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Abstract

Modelling and Control of Mechanical Systems

with Stick-Slip Friction

By

Stephen Charles Southward

Whenever two mechanical surfaces in a dynamical system are forced together in

direct contact, a friction force is induced at the point of contact which acts to resist the

relative motion of the surfaces. The result is often a stick-slip friction force that is highly

nonlinear, and generally has an undesirable influence on the system dynamics. Its primary

function is to remove useful energy from the system. With a representative model of this

phenomena, control schemes can be developed and evaluated to compensate for the

undesirable effects. In this dissertation, a model is presented which, when incorporated

into a dynamic system model, will provide the stick-slip dynamics observed in practice.

Using this model, classical control techniques are evaluated for their effectiveness.

A Proportional+Derivative (PD) control law is the simplest classical control law to

regulate the position of a one-degree-of-freedom (l-DOF) system. A stable set of multiple

equilibrium points is found to exist for the 1-DOF system under PD control, and the

steady-state error is guaranteed to be bounded. Integral control (PID) is added in an

attempt to remove the steady-state error, but certain types of slipping force models are

shown to promote the generation of limit cycles. Neither of these classical techniques are

able to effectively regulate the position of the 1-DOF system.



A nonlinear compensation force for stick-slip friction is developed to supplement a

PD control law applied to the 1-DOF mechanical system. The choice of a discontinuous

compensation force is motivated by the requirement that the desired reference be a unique

equilibrium point of the system. The stick-slip friction force, modelled with a sticking

force and a slipping force, generates discontinuous state derivatives. A Lyapunov function

is introduced to prove global asymptotic stability of the desired reference using a

modification of the direct method for discontinuous systems. Stability is verified

numerically as well as experimentally. .The nonlinear compensation force is robust with

respect to the character of the slipping force which is assumed to lie within piecewise linear

bounds. Exact knowledge of the static friction force levels is not required, only upper

bounds for these levels.



Copyright

COPyright by

Stephen Charles Southward

1990



Certification

This is to certify that the dissertation entitled

Modelling and Control of Mechanical Systems

with Stick-Slip Friction

 

presented by

/ ,/ , .
W, I mmm J Am] 331960

8 1p *n Charles Southward . I Date

DOCTOR OF PHILOSOPHY Candidate

has been accepted towards fulfillment of the requirements for a

DOCTOR OF PHILOSOPHY DEGREE in Mechanical Engineering at

Michigan State University

; ; Date

Mr‘ \VKMHQSL’VNA AQV‘I\ 3094“)

Charles R. MacCluer Date

Professor, Dept. of Mathematics

Z/Zaw / 9ko I770
0R0enberg Date

Professor, Dept. of Mech Engineering

3947—3; 93,996) MW»
Fathi Salam Date

Associate ofessor, Dept. of Electrical Engineering

 

 

flIfi/V,/3C’ IDaZVtJ

 

 

Charles Seebeck

Professor, Dept. of Mathematics

U 5%.; 14m? 22 {270
7 7 DateSt‘e en W. Shaw

Associate Professor, Dept. of Mechanical Engineering



Dedication

To my parents, Charles and Mildred Southward.

vi



Acknowledgements

I would like to extend my most sincere gratitude to my academic advisor Dr. Clark

J. Radcliffe. He has taught me much more than I had anticipated learning through this

experience. Special thanks go to Dr. Chuck MacCluer for his advice and assistance

through our brief association. I doubt that I could have finished this dissertation without

his guidance and expertise. Both of these men shall remain a source of positive inspiration

to me in my future pursuits, academic or otherwise. I am very grateful to claim them as

friends and mentors.

Each member ofmy guidance committee played an integral part in the development

of this research effort, and I would like to extend my gratitude to each of them. To Dr.

Steven Shaw for his support and guidance with the geometrical analysis. To Dr. Ronald

Rosenberg for his assistance with interpretation of the nonlinear simulation results. And

finally to Dr. Fathi Salam and Dr. Charles Seebeck for providing me with the fundamental

expertise in each of their respective disciplines. I am proud to have been able to work with

such an outstanding group of individuals.

Special thanks are extended to Bob Rose for his mechanical design expertise. I

would also like to thank the General Motors Corporation for providing funds to equip the

Dynamic Systems Laboratory, and the CASE Center for CAEM for providing

computational services.

Finally, I would like to thank all my friends at Michigan State, especially Andy

(Cap’n DPH Albano) Hull, who has truly shared this experience with me.

vii



Table of Contents

List of Tables

List of Figures

Chapter 1 - Introduction

1.1 The Study of Stick-Slip Friction

1.2 The Control of Systems with Stick-Slip Friction

1.3 Chapter Overview

Chapter 2 - Mathematical System Models

2.1 The Physics of Stick-Slip Friction

2.2 The Stick-Slip Friction Model

2.3 The Reaction Force

2.4 Common Slipping Force Models

2.5 The One-Degree-Of-Freedom System Model

Chapter 3 - PD Control Response

3.1 Theoretical Investigation

3.2 Experimental Investigation

Chapter 4 - PID Control Response

4.1 Theoretical Investigation

4.2 Simulated Time Responses

4.3 Limit Cycle Simulations

4.4 Experimental Investigation

Chapter 5 - Robust Nonlinear Compensation

5.1 Derivation of the Control Law

viii

\
O
Q
Q
U
I
U
J

12

15

19

21

21

23

29

29

34

41

47

52

52



5.2 Surface of Discontinuity and State Trajectories 55

5.3 Stability Theorem and Proof 57

5.4 Simulation Results 61

5.5 Experimental Results 68

Chapter 6 - Conclusions 72

6.1 Summary 72

6.2 Recommendations for future work 75

Appendix A - Simulation Models 76

A.l Numerical Simulation 76

A2 Stick-Slip Friction Model 76

A3 One-Degree-Of-Freedom Model 78

Appendix B - Experimental Controller 82

B.1 Controller Implementation 82

B.2 PID Controller 82

B.3 PD Control with Nonlinear Stick-Slip Compensation 94

8.4 Common Control Modules 106

References l 10

ix



Table

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

5.2

5.3

5.4-

5.5

List of Tables

Static friction bound results from PD control experiment.

Experimental parameters for PD control.

Common parameters for all three PID simulations.

PID Simulation parameters for the Coulomb model.

PID Simulation parameters for the stiction model.

PID Simulation parameters for the exponential model.

Classifications for each of the three stick-slip models.

Common parameters for PID limit cycle simulations.

Numerical results of fitted iteration functions for the Coulomb model.

Numerical results of fitted iteration functions for the stiction model.

Numerical results of fitted iteration functions for the exponential model.

Experimental parameters for PID control.

Slipping force parameters fitted to experimental limit cycle response.

Common parameters for all nonlinear compensation simulations.

Simulation parameters for nonlinear compensation with the Coulomb model.

Simulation parameters for nonlinear compensation with the stiction model.

Simulation parameters for nonlinear compensation with the exponential model.

Experimental parameters for nonlinear compensation.

S
A

Page

26

27

36

37

38

42

43

45

46

48

50

62

63

65

69



List of Figures

Figure

2.1 The sticking force model with unequal static friction levels.

2.2 Example nonlinear slipping force model bounded by linear bounds.

2. 3 Coulomb plus viscous friction model.

2.4 Stiction plus viscous friction model.

2.5 Exponential plus viscous friction model.

2.6 The 1-DOF conceptual stick-slip mass system.

3.1 Typical PD phase portrait and the set of multiple equilibria EPD.

3 .2 Experimental 1-DOF system schematic diagram.

3.3 Experimental brake to alter the friction characteristics.

3 .4 Experimental system time response for PD control.

4.1 Parallel trajectories inside the sticking band S.

4.2 Typical PID trajectory with sticking on both sides of the origin.

4. 3 PID Control simulated time response with the Coulomb model.

4.4 PID Control simulated time response with the stiction model.

4.5 PID Control simulated time response with the exponential model.

4. 6 Iteration functions for PID control with the Coulomb model.

4.7 Iteration functions for PID control with the stiction model.

4. 8 Iteration functions for PID control with the exponential model.

4.9 Experimental system time response for PID control.

4.10 Simulated limit cycle response fitted to experiment.

5.1 The nonlinear proportional feedback control force.

xi

Page

11

11

16

17

18

19

22

24

27

32

34

37

39

40

45

46

49

5 1



5.2

5.3

5.4

5.5

5.6

5.7

Nonlinear addendum, g(x), to the Lyapunov function candidate.

Simulated time response for nonlinear compensation with Coulomb model.

Simulated time response for nonlinear compensation with stiction model.

Simulated time response for nonlinear compensation with exponential model.

Experimental time response for nonlinear compensation with braking.

Experimental time response for nonlinear compensation without braking.

xii

58

.65

67

7O

71



Chapter 1

Introduction

1.1 The Study of Stick-Slip Friction

Ever since man began using machines to improve his control over nature, stick-slip

friction has been present to hinder and sometimes even help in this process. Stick-slip

friction, sometimes known as dry friction, is a natural resistance to relative motion between

two contacting bodies. This resistance can be reduced to effect the prevention of surface

wear with the use of lubricants, as the Egyptians, Greeks, and Romans were well aware

(Davison, 1957). Although Aristotle recognized and wrote of the reality of friction during

his time, it was nearly 2000 years before a quantitative study of friction took place

(Bowden and Tabor, 1964).

In the mid-fifteenth century, Leonardo da Vinci enunciated the first definitive laws

of friction based on direct experiments illustrated in his notebooks. The concept of a

coefficient of friction is clearly expressed in his statement, “The friction of a polished

smooth surface resists the engine with a force equal to one quarter of its weight” (Vinci,

circa 1500c). Although the details were not quite correct, the fundamental concepts behind

his laws of friction still hold me today. It is remarkable to note that these laws were

developed 200 years before Newton presented a clear definition of force.

The rediscovery of these laws by the French engineer Guillaume Amontons was

presented in 1699 to the Royal Academy of Sciences in France, but was met with some

skepticism. Amontons, working with dirty surfaces, determined the coefficient of friction

to be one third for all surfaces. These observations were verified by Charles Augustine



Coulomb in 1781 working with clean surfaces, and his results were also presented to the

Royal Academy. Through meticulous experimental work, Coulomb observed that static

friction is usually higher than kinetic friction, but for metals, the static friction is almost

identical to the kinetic friction. With strong encouragement from the Royal Academy,

Coulomb pioneered the research effort to determine the fundamental causes of friction.

Much of the friction research through the nineteenth century was concerned with the

mode of energy dissipation in friction. It is now accepted that friction is largely due to

interfacial adhesion and to the energy expended in deforming the surfaces (Bowden and

Tabor, 1964). Although this research continues to some degree today, friction research has

branched off into many new disciplines. The areas of primary interest to this research are

modelling stick-slip friction, and the associated effects of these models on the control of

dynamic systems.

Many models have been formulated for this type of friction, but only a few are

regularly used in practice today. The analytical simplicity of these common models are

based on the fundamental research of Coulomb. Through experimental evidence, Coulomb

observed that kinetic friction was nearly independent of the relative velocity of the smfaces,

thus the Coulomb friction model was postulated. For some surfaces, the kinetic friction

was found to be lower than the static levels. This model is currently accepted as the stiction

model. A linear viscous model, where the friction force is proportional to the velocity,

emerged from investigations with various lubricants. Linear combinations of these models

are usually able to predict observed system dynamics, and because of their simplicity, they

are the most common models found in practice.

Extensive research efforts have been directed toward characterizing the actual

friction force in experimental systems. Rabinowicz (1951) investigated the nature of the

transition region, from static to kinetic friction, when stationary metal surfaces were set into



morion. He postulated that the transition might be a continuous drop in contrast to the

discontinuous transition of the stiction model. Walrath (1984) introduced a first-order

dynamic friction model which effectively produced a continuous transition from static to

kinetic friction. In order to more accurately represent the stick-slip dynamics observed in

practice, Karnopp (1985) introduced a model with explicit simulation considerations.

Kolston (1988) utilized electrical circuit analysis equivalences to study a mechanical system

with stick-slip friction.

Research efforts have also been directed toward identifying the associated model

parameters for an experimental system. Based on the in-phase and quadrature power

dissipated when exciting a normal mode, Tomlinson and Hibbert (1979) developed a

technique to evaluate the magnitude of the nonlinear friction force and the hysteretic

damping constant. Parameter identification has been posed as an optimization problem,

and Cheok et al. (1988) employed a modified simplex algorithm to identify the system

parameters for servomechanisms with stick-slip friction.

Motivated by the desire to make our machines more efficient and/or more effective,

the direct effect of stick-slip friction on dynamical systems has also been studied

extensively. Den Hartog (1930) presented the exact solution to the forced response of a

one-degreeof-freedom (l-DOF) system using a linear combination of coulomb and viscous

friction. Shaw (1986) extended this work to include a stiction model using bifurcation

theory to study the nonlinear dynamics. Gogoussis and Donath (1987) examined the

fundamental issues associated with stick-slip friction, and their consequences on the design

and performance of robots.

1.2 The Control of Systems with Stick-Slip Friction

Feedback control techniques implemented for precise positioning of mechanical

systems is very difficult because stick-slip friction is discontinuous when the relative



velocity is zero. In order to use the well-developed design tools from linear control theory,

dynamic system models are typically linearized about some operating point. Even with an

accurate model, attempts to linearize or neglect stick-slip friction at zero velocity are either

impossible or produce invalid predictions of system response. For this reason, regulation

of position is much more difficult than tracking a desired trajectory. This observation is

implicit in the literature where the regulator problem is investigated almost exclusively.

The effects of nonlinear stick-slip friction on feedback control were examined using

a vector graphic technique (Tustin, 1947), which is similar to the modern describing

function analysis technique. Tou and Schultheiss (1953) thoroughly studied the impact on

control with static and kinetic friction using the describing function technique. More

recently, Townsend and Salisbury (1987) investigated the effect of coulomb friction and

stiction on force control through a compliant transmission with integral feedback.

The degree of difficulty of the control problem is clearly indicated with the types of

problems that are attacked in the literature. The regulation of l-DOF systems with stick-

slip friction is studied almost exclusively. This may be due in part to the large number of

l-DOF regulator applications requiring stick-slip friction compensation. It may also reflect

the problems associated with the control of multi-DOF systems which have stick-slip

friction.

A broad range of compensation techniques have been developed for an even

broader range of l-DOF applications. Gilbart and Winston (1974) developed a model

reference adaptive control system to compensate for bearing friction in an optical tracking

telescope. Walrath (1984) used a new dynamic friction model as the basis for a predictive,

adaptive friction compensator, and demonstrated a significant improvement in the

performance of airborne servo mechanisms. Kubo et a1. (1986) presented a feedback

compensation controller for a robot manipulator which attempts to eliminate the effect of the



static friction force. Canudas' et al. (1987) developed an adaptive control scheme to

feedback linearize a DC motor system with nonlinear friction. Yang and Tomizuka (1987)

developed and verified an adaptive pulse-width control scheme which adaptively updates

the width and height of the applied input control force pulse to regulate each of the X-Y

table coordinates. Armstrong (1988) utilized experimental results of friction behavior to

precompute motion torques for open loop compensation of a brush type DC servo motor

with gearing.

In this dissertation, we develop asimple nonlinear compensation technique for the

regulation of a 1-DOF system with stick-slip fiiction. The choice for the compensation

force is motivated by the requirement that the desired reference be a unique equilibrium

point of the system. This leads to a discontinuous nonlinear proportional feedback force

which appears to be a bang-bang force in a region near the desired reference. This

compensation force is robust to the character of the slipping friction force which is assumed

to lie within piecewise linear bounds. Only upper bounds on the static friction levels are

required to obtain stability with this control law. A modified form of Lyapunov’s direct

method is used to prove global asymptotic stability of the equilibrium point. Stability is

illustrated with a numerical simulation, and experimental test results verify the stability of

the reference position.

1.3 Chapter Overview

The physical phenomena of stick-slip motion is examined in Chapter 2. A general

mathematical model is presented which produces the desired stick-slip dynamics when

incorporated into a dynamic system model. This model is compared with the classical

friction models found in practice today. The state equations for the one-degree—of-freedom

system are also presented in this chapter.



Chapter 3 investigates the theoretical time response of the l-DOF system with stick-

slip friction under PD control. A procedure for estimating the static friction levels is

derived from the theoretical analysis of this system. Experimental static friction levels are

determined with this procedure, and the theoretical time response is verified with an

experimental system.

The response of the 1-DOF system with stick-slip fiiction under PID control is

explored in Chapter 4. A theoretical analysis of the PID time response indicates that

trajectories may have a limit cycle behavior. Further numerical analysis verifies the

existence of limit cycle behavior for some slipping force models. An experimental time

response verifies the predicted theoretical limit cycle response.

A robust nonlinear compensation force is derived in Chapter 5. This compensation

supplements a standard PD control law to regulate the position of the 1-DOF system with

stick-slip friction. Global asymptotic stability is proven with Lyapunov stability methods.

Simulation and experimental time responses verify the global stability of the origin.

Chapter 6 concludes and summarizes this dissertation with recommendations for

future work.



Chapter 2

Mathematical System Models

it is necessary to know the nature of the contact which this weight has

with the smooth surface where it produces friction by its movement,

because different bodies have difi‘erent kinds offriction; because if there

shall be two bodies with difi’erent surfaces, that is that one is soft and

polished and well greased or soaped, and it is moved upon a smooth surface

of a similar kind, it will move much more easily than that which has been

made rough by the use oflime or a rasping-file.

' Leonardo da Vinci

Forster Manuscript S.K.M. 11, 86v. and 87r.

A model is required to represent the physical characteristics of stick-slip friction. In

this chapter, the qualitative character of this type of fiiction is investigated, and a general

mathematical model is presented. This mathematical stick-slip friction model, when

incorporated into a dynamical system model, will exhibit the same behavior as that

observed in the corresponding physical system. Common qualitative slipping force

models, found in practice today, and their mathematical representations are reviewed here.

The dynamical system equations for a one-degree-of-freedom system with stick-slip

friction are also presented in this chapter.

2.1 The Physics of Stick-Slip Friction

When two mechanical surfaces are in contact with each other, a stick-slip friction

force is generated at the contacting surface. This stick-slip friction force has two defining

characteristics which can effectively be separated into two force components. A slipping,

or kinetic friction force dissipates energy when the relative velocity of the surfaces is non-

zero. The slipping force thus impedes the relative motion of the surfaces. A sticking, or

static friction force acts when the relative velocity is zero, therefore it does not dissipate

energy. The sticking force has the ability to keep the relative velocity zero under certain



limiting conditions. These two forces do not act simultaneously though they are dependent

on each other as will be shown.

The static friction force will take on whatever value is necessary to keep the relative

velocity zero, limited by positive and negative extremes. These are the smallest forces

necessary to start a relative motion in either direction. Leonardo da Vinci first discovered

that these maximum static friction forces generally followed two empirical laws. The first

law; “Friction produces double the amount of effort if the weight be doubled” (Vinci, circa

1500a), expresses the proportionality of the static friction force to the normal force between

the surfaces (Halliday and Resnick, 1978). The second law is; “The friction made by the

same weight will be of equal resistance at the beginning of the movement although the

contact may be of different breadths or lengths” (Vinci, circa 1500b). This is a statement of

the observation that the static friction forces are approximately independent of the surface

area of contact. The static coefficient of friction is defined to be the ratio of the maximum

static friction force to the normal force. It is difficult in practice to obtain a globally

constant coefficient of friction due to the strong dependence on local surface properties

(Bowden and Tabor, 1954).

The slipping force is generally a function of the relative velocity between the

surfaces when that velocity is non-zero. As the static friction force bounds are dependent

on the normal force between the surfaces, so too is the slipping force. In practice, a kinetic

coefficient of friction is determined as a function of velocity. The slipping force is the

product of the normal force and the kinetic coefficient of friction. For many dry polished

surfaces of dissimilar contacting materials, the kinetic coefficient of friction is

approximately constant (Amontons, 1699; Euler, 1750; Coulomb, 1785). Experimental

determination of the kinetic coefficient of friction is even more difficult than the static

coefficient (Bowden and Tabor, 1954).



The analysis in this dissertation will be restricted to systems where the normal force

between the surfaces is constant. With this simplification, the static friction force bounds

are constant, and the slipping force can be represented by a function of velocity only. Even

with this simplification, the stick-slip friction force remains highly nonlinear. The overall

stick-slip friction force can be expressed as a function of relative velocity when that velocity

is non-zero, but must be determined by an algebraic equilibrium constraint when zero. The

apparent switching of input-output causality on the stick-slip friction force causes a real

modelling problem. One set of dynamic equations are required for the slipping motion, and

another set for the sticking motion. A model for representing the stick-slip phenomena

with constant causality was inu'oduced by Karnopp (1985). With this method, only one set

of state equations are required.

2.2 The Stick-Slip Friction Model

The model for the stick-slip friction force 1",, used throughout this analysis is a

modification of the model presented by Karnopp (1985). This model allows for the

evaluation of the friction force during sticking and slipping motions. It also eliminates the

. numerical problems associated with near-zero-velocity force computation. True zero

velocity will rarely be numerically attained, therefore an artificial zero region is defined

around zero velocity [—Ot,0t]. The conceptual stick-slip friction model is achieved with

equation (2.1) only in the limit as a—>0.

F, = Fw(v)[7t(v)] +mexl - am} (2.1a)

x _ 1 lvl>a >0 21b

M" o lvlsa ’a ’ (‘ )

where v is the relative velocity between the surfaces, and F is a reaction force which

depends on the particular system configuration. The reaction force is, briefly, that force

which is required to keep the relative velocity zero and is the solution of an algebraic
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constraint which depends on the overall system equations. A thorough description of this

reaction force can be found in the following section, and in Karnopp (1985). Throughout

the following analytic investigation, the artificial zero parameter a is taken to be identically

zero. Non-zero values of or are only used in simulations to insure that the numerical

integration algorithms remain stable. Any velocity which is numerically within a of zero is

taken to be zero velocity.

The sticking function, Fm» provides values of the friction force at zero velocity.

This term is used to determine whether the contacting surfaces will stick, or break free from

the static friction forces. The positive and negative limits on the static friction forces are

given by ll",+ and F: respectively. As mentioned above, the static friction force bounds are

assumed to be constant throughout this analysis, but they are not presumed to be equal in

magnitude.

F," F 2 F: > 0

Fm,(F) = F F: < F < F: (2.2)

If F S F: < 0

When the relative velocity is zero, v=0, and the reaction force F is between the static

friction levels, the damping mechanism provides a force which keeps the surfaces from

slipping. The surfaces remain stuck until F is greater in magnitude than the respective static

friction force (Figure 2.1).



 

 
Figure 2.1. The sticking force model with unequal static friction levels.

The slipping function, F .,hp, provides values of the friction force at non-zero

velocity, and is represented by two functions of the relative velocity,

line) = E*(v-a)u(v)+B‘(v+a)u(-v). (2.3)

where u(.) is the right-continuous Heavyside step function. The function F; (.) defines

the slipping force for positive velocity only, and the function F:(.) defines the slipping

force for negative velocity only. Two separate functions are required for this representation

since the slipping force is not assumed symmetric. An example slipping force with (1:0 is

shown in Figure 2.2.

  

 
Figure 2.2. Example nonlinear slipping force model bounded by linear bounds.
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Throughout the following analysis, F; (.) and F: (.) are assumed to be arbitrary continuous

functions which satisfy a Lipschitz condition (Vidyasagar, 1978, pp. 79-80) over their

respective domains. The slipping force is assumed to dissipate energy at all non-zero

velocities, and therefore is bounded within the first and third quadrants as indicated in

Figure 2.2. We assume there exist constants b1 2 b0 > 0, F: S F: < 0, and F? 2 F”+ > 0,

which define piecewise linear bounds for the slipping functions (Figure 2.2).

bov S Fflv) S F;++ blv Vv > 0 (2.4a)

If + blv S F;(v) S bov Vv < 0 (2.4b)

As the velocity approaches zero from the right or left, the limiting values of the slipping

force do not, in general, exceed the respective static friction force levels, P? and If

(Rabinowicz, 1951), thus we have natural lower limits on the magnitudes of F? and 15;”.

This property will be required in the following analysis, but it should not be taken as a

restriction since this property is commonly observed in practice.

2.3 The Reaction Force

The reaction force F is the sticking force which is required to keep the relative

velocity zero, limited by the static friction bounds. This force is the solution of an algebraic

equilibrium relation which depends on the particular system equations. Presented here is

an algorithm for computing the reaction force(s) for a general N-DOF mechanical system.

The overall mechanical system can contain rotational and/or uanslational degrees of

freedom. This restriction is made since these types of motions have relative surface

motions and thus stick-slip friction exists at the surface contact.

A general notation is required to set up the framework for this algorithm. For the

N-DOF system, there are N generalized coordinates given by the vector q , N associated
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generalized velocities given by the vector 6;, and N associated stick-slip friction forces

given by the vector Fd . There are also M generalized inputs given by the vector u.

q = lap-".407 (2.5a)

it drip-".4517 (2.5b)

F, = [Fd,,---,Fm]r (2.5c)

u = [%,...,uM]T
(25d)

Note that only N stick-slip friction forces are allowed in this system representation. This

should not be taken as a restriction since multiple stick-slip friction forces associated with a

single degree of freedom can always be combined, or lumped together, to form a single

stick-slip friction force.

The individual components of the stick-slip friction vector are expressed similar to

the model in equation (2.1). Since this is a multi-degree of freedom representation, the

relative velocity between two surfaces associated with the generalized coordinates is

expressed as the difference between two generalized velocities.

F“’(v(‘))[7t(v“’)] + F§L(F)[l--l(v“’)] (2.6a)

where the relative velocities are

1);": (qj— q‘,). j,k e {0,--- ,N} (2.6b)

The relative velocity associated with the i‘“ generalized coordinate is the difference between

the j‘” and k‘h generalized velocities. Since it is possible for the slipping velocity to be

relative to ground, or zero velocity, the 0 index is used to represent this situation (i.e.

q'0 '=‘ 0). The particular indices (j,k) associated with the i‘h generalized coordinate are

determined from the system model.
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Associated with each component of the stick-slip friction force then is a slipping

force which is a function of a particular relative velocity, and a sticking force which .is a

function of its associated reaction force. These reaction forces only need to be computed

when the associated relative velocity becomes zero. With the following general state

equations,

ii = f(q.<'r.F,.u) (2.7)

the algorithm for the computation of the reaction forces can explicitly be stated. The first

step is to compute the N relative velocities associated with each of the stick-slip friction

forces. For every relative velocity that is non-zero, evaluation of the associated stick-slip

friction force is explicit. The slipping force can be evaluated at this velocity to generate the

pr0per friction force.

v5.2 at 0 => F4, = 17,2265?) (2.8)

When the i‘’1 relative velocity is zero, the sticking force will take on values to keep

that velocity zero, limited by the associated static friction bounds for that generalized

coordinate. Initially, we will assume that the sticking force is not limited, therefore from

equation (2.2)

v5.2 = 0 => 1;. = F; (2.9)

In order to keep the relative velocity zero, there must be no relative acceleration, thus

(61' -ék)l = 0 => fj(qvq’ Fd’u) = ft(Q9q9Fd:u) (210)

The resulting algebraic equation (2.10) has the unknown reaction force F} appearing

explicitly in the stick-slip friction force vector. For every relative velocity which is zero,

there will exist an associated algebraic equation. There will always be an equivalent



15

number of equations and unknowns which can be solved simultaneously for the reaction

forces.

Repeating the above process, the unlimited reaction forces are obtained through the

simultaneous solution of the algebraic equilibrium constraints, and finally they must be

limited by their respective sticking force functions.

Fr = 17.22413) (2.11)

Under the premise that the sticking forces are not limited, when a particular relative velocity

becomes zero, it must remain zero for all time thereafter. The physical lirrritations on the

sticking forces indicate that the relative velocity may not remain zero.

2.4 Common Slipping Force Models

Many slipping force models are available for use in dynamic simulations or analysis

(Kolston, 1988; Craig, 1988; Canudas, et al., 1987; Gogoussis and Donath, 1987; Shaw,

1986). Most of the standard slipping force models found in the literature can be classified

into three categories. In each of these categories, a linear viscous damping term is included

since it is the most common damping model, and the simplest model for analysis.

The first category is a Coulomb plus viscous damping model. The slipping force

approaches the respective static friction bound in a linear fashion from the left or right

(Figure 2.3).



l6

 

  
Figure 2.3. Coulomb plus viscous friction model.

The slipping force equations for this model are

F;(v) = F," + b‘v (2.12a)

F;(v) = F; + b’v, (2.12b)

where b*>0 and b'>0 are the viscous damping coefficients for positive and negative

velocity respectively. The slipping force can thus have different viscous damping

characteristics for positive and negative velocity.

The next category is a stiction plus viscous damping model. The slipping force

approaches a kinetic friction level which is at a lower level than the respective static friction

bound (Figure 2.4). For many materials the kinetic friction level is approximately half of

the static friction level (Miller, 1977).



 

  
Figure 2.4. Stiction plus viscous friction model.

The slipping force equations for this model are

F;+(v) = F? + b+v (2.13a)

F;(v) = F: + b'v, (2.13b)

where b*>0 and b'>0 are the viscous damping coefficients for positive and negative

velocity respectively, and F,“ > F: > 0, and F: < F: < 0.

The last category is an exponential model with viscous damping. This slipping

friction force exponentially decays from the static level to a kinetic friction force with

increasing velocity (Tustin, 1947; Armstrong, 1988). After a certain velocity, the viscous

term dominates and the slipping force increases linearly with velocity (Figure 2.5).



 

 

 
Figure 2.5. Exponential plus viscous friction model.

The slipping force equations for this model are

F;(v) = Fj+(at-1«;*)[1—e“"'3’]+b+v (2.14a)

F;(v) = F; + (F; — 17;)[1 - e“"'”] + b‘v, (2.14b)

where b*>0 and b’>0 are the viscous damping coefficients for positive and negative

velocity respectively, and Ii" > if > 0, and F,“ < F: < 0. The two velocity constants, v:

and v; , are the characteristic velocities where 63% of the drop from the static to the kinetic

force level occurs. Though the limiting values as velocity approaches zero in (2.14) are the

static friction bounds, a more general exponential model can be obtained by lowering these

limits below the static levels.

Any pair of contacting surfaces will have a slipping force relation which may be

approximately represented by one of the three models presented above. In a purely analytic

investigation, the primary motivation for the choice of slipping force model is simplicity. If

an experimental system is to be modelled, a complex model may be required for a more

accurate response prediction. It is also reasonable to expect that some physical mechanical

systems will exhibit a slipping force characteristic which can be represented by the simplest

slipping force model.
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2.5 The One-Degree-Of-Freedom System Model

The l—DOF system under investigation is a mass constrained to move in one

dimension along a horizontal ground surface. Displacement and velocity of the mass are

measured relative to the ground. Stick-slip friction is present between the mass and the

supporting surface (Figure 2.6).

Displacement, Velocity

x,v

Friction Force Mas Control Force

a\!=>.
Figure 2.6. The l-DOF conceptual stick-slip mass system.

The two first-order state equations for this system are given by

x = v (2.15a)

v = ()4,)(F-F;,). (2.15b)

These equations can also be used to represent a rotational l-DOF system with the proper

change of units. Linear displacements and velocities must be replaced with rotational

displacements and velocities, forces must be replaced with torques, and the mass must be

replaced with a rotational inertia. However, if the stick-slip friction model presented in

section 2.2 above is to be used for a rotational l-DOF system, the assumption of a constant ~

normal force between the contacting surfaces must remain valid.

The differential equations of motion (2.15) are linear except for the stick—slip

friction force, F, . The stick-slip friction force will be completely defined when a particular

slipping force model is chosen and an expression for the reaction force is obtained from the

system equations. In this example, the relative velocity is just the absolute velocity of the

mass (with respect to ground). In order to keep the mass at rest when the velocity is zero,

the acceleration must remain zero. Setting the acceleration term in (2.15b) to zero yields the
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algebraic relation whereby the reaction force is clearly equal to the input control force F.

As long as the applied force F remains between the static friction bounds, the mass will

remain stuck. When the applied force is greater than the respective static friction level,

there will be a non-zero acceleration, and the mass will begin to slip.



Chapter 3

PD Control Response

The very rapidfriction oftwo thick bodies producesfire.

Leonardo da Vinci

Codex Atlanticus

We would like to find a simple control law to regulate the position of the mass

under the influence of stick-slip friction. Classical control theory offers several attractive

possibilities. The simplest classical control technique is a Proportional+Derivative (PD)

law, where the control force is proportional to the position error and also to its derivative.

A substantial amount of useful information can be obtained through the study of this

control law applied to the mass system. A bounded steady-state error is found to exist for

the 1-DOF system with a PD control law. The theoretical l-DOF system response to a PD

control law is analyzed and the results are experimentally verified in this chapter.

3.1 Theoretical Investigation

A PD control law is simple and easy to implement. When applied to the l-DOF

mass system (Figure 2.6) with a type of stick-slip friction modelled by (2.1-2.4), state

trajectories end up at or near the desired reference with a bounded steady-state error (Hahn,

1967; Shaw, 1986). The steady-state error bounds can be explicitly determined by solving

for the equilibrium points of the system. Without loss of generality, the origin of the phase

space is taken as the desired reference position. The PD control force then simplifies to

F = —K,;c -— Kdv, (3-1)

where KP > 0 is the proportional gain, and Kd > 0 is the derivative gain. Solving the 1-

DOF system equations (2.15) with (3.1) for the equilibrium points

21
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i=0 => v=0 (3.2)

v = 0 => [—Kpr—Kdv-EEPMvPFWJl -7t.(v))] = 0

=> -K,x—Fm=0. (3.3)

Note that since the velocity is zero at equilibrium, Fm will take on any value of the applied

force limited by the static friction levels. In the equilibrium constraint (3.3), the applied

force is just -K,;r. There are two maximum displacements from the origin, xL and x”,

whereby the proportional control forces are equal to the respective static friction forces.

'Ihese maximum displacements are the steady-state error bounds, and are given by

F“ F‘

xL = -616} x” = -[K—’} (3.4)

From (3.2-3.4), we see that there exists a set of multiple equilibrium points which can be

written as E”, = {(x,v)lv = 0,xL S x S x,,}. The existence of this set of multiple

equilibrium points, E”), (Figure 3.1) is undesirable.

Ax'=v

f5

3
2

 
Figure 3.1. Typical PD phase portrait and the set of multiple equilibria E».

The PD-space equilibrium set is an invariant set and Lyapunov's direct method for

stability of invariant sets can be employed to verify the stability of Em (Hahn, 1963, and
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1967). If the PD control gains are chosen to stabilize the undamped system, then with the

proper choice of a Lyapunov function, it can be shown that the equilibrium set E”, is

globally asymptotically stable. Every trajectory will terminate with zero velocity and some

bounded steady-state position error. More importantly, no limit cycles can exist in the PD

control space for damping functions of the form presented in Chapter 2 with the given

assumptions.

There are only two trajectories in the PD space that take the mass position directly to

the origin. Unless initial conditions are specified on one of these two trajectories, there will

be some non-zero bounded steady-state error. The steady-state error bounds (3.4) can be

reduced by increasing the proportional gain KP, but at the expense of large control forces

for states far from the origin. For any finite proportional gain, there will exist a non-zero

steady-state error. This suggests that in order to get zero steady-state error, the

proportional gain must be infinite at the origin, or the control force may need to be

discontinuous.

3.2 Experimental Investigation

An experimental l-DOF system was available to validate the predicted theoretical

system reSponses. A cart, constrained to move in one dimension along a track, was cable

driven by a DC servo-motor. A control voltage to the DC servomotor was transformed to a

force which could push the cart in either direction along a one meter track. A rotational

potentiometer, rigidly coupled to the drive-train, admits electrical measurement of cart

positions. The general experimental system schematic is shown in Figure 3.2.



 

 

 

  Position Sensor

DC Servomotor

Figure 3.2. Experimental l-DOF system schematic diagram.

The friction present in the l-DOF experimental system was actually distributed

throughout the various components in Figure 3.2. For example, bearing friction existed in

the servomotor, cart wheels, position sensor, and drive cable shafts. Because it is assumed

to be a l-DOF system, the various friction components could be lumped into one global

stick-slip friction force. In order to increase the number of types of friction possible for

investigation, a friction brake was installed. With this brake, the overall friction force

could be altered to provide a range of static friction levels, and also vary the slipping force

characteristics.

Tightening Screws

 

    

 

 

Drive Shaft
 

:2 i .4 Base Support

   

 
 

.\.

IIIIIII

Figure 3.3. Experimental brake to alter the friction characteristics.
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A full-scale drawing of the experimental friction brake is shown in Figure 3.3. The spring

loaded brake pressed down on the drive shaft of the cable drive system. By changing the

compression in the springs and using different brake materials, different desirable or

undesirable friction characteristics could be obtained.

All control algorithms investigated here were implemented digitally using 12-bit

A/D and D/A converters to interface with the position sensor and DC motor respectively.

The static calibration constants for the actuator and sensor were determined to be 0.75936

N/V, and 19.895 V/m respectively (Southward, 1986). Based on these calibration

constants and the digital hardware configuration, the resolution of position measurements

was 0.000245 m, and the resolution of force output was 0.0037 N. These resolutions

allow ranges of approximately 10.5 m. for position, and 21:76 N. for force. The velocity

of the cart, which is needed to compute the derivative control force, was estimated with a

finite difference algorithm using position data. First order digital filters were available for

both the position data and the estimated velocity data. The controller algorithm was

implemented on a DEC LSI-11/23 computer in Fortran IV. Sampling rates up to 200 Hz.

were possible with the floating-point implementation (Appendix B).

Equation (3.4) suggests a method of obtaining estimates for the upper bounds on

the static friction forces. Assuming the static friction bounds are constant (i.e. independent

of position), the PD control law can be applied to the experimental system to determine the

sticking limits xL and x” for a given proportional gain KP. Theoretically, the cart must

stick at all points between the sticking limits. These limits were experimentally determined

by starting the PD control law with the mass inside the sticking zone, and manually

pushing it toward either bound. Beyond the sticking limit, the proportional force is greater

than the static friction level, and the mass will be forced back into the sticking zone.
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This test was performed on the experimental l-DOF system with PD control and the

friction brake applied to the drive shaft. Over the indicated range of proportional gains,

with the derivative gain set equal to zero, the static friction bounds were determined from

the measm'ed sticking limits (Table 3.1).

Table 3.1. Static friction bound results from PD control experiment.

 

 

    

KAN/In) E” (N) F. (N)

8 1.768 -1483

10 1.791 -1479

12 ' 1.705 -1431

14 1.761 -1372

16 1.750 -1449

20 1.765 -1.442

25 1.710 -1.416

30 1.713 -1435

35 1.776 -1.468

40 1.705 -1420
 

As seen from the above results, the static friction bounds appear to vary slightly with

position. The mean values and respective standard deviations from the above data are:

Ff: 1.744 :1: 0.033 N. and Ff: -1.439 i 0.033 N. From the relatively small standard

deviations, it is reasonable to assume that the static friction bounds are not strongly position

dependent, thus we are justified in assuming it to be constant for the ‘braked’ system.

The existence of the sticking zone can now be verified with an experimental time

response. Using the estimates for the static friction forces, the sticking zone limits are

estimated for a given proportional gain. These computed sticking zone bounds are shown

in Table 3.2 with all the pertinent control parameters for the experimental setup.
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Table 3.2. Experimental parameters for PD control.

 

 

 

 

 

Mass m l 375 kL.

PD Conuol K, 20.0 N/m

Gains K4 0.5 Ns/m.

Static Friction Ff 1.744 N

Bounds P: -1.439 N.

Sticking xL -0.0872 m.

Limits xL’ 0.0719 m.

Initial 10,) 0.3 m.

Conditions V0.) 0.0 m/s.     
As indicated above, the mass is initially at rest outside of the sticldng zone. The time

responses of the mass position and the applied control force are shown in Figure 3.4, thus

demonstrating that a non-zero equilibrium can exist for PD control.
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0.0 0.5 1.0 1.5 2.0

Figure 3.4. Experimental system time response for PD condo].

Voltages from the sensor and actuator were sampled at 2000 Hz. per channel and 1000

samples were taken from each to generate the experimental time response. From Figure
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3.4, the mass gets inside the sticking zone but has enough momentum to carry it a bit

further (see Figure 3.1). After one second the mass is stuck at a non-zero position, and a

non-zero control force is still being applied. The control force is approximately 1.0 N

(Figure 3.4), which is less than the estimated static friction level therefore we would expect

the mass to remain stuck.



Chapter 4

PID Control Response

Define to me why one who slides on the ice does notfall.

Leonardo da Vinci

Codex Atlanticus

The classical method for removing steady-state error from a system is to include

integral action with the PD control. Thus a Proportional+Integral+Derivative (PID) control

force is proportional to the position error, its derivative, and its integral. Though the PID

control law is not the simplest, it is a logical choice for attempting to remove the

undesirable steady—state error observed with the PD law. The effects of PID control on the

1-DOF system response are investigated in this chapter. A theoretical analysis

demonstrates that state trajectories appear to have a limit cycle character. Further

investigation with numerical simulations provides evidence that limit cycles can exist under

PID control. A property of slipping force models is shown to promote limit cycle

generation. This limit cycle behavior is experimentally verified. Based on the time

responses of the l-DOF system under P11) control for the three classes of slipping force

models presented in Chapter 2, a qualitative characterization of the slipping force present in

the experimental system is determined.

4.1 Theoretical Investigation

The inclusion of an integral force term to the control law introduces an added

dimension to the state space. To simplify the following PID analysis, the static friction

bounds are assumed to be constant and equal in magnitude, therefore F? = —F;' a F}. The

stick-slip friction force is also assumed to be symmetric for analytical simplicity. The

general system equation for PID control is

29
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mt + F, = er + Kdé + KJ" edt, (4.1)

where the actuating error, e = x, — 1:. Again, for the regulator problem, and without loss

of generality the desired states are chosen to be at the origin (i.e. xd(t) = 0 and v4(t) = 0

Vt 2 to). This system is also linear with the exception of the stick-slip friction force F4.

The sysrem equations can be written in state-space canonical form for x40) = 0 as

    

- r P 1

y 0 1 0 ”y 0

x = 0 0 l x - O (4.2)

v -(fr) {5.2) {E} v (Q)

_ m m m _b t. m .

with the identities v = x and y = if: edt.

The stick-slip friction force is the same as that presented in Chapter 2, (2.1-2.4),

except for the evaluation of the reaction force. For the PID controller, the reaction force is

again equal to the control force which is now given by

F=—Kdv—Krt-K‘.y. (4.3)

This PID {control force is used in the evaluation of the sticking force (2.2).

The PID control solution space for (4.2) is three dimensional with state coordinates

(y,x,v). There are several subspaces in this phase space which have interesting features.

The first subspace of interest is the equilibrium set, which is the set of all points in the

space where the derivatives are zero. The solution of (4.2) with zero derivatives yields

y=0 =9 x=0 (4.4)

i=0 => v=0 (4.5)

9:0 => [-KJ—pr-Kdv-th(v)-F¢,(l-h(v))]=0

=> -Ky-F;m=0. (4.6)
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From the definition of the sticking force (2.2), the system is in equilibrium whenever

IKyI S 15;. Two new constants, yL and y” , can be defined similar to those found in Chapter

3 for the steady-state error bounds on displacements. The set of equilibrium points for the

PID phase space can then be written as: Em, = {(y,x,v)| x = 0, v = 0, yL S y S y"), where

F: _ E
Yr. ‘ “[E} yH - [K] (4-7)

Notice the difference between this set and the set of equilibrium points for the PD control

space, E”). Even though it is not a single point set, any trajectories which end up in Em,

reach both the desired states x4 = 0 and v4 = 0. Unlike the stable PD equilibrium set. this

equilibrium set is unstable in the sense that a small perturbation from an equilibrium point

may result in convergence to a new equilibrium or divergence from the set entirely. As will

be shown below, for certain slipping force models, trajectories near the set Em, diverge

away from the set E”D into a stable limit cycle.

There exists a subspace where the system dynamics are reduced to first order

independent of the type of slipping force. For trajectories to exist in the x-y plane, the

velocity must be zero, v = 0, and there must be zero acceleration. From (4.2) and the

definition of the stick-slip friction force, zero acceleration is possible whenever

IKy + Kpgtl S F}. Using the previous definitions for the coordinate bounds (3.4) and (4.7),

one can write the following equivalent expressions

{YLS (y+(KP/Ki)x)Sy,,

v: 0 st (x+(K,/K,)y)sx,,'
(4.8)

These inequalities define a band in the x-y plane shown in Figure 4.1. This “sticking”

band can be defined in a way that is similar to the definition of the equilibrium set as the

union of two sets; S = S1 U52, where S1 = [(y,v,x)l yL S (y+ (Kp/ Ki)x) S y”, v = 0,): > 0},

and S2 = [(y,v,x)l yL S (y + (KP / K,)x) S )p, v = 0, x < 0}. Inside this band, the system
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dynamics (4.2) are reduced to first order in the state y. Trajectories in S represent

“sticking” trajectories where the mass remains stationary until the force due to the integral

of the error builds up to a level greater than the maximum static friction force. Given an

initial condition (ywxmvm) e S at time t” , state solutions are given by

y,(t) x“(t — t”) + y”

x,(t) = x t” S t S tr

v,(t) 0

The mass will break free at time t4 given by

it -(y.. + (K, / Kart...) x” > 0
t4 = [n+(1/x”) yL-(yn+(Kr/K‘)x’°) I” < 0

Trajectories in S are parallel to the y-axis, and their direction is dependent on the sign of x,

(Figure 4.1). These trajectories show the equilibrium, Em, to be unstable for small

perturbations in x and y.   

Figure 4.1. Parallel trajectories inside the sticking band S.
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The remainder of the three-dimensional PID control space is divided up into two

regions N and P, characterized by the sign of the velocity component of state trajectories

inside each region. These regions are: P = P,UP,, where P, = {(y,v,x)l

y, 2 (y+(Kp/K,)x), v = 0}, and P2 = {(y,v,x)lv > 0}. The other half of the space is

similarly defined as: N = N, U N2 , where N, = {(y,v,x)ly,, S (y+ (KP/K,)x),v = 0} , and

N2 = {(y,v,x)lv < 0}. From (2.2) and (4.3), we have: (y,x,v) e N, = (dv/dt) S 0 and

(y,x,v) e P, z: (dv/dt) 2 0. All initial conditions (yp,vp,xp) e P at time t" have

trajectories with non-negative velocity component until time tn, , and all initial conditions

(y”,vm,x~,) e N at time t” have trajectories with non-positive velocity component until

time t”. The final times are the first time after t" or t” where the velocity is zero, i.e. in

P: vP(tp,) = 0 and vp(t) at 0 Vt e (twtfi), and in N : v,(t,,) = 0 and vn(t) at 0

v: e (tw,t,,).

This sticking band S plays an important role in the possible generation of limit

cycles in the PID space. The x-coordinate of a point in S physically represents the

displacement of the mass away from the origin (the desired position) where the mass

remains stuck until the integral force term breaks it free. Near the origin, all trajectories in

S, enter N and then enter 5,. Also near the origin, u'ajectories in S2 enter P and similarly re-

enter S,. Physically, the mass is stuck on one side of the origin until the force due to the

integral term builds up enough to break free from the maximum static friction force. It then

overshoots the origin and sticks on the other side. A similar process is repeated on the

return motion. A typical trajectory is shown in Figure 4.2.
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Figure 4.2. Typical PID trajectory with sticking on both sides of the origin.

Since the general stick-slip friction force is nonlinear, and only piecewise linear for a few

special cases, an explicit solution is not possible. It is not possible to determine analytically

whether a limit cycle exists for a general slipping force function.

4.2 Simulated Time Responses

Numerical simulations of the time responses of the 1-DOF system under PID

control with the various slipping force models introduced in Chapter 2 provides a means of

establishing the existence or non-existence of limit cycles. Using the stick-slip friction

model with the three common classes of slipping force models, the simulated time

responses are evaluated for comparison.

All simulations were performed in double precision using the DIFFEQ program

(Southward, 1989) on a Digital Equipment Corporation Micro-VAX computer (Appendix

A). Several integration algorithms were utilized to verify that each would yield the same

prediction. The algorithms tested were an Euler method, a fourth order fixed step size

Runge-Kutta method, and a fourth order Adams variable step size predictor-corrector
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method. The final results were produced from a Hamming predictor-corrector general

(HPCG) method, with an initial step size of 0.001 s.

The differential equations of motion from Chapter 2 (2.15) are expressed in

continuous time and were integrated as such. However, in a digital controller

implementation, the sensor measurements and the actuator output are quantized into discrete

levels. In order to obtain a more realistic simulation, quantized states (simulating the

measurement process) are used to compute the control force, which is in turn quantized

(simulating the output process). Signals from the position and velocity sensors are

assumed to be quantized by 12-bit ND and D/A converters. Based on the experimental

parameters from Chapter 3, it is reasonable to assume resolutions of 0.00025 m. for

positions, and 0.005 N. for the force. These resolutions will allow ranges of $0.5 m., and

i100 N. It is also reasonable to assume a resolution of 0.01 m/s. for velocities, providing

a range of i200 m/s.

Using the above assumptions, the following parameters were chosen to

approximately model an experimental system (Table 4.1). The proportional control gain is

chosen so as not to saturate the actuator when the mass is at the extreme measurable limits

of position. The static friction force bounds were based on the experimental estimates from

Chapter 3. The sticking zone bounds are determined from these static friction levels and

the proportional gain (3.4). The derivative and integral gain were chosen somewhat

arbitrarily. The mass is assumed to be initially at rest outside of the sticking zone.
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Table 4.1. Common parameters for all three PID simulations.

 

 

 

 

 

 

Mass m 1 0 kg.

PID K, 20.0 N/m

Control K: 0.5 Ns/m.

Gains Kt 40.0 N/ms.

Static Friction F.“ 1.744 N.

Bounds F.‘ -1.439 N.

Sticking x, -0.0872 m.

Limits x” 0.0719 m.

Initial x0.) 0.15 m.

Conditions V0,) 0.0 m/s.   
 

A single pair of equations can be used to define each of the three classes of slipping

force models. These slipping force functions are represented as

F;(v) = F; — AF+[1- (““91 + b‘v (4.9a)

Fd‘(v) = F;-AF'rr-e""'5’]+b-v, (4.9b)

where If and F: are the limiting values of the slipping force at zero velocity, AF" and

AF' are the respective drops from this level to the kinetic force level, and v: and v; are

velocity constants defining the characteristic velocity at which 63% of the drop occurs.

Where applicable, numerical values for the drop to kinetic friction are based on a kinetic

coefficient of friction of 0.5, which roughly corresponds to a steel mass sliding on a

wooden surface (Miller, 1977).

The first PID time response uses the Coulomb plus viscous friction slipping force

model (2.12). As seen from the parameters in Table 4.2, the slipping force linearly

approaches the static friction bounds as velocity approaches zero from the left or right

respectively. The artificial zero parameter is naturally chosen to be the assumed resolution

of velocity measurementdue to sensor quantization.
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Table 4.2. PID Simulation parameters for the Coulomb model.

 

 

 

 

 

 

 

 

 

E.“ 1.744 N.

F;(v) , 95+ 0.0 N.

VI NA

b+ 0.5 Ns/m.

F.’ -1439 N.

Far-(V) M?" 0.0 N.

v; NA

b’ 0.5 Ns/m.

ArtificialZero ot 0.01m/s      
The simulated time response for PID control with the Coulomb plus viscous

slipping force model is shown in Figure 4.3. The time scale is extended to 120 seconds

since the mass is stuck most of the time. While stuck, the integral force term builds up

until it reaches the respective static friction bound. At this point, the mass begins to move

and gets stuck on the other side of the origin, as predicted by the theoretical analysis.

 

 

 

x,x,,,x,: (x10“m.)

F: (N.)

’4IIIITUIIIIITlIlTrIITTVUIIIITIUIUrrUI

0 20 40 60 80 100 120

Time (sec.)

   
 

Figure 4.3. PID Control simulated time response with the Coulomb model.
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From the displacement response and shape of the force response, the mass position appears

to converge to the origin, though it looks like it will take a long time. As the error becomes

smaller, the force due to the integral of the error requires more time to build up to a static

friction level. From Figure 4.3, the time between successive “jumps” of the mass increases

with each jump. This result indicates that PID control can be used to effectively regulate

the position of the mass with a Coulomb plus viscous friction model, and will be

investigated with additional detail in Section 4.3.

The second PID time response uses the stiction plus viscous slipping force model.

Similar to the previous slipping force model, and as indicated in (2.13), this model linearly

approaches kinetic friction levels as the velocity approaches zero from the left or right

respectively. The kinetic friction levels are arbiu'arily chosen for the simulation to be half

of the static friction levels. The artificial zero parameter is again chosen to be the assumed

resolution of velocity measurement due to sensor quantization.

Table 4.3. PID Simulation parameters for the stiction model.

 

 

 

 

 

 

 

 

     

P? 0.872 N.

Flo) ép 0.0 N.

v: NA

b” 0.5 Ns/m.

12' -0.719 N.

F;(V) ‘ AF' 0.0 N.

v. NA

b‘ 0.5 Ns/m.

ArtificialZero ot 0.01m/s
 

The simulated time response for PID control with the stiction plus viscous friction

model is shown in Figure 4.4. The time scale is one tenth that of the previous plot (Figure
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4.3), since the mass is no longer stuck most of the time. The mass still gets stuck twice per

 

 

    

period of the apparent oscillation.
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Figure 4.4. PID Control simulated time response with the stiction model.

The overall friction force and the applied force is plotted in Figure 4.4. When the mass is

stuck, the friction force is identical to the applied force until the static friction bound is

reached. At this point, the mass begins to move and the slipping force drops to the kinetic

level. The applied force overshoots the static friction bound thus increasing the acceleration

of the mass (2. 15). Unlike the previous case, the position of the mass appears to settle into

a stable limit cycle. This result indicates that PID control can not be used to effectively

regulate the position of the mass with a stiction plus viscous friction model, and will also

be further investigated in Section 4.3.

The final PID time response uses an exponential plus viscous slipping force model

(2.14). This model exponentially approaches the kinetic friction levels from the static level

as the velocity increases away from zero from the left or right respectively. As in the
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stiction model, the kinetic friction forces are chosen to be half the level of the respective

static friction forces.

Table 4.4. PID Simulation parameters for the exponential model.

 

 

  

 

 

 

 

 

     

1'? 1.744 N.

F:(v) . Ap+ 0.872 N.

v: 0.1 m/s.

b” 0.5 Ns/m.

F.‘ -1439 N.

Fitv) . 95- -0719 N.

V; -0.1 m/s.

b’ 0.5 Ns/m.

ArtificialZero ot 0.01m/s
 

The simulated time response for PID control with the exponential plus viscous

friction model is shown in Figure 4.5. As in the previous case, the mass appears to

oscillate in a stable limit cycle motion and also gets stuck twice per period.
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Figure 4.5. PID Control simulated time response with the exponential model.
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The overall friction force is again plotted with the applied force on this plot. Though the

applied force overshoots the static friction bound when the mass breaks free, the friction

force does not drop as rapidly as in the previous case, thus the resulting acceleration of the

mass is not as large. These results also indicate that PID control can not be used to regulate

the position of the mass with friction modelled by exponential plus viscous friction.

4.3 Limit Cycle Simulations

Existence and stability properties of a limit cycle for an explicit slipping force

function can be determined through the construction and examination of mappings of

trajectories from points in S, to S, and then back to S, (Figure 4.2). In fact, existence and

stability of limit cycle trajectories can be determined from mappings of the x-coordinate of a

trajectory in S, into the subsequent x-coordinate in 5,. Simulation data ofx-coordinates in

S, mapped back into S, can be used to numerically construct a continuous iteration function

for a given set of system parameters. Limit cycles will appear as fixed points of these

iteration map functions, where the fixed point is the x amplitude of the cycle. The

contraction mapping theorem can then be applied to prove the existence of fixed points

(Vidyasagar, 1978, pp. 73-78).

The equations for the stick-slip friction force (2.1-2.4), along with the three classes

of models for E,P(v) (2.12-2.l4) completely define the friction force. Motivated by the

time response simulations above it is useful to classify symmetric slipping force models

with the following property (4.10).

U = {Fw(v)| 3v. > 0 3 F;,,P(v) < E‘s/v e (0,v°)} (4.10)

If a slipping force model belongs to the set U, it will take on values which are less than the

static friction level in a region near zero velocity. Note that since the slipping force is

assumed symmetric, we only need to look at positive velocities. It will be demonstrated
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that models belonging to the set U will promote limit cycles in the 1-DOF mass system

under PID control. Using the models defined in Chapter 2, the following classifications

are obtained (Table 4.5).

Table 4.5. Classifications for each of the three stick-slip models.

 

 

 

    

Coulomb Model plus Viscous Damping pr(v) e U

Stiction Model plus Viscous Damping Fd,’(v) e U

Exponential Model plus Viscous damping pr(v) e U

The slipping friction forces from the Coulomb model are always greater than or

equal to the static friction levels therefore it is not in the set U. The stiction model has a

discontinuous drop from the static level to a non-decreasing slipping force as the velocity

increases and the exponential model undergoes a continuous drop from the static level to a

lower kinetic level then increases, therefore both belong to the set U.

Using the any of the three slipping force models, the system equations (4.2) are

nonlinear. They are only piecewise linear for the Coulomb and stiction models. Since no

general closed form solution exists for all three classes, a numerical simulation was

performed to determine the contraction mappings. Three representative examples from

each of the slipping force model classes were numerically simulated. All cases used the

following set of common parameters (Table 4.6).
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Table 4.6. Common parameters for PID limit cycle simulations.

 

 

 

 

    

Mass m 1.0 kg.

PID K, 10.0 N/m.

Control K1 10.0 Ns/tn.

Gains Kt 100.0 N/ms.

Static and Kinetic F. 4.0 N.

Friction Bounds FL 2.0 N.

Artificial Zero 01 0.001 rn/s.
 

Simulations were performed in double-precision on a Digital Equipment

Corporation Micro-VAX, using a Hamming predictor-corrector general integration method

with an initial step size of 0.001 s. For each run, a number of initial conditions inside S,

were chosen to provide an evenly distributed data set for generating the iteration functions.

Each x, is an x-coordinate in S, and x,“ is the x-coordinate for the next time the trajectory

enters S,. A second order polynomial of the form: x“, = (a0 + a,x, + a,x,2), was fit through

each set, and then plotted. There is one iteration function fit associated with each set of

parameters.

The numerical fixed points were obtained by guessing an initial value and then

iterating the fitted function until the error between successive iterations was less than

1.0E-9. Convergence is guaranteed since the slopes of the iteration function over the fitted

domain are less than unity. A conservative error estimate, 5, for each fixed point is

obtained by using the largest absolute residual error from the curve fit to form a band

around the fitted function. All data from the respective curve fit is therefore guaranteed to

be inside this band. The fixed points of the two functions defining the edges of this band

are then used to determine conservative error estimates in the original fixed point. These

error estimates are presented with each of the fixed point estimates.



For the Coulomb plus viscous friction models, the three representative cases were

obtained by varying the viscous damping coefficient, b (Table 4.7).

Table 4.7. Numerical results of fitted iteration functions for the Coulomb model.

 

 

 

b a,(x10*) a, a,(x10") (x :1: 6)(x10'3)

2.0 1.87 0.814 6.37 1.01 :1: 1.51

1.0 2.05 0.853 7.39 1.40 i 2.10

0 0 1.99 0.906 7.00 2.12 :1: 4.65
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Figure 4.6. Iteration functions for PID control with the Coulomb model.

The simulation results for this class are plotted in Figure 4.6. Shown on this plot is

the line: x”, = x, , along with the fitted iteration functions for the three test cases. A fixed

point occurs wherever an iteration function crosses the x“, = x, line. All three test cases

(Figure 4.6) have a fixed point at the origin, i.e. x“, = x, a: x, = 0. The magnitudes of

the intercepts (a,) of the polynomials from the curve fit, as seen from Table 4.7, indicate

that no limit cycles exist for this class of models. Within the accuracy of the simulation, all

trajectories eventually converge to the origin (Table 4.7), and no limit cycle exists for the

Coulomb friction model.
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For the stiction plus viscous friction models, the three representative test cases were

similarly obtained by varying the viscous damping coefficient, b (Table 4.8).

Table 4.8. Numerical results of fitted iteration functions for the stiction model.

 

 

 

 
   

b an a, 02 x :1: 5

2.0 0.0452 0.635 0.236 0.136 :1: 0.003

1.0 0.0489 0.663 0.246 0.165 :t: 0.004

0.0 0.0565 0.669 0.334 0.219 :1: 0.006

0.5

0.4-j

xi+l “

0.3—

0.2-

0.1—

/ / 13-6 b=l.0

- / x—x b=2.0
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Figure 4.7. Iteration functions for PID control with the stiction model.

The simulation results for the stiction plus viscous friction models are plotted in

Figure 4.7. Each of these three test cases have distinct non-zero fixed points which are

presented in Table 4.8 for each of the cases. From Figure 4.7, and as verified with the

polynomial curve fit, the local slopes of these iteration functions near the fixed points are

always less than unity. The contraction mapping theorem cantbe used to prove that these

fixed points are all stable (Vidyasagar, 1978, pp. 73-78), thus stable limit cycles exist for

the stiction plus viscous friction model. These limit cycles are reduced in magnitude with

increasing viscous friction.
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For the exponential plus viscous friction models, the three representative cases were

obtained by varying both the viscous damping coefficient b, and the velocity constant v0

(Table 4.9).

Table 4.9. Numerical results of fitted iteration functions for the exponential model.

 

b V. do 01 02 x :1: 5

0.0 0.05 0.0628 0.732 0.190 0.297 :1: 0.008

0.0 0.10 0.0638 0.767 0.138 0.343 :t 0.004

1.0 0.10 0.0553 0.735 0.120 0.233 i 0.002

 

    
0.0 0.1 0.2 x,- 0.3 0.4 0.5

Figure 4.8. Iteration functions for PID conu'ol with the exponential model.

The exponential plus viscous friction model results (Figure 4.8) also indicate the existence

and stability of limit cycles but at larger amplitudes than those for stiction (Table 4.9). The

local slopes near the corresponding fixed points are less than unity, so these fixed points

are also stable, thus stable limit cycles will man for the exponential friction model.

The Coulomb iteration function results indicate that as viscous damping is

decreased, the slope of the iteration function increases and the fixed point remains near
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zero. Similarly, the stiction iteration function results indicate that as the viscous damping is

decreased, the fixed point of the iteration function increases. This observation is important

since fast convergence to the fixed point (stable limit cycle) is obtained when the slope of

the iteration function near a fixed point is close to zero. Since the cases investigated here all

have slopes near unity, the convergence is slow. Raising the iteration functions further

away from the x-axis (i.e. increasing 0,) has the effect of increasing the amplitude of the

limit cycle. The presence of viscous damping can therefore help stabilize by either

decreasing convergence times as in the case of Coulomb models, or by reducing the limit

cycle amplitude as in the case of stiction and exponential models.

4.4 Experimental Investigation

Using the experimental l-DOF mass system described in Chapter 3, the theoretical

existence of limit cycle behavior was validated. As observed above, slipping force

functions which do not have a definite drop from the static level will not admit a limit cycle

response. A suitable braking material was found which produced a limit cycle behavior in

the experimental system. This same brake was used in all the experimental investigations

studied in this dissertation which required a brake.

The original PD control algorithm with integral control added (Appendix B), was

implemented on the same DEC LSI-l 1/23 computer, and ran at 200 Hz. For comparison

with the PD response, all control parameters remained the same for the PID implementation

except for the addition of integral gain. The pertinent control parameters for the

experimental PID investigation are presented in Table 4.10.
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Table 4.10. Experimental parameters for PID control.

 

 

 

 

 

 

Mass m 1.375 kg.

pro X. 20.0 N/m.

Control K; 0.5 Ns/m.

Gains K. 40.0 N/ms.

Static Friction F.+ 1.744 N.

Bounds F.’ -1.439 N.

Sticking x, -0.0872 m.

limits x, 0.0719 m.

Initial 10.) 0.3 m.

Conditions V0.) 0.0 m/s.   
 

The experimental system started up with the initial conditions given in Table 4.10. Under

PID control, the mass moved toward the origin, and ended in a stable limit cycle. Due to

the excessive amount of time required to reach this steady limit cycle, the time response for

mass position and conu'ol force were not sampled from the initial startup conditions listed

above. Voltage data was acquired fiom two channels with the use of An Apple Macintosh

IIx computer and National Instruments LabView hardware and software at 1920 samples

per channel and 8 Hz. per channel. The data was then scaled and plotted (Figure 4.9).
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Figure 4.9. Experimental system time response for PID control.

Several interesting observations can be made about the experimental time response

of Figure 4.9. When the mass breaks free, the control force appears to be at the same level

of the static friction forces which were estimated from the PD control experiment (Chapter

3). This agrees with the simulated predictions, and indicates that the estimates for static

friction bounds are reasonable. As the static friction bounds are at different levels in the

experiment, so too are the slipping forces. This can be seen by the difference in the amount

of time the mass sticks on each side of the origin. For positive displacement error, the

mass sticks for a longer time than for negative displacement error. The simulations were

performed with symmetric slipping force functions except for different offsets, therefore

the amount of time spent on either side of the origin was roughly equivalent.

Meticulous observation of the experimental PID time response will prove to yield

qualitative if not quantitative information about the character of the friction present. In this

example (Figure 4.9), the static friction bounds can accurately be estimated, and we know

that the slipping force is not of the Coulomb type. The slipping force must drop from the
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static level to a lower kinetic level, and from the small amplitude of the limit cycle

(approximately 1 cm.), we know this drop must be very small. Although this qualitative

information does not provide a direct method for obtaining explicit parameters, it is still

useful. Trial and error parameter tuning was used to produce a simulation in an attempt to

match the above experimental result. The following slipping force parameters were found

to produce a reasonable match (Table 4.11).

Table 4.11. Slipping force parameters fitted to experimental limit cycle response.

 

 

 
 

 

 

 

  

 

     

1‘? 1.69 N.

F;(v) Ap+ 0.0 N.

v: NA

5' 20.0 Ns/m.

F.‘ —1.39 N.

Fir-(V) AF’ 0.0 N.

v; NA

b' 3.0 Ns/m.

Artificial Zero 01 0.01 m/s
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Figure 4.10. Simulated limit cycle response fitted to experiment.

Initial conditions were chosen to match those of the experimental data. The

simulated time response does not match up exactly with the experimental results, but the

same character of the response is certainly present. The simple observations made above

regarding the character of the slipping force model can be utilized to guide an engineer as to

which models should be used. It is certainly important to use models which will actually

admit the responses observed in an experimental situation.



Chapter 5

Robust Nonlinear Compensation

Putting two solids together is rather like turning Switzerland upside down

and standing it on Austria - the area ofintimate contact will be small.

F.P. Bowden, B.B.C. Broadcast 1950.

A simple but robust control law is still needed for the regulation of the 1-DOF

system. PID control can only be used for some types of slipping force models, and

therefore is not robust to small variations in stick-slip behavior. With PD control, there

exists an undesirable set of multiple equilibrium points. This set can be reduced to a single

point set by allowing the proportional gain to approach infinity, but this is not possible in

practice. A discontinuous nonlinear compensation force is developed to supplement the PD

control law. The resulting robust control law is provenito stabilize the 1-DOF system for

any slipping force model satisfying the assumptions made in Chapter 2. This result is

verified through numerical and experimental time responses.

5.1 Derivation of the Control Law

The existence of a set of multiple equilibrium points, Em, (Figure 3.1) is

undesirable, but the origin can be made into a unique equilibrium point of the system with

the inclusion of a nonlinear compensation force 120:) in the PD control law

F = -K;. - Kdv - EU), (5.1)

where KP > 0 and Kd > 0. Solving the l-DOF system equations (2.15) with the new

control law (5.1) for the equilibrium points

52
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i=0 => v=0 (5.2)

v = 0 => [—K} - Kdv— F;(x)- Euph(v)- Ema—1w)» = 0

=> -K,;t-F;(x)—Fm=0. (5.3)

In order to have a unique equilibrium at the origin, we must choose a compensation force

such that (5.3) is satisfied for 1:0 only. Choose the nonlinear compensation force to have

the following form

I»; = foc. (5. 4)

Using the previous sticking limit definitions (3.4) with this compensation force and the

equilibrium constraint (5.3), an equivalent requirement for uniqueness of the equilibrium is

obtained by choosing an xc(x) such that the inequality

xL S (x + xc) S x”, (5.5)

is satisfied for x=0 only. This can be achieved with the following nonlinear function xc(x)

 

O x>f,,

(EH—x) O<x5iu

xc=< 0 x=0 , (5.6)

(EL-x) iLSx<O

O x<iL

where

52 =x +8

_” ” ,e>0. (5.7)
xL=xL-e

The addition of the nonlinear compensation force, defined by (5.4), (5.6), and

(5.7), to the PD control law insures that the origin is a unique equilibrium point. The

compensation force (5.4) is only active when the mass is between the extended sticking
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limits EL 5 x S i”. The combination of the compensation force with the proportional

force, KP(x + xc), can be viewed as a nonlinear proportional feedback control force (Figure

5.1). To simplify the implementation of this control force, the following two parameters

are defined

F“: = F: + er (5.8a)

F,’ = F,‘ - K,8. (5.8b)

K; + F.(x> = K,<x + xc) l

 

 

 

K13

-17; //l

4f“??? g
I

// l I
.. / _.-1 L‘—

Ji" {L 24 ‘ 1 8 ~—
I i // In In x

: |/// +

V------ 4::
3-5:

 
Figure 5.1. The nonlinear proportional feedback control force.

When the mass is between the original sticking limits xL S x S 1:”, any positive

value of e is enough to theoretically guarantee that the feedback force will always exceed

the static friction force levels. This result coupled with equation (2.15) imply that there

must be a non-zero acceleration of the mass in the original PD sticking zone, thus the mass

continues moving. In this region, the nonlinear proportional feedback force is essentially a

bang-bang force.
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5.2 Surface of Discontinuity and State Trajectories

The right-hand side of the system of differential equations (2.15) is discontinuous.

The slipping force, F“), is discontinuous at v=0, and the applied feedback control force F,

given by equations (5.1), (5.4), (5.6), and (5.7) is discontinuous at x=O because of the

nonlinear compensation term. The set of points in the state space where the right hand side

of (2.15) is discontinuous is called a surface ofdiscontinuity similar to what is found in the

theory of variable structure systems (Utkin, 1977). The surface of discontinuity S, can be

represented by

s = {(x,v) e 9t2Is(x,v) = o}, (5.9a)

where, for this l-DOF system

s(x,v) 4: xv. (5.9b)

This surface divides the phase space into two open regions,

12* = {(x,v) e Ems > o} and R' = {(x,v) 6 ms < o} (Siljak, 1969). Inside these

regions, the right-hand side of (2.15) satisfies a 10cal Lipschitz condition, therefore we are

guaranteed existence, uniqueness, and continuous dependence on initial conditions for

solutions there (Vidyasagar, 1978, pp. 78-88). Trajectories are well defined and

continuous until they hit the surface of discontinuity S where state derivatives are

discontinuous. The notion of a “solution” of (2.15) must be generalized for trajectories

which have discontinuous derivatives (Frlippov, 1964).

This l-DOF system (2.15) and (2.1-2.4) has discontinuities of the first kind, or

simple discontinuities. This means that there exists finite limits for the state derivatives as

s —> 0+ and s —> 0‘ which do not coincide (Barbashin, 1970). It is easy to check from the

limiting values of the state derivatives that at every point of S, the vector gradients of state
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trajectories are directed with the same sense through the surface. Trajectories are never

tangent to S and thus will always pass from one open region R*(R‘) through S into

R’(R*). Trajectories are also never directed toward points in S from both open regions,

therefore there cannot exist a sliding mode as found in the theory of variable structure

systems. Over the entire phase space, trajectories are absolutely continuous.

The qualitative behavior of trajectories in the phase space can be determined from

the differential equations (2.15) using the bounds on the slipping force (2.4) and the

nonlinear compensation force (5.4).

Lemma: Every non-trivial trajectory will exit the quadrant it occupies in a clockwise

fashion. The time spent in any one quadrant is bounded above by a constant determined by

the initial condition.

Proof: Consider solutions of the differential equations in each of the four quadrants

of the phase space. In the first quadrant, x>O, v>O, and from (2.15), (2.4), (5.1), (5.6),

Figure 2.2, and Figure 5.1

mv+ Kdv = -Kp(x+xC)-Fj(v) s E‘-b,v, (5.10a)

and thus

m9 + (K, + bo)v 5 if; < 0. (5.10b)

From (5.10b) we know that v(t) is bounded above by a strictly decreasing function which

approaches a negative value

v(t) s {[v. — (E’) / <K.+ bo)]e""'*"°""'+ (in / (K.+ 120)}. (5.11)
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where v, is the initial velocity in the quadrant. Trajectories must leave the first quadrant in

a clockwise fashion before the right-hand side of (5.11) becomes zero. In the second

quadrant, x<0, v>O, and again from (2.15), (2.4), (5.1), (5.6), Figure 2.2, and Figure 5.1

mv+K,v = -K,(x+xC)-I«;+(v) 2 i;*-F,,*—b,v, (5.12a)

and thus

m} + (K, + b,)v 2 (if,+ -- If) 2 (i3;+ - Ff) = er > o. (5.12b)

Similarly, from (5.12b) we know that v(t) is bounded below by a monotonic function

which approaches a positive value

v(t) 2 {[v - (er) / (K, + b,)]e""‘”’""”‘ + (er) / (K, + b,)}. (5.13)

Trajectories must also leave the second quadrant in a clockwise fashion. Proof of this

lemma in quadrants III and IV proceeds as in quadrants I and II respectively. Q.E.D.

5.3 Stability Theorem and Proof

Now that a control force has been determined such that the l-DOF system (2.15)

has a single equilibrium point at the origin of the state space, we need to show that it is

stable.

Theorem: The origin of the state space for the system given by equations (2.15)

and 2.1-2.4), with the control force given by equations (5.1), (5.4), (5.6), and (5.7), is a

globally asymptotically stable equilibrium point.

Proof: Choose the following Lyapunov function candidate, which closely

resembles the actual energy function of the system
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V(x,v) = yzprz + va2+ g(x), (5.14)

where

KK,(ig)2 x > i”

Kp(i,,x-}5x2) 0 51: Si”

Kp(i,_x—}éx2) iLSxSO'

)4K,,(5c',)2 x < i,

8(X) = 4 (5-15)
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Figure 5.2. Nonlinear addendum, g(x), to the Lyapunov function candidate.

It is easy to check that this Lyapunov function candidate is positive definite, decrescent,

and satisfies a global Lipschitz condition. This function is also continuous with respect to

xandv.

We must now evaluate the time derivative of the Lyapunov function candidate,

V(x,v), along solution trajectories of (2.15). The time derivative of V is the dot product of

the gradient of V with the vector of state derivatives. As mentioned above, the state

derivatives are discontinuous at all points in S, and from (5.15) the gradient of V is

discontinuous at x=0. The derivative V(x,v) is discontinuous or does not exist for all

points of S, however it exists and is well-defined for all points in the open regions R+ and

R'.
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A modification of Lyapunov’s direct method must be used for non-differentiable

Lyapunov function candidates, such as the one presented above (Solncev, 1951; Hahn,

1963). The global asymptotic stability theorem of Lyapunov for continuous systems is

modified by replacing the derivative V(.) with the Dini-derivate D‘V(.), where the *

represents any of the four possible Dini-derivates (Rouche, et al., 1977). At any point

where the derivative V(.) exists, all four Dini-derivates will have a common value equal to

the derivative at that point (McShane, 1947).

D'V(.) = V(.) V(x,v) e s. (5.16)

Along solution trajectories, excluding points in S, we can compute the time derivative of

the Lyapunov function candidate as

V(x,v) = ng + v(F - F,) + g’(x)v

= Kgv + v(-K;t - K,v — K,Jc - Euva) - Emu - l(v))) + g’(x)v

= - ,v2 — thup(v) + v(g’(x) - Krte), (5.17)

where

' 0 x > i”

Kp(i,,-x) O<xSiH

g’(x) =< undefined x = 0 . (5.18)

KP(iL—x) EELSx<O

 

From equation (5.6) we see that the last term (g’(x)- K’16) in (5.17) is identically zero

everywhere except at x=0 where g’(x) is undefined, therefore we conclude that

V(x,v) = —{K,v2 + v11,(v)} s o V(x,v) e s. (5.19)



For the points in S, we must look at the Dini-derivates. All the discontinuities are

simple, therefore both the left and right limiting values of the derivatives of V(.) exist

outside of S. The Dini-derivates are simply these limiting values. Since V(x(t),v(t)) is

continuous, and V(x,v) is negative semi-definite for all points outside of S, the Dini-

derivates are negative semi-definite for points in S (Yoshizawa, 1966). Using the

equivalence relation (5.16), the Dini-derivates are negative semi-definite over the entire

phase space. From (5.19), the set of points where V(x,v)=0 is just the x-axis, and we

have already shown that no trajectories are completely contained in this set, therefore the

origin is a globally asymptotically stable equilibrium point (Vidyasagar, 1978, Theorem

5.2(87), pg. 158). Q.E.D.

Alternative Proof: For the Lyapunov function candidate given above (5.14) and

(5.15), assume there exists some V, > 0 where, along some trajectory (x,v),

1imV(t) = V, (5.20)
[-50-

The level set V(x,v) = V, is a closed curve in the phase space. From the previous lemma,

trajectories must spiral clockwise around this curve, and must traverse the cycle within a

fixed period. Along solution trajectories, going from to to t1 ,

V|‘ .-_- ("th = —f'(K,v2+ vii») dt, (5.21)

and from (2.4) we have, VFW 2 bov2 Vv, therefore

v|:‘ s —(K, + b,)j"'v2 d1: = -(K, + b,)j:v dx. (5.22)

The last integral in (5.22) is just the area contained inside the path from x0 to x, in the

phase space. Each limit cycle will decrease V(t) by at least an amount which is proportional

to the area contained within the limit cycle, therefore no such V, can exist. Q.E.D.
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5.4 Simulation Results

A numerical simulation of the nonlinear stick-slip friction compensation force

applied to the mass system will verify the stability of the origin. As in the previous

chapter, in order to obtain a more realistic simulation, quantized states (simulating the

measurement process) are used to compute the control force, which is in turn quantized

(simulating the output process). In order to numerically verify robustness of the control

law, a representative slipping force model from each of the three classes will be tested with

the same control law.

All simulations were performed in double-precision on a Digital Equipment

Corporation Micro-VAX, using a Hamming predictor-corrector general integration method

with an initial step size of 0.001 s. (Appendix A). Using similar assumptions as those in

Chapter 4, the following parameters were chosen to approximately model an experimental

system (Table 5.1), and were common to each of the three numerical simulations.
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Table 5.1. Common parameters for all nonlinear compensation simulations.

 

 

 

 

 

 

 

  

Mass m 1.0 kg.

PD Control K, 20.0 N/m.

Gains K4 0.5 Ns/m.

Static Friction F.” 4.2 N.

Bounds I? -4.0 N.

Sticking xL -0.21 m.

Limits IL 0.20 m.

Nonlinear 8 0.005 m.

Compensation 1E: 4.3 N.

Force 13:- -4.1 N.

Extended 55,, -0.215 m.

Sticking Limits 55L, 0.205 m.

Initial 2:0.) 0.3 m.

Conditions V(ta) 0.0 m/s.  
 

Theoretically, any positive value for 8 can be used for the nonlinear compensation

force. In a real implementation, 8 must be chosen carefully. This control law assumes that

the discontinuous jump in the input force can actually be produced instantaneously. In

reality, the bandwidth of the actuator will limit the bang-bang nature of the control. In

(5.8), we have seen that Kp8 is a force which is added to the static friction levels to insure

that the net force on the mass is non-zero in the sticking zone (Figure 5.1). In this

example, the static friction force bounds are known exactly. In actuality, there will only be

estimates for these forces. Values for 13;” and if should be chosen to exceed the upper

bounds of the estimates for the static friction force levels. The value of e in Table 5.1

corresponds to assumed measurements of the static friction levels with less than a 2.5%

error, thus the control force levels, if and E", are chosen to be 0.1 N above the static

friction levels. Again, the mass is assumed to initially be at rest outside the sticking zone.

The slipping friction force function used in this numerical study is the same general

representation as used in Chapter 4 (4.9) since each of the three classes of slipping force
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models are easily represented by these functions. The first model is the Coulomb plus

viscous friction model. The defining parameters for this model are given in Table 5.2.

Table 5.2. Simulation parameters for nonlinear compensation with the Coulomb model.

 

 

 

 

 

 

 

 

     

F.” 4.2 N.

FR") ‘ éE* 0.0 N.

v: NA

b+ 0.5 Ns/m.

F.” .4.0 N.

Fifi) AP" 0.0 N.

v; NA

b' 0.5 Ns/m.

ArtificialZero a 0.01m/s
 

A simulated time response verifies the stability of the nonlinear compensator for the

Coulomb plus viscous slipping force model (Figure 5.3). Several important observations

can be made regarding this time response. As soon as the mass enters the extended

sticking zone, the control force takes on its bang-bang character. Note that since the

velocity is small, the derivative term in the control force is small also.
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Figure 5.3. Simulated time response for nonlinear compensation with Coulomb model.

Whenever the velocity becomes zero, there exists a possibility of becoming stuck. From

Figure 5.3, we see that the control force always exceeds the friction force when the velocity

becomes zero, thus the mass continues moving. Finally, notice that the mass displacement

does not overshoot the desired reference by very much. This is a characteristic of systems

with a Coulomb type of slipping force.

The second model is the stiction plus viscous fiiction force. The defining

parameters for this model are given in Table 5.3.
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Table 5.3. Simulation parameters for nonlinear compensation with the stiction model.

 

 

 

 

 

 

 

 

 

    

1'? 2.1 N.

Fd+(v) ‘ AF" 0.0 N.

VI NA

b“ 0.5 Ns/m.

1'? -2.o N.

Fd-(V) AF‘ 0.0 N.

v: NA

b' 0.5 Ns/m.

ArtificialZeto a 0.01 m/s  
 

The time response for the 1-DOF system with a stiction plus viscous slipping force

model and the nonlinear compensator is shown in Figure 5.4. Again, when the mass

enters the extended sticking zone, the control force takes on its bang-bang character. For

this slipping force model, both the displacement and force oscillate more than in the

previous example before stabilizing, thus more control energy is required and it takes

slightly longer to reach the desired equilibrium.
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Figure 5.4. Simulated time response for nonlinear compensation with stiction model.



Again, the control force always exceeds the friction force when the velocity

becomes zero, thus the mass continues moving. For this model, the mass displacement

does overshoot the desired reference and oscillates about the reference until stabilizing.

The final model is an exponential plus viscous friction force, and is more similar in

form to the stiction model than the Coulomb model. The defining parameters for this

model are given in Table 5.4.

Table 5.4. Simulation parameters for nonlinear compensation with the exponential model.

 

 

  

 

 

 

 

 

 

1‘? ‘ 4.2 N.

F;(v) , Ap+ 2.1 N.

VI 0.1 m/s

b+ 0.5 Ns/m.

FL‘ 4.0 N.

F;(v) , 915- .2.0 N.

V; -0.1 m/s

b’ 0.5 Ns/m.

Aru'ficialZero a 00le      
The time response for the l-DOF system with an exponential plus viscous slipping

force model and the nonlinear compensator is shown in Figure 5.5. This response, as

expected, is more similar in character to the stiction model response than the Coulomb

model response.
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Figure 5.5. Simulated time response for nonlinear compensation with exponential model.

Again, when the mass enters the extended sticking zone, the control force takes on

its bang-bang character. The displacement and force oscillate more than in the Coulomb

example, but not as much as in the stiction example. Less control energy is required for

stabilization, and it takes about the same amount of time to reach the desired equilibrium as

in the case of stiction.

Each of the simulation plots have a common characteristic. The bang-bang effect of

the control force is one where the force switches sign whenever the mass passes through

the desired reference. For example, the force may be positive for a period of time until the

mass overshoots the origin, then it becomes negative for a shorter period of time. This

decrease in the time width of the pulse is observed in each successive pulse for each of the

three examples.

From the simulation results, the desired reference position of the 1-DOF system is a

stable and unique equilibrium point with the nonlinear compensation force supplementing

PD control. As long as reasonable estimates for the upper bounds on the maximum static
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friction forces can be obtained,'this control technique is robust to the exact character of the

slipping force. No limit cycle behavior is observed as in the case of PID control with the

stiction and exponential models.

5.5 Experimental Results

The nonlinear proportional feedback control law (5.4), (5.6), and (5.7), has also

been tested on the experimental system to verify the stability of the origin. The estimates

for the static friction bounds from Chapter 3 (Table 3.1) are used to determine the

compensation force levels. In an experimental implementation of this compensation force,

since we only have estimates for the static friction bounds, we do not need to choose an e

explicitly. in order to insure that no sticking would occur in the sticking zone, the applied

nonlinear control forces, I? and F" , only need to be chosen to exceed the largest estimate.

The proportional and derivative gains were chosen identical to the gains in the simulation

section for direct comparison. The initial conditions were also chosen identical to those

from the simulations.
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Table 5.5. Experimental parameters for nonlinear compensation.

 

 

 

 

 

 

 

Mass m 1.375 kg.

PD Control K, 20.0 N/m.

Gains K; 0.5 Ns/m.

Static Friction P? 1.744 N.

Bounds P;- -l.439 N.

Sticking XL -0.0872 m.

Limits x41 0.0719 m.

Nonlinear .+ 2.0 N.

Compensation i: -2.0 N.

Extended 3,, -0.1 m.

Sticking Limits &, 0.1 m.

Initial 10.) 0.3 m.

Conditions V0.) 0.0 m/s.      
The velocity state, which is needed to compute the derivative control force, was

estimated with a finite difference algorithm using position data. The floating—point

controller algorithm was implemented on a DEC LSI-11/23 computer in Fortran IV, and

run at 200 Hz. In the implementation, a first order digital filter was used in the estimation

of the velocity state, but no filtering was used on the position data. The experimental data

was acquired with the use of an Apple Macintosh IIx computer and National Instruments

LabView hardware and software. From each channel, 2000 samples were taken at 1000

Hz. per channel.

To experimentally verify stability and robustness of the nonlinear compensation

technique, two tests were performed. In the first test, the friction brake was applied, since

the estimates for static friction were obtained under this condition. It was observed in

Chapter 3 that PD control led to a non-zero steady-state error, and in Chapter 4, PID

control led to a limit cycle response when the friction brake was applied. The resulting time
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response for this experiment is shown in Figure 5.6. Note the decrease in the width of the

control force pulses as observed in the simulations.
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Figure 5.6. Experimental time response for nonlinear compensation with braking.

The time response of the experimental system with braking (Figure 5.6) is similar

in character to the simulation results for a Coulomb plus viscous friction model (Figure

5.3). This result agrees well with the results in Chapter 4 obtained through the PID

simulations and experiment. It was observed that the friction present in the braked system

was stiction with a very small but definite drop from the static levels. The drop was

estimated to be so small as to be almost Coulomb friction, but the definite drop was

required to give a limit cycle response for PID control.

The friction brake was completely removed for the second experiment. Because of

this, the static friction bounds obviously decreased, but the remaining stick-slip friction

was observed to be much less uniform with position. Theoretically the controller is robust

enough to handle thisnew situation with no change. The resulting time response for this

experiment is shown in Figure 5.7.
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Figure 5.7. Experimental time response for nonlinear compensation without braking.

The resulting unbraked time response verifies the stability of the origin. Due to the

overall decrease in the friction present, the mass reaches the origin much faster than in the

braked situation.



Chapter 6

Conclusions

6.1 Summary

The physical phenomena of the stick-slip motion of one surface over another has

been investigated. The friction force induced by the surface contact has been identified as

the causal agent, thus it is termed a stick-slip friction force. A good mathematical model for

this stick-slip friction force is presented which, when incorporated into a dynamic system

model, will provide the stick-slip dynamics observed in practice. This model is composed

of a sticking force and a slipping force which do not act simultaneously. The sticking force

model provides values of the friction force when the relative velocity of the surfaces is

zero, and the slipping force model is assumed to be a function of the relative velocity.

The common models for friction exclusively neglect the sticking force altogether for

reasons of analytical simplicity. Omission of the sticking force from the overall friction

model will certainly reduce the richness of the set of possible dynamics obtainable from the

model. Three of the common slipping force models and their characteristics are

investigated throughout this analysis to determine and compare their effects with different

control strategies on the regulation of a single degree-of-freedom system. These three

models were Coulomb, stiction, and exponential. All three included a linear viscous

damping term since it is the most common friction model.

Using a Proportional+Derivative (PD) control law, there exists a set of multiple

equilibrium points around the desired equilibrium. This result is verified theoretically as

well as experimentally. The steady-state error bounds are inversely related to the

72
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proportional gain. Since this gain must be finite, there will always exist non-zero steady-

state error bounds for PD control. The static friction bounds for the stick-slip friction force

in a given l-DOF system can be experimentally estimated using the PD control law. With

each new proportional gain, there are two new steady-state error bounds which can easily

be measured. From these measured bounds, the static friction bounds can be computed

As long as the static friction forces are not dependent on position, the estimates obtained

through this procedure will be very good. Each of the estimated static friction bounds for

the experimental system with the friction brake applied were no more than 3% away from

the mean values of the respective samples. This indicates that there is only a minimal

dependence on position, and the estimates are very reasonable.

A Proportional+Integral+Derivative (PID) control law was investigated in an

attempt to remove the steady-state error. The initial theoretical analysis demonstrated the

existence of trajectories which appeared to have a limit cycle behavior. The nonlinearity of

the stick-slip friction force did not allow a closed form solution, therefore numerical

simulations were utilized to provide the limit cycle existence results. Simulations with the

stiction and exponential models appeared to exhibit limit cycle behavior over the finite time

interval of the simulations. The Coulomb model did not appear to exhibit a limit cycle

behavior. These results were verified through the numerical construction of a mapping of

points in the sticking zone, where the fixed point of this mapping is the limit cycle

amplitude. Several representative cases from each class of slipping force model were tested

under the same conditions.

A Coulomb friction model in the l-DOF system with PD) control does not exhibit a

limit cycle response, whereas the stiction and exponential models promote definite limit

cycle dynamics. This fact can be used advantageously to determine the qualitative character

of the slipping force present in a real experimental l-DOF system. If a limit cycle exists
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under PID control, the slipping force cannot have the characteristics of the Coulomb model.

The amplitude of the observed limit cycle depends somewhat on the amount of the drop

from the static friction level to the kinetic friction level. As the drop decreases to zero, the

limit cycle amplitude also decreases to zero.

A discontinuous nonlinear compensation force is developed to supplement the PD

control law. This compensation force is constructed to make the origin a unique

equilibrium point of the system. The discontinuous compensation, combined with the

natural discontinuity of the stick-slip friction force create a surface of discontinuity in the

phase space. A sliding mode does not exist, and since the discontinuities are simple, all

trajectories are absolutely continuous. The origin of the 1-DOF state space is proven to be

globally asymptotically stable by two Lyapunov methods. The first uses a modification of

the direct method for discontinuous systems. Dini-derivates must be used instead of

derivatives for non-differentiable Lyapunov function candidates. The second method

shows that the energy of the system (given by the Lyapunov function) must decrease a

finite amount with each cycle about the origin, therefore no sustained limit cycle can exist.

Stability of the origin is verified through numerical simulations and an experimental

demonstration. Each of the three classes of slipping force models were used in a

simulation study with the same nonlinear control law, and the same operating conditions.

All three test cases satisfied the assumptions that the slipping force functions be Lipschitz in

their respective domains, and they lie within prescribed bounds. Stability was verified with

each of the three models, thus the nonlinear compensation is robust to the character of the

slipping force. Similar to the results with PID control response, the qualitative character of

an experimental slipping force can be determined by comparison with the simulated

responses for each of the three classes. The braked and un-braked experimental responses

verify the stability of the nonlinear compensation force as well as its robustness.
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6.2 Recommendations for future work

The robust nonlinear compensation technique works well for the 1-DOF system,

but its effectiveness on a multi-DOF system is questionable. Preliminary investigations of

the extension of this control law applied to a 2-DOF system (the inverted pendulum) with

stick-slip friction present indicate that it cannot be simply extended. This can be explained

by looking at the sticking force. When one of the degrees of freedom is “stuck” the

nonlinear control law injects enough energy into the system to get it un-stuck. This can

adversely affect the resulting motion as indicated by the simulation study with the inverted

pendulum. It is probable that a greater degree of success is attainable with this

compensation technique for systems where an actuator and sensor pair are directly

associated with each degree of freedom. These types of systems are commonly found in

the robotics industry.

A natural extension of this work is to develop online or offline observation

algorithms for identification of the slipping forces and static friction levels in an

experimental system. The qualitative characterizations which can be obtained through the

PID time responses or the nonlinear compensation time responses will provide a better

“first guess” to the exact character of the slipping force present.

The nonlinearity associated with real stick-slip friction tends to be very complex and .

dependent on many quantities. The static friction forces can be strongly dependent on

position, and even the slipping forces may vary somewhat with position. With this in

mind, successful observation and identification may only be attainable with the “nicest”

experimental systems where the slipping forces and static friction bounds are uniform. In

dealing with real systems, it is better to investigate the control and observation techniques

which do not attempt to identify the exact friction present, but are robust enough to

successfully stabilize the system.
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Appendix A

Simulation Models

A.1 Numerical Simulation

Numerical solutions to the non-linear differential system equations were computed

on a MicroVAX-II running VMS V5.2 using the simulation package DIFFEQ (CCUG,

1989). All computations were performed in Double Precision. The following FORTRAN-

77 Functions/Subroutines were linked into the DIFFEQ program for the actual simulation.

A.2 Stick-Slip Friction Model.

The following function computes values of the sticking force when the velocity is

within the artificial zero range as defined in Chapter 2, Section 2.2. When the velocity is

outside of the zero range, the slipping force is evaluated.

C

C..................................................................

c----------------------------- Fd (V) ------------------------------

C

FUNCTION Fd (V, Eps, Fsp, an, Fr, Cp, Cn)

C

C This function computes the value of the damping force.

C

C ---Variable Identification

C

C V the sliding velocity between surfaces

C Eps artificial zero ( > O ) for computation purposes

C Fsp Positive ( > 0 ) static friction force

C an Negative ( < 0 ) static friction force

C Fr Reaction force (see notes for definition)

C Cp coefficient array for pos. non-zero function

C Cn coefficient array for neg. non-zero function

C

C ---Declare variables

C

REAL*8 Fd,V,Eps,Fsp,an,Fr,Cp(4),Cn(4)

C

C ---Compute the damping force

C

IF (V .GT. Eps) THEN

C

C ---Velocity is positive
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C

Fd = FlV-Eps,Cp)

C

ELSE IF (V .LT. -Eps) THEN

C

C ---Velocity is negative

C

Fd = F(V+Eps.Cn)

C

ELSE

C

C ---Velocity is zero

C

IF (Fr .62. Fsp) THEN

C

Fd = Fsp

C

ELSE IF (Fr .LE. an) THEN

C

Fd = an

C

ELSE

C

Fd = Fr

C

ENDIF

C

ENDIF

C

RETURN

END

C

C_____________________________________________________ -

c----------------------------- Fd(V) ---

C

The slipping force is computed with the following function whenever the velocity is

non-zero, or outside of the artificial zero range. The value of the slipping force is a

function of the velocity, and a set of four parameters stored in a parameter vector. With a

proper choice of the parameters, any of the three general stick-slip friction models

presented in Chapter 2, Section 2.3, can be represented. This function can produce

Coulomb, Stiction, or Exponential models with viscous friction added in.

 

  

C

C................... -. ——————————————————————————————————

c----------- - ------ F(V,C) -------------

C

FUNCTION F (V, C)

C

C This function computes the value of the damping force for

C nonzero velocity.

C

C --—Declare variables

C

REAL*8 F.V,C(4)

O
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C ---Compute the damping force

C

F = C(1) + C(2) * (1.000 - DEXP( -V / C(4))) + C(3) * V

C

RETURN

END

C

C———————————————————— ——— — -

c----------------------------- F(V,C) -- ---------

C

A.3 One-Degree-Of-Freedom Model

The l-DOF system equations were written into the following subroutine for

evaluation by the DIFFEQ package. Through this package, a set of parameters could be

interactively changed to obtain different modes of operation. For example, the PD and PID

controllers were both included in the following code.

0

 

0
0
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SUBROUTINE PZSIM

This subroutine has the simple forced mass problem with

the stick-slip damping model, controlled by PID feedback.

---DIFFEQ subroutine name

0
0
0
0
0
0
0
0

SUBROUTINE FCT ( T, 5, Bars )

C

C -—-Variable Identification

C

C T The real time variable

C S State vector

C DerS Derivative of state vector

C PA Parameter vector

C

C Kp Position control gain

C Kd Velocity control gain

C Ki Integral control gain

C M Actual mass

C

C Fsp Positive static friction force

C an Negative static friction force

C Cp Coefficient array for damping force (+)

C Cn Coefficient array for damping force (-)

C dF Damping force from the model

C Fd Name of function generating damping force

C

C Fr Reaction force (or control force)

C Fc Compensation force

C Fpid PID control force

C

C Est Quantization precision for position

C EpsV Quantization precision for velocity

C EpsF Quantization precision for force



0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0

0
0

0

EpsT

Tk

X

V

Y

E

DE

IE
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Quantization precision for time

Quantized time variable

Quantized mass position

Quantized mass velocity

Quantized integral of the error

Position error

Velocity error

Integral of the error

---Declare variables

REAL‘B

REAL‘B

+

REAL'B

REAL*8

---Common

COMMON

DerSIZO),S(20),PA(20),T

Kp,Kd,Ki,M,Fsp,an,Cp(4),Cn(4),

Fd,dF,Fr,X,V,Y,E,DE,IE,Xd,Vd,

Est,EpsV,EpsF,EpsT

Fpid,Fc,Xc,Xh,Xl,Eps,G,dG

Tk,Told,Xold,Vold

for fct parameters

/FCTCOM/PA

---Set up all local parameters

EQUIVALENCE (Kp, PAIIII:

+
+

+
+

+
+

+
+

+
+

+ (Kd, PA(2)).

(Ki, PA(3)).

(Est, PA(4)).

(EpsV, PA(5)).

(EpsF. PA(6)).

(EpsT, PA(7)).

(Eps, PA(8)).

(Fsp, PA(11)).

(an. PA(12)I.

(Cle),PA(13)).

(Cn(l),PA(17))

—--Initialize local constants

DATA M,Xd,Vd /1.0D0,0.0D0,0.0DO/

---Simulate measurement by quantizing the states

Tk a Q ( EpsT, T )

X = Q ( Epsx, 5(1) )

V

Y

Q ( EpsV, 5(2) )

5(3)

--—Compute the errors

E = Xd - X

DE = Vd - V

IE = - Y

---Compute the PID control force

Fpid - Kp*E + Kd*DE + Ki*IE

---Compute the compensation force
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Xh = - (an / Kp) + Eps

X1 = - (Fsp / Kp) - Eps

C

IF (X .LT. X1) THEN

Xc - 0.000

ELSE IF (X .GT. Xh) THEN

Xc = 0.000

ELSE IF (X .GT. Est/2.0DO) THEN

Xc = Xh - X

ELSE IF (X .LT. -Est/2.000) THEN

Xc - Xl - X

ELSE

Xc = 0.000

ENDIF

C

PC = - Kp * Xc

C

Fr = Q ( EpsF, (Fpid + PC) )

C

C ---Compute the actual damping force

C

dF = Fd (5(2), EpsV/2.0DO, Fsp, an, Fr, Cp, Cn)

C

C ---Eva1uate system derivatives

C

IF ( ABS(5(2)) .LE. EpsV/2.000 ) THEN

0er5(l) = 0.000

ELSE

0erS(1) = 5(2)

ENDIF

C

Der5(2) = (Fr - dF) / M

C

0erS(3) = - E

C

C ---Compute auxiliary outputs

C

5(4) = 10.0 * 5(1)

5(5) = 10.0 * 5(2)

5(6) = Y

5(7) = Fr

5(8) = dF

5(10) = Fc

C

C ---Compute the Lyapunov function

C

IF (5(1) .GT. Xh) THEN

G = Kp * Xh * Xh / 2.000

d6 = 0.000

ELSE IF (5(1) .LT. Xl) THEN

G = Kp * X1 * X1 / 2.000

d6 = 0.000

ELSE IF (5(1) .GE. 0.000) THEN

G = Kp * 5(1) * (Xh - 5(1)/2.000)

dG - Kp * (Xh - 5(1))

ELSE

G = Kp * 5(1) * (X1 - 5(1)/2.000)

d6 = Kp * (Xl - 5(1))

ENDIF

C

3(11) = G + ( Kp*S(l)*S(l) + M*S(2)*S(2) I / 2.0D0

5(12) = Kp*$(1)*S(2) + M*S(2)*Der$(2) + dG*S(2)

5(13) = 10.0 * Xh

5(14) = 10.0 * Xl
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C

RETURN

END

C

C..................................................................

C__________________________________________________________________

C

C ---Insert all the INCLUDEd functions

C

INCLUDE '[SOUTHWARO.RE5RCH.PID.COMMON]FD.FOR'

INCLUDE '[SOUTHWARO.RESRCH.PID.COMMON]F.FOR'

INCLUDE '[SOUTHWARD.RE5RCH.PID.COMMON]Q.FOR'

C

C——————————— - - .......

C..........................................

C

In the FCT subroutine above, the actual position and velocity are quantized to

simulate the discrete measurement process. This quantization is performed by the

 

 

following function.

C

C................................. -- .. - ...........

C---------------------------- Q(Eps,X) ----------------------------

C

FUNCTION Q ( Eps, X )

C

C This quantizer maps real X values into the Q—Eps space.

C

C ---Declare Variables

C

REAL*8 Q,X,Eps,MAX

C

C ---Compute the maximum value quantizable

C

MAX = Eps ‘ (2.000 ** 30)

C

C ---Compute the R value

C

IF (ABS(X) .LT. MAX) THEN

Q = Eps * JIDINT( (X/Eps) + 05IGN(0.500,X) )

ELSE

Q = X

ENDIF

C

RETURN

END

C

C____________________ —- -— ......

C---------------------------- Q(Eps,X) ----------------------------



Appendix B

Experimental Controller

8.] Controller Implementation

The two control algorithms used in this investigation, PID and PD with nonlinear

compensation, were implemented on a DEC PDP-11/23 running RSX-11M+. The

programs were written in FORTRAN IV and MACRO-11. All control computations were

carried out in Single Precision Floating Point. Four modules were common to both

algorithm implementations. These four modules are IPOSN, PAUSE, SETICK, and

SAMPLE, and can be found in Section B3. The specific PID routines are in the following

section.

8.2 PID Controller.

The PID control algorithm is implemented in the following program. A single input

voltage is read and filtered with a first order digital filter. The derivative of this filtered

signal is computed and filtered as well at user specified time constants. The integral of the

input error is also computed. The PID control signal is then computed and applied. This

program allows the user to interactively tune all parameters.

c

C——————————————————————————————————————————

c--------------------------------- PID - --- -----

c

 

 

PROGRAM PID

This is the main program which accesses all the control

subroutines for PID control.

Written by: STEVE C. SOUTHWARD

---Program Calling Tree

PID

IPOSN0
0
0
0
0
0
0
0
0
0
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0
0
0
0
0
0
0
0
0

0
0

0
0
0

SAMPLE

CGAINS

CONTRL

RUNLSF

PAUSE

SETICK

---Declare Variables

REAL G(10).F(10)

LOGICAL*1 IDATA

DIMENSION IDLIST(21)

EXTERNAL SETICK
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COMMON /ADDR1/ IKSR,IKDR,INCH,ITCK

COMMON /ADDR2/ IPSR,IPDR,IBPR,IADVEC,IADERR

COMMON /ADDR3/ ICSR,IADR,IDAR,IADBUF

COMMON /MISC2/ F,G,IZREF

COMMON /TIME/ I.IEND

---Initialize the zero reference

DATA IZREF/O/

---Initial PID control gains, and other parameters

F(l) - 10.0

F(Z) = 5.0

F(3) - 2.0

HF(4) ‘ .0/(1.0 + 3.0)

F(S) = 1.0 - F(Q)

F(6) = 1.0/(1.0 + 10.0)

F(7) = .0 - F(6)I
—
I

F(8) = -5.982

F(9) 1.68

F(10) 8 1.0

---Set up address registers

IPSR - "102

IKSR = "177560

IKDR = IKSR + 2

IPSR - IKSR + 4

IPDR ‘ IKSR + 6

ICSR = "170420

IBPR ‘ ICSR + 2

ICKV s "440

IDAR = "170440

IADR = "170400

IADBUF - IADR + 2

IADVEC - “400

IADERR = IADVEC + 4

IBELL - "7

IZERO = "4000

---Protect System from crash

!Kp \

!Kd PID controller gains

!Ki /

!position

!filter

!derivative

!filter

!input scale factor

!output scale factor

!maximum allowable error

!processor status word

!keyboard status register

!keyboard data register

!printer status register

!printer data register

!real time clock status reg.

!clock buffer preset reg.

!clock vector address

!D/A base output addr.: ch.0

!A/D control status register

!A/D buffer register

!A/D done interrupt vector

!A/D error interrupt vector

!bell tone

!zero value for D/A converter
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IDLIST(1) - IKSR !keyboard status

IDLIST(2) - IPEEK(IKSR)

IDLIST(B) - IPSR !printer status

IDLIST(4) 8 IPEEK(IP5R)

IDLIST(S) = IDAR !zero D/A channel 0

IDLIST(G) - IZERO

IDLIST(7) - IDAR + 2 !zero 0/A channel 1

IDLIST(B) ' IZERO

IDLIST(9) - IDAR + 4 !zero D/A channel 2

IDLIST(IOI ' IZERO

IDLIST(11) = IDAR + 6 !zero D/A channel 3

IDLIST(12) - IZERO

IDLIST(13) - IADR !A/D status

IDLIST(ld) - 0

IDLIST(IS) - IADVEC !A/D done interrupt vector

IDLIST(16) = IPEEK(IADVEC)

IDLIST(17) - ICSR !clock status

IDLIST(18) ‘ IPEEK(ICSR)

IDLIST(19) 8 IPSW !processor status

IDLIST(20) - IPEEK(IP5W)

IDLIST(21) = 0 !end of list marker

CALL DEVICE(IDLIST)

---Format Statements

500 FORMAT(/,/,/,2X,'Discrete Time PID Control',

+ /,2x,' ------------------------- ')

510 FORMAT(/,2X,'Enter the INPUT A/D channel: ',5)

530 FORMAT(/,2X,'Enter the OUTPUT D/A channel: ',$)

540 FORMAT(IZ)

550 FORMAT(/./,10X,' -----MAIN MENU----- ',

/,/,2X,'(I)nitialize the zero reference position',

/,/,2X,'(G)ain settings for PID control I filters',

/./.2X,'(5)tatus of Zero position',

/,/,2X,'(R)un the active PID controller',

/,/,2X,'(Q)uit the program',

/,/,2X,'Choose one of the above. . . ',S)

560 FORMAT(/,/,2X,'5TATUS of Zero Reference. . .',

+ /,2x,' ------------------------------ ')

570 FORMAT(/,2X,'INPUT zero reference: ',I6)

590 FORMAT(/,/,2X,'Exiting Control Routine. . .',5(/))

600 FORMAT(/,/,2X,'Zero reference position NOT initialized')

+
+

+
+

+
+

---Calibrate the PAUSE subroutine

IEND = 10000 !set initial value

IPR = 7 !highest priority interrupt

10 I = INTSET(ICKV,IPR,1,5ETICK) !attach to RTC vector

IF (I .EQ. 0) GOTO 20

WRITE(7,*)'INT5ET error -- RTC vector, CODE - ',I

GOTO 10

20 IRATE = "111 !set up clock to generate

ICOUNT - -16667 !an interrupt after 1 tick

CALL IPOKE(IBPR,ICOUNT)

CALL IPOKE(ICSR,IRATE) !start the clock

00 30 I e 1,10000 !do nothing loop while

30 CONTINUE !waiting for one tick
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ITCK = IEND + l

WRITE(7,*)'ITICK = ',ITCK

---5et zero (0) volts on all D/A outputs

DO 40 I - 0,6,2 !

CALL IPOKE(IDAR+I,IZERO) !zero out all 4 channels

40 CONTINUE !

---Get the INPUT A/D channels

WRITE(7,500) !initial header

50 WRITE(7,510) !get INPUT channel

READ(5,540,ERR=50) INCH

IF ((INCH.GT.15).OR.(INCH.LT.0)) GOTO 50

7O WRITE(7,530) !get D/A output channel

READ(5,540,ERR=70) IDACH

IF ((IDACH.LT.0).OR.(IDACH.GT.3)) GOTO 70

IDAR = IDAR + IDACH * 2

---Print out the options menu

80 WRITE(7,550) !print the menu options

CALL PAUSE(SO,ITCK) !wait for printing to finish

---Disable the keyboard

I - IPEEK(IK5R) .AND. "177477lclear keyboard interrupt

CALL IPOKE(IKSR,I)

---Wait for keyboard input

90 CALL IPOKE(IPDR,IBELL) !ring the bell

100 I = IPEEK(IKSR) .AND. "200 !test bit 7 of IKSR

IF (I .EQ. 0) GOTO 100

IDATA = IPEEK(IKDR) !a key has been pressed

---Check for a valid character

IF ((IDATA.NE.'I').AND.(IDATA.NE.'G').AND.(IDATA.NE.'5').AND.

+ (IDATA.NE.'R'I.AND.(IDATA.NE.'Q'II GOTO 90

CALL IPOKE(IPDR,IDATA) !print the proper key

---Enable the keyboard

I - IPEEK(IK5R) .OR. "100 !set bit 6 of IKSR

CALL IPOKE(IK5R,I)

WRITE(7,*)' '

---Go to the proper place

IF (IDATA .EQ. 'I') GOTO 110

IF (IDATA .EQ. 'G') GOTO 120

IF (IDATA .EQ. '5') GOTO 130

IF (IDATA .EQ. 'R') GOTO 140

IF (IDATA .EQ. 'Q') GOTO 150

—--INITIALIZE the zero reference position

110 CALL IPOSN



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
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GOTO 80 !return to menu

---GAIN settings for PID control law

120 CALL CGAINS

GOTO 80 !return to menu

---5TATU5 of Zero position

130 WRITE(7,560) !initial header

WRITEI7,570) IZREF

GOTO 80 !return to menu

---RUN the active control routine

140 IF (IZREF .NE. 0) GOTO 14S

WRITE(7,600) !zero references

GOTO 80 !not initialized

145 CALL CONTRL

GOTO 80 !return to menu

 

 

---QUIT the program

150 WRITE(7,590) !exit message

CALL PAUSE(60,ITCK)

CALL EXIT

END

------- - -— CGAINS --------------------------

SUBROUTINE CGAINS

This subroutine allows the user to input the control

gains for the PID control law, and the first order

filter parameters.

---Definition of parameters F()

F(1) = PID proportional gain (Kp)

F(2) - PID derivative gain (Kd)

F(3) - PID integral gain (Ki)

F(d) = posn. filter parameter (alfa)

F(S) - posn. filter parameter (1-alfa)

F(6) - deriv. filter parameter (alfa)

F(7) - deriv. filter parameter (1-alfa)

F(8) 8 Input scale factor

F(9) = Output scale factor

F(10)= Maximum allowable error

---Declare Variables

REAL G(10),F(10),SN

COMMON /MISC2/ F,G,IZREF
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---Format Statements

100 FORMAT(/,/,2X,'INPUT the PID Control Gains',/,

+ 2X,‘ ')

110 FORMAT(/.2X,'1) Input PID Controller gains',

/,2X,'2) Input Position Filter Parameters',

/,2X,'3) Input Derivative Filter Parameters',

/,2X,'4) Input INPUT/OUTPUT scale factors',

/,2X,'5) Input maximum allowable error EMAX',

/,2X,'6) Check Status of all gains',

/,2x,'7) EXIT to main routine. .')

120 FORMAT(/,2X,'Your Selection: ',$)

130 FORMAT(Il)

140 FORMAT(/.2X,A14,' - ',S)

150 FORMAT(/.2X,'Enter I of Samples/Filter Time Const.: '.$)

160 FORMAT(/,2X.'PID Controller Gains:',/./.

+ 5X,'Kp - ',F10.4,/,

+ 5X,'Kd 8 ',F10.4,/.

+ 5X,'Ki = ',F10.4)

170 FORMAT(/,2X,A10,' Filter Parameters:',/.

+ 5X,'#5amples/Time Constant a ',F5.1,/,

+ 5x,' alpha = ',F10.4,/,

+ 5X,'1-alpha = ',F10.4)

180 FORMAT(/,2X,'Enter the ',A6,' scale [Volt/ ]: ',S)

190 FORMAT(/.2X,'Calibration Scale Factors:',/,/,

+ 5X,'Input Scale = ',F10.4,/,

+ 5X,'Output Scale - ',F10.4)

200 FORMAT(/,2X,'Enter the maximum allowable error: ',5)

210 FORMAT(/,2X,'Maximum Allowable Error:',/./.

+ SX,'Emax = ',F10.4)

 

+
+

+
+

+
+

/.

/.

---Main routine

WRITE(7,100)

10 WRITE(7,110) !display menu options

20 WRITE(7,120)

READ(5,130,ERR=20) IOP

IF ((IOP.LT.1).OR.(IOP.GT.7)) GOTO 20

---Goto the proper place

GOTO(30,40,50,60,70,80,90) IOP

---Input new PID controller gains

30 WRITE(7,140) 'Kp [Volt/L] '!proportional gain

READ(5,*,ERR=30) F(1)

32 WRITE(7,140) 'Kd [Volt-5/L]'!derivative gain

READ(5,*,ERR=32) F(2)

34 WRITE(7,140) 'Ki [Volt/L-Sl'lintegral gain

READ(5,*,ERR=34) F(3)

GOTO 10 !return to CGAINS menu

---Input the filter parameters

40 WRITE(7,150) !get position filter

READ(5,*,ERR=40) F(4)

F(4) = 1.0 / (1.0 + F(4))

F(S) = 1.0 - F(4)
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GOTO 10 ' !return to CGAINS menu

---Input the derivative filter parameters

50 WRITE(7,150) !get derivative filter

READ(5,*,ERR=50) F(6)

F(6) ' 1.0 / (1.0 + F(6))

F(7) - 1.0 - F(6)

GOTO 10 !return to CGAINS menu

---Input the INPUT/OUTPUT scale factors

60 WRITE(7,180) 'INPUT' !get input scale factor

READ(5,*,ERR=60) F(8)

65 WRITE(7,180) 'OUTPUT' !get output scale factor

READ(5,*,ERR865) F(9)

GOTO 10 !return to CGAINS menu

---Input the maximum allowable errror EMAX

7o WRITE(7,200) !get EMAX

READ(S,*,ERR=70) F(10)

GOTO 10

---Check the status of all gains

80 WRITE(7,160) (F(I),I=1,3)

SN - (1.0 / F(4II - 1.0

WRITE(7,170) 'Position ',SN,F(4),F(5)

5N - (1.0 / F(6)) - 1.0

WRITE(7,170) 'Derivative',5N,F(6),F(7)

WRITE(7,190) F(8),F(9)

WRITEI7,210) F(10)

GOTO 10 !return to CGAINS menu

---EXIT to the main program

90 RETURN

END

0
0
0
0
0
0

SUBROUTINE CONTRL

This is the control subroutine which sets up the

clocked interrupt service control routine, and

starts the control action.

REAL G(lO),F(lO),FREQ,TICK,PER

REAL EN,DEN,IEN,EO,DEO,IEO,VOLT
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LOGICAL*1 IDATA.TIl(8),TI2(8)

EXTERNAL RUNLSF !to use as subroutine arg.

COMMON /ADDR1/ IKSR,IKDR,INCH,ITCK

COMMON /ADDR2/ IPSR,IPDR,IBPR,IADVEC,IADERR

COMMON /ADDR3/ ICSR,IADR,IDAR,IADBUF

COMMON /MISC1/ ICHAN,PER,IFAST

COMMON /MISC2/ F,G,IZREF

COMMON /STATE/ EO,DEO,IEO,EN,DEN,IEN,VOLT

---Format Statements

100 FORMAT(/./.2X,'RUN the Clocked Control Routine',

+ /'2x'I _l)

110 FORMAT(/.2X,'Enter the SAMPLING FREQUENCY (Hz.): ',5)

120 FORMAT(/,2X,'ERROR. . .[Sampling frequency is too high.]')

130 FORMAT(/,2X,‘ERROR. . .[Sampling frequency is too low.]')

140 FORMAT(/.2X,'ERROR. . .[Sampling rate TOO HIGH for system.]')

150 FORMAT(/,2X,'Actual sampling freq. = ',E11.4,' Hz.')

160 FORMAT(/,2X,'Actual sample period - ',E11.4,' 5ec.',/,/)

170 FORMAT(/.2X,'Press ANY KEY to STOP active control. . .')

180 FORMAT(/,2X,'Are you ready to begin control [Y,N]. . . ',S)

190 FORMAT('+',5X,'Error: ',F10.5,5X,'dError: ',F10.5,

+ 5X,'Output: ',F10.5)

220 FORMAT('+',2X,'Turn OFF the Line Time Clock. . .')

230 FORMAT(/,2X,'ERROR. . .[System too far from origin]')

240 FORMAT(/.2X,'Is system near the origin [Y,N]. . . ',S)

 

---Initialize Variables

IBELL = "7

IPR a 7 !highest priority interrupt

IFAST = 0 !reset too-high flag

FMAX - 200.0 !set max. sampling frequency

VOLT = 0 !initial voltage

---Convert real gains to controller gains

G(l) = - F(1) * F(9) / F(BIIKP .\

G(2) = - F(2) * F(9) / F(8)!Kd PID controller gains

C(3) = - F(3) * F(9) / F(8)!Ki /

G(4) = F(4) !position

G(5) = F(5) !filter

G(6) = F(6) !derivative

G(7) = F(7) !filter

C(10) = F(10) * F(8) * 204.8!EMAX

C(10) = ABS(G(10)I

---5et up clocked ISR

WRITE(7,100) !intial header

10 I = INTSET(IADVEC,IPR,1,RUNL5F)!attach to A/D done vector

IF (I .EQ. 0) GOTO 20

WRITE(7,*) 'INTSET error -- A/D Vector, CODE = ',I

GOTO 10

20 I = INTSET(IADERR,IPR,2,RUNL5F)!attach to A/D error vector
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50

55

60

IF (I .EQ. 0) coro 30

WRITE(7,*) 'INTSET error -- A/D Error Vector, CODE = ',I

GOTO 20

—--Input the sampling frequency

WRITE(7,110) !get the sampling frequency

READ(5,*,ERR=30) FREQ

IF ((FREQ.LE.FMAX).AND.(FREQ.GT.0.)) GOTO 35

WRITE(7,120) !sampling frequency too high

GOTO 30

---Calculate the best base clock rate

IR 8 1 !start at highest clock rate

TICK = (10.0**(7-IR))/FREQ

IF (TICK .LT. 3276?.) GOTO 45linteger out of range

IR - IR + 1 !next lower base frequency

IF (IR .LE. 7) GOTO 40

WRITE(7,130) !sampling frequency too low

GOTO 30

---Calculate the ticks for IBPR

ITICK = IFIX(-l.0*(TICK+0.5))!nearest integer

---Calculate the actual sampling frequency and period

FREQ - (10.0**(7-IR))/FLOAT(-ITICK)

PER = 1.0 / FREQ

WRITE(7.150) FREQ

WRITE(7,160) PER

---5et up the clock status and A/D status registers

IRATE = (IR * 8) + 3

ICHAN = "40140 + INCH * (2**8)!set up input sample

-—-Make sure the line time clock is turned off

CALL TIME(TIl) !get the first time

CALL PAUSE(60,ITCK) !wait for 1 second

CALL TIME(TIZ) !get the second time

IF ((TIl(8).EQ.T12(8)).AND.(TI1(7).EQ.TIZ(7))) GOTO 60

CALL IPOKE(IPDR,IBELL)

WRITE(7,220) !message to user

GOTO 55

---Ready to begin active control

WRITE(7,170) !user instructions

WRITE(7,180) !stop message

CALL PAUSE(40,ITCK) !wait for terminal

---Disable keyboard and wait for input [Y.N]
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I = IPEEK(IKSR) .AND. "177677lreset bit 6 of IKSR

CALL IPOKE(IKSR,I)

I = IPEEKIIKSR) .AND. "200 !test bit 7 of IKSR

IF (I .EQ. 0) GOTO 65

IDATA = IPEEK(IKDR) la key has been pressed

IF ((IDATA.EQ.'Y').OR.(IDATA.EQ.'N')) CALL IPOKE(IPDR,IDATA)

IF (IDATA .EQ. 'Y') GOTO 70

IF (IDATA .EQ. 'N') GOTO 85

CALL IPOKE(IPDR,IBELL)

GOTO 65

---0isable the printer

I = IPEEKlIPSR) .AND. "177677lreset bit 6 of IPSR

CALL IPOKE(IPSR,I)

---5et up initial conditions for the system

CALL SAMPLE(INCH,INVAL,IFLAG) !get initial position

EN ‘ (IZREF - INVAL) !initial error

DEN = 0.0

IEN = 0.0

---Check for initial state too far from origin

IF (ABS(EN) .LE. C(10)) GOTO 74

IDATA = IPEEK(IKDR) !reset the keyboard status

I = IPEEK(IPSR) .OR. "100 !set bit 6 of IPSR

CALL IPOKE(IPSR,I)

WRITE(7,*)' '

WRITEI7.240)

GOTO 65

---5tart clock and ISR

CALL IPOKE(IBPR,ITICK)

CALL IPOKE(ICSR,IRATE) !start clock ticking

CALL IPOKE(IADR,ICHAN) !start A/D conversion

-—-Wait for keyboard input or too-fast error

I = IPEEK(IPSR) .OR. "100 !set bit 6 of IPSR

CALL IPOKE(IPSR,I)

WRITE(7,*) ' '

WRITE(7,*) ' '

WRITE(7,*) ' '

WRITE(7,*) ' '

IF (IFAST .NE. 0) GOTO 85

WRITE(7,190) EN,DEN,VOLT

I = IPEEK(IKSR) .AND. "200 !test bit 7 of IKSR

IF (I .EQ. 0) GOTO 80

---Enable the keyboard and printer
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C

85 I = IPEEK(IK5R) .OR. "100 !set bit 6 of IKSR

CALL IPOKE(IKSR,I)

C

I - IPEEK(IP5R) .OR. "100 !set bit 6 of IPSR

CALL IPOKE(IPSR,I)

C

C ---Check for too-fast error

C

IF (IFAST .EQ. 0) GOTO 95

IF (IFAST .EQ. 2) GOTO 90

C

WRITE(7,*)' '

WRITE(7,140) !print an error message

GOTO 95

C

90 WRITE(7,*)' '

WRITE(7,230) !print an error message

C

C ---Turn off clock and A/D converter

C

95 CALL IPOKE(IADR,O)

CALL IPOKE(ICSR,0)

WRITE(7,*)' '

C

C ---Zero output voltage

C

IZERO a "4000

CALL IPOKE(IDAR,IZERO)

C

RETURN

END

C

C_______________________________ -.. ------

c---— -------- RUNLSF -- ----

C

SUBROUTINE RUNL5F(ID)

C

C This is an interrupt service routine to get clocked samples

C of the input signal and compute the PID output control voltage.

---Definition of parameters G()

6(1) = proportional gain

G(Z) = derivative gain

C(3) = integral gain

G(4) = filter parameter (alfa)

G(S) = filter parameter (l-alfa)

G(6) = deriv. filter parameter (alfa)

G(7) - deriv. filter parameter (1-a1fa)

0
0
0
0
0
0
0
0
0
0
0

REAL G(lO),F(10),VOLT,PER,VMAX

REAL EO,DEO,IEO,EN,DEN,IEN

COMMON /ADDR3/ ICSR,IADR,IDAR,IADBUF

COMMON /MISC1/ ICHAN,PER,IFAST

COMMON /MISC2/ F,G,IZREF

COMMON ISTATE/ EO,DEO,IEO,EN,DEN,IEN,VOLT

DATA VMAX/2047.5/

0 --—Select entry: ID = 1 . . . A/D Sample Done [PID control]
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ID = 2 . . . A/D Sample Error

GOTO (10,20) ID

WRITE(7,*) 'RUNLSF entry error, 10 = ',ID

CALL EXIT

<<<<< Calculate PID Errors >>>>>

-—-Get the new input sample

EN = G(4)*(IZREF - IPEEK(IADBUF)) + G(5)*EO

CALL IPOKE(IADR,ICHAN) lreset A/D status register

---Calcu1ate derivative of the input error

DEN - G(6)*(EN - EO)/PER + G(7)*DEO

-—-Ca1culate the integral of the input error

IEN = IEO + EN * PER

---5hift new variables into the old variables

E0 = EN

DEO - DEN

IEO = IEN

—--Use these approximated errors for the PID control law

<<<<< Calculate PID Control Law >>>>>

---Calculate the PID control law

VOLT 8 G(1)*EN + G(2)*DEN + G(3)*IEN

---Check for voltage out of range

IF (VOLT .LT. -VMAX) VOLT - -VMAX

IF (VOLT .GT. VMAX) VOLT = VMAX

IVOLT = IFIX(VOLT + 2048.0)

CALL IPOKE(IDAR,IVOLT) !apply the voltage

RETURN

---A/D Sample error

CALL IPOKE(IADR,O) !turn off A/D

CALL IPOKE(ICSR,0) !turn off RTC

IFAST = 1 !set the too-fast flag

IF (ABS(EN) .GT. C(10)) IFAST = 2 !out of range

RETURN

END

--------------------------------- PID ----------------------------
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B.3 PD Control with Nonlinear Stick-Slip Compensation

The PD control algorithm is implemented in the following program. A single input

voltage is read and filtered with a first order digital filter. The derivative of this filtered

signal is computed and filtered as well at user specified time constants. The nonlinear

compensation force is also calculated. The compensated PD control signal is then

computed and applied. This program allows the user to interactively tune all parameters.

  

   

C

C——————————————————— ___ ..

C--------------------- PD -

C

PROGRAM PD

C

C This is the main program which accesses all the control

C subroutines for P0 control.

C

C Written by: STEVE C. SOUTHWARD

C

C ---Program Calling Tree

C

C PD

C IPOSN

C SAMPLE

C CGAINS

C CONTRL

C RUNLSF

C PAUSE

C SETICK

C

C ---Declare Variables

C

REAL C(13).F(13)

C

LOGICAL*1 IDATA

C

DIMENSION IDLIST(21)

C

EXTERNAL SETICK

C

COMMON /ADDR1/ IKSR,IKDR,INCH,ITCK

COMMON /ADDR2/ IPSR,IPDR,IBPR,IADVEC,IADERR

COMMON /ADDR3/ ICSR,IADR,IDAR,IADBUF

COMMON /MISC2/ F,G,IZREF

COMMON /TIME/ I,IEND

C

C ---Initialize the zero reference

C

DATA IZREF/O/

C

C ---Initial PD control gains, and other parameters

C

F(1) = 20.0 !Kp \

F(2) = 0.5 !Kd / PD controller gains
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F(3) = 1.0/(1.0 + 0.0)

F(4) = 1.0 - F(3)

F(5) = 1.0/(1.0 + 100.0)

F(6) = 1.0 - F(5)

F(7) = 19.895

F(8) = 0.75936

F(9) 3 0.4

F(10) 2.0

F(11) - -2.0

F(12) ' 10.0

F(l3) ‘ 1.0

---Set up address registers

IPSW - "102

IKSR - ”177560

IKDR = IKSR + 2

IPSR - IKSR + 4

IPDR - IKSR + 6

ICSR - "170420

IBPR - ICSR + 2

ICKV ' "440

IDAR ' "170440

IADR = "170400

IADBUF ' IADR + 2

IADVEC - "400

IADERR - IADVEC + 4

IBELL - "7

IZERO 8 "4000

---Protect System from crash

IDLIST(1) = IKSR

IDLIST(2) = IPEEK(IK5R)

IDLIST(3) = IPSR

IDLIST(4) = IPEEK(IP5R)

IDLIST(S) - IDAR

IDLIST(6) - IZERO

IDLIST(7) = IDAR + 2

IDLIST(B) - IZERO

IDLIST(9) - IDAR + 4

IDLIST(10) - IZERO

IDLIST(11) a IDAR + 6

IDLIST(12) - IZERO

IDLIST(13) = IADR

IDLIST(14) = o

IDLIST(15) = IADVEC

IDLIST(16) = IPEEK(IADVEC)

IDLIST(17) - ICSR

IDLIST(18) - IPEEK(IC5R)

IDLIST(19) - IPsw

IDLIST(ZO) - IPEEK(IPSW)

IDLIST(21) = 0

CALL DEVICE(IDLIST)

---Format Statements

95

!position

!filter

!derivative

!filter

!input scale factor

!output scale factor

!maximum allowable error

!Fsp (+ve static friction)

!an (-ve static friction)

!Est (small +ve number)

!Eps (small +ve number)

!processor status word

!keyboard status register

!keyboard data register

!printer status register

!printer data register

!real time clock status reg.

!clock buffer preset reg.

!clock vector address

!D/A base output addr.: ch.0

!A/D control status register

!A/D buffer register

!A/D done interrupt vector

!A/D error interrupt vector

!bell tone

!zero value for D/A converter

!keyboard status

!printer status

!zero D/A channel 0

!zero D/A channel 1

!zero D/A channel 2

!zero D/A channel 3

!A/D status

!A/D done interrupt vector

!clock status

!processor status

!end of list marker

FORMAT(/././.2X,'Discrete Time PD Control',

+ /,2X,' --------------------
_____ I)
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FORMAT(/.2X,'Enter the INPUT A/D channel: ',$)

FORMAT(/.2X,'Enter the OUTPUT D/A channel: ',$)

FORMAT(IZ)

FORMAT(/,/,1OX,' -----MAIN MENU----- ',

+ /,/,2X,'(I)nitialize the zero reference position',

+ /,/,2X,'(G)ain settings for P0 control & filters',

+ /./,2X,'(5)tatus of Zero position',

+ /./.2X,'(R)un the active PD controller',

+ /./,2X.'(Q)uit the program',

+ /./.2X,'Choose one of the above. . . ',$)

FORMAT(/./,2X,'5TATUS of Zero Reference. . .',

+ /.2X.' --- r')

FORMAT(/,2X,'INPUT zero reference: ',IG)

FORMAT(/./,2X,'Exiting Control Routine. . .',5(/))

FORMAT(/,/,2X,'Zero reference position NOT initialized')

---Calibrate the PAUSE subroutine

IEND - 10000 !set initial value

IPR a 7 !highest priority interrupt

I = INTSET(ICKV,IPR,1,5ETICK) !attach to RTC vector

IF (I .EQ. 0) GOTO 20

WRITE(7,*)'INT5ET error -- RTC vector, CODE = ',I

GOTO 10

IRATE = "111 !set up clock to generate

ICOUNT - —16667 !an interrupt after 1 tick

CALL IPOKE(IBPR,ICOUNT)

CALL IPOKE(ICSR,IRATE) !start the clock

DO 30 I = 1,10000 !do nothing loop while

CONTINUE !waiting for one tick

ITCK = IEND + 1

WRITE(7,*)'ITICK = ',ITCK

---5et zero (0) volts on all D/A outputs

DO 40 I - 0,6,2 !

CALL IPOKE(IDAR+I,IZERO) !zero out all 4 channels

CONTINUE I

---Get the INPUT A/D channels

WRITE(7,500) !initial header

WRITE(7,510) !get INPUT channel

READ(5,540,ERR=50) INCH

IF ((INCH.GT.15).OR.(INCH.LT.O)) GOTO 50

WRITE(7,530) !get D/A output channel

READ(5,540,ERR=70) IDACH

IF ((IDACH.LT.0).OR.(IDACH.GT.3)) GOTO 70

IDAR = IDAR + IDACH * 2

---Print out the options menu

WRITE(7,550) !print the menu options

CALL PAUSE(50,ITCK) !wait for printing to finish

---Disable the keyboard
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I = IPEEK(IK5R) .AND. "177477lclear keyboard interrupt

CALL IPOKE(IKSR,I)

---Wait for keyboard input

90 CALL IPOKE(IPDR,IBELL) !ring the bell

100 I a IPEEK(IKSR) .AND. "200 !test bit 7 of IKSR

IF (I .EQ. 0) GOTO 100

IDATA - IPEEK(IKDR) !a key has been pressed

---Check for a valid character

IF ((IDATA.NE.'I').AND.(IDATA.NE.'G').AND.(IDATA.NE.'S').AND.

+ (IDATA.NE.'R').AND.(IDATA.NE.'Q')) GOTO 90

CALL IPOKE(IPDR,IDATA) !print the proper key

---Enable the keyboard

I = IPEEK(IKSR) .OR. "100 !set bit 6 of IKSR

CALL IPOKE(IKSR,I)

WRITE(7,*)' '

---Go to the proper place

IF (IDATA .EQ. 'I') GOTO 110

IF (IDATA .EQ. 'G') GOTO 120

IF (IDATA .EQ. '5') GOTO 130

IF (IDATA .EQ. 'R') GOTO 140

IF (IDATA .EQ. 'Q') GOTO 150

---INITIALIZE the zero reference position

110 CALL IPOSN

GOTO 80 !return to menu

---GAIN settings for P0 control law

120 CALL CGAINS

GOTO 80 !return to menu

---5TATUS of Zero position

130 WRITE(7,560) !initial header

WRITE(7,570) IZREF

GOTO 80 !return to menu

--—RUN the active control routine

140 IF (IZREF .NE. 0) GOTO 145

WRITE(7,600) !zero references

GOTO 80 !not initialized

145 CALL CONTRL

GOTO 80 !return to menu

---QUIT the program
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150 WRITE(7,590) !exit message

CALL PAUSE(60,ITCK)

CALL EXIT

END

 

  

SUBROUTINE CGAINS

This subroutine allows the user to input the control

gains for the PD control law, and the first order

filter parameters.

---Definition of parameters F(I

F(1) = P0 proportional gain (Kp)

F(2) - PD derivative gain (Kd)

F(3) = posn. filter parameter (alfa)

F(4) = posn. filter parameter (l-alfa)

F(S) - deriv. filter parameter (alfa)

F(6) = deriv. filter parameter (1-alfa)

F(7) - Input scale factor

F(8) - Output scale factor

F(9) 2 Maximum allowable error

F(10)- Fsp (+ve static friction)

F(11)- an (-ve static friction)

F(12)= Small positive number in control law (Eps)

F(13)- Small positive number for error bound

---Declare Variables

REAL C(13).F(13),SN

COMMON /MISC2/ F,G,IZREF

---Format Statements

100 FORMAT(/,/,2X,'INPUT the PD Control Gains',/,

+ 2x.' - ')

110 FORMAT(/,2X,'1) Input P0 Controller gains',

/,2X,'2) Input Position Filter Parameters',

/,2X,'3) Input Derivative Filter Parameters',

/,2X,'4) Input INPUT/OUTPUT scale factors',

/,2X,'5) Input maximum allowable error EMAX',

/,2X,'6) Input Stiction compensation gains',

/,2X,'7) Check Status of all gains',

/,2X,'8) EXIT to main routine. .')

120 FORMAT(/,2X,'Your Selection: ',$)

130 FORMAT(Il)

140 FORMAT(/,2X,A14,' - ',$)

150 FORMAT(/.2X,'Enter I of Samples/Filter Time Const.: ',$)

160 FORMAT(/,2X,'PD Controller Gains:',/,/,

+ 5X,'Kp - ',F10.4,' [N/m]',/.

+ 5X,'Kd - ',F10.4,' [N-s/ml')

170 FORMAT(/.2X,A10,' Filter Parameters:',/,/,

+ 5x,'ISamples/Time Constant = ',F5.1,/ /

+ 5X,‘ alpha - ',F10.4,/,

+ 5X,'1-alpha - ',F10.4)

180 FORMAT(/,2X,'Enter the ',A6,' scale: ',$)

 

+
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190 FORMAT(/,2X,'Calibration Scale Factors:',/,/.

+ 5X,'Input Scale = ',F10.4,' [Volt/m]',/,

+ 5X,'Output Scale - ',F10.4,' [N/Voltl')

200 FORMAT(/,2X,'Enter the maximum allowable error [m]: ',$)

210 FORMAT(/.2X,'Maximum Allowable Error:'././,

+ 5X,'Emax - ',F10.4,' [m]')

220 FORMAT(/,2X,'Stiction Compensation Gains:',/,/.

5X,'Fsp - ',F10.4,' [N]',/,

5X,'an = ',F10.4,' [N]',/.

5X,'Est - ',F10.4,' [bits]',/,

5X,'EPS - ',F10.4,' [bits]')+
+

+
+

---Main routine

WRITE(7,100)

10 WRITE(7,110) !display menu options

20 WRITE(7,120)

READ(5,130,ERR=20) IOP

IF ((IOP.LT.1).OR.(IOP.GT.8)) GOTO 20

---Goto the proper place

GOTO(30,40,50,60,70,80,85,90) IOP

---Input new PD controller gains

30 WRITE(7,140) 'Kp [N/m] ' !proportional gain

READ(5,*,ERR=30) F(1)

32 WRITE(7,140) 'Kd [N‘s/m1' !derivative gain

READ(5,*,ERR=32) F(2)

GOTO 10 !return to CGAINS menu

---Input the filter parameters

40 WRITE(7,150) !get position filter

READ(5,*,ERR=40) F(3)

F(3) = 1.0 / (1.0 + F(3))

F(4) = 1.0 - F(3)

GOTO 10 !return to CGAINS menu

---Input the derivative filter parameters

50 WRITE(7,150) !get derivative filter

READ(5,*,ERR=50) F(5)

F(5) = 1.0 / (1.0 + F(5))

F(6) = 1.0 - F(5)

GOTO 10 !return to CGAINS menu

---Input the INPUT/OUTPUT scale factors

60 WRITE(7,180) 'Input Cx [V/m]'!get input scale factor

READ(5,*,ERR=60) F(7)

65 WRITE(7,180) 'Outpt Cu [N/VJ'lget output scale factor

READ(5,*,ERR=65) F(8)

GOTO 10 !return to CGAINS menu
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---Input the maximum allowable errror EMAX

70 WRITE(7,200) !get EMAX

READ(5,*,ERR=70) F(9)

GOTO 10

---Input the stiction compensation gains

80 WRITE(7,140) 'Fsp [Nl' !get Fsp

READ(5,*,ERR=80) F(10)

81 WRITE(7,140) 'an [Nl' !get an

READ(5,*,ERR=81) F(ll)

82 WRITE(7,140) 'Est [bits]' !get Epsilon for X

READ(5.*,ERR=82) F(12)

83 WRITE(7,140) 'EPS [bits]' !get precision bound

READ(5,*,ERR=83) F(13)

GOTO 10

---Check the status of all gains

85 WRITE(7,160) (F(I),I=1,2)

SN ' (1.0 / F(3)) - 1.0

WRITE(7,170) 'Position ',SN,F(3),F(4)

5N .. (1.0 / F(5)) - 1.0

warrst7,170) 'Derivative',SN,F(5),F(6)I

WRITE(7,190) F(7),F(8)

WRITE(7,210) F(9)

WRITE(7,220) F(10),F(11),F(12),F(13)

GOTO 10 !return to CGAINS menu

---EXIT to the main program

90 RETURN

END

  

SUBROUTINE CONTRL

This is the control subroutine which sets up the

clocked interrupt service control routine, and

starts the control action.

REAL C(13),F(l3),FREQ,TICK,PER

REAL EN,DEN,EO,DEO,VOLT

LOGICAL*1 IDATA,TIl(8),TI2(8)

EXTERNAL RUNLSF !to use as subroutine arg.



0
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100

110

120

130

140

150

160

170

180

185

186

187

190

220

230

240

COMMON

COMMON

COMMON

COMMON

COMMON

COMMON
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/ADDR1/ IKSR,IKDR,INCH,ITCK

/ADDR2/ IPSR,IPDR,IBPR,IADVEC,IADERR

IADDR3/ ICSR,IADR,IDAR,IADBUF

/MISC1/ ICHAN,PER,IFAST

/MISC2/ F,G,IZREF

[STATE/ EO,DEO,EN,DEN,VOLT

-—-Format Statements

FORMAT(/,/,2X,'RUN the Clocked Control Routine',

+ /,2x,

FORMAT(/.ZXt

FORMAT(/.ZX.

FORMAT(/IZX.

FORMAT(/.ZXo

FORMAT(/,ZX,

FORMAT(/,ZX,

FORMAT(/.ZX,

FORMAT(/.ZX:

FORMAT(/.ZX.

/.2X,

FORMAT(/,ZX,

+

FORMAT(

 

Il)

')

'Enter the SAMPLING FREQUENCY (Hz.): ',$)

'ERROR. . .[Sampling frequency is too high.]')

'ERROR. . .[Sampling frequency is too low.]')

'ERROR. . .[Sampling rate TOO HIGH for system.]')

'Actual sampling freq. - ',E11.4,' Hz.')

'Actual sample period - ',E11.4,' 5ec.',/,/)

'Press ANY KEY to STOP active control. . .')

'Are you ready to begin control [Y,N]. . . ',$)

'1) PD control only',

'2) PD w/Stiction compensation')

'Choose one [1,2]: ',$)

FORMAT('+',5X,'Error: ',F10.4,5X,'Output: ',F10.4)

FORMAT('+',2X,'Turn OFF the Line Time Clock. . .')

FORMAT(/,2X,'ERROR. . .[System too far from origin]')

FORMAT(/,2X,'Is system near the origin [Y,N]. . . ',$)

---Initialize Variables

IBELL =

IPR - 7

IFAST 8

FMAX = 250.0

VOLT 8

"7

0

0

!highest priority interrupt

!reset too-high flag

!set max. sampling frequency

!initial voltage

---Convert real gains to controller gains

G(l) - F(1) / (F(8) * F(7)) !KP \

G(2) = F(2) / (F(8) * F(7)) !Kd / PD controller gains

C(3) = F(3) !position

G(4) = F(4) !filter

G(S) = F(5) !derivative

G(6) = F(6) !filter

G(9) = F(9) * F(7) * 204.8 !EMAX

G(9) - ABS(G(9))

G(lO) = - (F(10) / F(1)) * F(7) * 204.8

C(11) = - (F(11) / F(1)) * F(7) * 204.8

C(12) = ABS(F(12))

C(10) = G(lO) - C(12)

C(11) = C(11) + C(12)

C(13) - ABS(F(13))

---5et up clocked ISR

WRITE(7.100)

WRITE(7.185)

!intial header
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WRITE(7,186) !choose desired control alg.

READ(5,187,ERR=5) IOP

IF ((IOP.NE.1).AND.(IOP.NE.2)) GOTO 5

GOTO (10,15) IOP

I - INTSET(IADVEC,IPR,1,RUNL5F)!attach to A/D done vector

IF (I .EQ. O) GOTO 20

WRITE(7,*) 'INTSET error -- A/D Vector, CODE = ',I

GOTO 10

I = INTSET(IADVEC,IPR,2,RUNLSF)!attach to A/D done vector

IF (I .EQ. 0) GOTO 20

WRITE(7,*) 'INTSET error -- A/D Vector, CODE = ',I

GOTO 15

I - INTSET(IADERR,IPR,3,RUNL5F)!attach to A/D error vector

IF (I .EQ. 0) GOTO 30

WRITE(7,*) 'INTSET error -- A/D Error Vector, CODE = ',I

COTO 20

---Input the sampling frequency

WRITE(7,110) !get the sampling frequency

READ(5,*,ERR=30) FREQ

IF ((FREQ.LE.FMAX).ANO.(FREQ.GT.0.)) GOTO 35

WRITE(7,120) !sampling frequency too high

GOTO 30

---Calculate the best base clock rate

IR = 1 !start at highest clock rate

TICK = (10.0**(7-IR))/FREQ

IF (TICK .LT. 32767.) GOTO 45!integer out of range

IR = IR + 1 !next lower base frequency

IF (IR .LE. 7) GOTO 40

WRITE(7,130) !sampling frequency too low

GOTO 30

-‘-Calcu1ate the ticks for IBPR

ITICK = IFIX(-1.0*(TICK+O.5))!nearest integer

-—-Calculate the actual sampling frequency and period

FREQ ' (10.0**(7-IR))/FLOAT(-ITICK)

PER = 1.0 / FREQ

G(5) = G(5) / PER

WRITE(7,150) FREQ

WRITE(7,160) PER

---Set up the clock status and A/D status registers

IRATE = (IR * 8) + 3

ICHAN = "40140 + INCH * (2**8)!set up input sample
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---Make sure the line time clock is turned off

CALL TIME(T11) !get the first time

CALL PAU5E(60,ITCK) !wait for 1 second

CALL TIME(TIZ) !get the second time

IF ((TIl(8).EQ.T12(8)).AND.(TIl(7).EQ.TIZ(7))) GOTO 60

CALL IPOKE(IPDR,IBELL)

WRITE(7,220) !message to user

GOTO 55

---Ready to begin active control

WRITE(7,170) !user instructions

WRITE(7,180) !stop message

CALL PAUSE(40,ITCK) !wait for terminal

-—-Disab1e keyboard and wait for input [Y.NI

I = IPEEK(IKSR) .AND. "177677 !reset bit 6 of IKSR

CALL IPOKE(IKSR,I)

I = IPEEK(IKSR) .AND. "200 !test bit 7 of IKSR

IF (I .EQ. 0) GOTO 65

IDATA 2 IPEEK(IKDR) la key has been pressed

IF ((IDATA.EQ.'Y').OR.(IDATA.EQ.'N')) CALL IPOKE(IPDR,IDATA)

IF (IDATA .EQ. 'Y') GOTO 70

IF (IDATA .EQ. 'N') COTO 85

CALL IPOKE(IPDR.IBELL)

GOTO 65

---Disable the printer

I = IPEEK(IPSR) .AND. "177677lreset bit 6 of IPSR

CALL IPOKE(IPSR,I)

---5et up initial conditions for the system

CALL SAMPLE(1NCH,INVAL,IFLAG) !get initial position

EN = (IZREF - INVAL) linitial error

DEN = 0.0

---Check for initial state too far from origin

IF (ABS(EN) .LE. G(9)) COTO 74

IDATA = IPEEK(IKDR) !reset the keyboard status

I 8 IPEEK(IPSR) .OR. "100 !set bit 6 of IPSR

CALL IPOKE(IPSR,I)

WRITE(7,*)' '

WRITE(7,240)

GOTO 65

---Start clock and ISR

CALL IPOKE(IBPR.ITICKI
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CALL IPOKE(ICSR,IRATE) !start clock ticking

CALL IPOKE(IADR,ICHAN) !start A/D conversion

C

C --—Wait for keyboard input or too-fast error

C

I = IPEEK(IP5R) .OR. "100 !set bit 6 of IPSR

CALL IPOKE(IPSR,I)

C

WRITE(7,*) ' '

WRITE(7,*) ' '

WRITE(7,*) ' '

WRITE(7,*) ' '

80 IF (IFAST .NE. 0) GOTO 85

WRITE(7,190) EN,VOLT

C

I = IPEEK(IK5R) .AND. "200 !test bit 7 of IKSR

IF (I .EQ. 0) GOTO 80

C

C --—Enable the keyboard and printer

C

85 I = IPEEK(IKSR) .OR. "100 !set bit 6 of IKSR

CALL IPOKE(IKSR,II

C

I - IPEEK(IPSR) .OR. "100 !set bit 6 of IPSR

CALL IPOKE(IPSR,I)

C

C ---Check for too-fast error

C

IF (IFAST .EQ. 0) GOTO 95

IF (IFAST .EQ. 2) GOTO 90

C

WRITE(7,*)' '

WRITE(7,140) !print an error message

GOTO 95

C

90 WRITE(7,*)' '

WRITE(7,230) !print an error message

C

C ---Turn off clock and A/D converter

C

95 CALL IPOKE(IADR,O)

CALL IPOKE(ICSR,0)

WRITE(7,*)' '

C

C ---Zero output voltage

C

IZERO = "4000

CALL IPOKE(IDAR,IZERO)

C

RETURN

END

C

C——————————————————————————————————————————————————————————————————

C- - --- RUNLSF --------------------------

C

SUBROUTINE RUNL5F(ID)

C

C This is an interrupt service routine to get clocked samples

C of the input signal and compute the PD output control voltage.

C

C ---Definition of parameters G()

C
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G(l) - proportional gain

G(2) - derivative gain

G(3) - filter parameter (alfa)

G(4) filter parameter (1-a1fa)

G(5) deriv. filter parameter (alfa)

G(6) = deriv. filter parameter (l-alfa)

REAL G(l3),F(l3),VOLT,PER,VMAX

REAL EO,DEO,EN,DEN

COMMON /ADDR3/ ICSR,IADR,IDAR,IADBUF

COMMON /MISC1/ ICHAN,PER,IFAST

COMMON /MISC2/ F,G,IZREF

COMMON /STATE/ EO,DEO,EN,DEN,VOLT

DATA VMAX/2047.5/

---5elect entry: ID - 1 . . . A/D Sample Done [PD control]

ID = 2 . . . A/D Sample Done [PD w/Comp]

ID = 3 . . . A/D Sample Error

IF (ID .EQ. 3) GOTO 90

<<<<< Calculate PD Errors >>>>>

---Get the new input sample

EN = C(3)*(IZREF - IPEEK(IADBUF)) + G(4)*EO

IF (ABS(EN) .GT. G(9)) GOTO 90!out of range

CALL IPOKE(IADR,ICHAN) !reset A/D status register

---Calculate derivative of the input error

DEN a G(5)*(EN - E0) + G(6)*DEO

---Shift new variables into the old variables

E0 = EN

DEO = DEN

---Use these approximated errors for the PD control law

<<<<< Calculate PD Control Law >>>>>

---Calcu1ate the PD control law

IF (ID .EQ. 2) GOTO 10

VOLT 8 G(l)*EN + G(2)*DEN

GOTO 80

---Compute the compensation force

10 IF ((‘EN.GE.G(10)).AND.(-EN.LE.G(11))I GOTO 20

VOLT = G(l)*EN + G(2)*DEN

GOTO 50

20 IF (‘EN .LE. G(l3)) GOTO 30

VOLT = - G(l) * G(ll) + G(2)*DEN

GOTO 50

30 IF (-EN .GE. -G(13)) GOTO 40

VOLT - - G(l) * C(10) + G(2)*DEN

GOTO 50
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40 CONTINUE

VOLT = G(2)*DEN

50 CONTINUE

---Check for voltage out of range

80 IF (VOLT .LT. -VMAX) VOLT = -VMAX

IF (VOLT .GT. VMAX) VOLT 8 VMAX

IVOLT ' IFIX(VOLT + 2048.0)

CALL IPOKE(IDAR,IVOLT) !apply the voltage

RETURN

---A/D Sample error

90 CALL IPOKE(IADR,0) !turn off A/D

CALL IPOKE(ICSR,0) !turn off RTC

IFAST = 1 !set the too-fast flag

IF (ABS(EN) .GT. G(9)) IFAST

RETURN

END

B.4 Common Control Modules

2!out of range

The following subroutines are common to both the PID and PD control programs.

These are IPOSN, PAUSE, SETICK, and SAMPLE.

0
0
0
0

0
0

C

0

C

0

 

 ............. -- --- IPOSN

SUBROUTINE IPOSN

This subroutine allows the user to define the initial

zero reference position of the input signal.

REAL G(IO).F(10)

LOGICAL*1 IDATA

COMMON /ADDR1/ IKSR,IKDR,INCH,ITCK

COMMON /MISC2/ F,G,IZREF

—~-Format Statements

100 FORMAT('+',5X,'INPUT Sample: ',I4)

 

110 FORMAT(/./,2X,'INITIALIZE the Reference Position',/,

 
2X,‘

+
+

+
+

---Main Routine

2X,'Move the system to its reference',/,/,

2X,'position to define the ZERO.'././.

2X,'Press "X" to define the INPUT reference -'./././)

WRITE(7,110) !print the instructions
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CALL PAUSE(100,ITCK) !wait for CRT

---Turn off the keyboard

I = IPEEK(IKSR) .AND. "177477Eclear keyboard interrupt

CALL IPOKE(IKSR,I)

---Start Sampling

10 CALL SAMPLE(INCH,INVAL,IFLAG)!get INPUT A/D sample

IF (IFLAG .NE. 0) GOTO 20

IZREF = INVAL

WRITE(7,100) IZREF

CALL PAUSE(7,ITCK) !wait for 7 ticks

---Check for keyboard input

I = IPEEK(IKSR) .AND. "200 !test bit 7 of IKSR

IF (I .EQ. 0) GOTO 10

IDATA 8 IPEEK(IKDR) !a key has been pressed

IF (IDATA .EQ. 'X') GOTO 20

GOTO 10

--—Turn on the keyboard

20 I - IPEEK(IKSR) .OR. "100

CALL IPOKE(IKSR,I)

RETURN

END

 

  

SUBROUTINE PAUSE(NTICKS,ITCK)

This subroutine is approximately calibrated to pause

in ITCK intervals, as specified on input. There are

60 ticks in one second.

DO 20 I = l,NTICKS

DO 10 J = 1,ITCK !one tick per outer

10 CONTINUE !do loop step on (I)

20 CONTINUE

RETURN

END

  

 
- SETICK ----
 

SUBROUTINE SETICK(ID)

This is an interrupt service routine that is called
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C when the real time programmable clock has generated

C an interrupt after one tick (1/60 sec.).

C

COMMON /TIME/ I,IEND

C

IF (ID .EQ. 1) GOTO 10 !check for entry error

C

WRITE(7,*) 'SETICK entry error, ID = ',ID

CALL EXIT

C

10 IEND - I

I = 10000 !reset do loop counter

C

RETURN

END

'0 —————————————— — —— -—-—

;- - -— SAMPLE ------------

.TITLE SAMPLE

; This is a FORTRAN compatible subroutine called with

; CALL SAMPLE(ICHAN,IVAL,IFLG)

; This subroutine gets a sample from the specified A/D converter

; channel ICHAN. The data read from the A/D is passed back in 'IVAL'.

; The flag IFLG is returned to the main program with the status:

; / 0 = NO ERRORS DETECTED

; IFLG = - 1 = CHANNEL NUMBER OUT OF RANGE (0-15)

3 \ 2 = A/D SAMPLING ERROR

.GLOBL SAMPLE ;This makes SAMPLE a global symbol

‘
0

LC=. ;Find current assembly location

.=1000+LC ;Start assembling at location 1000

CSR=170400 ;Define A/D status register address

DBR=C5R+2 ;Define A/D buffer register address

SAMPLE:

R5 points to the first address of a table of arguments

@(R5) is the first data (= I of arguments passed)

@2(R5) is the first argument passed

‘
0

Q
.

‘
.

MOV @2(R5),ICHAN ;Put first argument in ICHAN

MOV @2(R5),TEMP ;Put first argument in TEMP also

BIC #177760,ICHAN ;Clear bits 4 to 15

CLR FLG ;Clear the FLG

CMP TEMP,ICHAN ;Check for ICHAN > 15

ENE ERRl ;Branch to ERRl if ICHAN > 15

START: SWAB ICHAN ;Swap high byte for low byte

MOV ICHAN,@#C5R ;Set the A/D Control Status Register

BIS #1,@#CSR ;Start the A/D conversion

WAIT: BIT #200,@#CSR ;Test bit 7 for A/D done

BEQ WAIT :Wait if not set

MOV @IDBR,@4(R5) ;Put sampled data into argument table

BIT #100000,@#C5R ;Test bit 15 for A/D sampling error

BNE ERR2 ;Branch to ERR2 if bit 15 is set

DONE: MOV FLG,@6(R5) ;Put flag back into argument table



RTS PC

I

I

; ERROR HANDLING ROUTINES

ERRl: BIS #1,FLG

BR START

ERR2: BIS #2,FLG

BR DONE

; LOCAL VARIABLES

ICHAN: .WORD 0

TEMP:

FLG:

I

.WORD 0

.WORD 0

.END
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;Return from subroutine to calling program

;Set bit 0 of FLG

;Go back to start

;Set bit 1 of FLG

;Go back to DONE
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