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TRANSPORT, 8W AID KIN-GAUSSIAN STATISTICS

II nIsoancnzn SYS'I'DIS

Yongsheng Li

After reviewing previous work on transport and breakdown in dis-

ordered systems, I discuss the ability of random walk algorithms to

calculate the effective conductivity of a continuum percolation

problem. I quantin the convergence properties by simulating the ef-

fective conductivity of regular arrays of inclusions and find that the

following two conditions are necessary for convergence: 1) The dis-

tance the random walker travelled >> the correlation length; 2) The

random walk step 5 size of the narrowest neck.

An extreme scaling analysis is used to estimate the size of

hotspots in random networks and the consequences these hotspots have

for network strengths. The most surprising result is that brittle

networks exhibit a ”dilute limit catastrophe", in which any finite

fraction of disorder drastically reduces the network strengths. This

is in contrast to transport or elastic moduli which are linear in



dilution with slope 0(1) near the pure limit. A logarithmic size ef-

fect also occurs in this limit. The origin of this difference is

explained by the fact that strength depends on extreme fluctuations,

while moduli depend on an average over all fluctuations.

In the language of local load distributions, I argue that

transport properties are related to the low moments, while breakdown

strengths are related to the very high moments. Thus, the moment

spectrum links and quantifies the crossover between these two very

different classes of properties. I study this crossover behavior by

analyzing the moment spectrum and find the critical moment Inc at which

the crossover occurs.

Another implication of the dependence of breakdown properties on

extreme fluctuations is that breakdown strengths conform to extreme

statistics distributions and exhibit large sample to sample fluctua-

tions [0(1/an)]. In contrast, the conductivity or elastic moduli

follow the central limit theorem and have Gaussian distributions with

l2)]. The thesis closes withsmall sample to sample variations [0(1/V1

a broad discussion of the role of non-Gaussian processes in disordered

systems .
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CHAPTER I

Introduction
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A basic aim of theoretical solid state physics is to understand

and predict various properties of solids, such as their structures,

mechanical, electrical and magnetic properties. This basically has

been accomplished fer crystalline solids‘, in which the periodicity of

the lattice structure and electronic band structures play.a fundamen-

tal rwile. In reality, due to impurities, lattice distortion and some

other reasonsz’3, most solid materials have non-crystalline structures

and the periodicity is violated. To understand the properties of

solids of this sort has been a great challenge. These properties have

been studied intensively for last twenty years with the achievement of

a reasonable understanding. Various models have been developed in

this field (a typical example is the percolation theory“). Today, it

is a well established field, but there are still many open questions.

Two such questions, which will be studied in this thesis, are the

transport properties of a continuum percolation system and the break-

down properties of a random medium. It is interesting to note the

fact that the second one is a new class of problem. It has attracted

a lot of attention recently, and is providing new insights to break-

down phenomena as well as to the statistical mechanics of extreme

phenomenas.

In this chapter, I will first give a overview about the under-

standing of the transport properties in lattice percolation systems,

which will naturally lead to the diffusion calculation of the effec-

tive conductivity for continuum percolation systems in chapter II.

Then, I will give a general introduction to the recently developed

statistical mechanics approach to breakdown in random media. Some of

these results are based on original work done in this thesis (chapters
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III and IV). In chapter V, the theory of extreme fluctuations is

placed in the broad context of non-Gaussian statistics in disordered

systems. Finally, in chapter VI, this thesis concludes with an over-

view and future perspective.

1.1 Transport Properties in a Lattice Percolation System.

There exist many inhomogeneous composite materials. Examples of

these materials include mineral rocks, sandstones, metal-insulator al-

loy and fiberglass. These composites are characterized by the so

called effective transport properties such as the electrical conduc-

tivity and elastic modulus, which reflect the average behaviors of the

bulk materials. The study of these effective transport properties of

composites has been a subject of great interest for more than a cen-

tury. There existed many different approaches to this problem. A

good general review on this subject has been given by Landauer6. Here

I will concentrate on one of these approaches, i.e., the percolation

theory.

Percolation theory provides a well-defined, transparent, and in-

tuitively satisfying pedagogical model for spatially random processes.

It can be applied to a broad range of physical phenomena. The

transport properties of a percolation systems have been the subject of

many recent theoretical and experimental studies. These studies,

apart from their theoretical interest, may serve as guidance for un-

derstanding the transport properties of many types of inhomogeneous

7,8
mterials, such as polymer gels near sol-gel transition and low-

porosity sedimentary rocksg.



A

Let us first review the "standard" discrete lattice percolation

model and its transport properies‘o.

As a typical example of percolation process, consider the square

network shown in Fig. 1.1, where each bond is a conductor and a fixed

external voltage is applied to the network. Starting from the pure

network, which is a conductor, we remove fraction (1-p) of the con-

ducting bonds randomly from this network. As more bonds are removed,

the conductivity of the network decreases and less current flows

through it. Finally, it becomes an insulator and the percolation

transition occurs. The value of p at which the percolation transition

occurs is called the percolation threshold pc. The network is con-

nected when p>pc, and it is disconnected when p<pc. As we can see

from Fig. 1.1, there is no connected path which links the top and

bottom of the square network when p is less than 0.5. Therefore, the

percolation threshold pc is equal to 0.5 for two dimensional square

networks. This model can be generalized to various other properties,

such as elastic moduli (in this thesis, I will mostly concentrate on

the electrical problem). Generally, given a network, we can define

the percolation model as follows:

1) For the electrical problem, each bond is a conductor and is

assigned a conductivity 0 according to the following distribution:

P(o) : p8(c-oo) + (1-p)8(o) (1.1)



  

 

 

 

 

Fig.1.1 Examples of percolation lattice with L=20: p=0.20

(moo); p=o.50 (9:93): p=o.ao “We’-



2) For the central force elastic problem, each bond is a spring

and is assigned a spring constant k according to the following dis-

tribution:

P(k) = WSW-kc) + (1-p)8(k) (1.2)

For simplicity, we usually choose the constants c0 and k0 to be unity.

For any percolation system, there is a percolation threshold pc, But

it virili trad utter. to imam rm? ‘pe‘r'eiilutioh transition he: been

extensively studied and the geometric properties show universal scal-

ing behaviors similar to critical phenomena near thermodynamic phase

transitions‘o.

Transport properties of these percolation lattices have been

studied by many researchers. Their results can be sunmarized as fol-

lows.

1) Near to the percolation threshold pc, the effective conduc-

tivity has a universal scaling behavior‘O:

t

2(1)) ~ (13 - pc) (1.3)

where t is called the conductivity exponent, which is independent of

the detail of the lattice geometry and only depends on the dimen-

sionality of lattice [for elastic problem, Young's modulus Y has a

similar behavior:



Y(p) ~ (p - 13c)f (1.“)

where f is called the elasticity exponent]. For example,

1.3 for two dimensional lattice

t z 2.0 for three dimensional lattice (1.5)

3.0 for Bethe lattice

2) Outside the critical region, one can obtain an accurate

analytic calculation of the effective conductivity by using the effec-

11-15
tive medium theory Typically, in the weak disorder limit, there

is a linear correction to the effective conductivity:

2 ~ 20 - 0(1-p) (1.6)

where 20 is the conductivity of pure lattice.

3) Numerical simulation10 is capable of accurately simulating

the effective conductivity of percolation lattice over the whole range

of p.

In order to compare these results with real composites, we have

to generalize these lattice percolation models to include the compli-

cated micro-geometry of composites. Therefore, the continuum

percolation model was proposed. The simplest example is the so-called

"Swiss-Cheese” model16-19 , where uniformly-sized circular (spherical)

holes are placed at random in a 2-dimensional (3-dimensional) uniform

transport medium. The holes are allowed to overlap with one another.

It is quite obvious that there exists a critical hole-volume fraction
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qc such that when q>qc the system ceases to support any transport.

For quc, one can again define all the transport percolation exponents

through: 2 ~ (qc-q)t'and Y ~ (qc-q)f'. In Fig. 1.2, a piece of two

dimensional Swiss-Cheese is shown. It was found that the transport

exponents of continuum percolation models are dependent on the

detailed geometry of the models. This is because near the percolation

threshold qc, the transport properties of this class of models are

limited by narrow "necks", which are bounded by interpenetrating holes

(see Fig. 1.3). A good review article is given by Feng, Halperin and

Sen19 , where the continuum percolation critical exponents are es-

timated.

When the concentration of one of the components (for simplicity,

we will consider only two-component composite systems) is extremely

low, the behavior of transport quantities like the electrical conduc-

tivity can be adequately described by the Clausius-Mossotti

equation20’25. In between these two extremes, i.e., close to the per-

colation threshold and the weak disorder limit, an exact microscopic

theory or detailed computer modeling of the transport properties is

very difficult and till recently neither was available. One of the

difficulties is the lack of good numerical simulations, which has been

a major research tool to understand the lattice percolation systems.

The obvious reason is that even the largest available machines can not

store enough information to meaningfully discretize continuum systems.

Recently, a novel approach to this problem has been introduced26,

in which the true continuum structure is maintained, and the effective

conductivity of a composite structure is calculated using random walk



 

   

13% O C

Q ._

5~ 01010 O-

Fig.1.2 A piece of two dimensional Swiss-Cheese, where

the circular fraction is 0.20.

20



 
Fig.1.3 Narrow portion of a neck, passing between three

overlapping spherical holes, in the three-dimensional

Swiss-cheese mdel.
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techniques. we applied this new method (see chapter II) to composite

structures and tested the accuracy of the method by comparing runneri-

cal results on Swiss-Cheese percolation structures with analog

experiment327’28.
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1.2 Introduction to Breakdown in a Random Medium

If one applies tensile stress to a solid, it elongates and be-

comes strained. The stress (c)-strain (e) relation is usually linear

for small stresses (Hooke's law) after which nonlinearity appears.

Finally at a critical stress cc, depending on the material, the

specimen, geometry and loading condition, the solid breaks into macro-

scopic pieces -- fracture occurs [see Fig. 1.“(a)]. In the case of

brittle solids, the fracture occurs immediately after the Hooke's

linear region, and consequently the linear elasticity theory can be

applied to study the (essentially nonlinear and irreversible) static

fracture properties of brittle solid329-37.

Similarly, if one applies voltage V across a conducting electri-

cal circuit, a current I flows through it. For small voltages, the I—

V relation is linear (Ohm's law). Finally, at a critical applied

voltage Vc’ depending the circuit, the circuit fuses as the current

through some part of the circuit exceeds its threshold value [see Fig.

1.“(b)]. In dielectric materials, when the voltage gradient exceeds

its threshold value, a similar (dielectric) breakdown occurs [Fig.

1.“(c)]. A similar behavior occurs in a superconducting material,

where a superconductor becomes a normal conductor when the current

reaches a critical value [Fig. 1.“(d)].

What happens to such responses when the solid contains random

quenched impurities, dilution for example? Obviously with more and

more random voids, the linear responses like the modulus of the elas-

ticity Y of the solid decreases, or with more and more
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nonconducting elements in a network the conductivity 2 of the network

decreases. So does the breaking strength of the material: the frac-

ture strength 00 of the specimen, or the fuse voltage V of the
b

network, or the breakdown voltage V of the dielectric, or the criti-
b

cal current Ic of the superconducting network, all decrease

(occasionally V increases due to the decreasing of conductivity) on
b

the average with the increasing concentration of random impurities

(random voids, insulators, conductors, or normal conductors

respectively). These breakdown strengths are properties of prime im-

portance in most applications of composites. Prediction of the effect

of composite microstructure on breakdown strength is however, at a far

more primitive stage than corresponding predictions of effective con-

ductivity or elastic moduli. Recent generalizations of the

percolation model to study breakdown phenomena‘3’38'u7 provide a new

starting point in this class of problem, and an important pedagogical

system in which to test the relative importance of various microstruc-

tural features and randomness on breakdown phenomena. In this

section, I give an introduction and overview of the ideas and results

that have been recently derived using this class of model.

There exist many percolation models for various breakdown

problems. Examples include the random resistor network model for

dielectric breakdownuu, random fuse network model for electrical

breakdown39’u1'u3, Hookean spring network model for mechanical

“5,“6
fracture and the superconducting network model for dirty

superconductors“. In this thesis, I will concentrate on the random

fuse network model and study the electrical breakdown problem. Most
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results fer this system can be easily extended to other categories of

problems.

The random fuse model is described as follows. For simplicity,

consider a d-dimensional hypercubic percolation lattice with percolas

tion probability p, i.e., p fraction of bonds are conductors and the

remaining fraction (1-p) of vacant bonds act as insulators. Assume

each conductor is a fuse and has a resistance of 10 and a breakdown

point of 1A (1V). Its current-voltage characteristic is shown in Fig.

1.5. Above 1V, the fuse becomes an insulator. There is a fuse net-

work only when the concentration is above the percolation’ threshold

(pcSpS1). Now, two busbars are separately installed horizontally

across the top and bottom of the system and an electric field or volt-

age drop is applied vertically between two bars. If a sufficiently

small voltage is applied then the system conducts just as a random

resistor network in the ordinary percolation problem. Now if this ex-

ternally applied voltage V is sufficiently large some of the fuses

will break. And if’enough ques break there will no longer be a con-

necting path between the busbars so we will say that there has been a

breakdown of the entire network. By studying the breakdown behavior

of this model, we can get a general insight to breakdown in random

media in general. In Fig. 1.6, the geometry of a typical random fuse

network and its breakdown path for 50x50 networks are shown.

Next we describe the numerical technique to calculate the break-

down voltages or currents within the random fuse network model. The

breakdown procedure fer each lattice realization is as follows:
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1 (amps)

    
1

V (volts) ——>

Fig.1.5 I-V characteristic for a single ideal time.

Above a voltage of 1V, no current flows.
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(b)

Fig.1.6 Example of random fuse networks and topology of

their final breakdown path on 501150 square network: (a)

p:0.70; (b) p=O.90 (from Ref. 12).
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(1) By using the Conjugate-Gradient method, we numerically solve

the Kirchhoff's equation on a given lattice network and find all the

voltages (currents) carried on each bond;

(2) Find the fuse which carries the largest voltage (current),

i.e., hottest bond, and remove it;

(3) Repeat this procedure until the network becomes disconnected.

In all the calculations, a unit voltage drop is imposed across the op-

posite edges of the system and free boundary conditions are used in

the transverse direction. The currents are determined to within an

accuracy of 10.9 (a computer code for this calculation is given in

Appendix A). Since the set of equations to be solved is linear, it is

easy for each step in the iterative process to find the external volt-

age required to break the hottest bond. Following this procedure, we

can get a sequence of breakdown voltages or currents. A typical se-

quence of external voltages that induce failure in the hottest fuse in

a 100x100 network with p=0.70 is displayed in Fig. 1.7. We define V1

(the corresponding current is 11) as the external voltage at which the

first fuse blows, and V is the maximum of the external voltages which
b

is the external voltage to induce the global failure to the network

(the maximum external current required to break this network is 1b)'

He also define the numbers, N1 and Nf , of fuses that are broken at Vb

and just before the network disconnects, respectively. In most study,

we are interested in the scaling behavior of the breakdown strength as

a function of disorder and system size.
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external voltage need to be applied to break the hottest

bond in the network, as a function of the number of broken

bonds N1 for a 100x100 square network with p=0.70.
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Since V and V scale in qualitatively same way, we can understand the

1 b

breakdown strength (Vb) by studying V1.

Compared to transport properties, the most surprising result in

breakdown problems is that random networks exhibit a dilute limit sin-

gularity, in which any finite amount of disorder drastically reduces

the network strength. A logarithmic size effect also occurs in this

limit. The origin of this difference can be explained by the fact

that strength depends on extreme fluctuations, while transport

properties depend on an average over all fluctuationsu9-51. We will

give detailed explanation and discussion of these difference in chap-

ters III - V of this thesis.

For network models, the dilute limit singularity mentioned above

can be easily explained by a Lifshitz type argument first given by

Duxbury, Leath and Bealeuz. Consider the pure limit (p=1) when there

are no defects in the network, as illustrated in Fig. 1.8 (a) for an

LxL square lattice. It is obvious that the same current flows in each

vertical fuse and no current is carried in the horizontal fuses.

Therefore, all fuses break at once so that V1 = V . He can easily
b

calculate the breakdown voltage and current and find:

V = V = L, i.e., V n < \ 1
"

1
1

< \ l
"
"
'

u

—
b

and

I = I = Ld-1, i.e., i1 : b d-1 - 1 -

and all the vertical fuses break so that
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N = L /d (1.9)

A single defect placed in the horizontal hyperplane of the net-

work has no effect on the properties of the network. However, when

placed on a vertical bond [as shown for 2D square lattice in Fig. 1.8

(b)] a single defect has a rather dramatic effect. Due to the

presence of a single defect of this sort, the currents carried on

those vertical fuses next to this defect will be enhanced. The en-

hancement can be calculated in terms of the equilibrium Green's

functions of the pure system. From which, the enhanced current is

found to be ,

I = i + “(1/n - £01 = “i/u (1.10)

d-1).
where i is the externally applied current per column (I = 1L

Now, the bond labeled 1 in Fig. 1.8 (b) breaks when I = 1, so by
fuse

1 = I,/I.d‘1 21/“. After the

first ste breaks the fuses adjacent to them [labeled 2 in Fig. 8 (b)]

setting Eq. (1.10) equal to 1, we find i

feel even greater enhancement of current and hence immediately also

break. Indeed, the network will break into two parts. Thus, for a

single vertical defect, we find

i = 1 = I /L = I /L = fl/“ (1.11)

and
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Fig.1.8 (a) Pure network for an LxL square lattice, the vertical

bonds all carry the same current. The horizontal bonds carry no

current. (b) Single-defect probla on a LxL square lattice. The

bonds labeled 1 break first. The bonds labeled 2 then feel an

enhanced current, and hence break. A crack propagates outward

in the direction of the arrows in the figure.
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v - v = v /L : V1/L = n/“(l + 0(1/L)) (1.12)

The order 1/L correction in Eq. (1.12) accounts for the change in con-

ductivity due to removing the one bond. Eq. (1.11) and (1.12) clearly

demonstrate the dilute limit singularity. Therefore, any finite con-

centration of defects will have an even more dramatic effect. And

clearly the defects dominate this problem.

Another fact to demonstrate the importance of defects in break-

down problem is the logarithmic size effect in dilute limit where 0 <

1-p << 1. From the discussion above, it was seen that a single verti-

cal defect has a profound effect on the breakdown strength, clearly a

cluster of such defects although less probable to occur, will have an

even larger effect. Therefore, we can understand the breakdown

strength by studying the most critical defect. One critical defect in

two dimensions is a horizontal line of removed vertical bonds (see

Fig. 1.9) simply because in this case the dipole fields for the

removed bonds add constructively to produce the maximum current en-

hancement at the defect edge. In order to quantify the identification

«of the most critical defect, it is necessary to answer two questions:

(1) "hat is the current enhancement at the edge of the critical defect

cluster; and (2) Given a defect fraction 1 - p, what is the probabil-

ity that the critical defect occurs somewhere within this network?

The answer to the first question is that the enhanced current

Itip at the defect tip depends on the size of defect as
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Fig.1.9 "Lifshitz defect" of size n for the square lattice

fuse problem. The bonds labeled 1 break first, and a crack

propagation outward in the direction of the arrows.
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Itip ~ c1 + c2 na (1.13)

where c1, c2 and a are constants, n is the size of the critical

defect. More detail study will be given in chapter III.

The second question is what is the probability P(n) that n ad-

jacent vertical defects in the hypercube will be missing somewhere in

the Ld network. Since (1-p)n is the probability of n bonds missing

and Ld measures approximately the number of places that the critical

defect cluster can be placed on the lattice, P(n) is approximately

n d

P(n) ~ (1 - p) L (1.1“)

For characteristic critical defect certainly occurring somewhere in

the lattice, P(n) should be of order 1. Therefore, we can find the

size of the characteristic largest defect nc by

no d

P(nc)~(1-p) L ~1,

which implies,

nc ~ [-d/ln(1-P)]lnL (1.15)

Combining Eq. (1.13) and (1.15), we then can predict the breakdown

current by using the Lifshitz-type argument, which is

11 = I1/L ~ 1/{c1 + c2([-d/ln(1-p)]lnL)a] (1.16)
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A similar result can be found for the breakdown voltage. Therefore,

the external current or voltage that needs to be applied to breakdown

the bonds at the tips of the largest defect is reduced by a factor of

order lnL. This is the so-called logarithmic size effect.

Before closing this chapter, I would like to point out the fact

that the study of breakdown problem is a broad field, which has been

linked to many other interesting topics in statistical mechanics and

solid state physics, such as pattern growth, instability analysis and

the statistics of extremess. Some of these connections will become

more evident in chapters V and VI of this thesis, where we will dis-

cuss other physical properties which obey unconventional non-Gaussian

statistics.

 



CHAPTER 11

Transport Properties of

Continuum Percolation Systems
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There exist many methods and techniques to calculate the effec-

tive transport properties of random media. Effective medium theory,

scaling arguments and random walk algorithms are some examples. These

methods have been proven effective for lattice or discrete-like per-

colation problems. In reality, most composites have continuum

structures, which are not well characterized by those lattice models.

Recently a number of researcher326’52’l33 have been exploring the use

of random walk algorithms to calculate the diffusion constant, and

thus through an Einstein's relation, the conductivity of continuum

systems. An advantage of this method is that the true continuum

structure is maintained. In this chapter, the detailed computation

algorithm is presented. Then the effective conductivity of the

"Swiss-Cheese" model is calculated using this algorithm. Finally, I

study the convergence properties of this random walk algorithm by

simlating the effective conductivity of regular arrays of inclusions,

and comparing with accurate results found using multipole expansion

methods. The ability of this algorithm to calculate elastic moduli is

also discussed.

11.1 Diffusion on Random Systems.

The problem of diffusion and transport in random materials has

been the subject of considerable experimental and theoretical

interestSu'éo. One prototype system that has been the object of

recent investigation is the random resistor network (RRN). Here one

studies the random walk motion of particles on percolation lattices.
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A general review on this subject is given by Pandey et a161,

where they presented a detailed Monte Carlo study for random walks on

various percolating lattices. The algorithm can be described as fol-

lows. For a given percolation lattice, one selects a site randomly as

local origin; from here the ant starts its random motion. One of the

nearest-neighbor sites is selected randomly, and the ant is moved to

this site if the bond linking these two sites is connected; otherwise

the ant stays at its previous place. In both cases the time is in-

creased by a unit step, whether the attempt to move was successful or

not. This process is repeated again and again for a preset time, the

maximum time. From the calculated rms distance R as function of time

t at various concentration p we can calculate the radii, dif-

fusivities, and the anomalous diffusion exponent.

The motion of the particle depends on the percolation probability

of the network. If the particle starts for p<pc from an arbitrary

origin, due to the absence of infinite cluster, the mean square dis-

placement R2 = < r2(t) > after a long time t approaches

32 = a: - Aexpl-(t/T)w] + ... (2.1)

where A is some p-dependent constant, Ron is the saturation value for R

and is some average cluster radius diverging at the percolation

threshold. Also the characteristic time T diverges at pc. For p>pc,

R grows with time asymptotically according to a diffusion law:

I

dRz/dt = constant + Bexpl-(t/T')" ] + ... (2.2)
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Right at pzpc, the asymptotic behavior of R(t) is presumed to follow

an anomalous diffusion law62

R a t + ... (2.3)

de Gennes proposed that one can equally think of the random

5“
resistor network as a diffusion problem , since the Einstein relation

connecting diffusion to conductivity applies regardless of whether or

not the system is random63. His term "ant in a labyrinth" to describe

the random walker on a random substrate has led to many new results

5“-58
for the RRN , such as the scaling relations among the exponents

describing conductivity and percolative quantitie856'6u’65. This is

an important conceptual advance and has been generalized to various

different problems, for example, random superconducting networks“.68

and two-component networks where bonds have two finite conductivities

(called termite diffusion)69’70. In the later case, the ant has dif-

ferent weights to correctly model the different conductivities when it

crosses the two-component boundaries. In this chapter, we use an

”ant" algorithm to calculate the effective conductivity of continuum

percolation systems.

11 .2 Comutational Algorithm.

In order to generate the a Swiss-Cheese system (see Chapter I)

with a given percolation probability p, we first calculate the number

of insulator circles we need to put into the system. This can be cal-

culated by using the formulae given by Xia and Thorpezs,
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p = exp (-nna2)
(2'1”

where a is the radius of circles, n is the area density of holes.

Then, fer a two-dimensional system with size LxL and percolation prob-

ability p, the number of holes is

N = - L2/(ua2) lnp (2.5)

Having this number, we can randomly put these holes into the system.

A typical example of this is plotted in Fig.1.2, where periodic bound-

ary conditions are used.

The random walk algorithm to find the electrical conductivity

consists of allowing an ant to land in a random location on the sys-

tem. If it lands on a void, the ant dies and is removed, if it lands

on a remaining part of the background, it begins to diffuse. The step

length of the ant is a variable in the algorithm, and must be chosen

to be sufficiently small to properly sample the inclusion geometry (it

rust be much less than the void diameter). Detail discussion about

this will be given in the later section about the convergence problem.

The ant randomly picks a direction and moves one step in that direc-

tion. If the ant hits any inclusions, the ant stays at its original

place, but the clock advances one step forward. In Fig.2.1, one difz

fusixni trajectory is plotted. The electrical conductivity is related

to the difoSion constant via the Einstein relation



 

    
Fig.2.1 A diffusion trajectory is shown, where the ant

starts from position 1 and arrives at position 2 at time

t. And the distance the ant travelled is R.
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2
o = e nD/ka (2.6)

where c is the conductivity, e is the electric charge on the ant, D is

the diffusion constant, kb is Boltzmann's constant, T is temperature

and n is the carrier density. The diffusion constant is related to

the distance that the ant travels in a time t via:

R « Dt (2.7)

where R is the radial distance travelled in time t. The simulation

method consists of measuring R2 for long times, averaging over many

initial configurations and walkers, and extracting D from the data.

Actually, the effective conductivity is calculated by the following

fermula:

c(p)/oO = D(p)/Do p (2.8)

where c(p) and 00 are the the effective conductivity and background

conductivity respectively, D(p) and D0 are the diffusion constants for

systems with percolation probability p and background (same diffusion

step length r is very important). The factor p occurs because we only

take into account those ants which start from the remaining back-

ground. For simplicity, we chose the value 00 to be unity. The

diffusion constant DD for background is related to the diffusion step

length r via:
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D ~ r (2.9)

An example of this procedure is given in Fig. 2.2 for the Swiss-

Cheese case with void fraction q=1-p=0.20. The value of c/c = Dp/D
0 0

extracted from these calculations is 0.67 1 0.01, and is comparable

with the best available estimates from perturbation expansions and

(rather tedious) analog experimentszg.

He have calculated the conductivity of Swiss-Cheese systems in

two dimensions for various percolation probability p (see Fig. 2.3).

In all of these calculations, the system size is L=50, the radius of

the inclusions is a=1.0 and the diffusion step length is fixed at

r=0.1. The typical maximum time is of the order 106. The calcula-

tions are averaged over 50 system configurations and 20 walkers per

configuration. In Fig. 2.3, we have plotted the available experimen-

tal results27 which were found from measurements of the conductivity

of a metal sheet with randomly punched holes in it. In this experi-

ment, about 3300 circular holes were drilled on each of two steel and

two molybdenum sheets (these materials are used instead of copper or

aluminum to avoid deformation during the drill). The size of the

sheets are 16cm x 16cm and the radius of the holes is 0.32cm. The

thickness of the sheets are 0.13mm, 0.25m and 0.38m respectively.

Effects due to the thickness of samples are negligible after observing

no change among the samples with different thickness. The finite size

effect only occurs for p very close to pc [typically when (p-pc)/pc S

21] . Thus, we believe that this experiment provided a reliable data

to test our numerical calculations.
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Fig.2.2 The distance travelled by the ant as a function of

time. The diffusion constant is given by the slope at long

time. Here p=0.90, system size is L=50, the radius of

circles is a=1.0 and the randm walk step is r=0.01. This

calculation is done by averaging over 50 systu realizations

and 100 different ant trajectories per realisation.
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As shown in Fig. 2.3, the calculated conductivities agree well with

the experimental data except in the region close to the percolation

threshold pc. We believe that the large discrepancy in this regime is

due to the following three reasons: 1) There exists a large finite

size effect as in lattice percolation problems; 2) The maximum diffu-

sion time is not large enough to find the correct limiting diffusion

constant near pc. This is because the diffusion behavior only sets in

when the distance travelled by the ant is much larger than the per-

colation correlation length 5, which diverges close to pc (E ~ Ip-

pcl'v); 3) The random walk step length is not small enough to

simulate the narrow necks that occur near to pc. In fact the size of

the smallest neck a is related to the percolation probability p18’19

by

6 ~ 1/L1 ~ (p - pc) (2.10)

where L1 is the number of singly connected bonds and is proportional

-1

to (qc-q) .

Since there exist many discussionsm’m’61 about solving the

first two problems listed above, we concentrate on the third problem

and try to characterize the effect of random walk step size on the

convergence of the random walk algorithm.
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11.3 Convergence Properties of Random Balk Algorithm.

In this section, we study the convergence properties of random

walk algorithms and test the ability of random walk simulation methods

to handle narrow necks by simulating the effective conductivity of

regular arrays of inclusions. The reason to use this system is: 1)

For this system, there exist more accurate results found using multi-

pole expansion methods71'75; 2) It is easy to clarify this issue

since disorder does not play any role in this system. 3) Due to the

periodic structure of this system, the diffusion regime sets in nuch

earlier than in the disordered systems. Therefore, more accurate dif-

fusion constants can be found.

He first briefly review the multipole expansion method for cal-

75-78
culating the effective conductivity Consider a square array of

cylinders each having radius a and unit separation between their cen-

ters (see Fig.2."). The cylinders have zero conductivities and the

mtrix separating the cylinders has a unit conductivity. The effec-

tive conductivity of this composite is 0 , which needs to be
eff

determined. Set up polar coordinates (r,9) with r being measured from

a cylinder center P and 6 from a line Joining neighboring centers.

76
Following Rayleigh we can expand the potential V(r,9) about P as

V(r,0) = A0 + 1:] (Alrl + B /rl) cosle (2.11)
l

for r>a and with the zero radial derivative at the cylinder surfaces.

The application of boundary conditions at the cylinder surface enables
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each A1 to be expressed in terms of 81' Symmetry conditions constrain

1 to run over odd values. The set of unknown Bl up to any desired or-

der can be obtained by truncation and solution of the following set

equations:

2n _

- n! Bn/a - 1:11:13,” 3 Bl (n+l-1)!/(l-1)! (2.12)
6 . n+1n,1

for n=1,3, . . .. Here the S1 are given by the sum over integers m and

S1 = mg» “in, 1/(m+in)l (2.13)

where (0,0) is excluded from the summation. By using the Green

73
theorem it can be shown that the effective composite conductivity

oeff depends only on BI:

eff = 1 - 21181 (2.1“)

Thus in order to calculate Oeff for a given order of solution (i.e. ,

for a given number of unknown Bl) the appropriate number of lattice

sums S1 must be calculated from Eq.(2.13); this enables the inversion

of the truncated system Eq.(2.12) to give the value of 8,, which is

then inserted in Eq.(2.1u).

In table 2.1, we list the calculated values oeff for various

volume fractions, f=1la2, and the minimum order, N, of solution re-

quired to achieve the accuracy shown there. An analytic expression

79.
f0r oeff of this array based on square truncation to order N=3 is
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Table 2.1 Values of conductivity 0eff for the square array

of insulating cylinders with various volume fractions f and

the minimum values of N required to obtain the corresponding

accuracy.

 

 

r 0eff N

0.1 0.8182 1

0.2 0.6665 2

0.3 0.5376 2

0.“ o.u25u u

0.5 0.32u7 6

0.6 0.2303 8

0.7 0.13fl5 16

0.75 0.07811 36

0.77 0.0889 #0

0.78 0.0278 100
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oeff = 1 — 2r/[1 + r - 0.305827fu/(1 - 1.402958r8)

- 0.013362f8] (2.15)

It is an interesting fact that oe is a monotonically increasing

ff

function of the order of solution N. Thus, the numerical values con-

verges from below to the true solution, as N increases.

Another important piece of information is the conductivity ex-

ponent for this system. This can be calculated by the multipole

expansion method given above. But an easier and more physical cal-

culation has been done by Kellerao, where he noted that it can be

found by calculating the conductivity contribution from the narrow

necks. By calculating the effective conductivity, he found that the

exponent t=0.5.

We applied the random walk algorithm to this system and calcu-

lated the conductivity for various volume fractions f (see Fig.2.5).

In these calculations, a fixed random walk step length r=0.01 was

used. From this figure, we can see that, comparing to the multipole

expansion method, the random walk algorithm gives very good results

until fc-f ~ 0.1. Near fc, there is a large discrepancy [see Fig.

2.5(b)]. Therefore, the conductivity exponent t calculated from these

conductivities is quite far away from the right value. This suggests

that close to the critical volume fraction fc the random walk step

length is not small enough to get a reliable result. In order to con-

firm this, we calculate the conductivity for two fixed volume

fractions (radius of inclusions a=0.110 and a=0.115 respectively) as a

function of the random walk step length r. And the result is plotted
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in Fig.2.6. As shown in the figure, the calculated conductivity in-

creases as the random walk step length decreases. It finally

saturates when the walk step length is below a critical length. This

is physically reasonable, as if the random walk step is much larger

than the size of the conducting narrow neck, the ant can not diffuse

through the narrow necks. Thus, we calculate a lower diffusion con-

stant which leads to a lower estimate of the effective conductivity.

As the random walk step length decreases, the diffusion constant be-

comes more accurate. When the walk step length is of the order of the

neck size, the diffusion constant saturates. This diffusion constant

leads to a good estimate of the conductivity.

11.” Conclusion and Possible Application to Elastic Moduli

Calculation.

In summary, we have addressed the question of transport property

in a continuum composite. We have found that a simple random walk al-

gorithm is able to calculate the effective conductivity in systems of

this sort. We have made extensive simulations of two different

specific models (Swiss-Cheese model and a square array of circular in-

sulating inclusions embedded in a conducting background), and obtained

results in agreement with those obtained from experiments and multi-

pole expansion method. We also studied the convergence properties of

these random walk simulations. Our main results is: in order to have

good estimate of the effective conductivity the following two condi-

tions are necessary:
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(1) The distance the ant travelled R >> g the correlation length

over which the disorder is correlated, which insures the diffusion

region sets in.

(2) Random walk step length 5 size of the narrowest neck. This

guarantees that the algorithm correctly samples the narrow necks which

have a significant contribution to effective conductivity fer high in-

clusion fraction.

One disadvantage of this algorithm is that it is an inefficient

use of computer time. This is because the walker spends too much time

in the background without getting very close to any inclusions.

Tobochnik52 proposed an algorithm to improve this, where the first

passage times are used. The basic idea is as fellows. For a given

composite structure and a particular random walker position, we first

find the largest circle (or D dimensional sphere in D dimensions)

which does not overlap any inclusion and is centered at the present

position of the walker. Then we move the walker immediately to a ran-

dom position on this circle (or sphere) and update the time by picking

it from a distribution of first passage time to the circle. The first

passage time distribution can be determined by solving the diffusion

equation with the right boundary and initial conditions (for details,

see Ref. 52).

Finally, we briefly discuss the possible application of this ran-

dom walk algorithm to the calculation of the elastic moduli of

composites. The random walk algorithm appropriate to elastic systems

is vector in nature81, and has not yet been properly formulated and

tested, even on the much simpler lattice problems. The random walker

is no longer a scalar quantity but rather a vector quantity. This is



117

because isotropic elasticity involves two degrees of freedom, leading

to two diffusion rates (related to the longitudinal and transverse

sound velocities) and two elastic moduli -— the shear modulus and the

bulk modulus. Therefore, the diffusion algorithm in this case in-

volves the walker both hopping, as in the scalar case, but also

rotating according to well defined rules. At long times the probabil-

ity distribution is the sum of two Gaussian-like distributions; one

depending on the longitudinal sound velocity and the other on the

transverse sound velocity. But, we have not developed a good way of

extracting these two sound velocities from the long time behavior.

This is the major technical problem in implementing the random walk

algorithm for the elastic moduli, and is under investigation now. If‘

this problem is solved for a lattice, it could be easily extended to

elastic continuum systems.



CHAPTER III

Size and Location of the Largest

Current in a Random Resistor Network

— Anomalous Size Effect in Breakdown
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III . 1 Introduction.

As discussed in chapter I, the random resistor network is a

paradigm for the study of transport in random media“ and can be ex-

39'”1’"". It hastended to the study of breakdown in random media

been briefly illustrated in chapter I that it provides a nontrivial

starting point in the study of crack initiation due to defects, and a

simple starting point for the study of breakdown in quenched random

media. In this chapter, I will use these networks to study the

anomalous size effect in breakdown problems.

An analytic study of breakdown networks centers on the bonds car-

rying the largest loads, and in the case of the fUSe network, the bond

carrying the largest current. In this chapter, we will study the

properties of the largest currents, in particular, we will show that

the largest bond current in a random resistor network (RRN) with p

(p>pc) present bonds of resistance 10, and 1-p vacant bonds, scales

with L, the linear dimension of the network, as

a
Imax ~ (lnL) (3.1)

3
100m ~ (lnL) (3.2)

in the dilute limit, i.e., for L (the linear dimension of the

network)»;p (the percolation correlation length). This is the so-

called anomalous size dependence in breakdown problem. Imax is the

largest current in the random resistor network, and Icom is the

largest current in a failure initiating bond. 0 and B are enhancement

 



50

exponents. In this chapter, we will analytically calculate the

largest current in some special cases, give general arguments to sup-

port Eqs. (3.1) and (3.2), and suggest that a and B obey the

approximate inequality

1/[2(D-1)]SaSBS1 (3.3)

where D is the spatial dimension. Numerical simulations which support

the analytic predictions for two-dimensional random resistor networks

are also given. In addition, we study the location of the largest

current in the network and find that in a system with free boundary

conditions, there is a strongly enhanced probability near the free

surfaces of the network. Translated into breakdown language, this im-

plies that cracks are often initiated near the surfaces of a sample.
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II I .2 Analytic Study.

In the dilute limit, where L>>gp, defect clusters are well

separated, and may, in a first approximation, be treated independ-

ently. Ne consider LD random resistor (10 per present bond) networks

that have a current of 1A through each vertical bond in the pure

limit. Upon adding a small fraction 1-p of defects (which have zero

conductivity), we then wish to find the size of the current in the

hottest bond (the bond carrying the largest current). As discussed in

Chapter I, in two dimensions, long thin defects are especially effi-

cient at causing current enhancements near their ends [see

Fig.3.1(a)], and our analysis begins by calculating the current en-

hancements due to defects of this sort. The largest defects of this

sort have the largest current enhancements, and as we have shown in

Chapter I, the largest defects of this form are of size lnL. To find

the current at the end of a defect like that shown in Fig.3.1(a) on

the lattice, we use the continuum approximation shown in Fig.3.1(b).

The solution to this problem in two dimensions may be found using el-

liptical coordinate solutions to Laplace‘s equations, and is given in

Appendix B, from which we take the result

COShEanD(€a-§)

Jtip(x) = JQII + -----EIEEE----- i, (3.“)

where Jtip”) is the current density at distance x from the tip (at

x=a) of the defect along the y=0 axis, £=cosh'1(x/a), and J“ is the

current density at a large distance away from the defect. To find the
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(b)

Fig.3.1 (a) A failure-inducing single defect in the square

lattice random resistor network. (b) An elliptical defect

that acts as a continqu-limit representation of the defect

in (a).
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prediction that this result makes in the lattice problem, we must in-

tegrate over the lattice spacing d, to find

Ia+d

Itip= a Jtip

(x)dx

cosh;alaexp(§-§)

M§::;d)J[1 + ----5165:------ ] CSinhng

=Im{1+ g- [1-exp(§a-§a+d)]} (3.5)

where ga = cosh-1(a/c), = cosh'1[(a+d)/c], and I“ = jmd if the
ga+d

current flowing in a vertical bond is a long way from the defect. For

simplicity, we take I“ = 1. In terms of d, a, and b, there are two

limiting behaviors in Itip’

(i) da<<b2, where I . ~ Ion (1+a/b) (3.6)

tip

(ii) da>>b2, where Itip ~ Im[1 + /(2a/d)] (3.7)

For i}) (D is the spatial dimension) RRN, the lattice spacing d:1. In

addition, b corresponds to the thickness of the long defect of

Fig.3.1(a) in the y direction, and so b=1. Since a ~ lnL, the limit

da>>b2 is the correct limit to take in comparing the ellipse result

with the lattice problem. Using the single-ellipse result, one then

finds that somewhere in the RRN there is a bond whose current scales

as
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I ~ (lnL)”2
2D ellipse (3‘8)

Now consider the random resistor network to be a breakdown network by

changing all of the resistors to 1-0, 1-A fuses. The failure of the

bond at the end of an "ellipse-like" defect will lead to the eventual

failure of the whole network, as the crack grows from the outer tips

of the long thin defect in Fig.3.1(a). The ellipse thus gives an es-

timate of the current in a "failure-initiating" bond, and from it we

obtain the estimate Icom 2 Iellipse‘ There are, however, defect con-

figurations that lead to large current enhancements and do not lead to

the failure of the whole network. One such configuration is shown in

Fig.3.2(a). The bond in the middle of the two cracks in this figure

carries the most current. However, when it fails it does not neces-

sarily lead to the eventual failure of the whole network82. This sort

of crack configuration is considered further below. Before doing

this, we find Icom in three dimensions based on calculations using a

oblate spheroidal defect found by forming a solid of revolution about

the y axis of Fig.3.1(b). Solving Laplace's equations in oblate

spheroidal coordinate383 (the detailed solution is given in Appendix

B), one finds, for the current density as a function of distance from

the edge of the y=0, r=a circle,

Jy=Jm{1-[cot'1(sinhu)-(sinhu)'1]/[cot'1(sinhu,)

- sinhu,/(1+sinh’u.)]}, (3.9)
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where a=ccoshu., r=(x’+z’)1/2=ccoshu, b=csinhu,, a’=b’+c’. This is

integrated over the lattice spacing d in the x and 2 directions, and

again taking the limit da>>b2, with b ~ d to obtain the lattice limit,

we find

Itip = IJy dxdz

_ 2 u(a+d)
- 210 Iu(a) coshu sinhu jydu

2 2
= uczjm{cosh u - [sinh u cot-1(sinhu) -

sinhu -tan-1(sinhu)]/[cot-1(sinhu,) -

2 u(a+d)
sinhuo/(1 + sinh u°)]}u(a)

~ Im23/2/u (a/d)‘/2, (3.10)

with the result a ~>nmxv2 ~ (lnL)”2 in three dimensions (3D)u1'u3,

and we find, further,

1/fl
Icom Z (lnL) (in 3D). (3.11)

Again, this defect leads to the eventual failure of the whole network

11 11

as the crack grows from the outer edges of the penny-shaped crack.

Combining the equations above fer 100m in two and three dimensions, we

find
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Icom ~ (lnL)B with 321/[2(0—1)]. (3.12)

Here we have written BZ1/[2(D-1)] because although the isolated el-

lipse and spheroidal defects that we have studied will certainly lead

to the failure of the network, there may be other configurations that

we have not studied that lead to failure more readily. The ellipse

result thus provides an approximate lower bound on B. It is only an

approximate lower bound, as we cannot rigorously exclude the pos-

sibility that the network may be stronger than the prediction found

from the ellipse result; although on physical grounds we consider it

unlikely, and the numerical evidencem'u3 (also see next section) sup-

ports Eq. (3.12).

It is straightforward to find a defect configuration that leads

to a greater current enhancement than that induced by the ellipse. In

two dimensions, one such defect is shown in Fig.3.2(a). The bond be-

tween the two cracks carries the most current, and we can make an

analytic estimate of its current by solving a continuum two-crack

problem. It is not possible to solve the two-ellipse problem, but it

is possible to solve the problem of two infinitesimally thin slits in

two dimensions by using conformal transformation techniques. We thus

replace the lattice problem of Fig. 3.2(a) by the continuum problem of

“3' 3°2(b)- BY conformal transformations"-86 (see Appendix B), the

two-slit problem is transformed as depicted in Fig. 3.2(c), a problem

that is trivially solvable for infinitesimally thin slits. The form

of the conformal transform is quite complex, however, so we defer

detailed calculations to Appendix B. The current density between the

two slits of Fig. 3.2(b) is then integrated over the lattice spacing
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Fig.3.2 (a) A strong current-enhancing defect configuration in

the aware-lattice RRN. The bond between the two defects carries

a large current. (b) A continuim representation of the defect in

(a). The defects are infinitesimal slits lyim slow the x axis.

(0) Under .a conformal transformation, the defect configuration of

(b) is transformed to that M in this figure. The calculation

of the electric field in this geometry is trivial.
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d, to find, for the current between the two slits in the lattice

limit,

I 1

Islits:2Jw(a+b)[R(k)‘x(k)+E(k )K(k)/K(k )I. (3.13)

where 2a is the distance between the two cracks [see Fig. 3.2(b)]. b

is the length of each crack, k=a/(a+b), k' = 1/(1-k2), and K(k) and

E(k) are,respectively, elliptic integrals of the first and second

kind. When the cracks are close so that a/b+0 and k+0, we find

Itotal ~ (a+b)/ln[a/(a+b)]. (3.1“)

which implies

Imax ~ ln(L)/ln[ln(L)], (3.15)

or 0:1, ignoring the ln[ln(L)] correction. As a technical aside, it

is interesting to note that although the single-slit result does not

produce the same current density at the slit tip as is found at the

ellipse tip, after integrating over the lattice spacing the ellipse

and the slit give the same expression for the current (this is

demonstrated in Appendix B).

In general, we believe that it is always possible to find a

defect configuration that channels a current proportional to the

defect size through one critical conducting bond, and hence that 0:1

for any dimension. In any case, 0:1 is an upper bound on the amount

of current that can be channelled by an isolated defect cluster, Just

due to current conservation. Based on the isolated defect cluster
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calculations described above and Eq. (3.12), we thus find the ap-

proximate inequality given in the Introduction [Eq. (3.3)].

1/[2(D-1)]SBSaS1 (3.16)

The only way that this result can be invalidated is for the

cumulative effects of many defect clusters to lead to qualitatively

new behavior. He may estimate the maximum enhancement this effect may

have by replacing each defect cluster by a dipole current source, and

considering a random distribution of such dipoles on the lattice. The

maximum cumulative effect of such a distribution of dipoles is

L D-1 D

Imax I1 dr 1‘ (1—p)1d1pole/r , (3.17)

where Idipole is the average strength of one dipole [0(1) for L>>§p].

The integrand is the maximum contribution to a bond current at the

origin due to all dipoles on the hypersphere at distance r. Upon

doing the integral, one finds

I ~ lnL in all dimensions. (3.18)

The failure of such a bond does not necessarily lead to the failure of

the network, and the long range cumlative effects of dipole current

sources thus leads to the prediction 051 as found above using defect-

cluster arguments. He thus believe that Eq. (3.16) provides reliable

bounds on 0 and B, and that the evidence is quite strong that 0:1 in

two dimensions. In the next section we test the analytic predictions
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that we have made above by doing numerical simulations on the two-

dimensional random fuse network.

111.3 Nuerical Simulations.

In order to test our predictions, we have performed numerical

simulations on LxL square-lattice random resistor networks. As

described in Chapter I, we use the Conjugate-Gradient method to solve

Kirchhoff's equations on this network. In the calculations described

here, we apply an external current of 1A per vertical bond and free

boundary conditions in the transverse direction. The solution is con-

sidered to have converged adequately when the residual vector” is

less than 1.0x10'7.

In Fig.3.3 we plot the maximum current Im x (averaged over 50
a

realizations) as a function of lattice size L, with L ranging from 10

to 200 for several values of p. At all values of p presented in the

figure, the data suggest that Imax is linearly dependent on lnL, and

hence that 0:1 in two dimensions. These numerical data thus support

the prediction found from the analytic arguments of the preceding sec-

tion, and we thus believe 0:1 in two dimensions fer L>>§p.

141.13
I

As discussed previously loom: Imax when there are no

defects in the system, and also that Icom ~ Imax at the percolation

point. He thus have chosen to do a detailed comparison of Icom with

Imax at p:0.75, as any differences between two quantities should be

noticeable at this defect fraction. It is much more time consuming

computationally to calculate Icom as it involves carrying the crack-

propagation process to completion. The data presented in Fig.3.“ on
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Fig.3.3 The size of the largest bond current, (Imax), on

LxL square lattice random resistor networks as a function

of the lattice size L, for p=0.90 (D), p:0.80 (<>), p:0.75

(+), and p=0.70 (x). Each point is an average over 50

realizations.
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Each point is an average over 50 realizations.
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square lattices of sizes from L:1O to 100 with 50 realizations per

lattice size took 5 h of Cyber 205 CPU time. The data are consistent

with the equality 0:8:1 in two dimensions, although the Icom data have

some downward curvature. The data are certainly consistent with the

theoretical prediction given in Eq. (3.16) of the preceding section.

The prediction that 0:1 in two dimensions has implications for

the nature of the tail of the bond-current distribution occurring in

the RRN. The fact that the largest current increases logarithmically

implies that the tail of the bond-current distribution is exponential,

as can be seen from the following equation,

LDexp(-BIma ) ~ 1, (3.19)
X

where B is independent of L, and so

I ~ lnL. (3.20)

The relationship between the extreme values of a distribution and the

nature of the distribution tail is well studied in statistics, and may

be found, for example, in the book by Gumbel“. Another numerical

test of the exponent 0 is thus to study the form of the tail of the

distribution of bond currents. The bond-current distribution for L:80

square networks with p:0.80 and 0.90 is shown in Fig.3.5(a). The two-

peak structure of the distribution in Fig.3.5(a) is a reflection of

the fact that when there are no defects in the network, the vertical

bonds all carry the same current, while the horizontal ones carry

none. In the pure limit the distribution fUnction is thus two delta
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Fig.3.5 (a) The probability distribution of bond currents

for the square-lattice random resistor network for p:0.90

(-) and p:0.80 (<>). The figure was constructed from 50

realizations of a 80x80 square lattice. (b) The data of (a)

plotted on a log-linear scale to emphasize the exponential

tail of the distribution function. If the tail of (a) is

exponential, we expect the tail in this figure to be linear.
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functions, one at the origin and one at a current 1A. This two-peak

structure persists for defect fractions quite close to the percolation

point. In this chapter we most interested in the tail of the dis-

tribution function, and, in particular, we expect the tail to be

exponential in I, if the value 0:1 is correct in two dimensions. The

bond-current distribution data in the tail of the distribution of

Fig.3.5(a) is plotted to fall on a straight line if the tail is ex-

ponential, and , to the accuracy of the numerical data, it does.

The location of the largest current in the RRN also shows an in-

teresting behavior as a function of the distance from the free edges

of the network. This is shown in Fig.3.6(a) and 3.6(b) for L:50 and

90 RRN at p:0.90. These figures show that there is a greatly enhanced

probability of finding the bond with the largest current near the sur-

faces of the network. This may be quantified by measuring the ratio

R(L) = Pmax/Pbulk’ (3.21)

where, for L:50, Pmax is the maximum of the curve in Fig.3.6(a) and

Pbulk is an average over the central region of the same graph. R(L)

appears to increase algebraically with system size, as shown in Fig.

3.7, which implies that with increasing system size the probability

that the bond carrying the largest current, lies near the surface, in-

creases.

The results depicted in Fig. 3.6 and 3.7 may be qualitatively ex-

plained on the basis of isolated defect-cluster arguments. The
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effect is reflected in a isolated-defect problem, in the statement

that as the isolated defect is moved closer to a free boundary the

current at its tip increases markedly. A graphical representation of

this effect is also given in Fig.3.8 (rectangles), where the current

at the tip of the defect of Fig.3.1(a) is monitored, as the defect is

moved towards the edge of the system. A similar effect occurs for the

defect of Fig.3.2(a), and is shown in Fig.3.8 (triangles), where the

current in the bond at the center of the two cracks in Fig.3.2(a) is

shown as a function of distance from the free edges of the network.

From Fig.3.8 it is seen that defects close to the free edges of the

networks lead to greater current enhancements than the same defects in

the bulk. An approximation to the enhanced surface probability is to

frame the question in a slightly different way. Namely, what size

surface defect do we need to have to produce the same current as a

reference defect in the bulk? In the case of the defect of Fig.

3.2(a) the defect at the surface needs to be about 3/‘1 (for an 80x80

lattice) the size of its bulk counterpart. One then finds for this

type of defect cluster the following enhancement in finding the defect

at the surface,

R = Psurface/Pbulk

~ (1_p)-3lnL/H[ln(1-p)]/(1_p)-lnL/ln(1-p)’ (3.22)

where we have used Eq.(1.19) and (1.20) in Chapter I to derive Eq.

(3.22). We then find
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Fig.3.8 The effect on Imax of moving the defect of Figs.

3.1(a) (o) and 3.2(a) (o) towards the free surface of

the RRN. The calculation was performed on a 80x80 lattice,

with nine bond defects. In. measures the center of the

isolated defect, and the figure gives the size of I.“ as a

function of X_.
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1/‘1
/P L (3.23)

Psurface bulk ~

We expect that the qualitative behavior is correctly given by

these arguments for general lattice dimensions and when the random

distribution of defects is included into the network, but with a dif-

ferent exponent. From the results of simulations of the full network

presented in Fig.3.7, we find this surface probability exponent, x, to

be (at p:0.90)

R: P /P L“, (3.21)
max bulk~

with

x:0.310.05. (3.25)

Translated into breakdown language, the results of Eq.(3.2fl) and

(3.25) suggest that cracks are often initiated near the surfaces of

the sample. This is an effect that is often observed in both electri-

cal and mechanical breakdown situations, but is usually attributed to

extra surface defects or surface inhomogeneities. Although these

probabilities do often occur in real situations, the results discussed

above show that the presence of a free surface is of itself enough to

induce a greatly enhanced probability of crack initiation in its

vicinity.
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III." Conclusions.

In this chapter we have studied the size and location of the

largest current in a RRN. Our conclusions are follows.

(1) The largest current in a RRN, with fraction 1-p of zero-

conductivity bonds, on length scales L >> gp’ has the scaling behavior

Imax ~ (lnL)“, while the size of the current in the failure-initiating

bond has the scaling behavior Icom~ (lnL)B. Analytic arguments place

.approximate bounds on 0 and B, as given in Eq.(3.3). Numerical

simulations in two dimensions indicate that 03831.

(2) The probability of finding the bond with the largest current

near the free surfaces of the network is much larger than that of

finding the largest current in the bulk. This is quantified by ratio

R : Psurface/Pbulk

Numerical simulations suggest x:0.30:0.05 at p:0.90 in two dimensions.

The methods and results of this chapter can be used to study many

other network models of breakdown, particularly, the brittle fracture

and dielectric networks described in Chapter 1.



CHAPTER IV

 

Comparison of Moduli and

Breakdown Scaling

—— A Moment Spectrum Analysis
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IV . 1 Introduction .

In this chapter, we will study the origin of the very different

scaling behaviors for transport and breakdown properties by analyzing

the moment spectrum of the local load distribution. If a constant ex-

ternal electric field or stress is applied to an inhomogeneous

material, the local stress or electric field shows strong spatial

113 , 82 , 88-911
fluctuations The size of these local load fluctuations is

quantified by a distribution function we call the local load distribu-

tion L(x). This distribution function has been intensively studied

recently in the context of the voltage distribution at the percolation

point, where it has been labeled multifracta188’89'95. In this chap-

ter, we show that the moment spectrum induced by a random environment

provides a useful concept in which to understand the differences be-

tween the scaling behavior characteristic of transport10 and

96-98
elastic moduli and the very different scaling behavior charac-

teristic of breakdown propertiesS’ul'u6’u9’99-‘01.

It is known that the effective conductivity of an inhomogeneous

material is related to the second moment of L(x)1o, while the resis-

tive noise is related to the fourth moment of this

distribution102-105. In a similar way, properties such as elastic

constant and thermal conductivity are related to the second moment of

the appropriate local load distributions. By contrast, fracture

strength, dielectric strength and other breakdown properties are in-

itiated in regions where the local load is largest5’u1-u6’u9’99—1m.

It is intuitively plausible, and in this chapter we give quantitative
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evidence that, these load hotspots are related to the very high mo-

ments of the local load distribution. A study of the full moment

spectrum thus allows us to understand in detail the crossover from

low-moment scaling (transport properties, etc.) to high-moment scaling

(hotspots and breakdown properties).

To study this crossover, we first focus attention on isolated

cracklike flaws that most enhance local fields. The low-moment-to-

high-moment crossover of systems containing such isolated cracks is

discussed in section 2. To carry out the analysis, we need simple

scaling forms for the local stress or electric field distributions

near isolated cracks. These forms are derived in the Appendix B, and

are sunmarized in Eq. (11.15) and (11.22).

When a distribution of flaws is present in a material, it is not

possible to find the detailed form of the stress or electric field

distribution. Despite this, we argue in section 3 that it is possible

to estimate the point at which the crossover from low moment to ex-

treme scaling occurs, by studying the form of the tail of the local

load distribution. This analysis is carried out for systems with ex-

ponential, algebraic, and multifractal tails in L(x). A numerical

illustration of these arguments is provided by calculating the moment

spectrum as a function of dilution for two-dimensional random resistor

networks. The results are displayed in Fig.4.3.

In section R, we study numerically the origin of multifractal be-

havior in electrical breakdown problem by using random resistor

networks. We find the local load (voltage) distribution change radi-

cally during the breakdown process, and that the narrow neck occurring

just before failure generates a broad voltage distribution. This
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broad voltage distribution leads to a multifractal scaling, and it

even occurs in systems very near the pure limit. The precise form of

the spectrum is sensitive to the initial randomness of the networks.

Finally, we conclude this chapter in section 5.

111.2 Moment Saling due to an Isolated Cracklike Flaw.

As in the most traditional theories of mechanical fracture“,

consider an isolated crack of length, a, and with a curvature at the

crack tip, K, in an otherwise, homogeneous system with large volume V

: Ld (a< (L). It is known that such an isolated crack (which is

modeled as a cracklike void) makes negligible contribution to the

overall conductivity“.15 [see Eq. (1.6)], 2 i.e., that,
eff’

2 /£~1-0(Veff 0 /V), (u.1)
inc

where )3 is the background conductivity and V c is the volume of the
0

inclusion. In contrast, such an isolated crack drastically reduces

in

the electrical and mechanical strength of the system, as near the

crack tip, strong load enhancements occur, and for the electrical case

one findss’uB’uS’uG’ug,

~ (a/2k)1/2 (f0r a>>1),Etip/EO

which leads to an electrical strength of order

Eb(a)/Eb(0) ~ E /E . ~ (2K/a)1/20 tip (for a>>1) (N.2)
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where Eb(a) and Eb(0) are the electrical strength of the sample with a

flaw in it and with no flaws respectively, and the electric field is

applied perpendicular to the crack. Similar expression to Eq. (14.2)

hold for the tensile strength of brittle materials with E and E20 re-
b

placed by stresses, and with a different constant prefactor. The

important scaling behavior that we want to emphasize is that in many

materials electrical and mechanical strength decrease as the square

root of crack length, while conductivity and elastic moduli have cor-

rections of order (1/V) for a<<L. The result in Eq. (M.2) is based on

field intensity calculations. Fracture strength reduction due to

cracks is most often discussed using energy balance arguments, in

which the elastic energy reduction due to increasing crack length is

balanced against the energy to form new fracture surfaces. For the

linear elastic case this is a classical calculation, and leads to the

(plane strain) Griffith's formulaso,

2Y : 1102a/e which implies 0b : (2Ye/1Ia)1/2b 01.3)

where Y is the energy needed to create new crack surfaces, while e is

51 is alsothe elastic modulus of the background. An analogous result

available for the dielectric strength of a two dimensional insulator

containing a long thin piece of metal (this is a dielectric "crack")

oriented parallel to the direction of applied electric field.

However, this analogy does not carry over to 3 dimensions where a

penny shaped crack is most important for mechanical and electrical

failure, while a finger-like defect is most important for dielectric

failure.
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In this chapter, we use stress and electric field intensity for-

mal ism, as they provide a framework in which to better understand the

crossover from moduli scaling to breakdown scaling.

To demonstrate that the moment spectrum of the local load dis-

tribution contains Eqs. (11.1) and (11.2) as limiting cases, note that

the maximum electric field occurring in a system may be written,

am ~ (#41:, (Ma)

so that

Eb(flawed system)/Eb(0) ~ (E: )/(Em>1/m as we». (11.11b)
0

For the case of insulating inclusions, it can be seen that the effec-

tive conductivity is related to the second moment of the electric

field distribution by noting that the power P

2 2 2
P - VEO Zeff - IE 2(r)dv - zo<s >v, (4.5)

so that

_ 2 2
zeff/EO - (E >/<EO>. (u.6)

Comparing Eqs. (11.11b) and (11.6), it is seen that study of the function

_ 1/m
Rm - <EO>/(Em> (A.7)
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provides a simple quantity that typifies the crossover from low-moment

to extreme moment scaling as a function of m. For a system containing

an isolated crack, this quantity shows a crossover from 0(1/V) correc-

tions when m is small to the typical breakdown scaling of Eq.(‘1.3)

when 01 becomes large. We now study this crossover analytically for

electrical, mechanical, and dielectric systems containing an isolated

crack.

Consider an isolated cracklike elliptical void in the geometry

shown in Fig.0.1. In elliptic coordinates, g, n,

x=ccosh§cosn, z:csinh§sinn (fl.8)

with the ellipse equation being

2 2

x2/a2 + z /b = 1 (11.9)

and

and the electric field applied in the z direction has amplitude 80 far

from the ellipse. Solving Laplace's equation in elliptical coor-

dinates yields the electric potentials,

01" : -Acsinh§sinn (H.10a)
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Fig.1).1 The geometry of the two-dimensional ellipse problem.
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¢out : -Eocsinh§sinn + Be—gsinn (n.10b)

with

A:Eo(a+b)/B, B:-E0a(a+b)/c (H.100)

The electric fields are then given by

EE -(1/1)8¢/8§, En = -(1/I)3¢/8n (H.11)

where

T = c(sinh2§ + sinzn)“2 (“.12)

The full expression fer the electric field moments is given by

(Em) = (1/V) IV (E2 + £2)m/2dg n V (H.13)

It is known that the second moment (m:2) and inclusion energy scale as

<52>x<sg> ~ 1 + 0(1/V) (1.11)

the corrections to the conductivity due to the isolated crack are re-

lated to the second moment [see Eq. (fl.6)], and this implies Eq. (u.1)

for a single crack. Re have not been able to analytically evaluate

Eq. (11.13) for any m>2, but the important scaling behavior may be
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found by noting that the electric field as a function of radial dis-

tance parallel to the major axis of the ellipse behaves as shown in

Fig. 11.2 (a). The important scaling behavior that occurs in this

figure is sunmarized mathematically by (see Appendix B)

1 + aze/rd for r>>a (4.15s)

1/2

Ez(r)/EO 018 + 028(a/2r) for x<r<a (H.15b)

1/2

k1e + k2e(a/2k) for r<k (”.150)

where 023 is a dipole moment for the two-dimensional problem of a

crack in a resistive background, x is the crack tip curvature (:b2/a)

for an ellipse, and 016, c2e’ k1e and k28 are constants for the two-

dimensional (2D) electrical problem. In fact, the scaling behavior of

Eq. (11.15) is highly universal, and applies (with different 0, c, and

k) to ellipse, ellipsoidal, and slitlike cracks in 2D and 3D linear

elastic (plane stress) and electric problems (see Appendix B). This

is illustrated for the 3D elastic problem in Fig.ll.2(b) where the

z-direction stress is plotted as a function of radial distance from

the tip of an oblate ellipsoidal void (in the x-y plane). Again, the

near-field square-root behavior crosses over to a far-field dipole

form, in agreement with Eq. (11.15). As seen from Eq. 01.1%), an im-

portant singular behavior occurs near the crack tip, and the angular

dependence (to x axis) of this singular behavior is

Er(r,9) ~ Eo(a/2r)1/Zsin(9/2),

(11.16)

E ( 1/2

9 r,0) ~ Eo(a/2r) cos(0/2)
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Fig.3.2 (a) The (2:0) electric field, fish), as a function

of distance from the tip of an ellipse (a:200, b=1). The

mathentical form of the scaling behavior in Bah) is given

in Eq. (L15) of the text. (b) The 2:0 stress field, o'(r),

as a function of r for an oblate ellipsoid (a:200, b:1) in an

elastic background. The damned line has slope 11,-.
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for 0 small. This more general form does not, however, change the mo-

ment scaling behavior derived below, and henceforth we use Eq. (11.15)

in our scaling analysis. The most important physical observation is

that as the moment value is increased, the regions (H.15b) (0.150) in-

crease their contribution to the integral (11.13). This is explicitly

seen by subdividing and approximating the integral 01.13) as shown

below

v <[E(r)/Eo]m> ~ Ir>ardr (1+0Ze/r2)m

+ IK<r<ardr [c1e+cze(a/2r)1/2]m

+Ir<Krdr [k1e+kae(a/2k)1/2]m (1.17)

keeping the most singular terms in each integral, we find,

<[E(r)/E0]m> ~ 1 + m0(V1nc/V) + (a/2K)m/2K2/V (0.18)

where Vin is the volume of the inclusion. The owinc/V) term is es-
c

timated by considering the leading term in the first integral, and

including the correct angular terms. This is necessary, as this term

is a dipole integral, in which care must be taken to ensure that all

terms are included, and that boundary terms do not produce unphysical

results. The result is a term of order the inclusion energy, which

leads directly to the result quoted.

From Eq. (11.18), we can see that RIll [see Eq. (11.7)] has the fol-

lowing scaling forms:



1 - 0(vinc/V)’ m<<mc,

R ~
(“.19)

(2x/a)1/2, m>>mc,

where me is found from

(a/21<)‘“/2 K2/V ~ 1 (11.20)

or

me ~ 2ln(V/K2)/ln(a/2x). (H.21)

Due to the universality of Eq. (11.15), this result straightforwardly

generalizes to three-dimensional electric problems and to elastic

problems in two and three dimensions.

There is also a great deal of similarity between the problem of

an insulating crack in a conducting background and the problem of a

conducting crack in an insulating background. The former problem has

been discussed as the simplest example of an electrical breakdown

5,u1-u6,u9,99-101
problem , while the latter is the simplest starting

point for understanding defect-induced dielectric

breakdmn5,ll1-li6,ll9,99-101.
It is well known that in two dimensions,

the electric field enhancement at the tip of a metal ellipse oriented

parallel to the applied electric field in an insulating background, is

the same as that at the tip of a void inclusion oriented perpendicular

to the applied field and in a conducting background (see the Appendix

B). The asymptotic form (4.15) then applies equally well to the
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dielectric problem in two dimensions, and hence that Eqs. (11.17)-

(ll.21) express the moment scaling appropriate to that problem. The

dielectric problem is different in three dimensions, however, as there

the most important cracklike defect is a fingerlike

5,u1-ue,19,99-101
inclusion , which induces the fellowing electric field

behavior near its tip (for detail calculation, see Appendix B):

1 + 03d/r3 for r>a

Ez(r)/EO ~ ln(r/2a) + a/2r for k<r<a (H.22)

1 + (a/b)2/ln(2a/b) for r<k

in this case the integration over the region near the crack tip leads

to

V<[E(r)/EO]m> ~ 1: rzdr (1+03d/r3)m

+ 1: r2dr[ln(r/2a) + a/2r]m

+ K3[l + (a/b)2/ln(a/b)]m, (4.23)

so that

<[E(r)/Eo]m> ~ 1 + m0(Vinc/V) + (a/2x)mK3/V (n.2u)

The moment value at which crossover between low-moment scaling and ex-

treme scaling occurs is then given by

me ~ ln(V/K3)/ln(a/2K). (1.25)



86

For extremely sharp cracks (koO), it is seen from Eqs. (H.18) and

(11.211) that if 1: becomes sufficiently small, a singular behavior can

occur for low-moment values. For the problems described by Eq. (H.18)

this moment value is

m z 11 (11.26)

m = 3 “4.27)

For m > mm, moments are affected by extremely sharp cracks, and in

fact these moments are singular as x + 0.

IV.3 Systems with Flaw Distributions.

In this section, we consider systems with a distribution of

voids. These voids are randomly distributed and may have any shape.

When such a distribution of flaws is present in a material, a dis-

tribution of local loads is induced. The point at which extreme

scaling sets in, is determined by the form of the tail of the local

load distribution L(x). In this section we consider exponential, al-

gebraic, and multifractal load distribution tails. A specific

illustration of our results is provided by numerical studies on random

resistor networks.

A. Exponential tails in L(x) -- p>pc random resistor networks
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When the dilution, f:1-p, is small, the distribution of bond cur-

rents (and hence voltages) in the 2D LxL random resistor network is

known to be exponentialu3. In this case, the largest current in a

system of size Ld is of order Imax ~ lnL, and for a fixed applied cur-

rent of L amps, the high moments of L(I) are then approximated by

I

<1m> ~ A! max Im exp(-AI) d1 (4.28)

This is true as long as m/A >> 1, and A ~ -ln(1-p) for p small”. As p

approaches pc, A becomes small, and a multifractal bond current dis-

88,89
tribution must be considered This integrand in Eq. (H.28) has a

maximum at Ipeak ~ m/A, after which it decays exponentially. If this

peak lies far above the upper limit of the integral in Eq. (”.28), the

algebraic term dominates, and the integral is approximated by

m+1

(1m) ~ (lnL) /(m+1) for m>mc ~ lnL (n.29)

so that

<Im>1/m

~ lnL ~ Imax (“-30)

Thus, for m>mc ~ lnL, moments drawn from an exponential local load

distribution exhibit extreme scaling,. For m<mc the full integral in

Eq. (".28) must be calculated, and that in this regime the systems ex-

hibit low-moment scaling. To illustrate the crossover from low-moment
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to high-moment scaling numerically, we present in Fig.1).3 these mo-

ments calculated for 100x100 random resistor networks for a range of

values of p. In these calculations we find <10>/<Im)1/m for fixed ex-

ternal supplied current as a function of p. As in the single crack

case, mun yields a crossover to breakdown scaling, while low moments

are nonsingular near the pure limit, as is the conductivity. A plot

of these moments as a function of system size is shown in FingJi,

where it is seen that low moments saturate at a finite value for large

system sizes, while extreme moments continue to decrease logarithmi-

cally as a function of system size (this is the characteristic "size

effect" of breakdown in random media). Since me ~ lnL, we find that

each moment has a critical length associated with it, and that this

critical length is given by Lc ~ exp(m). For L>Lc(m), the moments

show the 1/lnL size effect characteristic of breakdown. In this

sense, the breakdown limit is a critical point in moment space at

which Lc . w exponentially.

B. Algebraic tails in L(x).

Consider a bond current distribution which is algebraically

decaying in I and depends on a single exponent s. The current moments

are then given by

I

<1”) ~ I "m 1""3 111 (11.31)
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Imax is fOund from

which implies

Evaluating the integral gives,

m (m-s+1)/s
(I > ~ (L - 1)/(m-s+1)

For m>s-1, the first term in the parentheses dominates, and

<1m> ~ Lx(m)/v
for m>s-1,

where

x(m) = (m—s+1)v/s,

(“.32)

(H.33)

(“.3“)

(H.35)

Here v is the percolation correlation exponent and is included in the

definition of x(m) for comparison with systems having a multifractal

local load distribution (e.g., the percolation problem at p0). From

Eq. (“.3“), we see that

(H.36)
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provided m>>s-1. That is, the bigger s is, the more slowly the cross-

over to extreme scaling occurs. As 3 + on the distribution becomes

exponential, and me ~ lnL applies.

C. Multifractal L(x).

In this case, it is known that a moment scaling like that of Eq.

(“.3“) occurs, but that x(m) is nonlinear in m [we note in passing

that a plot of Eq. ((1.33) also looks nonlinear in m]. However, for

large enough m, the multifractal spectrum does become linear in m, and

once this has occurred, the moment scaling is strongly affected by

large currents. However, breakdown scaling does not become dominant

until the condition m>>s prevails. In the multifractal case, s is the

exponent one would get if the asymptotic linear behavior in the multi-

fractal spectrum were extrapolated back to the origin. ‘For the

percolation problem it is seen from the data of Ref. 89 (Fig. 6) that

3 ~ u, so that extreme scaling and low-moment scaling become identical

for moments in the part of the multifractal spectrum that is both

linear and satisfies m>>u.

IVA mltifmctal Spectrum induced by Crack Pattern.

An interesting fact is that the propagating crack induces multi-

fractal behavior in the moment spectrum Just prior to eventual

failure106’1o7. In this section, we study numerically this multifrac-

tal behavior in electrical breakdown problem by using the

deterministic crack propagation model in random resistor networks. He
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clarify the origin of this multifractal behavior by showing that a

propagating crack even in a nearly pure system always exhibits this

effect, but that the form of the multifractal spectrum is sensitive to

the amount of initial disorder.

To study this effect, we generate a two-dimensional random resis-

tor network of size L with fraction of (1-p) bonds removed. We grow a

crack pattern in this network using the hottest bond algorithm (see

the breakdown procedure described in chapter I). A typical sequence

of the external voltage that induce failure in the hottest bond in the

network with L=1OO and p:0.70 is displayed in Fig. 1.7.

Next, the voltage distribution is calculated. Here, we are in-

terested in the voltage distributions at three different breakdown

stages. They are the voltage distribution of initial networks, at

voltage Vb and Just befbre breaking the last bond. From these voltage

distributions, we calculated the average moments Mm, which are defined

as,

Mm = z n(V) vm (u.37)

where n(V) is the number of bonds carrying voltage drop V. By the

-P(m)/v
scaling relation Mm ~ L , we calculated the moment exponents

P(m)/v for a range of m values.

In order to check our program, we first did these calculations

for the networks with p:0.50 (percolation threshold p). They show a

multifractal scaling, as in other calculationsaa’go. The various mo-

ment exponents P(RD/v are consistent with previous calculationsaa’89

at p=pc, as shown in Fig.u.9.
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It is obvious that at pc the network structures at the three dif-

ferent breakdown stages -- initial, at V, and before breaking the last

bond -- are almost the same. This leads to three similar multifractal

voltage distributions in this case. But for p>pc, there are many

parallel paths to channel current in the initial network. As more

bonds break, we cut more current channels. Finally, there is one

single link remaining in the network structure and this induces a

radical change in the voltage distribution. This is illustrated in

Fig. ".5, where we have plotted the current distributions for liOx‘iO

networks with p:0.90. Since N1 (the number of broken bonds at voltage

Vb) is very small fOr all p, there is no significant lattice structure

change at V He therefore expect a similar voltage distribution atb.

this stage, as shown in Fig. H.5(a) and ll.5(b). In both of these

figures, the distribution has a sharp peak and a exponential tailua.

Therefore, for various moments,

Mm = I VmP(V)dV (n.38)

the large V tail in P(V) gives small contributions, and there is a

strong dominance in this integral due to the sharp peak. This implies

that there is one characteristic voltage which is responsible for the

scaling behavior for all moments. Thus, there should be a constant-

gap scaling behavior for the voltage distributions at these two

stages. But, just before breaking the last bond, there is a very

broad peak and a long tail in the voltage distribution as shown in

Fig. 44.5(0). There exists a competition between Vm and PW) in Eq.

(H.38) and this long tail gives a larger contributions for higher
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moments. .This leads to a set of different characteristic voltages for

various voltage moments, i.e., multifractal scaling behavior occurs.

In order to quantify this, we calculated the average moments, Mm,

as a function of the system size L, for a range of m values.

Typically, the calculations are averaged over 2000 samples for L=5;

500 samples for L=10, 20, 30 and 50; and 50 samples for L=80 and 100.

To demonstrate that each moment scales independently as a function of

1/m. If there ex-L, we consider the normalized moment M(m) = [Mm /MO]

ists a constant-gap exponent in the scaling behavior of the successive

moments, then all the M(m) should scale identically. In Fig. 14.6 and

Fig. 11.7, we plot the behavior of M(m) for three breakdown stages at

p:0.90, and p:0.70. Constant gap scaling is clearly seen in the data

for the initial configuration and at Vb [in figure (a) and (b)], while

nultifractal behavior occurs Just before breaking the last bond [in

figure (c)].

The presence of one or more single link bonds in all of the net-

works showing multifractal behavior suggests that this is the origin

of the multifractal behavior. In order to confirm this, we generate

1000 LxL (fbr a set of L values in the range from 5 to 100) p ll r- e

resistor networks with a single link bond in a random position inside

each network. We calculate the voltage distribution of these systems.

A broad peak and a long tall are found in these voltage distributions.

As shown before, this suggests that there exists a multifractal be-

havior in these systems. In Fig. “.8, the normalized moment M(m) for

these systems is displayed and it does show a multifractal scaling.

In contrast to the random resistor networks, these systems are weakly

disordered. This implies that multifractal
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of size L for the nearly pure networks and m=1 (0), m:2

(U), m=3 (+), m=5 (o) and m=9 (x). The data suggest a

non-constant-gap scaling.
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scaling behavior can even occur in systems very near the pure limit.

In Fig. 18.9, we plot the exponents P(m)/v as a function of m for

various systems. The curvature in small m region suggests a nonlinear

relation between P(m)/v and m. It becomes linear as m .1». As shown

in the figure, the slopes decrease as the systems become less disor-

dered. It is consistent with the fact that the strongly disordered

system has a small conductivity. This is because the large m slope is

expected to give the conductivity exponent88'89. The value of the in-

tercept of this line (as m + on) with the vertical axis gives the

fractal dimension of the single link bonds. From this figure, we can

see that this fractal dimension decreases from the value 1/v = 0.75 at

p:0.50 to 0 fer the nearly pure systems. The very different values of

P(m)/v for various systems in this figure is due to the different

geometric structures of the networks in this problem.

In general, we believe that the origin of the multifractality of

the voltage distribution Just befbre the systems breaks is due to cur-

rent channelling through narrow necks. To illustrate the generality

of this idea, we did similar calculations for the fractal—like

dielectric breakdown problems by using the stochastic dielectric

breakdown model108'110. This model has been used to study the fractal

dimension of dielectric breakdown patternma'110 and submarine cable

damage111'113. The structure of the breakdown pattern is often

fractalma'126 and is very different from that occurs in the random

resistor models. Here, the calculation was carried on an LxL square

lattice with potential V=0 along the discharge pattern and V=1 at the

top of the lattice. The probability p1 to add the segment 1 connected

to the pattern is related to the local potential drop V1,
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p1 at V1 (4.39)

In Fig. 4.10, we show a final breakdown pattern for a 40x110 lattice

and it has a fractal structure. The moment spectrum calculated Just

before breaking the last bond is shown in Fig. ll.11. As seen from

this figure, the moment spectrum is again multifractal as expected

from our previous discussion.

In conclusion, we have studied the origin of mltifractal be-

havior in the breakdown of random resistor networks and flawed

dielectrics. We found that during the breakdown process the voltage

distribution changes its behavior and that Just prior to failure the

distribution has a multifractal structure. Multifractality originates

from the broad voltage distribution produced by even a single narrow

neck, but the precise form of the multifractal spectrum depends on the

initial disorder, as is seen from Fig. '4.9.
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IV .5 Conclusion .

1) We show that the strength of brittle systems is related to the

very high moments of the distribution of electric or stress fields oc-

curring in a material. By contrast, as is well known, elastic or

transport moduli are related to the second moment of such distribu-

tions. We define a quantity related to the moment spectrum that

interpolates between low moments (such as moduli) and extreme moments

(such as breakdown properties), and show that for most cleavage cracks

and for diluted networks away from pc, a crossover from low moment

scaling to high moment scaling occurs at a critical moment value that

scales as 1110 ~ an, where V is the system size. For especially sharp

cracks, however, this crossover may occur as low as the third (3-D

dielectric) or fourth moment.

2) The multifractal spectrum that occurs in crack propagation

problems is induced by narrow necks, and only occurs very close to

final failure. Therefore, although the occurrence of this multifrac-

tal spectrum is interesting, it is unlikely to be experimentally

observable .



CHAPTER V

 

Statistics of Transport Properties

and Breakdown Strengths
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We have studied how the average transport properties

(conductivity) and breakdown strength of random media depend on disor-

der and system size. But, due to the presence of random flaws,

1disordered materials may exhibit a wide scatter from sample to sample

variations in their transport and breakdown properties. Therefore, the

ensemble averages of these quantities do not tell the whole story

especially in quenched strongly disordered systems and that a complete

knowledge comes, for example, from the full ensemble probability dis-

tribution of each variable of interest. In this chapter, we will

discuss their statistical properties and try to answer the following

question: what is the conductivity and breakdown strength distribu-

tions and how do they fluctuate from sample to sample?

For conventional statistical variables, the central limit theorem

guarantees their distribution approaches a Gaussian function. This

leads to the result that these statistical variables self-average and

have small sample to sample fluctuations (for L>>§). But, for uncon-

ventional non-Gaussian statistical variables, which violate the

central limit theorem, the appropriate statistical distribution is of-

ten very broad, with large sample to sample fluctuations.

In section 1, we will review various statistics to be used in

this chapter, i.e., central limit theorem for random additive process,

log-normal distribution for random multiplicative process and the

statistics of extreme. Then, in section 2, we will discuss the dis-

tributions and fluctuations in the conductivity of percolation

networks. By using the central limit theorem, we find that this dis-

tribution is Gaussian, and that sample to sample fluctuations are

 



108

relatively small [« (1./g)‘d/2 , where L is the size of system and 1; is

the correlation length]. In section 3, we study the probability dis-

tribution of resistances in one dimensional quantum electronic

systems. We find that the sample resistance is a product of a series

of random numbers, which is a typical multiplicative process. Based

on this, we argue that the logarithm of the resistance is the right

statistical variable and that it has Gaussian distribution (i.e. , the

distribution of resistances is a log-normal). He also briefly discuss

the resistance distribution for higher dimensional quantum systems.

In section 11, we apply extreme statistical argument to the distribu-

tion of breakdown strengths in percolation networks and find that it

is very broad. This results in that the sample to sample fluctuations

are 0[1/(an)]. This chapter concludes in section 5.
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V.1 Review of Various Statistics.

a) Random additive process and central limit theorem127-131.

The central limit theorem tells us that if we have a large number

of experiments which measure some stochastic variable, X, then the

probability distribution of the average of all the measurements ap-

proaches a Gaussian function (provided the tail of the distribution

decays faster than 1/x2, i.e., the second moment is finite), regard-

less of the form of the distribution for X itself. It is a very

important result and has fundamental implications for numerical

studies of stochastic processes governed by random additive process.

It guarantees that one can approach the real average by sampling only

an infinitesimal fraction of the total number of states of the system

with a relative small error (~ 1//N, where N is the number of

measurements). Here, we will give a proof of central limit theorem

and derive the Gaussian distribution function.

Given a random variable X with a probability density fx(x) , we

wish to find the distribution of the random variable, Y, where the

value of Y corresponds to the average of N measurements of X:

+ x +000+ x

N

[This is called a random additive mocess. A typical example of this

is the one-dimensional random walk problem. Then, X corresponds to

the displacement of a particle after one step and fx(x)dx corresponds
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to the probability that it is displaced a distance x+x+dx in one

step.] Let us consider the probability density fY(yN-<X>), where <x>

is the mean:

(X) = Idx xfx(x) (5.2)

Define the characteristic function:

 

¢(k) : I exp[ik(yN-<X>)] fY(yN-<X>) dyN (5.3)

5

Because 3

x + x + ... + x

- see 1 2 N
fY(yN -<X)) - Idx1dx2 de 8[ N -
 

yN] fx(x,)fx(x2)°°-fx(xN)

He can rewrite Eq. (5.3) as

c(k) = Idx1dx o-de exp[i(k/N)([x1-<X)]+
2 N

[x2-<X>]+ooo+[xN-<X>])] fx(x1)fx(x2)-°-fx(xu)

=}1dx1 exp[i(k/N)(x1-<X>)] fx(x1){N

= [¢(k/N)]N
(5 u)
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It will be shown later that k/N<<1, so that we can calculate c(k/N) by

expanding exp[i(k/N)(x-<X>)] and keeping to the second order term.

Therefore, we have,

¢(k/N) Idx exp[i(k/N)(x-<X>)]fx(x)

Idx [nib (ik/N)n(x-<X>)n/n!] fx(x) f

“:0 (ik/N)n/n! Idx (x-<X>)nfx(x) (5.5)

By the definition of the moments <x“>,  

(Kn) = Idx xnfx(x) (5.6)

we get that

c(k/N) = ”to (ik/N)n/n! <(x—<x>)”>

1 + (ik/N)<(x-<x>)> - (k/N)2/2 <(x—<X>)2>+ ...

¢(k/N) 1 + (1k/N)(<x>-<x>) -(k/N)2/2 [<x2> - <x>2]

1 - (k/N)2[<X2> - <x>21 (5.7)

Because the standard deviation 0 of X is,

02 = <x2> - <x>2 (5.8)
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Then

c(k/N) = 1 - (k/N)2/2 02 + ...

The fUnction ¢(k/N) decreases with increasing k and is less than unity

for K/N<<1. The function [Mk/11)]N then decreases even more rapidly

with increasing k. Then,

o(k) = [1‘- (ko/N)2/2 + 0(k3/N3)]N sz expl-(ko)2/(2N)] (5.9)

The probability density fY(yN - <x>) then becomes

+oo

fY(yN-<X>) - (1/2n)I_mdk ¢(k) exp[-ik(yN-<X>)

+m 2
=(1/21)I_adk exp[-ik(yN-<x>)-(ko) /(2N)]

2 2
= /(N/2n) (1/0) expl-N(yN-<x>) /20 ] (5.10)

In this equation, it is obvious to see that ¢(k) [and (Mk/11)] con-

tributes to fY only for small k, this is due to the oscillatory

character of exp[-ik(yN-<X>)] fer large k. For simplicity, we can as-

sume k<<N, i.e., k/N<<1.

From this distribution function, we can calculate the average

value of Y and its standard deviation. And they are as follows

(Y) = <x>, (Y2) - on2 = oz/N.

 

'
4
1
—
.
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Thus, regardless of the form of fx(x), the average of a large number

of measurements of x will be a Gaussian function centered at <x>, with

a standard deviation N'V2 times the standard deviation of the prob-

ability density of X. The only requirements are that f(x) have finite

moments, that the measurements of X be statistically independent, and

that N be large. This result is called the central limit theoran and

helps explain why the Gaussian distribution describes so many

phenomena that occur in nature. From Eq. (5.10), we can get that the

sum of N random numbers is also a Gaussian distribution and

fN(YN-N<X>) = [1//(21N02)lexpl-(YN-N<X>)2/(2N02)] (5.11)

where YN : x1 + x2 + ... + x", and as N increases it approaches

<YN> = N<x> (5.12)

its standard deviation is

03 = N02 (5.13)

b) Random multiplicative process and log-normal distribution132.

'There exist many natural phenomena which depend on the statisti-

cal properties of a product of random variables, such as the

distribution of incomes, body weights, rainfall, fragment sizes in

133,13".
rock crushing processes, multifractal phenomena, etc

n
r
—
.
_
.
.
.
_
—
_
'
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Recently, the notions of random multiplicative processes have been ap-

135-137.
plied to diffusive transport in random media Here, we will

derive the log-normal distribution and discuss the statistical

properties of random multiplicative processes.

Consider a sequence of random variables x1, x2, 000, x in which

x has the probability density fX(xi)' We are interested in the
i

statistical properties of the product of these N random numbers:

P - x x 000x" (5.1“)
12

i.e., we ask what is the average value of this N-fold product, <PN>

and what is the probability density fP(PN).

Take the logarithm of Eq. (5.1“), we have,

lnPN = lnx1 + lnx2 + 000 +1an (5.15)

Because x1 is a random variable, lnxi is also random number.

Therefore, this is a random additive process and the central limit

theorem applies. From Eq. (5.11), the distribution function of lnPN

then is Gaussian function

f(lnPN) = 1//(2nN) (1/0) expl-(lnPN -<lnP>)2/(2N02)] (5.16)

This is called log-normal distribution, whose name reflects the fact

that the logarithm of the product is normally distributed. The

parameters (In?) and 0 can be calculated by finding the probability

density of f(z=lnx), which is
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f(z=lnx) = Idx 5(z-lnx)fx(x)

=fx(ez) (5.17)

Then

<1nP> = Idz z f(2)

= Jam 2 fx(ez)

= Idlnx lnx fx(elnx)

= Idx [lnx fx(x)]/x (5.18)

and

2 2
<(lnP)2> - (lnP)O 1

1

Idz 22f(z) - (In?)2

= Idx [(lnx)2fx(x)]/x - <1np>2 (5.19)

It is interesting to note the fact

(P) = <exp(lnP)> : exp<lnP> (5.20)

which shows that the logarithm of the random product is a right quan-

tity to study statistically, instead of the product itself. But, we
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should point out that the log-normal distribution provides a poor ap-

proximation fer the asymptotic behavior of the average value, and also

for the higher moments of the product. This is due to the fact that

the extreme events, although exponentially rare in N, are exponen-

tially different from the typical, or most probable value of the

product, and they have a dominant contribution to the average value.

In the log-normal distribution, infbrmation about the tail of the dis-

tribution is lost, and these details are crucial in determining the

higher moments of the product (for detailed study, see Ref. 133).

87,138-1111
0) Statistics of extreme and three type of asymptotic dis-

tributions.

Consider a sequence of random variables, x1, x2, "0, x", which

are independent and identically distributed with a probability density

f(x). He can find the largest value x of this sequence of random

variables,

x = max{x1,x2, 000, xN}, (5.21)

We ask the following questions: what is theiaverage value of x? "hat

is the distribution function of x and how does the average value and

the distribution function depend on N? The answer to these questions

comes from the statistics of extreme. In this section, we will argue

that there exist three different types of limiting distribution for

maxima and derive these three different types of distribution func-

tions .

 



117

Consider n samples, each of size N, taken from the same popula-

tion. In each sample there is a largest value and the largest value

in the nN realizations is the largest of the n largest values taken

from samples of size N. The distribution of the largest value in nN

realizations will tend to the same asymptotic expression as the dis-

tribution of the largest value in samples of size N, provided that

such an asymptote exists. Consequently, the asymptote must be such

that the largest value of a sample of size N taken from it must have

the same asymptotic distribution.

Since a linear transformation does not change the form of the

distribution, the probability that the largest value is below x should

be equal to the probability of a linear function of x,

n
F (x) - F(anx + bn) (5.22)

the two parameters an and bn being functions of n. Eq. (5.22) is

called the Stability Postulate and it can be generalized as fellows:

Stability Postulate: If F is an asymptotic distribution, there exist

real functions a(s)>0 and b(s)>0 defined for s>0 such that,

Fs[a(s)x + b(3)] = P(X) (5.23)

for all real x, s>0.
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Before we start to find the asymptotic distributions, it will be

convenient for us to list some useful results without proof for in-

verses of monotone functions:

(b(x) is a nondecreasing continuous function and 111-1 is the in-

verse fUnction.

(i) If a>0, b and c are constants, and R(x) = Max + b) - c,

then,

-1 -1

H (y) = [w (y + c) - bl/a; (5.21)

(11) If 0-1 is continuous, then,

w“1o(x)1 = x. (5.25)

Now, we try to obtain the possible asymptotic distributions for

maxima and show there exist only three different types of asymptotic

distributions.

If F is a asymptotic distribution, then Eq. (5.23) holds for all

s>0 and all x. Our task is to solve this equation and find all the

possible solutions. From Eq. (5.23), we have,

-s ln{F[a(s)x + b(s)]} = - lnF(x), (5.26)

so that,

-ln(-ln{F[a(s)x + b(s)]}) - ln s = -ln[-lnF(x)]. (5.27)
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Now it is easily seen that the nondecreasing function Mx) = -

ln[-lnF(x)] has an inverse function U(y) defined for all y. Further,

Eq. (5.27) implies,

¢[a(s)x + b(s)] — lns = ¢(X).

so that by Eq. (5.2“), we have,

U(y) = [U(y + lns) - b(s)]/a(s)

Substracting this fer y=0, we have

U(y) - U(0) [U(y + lns) - b(s)]/a(s) - [U(lns) - b(s)]/a(s)

[[U(y + lns) - U(lns)]/a(s), (5.28)

Now, we write 2 = lns, a'(z) = a(ez) and U'(y) = U(y) - U(0), thus Eq.

(5.28) becomes,

U'(y) = [U(y + 2) - U(O) - U(z) + U(0)]/a'(z)

: [U'(y + z) - U'(z)]/a'(z)

i.e.,

U'(y + z) - U'(z) = U'(y) a’(z) (5.29)

for all real y, z.
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Interchanging y and z and subtracting, we obtain,

U'(y)[1- a'(2)1= U'(2)[1- a'(y)]. (5.30)

In order to satisfy this equation, we can have two possible cases, (1)

and (2) as follows:

(1) a'(z) = 1 for all 2 when Eq. (5.29) gives,

U'(y + z) : U'(y) + U'(z).

The only monotone increasing solution to this equation is well known

to be simply,

U'(y) PY:

fbr some p>0. Then,

U'(y) U(Y) ‘ ”(0) = py,

01"

w"(y) = U(y) = py + v,

where v = U(O) is a constant. Since this is continuous, Eq. (5.25)

gives,

x = o"(o(x)) = pw(x) + v.
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or,

¢(X) = -ln[-lnF(X)] = (x - v)/p

So, we finally have the first asymptote,

-(x-v)/p]

F(x) : exp[-e (5.31)

where p, v are positive parameters independent of N (s). This is also

87,1“2
called the Gumbel distribution It is immediately verified that

the functional Eq. (5.22) (5.23) are satisfied, provided that

an = 1, bn = pln(n) (5.32)

(2) a'(z) 3 1 for some 2 when Eq. (5.30) gives,

U'(y)/[1 - a'(y)] = U'(z)/[1 - a'(2)] = c,

where c is a non-zero constant [since this would imply that U'(y)=0

fer all y, hence U(y) : U(O), constant]. Therefore,

U'(y) = 0[1 - a'(y)] (5.33)

From Eq. (5.29), we thus obtain,

c[1 - a'(y + z)] - c[1 - a'(z)] = c[1 - a'(y)]a'(z),

a'(y + 2) = a'(y) a'(Z), (5.3")
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But a' is monotone, and the only monotone nonconstant solutions of

this functional equation have the form

a'(y) = epy. for p¢0 (5.35)

Hence Eq. (5.33) yields,

-1
o (y) = U(y) = u<o> + c[1 - epy]

= v + c(1 - epy) (5.36)

where v = U(0) is a constant. Since (b(x) = -ln[-lnF(x)] is increas-

ing, so is U(x), so that we must have c<0 if p>0 or c>0 if p<0. By

Eq. (5.25))

w'1lw(x)1 = v . c[1 _ epw(x)]

X 1
|

v + c(1 - exp[-pln{-ln[-F(X)]}]

v + c(1 - 1-1nF(x)1‘p1 (5.37)

giving,

F(x) = exp1-11 - (x - v)/c1“/p}

or after shifting the origin of x, we have

 

 



123

F(x) = exp1-1-(x/c)1“/p} (5.38)

If p>0, c(O, we can rewrite Eq. (5.38) as,

F(x) = exPI-(a/x)k], x20, a>0, k>0, (5.39)

This is the second asymptote, which is also called Frechet

87,138,139
distribution In this case, we also can find,

_ In.1/1<,
n and bn =0 (5.140)

(for detail, see Ref. 87).

If p<0, c>0, we can get,

F(x) = exp[-(x/a)k], x50, a<0, k)0, (5.“1)

This is the third asymptote, which is also called the Heibull

distribution1u3-1u5. He also can find that,

a = n (5."2)

So, we have proved that there exist three different types of

asymptotic distributions for maxima and they are as fellows:

Type I: F(x) = expl-e-a(x'u)], a>0;

Type II F(x) = exp[-(a/x)k], x20, a>0, k>0; (5.)3)

Type III F(x) = exp[-(x/o)k], x50, a<0, k>0.
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v.2 Conductivity Distribution and Fluctuation in Percolation

Networks .

The average conductivity or elastic moduli varies on length L<§,

but saturates on length L>§, where g is the correlation length in per-

colation models, and a length scale over which the system is

disordered in general. Since regions on length L); are uncorrelated,

we can assume that the average conductivities at length scale E are

independent random variables with the same probability distribution.

Then, finding the average conductivity of systems of size Ld becomes

to find the average value of (L/if.)d random variables, which is a ran-

dom additive process. Therefore, the average value for the moduli

measured on samples of size Ld have fluctuations of order (L/£)-d/2.

This qualitative argument is valid for L>>§, but must be modified for

L~§. By similar reasoning, the central limit theorem shows that the

full distribution function for such a moduli and L»; is Gaussian,

with

P(zN) ~ expt 41(2N - 2m)2/ce(P)] (5.uu)

where P(BN) is the probability that the conductivity of a sample

measured on a sample of size N=Ld has value I: ce(p) ~ Cegd, and ceN'

is a constant for the electrical problem. Similar expressions apply

to capacitance in dielectric problems and elastic moduli in mechanical

systems, and c8 is changed to c and cIn respectively. Since the dis-
(1

tribution in Eq. (5.“) is very narrow (for large N and away from the
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percolation point), sample to sample fluctuations are also small for

L>>§. This is the origin of the statement that, conductivity and

elastic moduli self average for large enough system sizes. We have

calculated the conductivity for a set of 2000, 50x50 random resistor

networks at p:0.90 and the result is plotted in Fig. 5.1. It is

readily seen that the distribution is a Gaussian function.
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Fig. 5.1 The probability that a 50x50 random resistor network

has conductivity G. The distribution was calculated frm 2000

realizations of the random resistor networks and (G) is the

average of the conductivity. (0) is the numerical data and

the curve is the best fitting to the Gaussian function. It

clearly shows that the distribution is a Gaussian.
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v.3 The Resistance Distribution in Disordered Quantum Systems.

It is well established that the slightest amount of disorder in a

perfect lattice suffices to localize all electronic states in one

146-158
dimension Therefore, due to the exponential localization of

the states, the averaged residual resistance of long finite chains

grows exponentially with length L, as was first shown by Landauer‘sg.

Along with the exponential growth of the average resistance with

length, one finds that the relative mean-square fluctuations also grow

exponentially at an even faster rate than the average value160'17u,

thus violating the central limit theorem. This implies that the

residual resistance is a non-additive as well as non-self-averaging

quantity (see more detailed discussion in this section). Instead,

Anderson et al‘61’162 showed that the problem of resistance of a dis-

ordered conductor could be reformulated in terms of a new scaling

variable [ln(1+p)], such that, the concepts of additivity, self-

averaging, and central limit theorem do remain valid in the usual

ensemble sense. Here, we will briefly give these arguments and calcu-

late the probability distribution of resistances for one dimensional

disordered conductors.

The resistance of a one dimensional conductor with many scatters

159
may be written as follows,

2
p = (h/e ) = (h/e2) (1/7 - 1) (5.u5)

a
l
s
o
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where h/e2 z 26k0, T and R=1-T are the transmission and reflection

coefficients. Using the model proposed by Anderson et al161, we can

calculate the total resistance by combining two resistances (scatters)

by first calculating the total transmission coefficient. The law of

composition of two scatters is

t = t1 [1/(1-rar2)]t2 (5.“6)

Here, the reflectivities of each systems r; and r2 are assumed

stochastically unrelated to each other. Therefore, the total resis-

tance in unit of (h/ez) is

(1/T - 1) : (1/lt'2 - 1)p =

= It111-r;r2)1t21‘2 — 1 (5.u7)

i.e.,

(1 + p) = (1 + p1)l1 — r1r2|'2(1 . p2)

= (1 + p1) [1 - 2r1r2cose + rfirg ‘1 (1 + p2) (5.“8)

where 0 is a cumulative phase depending on the characteristics of the

two scatters. In the random phase model161, phases of the individual

scatters are independent of each other and distributed uniformly be-

tween 0 and 21 (this is true if the distance between scatters is

larger than the dephasing length). This ensures a uniform distribu-

tion for the phase B in Eq. (5.118). Thus, the resistance pN of a one
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dimensional conductor with N scatters can be calculated from the fol-

lowing equation:

2 2
r1]-11 + pN = 1H1 (1 + pi) 152 [1 - 2ri_1r.cosei + r (5.49)

: 1 1-1

It is clearly seen that (1 + p”) is like a product of a series of ran-

dom numbers. To clarify this perception, we rewrite Eq. (5.49) as E.

follows,

_ 2
ln(1 + p") - i211nm + pi) - igzlnh - 2r r.cosGi + r r2]

i-1 l i-1 i

 

:
‘
T
T
:
5

‘
5
.
-

If the phase 91 are unifbrmly distributed and unrelated to p1, we can

first do the phase average for this equation (this approximation is

valid only in the large p1 limit, i.e., the strong disorder limit),

21 2 2

10 d91 ln(1 - 2r1_1r1cosei + ri_1r1)

_ 1_ 2 2 2 2 2 2 2 1/2
- uln 2 [1 + r1_1r1 + [(1 +r1_1ri) - 4r1_1r1) ] — 0

so that Eq. (5.49) becomes,

ln(1 + D") = ,g, ln(1 + p,) (5.50)

This implies ln(1 + p") has a Gaussian distribution for large N.

166-174
Shapiro et al have studied the distribution of pN itself,

P(pN), and showed that P(pN) is log-normal in the large p limit and
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P(pN) is exponential in the small p limit. Now, we just briefly

review these calculations.

From Eq. (5.117), the total resistance p can be represented in

terms of p1, p2 and the phase 6,

p : 9(919 p29 9) = 91 + 92 * 20192 '

2[p p (1 + p )(1 + p )IV2 0086 (5 51)
1 2 1 2 °

Then, we get the following equation fOr the distribution function P(p)

of the total resistance in terms of the distribution functions P1(p1)

and P2(p2) for the individual resistances:

_ 2n m m
P(p) - (1/211)!O d9 Iodp1 Iodp2 {P1(p1)P2(02) 8[p

- 0(91, 92, 9)]} (5.52)

After integrating over p2 and rewriting the integral over 6 in terms

of y=cose, Eq. (5.52) becomes

P(p) = (1/n)I11dy (1-y2)"/2 13dp1p(p1)92(u), (5.53)

where

u(p. 01. y) = p + p, + 209, + 2y[p(1 + p)p,(1 + 91)]1/2 (5.5a)
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We assume that p2 is the resistance of a chain with N scatters, p1 is

the resistance of a single (N+1)th scatter, P1(p1) is known and it is

same for all individual scatters. If we also assume that P1(p1) is

concentrated at very small p1 value, i.e., all scatters are weak.

Then, expanding Eq. (5.5”), we have the following recursion relation:

P (p)=P(p)+(p>§—[(02+p)§—P] (555)
N+1 N 1 3p 3p N °

where <p1> = I; dp1 p1P1(p1) is much smaller than unity. In con-

tinuous limit, this equation becomes a differential equation:

3 _ §_ 2 L

where L is the length of the disordered chain and a is the small-scale

resistivity.

In the large p limit [for L>>g=af1 (localization length)], the p-

term in Eq. (5.56) can be neglected, and this equation becomes a

diffusion equation in terms of lnp. In this case, the solution is:

2 expl-(lnp - <lnp>)2/(uaL)] (5.57)PL(p) = (unaL)"/

This is a Gaussian centered at a mean (most probable) value (lnp).

This shows that lnp, rather than p itself, is a proper scaling vari-

able of physical significance for large L (p>>1). By using the

transfer matrix technique, we have numerically calculated the resis-

tance distribution for one-dimensional lattice of random delta

functions. The physical systems which we studied consists of
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uniformly spaced delta-function potentials of random strengths153.

The numerical simulation result is plotted in Fig. 5.2. It is clearly

seen that PL(lnp) exhibits a Gaussian distribution in agreement with

theory. He can calculate the ensemble average <lnp> and the standard

deviation 02. And they are,

(5.58)P
~

(lnp) = I d(lnp) (lnp) PL(p)

2
O = <(lnp)2> - (lnp)2 20L (5.59)

Thus, (lnp) scales additively with length and the relative rms devia-

tion is

1/2/(cL) = mat)”2 (5.60)o/(lnp) = (2aL)

which decreases with increasing length L. This implies that lnp has a

central limit.

The most probable value (5.58) of lnp yields a typical or scale

resistance

0 = eXp(aL).

which agrees with the result from the Landauer's formula for chains

with L>>§.

In the small p limit (for L<<g), the p2 term in Eq. (5.56) can be

neglected and the equation becomes,

w

 

q
r
“
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3 a 3

'51: Pup) = 55 [p 53 meH (5.61)

The solution is

PL(D) = 1/(aL) expl-p/(aL)] (5.62)

This is a very broad distribution and has a large fluctuations. In

fact ,

<p> = aL (5.63)

02 = (aL)2 (5.6“)

Eq. (5.63) recovers the classical Ohm's law, but the fluctuations are

of order of the mean.

Finally, we briefly discuss the resistance distribution for d-

dimensional disordered systems. In this case, the system consists of

many parallel chains and each chain is a series of scatters. The

resistance can be calculated through the multichannel Landauer's

formula175 ,

p = 3" = [2Tr(tt+)]‘1 (5.65)

where t is the transmission matrix for the plane-wave amplitudes. It

is clearly seen that, due to the transverse fluctuations (this fluc-

tuation arises from the addition of Ld"1 channels and is called
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"classical fluctuation"), the resistance is not multiplicative. And

the transverse fluctuations will produce substantial changes in the

distributionsw?’170’173. Instead giving the detail discussion, we

Just point out that, in the strong disorder limit (isolating regime),

one recovers the one-dimensional result, and the resistance distribu-

tion is a log-normal distribution. In this case, the "classical"

transverse fluctuations have relatively small contributions compared

to the very large fluctuations inside the one-dimensional channels.

Therefore, we can neglect the transverse fluctuations and assume all

d-1
L parallel chains have the same resistance. Indeed, this becomes a

one-dimensional problem.

V.1) Strength Distribution and Fluctuation in Percolation Models of

Breakdown.

Because breakdown properties are dominated by extreme events, the

breakdown strength follows one of the extreme value distributions

given in section 1 of this chapter. In particular, fer a fixed amount

of disorder, sample to sample fluctuations in strength are far larger

than those for conductivity or elastic moduli. This is clearly seen

by comparing the probability distribution for the largest currents in

Fig. 5.3 to the conductivity distribution displayed in Fig. 5.1. In

Fig. 5.3, we plot the largest currents in the bonds of the network

(for brittle systems this is proportional to the inverse of the

electrical breakdown strength) for a set of 2000 50x50 random resistor

networks at p:0.90. It is readily seen that the maximum current (or

extreme moment) distribution is far broader than the

’
3
'
"
!
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conductivity (or low moment) distribution. It is possible to derive

the form to be expected for the distribution given in Fig.5.3 in

several ways depending on the amount of mathematical rigor you wish to

pursue. The most direct is to use the fact that we know that the dis-

tribution of bond currents is exponential fOr large currents fknr p>pc

(see Chapter III and Ref. “3),

P(I) ~ b exp(-bI) (5.66)

where b is a constant. Then the cumulative probability, C1(I<Imax)’

that a bond current is less than a maximum value, I is given by,
max’

I
max

c1(1<1max) ’0 b exp(-bI')dI'

= 1 - exp(-bImax) (5.67)

If we consider the bond currents to be uncorrelated, then the prob-

ability that no current in the N : Ld bonds in the network is greater

than Imax is given by:

N

CN(I<Imax) ~ [1 - exp(-bIma )] (5.68)

Since Imax is large, the exponential term is small, and the Eq. (5.68)

is approximated by

CN(I<Imax) ~ exp[-N exp(-bImax)] (5.69)

"
'
7
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The probability that a system of size N has maximum current Imax is,

then given by

P(Imax) ~ N[b exp(-blmax)] {exp[-(N—1) exp(-blmax)]} (5.70)

~ N b exp(-b1max) exp[-Nexp(-blmax)] (5.71)

where bexp(-blmax) term is the probability that one bond inside the

network carries current Imax’ expl-(N-1) exp(-b1max)] is the probabil-

ity that the rest N-1 bonds in the network carrying currents less than

Imax’ and the factor N is due to the reason that there are N possible

bonds at which the maximum current Imax occurs. This form is clearly

skew. The typical (or average) strength, (I >, is found from,
max

N exp(-b(Imax>) ~ 1 (5.72)

which implies,

(Imax> ~ lnL (5.73)

which has the correct size dependence as discussed in chapter 111.

Because of I ~ 1/I
b

tribution of breakdown current is

max’ Eq. (5.69) implies that the cumulative dis-

C(Ib) = 1 - exp[-Nexp(-b'/Ib)] (5.7”)
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This is a Gumbel distribution. Indeed, in extreme statistics, it has

been proved that for the exponential parent distribution given in Eq.

(5.66), the asymptotic strength distribution must be a Gumbel

138,139
distribution A more complete analysis that includes the de-

“2,176. The methodpendence on dilution p was given by Duxbury et al

relies on 1) the estimation of the probability of finding the largest

defect cluster in a finite percolation network and 2) the calculation

of the corresponding current enhancement at the tip of this most

critical defect. A typical form of these cumulative distributions is

shown in Fig. 5.” for the electrical breakdown problem.

Having the distribution of breakdown strength, we can calculate

the sample to sample fluctuation in strengthss. The expected sample

to sample variations in strength are found by comparing the location

of the 25% and 75% percentiles in these curves with the 501 percentile

-- the average value (these "percentiles" are more general concepts

than the standard deviation and the mean, which besides being most

suitable for symmetric distributions, are especially bad indicators of

observables when the local load distribution is very broad). Taking

the electrical cases, Eq. (5.711), as an illustrative example, we then

find that the typical breakdown current value at the pth percentile is

defined by:

0 l
l p/100 = C(13)

1 - exp[-Nexp(-b'/I§)] (5.75)

 



1M0

 

  
  

I00 ‘ ' f ‘ r j ' ' ‘ I 7 ' ' l ' 1 ' ‘

P 1

b o q

r- o d

r 4

0.8 r- ° -
L 1

1- ° 1

p 1

. <> .

A 0.6 - s
A P o d

5 r ‘

t-n : <> :

o 0.4 - o ‘1
p

b o q

1 .

r O I

002 b o T

. <> .

<>
r d

00 #4 m m l LJA l m 4 A J 1 a A. m A ‘

0 0.5 1 1.5 2

1,/L

Fig. 5.fl The probability that a network will fail when an

external current of size I is applied. The distribution

was calculated tro- zooo radiations of 50x50 rando- resistor

network at p:0.90. <> is numerical data and the solid line is

a fit to the data using Eq. (5.1!).

 

 



1N1

Isolating I: from this equation, we find that,

I: = -b'/ln[-ln(1 - c)/N] = -b'/{ln[-ln(1 - c)] - lan (5.76)

and,

AI: = I§(c=7sz) - I§(c=251)

-b'[{1n[-1n(1 - 751)] - 1nNI‘1 - {int-ln(1 - 25%)] - 1nN}"]

-b'[(0.33 - 1nN)" - (-1.25 - inu)"1

= -b'(-1.25 - lnN - 0.33 + lnN)/[(0.33 -

lnN)(-1.25 - lnN)]

= 1.586'/[(1nN)2 + 0.921nN - o.u1]

~ 1.58b'/(lnN)2 (5.77)

The main point of this equation is that sample to sample variations in

a system of size N are logarithmic. Therefore,

AIS/13(c=50$) [1.58b'/(lnN)2]/(-b'/ln[-ln(1 - sox)/N])

[1.58/(lnN)2] (0.37 + lnN)

(lnN)-1 (5.78)I
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This is in contrast to conductivity or elastic moduli which have

sample to sample variations 0(1/JN). A similar analysis may be

carried out for the dielectric and mechanical cases and the strength

fluctuations are again logarithmic. For p approaching the pure limit,

the strength fluctuations become smaller, so that exactly at the pure

limit, they are zero. A practical consequence of the large sample to

sample fluctuations occurring in measured strength values, in combina-

tion with the destructive character of typical experiments, make

experimental studies of breakdown phenomena more demanding than cor-

responding experiments of transport or elastic moduli.
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v.5 CNCLUSIOI AID DISCUSSIW.

We have discussed the use of unconventional statistics in the

study of disordered systems. Our specific results can be summarized

as follows:

(1) For pspc, the distribution of the moduli of percolation net-

works is a Gaussian and the sample to sample fluctuations in moduli

V2”;

(2) Resistance of a disordered one dimensional quantum

are small [0(1/V

electronic chain is a product of a series of random numbers, which ex-

hibits a large sample to sample fluctuations. Instead, the logarithm

of resistance is a right statistical variable and it has a Gaussian

distribution;

(3) We calculated the distribution of breakdown strengths in

percolation networks and found it is a Gumbel distribution. In con-

trast to moduli, the sample to sample fluctuations in strengths are

O[1/(an)]. This can be explained by the fact that strengths depend on

extreme fluctuations, while moduli depend on an average over all fluc-

tuations.

In chapter IV, we have shown that transport properties are re-

lated to the low moments of local load distribution and strengths are

related to the very high moments of local load distribution. The mo-

ment spectrum thus links the two very different classes of scaling

behaviors, i.e., the moduli scaling and breakdown scaling, and quan-

tifies their crossover. Generally, we would like to ask the following
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general statistical question: for any given distribution, what is the

critical moment Inc and how does this depend on the system size N? As

discussed in last chapter, this can be studied by calculating the full

distribution function of m-th moment for a set of N random numbers.

Unfortunately, we have not succeeded in calculating the various moment

distribution functions. But, people in mathematics have extensively

studied a similar problem, what is the influence of the maximum term

in the addition of independent random variables and when the maximum

term will dominate the sum and thus violate the central limit theorem.

There the asymptotic distribution is the mJor interest. They have

found that, under the condition that the moments of the initial dis-

tribution diverge, the maximum term has a non-negligible contribution

to the sun and the sum follows an extreme form17~7'179. Following this

result, we can give an intuitive argument which leads to the calcula-

tion of me for a given distribution. The idea is as fellows. For a

set of random numbers with a given distribution , we can calculate the

expectation value of the m-th moment and its standard deviation. We

can expect that the crossover occurs when the standard deviation is of

order of expectation value. This is due to the fact that for a

Gaussian distribution the deviation is much smaller than the expecta-

tion. To illustrate this idea, we now calculate mc fer an exponential

distribution discussed in last chapter.

P(x) = b exp(-bx) (5.79)

 

m
%
*
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where b is a positive constant. We first calculate the expectation

value and standard deviation for the m-th moment, which is given by

following equation:

Y - g xIn (5.80)

We know that,

<x'"> = 13°21}: x'“ pm

= b (3 “dx xm exp(-bx) = mI/bm (5.81)

and

o2 = <x2m> - <xm>2

= (2m)!/h2m - (mi/6'“)2

= [(2m): - (mi)21/62m (5.82)

Assume that the central limit theorem works here, then we have the

following result for Y":

(YN> = N <xm> = N[m!/bm] (5.83)

and

05 = u 02 = N[(2m)! - (m!)2]/b2m (5.8a)

Then, mc can be determined by the following equation:

‘
w
s
o
h
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OP

m 2 2m

N2 [mc!/b °] = u [(2mc)! — (mo!)2]/b °

OF

(1) +1) (mo!)2 = (2mc)!

For large m, we can use the Stirling's formula,

ln(m!) z mlnm - m,

then Eq. (5.85) can be rewritten as,

ln(N + 1) + 2[m lnm - m] = (2m) ln(2m) - (2m)

Thus we find that,

me : [ln(N + 1)]/[21n2] ~ lnN

This agrees with the result we found in last chapter.

(5.85)

 

(5.86)

Generally, we

believe this idea will give a reasonable estimate for me for any dis-

tribution function. Research in calculating the full distribution

function of Y and studying the detailed crossover behavior is going
N

on now.
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I have argued that breakdown strengths are related to the extreme

fluctuations or the very high moments of the local load distribution,

but the transport properties are related to the average over all fluc-

tuations or the low moments of the local load distributions. One

consequence is that the breakdown strengths of percolation networks

exhibit a "dilute limit catastrophe" in which any finite fraction of

disorder drastically reduces the network strength. This is in con-

trast to transport or elastic moduli which are linear in dilution with

slope 0(1) near the pure limit. A logarithmic size effect also occurs

in this limit. Another implication of the dependence of breakdown

properties on the tail (or high moments) of the local load distribu-

tion is that sample to sample variations in strength conform to

extreme statistics distribution, rather than the central limit form

appropriate to the conductivity or elastic moduli.

I can list many other statistical properties, such as specific

heat and magnetic susceptibility, which are quantities related to an

average over all fluctuations and conform to the central limit

theorem. These conventional Gaussian type statistical variables have

been intensively studied in statistical mechanics. But, it is impor-

tant to note there exist many other physical problems in which the

conventional central limit type microscopic averaging does not apply.

Instead, the novel idea and scaling theories used to study extreme

processes may eventually impact on these problems. Examples include

relaxation processes in disordered systems, transport in quantum sys-

tems and nucleation and growth processes.

I put this thesis in a broader perspective by discussing some of

the problems which are not in the category of breakdown phenomena, but
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in which I believe the extreme fluctuations or unconventional statis-

tics may play a key role.

V1.1 Relaxation Processes in Disordered Systems.

Due to disorder, the various parts of a random system relax at

different rates and often a rare statistical fluctuations will

dominate the asymptotic relaxation behavior of the system. One par-

ticular example is the relaxation processmo'mo of random magnetic

systems in the "Griffiths phase", which refers to the temperature

regime between the transition temperature To for magnetic long-range

order in the random system and the Griffiths temperature T TheG'

Griffiths temperature is the highest possible transition temperature

allowed in principle by a rare statistical fluctuation of the disorder

over the whole system191. For a ferromagnet with site or bond dilu-

tion, TG is the critical temperature of the undiluted system; for a

ferromagnet with a bounded distribution of exchange interactions, TG

is the critical temperature obtained when all bonds take the maximum

value. For a ferromagnet with an unbounded distribution of exchange

interactions, the Griffiths phase extends to infinite temperature.

The free energy of systems in the Griffiths phase exhibits sin-

gularities, which are called the Griffiths singularities. Griffiths

singularities have important consequences for the dynamics of the sys-

tem. In particular, relaxation is nonexponential fer Tc < T < TG,
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d/(d-1)]
exp[-A(lnt) Ising systems (6.1a)

C(t) ~

/2
exp(-Bt1 ) Heisenberg systems (6.1b)

where d is the spatial dimension, amplitudes A and B are constants and

depend on the system parameters (temperature, concentration of missing

sites or bonds, etc.). The physics behind Eq. (6.1) concerns the

dominance, as tom, of large regions in which, due to rare statistical

fluctuations in the disorder, the exchange interactions have values

characteristic of an ordered phase at the given temperature. Because

these regions are finite they do relax, but only slowly due to their

large size. This is a similar effect as in the breakdown problems, in

which the rare statistical events, largest defect clusters, have a

dominant contribution to the breakdown strengths. Therefore, I

believe that the statistics of extreme will apply in this problem.

Actually, following this direction, I can find the lower and upper

bounds for C(t) of the form in Eq. (6.1a) for the dilute Ising fer-

romagnets below the percolation thres.hold186'190 , where the systems

are sufficiently dilute they consist of finite clusters only. The

idea is as follows. The lower bound is derived by considering only

compact clusters. These are fewer in number than typical clusters,

but relax more slowly. The upper bound is obtained by including all

clusters, but replacing their lifetimes by those of compact clusters

of the same size. And the result is,

d/(d-1)]
C(t) ~ exp[-A(lnt) (6.2)

 

[
T
T
_
_
_
_
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and

Amin S A S Amax (6.3)

A and A have the form of (T/0)d/(d-1)f(p), where T is the tem-

min max

perature, 0 is the surface tension and f(p) is a function of p.

There are many other problems in disordered systems where the

same rare statistical fluctuations or large cluster regions are

dominant in the long time relaxation processes. One example is the

asymptotic behavior of the survival probability P(t) for a diffusive

particle in a background with randomly distributed traps192'195 , where

the distribution of the large regimes without traps is crucial to the

asymptotic behavior of P(t). Another example is nucleation and growth

processes196'198, in which the nucleation and growth of the largest

droplet will dominate the growth rate. This is due to the fact that

the largest droplet will reach the critical size first and then start

to grow. Other examples include dynamic processes in spin

81388199400.

V1.2 Transport in Quanti- Systems.

As discussed in last chapter, one dimensional quantum transport

process in disordered systems are another class of problems in which

non-Gaussian type statistics apply. Here, I briefly discuss two other

non-Gaussian quantum transport problems which have attracted con-

siderable attention. One is Lifshitz tails in the density of states

of disordered systems and the other on is universal conductance fluc-

tuations in mesoscopic systems.
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a) Lifshitz Tail in Disordered Systems.
 

Lifshitz201 argued that in random systems the van Hove band-edge

singularities in the density of states disappear and are replaced by

exponential singularities. In the language of harmonic chains with

two types of masses the underlying mechanism is that having a mode

with a frequency close to the maximal frequency one needs a large

region containing light masses only202-205. The probability of occur-

rence of such a region is exponentially small and so is the

probability to find such an eigenfrequency, i.e., the density of

states. It is clear to see that the Lifshitz tails in disordered sys-

tems in related to the rare statistical fluctuations.

b) Universal Conductance Fluctuations.

An interesting concept which is clearly emerging in recent

theoretical and experimental studies of quantum transport is that of

non-self-averaging of the conductance of samples in the mesoscopic

size range. This is the regime intermediate between microscopic and

macroscopic where the sample's dimensions are less than a phase

coherence length L4’, which is the distance across which the electrons

lose phase memory. In these systems, the conductances exhibit large

sample to sample fluctuations, and the so-called universal conductance

206-210

9
fluctuations are found i.e.,

<G2> - (G)2 = constant - (e2/h) (6.“)
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where the angular brackets signify ensemble averaging and the constant

is a number of order unity, universal in the sense that it is inde-

pendent of both disorder and sample size. This result is very

different from the typical inverse square-of—the-size [O(1//N)] de-

pendence of the relative fluctuations in conventional statistics. The

physical reason is that the electrons are phase coherent and the quan-

tum mechanical coherence of the electron waves dominates the physics

under these circumstance3211'215. In particular, in two-dimensional

films the motion of even a single impurity atom leads to a change of

order (e2/h) in conductance, no matter what the sample size L. This

effect is very similar to the "dilute limit catastrophe" in breakdown

problems.

At present the above mentioned problems are treated by seemingly

different analysis methods. It is probable that a new unified class

of theoretical techniques for all these problems, based on the study

of rare statistical fluctuations instead of the average over all fluc-

tuation, can be developed.
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APPENDIX A

COMPUTER CODE TO CALCULATE THE BREAKDONN CURRENT AND “OBTAGE

IN A RANDOM RESISTOR NETNORK

Program Fuse

 

Purpose and method: to calculate the breakdown current and

voltage in a Lx(L+1) random resistor network with

percolation probability p by using the conjugate-

gradient method.

Inputs: System Size = L; Percolation Probability = Prob;

Number of the Average Configurations = Nsys;

The Seed to Generate the Random Number = Iseed.

Outputs: Conductivity = Cond; Total Current = Curr;

Breakdown Current = Cb; Breakdown Voltage = Vb.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

001111011 GX(12000),GY(12000),V(12000),V1(1ZOOO),V2(12000),

1 R(1ZOOO),P(1ZOOO),Z(1ZOOO)

LOGICAL LX,LY

COMMON /SPAN/ L,MAX,LEVEL(SOO),NN(12000),LX(12000),

1 LY( 12000) ,PROB

INTERMX=5000

EPS=1.0D-9

HAX=12000

TO READ THE INPUT DATA

10 READ(5,') L,PROB,NSYS,ISEED

IF(L.LT.O) GO TO 999

N=L.(L+1)

N2=N+N
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L1=L+1

L2:L+2

LL1=L+L+1

NLzN-L

NLL=N-L-L

LOOP 800 IS TO AVERAGE OVER NSYS CONFIGURATIONS

00 800 sts = 1, NSYS

SET UP INITIAL VOLTAGES AT EACH SITE: 7(1)

00 30 I = 1, N

X=DBLE((I-1)/L)/DBLE(L)

V(I)=(1.000-x)

30 CONTINUE

no CONTINUE

SET UP THE RANDOM RESISTOR NETNORK

DO 50 I = 1, N

GX(IO=0.0DO

LX‘I):.FALSE.

GY(I)=0.0DO

LY(I):.FALSE.

CALL THE RANDOM NUMBER GENERATOR: RAN()

RANDI=RAN(ISEED)

RANDZ=RAN(ISEED)

IF ( RAND1.LE.PROB) THEN

GX(I)=1.0DO

LX(I)=.TRUE.

ENDIF

IF (RAND2.LE.PROB) THEN

GY(I)=1.0DO

LY‘I):.TRUE.

ENDIF

50 CONTINUE

FREE BOUNDARY CONDITION IN TRANVERSE DIRECTION

D0 60 I = L, N,

GY(I)=0.0DO

LY(I):.FALS

60 CONTINUE

L

E.

TO CHECK IF THE CONNECTION OF THE NETWORK

D0 70 I = 1, L

LEVEL(1)=1

7O CONTINUE

ITEST : ISPAN(O)

--- IF NETWORK NOT CONNECTED, REGENERATE IT

IF ( ITEST.LT.0 ) GO TO “0

 

 



CURR:0.0DO

VB=0.0DO

CB=0.0DO

ITER=O

DIFF=0.0DO

CONJUGATE GRADIENT TECHNIQUE

STARTING PROCEDURE

0
0
0
0
0

00 90 I = 1, N

P(I)=0.0DO

V1(I)=0.0DO

R(I)=0.0DO

90 CONTINUE

00 100 I = L1, NL

v1(I)=(V(I-L)-V(I))*GX(I-L)+v1(I)

V1(I)=(V(I+L)-V(I))*GX(I)+V1(I)

V1(I)=(V(I-1)-V(I))*GY(I-1)+V1(I)

V1(I)=(V(I+1)-V(I))*GY(I)+V1(I)

R(I)=V1(I)

P(I)=-R(I)

V1(I)=R(I)'R(I)

100 CONTINUE

RR=0.0DO

DO 110 I = L1, NL

RR=RR+V1(I)

110 CONTINUE

 

C

C RELAXATION PROCEDURE

C

DO 120 ITER = 1, ITERMX

IF ( ITER.GE.2 ) THEN

RRLAST=RR

RR:0.0D0

DO 130 I = L1, NL

V1(I)=R(I)'R(I)

RR=RR+V1(I)

130 CONTINUE

RR1=DSQRT(RR)

IF ( RR1.LT.EPS ) GO TO 180

E:RR/RRLAST

DO 1H0 I = L1, NL

P(I)=E’P(I)-R(I)

1H0 CONTINUE

ENDIF

DO 150 I = L1, NL

V1(I)=0.0DO

150 CONTINUE

ZP=0.0DO

DO 160 I = L1, NL

V1(I)=(P(I-L)-P(I))'GX(I-L)+V1(I)
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V1(I)=(P(I+L)-P(I))*GX(I)+V1(I)

V1(I):(P(I-1)-P(I))*GY(I-1)+V1(I)

V1(I)=(P(I+1)-P(I))*GY(I)+V1(I)

Z(I)=V1(I)

v1(I)=z(I)*P(I)

zrszr+v1(1)

160 CONTINUE

QsRR/ZP

00 170 I = L1, NL

V(I)=V(I)+Q*P(I)

R(I)=R(I)+Q*Z(I)

170 CONTINUE

120 CONTINUE

END OF RELAXATION PROCEDURE

180 CONTINUE

HRITE(6,111) ITER

111 FORMAT(1X,'ITER',15)

CALCULATE vs, CB, COND, CURR

PONER=0.0DO

PONHAXX=0.0DO

DO 200 I : 1, NL

V1(I)=0.0DO

V1(I)=(V(I+L)-V(I))'(V(I+L)-V(I)).GX(I)

IF ( GX(I).EQ.1.0DO.AND.PONHAXX.LE.V1(II ) THEN

PONNAXX=VA(I)

IHAXX=I

ENDIF

PONER=PONER+V1(I)

ZOO CONTINUE

PONHAXY=0.0DO

DO 220 I = L1, NL

V2(I)=0.0DO

V2(I)=(V(I+1)-V(I))'(V(I+1)-V(I)).GY(I)

IF ( GY(I).EQ.1.0DO.AND.PONHAXY.LE.V2(I) ) THEN

PONHAXY:V2(I)

IHAXY=I

ENDIF

PONER=PONER+V2(I)

220 CONTINUE

PONHAX=DHAX1(PONHAXX,PONHAXY)

CURR=PONER

COND:CURR

VB=1.0DO/DSQRT(PONHAX)

CB=CURR*VB

NRITE(6,IOOO) L,PROB,CURR,COND,VB,CB,ITER,RR

1000 FORMAT(1x,1u,5E12.6,l7,E1u.10)

c.......................................

800 CONTINUE

GO TO 10

999 STOP
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END

THE FOLLOWING TWO SUBROUTINES ARE TO CHECK THE

CONNECTION OF THE BETWORK

INTEGER FUNCTION LASS(M)

INPLICIT DOUBLE PRECISION (A-H,O-Z)

LOGICAL LX,LY

COMMON /SPAN/ L,HAX,LEVEL(500),N(12000),LX(12000),

LY(12000),PROB

IF ( H.NE.HAX ) GO TO 1

LASS:HAX

RETURE

MO=H

H:N(H)

IF ( H0.NE.H ) GO TO 1

LASS:M

RETURE

END

INTEGER FUNCTION ISPAN(IDUH)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

LOGICAL LX,LY

COMMON /SPAN/ L,NAx,LEVEL(500),N(12000),LX(12000),

LY(1ZOOO),PROB

LP1=L+1

INDEX=1

DO 1000 I = 1, 12000

1000 N‘I)=O

N(1)=1

no 2 x , LP1

C0 0

2

I :

DO IJ

NN

3 1. L

L'(K-1)+I

( LX(J-L) ) THEN

N0L0=LASS(LEVEL(I-1))

IF

ELSE

HOLD=MAX

ENDIF

IF ( LY(J-1) ) THEN

M1:LEVEL(I-1)

ELSE

H1=MAX

ENDIF

HTR:MINO(MOLD,H1)

IF ( HTR.EQ.HAX ) GO TO 5

IF ( MTR.EQ.1 ) ICONN:1
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IF ( HOLD.LT.MAX ) N(MOLD)=MTR

IF ( N1.LT.HAX) N(H1)=MTR

GO TO 8

5 INDEX=INDEX+1

HTRzINDEX

8 LEVEL(I)=HTR

N(HTR)=HTR

GO TO U

7 LEVEL(I):HAX

H CONTINUE

3 CONTINUE

IF ( ICONN.EQ.O) GO TO 6

2 CONTINUE

ISPAN:1

RETURN

6 ISPAN=-1

RETURE

END

 

(
t
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APPENDIX B

ANALYTIC 3(1UTIONS F(Nl DEFECT PRCBLEIS

In this appendix, we outline the derivations of the analytic

results for defect problems used before, i.e., scaling forms for a

cracklike elliptical (or ellipsoidal) void in electrical and mechani-

cal problems and for a long, thin metallic inclusion in a dielectric.

In all cases we consider an external electric field or tensile stress

applied along the z direction. He also restrict our attention to the

most severe flaws, namely ellipses and oblate ellipsoid voids with

their long axis perpendicular to the direction of applied load in the

electrical and elastic cases, and ellipse and prolate ellipsoid per-

fect conductors with their long axis parallel to the direction of

applied electric field in the case of dielectric problems. These el-

lipses and ellipsoids are characterized by one or two long axes, a,

and one or two short axes, b, and we consider a/b large to simulate

the most severe flaws.
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B. 1 Electric problems.

a. Two-dimensional insulating void in a conducting background.

Consider an elliptical defect in an infinite two-dimensional sys-

tem. The equation for an ellipse centered at the origin is

x2/a2 + 22/62 = 1, (B1)

whixnl is depicted in Fig. 3.1(b). To find the current density at any

point outside the boundary of the elliptical defect (£0) solve the

Laplace's equation with the boundary condition

3T _ _
-§§ - 0, for §-g0 (82)

whixul ensures that no current flows into the insulating defect.

Laplace's equation is invariant under a transformation to elliptical

coordinatesa1, and in that frame, the appropriate fbrm of the solution

is,

W(§,n) = A2 + Be-gsin(n+e) + Cegsin(§+n), (B3)

where

x = ccosh(§)cos(n); 2 = csinh(£)sin(n), (Bu)
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a = ccosh(§o), (35)

b = csinh(§0), (86)

c = (a2 - b2)1/2. (B?)

where A, B, C, and e are constants. Choose 6 = C = O and A = '30 to

produce the externally applied electric field. Then,

T(£,n) -E02 + Be-Esin(n)

 

= -E0csinh(£)sin(n) + Be-Esin(n) (B8)

and the boundary condition (B2) implies E_

in

B = -Eoce cosh(§0). (B9)

The electric field in the z direction is then

E2 = g; = -[cosh(;)sin(n) (g?) +

sinh(§)cos(n) (%%)]/[c(cosh2§ - coszn)] (B10)

= EO - Be-g[cosh(§)81n2(n) -

sinh(£)cosz(n)]/c[cosh2§ - cosen] (B11)

the current density in the z direction is 32 = 0E2, where 0 is the

conductivity. Setting 71:0, yields for the electric field and current
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density in the z direction as a function of distance from the ellipse

tip (on the 2:0 line):

Ez(§) E0[1 + coshgoexp(§o-§)/sinh§], (B12)

and

12m JO [1 + coshEOexp(§O-£)/sinh§] (B13)

This is the Eq. (3.4) used in Chapter III.

The electric field at the defect tip is then

_ _ 1/2 1/2
Etip - ED (1 + a/b) - BO [1 + 2 (a/2x) ] (B14)

where K is the curvature at the defect tip and bizla. Eq. (B12) can

be written in terms of r, the distance from the defect tip,

a(a+b)£(agr)-(23P+:jgb2)1/21) (B15)E(P)=E(1+

z 0 c (r +2ar+b2)

A plot of this equation is given in Fig. 11.2(a). When r is large,

Ez(r) asymptotes to a dipole form,

Ez(r) = EO(1 + a e/r2) (B16)
2

with the electric dipole moment
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026 = a(a+b)/2. (B17)

Since the inclusion is sharp, the electric field becomes large near

the defect tip [as seen in Eq. (B1101, the nature of this divergence

is found from a small r expansion of Eq. (B15) which shows

 

Ez(r) ~ Etip’ when r <<K (B18) E‘

and

220) ~ Eon + a(a+b)/02(a/2r)1/2], L

when a>r>k (B19)

_ 1/2
- Eo[c1e + c2e(a/2r) ] (B20)

with

c1e = 1 and c2e = a/(a-b) (B21)

Note that 018 and 02e are 0(1) as a + m and K + m. Therefore, we get

the scaling fOrm of electric field,

2
1 + OZe/r for r>>a,

Ez(r)/EO ~ 0 + 026(a/2r)”2 for K<r<a, (322)
1e

1/2
k1e + k28(a/2K) for r<K.

which is the Eq. (H.15) used in Chapter IV.
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b. Three-dimensional insulating void in a conducting background.

The single inclusion shape and orientation that is most effective

in enhancing electric fields for this case is penny shaped and

oriented perpendicular to the electric field direction. To simlate

this we use an oblate ellipsoidal void inclusion, and the electric

fields are found by solving the Laplace's equation in ellipsoidal

coordinates. The geometry is like that of Fig. 3.1(b), with the el-

 

lipsoid found by making a solid of revolution about the z axis. The ;.

relationships between Cartesian and oblate ellipsoidal coordinates is

given by83  

x = ccoshgcosncoso,

y = ccoshgcosnsino, (B23)

2 = csinhgsinn.

The electric potential for a uniform conducting background containing

this "penny-shaped" void, with a constant electric field E0 at in-

finity in the z direction, is then found by solving Laplace's equation

in oblate ellipsoidal coordinates to find

V = -chsinh§sinn[1 - (cot'1sinhg - 1/sinh§)/A] (B2H)

where

-1
cot sinh;O — tanhgo/coshgO

cot-1(b/c) -bc/a2 . (325)

D I
I
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The z-direction electric field as a function of distance, r, from the

ellipse tip in x=y=0 plane is then given by

av

Ez(g) = -'53 |x=y=0

z 2011 - (cot“sinhg - 1/sinh§)/A] (326)

The electric field at the tip of the defect is found by evaluating Eq.

(B26) at §=§o and gives

Etip = E0(1 - [cot"(b/c) - (c/b)]/A) (327)

which for large a and small b reduces to

Etip ~ EO[2/n + Ma(nb)]

1/2
: E0[k1e + k2e(a/2K) ] (828)

with

k = 2/u and k : “(21/2)/n (B29)
1e 2e

for large a. Rewriting Eq. (B26) in terms of the distance from the

defect tip yields

-1 2 2 1/2
Ez(r,z:0) = EO - Eo(cot [(a+r) /c - 1] -

-1/2
[(a+r)2/02 - 1] )/A (B30)
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and expanding for large r then shows that the "far-field solution" is

of a dipole form

~ 3
Ez(r) EO(1 + a3e/r ) for r>>a (B31)

where the dipole moment

a3e = dipole moment = 03/3A (B32)

A small-r expansion of Eq. (B30) shows the near-field solution yields

1/2

Ez(r) Eo[c1e + c26(a/2r) ] for K<r<a (B33)

with

c = 2b/1lc and c - 1/A. (B311)
1e 2e '

When r<x, Eq. (B30) reduces to Ez(r) ~ Etip'

c. Use of the complex mapping method for solving the tip enhancement

in 2D two defect problem.

In this section, we will use the complex mapping method to calcu-

late the tip current enhancement for 2D two slit-like defect problem.

In the complex mapping method, we can find the required electric

potential solution to Laplace's equation in two dimension from the

complex potential fhnction 0 defined by,
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m s u + iv (335)

The electric field is also cast into a complex form as

an au

E'EXIiEz’fi—x-iaz

by the Cauchy's relation, this becomes

X 2 = «$3 + 1%;- (B36)

and so the complex electric field is found from the complex potential

from the equation

E = 3% (837)

where sz + 12. It is straightforward to then find the physical

electric fields Ex and E2 from the complex electric field E. Now if

we assume that (U(C) is analytic, u and v in Eq. (B35) obey Laplace's

equation. Under a conformal transformation, the transformed u and v

again obey Laplace's equation, and we look for conformal transforma-

tions that simplify the geometry of the original problem.

We first illustrate the process with a single crack of in-

finitesimal thickness as depicted in Fig. B1(a). In this figure, the

electric potential at infinity is linearly increasing with vertical

direction, and has no dependence on the horizontal direction. It is

very easy to solve this one crack problem by the mapping method. We

can use the fOllowing mapping
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(a)

 
 

 

 

  
.L

(b)

Fig. BI The single slit representation of the elliptic

defect. (a) is the original geometry; (b) is the geometry

after conformal transformation. In this geaetry, the

solution is trivial provided the slit has infinitesimal

thickness .
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g = (c2 - 5)"? (1338)

to transform the E plane to the E plane as shown in Fig. B1(b) where

the slit is transformed to an orientation parallel to the external

field. The boundary conditions at infinity are unaltered in the

transformation, and so the solution in the presence of the transfbrmed

slit is trivial provided the slit is of infinitesimal thickness. We

then see that in the E plane, the complex potential is

u(§) = -1EO§ (B39)

which using Eq. (B37) gives the correct solution in the transformed

space. This solution in the E space is then transfbrmed back to the E

space to find the required solution

u + iv = .1E0[(C2 - a2)1/2] (Eu0)

and so from Eq. (B37) we find

_ . 2 2 1/2
Ex - 1Ez - 1EOC/(C - a )

= iEO(x+iz)/(x2-22-a2+2ixz)1/2 (Bu1)

On x axis, 2:0, the complex electric field becomes

a2 1/2
(Bu2)

. 2
E - iEz - 1E0X/(X - )
X
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As a function of distance (in the x-direction along the 2:0 line) from

the defect tip, the electric field is

a2 1/2 (3113)2

E - :EOx/(x - )
2

It is interesting to note that Ez and hence the current density in the

z direction is singular at the defect tip, in contrast to the ellipse

result where the current density is finite at the ellipse tip (x=a).

However, the two types of continuum defects give the same result in

the lattice limit for large system sizes, as may be seen by integrat-

 

ing the result (8H3) over the lattice spacing d:

2 1/2
Islit : 30(2ad + d ) (BAA)

and taking the large a/d limit, this gives,

1/2

Islit Ion (2a/d) (345)

Nhich is the same in the large a/d limit as the ellipse result Eq.

(3.7) quoted in Chapter III.

Ne know illustrate how to use this method to solve the two slit

problem depicted in Fig. 3.2(b). First, make a transformation

c = 5.22. (3116)

where a and b are defined in Fig. 3.2(b) and define
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k = a/(a+b) (3“?)

Now, make the mappingau’85

; = 113 (c2 - l2)/I(c2 - U(c2 - k2)1‘/2dc (Bus)

This mapping transforms the two collinear cracks problem of Fig. f“

3.2(b) to the biplane configuration of Fig. 3.2(c). The boundary con-

ditions are unaltered in this transformation except for a rotation by

 
ninety degrees, and in the new geometry, the potential in the trans- t

'4

formed space is again trivial for infinitesimally thin cracks. Ne

find the positions of the biplanes from the mapping Eq. (8&8).

I: (12 - C2)/[(1 - c2)(c2 - k2)]dc (Bu9)O 1
1

and

:
3
’

1- I: ()2 - c2)/1(1 - c2)(k2 - C2)]dc (350)

where c and h are as defined as in Fig. 3.2(c). A is fixed by the re-

quirement that the mapping (Bu8) should be independent of path, i.e.,

1 . 1C ((2 - A2)/[(1 - c2)(c2 - k2)]1/2dE = 0 (851)

where the integral path C includes each of the cracks. Thus

1 = 2 I; (c2 - 12)/1(1 - czm2 - k2)I‘/ch = o (352)
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c2/[(1-c2)(c2-k2)1‘/2dc = 121; [(1-c2)(c2-k2)1"’2dc (353)

Let E = [1 - (1 - k2)u2]1/2 and k'2 = 1 - k2, then,

>
2

1
1 I; c2/1(1-c2)(cz-k2)I‘/2dC/I; [(1-c2)(c2-k2)1"/2dc

I; [(1 - k'2u2)/(1—u2)11/2du/131(1-u2)(1-k'2u2)]“/2du

E(k')/K(k') (85”)

where 1((k') and E(k') are elliptic integrals of the first and second

kind respectively. In the E plane, we know the complex potential

function is simply

so, in the E plane, the potential is

U(C) = -ieoig (ca-12)/1(c2-1)(c2-k2)11’2dc (856)

And from Eq. (B37), we get

Ex - 152 = iEO(E2-k2)/[(CZ-1)(C2—k2)]1/2 (BS7)

On x axis, we then have:
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E - 13y = 1301x2—12(a+b)21/([xz-(a+b)2][x2-a2])”2 (358)

and hence the behavior of the physical electric fields is,

for -a<x(a:
F
)

1
1

:
3

m 1
1 tEOIxZ-)2(a+b)21/(Ixz-(a+b)21[xZ-azl)”2 (359)

3x = 0, E2 = :Eo[x2-12(a+b)2]/([xZ-(a+b)2][x2-a2])1/2 (860)

for a<lxl<a+b:

3x = 2301x2-12(a+b)2]/([(a+b)2-x2][x2-a2])‘/2, E2 = 0 (361)

To find the current between the two cracks, we integrate Eq. (BS9),

Islits 12°Eo’3 dxlx2-*2(a+b)21/([xZ-(a+6)211x2-321)‘/2

20E0(a+b)[E(k) - K(k) + E(k')K(k)/K(k')] (862)

where 0 is the conductivity of the system. We are interested in the

limit a<<b, which implies k+0. In this case,

Islits v 20E0(a+b)E(k')K(k)/K(k') (B63)
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As kro, k'OO, E(k') ~ K(k) and both are finite, and K(k') is singular.

Because K(k') is singular as ln(1-k'2), we find

an. I
Islits 0E0(a+b)E(k )K(k)/ln[a/(a+b)] (B64)

which is the result quoted in Eq. (3.14) in Chapter III.

To make contact with the result for one slit when the distance

between the two slits is zero, take the limit a+0, then 12=E(k')/K(k')

s0, and Eq. (B60) becomes

b2 1/22

E - -EOx/(x - )z for lxl>b (B65)

which is the one crack result reported in Eq. (B43).

8.2 Dielectric problems.

a. 2D problem of a conducting ellipse in an insulating background.

The most effective-field enhancing inclusion is a thin ellipse

with its long axis parallel to the direction of the electric field (2

axis). The electric field outside the inclusion can be found by solv-

ing the Laplace's equation in elliptical coordinates:

csinhEsinn, z = ccoshEcosn (B66)3
‘

1
1

and

D I- ccoshEo, b = csinhEO
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The calculation is analogous to that described in Appendix 8.1 a for

the 2D electrical problem. The only change is that the boundary con-

dition on the ellipse is now

T(£0) = 0 (B67)

The solution in this case is

T(E,n) = AcoshEcosn +Be'gcosn

where

A=-cE

Boundary condition (B67) determines that

B = -AcoshEOexp(E0)

= cEOcoshEoexp(Eo) (B68)

Thus,

T(E,n) = -cE0coshEcosn + chcoshEoexp(E0-E)cosn (B69)

The electric field in the z direction and on the z axis is then

_ 3T

E2(g’n)lx=0 ' d5;'|x=0
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= -[sinhEcosn(%g -

coshEsinn(%%)]/[c(cosh2E - coszn)] lx=0

: EO[1 + coshEoexp(EO-E)/sinhE] (B70)

Therefore, the solution is mathematically identical to that given

above for the 20 electrical case (although geometrically the conduct-

ing ellipse has its long axis parallel to the applied field), and

expression for the electric field at the crack tip, in the near field

and in the far field are identical to those given in Eqs. (B16) -

(821) for the electrical case.

b. 3D problem of a conducting ellipsoid in a dielectric background.

The most efficient-field enhancing defect is formed by making a

solid of revolution about the z axis of an ellipse with its long axis

in the z direction. This "finger-like" inclusion is the most impor-

tant single inclusion for this case of dielectric problem. Solving

Laplace's equation in the probate ellipsoidal coordinates

x = csinhEsinncos¢

y = csinhEsinnsin¢ (871)

z = ccoshEcosn

leads to the electric potentials

-
.
.
,
_
_
.
-
_
.
_
.
.
.
.
-
-
F
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in = 0 (B72)

wont = -cEOcoshEcosn(1 - [ln(tanhg) + 1/coshE]/8) (873)

where

B = ln[tanh(EO/2)] + 1/coshE0 (B74)

The electric field in the z direction and at the z axis, as a

function of distance from defect tip is then

Ez(E) = EO + Eo(ln[tanh(E/2)] + coshE/sinhZE)/B (375)

From this expression we find the electric field at the defect tip to

be

Etip = EO(1 + a2/[b21n(2a/b)]) (876)

The far-field (large r) solution again has a dipole fOrm

Ez(r) - E 3 (B77)0 ~ GBd/r

where the 3D electric dipole moment

_ 3
03d — 20 /38 (878)

For K<r<a, the electric field reduces to
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Ez(r) - E ~ E0[1n(r/2a) + a/2r]/B (B79)
0

and for r<K,

Ez(r) ~ E (880)
tip

8. 3 Elastic problems.

a. 2D void in an elastic background.

We consider the geometry of Fig. 4.1 with the external electric

field replaced by a tensile stress. The calculation of the stress

field due to this inclusion is a standard calculation, and the verti-

cal stress along the horizontal direction is given by [taken from Ref.

216, Eq. (130)]

oz(£.n=0) = 00(1 + (Al3exp(-£)-exo(-3E)] +

BcoshE)/sinh3E) (881)

where

_ 2

A - coshtolexp(3§o) - 3exp(§o)], B-cosh £0 (BB2)

The stress at the defect tip is then given by

0tip : 00(1 + 2a/b) (B33)
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Expression (881) in terms of r the radial distance from the crack tip,

and doing the large-r expansion, we find

0 (r) — 0 ~ 0 /r2 for r>>a (884)
z 0 2m

with the 2D elastic dipole moment

a - a /2 (885)

A small-r expansion of (B81) yields

 

02(r) - 0 ~ 00(a/2r)1/2 for K<r(a (886)
O

b. 3D void in an elastic background.

The most important single defect is a penny-shaped inclusion with

its long axis oriented perpendicular to the direction of the applied

tensile stress. To study this, we form a solid of revolution about

the z axis of the ellipse inclusion of Fig. 4.1. The exterior stress

and strain fields are most easily found using the equivalent inclusion

method, and the z-direction stress as a function of distance from the

defect tip is given by [this is found after simplifying Eq. (126) of

Ref. 216],

1

02(E) = 00[1 + aub(K1cot- sinhE - K /sinhE +

1

K2/sinh3E)/(N1c5)] (887)  
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where

K1 = (12-10/v)g + 2&4/c4 - (25 — 22/v)a202 (888)

K2 : 12au/cu - 6(g + 2)a2/c2 + 6g . (889)

N1 : 6[4aub2/c6 - 2(1 - 1/v)g2 - (2&4 - 8a2b2)g/cu] (B90)

and

2
g = [aubcot‘1(b/c) - a bzcl/c5 (B91)

where v is Poisson's ratio. The stress intensity at the defect tip is

found to be

_ 2 u u 2 2
Otip - 00a ([2a /b - (1.5 - 1/v)a /b + 1 - 1/v] +

a2A[1/v - (1.5 + 1/v)a2/b2])/[(a2/b2 + 1 - 1/v)/bc

+ a2A(a2/b2 - 2 - 2/v) - auA2(1 + 1/v)/bc] (392)

where

A = tan-1(c/b) (393)

For large a/b and 1/v<<a/b, we find

0 ~ -u(3v + 2)/1 + 2a/b = k + k (a/2K)1/2 (391)
tip 1m 2m

with
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k : -n(3v + 2)/H, k m = 81/2

1m 2

A large-r expansion, yields the expected dipole behavior

3
02(r) - 00 ~ a3m/r for r>>a

where

4 2
03m = (K2 - K1/3)a boo/(c N1)

is the dipole moment. A small-r expansion yields

1/2
02(r) - 0 ~ 1/r for K<r<a

0

and

oz(r) ~ otip for r<<K

(B95)

(B96)

(897)

(898)

(899)

 
 

E
-

 



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

183

N.F. Mott and H. Jones, 1936, The Theory of the Properties of

Metals and Alloys, Oxford, reprinted by Dover Publications, New

York; C. Kittel, 1971, Introduction to Solid State Physics,

Wiley.

R. Zallen, 1983, The Physics of Amorphous Solids, Niley.

N.F. Mott and E.A. Davis, 1971, Electronic Processes in Non-

crystalline Materials, Oxford University Press.

For general introduction about the percolation theory see:

D. Stauffer, 1985. Introduction to Percolation Theory, Taylor &

Francis Ltd; 8. Kirkpatrick, Rev. Mod. Phys., 574 (1973);

H.L. Frisch and J.M. Hammersley, J. Soc. Indust. Appl. Math.

u, 894 (1963).

P.M. Duxbury and Y.S. Li, Proceedirg of the SIAM Norksho on

Random Media and Composites, Leesburg, Virginia, 19 .

R. Landauer in AIP Conference Proceedings, No. 40, 1978, eds.

by J. Garland and Tanner.

P.G. de Gennes, J. Phys. (Paris) fl, L-1 (1976).

3. Alexander, J. Phys. (Paris) 45, 1939 (1984).

P.-z Nong, Phys. Today, 4_1_, No. 12, 24 (1988); J.R. Banavar, J.

Koplik, K.N. Ninkler, eds., Physics and Chemistry of Porous

Media 11, AIP Conference Proceedings 154, AIP, New York (1987).

For a review, see Ref 2 and 4; D. Stauffer, Phys. Rep. 14, 1

(1979); V.K.S. Shante and S. Kirkpatrick, Adv. Phys. 20, 325

(1971); D.J. Thouless, in Ill-Condensed Matter, eds. by R.

Balian, R. Maynard and G. Thoulouse (North-Holland, Amsterdam,

1979).

D.A.G. Bruggeman, Ann Phys. (Leipz.) g5, 636 (1935).

R. Landauer, J. Appl. Phys. g3, 779 (1952).

N.F. Brown, Handb. Phys. _1_'_I_, 104 (1956).

E.H. Kerner, Proc. Phys. Soc. Lond. B_6_9, 802 (1956).

E.H. Kerner, Proc. Phys. Soc. Lond. B_62, 808 (1956).

1LT. Elam, A.R. Kerstein and J.J. Rehr, Phys. Rev. Lett. _5_2,

1516 (1984).

’
3

 



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

184

J.N. Roberts and L.M. Schwartz, Phys. Rev. 831, 5990 (1985).

8.1. Halperin, S. Feng and P.N. Sen, Phys. Rev. Lett. 54, 2391

(1985).

S. Feng, 8.1. Halperin and P.N. Sen, Phys. Rev. B35, 197

(1987).

see reference 6; G. Deutscher, A. Kapitulnik and M. Rappaport,

Ann. Israel Phys. Soc. _5_, 207 (1983); P.N. Sen, C. Scale and

M.H. Cohen, Geophys. 46, 781 (1981).

R.I. Cukier, J. Phys. Chem. §9_, 246 (1985).

J. Berryman, J. Acoust. Soc. Am. 68, 1820 (1980), and reference

therein.

M.F. Thorpe and P.N. Sen, J. Acoust. Soc. Am. 11, 1674 (1985).

R. Hill, J. Mech. Phys. Solid., 13, 213 (1965); 3. Budiansky,

ibid., 13, 223 (1965); T.T. wu, Int. J. Solid. Struct., 3, 1

(1966).

W. Xia and M.F. Thorpe, Phys. Rev. A38, 2650 (1988).

L.M. Schwartz and J.R. Banavar, Phys. Rev. 832, 11965 (1989).

C.J. Lobb and M.G. Forrester, Phys. Rev. 835, 1899 (1987).

E.N. Martinez, private communication.

B.R. Lawn and T. Nilshaw, Fracture of Brittle Solids (Cambridge

Univ. Press, 1975).

R. Thomson, in Solid State Phys., ed. by H. Ehrenreich and D.

Turnbull, 32, 1 (Academic Press, N. Y., 1986).

B.R. Clarke and K.J. Faber, J. Phys. Chem. Solids, 48, 1151

(1987).

J.E. Gordon, The New Science of Strong Materials, Princeton

Univ. Press, Princeton (1987).

A. Kelly and N.H. Macmillan, Strong Solids, Clarendon Press,

Oxford (1986).

See, e.g., the collection of articles in Fracture, ed. by H.

Liebowitz (Academic Press, New York, 1984), Vols. I-VII.

S.M. Weiderhorn, Annu. Rev. Mater. Sci., 14, 373 (1984).

F. McClintock, in Fracture Mechanics of Ceramics, ed. by R.C.

Brandt, D.D.H. Hasselman and F.F. Lange (Plenum, New York,

1974).

  

 

 



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

185

R.H. Davidge, Mechanical Behavior of Ceramics, Cambridge Solid

State Science Series (Cambridge Univ. Press, Cambridge, 1979).

H. Takayasu, Phys. Rev. Lett. 64, 1099 (1985).

L. de Arcangelis, S. Redner and H.J. Herrmann, J. Physique

Lett. 32. L585 (1985).

M. Sahimi and J.D. Goddard, Phys. Rev. 933, 7848 (1986).

P.M. Duxbury, P.D. Beale and P.L. Leath, Phys. Rev. Lett. fl,

1052 (1986).

P.M. Duxbury, P.L. Leath and P.D. Beale, Phys. Rev. 83.6.. 367

(1987).

Y.S. Li and P.M. Duxbury, Phys. Rev. 636, 5411 (1987).

P.D. Beale and P.M. Duxbury, Phys. Rev. 631, 2785 (1988).

P.D. Beale and D.J. Srolovitz, Phys. Rev. 631, 5500 (1988).

D.J. Srolovitz and P.D. Beale, Am. Ceram. Soc., 14, 362 (1988).

P.L Leath and N. Tang, Phys. Rev. B , 6485 (1989); N. Xia and

P.L. Leath, Phys. Rev. Lett. 63, 142 (1989).

For example see,H.L. Ewalds and R.J.H. Nanhill, Fracture

Mechanics (Edward Arnold, 1984).

Y.S. Li and P.M. Duxbury, Phys. Rev. 646, 4889 (1939).

A.A. Griffith, Phil. Trans. R. Soc. London, ggl, 163 (1920).

E.J. Garboczi, Phys. Rev. 2391 9005 (1988).

J. Tobochnik, preprint; J. Tobochnik, M.A. Dubson, M.L. Wilson

and M.F. Thorpe, Phys. Rev. 4, in press.

M.F. Thorpe, M. DeVries and J. Tobochnik, unpublished.

P.G. de Gennes, Recherche, 1, 919 (1976).

S. Alexander and R. Orbach, J. Physique Lett. 43, L625 (1982).

Y. Gefen, A” Aharony and 8. Alexander, Phys. Rev. Lett. 66, 77

(1983).

D. Ben-Avraham and S. Havlin, J. Phys. 416, L691 (1982).

R.B. Laibowitz and Y. Gefen, Phys. Rev. Lett. 63, 380 (1984).

G. Deutscher, A. Kapitulnik and M. Rappaport, Ann. Isral. Phys.

Soc. 6, 207 (1983).

 

 



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

186

H.E. Stanley and A. Coniglio, Phys. Rev. £2, 522 (1984).

R.B. Pandey, D. Stauffer, A. Margolina and J.G. Zabolitzky, J.

Stat. Phys. 34, 427 (1984).

C. Mitescu and J. Roussenq, Ann. Israel Phys. Soc. 5, 81

(1983).

H. Scher and M. Lax, Phys. Rev. 6_16, 4491 (1973).

K.N. Kehr, J. Stat. Phys. 36, 509 (1983).

R. Kutner and K.N. Kehr, Phil. Mag. 646, 199 (1983).

P.G. de Gennes, J. Physique Colloq. _4_1_, C3 (1980).

A. Coniglio and H.E. Stanley, Phys. Rev. Lett. 63, 1068 (1984).

H.J. Herrmann, D. Derrida and J. Vannimenus, Phys. Rev. 636,

4080 (1984).

A. Bunde, A. Coniglio, D.C. Hong and H.E. Stanley, J. Phys.

A_18, L137 (1985).

D.C. Hong, H.E. Stanley and A. Coniglio, Phys. Rev. 633, 4564

(1986).

R.C. McPhedran, Proc. R. Soc. Lond. A408, 31 (1986).

L. Poladian and R.C. McPhedran, Proc. R. Soc. Lond. A408, 45

(1986).

R.C. McPhedran and D.R. McKenzie, Proc. R. Soc. Lond. A366, 45

(1978).

G.K. Batchelor, F.R.S. and R.N. O'brien, Proc. R. Soc. Lond.

A35 , 313 (1977).

N.T. Perrins, R.C. McPhedran and D. McKenzie, Thin Solid Films,

.51, 321 (1979).

L. Rayleigh, Phil. Mag. 34, 481 (1892).

I. Runge, 2. Tech. Phys. 6, 61 (1925).

H.B. Keller and D. Sachs, J. Appl. Phys. 36, 537 (1964).

N.T. Perrins, D.R. McKenzie and R.C. McPhedran, Proc. R. Soc.

Lond. A362, 207 (1979).

J.8. Keller, J. Appl. Phys. 34, 991 (1963).

S. Roux, J. Stat. Phys., 46, 201 (1987).

 

 

 

 



[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

187

J. Machta and R.A. Guyer, Phys. Rev. 636, 2142 (1987).

G. Arfken, Mathematical Methods for Physicists, 2nd ed.

(Academic, New York, 1970).

G.C. Sih, Method of Analysis and Solution of Crack Problems,

(Noordhoff, Amsterdam, 1973); 0.L. Bowie, ibid., and references

therein.

Th. von Karman and J.M. Burgers, in Aerodynamic Theory, Vol.11,

Div. E, 83, ed. N.F. Durand, 1943.

H. Tada, P. Paris and G. Irwin, The Stress Analysis of Cracks

Handbook (Doll Research, St. Louis, 1973).

 

E.J. Gumbel, Statistics of Extremes, (Columbia University

Press, New York, 1958).

L. de Arcangelis, S. Redner and A. Coniglio, Phys. Rev. 631,

4725 (1985).

L. de Arcangelis, S. Redner and A. Coniglio, Phys. Rev. 634,

4656 (1986).

G.C. Batrouni, A. Hansen and Nelkin, J. Physique, 46, 771

(1987).

R. Blumenfeld, Y. Meir, A.B. Harris and A. Aharony, J. Phys.

319. L791 (1986).

B. Kahng, G.C. Batrouni and S. Redner, J. Phys. A20, L827

(1987).

S.K. Chan, J. Machta and R.A. Guyer, Phys. Rev. 832, 9236

(1989).

J. Helsing, J. Axell and G. Grimvall, Phys. Rev. 836, 9231

(1989).

For introduction about multifractal, see G. Paladin and A.

Vulpiani, Phys. Rep. 166, 147 (1987).

Y. Kantor and I. Nebman, Phys. Rev. Lett. 66, 1891 (1984).

A.R. Day, B.R. Tremblay and A.M.S. Tremblay, Phys. Rev. Lett.

66, 2501 (1986).

S. Feng, M.F. Thorpe and E. Garboczi, Phys. Rev. B31, 276

(1985).

M. Soderberg, Phys. Rev. _835. 352 (1987).

B. Kahng, G.C. Bartrouni, S. Redner, L. de Arcangelis and H.J.

Herrmann, Phys. Rev. 631, 7625 (1988).

“
4
1
5
.
1
4
.
.
a
n
“

 

 



[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[1111]

[115]

[116]

[117]

[118]

[119]

[120]

188

H.J. Herrmann, A. Hansen and S. Roux, Phys. Rev. B36, 637

(1989).

R. Rammal, C. Tannous ans A.M.S. Tremblay, Phys. Rev. 631, 2662

(1985).

B. Fourcade and A.M.S. Tremblay, Phys. Rev. 634, 7802 (1986).

D.J. Bergman, Phys. Rev. 636, 4598 (1989).

M.A. Dubson, Y.C. Hui, M.B. Weissmann and J.G. Garland, Phys.

Rev. 636, 6807 (1989).

L. de Arcangelis and H.J. Herrmann, Phys. Rev. 836, 2678

(1989).

H.J. Herrmann, A. Hansen and S. Roux, Phys. Rev. B36, 637

(1989).

L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett.

66, 1033 (1984); L. Pietronero and H.J. Wiesmann, J. Stat.

Phys. 36, 909 (1984).

M. Murat, Phys. Rev. 636, 8420 (1985).

H.J. Wiesmann and H.R. Zeller, J. Appl. Phys. 66, 1770 (1986).

R.B. Blodgett, R.M. Wade and W.D. Wilkins, 1888 Trans. Elec.

Insul. Vol. 81-16, 564 (1981).

A.C. Ashcraft, Proc. World Electrochem. Congress (Moscow: Union

Carbide Kabelitems, 1976), p152; L.A. Dissado, J. Fothergill

and S. Wolfe, CEIDP Conf. Proc. p264, 1981.

Y.S. Li and P.M. Duxbury, submitted to Phys. Rev. Lett.

T.A. Witten and L.M. Sander, Phys. Rev. Lett. 41, 1400 (1981).

T.A. Witten and L.M. Sander, Phys. Rev. 631, 5686 (1983).

H.E. Stanley, F. Family and H. Gould, Phys. Rev. Lett. 66, 686

(1983).

Y. Termonia and P. Meakin, Nature, 366, 429 (1986).

E. Louis and F. Guinea, Europhys. Lett. 3, 871 (1987).

L. Fernandez, F. Guinea and E. Louis, J. Phys. L301A21,

(1988).

L. Pietronero, A. Erzan and C. Evertsz, Physica, A151, 207

(1988).

 

 



[101]

[102]

[103]

[104]

I105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

I115]

[116]

[117]

[118]

[119]

[120]

188

H.J. Herrmann, A. Hansen and S. Roux, Phys. Rev. 836, 637

(1989).

R. Rammal, C. Tannous ans A.M.S. Tremblay, Phys. Rev. 631, 2662

(1985).

B. Fourcade and A.M.S. Tremblay, Phys. Rev. 634, 7802 (1986).

D.J. Bergman, Phys. Rev. 636, 4598 (1989).

M.A. Dubson, Y.C. Hui, M.B. Weissmann and J.C. Garland, Phys.

Rev. 632, 6807 (1989).

L. de Arcangelis and H.J. Herrmann, Phys. Rev. B36, 2678

(1989).

H.J. Herrmann, A. Hansen and S. Roux, Phys. Rev. 833, 637

(1989).

L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett.

2, 1033 (1984); L. Pietronero and H.J. Wiesmann, J. Stat.

Phys. 36. 909 (198“).

M. Murat, Phys. Rev. 636, 8420 (1985).

H.J. Wiesmann and H.R. Zeller, J. Appl. Phys. 66, 1770 (1986).

R.B. Blodgett, R.M. Wade and W.D. Wilkins, IEEE Trans. Elec.

Insul. Vol. 81-16, 564 (1981).

A.C. Ashcraft, Proc. WOrld Electrochem. Congress (Moscow: Union

Carbide Kabelitems, 1976), p152; L.A. Dissado, J. Fothergill

and S. Wolfe, CEIDP Conf. Proc. p264, 1981.

Y.S. Li and P.M. Duxbury, submitted to Phys. Rev. Lett.

T.A. Witten and L.M. Sander, Phys. Rev. Lett. 41, 1400 (1981).

T.A. Witten and L.M. Sander, Phys. Rev. 661, 5686 (1983).

H.E. Stanley, F. Family and H. Gould, Phys. Rev. Lett. 66, 686

(1983).

Y. Termonia and P. Meakin, Nature, 366, 429 (1986).

E. Louis and F. Guinea, Europhys. Lett. 3, 871 (1987).

L. Fernandez, F. Guinea and 8. Louis, J. Phys. L301

(1988).

21,

L. Pietronero, A. Erzan and C. Evertsz, Physica, A151, 207

(1988).

 

 

 



[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

189

H.E. Stanley and N. Ostrowsky eds., Random Fluctuations and

Pattern Growth - Experiments and Growth, Kluwer Academic

(1988).

A.T. Skjeltorp and P. Meakin, Nature, 336, 424 (1988).

P. Meakin, Crystal Properties & Preparation, Vols. 17 8: 18, 1

(1988).

P. Meakin, G. Li, L.M. Sander, E. Louis and F. Guinea, J. Phys.

922. 1393 (1989).

E.L. Hinrichsen, A. Hansen and S. Roux, Europhys. Lett. _8_, 1

(1989).

H.J. Herrmann, J. Kertesz and L. de Arcangelis, preprint.

B.V. Gnedenko and A. N. Komogorov, Limit Distributions for Sums

of Independent Random Variables (Addison-Wesley, Cambridge, MA,

1954).

L.E. Reichl, A Modern Course in Statistical Physics,

(University of Texas Press, Austin, 1980).

W. Feller, Introduction to Probability Theory 6nd Its

Applications, (John Wiley & Sons, Inc., 1966).

F. Reif, Fundamentals of Statistical and Thermgl Physics

(McGraw-Hill, New York, 1965).

J.L. Doob, Stochastic Processes (Wiley, New York, 1953).

J. Aitcheson and J.A.C. Brown, The Lognormal Distribution

(Cambridge University Press, London, England, 1957).

S. Redner, preprint (1989).

S. Redner, Random Multiplicative Processes and Multifractals,

in Universality in Condensed-Matter Physics Preceedings of the

Les Houches Winter Conference, March 1988 (Springer-Verlag).

 

S. Havlin, R.L. Blumberg, M. Schwartz, H.E. Stanley and A.

Bunde, Phys. Rev. Lett. 61, 1428 (1988).

S. Havlin and D. ben-Avraham, Adv. Phys. 36, 695 (19877).

J.N. Haus and K.W. Kehr, Phys. Rep. 166, 263 (1987).

J. Galambos, The Asymptotic Theory of Extreme Order Statistics

(J. Wiley, New York, 1978).

 

E. Castillo, Extreme Value Theory in Engineering, (Academic

Press, Inc., 1988).

 



[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

189

H.E. Stanley and N. Ostrowsky eds., Random Fluctuations and

Pattern Growth - Experiments and Growth, Kluwer Academic

(1988).

A.T. SkJeltorp and P. Meakin, Nature, 336, 424 (1988).

P. Meakin, Crystal Properties A Preparation, Vols. 17 A 18, 1

(1988).

P. Meakin, G. Li, L.M. Sander, E. Louis and F. Guinea, J. Phys.

A_22_, 1393 (1989).

E.L. Hinrichsen, A. Hansen and S. Roux, Europhys. Lett. 6, 1

(1989).

H.J. Herrmann, J. Kertesz and L. de Arcangelis, preprint.

B.V. Gnedenko and A. N. Komogorov, Limit Distributions for Sums

of Independent Random Variables (Addison-Wesley, Cambridge, MA,

1954).

L.E. Reichl, A Modern Course in Statistical Physics,

(University of Texas Press, Austin, 1980).

W. Feller, Introduction to Probability Theory and Its

Applications, (John Wiley A Sons, Inc., 1966).

F. Reif, Fundamentals of Statistical and Thermal Physics

(McGraw-Hill, New York, 1965).

J.L. Doob, Stochastic Processes (Wiley, New York, 1953).

J. Aitcheson and J.A.C. Brown, The Lognormal Distribution

(Cambridge University Press, London, England, 1957).

S. Redner, preprint (1989).

S. Redner, Random Multiplicative Processes and Multifractals,

in Universality in Condensed-Matter Physics Preceedings of the

Les Houches Winter Conference, March 1988 (Springer-Verlag).

S. Havlin, R.L. Blumberg, M. Schwartz, H.E. Stanley and A.

Bunde, Phys. Rev. Lett. 61, 1428 (1988).

S. Havlin and D. ben-Avraham, Adv. Phys. 6, 695 (19877).

J.N. Haus and K.W. Kehr, Phys. Rep. 166, 263 (1987).

J. Galambos, The Agymptotic Theory of Extreme Order Statistics

(J. Wiley, New York, 1978).

E. Castillo, Extreme Value Theory in Engineering, (Academic

Press, Inc., 1988).

 



[140]

[141]

[1112]

[1113]

[11111]

[1115]

[146]

[147]

[1118]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

190

A.E. Sarhan and 8.0. Greenberg, Contributions to Order

Statistics, (John Wiley A Sons, Inc., 1962).

S.D. Volkov, Statisticl Strength Theory, (Gordon and Breach

Science Publishers, New York, 1962).

E.J. Gumbel, Ann. Math. Statist. 66, 76 (1954).

W. Weibull, J. Appl. Mech. 1_8, 293 (1951).

W. Weibull, J. Appl. Mech. 16, 109 (1952).

W. Weibull, Appl. Mech. Rev. 6, 449 (1952).

x. Ishii, Sup. Prog. Theor. Phys. 63, 77 (1973).

D.J. Thouless, Phys. Rev. Lett. 36, 1167 (1977).

E. Abrahams, P.W. Anderson, D.C. Licciardello and T.V.

Ramakrishnan, Phys. Rev. Lett. 4_2, 673 (1979).

P.A. Lee, Phys. Rev. Lett. 46, 1492 (1979).

Mott and W.D. Twose, Adv. Phys. 1_0, 107 (1961).

Borland, Proc. Phys. Soc. London, 16, 926 (1961).

@
5
0
2

.F.

.E.

.S. Andereck and E. Abrahams, J. Phys. 613, L383 (1980).

“
U

. Erdos and R.C. Herndon, Adv. Phys. 31, 63 (1982).

G. Bergmann, Phys. Rep. 161, 1 (1984).

M. Pepper, Contemp. Phys. 66, 257 (1935).

P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 61, 287 (1985).

N.F. Mott and M. Kaveh, Adv. Phys. 34, 329 (1985).

A.A. Abrikosov and LA. Ryzhkin, Adv. Phys. 61, 147 (1978).

R. Landauer, Philos. Mag. 61, 863 (1970).

A.A. Abrikosov and LA. Ryzhkin, Adv. Phys. 61, 147 (1978).

P.W. Anderson, D.J. Thoules, E. Abrahams, and D.S. Fisher,

Phys. Rev. 2.221 3519 (1980).

P.W. Anderson, Phys. Rev. 663, 4828 (1981).

A.A. Abrikosov, Solid State Commun. 31 997 (1981).

V.1. Mel'nikov, Zh. Eksp. Teor. Fix. Pis'ma. 36, 244 (1980)

[JETP Lett. 3g, 225 (1980)].



[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

I184]

[185]

[186]

[187]

191

A. Peres, M. Revzen, and A. Ron, Phys. Rev. fl» 7463 (1981).

P.A. Mello, J. Math. Phys. 21. 2876 (1986).

B. Shapiro, Phys. Rev. 634, 4394 (1986).

J. Flores, P.A. Mello, and G. Monsivais, Phys. Rev. 83 , 2144

(1987).

P.A. Mello, Phys. Rev. 232. 1082 (1987).

B. Shapiro, Philos. Mag. 666, 1031 (1987).

P.A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. 181, 290

(1988).

P.A. Mello and B. Shapiro, Phys. Rev. 231. 5860 (1988).

A. Cohen, Y. Roth and B. Shapiro, Phys. Rev. 636, 12125 (1988).

I. Edrei, M. Kaveh, and B. Shapiro, Phys. Rev. Lett. 66, 2120

(1989).

P.A. Lee and D.S. Fisher, Phys. Rev. Lett., 41, 1546 (1981).

P.M. Duxbury and P.L. Leath, J. Phys. _A_26, L411 (1987).

D.A. Darling, Trans. Amer. Math. Soc. 13, 95 (1952).

D.Z. Arov and A.A. Bobrov, Theor. Prob. Appl. 6, 377 (1960).

A.V. Nagaev, Theor. Prob. Appl. _16, 126 (1971), and references

therein.

D. Dhar, in Stochastic Processes: Formulasim and Applications,

ed. by S. Agarwal and S. Dattagupta, (Berlin: Springer, 1983),

p 300.

M. Randeria, J.P. Sethna and R.G. Palmer, Phys. Rev. Lett. 64,

1321 (1985).

A.J. Bray and M.A. Moore, J. Phys. 616, L765 (1982).

J.A. Hertz, L. Fleishman and P.W. Anderson, Phys. Rev. Lett.

43, 942 (1979).

A.J. Bray, Phys. Rev. Lett. 66, 586 (1987).

A.J. Bray, Phys. Rev. Lett. 66, 720 (1988).

D. Dhar, M. Randeria and J.P. Sethna, Europhys. Lett. 6, 485

(1988).

A.J. Bray and G.J. Rodgers, J. Phys. 661 L243 (1988).

 



[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

192

A.J. Bray and G.J. Rodgers, Phys. Rev. 636, 9252 (1988).

A.J. Bray and H. Deng, Phys. Rev. 646, 6980 (1989).

A.J. Bray, J. Phys. 466, L81 (1989).

R.8. Griffiths, Phys. Rev. Lett. 63, 17 (1969).

R.F. Kayser and J.B. Hubbard, Phys. Rev. Lett. 61, 79 (1983).

U. Seiferheld, H. Bassler and B. Movagher, Phys. Rev. Lett. 6_1_,

813 (1983).

S. Redner and K. Kang, Phys. Rev. Lett. 61, 1729 (1983).

J.K. Anlauf, Phys. Rev. Lett. 66, 1845 (1984).

J.S. Langer, Ann. Phys. 64, 258 (1969).

J.S. Langer and A.J. Schwartz, Phys. Rev. £1, 948 (1980).

J.D. Gunton, M.S. Miguel and P.S. Sahni, in Phase Transition

and Critical Phenomena, Vol. 8 (C. Domb and M.S. Green, eds.

Academic Press London, 1983).

 

K. Binder and A.P. Young, Rev. Mod. Phys. 66, 801 (1986).

D.S. Fisher and D.A. Huse, preprint.

I.M. Lifshitz, Adv. Phys. 13, 483 (1964).

T.M.

H.J.

Nieuwenhuizen, J.M. Luck, J. Canisius, J.L. Hemmen and

Ventevogel, J. Stat. Phys. 46, 395 (1986).

T.M. Nieuwenhuizen and J.M. luck, Physica A146, 161 (1987).

T.M. Nieuwenhuizen and J.M. Luck, J. Stat. Phys. 46, 393

(1987).

J.M. Luck and T.M. Nieuwenhuizen, J. Stat. Phys. 66, 1 (1988).

R.A. Webb, S. Washburn, C.P. Umbach and R.8. Laibowitz, Phys.

Rev. Lett. 64, 2696 (1985).

V. Chanderasekhar, M.J. Rooks, S. Wind and D.E. Prober, Phys.

Rev. Lett. 66, 1610 (1985).

S. Datta, M.R. Melloch, S. Brandyopadyay, R. Noren, M. Varizi,

M. Miller and R. Reifenberger, Phys. Rev. Lett. 66, 2344

(1985).

8.8. Kaplan and A. Hartstein, Phys. Rev. Lett. 66, 2403 (1986).

S. Washburn and R.A. Webb, Adv. Phys. fi, 375 (1986).

 



[211]

[212]

[213]

[214]

[215]

[216]

193

A.D. Stone, Phys. Rev. Lett. 64, 2692 (1985).

R.L. Al'tshuler, JETP Lett. 41, 648 (1935).

P.A. Stone and A.D. Stone, Phys. Rev. Lett. 66, 1622 (185).

S. Feng, P.A. Lee and A.D. Stone, Phys. Rev. Lett. 66, 1960

(1986).

P.A. Lee, A.D. Stone and H. Fukuyama, Phys. Rev. B36, 1039

(1987).

H. Neuber, Theory of Notch Stresses (Edwards Brothers, Ann I

Arbor, Michigan, 1946). g

 



"11111111111114)“

 


