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ABSTRACT

NON—LINEAR INTERACTIONS IN ROTORDYNANICS

BY

Jinsiang Shaw

The non-linear dynamic behavior of symmetric rotors is investigated

using methods from dynamical systems and bifurcation theories.

Rotordynamic instabilities and resonances caused by internal hysteresis,

fluid film bearing forces and mass unbalance are analyzed. Two types of

models have been proposed to study these effects on rotordynamics: a

slender, flexible shaft made of a viscoelastic material and rotating at

a constant rate about its longitudinal axis is used to study the effects

of internal hysteresis and mass unbalance on rotordynamics, and an

unbalanced disk mounted midway between two supporting fluid film journal

bearings on a rigid shaft is used to examine the effects of fluid

bearing forces and mass unbalance.

For the perfectly balanced flexible shaft model it is well known

that internal damping can cause an instability at a certain critical

speed. The instabilities are predicted using the linearized shaft model

and the post-critical behaviors are determined by applying the center

manifold theory to the full non-linear equations of motion.

Bifurcations of the trivial shaft configuration (the undeformed,

straight position) caused by internal damping include: simple Hopf,

double Hopf, and double zero eigenvalues. It is determined that

synchronous whirl, non-synchronous whirl, and competing-mode types of



behaviors are possible for various ranges of the parameter values. The

results obtained prove that the modal truncations typically used when

analyzing instabilities of a continuous shaft are mathematically

justifiable.

The first vibrational mode of the shaft is then used to determine

the effect of unbalance on system behavior. Special attention is paid

to the interaction between the primary resonance caused by mass

unbalance and the destabilizing influence of internal damping. Global

behavior in terms of the existence and stability of synchronous steady

state motions is examined and is followed by an investigation of local

behavior near bifurcation points by applying the center manifold

theorem. It is shown that the non-linear resonance for a rotating shaft

is much more complicated than a simple Buffing-type resonance when any

amount of internal damping is present. It includes saddle-node, Hopf,

saddle connection, and saddle-node saddle connection bifurcations. The

corresponding shaft responses include synchronous constant amplitude

motions and amplitude modulated solutions.

For the second model the non-linear oscillations of a rotor

supported in fluid film journal bearings is analyzed. The long-bearing

approximation with «-film model for cavitation is adopted. With the

introduction of periodic forcing due to rotor unbalance, the results

show that the limit cycle arising from the whirl instability (a Hopf

bifurcation) in the neighborhood of the threshold speed is perturbed and

a rich variety of response types is observed when certain resonant

conditions occur. These include harmonic, subharmonic, as well as

amplitude modulated responses.

In both models, mass unbalance introduces a periodic forcing term

which allows the response of the system to be analyzed in terms of a

periodically perturbed Hopf bifurcation. Complete bifurcation diagrams



in parameter space and results from simulation studies are presented to

illustrate the dynamics of the system as system parameters are varied.
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CHAPTER I

INTRODUCTION

1.1 Problel'Under Investigation

It is a necessary task in the design of rotating machinery to

accurately predict the dynamic behavior of rotors over a range of

operating conditions. One property of such rotors is high rotational

speeds relative to other types of machines of the same physical size.

Along with high speeds come the potential problems of shaft whirl,

transverse vibration, and rotordynamic instability which greatly limit

the designed performance, and can even lead to failure.

Many of the destabilizing forces which cause rotordynamic

instability in a rotor system have been identified. Internal friction

in rotating parts, hydrodynamic bearings, aerodynamic forces, magnetic

and electrodynamic forces, gyroscopic forces, trapped fluids inside of a

hollow shaft or rotor, dry friction, and labyrinth seals provide some

examples (see Vance, 1987). These destabilizing forces coupled with

high rotor speeds provide mechanisms by which some part of the energy of

rotation can be transferred into whirl motion of the rotor. Non-linear

analysis is often required to investigate the whirl motions in terms of

amplitudes as well as Stabilities, enabling one to judge how dangerous

these vibrations are to the system and decide what measures can be taken

to reduce them to acceptable levels.

Internal hysteresis in the material of the shaft and hydrodynamic

bearing forces are among the most cited causes for rotordynamic

instability, and these have drawn attention from many researchers.
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Previous work on the interaction between these destabilizing forces and

forces due to mass unbalance has been, to date, confined to linear

systems. In this dissertation, the competing effects of rotordynamic

instability and resonance will be thoroughly examined by applying

dynamical systems and bifurcation theories to the governing non-linear

differential equations. In addition, the instability of a continuous

shaft is analyzed using these methods, and it is rigorously shown that

the modal truncations typically used in the engineering literature are

valid.

1.2 Literature Survey

Analysis of the whirling motion of a rotor can be dated back as far

as 1919 when Jeffcott proposed a linear model (now widely known as the

Jeffcott rotor) in order to analyze the response of high speed rotating

machines to rotor unbalance. His analysis shows that the amplitude of

synchronous whirl initially increases as the rotor speed is increased

and reaches a maximum value at a critical resonant speed, and then

decreases and approaches the value of static unbalance at super-critical

speeds. In the early 1920's the General Electric Company experienced

instability problems with some of their turbo compressors which had been

developed for blast furnaces. The turbocompressor displayed a tendency

to undergo self-excited tranverse vibrations at speeds other than the

critical. These oscillations, which exhibited a lower frequency than

the rotational speed, are certainly not associated with the mass

unbalance and occur only when the rotational speed is beyond the

critical speed of rotation. Among the engineers assigned to this

problem, Kimball (1924) was able to show that the cause of their
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instability was internal hysteresis. In the course of another

investigation at General Electric, Newkirk and Taylor (1925) also

identified oil film journal bearings as another source of instability.

After the work carried out by Kimball the theoretical aspects of

the problem with internal friction were investigated by many researchers

(see for example Smith, 1933, Robertson, 1935, Dimentberg, 1951).

Pozniak (1958) has compiled a critical summary of the literature on this

subject up to 1956. The book by Bolotin (1963) extensively covers the

response of a rotor modelled by linear and non-linear, finite and

infinite dimensional differential equations under the action of internal

friction, with a goal of determining the amplitudes of oscillations

beyond the critical speeds; this analysis requires the solution of non-

linear equations. Smith (1933) and Ehrich (1964) studied the

instability in rotating systems induced by internal damping in the rotor

and gave a stability boundary defined in terms of the ratio of external

damping of the system to the internal damping in the shaft. It is shown

that for various damping conditions one particular whirl mode is induced

and that the whirl mode observed is generally the one whose natural

frequency is closest to one half of the rotational speed. This is

because the whirl motion is likely to occur when the rotational speed is

approximately twice the natural frequency of the mode in whirl. Genin

and Maybee (1970) have used energy methods and presented results in the

form of boundedness and growth theorems for the problem of whirl motions

of a linear viscoelastic continuous shaft. They also established

conditions for the asymptotic stability of solutions and found lower

bounds on the rate of growth of unbounded solutions. Other important

treatments in this aspect include works by Tondl (1965), Gunter and

Trumpler (1969), Muszynska (1974), Thomson, Younger and Gordon (1977),

Torby (1979), Crandall (1980), Bucciarell (1982), Hendricks (1986), and
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Zhang and Ling (1986). Crandall (1980) gives detailed physical

explanations of the destabilizing effects of damping in rotating parts

while Muszynska (1974) presents results for a variety of non-linear

damping and structural behavior. Some of the references listed above

have predicted post—critical behavior by studying a system of non-linear

ordinary equations obtained by a finite dimensional modelling or by

modal truncation of partial differential equations. In this

dissertation, we will investigate the post-critical behavior by studying

the full non-linear partial differential equations for a balanced shaft,

thus capturing all the possible effects of each mode on the system

response.

While many works (see for example Merkin, 1984, and Ishida et al.,

1987) have been done on the dynamics of an unbalanced shaft without

internal damping, the combined influence of these two effects, namely

the internal damping and unbalance, has received little attention. To

the author's knowledge, only the papers by Gunter and Trumpler (1969)

and Hendricks (1986) included these effects in an analysis of a

linearized rotor system and the works by Muszynska (1974) and Torby

(1979) briefly described these effects on non-linear rotor systems.

Ariaratnam and Namachchivaya (1986) have also considered the effects of

periodic perturbations in rotating systems with non-linear

characteristics, but did not consider the competing effects of internal

damping and resonance. The competing effects and the resulting dynamics

will be examined in this dissertation in both quantitative and

qualitative terms for a single mode non-linear rotor system.

Ever since Newkirk and Taylor (1925) identified oil film journal

bearing forces as one of the sources for rotordynamic instability, large

research efforts have been put into this subject. Early work include

those by Hagg (1946), Reddi and Trumpler (1962), Lund and Saibel (1967),
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and Badgley and Booker (1969). Worthy of mention is the work by Lund

and Saibel in which they used method of averaging to solve the non-

linear equations to obtain the whirl orbits in terms of their existence,

position and amplitude. Badgley and Booker proposed three models for the

journal bearing force due to the fluid film and investigated the

corresponding rigid-body dynamics of rotors via numerical simulations.

Representative recent works are those by Childs, Moes and van Leeuwen

(1977), Barrett, Allaire and Gunter (1980), Taylor (1980), and Brindley,

Elliott, and McKay (1983). Recently, more complete parameter studies

for such systems have been carried out by Myers (1984) and Hollis and

Taylor (1986) by applying the Hopf bifurcation theorem and by Gardner et

a1. (1985) by using the method of multiple scales.

The introduction of periodic forcing due to rotor unbalance has

received less attention, mainly due to the lack of suitable methods.

Barrett, Akers and Gunter (1976), Gunter, Humphris and Springer (1983)

and Hollis and Taylor (1987) employed numerical integration to examine

these perturbed motions. Here we present an analytical approach to

periodically forced problem in the neighborhood of the threshold speed

where self-excited oscillation exists for the balanced rotor. Numerical

integrations are employed to support the findings.

1.3 Scope of the Investigation

In this dissertation, two simplified models for symmetric rotor

systems with constant speed of rotation are proposed and detailed

analyses are used to determine the qualitative features of their

dynamics in the presence of internal damping, mass unbalance, and oil
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film journal bearing forces. An outline of the goals of these

investigations is as follows:

(1). To determine the effect of internal damping on rotordynamic

instability of a balanced, flexible, continuous rotating shaft. The

instability boundary for the pure rotation of the shaft is obtained,

above which whirl motions of the shaft are anticipated. The linearized

model for this system also indicates which mode(s) is (are) eligible to

whirl above the instability curve.

(2). To determine the post-critical speed behavior of the shaft when

rotational speeds exceed the critical speed. The stabilities and whirl

frequencies of the critical modes are determined. The center manifold

theorem is applied to this infinite dimensional non-linear dynamical

system (in the form of two coupled PDE's) in order to study the dynamics

in the neighborhood of bifurcation points, thus ensuring that the

necessary dynamics from all modes are included.

(3). To determine the response in the presence of the competing effects

of internal damping and first mode resonance excited by mass unbalance.

Here a single mode shaft model is employed. The amplitude and stability

of steady state solutions representing synchronous whirling of the shaft

are determined and presented in the form of frequency response curves

for various levels of unbalance. The center manifold theorem is again

applied in the neighborhood of the critical speed in order to deduce the

shaft behavior near critical speeds. Special attention is placed on the

occurrence of local and global bifurcations which result in a variety of

transitions which can lead to sudden changes in the shaft motion.

Response in terms of shaft motions are checked by computer simulations.

The response is shown to generally be either synchronous whirl or a

whirl which undergoes slow, but periodic, amplitude and phase

modulations. The type of behavior observed depends on the system

l
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parameters and the initial conditions, and a quite complete account of

these motions is presented.

(4). To determine the response of a rotor supported in fluid film

journal bearings under the action of a constant load (due to gravity)

and rotor unbalance. Due to the complex non-linear nature of the forces

inherent in fluid film journal bearings, a variety of interesting

motions are to be expected. The model we employ for these forces is

originally proposed by Myers (1984) and employs the long-bearing

assumption with x-film fluid to account for cavitation in the bearings.

The center manifold theorem and normal form theorem are extensively

employed in the analysis. Non-resonant and resonant responses with

emphasis on the latter are studied and given in the form of bifurcation

diagrams and associated phase portraits in terms of the system

parameters. In particular, 1/1 and 1/2 resonances (here p/q is defined

as the ratio of the frequency of the limit cycle arising from the Hopf

bifurcation for the balanced case to the excitation frequency for the

unbalanced case) are carefully investigated.

1.4 Methods of Analysis

Throughout this dissertation, methods of dynamical systems and

bifurcation theories are frequently employed to investigate the non-

linear dynamics of rotor systems. In this section we briefly review

some of them. The books by Iooss (1979), Carr (1981), Guckenheimer and

Holmes (1983), and Arnold (1987) should be referenced for more complete

and in depth treatments of dynamical system theories and bifurcation

theories.
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In the following we confine our discussions to vector fields

generated by differential equations. Analogous arguments (with some

modifications) may be applied to discrete time maps. Changes in the

qualitative structure of a system response may occur when the system

parameter values are varied. These changes are called bifurcations and

the corresponding parameter values are called bifurcation values.

Bifurcations involved in the stability changes of individual equilibria

and periodic orbits, as eigenvalues of the linearized system cross

stability boundaries in the complex plane, are referred to as local

bifurcations. That is, local bifurcations occur at parameter values

which have neutral linear stability, in which case non-linear terms are

important and small changes yield different behavior. Other

bifurcations, which involve changes in the global structure of the phase

space, are called global bifurcations. Examples of local bifurcations

are transcritical, saddle-node, pitchfork, Hopf, and flip bifurcations.

See Guckenheimer and Holmes (1983) for details of the above bifurcations

and some more complicated local bifurcations which are not covered here,

but do occur in the analysis described in this dissertation.

At a saddle-node bifurcation a pair of solutions (representing

equilibria or periodic orbits) coalesce and annihilate one another as

shown in Figure 1. A super- (sub-, resp.) critical pitchfork

bifurcation is shown in Figure 2 in which a symmetric solution undergoes

a stability change and an antisymmetric pair of stable (unstable, resp.)

orbits bifurcate from that orbit at the bifurcation point. The Hopf

bifurcation is responsible for the birth of limit cycles which exist

above (below, resp.) the bifurcation point for the super- (sub-, resp )

critical Hopf bifurcation, as shown in Figure 3. Flip bifurcations,

which are also referred to as period doubling bifurcations, involve the

instability of a periodic solution and the birth of a new periodic
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Pitchfork bifurcation.
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motion with period double that of the original period. Figure 4 shows a

super- (sub-,resp.) critical period doubling bifurcation in which a

stable periodic orbit of period T loses its stability and becomes

unstable with the appearance of a stable (unstable, resp.) periodic

orbit with period 2T which exists above (below, resp.) the bifurcation

point.

The global bifurcations which are encountered in this dissertation

are saddle connections of homoclinic (and heteroclinic types, resp.) in

which the stable manifold of a saddle type invariant set connects to its

own (or another saddle set's, resp.) unstable manifold. Often a limit

cycle appears or disappears at such a bifurcation point, although in

systems with phase space of dimension greater than two, chaos and other

exotic dynamics can occur near such bifurcations; see Wiggins (1988) for

thorough treatment.

Two methods will be described here and used later to simplify

equations of motion near certain critical points: they are the center

manifold theory (dimensional reduction) and normal form theory

(elimination of all non-essential non-linear terms by coordinate

changes). For studying the local behavior near a bifurcation point,
 

center manifold theory can be employed. A center manifold, denoted by

c . . . .
W , is an invariant manifold (i.e., a surface) tangent to the center

. c . . . . .
eigenspace E , i.e., the eigenspace assoc1ated With non-hyperbolic

eigenvalues (an eigenvalue with zero real part is called non-

hyperbolic). There are three essential theorems associated with center

manifold theory. We start by considering the differential equations
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i - Ax + f(x,y)

9 - By + 8(X.y) . (X.y) 6 RC x R5 (1.4.1)

with f(0,0) - g(0,0) - Df(0,0) - Dg(0,0) - 0. A is a c x c constant

matrix having all eigenvalues with zero real parts while B is an s x s

constant matrix having all eigenvalues with negative real parts. Proofs

for the following three theorems can be found in the book by Carr

(1981); only the theorems are stated here.

Theorem 1. (Existence and Reduction Theorem, Carr, 1981)

There exists a Cr center manifold for equation (1.4.1) for r 2 2

which can be locally represented as follows (see also Figure 5)

 

Y - h(X)

 
  

  
 

Figure 5. A center manifold.
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wc - { (x,y) 6 RC x R5 | y - h(x), [x] < 5, h(O) - Dh(0) 1

for 6 sufficiently small. The dynamics of (1.4.1) on the center

manifold is governed by the following c-dimensional vector field

u - Au + f(u,h(u)) , u e R (1.4.2)

Theorem 2. (Stability of the Full system from the Reduced System, Carr,

1981)

(i) Stable (asymptotically stable, unstable, resp ) zero solution of

equation (1.4.2) infers stable (asymptotically stable, unstable,

resp.) zero solution of equation (1.4.1).

(ii) Suppose that the zero solution of equation (1 4.2) is stable.

Then there is a solution u(t) of equation (1.4 2) such that the

solution (x(t), y(t)) of equation (1.4.1) with (x(0), y(0))

sufficiently small approach (u(t), h(u(t))) exponentially fast as

12"”.

Theorems 1 and 2 guarantee the existence of a center manifold for

equation (1.4.1) and provide the qualitative nature of the dynamics of

equation (1.4.1). In the neighborhood of the zero solution these are

well approximated by the dynamics of equation (1.4.2) on the center

manifold, which has a lower dimension than the full system. This

reduction of dimension makes the analyses of a dynamical system easier,

while still capturing all the important recurrent dynamics (e.g. fixed

points, periodic orbits, homoclinic orbits, etc.,). In practice, we

need to compute the center manifold h(x) from equation (1.4.1). This

can be done locally using Taylor series expansion as follows: take the
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derivative of y - h(x) with respect to time and use the chain rule to

obtain:

9 - Dh(x)x - Dh(x) [Ax + f(x,h(x))] - Bh(x) + g(x,h(x))

Now define N[h(x)] such that

l".'."s

l
N[h(x)] - Dh(x) [Ax + f(x,h(x))] - Bh(x) - g(x,h(x)) - 0 (1.4.3) i

This equation for h(x) cannot be usually solved explicitly but can be

approximated arbitrarily well by a Taylor series near the zero solution. “’

This is stated in Theorem 3.

Theorem 3. (Approximation of Center Manifold, Carr, 1981)

Let ¢(x) : RC 4 R5 be a c1 mapping with ¢(0) - D¢(0) - 0. Suppose

that N[¢(x)] - 0(lxlp) as le a 0 for some p >1. Then

[h(x) - ¢(x)| - 0(|x|P) as |x| 4 0 (1.4.4)

Hence we can approximate h(x) by ¢(x) as closely as desired.

Another way of simplifying a dynamical system near critical points

is by utilizing the normal form theorem. It is used to put a

differential equation into the so-called normal form (defined below) by

which the dynamics of the system are more easily derived. The normal

form for a dynamical system depends only on the linear structure of the

governing differential equations. Consider a Cr vector field described

by
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i - Jx + F(x) x e R (1.4.5)

where J is in real Jordan canonical form (Bellman, 1970) and F(x) is

non-linear. Expanding F(x) about zero by a Taylor series, equation

(1.4.5) becomes

i - Jx + F2(x) + F3(x) + . . . + Fr l(x) + o (ler) (1.4.6)

Here we would like to ask the question, by changes of coordinates can

one eliminate the 0(2) terms, then 0(3) terms, and so on, of equation

(1.4.6) ? According to the normal form theorem (Arnold, 1987, chapter

5), one can eliminate 0(2) terms , then 0(3) terms, and so on by

successive coordinate changes provided J has no eigenvalues with zero

real parts (this is simply the Hartman-Grobman theorem, which says the

dynamics of equation (1.4.5) in the neighborhood of the origin is

dominated by the linear terms). If J has eigenvalues with zero real

parts, one can still reduce large classes of equations to relatively

simple nonlinear forms - normal forms.

The center manifold theorem combined with the normal form theorem

give one a powerful tool to study the dynamics of dynamical systems

governed by non—linear differential equations. We conclude this section

with some remarks on extensions of the center manifold and normal form

theorems:

(1). Center manifold and normal form theorems apply also to vector

fields depending on parameters, for parameters close to critical values.

This is done by employing the suspension trick.

(2). Center manifolds are not necessarily unique.
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(3). Center manifold methods also apply to certain classes of infinite

dimensional equations (i.e., PDE's)

(4). Center manifolds may be time dependent.

See Carr (1981) for more information on these extensions, which are

vital to the studies here since the equations of motion (ODE; and/or

PDE's) for the models considered depend on system parameters and are

often time dependent.

1
_
_
_
A
.
_
.
_
‘
-
L
;
i
'

1.5 Dissertation Arrangement

The dissertation is arranged as follows. Chapter II discusses the

governing equations of motion and the stability and bifurcations of the

undisturbed (pure rotation) solution of a balanced flexible shaft made

of a viscoelastic material. This is followed by a non-linear analysis

to examine the post-critical behavior of the shaft. Three types of

bifurcation of the trivial solution are investigated and the results are

interpreted in terms of physical dynamics of the shaft.

The competing effects of the destabilizing forces induced by

internal friction and those due to the primary resonance excited by mass

unbalance are investigated in Chapter III. Complete bifurcation

diagrams, the associated phase portraits, and frequency response

diagrams are presented in the neighborhood of the first critical speed.

These provide a detailed description of the dynamic response of the

shaft and clearly indicate the net effects of the two competing effects.

Simulation results are also given to support the analytical findings.

In Chapter IV we analyze the effects of the destabilizing forces of

fluid film journal bearings on rotordynamic instability. Depending on
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system parameters, the equilibrium position of the perfectly balanced

rotor may undergo either super- or sub-critical Hopf bifurcation. With

the introduction of periodic forcing due to rotor unbalance, we then

carefully examine the periodically perturbed Hopf bifurcation problem.

In Chapter V we close the dissertation with some conclusions and

directions for future work. In all cases descriptions of the physical

dynamics of the rotor are provided along with the mathematical results.  

 



CHAPTER II

INSTABILITIES AND BIFURCATIONS IN A.PERFECTLY BALANCED ROTATING SHAFT

2.1 Mathematical Model

In this chapter we investigate the effects of internal damping on

the dynamics of a rotor system. A relatively simple model is proposed

to single out the role of internal friction arising from the assumption

that the rotating shaft is made of a dissipative material. The model is

as shown in Figure 6: a slender symmetric shaft of circular cross

section, length 2, and rotating about its longitudinal axis at a fixed

rate, 0, undergoes motions which can be represented by transverse

displacements in a rotating coordinate frame (x, y, z). The shaft will

be assumed to be simply supported at both ends, other types of boundary

condition can be considered and would give rise to different mode shapes

for the shaft, but the method of analysis will be unchanged. The

equations of motion will be generated using Hamilton’s principle.

Employing the usual beam theory assumptions, the displacement of an

arbitrary point in the cross»section is given by f - (u+x)i + (v+y)j +

(w - xu' - yv')k where u(z,t), v(z,t), w(z,t) are the displacement

components of a point on the neutral axis, a prime denotes

differentiation with respect to z, and (1,3,k) are the usual unit

vectors. The velocity of this point is given by V - f + (a x f) where a

- OR. The kinetic energy of the shaft T can then be written as

18

 



Figure 6.
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If the shaft is axially restrained and large deflections are

permitted it can be shown (see Ho, Scott, and Eisley, 1975) that the

only non-zero strain component is in the z direction, and it is given by

The shaft is made of a Voight viscoelastic material with stress

given by a - E(e + pie) where e is the strain, E is Young's elastic

modulus, and ”i is a material viscosity parameter (representing internal

damping). External damping is modeled by assuming that the resulting

dissipative force on a beam element is proportional to its absolute

velocity. The work W done by these non-conservative forces can readily

be determined. The equations of motion are then obtained by applying

Hamilton's principle

t2
I [ 6 (T - U) + W ] dt - 0

t1

which have the following forms
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-pAw + EAw" + EA(u'u" + v'v") + EApi(w' + u'u' + v'v')' - 0

'PAU ' EIU"" - peu + 2pAflv + pAflzu + peflv - Elpiu""

2
+ EA(w'u')’ + EA[ u"(u' + v'2) +u'(u'2 +v'2)']/2 + EApi(u'w’)'

+EApi[ u'(u'u' + v'v') ]' - 0 (2.1.1)

-pAv - EIv"" - peé - 2pAQu + pAflzv - peflu - £1pi&""

2
+ EA(w'v')' + EA[ v"(u' + v'2) +v'(u'2 +v'2)']/2 + EApi(v'w')'

+EApi[ v'(u'u' + v'v') ]' - 0

The 2 component of these equations is simplified by neglecting the

longitudinal inertial force which yields

2
[w' +% (u' + v'2) + piW' + pi (u' {1' + v' v')]' - 0. (2.1.2)

Integrating this with respect to z and using the boundary conditions

w(O) - w(fl) - 0 yields

,2
w' + % (u + v'2) + piw' + “1 (u' u' + v' v') -

2 2
l ,2 ,2 1 d ,2 ,2

22 J0(u + v ) ds + pi 23 dt [0 (u + v ) ds (2.1.3)
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The variable 2 can be eliminated by substituting equations (2.1 2) and

(2.1.3) into the x and y components of (2.1.1) yielding

 

pAu + Elu"" + pea - 2pAflv - pAgzu - #eav + Elpiu"”

 2 2

- EA (u'2 + v'2) ds + p g— (u'2 + v'2) ds u" - 0
22 0 1 dt 0

‘
_
f
‘
I

 
pAv + EIv"" + #96 + 2pAflu - pAflzv + peflu + Elpiv"" T

as 1 2 2 d 1 2 2
- 22 [ I (u' + v' ) ds + ”1 dt I (u’ + v' ) ds ] v" - 0 (2.1.4)

0 0

where p denotes mass density, A the cross-sectional area, I the second

moment of area of the cross-section, and pe’ ”i are the external and

internal damping constants, respectively.

In order to express (2.1.4) in dimensionless form, the following

non-dimensional variables are introduced:

a - u/2 , G - v/2 , E - 2/2

T - JEI/pA24 fl - 1t . pe - #e/pA7

p.1 A22/2I , n - 0/1
-/‘i7aa

Under this rescaling equation (2.1.4) becomes, after dropping all

overbars for convenience:
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l

u + u"" + peu - 2 0% - Ozu - peflv + piu"" — a [ I (u'2 + v'2) ds

0

l

—d_.- 92 I II

+ pi dr (u + v ) d5] u 0

0

" - - 2 - 1 2 2
v + v"" + pev + 2Qu - 0 v + peflu + piv"" - a [ I (u' + v’ ) ds

0

l

+ p. g— I (u'2 + v'2) ds] v" - 0 (2.1.5)

1 d1 0

where (.) - %L:l and ( )' - Q—L—l

Remarks:

i) This equation is described in a system of coordinates x-y-z

rotating at the constant angular speed 0 with the shaft about

the z axis.

ii) The effects of mass unbalance, transverse shear, rotary

inertia, longitudinal inertia, externally applied forces and

torques, and gravity are not included.

For simply supported ends the solution of equation (2.1.5) is

assumed to have the form

(D

u - E “n(’) ¢n(2)

n-l

“
n P

‘
m
n
n
i
-
v
n
u
p
;

.
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v — E vm (r) ¢m(z) (2.1.6)

m-l

 
where un(r) and vm(r) are unknown functions of time, 1, and ¢n(z) - /2

sin (nxz) are the eigenfunctions of the linearized system. Substituting

 
assumption (2.1.6) into equation (2.1.5) and using Galerkin's method 1

gives the following set of non-linear ordinary differential equations in

terms of the modal amplitudes:

‘
u
w
.

#
v
a
‘
.

a

v + 02v + p 6 + 296 - 02v + p flu + p. O 26

n n n e n n n e n i n n

2 g_ 2 2 2
+ a on { [l + pi dr] [ E [uj + vj] Oj ] } vn - O VneN (2.1.7)

1'

where N- {1, 2, 3, . . .} and 0n = (n1r)2 is the flexural vibration

frequency of small oscillations of mode n of the non-rotating shaft.

Existence and stability of steady state solutions are discussed in the

next section.
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2.2 Steady State Solutions

A steady state synchronous motion corresponds to a constant

solution of equation (2.1.7). It is easy to see that the trivial

solution corresponding to the undeformed configuration of the shaft is

always such a solution. A straightforward calculation shows that non-

trivial steady state solutions exist only when 0 > 01 and pe - 0 (i.e.,  
no external damping) and that these are given by

u 2 + v 2 - (02 - 0 2)/a0 2 , for n - {l,2,..., n } which satisfy
n n n n max

0 < O and u. - v. - 0 , V j > n (2.2.1)
n j j max

These solutions are circles of equilibria which bifurcate from the

trivial solution whenever the rotational speed exceeds an On. These

equilibria represent buckling of the shaft and correspond to synchronous

whirling, that is, the shaft position is fixed in the rotating frame

(x,y,z). This indicates that for 0n< 0 S 0 only the first n modes
n+1

are eligible to undergo synchronous whirl at rotational speed 0. The

determination of which modes are observable requires knowledge about the

stability of these non-trivial solutions; this is discussed in Section

2.4. Note that these solutions exist only in the absence of external

damping.

The stability of the trivial steady state solution may be

determined by employing the substitution

un(r) - A1 exp(Anr)
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vn(r) - A2 exp(Anr) (2.2.2)

in equation (2.1.7) and neglecting non-linear terms. The resulting

characteristic equations have the following form

4 3 2
An + CIAn + CZAn + C3An +C4 = 0 V neN. (2.2.3)

 
The Routh-Hurwitz criteria indicates that the ugh mode is stable if the 1

condition C1C2C3 - C32 - C12 CA a 0 holds, which can be expressed in L

terms of the system parameters as

 

050n-0+e . (2.2.4)

Bolotin (1963), Ehrich (1964), and Zhang and Ling (1986) give the same

*

result. The frequency 0 n is the angular velocity above which pure

rotation is unstable and hence the “Eh mode is expected to whirl (this

will be examined for the full non-linear system by using center manifold

methods). It is noted from equation (2.2.4) that the external

resistance delays the instability of pure rotation and that depending on

O O O 0 e

the ratio of external damping to internal damping, ;—’ the mode

i

undergoing whirl is not necessarily the first mode. In fact, the

limiting stability condition is assoc1ated with the n—h mode over the

range
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2 I“

n (n-l)2 <
 

< n2(n +1)2 . (2.2.5)
2

“191

from which it is seen that the first mode will undergo whirling if 0 <

pe/pifli < 4 is satisfied, i.e., the ratio of external damping to

internal damping is not too large. See Ehrich (1964) for a complete

description. In Figure 7 the neutral stability curves are presented,

from which it is seen that there are three distinct ways in which the

trivial shaft configuration can lose its stability according to the

linear theory. These are referenced in Figure 7 as follows: a double

zero eigenvalue structure at the points Di where two zero eigenvalues

C) ‘whirl mode
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associated with mode 1 exist; a pair of purely imaginery eigenvalues at

all non-intersection points on the curves; and two pairs of purely

imaginary eigenvalues (one pair from mode i and the other from mode

i+1) at the points P The corresponding bifurcations will be a simplei'

double zero, a simple Hopf, and a non-resonant double Hopf,

respectively.

The following three sections contain the main results. The

procedure used to analyze the dynamics near the points of instability

will be as follows. The partial differential equation is first written

as an ordinary differential equation in a suitable space. At the points

where stability changes occur, center manifold theory is used to

construct a finite set of ordinary differential equations (ODE's) which

completely and rigorously (Carr, 1981) capture the shaft dynamics near

the instabilities. The dependent variables in these finite ODE's

correspond to modal amplitudes and phases and the nature of the

associated shaft dynamics can be readily interpreted from them. These

equations take on the standard normal forms for the corresponding

bifurcations and are easily analyzed using phase plane techniques.

Conclusions are drawn about the behavior of the rotating shaft near the

bifurcation points by investigating the coefficients of the normal

forms.

By using center manifold theory one can be certain that the full

effects of all modes are captured in the post-critical dynamics. It

does turn out that in the cases considered in this chapter one could

obtain exactly the same results by simple truncation, that is, by simply

ignoring the dynamics of the modes which are not obviously involved in

the instability. However, one cannot know this without tackling the

full problem.

_
'
I
-
I
.
"
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Equation (2.1.5) can be written as an ordinary differential

equation (in infinite dimensions) as follows:

w - cw + N(W) (2.2.6)

Where W - (wl, wz, W39 w4)T - (ui v: u, V)T !

 

  

3

.

1'

l .w4
I

4 4

2 g__ Q_
‘

CW - [0 - 4] w]. + 11.60 w2 - [ye + pi 4] W3 + 20 W4

dz dz

4 4

- 0 w + 02 - g— w - 20 w - + -— w
”e 1 4 2 3 ”e “1 4 4 '

’ d2 dz .

N(W) - O

0

g2 (W)

l 2 2

31(W) - { a I [ wi (6) + wé (a) ] d0 + 2a pi

0

l , ,
‘

I [ w1 (0) w3 (0) + w2 (0) w4 (6)]d0} w1 , and

0

(W) - { a I1 w' (o)2 + w' (a)2 ] d0 + 2a
82 o 1 2 “1

1

I0 [ wi (6) wé (9) + wé (0) w; (0)]d0} W2

Note that C is linear operator associated with the linearized shaft

dynamics which are given by W - CW. Its spectrum will consist of
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distinct eigenvalues which are the roots of the characteristic equations

(2.2.3). The term N(W) contains the nonlinearities.

In terms of mathematical formalism, W is an element in a Banach

2
space, 2, with norm II . II where Z - (H02(0,l))2 x (L2(0,l))2. HO

(0,1) denotes the Sobolev space of twice differentiable functions which

vanish at 0 and 1 and L2 (0,1) is the usual Hilbert space of square

integratable functions. The linear operator C generates a strongly

continuous semigroup on 2 and N is a Can map from Z to 2 with N (0) -

N'(0) - 0 where N' is the Frechet derivative of N.

By varying the parameters peand 0 equilibrium points and limit

cycles of equation (2.2.6) can appear, disappear and change their

stability types in bifurcations. The three different types of

bifurcations encountered are now described in detail.

2.3 Bifurcation.Analysis Near a Double Zero Eigenvalue

In the following the dynamics of the shaft model will be explored

near the parameter values where C has a double zero eigenvalue, in

particular, point D in Figure 7 will be considered. Two small

1

parameters are introduced which measure the parameter deviations from

point D e - O - 0 represents rotational speed variation from the

1‘ 1 1

natural and £2 - “e is the external damping coefficient. The vector c

is defined by (61, 62)T.

It is the first mode of the shaft which becomes unstable at point

D . The fact that a double zero eigenvalue structure exists at D
l
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implies that the behavior of the shaft near D1 will be dominated by a

pair of ordinary differential equations which represent the "slow"

dynamics associated with those eigenvalues. The remaining eigenvalues

all have negative real parts and represent rapidly decaying dynamics.

The nonlinear coupling between modes prevents one from immediately

ignoring these "fast" dynamics; the center manifold and normal form I

methods provide one way to determine which of the nonlinear terms are i :

essential to the dynamics. 1

To begin the analysis, consider that part of C which corresponds to

the first mode, that is, restricted to the first mode subspace - {r sin

    

  

(«2): r - ( r1, r2, r3, r4)T CRél. It is denoted by C1 and can be

written as:

To 0 1 o ‘ ”o o 1 o“

0 0 0 1 0 0 0 l

2 2 2 2
C1 _ 0 -01 -pe0 -p101-pe 20 _ 0 0 -y101 201

2 2 2 2
h -pefl 0 -01 -20 ~plfll-ped L O 0 -201 -p101 .

"o o o o“

0 0 0 0

+ - 61,0 + C1,e

61 (£1 + 201) 62(61 + 01) -62 261

L -€2(€1 + 01) €1(€1+201) -2£1 -€2‘

where C1 0 represents C1 evaluated at D1 and Cl 5 represents the change

in C1 as e is varied, i.e., as one changes parameters away from point



32

D The matrix Cl'O has two zero eigenvalues and a pair of complex1 I

conjugate eigenvalues with negative real parts. It is convenient to

work with the equations of motion written in terms of the

eigencoordinates associated with the eigenvalues (0, 0, - a i Aj), a, A

> 0 where j2 - -1. To this end, let the matrix Q - (ql, q2, q3, Q4)

where . is the ei envector corres ondin to the iEh ei envalue of C .
91 8 P 8 8 l 0

Using Q in a similarity transformation, W - 02, the quation of motion

(2.2.6) is written in terms of the eigencoordinates Z:

2 - Q'1 CQZ + Q'lN (02). (2.3.1)

It is desired to split 2 into its two essential parts: one part

corresponding to the slow dynamics associated with the zero eigenvalues

and the other part containing the remaining fast dynamics. This is

accomplished by defining two subspaces, X and Y, such that Z - X 0 Y,

T . . 2
where X - ($1, 32, 0, 0) w(z) Wlth ¢(z) - Sin(nz) and (51’ 52) e R

represents the slow dynamic coordinates and Y is the complement of X. Y

L a

is given by V O [X 6 V] where [ ] is the complement space of [ ], V -

T . 2 .
(0, 0, 53, sh) w(z) with (33, sa) 6 R is the subspace of the fast

dynamics of the first mode (associated with the - a i Aj eigenvalues)

4- . .
and [X 0 V] represents the coordinates corresponding to the second and

higher shaft vibrational modes. Elements in Y will be denoted by y and

those in X are uniquely determined by S - (51’ 52)T.

The full dynamics given by equation (2.3.1) are now projected onto

the slow subspace X using the projection operator P - Z a X defined by

 

1
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z1 z1

_ _ l

P 22 - 22 p , zi - 2 IO 21(6) Sin («0) d6.

‘23

524-4 I. A    

(Note that P is much like a modal projection except that it shifts out

all of the fast dynamics, not just the higher modes). P and (I - P) ((I

- P) is the complement of P and is the projection onto the space Y) are

applied to equation (2.3.1) (see Carr, 1981) to yield the dynamics

separated into slow, S, and fast, y, components:

. 0 o -1 -1
s - 0 o s + <PQ C1,. Q[g] ¢, fl> + <PQ C1,. Qy, fi> (2.3.2a)

+ <P Q'1 N (s, y), a>

,e
i - By + (1-9) q’1 01 , q[S] w + (I-P) q'1 (21 Qy (2.3.2b)

’ 0

+ (I-P) q'lN (s.y>

2- o (2.3.2c)

where the matrix B - (I - P) Q.1 C1 0 Q, the vector B - (l, l, 0, 0)T

w(z), < , > is the inner product defined as (O, W> - (e1, e2, e3,

ea)T, where
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l

ei - 2 Jo ¢i¢id9

and where e - (cl, €2)T is being treated as a state variable (the

suspension trick, see Carr, 1981). This inclusion of e in the dynamics

allows one to apply the center manifold theorem at parameter values near

to, as well as at, D Note that the eigenvalues of B have negative1.

real parts.

The center manifold theorem states that there exists an invariant

manifold near (S, y, e) - (0, 0, 0) which can be written as y - h (S, c)

with ISI<6 and Ie|<6. This manifold contains the slow dynamics, which

in turn dominate the full equation of motion. The dynamics on h(S, 6)

can be obtained by substituting h(S,e) for y in equation (2 3.2a) and

noting that the e dynamics are trivial. A functional equation for

h(S,e) can be obtained by substituting h(S,e) into equation (2.3.2) (see

Carr):

M [h] - 3% [<PQ’1 C1,. Q[g] a, 5> + <PQ'l C1,. Qh, a >

+ < PQ‘l N(S,h),fi >] - Bh -(I-P)Q’1 c1 Q 5 ¢ - (I-P) (2'1 c1 Qh
.6 O ,6

- (I-P) q'l N (s, h) - 0 (2.3.3)

This partial differential equation for h cannot be solved explicitly but

can be approximated arbitrarily well by a Taylor series near (8, e) -

(0,0), provided its Taylor series exists. Henry (1981) and Carr (1981)
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show that if a function ¢(S,e), with ¢(0) - D¢(0) - O can be found such

that M [¢(S, 6)] - 0(IS, elp) for some p>l as IS,eI a 0, then it follows

that

h(S,e) - ¢(S,e) + O(IS,e|p) as |s,e|»o . (2.3.4)

Hence we can approximate h as closely as desired by seeking series

solution of equation (2.3.3).

By choosing ¢(S,e) - 0(IS,eI2) such that

S
B¢(S,e) + (I-P)Q'lc1 e Q[O] ¢ - 0 (2.3.5)

h - ¢(S,e) + 0(|s,e|3) by equation (2.3.4). Calculating ¢(S,c) in

equation (2.3.5) up to order two and substituting the result into the

first component of equation (2.3.2) yields the quations which govern the

slow dynamics and which include all essential components of the coupling

to the fast dynamics:

 

 

   

. . ”2010 A o 2011 o a

151 d ‘1‘ d ‘2+ f1(‘1"2)' d ‘1+ ’3"2+f2(‘1"2) S1

- 20 A 0 a 20 0 A0 5
s 1 1 1 __1 2

- 2J _‘ d 1‘ d ‘2' f2(‘1"2)' d ‘1' d ‘2 +f1(‘1"2),
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where d - 02 + A2 and f f are quadratic functions in e e

  

  

1’ 2 l’ 2

Finally, if one writes 512 + 53 - r2 and tan 9 - 52/51 equation (2.3.6)

becomes

20 0 A0 000 2

E- 1 -—1e - 1:2 r
6‘1 d 2 2d

2

. 201A 010 aAOI 2

0 - - d 61 + “a“ 62 + 2d r (2.3.7)

where f1, f2, and higher order terms have been neglected. This equation

describes a codimension two bifurcation of double zero type with

unfolding parameters 61 and 62.

The variable r simply represents the amplitude of the first mode of

the shaft and 0 represents the phase difference between the shaft and

the frame of reference rotating at 0. Solutions of constant r with 0 -

0 represent synchronous whirling of the shaft in its first mode. Such

solutions arise as a circle of equilibria as a consequence of the

symmetry of the shaft, i.e., it has no preferred orientation when

buckled. Solutions of constant r with 0 fl 0 represent nonsynchronous

whirling of the first mode, these arise as limit cycles in equation

(2.3.7). The r - 0 solution corresponds to the trivial shaft

configuration.

The structure of equation (2.3.7) is also worthy of note. The

linear part of the equations is dominated by the 6 variables and is zero

when 6 - 0; this recovers the fact that a double zero eigenvalue occurs

for e - 0. The nonlinear terms originate from the nonlinear structural

effects, a, and contain the net effect of these effects at the

bifurcation point. (If, in such an analysis, one obtains zero for the
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coefficient of the leading nonlinear terms, the next order nonlinear

terms must be computed to determine the dynamics. Here the coeffecients

of the cubic terms are strictly nonzero.)

The dynamics of equation (2.3.7) are summarized here; recall that

ye - £2 and 0 - 01 + cl:

(1) For 62-0, corresponding to zero external resistance: the zero

amplitude solution is asymptotically stable (unstable) when 61 < 0 (51 >

0). A non-trivial circle of equilibria bifurcates from the trivial

solution at 61-0, these exist and are stable for e > 0 and are given by
l

which indicates that the first mode is whirling synchronously.

. . . . A

(2) 62 > 0: A supercritical Hopf bifurcation occurs at £1 - 5362 where

nontrivial constant r solutions appear. The zero solution loses its

stability and bifurcates into a stable limit cycle for 61 > €362. Non-

synchronous, but nearly synchronous, whirling of the first mode arises

in this case since 5 is nonzero but small. In fact 9 - -

I
.
)

1
-— e for the

o 2

nontrivial r solutions, indicating that subsynchronous whirling of the

shaft always occurs since the absolute rotational speed is given by 01 +

1 + 0 - 01 + £1 - 0c 1 £2 / a which is greater than 01 (Since 61 > A62 /

20 (- 0162/0) holds in the parameter region where the limit cycle

exists). The whirling speed at the stability boundaries will be
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discussed more thoroughly in next section in which Hopf bifurcations of

the zero solution are considered.

Figure 8 shows the bifurcation set and associated phase portraits

for equation (2.3.7).

6 . 01 @
‘1

circle or equilibria

 

Figure 8. Bifurcation diagram and associated phase portraits of

equation (2. 3. 7). Hf: Hopf bifurcation. DI: double zero bifurcation
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It must be stated that equation (2.3.7) can be obtained by simply

ignoring all vibrational modes except the first. Effects from the

nonlinear coupling of the modes appear only in the coefficient of r4

terms and higher. However, this cannot be determined without including

the higher modes in the analysis in some manner.

Similar analyses can be applied to points D2, D3, . . . in Figure 7

which all correspond to the same type of bifurcation. However, the

circles of equilibria and limit cycles for modes 2, 3, . . . (for 0 >

02, 03, .) are stable only in the center manifold which itself is

not attracting. The unstable nature of the first mode dominates the

response near these bifurcation points.

For other examples of codimension two bifurcations of the double

zero type with zero linear part, the reader is referred to Golubitsky

and Schaeffer (1978, 1979).

2.4 The Hopf Bifurcation

For damping ratios lying in the range of equation (2.2.5), but not

equal to the values at points D1 or Pi’ it is seen that one pair of

complex conjugate eigenvalues of the trivial solution, associated with

the nEh mode, cross the imaginary axis in the complex plane when the

* O O O O

rotational speed exceeds 0n. Bifurcation of a limit cycle from the zero

solution is thus eXpected. Using the same procedure as given in Section

2.3, phase and amplitude equations similar to equation (2.3.7) are

. 1’.

obtained representing the response of the n—h mode for parameters near

the bifurcation point. The relation between the whirling speed and the
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rotational speed (as a function of the damping ratio) can be determined

by examining the phase equation.

In this case only one parameter variation is required. The

variation in the rotational speed from critical is denoted by e - 0 -

*

On. The procedure for obtaining the essential dynamics near the

instability is exactly the same in this case. The resulting

differential equations will again be two in number and will specify the

ngh mode dynamics near the instability.

. . th
The linear operator C restricted to the n“ modal subspace {r

sin(nnz): r - (r1, r2, r3, r4)T 6 R9} can be represented by the matrix

    

r0 0 1 0‘ "o o o o“

0 0 0 l 0 0 0 0

c -

n

+ * 2
Aw aw -o A+w 20ne+e pee 0 26

-aw Aw -(A+w) -a -u e 20*€+€2 -26 0
h- d h e n .1

- Cn,0 + Cn,c

2
where w - pe/pifln, a - ”inn + #e’ and A - 20n + pe/pifln. The

eigenvalues of Cn’O are i wj, -a iAj and the eigenvalues of C k # n,k’

all have negative real parts when 6 - 0 for those cases on the stability

boundary of Figure 7. Hence, center manifold theory can be used to

reduce the analysis of the bifurcation to the study of a two-dimensional

differential equation.

Using the same symbols and procedures introduced in Section 2.3,

and replacing sin(«z) by sin(n«z) (that is, mode 1 by mode n), one

obtains the "split" dynamics:
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-1 -1
- +<PQn cn’e on [3] w, p>+< P Qn cn’e Qny, 5>

      

+ < P le N<s.y>. 2 >

. -1 -1
y - By + (I-P) Qn on,e Qn [3] w + (I-P) Qn en’s Qny

+ (I-P) Q;1 N (s, y) - 0 (2.4.1)

é - o

where Qn is the similarity transformation matrix which puts Cn 0 into

canonical form. A center manifold h(S,e) exists for the above equation

and can be approximated up to order two if

a¢(s,e) o -6 S1 -1 s
as w - B ¢(S,e) - (I-P) Qn Cn,e Qn 0 - 0 (2.4.2)

such that h(S,e) - ¢(S,e) + 0[IS,£I3]. Substituting h(S,e) into

equation (2.4.1) yields, for the S equation,

 

Fd1(€,€2)+ d2(€2,€3) - (w +c1(e,€2) + C2(€2,€3)) 1

5,
s1

52 ‘
52

.w +Cl(6,€2) +C2(€2,€3) d1(€,€2) + d2(€2,€3) j

- 2 2 2 2
a(s1 + $2 ) 31 + b(s1 +52 ) 52

+ O(|S,el5 2 2 2 2
L-b(s1 + 52 ) 51 + a(sl + 52 ) 52 (2.4.3)
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where d1 and c1 arise from the contribution of the second term of S in

equation (2.4 1) and (12 and c2 arise from the third term of that

equation. These terms are zero when 6 - 0. Also, the constants a and b

are given by

a - - % afli 0/[02+ (A-w2)] < o, b - % a0n2(A-w)/[02+ (A-w)2]> 0

Equation (2.4.3) is in the normal form for a Hopf bifurcation. The

occurence of a supercritical Hopf bifurcation is thus concluded by the

sign of a. Transforming equation (2.4.3) back to the original modal

variables by the relation W - Q2 and writing them in polar coordinates

one obtains an equation which describes the shaft dynamics near the Hopf

bifurcation:

f - [(d1 + d2) + ar2] r

7 - [- (w + c + c2) + br2] (2.4.4)

1

where r and 9 are the physical amplitude and relative phase for the “Eh

mode in the (x, y, 2) frame.

Again, the r - 0 solution corresponds to the trivial shaft

configuration. It is stable for e < 0 and unstable for e > 0. A

nonzero constant r solution appears for e > 0; its amplitude is given by

r2 - - ((11 + d2)/a (recall a < 0) and corresponds to a limit cycle with

frequency 6 - - (ml + c1 + c2 + b (d1 + d2) / a). Figure 9 depicts the

bahavior of solutions of equation (2.4.4) for e > O.
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Figure 9. Phase portrait of equation (2.4.4).
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Figure 10. Ratio of whirl speed to rotational speed versus damping ratio.





44

Note that near 6 - 0 the frequency of the limit cycle is dominated

by the - w term since the ci's and dl's are of order s. This indicates

that the whirling speed of the shaft when pure rotation is unstable can

be approximated by

e *

0 + 0 = 0 - w - 0

nwhirl - n n

i.e., the center line of the shaft will precess at a rate approximately

equal to the nEh natural frequency. This phenomenon was observed in

Newkirk’s experiment (1924) and was used by Ehrich (1964) to determine

the stability boundary.

The relation between the whirling speed and the rotational speed is

shown in Figure 10. Note that the whirling speed approaches one-half of

the rotational speed as pe/pi becomes large; this was observed in both

Newkirk's and Ehrich's experiments.

This analysis indicates that stable limit cycles are born at the

stability boundaries. These limit cycles arise as the speed is raised

beyond any of the lines (except at points Di and Pi) in Figure 7.

However, the limit cycles arising at boundaries anywhere in the region

marked "unstable" are stable only in the center manifold, which is

itself not attracting. Again, the unstable nature of the previously

bifurcated mode(s) will dominate the dynamics. Only those limit cycles

arising along the heavy line in Figure 7, i.e., the stability boundary

for the trivial solution, correspond to observable dynamics.

Also, as in the previous case, the dynamics obtained from a simple

0 th 0 O o

truncation of all modes except the n“ mode will be identical to those
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obtained by the present method. Thus, this analysis proves the validity

of modal trucation in this situation.

2.5 The Double Hopf Bifurcation

At points Pn in Figure 7 two pairs of purely imaginary eigenvalues,

one pair from the CH matrix and another from C are found to coexist,
n+1’

suggesting the existence of a double Hopf bifurcation. Center manifold

theory is applied to study the qualitative behavior of the two mode

interactions near these points.

For this analysis the full partial differential equation (2.2 6) is

reduced to an m-mode approximate system by Galerkin's method. This

reduced system has a phase space of Rém and is of the following form

(here WeRém and is not to be confused with the W in equation (2.2.6):

5 - cmw + N(W) (2.5.1)

where Cm is the 4m x 4m matrix given by

  

C1 0

Cm - C2.

0 'c
m

where _
-

0 0 1 0

0 0 O l

C

n - 2 2 2 , n - l, 2, m

0 -0n -ue0 -pifln -pe 20

2 2 2

.'”en 0 '0n -20 -piOn-pe -
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w - “ull , and N(W) - '0 '

v1 0

m

. d 2
u1 -001 {[1 + pi dr] [ E (u. + v. )0 J } u1

3-1

m

i: -an 1 + 51 (u + v )n 2 v
1 1 ”1 dr ' ' 1

j-l

u 0

m

v 0

m

m

. g 2 2 2

“m '“fim {[1 + “1 dr] [2 (u,- + ‘3' ”’1 l } ”m
j-l

m

. 2 g 2 2 2

."m. .'““m {[1 + "1 dr] [7 (“j + ”1 ”‘3 1 }"m _
j-l

The solution of the m-mode truncated system converges to the 'true'

solution as m 4 w (see Holmes and Marsden, 1978, for a proof for a

similar system).

. - 2 2 2 - * 2
At paint Pn’ ”e - piflln (n + l) and 0 - 0n - 0n + 01 (n + l) ,

and matrices Cn and Cn+1 have eigenvalues of (: wlj, - a i Alj) and (i
l

wzj, - 02 : A2j), respectively, while the other Cj’s have eigenvalues

with strictly nonzero real parts. Therefore a double Hopf bifurcation

occurs for equation (2.5.1). This bifurcation does not involve any

special resonance conditions since (oz/w1 - (n+l)2/n2 and only the cases

(oz/w1 - p/q, q S 3 and p < q are special (see Arnold, 1987). The

bifurcation of the finite dimensional system (2.5.1) does not differ

from that of the full system (2.2.6) near the point Pn' It is then

justifiable to study the two-mode system with the nEh and (n+1)Eh modes,
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i.e., simple model truncation is employed here. Based on the two mode

model, equation (2.5.1) becomes

(2.5.2)

- o - 5 and ewhere 61 2 - “e
T - .

Let c - (61,62) - “e‘ As before, Cn is

+ C with the knowledge that (i wlj, ~01 : Alj)decomposed into Cn,0 n,e

are the eigenvalues of Cn 0 . A similar decomposition may be done for

C In order to put equation (2.5.2) into canonical form the
n+l°

transformation matrix Q - diag (Q1, Q2) is constructed such that

    

01-1 Canand 02-1 Cn+1 Q2 are in Jordan normal form. Let W - QZ,

equation (2.5.2) then becomes

2 - Q '1 c Q 0 '10 o
1 n,0 1 z + Q1 n,te z

0 q'lc Q 0 q'lQ Q
2 n+l,0 2 2 n+l,6 2

-l

+Q N (Q Z) (2.5.3)

where Q-1C Q = 10 -w 0 0 and Q'lc Q - r -w 0 0 q
1 n,0 l 2 n+l,0 2

ml 0 0 0 0 0 0

0 0 -01 -A1 -0 -A2

.0 0 A1 -014 A -02‘

Rearranging the above equation by letting X - (21, 22, 25, 6)T, and

Y - (23, 24, 27, 28)T yields the "split" dynamics:

X - AX + EIX + EZY + F1(X,Y)

Y - BY + E3X + EAY + F2(X,Y) (2.5.4)



where A -
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and B -

   

-01 -A O 0

A1 -01 0 0

0 O -o -A

LO 0 A2 -a -

Elements of E1 are functions of (61,62) and elements of F1 are cubic

functions of its arguments.

a center manifold Y-h(X,c) such that

Eh flh AX + E X + E

ax’ac

2h + F1(X,h)]

- Bh -E

By the center manifold theorem there exists

3
 X -E4h - F2(X,h) - 0. (2.5.5)

Approximating h(X,e) up to order two and substituting this into the X

equation in (2.5.4) yields the equations governing the slow dynamics

 

where oi and fii are functions of (61,62) up to order two and ai, bi’ c.,

x
.

(-d2x3 + czxa) (x1

 L

2 2
+ x2 ) + (-b2x3+ ath) (x3 + x4 )

a

l

w1+fl1

O

O

' (”1+fi1)

a1

0 a

0 (w2+32) a2

2

. 2 2 2 2

(alx1 + blx2) (x1 + x2 ) + (clx1 + dlxz) (x3 + X4 )

2 2 2

(c2x3 + d2x4) (x1 + x2 ) + (a2x3+b2x4) (x3 + x4 )

' (“2+fl2)

 d

2 2 2 2 4

(- blx1 + a1 x2) (x1 + x2 ) + (~d1x1 + c1x2) (x3 + x4 ) + O(|X,e| )

2

2

 
(2.5.6)

1

and d depend only on the system parameters. Equation (2.5.6) is

i
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. . 2 2 2 2 2
transformed to polar coordinates with r1 - x1 + x2 and r2 - x3 + X“

to yield

or+a

1 1 1 1r

fi
e

I 13 + c1r1r22+ 0(Irl5)

2
+ c r r

r2 2 1
H
0

I

a + a r23+ 0(|r|5) (2.5.7)
2 2 2

1 wl + 51 + 0(IrI2)Q
)
.

I

Q
5
0

I2 ”2 + fiz + 0(IrI2)

The coefficients a1 and ci are crucial to determine the bifurcation

diagram for the above equation; they are given as follows

2 2 2 2 2 2
a1 - -a0n ol/[o1 + (Al-ml) ] < 0, a2 - -afln+1 02/[02 + (A2- wz) ] < 0

2 2 2 2
l/[a1 + (Al-wl) ] < 0, c - -aO 0 l02/[02 +(A2-w2) ]< O,

- -anO 2 n n+C1 n+1”

Equation (2.5.7) is in the standard normal form for a non-resonant,

double Hopf bifurcation (Takens, 1974). However, the equations do have

a special symmetry which is discussed below. The parameters 01 and 02

are the unfolding parameters, they are functions of (61,62) and al - 02

- 0 corresponds to the point Pn' The amplitude and phase components of

equation (2.5.7) are uncoupled so that the bifurcations and asymptotic

behavior of solutions of this system can be studied via the two

dimensional amplitude equations
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+ar +crr

r1 1 1 1 1 2l

+ c + a (2.5.8)'
1
0 3

2 ' “2r2 2‘1 r2 2‘2

The 0 equations can be used to determine the whirling speeds. In order

to reduce the number of coefficients one can rescale equation (2.5.8) by

letting E1 - r1 Jlall and f2 - r2 Jlazl which results in, after dropping

the over-bars,

. 2
r1 - alrl - r1 + brlr2

f - a r + c r 2r - r 3 (2 5 9)

2 2 2 l 2 2 ' '

where b-cl/Iall and c-cz/Iall. (For a more complete description of

unfolding equation (2.5.9) with different combinations of constants b

and c, the reader is referred to Guckenheimer and Holmes, 1983, Chapter

7). Here the constants b and c can be shown to take the value of -1

after substituting a1, a2, c1 and c2. Hence equation (2.5.9) becomes

r - a2r2 - r1 r2 - r2 (2.5.10)

The variables r1 and r2 represent the amplitudes of mode n and n+1,

respectively, and 01 and 02 in equation (2.5.7) are the corresponding

phases .
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Equation (2.5.10) has a special symmetry between the modes. The

equations are unchanged if (r1, a1) is switched with (r2, a2). This

arises from the symmetry of the shaft and implies certain restrictions

on the solutions. In some cases such symmetries lead to a variety of

exotic dynamics; see Knoblock (1986), for example. In the present case

it affects the behavior in a straightforward manner.

It is desired to determine the dynamics for all parameter values

near the Pn points. This is accomplished by studying the dynamics given

by equation (2.5.10) for (a1, 02) varying in a neighborhood of (O, O).

This is equivalent to varying (ye, 0) near (Ze' 5). It is carried out

using phase plane methods: locating the equilibrium points, analyzing

their Stabilities, and checking for the possible existence of limit

cycles and global bifurcations. The resulting bifurcation sets and

associated phase portraits are sketched in Figure 11.

The dynamics resulting from Equation (2.5 10) are summarized here:

(1) (0, O) is always an equilibrium, corresponding to the trivial

configuration of the shaft. It is stable if 01’ a2 < 0, unstable

otherwise.

(2) (r1, r2) - (18;, 0) is an equilibrium if a > 0, it corresponds to

l

> a it is stable.mode n whirling. If, in addition, a1 2,

Otherwise, it is unstable.



(3)

(4)

(5)
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(r1, r2) = (0, J32) is an equilibrium if a > 0, it corresponds to

2

mode n+1 whirling. If, in addition, a2 > a1, it is stable.

Otherwise, it is unstable.

If a1 - a2 (-a), a circle of equilibria is found at r12 + r22 - a.

It is locally attractive, as determined by the non-linear cubic

terms. Any non-zero fixed point in the interior of the positive

quadrant indicates the existence of mixed mode whirling for the

system. Here mixed mode whirling corresponds to a solution

composed of two distinct modes whirling at different speeds,

whereas single mode whirling corresponds to a single frequency

component solution. (However, higher-order terms or symmetry

considerations need to be included to obtain structurally stable

bifurcation diagrams near a - a1 It is expected that the circle2.

of equilibria will persist to all orders due to the inherent

symmetry of the model.)

In Figure 11 two straight lines (one solid, one dashed), traversed

in the direction shown, indicate two different successions of phase

portraits as the rotational speed is increased. The solid line

represents the case for “e > Ze’ the dashed one ”e < fie. If “e <

ye, the trivial pure rotation loses stability to the steady state

mode n whirling as the rotational speed increases. This whirling

solution remains stable as O is increased further, mode n + l

whirling is introduced, but it is unstable. For pe > Ee’ in

contrast to the previous case, the trivial rotation loses stability
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/
\

 

 
 

Bifurcation diagram for the normal form (equation (2.5.10))

Figure 11.

of the double Hopf bifurcation.
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to mode n + l whirling as the rotational speed increases and this

whirling remains stable. Mode n whirling is introduced, but is

unstable in this case. For ”e - Ze’ i.e., a1 - a2, the response is

more complicated. The pure rotation loses stability simultaneously

to both modes, n and n + 1. This mixed mode solution is stable.

In practice, other effects, such as small asymmetries, etc., will

determine the dynamics in this case.

Modal interactions occuring near a double Hopf bifurcation have

been analyzed for a number of physical systems; the papers by Knobloch

and Guckenheimer (1983) and Moroz and Holmes (1985) provide examples.

2.6 Conclusions

We have rigorously shown by the use of center manifold and normal

form theories the existence of synchronous and non-synchronous post-

critical-speed whirling of a rotating shaft. These results are in

accord with intuition and physical experiments (Newkirk, 1924 and

Ehrich, 1964) and provide a formal justification for the modal

trucations widely used in studies of shaft dynamics.

Although the model studied here is a highly idealized one, the

approach can be applied to more sophisticated models which incorporate

other effects which may include, for example, non-symmetric stiffness,

applied axial loads and torques,-etc., or even non-linear rheological

models of the shaft material (Muszynska, 1974). The bifurcation

diagrams may be more complicated and computation of the nonolinear

coefficients will be a more formidable task.
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The interaction between the instabilities described in this work and

the resonance effects which arise from eccentricity and/or unbalance in

the shaft will be studied in next chapter using similar methods.



CHAPTER III

EFFECTS OF MASS UNBALANCE ON THE DYNAMICS OF A.ROTATING SHAFT WITH

INTERNAL DAHPING

3.1 Equations of Motion

In this chapter, the dynamic response of an unbalanced rotating

shaft with internal damping is considered. As shown in Chapter II, the

internal damping can have a destabilizing effect on a rotating shaft :

the straight, undeformed configuration of a perfectly balanced shaft

loses stability when the impressed rotational speed exceeds the first

critical speed 0:, assuming 0 < pe/pifli < 4, i.e., that the external

damping is not too large. Figure 12 shows the corresponding Hopf

bifurcation diagram for this case. In the post stable region nonlinear

effects limit the amplitude and a stable limit cycle exists,

corresponding to nonsynchronous (actually, subsynchronous) whirling at a

constant amplitude. The inclusion of mass unbalance to the system gives

rise to a periodic disturbance which, by itself, leads to simple

synchronous whirling and a nonlinear resonance near the first flexural

vibration frequency 01 of the shaft. As is shown in this chapter, the

combined effects can result in synchronous whirling and/or amplitude

modulated whirling depending on the level of unbalance, the rotational

speed, and other parameters.

Near the primary resonance of the shaft the first mode dynamics

dominate the shaft response. Hence, we will present and analyze

equations of motion for the first mode. These can be obtained from

equations (2.1.7) by neglecting higher modes and including the effect of

56
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l2. Bifurcation diagram of a balanced shaft.

3 : first natural frequency, 01: first critical frequency

tiivial solution: --—- stable, ------- unstable

stable periodic subsynchronous whirl: -.-.-.-

mass unbalance :

u 2 . . 2 2 2 2 2

u + (“e + #101) u - 20v + (01 - Q ) u - peflv + afll (u + v ) u

2 o o 2
+ Zapifll (uu + vv) u - e0

v + (“e + ping) G + 20& + (0% - 02) v + peflu + afli (u2 + v2) v

+ Zapifli (ué + v6) v - 0 (3.1.1)

where u and v are the transverse displacements of the first mode in the

x and y directions, respectively, 01, ”e’ ”i’ 0 and a have the same
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meanings as those of Chapter II, and e - 2J2c/«fi is the parameter

representing the effect of unbalance (where c is the distance from

center of gravity to the geometric center of the shaft). The equations

of motion (3.1.1) are presented in terms of a coordinate frame X-Y-Z

which is rotating at the rotational speed 0 about the Z axis; hence the

force due to unbalance appears as a constant. A nonzero equilibrium

point in these coordinates represents a synchronous whirling of the

shaft. In this case the rotating coordinate system provides an

autonomous set of governing equations, much like the averaging process

used in periodically forced systems. The absence of explicitly time-

dependent terms facilitates the analysis considerably.

When e - 0 the response diagram of equation (3.1.1) is as shown in

Figure 12 where

 

(3.1.2)

is the first critical speed at which the trivial solution loses its

stability and bifurcates into a stable periodic solution which whirls at

a speed different from the rotational speed. However, for e # O and

small, the trivial configuration is no longer a solution of equation

(3.1.1) and the resulting steady state synchronous whirling solutions

are obtained by setting all time derivatives equal to zero. Due to

symmetry, synchronous motions of constant amplitude of equation (3.1.1)

exist in the form

5 - R cos 0
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G - R sin a (3.1.3)

where R is the amplitude and 0 is the relative phase (both constant) of

a steady state solution. Substituting equation (3.1.3) into equation

(3.1.1) and some rearrangement yields two algebraic equations relating

R and 9 to the system parameters:

3 2 4
[afliR + (of - 02)R]2 + (peOR)2 - e a (3.1.4)

tan (9) - - pen / [afliRZ + (0% - 02) R ] (3.1.5)

Though the equations of motion (3.1.1) are nonlinear, the steady state

solutions (3.1.3) obtained by solving equations (3.1.4) and (3.1.5) are

exact (that is, no approximations have been used) and can be solved for

the synchronous response of the shaft.

3.2 SynChronous Steady State Solutions

Equation (3.1.4) is a quadratic equation in 02 in terms of system

parameters and R, hence two solutions of 02 are obtained for every value

of R. The requirements that 02 be greater than zero and real lead to

the three distinct cases, depending on the level of external damping;

these distinguish three types of possible synchronous response. The

stability of the solutions is discussed subsequently; the three cases

are I
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Figure 13(a) depicts the frequency response curve for this case. It is

a typical nonlinear response curve for a hardening nonlinearity

(provided here by the midline stretching of the shaft). For 0 < QSNl a

single stable synchronous steady state exists. At 0 - nSNl a vertical

tangency, or in bifurcation terminology a saddle-node bifurcation,

occurs which introduces two new constant amplitude solutions. One of

these is unstable (of saddle type) and increases in amplitude as 0

increases, and asymtotically approaches the uppermost stable solution as

0 e w. The lower solution branch is initially stable but undergoes a

flutter instability, i.e., a Hopf bifurcation, at 0H and remains

unstable as 0 is increased further.

2
(II) a e2 02 < a: < 2 of (ae + 1)

l

The frequency response in this case is shown in Figure 13(b). It is

very similar to case (I) above except that the two upper solution

branches merge and annihilate each other in another vertical tangency at

0 - OSNZ’ leaving only the lower branch, which approaches the magnitude

of unbalance e as 0 is increased.

(111) p: a 2n; (ae2 + 1)

Unlike the two previous cases, due to the large external damping no

multiple solutions of R exist. The amplitude increases asymptotically

to e as 0 increases as shown in Figure 13(c), and the response undergoes

a Hopf bifurcation at an.

The multiple response boundaries can be determined by computing the

locations of the vertical tangencies of the response curves. This can

be accomplished here by locating the degenerate double roots of the
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Figure 13. Amplitude - frequency curves of equation (3.1.4).

8N1: first saddle node, 8N2: second saddle node, B: Hopf bifurcation

(a) O S u: s a e2 0% , (b) a e2 0% < p: < 2 0% (a e2 + 1)

(c) 2 of (a e2 + 1) 5 p2,  stable, ------ unstable
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cubic equation in R2, equation (3.1.4). Equation (3.1.4) is a cubic

function of R2, i.e., f(Rz) - 0. Figure 14 shows the function f as R

varies while 0 is fixed at 0 At R and O

SNl' SNl SNl’

2

it is required that

f'[R§N1] - O and f[R§Nl] - 0 where ()' denotes d() /dR2. These two

conditions lead to conditions for R5N1 and nSNl which are given as

2—' 02 - 02 3 + 3 02 - 02 2 02 e2 a 020“ -
27 SNl 1 3 SNl 1 “e SNl 1 SN1 SNl

 

 

2 2 2 2 2 2 2

R2 _ 2[575m 01] ' J[OSN1 ' 01] ' 3 “g fl3N1

SNl 3 a n2

1

5!

f(R M

:2

RSnl
 

 
Figure 14. The function f at 0 - OSNl'

(3.2.1a)
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Similar results can be obtained for the values of RSNZ and nSN2 in

Figure 13(b):

3
2_ 2 _ 2 g 2 _ 2 2 2 2 4 ;_ 2

27 “3N2 01 + 3 03N2 01 “e n3N2 e a 0105m + 27 05N2

2 2 1/2
2 2 2 2 2 2 2 2

01] ’ 9 “e 05N2] [[“suz 01] 3”e 05N2] 0

2 2 ' 2 2‘2 2 2

2 2[03112 ' 01] + J n5N2 ' 01 3 “e fl5N2
R - ~ , (3.2.lb)

8N2 2
3 a 0

In order to determine the stability of the synchronous steady

states, linearization is used. Small perturbations (E,G) of the steady

state (3,?) are introduced as follows: u - E + G and v - G + 3. These

are substituted into equation (3.1.1) which are then expanded in Taylor

series in terms of (5,5). Retaining only those terms which are linear

in (3,3) and their time derivatives yields the following linear

equations which govern the dynamics of the perturbations, and thus the

local stability of (3,5):

E + g1 G + g2 G + g3 G + g4 G - O

5 + g5 G + g6 G + g7 G + g8 E - 0 (3.2.2)

where gl - (ye + pifli) + 2apifliR2c0520

2 2
g2 - -20 + ZapifllR sinflcoso
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83 — (0i - 02) + aOiR2(l + 2c0529)

2 2 .
g4 - -pefl + 2a01R Sin6c050

2 2 2 2
85 - (ye + pifll) + 2apifllR sin 9

2stinficosog6 - 20 + Zapifll

2 2
g7 - (Oi - 02) + 001R (1 + 25in20)

2 2 .
g8 - pen + 2a01R Sinflcosfl

The eigenvalues of equation (3.2.2) determine the stability

characteristics of (5,5). A tedious calculation yields the following

quartic equation for the eigenvalues, A:

4 3 2
A + CIA + C2A + C3A + C4 - 0 (3.2.3)

where

2 2 2
Cl - 2[pe + #101 + apifll R ]

2 2 2 2 2 2 2 2
C2 - 2[01 + Q + 2001 R ] + [ye + p101] [ye + #101 + 20pi 01 R ]

2 2 2 2
C3 - 2 ”e [01 + 0 + 2a01 R ] + 2p 0 [0

2 2 2 2 2 2 2 4 4 2 2
C4 - [01 - 0 ] [01 - 0 + 4 a 01 R ] + 3 a 01 R + pe O .
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and where 0 is varied and R is evaluated at the roots of equation

(3.1.4), i.e., at the steady state amplitudes (recall that E - R c056

and 3 - R sine). In the following discussion the term "branch" will be

used in reference to the frequency response diagrams. Equation (3.2.3)

is solved numerically for the system's linearized eigenvalues along

these response branches as 0 is varied.

For cases represented by Figure l3(a,b) it is found that the upper

branch is always stable, the middle branch is always unstable (in fact,

of saddle type) and that the lower branch may or may not change

stability type depending on the values of pi and pe' For the lower

branch there exists one pair of complex conjugate eigenvalues with

negative real part which move further into the left half of the complex

plane as 0 increases; hence we will ignore them as we search for further

instabilities.

It is known that at least one eigenvalue is zero at point 8N1

(since a saddle-node bifurcation occurs), which is readily verified by

noting that C4(RSN1) - 0. As one starts from point SNl and follows the

lower branch as 0 increases, three cases must be considered:

(i) pi-O, the zero eigenvalue becomes negative, merging with the other

negative (real) one, and splits into a pair of complex conjugate

eigenvalues which move further into the left half of the complex plane.

This is the case for a simple Buffing-type resonance in which the lower

branch is stable for all 0 values for which it exists.

(ii) 0 < ”i <p1* (pi* given below), the zero eigenvalue first moves into

the left half of the complex plane, then meets the other negative

eigenvalue and splits into a pair of complex conjugates with negative

real part. The pair of complex conjugate eigenvalues travel rightward

as 0 increases and eventually cross the imaginary axis at a point
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designated by 0H (determined below). Hence the stable lower branch

becomes unstable in a Hopf bifurcation at point 0H as shown in Figures

l3(a,b).

(iii) ”1 2 p1*, there are either two zero eigenvalues [pi - pi*] or one

zero and one positive and real [pi > pi*] eigenvalues at point SNl which

will combine and become complex conjugates with positive real part, and

move continually rightward in the complex plane as 0 increases, i.e.,

the lower branch is unstable at its origin (point SNl) and remains

unstable as 0 increases.

For the case of Figure l3(c), the unique branch becomes unstable in

a Hopf bifurcation at point 0H for pi i O. In case of pi = 0, this

branch is stable for all 0 values.

An expression for p: can be obtained as follows: for pi - #i*

there are two zero eigenvalues at point SNl, this implies C3 - O in

addition to C4 - O in equation (3.2.3). Setting C3 - O and utilizing C4

- O to compute R and OSNI yields
SNl

 

2 2 2 2

* ”e[ 1 + o5N1 + 2001 RSNl]

”1 - 02‘02 - 02 + R2 o2 - 302 - 02 R2 (3.2.4)
1 SNl 1 “ SNl SNl 1 a 1 8N1

In order to obtain an expression for 0H one can apply the Routh-

Hurwitz criterion to equation (3.2.3). At 0 - 0H the following

condition must hold (to have one pair of purely imaginary eigenvalues):

2 - c c - o. (3.2 5)

Equation (3.2.5) (with Ci from equation (3.2.3)) and equation (3.1.4)

can be combined to solve for 0H implicitly. (An explicit expression is

not obtainable.)
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3.3 Application of the Center Manifold Theorem

The above analysis is quite general but is not able to determine

post-critical dynamics or the manner in which the synchronous solutions

and the bifurcating solutions, which turn out to be amplitude moduated,

that is, quasi-periodic, interact. In order to obtain a more complete

picture of the overall dynamics one would need to determine all of the

steady state solutions of equation (3.1.1), whether they be periodic,

quasi-periodic, etc., a formidable task. However, a quite complete

description of the overall dynamics can, in a restricted parameter

region, be obtained using tools from the qualitative theory of dynamical

systems, in particular, the center manifold method. The parameter range

to be considered is as follows: (i) ”e/flinl’ the ratio of external to

internal damping, is small; (ii) rotational speeds remain close to the

*

l; and (iii) the unbalance, e, is small.first critical speed 0

Condition (1) implies that the first critical speed is near the first

resonance (recall equation (3.1.2)); condition (ii) restricts attention

to rotational speeds near critical (and resonance), the region of

interest; and condition (iii) simply states that the effects of a slight

unbalance on the instability are considered. In this case the first

mode dynamics are dominated by the behavior associated with the two

eigenvalues which have, in this parameter region, nearly zero real

parts. The dynamics associated with the remaining two eigenvalues, which

lie well into the left half of the complex plane, will rapidly decay.

Due to nonlinear coupling effects, the dynamics associated with these

latter eigenvalues cannot simply be ignored in general, and the center

manifold technique provides a constructive tool by which the "reduced"

slow dynamics can correctly account for such effects. The treatment

begins by splitting the linearlized dynamics into the slow and fast
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components; the center manifold is then constructed, and finally the

dynamic equations on the center manifold, i.e., the "reduced" dynamic

equations are derived. The analysis of the "reduced" equations is then

carried out and the inferred shaft responses can be described.

In the following the center manifold theorem will be applied to

equation (3.1.1) in the neighborhood of the first critical speed to

deduce the "reduced" dynamic equations. From this stage on we will

treat e and e as dependent variables (i.e., the unfolding parameters)

where e represents the small perturbation of unbalance and 6 measures

the deviation of speed 0 from 0:. We also introduce new coordinates X =

( x1, x2, x3, x4, e)T - (u, v, u, 6, e)T. By treating e and e as

dependent dynamic variables, terms such as exl, ee, etc., are rendered

as nonlinear in the coordinates (X,e) 5 R6 (this seemingly trivial step

is known as the suspension trick, see Carr , 1981, and it permits

application of the center manifold theorem for parameter values away

from, but near to, the critical case). Though here we treat both e and

e as unfolding parameters, they come into play at different stages; e

is regarded as a dependent variable first in equation (3.3.1) below so

that no constant terms appear in equation (3.3.1), which is then in the

same form as equation (1.4.1), to which the center manifold theorem may

be directly applied. 5 is then introduced into the equation as another

dependent variable exactly the same way as in the previous chapter, so

as to be consistent. The system of equations (3 1.1) can be written in

first order form as follows:
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. 1 ' '

x1 0 0 l O 0 x1

:2 o o o 1 o x

2-}-
2+

x3 0 -01 “e0 -pe-pi01 20 0 x3

. 2 2

x4 -pefl 0 ~01 ~20 -pe-pifll 0 X“

e O O O 0 0 e

. O .

O

- 02 2+ 2 -2 02 ( + ) - BX + F(X) (3 3 1a 1 x1 x2 x1 api 1 xlx3 xzxa x1 . . )

2 2 2 2

-a01 [x1+x2] x2-2apifll (x1x3+x2x4)x2

O  

The term BX represents the linearized shaft dynamics, F(X) the

*

structural nonlinear terms. At 0 - 0 the eigenvalues of B are : +

l’ -

. . 2
le, - 02 i Jw2 and 0 where wl - ”e/pinl’ 02 - pe + “131' w2 - 201 +

*

”e/pinl’ and j2 - - l. Letting 0 - 01 + e where 5 measures the

*

deviation of speed 0 from 01 and decomposing B into BC + Be, equation

(3.3.1) becomes

x
0

- BOX + 86X + F (X) (3.3.2)

(
‘
0

I

O

*

where Bo has the same eigenvalues as B at 0 - 01 and Be is identically

the zero matrix when 5 - O.
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Employing the change of coordinates X-QZ, where Q contains the

eigenvectors of B0 in coorespondence to the eigenvalues -02 i jwz, i

jwl, and O, and is given below:

*2
1 o 1 o -w201

o 1 o 1 0*2
' ' '02 1

2 2
0 O 0 O w1(w2+02) J  

equation (3.3.2) is transformed into the standard form in order to apply

the center manifold theorem:

        

Z1 ~02 -w2 O O 0 21

22 wz -02 o o o 22

23 - 0 o o -w1 0 23 + «Q'lBeQZ +Q°1F (QZ)L (3.3.3)

24 o 0 ml 0 o 24

25 o o o o 0 2S

2 - 0

Note that (21’ 22) are the coordinates associated with the "fast"

dynamics, while (Z3, 24, 25’ e) are the coordinates associated with the

"slow" dynamics. The last two non-linear terms of equation (3.3.3) can

be written in explicit matrix/vector forms as:
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, 1 r - r 1

Z1 f1

D1 D2 Z2 f2

Q'IBEQZ - z3 ; Q'IF (QZ) - f3

D3 D4 24 f4

. - -25. ..0 -

where Di are matrix functions of e and £2: D1 is 2 x 2, D2 is 2 x 3, D3

is 3 x 2 and D4 is 3 x 3. The center manifold, given by (21,22) - h

(Z3, 24, 25’ 6), may be approximated as a power series in its variables.

It satisfies equation (1.4.3) which, for the present case, is '

        

0 -w1 O Z3 23 f3

N[h] - Dh [ ml 0 o 24 + D3h + DA 24 + fa ]

L o o o . 125. _254 _ .

_ 1 . . . .

'02 ’ ”2 23 f1

- h - 01h - 02 24 - - 0 (3.3.4)

- ‘02 - 02 .4 EZS. ufzd      

The center manifold h(Z3, Z Z 6) can be approximated up to order two

     

4’ 5’

if

r - ~ - F ' . 3

0 -w1 O 23 -02 - w2 23

Dh wl 0 O Z4 - h - 02 24 - 0 (3.3.5)

L 0 O O . .25‘ b w2 - 02 . .25.   
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is satisfied. Solving (3.3.5) for h and substituing h for (21’ 22) in

the last four equations of (3.3.3), the resulting "reduced" dynamics on

the center manifold are given by

2 u(e) -w -fi(e) 23 22 + 2: 23+ b 22+ 22 z,
3 _ 1 + a

2 w+fi(e) 71(6) 2
a 1 4 2 2 2jgw[z,.z]z..[z+z,]z,

d (6) q + d 3 + (d 23 + (14Z4) q2 + 22 + d 2 Z + d 22 q

+ 1 2q 3 23 5 3 a 7 a

3 2 2

d8“) q + d9q + (d1023 d1124) 82 +d[d1223 + d132324 + d1424]q

31-0

2 - o, (3 3.6)

where q - ZS - e / wl [mg + 03] has replaced e for convenience. The

constants p, 6, (11 and d8 depend on e and other system parameters and

vanish when 6 vanishes. The remaining constants depend on the system

parameters only and not on e. The terms in the last bracket of equation

(3.3.6) represent the perturbations to the perfectly balanced shaft

since when q - 0 these terms vanish. The remaining terms describe the

Hopf bifurcation of a balanced shaft. A supercritical Hopf bifurcation,

corresponding to the birth of a stable limit cycle from the trivial

solution, as depicted in figure 12 is thus concluded since a - -a O a
l 2

/ [0% + ((02 - w1)2] is negative. (This is expected since the unbalance

cannot affect the sign of a.) The dynamics of the full system (equation

(3.1.1)) with small unbalance and 0 near a: are fully captured by the

dynamics of equation (3.3.6), the "reduced" equations.

Here the benefits of the center manifold method are evident.

Instead of analyzing the full system of four first order nonlinear

differential equations, we can carry out the investigation by studying

only two first order equations. This provides a method for predicting

and describing the response without the use of the extensive simulations
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which would be required in a numerical study, due to the number of

parameters. The analysis utilizes standard phase plane techniques; it

involves locating the equilibrium points, determining their Stabilities,

and checking for the possible occurrence of limit cycles and global

bifurcations, such as saddle connections.

In order to interpret the shaft motions from the dynamics on the

center manifold, the facts and correspondences given here should be kept

in mind. First, the center manifold is a two dimensional surface

embedded in the full four dimensinoal phase space. It is invariant -

that is, solutions on the center manifold remain on it. It is also

locally attractive - that is, solutions started near it tend towards it

asymptotically, since the dynamics away from the center manifold will be

dominated by the linear terms corresponding to the two eigenvalues which

have negative real parts. Equilibrium points in the center manifold

correspond to constant amplitude and phase synchronous shaft motions,

such as those determined in the previous section, and the stability

types correspond. A limit cycle in the center manifold corresponds to a

shaft motion which undergoes amplitude and phase oscillations about a

synchronous motion. In terms of the rotating coordinates the shaft will

oscillate in a periodic manner in both amplitude and phase, with a

frequency which is approximately equal to that associated with the Hopf

bifurcation, i.e., wl (recall that ijwl, are the eigenvalues associated

with the instability). In terms of fixed, laboratory coordinates, the

shaft will be observed to undergo a quasiperiodic motion consisting of

two frequencies (plus combinations and harmonics); these frequencies

correspond to 01 (free oscillation) and 0 (forced vibration). This is

not unexpected since, for “e/“iol - wl small, the internal damping

drives the shaft towards nearly synchronous whirling while the unbalance

drives it towards exactly synchronous whirling. Thus, when combinations
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of these two motions occur, the result is composed of two oscillations

of nearly equal frequency, and a beating type motion, (that is,

amplitude modulated motion) with a long period envelope occurs.

The equilibrium points are obtained by setting 23 - 24 - O in

equation (3.3.6). The two resulting algebraic equations are cubic in 23

and 24 and one, two, or three real solutions are possible for each set

of (e, 6) (Though, mathematically, there are up to 9 solutions possible

for two cubic equations). The stability of the equilibria is determined

via linearization. Since the balanced shaft (e - O) undergoes a Hopf

bifurcation at 0 - 0: (e - 0), it is expected that at least one

equilibrium solution will undergo a Hopf bifurcation at some point with

e > 0. Once the Hopf bifurcation is found, its type (sub- or super-

critical) is known to be supercritical from the unperturbed system,

since small perturbations (e < < l in this case) cannot affect the order

one coefficient, a, in the normal form for the Hopf bifurcation. Thus a

stable limit cycle will arise.

Due to the complexity of the equations in (3.3 6), numerical root

solving methods and simulations were employed. Figure 15 depicts a

series of numerically calculated phase portraits obtained by fixing e

and increasing 6 from below zero; these clearly show the occurrences of

a saddle-node bifurcation (portrait 2), a Hopf bifurcation (portraits 3-

4), a saddle connection (portrait 5), and the birth of a limit cycle

immediately after the second saddle-node bifurcation (portrait 8) (in

fact, a saddle-node, saddle connection bifurcation occurs here

,Schecter, 1988). A complete bifurcation diagram with e and e as the

unfolding parameters is shown in Figure 16, with the regions of the

associated phase portraits from Figure 15 indicated (Portraits 6 and 7,

and 4 and 10 are are grouped together since they are qualitatively the

same in terms of topological structure.) Bifurcation diagrams for



75

 
Figure 15. Phase portraits of eqution (3.3.6) as e is increased.

2”e - o 03, pi - 4.5 / 01, a - 10, e - 0.001



76
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10 11

Figure 16. Bifurcation diagram and phase portraits of equation (3.3.6).

SC: saddle connection, r - J 2% + 22, ”e - 0.08, pi - 4.5 / Oi

 

a - 10. See Figure 6 for phase portraits 1,2, ...9.
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equation (3.1.1) based on the dynamic equivalence to equation (3.3.6)

and on the properties derived in Section 3.2 are shown in Figure 17. A

discussion of the main results follows.

3.4 Results

Figure 17 depicts the bifurcation curves for the shaft response;

each point in the (e,0) space corresponds to a specific unbalance

magnitude and rotational speed. The present discussion will focus on

frequency response diagrams for the shaft, which display a measure of

the shaft's vibrational amplitude versus rotational speed. By including

the unbalance as a parameter in Figure 17, the response curves for

various levels of unbalance can be obtained. In Figure 17 stable

synchronous response amplitudes are indicated by solid lines, unstable

synchronous amplitudes are indicated by dashed lines, and quasiperiodic

response amplitudes are shown as broken lines. The amplitudes and

stability types for synchronous motions are determined from the analysis

in Section 3.2. The existence and stability of the quasiperiodic

motions, as well as the interaction of these with synchronous motions,

is derived from the results presented in Section 3.3.

In Figure 17 the curves marked SNl are associated with the

conditions for the first saddle-node bifurcation (equation (3.2.1)) in

which the lower two branches of the synchronous response diagram are

born as 0 increases. The curves 8N2 and 5N2 + SC correspond to the

saddle-node bifurcation in which the upper and middle synchronous

response branches merge and disappear. Note that this curve is

asymptotic to a finite value of e (e such that p: - aezfli) as 0

increases, indicating that for sufficiently large unbalance this
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bifurcation will not occur. The 8N2 corresponds to a simple saddle-node

whereas the 8N2 + SC corresponds to a more complicated bifurcation in

which the saddle-node bifurcation interacts with a saddle connection,

resulting in the appearance of a limit cycle corresponding to an

amplitude modulated motion (this is depicted in Figure 15, portraits 7-

9, with 8 showing the condition at 5N2 + SC). Schecter (1988), gives a

complete account of this bifurcation. The curve H corresponds to the

point at which the lowest synchronous response branch becomes unstable

in a Hopf bifurcation, at which point the quasiperiodic response is

born. The curve marked SC corresponds to the condition in which the

limit cycle amplitude has grown to the point where it touches the saddle

point corresponding to the unstable middle branch of the synchronous

response curve, forming a simple saddle connection (portrait 5 in Figure

15). This bifurcation annihilates the limit cycle. The points where

these curves meet correspond to more complicated, codimension two

bifurcations which are, in themselves, of interest. This is not pursued

here since the required information is obtained in a direct fashion

using simulations; the interested reader is referred to Guckenheimer and

Holmes (1983) for background on this topic.

The various curves fit together in a consistent manner, providing a

complete description of the shaft response near resonance. Figure 17(a)

(17(b), resp.) is a bifurcation diagram for the case in which the Hopf

bifurcation disappears before (after, resp.) the second saddle-node

bifurcation disappears as the magnitude of unbalance is increased, i.e.

the two cases are distinguished by the relative magnitudes of unbalance

e which correspond to the conditions #2 - aezfli and ”i - pi. These two

cases result in minor qualitative differences in the frequency response

of the shaft for different levels of unbalance; this is described in

detail below. The repsonse of the unbalanced shaft as its rotational
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speed is increased (from below 01) can be inferred from these

bifurcation diagrams; these responses are indicated in the corresponding

frequency response diagrams.

The response curves corresponding to the bifurcation diagrams of

Figures l7(a,b) are described here. There are four distinct frequency

respones possible in Figure 17(a), depending on the level of unbalance.

These correspond to cases marked by unbalance levels labeled 1, III, IV,

and V. Case II represents a special situation which lies on a boundary

separating two generic cases. The stable, that is, observable, motions

are described below.

For very small levels of unbalance, Case I, the shaft response

consists of a region of a single possible synchronous whirl amplitude

for 0 < 0 two possible synchronous whirl amplitudes, one large and
SNl;

one small, (the actual steady state depending on initial conditions) for

OSN1< 0 < OR; a large amplitude synchronous whirl and a lower magnitude

amplitude modulated whirl for 0H < 0 < 0 and only the amplitude
8N2;

modulated whirl for Q < 0. In Case I the amplitude modulated whirl
8N2

never interacts with the synchronous whirl. Case II represents the

level of unbalance for which this interaction begins; here the amplitude

modulated whirl is just tangent to the synchronous whirl at the second

saddle-node point, 0

8

SN2'

Case III is very similar to Case I except that the amplitude

modulated whirl is destroyed in a collision with the middle synchronous

SNl < O < QH’ 1n

C<O<fl

whirl branch. This results in the following regions: 0

which two stable synchronous whirl solutions exist; 0 in
S SN2’

which only one stable synchronous whirl solution exists; and 0H < O <

OSC’ in which synchronous and amplitude modulated whirl are possible.

The ranges 0 < 0 and 0 > 0 2 are the same as in Case I.
SNl SN
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Case IV, and the borderline level of unbalance given by pi - p:

between Cases III and IV at which the Hopf bifurcation occurs exactly at

the first saddle-node point, are dynamically similar. In this case, and

for all larger values of unbalance, i.e. Case V, the lowest synchronous

response branch is nowhere stable. In Case IV the synchronous response

grows and becomes amplitude modulated for O z nSNZ; at each 0 there is a

unique stable response. In Case V there exists a unique stable

synchronous response for all values of 0. Here the unbalance dominates

the response, the instability merely renders the lowest synchronous

response branch unstable and no amplitude modulated motions occur.

For Figure l7(b) Cases I, II, III, and V are the same as those in

Figure l7(a). The difference between the two Figures is in case IV. In

order to describe the difference the following notation is introduced:

let e1 correspond to the e value such that ”i - ”2’ above which in terms

of e the lowest synchronous response branch is unstable for all 9 above

nSNl’ and let e2 denote the value corresponding to p: - aezfli, above

which the uppermost synchronous response branches do not merge, with all

other parameters fixed except the rotational speed. In Figure l7(a) e

2

> e1; in this case e that is, the e value above which the lowest
1,

response branch is "completely unstable" (i.e., unstable over 0 < 0 <
SNl

00), is below the large 0 asymptote of the SN2+SC curve, e2. In this

situation, for e1 < e < e2, the response curves exhibit a completely

unstable lower branch, and the upper two branches merge at SN2+SC (see

Case IV in Figure l7(a)). In Figure l7(b) e2 < e1; here Case IV is

different in that, while the lowest response branch is completely

unstable, the upper two branches do not merge as 0 is increased.



17 (a).

 

81

 

 

 

 
 

  
 
 

Bifurcation diagram and amplitude-frequency curves for the full

system (3.1.1).

( ------- ) stable (unstable) equilibria (stable

(unstable) steady state 2x/0 periodic motions of the shaft),

-.-.-.- stable limit cycle (stable two-frequency component

response of the shaft)
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17 (b). Bifurcation diagram and.amplitude-frequency curves for the full

system (3.1.1).

( ------- ) stable (unstable) equilibria (stable

(unstable) steady state 2x/0 periodic motions of the shaft),

-.-.-.- stable limit cycle (stable two-frequency component
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3.5 Computer Simulations and Discussion

Simulations of the full first mode shaft dynamics equations (3 1.1)

verify the bifurcation diagrams of Figure 17. Here we present only

simulation results for Case III of Figure 17. These simulation results

are presented in terms of nonrotating, i.e., fixed coordinates in order

to aid with visualization of the shaft response. Figure 18(a) shows a

unique stable synchronous whirl for a value of 0 below nSNl' Two

possible synchronous whirling motions, one large and one small, are

shown in Figure 18(b) for nSNl < 0 < 0H. Figure 18(c) shows a large

synchronous response and an amplitude modulated whirl for 0H < 0 < QSC'

Ah

.UU

000

-0-98 '

TTnne

18 (a). Responses of the shaft depicted in a fixed coordinates.

a - 10.04, ye - 0.08, pi - 4.5 / of, a - 10. e - 0.001
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18 (b). Responses of the shaft depicted in a fixed coordinates.

2

o - 10.085, 4e - 0.08,;1i - 4.5 / “1' a - 10, e - o.oo1

nn

.v0
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 —o.cs . , fl _‘
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18 (b). Responses of the shaft depicted in a fixed coordinates.

a - 10.085, ye - 0.08,;11 - 4.5 / 02, a - 10, e - o.oo1

 



85

 0.1 '

0.0

 -o.1 .

Time

18 (c). Responses of the shaft depicted in a fixed coordinates.

a - 10.125, #3 - 0.08, pi - 4.5 / 02, a — 10, e - o 001
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18 (c). Responses of the shaft depicted in a fixed coordinates.

a - 10.125, pe - 0.08, #1 - 4.5 / 02, a - 10, e - 0.001
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The actual steady state solution of Figure l8(b,c) depends on initial

conditions. Figure 18(d) shows the unique stable large synchronous

whirl for “SC < 0 < OSNZ + S

annihilated through a saddle-connnection). The unique stable amplitude

C (the amplitude modulated whirl has been

modulated whirl is depicted in Figure l8(e) for 0 > “SNZ + SC‘

The long period envelope is evident in Figures 18(c,e). For

#e/pinl small (i.e., 0: close to 01), all amplitude modulated motions

which exist near 0: are expected to have long period envelopes since the

forcing frequency 0 is near to the free vibration frequency. However,

if the ratio pe/flinl is not small, it is known that the rotordynamic

instability may occur at a much higher value of 0 than the first

 
resonance considered here (see Ehrich, 1964 or Chapter 2 of this

dissertation). Between resonances, interactions of the type discussed

here will be much less complicated and probably simply result in

amplitude modulated motion. In these cases the envelope may not have so

long a period, since the whirl frequency may not be near to synchronous.

However, situations may arise in which the instability interacts with

the nonlinear resonance of a higher mode, or with a subharmonic

resonance. These topics remain open for future research.

Finally, it may well occur that irregular (that is, nonperiodic or

chaotic) amplitude modulations of the motion are observed in simulation

studies of equation (3.1.1) or similar models. These can arise from

chaotic motions in the full four dimensional phase space which cannot be

captured by the center manifold dynamics (since they are two

dimensional). These would most likely occur near the saddle-connection

bifurcations since saddle connections (that is, homoclinic motions) in a

four dimensional phase space can give rise to chaos in quite general

circumstances. The book by Wiggins (1988) describes many of these

possibilities in mathematical detail. Chaotic amplitude modulations
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18 (d). Responses of the shaft depicted in a fixed coordinates.

a - 10.7. ye - 0.08, 41 - 4.5 / 02, a - 10, e - o 001
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220.
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18 (e). Responses of the shaft depicted in a fixed coordinates.

a - 10.8, ye - 0.08, 41 - 4.5 / 02, a - 10, e - o 001
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have been found to occur in the vibrations of systems with internal

resonances; the paper by Johnson and Bajaj (1989) provides an example of

this and gives several references.

In the previous two chapters, internal damping resulting from the

dissipative property of the shaft material is the cause of rotordynamic

inStability. Another common cause of rotordynamic instability is non-

linear bearing forces; this is investigated in the following chapter.



CHAPTER IV

INSTABILITIES AND RESONANCES DUE TO FEUID FIUH JOURNAL BEARINGS

4.1 The Journal Bearing Equations and.Hopf Bifurcations

In this chapter methods similar to those used in the previous

chapters will be employed to investigate the effects of fluid film
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forces in journal bearings and mass unbalance on the dynamics of a

rotor. The model consists of an unbalanced disk mounted midway between

two supporting fluid film journal bearings on a rigid shaft. Studies on

this problem have been carried out by other researchers, see for example

Barrett, Akers and Gunter (1976), Gunter, Humphris and Springer (1983)

and Hollis and Taylor (1987), but are restricted to numerical

investigations. In this chapter we present an analytical approach to

this problem so as to obtain a more complete understanding in terms of

response bifurcation diagrams and associated phase portraits.

It is well known that such systems, under the action of a constant

load due to gravity and without mass unbalance, may exhibit a self-

excited vibration known as "oil whip" as the rotor speed is increased

beyond a certain threshold speed, above which the static equilibrium

positions are unstable. These stable (unstable, resp.) whirl orbits,

which arise above (below, resp.) the threshold speed, are consequences

of the non-linear bearing hydrodynamical film forces which are capable

of transferring energy from the rotation of the rotor into a whirl

motion. Fairly complete parameter studies for such system are given by

Myers (1984), Gardner et a1. (1985), and Hollis and Taylor (1986).

The effects of rotor unbalance on these instabilities will be

89
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examined by using the center manifold theorem and the normal form

theorem. Special attention is given to the resonant cases in which the

frequency of the bifurcating cycle and the frequency of the excitation

due to unbalance are commensurate, i.e., the ratio of the two

frequencies is close to a rational number, p/q, where p and q are

relatively prime, especially for strongly resonant cases, q - l, 2, 3,

which correspond to primary resonance, subharmonic resonances of order

two and three, respectively. The dynamics in the nonresonant case are [2

quite straightforward; the responses are mainly dominated by the forcing I

of period T due to the unbalance excitation, which become unstable (due

to the action of bearing forces) when the rotational speed is increased

 
beyond a certain value, beyond which the responses consist of two

components, one from the excitation and the other from the oil whip with

frequencies approximately equal to those of the rotation and the oil

whirl, respectively; these are simple quasi-periodic responses. For the

weakly resonant cases (q 2 4), in addition to the phenomena mentioned

above, there exists a resonant "horn" in parameter space (see Gambaudo,

1985) in which periodic motions with period qT exist. The dynamics for

the strongly resonant cases are much more complicated than those

mentioned above, as will be seen in the sequel.

The model for the fluid film forces considered here was originally

proposed by Myers (1984); it consists of a rigid, symmetric disk with

mass unbalance mounted midway between two identical, plain cylindrical

journal bearings on a rigid shaft. The investigation is confined to

cylindrical whirling in which the two ends of the rotor remain in phase

so that it is sufficient to consider only one bearing (Figure 19), which

then supports a load equal to one half of the applied load F on the

rotor. Note that the rotor has mass 2M and unbalance e and the journal

center has horizontal and vertical displacements Y and X, respectively,



91

measured from the center of the bearing. Other system parameters are

the bearing length in the axial direction L, the bearing radius R, the

angular rotor speed w, the radial clearance c, and the lubricant

viscosity u. The equations of motion are derived by assuming the long-

bearing approximation with x-film model for cavitation and are, in

nondimensionalized form:

x1 ' x2

‘
7
.
"
“
C
W
”

-
.
-

r
a
l
l
—
'
_
.
3
E
S
!
“

sin¢)/& + p2coscx
.

N

I S(l/S& + frcos¢ - f¢

f
‘
i

p

x3 - X“ (4.1.1)

i4 - S(frsin¢ + f¢cos¢)/& + pzsint

where

x1 - x - X/c, x2 - 2, x3 - y - Y/c, x4 - y, (°) - d( )/dt

t - wr, 5 - (Mc/F)1/2w, p2 - e/c, S -LR3u/(FMc)1/2c2

and where the radial and tangential fluid forces are expressed as

- 2 2 2 .

fr _ Fr/SwF _ _ 6 [26 (1-231_ + In (2+e )-161. ]

(2+e2)(1-e2) «(2+e2)(1-e2)3/2

 

- we -2. 462

f - F /SwF - 6 ‘—-Ll-¢l——— + . (4.1.2)

2 2 [(2+52)(1-62)1/2 (2+e )(1-22) ]

where (6, ¢) are the polar coordinates for (x, y), given by
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x - e cos¢, y - e sind

These fluid forces are obtained by solving the Reynold equation for a

journal bearing (see the Appendix in Myers, 1984) for an expression for

the pressure distribution around the journal with the assumption of a

long bearing approximation and suitable boundary conditions (that is,

the oil film occupies the converging half of the bearing and a cavity

exists in the diverging region). The hydrodynamic fluid forces are then

calculated by integrating the pressure distribution in the radial and

tangential directions.

The parameters to be varied are the nondimensionalized running

speed 3 and the system parameter S which is defined above; it is

independent of the rotor speed w and is constant for a given rotor

system. For a perfectly balanced rotor, p, which measures the

unbalance, is zero and the static equilibrium position (60, 2O) is

obtained by setting all time derivatives in equation (4.1.1) to zero.

It is a function of E, and it is easily shown that (50, 20) must satisfy

the following conditions

8: - (2 + ‘3)(1 - cg) / 6eo[n2(l - £3) + 4c

2]1/2

o

2 1/2
tan 20 - «(l -60) / 260 (4.1.3)

the solution of which is shown in Figure 20 for various values of 5.

The stability of this static equilibrium position can be determined by

the eigenvalues of the system linearized at (co, do). It is found that

the stable static equilibrium position becomes unstable when S exceeds

.
~
’
-
-
A
m
"
r

 

 



Figure 20.
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Figure 19. The Journal Bearing.
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Figure 21. The stability boundary and bifurcation diagrams.

the critical speed 50 (which depends on S) at which point a pair of

complex conjugate eigenvalues of the linearized system passes through

the imaginary axis of the complex plane into the right hand side and a

Hopf bifurcation occurs.

Myers (1984) used the Hopf bifurcation theory to examine the

bifurcating limit cycles and obtained the resulting stability boundary

and bifurcation diagrams shown in Figure 21. In regions I and III

unstable small-amplitude limit cycles which exist below the critical

speed 50 are predicted (subcritical bifurcation), while stable limit

cycles existing above the critical speed are predicted in region II

(supercritical bifurcation). Our present purpose is to investigate the

behavior of the overall dynamics when p # O, in which case the static
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equilibrium position is perturbed to a motion of period 2« (due to the

excitation terms, p2cost and pzsint) and the limit cycle is perturbed to

a periodic or quasi-periodic motion depending on the delicate issue of

whether these multiple frequencies are commensurate, close to

commensurate, or far from commensurate. Other more exotic responses may

also exist, as is shown below.

'
—
s
z
l
_
“
-
5
.

4.2 The Center Manifold.Theoren and the Poincare Map

We shall first shift the origin of the coordinates to the static

W
'

equilibrium position and perform a Taylor series expansion of equation

(4.1.1) about the steady state position (x0, yo) out to third order. To

this end, letting

yl ' x ‘ x0» Y2 ' yl’ Y3 ' y ' Yo, YA ' Y3

equation (4.1.1) becomes

y1"3'2

5— § 2
Y2 - - (81YI + a3y2 + 32y3 + aayé) + f1(y1, Y2, Y3, ya) + p cost

w 8
|

Y3 - Y4 (4.2.1)

§ § 2 .
Y4 ' _ (blyl + b3y2 + be3 + b4y4) + f2(y1, y2, y3, Y4) + p Slnt

w 8
|
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* 4 2 2 2 4
Where a I. 2[8£g(2 + £0) + a (1 - eo)(2 - so + 260)]

1 ' ' 2 2 2 2 2 3 2
S; (2 + eo)(l - eo)[n (1 - £0) + 460] /

«(l - eg)1/2

a2 - 260 al

1 2(268[«2(2 + £3) - l6]+ «2(1 - eg)[n2(l +62) + 862])
a _ _ ._

3 2 1 2 2 2 2 3 2 e
S; «e0(1 - co) / [x (1 - £0) + 4e0] / 1

 
 

 

 

Sw

e”

1 «[450 - «2(1 - eg)2]

b1 ' ’ '_ 2 1/2 2 2 2 3/2
S- 0(1 ' 0) [ (1 0) + 4 0]

2 2

b - - l. 2[4eO + r (2 - 60)]

2 _ 2 2 2 3/2

Sw [n (l - so) + 4c ]

«(1 - e§)1/2

b4 - 260 a4

and where the expressions for the coefficients of the quadratic and

cubic terms of f1 and f2 are functions of (co, ¢0) and can be found in

Myers (1981). The stability boundary in Figure 21 is determined by

examining the eigenvalues of equation (4.2.1) linearized about (0, O, O,

O) with p - 0. The boundary occurs when a pair of purely imaginary

eigenvalues, i 0 j, and two eigenvalues (these may be complex

conjugates) with negative real parts exist. For a specific rotor

system, represented by the constant 8 curves of Figure 21, the static
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equilibrium position is stable when w < wo and unstable when w > wO'

The bifurcating limit cycle arising at S - 50 has a natural frequency 6,

which may be close to (in a precise sense, see Arnold, 1987 or Gambaudo,

1985) a rational number p/q depending on the S value, in which case

resonant phenomenon may occur for the system with unbalance p.

Application of the Center Manifold.Theorem

Again the center manifold theorem will be applied to equation

(4.2.1) in the neighborhood of E where p is assumed to be a small
0

perturbation. The four dimensional equations of (4.2.1) are to be

reduced to the "essential" two dimensional equations which govern the

dynamics on the center manifold. This reduction of dimension simplifies

the analysis of the response and captures the dynamics of the full

system near the bifurcation points.

Introducing p - w - we as a small parameter (which measures the

deviation of S away from the threshold speed 50), equation (4.2.1) can

be written in matrix form as

0 0

2 ' A0; + Al#; + (3/50 - S/Sép) f1 + p2 cost (4.2.2)

0 0

f2 sint     

where § - (y1, y2, y3, y4)T, 1/; has been approximated by 1/50 - 0/53

and
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‘2
A1 - - S a1 a3 a2 a4 / ”O

0 O O 0

b b b b .  
 

Note that AO has eigenvalues of i 6 j and two others with negative real

parts. Introducing the coordinate transformation y - Qv where Q

contains the corresponding eigenvectors of the eigenvalues of A0,

equation (4.2.2) yields

0 0

v - Q'lA Qv+ Q-1A va+ Q'l(S/w - S/wzp) f + Q'lp2 cost
0 1 0 0 l

0 O

b f2‘ 1 sint    

(4.2.3)

Splitting equation (4.2.3) into two 2-dimensional equations, defining 0

- t(mod 2n) and treating 0, p and p as dependent variables such that pv,

p2coso and pzsino. etc., are nonlinear terms (the suspension trick

again, see Carr, 1981), one obtains
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79-1

L-0

73-0

v1 - BO v1 + Blp vl + 82p

v2 v2 v2

v - C v3 + Clp v1 + C2p

- ’2
v3 + 3(1/w0 - p/wO)B3 fl

v4 f2

— ’2

3 + S(l/w0 - p/wO)B3 f1

V4 . f2

(4.2.4)

where Q-1AOQ and Q-1A1Q have been decomposed as follows:

C
D

(
1
1

O O

and where B and C are constant 2 x 2 matrices with B0 and C0 in real

i 1

Jordan canonical form :
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C0 has eigenvalues with negative real parts (either real: - sl, - 52; or

complex conjugate: - 51 i 82 j). By the center manifold theorem, there

exists a center manifold (v3 - h1(0, p, p, v1, v2), v4 - h2(0, p, p, v1,

v2))T with hi - Dhi - 0 at p - p - v1 - v2 - 0 such that the dynamics of

equation (4.2.4) are topologically equivalent to those on the center

manifold (see Kelley, 1967, for the required results and the proofs for

time dependent center manifolds).

Differentiating h - (hl’ hz)T with respect to time and using the

chain rule, one obtains an equation which h must satisfy:

- ‘2
N[h] - Dh { Bo v1 + Bl“ v1 + 82“ h + S(1/w0 - p/w0)33 fl

 
v2 v2 f2

+ p28 c050 - C h - C ph - C p v - p2C c056

3 O 2 1 l 3

sine v2 sin6

‘ ‘2

- S(l/wO - p/w0)83 f1 - 0 (4.2.5)

f2

which is not solvable for h, but can be approximated arbitrarily well by

a Taylor series near (p, p, v1, v2) - 0. h can be approximated up to

order two if

- 2
DhBO v1 - Clp v1 - CO h - S/wO C3 f1 — p C3 cosfi - 0 (4.2.6)

f sin0

v2 v2 2

such that N[h] - 0(Ip, p, v1, v2I3). Solving equation (4.2.6) and

substituting the results for h in ($1, $2)2 of equation (4.2.4) yields
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the following equations which govern the dynamics on the center

manifold:

e - 2

v1 _ 01(p) -0 - 01(p) + f3(vl, v2) + p B3 cost

62 5 + 02(p) 02(p) f4(v1, v2) sint

gl(#. V1. v2. t) (4.2.7)

+

8201': V1, V2» t)

where ai(0) - 01(0) - 0; f3 and f4 contain quadratic and cubic terms of

v1, v2 with coefficients depending on p which are non-zero when p

vanishes; and g1 - p2 (0(p) + 0(vi)). At this stage, it is clearly seen

that for p - 0, equation (4.2.7) exhibits a Hopf bifurcation at p - 0.

The latter two terms in equation (4.2.7) represent the small

perturbation due to unbalance. By the normal form theorem (see

Guckenheimer and Holmes, 1983 or Arnold, 1987), there exists a weakly

non-linear change of coordinates which puts equation (4.2.7) into the

standard normal form for a Hopf bifurcation. Written in complex

variable form, 2 - v1 + j v this normal form is as follows
2’

i - A(u)z + b(u)22; + p2g3(t) + g4(u. 2. 2. p. t) (4.2.8)

where A(p) - 0p + i(5 + 0p) + 0(p2) (with a > 0, 0 < 0) is one of the

eigenvalues of the linearized system (4.2.1) that crosses the imaginary

axis at p - 0; b(p) - (a1 + azp) + i(fl1 + 62p) + 0(p2); 2 is the complex

conjugate of z; g3 is periodic, i.e., g3(t + 2n) - g3(t); and g4 -

p2(0(u) + 0<lzl)).
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In the case p - 0, the zero solution of equation (4.2.8) undergoes

a Hopf bifurcation at p - O. The Hopf condition a > O insures that the

static equilibrium position is stable (unstable) if p < O (p > O), or

equivalently 5 < 50 (5 > 50). The type of Hopf bifurcation occuring at

1: a1 < 0

implies the existence of an attracting limit cycle arising at p - O

p - 0 can be determined by examining the sign of Re b(0) - a

(supercritical) while a1 > 0 implies the existence of a repelling limit

cycle vanishing at p - O (subcritical) as p is increased. A numerical

computation of a1 confirms and reproduces the bifurcation diagram of

Figure 21.

The Poincare Map

Since this is a periodically forced problem, it would be convenient

to look at the dynamics on the Poincare map which is obtained by

sampling the response once per forcing period, T - 2a. In order to

achieve this, the solution of equation (4.2.8) is written in an integral

form as follows (after Gambaudo, 1985):

t

z(t) - e*(“)t{z(0) + I e'*(“)" [ b(p)|z(n)|22(n) + p2g3(n) +

0

84(#. 2(a). 2(0). p. n)]dn} (4.2.9)

Hence a local expression of the Poincare map P : C 4 C (i.e., 2(0) 4

z(2«)) can be obtained by solving equation (4.2.9) utilizing a fixed

point technique. It is given by
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4nReA(p) -

P _ eA(p)2n [z + g 2R€A(p) 1 b(u)lzl22 + p21(#)]

+ EA(u. z. E. p) (4.2.10)

2" _ -2flA(u) _

where I(p) - I e 2(2)" g3(n)dn - e 2 1 [- c - d1(p)]

0 A(p)+l

3,04 2. 2. p) - 722(000 + NM»

and the constants c - q14 + j q24, and d - q12 + j q22 where qij is the

(i,j) element of the matrix Q21.

The dynamics governed by the above equation (4.2.10) will be

examined in a three parameter space : p for the amplitude of the

unbalance, p for the rotary speed variation from the Hopf bifurcation,

and s for the frequency detuning of thecritical eigenvalues associated

with the Hopf bifurcation: 6 -‘0 + 5. Note that varying the system
0

parameter S has the same effect as varying 5 and hence no and s. The

discussion of this chapter includes two separate cases: the nonresonant

(00 ¢ {p/q)) and resonant (00 c {p/q}) cases, with an emphasis on the

latter.

As mentioned before, the dynamics for the nonresonant case are

quite straightforward. Rather complicated and interesting dynamics

occurs near resonances in which case small divisor terms play an

important role in determining the response. Large amplitude vibration,

jump phenomenon and the coexistence of multiple stable solutions are

typically observed phenomena for the resonant case. Since equation

(4.1.2) contains nonlinear terms up to order three, strongly resonant

cases occur for q - l, 2, 3. Higher order terms (order 4, 5, ...) are
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much less significant than the lower order terms in determining the

response and hence are neglected in the equation. Thus, for q 2 4 the

natural frequency of the bifurcating cycle does not strongly interact

with the excitation frequency. Here only the 1/1 and 1/2 resonances are

considered. Other cases are left for future work.

It should be noted that fixed points of the Poincare map (4.2.10)

represent periodic solutions with period 21 of equation (4.2.7), i.e.,

synchronous whirling; periodic cycles with rotation number p/q where p <

q and p and q are relatively prime correspond to periodic solutions of

equation (4.2.7) with period 2wq, i.el, whirling subharmonics of order

q, and that invariant circles correspond to two dimensional invariant

tori, i.e., quasi-periodic motions (modulated whirling responses). The

stability types also correspond.

The Nonresonant Case 0b + (p/q)

In this, the most common case, no resonance occurs and the

perturbed dynamics are straightforward. Figures 22 and 23 show the

bifurcation diagrams and the associated phase portraits of equation

(4.2.10) in the three parameter space. Equation (4.2.10) has a single

fixed point which undergoes a Hopf bifurcation at the Hopf bifurcation

surface resulting in the disappearance (Figure 22) or birth (Figure 23)

of an invariant circle as p is increased across the surface, as might be

generally expected. In terms of the dynamics of equation (4.2.7), the

zero solution (i.e., the static equilibrium position (x0, y0)) is

perturbed by the unbalance into a periodic response with period equal to

that of the forcing, 2x, for p < ”cr' As the speed is increased across

the Hopf bifurcation surface p - pcr’ this periodic motion becomes

unstable and an invariant two dimensional torus (i.e., a quasi-periodic
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Hopf bifurcation surface

 

 
Figure 22. Phase portraits in parameter space - regions I and III of

Figure 21.

  

Hopf bifurcation surface

Figure 23. Phase portraits in parameter space - region II of Figure 21
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response) is born whose stability and existence is determined by the

type of the corresponding unperturbed (p - 0) Hopf bifurcation, that is,

an unstable (a stable, resp.) quasi-periodic response exists for

parameters in region I and III (region II, resp.) of Figure 21.

It should be noted that the Hopf bifurcation surface in Figures 22

and 23 are obtained not by actual numerical computations of equation

(4.2.10), but by observations from the results for the 1/1 (Figures 25

and 26) and 1/2 (Figure 29) resonant cases (studied below). Figure 22

is for the non-resonant case with parameters in regions I and III of

Figure 21 in which subcritical Hopf bifurcation occurs. The response in

Figure 29 with s away from 0 (i.e., away from the resonant case of 1/2)

resembles that in Figure 22. Similar observations can also be found

between Figures 25, 26 and Figure 23.

4.3 Dynamics of the Poincare Map in the 1/1 Resonant Case

For the perfectly balanced rotor system with S near S0 - 0.199875

and 5 near 50 - 1.138166, which is in the region II of Figure 21, the

bifurcating stable limit cycle arising at the stability boundary has a

frequency near 1.0, in which case primary resonance is expected to occur

when the periodic excitation due to unbalance is included. Letting 00 -

1.0 and 6 - 00 f s, the various responses of equation (4.2.10) will be

determined for small values of the parameters (p, p, s). The resulting

bifurcation diagram is obtained by first specifying an 5 value

(consequently, specifying the constants of equation (4.2.10)), then

investigating the dynamics as parameters p and p vary. This procedure

is repeated for each different 5 value, hence the bifurcation diagram is

T
,
,
g
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completed in the (p, p, 5) space. Our treatment follows the ideas of

Gambaudo (1985).

Substituting 5 - 00 + s and using the fact that p and s are small

parameters, equation (4.2.10) can be reduced to :

P - (l + cl)z + c2b|z|22 + p2c (4 3.1)

3

where

c1 - 2nap + 2ni(0p + 5), c2 - 2«(1 + 2nap), and

c3 - -2«[- c - d(ap + 1(1 + S + 0#))]/[2i + 0# + 1(9# + 5)] '

Let 20 be a fixed point of the above equation. Substituting 20 in

equation (4.3.1) yields

2 2
c420 + [20' zO + p c5 - 0 (4.3.2)

where c4 - cl/CZb and c5 - c3/c2b. Let 5 - IzO|2> 0, then 5 satisfies

the following equation (from equation (4.3.2)):

53 + 2R§<c,)e2 + lc4I2e - p“|c5|2 - 0 (4.3.3)

Equation (4.3.3) may have one, two, or three real solutions for 5 for

each triad (p, p, s), and the fixed point is given by

zo - -p2C3 / (c1 + czbf) . (4.3.4)
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The stability of the fixed point z0 can be determined by the eigenvalues

of DP(zo) (the Jacobian matrix of equation (4.3.1) evaluated at z A
0"

saddle-node bifurcation of 20 occurs when l is an eigenvalue of DP(zO),

which occurs iff

2 2
35 + 4Re(ca)€ + Ical - o . (4.3.5)

The requirement of 5 to be real and positive and the compatibility

of equation (4.3.3) and (4.3.5) give the saddle-node bifurcation curve

SN in parameter space as shown in Figure 24. Note that for s s 0, there

is only one fixed point, hence no such saddle-node curve exists.

 
Similar conditions for the existence of a Hopf bifurcation of 20 can

also be written down (i.e., conditions at which DP(zO) has complex

conjugate eigenvalues with modulus l):

 

2 1 2 2Re(cl)

3s + 4Re(ca)(l + C1. b)§ + |64| (1 +--————73- ) - 0 (4.3.6)

cll

(1 + c4 + 2c1c3£)2 S 1 (4.3.7)

These equations are satisfied by 20 and are associated with equation

(4.3.3) to give the Hopf bifurcation curve HF. A complete examination

of the fixed points in parameter space, their stabilities and possible

local and global bifurcations of equation (4.3.1) leads to the

bifurcation diagrams of Figures 25 and 26 and the associated following

conclusions

(1). For 3 s 0 (i.e., 5 S 1.0), there is only one fixed point which is

initially stable and undergoes a Hopf bifurcation as p crosses the

HF line. A stable invariant circle is born thereafter as shown in

 

 



(2).

(3).

(4).

(5).

(6).
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Figure 25. The rotation number (see Guckenheimer and Holmes, 1983)

for this torus in terms of the dynamics of equation (4.2.7), which

is essentially a measure of the ratio of the two frequencies

contained in the response, is approximately 1.0 indicating that the

response is a beating type motion (that is, amplitude modulated

motion) with a long period envelope.

For 5 > 0 (see Figure 26), P has only one fixed point outside SN;

inside SN, P has three fixed points, one of which is a saddle.

The Hopf bifurcation curve HF exists both outside and inside of SN.

The points b1 and b2 correspond to the fixed points of P with l as

a double eigenvalue of DP(zO). Hence, codimension two bifurcations

occur at b1 and b2.

Near points b1 and b2, P has homoclinic bifurcation curves

emanating from b1 and b2 in the (p, p) space - a saddle connection

bifurcation which implies, by the Smale homoclinic theorem (1965)

(see also Gambaudo, 1985, for the proof of existence of such

homoclinic points), that equation (4.2.7) generically has

infinitely many periodic and homoclinic orbits near the saddle

connection curves (curves bordering regions 4-5 and 5-6).

This implies that chaotic response may be observable near such

parameter conditions.

In region 1 there exists only one stable fixed point; in region 2

and 7 there exist only one unstable fixed point; in regions 3 and 8

there exist one saddle and two sinks, while regions 4, 5 and 6 have

one saddle, one source and one sink. Stable limit cycles exist in

regions 2, 4, 6, and 7.
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Figure 24. SN curves of equation (4.3.1) in parameter space.
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Figure 25. Bifurcation diagrams for s s 0.
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Figure 26. Bifurcation diagram for s > O.
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The corresponding dynamics of equation (4.2.7) in the neighborhood

of So and 50 can be readily realized from Figure 25 and 26 by recalling

the fact that equation (4.3.1) is an approximation of the "time 2n map"

of equation (4.2.7). For a rotor system with S 5 SO and SO - S << 1

(figure 25), the response from equation (4.2.7) is similar to the

nonresonant case of Figure 23. As 5 is increased from below 50, the

system response is initially periodic with period 2«, then undergoes a

Hopf bifurcation and becomes unstable as p crosses the HF curve. A

stable quasi-periodic motion occurs thereafter. For a rotor system with

S > So and S - SO << 1 (Figure 26), the system response is more

complicated and phenomena typical of non—linear primary resonance are

observed (Nayfeh and Mook, 1979). Depending on the levels of unbalance,

different amplitude-frequency response curves can be obtained, much like

those of Chapter III. Stable and unstable (source and/or saddle)

periodic responses with period 2« and stable quasi-periodic motions are

found to coexist and interact much the same way as in Chapter III.

Saddle connections also occur between regions 4-5 and 5—6, suggesting

the existence of irregular motions nearby.

It is of interest to look at the stable orbits in Figure 26 and to

interpret the attendant rotor dynamics in terms of equation (4 2.7).

Stable fixed points (which occur in regions 1, 3, 4, 5, 6, and 8)

represent periodic responses with period 2n; stable invariant circles

(which exist in regions 2, 4, 6 and 7) correspond to quasi-periodic

motions which contain two frequencies: one is the forcing frequency, the

other one is close to the frequency of the bifurcating cycle for the

unforced problem which is approximately equal to 1.0; hence these quasi-

periodic motions are beating type motions with long period envelopes.

Multiple stable orbits coexist in regions 3, 4, 6, and 8 in which case
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initial conditions play a critical role in the observed response of the

system.

4.4 Dynamics of the Poincare Map in the 1/2 Resonant Case

For the perfectly balanced rotor system with 5 near 80 - 0.0364 and

w near 50 - 2.57553 (which is in region III of Figure 21), the

bifurcating unstable limit cycle arising at the stability boundary has a

frequency approximately equal to 1/2. In this case a subharmonic

resonance is expected to occur when periodic excitation is applied.

Substituting 5 - 1/2 + s in equation (4.2.10) and using the assumption

that Ipl, Isl << 1 yields

2 2
P - - (1 + d1)z - d2b|zl z - p d3 (4.4.1)

. l
where d1 - c1, (12 - c2, and d3 - (-2 + c1)[- c - d(ap + 1(5 + s + 0p))].

As in the previous section, the fixed points and their stabilities of

equation (4.4.1) will be determined. Let £0 - [20]2 where 20 is a fixed

point, then the following equation is satisfied by $0

3 2 2 4 2
50 + 2Re(dh)§0 + Idal 20 -p |dS| - 0 (4.4.2)

where d4 - (2 + d1) / d2b and d - d3 / d2b. A numerical study of
5

equation (4.4.2) shows that there is only one real and positive solution

for £0 and the fixed point z is given by

O

20 — -p2d5 / (64 + 50) (4.4.3)
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The stability of 20 can be determined by the eigenvalues of the Jacobian

matrix DP(zO) of equation (4.4.1). It is found that 20 may change

stability from stable to unstable either by a period doubling (flip) or

a Hopf bifurcation. The period doubling bifurcation (with -1 as an

eigenvalue of DP(zo)) of 20 is anticipated since the frequency of the

bifurcating limit cycle for the balanced system is nearly one half of

the forcing frequency. It is, therefore, convenient to consider the

 dynamics for this problem by using the second iterate of the Poincare

map: P2 - P . P. Note that a flip bifurcation of 20 for P corresponds

to a pitchfork bifurcation of 20 for P2 in which two fixed points

bifurcate from 20; this is described in more detail below.

 

Letting z - 20 + 2', which moves the origin of z' to zO, equation

(4.4.1) becomes

2
I I 2 -v _ r 2 I - - o

P - - (1 + d1 +2£Od2b)z - zodzbz d2b|z | z d2b(zoz

 + 2202'?) (4.4.4)

Iterating P' once and dropping the prime yields

P2- 2 + 2(d1 + 2£Od2b)z + 2zgd2b; + 2d2blz|22 + 0(60|z|2) (4.4.5)

where 0(éolzlz) represents higher order terms which will be neglected.

It is obvious that z - O is always a fixed point of equation (4.4.5); it

represents the only non-zero solution of equation (4.4.1) and

corresponds to a periodic response with period 21 for equation (4.2.7).

The non-zero fixed points of P2 correspond to periodic points with

period two of the Poincare map P, which in turn represent periodic
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orbits with period 4n of equation (4.2.7). These consist mainly of two

components (recall 2 - 20 + 2'): one from the forcing with period 2n,

the other from the free response with period 4«.

Let (1 - 21, where 21 is a fixed point of equation (4.4.5), then 51

satisfies

2 2 2
£1 + 2Re(el)g1 + Iell - |62| - 0 (4.4.6)

where e1 - ((11 + 250d2b) / d2b and e2 - 23. Equation (4.4.6) is

quadratic in $1, implying that there may be none, one, or two real and

positive solutions for £1. The fixed point 21 is then given by

21 - - 6221 / (e1 + 51) . (4.4.7)

Since equation (4.4.7) possesses the symmetry of rotation by n, z - v

11 1

+ j v2 and 212 - - v1 - j v2 (rotation of 211 by n) are both fixed

points for a given 61 (Note that a non-zero fixed point 211 of P2 is

mapped on another fixed point 212 by P, and vice versa). Hence 211 and

212 on P2 correspond to the periodic points with period two on P, which

in turn represent periodic orbits with period 4x of equation (4.2.7).

According to equation (4.4.6) the number of fixed points of P2 is

determined to be as follows (see Figure 27):

(l). P2 has only one fixed point, zl-O: if Re(e1)2- (lell2 - Iezlz) > 0,

Iell2 - |e2|2 > O and Re(e1) > O, or Re(e1)2 - (Iell2 - |e2|2) < 0.

(2). P2 has three fixed points: if Re(e1)2 - (Iell2 - lezlz) > 0 and

2 2
Iell - |e2| < 0.

(3). P2 has five fixed points: if Re(e1)2 - (Iell2 - lezlz) > 0,
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Iell2 - lezl2 > 0 and Re(e1) < 0.

1 fixed point

3 M.
. S

5

 
 

Figure 27. Bifurcation diagram of equation (4.4.5) in parameter space.

The stability types of the fixed points are determined by the

eigenvalues of DP2(z1). A study of these eigenvalues for a certain p

value has been carried out and the results are shown in Figure 28. On

curve PF the fixed point 21 - 0 undergoes a pitchfork bifurcation while

on the two curves marked SN the non-zero fixed points appear (or

disappear) in saddlejnode bifurcations. Line HFl represents the Hopf

bifurcation of 21 - 0 while curve HF2 corresponds to the simultaneous

Hopf bifurcations of two non-zero fixed points (two fixed points that

are symmetric by a rotation of u). At points b1, b2 and b3, 1 is a

double eigenvalue of DP2(zl), suggesting the existence of saddle

connection bifurcations nearby.
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b1

1 saddle
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SN 1" / b2
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b3 3 sinks

SN 1 source
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Figure 28. Stabilities of the fixed points of equation (4.4.5).
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In fact, this case is much more complicated than the previous one.

In addition to the local bifurcations just mentioned (pitchfork, saddle-

node and Hopf bifurcations), a saddle-node bifurcation of invariant

circles is also found to occur. The global bifurcations found are

saddle connections of homoclinic as well as heteroclinic types. Based

on the knowledge of these local and global bifurcations, as well as the

type of stability of each fixed point, the phase portraits in parameter

space (p, 5) may be determined; these are presented in Figure 29.

Other local bifurcations occur on the curves between regions 5-8

and 6-7 in Figure 29, these are saddle-node bifurcations of invariant

circles. Global bifurcations occur between regions 8-9 and 10-11,

saddle connections of homoclinic type; and between regions 6-11, 7-11

and 3-6, saddle connections of heteroclinic type. As in the previous

section, equation (4.2.7) generically possesses infinitely many periodic

and homoclinic (and/or heteroclinic) orbits near the saddle connection

bifurcation curves.

It is again of interest to look at the stable orbits in Figure 29

and to interpret the attendant rotor dynamics in terms of equation

(4.2.7). Stable zero solutions (which occur in regions 2, 3, 6, 7, 10,

11, 12 and 14) represent periodic response at the forcing period, 2n;

stable nonzero fixed points (regions 12 and 13) indicate a periodic

response with period An; stable invariant circles (regions 7, 8, 9 and

10) correspond to quasi-periodic motions, in which one of the

frequencies is the forcing frequency and the other is approximately (not

exactly) equal to 1/2, leading to amplitude modulated motions. Note

that this amplitude modulated motion will not have as long a period

envelope as that for the 1/1 resonant case. Figure 29 also clearly

shows how the dynamics of equation (h.2.7) change as parameters (p, p,

s) vary.

 
r7
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Phase portraits of equation (4.4 5 )

Figure 29 .
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4.5 Conclusions

An analytical approach has been presented which determines the

effects of unbalance on oil whirl for a model rotor system supported in

fluid film journal bearings. The main results, depicted in the

bifurcation diagrams and the portraits of the associated Poincare maps,

are presented in Figures 22, 23, 25, 26, 27 and 29. In order to

interpret the shaft motions from these figures, the facts and

correspondences given below should be kept in mind. Figures 22, 23, 25

and 26 are obtained from "time 2x" maps of equation (4.2.7) while

Figures 27 and 29 are obtained from "time An" maps. The center manifold

theorem assures that the shaft motions governed by equation (4.2.1) in

the neighborhood of the threshold speed are topologically equivalent to

those on the two dimensional center manifold governed by equation

(4.2.7). The stability types of steady state solutions between the

Poincare maps and equation (4.2.7) and between equation (4.2.7) and

equation (4.2.1) also correspond. Hence the shaft motions governed by

equation (4.2.1) whose origin is at (x0, yo) can be readily deduced by

knowing these relations between equations (4.2.1), (4.2.7) and the

Poincare maps.

It is noted that the results presented are valid only for small

\

amount of unbalance and in the neighborhood of the threshold speed 50'

For a relatively large amount of unbalance and/or speed well above or

below the threshold speed the results may not be valid, and other

methods of analysis are thus required to predict the response in this

case. In fact, the works by Barrett, Akers and Gunter (1976), Gunter,

Humphris and Springer (1983) and Hollis and Taylor (1987) were carried

out for relatively large unbalances and/or for speeds well above or
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below the threshold speeds. Numerical integrations were employed in

their works to investigate the responses and synchronous motions with

period 2x, periodic orbits with period An and quasi-periodic motions

have been found. Periodic orbits with period An arise due to the fact

that the whirl frequency for the balanced shaft is approximately equal

to one half of the rotational speed. Systematic parameter studies in

the neighborhood of the threshold speed were not included in their

investigations.

Preliminary computer simulations of equation (4.2.1) confirm the

existence of the synchronous motions with period 2n and quasi-periodic

responses in their corresponding parameter regions predicted in Figures

25 and 26 for the 1/1 resonant cases, but multiple stable solutions

existing in regions 3, h, 6 and 8 have not been found to coexist. For

the 1/2 resonant case, only the stable synchronous responses and large

amplitude quasi-periodic motions are obtained from the simulations.

These large amplitude quasi-periodic motions are predictable from the

unforced problem, in which case Myers (1984) has shown existence of a

large stable limit cycle enclosing the bifurcating unstable limit cycle.

These phenomenon are expected, since the directions of the outer

portions of the local phase flow in each region of Figure 29 are

directed outward and are rotational. These large amplitude quasi-

periodic motions are undesirable in view of system performance and hence

should be avoided. More simulations are currently being conducted in

order to obtain and verify the results predicted for the 1/1 and 1/2

resonant cases.

The dynamics of the rotor predicted in Figure 26 and 29 are valid

in a relatively small parameter space, hence it would be extremely

difficult to observe many of these responses in practice. It is,

however, important to recognize their existence and their possible

 

 



122

effects on the dynamics of the system. Harmonic, subharmonic and quasi-

periodic motions are possible motions for this system under various

parameter conditions.

In both models described in chapters III and IV, mass unbalance

introduces a periodic forcing term which allows the response of the

system to be studied in the context of a perturbed Hopf bifurcation.

Mathematical work on this subject can be found in the papers by Kath

(1981), Rosenblat and Cohen (1981) and Bajaj (1986). More recently, Sri

Namachchivaya and Ariaratnam (1987) have analyzed secondary bifurcations

for these resonances. Gambaudo (1985) presents the most detailed and

complete study of this periodically perturbed Hopf bifurcations. In

fact, the latter part of this chapter (from equation (4.2.7)) follows

closely his work, especially for 1/1 and l/2 resonant cases. For the

1/1 resonant case, Figures 24 and 26 are similar to (actually,twisted

images of) Figures 4 and 16 in his work. Figure 29 is similar to Figure

25 in his work, for the 1/2 resonant case, except that his case is for

the perturbation of a supercritical Hopf bifurcation while Figure 29 is

for a subcritical Hopf bifurcation. In each of the corresponding

regions between Figure 29 and his Figure 25, the stability type is

opposite and phase flow is reversed.



CHAPTERV

DISCUSSION AND CONCIDSIONS

In this dissertation methods of dynamical systems and bifurcation

theories have been used to investigate the non-linear behavior of

symmetric rotor models. These approaches are analytic in nature, and

are supported by computer simulations. The results are presented in

terms of bifurcation diagrams and associated phase portraits in

parameter space and clearly illustrate how the dynamics of the rotor

change as system parameters are varied. Though these methods are

employed locally in the neighborhood of bifurcation points, the system's

global behaviors can often be realized by knowing these local dynamics

together with some knowledge about global behavior, obtained either from

applying other methods (e.g. Lyapunov methods) or from computer

simulations. In any case, most of the complicated and interesting

dynamics of these systems occur near the bifurcation points.

Though rotordynamic instabilities caused by internal damping and

fluid film journal bearing forces have been the subjects of many

investigations, few rigorous and complete studies have been carried out;

the exceptions include the works by Myers (1984), Gardner et a1. (1985)

and Hollis and Taylor (1986). In this dissertation, these instabilities

and the attendant post-critical behavior are thoroughly examined as a

function of system parameters. We then go on to investigate the

dynamics of the rotor system with the existence of mass unbalance. This

periodically perturbed problem has received little attention, not

because it is unimportant, but mainly due to the lack of suitable

methods. An analytical approach has been applied to derive the response
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for these systems. The results presented in terms of bifurcation

diagrams and phase portraits have proven the utility of the method and

enable one to clearly visualize the rotor dynamics as system parameters

are varied. Although the results are not complete, they are new.

In Chapters II and III the model used to investigate the effects of

internal damping and mass unbalance on the rotordynamic instability and

resonance is a relatively simple one (a flexible continuous rotating

shaft); the type of damping and structural non-linearities used were

chosen to illustrate a procedure by which the response may be computed“

and to provide what are hoped to be qualitatively typical results. More

complicated models which incorporate the effects of asymmetric

stiffness, gyroscopic forces, applied axial loads and torques and even

non-linear rheological models of the shaft material may be adopted in

which case more exotic dynamics of the system will be expected; these

are left for future work. It should be noted that if the non-

linearities are of the softening type (a < 0) the response will be quite

different. Our main conclusion for the analysis of this model is as

follows: in order to fully understand the effects of structural non-

linearities on the resonant behavior of a rotating shaft, one must

include the effects of structural damping. The results obtained by

neglecting internal dissipation are very different from those obtained

for non-zero internal damping.

In the context of the study of the effects of mass unbalance on

instabilityg only the 1/1 resonant case has been studied in Chapter III

(because the whirl frequency, 01, of the bifurcating cycle which is born

*

at 0 - 01 is close to the rotational frequency 0). However, as was

pointed out in the discussion section of Chapter III, if the ratio

pe/pfl 1is not small, other types of resonance may occur. In fact,
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subharmonic resonant cases of p/q for q s S are possible for this single

mode model. It would be quite interesting to carry out studies of all

these resonant cases, especially for the strongly resonant cases q S 3,

and to compare with those of bearing problems in Chapter IV and/or

Gambaudo's work (1985). This is also left for future work.

The model used in Chapter IV to study the rotordynamic instability

due to fluid film journal bearings was originally proposed by Myers

(1984). It is a simple model (a long bearing operating with a half

film) and was chosen because it provides simple analytic expressions for

the hydrodynamic forces (equation (4.1.2)). The use of a more accurate

model would significantly complicate the determination of the

coefficients of equation (4.2.1), but is not expected to alter the

qualitative character of the bifurcations of the problem. It would

merely alter the values of the threshold speed, the whirl frequency,

and/or the type of Hopf bifurcation for a particular system.

As mentioned in Chapter IV, preliminary computer simulations

confirm the results presented in Chapter IV, but difficulties have been

encountered in showing the coexistence of multiple stable solutions

predicted in the analysis; this is not surprising since some regions of

the bifurcation diagram are extremely small in the parameter space and a

careful choice of parameters and initial conditions is crucial to obtain

the desired stable motions. The details of the bifurcation diagrams are

important in the understanding of the rotor dynamics in a more complete

sense, but may not all be easily observed in practice. This is due to

the narrow parameter ranges over which certain motions will occur, and

to the fact that they also have small initial condition sets which

result in that particular motion. Engineers working in rotordynamic

systems should be aware of all the possible responses that a rotor

system might have, however, and be prepared to handle the situations
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should a problem occur. In fact, the existence of these "possible but

unlikely" motions can cause difficulties in experimental and/or

simulation studies, and can lead to results which are difficult to

reproduce. More simulations are currently being conductxni; laboratory

experiments are left for future work.

In.both models considered, it may well occur that irregular

amplitude modulations of the motion are observed in simulation or

experimental studies, these are most likely to occur near the saddle

connection bifurcations. Such chaotic behavior has been found by Hollis

and Taylor (1986) for the journal bearing system for certain sets of

parameter values, but more work needs to be done in order to provide

predictive criteria for the chaotic motions found in rotor systems.

Other sources of rotordynamic instabilities are not covered in this

thesis, but are as important in applications; these include aerodywuunic

forces, gyroscopic forces, magnetic and electrodynamic forces, dry

friction, and labyrinth seals. It is expected that the interaction

between unbalance and instability will be qualitatively similar in those

situations.
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