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ABSTRACT

MODAL ANALYSIS OF VIBRATIONS
IN
LIQUID-FILLED PIPING SYSTEMS

By

Marlio William Lesmez

The vibration of liquid-filled piping systems is formulated using one-
dimensional wave theory in both the liquid reaches and the pipe wall.
Five families of waves and fourteen variables are considered and the
effects of shear deformation and rotary inertia on the lateral vibration
of the pipe reaches are included. A numerical model is described which
includes both Poisson and junction coupling, thereby providing com-

prehensive interaction between the fluid reaches and the piping.

The transfer matrix method is used to study the motion of these systems.
The motion is represented by an overall transfer matrix. This matrix is
assembled by combining field transfer matrices representing the motion

of single pipe reaches with point matrices describing specified boundary

conditions.



A one-inch (25 mm) diameter variable length piping system with a U-type
bend is used to obtain the experimental data. Various fluid and struc-
tural frequencies are excited by using a crank mechanism which vibrates
the piping. Fluid pressure and pipe displacement responses for various
forcing frequencies are obtained and compared with analytical results.
Larger fluid pressure responses occur at higher harmonics than at the
first fundamental frequency. Mode shapes for the liquid pressure and
Pipe motion are also presented. Good agreement of natural frequencies

is found between predictions and observations.
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Chapter 1 Objective and Scope

CHAPTER 1

1.1 Introduction

Vibrations that occur in liquid-filled piping systems are of interest in
a variety of industrial, water supply, hydraulic, nuclear power,
aircraft and automotive applications. The dynamic behavior of these
systems includes both transient and steady-state vibrations caused by
rapid valve closures and unbalanced rotating machinery. This dynamic
behavior has usually been modeled by uncoupled analyses. The analyses
of liquid columns contained in pipes are based in part on the assump-
tions that the piping system is sufficiently rigid to remain immobile
and that it does not interact dynamically with either fluid oscillations
or external loads. Possible sources of the external loads are machine
vibrations and seismic motion. Analytical developments for free vibra-
tions and resonance of liquid columns are presented by Jaeger (5], Wylie
and Streeter [6] and Chaudhry (7). On the other hand, well-known modal
analysis techniques, such as those described by Clough and Penzien (52],
can be used to analyze vibrations of piping structures if the motion of

the contained liquid is neglected.
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Recently, coupling analyses have been called to the attention of re-
searchers. Experimental results in laboratories [19,24,25,64) have
clearly shown that under certain conditions, vibrations of liquid
columns and piping structural elements interact and respond differently
than if the two components are treated independently. The interaction
can be attributed in part to two coupling mechanisms, Poisson and junc-
tion coupling. Poisson coupling takes place along a pipe length. Axial
strain of the pipe is induced by circumferential strain caused by a
change in the fluid pressure. Junction coupling occurs at locations
where the flow area and/or flow direction changes. At junctions, varia-
tions in fluid pressure create force resultants. It is necessary for
these pressure forces to be balanced by axial forces in the pipe wall.
The axial forces generate subsequent pipe motion that may excite

flexural and torsional modes of vibration of the pipe.

Poisson and junction coupling generate forces and displacements in the
fluid and in the pipe wall that are transmitted and reflected back and
forth along the length of the pipe. Wilkinson [64) identified five
families of waves: tension, torsion, and two families of transverse
bending waves in the pipe wall and pressure waves' in the liquid. A
three-legged liquid-filled pipe in a three-dimensional space shown in
Figure 1.1 is used to describe the transmission process of these waves.
The pipes connect two reservoirs. A valve, location D, is located at

the downstream reservoir where water is flowing at velocity V,.

Junctions B and C are unrestrained allowing displacements and rotations.

The pipe is rigidly supported at the ends. An instantaneous valve
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closure creates the system excitation. The following events take place
as the valve begins to close. A pressure wave is generated and
propagates in the fluid while an axial wave is transmitted along the
pipe wall in leg 3, that is, Poisson coupling occurs. For most commer-
cial pipe material, the axial wave (precursor wave) travels faster than
the fluid pressure wave [21]. The precursor wave produces a displace-
ment at junction C in the positive X direction. This motion, which is
generated by Poisson coupling, induces a change in the fluid velocity
and creates an unbalanced axial force at this location. The change in
fluid velocity produces an increase in the fluid pressure that is trans-
mitted towards the valve and location B. The unbalanced axial force is
transmitted as a shear force and bending moment along leg 2. The motion
at junction C is maximum when the fluid pressure wave from the valve
reaches this point. Junction coupling is present at this point due to
the unbalanced axial force produced by the change in pressure.
Moreover, the motion at junction C and moment in leg 2 produce a rota-
tion at junction B about the Y-axis. This generates a torsional moment
that is transmitted along leg 1. The boundary conditions at D reflect

the five waves described above.

The study of liquid-filled pipes becomes more complicated when several
factors are taken into account. The five families of waves, tees and
bends, supports of various stiffnesses, structural restraints and
hydraulic devices such as pumps, orifices and valves must be con-
sidered. The speed of the wave components depends on the pipe material

and fluid properties. The frequencies at which the liquid and pipe are
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vibrating are influenced by the structural support configurations of the

pipe and the hydraulic elements of the system.

The frequencies of the system may also be affected by the interaction
between the fluid and the structure due to Poisson and junction cou-
pling. Some incidents of hydraulic resonance at various pumped storage
sites and power plants are presented by Jaeger [5], Wylie and Streeter
[6] and Chaudrhy [7]. Jaeger [4l1] also reported several of these inci-
dents and points out the importance and danger of vibrations from higher
fluid harmonics. These harmonics may be excited by the motion of struc-

tural components of the system.

The analysis and design of piping systems can be performed in either the
time or the frequency domain. The method of characteristics has been
used to model the propagation of acoustic waves in liquids (5,6,7],
beams as described by the Timoshenko’s theory [89] and in fluid-
structure interaction systems [17,19,20,21,22]). Unfortunately,
numerical limitations have thwarted the evolution of a generalized
solution methodology. In the frequency domain the transfer matrix
method has been used to model distributed parameter systems [50].
Wilkinson [64] and Wiggert, Lesmez and Hatfield [65] use this method to
model liquid-filled piping systems. Wilkinson’s model uses the
Bernoulli-Euler beam theory to describe the piping flexure, but does not
include Poisson’s coupling. His model then, does not account for the

axial liquid pipe wall coupling.
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The transfer matrix method is appropriate to model piping systems be-
cause it directly relates the force and displacement variables in the
pipe wall and in the fluid at one end of the system to the corresponding
variables at the other end. As a designing model, the method may be
used to compute the natural frequencies, mode shapes and frequency
responses of the system including the structural supports and hydraulic
devices. It can also be used to compute the response of the system for
free or forced vibration analysis. The variables are related by using a
global transfer matrix. Elastic liquid-filled pipe reaches can be
analyzed with an appropriate transfer matrix. Point matrices describe

joints, such as tees, bends, point masses, and hydraulic elements.

1.2 gbjective

The objective of the present research is to incorporate the flexural and
torsional modes of vibration in an existing coupled liquid-axial pipe
wall model. The proposed model accounts for Poisson and junction cou-
pling and allows the inclusion of structural and hydraulic devices. The
mod§1 represents an improvement over the previous model by Wilkinson
[64). In addition, an experimental apparatus was designed and built to

provide experimental data collection to verify the analytical model.

1.3 Scope

This report is organized into two sections. Chapters 3 and 4 are in-

cluded in the first section which is concerned with the development and
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verification of the numerical analysis technique. Chapter 3 presents
the equations of motion that describe the coupled liquid and axial pipe
wall model and the equations that describe the transverse and torsional
modes of vibrations. Chapter 4 describes the numerical technique that
accounts for the five families of waves propagating in the pipe and the
liquid. The modeling of bends, masses, springs and rigid supports is
also presented. Forced vibration is also incorporated into the model.
The proposed model is compared with two numerical techniques and with

experimental data available in the literature.

The second part of the research is an experimental study of a piping
system of variable pipe length and with a U-type bend that is excited by
an external shaker. The variable pipe length allows changes in fluid
frequency. The U-bend is free to move in one plane. The shaker excites
the piping over a range of frequencies that includes the first natural
frequencies of both the fluid and the U-bend. Chapter 5 describes the
experimental apparatus and procedures. The experimental results and

comparison with the analytical model are presented in Chapter 6.
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Figure 1.1 Liquid-Filled Piping System
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2.1 Introduction

The objective of this study is to incorporate the flexural and torsional
modes of vibration in an existing coupled axial pipe wall and liquid
model. A review of the evolution of the axial model and these modes of
vibration is necessary to incorporate the appropriate coupling
mechanisms. This section is devoted to a review of the previous works
in these areas. This review will be divided into three sections. The
first section reviews the studies of unsteady flow in closed pipes. The
second one relates the works on the interaction between fluid and struc-
ture in liquid-filled piping systems. The last section relates the
studies of oscillatory motion in piping systems and the applications of

the transfer matrix method to solve these problems.
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2.2 Unsteady Flow in Pipelines

The study of unsteady flow in pipelines, or waterhammer as this
phenomenon is more commonly known, has been of interest since the middle
of the 1800’s [1]. Among the early significant contributions to the
solution of waterhammer problems are those of Joukowsky [2], Lamb [3],
and Allievi [4]. Their findings predicted with accurately predicted the
liquid wave speed and its associated pressure rise. With the exception
of Lamb, who included the effect of longitudinal stresses in the pipe
wall by considering the pipe an elastic membrane, the others predicted
the existence of only one wave propagation. Joukowsky conducted exten-
sive experiments and found that the speed at which disturbances
propagates in the water is related to the relative circumferential
stiffness of the pipe. His study concluded that the speed of propaga-
tion for the liquid in pipelines is less than the propagation speed in
an infinite liquid. In his research, Joukowsky assumed that pressure is
uniform across any given pipe section. He also neglected the mass of
the pipe wall, the radial inertia of the liquid and the axial and bend-
ing stresses in the pipe wall. Based on these assumptions he derived a
modified wave speed for the fluid in which the liquid bulk modulus is

adjusted by the structural properties of the pipe wall.

The analysis of the waterhammer problem has produced much research after
these early works. Some analytical solutions of unsteady flow problems
with various boundary conditions are outlined in textbooks by Jaeger

[5], Wylie and Streeter [6] and Chaudhry (7). Waterhammer problems are
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still being researched today. The basic equations are being inves-

tigated (8] and new numerical techniques are being developed [9,10].

2.3 Fluid-Structure Interaction

Research in the area of fluid-structure interaction has identified four

main forms of dynamic liquid-pipe forces:

1. Lateral momentum forces. Blevins [11] reported some of the research
into this mechanism which has been extensively investigated. The
lateral momentum forces induced by high, steady flow rates through
curved pipes can reduce flexural stiffness and may produce buckling of

initially straight pipes.

2. Transverse pressure variation. This phenomenon occurs in cases where
the inside diameter of the pipe is a multiple of the length of the
transverse acoustic wave in the liquid. This may result in the excita-
tion of higher symmetric lobar modes of the pipe cross section. Leissa
[12] presented estimates of natural frequencies of lobar modes for

infinitely long cylindrical shells.

3. Dilation pressures. This mechanism is related to the Poisson ratio
(13] in which an axial elongation of a straight pipe causes a decrease
of its inside diameter or ,conversely, an axial contraction of the pipe
causes a dilation of the inside diameter. This axial elongation or

contraction of the pipe wall may be caused by a rapid change in the
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fluid velocity creating a decrease or increase in the fluid pressure.
This pressure change gives rise to an axial stress wave in the pipe.
For most piping systems the propagation of the stress wave in the pipe
wall is faster than that of the acoustic wave in the fluid. The result
of this wave interaction is called the "precursor wave" and the

mechanism by which it occurs is termed Poisson coupling.

4. Axial resultants at fittings. Variations in fluid pressure create
pressure resultants that act at locations where flow changes area or
direction, such as at bends, tees and orifices. These differential
pressure forces have to be balanced by axial forces in the pipe wall to
maintain equilibrium conditions. The axial forces generate subsequent
pipe motion that may excite the flexural and torsional modes of vibra-

tion of the pipe. This phenomenon is known as junction coupling.

Poisson coupling and junction coupling are the phenomena to be studied

in this research. The literature review concerning these follows.

2.3.1 Poisson Coupling

In liquid-filled pipes, Poisson coupling results from the transformation
of the circumferential strain, caused by internal pressure, to axial
strain and is proportional to Poisson’s ratio. Skalak [14] was among
the first to extend .Joukowski's method to include Poisson coupling. His
results 1identified the precursor wave for a sudden valve closure. The

analytical model that he developed treated the pipe wall as an elastic
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membrane to include the axial stresses and axial inertia of the pipe.
Thorley [l] conducted experimental validation of Skalak’s theory.
Williams [85] conducted a similar study. He found that structural
damping caused by longitudinal and flexural motion of the pipe was
greater than the viscous damping in the liquid. In fact, Williams
states that "mechanical damping can be more important for water hammer
decay than viscous friction". These researchers did not include the
radial inertia of the liquid or the pipe wall. Lin and Morgan [15,16]
included the pipe inertia term and the transverse shear in their equa-
tions of motion. Their study was restricted to waves which have axial
symmetry and purely sinusoidal variation along the axis. Walker and
Phillips [17] extended the study by Lin and Morgan to include both the
radial inertia of the pipe wall in the fluid and the axial equations of
motion. Their interest in short duration, transient events produced a
one-dimensional, axisymmetric system of six equations. Wilkinson and
Curtis [18] developed a non-linear, twenty-one equation model for the
axial and radial pipe wall deformations in both elastic and plastic
zones. Vardy and Fan [75]) conducted experiments on a straight pipe,
generating a pressure wave by dropping the pipe onto a massive base.
Their results showed good agreement with the analytical model by
Wilkinson and Curtis [18]. They concluded that the fluid friction does
not influence the pressure response and that the axial waves in the
straight pipe are non-dispersive for a first order accuracy. Otwell
[19], Wiggert, Otwell and Hatfield [20] and Stuckenbruck, Wiggert and
Otwell [21]) neglected the radial acceleration in their studies using the
six-equation model of Walker and Phillips (17]. This simplification

reduced the mathematical model to four equations. They presented
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numerical examples for various combinations of liquids and piping
materials and for various coupling constraints. Budny [22] also reduced
the six-equation model, but he included viscous damping and a fluid
shear stress term to account for the structural and liquid energy dis-
sipation. Experimental tests verified that the model satisfactorily
predicts the wave speeds, fluid pressure, and structural velocity of a
straight pipeline for several fluid periods after a transient has ex-

cited the fluid.

The aforementioned researchers have helped in the understanding of the
Poisson coupling mechanism in fluid-structure interaction problems.
They identified two important waves that propagate in a straight pipe
reach, one in the liquid and one in the pipe wall. However, none of
these studies, with the exception of Otwell [19] and Wiggert et al.
[20], considered the possibility that a fitting, such as an elbow, may
move in response to the precursor wave, thereby, altering the transient
response of the liquid. The following section discusses the models that

have included the junction coupling mechanism.

2.3.2 Junction Coupling

Piping systems can be thought of as straight pipes joined at localized
points by elbows, reducers, tees, orifices and the like. Pressure
resultants at these points act as localized forces on the pipe, gener-
ating the junction coupling mechanism. For pipes with only a few bends,

a continuous representation of the piping was devised by Blade, Lewis
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and Goodykoontz [23]. Experimental tests were conducted to analyze the
response of an L-shaped pipe to harmonic loading. The experimental
setup included a restricting orifice plate at the downstream end of the
Pipe. Their experimental results validated their model. They concluded
that an uncoupled analysis does not produce accurate estimates of
natural frequencies, and that the elbow, which provides coupling between
the pipe motion and liquid motion, causes no appreciable reflection,
attenuation, or phase shift in the fluid waves. Davidson and Smith [24]
conducted a similar investigation. Their analytical model was based on a
vibration transmission matrix and it showed good agreement with ex-
perimental results. As an extension of that work, Davidson and Samsury
[25] developed a more accurate solution to analyze a pipe assembly
comprised of straight sections and uniform bends arranged in a nonplanar
configuration. Experimental results indicated a significant level of
coupling between the plane compressional wave in the liquid and that in
the pipe wall. Comparison of numerical and experimental results,
however, indicated a need for further refinement. Wiggert, Hatfield and
Stuckenbruck [26], and Wiggert, Hatfield and Lesmez [27]) used a one-
dimensional wave formulation in both the liquid reaches and the piping
structure resulting in five wave components and fourteen variables. The
five families of waves are pressure waves in the liquid, axial tension
waves in the pipe wall, two families of transverse shear and bending
waves, and torsional waves. The method of characteristics was used to
solve for the fourteen variables and to find the expressions for the
wave speeds. The authors showed a comparison of the predicted fluid
pressures and structural velocities with experimental data to provide a

partial validation of the model. However, their model showed that
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numerical errors are introduced by time-line interpolations and by
numerical integration of the coupled transverse shear force and bending
moment. Experimental validation of the transverse vibration was not
included. Joung and Shin [28)] developed a model that takes into account
the shear and flexural waves of an elastic axisymmetric tube. The method
of characteristics was used in the solution for four families of
propagating waves: the extensional, transverse, and symmetric bending
waves of the elastic tube and the acoustic wave of the fluid medium.
Their results compared closely to Walker and Phillips’ results [17] for

relatively small pipe deformationms.

The above mo§els used a continuous representation of the piping system.
Another approach for complicated geometric configurations is to ap-
proximate the system as a set of discrete connected masses. Several
techniques have been applied to a variety of models. A basic technique
uses spring and point masses to represent the pipe structure. Wood [29]
studied a pipe structure loaded with a harmonic excitation. He found
that the natural frequencies of liquid were shifted, especially when the
frequency of the harmonic load is near one of the natural frequencies of
the supporting structure. Ellis [30] reduced a piping structure to
equivalent springs and masses by selectively lumping mass and stiffness
at fittings and releasing specific force components at bends, valves and
tees. His formulation of axial response was a modification of the
method of characteristics and included pipe stresses and velocities.
Otwell [19] and Wiggert et al., [20] modeled a pipe elbow as two or-

thogonal springs. The stiffness of the springs corresponded to the
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flexural stiffness of the upstream and downstream pipe reaches connect-
ing to the elbow. Their investigation also included experimental data
for a rapid valve closure. Their results showed that the motion of the
elbow, driven by the axial stress in the pipe and by the liquid pres-
sure, caused appreciable alteration of the pressure. The pressure
response was 33% greater than the response for an immobile elbow.
Otwell [31] used a spring-mass oscillator to represent each mode of the
structural response. 'I'h:ls. approach, however, is limited to simple,
orthogonal configurations because it provides only one liquid-structure

coupling point and only one degree of freedom for each mode.

A second method uses the finite element method to model the structure,
treating each pipe element as a beam. Schwirian and Karabin ([32]
generalized this approach by using a finite element representation of
the liquid and the piping. Their studies imposed coupling at fittings
only. The effect of the supports and piping stiffness was shown to be
significant. Wiggert and Hatfield [33] used the method of characteris-
tics to model the fluid. They coupled the results at pipe junctions with
a finite element code to solve for the structure. Hatfield, Wiggert and
Otwell [34] used the modal synthesis technique [35,36] to analyze fluid-
structure systems with harmonic loading. The modal responses of the
supporting structure were obtained from an existing finite element
program. These responses were then coupled to the liquid analyses.
Hatfield, Wiggert and Davidson [37] presented a validation of this

methodology based on comparison to earlier experiments.
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The previous models used the beam theory to represent the pipe reaches.
These models, however, cannot represent the precursor wave because
classic beam theory neglects deformations of cross sections. The reduc-
tion in flexural stiffness at bends is also inappropriately treated by
these models. To avoid these difficulties, Quezon and Everstine [38]
used shell elements to represent the pipe wall. While providing useful
estimates of flexural stiffness of a single bend, this method is com-

putationally feasible for only short lengths of pipe.

The investigation of these two coupling mechanisms, Poisson and junc-
tion, in liquid-filled piping systems is continuing. Wiggert [39]
presented a survey of the latest work in this area. The study of piping
systems in industrial plants and experimental testing of large scale
models as well as the inclusion of non-linearities such as cavitation,
structural damping and fluid friction is necessary to gain a better
understanding of these systems. Rothe and Wiggert [40] outlined some of
these considerations when modeling condensation-induced waterhammer in
pover plant systems. Jaeger [4l1] reported incidents of hydraulic
resonance caused by structural vibration at various pumped storage sites
and power plants. The understanding of these mechanisms has been useful
also in the study of seismic motion of pipelines. Hatfield and Wiggert
[42] applied a response spectrum analysis to an elastically-supported,
liquid-filled pipe aligned in the direction of ground motion. The same
authors ([43] described a technique for determining pressure and dis-
placement responses of liquid-filled piping in the time domain. Both
mathematical models included waves in the liquid and pipe wall coupled

by the Poisson effect. Ogawa [44] conducted experiments on the dynamic



Chapter 2 Literature Review

18

response of a real-scale piping system using a large scale shaking table
to investigate earthquake induced hydraulic transient effects. The
system was excited by a harmonic motion in the axial direction of pipe
and showed a sharp resonance for a closed, liquid-filled pipeline. The
system was analyzed using a simple model of a rigidly supported pipe-
water column system. The analytical and experimental results suggested
that the coupling of a closed low pressurized liquid contained in a
Piping system is an important factor for seismic response estimations of

liquid-filled pipelines.

2.4 Qscillatory Motion

Resonance in power conduits has been the cause of many severe and spec-
tacular accidents as mentioned by Jaeger [41l] in his remarkable
discussion of incidents in hydropower systems. His discussion points
out the importance and danger of vibrations from higher fluid harmonics.
Jaeger [5], Wylie and Streeter [6] and Chaudhry [7] included extensive
discussions of this phenomenon in their textbooks. Resonance, which is
an oscillating condition that leads to a pressure amplification in the
piping system, develops when there is an exciter present at some point
in the system. The piping can be excited in two ways. First, a device
may act as a forcing function, exciting the system at one of its natural
frequencies. Second, self-excited oscillations occur when a component
of the system acts as an exciter. These two actions may occur simul-
taneously or independently. Resonance, due to a forcing function, takes

place when the interactive response occurs at or near one of the natural
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periods of the system. A forcing excitation will be used in the current
research to find the resonant frequencies of a liquid-filled pipe.
Self-excited oscillations are caused by certain features of the piping
system. Some of these features include a malfunctioning valve seal
[45]), cavitating pump [41l]) or interactive structural and fluid com-

ponents [46,47,22].

The analysis of resonating conditions in liquid-filled piping systems
can be studied in either the time domain, by the method of characteris-
tics, or the frequency domain, by the impedance method or transfer
matrix method. The frequency domain method of analysis will be the

focus of this research.

2.4.1 Impedance Method

The impedance method was systemized for the analysis of complex liquid
systems by Wylie [48]. The method computes the ratio of the oscillatory
pressure and the discharge, known as the terminal impedance, by using
known boundary conditions. Then, the terminal impedance is plotted ‘as a
function of frequency to find the natural frequencies of the system and
the extreme terminal impedances. This method has been used by Zielke
and Hack (49] for the frequency response analysis of pumped storage

systems.
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2.4.2 Transfer Matrix Method

The transfer matrix method has been widely used for analyzing structural
and mechanical vibrations [50,51,52,53,54] and for analyzing electrical
systems [55]. This method is an extension of Miklesta’s and Holzer'’s
methods [52,53,54]. Dawson and Davies [56] improved these methods by
giving them an automatic natural frequency search capability for ideal-
ized lumped property models. Pestel and Leckie [50] detailed the work
of many authors dealing with lumped and distributed property models.

The transfer matrix method was us;ad by Chaudhry [57,58] for analysis of
steady-oscillatory flows and for determining the frequency responses of
hydraulic systems. Classic fluid transient textbooks such as those by
Wylie and Streeter [6] and Chaudhry [7] describe the application of this
methodology to hydraulic systems. To [59,60] used this.method to simu-
late and analyze complicated reciprocating compressor piping systems.
He developed nineteen parameter matrices for acoustic elements (59] and
presented a description of a digital computer program and its applica-
tions [60]. The method has also been used in solving fluid-structure
interaction problems. Keskinen [61), To and Kaladi [62] and Dupuis and
Rousselet [63] developed methodologies to study non-conservative systems
involving fluid flow in pipes. Keskinen’s method [61] involved numeri-
cally solving a system of differential equations, expressed in matrix
form, to obtain the transfer matrix for a pipe element which is treated
as a discrete parameter model. To and Kaladi’'s model [62] differed from
the previous work in that the transfer matrix was derived from a direct

solution of the differential equation of motion of the pipe, which was
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considered a distributed parameter model. They presented a method of
analysis for complicated piping networks with moving mediums involving
bends, piping components of various diameter and lumped masses such as
valves. Experimental validation of their model was presented. Dupuis
and Rousselet [63] formulated the transfer matrix by using equations of
motion that included shear and extensional deformations, rotatory iner-
tia and variable pipe curvature. They applied the method to straight

and curved cantilevered pipes containing a flowing fluid.

Another application of this method has been in the study of liquid-
filled piping systems such as is the topic of this research. Wilkinson
[64] showed that under certain conditions the vibrations of the liquid
column and that of the supporting structure can interact. This causes
the coupled system to respond dynamically in a manner different from the
response of either of the independent components. He used the transfer
matrix approach with the vibration state at a point described by a
fourteen element vector representing five wave families. These five
families are: pressure waves in the liquid, tension waves in the pipe
wall, two families of transverse bending waves and a torsion wave. The
Poisson effect between the liquid pressure and the axial tension wave in
the pipe wall was not included. The equation of motion for the
transverse vibration was based on the Bernoulli-Euler beam theory. His
results were compared with the experimental results for an L-shaped
pipe. They indicated good agreement, but the author concluded that
further study of this topic i1s needed. Wiggert, Lesmez am.i Hatfield
[65] extended Wilkinson's work by including the Poisson effect and by

using the Timoshenko beam theory to model the transverse vibration in
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the piping. The Timoshenko beam accounted for the secondary effects of
rotatory inertia and shear deformation. Experimental results with an L-
shaped pipe showed good agreement with the numerical model. Lesmez,
Wiggert and Hatfield [66] used the same model with a U-shaped bend for a
variable length piping system. The variation of the pipe length allowed
for different acoustic natural frequencies in the liquid. Excellent
agreement in the natural frequencies for both experimental and computed
results indicated that the method accounted for the appropiate coupling
mechanisms. This dissertation describes in a more detailed fashion the

work reported in the two previous studies.
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CHAPTER 3

3.1 Introduction

The equations of motion for the vibration of a liquid and the axial,
transverse and torsional vibrations of the pipe wall in a liquid-filled
piping system are presented in this chapter. The development includes
simplifications of the radial properties of the fluid and pipe wall in
the axial direction. Although these equations are well documented
{17,19,20,21,22), they will be described below since they constitute the

starting point of this research.

The major contribution of this study is the incorporation of the
transverse and torsional vibrations of the pipe wall to an existing
axial model that couples the liquid and pipe wall. This model includes
Poisson and junction coupling and accounts for the effects of rotary
inertia and shear deformation of the pipe wall. The addition of these
mechanisms provides an improvement in accuracy over the previous axial-
coupled models such as those by Otwell [19], Wiggert et al., [20] and
Budny [22] and the junction coupled model described by Wilkinson [64].

The Timoshenko beam equation is used to represent the transverse

23
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vibration of the pipe. The solution for the constants of integration

constitute the connecting point between this chapter and Chapter 4.

3.2 Governing Differential Equations

This study is concerned with piping systems in which the inside diameter
of the pipe is much smaller than the pipe length, limiting the equations
of motion that describe the system to a one-dimensional wave approach
(67,68]. The junction mechanism guarantees that a pipe element can
transmit axial, torsion and transverse shear and bending waves in the
pipe wall. Therefore, the inclusion of these waves is necessary to
more realistically represent the motion of the piping system. The next
section considers the axial liquid and axial pipe wall wave equations.
The equations that describe the transverse vibration of the piping in
the in-plane and out-of-plane modes are then developed. Finally, the
equations describing the torsional pipe waves are presented. Figure 3.1
shows a general pipe reach with the sign convention used in this study.
The z-axis is considered coincident with the centerline of the pipe

reach.
3.2.1 Axial Waves - Liquid and Pipe Wall
The six-equation model by Walker and Phillips (17], which consists of

one-dimensional continuity and momentum equations for the liquid, axial

and radial momentum equations and two constitutive equations for the
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pipe wall, constitutes the basis for the axial coupled model. Otwell
(19]), Wiggert et al., [20], Stuckenbruck et al.,[21], and Budny [22]
reduced the six-equation model to a four-equation model by neglecting
the radial inertia of the pipe wall. The fluid in the model is assumed
to be one-dimensional, linear, homogeneous, with isotropic flow and
uniform pressure and fluid velocity over the cross section. The pipe
wall is assumed to be linearly elastic, isotropic, prismatic, circular

and thin-walled.

Two equations represent the axial continuity and momentum relations for

the liquid:

dap 29w dv | _

ac * K [rat+ataz] 0 (3.1)
2 274

%:zz + pfé_!atz +—/ =0 (3.2a)

in which p = p(z,t) is the fluid pressure, v = v(z,t) is the fluid

displacement and w = w(z,t) is the pipe wall displacement. K and pg are

the fluid bulk modulus and density, r is the inside radius of the pipe,

and the shear stress along the pipe wall is represented by 7, [22].

Previous authors arrived at these equations by making a number of stan-
dard assumptions (17,19,20,21,22]. First, the convective terms are
ignored by assuming low Mach numbers, where the fluid wave speed is much
greater than the fluid velocity. This implies that the fluid density in
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Equation 3.2a is constant. Second, the one-dimensional flow assumption
implies that the radial component of the fluid velocity is zero and that
the flow is developed in only the radial direction. The fluid friction
term in the momentum equation can be neglected for forced vibrations
[5,6] as is the case in this study. However, as noted by Williams [85]
and Budny ([22] the damping terms in both the liquid and the axial pipe
wall equations of motion should be considered for transient events.

Equation 3.2a reduces to:

e, 4y _p (3.2b)

Assuming an axisymmetric, linear elastic pipe wall and small deforma-
tions, the axial and circumferential stress-strain relationships for the

ﬁipe wall are:

az-E*[_a_‘:;+vg] -0 (3.3)
8z r
’ du
* w —2 -
o, - E [ etV 7z ] 0 (3.4a)
where
E - —E— (3.4b)
(l1-v )

in which o, = az(z,t) and o4 = oo(z,t) are the stresses in the axial and
radial direction, u, - uz(z,t) is the pipe wall displacement in the

axial direction, and E and v are the Young’s modulus and Poisson’s ratio
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of the pipe wall. Figures 3.2 and 3.3 show a section of a pipe with
stresses and displacements in the axial and radial direction. The

equations of motion for the pipe wall are:

992 -5 29 -0 (3.5)
3z P 2
at
2 2
pr - oge - [ pore + pg §- ] §:¥ -0 (3.6)

in which p_ is the pipe wall density and e is the pipe wall thickness.

P

The effect of the radial fluid acceleration appears as an added mass in

the last term of Equation 3.6.

Equations 3.1 through 3.6 constitute the six-equation model. The radial
inertia term is important when an excitation is approaching the first
lobar mode of the cross section. Everstine, Marcus and Quezon [86]
compared a one-dimensional finite element formulation with a three-
dimensional one. The study showed that a one-dimensional finite element
formulation of coupled pipe and liquid accurately predicts the dynamic
responses up to the frequency of the first lobar mode. Therefore,
neglecting the radial inertia term is accurate for frequencies below

this mode. The expression for this lobar mode frequency is:

235 )
Wy = :? 5pp(1-v )(1+pfr/2ppe)

(3.7)
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By neglecting the radial inertia term in Equation 3.6 the radial stress,

g4, can be evaluated in terms of the fluid pressure:

o R

oy = (3.8)

The radial stress can be eliminated by combining Equations 3.4 and 3.8

and solving for the radial strain w/r

du
YR .2 (3.9)
Ee az

Combining Equations 3.9 and 3.3 give the expression for the axial stress

E—% =0 (3.10a)

Multiply the above equation by the pipe cross-sectional area Ap, to

obtain the axial force, fz

du
- ‘ - —‘z -
£, - vA, Cp - EA 3 0 (3.10b)

Differentiating Equation 3.9 with respect to time and combining it with

Equation 3.1 produces the expression for the fluid pressure
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2
i,y 311
oz -~ 2K ez v K geaz ~ (3.11a)
where
* ___ K
K - (3.11b)
1+ &Kz
E e

Equations 3.2b, 3.5, 3.10b and 3.11 constitute the four-equation model
presented by Otwell [19], Wiggert et al., [20], Stuckenbruck et al.,
[21] and Budny [22]. These equations can be further reduced by dif-
ferentiating Equations 3.2b and 3.5 with respect to the axial direction
z, then differentiating Equations 3.10b and 3.11 with respect to time

and combining them to solve for the axial force and fluid pressure.

2 2
. 0 £ 3t 2
a, =3 - —,1+Apub5—¥-o (3.12)
az at at
2 2 2E a'f
2 va
az at P az :
where
*
ar = K (3.13b)
b Pe

al = E (3.13c¢)
PP,
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x
b=-% (3.134d)
P
d=-R (3.13e)
P

In Equations 3.13b and 3.13c, ag and ap are the non-coupled fluid and

axial pipe wall wave speeds, respectively, b is the pipe radius to wall
thickness ratio and d is the density ratio. Equations 3.12 and 3.13a
are second order partial differential equations in the fluid pressure

and axial pipe wall force. They may be expressed in matrix form as:

0 2 - 2
2 2| 2 fl . ; VEAP - 2l L (3.14a)
8 % | az” | P at | P

A similar equation can be obtained for the axial pipe wall and fluid

'UgF _up"

displacements by combining and solving Equations 3.2b, 3.5, 3.10b and

3.11.

2h 2 2 vh 2

v gqagta, -vqag 2 [ 1 o [ v
Vh 2 L 2 a 2 v - O b__ 2 v - 0 (3.14b)
“Vais 2d%f| 9%

Poisson terms couple Equations 3.12 and 3.13a as shown by the off-

diagonal elements of the matrices in Equations 3.14a and 3.14b.
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The separation of variables technique [76] is used to solve for the

force fz and fluid pressure p in Equation 3.14a. Three steps are neces-

sary to solve for the dependent variables in the above equation: 1)
convert the partial differential equation into ordinary differential
equation, 2) find solutions for the ordinary differential equation, and
3) find the constants of integration of the differential equation. The
solution for the constants of integration will be postponed to the next
chapter since they depend on the boundary conditions imposed on the

piping system.
1) Separation of Variables

Assuming a harmonic oscillation for the time dependence, which is ap-
propriate for oscillatory flow [41,71] and oscillatory structural motion

in the axial direction [68], we can write:

£ (z,£) = F (2) eJot (3.15)

p(z,t) = P(z) ed®t (3.16)

where Fz(z) and P(z) are functions of z only, w is the oscillatory

frequency and j = (-1)5. Substituting the above equations into Equation

3.14 yields the ordinary differential equation in F, and P:
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ap 0 "
F 1 -vbA F
w 2 2 z ‘o o 1 P z -0 (3.17)
a f af P P
P

where F; and P" are the derivatives with respect to the axial direction

z. The elimination method [92] can be used to reduce Equation 3.17 to a

single dependent variable. This procedure yields

{r+ o0+ y) "
Flv lred )t 12 (3.18a)
z 2 2

where £ is the length of a pipe reach and

2 2
N (3.18b)
ag
2 2
Py (3.18¢)
a
P
2 2 2
y =2 Rud : (3.18d)
d ap

Equation 3.18a is a fourth-order, ordinary differential equation with

constant coefficients.
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2) Solution of the Ordinary Differential Equation

The solutions for F, in Equation 3.18a is of the form

Y 1
F,(z) = A e'2 (3.19)

where A is a constant.

Substitution of Equation 3.19 into 3.18a produces the characteristic

equation in A:

4 2
A +(r+o0+9) X +0r =0 (3.20)

where A is the characteristic value. The roots of this equation are

+jA; and *jir,, where

2 1 2 Y
A1'2 =2 (r + 0+ 7) ;[(f +o0+17) - &ar] (3.21)

This equation can also be expressed as:
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2 2 3
2 _el _1 2 2 2 p 2 2 2 2 p 2]2 2 2
‘cp A: 2 {[ af+ap+2v daf] + [[af+ap+2u daf] - 4afap] } (3.23)

The above equations .give the expressions for the coupled wave speeds.
These coupled speeds are the same as those derived by Budny [22] using
the method of characteristics. An inspection of Equations 3.22 and
3.23, assuming no coupling between liquid and pipe wall by neglecting

the second order Poisson terms, yields

wl 2 2
x: - ag (3.24a)
wl )2 2
;; - ap (3.24b)

As noted by Stuckenbruck, et al., [21], Equation 3.24a is the classical
fluid wave speed prediction [6] for a pipe anchored throughout against

axial motion.

Placing Equation 3.21 into 3.19, the solution for Fz(z) is:

DY ¥ AT, PV SRS, PP
e

Fz(z) - K, e + Aj e + Ag e + A, (3.25)
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and using the relation

+§ (\&)
e . £ cos(Af) + jsin(Af)

Equation 3.25 can be written in the following form
Fz(z) - A,cos(xlf) + A,sin(x1f) + A,cos(k,%) + A‘sin(sz)

where
Ay = Ay + A,
Ay = J(A; - Ay)
Ay = Ag + A,

A, = J(As - Ay)

3) Solution for the Constants of Integration

(3.

(3.

(3.

(3.

(3.

26)

.27a)

27b)

27¢)

27d)

27e)

The solutions for the pipe wall and fluid displacements and the fluid

pressure are of the same form as Equation 3.27a. To solve. for the four

dependent variables, the constants of integration A;, A;, Ag and A, must

have known values.
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Expressing the axial and fluid displacements in similar forms as the

force and fluid pressure in Equations 3.15 and 3.16 gives

Jot

uz(z,t) - Uz(z) e (3.28)

Jot

v(z,t) =V(2) e (3.29)

Placing Equation 3.28 into 3.5 and combining with Equation 3.27a we

obtain the solution for the axial displacement:

Uz(z) - Z;é; { A [A,sin(xlf) - A,cos(xlf)]

+ A [A,sin(x,f) . A.cos(x,f)] } (3.30)

The fluid pressure is obtained by placing Equations 3.27a and 3.30 into
3.10b

P(z) = Z;;%; {(a - A:) { Alcos(xlf) + A, sin(x,f) ]

2
+ (0 - Ap) [ Ascos(2,%) + A4sin(A,§)]} (3.31)
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Finally, the fluid displacement is obtained by placing Equations 3.29
and 3.31 into 3.2b

V(z) = —4— {(a - AN [A;sin(xxfp - Azcosm§>]
Apva ro

2
+ (0 - Az)Aq [A,sin(x,f) - A4cos(A2§)]} (3.32)
Arranging Equations 3.27a, 3.30, 3.31 and 3.32 into matrix form we

obtain

1 r 1 ()

Blsin(kli) 'Bicos(kxf) stin(sz) 'BzCOS(Xzf) Al

B3cos(A1f) BBSin(Alf) B.cos(Azf) B.sin(A,f) Aj

U
P
v r - -Bssin(xlf) Bscos(k1§) -Bosin(xzf) BG°°3(A2§) *As’ (3.33a)
F

cos(A,8)  stn(,,%)  cos(AZ)  sin(r )| A

- B . P

where
B, = M (3.33b)
A _Eo
P
B, = X2 (3.33¢)
A Eo
2
By = 2 M (3.334d)
A_vbo
2
B, = 7 " 22 (3.33e)
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2
By = (7 - A4 (3.33f)
Apva*ra
%Y)
B = (7 - )b (3.33g)
Apva*ra

Equation 3.33a will be the starting point of the next chapter.
Solutions for the constants of integration of the axial waves equations

will be derived.

3.2.2 Transverse Waves - Shear and Bending

The classical one-dimensional Bernoulli-Euler theory of flexural motions
in elastic beams is inadequate to describe vibrations of higher modes as
well as those beams where the effect of the cross-sectional dimensions
on frequencies cannot be neglected [69]. Rayleigh [70] introduced the
effect of rotatory inertia and Timoshenko [68,71,72] extended it to
include the effect of transverse shear deformation. The equations that
include these effects are generally referred to as tﬁe Timoshenko beam
equations. The derivation of the equations for transverse vibrations in
the x-z and y-z planes are presented following the sign convention in

Figures 3.4 through 3.7.
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3.2.2.1 Shear and Bending in x-z Plane

The derivation of the Timoshenko equations for the pipe reach in Figure
3.1, vibrating in the x-z plane, are based on the diagrams shown in

Figures 3.4 and 3.5. Figure 3.4 shows that the slope of the center line

of the pipe reach, aux is affected by both the bending moment and the
az

shear force [50]. The action of the internal bending moment, my,
rotates the face of the cross section through angle 'ﬁy' From there, the

internal shearing force, £ , turns the center line to adopt the slope

x,

aux . The angle of the face of the pipe element remains unchanged.

az
Inspection of Figure 3.4 shows that the angle between the line perpen-
dicular to the face and the center line of the pipe element which is

caused by the shear force is the shear angle, ﬂy:

B. =% -y (3.34)

du
£, - GAp:cs [a_zx . ;oy] -0 (3.35a)
where
G = E (3.35b)

2 (1+v )
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The shear modulus is G, the product Ap“s represents the effective shear
area of the section and L. is a factor depending on the shape of the

cross section [73,74]. For a thin-walled tube L is given by

M (3.36)

s = 443y

The relation between the bending moment and cross-sectional rotation is

given by elementary beam theory as:

L)
- EI -0 3.37
" " e 027

in which Ip is the second moment of inertia about the y-axis for the

pipe wall. Equations 3.35a and 3.37 constitute elastic laws relating
the deformations to the internal loading. Equilibrium considerations

(Fig. 3.5) give the equations

2

af d u
- A + -0 3.38
F;K (Pp P PfAf)_zx ( )
at
3 a’y
m
5;2 + fx - (ppIp+Pf1f);-2J =0 (3.39)
t

in which If is the second moment of inertia about the y-axis for the

fluid. Equations 3.38 and 3.39 describe the translation and rotational
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equilibrium, respectively. Solving for ¢y and u, in Equations 3.35a and
3.38, substituting the results in Equation 3.37 and eliminating my from

Equation 3.39, we obtain a fourth-order partial differential equation in

fx(z,t:):
a's a'f a't. . EI o a'f
+ - + +
EBlp—B + (phpteehp) X - (pplptogle) X 1 -2 z[(”pAp ”fAf)-—zK]
az at dz at P s 9z at
(p A +pAl) .2 2
. PfetPete) o [(pAfpfAf)afx]-o (3.40)
CA « 2 PP 2
Ps Jdt at

The third term in the above equation corresponds to rotatory inertia,
the fourth to shear deformation and the last term represents the com-
bined influence of shear deformation and rotatory inertia [52]. By
neglecting these three terms, we obtain the Bernoulli-Euler beam equa-

tion in the shear force fx’

4 2
3 f 3 f
Ipa_'K (PoAp pfAf);:;& (3.41)
z

The separation of variables technique is used to solve for the dependent

variable fx’ in time, t, and axial direction z [50].

£ (z,t) = F_(2) eJot (3.42)
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Substitution of the above equation into Equation 3.40 we obtain

Fiv +g + 71 F" - [ 1 - or ] F. =0 (3.43a)

where

o = (PpApteche) 2R (3.43b)

GApns
2 2
ro= (pplpteele) Wy (3.43c)
EI
P
2 4
v = PpALtPEAE) )y (3.43d)
EI
P

and £ is the length of the pipe reach.

Equation 3.43a is a fourth-order ordinary differential equation 'with

constant coefficients whose solution is of the form

- )&
Fx(z) -Ae'd (3.44)

where A is a constant.

Substitution of Equation 3.44 into 3.43a produces the characteristic

equation in A:

A‘ + (0o + 1) Az - (y-0or) =0 (3.45)
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The roots of this equation are *); and *ji,, where

l:'z - [1 +% (o - 1)2]}’ ;]2‘ (0 + 1) (3.46)

The solution of Equation 3.43a is

DY S ¥, B, PPY N Y

F (2) = A e + A e + Ag e + A, e (3.47)

and using the relations

+(2&) +j (A&)
e *a cosh(0®) + sinh()%) and e 109 _ cos(A%) * jsin(A%)  (3.48)

Equation 3.47 can be written in the following form
¥4 r4 & Z
Fx(z) - A,cosh(xll) + Azsinh(xll) + A,cos(A,z) + A4sin(A22) (3.49a)

where

Al - Xl + xz (3°49b)
A, = A, - A, (3.49¢)
Ag = Ag + A, (3.494d)

A, = J(Ag - Ag) (3.49e)
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The solution for the other three dependent variables, My, wby and Ux is

based on the solution for Fx.

The solution for Ux(z) can be found by substituting Equation 3.49a in

Equation 3.38

4

U (z) = -—4& [A, M stnh(3,5) + 4, 21 cosh(r,%) - Ay 22 sin(3,5)
EI v 2 2
P
+ 8 22 cos(a,%) ] (3.50)
;

The solution for \Fy(z) is obtained by placing Equations 3.49a and 3.50

into 3.35a

2
Wy(z) - -—L{ (o + A:) [A‘cosh()«&) + A,sinh(k,i) ]

EI
p‘Y

3
+ (o - x:) [A,cos(x,f) + A‘sin(lzf) ] } (3.51)

The expression for Hy(z) is found placing Equation 3.51 into 3.37

2
M (2) - f{ (o + A1) Ay [A,sinh(xlf) + Ajcosh(),%) ]

2
+ (A - 0) A, [A,sin(xzf) - Acos(A%) ] } (3.52)
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Arranging equations 3.49a through 3.52 into matrix form we obtain

YT 1 .
U, | |-Bisinh(2,%) -B,cosh(2,%) B,sin(x,%) -Bzcos(A,5) | (A,
iy -B,cosh(Axf) -B,sinh(Alf) -B.cos(Azf) -B‘sin(Azf) A,
<My*- '3531nh(x1f) 'BSCOSh(xxf) -B,sin(ng) B.cos(Agf) 1as( (3.53a)
LFXJ i cosh(Alf) sinh(A,%) cos(A,%) sin(Azf)_ LA‘J
s .
where B, = Eil; A (3.53b)
P
s
By = EEA; Az (3.53¢)
| %
2 2
By = ﬁ% (0 + A1) (3.53d)
P
2 2
B, = HL‘y (@ - Ap) (3.53e)
P
2
B, -f (@ + A1) A (3.53f)
2
B, -;3 (Mg - 9) A, (3.53g)

The solution for the constants of integration is given in the next

chapter.

3.2.2.2 Shear and Bending in y-z Plane

The procedure to derive Timoshenko'’s beam equation in the y-z plane for

the pipe element shown in Figures 3.6 and 3.7 is the same as described
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in the previous section. The only differences arise in the sign conven-

tion.

The shear angle is given by:

du,
ﬂx - # +¢ (3.54)

du
f - GA + -0 3.55
y - CApKg [3;! sbx] (3.55)
The bending relation is:
m - EL % -0 (3.56)

X Paz

Equilibrium considerations (Fig 3.7) give the equations

2
?.f! - (p A +pfAf)a_"z -0 (3.57)
4z PP 2
at
3 3’
m
- £ - I +p.1 =0 3.58
5;& y (Pp P Pf f)_zx ( )

at

Combining Equations 3.55 through 3.58 gives the fourth-order partial

differential equation in the lateral displacement fy(z,t):
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a's a’f a't. . EI 38 a’e
EI + (p A+ - I+ + A_+
p— T (PphpPehp) ¥ - (A lgtegl) ¥ 1 2 2[(pPprAf)—'zY]
az at dz at P S 0z at
(p A +pA.) .2 2
L, ettt [(,,Aﬂf,\f)afx]-o (3.59)
GA 2 PP 2
ps 4t at

The solution for the constants of integration is of the same form as for
the shear and bending in the x-z plane. The change in the sign of the

shear angle ﬂx determines sign changes in the rotation and bending

moment, whereas the shear force and lateral displacement remain the

same. Equation 3.53a becomes:

) h 4 3
(uy ('Bminh(xxf) -Bycosh(1,%) B,sin(,%) -Bycos(2,%)| [a,
wx BSCOSh(Alf) B;sinh(,\,‘;‘) B‘cos(kzi) B.sin(k,f) Ap
1Mx - B;sinh(xlf) BsCOSh(hf) B.sin(xzf) -B.cos(,\,f) 1a,f (3-89
LFYJ i cosh(hf) sinh(h%) cos(A,f) sin(,\zf)d LA‘J

where the coefficients of the matrix are given in Equations 3.53b

through 3.53g.
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3.2.3 Torsion About z-axis

Figure 3.8 illustrates the internal moment, m,, acting on the pipe
section and the rotation about the z-axis ¢z. The equilibrium condition

is given by:

O .3 2% -0 (3.61)
3z PP at2

m -6l ¥ -0 (3.62)

in which Jp is the polar moment of inertia for the pipe wall. Combining

Equations 3.61 and 3.62 the wave equation for the moment mz(z,t) is:

2 2
a_:'.z-ﬁn a_‘:z -0 (3.63)
az G at

The separation of variables can be used to solve for mzin the above

equation.

m (z,t) = Mz(z)ejwt (3.64)
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Substitution of the above equation into 3.63 yields

Mz + 1? Mz -0 (3.65a)
2
where
p 2 2
y="p w2 (3.65b)
G

The solution of Equation 3.65a is of the form

- A&
M (z) = A el (3.66)

Placing the above equation into 3.65a yields the characteristic equation

in X:

A4y =0 (3.67)
The roots of this equation are *jA where
x-:[y]”- th[ﬁp_]” | (3.68)
G

Placing the characteristic value A in Equation 3.66, the solution for Mz

is
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M_(z) = FOPR LY R LY (3.69)
using the relation in Equation 3.26, the above equation becomes

M_(z) = Ajcos(A%) + Azsin()%) (3.70)
Where A; and A, are given in Equations 3.27b and 3.27c.

The solution of the rotation Wz about the z-axis is found by placing

Equation 3.70 into 3.61 and using

¥, (z,t) = ¥ (2)el“" (3.71)
we obtain
¥, (z) = Tf}_z [Alsin(xg) - Agcos(A%) ] (3.72)
PP

Equation 3.70 and 3.72 can be arranged in matrix form as

ﬁz(z) ;—§_7 sin(k%) ;‘%—I cos(Af) A,
- | PP PP (3.73)
M, (2) cos (A%) sin(A%) | |a,

The matrix Equations 3.33a, 3.53a, 3.60 and 3.73 constitute the starting

point to derive the field transfer matrices in the next chapter.
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Figure 3.7 Internal Forces for Transverse Vibration in y-z Plane
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Chapter 4 ‘ Numerical Simulation

CHAPTER 4

4.1 Introduction

The equations that describe the motion of five families of waves were
derived in the previous chapter. The separation of variables technique
was used to solve for forces and displacements. The solutions for the
constants of integration of the equations of motion are the connecting
point between this chapter and the previous one. The solution for the
constants of integration are derived in a general form based on the end
points of a pipe reach. Once these constants are known for each family
of waves, the transfer matrix is assembled. The transfer matrix method
is used to find the frequency response of liquid-filled pipe systems.
This chapter gives a description of this method and presents comparisons
with other numerical methods such as the method of characteristics and

the component synthesis method.

56
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4.2 Iransfer Matrix Method

The transfer matrix method is the systemization of the Holzer and
Myklestad procedures [50,52,53,54]. Holzer applied the method to tor-
sional systems, whereas Myklestad applied it to bending vibrations of
bars. Both methods calculate the natural frequencies and mode shapes of
the system. This is done by assuming a frequency and starting with a
unit amplitude at one end of the system and systematically calculating
the responses at the other end. The frequencies that satisfy the re-
quired boundary condition at the other end are the natural frequencies
of the system. Their findings are based on the fact that when an un-
damped system is vibrating freely at any one of its natural frequencies,
no external force, torque or moment is necessary to maintain the vibra-
tion. Also, the amplitude of the mode shape is immaterial to the
vibration [53]. These two methods have been applied to lumped mass
systems. The masses are lumped at discrete points of the system called
stations and the portion between the lumped masses is assumed massless

and of uniform stiffness.

The transfer matrix method is suitable for the analysis of large liquid-
filled piping systems made up of subsystems such as pipe links,
snubbers, springs, concentrated masses, rigid supports, valves, pumps,
orifices, and the like. Each subsystem is modeled as simple elastic and
dynamic elements described by a field matrix and a point matrix. At the
stations, the displacements and internal forces of the systems are
arranged in a state vector. The overall transfer matrix is assembled by

the systematic multiplication of the field and point matrices.
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The advantages of this method are:

1.

4,

The assembly of complex, branched, parallel, and series systems

is suitable for digital computation,

. Boundary conditions at the ends and at intermediate points in a

system are easy to identify and model,

. The method can be applied to piping systems of non-uniform cross

sections,

The stability of a system can be checked by the root locus
technique [7],

Systems with more than two dependent variables can be

analyzed, since the size of the matrices does not depend on the
number of subsystems but rather on the order of the differential

equations governing the systems behavior,

. The method can be extended to stability problems such as flow

induced vibrations and damped vibrations,

. External excitation of the system can be modeled by the extended

field, point, and global matrix and extended state vector, and

. The method can be used to model systems as discrete parameter or

distributed parameter systems.

4.2.1 Description of Transfer Matrix Approach

The procedure to implement the transfer matrix method is illustrated

using a spring-mass system [50] in Figure 4.1. The state vector at

point { is a column vector whose elements are the various displacements,

linear or rotary, of the point i and the corresponding internal forces.
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In the system shown in Figure 4.1, the state vector (Z}; at point i is

comprised of the linear displacement zy and the spring force fi:

(3},

A field transfer matrix relates the state vectors at two locations in a
system. Equilibrium conditions can be used to obtain the field matrix

of the system. Thus, the displacements and forces to the left of mass
my denoted as (Z)% are related to the forces and displacements to the
right of mass my 4 denoted as (Z}§-1 by means of the matrix [Tli’

called the field matrix.

Equilibrium of the massless spring (Figure 4.2a) is expressed

L
£7. = 5 (4.2)
Also,
R
—i-1
2y om oz b (4.3)

P
L R
z 1 k z
- i (4.4a)

or
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@} - m2f (4.4b)

In the same form, the state vectors to the left and right of mass m; are
related by matrix [P]i called the point matrix. This is possible be-

cause the transfer between the two adjacent state vectors is over a
point. Assuming the system is vibrating with a frequency w the follow-

ing equation of motion is obtained, (Fig. 4.2b).
L 2
£i - £r - mw z, (4.5)

Also, by continuity and since the mass is rigid,

(4.6)

R = L .
z 1 0 z
HEEERSIH

(2} = [Pl (2)] (4.7b)

or

Combining Equations 4.4b and 4.7b renders
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(21} = [Pl [T] (D)}, (4.8)

Following a similar procedure, the state vector at the end of a system
(Figure 4.1) consisting of n number of springs and masses, joined end-
to-end can be related by multiplying together the various field and

point matrices in the proper order. Thus,
()} = (P]_[T]_[P]__,[T] (B],[T],(Z); = (Ul(Z)] (4.9a)
n n'"'n'"in-1""n-1" "0 ALERILTYO 0 :

where (U] is the overall transfer matrix of the system

(U] - H[Pli[rli (4.9b)

Once the overall transfer matrix of the system is obtained, the natural
frequencies can be found by applying the boundary conditions. This is
shown for a simple spring-mass system in Figure 4.3. The global trans-

fer matrix of this system is:

i 1 1/k
1 0 1l k 1
(U] = [P]l['r]l- [ -m1¢02 1] [0 11 } - [ -mlwz [1- 2 1]] (4.10)

The boundary conditions, f; = 0 and z, = 0 and the overall transfer

matrix form the general equation for the system:
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()
{3}1 - [U] { ¢ }0 (4.11)

which gives the frequency equation

o--o+(1-""‘--)fo (4.12)

The well-known frequency of a single spring-mass system is, thus,

derived as:

w - [ﬁ]" (4.13)

This procedure can be used for more complicated systems providing the

field and point matrices for each subsystem are known.

Figure 4.4 shows a liquid-filled piping system composed of straight
links and subsystems such as point masses, springs, and supports that
suppress the pipe motion partially or totally. These subsystems connect
to and have an effect on the response of the pipe wall. A constant-
pressure reservoir and a closed valve affect the behavior of the liquid.
To find the natural frequencies of this system, the field matrices for
straight pipe links, and the point matrices defined where there are
bends, springs, point masses, and supports, must be known. The follow-

ing sections will explain the derivation of these matrices.
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The field matrix for a straight pipe reach is composed of four sub-
matrices representing the vibrations of the liquid and axial pipe wall,
shear and bending in the x-z plane and in the y-z plane and torsion
about the z-axis. Expressions for each submatrix are given. The field
transfer matrix derivation for the liquid and axial pipe wall vibration
is presented in detail. The field matrices for the transverse and
torsional vibrations were obtained by Pestel and Leckie [50]. Their
derivation is presented for completeness. Point matrices for springs,
concentrated masses and bends are also presented. Point and field
matrices for each subsystem are derived with respect to a local rectan-
gular coordinate system, x,y,z. Transformation matrices to express
these matrices in a global coordinate system, X,Y,Z are also presented.
Supports, reservoirs and closed valves are treated as boundary condi-

tions.

4.2.2 Field Transfer Matrices

As mentioned earlier, the field transfer matrix expresses the forces
and displacements at one section of a chain-type structure in terms of
the corresponding forces and displacements at an adjacent section. For
a discrete system, field matrices provide for transfer across the elas-
tic segments between the masses [52,53,54]. To and Kaladi [62] and
Wilkinson [64] use a distributed parameter approach to derive the field
transfer matrices for fluid-structure interaction problems. Wyiie and
Streeter [8], and Chaudhry [7] use this approach for oscillatory flow

problems.
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The derivation of the field matrices for a distributed parameter model
involves three steps: 1) converting the partial differential equations
of motion into one ordinary differential equatioﬁ, 2) finding solutions
for the differential equation, and 3) finding the constants of integra-
tion of the differential equation. Steps one and two are developed in
Chapter 3. The constants of integration are left in matrix form for
each family of waves in section 3.2. These constants are solved as
function of the state vector at the end points of the pipe reach of
length £ shown in Figure 4.5. A general procedure that can be applied
to any of the matrices of the previous chapter is presented. Either one
of the matrix Equations 3.33a, 3.53a, 3.60 or 3.73 can be represented

as:
2(z) = [B(z)] A (4.14)

where Z(z) is the state vector representing the dependent variables of
any one of the above equations, B(z) is a matrix that depends on the
geometry of the pipe wall and material properties, and A is a vector
containing the constants of integration.

At point z = 0 in Fig. 4.5, Z(z) = Z the matrix Equation 4.14 be-

i-1’

comes

Z, , = [B(0)] A (4.15)

Solving for the column vector A in the above equation
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-1
A = [B(0)] Z 1 (4.16)
Substituting Equation 4.16 into Equation 4.14 yields
2(z) - [B(z)] (B 2z, | (4.17)
At point z = 2, Z(z) = Zi , so Equation 4.17 becomes
-1
z, - [(B(£)] [B(0)] Z, .- [T] Z, 4 (6.18)

where [T] is the field transfer matrix. The field transfer matrix for
each one of the family of waves is presented next.

4.2.2.1 Liquid and Axial Pipe Wall Vibration

Equation 4.18 for the liquid and axial pipe wall vibration becomes

z, - [T (4.19a)

epl1Zi-1

where

[T, = (BCH] (BO)]™ (4.19b)
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The matrices [B(0)] and [B(£)] are obtained from the matrix of Equation
3.33a evaluated at locations i-1 and i in Figure 4.5, respectively. The
non-dimensional representation of the field transfer matrix and state

vector are

0C3-Co  FRIC;-(o+r+m)Cs] £erc, -Cy+(a+7)Cs
2vorCy (r+y)C,-Cy r[(r+y)Cs3-C,] -2vrC,
- 2
[Tfp] 2voC, %[(1+7)C,-[(r+1) +01]CS] (r+y)C2-Cy 2v[(o+r+y)Cs-C, ]
o(C,-0Cg) - ﬁhUCQ -ﬁhvrcs 0C,-Cq
(4.20)
where
2 2
e (4.21a)
af
2 2
p— (4.21b)
a
P
-2 bo (4.21c)
b = § (4.21d)
P
d =L (4.21e)
P
n-E (4.21F)
K
- . . -
Co = A|Azcos(A;) - Ajcos(Ary) (4.21g)
. 2 2 -

A

2 1

C;, = A ;-sin(x1) - I~sin(A2) (4.21h)
1 2

- e
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C, = A[cos(l,) - cos(Az)] (4.211)
Cy = A[{:sin(x,) . tsinu,)] (4.213)
A - [xf . A:]'l (4.21K)

2 1 2 3
Ay -2 (r + 0+ 7) -[(r+a+7) - lmr] (4.212)

>
[X)

2-1 (‘r+¢7+'y)~i-(f+¢7+'y)2-lnn';s (4.21m)
2

and the non-dimensional state vector at location i in Figure 4.5 is:

N

The matrix in Equation 4.20 is valid providing that the coupled wave

hkc‘
= I
ol

F 1T
A—g} (4.22)
P i

speeds ratio are different from one another. This condition guarantees
that the eigen values in Equations 4.212 and 4.21m are different from
one another, therefore, avoiding the undeterminate form of Equation

4.21k.

4.2.2.2 Transverse Vibration in x-z Plane

Equation 4.18 for the transverse vibration of a pipe reach in the x-z

plane becomes



Chapter 4 Numerical Simulation
68

zZ, = [T, 1;% (4.23a)

where
[T,,] = [B(®)] [B(O)] ™} (4.23b)

The matrices [B(0)] and [B(2)] are obtained from the matrix of Equation
3.53a evaluated at locations i-1 and i in Figure 4.5, respectively. The
non-dimensional representation of the field transfer matrix [50] and

state vector are

2
Co-0Cy  Cy-(a+r)Cs C, -%[-ac,+(1+a )Cs]
"1C3 Co'ng Cx-rC, ‘CQ
- 2
(Tyez! +Cq (v+7 )Cg-7C; Co-7C3  -[Cy-(o+r)Cs] (4.24)
-v(C,-0Cg) =7C, -7Cy Co-0C,
where

2 2
o = (PpBpteshe) Ly (4.25a)
GA_x

]
2 2
r o= S2pLoteele) Oy (4.25b)
EI
P
2
v = (ppAptesAs) Pyt (4.25¢)
EI
P

Co = A[A:cosh(xl) + ,\:cos(,\,)] (4.254)
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Ag Ay
c, - A[;:sinh(x,) + 3;31n<x,)] (4.25e)
c; - A[cosh(x‘) - cos(A,)] (4.258)
Cs = A[}:sinh(xl) ] i;sin(x,)] (4.25g)
A = [x: + A:]'l (4.25h)
AT - [ v+1- r)’]” 2@+ (4.251)
Ay = [ v+t - r)z]* +wen (4.25§)

and the state vector in the x-z plane at location i in Figure 4.5 is

given by

2
Gow, Nt R
Zi =11 y B EL) [, (4.26)

The matrix in Equation 4.24 differs from the one by Pestel and Lackie
[50] in that the mass of the contained liquid is included in the

parameters o, r and 7.

4.2.2.3 Transverse Vibration in y-z Plane

Equation 4.18 for the transverse vibration of a pipe reach in the y-z

plane can be represented by
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Z; = [T,,13% 4 (4.27a)

where
-1
[Tyz] = [B(2£)] [B(0)] (4.27b)

The matrices [B(0)] and [B(£)] are obtained from the matrix of Equation
3.60 evaluated at locations i-1 and i in Figure 4.5, respectively. The
non-dimensional representation of the field transfer matrix and state

vector are

[ Co-0C; -[Cy-(o+7)Cy4] -C, -#[-acl+(1+az)03]
-vCs Co-7C, C,-7rCgq Ca
[T&z] = -vC, (-1+72)C,-7C1 Co-7Cy [Cy-(o+7)Cq] (4.28)
-v(C,-0Cg) vC, vCs Co-0C,

where the coefficients are given in Equations 4.25a through 4.25j. The

state vector in the y-z plane at location i in Figure 4.5 is

2
u, , M2 F2 T
z, - 31 x == X (4.29)
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4.2.2.4 Torsional Vibration About z-Axis

Equation 4.18 for the torsion about the z-axis is

z,- [T,,1,% (4.30a)

where
(T, = (B(®)] [B(0)]! (4.30b)

The matrices [B(0)] and [B(£)] are obtained from the matrix of Equation
3.73 evaluated at locations i-1 and i in Figure 4.5, respectively. The
non-dimensional representation of the field transfer matrix and state

vector are

-cos () -%sin(k)

[T (4.31)

e = |
tz'i A sin()) -cos())

where
2 2 2 P
S A (4.32)

and the state vector, Z, in Equation 4.30a is

M2 |T
zi - { yz Ef— } (4.33)
P
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4.2.2.5 General Field Transfer Matrix

The field transfer matrix for a single straight pipe reach shown in
Figure 4.5 is composed of four submatrices: longitudinal vibration of
the liquid and pipe wall, transverse vibration in the x-z as well as in
the y-z planes and torsional vibration about the z-axis. Their expres-
sions were given in Equations 4.20, 4.24, 4.28 and 4.31, respectively.
The state vectors have fourteen dependent variables: three for each of
forces, moments, displacements and rotations of the pipe wall and pres-
sure and displacement of the liquid. The eduation below shows these

arrangements:

z, - [T Z, 4 (4.34)
where ['rL] is the field transfer matrix for a pipe reach of length £ in

the local coordinate system. The fourteen by fourteen element matrix is

given below:

[T, ] = xz] [T, ] (4.35)
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4.2.3 Point Matrices

Three types of point matrices for the pipe wall will be discussed:
bends, springs and point masses. Point matrices for structures that
affect the liquid directly, such as orifices, accumulators and oscil-
latory valves were developed by Chaudhry [7], and Wylie and Streeter
[(8]. Wilkinson [64] developed point matrices for T-junctions, curved

bends and pumps as sources of excitation.

4.2.3.1 Bend Point Matrix

A piping system in two or three dimensional space can be treated as a
collection of straight pipe reaches, differing in orientation and joined
end-to-end. The difference in orientation generates junction coupling
of the fluid pressure and of the pipe wall moments and forces between
the reaches. The junction itself is treated as a discontinuity with
negligible mass and length. Equilibrium and continuity relationships

constitute the basis for point mafrices at bends.

The point matrix is derived for two reaches in a two-dimensional space
and is shown in Figure 4.6. The reaches are connected so that a is the
angle between the axis of each pipe. Figure 4.6a shows the internal
forces in the local coordinate system and Figure 4.6b shows the dis-

placements. The equilibrium and continuity conditions that relate the
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state vector, z% to the right and the state vector, Z? to the left of

point 1 are as follows [26,27]:

Equilibrium of fluid displacement, pipe moments and forces (Figure

4.6a):
M My - ME =0 (4.37a)
ZFy: PRAfcosa - cmosa + F?sina - PLAf + Fg =0 (4.37b)
EFz: -PRAfsina + ngina + F?cosa - F; =0 (4.37c)
Displacements: - (V- - UI) + (W} - US) = 0 (4.37d)

Continuity of fluid pressure, pipe displacements and rotations (Figure

4.6b):
Rotations: W: - Wﬁ (4.37e)
Displacements: U; - U?cosa + Uisina (4.376)
- g - U?sina - Uﬁcosa (4.37g)
Pressures: P- = PR (4.37h)

These equations are assembled in matrix form as:
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N

U R
;Z cosa 0
)
K* 0 1
% -(l-cosa) 0
F
KZE 0 g(l-cosa)
P
<U P =
Ix -sina 0
Wx 0 0
M2
. 2
Elg 0 0
F £
E‘I,_ 0 gqb sina
P )it
or
7y = [F1,Z;
and
AL
- =P
g="1
P
q-=- 5£
A
P

4.2.3.2 Spring Point Matrix

75

0 0 cosa
0 0 0
0 0 0
0 -g sina O

Numerical Simulation

cosa

> (4.38)

(4.39a)

(4.39b)

(4.39¢c)

Piping systems generally are supported at several locations, restricting

motion partially or totally, or they may be placed on an elastic founda-

tion. The elastic foundation can be represented by springs. Each

spring can be modeled as a point matrix.
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Suppose the pipe reach in Figure 4.7a has a spring support and is

vibrating in the y-z plane and in the axial direction z. The state
vectors to the right and left of point i, 21;‘ and Zi‘, can again be

related by a point matrix. The lateral displacement, rotation, moment
and axial variables are continuous over point i. But because of the
spring restoring force, a discontinuity occurs in the shear force. When

the spring is deflected by an amount Uy' the restoring force is kin,

where ki is the stiffness of the spring (Fig. 4.7b). The relations

between the state vector elements to the left and right of the spring

are then
vt - ol (4.40a)
- pl (4.40b)
Sl Uﬁ) - vk - Ui) (4.40¢)
p§ - pi (4.404d)
U? - ; (4.40e)
LR (4.40f)
My - M (4.40g)
F? - r; . kiu; (4.40h)
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Here the subscript i of the dependent variables has been dropped for

clarity. In matrix notation, and in non-dimensional form the equations

become:
(U_ )R 1 (U )L
;‘ 1 0 0 0 0 0 0 0 ;1
) o 1 0 0 0 o0 0 o0 B
K* K*
A v
1 0 0 1 0 o0 0 o0 o0 Y
F F
ﬁ 0 0 0 1 0 0 0 0 AJE
) P
{u } = {u } (4.41)
;! 0 0 0 0 1 0 0 0 31
v 0 0O 0 o 1 0 O v
et i
o 0 0 0 O0 o0 O 1 o Ga
F zg k.2 F o
=+ 0 0 0 0 ﬁ- o o 1|
(P JL * P “Up )1
or
Z; - (R],2; (4.42)

4.2.3.3 Mass Point Matrix

Valves, accumulators and control instrumentation can be modeled as
concentrated or point masses. For example, consider the pipe reach in

Figure 4.8a which has a valve of mass m, in the mid-span. Assume that

the radius of gyration of the mass of the valve is zero about the x-axis

and that the system is vibrating in the y-z plane as well as in the
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axial direction z. The point mass matrix connecting 2§ and Z% is found

by noting that the lateral displacement, rotation and moment as well as

the axial variables are continuous across m, , S0 that

U§ - uﬁ (4.43a)
PR - pL (4.43b)
R vy - -l (4.43c)
u§ - U; (4.43d)
R (4.43e)
MY - ME (4.43F)

An inertia force causes a discontinuity in the shear and axial forée due
to the vibrating mass. Equilibrium considerations in the free-body

diagram shown in Figure 4.8b yield

(4.43g)
FZ - Fi - miszg (4.43h)

In non-dimensional matrix notation Equations 4.43a through 4.43h become
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[U_ IR 1+ (UL
-i‘ 1 0 0 0 0 0 0 0 31
B o 1 0 0 0 o 0 o0 B
K* K*
\'A v
y o2 0 1 0 0 0 0 0 7
F m,w £ F
—Z_ —H— 0o o 1 0 o o o] |-&=
AE AE AE
g P T S
< > == 1 .
T‘l 0 0 0 0 1 0 0 0 7‘1
v 0 0 0 0 0 1 0 0 v
M 2 M_2
e 0 0 0 0 0 0 1 o| |&
EI EI
p P
F o mw 8 F o
LEI 0 0 o0 0 - —’-—EI 0 o 1| -Y—EI
(P JL - P e )1
or z‘; - [p‘l"]iz’i- (4.45)

4.2.4 Overall Transfer Matrix

The overall transfer matrix relates the state vector at one end of a
system to that at the other end. The matrix is obtained by an ordered
multiplication of all the intermediate field and point matrices [7].
Once the field and point matrices for each subsystem have been obtained,
three steps are necessary to form the overall transfer matrix. The
first step consists of rearranging the terms of the matrices. The
second step transforms the matrices from a local to a global coordinate
system by using transformation matrices. The final step is the ordered-
multiplication of the transformed matrices. The first two steps are

considered next.
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4.2.4.1 Overall Transfer Matrix Rearrangement

The state vector in Equation 4.36 has fourteen elements corresponding to
fourteen dependent variables that are necessary to describe a liquid-
filled piping system in a three dimensional space. Assume that the
piping system is in the y-z plane. This piping set-up allows motion in
the axial direction, z and in the y-z plane. The state vectors and

transfer matrix are given by:

(4.464a)

or

z, - [T],Z, , (4.46b)

where ['l‘fp] and ['l'yz] are given in Equations 4.20 and 4.28, respec-

tively. The state vector Zi is given by:

2T
F 2
zi'{g‘ L % AFE lzlx ¥x ;{:1‘2 B } (4.47)
K P P pJi

In order to keep the variables subjected to continuity and equilibrium
conditions separate from one another [26,27,50], the state vector is

rearranged
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U U M2 Feo F T
z -48 ¥ x 2 V¥ X ¥y _z (4.48)
i o* I 1 % EI EI; AE .

To have the transfer matrix compatible with the state vector in Equation
4.48, the columns and rows of the matrix in Equation 4.46a must be

rearranged. Comparing the state vectors in the two previous equations

one can see, for example, that the second element, P/K*, is now the

first and the sixth element, ‘x’ is now the second. In a similar

manner the transfer matrix is rearranged. Row and column shifting can
be achieved in two steps. First, the columns are rearranged by postmul-

tiplying the transfer matrix by a square matrix [tc]. Then,

rearrangement of rows is accomplished by premultiplying by [tR] so that:

[T = (] [T] (%] (4.49)

where [tR] is given by:

(4.50)

[tg] =

COOHOOOO
HOOOOOOO
COHOOOOO
OHOOO0OOO0OO

COO0OOHOOO
COO0OO0OO0O0OOoOm
COO0OoOOH+HOO
COO0CO0OO0OOKrHO

and [te] = [tg]° (4.51)
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The final field transfer matrix, in local coordinates, is given in the

equation below:

(P £ £ £ £p] ( B_ )
i; ™ o o P T2 o o TP i;
v, 0 TIZ 1% o o T 1% o v,
U U
T o 17 1% o o & 1% o 7
U U
£ £ £ £
'R 5 0 o T T8 o o T%| |5
{3l o o 1B 2 o o B JY¥ P @y
et YZ Y2 ¥z z Mt
= o T3 T o0 o T W. o |
P P
2
el yz vz yz gy il
P P
P2 fp fp fp fo| |Fz_
L P i L J i L P ) 1-1
or

where the elements of the matrix ['l.‘L], Tﬁg and T{é are given in

Equations 4.20 and 4.28, respectively. The subscripts R and C in each

element of [TL] refer to rows and columns. The procedure described can

be generalized to a three-dimensional space. The size of the overall
transfer matrix will be fourteen by fourteen. The state vector will be
composed of three rotations, displacements, moments and forces, in

addition to the liquid pressure and displacement.
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4.2.4.2 Coordinate Transformation

State vectors and field and point matrices are developed based on the
local coordinate system, x,y,z, associated with each particular subsys-
tem. In order to relate the state vectors at the end of a pipe reach to
those at the end of an adjacent pipe, the state vectors are expressed
with respect to a set of global coordinates, X,Y,Z, fixed with respect

to the piping system.

The state vector ZL with respect to the local coordinates, x,y,z, and
the state vector ZG with respect to the global coordinates, X,Y,Z, are

related by the transformation matrix [t]:

zZ - [t]zg (4.54)
where
U ¢ Fao F )T
-J2 ¥ 3y z ¥ gx_ Y. =z
Z {K* X T 1 1 EL ®E AE} (4.55a)
P “p p
U, U Myt Foo. F, )T
P v X 2 ¥ X _2Z
zc'{K* X371 1 EI, EI APE} (4.55b)

To obtain the transformation matrix, the orientation of the pipe reach

with respect to the global axis must be defined. The orientation is
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defined by using the direction cosines of the local axis with respect to

the global axis. This is expressed in matrix form as:

x cos(p;;) cos(p;3) cos(p;s) X
Y ¢ = | cos(pz1) cos(pz2) cos(wzs) *é (4.56)
z

cos(ps;) cos(psz) cos(pss)

where qu is the angle between the local and global axes. The subscript

p refers to the local axis, whereas q refers to the global axis. This
is shown in Figure 4.9. As an example, Figure 4.10 shows a pipe reach
in both the local and global coordinate systems. The local coordinates
have been rotated about the X-axis, which is perpendicular to the plane

of the paper. The local y-axis and global Z-axis coincide. The follow-

} (4.57)

ing relations can be observed:

N =

or

ZL - [t] Zc (4.58)

The transformation matrix for this example is:
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r 3 . 1
E 1 o o o o o o offk
K K
v 0o 1 0 0 0 0 o0 o || ¥
) U
e 0o 0 o0 1 0 0 0 0 ;Y
U U
& 0 0 -1 o 0 0 o o]
2 2
vi_ v

4 2 S 0 0 0 0 1 0 (0} 0 |+ )
M_2 2
- o 0 0 0 0 1 0 o0 i
EI EI

14 P,
F 2 Fol
X o 0 0 0 0 0 o 1 ||
EI EI

P P
F F
== 0O 0 0 0 0 0 -1 o XZE

. p P L - - . p P

‘ (4.59)

The relation between the local state vector at locations i and i-1 is:

Combining Equations 4.54 and 4.60 and remembering that [t]'1 = [t

following relation is obtained

t
(Zg)y = (€17 (Tl lelMZg)y
or

(Zg)g = [TelT1Z5)E

and

t
[TG]i - [t] [rL]i[t]

(4.60)

1% the

(4.61a)

(4.61b)

(4.61c)
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where [TG]i is the field transfer matrix in global coordinates relating

the state vectors at the two ends of a pipe reach. The state vectors

are defined with respect to the global coordinate system.

Similar procedures for rearranging and transforming the coordinates from
local into global can be applied to the point matrices defined in
Equations 4.38, 4.41 and 4.44., The overall transfer matrix for the

system shown in Figure 4.4 between points 7 and 5 is given by:
(U] = ... [BQl,[Tgl,[BG]4ITglg RG] IT ] (4.62)

The number of columns of the overall matrix may be reduced according to
the boundary conditions at one end of the system or increased, in the
case of a rigid support, to account for the new unknown introduced by
the intermediate boundary condition. These special conditions will be

defined in the next section.
4.2.5 Boundary and Intermediate Conditions
Boundary and intermediate conditions are restrictions imposed on the

system affecting the degrees of freedom of the pipe or liquid. The

natural frequencies of the system are dependent upon these conditions.
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4.2.5.1 Boundary Conditions

Figure 4.11 shows a piping system vibrating in both the axial direction
Z and in the Y-Z plane. The boundary conditions at location O are a
reservoir of constant pressure for the liquid and restrictions on rota-
tions and displacements of the pipe. The reservoir represents an open-
end condition in the liquid, whereas the restriction of pipe motion is a
fixed-end condition. Since the reservoir level is constant, a pressure
node always exists at this end. This boundary will be referred to as an
open-fixed end condition. The state vector, in global coordinates, at

this end is given by:

rP 3 ro 3

'X 0

UY 0

UZ 0
4 VP = ¢V » (4 . 63)

My My

Fy Fy

LFZJ 0 LFZJ 0

At location 1 in Fig. 4.13 there is a closed valve and a release (for
example, a flexible hose of negligible length) that allow pipe motion.
Moment and forces in the pipe vanish due to the release. A liquid
pressure antinode exists at this end due to the presence of the closed
valve. Assuming that the release does not affect the fluid pressure and
that the valve is rigid so that fluid displacement is not allowed, the

state vector at this closed-free end condition is given by:
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P ) P )

¥y ¥y

Uy Uy

Uz Uz

vl = {o} (4.64)
My 0

Fy 0

Fz)1 %)

4.2.5.2 Intermediate Conditions

Rigid supports and external excitations of the piping are the inter-
mediate conditions studied in this research. Figure 4.12 shows these
two intermediate conditions. Lesmez, et al. [66]) presented a descrip-

tion of these conditions.
1) Rigid Supports

A rigid support restricts all motion of piping at a given location.
This support condition may be represented by increasing the number of
columns of the transfer matrix. The increase in the number of columns
accounts for the reaction at the location and increases the number of
unknowns. This boundary condition can be illustrated by a simple ex-
ample. The clamped-clamped beam in Figure 4.12a has a support at
location 2. Let T1 and T2 be the field transfer matrices between points
1 and 2, and 2 and 3, respectively. The matrices Tl and T2 can be

written as follows:
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[T1] = |Tly; Tlgy Tlgy Tlgy|, [T2] = |T24, T24; T233 T24, (4.65)

The state vector for shear and bending in the Y-Z plane is given by:
Z- (U, ¥ M, F,)T (4.66)
Y ¥x ¥x Fy :

Applying the fixed boundary conditions Uy = o, ¥y = 0 at 1, the first
and second columns of the field transfer matrix [Tl] are dropped and the
state vector becomes ( Mx FY )T. The rigid support at point 2 causes a

discontinuity in the shear force according to the relation

- FYZ +Q (4.67)

This restraint also introduces the relation

U,

= 0= Tl,,ux1+ T, Fy (4.68)

2 1
In order to introduce the reaction Q, a column is added in the field
transfer matrix. It has unit value in the row corresponding to the

discontinuity, as shown in the equation below.
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=OOO

&

Numerical Simulation

(4.69)

Point 3 is reached by multiplication of the modified matrix T1l by the

field transfer matrix [T2]:

T211 T2;3
T24, T24,
T2, T2,

(T] -

T2,3 T2,,

T2, T2,

Equation 4.66 can be added to the overall transfer matrix:

Uy, Uyy Upq
v Uz, Ugzg
HFX" _ |us: Uiz
Y «1 Ugqz
of|, [rli, Tii,

or

Z - 10l 7

Uys

Uazs | [My
USS F.
Ues Y
0 Q

1
1

Tlys Tl O
Tl,s Tlz O
Tlgy Tlg O (4.70)
Tles Tle, 1
(6.71)
(6.72)

where the state vector at location 1 includes the reaction at location 2

and the state vector at location 3 has now five elements:

2) External Force

A static or harmonic force can be represented by an extended state

vector and an extended transfer matrix.

Figure 4.12b shows the same

beam as the previous figure, but now at point 2 a harmonic force of
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amplitude Q and frequency @ is being applied. The force at location 2

is given by the relation

Fr = Fr +q (4.73)

This equation is introduced in the transfer matrix by adding one row and

one column to matrix [T1l] in the following manner:

UJR  [Tlys Tly, O
¥ Thas Thae Of iy
= |Tlss Tlge O Y (4.74)
Y les Tleo Q 17)1
17)2 0 o 1

where one more equation has been added: 1 = 1.

The overall extended transfer matrix is given by the product of the
matrix in Equation 4.74 and that in [T2]. The final matrix equation

that expresses the state vector at 3 is:

U. Uy Uz |Q

Y U U Q
¥ 21 Uaz 2
- Usy Usz2 |Qs
g§ Uy Ugz |Qq {?§}1 (4.73)
1Y)3 00 |1]

or

23 - (U] 21 (4.76)

where the Q;, Q,, Qs and Q, represent the forcing terms.
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4.2.6 Natural Frequencies

The natural frequencies of liquid-filled piping systems are important in
the design process. Let [U] and Z be the global transfer matrix and
state vector of the single pipe reach vibrating in the Y-Z plane shown
in Figure 4.11. The global transfer matrix relates the state vectors at

the end points

z) - (U] %, (4.77)

The natural frequencies of this system depend on the boundary conditions
described in Equations 4.63 and 4.64. Because some of the variables are
zero at the boundaries, the number of elements of the state vectors at
locations 0 and 1 is reduced. Therefore, the order of the global trans-
fer matrix is also reduced. For example, the plane vibration of the
plpe reach has eight variables. Four variables are known at each end
reducing the number of elements of the state vector to four. This can

be represented by

Ugs Ugse Us? Uss|

65 Use Us7 Ugs

= |Uzs Uzg Uz7 Uzs
1 Uss Use Us? Usgs

(4.78)

-
[=X=X=)X=)

N <

or

(0);= [U](Z) (4.79)
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where the vector Z represents the non-zero variables and the order of
the matrix (U] has been reduced by the boundary conditions that are
zero. To have a non-trivial solution the determinant of the reduced

matrix must be zero
A-I[U]' (4.80)

This generates an equation for the circular natural frequency w. In
practice [50], the procedure adopted is to choose certain values for w
and compute the corresponding values of the frequency determinant A(w).
The values of the determinant are then plotted against the frequency w.
The values of w at which the determinant equals zero are the natural

frequencies of the system.

4.2.7 Mode Shapes

After the natural frequencies have been determined, the mode shapes of
an elastic system can be found in terms of one variable. For example,
assume that the fluid displacement at location O in Figure 4.11 has a

unit amplitude. Equation 4.78 then becomes

0 Uss | Use Usr Uss
0 Ugs | Uge Ugz Ugs
Op = |Uss | Uzg Uzz Uqgyg
0]; |Uss | Use Us7 Uss

(4.81)

S
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where the partitioning corresponds to the unknown variables. Once the
variables at 0 are known, the variables at specified locations of the
pipe reach may be found. This is accomplished by evaluating the trans-
fer matrix at the natural frequency and at the given location. Then,
the transfer matrix is multiplied by the state vector at the initial

location. This is represented by

[P ] [T1s Tis T17 Tis

¥y T2s Tze T27 T2s|

Uy Tss Tse Ts7 Tss| |V

u, Tes Tae Ta7 Tqs My

1V = [Tss Tse Ts7 Tss| {Fyf (4.82)
My Tes Tes Ter Tes| |Fy

Fy Trs Tre T77 T7s| L JO

‘Fz‘ { Tss Tse Ts7 Tes

where 1 represents a location along the pipe reach. This procedure is

followed until the other boundary is reached.

4.2.8 Frequency Response

The transfer matrix method can be used to determine the frequency
response of systems having one or more periodic forcing functions.
Chaudhry [7] describes a method to determine the frequency response of
these systems. The extended matrix and state vector concepts and the
method of superposition can be used to find the total response. The
response of the system to each forcing function is evaluated and the

results are then superimposed to determine the total response of the
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system. Determining the response for a forcing function of frequency
involves evaluating the global transfer matrix at that frequency. Then,
the response of the dependent variable such as forces and displacements
at the starting point are found by following a similar procedure to the
one used to compute the mode shapes. For example, the moment and force
of the system shown in Figure 4.12b and represented in Equation 4.75,

become

U U Q
0 11 Uiz Q
ol - Uzy Uz Q2 l:-;(' (4.83)
1)3 0 0 1 1)1

Once the conditions at location 1 (Figure 4.12b) are known the response
at the desired locations can be found by evaluating the transfer matrix
from the starting point up to that location. This procedure is followed
for each frequency of the frequency range at a specified frequency

interval.

4.3 Comparison with Other Methods

The transfer matrix method is compared in this section with the method
of characteristics (MOC) [5,6,7], the component synthesis method (CSM)
[34,35,36], and with experimental data available in the literature. Two
Piping systems are used to make the comparisons. The first system is a
one-dimensional liquid-filled pipeline with a reservoir that has a

closed end, either free or fixed. The second system is an L-shaped pipe
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connected to a reservoir and free at the other end. The L-shaped pipe
was tested at the David W. Taylor Naval Research and Development Center
in Maryland [24]). This pipe has been extensively studied. The previous
modeling efforts included direct analytical solution of simultaneous
differential equations [24], component synthesis using finite element
discretization (Nastran) for the structural elements [37] and finite

element analysis in three dimensions [86].

4.3.1 Method of Characteristics

The method of characteristics has been widely used to estimate the
response of liquid systems to transient ;§ents. A description of the
method is presented by Wylie and Streeter [6] and Chaudhry (7]. The MOC
has also been used to model waves propagating in beams including rotary
inertia and shear deformation [89]. Numerical difficulties in modeling
beams have made the MOC unattractive in modeling liquid-filled pipings
for plane vibration [65]. This method was used by Otwell [19], Wiggert
et al.(20], and Budny [22] to compare experimental data in which fluid-
structure interaction was allowed. Budny [22] incorporated daﬁping in
both the pipe and the liquid. His model is used here to predict the
pressure response of the one-dimensional pipe with no energy dissipa-
tion. Table 4.1 shows the characteristics of a straight copper pipe

filled with water.
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TABLE 4.1
PROPERTIES OF STRAIGHT LIQUID-FILLED PIPE
Pipe Liquid
Property Value Property Value

Young'’s Modulus 117 GPa . Bulk Modulus 2.2 Gpa .
Density 8940 kg/m Density 1000 kg/m
Poisson’s Ratio 0.45

Inside Radius 13 mm

Thickness 1.2 mn

Wave Speed 3744 m/s Wave Speed 1248 m/s

Boundary Conditions

Case a Fixed-Fixed Open-Closed
Case b Fixed-Free Open-Closed

The Poisson’s ratio has been adjusted to 0.45 so that the ratio of the
coupled wave speeds is three. Taking the pipe wave speed as a mutiple
of the liquid avoids any interpolations that may introduce numerical
errors in the MOC [6,90]. The relative displacement as well as the net
force must be zero at the free end condition as described by Budny (22].
Inertia forces are not included at the free end. A sinusoidal function
applied to the liquid at the open-end is the source of excitation in
both cases. A fast Fourier transform (FFT) analysis of the time history
generated by the MOC is performed to obtain the frequency response. The
pressure amplitude response at the closed end is plotted in Figure 4.13.
The natural frequencies are the same regardless of the method of com-
putation. Table 4.2 shows the natural frequencies for both cases. The
results for Case a are shown in Figure 4.13a. Case b shows that when
the pipe wall is free in the axial direction, the third liquid and first

pipe natural frequencies coincides at 12 Hz. The frequencies of both
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the liquid and pipe are split apart to 9.0 and 14.4 Hz. The same result
occurs at the ninth liquid harmonic which coincide with the second
natural frequency of the axial pipe wall at 36 Hz. Figure 4.13b shows

this result.

IABLE 4.2
NATURAL FREQUENCIES FOR STRAIGHT PIPE
Case a Case b
Frequency Type Harmonic Frequency Type Harmonic
- (Hz) (Hz)

4.0 F 1 4.0 F 1
11.7 F 3 9.0 P 1
19.4 F 5 14.4 F 3
23.4 P 1 19.4 F 5
27.4 F 7 27.3 F 7
35.1 F 9 32.4 P 2
42.8 F 11 37.8 F 9
46.8 P 2 42.8 F 11
50.8 F 13 50.7 F 13

F = Fluid, P = Pipe

4.3.2 Component Synthesis Method and Experimental Data

The second comparison of the transfer matrix method is with the com-
ponent synthesis method and experimental data. Hatfield et al. (37]
devised the component synthesis approach which is an extension of the
modal synthesis technique [36] for dynamic analysis of structures. The
L-shaped pipe in Figure 4.14 was used to validate the CSM. Table 4.3
describes the properties of the pipe, 70% copper and 30% nickel and
filled with oil [24].
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TABLE 4.3
PROPERTIES OF L-SHAPED LIQUID-FILLED PIPE
Pipe Liquid
Property Value Property Value
Young’s Modulus 157 GPa8 Bulk Modulus 2 Gpa
s
Density 9000 kg/m Density 872 kg/m
Poisson’s Ratio 0.34
Outside Diameter 114 mm
Inside Diameter 102 mm
Radius of Bend 102 mm
Sound Speed
In-Situ 1372 m/s
Boundary Conditions Fixed-Free Closed-Open

A correction for the flexural stiffness, EI, of the bend was used for
both numerical methods. A curved pipe subject to bending is less stiff
than would be indicated by elementary theory of bending [87]. The

correction formula developed by von Karman [88] is

2

n - l.i.lZisBLI_i (4.84)
10 + 12(eR/r )

where n is the correction factor for the flexural stiffness, R is the
radius of the bend, r is the inside radius of the pipe and e is the
thickness of the pipe. The CSM does not include the Poisson’s coupling
because in the computation of the normal modes of vibration of the pipe
the interaction with the liquid is not considered. However, the mass of
the contained liquid is included as part of the total mass. The first

lobar mode of the cross section is 850 Hz.
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The pipe frequencies for the CSM are computed by using the finite ele-
ment program Nastran. Ten modes and 25 elements are used in the

computations. Seven pipe reaches are used to model the pipe by using
the transfer matrix method. The 90. bend is modeled using three pipe

reaches each with a relative change of 30 in orientation. The liquid
in the pipe was excited by a harmonic oscillator. Neither structural
nor fluid damping are considered in the computations. The liquid is
free to move at the free end. The mobility (ratio of velocity over
force) of the liquid at the excitation point and free end, as well as
the mobility of the pipe in the Y and Z directions are shown in Figure
4.15. Discrepancies in predicted and measured responses in the vicinity
of the amplitude peaks are because damping was not included in the
computed analysis. In non-resonant frequency ranges, differences in the
responses predicted by the two analyses are minor compared to the devia-
tions of both predictions from observed responses, particularly in the
structural responses (Figures 4.15c and 4.15d). The discrepancy in the
structural mobility may be caused by the flexibility factor which is

significant in accurately modeling elbows [86].
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Figure 4.4 General Piping System
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CHAPTER 5

5.1 Introduction

The analytical model derived in Chapter 3 and the methodology described
in Chapter 4 incorporate the flexural and torsional modes of vibration
into an existing coupled axial pipe wall and liquid model. This
model represents five families of waves. Four of the waves propagate in
the pipe wall and one in the liquid. The previous section compared the
frequency responses of the proposed model to the method of characteris-
tics and the component synthesis method. The model was also compared

with experimental results available in the literature.

This chapter describes the experimental apparatus that was designed and
built to validate the proposed model. The comparisons of the previous
chapter validate the model only partially because the excitation was
applied to the liquid column and the natural frequencies of the liquid
were unchanged. The experimental apparatus is designed to excite the

natural frequencies of a piping system. The excitation is harmonic.

111
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The experimental apparatus was located in the basement of the
Engineering Building on the campus of Michigan State University. The
piping system, the experimental procedure and the sources of experimen-
tal error are described in this chapter. Appendix B describes the data

acquisition equipment utilized, including the hardware and software.

5.2 Description of Experimental Apparatus

This section examines the components considered in the design of the
apparatus. These components will be discussed in reference to either
the pipe or the contained liquid. Liquid medium, constant pressure
reservoirs and a valve are the components related to the liquid. Pipe
material, pipe supports and the external shaker are associated with the
pipe. The final component of the experimental apparatus is the data

acquisition equipment. Figure 5.1 shows the piping system set-up.

5.2.1 Liquid Components

5.2.1.1 Liquid

The liquid used in the experiments was water from the university water

supply system. Table 5.1 [78,79] lists the physical properties of the

water.
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IABLE 5.1
PHYSICAL PROPERTIES OF LIQUID
Property ' Value
Temperature 25.0 °C 77. °F
Bulk Modulus (K) 2.2 GPa . 320. kpsi s
Density (p) 997.0 kg/m 1.93 slugs/ft

5.2.1.2 Constant Pressure Reservoirs

The upstream and downstream reservoirs each consist of two 454 liter
vertical F.E. Myers Model V120G 14800C8 well tanks. Each tank is rated
for 517 kPa (75 Psi). The set-up of the tanks is shown in Figure 5.2a.
A one inch U.S. nominal diameter pipe connects the bases of the pair of

tanks, allowing them to act as a single reservoir.

The tanks are pressurized with Engineering Building air supply that has
a maximum pressure of approximately 650 kPa (94 Psi). The air pressure
allows a constant liquid pressure at point C as shown in Figure 5.1.
The air supply passes through a Schrader Model 3564-2000 pressure
regulator, and is directed through an orifice on top of the tanks with a
common header. The header is used to maintain equal air pressure in both

tanks.

The tanks are filled with water through a hose connection on the one
inch nominal diameter transfer line at the base of the tanks. This
transfer line is connected to the one inch diameter pipe at the base of

each reservoir and has a shutoff valve at each end. In addition to
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allowing filling and emptying of the tanks, this transfer line is used
to transfer water between the reservoirs. Water level in the tank is
monitored using a sight glass connected to the orifices on the side of
one of the tanks in each reservoir. These tanks are also used to purge
the air from the system. The purging procedure described by Budny [22]
was used. The open boundary condition defined in section 4.2.5.1 is

simulated by the set of tanks at one end of the piping system.

5.2.1.3 Valve

A fast closing valve, described by Budny [22], was placed at one end of
the piping system, as shown at point A in Figure 5.1. Figure 5.2b shows
two views of the valve. For the purposes of this study, the valve was

kept in the closed position simulating a dead-end [6,7].

5.2.2 Pipe Components

5.2.2.1 Pipe Material

The pipeline used is a one inch U.S. nominal diameter type L copper pipe
with standard soldered fittings. Unions are installed at intervals of
approximately 7.3 meters (24 ft.) along the pipeline to allow for
changes of the total pipe length. Figure 5.1 shows the pipeline set-
up. Table 5.2 [78,80,81] lists the physical properties of the piping

system.
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IABIE 5.2
PHYSICAL PROPERTIES  OF PIPING SYSTEM

Property Value
Young’s Modulus (E) 117.0 GPa . 17.00 Mpsi

3
Density" (p)  8900.0 Kg/m 17.30  slugs/ft
Inside Radius (xr) 13.0 mm 0.51 in
Outside Radius 14.3 mm 0.56 in
Thickness (e) 1.3 mm 0.05 in
Poisson’s Ratio w) 0.35

* Determined by water displacement [22]

5.2.2.2 Pipe Supports

Unistrut model P2031 pipe clamps mounted approximately 3.7 meters (12
ft.) apart are used to provide support of the pipe to the wall. 1In
addition, rigid supports are connected to the piping at each elbow to

eliminate axial motion.

Each rigid support is an aluminum block bolted to the wall. Each blogk
has a hole matching the OD of the pipe drilled in its center. Each
block is cut in half through this hole and bolt holes are drilled
through both sections. Bolts are then used to hold the two pieces
together enabling the block to act as a vise, squeezing the pipe around
its entire circumference. The entire support is then bolted to the

wall, using 3/8 inch Red Head anchor bolts.

Rope hangers are used to hold the piping at locations where neither one

of the above supports are placed. The locations of the supports are
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displayed in Figure 5.1. The Unistrut supports may be replaced by rigid
supports to vary the length of the piping. The procedure to change

these supports is discussed in section 5.2.3.

5.2.2.3 External Shaker

The excitation of the pipe is induced by a reciprocating force produced
by an external shaker. The shaker is a crank-slider mechanism that
transfers rotary motion to reciprocating motion. Top and side views of
the mechanism are shown in Figure 5.3. Figure 5.4 shows a sketch of the
same mechanism. The mechanism consists of five major elements: a motor,
crank, connecting rod, linear bearing structure and connecting spring.

These elements will be described next.

The motor is a Dayton model 4Z140, permanent magnet DC variable-speed
motor with a Dayton SCR control which allows changes of the rotational
speed. The rated frequency and torque of the motor are 1800 RPM and 0.5
N-m (4.38 in-1b), respectively. The motor is mounted on a structure
made of 102 mm (4 inch) L-shaped steel bars bolted to the wall. This
structure prevents any vibration that may interfere with the experi-
ments. A flywheel is attached to the end of the shaft of the motor.
Bolted to the flywheel is an aluminum disk. A distance of 1.5 mm be-
tween the center of the aluminum disk and the center of the flywheel
forms the crank of the slider mechanism. A 1/2 inch Heim Unibal
Spherical Rod End Bearing is joined to the aluminum disk by a 6.4 mm

screw. This joint is a pin-type connection, as shown at point C in
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Figure 5.4. The pin connection, which follows a circular path, trans-
fers the rotary motion of the crank to the spherical bearing. The
spherical bearing is screwed to a one inch diameter aluminum rod. At
the other end of the rod there is a similar spherical bearing that
connects to a linear bearing structure by a wrist-type connection. The
motion at point P in Figure 5.4 oscillates along a linear path. The
transfer of rotary motion to reciprocating motion occurs along the
aluminum rod, whose points follow elliptical paths. The total lgngth of
the link is 880 mm (Figure 5.3). Two pairs of 1/4 inch linear self-
aligning, super-ball bushing bearings slide on two stainless steel rods,
simulating piston-type motion of the linear bearing structure. The
static coefficient of friction is 0.2% [82]. These rods are supported
on acrylic blocks which are glued to an acrylic base. The base is
mounted on a L-shaped steel bar bolted to the wall. A 1/2 inch steel
rod anchored to the bearing structure, in the same plane as the link,
connects to the spring. Table 5.3 gives the technical information

concerning these shaker components.

5.2.2.4 Spring

The reciprocating motion of the linear bearing structure is transmitted
to the pipe by a round-wire helical compression spring. The spring
allows a linear relationship between the reciprocating displacement at
the bearing structure and the force that is transmitted to the pipe.
The technical information regarding the spring is shown in Table 5.4
(13].
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TABLE 5.3
SHAKER COMPONENTS
Component Material Diameter Thickness Length Mass
(mm) (mm) (mm) (gm)
Motor Shaft 12.7
Flywheel Steel 127.0 32.0 2980
Disk Aluminum 61.0 22.9 150
Crank Off-Center 6.4 1.5
Heim Uniball Spherical
Rod End Bearing 12.7 76.2
Rod Aluminum 25.4 825.0
Link 880.0% 1350
Linear Bearings 6.4 20.3
Linear Bearing
Structure 1510
Rod Connector Steel 12.7 140.0

* Total distance between point C and P in Figure 5.4.

(See Figure 5.3)

IABLE 5.4

SPRING PROPERTIES
Property Value
Material Hard-drawn steel wire, zinc plated*
Mass (ns) 20.3 gm
Spring Constant (k,) 7.0 kN/m 40 1b/in”
Modulus of Rigidity (G) 79.3 Gpa 11.5 Mpsi
Mean Spring Diameter (D) 15.9 mm 0.63 in
Wire Diameter (d) 2.4 mm 0.09 in
Active Coils (N) 11*
Natural Frequency (fs) 290.0 Hz
Spring Ends Both ends squared

* Obtained from the manufacturer
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The spring is connected to the bearing structure by a 1/2 inch steel
rod. A screw rigidly connects the spring to the rod. Another screw
connects the other end of the spring to an acrylic collar that embraces
the copper pipe, as shown in Figure 5.3. These connections reduce the
number of active coils to seven, thereby increasing the stiffness of the
spring to 11.7 kN/m (67 1b/in). This value was obtained from Equation
5.1 [13].

Kk --46 (5.1)

where ks is the spring constant and D and d are the mean spring diameter

and wire diameter, respectively. The modulus of rigidity is G and the
number of active coils is represented by N. The reduction of the number
of active coils also increases the natural frequency of the spring to
460 Hz. The natural frequency of the spring can be obtained from

Equation 5.2, [13]

£, -3 [ks/ns] g (5.2)

where m, represents the active mass of the spring.
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5.2.3 Experimental Configurations

The general piping set-up in Figure 5.1 will be used to describe the
pipe configurations. Each pipe configuration varies in total length,
therefore, the frequency of the liquid varies. A U-type bend is placed
between the valve and the reservoir. The legs of the U-bend are 1.83 m
(6 ft) each. The Unistrut and rigid supports restrict the motion of the
pipe whereas the U-bend is free to move in the Y-Z plane. The external
shaker is attached at the mid-point of the vertical leg of the U-bend,
location D. The elbows of the U-bend are reinforced with a steel plate.
Brass blocks are soldered to the copper pipe at both sides of each
elbow. The steel plates then are screwed to the brass blocks. The
steel plates, screws and the brass blocks add 0.5 Kg of mass to the U-

bend, localized at each elbow.

IABLE 5.0
PIPING SYSTEM CONFIGURATIONS
Configuration Location Length
Valve Movable Reservoir

Rigid Support Meters Feet
1 B 4 4 c 40.99 134.45
2 B 5 5’ c 55.62 182.43
3 A 11 44 c 65.51 214.87
4 A 11 55 c 80.14 262.93
5 A 22 44 c 80.16 262.92
6 B 6 6’ c 91.89 301.40
7 A 33 44 c 94.77 310.85
8 A 22" 55 c 94.79 310.99
9 A 33 55’ c 109.40 358.92
10 A 33 66 c 145.67 477.80

(See Figure 5.1)
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A total of 10 different pipe lengths can be obtained. The movable rigid
supports are placed at locations where two pipe unions are aligned in
the Y direction, as shown in Figure 5.1. Table 5.5 shows the total
length of the system for each configuration. The change in pipe length
allows variance of several parameters: frequency of the liquid, loca-
tion of the U-bend, external excitation and data acquisition

transducers.

5.2.4 Transducers

The responses of the liquid pressure and pipe motion to the harmonic
excitation are recorded as functions of time. These recordings were
accomplished using PCB pressure and acceleration transducers interfaced
with either a Digital PDP-11/73 computer or a Tektronix D13 dual beam
storage oscilloscope. A description of the components of'the data
acquisition equipment is presented in Appendix B. Two pressure
transducers and two accelerometers were used in the recording. Another
accelerometer monitored the motion of the linear bearing structure.
Their locations are shown in Figures 5.1 and 5.5. One pressure
transducer is located at the closed end where a liquid pressure antinode
occurs. The other is located after the U-bend to monitor the effect of
the motion of the pipe during the pressure response. The accelerometers
are located at the spring and the elbow of each leg. At these loca-
tions, large displacements are expected to occur for the first and

second natural frequencies of the U-bend [83].



Chapter 5 Experimental Apparatus

122
IABLE 5.6
LOCATION OF TRANSDUCERS AND U-BEND RELATIVE TO VALVE
Location Configuration
1 2 3 4 S
Valve 0.0 0.0 0.0 0.0 0.0
P, 0.3 0.3 0.2 0.2 0.2
B, 1.2 0.9 38.2 31.2 49.5
D, 3.4 2.5 39.6 32.4 50.6
D, 5.5 4.0 40.8 33.4 51.7
B, 5.7 4.2 41.0 33.5 51.8
Bg 10.1 7.5 43.8 35.8 54.1
B, 14.6 10.8 46.6 38.1 56.3
P, 16.1 11.9 47.5 38.8 57.1
Reservoir 100.0 100.0 100.0 100.0 100.0
Location Configuration
6 7 8 9 10
Valve 0.0 0.0 0.0 0.0 0.0
P, 0.2 0.1 0.1 0.1 0.1
B, 0.5 57.3 41.9 49.6 37.3
D, 1.5 58.2 42.8 50.4 37.9
D, 2.4 59.1 43.7 51.2 38.5
B, 2.5 59.2 43.8 51.3 38.5
Bg 4.5 61.1 45.7 53.0 39.8
B, 6.5 63.1 47.6 54.6 41.0
P, 7.2 63.7 48.3 55.2 41.4
Reservoir 100.0 100.0 100.0 100.0 100.0
(See Figure 5.5) P = Pressure Transducer

D = Accelerometer
B = U-Bend
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Table 5.6 shows the relative locations of the transducers, U-bend elbows
and rigid supports with respect to the total length of each experimental
configuration. Distances are measured from the closed end (valve) to

the open end (reservoir).

5.2.5 Dynamic Forces and Natural Frequencies of Shaker

The magnitude and characteristics of the dynamic loads that the shaker
puts into the spring and, therefore, into the pipe, must be known before
experiments are performed. The dynamic forces are studied in the form
of the reciprocating force induced by the crank mechanism and the force
that the spring transmits to the pipe. Also, the shaker may introduce
noise into the signals if a natural frequency of the component coincides

with the frequency of excitation.
5.2.5.1 Shaker Loads
The reciprocating force at point P in Figure 5.4 can be defined when the

acceleration at this point is known. Given that Q is the frequency of

oscillation in radians per second, then the displacement of the piston

zg measured from the dead-center position, at which Qt is zero, is [84]:

2
zP - [R“Ex'.] - Rcos(ar) + %Ecos(ﬂlt)] (5.3)
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The reciprocating force is:
£P = (m, + m )RA |cos(at) + Beos(2at) (5.4)
z 17 ™ L :

The inertia torque, T X exerted by the motor on the crank is:

.

(m )
T° - —1;—'“‘?—-&’02 [sin(ZOt)-%[sin(Qt)-3sin(0t)]] (5.5)

where m, and m, are the mass of the link and linear bearing structure,

respectively. The first term in Equation 5.4 is called the primary
term. Its frequency varies with the frequency of the motor. The other
term is called the secondary term because its frequency varies with
twice the frequency of the motor. The importance of the secondary term
is established by the ratio R/L. 1In the case of an infinitely long
connecting rod, the secondary term may be neglected and the piston
follows a harmonic motion. For a connecting rod of finite length the
motion of the piston is periodic but not harmonic. This ratio is less
than 0.2% for the crank mechanism in Figures 5.3 and 5.4 (see Table
5.3). When the effect of the secondary term is neglected, the motion
that the piston induces in the spring is harmonic. The reciprocating
force and torque, then, depend on the mass of the link and linear bear-
ing structure, the crank radius and the frequency of oscillation.

Neglecting the secondary terms, Equations 5.3 through 5.5 become:
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2l = R [1 - cos(nt)] (5.6)
£ = (m, + m) RQ cos(Qr) (5.7)
0 - ot m) R’0 sin(20t) (5.8)

X 2

Placing the values for the mass of the link and bearing structure in
Equation 5.8 at the rated frequency shows that the torque on the motor
shaft is 0.1 N-m, 20% of the rated torque of the motor. The torque
induced by the reaction force of the spring on the shaft of the motor
should also be included. This torque depends on the displacement at
both sides of the spring, the stiffness of the spring and the crank
radius. Because the displacement of the spring at the U-bend is fre-
quency dependent the torque also depends on the frequency of
oscillation. The curve that describes this relationship is presented in

section 5.3.3.

5.2.5.2 Spring Loads

The shaker mechanism inputs a specified displacement at one end of the
spring as given in Equation 5.6. The influence of the spring on the U-
bend as shown in Figure 5.5 can be analyzed by studying a simplified
structure. The U-bend can be considered a single mass-spring system

connected to a spring with specified displacement U, and a force F as
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shown in Figure 5.6. Let m, and kB be the mass and stiffness of the
mass-spring system, and ks the spring constant. A transfer matrix

analysis of this system yields:

At location .2 the displacement Uz is zero, therefore, the frequency

equation is

2

[1-‘:,] vo+[ts [1-22]«»%5]?-0 (5.10)

where w is the frequency of the spring-mass system and O is the fre-
quency at which the crank-slider mechanism is oscillating. This
equation suggests that the dynamic loads from the shaker can be divided

into two loads: one associated with the displacement, U, and one as-

sociated with the force, F. This force is the same as the spring force
described in the previous section. 1Its description is also presented in

Section 5.3.3.
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5.2.5.3 Natural Frequencies of Shaker Components

The components that may induce high frequency vibration are the link,
the spring and the steel rods on which the linear bearings slide. The
link that connects the crank to the slider bearing may bend rather than
having a purely rigid body motion, inducing lateral vibration to the
mechanism. A transfer matrix analysis for a free-pinned solid beam
(locations C and P in Figure 5.4) demonstrates that the first natural
frequency occurs at 100 Hz which is 70 Hz above the rated frequency of
the motor. The natural frequency of the spring is 460 Hz. The natural
frequencies of the stainless-steel rods are 88 and 550 Hz for vibra-
tions in the axial and transversal directions, respectively. The
natural frequency of these components are higher than the rated fre-
quency of the motor, therefore, the dynamic components of the shaker do

not interfere with the harmonic motion induced onto the U-bend.

5.3 Experimental Procedure and Analysis

The objective of the experiments was to excite the natural frequencies
of the U-bend and the liquid contained in the pipe and to record the
pressure response and pipe motion. Several sampling parameters had to
be determined before collecting data for each pipe configuration. These
included the frequency range of excitation, the sampling frequency and
the duration of the sampling process. . Figure 5.7 is a diagram of the
experimental procedure and analysis. Four transducers were used to

collect the time series of the liquid pressure and pipe displacements.
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These were compared with results from the analytical model developed in
Chapters 3 and 4. This section describes the experimental procedures

and analyses that were used for each pipe configuration.

5.3.1 Frequency Range of Excitation

The determination of the frequency range of excitation depends on the
rated frequency of the motor and the natural frequencies of the liquid
and the U-bend. The rated frequency of the motor is 30 Hz which is the
upper bound of the range. The lower bound of the frequency range is
determined by the frequency at which the inertia forces of the shaker
mechanism are overcome producing a harmonic oscillation of the linear
bearing structure. This lower bound frequency was found to be at 3.4
Hz. Several natural frequencies of the liquid and U-bend are excited

over the frequency range.
5.3.1.1 Liquid Frequencies

The fundamental frequency of an open-closed liquid system is [5,6,7,41])

o]
£, = £ (5.11)

Where ff is the fundamental frequency of the liquid, Ce is the coupled

wave speed and £ is the length of the pipe. A pressure node is formed

at the open end and a pressure antinode is formed at the closed end.



Chapter 5 Experimental Apparatus

129

The higher harmonics of the system are determined by the odd harmonics
of the fundamental frequency computed from Equation 5.11. Table 5.7
lists the first through the ninth harmonic for the first nine pipe

configurations. The coupled wave speed Ces which was determined for

this piping system by Budny (22], is 1265 m/s. The results in Table 5.7
show that the ninth harmonic of configurations 7, 8 and 9 can be ex-
cited. The first harmonic of configurations 7, 8 and 9 is periodic but

not harmonic.

IABLE 5.7
FLUID HARMONICS FOR PIPE CONFIGURATIONS
Configuration Harmonic
(Hz)

First Third Fifth Seventh Ninth

1 7.7 23.1

2 5.7 17.1 28.4

3 4.8 14.5 24.1

4 3.9 11.8 19.7 27.6

5 3.9 11.8 19.7 27.6

6 3.4 10.3 17.2 24.1

7 3.3 10.0 16.7 23.4 30.0
8 3.3 10.0 16.7 23.4 30.0
9 2.9 8.7 14.5 20.2 26.0

5.3.1.2 U-Bend Frequencies

The U-bend may be thought of as a plane frame clamped at the columns and
having rigid joints at the elbows. Chang [83] developed frequency

charts for identical columns and cross-beam plane frames. The frequency
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equation, which 1is based on the Bernoulli-Euler beam theory, includes

the effect of axial vibration. It is given by:

2 EI 3
s - J— 5.12
2x2 PP

where { is the frequency parameter and £ is the length of a column.

Table 5.8 shows the estimated frequencies, using Chang'’s development,
for the U-bend shown in Figure 5.5 and the values presented in Tables
5.1 and 5.2. The mass of the liquid can be added to the denominator of

the radical term as: ppAp+pfAf. The modes of vibration are asymmetrical

and symmetrical. In the asymmetrical modes the elbows of the U-bend
translates, simulating a rigid motion of the horizontal leg. The elbows

in the symmetrical modes do not translate.

IABIE 5.8
RATURAL FREQUENCIES OF U-BEND
Frequency parameter Natural frequency Mode of vibration
¢ (Hz)
Empty Liquid-Filled
1.790 5.1 4.1 asymmetrical
3.553 21.0 16.9 symmetrical
4.541 34.3 27.6 asymmetrical

6.693 74.5 60.0 asymmetrical
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The frequency range of 3.4 Hz through 30 Hz excites two natural fre-
quencies of the empty U-bend. The same frequency range also excites

three natural frequencies of the liquid-filled U-bend.

5.3.2 Sampling Frequency- and Sampling Time

The frequency range of 3.4 Hz to 30 Hz used for the experiments was
determined as shown in the previous section. The sampling frequency is
1000 Hz and the duration of the sampling process is 4096 milliseconds.
These parameters minimize the sampling errors due to aliasing and
leakage. The upper limit of the frequency range is 30 Hz. This fre-
quency is more than ten times less than the Nyquist frequency which is
500 Hz [93]. In the frequency range, the number of sinusoidal cycles
for the duration of the sampling varies from 14 to 123. The error
introduced, due to leakage when computing the frequencies, is less than

0.12 Hz, which is the resolution of the fast Fourier transform (FFT).
5.3.3 Sampling Procedure

The SCR motor control was calibrated to input the same frequency incre-
ments for all pipe configurations. The spacing between forcing
frequencies was 0.41 Hz, yielding a total of 65 discrete frequencies.
An input-output calibration curve for the frequency range was obtained
between an accelerometer located at the linear bearing structure and
another located at the spring. These displacements are presented in

Figure 5.8. The input displacement at the bearing structure slightly
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increases as the circular frequency of the motor increases, this was
caused by a small bending of the shaft of the motor. This increase was
0.4 mm over the frequency range from 3.4 Hz to 30.0 Hz. The spring
force at D1 in Figure 5.5 is of the same form as the displacement at
this location. The torque described in Section 5.2.5.1 and the rated
torque of the motor are shown in Figure 5.9. The reaction force of the

spring onto the shaft of the motor was included.

The response spectra for the four transducers were obtained by sweeping
through the frequency range. The signals from the pressure transducer
located at the closed end and the accelerometer at the spring were
monitored on an oscilloscope during the sweeping process. The oscillo-
scope monitoring had two purposes. First, before each sampling the
system was allowed to reach a steady-state condition. Second, it al-
lowed determination of the natural frequencies of the system. After the
sweeping process was finished, the responses of the transducers at the

natural frequencies were sampled.

5.3.4 Analysis Procedure

The time series for the 65 discrete frequencies and the natural fre-
quencies were stored in a PDP 11/73 microcomputer. A fast Fourier
transform FFT of these series was performed to obtain the magnitude and
frequency. Before the FFT analysis, each time series was low pass
filtered. The filter, which is shown in Figure 5.10, had a cut-off

frequency of 80 Hz. This cut-off minimizes the noise introduced to the
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signals by the shaker components. The sampling parameters described in
the previous section determined that the resolution of the FFT was %0.12

Hz.

5.4 Experimental Uncertainty

The uncertainty of the experiments performed arises from three sources:
the transducers, the A/D conversion and the pipe and fluid characteris-
tics. Appendix B describes the characetristics of the data acquisition

equipment used.

Tables B.1 and B.2 of Appendix B list the characteristics provided by
the manufacturer for the two types of transducers used in the experi-
ments and the error in the conversion of the analog voltage to digital
format by the A/D converter. . Pressure transducers models 111A26 and
113A24 were used. Both models have a linear error of 2%. The linearity
of the error means the error is a constant 2% along the entire operating
range of the transducer. Thus, a reading of 50 psi (345 kPa) would have
an error of *1.0 psi (37.0 kPa). The resolution is a measure of the

ability to distinguish between nearly equal values of a quantity. It is
also referred to as "threshold", that is, the lowest level of valid

measurement.

The accelerometers used were manufacturer model 302A. The error is
based on the type of power unit that is connected to the transducer.

Double integrator units were used in all the experiments to obtain
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displacements. The error associated with this type of unit is 5%.
Another source of error of the accelerometers is the nonlinearity of the
response at frequencies less than 10 Hz. A calibration was necessary to
find the conversion from volts to millimeters in the range from 3.4 Hz

to 10 Hz. The procedure used is described in Appendix B.

The error due to the A/D conversion is controlled by the 11 bit resolu-
tion of the input data. Because the A/D board is configured for bipolar
inputs of *10.0 volts, the 11 bit resolution is equivalent to an error
of £ 9.7 millivolts. The base frequency for the programmable realtime
clock is 10 Mhz, thus the accuracy of the time measurement is #0.1

microseconds.

Thus, the maximun experimental error associated with the pressure read-
ings due to the propagation of both the transducer and conversion error
based on root mean square (rms) estimates for a 500 kPa reading is +12.0

kPa.

The sources of error that arise from the fluid and pipe properties come
from the measurement of these properties. The copper pipe was manufac-
tured by American Brass Company. The tolerances for the inside diameter
and wall thickness of the pipe were 0.4% (0.1 mm) and 3% (0.04 mm),
respectively. The fluid temperature was measured with an accuracy of
0.5 °C. The length of each pipe configuration was taken with a 100-foot
tape with 100 divisions per foot. The error associated with the total
Pipe length depends on the number of measurements taken. For example,

17 measurements were taken for configuration 10 and 9 for configuration
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1. Then, the error in pipe length measurement varies from *0.04 ft
(0.01 m) to #0.03 ft (0.01 m). A 12 foot tape with 16 divisions per

inch was used to measure pipe lengths iess than 10 feet. For example,
the legs of the U-bend were measured with this tape. The error in the
measurement is #0.06 inch (2 mm). Possible errors due to temperature

changes and sagging of the tape were not estimated.
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Chapter 6 Experimental Results and Comparisons

6.1 Introduction

The purpose of the experiments was to validate the analytical model
derived in Chapters 3 and 4 and gain further physical understanding of
the phenomena. Transient and harmonic tests were conducted to find the
natural frequencies of the system. Fluid pressure and pipe displacement
responses were monitored. Transient tests were used to calibrate the
apparatus and measure the natural frequency of the U-bend and natural
frequencies of the contained liquid. The transient tests were rapid
valve closure and snap-back of the piping. The U-bend was excited
harmonically by the crank mechanism that inputs a harmonic load to the

pipe, as discussed in Chapter 5.

The first part of this chapter gives the results of the transient tests.

The second part presents the experimental results of the harmonic test

and compares them with the computed results from the analytical model.

142
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6.2 Iransient Tests

Transient tests allow measurement of the natural frequencies of the
system. Snap-back of the U-bend and rapid valve closure were the
tests performed. The description of the tests and the results are

presented.

6.2.1 Snap-Back Test

This test was used to measure the first natural frequency of the U-bend
and calibrate the analytical model. The test consisted in displacing
the elbows of the U-bend 12.7 (0.5 inch) from the equilibrium posi-
tion and then releasing them. The calibration consisted of determining
the effective stiffness of the spring between the linear bearing struc-
ture and the U-bend. Tests were conducted on an empty U-bend and a
liquid-filled U-bend. The U-bend can be either free from or attached to
a spring. Table 6.1 shows the results of the experimental tests and the
computed results using either the transfer matrix method (TMM) or the
Bernoulli-Euler beam theory developed by Chang [83] as shown in Table
5.8. Figures 6.1 and 6.2 show the time responses and the FFT's of the
time series for the various U-bend conditions mentioned above. The
added masses from the accelerometers, aluminum collar and steel bars at
the elbows of the U-bend were included in the computed results for the
TMM. The stiffness of the spring was found to be 8 KN/m which is
greater than the stiffness provided by the manufacturer, as shown in

Table 5.4. The results, in Table 6.1, show that the natural frequency
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increases when the U-bend is attached to the spring. This result sug-
gests that the stiffness of the U-bend - spring system increases.
Including the mass of the liquid decreased the natural frequency of the

U-bend, as expected.

IABLE 6.1
EXPERTMENTAL AND COMPUTED U-BEND RESPONSE TO SNAP-BACK TEST
Free Spring
Condition Experimental TMM Chang [83] Experimental TMM
(Hz) (Hz) (Hz) (Hz) (Hz)
Empty 4.4 4.4 5.1 5.1 5.1
Liquid-Filled 3.9 3.9 4.1 4.4 4.4

6.2.2 Valve Closure Test

A rapid valve closure induces excitement of the liquid pressure. The
experimental procedures as well as the software and hardware used for
these tests are described by Budny [22]. These tests also allow
measurement of the liquid wave speed if the length of the pipe is known
as shown in Equation 5.11. An open-closed system results upon closure
of the valve and excites the odd harmonics of the liquid. The first
harmonic corresponds to the first or fundamental frequency of the liq-
uid. According to the state of the U-bend, three cases were studied for
configurations 4, 8, 9 and 10: fixed, free and with spring. The total
length of the pipe and relative location for each configuration are

given in Tables 5.4 and 5.5.
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6.2.2.1 Fixed U-Bend

A Unistrut was placed at each free elbow of the U-bend, locations B2 and
B3 in Figure 5.5. The time series for the pressure at the closed-end
for the four configurations are presented in Figure 6.3. The FFT's of
the time series are shown in Figure 6.4. The FFT's were normalized with
respect to the largest pressure or displacement response for all three
cases. The natural frequencies from the experiment were compared with
the frequencies computed by the TMM. A straight pipe of variable length
with a harmonic oscillation at the open end was used to compute the
natural frequencies of the system. The results, shown in Table 6.2
demonstrate the ability of the TMM to predict the natural frequencies of
an axially coupled system. The computed wave speed is within 0.5% of

the experimental.

IABLE 6.2
EXPERIMENTAL AND COMPUTED FREQUENCIES OF LIQUID FOR FIXED CONDITION
Configuration Wave Speed Harmonics
(m/s) (Hz)
First Third Fifcth
E C E C E c E c
4 1267 1260 3.9 4.0 12.0 11.8 19.8 19.6
8 1266 1260 3.4 3.4 10.0 10.0 16.6 16.5
9 1265 1260 2.9 2.9 8.5 8.7 14.4 14.3
10 1267 1260 2.2 2.2 6.6 6.5 11.0 10.8

E = Experimental C = Computed
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6.2.2.2 Free U-Bend

For this case, the U-bend is free to vibrate in the Y-Z plane, as shown
in Figure 5.5. The time series of the liquid pressure at the closed-

end, P,, and the U-bend elbow displacement, D,, were recorded; the

results are shown in Figure 6.5. The FFT’s of the time series are shown
in Figure 6.6. Table 6.3 shows the experimental and computed results
for the natural frequencies of the liquid and the experimental com-
pliance. Compliance [34] is defined as ratio of the elbow displacement

over pressure at the closed-end, D,/P,.

IABLE 6.3
EXPERTMENTAL AND COMPUTED FREQUENCIES OF LIQUID FOR FREE CONDITION

Fluid Harmonics

Configuration First Third Fifth
. E c E o] E o]
4 Frequency (Hz) 3.9 4.0 12.0 12.0 19.8 19.7
D,;/P, (mm/Pa) 69.4 1.8 0.4
8 Frequency (Hz) 3.2 3.4 10.0 10.1 16.4 16.7
D,/P; (mm/Pa) 2.8 3.0 0.4
9 Frequency (Hz) 2.9 2.9 8.5 8.8 14.4 14.5
D2/P1 (M/Pa) 1.1 3.1 1.2
10 Frequency (Hz) 2.2 2.2 6.6 6.6 11.0 10.8
D;/P, (mm/Pa) 0.1 8.6 0.3

E = Experimental
C = Computed
D, = Accelerometer response at U-bend elbow

P, = Pressure transducer response at closed end
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The computed frequencies show good agreement with the experimental
frequencies of the system. The following observations can be made
concerning the experimental compliance:

1) Configuration 4 shows the largest magnitude. The frequency of the
U-bend and the first natural frequency of the liquid nearly coincide.
The proximity of the frequencies results in a beat as shown in Figure
6.5a.

2) The magnitude of the compliance at the first fluid frequency
decreases as both the frequency of the fluid and the U-bend move apart
from each other.

3) The opposite occurs at the third liquid harmonic. Configuration 10
shows a larger compliance than configuration 4. This phenomenon takes
place because the third harmonic of configuration 10 (6.6 Hz) is closer
to the natural frequency of the U-bend than the other configurations.

4) The compliance at the third liquid harmonic is greater than that at
the first harmonic for configurations 8, 9 and 10. The third liquid
harmonic for configuration 10 constitute the dominant frequency of the
U-bend. The compliance is greater than the compliance at the natural

frequency of the U-bend as shown in Figure 6.6d.

The pipe line from the closed-end to B; and from B, to the open-end,

Figure 5.5, was treated as a straight pipe. Only the axial modes of
vibration for the pipe and the liquid modes were included in these
reaches. This simplification is based on the previous experimental

results of this research. The pressure response at the closed-end is
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affected by the status of the bend (as shown in Figure 6.5a for con-
figuration 4). The reponse of the U-bend is affected by the closing of
the valve. Only the liquid and U-bend frequencies were found to be of
significance in the results. This simplification also reduces the
numerical difficulties associated with the TMM as pointed out by Pestel

and Leckie [50] and as described in Chapter 4.

6.2.2.3 U-bend with Spring

The U-bend was attached to the spring, as described in Chapter 5, at

location D; in Figure 5.5. The experimental time series and FFT's are

shown in Figures 6.7 and 6.8, respectively. The experimental and com-
puted results are shown in Table 6.4. The same observations as for the
previous case can be made. In the present situation the frequency of
the U-bend is 0.5 Hz higher than the previous case, because of the
additional stiffness provided by the spring. This causes the third
fluid frequency for configuration 10 to be closer to the U-bend fre-

quency, thus, resulting in a larger ratio than in the previous case.

6.3 Harmonic Tests

The harmonic tests consisted of obtaining the liquid pressure and pipe
displacement responses of the liquid-filled pipe when a harmonic dis-

placement is induced at the U-bend. Two liquid pressure readings at the
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closed end and at the U-bend (locations Pl and P2 in Figure 5.5), and
two displacement readings at the spring and at U-bend elbow (locations

D, and D, in Figure 5.5) were collected at each frequency. The fre-

quency range of excitation varied from 3.4 Hz to 30 Hz. A preliminary
evaluation of the U-bend subjected to harmonic displacement {is

presented. Then, the response spectra and liquid mode shapes follow.

IABLE 6.5
EXPERTMENTAL AND COMPUTED FREQUENCIES OF LIQUID FOR SPRING CONDITION

. Fluid Harmonics

Configuration First Third Fifth
E c E c E (o]
4 Frequency (Hz) 3.9 4.0 12.0 12.0 19.8 19.7
D,/P, (mm/Pa) 10.1 2.2 0.4
8 Frequency (Hz) 3.4 3.4 10.0 10.1 16.6 16.7
D,/P;, (mm/Pa) 6.4 2.4 -0.5
9 Frequency (Hz) 2.9 2.9 8.6 8.8 14.4 14.5
D,/P; (mm/Pa) 0.6 3.4 1.3
10 Frequency (Hz) 2.2 2.2 6.4 6.6 10.7 10.8
D,/P;, (mm/Pa) 0.1 11.3 0.1

E = Experimental
C = Computed
D; = Accelerometer response at U-bend elbow

P, = Pressure transducer response at closed end
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6.3.1 U-Bend Response

Displacements at locations D, and D, were recorded to find the natural

frequencies of the U-bend. Two cases were considered, when the U-bend
is empty and when it is liquid-filled. Figure 6.9 shows the responses
at the spring and the elbow for the two cases. The added mass of the
liquid reduces the natural frequencies of the U-bend. Table 6.5 shows
the experimental and computed results at the natural frequencies. The
computed mode shapes for the liquid-filled U-bend are displayed in
Figures 6.10 and 6.11. Figure 6.10 shows the mode shapes of the U-bend
without the spring. Figure 6.11 shows the mode shapes with the spring.
The odd natural frequencies correspond to asymmetrical modes and the
even frequencies to symmetrical modes of vibration. The inclusion of
the spring affects the first and second modes of vibration. The other
mode shapes do not show any appreciable change. It can be noted that
the inclusion of the spring allows for larger displacements of the leg
where the spring is attached. The largest discrepancy between the
experimental and computed natural frequencies occurs at the second mode.
The computed frequencies for this mode are 0.9 Hz and 0.6 Hz lower than
the experimental when the U-bend is empty and liquid-filled respec-

tively.
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IABLE 6.5
NATURAL FREQUENCIES OF U-BEND TO HARMONIC EXCITATION

Natural Frequencies

(Hz)
Empty Liquid-Filled

Frequency Mode of Spring Free Spring Free
Number Vibration E c E* c E c E* c

1 Asymmetrical 5.1 5.1 4.4 4.4 4.4 4.4 3.9 3.9

2 Symmetrical 22.7 21.8 21.2 18.1 17.5 17.0

3 Asymmetrical 35.5 35.0 28.3 28.6 28.0

4 Symmetrical 44.4 41.4 34.3 32.1

5 Asymmetrical 73.3 73.1 58.9 58.8

6 Symmetrical 89.9 89. 72.9 72.9

* Results for the free case were obtained from the snap-back test, see
Table 6.1.

6.3.2 Spectral Response of Liquid-Filled Piping

Tables 6.9 and 6.11, at the end of this chapter, show the results at the
natural frequencies of the system. The largest experimental pressure
response occurred at the fifth and seventh harmonic of configurations 2
(28.3 Hz and 521 kPa) and 4 (27.8 Hz and 290 kPa). The large pressure
responses are associated with the third natural frequency of the U-bend.
This frequency, 28.3 Hz, corresponds to an asymmetrical mode, in which
the elbows show a small displacement, Figure 6.11. This small displace-
ment generates the large liquid pressure responses through the junction

coupling mechanism.
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6.3.3 Liquid Mode Shapes

The first pressure mode shape of the liquid in an open-closed pipe
corresponds to 1/4 of a sinusoidal wave [5,6,7]. The maximum response
occurs at the closed-end (s/2 = 0), where a pressure loop develops. A
pressure node, where the pressure is zero, develops at the open-end (s/4
= 1), where s is a coordinate along the pipe length 2. The other mode

shapes correspond to the odd multiples of the 1/4 sinusoidal wave.

The response of the pressure transducers P; and P, were used to obtain

the mode shapes for each natural frequency of the system. The distance
from these transducers to the closed end varies for each pipe configura-
tion. In this way, a point of the liquid mode shape was obtained for

each configuration. The relative location of P; and P, with respect to

the closed-end is given in Table 5.6. Tables 6.8 through 6.16 show the
experimental and computed results at the natural frequencies of the
system for configurations 1 through 9. The behavior of the mode shapes
of the liquid is different if the frequency of the harmonic excitation
is oscillating at a natural frequency of the liquid or the U-bend.
Thus, the liquid mode shapes will be studied at the liquid frequencies

and at the natural frequencies of the U-bend. The pressure ratio P,/P,;

will be used to compare the computed and experimental liquid mode

shapes.
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6.3.3.1 Liquid Mode Shapes at Liquid Natural Frequencies

Figure 6.12 shows the normalized pressure mode shapes at the natural
frequencies of the liquid. The mode shapes were normalized with respect
to the pressure at the closed end. The first through ninth odd har-
monics are shown in this figure; the solid line represents the computed
mode shape and the dots represent experimental points. The encircled
numbers correspond to the pipe configuration. They are placed at the
relative location of P2 with respect to the closed-end. Table 6.6 shows
the experimental and computed results depicted in Figure 6.12. Good
agreement between the experimental points and the computed mode shapes
is noted in this figure. The correlation coefficient [92] between
computed and experimental results is unity for all harmonics, except for
the first. The first liquid mode shape, which is associated with the
first harmonic, shows the largest discrepancies for configurations 1,
2, and 3. These configurations show that the first natural frequency of
the liquid is higher than the first natural frequency of the U-bend.
The minimal motion of the elbows of the U-bend at the liquid frequencies
causes a minimal response of the pressure, increasing the experimental
error. Pressure readings lower than 15 KPa are only four times greater
than the resolution of the A/D converter board, as mentioned in the

previous chapter.
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IABIE 6.6
LIQUID PRESSURE MODE SHAPES AT LIQUID NATURAL FREQUERCIES
Harmonic

Conf. * First Third Fifth Seventh Ninth
No. P2 E o] E (o E c E C E c
1 0.15 0.83 0.97 0.71 0.74

2 0.11 0.73 0.98 0.89 0.86 0.60 0.57

3 0.47 0.89 0.75 0.56 0.60 0.94 0.83

4 0.38 0.78 0.81 0.24 0.246 0.94 0.97 0.41 0.46

5 0.56 0.60 0.61 0.85 0.88 0.23 0.22 0.99 1.00

6 0.07 -- 1.00 -- 0.95 -- 0.86 0.71 0.74

7 0.63 0.51 0.5 0.92 0.98 -- 0.32 -- 0.75 0.87 0.84
8 0.48 0.69 0.72 0.60 0.63 -- 0.80 0.52 0.54 0.89 0.89
9 0.55 0.63 0.65 0.82 0.8 0.35 0.36 0.90 0.99 0.00 0.09
Correlation 0.77 1.00 1.00 1.00 1.00

E = Experimental C = Computed

* P2 is the relative location of the pressure transducer with respect to
the closed-end, see Table 5.6.

6.3.3.2 Liquid Mode Shapes at U-Bend Natural Frequencies

The experimental liquid mode shapes at the frequency of the U-bend were
obtained as in the previous section. The behavior of the liquid pres-
sure at the natural frequencies of the U-bend follows the same trend as
the behavior at the natural frequencies of the liquid. However, an
abrupt change of the mode shape at the location of the U-bend is
produced due to the motion of the elbows. Three of the natural fre-
quencies of the U-bend were excited by harmonic oscillation. The first
and third, which correspond to asymmetrical modes, as shown in Figure
6.10, allow motion of the elbows in the Y-Z plane. The second natural

frequency, which is a symmetrical mode, allows no motion at the elbows.
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This lack of motion at the elbows prohibits the development of junction
coupling. Therefore, the liquid pressure response is minimum at this
mode. Tables 6.8 through 6.16, at the end of this chapter, show the
experimental and computed results at the natural frequencies of the

system.

Figures 6.13 through 6.19 show the liquid mode shapes at the two asym-
metrical U-bend frequencies for configurations 1 through 9. 1In addition
to the features described in the previous section for Figure 6.12, the
location of the horizontal leg of the U-bend is shown for each con-

figuration (locations B, and Bg in Figure 5.5). The location is marked

by two parallel vertical lines. Figure 6.16 shows the liquid mode
shapes for configurations 4 and 5 and Figure 6.18 for configurations 7
and 8.

Table 6.7 shows the results depicted in Figures 6.13 through 6.19. The
experimental and computed results show good correlation at the first
natural frequency of the U-bend. The largest discrepancies at the third
U-bend frequency occur for configurations 4 and 9. The liquid is oscil-
lating between the ninth and eleventh harmonic for both configurations.

The pressure gradient at P, shown in Figures 6.16 and 6.19 are higher

than for any other configuration. Thus, any change of the frequency of
oscillation may cause considerable changes in the magnitude of the

pressures.
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TABLE 6.7
LIQUID PRESSURE MODE SHAPES AT U-BEND NATURAL FREQUENCIES

U-bend Frequency

(Hz)
4.4 28.3
Configuration  P2* First Third
Number E c E c

1 0.15 0.00 0.07 0.76 0.74
2 0.11 0.16 0.14 0.94 0.97
3 0.47 0.55 0.55 1.18 1.22
4 0.38 1.20 1.18 0.94 1.53
5 0.56 0.82 0.80 0.53 0.35
6 0.07 0.00 0.19 0.22 0.20
7 0.63 0.92 0.98 1.80 1.54
8 0.48 1.66 1.65 0.28 0.43
9 0.55 2.05 1.95 1.09 1.83

Correlation 1.00 0.82

E = Experimental C = Computed

* P2 is the relative location of the pressure transducer with respect to
the closed-end.
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IABLE 6.8
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 1
Displacement Pressure
(mm) (kPa)
Type Location Location Ratio Location Location Ratio
D1 D2 D2/D1 Pl P2 P2/P1
S1 13.6 33.2 2.4 49 0 0.0
2.8 0.07
F1 0.2 0.5 2.5 12 10 0.83
2.6 0.97
S2 3.8 0.7 0.2 0 0 --
0.5 0.03
F3 0.4 0.2 0.5 56 40 0.71
0.7 0.74
S3 6.0 1.3 0.2 59 45 0.76
0.2 0.74

E = experimental, C = computed, F = fluid, S = structural frequency
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TABLE 6.9
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 2
Displacement Pressure
(mm) (kPa)
Freq. Type Location Location Ratio Location Location Ratio
(Hz) D1 D2 D2/D1 Pl P2 P2/P1
4.4 E sl 11.8 30.2 2.1 49 8 0.16
4.4 C 2.8 0.14
5.6 E F1 0.3 1.8 6.0 11 8 0.73
5.7 C 2.8 0.98
17.1 E F3 1.2 0.1 0.1 18 16 0.89
17.1 ¢ 0.0 0.86
18.1 E S2 3.9 0.7 0.2 0 0 --

17.5 C 0.5 3.94
28.3 E F5 3.1 0.6 0.2 521 310 0.60
28.1 C 0.4 0.57
28.8 E S3 5.2 1.3 0.3 239 225 0.94
28.7 C 0.2 0.97

= experimental, C = computed, F = fluid, S = structural frequency
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IABLE 6.10
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 3
Displacement Pressure
(mm) (kPa)
Freq. . Type Location Location Ratio Location Location Ratio
(Hz) D1 D2 D2/D1 Pl P2 P2/P1
4.4 E Sl 13.4 39.2 2.9 214 117 0.55
4.4 C 2.8 0.55
5.1 E F1 0.5 2.1 4.4 16 14 0.89
4.9 C 2.7 0.75
14.6 E F3 0.5 0.1 0.3 52 29 0.56
14.7 2.2 0.60
18.1 E S2 12.5 2.5 0.2 7 0 0.00
17.5 ¢C 0.1 0.14
24.4 E FS 0.4 0.2 0.5 18 17 0.94
2.2 C 0.4 0.83
28.3 E S3 4.9 1.1 0.2 43 50 1.18
28.6 C 0.2 1.22
E = experimental, C = computed, F = fluid, S = structural frequency
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TABLE 6.11
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 4
Displacement Pressure
(mm) (kPa)

q. Type Location Location Ratio Location Location Ratio
) D1 D2 D2/D1 Pl P2 P2/P1
9 E F1 1.7 3.5 2.1 102 80 0.78
0 C 2.8 0.81
4 E sl 12.9 38.5 3.0 99 119 1.20
4 C 2.8 1.18
.0 E F3 0.4 0.1 0.3 41 10 0.24
.0 C 2.3 0.24
.1 E S2 9.3 2.0 0.2 0 7 --

5 C 0.5 18.53
.8 E F5 0.3 0.2 0.7 36 34 0.94
.7 C 0.8 0.97
8 E F9 1.7 0.3 0.2 290 118 0.41
4 C 0.2 0.46
.6 E S3 6.4 1.6 0.3 154 145 0.94
.6 C 0.2 1.53
= experimental, C = computed, F = fluid, § = structural frequency
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TABLE 6.12
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 5
Displacement Pressure
(mm) (kPa)
Freq. Type Location Location Ratio Location Location Ratio
(Hz) D1 D2 D2/D1 Pl P2 P2/P1
3.9 E F1 1.7 3.5 2.1 144 87 0.60
4.0 C 2.8 0.61
4.4 E Sl 13.8 40.5 2.9 160 131 0.82
4.4 C 2.8 0.80
12.0 E F3 0.3 0.1 0.3 26 22 0.85
12,0 C 2.3 0.88
18.1 E S2 12.6 2.5 0.2 10 0 0.00
17.5 C 0.1 0.08
19.8 E F5 0.2 0.2 1.0 39 9 0.23
19.7 C 0.8 0.22
27.6 E F9 1.9 0.4 0.2 231 228 0.99
27.5 C 0.2 1.00
28.3 E S3 5.4 1.3 0.2 188 100 0.53
28.6 C 0.2 0.35
E = experimental, C = computed, F = fluid, S = structural frequency
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TABLE 6.13
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 6
Displacement Pressure
(mm) (kPa)
q. Type Location Location Ratio Location Location Ratio
) D1 D2 D2/D1 Pl P2 P2/P1
4 E F1 1.1 0.9 0.8 0 0 - -
4 C 0.20
4 E sl 11.5 26.0 2.3 36 0 0.00
4 C 2.8 0.19
S E F3 0.3 0.2 0.7 6 0 0.00
8 C 2.4 0.95
.1 E F5 0.9 0.1 0.1 5 0 --
5 C 0.5 0.86
1 E S2 3.8 0.7 0.2 0 0 .-
5 C 0.5 0.03
2 E F7 0.4 0.2 0.5 56 40 0.71
3 C 0.7 0.74
6 E S3 6.0 1.3 0.2 59 45 0.76
6 C 0.2 0.74
= experimental, C = computed, F = fluid, S = structural frequency
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IABLE 6.14
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 7
Displacement Pressure
(mm) (kPa)

Freq. Type Location Location Ratio Location Location Ratio
(Hz) D1 D2 D2/D1 Pl P2 P2/P1
3.4 E F1 0.9 1.6 1.9 39 20 0.51
3.4 C 2.8 0.54
4.4 E sl 13.2 38.5 2.9 65 60 0.92
4.4 C 2.8 0.98
10.0 E F3 0.2 0.2 0.8 12 11 0.92
10.1 C 2.5 0.98
16.8 E F5 0.7 0.1 0.1 22 0 0.00
16.8 C 10.8 0.32
18.1 E S2 12.2 2.4 0.2 11 0 --
17.5 ¢ 0.1 0.20
22.7 E F7 0.2 0.1 0.5 7 0 0.01
23.4 C 0.5 0.75
28.1 E S3 2.9 0.6 0.2 30 54 1.80
28.5 C 0.2 1.54
30.0 E F9 1.2 0.4 0.3 263 228 0.87
29.9 C 1.3 0.84
E = experimental, C = computed, F = fluid, S = structural frequency
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IABIE 6.15
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 8
Displacement Pressure
(mm) (kPa)

Freq. Type Location Location Ratio Location Location Ratio
(Hz) D1 D2 D2/D1 Pl P2 P2/P1
3.4 E F1 1.1 2.0 1.8 39 27 0.69
3.4 C 2.8 0.72
4.4 E Sl 13.6 40.4 3.0 41 68 1.66
4.4 C 2.8 1.65
10.0 E F3 0.2 0.2 1.0 35 21 0.60
10.1 C 2.4 0.63
16.6 E FS 0.8 0.0 0.0 6 0 0.00
16.7 2.7 0.80
18.1 E s2 11.2 2.3 0.2 0 0 - -
17.5 C 0.5
23.7 E F7 0.3 0.2 0.5 87 45 0.52
23.2 C 0.7 0.54
28.3 E S3 5.0 1.2 0.2 56 16 0.30
28.6 C 0.2 0.40
30.3 E F9 0.9 0.2 0.3 29 26 0.89
29.9 C 0.1 0.89

E = experimental, C = computed, F = fluid, S = structural frequency
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TABLE 6.16
EXPERTMENTAL AND COMPUTED RESULTS FOR CONFIGURATION 9
Displacement Pressure
(mm) (kPa)

Freq. Type Location Location Ratio Location Location Ratio
(Hz) D1 D2 D2/D1 Pl P2 P2/P1
2.9 E F1 0.2 0.0 0.0 22 14 0.63
2.9 C 2.8 0.65
4.4 E S1 13.8 39.8 2.9 26 54 2.05
4.4 C 2.8 1.95
8.5 E F3 0.1 0.2 2.0 14 11 0.82
8.8 C 2.5 0.84
14.4 E F5 0.3 0.1 0.2 21 7 0.35
14.5 C 2.2 0.36
18.1 E S2 10.5 2.1 0.2 0 0 .-
17.5 C 0.5

20.3 E F7 0.1 0.2 2.0 37 33 0.90
20.2 C 1.0 0.99
26.1 E F9 0.6 0.1 0.2 99 0 0.00
25.8 C 0.2 0.09
28.3 E S3 4.5 1.0 0.2 36 39 1.09
28.6 C 0.2 1.83

E = experimental, C = computed, F = fluid, S = structural frequency
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a) Time response

1
2.0

T
1.5

Time (s)

b) FFT

jueweoo|ds|g eA[ID|OY

s

=
© -
o

epnyjidwy

w/@

———==——=-U-bend with spring

U—bend free

Figure 6.1 Experimental Results of Snap-Back Test, U-Bend Empty,
Frequency of Free Bend is 4.4 Hz
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a) Time response

b) FFT
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Figure 6.2 Experimental Results of Snap-Back Test, U-Bend Filled,
Frequency of Free Bend is 3.9 Hz
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Figure 6.9 Experimental U-Bend Displacements for Harmonic Excitation
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a) First natural frequency b) Second natural frequency
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Figure 6.10 Computed U-Bend Mode Shapes, Free Bend
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b) Second natural frequency
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d) Fourth natural frequency
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Figure 6.11 Computed U-Bend Mode Shapes, Bend Attached to Spring
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d) Seventh harmonic
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Figure 6.12 (Continuation)
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a) First U-bend frequency = 4.4 Hz
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Figure 6.13 Liquid Mode Shapes at U-Bend Natural Frequencies,

Configuration 1
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Configurations 4 and 5



Chapter 6

1.0

°
o

Pressure Amplitude
e e
N >

|
o o o
Y » o

Pressure Amplitude

|
o
(- ]

-100

Experimental Results and Comparisons

183
a) First U-bend frequency = 4.4 Hz

U-bend location

® Experimental

/

oo ' ©02 ' o4 = 08 = 08 1.0
Location (s/1)
b) Third U-bend frequency = 28.3 Hz
()]
| L I | | A ) v | § v T 1  § v  } v 1 4
0.0 0.2 0.4 0.6 0.8 1.0

Location (s/1)

Figure 6.17 Liquid Mode Shapes at U-Bend Natural Frequencies,

Configuration 6



Chapte

Pressure Amplitude

Pressure Amplitude

r 6

1.8

1.5

0.3

z.o

-1.0

| B U B Y U Y U Y Y e |

Experimental Results and Comparisons

184
a) First U-bend frequency = 4.4 Hz

o,

Experimental

e XX
td

U-bend location >
|0 D
L J v | J v L B L v L] v ) v L} v L J v | L v ] hd
0.0 0.2 0.4 0.6 0.8 1.0
Location (s/1)
] b) Third U-bend frequency = 28.3 Hz
1 @ v/
[ J
 § v T v 1 § v L v L | v | v ] v L J v | v ¥ v  § v
0.0 0.2 0.4 0.6 0.8 1.0
Location (s/t)
Configuration 7 ——~-——- Configuration 8

Figure 6.18 Liquid Mode Shapes at U-Bend Natural Frequencies,

Configurations 7 and 8



Chapter 6

2.0

1.5

1.0

Preasure Amplitude

o.o

3.0

2.0

1.0

Pressure Amplitude
o

Experimental Results and Comparisons

185
a) First U-bend frequency = 4.4 Hz

: /.
. Experimental
ﬁ
{ u-bend location — ™ p
 J L B ) | v L} R | v ] L J v ] 14 ] v
0.0 0.2 0.4 0.6 0.8 1.0
Location (s/1)
b) Third U-bend frequency = 28.3 Hz

L.a b o 2 o 8 o 8 o % o b o b o b o b ot ot

T

4 J v T v L] v L

0.4 " 0.6 0.8 1.0

Location (s/1)

Figure 6.19 Liquid Mode Shapes at U-Bend Natural Frequencies,

Configuration 9



Chapter 7 Summary and Conclusions

The primary objective of this study was to incorporate the flexural and
torsional modes of vibration of liquid-filled pipe systems to an exist-
ing axially coupled model. The motion of the pipe wall and the
contained liquid was represented by using a one-dimensional approxima-
tion. This approximation has been proved valid for the first lobar mode
of the pipe cross section. A system of fourteen equations and fourteen
dependent variables described the motion of the piping. Five families
of waves that propagate in the pipe wall and in the liquid were iden-
tified. The analytical model incorporated the Poisson and junction
coupling mechanisms and included the effect of shear deformation and
rotary inertia of the lateral motion of the pipe. The inclusion of
these mechanisms represents appropriately the motion of the systems and

constitutes an improvement over the previous model by Wilkinson [64].

The transfer matrix method was the numerical model used for the analysis
of these systems. The method can predict the pipe wall displacements
and forces as well as the pressure and displacement of the li:quid. The

model provides an alternative to other numerical and analytical methods.
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In addition,the Poisson and junction coupling were properly treated.
The methodology to incorporate pipe constraints, such as rigid supports,
springs, and inertia and external forces, was presented. The inclusion
of hydraulic devices, such as orifices and pumps, may be easily ac-

complished by the use of point matrices.

The field transfer matrices for the flexural modes, developed by Pestel
and Leckie [50], were modified to include the mass of the contained
liquid. The field transfer matrix for the liquid-axial pipe wall was
derived based on the model developed by Wiggert et al. [20]. Four
submatrices were identified. The magnitude of the terms of this matrix
in the analysis of liquid-filled pipes depends on the frequency at which
the system oscillates. The compliance terms may be neglected for high
frequency analysis. However, the main diagonal terms of each submatrix

are important for low frequency studies.

The results from the transfer matrix method (TMM) were compared with
numerical methods such as the method of characteristics (MOC) and the
component synthesis method (CSM). The TMM exhibited advantages over the
other two methods. The TMM is a one-step computation, whereas the CSM
requires two steps for the analysis. In contrast to the MOC, the TMM
does not require interpolations for the analysis of systems subjected to
harmonic oscillations. Experimental data, available in the literature

were also used to provide validation of the transfer matrix method.

An experimental apparatus was designed and built to validate the numeri-

cal method. A one-inch, water-filled, copper pipe with a U-type bend
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was excited with either a transient or harmonic loading to study the
response of the system. The experimental tests were conducted on a
liquid-filled pipe system with closed-open conditions for the liquid and
fixed-fixed conditions for the U-bend. The natural frequencies of the
liquid were varied by changing the length of the pipe. The harmonic
excitation was applied to a U-bend that was allowed to vibrate in one
plane. Numerical analysis results were compared to experimental
results. The following conclusions were drawn from the experimental

tests:

1) The snap-back transient test was used to calibrate the numerical
model. The addition of the spring increased the stiffness of the U-
bend. This additional stiffness increased the natural frequencies of the
bend. Computed results showed that the spring increased by 0.5 Hz the

natural frequencies of the U-bend.

2) The other transient test used was rapid valve closure. The closure
of the valve excited the liquid odd harmonics, but only the first fre-
quency of the U-bend. The time response of the liquid pressure and the
displacement of the U-bend were presented. A fast Fourier transform
analysis of the time series was performed to obtain the natural fre-
quencies of the system. Good agreement between the experimental liquid
harmonics and the corresponding computed results was obtained. The
computed frequencies were obtained by assuming no shear or bending for
the pipe legs between the valve and U-bend. The same assumption was

made for the pipe legs and between the U-bend and the reservoir. Only

the axial pipe wall and liquid modes were considered in these pipe
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reaches. This test was also used to measure and compare the liquid wave
speeds. The experimental results were compared with the wave speed
obtained by Budny ([22]. The computed results showed that the wave

speeds were within 0.5% of the experimental values.

3) The harmonic test was used to excite the U-bend, thereby, exciting
the liquid. Three U-bend frequencies and nine harmonics of the liquid
were excited. Spectral analysis showed that large pressure responses
occured at frequencies near the asymmetrical modes of the U-bend. These
modes allowed motion of the elbows which generated the junction cou-
Pling mechanism. This coupling mechanism was the primary factor to
magnify the pressure. The second mode of the U-bend, which corresponds
to a symmetrical mode, did not excite the liquid pressure. The computed
results predicted the natural frequencies of the system. The magnitude
of the pressure response was increased when a liquid frequency was near

one of the asymmetrical modes of the U-bend.

4) Variations of the pipe length changed the relative location of the
U-bend and transducers with respect to the closed-end. A total of nine
pipe configurations were studied. This allowed measurement of the
liquid pressure mode shapes at discrete points for each pipe configura-
tion. Computed mode shapes showed good correlation with the
experimental points. The pressure mode shapes at the natural fre-

quencies of the liquid corresponded to the odd harmonics of a 1/4 sine
. wave. The mode shapes at the U-bend frequencies show an abrupt change
at the horizontal leg of the U-bend. The results showed that at these

frequencies the magnitude of the pressure at the bend can increase as
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much as 100% from the pressure at the closed end. The magnitudes of the

pressure responses at the fluid frequencies are larger than those at the

U-bend frequencies.

In summary, the tranfer matrix method is appropriate to predict the
natural frequencies of liquid-filled pipes. Poisson and junction cou-
pling are modeled with the use of this method. The experimental results
showed that the larger pressure responses occured at higher harmonics
and that the responses were magnified when the liquid frequency was near
one of the asymmetrical modes of the U-bend. These modes allow motion
at the elbows generating the junction coupling. This mechanism
amplifies the pressure response of the system. Nat:ur'al frequencies of
complicated piping systems can be estimated by including the flexural,
liquid and axial modes at locations where these modes may affect the
response of the system. Other reaches can be analyzed by including the

appropriate modes, for example only liquid or both liquid and axial.

The model used in this study allowed motion in only one plane. It did
not include fluid friction or structural damping. The extension to a
three dimensional space can be accomplished by incorporating the torsion
mode as well as the flexural mode of the out of plane motion.
Experiments are necessary to estimate the influence of these modes on
the responses of the system. The incorporation of energy dissipation
into the model is necessary to estimate the magnitude of the responses

to an excitation.
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APPENDIX A

A.1 Introductjon

The field transfer matrix [Tfp] shown in Equation 4.20 will be analyzed

for two cases. First, Poisson’s ratio is set to zero, thereby decou-
pling the axial pipe wall and liquid vibration. The results are then
compared with those of other authors. Second, Poisson’s ratio is taken
nonzero; in this case the analysis will focus on the orders of mag-

nitude of the matrix terms when the frequency of oscillation varies.

The analysis is facilitated by arranging the matrix in Equation 4.20

into four submatrices. The arrangement yields:

- -

0C1-Co  -Cit(otn)Cs | PRrc, 2R1C, - (a+r41)Cs ]
o(Cy-0C3) aCz-Cy = h orCgy - ﬁhac,

(Te 1= | 1 2
fp 2voC, 2v[(a+r+1)C3-Cl]| (r+y)C,-Cy f[(r+1)C1-[(f+'y) +01]C3]
2vorCg -2vrC, =r[(r+1)c,-c,] (r+y)C2-Cy

(A.1)
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The state vector associated with the above matrix is

T
U F
Z _—z Y
z -{2 RE 1 g } (A.2)

The matrix in Equation A.l1 can also be written as

|

T, ]= A.3

[ fp] a (A.3)

fp

Notice that the coupled submatrices 'I:.g and 'Ig; contain the factors ﬁh
b-

and 2v, respectively. Also, the main diagonal terms of the four su

matrices are functions of the cosine of the eigen values ), and 1,,

whereas the other nondiagonal terms depend on the sine function of the

same eigen values. The expressions for these coefficients are given in

Equations 4.21g through 4.20j.

A.2 Uncoupled Analysis

Setting Poisson’s ratio to zero results in uncoupling the axial pipe
wall and liquid variables. The transfer matrix becomes separated into

two sub-matrices. The liquid matrix is

{ P } [cos(wl/af) -jsin(w!/af)] { P }
- (A.4)
pfaf\'l { -jsin(wl/af) cos(wl/af) 1 pfaf"l £-1
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where V represents the liquid velocity amplitude. This result agrees
with that of Wilkinson [64], Chaudhry [7] and Wylie and Streeter [6].

The axial pipe wall matrix is

o cos(wl/a_) jsin(wl/a_ ) o
5 3 ety gt AR A
pfap 211 jsin(wl/ap) cos(wl/ap) { pfap zli-1

where ﬁz represents the axial pipe wall velocity amplitude and o, is the

axial stress. This matrix agrees with the matrix presented by Wilkinson

[64].

A.3 Coupled Analysis

The importance of the coupling terms of the transfer matrix can be
studied by using an order of magnitude analysis. An inspection of the
matrix terms in Equation A.l1 shows that the coefficients and the eigen
value parameters o, r and vy are function of the frequency in addition to
the liquid and pipe material properties. The terms v, b and h depend on
the liquid and pipe material properties. The radius to thickness ratio,
b, and the frequency of oscillation, w, are the parameters varied. The
Young’s modulus to modified bulk modulus ratio, h, and Poisson’s ratio,
v, also affect the order of magnitude of the matrix terms, but they will
be kept constant in this analysis. For comparison, a discussion based

on numerical evaluations will be presented for pipes of five different
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3
materials. The liquid is water with K = 2.2 GPa and pe = 1000 kg/m . A

similar analysis was performed by Otwell [19] and Stuckenbruck [21].

The physical properties used for the pipe material are shown in Table

A.l [21].
IABLE A.1
PIPE MATERTAL PROPERTIES
Material Young’s Modulus Density Poisson’s Ratio
3
GPa kg/m
Steel 210.0 7600 0.27
Cast Iron 80.0 7600 0.25
Copper 115.0 8800 0.34
Aluminum 70.0 2700 0.33
Polyethylene - 0.8 1000 0.46

The influence of the pipe cross-section geometry ratio, b, can be

facilitated by defining the ratio of coupled wave speeds as

c
c=2 (A.6)
f
This ratio can also be defined as the eigen value ratio
Ay
c =3 (A.7)

The relations between the coupled wave speed and eigen value for the

liquid and axial pipe wall are defined in Equations 3.22 and 3.23. The
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variation of c with respect to the pipe cross section ratio is shown in
Figure A.la for values of b between 10 and 160. Figures A.lb and A.lc
show the coupled wave speeds for both the liquid and pipe in the axial
direction for each of the five pipe materials studied and for the same
pipe cross section range. The wave speed ratio ranges within one order
of magnitude for values of b less than 160 (Figure A.la), except for the
polyethylene pipe. For example, for the copper pipe the variation of c
is 4 (between 3 and 7), whereas for the polyethylene it is 17 (between 5
and 22). The variation of the wave speed ratio is due to a faster
decrease of the liquid speed over the axial speed as b increases (Figure
A.1b and A.1lc). Therefore, the radius to thickness ratio does not
introduce appreciable changes in the order of magnitude of the terms in

the transfer matrix.

The variation of the matrix terms with respect to the frequency of
oscillation, w, is analyzed for a copper pipe with b = 10 and liquid

natural frequency of 4 Hz. Table A.2 shows the value of the coeffi-
cients as the frequency increases. The characteristic parameters o, 7
and vy are also shown.\‘\_'!'he upperrlimiét frequency is given by the first

_
lobar mode of the pipe cross section, w,. As shown by Everstine et al.

(86], a one-dimensional analysis is not valid for frequencies greater

than wg- The frequency expression for the first lobar mode is given in

Equation 3.7. This equation may also be written as
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a 3 b
_3%
W9 =T | sb (1-v")(1+b/2d) ] (a.8)

For example, for the copper pipe of Table A.1l with r = 0.1 m and b = 10
the first lobar mode frequency w, is 2380 rad/s or 380 Hz.

IABIE A.2
TRANSFER MATRIX PARAMETERS
Coefficient Equation Amplitude Value Value at
W - wo
Co 4.20g +(14c ) /(e -1) 1.25 1.3
c, 4.20h +(l+e ) /2y (e -1) 3.50/2, 0.0
Cs 4.201 +2¢” /At (e 1) 2.25/A; 0.0
Cs 4.20§ tc(l+c) /A (e -1) 1.50/A7 0.0
. 4.20a cghi/al 0.962; 9075
o 4.20b c;A:/ag 1.0675 27220
. 4.20c 20°b/d c;A:/ag 0.272s 7070

The results given in Table A.2 show that the trigonometric coefficients
depend on 1//\? where n = 0,1,2 or 3 as w increases, whereas the eigen-

value parameters depend on the square of the eigenvalues. The
coefficients are shown in Figure A.2a for the copper water-filled pipe
when ¢ is 2.8. Figure A.2b shows the eigen values for the same piping
system. The sixteen terms of the transfer matrix are plotted in Figures
A.3 through A.6 for varying ratios of oscillation to the liquid natural
frequency. Figure A.3 shows the terms for the axial pipe wall sub-

matrix. The coupling submatrices are shown in Figures A.4 and A.5.
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Finally, the liquid submatrix is shown in Figure A.6. The following

observations can be made

1) The main diagonal terms of the liquid and pipe wall submatrices
fluctuate between -1 and 1.
2) At low frequencies, the main diagonal terms of the matrix, which

depend on C, start at a value of 1. The other terms are one order of

magnitude lower than the main diagonal terms. This result is also shown
in Figure A.2a.

3) At high frequencies, the amplitude of the matrix terms (2,1), (2,3),
(4,1) and (4,3) increase as the frequency increases. These terms are
associated with the apparent stiffness ratio, force or pressure over
displacement. The amplitude of the terms (1,2), (1,4), (3,2) and (3,4)
decrease as the frequency increases. These terms are associated with

the compliance ratio, displacement over force or pressure.

The above observations and the results in Figures A.3 through A.6 show
that the compliance terms may be neglected for high frequency analysis.
The main diagonal terms can be use for frequencies less than the first
liquid frequency and the other terms may be neglected at low fre-

quencies.
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Figure A.1 Liquid and Axial Pipe Wall Wave Speeds Versus
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APPENDIX B

B.1 Introduction

To obtain the required information on harmonic behavior, the dependent
variables of liquid pressure and structural displacement must be re-
corded as a function of time. This was accomplished by using PCB
pressure and acceleration transducers interfaced with either a Digital

PDP-11/73 computer, or a Tektronix D13 dual beam storage oscilloscope.

B.2 System Compoments

The analog output signals of the transducers, which are directed to the
computer, are converted to a digital format by an analog/digital board,
with the sampling rate controlled by a programmable clock board. The
software required to perform this conversion and data storage is
described below in the Data Acquisition Software section. A schematic
of the components of the data acquisition system is shown in Figure 5.7.

Each component is described below.
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B.2.1 Piezoelectric Pressure Transducers

The principle of a piezoelectric transducer is that a charge is produced
across the piezoelectric crystal, which is proportional to the applied
pressure. Since this type of transducer is designed to measure dynamic
and short term static pressure measurements, all pressure readings taken
are dynamic pressure variations about a steady state static pressure.

For this study PCB Piezotronics Models 111A26 and 113A24 Dynamic
Pressure transducers with built-in unity gain voltage amplifiers were
used to measure the liquid pressure within the pipeline at the harmonic
and fast acting valve. These units were selected because of their high
resonant frequency, acceleration compensated quartz element, and the
fact that the signal quality is nearly independent of cable length and
motion. Table B.1l lists the published properties and the calibration
properties as determined by the manufacturer. The calibration procedure

was in compliance with MIL-STD-45662.

IABLE B.1
PROPERTIES OF PRESSURE TRANSDUCERS

Property Units Value
PCB Serial No.

111A26 113424

Range (5 volts output) psi 500.0 1000.0
MPa 3.447 6.894
Resolution (min. value) psi 0.1 0.01
Pa 689.4 69.9
Sensitivity (output) mV/psi 9.71 5.23
mV/kPa 1.41 0.76
Resonant Frequency KHz 400.0 425.0
A/D Error @ Gain of 1 psi 0.97 0.97
kPa 6.73 6.73

Linearity (error) $bsl 2.0 2.0
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Connected to each pressure transducer is a PCB Battery Power Unit. The
units are PCB Model 480D06 with 1,10, and 100 range signal amplifiers.
The function of each battery power unit is to power the transducer
electronics, amplify the signal, remove bias from the output signal and
indicate normal or faulty system operation. It is a combination power

supply and signal amplifier.

The transducers were mounted by tapping a brass block as per PCB
specifications. The block was designed so that the end of the
transducer would be flush mounted with the inside diameter of the
pipeline. Since the end of the transducer is flat an& the block was
tapped with a circular hole, the mounting is not flush mounted. There

is a small deviation due to the curvature of the hole.

B.2.2 Quartz Accelerometers

The principle of a quartz crystal accelerometer is that a charge is
produced across the crystal in proportion to the applied acceleration.
For this study PCB Piezotronics Model 302A Low Impedance Voltage Mode
quartz accelerometers were used to monitor the desired motion. These
units were selected because of their ability to measure the acceleration
aspect of shock and vibration motion from 1g to 500g, over a wide fre-
quency range. They also offer exceptionally sensitive low frequency
response, can follow long duration shock events, and have built-in
amplifiers. These types of accelerometers are not linear for fre-

quencies less than 10 Hz. A calibration curve was obtained for each
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accelerometer to find the conversion from volts to millimeters. These
curves are -shown in Figure B.1l. A direct displacement measurement
technique was used. The accelerometers were attached to the shaker
mechanism shown in Figure 5.3 in place of the spring. The circular
frequency of the motor was increased and the displacement output from
the accelerometers was compared with observed readings from a displace-
ment meter for the same frequency. The range of the displacement meter
was one inch, with 1000 divisions per inch. Table B.2 lists the pub-
lished and calibration properties of the transducers as determined by
the manufacturer. The calibration procedure was in compliance with MIL-

STD-45662.

The accelerometers were installed by clamping the base of the transducer
to the test object with an elastic beryllium-copper threaded stud. To
accomplish this, a mounting collar was designed and used to install the
transducer at any point along the pipeline. The collar is made of a 63
mm square, 19 mm thick aluminum block. The block is tapped to accept
the mounting stud, and a hole is drilled through the center of the block
to match the OD of the one inch nominal copper pipe. The block is then
cut through the center of the hole and bolt holes are drilled through
both sections. Bolts are then used to hold the two pieces together
enabling the block to act as a vise squeezing the pipe around its entire

circumference.
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IABLE B.2
PROPERTIES OF ACCELEROMETER TRANSDUCERS

Property Units Value
302A Serial No.

=111 3712 3713

Range FS (5 volt output) 4 500.0 500.0 500.0
Resolution g 0.01 0.01 0.01
Sensitivity mv/g 10.04 10.03 10.04
mv/ft/s 0.831 0.832 0.831
mv/m/s 0.253 0.253 0.253
* mv/mm 322.5 322.5 322.5
Resonant Frequency kHz 45.0 45.0 45.0
Frequency Range (+5%) Hz 1 - 5000
A/D Conversion Error g 0.976 0.976 0.976
Linearity $FS 1.0 1.0 1.0
Integration Error $ 5.0 5.0 5.0

* For frequencies below 10 Hz, the conversion factors for
displacement are obtained from Figure B.1l

Connected to each transducer is a PCB Dual Integrating Power Unit Model
480A10. The function of this unit is to supply constant current excita-
tion to power ICP sensors over signal lead, eliminate DC bias voltage on
output signal by capacitive decoupling, monitor bias voltage on sensor
lead for normal or faulty operation by meter indication, and provide
either acceleration or velocity output signals. In addition to the

above features, it also pfovides a displacement output signal.

B.2.3 Computer Hardware and Accessories

The computer used for the data collection was a Digital Equipment

Corporation DEC PDP-11/73. The installed operating system was RSX-11M-

PLUS version 3.0. In addition to the standard equipment present within
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a PDP-11/73 system, an analog-to-digital converter and a programmable
real-time clock board were installed to facilitate data acquisition. To
direct the input and output signals to their appropriate locations, a
patch panel was constructed and mounted on the face of the computer

cabinet.

B.2.3.1 Analog-to-Digital Converter

The AXV11-C is an LSI-1ll analog input/output printed circuit board. The
board accepts up to sixteen single-ended inputs, or up to eight dif-
ferential inputs, either unipolar or bipolar. A unipolar input can
range from 0 volts to +10 volts DC. The bipolar input range is *10
volts DC. The analog-to-digital (A/D) output resolution is 12 bit
unipolar, or 11 bit bipolar plus sign, with output data notation in
octal coding of binary, offset binary, or 2's complement. The A/D
converter performance has a system throughput of 25K channel samples per
second, with a system accuracy input voltage to digitized value of plus
or minus 0.03% full scale. The board also has two separate
digital-to-analog converters (DAC). Each DAC has a write-only register
that provides 12-bit input data resolution, with an accuracy of plus or

minus 0.02% full scale.

By setting the required jumpers on the board, the AXV11-C was configured
for bipolar differential inputs with the external trigger set to the I/0
connector. The I/0O connector was then hardwired to the KWV11l-C program-

mable real-time clock overflow.
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B.2.3.2 Programmable Real-Time Clock

The KWV11l-C is a sixteen bit resolution programmable real-time clock
pPrinted circuit board. It can be programmed to count from one to five
crystal-controlled frequencies, from an external input frequency or
event, or from the 50/60 Hz line frequency on the LSI-11 bus. The five
internal crystal frequencies are 1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100
Hz. The base frequency for the clock is 10 MHz, thus the accuracy of

the time measurement is * 0.1 microseconds.

The clock also has a counter that can be programmed to operate in either
a single interval, repeated interval, external event timing, or external
event timing from zero base mode. In addition to its clock functions,
the KWV11l-C also has two Schmitt triggers. The triggers can be set to
operate at any level between % 12 volts DC on either a positive or

negative slope of the external input signal. In response to external
events, the Schmitt trigger can start the clock, start A/D conversions

in an A/D input board, or generate program interrupts to the processor.

B.2.3.3 Patch Panel

To facilitate use of these data acquisition computer boards, a patch
panel was installed on the front of the computer cabinet. It has BNC
connectors installed which allow access to the eight differential A/D
inputs, the two D/A outputs, and both Schmitt triggers. Switches and

potentiometers for each Schmitt trigger were also installed to allow
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external control of both the slope and triggering level. 1In addition,
the panel also contains a three volt DC power supply with a connection

to the KWV1l-C board.

B.2.4 Data Acquisition Software

Digital’s K-Series Peripheral Support Routines were used for data ac-
quisition. These machine language routines perform input and output
operations through the Connect to Interrupt Vector Executive directive.
The routines are highly modular, that is they are designed to perform
specific operations. Thus, to complete the sampling, a user program is

required to call each routine as various functions are to be performed.

A Fortran computer program was developed to facilitate the data acquisi-
tion process. The program accessed the routines for computing and
setting the clock rate, setting the A/D channel sampling information,
creating and maintaining buffers to store the sampled data, and starting
and stopping the sampling. The program was divided into two parts. The
first part of the preprocessor is an interactive program. This program
allows the user to select the sampling rate, number of channels to be
sampled, number of samples per channel, the data acquisition device
connected to each channel, and the range of frequencies to be sampled.
The second part is the actual sampling routine. This program is
designed so that the sampling process is started upon indication of the
user. After the sampling process is finished the program requests the

user to change the frequency of the motor. At this time the program
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allows 30 seconds for the system to reach steady-state conditions. This
process continues until all the frequencies of the frequency range have

been sampled.

The experimental procedure as well as the hardware and sofware com-

ponents for rapid valve closure are described by Budny [22].
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Figure B.1 Displacement Calibration Curve for PCB Accelerometers
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