference in reservoir

concentration at steady state is the same as the difference in

concentration between the two ends of the column. Because the volume of

the reservoirs is much larger than that of the column, it is easier to

monitor the concentration change in the reservoirs than in the column.

That is why most experiments have utilized reservoirs.

‘Pwo kinds of apparatus have been used. One is the cylindrical type

which we deal with in this work, while the other is a rectangular

thermogravitational cell, combining two flat vertical plates, one

heated and the other cooled (de Groot [1946], Tyrell [1961]).

Traditionally, the theory of a time-dependent TGTD cohum1vflth two

reservoirs has been based on a theory developed for gaseous mixtures by

Furry, Jones, and.0nsager (1939), and Furry and Jones (1946). An

approximate time dependent TGTD theory for dilute binary solutions was

developed by de Groot (1946). The main assumption made in. all previous

approaches is that material reaching the upper or lower reservoir is

almost instantaneously distributed uniformly throughout the reservoir.

This assumption was first presented by Furry, Jones, and Onsager for the
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treatment of TGTD in gases. It is nearly true for gases, because gas

molecules diffuse much faster than liquid molecules. The diffusion

constant is of order 0.1cm2/sec for gases, but for liquid mixtures is of

order 10-5cm2/sec. Thus, for gases, molecules reaching the reservoirs

can diffuse rapidly into them and they are rapidly distributed uniformly

throughout the reservoirs. For liquid mixtures, the diffusion process is

very slow. The working equation (Tyrell [1961]) for the concentration

distribution in a TGTD apparatus with two equal reservoirs at short time

based on the above assumption is

c -

B 0 ba3 AT 2

{—cT-1]-L3——-L)—36Onvst, . ( 8 - 1 )

where s is the experimental Soret coefficient, V the volume of

reservoir, b is the width of the plate, and the other coefficients have

their usual meanings. Thus if one could measure the solute

concentrations cB and cT in the bottom and top reservoirs at a given

time and given initial concentration, one will be able to evaluate 5

through Eq.(8-1). As we can see from Eq.(8-l) if cB/cT>1, (for TM>4°C),

then s is positive and if cB/cT<1, then s is negative. Clearly, if

solute indeed concentrates in the lower reserwoir then the Soret

coefficient is positive. Soret coefficients determined by pure thermal

diffusion experiments are positive and of order of 10-3K. Recently,

Gaeta and coworkers (1982) reported from their TGTD experiments that in

certain concentration regions the ratio cB/cT<1, and then s becomes

negative for NaCl and KCl binary aqueous solutions. That is, in those

concentration regions, the solute is enriched in the upper reservoir
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rather than in the lower one. To explain this unusual experimental

result,t1mw’suggest order-disorder transitions between solvent and

solute which involve sharp changes in solvation. Later, however, Naokata

and coworkers [1984] could not reproduce the unusual concentration

dependence of Soret coefficient in their TGTD column. Gaeta et al. used

a rectangular TGTD cell. Earlier, Prigogine et a1. [1950] reported

similar results from a rectangular TGTD cell.

In this work, the reservoir geometry is cylindrical, not rectangular.

Experimentally, it is much easier to attain precise geometry and precise

temperature control in a cylindrical apparatus.

B. DIFFERENTIAL EQUATION OF DIFFUSION

The fundamental differential equation of diffusion in an isotropic

isothermal medium is, by Eq.(2-76),

3C2
*

at D v c2 ( 8 2 )

*

where c2 is the solute concentration and D the modified diffusion

coefficient. We neglect the convection velocity term v-V'c2 in writing

Eq. (8-2) because the reservoirs are assumed isothermal and convection

will not occur. In cylindrical coordinates, Eq.(8-2) is

acgD :c218202 82 c2

252w }at r +; 533 +r
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Assuming 8c2/6¢-0, we have

at r ar(ar )+razz ( 8 - 4 )

To solve Eq. (8-4), boundary and initial conditions must be known. The

initial condition is that at the time of starting the experiment, c2 iJI

the reservoirs is cg, duainitial concentration. One end of the

reservoir is closed and the other end is connected to the column. The

boundary conditions for the closed end and for the outer wall reflect

the fact that nothing will diffuse through the reservoir walls. The

situation is very complicated for the end connected to the column

because the concentration at the junction between column and reservoir

is a function of space and time. If, however, the annular spacing of the

column is much much less than that of the reservoir, and the

concentration variation along r from r1 to g is very small in the

column, we can replace c2(r,t) by its average concentrationi<c2(t)>. we

write for the boundary conditions at the lower junction

c2(r2,z-0, t)-<c2(t)>-g(t), rlerrQ, ( 8 - 5 )

where g(t) is the average concentration at the bottom end of the column.

For the diffusion process in the bottom reservoir, the differential

equation and boundary conditions are

r2<r<r3, h<z<0, t>0,

at -r r-:2)+r32

aczD 62c2

”{3-< z
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8C2 6c2

5?   

02(r2,t,2-0)=g(t), =0, t>0,

r3: 5; h

C2(t-O)-Cg ( 8 ' 6 )

Eqs.(8-6) tell us that there is a point concentration source at the

upper entrance to the bottom reservoir. Note that if the source term

g(t) is just.c92, the solution of Eqs.(8-6) will be just cz-cg. If

g(t)>cg, then solute will diffuse into the reservoir, while if g(t)<c2,

solute will diffuse out of the reservoir.

C. SOLUTION OF DIFFERENTIAL EQUATIONS

We first let

Then

6U D* Q_ 8U 62U

__ _. { (r—— )+r——— }, r2<r<r3, h<z<0 t>0,

  

at r ar ar 822

- Q! Q! =
U (r2,t,z-0)-g(t), ar ran 62 h 0, t>0,

U (t-0>-0. é<t>-g<c>-c3 < 8 - 8 >

Eqs.(8-8) can solved if the solution of the following partial

differential equation can be obtained



To derive Eqs.(8-12 and 13),
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82W

at -rD*{arfl6r )+r5;; }, r2<r<r3, t>0,

a_w 6.11 =
W (r2,z 0)-l, 6r r3 62 h 0, t>0,

  

W(t-0)-0,

then (Carslaw and Jaeger [1959])

U(r, z ,c)--I:g(A)%:(t A)dA .

If we suppose a form of solution for W(r,z,t)

W(r,z,t)=R(r,t)V(z,t),

Eqs.(8-9) become

62V

 

a—V — a fl=at 322' V(0,t) l, az'h o, t>0,

V(t-0,z)-0,

3R

__DL
at r ar(r5?) r2<r<r3, t>0,

R (r2)-1, %% raao, c>o,

R(t=0)-0.

we have assumed

(8-9)

( 8 — 10 )

( 8 -1l )

( 8 ~12 )

( 8 - 13)

that R(r=r2,t)=V(z-0,t)=1,
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t>0, which means that at the origin, both functions equal unity, the

same as unit concentration c3. This assumption is reliable if we take a

look at the second equation of Eqs.(8-9). Physically, it tells us that

at the origin, or at r=r2, z=0, there is a constant concentration source

of unity for t>0, and at t=0 the concentration in the reservoir is

initially zero. Solute does not flow out at r3 and z-h. At the origin,

the solute concentration will be unity along any direction, or the

diffusion from the z direction is independent of the r direction, Thus

the solution for W can be written as the form of the products of V and

R.

The solution for V has two forms. Using a Laplace transformation, we

have

 

“ m 2h(m+1)-z ” m 2hm-z

V(z,t)-E (-l) erfc[—*]+§ (—l) erf[ * ], (8 - 14 )

2/(D c) m=0 2/(D )
m=0

2hm-z

 

where erf represents the error function with argument [ ] and the
*

2/(0 )

complementary error function is defined by erfc(x)=-1-erf(x). An

alternative form can be derived by the method of separation of

variables,

.-

(2m+1) «z *

2h exp[_(2m+l)2n2D c]

2

(2m + I)2 “h

   
4 sin

V(z,t)-l-;§ ( 8 - 15 )

m==0

The solution for R(r,t) is
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cu *

 

 

«221) t J¥(a r3)

R-1+« a(a )¢ (a r)e n a(a )- n ( 8 - 16 )
n 0 n , n Jg(a r2)'J¥(a r3),

n n

n-0

with

¢o(anr)-Jo(anr)Yo(anr2)-Jo(anr2)Yo(anr) ( 8 - 17 )

a satisfies

n

¢1(ar3)-J1(ar3)Yo(ar2)-Jo(ar2)Y1(ar3)=O. ( 8 - 18 )

For the details of solving these equations see Appendix A.

The solution for W is, by Eqs.(8-11,15 and 16),now

” -a:Dt 4 ” -d20*t

W - l+x§ a(an)¢o(anr)e ‘1-; E Om(z)e , ( 8 - 19 )

n-O m-O

with

”i” 1 I .51“[21. "Z_ _ n (z) 2m+1 2n2 _ d, ( 8 - 20 )

2 m ’ 4h2 m '
(2m + 1)

The solution of Eqs.(8-6) is given by combining Eqs.(8-7,10 and 19)

02 t_ a m ~a:D*(t-A)

;§-1+ g(A)3; 1+«E a(an)¢o(anr)e

0 n-O

co *

-d"’D (t-A) .

x[1-$ E Om(z)e m ]}dx . ( 3 - 21 )

m-O

D. DISCUSSION OF THE SOURCE FUNCTION
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To obtain an exact solution for Eq. (8-21), an actual form for the

source function g(A) must be known. From chapter 7, the average

concentration distribution function as a function of time at the two

ends of the column can be written approximately as

 

<c2>T-cg-7(1-e‘92D*t)cg , <c2>B-cg+7(1-e-ezD*t)cg , ( 8 - 22 )

where

2 asnz ATpoag 2

y-KL/Z' e - 362880(D*)2[ "L ] ( 8 - 23 )

Experimentally, it has been observed (Naokata and Kimie, [1984]) that

the average concentration change in time at the column ends (for a

column with reservoirs) has the same form as Eq.(8-22), but 7 and 9 are

essentially adjustable parameters to the experimentalists.

Now we make the following assumptions for source functions at the two

column ends.

*

92D t92D*t
), ( 8 - 24 )83(t)-CS+163(1-e' ). gT(t)-cgoycg(I-e'

and for short times the above equations reduce to

* *

gB(t)zcg(l+762D c), gT(t)zcg(1-792D c) . ( 3 - 25 )

E. CONCENTRATION DISTRIBUTION IN THE RESERVOIR WITH EXPONENTIAL AND

CONSTANT SOURCE FUNCTIONS
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Substituting Eqs.(8-24) into Eq.(8-21) and making use of the last

equation of Eqs.(8-8), the general solution is found for the

concentration in the bottom reservoir. The detailed mathematical

manipulations are presented in Appendix B.

 

B m 2 _ 2 * m 2
33-1+ ." ana(an)¢o(anr) e anD t_e-G2Dt +3 dm 0m62)X

cg 7 a: - e2 n d; - e2

n-O m=0

 

-d7D*t * m ” a(a )¢ (a r)fl (z)E 2 -E 29*: *
[ m -92D t] E E n 0 n m mn[ mn -92D t]
e -e +4 e -e

E 2 - e2

m-On-O mn

” m -E 20*: a ” -d;D*c

+4 E E a(an)¢o(anr)0&z)[l-e mn ]+; E 0m(z)[l-e ]

m-On-O m=0

w ~a§D*t

-« E a(an)¢o(anr)[l-e ] , ( 8 - 26 )

n-O

where E 2 -a2+d2.

mn n m

Putting a minus sign in front of 7 for Eq.(8-26), we obtain the

concentration in the top reservoir. Note that at t=O, Eq.(8-26) is

simply unity and as t approaches infinity, we get

c2 w w
m

Eg - 1+7[ 4 E E 3(an)¢°(anr)0mz) + % E flm(Z)

m-On-O m=0

- N E a(an)¢o(anr)]. ( 8 - 27 )

n=0

Using the relations (Appendix B)
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n E a(an)¢o(anr)--1, % E Om(z)-l , ( 8 - 28 )

n-O m=0

we get from Eq.(8-27)

E? - 1 + 7 . ( 8 - 29 )
2

Therefore, when a steady state is established, the concentrations in the

reservoirs will be equal to the concentrations at the two ends of the

column. If we solve Eqs.(8-6) for steady state, we end up with the same

result. This is also the previous result since upon averaging Eq.(7-54)

and taking z-O, it is just Eq.(8-29).

Now we need to evaluate the average concentration change with time in

the reservoirs. The average concentration is

B 1 2w r3 B

<C2(t)>-_V— I I J rc2(r,z,t)dwdrdz, ( 8 - 30 )

0

‘where VR is the volume of reservoir. Making use of Eq.(8-26) as well as

the integrals in the Appendices A and B we have

 

*

<c2(t)> 2“ Q a(an) -a§D t HGQDt r§--r§ w . 1

cg A1+vR 2h E a2 - e2 [‘ ‘ ] h E d2-92 x
m

n~0 m-O

_ co co 2 - 2 *

dmD*t HGZDt 4 a(anflimn -82D*t EmnD t

' +h a2d2( E 2 e?) '9
m-On-0 n m( mn
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4 a(a ) -E 20*: rg-rg ” -d2D c

+- e m“ -1 + -—— l-e
h déa: h d;

m-On¥0 m=0

m a(an) -a;D*t

+2h E a2 [l-e ] . ( 8 - 31 )

n
n-O

At this stage, we have solved the reservoir problem. We have found the

concentration distribution in the reservoir as a function of space and

time as well as the average concentration change in time in the

reservoir. However, Eq.(8-31) is too complicated to apply for practical.

purposes. We want particularly to know what will happen during the

experimental time interval shortly after the beginning of the

experiment.

Before answering that question, it is interesting to examine Eq. (8-

31) for a special case. If 62 is much smaller than d; and a3, then

aa-ezza: and dg-Gszg. In other words, if the rate of flow into the

reservoir determines the rate of the process and the solute diffusing

into the reservoir will spread throughtout the whole reservoir

immediately, then Eq.(8-3l) reduces to

  

<c2(t)>-1 a m ” a(an ) rg-rg ” 1 ” a(an)

—c—3 lfi+h§§d2ag'h EEE-ZhEOS x

m-On-0 m-O n=-O

920*:
[e' -1] . ( 8 - 32 )

Using the equations in Appendix B
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(rE-rg) . ( 8 - 33 )

( 8 - 34 )

This is just the same as Eq.(8-22). If 9240, then the concentration is

just the initial concentration in the reservoir. This case corresponds

to the zero time situation.

On the other hand we rewrite Eq.(8-3l) as

 

 

 

<c2(t)> 2' h 4 m ” a(an) e2 -Em;D*t

o '1+-_1 (rg-r2 )' E E 2 2 2 2
c2 VR 2 h anmd (EIn -9 )e

m-On-On

rg-rg m 2 -d2D*t m 92a(a ) -02D*t

+ ————e e m +2h —“e n
h d2(d2-62) a2(a2-62)

m m n n
m-O n=0

Q w 2 2- 2 CD

+9 __fffan_a__ 920*t_:£_53 1 -e2D*t

h a2d2(Em:--e2) h dg-e2‘

m-On-O n m m-O

Q

3(0 ) 2 *
n -6 D t

-2h E Eg-j—ag—e ] . ( 8 - 35 )

n
n-O
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'To write down.Eq.(8-35), we have rearranged Eq.(8-33) and used Eqs.(8-

33). As 924w, Eq.(8-35) becomes,

  

 

<c2(t)>14 m m a(an) -Em2D*t rg-rg m l -d;D*t

o %(r§ r§)+— 2 2 e ' E 29
c2 h anmd h dm

co *

a(an) -a:D t

-2h E a2 e . ( 8 - 36 )

n

n-O

TUnis case corresponds to the constant source concentration since Eq.(8-

36) could have been derived if we replace g(A) in Eq(8-21) by the

constant 15 and it tells us that if the source function is a constant,

the rate of diffusion is only dependent on the reservoir's dimensions.

F. CONCENTRATION DISTRIBUTION IN THE RESERVOIR WITH A LINEAR SOURCE

FUNCTION

If the source function is linear in time, we substitute Eqs.(8-25)

into Eq.(8-21) and make use of the last equation of Eqs.(8-8) to derive

 
 

 

c2 2 * a(ann)¢o(ar) -a:D*t 4 ” 0m(z) -d;D*t

E§-1+79 D t+n no: [1 -e ]-W E d; [l-e ]

“‘0 m=0

” ” a(a )¢o(a r)0 (z) -E 2D*c ~

- 4 E E n E 2 m [l-e m“ J]. ( 8 - 37 )

m-On=0 mn
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Applying Eq.(8-30), we have for the average concentration change in time

in the bottom reservoir

 

B - 2* 2- 2 a) - 2*

{52> 1 2 * Anhm a(a ) anD t 2n(r3 r2) 1 de t

o - +76 D t-‘V— ‘———:n‘ l- e -___hV-——_ d‘ l-e

c2 R an R m
n-O m=O

a(an) -E 2D*t
mnEM 41-. ]. (a-..)

VRm-On-O manEmn)

Obviously, there is no steady state solution for a source function

linear in time. However, since we are more interested in early time, we

assume that the time is short enough that we can expand all exponential

times in Eq.(8-38). On the other hand we notice that all summations in

Eq. (8-38) converge very fast. At early time, the average concentration

change will be almost linear. This is because the terms

* * *

-En;D t -a:D t -d;D t

l-e , l-e , and l-e will all be linear for small time

intervals and these infinite sums converge after only a few terms.

Although the main feature of Eq.(8-38) is that <c2> is almost linear in

tfinw, it is not easy to make a satisfactory simplification for this

a(a )

equation because the term E -;:—— cannot be written in a closed form

n-O n

(we can show that

k 2:10]:n ) '

ifa for k-2, 3, ---, the sum i -————— has a closed form only for k=2,

ak
n-O n

and for k>2 there are no closed mathematical expressions). Here a(an)

and an are given by Eqs.(8-l6 and 17).). If 92 is known, Eq.(8-38)
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should be used to evaluate the Soret coefficient. We still want a more

simplified.equation, and as an approximation, we take only one term for

all sums and expand the exponential terms. (The exact way of simplifing;

Eq.(8-38) is to work out the asymptotic forms for terms such as

m a(a )

E ___EE- and

a

n-O n

on *

a(an) -a;D t

E --E——¢ . This approach is fraught with mathematical

a

n-O n

difficulties.) Thus we have

” a(a ) -a2n*t * m 1 -d2D*t *

E __ZTB_[1‘9 n ]za(ao)(D t/ag), E a4[1'e m )zD t/dg

n
n-O m=0

” “ a(an) -Eng*t a(ao)D*t

E E (d [l-e Jz-—-————— ( 8 - 39 )
2 2 2

m-on-O manEmn) aodo

substituting these equations into Eq.(8-38) and rearranging, we obtain a

very approximate linear equation

B 4a(a )(«2-8)

<Lc§92-1+[1-[§ + o ]] 792D*t.

2 «2 a3«2(r§-r§)

 

 

8 4a(ao) 2 *

_1+[1-;2][l- a3(r§-r§)]7e D t, ( 8 - 40 )

Where we used the relation VR=nh(r§-r§).

The average concentration change in the upper reservoir is given by

putting a minus sign in front of 7 for Eq.(8-40), which is
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4a(a )(«2- 8)

-;:-(()£2-1 [1- [— O ]]792D*t.
+

«2 ao«2(r§--r2)

 

8 48(00) 2 *

-1-[1-«,][1- ag(r§-rg)]79 D t ( 8 - 41 )

The error caused by Eq.(8-40 and 41) will be dependent on the relaxation

time; the smaller the time, the better the Eqs.(8-40 and 41). This can

be seen by the following arguments. First we write

m 1 ‘dzD*t _16h‘ B(2 1)2m m+

m-O m-O '

where

B—[EIE]2D*t. ‘ ( 8 - 43 )

Then, we put

E <2m+1).<1-e'3(2m+1’2>z8.
< 8 - 44 >

m-O

Table(8-l) shows the numerical comparison between B and Eq. (8-42). For

BSO.2, the relative error due to Eq.(8-44) is about 3% and the error is

about 9% for 350.3. We assume 350.2, then

0.8h2

ts * . ( 8 - as )

«2D

 

This tells us that if Eq.(8-44) is used to replace the infinite sum, and

the error due to this approximation is expected to be less than 3%, then
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t must satisfy Eq.(8-45). For h-Zcm, Eq.(S-AS) gives 1159 hours.
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Table 8-1

B 0 0 0.1 0 2 0 3

w

_ 2

E 753i577(1-¢ 3(2m+1) ) 0.0 0.1046 0.194 0.271

m-O
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-azD t

The situation for E [l-e ] is, however, much more

n-O

complicated, for only the smallest (the first) roots are tabulated for

r3/r2>l (Bogert [1951]). We are unable to give a comparison like Table

3, but we know that a:n increases very rapidly as n increases. The

asymptotic forms of an and a(an) are given by a8 and a(a$)

 
a.~_(_20:1.1«_ 8(0.)~ rzn‘smzafirsn ( 8 _ 46 )
n~2(r3-r2) ’ n ~r3[1+sin(2ar'lr2)]-r2[1+sin(2alf1r3)]

This relation is valid only for large n. In table 4 we give a comparison

‘between the first roots calculated.by Eq.(8-18) and Eqs.(8-46) for a

given ratio of r3/r2. a(a5) and a(a6) are calculated by the second

equation of Eqs.(8-46).

The table suggests that an increases as n increases. We therefore

 

assume

Q a(a ) -a2D*t a(ao) -agD*t m a(a') -(a')2D*t
n n n n

-——7—— l-e ~ ‘ l-e + , ‘ l-e

Earl Ja.[ 1§<an>[ ]
n-0 n-1

*

za(ao)D t/ag . ( 8 - 47 )

*

agntsA (8-48)

For error less than 3% for above equation, A50.2.
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Table 8-2

r3/r2 1.01 1.10 1.20 1.50 2.00 3.00 5.00

a ,156‘8 15,41 7,52 2,90 1,36 0,63 9,28

0 r2 r2 r2 r2 r2 r2 r2

a' 121,1 15,71 2,85 3,14 1.52 0,29 9,39

0 r2 r2 r2 r2 r2 r2 r2

a(ao) ---- 16.08 5.82 1.42 1.54 0.68 0.44

a(a5) 100 10.0 5.00 2.00 1.00 0.33 0.207

a' 421,2 42,1 33,6 9,42 4.71 2,36 1,18

0 r2 r2 r2 r2 r2 r2 r2
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If we require that the relaxation time along the z direction is the

same as along r, then from Eq.(8-48) and Eq.(8-43) (taking the equal

Siegn), the height of reservoir is related to r by

___«38
h2 4013(3). ( 8 - 49 )

Thus Eq.(8-49) must be used for proper design of the reservoirs, and the

constants A and B are determined by Eq.(8-47) and Eq.(8-44). If an is

given by Eq.(8-46) and r3-r2-h, then by Eq.(8-48 and 43), A-B and

Eq.(8-49) is an identity.

Now we combine Eqs.(8-40 and 41) to derive

- *

<c2> 270 62t

-1_4——-—————- . ( 8 - 50 )

(cg) 1-1D Sgt

 

  

4a(a )(«2-8) 4a(a )

-4--*—1 ° 1111-22111- ° 14«2 a3«2(r§-r§) a3(r§-r§)

If §D*92t is much less than 1, (true for t55 hours) this leads to

-*

<c2> 21D 92c _ *

T-l— _* 427002: (8-51)

<c2> 1-7D 82t

 

Eq.(8-51) is our working equation for calculating the Soret coefficient

from a TGTD experiment at an early time period. The time length is

controlled by the dimensions of the reservoir. Eq.(8-49) gives the
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relation between h and r and A and B are determined properly from the

accuracy requirement of the approximation of Eqs.(8-44 and 47).

Now we replace 92 by Eqs.(8-23) to give a practical form of the

working equation

8

   

<C2> [ [:1112 poag 8 48(00)(fl2-8) *

< T '1' 6! [ flL ][1'[«2+ agflz<r§_rg)]]0
t ( 8 - 52 )

c2>

Eq.(8-52) is to be compared with Eq.(8-l). Using Gaeta and coworker's

data (1982), VR-15cm3, a-0.045, b-8cm, LP4.8cm and AT-16°C, we calculate

the numerical coefficients for these two equations. We take VR-nh(r23-

r§)-15cm3 and assume rg/rg-Z, then use Eq.(8-49) to evaluate h (we have

taken AFB'O.2). We get h-l.155cm, r2-1.174cm, r3-2.34 and a(a°) as well

as ea is from table 4. Substituting these values into Eq.(8-52) and

Eq.(8-1) we find

<c2>

<c$>

  

9008 , '

]a*t, a*-c1V15-a ( 8 - 53 )-1zs.4x10'5[

<c2>

<c§>

  

_5 P008

-1z3.5x10 [ 0 )st, ( 8 - 54 )

* -

Because 3 and a are of the order of 10 3, we expect Eqs.(8-53 and 54)

are also the same order; then Eq.(8-52) and Eq.(8-1) are qualitatively

equal. A better result is derived if we remember
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#hxmuxu. . .; < 8 - 55 )

then a better approximation for Eq.(8-50) is

<c2> 250*92t _ * _ *

T -1- _ * ~21D 62t(1+7D 92:), ( 8 - 56 )

<c2> 1-1D 92t

  

where the 110*82c is given by Eqs.(8-23). Eq.(8-56) is a second order

algebraic equation for 0*. By solving it we will have two values for 0*,

and only a meaningful root will be applicable to evaluate s from the

last equation of Eqs.(8-53).

As we pointed out the working equation Eq.(8-52) is only an

approximation, but we do think it will be applicable at least

qualitatively under the requisite experimental conditions. Furthermore,

justification of usage of 62 from Eq.(8-23) must be done experimentally.

G. SUMMARY AND DISCUSSION

In this chapter we developed the theory of TGTD column with two equal

volume reservoirs. The theory is based on diffusion. The practical

differential equation for the diffusion process in the reservoirs is

established using this model. The equation is solved to obtain the

concentration distribution in the reservoirs as a function of space and

time. The solution is dependent on the choices of the boundary

concentration distribution, i.e the source function. Several special

cases were discussed, and corresponding equations were developed.
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We were particularly interested in deriving a working equation

applicable at an early stage of the experiment and from which the

thermal diffusion coefficients or Soret coefficients could be estimated.'

The result is given in section F. For certain restrictions of reservoir

dimensions as well as time, we do obtain a working equation to estimate

the Soret coefficients if the average concentrations in both top and

bottom reservoirs are measured. Because at present we do not know the

asymptotic expansions such as

 

a(a ) -a2D t a(a ) -E :D t

1—44: 1 11...... 14 1
n-O n m-On-O m n mn

the accuracy of the working equation given in section F is uncertain. If

possible Eq.(8-38) should be used. However, at present, only the

smallest roots are given for different ratios of r3/r2. The difficulty

of computing the roots of Eq.(8-18) hinders usage of Eq.(8-38). We are

unable to find the asymptotic roots for Eq.(8-18) because the arguments

cannot be made large enough to do so. We hope this difficulty will be

solved later.

Another important aspect of TGTD with reservoirs is that although the

general form of exponential decay type source function is confirmed

experimentally (Naokata and Kimie [1984]) and used in our problem, the

actual form of relaxation time for such exponential decay is not yet

established. The source function relaxation time used to derive our

working equation was borrowed from the theory of TGTD without

reservoirs. Our linear source function came from the direct expansion of

the exponential term as time t is small. This "short-time" scale depends
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upon the dimensions of the column, and the temperature gradient as well

as the physical properties of the solution, as can be seen from Eqs.(8-

23). Usually, this "short-time" is about a few hours for a typical

column and.AT. Time dependent TGTD is a very sophisticated problem even

without reservoirs. For TGTD with reservoirs, we used our diffusion

model so that the problem can be attacked, and find a very approximate

working equation to estimate Soret coefficients.

There is a marked discrepancy between the working equation derived by

us and the one used before. However we see from our numerical

calculation that the two working equations are of the same order, which

nmmns that a cylindrical type TGTD column gives about the same

separation of solute from solvent with a rectangular cell type TGTD

column. However, the biggest difference between our equation and the one

used before is that Eq.(8-52) is made of two terms with opposite signs.

This can be seen by rewriting Eq.(8-52)

  

<cB> p ag 4a(a )
2 2 0 O

-1_L—Ll)—laA («2-8) 1-——22 2 Jr. ( 8 - 58 )

Because all terms outside the square bracket are positive, the sign

change depends on the two terms in the bracket. If the second term in

<e2>
 

the bracket is larger than 1, then is less than 1, the

<c2>

concentration in the bottom reservoir is less than that in the top

reservoir, thus instead of migrating to the bottom reservoir, solute

moves against the temperature gradient up to top reservoir. This is true
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if the reservoir is very small. Using table 4 we found that if ra/r2<1.2

then the square bracket term is negative, and <c§> is less than <c§>.

But if r3/r2>1.2, then solute concentrated in the bottom reservoir as it

usually does (We remind the readers here that we did find by calculating

the concentration distributions in the column without reservoirs at very

early time period that when column length is over 20 cm, the solution is

a little bit more concentrated at upper section of the column.).

Therefore, in order to ensure that the solution is more concentrated in

the bottom reservoir, one has to design one's reservoir carefully, and

our equation provides a useful qualitative criteria for that purpose.

<c2>

<c§>

 

The disadvantage of the old working equation is that if is less

than 1, one obtains a negative Soret coefficient or thermal

diffusion coefficient from the old equation. Then to explain such an

unusual situation of electrolyte solutions at low concentrations( about

3to 1.3x10-1mol) and an average temperature of around 30°C, the5x10"

authors (Gaeta et a1. [1982]) claimed that there must be a phase

transition under the conditions described above. But from our working

equation, it is apparent that the possibility that a negative sign

occurs for Eq.(8-58) is due to the improper choices of the dimensions

of the reservoirs such that rg-rg is too small. In other words, for

small reservoirs, it is possible to make a conversion of direction of

regular TGTD during the early time of experiment. Because we did not

work out the TGTD theory for a rectangular cell, we are unable to apply

our working equation to recalculate Gaeta et al.'s experimental results.

If larger reservoirs had been used in their experiments, negative Soret
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coefficients would probably not have occurred. Our conclusion implies

that it is unlikely that there is any kind of phase transition in dilute

electrolyte solution. The conversion of TGTD is more likely due to

improper design of the apparatus. We also mention here that Naokata and

Kimie [1984] were unable to reproduce the results of Gaeta et a1. From

our point of view this is because they used relatively larger and

cylindrical geometry reservoirs. Moreover the pure thermal diffusion

experiments of Petit, Renner, and Lin (1984) yielded only positive Soret

coefficients.

Since the Japanese workers reported explicitly the detailed time

course of their results (through curves), it is should be possible to

*

obtain a from their paper as long as the dimensions of reservoirs are

given. It is n_o_§ possible to recalculate the Italian results to obtain

*

reliable 0 since the Italians report only their calculated results, not

their experimental results.



CHAPTER 9

SUGGESTIONS FOR FUTURE WORK

We have already seen from previous chapters that the complexity of

time-dependent TGTD prevents us from solving the problem exactly. Only

the zeroth or for some cases at most the first order solutions are

obtained, and nothing can be done for the solutions with order higher

than 1. However, we still have had a clear and deep look at the time-

dependent TGTD problem and have established a solid foundation for any

further research on the problem. Whenever possible, a numerical solution

should be done to check the accuracy of the perturbation solutions. For

the steady state, we have found an accurate result, but more research is

required for the transient state, particularly for the transient state

with two reservoirs.

The situation for the transient state with reservoirs is extremely

complicated due to the uncertain boundary conditions at the column ends.

We thus hope to reformulate a proper mathematical form for matter flux

at the interfaces between the column and reservoirs either empirically

or theoretically, so that one can derive the corresponding boundary

conditions in the transient state. At the interfaces where the

149
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temperature gradient vanishes, the formulation of matter flux at

interfaces is not easy, and even if it could be done, the boundary

conditions would be too complicated to hold out much hope of solving the

concentration equation.

In chapter 8, we found the concentration1distribution in.the

reservoirs based on diffusion models, but we still do not know the

concentration distribution in the column. The average matter flux has

following form:

-A
2

j: - Ko30* ( L - 22 )( 1 - e t ) at z - 0, L , ( 9 - 1 )

*

where chD ( L - 2z ) is the steady state flux of the column without

*

reservoirs. Note that j: (z=0)=-jz(L), which is to say that the flux is

antisymmetric at the two ends. When a final steady state is reached, the

concentrations in the top or bottom reservoirs are the concentrations

at the respective ends of the column. The only disturbance in the

reservoir comes from the interfaces where concentration gradients are

built up due to TGTD in the column. We expect that the factor A2 will be

a very complicated quantity dependent on the dimensions of reservoirs as

well on the properties of electrolyte solutions. One possibility is

that

QQ(AT)2D* *
12 - C(L,a) " 0 v ( 9 - 2 )

R 3

where C(L,a) is a constant which depends on the dimensions of the column
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and VR is the volume of the reservoirs,(Tyrrell [1962]), Naokata and

Kimie [1984]). On the other hand, the zeroth order average flux in the

column is from chapter 7,

2* -KL - a¢o _

Jz - 8a”: ( H¢°' E 5; ' ( 9 - 3 )

On the boundaries, or at the immerfaces, these two fluxes must be the

same, thus at z - O, L,

* -KL 8%,

-——8:2e 1118,- r 5; -jz. < 9 - 4)
A2t

j:-Keg(L-2z)(1-e' )

An alternative way of looking at this problem is that the net flux in

the column is

jN-JZ-jz’ (9'5)

where the additional term is due to the reservoir effect. After

subtracting this effect we have the modified flux jN’ whic is still zero

Combining Eq. (7-48) with (9-4), we have the following differential

equation with proper boundary and initial conditions.
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a¢o 82 o ‘2

- eA DV t LK

—- K¢o- ch(l - e T )e _

63° K8 a2 K 0(1 -S2DvTc) LK
_ - 0+ C2 " e e = ,

Bz 8D*E z L

*
- _ 2

80- xzcg eKL, at r-o, A2-C(L,a)2flé§1—2 , ( 9 - 6 )

where VT and VB are respectively the volume of top and bottom

reservoirs. The above equation reduces to Eq. (7-48) as V approaches to

R

zero. Solution of Eqs.(9-6) will be not easy because of time dependent

boundary conditions and the actual form of A2 must be given. It is hoped

that this can be done to get the concentration distribution in the TGTD

column with two reservoirs.

In chapter 8, the concentration distribution in the reservoir is

given, and a simple transient working equation is derived to estimate

the Soret coefficients. Because of the difficulty of evaluating the

higher roots of Eq. (8-18), the first term is used to accomplish the

transient working equation. Numerical work is needed to give some higher

order roots for Eq. (8-18), thus a more accurate working equation could

be given by counting more terms of the infinite summations. From the

point of view of mathematics, the best way is to work out the asymptotic

forms of following sums such as

an 2 Q

E 31321 -a Dt } 35331 -o20c
e n , e n

2 2- 2

n—l an n=1 (a e )

   



A P P E N D I X A

SOLUTION OF PARTIAL DIFFERENTIAL EQUATION ( 8 - 13 )

 

 

Qflj a_ a_R _ _ «it: _
6t-r 8r[rar] ’ R(r-r2)—l, 8r r=r3—O

R(t=O)=O . . ( A - 1 )

If

R(r,t)=<1>(r.t)+\/(r), ( A - 2 )

then Eqs.(A-l) becomes

@1112 6_ a_d_> _ __ as _
6t_r 6r[rar] ’ ¢(r—r2)—O, 8r r=r3—O

<I>(t=0)=-V(r), ( A - 3 )

and

Q. 9! _ _ QM _ -dr[rdr]-—0, V(r2)—1, dr rB—O . ( A 4 )

The solution of Eqs.(A-4) is

V(r)=1 ( A - 5 )

153



154

We solve Eqs.(A-l) by the method of separation of variables. Writing

¢(r.t)-T(t)¢(r). ( A - 6 )

we have

Q. d 22
dr[ dr]+a2¢-ov ¢(r2)=1, dr 1:330, ( A ' 7 )

and

%%--a2DT,
( A ' 8 )

with a2 an arbitrary separation constant. The solution of Eq.(A-8) is

T(r)-ae'°‘29t , ( A - 9 )

where a is an integration constant. To solve Eqs.(A-7), we make the

independent variable transform

r-fix. ( A - 10 )

This gives, by Eqs.(A-7 and 10),

If afl-l, then

r-x/a ( A - 12 )
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Eq.(A-ll) is a standard form of Bessel's differential equation of the

zeroth order if Eq.(A-12) is satisfied. One of the the solution is

Jo(ar2)

¢o(r)-AJo(ar)+BYo(ar), B--§;?;;;7A ,

¢5(ar3)-J5(ar3)Yo(ar2)-Jo(ar2)Y5(ar3)=0, ( A - l3 )

or _

¢1(ar3)-J1(ar3)Yo(ar2)-Jo(ar2)Y1(ar3)-O, ( A - 14 )

where we have made use of Eqs.(A-7), and J0, J1, Y0, Y1, J5, Y5 are

respectively the zeroth and first order Bessel's function of the first

and second kind and their derivatives. Furthermore, the constant a must

be the root of the second of Eq.(A-l3) or of Eq.(A-14). Because there

are infinitely many positive nondegenerate roots (Bogert,[1951]), we

rewrite the first of Eqs.(A-13)

¢o(anr)-A:[Jo(anr)Yo(anrz)-Jo(anr2)Yo(anr)]

n-l, 2, 3, . . ., A*-A/Yo(onr,)-An , ( A - 15 )

where an satisfies Eq.(A-14). The general solution of Eqs.(A-7) is the

infinite sum of Eqs.(A-lS)

Q

¢- E An¢o(anr) . ( A --16 )

n-l

Now, combining Eqs.(A-3,4,5,6,9, and 16), we have
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Q

_ath

¢(r,t)- E An¢o(anr)e

n-l

¢o(anr)-Jo(anr)Yo(anr2)-Jo(anr2)Yo(anr) . ( A - l7 )

¢(r,t-0)- E An¢o(anr)--l, ( A - 18 )

n-l

where we have redefined ¢o(anr) and An is a new constant.

For Eq.(A-18) to be true, we must expand the constant 1 in terms of

¢o(anr), and An must be the nth coefficient of the expansion. To this

end we must compute the required integrals since they do not appear in

the literature. Assuming the two differential equations

d2¢o(anr) d¢o(a r)
2

drz +. dr“ +agr2¢o(anr>-0. ( A - 19 ) 

r

2d2¢o(amr) d¢o(amr)

+r-——————-+a;r2¢o(amr)-O, ( A ' 20 )
r dr2 dr

n-1,2,---, m-1,2,---,

where an and am are any two roots of Eq.(A-lA), we multiply Eq.(A-l9) by

¢o(amr), and Eq.(A-ZO) by ¢o(anr), then subtract Eq.(A-ZO) from Eq.(A-

19), and finally integrate the result from r2 to r3 to obtain

r3

(cg-a;)Ir r¢o(anr)¢o(amr)dr

2

r3

—r[am¢o(anr)¢6(amr)-an¢o(amr)¢6(aar)]r . ( A - 21 )

2
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Here, ¢5 is the derivative with respect to the argument anr or amr, not

just r. For min, Eq.(A-Zl) reduces to

r,

(cg-a;)Ir r¢o(anr)¢o(amr)dr

2

-r3 [am¢o(anr3)¢6(amr3)]-r2[-an¢o(amr2)¢6(al'1r2):l, ( A - 22 )

where we have applied Eqs.(A-l3,14 and 17). Because ¢o(amr2) and

¢6(amr3) are also zero by Eqs.(A-l3,14 and 17), we have

r3

I r¢o(anr)¢o(amr)dr=0 , for am# an. ( A - 23 )

r2

For am- an, the situation is complicated and we give only an outline

of the proof. We rewrite Eq.(A-21) as

r3

I r¢o(anr)¢o(amr)dr

r2

r r3
-___[am¢o(anr)¢6(amr)-an¢o(amr)¢6(ar'lr)] . ( A - 24 )

ag-a; r2

When anéam the right hand side of Eq.(A-24) requires application of

L'Hospital's rule, which yields after some manipulations,
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r

I 3r¢3(anr)dr

r2

2 2

.;3[[¢6(anr3)]2+¢g(anr3)]-;fl[[¢6(anr2)]2+¢g(anr2)]. ( A - 25 )

To obtain Eq.(A-25), we have used Eqs.(A-l3,14 and 17 and 19), the

Wronskian (Abramowits and Stegun [1970])

 

WIJV(2>.YV<2)1-JV+1<2)YV(2)-Jy<z>YV+1<z)- "22 . < A - 26 >

and the identities

Jy+1(z)-§Jy(z)-J;(z) , Yy+1(z)-:Yu(z)-Y;(z). ( A - 27 )

Then

2

1rar
n2

 

¢6(anr3)-’¢1(anr3)'o v ¢6<anr2)"¢1(anr2)" ( A ' 28 )

Using these relations, we finally derive from Eqs.(A-25 and 23)

2 ' [J3(anr2) ]

r -———— ——————— - , n=m

I 3r¢o(°nr)¢o(amr)dr
(mm)2 JRant?)

r
2 0, nfim

( A - 29 )

Eq.(A-29) is very important, and we will repeatedly apply it.

Having obtained Eq.(A-29), we now expand Eq.(A-l8). Because r¢o(anr)

forms a complete set of orthogonal functions with different an, we

multiply Eq.(A-18) by r¢o(amr) and then integrate from r2 to r3 to give
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rs

I r¢o(anr)dr

r2 (wan)2 J3(anr2)
-1 r3

An-- r3 = 2 [J§(a r2)-1] I r¢o(anr)dr. ( A - 3o )

n r
I r¢§(a r)dr , 2

 

In order to evaluate the integral in Eq.(A-30), we derive a general form

for this type of integral.

1

ap+2

n

 

Irp+1¢o(anr)dr- Jzu+l¢o(z)dz, z=anr ( A - 31 )

with p a constant. The following two relations are needed for evaluating

Eq.(A-3l) (Tranter, [1968]),

Iz”+1Jy(z)dz-z“+lJV+1(z)+(p-u)z“JV(z)-(y2-u2)Iz“+1Jv(z)dz

sz+1YV(z)dz-zp+1Yu+1(z)+(p-u)szV(z)

~(p2-v2)Izp+lYV(z)dz ( A ~ 32 )

We substitute Eqs.(A-32) into Eq.(A-31) and use Eqs.(A-l7) to derive

Irfl+1¢o(anr)dr=a;("+2)[zp+l¢l(2)+pzfl+l¢o(2)

-p2Iz”'1¢o(z)dz] . ( A - 33 )

We note that Eq.(A-33) is exactly the same as Eqs.(A-32) in form with

v-O, and ¢u is replaced by either JV or YV. We immediately derive from
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Eq.(A-33) for p-O

r3 2

J r¢o(anr)dr--;;; , ( A - 34 )

r n

where Eqs.(A-14 and 26) are used. The integral in Eq.(A-30) now is

eliminated by Eq.(A-34), and An is then,

J¥(anr3)

An/fl- Jg(anr2)-J§(anr3) ' ( A - 35 )

 

The solution of Eqs.(A-l) is, by Eqs.(A-2,5,9,l7 and 34),

” -a20c J§(anr,)
n

R-1+w§ a(an)¢o(anr)e , 8(an)-J3(anr2)-J¥(anr3)'
 

( A - 36 )

n-l
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A P P E N D I X B

SOLUTION OF PARTIAL DIFFERENTIAL EQUATION (8-6)

The solution of Eqs.(8-6) is obtained by differentiating the square

bracket product in Eq.(8-21),

c2 ” t a:D(A-t)

Eg-l-«D E a:a(an)¢o(anr) e g(A)dA

n-l 0

” ” t Em;D(A-t)

+4D E E a(an)¢o(anr)0&z)Em: e g(A)dA

m-ln-l

” t d2D(A-t)

+50 dzfl (z) e m (A)dA E 2-a2+d2
n m m ‘ g ’ nm n m'

m-l O

-92DA

g(A)-7(1-e )

For the g(A) given, Eq.(B-l) becomes

( B - 1 )
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” 2 _ 2 m 2
co 1 ana(an)¢o(anr) anDt -92Dt 5 dm amaz)

n-l .n n-l m

E 2 _ 92

_ 2 w m 2 _ 2

e e +4 e -e

mn

°° m -Em§Dt 4 °° 4;th

+4 E E a(an)¢o(anr)0&z)[l-e ]+; E 0m(z)[1-e ]

m-ln-l m=l

m -a;Dt

-« E a(an)¢o(anr)[l-e ] . _( B - 2 )

n-l

Eq.(B-2) contains many infinite sums, and is difficult to apply in

practice. We are able to perform some of the sums. Consider first the

summation

@

d2 0 82)

Y(z)- E 5%—795; . ( B - 3 )

m

n-l

Using Eqs.(8-20) to eliminate Om(z) and d2m , we derive

m

(2m+1) i [(2 1) I __ 82(2h22

Y(z)' E (2m+:)? _ g: x v X'gfig {23 «2 ° ( B ' A )

n-O

To sum Eqs.(B-h), we use the two relations (Gradshteyn and Ryzhik,

[1980])
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i ki_ll_§inikzl _Eéifll£12m£;§ll

k2 - :2 25in(§w) ’ ( B ‘ 5 )

n-l

kgigik§1_ «sin 2m+1 n -x _

E k2-§2 25in(§n) ' ( B 6 )

n-l

If we subtract Eq.(B-6) from Eq.(B-S), then

i____l_l_ii____l_l=________E 2k:%k:1?2 ?k;; X =Asin(§W){sin[ (2m+1)n§--x§]--sin[§(2m«-x)]},

O<x<«, m-O, i1, :2, ~--. ( B - 7 )

Taking m-O, Eqs.(B-7) reduce to

m

E 12k:%fi:in£(Bk;l)x1_asi:(gw){sin[(n-x)§]-sin(§x)}, ( B - 8 )

n-0

and comparing Eq.(B-S) with Eqs.(B-B and 4), we obtain

manz)-zsin[(2h- z)91--sin 92 ( B _ 9 )

d2 - 92- sin(2h6) '

n-l

Integrating both sides of Eq.(B-9) from O to h for 2, we obtain

E di%954= -3- t8(h9) ( B ' 10 )
m
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It is also possible to perform the infinite sum

° a2a<a >¢o<a r)
X(r)-x E n a2n- 92 n

n-l n

 

To evaluate this summation, we define

Do(9r)-Jo(6r)Yo(er3)-J0(er3)Yo(6r)

¢o(er)-Jo(9r)Yo(er2)-Jo(er2)Yo(er)

¢1(9r)-J1(9r)Y0(9r2)-Jo(er2)Y1(er).

The following relationships are satisfied,

D1(9r)--D6(6r), Do(9r2)--¢(9r3), ¢1(Gr)=-¢6(8r).

( B - 11 )

( B -12 )

( B - 13 )

The trick here is to expand ¢o(er) in terms of orthogonal functions

¢o(anr). We write

¢o(6r)-§ Cn¢o(anr).

Then

r,

I r¢o(anr)¢o(9r)dr

r2
 

C-

n r3

I r¢3(anr)dr

1'2

and because ( Luke, [1962])

( B - 14 )

( B - 15 )
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r3 r39¢o(anr3)¢1(9r3)

I r¢o(anr)¢o(9r)dr-- 02 _ 92 , ( B - 16 )

r2 n

we obtain

 

C r39¢o(anr3)¢l(9r3)

n a2 - 92

n

(flan)2a(an). ( B - 17 )

where we have used Eq.(A-29). By Eq.(B-lh),

  

e¢o(anr3)¢1(anr) 2 2¢0(9r)

E a; - 62 (flan) a(an)-.r39¢1(0r3) ( B - 18 )

The next step is to expand Do(9r) in terms of ¢o(anr),

Do(9r)-§ Bn¢o(anr). ( B - l9 )

As before, we obtain for Bn

(1mn)2a(an

Bn-- 2n(a2-92)[r39¢0(anr3)D1(er3)+r2an¢1(anr2)Do(er)].( B - 20 )
 

Combining Eqs.(B-20,19 and 18), we finally obtain for Eq(B-ll)

 
 

S ana(an)¢o(anr) ¢0(9r)D1(9r3)-D0(9r)¢1(9r3)

a2 - 92 ’ Do<er2)¢1<er3> '

n-l

r2<r<r3. ( B - 21 )
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As 640, we can show that the limiting form of Eq.(B-21) is

a} a(an)¢o(anr)--l, ( B - 22 )

and Eq.(B-22) is just Eq.(A-l8), the initial condition of the partial

differential equation(A-B).

If we multiply both sides of Eq.(B-22) by r, then integrate from r2 to

r3, the result is

___4___

E a(an) r2 ¢1(6r3)D1(9r2)- n2r2r392
 
 

a: - e2 "29 Do(er2)¢,(er3) ' ( B ' 23 )

n-l

where we have used Eqs.(A-26,3l,32, 33, and 34). At G-O, Eq.(B-23)

reduces to a very simple form. To show this, we rewrite Eq.(B-23)

 
 

 

___‘_+___.

m a(a ) r2 ¢1(6r3)D1(9r2)62- n’rar2

“ ---; ( B - 24 )
a2 - 92 e 200(6r2)¢1(er3)

n-l n

Then

” a(a ) r39¢o(9r3)D1(9r2)+9r2¢1(9r3)Do(9r2)

E a2 '538 'r2 aeno(er2)¢,(er3)

n-l n

-(rg-rg)/a . ( B - 25 >

To get the last line of Eq.(B-25), we have successively employed

L'Hospital's rule. A simpler way to show this is to multiply Eq.(B-22)

by r, then integrate from r2 to r3 to lead to Eq.(B-25).
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