

.‘A.
”4.111;

4'.‘(H

A

,'. '1'“,

$.33???'5’
. .

, .

1‘5"»1".‘g’JI‘Ch' L.‘

m #433:3.33::

('3;

I 'vk-ni.’

V. .

‘ \ ‘-

J!‘ 1‘.

5., 9.1.4
4

~wlvi‘lm“"" V ‘

2‘3? 5.: 4.4 . «1.4 ..7 21“ $5; .”$23.?
.u

5"!‘ "~“~“

3&1?“ mmh’’W9'33“};
:\ ahv§127IL}

”(wufiiq‘
i" “mu.

‘5‘i ‘1::j~”,:..O1:V\-I:wh-~“”-?“.'1 -‘ .- I‘
. '

“~‘~ 45‘~

3.63125:- (“L‘W‘W'a- 2"“
'w' A ‘ 333v}

3.
“ ‘u‘ 'JVOQ‘V‘Q'A.:j. “UR-u 4 ..
~ 5». s K's)" :33:-.\Emu» “ "4.7" .-'v.‘ .44- . “2:33:_ x

‘pvfiwv.‘.

V

,4

“'I I

4. ‘ M‘i‘
\“<

“‘V'Q~§ld

'17,-?

“.343
~ .

4‘34

‘ ‘r

.

=11. "
_ z- ‘w

1-1A~_‘o'j‘~}

w; 1&7“.

“8....fink}-
43.2%;

.v 1. . 4
VV

r €?{,‘J,'f’.:43;._
‘ 4 ..

avigif???“"I u,

a {23$};5“: ’ .
‘3?Kuwyx; 11‘ "3"
62:}: .0.” .7

a 1 4‘7
, gfihf‘i ‘}4

O a I 4;!

1'
7

‘3
‘

-
.2
.

‘
I

I

.

t
4

.
3
:

.
3
.

.

-
‘
.

~

"
m
-
I
L
‘4 1"

“u M (a;

fid‘§$

, ‘ ‘

«a

v
y: . «

b-g’u‘u$"<04A ‘l‘I
‘7’

’5

"$3“; If» ‘ ‘ A'

.J'Jqu“.-- 5"
' ' ‘

V ,4 " ' "“14-

‘ «‘4‘ 1"”

1’?!“ a".3

.1""-":’4"W:"

'
5
2
,

‘
1
'
:

'21th ’4"

,4 "a

«A;.4’

'4"

""1"."

q '1

1’3
J‘Jyl

.y

M,"
new;

44', {f‘II'Ct
wt;

f‘K/“e'

fl.

j,“,’:(2‘‘3 ‘ .4

- ,r4 " :‘:.""
filfl-(fo'v'l'urf

9“)?“ K 3 . '5%
{I’VE}

‘Vpflfi

y-‘H‘lvdra'g

('6'?

'fi "
_‘ .w

”it"{ngl'f
"$112:-’?r;;"""'&

(12...,

”52:7!

5“"

W" ‘‘
.4' '1

'31""'
~14£5

4

#1.” ‘5‘.)

IV:(‘41 [:4

w\’f.‘,{a;
13""!‘rf,

............................... 0 51670

IIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Lab-4AM
_ 313005741172 chigan SI I

University

This is to certify that the

dissertation entitled

0n Interleaving Syntax and Semantics in Parsing

presented by

Dongyul Ra

has been accepted towards fulfillment

ofthe requirements for

PhD Computer Science

(kgnxin

I Major professor

17 Oct 1989

Ihne

MSUis an Aflinnativc Action/Equal Opportunity Institution 0- 12771

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

MSU In An Affirmative Action/Equal Opportunhy lnetilution

ON INTERLEAVING SYNTAX

AND SEMANTICS IN PARSING

By

Dongyul Ra

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1989

Li
z-
{‘
3
4

’2
.
2
.

I
I

ABSTRACT

ON INTERLEAVING SYNTAX

AND SEMANTICS IN PARSING

By

Dongyul Ra

It is agreed that natural language parsers should use both syntactic and semantic

knowledge for better analysis. Several approaches for using these distinct knowledge

have been proposed: non-integrated parsing and integrated parsing. Under non-

integrated parsing, there are two kinds of approaches: the old extreme one which is

represented by the serial stage parsing and the recent one called interleaved semantic

processing. Under integrated parsing, there are also two views: the old extreme one

represented by conceptual analyzers and the recent moderate one shown in Lytinen’s

MOPTRANS parser.

This thesis attempts to update the interleaved semantic processing to achieve the

power of integrated parsing. An integrated parser, called SYNSEM, has been developed

for this purpose. In SYNSEM, each alternative syntactic analysis becomes a branch of

parsing. Multiple branches can run in parallel but they are filtered, as soon as possible,

according to their semantic processing results at the periodic synchronization points.

SYNSEM’s approach is able to utilize semantics(as well as syntax) as much as the

recent integrated parsing approach.

To provide the necessary semantics for comparing the branches of parsing, a

knowledge base(KB) is built using the recent knowledge representation language,

KODIAK. A marker passing paradigm is used to utilize the knowledge base. The seman-

tic processing result for each branch is realized as the paths in the knowledge base. To

solve the hard problem of finding the best paths between two concepts, a mechanism

called secondary marker passing has been developed which efficiently cuts down the

number of paths to be considered. Several heuristics have been developed for selecting

only the best paths. The comparison of branches to filter those with inferior semantic

results is done by comparing the KB paths. A heuristic for this comparison is also

developed.

The approach described so far aims at structural disambiguation. Word sense

ambiguity is another big source of ambiguities in natural language. Several methods for

word sense disambiguation are developed in SYNSEM. By manipulating a set of the

KB paths, an easily conceived and simply implementable method for word sense disam-

biguation is introduced. The path adjustment operation after the concretion of a sense to

the more specific sense is a new source of information utilized in the SYNSEM parser.

To my wife and daughter

for their love and support

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. George C. Stock-

man, for his guidance over the years at Michigan State University. Dr. Stockman

advised me at every phase of my research. He showed a great deal of patience while I

was going through the long period of reading literature and preparing for the research.

He patiently listened to my ideas and plans and provided valuable comments and

suggestions even when my ideas were sometimes vague or seemed strange. He also pro-

vided encouragement for me when I needed it to continue this arduous thesis work.

Without that, my program might never have been completed.

I am grateful to my committee members, Dr. Anil K. Jain, Dr. Carl V. Page, Dr.

Jon Sticklen, Dr. J. Kathryn Bock, and Dr. Barbara K. Abbott for giving me kindness,

valuable suggestions and comments and for teaching me during my graduate program.

I am grateful to Barbara Czemy for reading the draft of this thesis and correcting

numerous errors. I also would like to thank my friends I’ve made during my stay in this

university for helping me in one or more ways: Chaur-Chin Chen, Sci-Wang Chen, Xian

He Sun, Jayashree Ramanathan, Arun Nanda, Rob Jaksa, Mahmoud Pegah, John Kern,

Joe Miller, Paul Wolberg and many others.

Finally I would like to thank my wife and my daughter for their constant support,

patience, and love.

TABLE OF CONTENTS

List of Tables .. ix

List of Figures .. x

Chapter 1. Introduction .. 1

1.1. Serial Stage Parsing .. 3

1.2. Integrated Parsing ... 4

1.3. Interleaved Semantic Processing .. 7

1.4. Improving Interleaved Semantic Processing: a New Proposal 10

1.5. Outline of the Thesis ... 13

Chapter 2. Parsing Models in Psycholinguistics ... 15

2.1. Serial Models .. 15

2.1.1. Structural Preference Model .. 16

2.1.2. Lexical Preference Model .. 20

2.2. Parallel Models ... 24

2.2.1. Discourse Model .. 25

2.2.2. Ranked Parallel Model .. 28

2.2.3. A Parallel Model with Conceptual Selection Hypothesis 31

2.3. Summary ... 36

Chapter 3. Framework of New Approach ... 37

3.1. General Framework of the Control ... 38

3.2. Configuration of SYNSEM ... 42

vi

3.3. Operating Principle of SYNSEM ... 44

3.4. Conclusion .. 48

Chapter 4. Syntactic Analysis ... 50

4.1. Syntactic Analysis .. 50

4.2. Structure of Rules ... 53

4.3 Delay Used for Increasing Syntactic Context .. 59

4.4. Rules and State of Parsing .. 64

4.5. Rules and Ambiguity .. 67

4.5.1. Delay and Parallelism .. 70

4.6. Syntactic Processing in Operation .. 72

4.7. Conclusion .. 80

Chapter 5. Knowledge Base and Marker Passing .. 82

5.1. KODIAK ... 83

5.1.1. Modeling Knowledge .. 87

5.2. Marker Passing in SYNSEM .. 89

5.2.1. Links and Flow of Markers .. 92

5.2.2. Basic Considerations on Marker Passing .. 94

5.2.3. Follow-on Collisions ... 97

5.2.4. Overlapping Collisions .. 99

5.2.5. Marker Passing Algorithm ... 100

5.3. Conclusion .. 102

Chapter 6. Providing Semantics to Parsing .. 103

6.1. Interfacing Syntax and Semantics .. 104

6.2. Finding a Path for a Suggestion .. 108

6.2.1. Secondary Marker Passing: Motivation and Basic Concept 110

6.2.2. Consideration on the Polarity of Paths .. 115

6.2.3. Heuristics for Finding the Best Path .. 119

vii

6.2.3.1. Hierarchy: H—heuristic ... 120

6.2.3.2. Length: L-heuristic .. 121

6.2.3.3. Specificity: S-heuristic ... 122

6.2.4. Operating Example of Finding the Best Path .. 123

6.3. Semantic Comparison of Branches ... 129

6.4. Semantic Processing Component in Action ... 132

6.4.1. Example 1 .. 133

6.4.2. Example 2 .. 136

6.5. Conclusion .. 143

Chapter 7. Word Sense Disambiguation ... 145

7.1. Use of Semantic Paths for Word Sense Elimination 147

7.2. Use of Concretion ... 155

7.3. Use of Semantic Association .. 158

7.4. Use of Information about Syntactic Category .. 161

7.5. Conclusion .. 162

Chapter 8. Conclusion ... 164

8.1. Proposed Approach of Parsing ... 164

8.2. Argument for the Proposed Approach .. 165

8.3. Observations on Implementations and Test ... 168

8.4. What Has Been Achieved ... 170

8.5. Future Research Items .. 172

Appendix A Structure of Noun Phrase(NP) ... 174

Appendix B Determining Dead-end Situation .. 175

Appendix C Test Sentences .. 177

Appendix D System Output of Parser ... 182

Appendix E List of Sample Rules .. 201

List of References ... 206

viii

LIST OF TABLES

Table 4.1 Some Actions .. 57

Table 5.1 Links in KODIAK .. 85

Table 6.1 Data of Finding Paths ... 134

ix

LIST OF FIGURES

Figure 1.] Stages of Parsing ... 3

Figure 1.2 Integrated Stage of Parsing ... 4

Figure 1.3 Generalized Syntactic Rules in MOPTRANS ... 5

Figure 1.4 Arcs of an ATN State .. 8

Figure 2.1 Alternative Analyses Tried Serially .. 16

Figure 2.2 Minimal Attachment ... 18

Figure 2.3 Failure of Local Attachment ... 19

Figure 2.4 Ambiguous Region .. 20

Figure 2.5 Lexical Forms of Verbs ... 22

Figure 2.6 An example of Final Argument Principle ... 23

Figure 3.1 Interleaved Semantic Processing - 1 ... 38

Figure 3.2 Interleaved Semantic Processing - 2 ... 39

Figure 3.3 Interleaved Semantic Processing - 3 ... 40

Figure 3.4 Interleaved Semantic Processing - 4 ... 41

Figure 3.5 Configuration of SYNSEM ... 42

Figure 3.6 "the" Processing .. 44

Figure 3.7 Lives of Branches .. 46

Figure 3.8 Partial Parallelism ... 47

Figure 3.9 Flow of the Control ... 49

Figure 4.1 Syntactic Working Memory .. 51

Figure 4.2 Syntactic Node .. 51

Figure 4.3 A Tree in SWM ... 52

Figure 4.4 Format of Rules ... 53

Figure 4.5 Specification of the Base Pattern .. 55

Figure 4.6 Main-verb2 Rule ... 56

Figure 4.7 Mapping Patterns to Trees .. 58

Figure 4.8 Parsifal’s Pattern Matching ... 58

Figure 4.9 Delaying in the build-PP Rule ... 59

Figure 4.10 Steps of Building a PP ... 60

Figure 4.11 Recursive Embedding of Attention Shifting ... 61

Figure 4.12 Matching of Lowest and Rightrnost NP .. 62

Figure 4.13 Implicit Attachment of Secondary Clause .. 63

Figure 4.14 PP Attachment Ambiguity .. 67

Figure 4.15 PP Attachment and the Corresponding Rules 68

Figure 4.16 Verb Form Ambiguity ... 69

Figure 4.17 CLIST and Categorical Ambiguity ... 69

Figure 4.18(a,b) Snapshots of SWM during Parsing .. 73

Figure 4.18(c,d,e) Continued .. 74

Figure 4.18(f,g,h) Continued .. 74

Figure 4.18(i.j,k) Continued ... 75

Figure 4.18(l,m,n,o) Continued .. 76

Figure 4.18(p.q,1’.s,t) Continued ... 77

Figure 4.18(u,v,w,x) Continued .. 78

Figure 4.18(y,z,zl,22) Continued ... 79

Figure 4.18(z3,z4,25) Continued .. 80

Figure 4.19 Creation of Multiple of Branches .. 75

Figure 5.1 Elements of KODIAK ... 84

Figure 5.2 Frame Representation .. 84

Figure 5.3 Instance Links ... 86

Figure 5.4 An Example of KB .. 88

Figure 5.5 Memory of TLC .. 90

Figure 5.6 Origin of Marker Passing .. 93

Figure 5.7 Links and Nodes Passing Markers .. 93

Figure 5.8 Split of Markers ... 95

Figure 5.9 Loop in Marker Passing .. 96

Figure 5.10 Merging of Markers .. 96

Figure 5.11 Follow-on Collision .. 98

Figure 5.12 Regular and Follow—on Collision .. 98

Figure 5.13 Overlapping Collisions .. 99

Figure 5.14 Marker Passing Algorithm .. 101

Figure 6.1 Flow of Information from Syntax to Semantics 104

Figure 6.2 PP Attachment Depending on Semantics .. 106

Figure 6.3 Influence of Semantics on Parsing .. 107

Figure 6.4 Conversion of Suggestions .. 108

xi

Figure 6.5 Part of KB .. 109

Figure 6.6 Hierarchies of Relations .. 111

Figure 6.7 A Three-way Collision .. 113

Figure 6.8 Cut-down of Marker Passing Space .. 114

Figure 6.9 Two Collisions with One to Be Removed ... 115

Figure 6.10 Role and Play of Aspectuals of Relations ... 117

Figure 6.11 An Example of Role and Play ... 117

Figure 6.12 Stages of Finding Best Paths ... 119

Figure 6.13 Removal of a Collision Using Ancestor Information 120

Figure 6.14 Number of Nodes in the D—hierarchy .. 122

Figure 6.15 Possible Forms of Paths .. 122

Figure 6.16 End Absolutes of Two Paths to Be Compared 123

Figure 6.17 Rank-Ordering the Branches ... 129

Figure 6.18 Comparison of Two Rules(vp-pp & np-pp) .. 130

Figure 6.19 Instances and Two Paths to Be Compared .. 130

Figure 6.20 Two Paths in "cat" Example ... 132

Figure 6.21 Competition of Three Branches .. 135

Figure 6.22 Removal of a Branch with Bad Semantic Processing 135

Figure 6.23 A Snapshot of CLIST .. 136

Figure 6.24 Flow of Branch for Noun-parse3 .. 137

Figure 6.25 Flow of Branch for Noun-parse4 .. 138

Figure 6.26 Flow of Branch for Noun-parseS .. 139

Figure 6.27 Comparison of Three Branches ... 140

Figure 6.28 A Path without a Relation Node .. 140

Figure 6.29 Parallel Running of two Branches ... 142

Figure 6.30 Final Branch for the Parse ... 143

Figure 7.1 Knowledge Base for Examples ... 147

Figure 7.2 Representation of Multiple Word Senses .. 148

Figure 7.3 Different Word Senses for Different Branches 149

Figure 7.4 Paths between Two Instance Nodes .. 150

Figure 7.5 Effect of Reading a New Word ... 151

Figure 7.6 Paths after Removing a Sense and a Path ... 151

Figure 7.7 RWSR Operation .. 152

Figure 7.8 Consideration for the Set of Non-removable Senses 153

Figure 7.9 Starting the removal Operation ... 154

xii

Figure 7.10 RWSR Operation Routine ... 154

Figure 7.11 Shape of Concretion Path .. 155

Figure 7.12 Concretion for the Example .. 156

Figure 7.13 Success of Path Adjustment .. 157

Figure 7.14 Failure of Path Adjustment ... 158

Figure 7.15 Use of Semantic Association .. 160

Figure 7.17 Use of Categorical Information ... 161

Figure A-l Structure of an NP ... 174

xiii

CHAPTER 1

INTRODUCTION

For humans natural language is an easy, flexible, and powerful means of communi-

cation. The goal of natural language processing, an area of Artificial Intelligence, is to

allow humans to use natural language to communicate with computers. One of the most

important advantages of achieving this goal is that humans can use their language, i.e.,

natural language, to communicate with computers. They can issue commands to the

computer with, for example, English and receive responses in English. Computers could

read or write documents written in natural language.

The global goal of natural language parsing is to make computers understand input

expressed in natural language. But this definition needs more elaboration because

"understand" is not specific enough. The fact that "a man understood a sentence" means

that he got the meaning of the sentence. This means: first he translated the input sen—

tence into a chunk of some biological medium that is used by the brain processes for

doing things such as thinking, storing, reasoning, speaking, etc.; second, he identified the

status of the chunk by relating it to the existing knowledge (for example, it is true, false,

new, etc.). An interesting thing is that these two steps of understanding are not separate

steps. It seems that they are interwined and mixed. A similar analogy can be applied to

the case of computers. The fact that a computer understands an input sentence means

that the input sentence should be translated into some form of a representation language

that can represent the meaning of the sentence. This representation language is usually

called the internal representation language or knowledge representation language. This

internal representation language is the universal medium that is used by the intelligent

processes in the system. This might be used for further processing such as reasoning or

1

answering.

Building a natural language parser is a very complex and difficult task. The

detailed processing principles and steps have been studied much but there is no unified

theory yet. One of the difficulties of building a natural language parser is because

natural language is full of ambiguities. To resolve the ambiguities, various kinds of

knowledge should be extensively used. The use of syntactic knowledge usually enables

the parser to understand the grammatical structure of a sentence. Syntactic analysis is

one of the areas that is most clearly understood according to the research of linguists.

But as we go from syntactic knowledge to the higher level knowledge, we do not have

clear understanding of the exact way of representing the knowledge or using the

knowledge during parsing. A big problem arises from the fact that many syntactic ambi-

guities require the use of higher level knowledge (let’s call this semantic information

broadly) for resolution.

In addition to this problem, there is not much agreement on the role that the syntac-

tic and the semantic knowledge should play in parsing and there is not much agreement

on what kinds of structures should be built during the course of parsing. Some argue

that syntactic knowledge need not be extensively used and syntactic structure of the

input sentence need not be completely built and used because the final goal of parsing is

to compute its meaning (semantic interpretation) instead of its syntactic

structure(Schank and Bimbaum, 1980). Some argued that the syntactic structure of the

sentence should be fully computed first and then semantic information should be applied

to resolve the ambiguities and compute the semantic interpretation(Woods, 1972). Oth-

ers argued that the parsing should involve the use of syntactic and semantic information

at the same time(Charniak, 1981c). The means of how to use semantic information is not

completely known.

The research to be reported in this thesis investigates the use of semantics in pars—

ing. What should the parsers’ control strategy be for the efficient use of syntactic and

semantic information? What kind of method should be used to glean the semantic infor-

mation that is necessary for the disambiguation? How are they applied to influence the

computation of the syntactic structure? In other words, this thesis is dedicated to finding

a parsing model that has a better answer for these questions. A parsing model that is new

and advanced will be adopted and an actual parser based on this model will be

developed. The problems and techniques that arise during the development of the parser

will be examined in this thesis.

In this chapter, several parsing approaches that have been used in previous parsers

will be introduced and then a new parsing approach will be introduced and motivated.

This chapter will conclude with the outline of the thesis.

1.1 Serial Stage Parsing

In the serial stage parsing approach, the syntactic analysis and semantic analysis

are done separately in two stages which are ordered serially. As shown in Figure 1.1, the

syntactic analysis stage comes

Input :> Syn‘awc j > / > Semantic It a1
Sentence Analysis Ananysis 11 emRepresentation

Syntactic

Tree

Figure 1.1 Stages of Parsing

first and then the semantic analysis stage follows. In the syntactic analysis stage, gram-

matical knowledge is used to build the syntactic tree for the input sentence. After the full

syntactic tree for the whole input sentence has been constructed, the semantic analysis is

done in the next stage. The syntactic tree from the first stage is input to the semantic

analysis stage. Non-syntactic knowledge is the major information used in the semantic

analysis stage. One of the advocates of this parsing approach was Woods(l972). He

argued that the parsing will be more efficient and faster if syntactic analysis is done first

without worrying about the semantic content of the sentence and then semantic process-

ing (which requires lots of computation) is based on the result of the syntactic analysis

which is a more appropriate form to process. The following quotation from

Woods(l972:145) shows his argument:

We have not gotten any conclusive answers yet regarding the effectiveness of this

type of semantic screening, but it looks as if it takes longer to do the parsing and

semantic interpretation overall if the interpretation is done during the parsing than

it does if the parsing is done first and the interpretation afterwords. This seems to

be because the semantic interpretation process is at least as expensive as following

out the syntactic consequences without semantic guidance, and the syntax is as

likely to rule out an alternative and keep the interpreter from having to interpret it

as the semantics is likely to rule out an alternative and keep the parser from having

to operate further on it. Clearly there is no a priori reason to expect that semantic

screening will save more of the parser’s effort than syntactic screening saves of the

interpreter’s effort.

But this approach has been opposed by many researchers. For example,

Chamiak(1981c) refuted Woods by saying that the serial stage approach has no psycho-

logical reality and it is rather inefficient in the face of lots of ambiguities in the human

language. The approach of serial stage parsing became an out—of-date parsing approach

which is the typical example of non-integrated parsing. The non-integrated parsing

approach is directly opposite to the integrated parsing approach that will be explained in

the next section.

1.2 Integrated Parsing

In the integrated parsing approach, there is no separation between the syntactic and

semantic processing stages as shown in Figure 1.2.

Input : Integrated Internal

Sentence Stage Representation

Figure 1.21ntegrated Stage of Parsing

In addition to the fact that two stages are integrated into one stage, this approach has the

following features: semantics is the major driving force of parsing; syntactic trees are

not built, which results in using only local syntactic cues and not global syntactic infor-

mation. Semantic representation of the input sentence is directly built. In this model,

syntax is viewed as less important information for parsing. This view has been strongly

advocated in Schank and Birnbaum(1980). A series of parsers have been developed fol-

lowing this approach: the Margie parser in Riesbeck(1975), ELI in Riesbeck and

Schank(1976), IPP in Lebowitz(1980), and Conceptual Analyzer in Birnbaum and Sel-

fridge(1981). Another parser that belongs to this model is the semantic grammar shown

in Burton(l976).

But one recent parser attempts to provide more syntactic analysis to integrated

parsing while it still tries to maintain the characteristics of integrated parsing. This

parser is the MOPTRANS parser developed by Lytinen(1984). Instead of using the lexi-

cal request-based rules used in the conceptual analyzers, MOPTRANS uses the general-

ized syntactic rules. Figure 1.3 shows two generalized syntactic rules, "subject" rule and

"object" rule.

Subject Rule

Syntactic pattern: NP, V (active)

Additional restriction: NP is not attached syntactically

Syntactic assignment: NP is SUBJECT of V, V is a MAIN CLAUSE

Semantic action: NP is actor of V(or another slot,

if specified by V)

Result: V (changed to 8)

Object Rule

Syntactic pattern: S, NP

Additional restriction: NP is not attached syntactically

Syntactic assignment: NP is (syntactic) OBJECT of S

Semantic action: NP is (semantic) OBJECT of S(or

another slot, if specified by S)

Result: 8, NP

Figure 1.3 Generalized Syntactic Rules in MOPTRANS

The generalized syntactic rules are indexed in a way that semantic knowledge is fully

used before the use of syntactic knowledge. At each step of parsing, all possible seman-

tic connections between the semantic objects in the memory are found. Then the

generalized syntactic rule which satisfies the constraint of its syntactic pattern and builds

the best semantic connection is selected and executed. Thus semantic knowledge is

used first and then syntactic knowledge is consulted at each step of rule indexing and

execution. This strategy guarantees the utilization of the predictive power of semantics.

The important point in the rule indexing strategy of MOPTRANS is that the parser will

never consider a rule that results in incorrect semantic effect. This can be shown using

the following two sentences:

(1-1)The man wrapped the present.

(1-2)The present wrapped by the man was expensive.

After "wrapped" is input in the first sentence, the memory contains two elements,

HUMAN for "the man" and COVER for "wrapped". The possible semantic connections

between these two memory elements are sought by the parser and it is found out that

there is only one possible connection: HUMAN is connected to COVER via the agent

relationship. Then any rule that matches the syntactic pattern and builds this semantic

connection is sought. In this case, only one rule, the Subject rule, is found. Then this

rule is executed and the parsing continues. Now, let’s consider the situation after read-

ing "wrapped” in sentence (1-2). The memory contains two elements: GIFI‘ and

COVER. Only one semantic connection is found between these two elements: GIFT is

the (semantic) OBJECT of COVER. All syntactic rules which match the syntactic pat-

tern and can build this semantic connection are found. Note that the Subject rule

matches the syntactic pattern of the current situation but it can not build the required

semantic connection. Thus the Subject rule is not found. The Object rule is not found

because its syntactic pattern does not match the input pattern. But the Unmarked-Passive

rule is found by the rule matching process.

Unmarked-Passive Rule

Syntactic pattern: NP, VPP

Additional restriction: none

Syntactic assignment: NP is (syntactic) SUBJECT of VPP, VPP

is passive, VPP is a RELATIVE CLAUSE of NP

Semantic action: NP is (semantic) OBJECT of S(or another slot

if specified by VPP)

Result: NP, VPP(changed to S)

This rule’s syntactic pattern matches the pattern of the input. According to the semantic

action of this rule, the connection of semantic OBJECT can be built by this rule. There-

fore this rule is found and executed. The approach of MOPT'RANS greatly improves on

the weakness of the conceptual analyzers in the analysis of sentences that have complex

syntactic structure. MOPTRANS used one stage of parsing but both syntactic and

semantic knowledge is used in a more balanced way titan the conceptual analyzers.

1.3 Interleaved Semantic Processing

It has been agreed that the serial stage parsing model is not the appropriate model

for natural language parsing. An updated version of the serial approach has been popu-

lar. This is called interleaved semantic processing(Ritchie, 1983). In this approach the

syntactic analysis is still the major driving force of parsing but semantic knowledge is

consulted during syntactic analysis. Semantic processing is interleaved with the syntac-

tic decision making points so that the decision can be made after consulting semantic

information. Semantic interpretation is built in parallel with the construction of the syn-

tactic representation. The possibility of doing the wrong syntactic analysis (which does

not make sense semantically) for the whole sentence in the serial stage parsing model

can be removed in the interleaved semantic processing model while the parser can still

take advantage of the clear-cut information that can be provided by the syntactic struc-

ture of the sentence.

One of the typical parsers incorporating interleaved semantics is Psi-Klone(Bobrow

and Webber, 1980). Psi-Klone’s syntactic analyzer is based on the ATN parser. When it

executes actions of an arc of a state of ATN, messages are passed to the semantic

component. The semantic component builds the semantic structure corresponding to the

messages. If the attempt at building the semantic structure succeeds, the semantic com-

ponent returns the signal of success to the ATN analyzer (otherwise, a signal of failure is

returned). Let’s consider Figure 1.4 which shows states of the ATN.

Figure 1.4 Arcs of an ATN State

At state A, arc l is tried first. If the semantic component returns the signal of success for

the messages of this arc, the parser moves to state B without considering the other

arcs(arc 2 and are 3). But if the failure signal is returned, the parser tries the next arc,

are 2. This arrangement of control takes advantage of separating syntax and semantics

but allows a large amount of semantic checking. This is a modular approach and the

syntactic rules are independent of the domain.

The messages passed to the semantic component are of the form (M, L, C), where

M(matrix) is some half-built constituent, C is a constituent of some kind and L is a label

that indicates some syntactic relation. What (M, L, C) suggests is that C is attached to M

by a link labeled with L. The semantic component checks the semantic constraint related

to this attachment to decide if the attachment can be done. When the attachment is

done, a symbolic name that points to the result of this structure building operation is

returned to the parser. Upon the receipt of a message (M, L, C), the semantic com-

ponent uses relation-mapping rules(RM rules) to determine into which semantic relation

L can be mapped. The semantic relation here is something like cases or roles in other

systems. The attachment is done based on this semantic relation. For each semantic

relation, there are interpretation rules(l rules) which are applied to convert the case-

frame-like structure into a full semantic item for the updated matrix.

Note in Figure 1.4 that arcs are tried one after another, serially, until one succeeds.

The first arc that gets the signal of success is the one that is selected by the parser to

update the parsing. But the problem is that an are ordered later may have better seman-

tics. This arc with best semantics is missed without being detected because the are

appearing before it has just enough reasonable semantic effect to pass the semantic

check. For example, the semantic effect related to arc 3 may be better than that of arc 1

but the are 1 is reasonable enough to pass the semantic check. In this case, the parser

never notice the fact that arc 3 is better than are l and it just chooses are 1 to update the

parsing and move to the next state.

Another parser that is an example of the interleaved semantic processing approach

is Paragram and Absity system(Charniak,1983b; Hirst, 1984, 1986). Paragram is based

on the Marcus-style parser. At each stage of parsing, the state of stack and buffer is

matched against the rules in the rule base (actually the rules in a packet of the rule base).

A rule that is found is executed. During the execution of the rule, the corresponding

semantic processing is done in parallel. The parser attaches one element to another ele-

ment only when the semantic effect related to the attachement is proved to be good. Oth-

erwise, another attachement in the rule will be tried. Because the parser is a determinis-

tic parser, only one rule should be found by the pattern matcher. It is not clear what will

happen when all attachment attempts in the rule fail because of semantic reasons. This

problem is beyond the scope of Paragram. Thus the selection of one out of several pos-

sible attachments in the same rule is based on the semantic checking and this is the way

of achieving "semantic interleaving" used in the Paragram and Absity parsing system.

Another early parsing system that used interleaved semantic processing is the

SHRDLU parser developed by Winograd(1972). When this parser builds a semantic

structure, a list of semantic markers is associated with the structure. The parser checks

10

the internal consistency of the semantic marker list when it builds a new structure and

the checking is used as the feedback to the parser. This semantic feedback enables the

parser to avoid the unnecessary construction of structures. The parser is based on pro-

cedures instead of declarative rules. But it is clear that the syntactic analysis routine con-

sults the semantic component before it decides to take any action of syntactic analysis.

At an ambiguous point, the first analysis with the reasonable semantic feedback is

selected. The advocates of integrated parsing argued that the interleaved semantic pro-

cessing approach also belongs to non-integrated parsing where the serial stage parsers

are the most extreme examples. Lytinen(1984:4) described non-integrated parsing as

follows:

Syntax plays an important role in the process of understanding the meaning of a

natural language text. Syntactic and semantic processing are largely separate, with

syntactic processing performed first (although semantic processing can be inter-

leaved with syntactic processing; i.e. once syntax has produced a partial analysis,

semantic interpretation of that portion of the text can proceed before other portions

of the text are syntactically analyzed). Syntax and semantics interact with each

other in limited ways, if at all. Syntax might be allowed to ask certain types of

questions of semantics at particular times, but communication between syntactic

and semantic processing is not unlimited. Knowledge about syntax and semantics

is also largely separate. Syntactic knowledge can be expressed without much refer-

ence to semantics.

1.4 Improving Interleaved Semantic Processing: a New Proposal

It cannot be denied that the popular approach to parsing is to make syntactic

analysis rather than the semantic analysis the major driving force of parsing. The reason

is that syntax can provide the first clear information about the structure of a sentence.

This structural information is useful to understand the meaning that the sentence con-

veys. If the meaning can be understood easily without the use of this syntactic informa-

tion as the integrated parsing advocates argued, why does the syntax exist? The follow-

ing quotation from Chamiak(1981c) argues for the whole idea behind interleaved

semantic processing:

11

Intheschemeofthismodel(HEARSAY’sblackboardmodel),thesyntaxand

semanticcomponentsworkinparallel,leavingtheirconclusionsonacommon

blackboard.Theideaisthatevenifthesyntacticcomponentfails,thesemantic

componentwillstillsucceed,atleastifthesentenceiscomprehensible.

ThattherearetroubleswiththismodelissuggestedbythefactthatHEARSAY

itselfdidnotreallyuseit.Whiletechnicallythetwosystemsworkedinparallel,in

actualdesignthesemanticswouldonlyworkontheoutputofthesyntacticcom-

ponent,makingthemodelisomorphictothesemanticsubroutinemodel(orthe

interleavedsemanticprocessingmodel)proposedearlier.Norisithardtoseewhy

thisshouldbethecase.Aswehavealreadynoted,syntaxisthemostobviousway

togetafirstcutatthelogicalstructureofthesentence.Inarealblackboardmodel

thesemanticswouldbeforcedtodowithoutthelogicalstructureestablishedbythe

syntacticcomponent.Thiswouldmeanthatitwouldhavetore-establishthesame

informationbyothermeans.Ifitcoulddothis,thenwhybotherwithsyntaxatall?

Inotherwords,ablackboardmodelwillultimatelydegenerateintoeithera"no

syntax"model,oracombinedsemanticsmodel.

Theadvocatesofintegratedparsingclaimedthatinterleavedsemanticprocessing

doesnotusethefullpowerofsemanticsandthusshouldbeclassifiedasanon

integratedparsingapproach.Thereasonforthisclaimisthatsemanticprocessingis

doneonlyfortheanalysisthatissuggestedbythesyntacticanalyzer.Forexample,in

Figure1.4,theATNparseratfirstsuggeststhesemanticprocessingforarc1evenifthe

Othertwoarcsarepossiblewaysofparsinginstate1.Ifarc1resultsinthesemanticpro-

cessingthatisreasonablygood,thepossibilitiesofare2andarc3areneverconsidered.

Butitmaybethecasethattheanalysisrepresentedbyarc3maybethebetteranalysis

basedonsemanticprocessing.(Notethattheorderdoesn’tseemtobeanimportantpoint

here,justtheseverecontrolofsemanticsbysyntax.)Thismeansthatsyntacticanalyzer

maypreventtheparserfromtakingthebetteranalysis.Thiscanbeavoidedinthe

integratedparsers.

InthecaseofParsifal(Marcus,1980)orParagram,theproblemgetsworsethan

withPsi-Klone.Thoseparsershaveaconfigurationwhereitishardtoapplysemantic

powertotheactionoftheparser.Forexample,itisassumedthatonlyonerulecanbe

correctlyfoundbylookingaheaduptothreebuffercells.Thisruleselectionutilizes

onlysyntacticinformationwithoutanysemanticinformation.Semanticcheckingcanbe

usedonlyforselectingoneattachmentactionovertheotherintheactionpartofthe

12

same rule. Thus the use of semantics for guiding the parser is limited compared to Psi-

Klone. There is also an unsettled argument on the number of buffer cells to look ahead.

For example, Milne used the lookahead of up to only two buffer cells, arguing that the

two buffer lookahead is enough. Milne(1982) showed that a parsing decision should

sometimes be made based on the semantic bias instead of using the lookahead of all

three buffer cells.

The major goal of the research reported in this thesis is to design a parser that can

fully utilize semantics but is still based on interleaved semantic processing. The previous

interleaved semantic processing approach will be updated to achieve better use of

semantics. Thus the major driving(controlling) force of the parser will be syntactic

analysis but the method of utilizing the semantics will be modified. The parsing system

that has been developed for the purpose is called SYNSEM. SYNSEM’s syntactic

analyzer is based on Parsifal. It has been significantly modified in several ways to

achieve the aim of the thesis. The semantic processing is based on world knowledge that

is written in the knowledge representation language called KODIAK developed by

Wilensky(l987). This means that the internal representation language of SYNSEM is

KODIAK.

The control of SYNSEM is designed in a way that the full use of semantics can be

possible even if the parser is based on syntactic analysis (note that the base of inter-

leaved semantic processing is syntactic analysis). This approach resulted in the partial-

parallelism in the parser. The partial-parallelism means that the parser mostly runs in

serial mode but it can run in parallel for the period when there exists ambiguity. The

parser tries to reduce down the number of parallel branches to one as soon as possible

using any information available (either semantics or syntax).

To use the knowledge base efficiently and conveniently, considering that the

KODIAK knowledge base is a kind of semantic network, the marker passing paradigm

has been adopted as the major means that the semantic component uses to obtain

13

semantic information. This strategy allows easy use of the knowledge base. Thus the

framework of the parser is to use a rule-based syntactic analyzer as the syntactic analysis

component and use the marker passing paradigm as the major means of getting semantic

information. Some schemes are developed that make this framework achieve the global

aim of designing a parser that utilizes semantics as fully as possible.

One of the most important problems related to marker passing is how to find the

best paths between two concepts. This problem has been extensively studied in this

research. The parser is designed in a way that the goodness of a syntactic analysis can be

represented by the goodness of the paths related to the analysis. This creates a problem

of comparing the paths that represent the possible analyses that compete. The path com-

parison problem is also addressed in this research.

The word sense disambiguation problem is one of the problems that any significant

natural language understanding system should address because it is another major source

of ambiguity. The marker passing-based parsers have some advantages for handling this

problem(Charniak,1986). Computational techniques on how to handle this problem

under the framework of SYNSEM have also been studied.

1.5 Outline of the Thesis

In Chapter 2, the parsing models in psycholinguistics are reviewed for the purpose

of providing some support to the framework of SYNSEM. The partial—parallel approach

used by SYNSEM is supported by some recent parsing models. The overall framework

of SYNSEM will be designed in Chapter 3. The discussion in that chapter is mostly

related to the issue of the control strategy of parsing. The partial-parallelism is adopted

as a means of improving interleaved semantic processing to use semantics as fully as

possible. Chapter 4 is related to the description of the syntactic component of SYN-

SEM. The rule-based Marcus-style syntactic analyzer is introduced. Several new

features of SYNSEM are explained such as the format of rules, rule-indexing, and the

14

relation between ambiguity and rules. How the analyzer works is explained using some

detailed examples. Chapter 5 is a prelude to the description of the semantic processing

component. First KODIAK knowledge representation language is explained in detail but

only as much as necessary in this research. Secondly, the marker passing method used

in SYNSEM is described in detail. How the markers are passed and how the collisions

are detected will be explained. The core problems of the semantic processing com-

ponent are touched on in Chapter 6. The two problems addressed in that chapter are:

how the best path(s) are searched between two concepts in the knowledge base; how the

branches that run in parallel are compared based on the semantic processing result and

how the best ones are filtered to reduce the ambiguity. In Chapter 7, word sense disam-

biguation is attacked. The major weapon for this comes from the framework of SYN-

SEM that uses the semantic network and the marker passing paradigm. The use of syn-

tactic information for this problem is also considered. Chapter 8 concludes the thesis by

discussing why SYNSEM can utilize semantics as much as integrated parsers and sum-

marizes the research results and introduces the future research problems.

The brief summary of the accomplishments in this thesis is as follows. A new con-

uol strategy for using syntactic and semantic information in parsing has been proposed.

The syntactic and semantic analysis components to achieve this control strategy have

been developed. For the syntactic analysis component, a rule-based analyzer with new

features has been developed. To provide semantics to the parser based on the marker

passing paradigm, several heuristics for finding the best path between two concept nodes

have been introduced along with the powerful mechanism called secondary marker pass-

ing. We introduce a heuristic that is used for comparing the semantic interpretation

results of the competing branches of parsing. The word sense disambiguation problem

has been studied and partly solved in the context of the parser developed.

CHAPTER 2

PARSING MODELS IN PSYCHOLINGUISTICS

There has been a great deal of research in psycholinguistics for parsing models for

the human language processing system. It is worthwhile to review these parsing models

and compare them because this can shed some light on the design of natural language

processing systems. The human parsing system shows mysterious high performance in

spite of the abundant ambiguities in natural language. It does not necessarily mean that

the human parsing system has the most efficient processing mechanism. But, no natural

language parsing systems that have been developed so far can compete with humans.

Thus there might be a good chance that following the strategy of the human parsing sys-

tem may result in the design of a good automatic natural language parser.

A parsing model can be characterized by considering the following two important

questions: (1) whether all possibilities of an ambiguity are considered in serial or in

parallel; (2) what kind of information is used to select one alternative out of the multiple

analyses of the ambiguity. Some important parsing models will be reviewed with these

points in mind.

2.1 Serial Models

A parsing model that belongs to this group considers only one possible analysis at a

time when an ambiguity is encountered. After selecting one possibility according to

some selection criteria, the parsing continues as if there has been no ambiguity. If this

selection proves to be wrong by some disambiguating material appearing later in the

sentence, the parser goes back to the ambiguous point and the next possibility is tried.

Thus the alternatives of an ambiguity are tried in serial as illustrated in Figure 2.1.

15

Figure 2.1 Alternative Analyses Tried Serially

At first, alternative (i) is tried. If the parser encounters a dead end later, the next altema-

tive, (ii), is tried. Then if it fails again, the third alternative, (iii), is tried, and so on.

When a parser encounters a dead end, the parser should retreat to a previous point of the

sentence to reanalyze it. There hasn’t been much research on this backtrack and

reanalysis strategy. It has been known that there can be three kinds of reanalysis stra~

tegy. The first is to start the reanalysis from the first word of the sentence. The second is

the blind chronological backtrack, which means that the parser backs up to the most

recent ambiguous point and the next alternative is used to start the analysis from that

point. The last is the one which is called selective reanalysis. In this strategy, the parser

backs up to the most appropriate ambiguous point in the sentence which is determined

by considering all information available to the parser. Let’s consider some serial models

which are classified according to what kind of information is used to determine the order

of considering the alternatives of ambiguities.

2.1.1 Structural Preference Model

This model is also known as the local and minimal attachment principle which was

advocated by Frazier and Fodor(1978). They proposed that the human parsing model

consists of two stages. The first stage is called the Preliminary Phrase Packager(PPP)

and the second stage the Sentence Structure Supervisor(SSS). The PPP assigns lexical

and phrasal nodes to groups of words within the lexical suing that is received. The out-

put of the PPP is shunted to the SSS which combines these structural phrases into a com-

plete phrase marker by adding higher nonterrninal nodes. The PPP is a shortsighted dev-

ice which looks at the input string using a narrow window (of the size of 6 words). Thus

17

the PPP analyzes the sentence locally and the global processing is the job of the SSS. It

is not clear how the PPP and the SSS are synchronized in detail except that the PPP goes

ahead of the SSS. From the fact that the PPP is shortsighted, there comes the local

attachment principle which can be described as:

An attachment can not be made to a structure that is out of sight of the PPP. If

there are more than one possible attachment points inside the sight of the PPP,

then they are equallyfine as the attachment point.

We can show the example of local attachment in sentence (2-1). In (2-1),

(2-1)John read the postcard, the memo, and the letter to Mary.

(2-2)John read the letter to Mary.

"to Mary" is preferably attached to "the letter" because another possible attachment

point "read" is out of sight of the PPP. But in (2—2), both "read" and "the letter" are

within the window of the PPP. Thus "read" and "the letter" are equally fine as the attach-

ment point of "to Mary" (but actually "rea " is preferred by the minimal attachment

principle which will be explained below). Another example of the local attachment prin-

ciple can be found in (2—3) and (2-4):

(2-3)Ellen got the idea that the coast guard was going to send a life raft across.

(2-4)Though Martha claimed that she would be the first woman president yesterday

she announced that she’d rather be an astronaut.

In (2-3), "across" is associated with "send" instead of "got" because "got" is too far

away. In (2-4), "yesterday" is associated with "announced" because "claimed" is not

available within the window of the PPP when "yesterday" is being processed.

After the local attachment principle is applied, the minimal attachment principle is

used if there is more than one possible attachment that is still left. The minimal attach-

ment principle can be described as follows:

18

Attach the incoming material into the phrase-marker being constructed using the

fewest number of nonterminal nodes.

This principle can be illustrated by looking at the processing of (2—5) and (2-6):

(2-5)The city council argued the mayor’s position forcefully.

(2-6)The city council argued the mayor’s position was incorrect.

When the noun phrase "the mayor’s position" is analyzed, there are two possible attach-

ment points as shown in Figure 2.2. It is clear that

‘\“

~

The city council V

arguedA AP

f f 11

the mayor’s orce u y

position

(a)

/\

A v/K

The city council

argued A /VP\

the mayor’s

posrytion

was lllCOI'l'CCI

(b)

Figure 2.2 Minimal Attachment

19

the attachment shown in (a) of the figure uses a smaller number of nonterminal nodes

than that in (b). According to the minimal attachment principle, the attachment in (a) is

chosen first by the parser. In the processing of (2-5), this decision will prove to be

correct by the input that follows. But "was incorrect" in (2-6) will prove that the decision

of the minimal attachment principle is wrong. Then the parser should attempt reanalyz-

ing the sentence by flying the other attachment.

It was said that the local attachment principle provides no preference in (2-2). Then

the minimal attachment principle is used to attach "to Mary" to "read" rather than to "the

letter", which can be illustrated using Figure 2.3.

NP/S>P\ NP/\/'\

/V A /PP\ V A

John read the letter to Mary

Figure 2.3 Failure of Local Attachment

Thus the local attachment principle is used first and then the minimal attachment princi-

ple is used if there is still more than one possible attachment point.

In (Frazier and Raynor,1982), some experimental data was reported which further

strengthens their argument. In their experiment, the eye movements were recorded as the

subject read a sentence containing the attachment ambiguity. They found that shorter

reading time is taken for the sentences whose ambiguity resolution conforms to the stra-

tegy of the local and minimal attachment principle than for the sentences whose ambi-

guity resolution does not conform to this strategy.

They extend the concept of garden-path by incorporating into the group of garden-

path sentences the sentences whose temporary ambiguity is resolved into the wrong

20

analysis and then revised later by the disambiguating material. In other words, the sen-

tences containing temporary ambiguities which require reanalysis but do not require

conscious effort are also considered to be garden-path sentences. Other significant data

they provided is that the reading time and fixation duration in area (b) in Figure 2.4 (the

region where the ambiguity remains) is not longer than (a), and the difference in reading

times is associated with the disambiguating region (c).

‘— (b) _’5‘— (C)
l

I

I I I I

(a) _"

sentence onset of disambiguating end of

start . ambiguity matenal sentence

Figure 2.4 Ambiguous Region

This data supports the view that the existence of the ambiguity is not detected if it does

not garden-path (even if there is ambiguity) and the view of the serial model in which

only one analysis of the ambiguous material is computed at first.

2.1.2 Lexical Preference Model

Ford, Bresnan and Kaplan(1982) (henceforth FBK) introduced a theory which

differs from the structural preference model in the previous section in how an ambiguity

is resolved. FBK argued that the lexical property of the head of a phrase is what deter-

mines the order of choosing the alternatives of an ambiguity. The sentences from (2-7)

to (2-9) can be used to illustrate this lexical preference theory :

(2-7a)The woman wanted the dress on that rack.

(2-7b)The woman positioned the dress on that rack.

(2-8a)The tourists objected to the guide that they couldn’t hear.

21

(2-8b)The tourists signaled to the guide that they couldn’t hear.

(2-9a)Joe included the package for Susan.

(2-9b)Joe carried the package for Susan.

In (2-7a), the PP, "on that rack", can be attached to either the VP headed by "wanted" or

to the NP headed by "the dress". (2-7b) has ambiguity similar to (2-7a). The only differ-

ence in (2-7a) and (2-7b) is in the main verb. But the attachment to the NP is preferred

in (2-7a) while the VP is the preferred attachment point in (2—7b). A similar situation

can be seen in (2-8). The only difference in (2-8a) and (2-8b) is also the main verb. In

(2-8a), the preference is that the phrase "that they couldn’t hear" is analyzed as the rela-

tive clause which is attached to the NP "the guide". But the secondary clause "that they

couldn’t hear" is analyzed as the complement clause of the VP headed by "signaled" in

(2-8b). (2-9) shows a similar ambiguity resolution as in (2-7). The ambiguity resolution

phenomenon shown in (2-7) to (2-9) can not be explained using the parsing model of

Frazier and Fodor because the sentences have the same syntactic structure but the ambi-

guity is resolved in different ways.

FBK sought the explanation of these phenomenon from the lexical component of

the grammatical system in the human sentence processing system. They argued that each

verb has various lexical forms which have different strengths and the strongest forms

determine the preferred syntactic analysis. Figure 2.5 shows the lexical form of the verbs

appearing in the above sentences. The first form is stronger than the second form in each

verb. They did not explain what determines the strength of the lexical forms but they

conjectured that the frequency of usage might contribute in part. But this theory can not

be applied if the ambiguity is not related to a verb as in (2-10):

(2-10)That silly old-fashioned

22

want: < (SUBJ), (OBJ) >

< (SUBJ), (OBJ), (PCOMP) >

position: < (SUBJ), (OBJ), (PCOMP) >

< (SUBJ), (OBJ) >

object: < (SUBJ), (OBJ) >

< (SUBJ), (OBJ), (COMP) >

signal: < (SUBJ), (OBJ), (COMP) >

< (SUBJ), (OBJ) >

include: < (SUBJ), (OBJ) >

< (SUBJ), (OBJ), (PCOMP) >

carry: < (SUBJ), (OBJ), (PCOMP) >

< (SUBJ), (OBJ) >

Figure 2.5 Lexical Forms of Verbs

FBK used the "syntactic preference" principle to solve this problem. It was argued that

the alternative phrase structure categories in the expansion of a phrase structure have

ordered priorities which determine the preference of the analyses. In (2-10), the subject

NP analysis as shown in "That silly old-fashioned joke is told too often" has the higher

priority than the sentential subject analysis as shown in "That silly old-fashioned jokes

are told too often is well-known." Therefore the NP analysis is preferred to the 8

analysis. The following sentence (2-11) provides another example related to the current

discussion:

(2-11)We discussed running.

"running" in (2-11) can be analyzed as either a noun as in (2-12) or a verb as shown in

(2-13).

(2-12)We discussed the excessive running of races.

(2-13)We discussed running races excessively.

Because the noun category is ranked higher than the VP category, "running" in (2-11) is

first analyzed as a noun.

23

Based on the two principles discussed so far (i.e. the lexical preference principle

and the syntactic category preference principle), FBK formulated the final argument

principle that is related to the closure problem as follows:

final argument principle (Ford, Bresnan and Kaplan,1982): Give low priority to

attaching to a phrase the final argument of the strongest lexical form of that phrase

and to attaching any elements subsequent to the final argument. Low priority is

defined here with respect to other options that arise at the end position of the ele-

ment whose attachment is to be delayed.

Let’s explain this principle using (2-7a) and (2-7b): In (2-7a), "the dress" is analyzed as

the NP and it corresponds to the final argument of the strongest lexical form <(subj),

(obj)> of "want". So the attachment of "the dress" to the VP "want" is delayed. Rather

the other option that the NP2, "the dress", is attached to the partial complex NPl is given

the higher priority as shown in Figure 2.6.

/" ‘
/

want the dress

Figure 2.6 Example of Final Argument Principle

(The reason for this analysis is that if the NP, "the dress", is attached to the VP, then it

will be closed and the coming PP, "on that rack", can not be attached to the NP headed

by "the dress".) Then the PP "on that rack" is attached to the NPl and the NH is

attached to the VP. In the case of (2-7b), the final argument principle can not come into

play to delay the attachment of the NP "the dress" to the VP because the object NP is not

the final argument of the strongest lexical form of "position". In this situation, the NP

"the dress" is attached to the VP rather than to a complex NP (this tendency was called

the invoked attachmcnt principle). Then the PP, "on that rack", is analyzed as a final

24

argument of the strongest lexical form. Thus its attachment to the VP is delayed. There

are no more words following it and the attachment of the PP to the VP is the only

choice. The model described in this section can be considered to be a serial model

because the first alternative that conforms to the theory is chosen but the other altema-

tives are never considered.

2.2 Parallel Models

Parallel parsing models, which are directly opposite to the serial parsing models,

also received much attention in psycholinguistics. One of the oldest parallel parsing

model seems to be the model proposed by Fodor, Bever, and Garrett(1974) who sug-

gested that all possible analyses are computed when an ambiguity is encountered. All

possible analyses are canied out in parallel. An analysis that is inconsistent with the fol-

lowing input is dropped. When a clause boundary is reached, one analysis out of a set of

the parallel analyses is selected based on some decision principles.

Forster’s(l979) autonomous parsing model can also be considered to be a parallel

model. In this model, phonological, syntactic, and message-level processors compose

the language processing system. Each processor operates autonomously but the input

into it is the information that is available in its level and the information generated from

the next lower level. This definition implies that the syntactic processor computes all

possible syntactic analyses as far as it can and the result is shunted to the next upper

level (which is the message-level processor). The analyses in a level can be dropped or

accepted by the next level processor. This model can explain the dumb, fast, automatic

process of each linguistic processing level such as the lexical access. Recently there has

been serious research on parallel models that challenge serial models that have until now

prevailed. These parallel models will be explained in the following sections.

25

2.2.1 Discourse Model

Crain and Steedman(1985) proposed a model that directly argued against the struc-

tural preference and lexical preference models(Frazier and Fodor, 1978; Ford, Bresnan

and Kaplan, 1982). This model is called the discourse model (or context model) because

it is argued that the access to the contextual information is what disarnbiguates the local

syntactic ambiguity. It is obvious that Crain and Steedman’s original idea is that the

plausibility based on the broad sense of semantics is the thing that works for the disam-

biguation. This broad sense of semantics includes both the general world knowledge and

contextual information. But their paper concentrated on the explanation of using only

the contextual information. They mostly argued for the influence of specific conversa-

tional context upon the syntactic disambiguation.

Crain and Steedman described two possible interactions between syntax and

semantics: the weak and strong interaction. In weak interaction, the syntactic component

from time to time proposes several alternatives of syntactic analysis to the semantic

component either serially or in parallel. Then the semantic component selects one alter-

native by comparing the evaluations or referents of the alternatives. In this interaction

the syntactic processing level independently proposes the alternatives of the local struc-

tural ambiguity, while the semantic level disposes among these alternatives. On the

other hand, in sn'ong interaction, semantics and context influence which alternatives are

actually proposed by the syntactic level in the first place. Semantics and context can

either set the order of alternatives being proposed serially or make some alternatives

entirely unavailable.

Crain and Steedman’s choice out of the two interactions was the weak interaction.

They also argued that the alternatives should be proposed in parallel. They opted for a

very intimate interaction between syntax and semantics, for example, an interaction for

every word. This means that syntax appeals to semantics frequently and immediately.

They called this interaction the radical weak interaction. One important point here is

26

that the alternatives are proposed in parallel in contrast to the serial models such as

minimal attachment. The reason they went for the parallel model is that their experi-

ment did not show any residual effect of the structure when semantics and context sup-

port the two alternatives equally. The most general principle they proposed is described

as follows:

The principle of a priori plausibility (Crain and Steedman,l985): If a reading is

more plausible in terms either of general knowledge about the world, or of specific

knowledge about the universe of discourse, then other things being equal, it will be

favored over one that is not.

One specific knowledge they most specifically pointed out was the knowledge

about the referents that are present in the listener’s mental model of the universe of

discourse. Consider (2-14a) and (2-14b) to see this point:

(2-14a) Put [the block in the box] [on the table].

(2-14b) Put [the block] [in the box on the table].

If there is actually a block that is in the box or that kind of block has been mentioned,

then (2-14a) would be the preferred analysis, because there is a referent in the mental

model. But if the (2-14a) analysis fails to produce a referent, but (2-14b) succeeds in

finding a referent for "the block", then (2—14b) will be the analysis that is chosen. This

heuristic was stated as follows:

The principle of referential success (Crain and Steedman,l985): If there is a read-

ing that succeeds in refening to an entity already established in the hearer’s mental

model of the domain of the discourse, then it is favored over one that does not.

This principle is a special case of the principle of a priori plausibility. In Crain and

Steedman’s model, the source of semantics is the mental representation of a specific

conversational context including things that have been mentioned and things that have

been implied in the conversation rather than the world itself. In the cooperative

27

conversation, the bearer will introduce the referents into his or her mental model as well

as recognizing the reference to items already introduced in the conversation. The reason

for this can be explained by the cooperativeness between the conversants(Grice, 1975).

In other words, the bearer will add the referents for the presuppositions of the speaker

that are not satisfied with his mental model. Based on this consideration, another heuris-

tic is suggested which is a more generalized version of the principle of referential suc-

06882

The principle of parsimony(Crain and Steedman,l985): If there is a reading that

carries fewer unsatisfied but consistent presuppositions or entailments than any

other, then, other criteria of plausibility being equal, that reading will be adopted as

the most plausible by the bearer, and the presuppositions in question will be incor-

porated in his or her mental model.

This principle is still a special case of the principle of a priori plausibility. The principle

of parsimony can be used to explain the garden path effect in (2-15):

(2-15)The horse raced past the barn fell.

In (2-15), local syntactic ambiguity exists in the main-verb analysis or the reduced rela-

tive clause analysis of "raced". In the case of reduced relative clause analysis, the fol-

lowing presuppositions are required in the so—called null context: (1) the set of horses (2)

some horses were raced past the barn. But the main verb analysis does not need the

presupposition of (2). Therefore it is argued that the main verb analysis is chosen over

the reduced relative clause analysis and the garden path occurs.

(2-16)A horse raced past the barn fell.

In (2-16), no presuppositions such as (1) and (2) above are needed and thus it is expected

that the possibility of the occurrence of garden pathing will be less than (2-15). This

argument was supported by their experiment.

28

One important point that was argued by Crain and Steedman is that there can not

be the null context in the sense of "no horses has been mentioned before (2—15) or (2-16)

is told to the hearer". The reason they provided was that a null context like this can not

be neutral to the two possible analyses because the two readings may differ in the ease

with which the hearer may have to set up the referents because of the different number

of presuppositions the readings invoke. They said that the argument for the structural

preference model is actually based on the null context which is not a real neutral context

and thus the experiment data provided by the structural proponents lose credibility. They

argued that the result that the structural proponents obtained is actually due to the effect

of context.

Crain and Steedman also argued that the source of semantics in the analysis of (2-

15) is not the prior plausibility based on the general world knowledge but the presuppo-

sitions in the context of discourse. According to their theory, the control of the context

can not only induce the garden path effects but also overcome them. Consider (2-17):

(2-17)It frightened the child that John wanted to visit the lab.

The usual preference is that "that lab" is analyzed as a complement clause rather than

as a relative clause attached to "the child". But if the statement, "There was an explo-

sion", was mentioned just before (2-17), it was found that the preference switched. In

(2-18), the context even induced the garden path effect:

(2-18)Context: Several children heard an explosion.

It frightened the child that John wanted him to visit the lab.

2.2.2 Ranked Parallel Model

Gorell(1987) attempted an experiment to investigate the issue of serial/parallel

model related to the resolution of the local syntactic ambiguity. He used an experiment

called the syntactic priming paradigm. He argued that the experiment used by the serial

model proponents(i.e. the acceptability judgement task or the eye movement

29

experiment) is not appropriate for investigating the issue. In the case of the experiment

which used the acceptability judgement task reported in Frazier(1978), the acceptability

judgement is made at the end of the sentence, which makes it hard to examine what is

actually going on during the time between the onset of ambiguity and the appearance of

the disambiguating material. Frazier argued that the poor and slow performance for the

non-preferred reading of an ambiguity is due to the reanalysis of the input after the first

analysis has failed. But Gorell proposed another possible explanation that can replace

Frazier’s claim. He argued that the poor and slow performance might be due to the com-

plexity of the structure that exists in the sentences in which non-preferred reading is the

correct reading.

(2-19)John knew the very old woman was ill.

In (2-19), the appearance of "was" makes the parser construct a clause which is a com-

plex task. According to Gorrell, this complexity causes the parser to become slow. He

attributed the poor performance to the processing load due to the complexity of the

structure rather than the requirement for reanalysis.

Frazier and Raynor(1982) reported an experiment that provided a stronger support

for the serial model. The experiment measured the eye fixation and movement during

the reading of the sentences. Even for this data, Gorell suggested that the data can be

accounted for by the increased processing load due to the structural complexity. Gorell

suggested an experiment in which "knew" in (2-19) is replaced by "thought" as shown in

(2-20):

(2-20)John thought the very old woman was ill.

(2-20) is an unambiguous sentence having the same syntactic structure as (2-19). Gorell

argued that if (2-20) shows the similar poor performance as shown in (2-19) this shows

that his argument is correct. If the serial model is assumed, (2-20) should show better

performance than (2-19) because (2-20) does not require reanalysis. But unfortunately

there is no data available on (2-20).

30

Gorell’s experiment which used the syntactic priming paradigm is similar to the

experiment for the problem of lexical access done by Swinney(1979). Swinney showed

that a semantically ambiguous word can prime a target related to only one of its various

meanings in any biasing contexts. This experiment made parallelism of lexical access

widely accepted. Gorell argued that the syntactic category can prime a target that is

associated to this category. In his experiment, a target word is presented during the read—

ing of a sentence with a local syntactic ambiguity before the disambiguating words

appear. The subjects are asked to decide if the target is an English word or not immedi-

ately after the appearance of the target word. He said that a significant priming effect

was observed for targets belonging to the categories predicted by the structure associ-

ated with the non-preferred reading of the ambiguity. He interpreted the data in this way:

the non-preferred reading is actually computed and proposed in parallel with the pre-

ferred reading. He also used unambiguous counter parts of the ambiguous sentences in

the experiment and found that the response time and correct ratio is almost the same as

the ambiguous counter parts with non-preferred reading. The use of unambiguous con-

trol like this excluded the possibility that the priming effect for ambiguous contexts was

the result of the rapid reanalysis.

Using the result of his experiment, Gorell proposed a parsing model dubbed the

ranked parallel model. In this model, all possible alternative analyses of a structural

ambiguity are computed and proposed in parallel to the next processing level. To reach a

reconciliation with the serial model proponents, he suggested that the multiple altema-

tives are proposed in parallel but they are rank-ordered according to the complexity of

the structure and they are considered by the next level in that order. The major point is

that syntactic level computes and proposes the alternatives in parallel but they are exam-

ined serially in the next level.

31

2.2.3 A Parallel Model with Conceptual Selection Hypothesis

Kurtzman(1985) made an attempt which argues for the parallel parsing model.

Instead of the structural preference (i.e. the local and minimal attachment principles),

lexical preference, and discourse preference used in other models, Kurtzman suggested

that expectation for the conceptual information is what determines the resolution of the

ambiguity. This was called the conceptual selection hypothesis. Consider a situation in

sentence (2-21) where someone is "keeping" something:

(2-21)The woman kept the dogs on the beach.

(2-22)The woman discussed the dogs on the beach.

Kurtzman argued that the conceptual information expressed by "kept" expects to have

some conceptual information about "where" (something is kept) in addition to the infor—

mation about "who" and "what". Because of this expectation, "on the beach" is associ-

ated with "kept" instead of with "the dogs". This seems to be a reasonable argument. It

is interesting to see how he handled the case in (2-22). In the situation expressed by "dis-

cussed", the conceptual information for the location where the discussion occurred is not

so strong as in the situation of "keeping" in (2-21). Rather the more elaborated informa-

tion of the object of discussion is what is expected conceptually. He argued that this dif-

ferent expectation is what causes "on the beach" to be attached to "the dogs" instead of

"discussed".

The information sought by the expectations that affect the resolution of ambiguity

in Kurtzman’s model is of a fully conceptual sort at the level of real world knowledge.

It is quite specific information which can not be mapped one to one onto some type of

structural semantic representation. One of the parsing approaches that utilizes concep-

tual information is the conceptual analyzer developed by Schank’s group (for example,

Riesbeck and Schank, 1978; Birnbaum and Selfridge, 1981). But it seems that their

representation language, the Conceptual Dependency, is too limited to be used for

representing conceptual information discussed in Kurtzman’s model.

32

The use of conceptual information in Kurtzman’s model seems to be similar to the

use of mental representation in Crain and Steedman’s discourse model but the former

model emphasizes the conceptual expectation as it can be shown in the sentences (2-

23a) - (2-23c):

(2-23a) The horse raced past the barn fell.

(2-23b) A horse raced past the barn fell.

(2-23c) Horses raced past the barn fell.

In (2-23a), "the horse" has the determiner and it is already in focus. Thus "the horse"

expresses old information. The participants in the dialogue have some information about

this horse. But "a horse" in (2-23b) or "horses" in (2-23c) expresses new information

whose nature is not known yet. It seems that there will be more expectation of new

information about an entity that is not known well. For this reason, we can say that

"raced past the barn" is more likely to modify the subject in (2-23b) and (2-23c) rather

than in (2-23a).

But this conceptual selection hypothesis is not out of trouble. Consider an example

in (2-24) and (2-25):

(2-24)We discussed running.

(2-25)We considered running.

In (2-24), it is preferred that "running" is analyzed as the simple noun (running as a

sport) instead of as a VP dominating a simple verb (engaging in running). But in (2-25),

the preferred resolution is the VP. As Kurtzman acknowledged, the resolution does not

seem to be based on the expectations for particular conceptual information in these sen-

tences, because we can discuss "running" as a sport as much as "running" as "engaging

in running". What matters in this case is the subtle difference in relative plausibility. It

seems to be more plausible to discuss a sport of running than to discuss engaging in run-

ning. But Kurtzman argued that adding the general plausibility as a source of

33

disambiguation does not undermine his conceptual selection hypothesis model because

there are cases which the general plausibility can not handle as shown in (2-26) and (2-

27). In (2-26) "discussing on the beach" is as plausible as "dogs on the beach", which is

true in (2-27), too.

(2-26)The woman discussed dogs on the beach.

(2-27)The woman kept the dogs on the beach.

Another difficulty for the conceptual selection hypothesis can be found in (2-10).

The general preference is that "that" in (2-10) is analyzed as a determiner rather than as

a complementizer. His explanation for this case is based on the following observation:

Analyzing "that" as a determiner (which begins a main clause’s subject NP) invokes an

expectation for a term referent but analyzing it as a complementizer (which begins a

complement clause) invokes an expectation that the topic of the sentence is a proposi-

tion. He argued that the better conceptual expectation is to take a simple object or idea

rather than a whole proposition as the topic of a sentence. This explanation seems to be

at least as good as that given by other parsing models introduced earlier.

So far we examined the conceptual selection hypothesis. Now it is necessary to

consider how the conceptual information level works with the syntactic analysis level in

Kurtzman’s parsing model. In the Schankian conceptual analyzers, syntactic analysis is

held to a minimum and conceptual analysis is given the major role. But Kurtzman pro-

posed a model similar to the autonomous model. All possible syntactic analyses are

computed on the syntactic level and this result is input into the level that is in charge of

handling conceptual information. Then the conceptual level chooses one analysis which

is most appropriate based on the conceptual expectation. It was argued that it would be

hard to conceive a model in which the syntactic processing is interrupted by the concep-

tual level so that the parser can consider only one syntactic analysis (out of several) that

is most appropriate conceptually. The reason for this is that there are no systematic rela-

tions between the conceptual information and the syntactic information which could be

34

used in such a direct conceptual determination of the parsing process. Kurtzman also

objected to the scheme in which one analysis is proposed by the parser and the concep—

tual mechanism either rejects or accepts it (in the case of rejection, the parser proposes

the next possible analysis, and so on. Note that this is the approach used by the parsers

of interleaved semantic processing). His reason for the objection is that there can be so

many single analyses of the unambiguous and generally plausible sentences that fail to

express the conceptual expectation.

The architecture of the model he proposed is the so called, Immediate parallel

analysis(IPA) with strong parallelism. "Immediate parallel analysis" means that all pos-

sible analyses are computed from the onset of the ambiguity instead of delaying the

analysis (which is called the delayed parallel analysis as shown in (Marcus,1980)). The

strong parallelism means that each of the possible analyses is canied on until it is

removed based on further input material. The opposite of the strong parallelism is called

momentary parallelism. In momentary parallelism, the ambiguity is resolved at the onset

of the ambiguity. In other words, one analysis is chosen immediately out of the multiple

possible analyses based on some selection criteria.

Kurtzman’s parsing model can be described as follows. At an ambiguous point, all

possible analyses are computed. Out of these alternatives, those that are best according

to conceptual expectation are retained and the others are removed. If the confident deci-

sion can not be made because of the lack of conceptual information, the decision is

delayed until it is possible to. The analyses that have not been removed stay active as the

parsing is going on.

The reason that strong parallelism is adopted instead of the momentary parallelism

can be explained using sentences (2-28) and (2-29):

(2-28)The executives discussed the problems in the factory.

(2-29)The executives discussed the problems in the restaurant.

35

In the case of the momentary parallelism, the attachment point of the PP (even if it is not

complete yet) should be decided as soon as "in" is read. But this is not what actually

happens. In (2-28), the PP is attached to the NP "the problems", while it is attached to

the VP in (2-29). In other words, the attachment point is determined by the content of

the PP, which implies that the ambiguity can not be resolved at "in" but after completing

the PP. This example shows that strong parallelism should be adopted instead of the

momentary parallelism. The advocates of the serial model (for example, the Frazier and

Fodor model) might argue that a single analysis is chosen first and backtrack is done if it

proves that the selection was wrong. But note that neither (2-28) nor (2-29) are garden-

path sentences which require backtracking (but the matter becomes complicated if we

consider that the slight garden-path sentences do not require the conscious backtrack-

ing).

The important question that needs to be investigated under strong parallelism is the

point at which the ambiguity is resolved (note that the source of disambiguation in

Kurtzman’s model is conceptual expectation). Kurtzman conjectures that the point of

disambiguation might be when the conceptual mechanism can confidently evaluate

which analysis is an appropriate one. The resolution point can vary according to the lex-

ical content of the following input material. One example for this phenomenon can be

found in the following sentences.

(2-30)The horse raced past the barn fell.

(2-31)The aluminum strengthened to a great degree.

(2-32)The children observed here our plant fields.

In each of the above sentences, the first verb can be analyzed as either the main verb of

the sentence or the past participle leading the reduced relative clause. After reading this

verb, the experimental data reveals the following result: in (2-30), the main verb

analysis is the prefered analysis and garden pathing occurs; No garden-path effect occurs

in (2-31); But in (2-32), garden-pathing occurs in favor of the reduced relative analysis.

36

This data suggests that the decision can be made prior to the reception of the disambi-

guating material.

2.3 Summary

In this chapter, the important parsing models proposed in the psycholinguistic

literature have been studied. The two major features that distinguish the models are

serial/parallel computation of the syntactic alternatives and the type of information that

determines the preferred analysis. In the serial model, the parser computes and proposes

the syntactic alternatives serially. In the parallel model, the alternatives are computed

and proposed in parallel and it is up to the next processing level to choose one out of the

multiple analyses of an ambiguity.

Information that is used to select an alternative is important in defining a parsing

model. The complexity of the structure is used in Frazier’s minimal attachment, the lexi-

cal preference is used in Ford, Bresnan and Kaplan’s model, discourse information is

used in Crain and Steedman’s discourse model, and conceptual expectation is used in

Kurtzman’s parallel model. Note that the models that use semantics to resolve local syn-

tactic ambiguity go for parallelism. (Semantics here does not include the lexical infor-

mation used in the lexical preference model). One of the reasons for this tendency is the

autonomy of language processing. The input into the syntactic level consists of the out-

put of the next lower level(lexical level) and the syntactic knowledge available in the

syntactic level. The syntactic level does whatever processing it can and the output is

input into the next higher level (let us assume this is the semantic level). Because the

information available to the syntactic level and the semantic level is so distinct it is not

likely that the syntactic level’s processing is interrupted by the semantic level.

Gorell used an on-line experimental technique to show that parallel processing is

actually going on at the syntactic level. But it is too early to decide that one model is to

be chosen over another model.

CHAPTER 3

FRAMEWORK OF THE NEW APPROACH

We will describe the overall framework of the SYNSEM parser which was pro-

posed in Section 1.4. The objective of the parser is to update the approach of interleaved

semantic processing to achieve integrated parsing by approaching from syntax-oriented

parsing. The major attraction that integrated parsing has is to use semantic information

as much as possible. The previous integrated parsing advocates argued that the full use

of semantics can be achieved only by making the semantic analysis the major analysis

and restricting the amount of syntactic analysis. Integrated parsing could not be con-

sidered to be an approach that uses both full-fledged syntax and semantics. The fact that

the integrated parsers are biased too much toward semantics was corrected by Lytinen’s

new integrated parsing approach which was shown in the MOPTRANS parser (Lytinen,

1984). But his approach still puts more emphasis on semantics and uses syntax only as

the filter that applies after the semantic analysis.

We take the position that the syntactic processing level is lower than the semantic

processing level and is an autonomous processing level which runs more or less

independently. We are not aware of any psycholinguistic research that claims that the

semantic processing is on the lower level than the syntactic processing. Thus it seems to

be natural to start the design of a parser from the syntax-oriented parser and then add

more on-line semantic processing to it. This approach resulted in the interleaved seman-

tic processing approach. But the use of semantics in interleaved semantic processing is

not enough to satisfy the advocates of integrated parsing.

37

38

Kurtzman’s conceptual selection hypothesis and the immediate parallel analysis with

strong parallelism provides the basic framework for the new parser that will be

developed in this thesis.

3.1 General Framework of the Control

The starting point to approach the desired parser is interleaved semantic process-

ing. The control loop for interleaved semantic processing is shown in Figure 3.1 (let’s

call this model ISPl).

l <

step- 1 :

find syntactic rules by pattern matching

J

'I

step-2: Choose an untried rule update parsing

II

step-3: compute semantic processing

corresponding to this rule

step-4: semantically reasonable?

Ye ‘
Figure 3.1 Interleaved Semantic Processing - 1

(Loop terminated at end of sentence)

It is clear from this figure that the processing is compatible with the serial models dis-

cussed in the previous chapter. If the rules found at step-1 are sorted and tried in the

order of the simplicity of the structure at step-2 , then the approach shown in this figure

is the same as the structural preference model such as minimal attachment. If the rules

are tried in the order of lexical preference in step-2, this approach would be the same as

the lexical preference model. It is also conceivable that a parser adopts no specific selec-

tion strategy in step-2 but rather a next rule is chosen randomly from the rules that have

39

not been tried yet. This is the method that was usually used in natural language parsers

that used interleaved semantic processing.

The parallel parsing models suggested that all rules are proposed and processed in

parallel. We can take this suggestion as one way of changing the control strategy of

interleaved semantic processing. The control strategy updated according to this sugges-

tion is shown in figure 3.2 (let’s call this model ISP2).

processing processing processing

: . . . i
u do semantic do semantrc do semantrc :

I

t I

I I

step-3: select one with best semantic result

I

step-4: update parsing

l

Figure 3.2 Interleaved Semantic Processing - 2

All rules (or syntactic alternatives) found by the syntactic processor at step—1 are pro-

vided to the next higher level at step-2 and these alternatives are processed and com-

pared in parallel according to the information available in this level. This information

will be the discourse context in the discourse model and conceptual information in

Kurtzman’s model. In the case of Gorell’s model, this information would be the struc-

tural complexity (provided by the lower level, the syntactic level) rather than the sort of

semantic information. Based on the processing at step—2, one rule that has obtained the

best score at step-2 will be chosen at step-3. This rule will be used to update the parsing

'at step-4 and the parsing goes to the next round of the loop.

40

The improvement in going from ISPl to ISP2 is that the alternative with the best

semantic result can be selected. Thus the probability of making an error in selecting one

alternative can be reduced compared with ISPl. ISPl has the step of checking the

semantic effect of the chosen alternative but it is not an appropriate architecture for

selecting the best alternative. As far as the speed of the parsing is concerned, it is not

clear that ISP2 is better than ISPl. It is usually acknowledged that the semantic process-

ing takes more computation than the lower level processing such as the lexical or syn-

tactic processing. But ISP2 encourages more semantic processing than ISPl.

According to Kurtzman’s IPA with strong parallelism, the point of disambiguation

depends on the time that a confident decision can be made based on conceptual informa-

tion. This means that a decision may not be made just after finding the rules and consid-

ering the semantic effects of these rules (at step-2 and step-3 in Figure 3.2). It may be

several words later that one alternative can be determined to be better than the other. In

some cases two rules might have the same semantic processing result or in other cases

some rules might never invoke semantic processing but only the build-up of the syntac-

tic structure. These considerations indicate that the output of step-3 in Figure 3.2 may

have to be more than one rule. This implies that there might be more than one way of

parsing (called the branches of parsing) active at the same time. The control flow shown

in Figure 3.3 (named to be ISP3) takes these considerations into account. Note that there

can be more than one branch at the beginning of the control loop. Finding more than

one rule at the pattern matching step(step-1) means that the number of branches will be

increased by that amount (if only one rule is found, the number of branches would not

change).

But there is a problem that needs more consideration in ISP3. The problem is

related to the question of when the branches are compared and filtered. According to

Figure 3.3, the point of comparing and filtering the branches comes always right after

the semantic processing is done for the rules found during the pattern matching step.

41

"-4........I +

step-l"--

. find rules find rules

I

! compute compute compute compute I

I semantrcs $61113llthS semantrcs l

L - - - .. f1 .. J

I v

I I

update update ,,,,, update

brgrrrch

Figure 3.3 Interleaved Semantic Processing - 3

This might cause the system to compare the branches even if insufficient semantic pro-

cessing results have been collected, which also means that the branches might be com-

pared too frequently. Based on this consideration, the control is modified as shown in

Figure 3.4 (this is named to be ISP4).

I—

I l ' I I r——

find rules find rules

compute compute compute compute

semantrcs semantics semantrcs semantrcs

semantic comparison stage

Figure 3.4 Interleaved Semantic Processing - 4

Looking at the figure, we can notice that another loop is added in the control. In the

42

inner loop, each branch goes through the following steps: (1) find all rules whose pat-

terns match the working memory (called the pattern matching step); (2) for each rule

found in (1), a new branch is created and the semantic effect of the rule is computed and

the parsing state of the branch is updated; (3) check to see if the branch needs to read a

new input word and go into the semantic comparison stage if it does (if the branch does

not need a new word, the control returns to the beginning of the inner loop as shown in

the figure). The branches that reach the semantic comparison stage wait until all the

branches reach this stage. When all branches in the system have reached the comparison

stage, the actual processing of the stage begins. During this stage, the branches are com-

pared using the semantic processing result collected after the last semantic comparison

stage. Only those branches with the best semantic processing result are kept and others

are thrown away (they are actually stored in the backup stack). If there is a branch

which has no semantic processing result collected since the last semantic comparison

stage, this branch is also kept as an active branch. The detailed operations and imple-

mentation of ISP4 will be explained throughout the thesis.

3.2 Configuration of the Parser

Figure 3.5 shows the configuration of the SYNSEM parser. The program modules

are indicated by the ellipses and the data structures are enclosed in the boxes. The regu-

lar arrows indicate the flow of control and the access of data structures is shown with the

dotted arrows. The monitor(MON) is in charge of reading each input word and calls the

other program modules to process the input. It supervises the control of the parser in a

synchronized way to successfully achieve the parsing.

The syntactic analysis component(SYN) is the program module that does all the

processing related to syntax. For example, matching the patterns of the syntactic rules

(henceforth, "rules" means the syntactic rules) against the state of parsing to find the

rules to be triggered and building the syntactic trees are handled by SYN. The semantic

43

Other

Routines

SWM Rule Base KB

Figure 3.5 Configuration of SYNSEM

processing component(SEM) builds a semantic interpretation for the input sentence

based on the analysis of SYN. The most important function of SEM to be discussed in

this thesis is to find the paths in the knowledge base to get semantic information and

compare these paths to find the best alternative out of multiple analyses proposed by

SYN. The marker passing module(MP) is the routine to pass the markers starting from

the concept representing input words. It detects the collisions so that SEM can use

them.

SYNSEM uses three major data structures: the syntactic working memory(SWM),

the rule base(grammar rules), and the knowledge base(KB) which is a semantic network.

The SWM consists of two lists called CLIST and CASH and some global variables.

CLIST contains the syntactic trees that are being built during parsing. CASH is the auxi-

liary list that stores syntactic trees temporarily. The rule base contains all grammar rules

which represent the grammatical knowledge of the parser. The grammer rules used in

SYNSEM are similar to those of Parsifal (Marcus, 1980).

The rules are written in a domain independent way so that the syntactic portion of

the system can be portable between different domains. The knowledge base(KB) is a

semantic network written in the KODIAK knowledge representation language (Norvig,

44

1986; Wilensky 1987; Wilensky & etc. 1986). The knowledge base encodes world

knowledge that the system knows about the world with which it is dealing. The semantic

power of the system depends on knowledge the knowledge base holds. The knowledge

base is the part of the system that is dependent on the domain.

Currently SYNSEM can only handle single sentence input. In other words, it can

not use the context available in a text consisting of multiple sentences. The output of

SYNSEM is a set of knowledge base paths which represents the meaning of the input

SCIltCI‘lCC.

3.3 Flow of Parsing in SYNSEM

In this section, the overall operation of the SYNSEM parser will be described so

that we can see how it operates globally. A word of the input suing is always read into

the system by MON(Monitor). If this word is an open word, MON calls the MP with the

word being passed. Open words are the words that can represent an entity in the world

such as objects, actions, or states. For example, "train , apple" and "eat" are the open

words while the prepositions, articles, etc. are examples of closed words.

After marker passing is done, the word goes through the morphological processing

and it is pushed into CLIST. This changes the content of CLIST, which might cause

some rules’ patterns to match CLIST. Then for each branch in the parser, MON calls

SYN to do syntactic analysis. SYN matches the patterns of the rules in the rule base

against CLIST. SYN returns the rules found during the pattern matching to MON. Note

that more than one rule can be found if there is ambiguity. For each rule returned by

SYN, a branch of parsing is created and the actions of the rule are executed. At this

point some action might call the semantic processing component to do semantic process-

ing corresponding to the rule.

Note that some rules may not have any action that invokes semantic processing.

These rules (thus the branches) have no semantic processing result after the execution of

45

the actions. For example, the rule Parse-det which processes the word "the" has no

semantic processing. It only attaches the word "the" to a node NS which is newly

created (see Figure 3.6).

118

t

”I :>
the Rule: Parse-det I

the

Figure 3.6 "the" Processing

It should be noted that the execution of the actions of a rule does syntactic process-

ing such as updating the content of the SWM as well as calling the semantic component

to invoke some related semantic processing. The details of the actions of the rules will

be explained in the next chapter. The syntactic processing can be divided broadly into

two tasks: finding rules whose patterns match the SWM of the branch, and constructing

the syntactic trees in the SWM.

If there are some rules found during the pattern matching, the branches will be

created for these rules and each branch executes the actions of the rule and the process-

ing starts from the pattern matching again.

If there is no rule found during the pattern matching of a branch, the parsing has

encountered a blocked situation. A blocked situation can happen in two ways. One

blocked situation is not an actual blocked situation but it represents the situation where a

new input is required to be input into CLIST. Let us call this the read-again situation.

This happens when all possible processing has been done on the material in CLIST and

thus no rule can be found that matches CLIST. The other blocked situation happens

when the analysis corresponding to the branch is not compatible with the input string.

Because of the incompatibility of the input string, no grammar rule matches CLIST.

This is called the dead-end situation of the branch. MON can determine which blocked

situation it is when no rule matches CLIST (refer to Appendix B). If the blocked

46

situation is not the dead-end, MON puts the element in CASH into CLIST if CASH is

not empty. If CASH is empty, it is required to read the next input word. This situation is

the point where the branch reaches the semantic comparison stage. The branch is

pushed into the waiting pool so that the branches can be compared and filtered when all

branches reach the stage.

When all branches get to the semantic comparison stage, the branches are com-

pared and filtered according to the semantic processing results that have been collected

since the last semantic comparison stage. At this stage, the branches whose semantic

results are worse than other branches are removed (actually stored into the backup stack)

and the other branches are kept as active. Note that the branches with no semantic pro—

cessing result since the last semantic comparison stage are just retained without com-

parison. Then MON reads a new word from the input string and pushes it into CLIST of

each active branch after morphological processing. From this point, each branch flows as

explained so far.

Let’s consider Figure 3.7 to see the creation and removal of the branches.

processing point processing point

p1 P2

Figure 3.7 Lives of Branches

The branch b in Figure 3.7 is removed because it encounters the dead-end situation at

p1. This is one way in which syntactic information is used for disambiguation. Branch a

forks into three new branches (a1, a2, and a3) because three rules are found during the

47

pattern matching of the rules while branch c gets only one rule and thus one branch is

forked. The rule matching and execution process is repeated until all branches request a

new input word. At processing point p2, let’s assume that all the branches reached the

semantic comparison stage. At this stage, branch a2 and branch c are removed because

their semantic processing results are worse than that of branch a3. But branch a1 is kept

without comparison because it has either the same semantic processing result as branch

a3 or no semantic processing result.

It is reiterated that a branch is completely thrown away if it proves to be a wrong

syntactic analysis (this appears as the situation in which no rules are found during the

pattern matching and it is determined to be the dead-end situation). This inactivation is

because of the syntactic reason. If the branch is not one of the branches with the best

semantic processing result during the semantic comparison stage, the branch is inac-

tivated but stored in the backup stack (if the semantic processing result is too bad, the

branch is immediately thrown away without being stacked). This inactivation is because

of the semantic reason. Thus, the disambiguation is done for both syntactic and semantic

reasons.

Usually all the branches except one will be removed during the semantic com-

parison stage, which means that the ambiguity is resolved completely. The period during

which there is more than one branch (i.e. there is ambiguity) is usually short. Thus, the

whole parsing consists of some periods during which there is only one active branch and

other periods which have multiple active branches. This phenomenon is called partial

parallelism and is illustrated in Figure 3.8. The branches that drop off during the

semantic comparison stage are stored in the backup stack so that they can be used when

it is necessary to do backtracking. A push down stack is used as the storage so that the

most recently stored branch can be used first in the case of backtracking.

When all branches in the parser get to the dead-end, the parsing can not go any

further. This situation is the dead-end of total parsing (note that this dead end is more

48

RI/J
parallel

stages

Figure 3.8 Partial Parallelism

serious than that of a branch). In this situation, the parser should back up to some previ-

ous point. This is done by popping one image of a branch that was stored in the stack

and using it as the active branch. Figure 3.9 shows the flow of the parser in a precise

form.

3.4 Conclusion

In this chapter, the general framework of the new parser with improved interleaved

semantic processing has been developed. The basic approach is to make the parser con-

sider all possible alternatives of syntactic processing at each step of parsing. This

resulted in a system that allows multiple branches of parsing to exist at the same time.

The disambiguation is done by removing the branches for one of two reasons. First, any

branch proven to have a semantic processing result inferior to any other branch is

suppressed during the synchronized semantic comparison stage. Second, any branch that

is not compatible with the following input material is removed. This is realized in the

way that the branch finds no rules during its pattern matching step.

The final version of the parser studied in this chapter corresponds to Kurtzman’s

parsing model which adopts the IPA with strong parallelism with the conceptual selec-

tion hypothesis. The configuration of the parser has been introduced and its detailed

operation has been explained.

49

step 1:

step 2:

step 3:

step 4:

read a word and push into SWM of each active branch;

(if all words in sentence has been processed, then stop.)

make a queue Q consisting of all active branches;

if Q is empty, goto step 4;

pop a branch from front of Q;

find rules that match SWM of the branch;

if no rules found,

then if read-again situation

then if CASH is nonempty

then read from CASH

else push this branch to All_done_queue

else throw away this branch

else

begin

for each rule found

do begin

execute actions of the rule;

fork a new branch for this rule:

insert this new branch into rear of Q;

end

end;

goto step 3;

(Semantic Comparison Stage)

compare the branches in All_done_queue and

choose the branches with best semantic results;

(All branches chosen become active ones and

others are thrown away.)

goto step 1;

Figure 3.9 Flow of the Control

CHAPTER 4

SYNTACTIC ANALYSIS

The design of the syntactic analysis component has been influenced by the three

considerations in SYNSEM. The first consideration is related to parallelism. The system

should synchronize multiple branches that run in parallel and try to remove some

branches based on both syntactic and semantic information. Thus SYN should be

designed in such a way that management of parallel branches is relatively easy to imple-

ment. The second consideration is the early attachment strategy. A partial NP is created

until the head noun is found. Then this partial noun phrase is treated as if it is the com-

pleted noun phrase. Thus the partial noun phrase can be attached to other structures as

soon as its head noun is known. The NP’s post modifiers after the head noun can then be

attached to the NP incrementally. The third consideration is to delay some syntactic

decision until the context is collected enough to make the correct decision. Based on

these considerations, the rule-based syntactic analysis component has been developed.

4.1 Syntactic Working Memory

The syntactic working memory(SWM) is the data structure which contains the syn-

tactic representations that are being built during the parsing of the input sentence. Two

major components of the SWM are the two lists called CLIST and CASH. CLIST and

CASH contain the syntactic trees. CASH is storage which contains syntactic trees that

have been pushed out of CLIST temporarily as illustrated in Figure 4.1. When a word is

input to the system, it is pushed onto the right side of CLIST after going through mor-

phological processing (let us just distinguish the two ends of a list as the left and right

ends). The actual entity that is pushed is a node representing the word. A node in the

50

51

CLIST

trel tre2 tre3

A <—_: 000

input string

(‘ASI—I

AA

Figure 4.1 Syntactic Working Memory

trees is called an Snode which stands for a "syntactic node". The content of an Snode is

shown in Figure 4.2. It shows a node for the word "eat" and "rocks".

.Snode ,Snode

type=V =(Noun or V)

parent=nil parent=nil

son=nil son=nil

word=eat word=rocks

Figure 4.2 A Syntactic Node

Note that an Snode is itself a tree with one node. Syntactic trees are made with the

Snodes. The structure of a syntactic tree is illustrated in Figure 4.3.

As explained above, each word that is input by MON is pushed into the right side

of CLIST after it is converted into an Snode by the morphological routine. The right-

most tree of CLIST can be popped out and pushed into CASH by the request of an

action of a rule. This request is made if the rule used the rightmost tree just to determine

what analysis should be done for the second rightmost tree in CLIST (i.e. the rightmost

tree is used only for providing context for making decisions related to the second right—

most tree). After the execution of this rule, that rightmost tree need not be in CLIST

52

name= S1

WPC= S

parent=()

Figure 4.3 Tree in SWM

because the purpose of its being in CLIST has been fulfilled and the second rightmost

node needs to become the rightmost tree of CLIST for further processing related to it.

This fact will become clear when the format of rules is explained in the next section. So

one of the actions of a rule can be the request for the transfer of a tree from CLIST to

CASH. When the system needs to read a new input into CLIST, then the tree in CASH

is pushed into the right side of CLIST if CASH is not empty. If CASH is empty, the

input should come from the input string.

A new tree can be created and put into CLIST (usually a tree of one node is

created). For example, the nodes of type "S", "NP" and "VP" are the nonterminal nodes

which are created by the system. One important operation related to trees is attaching a

tree in CLIST (usually the rightmost tree) to another u'ee in CLIST so that a bigger tree

can be constructed.

53

The name CLIST reminds us of the data structure called "clist" used in the concep-

tual analyzers. But there is only a weak relation. "Clist" in conceptual analyzers is a list

of semantic objects that are being built. CLIST of SYNSEM is a list of purely syntactic

trees that correspond to the phrase structure trees of the sentence. CLIST is similar to the

combination of the C-stack and the lookahead buffer in Parsifal (Marcus, 1980). The

stack and lookahead buffer is merged into one list in SYNSEM. The right side of

CLIST corresponds to the buffer cells and the left side corresponds to C—stack in Parsi-

fal. However there is no preset boundary in CLIST that divides it into two parts. The

use of the SWM will become clear from the examples that will follow later.

4.2 Structure of Rules

As mentioned before, SYNSEM is a rule-based analyzer that is similar to Parsifal.

In this section, the mles used in SYNSEM will be explained in detail. Figure 4.4 shows

the format of a rule in SYNSEM.

C Priofity J

Pattern-part /

node - node . node - node I, tric
<chain Icstrrc > tghain restrrc] [chain restnc] [chain es

base < >
I‘— pattern —’ raw patterns I

|‘—"—_ additional restrictions _—’ I

Action-part

[a1 :1 E a2 1 [a3

 II

I < actions

Figure 4.4 Format of Rules

54

A rule is composed of the priority specification, the pattern part and the action part. The

priority specification part specifies the priority of the rule relative to other rules. The

priority is specified by enumerating the rules which has higher priority than this rule and

the rules which has lower priority than this rule. Note that numerical number is not used

for the priority specification in SYNSEM. It is either an empty list or a list of the form,

((1 rulel rule2 ...) (h rule-a rule-b ...)). The first case is is used when there is no rule

which has relative priority relationship with this rule (most of the rules are in this case).

In the second case, the sublist starting with "1" contains the rules which should have

lower priority than this rule and the sublist starting with "h" contains the rules which

should have higher priority than this rule. The priority is used when more than one rule

is found during the pattern matching. From the set of the rules from the pattern matcher,

any rule with lower priority than a rule in the set need not be considered and removed.

The pattern part of a rule specifies the condition that should be satisfied by CLIST

in order for the rule to be selected during the pattern matching. We also say that the rule

matches CLIST if the pattern part is satisfied by CLIST. The action part of a rule consists

of actions that need to be executed when the rule matches CLIST. The pattern part con-

sists of two parts: the patterns and the additional restrictions. The patterns are matched

against the trees in CLIST. There are two kinds of patterns. One is the base pattern and

the other is the raw pattern. One pattern is matched against one tree. A raw pattern is a

pattern which needs to be specified by only stating a property of the root node of the

corresponding tree. This specification can only be done by either naming the type of the

node or specifying a feature of the node. Note that the specification is only about the

root node of the tree.

There can be zero or one base pattern in a rule. In the base pattern, other nodes in

addition to the root node of the corresponding tree can be involved in the specification.

This means that the inside of the tree is examined using the base pattern. The base pat-

tern is usually used for checking the state ofparsing. The state of parsing is implicitly

55

represented by the trees in the SWM. By examining the syntactic trees, the state of pars-

ing can be gleaned. In the ATN parser, the state of parsing is represented by the state

node of the ATN to which the parsing has reached. Parsifal used the active packets to

represent the state of parsing. In SYNSEM, the rule base is nor partitioned into packets

as it is in Parsifal; the reason will be explained later. The root node of the tree that is

matched against the base pattern is usually of type S(clause node). The state information

can be checked by specifying the right side of the S tree as shown in Figure 4.5.

(‘I .IST

specified in P

base pattern

Figure 4.5 Specification of the Base Pattern

The base pattern can specify only a part of the tree that corresponds to this pattern. Note

that it is not necessary to specify the shape of the full tree. This leads to the fact that

matching the base pattern to a tree won’t be computationally too costly. Let’s take an

example using Figure 4.5. For the rule that attaches a PP to a VP, the only portion of the

S node that needs to be specified in the base pattern is "VP-S" as shown in the figure. It

is not necessary to specify the NP or V node in the tree. The PP can be attached to a VP

without worrying about other parts of the S tree because the existence of the VP guaran-

tees that there is an NP under 8 (in the subject position) and a V under the VP. The base

pattern should always be the leftmost pattern if it exists in a rule. The number of raw

patterns can be from one to three and they are put consecutively on the right of the base

pattern.

56

A pattern consists of two parts: the node chain and the node restriction as shown in

Figure 4.4. The node chain specifies the skeleton of the portion of the tree (actually the

right portion of the tree) that corresponds to the pattern. The node restriction specifies

the restrictions that the nodes on the tree should satisfy, such as some specific features.

The node chain for the raw pattern should consist of only the node type of the root node

of the tree or the basic property of the root node. The node chain of the base pattern con-

sists of a set of chains of nodes such as "(VP-l S-l)"(the number suffix will be explained

shortly).

The additional restrictions of the pattern part of a rule consists of a set of restric-

tions that the corresponding trees should satisfy. Each additional restriction specifies the

constraint that is related to two nodes that are in the different patterns of the rule. As an

example the main-verb2 rule is shown in Figure 4.6.

(main-verb2 ()

[(< (np-l s-1) 1 ((link subj)) > ,‘basepatternfindicatedbyn

[(v—1) 0 (main (not aux))]) ;rawpattern(indicatedby0)

,' additional restrictions

([equal (feature-of num np-l) (feature-of num v-l)]

) l

[(create vp-l) ,'acti0n1

(attach v-l to vp-l) ,‘actionZ

(transfer-features v-l to vp-l)

(attach vp-l to s-l)

(sem np—l v-1 subj)

(if (have-feature intransitive in v-l)

(add-feature struc-ok to s-l))

(connect_main_sec2 v-l)]

Figure 4.6 Main-verb2 Rule

This rule matches CLIST when the subject NP of a clause is followed by a verb which is

in the form of a main verb. This NP should already be attached to the S node and this is

checked in the base pattern of the rule (see the node chain "(np—l s-l)"). The first raw

pattern checks to see if the node of the rightmost tree is a verb which is not an auxiliary

verb. The additional restriction checks the agreement of the number feature of the NP

57

and the verb. This rule actually interprets the NP as the subject of the sentence whose

main verb is the verb corresponding to v-l. In the action part of the rule, a node of type

VP is created on CLIST and the v-l node is attached to the VP node.

The action part of a rule consists of the list of actions. An action is a command to

the rule interpreter about manipulating the content of the SWM, setting or resetting the

global variables, sending a request to the semantic processing component, etc. Some

actions are shown in Table 4.1.

Table 4.1. Some Actions

(create vp—l) .' create andput a new node in Clist.

(attach v-1 to vp-l) :attachatree toanode.

(transfer—features v-l to vp-l) ,' copy thefeatures.

(if (have-feature passive in aux-1) . . .) .‘test afeature in a node.

(add-feature dummy to np-Z) ; addafeature to anode.

(sem connect np-l v-l (dative-prep v-1) 2) ,' semantic suggestion to SEM.

(push-to-cash-lastnode) ; move the rightmost node in Clist to Cash.

(change-link np-l to iobj) :changeanameofa link.

(remove-feature modifiable from np-l) ,' delete afeaturefrom anode.

(set-whcomp np—2) .' set a wh-phrase pointer to an NP.

(make-pointer np-3 to np-l) ,' makeanodepoint to another node.

Actions use the node names such as NP1 or VPl identified during the pattern matching

process of the pattern part of the rule. Because more than one node of the same category

can appear in the pattern part, a number suffix is used for identification (example, NP—l,

NP-2, etc.). For example, the pointer corresponding to NP-l found during the pattern

matching is used during the execution of actions when NP-l is specified in an action of

the same rule. Some complexity arises because more than one rule can match during the

pattern matching and the actions of those rules can change the SWM in a different way.

Therefore the data structures of the branch are copied into each new branch created for

each rule found during the pattern matching. Then the actions of a rule are applied on

' the SWM of the rule’s branch.

58

Now, it is necessary to explain how each rule’s pattern part is matched against the

trees in CLIST. Note that one pattern is matched against one tree. The mapping of the

patterns to the trees is illustrated in Figure 4.7.

noon
3 5 5

CLIST

[p4] [p3] [p2] [p1]

Pattern-part

Ip3] [P2] [P1]

Pattern-part '

[p1]

Pattern-part

Figure 4.7 Mapping Patterns to Trees

The rightmost pattern should be compared with the rightmost tree and the next rightmost

pattern with the next rightmost tree, and so forth. This mapping implies that a rule

always specifies the righthand part of CLIST. The rightmost tree is the starting point of

the matching process. This pattern matching su'ategy is different from that of Parsifal. In

Parsifal, the first buffer cell is the starting point as illusuated in Figure 4.8.

[l [l

[l [g]

stack [[l] [I]

l ill

top celll 2 3

Figure 4.8 Parsifal’s Pattern Matching

59

4.3 Delay Used for Increasing Syntactic Context

Because of the pattern matching scheme explained in the above section, it is possi-

ble for SYNSEM to delay the construction of structures. The lookahead capability in

Parsifal can be achieved in SYNSEM by delaying the syntactic decision and receiving

further material into CLIST until a sufficient amount of context is collected in CLIST.

Figure 4.9 is for illustrating how delaying can be used for the construction of a PP. Con-

sider sentence fragment (4-1) along with the figure.

an“):A
\ 7’

Rule Build-PP: [Prep] [NP] => ([create new PP]

[attach Prep to PP]

[attach NP to PP])

Rule PP-create in Packet Cpool

[Prep][NP]=>([....]

Figure 4.9 Delay in the build-PP Rule

(4-1) 1 in2 the3 basket4

In the case of Parsifal, the PP for "in the basket" is constructed while the processing

point remains at position 1 by looking ahead to the preposition and the NP "the basket".

To prepare the NP "the basket" which the normal processing point has not yet reached,

the attention shifting mechanism is used. While the normal processing point remains at

position 1, Parsifal moves its attention to position 2 and it processes the input starting

from this position. After completing the construction of the NP, the parser returns to

position 1. At this time, the input looks like "in [NP]". Now the PP-creation rule matches

this input. The working of Parsifal can be understood in a way that the parsing process

forks a child process and the child process analyzes and prepares an NP that lies ahead

(this is the attention shifting mechanism).

But SYNSEM does not use the complex processing mechanism such as the atten-

tion shifting mechanism. When the parser’s processing point is at 2 in (4-1), the parser

gets to the blocked situation because no rule matches CLIST in which the preposition

"in" is the righunost tree and no part of the NP has yet appeared. This is not the dead end

situation but the read-again situation. This situation is shown in Figure 4.10(a).

pr p Prep Det Prep Det N Prep)K /’K

D t p NP

in in the in the basket in the basket

(20 (b) (c) (d) (6)

Figure 4.10 Steps of Building a PP

Thus SYNSEM reads the next word "the" to provide more context, and the result is

shown in (b) in the figure. But CLIST in (b) still does not have enough context to find a

rule that matches it. Thus, the next word, "basket", is input and CLIST becomes (c).

Note that the processing point is at position 4 instead of staying at position 1. Against

CLIST in (c), the NP construction rule matches and it builds the NP as shown in Figure

4.10(d). (This account is a simplied version. In the actual grammar of SYNSEM, it is

more complicated than this. Actually several rules are used to build the NP.) Still the

processing point (i.e. the rightmost node) is at position 4. Now the rule build-pp is found

during the pattern matching and creates the PP as shown in (e). Note that the PP has

been built using only the uniform processing mechanism. SYNSEM did not use some

special mechanism such as the attention shifting mechanism. Instead of looking ahead

and shifting the attention, SYNSEM delayed the decision of creating the PP (i.e. apply-

ing the build-pp rule) until CLIST gets the sufficient amount of context. "Delaying the

decision" is implicitly implemented in "reading the next word if no rule matches

‘ CLIST".

61

A complex NP such as that shown in (4-2) gives more of a problem to Parsifal.

(4-2) r in 2 the 3 basket 4 which 5 the man 6 brought 7 from a the 9 store...

In Parsifal, while the main processing point remains at position 1, the sub-processing

begins at 2 to prepare the NP headed by "the basket". But the relative clause is a part of

this NP and it contains several NP’s such as "the man" and "the store". Thus, inside of

the sub-processing (i.e. the attention shifting), another sub-processing should be embed-

ded. This results in the recursive embedding of the processing levels as shown in Figure

4.11 because another attention shifting should be done inside an attention shifting.

main prncrssing

Moccssing-l

suhpmcessingL

in the basket which the man

Figure 4.11 Recursive Embedding of Attention Shifting

This results in undesirable complexity in the processing. It seems intuitive that this is not

the processing strategy that is used in the human language processing system. To avoid

this problem, the "node reactivation" mechanism is used in the grammar of Parsifal. As

soon as "the basket" is analyzed, the parser returns to the main processing point. Thus

when the relative clause is being analyzed in (4-2), there is no embedded attention shift-

ing. As soon as "which" is seen, Parsifal uses the node reactivation rule(sirnilar to the

attention shifting rule) to resume the processing of the NP "the basket". Note that the NP

may have already been attached to a previous tree at this point. This technique solves the

problem of deep recursion of the attention shifting, but it is directly against the "limited

looking ahead" theory in Parsifal. The "lookahead" theory of parsing can achieve its full

power only when the whole NP can be prepared by one attention shifting. (43) can be

62

used to illustrate this point:

(4—3) It is natural for the man who stole the apple to be punished.

After "the man" is analyzed as an NP, the buffer would be like:

[Prep;for] [NP; the man] [who]

The "PP-create" rule in Parsifal will match against the buffer cells shown above. But the

"For-np-to" rule in Parsifal is the rule that actually needs to match instead of the PP-

create rule.

SYNSEM parses sentence (4-2) using the uniform processing strategy. As soon as

"the basket" is analyzed as an NP, the rule build-pp matches CLIST. As soon as the

head noun of the NP is found, the partial NP can be regarded as a complete NP. In other

words, the partial NP corresponding to "the basket" is treated as a legitimate NP and can

be used by other rules. This is an early attachment strategy. This idea is similar to the

node reactivation rule in Parsifal but the account in SYNSEM is more easily conceived

and implemented. When SYNSEM reads "which", the rule which initiates a relative

clause is found and it attaches the secondary clause node "S" to the NP, "the basket"

(here the NP has already been attached to the PP node). Let’s call this rule wh-relative.

This rule is shown in Figure 4.12.

relplo

liP which

Rule Wh-relatiiC:

<low-right-NP> [which;relpro] =>

Figure 4.12 Matching Lowest and Righunost NP

In the rule wh-relative, the base pattern is <low-right-np> (low-right-np is a special case

of node-chain), which indicates that the lowest and rightmost node of the corresponding

u'ee (i.e. the second rightmost tree in CLIST) should be an NP. After the execution of

63

this rule, the snapshot of CLIST will be Figure 4.13.

x/9[$60]

, , relpro

which

Figure 4.13 Implicit Attachment of Secondary Clause

The secondary clause node, "S", is implicitly attached to the NP which is attached to the

PP node. When the NP for "the man" is built, it will be attached to the S node as a sub-

ject. As the following input is received, the secondary clause node, S, is built incre-

mentally as if it is the main clause. The secondary 8 node is implicitly attached to be

seen as the root of a tree (indicated by the dotted line) so that the rules for the main

clause processing can be used for the processing of the secondary clause. When the

secondary clause S is complete, this tree will just be popped out (but it will still be

linked to the NP node). As will be shown in the examples later, the PP can be attached

to the previous tree before the processing of its relative clause begins.

But SYNSEM’s processing strategy is not optimal. For the sentence (4-3), SYN-

SEM can not use a rule whose pattern part is of the form "[Prep;for] [NP] [Prep;to]" (let

us call this the For-np-to rule) because of the following reason: as soon as the NP for

"the man" is constructed the build-pp rule will match the SWM and create a PP. One

solution is to add some restriction to the build-pp rule so that it can not match if the

preposition is "for". Another solution is just to add another rule whose pattern part is

"[PP;prep=for][Prep;to]" that corresponds to the for-NP-to rule. Neither solution is the

best.

4.4 Rules and State of Parsing

In Parsifal, the grammar rules are partitioned into packets. Each rule is a member

of only one packet. SYNSEM has no packets. It has only one pool of all rules. This

design strategy requires some explanation. The reason that Parsifal use packets is two-

fold. The first is efficiency and the second is conciseness of the grammar. Each node in

the stack of Parsifal is associated with a list of packets. The node at the top of the stack

(the most recently pushed node) is called the current active node. The packets associated

with the current active node are the active packets. Adding(deleting) a packet to(from)

the set of active packets is requested in the action part of a rule.

When a node is pushed into the top of the stack, the packets related to the previous

active node are not active any more. If a node is popped from the top of the stack, the

second node from the top of the stack becomes the current active node and the packets

that are associated with this node become active. The whole idea of having the active

packets for the active node is that only a small subset of the rule base is related to the

parsing at each point (represented by the current active node). The other rules are

irrelevant to the parsing and need not be accessed. For example, a small number of rules

are related to the parsing of the subject of a clause. These rules are contained in the

packet called PARSE-SUBJ. The efficiency of parsing is obtained by looking at only the

rules in the packet PARSE-SUBJ during the time when the subject is analyzed. Now it is

likely that the set of active packets represents the state of parsing (see (Marcus, 1980)

for more detailed account). The rules in a packet will be formulated under the assump-

tion that they will be applied only during the state of parsing represented by the packet.

Thus the rules need not test the state of parsing in their pattern part, which makes the

grammar rules concise.

In SYNSEM, the advantage of using packets can not be used because of its parsing

strategy that "any rules that match CLIST should be found. " Consider the next sentence

to see the reason:

65

(4-4)The granite rocks near the shore.

Note that "rocks" can be both a noun and a verb. After "rocks" is input, two rules should

be found during the pattern matching: a rule that analyze "rocks" as the head noun of the

NP and another rule that analyze "rocks" as the main verb (actually there is one more

rule). But these two rules can not be put in the same packet because they are related to

different parsing stages, which makes SYNSEM unable to use packets. One of the

disadvantages of using packets is that there should be some rules(or actions) that add or

delete packets to and from the set of active packets. This causes some difficulty to the

grammar writer. The management of the active packets gives difficulty to both the

designer and the reader of the grammar. Charniak(1983b) attempted to remove this

difficulty without much success. This difficulty can be totally eliminated by removing

the packets. Our experience is that it is hard to keep track of the active packets during

the reading of Parsifal’s grammar rules.

Instead of using the active packets to get the state information of parsing, SYN-

SEM uses rules with the base pattern to check the state of parsing. It has been found

that the base pattern can be specified in a simple way. There are many rules that do not

even need the base pattern. It is argued that rules are still concise even with the base pat-

tern. We need to consider the possible inefficiency caused by not adopting the packets.

During the pattern matching, all rules in the rule base should be checked to find the rules

that match CLIST. But this computational cost can be minimized by using a special rule

indexing technique. It has been verified in the experiment that the time taken for the

pattern matching is a small fraction of the total parsing time. The bottleneck of the

speed of SYNSEM is in the semantic processing instead of syntactic processing.

The raw patterns in the rules of SYNSEM are analogous to the patterns for check-

in g the buffer cells in Parsifal. Marcus argued that the lookahead of three buffer cells is

enough for deterministic parsing. He used this lookahead of only up to three buffer cells

to explain why the garden-path effect occurs in sentence (4-5). But this argument has

66

been challenged in several ways. Refer to (Kurtzman, 1985).

(4-5)The horse raced past the barn fell.

Following Parsifal, SYNSEM uses up to three raw patterns to make a rule. It has been

found that three raw patterns are enough to write the grammar.

Marcus explained that some linguistic generalizations such as Ross’s complex NP

constraint can be obtained automatically by using Parsifal’s grammatical constraint that

a rule can not access the inside of the nodes in the active node stack other than the

current active node and the first S node. In SYNSEM, such grammatical constraint does

not exist. The base pattern should be able to access the inside of the corresponding tree.

Hirst(l984:211) provides the following counter example to Marcus’ claim. In the

prepositional attachment problem, the verb of the VP should be examined to determine

the attachment point (either the VP or the NP appearing after the main verb). The NP is

the current active node (i.e. the node at the bottom of the stack) and thus it can be exam-

ined during the processing. But the VP is the node which is the node just above the NP

in the stack and thus it can not be looked at according to Parsifal’s constraint.

Another counter example can be found in the parsing of conjunctions. Consider

the following sentences with conjunctions in them:

(4-6)The principal ordered the pupil to be punished and scolded.

(4-7)The teacher ordered the student to be punished and taught the other students

not to commit a similar misdemeanor.

To determine the counterpart of the conjunction of "scolded" and "taught" in the above

sentences, the verb "ordered" should be considered. But according to the constraint of

Parsifal, the verb "ordered" should not be available for consideration because it is nei-

ther the current active node nor the first 8 node above the current active node.

,67

4.5 Rules and Ambiguity

In SYNSEM, the existence of a local syntactic ambiguity at a certain point is exhi-

bited by the fact that multiple rules are found during the pattern matching. One of the

important guidelines to writing the grammar rules in SYNSEM is to prepare a rule for

each possible analysis of the ambiguity. Multiple rules found by the pattern matcher

invoke the same number of parsing branches. As the parsing goes on, some branches

will die out because of either syntactic or semantic reasons. Later there will remain only

one branch, which means that the ambiguity has been resolved. In sentence (4-8),

(4-8)The boy ate a cake with a fork.

there is an ambiguity about the attachment of the PP "with a for " as shown in Figure

/\ /5\

fi /vl\ & /K
the boy /v ‘2’); /PP\ the boy IV A

4.14.

a cake

ate 174’ 5 ate
2K)"\

With a fork .

a cake Wlth

a fork

Figure 4.14 PP Attachment Ambiguity

The snapshot of CLIST just after the analysis of the PP "with a fork" is shown in Figure

4.15. There are two rules(np-pp and vp-pp) that match this CLIST (these two rules are

also shown in Figure 4.15):

Note that the NP "a cake" (possibly a partial NP) has been already attached to the VP

because the head noun has been already analyzed and "a cake" is considered to be a legi-

timate NP. As explained before, the base pattern <low-right-np> of the rule np-pp

matches the NP "a cake" because this NP is the lowest and rightmost node of the second

68

(np-pp ((l)(h passive-by))

[([(np-l low—right) 1 (modifiable) l; 1 indicates base pattern.

[(pp-1) 0 l)]) ; 0 indicates raw pattern.

()] ; no additional restrictions.

[(attach pp-l to np-l)

(if (have-feature trace in pp-l)

(sem connect (np pp-l) np-l (prep pp-l) 2)

(sem connect np-l (np pp-l) (prep pp-1)))

(remove-feature modifiable from np-l)]

(vp-pp ((1)(h wh-dative-np-pp))

[([(vp-l 3-1) 1 () l ; base pattern.

[(PP‘I) 0 () l) ; raw pattern.

0 l

[(attach pp-l to vp-l)

(if (have-feature trace in pp-l)

(sem connect (np pp-l) (v vp-l) (prep pp-l) 2)

(sem connect (v vp—l) (np pp-l) (prep pp-1)))

CLIST

AK /m\2i
P / p

the% Y & :iTth a fork

ate a cake

Figure 4.15 PP Attachment and the Corresponding Rules

rightmost tree in CLIST. The base pattern of the rule vp-pp checks if the second right-

most tree of CLIST has the root node of type S and its rightmost child node is of type

VP (i.e. the verb of the clause has been analyzed). This is to check the state of parsing if

there is a VP which can be modified by the PP that is the rightmost tree in CLIST. For

each of np-pp and vp-pp, a branch is created. The actions in the rules are executed and

some of them may invoke semantic processing. The result of semantic processing of the

rules is used for comparing the branches and the better one is chosen (which will be vp-

pp in this case).

69

The sentence (4-9) shows another kind of ambiguity. After the word "raced" has

been input, the SWM becomes that shown in Figure 4.16. Two rules should be found

during the pattern matching.

(4-9)The horse raced past the barn fell.

(‘I .IST

A V

the horse raced

Figure 4.16 Verb Form Ambiguity

The rule main-verb2 analyzes "raced" as the past main verb of the sentence and the rule

np-vpp considers "raced" as the past participle leading a reduced relative clause.

Ambiguity also occurs when a word is categorically ambiguous as shown in (4-10).

(4-10)The granite rocks near the shore. (= (4-4))

The word, "rocks", can be both a noun and a verb. The snapshot of CLIST and the rules

that match this CLIST are shown in Figure 4.17:

(‘1 .IST

/"’\ I
the granite rocks

Figure 4.17 CLIST and Categorical Ambiguity

Three rules are found in this example: the noun-parseS rule which interprets "rocks" as

a main verb, the noun-parse4 rule which considers "rocks" as the head noun of the NP

and the noun-parseS rule which closes the NP "granite" and considers "rocks" as a

noun that begins a new NP. The disambiguation will be done later by either semantic

information or syntactic reasons. This example will be explained in more detail in

Chapter 6. These examples show that SYNSEM prepares one rule for each alternative

of an ambiguity.

70

4.5.1 Delay and Parallelism

The fact that a rule can have up to three raw patterns indicates that the parser can

delay the decision up to three constituents (i.e. at least three words) to collect the

sufficient context. But it seems that the human sentence processing system does not

always utilize the delay as fully as possible. Let’s consider rules for parsing (4-11) and

(4-12).

(4-11)I know the man.

(4-12)I know the man is a doctor.

After "the man" is analyzed as the NP, the rule object in (4-13) is used to analyze this

NP as the object of the verb "know". This rule is shown below:

(4-13) Rule Object:

<S-VP—V> [NP] => [attach NP to VP]

(4—14) Rule Reduced-that-comp

<S-VP-V; that-comp> [NP] [V] =>...

Note that V is specified in the node chain of the base pattern to make sure that there is

nothing attached to the VP except the verb. The problem of the object rule is that it will

analyze "the man" as the object of "know" in (4-12), too. This is the incorrect analysis.

In (4-12), the reduced-that-comp rule in (4-14) should be used to analyze the comple-

ment clause that is led by the NP, "the man". However this rule can match CLIST after a

verb(or auxiliary verb) is input to CLIST because of the pattern [v] in the rule. Before

this rule matches, the object rule will match CLIST. Then the parser will reach the

dead-end and the parsing will fail.

The solution for the above problem is to change the object rule so that it can not be

applied for the verbs that can have a "that" complement clause and to add another object

rule (called special-object shown below) that will wait and see the word after the NP.

The updated rules for this purpose are shown in (4-15) and (4-16):

71

(4—15) Rule Object:

<S—VP—V; not(that-comp)> [NP]

=> [attach NP to VP]

(4-16) Rule Special-object:

<S-VP-V; that-comp> [NP] [#V]

=> [attach NP to VP]

The object rule in (4-15) can not be used for (4-11) or (4-12) because the V, "know",

has the feature "that-comp" indicating that it can have a complement clause with com-

plementizer "that" (note that the "that" complementizer in English can be omitted). For

(4-11), the special-object rule in (4-16) will be used after "." is input, because "." will

match the pattern [¢V]. Thus both (4-11) and (4-12) can be successfully analyzed using

these two rules.

But these rules are not perfect. The sentence (4-17) causes a problem.

(4-17)I know the man who eats an apple is a doctor.

Just after "who" is input into CLIST, the special-object rule matches the CLIST and

"the man" is analyzed as the object of the verb "know". But this is a wrong analysis

because "the man" should be analyzed as the subject of the complement clause. This

decision should be delayed until the correct evidence occurs. To fix this problem, the

special-object rule can be modified as follows:

Rule special-object:

<S-VP-V; that-comp> [NP] [.1 =>

This solution works for the sentence (4-17), but there is a counter example such as (4-

18):

(4-18)I have known the man since 1930.

The special-object rule can not be used to analyze this sentence because "since 1930"

exists between "the man" and ".".

72

From the discussion done so far, we can notice that even delaying the decision for

three words is not enough. It is argued in Frazier and Raynor(1982) that "the man" in

(4-12) is first analyzed as the direct object of the verb and then this analysis is thrown

away if it proves to be wrong later and the sentence is reanalyzed. They presented data

from eye movement experiments as evidence that (412) shows some garden path effect.

The position taken in SYNSEM is to use the following two rules:

(4-19) Rule Object:

<S—VP-V> [NP] => [attach NP to VP]

(4-20) Rule reduced-that-comp:

<S-VP-V; that-comp> [NP] => ..open sec clause..

The above two rules match CLIST (just after "the man" is analyzed as the NP) and the

corresponding two branches run in parallel. For the sentence (4-11), the branch created

by the rule reduced-that-comp will be removed after the input of "." because the

expected complement clause does not follow. The sentence is successfully analyzed by

another branch created by the rule object. In the case of (4-12), the input "is" will make

the parser remove the branch corresponding to the object rule. The branch issued by the

rule reduced-that-comp will analyze this sentence successfully. For the sentence (4-

17), the branch issued by the reduced-that-comp will carry out the parsing but the

branch for object will die in the middle of parsing. This parsing strategy indicates that

the partial parallelism concept introduced in Chapter 3 overcomes this problem. But

note that this is just an alternative to the reanalysis strategy.

4.6 Syntactic Processing in Operation

To understand the operation of the syntactic analysis clearly, a detailed trace for

the analysis of (4-21) will be given in this section (See Appendix D for the system out-

put and see Appendix F. for the rules mentioned in the thesis).

73

(4-21)The teachers taught by the pool passed the test.

The parsing of a sentence starts with the empty CLIST and CASH. Just before reading

the first word, a dummy node of type "SS" is inserted into the empty CLIST (the

snapshot of the SWM is shown in Figure 4.18). "SS" node indicates

CLIST CLIST

ss 33 (£3

CASH— ’ 9115.151—

(a) (b)

Figure 4.18 Snapshots of SWM

that it is the starting point of a sentence. MON reads the word "the" and calls the mor-

phological routine. This routine looks in the dictionary and finds the part of speech of

the word. If the word is an open class word, an instance concept for it is created in the

knowledge base and the MP passes a marker starting from this instance concept. Marker

passing will be explained in the next chapter. This word is inserted into CLIST of the

branches that are active (only one branch here). The SWM becomes as in Figure 4.18(b).

For this CLIST, the pattern matcher finds only one rule parse-det (Refer to Appendix A

for the NP structure used in SYNSEM.) After executing this rule, The SWM becomes

(c). No rules are found for this SWM, which means that the blocked situation has

occurred. However it is determined that this is not the dead end (Refer to Appendix B.)

Thus MON reads the next word "teachers" and inserts it into CLIST as shown in (d).

The pattern matcher finds only one rule, noun-parsel , for this SWM and its execution

results in (e). For (e), the pattern matcher finds the rule noun-parse33 and the SWM

becomes (f). This rule analyzes the noun "teachers" as the head noun of the NP that is

being built, because the noun is in plural form. Refer to Milne(1980) for the use of

singular/plural form of a noun to decide the boundary of the NP.

74

(‘1 181‘ CLIST CLIST

88 NS 83 NS N 38 bltc N

l I N5 |
Det Det teachers I teachers

(the) liner net

(C) (d) (6)

Figure 4.18 Snapshots of SWM(Continued)

Only one rule, subject, matches (f) which changes CLIST to (g).

SS ’NP\ /S\ A [main,en]

NC N SS P
SS NP

NA ' A 4;
NS teachers taught

——-Det

(f) (g) (h)

Figure 4.18 Snapshots of SWM(continued)

The NP has been analyzed as the subject of the sentence. No rule matches (g) and the

next word "taught" is read in by MON. Because this is an open word, the MP is called to

pass markers from the instance concept for this word. The Snode for this word has

features "main" and "en" because "taught" can be a main verb and a past participle. For

CLIST in (h), the pattern matcher finds three rules: main-verb2, np-vpp and np—vppl.

The main-verbZ rule analyzes "taught" as the main verb of the sentence. The other two

rules are for the reduced relative clause analysis of "taught". Note that this verb is a

dative verb as shown in "She taught the boy mathematics." Thus "the teachers" in (4-

21) can be either a direct or indirect object of "taught". For example, "the theory" in (4-

22) is the direct object but "the person" in (4-23) is the indirect object of the verb

"taught".

(4—22)The theory taught by the professor is really hard to understand.

' (4—23)The person taught by the professor is a farmer.

75

The np-vpp rule analyzes the NP, "the teachers", as the direct object and the np-

vppl rule analyzes the NP as the indirect object of the verb "taught". The pattern parts

of the two rules are almost the same. The difference comes from the action part. The

action part of np-vpp has an action which suggests that the NP and the V should be

related via the pseudo-preposition "obj". This indicates that the NP is the direct object of

the V. But an action in the action part of the rule np-vpp1 suggests that the NP and the

V should be related via the preposition "to" (which is the dative preposition of "teach").

This means that the NP is the indirect object of the V.

Each of the above three rules create a branch as shown in Figure 4.19.

main-verb2 > (I)

nP-vpp , 0)

np-vppl : (k)

Figure 4.19 Creation of Multiple Branches

The SWM’s in (i), (j) and (k) shown in Figure 4.18 are the results of the execution of the

rules of the three branches.

/I\ S/‘\I~7’\ 7\17K
NPSS/VP latdummmmy] fad SS P [dummy] 3%

V V NP P

)(taught)/ taughtv))1

V

(i) (k)

Figure 4.18 Snapshots of SWM(Continued)

In (j) and (k), the secondary clause 82 is attached to the NP. But 82 is a root node of the

rightmost tree because this is an implicit attachment as indicated with the dotted line.

The reason that 82 should be a root node is that this secondary clause is treated as if it is

76

the main clause so that the rules for building the main clause can be used to build the

secondary clause. When 82 is complete, it will just be popped out from CLIST (but it

will still be attached to the NP). An attachment like this is called an implicit attachment

because it is done in the background. 82 actually hides 81 until its construction is

finished and it is popped out.

For each branch, no rule is found during the pattern matching and a new word is

requested to be input. As explained in Chapter 3, the semantic comparison stage comes

at this point. The branch for the rule main-verb2 is selected after the comparison of the

semantic processing results (The reason for this selection will be explained in Chapter 6,

but it has to do with the knowledge that teachers do teach). The other two branches are

pushed into the backup stack. Out of these two branches, the one with the better seman-

tic result is pushed later so that it can be used first when backtracking is needed later.

The output of this semantic comparison stage is one branch. Now MON inputs the new

word, "by", and the SWM for the selected branch becomes (1).

)l\ p 1 6P t 1 P NC T! 1 Prep NC N

38 NP ”(A)'P pool

V (W) (by) NS passed

(the) (by) D“

(1) (m) (n) (0)

Figure 4.18 Snapshots of SWM(Continued)

No rule matches (1) and MON reads the next word "the" as shown in (m). After several

NP processing rules are used and the word "pool" is input, the SWM becomes (n) (this

change is same as the change from (b) to (e) before). At this point, it can not be deter-

mined that "pool" is the head noun of the NP without looking at the next words. For

example, "pool" is the head noun of the NP in "the pool of the house", but it is not the

head noun in the nominal compound, "the pool repair". No rule matches the SWM in

(n). Thus MON reads the next word "passed" and the SWM becomes (0). The rule

77

noun-parSGS matches (0). Seeing the V following the noun "pool", this rule decides

that "pool" is the head noun of the NP being built. Note the last action of this rule is

"(push-to—cash-last-node)" which pops the last node, V(passed), and puts it into CASH.

The reason for performing this action is that the V has been used by the rule only for

getting enough context to make the decision if "pool" is the head noun or not. After

completing this purpose, the V should be retracted from CLIST so that the NP just built

can be the rightmost node of CLIST and all further processing can be done for this situa-

tion.

After the execution of noun-parse3, the SWM becomes (p). For this new SWM,

the pattern matcher finds the rule build-pp which builds a PP as shown in (q).

flPreP NP R e ik R IV Ra72x

NC N NPYPPrcp Np NP fl NP fipassw SS PNP)1

v V ill V PL V P

CASH— EASE— NP NP

v IV Pm.“ Prey

ed(ML ML CASVH— CASH=nil CASH=nil

(passed)

(P) (q) (r) (S) (t)

Figure 4.18 Snapshots of SWM(Continued)

The vp-pp rule matches the SWM in (q) and this rule attaches the PP to the VP as

shown in (r). (The semantic component returns the signal of accepting this attachment

because a "teaching" action can happen at the location close to the pool.) No rule is

found for (r) and a new input is required for CLIST. Because CASH is not empty, MON

pushes the node, V(passed), in CASH into CLIST instead of reading a new word from

the input suing. The new SWM is shown in (s). The V of "passed" can be a past main

verb or a past participle. The main verb analysis rule does not match the SWM because

the main verb is already in the tree. The only rule that matches is np-vpp which

analyzes the V(passed) as the past participle that begins the reduced relative clause.

78

Let’s assume that "pass" has two meanings: (1) to hand something to a nearby person,

(2) to have enough qualification in a test. The execution of the np-vpp rule gets the

response from the semantic component that the result is semantically bad. The reason

for this response is that a pool can not be passed because it is not a movable object and a

pool is not a kind of test. The branch whose execution of the corresponding rule results

in a bad semantic effect is just removed. This is another case of disambiguation due to

the semantic reason.

Note that there has been only one rule that is active and the execution of this rule

has been rejected by the semantic component. Thus, the parsing is in a dead end because

there is no active branch left. Therefore it is necessary to back up. The parser pops out

an image of a branch that was stored in the backup stack and makes a new branch which

is shown in (t). Note that the SWM of this branch is actually the SWM in Figure 4.18(k)

that was pushed into the backup stack. This branch is the branch that was created

corresponding to the rule np-vpp1. The next word to be read for the branch correspond-

ing to the SWM in (k) is "by".

No rule matches (t) and MON reads the next word "by". The new SWM is shown

in (u). The course of parsing from (u) to (v) is not explained because it is related to the

PP analysis which was explained from (1) to (q). Against the SWM in (v),

CLIST CLIST CLIST CLIST

”77‘? f"?! 33

SSNP1???by

ss NP1 NP2 P29\)(PP ed

ass

P2v NP3by v NP3 VNP3 p

CASH=nil CASH=(V) CASH=(V) CASH=nil

(ll) (V) (w) (x)

Figure 4.18 Snapshots of SWM(Continued)

the pattern matcher finds two rules: the vp-pp rule and the passive-by rule. passive-by

analyzes the NP, "the pool", of the PP as the actual subject of the verb "taught" (of the

passive clause) and the vp-pp rule tries to attach the PP, "by the pool" to "taught". Thus,

79

two branches are created. The execution of the rule passive-by gets the failure signal

from the semantic component because a pool can not be the agent of the action "teach".

Thus the branch for this rule is removed. The execution of the rule vp-pp is accepted

because a satisfactory signal is returned from the semantic component for the execution

of the rule. Thus only one branch remains as active. The new SWM for this branch is

shown in (w). No rule matches (w) and the node V in CASH is pushed into CLIST as

shown in (x).

Only one rule(np-pp) matches (x) which attempts to analyze the V(passed) as the

past participle that begins the reduced relative clause that is attached to the NP, "the

pool". But this analysis is rejected by the semantic component as explained before.

Therefore the parsing is blocked and needs to back up. But before doing back up, the

parser always checks CLIST to see if there is an S of the secondary clause and if it is in

a complete form. If so, this 8 is popped out (this is the strategy of closing the secondary

clause in SYNSEM). Even if 82 is popped out, it is still attached to NP1. The SWM for

this branch becomes as shown in (y). Against (y), the main-verbZ rule matches. This

rule

as, I 2x A ”r a 2%
)K passed NP\ /vr> 2': TP the Xi TP 2:;

 N” /‘[K i)" V

V NP3)K I CASH=nil CASH=(-)

Prep NP

passed

CASH=nil CASH=nil

(y) (z) (21) (22)

Figure 4.18 Snapshots of SWM(Continued)

analyzes the NP for "the teachers taught by the pool" as the subject of the verb "passed".

The result of the execution of this rule is shown in (2). No rule matches the SWM in (z)

80

and MON inputs the next word "the" as shown in (21). After the NP for "the test" has

been constructed, the SWM becomes (22). Note that CASH contains "." which was used

to provide the context for analyzing the NP.

The object rule matches (z2) and its execution results in the SWM in (23). No rule

matches (23) and "." in CASH is pushed into CLIST as shown in (24). The s-close-aff

rule matches and this rule

CLIST CLIST CLIST

pr>vK NP/s\ OI N

/V“’\ I.

lfi (2:; A A

passed the passed

test test

CASH=(.) CASH=nil CASH=nil

(23) (z4) (25)

Figure 4.18 Snapshots of SWM(Continued)

attaches the punctuation mark to the tree as shown in (25). No input is left and the final

punctuation mark is attached to the tree. Therefore the parse of the sentence (4-14) is

finished.

4.7 Conclusion

The syntactic analysis component of the SYNSEM parser has been explained in

this chapter. The data structure employed in the parser is a list containing trees. The

grammar rules have the form of fairly straightforward production rules. The main design

objective of this component is to allow the parser to be able to delay the syntactic deci-

sion until a sufficient amount of context becomes available. This "delaying" is realized

by reading the next word when no rule is found during the pattern matching and the

situation is not the dead-end. By reading the next input word, the SWM will contain

more context and rules that can match this added context are sought again.

81

The method of delaying the decision achieves the same power as the lookahead

used in Parsifal. The use of delaying enables the SYNSEM parser not to use the atten-

tion shifting mechanism which psychologically seems to require processing which is too

complex. SYNSEM can use a simple and uniform processing technique even for the

structures that require attention shifting in Parsifal.

Another feature of SYN is the base pattern that is used to find the state of parsing in

each rule if necessary. Instead of employing states in ATN or packets in Parsifal, each

rule can test the state of the parsing by specifying the base pattern. This might make the

rules look a little complex but actually it makes the rules more readable and makes it

easier to follow the grammar.

The rules that have corresponding semantic processing contain actions which issue

a suggestion to the semantic processing component to find a path in the knowledge base.

The path found for the suggestions are used as the measure of the goodness of the

rule(branch).

One important guideline to prepare rules in SYNSEM is to prepare one rule for

each alternative analysis of a structural ambiguity. If there are n possible ways of

analysis at some processing point, then It rules should be proposed by the pattern

matcher. Each alternative will become a branch, which means that multiple branches of

parsing can go on in parallel as explained in the previous chapter. Some branches will

drop out as the parsing is going on because of either a syntactic reason or a semantic rea-

SOIL

CHAPTER 5

KNOWLEDGE BASE AND MARKER PASSING

The major motivation of the SYNSEM parser’s control strategy is to use the

semantic information as much as possible as a resource for disambiguation. We use a

knowledge base to provide the parser with this semantic information. Because we are

building a general natural language understanding system, the knowledge representation

language should be one that can represent general world knowledge instead of one that

is suited for a specific domain. The enumeration of the possible candidates is first order

logic, KL-One, KRL, Frail, Conceptual Dependency, KODIAK, and so forth. It seems

that these languages are the same as far as representational power is concerned, even

though each has its own representational characteristics. It is known that the first order

logic is equivalent to the frame-based representation languages in the representational

power. First order logic has a straightforward inference engine which is the so-called

"resolution-based" theorem proving. The problem is that the amount of computation can

grow intractably as the size of the knowledge base grows.

The frame-based representation languages add some features to have more control

on intractability but end up with reduced capability for making inferences. In SYNSEM,

KODIAK is used as the knowledge representation language to build the knowledge base.

KODIAK was developed by Wilensky(l987). It has been used in some A.I. systems

such as FAUSTUS (the text inference system) (Norvig, 1986) and UC (natural language

processing system) (Wilensky & etc, 1986).

One of the motivations behind choosing KODIAK in SYNSEM is that it has a type

of concept called relation that relates the concepts of objects and actions. Another

motivation is that it is a semantic network in which it is appropriate to use the marker

82

83

passing method to facilitate the semantic processing. Charniak(1983a) first proposed the

use of marker passing in natural language processing systems. He pointed out that

marker passing-based systems can provide advantages for problems such as word sense

disambiguation, prepositional phrase attachment, and so forth. Norvig used the marker

passing mechanism to get plausible inferences in the text understanding system.

In this chapter, KODIAK and marker passing used in SYNSEM will be inuoduced,

which provides the reader the necessary background for the discussions in the following

chapters.

5.1 KODIAK

KODIAK will be introduced briefly in this section. (The notations for KODIAK

elements used in this dissertation mostly follows the description of KODIAK in (Nor-

vig,l986).) KODIAK has three types of nodes: absolutes, relations, and aspectuals. The

nodes are connected via links. There are eight different types of links. Absolutes

represent the objects or entities in the world. Entities here include some concepts that

have a meaning by themselves. For example, objects in the world such as "boo ",

"train", "person", "dream , plan", etc. are represented by absolutes in KODIAK. Non-

object entities such as "action , eat , run", etc. are also represented by absolute nodes.

(The main intention of KODIAK is to derive the meaning of absolutes from that of rela-

tions and aspectuals.) A relation in KODIAK connects two absolutes. For each relation,

there are two corresponding aspectuals. The aspectuals for a relation can be considered

to be the formal parameters of the relation. The absolute which specifies the class whose

elements can fill the parameter is connected to the aspectual by a link. Let’s consider

Figure 5.1 as an example. The double circles are for relations, the single circles for

aspectuals, and rectangles for absolutes. The relation eater-eat relates the absolute

animal and the absolute eat. The absolute animal is connected to eater-eat

via the aspectual eater . eater-eat. (The names of the concepts can become long

84

eat food

eater.eater-eat

eateater-eat CfltfifltCC-Cflt eatee.eatee-eat

Figure 5.1 Elements of KODIAK

because each concept has a unique name so that a concept can be accessed by its name.

We tried to use self-explanatory names but the name itself does not have any meaning

for the Operation of the system.) We can consider the aspectuals, eater . eater—eat

and eat . eater-eat, as the parameters of the relation eater-eat. The absolute

animal constrains the argument which fills the parameter eater . eater-eat and

the argument of the parameter eat . eater-eat is constrained by the absolute eat.

As shown in Figure 5.1, the absolute animal is pointed by a C(constraint) link from

the aspectual eater . eater-eat. The "A" link between an aspectual and a relation

can be considered to imply argument. Anything that is a kind of animal has a relation

named eater-eat with any concept which is a kind of eat and can be connected to

(or involved in the relation with) the relation eater-eat which is again connected to

the concept eat. The fragment of knowledge represented in Figure 5.1 can be

represented in a frame-based language as shown in Figure 5.2.

name eat

agent //\ animal

slots ,

patient -"‘—\

food

Figure 5.2 Frame Representation

85

Comparing Figure 5.1 with Figure 5.2, it can be noticed that slots in a frame-based

language correspond to the relation nodes in KODIAK. The agent slot of the frame

eat corresponds to the relation eater-eat in KODIAK. Relations are considered to

be the most important elements in KODIAK. Thus KODIAK is considered to be a

relation-based knowledge representation language. The name "aspectual" is derived

from the fact that the meaning of two aspectuals are derived from the relation that holds

between them.

KODIAK has eight types of links which are listed in Table 5.1 adapted from Nor-

vig(1986). The Prototype link is the newly added link which points to the concept which

can be the prototype filler of an aspectual.

Table 5.1 Links in KODIAK

Dominate(D) - a concept is a subclass of another class

Instance(I) - a concept is an instance of some class

View(V) - a concept can be seen as another class

Constrain(C) - fillers of an aspectual must be of some class

Prototype(P) - prototype filler of an aspectual

Argument(A) - associates aspectuals with a relation

Fill(F) - an aspectual refers to some absolute

Equate(E) — two concepts are co-referential

Differ(Df) - two concepts are not co-referential

The D(dominate) link indicates the subclass relationship between two concepts. If a

node, say nodel, is a subclass of another node, say node2, then there is a D link which

starts from nodel and terminates at node2. D links are also used to specify the subclass

relationship between two relations. D links in KODIAK correspond to the IS-A or AKO

links in other representation languages. One important implication of D links is that the

86

properties of concepts are inherited by other concepts via D links. If nodel dominates

node2 (i.e. a D link points from node2 to nodel), all the relations and aspectuals that

nodel is involved with are inherited by node2.

The I(instance) link is used to represent the relationship between a member and the

class to which this member belongs. For example, to represent that a specific person

called Bill is a person, the I link is used between the absolute billO 1 and person

as shown Figure 5.3. Note that "01" in bil 10 1 is used to indicate the specific person,

our Bill and not, say, Bill Cosby:

person person

A

person-with-

_name-“ ill

BillOl

BillOl

(a) (b)

Figure 5.3 Instance Links

Because there can be many persons whose name is Bill, we can introduce a new concept

called persons-with-name-Bill as shown in (b) of the figure. The A and C links

have already been explained. For each relation, there are two A links that associate two

aspectuals to the relation. These two aspectuals correspond to the two arguments of the

relation. The C link is used to specify what kind of absolute can be connected to an

aspectual. This absolute can be considered to be the constraint of a concept which can

fill the argument that the aspectual specifies. An E(equate) link is used to connect two

absolutes to specify that the absolutes are co-referential. If an E link connects two aspec-

tuals, this means that the aspectuals are filled with the same absolute. Df(different) links

areiopposites of E links. They are used to assert that two absolutes are explicitly not co-

87

referential, or that two aspectuals can not be filled with the same absolute.

The V(view) link is used to regard an absolute as another absolute. For example,

"person" can be viewed as a "physical-object". In this case, "person" is used actually to

refer to the person’s body. The representation involving the V link is complex and will

not be explained in detail here.

5.1.1 Modeling Knowledge

To have a better feeling of KODIAK, it is useful to look at a piece of a knowledge

base written in KODIAK. Figure 5.4 models the knowledge involved with "giving" and

"having". Two absolutes named giver-has-given and givee-has-given are

two concepts which are kinds of the concept have. The absolute giver—has-

given represents the idea that one should have something to give to somebody. Note

that these ideas are represented by full-fledged concept nodes in KODIAK. This shows

that KODIAK encourages the proliferation of concepts. giver-has-given is a

precondition of giving while givee-has-given is the result of giving, as

shown in the figure. Note that several E links are used to express the important relation-

ship among give, giver-has-given, and givee-has-given. The person

who gives something to somebody is the same person who has it. The thing that is given

by somebody is the same thing that the person has and the same thing that the recipient

will have. These are represented by the E links (indicated by "=") in the figure.

The D link between actor-act and giver-give indicates that the

giver-give relation is a kind of the actor-act relation. The concept have is

considered to be a kind of the concept experience which is again a kind of the con-

cept st at ive. The relation haver-have is subsumed by the relation

experiencer-experience. If giver-give had not been specified in the figure,

actor-act relation would be inherited by the absolute give because of the D link

between act and give. But giver-given was specified in the figure because

88

PantiCigant-
81 I . I [1 thing

. situatio ll event @

C O{f . C
/

person C
‘ person

stative

l

xpe 'encer- D

x ence
experietjce

D

have

D

mt:4 ‘ I c

haver-of- .

grvee-has-grven

Figure 5.4 Example of a KB

89

giver has more specific meaning than actor such as the fact that "the giver of giv-

ing" is the same person who originally had the object (this is represented by the E link).

To be a more complete piece of knowledge, some nodes and links should be added

to the figure, which specifies the time relation between the concepts. For example, the

period of time that giver-has—giving occurs is followed (disjointly) by the period

of the state givee-has-given.

5.2 Marker Passing in SYNSEM

Marker passing is one of the computational methods of using the knowledge base

encoded in a network-based model. A marker starts from an origin and spreads through

links and nodes. Some information is obtained by examining the collisions of markers

from different origins. The idea of marker passing is rooted in the research related to

spreading activation models in psychology.

The spreading activation model was first proposed by Quillian(1968, 1969). After

that, much research has been done on this model such as Collins and Loftus(1975),

Anderson(1983), and Lorch(1982). The main idea in Quillian’s language understanding

system, TLC, was that there should be a connection in the memory between two con-

cepts if they are related semantically. The method to find the connection(or path) is to

activate the two concepts and let the activation spread through the memory and then find

the collisions of the activations from two origins. He called this memory "a semantic

network" which represents the factual assertions about the world. One type of node in

his semantic network is called a "unit" which represents the concept of some object,

event, idea, assertion, etc. Another type of node in his network is called "property"

which encodes any sort of predication (that can be stated by a verb phrase, adjectival,

etc.). A unit or property may contain pointers to other units or properties. In Figure 5.5,

a piece of knowledge about "client" is shown. These pointers are links of the memory

model. Based on this organization of memory, the program can trace to all the units that

client

W * *1

[person] (a:

(13*

[employ]

[by]

professional]

Figure 5.5 Memory of TLC

can be reached from the starting unit by following the pointers, units, and properties.

The breadth-first u'acing method was used to propagate the tags(i.e. markers). The inter-

sections of tags from different origins were used to interpret the input string.

Following Quillian’s idea, Collins and Loftus extended the spreading activation

model to provide psychological validity. One of the major extensions is that the activa-

tions at the nodes have suengths that decay over time and distance. The intersection can

occur only when the total activation at the node should be above some threshold.

The spreading activation model was first introduced into A.I. by Fahlman(1979).

Each node of the network memory in his NETL system was implemented using a

hardware device called a node unit. The nodes are connected by links which are imple—

mented by a hardware unit called the link unit. He advocated that the massive parallel-

ism can be achieved with the independent propagations of markers by the node units via

the link units. In addition to these hardware units, NETL has a controller which is called

the network controller. The network controller can query all nodes to find how they have

been marked. He tried to deal with some problems of the knowledge base such as type

hierarchies and property inheritance. Posed with certain kinds of questions such as

"what color is Clyde?", markers are passed starting from the nodes, "Clyde" and "color".

The collisions of the markers from different origins are used to answer the question.

91

Some special features such as cancellation links are used in NETL to make nodes use

more specific information (if it exists) rather than the inherited information.

Charniak(1983a) advocated the use of marker passing for language comprehension.

He suggested that the use of context for language understanding can be easily done by

using the marker passing paradigm. For example, the effort to solve the word sense

disambiguation problem benefits much from the marker passing paradigm. The idea is

that the senses that do not form a reasonable path(or collision) are deleted from the list

of candidate senses of the ambiguous word. This strategy can even be applied in the case

of more than one sentence. Charniak(1986) provided the theoretical basis for the marker

massing paradigm. He showed that the Operation of finding the paths using marker pass—

ing is equivalent to theorem proving in logic. He suggested that anaphora resolution,

word sense disambiguation and the prepositional phrase attachment problems can be

attacked using the marker passing paradigm.

Granger and his colleagues used marker passing for their text understanding system

called ATLAST (Eiselt, 1985; Granger & etc. 1986). ATLAST consists of the Capsul-

izer, the Proposer, and the Filter. The Capsulizer does the intra-phrase syntactic analysis

whose result is passed to the Filter in the form of capsules. While the input word is input

into Capsulizer, spreading activation starts from the senses of the word. The activation

spreads through the memory which consists of MOPs(memory organization packets)

(Schank, 1982a, 1892b). When the intersection of two activations from different origins

occurs, the Proposer has found some plausible relationships between word senses. The

Proposer passes these possible inference paths to the Filter for evaluation. The Filter per-

forms inter-phrasal syntactic analysis to determine the actor, action, and the object slots.

Another major function of the Filter is to evaluate the inference paths and select one

path among the competing ones.

Hendler(1986) used marker passing for problem solving. His main idea is to reduce

the back tracking in planning by having the marker passing mechanism make

92

appropriate suggestions as to what to try first.

Most recently, Norvig(l986) used marker passing for getting the plausible infer-

ences in a text understanding system. The knowledge base is written in KODIAK. From

the collisions of markers whose origins are input words, six types of plausible inferences

are produced. He argued that these inferences are the inferences that should be made to

understand the text properly. I-Iis major claim is that his approach of using the declara-

tive knowledge base and producing the inferences based on this knowledge base is a

generalization unifying the SCRIPT-based and Plan/Goal-based story understanding

approaches.

Another recent approach of using spreading activation can be found in the so-called

connectionist network model (Feldman and Ballard, 1982). In this memory model, all

the work related to syntax and semantics is presumed to be done by spreading the activa-

tions through the network. One of the features they use is inhibition as well as activa—

tion. (Waltz and Pollack, 1984) and (Small, Cottrell and Shastri, 1982) are examples of

attempts to build natural language parsers using the connectionist model.

5.2.1 Links and Flow of Markers

As each word is input into the system, MON creates a new instance node for the

word if it is an Open word. An instance node is a kind of absolute node. Then MON calls

the MP to pass markers starting from the instance node. (Marker passing done by the

MP is called primary marker passing to distinguish it from another marker passing done

by the semantic analysis component.) Figure 5.6 shows that an instance node Z is used

as the origin of a session of marker passing. Z is connected to three absolutes(W, X, and

Y) because the corresponding word has three senses.

In SYNSEM, the links and nodes through which markers can flow are resuicted so

that the markers can not propagate too widely. In each row of Figure 5.7, the node in

the left column can send a marker via the link in the middle column to the node on the

Figure 5.6 Origin of Marker Passing

From Via T0

0 I

D >J

A

n "
U

 O I >0
Figure 5.7 Links and Nodes Passing Markers

(ellipse: instance; box: absolute; circle: aspectual; double circle: relation)

right column.

Each marker carries a strength which diminishes as it travels. As a marker passes

through each link (except D and 1 links), its strength is reduced by one. When a

market’s strength becomes zero, the marker can not flow any more. Thus, marker pass-

ing activates only a subgraph of limited diameter in the overall network. The marker

su'ength at the origin is set to be 6. This value was decided after considering several

94

factors. If it is too small, the set of collisions produced during marker passing may not

include some important paths. But, if it is too big, the initial marker strength may result

in too many spurious collisions, which can slow down the system. D and I links do not

reduce the marker strength. These links specify the ancestor relationship and it seems

that all the ancestors of an activated node should be activated too.

Note that the markers can not flow in the reverse direction of D and I links. The

reason is to prevent the markers from propagating too widely in the network. For exam-

ple, if a high node such as thing is marked, then all the nodes under this node (i.e. all

objects in the network) will be marked without this resuiction. This restriction may

result in the reduction of some inferencing power of the system. It has not been found

that any important inference is lost because of this restriction.

SO the computational cost is the major factor for deciding the initial marker

strength and the resuiction of links. It is necessary to keep in mind that a marker can not

flow back along any link through which it flowed. Without this restriction, markers

would get into infinite loops.

5.2.2 Basic Considerations of Marker Passing

The marker passing algorithm used by the MP is strictly a breadth-first algorithm.

The whole marker passing operation related to a word is called a session of marker pass-

ing. A marker passing session starts from an instance node for an open word from the

input string. This instance node is the origin of markers in this session. During the

marker passing session, the MP knows the origin and thus the origin need not be

included in the information that a marker should carry. A marker carries the following

information: (1) the next nodes to visit, (2) the previous node it has just come from, (3)

the link through which it has just come, and (4) the strength of the marker.

When a marker visits a node, its trace is put on the node. The trace is a kind of

stamp that is used later to find the collisions on the node. A marker trace has the

95

following information: (1) the origin of the marker, (2) the suength of the marker, (3)

the immediate previous node, and (4) the link through which the marker has come to this

node from the immediate previous node. A node may be marked by markers from dif-

ferent origins during the parsing of a sentence. Thus a node may have more than one

trace. During a session of marker passing, a marker may collide with other markers from

other origins. This happens when a marker reaches a node which has a trace of a marker

from any previous marker passing session. The collisions which occur during the marker

passing session are collected and reported to the caller of the MP after the session.

If a marker reaches a node which does not have the marker trace of the same ses-

sion, this means that this node is marked for the first time in the session. There is no

problem in this case. A marker trace for this marker is put on the node and the marker is

passed to the neighboring nodes. This case is illustrated in Figure 5.8.

A 11 E

Figure 5.8 Split of Markers

Consider a case that a marker has arrived at node B from node A, and E has never been

visited during the session. A marker trace is put on E which is a list: (origin strength A

11). If the strength is not 0, the marker should be propagated to the neighboring nodes A,

B, and C assuming that 11, 12, and 13 are legal for the flow of markers. Because this

marker has just come from A via 11, it can not flow through 11 again. But 12 and 13 can

be used for passing the marker, and thus B and C will get marked. It can be said that the

marker at E is split into two markers. One of them will be a marker that flows through 12

and mark B. The other one will flow through 13 and mark C. The mark at B will mark D

96

and F later. If a marker at a node, say node-x, flows to the next node, say node-y, via a

link, then the marker at node-y is called a descendant of the marker at node-x.

Complication arises if a marker reaches a node which already has a marker trace of

the same marker passing session (i.e. this node was already visited during this marker

passing session). Two possibilities can be considered in this case: (1) the marker is the

descendant of the marker that already marked the node, (2) the marker is not the descen-

dant. Case (1) happens when a loop has been formed as shown in Figure 5.9.

Figure 5.9 Loop in Marker Passing

The marker that marked the node B propagates to B again (in the guise of a descendant)

via the path that is a loop in this figure. In this case, B is not marked again. This marker

which returned via a loop is just thrown away; Otherwise, marker passing will go on

infinitely along the loop. Case (2) is illustrated in Figure 5.10. Node B was marked by a

,Q

{I V4

Figure 5.10 Merge of Markers

marker that reached B via A from the origin. Later, a marker which followed a different

path reaches B via C. This marker is not the descendant of the marker which put a

97

marker trace on B earlier. In this case, the marker trace at B is modified in such a way

that the previous node field of the marker trace contains both A and C. We call this

operation "merging of two markers". But additional processing is required for this opera-

tion. Note the following fact. When a collision is reported, the paths to the origins are

computed and stored as part of the data about the collision. Because of this, the path

information of the collisions whose path goes through B should be updated so that the

new added branch can be a part of the paths in the path information of the collisions.

The easiest way to explain this processing is to use an example. In Figure 5.10, let’s

assume that a marker propagated from origin 01 to E via A, B, and D. At E, a collision

occurred with a marker from origin 02 (of a previous marker passing session). Accord-

ing to this collision, the path (01 A B D E F O2) is computed and stored. Later,

"merging of two markers" occurs at node B. Then the path information of the above col-

lision should be updated so that another path corresponding to the new branch can be

added. Thus the following path should be added to the collision: (Ol .. C B D E F .. 02).

5.2.3 Follow-on Collisions

As explained before, a collision is reported if a marker reaches a node which was

marked from another origin in a previous marker passing session. As soon as a collision

is detected, the MP finds all the paths corresponding to the collision by tracing the mark-

ers to the two origins. There can be more than one path found because of the merge of

two markers as explained in the previous section. For each collision, the following infor-

mation is gathered and stored: the node at which the collision occurred, paths

corresponding to the collision, and the two origins involved. At the node of a collision,

the fact that a collision between two origins occurred is logged for later use.

Normally collisions are expected to provide useful information. But, in reality,

many useless collisions called follow-on collisions (Hendler,l986) are reported. Let’s

consider Figure 5.11 and assume that the nodes, A, B, and C were marked by markers

98

Figure 5.11 Follow-on Collisions

whose origin was 01 during the previous marker passing session. Assume that a marker

reaches C during the marker passing session corresponding to the origin 02. This colli-

sion is a normal collision and is called a regular collision. The marker will reach B

from C. A collision is also reported at B because B was marked by a marker from O].

The marker will reach A from B and a collision will also be reported at A. But these col-

lisions at A and B are the dummy collisions corresponding to the regular collision at C,

because they provide no additional information. All these collisions correspond to the

same path, (01 .. A B C D .. OZ). From this example, we can see that more than one col-

lision can be reported for the same path. Out of these collisions, only one can represent

the path and others can be considered to be dummy collisions. Thus we call the first col-

lision a regular collision and the Others the follow-on collisions. But note that there can

be more than one regular collision between two origins as shown in Figure 5.12.

X: regular collisions

O: follow-on collisions

Figure 5.12 Regular and Follow—on Collisions

Detection of the follow-on collision is done as follows:

99

When a marker (whose origin is O2) reaches a node, say A, which was visited by a

marker of the previous session (related to the origin, say 01); this means that a col—

lision occurred at A; Identify the previous node (say B) of this marker and check if

either a follow-on or regular collision between markers from 01 and OZ occurred

at that previous node (and the marker from 01 at node A was from node B); If it

did, the collision at node A is a follow-on collision; Otherwise, the collision is a

regular collision.

According to this detection method, it is clear that the collision at node C in Figure

5.12 is the regular collision and the collisions at node B and A are follow-on collisions.

The follow-on collisions are also logged on the node at which they occur so that the

information can be used later.

5.2.4 Overlapping Collisions

It is necessary to consider another kind of useless collision in addition to the

follow-on collisions. Let’s consider Figure 5.13 and assume that the marker

Figure 5.13 Overlapping Collisions

whose origin is 01 flows through the nodes in the following order: A, C, D, E, etc.

Assume also that the marker from origin 02 flows through the nodes: B, C, D, E, etc.

The collisions between the two markers occur at C, D, and E. The collision at C is the

regular collision. The fact that the collisions at D and E are false collisions is clear when

100

the paths for the collisions are compared as shown below:

Collision C1 at C: (01 A C B 02)

Collision C2 at D: (01 A C D C B02)

Collision C3 at E: (01 A C D E D C BO2)

The paths C2 and C3 have no more information than C1, because the segment "CDC"

and "CDEDC" does not add any information. Thus the collisions, C2 and C3, are the

dummy collisions of C1. Note that these dummy collisions can not be detected by the

method to detect the follow-on collisions. We call the collisions such as those at D and E

the overlapping collisions because the flows of the two markers overlap.

The scheme to detect an overlapping collision is simple. At a node at which a colli-

sion occurs, say D, compute the paths to the two origins. If the two paths share some

nodes and links, then the collision at the node D is an overlapping collision. In Figure

5.13, a collision occurred at D. The paths to the two origins are (D C A 01) and (D C

B02). Because (D C) is shared between the two paths, the collision at D is an over-

lapping collision. The collision at E is also an overlapping collision because the path

from E to O], i.e. (E D C A ...Ol), and the path from E to 02, i.e. (E D C B ...O2), share

the portion (E D C). Overlapping collisions are just thrown away.

5.2.5 Marker Passing Algorithm

Now the overall flow of the marker passing algorithm used in SYNSEM can be

introduced. It is shown in Figure 5.14.

The initial strength of the marker is set to some fixed number(6 in the current

implementation) and the strength is reduced by one as it passes a link(except D or I

link). Therefore the number(say W) of nodes being marked during a marker passing ses-

sion does not increase exponentially according to the size of the KB(say N) (

W=(kN)6

101

because the branch factor can be assumed to be kN where k is a constant and N is the

number of nodes in the KB). It follows that the number of collisions and the number of

possible paths for collisions do not increase exponentially according to the size of the

KB.

step 0:

step 1:

step 2:

insert a marker (origin nil nil 6) into an empty queue, Mqueue.

if Mqueue is empty, goto stop.

Marker <— a marker popped out from the front of Mqueue.

Set currentnode, previousnode, fromlink and strength from Marker.

if currentnode already has a trace of this session

then if the situation is infinite loop

then goto step 1

else begin

update the trace so that previousnode is added;

update related collisions to change the path

information;

goto step 1

end

else begin

find and prepare the markers for

all neighboring nodes to which the marker can flow;

(if strength is 0, A or C links can not be used.)

insert the markers into the rear of Mqueue;

if there are traces for previous sessions

then

for each trace do

if overlapping collision

then do nothing

else if follow-on collision

then report and log follow—on collision

else report and log regular collision;

goto stepl:

end

stop;

Figure 5.14 Marker Passing Algorithm

102

5.3 Conclusion

A knowledge base written in KODIAK is used as the source of semantic informa-

tion for the SYNSEM parser. KODIAK has three types of nodes: absolutes representing

the objects, states, and actions in the world; relations representing the possible relation-

ships that can exist between two absolutes; and aspectuals which are formal parameters

of relations. The important feature of KODIAK is that it is a relation-based knowledge

representation language. The concepts hidden behind the slots in the frame-based

languages become full-fledged concepts in KODIAK. In KODIAK, the proliferation of

concepts is encouraged in contrast to languages such as Conceptual Dependency that

provide a set of primitives. The meaning of a concept in KODIAK is generated by its

connections to other concepts. KODIAK provides nine primitive links that can connect

the concepts.

The marker passing mechanism is used in SYNSEM as a simple way of providing

semantics to the parser. The detailed considerations on the design of the marker passer

have been explained. To reduce the space of the KB that gets marked and thus minimize

the computational cost, some constraints have been put on the marker passing: resuict-

ing the possible link and node combinations that markers can flow through and restrict-

ing the distance that a marker can travel. The critical design problems such as follow-on

collisions, merging of markers, detecting the loop, and overlapping collisions have been

explained. Use of marker passing for providing semantics to parsing and for resolving

word sense ambiguity is discussed in the next two chapters.

CHAPTER 6

PROVIDING SEMANTICS TO PARSING

It was explained that the parsing is split into several branches when more than one

rule is found by the syntactic pattern matcher. Each branch is a legitimate way of pars-

ing at that point. The parser removes the branches whose semantic processing result is

worse than others by pushing these into the backup stack (i.e. the parser pursues only the

top-rated parses). The number of branches will be reduced (usually down to one) as soon

as syntactic or semantic information allows the parser to remove some branches. There-

fore the important problem in this parsing framework is how the semantic processing

result is computed and how the semantic processing results of the multiple branches are

compared.

It was explained in the previous chapter that the source of semantic information is

the KODIAK knowledge base and the major technique to utilize it is the marker passing

mechanism. A decision situation that requires semantic information which can not be

represented in KODIAK can not be handled in SYNSEM. Thus, we can only claim that

SYNSEM can handle the ambiguities which can be resolved by the kind of knowledge

that can be encoded using KODIAK.

This chapter will start with the explanation of the interface between the syntactic

analysis and semantic processing component. The most important concept is the sugges-

tion which the syntactic analysis component sends to the semantic processing com-

ponent. Any rule that invokes some semantic processing has an action which issues a

suggestion. Each suggestion is interpreted by the semantic processing component and

the result is stored as a part of the semantic interpretation of the branch. The semantic

processing result of each suggestion is realized as a path (or a set of multiple paths if

103

104

there is ambiguity) in the KODIAK knowledge base. Marker passing is useful for

finding a path for the suggestion. One problem with marker passing is that its computa—

tional cost is big. One reason for this big computational cost is that there are too many

spurious collisions(or paths) reported by the marker passing routine. In this chapter, an

efficient way to remove false collisions is introduced. The problem of comparing the

branches according to the semantic processing result becomes a matter of comparing the

paths. This problem is also investigated in this chapter.

6.1 Interfacing Syntax and Semantics

The main method of interfacing the syntactic processing component(SYN) and the

semantic processing component(SEM) is to use the suggestions that SYN sends to SEM.

A rule whose execution should invoke some semantic processing contains actions that

issue a suggestion. For example, the rule main-verb2 has an action:

(sug NP1 V1 subj)

This suggestion indicates that the syntactic constituent NP1 and V1 are related by the

syntactic relationship "subj". It says that NP1 is the syntactic subject of the clause whose

main verb is V1. The semantic component should consider this relationship when it is

computing the semantic relationship between them.

suggestions _\

SYN ,) SEM

(C1 C2 Prep)

(C1 C2)

Figure 6.1 Flow of Information from Syntax to Semantics

What the rule main-verb2 tells SEM is that SEM should find the appropriate semantic

connection between the semantic object corresponding to the syntactic constituent NP1

and the semantic Object corresponding to V1. But SYN includes a hint "subj" which

should be utilized by SEM. When SYN has analyzed a syntactic object of a clause, it

105

will send a suggestion to SEM saying that the verb of the clause and this object should

be connected via the semantic relation that can be implied by the syntactic relationship

"object". Thus the rule object (which does this analysis) has an action of the form:

(sug V1 NP1 obj)

The suggestion sent by SYN according to the action has the form of "(C1 C2 Prep)". C1

and C2 are syntactic constituents and Prep is a preposition (including pseudo-

prepositions) indicating the syntactic relationship between C1 and C2. Prep is used as a

hint to SEM for connecting the semantic objects corresponding to Cl and C2. Pseudo-

prepositions are the dummy prepositions that actually do not exist but can be assumed to

exist. "Subj" and "obj" are examples of pseudo-prepositions. "Indirect-object" can also

be a pseudo-preposition. But an indirect object can eventually be replaced by the dative

preposition of the dative verb. For example, "to" is the dative preposition of the dative

verb "give", and "for" is the dative preposition of the dative verb "buy". Thus, sugges—

tion (V 1 NP1 indirect-object) can be replaced with (V1 NP1 to) if V1 is the verb "give".

Let’s consider (6-1) and (6-2) to provide examples for suggestions.

(6-1)The man ate a cake with a fork.

(6—2)The man ate a cake with frosting.

In (6—1), "eat" and "a for " are related via the PP which is headed by the preposition

"with" (refer to Figure 6.2(a)). The preposition "with" provides some information about

how "eat" and "a fork" are related. Using the fact that the V, "eat", and the PP, "with a

fo ", compose the VP syntactically, SYN knows that the V and the NP of the PP should

be connected in some way and this relationship needs to be implied by the meaning of

the preposition "with". The preposition "with" might have many meanings. It is up to the

semantic component to use the correct meaning of "with" to connect "eat" and "a fork".

So, for (6-1), the syntactic rule which recognizes this syntactic relationship (i.e. the rule

vp-pp) has an action which issues the suggestion (V 1=eat NP1=a fork prep=with) and

sends it to SEM. For this suggestion, SEM finds the KB path which connects "eat" and

106

"a for ". The preposition "with" is used to find the correct path (i.e. the path that con-

veys one of the meanings of "with").

2””; K A/{\
1 P P1 P1 /pp,1\

“:1 A a cake Prefivl X

a fork with frosting

(a) (b)

Figure 6.2 PP Attachment Depending on Semantics

eat

In the case of (6-2), the NP "a cake" is modified by the PP "with frosting" (consider

Figure 6.2(b)). This analysis is done by the rule np-pp. This rule knows that NP1 and

NP2 would be related in some way semantically and this relation is implied by one of

the meanings of "with". Thus, this rule has an action which issues the suggestion

(NP1=a cake NP2=frosting prep=with).

According to the framework described so far, it is clear that a syntactic rule to

which some semantic processing is related has some actions which issue suggestions to

SEM. The decision about which rules should have what kind of suggestions should be

determined by the grammar writer. Note that a suggestion action is of the form (C1 C2

Prep) where C1 and C2 are syntactic constituents. Thus the specification of a suggestion

action is in purely syntactic form which is domain independent.

So far, we explained how the syntactic analysis component provides SEM with a

message which is used for semantic processing. This is the way syntax requests seman-

tics to do some semantic processing. The next question that arises is how semantic pro-

cessing influences the processing of syntax. This is achieved by the removal of some

branches based on the semantic processing result. Consider Figure 6.3. Each branch is

created for each syntactic rule whose patterns match CLIST. For each branch, there are

suggestions which are sent to SEM. The KB path for each suggestion is found by SEM

107

br ch-l br ch- branch-k

provide

$5331?“ 0 o o

sem. proc.
i

3

component . ' .

semantrc comparison stage

(filter branphes)

%

continuation

of branch-2

Figure 6.3 Influence of Semantics in Parsing

and it is returned to the branch to be stored. At the semantic comparison stage, the

branches are filtered according to the semantic processing result (actually the goodness

of the KB path). Thus the branches having inferior semantic effect are suppressed by

pushing them into the backup stack and the branches (i.e. syntactic analysis alternatives)

with best semantic effect survive. This is one way that semantics can influence the pro-

cessing of syntax.

Another way that semantics can influence syntactic processing is to notify SYN

that the suggestion is so bad that a reasonable path can not be found. In this case, the

branch that issued the suggestion is just thrown away (without being backed up in the

stack).

Interfacing syntax and semantics explained in this section are the major ways of

how syntax and semantics communicate in SYNSEM. But it should be noted that it

might be necessary to have other ways of making syntax and semantics exchange infor-

mation. Natural language is too complex to classify the communication between the syn-

tactic processing level and the semantic processing level in only a couple of ways. But

we claim that the methods of interfacing SYN and SEM explained in this section are

108

major ways of communication.

6.2 Finding a Path for a Suggestion

As explained in the previous section, SEM should find a path in the KB

corresponding to the suggestion. The path should be the best path for the suggestion.

Normally only one path is the best one, but there can be more than one best path if there

is word sense ambiguity. The suggestion that is issued by the suggestion action of a syn-

tactic rule is specified using the syntactic constituents. Then this suggestion is converted

into the suggestion specified using the nodes in the knowledge base. Let’s consider sen-

tence (6—1) as an example. The result of syntactic analysis after "ate" has been read is

shown in Figure 6.4(a). This analysis is done by the rule main-verb2 which contains a

/\
NP01 VP02 (NP01 V03 subj) (man.l ate.2 subj) (man.1 ate.2)

/

V|03

ate

(a) (b) (C) (d)

suggestion

Figure 6.4 Conversion of Suggestions

action (sug NP1 V1 subj) as explained before. During the pattern matching of the rule,

NP-l is mapped to NP01 and V-l is mapped to V03. According to this action, the

suggestion in (b) is produced by SYN. Note that NP01 and V03 are actually pointers to

the syntactic constituents in the tree in CLIST (shown in (a)). The suggestion in (b) is

converted into the suggestion in (c) by replacing the pointers with the corresponding

concept nodes in the KB. Refer to the KB shown in Figure 6.5 to follow the example in

this section. The suggestion in (c) is of the form (I1 12 Preposition) where

11 and IZ are the KB nodes and Preposition is the preposition given by the rule

("subj" in this example). NP01 in (b) is replaced with man . 1 which is the instance

thing Ob' event

A

O O O O o D O O
D

thy_0bj

n

, “i , “‘ .O.
food namma nimat “

I j)

cake [Erna] .

1 [MI

® - D

C ‘ t__t001 h h_ani [I .

D

D

. .

m (C

Figure 6.5 Another Example of the KB

absolute created by MON. MON created it when it input the word "man". In a similar

way, V03 in (b) is replaced with the instance node ate . 2 in the KB. Thus the sugges-

tion in (c) is obtained. The conversion of the form is done by the interface routine.

After getting the suggestion in (c), all SEM should do is to find the best path

between the node man . 1 and ate . 2 via some relation node that has one of the mean-

ings that "subj" can indicate. Note that the MP passed markers from the instance nodes

when the nodes were created. The collisions of markers whose origins are man . l and

ate . 2 are available. A collision corresponds to one or more paths between the origins

of the markers that collide. One of the biggest problem that marker passing-based sys-

tems suffer from is that there are too many spurious(false) collisions (Charniak, 1983a,

110

1986). Charniak said that the ratio of good collisions to the spurious collisions is 1 to 10.

Without solving this problem, the marker passing-based system can be slow, which

prevents it from being used as a practical system.

6.2.1 Secondary Marker Passing: Motivation and Basic Concept

We have developed a technique which can efficiently remove most of the spurious

collisions. The basic idea is to use the information that the preposition in the suggestion

can provide. Let’s assume that the suggestion to be processed by SEM is (I1 12

Preposition). Preposition provides some meaning which should be reflected

on the path between II and I2. The collisions of the markers from I1 and I2

reported by the MP are called two-way collisions because each collision consists of two

markers. The set of two-way collisions between I 1 and I 2 contains not only the

correct paths (reflecting the meaning of Prepos it ion) but also many other incorrect

paths. From now on, the collision and the path will be used interchangeably, except for

cases in which some confusion may occur. Note that a collision can correspond to more

than one path because of the "merging" of markers explained in Chapter 5. Without the

information Preposit ion provides, it is difficult to remove the spurious collisions.

(Even if it can be done, it takes too much time.) It is necessary to develop a technique by

which the spurious collisions are removed efficiently.

The technique developed for this purpose is called secondary marker passing. Most

of the spurious collisions can be efficiently removed using this technique. This technique

removes all the collisions whose path does not reflect one of the meanings of Prepo-

sition. Let’s consider sentence (6-1). The fact that "the man" has the syntactic rela-

tion of "subject" with "eat" indicates that they are related by a semantic relation that can

be implied by the pseudo-preposition "subj". The input string "ate" and "a for " are syn-

tactically related via the preposition "with". This indicates that the concept for "ate" and

the concept for "a fork" should be connected in the KB via a semantic relation that can

111

be implied by one of the meanings of the preposition "with". From this consideration,

we can say that the best path between I 1 and I 2 should pass through a concept node

whose meaning can be implied by Preposition in the suggestion (11 12

Preposition).

The concept nodes which can represent the semantic relations that are implied by

the meanings of the prepositions are the nodes of the type "relation" in KODIAK. The

relation nodes such as actor-action, eater-eat, recipient-receive,

etc. are some of the nodes that can be implied by the pseudo-preposition "subj". The

relation nodes such as instrument-action, instrument-eat, has-part,

etc., are implied by the preposition "with". We can think of the hierarchy of the relation

nodes for each preposition in the KB. The root of the hierarchy can be assumed to be

the preposition itself. We can recognize these hierarchies in the KODIAK knowledge

base. The hierarchy in Figure 6.6(a) is for the pseudo-preposition "subj", and

instru

 (a) m (c)

\'7

Figure 6.6 Hierarchies of Relations

that in (b) is for the pseudo-preposition "obj", and that in (c) is for the preposition

112

"with". Note in the figure that breakee-break belongs to the two hierarchies. For

example, "the rock" in (6-3) is the syntactic object of "broke" and the relation

breakee-break is implied by "obj" but the rock in (6-4) is a syntactic subject of

"broke".

(6—3)The man broke the rock with a hammer.

(64)The rock broke.

Thus the relation node breakee-break is implied by "subj". The root node of each

hierarchy in Figure 6.6 is a dummy node representing the preposition. The link between

the relation nodes in the hierarchy is implemented using the D link in KODIAK. If the

relation node A is a super-class of another relation node B, then there is a D link coming

from B to A.

For the suggestion (Instancel Instance2 Preposition) , the best path

between instancel and instance2 should pass through a relation node that is

implied by Preposition. This means that the path should pass through a relation

node that is in the hierarchy whose root is Preposition. The paths found by the MP

(i.e. two-way collisions) that do not pass through a relation node in the corresponding

hierarchy need not be considered.

This idea can be implemented using another marker passing. A marker different

from the markers used by the MP are passed from the root node of the hierarchy for the

preposition in the suggestion. The markers used in this process are called the secondary

markers (note that the markers used by the MP are called the primary markers). All the

relation nodes in the hierarchy can be marked by the secondary markers if the markers

propagate via D links between relation nodes in the hierarchy. Any path which does not

contain a relation node that is marked by a secondary marker can be removed as a false

path because it does not pass through any relation node that has a meaning of the prepo-

sition. At this point, it is important to note that the relation node of a good path which is

marked by a secondary marker should also have markers from instancel and

113

instance2 as shown in Figure 6.7.

Figure 6.7 Three-way Collision

The reason is that this relation node, node A in the figure, represents the semantic rela-

tion between instancel and instance2 and thus the node is related to both

instancel and instanceZ. Thus, the markers from the two origins should be able

to reach the node A. This means that three markers should collide at the relation node A

as shown in Figure 6.7. This collision is called a three-way collision because the mark-

ers from three different origins form the collision. From this consideration, the task of

removing the paths which do not contain a relation node marked by a secondary marker

can be achieved by collecting only the three-way collisions. Then the routine for finding

the best path needs to consider the three-way collisions instead of the two-way colli-

sions. This will save a lot of computation because the number of two-way collisions(or

the paths) should be much bigger than the number of three-way collisions (the data of

the experiment will be given later).

It has been explained that all the relation nodes in the hierarchy for Preposi-

t ion are marked during the secondary marker passing session. But this is not true. The

amount of computation can be reduced using an updated scheme. For a large knowledge

base, the number of relation nodes in a hierarchy for a preposition can still be big. Con-

sider, for example, the pseudo-preposition "subj". The concept nodes for almost all verbs

in the domain are linked to relation nodes that are implied by "subj", which means that

the number of relation nodes in the "subj" hierarchy is almost the same as the number of

verbs in the domain. To reduce the number of relation nodes that are marked during the

114

secondary market passing session, the following scheme is used. When a relation node

gets marked by a secondary marker, SEM can pass the secondary markers from this

node only if a three—way collision has occurred at this node. Thus further propagation of

the secondary markers stops at a relation node at which no three-way collision occurs.

According to this scheme, the system need not mark all the relation nodes in the hierar-

chy. Only part of the hierarchy will get marked. Consider the suggestion (eat . 1

spoon . 3 with) for an example. Only the portion of the "with" hierarchy

corresponding to the node instrument-acti on will be marked as shown in Figure

6.8.

instancel in stance2

Figure 6.8 Cut-down of Marker Passing Space

The sub-hierarchies corresponding to has—part and participant-event will

not get marked during secondary marker passing for the suggestion because there is no

three-way collision at has-part or participant—event.

Now, the secondary marker passing session can be stated more precisely as fol-

lows:

l. A secondary marker passing(SMP) session occurs for each suggestion from

SYN. But the suggestion should contain a preposition. Secondary marker

passing is done by SEM before it attempts to find the best path for the sugges-

tion.

2. The output of an SMP session is a set of three-way collisions. This output is

used by the routines for finding the best path.

115

3. The origin of secondary marker passing is the dummy root node of the hierar-

chy corresponding to the preposition.

4. A marker is passed only through the D links (in the reverse direction) between

the relation nodes.

5. A marker which reaches a relation node can not flow any more if a three-way

collision does not occur at this relation node.

There is no limit to distance that a secondary marker can travel.

All secondary markers are removed after each SMP session.

6.2.2 Consideration on the Polarity of Paths

Related to secondary marker passing, is one problem that should be considered dur-

ing the SMP session. This problem can explained using (6-5) and (6-6).

(6-5)The man with moustache

(6-6)The moustache with the man

During the analysis of (6-5), SYN would send a suggestion (man.1 mous-

tache.2 with) to SEM and SEM will find the path, (1) in the figure, between

man.1 and moustache.2 which contains a relation node has-moustache,

because a three-way collision occurs at has-moustache (illusu'ated in Figure 6.9).

with

(j
kvj

oustache

/man

/ ‘

(1) has-moustache .

man.2 man.1 moustache.2 moutasche.1

Figure 6.9 Two Collisions with One to be Removed

In the case of (6-6), the suggestion (moustache . 1 man . 2 with) is sent to SEM.

Note that the same path, (2) in the figure, as the path for (6—5) is found in this case

according to the three-way collision during the secondary marker passing operation. But

116

(6-6) is semantically unacceptable even if a good path is found. Thus either this path

should not be found during secondary marker passing, or the path is found during secon-

dary marker passing but is rejected later by some filtering routine. From this observa-

tion, it is realized that the order of two concepts in the suggestion is important.

(man . 1 moustache . 2 with) is semantically acceptable and a good path is found,

but (moustache . 1 man . 2 with) is semantically bad and thus no path should be

found by SEM.

This kind of false path can be removed during secondary marker passing. The idea

is to use the order of aspectuals for a relation. We put an order for two aspectuals of

each relation in such a way that the aspectual whose corresponding word appears before

the word corresponding to the other aspectual is given the first place and the other aspec-

tual is given the second place. For example, the relation subj (the root node for the

hierarchy of pseudo-preposition "subj") has two aspectuals, pre . subj and

pos . subj. Pre . subj is the aspectual that corresponds to the input suing of the syn-

tactic subject. Pos . subj is the aspectual that corresponds to the verb of the clause.

Pre . subj is called the first aspectual and pos . subj is called the second aspectual

of subj because the subject occurs before the main verb in a clause. Note that aspec-

tuals of two relations that are connected by a D link are paired by the role/play relation-

ship as illustrated in Figure 6.10. Actor-act dominates eater-eat (i.e. there is a

D link from the latter to the former node). The aspectual actor . actor-act is in the

role/play relationship with eater . eater-eat. Similarly act . actor-action is

in the role/play relationship with eat .eater-eat. The first aspectual of subj,

pre . subj, is linked to actor. actor-act. Actor. actor-act is linked to

eater.eater-eat by the role/play relationship. The second aspectual of subj,

pos . subj, is linked to act . actor-act which is linked to eat . eater—eat by

role/play. The role/play relationship is used to link the aspectuals as shown in the figure.

Because the subject appears before the verb the aspectuals that denote the subject are

117

man ate

I

I

' I

' I

pre.subj “ ” pos.subj

1 tJR i
I I

a . . .

I

gimme *‘C’“ A a A I '

I

. ’ l D
D = ;

._ of

person 0 AOAw
eaten-I eater-eat eat.-

act

act.-

Figure 6.10 Role and Play of Aspectuals of Relations

linked to the first aspectual of subj, pre . subj.

Figure 6.11 shows the case for the preposition "with". Note that the first aspectual

of with is linked to the aspectual whole . has-moust ache Of has—moustache

because the referent of whole.has-moust ache appears before the preposition

"with" followed by the referent of part . has —mousta che.

pre with .s.with

O A A

' R

. . .

‘ hy obj ct @h phy_obiect

«C,— A A . -

who C. 311:.- ll

D . D
_ ‘ F A: h

person A A w mousta e

whole.- has-moustache part.-

Figure 6.11 Example of Role and Play

Let’s explain how the path is rejected for (6—6). SYN always puts the constituent appear-

ing before the preposition (here "with") in the first element of the suggestion and the

118

constituent after the preposition in the second element of the suggestion. Thus the

suggestion for (6-6) is (moustache . 1 man . 2 with) . For each three-way colli-

sion that has been found, SEM checks to see if the first instance node in the suggestion

(moustache . 1 in this example) and the aspectual (of the relation of the three-way

collision) which is in the role/play relationship with the first aspectual of the preposition

node, are on the same part when the path is divided into two halves by the three-way

collision node. In the example shown in Figure 6.11, the aspectual of has-

moustache which is linked to the first aspectual of with is whole .has-

moustache. The two half paths are:

(man.2 person whole.has-moustache has-moustache)

(has-moustache part.has-moustache moustache mous-

tache.1)

We can see that whole . has-moust ache and moustache . 1 are not on the same

half path. Therefore this three-way collision is thrown away.

Related to the problem discussed so far, it is worth considering (6-7) and (6-8).

(6-7)The man ate the apple.

(6—8)The apple was eaten by the man.

During the analysis of (6-7), SYN will send the suggestion (man . 1 ate . 2 subj)

after "ate" is analyzed. During secondary marker passing for this suggestion, a three-way

collision occurs at the relation node eater-eat. This suggestion is issued by the

action (sug NP1 V1 subj) of the rule main-verbz. NP1 is put before V1 because NP1

appears before V1 in the input suing. What should be the suggestion action of the rule

passive-by which analyzes "the man" as the actual subject of "eaten" in sentence (6-8)?

119

This rule is shown below:

(passive-by ((l np—pp np—pp1)(h))

[([(DP-1 8‘1) 1 () l

[(aux-1 s-1) 1 (passive)]

[(VP-1 8'1) 1 () l

[(PP—1) 0 () l)

([equal-exact (symbol by) (prep—of-pp pp-1)])

l

[(sem connect (v vp-l) (np pp-l) subj 2)

(attach pp—l to vp-l)

]

)

In the suggestion of this rule, "(sem connect (v vp-l) (np pp-l) subj 2)", the flag, 2, is

used to signal to SEM that the V appeared before the NP in the input string but it should

be assumed that it appeared after the NP. Then SEM uses this information to change the

order of the V and NP and the analysis is done correctly.

6.2.3 Heuristics for Finding the Best Path

After the secondary marker passing session for a suggestion, a set of three-way col-

lisions is reported. The number of three-way collisions in this set is small compared with

the number of two-way collisions, but there is no guarantee that only one three-way col-

lision is returned. Even if there is only one three-way collision reported, the best paths

should be found (note that one collision can represent more than one path). Thus it is

necessary to develop heuristics that can find the best paths, given a set of three-way col-

lisions. The course of finding the best path is shown in Figure 6.12.

suggestion Secondary

(11 12 prep) Marker :> Heuristic-1 > Heuristic-n >

Passing 3W3Y‘ best paths

collisiofls

Figure 6.12 Stages of Finding Best Paths

120

Note that the scheme in this figure applies only to the suggestions containing a preposi-

tion. Each heuristic in Figure 6.12 is actually for reducing the number of paths(or colli-

sions) which are the candidates for the best path.

6.2.3.1 Hierarchy: H-heuristic

The first heuristic that is in the order is called the H-heuristic (H stands for hierar-

chy). The input to this heuristic should be the set of three-way collisions which is the

output from the secondary marker passing session. The idea behind the H—heuristic can

be illustrated using Figure 6.13.

Figure 6.13 Removal of a Collision Using Ancestor Information

Three-way collisions occur at node A and B. B is the ancestor of A. This means that A

can be reached from B via D links (in the reverse direction). It is obvious that the path

for the three-way collision at A is better than the path for the collision at B because A is

a more specific concept than B. The H-heuristic is defined precisely as follows:

H-heuristic: A three-way collision is removed if its collision node is an ancestor of

a node at which a three-way collision also occurs.

The result after applying the H-heuristic becomes the input to the next stage of heuris-

tics.

121

6.2.3.2 Length: L-heuristic

The heuristic called the L-heuristic is applied to the result after applying the H-

heuristic. Thus the input to this stage is a set of three-way collisions. The set is con-

verted into a set of the KB paths according to the following scheme: For each three-way

collision,

(i) Starting from the collision node, trace the marker back to the origin node.

This results in a set of paths.

(ii) Starting from the collision node, trace the marker back to the other origin

node and get the set of paths.

(iii) For each path from the set in (i) and for each path from the set in (ii), form a

full path by combining the two paths. The result of this step is the set of full

paths.

To the output of step (iii) above, the L—heuristic(L stands for length) is applied. This

heuristic is defined as follows:

L-heuristic: Select the paths with the smallest number of relation nodes.

The idea behind this heuristic is that the shorter the path is the better the path is. The

reason why the number of relation nodes is used instead of the number of all nodes

should be noted. The number of absolutes and D links between the absolutes might not

be a reliable source Of information for filtering paths. Consider an example in Figure

6.14 to illustrate this. Let’s assume that node A is an absolute which is as specific as the

absolute node B. But the knowledge engineer put more descendants under B than under

A because he happened to know the hierarchy under B was better than the hierarchy

under A. Therefore the number of nodes between A(or B) and the instance node should

not be used in computing the length that is used in the L-heuristic.

122

in
A1 path-2

D . 132

B3 D

I I

instance

Figure 6.14 Number of Nodes in the D-hierarchy

6.2.3.3 Specificity: S-heuristic

The heuristic called the S-heuristic is applied to the set of paths output from the

stage of the L-heuristic. The source of information for the S-heuristic is the specificity of

the absolutes of the path (S stands for the specificity). To compare two paths based on

the specificity, it is necessary to decide which absolutes(or relations) of the paths should

be used for comparison. Note that a path might have many absolutes and up to three

relations (because the initial strength of a marker is 6). There are three possible forms of

paths as shown in Figure 6.15.

@‘OQVPPM Is WP[j .

i if. Ii E.
Figure 6.15 Possible Forms of Paths

A path with any of the three forms might be compared with another path with any

of three forms. The nodes that are used for the comparison should be chosen in a way

that does not lose any information. In the S-heuristic, two absolute nodes are used for

this purpose: the absolute node that is pointed to by the first C(constraint) link and the

123

absolute node that is pointed to by the last C link (the dark nodes in the figure). These

two absolute nodes are called the end absolutes of a path. The comparison of any two

paths (say, path-a and path-b) is depicted in Figure 6.16. Note, in this figure, that

instancel of path-a is the same concept as instancel of path-b. Similarly,

instance2 of path-a is the same as instance2 of path-b. The reason for this is

that path-a and path-b are the paths for the same suggestion, (inst ancel

instance2 preposition).

instancel instance2

Figure 6.16 End Absolutes of two Paths to be Compared

The first end absolute of path-a, a1, is compared with the first end absolute of path-b, bl,

and the second end absolute of path-a, a2, is compared with the second end absolute of

path-b, b2. Now, the S-heuristic can be defined as follows (using the above notation) :

S-heuristic: If a1 is an ancestor of bl and a2 is an ancestor of(or same with) b2,

then path-b is better than path-a and thus path-a is removed. Symmetrically, if a2

is an ancestor of b2 and a1 is an ancestor of(or same with) b1, then path-b is better

than path-a and thus path-a is removed.

Any path which is inferior to any other path based on this heuristic is removed.

6.2.4 Operating Example of Finding the Best Path

In this subsection, some examples for finding the best path will be given. Let’s

consider how the path finding task is done for the suggestions sent by SYN during the

analysis of sentence (6]). The syntactic rule main-verb2 sends the suggestion (man . 1

124

ate . 2 subj) to SEM after "ate" is analyzed. Let’s use the small KB shown in Figure

6.5 to make the explanation easy. There are four two-way collisions of primary markers

from the origins, man . 1 and ate . 2. The collisions correspond to the following six

paths (nodes at which a two-way collision occurred are underlined. Links and aspectuals

are omitted):

(6—9)(man.l man person high_animate animal animate

actor-act act trsact eat ate.2)

(6-10)(man.l man person high_animate animal animate

phy obj food eatee_eat eat ate.2)

«$1D(man.1 man person high_animate animal animate

phy obj inanimate eat_tool instr-eat eat ate.2)

(6—12)(man.1 man person high_animate animal animate

phy obj inanimate instr-act act trsact eat ate.2)

(6-13)(man.1 man person high_animate animal animate

phy_obj thing actee-trsact trsact eat ate.2)

(6—14)(man.1 man person high_animate animal eater—eat eat

ate.2)

SEM passes secondary markers starting from subj. Subj, actor—act,

and eater-eat get marked during this secondary marker passing session. Then two

three-way collisions at actor-act and eater-eat are reported. The paths

corresponding to these three-way collisions are (6-9) and (6-14) and they are shown

below again with the three-way collision node underlined:

(6-9)(man.1 man person high_animate animal animate

actor—act act trsact eat ate.2)

(6-14)(man.1 man person high_animate animal eater-eat eat

ate.2)

125

Note that the collision node has been changed from act to actor—act in (6-9). The

reason is that afollow-on collision collected during primary marker passing can also be

used to form a three-way collision. Note that SEM needs to consider only two paths

after secondary marker passing. Otherwise the six paths from (6-9) to (614) should have

been considered. Then the H-heuristic is applied to the paths (6-9) and (6-14). Because

actor-act (the three-way collision node for (6-9)) is an ancestor of eater-eat

(the three-way collision node of (6-14)), the path (69) is removed. So only one path,

(6-14), is left after the stage of the H-heuristic, which means that the path finding opera-

tion need not go through the stages of the L-heuristic and the S-heuristic. The best path

for the suggestion (man . 1 ate . 2 subj) has been determined to be the path (614).

After "the cake" has been analyzed in sentence (6-1), the object rule sends the

suggestion (ate . 2 cake . 3 obj) to SEM. The two-way collisions (actually the

corresponding paths) between ate . 2 and cake . 3 are as follows:

(cake.3 cake food eatee-eat eat ate.2)

(cake.3 cake has-part1 frosting food eatee-eat eat ate.2

(cake.3 cake food asymbjggt animate animal eater-eat eat ate.2)

(cake.3 cake food psy object animate actor-act act trsact eat ate.2)

(cake cake food psy object inanimate eat_tool instr-eat eat ate.2)

(cake.3 cake food psy_o_bjec_t inanimate instr-act act trsact eat ate.2)

(cake.3 cake has-part1 frosting food phy object animate animal eater-eat eat ate.2)

(cake.3 cake has-part1 frosting food phy_objgt animate actor-act act trsact eat ate.2)

(cake.3 cake has-part1 frosting foodWinanimate eat_tool instt-eat eat ate.2)

(cake.3 cake has-part1 frosting food phy_object inanimate instr-act act trsact eat ate.2)

(cake.3 cake food phy_object Mtg actee-trsact trsact eat ate.2)

(cake.3 cake has-partl frosting food phy_object _thi_ng actee-trsact trsact eat ate.2)

Instead of considering these 12 two-way collision paths, secondary marker passing is

done starting from the node obj. Actee-trsact and eatee-eat get secondary

markers and three-way collisions occur at these two relation nodes. The three—way colli-

sions and the corresponding paths are as follows (the three-way collision nodes are

underlined):

126

(6-15)(cake.3 cake food psy_object thing actee-trsact

trsact eat ate.2)

(6—16)(cake.3 cake has-part1 frosting food phy_object

thing actee-trsact trsact eat ate.2)

(6-17)(cake.3 cake food eatee-eat eat ate.2)

The H-heuristic is applied to the two three-way collisions. Because actee-trsact

is ancestor of eatee-eat, the paths for the three-way collision at actee-act, i.e.

(6-15) and (6-16), are removed. The output of the stage of the H-heuristic is only one

three-way collision and this collision corresponds to only one path, (6-17). Thus the best

path is determined to be (6-17). The following stages of the heuristics need not be

applied because only one path is left.

Let’s consider the other situation during the analysis of the sentence (61). After

the PP, "with a fork", has been analyzed, two rules(vp-pp and np-pp) are found by the

pattern matcher. Each of these two rules creates a branch of parsing. The branch for vp-

pp issues the suggestion (ate . 2 fork . 4 with) and the branch for np-pp issues

the suggestion (cake . 3 fork . 3 with) . The best paths for these two suggestions

are found in a similar way. For these two collisions, the data will be provided using the

bigger knowledge base below.

So far we used the KB shown in Figure 6.5. But this KB is very small. The follow-

ing data was obtained using a bigger KB which has about 100 concepts. The rules and

their suggestions are from the analyses of the same sentence (6-1).

0 Suggestion (man . 2 ate . 2 subj) for the main-verb2 rule :

Number of paths corresponding to two-way collisions : 295

Number of three-way collisions after secondary marker passing : 2

Number of three-way collisions after applying H-heuristic : 1

Best path found:

(618) (<abso ate.2> I <abso eat> C <asp eat.eater-eat> A <rel eater-eat> A <asp

127

eater.eater-eat> C <abso animal> D <abso high_animate> D <abso person> D

<abso man> I <abso man. 1>)

Note in the above data that the number of paths for the two-way collisions has been

increased from 6 to 295 according to the change of the KB. But the result of secondary

marker passing is still 2. This shows the good performance of the proposed mechanism.

This good performance is also observed in the case of the other suggestions shown

below. The L-heuristic and the S—heuristic need not even be applied because only one

path is found after applying the H-heuristic. (According to the experiments, it has been

found that the L-heuristic and the S-heuristic are usually used when there is word sense

ambiguity.)

Suggestion (ate . 2 cake . 2 ob j) for the object rule :

Number of paths corresponding to two-way collisions : 220

Number of three-way collisions after secondary marker passing : 2

Number of three-way collisions after applying H-heuristic : 1

Best path found:

(6—19) (<abso cake.3> I <abso cake> D <abso food> C <asp eatee.eatee-eat> A

<rel eatee-eat> A <asp eat.eatee-eat> C <abso eat> I <abso ate.2>)

Suggestion (ate . 2 fork . 4 with) for the rule vp-pp:

Number of paths corresponding to two-way collisions : 112

Number of three-way collisions after secondary marker passing : 2

Number of three-way collisions after applying H-heuristic : 1

Best path found:

(6-20) (<abso fork.4> I <abso fork> D <abso eat_tool> C <asp instr.instr-eat> A

<rel instr-eat> A <asp eat.insu'-eat> C <abso eat> I <abso ate.2>)

128

° Suggestion (cake . 3 fork . 4 with) for the rule np-pp :

Number of paths corresponding to two-way collisions : 808

Number of three-way collisions after secondary marker passing : 1

Best path found:

(621) (<abso fork.4> I <abso fork> D <abso eat_tool> D <abso inanimate> D

<abso phy_object> C <asp part.has-part> A <re1 has-part> A <asp whole.has-part>

C <abso phy_object> D <abso food> D <abso cake> I <abso cake.3>)

In the above data, it is shown how effective the secondary marker passing mechanism is

for the path finding problem. This can be contrasted with the case where secondary

marker passing can not be used. When "the granite rocks" is analyzed as a nominal com-

pound, a suggestion (granite . 1 rocks . 2) is sent to SEM. Note that this sugges-

tion has no preposition in the suggestion because there is no syntactic cue about the rela-

tion between the nouns in the nominal compound. The semantic relation between nouns

should be inferred by the semantic processing component (Finin, 1980). Data from the

path finding operation for the suggestion (granite . 1 rocks . 2) of the noun-

parSGS rule is:

Number of paths corresponding to two-way collisions = 309

Number of paths after applying S-heuristic : 29

Best path found:

(6-22) (<abso rocks.2> I <abso stone> D <abso granite> I <abso granite. 1>)

Secondary marker passing could not be used because there is no preposition available.

After the stage of the S—heuristic, the number of paths is 29 which is still a large number

of paths. The time taken for the stage of the S-heuristic in this case is about 50 times

longer than the time taken for the whole path finding operation for the suggestions with

prepositions. This data shows how efficient the secondary marker passing mechanism is

for the path finding problem.

129

6.3 Semantic Comparison of Branches

It has been explained in this chapter that the branches running in parallel are

filtered at the semantic comparison stage(SCS). The comparison is made based upon the

goodness of semantic processing results. The semantic processing results are represented

by the KB paths returned by SEM for the suggestions from SYN. The KB paths are

stored in the corresponding branches so that they are used in the semantic comparison

stage. Thus the problem of comparing the branches based on the semantic processing

results can be reduced to the problem of comparing the paths of the branches.

bran t - s

continue>

j Semantic

Comparison

N backup

tack

Stage r -

worst

Figure 6.17 Rank-ordering the Branches

For the moment, let’s assume that any two paths can be compared and the decision can

be made about which path is the better path (or equally good path). Then the branches

that are input into the semantic comparison stage can be rank-ordered. The branches

with the highest rank are kept as active (see Figure 6.17) and the other branches are

pushed into the backup stack, the worse one first so that the branch with better rank can

be used first in case of backtracking. Only one branch will normally be given the highest

rank. But there can be more than one branch which receives the highest rank because

two branches may have the same paths as a result of semantic processing. The branches

with no semantic processing result are always inserted in the set of branches having the

. highest rank for the following reason: these branches can not be compared to the

branches with semantic processing results and should be kept as active branches. Having

130

no semantic processing result means that the corresponding rule has no action issuing a

suggestion. Examples of these cases will be shown later.

One simple example can be given using the analysis of sentence (6-1). It was

explained that the np-pp rule and the vp-pp rule were found during the same pattern

matching operation. Two branches are created for the two rules. For the branch of the

np-pp rule, the semantic processing result is the path (6-21) that is found for the sugges—

tion (cake . 3 fork . 4 with) . The path (6-20) found for the suggestion (ate . 2

fork . 4 with) is the semantic processing result for the branch of the vp-pp rule. Fig-

ure 6.18 illustrates this case.

path=(6-20)

 NP-PP :

path=(6-21)
Figure 6.18 Comparison of Two Rules(vp-pp & np-pp)

It has been stated that rank-ordering the branches during the semantic comparison

stage can be done if any two paths can be compared. We have seen in section 6.2.3 that

the process of finding the best path for a suggestion also requires the capability of com-

paring two paths and the paths to be compared have the same origins as illustrated in

Figure 6.16. But it is necessary to consider one more possibility in the case of the path

comparison problem in this section. This is illustrated in Figure 6.19.

path-b

instancel instance2 instancel instance3 instance2

(a) (b)

Figure 6.19 Instances and Two Paths to be Compared

131

In Figure 6.19(b), path-a and path-b share one end (i.e. instance2) but not the other

end. The reason that two paths should share at least one end(origin) is that the newest

constituent built by the parser is always involved in the suggestions issued by the rules

that are found during the same pattern matching. This fact makes it easy to decide which

end of a path corresponds to which end of the other path.

The comparison of path-a and path-b can be classified into four possible cases (note

that al and a2 are the end absolutes of path-a, and b1 and b2 are the end absolutes of

path-b) as shown in the following heuristic.

SCS Heuristic:

(case-i):

(case-ii):

(case-iii):

The relation of end absolutes conforms to the condition of the S-

heuristic explained in section 6.2.3.3. Let’s state it here again. If a1 is

an ancestor of b1 and a2 is an ancestor of(or same with) b2, then path-b

is better than path-a. Symmetrically, if a2 is an ancestor of b2 and a1 is

an ancestor of(or same with) b1, then path-b is better than path-a.

If a1 is an ancestor of b1 but a2 and b2 have no ancestor relationship,

then consider the following three possibilities, (a), (b) and (c). Here we

need to consider what the term promiscuous concept is. A concept is

said to be promiscuous if it is high in the hierarchy of the KB and has

many descendants(Charniak, 1983a). For example, "action , thing",

"physical-object", etc. are promiscuous concepts.

(a) If a2 is promiscuous, then path-b is better than path-a.

(b) If neither a2 nor b2 is promiscuous, then path-b is better than

path-a.

(c) If b2 is promiscuous but not a2, then it is undecidable.

If a1 is the same as b1 and both a2 and b2 are promiscuous concepts(or

symmetrically, a2 is the same with b2 and both a1 and bl are

promiscuous), path-a and path-b ties in goodness. In this case, any path

with a smaller number of relation nodes is better than the other. If the

number of relation nodes can not even break the tie, other information

such as the frequency of usage of relation nodes in the path is used to

132

decide which path is better.

(case-iv): If a1 is not b1 and they do not have an ancestor relationship, and a2 and

b2 do not have an ancestor relationship, then any path having a smaller

number of promiscuous end absolutes is better than the other.

In Figure 6.18, the path (6-20) for the vp-pp rule was chosen over the path (6-21),

which is determined using (case-ii) of the SCS heuristic. The end absolutes of (6—20) are

eat and eat_tool, and those of (621) are phy_object and phy_object.

Consider Figure 6.20 for this problem. Because phy_object is an ancestor of

eat_tool but phy_object and eat have no ancestor relationship, (case-ii) can

be applied and the decision that (6-20) is better than (6-21) can be made. Thus the

branch for the vp-pp rule is chosen in the SCS.

phy_object

,4

/D*

/p

 cake

(6—21)

eat

l

I

(6—20)

Figure 6.20 Two Paths in "eat" Example

6.4 Semantic Processing Component in Action

In this section, two examples of semantic processing will be given to provide a

"clearer picture of the actual working of the SYNSEM parser. Especially, in the second

[phy_object

l

rk.4

eat_tool

133

subsection, it will be shown in detail how the parallel running of branches is influenced

by semantic processing.

6.4.1 Example 1

Let’s first consider the example given in Section 4.6 which used the example sen-

tence (4-21) shown below again:

The teachers taught by the pool passed the test.

It was explained that three rules are selected during the pattern matching operation as

shown in Figure 4.19: main-verb2, np-vpp, and np-vppl. For each of these rules, a

branch is created. During the execution of the actions of each branch, a suggestion is

issued as shown in Table 6.1. The data related to finding the best path for each sugges-

tion is shown in the table, too.

After executing the rules of the branches, the semantic comparison stage comes

because each branch needs a new input word. The semantic processing result of the

branch corresponding to the rule main-verb2 is (6—23). Similarly, the path (624) is the

semantic processing result of np-vpp, and (6—25) is for the branch of np-vpp1. Thus

these three paths are compared at the semantic comparison stage. Note that the end abso-

lutes for (6-23) are teach and teach_professional, those for (6-24) are

trsact and thing, and those for (6-25) are teach and person. Each pair of

paths is compared as follows:

(i) Comparison of (6-23) and (6—24):

The first EA of (6-24) is an ancestor of the first EA of (6-23) and the second

EA of (6-24) is also an ancestor of the second EA of (6-23). Therefore,

according to (case-i) of the SCS heuristic, (6-23) is better than (6-24).

(ii) Comparison of (6-23) and (6—25):

The first EA of (6-23) is the same as the first EA of (6-25) and the second EA

134

Table 6.1 Data for Finding Paths

Branch I main-verb2 "2'22 “E'QEI I

Suggestion (teachersJ taught2 subj) (teachers.l taughtz obj) (teachers.l taught.2 to)

of 2-way collisions 398 398 398

of 3-way collisions 2 l l

H-heuristic 1 1 1

S-heuristic l l 1

L-heuristic 1 1 1

path (623) (6-24) (6-25)
(6-23)(<abso taught.2> I <abso teach> C <asp teach.teacher-teach> A <rel teacher-

teach> A <asp teacher.teacher-teach> P <abso teach_professional> D <abso

teacher> I <abso teachers. 1>)

(6-24)(<abso taught.2> I <abso teach> D <abso trsact> C <asp trsactactee-trsact) A

<rel acme-trsact> A <asp actee.actee-trsact> C <abso thing> D <abso phy_object>

D <abso animate> D <abso animal> D <abso high_animate> D <abso person> D

<abso teach_professional> D <abso teacher> I <abso teachers. 1>)

(6-25)(<abso taught.2> I <abso teach> C <asp teach.rec-teach> A <rel rec-teach> A

<asp rec.rec-teach> C <abso person> D <abso teach_professional> D <abso

teacher> I <abso teachers. 1>)

of (6—25) is an ancestor of the second EA of (6-23). Thus, according to (case-

i) of the SCS heuristic, (6-23) is better than (625).

(iii) Comparison of (6-24) and (6-25):

The first EA of (6-24) is an ancestor of the first EA of (6-25), and the second

EA of (6-24) is also an ancestor of the second EA of (625). Thus, according

to (case-i) of the SCS heuristic, (6-25) is better than (6-24).

From (i), (ii) and (iii), it is concluded that (623) is the best, (6-25) is the next best, and

(6—24) is the worst. Therefore the branch for main-verb2 is the one that is selected by

the semantic comparison stage. The other two branches are pushed into the backup

stack. The branch for np-vpp1 is pushed later than that for np-vpp so that the branch

with the better semantic result is used first when backtrack is required later. This situa-

tion is shown in Figure 6.21.

135

main-verb2

 v

S
”

.
0

S
”

nP'VPP

 ll
nP-VPPI

Figure 6.21 Competition of Three Branches

Consider the situation shown in Figure 4.18(w). It was explained that the pattern

matcher found the passive-by rule and the vp-pp rule that matched Figure 4.18(w).

Thus, for each of the two rules, a branch is created. These branches, the corresponding

suggestions, and the paths for the suggestions are shown in Figure 6.22.

VP-PP (taught.2 pool.3 by):

path=(6-26)

Figure 6.22 Removal of a Branch with Bad Semantic Processing

(6-26)(pool.3 I pool D place C loc.loc-teach A loc-teach A teach.loc-teach C teach

I taught.2)

Note that no path can be found for the suggestion for the passive-by rule. Therefore

the branch corresponding to this rule is just thrown away because the semantic effect is

too bad to find a reasonable path. But for the suggestion for the vp-pp rule, the path (6-

26) is found. Thus the branch for the vp-pp rule is the only rule that is left and it is kept

active without any comparison as shown in Figure 6.22.

136

6.4.2 Example 2

Let’s consider how sentence (6-27) is processed in SYNSEM.

(6-27)The granite rocks near the shore.

The snapshot of the SWM after reading "rocks" is shown in Figure 6.23. The root of the

tree that corresponds

CLIST

)C IV V__N

)A | CASH=nil

)3 granite rocks

Det

the

Figure 6.23 Snapshot of CLIST

to the word "rocks" is of two types(V or N), because "rocks" can be either a verb or a

noun. Three rules match this SWM. They are noun-parseS, noun-parse4 and noun-

parseS. Nounéparse4 analyzes "rocks" as the head noun of the NP that corresponds to

the input suing "the granite rocks". This rule matches the SWM because "rocks" is a

plural noun. If it is not a plural noun, it is necessary to see the next word to make the

decision. The rule noun-parse?) regards "rocks" as a verb and analyzes "the granite" as

the complete NP. noun-parse5 also analyzes "the granite" as the complete NP but inter—

prets "rocks" as a noun that leads a relative clause (i.e. "rocks" is considered to be the

NP which is the subject of the relative clause that will follow).

Each of the three rules creates a branch of parsing. The system takes a note that

CASH was empty at this time. From this point to the next semantic comparison stage,

each of the branches will run independently. Note that the semantic comparison stage

comes when all branches want to read the next word (just after "rocks"). Let’s follow

each branch until the semantic comparison stage comes. First, the flow of the branch for

‘ noun-parse3 is shown in Figure 6.24. After the execution of noun-parse3, the SWM

becomes (a) in the figure. But there is no suggestion issued by this rule. The V of

137

mrsr n r. T

S

. WK 1’
11311116. 3 15C N Rule: no ruleoun- arse '

Figure 623 p > NA S—“QPEL K . :
granite mput to

N3 the CLIST

Det '

(the) gram”

CASH Y CAf Y

rocks (a)

CLIST "’

V

§ | Rule:
A

P marn-verb2 NP AUX)(P no rule ._

rocks suggestion read S.C.S

(granite.l rocks.2 subj Y next word

path=(6-28) rocks

CASH=ni1 CASH=nil

(C) ((1)

Figure 6.24 Flow of Branch for Noun-parse3

"roc " is pushed into CASH as shown in (a). The subject rule matches this SWM and

its execution results in the SWM in (b). No rule matches (b) and CLIST needs an input.

Because CASH is not empty, the V of "rocks" in CASH is inserted into CLIST as shown

in (c). The main-verbZ rule matches this SWM, and its execution updates (0) to (d).

This main-verb2 rule issues a suggestion (granite. 1 rocks.2 subj). The

best path for this suggestion is found by SEM and is shown in (6-28).

(6-28)(<abso rocks.2> I <abso shake> C <asp act.stuff-shake> A <rel stuff-shake>

A <asp stuff.stuff-shake> C <abso phy_object> D <abso inanimate> D <abso

stone> D <abso granite> I <abso granite.l>)

Against the SWM in ((1), no rule matches and a new input is required to be inserted into

CLIST. Because CASH is empty, 3 new word needs to be read from the input suing

4 which means that this branch has reached the semantic comparison stage.

138

Second, the flow of the branch for the rule noun-parse4 is shown in Figure 6.25.

After the execution of noun-parse4, the SWM of this branch becomes (a) in the figure.

The rule noun-parse33 matches (a) whose execution results in the SWM in (b). This

rule notices that "rocks" is in plural form of the noun and thus it detemrines that "rocks"

is the head noun of the NP. Because this NP is a nominal compound, a suggestion

(granite . 1 rocks . 2) is sent to the SEM. Note that a preposition is missing in

this suggestion.

CLIST

5 NR I‘ rule:
)1A If nou'n-parse33 ‘

o . . T091“ suggestion

suggestion granite (granite. 1 rocks.2)

Det path: 29

_(the)

CASH=nil (a)

CLIST m IQT

S /NK]1\J rule: /S

“II-DEC subject > /NP\ I n9 rule ,

rocks no & N S.C.s.

su estion
granite gg rocks

gmncite

CASH=nil CASH=nil

(b) (C)

Figure 6.25 Flow of Branch for Noun-parse4

From the nominal compound, no information about the related preposition can be

obtained by SYN. SEM finds the path (6-29) for this suggestion.

(6-29)(<abso rocks.2> I <abso stone> D <abso granite> I <abso granite.l>)

The parsing of this branch continues and the subject rule matches the SWM in (b). The

execution of this rule results in the SWM shown in (c). No rule is found for (c). Because

CASH is empty, a new input word should be read from the input string. Therefore this

‘ branch has reached the semantic comparison stage.

139

Third, let’s follow the branch for the noun-parseS rule. The flow of this branch is

shown in Figure 6.26. After the execution of

CLIST FLIL

S K /S

NC N rule:

i 6— “ . subject ; no rule _

gure noun-parse5 VA granite no & 7

)1S suggestion the

1112? granite

E N

(a) rnclrc (b)

- 131* - .rsr

rule:

/S I] noun-parseO & /S R

rocks noun-parse33 = P NC N no rule ;

no ' s.c.s.

the, suggestion the rocks

m 31611.19

CASH=ml
CASH=nil

(c) ((1)

Figure 6.26 Flow of Branch for Noun-parseS

noun-parseS, the SWM of this branch becomes that in (a) of the figure. This rule

regards "rocks" as the plural noun which starts a new NP and thus "granite" is analyzed

as the head noun of the complete NP as shown in (a). Note that "rocks" is pushed into

CASH so that the NP, "the granite", can be used in any further processing while it is the

rightmost edge in CLIST. The subject rule matches (a) and its execution results in the

SWM in (b). No rule matches (b) and thus a node in CASH is input into CLIST as

shown in (c). The SWM in (c) becomes (d) by the noun-parseO rule and noun-

parse33 rule. These two rules determine that "rocks" is the NP by itself. No rule is

found that matches ((1) and CASH is empty. Thus a new word needs to be input from the

input string. This branch has reached the semantic comparison stage. Note that no rule

. issued a suggestion during the parse of this branch. This is an interesting case since there

is no semantic processing result for this branch.

140

At the semantic comparison stage, these three branches are compared based on the

semantic processing results. The semantic processing result of the branch for noun-

parse3 is the path (628), while the path (629) is the semantic processing result of the

branch for the rule noun-parse4. But the branch for the rule noun-parseS has no

semantic processing result. This situation is illustrated in Figure 6.27.

 II

nmrn-parseB

path=(6-28)

nonn-partsc4 _ \

path=(6-29)

V II

._uoun;narsr:5 > __________>

no semantic result

I
!

Figure 6.27 Comparison of Three Branches

The path (628) will be compared with the path (6-29) to compare the two branches.

Note that there is no relation node in the path (6-28). The paths that have no relation

generally have the form shown in Figure 6.28.

v

énstancel éinstanceZ

Figure 6.28 Path without a Relation Node

In this case, we set both the first end absolute and the second end absolute to be the pla-

teau (the node A in the figure). Therefore the end absolutes of (6-29) are the concept

stone. The end absolutes of (6—28) are shake and phy_object. Because the first

end absolutes of the two paths have no ancestor relationship but the second end absolute,

. phy_object, of (6-28) is an ancestor of the second end absolute, stone, of (6—29),

(6-29) is better than (628) according to (case ii-b) of the SCS heuristic. Because the

141

branch for noun-parseS has no semantic processing result collected until the semantic

comparison stage, it can not be compared with other branches and thus it is kept active

by the semantic comparison stage. As shown in Figure 6.27, the branch for noun-

parse4 and that for noun-parseS are selected in the semantic comparison stage. The

branch for noun-parse3 is pushed into the backup stack.

After the semantic comparison stage, two branches are active and run in parallel as

shown in Figure 6.29 (branch-1 is for noun-parse4 and branch-2 is for noun-parseS).

The new input word("near") is input by MON and is inserted into CLIST of every active

branch. The SWM at this point is shown in Figure 6.29(a). No rule is found by the pat-

tern matcher in either branch in (a). Thus, a new input word is required to be input in

each branch and the semantic comparison stage comes. But there is no semantic process-

ing result collected after the last semantic comparison stage. So both branches are kept

without comparison. The next input word "the" is read and pushed into CLIST of both

branches as shown in (b). After the node of type "N8" is made, both branches need to

read another new input word. The semantic comparison stage comes but both branches

are kept because neither has any semantic processing result collected since the last stage.

After reading "shore", the SWM’s of the branches are shown in (c). After the PP pro-

cessing is done, branches are shown in ((1). Against (d) in the figure, the np-pp rule

matches the SWM’s of both branches. The semantic suggestion is (rocks . 2

shore . 3 near) and the best path is found to be (6-30):

(6-30)(<abso shore.3> I <abso shore> D <abso place> C <asp pos.loc-place> A

<rel loo-place> A <asp pre.loc-place> C <abso phy_object> D <abso inani-

mate> D <abso stone> I <abso rocks.2>)

After the punctuation mark(".") in CASH is input into CLIST’s, the branches become

(f). Neither branch finds any rule that matches the SWM and it is found that both

. branches have reached the dead-end situation. Thus, both branches are thrown away for

the reason of syntactic anomaly. Backtracking is required because there is no active

142

PTfP DFt _ pr p NS

near the no 11.119; 4; f T I __,,

r"w l“
S the

nil shore

I tC - - _. .CASHEnil

PTTP Bled S $ NPprep 3
P l

rocks near the > I,A near Det I»

[11 I shore

C , the

granite

CASH=nil — CASH=nil T CASH=nil

(a) (b) (C)

branch—1

E . punc

i ar 1:11;)?)L no rule 7 no mtifre ._ ow

the s ore (rocks.2 shore.3 C III away

I'OC S near) A0616 A

CASH=() ""1

.......................... .CASHEC).--“_---CASI-L=nil-_-.._---

branch 2

P P P P punc

f; A rule: /5 A f A no rule

NProcks np-pp : g I“ PmNP _,throw

near (rocks.2 shore.3 rocks A , away
the . 6 near) the . I

grarute S OTC granite

CASH=(.) CASH=(.) CASH=nj1

(d) (e) (0

Figure 6.29 Parallel Running of Two Branches

branch. A branch is popped out from the backup stack and it is made to be an active

branch. This is the branch that was shown in Figure 6.24(d). From this point, the parsing

goes on as shown in Figure 6.30. Against the SWM in (b) of the figure, the vp-pp rule

matches. This rule issues a suggestion (rocks.2 shore.3 near). The path

. found for this suggestion is (6-31). Note that this suggestion is the same as the sugges-

tion issued at Figure 6.29(d)-(e). But the path for the suggestion issued at Figure

143

NP)\ PTP§ A rule:

Z:§ 713nm“ shore ___> NP VP vp-pp K/KIV];

“113' near (rocks.2 shore3

build-pp the near) thegranitelks shore granite near

rock's the

CASH=(.) CASH=(.) Shore_

CASH=(.)

(a) (b) (C)

Figure 6.30 Final Branch for the Parse of the Sentence

6.29(d)-(e) is (6—30). The reason that the paths found for the same suggestions are dif-

ferent is that "rocks" is used as a verb in Figure 6.30 (thus with sense shake) while as

a noun in Figure 6.29 (thus with sense stone). This shows that SYNSEM uses the

correct sense that is appropriate for the part of speech used in the analysis.

(6-31)(<abso shore.3> I <abso shore> D <abso place> C <asp loc.loc-act> A <rel loc-

act> A <asp act.loc-act> C <abso act> D <abso shake> I <abso rocks.2>)

6.5 Conclusion

It has been explained in this chapter how the SYNSEM parser gets the semantic

information that is necessary to drive the parsing. Each syntactic rule that needs seman-

tic processing contains actions that issue a suggestion to find a best path between two

concepts. A preposition or a pseudo-preposition is provided in the suggestion whenever

it is available. The semantic component should find the best path for this suggestion.

This path is used to build semantic interpretation and is stored in the branch as part of its

semantic processing result.

The marker passing paradigm provides a conceptually simple method to find a path

between two concepts. But this simple method is plagued by the reality that there are too

' many spurious collisions(paths) collected during marker passing. This results in a seri-

ous problem when attempting to use the marker passing paradigm in natural language

144

processing. A mechanism called secondary marker passing has been developed to solve

this problem. It has been found that the secondary marker passing method removes most

of the spurious collisions efficiently. The key idea behind the secondary marker passing

method is to utilize the information that can be provided by the preposition or pseudo-

preposition supplied in the suggestion. Along with this mechanism, three heuristics

have been developed to find only the best paths for a suggestion.

Another important task for the semantic processing component is to compare and

filter the branches according to the semantic processing result at the semantic com-

parison stage. Each branch keeps the set of the knowledge base paths found for the

suggestions issued by the rules of the branch. The problem of comparing the branches is

reduced to comparing the paths. How to compare the two paths to determine the better

one has been studied in this chapter. This is one way to solve the problem of scoring the

alternative rules and choosing the one with the best score. Instead of producing the abso-

lute score for the rules, the branches are rank-ordered according to the comparison of the

paths and the branch with the highest rank is chosen. Using this scheme, the problem of

producing an absolute score can be avoided.

CHAPTER 7

WORD SENSE DISAMBIGUATION

It is recognized that word sense disambiguation is one of the several natural

language understanding problems that are hard to solve completely. Since any natural

language understanding system should have some mechanism to do word sense disam-

biguation to achieve a reasonable degree of understanding, researchers in natural

language understanding have devoted much research to this problem. It seems that we

are far from achieving a complete solution to the problem. However humans seem to

have no double in selecting the correct sense of a word in a sentence. Psycholinguists

have tried to find the mechanism that humans use to achieve this high performance, but

they are also far from completely understanding this mechanism.

There are three kinds of ambiguity related to a word (so-called lexical ambiguity) :

homonymy, polysemy and categorical ambiguity. Homonymous words (for example,

ball/toy-ball, ball/dance-party) have multiple meanings(senses) that are not related.

Polysemous words (for example, "go") have several meanings that are related. The

senses of a polysemous word have a meaning in common. A polysemous word is also

called a vague word. A word is categorically ambiguous when it can be used in more

than one syntactic category (for example, rock/shake, rock/stone).

There were two recent research efforts in word sense disambiguation that used

knowledge bases built with frame-based knowledge representation. Hirst’s(1984, 1986)

research is largely related to the disambiguation of homonymous words. He used what

he called Polaroid Words(PW) to realize his idea about the gradual disambiguation of

ambiguous words. A PW is created and assigned to each word as it is input to the

parser. PWs can be considered to be communicating processes that cooperate together.

145

146

A PW first starts with all possible senses of its word. The PW gradually eliminates the

senses that are inappropriate to the surrounding context by communicating with other

PWs. When a PW eliminates some of its senses, it announces this. Then other PWs use

this information to try to eliminate some of their senses. This elimination and announce-

ment process goes on until all words have been read and the exchanging of information

stabilizes. Two major sources of disambiguation information that are used by PWs are

selectional restriction and semantic association. The use of semantic association is

achieved by incorporating marker passing in his system.

Lytinen(1984, 1988) put his focus on the disambiguation of vague words. He used

the concept refinement process for this purpose. A vague word is initially represented by

a concept that is high in his hierarchically organized knowledge base. As more words

are read in and more contextual information is available, a set of concept refinement

rules are used to refine the concept to a more specific concept in the knowledge base.

But it is not clear how the homonymous words (especially nouns) are disambiguated

using Lytinen’s strategy.

In this chapter, we will explain a word sense disambiguation method used in the

SYNSEM parser. Influenced by the work of Charniak(1983a, 1986), SYNSEM has been

built based on the marker passing mechanism. SYNSEM keeps track of the semantic

paths which reflect the process of semantic interpretation of an input sentence. If a word

has multiple senses and it has not been disambiguated yet, there can be false paths being

kept due to the inappropriate senses of the ambiguous word. If a word has a vague word

sense, then it will be represented by an abstract concept until it is disambiguated to a

more specific concept. As the parsing goes on, these false paths will be eliminated and

abstract concepts will be replaced by concrete concepts. All these disambiguation stra-

tegies adopted by SYNSEM are made possible by the use of the knowledge base that

contains the system’s knowledge about the world.

147

7.1 Use of Semantic Paths for Word Sense Elimination

To explain several aspects of the disambiguation method used in SYNSEM, the

knowledge base shown in Figure 7.1 will be used throughout this chapter.

© subj

1k

semi.

like. smart

IC 0Qo C
obj-c.function.pz.par@,ar10r_3

Figure 7.1 Knowledge Base for Examples

Let’s use the example sentence (7~1) (Hirst, 1983) to show how the disambiguation goes

on.

(7-1)The crook operated the pizza parlor.

In this section, the use of semantic paths for word sense disambiguation will be

described. The mechanism is based on the word sense elimination strategy proposed by

Hirst. But instead of using the complex interaction among Polaroid Words, we utilize

the semantic paths that are found during the analysis of the sentence. As we saw in the

previous chapter, the best path in the KB is found for each suggestion sent from SYN to

SEM. The best path(or paths) for the suggestion is stored in a set in the branch of

148

parsing. This set represents the semantic interpretation of the sentence (in the loose

sense). Each branch has its own set of paths that represent its semantic interpretation.

Let’s call this set of the best paths the set of semantic paths. When a branch, say branch

A, is forked into two branches, say B and C (because of two rules found by the pattern

matcher), A’s semantic paths are copied to B’s and C’s. Then the set of semantic paths

for branch B is the same as that of branch C. But B and C can add different semantic

paths according to their own processing as the parsing goes on.

If a word has multiple senses out of which only one is the correct one in the sen-

tence, there will be wrong paths found by SEM because of the wrong senses. As the

parsing goes on and more context is available, some paths will be proved to be wrong

and be removed. The word senses are also eliminated if they are in the paths that are

proved to be false later. The elimination of a word sense is propagated via semantic

paths, which results in the removal of other word senses. Using this idea, we are able to

characterize the word sense elimination process more clearly and implement it more

efficiently. How this process works will be explained in detail using the parsing of sen-

tence (7-1).

When "croo " is input, MON will create the instance node crook . 1. "croo " is a

homonymous word that has two senses: criminal and a staff used by the shepherds. The

node crook . 1 has I-links pointing to all senses of the word as shown in Figure 7.2.

Each sense is represented by an absolute node in the KB.

 Disambiguation

Process

Figure 7.2. Representation of Multiple Word Senses

This means that SYNSEM supports the all-readings hypothesis for the word sense

access (Swinney, 1979). To each I-link, a status flag is attached to indicate the status of

149

the link (the status of an I-link is written in the parentheses in Figure 7.2). A status flag

can be one of the following values: "i", "u", and "r". "i" means that the link is in the ini-

tial state; In other words, it has not been processed yet since its creation. "u" indicates

that the I-link is currently being used in a semantic path and the corresponding sense is

still a candidate for the correct sense of the word. An I-link for the sense that has been

eliminated is tagged with "r"(removed). When a word has been disambiguated fully,

there should be only one I-link with the status flag "u" as illusuated in the left side of

Figure 7.2.

Here, it is necessary to inu'oduce a complicated matter that SYNSEM has to han-

dle. As explained before, each branch of parsing has its own set of semantic paths.

Therefore the word sense disambiguation status of a word may be different among the

branches, which means that each branch should have its own representation of the

disambiguation status of the words. This problem becomes more complicated with

marker passing and semantic priming (that will be explained later). For example, con-

sider Figure 7.3. Note the possible connections between 2 and the instance for the new

word. If branch-i is selected instead of branch-ii, then the sense of the new word should

be the concept "V" in the figure. But if branch-ii is chosen instead of branch-i, then the

concept "U" should be the correct sense of the new word.

. /——/I— \

branch-r

x Y

>)6

Z U / v

branch-ii N I I

x /Y W

new word

I (u)
Figure 7.3 Different Word Senses for Different Branches

150

For the input word "croo ", the MP passes markers starting from its instance node.

The next word "operat is input which is represented by the instance node

operated . 2. This word has two possible senses: to cause something to function and

to perform surgery. Marker passing is done for this word, too. After syntactic analysis,

SYN will send a suggestion (crook . 1 operated. 2 subj) to SEM according to

the rule main-verb2. SEM will find all possible best paths as shown in Figure 7.4. There

should be only one best path for a suggestion, but if one of the words related to the

suggestion has multiple senses as in this example, more than one best path can be found

by SEM. It is important for SEM not to remove any legitimate good path.

o ‘I
instr-c. unction \

0 0 ' C ' I I

agent-c. unction Sm — cause functionL _S_1_,

I
. u) v’v”’

ag —. orm_surg w) ’ I(r)

Figure 7.4 Paths between Two Instance Nodes

Three paths have been found in this example as in Figure 7.4. These paths are stored in

the set of semantic paths. Note that shepherd_staff has no path to

perform_surgery because the KB in figure 7.1 defines that the instrument of per-

forming surgery should be some kind of medical tool and the shepherd’s staff is not one

of them. At this point of paring, the two senses of "crook" are still used in the semantic

paths. Thus, it is not fully disambiguated yet. The word "operated" has not been disam-

biguated either. If we assume that the word "operated" has another sense 81 (the dot-

ted box in the figure) and it is not used in any path found, then the sense 81 will be

removed by attaching the flag "r" to the corresponding I-link. For a suggestion, usually

one path is found. But three paths have been found because of the ambiguous words in

this case. As the parsing goes on, the two false paths will be removed.

151

Now the next input is the canned phrase "pizza parlor" which is represented by the

single concept pizza_parlor. Let’s assume a canned phrase can be analyzed.

, After marker passing is done for this word, SYN will send the suggestion

(operated.2 pizza_parlor.3 obj) to SEM by the object rule. For this

suggestion, there is only one path (d) found as shown in Figure 7.5.

, © , - .

Kim ‘ iris©gss"
S v d. : . © _

W h “‘ ' ent—c.function(c m, "- ca fipction pizza53—1) 10f

© 1 u)

agent-perform_surg o .- . -. .2 zza_p or.3

Figure 7.5 Effect of Reading a New Word

I((u)

Note that the sense perform_surgery of "operated" is not used in this path. This

means that perform_surgery cannot be the sense of the word "operated". The

III,"

sense perform_surgery is removed by attaching the flagr to the corresponding

I-link. The removal of the sense perform_surgery makes SEM remove the path

(c)(in the figure) from the set of semantic paths, which results in the set of semantic

paths shown in Figure 7.6.

© .

instr-c.function , (' -c©unc on

s r'. -. . © _ $12me or

$5 _ Mal agent-c.function m. - ca flpction piz —P 101'

I (
(u) H. , ‘3 @or3

Figure 7.6 Paths after Removing a Sense and a Path

At this point of parsing, the word''operated" has only one sense with "u" flag, which

means that it has been fully disambiguated. But there are still two senses with "u" flag

for the word "crook". Thus, it has still word sense ambiguity.

152

If there were not path (b) between crook . 1 and operated . 2, then the remo-

val of the path (c) would result in the removal of the sense criminal of the word

"croo " because criminal would not be used in any path connecting crook . 1 and

operated . 2. As soon as a sense gets an "r" flag, it will never be considered by SEM

during the path-finding process.

At this point, let us consider a general case which can be illustrated in Figure 7.7.

W.8, Y.l and X.4 are instance nodes for the words already processed by the parser. W.8

has two senses which are P and Q and these two senses are still candidate senses. A and

B are candidate senses for Y.1. D and E are candidate senses for X.4. At this point, the

new word 26 has just been input. The suggestion between Z6 and X.4 resulted in only

one path (e) as shown in Figure 7.7. The sense D of X.4 is not used in this path (e).

Thus, the sense D can not be the sense of X.4 and it is removed. The removal of the

sense D causes the path ((1) to be removed from the set of semantic paths. The removal

of ((1) causes the sense B to be removed from the possible senses of Y.1. The removal of

the sense B again causes the removal of the path (a) from the set of semantic paths. This

again causes the removal of the sense P from the possible senses of W.8. P is not con-

nected to any other paths and thus the removal operation stops here. From this process,

we can notice that the removal of a word sense recursively propagates through the KB

via the semantic paths. We call this operation the recursive word sense removal(RWSR)

operation.

Figure 7.7. RWSR Operation

But there is a case which requires more careful consideration. Consider the case

shown in Figure 7.8 which has one more path, (f), added to the case in Figure 7.7.

153

Figure 7.8 Consideration for the Set of Non-removable Senses

During the RWSR operation invoked by the removal of D of X.4, P will be considered

for removal after the removal of the path (a). Note that P is also used in the path (f).

Thus, P should not be removed. The sense P is an example of the so-called non-

removable senses. After the path finding process for a suggestion has been done, the

SEM computes the set of non-removable senses before the word sense disambiguation

process starts. SEM computes the set of non-removable senses as follows: Starting from

the word senses of the new word that are included in any semantic path found for the

suggestion, find all word senses that can be reached via the semantic paths. In Figure

7.8, this set will be (F E A Q P). During the RWSR operation, any word sense that is in

the set of non-removable senses is not removed.

In this section, we have been considering the word sense disambiguation process

that is initiated by each suggestion sent by SYN. This operation starts from the set of

semantic paths that is found by SEM for each suggestion from SYN. Let’s assume that

S is the set of semantic paths found for a suggestion having old-instance and

new-instance as two origins. Then the word sense disambiguation is done as fol-

lows:

(1) Remove the senses of new-instance that are not in any of the paths in

S(for example, the node C in Figure 7.9).

(2) Compute the set of non-removable senses. (In Figure 7.9, all senses that are

reachable from A or B via semantic paths are non-removable senses.)

154

' tan

rns ce S=(path—a path—b)

Figure 7.9 Starting the Removal Operation

(3) For each of the senses of old-instance having "u" flag, if the sense is not

used in any path in S, call the RWSR operation passing this sense and old—

instance as the arguments.

RWSR operation routine is shown in Figure 7.10.

Procedure RWSR_operation (sense instance)

begin

if sense is in non-removable-senses

then exit

else

begin

remove sense form the possible senses of instance;

find all (sense instance) pairs that can be reached from

(instance sense) pair via any path in the set of semantic

paths and has not been visited yet. Insert the pairs into

the set "reachable";

remove any path used in the step 1 from the set of semantic paths;

call RWSRgoperation recursively for each element in the set

"reachable" passing the element(which is pair) as argument;

end;

end;

Figure 7.10 RWSR Operation Routine

155

7.2 Use of Concretion

Another mechanism used by SYNSEM for word sense disambiguation is the con-

cretion operation. A sense of a word is changed to a more specialized sense if a path

with a special shape connecting the two instances of the suggestion are detected. Let’s

call this special shape the concretion shape. The concretion shape is shown in Figure

7.11.

, ’ ’ instance2

I

I

I

instancel

Figure 7.11 Shape of Concretion Path

In Figure 7.11, the path (instance2 A B D E F G H instancel) is of the

concretion shape. Note that there can be zero or more absolutes between G and

instancel and between A and B in the figure (as indicated with *). According to

this concretion path, the sense of instance2 can be specialized from A to B. The

reason for this is as follows: The conceptual association between instancel and

instance2 is via B and A; But B is a specialization of A; Thus, instance2 can

actually imply the meaning B (which is a specialization of A). The concretion path in

Figure 7.11 is the best path found for the suggestion (instancel instance2

Prep) -

The detection of the concretion path is done in a special way. Note that markers

from instancel and inst ance2 can not create a two-way collision at the relation

- node E because a marker from inst ance2 can not flow in the reverse direction of D

links and thus can not reach the node B. But it is necessary to get a two-way collision at

156

B so that a three-way collision can occur at E: during secondary marker passing and thus

the path can be found as the best path for the suggestion. This problem is handled in the

following way. Note that the marker starting from instancel will reach node A via

the course of the concretion path (i.e. via H, G, F, E, D, and B). The two-way

collision occurs at the node A when a marker fiom instance2 reaches the node A.

For every two-way collision, the MP checks if the trace of one marker of the collision is

of the concretion shape and the trace for another marker of the collision is of the form

(collision-node I-link instance-node). Then a dummy two-way collision is put on the

relation node which is in the middle of the trace (the node E in Figure 7.11). We add

another case in which a three—way collision can occur in the case explained in Chapter 6.

The dummy collision node is also used to form a three-way collision when it collides

with a secondary marker. This is the way that the concretion path is found for a sugges-

tion. When a concretion path is found for a suggestion, the sense of an instance is spe-

cialized. In the current example, the sense of instance2 is changed from A to B.

Let’s look at the ongoing example that is using (7-1). In the previous section, it

was explained that the path ((1) in Figure 7.6 was found for the suggestion

(operated. 2 pizza_parlor . 3 obj). Actually this path is a path of the con-

cretion shape as shown in Figure 7.12.

obj cau ction

© 1‘1 ,1
ll , , ’operated.2

l

l

V D ,”I

77

cause funptionn

przza:par or

obj-c.function_pizza_parlor

pizza_parlor.3

Figure 7.12 Concretion for the Example

Noticing that (d) in Figure 7.6 is a concretion path, the sense of "operat " is changed

’ from cause_function to cause_function_pizza_parlor. This is called

157

the concretion operation. But this concretion operation requires the system to adjust the

semantic paths that goes through the old word sense (cause_funct ion in this exam-

ple). For example, the path (a) and (b) in Figure 7.6 goes through cause_function

to get to operated. 2 from crook . 1. Thus these paths should be adjusted so that

they can go through the concreted sense, cause_function_pizza__parlor,

instead of the old sense. This is called the path adjustment operation after concretion. It

is important to recognize that the path adjustment operation after concretion is also a

source of word sense disambiguation. To see this, let’s consider how the path adjust-

ment operation is done in the ongoing example.

The new adjusted path should satisfy the following condition: the relation node of

the new path is the specialization of(or same as) the relation node of the old path and

the end absolutes of the old path is an ancestor of(or same as) the end absolutes of the

new path. If a new path satisfying this condition can be found, the new path is added to

the set of semantic paths in place of the old path. If the new adjusted path can not be

found, the old path is simply thrown away.

The adjustment of the path (b) in Figure 7.6 is shown in Figure 7.13. The new

adjusted path

old path

116W

agent-cause_func.przza_parl cause_fu tion

pizza_par or

crook. 1

Figure 7.13 Success of Path Adjustment

shown in this figure satisfies the condition stated above. In the case of the adjustment

operation for the path (a) in Figure 7.6, the new adjusted path can not be found as

158

illustrated in Figure 7.14. The reason is twofold: shepherd_staf f is not an ances-

torof capital and there is noconnection between capital and crook.1.

. . instru ent_ .

rnanrmateW se function

old path \

D ’0‘

- x ’1

f N
i

k) 0/ if .

inStrument cause_functron_

cause_func_pz_parlor pizza_parlor-

Figure 7.14 Failure of Path Adjustment

Therefore, the path (a) in Figure 7.6 is removed from the set of semantic paths, which

results in the removal of shepherd_staff from the sense of crook. 1. At this

point, the word "croo " has only one sense criminal and is fully disambiguated.

The method of concretion used in this section is similar to the concept refinement

process (specifically the slot-filler specialization rule) of Lytinen(1984). But the path

adjusunent operation after concretion was not used in Lytinen’s method and is a new

source of disambiguation information developed in SYNSEM. The disambiguation

information from the path adjustment operation may lead to the elimination technique

explained in section 7.1 to remove other senses, which means that the different sources

of disambiguation cooperate with each other.

7.3 Use of Semantic Association

Semantic association is one of the sources of information that is useful for word

sense disambiguation. It seems that Quillian(1968) is the first researcher who used it.

Semantic association can be modeled naturally in a semantic network. Two concepts

have a semantic association if there is a path connecting them in the network. A concept

is said to be semantically primed by another concept if the access of the latter concept

2

159

facilitates the process(or access) of the former concept. In a marker passing system,

nodes X and Y have semantic association if markers originating from them collide at a

node. If X gets a marker whose origin is Y, it can be said that X is semantically primed

by Y.

SYNSEM uses these notions for the disambiguation. When the MP begins to do

marker passing for a new input word having multiple senses, it checks if there is a sense

of this word that has been primed by a previous word. Then the MP removes the other

senses of the new word by tagging the corresponding I-links with "prime-removed" (this

is an additional possible value of the status flag). The MP does not pass markers from

the senses with the "prime-removed" tag, which implies that these senses are not

accessed. This is to follow the research in Seidenberg & etc.(1982) which found that

semantic priming allows only the primed sense to be used. An ambiguous word which

still has more than one sense remaining can be disambiguated by a new input word if

there is a strong semantic association (detected by the MP) between one sense of the

ambiguous word and one sense of the new word. Strong semantic association is defined

as follows in SYNSEM: there should be a path that does not involve more than two

relation nodes and the end absolutes of the path should not be promiscuous concepts.

The MP removes the senses of the ambiguous words that are not involved in the strong

semantic association by tagging them with "prime-removed". This process can be

explained using the input sentence (Hirst, 1984):

(7-2)The slug operated the vending machine.

We assume that the possible senses of "slug" are: a gashopod without shell, a fake coin,

a bullet or a shot of liquor. After "operat " is processed, the following three paths are

found and registered :

(7-3)(slug.l fake_coin coin inanimate instr-c.function

cause_function operated . 2)

160

(7-4) (slug . l bullet inanimate instr-c . function

cause_function operated.2)

(7-5) (slug . 1 shot_liquor inanimate instr-c . function

cause_function operated.2)

Note that perform_surgery is removed from the possible candidates for the sense

of "opera " because it is not used in the paths. The sense

gastropod_without_shell is not used in any path and thus it is removed from

the possible senses of "slug". But the three senses(fake_coin, bullet, and

shot_liquor) are still possible candidates for the correct sense of "slug". After "the

vending machine" is input, the MP finds the following path indicating strong semantic

association between slug. 1 and vending_machine . 3 through the sense

fake_coin :

(7-6) (vending_machine.3 vending_machine obj-c.function_vendingmachine

cause_function_vendingmachine instr-c.function_vendingmachine coin

fake_coin slug.1)

Thus fake_coin is chosen as the sense of "slug", and other senses and their

corresponding paths((7-4) and (7-5)) are removed. Word sense disambiguation using

semantic association is graphically shown in Figure 7.15. Note that the removal of the

sense A in the figure invokes the RWSR operation explained in the above section.

NE] W“
I . .

(u) no 1(1) £50)

e e

forprevious for new

word worrL_

Figure 7.15 Use of Semantic Association

161

7.4 Use of Information about Syntactic Category

Another source of word sense disambiguation is syntactic categories of words

assigned during syntactic analysis. Let’s consider the sentence (7-7) to illustrate how

disambiguation is done using the categorical information.

(7-7)The granite rocks near the shore.

The word "rocks" has two possible senses: stone and shake. But stone is used as the

sense of "rocks" only when the word is interpreted as a noun and shake is used as the

sense only when the word has verb as its part of speech. As soon as the syntactic

analysis component determines that "rocks" is a verb, it can be determined that its word

sense is shake. If it is decided that "rocks" should have the syntactic category of noun,

its sense automatically becomes stone.

This disambiguation method is also used in SYNSEM. When an instance node is

created for the word "rocks", it attaches the part of speech to the I link of each sense as

shown in Figure 7.17. The MP flows markers through all senses of

shake stone shake stone shake stone

I V1 IN] N [N]
1’ 1'

w as»

(b) (C)

Figure 7.17 Use of Categorical Information

the instance because it does not know yet which sense is the correct sense of the word.

Then three rules(noun-parsea, noun-parse4 and noun-parseS) are found by the pat-

tern matcher as shown in Section 6.4.2. Three branches are created for the three rules

and they run in parallel as described in that section. The branch for noun-parseS

analyzes "rocks" as a verb. (Note that each branch keeps its own copy of I links for

ambiguous words.) In this branch, the I link for the sense stone is removed so that it

can never be used during the process of finding the best path for the suggestion in the

162

branch as shown in Figure 7.17(b). Thus the paths to rocks . 2 can only go through

the sense shake.

The branch for noun-parse4 and the branch for noun-parseS set the I links for

rocks . 2 as shown in Figure 7.17(c) so that the link for the sense shake can never be

used for finding the paths for their suggestions (because they analyze "rocks" as a noun).

When one branch is finally chosen over the others, the correct sense of "rocks" is

also automatically chosen which conforms to the syntactic category of the word. In this

example, the branch for noun-parse3 is the one that the parser finally chooses and thus

the sense shake is automatically chosen as the correct sense of "rocks".

7.5 Conclusion

A new method for applying the word sense elimination mechanism has been pro-

posed. We have shown that a knowledge base encoded with the KODIAK knowledge

representation language can be used to facilitate word sense disambiguation in natural

language parsing. The basic strategy is to make the parser keep track of a set of seman-

tic paths corresponding to the semantic interpretation of the input sentence. These are

the paths that connect the instance concepts of input words. Senses of a word that are

not used in the semantic paths found for a suggestion from the syntactic analysis com-

ponent are removed. The removal of a sense at one end of a registered path results in

the removal of the sense at the other end of that path. The removal operation is applied

recursively.

A concretion mechanism similar to the concept refinement process is also incor-

porated into the disambiguation method in the SYNSEM parser. The idea of the path

adjustment operation is newly employed to extend the concretion mechanism. The use

of marker passing enables the parser to use semantic association and semantic priming

as another source of disambiguation information. The syntactic analysis helps the parser

eliminate word senses that do not correspond to the correct part of speech.

163

A problem occurs if semantic priming leads the parser to select an incorrect word

sense. Further research is required to handle this problem. The fundamental problem

that waits for additional research is how more diverse kinds of knowledge such as goals,

intentions, discourse structures, and more global context (spanning to several sentences)

can be applied to the word sense disambiguation problem.

CHAPTER 8

CONCLUSION

The parsing model with improved interleaved semantic processing developed in the

thesis research will be summarized first and then it will be argued that the proposed

approach of parsing is an integrated parsing approach. Then the achievements that have

been made in this thesis will be outlined. Finally the problems that need more research

related to the thesis will be enumerated and discussed.

8.1 Proposed Approach to Parsing

The objective of the research has been to develop a natural language parser that can

utilize both syntax and semantics as early and fully as possible. To achieve this objec—

tive, we have taken the approach of interleaved semantic processing which is based on

the syntax-oriented analyzer using semantics to get intermittent feedback. As suggested

in several parsing models in psycholinguistics which proposed the parallelism, all syn-

tactic alternatives of a structural ambiguity are considered in parallel. Each alternative

invokes a new branch of parsing. The branches run in parallel until all branches need to

read the next input word. At this time, the semantic comparison stage is invoked, during

which the semantic processing results of the branches are compared and only those with

best results are kept alive while the others are thrown away. This is a source of structural

disambiguation that uses semantic information.

The branches out of the semantic comparison stage run again in parallel until the

next semantic comparison stage comes. The semantic results collected during this inter-

val between the two semantic comparison stages are used again for filtering the

branches. The branches run asynchronously in parallel, but they are synchronized

164

165

periodically by the reading of words. Some branches might be removed if they reach a

dead-end because the following input material does not agree with their analyses, which

is realized by the fact that no rules are found during the pattern matching step and the

situation is determined to be a dead-end. The removal of branches here is a source of

structural disambiguation that is based on syntactic information. Another type of ambi-

guity that is abundant in natural languages is word sense ambiguity. Much effort on the

word sense disambiguation problem has also been made in this research. The theoretical

support for the parsing approach taken in this thesis can be found in Kurtzman’s parsing

model that advocated for immediate parallel analysis(IPA) with strong parallelism and

conceptual selection hypothesis.

A parser that had a similar motivation as SYNSEM is Lytinen’s MOPTRANS

parser. But he approached the problem of building a parser with good use of syntax and

semantics from the integrated parsers such as the conceptual analyzers. MOPTRANS

adopted the control in the sense of Crain and Steedman’s strong interaction between

syntax and semantics, which means that, in the MOPTRANS parser, the selection of the

syntactic rules is influenced by semantics. Actually only one rule that corresponds to the

best semantic interpretation is chosen and other alternatives are not even considered.

Lytinen’s approach is directly against most of the parsing models proposed in psycho-

linguistics. In addition to the difference in general approach, SYNSEM and MOP-

TRANS are different in the inside detail of the parsing. It is argued in this thesis that

SYNSEM’s parsing approach constitutes a new distinct approach that utilizes syntax and

semantics as early and fully as possible.

8.2 Argument for the Proposed Approach

It was pointed out that the parsers with interleaved semantic processing are not

good enough in utilizing semantics. We will show that SYNSEM has improved on this

point over the previous parsers. (The exact paths in the KB corresponding to the

166

suggestions will not be provided in this discussion; We will also sometimes use the ter-

minologies such as "slot" of a frame representation language for the ease of explana-

tion.) Let us assume that SYNSEM parses sentence (8-1) and SYN has just determined

Mary to be a NP:

(8-1)John gave Mary a book.

At this point, two rules match the syntactic working memory(SWM): object and ind-

object. The ind-object rule matches the SWM because the verb gave is a dative verb.

SYN sends the suggestion (gave.2 Mary. 3 obj) according to the object rule.

Another suggestion (gave.2 Mary.3 to) is sent to SEM according to the ind-

object rule. Here gave . 2 is the instance node of the concept give, and Mary . 3 is

the instance node of the concept female. The path for the suggestion (gave.2

Mary. 3 to) is better than the path for the suggestion (gave.2 Mary. 3 obj)

because person fits better into the RECIPIENT slot(implied by to) than the

PATIENT slot (implied by obj) of give (more precisely, because

high_animate, the constraint of the relation recipient-give, is a more specific

concept than phy_object, the consuaint of the relation pat ient-give). Thus

the branch for the ind-object rule is selected over that of the object rule. This shows

that SYNSEM correctly interprets "gave Mary" in (8-1) as an integrated parser does.

Another illustration can be provided by using the sentences from (8-2) to (8-4):

(8—2)The teachers taught by the Berlitz method passed the test.

(8-3)The students taught by the Berlitz method passed the test.

(8-4)The horse raced past the barn fell.

Lytinen(1984) argued that an integrated parser should be able to explain why (8-2) is a

garden path sentence while (8-3) is not, even though they have the same syntactic struc-

tures as (8-4) which is a well known garden path sentence. After SYNSEM inputs

"taught" in (82), three syntactic rules(main-verb2, np-vpp1, and np-vpp2) will match

167

the SWM because "taught" can be either a "past active" or a "past participle". The

main-verbZ rule analyzes the teachers as the subject of the past active "taught". The

np-vpp1 rule analyzes "the teachers" as the direct object, and the np-vpp2 rule analyzes

"the teachers" as the indirect object of the past participle "taught". Each of the three

rules creates a branch. These branches send three suggestions to SEM: (teacher . I

taught . 2 subj) for the main-verb2 rule, (teacher . 1 taught . 2 obj) for the

np-vpp1 rule, and (teacher.1 taught.2 to) for the np-vpp2 rule. For the

suggestion of each branch, the best path connecting the two instance concepts in the

suggestion will be found. Then at the semantic comparison stage, the three paths of the

three branches will be compared and the best one will be selected. The path for the

main-verb2 rule is best because the concept teacher can be a prototype for the

AGENT slot but not for the RECIPIENT or SUBJECT-MATTER slot of the concept

teach. (Note that the "P"(prototype) link is added in addition to the "C"(constraint)

link between an absolute and an aspectual in our version of KODIAK.) Thus, the branch

for the main-verb2 rule is selected which analyzes the teacher as the syntactic subject

and thus a garden path phenomenon occurs in (8-2). But in the case of (8-3), the path

for the suggestion of the np-vpp2 rule (that determines the students as the indirect

object) is best among the three paths for the three suggestions of the three rules because

the concept student is a prototype of the RECIPIENT slot of the concept teach.

Therefore a garden path phenomenon does not occur in sentence (8-3) even if it has the

same syntactic structure as sentence (84). So our parser behaves in the same way that

Lytinen expected for an integrated parser.

It can be shown that the integrated parsing approach of MOPTRANS which per-

forms semantic processing before syntactic processing in each step of parsing is more

inefficient in some cases than the approach of SYNSEM. MOPTRANS tries to connect

two semantic objects without using the information that syntactic knowledge can pro-

vide. Let’s consider (8-5) to illustrate this point:

168

(8-5)The man attacks a bear with a boy.

After inputing attacks, MOPTRANS will uy to find all possible connections between the

semantic objects in memory: MAN and ATTACK. It will find the three possible seman-

tic connections: MAN can be the AGENT of the action ATTACK; MAN can be the

PATIENT of the action ATTACK; and finally MAN can be the PARTICIPANT of the

event ATTACK. Then it will try to find the best one among the three.

In the case of SYNSEM, only one syntactic rule, main-verbz, will match the

SWM. Therefore the relation node patient-of—attack and the relation node

participant-of-attack will never be considered because these two nodes will

never get marked during the secondary marker passing that starts from the node subj.

The three-way collision will occur only at the node agent-of—attack. SYNSEM

will have only one branch for one rule and never consider the semantic connections that

should be considered by MOPTRANS. In a large and complex knowledge base, there

can be many possible connections between semantic objects which may make the MOP-

TRANS’ parsing approach inefficient.

From these examples, we argue that SYNSEM utilizes syntactic and semantic

knowledge as fully and efficiently as any existing integrated parser.

8.3 Observations on Implementation and Test

The SYNSEM parser has been implemented on a SUN 3/280 system using Com-

mon Lisp. Appendix C lists the test sentences used to test the parser developed to

demonstrate the working of the theory explained in this thesis. Appendix D shows the

total output of the parser to parse a sentence, which is useful to track the course of pars-

ing. (The comments are shown in italics. The sentences which the parser could not han-

dle satisfactorily are preceded by an asterisk.)

The size of the parser is reflected in the following data:

169

Number of absolutes : 172

Number of relations : 145

Number of aspectuals: 290

Number of syntactic rules : 80

Number of Lisp lines : 7400 (including comment lines)

As far as the speed is concerned, the prototype of the SYNSEM parser is not good. It is

slow, and needs some analysis to find out ways to increase the speed. For sentences with

around 10 words, it takes about 3 rrrinutes for parsing. But it would be useful to report

what has been observed during the test:

(a)

(b)

(0)

Most of the parsing time is spent in the steps of doing marker passing for open

words (it has been called primary marker passing in this thesis). From three or

four open words in the input string, it sometimes takes more than a minute to

do primary marker passing. It should be mentioned that much portion of this

time is for doing garbage collections by the lisp interpreter. I conjecture that

the reason for the so many garbage collections is due to the use of a recursive

function for finding paths for each collision. It will be interesting to see what

will happen in the speed if the recursive function is replaced by the

corresponding non-recursive version. The time taken for marker passing is

about 90% of the total parsing time.

The syntactic analysis component is fast and is not affected much by the

increase of the number of words in the dictionary. The size of the rule base

did not change much after the initial writing of the rules. With the rule base

that has most of the rules that can do the clause level analysis, it has been

found that the time taken for syntactic analysis is only a fraction of the total

parsing time (around 4% of the total parsing time).

Time taken for finding the best paths for suggestions with a preposition is only

a fraction of the total parsing time and it did not vary much with the increase

170

of the knowledge base. This is due to the efficiency provided by the secondary

marker passing mechanism (around 6% of the total parsing time).

(d) For suggestions which do not contain a preposition, the time to find the best

path is too long (even much longer than the time for marker passing.) Thus it

is really necessary to develop some method to speed up this process.

(e) Based on the above observations, it is concluded that it is necessary to

develop a mechanism using some parallelism to speed up the marker passing

process. (This is true regardless of the availability of the efficient method of

path finding.)

8.4 What has been achieved

In this section, the items that have been achieved during the project will be listed

and summarized:

A new integrated parsing has been achieved by updating interleaved semantic pro-

cessing. The details have already been summarized and discussed in the previous

two sections in this chapter.

A rule-based syntactic analyzer with the following new features has been

developed. The base pattern is used to check the state of parsing which results in

the removal of packets or states from the parser. A method of "delaying the deci-

sion until enough context appears" has been created and implemented. This enables

the parser to have the same power as a parser using lookahead and to use simple

and uniform processing instead of the attention shifting mechanism.

A simple and clean interface between syntax and semantics has been developed.

This is achieved by using suggestions that are sent from the syntactic processing

component to the semantic processing component. But it seems that this method

can not cover everything. The use of the semantic comparison stage provides a way

of using semantic information to control the syntactic processing.

171

A mechanism called secondary marker passing has been developed to facilitate the

use of the marker passing paradigm in natural language parsers. This provides an

efficient way of finding the best paths between two concepts in the knowledge

base. Without this mechanism, we should tolerate the high computational cost or

we should give up using the marker passing paradigm. As Charniak(1986) pointed

out, there is yet no better alternative to marker passing.

Along with the secondary marker passing mechanism, several heuristics have been

developed to find the best paths between the concepts. It has been observed that

usually the secondary marker passing mechanism and the H-heuristic are powerful

enough to find the best paths. The S-heuristic is necessary in a complex situation

such as the existence of word sense ambiguity.

The critical problem of scoring the alternative analyses has been circumvented by

the method of rank-ordering the branches by comparing the knowledge base paths.

A method of comparing the paths has been developed under the context of the

SYNSEM parser. The basic idea was to use the specificity of the concepts (these

were called the end absolutes) that constrain the first and last relations in the path.

Attacking the disambiguation problem of structural ambiguity is not enough

because word sense ambiguity is another major source of ambiguity. Broad and

deep treaunent of this problem has been sought in this research. It has been sug-

gested that managing the set of knowledge base paths (called the semantic paths)

and propagating the elimination of word sense via these paths is an efficient

method to remove the false senses. The path adjustment operation related to the

concretion of a word sense has been proposed as another source of word sense

disambiguation.

172

8.5 Future Research Item

In this section, limitations and the research items identified during the development

of the SYNSEM parser will be listed:

The first and most important problem on the list seems to be the problem of

knowledge representation. Presently semantic information that can be used by

SYNSEM is limited to the kind of knowledge that can be encoded using KODIAK.

KODIAK is one of the most recent knowledge representation languages but it can

not satisfy the users fully. For example, how can we represent the fact that "eating

on the uain" is more plausible than "an apple on the train"? (for the sentence "The

man ate an apple on the train") How can we represent the fact that "discussing run»

ning as a sport" is more plausible than "discussing running as an act of engaging in

running"? Another problem related to knowledge representation is the use of other

diverse kinds of knowledge sources such as knowledge about discourse structure,

user modeling, goals and intentions, common sense knowledge such as time and

unexpected happenings, etc. Some of these might need a totally new kind of

knowledge representation language. To achieve the full use of semantics the sys-

tem should be able to utilize these various knowledge sources. It is clear that the

current version of KODIAK can not easily accommodate all of these knowledge

structures in a reasonably easy way (even if it can). It is not clear that the present

architecture of the parser can remain unchanged when these other knowledge

sources are eventually used.

The current grammar in SYNSEM needs to be extended so that more complex

syntactic structures can be analyzed, for example, topicalization, particles, etc. But

no major obstacles are anticipated in doing this.

Parsers which use semantics early have an advantage in handling ill-formed inputs.

It is worthwhile to extend the parser to be able to handle ill-formed inputs. The

basic strategy can be an attempt to find the semantic connections between the

173

chunks that can not be linked by syntactic relations. Finding the paths based on

marker passing can be useful for this purpose.

Marker passing in SYNSEM requires a large amount of computation. Part of the

reason is that detection of the concretion paths and strong semantic association

paths related to word sense disambiguation should be done during marker passing.

It seems interesting to consider the use of massive parallelism in marker passing to

increase the speed.

The branches running in parallel build their own copies of syntactic representation.

It might be the case that the same structures are built in several branches. Intui-

tively, the human parsing system does not seem to have multiple copies of the

same structure. It is better to share the data structures among the branches as far as

possible.

SYNSEM has no efficient way of finding the best path between two nouns that

appear in the nominal compound. It just uses the brute force method to compare

every pair of paths to find the best path and thus it takes much time. The problem is

that there is no cue to facilitate the search (such as syntactic relation or preposi-

tion). It is necessary to develop a better scheme to find the best semantic connec-

tion among the nouns in the nominal compound.

APPENDICES

Appendix A

Structure of Noun Phrase(NP)

Figure A—l is assumed to be the structure for an NP in SYNSEM. It is not claimed

that this su'ucture is the optimal one of the NP. But this NP structure is introduced here

for the ease of following the grammar rules and examples appearing in the thesis. Note

that the post NP modifiers such as the PP or the relative clause, etc. are not shown in the

figure. Instead, only the portion of the NP up to the head noun is shown in the figure.

Na Noun Noun Noun

/I\ [headnoun]

Ns Adj Adj

Der Quant Ordinal Number

Figure A-l Structure of an NP

174

Appendix B

Determining Dead-end Situation

When the pattern matcher finds no rules that match the syntactic working

memory(i.e. CLIST), the parser should decide if the situation is the dead-end situation or

just the situation that requires a new input (called read-again situation). The parser uses

the routine called "justify-situation" for the decision. This routine is called by the parser

with no input argument(this actually use CLIST for its working). This routine is

explained below.

Let’s call a tree in CLIST Ci where "i" indicates the position of the tree from the

right side of CLIST. C1 is the rightmost tree, C2 is the second rightmost tree, etc. Let’s

call the raw patterns of rules RPi where i indicates the position of the raw pattern. Thus

RPl is the rightmost raw pattern, RP2 the second righurrost raw pattern(if it exists), etc.

Cl might lead to the construction of a basic nodes such as an NP or a PP. For

example, DET can be considered to be the leading edge of an NP. Let’s use

SC1(starting edge of C1) to specify the basic node of which C1 is a leading edge. SCl of

det, ns, na, or nc is NP. SCl of prep is PP. Except these, SCl of C1 is set to nil to indi-

cate that Cl does not lead to the basic node of NP or PP.

The basic scheme used in the routine "justify-situation" is that if the right side of

CLIST can match the pattern part of any rule by using SCl or the initial portion of the

pattern part of any rule(indicating that the rule can be matched in the near future after

more context is built in CLIST) with or without using SCl, then it is decided that the

situation is a read-again situation.

175

176

This routine is shown in more detail below:

Routine justify—situation:

{ The return with yes means that the situation is decided to be a read-again

situation and the return with no indicates the dead-end situation.

The length ofa rule is the number ofraw patterns in the rule. 1

(1)

(2)

(3)

(4)

if CLIST contains only one tree then return with yes;

if C1 is a conjunction node(and, or, but), then return with yes;

if C2 is of type S then

if SCl =/ nil

then begin assume CLIST whose C1 is replaced with 5C1;

call justify-situation with this new CLIST;

end

else begin if there is a rule of length 2 whose RP2 is C1

then return with yes;

if there is a rule of length 3 whose RP3 is Cl

then return with yes;

return with no;

end;

if SCl is non-nil and there is a rule of length 2

whose RP1=SC1 and RP2=C2, then return with yes;

{Sofar, checking with the rules oflength I or 2 has beenfinished.

From now, try the rules with length 3. }

(5)

(6)

(7)

(8)

if there is a rule whose RP3=C2 and RP2=C1 then return with yes;

if there is a rule whose RP3=C2 and RP2=SC1 then return with yes;

if there is a rule whose RP3=C3, RP2=C2 and RP1=SC1,

then return with yes;

return with no;

Appendix C

Test Sentences

Diverse kinds of sentences have been used to test the features of the SYNSEM

parser. The test sentences are listed under the categories which indicates the feature of

ambiguity to be tested. The asterisk in front of a sentence indicates that SYNSEM can

not handle the sentence satisfactorily.

(1)

(2)

pp-attachment ambiguity

The man ate a cake with a fork.

The boy ate the pizza with the man.

The man ate the cake with frosting.

The man ate an apple from the orchard.

The employees of the company with the disease were examined by the doctor.

*The women discussed the dogs on the beach. ;Kurtzman(1985). SYNSEM does not have

enough conceptual expectation(described in Section 2.23) to handle this sentence.

I bought the book for the girl in the bookstore. ; the concept bookstore-buying has a slot of

location to which bookstore is the prototype. Thus "in the bookstore is attached to the VP.

The man ate in the restaurant with Tom.

The man ate the cake with Tom.

The man ate with Tom.

The spy saw the cop with the binoculars. ;Ferreira & Clifton(1986)

The spy saw the cop with the revolver. ;Ferreira & Clt'fton(1986)

Active past/past participle ambiguity

The teacher taught by the pool passed the test. ; Crain & Steedman(1985)

177

(3)

(4)

(5)

178

The present wrapped by Judy was given to Tom. ;Lytinen(1984)

The horse raced past the barn fell. ; Crain & Steedman(1985)

The students taught by the pool passed the test. ; Crain & Steedman(1985)

Case determination ambiguity

”The man ate the cracker with the dip. ;the fact that "with" can indicate the co-object of

some verbs should be encoded in the parser, which needs more consideration.

I told the story to John.

I told John the story.

I told John the story was the last thing I wanted to hear. ; Barton & Berwick(1985)

The person gave the cat to Mary.

Tom broke the window with a rock.

The rock broke the window.

The rock broke. Syntactic analysis isfine. But it misanalyzes semantically("rock" is analyzed as

the instrument. Currently there is no way to detect it and reanalyze it later.

relative clause attachment ambiguity

The man bit the apple on the desk that the boy ate.

The man bit the apple on the desk that the boy painted.

*The man bit the apple on the desk that the boy bought. :1: is hard to determine where to

attach the relative clause. It is necessary to have some semantic information that it is likelyfor boys

to buy an apple but not a desk.

The girl saw the lion in the field which Tom shot in the body.

missing "that" ambiguity Tom knew the man.

Tom knew the man ate the apple.

I told John the story was the last thing I wanted to hear. ;At first "the story" is analyzed

both as the object of "tel " and as the subject of the complement clause. As soon as "was" is seen,

the object analysis is thrown away.

(6)

(7)

(8)

(9)

179

Conjunction

The boy and the girl ate an apple.

The man bit and ate the apple.

The man bit the apple and ate the pear.

The man ate an apple and the girl bit the pear.

The man ate the apple and the pear.

The boy ate and the girl saw the apple.

Wh-phrase sentences: Wh-question and relative clause

Which apple did the man eat ?

I ate the apple which the man bit.

I ate the apple that the man bit.

He ate the apple the man bit.

Who do you want to visit?

Who do you want to eat the apple? The equi-np deletion analysis and the Wh—analysis("who"

fills the gap between "want" and ”to") goes on in parallel until one is rejected.

Who do you want to give the apple to? ;Marcus(1980)

What did you give Tom the book for? ;Hirst(1984)

I gave the boy who you gave the apples to three books.

Equi-np deletion

The man wanted to eat the apple.

Tom wanted the man to eat an apple.

The man wanted the book.

Semantic anomaly

The boy drank the apple. ;the analysis fails because of semantic anomaly("apple" can not be

object ofaction ”drink".

”The boy ate the green apple. ;The semantic oddness of eating unripe apple can not be

detected in SYNSEM

180

(10) Word sense ambiguity

The slug operated the vending_machine. ;Hirst(1984)

The man operated the machine with the tool.

The granite rocks near the shore. ;Milne(1982)

The crook operated the pizza_parlor. ;Hirst(1984)

*The astronomer married a star. ; Charniak(1983). "star" is at first disambiguated to be a

concept of "star in the sky" but later the parser gets into trouble because the object of "marry"

should be oftype "person".

Tom fixed the washer. ;Lytinen(1984)

Tom fixed the game. ;Lytinen(1984)

(1 l) Metaphor: SYNSEM can not handle this type ofsentence.

*The car drank the gasoline. ; Small(1983)

(12) Multiple part of speech ambiguity

The granite rocks near the shore. ;Milne(1982)

*The prime number few. ; Milne(1982). SYNSEM can not handle this one because of the lack

ofnecessary semantic information.

(13) Plain sentences

The apple is big.

The boy said that Tom had stolen the watch.

The girl sleeping in the room wanted to visit Tom.

(14) Ambiguity from present participle

*The man eating tiger growls. ; Small(1983). SYNSEM currently can not handle this sentence

because it does not have appropriate syntactic rules.

The man eating shrimp growls. ;Small(1983)

(15) Vague word sense ambiguity

I took a picture.

181

The man took aspirin.

The man got the goods. ; "got" is analyzed to be "buying".

(16) Semantic association between nouns in a nominal compound

The cotton clothing is made of grows in Mississippi. ;Marcus(1980). SYNSEM can not

model the garden pathing effect of this sentence shown by humans. Two possible analyses are

sought in parallel in SYNSEM.

Appendix D

Output of Parsing

The following system output of SYNSEM shows how the parser works during the

parsing of sentence "the teacher taught by the pool passed the test" which was explained

extensively in Chapter 4 and 6.

;;; Dribble file #P"lusr.MC68020/users/staff/ra/nlp/out-taught” started

T

> (mon)

RRRRRRRRRead next word : THE

A word read111 read-word: word=@

Come into rule-matchin part...

rule succeeded.S-START

Retum from rule-matching mtine. mlesz (S-START)

Only one rule selected == S-START

mm:.(S) name:NIL range:(1 l) sansug.NIL

featureeaturezs((S (MAIN))) trace.NIL

“ode.SSl SS 1 l :NIL

paEms: l2"2((‘é‘é3‘f3émNF ”mm“

Comemto rule-matching pan...

Retum from rule-matching routine. rules: NIL

No rules are found.

------- justify finished.as success --------------

A word readin read-word: word=THE

Come into rule-matching part...

Retum from rule-matchin routine. rules: (PARSEDET)

Only one rule selected: ARSE-DET

ez‘Nlp‘or:.(S) namezNIL ran e:(1 l) semsug:NIL

parent featureseatmes:((S (MAIN))tracezNIL

node:SSl .(SS) narne:@ran e:(l l) sernsugzNIL

parent:82 Puma:((88)) trace:N'fi.

nodezNS4 pos:(NS) name:g:gNILrane(22)semsu:NIL

perennNILfeatures:((NS (NUM IS 28 38 1P 2P 3P))) trace:NIL

node:DET3pos:(DEI') namez'I‘HEg:rane(22)semsug:NIL

parentzNS4 tures:((DET (NUM IS 28 BS 1P 2P 3P))) trace:NIL

Comemto rule-matchmg part...

Retum from rule-matching routine. rules: NIL

No mles are found.

------ finished.as success -------------

cad next word: TEACHER

Busing markers. instance=<abso TEACHERJ>

ump into node carrying same ori mark at cnode=~<asp TEACHERTEACHER-TEAClb

Loop detected at cnode=<abso PERSON>

Loop detected at cnode=<abso PLACE>

182

183

A word readm read-word: word=TEACHER

Comemto rule—matching part...

Return from rule-matching routine. rules: (NOUN-PARSEI)

Only one rule selected = NOUN-PARSEI

3Trees in CLIST

node:S2 :(S) name:NIL range:(l l) semsugNIL

parent: features:((8 (MAIN))) trace:NIL

node:SSl :(SS) name:ran@ e.(l l) semsugzNIL

parent:82 I”.eatuzres((88)) trace:NIL:

node:NC6 pos:(NC) name:NIL rang:ge(22)semsu:NIL

parent:NIL features:((NC (NUM 18 28 3S 1P 2P 3P))) tracezNIL

node:NS4 pos:(N8) name:NIL range:(2 2) semsug:NIL

pumtzNCG features:((NS (NUM lS 28 38 1P 2P 3P))) trace:NIL

nodezDE'I‘3 pos:(DET) name:THE range:(2 2) semsug:NIL

parent:NS4 features:((DET (NUM lS 28 3S 1P 2P 3P») trace:NIL

node:NOUN5 pos:(NOUN) namezTEACHER ran e:(3 3) semsugzNIL

parentleL features:((NOUN (NUM 3S))) tracezNIf.

Come into rule-matching part.

Return from rule-matching routine. rules: NIL

No rules are found.

-----justify finished.as success “.-...-m.--

RRRRRRRRRead next word : TAUGHT

passing markers. instance:<abso TAUGHT.2>

this1s regular collision at <abso TEACH).

thisrs regular collision at <abso TRSACIB.

Bump into node carrying same ori mark at cnode=<abso PERSON>

this is regular collision at <abso 'I'I'>.

Loop detected at cnode:<asp RECREC-TEACH)

A word readin read-word: word=TAUGHT

Come'mto rule-matching part...

Retum from rule-matching routine. rules: (NOUN-PARSE3)

Only one rule selected: NOUN-PAR8E3

mm18)name.NIL range:(1 l) semsug:NIL

s:((S (MAIN))) traceNIL

nod .88] SS 1 l NIL

punciuSZ I’mtu(res)((’S.Sn)‘)c£cemNE:()sernsug:

nodezNP8 pos:(NP) name:NIL range:(23) semsug:NIL

parent:NILfeatures:((NP (NUM 3S) (MODIFIABLE))) tracezNIL

nodezNCG pos:(NC) name:NIL range:(2 2) semsugzNIL

paratt:NP8 features:((NC (NUM IS 28 3S 1P 2P 3P))) trace:NIL

node:NS4 pos:(NS) name.NIL range:(22) semsug:NIL

parentzNCé features:((NS (NUM 18 28 3S 1P 2P“‘83P))) trace.NIL

node:DET3 pos:(DET) namezTHE range:(2 2) sansugzNIL

parentzNS4 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN5 pos:(NOUN) name:TEACHER range:(3 3) semsug:NIL

parent:NP8 features:((NOUN (NUM 38))) trace:NIL

Corne'mto rule-matching part...

Remm from rule-matching routine. rules: (SUBJECT-RULE)

Only one rule selected: SUBJECT-RULE

node:Sm(S)name:NIL ran e:(l 3)semsug:NIL

parent eatures:((S (MAIN))trace:NIL

”0d .881 SS 1 l :NIL

Sarge]82 F”(res)((l8.8")l)etr.?cerzanNE:()semsug

.(NP) name:NIL range

parait:82mamastures(:(NP (NUM 3S) (MODIFIABLE)(SUBD)) trace:NIL

nodezNCG pos:(NC) name:NIL range:(22) semsugSNIL

parent:NP8 features:((NC (NUM 18 28 38 IP 2P3))) trace:NIL

node:N84 pos:(N8) name:NIL range:(2 2) semsugzNIL

184

parent:NC6 features:((NS (NUM 18 28 38 1P 2P 3P») tracczNIL

;OdczDETB perisKDET) narne:THE ran e:(2)2)scrnsug:NIL

‘ parentzNS4 tures((DET(NUM 18 3S 1P2P3P)))tracc:NIL

nodezNOUNS p08:(NOUN) name.TEACHERranNIII..(3 3) setnsugtNIL

mm features:((NOUN (NUM as») trace

Come into rule-matching part...

Return from rule-matching routine. ntles= NIL

No rules are found.

~-—---- justify finishedas success --------------

anobjcctreadinfromcash:V7

Come into rule-matching part...

Return from rule-matching routine rules: (MAIN-VERBZ NP-VPP NP-VPPl)

come into go__on_scvera1__ntles. rules: (NP-VPPl NP-VPP MAIN-VERBZ)

start of branch in go_sevcral_rulcs = (NP-VPPl)

Suggestim received: dir=CONNECT ol =<abso TEACHERJ) 02=<abso TAUGHT.2> o3=TO whichasp: 2

two-way collisions betw <abso TAUGHT.2> and <abso TEACHER.l> = 31

of paths for these two-way collisions : 1502

call into secondary marker passing

Number of original three-way collisions : 1

number of collisions before H-heuristics = 1

of collisions after H-heuristic: l

Nmnberoffullpathsbefilrelhltering=l

number of full paths after num. relation filtering : 1

Number of full paths after hierarchy (I end absos : l

Final paths selected in pickup_interp.

<<>> (<abso TEACH) <abso PERSON) (<abso TAUGHT.2> I <abso TEACH) C_INV <asp TEACHREC-TEACH) A_INV

<rel REC-TEACH) A_INV <asp RECREC-TEACH) C_INV <abso PERSON) D <abso TEACH_PROFESSIONAL) D

<abso TEACHER) I <abso TEACHERJ>))

Trees in CLIST

node:SlO pos:(S) name:NIL range:(l 3) scmsugzNIL

parent:NIL fcatures:((S (MAIN))) tracczNIL

node:SSl] pos:)(88 name:@ range:(l l)scmsug:NIL

parent:810 eatures:((SS))):traceNIL

«SUBL-

ncdczNPl2 .(NP) name.NIL range:(2 NIL) scm .NIL

parent:SlO Ferd:tuzres((NP (NUM 3S) (SUBJ))) tracc:N181.

nodezNCl3 pos:(NC) name:NIL range:(22) semsugNIL

parent.NP12 features:((NC (NUM 18828 38 1P 2P3))) trace:NIL

nodezNSl4 pos:(NS) name:NIL range:2(2) semsugzNIL

parent:NCl3pmfcautres:((NS (NUM 18828 38 IP 2P P))) trace:NIL

node:DETlS s:(DET) name:THE marge:.(2 2) sernsug:NIL

parent:N814 eatures:((DE'I‘ (NUM IS 38 1P 2P 3P))) tracezNIL

;odeNOUNlé pos:(NOUN) name:TEACHER ruNfic:.(3 3) semsugNIL

parcnt:NP12 features:((NOUN (NUM 38))) trace

node:817 pos:(S) name:NIL range:(4 NIL) semsug:NIL

parfsuzNPIZfeatures:((8 (SEC) (STRUC-0K)» trace:NIL

nodezNP18 I)“:(NP) name:NIL range:NIL semsugzNIL

parent:817 eatures:((NP (DUMMY))) trace.NIL

node:AUXl9 pos:(AUX) name:NIL rangc:NIL semsugzNIL

parents17 features:((AUX (PASSIVE))) tracetNIL

:NIL 4 N11. :NIL

parents17Gratin":((3%)!)etracerange:()sernsug

node:V9 pos:(V) namezTAUGHT range:(4 4) sernsu :(<abso TEACHERJ) <abso TAUGHT.2> TO 2)

pIISEtImo features:((V (EN) (TENSE PAST))(TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

nodezNP2l pos:(NP) name:NIL range:NILscmsugNIL

parart:VP20 features.((NP (TRACE)))trace:NP12

node.817 .(S) name.NIL range:(4 NIL) semsug:NIL

parentzNPf20‘fcatures:((8 (SEC) (STRUC-OK») tracc1NIL

nodczNP18:(NP) name:NIL ran ezNIL semsug:NIL

parurt:Sl7 eaturcs:((NP (DUMMY))tracczNIL

. nodczAUXl9 pos:(AUX) name:NIL rangezNIL semsugzNIL

paratt:Sl7 features:((AUX (PASSIVE))) tracezNIL

185

;ode:VP20 for:.(VP) name.NIL range:(4 NIL) semsug1NIL

parent:817 eatures:((VP)) trace:NIL

node:V9 pos:(V) name:TAUGHTranrange:.(4 4) serum :(<abso TEACHER.1> <abso TAUGHT.2> TO 2)

Wm features:((V (EN) (TENS PAST) (M (IRANSI'I'IVE) (DATIVE) (DATIVE-PREP TO)))

nodezNP21 pos:(NP) name:NIL range:NIL semsugzNIL

parern:VP20 features:((NP (TRACE))) trace:NP12

beginning (1 NEXTJound.

Come into rule-matching part...

No rules matchcd.(just after NEXT_ROUND1)

--«--- justify finishedas success .-............

End of one rule-process for=(NP-VPP1) merit=(<abso TEACH) <abso PERSON) (<abso TAUGHT.2) I <abso TEACH) C__INV

<asp TEACH.REC-TEACH) A_INV <rel REC-TEACH) A_INV <asp REC.REC-TEACH) C_INV <abso PERSON) D

<abso TEACHPROFESSIONAI.) D <abso TEACHER) l <absoTE CHER.1>))

start of branch irt go_several_rulcs : (NP-VPP)

Suggestion received: dit=CONNECT 01 =<abso TEACHERJ) 02=<abso TAUGHT.2> o3=OBJ whichasp= 2

two-way collisiorts bctw <abso TAUGHT.2> and <abso TEACHER. l) = 31

4 of paths for these two-way collisions = 1502

call into secondary marker passin

Number of original three—way colfisions - 1

number of collisions before H-hcuristics = 1

of collisions after H-heuristic: 1

Number of full paths bef it rel filtering: 1

number of full paths after num. relation filtering-- 1

Number of full paths after hierarchy of end absos: 1

Filter paths having too_abstract_...conccpt

removed: (<abso TAUGHT.2) I <abso TEACH) D <abso TRSACI‘) C_INV <asp TRSACI‘.ACI'EE-TRSACI) A_INV <rcl ACI'EE~TRSACI‘)

A_INV ACI'EE.ACI‘EE-TRSACI‘) C_INV <abso THING) D <abso PHY_OBJECI‘) D <abso ANIMATE) D <abso ANIMAL> D

<abso HIG _ANIMATE) D <abso PERSON) D <abso TEACH_PROFESSIONAL) D <abso TEACHER) I <abso TEACHER.1))

Final paths scleaedtn pickup_interp: no paths found.

start of branchtn go_several_ntles—- (MAIN-VERBZ)

Suggestion received: dir=CONNECF ol=<abso TEACHER. l) 02=<abso TAUGHT.2) o3-5UBJ whichasp: NIL

two-way collisions bctw <abso TAUGHT.2) and <abso TEACHER. 1): 31

3 of paths for these two-way collisions: 1502

call into secondary market passing

Number of original three-way collisions : 3

nunber of collisions before H-heuristics : 3

drop collision at filter]: cnode=<rel ACTOR-AC1)

d collision at filterl: cnode:<rel AC'IOR-TRSACT)

o collisions after H-heuristic: 1

Number of full paths bef it rel filtering-- 1

number of full paths after num. relation filtering-- 1

Number of full paths after hierarchy of end absos-- 1

Final paths selectedtn pickup_jitter-EH

<<>> (<abso TEACH) <absoTEA _PROFESSIONAL) (<abso TAUGHT.2)I <abso TEACH) C_INV <asp TEACH.TEACHER-TEACH)

A_INV (rel TEACHER-TEACH) A__INV <asp TEACHER.TEACHER-TEACH) P_INV <abso TEACH_PROFESSIONAL) D <abso

TEACHER) I <abso TEACHER.1>)

_.— Treestn CLIST

node:836 pos:(8) name:NIL range:(1 4) semsug:NIL

parent:NIL features:((8 (MAIN))) trace.NIL

0d 8837 SS 1 l :NIL

.....i"w"osoo F“(mlté's'i‘fgfl”if" ’ m“

nodeNP38):narneNIL range:(2 3) serum

paratt:S36 (mmcautres:((NP (NUM 3S) (MODIFIABLLE)(SUBD)) trace:NIL

node:NC39 pos:(NC) name:NIL range:(22) semsug)NIL

parent:NP38 features:((NC (NUM 18828 38 IP 2P3))) trace:NIL

nodc:NS4O pos:(NS) name:NIL rang:)e(22)u:NILscmsg

parentzNC39 features.((NS (NUM 1828 38 1P 2P P))) trace:NIL

node:DET41 pos:(DET) name:THE c:(2 2) semsugzNIL

parattzNS4O featurcs:(((DET (NUM 18 38 1P 2P 3P))) trace:NIL

;ooo-.NOUN42 poo(NOUN) name:TEACHER W'.(3 3) semsug:NIL

Mme features:((NOUN (NUM 33)» trace

node:AUX43 pos.(AUX) nune:NIL range:NIL semsug:NIL

parent:S36 features:((AUX)) trace:NIL

nodc:VP44 pos:(VP) name:NIL range:(4 4) semsugzNIL

186

parcnt:S36 features:((VP (NUM 18 28 3S 1P 2P 3P) (DATIVE-PREP TO) (DATIVE) (TRANSITIVE) (MAIN) (TEVSE PAST) (EN)))

node:V35 pos:(V) namezTAUGHT range:(4 4)sesnsu:(<abso TEACHERJ) <abso TAUGHT.2> SUBJ NIL)

parent:VP44features:((V (EN) (TENSE8PAST) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

Comemto rule-matchingpa

No rules matched.(just afterNEXT_ROUNDI)

------- justify linishedas success ----------

End of one rule-process for=(MAIN-VERBZ) merit=(<abso TEACH) <abso TEACH_PROFESSIONAL> (<abso TAUGHT.2> I <abso TEACH)

C_INV <asp 'IEACH.TEACHER-'IEACH> A_INV <rel TEACHER-TEACH) A_INV <asp TEACHERTEACHER-TEACH) P_INV

<abso 'IEACH_PROFESSIONAL> D <abso TEACHER) I <abso TEACHERJ)»

startof rmparallcltill cneis found.#of branchcs:2

#ofscmbranchcs=2 #ofnoscrnbranches:0

Backed up branches into I'backup-staclt“ : (NP-VPPl)

Branches to corttinue to run : (MAIN-VERB2)

FINAL One brutch chosen after parallel execution: (MAIN-VERB2)

Come into rule-matching part...

Retum from rule-matching routine. rules: NIL

------- justify finiahed.as success ------------

RRRRRRRRRead next word : BY

A word read irt read-word: word=BY

Come into rule-matching part...

Return from rule—matching routine. rules: NIL

No rules are found.

-------- ' s ' finished.“ success ----«-—------

cad next word : THE

A word read in read-word: word=THE

Come into rule-matching part...

Retum from rule—matching routine. rules: (PARSE-DET)

Only one rule selected = PARSE-DET

Trees in CLIST

node:S36 pos:(S) name:NIL range:(l 4) semsugzNIL

parcntzNIL features:((S (MAIN))) trace:NIL

node:SS37 pos:(SS) namc:@ range:(l l) semsugzNIL

m-SUE11836 features:((88)) trace:NIL

node:NP38 pos:(NP) name:NIL range:(2 3) semsug:NIL

parent2836 features:((NP (NUM 3S) (MODIFIABLE) (SUBD)) trace:NIL

;odezNC39 pos:(NC) name:NIL range:(2 2) semsugzNIL

parentzNP38 features:((NC (NUM 18 28 38 1P 2P 3P)))tracc1NIL

node:NS40 pos:(NS) name:NIL range:(2 2) scmsug:NIL

parentzNC39 features:((NS (NUM 18 28 3S 1P 2P 3P))) trace:NIL

node:DET4l pos:(DET) namczTHE range:(2 2) semsugzNIL

parent:NS40 features:((DET (NUM 18 28 3S 1P 2P 3P))) trace:NIL

iiodeNOUN42 pos:(NOUN) namc:TEACHER range:(3 3) scmsug:NIL

paretn:NP38 features:((NOUN (NUM 3s») trace-.NIL

nodc:AUX43 pos:(AUX) name:NIL range:NIL semsugzNIL

parutt:836 features:((AUX)) trace:NIL

node:VP44 pos:(VP) name:NIL range:(4 4) semsugzNIL

parent:836 features:((VP (NUM 18 28 3S 1P 2P 3P) (DATIVE-PREP TO) (DATIVE) (TRANSITIVE) (MAIN) (TENSE PAST) (EN)))

node:V35 pos:(V) name:TAUGHT range:(4 4) scmsug:(<abso TEACHERJ) <abso TAUGHT.2) SUB] NIL)

parentzVP44 features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

nodczPREP45 pos:(PREP) namc:BY range:(S 5) semsugzNIL

parent:NIL features:((PREP)) trace:NIL

node:N847 pos:.(NS) name:NIL range:(6 6) sernsug.NIL

parent:NIL cat:ures((NS (NUM 18 28 3S 1P 2P 3P))) trace:NIL

node.DET46 per:.(DET) name:THE range:(6 6) semsug:NIL

parentzNS47 tures:((DET (NUM 18 28 3S 1P 2P 3P))) trace:NIL

Cometnto rule-matching part...

Return from rule-matching routine rules: NIL

187

No rules are found.

------ justify finishedas success --....m---”

RRRRRRRRRead next word : POOL

passing markers. instance=<abso POOL.3>

thisis regular collision at <abso PLACE>.

thists regular collision at <abso INANIMATE>.

this is regular collision at <asp ACT.ACI‘OR-ACb.

Loop detected at cnode=<asp ACT.INSTR-AC'b

this is regular collision at <asp ACLACCOMPANIER-AC'b.

this is regular collision at <abso TRSACIB.

Loop detected at mode-«asp POS.IDENTITY-REL>

Bump into node carrying same ori mark at cnode=<asp ACI'.PURPOSE-ACT>

this is regular collision at <rel AG-EXAMINE>.

A word readin read-word:p‘word=POOL

Comeinto rule-matching

Retum from rule-matching”routine. mles= (NOUN-PARSEI)

Only one rule selected = NOUN-PARSE1

Treesin CLIST

node:836 pos:(8) name:NIL range:(1 4)semsugzNIL

parent:NIL features:((8 (MAIN))) trace.NIL

node:SS37 s.(88) name:@ran e.(l l) semsugzNIL

parmt:836 p0eatures:((SS)) trace:NIL:

-SUBJ--

node:NP38 s.(NP) name.NIL range.(2 3) sems

parent:836 Futures:((NP (NUM 38) (MODIFIABLE)(SUBJ))) trace:NIL

node:NC39 pos:(NC) name:NIL range:(2 2) semsugzNIL

parentzNP38 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

;ode.NS40 po:s(NS) name.NIL range:(22P'.NIL2)semsu§

parentzNC39p°features:((NS (NUM rs23 3s 1P2? P))) trace:NIL

node:DEI‘4l .(DE'I) name:THE e:(2 2) sansugzNIL

parentzNS40eatuyour“:((DET (NUM 18.2.8 38 1P 2P 3P)))trace1NIL

node:NOUN42 pos:(NOUN) name:TEACHER 7:31.243 3) semsug:NIL

parent:NP38 features:((NOUN (NUM 3S))) trace

node:AUX43 pos:(AUX) name:NIL range:NIL semsug:NIL

pamt:S36 features:((AUX)) trace:NIL

node:VP44 Foam.(VP) name:NILranranze(4 4) semsug:NIL

parent:S36 :((VP (DA'I'IVE- REP 10) (DATIVE) (TRANSITIVE) (MAIN) (TENSE PAST) (EN)))

node:V35 pos:(V) name:TAUGHT range:(4 4) semsug:(<abso TEACHER.l> <abso TAUGHT.2> SUBJ NIL)

parent:VP44 features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DAIIVE-PREP TO)))

node:PREP45 pos:(PREP) name:BY range:(5 5) semsug:NIL

parent:NIL features:((PREP» trace:NIL

node:NC49 pos:(NC) name:NIL rangze(6 6) semsugzNIL

parent:NIL features:((NC (NUM IS28 38 1P 2P 3P))) trace:NIL

node:N847 pos:(NS) name:NIL range:(6 6) semsug:NIL

parent:NC49 features:((NS (NUM 18 28 38 1P 2P 3P))) trace:NIL

nodezDET46 pos:(DET) namezTHE range:(6 6) semsugzNIL

parentzNS47 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN48 pos:(NOUN) namezPOOL range: (7 7) semsug:NIL

parent:NIL features:((NOUN (NUM 38))) trace:NIL

Comeinto rule-matching part...

Retum from rule-matching routine. rules: NIL

No rules are found.

-------- justify finished.“ success --------------

RRRRRRRRRead next word : PASSED

passing markers. instancc=<abso PASSED.4>

this is regular collision at <abso PASS>.

this is regular collision at <abso TRSACIB.

this is regular collision at <abso PHY_OBIEC'I>.

Loop detected at atmqsp ACTOR.ACIOR-ACI>

Loop detected at anode=<asp ACCOMPANIERACCOMPANIER-ACI‘)

Bump into node carrying same ori mark at cnode=<abso IT>

this is regular collision at (rel PAT-WRAP>.

Loop detected at mode=<abso PLACE>

188

Come into syntax-semantics.

A word read in read-word: word=PASSED

Come into rule-matching part...

Retum from rule-matching routine. rules: (NOUN-PARSE3)

Only one rule selected = NOUN-PARSE3

 Trees in CLIST

node:S36 pos:(S) name:NIL range:(l 4) semsug:NIL

parentzNIL features:((S (MAIN))) trace:NIL

node:SS37 pos:(SS) name:@ range:(l I) semsugzNIL

parcnt:836 fcatures:((88)) trace:NIL

«SUBL-

nodczNP38 pos:(NP) name:NIL range:(2 3) scmsug:NIL

paratt:836 features:((NP (NUM 3S) (MODIFIABLE) (SUBJ))) trace:NIL

node:NC39 pos:(NC) name:NIL rang:c(‘2 2g)scmsu:NIL

parera:NP38 features.((NC (NUM IS 28 38 1P 2P 3P))) trace:NIL

node:NS40 pos:(NS) name:NIL range:(2 2) semsugzNIL

parentzNC39 features:((NS (NUM IS 28 38 1P 2P 3P))) trace:NIL

node:DET41 pos:(DET) namezTHE range:(2 2) sansugzNIL

parentzN840 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN42 pos:(NOUN) namezTEACHER range:(3 3) semsugzNIL

parent:NP38 features:((NOUN (NUM 38))) trace:NIL

node:AUX43 pos:(AUX) name:NIL rangc:NIL semsugzNIL

parent:836 features:((AUX)) trace:NIL

nodezVP44 pos:(VP) name:NIL range:(4 4) semsug:NIL

parent'836 features ((VP (NUM 18 28 3S 1P 2P 3P) (DATIVE-PREP TO) (DATIVE) (TRANSITIVE) (MAIN) (TENSE PAST) (EN)))

node V35 pos (V) name:TAUGHT range:(4 4) semsug:(<abso TEACHER.1> <abso TAUGHT.2> SUB] NIL)

parent:VP44 features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

nodc:PREP4S pos:(PREP) namc:BY range:(S 5) semsug'NIL

parentzNIL features:((PREP)) trace:NIL

node:NPSI s.(NP) name:NIL rangc: (6 7) scmsu

parentzNIL r0eatzures((NP (NUM 38) (MODIFIABLLIE»)Ltrace:NIL

node:NC49 pos:(NC) name:NIL rangc:(6 6) semsug:NIL

parmtzNPSI features:((NC (NUM 18828 38 1P 2P 3P))) trace:NIL

node:N847 pos(N:8) nune:NIL range:(6 6) semsugzNIL

parentzNC49posfeatures:((NS (NUM 18g28 38 1P 2P P))) trace.NIL

node:DET46 g:(DET) amczTHE rangc:(6 6) semsugzNIL

parentzNS47 tures:((DET(NUM IS 28 38 1P 2P 3P))) trace:NIL

node:NOUN48 pos:(NOUN) namczPOOL range:(7 7) semsugzNIL

parentzNPSI features:((NOUN (NUM 38))) trace:NIL

Come into rule-matching part...

Retum from rule-matching routine. rules: (build-PP)

Only one rule selected = build-PP

Trees in CLIST

node:S36 pos:(S) name:NIL range:(l 4) semsugzNIL

parentzNIL features:((S (MAIN))) trace:NIL

node:SS37 pas:.(SS) name:@ranNE:.(1 l) semsug:NIL

parent.836 tures:((88)) trace:

«SUBL-

node:NP38 :(NP) name.NIL range:(2 3) semsu

parent:836 Shires:((NP (NUM 3S) (MODIFIABLLE)(SUBD)) trace:NIL

node:NC39 pos:(NC) name:NIL range:(2 2) semsugzNIL

parent:NP38 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NS40 po:s(N8) name:NIL range:(22) sernsuzNILg

parent:NC39p0features:((NS (NUM IS 28 38 1P 2P P))) tracc.NIL

nodc:DET4l :(DET) namezTHEran

parentzNS40 eatures:((DET (NUM 18

;ochOUN42 pos:(NOUN) name:TEACHERran c:(3 3) semsug:NIL

parerrtzNP38 features:((NOUN (NUM 35)» trace:NIL.

c:(2 2) semsugzNIL

38 1P 2P 3P))) trace:NIL

189

nodezAUX43 pos:(AUX) name:NIL rangczNIL semsugzNIL

parerrt:836 features:((AUX)) trace:NIL

node:VP44 Fos:(VP))name:NIL range:(4 4) semsug:NIL

parcnt:836 eatures:((VP (DATIVE-PREP T0) (DASTIVE) (TRANSITIVE) (MAIN) (TENSE PAST) (EN)))

node:V35 pos:(V) name.TAUGHT range:(4 4)scrnmy(<abso TEACHERJ> <abso TAUGHT.2> SUBJ NIL)

parem:VP44 features:((V (EN) (TENSE PAST)NIL (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

node:PP52 pos:(PP) name:NIL range:(5 7) semsug

parent:NIL features:((PP (MODIFIABLE) (NUM 3s»)mmcezNIL

node:PREP45 pos:(PREP) namezBY range:(5 5) sunsug:NIL

parurtzPP52 features:((PREP)) trace:NIL

node:NPSI pos:(NP) name:NIL range:(6 7) semsugzNIL

parcntzPP52 features:((NP (NUM 3S) (MODIFIABLE))) trace:NIL

node:NC49 pos:(NC) name:NIL range:(6 6) semsugzNIL

parentzNPSI features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NS47 pos:(NS) name:NIL range:(6 6) scrnsugzNIL

parent:NC49 features:((NS (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:DET46 pos:(DET) namczTHE range:(66) semsugzNIL

parmuNS47 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN48 pos:(NOUN) namc:POOL range:(7 7) sernsugzNIL

parerrtzNP51 features:((NOUN (NUM 3S))) trace:NIL

Come into rule-matching part...

Return from nrlc-rnatching routine. rules: (VP-PP)

Only one rule selected = VP-PP

Suggestion received: dip-CONNECT ol=<abso TAUGHT.2> o2=<abso POOL.3> o3=BY whichasp= NIL

two-way collisions bctw <abso POOL.3> and <abso TAUGHT.2> = 27

ofpaths for these two-way collisions = 562

callrate secondary marker passing

Number of original three--way collisions-- 2

number of collisions before H-heuristics: 2

f of collisions after H~heuristicz 1

Number of full paths bcf it rel filtering = 1

number of full paths after nurn. relation filtering = 1

Number of full paths after hierarchy of end absos = 1

Final paths selectedIn pickup_irrterp.

<<>> (<abso PLACE> <abso TEACH) (<abso POOL3> I <abso POOL> D <abso PLACE> C_INV <asp LOC.LOCTEACH) A_INV

<rel LOC-TEACH> A_INV <asp TEACH.LOC-TEACH> C_INV <abso TEACH> I <abso TAUGHT.2>))

—— Trees in CLIST

node:S36 pos:(S) name:NIL range:(l 4) semsug:NIL

parerruNIL features:((S (MAIN))) trace:NIL

0d 8837 SS 1 l :NIL

WWW‘us36 121‘...‘J«“s‘s“>3°3££i°(’m‘“

;{Jims .(NP) name:NIL range:(2 3) scrnsu

parcrrt:836eaturoan”:((NP (NUM 3S) (MODIFIABLLE)(8UBJ))) trace.NIL

node:NC39 pos:(NC) name:NIL rangc:(2

parerrtzNP38 features:((NC (NUM 18828 38)lPZP253$)»Ltrace:NIL

node:NS40 pos:(NS) name:NIL range:(2 2)semsusuzNIgL

paresrtzNC39 features:((NS (NUM IS 28 38 1P 2P P))) trace:NIL

nodezDET4l pas:.(DET) name:THE range:(2 2) semsug:NIL

parurtzNS40 res:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

;odc:NOUN42 pos:(NOUN) name:TEACHER c:(3 3) semsug:NIL

parent.NP38 features:((NOUN (NUM 38))) tracefNfi.

node:AUX43 pos:(AUX) name:NIL range:NIL semsug:NIL

parent:S36 features:((AUX)) trace:NIL

node:VP44 .(VP) name:NH. range:(4 7) semsug:NIL

parurt:836 mm:((VP (DATIVE-PREP T0) (DATIVE) (TRANSITIVE) (MAIN) (TENSE PAST) (EN)))

node:V35 pos:(V) name:TAUGHT range:(4 4) semsug:(<abso TEACHER. l> <abso TAUGHT.2> SUBJ NIL)

parent:VP44 features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP T0)))

nodezPP52 pos:(PP) name:NIL range:(S 7) sernsug:NIL

190

parem:VP44 features:((PP (MODIFIABLE) (NUM 3S))) trace:NIL

r:ode:PREP45 pos:(PREP) namezBY range:(S S) semsug:NIL

paruttzPPSZ features:((PREP)) trace:NIL

node:NP51pozs(NP) name:NIL range:(6 7) sernmEéabso TAUGHT.2> <abso POOL.3> BY NIL)

parentzPPSZfeatures:((NP (NUM 38) (MODIFIAB))) trace:NIL

node:NC49 pos:(NC) name:NIL rang:sernse(66)sernsug).NlL

parurtzNPSI features:((NC (NUM 18 28 381P2P 3))) trace:NIL

node“:NS47 pos:(NS) name:NIL range.(6 6) semsugzNIL
parentzNC49p“features.((NS (NUM 18828 38 1P 2P P))) trace.NIL

node:DET46 (DEF) name:THE range:(6 6) semsug:NIL

parent:NS47 Futures:((DET (NUM 18 28 38 1P 2P 3P)g)) trace:NIL

;we1NOUN48 pos:(NOUN) namezPOOL range:(7 7) sernsug:NIL

parattzNPSI features:((NOUN (NUM 38))) trace:NIL

Come into rule-matching part...

Retum from rule-matching routine. rules: NIL

No rules are found.

----- justify finished.“ success ----------

anobjectreadinfromcash=VSO

Comeinto rule-matching part...

Return from rule-matching routine. rules: (NP--VPP)

Only one rule selected: NP-VPP

Suggestion received: dir=CONNECF 01=<abso POOL3> 02=<abso PASSED.4> 03:03] whichasp= 2

two-way collisions betw <abso PASSED.4> and <abso POOL.3>-- 17

ll of paths for these two-way collisions = 356

call into secondary marker passing

Number of original three-way collisions = 1

nmnber of collisions before H-heuristics = 1

of collisions after H-heuristic: 1

Number of full paths bef it rel filtering = 1

number of full paths after nurn. relation filtering = 1

Number of full paths after hierarchy (I end absos = 1

Filter paths having too__abstract_concept....

Final paths selected in pickup_interp: no paths found.

Comeinto backup...

Comeinto backup..original rule: (NP-VPPI)

--== Trees in CLIST

node:SlO pos:(S) name:NIL range:(l 3) semsugzNIL

parentzNIL features:((S (MAIN))) trace:NIL

node.8811 pas:.(SS) name:@ range:(1 1) sernsug:NIL

pasta);.810 res.((88)) trace:NIL

node:NP.12)nameleL range:(2NIL) sem .NIL

parent:810 Futures:((NP (NUM 3S) (SUBJ))) trace:NS.

node:NC13 pos:(NC) name:NIL range:(2 2) semsug:NIL

parern:NP12 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:N814 pos:(NS) name:NIL range:(22) semsug:]‘JIL

parentzNCl3 features:((NS (NUM IS28 38 1P 21’ P))) trace:NIL

nodezDET15 :(DET) name.TI-IE marge:.(2 2) semsug:NIL

parartzNSM eaztures((DET (NUM 18 38 1P 2P 3P))) trace:NIL

;odezNOUNlé pos:(NOUN) name:TEACHER range:(3 3) sernsug:NIL

parentzNPIZ features:((NOUN (NUM as)» trace:NIL

node.817Mros;(8)name:NIL range:(4NIL) semsug:NIL

sum eatuzres((8 (SEC)(muoox)» trace:NIL

Jude:NP18 .(NP) name:NIL ran e:NIL sernsug:NIL

parent:817 museseatures:((NP (DUMMY))tracezNIL

nodezAUX19 pos:(AUX) name:NIL rangezNIL sernsugzNIL

parentzs17 features:((AUX (PASSIVE))) trace:NIL

;odeNPZO Fos:(VP) name:NIL range:(4 NIL) semsug1NIL

parent:Sl7 eatures:((VP)) trace:NIL

node:V9 pos:(V) namezTAUGHT range:(4 4) semsug:(<abso 'I‘EACHER.1> <abso TAUGHT.2> TO 2)

191

parent:VP20 features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO) (NUM 18 28 38 1P 2P 3P)))

«1081--

node:NP21 pos:(NP) name:NIL range:NIL semsug:NIL

parart:VP20 features:((NP (TRACE))) trace:NPlZ

node:Sl7 pos:(S) name:NIL ran e:(4 NIL) semsug:NIL

parentzN'I;12 features:((S (SEC) (TRUC-OK») trace:NIL

-.su ..

node:NP18 pos:(NP) name:NIL range:NIL sernsugzNIL

parent:817 features:((NP (DUMMY))) trace:NIL

nodezAUX19 pos:(AUX) name:NIL rangezNIL sernsugzNIL

param817 features:((AUX (PASSIVE))) trace:NIL

node:VP20 :(VP) name:NIL range:(4 NIL) semsug:NIL

parent:817 eatures:((VP)) trace:NIL

node:V9 pos:(V) name:TAUGHTranranzge.(4 4) sem :(<abso TEACHERJ) <abso TAUGHT.2> TO 2)

[3.13.ng features:((V (EN) (TENS PAST) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

node:NP21 pos:(NP) name:NIL rangezNIL semsugzNIL

parent:VP20 features:((NP (TRACE))) trace:NP12

Come into rule-matching part...

Return from rule-matching routine. rules: NIL

No rules are found.

--«-- justify finished.“ success --------------

Save backup pain for sec clause:(Sl7 810)

A word read in read-word: word=BY

No rules are found.

««««« justify finished.as success ..------------

A word read in read-word: wordleIE

Come into rule-matching part....

Return from rule-matching routine. rules: (PARSE-DET)

Only one rule selected = PARSE-DET

This rule executed.

Come into rule—matching part...

Retum from mic-matching routine. nrles= NIL

No mles are found.

«mm ' stify finished.“ success ------------

A w read in read-word: word=PO0L

Come into rule-matching part...

Retum from rule-matching routine. rules: (NOUN-PARSEl)

Only one rule selected = NOUN-PARSEI

Ibis rule executed.

Come into rule-matching part...

Retum from rule-matching routine. rules: NIL

No rules are found.

-------- ' stify finished.as success .-----.--...--

A w readit: read-word: word=PASSED

Come'into rule-matching part...

Return from rule-matching routine. rules: (NOUN-PAR8E3)

Only one rule selected: NOUN-PARSE3

This rule executed.

Comeinto rule-matchin part...

Retum from rule-matching routine. rules=build-PP

Only one rule selected: build-PP

aTree: in CLIST

node:SlO pos:(S) name:NIL range:(13)semsug:NIL

parentzNIL features:((S (MAIN))) trace:NIL

node:SSl] pos:(SS) narne:@ range:(l l) sesnsugzNIL

pasrstfiESIO features:((88)) trace:NIL

node:NP12 pos:(NP) name:NIL range:(2 NIL) semsug:NIL

parent:810 features:((NP (NUM 38) (8081») trace:NIL

node:NCl3 pos:(NC) name:NIL range:(2 2) semsug:NIL

parentzNP12 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

192

node:NSl4 pos:(NS) name:NIL range:(2 2) sernsug:NIL

parentzNC13 features:((NS (NUM IS 28 38 1P 2P 3P))) trace:NIL

node:DET15 pos:(DET) name:THE range:(2 2) semsugiNIL

parartzN814 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

;odezNOUN16 pos:(NOUN) namez'I'EACHER range:(3 3) sernsug:NIL

parentzNPIZ features:((NOUN (NUM as)» trace:NIL

node:Sl7 pos:(S) name:NIL range:(4 NIL) sernsugzNIL

parent:NPl2 features:((S (SEC) (STRUC~OK))) trace:NIL

«SUBL-

nodezNPl8 pos:(NP) name:NIL rangezNIL semsugzNIL

parent:817 features:((NP (DUMMY))) trace:NIL

nodezAUXl9 pos:(AUX) name:NIL rangezNIL sernsug:NIL

parent:817 features:((AUX (PASSIVE))) trace:NIL

node:VP20 pos:(VP) name:NIL range:(4 NIL) sernsugzNIL

parent:Sl7 features:((VP)) trace:NIL

;ode:V9 pos:(V) narnezTAUGHT range:(4 4) semsug:(<abso TEACHERJ) <abso TAUGHT.2> TO 2)

paIrentiVPZO features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

.. ()3 --

node:NP21 pos:(NP) name:NIL rangezNIL semsugzNIL

pathPZO features:((NP (TRACE))) trace:NP12

node:Sl7 pos:(S) name:NIL range:(4 NIL) semsug:NIL

parentzNPIZ features:((S (SEC) (STRUC-OK)» trace:NIL

«SUBL-

node:NP18 :(NP) name:NIL range:NIL sernsugzNIl.

parent:817 eatures:((NP (DUMMY))) trace:NIL

nodezAUXl9 pos:(AUX) name:NIL rangezNIL sernsug:NIL

parent:817 features:((AUX (PASSIVE))) trace:NIL

node:VPZ) :(VP) name:NIL range:(4 NIL) semsugzNIL

pamt:817 eatures:((VP)) trace:NIL

node:V9 pos:(V) name:TAUGHT ran e:(4 4) semsug:(<abso TEACHER.1> <abso TAUGHT.2> TO 2)

parent:VP20 features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DAIIVE~PREP TO))) trace:NIL

--IOBJ--

node:NP21 pos:(NP) name:NIL range:NIL semsugzNIL

parent:VP20 features:((NP (TRACE))) trace:NP12

nodezPP78 pos:(PP) name:NIL range:(S 7) semsugtNIL

parentzNIL features:((PP (MODIFIABLE) (NUM 3S))) trace:NIL

nodezPREP71 pos:(PREP) namezBY range:(S 5) semsugzNIL

parent:PP78 features:((PREP)) trace:NIL

node:NPTI pos:(NP) name:NIL range:(67)semsu :NIL

parent:PP78 features:((NP (NUM 3S) (MODIFIAB))) trace:NIL

node:NC75 pos:(NC) name:NIL range:(6 6) semsugzNIL

parent:NP77 features:((NC (NUM IS 28 3S 1P 2P 3P))) trace:NIL

node:NS73 s:(NS) name:NIL range:(6 6) sernsugzNIL

parent:NC7 features:((NS (NUM IS 28 38 1P 2P 3P))) trace:NIL

nodezDET72 pos:(DET) namezTHE range:(6 6) semsugzNIL

paruitzNS73 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN74 pos:(NOUN) name:POOL range:(7 7) semsugzNIL

parent:NP'77 features:((NOUN (NUM 38))) trace:NIL

Come into rule-matching part...

Return from flue-matching routine. rules: (VP-PP PASSIVE—BY)

come into go_on_several_niles. rules: (PASSIVE-BY VP-PP)

start of branch in go__several_rules = (PASSIVE-BY)

Suggestion received: dir=CONNECF ol=<abso TAUGHT.2> 02=<abso POOL.3> 03$UBJ whichasp= 2

two-way collisions betw <abso POOL3> and <abso TAUGHT.2> = 27

ll of paths for these two-way collisions = 562

call into secondary marker passing

Number of original three-way collisions = 0

No three way collision found.....

This launch is removed.

start of branch in go_several_rules = (VP-PP)

Suggestion received: dir=CONNECT ol=<abso TAUGHT.2> 02=<abso POOL.3> o3=BY whichaspr: NIL

two-way collisions betw <abso POOL.3> and <abso TAUGHT.b = 27

ll of paths for these two-way collisions = 562

193

call into secondary marker passing

Number of original three-way collisions = 2

number of collisions before H-heuristics = 2

drop collision at filterl: cnode=<rel LOC-ACT>

of collisions after H-heuristic: 1

Number of full paths bef ll rel filtering = 1

number of full paths after num. relation filtering = 1

Number of full paths after hierarchy (I end absos = 1

Final paths selectedin pickup_interp.

<<>> (<abso PLACE> <abso TEACH> (<abso POOL.3> I <abso POOL> D <abso PLACE> C_INV <asp LOC.LOC-TEACH> AINV

<rel [DC-TEACH> AINV <asp TEACH.LOG-TEACH) C__INV <abso TEACH) I <abso TAUGHT.2>))

==—-- Trees in CLIST -—-—-

node:SlO7 pos:(S) name:NIL range:(l 3) sernsug:NIL

parent:NIL features:((S (MAIN))) trace:NIL

node:SSIOS Fos:.(SS) narne:@ range:(l 1) sernsug:NIL

paren.suE38107 eat:ures((88)) trace:NIL

node:NP109 :(NP) name:NIL range:(2 NIL) sernsu :NIL

parent:8107 eatures:((NP (NUM 3S) (SUBD)) trace:NI

node:NCllO pos:(NC) name:NIL rangze(2 2) sernsu

parent:NPlO9 features:((NC (NUM 18828 38 IP 2P33%»)trace:NIL

node:N81 11 pos:(NS) name:NIL range:(2 2))sernsu;:NIL

pawn:NCl 10pmfeatures:((NS (NUM 18 28 38 1P 2P P))) trace:NIL

nodezDET112 :(DET) narnezTHE range:(2 2) sernsug:NIL

parartzN81ll eatures:((DET (NUM 18 28 3S 1P 2P 3P))) trace:NIL

node:NOUN113 pos:(NOUN) name:TEACHERranME:-(3 3) sernsug:NIL

pawn:NP109 features:((NOUN (NUM 38))) trace

node:Sl l4 pos:(S) name:NIL range:(4 NIL) sernsug:NIL

pawnzNP109features:((S (SEC) (STRUC-OK») trace:NIL

«SUBJ—

node:NP1 15 ros:.(NP) nameNIL range.:NILsemsugNIL

parent:8114 eatu:res((NP (DUMMY))) trace:NIL

node:AUX116 pos:(AUX) name:NIL range:NIL sernsug:NIL

parent:8114 features:((AUX (PASSIVE))) trace:NIL

node:VP117 :(VP) name:NIL range:(4 7) semsugzNIL

parent:8114 eatures:((VP)) trace:NIL

node:V118 pos:(V) namezTAUGHT range:(4 4) sems :(<abso TEACHER.1> <abso TAUGHT.2> TO 2)

paIrOenBtJNPl 17 features:((V (EN) (TENSE PAST) (M (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

node:NP119 pos:(NP) name:NIL range:NIL sernsug:NIL

parent:VP117 features:((NP (TRACE))) trace:NP12

node:PP1(X).(PP) name.NILran e.(5 7) sansug:NIL

parent:VP1 lfieatureseatures:((PP (MODIFIEABLE) (NUM 38))) trace:NIL

node:PREP101 pos:(PREP) namezBY range:(S 5) sernsug:NIL

parent:PP1(X) features:((PREP)) trace:NIL

node:NP102 pos:(NP) name:NIL range:(6 7) sernsuf‘éabso TAUGHT.2> <abso POOL.3> BY NIL)

pawn:PP1(X) features:((NP (NUM 38) (MODIFIAB))) trace:NIL

node:NC103 pos:(NC) name:NIL range:(6 6) sernsug:NIL

parent:NPlO2 features:((NC (NUM 18 28 3S 1P 2P 3P))) trace:NIL

node:N8104 pos:(N8) name:NIL range:(6 6) sernsug:NIL

pawn:NC103 features.((NS (NUM 18828 3S 1P 2P P))) trace:NIL

nodezDETIOS Fos:.(DET) name:THE range:(6 6) semsug:NIL

parent:NSlO4 tures:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN106 pos:(NOUN) name:POOL range:(7 7) sernsug:NIL

parent:NP102 features:((NOUN (NUM 38))) trace:NIL

node:81 14 (.8) name:NIL range:(4 NIL) semsug:NIL

parersttU1:13PM?seazmres((8 (SEC) (STRUC-OK))) trace:NIL

node:NP115.(NP) name:NIL range:NIL semsug:NIL

parent:81 14 F05:eature:s((NP (DUMMY))) trace:NIL

node:AUXl 16 pos:(AUX) name:NIL range:NIL semsug:NIL

paratt:8114 features:((AUX (PASSIVE)))8trace:NIL

194

;ode:W117 for:.(VP) name:NIL range:(4 7) sernsug:NIL

parart:81 14 eatures(:(VP)) trace:NIL

node:V118 pos:(V) narnezTAUGHT range:(4 4) semsu :(<abso TEACHERJ) <abso TAUGHT.2) TO 2)

wwr17 features:((V (EN) (TENSE PAST)) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

node:NP119 pos:(NP) name:NIL rangezNIL sernsug:NIL

parent:VP117 features:((NP (TRACE))) trace:NPl2

node:PP100 ros:.(PP) name.NIL range.(5 7) semsug:NIL

parern:VP11 featueatu:res((PP (MODIFIABLE) (NUMg3S))) trace:NIL

node:PREP101 pos:(PREP) name:BY range:(5 5) sernsug:NIL

pawtt:PP100 features:((PREP)) trace:NIL

node:NP102 pos:(NP) nune:NIL range:(6 7) semsug:.(<abso TAUGHT.2> <abso POOL.3> BY NIL)

parentzPPIOO features:((NP (NUM 38) (MODIFIAB E))) trace:NIL

node:NC103 pos:(NC) name:NIL range:(6 6) semsug:NIL

pamePlOlfeatures.((NC (NUM 18828 38 1P 2P 3P))) trace:NIL

node:N8104pos:(NS) name.NIL range:(6 6) sernsug:NIL

parentzNC103p08features.((NS (NUM 1828 38 1P 2P P))) trace:NIL

node:DET105 pos:(DET) name.THEranmarge:.(6 6) sernsug:NIL

parent:N8104 features:((DET (NUM 18 3S 1P 2P 3P))) trace:NIL

node:NOUN106 pos:(NOUN) namezPOOL range:(7 7) sernsug:NIL

parentzNP102 features:((NOUN (NUM 38))) trace:NIL

beginning of NEXT_round.

Comeinto rule-matching part

No rules matched.(just after NEXT_ROUNDI)

------- justify finished.as success ..-----.----..

End of one rule-process for-.(VP-PP) merit-(<abso PLACE> <abso TEACH) (<abso POOL.3> I <abso POOL> D <abso PLACE> C_INV

<asp LOCLOC-I'EACIb A_INV <rel LOG-TEACH) A_INV <asp 'I‘EACH.LOC-TEACH> C_INV <abso TEACH> I <abso TAUGHT.2>»

startofnmparalleltilloneisforrrrd.#ofbranches:1

if of sern bmches: 1 0 of no sem branches: 0

Backed up branches into ‘back -stack‘ :

Branches to continue to run : -PP)

FINAL One branch chosen after parallel execution: (VP-PP)

only one branch chosen in parallel.

Comernto rule-matching part...

Retum from rule-matching routine. rules: NIL

No rules are found.

-------- justify finished.as success ---..---..----

Save backup point for sec clause:(8114 8107)

an object readtn from cash: V120

Come into rule—matching part.

Return from rule-matching routine. rules: (NP--VPP)

Only one rule selected : NP-VPP

Suggestim received: dir:CONNECI' 01=<abso POOL.3> ok<abso PASSED.4> o3=OBJ whichasp: 2

two-way collisions betw <abso PASSED.4> and <abso POOL.3> : 17

of paths for these two-way collisions : 356

call into secondary marker passing

Number of original three-way collisions : 1

number of collisions before H-heuristics : 1

of collisions after H-heuristic: 1

Number of full paths bef # rel filtering : 1

number of full paths after num. relation filtering-- 1

Number of full ths after hierarchy of end absos-- 1

Filter paths havrng too_abstract_...conccpt

Final paths selectedtn pickup_interp: no paths found.

Come into backup...

Come into rule-matching part...

Retum from rule-matching routine. rules: NIL

No rules are found.

4.---.. justify finished.as success --------------

195

anobjectreadinfromcash=V141

Come into rule-matching part...

Return from rule-matching routine. rules: (MAIN-VERB2)

Only one rule selected : MAIN-VERB2

Suggestion received: dim-CONNECT ol=<abso TEACHERJ) o2=<abso PASSED.4> o3=SUBJ whichasp: NIL

two-way collisions betw <abso PASSED.4> and <abso TEACHER. l) : 30

it of paths for these two-way collisions : 1048

call into secondary marker passing

Number of original three-way collisions : 3

number of collisions before H-heuristics : 3

drop collisiat at filterl: cnode=<rel ACTOR-ACT)

drop collision at filter]: cnode=<rel ACI‘OR-TRSACD

of collisions after H—heuristic: 1

Number of full paths bef # rel filtering : 1

number of full paths after num. relation filtering : 1

Number of full paths after hierarchy of end absos : 1

Final paths selected in pickup_interp.

<<>> (<abso PASS) <abso ANIMAL> (<abso PASSED.4> I <abso PASS) C_INV PASS.PASSER-PA88) A_INV <rel PASSERPASS)

A_INV <asp PASSER.PASSER-PASS> C_INV <abso ANIMAL> D <abso HIGl-l_ ATE> D <abso PERSON> D

<abso TEACH_PROFESSIONAL> D <abso TEACHER) I <abso TEACHER.1>))

Trees in CLISTm

node:8121 pos:(S) name:NIL range:(l 8) sernsug:NIL

parentzNIL features:((S (MAIN))) trace:NIL

node:88122 pos:(SS) name@ range:(l 1)sernsug:NIL

$638121 features:((SS))trace:NIL

node:NP123 pos:(NP) name:NIL range:(2 NIL) sernsug:NIL

pawrt:8121 features:((NP (NUM 38) (SUBJ))) trace:NIL

node:NC124 pos:(NC) nune1NIL range:(2 2) sernsug:NIL

parentzNP123 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:N8125 pos:(NS) name:NIL range:(2 2) sernsug:NIL

parent:NC124 features:((NS (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:DET126 pos:(DET) name:THE range:(2 2) sernsug:NIL

pararuN8125 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN127 pos:(NOUN) name:TEACHER range:(3 3) sernsug:NIL

pawn:NPl23 features:((NOUN (NUM 3S))) trace:NIL

node:8128 pos:(S) name:NIL range:(4 NIL) sernsug:NIL

pagnfilgglfi features:((S (SEC) (STRUC-OK) (CLOSED))) trace:NIL

node:NP129 pos:(NP) name:NIL range:NIL sernsug:NIL

pawrt:8128 features:((NP (DUMMY))) trace:NIL

node:AUXl30 pos:(AUX) name:NIL range:NIL semsug:.NIL

parent:8128 features:((AUX (PASSIVE))) trace:NIL

node:VP131 pos:(VP) name:NIL range:(4 7) sernsug:NIL

pawn:8128 features:((VP)) trace:NIL

node:V132 pos:(V) name:TAUGI-IT range:(4 4) sernsug:(<abso TEACHERJ) <abso TAUGHT.2> TO 2)

palroaétivmfl features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

node:NP133 pos:(NP) name:NIL range:NIL sernsug:NIL

parent:VP131 features:((NP (TRACE))) trace:NP12

node:PP134 pos:(PP) name:NIL range:(5 7) sernsug:NIL

parent:VPl3l features:((PP (MODIFIABLE) (NUM 38))) trace:NIL

node:PREP135 pos:(PREP) name:BY range:(5 5) sernsug:NIL

parent:PP134 features:((PREP)) trace:NIL

node:NPl36 pos:(NP) name:NIL range:(6 7) semsug:(<abso TAUGHT.2> <abso POOL.3> BY NIL)

parent:PP134 features:((NP (NUM 38) (MODIFIABLE))) trace:NIL

node:NC137 pos:(NC) name:NIL range:(6 6) sernsug:NIL

parentzNP136 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:N8138 :(NS) name:NIL range:(6 6) sernsug:NIL

pawrt:NC13 features:((NS (NUM 18 28 38 1P 2P 3P))) trace:NIL

nodezDET139 pos:(DET) name:THE range:(6 6) sernsug:NIL

parentzNSl38 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

196

node:NOUN140 pos:(NOUN) namezPOOL range:(7 7) semsugzNIL

pawrtzNP136 features:((NOUN (NUM 38))) trace:NIL

node:AUX147 pos:(AUX) name:NIL range:NIL sernsug:NIL

parun:8121 features:((AUX)) trace:NIL

node.VP148 pos:(VP) name:NIL range:(8 8) sernsug:NIL

parent:8121 features:((VP (NUM 18 28 38 1P 2P 3P) (TRANSITIVE) (EN) (TENSE PAST) (MAIN))) trace:NIL

node:V141 pos:(V) namezPASSED range:(8 8) sernsug:(<abso TEACHER. 1) <abso PASSED.4> SUBJ NIL)

pawn:VP148 features:((V (MAIN) (TENSE PAST) (EN) (TRANSITIVE) (NUM 18 28 38 1P 2P 3P))) trace:NIL

Come into rule-matching part...

Return from mic-matching routine. ntles= NIL

No rules are found.

-------- {IEEK finished.as success --------------

next word : THE

A word read in read-word: word=THE

Come into rule-matching part...

Return from ntle-matching routine. rules: (PARSE-DET)

Only one rule selected : PARSE-DET

This rule executed.

Come into rule-matching part..“

Return from mle-matching routine. rules: NIL

No rules are found.

-------- justify finished.” success --------------

RRRRRRRRRead next word : TEST

passing markers. instance=<abso TEST.5>

this is regular collision at <abso GENERAL_I'EST>.

Bump into node carrying same ori mark at cnode=<abso STATE)

this is regular collision at <rel STEAL-ER).

this is regular collision at <rel AG-ACQUIRE).

this is regular collision at <rel AG-DISCUSS).

A word read'in read-word: word=TE8T

Come into rule-matching part.

Retum from nrle-matching routine. ntles= (NOUN-PARSEI)

Only one rule selected : NOUN-PARSEI

This rule executed.

Come into rule—matching part...

Return from mle-rnatching routine. rules: NIL

N0 rules are found.

------ justify finished.“ success --------------

RRRRRRRRRead next word : @.

A word read in read-word: word=@.

Come into rule-matching part...

Return from rule-matching routine. rules: (NOUN-PARSE3)

Only one rule selected : NOUN-PARSE3

Trees in CLISTa

node:8121 pos:(S) name:NIL range:(18)semsug:NIL

parent:NIL features:((S (MAIN))) trace:NIL

node:88122 :(SS) nune:@ range:(l 1) sernsug:NIL

$538121 eatures:((88)) trace:NIL

node:NP123 s:(NP) name:NIL range:(2 NIL) semsu :NIL

parurt:812l eatures:((NP (NUM 38) (SUBD)) trace:NI

node:NC124 pos:(NC) name:NIL rangze(2 2) sernsug:NIL

parentzNP123 features:((NC (NUM 18828 38 1P 2P 3))) trace:NIL

node:N8125 pos:(NS) name:NIL range:(22)sernsusernsug:NIL

parentzNC124p°sfeatures:((NS (NUM 18 28 38 1P 2P P))) trace:NIL

nodezDET126 :(DET) name:THE ran e:(22) semsug:NIL

parentzN8125 eaztures((DET (NUM 18 38 1P2P 3P))) trace.NIL

node.NOUN127 pos:(NOUN) nune.TEACHERrarrrNIIf:.(3 3) sernsug:NIL

parent:NPl23 features:((NOUN (NUM 38))) trace:

197

node:8128 gs:.(S) name:NIL range:(4 NIL) sernsug:NIL

par-enstuzNBP13 features:((8 (SEC) (STRUC-OK) (CLOSED))) trace:NIL

node:NP129 :(NP) name:NIL range:NIL sernsug:NIL

parent:8128 eatures:((NP (DUMMY))) trace:NIL

node:AUX130 pos:(AUX) name:NIL rang:.eNILsernsugNIL

pawrt:8128 features.((AUX (PASSIVE))) trace.NIL

node:VP13l 1pos:.(VP) name:NIL range:(4 7) sernsug:NIL

parent:8128 tuzres((VP)) trace.NIL

node:V132 s.(V) name:TAUGHT range:(4 4) semsug:(<abso TEACHER.1) <abso TAUGHT.2) TO 2)

paratt:VP131features.((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

«IOBJ—

node:NP133 pos:(NP) name:NIL range:NIL sernsug:NIL

pawn:VPl31 features:((NP (TRACE))) trace:NP12

node:PP134 pos:(PP) name:NILranm6 7)sernsug:NIL

parent:VP131 features:((PP (MOD BLE) (NUM83S))) trace:NIL

;odezPREP135 pos:(PREP) name:BY range:(5 5) sunsug'NIL

parent:PPl34 features:((PREP))tracezNIL

node:NPl36 pos:(NP) name:NIL range:(6 7) sernsuEé<abso TAUGHT.2) <abso POOL.3) BY NIL)

parent:PP134features:((NP (NUM 3S) (MODIFIAB))) trace:NIL

node:NC137 pos:(NC) name:NIL range:(6 6) semsug:NIL

parent:NP136 features.((NC (NUM 18828 3S 1P 2P 3P))) trace.NIL

node:NSl387pos:.(NS) name:NIL range.((66) sernsug:NIL

parent:NC13 features:((NS (NUM 1828 38 1P 2? P))) trace.NIL

node.DET139 pos:(DET) name:THE nrzrge:()66) semsug:NIL

parent.N8138 features:((DET (NUM 18 38 1P 2P 3P))) trace:NIL

node:NOUNl40 pos:(NOUN) namezPOOL range:(7 7) sernsug:NIL

parent1NPl36 features:((NOUN (NUM 38))) trace:NIL

nodezAUX147 pos:(AUX) name:NIL range:NIL sernsug:NIL

parent:8121 features:((AUX)) trace:NIL

node:VP148 (VP:) name:NIL range:(8 8) semsug:NIL

parent:8121eat:ures((VP (NUM 18 28 38 1P 2P 3P) (TRANSITIVE) (EN) (TENSE PAST) (MAIN))) trace:NIL

node:V141 pos:(V) name:PASSED range:(8 8) semsu :(<abso TEACHERJ) <abso PASSED.4> SUBJ NIL)

pawn:VP148 features:((V (MAIN) (TENSE PAST) (TRANSITIVE) (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NP154 pos:(NP) name:NIL range:(9 10) sernsug:NIL

parent:NIL features:((NP (NUM 38) (MODIFIABLE))) trace:NIL

node:NC152 pos:(NC) name:NIL range:(9 9) semsugzNIL

parent:NP154 features:((NC (NUM 18 28 3S 1P 2P 3P))) trace:NIL

node:NSlSO pos:(NS) name:NIL range:(9 9) sernsug:NIL

pawnzNC152 features:((NS (NUM 18 28 3S 1P 2P 3P))) trace:NIL

node:DET149 pos:(DET) name:THE range:(9 9) sernsug:NIL

parent:N8150 features:((DET (NUM 18 28 3S 1P 2P 3P))) trace:NIL

;ode:NOUN151 pos:(NOUN) name:TEST range:(lO 10) sernsug:NIL

parent:NP154 features:((NOUN (NUM 38)» trace:NIL

Come into mic-matching part...

Retum from nae-matching routine. rules: (OBJECT-RULE)

Only one rule selected : OBJECT-RULE

Suggestion received: dir=CONNECI ol:<abso PASSED.4> o2=<abso TEST.5) 03:08] whichasp: NIL

two-way collisions betw <abso TEST.5) and <abso PASSED.4> : 8

4! of paths for these two-way collisions : 171

call into secondary marker passing

if of collisions after H-heuristic: 1

Number offull paths be“! rel filtering :1

number of full paths after nurn. relation filtering : 1

Number of full paths after hierarchy of end absos : 1

Final paths selectedin picig'tgsinterp.

<<>> (<abso GENERAL_ '1‘) <abso PASS) (<abso TEST.5) I <abso TEST) D <abso GENERAL_TEST) C_INV <asp

PASSEE.PASSEE-PASS) A_INV <rel PASSEE-PASS) A_INV <asp PASS.PASSEE-PASS) C_INV<abso PASS) I <abso PASSED.4>))

...-:Trees'tn CLIST:=

I98

node:8121 pos:(S) name:NIL range:(l 8) sernsug:NIL

parentzNIL features:((S (MAIN) (STRUC—OK») trace:NIL

node:88122 pos:(SS) narne:@ range:(l 1) sernsug:NIL

paratt:812l features:((88)) trace:NIL

«SUBJ--

node:NPl23 pos:(NP) name:NIL range:(2 NIL) semsug:NIL

parutt:8121 features:((NP (NUM 38) (SUBJ))) trace:NIL

node:NC124 pos:(NC) name:NIL range:(2 2) sernsug:NIL

pawrtzNP123 features:((NC (NUM 18 28 3S 1P 2P 3P))) trace:NIL

;ode:N8125 pos:(NS) name:NIL range:(2 2) semsug:NIL

parent:NC124 features:((NS (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:DET126 pos:(DET) name:THE range:(2 2) sernsug:NIL

parutt:N8125 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUNl27 pos:(NOUN) name:TEACHER mge:(3 3) sernsug:NIL

pawn:NP123 features:((NOUN (NUM 3S))) trace:NIL

node:8128 pos:(S) nachIL range:(4 NIL) sernsug:NIL

pawsnéglfi features:((S (SEC) (STRUC—OK) (CLOSED))) trace:NIL

node:NP129 pos:(NP) name:NIL range:NIL sernsug:NIL

parent:8128 features:((NP (DUMMY))) trace:NIL

node:AUXl3O pos:(AUX) name:NIL range:NIL sernsug:NIL

pawtt:8128 features:((AUX (PASSIVE))) trace:NIL

node:VPl31 pos:(VP) name:NIL range:(4 7) sernsug:NIL

pawtt:8128 features:((VP)) trace:NIL

node:Vl32 pos:(V) name:TAUGHT range:(4 4) sernsug:(<abso TEACHERJ) <abso TAUGHT.2> TO 2)

parent:VP131 features:((V (EN) (TENSE PAST) (MAIN) (TRANSITIVE) (DATIVE) (DATIVE-PREP T0)))

--IOBJ-

nodezNP133 pos:(NP) name:NIL range:NIL sernsug:NIL

paratt:VP131 features:((NP (TRACE))) trace:NP12

node:PP134 pos:(PP) name:NIL range:(5 7) sernsug:NIL

parent:VPl3l features:((PP (MODIFIABLE) (NUM 3S))) trace:NIL

node:PREP135 pos:(PREP) namezBY range:(5 5) sansug:NIL

parent:PP134 features:((PREP)) trace:NIL

node:NP136 pos:(NP) name:NIL range:(6 7) sernsug:(<abso TAUGHT.2> <abso POOL3> BY NIL)

pawnzPP134 features:((NP (NUM 3S) (MODIFIABLE))) trace:NIL

node:NCl37 pos:(NC) name:NIL range:(6 6) sernsug:NIL

parentzNPl36 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:N8138 s.(NS) name:NIL range:(6 6) semsug:NIL

parent:NC13 feattrres:((NS (NUM 1828 38 1P 2P 3P))) trace:NIL

node:DET139 pos:(DET) name:THE range:(6 6) sernsug:NIL

pawnzN8138 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NOUN140 pos:(NOUN) name:POOL range:(7 7) semsug:NIL

parentzNP136 features:((NOUN (NUM 38))) trace:NIL

nodezAUX147 pos:(AUX) name:NIL range:NIL sernsug:NIL

parent:8121 features:((AUX)) trace:NIL

node:VP148 pos:(VP) name.NIL range:(8 10) semsug:NIL

parent:8121 features:((VP (NUM 18 28 38 1P 2P 3P)(TRANSITIVE) (EN) (TENSE PAST) (MAIN))) trace:NIL

node:V141 pos:(V) name:PASSED range:(8 8) sernsug:(<abso TEACHER. I) <abso PASSED.4> SUBJ NIL)

”3;:W148 features:((V (MAIN) (TENSE PAST) (EN) ('I'RANSIIIVE) (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NP154 pos:(NP) name:NIL range:(9 10) sernsug:(<abso PASSED.4> <abso TEST.5) QB] NIL)

pawn:VP148 features:((NP (NUM 3S) (MODIFIABLE))) trace:NIL

node:NC152 pos:(NC) name:NIL range:(9 9) sernsug:NIL

parentzNP154 features:((NC (NUM 18 28 38 1P 2P 3P))) trace:NIL

node:NSISO pos:(NS) name:NIL range:(9 9) semsugzNIL

parcntzNC152 features:((NS (NUM rs 23 as IP 2? 3?)» trace:NIL

node:DET149 pos:(DET) name:THE range:(9 9) sernsug:NIL

parent:N8150 features:((DET (NUM 18 28 38 1P 2P 3P))) trace:NIL

199

node:NOUN151 pos:(NOUN) name:TEST range:(lO 10) sernsug:NIL

pawttzNP154 features:((NOUN (NUM 38))) trace:NIL

Come into rule-matching part...

Return from rule-matching routine. rules: NIL

No rules are found.

------- justify finished.as success -------------

an object read in from cash : FPUNC153

Come into rule-matching part...

Return from rule-matching routine. rules: (S-CLOSE-AFF)

Only one rule selected = S-CLOSE-AFF

3Trees in CLIST

,' This tree is thefinal syntactic representation ofthe input sentence.

node:8121 pos:(S) name:NIL range:(l 11) sernsug:NIL

parent:NIL features:((S (MAIN) (STRUC-OK)» trace:NIL

node:88122 :(SS) narne@ range:(l 1) sernsug:NIL

prtrcrtSUB38121 eatures:((88)) trace:NIL

node:NP123 :(NP) name:NIL range:(2NIL)semsu :NIL

parent:8121eatzures((NP (NUM 3S) (8UBJ))) trace.NI

node:NC124 pos:(NC) name:NIL rangc:(2 2) semsug

pawn:NP123 features:((NC (NUM 18s28 38 1P 2P 3P)))trace:NIL

node:N8125 pes:(N8) name:NIL rang:e(2 2) sernsug:NIL

parent:NC124 features:((NS (NUM 18828 38 1P 2P P))) trace:NIL

node:DET126 po:s(DET) name:THEranranzge:.(22))sernsug:NIL

parmt:NSl25 features:((DET (NUM 18 3S 1P 2P 3P))) trace:NIL

node:NOUN127 pos:(NOUN) name.TEACHERranNIit:.(3 3) semsug:NIL

parent:NP123 features.((NOUN (NUM 38))) trace

node:8128 {on.(S) name:NIL rang“: NIL) semsug:NIL

pawnU:NP13 features:((8 (SEC) (UC-OK) (CIDSED))) trace.NIL

node:NP129 :(NP) name:NIL range:NIL sernsug:NIL

parent:8128 eatures:((NP (DUMMY))) trace:NIL

nodczAUX130 pos:(AUX) name:NIL range:NIL sernsug:NIL

parent:8128 features:((AUX (PASSIVE))) trace:NIL

node:VP131 res:.(VP) name:NIL range:(47) sernsug:NIL

parent:8128 tu:res((VP)) trace:NIL

node:Vl32 pos:(V) name:TAUGHT rang).e:(4 4) semsu :(<abso TEACHER.1> <abso TAUGHT.2> T0 2)

firiwrsr features:((V (EN) (TENSE

node:NP133 pos:(NP) name:NIL range:NIL sernsug:NIL

parent:VP131 features:((NP (TRACE))) trace.NP12

node:PP134 pes:(PP) name:NIL rang:ge(57)sernsu:NIL

parent:VP131 features.((PP (MODIFIABLE) (NUMg38))) trace'.NIL

node:PREP135 pos:(PREP) name:BY range:(5 5) sernsug:NIL

pawn:PP134 features:((PREP)) trace:NIL

nodeNP136 pos:(NP) name:NIL range.((6 7) semsug-(<abso TAUGHT.2) <abso POOL.3> BY NIL)

pawnPP:134 features:((NP (NUM 38) (MODIFIAB))) trace:NIL

node:NC137 pes:(NC) name.NIL range:(6 6) sernsug>NIL

parent:NP136 features:((NC (NUM 18828 38 1P 2P 3))) trace:NIL

node:N8138 res:.(NS) name:NIL range:(6 6) semsu§:NIL

parent:NC13 tures:((NS (NUM 18828 3S 1P 2P P))) trace.NIL

node:DET139 :(DET) name.THE c:(66) g:NIL

parent:N8138 eaztures((DET (NUM 18 638 1P 2P3P))) trace:NIL

node:NOUN140 pos:(NOUN) namezPOOL range:(7 7) sernsug:NIL

parent:NP136 features:((NOUN (NUM 3S))) trace:NIL

nede:AUX147 pos:(AUX) name:NIL range:NIL sernsug:NIL

parent:8121 features:((AUX)) trace:NIL

node:VP148 (VP:) name:NIL rangee:(8 10) semsug

parun:8121eaturcs:((VP (NUM 18 28 3S 1P 2P 3P)(TRANSITIVE) (EN) (TENSE PAST) (MAIN))) trace:NIL

AST) (M (TRANSITIVE) (DATIVE) (DATIVE-PREP TO)))

node:V141 pos:(V) name:PASSED range:(8 8) semsug:(<abso TEACHER. 1) <abso PASSED.4) SUBJ NIL)

paws}:.VP148features:((V (MAIN) (TENSE PAST) (EN) (TRANSITIVE) (NUM 18 28 3S 1P 2P 3P))) trace:NIL

..03 --

node:NP154 pos:(NP) name:NIL range:(9 10) semsug:(<abso PASSED.4> <abso TEST.5) OBI NIL)

pawn:VP148 features:((NP (NUM 3S) (MODIFIABLE))) trace:NIL

node:NC152 pes:(NC) name:NIL range:(9 9) semsug):NIL

parent:NP154 features:((NC (NUM 18 28 3S 1P 2P3))) trace:NIL

node:N8150 pos:(NS) name:NIL range:(9 9) sernsug:NIL

parent:NC152 features:((NS (NUM 18 28 3S 1P 2P 3P))) trace:NIL

node:DET149 tpes:.(DET) name.THEranrarztge:.(9 9) sernsug:NIL

parent:NSlSO tures:((DET (NUM 18 38 1P 2P 3P))) trace:NIL

node:NOUN151 pos:(NOUN) name:TEST range:(lO 10) sernsug:NIL

parent:NP154 features:((NOUN (NUM 3S))) trace:NIL

node:FPUNC153 pes:(FPUNC) name:@m range:(11 11) sernsug:NIL

paran:8121 features:((FPUNC)) trace:NIL

Come into mic-snatching part...

Retum from ntlc-matching routine. rules: NIL

No rules are found.

-------- justify finished.” success ---—----------

processing one sentence has finished.

> (print_semi)

Semantic Interpretation -----)

,',',' This is a set ofknowledge base pathsfound during the parsing.

(<abso TEST.5) I <abso TEST) D <abso GENERAL_TEST) C_INV <asp PASSEEPASSEE-PASS) A_INV

<rel PASSEE-PASS) A_INV <asp PASS.PASSEE-PASS) C_INV <abso PASS) I <abso PASSED.4))

(<abso PASSED.4> I <abso PASS) C_INV (“KNIMSS.PASSER-PASS) A_INV <rel PASSER-PASS) A_INV

<asp PASSER.PASSER-PASS> C_INV <abso AL) D <abso HIGH_ANIMATE) D <abso PERSON> D

<abso TEACH_PROFESSIONAL> D <abso TEACHER) I <abso TEACHER.1))

(<abso POOL.3> I <abso POOL> D <abso PLACE> C_INV <asp LOC.LOC-TEACH> A_INV <rel LOG-TEACH)

A_INV <asp TEACH.LOC-TEACH) C_INV <abso TEACH) I <abso TAUGHT.2>)

(<abso TAUGHT.2> I <abso TEACH) C_INV <asp TEACHREC-TEACH) A_INV <rel REC-TEACH) A_INV

<asp RECREC-TEACH) C_INV <abso PERSON> D <abso TEACH_PROFESSIONAL> D <abso TEACHER) I <abso TEACHER. 1 >)

> (dribble)

Appendix E

List of Sample Rules

The rules that have been mentioned in Chapter 4 and 6 in this thesis will be listed

in this section.

‘
a

‘
a

‘
a

‘
a

‘
a

‘
a

‘
a

‘
a

‘
a

\
a

\
a

‘
a

‘
a

‘
a

‘
a

\
a

a

I

a

I

I

I

V

In the pattern part, the base pattern is indicated by the flag 1

and the raw pattern is indicated by the flag 0.

Because the base pattern should be able to specify a portion of a tree,

it might be necessary to use more that one node chain elements. For example,

in the "passive-by" rule, the base pattern consists of three node chain

elements, "[(np-l 5-1) 1 ()] [(aux-l s-1) 1 (passive)] [(vp-l s-1) 1 ()]".

This is to specify the following shape of a portion of a tree:

8

/ l \

/ I \

NP AUX VP

The first element of each rule is the rule name which should be unique.

This rule creates a PP.

(build-pp ((1)(h dative-dobj‘PP1)

[l [(PIEP-I) 0 () l

[(np-l) 0 l) l)

() l

[(create pp-l)

(attach prep—1 to pp—l)

(attach np-l to pp-l)

(transfer-features np-l to pp-l)

]

This rule analyzes the main verb of a clause.

(main-verbZ ()

[([(np-l s-1) 1 ((link subj))]

[(v-1) 0 (main (not aux))])

([equal (feature—of num np-l) (feature-of num v-l)]

) l

[

(create aux-l)

(attach aux-1 to s-l)

(create vp-l)

(attach v-l to vp-l)

(transfer-features v-l to vp—l)

(attach vp-l to s-l)

(sem connect np-l v-l subj)

(if (have-feature intransitive in v-l)

(add-feature struc-ok to s-l))

; if *dummy_prop_instance* is set by the that-complement rule,

; then the proposition instance in this var is connected to

; the main verb of the secondary clause in the global var

; called *connections sec clause*.

onnect_main_sec2 v-1)— —o
‘
0

‘
0

‘
g

\
.

H

A

This rule analyzes the NP which starts with a noun.

(ex) "apples"

(noun-parseO ()

201

I

‘
0

‘
0

‘
0

s
o

‘
0

‘
0

‘
g

‘
0

‘
0

[([(noun-1) 0 () l

)

([no-ns-na-nc-noun-2])

l

[(push-to-cash-last—node) ; to put new nc in front of noun-l.

(create nc-Z on clist) ; this will be dummy nc containing nothing.

(bring-from-cash) ; to get noun-l after new nc.

]

This rule creates an NC when a noun directly follows the NS.

(noun-parsel ()

[([(ns-l) 0 () l

[(noun-1) 0 () I)

U l

[(create—mother nc-l of ns—l)

(transfer-features ns-l to nc-l)

]

This rule identifies the head noun of an NP by noticing that it is

followed by some non-noun element.

(ex) "the book is..."

(noun-parse3 ((l which-diagZ parse-det pronoun-rule)(h))

[([(nc—l) 0 () l

[(noun-l) O ()] ; this noun becomes the end of hp.

[(not noun) 0 ((word))]) ; this gives the enough context.

() l

[(push-to-cash-last-node)

(create np-l on clist)

(attach nc-l to np-l)

(transfer-features nc-l to np-l)

(attach noun-1 to np-l) ; noun-l is the end of np.

(sem connect nc-l noun-l) ; nc-l alone means the last noun under it.

(sem connect (na nc-l) noun-1 adj-mod); na alone means the last adj underit.

(transfer-features noun-l to np-l)

(if (have-feature wh in np-l)

(bind-whcomp np-l) : then

(add-feature modifiable to np-l)) : else

; deleted from clist by bind-whcomp. specific rules will do.

1

This rule identifies the head noun of an NP by noticing that

a noun with plural form should be the head noun.

(ex) ”the books ..."

(noun-parse33 ()

[([(nc—l) 0 () l

[(noun-1) O ((have-feature num 3p) (not sing-plu-same))]

;; sing—plu-same indicates that the noun can be both singular

;; and plural. (ex) fish, sheep.

)

U l

[(create np-l on clist)

(attach nc-l to np-l)

(transfer-features nc-l to np-l)

(sem connect nc-l noun-1)

(sem connect (na nc—l) noun-1)

(attach noun-1 to np-l)

(transfer-features noun-1 to np-l)

(if (have-feature wh in np-l)

(bind-whcomp np-l) ; then

(add-feature modifiable to np-1)) ; else

; deleted from Clist by bind-whcomp. specific rules will do.

This rule analyzes a non-"head noun" in the nominal compound by noticing

that a noun(of singular form) is immediately followed by another noun.

(ex) "the book shelf ..."

(noun-parse4 ()

;;; accomodate noun-1 as part of the np being built.

[([(nc-l) O () l

[(noun—l) O ((have-feature num 35))] ; becomes modifier of hp.

[(noun-2) O ()] ; this will become part of the np being built.

)

U

]

[(sem connect nc-l noun-l) ; it is not clear if this suggestion is

; necessary. more study of nominal compound is required.

(attach noun-1 to nc-l)]

This rule determines that a noun followed by a plural noun can be

the head noun of a NP and the plural noun will build another NP.

(ex) "the fish eggs ..."

(noun-parseS ()

[([(nc-l) 0 () l

[(noun-1) 0 ((have-feature num 35))) ; this is the end of np built.

[(noun-2) 0 ((have—feature num 3p))] : if it is not plural form,

; an article(a, the) should come to lead relative cl.

; noun-2 becomes a new np.

)

‘
0

‘
0

‘
0

0 l

[(push-to-cash-last-node)

(create np-l on clist)

(attach nc-l to np-l)

(transfer-features nc-l to np-l)

(sem connect nc-l noun-l)

(sem connect (na nc-l) noun-1)

(attach noun-1 to np-l) ; this is the head noun of np-l.

(transfer-features noun-1 to np-l)

(if (have-feature wh in np-l)

(bind-whcomp np-l) ; this is then part.

(add-feature modifiable to np-1)) ; this is else part.

This rule attaches a PP to an NP which immediately preceding it.

(ex) "a book on the desk"

(np-pp ((l)(h passive-by))

[([(np-l low-right) 1 (modifiable)]

[(PP-1) 0 (l l)

U l

[(attach pp-l to np-l)

(if (have-feature trace in pp-l)

(sem connect (np pp-l) np-l (prep pp-l) 2) ; if wh object is under pp.

(sem connect np-l (np pp-l) (prep pp-l)))

(remove-feature modifiable from np-l)]

‘
3

‘
g

This rule analyzes the reduced relative clause when an NP is followed by

a verb with past participle form(the NP is analyzed as the direct object

of the verb.

(ex) "the book torn ..."

V
.

‘
0

‘
0

\
.

(np-vpp ()

[([(np-l low-right) 1 (modifiable)]

[(v-1) 0 (en transitive)] ; has feature of past participle

)

()]

[(create s-l in clist)

(add-feature sec to s-l)

(attach s-l to np-l implicitly)

(create np-2)

(add-feature dummy to np-2)

(attach np-2 to s-l as subj)

(create aux-l)

(add-feature passive to aux-l)

(attach aux-l to s-l)

(create vp-l)

(attach v-l to vp-l)

(create np-3) ; this is the trace node for object.

(add-feature trace to np-3)

(make-pointer np-3 to np-l)

(attach np-3 to vp-l as obj)

(sem connect np-l v-l obj 2) : see order of wl and w2 here.

(attach vp-l to 3-1)

(add-feature struc-ok to s—l)

(remove-feature modifiable from np-l)

This rule applies for the same situation for the above "np-vpp" rule.

But the NP is analyzed as the indirect object of the verb.

(ex) "the teacher taught by the professor ...“‘
0

V
0

‘
-

(np-vppl ()

[([(np-l low-right) l (modifiable)]

[(v-1) 0 (en transitive dative)] ; has feature of past participle

)

() l

[(create s-l in clist)

(add-feature sec to s-l)

I

I

I

I

I

I

o

I

I

I

I

I

I

I

I

(attach s-l to np-l implicitly)

(create np-2)

(add-feature dummy to np-2)

(attach np-Z to s-1 as subj)

(create aux-l)

(add-feature passive to aux—1)

(attach aux-1 to s-l)

(create vp-l)

(attach v-l to vp-l)

(create np-3)

(add-feature trace to np-3)

(make-pointer np-3 to np-l)

(attach np-3 to vp-l as iobj)

(sem connect np-l v—l (dative-prep v-1) 2) ; see order of wl and w2 here.

(attach vp-l to s-l)

(add-feature struc-ok to s-l)

(remove-feature modifiable from np-l)

This rule analyzes the direct object of a clause.

(object-rule ()

[([(v-l vp—l s-1) 1 (transitive)]

[I(np-ll 0 ((not wh)) l)

(l

[(attach np-l to vp—l as obj)

(sem connect v-l np-l obj)

(add-feature struc-ok to s-l)]

This rule analyzes the determiner(a, the) of an NP.

(parse-det ((l)(h noun-parse3))

[([(det-l) 0 () l

)

() l

[(create ns-l on Clist)

(attach det—l to ns-l)

(transfer-features det-l to ns-l)]

This rule analyzes the passive clause's real subject of the form "by NP".

(ex) “... eaten by the tiger"

(passive-by ((1 np-pp np-ppl)(h))

[([(np-l s-1) 1 () l

[(aux-1 s-1) 1 (passive)]

[(Vp-l s-1) 1 () l

[(pp-1) o () l)

([equal-exact (symbol by) (prep-of—pp pp-1)])]

[(sem connect (v vp-l) (np pp-l) subj 2)

(attach pp-l to vp-l)

;;(replace np-l with pp-l)

;;(remove-from-clist pp-l)

This rule creates the start of a that-complement clause where

"that" is missing.

(ex) “I know he passed the test."

(reduced-that-conp ((l reduced-relative)(h)) ;;; reduced-relative has lower pri.;;;;

[([(Vp-l s-1) 1 (thatcomp)]

[(hp-1) 0 ((not wh)) 1

)

() l

[(push—to-cash-last—node) ; move the np to cash.

(create s-2)

(add—feature sec to 5-2)

(add-feature comp to s-2)

(create that-comp-l)

(add-feature dummy to that-comp-l)

(attach that—comp-l to s-2) ; to use as a claudse starter.

(attach s-2 to vp-l as comp implicitly)

(add-feature struc-ok to s-l)

the following action push the instance of (v vp-l) to

the global variable *connect_main_sec_pr0position*.

the instance for the verb of sec clause will be pushed

later by the main verb processing rules.

(c nnect_main_secl (v vp-l))

H
O
‘
O
‘
Q
‘
.

\
.

This rule analyzes the first NP of a clause to be the subject of the clause.

I

I

I

I

I

‘
0

‘
0

‘
-

205

(subject-rule ()

[

[

([(*clause-start* s-1) 1 ()] ; ss, relpro, comp,

[(hp-1) 0 ((not wh))])

()] ; no additional restrictions

(attach np-l to s-l as subj)

(add—feature subj to np—l)]

This rule close an affirmative sentence by looking at the final

- punctuation mark ".".
I

(s-close-aff U

[

[

([(s-1) 1 ((not question) main struc-ok)]

[(fpunc-l) O ((not question))])

()]

(attach fpunc-l to s-l)

(set-sentence—finish)]

This rule attaches a PP to the VP of a clause.

[

(ex) "eat with a fork"

(vp-pp ((1)(h wh-dativ?-np-pp))

([(vp-l s-1) 1 ()

I (PP-l) 0 ()])

U]

(attach pp-l to vp-l)

(if (have-feature trace in pp-l)

(sem connect (np pp-l) (v vp-l) (prep pp-l) 2) ; if wh object is under pp.

(sem connect (v vp-l) (np pp-l) (prep pp-l)))

This rule starts the relative clause by noticing that

"which" or "that“ is directly following an NP.

(ex) "the book which the man read ..."

(wh-relative () ; after this rule, subject rule will run.

[([(np-l low-right) 1 (modifiable)]

()[](relpro-l) 0 () l)

(create s-l on Clist)

(add-feature sec to s-l)

(add-feature rel to s-l)

(attach relpro-1 to s-l) ; relpro-1 will work as clause-starter

(bind-whcomp np-l) ; this means making whcomp reg point to np-l

(remove-feature modifiable from np-l)

(attach s-l to np-l as mod implicitly)] ; but s-l should still be on clist.

LIST OF REFERENCES

LIST OF REFERENCES

Akmajian, A. and Heny, F. W. (1975) An Introduction to the Principles of Transforma-

tional Syntax. Cambridge, Massachusetts: The MIT Press, 1975.

Allen, J. F. (1983) "Recognizing Intentions from Natural Language Utterances". in

Brady, M. and Berwick, R. C. (editors). Computational Models of Discourse.

Cambridge, MA: The MIT Press, 107-166.

Allen, J. F. and Hayes, P. J. (1985) "A common sense theory of time." Proceedings of

9th International Joint Conference on Artificial Intelligence, Los Angeles, 1985,

528-531.

Alterman, R. (1985) "A Dictionary Based on Concept Coherence." Artificial Intelligence

25(2), 1985, 153-186.

Anderson, J. (1983) The Architecture of Cognition. Harvard University Press, Cam-

bridge, MA, 1983.

Barton, E. and Berwick, R. (1985) "Parsing with assertion Sets and Information Mono-

tonicity." Proceedings of the 9th International Joint Conference on Artificial Intel-

ligence, Los Angeles, California, 1985, 769-771.

Berwick, R. (1983) "A Deterministic Parser with Broad Coverage." Proceedings of the

8th International Joint Conference on Artificial Intelligence, Karlsruhe, West Ger-

many, 1983.

Birnbaum, L. and Selfridge, M. (1981) "Conceptual Analysis." in Schank and Riesbeck

1981, 318-353.

Bobrow, D. G. (1968) "Natural Language Input for a Computer Problem Solving Sys-

tem." in Minsky, M. L.(editor), Semantic Information Processing. Cambridge,

Mass.:The MIT Press, 146-226.

206

207

Bobrow, D. G. and Winograd, T. (1977) "An Overview of KRL: A knowledge represen-

tation language." Cognitive Science 1(1), 1977, 3-46.

Bobrow, R. J. and Webber, B. L. (1980) "Knowledge Representation for

Syntax/Semantic Processing." Proceedings of the First Annual National Confer-

ence on Artificial Intelligence. Stanford, August 1980, 316-323.

Brachman, R. J. (1979) "On the Epistemological Status of Semantic Networks." In Asso-

ciative Networks: Representation and Use of Knowledge by Computers. N. V.

Findler(editor), New York: Academic Press, 1979.

Brachman, R. J. (1983) "What IS-A is and isn’t: An Analysis of Taxonomic Links in

Semantic Nets." Computer 16(10) 1983, 30-36.

Brachman, R. J., Fikes, R. E. and Levesque, H. J. (1983) "Kripton: A Functional

Approach to Knowledge Representation." Computer 16(10), 1983, 67-73.

Brachman, R. J. and Schmolze, J. G. (1985) "An overview of KL-ONE knowledge

representation system." Cognitive science, 9(2), 1985, 171-216.

Bresnan, J. W. (editor) (1982) The Mental Representations of Grammatical Relations.

Cambridge, Massachusetts: The MIT Press, 1982.

Burton, R. (1976) "Semantic Grammar: An Engineering Technique for Constructing

Natural Language Understanding Systems." Technical Report 3453, Bolt Beranek

and Newman, Cambridge, Mass, 1976.

Carbonell, J. G. and Hayes, P. J. (1983) "Recovery Strategies for parsing Extragrammat-

ical Language." Computational Linguistics, 9(3-4), 1983, 123-146.

Charniak, E. (1976) "Inference and Knowledge." in Charniak and Wilks 1976.

Charniak, E. (1978) "On the use of framed knowledge in language comprehension."

Artificial Intelligence, " I 1(3), 1978, 225-266.

Charniak, E. (1981a) "A Common Representation for Problem Solving and Language

Comprehension Information." Artificial Intelligence, 16(3), 1981, 225-255.

Charniak, E. (1981b) "The Case-Slot Identity Theory." Cognitive Science, 5(3), 1981,

285-292.

208

Charniak, E. (1981c) "Six Topics in Search of a Parser." Proceedings of the 7th Interna-

tional Joint Conference on Artificial Intelligence, Vancoubcr, Canada, 1981,

1079- 1087.

Charniak, E. (1982) "Context Recognition in Language Comprehension." in Lehnert

and Ringle 1982, 435-454.

Charniak, E. (1983a) "Passing markers: A Theory of Contextual Influence in Language

Comprehension." Cognitive Science, 7(3), 1983, 171-190.

Charniak, E. (1983b) "A Parser with Something for Everyone." in King 1983, 117-149.

Charniak, E. (1986) "A Neat Theory of Marker Passing." Proceedings of the 5th

National Conference on Artificial Intelligence, 1986, 584-588.

Charniak, E. and Mcderrnott, D. V. (1986) Introduction to Artificial Intelligence.

Addison Wesley, 1986.

Charniak, E., Riesbeck, C. K. and McDermott, D. V. (1980) Artificial intelligence pro-

gramming. Hillsdale, NJ, Lawrence Erlbaum Associates, 1980.

Charniak, E. and Wilks, Y. A. (1976) Computational Semantics: An Introduction to

Artificial Intelligence and Natural Language Comprehension. Amsterdam: North-

Holland, 1976.

Chomsky, A. N. (1965) Aspects of the Theory of Syntax. Cambridge, MA: The MIT

Press, 1965.

Church, K. (1980) "On memory limitations for natural language parsing." Technical

Report MIT/LCS/l‘R-245, Laboratory for Computer Science, MIT, 1980.

Church, K. and Patil, R. S. (1982) "Coping with syntactic ambiguity or how to put the

block in the box on the table." American Journal of Computational Linguistics,

8(3-4), 1982.

Colby, K. M., Faught B. and Parkinson R. (1974) "Pattern Matching Rules of the recog-

nition of Natural Language Dialogue Expressions." Stanford AI Lab. Memo AIM-

234, 1974.

Collins, A. M. and Loftus, E. F. (1975) "A spreading activation theory of semantic pro-

cessing." Psychological Review, 82(6), 1975, 407-428.

209

Crain, S. and Steedman M. (1985) "On not Being Led up the Garden Path: The Use of

Context by the Psychological Parser." in Studies in Natural Language Processing.

Dowty, D., Karttunen, L. J. and Zwicky, A. M.(editors), Cambridge University

Press, 1985.

Cullingford, Richard (1978). "Script Application: Computer Understanding of Newspa-

per Stories." Research Report No. 116, Department of Computer Science, Yale

University, New Haven, Connecticut, 1978.

Dahlgren, K. and Mcdowel, J.(1986) "Using common sense knowledge to disambiguate

prepositional phrase modifiers." Proceedings of the 5th National Conference on

Artificial Intelligence, Philadelphia, 1986, 589-593.

Dowty, D. R, Wall, R. E. and Peters, S. (1981) Introduction to Montague Semantics.

Dordrecht: D. Reidel, 1981.

Dyer, M. (1983) In-Depth Understanding. Cambridge, MA: The MIT Press, 1983.

Eiselt, KR (1985) "A Parallel-process Model of On-Line Inference Processing."

Proceedings of the 9th International Joint Conference on Artificial Intelligence,

Los Angeles, California, 1985. 863-869.

Fahlman, S. E. (1979) NETL: A System for Representing and Using Real-World

Knowledge. MIT Press, Cambridge, 1979.

Feldman, J. A. and Ballard, D. H. (1982) "Connectionest models and their properties."

Cognitive Science, 6(3), 1982, 205—254.

Ferreira, F. and Clifton, C. (1986) "The independence of syntactic processing." Journal

ofMemory and Language, 25, 1986, 348-368.

Fillmore, C. J. (1968) "The Case for Case." in Universals in Linguistic Theory. E. W.

Bach and R. T. Harms(editors), Holt, Reinhart and Winston, New York, 1968, 1-

88.

Finin, T. (1980) "Semantic interpretation of nominal compounds." proceeding of The

first annual national conference on artificial intelligence, 1980, 310-312.

Fodor, J. A. (1983) Modularity ofMind, Cambridge, MA: MIT Press, 1983.

210

Fodor, J., Bever, T., and Garrett, M. (1974) The Psychology of Language. McGrawhill

Book Co., New York, 1974.

Fodor, J. D. and Frazier, L. (1980) "Is the human sentence parsing mechanism an

ATN?" Cognition, 8, 1980, 417-459.

Ford, M., Bresnan, J. W. and Kaplan, R. M. (1982) "A Competence-based Theory of

Syntactic Closure." in Bresnan 1982, 727-796.

Forster, K. I. (1979) "Levels of processing and the structure of the language processor."

In Sentence processing: psycholinguistic studies presented to Merill Garrett. W. E.

Cooper and E. C. T. Walker (editors), Hillsdale, N.J.: Lawrence Erlbaum, 1979.

Frazier, L. (1978) On Comprehending Sentences: Syntactic Parsing Strategies. Ph. D.

Dissertation, University of Connecticut, 1978.

Frazier, L. and Fodor, J. D. (1978) "The Sausage Machine: a New two Stage Parsing

Model." Cognition, 6(4), 1978, 291-325.

Frazier, L. and Rayner, K. (1982) "Making and correcting errors during sentence

comprehension: Eye movements in the analysis of structurally ambiguous sen-

tences." Cognitive psychology, 14, 1982, 178-210

Frazier, L. (1987) "Theories of sentence processing." In Modularity in Knowledge

Representation and Natural Language Understanding. Garfield, J. L. (editor),

Cambridge, MIT Press, 1987, 291-307.

Gawron, J. M., King, J. J, Lamping J. and Egon E., Paulson, E. A., Pullum, G. K., Sag, I.

A. and Wasow, T. A. (1982)

"Processing English with a Generalized Phrase Structure Grammar." Proceedings

of the 20th Annual Meeting of the Association for Computational Linguistics,

Tronto, June 1982. 74-81.

Gazdar, G. (1981) "Unbounded dependencies and constituent structure." Linguistic

Inquiry, 12, 1981, 155-184.

Gazdar, G. (1982) "Phrase Structure Grammar." in The Nature of Syntactic Representa-

tion. Jacobson, P. and Pullum, G. K. (editors), Dordrecht: D. Reidel, 1982.

Gorell, P. G. (1987) Studies of human syntactic processing: Ranked-parallel versus

serial models. Ph. D. Dissertation, University of Connecticut, 1987.

211

Granger, R. H. (1983) "The NOMAD System: Expectation-based Detection and Correc-

tion of Errors during Understanding of Syntactically and Semantically Ill-formed

Text." Computational Linguistics, 9(3-4), 1983. 188-196.

Granger, R., Eiselt, K., and Holbrook, J. (1986) "Parsing with parallelismza spreading-

activation model of inference processing during text understanding." in Memory,

Experience and Reasoning. J. Kolodner and C. Riesbeck(editors), Hillsdale,

NJzErlbaum, 1986.

Grice, H. P. (1975) "Logic and conversation." in Syntax and Semantics, Vol. III: Speech

Acts. P. Cole and J. L. Morgan(editor), Academies Press, New York, 1975.

Grosz, B. (1983) "TEAM: A transportable natural language interface system." Proceed-

ings of the Conference on Applied Natural Language Processing. Santa Monica,

1983, 39-45.

Hendler, J. (1986) "Integrating Marker-Passing and Problem-Solving: A Spreading

Activation Approach to Improved Choice in Planning." TR-l624, Department of

Computer Science, University of Maryland, College Park, MD, 1986.

Hirst, G. (1984) Semantic Interpretation Against Ambiguity. Ph. D. Dissertation,

Department of Computer Science, Brown University, 1984.

Hirst, G. (1986) Semantic Interpretation and the Resolution of Ambiguity. Cambridge

University Press, Cambridge, England, 1986.

Joshi, A. K., Webber, B. L. and Sag, I. A. (editors) (1981) Elements ofDiscourse Under-

standing. Cambridge University Press, 1981.

Katz, J. J. and Fodor J. A. (1963) "The Structure of a Semantic Theory." Language,

39(2), 1963, 170-210.

Kimball, J. (1973) "Seven Principles of Surface Structure Parsing in Natural Language."

Cognition, 2, 1973, 15-47.

King, M. (1983) Parsing Natural Language. London: Academic Press, 1983.

Kurtzman, H. (1985) Studies in syntactic ambiguity resolution. Ph. D. Dissertation,

MIT, 1985, distributed by IULC.

212

Lebowitz, M. (1980) Generalization and Memory in an Integrated Understanding Sys-

tem. Ph. D. Dissertation, Department of Computer Science, Yale University. 1980.

Lehnert, W. G. and Ringle, M. H.(editors) (1982) Strategies for Natural Language Pro-

cessing. Hillsdale, NJ: Lawrence Erlbaum Associates, 1982.

Lesser, V. R., Fennel, R. D., Erman L. D. and Reddy, D. R.(l975) "Organization of the

Hearsay H Speech Understanding System." IEEE Transaction on Acoustics,

Speech, and Signal Processing. ASSP-23, 1975, 11-24.

Lorch, R. F. (1982) "Priming and Search Processes in Semantic Memory: A test of three

models of spreading activation." Journal of Verbal Learning and Verbal Behavior,

21, 1982, 468-492.

Lytinen, S. L. (1984) The Organization of Knowledge in a Multi-lingual Integrated

Parser. Ph. D. Dissertation, Department of Computer Science, Yale University,

1984.

Lytinen, S. L. (1986) "Dynamically Combining Syntax and Semantics in Natural

Language Processing." Proceedings of the 5th National Conference on Artificial

Intelligence, 1986, 574-578.

Lytinen, S. L. (1988) "Are Vague Words Ambiguous?" in Lexical Ambiguity Resolution,

S. Small, G. Cottrell and M. Tanenhaus(editors), Morgan Kaufmann Publishers,

California, 1988, 109-128.

Marcus, M. (1980) A Theory of Syntactic Recognition for Natural Language. Cam-

bridge, MA: The MIT Press, 1980.

Marcus, M. Hindle, D. and Fleck, M. (1983) "D-theory: Talking about talking about

trees", Proceedings of the let Annual Meeting of the Association for Computa-

tional Linguistics, Stanford, CA, 1983, 129-136.

Marr, D. (1977) Artificial Intelligence - A personal view", Artificial Intelligence, 9,

1977, 37-48.

Marslen-Wilson, W. D and Tyler, L. (1980) "The Temporal Structure of Spoken

Language Understanding." Cognition, 8(1), 1980, 1-71.

McCarthy, J. and Hayes, P. J. (1969) "Some philosophical problems from the stand point

of artificial intelligence." in Machine Intelligence 4, Meltzer and Michie(editors),

213

Edinburgh, 1969, 463-502.

McDermott, D. (1981) "Artificial Intelligence Meets Natural Stupidity." in Mind

Design, J. Haugeland(editor), MIT Press, Cambridge, MA, 1981, 143-161.

Milne, R. (1980) "a Framework for Deterministic Parsing using Syntax and Semantics."

DAI Working Paper, Department of Artificial Intelligence, University of Edin-

burgh, January 1980.

Milne, R. (1982) "Predicting Garden Path Sentences." Cognitive Science, 6, 1982, 349-

373.

Milne, R. (1983) Resolving Lexical Ambiguities in the Deterministic Parser. Ph. D.

Dissertation, Department of Artificial Intelligence, University of Edinburgh, Scot-

land, 1983.

Milne, R. (1986) "Resolving Lexical Ambiguity in a Deterministic Parser." Computa-

tional Linguistics, 12(1), 1986, 1-12.

Minsky, M. (1968) Semantic Information Processing. MIT Press, Cambridge, MA,

1968.

Minsky, M. (1975). "A Framework for Representing Knowledge." in The Psychology

of Computer Vision. Winston, Patrick (editor), New York, McGraw-Hill, 1975,

211-277.

Norvig, P. (1983a) "Frame Activated Inferences in a Story Understanding Program."

Proceedings of the 8th International Joint Conference on Artificial Intelligence,

Karlsruhe, West Germany, 1983.

Norvig, P. (1983b) "Six Problems for Story Understanders." Proceedings of4th National

Conference on Artificial Intelligence, Washington, DC, 1983.

Norvig, P. (1986). Unified theory of inference for text understanding. Ph. D. thesis,

Department of Computer Science, University of California: Berkeley, 1986.

Pazzani, M. K. and Engelman, C. (1983) "Knowledge-based Qusetion Answering."

Proceedings of the Conference on Applied Natural Language Processing, Santa

Monica, 1983, 73-80.

214

Pazzani M. K. (1984) "Conceptual Analysis of Garden Path Sentences. " Proceeding of

International Conference on Computational Linguistics, 1984, 486-490.

Perreira, F. C. N. and Warren, D. H. D. (1980) "Definite clause grammars for language

analysis--- a survey of the formalism and a comparison with augmented transition

networks." Artificial Intelligence, 13(3), 1980, 231-278.

Quillian, M. R. (1968) "Semantic Memory." in Semantic Information Processing. Min-

sky, M. L.(editor), Cambridge, MA: The MIT Press, 1968.

Quillian, M. R. (1969) "The teachable language comprehender: A simulation program

and theory of language." Communications of the ACM, 1969, 459-476.

Ra, D. and Stockman, G. C. (1989a) "Use of Knowledge for Word Sense Disambigua-

tion." Proceedings of the Annual Conference for the International Association of

Knowledge Engineers, College Park, Maryland, 1989.

Ra, D. and Stockman, G. C. (1989b) "Integrated Natural Language Parsing Based on

Interleaved Semantic Processing." Proceedings of the Second International Sympo-

sium on Artificial Intelligence, Monterrey, Mexico, 1989.

Riesbeck, C. K. (1975) "Conceptual Analysis." in Schank 1975, 83-156.

Riesbeck, C. K. and Martin, C. E. "Direct Memory Access Parsing." Technical Report

354, Department of Computer Science, Yale University, 1984.

Riesbeck, C. K. and Schank R. C. (1976) "Comprehension by Computer: Expectation-

based analysis of Sentences in context." Research Report 78, Department of Com-

puter Science, Yale University, 1976.

Rieger, C. (1976) "An organization of knowledge for problem solving and language

comprehension." Artificial Intelligence, 7(2), 1976.

Ritchie, G. (1983) "Semantics in Parsing." in Parsing Natural language, M. King (edi-

tor), Academic Press, London, 1983.

Rumelhart, D. (1975) "Notes on a schema for stories." in Representation and Under-

standing. D. G. Bobrow and A. Collins(editor), Academic Press, New York, 1975,

211-236.

215

Sabah, G. and Rady, M. (1983) "A deterministic syntactic-semantic parser." Proceed-

ings of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe,

August 1983.

Sachs, J. S. (1967) "Recognition Memory for Syntactic and Semantic Aspects of Con-

nected Discourse." Perception and Psychophysics, 2, 1967, 437-442.

Sampson, G. R. (1983) "Deterministic Parsing." in King 1983, 90-116.

Schank, R. C. (1975) Conceptual Information Processing. Amsterdam: North-Holland,

1975.

Schank, R. C. (1982a) "Reminding and Memory Organization: An Introduction to

MOPS." in Strategies for Natural Language Processing. W. G. Lehnert and M. H.

Ringle(editors), Lawrence Erlbaum Associates, Hillsdale, N.J., 1982, 455-494.

Schank, R. C. (1982b) Dynamic Memory: a Theory ofReminding and Learning in Peo-

ple and Computers. Cambridge University Press, 1982.

Schank, R. C. and Abelson, R. P. (1977) Scripts, Plans, Goals and Understanding: an

Inquin into Human Knowledge Structures. Hillsdale, New Jersey: Lawrence Erl-

baum Associates, 1977.

Schank, R. C. and Birnbaum, L. (1980) "Memory, Meaning and Syntax." Research

report No. 189, Department of Computer Science, Yale University, New haven,

Connecticut. 1980.

Schank, R. C. and Riesbeck CK. (1981) Inside Computer Understanding: Five Pro-

grams plus Miniatures. Lawrence Erlbaum Associates, Hillsdale, N.J., 1981.

Seidenberg M., Tanenhaus, M., Leiman, J., and Bienkowski, M. (1982) "Automatic

access of the meanings of ambiguous words in context: Some limitation of

knowledge-based processing." Cognitive Psychology, 14(4), 1982, 489-537.

Selfridge, M. (1986) "Interated Processing Produces Robust Understanding." Computa-

tional Linguistics, 12(2), 1986, 89-106.

Small, S. L. (1980) Word Expert Parsing: a theory of distributed word-based natural

Language Understanding. Ph. D. Dissertation, Department of Computer Science,

University of Maryland, September 1980.

216

Small, S. L. (1983) "Parsing as Cooperative Distributed Inference: Understanding

through Memory Interactions." in King 1983.

Small, S. L., Cottrell, G. W. and Shastri, L. (1982) "Toward Connectionist parsing."

Proceedings of the National Conference on Artificial Intelligence, 1982, 247-250.

Small, S. L. and Rieger, C. J. (1982) "Parsing and Comprehending with Word Experts(a

theory and its realization)" in Lehnert and Ringle 1982, 89-147.

Sowa, J. F. (1984) Conceptual Structures. Addison-Wesley, 1984.

Stabler, E.(1983) "Deterministic and bottom-up parsing in prolog." Proceedings of the

National Conference on Artificial Intelligence, 1983.

Swinney, D. A. (1979) "Lexical Access during Sentence Comprehension:

(Re)Consideration of context effects." Journal of Verbal Learning and Verbal

Behavior, 18(6), 1979.

Tomita, M. (1987) "An Efficient Augmented-context-free Parsing Algorithm." Compu-

tational Linguistics, 13(1-2), 1987, 31-46.

Tyler, L. and Marslen-Wilson, W. (1977) "The on-line Effects of Semantic Context on

Syntactic Processing." Journal of Verbal Learning and Verbal Behavior, 16, 1977,

683-692.

Waltz, David L (1982). "The State of the Art of the Natural-language understanding."

in Lehnert and Ringle 1982.

Waltz, D. L. and Pollack, J. B. (1984) "Massively parallel parsing: A strongly interactive

model of natural language interpretation." Technical Report, Coordinated Science

Laboratory, University of Illinois, Urbana, Ill, 1984.

Wanner, E. (1980) "The ATN and the sausage Machine: Which one is baloney?" Cogni-

tion, 8(2), 1980, 209-225.

Weischedel, R. M. and Ramshaw, L. A. (1986) "Reflections on the Knowledge Needed

to Process Ill-Formed Language." Report No. 6264, BBN Laboratories Inc. Cam-

bridge, Massachusetts, 1986.

. Weischedel, R. M. and Sondheimer N. K. (1983) "Meta-Rules as a Basis for Processing

Ill-formed Input." Computational Linguistics, 9(3-4), 1983, 161-177.

217

Wilensky, R. (1987) "Some Problems and Proposals for Knowledge Representation".

Report No. UCB/CSD 87/351, Computer Science Division, University of Califor-

nia, Berkeley, 1987.

Wilensky, R., Arens, Y. and Chin, D. N. (1984) "Talking to Unix in English: An Over-

view of UC". Communications ofthe ACM, 27(6), 1984.

Wilensky, R., Mayfield, J., Albert, A., Chin, D., Cox, C., Luria, M., Martin, J. and Wu,

D. (1986) "UC - A Progress Report". Report no. UCB/CSD 87/303, Computer Sci-

ence Division(EECS), University of California, Berkeley, 1986.

Wilks, Y. A. (1975a) "An Intelligent Analyzer and Understander of English." Commun-

ications ofACM, 18(5), 1975, 264-274.

Wilks, Y. A. (1975b) "A Preferential, Pattem-Seeking Semantics for Natural Language

Inference." Artificial Intelligence, 6, 1975, 53-74.

Winograd, T. (1972) Understanding Natural Language. New York, Academic Press,

1972.

Winograd, T. (1983) Language as a Cognitive Process. Addison-Wesley, 1983.

Winston, P. H. (1984) Artificial Intelligence. Second Edition, Addison-Wesley, 1984.

Woods, W. A. (1970) "Transition Network Grammars for Natural Language Analysis."

Communications ofthe ACM, 13(10), 1970, 591-606.

Woods, W. A. (1972) "An experimental parsing system for transition network gram-

mars." in Natural Language Processing, R. Rustin (editor), Algorithmics Press,

New York, 1972.

Woods, W. A. (1975) "What’s in a Link: Foundations for Semantic Networks." in

Representation and Understanding: Studies in Cognitive Science. Bobrow, D. G.

and Collins, A. M. (editors), New York: Academic Press, 1975, 35-82.

Woods, W. A. (1983) "What’s Important about Knowledge Representation." Computer,

16(10), 1983, 22-29.

Woods, W. A., Kaplan, R. M. and Nash-Webber, B. L. (1972) "The Lunar Sciences

Natural Language Information system: Final Report." Report 2378, Bolt, Beranek

and Newman, Inc., Cambridge, Massachusetts, 1972.

