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ABSTRACT

NODAL ANALYSIS OF VIBRATIONS

IN

LIQUID-FILLED PIPING SYSTEMS

BY

Marlio William Lesmez

The vibration of liquid-filled piping systems is formulated using one-

dimensional wave theory in both the liquid reaches and the pipe wall.

Five families of waves and fourteen variables are considered and the

effects of shear defamation and rotary inertia on the lateral vibration

of the pipe reaches are included. A numerical model is described which

includes both Poisson and junction coupling, thereby providing com-

prehensive interaction between the fluid reaches and the piping.

The transfer matrix method is used to study the motion of these systems.

The motion is represented by an overall transfer matrix. This matrix is

assembled by combining field transfer matrices representing the motion

of single pipe reaches with point matrices describing specified boundary

conditions .



A one-inch (25 mm) diameter variable length piping system with a U-type

'bend is used.to obtain.the experimental data. Various fluid and struc-

tural frequencies are excited by using a crank mechanism which vibrates

the piping. Fluid pressure and pipe displacement responses for various

forcing frequencies are obtained and compared with analytical results.

Larger fluid pressure responses occur at higher harmonics than at the

first fundamental frequency. Mode shapes for the liquid pressure and

pipe motion are also presented. Good agreement of natural frequencies

is found between predictions and observations.
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Chapter 1 Objective and Scope

1.1 1113251393192

Vibrations that occur in liquid-filled piping systems are of interest in

a variety of industrial, water supply, hydraulic, nuclear power,

aircraft and automotive applications. The dynamic behavior of these

systems includes both transient and steady-state vibrations caused by

rapid valve closures and unbalanced rotating machinery. This dynamic

behavior has usually been modeled by uncoupled analyses. The analyses

of liquid columns contained in pipes are based in part on the assump-

tions that the piping system is sufficiently rigid to remain immobile

and that it does not interact dynamically with either fluid oscillations

or external loads. Possible sources of the external loads are machine

vibrations and seismic motion. Analytical developments for free vibra-

tions and resonance of liquid columns are presented by Jaeger [5] , Wylie

and Streeter [6] and Chaudhry [7]. On the other hand, well-known modal

analysis techniques, such as those described by Clough and Penzien [52],

can be used to analyze vibrations of piping structures if the motion of

the contained liquid is neglected.
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Recently, coupling analyses have been called to the attention of re-

searchers. Experimental results in laboratories [19,24,25,64] have

clearly shown that under certain conditions, vibrations of liquid

columns and piping structural elements interact and respond differently

than if the two components are treated independently. The interaction

can be attributed in part to two coupling mechanisms, Poisson and junc-

tion coupling. Poisson coupling takes place along a pipe length. Axial

strain of the pipe is induced by circumferential strain caused by a

change in the fluid pressure. Junction coupling occurs at locations

where the flow area and/or flow direction changes. At junctions, varia-

tions in fluid pressure create force resultants. It is necessary for

these pressure forces to be balanced by axial forces in the pipe wall.

The axial forces generate subsequent pipe motion that may excite

flexural and torsional modes of vibration of the pipe.

Poisson and junction coupling generate forces and displacements in the

fluid and in the pipe wall that are transmitted and reflected back and

forth along the length of the pipe. Wilkinson [64] identified five

families of waves: tension, torsion, and two families of transverse

bending waves in the pipe wall and pressure waves. in the liquid. A

three-legged liquid-filled pipe in a three-dimensional space shown in

Figure 1.1 is used to describe the transmission process of these waves.

The pipes connect two reservoirs. A valve, location D, is located at

the downstream reservoir where water is flowing at velocity V0.

Junctions B and C are unrestrained allowing displacements and rotations.

The pipe is rigidly supported at the ends. An instantaneous valve
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closure creates the system excitation. The following events take place

as the valve begins to close. A pressure wave is generated and

propagates in the fluid while an axial wave is transmitted along the

pipe wall in leg 3, that is, Poisson coupling occurs. For most commer-

cial pipe material, the axial wave (precursor wave) travels faster than

the fluid pressure wave [21]. The precursor wave produces a displace-

ment at junction C in the positive X direction. This motion, which is

generated by Poisson coupling, induces a change in the fluid velocity

and creates an unbalanced axial force at this location. The change in

fluid velocity produces an increase in the fluid pressure that is trans-

mitted towards the valve and location B. The unbalanced axial force is

transmitted as a shear force and bending moment along leg 2. The motion

at junction C is maximum when the fluid pressure wave from the valve

reaches this point. Junction coupling is present at this point due to

the unbalanced axial force produced by the change in pressure.

Moreover, the motion at junction C and moment in leg 2 produce a rota-

tion at junction B about the Y-axis. This generates a torsional moment

that is transmitted along leg 1. The boundary conditions at D reflect

the five waves described above.

The study of liquid-filled pipes becomes more complicated when several

factors are taken into account. The five families of waves, tees and

bends, supports of various stiffnesses, structural restraints and

hydraulic devices such as pumps, orifices and valves must be con-

sidered. The speed of the wave components depends on the pipe material

and fluid properties. The frequencies at which the liquid and pipe are
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vibrating are influenced by the structural support configurations of the

pipe and the hydraulic elements of the system.

The frequencies of the system may also be affected by the interaction

between the fluid and the structure due to Poisson and junction cou-

pling. Some incidents of hydraulic resonance at various pumped storage

sites and power plants are presented by Jaeger [5] , Wylie and Streeter

[6] and Chaudrhy [7]. Jaeger [41] also reported several of these inci-

dents and points out the importance and danger of vibrations from higher

fluid harmonics. These harmonics may be excited by the motion of struc-

tural components of the system.

The analysis and design of piping systems can be performed ineither the

time or the frequency domain. The method of characteristics has been

used to model the propagation of acoustic waves in liquids [5,6,7],

beams as described by the Timoshenko's theory [89] and in fluid-

structure interaction systems [l7,l9,20,21,22]. Unfortunately,

numerical limitations have thwarted the evolution of a generalized

solution methodology. In the frequency domain the transfer matrix

method has been used to model distributed parameter systems [50] .

Wilkinson [64] and Wiggert, Lesmez and Hatfield [65] use this method to

model liquid-filled piping systems. Wilkinson's model uses the

Bernoulli-Euler'beam theory to describe the piping flexure, but does not

include Poisson's coupling. His model then, does not account for the

axial liquid pipe wall coupling.
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The transfer matrix method is appropriate to model piping systems be-

cause it directly relates the force and displacement variables in the

pipe wall and in the fluid at one end of the system to the corresponding

variables at the other end. As a designing model, the method may be

used to compute the natural frequencies, mode shapes and frequency

responses of the system including the structural supports and hydraulic

devices. It can also be used to compute the response of the system for

free or forced vibration analysis. The variables are related by using a

global transfer matrix. Elastic liquid-filled pipe reaches can be

analyzed with an appropriate transfer matrix. Point matrices describe

joints, such as tees, bends, point masses, and hydraulic elements.

1.2 Quartile

The objective of the present research is to incorporate the flexural and

torsional modes of vibration in an existing coupled liquid-axial pipe

wall model. The proposed model accounts for Poisson and junction cou-

pling and allows the inclusion of structural and hydraulic devices. The

model represents an improvement over the previous model by Wilkinson

[64] . In addition, an experimental apparatus was designed and built to

provide experimental data collection to verify the analytical model.

1.3 5.222:

This report is organized into two sections. Chapters 3 and 4 are in-

cluded in the first section which is concerned with the development and



Chapter 1 Objective and Scope

verification of the numerical analysis technique. Chapter 3 presents

the equations of motion that describe the coupled liquid and axial pipe

wall model and the equations that describe the transverse and torsional

modes of vibrations. Chapter 4 describes the numerical technique that

accounts for the five families of waves propagating in the pipe and the

liquid. The modeling of bends, masses, springs and rigid supports is

also presented. Forced vibration is also incorporated into the model.

The proposed model is compared with two numerical techniques and with

experimental data available in the literature.

The second part of the research is an experimental study of a piping

system of variable pipe length and with a U-type bend that is excited by

an external shaker. The variable pipe length allows changes in fluid

frequency. The U-bend is free to move in one plane. The shaker excites

the piping over a range of frequencies that includes the first natural

frequencies of both the fluid and the U-bend. Chapter 5 describes the

experimental apparatus and procedures. The experimental results and

comparison with the analytical model are presented in Chapter 6.
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m2

2.1 Mien

The objective of this study is to incorporate the flexural and torsional

modes of vibration in an existing coupled axial pipe wall and liquid

model. A review of the evolution of the axial model and these modes of

vibration is necessary to incorporate the appropriate coupling

mechanisms. This section is devoted to a review of the previous works

in these areas. This review will be divided into three sections. The

first section reviews the studies of unsteady flow in closed pipes. The

second one relates the works on the interaction between fluid and struc-

ture in liquid-filled piping systems. The last section relates the

studies of oscillatory motion in piping systems and the applications of

the transfer matrix method to solve these problems.
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2.2new

The study of unsteady flow in pipelines, or waterhammer as this

phenomenon is more commonly known, has been of interest since the middle

of the 1800's [1]. Among the early significant contributions to the

solution of waterhammer problems are those of Joukowsky [2] , Lamb [3] ,

and Allievi [4] . Their findings predicted with accurately predicted the

liquid wave speed and its associated pressure rise. With the exception

of Lamb, who included the effect of longitudinal stresses in the pipe

wall by considering the pipe an elastic membrane, the others predicted

the existence of only one wave propagation. Joukowsky conducted exten-

sive experiments and found that the speed at which disturbances

propagates in the water is related to the relative circumferential

stiffness of the pipe. His study concluded that the speed of propaga-

tion for the liquid in pipelines is less than the propagation speed in

an infinite liquid. In his research, Joukowsky assumed that pressure is

uniform across any given pipe section. He also neglected the mass of

the pipe wall, the radial inertia of the liquid and the axial and bend-

ing stresses in the pipe wall. Based on these assumptions he derived a

modified wave speed for the fluid in which the liquid bulk modulus is

adjusted by the structural properties of the pipe wall.

The analysis of the waterhammer problem has produced much research after

these early works. Some analytical solutions of unsteady flow problems

with various boundary conditions are outlined in textbooks by Jaeger

[5] , Wylie and Streeter [6] and Chaudhry [7]. Waterhammer problems are
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still being researched today. The basic equations are being inves-

tigated [8] and new numerical techniques are being developed [9,10] .

2.3Winn

Research in the area of fluid-structure interaction has identified four

main forms of dynamic liquid-pipe forces:

1. Lateral momentum forces. Blevins [11] reported some of the research

into this mechanism which has been extensively investigated. The

lateral momentum forces induced by high, steady flow rates through

curved pipes can reduce flexural stiffness and may produce buckling of

initially straight pipes.

2. Transverse pressure variation. This phenomenon occurs in cases where

the inside diameter of the pipe is a multiple of the length of the

transverse acoustic wave in the liquid. This may result in the excita-

tion of higher symmetric lobar modes of the pipe cross section. Leissa

[12] presented estimates of natural frequencies of lobar modes for

infinitely long cylindrical shells.

3. Dilation pressures. This mechanism is related to the Poisson ratio

[13] in which an axial elongation of a straight pipe causes a decrease

of its inside diameter or ,conversely, an axial contraction of the pipe

causes a dilation of the inside diameter. This axial elongation or

contraction of the pipe wall may be caused by a rapid change in the
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fluid velocity creating a decrease or increase in the fluid pressure.

This pressure change gives rise to an axial stress wave in the pipe.

For most piping systems the propagation of the stress wave in the pipe

wall is faster than that of the acoustic wave in the fluid. The result

of this wave interaction is called the "precursor wave" and the

mechanism by which it occurs is termed Poisson coupling.

4. Axial resultants at fittings. Variations in fluid pressure create

pressure resultants that act at locations where flow changes area or

direction, such as at bends, tees and orifices. These differential

pressure forces have to be balanced by axial forces in the pipe wall to

maintain equilibrium conditions. The axial forces generate subsequent

pipe motion that may excite the flexural and torsional modes of vibra-

tion of the pipe. This phenomenon is known as junction coupling.

Poisson coupling and junction coupling are the phenomena to be studied

in this research. The literature review concerning these follows.

2.3.1 Poisson Coupling

In liquid-filled pipes, Poisson coupling results from the transformation

of the circumferential strain, caused by internal pressure, to axial

strain and is proportional to Poisson's ratio. Skalak [14] was among

the first to extend .Joukowski's method to include Poisson coupling. His

results identified the precursor wave for a sudden valve closure. The

analytical model that he developed treated the pipe wall as an elastic
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membrane to include the axial stresses and axial inertia of the pipe.

Thorley [l] conducted experimental validation of Skalak's theory.

Williams [85] conducted a similar study. He found that structural

damping caused by longitudinal and flexural motion of the pipe was

greater than the viscous damping in the liquid. In fact, Williams

states that “mechanical damping can be more important for water hammer

decay than viscous friction”. These researchers did not include the

radial inertia of the liquid or the pipe wall. Lin and Morgan [15,16]

included the pipe inertia term and the transverse shear in their equa-

tions of motion. Their study was restricted to waves which have axial

symmetry and purely sinusoidal variation along the axis. Walker and

Phillips [17] extended the study by Lin and Morgan to include both the

radial inertia of the pipe wall in the fluid and the axial equations of

motion. Their interest in short duration, transient events produced a

one-dimensional, axisymmetric system of six equations. Wilkinson and

Curtis [18] developed a non-linear, twenty-one equation model for the

axial and radial pipe wall deformations in both elastic and plastic

zones. Vardy and Fan [75] conducted experiments on a straight pipe,

generating a pressure wave by dropping the pipe onto a massive base.

Their results showed good agreement with the analytical model by

Wilkinson and Curtis [18] . They concluded that the fluid friction does

not influence the pressure response and that the axial waves in the

straight pipe are non-dispersive for a first order accuracy. Otwell

[l9], Wiggert, Otwell and Hatfield [20] and Stuckenbruck, Wiggert and

Otwell [21] neglected the radial acceleration in their studies using the

six-equation model of Walker and Phillips [17] . This simplification

reduced the mathematical model to four equations. They presented
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numerical examples for various combinations of liquids and piping

materials and for various coupling constraints. Budny [22] also reduced

the six-equation model, but he included viscous damping and a fluid

shear stress term to account for the structural and liquid energy dis-

sipation. Experimental tests verified that the model satisfactorily

predicts the wave speeds, fluid pressure, and structural velocity of a

straight pipeline for several fluid periods after a transient has ex-

cited the fluid.

The aforementioned researchers have helped in the understanding of the

Poisson coupling mechanism in fluid-structure interaction problems.

They identified two important waves that propagate in a straight pipe

reach, one in the liquid and one in the pipe wall. However, none of

these studies, with the exception of Otwell [l9] and Wiggert et a1.

[20], considered the possibility that a fitting, such as an elbow, may

move in response to the precursor wave, thereby, altering the transient

response of the liquid. The following section discusses the models that

have included the junction coupling mechanism.

2.3.2 Junction Coupling

Piping systems can be thought of as straight pipes joined at localized

points by elbows, reducers, tees, orifices and the like. Pressure

resultants at these points act as localized forces on the pipe, gener-

ating the junction coupling mechanism. For pipes with only a few bends,

a continuous representation of the piping was devised by Blade, Lewis
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and Goodykoontz [23]. Experimental tests were conducted to analyze the

response of an L-shaped pipe to harmonic loading. The experimental

setup included.a.restricting orifice plate at the downstream and of the

pipe. Their experimental results validated their model. They concluded

that an uncoupled analysis does not produce accurate estimates of

natural frequencies, and that the elbow, which provides coupling between

the pipe motion and liquid motion, causes no appreciable reflection,

attenuation, or phase shift in the fluid waves. Davidson and Smith [24]

conducted a similar investigation. Their analytical model was based on a

vibration transmission matrix and it showed good agreement with ex-

‘perimental results. As an extension of that work, Davidson and Samsury

[25] developed a more accurate solution to analyze a pipe assembly

comprised of straight sections and uniform bends arranged in a nonplanar

configuration. Experimental results indicated a significant level of

coupling between the plane compressional wave in the liquid and that in

the pipe wall. Comparison of numerical and experimental results,

however, indicated a need for further refinement. Wiggert, Hatfield and

Stuckenbruck [26], and Wiggert, Hatfield and Lesmez [27] used a one-

dimensional wave formulation in both the liquid reaches and the piping

structure resulting in five wave components and fourteen variables. The

five families of waves are pressure waves in the liquid, axial tension

waves in the pipe wall, two families of transverse shear and bending

waves, and torsional waves. The method of characteristics was used to

solve for the fourteen variables and to find the expressions for the

wave speeds. The authors showed a comparison of the predicted fluid

pressures and structural velocities with experimental data to provide a.

partial validation of the model. However, their model showed that
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numerical errors are introduced by time-line interpolations and by

numerical integration of the coupled transverse shear force and bending

moment. Experimental validation of the transverse vibration was not

included. Joung and Shin [28] developed a model that takes into account

the shear and flexural waves of an elastic axisymmetric tube. The method

of characteristics was used in the solution for four families of

propagating waves: the extensional, transverse, and symmetric bending

waves of the elastic tube and the acoustic wave of the fluid medium.

Their results compared closely to Walker and Phillips' results [17] for

relatively small pipe deformations.

The above models used a continuous representation of the piping system.

Another approach for complicated geometric configurations is to ap-

proximate the system as a set of discrete connected masses. Several

techniques have been applied to a variety of models. A basic technique

uses spring and point masses to represent the pipe structure. Wood [29]

studied a pipe structure loaded with a harmonic excitation. He found

that the natural frequencies of liquid were shifted, especially when the

frequency of the harmonic load is near one of the natural frequencies of

the supporting structure. Ellis [301 reduced a piping structure to

equivalent springs and masses by selectively lumping mass and stiffness

at fittings and releasing specific force components at bends, valves and

tees. His formulation of axial response was a modification of the

method of characteristics and included pipe stresses and velocities.

Otwell [19] and Wiggert et al. , [20] modeled a pipe elbow as two or-

thogonal springs. The stiffness of the springs corresponded to the
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flexural stiffness of the upstream and downstream pipe reaches connect-

ing to the elbow. Their investigation also included experimental data

for a rapid valve closure. Their results showed that the motion of the

elbow, driven by the axial stress in the pipe and by the liquid pres-

sure, caused appreciable alteration of the pressure. The pressure

response was 33% greater than the response for an immobile elbow.

Otwell [31] used a spring-mass oscillator to represent each mode of the

structural response. This. approach, however, is limited to simple,

orthogonal configurations because it provides only one liquid-structure

coupling point and only one degree of freedom for each mode.

A second method uses the finite element method to model the structure,

treating each pipe element as a beam. Schwirian and Karabin [32]

generalized this approach by using a finite element representation of

the liquid and the piping. Their studies imposed coupling at fittings

only. The effect of the supports and piping stiffness was shown to be

significant. Wiggert and Hatfield [33] used the method of characteris-

tics to model the fluid. They coupled the results at pipe junctions with

a finite element code to solve for the structure. Hatfield, Wiggert and

Otwell [34] used the modal synthesis technique [35,36] to analyze fluid-

structure systems with harmonic loading. The model responses of the

supporting structure were obtained from an existing finite element

program. These responses were then coupled to the liquid analyses.

Hatfield, Wiggert and Davidson [37] presented a validation of this

methodology based on comparison to earlier experiments.
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The previous models used the beam theory to represent the pipe reaches.

These models, however, cannot represent the precursor wave because

classic beam theory neglects deformations of cross sections. The reduc-

tion in flexural stiffness at bends is also inappropriately treated by

these models. To avoid these difficulties, Quezon and Everstine [38]

used shell elements to represent the pipe wall. While providing useful

estimates of flexural stiffness of a single bend, this method is com-

putationally feasible for only short lengths of pipe.

The investigation of these two coupling mechanisms, Poisson and junc-

tion, in liquid-filled piping systems is continuing. Wiggert [39]

presented a survey of the latest work in this area. The study of piping

systems in industrial plants and experimental testing of large scale

models as well as the inclusion of non-linearities such as cavitation,

structural damping and fluid friction is necessary to gain a better

understanding of these systems. Rothe and Wiggert [40] outlined some of

these considerations when modeling condensation-induced waterhammer in

power plant systems. Jaeger [41] reported incidents of hydraulic

resonance caused by structural vibration at various pumped storage sites

and power plants. The understanding of these mechanisms has been useful

also in the study of seismic motion of pipelines. Hatfield and Wiggert

[42] applied a response spectrum analysis to an elastically-supported,

liquid-filled pipe aligned in the direction of ground motion. The same

authors [43] described a technique for determining pressure and dis-

placement responses of liquid-filled piping in the time domain. Both

mathematical models included waves in the liquid and pipe wall coupled

by the Poisson effect. Ogawa [44] conducted experiments on the dynamic
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response of a real-scale piping system using a large scale shaking table

to investigate earthquake induced hydraulic transient effects. The

system was excited by a harmonic motion in the axial direction of pipe

and showed a sharp resonance for a closed, liquid-filled pipeline. The

system was analyzed using a simple model of a rigidly supported pipe-

water column system. The analytical and experimental results suggested

that the coupling of a closed low pressurized liquid contained in a

piping system is an important factor for seismic response estimations of

liquid- filled pipelines .

2.4W

Resonance in power conduits has been the cause of many severe and spec-

tacular accidents as mentioned by Jaeger [41] in his remarkable

discussion of incidents in hydropower systems. His discussion points

out the importance and danger of vibrations from higher fluid harmonics.

Jaeger [5] , Wylie and Streeter [6] and Chaudhry [7] included extensive

discussions of this phenomenon in their textbooks. Resonance, which is

an oscillating condition that leads to a pressure amplification in the

piping system, develops when there is an exciter present at some point

in the system. The piping can be excited in two ways. First, a device

may act as a forcing function, exciting the system at one of its natural

frequencies. Second, self-excited oscillations occur when a component

of the system acts as an exciter. These two actions may occur simul-

taneously or independently. Resonance, due to a forcing function, takes

place when the interactive response occurs at or near one of the natural
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periods of the system. A forcing excitation will be used in the current

research to find the resonant frequencies of a liquid-filled pipe.

Self-excited oscillations are caused by certain features of the piping

system. Some of these features include a malfunctioning valve seal

[45] , cavitating pump [41] or interactive structural and fluid com-

ponents [46 ,47 , 22] .

The analysis of resonating conditions in liquid-filled piping systems

can be studied in either the time domain, by the method of characteris-

tics, or the frequency domain, by the impedance method or transfer

matrix method. The frequency domain method of analysis will be the

focus of this research.

2.4.1 Impedance Method

The impedance method was systemized for the analysis of complex liquid

systems by Wylie [48] . The method computes the ratio of the oscillatory

pressure and the discharge, known as the terminal impedance, by using

known boundary conditions. Then, the terminal impedance is plotted .as a

function of frequency to find the natural frequencies of the system and

the extreme terminal impedances. This method has been used by Zielke

and Hack [49] for the frequency response analysis of pumped storage

systems .
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2.4.2 Transfer Matrix Method

The transfer matrix method has been widely used for analyzing structural

and mechanical vibrations [50,51,52,53,54] and for analyzing electrical

systems [55]. This method is an extension of Miklesta's and Holzer's

methods [52,53,54] . Dawson and Davies [56] improved these methods by

giving them an automatic natural frequency search capability for ideal-

ized lumped property models. Pestel and Leckie [50] detailed the work

of many authors dealing with lumped and distributed property models.

The transfer matrix method was used by Chaudhry [57,58] for analysis of

steady-oscillatory flows and for determining the frequency responses of

hydraulic systems. Classic fluid transient textbooks such as those by

Wylie and Streeter [6] and Chaudhry [7] describe the application of this

methodology to hydraulic systems. To [59,60] used this.method to simu-

late and analyze complicated reciprocating compressor piping systems.

He developed nineteen parameter matrices for acoustic elements [59] and

presented a description of a digital computer program and its applica-

tions [60]. The method has also been used in solving fluid-structure

interaction problems. Keskinen [61], To and Kaladi [62] and Dupuis and

Rousselet [63] developed methodologies to study non-conservative systems

involving fluid flow in pipes. Keskinen's method [61] involved numeri-

cally solving a system of differential equations, expressed in matrix

form, to obtain the transfer matrix for a pipe element which is treated

as a discrete parameter model. To and Kaladi's model [62] differed from

the previous work in that the transfer matrix was derived from a direct

solution of the differential equation of motion of the pipe, which was
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considered a distributed parameter model. They presented a method of

analysis for complicated piping networks with moving mediums involving

bends, piping components of various diameter and lumped masses such as

valves. Experimental validation of their model was presented. Dupuis

and Rousselet [63] formulated the transfer matrix by using equations of

motion that included shear and extensional deformations, rotatory inero

tie and variable pipe curvature. They applied the method to straight

and curved cantilevered pipes containing a flowing fluid.

Another application of this method has been in the study of liquid-

filled piping systems such as is the topic of this research. Wilkinson

[64] showed that under certain conditions the vibrations of the liquid

column and that of the supporting structure can interact. This causes

the coupled system to respond dynamically in a manner different from the

response of either of the independent components. He used the transfer

matrix approach with the vibration state at a point described by a

fourteen element vector representing five wave families. These five

families are: pressure waves in the liquid, tension waves in the pipe

wall, two families of transverse bending waves and a torsion wave. The

Poisson effect between the liquid pressure and the axial tension wave in

the pipe wall was not included. The equation of motion for the

transverse vibration was based on the Bernoulli-Euler beam theory. His

results were compared with the experimental results for an L-shaped

pipe. They indicated good agreement, but the author concluded that

further study of this topic is needed. Wiggert, Lesmez and Hatfield

[65] extended Wilkinson's work by including the Poisson effect and by

using the Timoshenko beam theory to model the transverse vibration in
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the piping. The Timoshenko beam accounted for the secondary effects of

rotatory inertia and shear defamation. Experimental results with an L-

shaped pipe showed good agreement with the numerical model. Lesmez,

Wiggert and Hatfield [66] used the same model with a U-shaped bend for a

variable length piping system. The variation of the pipe length allowed

for different acoustic natural frequencies in the liquid. Excellent

agreement in the natural frequencies for both experimental and computed

results indicated that the method accounted for the appropiate coupling

mechanisms. This dissertation describes in a more detailed fashion the

work reported in the two previous studies.
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3.1W

The equations of motion for the vibration of a liquid and the axial,

transverse and torsional vibrations of the pipe wall in a liquid-filled

piping system are presented inithis chapter. The development includes

simplifications of the radial properties of the fluid and pipe wall in

the axial direction. Although these equations are well documented

[l7,l9,20,21,22] , they will be described below since they constitute the

starting point of this research.

The major contribution of this study is the incorporation of the

transverse and torsional vibrations of the pipe wall to an existing

axial model that couples the liquid and pipe wall. This model includes

Poisson and junction coupling and accounts for the effects of rotary

inertia and shear deformation of the pipe wall. The addition of these

mechanisms provides an improvement in accuracy over the previous axial-

coupled models such as those by Otwell [l9] , Wiggert et a1. , [20] and

Budny [22] and the junction coupled model described by Wilkinson [64] .

The Timoshenko beam equation is used to represent the transverse

23
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vibration of the pipe. The solution for the constants of integration

constitute the connecting point between this chapter and Chapter 4.

3.2W

This study is concerned with piping systems in which the inside diameter

of the pipe is much smaller than the pipe length, limiting the equations

of motion that describe the system to a one-dimensional wave approach

[67,68] . The junction mechanism guarantees that a pipe element can

transmit axial, torsion and transverse shear and bending waves in the

pipe wall. Therefore, the inclusion of these waves is necessary to

more realistically represent the motion of the piping system. The next

section considers the axial liquid and axial pipe wall wave equations.

The equations that describe the transverse vibration of the piping in

the in-plane and out-of-plane modes are then developed. Finally, the

equations describing the torsional pipe waves are presented. Figure 3.1

shows a general pipe reach with the sign convention used in this study.

The z-axis is considered coincident with the centerline of the pipe

reach.

3.2.1 Axial Waves - Liquid and Pipe Wall

The six-equation model by Walker and Phillips [17], which consists of

one-dimensional continuity and momentum equations for the liquid, axial

and radial momentum equations and two constitutive equations for the
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pipe wall, constitutes the basis for the axial coupled model. Otwell

[19] , Wiggert et a1. , [20], Stuckenbruck et al.,[21], and Budny [22]

reduced the six-equation model to a four-equation model by neglecting

the radial inertia of the pipe wall. The fluid in the model is assumed

to be one-dimensional, linear, homogeneous, with isotropic flow and

uniform pressure and fluid velocity over the cross section. The pipe

wall is assumed to be linearly elastic, isotropic, prismatic, circular

and thin-walled .

Tim equations represent the axial continuity and momentum relations for

the liquid:

2

in 2:2! LL _

ac+K [rat+ataz] 0 (3'1)

12 fi 2”
a. + Pfatz + T - ° (“3’

in which p - p(z,t) is the fluid pressure, v - v(z,t) is the fluid

displacement and w - w(z,t) is the pipe wall displacement. K and pf are

the fluid bulk modulus and density, r is the inside radius of the pipe,

and the shear stress along the pipe wall is represented by 10 [22] .

Previous authors arrived at these equations by making a number of stan-

dard assumptions [l7,l9,20,21,22]. First, the convective terms are

ignored by assuming low Mach numbers, where the fluid wave speed is much

greater than the fluid velocity. This implies that the fluid density in
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Equation 3.2a is constant. Second, the one—dimensional flow assumption

implies that the radial component of the fluid velocity is zero and that

the flow is developed in only the radial direction. The fluid friction

term in the momentum equation can be neglected for forced vibrations

[5,6] as is the case in this study. However, as noted by Williams [85]

and Budny [22] the damping terms in both the liquid and the axial pipe

wall equations of motion should be considered for transient events.

Equation 3.2a reduces to:

2

£262 + pf .. o
(3.2b)2

at

Assuming an axisymmetric, linear elastic pipe wall and small deforma-

tions, the axial and circumferential stress-strain relationships for the

pipe wall are:

oz-E*[a_u_;+u}g] -o (3.3)

dz r

' au

* E __Z _
ao-E [r+yaz] 0 (3.4a)

where

E*- —-L2—- (3.4b)

(1-v )

in which oz - oz(z,t) and do - 00(z,t) are the stresses in the axial and

radial direction, uz - uz(z,t) is the pipe wall displacement in the

axial direction, and E and u are the Young's modulus and Poisson's ratio
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of the pipe wall. Figures 3.2 and 3.3 show a section of a pipe with

stresses and displacements in the axial and radial direction. The

equations of motion for the pipe wall are:

_z - pp ‘7‘ - 0 (3.5)

32 at

2 2

pr-aoe-[ppre+pf§—]‘g—¥-0 (3.5)

t

in which pp is the pipe wall density and e is the pipe wall thickness.

The effect of the radial fluid acceleration appears as an added mass in

the last term of Equation 3.6.

Equations 3.1 through 3.6 constitute the six-equation model. The radial

inertia term is important when an excitation is approaching the first

lobar mode of the cross section. Everstine, Marcus and Quezon [86]

compared a one-dimensional finite element formulation with a three-

dimensional one. The study showed that a one-dimensional finite element

formulation of coupled pipe and liquid accurately predicts the dynamic

responses up to the frequency of the first lobar mode. Therefore,

neglecting the radial inertia term is accurate for frequencies below

this mode. The expression for this lobar mode frequency is:

BE ’1

“’0 " :7 [5pp(1-v2)(l+pfr/2ppe) (3'7)
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By neglecting the radial inertia term in Equation 3.6 the radial stress,

00, can be evaluated in terms of the fluid pressure:

«
[
3

do (3.8)

The radial stress can be eliminated by combining Equations 3.4 and 3.8

and solving for the radial strain w/r

au

2 _ Di— , ”—1 (3.9)

r
E e 82

Combining Equations 3.9 and 3.3 give the expression for the axial stress

a -—1 - o (3.10s)

Multiply the above equation by the pipe cross-sectional area AP, to

obtain the axial force, fz

au

- I - —'z' -fz uAp e p EAp 32 o (3.10b)

Differentiating Equation 3.9 with respect to time and combining it with

Equation 3.1 produces the expression for the fluid pressure
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2

dz ' ” dtdz + dtdz ' ( ° a)

where

* _K_K _ (3.11b)

1 +JE§L11

E e

Equations 3.2b, 3.5, 3.10b and 3.11 constitute the four-equation model

presented by Otwell [l9], Wiggert et a1. , [20], Stuckenbruck et a1. ,

[21] and Budny [22] . These equations can be further reduced by dif-

ferentiating Equations 3.2b and 3.5 with respect to the axial direction

2, then differentiating Equations 3.10b and 3.11 with respect to time

and combining them to solve for the axial force and fluid pressure.

2 2

2 a f a f 2

ap —-;i - -—;Z + Apub 2—9 - o (3.12)

dz dt dt

2 2 2 2 a f2 V8

aft)- 3—2+A—&f~—;‘-o (3.13s)

dz dt dz -

where

*

2

a - 3— (3.13b)
f pf

a2 - 5— (3.13c)

pp
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r
b - e (3.13a)

p

d - J (3.13a)

Pf

In Equations 3.13b and 3.13c, af and ap are the non-coupled fluid and

axial pipe wall wave speeds, respectively, b is the pipe radius to wall

thickness ratio and d is the density ratio. Equations 3.12 and 3.13a

are second order partial differential equations in the fluid pressure

and axial pipe wall force. They may be expressed in matrix form as:

0 2 f 1 - bA 2 f
2 2 L2 2 - 0 ”1 P .2—2 2 - O (3.143.)

“r “f dz P at P

A similar equation can be obtained for the axial pipe wall and fluid

.
F
F
a
.

displacements by combining and solving Equations 3.2b, 3.5, 3.10b and

3.11.

2h 2 2 2

2" daf+ap -Vldaf 2 u l l 0 2 u
L z i L z - o 3 14b)

”h 2 L 2 2 V " o b— 2 v ( -

Poisson terms couple Equations 3.12 and 3.13a as shown by the off-

diagonal elements of the matrices in Equations 3.14s and 3.14b.
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The separation of variables technique [76] is used to solve for the

force f2 and fluid pressure p in Equation 3.14a. Three steps are neces-

sary to solve for the dependent variables in the above equation: 1)

convert the partial differential equation into ordinary differential

equation, 2) find solutions for the ordinary differential equation, and

3) find the constants of integration of the differential equation. The

solution for the constants of integration will be postponed to the next

chapter since they depend on the boundary conditions imposed on the

piping system.

1) Separation of Variables

Assuming a harmonic oscillation for the time dependence, which is ap-

propriate for oscillatory flow [41,71] and oscillatory structural motion

in the axial direction [68], we can write:

fz(z,t) - Fz(z) ejwt (3.15)

p(z,t) - P(z) ejwt (3.16)

where Fz(z) and P(z) are functions of 2 only, to is the oscillatory

frequency and j - (4)8. Substituting the above equations into Equation

3.14 yields the ordinary differential equation in F2 and P:
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2 .

ap 0 ,,

‘ F 2 1 'VbA F

2» a2 a2 f + w o 1 P z - o (3.17)

d_A_ f f P P

P

where F; and P" are the derivatives with respect to the axial direction

2. The elimination method [92] can be used to reduce Equation 3.17 to a

single dependent variable. This procedure yields

 

F2” + " + ”,+ 7) F" + 1% - o (3.18a)

2 2

where 1 is the length of a pipe reach and

2 2

r - 2;; (3.18b)

“f

2 2

a -5‘%& (3.18c)

a

p

2 2 2

7 - 2y P-Pgl . (3.18d)

d ap

Equation 3.18s is a fourth-order, ordinary differential equation with

constant coefficients .
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2) Solution of the Ordinary Differential Equation

The solutions for F2 in Equation 3.18s is of the form

- J[2

122(2) - A e 2 (3.19)

where A is a constant.

Substitution of Equation 3.19 into 3.18s produces the characteristic

equation in A:

4 2

A + (r + a + 1) A + or - 0 (3.20)

where A is the characteristic value. The roots of this equation are

ijA, and isz, where

2 l 2 h
A1,2 - 2 (r + a + 1) ;[(r + a + 1) - 407] (3.21)

This equation can also be expressed as:

82 2 2 2 2

c; - Q—é— - % {[ a;+32+2y2 gag] - [[a;+a;+2v 33f] - 4afap] } (3.22)
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p A: f+ap+ v daf af+ap+ V daf - afap ( . )

The above equations .give the expressions for the coupled wave speeds.

These coupled speeds are the same as those derived by Budny [22] using

the method of characteristics. An inspection of Equations 3.22 and

3.23, assuming no coupling between liquid and pipe wall by neglecting

the second order Poisson terms, yields

‘01 2 2

1—1 - af (3.24s)

(01 2 2

r2- - ap (3.24b)

As noted by Stuckenbruck, et al. , [21] , Equation 3.24s is the classical

fluid wave speed prediction [6] for a pipe anchored throughout against

axial motion.

Placing Equation 3.21 into 3.19, the solution for Fz(z) is:

th _ an: - 112% _ 4);}
eFz(z) - A1 e + A, e + A; e + A, (3.25)
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and using the relation

i (15)

e j i - cosuf) i 35mm?)

Equation 3.25 can be written in the following form

Fz(z) - A;cos(A1§) + A,sin(A1§) + A,cos(A2§) + A‘sin(A2%)

where

A1 "' K1 ‘1' X2

A2 ‘ J<X1 ' X2)

A3 - X3 + X4

A4 ‘ J<Xs ' X4)

3) Solution for the Constants of Integration

(3.

(3

(3

(3.

(3

(3.

26)

.27a)

.27b)

27c)

.27d)

27a)

The solutions for the pipe wall and fluid displacements and the fluid

‘pressure are of the same form as Equation 3.27a. To solve for the four

dependent variables, the constants of integration A1, A2, A3 and A, must

have known values.
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Expressing the axial and fluid displacements in similar forms as the

force and fluid pressure in Equations 3.15 and 3.16 gives

jwt
uz(z,t) - Uz(z) e (3.28)

jwt
v(z,t) - V(z) e (3.29)

Placing Equation 3.28 into 3.5 and combining with Equation 3.27a we

obtain the solution for the axial displacement:

Uz(z) - AJPE: { A1 [Alsin(A1§) - A2cos(A1§)]

+ A, [Assin(A2‘;‘) - A.cos(A2§)] } (3.30)

The fluid pressure is obtained by placing Equations 3.27a and 3.30 into

3.10b

2

P(z) - W {(a - 1,) [A1cos(1,§) + A, s1n(1,§) ]

2

+ (a - A2) [Ascos(A2‘;‘) + A‘sin(A2§)]} (3.31)
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Finally, the fluid displacement is obtained by placing Equations 3.29

and 3.31 into 3.2b

V(z) .. __'£*_ {(a - 1:», [A,sin(.\,§) - A,cos(1,§)]

Apva to

2

+ (a - 1,)12 [A,sin(x,§) - A,cos(12f)]} (3.32)

Arranging Equations 3.27a, 3.30, 3.31 and 3.32 into matrix form we

obtain

r w

Blsin(A,§) -B,cos(A,§) B,sin(A,f) -B,cos(A,§)l rA,

B3cos(A1§) B3sin(A1f) B,cos(A,§) B‘sin(A,§) A,

> (3.33s)

      

,

U

P

V i - -Bssin(A,§) B5c0s(A1f) -B.sin(A,§) B.cos(A,§) 1A,

F

L

cos(A,§) sin(A1§) cos(A,§) sin(A,§)J A,

 

 

where

B, - 2‘1 (3.33b)

A E0
9

32 - 21, (3.33¢)

A Ea
p

2

B, - a ' *1 (3.33d)

A who

2

B, - a ' ‘2 (3.33e)
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2

(a - AI)1A1
(3.332)

 

A va*ra

P

2

(a ' A2)£A2
BO _

(3.33g)
 

*

A bit ap" 1

Equation 3.33a will be the starting point of the next chapter.

Solutions for the constants of integration of the axial waves equations

will be derived.

3.2.2 Transverse Waves - Shear and Bending

The classical one-dimensional Bernoulli-Euler theory of flexural motions

in elastic beams is inadequate to describe vibrations of higher modes as

well as those beams where the effect of the cross-sectional dimensions

on frequencies cannot be neglected [69]. Rayleigh [70] introduced the

effect of rotatory inertia and Timoshenko [68,71,72] extended it to

include the effect of transverse shear deformation. The equations that

include these effects are generally referred to as the Timoshenko beam

equations. The derivation of the equations for transverse vibrations in

the x-z and y-z planes are presented following the sign convention in

Figures 3.4 through 3.7.
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3 . 2 . 2 . 1 Shear and Bending in x-z Plane

The derivation of the Timoshenko equations for the pipe reach in Figure

3.1, vibrating in the x-z plane, are based on the diagrams shown in

Figures 3.4 and 3.5. Figure 3.4 shows that the slope of the center line

of the pipe reach, dux is affected by both the bending moment and the

dz

shear force [50]. The action of the internal bending moment, my,

rotates the face of the cross section through angle ivy. From there, the

internal shearing force, fx’ turns the center line to adopt the slope

a“; . The angle of the face of the pipe element remains unchanged.

dz

Inspection of Figure 3.4 shows that the angle between the line perpen-

dicular to the face and the center line of the pipe element which is

caused by the shear force is the shear angle, fly:

2:.
fl - 32 ' '1’ (3°34)

du . _
2x - GApas [ea—23 - (6),] o (3.35a)

where

c - __a_ (3.35b)

2(1+V)
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The shear modulus is G, the product Apr:s represents the effective shear

area of the section and ‘s is a factor depending on the shape of the

cross section [73,74] . For a thin-walled tube ”3 is given by

2114.1). (3.36)

s - 4+3u

The relation between the bending moment and cross-sectional rotation is

given by elementary beam theory as:

81/:
- EI - 0 3.37

“‘2 Pal ‘ )

in which Ip is the second moment of inertia about the y—axis for the

pipe wall. Equations 3.35a and 3.37 constitute elastic laws relating

the deformations to the internal loading. Equilibrium considerations

(Fig. 3.5) give the equations

2

2.2.. - (p A ”£192.. — o (3.3.)
32 P P 2

at

3 32¢m

+ f - I + - 0 3. 9

at

in which If is the second moment of inertia about the y-axis for the

fluid, Equations 3.38 and 3.39 describe the translation and rotational
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equilibrium, respectively. Solving for )6}, and ux in Equations 3.35a and

3.38, substituting the results in Equation 3.37 and eliminating my from

Equation 3.39, we obtain a fourth-order partial differential equation in

 

fx(z,t):

a‘f 82f a‘f E1 3 82f
£1 + A + - I + I + A +

p--:‘ (”p p ”fAf)—'33 (pp p pf f)“;3 2 ax-E -—3[(pp p pfAf)-—53]
dz dt dz dt p 5 dz dt

(9 A +p ) 2 2

+ P P fAf ‘9 [on A egg—2"f ] - o (3.40)
CA a 2 P P 2

p s at dt

The third term in the above equation corresponds to rotatory inertia,

the fourth to shear defamation and the last term represents the com-

bined influence of shear deformation and rotatory inertia [52]. By

neglecting these three terms, we obtain the Bernoulli-Euler beam equa-

tion in the shear force fx’

4 2

d f d f

81 + A + - 0 3.41pf‘ (Pp P PfAf)__—Kat2 ( )

z

The separation of variables technique is used to solve for the dependent

Variable fx’ in time, t, and axial direction 2 [50] .

fx(z,t) - Fx(z) e3”t (3.42)
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Substitution of the above equation into Equation 3.40 we obtain

+ 2.2.2 F; - [ 1.2.2: ] Fx - 0 (3.43s)

where

a - (PgAp+Pff£) A222 (3.43b)

CAI:

ps

22

r - (PpIp+P£If) w 2 (3.43c)

21p

2‘

1 - (PnAn+P£Ar) w 2 (3.43d)

21p

and 2 is the length of the pipe reach.

Equation 3.43s is a fourth-order ordinary differential equatian'with

constant coefficients whose solution is of the fom

- 11
Fx(z) - A e 2 (3.44)

where A is a constant.

Substitution of Equation 3.44 into 3.43s produces the characteristic

equation in A:

A‘. + (a + r) A2 - (1 - or) - 0 (3.45)
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The roots of this equation are iA, and ijA,, where

li’z - [1+%(0-r)2]k;12‘(a+r)

The solution of Equation 3.43s is

hf _ 41% - an? _ an»?
Fx(z) - A + A, e + A, e + A, e18

and using the relations

:01) s: (,2)
e I - cosh(A§) i sinh(A§) and e j I - cos(Af) i jsin(A%)

Equation 3.47 can be written in the following form

_ z. z z. a
Fx(z) Alcosh(A1£) + A,sinh(A12) + Ascos(A,2) + A.sin(A,£)

where

(3

(3.

(3

(3

(3.

(3

(3

.46)

47)

.48)

.49a)

.49b)

49c)

.49d)

.49e)
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The solution for the other three dependent variables, My’ p), and Ux is

based on the solution for Fx'

The solution for Ux(z) can be found by substituting Equation 3.49s in

Equation 3.38

4

Ux(2) - '-_L [A1 2 Slnh(Ali’) ‘2' A2 2 COSh(A1§) ' A3

1 2E11,7

A” sin(A,f)

+ A, :3 cos(A,§) ] (3.50)

2

The solution for \Fy(z) is obtained by placing Equations 3.49s and 3.50

into 3.35a

2

wy(z) .. -—.L{ (a + 1:) [A,cosh(A,§) + A,sinh(1,f) ]

EIp7

2 A

+ (a - A,) [A,cos(A,i-) + A‘sin(A,§) ] J (3.51)

The expression for My(z) is found placing Equation 3.51 into 3.37

My(Z) _ -‘&{ (a + A?) A1 [A181m(xli) + AQCOSh(A1§) ]

T

2

+ (A, - a) A, [A,sin(A,§) - A4cos(A,§) ] } (3.52)



Chapter 3 Analytical Development

45

Arranging equations 3.49a through 3.52 into matrix form we obtain

      

r w P ‘ r ‘

Ux -n,sinh(x1f) -Blcosh(xlf) B,s1n(x,§) -B,cos(,\,§) A1

0y -Bscosh(A1§) -Bssinh(A1f) -B‘cos(A2§) -B.sin(A2§) A,

‘My” -35s1nh(xlf) -Bscosh(x1§) 4.311102%) B.cos(,\2f) ‘A,> (3'53”

£ij _ cosh(A1%) sinhulf) cosuzf) sin(/\21)d ~A44

3 .

where B, - iii; A1 (3.53b)

p

8

32 - ‘1‘“7 A2 (3.53c)

p

2 2

B, - fig? (0 + A1) (3.53d)

p

2 2

B. - EL», (0 - x2) (3.53e)

p

2

35 -f (a + A1) A1 (3.5313)

2

3. -$ (A2 - a) A: (3.533)

The solution for the constants of integration is given in the next

chapter.

3.2.2.2 Shear and Bending in y-z Plane

The procedure to derive Timoshenko's beam equation in the y-z plane for

the pipe element shown in Figures 3.6 and 3.7 is the same as described
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in the previous section. The only differences arise in the sign conven-

tion.

The shear angle is given by:

au

)3 - 342! +4, (3.54)

au
fy-GAK [J+¢x] -o (3.55)

The bending relation is:

3"
- 51 x - 0 3.56

mx paz
( )

Equilibrium considerations (Fig 3.7) give the equations

2

35: - (p A +pfAf)a_ux - 0 (3.57)

32 P P 2

at

2

1'3 - f - (p I ”£19253 - o (3.53)
32 Y P P 3:2

Combining Equations 3.55 through 3.58 gives the fourth-order partial

differential equation in the lateral displacement fy(z,t):
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a‘f 62f a‘f EI a2 62f
£1 + A+ - 1+ I + A+
9-4. (”pppfAf)—12 (”pppf f)__22 2‘41“,c —2[(ppppfAf)42]
62 at 62 at psaz at

(pA+p ) 2 2

+ PP fAfa [(pA+pfAf)af1]-O (3.59)
CAR 2 PP 2

ps at at

The solution for the constants of integration is of the same form as for

the shear and bending in the x-z plane. The change in the sign of the

shear angle fix determines sign changes in the rotation and bending

moment, whereas the shear force and lateral displacement remain the

same. Equation 3.53a becomes:

1 ' r ‘
fUy {-Blsinhuxf) -B,cosh(x,‘}) B,s1n(x,§) -B,cos(x,f) A,

ix B,cosh(A1‘;‘) B,sinh(A1‘;‘) B4cos(A2f) B‘sinugf) A2

‘M "' Bssinhulz) escoshuf) 3.31:1023) -B.cos(A2z') ‘A,’ (3'60)
x 1 z 1 2

z z z 1
(FY) . cosh(;\11) Sinhalz) c0302!) sinunw (A5      

where the coefficients of the matrix are given in Equations 3.53b

through 3.53g.
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3.2.3 Torsion About z-axis

Figure 3.8 illustrates the internal moment, mz, acting on the pipe

section and the rotation about the z-axis $2. The equilibrium condition

is given by:

Ez-iniz-o (3.61)
62 P P at:

:11 -GJ 2; -o (3.62)

in which Jp is the polar moment of inertia for the pipe wall. Combining

Equations 3.61 and 3.62 the wave equation for the moment mz(z,t) is:

a m; - £2 a ”z - o (3.63)
2 G 2

82 at

The separation of variables can be used to solve for mzin the above

equation.

mz(z,t) - Mz(z)e3“’t (3.64)
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substitution of the above equation into 3.63 yields

Mz+33_Mz -o (3.65a)

2

where

2 2

7-162 (3.65b)

c

The solution of Equation 3.65a is of the form

- A;

1512(2) - A e 2 (3.66)

Placing the above equation into 3.65a yields the characteristic equation

in A:

2

The roots of this equation are ijA where

.\-:[~,]”- :62[£p_]”’ (3.68)

G

Placing the characteristic value A in Equation 3.66, the solution for M2

is
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Mz(z) - K,e3*§ + Xze'3*§ (3.69)

using the relation in Equation 3.26, the above equation becomes

Mz(z) - A,cos(A§) + A,sin(A§) (3.70)

Where A, and A, are given in Equations 3.27b and 3.27c.

The solution of the rotation W2 about the z-axis is found by placing

Equation 3.70 into 3.61 and using

jwt

¢z<2.t) - *z(2)e (3.71)

we obtain

W (2) - ‘-A- A,sin(Az) - A,cos(Az) (3.72)

z p J 1 2 2

P P

Equation 3.70 and 3.72 can be arranged in matrix form as

__A__ z _;A__ 1
92(2) p J i sin(A£) p J 2 cos(A£) A1

- P P P P (3.73)

Mz(z) cos(Af) sin(A§) A,

The matrix Equations 3.33a, 3.53a, 3.60 and 3.73 constitute the starting

point to derive the field transfer matrices in the next chapter.
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Figure 3.2 Axial Pipe Element

 

 

 
Figure 3.3 Radial Pipe Element
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Chapter 4 3 Numerical Simulation

MA

4.1 Introduction

The equations that describe the motion of five families of waves were

derived in the previous chapter. The separation of variables technique

was used to solve for forces and displacements. The solutions for the

constants of integration of the equations of motion are the connecting

point between this chapter and the previous one. The solution for the

constants of integration are derived in a general form'based on the end.

points of a pipe reach. Once these constants are known for each family

of waves, the transfer matrix is assembled. The transfer matrix method.

is used to find the frequency response of liquid-filled pipe systems.

This chapter gives a description of this method and presents comparisons

with other numerical methods such as the method of characteristics and

the component synthesis method.

56
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The transfer matrix method is the systemization of the Holzer and

Myklestad procedures [50,52,53,54]. Holzer applied the method to tor-

sional systems, whereas Myklestad applied it to bending vibrations of

bars. Both methods calculate the natural frequencies and mode shapes of

the system. This is done by assuming a frequency and starting with a

unit amplitude at one end of the system and systematically calculating

the responses at the other end. The frequencies that satisfy the re-

quired boundary condition at the other end are the natural frequencies

of the system. Their findings are based on the fact that when an un-

damped system is vibrating freely at any one of its natural frequencies,

no external force, torque or moment is necessary to maintain the vibra-

tion. Also, the amplitude of the mode shape is immaterial to the

vibration [53]. These two methods have been applied to lumped mass

systems. The masses are lumped at discrete points of the system called

stations and the portion between the lumped masses is assumed massless

and of uniform stiffness.

The transfer matrix method is suitable for the analysis of large liquid-

filled piping systems made up of subsystems such as pipe links,

snubbers, springs, concentrated masses, rigid supports, valves, pumps,

orifices, and the like. Each subsystem is modeled as simple elastic and

dynamic elements described by a field matrix and a point matrix. At the

stations, the displacements and internal forces of the systems are

arranged in a state vector. The overall transfer matrix is assembled by

the systematic multiplication of the field and point matrices.
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The advantages of this method are:

l. The assembly of complex, branched, parallel, and series systems

is suitable for digital computation,

. Boundary conditions at the ends and at intermediate points in a

system are easy to identify and model,

. The method can be applied to piping systems of non-uniform cross

sections,

. The stability of a system can be checked by the root locus

technique [7],

. Systems with more than two dependent variables can be

analyzed, since the size of the matrices does not depend on the

number of subsystems but rather on the order of the differential

equations governing the systems behavior,

. The method can be extended to stability problems such as flow

induced vibrations and damped vibrations,

. External excitation of the system can be modeled by the extended

field, point, and global matrix and extended state vector, and

. The method can be used to model systems as discrete parameter or

distributed parameter systems.

4.2.1 Description of Transfer Matrix Approach

The procedure to implement the transfer matrix method is illustrated

using a spring-mass system [50] in Figure 4.1. The state vector at

point i is a column vector whose elements are the various displacements,

linear or rotary, of the point i and the corresponding internal forces.
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In the system shown in Figure 4.1, the state vector (Z)i at point i is

comprised of the linear displacement 21 and the spring force f1:

{mi-{21W}.

A field transfer matrix relates the state vectors at two locations in a

system. Equilibrium conditions can be used to obtain the field matrix

of the system. Thus, the displacements and forces to the left of mass

m denoted as (2);": are related to the forces and displacements to the
i

right of mass m1_1 denoted as (2)1;1 by means of the matrix [T]1,

called the field matrix.

Equilibrium of the massless spring (Figure 4.2a) is expressed

L
3L1 - £1 (4.2)

Also,

£3
_ _i-_l

21 21-1 + k1 (4.3)

l...

{éF-[WJWi i-l

or
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(21‘; - Ingmil (4.1m)

In the same form, the state vectors to the left and right of mass mi are

related by matrix [P]i called the point matrix. This is possible be-

cause the transfer between the two adjacent state vectors is over.a

point. Assuming the system is vibrating with a frequency w the follow-

ing equation of motion is obtained, (Fig. 4.2b).

f? - fL 2 (4.5)

R - (4.6)

R ; L .

z 1 0 z

{.5},- 1 1 Hf}.

(2)1: - [Plimli‘ (4.7b)

or

Combining Equations 4.4b and 4.7b renders
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(2)1; - [P1,III,{21§_1 (4.8)

Following a similar procedure, the state vector at the end of a system

(Figure 4.1) consisting of n number of springs and masses, joined end-

to-end can be related by multiplying together the various field and

point matrices in the proper order. Thus,

m“- [P] [I] [P] [I] [P] [I] (2)“ - [BMW (4 9a)
n n n n-l n-l'” l 1 0 0 '

where [U] is the overall transfer matrix of the system

[U] - nlplilrli (4.91))

Once the overall transfer matrix of the system is obtained, the natural

frequencies can be found by applying the boundary conditions. This is

shown for a simple spring-mass system in Figure 4.3. The global trans-

fer matrix of this system is:

1— 1 UR
1 o 1 k 1

[U] - mlml‘ [ “‘1‘”: 1] [° 11 ] ' [ «.162 [1-m2/k1]] (4'10)

The boundary conditions, f, - 0 and z, - 0 and the overall transfer

matrix form the general equation for the system:
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o
{ g }1 - [a] {f }o (4.11)

(4.12)

The well-known frequency of a single spring-mass system is, thus,

derived as:

w - [§]“ (4.13)

This procedure can be used for more complicated systems providing the

field and point matrices for each subsystem are known.

Figure 4.4 shows a liquid-filled piping system composed of straight

links and subsystems such as point masses, springs, and supports that

suppress the pipe motion partially or totally. These subsystems connect

to and have an effect on the response of the pipe wall. A constant-

pressure reservoir and a closed valve affect the behavior of the liquid.

To find the natural frequencies of this system, the field matrices for

straight pipe links, and the point matrices defined where there are

bends, springs, point masses, and supports, must be known. The follow-

ing sections will explain the derivation of these matrices.
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The field matrix for a straight pipe reach is composed of four sub-

matrices representing the vibrations of the liquid and axial pipe wall,

shear and bending in the x-z plane and in the y-z plane and torsion

about the z-axis. Expressions for each submatrix are given. The field

transfer matrix derivation for the liquid and axial pipe wall vibration

is presented in detail. The field matrices for the transverse and

torsional vibrations were obtained by Pestel and Leckie [50] . Their

derivation is presented for completeness. Point matrices for springs,

concentrated masses and bends are also presented. Point and field

matrices for each subsystem are derived with respect to a local rectan-

gular coordinate system, x,y,z. Transformation matrices to express

these matrices in a global coordinate system, X,Y,Z are also presented.

Supports, reservoirs and closed valves are treated as boundary condi-

tions .

4.2.2 Field Transfer Matrices

As mentioned earlier, the field transfer matrix expresses the forces

and displacements at one section of a chain-type structure in terms of

the corresponding forces and displacements at an adjacent section. For

a discrete system, field matrices provide for transfer across the elas-

tic segments between the masses [52,53,54]. To and Kaladi [62] and

Wilkinson [64] use a distributed parameter approach to derive the field

transfer matrices for fluid-structure interaction problems. Wylie and

Streeter [8], and Chaudhry [7] use this approach for oscillatory flow

problems.
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The derivation of the field matrices for a distributed parameter model

involves three steps: 1) converting the partial differential equations

of motion into one ordinary differential equation, 2) finding solutions

for the differential equation, and 3) finding the constants of integra-

tion of the differential equation. Steps one and two are developed in

Chapter 3. The constants of integration are left in matrix form for

each family of waves in section 3.2. These constants are solved as

function of the state vector at the end points of the pipe reach of

length 1 shown in Figure 4.5. A general procedure that can be applied

to any of the matrices of the previous chapter is presented. Either one

of the matrix Equations 3.33a, 3.53a, 3.60 or 3.73 can be represented

as:

2(2) - [3(2)] A (4.14)

where 2(2) is the state vector representing the dependent variables of

any one of the above equations, 3(2) is a matrix that depends on the

geometry of the pipe wall and material properties, and A is a vector

containing the constants of integration.

At point 2 - 0 in Fig. 4.5, 2(2) - 2i_1, the matrix Equation 4.14 be-

comes

21-1 - [3(0)] A (4.15)

Solving for the column vector A in the above equation
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-l
A.- [3(0)] 2L1 (4.16)

substituting Equation 4.16 into Equation 4.14 yields

2(2) - [3(2)] [3(0)1‘1 z,_1 (4.17)

At point 2 - 1, 2(2) - Z1 , so Equation 4.17 becomes

-1
2i - [3(1)] [3(0)] 21_1 - [T] 2L1 (4.18)

where [T] is the field transfer matrix. The field transfer matrix for

each one of the family of waves is presented next.

4.2.2.1 Liquid and Axial Pipe wall Vibration

Equation 4.18 for the liquid and axial pipe wall vibration becomes

(4.19a)

21 ' [Tfplizi-l

where

[rfp] - [3(2)] [3(0>1'1 (4.19b)
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The matrices [3(0)] and [3(2)] are obtained from the matrix of Equation

3.33a evaluated at IOCations i-l and i in Figure 4.5, respectively. The

non-dimensional representation of the field transfer matrix and state

vector are

[r

where

fpl-

 

0C2’Co halal-(mama h '02

2V0'C3 (7”)02'Co T[(T"."1)C3‘cll

2

2V002 %[(7+‘Y)CI'[(T+‘7) +01103] (TH)C2“C° 2V[(0+T+‘1)C3‘C1]

a(C,-aC,) - fihac, -%harC3

2 2

r - 9%!

af

2 2

a - “La-1
a

P

1 - 2v2 5;

b _ I

e

d - 52
Pf

h - :;

2h

Co - A[A:cos(A1) - AZcos(A,)]

A2 *1

C1 - A x—sin(A1) - K—sin(A,)

1 2

'C1+(0+7)C3

-2vrC,

0'02 '00

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

 
20)

213)

21b)

21c)

21d)

21e)

21f)

218)

21h)
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C, - A[cos(A1) - cos(A,)] (4.211)

c, - 63:51:10,) - tangy] (4.213)

2 2 -1

A - [1, - 1,] (4.21k)

2 l 2 *1
A, - 2 (r + a + 1) -[(r + a + 1) - 401] (4.212)

A: - 12‘ {(1 + a + 1) +[(r + a + 7)2 - 4048} (4.21m)

and the non-dimensional state vector at location i in Figure 4.5 is:

T
U F

.2 2 Y. _2
z - (4.22)

The matrix in Equation 4.20 is valid providing that the coupled wave

speeds ratio are different from one another. This condition guarantees

that the eigen values in Equations 4.212 and 4.21m are different from

one another, therefore, avoiding the undeterminate form of Equation

4.21k.

4. 2 . 2 . 2 Transverse Vibration in x-z Plane

Equation 4.18 for the transverse vibration of a pipe reach in the x-z

plane becomes
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21 - [szlizi-l (4.23a)

where

[1,21 - [3(1)] tn<0>1‘1 (4.236)

The matrices [3(0)] and [3(2)] are obtained from the matrix of Equation

3.53a evaluated at locations i-l and i in Figure 4.5, respectively. The

non-dimensional representation of the field transfer matrix [50] and

8tate VBCCOI are

q

  

 

2

Co'002 C1'(U+T)Cs C2 ‘%['0C1+(‘Y+U )Cs]

7C3 60-762 C,-sz '02

- 2
[ngl 102 (7+, )Cs'761 60.,62 -[c,-(a+r)c,] (4.24)

47(01'0C3) 3732 '1C3 Co-aC,

where

2 2

a - (pnAD+pfAf) w 2 (4.25a)

GAP»s

2 2

f - (”212+Pflfi) w 2 (4.25b)

EI

P

2 4

1 - ffnfniffffl w 2 (4.256)

EIp

Co - A[A:cosh(A1) + Aicos(A,)] (4.25d)
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2 2

(A, A,

C, - A T;sinh(A,) + :sin(A,)] (4.25e)

F

C, - ALcosh(A,) - cos(A,)] (4.25f)

F

c, - A §Isinh(A,) - §;sin(x,)] (4.253)

2 2 -1

A - [1, + 1,] (4.25h)

A: - [ 1 + i (a - ¢)2]” - % (a + 1) (4.251)

A, - [ 1 + i (a - 7):)” + % (a + r) (4.253)

and the state vector in the x-z plane at location i in Figure 4.5 is

given by

2

[.1233 525.5“:
21 ' 1 Y 21p 21p 1 (“'26)

The matrix in Equation 4.24 differs from the one by Pestel and Lackie

[50] in that the mass of the contained liquid is included in the

parameters a, r and 1.

4. 2 . 2 . 3 Transverse Vibration in y-z Plane

Equation 4.18 for the transverse vibration of a pipe reach in the y-z

plane can be represented by
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21 - ['I'yz]121_1 (4.27a)

where

[1,21 - [3(2)] [3(0)1'1 (4.27b)

The matrices [3(0)] and [3(2)] are obtained from the matrix of Equation

3.60 evaluated at locations i-l and i in Figure 4.5, respectively. The

non-dimensional representation of the field transfer matrix and state

VGC‘COI are

q

  

F c0'002 '[Ci‘(0+')cs] ‘02 “$1'001+(7+02)Cs]

~1C3 Co-rC, C1-rC, C,

[1&2] - ~1C, (1+72)Ca-7C1 Co-yc2 [c1-(a+,)03] (4.28)

L°7(C1'0C3) 162 16, 60-00,

where the coefficients are given in Equations 4.25a through 4.25j. ‘The

state vector in the y-z plane at location i in Figure 4.5 is

2

U w M 2 F 2 T

21" f x 4‘— L (4.29)
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4.2.2.4 Torsional Vibration About 2-Axis

Equation 4.18 for the torsion about the z-axis is

21' [thlizi-l (4.30a)

where

[rm]? [3(2)] [B(O)I'1 (4.3015)

The matrices [3(0)] and [3(2)] are obtained from the matrix of Equation

3.73 evaluated at locations i-l and i in Figure 4.5, respectively. The

non-dimensional representation of the field transfer matrix and state

VGCtOI' are

-cos(A) -‘1‘81n(a\)

[r (4.31)] .-

‘z 1 A sin(A) -cos(A)

where

2 2 2 P

A - w 2 52 (4.32)

and the state vector, 21 in Equation 4.30a is

u 2 T

21 - 92 63‘ (4.33)

p
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4.2.2.5 General Field Transfer Matrix

The field transfer matrix for a single straight pipe reach shown in

Figure 4.5 is composed of four submatrices: longitudinal vibration of

the liquid and pipe wall, transverse vibration in the x-z as well as in

the y-z planes and torsional vibration about the 2-axis. Their expres-

sions were given in Equations 4.20, 4.24, 4.28 and 4.31, respectively.

The state vectors have fourteen dependent variables: three for each of

forces, moments, displacements and rotations of the pipe wall and pres-

sure and displacement of the liquid. The equation below shows these

arrangements :

zi - [TL] 21.1 (4.34)

where [TL] is the field transfer matrix for a pipe reach of length 2 in

the local coordinate system. The fourteen by fourteen element matrix is

given below:

(4.35)

2 * AB

2 2 T

n F U n: 2 2

2112144 314.251 gxwxmnga},,,,,

K p p p p p p
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4.2.3 Point Matrices

Three types of point matrices for the pipe wall will be discussed:

bends, springs and point masses. Point matrices for structures that

affect the liquid directly, such as orifices, accumulators and oscil-

latory valves'were developed by Chaudhry [7] , and Wylie and Streeter

[8] . Wilkinson [64] developed point matrices for T-junctions, curved

bends and pumps as sources of excitation.

4 . 2 . 3 . 1 Bend Point Matrix

A piping system in two or three dimensional space can be treated as a

collection of straight pipe reaches, differing in orientation and joined

end-to-end. The difference in orientation generates junction coupling

of the fluid pressure and of the pipe wall moments and forces between

the reaches. The junction itself is treated as a discontinuity with

negligible mass and length. Equilibrium and continuity relationships

constitute the basis for point matrices at bends.

The point matrix is derived for two reaches in a two-dimensional space

and is shown in Figure 4.6. The reaches are connected so that a is the

angle between the axis of each pipe. Figure 4.6a shows the internal

forces in the local coordinate system and Figure 4.6b shows the dis-

placements. The equilibrium and continuity conditions that relate the
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state vector, 21; to the right and the state vector, 2;: to the left of

point i are as follows [26,27]:

Equilibrium of fluid displacement, pipe moments and forces (Figure

4.6a):

. L _22x. M: - MK 0 (4.37a)

2F : PRA cosa - FRcosa + l-‘Rsina - PLA 4» FL - 0 (4.37b)
y f z y f 2

EF : -PRA sine + FRsina + FRcosa - FL - o (4.37e)
2 f 2 y y

Displacements: -(VL - U2) + (VR - 01;) - 0 (4.37d)

Continuity of fluid pressure, pipe displacements and rotations (Figure

4.6b):

Rotations: iv: - 1!: (4.37e)

Displacements: U; - U§cosa + Ui‘sina (4.37f)

- 2' Disina - Ui‘cosa (4.37g)

Pressures: PL - PR (4.37b)

These equations are assembled in matrix form as:
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' U ‘R r- . ' U ‘L

2; case 0 0 0 sina O 0 0 2;

1’- o 1 o o o o o o 1’—

K* 18"

ii -(l-cosa) o 1 o sina o o o ‘3?

F F
.2. a _ 1 .2.
ApE 0 b(1 case) 0 cosa 0 0 0 gsina ApE

.11.- «U >(4.38)

I! ~sina o o o cosa o o o 723

9x 0 o o o o 1 o 0 1x

Hg 0 o o o o o 1 0 up

2

F 2 F 2

E¥_— 0 gqb sina 0 ~g sina 0 0 0 case 1 E¥—-

1 911 ‘ . . 911

or

2‘; - [2,2112% (4.39a)

and

2

A 2

g - '11)— (4.3%)

p

A

q - A: (4.39c)

9

4.2.3.2 Spring Point Matrix

Piping systems generally are supported at several locations, restricting

motion partially or totally, or they may be placed on an elastic founda-

tion. The elastic foundation can be represented by springs. Each

spring can be modeled as a point matrix.
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Suppose the pipe reach in Figure 4.7a has a spring support and is

vibrating in the y-z plane and in the axial direction z. The state

vectors to the right and left of point i, II; and 21;, can again be

related by a point matrix. The lateral displacement, rotation, moment

and axial variables are continuous over point 1. But because of the

spring restoring force, a discontinuity occurs in the shear force. When

the spring is deflected by.an amount Uy’ the restoring force is kin,

where k1 is the stiffness of the spring (Fig. 4.7b). The relations

between the state vector elements to the left and right of the spring

are then

0: - U: (4.40s)

PR - PL (4.40b)

(vR - 0:) - (vL - U2) (4.40c)

F: - F: (4.40d)

U; - U; (4.40e)

wfi - w; (4.40f)

M: - M: (4.40g)

F; - F; - kin; (4.40h)
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Here the subscript i of the dependent variables has been dropped for

clarity. In matrix notation, and in non-dimensional form the equations

      

become:

rU ‘R _ . rU ‘L

3‘ 1 o o o o o o o 31

3— o 1 o o o o o o 2-

x* K*

1 .Y.
1 o o 1 o o o o o 2

F F

-‘— o o o 1 o o o o -5—
APE APE

< U > - < U + (4.41)

:1 o o o o 1 o o o I!

tx o o o o o 1 o o wx

2.5 1.:
El 0 o o o o o 1 0 E1?

F 23 k 23 22
_x__ __i. _x__

RI 0 ° ° 0 HI 0 ° 1 1 HI
. 9 J1 . p - L .1

or

2% - [ri112§ (4.42)

4.2.3.3 Mass Point Matrix

Valves, accumulators and control instrumentation can be modeled as

concentrated or point masses. For example, consider the pipe reach in

Figure 4.8a which has a valve of mass 1111 in the mid-span. Assume that

the radius of gyration of the mass of the valve is zero about the x-axis

and that the system is vibrating in the y-z plane as well as in the
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axial direction 2. The point mass matrix connecting Z? and Zi‘ is found

by noting that the lateral displacement, rotation and moment as well as

the axial variables are continuous across m1,so that

U: - U: (4.43a)

PR - PL (4.43b)

(vR - 0:) - (vL - vi) (4.43c)

U? - U; , (4.43d)

w: - w: (4.43e)

Mi - M: (4.43f)

An inertia force causes a discontinuity in the shear and axial force due

to the vibrating mass. Equilibrium considerations in the free-body

diagram shown in Figure 4.8b yield

2

F; - F; - miw U; (4.433)

2

FR - FL - m UL (4.43h)
z z 2

In non-dimensional matrix notation Equations 4.43a through 4.43h become
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'U ‘R p « ’U ‘L

31 1 o o o o 0 <> 0 31

2— o 1 o o o o o o 3-

K* x*

X E
2 02 o 1 o o o o o 1

F mwl F

4L. __i__ .JL
‘AE ‘AE o o 1. o o c) 0 ‘AE

p p p

+ U > - 1 U L (4.44)

I! o o o o 1 o o o 31

2x 0 o o o o 1 o 0 ex

M2 M2

-3- o o o o o o 1 o -3—
E1 E1

p p

F 22 m «.1228 F 22
J— o 0 0 o__1.__o o 1 L—

E1 E1 1 E1

Lin b P deJ1

or 2% - [PE]12§ (4.45)

4.2.4 Overall Transfer Matrix

The overall transfer matrix relates the state vector at one end of a

system to that at the other end. The matrix is obtained by an ordered

multiplication of all the intermediate field and point matrices [7].

Once the field and point matrices for each subsystem have been obtained,

three steps are necessary to form the overall transfer matrix. The

first step consists of rearranging the terms of the matrices. The

second step transforms the matrices from a local to a global coordinate

system by using transformation matrices. The final step is the ordered.

multiplication of the transformed matrices. The first two steps are

considered next.
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4.2.4.1 Overall Transfer Matrix Rearrangement

The state vector in Equation 4.36 has fourteen elements corresponding to

fourteen dependent variables that are necessary to describe a liquid-

filled piping system in a three dimensional space. Assume that the

piping system is in the y-z plane. This piping set-up allows motion in

the axial direction, 2 and in the y-z plane. The state vectors and

transfer matrix are given by:

(4.46a)

or

21 - [11121.1 (4.46b)

where [Tfp] and [Tyz] are given in Equations 4.20 and 4.28, respec-

tively. The state vector 21 is given by:

U U F 1

{15355: skis-41L} «mm
X p p p 1

In order to keep the variables subjected to continuity and equilibrium

conditions separate from one another [26,27,50], the state vector is

rearranged
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UU 1421:2er
z_£Wx_2_z!Js__y___z (443)

1 K* 2 2 2 EIp 31p APE ‘

To have the transfer matrix compatible with the state vector in Equation

4.48, the columns and rows of the matrix in Equation 4.46a must be

rearranged. Comparing the state vectors in the two previous equations

*

one can see, for example, that the second element, P/K , is now the

first and the sixth element, fix, is now the second. In a similar

manner the transfer matrix is rearranged. Row and column shifting can

be achieved in two steps. First, the columns are rearranged by postmul-

tiplying the transfer matrix by a square matrix [to]. Then,

rearrangement of rows is accomplished by premultiplying by [tR] so that:

[IL] - [5,] [r] [to] (4.49)

where [tR] is given by:

‘I l

(4.50)Ital -

O
O
O
O
D
—
‘
O
O
O

O
O
O
O
O
O
O
H

O
O
O
H
O
O
O
O

H
O
O
O
O
O
O
O

C
O
O
O
O
H
O
O

O
O
O
O
O
O
H
O

O
O
H
O
O
O
O
O

O
H
O
O
O
O
O
O

  I l

and [cc] - [ck]t (4.51)
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The final field transfer matrix, in local coordinates, is given in the

equation below:

      

F ‘ f f f f q r w

2; Tag 0 0 T2? Tag 0 0 T2? 2;
K

K

2 2

ix 0 1;"; TX? 0 0 IX, 1);, 0 ix

U
U

f o 11’? Ti"? 0 o 131'? 11'? o 31

U
U

f f f f
3‘ TI? 0 o 1.? 1,1; 0 0 n? 3‘

1 32; »- 1f? 0 o '15? TE? 0 o if? < % L (4.52)

in: o Tyz T3" 0 o Tyz 1‘2" 0 535
32 31 33 CBIB

31?
2

5i. yz yz yz yz 5i
0 T42 T41 0 0 T43 T44 0

El E1
p

P

1'.-
F

{‘3 If? 0 0 15? TE? 0 0 1'59 fig
L P a 1 L

‘ 1 L P ‘ 1-1

or

where the elements of the matrix [TL], ng and Ti: are given in

Equations 4.20 and 4.28, respectively. The subscripts R and C in each

element of [TL] refer to rows and columns. The procedure described can

be generalized to a three-dimensional space. The size of the overall

transfer. matrix will be fourteen by fourteen. The state vector will be

composed of three rotations, displacements, moments and forces, in

addition to the liquid pressure and displacement.
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4.2.4.2 Coordinate Transformation

State vectors and field and point matrices are developed based on the

local coordinate system, x,y,z, associated with each particular subsys-

tem. In order to relate the state vectors at the end of a pipe reach to

those at the end of an adjacent pipe, the state vectors are expressed

with respect to a set of global coordinates, X,Y,Z, fixed with respect

to the piping system.

The state vector 21. with respect to the local coordinates, x,y,z, and

the state vector 26 with respect to the global coordinates, X,Y,Z, are

related by the transformation matrix It]:

2L - [1:126 (4.54)

where

U 5215 F22 F T
_ 2 ‘1' .1 .4 2 .1. _z

ZL. {x* x 2 2 2 El E1 AE} (“553)
p p p

,_ 2 4911411111253" (455,,
c 18" 2 2 2 up up APE ‘

To obtain the transformation matrix, the orientation of the pipe reach

with respect to the global axis must be defined. The orientation is
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defined by using the direction cosines of the local axis with respect to

the global axis. This is expressed in matrix form as:

x cos(¢pu) coup”) cos(cp13) X

y - cos<¢21> com") cos(¢2s) 32! (4.56)

2 cos (w; 1) COS (9: 2) cos (‘P3 3)

where (ppq is the angle between the local and global axes. The subscript

p refers to the local axis, whereas q refers to the global axis. This

is shown in Figure 4.9. As an example, Figure 4.10 shows a pipe reach

in both the local and global coordinate systems. The local coordinates

have been rotated about the X-axis, which is perpendicular to the plane

of the paper. The local y-axis and global Z-axis coincide. The follow-

ing relations can be observed:

X

Y (4.57)

2

or

2L- it] 2c (4.58)

The transformation matrix for this example is:
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8S

‘

' F

F2; 1 o o o o o o o 1’; l
K

K

wx o 1 o o o o o o ”x

U
U

f o o o 1 o o o o f1

U
U

f o o -1 o o o o o 32

4 %'> - 0 0 0 0 1 0 O 0 < %’ > (4.59)

M 2 2

J‘- o o o o o 1 o o 555-
EI

31
p

P

F 22
F 12

l— o o o o o o o 1 3—
E1

E1
p

P

F
F

212'? o o o o o o -1 o XZE
L p JL L

4L P JG

The relation between the local state vector at locations 1 and i-l is:

{2L}i - [Ti]1{zL}i-1 (4°60)

Combining Equations 4.54 and 4.60 and remembering that [t]-11- [t]t the

following relation is obtained

t

(2C), - [t1 [T111I‘1‘Zc’1-1 (4.61a)

or

(zb); - II¢I}(ZC)§_1 (4.61b)

and

[T411 - [tlt [Tililt] (4.61c)
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where [TG]1 is the field transfer matrix in global coordinates relating

the state vectors at the two ends of a pipe reach. The state vectors

are defined with respect to the global coordinate system.

Similar procedures for rearranging and transforming the coordinates from

local into global can be applied to the point matrices defined in

Equations 4.38, 4.41 and 4.44. The overall transfer matrix for the

system shown in Figure 4.4 between points 7 and S is given by:

[U] - [Pg]7ITG]7[P§]5[IG]6IP31SITGJS... (4.62)

The number of columns of the overall matrix may be reduced according to

the boundary conditions at one end of the system or increased, in the

case of a rigid support, to account for the new unknown introduced by

the intermediate boundary condition. These special conditions will be

defined in the next section.

4.2.5 Boundary and Intermediate Conditions

Boundary and intermediate conditions are restrictions imposed on the

system affecting the degrees of freedom of the pipe or liquid. The

natural frequencies of the system are dependent upon these conditions.
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4 . 2 . 5 . 1 Boundary Conditions

Figure 4.11 shows a piping system vibrating in both the axial direction

2 and in the Y-Z plane. The boundary conditions at location 0 are a

reservoir of constant pressure for the liquid and restrictions on rota-

tions and displacements of the pipe. The reservoir represents an open—

end condition in the liquid, whereas the restriction of pipe motion is a

fixed-end condition. Since the reservoir level is constant, a pressure

node always exists at this end. This boundary will be referred to as an

open-fixed end condition. The state vector, in global coordinates, at

this end is given by:

    

rP ‘ r0 1

ix 0

UY 0

U2 0

Jv» - 4v» (4.63)

FY FY

LFZJO LFZJO

At location 1 in Fig. 4.13 there is a closed valve and a release (for

example, a flexible hose of negligible length) that allow pipe motion.

Moment and forces in the pipe vanish due to the release. A liquid

pressure antinode exists at this end due to the presence of the closed

valve. Assuming that the release does not affect the fluid pressure and

that the valve is rigid so that fluid displacement is not allowed, the

state vector at this closed-free end condition is given by:
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’1) ‘ FP )

“'11 'x

UY UY

U2 U2

«v > - (o > (4.64)

MK 0

FY o

F o
L ZJ 1 L J 1

4.2.5.2 Intermediate Conditions

Rigid supports and external excitations of the piping are the inter-

mediate conditions studied in this research. Figure 4.12 shows these

two intermediate conditions. Lesmez, et a1. [66] presented a descrip-

tion of these conditions.

1) Rigid Supports

A rigid support restricts all motion of piping at a given location.

This support condition may be represented by increasing the number of

columns of the transfer matrix. The increase in the number of columns

accounts for the reaction at the location and increases the number of

unknowns. This boundary condition can be illustrated by a simple ex-

ample. The clamped-clamped beam in Figure 4.12a has a support at

location 2. Let T1 and T2 be the field transfer matrices between points

1 and 2, and 2 and 3, respectively. The matrices T1 and T2 can be

written as follows:
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T111 T112 T113 T116 T211 T212 T213 T214

T121 T122 T123 T124 T221 T222 T223 T224

[Tl] - T131 T132 T133 Tls‘ , [T2] - T231 T232 T233 T234 (4.65)

T141 T142 T143 T144 T241 T242 T243 T244

The state vector for shear and bending in the Y-Z plane is given by:

z-(Uw F}T (466)
YXMXY °

Applying the fixed boundary conditions UY - 0, Wx - 0 at l, the first

and second columns of the field transfer matrix [T1] are dropped and the

state vector becomes { Mx FY )T. The rigid support at point 2 causes a

discontinuity in the shear force according to the relation

L
- FY + Q (4.67)

This restraint also introduces the relation

- O - T113Mx1+ TII‘FY (4.68)U

Y 12

In order to introduce the reaction Q, a column is added in the field

transfer matrix. It has unit value in the row corresponding to the

discontinuity, as shown in the equation below.
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R. 11,, T1,,UY 0

w 11,, 11,, 0 fix

-- T133 Tls‘ O Y (4.69)

Y 2 Tl‘s Tl“ 1 Q 1

Point 3 is reached by multiplication of the modified matrix T1 by the

field transfer matrix [T2]:

T211 T212 T213 T214 ~ T113 T114

H
0
0
0

    

[I] - T231 T232 T233 TZS‘ T133 Tls‘ (4.70)

T2“ T2“ T2“ T2“ T1“ T1“

Equation 4.66 can be added to the overall transfer matrix:

(UY‘ PU“ 012 U1: .

‘1' U21 ":2 U2: “X1

1 _ U31 U32 Us: 4
1 U U FY ( .71)

y n 42 cs 1

0 J3 T1,, T1“ 0 Q

or

23 .. [a] 21 (4.72)

where the state vector at location 1 includes the reaction at location 2

and the state vector at location 3 has now five elements ..

2) External Force

A static or harmonic force can be represented by an extended state

vector and an extended transfer matrix. Figure 4.12b shows the same

beam as the previous figure, but now at point 2 a harmonic force of
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amplitude Q and frequency 0 is being applied. The force at location 2

is given by the relation

F? _ FL 1 Q (4.73)

This equation is introduced in the transfer matrix by adding one row and

one column to matrix [T1] in the following manner:‘

UY R '11,, '11,, o

w 11,, 11,, o :5,

' 1:: T134 0 Y (4.74)

Y 1,, '11,, Q 1 1

l 2 0 0 1

where one more equation has been added: 1 - l.

The overall extended transfer matrix is given by the product of the

matrix in Equation 4.74 and that in [T2] . The final matrix equation

that expresses the state vector at 3 is:

 

   

U U11 U12 Q1

WY 321 U22 32

_ si 32 a 4.75

gfi U41 U42 Q4 {1Y}1 ( )

1Y 3 _ o o 1 .

or

23 - [u] 21 (4.76)

where the Q1, Q2, Q3 and Q, represent the forcing terms.
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4.2.6 Natural Frequencies

The natural frequencies of liquid-filled piping systems are important in

the design process. Let [U] and 2 be the global transfer matrix and

state vector of the single pipe reach vibrating in the Y-Z plane shown

in Figure 4.11. The global transfer matrix relates the state vectors at

the end points

21 - [U] 20 (4.77)

The natural frequencies of this system depend on the boundary conditions

described in Equations 4.63 and 4.64. Because some of the variables are

zero at the boundaries, the number of elements of the state vectors at

locations 0 and l is reduced. Therefore, the order of the global trans-

fer matrix is also reduced. For example, the plane vibration of the

pipe reach has eight variables. Four variables are known at each end

reducing the number of elements of the state vector to four. This can

be represented by

0 055 U56 U57 Us: V

. 0 nos 66 U67 us: fix

0 ' 15 76 17 U1: y (4-73)

0 1 as so 31 Use F2 0

or

(011- [01120) (4.79)
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where the vector 2 represents the non-zero variables and the order of

the matrix [II] has been reduced by the boundary conditions that are

zero. To have a non-trivial solution the determinant of the reduced

matrix must be zero

A-|[U]| (4.80)

This generates an equation for the circular natural frequency m. In

practice [50] , the procedure adopted is to choose certain values for w

and compute the corresponding values of the frequency determinant 11(4)).

The values of the determinant are then plotted against the frequency w.

The values of m at which the determinant equals zero are the natural

frequencies of the system.

4 . 2 . 7 Mode Shapes

After the natural frequencies have been determined, the mode shapes of

an elastic system can be found in terms of one variable. For example,

assume that the fluid displacement at location 0 in Figure 4.11 has a

unit amplitude. Equation 4.78 then becomes

U55 U56 U81 U53

U65 U66 U67 Use

' U75 U16 U71 U"

1 Us; so U31 Us:

 

(4.81)

0
0
0

0

(
«
H
A
E
I
“
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where the partitioning corresponds to the unknown variables. Once the

variables at 0 are known, the variables at specified locations of the

pipe reach may be found. This is accomplished by evaluating the trans-

fer matrix at the natural frequency and at the given location. Then,

the transfer matrix is multiplied by the state vector at the initial

location. This is represented by

  
    

r? ‘ [T15 T16 T11 T18.

wx T25 T23 T21 T23 ' ‘

UY T35 Tao T31 T33 V

U2 T45 T46 T41 T43 ”X

1V * - T55 T55 T51 T58 1FY> (4.82)

"X T65 T66 T87 Too Fz

FY T15 T76 T11 T73 L .0

(F2) 1 st5 Tu Tu Tu‘

where i represents a location along the pipe reach. This procedure is

followed until the other boundary is reached.

4 . 2 . 8 Frequency Response

The transfer matrix method can be used to determine the frequency

response of systems having one or more periodic forcing functions.

Chaudhry [7] describes a method to determine the frequency response of

these systems. The extended matrix and state vector concepts and the

method of superposition can be used to find the total response. The

response of the system to each forcing function is evaluated and the

results are then superimposed to determine the total response of the



Chapter 4 Numerical Simulation

95

system. Determining the response for a forcing function of frequency 0

involves evaluating the global transfer matrix at that frequency. Then,

the response of the dependent variable such as forces and displacements

at the starting point are found by following a similar procedure to the

one used to compute the mode shapes. For example, the moment and force

of the system shown in Figure 4.12b and represented in Equation 4.75,

become

U U Q0 11 12 1

0 - U21 U22 Q2 :XY (4.33)

1 3 0 0 1 1 1

Once the conditions at location 1 (Figure 4.12b) are known the response

at the desired locations can be found by evaluating the transfer matrix

from the starting point up to that location. This procedure is followed

for each frequency of the frequency range at a specified frequency

interval.

4.3W

The transfer matrix method is compared in this section with the method

of characteristics (MOC) [5,6,7], the component synthesis method (CSM)

[34,35,36] , and with experimental data available in the literature. Two

piping systems are used to make the comparisons. The first system is a

one-dimensional liquid-filled pipeline with a reservoir that has a

closed end, either free or fixed. The second system is an L-shaped pipe
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connected to a reservoir and free at the other end. The L-shaped pipe

was tested at the David W. Taylor Naval Research and Development Center

in Maryland [24] . This pipe has been extensively studied. The previous

modeling efforts included direct analytical solution of simultaneous

differential equations [24], component synthesis using finite element

discretization (Nastran) for the structural elements [37] and finite

element analysis in three dimensions [86] .

4. 3. 1 Method of Characteristics

The method of characteristics has been widely used to estimate the

response of liquid systems to transient events. A description of the

method is presented by Wylie and Streeter [6] and Chaudhry [7] . The MOC

has also been used to model waves propagating in beams including rotary

inertia and shear deformation [89] . Numerical difficulties in modeling

beams have made the MOC unattractive in modeling liquid-filled pipings

for plane vibration [65] . This method was used by Otwell [l9] , Wiggert

et a1. [20] , and Budny [22] to compare experimental data in which fluid-

structure interaction was allowed. Budny [22] incorporated damping in

both the pipe and the liquid. His model is used here to predict the

pressure response of the one-dimensional pipe with no energy dissipa-

tion. Table 4.1 shows the characteristics of a straight copper pipe

filled with water .
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m1

PROPERTIES OF STRAIGHT LIQUID-FILLED PIPE

Pipe ' Liquid

Property Value Property Value

Young's Modulus 117 GPa 3 Bulk Modulus 2.2 Gpa 3

Density 8940 kg/m Density 1000 kg/m

Poisson's Ratio 0.45

Inside Radius 13 mm

Thickness 1.2 mm

Wave Speed 3744 m/s Wave Speed 1248 m/s

Boundary Conditions

Case a Fixed-Fixed Open-Closed

Case b Fixed-Free Open-Closed

The Poisson's ratio has been adjusted to 0.45 so that the ratio of the

coupled wave speeds is three. Taking the pipe wave speed as a mutiple

of the liquid avoids any interpolations that may introduce numerical

errors in the MOC [6,90]. The relative displacement as well as the net

force must be zero at the free end condition as described by Budny [22].

Inertia forces are not included at the free end. A sinusoidal function

applied to the liquid at the open-end is the source of excitation in

both cases. A fast Fourier transform (FFT) analysis of the time history

generated by the MOC is performed to obtain the frequency response. The

pressure amplitude response at the closed end is plotted in Figure 4.13.

The natural frequencies are the same regardless of the method of com-

putation. Table 4.2 shows the natural frequencies for both cases. The

results for Case a are shown in Figure 4.13a. Case b shows that when

the pipe wall is free in the axial direction, the third liquid and first

pipe natural frequencies coincides at 12 Hz. The frequencies of both



Chapter 4 Numerical Simulation

98

the liquid and pipe are split apart to 9.0 and 14.4 Hz. The same result

occurs at the ninth liquid harmonic which coincide with the second

natural frequency of the axial pipe wall at 36 Hz. Figure 4.13b shows

this result .

was

RAMA]. WES ma STRAIGHT PIPE

Case a Case b

Frequency Type Harmonic Frequency Type Harmonic

- (HZ) (Hz)

4.0 F l 4.0 F 1

11.7 F 3 9.0 P 1

19.4 F 5 14.4 F 3

23.4 P 1 19.4 F 5

27.4 F 7 27.3 F 7

35.1 F 9 32.4 P 2

42.8 F 11 37.8 F 9

46.8 P 2 42.8 F 11

50.8 F 13 50.7 F 13

F - Fluid, P - Pipe

4.3.2 Component Synthesis Method and Experimental Data

The second comparison of the transfer matrix method is with the com-

ponent synthesis method and experimental data. Hatfield et a1. [37]

devised the component synthesis approach which is an extension of the

modal synthesis technique. [36] for dynamic analysis of structures. The

L-shaped pipe in Figure 4.14 was used to validate the CSM. Table 4.3

describes the properties of the pipe, 70% copper and 30% nickel and

filled with oil [24] .
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MAJ

PROPERTIES OF LPSHAPED LIQUID-FILLED PIPE

Pipe Liquid

Property Value Property Value

Young's Modulus 157 GPa3 Bulk Modulus 2 Gpa

3

Density 9000 kg/m Density 872 kg/m

Poisson's Ratio 0.34

Outside Diameter 114 mm

Inside Diameter 102 mm

Radius of Bend 102 mm

Sound Speed

In-Situ 1372 m/s

Boundary Conditions Fixed-Free Closed-Open

A correction for the flexural stiffness, E1, of the bend was used for

both numerical methods. A curved pipe subject to bending is less stiff'

than would be indicated by elementary theory of bending [87]. The

correction formula developed by von Harman [88] is

2

n _W (4.34)

10 + 12(eR/r )

where n is the correction factor for the flexural stiffness, R is the

radius of the bend, r is the inside radius of the pipe and e is the

thickness of the pipe. The CSM does not include the Poisson's coupling;

because in the computation of the normal modes of vibration of the pipe

the interaction with the liquid is not considered. However, the mass of

the contained liquid is included as part of the total mass. The first

lobar mode of the cross section is 850 Hz.
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The pipe frequencies for the CSM are computed by using the finite ele-

ment program Nastran. Ten modes and 25 elements are used.in the

computations. Seven pipe reaches are used to model the pipe by using

the transfer matrix method. The 90 bend is modeled using three pipe

reaches each with a relative change of 30. in orientation. The liquid

in the pipe was excited by a harmonic oscillator. Neither structural

nor fluid damping are considered in the computations. The liquid is

free to move at the free end. The mobility (ratio of velocity over

force) of the liquid at the excitation point and free end, as well as

the mobility of the pipe in the Y and 2 directions are shown in Figure

4.15. Discrepancies in predicted and measured responses in the vicinity

of the amplitude peaks are because damping was not included in the

computed analysis. In non-resonant frequency ranges, differences in the

responses predicted by the two analyses are minor compared to the devia-

tions of both predictions from observed responses, particularly in the

structural responses (Figures 4.15c and 4.15d). The discrepancy in the

structural mobility may be caused by the flexibility factor which is

significant in accurately modeling elbows [86] .
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Figure 4.5 General Straight Liquid-Filled Pipe Reach
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Figure 4.9 Definition of Local and Global Axes
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Figure 4.10 Coordinate Transformation of Straight Pipe Reach



Numerical Simulation

 
 
 

 

 

Chapter 4

106

Y

g L
0 Z 1

21%
I

0 1

Figure 4.11 Boundary Conditions

Y

1 3

| [T11 2 [12]] I

g! 77); I52
1 3

0) Rigid Support

Y

1 3

[T1] 2 [12] l |

ii IE 2
3

1 Q*sin(0t)

b) Harmonic Force

Figure 4.12 Intermediate Boundary Conditions
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a) Coee a. Preeeure at Fixed-Cloud end
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a) Amplitude of mobility of liquid at O
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C) Amplitude of mobility of pipe at 7. in Y direction
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The analytical model derived in Chapter 3 and the methodology described

in Chapter 4 incorporate the flexural and torsional modes of vibration

into an existing coupled axial pipe wall andliquid model. This

model represents five families of waves. Four of the waves propagate in

the pipe wall and one in the liquid. The previous section compared the

frequency responses of the proposed model to the method of characteris-

tics and the component synthesis method. The model was also compared

with experimental results available in the literature.

This chapter describes the experimental apparatus that was designed and

built to validate the proposed model. The comparisons of the previous

chapter validate the model only partially because the excitation was

applied to the liquid column and the natural frequencies of the liquid

were unchanged. The experimental apparatus is designed to excite the

natural frequencies of a piping system. The excitation is harmonic.

lll
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The experimental apparatus was located in the basement of the

Engineering Building on the campus of Michigan State University. The

piping system, the experimental procedure and the sources of experimen-

tal error are described in this chapter. Appendix B describes the data

acquisition equipment utilized, including the hardware and software.

5.2W

This section examines the components considered in the design of the

apparatus. These components will be discussed in reference to either

the pipe or the contained liquid. Liquid medium, constant pressure

reservoirs and a valve are the components related to the liquid. Pipe

material, pipe supports and the external shaker are associated with the

pipe. The final component of the experimental apparatus is the data

acquisition equipment. Figure 5.1 shows the piping system set-up.

5.2.1 Liquid Components

5.2.1.1 Liquid

The liquid used in the experiments was water from the university water

supply system. Table 5.1 [78,79] lists the physical properties of the

water .
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m1.

PHYSICAL HOMES 0F LIQUID

Property 1 Value

Temperature 25.0 'C 77. °F

Bulk Modulus (K) 2.2 GPa s 320. kpsi 3

Density (p) 997.0 kg/m 1.93 slugs/ft

5.2.1.2 Constant Pressure Reservoirs

The upstream and downstream reservoirs each consist of two 454 liter

vertical F.E. Myers Model V1206 l48OOC8 well tanks. Each tank is rated

for 517 kPa (75 Psi). The set-up of the tanks is shown in Figure 5.2a.

A one inch U.S. nominal diameter pipe connects the bases of the pair of

tanks, allowing them to act as a single reservoir.

The tanks are pressurized with Engineering Building air supply that has

a maximum pressure of approximately 650 kPa (94 Psi). The air pressure

allows a constant liquid pressure at point C as shown in Figure 5.1.

The air supply passes through a Schrader Model 3564-2000 pressure

regulator, and is directed through an orifice on top of the tanks with a

common header. The header is used to maintain equal air pressure in both

tanks .

The tanks are filled with water through a hose connection on the one

inch nominal diameter transfer line at the base of the tanks. This

transfer line is connected to the one inch diameter pipe at the base of

each reservoir and has a shutoff valve at each end. In addition to
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allowing filling and emptying of the tanks, this transfer line is used

to transfer water between the reservoirs. Water level in the tank is

monitored using a sight glass connected to the orifices on the side of

one of the tanks in each reservoir. These tanks are also used to purge

the air from the system. The purging procedure described by Budny [22]

was used. The open boundary condition defined in section 4.2.5.1 is

simulated by the set of tanks at one end of the piping system.

5.2.1.3 Valve

A fast closing valve, described by Budny [22], was placed at one end of

the piping system, as shown at point A in Figure 5.1. Figure 5.2b shows

two views of the valve. For the purposes of this study, the valve was

kept in the closed position simulating a dead-end [6,7] .

5 . 2 . 2 Pipe Components

5.2.2.1 Pipe Material

The pipeline used is a one inch U.S. nominal diameter type L copper pipe

with standard soldered fittings. Unions are installed at intervals of

approximately 7.3 meters (24 ft.) along the pipeline to allow for

changes of the total pipe length. Figure 5.1 shows the pipeline set-

up. Table 5.2 [78,80,811 lists the physical properties of the piping

system .
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MILL}

PHYSICAL PROPERTIES-0F PIPING SYSTD!

Property Value

Young' 8 Modulus (E) 117 . 0 GPa 17 . 00 Mpsi

s s

Dens1cy* (p) 8900.0 Kg/m 17.30 slugs/ft

Inside Radius (r) 13.0 mm 0.51 in

Outside Radius 14 . 3 mm 0 . 56 in

Thickness (e) l . 3 mm 0 . 05 in

Poisson's Ratio (u) 0.35

* Determined by water displacement [22]

5.2.2.2 Pipe Supports

Unistrut model P2031 pipe clamps mounted approximately 3.7 meters (12

ft.) apart are used to provide support of the pipe to the wall. In

addition, rigid supports are connected to the piping at each elbow to

eliminate axial motion .

Each rigid support is an aluminum block bolted to the wall. Each block

has a hole matching the CD of the pipe drilled in its center. Each

block is cut in half through this hole and bolt holes are drilled

through both sections. Bolts are then used to hold the two pieces

together enabling the block to act as a vise, squeezing the pipe around

its entire circumference. The entire support is then bolted to the

wall, using 3/8 inch Red Head anchor bolts.

Rope hangers are used to hold the piping at locations where neither one

of the above supports are placed. The locations of the supports are



Chapter 5 ' Experimental Apparatus

116

displayed in Figure 5.1. The Unistrut supports may be replaced by rigid

supports to vary the length of the piping. The procedure to change

these supports is discussed in section 5.2.3.

5 . 2 . 2 . 3 External Shaker

The excitation of the pipe is induced by a reciprocating force produced

by an external shaker. The shaker is a crank-slider mechanism that

transfers rotary motion to reciprocating motion. Top and side views of

the mechanism are shown in Figure 5.3. Figure 5.4 shows a sketch of the

same mechanism. The mechanism consists of five major elements: a motor,

crank, connecting rod, linear bearing structure and connecting spring.

These elements will be described next.

The motor is a Dayton model 42140, permanent magnet DC variable-speed

motor with a Dayton SCR control which allows changes of the rotational

speed. The rated frequency and torque of the motor are 1800 RPM and 0.5

N-m (4.38 in-lb), respectively. The motor is mounted on a structure

made of 102 mm (4 inch) L-shaped steel bars bolted to the wall. This

structure prevents any vibration that may interfere with the experi-

ments. A flywheel is attached to the end of the shaft of the motor.

Bolted to the flywheel is an aluminum disk. A distance of 1.5 mm be-

tween the center of the aluminum disk and the center of the flywheel

forms the crank of the slider mechanism. A 1/2 inch Heim Unibal

Spherical Rod End Bearing is joined to the aluminum disk by a 6.4 mm

screw. This joint is a pin-type connection, as shown at point C in
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Figure 5.4. The pin connection, which follows a circular path, trans-

fers the rotary motion of the crank to the spherical bearing. The

spherical bearing is screwed to a one inch diameter aluminum rod. At

the other end of the rod there is a similar spherical bearing that

connects to a linear bearing structure by a wrist-type connection. The

motion at point P in Figure 5.4 oscillates along a linear path. The

transfer of rotary motion to reciprocating motion occurs along the

aluminum rod, whose points follow elliptical paths. The total length of

the link is 880 mm (Figure 5.3). Two pairs of 1/4 inch linear self-

aligning, super—ball bushing bearings slide on two stainless steel rods,

simulating piston-type motion of the linear bearing structure. The

static coefficient of friction is 0.2% [82]. These rods are supported

on acrylic blocks which are glued to an acrylic base. The base is

mounted on a L-shaped steel bar bolted to the wall. A 1/2 inch steel

rod anchored to the bearing structure, in the same plane as the link,

connects to the spring. Table 5.3 gives the technical information

concerning these shaker components.

5.2.2.4 Spring

The reciprocating motion of the linear bearing structure is transmitted

to the pipe by a round-wire helical compression spring. The spring

allows a linear relationship between the reciprocating displacement at

the bearing structure and the force that is transmitted to the pipe.

The technical information regarding the spring is shown in Table 5.4

[13].
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mm

SHAKER COMPONENTS

Component Material Diameter Thickness Length Mass

(an) (Inn) (M) (3m)

Motor Shaft 12.7

Flywheel Steel 127.0 32.0 2980

Disk Aluminum 61.0 22.9 150

Crank Off-Center 6.4 1.5

Heim Uniball Spherical

Rod End Bearing 12.7 76.2

Rod Aluminum 25.4 825.0

Link 880.0* 1350

Linear Bearings 6.4 20.3

Linear Bearing

Structure 1510

Rod Connector Steel 12.7 140.0

* Total distance between point C and P in Figure 5.4.

(See Figure 5.3)

m

SPRING PROPERTIES

Property value

Material Hard-drawn steel wire, zinc plated*

Mass (mg) 20.3 gm

Spring Constant (kg) 7.0 kN/m 40 lb/in*

Modulus of Rigidity (G) 79.3 Gpa 11.5 Mpsi

Mean Spring Diameter (D) 15.9 mm 0.63 in

Wire Diameter (d) 2.4 mm 0.09 in

Active Coils (N) 11*

Natural Frequency (fs) 290.0 Hz

Spring Ends Both ends squared

* Obtained from the manufacturer
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The spring is connected to the bearing structure by a 1/2 inch steel

rod. A screw rigidly connects the spring to the rod. Another screw

connects the other end of the spring to an acrylic collar that embraces

the copper pipe, as shown in Figure 5.3. These connections reduce the

number of active coils to seven, thereby increasing the stiffness of the

spring to 11.7 kN/m (67 lb/in). This value was obtained from Equation

5.1 [13].

k - -4—9— (5.1)

where k8 is the spring constant and D and d are the mean spring diameter

and wire diameter, respectively. The modulus of rigidity is G and the

number of active coils is represented by N. The reduction of the number

of active coils also increases the natural frequency of the spring to

460 Hz. The natural frequency of the spring can be obtained from

Equation 5. 2 , [13]

fs - % [ks/ms] a (5.2)

where ms represents the active mass of the spring.
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5 . 2 . 3 Experimental Configurations

The general piping set-up in Figure 5.1 will be used to describe the

pipe configurations. Each pipe configuration varies in total length,

therefore, the frequency of the liquid varies. A U-type bend is placed

between the valve and the reservoir. The legs of the U-bend are 1.83 nI

(6 ft) each. The Unistrut and rigid supports restrict the motion of the

pipe whereas the U-bend is free to move in the Y-Z plane. The external

shaker is attached at the mid-point of the vertical leg of the U-bend,

location D. The elbows of the U-bend are reinforced with a steel plate.

Brass blocks are soldered to the copper pipe at both sides of'each

elbow. The steel plates then are screwed to the brass blocks. The

steel plates, screws and the brass blocks add 0.5 Kg of mass to the U-

bend, localized at each elbow.

m

PIPING SYSTEM.CONFIGURATIONS

Configuration Location Length

Valve Movable Reservoir

Rigid Support Meters Feet

1 B 4 4' C 40 99 134 45

2 B 5 5' C 55 62 182 43

3 A 1 1' 4 4' C 65 51 214 87

4 A l 1' 5 5' C 80 14 262 93

5 A 2 2' 4 4' C 80 16 262 92

6 B 6 6' C 91 89 301 40

7 A 3 3' 4 4' C 94 77 310 85

8 A 2 2' 5 5' C 94 79 310 99

9 A 3 3' 5 5' C 109 40 358 92

10 A 3 3' 6 6' C 145 67 477 80

(See Figure 5.1)
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A total of 10 different pipe lengths can be obtained. The movable rigid

supports are placed at locations where two pipe unions are aligned in

the Y direction, as shown in Figure 5.1. Table 5.5 shows the total

length of the system for each configuration. The change in pipe length

allows variance of several parameters: frequency of the liquid, loca-

tion of the U-bend, external excitation and data acquisition

transducers.

5.2.4 Transducers

The responses of the liquid pressure and pipe motion to the harmonic

excitation are recorded as functions of time. These recordings were

accomplished using PCB pressure and acceleration transducers interfaced

with either a Digital PDP-ll/73 computer or a Tektronix D13 dual beam

storage oscilloscope. A description of the components ofthe data

acquisition equipment is presented in Appendix B. Two pressure

transducers and two accelerometers were used in the recording. Another

accelerometer monitored the motion of the linear bearing structure.

Their locations are shown in Figures 5.1 and 5.5. One pressure

transducer is located at the closed end where a liquid pressure antinode

occurs. The other is located after the U-bend to monitor the effect of

the motion of the pipe during the pressure response. The accelerometers

are located at the spring and the elbow of each leg. At these loca-

tions, large displacements are expected to occur for the first and

second natural frequencies of the U-bend [83].
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m

LOCATION OF'TRANSDUCERS AND'U-BENN RELATIVE TO VALVE

Location Configuration

1 2 3 4 5

Valve 0.0 0.0 0.0 0.0 0.0

P, 0.3 0.3 0.2 0.2 0.2

B1 1.2 0.9 38.2 31.2 49.5

D, 3.4 2.5 39.6 32.4 50.6

D2 5.5 4.0 40.8 33.4 51.7

B, 5.7 4.2 41.0 33.5 51.8

B3 10.1 7.5 43.8 35.8 54.1

B, 14.6 10.8 46.6 38.1 56.3

P2 16.1 11.9 47.5 38.8 57.1

Reservoir 100.0 100.0 100.0 100.0 100.0

Location Configuration

6 7 8 9 10

Valve 0.0 0.0 0.0 0.0 0.0

P, 0.2 0.1 0.1 0.1 0.1

81 0.5 57.3 41.9 49.6 37.3

D1 1.5 58.2 42.8 50.4 37.9

D2 2.4 59.1 43.7 51.2 38.5

B; 2.5 59.2 43.8 51.3 .38.5

B; 4.5 61.1 45.7 53.0 39.8

B, 6.5 63.1 47.6 54.6 41.0

P, 7.2 63.7 48.3 55.2 41.4

Reservoir 100.0 100.0 100.0 100.0 100.0

(See Figure 5.5) P - Pressure Transducer

D - Accelerometer

B - U-Bend
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Table 5.6 shows the relative locations of the transducers, U-bend elbows

and rigid supports with respect to the total length of each experimental

configuration. Distances are measured from the closed end (valve) to

the open end (reservoir).

5.2.5 Dynamic Forces and Natural Frequencies of Shaker

The magnitude and characteristics of the dynamic loads that the shaker

puts into the spring and, therefore, into the pipe, must be known before

experiments are performed. The dynamic forces are studied in the form

of the reciprocating force induced by the crank mechanism and the force

that the spring transmits to the pipe. Also, the shaker may introduce

noise into the signals if a natural frequency of the component coincides

with the frequency of excitation.

5.2.5.1 Shaker Loads

The reciprocating force at point P in Figure 5.4 can be defined when the

acceleration at this point is known. Given that O is the frequency of

oscillation in radians per second, then the displacement of the piston

z: measured from the dead-center position, at which at is zero, is [84]:

2

z: - [Rd-EL] - R cos(0t) + fif‘cos(20t)] (5.3)
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The reciprocating force is:

fp - (m + )an cos(0t) + R'cos(20t) (5 4)
z 1 n‘b L ‘

The inertia torque, Tx exerted by the motor on the crank is:

(m + ) '

T; - 42:11—32:22 [sin(20t)-§E[sin(0t)-351n(0t)]] (5.5)

where m1 and 1111) are the mass of the link and linear bearing structure,

respectively. The first term in Equation 5.4 is called the primary

term. Its frequency varies with the frequency of the motor. The other

term is called the secondary term because its frequency varies with

twice the frequency of the motor. The importance of the secondary term

is established by the ratio R/L. In the case of an infinitely long

connecting rod, the secondary term may be neglected and the piston

follows a harmonic motion. For a connecting rod of finite length the

motion of the piston is periodic but not harmonic. This ratio is less

than 0.2% for the crank mechanism in Figures 5.3 and 5.4 (see Table

5.3). When the effect of the secondary term is neglected, the motion

that the piston induces in the spring is harmonic. The reciprocating

force and torque, then, depend on the mass of the link and linear bear-

ing structure, the crank radius and the frequency of oscillation.

Neglecting the secondary terms, Equations 5.3 through 5.5 become:
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z: - R [1 - cos(0t)] (5.6)

£1; - (m1 + mb) ancosalt) (5.7)

r° -M R2O2s1n(20t) (5.8)
x 2

Placing the values for the mass of the link and bearing structure in

Equation 5.8 at the rated frequency shows that the torque on the motor

shaft is 0.1 N-m, 20% of the rated torque of the motor. The torque

induced by the reaction force of the spring on the shaft of the motor

should also be included. This torque depends on the displacement at

both sides of the spring, the stiffness of the spring and the crank

radius. Because the displacement of the spring at the U-bend is fre-

quency dependent the torque also depends on the frequency of

oscillation. The curve that describes this relationship is presented in

section 5.3.3.

5.2.5.2 Spring Loads

The shaker mechanism inputs a specified displacement at one end of the

spring as given in Equation 5.6. The influence of the spring on the U-

bend as shown in Figure 5.5 can be analyzed by studying a simplified

structure. The U-bend can be considered a single mass-spring system

connected to a spring with specified displacement 0° and a force F as
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shown in Figure 5.6. Let InB and kB be the mass and stiffness of the

mass-spring system, and k8 the spring constant. A transfer matrix

analysis of this system yields:

  

At location.2 the displacement U2 is zero, therefore, the frequency

equation is

[1-9:]u,+[%[1-9:]+&B]F-o (5.10)

where w is the frequency of the spring-mass system and fl is the fre-

quency at which the crank-slider mechanism is oscillating. This

equation suggests that the dynamic loads from the shaker can be divided

into two loads: one associated with the displacement, Va and one as-

sociated with the force, F. This force is the same as the spring force

described in the previous section. Its description is also presented in

Section 5.3.3.
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5 . 2 . 5 . 3 Natural Frequencies of Shaker Components

The components that may induce high frequency vibration are the link,

the spring and the steel rods on which the linear bearings slide. The

link that connects the crank to the slider bearing may bend rather than

having a purely rigid body motion, inducing lateral vibration to the

mechanism. A transfer matrix analysis for a free-pinned solid beam

(locations C and P in Figure 5.4) demonstrates that the first natural

frequency occurs at 100 Hz which is 70 Hz above the rated frequency of

the motor. The natural frequency of the spring is 460 Hz. The natural

frequencies of the stainless-steel rods are 88 and 550 Hz for vibra-

tions in the axial and transversal directions, respectively. The

natural frequency of these components are higher than the rated fre-

quency of the motor, therefore, the dynamic components of the shaker do

not interfere with the harmonic motion induced onto the U-bend.

5.3W

The objective of the experiments was to excite the natural frequencies

of the U-bend and the liquid contained in the pipe and to record the

pressure response and pipe motion. Several sampling parameters had to

be determined before collecting data for each pipe configuration. These

included the frequency range of excitation, the sampling frequency and

the duration of the sampling process. . Figure 5.7 is a diagram of the

experimental procedure and analysis. Four transducers were used to

collect the time series of the liquid pressure and pipe displacements.
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These were compared with results from the analytical model developed in

Chapters 3 and 4. This section describes the experimental procedures

and analyses that were used for each pipe configuration.

5.3.1 Frequency Range of Excitation

The determination of the frequency range of excitation depends on the

rated frequency of the motor and the natural frequencies of the liquid

and the U-bend. The rated frequency of the motor is 30 Hz which is the

upper bound of the range. The lower bound of the frequency range is

determined by the frequency at which the inertia forces of the shaker

mechanism are overcome producing a harmonic oscillation of the linear

bearing structure. This lower bound frequency was found to be at 3.4

Hz. Several natural frequencies of the liquid and U-bend are excited

over the frequency range.

5 . 3 . l . 1 Liquid Frequencies

The fundamental frequency of an open-closed liquid system is [5,6,7,4l]

C

if --f (5.11)

Where ff is the fundamental frequency of the liquid, cf is the coupled

wave speed and I is the length of the pipe. A pressure node is formed

at the open end and a pressure antinode is formed at the closed end.
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The higher harmonics of the system are determined by the odd harmonics

of the fundamental frequency computed from Equation 5.11. Table 5.7

lists the first through the ninth harmonic for the first nine pipe

configurations. The coupled wave speed cf, which was determined for

this piping system by Budny [22], is 1265 m/s. The results in Table 5.7

show that the ninth harmonic of configurations 7, 8 and 9 can be ex-

cited. The first harmonic of configurations 7, 8 and 9 is periodic but

not harmonic .

W

FLUID HARmNICS FOR PIPE CONFIGURATIONS

Configuration Harmonic

(HZ)

First Third Fifth Seventh Ninth

l 7.7 23.1

2 5.7 17.1 28.4

3 4.8 14.5 24.1

4 3.9 11.8 19.7 27.6

5 3.9 11.8 19.7 27.6

6 3.4 10.3 17.2 24.1

7 3.3 10.0 16.7 23.4 30.0

8 3.3 10.0 16.7 23.4 30.0

9 2.9 8.7 14.5 20.2 26.0

5 . 3 . l . 2 U-Bend Frequencies

The U-bend may be thought of as a plane frame clamped at the columns and

having rigid joints at the elbows. Chang [83] developed frequency

charts for identical columns and cross-beam plane frames. The frequency
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equation, which is based on the Bernoulli-Euler beam theory, includes

the effect of axial vibration. It is given by:

3 El *2

f__C._ _.D_ 512
P 2 pA (.)

211 pp

where g‘ is the frequency parameter and l is the length of a column.

Table 5.8 shows the estimated frequencies, using Chang's development,

for the U-bend shown in Figure 5.5 and the values presented in Tables

5.1 and 5.2. The mass of the liquid can be added to the denominator of

the radical term as: ppAp-I-pfAf. The modes of vibration are asymmetrical

and symmetrical. In the asymmetrical modes the elbows of the U-bend

translates, simulating a rigid motion of the horizontal leg. The elbows

in the symmetrical modes do not translate.

W

NATURAL F'RmUENCIES OF U-BEND

Frequency parameter Natural frequency Mode of vibration

f (HZ)

Empty Liquid- Filled

1.790 5.1 4.1 asymmetrical

3 .553 21.0 16 . 9 symmetrical

4 . 541 34 . 3 27 . 6 asymmetrical

6 . 693 74. 5 60 .0 asymmetrical
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The frequency range of 3.4 Hz through 30 Hz excites two natural fre-

quencies of the empty U-bend. The same frequency range also excites

three natural frequencies of the liquid-filled U-bend.

5.3.2 Sampling Frequency. and Sampling Time

The frequency range of 3.4 Hz to 30 Hz used for the experiments was

determined as shown in the previous section. The sampling frequency is

1000 Hz and the duration of the sampling process is 4096 milliseconds.

These parameters minimize the sampling errors due to aliasing and

leakage. The upper limit of the frequency range is 30 Hz. This fre-

quency is more than ten times less than the Nyquist frequency which is

500 Hz [93] . In the frequency range, the number of sinusoidal cycles

for the duration of the sampling varies from 14 to 123. The error

introduced, due to leakage when computing the frequencies, is less than

0.12 Hz, which is the resolution of the fast Fourier transform (FFT).

5.3.3 Sampling Procedure

The SCR motor control was calibrated to input the same frequency incre-

ments for all pipe configurations. The spacing between forcing

frequencies was 0.41 Hz, yielding a total of 65 discrete frequencies.

An input-output calibration curve for the frequency range was obtained

between an accelerometer located at the linear bearing structure and

another located at the spring. These displacements are presented in

Figure 5.8. The input displacement at the bearing structure slightly
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increases as the circular frequency of the motor increases, this was

caused by a small bending of the shaft of the motor. This increase was

0.4 mm over the frequency range from 3.4 Hz to 30.0 Hz. The spring

force at D1 in Figure 5.5 is of the same form as the displacement at

this location. The torque described in Section 5.2.5.1 and the rated

torque of the motor are shown in Figure 5.9. The reaction force of the

spring onto the shaft of the motor was included.

The response spectra for the four transducers were obtained by sweeping

through the frequency range. The signals from the pressure transducer

located at the closed end and the accelerometer at the spring were

monitored on an oscilloscope during the sweeping process. The oscillo-

scope monitoring had two purposes. First, before each sampling the

system was allowed to reach a steady-state condition. Second, it al-

1owed determination of the natural frequencies of the system. After the

sweeping process was finished, the responses of the transducers at the

natural frequencies were sampled.

5.3.4 Analysis Procedure

The time series for the 65 discrete frequencies and the natural fre-

quencies were stored in a PDP 11/73 microcomputer. A fast Fourier

transform FFT of these series was performed to obtain the magnitude and

frequency. Before the FFT analysis, each time series was low pass

filtered. The filter, which is shown in Figure 5.10, had a cut-off

frequency of 80 Hz. This cut-off minimizes the noise introduced to the
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signals by the shaker components. The sampling parameters described in

the previous section determined that the resolution of the FFT was 10.12

Hz.

5.4W

The uncertainty of the experiments performed arises from three sources:

the transducers, the A/D conversion and the pipe and fluid characteris-

tics. Appendix B describes the characetristics of the data acquisition

equipment used .

Tables B.l and 8.2 of Appendix B list the characteristics provided by

the manufacturer for the two types of transducers used in the experi-

ments and the error in the conversion of the analog voltage to digital

format by the A/D converter. . Pressure transducers models 111A26 and

113A24 were used. Both models have a linear error of 2%. The linearity

of the error means the error is a constant 2% along the entire operating

range of the transducer. Thus, a reading of 50 psi (345 kPa) would have

an error of $1.0 psi ($7.0 kPa). The resolution is a measure of the

ability to distinguish between nearly equal values of a quantity. It is

also referred to as "threshold", that is, the lowest level of valid

measurement .

The accelerometers used were manufacturer model 302A. The error is

based on the type of power unit that is connected to the transducer.

Double integrator units were used in all the experiments to obtain
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displacements. The error associated with this type of unit is 5%.

Another source of error of the accelerometers is the nonlinearity of the

response at frequencies less than 10 Hz. A calibration was necessary to

find the conversion from volts to millimeters in the range from 3.4 Hz

to 10 Hz. The procedure used is described in Appendix B.

The error due to the A/D conversion is controlled by the 11 bit resolu-

tion of the input data. Because the A/D board is configured for bipolar

inputs of $10.0 volts, the 11 bit resolution is equivalent to an error

of $ 9.7 millivolts. The base frequency for the programmable realtime

clock is 10 Mhz, thus the accuracy of the time measurement is $0.1

microseconds .

Thus, the maximun experimental error associated with the pressure read-

ings due to the propagation of both the transducer and conversion error

based on root mean square (rms) estimates for a 500 kPa reading is $12.0

kPa.

The sources of error that arise from the fluid and pipe properties come

from the measurement of these properties. The copper pipe was manufac-

tured by American Brass Company. The tolerances for the inside diameter

and wall thickness of the pipe were 0.4% (0.1 mm) and 3% (0.04 mm),

respectively. The fluid temperature was measured with an accuracy of

0.5 ‘C. The length of each pipe configuration was taken with a lOOrfoot

tape with 100 divisions per foot. The error associated with the total

pipe length depends on the number of measurements taken. For example,

17 measurements were taken for configuration 10 and 9 for configuration
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1. Then, the error in pipe length measurement varies from $0.04 ft

(0.01 m) to $0.03 ft (0.01 m). A 12 foot tape with 1-6 divisions per

inch was used to measure pipe lengths less than 10 feet. For example,

the legs of the U-bend were measured with this tape. The error in the

measurement is $0.06 inch (2 mm). Possible errors due to temperature

changes and sagging of the tape were not estimated.
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Figure 5.6 One Dregree-of—Freedom Representation of U-Bend
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6.1W

The purpose of the experiments was to validate the analytical model

derived in Chapters 3 and 4 and gain further physical understanding of

the phenomena. Transient and harmonic tests were conducted to find the

natural frequencies of the system. Fluid pressure and pipe displacement

responses were monitored. Transient tests were used to calibrate the

apparatus and measure the natural frequency] of the U-bend and natural

frequencies of the contained liquid. The transient tests were rapid

valve closure and snap-back of the piping. The U-bend was excited

harmonically by the crank mechanism that inputs a harmonic load to the

pipe, as discussed in Chapter 5.

The first part of this chapter gives the results of the transient tests.

The second part presents the experimental results of the harmonic test

and compares them with the computed results from the analytical model.
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6.2W

Transient tests allow measurement of the natural frequencies of the

system. Snap-back of the U-bend and rapid valve closure were the

tests performed. The description of the tests and the results are

presented.

6.2.1 Snap-Back Test

This test was used to measure the first natural frequency of the U-bend

and calibrate the analytical model. The test consisted in displacing

the elbows of the U-bend 12.7 mm (0.5 inch) from the equilibrium posi-

tion and then releasing them. The calibration consisted of determining

the effective stiffness of the spring between the linear bearing struc-

ture and the U-bend. Tests were conducted on an empty U-bend and a .

liquid-filled U-bend. The U-bend can be either free from or attached to

a spring. Table 6.1 shows the results of the experimental tests and the

computed results using either the transfer matrix method (TM) or the

Bernoulli-Euler beam theory developed by Chang [83] as shown in Table

5.8. Figures 6.1 and 6.2 show the time responses and the FFT's of the

time series for the various U-bend conditions mentioned above. The

added masses from the accelerometers, aluminum collar and' steel bars at

the elbows of the U-bend were included in the computed results for the

TM. The stiffness of the spring was found to be 8 KN/m which is

greater than the stiffness provided by the manufacturer, as shown in

Table 5.4. The results, in Table 6.1, show that the natural frequency
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increases when the U-bend is attached to the spring. This result sug-

gests that the stiffness of the U-bend - spring system increases.

Including the mass of the liquid decreased the natural frequency of the

U-bend, as expected .

mu.“

E!PERIHENTAL.ARD COMPUTED'U-BERD RESPONSE TO SlAP-BACK.TEST

Free Spring

Condition Experimental TMM Chang [83] Experimental TMM

(HZ) (H2) (H2) (H2) (HZ)

Empty 4.4 4.4 5.1 5.1 5.1

Liquid-Filled 3.9 3.9 4.1 4.4 4.4

6. 2 .2 Valve Closure Test

A rapid valve closure induces excitement of the liquid pressure. The

experimental procedures as well as the software and hardware used for

these tests are described by Budny [22]. These tests also allow

measurement of the liquid wave speed if the length of the pipe is known

as shown in Equation 5.11. An‘ open-closed system results upon closure

of the valve and excites the odd harmonics of the liquid. The first

harmonic corresponds to the first or fundamental frequency of the liq-

uid. According to the state of the U-bend, three cases were studied for

configurations 4, 8, 9 and 10: fixed, free and with spring. The total

length of the pipe and relative location for each configuration are

given in Tables 5.4 and 5.5.
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6 . 2 . 2 . 1 Fixed U-Bend

A Unistrut was placed at each free elbow of the U-bend, locations 82 and

B3 in Figure 5.5. The time series for the pressure at the closed-end

for the four configurations are presented in Figure 6.3. The FFT's of

the time series are shown in Figure 6.4. The FFT's were normalized with

respect to the largest pressure or displacement response for all three

cases. The natural frequencies from the experiment were compared with

the frequencies computed by the TMM. A straight pipe of variable length

with a harmonic oscillation at the open end was used to compute the

natural frequencies of the system. The results, shown in Table 6.2

demonstrate the ability of the TMM to predict the natural frequencies of

an axially coupled system. The computed wave speed is within 0.5% of

the experimental .

m2 f

WWWWEOFLIQUIDFORFIXEDWDITION

Configuration Wave Speed Harmonics

(In/s) (H2)

First Third Fifth

E C E C E C E C

4 1267 1260 3.9 4.0 12.0 11.8 19.8 19.6

8 1266 1260 3.4 3.4 10.0 10.0 16.6 16.5

9 1265 ‘1260 2.9 2.9 8.5 8.7 14.4 14.3

10 1267 1260 2.2 2.2 6.6 6.5 11.0 10.8

E - Experimental C - Computed
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6 . 2 . 2 . 2 Free U-Bend

For this case, the U-bend is free to vibrate in the Y-Z plane, as shown

in Figure 5.5. The time series of the liquid pressure at the closed-

end, P1, and the U-bend elbow displacement, Dz, were recorded; the

results are shown in Figure 6.5. The FFT's of the time series are shown

in Figure 6.6. Table 6.3 shows the experimental and computed results

for the natural frequencies of the liquid and the experimental com-

‘pliance. Compliance [34] is defined as ratio of the elbow displacement

over pressure at the closed-end, Da/Pl.

MILL:

mummmmmctnoruqummmmmon

Fluid Harmonics

Configuration First Third Fifth

. E C E C E C

4 Frequency (Hz) 3.9 4.0 12.0 12.0 19.8 19.7

Dz/Pl (mm/Pa) 69.4 1.8 0.4

8 Frequency (Hz) 3.2 3.4 10.0 10.1 16.4 16.7

Dz/Pl (mm/Pa) 2.8 3.0 0.4

9 Frequency (Hz) 2.9 2.9 8.5 8.8 14.4 14.5

D2/P1 (min/Pa) 1.1 3.1 1.2

10 Frequency (Hz) 2.2 2.2 6.6 6.6 11.0 10.8

D2/P1 (mm/Pa) 0 1 8.6 0.3

E - Experimental

C - Computed

D, - Accelerometer response at U-bend elbow

P1 - Pressure transducer response at closed end
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The computed frequencies show good agreement with the experimental

frequencies of the system. The following observations can be made

concerning the experimental compliance:

1) Configuration 4 shows the largest magnitude. The frequency of the

U-bend and the first natural frequency of the liquid nearly coincide.

The proximity of the frequencies results in a beat as shown in Figure

6.5a.

2) The magnitude of the compliance at the first fluid frequency

decreases as both the frequency of the fluid and the U-bend move apart

from each other.

3) The opposite occurs at the third liquid harmonic. Configuration 10

shows a larger compliance than configuration 4. This phenomenon takes

place because the third harmonic of configuration 10 (6.6 Hz) is closer

to the natural frequency of the U-bend than the other configurations.

4) The compliance at the third liquid harmonic is greater than that at

the first harmonic for configurations 8, 9 and 10. The third liquid

harmonic for configuration 10 constitute the dominant frequency of the

U-bend. The compliance is greater than the compliance at the natural

frequency of the U-bend as shown in Figure 6.6d.

The pipe line from the closed-end to B1 and from B, to the open-end,

Figure 5.5, was treated as a straight pipe. Only the axial modes of

vibration for the pipe and the liquid modes were included in these

reaches. This simplification is based on the previous experimental

results of this research. The pressure response at the closed-end is
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affected by the status of the bend (as shown in Figure 6.5a for con-

figuration 4). The reponse of the U-bend is affected by the closing of

the valve. Only the liquid and U-bend frequencies were found to be of

significance in the results. This simplification also reduces the

numerical difficulties associated with the TMM as pointed out by Pestel

and Leckie [50] and as described in Chapter 4.

6.2.2.3 U-bend with Spring

The U-bend was attached to the spring, as described in Chapter 5, at

location D1 in Figure 5.5. The experimental time series and FFT's are

shown in Figures 6.7 and 6.8, respectively. The experimental and com-

puted results are shown in Table 6.4. The same observations as for the

previous case can be made. In the present situation the frequency of

the U-bend is 0.5 Hz higher than the previous case, because of the

additional stiffness provided by the spring. This causes the third

fluid frequency for configuration 10 to be closer to the U-bend fre-

quency, thus, resulting in a larger ratio than in the previous case.

6.3W

The harmonic tests consisted of obtaining the liquid pressure and pipe

displacement responses of the liquid-filled pipe when a harmonic dis-

placement is induced at the U-bend. Two liquid pressure readings at the
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closed end and at the U-bend (locations P1 and P2 in Figure 5.5) , and

two displacement readings at the spring and at U-bend elbow (locations

D1 and D2 in Figure 5.5) were collected at each frequency. The fre-

quency range of excitation varied from 3.4 Hz to 30 Hz. A preliminary

evaluation of the U-bend subjected to harmonic displacement is

presented. Then, the response spectra and liquid mode shapes follow.

m5

EXPERIMENTAL.AND COMPUTED FREQUENCIES OF LIQUID FOR SPRING CONDITION

. Fluid Harmonics

Configuration First Third Fifth

E C E C E C

4 Frequency (Hz) 3.9 4.0 12.0 12.0 19.8 19.7

D2/P1 (mm/Pa) 10.1 2.2 0.4

8 Frequency (Hz) 3.4 3 4 10.0 10.1 16.6 16.7

D2/P1 (mm/Pa) 6.4 2.4 -0.5

9 Frequency (Hz) 2.9 2.9 8.6 8.8 14.4 14.5

D2/P1 (mm/Pa) 0.6 3.4 1.3

10 Frequency (Hz) 2.2 2.2 6.4 6.6 10.7 10.8

D2/P1 (mm/Pa) 0.1 11.3 0.1

E - Experimental

C - Computed

D, - Accelerometer response at U-bend elbow

P1 - Pressure transducer response at closed end
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6 . 3 . 1 U-Bend Response

Displacements at locations D, and D, were recorded to find the natural

frequencies of the U-bend. Two cases were considered, when the U-bend

is empty and when it is liquid-filled. Figure 6.9 shows the responses

at the spring and the elbow for the two cases. The added mass of the

liquid reduces the natural frequencies of the U-bend. Table 6.5 shows

the experimental and computed results at the natural frequencies. The

computed mode shapes for the liquid-filled U-bend are displayed in

Figures 6.10 and 6.11. Figure 6.10 shows the mode shapes of the U-bend

without the spring. Figure 6.11 shows the mode shapes with the spring.

The odd natural frequencies correspond to asymetrical modes and the

even frequencies to symmetrical modes of vibration. The inclusion of

the spring affects the first and second modes of vibration. The other

mode shapes do not show any appreciable change. It can be noted that

the inclusion of the spring allows for larger displacements of the leg

where the spring is attached. The largest discrepancy between the

experimental and computed natural frequencies occurs at the second mode.

The computed frequencies for this mode are 0.9 Hz and 0.6 Hz lower than

the experimental when the U-bend is empty and liquid-filled respec-

tively .
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IIBLE_§.§

NATURAL FREIUENCIES 0? mm 1'0 WC EXCIIATION

Natural Frequencies

(HZ)

Empty Liquid-Filled

Frequency Mode of Spring Free Spring Free

Number Vibration E C E* C E C E* C

l Asymmetrical 5.1 5.1 4.4 4.4 4.4 4.4 3.9 3.9

2 Symmetrical 22.7 21.8 21.2 18.1 17.5 17.0

3 Asymmetrical 35.5 35.0 28.3 28.6 28.0

4 Symmetrical 44.4 41.4 34.3 32.1

5 Asymmetrical 73.3 73.1 58.9 58.8

6 Symmetrical 89.9 89.8 72.9 72.9

* Results for the free case were obtained from the snap-back test, see

Table 6.1.

6.3.2 Spectral Response of Liquid-Filled Piping

Tables 6.9 and 6.11, at the end of this chapter, show the results at the

natural frequencies of the system. The largest experimental pressure

response occurred at the fifth and seventh harmonic of configurations 2

(28.3 Hz and 521 kPa) and 4 (27.8 Hz and 290 kPa). The large pressure

responses are associated with the third natural frequency of the U-bend.

This frequency, 28.3 Hz, corresponds to an asymmetrical mode, in which

the elbows show a small displacement, Figure 6.11. This small displace-

ment generates the large liquid pressure responses through the junction

coupling mechanism.
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6 . 3 . 3 Liquid Mode Shapes

The first pressure mode shape of the liquid in an open-closed pipe

corresponds to 1/4 of a sinusoidal wave [5,6,7]. The maximum response

occurs at the closed-end (s/l - 0), where a pressure loop develops. A

pressure node, where the pressure is zero, develops at the open-end (s/t

- 1), where s is a coordinate along the pipe length 1. The other mode

shapes correspond to the odd multiples of the 1/4 sinusoidal wave.

The response of the pressure transducers P1 and P, were used to obtain

the mode shapes for each natural frequency of the system. The distance

from these transducers to the closed and varies for each pipe configura-

tion. In this way, a point of the liquid mode shape was obtained for

each configuration. The relative location of P, and P, with respect to

the closed-end is given in Table 5.6. Tables 6.8 through 6.16 show the

experimental and computed results at the natural frequencies of the

system for configurations 1 through 9. The behavior of the mode shapes

of the liquid is different if the frequency of the harmonic excitation

is oscillating at a natural frequency of the liquid or the U-bend.

Thus, the liquid mode shapes will be studied at the liquid frequencies

and at the natural frequencies of the U-bend. The pressure ratio P,/P1

will be used to compare the computed and experimental liquid mode

shapes .
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6.3.3.1 Liquid Mode Shapes at Liquid Natural Frequencies

Figure 6.12 shows the normalized pressure mode shapes at the natural

frequencies of the liquid. The mode shapes were normalized with respect

to the pressure at the closed end. The first through ninth odd har-

monics are shown in this figure; the solid line represents the computed

mode shape and the dots represent experimental points. The encircled

numbers correspond to the pipe configuration. They are placed at the

relative location of P2 with respect to the closed-end. Table 6.6 shows

the experimental and computed results depicted in Figure 6.12. Good

agreement between the experimental points and the computed mode shapes

is noted in this figure. The correlation coefficient [92] between

computed and experimental results is unity for all harmonics, except for

the first. The first liquid mode shape, which is associated with the

first harmonic, shows the largest discrepancies for configurations 1,

2, and 3. These configurations show that the first natural frequency of

the liquid is higher than the first natural frequency of the U-bend.

The minimal motion of the elbows of the U-bend at the liquid frequencies

causes a minimal response of the pressure, increasing the experimental

error. Pressure readings lower than 15 KPa are only four times greater

than the resolution of the A/D converter board, as mentioned in the

previous chapter .
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M

LIQUID PRESSURE.NDDE SHAPES AI LIQUIDINAIURAL.FREQUENCIES

Harmonic

Conf. * First Third Fifth Seventh Ninth

No. P2 E C E C E C E C E C

l 0.15 0.83 0.97 0.71 0.74

2 0.11 0.73 0.98 0.89 0.86 0.60 0.57

3 0.47 0.89 0.75 0.56 0.60 0.94 0.83

4 0.38 0.78 0.81 0.24 0.24 0.94 0.97 0.41 0.46

5 0.56 0.60 0.61 0.85 0.88 0.23 0.22 0.99 1.00

6 0.07 -- 1.00 -- 0.95 -- 0.86 0.71 0.74

7 0.63 0.51 0.54 0.92 0.98 -- 0.32 -- 0.75 0.87 0.84

8 0.48 0.69 0.72 0.60 0.63 -- 0.80 0.52 0.54 0.89 0.89

9 0.55 0.63 0.65 0.82 0.84 0.35 0.36 0.90 0.99 0.00 0.09

Correlation 0.77 1.00 1.00 1.00 1.00

E - Experimental C - Computed

* P2 is the relative location of the pressure transducer with respect to

the closed-end, see Table 5.6.

6.3.3.2 Liquid Node Shapes at U-Bend Natural Frequencies

The experimental liquid mode shapes at the frequency of the U-bend were

obtained as in the previous section. The behavior of the liquid pres-

sure at the natural frequencies of the U-bend follows the same trend as

the behavior at the natural frequencies of the liquid. However, an

abrupt change of the mode shape at the location of the U-bend is

produced due to the motion of the elbows. Three of the natural fre-

quencies of the U-bend were excited by harmonic oscillation. The first

and third, which correspond to asymmetrical modes, as shown in Figure

6.10, allow motion of the elbows in the Y-Z plane. The second natural

frequency, which is a symmetrical mode, allows no motion at the elbows.
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This lack of motion at the elbows prohibits the development of junction

coupling. Therefore, the liquid pressure response is minimum at this

mode. Tables 6.8 through 6.16, at the end of this chapter, show the

experimental and computed results at the natural frequencies of the

system .

Figures 6.13 through 6.19 show the liquid mode shapes at the two asym-

metrical U-bend frequencies for configurations 1 through 9. In addition

to the features described in the previous section for Figure 6.12, the

location of the horizontal leg of the U-bend is shown for each con-

figuration (locations B, and B, in Figure 5.5). The location is marked

by two parallel vertical lines. Figure 6.16 shows the liquid mode

shapes for configurations 4 and 5 and Figure 6.18 for configurations 7

and 8.

Table 6.7 shows the results depicted in Figures 6.13 through 6.19. The

experimental and computed results show good correlation at the first

natural frequency of the U-bend. The largest discrepancies at the third

U-bend frequency occur for configurations 4 and 9. The liquid is oscil-

lating between the ninth and eleventh harmonic for both configurations.

The pressure gradient at P, shown in Figures 6.16 and 6.19 are higher

than for any other configuration. Thus, any change of the frequency of

oscillation may cause considerable changes in the magnitude of the

pressures .
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Ml

LIQUID PRESSURE MODE SHAPES AI U-BEND NAIURAL.FREQUENCIES

U-bend Frequency

(HZ)

4.4 28.3

Configuration P2* First Third

Number E C E C

1 0.15 0.00 0.07 0.76 0.74

2 0.11 0.16 0.14 0.94 0.97

3 0.47 0.55 0.55 1.18 1.22

4 0.38 1.20 1.18 0.94 1.53

5 0.56 0.82 0.80 0.53 0.35

6 0.07 0.00 0.19 0.22 0.20

7 0.63 0.92 0.98 1.80 1.54

8 0.48 1.66 1.65 0.28 0.43

9 0.55 2.05 1.95 1.09 1.83

Correlation 1.00 0.82

E - Experimental C - Computed

* P2 is the relative location of the pressure transducer with respect to

the closed-end.
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m

EXPERIMENTAL.AND COMPUTED RESULTS FOR.CONFIGURATION 1

Displacement Pressure

(mm) (kPa)

Freq. Type Location Location Ratio Location Location Ratio

(Hz) D1 02 DZ/Dl P1 P2 P2/P1

4.4 E 81 13.6 33.2, 2.4 49 0 0.0

4.4 C 2.8 0.07

7.6 E F1 0.2 0.5 2.5 12 10 0.83

7.8 C 2.6 0.97

18.1 E 82 3.8 0.7 0.2 0 0 --

17.5 C 0.5 0.03

23.2 E F3 0.4 0.2 0.5 56 40 0.71

23.3 C 0.7 0.74

28.6 E S3 6.0 1.3 0.2 59 45 0.76

28.6 C 0.2 0.74

E - experimental, C - computed, F - fluid, 8 - structural frequency
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W2

EXPERIHENTAL.AND COMPUTED RESULTS FOR CONFIGURATION 2

Displacement Pressure

(mm) (kPa)

Freq. Type Location Location Ratio Location Location Ratio

(Hz) D1 02 D2/Dl P1 P2 P2/P1

4.4 E 81 11.8 30.2 2.1 49 8 0.16

4.4 C 2.8 0.14

5.6 E Fl 0.3 1.8 6.0 11 8 0.73

5.7 C 2.8 0.98

17.1 E F3 1.2 0.1 0.1 18 16 0.89

17.1 C 0.0 0.86

18.1 E 82 3.9 0.7 0.2 0 0 --

17.5 C 0.5 3.94

28.3 E F5 3.1 0.6 0.2 521 310 0.60

28.1 C 0.4 0.57

28.8 E $3 5.2 1.3 0.3 239 225 0.94

28.7 C 0.2 0.97

E - experimental, C - computed, F - fluid, S - structural frequency
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M

EXPERIMENTAL.AND COMPUTED RESULTS FUR.CDNFICURATION 3

Displacement Pressure

(mm) (kPa)

Freq. . Type Location Location Ratio Location Location Ratio

(Hz) D1 D2 D2/Dl P1 P2 P2/Pl

4.4 E 81 13.4 39.2 2.9 214 117 0.55

4.4 C 2.8 0.55

5.1 E F1 0.5 2.1 4.4 16 14 0.89

4.9 C 2.7 0.75

14.6 E F3 0.5 0.1 0.3 52 29 0.56

14.7 2.2 0.60

18.1 2 52 12.5 ' 2.5 0.2 7 o 0.00

17.5 C 0.1 0.14

24.4 E F5 0.4 0.2 0.5 18 17 0.94

24.2 C 0.4 0.83

28.3 E 83 4.9 1.1 0.2 43 50 1.18

28.6 C 0.2 1.22

E - experimental, C - computed, F - fluid, 8 - structural frequency
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EXPERIMENTAL.AND COMPUTED RESULTS FOR CONFIGURATION 4

Displacement Pressure

(Inn) (kPa)

q. Type Location Location Ratio Location Location Ratio

) D1 D2 D2/D1 P1 P2 P2/P1

9 E F1 1.7 3.5 2.1 102 80 0.78

0 C 2.8 0.81

4 E 81 12.9 38.5 3.0 99 119 1.20

.4 C 2.8 1.18

.0 E F3 0.4 0.1 0.3 41 10 0.24

.0 C 2.3 0.24

.1 E 82 9.3 2.0 0.2 0 7 --

.5 C 0.5 18.53

.8 E F5 0.3 0.2 0.7 36 34 0.94

.7 C 0.8 0.97

.8 3 F9 '1.7 0.3 0.2 290 118 0.41

4 C 0.2 0.46

6 E 83 6.4 1.6 0.3 154 145 0.94

.6 C 0.2 1.53

- experimental, C - computed, F - fluid, 8 - structural frequency
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W12

EEPERIMENTAL.AND COMPUTED RESULTS FOR CONFIGURATION 5

Displacement Pressure

(MI) (kPa)

Freq. Type Location Location Ratio Location Location Ratio

(Hz) D1 D2 DZ/Dl P1 P2 P2/P1

3.9 E F1 1.7 3.5 2.1 144 87 0.60

4.0 C 2.8 0.61

4.4 E 51 13.8 40.5' 2.9 160 131 0.82

4.4 C 2.8 0.80

12.0 E F3 0.3 0.1 0.3 26 22 0.85

12.0 C 2.3 0.88

18.1 E 52 12.6 2.5 0.2 10 0 0.00

17.5 C 0.1 0.08

19.8 E F5 0.2 0.2 1.0 39 9 0.23

19.7 C 0.8 0.22

27.6 E F9 1.9 0.4 0.2 231 228 0.99

27.5 C 0.2 1.00

28.3 E 83 5.4 1.3 0.2 188 100 0.53

28.6 C 0.2 0.35

E - experimental, C - computed, F - fluid, S - structural frequency
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EXPERIMENTAL.AND COMPUTED RESULTS FOR.CONFICURATION 6

Displacement Pressure

(mm) (kPa)

q. Type Location Location Ratio Location Location Ratio

) 01 D2 DZ/Dl P1 P2 P2/P1

.4 E Fl 1.1 0.9 0.8 0 0 - -

4 C 0.20

4 E 31 11.5 26.0 2.3 36 0 0.00

4 C 2.8 0.19

5 E F3 0.3 0.2 0.7 6 0 0.00

8 C 2.4 0.95

.1 E F5 0.9 0.1 0.1 5 0 --

5 C 0.5 0.86

1 E 82 3.8 0.7 0.2 0 0 --

5 C 0.5 0.03

2 E F7 0.4 0.2 0.5 56 40 0.71

3 C 0.7 0.74

6 E 83 6.0 1.3 0.2 59 45 0.76

6 C 0.2 0.74

- experimental, C - computed, F - fluid, 8 - structural frequency
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W

EEPERIMENTLL.AND COMPUTED RESULTS FOR.CONFICURATION 7

Displacement Pressure

(Inn) (kPa)

Freq. Type Location Location Ratio Location Location Ratio

(Hz) D1 D2 D2/Dl P1 P2 P2/Pl

3.4 E F1 0.9 1.6 1.9 39 20 0.51

3.4 C 2.8 0.54

4.4 E 81 13.2 38.5 2.9 65 60 0.92

4.4 C 2.8 0.98

10.0 E F3 0.2 0.2 0.8 12 11 0.92

10.1 C 2.5 0.98

16.8 E F5 0.7 0.1 0.1 22 O 0.00

16.8 C 10.8 0.32

18.1 E 82 12.2 2.4 0.2 11 0 --

17.5 C 0.1 0.20

22.7 E F7 0.2 0.1 0.5 7 0 0.01

23.4 C 0.5 0.75

28.1 E 83 2.9 0.6 0.2 30 54 1.80

28.5 C 0.2 1.54

30.0 E F9 1.2 0.4 0.3 263 228 0.87

29.9 C 1.3 0.84

E - experimental, C - computed, F - fluid, 8 - structural frequency
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EEPERIMENTAL.AND COMPUTED RESULTS FOR CONFIGURATION 8

Displacement Pressure

(mm) (kPa)

q. Type Location Location Ratio Location Location Ratio

) D1 D2 D2/D1 P1 P2 P2/P1

.4 E Fl 1.1 2.0 1.8 39 27 0.69

.4 C 2.8 0.72

.4 E 81 13.6 40.4 3.0 41 68 1.66

.4 C 2.8 1.65

O E F3 0.2 0.2 1.0 35 21 0.60

1 C 2.4 0.63

.6 E F5 0.8 0.0 0.0 6 0 0.00

.7 2.7 0.80

.l E 82 11.2 2.3 0.2 0 0 - -

.5 C 0.5

.7 E F7 0.3 0.2 0.5 87 45 0.52

.2 C 0.7 0.54

.3 E S3 5.0 1.2 0.2 56 16 0.30

.6 C 0.2 0.40

3 E F9 0.9 0.2 0.3 29 26 0.89

.9 C 0.1 0.89

- experimental, C - computed, F - fluid, S - structural frequency
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INEERIMENTAL.AND COMPUTED RESULTS FOR.CONFICURATION 9

Displacement Pressure

(Inn) (kPa)

Freq. Type Location Location Ratio Location Location Ratio

(Hz) D1 D2 D2/D1 P1 P2 P2/P1

2.9 E Fl 0.2 0.0 0.0 22 14 0.63

2.9 C 2.8 0.65

4.4 E 81 13.8 39.8 2.9 26 54 2.05

4.4 C 2.8 1.95

8.5 E F3 0.1 0.2 2.0 14 11 0.82

8.8 C 2.5 0.84

14.4 E F5 0.3 0.1 0.2 21 7 0.35

14.5 C 2.2 0.36

18.1 E 82 10.5 2.1 0.2 0 O --

17.5 C 0.5

20.3 E F7 0.1 0.2 2.0 37 33 0.90

20.2 C 1.0 0.99

26.1 E F9 0.6 0.1 0.2 99 0 0.00

25.8 C 0.2 0.09

28.3 E 83 4.5 1.0 0.2 36 39 1.09

28.6 C 0.2 1.83

E - experimental, C - computed, F - fluid, S - structural frequency
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a) Time response
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a) Liquid-filled U-bend
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a) First natural frequency 8) Second natural frequency
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Figure 6.10 Computed U-Bend Mode Shapes, Free Bend
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a) First natural frequency 5) Second natural frequency

B 4 Asymmetrical 1 D 4 Symmetrical B 1

f.- 4.4 u: f.- ms Hz

i :

i :

. !
i n

l_ _ _l

B B D

3 z a

a) Third natural frequency d) Fourth natural frequency

3 4 Asymmetrical l B 4 Symmetrical f

f.- sum f.- «as:

s '_"—" a s
3 z s

e) Fifth natural frequency 0 Sixth natural frequency

D 4 Asymmetrical l B 4 Symmetrical B 1

f.-ss.sus f.- new:

8 --—-- --_-- B B --—-- B

a z a 2

Normal mode shape —--—- Undlsturbed

Figure 6.11 Computed U-Bend Mode Shapes, Bend Attached to Spring
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a) First Harmonic
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d) Seventh harmonic
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a) First U-bend frequency - 4.4 Hz
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Chapter 7 Sumnlary and Conclusions

The primary objective of this study was to incorporate the flexural and

torsional modes of vibration of liquid-filled pipe systems to an exist-

ing axially coupled model. The motion of the pipe wall and the

contained liquid was represented by using a one-dimensional approxima-

tion. This approximation has been proved valid for the first lobar mode

of the pipe cross section. A system of fourteen equations and fourteen

dependent variables described the motion of the piping. Five families

of waves that propagate in the pipe wall and in the liquid were iden-

tified. The analytical model incorporated the Poisson and junction

coupling mechanisms and included the effect of shear deformation and

rotary inertia of the lateral motion of the pipe. The inclusion of

these mechanisms represents appropriately the motion of the systems and

constitutes an improvement over the previous model by Wilkinson [64] .

The transfer matrix method was the numerical model used for the analysis

of these systems. The method can predict the pipe wall displacements

and forces as well as the pressure and displacement of the liquid. The

model provides an alternative to other numerical and analytical methods.

186
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In addition,the Poisson and junction coupling were properly treated.

The methodology to incorporate pipe constraints, such as rigid supports,

springs, and inertia and external forces, was presented. The inclusion

of hydraulic devices, such as orifices and pumps, may be easily ac-

complished by the use of point matrices.

The field transfer matrices for the flexural modes, developed by Pestel

and Leckie [50], were modified to include the mass of the contained

liquid. The field transfer matrix for the liquid-axial pipe wall was

derived based on the model developed by Wiggert et al. [20]. Four

submatrices were identified. The magnitude of the terms of this matrix

in the analysis of liquid-filled pipes depends on the frequency at which

the system oscillates. The compliance terms may be neglected for high

frequency analysis. However, the main diagonal terms of each submatrix

are important for low frequency studies.

The results from the transfer matrix method (TMM) were compared with

numerical methods such as the method of characteristics (MOC) and the

component synthesis method (CSM). The TMM exhibited advantages over the

other two methods. The mu is a one-step computation, whereas the CSM

requires two steps for the analysis. In contrast to the MOC, the TMM

does not require interpolations for the analysis of systems subjected to

harmonic oscillations. Experimental data, available in the literature

were also used to provide validation of the transfer matrix method.

An experimental apparatus was designed and built to validate the numeri-

cal method. A one-inch, water-filled, copper pipe with a U-type bend
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was excited with either a transient or harmonic loading to study the

response of the system. The experimental tests were conducted on a

liquid-filled pipe system with closed-open conditions for the liquid and

fixed-fixed conditions for the U-bend. The natural frequencies of the

liquid were varied by changing the length of the pipe. The harmonic

excitation was applied to a U-bend that was allowed to vibrate in one

plane. Numerical analysis results were compared to experimental

results. The following conclusions were drawn from the experimental

tests:

1) The snap-back transient test was used to calibrate the numerical

model. The addition of the spring increased the stiffness of the U-

bend. This additional stiffness increased the natural frequencies of the

bend. Computed results showed that the spring increased by 0.5 Hz the

natural frequencies of the U-bend.

2) The other transient test used was rapid valve closure. The closure

of the valve excited the liquid odd harmonics, but only the first fre-

quency of the U-bend. The time response of the liquid pressure and the

displacement of the U-bend were presented. A fast Fourier transform

analysis of the time series was performed to obtain the natural fre-

quencies of the system. Good agreement between the experimental liquid

harmonics and the corresponding computed results was obtained. The

computed frequencies were obtained by assuming no shear or bending for

the pipe legs between the valve and U-bend. The same assumption was

made for the pipe legs and between the U-bend and the reservoir. Only

the axial pipe wall and liquid modes were considered in these pipe
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reaches. This test was also used to measure and compare the liquid wave

speeds. The experimental results were compared with the wave speed

obtained by Budny [22] . The computed results showed that the wave

speeds were within 0.5% of the experimental values.

3) The harmonic test was used to excite the U-bend, thereby, exciting

the liquid. Three U-bend frequencies and nine harmonics of the liquid

were excited. Spectral analysis showed that large pressure responses

occured at frequencies near the asymetrical modes of the U-bend. These

modes allowed motion of the elbows which generated the junction cou~

pling mechanism. This coupling mechanism was the primary factor to

magnify the pressure. The second mode of the U-bend, which corresponds

to a synnetrical mode, did not excite the liquid pressure. The computed

results predicted the natural frequencies of the system. The magnitude

of the pressure response was increased when a liquid frequency was near

one of the asymmetrical modes of the U-bend.

4) Variations of the pipe length changed the relative location of the

U-bend and transducers with respect to the closed-end. A total of nine

pipe configurations were studied. This allowed measurement of the

liquid pressure mode shapes at discrete points for each pipe configura-

tion. Computed mode shapes showed good correlation with the

experimental points. The pressure mode shapes at the natural fre-

quencies of the liquid corresponded to the odd harmonics of a l/lI sine

wave. The mode shapes at the U-bend frequencies show an abrupt change

at the horizontal leg of the U-bend. The results showed that at these

frequencies the magnitude of the pressure at the bend can increase as
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much as 100‘ from the pressure at the closed end. The magnitudes of the

pressure responses at the fluid frequencies are larger than those at the

U-bend frequencies .

In summary, the tranfer matrix method is appropriate to predict the

natural frequencies of liquid-filled pipesf Poisson and junction cou-

pling are modeled with the use of this method. The experimental results

showed that the larger pressure responses occured at higher harmonics

and that the responses were magnified when the liquid frequency was near

one of the asymmetrical modes of the U-bend. These modes allow motion

at the elbows generating the junction coupling. This mechanism

amplifies the pressure response of the system. Natural frequencies of

complicated piping systems can be estimated by including the flexural,

liquid and axial modes at locations where these modes may affect the

response of the system. Other reaches can be analyzed by including the

appropriate modes, for example only liquid or both liquid and axial.

The model used in this study allowed motion in only one plane. It did

not include fluid friction or structural damping. The extension to a

three dimensional space can be accomplished by incorporating the torsion

mode as well as the flexural mode of the out of plane motion.

Experiments are necessary to estimate the influence of these modes on

the responses of the system. The incorporation of energy dissipation

into the model is necessary to estimate the magnitude of the responses

to an excitation.
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A.1 Intraductiga

The field transfer matrix [Tfp] shown in Equation 4.20 will be analyzed

for two cases. First, Poisson's ratio is set to zero, thereby decou-

pling the axial pipe wall and liquid vibration. The results are then

compared with those of other authors. Second, Poisson's ratio is taken

nonzero; in this case the analysis will focus on the orders of mag-

nitude of the matrix terms when the frequency of oscillation varies.

The analysis is facilitated by arranging the matrix in Equation 4.20

into four submatrices. The arrangement yields:

P .

g1;
0C2'Co ’C1+(U+‘Y)Cs 5 $702 11 [C1‘(U+T+‘1)C3]

a(c,-ac,) acz-co : -§Parc, - figvc,

[Tfpl- 2uaC 2v[(a+r+1)C -c 1' (7+1)c -c l[(r+1)C -[(r+1)2+a ]c ]
2 31' 20 1 ‘73

T

  21’0703 '2VTC2 :T[(f+1)C3'CI] (TH)C:‘CO

(A.l)

191



Appendix A Liquid-Axial Pipe Wall Transfer Matrix

192

The state vector associated with the above matrix is

AE

T
U F

2 - { 33 -3 ¥ 2* } (A.2)

p K

The matrix in Equation A.1 can also be written as

 

[rfp1- (A 3)

  I l

=1
;-

Notice that the coupled submatrices T2: and T2; contain the factors

Uand 2v, respectively. Also, the main diagonal terms of the four su

matrices are functions of the cosine of the eigen values A1 and A2,

whereas the other nondiagonal terms depend on the sine function of the

same eigen values. The expressions for these coefficients are given in

Equations 4.21g through 4.20j .

A-2 unsounléd_Analxsis

Setting Poisson's ratio to zero results in uncoupling the axial pipe

wall and liquid variables. The transfer matrix becomes separated into

two sub-matrices. The liquid matrix is

P cos (wt/sf) -j 8111((01/8f) p
... (A. 4)

pfafi'l i -jsin(w£/af) cos(wl/af) i Pfaf0 1,1

_._—- up
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where V represents the liquid velocity amplitude. This result agrees

with that of Wilkinson [64], Chaudhry [7] and Wylie and Streeter [6].

The axial pipe wall matrix is

a cos(w£/a ) jsin(wl/a ) a

{ "oH . PH ‘0}[ifsp z 1 jsin(wl/ap) cos(w£/ap) 1 pfap z 14

where Oz represents the axial pipe wall velocity amplitude and oz is the

axial stress. This matrix agrees with the matrix presented by Wilkinson

[64].

A3W

The importance of the coupling terms of the transfer matrix can be

studied by using an order of magnitude analysis. An inspection of the

matrix terms in Equation A.1 shows that the coefficients and the eigen

value parameters a, r and 1 are function of the frequency in addition to

the liquid and pipe material properties. The terms u, b and h depend on

the liquid and pipe material properties. The radius to thickness ratio,

b, and the frequency of oscillation, w, are the parameters varied. The

Young's modulus to modified bulk modulus ratio, h, and Poisson's ratio,

u, also affect the order of magnitude of the matrix terms, but they will

be kept constant in this analysis. For comparison, a discussion based

on numerical evaluations will be presented for pipes of five different
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3

materials. The liquid is water with K - 2.2 GPa and pf - 1000 kg/m . A

similar analysis was performed by Otwell [19] and Stuckenbruck [21] .

The physical properties used for the pipe material are shown in Table

A.1 [21].

MAJ.

PIPE MATERIAL PROPERTIES

Material Young's Modulus Density Poisson's Ratio

3

GPa kg/m

Steel 210.0 7600 0.27

Cast Iron 80.0 7600 0.25

Copper 115.0 8800 0.34

Aluminum 70.0 2700 0.33

Polyethylene . 0.8 1000 0.46

The influence of the pipe cross-section geometry ratio, b, can be

facilitated by defining the ratio of coupled wave speeds as

c

c - :9 (A.6)

f

This ratio can also be defined as the eigen value ratio

A1

c - x; (A.7)

The relations between the coupled wave speed and eigen value for the

liquid and axial pipe wall are defined in Equations 3.22 and 3.23. The
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variation of c with respect to the pipe cross section ratio is shown in

Figure A.1a for values of b between 10 and 160. Figures A.lb and A.1c

show the coupled wave speeds for both the liquid and pipe in the axial

direction for each of the five pipe materials studied and for the same

pipe cross section range. The wave speed ratio ranges within one order

of magnitude for values of b less than 160 (Figure A.1a), except for the

polyethylene pipe. For example, for the copper pipe the variation of c

is 4 (between 3 and 7), whereas for the polyethylene it is 17 (between 5

and 22). The variation of the wave speed ratio is due to a faster

decrease of the liquid speed over the axial speed as b increases (Figure

A.1b and A.1c). Therefore, the radius to thickness ratio does not

introduce appreciable changes in the order of magnitude of the terms in

the transfer matrix .

The variation of the matrix terms with respect to the frequency of

oscillation, w, is analyzed for a copper pipe with b - 10 and liquid

natural frequency of 4 Hz. Table A.2 shows the value of the coeffi-

cients as the frequency increases. The characteristic parameters a, r

and 7 are also shownx‘x‘xl'l'he uppervlimiflt frequency is given by the first
V

lobar mode of the pipe cross section, “’0' As shown by Everstine et a1.

[86], a one-dimensional analysis is not valid for frequencies greater

than “9' The frequency expression for the first lobar mode is given in

Equation 3.7. This equation may also be written as



Appendix A Liquid-Axial Pipe Wall Transfer Matrix

196

3 ha

.2
' r 5b2(l-u2)(l+b/2d) (A'a)“o

For example, for the copper pipe of Table A.1 with r - 0.1 m and b - 10

the first lobar mode frequency ”9 is 2380 rad/s or 380 Hz.

IBELE‘ALZ

MSFERHAIRIXPWS

Coefficient Equation Amplitude Value Value at

w -wo

2 2

Co 4.20g i(l+c )/(c -l) 1.25 1.3

s 2

C1 4.20h i(l+c )/A,(c -l) 3.50/A, 0.0

2 2 2 2

C2 4.201 12c /A1(c -l) 2.25/A1 0.0

s 2 2

C, 4.20j ic(l+c)/A,(c -l) 1.50/11 0.0

2 2 2

f 4.20a cfx,/a§ 0.9611 9075

2 2 2

a 4.20b c x2/a2 1.04;, 27220

2 p 2P2 2 2

1 4.20c 2v b/d cpxz/ap 0.271, 7070

The results given in Table A.2 show that the trigonometric coefficients

depend on l/ArlI where n - 0,1,2 or 3 as (9 increases, whereas the eigen-

value parameters depend on the square of the eigenvalues. The

coefficients are shown in Figure A.2a for the copper water-filled pipe

when c is 2.8. Figure A.2b shows the eigen values for the same piping

system. The sixteen terms of the transfer matrix are plotted in Figures

A.3 through A.6 for varying ratios of oscillation to the liquid natural

frequency. Figure A.3 shows the terms for the axial pipe wall sub-

matrix. The coupling submatrices are shown in Figures A.4 and A.5.
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Finally, the liquid submatrix is shown in Figure A.6. The following

observations can be made

1) The main diagonal terms of the liquid and pipe wall submatrices

fluctuate between -1 and l.

2) At low frequencies, the main diagonal terms of the matrix, which

depend on Co start at a value of l. The other terms are one order of

magnitude lower than the main diagonal terms. This result is also shown

in Figure A.2a.

3) At high frequencies, the amplitude of the matrix terms (2,1), (2,3),

(4,1) and (4,3) increase as the frequency increases. These terms are

associated with the apparent stiffness ratio, force or pressure over

displacement. The amplitude of the terms (1,2), (1,4), (3,2) and (3,4)

decrease as the frequency increases. These terms are associated with

the compliance ratio, displacement over force or pressure.

The above observations and the results in Figures A.3 through A.6 show

that the compliance terms may be neglected for high frequency analysis.

The main diagonal terms can be use for frequencies less than the first

liquid frequency and the other terms may be neglected at low fre-

quencies.
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Appendix B Data Acquisition

APPENDIX!

8.1 Wan

To obtain the required information on harmonic behavior, the dependent

variables of liquid pressure and structural displacement must be re-

corded as a function of time. This was accomplished by using PCB

pressure and acceleration transducers interfaced with either a Digital

PDP-ll/73 computer, or a Tektronix D13 dual beam storage oscilloscope.

3-2W

The analog output signals of the transducers, which are directed to the

computer, are converted to a digital format by an analog/digital board,

with the sampling rate controlled by a programmable clock board. The

software required to perform this conversion and data storage is

described below in the Data Acquisition Software section. A schematic

of the components of the data acquisition system is shown in Figure 5.7.

Each component is described below.

204
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B.2.l Piezoelectric Pressure Transducers

The principle of a piezoelectric transducer is that a charge is produced

across the piezoelectric crystal, which is proportional to the applied

pressure. Since this type of transducer is designed to measure dynamic

and short term static pressure measurements, all pressure readings taken

are dynamic pressure variations about a steady state static pressure.

For this study PCB Piezotronics Models lllA26 and 113A24 Dynamic

Pressure transducers with built-in unity gain voltage amplifiers were

used to measure the liquid pressure within the pipeline at the harmonic

and fast acting valve. These units were selected because of their high

resonant frequency, acceleration compensated quartz element, and the

fact that the signal quality is nearly independent of cable length and

motion. Table B.1 lists the published properties and the calibration

properties as determined by the manufacturer. The calibration procedure

was in compliance with MIL-STD-45662.

m1

ROPERTIES 0P PRESSURE TRANSDUCERS

Property Units Value

PCB Serial No.

11M 113.629.

Range (5 volts output) psi 500.0 1000.0

MPa 3.447 6.894

Resolution (min. value) psi 0.1 0.01

Pa 689.4 69.9

Sensitivity (output) mV/psi 9.71 5.23

mV/kPa 1.41 0.76

Resonant Frequency KHz 400.0 425.0

A/D Error @ Gain of 1 psi 0.97 0.97

kPa 6.73 6.73

Linearity (error) tbsl 2 . 0 2 . 0
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Connected to each pressure transducer is a PCB Battery Power Unit. The

units are PCB Model 480DO6 with 1,10, and 100 range signal amplifiers.

The function of each battery power unit is to power the transducer

electronics, amplify the signal, remove bias from the output signal and

indicate normal or faulty system operation. It is a combination power

supply and signal amplifier.

The transducers were mounted by tapping a brass block as per PCB

specifications. The block was designed so that the end of the

transducer would be flush mounted with the inside diameter of the

pipeline. Since the end of the transducer is flat and the block was

tapped with a circular hole, the mounting is not flush mounted. There

is a small deviation due to the curvature of the hole.

B.2.2 Quartz Accelerometers

The principle of a quartz crystal accelerometer is that a charge is

produced across the crystal in proportion to the applied acceleration.

For this study PCB Piezotronics Model 302A Low Impedance Voltage Mode

quartz accelerometers were used to monitor the desired motion. These

units were selected because of their ability to measure the acceleration

aspect of shock and vibration motion from lg to 500g, over a wide fre-

quency range. They also offer exceptionally sensitive low frequency

response, can follow long duration shock events, and have built-in

amplifiers. These types of accelerometers are not linear for fre-

quencies less than 10 Hz. A calibration curve was obtained for each
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accelerometer to find the conversion from volts to millimeters. These

curves are shown in Figure 8.1. A direct displacement measurement

technique was used. The accelerometers were attached to the shaker

mechanism shown in Figure 5.3 in place of the spring. The circular

frequency of the motor was increased and the displacement output from

the accelerometers was compared with observed readings from a displace-

ment meter for the same frequency. The range of the displacement meter

was one inch, with 1000 divisions per inch. Table 8.2 lists the pub-

lished and calibration properties of the transducers as determined by

the manufacturer. The calibration procedure was in compliance with MIL-

STD-45662.

The accelerometers were installed by clamping the base of the transducer

to the test object with an elastic beryllium-copper threaded stud. To

accomplish this, a mounting collar was designed and used to install the

transducer at any point along the pipeline. The collar is made of a 63

mm square, 19 mm thick aluminum block. The block is tapped to accept

the mounting stud, and a hole is drilled through the center of the block

to match the OD of the one inch nominal copper pipe. The block is then

cut through the center of the hole and bolt holes are drilled through

both sections. Bolts are then used to hold the two pieces together

enabling the block to act as a vise squeezing the pipe around its entire

circumference .



Appendix 8 Data Acquisition

208

mu

PROPERTIES 0F.ACCELEROMETER.TRANSDUCERS

Property Units value

302A Serial No.

Range FS (5 volt output) g 500.0 500.0 500.0

Resolution g 0.01 0.01 0.01

Sensitivity mv/g 10.04 10.03 10.04

mv/ft/s 0.831 0.832 0.831

mv/m/s 0.253 0.253 0.253

* mv/mm 322.5 322.5 322.5

Resonant Frequency kHz 45.0 45.0 45.0

Frequency Range (:58) Hz 1 - 5000

A/D Conversion Error g 0.976 0.976 0.976

Linearity %FS 1.0 1.0 1.0

Integration Error % 5.0 5.0 5.0

* For frequencies below 10 Hz, the conversion factors for

displacement are obtained from Figure 8.1

Connected to each transducer is a PCB Dual Integrating Power Unit Model

480AlO. The function of this unit is to supply constant current excita-

tion to power ICP sensors over signal lead, eliminate DC bias voltage on

output signal by capacitive decoupling, monitor bias voltage on sensor

lead for normal or faulty operation by meter indication, and provide

either acceleration or velocity output signals. In addition to the

above features, it also provides a displacement output signal.

8.2.3 Computer Hardware and Accessories

The computer used for the data collection was a Digital Equipment

Corporation DEC PDP-ll/73. The installed operating system was RSX-llM-

PLUS version 3.0. In addition to the standard equipment present within
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a PDP-ll/73 system, an analog-to-digital converter and a programmable

real-time clock board were installed to facilitate data acquisition. To

direct the input and output signals to their appropriate locations, a

patch panel was constructed and mounted on the face of the computer

cabinet.

8.2.3.1 Analog-to-Digital Converter

The AXVll-C is an LSI-ll analog input/output printed circuit board. The

board accepts up to sixteen single-ended inputs, or up to eight dif-

ferential inputs, either unipolar or bipolar. A unipolar input can

range from 0 volts to +10 volts DC. The bipolar input range is :10

volts DC. The analog-to-digital (A/D) output resolution is 12 bit

unipolar, or 11 bit bipolar plus sign, with output data notation in

octal coding of binary, offset binary, or 2's complement. The A/D

converter performance has a system throughput of 25K channel samples per

second, with a system accuracy input voltage to digitized value of plus

or minus 0.03% full scale. The board also has two separate

digital-to-analog converters (DAC). Each DAC has a write-only register

that provides lZ-bit input data resolution, with an accuracylof plus or

minus 0.02% full scale.

By setting the required jumpers on the board, the AXVll-C was configured

for bipolar differential inputs with the external trigger set to the I/O

connector. The I/O connector was then hardwired to the KWVll-C program-

mable real-time clock overflow.
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B . 2 . 3 . 2 Programmable Real-Time Clock

The KWVll-C is a sixteen bit resolution programmable real-time clock

printed circuit board. It can be programmed to count from one to five

crystal-controlled frequencies, from an external input frequency or

event, or from the 50/60 Hz line frequency on the LSI-ll bus. The five

internal crystal frequencies are 1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100

Hz. The base frequency for the clock is 10 MHz, thus the accuracy of

the time measurement is i 0.1 microseconds.

The clock also has a counter that can be programmed to operate in either

a single interval, repeated interval, external event timing, or external

event timing from zero base mode. In addition to its clock functions,

the KWVll-C also has two Schmitt triggers. The triggers can be set to

operate at any level between i 12 volts DC on either a positive or

negative slope of the external input signal. In response to external

events, the Schmitt trigger can start the clock, start A/D conversions

in an A/D input board, or generate program interrupts to the processor.

8.2.3.3 Patch Panel

To facilitate use of these data acquisition computer boards, a patch

panel was installed on the front of the computer cabinet. It has BNC

connectors installed which allow access to the eight differential A/D

inputs, the two D/A outputs, and both Schmitt triggers. Switches and

potentiometers for each Schmitt trigger were also installed to allow
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external control of both the slope and triggering level. In addition,

the panel also contains a three volt DC power supply with a connection

to the KWVll-C board.

8.2.4 Data Acquisition Software

Digital's K-Series Peripheral Support Routines were used for data ac-

quisition. These machine language routines perform input and output

operations through the Connect to Interrupt Vector Executive directive.

The routines are highly modular, that is they are designed to perform

specific operations. Thus, to complete the sampling, a user program is

required to call each routine as various functions. are to be performed.

A Fortran computer program was developed to facilitate the data acquisi-

tion process. The program accessed the routines for computing and

setting the clock rate, setting the A/D channel sampling information,

creating and maintaining buffers to store the sampled data, and starting

and stopping the sampling. The program was divided into two parts. The

first part of the preprocessor is an interactive program. This program

allows the user to select the sampling rate, number of channels to be

sampled, number of samples per channel, the data acquisition device

connected to each channel, and the range of frequencies to be sampled.

The second part is the actual sampling routine. This program is

designed so that the sampling process is started upon indication of the

user. After the sampling process is finished the program requests the

user to change the frequency of the motor. At this time the program
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allows 30 seconds for the system to reach steady-state conditions. This

process continues until all the frequencies of the frequency range have

been sampled.

The experimental procedure as well as the hardware and sofware com-

ponents for rapid valve closure are described by Budny [22] .
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